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ZUSAMMENFASSUNG I 

ZUSAMMENFASSUNG 

Diese Arbeit beschäftigt sich mit der Entwicklung flexibler zeitstetiger Überlebenszeitmodelle, die auf 

dem Accelerated Failure Time (AFT) Modell für die Überlebenszeit und dem Cox Relative Risk 

(CRR) Modell für die Hazardrate basieren. Die Flexibilisierung betrifft zum einen die Erweiterung des 

Prädiktors, um gleichzeitig eine Vielfalt von verschiedenartigen Kovariableneffekten zu 

berücksichtigen. Zum anderen werden die oftmals zu restriktiven parametrischen Annahmen über die 

Verteilung der Überlebenszeit durch semiparametrische Ansätze ersetzt, die flexiblere Formen der 

Überlebenszeitverteilung ermöglichen. Wir verwenden die Bayesianische Methodik für die Inferenz. 

Die auftretenden Probleme, wie zum Beispiel die Penalisierung der hochdimensionalen linearen 

Effekte, die Glättung nicht linearer Effekte und die Glättung der Basis-Überlebenszeit Verteilung, 

werden durch Regularisierungs-Prioris gelöst, die für die jeweilige Anforderung speziell angepaßt 

werden. 

Durch die betrachtete Erweiterung der beiden Modellklassen können verschiedene Herausforderungen, 

die in der praktischen Analyse von Lebensdauerdaten auftreten, bewältigt werden. Beispielsweise 

können die Modelle mit hochdimensionalen Merkmalsräumen umgehen (z. B. Genexpressionsdaten), 

sie ermöglichen die Variablenselektion aus der Menge oder einer Teilmenge der verfügbaren 

Kovariablen und erlauben gleichzeitig die Modellierung irgendeiner Art nicht linearer Effekte für 

Kovariable, die immer in das Modell eingeschlossen werden sollen. Die Möglichkeit der nichtlinearen 

Modellierung von Kovariableneffekten, ebenso wie die semiparametrische Modellierung der 

Überlebenszeitverteilung, ermöglichen darüber hinaus die visuelle Prüfung der Linearitätsannahme für 

Kovariableneffekte beziehungsweise der parametrischer Annahmen über die Überlebenszeitverteilung. 

In dieser Arbeit wird gezeigt, wie das p n>  Paradigma, die Relevanz von Untersuchungsmerkmalen, 

die semiparametrische Inferenz für funktionale Effektformen und die semiparametrische Inferenz für 

die Überlebenszeitverteilung in einem vereinheitlichten Bayesianischen Rahmen behandelt werden 

können. Wegen der Möglichkeit, die Stärke der Regularisierung bei den betrachteten Prioris für die 

linearen Regressionskoeffizienten zu kontrollieren, ist es nicht notwendig, konzeptionell zwischen den 

Fällen p n≤  und p n>  zu unterscheiden. Um die gewünschte Regularisierung durchzuführen, werden 

die Regressionskoeffizienten mit entsprechenden Schrumpfungs-, Selektions- oder Glättungs-Prioris 

verbunden. Da die verwendeten Regularisierungs-Prioris alle eine hierarchische Darstellung 

unterstützen, ermöglicht die resultierende modulare Priori Struktur, in Kombination mit angemessenen 

Unabhängigkeitsannahmen für die Parameter der Prioris, die Schaffung eines einheitlichen 

Bayesianischen Rahmens und die Möglichkeit, effiziente MCMC Ziehungsschemen für die 

gemeinsame Schrumpfung, Selektion oder Glättung in flexiblen Klassen von Lebensdauermodellen zu 

konstruieren. Die Bayesianische Formulierung ermöglicht somit die gleichzeitige Schätzung aller 

Modellparameter ebenso wie die Prädiktion und Unsicherheitsaussagen über die Modellspezifizierung. 

Die dargelegten Methoden wurden durch den flexiblen und allgemeinen Ansatz der strukturiert 

additiven Regression (STAR) für Zielvariable aus einer Exponentialfamilie und 
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Überlebenszeitmodelle vom CRR-Typ angeregt. Derartige systematische und flexible Erweiterungen 

sind im allgemeinen für AFT Modelle nicht verfügbar. Ein Ziel dieser Arbeit ist, die Klasse der AFT 

Modelle zu erweitern, um eine ebenso reichhaltige Klasse von Modellen bereitzustellen wie die, die 

aus den STAR Ansatz resultieren, wobei das Hauptaugenmerk auf der Schrumpfung von linearen 

Effekten, der Selektion von Kovariablen mit linearen Effekten und der Glättung von nichtlinearen 

Effekten stetiger Kovariablen, als typischem Bespiel einer nicht-linearen Modellierung, liegt. Im 

Speziellen werden der Bayesianische Lasso, der Bayesianische Ridge und der Bayesianische NMIG 

(eine Art Spike-and-Slab Priori) Ansatz zur Regularisierung der linearen Effekte kombiniert mit dem 

P-Spline Ansatz der die Glättung der nichtlinearen Effekte und der Basiszeitverteilung regularisiert. 

Um die Fehlerverteilung im AFT Modell flexibel zu gestalten, werden die parametrischen Annahmen 

über die Basis-Fehlerverteilung durch die Annahme einer endliche Gauss-Mischverteilung ersetzt. Für 

den Spezialfall der Spezifizierung einer einzigen Mischungskomponente reduziert sich das 

Schätzproblem auf die Schätzung eines log-normalen AFT Modells mit STAR Prädiktor. Zusätzlich 

wird die bestehende Klasse von CRR survival Modellen mit STAR Prädiktor, bei der ebenfalls die 

Basis-Hazardfunktion durch P-Splines approximiert wird, erweitert, um die Regularisierung der 

linearen Effekte mit den genannten Prioris zu ermöglichen, was den Anwendungsbereich dieser 

reichhaltigen Klasse von CRR Modellen weiter verbreitert. Schließlich wird der kombinierte 

Schrumpfungs-, Selektions- und Glättungsansatz auch in das semiparametrische CRR Modell 

eingeführt, bei dem die Basis-Hazardfunktion unspezifiziert bleibt und die Inferenz auf der Partiellen 

Likelihood basiert. 

Neben der Erweiterung der beiden Überlebenszeit Modellklassen werden die verschiedenen 

Regularisierungseigenschaften der betrachteten Schrumpfungs- und Selektions-Prioris untersucht. Die 

entwickelten Methoden und Algorithmen sind in der öffentliche verfügbaren Software BayesX und in 

R-Funktionen implementiert und die Leistungsfähigkeit der Methoden und Algorithmen wird 

umfangreich in Simulationsstudien getestet und anhand von drei realen Datensätzen dargestellt.  
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ABSTRACT 

This thesis is concerned with the development of flexible continuous-time survival models based on 

the accelerated failure time (AFT) model for the survival time and the Cox relative risk (CRR) model 

for the hazard rate. The flexibility concerns on the one hand the extension of the predictor to take into 

account simultaneously for a variety of different forms of covariate effects. On the other hand, the 

often too restrictive parametric assumptions about the survival distribution are replaced by 

semiparametric approaches that allow very flexible shapes of survival distribution. We use the 

Bayesian methodology for inference. The arising problems, like e. g. the penalization of high-

dimensional linear covariate effects, the smoothing of nonlinear effects as well as the smoothing of the 

baseline survival distribution, are solved with the application of regularization priors tailored for the 

respective demand. 

The considered expansion of the two survival model classes enables to deal with various challenges 

arising in practical analysis of survival data. For example the models can deal with high-dimensional 

feature spaces (e. g. gene expression data), they facilitate feature selection from the whole set or a 

subset of the available covariates and enable the simultaneous modeling of any type of nonlinear 

covariate effects for covariates that should always be included in the model. The option of the 

nonlinear modeling of covariate effects as well as the semiparametric modeling of the survival time 

distribution enables furthermore also a visual inspection of the linearity assumptions about the 

covariate effects or accordingly parametric assumptions about the survival time distribution. 

In this thesis it is shown, how the p n>  paradigm, feature relevance, semiparametric inference for 

functional effect forms and the semiparametric inference for the survival distribution can be treated 

within a unified Bayesian framework. Due the option to control the amount of regularization of the 

considered priors for the linear regression coefficients, there is no need to distinguish conceptionally 

between the cases p n≤  and p n> . To accomplish the desired regularization, the regression 

coefficients are associated with shrinkage, selection or smoothing priors. Since the utilized 

regularization priors all facilitate a hierarchical representation, the resulting modular prior structure, in 

combination with adequate independence assumptions for the prior parameters, enables to establish a 

unified framework and the possibility to construct efficient MCMC sampling schemes for joint 

shrinkage, selection and smoothing in flexible classes of survival models. The Bayesian formulation 

enables therefore the simultaneous estimation of all parameters involved in the models as well as 

prediction and uncertainty statements about model specification. 

The presented methods are inspired from the flexible and general approach for structured additive 

regression (STAR) for responses from an exponential family and CRR-type survival models. Such 

systematic and flexible extensions are in general not available for AFT models. An aim of this work is 

to extend the class of AFT models in order to provide such a rich class of models as resulting from the 

STAR approach, where the main focus relies on the shrinkage of linear effects, the selection of 

covariates with linear effects together with the smoothing of nonlinear effects of continuous covariates 
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as representative of a nonlinear modeling. Combined are in particular the Bayesian lasso, the Bayesian 

ridge and the Bayesian NMIG (a kind of spike-and-slab prior) approach to regularize the linear effects 

and the P-spline approach to regularize the smoothness of the nonlinear effects and the baseline 

survival time distribution. To model a flexible error distribution for the AFT model, the parametric 

assumption for the baseline error distribution is replaced by the assumption of a finite Gaussian 

mixture distribution. For the special case of specifying one basis mixture component the estimation 

problem essentially boils down to estimation of log-normal AFT model with STAR predictor. In 

addition, the existing class of CRR survival models with STAR predictor, where also baseline hazard 

rate is approximated by a P-spline, is expanded to enable the regularization of the linear effects with 

the mentioned priors, which broadens further the area of application of this rich class of CRR models. 

Finally, the combined shrinkage, selection and smoothing approach is also introduced to the 

semiparametric version of the CRR model, where the baseline hazard is unspecified and inference is 

based on the partial likelihood. 

Besides the extension of the two survival model classes the different regularization properties of the 

considered shrinkage and selection priors are examined. The developed methods and algorithms are 

implemented in the public available software BayesX and in R-functions and the performance of the 

methods and algorithms is extensively tested by simulation studies and illustrated through three real 

world data sets. 
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INTRODUCTION 1 

INTRODUCTION 

1. Introduction to the basic concepts 

1.1. Basic concepts of survival analysis K1.A1 

In continuous-time survival analysis the focus of attention is on a nonnegative random variable T , 

that is defined as the time to a predefined event, i. e. the duration time, where an individual is under a 

special unique risk (in contrast to competing risk models) until the interesting event occurs. T  is 

usually called survival or failure time. As a generic example, the risk could be the diagnosis of 

infection with a deadly disease and the corresponding event is the death of an individual in the study 

who is infected. The survival time in this example is the duration from the diagnosis until death and as 

also reflected by this example, the interesting event has only two complementary states, 0 = “event not 

occurred” and 1 = “event occurred”, and transitions from the state 1 to the state 0 are excluded. 

Symptomatic for the collected survival data set is its incompleteness due to the fact that the exact 

survival time of some individuals is unknown, censored, and the only available information is that the 

event occurred in a certain period of time. A special and most common censoring scheme is the right 

censoring, where an individual’s survival time becomes incomplete at the right side of the observation 

period, i. e., the only available information is, that the event happens at any time after the follow up. 

Reasons that hinder the observation of the exact survival time are, for example, that the event doesn’t 

occur during the end of the finite follow-up period in the study or the individual is lost during the 

study or withdrawn due to an event that is not of interest (e. g., cured or another competing risk). As a 

consequence of the censoring summary statistics of survival time distributions, such as the sample 

mean or the standard error for the mean, do not have desired statistical properties like unbiasedness as 

an example. Therefore, to accommodate for censoring, numerous methods have been developed for 

handling these incompletely observed survival times adequately, and survival analysis became a 

special topic in statistical research with applications in many fields of study like economics, medicine, 

biology, public health or epidemiology.  

There is a great variety of literature devoted to the analysis of survival data. A detailed introduction to 

survival analysis from a frequentist perspective and description of the possible censoring and 

truncation schemes can be found, e. g., in Klein and Moeschberger (2003) or Kalbfleisch and Prentice 

(2002). A powerful tool for a unified, efficiently handling of survival and event history data arises 

using the counting process representation of the corresponding models, which is exposed, e. g., in 

Andersen et al. (1993). For a general introduction and overview for full parametric and nonparametric 

Bayesian approaches for survival models we refer to Ibrahim et al. (2001), who give also a 

comprehensive review on Bayesian survival analysis. 
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1.1.1. Survival quantities 

Let the absolutely continuous, nonnegative random variable T 0≥  represent the survival time. For 

simplicity we assume in this subsection that the survival times iT , i 1,...,n= , of all patients follow the 

same general distribution iT ~ T . Besides the probability density function (p.d.f.) 

 T t 0

1
f (t) lim (t T t t), t 0

t
∆ → += ≤ < + ∆ ≥

∆
P , (1.1) 

and the corresponding cumulative distribution function (c.d.f.) 

 
t

T T
0

F (t) (T t) f (s)ds, t 0= ≤ = ≥∫P ,  

there are also some other quantities available to describe the probability distribution of the survival 

time T . In the survival analysis context it is common to use the survival function 

 T TS (t) 1 F (t) (T t), t 0= − = > ≥P , 

which is the probability that an individual will survive till time t 0≥  and the hazard rate function 

T (t) 0λ ≥ , which is defined by 

 T t 0

1
(t) lim (t T t t | T t), t 0

t
∆ → +λ = ≤ < + ∆ ≥ ≥

∆
P , (1.2) 

and interpreted as the instantaneous risk of failure in the interval [t, t t)+ ∆ , given survival up to time 

t 0≥ . In general the interpretation of the hazard rate as probability is not valid, but for small t 0∆ >  

the hazard rate expression T (t) tλ ∆  is approximately the conditional probability of failure in the 

interval [t, t t)+ ∆  given survival up to time t , i. e., T(t T t t | T t) (t) t≤ < + ∆ ≥ ≈ λ ∆P . Finally the 

cumulative hazard function is given as  

 
t

T T
0

(t) (s)ds, t 0Λ = λ ≥∫ . (1.3) 

While each of the functions Tf (t) , TF (t) , TS (t) , T (t)λ  and T (t)Λ  illustrate different aspects of the 

survival distribution, they separately provide mathematically equivalent full specifications of the 

survival distribution. Therefore, there exist some important one-to-one relationships of these 

quantities. In particular the connection 

 T
T

T

f (t)
(t)

S (t)
λ = , (1.4) 

which is derived immediately from the definition of the hazard function and 

 ( )T TS (t) exp (t)= −Λ  (1.5) 

are mainly used in the following. 

1.1.2. Data structure 

To accommodate censoring in the data, in the statistical model and in the methods, an additional 

positive and continuous random variable C 0≥  is introduced to describe the censoring process, where 

iC , i 1,...,n= , denote the corresponding potential censoring times of each individual. An individual’s 

observed survival time iTɶ  is said to be right censored at time iC 0≥ , if the exact value iT  is not 
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known and we only know, that it is greater than or equal to iC . The observed survival time for each 

subject in the sample is then given as the minimum of the true survival time and the censoring time 

 ( )i i iT min T ,C , i 1,...,n= =ɶ , 

and the so called censoring indicator 

 ( )i i iD I C T , i 1,...,n= ≤ = , 

reports, if an observation is right censored ( iD 0= ) or not ( iD 1= ) using the indicator function I( )⋅  

for definition. Beside the survival times there are usually sets of covariates collected, which may have 

an individual specific influence on the survival times. In summary, the observed right censored 

survival data is represented as 

 { }i i i(t ,d , ),i 1,...,n′= =vɶD , 

where it 0≥ɶ  is the observed survival time, id {0,1}∈  is the censoring indicator and i i,1 i,p(v ,..., v )′=v  

is the p-dimensional vector of observed covariates for the n individuals of the sample. 

1.1.3. Survival regression models 

The distribution over the survival times iT 0≥  is no longer independent of individual specific 

characteristics, if additional covariates iv  are available, where some of them are suspected to have an 

influence on the individual’s survival times. Influential individual specific characteristics cause 

heterogeneity in the population and require conditioning the survival distribution on the associated 

parameters, yielding a separate survival distribution for each individual in the sample. Heterogeneity 

in the population is addressed by the formulation of regression models to describe the functional 

dependence between the distribution of the survival times and the set of covariates with the task, to 

build a model that adequately describes the available data in terms of explanation and prediction. We 

consider two major approaches in continuous-time survival regression, which address different aspects 

of the survival distribution. For simplicity we take account for linear effects β  of time-independent 

covariates i i⊂x v , which build a subset of the observed covariates iv  in the collected data D . This 

assumption is abandoned in the later sections. 

Cox relative risk model (CRR model) 

A popular survival regression model is the relative risk model of Cox (1972). In contrast to the AFT 

model, introduced below, the relationship of the covariates and the survival time iT 0≥  is implicitly 

defined by the specification of the hazard function as 

 i 0 0 i(t | , ) (t)exp( )′λ λ = λβ x β , (1.6) 

where 0 ( ) 0λ ⋅ ≥  is an unspecified, arbitrary baseline hazard function and 
x1 p( ,..., )′= β ββ  denotes the 

xp -dimensional vector of regression coefficients associated to the time-independent covariates 

xi i1 ip i(x ,..., x )′= ⊂x v . The impact of the covariates is subsumed in the predictor i i i( ) ′η = η =β x β , 

which acts through the exponential function (to ensure a nonnegative hazard function) as individual 

specific modifier at the common baseline hazard function in the population. In addition, the model 
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formulation (1.6) separates the effects of the covariates completely from the baseline hazard, i. e. from 

the underlying baseline survival distribution of the population.  

In particular, the factor i iexp( ) exp( )′η = x β , also called relative risk , summarizes the effects of 

different personal characteristics and scales the baseline hazard individual specific, while the single 

covariate effect kexp( )β  corresponds to the unit change of the hazard function with respect to a unit 

change in the covariate ikx . The famous property of the CRR model arises, when the hazard rate ratio 

of two individuals with covariates i j,x x , i j≠  is considered 

 ( ) ( )i 0
i j i j

j 0

(t | , )
exp exp ( )

(t | , )

λ λ
′= η − η = −

λ λ

β
x x β

β
. 

For time-independent covariates the hazard ratio is constant for any two covariate combinations 

leading to proportional hazard rates. The crucial, rather strong property, that the hazard rate functions 

of different individuals can not cross, must be seriously verified to hold in practice. Another special 

and remarkable feature of the CRR model is the presence of the partial likelihood, compare 

Subsection 1.1.4, which enables suitable likelihood inference for the regression coefficients without 

the need to specify baseline hazard function. A possible parametric specification for inference arises 

from Weibull regression model, where the hazard is given by 

 1
i i(t | , ) t exp( )α− ′λ α = αβ x β , 

with shape parameter 0α > . The Weibull model is adequate, if the baseline hazard 1
0 (t) tα−λ = α  is 

assumed to be monotone increasing ( 1α > ), monotone decreasing ( 1α < ) or constant ( 1α = ), where 

in the latter case the survival times have an exponential distribution i iT ~ Exp( )′x β . 

Accelerated failure time model (AFT model) 

A regression model that specifies the direct impact of the covariates on the survival time iT 0≥  is the 

accelerated failure time model, also introduced by Cox (1972). The functional relationship in the AFT 

model is described by 

 i 0,i iT T exp( )′= x β , (1.7) 

where 0,iT 0≥  are covariate independent baseline survival times and 
x1 p( ,..., )′= β ββ  is a xp -

dimensional vector of regression parameters that represents the linear effects of time-independent 

covariates 
xi i1 ip i(x ,..., x )′= ⊂x v . In contrast to the CRR model the predictor i i i( ) ′η = η =β x β  

determines the so-called acceleration factor i iexp( ) exp( )′η = x β  for the baseline survival time 0,iT , 

where a negative value of the predictor i i 0′η = <x β  causes an acceleration and a positive value 

i i 0′η = >x β  a deceleration (= negative acceleration) of the baseline survival time 0,iT . Through the 

exponential link function in (1.7) each single covariate causes a multiplicative change of 0,iT  and in 

particular jexp( )β  reflects the unit change of the survival time iT  with respect to a unit change in the 

covariate jx . The baseline survival times 0,iT 0≥  can be interpreted as the individual lifespan if 

i =x 0 , but in general the baseline survival time 0T  is an unobservable model component. For 

parametric inference the baseline survival times 0,iT , i 1,...,n= , are assumed to be independent and 

identical distributed (i.i.d.) with subject to the baseline survival time distribution of 0T 0≥  in the 

population. Under this assumption, the ratio of the mean survival times of two individuals with 

observed covariates i j,x x , i j≠ ,  



INTRODUCTION 5 

 ( )i
i j i j

j

(T | )
exp( ) exp ( )

(T | )
′= η − η = −

β
x x β

β

E

E
, 

is constant, for any two time independent covariate combinations leading to proportional changes of 

the survival time means, and especially kexp( )β  quantifies this proportion with respect to a unit 

change in the covariate ikx  compared to jkx . The generic form of the hazard rate function is given by 

 ( ) ( )i 0 i it | t exp( ) exp( )′ ′λ = λ ⋅ − −β x β x β , (1.8) 

where 0 ( ) 0λ ⋅ ≥  denotes the baseline hazard function that describes the covariate independent baseline 

survival time distribution. In contrast to the hazard function in the CRR model the covariates affect 

also the baseline hazard 0 ( )λ ⋅  and Figure 1.1 visualizes the different impact of a binary covariate on 

the baseline hazard in the CRR and AFT model. 

An alternative and often used representation of the AFT model is obtained, when the logarithmic 

transformation is applied to (1.7). On the log-scale the AFT model gets an additive structure 

 i i i iY : log(T ) ′= = + σεx β , (1.9) 

that is much closer to conventional regression models with response i iY : log(T )=  and random baseline 

error term i 0,i: log(T )σε = . The interpretation of the covariate effects in the log-linear version of the 

AFT model is straightforward in terms of iY . The random baseline error term is further decomposed 

in a fixed scale factor 0σ >  and random error terms iε ∈ℝ  which are assumed to be i.i.d. with density 

f ( )ε ⋅ . In the later sections we use the definition 0 0Y := β + σε , including the common intercept 0β , to 

describe the common baseline error distribution of the population.  

The error iε  is often assumed to have a density from a standard location-scale family, where the 

location parameter is equal to zero and scale parameter is equal to one. Since the location-scale 

distribution family is invariant for linear (affine) transformations, the location parameter of the log-

survival time iY  in (1.9) is modeled by the predictor i i′η = x β  and the scale parameter is given by 

0σ > . Using for example i.i.d. baseline errors i ~ N(0,1)ε  from the standard Gaussian distribution in 

the log-linear representation, the log-survival times iY | ,σβ  also have a Gaussian distribution, where 

the location parameter i i′η = x β  determines the mean and the scale parameter 0σ >  determines the 

standard deviation. On the associated time-scale we get a lognormal distribution for the survival times, 

i iT | , ~ LogN( , )′σ σβ x β , with shape parameter σ  and scale parameter i i′η = x β . Using alternatively 

i.i.d. baseline errors from a standard extreme value distribution with density f ( ) exp( exp( ))ε ε = ε − ε , 

the popular and widely used Weibull regression is obtained. The resulting distribution of the log-

survival times iY | ,σβ  is also an extreme value distribution, where the location parameter i i′η = x β  

corresponds to the mode. Returning to time-scale, the associated survival times have a Weibull 

distribution, iT | , ~ WB( , )σ α λβ , with shape parameter 1α = σ , scale parameter iexp( )′λ = − σx β  

and the hazard function 

 ( )
1 11

i i

1
(t | , ) t exp

−
σ σ′λ σ = −

σ
β x β . 

The unique feature of the Weibull regression model is that it can either be viewed as special case of 

the AFT model or as special case of the CRR model. Note that in the CRR context the Weibull 

regression model has another parameterization as in the AFT context with the one-to-one connections 
1−α = σ  and 1

j,CRR j,AFT
−β = −σ β . To simplify the notation and disburden the common treatment of the 
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AFT and CRR model in this introductory section, the scale parameter 0σ >  of the AFT model is from 

now on assumed to be known, so that β  is the parameter of primary interest. Inference for the scale 

parameter is outlined in the subsequent sections. 
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Figure 1.1: Hazard functions of the AFT and CRR model. The baseline hazard 0 (t)λ  (black line) corresponds to 
x 0=  and is compared to the hazard function for x 1=  under the CRR model (blue line) with 2 3β =  and an 

AFT model (magenta line) with 2 3β = − . 

This subsection is concluded with the short remark that also semiparametric versions of the AFT 

model, with unspecified baseline survival times/errors, can be considered for inference of the 

regression parameters β , similar to the semiparametric version of the CRR model. The methods are 

based on censored rank statistics and there is a lot of literature dealing with the development of these 

statistics and adequate inferential methods, so that meanwhile the AFT model can also be viewed as 

practical semiparametric alternative to the CRR model, even in the context with time-dependent 

covariates. However, the methods are numerical challenging and computationally intensive and there 

is no inferential pendant to the partial likelihood of the CRR model. We refer to Kalbfleisch and 

Prentice (2002) for a comprehensive treatment of parametric and nonparametric parametric AFT 

models and to Wei (1992) for a review of inference procedures for nonparametric models in the 

frequentist setting. 

1.1.4. Likelihood structure 

Full likelihood 

For estimation of parametric survival regression models it becomes also necessary to model explicitly 

the introduced censoring mechanism. In general the censoring time iC 0≥  is treated as a survival 

time, where the interesting event is the censoring and iC |ψ  denotes the corresponding distribution 

which depends on a set of parameters ∈Ψψ . The survival distribution iT |θ  is assumed to depend on 

the parameters ∈Θθ  which are the parameters of main interest. For simplicity we can think about 

≡θ β , but in parametric models, like e. g. the Weibull model, we have generally more parameters of 

interest, i. e. ( , )′ ′= αθ β . To derive an adequate likelihood, further assumptions are useful to simplify 

the likelihood structure of a survival regression model. Often the censoring process is assumed to be 
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noninformative, so that the distribution of the lifetimes iT |θ  and censoring times iC |ψ  of each 

individual i 1,...,n= , do not share common parameters of interest, i. e. the intersection of θ  and ψ  is 

empty. Further assumptions are that given the covariates the lifetimes iT |θ  are conditional 

independent, the censoring times iC |ψ  are conditional independent and the lifetimes and censoring 

times are conditional independent of each other. At least the likelihood contribution for a possibly 

right censored observation is given by the joint distribution of the observable quantities iTɶ  and iD  as 

 ( ) ( ) ( )( )i i i i
i i i ii i

d 1 d 1 d d
i i i T i T i C i C iT ,DL , | f t ,d | , f (t | ) S (t | ) f (t | ) S (t | )− −= =θ ψ θ ψ θ θ ψ ψɶ

ɶ ɶ ɶ ɶ ɶD . (1.10) 

The noninformative censoring induces that the components concerning the censoring process act as 

constants and can be neglected if the focus relies on θ . Finally, the likelihood contribution for the 

observation of a true survival time ( i iT T=ɶ ) given the data D  is simply i i iL ( | ) f (t | )=θ θɶD  and for a 

right censored observation ( i iT C=ɶ ) the contribution is given by i i i i iL ( | ) (T t | ) S (t | )= > =θ θ θɶ ɶPD . In 

summary, the full likelihood for right censored survival data is represented by 

 ( ) ( ) ( ) ( )i i
n n

d 1 d

i i i i i

i 1 i 1

L | L | f t | S t |
−

= =

= =∏ ∏θ θ θ θɶ ɶD D . (1.11) 

In terms of the hazard function using the relationships (1.4) and (1.5) the full likelihood is expressed 

as 

 ( ) ( ) ( ) ( )( )i
n n

d

i i i i i

i 1 i 1

L | L | t | exp t |
= =

= = λ −Λ∏ ∏θ θ θ θɶ ɶD D . (1.12) 

If there is sufficient evidence for a parametric specification of the survival distribution, maximum 

likelihood methods based on the full likelihood can be used to estimate the model parameters ∈Θθ  

leading to usual properties like asymptotic normality and unbiasedness of the estimates. 

Partial Likelihood 

As proposed in Cox (1972) and further discussed in Cox (1975), the inference of the regression 

coefficients β  in the semiparametric CRR model (1.6) can be carried out in terms of the partial 

likelihood 

 ( )
( )

( )

i

k i

d
n

i

n
i 1 k(t t )k 1

exp
pL |

1 exp= ≥=

 ′ 
=  

′  
∏

∑
x β

β
x βɶ ɶ

D . (1.13) 

The indicator function 
k i(t t )1 ≥ɶ ɶ  in the denominator is used to describe the risk set i k iR(t ) {k : t t }= ≥ɶ ɶ ɶ  at 

the observed survival time itɶ , which consists of all individuals who are event-free and still under 

observation just prior to time itɶ . In contrast to the full likelihood, e. g. (1.11), there is no separate 

contribution to the partial likelihood for a censored observation id 0=  and information from censored 

individuals enters the likelihood only via the risk set. To practice the estimation, the partial likelihood 

is treated as a usual likelihood function and the maximum partial likelihood estimator of β  is shown to 

be consistent and asymptotically normal, compare, e. g., Andersen and Gill (1982). The estimation in 

the CRR model is often continued by the estimation of the cumulative baseline hazard function in 

terms of the Breslow estimate BR
o

ˆ ( )Λ ⋅ , Breslow (1972, 1974), which is given by the step function 

 ( )
( )

i

k i

n
i(t t)Br

0 n
i 1 k(t t )k 1

1 dˆ t
ˆ1 exp

≤

= ≥=

Λ =
′

∑
∑ x β

ɶ

ɶ ɶ

 (1.14) 
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and depends on the estimator β̂  from the maximization of the partial likelihood. The Breslow 

estimator can be jointly derived with the partial likelihood from a profile likelihood approach, 

assuming a piecewise constant baseline hazard between two consecutive distinct uncensored failure 

times, compare, e. g., Breslow (1972, 1974), Murphy and Van der Vaart (2000) or van Houwelingen et 

al. (2006) for details. The asymptotic properties of this estimator were also established by Andersen 

and Gill (1982).  

Since the partial likelihood only depends on the observed order, not on the exact values of the failure 

times, corrections are required if ties (identical survival times) are present to take account for the 

permutation of those individuals with identical survival times, because if more than one individual has 

its event at the same time, the ordering is no longer unique. For a moderate number of ties among the 

uncensored survival times, so that the use of the continuous time Cox model is still justified, there are 

several suggestions to approximate the partial likelihood, compare, e. g., Therneau and Grambsch 

(2000), Klein and Moeschberger (2003). The correction proposed by Breslow (1972, 1974) arises 

naturally from the profile likelihood approach by treating the tied observations at a given time as 

distinct contributions to the likelihood, and in particular the formulation of the partial likelihood in 

(1.13) results in the Breslow correction in the presence of ties. The partial likelihood approach can also 

be applied for extensions of the Cox model, e. g., with nonlinear covariate effects, Sleeper and 

Harrington (1990), Gray (1992), time-varying effects, Verweij and van Houwelingen (1995), frailties, 

Therneau and Grambsch (2000), or time-varying covariates, Klein and Moeschberger (2003). 

1.1.5. Bayesian Inference 

An alternative concept to the likelihood inference is the Bayesian inference. Bayesian inference relies 

on the posterior distribution of the model parameters ∈Θθ  given the observed data D  and the 

operational core is the Bayes theorem, where the density of the posterior distribution p( | )θ D  is 

defined as 

 
L( | )p( )

p( | ) L( | )p( )
L( | )p( )d

Θ

= ∝
∫

θ θ
θ θ θ

θ θ θ

D
D D

D
. (1.15) 

The posterior distribution is expressed in terms the prior density p( )θ , which represents the prior 

knowledge of the complete set of model parameters ∈Θθ  and the likelihood L( | )θ D , that may also 

depend only on a subset of θ . The so called marginal likelihood in the denominator does not depend 

on model parameters and acts as normalization constant of the posterior density. This causes the 

annotated proportionality of the posterior density to the product of the prior density and the likelihood.  

For posterior maximization, the normalizing constant is negligible, and finding the mode of the 

posterior density is equivalent to the maximization of the right hand side of (1.15). The corresponding 

optimization problem has the general form 

 ˆ arg max {log p( | )} arg max {log L( | ) log p( )}= = +θ θθ θ θ θD D . (1.16) 

and θ̂  denotes the maximum a posteriori (MAP) estimate. If weakly informative priors are used, the 

prior term acts like a proportionality constant and the Bayesian optimization problem for finding the 

mode is equivalent to the optimization of log-likelihood, and hence the posterior mode estimate 

coincides with the maximum likelihood estimate of ∈Θθ . Despite this interesting connection to the 

likelihood inference, the posterior mode is not in general the unique or best choice to obtain a 
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Bayesian point estimate. In the Bayesian-risk sense, for example under the squared error loss function, 

the optimal choice for a point estimate of the regression parameters is given by the posterior mean 

instead of the posterior mode. However, Bayesian inference is rather based on the access to whole 

posterior distribution than just finding its mode and under a full Bayesian approach, the evaluation of 

the posterior provides a probabilistic basis to consider the uncertainty of a model.  

In practice the entailed integral calculations to evaluate the normalizing constant in the denominator 

(1.15) are often not feasible and as a consequence the posterior density has no closed analytical form. 

In such situations the posterior can be explored by generating samples from the posterior distribution 

by Markov Chain Monte Carlo (MCMC) techniques. The main goal of MCMC methods is to generate 

(dependent) samples (s)θ , s 1,2,...,S= , from a given distribution, in particular the posterior 

distribution. By utilizing MCMC integration, e. g., with 

 ( )
K

(k)
p( | )

k 1

1
g( )p( | )d E g( ) g( )

K
θ

Θ
=

= ≈ ∑∫ θ θ θ θ θDD , 

it is possible to approximate the mean of a functional g( )⋅  using the generated sample of the 

parameters (1) (S),...,θ θ . For example, the posterior mean of θ  is estimated using the identity function 

g( ) id( )⋅ = ⋅ . Uncertainty about the model parameters is considered by the corresponding empirical 

counterparts of the standard deviation or credible intervals. We refer at this point, e. g., to Gelman et 

al. (2004) or Gilks et al. (1996) for a detailed illustration of the basic concepts of Bayesian analysis 

and posterior inference based on MCMC methods and in the special context of survival analysis to 

Ibrahim et al. (2001). Bayesian analysis of the CRR model has also been studied in terms of the partial 

likelihood, where the full likelihood L( | )θ D  in (1.15) is replaced by the partial likelihood pL( | )θ D . 

This approach is often justified by showing that the posterior, based on the partial likelihood, 

approximates the full marginal posterior of the regression coefficients with a very diffuse prior on the 

cumulative baseline hazard function. We sketch the idea in Section 7.4.2 and refer for details to 

Kalbfleisch (1978), Sinha et al. (2003) and Kim and Kim (2009). 

1.2. Basic concepts of regularization 

Regularized estimation approaches have emerged as a general tool to address different problems in 

applied regression analysis like shrinkage of highly correlated covariate effects to uniquely solve 

underdetermined estimation equation systems, selection of important covariates from the set of 

available covariates or for smoothing of nonlinear effects to reflect a more complex influence of the 

covariates. As an example consider gene expression data. With today’s analytical methods, thousands 

of genes can be analyzed simultaneously for any given patient, but acquisition of suitable patients is 

often difficult and time consuming and so sparse data sets arise with huge feature spaces, but only very 

few data points. One of the resulting problems is to compensate identification problems of an 

estimator, if a lot of parameters have to be estimated and/or heavy correlations inducing 

multicollinearity are present. In such situations the estimation equation system is often 

underdetermined and as a consequence, there is no unique solution available and the optimization 

procedure becomes numerically unstable. Regularization is used to find unique solutions by 

introducing additional constraints supporting the identification of the regression parameters. Also the 

prediction can be enhanced by constructing estimators with a little bit of bias to obtain a smaller 

variance, known e. g. from ridge regression. Another goal is the separation of influential variables and 
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nuisance covariates that are not associated with the response. Also variable selection, as a form of 

model selection in which the class of considered models is represented by subsets of the available 

covariates in the data, becomes an important task especially in high-dimensional feature spaces, where 

a lot of covariates are suspected to be rather unimportant. To answer questions concerning the 

relevance of individual features, regularization methods are utilized that shrink the regression 

coefficient estimates toward zero and simultaneously enforce some coefficients to be set equal to zero, 

which are then interpreted as unimportant nuisance variables. A prominent representative is given by 

the lasso regression, Tibshirani (1996). Beside the gene expressions often additional patient specific 

characteristics, like age or weight, are available, and we want to enable more flexible shapes to reflect 

the impact of such covariates on the survival time. In modeling nonlinear effects, smoothness penalties 

have a long tradition in semiparametric regression, with smoothing splines and penalized polynomial 

splines as the most prominent examples, see Wood (2006) or Ruppert et al. (2003) for overviews. In 

this case, the penalty represents a roughness measure for unknown functions that avoids overfitting 

induced by overly flexible function estimates.  

1.2.1. Frequentist regularization 

In summary, the general idea of regularized regression relies on the incorporation of additional 

assumptions about the model parameters into the estimation problem. In practice, a penalty term is 

added to the estimation function to enforce that the solutions are determined with respect to these 

constraints. The resulting optimization problem is reflected by the penalized (log-) likelihood 

 penlog L ( , ) log L( | ) pen( ; )λ = − λβ β βD , (1.17) 

where log L( | )β D  denotes the logarithm of the model specific likelihood L( | )β D  and pen( ; )λβ  is 

the penalty term that splits into two components pen( ; ) pen( )λ = λβ β . The term pen( )β  defines the 

form of the penalty and 0λ ≥  is the regularization parameter, which determines the impact of pen( )β  

at the solution of the regularized optimization problem 

 pen
ˆ ( ) arg max {log L ( , )}λ = λββ β . (1.18) 

For the special case of 0λ =  the regularized solution coincides with the maximum likelihood estimate 

ML
ˆ ˆ(0) =β β . Otherwise the estimate is, e. g., shrunken towards zero and the various values of 0λ ≥  

trace out a path of solutions, where the resulting bias of the estimate is due to the associated size of the 

penalty term incorporated in the likelihood. The behavior at the limit λ → ∞  depends on the specific 

selected penalty, but for shrinkage-towards-zero penalties we obtain ˆ ( )λ →β 0 . A particular solution 

of (1.18) is often determined by crossvalidation, where λ  is chosen to minimize the prediction error. 

The selection of a special type of the penalty term allows to handle the before mentioned demands on 

the resulting estimate. Some well-known examples include the ridge penalty 2
j2 jpen( ) : L ( )= = β∑β β , 

Hoerl and Kennard (1970), which is used to find a unique estimate for an underdetermined estimation 

equation system. The topic of variable selection is addressed e. g. by the lasso penalty 

1 jjpen( ) : L ( ) | |= = β∑β β  proposed by Tibshirani (1996). Due to the special shape of the contours of 

both penalty functions, the covariate estimates are shrunken towards zero. In contrast to the ridge 

penalty, the square-cut contours of the lasso penalty enable that small covariates can be estimated to 

be exactly zero, when maximizing the penalized likelihood, so that the solution to the lasso regularized 

optimization problem is sparse and simultaneously accomplishes the goals of estimation and model 
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selection. We provide more details to this topic in Sections 4.1 to 4.3. The ridge and lasso penalty are 

special cases of the more general qL -penalty with 
q

q jjL ( ) = β∑β , q 0> . Another topic that can be 

addressed is the smoothing of unknown functions f ( )⋅  of continuous covariates x, which are 

approximated, e. g., by linear combinations of basis functions kB ( )⋅ , i. e. g
k kk 1f (x) B (x)

=
≈ β∑ , where 

the regression coefficients kβ  represent the corresponding weights of the basis functions. Besides the 

selection of the basis functions, especially choosing the right number g ∈ℕ  of basis functions is a 

hard task, since it determines the flexibility in the shape of the linear combination and therefore the fit 

to the unknown function. Using only few basis functions may be too restrictive to reflect possible 

shape variations of the unknown function. A large number of basis functions enables a high flexibility 

to fit the function, but coincides with the problem of interpolating the data or overfitting. A penalty 

based on the squared differences of the coefficients, like 2
j j 1jpen( ) ( )−= β − β∑β , can be used to avoid 

overfitting and to enforce a smooth estimate of the unknown function, compare, e. g., Eilers and Marx 

(1996) for details. 

Regularization based regression methods are primarily explored in the context of the classical linear 

model. In survival regression based on the CRR model, regularization is considered by several 

authors, e. g. Verweij and van Houwelingen (1994) and van Houwelingen et al. (2006) proposed a 

ridge regularized CRR model, where the partial likelihood is used to form the penalized partial 

likelihood in (1.17) and the shrinkage parameter is determined by minimizing the cross-validated 

partial likelihood, Verweij and van Houwelingen (1993). Tibshirani (1997), Gui and Li (2005) and 

Park and Hastie (2007) applied the lasso penalty to the partial likelihood and Zhang and Lu (2007) use 

the adaptive lasso, Zou (2006), to handle the variable selection and model estimation simultaneously. 

Under some mild conditions the estimator is shown to have sparse and oracle properties. They use the 

Bayesian Information Criterion (BIC) for tuning parameter selection and a bootstrap variance 

approach for standard error. The adaptive lasso, the elastic net, Zou and Hastie (2005), and the SCAD 

penalty, Fan and Li (2001), are used for high-dimensional Cox models by Benner et al. (2010). Their 

article also provides a good comparative review of these penalized partial likelihood approaches. Fan 

and Li (2002) applied the SCAD penalty to the CRR model considering also gamma frailties. Gray 

(1992) used an additive model for the predictor to take account for smooth nonlinear covariate effects, 

modeled by penalized splines, covariate interactions and time-varying effects. 

Several authors investigated also the regularization of the AFT model, e. g. Huang et al. (2006) 

considered variable selection via the lasso penalty and Huang and Ma (2010) via the bridge penalty, 

Fu (1998), in the semiparametric AFT model with unspecified error distribution, where inference is 

carried out in terms of weighted least squares with Kaplan-Meier weights. Johnson et al. (2008) use 

the lasso, elastic net, SCAD and adaptive lasso penalty for variable selection in the semiparametric 

AFT model, where inference is based on the penalized Buckley-James estimator, Buckley and James 

(1979). Wang et al. (2008) and Engler and Li (2009) apply the elastic net regularization to gene 

expression data. Datta et al. (2007) considered the lasso in the high-dimensional parametric AFT 

model with Gaussian and log-Weibull errors using partial least squares for estimation.  

1.2.2. Bayesian regularization 

From a Bayesian perspective there is a natural close relationship to the frequentist regularization, 

since, under certain conditions, the penalty terms correspond to log-prior terms that express specific 

information about the regression coefficients. Using the Bayesian formula (1.15) with an informative 
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prior p( | )λβ  for the regression coefficients given the tuning parameter 0λ >  and an additional 

(independent) hyperprior p( )λ  for the shrinkage parameter, the posterior for an observation model 

L( | )βD  is given as 

 p( , | ) L( | )p( | )p( )λ ∝ λ λβ β βD D  (1.19) 

with ( , )′ ′= λθ β  and p( ) p( | )p( )= λ λθ β . If the regularization parameter λ  is assumed to be known or 

fixed, the prior p( )λ  is negligible and the resulting maximization problem (1.16) becomes  

 ˆ ( ) arg max {log L( | ) log p( | )}λ = + λββ β βD . (1.20) 

Comparing the Bayesian optimization problem (1.20) with the frequentist optimization problem (1.18) 

shows, that the posterior mode estimate ˆ ( )λβ  is equivalent to regularized maximum likelihood 

estimate, if the negative log-prior log p( | )− λβ  is proportional to the regularization term pen( ; )λβ . 

Under this conjunction the penalized log-likelihood can be interpreted as the logarithm of the posterior 

distribution density penp( | ) log L ( , )λ ∝ λβ βD,  and consequently the frequentist regression parameter 

estimates (1.18) can be interpreted as mode of the posterior distribution. With the exception of the 

SCAD penalty all of the previous mentioned penalties comprise Bayesian versions of priors. E. g., the 

ridge and lasso estimates have a Bayesian interpretation as MAP estimates formulating i.i.d. Gaussian 

priors 2
j jjp( | ) exp( )β λ ∝ −λ β∑  or double exponential priors j jjp( | ) exp( | |)β λ ∝ −λ β∑  on the 

regression coefficients, which are both special cases of the exponential power prior 
q

j jjp( | ) exp( | | )β λ ∝ −λ β∑ . 

Besides the close connection between the Bayesian and the frequentist regularization approach also 

some differences and advantages arise from the Bayesian perspective. One difference is that the tuning 

parameter λ , which controls the regularization, is in general not assumed to be fixed and there is also 

a prior p( )λ  specified. Full Bayesian inference enables that all model parameters are simultaneously 

estimated and in particular the regression parameters β  and the tuning parameter λ  are jointly 

estimated. This offers new methods to estimate the complexity parameter λ  by using the usual point 

estimates like the mode, mean or median of the marginal posterior p( | )λ D  or the corresponding 

empirical counterparts from the MCMC sample of λ . In frequentist regularization crossvalidation is a 

popular method to determine reasonable values of the tuning parameter λ . Compared to the burden, 

which crossvalidation can cause for complex models in practice, the Bayesian approach provides a 

comparatively easy access to an estimate λ̂ . Further, the recruited prior p( )λ  incorporates uncertainty 

about the tuning parameter λ  into the model, and uncertainty in estimating the tuning parameter can 

be addressed by the marginal posterior p( | )λ D . In addition, integrating over the tuning parameter 

creates marginal priors for the regression coefficients β , which differ from those when the tuning 

parameter is assumed to be fixed and induce a different kind of regularization behavior of the 

corresponding marginal penalty of the regression coefficients. A further challenge of some frequentist 

variable selection approaches like the lasso is the estimation of the standard error associated to the 

zero estimated regression coefficients, compare e. g. Tibshirani (1996) or Kyung et al. (2010). In 

MCMC based inference, standard errors for regression coefficients or other model parameters are a 

byproduct from the sampling based approach to the posterior. 

Several authors have investigated the Bayesian regularization concept (mainly for Gaussian 

responses), proposing a lot of priors to address the before mentioned regression tasks and connections. 

In particular Lindley and Smith (1972) showed that using i.i.d. Gaussian priors for the regression 
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coefficients β  is leading to the ridge regression estimate as posterior mode. Tibshirani (1996) and 

Park and Casella (2008) showed that the lasso estimate results as posterior mode, if i.i.d. Laplace 

priors for the regression coefficients β  are selected. Park and Casella (2008) provide also a full 

Bayesian version of the lasso by assuming an additional gamma prior for the squared shrinkage 

parameter. Griffin and Brown (2005) investigated various regularization priors that support a scale 

mixture of normal representation for the regression coefficients, West (1987). Under certain 

conditions, compare Section 4.1 to 4.3, such priors induce an adaptive, covariate specific shrinkage 

which avoids the overshrinkage of large regression coefficients. Armagan and Zaretzki (2010) use the 

scale mixture of normal representation to derive an adaptive ridge prior for posterior mode estimation 

in the linear regression model. Recently Polson and Scott (2011) describe the corresponding prior 

distribution that results in the bridge regression estimate, and Li and Lin (2010) and Hans (2011) 

investigate the prior associated to the elastic net penalty. Other Bayesian approaches for variable 

selection are based on bimodal spike-and-slab priors for the regression coefficients, where the spike-

mode is exactly or close around zero to remove unimportant variables and the slab-mode is rather flat 

and differs form zero to retain important variables, compare George and McCulloch (1993), Smith and 

Kohn (1996), Ishwaran and Rao (2005b) and Li and Zhang(2010). The squared difference penalty, 

typically applied in penalized spline smoothing, Eilers and Marx (1996), is related to a Gaussian 

random walk assumption for the polynomial spline coefficients as shown in Lang and Brezger (2004), 

Brezger and Lang (2006). 

Although the Bayesian regularization approaches for possibly high-dimensional linear predictors can 

be carried straightforward to the survival context the Bayesian literature dealing with these topics is 

quite sparse. In the framework of the CRR regression model Kaderali (2006) used a time-constant 

baseline hazard with a Normal-Gamma prior, Griffin and Brown (2005), for the regression 

coefficients. Recently Tachmazidou et al. (2010) used the Bayesian lasso, Park and Casella (2008), in 

combination with an exponential distribution of the survival times. Joint estimation of the baseline 

hazard and unregularized linear covariate effects in the CRR model has also been considered by Sinha 

(1993), who suggests a gamma process prior for the cumulative baseline hazard function. Lee et al. 

(2011) developed a semiparametric model for handling high-dimensional data by extending the 

Bayesian lasso to the CRR model, where the cumulative baseline hazard function is modeled 

nonparametrically by a discrete gamma process, compare Kalbfleisch (1978). Rockova et al. (2012) 

review hierarchical Bayesian formulations of various regularization and selection priors and apply 

them to Probit and Weibull survival regression models. Fahrmeir et al. (2010), Kneib et al. (2011) and 

Konrath et al. (2013) provide a unified approach to combined shrinkage, selection and smoothing in 

the framework of exponential family and hazard regression. The AFT model has not received much 

attention in the Bayesian regularization framework. Sha et al. (2006) propose for AFT models with 

log-normal and log-t distributional assumptions a Bayesian variable selection approach based on 

mixture priors for the regression coefficients, in the spirit of George and McCulloch (1993). There are 

several approaches to model the baseline survival quantities in order to get more flexible shapes for 

the survival time distribution. An example that fits in the Bayesian regularization framework is given 

by Komárek et al. (2005) who replaced the error distribution by a semiparametric penalized Gaussian 

mixture and Komárek et al. (2007) who extended this approach to interval censored data AFT with 

random effects. 
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1.3. Outline 

Approaches for combined regularization with respect to shrinkage, selection and smoothing have a 

direct application to possibly high-dimensional regression problems. For example, in the presence of 

influential clinical predictors we may want to select important microarray features, while the clinical 

effects are assumed to be linear or nonlinear. Although regularization of high-dimensional coefficient 

vectors or smoothing of nonlinear effects or the development of flexible semiparametric versions of 

the CRR or AFT model have gained a lot of attention in the recent years, publications on the 

combination of the approaches are very rare.  

The aim of this work is to derive flexible classes of AFT and CRR survival models by casting various 

regularization approaches into one general, unified Bayesian framework. The presented methods are 

based on the flexible and general approach for structured additive regression (STAR) for responses 

from exponential family models, Fahrmeir et al. (2004), and CRR-type survival models, Hennerfeind 

et al. (2006). On the one hand flexibility is addressed in terms of an extended version of the predictor, 

where various effect types are additively combined, each equipped with a suitable regularization prior. 

The structured additive modeling of the predictor is convenient for both, the inference and the 

interpretation of the different covariate effects. On the other hand flexibility is addressed in terms of 

the baseline survival distribution, which is modeled nonparametrically and smoothness priors are used 

to prevent overfitting. Each extension separately and both in combination provide large classes of 

flexible AFT-type and CRR-type regression models. 

The unified Bayesian approach relies on the hierarchical model representation combined with suitable 

conditional independence assumption about the model parameters to support a modular structure. One 

major building block is the hierarchical formulation of the regularization priors for linear effects 

obtained through the representation as scale mixture of normals, West (1987). Auxiliary latent 

variance parameters enable a reformulation of the prior in terms of the product of a conditionally 

Gaussian prior given the variance parameter and a prior for the variance parameter given further 

hyperparameters. Besides the advantageous hierarchical representation, additional priors for the 

hyperparameters entail marginally a modification of the regularization prior for the regression 

coefficients. Such hyperpriors are very useful to enforce an adaptive (covariate-specific) shrinkage of 

the regression coefficients and hence to avoid the overshrinkage of large regression coefficients, as 

observed e. g. under the lasso penalty. In particular we consider the Bayesian lasso and ridge prior and 

a Normal Mixture of Inverse Gamma (NMIG) prior. Another major building block is given by the 

basis function representation of the various non-linear model components. The basis function 

representation preserves the linear structure for the non-linear predictor components and random walk 

priors for the basis function coefficients allow also a hierarchical reformulation with (improper) 

conditional Gaussian densities given variance or smoothing parameters as shown e. g. in Brezger and 

Lang (2006). In particular we consider smooth effects of continuous covariates as one representative 

of the various effect-types which support a basis function representation. Also the flexible extensions 

of the baseline quantities are also expressed by linear combinations of basis functions with random 

walk smoothness priors. In the AFT model the baseline error is modeled as penalized Gaussian 

mixture, Komárek et al. (2007) and in the CRR model the logarithm of baseline hazard rate is 

approximated by penalized B-splines, Hennerfeind et al. (2006). Besides the full likelihood 

specification, inference in the CRR model is also carried out in terms of the partial likelihood, where 

the baseline hazard is left unspecified. 
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The full Bayesian framework has the advantage that it facilitates a joint modeling and estimation of 

the baseline quantities and the regression coefficients of the extended predictor. No asymptotic 

assumptions or conjectures are needed for finite sample inference and the case n p<  is automatically 

covered. In addition, the Markov chain Monte Carlo simulation techniques build a versatile tool for 

the joint estimation. The derived MCMC samplers are based on Gibbs sampling or Metropolis-

Hastings within Gibbs sampling. In particular in the CRR regression model, the full conditionals of the 

regression coefficients in the predictor are non-Gaussian. Samples from non-Gaussian full conditionals 

can be drawn in a unified computationally efficient way from IWLS proposals, introduced by 

Gamerman (1997). The general idea of IWLS proposals is to obtain a Gaussian proposal by matching 

the mode and the curvature of the full conditional at the current state of parameter vector in each 

update step. Metropolis-Hastings-steps with these multivariate Gaussian IWLS proposals have several 

advantages. The proposal can be used with multivariate coefficient vectors to take correlations into 

account. In addition, the proposal automatically adapts to the form of the full conditional and thereby 

avoids a manual tuning of the proposal density and typically leads to samplers with satisfactory 

mixing and convergence properties. Due to the hierarchical prior representation and conjugate 

hyperprior specification, Gibbs sampling remains possible for variance parameters and the model 

parameters on hierarchical stages below, like the shrinkage parameter. For AFT regression models, or 

models with a latent Gaussian structure such as Probit models, the conjugate conditional Gaussian 

priors for the regression coefficients induce full conditionals of the regression coefficients that are also 

Gaussian and facilitate Gibbs sampling. Finally, the provided modular hierarchical framework 

supports the extensibility of our approaches. In particular we can link the priors for combined 

regularization straightforward to various kinds of observation models arising e. g. from exponential 

family regression models. Due to the resulting modular structure of MCMC algorithms, it is also easy 

to extend the model at some places without having to re-implement the rest of the estimation 

algorithm. 

Under the MCMC sampling approach for a full Bayesian inference the sharp variable selection 

property of some regularization priors gets alleviated. This is due to the fact, that the proposed MCMC 

techniques provide samples from the (marginal) posterior distribution, but they do not maximize the 

posterior. As a consequence, there is no exact zero estimate of a regression coefficient obtainable, 

even for a set of samples close to zero. From the theoretical point of view using the posterior mean 

instead of the posterior mode is not a drawback, since the posterior mode does not play the central role 

in Bayesian inference and Park and Casella (2008) or Hans (2009) give realistic examples, where the 

lasso posterior mean outerperforms the posterior mode in prediction and estimation. However, still 

regularization of the regression coefficients takes place and coefficients corresponding to covariates 

with minor effect are even so shrunken close to zero. Variable selection is supported through the 

inspection of the posterior distribution of individual regression coefficients or through posterior 

inclusion probabilities as provided by the NMIG prior and carried out in a post inferential step by hard 

shrinkage selection. In our simulations and applications we consider several empirical thresholding 

procedures as used in Konrath (2007) and recently proposed in Li and Lin (2010) with respect to their 

predictive performance. 

The developed and described procedures are implemented in public available software, like BayesX 

for the extended CRR model based on the full likelihood and exponential family regression or in R-

functions for the extended AFT model and the extended CRR model based on the partial likelihood. 
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The performance of the developed methods and algorithms is extensively tested by simulation studies 

and illustrated by three real world data sets. 

1.4. Organization 

The rest of this work is organized as follows: Part I is devoted to the extension of the AFT model. The 

considered extensions and their modeling are provided in Section 2, and Section 3 to Section 5 provide 

the associated priors for the model components. In particular in Section 4, we introduce the utilized 

Bayesian regularization priors for the joint shrinkage, selection and smoothing and investigate and 

illustrate their specific shrinkage properties. Finally, Section 6 addresses the posterior inference for 

model parameters based on MCMC simulations. Part II considers the extension of the CRR model and 

in particular Section 7 introduces the model extensions. Prior specification and posterior inference is 

carried out in Section 8 and Section 9. Simulations to test and demonstrate the flexibility and 

applicability of the proposed methodology are provided in Sections 10 (AFT model) and Section 11 

(CRR model) of Part III and the data applications in Section 12 to Section 14 of Part IV. Optional 

results for the simulations and applications will be provided in an electronic supplement. Finally, the 

concluding Sections 15 and 16 contain a summary and comments on directions of future research. 
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PART I. BAYESIAN REGULARIZATION IN THE 

AFT MODEL 

2. Extended AFT model K2.A1 

2.1. Basic AFT model 

Let iT 0≥ , i 1,...,n= , denote the random variable representing the non negative, continuous survival 

time of an individual i from a heterogeneous population. This heterogeneity of the population is 

caused by individual-specific characteristics that effect the individual’s survival time, like sex, age or 

medical treatment of a patient in a clinical study. The functional dependence of the survival time on 

the covariates is determined in terms of the transformation i iY : log(T )= ∈ℝ  by the log-linear 

representation of the AFT regression model as introduced in (1.9) 

 i i i iY : log(T )= = η + σε , (2.1) 

where iη ∈ℝ  denotes the predictor that summarizes the covariate effects and 0σ >  is a scale factor 

for the covariate independent random error terms iε ∈ℝ . The errors are assumed to be independent 

and identically distributed with absolutely continuous density f ( )ε ⋅ . This implies that the log-survival 

times iY , i 1,...,n= , are conditional independent given the covariates. In parametric AFT models the 

error term is often assumed to belong to a specific location-scale family, like the Gaussian or extreme 

value distribution for example. The observed right censored survival data is given as 

 { }i i i(y ,d , ), i 1,...,n′= =vɶD , (2.2) 

where i iy log(t )= ɶɶ  is the logarithm of the observed survival time, id {0,1}∈  the censoring indicator 

and i i1 ip(v ,..., v )′=v  is the p-dimensional vector of the observed covariates for the n individuals of the 

sample. 

This thesis considers two extensions of the AFT model to enable a more refined and flexible 

formulation of this model: On the one hand the predictor iη  is additively expanded to enable the 

regularization of some or all covariates with linear effects. Further nonlinear effects are considered, 

where functional forms of the effects are utilized to represent flexible relationships between the 

response and the corresponding covariates. In summary, the predictor gets a structured additive form, 

where each summand reflects the specific form of the covariate impact on the log-survival time. The 

covariate-specific predictor components are equipped with informative regularization priors, compare 

Section 4, to enforce the desired shrinkage of linear effects or the smoothing of the nonlinear effects. 

On the other hand the parametric assumptions of the error distribution are replaced by flexible 

semiparametric assumptions, where the error distribution is modeled by a penalized Gaussian mixture 

distribution. 
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2.2. Extended predictor 

To attain a higher flexibility in modeling various functional relationships between the covariates and 

the response, the predictor is partitioned into three subgroups that represent the specific assumption 

about the functional form of the impact of the covariates. Accordingly, the vector of explanatory 

covariates is partitioned as i i i i( , , )′ ′ ′ ′=v u x z  to reflect by notation the different ways how the covariates 

are treated. In particular, the predictor iη  is assumed to summarize the different functional forms of 

the covariates in a structured additive form given by 

 
z zi i i 1 i1 p ipf (z ) ... f (z )′ ′η = + + + +u γ x β . (2.3) 

The components of the predictor are used to describe 

• Linear effects i′u γ  of a moderate low number of unregularized, time-independent, categorical or 

continuous covariates 
ui i0, i1, ip i(u u ...,u )′= ⊂u v , up n≪ , that are forced into the model. The 

regression coefficients 
u0 1 p( , ,..., )′= γ γ γγ  model at least the global intercept term defined by 0γ  

(with i0u 1= , i 1,...,n= ), which is in general not regularized and is also required for the 

identifiability of the optional nonlinear terms. 

• Regularized linear effects i′x β  of possibly high-dimensional categorical or continuous time-

independent covariates 
xi i1, ip i(x ..., x )′= ⊂x v , with xp n≤  or xp n> . The regression 

coefficients 
x1 p( ,..., )′= β ββ  are equipped with an informative shrinkage- or selection-type prior 

to identify those effects with the highest impact on the response. 

• Smooth nonlinear effects j ijf (z ) , zj 1,...,p= , which are defined by smooth functions jf ( )⋅  of 

time-independent continuous covariates ijz  that need to be regularized to avoid overfitting. A 

suitable tool to model unknown functional forms of covariates is provided by semiparametric 

basis function approaches, where each of the unknown functions jf ( )⋅  in the predictor (2.3) is 

represented in terms of a linear combination 

 
jg

j jk jk j j

k 1

f (z) B (z) (z)
=

′= α =∑ b α  (2.4) 

of a finite number jg < ∞  of known basis functions 
jj j1 jg( ) (B ( ),...,B ( ))′⋅ = ⋅ ⋅b  and a vector of 

coefficients 
jj j1 jg( ,..., )′= α αα . In particular, the Bayesian penalized splines (P-splines) 

approach, as developed by Lang and Brezger (2004) is considered, which builds the Bayesian 

counterpart of the P-splines proposed by Eilers and Marx (1996). In this approach the numerical 

advantageous B-splines of De Boor (2001) are picked as basis functions and placed using a set 

of (inner, equidistant) knots 
j1 s,...,ξ ξ , with 

jj 1 s jmin(z ) ... max(z )= ξ < < ξ = , from the support of 

the j-th covariate jz . The number of B-spline basis functions with degree jq  is determined as 

j j jg s q 1= + − . Since the B-splines are bounded and have local support over the range of a few 

knots, the corresponding design matrices are sparse (as well as the associated penalty matrices) 

and computational efficient matrix inversion is possible. In practice we often use cubic B-

splines, i. e. jq 3= . As trade-off for the number of basis functions the use of a moderate large 

number is proposed, that provides sufficient flexibility in the shape for a well suited 

approximation. This is combined with a Bayesian regularization of the distances between 

adjacent basis coefficients 
jj j1 jg( ,..., )′= α αα  by utilizing a Gaussian random walk prior that 

enforces the desired smoothness of the approximation and avoids overfitting. For identifiability 
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reasons it is necessary to center all functions horizontally about zero and include an intercept 

term in the linear component of the predictor. 

Further effect-types like varying coefficients, random effects, spatial effects, time-dependent effects or 

interactions can also be included in the predictor and cast into the unified modeling via basis function 

expansions as shown, e. g., in Brezger and Lang (2006) for exponential family regression, Kneib and 

Fahrmeir (2007), Hennerfeind et al. (2006) for geoadditive Cox-type survival regression models or in 

Fahrmeir and Kneib (2011) for both regression model types. The focus here relies on smooth nonlinear 

effects to demonstrate the methodological principle, but the implementation of other effect types is 

straightforward. A note about this generalization and the inclusion of time-dependent covariates is 

given in the Outlook Section 16.  

Generic notation: Due to the linear structure of the basis function approach (2.4), the vector 

j j 1j nj(f (z ),...,(z ))′=f  of function evaluations at the observed values ijz , i 1,..,n= , of covariate jz  can 

be expressed as the matrix product j j j=f Z α , where the design matrix jΖ  has the elements 

ik jk ijb B (z )= , j1 k g≤ ≤ , 1 i n≤ ≤ . In summary, with the design matrices X  and U of the linear 

effects γ  and β , that have rows i′x  and i′u , it turns out, that the vector 1 n( ,..., )′= η ηη  of extended 

predictors can always be represented in generic matrix form 

 
z z1 1 p p...= + + + +η Uγ Xβ Z α Z α  (2.5) 

with components 

 
z z zi i i 1 i1 1 p ip p(z ) ... (z )′ ′ ′ ′η = + + + +u γ x β b α b α  (2.6) 

and a possibly high-dimensional parameterization of the predictor. 

2.3. Extended error distribution 

Assuming that the distribution of the error stems, e. g., from a location-scale family leads to models, 

where only a few number of parameters are used to describe this distribution. Picking up, e. g., the 

Weibull model from Section 1.1.3, where the error has a standard extreme value distribution, shows 

that there are only monotone baseline hazard functions possible. Checking parametric assumptions for 

the error is in general difficult in the presence of censoring. For this reasons the conventional 

parametric assumption of the error is replaced by a semiparametric distribution that is defined in terms 

of a finite penalized Gaussian mixture (PGM) as in Komárek et al. (2005). The density of the error 

distribution in the log-linear specification of the AFT model is approximated by a flexible continuous 

mixture distribution 0g 2
k k kk 1~ w N(m ,s )

=
ε ∑  with density 

 
0g

2
k k k

k 1

f ( | ) w ( | m ,s )ε

=

ε = ϕ ε∑w , (2.7) 

where 
01 g(w ,..., w )′=w  is the vector of mixture weights corresponding to the finite set of Gaussian 

mixture densities 2
k k( | m ,s )ϕ ε , 0k 1,...,g= , with fixed means 

01 g(m ,...,m )′=m , 
01 gm ... m< < , and 

fixed variances 
0

2 2 2
1 g(s ,...,s )′=s , ks 0> . The mean and variance of the error distribution are given by 

 ( )
0 0g g

2 2 2 2
k k k k k

k 1 k 1

( | ) w m , ar( | ) w m sε ε ε

= =

µ = ε = σ = ε = + − µ∑ ∑w wE V , (2.8) 

compare Appendix A.1.1.  



20 2. EXTENDED AFT MODEL 

Additional conditions are required to ensure that (2.7) is a probability density and to identify the 

location and scale parameter of the AFT model (2.1). To guarantee that (2.7) is a probability density 

with f (e | )de 1ε =∫ w , the weights have to be positive kw 0>  with 01 gw ... w 1+ + = . To fulfill both 

constraints, the generalized logit-reparametrization of the weights 

 
0

0,k
k k 0 0g

0, jj 1

exp( )
w w ( ) , k 1,...,g

exp( )
=

α
= = =

α∑
α , (2.9) 

in terms of unrestricted basis coefficients g
0 0,1 0,g( ,..., )′ = α α ∈α ℝ  is used. Since this reparametrization 

is not unique, j 0 j 0w ( c) w ( )+ =α α  for any scalar c, one of the 0g  unrestricted coefficients in 0α  is set 

equal to zero 

 0,k 0: 0, k {1,...,g }α = ∈ . (2.10) 

To guarantee identifiability, the location and scale parameter of the error distribution need to be fixed 

or at least standardized with 

 ( )
0 0g g

2 2 2
k 0 k k 0 k k

k 1 k 1

w ( )m : 0, w ( ) m s : 1ε ε

= =

µ = = σ = + =∑ ∑α α . 

As shown in the Appendix A.1.2, standardization can be achieved by expressing two of the 

unrestricted coefficients 0α , e. g. 0,g 1−α  and 0,g 2−α  through the remaining coefficients. The weights 

have to match the constraints 

 
( )
( )

0

0 0 0 0

0

0 0 0 0

g 3

g 1 0,k k,g 1 g ,g 1k 1

g 3

g 2 0,k k,g 2 g ,g 2k 1

log exp( )c c ,

log exp( )c c ,

−

− − −=

−

− − −=

α = α +

α = α +

∑

∑
 

with 

 

0 0

0

0 0 0 0

0 0

0

0 0 0 0

2
k g 2 k g 1

k,g 1 0 02
g 1 g 2 g 1 g 2

2
k g 1 k g 2

k,g 2 0 02
g 2 g 1 g 1 g 2

m m 1 s m m
c , k 1,...,g 3,g ,

m m 1 s m m

m m 1 s m m
c , k 1,...,g 3,g ,

m m 1 s m m

− −
−

− − − −

− −
−

− − − −

− − −
= − = −

− − −

− − −
= − = −

− − −

 

when equal basis variances 2 2
ks s= , 0k 1,...,g= , and the identifiability constraint 

00,g 0α =  are used. 

Since these restrictions are hard to implement in the Bayesian context, we use an alternative strategy 

to standardize the error distribution in the constructed MCMC sampler, compare Section 6.2.1. 

Similar to the Bayesian P-spline approach, used to extend the predictor, the error density (2.7) can be 

viewed as a basis function expansion, where the set of mixture densities 2
k k( | m ,s )ϕ ⋅ , 0k 1,...,g= , acts 

as basis functions positioned at the mean values 
01 g(m ,...,m )′=m  that may be denoted as the knots of 

the basis, and the mixture weights 
01 g(w ,..., w )′=w  correspond to the basis coefficients. In the spirit 

of Bayesian P-spline smoothing, a moderate large number 0g  of basis functions is used to guarantee 

the flexibility of the approximation in combination with an imposed random walk regularization prior, 

which controls the variation to achieve the desired smoothness. With respect to the reparametrization 

in (2.9), the regularization prior is finally formulated for the unrestricted coefficients 

00 0,1 0,g( ,..., )′ = α αα . The grid points km , the basis variances 2
ks  as well as the constraints of 0′α  for 

standardization can be chosen independently from the location and the scale of the true distribution of 

iY . Komárek et al. (2005) recommend placing the knots on an equidistant grid in the interval 
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[ 4.5,4.5]−  with the distance k k 1m m 0.3−− =  between consecutive knots and the use of common 

variances 22
k k 1k 3s (m m ) 0.2−= − = . This implies 0g 31=  as number of basis function and that the 

mixture density is practically zero outside the interval ( 6.6,6.6)− . If only one mixture density is used, 

0g 1= , the mixture distribution collapses to the parametric case with Gaussian error. In principle, any 

mixture density can be used to specify the error distribution and there is no need using Gaussian 

mixtures, but sampling of truncated observations from the mixture components should be feasible to 

impute the survival times, compare Section 3. 

Distribution of the log-survival time 

Due to the structure of the model, the log-survival times also follow a mixture distribution, since one 

can associate to each observation i i(y , )v  a latent error quantity i i i(y )ε = − η σ . The density of the 

log-survival time iY |θ  is in general given by  

 i i
i i 0

1 y
f (y | ) f |ε

− η 
=  

σ σ 
θ α . 

Using the mixture representation of the error we get the mixture distribution density of the log-

survival time as 

 

( ) ( )

( )
( )

( ) ( )

0

0

0

g
i i 2

i i k 0 k k
k 1

g
2k 0

i i k2 2
k 1 kk

g
2 2

k 0 i i k k
k 1

1 y
f y w | m ,s

w 1
exp y m

2 s2 s

w y | m , s

=

=

=

− η 
= ϕ 

σ σ 

 
= − − η σ 

σπσ  

= ϕ η + σ σ

∑

∑

∑

θ α

α

α

−−−−  (2.11) 

with the extended predictor iη  of (2.6) and the corresponding parameters ( , , , )′ ′ ′ ′= σθ α β γ , with 

z0 1 p( , ,..., )′ ′ ′ ′=α α α α , 
jj 0, j 0,g( ,..., )′= α αα . The resulting conditional mean and conditional variance of 

the response iy  given the model parameters resp. covariates are 

 
i i

2 2 2
Y i i iY(Y | ) , ar(Y | )ε εµ = = η + σµ σ = = σ σθ θE V .  

If the error distribution ε  is standardized with 0εµ =  and 2 1εσ = , one gets  

 
i i

2 2
Y i i iY(Y | ) , ar(Y | )µ = = η σ = = σθ θE V . (2.12) 

Distribution of the baseline error 

We introduce the notation 0Y  to describe the baseline error 0 0Y := γ + σε , with  

 
0 0

2 2 2
Y 0 0 0Y(Y | ) , ar(Y | )ε εµ = = γ + σµ σ = = σ σθ θE V , (2.13) 

as the associated location and squared scale of the baseline error distribution. Since the standardization 

is in general not implemented in the software, we can compute these expressions from the posterior 

samples of the involved quantities to verify the convergence or mixing.  

These expressions reduce to 

 
0 0

2 2
Y 0 0 0Y(Y | ) , ar(Y | )µ = = γ σ = = σθ θE V , (2.14) 
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if the error distribution ε  is standardized. 

2.4. Likelihood 

The parameterization ( , , , )′ ′ ′ ′= σθ α β γ  of the extended model terms enables a full likelihood 

specification with respect to the partial knowledge caused by the right censoring of the survival times 

of some individuals. Based on the generic formulation in (1.11) the full likelihood of the extended 

AFT model under non-informative right censoring is given as 

 ( ) ( ) ( ) ( )i i
n n

d 1 d
i i i i i i

i 1 i 1

L | L | f y | S y |
−

= =

= =∏ ∏θ θ θ θɶ ɶD D . 

To complete the AFT regression model from the Bayesian point of view, all model parameters have to 

be equipped with suitable prior distributions. In the next section we consider at first the priors 

associated to the data augmentation. The priors of the predictor components will be derived in the 

subsequent section. 

3. Data augmentation priors K3.A1 

It is often advantageous for inference to introduce additional latent model parameters, which simplify 

the structure of complex models, compare Tanner and Wong (1987). In the extended AFT model the 

censoring and the formulation of the error as mixture distribution complicate the inference. The 

individual likelihood contributions to the model likelihood have the complex form 
i id 1 d

i i i i i iL ( | ) f (y ) S (y ) −=θ θ θɶ ɶD , where for an uncensored observation ( id 1= ) the mixture density 

 
0g

2 2
i i k 0 i i k k

k 1

f (y ) w ( ) (y | m , s )
=

= ϕ η σ σ∑θ α −−−−ɶ ɶ , 

and for a censored observation ( id 0= ) the survival function 

 
i

2
i i i

y
S (y ) f (s , , , )ds

∞

= σ∫θ α β γ
ɶ

ɶ  

need to be evaluated. To bypass the mixture density representation and the evaluation of the integral in 

the survival function, three further groups of latent quantities are introduced to augment the likelihood. 

The problem of censoring can be overcome by treating the unobserved true survival times as latent 

data, and the imputation of these latent quantities is leading to an uncensored regression model that is 

fitted in each MCMC iteration. Considered are in particular the vector of latent exact survival times 

1 n(t ,..., t )′=t  and the vector of exact censoring times 1 n(c ,...,c )′=c , which are both partially 

unobserved since we observe under right censoring either an exact survival or an exact censoring time 

( i i it min(t ,c )=ɶ ). To solve the task concerning the mixture representation, we rewrite the likelihood in 

terms of latent mixture component labels 1 n(r ,...r )′=r , i 0r {1,...,g }∈ , which is leading to conditional 

Gaussian likelihood contributions. In summary, the complete data containing the latent quantities is 

denoted as 

 comp
i i i i i i{(t ,d , t ,c , r , ), i 1,...,n}= =vɶD . 

With respect to the complete data we obtain a likelihood-prior structure that simplifies the derivation 

of the conditional posterior distributions and enforces Gibbs sampling for almost all model parameters.  
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Augmented survival times 

For the moment we disregard the latent component labels 1 n(r ,...r )′=r  and consider the partially latent 

survival and censoring times. The first augmentation concerns the possibly right censored observations 

of the survival times i i iT min(T ,C )=ɶ , i 1,...,n= . The sample population is split into two groups, those 

individuals for which a survival time i iT T=ɶ , iD 1=  is observed and those for which a censoring time 

i iT C=ɶ , iD 0=  is observed. Let θ  denote the parameters of the survival time distribution iT | θ  and 

ψ  the parameters of the censoring time distribution iC |ψ . Since iTɶ  is either iT  or iC  the joint 

distribution of i i i iT ,D ,T ,Cɶ  is given as  

 
i i ii i i i i i i i D ,T ,C i i iT ,D ,T ,Cf (t ,d , t ,c | , ) f (d , t ,c | , )=θ ψ θ ψɶ

ɶ . 

For a censored observation iD 0= , i iT C=ɶ  we obtain with i iT C>  the relationship 

 

( )

( )

( ) ( ) ( )

i i i i 1 i i i 2

i i i i i 1 i i i 2

i i i i i 1 i i i 2 i i i 1 i i i 2

D 0,T [t , t h ),C [c ,c h ) | ,

T C ,T [t , t h ),C [c ,c h ) | ,

T c | T [t , t h ),C [c ,c h ) T [t , t h ) | C [c ,c h ) ,

= ∈ + ∈ +

= > ∈ + ∈ +

≈ > ∈ + ∈ + ∈ + ∈ +

θ ψ

θ ψ

θ ψ

P

P

P P P

 

where the last equality utilizes the conditional independence of the survival and censoring times and 

that ic  is a fixed number . Using further the relationships 
i 1T i h 0 i i i 1 1f (t ) lim (T [t , t h ) | ) h→= ∈ +θ θP  

and 
i 2C i h 0 i i i 2 2f (C ) lim (C [c ,c h ) ) h→= ∈ +ψ ψP , compare (1.1), the joint distribution reads  

 

( )
i i i

1

2

i i

i i i

i i i i 1 i i i 2
D ,T ,C i i

h 0
1 2h 0

i i i i i i T i C i

[c , ) i T i C i

D 0,T [t , t h ),C [c ,c h ) | ,
f (0, t ,c | , ) lim

h h

(T c | T t ,C c )f (t )f (c )

1 (t )f (t )f (c ).

→
→

∞

= ∈ + ∈ +
=

= > = =

=

θ ψ
θ ψ

θ ψ

θ ψ

P

P  

Similar steps for an uncensored observation iD 1= , i iT T=ɶ  with i iT C<  are leading to 

 
i i i i i iD ,T ,C i i [ t , ) i C i T if (1, t ,c | , ) 1 (c )f (c )f (t | )∞=θ ψ ψ θ . 

Consequently the complete data likelihood contribution for the i-th observation can be written as 

 ( ) { } { }i i

i i i i i i

d 1 d
comp

i [ t , ) i C i T i [c , ) i T i C iL | , 1 (c )f (c )f (t | ) 1 (t )f (t )f (c )
−

∞ ∞=θ ψ ψ θ θ ψD  

and inserting i it t= ɶ  if id 1=  and i ic t= ɶ  if id 0=  is leading to 

 ( ) { } { }i i

i i i ii i

d 1 d
comp

i i C i T i i T i C i[ t , ) [ t , )L | , 1 (c )f (c )f (t | ) 1 (t )f (t )f (t )
−

∞ ∞=θ ψ ψ θ θ ψɶ ɶ
ɶ ɶD . (3.1) 

The marginalization over the i-th latent quantity, which is either in the censoring case a true survival 

time, or vice versa a censoring time for an uncensored observation, results in 

 
( ) ( ) ( )

( ) ( )

i i

i i i ii i

i i

i i i i

d 1 d

i T i C C i T[ t , ) [ t , )

d 1 d

T i C i C i T i

L | , f (t | ) 1 (c)f (c | )dc f (t | ) 1 (t)f (t | )dt

f (t | ) S (t | ) f (t | ) S (t | ) ,

+ +

−

∞ ∞

−

= ⋅ ⋅

= ⋅ ⋅

∫ ∫θ ψ θ ψ ψ θ

θ ψ ψ θ

ɶ ɶ
ℝ ℝ

ɶ ɶ

ɶ ɶ ɶ ɶ

D

 

which coincides with the i-th likelihood contribution from (1.10), so that in summary the (observed) 

data likelihood L( , | )θ ψ D  can be interpreted as the marginal likelihood of the complete data 

likelihood compL( , | )θ ψ D  of the latent exact survival and censoring times. If the censoring is 
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independent and noninformative, one can neglect the components of the censoring process for 

inference on the parameter θ  of main interest and we get from (3.1)  

 ( ) ( )i
ii

n
comp 1 d comp

i T i[ t , )

i 1

L | 1 (t ) f (t ) L | ,−
∞

=

∝ ∝∏θ θ θ ψɶD D  

or in terms of the log-transformed survival times i iY log(T )=  

 ( ) i
i i

n
comp 1 d

[y , ) i Y i

i 1

L | 1 (y ) f (y )−
∞

=

∝ ∏θ θɶD . 

Due to these assumptions, the true censoring times are not required for inference about the parameter 

θ  and we only need to impute the partially latent, exact survival times corresponding to the censored 

observations. 

Augmented mixture distribution 

The second augmentation concerns the mixture representation of the baseline error. In general a 

mixture model, defined by mixture distribution with 0g  components like in (2.11), can be viewed as 

an incomplete data problem, when the allocation of each observation to one of the components 

0{1,...,g }  is treated as missing data, compare e. g. Frühwirth-Schnatter (2006). Let R  denote a 

discrete indicator variable with values in the set 0{1,...,g }  that labels the 0g  components of the 

mixture distribution. For each observation of an exact log-survival time i iy log(t )= , i 1,...,n= , the 

realization i 0r {1,...,g }∈  of the discrete allocation variable iR  indicates from which of the 0g  mixture 

components the i-th observation is assumed to arise. Conditional on knowing the mixture component 

with label ir , the distribution of i iY | r ,θ  is Gaussian with mean 
ii i i r(Y | r , ) m= η σθ −−−−E  and variance 

i

2 2
i i rar(Y | r , ) s= σθV , i. e.  

 
i i

2 2
i i i i r rp(y | r , ) : (y | m , s )= ϕ η σ σθ −−−− , 

and the probability, that iY  belongs to the ir -th mixture component, is discrete with  

 
ii i i r 0p(r | ) : (R r | ) w ( )= = =θ θ αP . 

The resulting joint density of the completed data i i(Y ,R ) , i 1,...,n= , is displayed as 

 
i ii

2 2
i i i i i i i r r 0rp(y ,r | ) p(y | r , )p(r | ) (y | m , s )w ( )= = ϕ η σ σθ θ θ α−−−−  

and at last, the finite mixture arises as marginal distribution over the component labels, if it is not 

possible to record the group indicator iR  and only the random variable i iY log(T )=  is observed 

 
0 0

i i i

i i

g g
2 2

i i i r 0 i i r r
r 1 r 1

p(y | ) p(y , r | ) w ( ) (y | m , s )
= =

= = ϕ η σ σ∑ ∑θ θ α −−−− . 

Thereby and with the argumentation of the last subsection the augmented likelihood contribution with 

respect to the complete data is finally given as 

 ( ) i
i

comp 1 d
i [y , ) i i i iL | 1 (y ) p(y r , )p(r | )−

∞∝θ θ θɶD .  

In this complete data representation we associate the components i ip(y r , )θ  and ip(r | )θ  to the prior-

part of the Bayesian model and identify i
i

1 d
[y , ) i1 (y ) −

∞ɶ  as the likelihood-part. 
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In summary, we obtain the degenerated augmented likelihood  

 ( ) ( )i
i

n
comp 1 d

[y , ) i

i 1

L | 1 (y ) : L |−
∞

=

= =∏θ yɶD D  (3.2) 

and, given the independence of i iY ,R |θ , i 1,...,n= , the joint prior of the latent data ( , )y r  is 

 
n n

i i i

i 1 i 1

p( , | ) p( | , )p( | ) p(y | r , ) p(r | )
= =

= = ∏ ∏y r θ y r θ r θ θ θ .  

With the definitions 2
y r:= σΣ S  and y r:= − σµ η m , with 

1 n

2 2
r r r: diag(s ,...,s )=S  and 

1 nr r r: (m ,...,m )′=m , 

we get for the first component of the joint prior a multivariate Gaussian distribution 

 y y| , ~ N( , )Y r θ µ Σ  (3.3) 

with mean vector yµ , covariance matrix yΣ  and density 

 ( ) ( ) ( )1
y y y

y

1 1
p | , exp

2
− ′∝ − − − 

 
y r θ y µ Σ y µ

Σ
. 

The second component is the product of n discrete multinomial distributions,  

 i 0 0R | ~ MulNom(1, ( ))α w α , (3.4) 

00 1 0 g 0( ) (w ( ),...,w ( ))′=w α α α , with probability 

 ( ) ( ) ( ) ( ) ( ) ( )
0 00

j

i

n
g ggn

n
0 r 0 0 0, j j 0, jj

j 1i 1 j 1 j 1

p | p | w w exp exp n

−

== = =

 
= = = = α α 

 
∑∏ ∏ ∏r θ r α α α , 

where ( )n
j ii 1n I r j== =∑  is the number of observations for which the component label r  equals j. In 

the last equation we use the reparametrization of the mixture weights (2.9). Because marginalization 

over the latent variables is leading to the original (marginal) posterior 

 ( ) ( ) ( )compL | d d L | p∝∫ θ y r θ θD D , 

marginal characteristics of the parameter θ  are the same, irrespective if they are obtained from the 

complete or marginal posterior. 

4. Regularization priors K4.A1 

In this section continuous regularization priors for shrinkage, selection and smoothing of the various 

regression model components are considered and compared. The presented priors support a 

hierarchical reformulation in terms of conditional Gaussian densities given variance parameters, where 

the variance parameters play the central role to control the desired kind of regularization. The various 

Bayesian regularization strategies for shrinkage, selection and smoothing are generated by varying the 

prior specifications on several stages of the hierarchical model. 

Shrinkage or selection of linear predictor components, compare Subsections 4.1 to 4.3, relies on the 

interpretation of the associated priors as scale mixtures of normal distributions, West (1987). The prior 

distribution for the regression coefficients jβ , xj 1,...,p= , is represented as 
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j j j

2 2 2
j jp( | ) ( | 0, )p( | )dβ β ββ ⋅ = ϕ β τ τ ⋅ τ∫ , (4.1) 

where 2( | m,s )ϕ ⋅  denotes the density of a Gaussian distribution with mean m  and variance 2s  and 

j

2p( | )βτ ⋅  is the density of the mixing distribution of the variance parameter 
j

2
βτ . The switch from the 

marginal to the conditional prior representation leads to a hierarchical prior formulation in terms of the 

conditional Gaussian distribution 
j

2
j | 0, ββ τ  assigned to the regression coefficients and the distribution 

j

2 |βτ ⋅  assigned to the variance parameter. In this formulation the variance parameters control the 

concentration of the Gaussian prior for the regression coefficients around zero and determine the 

amount of shrinkage, where small variances induce a strong concentration and a heavy shrinkage 

towards zero. In addition, the scale mixture representation allows for a flexible kind of regularization, 

since each regression coefficient is equipped with its own variance parameter. A covariate-specific 

shrinkage is advantageous to avoid the overshrinkage of larger regression coefficients. E. g. Zou 

(2006) showed this in terms of the adaptive lasso penalty, xp
j jj 1pen( ; )

=
= λ β∑β λ , where covariate-

specific penalties jλ  are introduced to support the unbiasedness for larger regression coefficient 

estimates. In contrast the lasso penalty, xp
jj 1pen( ; )

=
λ = λ β∑β , with its uniform shrinkage of all 

coefficients, produces biased estimates also for large regression coefficients, because all regression 

coefficients share a common regularization parameter λ . The flexibility of the regularization is further 

supported by the option to utilize additional priors for the hyperparameters of the variance distribution 

j

2 |βτ ⋅ , which leads marginally to a modification of the mixing variance distribution. Finally, this 

modifies marginally the regularization prior of the regression coefficients and enables more 

sophisticated types of shrinkage and selection priors.  

Under the conditional independence assumption for the regression coefficients given the variance 

parameters, the prior hierarchy is represented by the multivariate Gaussian prior distribution 
2| ~ N( , )β β ββ τ µ Σ  with zero mean vector β =µ 0  and covariance matrix 

1 px

2 2diag( ,..., )β β β= τ τΣ  and the 

joint prior distribution of the mixing variances 2 |β ⋅τ ,
1 px

2 2 2( ,..., )β β β
′= τ ττ , given further hyperparameters. 

Under conditional independence given the hyperparameters, the prior 2 |β ⋅τ  is the product of the priors 

of the single variance parameters. Since large variance parameters induce less shrinkage, the priors for 

the unregularized linear regression coefficients γ  can also be cast in this representation. We write 

~ N( , )γ γγ µ Σ , with γ =µ 0  and cγ =Σ I , c 0>  large, or 1−
γ →Σ 0  to denote the assigned weakly 

informative Gaussian priors. These priors cause virtual no regularization and are appropriate for low-

dimensional numbers of covariates that should always enter the model. Smoothing of nonlinear 

predictor terms or model components, like the baseline error distribution density in the AFT model or 

the log-baseline hazard function in the CRR model, rely on the basis function representation of these 

components. The recruited random walk smoothing priors for these semiparametric model 

components, compare Subsection 4.6, allow a similar hierarchical reformulation in terms of (partially 

improper) conditional Gaussian densities for the basis function coefficients jα , zj 0,1,...,p= , given 

variance parameters 
j

2
ατ , i. e. 

j jj

2
j | ~ N( , )α αατα µ Π  with 

jα =µ 0  and appropriate precision matrix 
jαΠ  

that depends on 
j

2
ατ . 

Finally, the conditional Gaussian priors of the predictor components act as intermediate quantities in 

the joint prior to separate the priors of the associated variances and further parameters from lower 

stages of the hierarchy from the likelihood. This means, that the likelihood is not involved in the 

MCMC update of the variance parameters and the hyperparameters on hierarchical stages below and, 

as a consequence, the associated full conditionals have a closed form and enable fast Gibbs sampling. 

In addition, for Gaussian or latent Gaussian observation models, due to self-conjugacy, Gibbs 
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sampling can be applied to update the predictor components. Also for non Gaussian observation 

models the quadratic structure of the conditional Gaussian prior of the regression coefficients 

simplifies the structure of the constructed IWLS-proposal distribution as shown, e. g. in CRR 

inference Section 9. 

4.1. Bayesian ridge prior 

4.1.1. Prior hierarchy 

A well known penalty to deal with multicollinearity or the problem of xp n>  in classical regression is 

the ridge penalty. In ridge regression the penalized least squares criterion is minimized with respect to 

the penalty xp 2
jj 1pen( ; )

=
λ = λ β∑β , 0λ ≥ . The Bayesian version of the ridge penalty is given by the 

assumption of i.i.d. (conditional) Gaussian priors for the regression coefficients 

 ( )j iid x| ~ N 0,1 2 , j 1,...,p ,β λ λ =  (4.2) 

that leads to the joint prior density 

 ( ) ( )
x

x x
p

p p
2

j j
j 1j 1

p | p | exp
==

   λ
λ = β λ = −λ β    π   

∑∏β . (4.3) 

For a given value of the shrinkage parameter 0λ ≥ , posterior mode estimation corresponds to 

maximum penalized likelihood estimation, compare (1.20). The prior (4.3) has the scale mixture of 

normals representation 
j j

2 2
j | ~ N(0; )β ββ τ τ  with 

j j

2 2
1 2| ~ ( )λβ βτ λ δ τ . The symbol a (t)δ  denotes the 

Kronecker function which equals 1, if t a= , and 0, if t a≠ . A full Bayesian specification is obtained, 

when additionally the shrinkage parameter λ  is assumed to be a random variable and is equipped with 

an appropriate prior. Due to conjugacy to the Gaussian family using a gamma prior, 

 ( )1, 2, 1, 2,~ Gamma h ,h ; h ,h 0λ λ λ λλ > , (4.4) 

is convenient to support a Gibbs update for this parameter. The deterministic connection 
j

2
1 2 ( )λ βδ τ  

between the shrinkage parameter and the variance parameters is leading to identical variance 

parameters 
j

2 2
β βτ = τ  and an identical proportion of shrinkage for all regression coefficients. This 

somehow artificial notation of the hierarchy, with a gamma prior for the shrinkage parameter λ  

instead of an inverse gamma prior for the variance parameter 2
βτ , prevents the interpretation of λ  as 

shrinkage parameter similar to the lasso prior. In summary we obtain, due to the identical variance 

parameters, a multivariate scale mixture of normals, compare e. g. Eltoft et al. (2006), and we express 

the hierarchy as 

 2 2 2 2
j 1 2| ~ N(0; ), | ~ ( )β β β λ ββ τ τ τ λ δ τ , (4.5) 

to reflect the identical shrinkage also in the notation.  

To obtain the univariate scale mixture of normals representation, we utilize regression coefficient 

specific shrinkage parameters jλ  resulting in the hierarchy 

 ( ) ( )jj j j j

2 2 2 2
j j 1 2| ~ N 0; , | ~ λβ β β ββ τ τ τ λ δ τ , (4.6) 

with 
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 ( )j iid 1, 2, 1, 2,~ Gamma h ,h ; h ,h 0λ λ λ λλ > . (4.7) 

In this representation each regression coefficient has a representation as scale mixture of normal 

distributions (4.1) with individual inverse gamma mixing distribution, which bypasses the identical 

proportion of shrinkage for all regression coefficients. We consider in the following the more general 

case (4.6) with (4.7), since the properties of the multivariate scale mixture (4.5) can be derived as a 

special case. More details are provided in Subsection 4.1.3.  

4.1.2. Shrinkage properties 

Marginal priors 

To investigate the shrinkage properties, we consider the univariate marginal priors of the regression 

coefficients jβ  and the associated variance parameter 
j

2
βτ , induced by the hierarchical prior structure 

given above. For the mixing variance parameter we obtain 

 ( )
j

2 1
1, 1, 1, 2,2| h ,h ~ IGamma h , hλ λ λ λβτ , (4.8) 

and further marginalization over the variance parameter, compare Appendix B.1, is leading to a scaled 

Student t-distribution as marginal distribution of the regression coefficients given the hyperparameters 

1, 2,h ,hλ λ  

 ( ) ( ) ( ) ( )j j j

2 2 21
j 1, 2, j 1, 2, j 1, 2, 1,20

p | h ,h N | 0, IGamma | h , h d t | 2h , h 2h
∞

λ λ λ λ λ λ λβ β ββ = β τ τ τ = β∫ , (4.9) 

with densities ( )
11
22
(d 1)2 2 21 1

j j2 2p( | d,s) ( (d 1)) ( ds ) ( d) 1 ds
− +

β = Γ + π Γ + β , where 1,d 2h λ=  are the degrees 

of freedom and 2, 1,s h 2hλ λ=  is the scale parameter. For 2d s 1= = , i. e., 1,h 0.5λ =  and 2,h 1λ = , the 

standard Cauchy distribution is obtained as special case. Finally, the full Bayesian specification is 

leading to a marginal distribution of the regression coefficients, which has a representation as scale 

mixture of normal distributions with an inverse gamma mixing distribution.  

The additional prior assumptions about the shrinkage parameters are leading to a more flexible 

modeling of our prior knowledge and a refinement of the prior tuning, i. e., the shrinkage of the 

regression coefficients is controlled by the two hyperparameters of the scaled Student t-distribution 

j 1, 2,p( | h ,h )λ λβ  in comparison to the single parameter Gaussian prior jp( | )β λ . The associated penalty 

function simply incorporates the term in the logarithm of the prior, j 1, 2,log p( | h ,h )λ λ− β , that depends 

on jβ  and is given by 2
j 1, 2, 1, j 2,pen( ;h ,h ) (h 0.5)log(1 h )λ λ λ λβ = + + β . From the optimization 

perspective, the penalized ML or MAP estimate solves the penalized log-likelihood equations with 

respect to the penalty term xp 2
1, 2, 1, j 2,j 1pen( ;h ,h ) (h 0.5) log(1 h )λ λ λ λ=

= + + β∑β . 

Shrinkage properties in terms of the marginal prior of the regression coefficients 

The shrinkage behavior of a prior distribution is determined by the specific shape of the density. A 

concentration of the probability mass around the origin enforces a strong shrinkage of the regression 

coefficients, while more mass in the tails of the density, enables larger values of the regression 

coefficients and supports the unbiasedness of the larger regression coefficient estimates. At the limit, 

for very noninformative, diffuse priors, the regression coefficients are distributed around their ML 

estimates. In the case of a scaled Student t-distribution the scale parameter equals 1, if 2, 1,h 2hλ λ=  in 
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our parameterization. If 2, 1,h 2hλ λ> , the scale parameter is larger than one, s 1> , and more probability 

mass is allocated to the tails of the t-distribution and vice versa, if 2, 1,h 2hλ λ< , we have s 1<  and the 

probability mass is more concentrated around zero. Also the degrees of freedom 1,d 2h λ=  determine 

the shrinkage, since larger degrees of freedom concentrate the t-distribution around zero and induce a 

stronger shrinkage. In summary, the constellation of the two hyperparameters 1,h λ  and 2,h λ  controls 

the amount shrinkage of smaller regression coefficients and the size of the bias for larger regression 

coefficients.  

Figure 4.1 shows the univariate marginal log-priors of one regression coefficient, jlog(p( | ))β ⋅ , 

associated to the various regularization priors considered in this section. The used hyperparameters are 

selected to obtain 0.05q 4= −  as the lower 5% quantile of each prior distribution, but in the case of more 

than one hyperparameter the selection is not unique. In particular the left panel of Figure 4.1 contains, 

amongst others, the marginal Gaussian prior (4.2), denoted with BR( 0.169)λ = , and the marginal 

Student t-prior (4.9), denoted with 1, 1,BR(h 0.45,h 0.248)λ λ= = . In contrast to the light-tailed Gaussian 

distribution, the Student t-distribution has a more beneficial shape for regularization, since it shows a 

distinctive peak at zero and a strong decline, similar like the heavy tailed Cauchy distribution, 

1, 1,BR(h 0.5,h 1)λ λ= = , if the absolute values of β  increase. Therefore, the shrinkage of large 

coefficients towards 0 is only moderate, whereas shrinkage of small coefficients towards 0 is 

encouraged.  

This is also shown in Figure 4.2 in terms of the associated penalty functions.  
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Figure 4.1: Univariate marginal log-priors of the regression coefficients log p( | )β ⋅  resulting from the various 
regularization schemes. Upper panel: Log-priors in the range [ 5,5]− . Lower panel: Log-priors in the left margin 
[ 20, 5]− − . The hyperparameters given in the legends are selected to obtain 0.05q 4= −  as the lower 5% quantile 

of the marginal prior of the regression coefficient. 
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Figure 4.2: Univariate marginal penalty of the regression coefficients pen(| || )β ⋅  resulting from the various 
regularization schemes. The hyperparameters given in the legends are selected to obtain 0.05q 4= −  as the lower 

5% quantile of the marginal prior of the regression coefficient.  

Especially in the linear regression model with Gaussian error the amount of shrinkage can be 

quantified and expressed in terms of the ML-estimate. For simplicity we assume in this context 

orthogonal predictors. Solving the penalized score equations pen pen
ˆlog L ( , )∂ ⋅ ∂ =β β 0  is leading to the 

connection 2
j,ML j,pen j,pen j,pen

ˆ ˆ ˆ ˆsign( )pen (| |; )′β − β = σ β β ⋅ , where j,penβ̂  denotes the penalized estimate, 

j j jpen (| |; ) d log p(| || ) d′ β ⋅ = − β ⋅ β  is the first derivate of the penalty function with respect to jβ  and σ  

is the standard error of the ML estimate j,MLβ̂ . It follows, that the derivate of the penalty controls the 

amount of shrinkage and, if the derivate tends to zero for large values of j,MLβ̂ , the penalized estimate 

gets close to the ML estimate j,pen j,ML
ˆ ˆβ ≈ β  and is nearly unbiased. Fan and Li (2001) formulated 

several conditions to define a good penalty function. The unbiasedness of the resulting estimator, 

when the true unknown parameter is large, is one of the conditions and it is sufficient to show 

jpen (| |; ) 0′ β ⋅ →  for j| |β  large. The resulting estimator is said to be a thresholding rule for the MAP 

estimation, if the minimum of the thresholding function 2
j j jT( ) : | | pen (| |)′β = β +σ β  is positive, that is 

j 0 jTP : min T( ) 0β ≠= β > . In this case the penalty is sparse, since the penalized estimate is set to 

j,pen
ˆ 0β = , if j,ML

ˆ| | TPβ ≤ , and the model complexity is reduced. For continuity of the penalized 

estimator in the data a necessary and sufficient condition is that the threshold TP is attained at 0. This 

avoids instability of the estimators as e. g. resulting from all subset selection. In summary, the penalty 

function must be singular at the origin.  

Figure 4.3 shows the derivate of the univariate marginal log-priors of the regression coefficients 

j jd log p( | ) dβ ⋅ β  at the positive x-axis and the derivate of penalty function jpen (| |; )′ β ⋅  is obtained by 

reflection across the positive half of the x-axis. The penalty of the Gaussian prior (4.2) is given by 
2

j jpen(| |; ) | |β λ = λ β  with derivate j jpen (| |; ) 2 | |′ β λ = λ β . From this formula we can easily see the 

well known results, that the estimators resulting from this penalty are always biased, since the penalty 

does not converge towards zero for large j| |β , and it is obvious that the minimum TP of the 

thresholding-function 2 1
j j jT( ) | | 2 | | ( )−′β = β + λ β σ X X  with respect to jβ  is attained at zero, so this 

penalty does not produce sparse solutions. The penalty of Student t-prior (4.9), is leading to the 

derivate 2 1
j 1, , 1, j 2, jpen (| |;h ,h ) (2h 1) | | (h )−

λ λ λ λ
′ β = + β + β , compare right panel of Figure 4.3, which 

converges to zero if jβ  gets large and, as a consequence, we obtain less biased estimates. But, due to 

the smoothness of the Student t-prior at the origin, the derivate of the log-prior is continuous at the 

origin, so that the minimum TP is attained at zero ( TP 0= ), and consequently there are no sparse 

solutions obtainable with this penalty resp. prior. 
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Figure 4.3: First derivate of the univariate marginal log-priors of the regression coefficients d log p( | ) dβ ⋅ β  
resulting from the various regularization schemes.The hyperparameters given in the legends are selected to 

obtain 0.05q 4= −  as the lower 5% quantile of the marginal prior of the regression coefficient. The derivate of the 
penalty function is obtained by reflection across the x-axis.  

Shrinkage properties in terms of the marginal prior of the variance parameters 

An intuitive way to understand the shrinkage properties is provided by the analysis of the marginal 

prior of variance parameters 
j

2
βτ , since small variances 

j

2 0βτ →  induce a strong and large variances 

j

2
βτ → ∞  induce a weak shrinkage of the regression coefficients jβ , with respect to the scale mixture 

representation. Carvalho et al. (2010) suggested the use of the standardized constraint parameter 

j

2
j : 1 (1 ) [0,1]βκ = + τ ∈  instead of the variance parameters to improve the comparison of various priors. 

The associated prior distribution of jκ  is derived by the density transformation 2
j

21
j jp( ) p ( 1) −

τ κκ = − κ , 

where 2p ( )τ ⋅  denotes the marginal prior of the variance parameters 
j

2
βτ . The behavior of the prior 

jp( )κ  close to j 1κ =  (
j

2 0βτ → ) controls the shrinkage of the smaller regression coefficients, while 

prior jp( )κ  close to j 0κ =  (
j

2
βτ → ∞ ) controls the tail robustness of the prior. 

For the inverse gamma distribution of the variance parameter in (4.8) we obtain the density 

 
1,1,

1,

h 1h
j j2,

j 2,h 1
1, j j

( )(0.5h )
p( ) exp 0.5h

(h ) (1 ) 1

λλ

λ

−
λ

λ+
λ

 κ κ
κ = − 

Γ − κ − κ 
. 

At the right limit j 1κ →  the prior is always zero, jp( ) 0κ → , and at the left limit j 0κ →  the prior 

behavior depends on the hyperparameters 1,h λ  and 2,h λ . We obtain for j 0κ →  that jp( ) 0κ → , if 

1,h 1λ > , j 2,p( ) 0.5h λκ → , if 1,h 1λ = , and jp( )κ → ∞ , if 1,h 1λ < .  

Figure 4.4 shows the prior of the parameter jκ  under various hyperparameter constellations. From the 

upper left panel to the lower right panel the hyperparameter 1,h λ  decreases, within the panels we 

sweep through the scale of the prior by decreasing the hyperparameter 2,h λ  with fixed value for 1,h λ . 

The magenta lines mark the values, where the scale parameter of the Student t-prior for the regression 

coefficients equals one. Within each panel, if the hyperparameter 2,h λ  decreases, more prior mass is 

assigned to the neighborhood of j 1κ ≈  and shrinkage is enforced. The prior jp( )κ  becomes strongly 

peaked near j 0κ = , if 2,h λ  is small enough. On the other hand, decreasing the hyperparameter 1,h λ  

places more probability mass in the neighborhood of j 0κ ≈  which promotes the tail robustness and 

we obtain infinite spikes at j 0κ =  for 1,h 1λ <  in the lower panel. The density jp( )κ  associated to the 

heavy tailed Cauchy prior is displayed in the lower left panel (magenta line). Here the prior jp( )κ  

equals zero at j 1κ =  and is unbounded at j 0κ =  with prior mass j( [0,0.25]) 0.53κ ∈ ≈P  and 

j( [0.25,0.75]) 0.43κ ∈ ≈P . 
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Figure 4.4: Prior densities of the standardized constraint parameter jκ  for the marginal variance prior (4.8) 
under various hyperparameter combinations given in the legends.The magenta line in the lower left panel 

corresponds to the Cauchy density as marginal prior of the regression coefficients.  
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Figure 4.5: Prior densities of the standardized constraint parameter jκ  for various regularization priors. The 
hyperparameter combinations given in the legends are used in the simulations and applications.  

Due to the trade-off between the magnitude of shrinkage and tail robustness, the hyperparameters have 

to be selected carefully. To enable data driven estimates, we specify diffuse gamma priors for the 

shrinkage parameter with small values of the hyperparameters 1,h λ  and 2,h λ . For our general settings 

1, 2,h h 0.01λ λ= =  (with j( [0,0.25]) 0.943κ ∈ ≈P  and j( [0.25,0.75]) 0.023κ ∈ ≈P ), 1, 2,h h 0.001λ λ= =  

(with j( [0,0.25]) 0.991κ ∈ ≈P  and j( [0.25,0.75]) 0.0025κ ∈ ≈P ) used in the simulations and 

applications, we obtain a lot of mass in the tails and an enhanced shrinkage for j 1κ ≈ . For the various 

shrinkage priors used in the simulations and applications, the distributions of the standardized 

constraint parameters are compared in Figure 4.5 together with the horseshoe, Carvalho et al. (2010), 

and the Normal-Jeffrey prior. 
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4.1.3. Extensions 

In Subsection 4.1.1 we have introduced two versions of the Bayesian ridge prior. One version 

corresponds to the prior hierarchy in (4.6) and (4.7) 

 ( ) ( ) ( )jj j j j

2 2 2 2
j i 1 2 j 1, 2,| ~ N 0; , | ~ , ~ Gamma h ,hλ λ λβ β β ββ τ τ τ λ δ τ λ  (A) 

and the other corresponds to (4.5) and (4.4) 

 ( ) ( ) ( )2 2 2 2
j 1 2 1, 2,| ~ N 0; , | ~ , ~ Gamma h ,hβ β β λ β λ λβ τ τ τ λ δ τ λ . (B) 

The first version (A) leads to a marginal Student t-distribution for each regression coefficient jβ , as 

described above, and enables an individual shrinkage of each regression coefficient via the coefficient-

specific variance parameter 
j

2
βτ . The joint prior of the regression coefficients β  is the product of 

univariate t-densities. The second version (B) leads to a multivariate Student t-distribution as marginal 

prior of the regression coefficients β , with 1,d 2h λ=  degrees of freedom and scale matrix 
1
2

x2, 1, ph 2hλ λ=Σ I , compare Appendix B.1, and induces an identical proportion of shrinkage for all 

regression coefficients, due to the common variance parameter 2
βτ . Both versions differ, because the 

product of univariate t-densities is not equivalent to a multivariate t-density. But, since the 

distributions of the marginal variance parameter(s) are in both cases inverse gamma distributions, 
1

1, 1,2IGamma(h , h )λ λ , the analysis of the distribution of the standardized constraint parameter κ  can 

also be applied to analyze the shrinkage behavior under version (B). We use version (B) throughout in 

the simulations and the applications. 

In the upper panel of Figure 4.6 the different shapes of both versions are shown in terms of the 2-

dimensional log-priors of the regression coefficients. The adaptive ridge version (A) behaves similar 

as the lasso prior (4.15) with ridges at the axes, but conversely we have rounded edges at the axes 

under the ridge prior (A). In contrast the ridge version (B) produces elliptical contours, compare lower 

panel of Figure 4.6. In the software both versions of the ridge prior are implemented. Version (A) is 

specified as “adaptive ridge” method and (B) simply as “ridge”. The term adaptive indicates in 

general, that covariate-specific complexity parameters are used, where each can be equipped in 

addition with its own hyperparameters if desired. Covariate-specific hyperparameters enable to 

“stretch” or “compress” the marginal priors of the regression coefficients covariate-specific which 

increases again the flexibility of the joint prior. Such adaptations may be useful to take into account 

correlations of the covariates or various covariate scales. In contrast, e. g. the lasso prior (compare 

Subsection 4.2) is leading to covariate-specific shrinkage, even if a common prior for the shrinkage 

parameter is introduced.  

Group priors 

The simultaneous selection of associated covariate groups, arising e. g. from categorical covariates or 

from pathways representing predefined sets of interconnected genes, is also an important feature of 

regularization priors. Group sparsity can be handled by assuming identical variance parameters for the 

associated subgroups of regression coefficients, similar to the ridge version (B), to induce an identical 

proportion of shrinkage for all regression coefficients within the subgroup. More formal, let 

jj j,1 j,k( ,..., )′= β ββɶ  denote the xj 1,...,p=  associated subgroups of regression coefficients with group size 

jk 1≥ . For each group xj {1,...,p }∈  we use the hierarchical structure 
jj j

2 2
j k| ~ N(0; )

β β
τ τβ Iɶ ɶ

ɶ , 

jj j

2 2
j 1 2| ~ ( )λβ β

τ λ δ τɶ ɶ , ( )j iid 1, 2,~ Gamma h ,hλ λλ , where 
jkI  denotes the jk -dimensional identity matrix  
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Figure 4.6: Marginal 2-dimensional log-priors of the regression coefficients, 1 2log p( , | )β β ⋅ , and equicontours, 

1 2log p( , | ) constβ β ⋅ = , resulting from the Bayesian ridge version (A) and (B), the lasso and the NMIG 
regularization scheme.  
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and 
j

2
β

τ ɶ  is the group-specific variance parameter. Concordantly to the ridge version (B), we obtain 

multivariate Gaussian scale mixtures for each group of associated regression coefficients jβɶ  with 

marginal jk -dimensional Student t-distributions, each having 1,d 2h λ=  degrees of freedom and a scale 

matrix 
1
2

jj 2, 1, kh 2hλ λ=Σ I . This version is not implemented in the software yet. 

4.2. Bayesian lasso prior 

4.2.1. Prior hierarchy 

Just as well known as the ridge regression in the context of collinearity, is the lasso regression, 

Tibshirani (1996), if simultaneous variable selection and estimation should be achieved. The Bayesian 

version of the lasso penalty xp
jj 1pen( , ) | |

=
λ = λ β∑β  can be formulated with i.i.d. centered Laplace priors 

 ( )j iid x| ~ Laplace 0, , j 1,...,p ,β λ λ =  (4.10) 

where 0λ >  represents the inverse scale parameter of the Laplace distribution, and joint density 

 ( ) ( )
xx x

pp p

j j

j 1j 1

p | p | exp
2 ==

 λ 
λ = β λ = −λ β  

   
∑∏β , (4.11) 

compare, e. g., Park and Casella (2008). Figure 4.1 shows the Laplace prior, BL( 0.576)λ = , in the 

univariate case. As in ridge regression, for given values of λ , posterior mode estimation corresponds 

to penalized likelihood estimation.  

The Laplace density jp( | )β λ  is expressed as scale mixture of normals (4.1), with an exponential prior 

on the mixing variances 

 ( ) ( )
j j j

2 2 2 2 21
j iid 2| ~ N 0; , | ~ Exp .β β ββ τ τ τ λ λ  (4.12) 

For full Bayesian inference, we use in addition a gamma prior for the squared shrinkage parameter 2λ  

 ( )2
1, 2, 1, 2,~ Gamma h ,h , h ,h 0λ λ λ λλ > , (4.13) 

where small values of the hyperparameters 1, 2,h 0,h 0λ λ> >  define diffuse gamma priors and allow 

data driven estimates of the model parameters. 

4.2.2. Shrinkage properties 

Marginal priors 

The introduction of the hyperprior for the shrinkage parameter is leading to the following marginal 

density for the mixing variance parameter 
j

2
βτ  

 ( ) ( ) ( )
( )1,

j

j j

h 12
1,12 2 2 2 2

1, 2, 1, 2,2
2, 2,

h
p | h ,h Exp | Gamma | h ,b d 1

2h 2h

λ− +

βλ
λ λ λ λβ β

λ λ

τ 
τ = τ λ λ λ = + 

 
∫ . (4.14) 

This is the density of generalized Pareto (gP) distribution ( 1 a 1
gPp (x;a,s,m) s (1 (x m) as)− − −= + − , 

a 0> , x m≥ ), with zero location parameter m 0= , scale parameter 2, 1,s 2h hλ λ=  and shape 

parameter 1,a h λ= . As mentioned before, conditionally on the variance parameter 
j

2
βτ , the prior for jβ  
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is Gaussian, but the marginal density of the regression coefficients is non Gaussian and can be 

expressed as 

 

( ) ( ) ( )

( ) ( )

j j j

1,

1,

2 2 2
j 1, 2, j 1, 2,

2h
j j1,

1, 2 h 1 2
2,2, 2,

p | h ,h N | 0, gPareto | h ,h d

| |h 2 1
h 1 2 exp D

4 2h2h 2h

λ

λ

λ λ λ λβ β β

λ
λ − +

λλ λ

β = β τ τ τ

  β β
= Γ +     π    

∫
 (4.15) 

with the parabolic cylinder Function D ( )ν ⋅ , compare Appendix B.2 for details to the derivation. In 

summary, the derived marginal distribution can be expressed as scale mixture of normals with a 

generalized Pareto mixing distribution. The hyperparameter 2,h λ  plays the role of a scale parameter in 

the marginal distribution of the regression coefficients, in particular the scale factor is given by 

2,s 2h λ= . With respect to the unscaled distribution ( 2,h 0.5λ = ), smaller values 2,h 0.5λ <  

concentrate more mass around zero and enforce the shrinkage, while larger values 2,h 0.5λ >  shift 

more mass to the tails of the distribution. Using the connection 
1

2 2 1 1
2D (0) 2 ( )

ν
− −ν

ν = π Γ , we obtain at the 

origin 
1
2 11

j 1, 2, 1, 2, 1, 1,2p( 0 | h ,h ) h (4h ) (h ) (h 1)− −
λ λ λ λ λ λβ = = Γ + Γ + . As reflected by this expression, the 

hyperparameter 1,h λ  determines the level of the prior at the abscissa j 0β =  and larger values are 

leading to higher ordinates, which also enforce the shrinkage.  

In contrast, e. g., to the ridge prior, the marginal prior (4.15) lacks a simple analytic form and the 

theoretical properties of the resulting shrinkage estimators are hard to access in terms of the parabolic 

cylinder function. Armagan et al. (2013) utilize a gamma prior for the shrinkage parameter, 

1, 2,~ Gamma(h ,h )λ λλ , which leads marginally to a generalized double Pareto (gdP) distribution as 

prior for the regression coefficients, i. e. 

 ( ) ( ) ( )
( )1,h 1

j1,
gdP j 1, 2, j 1, 2,

2, 2,

| |h
p | h ,h Laplace | 0, Gamma | h ,h d 1

2h h

λ− +

λ
λ λ λ λ

λ λ

 β
β = β λ λ λ = + 

 
∫ , (4.16) 

and the mixing scheme is interpreted as scale mixture of Laplace distributions. The simple analytical 

expression of the marginal prior enables the formulation of a compact penalty function with 

summands j 1, 2, 1, j 2,pen( ;h ,h ) (h 1)log(| | h )λ λ λ λβ = + β +  and j 1, 2, 1, j 2,pen (| |;h h ) (h 1) (| | h )λ λ λ λ
′ β = + β +  

as first derivate to study the properties of the resulting posterior mode estimator. Armagan et al. (2013) 

show, in the spirit of Fan and Li (2001), that the MAP estimator resulting from this penalty function is 

continuous in the data, nearly unbiased, if the absolute value of the true parameter j| |β  is large, and 

that small estimated coefficients are set to zero, if 2, 1,h 2 h 1λ λ< + , i. e. the prior reduces the model 

complexity. Lee et al. (2012) showed that the gdP-prior, the exponential power prior and the Student t-

prior can be viewed as special cases of a generalized t-prior with four hyperparameters and investigate 

the shrinkage and selection properties in this general framework.  

In the frequentist context, Zou (2006) shows similar oracle properties for the adaptive lasso, where 

covariate-specific weights jw  are introduced in the penalization term j j j jpen(| |; ,w ) wβ λ = λ β  of the 

regression coefficients. This leads to coefficient-specific penalties j jwλ = λ  in comparison to the 

frequentist lasso, j jpen(| |; )β λ = λ β , with its uniform shrinkage of all coefficients. The author state, 

that under an appropriate choice of the weights jw , e. g. as the inverse ML estimates, the adaptive 

lasso can asymptotically perform as well as if the correct submodel was known.  
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Shrinkage properties in terms of the marginal prior of the regression coefficients 

The right panel of Figure 4.1 shows the marginal priors of the regression coefficients for the Bayesian 

lasso prior (4.15), 1, 2,BL(h 0.21,h 0.129)λ λ= = , and the generalized double Pareto prior (4.16), 

1, 2,gdP(h 1.90,h 1.70)λ λ= =  in the univariate case. By trend, both priors behave very similar. 

Compared to the one parameter Laplace-prior, BL( 0.576)λ = , we obtain also peaks around zero and 

non continuous first derivates at the origin, but the two hyperparameters enable shapes, which assigns 

more probability mass to the tails. Under the selected hyperparameter constellations the gdP-prior is 

slightly more concentrated around zero, which results in (marginally) lighter tails. But both prior tails 

are almost comparable to the Cauchy- or the Bayesian ridge prior tails. Comparing the marginal log-

priors from the Bayesian lasso hierarchy, 1, 2,BL(h 0.21,h 0.129)λ λ= = , and the Bayesian ridge 

hierarchy, 1, 2,BR(h 0.45,h 0.248)λ λ= = , we see that both approaches are not so far from each other as 

in their one-parameter versions, BL( 0.576)λ =  and BR( 0.169)λ = , with marginal Laplace and 

Gaussian prior. Figure 4.6 displays the 2-dimensional shape of the lasso prior (4.15) and the 

associated equicontours. The contours are similar the qL -penalty with q 1< . 

In the univariate case the contribution to the lasso penalty arising from the Laplace prior (4.10) is 

given by j jpen( ; ) | |β λ = λ β , see Figure 4.2, with derivate jpen (| |; )′ β λ = λ , see Figure 4.3. The 

Bayesian lasso penalty has the contributions ( ) ( )
1,

2
j 1, 2, j 2, 2(h 1 2) jpen ;h h 8h logD | | 2b ,

λλ λ λ − + λβ = β + β  

with derivate 

 ( )
( ) ( ) ( )

( ) ( )
1,

1,

j 2,2 h 11,

j 1, 2,

2, j 2,2 h 1 2

D 2h2h 1
pen | |;h ,h

2h D 2h

λ

λ

λ− +λ

λ λ

λ λ− +

β+
′ β =

β
, 

compare Appendix B.2. The right panel of Figure 4.3 shows the first derivate of the univariate 

marginal log-priors of the regression coefficients, j jdlogp( | ) dβ ⋅ β , for the lasso variants. In contrast 

to the Laplace prior, the Bayesian lasso and gdP prior do not inherit the problem of overshrinking 

large coefficients, since the derivates vanish if j| |β  increases, resulting in a reduction of bias. In 

contrast to the Bayesian ridge or NMIG (Subsection 4.3) regularization, the Bayesian lasso 

regularization (also Laplace and gdP) produce a nonzero derivate of the penalty at the origin j 0β = , 

because the priors are not continuous differentiable there. With respect to the thresholding function 

jT( )β , the derivate of the penalty evaluated at the origin, ( )jpen | | 0 |′ β = ⋅ , determines the threshold 

TP 0>  in the linear model with orthogonal predictors, and the MAP resp. penalized ML estimates 

with ML,j
ˆ| | TPβ <  are set to zero. We obtain at the origin for the Bayesian lasso prior 

( ) 11 1
1, 2, 2, 1, 1, 2pen 0 | h ,h h (h 1) (h )− −

λ λ λ λ λ′ = Γ + Γ + , for the gdP prior 1, 2, 1, 2,pen (0;h h ) (h 1) hλ λ λ λ
′ = +  and 

pen (0; )′ λ = λ  for the Laplace prior. 

Shrinkage properties in terms of the marginal prior of the variance parameters 

For the generalized Pareto distribution of the variance parameter 
j

2
βτ  in (4.14) we obtain the density 

 

( ) ( )1, 1,

1,

h 1 h 1

j j1, 1, h 1
j j2

2, 2, j 2, 2,j

1 1h h1 1
p( ) 1 1

2h 2h 2h 2h

λ λ

λ

− + − +

λ λ −

λ λ λ λ

   − κ − κ
κ = + = κ +   

κ κ   
 

for the standardized constraint parameter jκ . At the right margin j 1κ →  we have always finite 

nonzero values j 1, 2,p( ) h 2hλ λκ → . At the left margin j 0κ →  we obtain for the prior jp( ) 0κ → , if 

1,h 1λ > , 2 1
j 2, 2,p( ) (2h (1 1 2h ) )−

λ λκ → + , if 1,h 1λ =  and jp( )κ → ∞ , if 1,h 1λ < . The influence of the 
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hyperparameters 1,h λ  and 2,h λ  is visualized in Figure 4.7, which shows the prior of the parameter jκ  

under various hyperparameter constellations. From the upper left panel to the lower right panel the 

hyperparameter 1,h λ  decreases, within the panels the hyperparameter 2,h λ  varies with constant value 

for 1,h λ . Increasing 2,h λ  shifts more probability mass to the right support of jκ . The magenta colored 

densities result if 1, 2,h hλ λ= . For 1,h 1λ <  and small values 2,h λ  we obtain a horseshoe like shape for 

the prior jp( )κ , i. e. we have high probabilities at the right margin, which determine the shrinkage, 

and at the left margin, which determine the tail behavior. The shapes of jp( )κ  under the ridge and the 

lasso prior are almost comparable for small values of the hyperparameters, with the exception that 

under the ridge prior jp( )κ  vanishes at j 1κ = . We obtain for the two hyperparameter settings 

1, 2,h h 0.01λ λ= =  ( j( [0,0.25]) 0.951κ ∈ ≈P  and j( [0.25,0.75]) 0.023κ ∈ ≈P ) and 1, 2,h h 0.001λ λ= =  

( j( [0,0.25]) 0.992κ ∈ ≈P  and j( [0.25,0.75]) 0.0025κ ∈ ≈P ), that are used in the simulations and 

applications, a lot of mass in the tails and an enhanced shrinkage near j 1κ ≈ . The resulting 

distributions of the standardized constraint parameters are compared in Figure 4.5 and we see that the 

densities jp( )κ  under the lasso and ridge prior almost coincide. 
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Figure 4.7: Prior densities of the standardized constraint parameter jκ  for the marginal variance prior (4.14) 
under various hyperparameter combinations given in the legends. 

4.2.3. Extensions 

Group regularization: We can modify the hierarchical structure of the Bayesian lasso, similar as in 

Subsection 4.1.3, to obtain a common regularization for an associated group of covariates. Assuming a 

common variance parameter within each jk -dimensional group results in a multivariate Gaussian 

scale mixture representation 
jj

2
j k~ N(0, )

β
τβ Iɶɶ  with 

j

2 2 21 1
iid j2 2| ~ Gamma( (k 1), )

β
τ λ + λɶ  for the j-th 

group of associated regression coefficients jβɶ  and marginally in a multivariate Laplace-distribution of 

the regression coefficients jβɶ , compare Kyung et al. (2010) for details. The provided MCMC 
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sampling methods for Bayesian inference can easily be extended to consider group sparsity, but this 

not implemented yet. 

Adaptive priors: To achieve more flexibility, we can equip the hierarchical models above with 

covariate-specific shrinkage parameters and the resulting models are additionally named with 

“adaptive”. For example, the adaptive version of the lasso prior is given through ( )2 2 2
j j j| ~ Exp 2τ λ λ  

with ( )2
iid 1, 2,j ~ Gamma h ,bλ λλ . It is straightforward to use also covariate-specific hyperparameters, 

j j1, 2,h ,bλ λ , which can e. g. be utilized, if the covariates are not standardized, to take account for 

different scales. However, one should keep in mind, that the number of parameters to estimate is 

increased in the adaptive versions, which can cause problems in situations with low sample sizes. The 

adaptive versions can be specified in the software if desired, compare Appendix D.3 to D.5. 

4.3. Bayesian NMIG prior 

4.3.1. Prior hierarchy 

Finally, we consider a normal mixture of inverse gamma distributions, shortly named as NMIG prior. 

This prior has been suggested by Ishwaran and Rao (2003) for the regularization of high-dimensional 

linear regression models. The conditional prior distribution for the regression coefficients is Gaussian, 

as in the lasso and ridge case, 

 ( )j

2 2 2
j j j j j| I , ~ N 0; I ,ββ ψ τ = ψ  (4.17) 

but in contrast, the variance parameters 
j

2
βτ  are specified through a spike and slab mixture distribution, 

modeled by the product of the two components 

 ( )2
j 0 1 iid 0 1 j 1, 1, iid 1, 2,I | v ,v , ~ Bernoulli( ;v ,v ), | h ,h ~ IGamma h ,h .ψ ψ ψ ψω ω ψ  (4.18) 

The first component in (4.18) is a Bernoulli distributed indicator variable jI  with point mass at the 

values 0v 0>  and 1v 0> . In particular the parameter 0v  should have a positive value close to zero, to 

induce small variances, but we assume 0v 0≠  to avoid degenerated priors. The value of 1v  should be 

large compared to 0v  and we can use, e. g., 1v 1= . The binary indicator variable takes the value 0v  

with probability j 0(I v ) 1= = − ωP  and 1v  with probability j 1(I v )= = ωP . Since the parameter ω  

controls how likely the binary variable jI  equals 1v  or 0v , it takes on the role of a complexity 

parameter which controls the size of the models. The assumptions in (4.18) are leading to a 

continuous, bimodal distribution for the variance parameter 
j

2 2
j j: Iβτ = ψ  given the hyperparameters 0v , 

1v , 1,h ψ , 2,h ψ , ω . In particular, we obtain a mixture of scaled inverse gamma distributions 

 ( ) ( )
j

2
0 1 1, 2, 1, 0 2, 1, 1 2,| v ,v ,h ,h , ~ (1 ) IGamma h ,v h IGamma h ,v hψ ψ ψ ψ ψ ψβτ ω − ω ⋅ + ω⋅ , (4.19) 

with common shape parameter 1,h ψ  and scale parameters 0 2,v h ψ  and 1 2,v h ψ , compare Appendix B.3. 

The priors in (4.18) can alternatively be derived on the base of the mixture distribution (4.19) using 

the data augmentation approach depicted in Section 3. In the first mixture component, the so-called 

spike, probability mass is strongly concentrated on small values of the variances and in the second 

mixture component, the so-called slab, we obtain a more diffuse distribution with probability mass on 

a wide support for larger variance values. Variance parameters arising from the spike component 

induce a strong shrinkage of the regression coefficients, while variance parameters from the slab 
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component enforce a reduced shrinkage. The prior locations of the two modes of the inverse gamma 

mixture components are independent of ω  and fixed at 

 
0 1

2, 2,
v 0 v 1

1, 1,

h h
mode v , mode v .

h 1 h 1
ψ ψ

ψ ψ

= =
+ +

 

The shape and scale hyperparameter of the inverse gamma distributed variances 2
jψ  determine a basic 

location of the mode, which is then adjusted by the values of 0v  and 1v . We select the 

hyperparameters 1,h ψ  and 2,h ψ  with respect to 1, 2,h hψ ψ< , to enforce a basic mode 2, 1,h (h 1) 1ψ ψ + ≫ . 

In addition, we assume a beta prior for the complexity parameter ω   

 ( )1, 2,~ Beta h ,hω ωω , (4.20) 

with mean 1, 2, 1, 1, 2,( | h ,h ) h (h h ) : Hω ω ω ω ω ωω = + =E . The beta prior reduces to the uniform prior in the 

special case 1, 2,h h 1ω ω= = , which enables to express an indifferent prior knowledge about the model 

complexity. With an appropriate choice of the hyperparameters 1, 2,h ,b 0ω ω >  it is possible to favor 

more or less sparse models. In particular, for overparameterized models sparse solutions can be 

enforced by choosing 1, 2,h bω ω< .  

In the context of Bayesian variable selection George and McCulloch (1993) use a mixture prior (SSVS 

prior) at the higher level of the regression coefficients, i. e. 2 2
j j j 0, j j 1,j| I ~ (1 I )N(0, ) I N(0, )β − τ + τ , with 

jI {0,1}∈  and pre-specified small and large values of the variance parameters 2
0, jτ  and 2

1,jτ . The NMIG 

prior mimics this variable selection strategy, since variances 
j

2 2
0 jvβτ = ψ  from the spike component of 

the mixture (4.19) induce a strong shrinkage similar 2
0, jτ , whereas variances 

j

2 2
1 jvβτ = ψ  from the slab 

component of the mixture (4.19) support less biased estimates for relevant covariates similar to 2
1,jτ . 

The full Bayesian model specification avoids the direct selection of the values for the variance 

parameters 2
0, jτ  and 2

1,jτ  due to utilizing hyperpriors for 2
jψ . It facilitates an absolutely continuous 

prior, due to 0v 0≠ , and straightforward Gibbs sampling to update the components jI  and 2
jψ  

simultaneously with the update of the complexity parameter ω . A common feature of the NMIG prior 

and the SSVS prior is that the regression coefficients can be rated due to their relevance for prediction. 

Since the sampled indicator values j 1I v=  contain the main information for variable selection, we can 

utilize the posterior relative frequencies of the state j 1I v=  as relevance measure for the covariate 

rating. Finally, variable selection is practiced by utilizing a threshold rule for the posterior relative 

frequencies of the indicators j 1I v= , compare Subsection 4.4. Nevertheless, we have, in contrast to the 

lasso and the ride prior, an increased number of six hyperparameters to manipulate the shape of the 

marginal prior of the regression coefficients, and the costs for the obtained flexibility is an enhanced 

tuning effort. To guide the specification of the hyperparameters, we investigate in the following how 

the hyperparameters affect the shape of the marginal priors and the shrinkage properties. Further we 

analyze the behavior of the inclusion probability for a covariate with j 1I v=  in terms of the associated 

full conditional.  

4.3.2. Shrinkage properties 

Marginal priors 

The marginal density for the mixing variance parameters, after integrating out the parameter ω , is the 

mixture of two inverse gamma distributions 
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j

2, 1,2
1, 0 2, 1, 1 2,

1, 2, 1, 2,

h h
| ~ IGamma(h ,v h ) IGamma(h ,v h ),

h h h h
ω ω

ψ ψ ψ ψβ
ω ω ω ω

τ ⋅ ⋅ + ⋅
+ +

 (4.21) 

which corresponds to the conditional variance density (4.19) for ω  fixed at the prior mean ( Hωω = ). 

Due to the high number or hyperparameters, we use the dot abbreviation to denote the set 

0 1 1, 2, 1, 2,{v ,v ,h ,h ,h ,h }ψ ψ ω ω  in the notation of the marginal distributions. The marginal distribution for 

the regression coefficients jβ  is a mixture of two scaled Student t-distributions 

 0 2, 1 2,2, 1,
j 1, 1,

1, 2, 1, 1, 2, 1,

v h v hh h
| ~ t 2h , t 2h ,

h h h h h h
ψ ψω ω

ψ ψ

ω ω ψ ω ω ψ

   
β ⋅ +      + +   

, (4.22) 

with 1,d 2h ψ=  degrees of freedom and the scale parameters 0 0 2, 1,s v h hψ ψ=  and 1 1 2, 1,s v h hψ ψ= , 

compare Appendix B.3 for the derivation. We obtain as marginal inclusion probability of a covariate 

given jβ  the expression 

 ( ) ( )1,1,
j 1 j h 0.5h 2

j 0 2,2, 0
2

1, 1 j 1 2,

1
I v | ,

2v hh v
1

h v 2v h

ψψ
− +

ψω

ω ψ

= β ⋅ =
 β + 

+    β +   

P . (4.23) 

Shrinkage properties in terms of the marginal prior of the regression coefficients 

The left side of Figure 4.1 shows the univariate marginal log-prior of the regression coefficients 

resulting from the NMIG regularization scheme. We have a finite rounded “spike” at the origin and 

observe a clear concentration of the log-prior around zero, which is stronger than under the other 

regularization priors. The slope of the prior gets large within in the region [ 1,1]−  and outside the prior 

it is comparatively flat and initially indicates a reduction of the shrinkage, separately and compared to 

the other priors. An inspection of the tails exposes over a broad range a prior behavior similar to the 

Laplace prior, but the differences become larger as | |β  increases and the log-prior is flattened. In this 

region the NMIG prior indicates a stronger shrinkage compared to the Bayesian lasso or ridge prior.  

The two points on the log-prior mark the intersection points, where the weighted “spike” component 

of the mixture distribution (4.22) coincides with the weighted “slab” component. Both intersection 

points are located at the roots 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1, 1,

1, 1,1, 1,

1, 1,

1, 1,1, 1,

0 2, 1, 1 1 2, 2, 0

2, 0 1, 1

2h 2h2 2

2h 1 2h 12h 1 2h 1

2h 2h2 2

2h 1 2h 12h 1 2h 1
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2v 2v
ISP

ψ ψ
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ψ ψψ ψ

+ ++ +
ψ ω ψ ω

ω
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+ +
ω

+ +

−
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−

. 

This expression is clearly simplified, if 1v 1=  and a uniform prior for the complexity parameter is 

used, i. e. 1, 2,h h 1ω ω= = . Within the range ISP , P[ ]ISβ β−  the spike component dominates the slab 

component and the location of the intersection points can guide the hyperparameter selection. In 

addition, it turns out that at the intersection points ISPβ  the marginal prior inclusion probability (4.23) 

always equals 1
2 , i. e. j 1 j(I v | , ) 0.5ISPβ= β = ⋅ =∓P . That means, regression coefficients outside the 

interval ISP , P[ ]ISβ β−  have a higher prior inclusion probability than 1
2  and those within have a lower 

inclusion probability. At the origin j 0β =  we obtain 1
j 1 j 2, 1 1, 0(I v | 0, ) (1 h v h v )−

ω ω= β = ⋅ = +P . 

Figure 4.6 shows the 2-dimensional marginal log-prior of the regression coefficients and the 

associated equicontours in comparison to the lasso and ridge prior. Close to the origin we observe 

typical ridge (A) type contours, since the spike part of the log-prior dominates here. Then moving 
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along the diagonal, if 1 2 0.5β = β > , we observe near the axes contours similar to qL -penalty, with 

q 1≪  and rounded corners. Regression coefficients in this areas are mainly shrunken towards one of 

the two axes, i. e. the 1β -axis, if 2 1β < β , or vice versa towards the 2β -axis, if 2 1β > β , but the 

effective direction depends on the shape of the log-likelihood contours, the size of the regression 

coefficients and their correlation, compare e. g. Konrath (2007) for a detailed 2-dimensional 

visualization in terms of the lasso and ridge prior. Moving further along the diagonal, if 1 2 1β = β > , 

we observe the area of the t-distributed slab part with initially convex contours with a reduced ridge 

(A) type shrinkage, when both regression coefficient components are not too close to the axes. The 

transition to the region, where the contours become concave, is outside the plotting area. In the 

univariate case we obtain the first derivate on the marginal log-prior as 

    

1, 1,

1 , 1,

2h 3 2h 3

2 22 2
1, j j 1, j j

3 3
0 2, 1 2,

0 2, 1 2,

2h 1 2h 1

2 22 2
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0 2, 1 2,0 2, 1 2,
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1 1

2v h 2v h2v h 2v h
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1 1
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ψ ψ
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− −
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− −
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   
   

. (4.24) 

We can easily proof that the derivate of the penalty j j jpen (| |; ) d log p(| || ) d′ β ⋅ = − β ⋅ β  converges 

towards zero for large regression coefficients j| |β → ∞ , so that large estimates are less biased, but the 

convergence is slow compared to the other regularization schemes as shown in the right panel of 

Figure 4.3 in terms of the derivate of the log-prior. For small coefficients we observe the clear 

regularization from the spike component, which quickly decreases with increasing values of j| |β . For 

medium values j| |β  around 1 the penalization is reduced, but the amount of penalization increases 

again with the transition to the slab component and reduces there slowly for increasing values 

j| |β → ∞ . 

Figure 4.8 to Figure 4.10 display the marginal prior of the inclusion probabilities (4.23), the 

corresponding marginal log-prior of the regression coefficients (4.22) and the first derivate (4.24) on 

the right half for j [0,3]β ∈  under the variation of the hyperparameters. In the upper panels we have 

1,h 2.5ψ =  and in the lower panels 1,h 5ψ = . From the left to the right 2,h ψ  varies with values 

2,h 25,50,100ψ = . Within each panel the parameter 0v  increases with values from 0v 2.5e-5=  

(yellow) to 0v 0.005=  (magenta). Overall the value of 1v  is fixed to 1 and we set 1, 2,h h 1ω ω= = . 

Within each panel of Figure 4.8 we observe that the prior inclusion probability becomes larger, at 

fixed values of the regression coefficients, with decreasing values of 0v . Simultaneously, the prior 

inclusion probability of very small or zero effects becomes smaller and we obtain at the origin the 

value 1
j 1 j 0(I v | 0, ) (1 1 v )−= β = ⋅ = +P . This implies in terms of the log-prior of the regression 

coefficients, jlog p( | )β ⋅ , that the intersection point of the two mixture components is shifted towards 

the origin, if 0v  is decreased and the log-prior becomes more and more concentrated, compare Figure 

4.9. The derivate j jd log p( | ) dβ ⋅ β  in Figure 4.10 shows accordingly that lager effects get less 

penalized and that the penalty of small effects increases. If we move from the left to the right panels in 

the figures we observe that the decrease of the scale component 2,h ψ  is leading to the same effects on 

the displayed quantities as for decreasing values of 0v . In contrast the increase of the degrees of 

freedom 1,h ψ , from the top to the bottom panels, induces more concentrated prior inclusion 

probabilities at the origin with converse effects. Both changes have no impact on the prior inclusion 

probability at the origin since j 1 j(I v | 0, )= β = ⋅P  does not depend on 1,h ψ  and 2,h ψ . Figure 4.11 

shows the impact on the 3 displayed quantities, if the prior mean of the complexity parameter 
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1, 1, 2,H h h hω ω ω ω= +  is increased. The larger the prior mean Hω , the smaller is the size of the 

regression coefficient with prior inclusion probability equal to larger than 1
2 , i. e. the regularization 

from the spike component is reduced and we observe a clear impact on the inclusion probabilities of 

small and zero effects which increase. 
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Figure 4.8: Marginal prior inclusion probability of the indicator variable jI , j 1 j(I v | ),= β ⋅P  given in (4.23), as 
function of the regression coefficient jβ  with the hyperparameters given in the upper left legend. In the upper 
panel the hyperparameter 1,h ψ  is set to 1,h 2.5ψ =  and in the lower panel to 1,h 5ψ = . From the left side to the 

right side the hyperparameter 2,h ψ  varies with values 2,h 25,50,100ψ = . The values 0v  are given in the legend.  
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Figure 4.9: Marginal log-prior of the regression coefficients, jlog p( | )β ⋅  given in (4.22), as function of the 
regression coefficient jβ  with the hyperparameters given in the lower left legend. In the upper panel the 

hyperparameter 1,h ψ  is set to 1,h 2.5ψ =  and in the lower panel to 1,h 5ψ = . From the left side to the right side 
the hyperparameter 2,h ψ  varies with values 2,h 25,50,100ψ = . The values 0v  are given in the legend.  
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Figure 4.10: Derivate of the marginal log-prior of the regression coefficients, j jd log p( | ) dβ ⋅ β  given in (4.24), 
as function of the regression coefficient jβ  with the hyperparameters given in the upper left legend. In the upper 
panel the hyperparameter 1,h ψ  is set to 1,h 2.5ψ =  and in the lower panel to 1,h 5ψ = . From the left side to the 

right side the hyperparameter 2,h ψ  varies with values 2,h 25,50,100ψ = . The values 0v  are given in the legend.  
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Figure 4.11: Marginal prior inclusion probability of the indicator variable jI , j 1 j(I v | ),= β ⋅P  given in (4.23), 
(left side), marginal log-prior of the regression coefficients, jlog p( | )β ⋅  given in (4.22), (middle), and derivate of 

the marginal log-prior of the regression coefficients, j jd log p( | ) dβ ⋅ β  given in (4.24), (right side), as function 
of the regression coefficient jβ  with the prior mean of the complexity parameter 1, 1, 2,H h h h:ω ω ω ω= +  given in 

the legend.  

Shrinkage properties in terms of the marginal prior of the variance parameters 

We highlight now the shrinkage properties in terms of the standardized constraint parameter jκ . For 

the mixture distribution of the variance parameter 
j

2
βτ  in (4.14) we obtain for jκ  the mixture density 
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h 1h
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Due to the similarity, we can use the results from the ridge section to derive the limiting behavior of 

the mixture density jp( )κ  at the margins. At the limit j 1κ →  both prior mixture components are 

always zero and in summary jp( ) 0κ → . For j 0κ →  we obtain concordantly jp( ) 0κ → , if 1,h 1ψ > , 
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j 2, 0 2, 1, 1 2, 1, 2,p( ) (h v h h v h ) (h h )ω ψ ω ψ ω ωκ → + + , if 1,h 1ψ =  and jp( )κ → ∞  if 1,h 1ψ < . Figure 4.12 

shows the prior of the parameter jκ  under various hyperparameter constellations. In the left panel the 

parameters 1,h ω  and 2,h ω  are varied keeping the constellation of the remaining parameters fixed. In the 

middle panel the parameters 0v  and 1v  are varied and in right panel we vary the parameters 1,h ψ  and 

2,h ψ . The magenta density has identical hyperparameters in each panel. Increasing the hyperparameter 

1,h ω  enforces that more probability mass is assigned to the left component of the mixture jp( )κ . This 

supports the tail robustness, but leads simultaneously to a reduction of the shrinkage. Vice versa, 

increasing the hyperparameter 2,h ω  is leading to an enhanced probability mass in the right mixture 

component of jp( )κ , which reduces the tail robustness and enforces further shrinkage. Increasing 1v  

causes mainly that the prior mass from the left component of the reference mixture jp( )κ  is shifted 

towards j 0κ = , the right component coincides almost with the right component of reference 

distribution. In terms of the decreased parameter 0v , the prior mass from the right component of the 

reference mixture is shifted towards j 1κ = . In summary, the parameters 1,h ω  and 2,h ω  determine the 

amount of probability assigned to the left and right mixture component of jp( )κ  and the parameters 

1v  and 0v  determine the location of the probability at the right and left margins j 0κ =  and j 1κ = . 

The hyperparameters 1,h ψ  and 2,h ψ  determine the shape and scale of the mixture components similar 

as outlined under the ridge prior in Subsection 4.1.2. Increasing 2,h ψ  enhances the mass near j 0κ ≈  

and increasing 1,h ψ  enhances the mass near j 1κ ≈ . The values of the hyperparameter 1,h ψ  determine 

weather the limit of the prior at j 0κ =  is finite or infinite. From this point of view it seems to be 

appealing to work also with values 1,h 1ψ <  to support the tail robustness, e. g. 1,h 0.9ψ <  as displayed 

in the right panel of Figure 4.12, and adjusting 0v  to a smaller value to emphasize the shrinkage.  
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Figure 4.12: Prior densities of the standardized constraint parameter jκ  for the marginal variance prior (4.21) 
under various hyperparameter combinations given in the legends. In the middle panel the reference density 

(magenta) is given by the dotted line.  

In our simulations and applications we use the two parameter constellations 1,h 5ψ = , 2,h 50ψ = , 

0v 0.005= , with j( [0,0.25]) 0.499κ ∈ ≈P  and j( [0.25,0.75]) 0.003κ ∈ ≈P , or 1,h 5ψ = , 2,h 25ψ = , 

0v 2.5e-5= , with j( [0,0.25]) 0.458κ ∈ ≈P  and j( [0.25,0.75]) 0.126κ ∈ ≈P ), both in combination 

with 1v 1=  and 1, 2,h h 1ω ω= = . The first setting is suggested by Ishwaran and Rao (2005b) for 

standardized covariates and rescaled responses in the linear model. This setting is used in the 

simulations of Section 10 based on the extended AFT model. In the second hyperparameter 

constellation the selection of smaller effects is emphasized. We use this in the simulations of Section 

11 with the extended Cox model and the applications. For both settings the density of the parameter 

jκ  is shown in Figure 4.5. The prior mass in the left and right component of jp( )κ  is in both cases 
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close to 0.5 and we have wide areas between the components with close to zero probability mass. In 

Subsection 4.5 we compare the shrinkage properties of the different shrinkage priors with various 

hyperparameter constellations in terms of the Weibull model. 

Conditional posterior inclusion probability 

In the applications we consider the evolution of the parameter estimates if the complexity parameter is 

varied. The Bayesian paths of the estimates are computed by fixing the complexity parameter ω  to the 

initial value and skip the update of ω  within the MCMC sampler. We observed that the parameter 

paths, in particular the path of the indicator variable, are wiggly and become very unstable for larger 

regression coefficients at small values of the complexity parameter ω . To clarify this behavior, we 

consider the full conditional of the indicator variable, compare (6.11), to analyze the probability of 

sampling j 1I v=  as new state of the Markov chain. The probability is given by 

 

1
2
j1 1 0

j 1 2
0 0 1 j

1 v 1 (v v )
(I v | ) 1 exp

v 2 v v

−
  β− ω − 

= ⋅ = + −   ω ψ   
P  

and depends on the hyperparameters 0v  and 1v , the current states of the regression coefficient jβ , the 

variance parameter jψ  and the complexity parameter ω . In the following we use the fixed 

hyperparameter constellation 1,h 5ψ = , 2,h 50ψ = , 0v 0.005=  and 1v 1=  for demonstration purposes. 

The hyperparameters 1, 2,h ,hω ω  affect only the update of the complexity parameter and may be assumed 

to be 1, 2,h ,h 1ω ω = . 

• Due to j 1(I v | ) 1= ⋅ →P , if jβ → ∞ , larger regression coefficients are associated with higher 

probabilities of sampling j 1I v=  as new state. At the origin j 0β =  we obtain 
1

j 1 1 0(I v | ) (1 (1 ) v v )−= ⋅ = + − ω ωP  and the inclusion probability of a zero effect depends 

only on the current state of ω .  

• When the complexity parameter varies in its range [0,1]ω∈ , we obtain an inclusion probability 

j 1(I v | ) 1= ⋅ →P  at the right margin 1ω →  and j 1(I v | ) 0= ⋅ →P  at the left margin 0ω → .  

• Finally, for small variances 2
j 0ψ →  the probability converges to 1, j 1(I v | ) 1= ⋅ →P , and for 

larger variances 2
jψ → ∞  follows j 1(I v | ) 0= ⋅ →P .  

The last point may be at the first sight somehow contra-intuitive, since we associate larger variances 
2
jψ  with the slab component and suppose a higher probability to sample j 1I v= . We can clarify this by 

considering the full conditional of the variance parameter, compare (6.12), which is given by 
2 1 2

1, 2,j j j| IGamma(h 0.5,h 0.5I )−
ψ ψψ ⋅ + + β∼ , where the scale parameter depends on the current state of 

the indicator variable and the regression coefficient. The smaller value j 0I v=  causes an increase in 

the scale parameter, compared to j 1I v= , and we obtain by trend larger sampled variances. Figure 

4.13 shows the full conditional of 2
jψ  as function of 2

jψ  and jβ  under the given hyperparameter 

constellation. At the left side we see the full conditional given j 0I v=  and at the right side given 

j 1I v= . If we condition on j 1I v= , the scale parameter 2
2, jh 0.5ψ + β  increases for larger values of the 

regression coefficients, but in the shown range j [0,3]β ∈  the changes in the full conditionals for fixed 

values jβ  are only marginal. The marked 5% quantiles and the mean vary marginally within the range 

of the two marked full conditionals at j 0.5β =  and j 1β = . In contrast, we observe a strong dependence 

on the values jβ  if we condition on j 0I v= . For larger values jβ  the scale parameter 
1 2 2

2, 0 2,j jh 0.5v h 100−
ψ ψ+ β = + β  becomes very large and more probability mass is shifted to larger values 
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of 2
jψ . The marked 5% quantiles and the mean vary clearly and the upper 5% quantile exceeds the 

plotting area for j 1β = . The classification of a larger regression coefficient to the component j 0I v=  is 

leading to larger variance 2
jψ  compared to j 0I v=  and to a decrease of the sampling probability 

j 1(I v | )= ⋅P , and vice versa the classification of a smaller regression coefficient to the component 

j 1I v=  is leading to smaller variance 2
jψ  compared to j 1I v=  and an increased sampling probability 

j 1(I v | )= ⋅P . 
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Figure 4.13: Full conditional of the variance parameter 1, 2,
2
j j jp( | , I , h 5,h 50)ψ ψψ β = =  as function of 2

jψ  and 

jβ . At the left side we condition on 0jI v=  with 0v 0.005= , at the right side we condition on 1jI v=  with 

1v 1= . The bold dashed lines mark the full conditional for the fixed values j 0.5β =  and j 1β = . The blue points 
mark the upper and lower 5% quantile and the green point the mean of the full conditional at the both fixed 

values j 0.5,1β = . The dashed colored lines show the movement of the quantiles and the mean if jβ  varies in the 
interval [0.5,1] .  

Figure 4.14 shows the resulting probability for sampling the value 1v , j 1(I v | )= ⋅P , as a function of 

the current value of the regression coefficient in the range j [0,2]β ∈ . From the left to the right panel 

the complexity parameter increases with values 0.1,0.5,0.9ω = . Variability in the complexity 

parameter can be considered by analyzing the changes caused by the variation of ω . In the upper 

panel we assume that the current state of the indicator is j 1I v= , i. e. the variance parameter is 

sampled from the full conditional of 2
jψ  given j 1I v=  and in the lower panel we assume that the 

current state of the indicator is j 0I v=  with corresponding variance 2
jψ . Within the panels the 

inclusion probability is shown in dependence on various values of the current variance parameter 2
jψ . 

We use the mean, the mode and the 5% upper and lower quantiles of the associated inverse gamma 

full conditionals evaluated at the current state jβ , to compute the ranges of the inclusion probability in 

order to get an impression of the variability caused by the variance parameter 2
jψ . In the upper and 

lower panel the inclusion probability increases at the origin j 0β =  with values 0.008, 0.07, 0.39 from 

the left to the right with increasing ω . For large values of the complexity parameter, e. g. 0.9ω = , the 

probability for sampling j 1I v=  for a zero regression coefficient is about 0.39, irrespective from which 

component the current state of the variance 2
jψ  is obtained. The sampling probabilities of j 1I v=  

obtained with lower and upper 5% quantile of the full conditional of 2
jψ  (left and right blue line) 

provides a kind of upper and lower bound of the inclusion probability for a regression coefficient. In 
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the upper panel, with the current value j 1I v= , we see that the upper and lower bounds of the inclusion 

probability are both close to 1, for regression coefficients larger than j| | 1.5β >  if 0.1ω =  and for 

regression coefficients larger than j| | 1.0β >  if 0.9ω = . For 0.1ω =  we obtain for smaller regression 

coefficients j| | 0.25β <  close to zero sampling probabilities j 1(I v | )= ⋅P . Dependent on ω  we obtain 

bounds for regression coefficients, given a certain hyperparameter constellation, which are almost 

assigned to the spike or the slab component. For some values of the regression coefficients within the 

area, where the upper and lower bound are close to 0 or 1, we have a high variability in the sampling 

probability of j 1I v= . If we consider, e. g. for 0.1ω = , the inclusion probability at the mode of the full 

conditional of 2
jψ , we find that regression coefficients j| | 0.6β ≈  have a sampling probability close to 

0.5, but the sampling probability can vary within the range j 1(I v | ) [0.05,0.95]= ⋅ ∈P . For each fixed 

value of ω  we find such regions of the regression coefficients with a high variability in the sampling 

probability of j 1I v= . For adjacent values of fixed complexity parameters and regression coefficient 

states that move within this high variability area, the resulting adjacent posterior inclusion 

probabilities can show a high variability and the parameter paths become wiggly. If the value of the 

complexity parameter increases, the variability in the sampling probability is reduced, since also the 

bounds of the sampling probability of j 1I v=  increase and the parameter paths become more stable at 

the right side. For smaller values of ω , the area of regression coefficients with high variability in the 

sampling probability of j 1I v=  becomes a wider range and is shifted to larger values of the regression 

coefficients. So, at the left side the parameter paths of such medium sized regression coefficients 

become very unstable.  
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Figure 4.14: Sampling probability from the full conditional density of the indicator variable, 

1
2

j j j(I v | , , )= β ψ ωP , as function of the regression coefficient jβ  for the hyperparameters given in the upper left 
legend. From the left side to the right side the complexity parameter ω  varies from 0.1ω =  over 0.5ω =  to 

0.9ω = . In the upper panel the blue solid lines mark the mode and the lower and upper 5% quantiles of the full 
conditional 2

j j j 1p( | , I v )β =ψ  at the corresponding value of jβ  and the green line marks the mean. In the lower 
panel the blue solid lines mark the mode and the lower and upper 5% quantiles of the full conditional 

2
j j j 0p( | , I v )β =ψ  at the corresponding value of jβ  and the green line marks the mean.  
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We further see, that even for small, close to zero, values of the complexity parameter, larger effects 

can have sampling probability of j 1I v=  close to 1. Such influential coefficients have over a wide 

range of the complexity parameter high posterior inclusion probabilities. Therefore, the parameter 

paths under the NMIG penalty show different behavior as e. g. the lasso paths, where for small values 

of the shrinkage parameter also influential coefficients are strongly shrunken close to zero. In the 

lower panel, with the current value j 0I v= , the sampling probability j 1(I v | )= ⋅P  for small regression 

coefficients is close to the sampling probability in the upper panel. With respect to the mean of the full 

conditional of 2
jψ  we have clearly smaller sampling probabilities for larger regression coefficients of 

comparable size than in the upper panel. The sampling probability is not as close to zero for larger 

regression coefficients and a current state j 0I v=  can be left. The results shown in Figure 4.14 are 

almost comparable for the second hyperparameter constellation ( 1,h 5ψ = , 2,h 25ψ = , 0v 2.5e-5= , 

1v 1= ) used in the simulations and applications with respect to a modified smaller range of the 

regression coefficients. 

4.3.3. Extensions 

Similar to the derivation in the Bayesian ridge Section 4.1.3, we obtain for groups of associated 

regression coefficients, using an identical amount of shrinkage for regression coefficients jβɶ  within 

the groups, mixtures of multivariate Student t-distributions with 1,d 2h ψ=  degrees of freedom and 

scale matrices 
1
2 1

0 2, 1,0 v h h−
ψ ψ=Σ I , 

1
2 1

0 2, 1,1 v h h−
ψ ψ=Σ I  as marginal distributions of the regression 

coefficients jβɶ , compare Appendix B.3. The adaptive version of the NMIG prior enables the 

specification of covariate-specific inclusion probabilities j 1 j(I v )= = ωP  through covariate-specific 

hyperparameters utilized in the prior distributions ( )j 1, 2,~ Beta h ,hω ωω . 

4.4. Variable selection 

In contrast to the optimization based methods for feature selection, the presented sampling based 

Bayesian MCMC methods do not eliminate features completely. Sampling based summary statistics 

from the posterior, like the mean or the median, are never exactly zero even under the Bayesian NMIG 

prior. Hence, selection of important variables relies on the inspection of the posterior. To build sparse 

final models, we consider hard shrinkage selection rules to accomplish variable selection.  

A first interval criterion is constructed using the empirical standard deviation 
j

ˆŝβ  of the sampled 

regression coefficients jβ . We eliminate a covariate jx  from the predictor of the final model, if the 

zero lies outside the one standard deviation interval around the estimated regression coefficient jβ̂  and 

otherwise the covariate is retained, i. e. 

 
j j

ˆ ˆj j j
ˆ ˆ ˆˆ ˆ: : 0 if 0 [ s , s ]

β β
β = ∈ β − β +HS.STD . 

The second rule is similar, but based on the 95% credible interval with the empirical quantiles 
j ,0.025q̂β  

and 
j ,0.975q̂β  from the sample of the regression coefficients, i. e.  

 
j jj ,0.025 ,0.975

ˆ ˆ ˆ: : 0 if 0 [q ,q ]β ββ = ∈HS.CRI . 

By trend the HS.CRI interval has a wider range compared to the HS.STD interval and is leading to 

sparser final models. In Konrath (2007) these selection rules are utilized in context of regularized 

exponential family regression, recently Li and Lin (2010) utilized similar rules, where the margins of 



50 4. REGULARIZATION PRIORS 

the intervals are determined via ROC curves. In contrast to the Bayesian lasso and ridge prior, the 

NMIG prior provides a natural criterion to select covariates on the base of the MCMC samples of the 

indicator variables jI . Covariates with considerable influence should be frequently assigned to the 

mixing distribution component corresponding to the indicator with values j 1I v= . The higher the 

percentage of the values 1v  in the sample, the larger is the evidence that the corresponding covariate 

has a non negligible effect. In our simulations and applications we use the intuitive cut-off value of 0.5 

as selection threshold and covariates with higher relative frequency of the associated indicator variable 

value j 1I v=  are included in the final model. In summary, the third criterion is given by 

 j j 1
ˆ ˆ: : 0 if (I v ) 0.5β = = ≤HS.IND P , 

where j 1
ˆ (I v )=P  denotes the estimated inclusion probability based on posterior relative frequencies of 

the Bayesian NMIG indicator variable value 1jI v= . In the Simulation Section 11.5 we consider some 

variations of the threshold value. 

4.5. Simulation 

In the following we demonstrate the properties of the presented shrinkage priors in a simple setting for 

various hyperparameter constellations. In the later simulation and application sections we use only a 

reduced number of methods and hyperparameter constellations with very different settings for the 

AFT and CRR model. Since there is no connection between the extended versions of AFT and CRR 

model, the results there are not directly comparable with each other. 

Data generation 

We use xp 10=  covariates i i,1 i,10(x ,..., x )′=x  which are randomly drawn from a multivariate Gaussian 

distribution with zero mean, unit variance and no correlation between the covariates. The survival 

times iT , i 1,...,n= , are generated from an exponential hazard model with constant baseline hazard 

0 (t) 1λ = , i. e.  

 i i i(t ) exp( ), (0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9)′′λ = =x β β , 

while the censoring variables iC , i 1,...,n= , are generated as i.i.d. draws from the uniform distribution 

0U[0,c ]  with 0c  chosen to obtain the desired censoring rates in each dataset.  

We use R 50=  replicated datasets with  

• n 50,100,200=  observations, 

• with 0% and 25% censored observations in the data.  

Simulation setting 

We fit with the software package BayesX a Bayesian Weibull model, compare Section 9.1.1 for 

details, to the data with 15000 iterations, a burnin of 5000 iterations and we thin the chain by 10 which 

results in an MCMC sample of size 1500. Posterior parameter estimates are in general based on the 

empirical mean of the associated sample from the posterior.  

The hyperparameters of the regularization priors are set to the following values. 
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Bayesian ridge, compare (4.5) and (4.4):  

• BR1: 1, 2,h h 0.001λ λ= = , to allow a great amount of adaptiveness to the data. 

• BR2: 1,h 5λ = , 2,h 0.5λ = , to induce a stronger shrinkage, compare Figure 4.4. 

• BR3: 1,h 0.5λ = , 2,h 1λ = , to obtain a marginal Cauchy prior. 

Bayesian adaptive ridge, compare (4.6) and (4.7):  

• ABR1: 1, 2,h h 0.001λ λ= = , to allow a great amount of adaptiveness to the data. 

• ABR2: 1,h 5λ = , 2,h 0.5λ = , to induce a stronger shrinkage, compare Figure 4.4. 

• ABR3: 1,h 0.5λ = , 2,h 1λ = , to obtain a marginal Cauchy prior. 

Bayesian lasso, compare (4.12) and (4.13):  

• BL1: 1, 2,h h 0.001λ λ= = , to allow a great amount of adaptiveness to the data.  

• BL2: 1,h 5λ = , 2,h 0.5λ = , to induce a stronger shrinkage compared to BL1, see Figure 4.7. 

Bayesian NMIG, compare (4.17), (4.18) and (4.20):  

• BN1: 1v 1= , 0v 0.005= , 1,h 5ψ = , 2,h 50ψ = , 1,h 1ω =  and 2,h 1ω =  ( ISP 0.558β ≈ ). 

• BN2: 1v 1= , 0v 2.5e-5= , 1,h 5ψ = , 2,h 25ψ = , 1,h 1ω =  and 2,h 1ω =  to induce a stronger 

regularization of small regression coefficients ( ISP 0.045β ≈ ). 

Results 

Regression coefficients 

Figure 4.15 displays the median and the interquartile range of the estimated regression coefficients for 

n 50=  observation in the upper panel and n 200=  observations in the lower panel. The left panel 

shows the results for the uncensored data and the right panel those with 25 % censored observations. 

Within the panels the unregularized estimates (B) are compared with the Bayesian lasso (BL1, BL2), 

ridge (BR1, BR2) and NMIG (BN1, BN2) estimates.  

For n 50=  we observe a clear shrinkage of the regression coefficients under the shown regularization 

priors. Since for the smaller regression coefficients j 0.3β <  the unpenalized estimates (B) are close to 

the true effects, we obtain by trend an overshrinkage of the smaller regression coefficients. This is 

reversed for the larger effects, where the unpenalized estimates overestimate the true effects. 

Comparing the NMIG results under the BN1 and BN2 hyperparameter setting, the stronger shrinkage 

of the smaller effects is confirmed for BN2, with more concentrated boxes for 1 0β =  and 2 0.1β = . 

The amount of shrinkage is almost comparable with respect to the median for the regression 

coefficient 3 0.2β =  and the larger regression coefficients are less penalized with BN2, similar to the 

BR2 estimates. The strongest shrinkage is obtained with the NMIG prior followed by the lasso and the 

ridge prior. In the presence of censored observations the uncertainty is increased and we observe wider 

interquartile ranges of the boxes for all model parameters. If more information in terms of an increased 

number of observations is available, e. g. n 200= , the influence of the likelihood to the posterior gets 

more pronounced, compared to the prior contribution, and the shrinkage of the regression coefficients 

is reduced. 
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Figure 4.15: Regression coefficient estimates jβ̂ , j 1,...,10= , under the regularization priors given in the 
legends. The red horizontal lines mark the true value of the regression coefficient corresponding to the covariates 
given at the x- axis. Upper panel: Replications with n 50=  observations under no censoring (left side) and 25% 
censoring (right side). Lower panel: Replications with n 200=  observations under no censoring (left side) and 

25% censoring (right side).  

Figure 4.16 compares the estimates obtained with the adaptive versions of the ridge prior (ABR1, 

ABR2, ABR3), the lasso priors (BL1, BL2) and the Cauchy-prior setting (BR3) from the data with 

n 50=  observations. The estimates under the three adaptive ridge priors are almost comparable to 

each other with exception for 1 0β = , where the concentration of the boxes decreases from ABR2 to 

ABR3. The adaptive ridge priors induce for smaller regression coefficients a stronger shrinkage 

compared to the lasso priors, but the difference in the shrinkage is reduced for lager regression 

coefficients and the adaptive ridge versions become comparable to BL1. 
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Figure 4.16: Regression coefficient estimates jβ̂ , j 1,...,10= , under the regularization priors given in the 
legends. The red horizontal lines mark the true value of the regression coefficient corresponding to the covariates 
given at the x- axis. Both sides show the replications with n 50=  observations under no censoring (left side) and 

25% censoring (right side) in the data.  
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Figure 4.17: Shrinkage of the regularized regression coefficient estimates jβ̂ , j 1,...,10= , from the replications 
with n 50=  observations and no censoring in the data under the various regularization priors given in the upper 
left legends. The x-coordinates represent the unpenalized estimate and the y-coordinates the penalized estimate 
of the corresponding effect coded by the colors given in the lower right legends. The colored dashed lines mark 

the associated true values of the regression coefficients on both axes.  
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Figure 4.18: Shrinkage of the regularized regression coefficient estimates jβ̂ , j 1,...,10= , from the replications 
with n 100=  observations and no censoring in the data under the various regularization priors given in the upper 
left legends. The x-coordinates represent the unpenalized estimate and the y-coordinates the penalized estimate 
of the corresponding effect coded by the colors given in the lower right legends. The colored dashed lines mark 

the associated true values of the regression coefficients on both axes.  
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To visualize the amount of shrinkage from another point of view, the regularized estimates under the 

various priors are plotted against the unregularized Bayesian estimates, compare Figure 4.17 ( n 50= ) 

and Figure 4.18 ( n 100= ). The true effect sizes are coded by the colors given in the legends. In 

particular the amount of shrinkage under the NMIG prior reminds somehow on the SCAD penalty, 

Fan and Li (2001). 

Penalty 

In the hierarchical representation of the shrinkage priors, the variance parameters 
j

2
βτ  determine the 

concentration of the conditional Gaussian distribution of the regression coefficients around zero and 

smaller variances 
j

2
βτ  induce a stronger shrinkage of the regression coefficients. The regularization of 

the regression coefficients is reported in Figure 4.19 (for BN1, BN2, BL1, BR1) and Figure 4.20 (for 

BR3 ABR1, ABR2, ABR3) in terms of the logarithm of the inverse variance parameter 
j

2ˆlog( )−
βτ . 

Displayed are the results obtained with the estimated empirical posterior mean, median, 10% and 90% 

quantile of 
j

2
βτ  over the replicated uncensored data with n 50=  observations.  

Under the NMIG prior we observe a great variation in the various location parameter estimates, but 

each location parameter reflects the decreasing penalty for increasing sizes of the regression 

coefficients. The penalty is clearly increased for smaller effects in setting BN2, but the variability is 

clearly reduced for the larger effects. Note that the ridge priors BR induce the same proportion of 

shrinkage for all regression coefficients. We obtain a covariate-specific penalty under the ABR, BN 

and BL regularization with a stronger penalization of the smaller and a weaker penalization of the 

larger regression coefficients. In general we construct the parameter estimates in terms of the 

empirical mean of the posterior sample, and consequently we report in the simulation and application 

sections the estimated log-penalty also on the base of the posterior mean of 
j

2
βτ . By the displayed 

variability in the location parameter estimates we have to keep in mind that the mean estimate under 

the NMIG prior is rather a lower bound to get an impression about the strength of the regularization. 

Compared e. g. to the lasso BL1, the log-penalties from the adaptive ridge priors indicate the stronger 

shrinkage of smaller effects and the weaker regularization of the larger effects. Under the settings 

ABR2 and ABR3 we observe a concentration of the location parameters for 1 0β = , further the 

resulting marginal posteriors of the variance parameters seem to be extremely skewed, since the mean 

estimates fall within the region of the 10 % quantile. With respect to this result, ranking the covariates 

on the basis of the variance parameters 
j

2
βτ  should be rather based on the posterior median than on the 

posterior mean. 

Figure 4.21 and Figure 4.22 show the associated results to Figure 4.19 and Figure 4.20 in terms of 

the estimated regression coefficients, i. e., we see the empirical posterior mean, median, 10% and 90% 

quantile of jβ  over the replicated uncensored data with n 50=  observations under the priors BN1, 

BN2, BL1 and BR1. In general the clear differences observed in the estimated location parameters of 

the variances 
j

2
βτ  are less pronounced for the regression coefficients jβ . The empirical mean and 

median estimates of jβ  are almost comparable for most of the regularization priors, even for the 

Bayesian NMIG prior under the hyperparameter setting BN1. Larger differences for the smaller 

regression coefficients ( 1 2 3, ,β β β ) are obtained with the setting BN2, where the median estimates are 

much more concentrated around zero than the mean estimates. The relative positions of the shown 

estimated location parameters indicate almost symmetric marginal posterior distribution for the 

regression coefficients in contrast to the estimates of the variance parameters. 
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Figure 4.19: Log-penalty estimates 
j

2ˆlog( )−
βτ , j 1,...,10= , for the replications with n 50=  observations and no 

censoring in the data under the regularization priors given in the upper left legends. Shown are the upper and 
lower 10% quantiles, the median and the mean of the log-penalty.  
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Figure 4.20: Log-penalty estimates 
j

2ˆlog( )−
βτ , j 1,...,10= , for the replications with n 50=  observations and no 

censoring in the data under the regularization priors given in the upper left legends. Shown are the upper and 
lower 10% quantiles, the median and the mean of the log-penalty.  
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Figure 4.21: Regression coefficient estimates jβ̂ , j 1,...,10= , for the replications with n 50=  observations and 
no censoring in the data under the regularization priors given in the upper left legends. Shown are the upper and 

lower 10% quantiles, the median and the mean of the regression coefficients.  
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Figure 4.22: Regression coefficient estimates jβ̂ , j 1,...,10= , for the replications with n 50=  observations and 
no censoring in the data under the regularization priors given in the upper left legends. Shown are the upper and 

lower 10% quantiles, the median and the mean of the regression coefficients.  
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Indicator variables 

Figure 4.23 shows the estimated posterior inclusion probabilities for the two settings of the NMIG 

prior BN1 and BN2. The estimates are based on posterior relative frequencies of the Bayesian NMIG 

indicator variable value j 1I v=  in the replications with n 50=  and n 200=  observations, each with 

and without censoring in the data. 

Under the setting BN1 we observe a slow increase of the estimated inclusion probabilities for 

increasing size of the regression coefficients. The smaller regression coefficients ( 1 2 3, ,β β β ) have 

inclusion probabilities close to zero and the largest regression coefficient 10β  obtains an inclusion 

probability about 0.8. The uncertainty in the classification to the “spike” and “slab” mixture 

component, as shown in Figure 4.14, is indicated by the larger box-widths for increased regression 

coefficients. The uncertainty in the classification decreases for larger values of the regression 

coefficients and the boxes become smaller. Due to the range of the regression coefficients, this 

behavior can clearly be observed in terms of the setting BN2, but the boxes get also smaller with the 

setting BN1 for larger coefficients than 0.9. We obtain estimated complexity parameters ω  with 

median ≈ 0.37 in the uncensored data with n 50=  observations. Censoring in the data increases the 

uncertainty and we have larger box-widths. The inclusion probabilities increase by trend and we 

obtain an increase of the estimated complexity parameter (median ≈ 0.4) with the data containing 25% 

censored observations. Conversely, when the number of observations is increased to n 200= , the 

estimated inclusion probabilities commonly decrease about a small amount, leading also to a reduction 

in the estimated complexity parameter (median of the estimates ≈ 0.31). 
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Figure 4.23: Estimated inclusion probabilities, 1j
ˆ (I v )=P , j 1,...,10= , based on posterior relative frequencies of 

the Bayesian NMIG indicator variable value j 1I v=  for the two hyperparameter settings given in the legends. 
Upper panel: Replications with n 50=  observations under no censoring (left side) and 25% censoring (right 

side). Lower panel: Replications with n 200=  observations under no censoring (left side) and 25% censoring 
(right side). The red horizontal line marks the cut off value 0.5 of the hard shrinkage selection criterion HS.IND.  
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With the NMIG prior setting BN2 the estimated inclusion probabilities also increase with increasing 

effect size, but there we observe basically different and larger sizes of the estimated inclusion 

probabilities and a rapidly increase compared to the setting BN1. In the data with n 50=  observations, 

effects larger than 8 0.7β =  have an inclusion probability about ≈ 1 and the smaller effects around zero 

about ≈ 0.45 with respect to the median. We obtain estimated complexity parameters ω  in the 

replications with median ≈ 0.75 that reflect the higher model complexity. The impact of the censoring 

is transferable from the setting BN1, but with increased sample size n 200=  we observe a somewhat 

different effect. The uncertainty of the classification concerns mainly the effects 2β  and 3β , the 

inclusion probabilities for the effects larger than 2β  are clearly increased and we have a reduced 

inclusion probability for 1β . This is also reflected in the estimates of the complexity parameter which 

increase the median ≈ 0.8 for n 200=  uncensored observations. It may be somehow confusing at the 

first sight that the estimated inclusion probability of the zero effect 1β  is not as close to zero as one 

may possibly expect due to the strong shrinkage of this effect. But we have seen in the right panels of 

Figure 4.14 that large values of the complexity parameter ω  increase the sampling probability of the 

indicator value j 1I v=  for zero effects. On the other side we observe sizes of the zero regression 

coefficients in a broad range around zero, compare Figure 4.22, and such effects have a broad range 

of possible nonzero sampling probabilities also shown in Figure 4.14. This explains the high 

uncertainty in the classification observed for the zero effect under the setting BN2. 

If the HS.IND selection rule of Subsection 4.4 was applied, we would remove by trend the covariates 

1x  to 6x  in almost all replications from the final models under the prior setting BN1 and the covariate 

10x  with true effect 10 0.9β =  would always be included. Under the setting BN2 the covariates 2x  to 

10x  would frequently appear in the final models while the covariate 1x  would be often removed. 

4.6. Random walk prior 

Prior hierarchy 

Nonparametric model components, like smooth effects, the error term in the flexible AFT model or the 

log-baseline hazard in the Cox model, are represented as linear combinations of basis functions 

defined by B-Splines or Gaussian densities. To guarantee smoothness, we assume Bayesian random 

walk priors of jd -th order for the basis function weights jα , zj 0,1,...,p= , as suggested in Lang and 

Brezger (2004), to counterbalance the flexibility provided by utilizing a large number of basis 

functions. In particular, the first or second order random walk priors are given by, 

 j,k j,k 1 j,k j,k j,k 1 j,k 2 j,ku or 2 u− − −α = α + α = α − α + , (4.25) 

with i.i.d. Gaussian errors 
j

2
j,ku ~ N(0, )ατ , zj 0,1,...,p= , and diffuse priors for the initial values 

j,1p( ) constα ∝  or j,1 j,2p( ) p( ) const.α = α ∝  The first order random walk prior controls abrupt jumps in 

the differences (1)
j,k j,k j,k 1: −∆ α = α − α , while the differences corresponding to the second order random 

walk prior (2)
j,k j,k j,k 1 j,k 2: 2 − −∆ α = α − α + α  penalizes deviations from a linear trend. Higher order 

differences with jd 2>  are recursively defined via j j j(d ) (d 1) (d 1)
j,k j,k j,k 1: − −

−∆ α = ∆ α − ∆ α  and diffuse 

priors for the jd  coefficients j,1p( ) constα ∝ ,..., 
jj,dp( ) constα ∝ . The variance parameter 

j

2
ατ  controls 

the smoothness with the connection, that large values of the variance parameter allow a clear variation 

in the basis function weights corresponding to wiggly function estimates, while small variances 

implicate smoothed curves as estimates. 
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The joint prior for the parameter jα , zj 0,1,...,p= , is derived as the product of the conditional 

Gaussian densities (4.25) and has the form 

 ( )
j

j

j j

k

2
2

j j j j z2 2

1 1
p | exp , j 0,1,...,p

2
α

α α

   
′τ ∝ − =   

   τ τ   
α α K α , (4.26) 

where jK  denotes the penalty matrix with ( )j j j jk rank g d= = −K . The term j j j′α K α  represents the 

sum of the quadratic differences j j

j

g (d ) 2
j j j j,kk d 1( )

= +
′ = ∆ α∑α K α  and the penalty matrix can be written as 

j j j′=K D D , where jD  is the corresponding jd -th order difference matrix of dimension j j j(g d ) g− × . 

In general, the penalty matrix jK  does not have full rank, i. e. j jk dim( )< α , and this rank deficiency 

represents the fact, that specific parts of the function remains unpenalized. For example, a polynomial 

of order j(d 1)−  remains unpenalized by the jd -th order penalty matrix. In particular a second order 

penalty applied to smooth predictor terms jf ( )⋅  is leading to a linear modeled effect in the limiting 

case, when the variance parameter decreases 
j

2 0ατ → . As a consequence, the conditional Gaussian 

prior (4.26) is partially improper with precision matrix 
j

2
j j: −

α= τΠ K , and with respect to the partial 

impropriety the covariance matrix is written as 
j j

2
j:− −

α α= τΣ K , where j
−K  denotes a generalized inverse 

of the penalty matrix jK . Theoretical results to the propriety of the resulting posterior are given, e. g., 

in Fahrmeir and Kneib (2009) in the context of structured additive exponential family and hazard 

regression and in Hennerfeind et al. (2006) in the context of geoadditive survival models.  

The conditional distributions 
j

2
j,k j, k| ,− αα τα  of the single basis function weights j,kα  given the 

remaining weights 
jj, k j,1 j,k 1 j,k 1 j,g( ,..., , ,..., )− − + ′= α α α αα  are also Gaussian with mean and variance 

 ( )
[ ]

[ ]
( )

[ ]
j

j j

2
j2 2k

j,k j, k j,k j, k

j j

k,
| , , ar | ,

k,k k,k

α≠
− α − α

α τ
α τ = − α τ =

∑ K
α α

K K

ℓℓ
ℓ

E V , (4.27) 

where j[k, ]K ℓ  denotes the element of the penalty matrix in the k-th row and ℓ -th column. In a full 

Bayesian approach the variance parameters 
j

2
ατ , zj 0,1,...,p= , are commonly equipped with conjugate 

inverse gamma priors 

 
j jj

2
1, 2,~ IGamma(h ,h )τ τατ . (4.28) 

To specify almost diffuse inverse gamma priors, we select small values of the hyperparameters 

j j1, 2,h 0,h 0τ τ> > . Common choices in this work are 
j1,h 1τ =  and a small values 

j2,h {0.01,0.001}τ ∈  or 

also 
j1,h {0.01,0.001}τ ∈ . The choice of diffuse, but proper, inverse gamma priors is usually not crucial 

for smoothing variances to obtain proper full conditionals, compare, e. g., Fahrmeir and Kneib (2009) 

who provide conditions for propriety of posteriors.  

5. Priors for the extended AFT model K5.A1 

In the following the priors of the extended AFT model (2.1) with predictor (2.7) and error distribution 

(2.6) are briefly summarized. In addition to the estimation of the parameter vector ( , , , )′ ′ ′ ′σα β γ  from 

the extended AFT model, the (partially) latent log-survival times y  and the vector of latent component 

labels r  need to be imputed. Together with the hierarchical representation of the regularization priors 

for the predictor components we obtain a beneficial hierarchical model representation to derive fast 
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MCMC update schemes for posterior inference since most of the priors have a closed and conjugate 

form. 

Joint prior distribution 

The complete parameter vector 2 2( , , , , , , )α β′ ′′ ′ ′ ′ ′= σθ α β γ τ τ ρ  consists of the regularized regression 

coefficients 
z0 1 p( , ,..., )′ ′ ′ ′=α α α α , 

jj 0, j 0,g( ,..., )′= α αα , representing the basis function weights of the 

nonlinear modeled covariate effects in the predictor and the transformed mixture weights of the error 

distribution as well as the associated smoothness parameters 
0 1 pz

2 2 2 2( , ,..., )α α α α
′= τ τ ττ  and the scale 

parameter σ . Further contained are the unregularized linear effects 
u0, p( ..., )′= γ γγ  and the regularized 

linear effects 
x1 p( ,..., )′= β ββ  with the associated variance parameters 

1 px

2 2 2( ,..., )β β β
′= τ ττ  and ρ , which 

is the generic notation for prior-specific hyperparameters from further stages of the hierarchical 

formulation, like the shrinkage parameters.  

With the independence and distributional assumptions of the latent quantities from Section 3 we obtain 

the hierarchical prior structure ( )p , , p( | , )p( | )p( )=y r θ y r θ r θ θ . The mean and covariance matrix of 

the log-survival times y  depend on the regression parameters of the predictor and the scale parameter, 

hence we write 
z1 pp( | , ) p( | , ,..., , , , )= σy r θ y r α α β γ . Accordingly, we have for the component labels 

the dependence on the (transformed) mixture weights 0p( | ) p( | ) p( | )= =r θ r w r α . In summary, the 

joint prior is given by 

 ( ) z1 p 0p , , p( | , ,..., , , , )p( | )p( )= σy r θ y r α α β γ r α θ , (5.1) 

with 

 
z

j j

p
2 2 2 2 2

j

j 0

p( ) p( | )p( ) p( | )p( | )p( )p( )p( )β βα α

=

= τ τ ⋅ σ∏θ α β τ τ ρ ρ γ , (5.2) 

where the factorization in p( )θ  reflects the implied independence assumptions formulated in Section 

4. The joint prior consists of the following conditional priors for the parameter components. 

Prior of the survival times  

At the first stage of the prior hierarchy the joint distribution of the log-survival times Y  is multivariate 

Gaussian  

 
z1 p y y| , ,..., , , , ~ N( , )σY r α α β γ µ Σ , (5.3)  

with mean vector y r= + σµ η m , 
1 nr r r(m ,...,m )′=m  and covariance matrix 2

y r= σΣ S , 

1 n

2 2
r r rdiag(s ,...,s )=S , compare Section 3. The components 

irm  and 
i

2
rs , i 0r {1,...,g }∈ , are the mean and 

variance of the ir -th error mixture component. 

Prior of the latent component labels 

On the second stage the distribution of the component labels 0|r α  is the product of n discrete 

multinomial distributions i 0R ~ MulNom(1, ( ))w α  with density 

 ( ) ( ) ( ) ( )
0 00

j

n
g gg

n
0 0, j j 0,jj

j 1j 1 j 1

p | w exp exp n

−

== =

 
= = α α 

 
∑∏ ∏r α α . (5.4) 
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The probability of a single component label is 
ii 0 r 0p(r | ) w ( )=α α  and the last term in expression (5.4) 

results with the reparametrization of the mixture weights (2.9). 

Prior of the unregularized linear effects 

The prior distribution of the unregularized regressions coefficients 
u0, p( ..., )′= γ γγ  in the predictor can 

be taken to be the product of independent diffuse priors jp( ) const.γ ∝ , uj 1,...,p= , or the product of 

independent zero mean, highly dispersed Gaussian priors. In the second case we obtain a multivariate 

Gaussian prior  

 ( )| , ~ N ,γ γ γ γγ µ Σ µ Σ , (5.5) 

with γ =µ 0  and 1−
γ →Σ 0 . In both cases the prior of γ  is denoted with p( )γ . The general form in 

(5.5) is used to derive the general structure of the full conditionals when the prior is a multivariate 

Gaussian distribution. 

Prior of the regularized linear effects 

As seen in the Sections 4.1 to 4.3, the general form of the priors for the regularized regression 

coefficients 
x1 p( ,..., )′= β ββ  are zero mean Gaussian distributions 

j j

2 2
j | ~ N(0, )β ββ τ τ , where the 

variance parameters 
j

2
βτ  in combination with further hyperparameters ρ  drive the specific kind of 

shrinkage or variable selection. Under the conditional independence assumption we obtain a 

multivariate Gaussian prior  

 ( )2| ~ N ,β ββ τ 0 Σ  (5.6) 

with diagonal covariance matrix 
1 px

2 2diag( ,..., )
ββ τ β β= = τ τΣ D , that determines the shrinkage of the 

regression coefficients towards the mean β =µ 0 .  

The associated priors for the variance and shrinkage parameters are: 

Bayesian ridge version (A) (
x1 p( ,..., )= λ λρ ) 

 
jj j

2 2
1 2| ~ ( )λβ βτ λ δ τ , xj 1,...,p= , (5.7) 

 ( )j iid 1, 1, 1, 1,~ Gamma h ,h ; h ,h 0λ λ λ λλ > , xj 1,...,p= . (5.8) 

Bayesian ridge version (B) ( = λρ ) 

 2 2
1 2| ~ ( )β λ βτ λ δ τ , xj 1,...,p= , (5.9) 

 ( )1, 1, 1, 1,~ Gamma h ,h ; h ,h 0λ λ λ λλ > . (5.10) 

Bayesian lasso ( = λρ ) 

 
j

2
2 2

iid| ~ Exp
2

β

λ 
τ λ  

 
, xj 1,...,p= , (5.11) 

 ( )2
1, 1, 1, 1,~ Gamma h ,h ; h ,h 0λ λ λ λλ > . (5.12) 
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Bayesian NMIG with 
j

2 2
j jIβτ = ψ  ( = ωρ ) 

 j 0 1 iid 0 1I | v , v , ~ Bernoulli( ;v ,v )ω ω , xj 1,...,p= , (5.13) 

 2
j 1, 2, iid 1, 2, 1, 2,| h ,h ~ IGamma(h ,h ), h ,h 0ψ ψ ψ ψ ψ ψψ > , xj 1,...,p= , (5.14) 

 ( )1, 2, 1, 2,~ Beta h ,h ; h ,h 0ω ω ω ωω > . (5.15) 

Prior of the nonlinear effects and the transformed mixture weights 

For the basis function weights 
jj j,1 j,g( ,...., )′= α αα , zj 0,1,...,p= , of the nonlinear predictor 

components jf ( )⋅  and the mixture error density f ( )ε ⋅  the priors are specified by random walks of jd -th 

order. This is leading to an intrinsic Gaussian Markov Random Field (GMRF) prior as defined in the 

Section 4.6 

 ( )jj

2
j | ~ N , −

αατα 0 Σ , zj 0,1,...,p= , (5.16) 

with covariance matrix 
j j

2
j:− −

α α= τΣ K , where j
−K  denotes a generalized inverse of the penalty matrix 

jK  with rank j j jrg( ) g q= −K . In addition diffuse priors are used for the jq  coefficients 

j,1p( ) const.α ∝ ,..., 
jj,qp( ) constα ∝ . The smoothness controlling variances 

j

2
ατ  are equipped with 

inverse gamma distributions 

 ( )j jj

2
1, 2,~ IGamma h ,hτ τατ ,

j j1, 2,h ,h 0τ τ >  zj 0,1,...,p= . (5.17) 

Prior of the scale parameter 

Finally, for the scale parameter the prior is specified as an inverse gamma distribution 

 ( )2
,1 ,2~ InvGamma h ,hσ σσ , 1, 2,h ,h 0σ σ > . (5.18) 

6. MCMC inference for the extended AFT model K6.A1 

In the following subsections the update of the model parameters and the sampling algorithm are 

described. Bayesian Inference of the model parameters is carried out with MCMC techniques by 

consecutively updating conditional posterior distributions (full conditionals) of single parameters or 

blocks of parameters given the rest of the parameters and the data. The full conditional for a group of 

parameters is proportional to the posterior distribution density and derived by disregarding all factors 

that are independent of the considered parameter group. The derived MCMC sampler is based on 

Gibbs sampling or Metropolis-Hastings (MH) within Gibbs sampling. Gibbs sampling is used, if the 

full conditional of the considered parameter or parameter block given the current values of the 

remaining parameters has a standard form. Sampling from standard distributions is also a very 

efficient way to achieve a new state of the Markov chain. Another general way is to perform a 

Metropolis-Hastings (MH) update, where at first a new candidate state is drawn from a proposal 

distribution and this candidate is then accepted or rejected as new state of the Markov chain based on 

the ratio of probability densities of the candidate and the current state of the chain. This method is 

often applied, if the full conditional has no closed form. E. g. for the update of the mixture weights a 
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version of the Metropolis-Hastings algorithm based on IWLS proposals, as proposed in Gamerman 

(1997) and described in Brezger and Lang (2006), is used. With symmetric (Gaussian) proposals that 

are centered at the current state of the chain, we obtain the so called Metropolis update, a simplified 

special case of the MH update scheme. For univariate full conditionals from nonstandard distributions 

we use alternatively the slice sampling method of Neal (2003). The described inferential procedure is 

implemented in the function baftpgm(), compare the Appendix D.5 for a description and the usage. 

6.1. Conditional posterior densities 

From the Bayesian theorem (1.15) the joint posterior distribution of the model and augmented 

parameters is obtained as 

 ( ) ( ) ( )p , , | L | , , p , ,∝y r θ y r θ y r θD D , 

with the likelihood from (3.2) 

 ( ) ( ) i
i

n
1 d

[y , ) i

i 1

L | , , L | 1 (y ) −
∞

=

= = ∏y r θ y ɶD D , 

and the prior from (5.1) and (5.2) 

 ( )
z

z j j

p
2 2 2 2 2

1 p 0 j

j 0

p , , p( | , ,..., , , , )p( | ) p( | )p( )p( | )p( | )p( )p( )p( )β βα α

=

= σ τ τ σ∏y r θ y r α α β γ r α α β τ τ ρ ρ γ , 

with specifications (5.4) to (5.18). The shown hierarchical structure of the priors with the implied 

independence assumptions simplifies in the following the derivation of the full conditionals for the 

model parameters of the extended AFT. 

6.1.1. Full conditionals of the predictor components 

Unregularized linear regression coefficients γ  

The full conditional of the unregularized linear regression coefficients γ  is obtained by using the 

proportionality of the posterior to the product of the multivariate Gaussian prior of the log-survival 

times 
z1 p y yp( | , ,..., , , , ) p( | , )σ =y r α α β γ y µ Σ  given in (5.3) and the multivariate Gaussian prior of the 

regression coefficients p( ) p( | , )γ γ=γ γ µ Σ  from (5.5). To simplify the notation, working observations 

r y: ( )γ = − − − σ = − +y y η Uγ m y µ Uγɶ , with y r= + σµ η m , are introduced by deleting the component 

Uγ  from the predictor. In summary we get 

 

( ) ( )

( )

y y

1 1
y y y

1 1
y

1 1 1 1
y y

p | p( | , )p | ,

1 1
exp ( ) ( ) ( ) ( )

2 2

1 1
exp ( ) ( ) ( ) ( )

2 2

1
exp ( ) 2 ( ) .

2

γ γ

− −
γ γ γ

− −
γ γ γ γ γ

− − − −
γ γ γ γ

⋅ ∝

 
′ ′∝ − − − − − − 

 

 
′ ′∝ − − − − − − 

 

 
′ ′ ′ ′∝ − + − + 

 

γ y µ Σ γ µ Σ

y µ Σ y µ γ µ Σ γ µ

y Uγ Σ y Uγ γ µ Σ γ µ

γ U Σ U Σ γ γ U Σ y Σ µ

ɶ ɶ

ɶ

 (6.1) 

This full conditional has the kernel of a multivariate Gaussian distribution, | || ~ N( , )⋅ ⋅⋅ γ γγ µ Σ , with 

mean vector | ( | )⋅ = ⋅γµ γE  and covariance matrix | ov( | )⋅ = ⋅γΣ γC  given by 
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 1 1 1 1 1
| | y | y( ), ( )− − − − −
⋅ ⋅ γ γ γ ⋅ γ′ ′= + = +γ γ γµ Σ U Σ y Σ µ Σ U Σ U Σɶ . (6.2) 

It turns out, that the multivariate Gaussian distribution is the general form of the full conditionals for 

all predictor components and, as a consequence, Gibbs sampling can be employed. The derivation 

(6.1) serves as the building block to obtain the full conditionals of the remaining predictor 

components, where the specific mean and covariance structure of (6.2) results from the specific prior 

structure. Since the linear effects γ  are assumed to be unregularized, we simply set γ =µ 0  and the 

precision to 1− =γΣ 0  and get  

 1 1 1
| | y | y, ( ) .− − −
⋅ ⋅ γ ⋅′ ′= =γ γ γµ Σ U Σ y Σ U Σ Uɶ  (6.3) 

Regularized linear regression coefficients β  

With (5.3) and (5.6) the full conditional of the regularized linear effects is proportional to the product 

y yp( | ) p( | , )p( | , )β β⋅ ∝β y µ Σ β µ Σ . The mean vector of the Gaussian prior of the regularized regression 

coefficients equals zero, β =µ 0 , and the covariance matrix is given by 
u

2 2
,1 ,pdiag( ,... )β β β= τ τΣ . 

Adapting the general form in (6.2) to the working observations y:β = − +y y µ Xβɶ , we get for the 

regularized linear effects also a multivariate Gaussian full conditional distribution, | || ~ N( , )⋅ ⋅⋅ β ββ µ Σ , 

with mean vector | ( | )⋅ = ⋅βµ βE  and covariance matrix | ov( | )⋅ = ⋅βΣ βC  defined by 

 1 1 1 1
| | y | y, ( ) .− − − −
⋅ ⋅ β ⋅ β′ ′= = +β β βµ Σ X Σ y Σ X Σ X Σɶ  (6.4) 

Regularized nonlinear regression coefficients jα  

In completely concordance to the former derivations we obtain with (5.3) and (5.16) the full 

conditional for the basis coefficients jα , zj 1,...,p= , via 
j jj y y jp( | ) p( | , )p( | , )−

α α⋅ ∝α y µ Σ α µ Σ , where 

j j

−
α α=Σ Π  denotes the generalized inverse of the prior precision matrix 

j

2
j j
−

α = τΠ K . Since the prior 

mean is 
jα =µ 0 , we get with (6.2) and the working observations 

j y j jα = − +y y µ Z αɶ  multivariate 

Gaussian distributions 
j jj | || ~ N( , )⋅ ⋅⋅ α αα µ Σ , zj 1,...,p= , as full conditionals. The mean vector 

j| j( | )⋅ = ⋅αµ αE  and covariance matrix 
j| jov( | )⋅ = ⋅αΣ αC  are given by 

 
j j j j j

1 1 1
| | j y | j y j, ( )− − −
⋅ ⋅ α ⋅ α′ ′= = +α α αµ Σ Z Σ y Σ Z Σ Z Πɶ . (6.5) 

Centering of the spline: In general the mean levels of the unknown functions jf ( )⋅  are not identifiable. 

To ensure identifiability of the model, we center the estimated functions jf ( )⋅  in every iteration of the 

sampler to have zero mean n* 1 *
j j i, ji 1f n f (z ) 0−

=
= =∑ . To do so, we recompute the basis function weights 

jα  as 

 j,k j,k jc∗α = α − , (6.6) 

where jn n g1 1
j j i, j j,k j,k i, ji 1 i 1 l 1c n f (z ) n B (z )− −

= = =
= = α∑ ∑ ∑  denotes the mean of the function evaluations jf ( )⋅  

at the observed data points. We verify that jn g* 1
j j,k j,k i, ji 1 j 1f : n B (z )− ∗

= =
= α∑ ∑  has zero mean since 

j j jn g n g n g n
j,k j,k i, j j,k j,k i, j j j,k i, j j i, j ji 1 j 1 i 1 j 1 i 1 j 1 i 1B (z ) B (z ) c B (z ) f (z ) nc 0∗

= = = = = = =
α = α − = − =∑ ∑ ∑ ∑ ∑ ∑ ∑ , where we 

used in the fourth equation the fact jg
j,kk 1B (z) 1

=
=∑ .  

The shift of the basis function weights does not affect the penalty, since the differences j(d )
j,k∆ α  are 

invariant, i. e. ( )j j(d ) (d )
j,k j,k c∆ α = ∆ α −  for any scalar c, and the addition of the subtracted means 

jc ∈ℝ , zj 1,...,p= , to the intercept 0γ  avoids that the posterior is changed. 
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6.1.2. Full conditionals of the regularization parameters 

Ridge regularization 

Version (A): With the deterministic connection 
j

2
j1 2βτ = λ  in (5.7) the Gaussian prior of the 

regression coefficients from (5.6) becomes 2
j j j j jp( | ) exp( )β λ ∝ λ −λ β . The full conditional of the 

shrinkage parameter jλ  is proportional to the product of this prior and the gamma prior of the 

shrinkage parameter 1,h 1
j 2, jjp( ) exp( h )λ −

λλ ∝ λ − λ  from (5.8). We simply see that we obtain gamma 

densities 

 2
j 1, 2, j

1
| Gamma h ,h

2
λ λ

 
λ ⋅ + + β 

 
∼ , xj 1,...p= , (6.7) 

as full conditionals. 

Version (B): With a similar argumentation we obtain the full conditional of the shrinkage parameter 

λ . Using the product of 
x

x
p p 2

j jj 1p( | ) exp( )
=

λ ∝ λ −λ β∑β  from (5.6) and the gamma prior of the 

shrinkage parameter 1,h 1
2,p( ) exp( h )λ −

λλ ∝ λ − λ  from (5.10) we obtain also a gamma density 

 
xp

x 2
1, 2, j

j 1

p
| Gamma h ,h

2
λ λ

=

 
λ ⋅ + + β 

 
∑∼ . (6.8) 

Lasso regularization 

We derive the full conditionals for the variance parameters 
j

2
βτ  from the product of the prior for the 

regression coefficients 
j j j

2 1 2 2
j jp( | ) exp( 2 )−

β β ββ τ ∝ τ −β τ , compare (5.6), and the exponential prior for the 

variance parameters 
j j

2 2 2 2 2p( | ) exp( 2)β βτ λ ∝ λ −λ τ  from (5.11)  

 

{ } ( )j

j j j j j

j

j

j j

2 2 2
j2 1 2 2 2 2 2 2 2 2

j j22

2
2 2 2

j

2 2 2
j

1
p( | ) exp 2 2 exp ( )

2

1 1
exp .

2 | |

β− − −
β β β β β

β

β

β β

λ τ β 
τ ⋅ ∝ τ −β τ − λ τ = − τ + λ β 

λτ   

  λ τ β λ 
∝ − −   τ λ τ β   

 

Using the definition 2 2
j j: /µ = λ β  and applying the change of variables 

j

2 2
jt 1 β= τ  is leading to 

2 2 3/2 2 2 2 1 2 2
j j j j j jp(t | ) (t ) exp( (2 t ) (t ) )− −⋅ ∝ −λ µ − µ , which is the kernel of an inverse Gaussian density with 

mean j 0µ >  and shape parameter 2λ . Finally the full conditionals for the variance parameters 
j

2
βτ  are 

inverse Gaussian distributions 

 
j

2
2

x2
j

1
| InvGauss , , j 1,..,p

β

 λ
⋅ λ =  τ β 
∼ . (6.9) 

The full conditional for the quadratic shrinkage parameter is proportional to the product of the gamma 

prior 1,h 12 2 2
2,p( ) ( ) exp( h )λ −

λλ ∝ λ − λ  from (5.12) and the product of the exponential priors of the 

variance parameters xx

j

p2 2 2 p 2 2
j 1p( | ) ( ) exp( 2)β β=

λ ∝ λ −λ τ∑τ , compare (5.11). We obtain as full 

conditional the gamma density 

 
x

j

p
2 2

1, x 2,

j 1

1
| Gamma h p ,h

2
λ λ β

=

 
λ ⋅ + + τ 

 
∑∼ . (6.10) 
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NMIG regularization 

Under the Bayesian NMIG prior the variance parameter is the product of two variance components 

j

2 2
j jIβτ = ψ . The full conditionals of the covariate-specific binary indicator variables jI  are Bernoulli 

distributions 

 ( )
v j v jo 1(I ) (I )

j

j j j j

1 1
p I | 1

1 A B 1 A B

δ δ
   

⋅ = −   
+ +   

, (6.11) 

with 

 
2

j j1 0 1

2
j 0 1 j0

A 1 v (v v )
exp

B v v 2v

 β− ω −
=  

ω ψ 
, 

which is derived from the product of the indicator prior v j v j1 o(I ) (I )
j 0 1p(I | , v ,v ) (1 )δ δω ∝ ω − ω  in (5.13) 

and the prior of the regression coefficients 
j

2 1 2 2
j j j j jp( | ) I exp( 2I )−

ββ τ ∝ −β ψ  in (5.6).  

For the second variance parameter component 2
jψ  the full conditionals are proportional to the product 

of the Gaussian prior of the regression coefficients 
j

2 2 2 2
j j j j jp( | ) exp( 2I )−

ββ τ ∝ ψ −β ψ  in (5.13) and the 

inverse gamma prior in (5.14) ,1h 12 2 2
j j ,2 jp( ) ( ) exp( h )ψ− −

ψψ ∝ ψ − ψ , which results in inverse gamma 

densities 

 
2
j2

j 1, 2, x

j

1
| InvGamma h ,h , j 1,..,p

2 2I
ψ ψ

 β
ψ ⋅ + + = 

 
∼ . (6.12) 

With the beta prior (5.15) for the complexity parameter 1, 2,h 1 h 1p( ) (1 )ω ω− −ω ∝ ω − ω  and the product of the 

indicator priors (5.13) 1 0n n
0 1p( | , v ,v ) (1 )ω ∝ ω − ωI , with { }0 j 0n : # j: I v= =  and { }1 j 1n : # j: I v= = , the 

full conditional for the mixing parameter is also a beta density 

 ( )1, 1 2, 0| Beta h n ;h nω ωω ⋅ + +∼ . (6.13) 

Smoothing parameters 

The full conditionals of the smoothing parameters are proportional to the product of the inverse 

gamma prior 1, j
jj j j

h 12 2 2
2,p( ) ( ) exp( h )τ− −

τα α ατ ∝ τ − τ  from (5.17) and the partial improper multivariate 

Gaussian prior of the basis function weights j

j j j

rank ( ) 22 2 2
j j j jp( | ) ( ) exp( K 2 )α α α

′τ ∝ τ − τKα α α  from (5.16). 

We can easy reproduce that the full conditionals are all proper inverse gamma distributions 

 
j jj

j2
1, 2, j j j

rank( ) 1
| ~ InvGamma h ,h

2 2
τ τα

 
′τ ⋅ + + 

 

K
α K α , zj 0,1,...,p= . (6.14) 

6.1.3. Full conditional of the mixture weights 

In this section we derive several alternatives for the update of the (transformed) mixture weights. 

Besides a single-update of the mixture weights we consider several block-update schemes to 

investigate the impact on the convergence of the mixture weights in combination with a 

standardization of the error distribution within the MCMC sampler, compare Subsection 6.2.1. The 

particular method is specified in the function baftpgm() through the argument method.alpha 

within the errorpri list, compare Appendix D.5. 
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Update scheme “mhcond” (Metropolis-Hastings based block update) 

To update the block of transformed mixture weights, we use Metropolis-Hastings steps with IWLS 

proposals as in detail described e. g. in Brezger and Lang (2006) and shortly summarized in the 

Appendix C. The general idea of IWLS proposals is to obtain a Gaussian proposal by matching the 

mode and the curvature of the full conditional at the current state of parameter vector in each update 

step. The proposal distribution is constructed by a second order Taylor expansion of the logarithm of 

the full conditional at the current state of the chain. The full conditional for the transformed mixture 

weights is proportional to the product of the smoothing prior (5.16) and the prior of the component 

labels (5.4) 

 ( ) ( ) ( ) ( )
0

0

0

g
2

0 0 0 j j 0 0 0 02
j 1

1
p | p | p | exp n log w ( )

2
α

= α

 
′⋅ ∝ τ ∝ −  τ 

∑α r α α α α K α . 

Due to the identifiability constraint 0,k 0α = , for one 0k {1,...,g }∈ , the mixture weights j 0w ( )α  

depend effectively on the parameters 0 0,1 0,k 1 0,k 1 0,g: ( ,..., , ,..., )− + ′= α α α ααɶ  and also the full conditional 

depends effectively on 0αɶ . With respect to this constraint we write the full conditional as 

 ( )
0 0

0

g g

0 0, 0, 0 0 02
1, k 1, k

1
p | exp n n log 1 exp( )

2= ≠ = ≠ α

  
′⋅ ∝ α − ⋅ + α −   τ  

∑ ∑α α K αℓ ℓ ℓ

ℓ ℓ ℓ ℓ

ɶɶ ɶ ɶ , (6.15) 

where 0Kɶ  denotes the reduced difference matrix, if the k-th row and k-th column are removed from 

0K . To construct the IWLS proposal, the score vector 
0 0( )αs αɶ ɶ  and the Hessian matrix 

0 0( )αH αɶ ɶ  of the 

logarithm of the full conditional, 0 0f ( ) log(p( | ))= ⋅α αɶ ɶ , are required. With 

 
0 0g g

0 0, 0,

1, k 1, k

g( ) n n log 1 exp( )
= ≠ = ≠

 
= α − ⋅ + α 

 
∑ ∑α ℓ ℓ ℓ

ℓ ℓ ℓ ℓ

ɶ , 

we derive the first and second order partial derivates of g( )⋅  as 

 0
j j 0

0, j

g( )
n n w ( ), j k

∂
= − ≠

∂α

α
α

ɶ
, 

 
( )22

j 0 j 0j 00

0, j 0,i 0,i j 0 i 0

n w ( ) w ( ) i j,  and i, j kw ( )g( )
n

nw ( )w ( ) i j,  and i, j k.

 − = ≠∂∂
= − = 

∂α ∂α ∂α ≠ ≠

α ααα

α α

ɶ
 (6.16) 

With the definitions 
01 k 1 k 1 g: (n ,...,n ,n ...,n )− + ′=nɶ , 

00 1 0 k 1 0 k 1 0 g 0( ) : (w ( ),...,w ( ), w ( )...,w ( ))− + ′=w α α α α αɶ  

and ( )0 0 0 0( ) : diag ( ) ( ) ( )′= −W α w α w α w αɶ ɶ ɶ ɶ  the score vector and Hessian matrix of the function 

0 0f ( ) : log(p( | ))= ⋅α αɶ ɶ  are 

 ( ) ( )0 0

0 0

0 0 0 0 0 0 02 2

1 1
n ( ) , n ( )α α

α α

= − ⋅ − = − −
τ τ

s α n w α K α H α W α Kɶ ɶ
ɶ ɶ ɶɶ ɶ ɶ ɶ ɶɶ . 

We note from (6.16) that in general the matrix of the first derivates of the weights 0( )w α  with respect 

to 0α  is given by ( )00 0 0 i 0 0, j i, j 1,...,g 0 0 0( ) : ( ) ( w ( ) ) diag ( ) ( ) ( )= ′= ∂ ∂ = ∂ ∂α = −W α w α α α w α w α w α , and 

we obtain the representation 0( )W αɶ  by removing the k-th row and k-th column from 0( )W α , i. e. 

0 0( ) ( )[ k, k]= − −W α W αɶ . The second order Taylor expansion of 0 0f ( ) log(p( | ))= ⋅α αɶ ɶ  around the 

current state of the parameter vector (c)
0α  has the general form 

 ( ) ( ) ( ) ( ) ( ) ( )( )0 0

(c) (c) (c) (c) (c) (c)
0 0 0 00 0 0 0 0 0

1
f̂ f

2
α α

′ ′≈ + − + − −α α α α s α α α H α α αɶ ɶɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ .  
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Taking the exponential 0
ˆexp(f ( ))αɶ  and neglecting the components that do not depend on 0αɶ  leads to a 

multivariate Gaussian distribution density  

 ( ) ( ) ( )( )0 0 00 0

(c) (c) (c) (c) (c) (c)
0 0 0 00 0 0 0

1ˆˆ( | , ) exp
2

α α αα α

 
′ ′ϕ ∝ + − 

 
α µ Σ α H α α α s α H α αɶ ɶ ɶɶ ɶ
ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ , (6.17) 

with mean vector ( )0 00 0 0 0

(c) (c) (c) (c) (c) (c) (c) (c)1 1
0 0 0 0 0 0 0ˆ ( ) ( ) ( ) ( ) ( )− −

α αα α α= − − = −αµ H α s α H α α α H α s αɶ ɶɶ ɶ ɶ ɶ
ɶ ɶ ɶ ɶ ɶ ɶ ɶ  and covariance 

matrix 
0 0

(c) (c)1
0

ˆ ( )−
α α= −Σ H αɶ ɶ

ɶ . The representation of mean vector in the second equality shows, that the 

mean of the Gaussian proposal 
0 0

(c) (c)ˆˆ( | , )α αϕ ⋅ µ Σɶ ɶ  can be interpreted as one step approximation to the 

mode of the full conditional obtained by a single Fisher scoring step from the current state. To update 

the transformed mixture weights based on the current state (c)
0αɶ  of the chain, the new value (p)

0αɶ  is 

proposed by drawing a random number from the multivariate Gaussian proposal distribution 

0 0

(c) (c)ˆˆN( , )α αµ Σɶ ɶ  with density 
0 0

(c) (c)ˆˆ( | , )α αϕ ⋅ µ Σɶ ɶ , where the mean vector 
0

(c) (c)
0 0ˆ ( | )α =µ α αɶ
ɶ ɶE  and covariance 

matrix 
0

(c) (c)
0 0

ˆ ov( | )α =Σ α αɶ
ɶ ɶC  are given by 

 ( ) ( )( ) ( )( )0 0 0 0

1
(c) (c) (c) (c) (c) (c) (c) 2

00 0 0 0
ˆ ˆˆ n n , n

−
−

α α α α= − + = + τµ Σ n w α W α α Σ W α Kɶ ɶ ɶ
ɶ ɶ ɶɶ ɶɶ . (6.18) 

Finally, the proposed state (p)
0αɶ  is accepted as new state of the chain with probability 

 ( )
( ) ( )
( ) ( )

0 0

0 0

(p) (c) (p) (p)
0 0(p) (c)

accept 0 0 (c) (p) (c) (c)
0 0

ˆˆp | | ,
p , min 1,

ˆˆp | | ,

α α

α α

 ⋅ ⋅ϕ 
=  

⋅ ⋅ϕ  

α α µ Σ
α α

α α µ Σ

ɶ ɶ

ɶ ɶ

ɶ ɶ
ɶ ɶ

ɶ ɶ
. (6.19) 

The nominator and denominator contain the full conditional (6.15) and proposal density (6.17), each 

evaluated at the current state (c)
0αɶ  and proposed state (p)

0αɶ , whereat 
0

(p)ˆ
αµ ɶ  and 

0

(p)ˆ
αΣ ɶ  are obtained by 

inserting the proposal into (6.17) and computing the resulting mean and covariance. We specify this 

method with method.alpha=“mhcond” in the function baftpgm(). 

Update scheme “mhmarg” (Metropolis-Hastings based block update): 

This update scheme is based on the marginal likelihood i i 0 if (y | ) ( ) (y )′=θ w α φ  from (2.11), with 

0 0 0

2 2 2 2
i 1 i g i i i 1 1 i i g g(y ) : ( (y ),..., (y )) ( (y | m , s ),..., (y | m , s ))′ ′= ϕ ϕ = ϕ η σ σ ϕ η σ σφ − −− −− −− − . With the smoothing 

prior (5.16) the full conditional is given as 

 ( ) ( ) ( ) ( )
0

0

n
2

0 0 0 i 0 0 02
i 1

1
p | p | p | exp log ( ) (y )

2
α

= α

 
′ ′⋅ ∝ τ ∝ −  τ 

∑α y θ α w α φ α K α . 

Since one of the transformed mixture weights fulfills the identifiability constraint, i. e. 0,k 0α = , 

{ }0k 1,...,g∈ , we use from above the reduced vector 
00 0,1 0,k 1 0,k 1 0,g: ( ,..., , ,..., )− + ′= α α α ααɶ to construct 

the IWLS proposal, compare Appendix C. From the previous subsection the first derivate of the 

weights 0( )w α  with respect to 0α  is given by ( )0 0 0 0 0 0( ) : ( ) diag ( ) ( ) ( )′= ∂ ∂ = −W α w α α w α w α w α . 

With respect to the identifiability constraint we remove now the k-th column of the matrix 0( )W α  that 

contains the first derivate of the weights 0( )w α  with respect to 0,kα , and define the resulting 

0 0g (g 1)× −  dimensional matrix as 0 0( ) : ( )[, k]= −W α W αɶ . With this representation we write the score 

vector of the function  

 ( ) ( )
n

0 0 i

i 1

g : log ( ) (y )
=

′=∑α w α φɶ  

as  
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 ( )
( )

0

n
0 i

0

0 ii 1

( ) y

( ) (y )
α

=

′
=

′∑
W α φ

s α
w α φ

ɶ

ɶ
ɶ . 

Using the Fisher information matrix as an approximation to the negative Hessian matrix, i. e. 

( ( )) ov( ( )) ( ( ) ( ))θ θ θ θ′− = =H θ s θ s θ s θE C E , we obtain the Hessian matrix as 

 ( )
( ) ( )

( )
0

n
0 i i 0

0 2
i 1 0 i

( ) y y ( )

( ) (y )
α

=

′ ′
≈ −

′
∑

W α φ φ W α
H α

w α φ
ɶ

ɶ ɶ
ɶ . 

Taking into account the first and second order derivates of the penalty term, like in the previous 

subsection, the second order Taylor expansion of 0 0f ( ) log(p( | ))= ⋅α αɶ ɶ  with respect to the current state 

of the chain (c)
0αɶ  results in a multivariate Gaussian proposal distribution ( )0 0

(c) (c) (c)
0 0

ˆˆ| N ,α αα α µ Σɶ ɶ
ɶ ɶ ∼  with 

mean vector 
0

(c) (c)
0 0ˆ ( | )α =µ α αɶ
ɶ ɶE  and covariance matrix 

0

(c) (c)
0 0

ˆ ov( | )α =Σ α αɶ
ɶ ɶC  given by  

 

( ) ( ) ( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )
( )

0 0

0

0

(c) (c) (c)n n
i0 i i(c) (c) (c)

02(c) (c)
ii 1 i 10 i0

1
(c) (c)n

i i0 0(c)
d2 2(c)

i 1 i0

y y yˆˆ ,
( ) (y ) ( ) (y )

y y 1ˆ ,
( ) (y )

α α

= =

−

α

= α

 ′′ ′
 = +
 ′ ′
 

 ′ ′
 = +

τ ′ 

∑ ∑

∑

W α φ W α φ φ W α
µ Σ α

w α φ w α φ

W α φ φ W α
Σ K

w α φ

ɶ ɶ

ɶ

ɶ ɶ ɶ
ɶ

ɶ ɶ
ɶ

 (6.20) 

with 
0

(c) (c) (c) (c) (c)
0 0,1 0,k 1 0,k 1 0,g( ,..., ,0, ,..., )− + ′= α α α αα . The proposed state (p)

0αɶ  is then accepted as new state of 

the chain with probability given in (6.19). We specify this method with method.alpha=“mhmarg” in 

the function baftpgm(). 

Update scheme “mcondblock” (Metropolis based block update) 

To achieve higher acceptance rates, Brezger and Lang (2006) suggest using the posterior mode of the 

previous iteration 
0

(c 1)ˆ −
αµ ɶ  for computing the IWLS proposal. More precisely the mean vector and 

covariance matrix in (6.18) are evaluated by replacing the current state (c)
0αɶ  with 

0

(c 1)ˆ −
αµ ɶ , i. e. 

 ( ) ( )( ) ( )( )0 0 0 0 0 0 0

1
(c) (c) (c 1) (c 1) (c) (c) (c 1) 2

00
ˆ ˆˆ ˆ ˆ ˆn n , n

−
− − − −

α α α α= − + = + τα α αµ Σ n w µ W µ α Σ W µ Kɶ ɶ ɶ
ɶ ɶ ɶɶ ɶɶ . 

With this modification the proposal distribution becomes independent from the current state (c)
0αɶ  of 

the chain and we bypass the recomputation of the mean 
0

(p)ˆ
αµ ɶ  and the covariance 

0

(p)ˆ
αΣ ɶ  to calculate the 

proposal density 
0 0

(c) (p) (p)
0

ˆˆ( | , )α αϕ α µ Σɶ ɶ
ɶ  at the current state (c)

0αɶ . This decreases the computational effort for 

the evaluation the acceptance probability (6.19) and increases the speed of the algorithm. If in addition 

the mean vector of the proposal is exchanged by the current state of the chain, i. e. 
0

(c) (c)
0ˆ α =µ αɶ
ɶ , we do a 

simpler Metropolis update since the proposal becomes symmetric and the proposal ratio equals 1.  

We have implemented a Metropolis update, where the mean vector and covariance matrix of the 

Gaussian proposal distribution are given by 

 ( )( )0 0 0 0 0

1
(c) (c) (c) (c 1) (c 1) 2

00
ˆ ˆˆ ˆ, n

−
− − −

α α α α= = = + ταµ α Σ Σ W µ Kɶ ɶ ɶ ɶ
ɶ ɶɶ . (6.21) 

The update is done e. g. via the Cholesky decomposition of the covariance matrix 
0

(c 1)ˆ −
α

′=Σ LLɶ . With 

the sample 
01 g 1(x ,...,x ) ~ N( , )− ′=x 0 I  from a standard multivariate Gaussian distribution we compute 

the proposal via (p) (c)
0 0= +α α Lxɶ ɶ , compare computational detail 2 in Subsection 6.1.7, and accept this 

proposal with probability 
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 ( )
( )
( )

(p)
0(p) (c)

0 0 (c)
0

p |
accept , min 1,

p |

 ⋅ 
=  

⋅  

α
α α

α

ɶ
ɶ ɶ

ɶ
. (6.22) 

We specify this method with method.alpha=“mcondblock” in the function baftpgm(). 

Update scheme “mcondstep” (Metropolis based block update) 

In a further version we use multiple Metropolis acceptance steps within the update of the transformed 

mixture weights. The mean vector and covariance matrix of the Gaussian proposal distribution are 

given by (6.21) and we use again the Cholesky decomposition of the covariance matrix 
0

(c 1)ˆ −
α

′=Σ LLɶ . 

Let 
01 g 1(x ,...,x ) ~ N( , )− ′=x 0 I  denote a sample from a multivariate standard Gaussian distribution and 

je  denotes the ℓ -th unit vector of dimension 0(g 1)− . We can represent the sample =v Lx  from the 

multivariate Gaussian distribution 
0

(c 1)ˆN( , )−
α0 Σ ɶ  as sum of componentwise updates 0g 1

1 x−

=
=∑Lx Leℓ ℓℓ

, 

where the ℓ -th summand xLeℓ ℓ  is the ℓ -th column of the lower triangular matrix L  multiplied with 

xℓ . It is obvious, that the proposal (p) (c)
0 0= +α α Lxɶ ɶ  from the previous subsection is also obtained with 

the componentwise update, i. e. 0g 1(p) (c)
0 0 1 x−

=
= +∑α α Leℓ ℓℓ

ɶ ɶ , and we can rewrite the update iteratively as 
(p) (p)
0, 0, 1 z−= +α α Leℓ ℓℓ ℓ
ɶ ɶ , 01,...,g 1= −ℓ , starting with the current state (p) (c)

0,0 :=α αɶ ɶ . Based on this 

representation, the proposal arises as sequential modification of the 01,...,g 1+ −ℓ  components of the 

current value 
0

(c) (c)ˆ
α=α µ ɶɶ . 

In the “mcondstep” update scheme we use this iterative construction of the proposal with an 

additional acceptance step after each iteration. In summary, the proposal is iteratively computed in 

( 0g 1− )-steps via (p) (p)
0, 0, 1 z−= +α α Leℓ ℓℓ ℓ
ɶ ɶ , 01,...,g 1= −ℓ , starting with the current state (p) (c)

0,0 :=α αɶ ɶ and we 

accept the new components of the proposal in each iteration with probability 

 ( )
( )

( )

(p)
0,(p) (p)

00, 0, 1 (p)
0, 1

p |
accept | min 1, , 1,...,g 1

p |
−

−

 ⋅ 
= = − 

⋅  

α
α α

α

ℓ

ℓ ℓ

ℓ

ɶ
ɶ ɶ ℓ

ɶ
. (6.23) 

The “mcondblock” update scheme is obtained as special case of the “mcondstep” scheme if the 

acceptance probabilities all equal 1. We specify this method with method.alpha=“mcondstep” in 

the function baftpgm(). In addition we have several options to vary the order of the update of the 

transformed mixture weights by specifying the argument order.alpha, compare Subsection 6.2.2. 

Update scheme “slice” (single parameter update) 

For a single update of the transformed weights 0, jα , 0j 1,...,g= , we require the conditional distribution 

j

2
0, j 0, jp( | , )− αα τα  of the weight 0, jα  given the remaining weights 

00, j 1 j 1 j 1 g: ( ,..., , ,..., )− − + ′= α α α αα . As 

pointed out in the Regularization Section 4.6 the conditional distribution 
0

2
0, j 0, j| ,− αα τα , depends only 

on the nearest neighbors and is Gaussian with mean and variance given as 

 ( )
[ ]

[ ]
( )

[ ]
0

20 0,kk j
0, j 0, j 0, j 0, j

0 0

j,k
| , ar |

j, j j, j
≠ α

− −

α τ
α = − α =

∑ K
α α

K K
E V , (6.24) 

where 0K  denotes the penalty matrix.  

In summary, the full conditional distributions of the transformed weights 0, jα  are proportional to the 

product of this Gaussian prior and the prior of the component labels (5.4) 
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( )

( )( )
( )( )

( )0

2

0,j 0,j 0, jj 0, j
0,j 0, j 0ng

0, j 0, j
0,kk 1

| ,exp n 1
p( | , ) exp , j 1,...,g

2 ar | ,exp

−

−

−
=

 α − α ⋅α
 α ⋅ ∝ − =
 α ⋅α  ∑

α
α

α

E

V
. (6.25) 

Due to the identifiability constraint 0,k 0α =  for one 0k {1,...,g }∈ , we update only the parameters 

0,1 0,k 1 0,k 1 0,g,..., , ,...,− +α α α α  and keep 0,kα  fixed at zero in each iteration. As for the update of the scale 

parameter (next subsection) we use the univariate slice sampling of Neal (2003). Since this density is 

log-concave also adaptive rejection sampling, Gilks and Wilde (1992), is a possible alternative. We 

specify this method with method.alpha=“slice” in the function baftpgm(). In addition we have 

several options to vary the order of the update of the transformed mixture weights by specifying the 

argument order.alpha, compare Subsection 6.2.2. 

Update scheme “dirichlet” (unregularized block update) 

To compare the performance of smoothing the baseline error, also an unregularized approach for the 

weights 
01 g(w ,...,w )′=w  of the baseline error mixture distribution is considered. In contrast to the 

smoothing penalty a conjugate Dirichlet prior for the component weights is utilized, compare 

Frühwirth-Schnatter (2006), i. e.  

 ( )001 0g~ Dirichlet n ,...,nw , 

with density 

 ( )
( )

( )
0

0

0

0 g01

0

g
0 jj 1 n 1n 1

1 gg
0 jj 1

n
p w ... w

n

= −−

=

Γ
= ⋅ ⋅

Γ

∑

∏
w . 

In this case the full conditional for the weights is 

 ( ) ( ) ( )
0 0 0

j 0 j j 0 j

g g g
n n 1 n n 1

j j j

j 1 j 1 j 1

p | p | p w w w− + −

= = =

⋅ ∝ = ⋅ =∏ ∏ ∏w r θ w , 

which is also the density of a Dirichlet distribution:  

 ( )0 01 01 g 0g| ~ Dirichlet n n ,...,n n⋅ + +w . (6.26) 

Since there is no smoothing in this case, we do not require an update of the parameter 
0

2
ατ . 

6.1.4. Full conditional of the scale parameter 

With the multivariate conditional Gaussian prior of the log-survival times y yp( | , )y µ Σ  from (5.3) and 

the inverse gamma prior 1,h 12 2 2
2,p( ) ( ) exp( h )σ− −

σσ ∝ σ − σ  for the scale parameter 2σ  from (5.18) the 

full conditional is given as 

 ( )
,1

n
h 1

2 ,22 1
y y y2 2

1 1 h
p | exp ( ) ( ) .

2

σ+ +

σ−   
′σ ⋅ ∝ − − − −   

σ σ   
y µ Σ y µ  

To separate the dependence of scale parameter, we use the identity 

 1 1 1 1
y y y r r r r r r2

1 1 1 1
( ) ( ) ( ) ( ) ( )

2 2 2
− − − −′ ′ ′ ′− − = − − − − +

σ σ
y µ Σ y µ y η S y η y η S m m S m  
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with 
1 nr r r(m ,...,m )′=m  and 

1 n

2 2
r r rdiag(s ,...,s )=S . The last summand in the identity does not depend on 

the scale parameter and is omitted. Inserting this identity into the expression of the full conditional and 

using further the definitions 

 1 1
,1 r ,2 r r

n 1
A : h 1, B : ( ) ( ) h , C : ( )

2 2
− −

σ σ σ σ σ′ ′= + + = − − + = −y η S y η y η S m  (6.27) 

the full conditional is finally built as 

 ( )
A

2

2 2

1 1 1
p | exp B C

σ

σ σ
   

σ ⋅ ∝ − +   
σ σ σ   

, (6.28) 

which is obviously not an inverse gamma density or of any standard form. It is shown in the Appendix 

A.2 that this density is unimodal and the univariate slice sampler, as described in Neal (2003) and 

implemented in the R-function uni.slice{R}, is used to update the scale parameter. 

6.1.5. Full conditionals of latent component labels 

Since the allocations to the mixture components are not known, we need to impute this latent 

component labels. The discrete allocation indicator iR  associates each observation with a certain 

component of the mixture distribution. The classification of the log-survival times iy , i 1,...,n= , via 

the allocation variable i 0r {1,...,g }∈  is obtained from the product of the Gaussian density of the log-

survival times ( )i ii i

2 2 2 2
i i r i i rr rp(y | m , s ) y | m , sη − σ σ = ϕ η − σ σ , (5.3), and the multinomial prior of the 

component labels ( ) ii 0 r 0p r | w ( )=α α , (5.4), i. e. 

 ( ) ( )i ii

2 2
i i i r r 0rp r | y | m , s w ( )⋅ ∝ ϕ η − σ σ α . 

Thus the full conditional of each allocation variable ir , i 1,...,n= , is discrete with the normalized 

probability 

 ( )
( )

( )
0

2 2
j 0 i i j j

ij i 0g
2 2

k 0 i i k k

k 1

w ( ) y | m , s
p : P r j | , j 1,...,g

w ( ) y | m , s
=

ϕ η − σ σ
= = ⋅ = =

ϕ η − σ σ∑

α

α

, (6.29) 

which is the special case of a multinomial distribution 
0i i1 igr ~ MNom(1,p ,...,p ) .  

6.1.6. Full conditional of the censored log-survival times 

As shown in the previous sections, the vector of exact (log-) survival times y  is required to update the 

remaining model parameters. The exact survival times are only partially known, in particular for the 

uncensored individuals. The survival times of the right censored individuals with censoring time iyɶ  

have to be imputed in each update step. Using the likelihood contribution for a censored observation 
i

i

1 d
i i [y , ) iL( | y ) 1 (y ) −

∞= ɶD , id 1= , and the associated prior component of the exact survival time 

zi i 1 pp(y | r , ,..., , , , )σα α β γ  from (5.3), the full conditional for a censored log-survival time is given as 

 ( ) ( ) ( )i i

i i

2
i [y , ) i i i r2 2

r r

1 1
p y | 1 y exp y m

s 2 s
∞

 
⋅ ∝ − − η − σ  σ σ 

ɶ , 

which is the density of a truncated Gaussian distribution with location parameter 
ii rmη + σ , squared 

scale parameter 
i

2 2
rsσ  and support i[y , )∞ɶ  
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 ( ) ( )i i i

2 2
i [y , ) i r rp y | ~ TN m , s∞⋅ η + σ σɶ . (6.30) 

Sampling from a truncated normal distribution is described in Robert (1995) and practiced using the 

R-function rtnorm{msm}.  

6.1.7. Computational details 

Detail 1: The generic way to update the predictor components is described in terms of the 

unregularized linear effects γ , where we assume 0γ ≠µ  and 1 0−
γ = ≠γΠ Σ  for the moment to keep the 

generality of the derivation. To draw the random samples efficiently from a possibly high-dimensional 

multivariate Gaussian distribution 1
| || ~ N( , )−
⋅ ⋅⋅ γ γγ µ Π  with precision matrix |⋅γΠ , we follow Rue (2001) 

and start with computing the Cholesky decomposition of the precision matrix 
1 1

y| ( )− −
γ⋅ ′ ′= + =γΠ U Σ U Σ LL  such that L  denotes the corresponding lower triangular matrix. With the 

up -dimensional sample 
u1 p(x ,..., x )′=x  from a standard Gaussian distribution ix ~ N(0,1)  we solve 

the equation *′ =L γ x  via backward substitution to get a sample from * 1
|| ~ N( , )−
⋅⋅ γγ 0 Π . Finally, the 

sum *
|⋅ +γµ γ  is the desired sample of 1

| |N( , )−
⋅ ⋅γ γµ Π . We can also compute the mean |⋅γµ  in terms of the 

Cholesky decomposition. Via the connection 1 1
| | y| ( )− −
⋅ ⋅ γ γ γ⋅ ′ ′= = +γ γγΠ µ LL µ U Σ y Σ µɶ , we solve at first 

the equation 1 1
y( )− −

γ γ γ′= +Lv U Σ y Σ µɶ  via forward substitution and then the equation |⋅′ =γL µ v  via 

backward substitution. Since the precision matrix of the nonlinear terms has band structure, the 

Cholesky decomposition can be computed by sparse matrix operations. 

Detail 2: An alternative is to use the methods implemented in the R function rmvnorm{mvtnorm} to 

draw in terms of the covariance matrix |⋅γΣ , instead of the precision matrix, a new state from a 

multivariate Gaussian distribution | || ~ N( , )⋅ ⋅⋅ γ γγ µ Σ . The procedure based on the e Cholesky 

decomposition of the covariance matrix uses the steps described in Rue (2001), i. e. with the 

decomposition |⋅ ′=γΣ LL  and the up -dimensional sample 
u1 p(x ,..., x )′=x , ix ~ N(0,1) , the vector 

*=Lx γ  is computed to obtain the sample from *
|| ~ N( , )⋅⋅ γγ 0 Σ . Finally, the mean vector is added 

and the sum *
|⋅ +γµ γ  is the desired sample of | |N( , )⋅ ⋅γ γµ Σ . 

Detail 3: For large parameter vectors we can partition the vector of regression coefficients randomly in 

blocks of fix size and update sequentially the blocks until each coefficient is updated instead of 

updating the whole coefficient vector at once. The random sample is then generated from a 

multivariate Gaussian distribution with the corresponding subvector of the mean and the submatrix of 

the covariance matrix conditional on the remainder of the regression coefficients and other parameters 

(argument blocksize in the function baftpgm()). 

6.2. Algorithmic variants 

6.2.1. Standardization of the baseline error distribution 

As outlined in Subsection 2.3 we require constraints on the transformed weights 0α  to achieve a 

standardized baseline error distribution to enforce the interpretation of the predictor iη  as the mean 

ii Y(Y | ) = µθE  and the scale parameter 2σ  as the variance 
i

2
i Yar(Y | ) = σθV  of the conditional 

distribution iY |θ , compare (2.12) and (2.14). In this case the trace plots of the samples of the global 

intercept parameter 0γ , the scale parameter 2σ  and the samples of the mixture weights 0( )w α  of the 

corresponding baseline error distribution 0 0Y | ,γ σ  indicate the desired convergence. With an 
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unconstrained estimation of the transformed mixture weights 0α  the mean 0g
k 0 kk 1w ( )mε =

µ =∑ α  and 

the variance 0g2 2 2 2
k 0 k kk 1w ( )(m s )ε ε=

σ = + − µ∑ α , of the error distribution 0|ε α , (2.8), can take any values 

εµ ∈ℝ  and 2 0εσ > . The corresponding mean and variance of the baseline error distribution 0 0Y | ,γ σ  

are given by 
0Y 0 εµ = γ + σµ  and 

0

2 2 2
Y εσ = σ σ , compare (2.13), and the interpretation of the parameters 

0γ  and 2σ  as global intercept and variance of the conditional distribution iY |θ  is not feasible. As a 

further consequence of the unconstrained update of 0α , the parameters 0γ  and εµ  of the mean 

0Y 0 εµ = γ + σµ  as well as the parameters 2σ  and 2
εσ  of the variance 

0

2 2 2
Y εσ = σ σ  of the conditional 

distribution 0 0Y | ,γ σ  are not identifiable. This is due to the fact, that for any scalar c∈ℝ , 

0 0 cγ = γ + σɶ  in combination with cε εµ = µ −ɶ , and 2 2 2cσ = σɶ  in combination with 2 2 2c−
ε εσ = σɶ , does not 

change the mean 
0Yµ  and the variance 

0

2
Yσ . It follows that only the trace plots of the mean 

0Yµ  and 

variance 
0

2
Yσ  of the baseline error distribution show the desired stationarity, but stationarity is not 

indicated by the trace plots of the single components of these expressions and the mixture weights 

0( )w α . 

The unconstrained estimation requires also an adjustment of the hyperparameters of the intercept 0γ  

and the scale parameter σ  in the algorithm, if informative instead of diffuse priors are used for these 

parameters. Consider as an example the scale parameter 2σ . In the case of a standardized error 

distribution ~ (0,1)ε , our prior knowledge of the baseline variance 0 0ar(Y | , )γ σV  of the conditional 

distribution 0 0Y | ,γ σ  is reflected by the hyperparameters 1,h σ  and 2,h σ  of an inverse gamma 

distribution, compare (5.18). For an unstandardized baseline error distribution our knowledge concerns 

the product of the scale parameter and the variance of the baseline error distribution, i. e. 
2 2

0 0 1, 2,ar(Y | , ) ~ InvGamma(h ,h )ε σ σγ σ = σ σV . Due to the identification problem of the variance, the 

single components 2
εσ  and 2σ  can take any positive value in each iteration and we have to adjust the 

hyperparameters of the prior for the scale parameter 2σ  with respect to the values of 2
εσ  in the 

iterations according to 2 2
1, 2,~ InvGamma(h ,h )σ σ εσ σ . The same argumentation holds for the intercept 

and is leading to the adjustment 
0 0

2
0 1, 2,~ N(h ,h )γ ε γγ − σµ  in every iteration of the sampler. 

We advocate the following strategy to obtain a standardized baseline error distribution, which avoids 

the direct implementation of constraints in the update of the (transformed) mixture weights. Let 
0g

k 0 kk 1w ( )mε =
µ =∑ α  and 0g2 2 2 2

k 0 k kk 1w ( )(m s )ε ε=
σ = + − µ∑ α  denote the mean and the variance of the 

unstandardized error distribution with density 0g 2
0 k 0 k kk 1f ( | ) w ( ) ( | m ,s )ε =

⋅ = ϕ ⋅∑α α  from (2.7). The 

density of the standardized baseline error distribution 0 0|ε αɶ  is obtained via the transformation 

0 ( )ε εε = ε − µ σɶ  as 0

0

g 2
0 k 0 0,k 0,kk 1f ( | ) w ( ) ( | m ,s )ε =

⋅ = ϕ ⋅∑α αɶ ɶ ɶ  with basis knots 0,kmɶ  and basis variances 
2
0,ksɶ  given by 

 
2

k k2
0,k 0,k 02

m s
m , s , k 1,...,gε

ε ε

− µ
= = =

σ σ
ɶ ɶ . (6.31) 

This transformation shifts and scales only the basis knots and variances to match the zero mean and 

unit variance condition, but leaves the mixture weights unchanged. To avoid a change of the posterior 

we have to ensure, that the mean 
0Y 0 εµ = γ + σµ  and the variance 

0

2 2 2
Y εσ = σ σ  of the baseline error 

distribution 0 0Y | ,γ σ , now expressed in terms of the standardized error distribution 0 0|ε αɶ ɶ , does not 

change. With the relationship 0 0 0 0 0Y ε ε= γ + σε = γ + σµ + σσ εɶ ɶ ɶɶ  follows that we have to adjust the 

intercept and the scale parameter according to 

 2 2 2
0 0 ,ε εγ = γ + σµ σ = σ σɶ ɶ . (6.32) 
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To reformulate the standardized baseline error density in terms of the initial basis knots km  and basis 

variances 2
ks , we have to recompute the weights at the basis knots km  by solving the linear equation 

system 

 
0

0

g 2
k k k 0 0k 1

w (m | m ,s ) f (m | ), 1,...,gε=
ϕ = =∑ αɶℓ ℓɶ ℓ , (6.33) 

with respect to the constraints 0g
kk 1w 1

=
=∑ ɶ  and kw 0>ɶ . The standardized baseline error density is then 

given by 0

0

g 2
0 k 0 k kk 1f ( | ) w ( ) ( | m ,s )ε =

⋅ = ϕ ⋅∑α αɶ ɶ ɶɶ , where 0αɶ  denotes the corresponding transformed 

mixture weights.  

In the simulations we try two alternatives. We run the MCMC iterations without the standardization of 

the baseline error density within the algorithm described in Section 5.2.3 and standardize the error 

density in post-processing steps with the listed corrections (6.32) applied to the samples of the 

involved parameters. Alternatively, we standardize the baseline error density according to (6.32) 

within the sampling algorithm, after every update of the mixture weights, but we leave the weights 

unchanged to avoid in the next iteration sampling from possibly unfavorable conditional posterior 

regions arising probably from the recomputation of the mixture weights according to (6.33). In this 

version the knot positions and basis variances change in each iteration of the sampler and need to be 

stored in addition to the samples of the parameters. The option for a within-standardization is selected 

in the function baftpgm() with the argument scalebasis=TRUE. The weights are optionally 

recomputed after the simulation to show the convergence also in terms of the mixture weights. 

6.2.2. Varying the update order of the transformed mixture weights 

If we specify the methods method.alpha=“mcondstep” or method.alpha=“slice” in the 

function baftpgm(), we have the following options to vary the order of the update of the transformed 

mixture weight in every loop of the sampler (we assume e. g. 
0g : 0α =  for identifiability): 

• order.alpha=”fix1”. The order of the indices is fixed to 0(1,2,3,....,g 1)− . 

• order.alpha=”fix2”. The fixed order of the coefficients is determined in the way, that the 

coefficient j , which is just updated, does not depend on the coefficients used for the update of 

the previous coefficient j 1− . If 0d  denotes the used difference order, the update order is 

j→ 0j (d 1)+ + → 0j 2(d 1)+ + →,…, 0j 1,...,d 1= + . This is the default setting. 

• order.alpha=”random1”. In each update step a random permutation of the indices 

0(1,2,3,....,g 1)−  is used. 

• order.alpha =”random2”. In the order of the option order.alpha=”fix2” in each step 

one random cut is used to exchange the update order. 

6.2.3. Varying the update of the component labels 

We have several alternatives to classify the observations to the mixture components.  

• method.rlabel=”gibbs”: Random assignment by sampling the labels with ijp  from (6.29), 

which is the default option. 

• method.rlabel=”fix-maxprob”: Hard assignment to the class with maximum probability 

i ,max i 0p max{p(r k) : k 1,...,g }= = = . 
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• method.rlabel=”fix-interval”: Hard assignment to intervals jI  around the knots that 

build a partition of the domain of the error distribution. E. g. for equidistant knots and 

homoscedastic basis variances these intervals are j j 1 j j j 1I (0.5(m m ),0.5(m m )]− += + + , 

0j 1,...,g= , and 
01 g 1m : ,m :− += −∞ = ∞ .  

6.2.4. Scale dependent implementation 

In addition a variant with scale-dependent covariance matrices in the priors of the regularized 

predictor components (5.6) and (5.16) is implemented, i. e. , 2
ββ τ= σΣ D  and 

j j

2 2
j

− −
α α= σ τΣ K . With this 

parametrization the values of the scale parameter strengthen or relax the regularization. The derivation 

of the associated full conditionals is straightforward. We can select this option with the argument 

scaledpri=TRUE. 

6.3. Update of the parameters 

The Markov chain is generated via MCMC simulations based on drawing from the full conditionals of 

parameters or parameter blocks given the remaining parameters and the data as derived in the previous 

sections. The methods are implemented in the R-function baftpgm() which will be provided from the 

author on request. The usage of the function is described in the Appendix D.5. 

6.3.1. Preprocessing 

Standardization: To ensure that comparable regression coefficient sizes imply comparable effect 

sizes, the covariates are standardized in advance. This avoids the extensive covariate-specific tuning of 

the priors for different covariate scales. We standardize covariates with linear effects to zero empirical 

mean and unit empirical variance. To obtain that smooth covariates taking values in [ 1,1]− , we can 

apply the transformation  

 ij j,min*
ij

j,max j,min

2(z z )
z 1

z z

−
= −

−
. 

Starting values: In general we avoid preprocessing steps to fit the model in order to obtain suitable 

starting values. An automatic computation of starting values is not implemented in the function 

baftpgm() and in our simulations and applications we start with weakly specified models. The 

accurately starting values and prior specifications are given corresponding sections. If desired, starting 

values can e. g. be computed by a view iterations with the R-function bayessurvreg2{bayesSurv}. 

6.3.2. Pseudocode 

[1] Initialization:  

Specify the PGM: Set number 0g  of Gaussian basis functions and choose the location of the 

means jm , the scales 2
js  and the order 0d  of the random walk prior for the (transformed) 

mixture weights. Select the hyperparameters 1, 2,h ,hσ σ  to specify the inverse gamma prior for the 

scale parameter σ . 

Specify the regularization priors of the linear effects: Set the values of the hyperparameters 

1, ,h ,hλ 2 λ  to specify the gamma prior for the shrinkage parameter 2( )λ λ in the Bayesian ridge or 
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lasso prior. For the Bayesian NMIG prior set the values 0 1v ,v  of the indicator jI , set the values 

of the hyperparameters 1, ,h ,hψ 2 ψ  of the inverse gamma prior for the variance parameter 2
jψ  and 

set the hyperparameters 1, 2,h ,hω ω  of the beta prior for the complexity parameter ω . 

Specify the non-linear effects: Set number jg  of B-spline basis functions and choose the order 

jd  of the random walk prior for basis function weights. 

Select optionally variants described in Subsection 6.2. 

Standardize the covariates according to Section 6.3.1 and choose appropriate starting values for 

the parameters 2 2( , , , , , , )α β′ ′′ ′ ′ ′ ′= σθ α β γ τ τ ρ . 

Set the number C of iterations, set c 0=  and repeat the following steps until c C< . 

[2] Update of the unregularized linear regression coefficients:  

Draw a new value (c 1)+γ  from a multivariate Gaussian full conditional with mean vector and 

covariance matrix given in (6.3). 

[3] Update of the regularized linear regression coefficients:  

Draw a new value (c 1)+β  from a multivariate Gaussian full conditional with mean vector and 

covariance matrix given in (6.4). 

[4] Update of the shrinkage- and selection-prior components: 

Bayesian ridge (A): Draw a new value of the complexity parameter (c 1)
j

+λ  from the conditional 

gamma distribution given by (6.7) and set the variance parameter 
j

2,(c 1) (c 1)
j1 2+ +

βτ = λ , xj 1,...,p= . 

Bayesian ridge (B): Draw a new value of the complexity parameter (c 1)+λ  from the conditional 

gamma distribution given by (6.8) and set the variance parameter 2,(c 1) (c 1)1 2+ +
βτ = λ . 

Bayesian lasso: Draw a new value of the variance parameter 
j

2,(c 1)+
βτ , xj 1,...,p= , from the 

conditional inverse Gaussian distribution given by (6.9). Draw a new value of the complexity 

parameter 2,(c 1)+λ  from the conditional gamma distribution given by (6.10). 

Bayesian NMIG: Draw a new value of the indicator 
j

(c 1)I +
β , xj 1,...,p= , from the conditional 

Bernoulli distribution given in (6.11). Draw a new value of the variance parameter 
j

2,(c 1)+
βψ , 

xj 1,...,p= , from the conditional inverse gamma distribution given in (6.12). Draw a new value 

of the complexity parameter (c 1)+ω  from the conditional beta distribution given in (6.13). 

[5] Update of the regularized spline coefficients of the nonlinear effects:  

Draw a new value (c 1)
j

+α , zj 1,...,p= , from a multivariate Gaussian full conditional with mean 

vector and covariance matrix given by (6.5).  

To center the functions, compute the mean of the function evaluations at the observed data 

points n(c 1) (c 1)1
j,k ijj j,ki 1c n B (z )+ +−

=
= α∑ .  

Adjust the current states of (c 1)
j

+α  by (c 1) (c 1)
j jc+ +−α , zj 1,...,p= , and adjust the intercept (c 1)+γ  by 

z

(c 1) (c 1)(c 1)
1 pc ... c+ ++γ + + + . 

[6] Update of the smoothing variances associated to the spline coefficients:  

Draw a new value of the variance parameters 
j

2,(c 1)+
ατ , zj 1,...,p= , from the conditional inverse 

gamma distribution given by (6.14). 
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[7] Update of the scale parameter:  

Draw with slice sampling a new value of the variance parameters 2,(c 1)+σ  from the conditional 

inverse gamma distribution given by (6.28) with (6.27).  

[8] Update of the transformed mixture weights:  

Option 1: (Method “mhcond”) Draw a new value (p) (p) (p) (p) (p)
0 0,1 0,g0,k 1 0,k 1( ,..., , ,..., )− + ′= α α α ααɶ  from a 

multivariate Gaussian proposal distribution with mean vector and covariance matrix given by 

(6.18). Accept the proposed state as new state of the chain with the acceptance probability given 

in (6.19). If the proposal is accepted, set (c 1) (p)
0 0

+ =α α , else set (c 1) (c)
0 0

+ =α α . 

Option 2: (Method “mhmarg”) Draw a new value (p) (p) (p) (p) (p)
0 0,1 0,g0,k 1 0,k 1( ,..., , ,..., )− + ′= α α α ααɶ  from a 

multivariate Gaussian proposal distribution with mean vector and covariance matrix given by 

(6.20). Accept the proposed state as new state of the chain with the acceptance probability given 

in (6.19). If the proposal is accepted, set (c 1) (p)
0 0

+ =α α , else set (c 1) (c)
0 0

+ =α α . 

Option 3: (Method “mcondblock”) Draw a new value (p) (p) (p) (p) (p)
0 0,1 0,g0,k 1 0,k 1( ,..., , ,..., )− + ′= α α α ααɶ  

from the Gaussian proposal distribution with mean vector and covariance matrix given by (6.21)

and accept the proposed state as new state of the chain with the acceptance probability given in 

(6.22). If the proposal is accepted, set (c 1) (p)
0 0

+ =α α , else set (c 1) (c)
0 0

+ =α α . 

Option 4: (Method “mcondstep”) Draw a new value (p)
0,α ℓ
ɶ  from the multivariate Gaussian 

proposal distribution with mean vector and covariance matrix given by (6.21) and the stepwise 

update. Accept in each step 01,...,g 1= −ℓ , the proposed state as new state of the chain with the 

acceptance probability given in (6.23). If the proposal is accepted, set (c 1) (p)
0 0,

+ =α α ℓ , else set 
(c 1) (c)
0 0, 1

+
−=α α ℓ . 

Option 5: (Method “slice”) Draw a new value with slice sampling to update each component 
(c 1)
0, j

+α , 0j 1,...,k 1,k 1,...,g= − + , from the conditional distribution given by (6.25).  

Option 6: (Method “dirichlet”) Draw a new value state of the component weights (c)w  from 

the Dirichlet distribution (6.26).  

Skip the update of the smoothing variance parameter in [9]. 

Option 7: (scalebasis=TRUE) To standardize the error distribution to zero mean and unit 

variance, compute the mean and variance of the error distribution at the current values of the 

basis knots (c)
jm  and basis variances 2,(c)

js  

 ( )0 0g g(c 1) (c) (c 1) 2,(c) 2,(c)(c 1) 2,(c 1) 2,(c 1)
j j0 0j j jj 1 j 1

w ( )m , w ( ) m s+ ++ + +
ε ε ε= =

µ = σ = + − µ∑ ∑α α . 

Update the basis means and variances according to (6.31) with 

 
(c) 2,(c)(c 1)
j j(c 1) 2,(c 1)

j j(c 1) 2,(c 1)

m s
m , s

+
ε+ +

+ +
ε ε

− µ
= =

σ σ
, 0j 1,...,g= . 

Finally, adjust the intercept (c 1) (c 1) 2,(c 1) (c 1)
0 0

+ + + +
εγ → γ + σ µ  and the scale parameter 

2,(c 1) 2,(c 1) 2,(c 1)+ + +
ε εσ → σ σ  according to (6.32). 

[9] Update of the smoothing variance of the mixture weights:  

Draw a new value of the variance parameter 
0

2,(c 1)+
ατ  from the conditional distribution given by 

(6.14). 
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[10] Update of the latent component labels:  

Draw a new value of the latent component labels (c 1)
0ir {1,...,g }+ ∈ , i 1,...,n= , from the 

conditional multinomial distribution with probabilities given by (6.29). Update the number of 

observations in the mixture components { }(c 1) (c 1)
j in # i : r j+ += = , 0j 1,...,g= . 

[11] Update of the latent exact log-survival times:  

For the censored observations i {1,...,n}∈  draw a new value of the latent log-survival time (c 1)
iy +  

from the truncated Gaussian distribution given by (6.30). 

6.3.3. Postprocessing 

Standardization of the error: As outlined in Subsection 6.2.1 the unconstrained estimation of the 

baseline error is leading to the non-identifiability of the parameters defining the baseline error 

distribution 0 0Y = γ + σε  and the involved parameters do not show the desired convergence. When the 

basis function means km  and standard deviations ks  are fixed during the sampler 

(scalebasis=FALSE), we have to compute the standardized error density in post-processing steps 

utilizing the obtained MCMC sample. We do this by applying the same transformation of the mean 

km  and standard deviation ks  as described in Option 7 to the sampled values of the location and scale 

parameter. The resulting, adjusted sample values of the intercept 0γ  and the scale parameter σ  show 

the desired convergence. 

Recomputation of the weights: With the procedure described in Option 7 we achieve a standardized 

error distribution, 0 ~ PGM(0,1)ε , but the resulting variability in the locations kmɶ  and scales ksɶ  of 

the Gaussian basis function sometimes prevents the direct detection of the convergence of basis 

function weights. Finally, to show in addition the convergence of the weights, we compute the 

estimated standardized version of error density 
0

f ( )ε ⋅  at a fixed number of grid points. For the 

standardized densities we can e. g. use the starting knots 
01 g(m ,...,m )′=m  of the Gaussian basis 

densities, but any set of grid points is possible. With respect to (6.33), we have to solve the constrained 

linear equation system 
0

(s)(s) (s)
ε=B w f  subject to (s)

kw 0>ɶ  and 0g (s)
kk 1 w 1

=
=∑ ɶ , where 

0

(s) (s)2(s)
1 i, j gk k( (m | m ,s )) ≤ ≤= ϕB ℓ ɶ ɶ  denotes the matrix of the Gaussian basis functions (s) (s)2

k k( | m ,s )ϕ ⋅ ɶ ɶ  with 

adjusted mean (s)
kmɶ  and standard deviation (s)

ksɶ , 0k 1,....,g= , evaluated at each grid point mℓ , 

01,...,g=ℓ . Further 
0

(s) (s)(s)
1 g(w ,...,w )′=wɶ ɶ ɶ  is the vector of recomputed basis function weights and 

00 0 0

(s) (s) (s)
1 g(f (e ),..., f (e ))ε ε ε

′=f  is the vector of the standardized error density computed with the parameter 

values of the s-th iteration. Since some of the border weights are often very close to zero, solving the 

constrained equation system becomes often numerically instable. To approximate the solution, we 

replace one component of the system (s)(s) (s)
0=B w f  to satisfy 0g (s)

kk 1 w 1
=

=∑ ɶ  and use the optim() 

optimization method in R to minimize the problem 
0 0

(s) (s)(s) (s) (s) (s)( ) ( )ε ε
′− −B w f B w f  with respect to the 

positivity constraint of the weights. If some of the basis function weights have close to zero values, e. 

g., at the border knots, the associated recomputed weight often match the lower bound of the box 

constraints specified in optim(). 
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PART II. BAYESIAN REGULARIZATION IN THE 

CRR MODEL 

7. Extended CRR model K7.A1 

The second popular regression model for continuous right-censored data treated in this work is the 

semiparametric relative risk model of Cox (1972), where the functional dependence of the survival 

time on the covariates is specified through the hazard rate function.  

A very general, broad and flexible class of Cox type hazard regression models is already proposed by 

Hennerfeind et al. (2006). The authors extended the Cox model in two directions. On the one hand the 

logarithm of the nonparametric baseline survival hazard function is modeled by penalized B-splines 

that allow flexible, smooth shapes for the baseline hazard in the Cox model. On the other hand the 

predictor is extended to a structured additive predictor in the spirit of GAMs to model, in addition to 

the linear effects of some covariates, further covariates with other effect types, like smooth effects, 

time-varying effects, varying coefficients, nonlinear covariate interactions, random effects or spatial 

effects. The unified Bayesian modeling approach for this rich class of survival models is based on the 

fact that non-linear effects, including also the logarithm of the baseline hazard, can be expressed or 

approximated as linear combination of basis functions, where the basis function weights act as linear 

regression coefficients. This representation forces a purely linear structure of the predictor with 

appropriate defined design matrices. A common hierarchical model structure results, since all 

regression parameters in the predictor are equipped with conditional Gaussian priors given variance 

parameters, which drive the various forms of covariate-specific regularization, like smoothing of 

nonlinear or spatial effects. Finally, hyperpriors are assigned to the variance parameters to enable full 

Bayesian inference based on the full likelihood. The variance parameters, as an integral part of the 

model, are estimated jointly with the different covariate effects and the baseline hazard by MCMC 

simulation techniques.  

In the subsequent section, the previous work of Hennerfeind et al. (2006) is expanded to take into 

account linear regularized effects utilizing informative shrinkage- and selection-type priors to consider 

also possibly high-dimensional covariates arising, e. g., in microarray-based survival studies. It is 

shown, that the inference of the regularized linear effects can be treated within the provided unifying 

framework, since the presented shrinkage priors also enable a hierarchical representation in terms of 

conditional Gaussian priors given variance parameters that drive the shrinkage towards zero. 

Therefore, inference for regularized linear effects is only described in combination with smooth effects 

of continuous covariates, because the inference is straightforward for model terms reflecting the 

previous mentioned other kinds of effects. The inferential procedures are implemented in the free 

software BayesX.  
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Bayesian analysis of the Cox model has also been studied in terms of the partial likelihood, where the 

estimation of the covariate effects is of primary interest and the baseline hazard is treated as a nuisance 

parameter. In the framework of the partial likelihood we consider also an extended predictor to model 

jointly regularized linear effects and nonlinear smooth effects of continuous covariates as prototype. 

Since the unified building block for representing the various kinds of effects does not change, if 

inference is based on the partial instead the full likelihood, the extensions to consider the manifold of 

effects listed above are managed identically. In summary, the unified modeling approach of the 

various types of covariate effects, as described in Hennerfeind et al. (2006), is also applicable to model 

the predictor and the corresponding priors under the partial likelihood. The inferential procedure is 

implemented in the R-function bcoxpl().  

7.1. Basic CRR model 

Let iT 0≥ , i 1,...,n= , denote the random variables representing the non negative, continuous survival 

times of the individuals from a heterogeneous population with the assumption that the survival times 

iT , i 1,...,n= , are conditionally independent given covariates and parameters. The observed right 

censored survival data is given as i i i{(t ,d , ),i 1,...,n}′= =vɶD , where i i it min(t ,c )=ɶ  is the observed 

survival time, i i id 1(t c ) {0,1}= ≤ ∈  is the observed censoring indicator and i i1 ip(v ,...,v )′=v  is the p-

dimensional vector of the observed covariates for the n individuals of the sample. As pointed out in 

(1.6.) the hazard function i ( )λ ⋅  for individual i is assumed to be built as the product on an unspecified, 

covariate independent baseline hazard function 0 ( ) 0λ ⋅ ≥  and the exponential link iexp( )η of the 

predictor iη ∈ℝ  that imports the summarized covariate effects, i. e.  

 i 0 i(t | ) (t)exp( )λ = λ ηϑϑϑϑ , (7.1) 

where ϑϑϑϑ  is an appropriate vector of regression parameters which will be specified in the following. 

7.2. Extended predictor 

As in Section 2.2 we partition the vector of explanatory covariates into three different treated 

subgroups of covariates i i i i( , , )′ ′ ′ ′=v u x z  and consider a semiparametric form of the predictor 

i i ( )η = η ϑϑϑϑ  given by  

 
z zi i i 1 i1 p ipf (z ) ... f (z )′ ′η = + + + +u γ x β  (7.2) 

that summarizes the different functional forms of the covariates.  

The first component of the predictor describes the linear effects 
u0 1 p( , ,..., )′= γ γ γγ  of a moderate low 

number of time-independent, categorical or continuous covariates 
ui i0, i1, ip i(u u ...,u )′= ⊂u v  with 

up n≪ , that are forced into the model and should not be regularized. In general it is not necessary to 

model an intercept term as regression parameter, because this parameter is common to all individuals 

and is therefore included in the baseline hazard. But for identifiability reasons, with respect to the level 

of the optional nonlinear terms, at least the global intercept term 0γ  with i0u 1= , i 1,...,n= , is 

modeled. The second component describes regularized linear effects 
x1 p( ,..., )′= β ββ  of possibly high-

dimensional categorical or continuous time-independent covariates 
xi i1, ip i(x ...,x )′= ⊂x v , with xp n≤  

or xp n> . The regression coefficients β  are equipped with an informative shrinkage- or selection-

type prior as provided in Sections 4.1 to 4.3 to identify those effects with the highest impact on the 
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response. The remaining functions jf ( )⋅ , zj 1,...,p= , are smooth nonlinear effects of time-independent 

continuous covariates jz  that need to be regularized to avoid overfitting. As outlined in Section 2.2 

modeling of these unknown functions jf ( )⋅  is based on Bayesian P-splines, compare Lang and Brezger 

(2004), where each function is approximated as a linear combination  

 
jg

j j,k j,k j j

k 1

f (z) B (z) (z)
=

′= α =∑ b α  

of B-spline basis functions 
jj j,1 j,g( ) (B ( ),...,B ( ))′⋅ = ⋅ ⋅b  and basis coefficients 

jj j,1 j,g( ,..., )′= α αα . The 

basis functions with degree jq  are defined on a sequence of equally spaced (inner) knots 

jj 1 s jmin(z ) ... max(z )= ξ < < ξ = , j j jg s q 1= + − , from the domain of the j-th covariate jz  with 

additional boundary knots. A moderate number of knots is used to maintain the flexibility of the 

approximations in combination with Gaussian random walk priors for the basis coefficients that 

control the smoothness. For identification, the functions are centered horizontally about zero.  

Further predictor components, like random effects to model unit- or cluster-specific heterogeneity, can 

be treated in a natural way in the Bayesian framework, where all parameters per se are considered as 

random variables. In particular, the distributional assumption about the random effects acts as the prior 

and can be cast into the regularized regression context, e. g. the Gaussian random intercept model with 
2

i ~ N(0, )δδ τ  in combination with an inverse gamma prior for the variance parameter 2
δτ  corresponds 

to the Bayesian ridge prior of Section 4.1. Other optional components like time-dependent covariates 

( ij jz (t)′ α ), varying coefficients ( j ik ijf (z )z , where jf ( )⋅  is a function of covariate kz  that modifies the 

effect of the covariate jz ), time-varying effects ( j ijf (t)z , where jf ( )⋅  is a time-dependent function that 

modifies the effect of the covariate jz ) or spatial effects (defined by smooth functions spatf ( )⋅  of spatial 

indices of the geographical areas) can also be included in the predictor and cast into the unified 

modeling via penalized basis function expansions as shown e. g. in Brezger and Lang (2006) for 

exponential family regression, Kneib and Fahrmeir (2007), Hennerfeind et al. (2006) for geoadditive 

Cox-type survival regression models. By incorporating smooth effects or time-dependent covariate 

effects into the predictor the proportional hazards property is relaxed and the application of the 

resulting structured additive CRR regression models is not longer restricted to the assumption of 

proportional hazards.  

7.3. Extended baseline hazard function 

To obtain a flexible baseline survival distribution in the Cox model, the rather strong parametric 

assumptions for the baseline hazard function, like e. g. in the Weibull model, are relaxed by placing a 

P-spline model for the logarithm of the baseline hazard as suggested by Hennerfeind et al. (2006). In 

the similar manner like the smooth effects of the predictor, the log-baseline hazard is approximated by 

a linear combination of B-spline basis functions, i. e.  

 0 0 0 0f (t) : log (t) (t)′= λ = b α ,  

where 
00 01 0g( ,..., )′= α αα  denotes the vector of basis function weights corresponding to an appropriate 

set of B-spline basis functions 
00 0,1 0,g( ) (B ( ),...,B ( ))′⋅ = ⋅ ⋅b  evaluated at the observed survival times itɶ , 

i 1,...,n= . In particular, the piecewise exponential model, which states a step function for the baseline 

hazard function, is included as a special case when B-splines of degree zero are used. In this case the 

random walk prior prevents too large jumps between adjacent values of the baseline hazard pieces. 
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Modeling the log-transformation of the baseline hazard is advantageous, since it allows specifying the 

smoothness prior for the basis coefficients without any non-negativity restrictions for the regression 

coefficients 0α  to ensure the condition 0 (t) 0λ ≥ , 0t +∈ℝ .  

Generic notation: Rewriting the hazard function as i 0 i(t) exp(f (t) )λ = + η , the time-independent 

semiparametric predictor iη  in (7.2) can be further extended to take into account the time-dependent 

baseline hazard function  

 
z z zi i i 0 0 1 i1 1 p ip p(t) (t) (z ) ... (z )′ ′ ′ ′ ′η = + + + + +u γ x β b α b α b α . (7.3) 

Due to the linear structure, the vector of predictors 1 1 n n( ) ( (t ),..., (t ))′= η ηη tɶ ɶ ɶ , evaluated at observed 

lifetimes itɶ , i 1,...,n,=  can always be represented in generic matrix form 

 0 0 m m( ) ...= + + + +η t Xβ Uγ Z α Z αɶ , 

using appropriately defined design matrices X  and U , with rows i′x  and i′u , for the linear effects and 

the jn g× -dimensional design matrices jZ , with rows 0 i(t )′b ɶ , j 0= , and j ij(z )′b , zj 1,...,p= , 

i 1,...,n= , representing the evaluations of the basis functions.  

7.4. Likelihood 

7.4.1. Full likelihood 

Joint inference for covariate effects and the baseline hazard is based on the full likelihood. For right 

censored data the full likelihood is given in (1.12). Inserting the hazard function with representation 

i i(t) (t)λ = η  from (7.3) into the expression of the full likelihood we obtain the following log-

likelihood expression 

 ( ) ( )( )i
n t

i i i i
0

i 1

l | log L( | ) d (t ) exp (s) ds
=

= = η − η∑ ∫ϑ ϑϑ ϑϑ ϑϑ ϑ
ɶ

ɶD D , (7.4) 

where ( , , )′ ′ ′ ′= α β γϑϑϑϑ , with 
z0 1 p( , ,..., )′ ′ ′ ′=α α α α , denotes the vector of regression parameters.  

The evaluation of the log-likelihood (7.4) requires the computation of the cumulative hazard function 
it

i i i0
(t | ) exp( (s))dsΛ = η∫ϑϑϑϑ  by integration over all time-dependent terms in the predictor. Because in 

our considerations the log-baseline hazard function 0 0f (t) log( (t))= λ  is the only time-dependent 

function, the expression of the cumulative baseline hazard simplifies to i 0 i(t | ) (t) exp( )Λ = Λ ⋅ ηϑϑϑϑ , 

where iη  is the time-independent part of the predictor i i i 0 i 0(t ) (t )′η = η − b α  given in (7.2) and 

0 0 0(t) : (t | )Λ = Λ α  denotes the cumulative baseline hazard function defined by 

 ( )
t t

0 0 0 0
0 0

(t) (s)ds exp (s) ds′Λ = λ =∫ ∫ b α . (7.5) 

Using the special functional form of the cumulative hazard function, the log-likelihood can finally be 

written as 

 ( ) ( )
n

i i i 0 i i

i 1

l | d (t ) (t )exp( )
=

= η − Λ η∑ϑϑϑϑ ɶ ɶD . (7.6) 

Apart from simple parametric forms or using B-splines of degree 0 or 1 to model the log-baseline 
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hazard 0f (t) , the integral in (7.5) can not be solved analytically and has to be evaluated numerically 

using, e. g., the trapezoidal rule. 

7.4.2. Partial likelihood 

A special feature of the CRR model (7.1) is the possibility to estimate the relationship between the 

hazard rate and the explanatory variables by treating the baseline hazard function 0 ( )λ ⋅  as nuisance 

parameter. Inference is carried out on the base of the partial likelihood (1.13), where 0 ( )λ ⋅  is discarded 

and hence we do not have to worry about the shape of the baseline hazard function. The logarithm of 

the partial likelihood is given as 

 ( ) ( ) ( )k i

n
n

i i k(t t )k 1
i 1

pl | log pL | d log 1 exp( )≥=
=

 = = η − η  ∑ ∑ϑ ϑϑ ϑϑ ϑϑ ϑ ɶ ɶD D , (7.7) 

where iη  denotes the extended predictor from (7.2). The indicator function in the log-likelihood (7.7) 

is used to describe the risk set i k iR(t ) {k : t t }= ≥ɶ ɶ ɶ  at the observed survival time itɶ , which consists of 

all individuals who are event-free and still under observation just prior to time itɶ . To estimate the 

distribution associated with the baseline hazard function (7.1), Breslow (1972, 1974) proposed to 

estimate for the cumulative baseline hazard 0 (t)Λ  in a post-inferential step by 

 ( )
( )

i

k i

n
i(t t)Br

0 n
i 1 k(t t )k 1

1 dˆ t
ˆ1 exp

≤

= ≥=

Λ =
η

∑
∑

ɶ

ɶ ɶ

, (7.8) 

where the Breslow estimate BR
o

ˆ ( )Λ ⋅  is computed on the base of the regression parameter estimates 

k k
ˆˆ ( )η η= ϑ= ϑ= ϑ= ϑ  from the partial likelihood.  

Bayesian justification of the partial likelihood 

While the partial likelihood is a widespread tool for frequentist inference of the CRR model, it is in 

general not clear, if the partial likelihood is valid for posterior analysis based on the Bayesian theorem 

(1.15), where commonly the full likelihood is used. The Bayesian partial likelihood approach is often 

justified by showing, that the posterior based on the partial likelihood approximates the full likelihood 

based marginal posterior of the regression coefficients, if a very diffuse prior for the baseline 

cumulative hazard function is assumed. We sketch the idea in the following and refer for details, e. g., 

to Kalbfleisch (1978), Sinha et al. (2003) and Kim and Kim (2009). 

For simplicity we consider the case of linear effects = γϑϑϑϑ . In this case Bayesian inference is based on 

the posterior density PLp ( | ) PL( | )p( )∝γ γ γD D , which is proportional to the product of the partial 

likelihood PL( | )γ D  and an arbitrary prior p( )γ  of γ . The Bayesian justification of PLp ( | )γ D  for 

continuous univariate survival data and time-constant covariates is due to Kalbfleisch (1978). Under 

the assumption of a very diffuse gamma process prior used for the cumulative baseline hazard 
*

0 0(t) ~ GP(c (t),c)Λ Λ  he showed, that the posterior density PLp ( | )γ D  can be viewed as an 

approximation of the marginal posterior of γ  

 0 0 0 0 0 0p( | ) L( , | )p( )p( )d p( ) L( , | )p( )d∝ Λ Λ Λ = Λ Λ Λ∫ ∫γ γ γ γ γD D D , (7.9) 

where 0L( , | )Λγ D  denotes the full joint likelihood of γ  and 0 (t)Λ , and 0p( )Λ  denotes the gamma 

process distribution density. As expressed in (7.9), the prior for the regression parameter p( )γ  is 

assumed to be independent of 0p( )Λ . The distribution parameter *
0 (t)Λ  can be interpreted as an initial 
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guess for the cumulative baseline hazard 0 (t)Λ  and is often assumed to be a known differentiable 

parametric function depending on further hyperparameters, while the positive real number c 0>  is a 

weight attached to this guess. It is shown, that the corresponding marginal density 

0 0 0L( | ) L( , | )p( )d= Λ Λ Λ∫γ γɶ D D , which depends on the hyperparameters c 0>  and those of *(t)Λ , 

can be interpreted as likelihood function for γ  given the data. In addition L( | )γɶ D  provides for 

different choices of the weight parameter c  a spectrum of likelihoods, where two limiting cases are of 

particular interest. For the very diffuse case c 0→ , placing a little faith on the prior guess *
0 (t)Λ , this 

marginal likelihood L( | )γɶ D  is proportional to the partial likelihood pL( | )γ D , so that the marginal 

posterior of γ  in (7.9) is approximated by PLp ( | ) PL( | )p( )∝γ γ γD D . On the other hand, for a strong 

trust in *
0 (t)Λ  with c → ∞ , the full likelihood *

0L( , | )Λγ D  results with *
0 0(t) (t)Λ = Λ . The 

examination of this marginal likelihood for varying values of the parameter c 0>  enables the 

evaluation how assumption-dependent the analysis is. Kalbfleisch (1978) showed also that, if the value 

c  is small, the mean of the posterior distribution of the cumulative hazard is approximated by the 

Breslow estimate (7.8).  

Sinha et al. (2003) picked up the approach and extend the results to take into account (external) time-

dependent covariates, time-dependent effects, multivariate survival data (if frailties are modeled) and 

grouped survival data. Since the partial likelihood only depends on the observed order not on the exact 

values of the failure times, corrections are required if ties are present to take into account the 

permutation of those individuals with identical survival times. This is due to the fact, that the partial 

likelihood considers only the observed order of the survival times and, if more than one individual has 

its event at the same time, the ordering is no longer unique. In the Bayesian framework Kim and Kim 

(2009) investigate corrections of the partial likelihood when many ties are present and they provide a 

Bayesian justification of using the exact partial likelihood of Peto (1972) in such situations. 

8. Priors for the extended CRR model K8.A1 

To complete the Bayesian formulation of the CRR regression model, the regression parameters are 

equipped with more or less informative regularization priors as presented in the Section 4. The priors 

are identical to the priors used in the extended AFT model, which emphasizes again the uniformity of 

the Bayesian approach. We use again ρ  as generic notation for the shrinkage prior-specific 

hyperparameters from further stages of the hierarchical formulation. 

Prior of the unregularized linear effects 

The prior for the low-dimensional linear effects 
u0, p( ..., )′= γ γγ , which are forced into the model, is 

assumed to be weakly informative Gaussian  

 | , ~ N( , )γ γ γ γγ µ Σ µ Σ , (8.1) 

with γ =µ 0  and 1−
γ →Σ 0 . Alternatively we use the product of independent diffuse priors 

jp( ) const.γ ∝ , uj 0,1,...,p= . In general we use the formulation (8.1) as blueprint to derive the 

conditional posterior densities, because the remaining regularization priors are also conditional 

Gaussian and differ only in the specification of the mean vector and covariance matrix. 
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Prior of the regularized linear effects 

For possibly high-dimensional regularized linear effects 
x1 p( ,..., )′= β ββ  we use the shrinkage or 

selection priors corresponding to the Bayesian lasso, Bayesian ridge or Bayesian NMIG hierarchy as 

described in Sections 4.1 to 4.3. In particular, all priors are conditional Gaussian 

 ( )2| ~ N ,β ββ τ 0 Σ , (8.2) 

with diagonal covariance matrix 
1 px

2 2diag( ,..., )
ββ τ β β= = τ τΣ D , where the variance parameters 

j

2
βτ  drive 

the covariate-specific shrinkage of the regression coefficients towards the mean β =µ 0 . The 

associated priors for the variance and shrinkage parameters are: 

Bayesian ridge version (A) (
x1 p( ,..., )= λ λρ ) 

 
jj j

2 2
1 2| ~ ( )λβ βτ λ δ τ , xj 1,...,p= , (8.3) 

 ( )j iid 1, 1, 1, 1,~ Gamma h ,h ; h ,h 0λ λ λ λλ > , xj 1,...,p= . (8.4) 

Bayesian ridge version (B) ( = λρ ) 

 2 2
1 2| ~ ( )β λ βτ λ δ τ , xj 1,...,p= , (8.5) 

 ( )1, 1, 1, 1,~ Gamma h ,h ; h ,h 0λ λ λ λλ > . (8.6) 

Bayesian lasso ( = λρ ) 

 
j

2
2 2

iid| ~ Exp
2

β

λ 
τ λ  

 
, xj 1,...,p= , (8.7) 

 ( )2
1, 1, 1, 1,~ Gamma h ,h ; h ,h 0λ λ λ λλ > . (8.8) 

Bayesian NMIG with 
j

2 2
j jIβτ = ψ  ( = ωρ ) 

 j 0 1 iid 0 1I | v , v , ~ Bernoulli( ;v ,v )ω ω , xj 1,...,p= , (8.9) 

 2
j 1, 2, iid 1, 2, 1, 2,| h ,h ~ IGamma(h ,h ), h ,h 0ψ ψ ψ ψ ψ ψψ > , xj 1,...,p= , (8.10) 

 ( )1, 2, 1, 2,~ Beta h ,h ; h ,h 0ω ω ω ωω > . (8.11) 

Prior of the nonlinear effects and the log-baseline hazard 

The priors for the basis function coefficients 
z0 1 p: ( , ,..., )′ ′ ′ ′=α α α α  of the nonlinear effects and the log-

baseline hazard are specified by random walks of jd -th order. We obtain conditional, partially 

improper Gaussian smoothing priors as defined in Section 4.6 with 

 ( )jj

2
j | ~ N , −

αατα 0 Σ , zj 0,1,...,p= , (8.12) 

where 
j j

2
j:− −

α α= τΣ K  denotes the covariance matrix and j
−K  is a generalized inverse of the penalty 

matrix jK  with rank j j jrank( ) g q= −K . Diffuse priors are initially used for the jq  coefficients 

j,1p( ) constα ∝ ,..., 
jj,qp( ) constα ∝  and the smoothness controlling variance parameters 

0 1 pz

2 2 2 2: ( , ,... )α α α α
′= τ τ ττ  are equipped with inverse gamma distributions 
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 ( )j jj

2
1, 2,~ InvGamma h ,hτ τατ , zj 0,1,...,p= . (8.13) 

Joint prior distribution 

With the independence assumptions implied in the prior definitions, i. e. that all priors are 

conditionally and mutually independent, the joint prior distribution of the set of model parameters 
2 2( , , , )α β=θ τ τ ρϑϑϑϑ  is given by the product 

 
zp

2 2 2 2
j , j , j

j 0

p( ) p( | )p( ) p( | )p( | )p( )p( )α α β β

=

= τ τ ⋅∏θ α β τ τ ρ ρ γ , (8.14) 

where ρ  is a generic notation for the shrinkage prior-specific hyperparameters from further stages of 

the hierarchical formulation. If inference is based on the partial likelihood, the factors 
2 2

0 ,0 ,0p( | )p( )α ατ τα , modeling the assumptions of baseline hazard, are discarded. 

9. MCMC inference in extended CRR model K9.A1 

Bayesian Inference via MCMC simulation is based on updating full conditionals of single parameters 

or blocks of parameters given the rest of the parameters and the data. The unified prior structure for 

functions and parameters is leading to full conditionals with a similar unified structure. For non 

Gaussian responses, Gibbs sampling as for the regression parameters in the AFT model, is no longer 

feasible and more general Metropolis-Hastings (MH) algorithms are required. We construct a Markov 

chain with MH steps using IWLS fashioned proposals, as suggested by Gamerman (1997) and shortly 

described in Appendix C. Due to the beneficial hierarchical structure of the model, Gibbs sampling for 

the regularization parameters is still feasible. We first describe MCMC inference for the extended 

model based on the full likelihood (7.6) with the predictor (7.3), where joint shrinkage and smoothing 

of covariate effects together with a smooth estimation of the log-baseline hazard are of  primary 

interest. Inference for shrinkage and smoothing of covariate effects based on the partial likelihood 

(7.7) with the extended predictor (7.2) is outlined subsequently. 

9.1. Conditional posterior densities based on the full likelihood 

Using the Bayes theorem, the joint posterior p( | )θ D  is proportional to the product of the model 

likelihood L( | )θ D  and the joint prior density of the model parameters p( )θ . Based on the full log-

likelihood (7.6) of the extended Cox model with the extended predictor given in (7.3) and the prior 

(8.14) the posterior has the general form 

 ( ) ( )
zp

2 2 2 2 2 2
j , j , j

j 0

p , , , , , | exp l( , , | ) p( | )p( ) p( | )p( | )p( )p( )α β α α β β

=

∝ τ τ ⋅∏α β γ τ τ ρ α β γ α β τ τ ρ ρ γD D . (9.1) 

9.1.1. Full conditionals of the predictor components 

Unregularized linear regression coefficients γ  

In the following we derive the general structure of the full conditionals and the proposal distributions 

for the predictor components ( , , )′ ′ ′ ′= α β γϑϑϑϑ  in terms of the unpenalized regression coefficients γ  
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assuming for a while the prior (8.1), | , ~ N( , )γ γ γ γγ µ Σ µ Σ , with γ ≠µ 0  and 1− ≠γΣ 0  to preserve the 

generality. Discarding the factors in the posterior (9.1) that do not depend on γ , the full conditional of 

the regression parameter γ  is given by 

 ( ) ( ) 1 11
p | exp l |

2
− −
γ γ γ

 
′ ′⋅ ∝ − + 

 
γ γ Σ γ γ Σ µϑϑϑϑ D . (9.2) 

To construct the Gaussian IWLS proposal, we apply a second order Taylor expansion to the logarithm 

of the full conditional f ( ) log(p( | ))= ⋅γ γ  at the current state of the parameter vector (c)γ , compare 

Appendix C for details. Differentiating f ( )γ  with respect to γ  gives the score vector  

 1 1l( | )
( ) − −

γ γ γ γ

∂
= − +

∂
s γ Σ γ Σ µ

γ

ϑϑϑϑ D
 (9.3) 

and the hessian matrix 

 ( )
2

1l( | ) −
γ γ

∂
= −

′∂ ∂
H γ Σ

γ γ

ϑϑϑϑ D
, (9.4) 

with the following contributions from the differentiation of the log-likelihood 

 
i

n nt

i i i i i i 0 i i i
0

i 1 i 1

l( | )
d exp( (s))ds d (t )

= =

∂
= − η = − Λ η

∂
∑ ∑∫u u u u

γ

ϑϑϑϑ ɶ

ɶ
D

,  

 
i

n n2 t

i i i 0 i i i i
0

i 1 i 1

l( | )
exp( (s))ds (t )

= =

∂
′ ′= − η = − Λ η

′∂ ∂
∑ ∑∫ u u u u

γ γ

ϑϑϑϑ ɶ

ɶ
D

.  

The second order Taylor expansion of f ( )γ  around the current state of the parameter vector (c)γ  has 

the form 

 ( ) ( ) ( ) ( ) ( ) ( )( )(c) (c) (c) (c) (c) (c)1
f̂ f

2
γ γ

′ ′≈ + − + − −γ γ γ γ s γ γ γ H γ γ γ , (9.5) 

where (c)( )γs γ  and (c)( )γH γ  denote the score vector (9.3) and the Hessian matrix (9.4) evaluated at 

the current state (c)γ  and the current states of the remaining involved parameters (c) (c)( , )−γ = α βϑϑϑϑ . 

Building the exponential of approximation (9.5) and neglecting the components that do not depend on 

γ  provides the following structure of the proposal density 

 ( ) ( ) ( )( )(p) (c) (c) (c) (c) (c) (c)1ˆˆ( | , ) exp
2

γ γ γ γ γ
 

′ ′ϕ ∝ + − 
 

γ µ Σ γH γ γ γ s γ H γ γ , 

which represents the kernel of a multivariate Gaussian distribution density (c) (c)ˆˆ( | , )γ γϕ ⋅ µ Σ  with mean 

vector and covariance matrix 

 ( ) ( )( ) ( )( )
1

(c) (c) (c) (c) (c) (c) (c)ˆ ˆˆ ,
−

γ γ γ γ γ γ= − = −µ Σ s γ H γ γ Σ H γ . (9.6) 

As already mentioned in the context of the extended AFT model, the reformulation of the mean as 
(c) (c) (c) (c)ˆ ( ) ( )γ γ γ= −µ γ H γ s γ  enables the interpretation as one-step-approximation to the mode of the 

full conditional obtained by a single Fisher scoring step from the current state.  

Using the notation 1 n( | ) : ( (t | ),..., (t | ))′= Λ ΛΛ t ϑ ϑ ϑϑ ϑ ϑϑ ϑ ϑϑ ϑ ϑɶ ɶ ɶ  as the vector of the cumulative baseline hazards 

evaluated at the observed survival times itɶ  and 1 n: (d ,...,d )′=d  as the vector of censoring indicators, 

the score vector has the compact form 
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 ( ) ( )(c) (c) 1 (c) 1( | , ) − −
γ −γ γ γ γ′= − − +s γ U d Λ t γ Σ γ Σ µϑϑϑϑɶ  (9.7) 

and the Hessian matrix reads  

 ( ) ( )(c) (c) 1diag ( | , ) −
γ −γ γ′= − −H γ U Λ t γ U Σϑϑϑϑɶ . (9.8) 

Finally, a new proposed value (p)γ  of the Markov chain is obtained by drawing a random number 

from the Gaussian distribution with density (c) (c)ˆˆ( | , )γ γϕ ⋅ µ Σ . The new state is accepted with the 

probability 

 ( )
( )
( )

(p) (c) (p) (p)
(p) (c)

accept
(c) (p) (c) (c)

ˆˆp | ( | , )
p , min 1,

ˆˆp | ( | , )

γ γ

γ γ

 ⋅ ϕ 
=  

⋅ ϕ  

γ γ µ Σ
γ γ

γ γ µ Σ
, 

where (p)p( | )⋅γ  and (c)p( | )⋅γ  denote the evaluations of the full conditional (9.2) at the proposed state 
(p)γ  and the current state (c)γ  with respect to the current states of the remaining involved model 

parameters −γϑϑϑϑ . The mean vector (p)ˆ γµ  and the covariance matrix (p)ˆ
γΣ , appearing in the acceptance 

probability, are computed by the evaluation of the expressions in (9.6) at the proposed value ( )pγ  

keeping the remaining parameters −γϑϑϑϑ  fixed at their current states. 

In particular, since we assume a flat Gaussian prior for the unregularized effects γ  that corresponds to 

the limiting case γ =µ 0  and 1−
γ =Σ 0 , the mean and covariance matrix of the Gaussian proposal for the 

unregularized effects γ are given as 

 
( ) ( )( )

( )( )( )

(c) (c) (c) (c) (c)

1
(c) (c)

ˆˆ | , diag | , ,

ˆ diag | , .

γ γ −γ −γ

−

γ −γ

 ′ ′ ′= − +
 

′=

µ Σ U d U Λ t γ U Λ t γ Uγ

Σ U Λ t γ U

ϑ ϑϑ ϑϑ ϑϑ ϑ

ϑϑϑϑ

ɶ ɶ

ɶ

 (9.9) 

Regularized linear regression coefficients β  

For the remaining regression coefficients α  and β  the IWLS proposal densities can conceptually be 

carried out in the same way as above for γ . We obtain the corresponding expressions for the mean 

and the covariance matrix of the Gaussian proposal by replacing the design matrix U , the precision 

matrix 1−
γΣ  and the mean γµ  in (9.7) and (9.8) with the associated quantities from the priors of the 

regularized linear effects and the smooth effects. Proceeding as before, using the conditional Gaussian 

prior 2| ~ N( , )β ββ τ 0 Σ  from (8.2) the full conditional of β  is given as 

 ( ) ( ) 11
p | exp l |

2
−
τ

 
′⋅ ∝ − 

 
β βD βϑϑϑϑ D . (9.10) 

Given the current state (c)β  and the current states of the remaining regression coefficients 
(c) (c)( , )−β = α γϑϑϑϑ , proposals are drawn from a Gaussian density with mean vector and covariance 

matrix 

 
( ) ( )( )

( )( )( )

(c) (c) (c) (c) (c)

1
(c) (c) 1

ˆˆ | , diag | , ,

ˆ diag | , .

−β −ββ β

−
−

−β τβ

 ′ ′ ′= − +
 

′= −

µ Σ X d XΛ t β X Λ t β Xβ

Σ X Λ t β X D

ϑ ϑϑ ϑϑ ϑϑ ϑ

ϑϑϑϑ

ɶ ɶ

ɶ

 (9.11) 
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Regularized nonlinear regression coefficients jα  

Using the conditional Gaussian priors ( )jj

2
j | ~ N , −

αατα 0 Σ  from (9.12), the full conditionals of the 

basis function weights coefficients jα  are 

 ( ) ( )
j

j j j j z2

1
p | exp l | , j 0,1,...,p

2 α

  
′⋅ ∝ − = 

τ  
α α K αϑϑϑϑ D . (9.12) 

Given the current state (c)
jα  and the current states of the remaining regression coefficients 

j z

(c) (c) (c) (c) (c) (c)
0 j 1 j 1 p( ,..., , ,..., , , )− +−α = α α α α γ βϑϑϑϑ , proposals are drawn from a Gaussian distribution with mean 

vector and covariance matrix 

 

( ) ( )( )

( )( )

j j

j

j

(c) (c) (c) (c) (c)
j j j j, j , j j j j

1

(c) (c)
j j j, j j 2

ˆˆ | , diag | ,

1ˆ diag | , .

−α −αα α

−

−αα

α

 ′ ′ ′= − +
 

 
′= − 

 τ 

µ Σ Z d Z Λ t α Z Λ t α Z α

Σ Z Λ t α Z K

ϑ ϑϑ ϑϑ ϑϑ ϑ

ϑϑϑϑ

ɶ ɶ

ɶ

 (9.13) 

In particular the band structure of the precision matrices of the Gaussian proposal distributions for the 

basis coefficients jα  enables an efficient computation of the Cholesky decomposition and a fast 

implementation of the algorithm of Rue (2001), compare Section 6.1.7, to draw a new proposal and 

compute the acceptance probability. To identify the model, the B-spline coefficients are centered as 

described in Section 6.1.1. 

The computational efforts increase for the update of the baseline hazard coefficients 0α , because the 

time-dependent cumulative baseline hazard function 
t

0 0 00
(t) exp( (s) ds′Λ = ∫ b α  and the associated time-

dependent derivates are involved, complicating the computation of the score function and the Hessian 

matrix of the likelihood. We obtain 

 
i

n t

i 0 i i 0 0 0
0

0 i 1

l( | )
d (t ) exp( ) (s)exp( (s) )ds

=

∂
′= − η

∂
∑ ∫b b b α

α

ϑϑϑϑ D
, 

 
i

n2 t

i 0 0 0 0
0

0 0 i 1

l( | )
exp( ) (s) (s)exp( (s) )ds

=

∂
′ ′= − η

′∂ ∂
∑ ∫ b b b α

α α

ϑϑϑϑ D
, 

and we have to evaluate this time-dependent expressions concerning the log-baseline hazard P-spline 

model by numerical integration in every iteration of the sampler. As computationally more efficient 

alternative, one may use MH steps with conditional prior proposals, as developed in Knorr-Held 

(1999) for state space models and applied to geoadditive hazard rate models in Hennerfeind et al. 

(2006), which require only the evaluation of the log-likelihood and not evaluation of the derivates.  

Weibull baseline hazard model 

In addition to the P-spline based approach, we consider a simple parametric Weibull model to model 

the baseline hazard with 0 1
0 0(t) : tα −λ = α  and 0

i 0 i(t | ) t exp( (t))αλ = α ηθ  as competitor. In the extended 

predictor (7.3) the nonlinear log-baseline component 0 0f (t) log( (t))= λ  has in this case the special 

form 0 0 0f (t) log( ) ( 1)log(t)= α + α − .  

Typically a gamma prior is employed to model the prior knowledge about the shape parameter 0α , 

compare e. g. Ibrahim et al. (2001), i. e., 

 ( )0 0 0 00 1, 2, 1, 2,~ Gamma h ,h , h 0,h 0α α α αα > >  (9.14) 
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with 
0 00 1, 2,( ) h hα αα =E  and 

0 0

2
0 1, 2,ar( ) h hα αα =V . If identical hyperparameters like 

01,h 0.01α =  and 

01,h 0.01α =  are used, the prior mean of 0α  equals one, which corresponds to a constant hazard over 

time with a large variance of 100. The update of the log-baseline hazard in this parametric case is 

achieved by the update of the single parameter 0α . With the prior assumption (9.14), and the 

likelihood contributions i i 0 i 0 i i i i il ( ) d log( ) d ( 1)log(t ) d (t | )= α + α − + η − Λϑ | ϑϑ | ϑϑ | ϑϑ | ϑɶ ɶD  the full conditional 

of 0α  is given by 

 ( ) 0 0

n

0 i 0 i 0 i i i 1, 0 2, 0

i 1

p | exp d log( ) d ( 1) log(t ) (t | ) (h 1) log( ) hα α

=

 
α ⋅ ∝ α + α − − Λ + − α − α 

 
∑ ϑϑϑϑ , (9.15) 

where in our case of time-independent covariates in the predictor the expression for the cumulative 

baseline hazard is simplified to 0
i i i i(t | ) t exp( )αΛ = ηϑϑϑϑɶ ɶ . Since the full conditional does not have a 

closed form, we use again MH steps to update the shape parameter 0α . The proposal (p)
0α  is drawn 

from a gamma distribution  

 ( ) ( )0 0 0

(c) (c)
0 0q | ,d ~ Gamma d ,dα α α⋅ α α  (9.16) 

based on the current value (c)
0α , which leads to the acceptance probability 

 ( )
( ) ( )
( ) ( )

0

0

(p) (c) (p)
0 0 0(p) (c)

accept 0 0 (c) (p) (c)
0 0 0

p | q | ,d
p , min 1,

p | q | ,d

α

α

 α ⋅ α α 
α α =  

α ⋅ α α  
.  

The value of 
0

dα  is determined during the burnin to achieve reasonable acceptance rates. In addition 

slice sampling is possible, because the full conditional is log-concave, see Ibrahim et al. (2001), and 

thereby also adaptive rejection sampling can be applied to update the shape parameter of the Weibull 

model. However, the update of the remaining model parameters is practiced as in the case when the 

baseline is modeled by a P-spline. In particular, we only have to replace the logarithm of the baseline 

hazard and the cumulative baseline hazard by the corresponding expressions of the Weibull model. 

9.1.2. Full conditionals of the regularization parameters 

Due to the stage of the hierarchical model structure, there is no direct connection between the 

regularization parameters 2
ατ , 2

βτ , ρ  and the likelihood and, as a consequence, the full conditionals 

have a closed form to draw directly a new state of the MCMC chain by Gibbs sampling. The same 

holds, if the partial likelihood is used for inference. The full conditionals of the regularization 

parameters are derived as in Section 6.1.2 and we shortly summarize here only the results. 

Bayesian ridge  

Version (A): We have for the variance parameters the deterministic connection 
j

2
j1 2βτ = λ  and the full 

conditionals of the shrinkage parameters are gamma distributions 

 2
j 1, 2, j

1
| Gamma h ,h

2
λ λ

 
λ ⋅ + + β 

 
∼ , xj 1,...p= . (9.17) 

Version (B): We have for the variance parameters the deterministic connection 2 1 2βτ = λ  and the full 

conditional of the shrinkage parameter is a gamma distribution 

 
xp

x 2
1, 2, j

j 1

p
| Gamma h ,h

2
λ λ

=

 
λ ⋅ + + β 

 
∑∼ . (9.18) 
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Bayesian lasso  

The full conditional of the variance parameters 2
,jβτ  are inverse Gaussian distributions 

 
j

2
2

x2
j

1
| InvGauss , , j 1,..,p

β

 λ
⋅ λ =  τ β 
∼ , (9.19) 

and we have a gamma full conditional of the complexity parameter 

 
x

j

p
2 2

1, x 2,

j 1

1
| Gamma h p ,h

2
λ λ β

=

 
λ ⋅ + + τ 

 
∑∼ . (9.20) 

Bayesian NMIG  

Under the Bayesian NMIG prior the variance parameter is the product of two variance components 

j

2 2
j jIβτ = ψ . The full conditionals of the covariate-specific binary indicator variables jI  have Bernoulli 

distributions 

 ( )
v j v jo 1(I ) (I )

j x

j j j j

1 1
p I | 1 , j 1,..,p

1 A B 1 A B

δ δ
   

⋅ = − =   
+ +   

, (9.21) 

with 

 
2

j j1 0 1

2
j 0 1 j0

A 1 v (v v )
exp

B v v 2v

 β− ω −
=  

ω ψ 
 

and the variance parameters have inverse gamma distributions 

 
2
j2

j 1, 2, x

j

1
| InvGamma h ,h , j 1,..,p .

2 2I
ψ ψ

 β
ψ ⋅ + + = 

 
∼  (9.22) 

The full conditional for the mixing parameter is a beta density 

 ( )1, 1 2, 0| Beta h n ;h nω ωω ⋅ + +∼  (9.23) 

with { } { }0 j 0 1 j 1n : # j: I ,  n : # j: I= = ν = = ν .  

Smoothing variances: 

The full conditionals for the variance parameters 
j

2
ατ are (proper) inverse gamma distributions 

 
j jj

j2
1, 2, j j j

rank( ) 1
| ~ InvGamma h ,h

2 2
τ τα

 
′τ ⋅ + + 

 

K
α K α , zj 0,1,...,p= . (9.24) 

9.2. Conditional posterior densities based on the partial likelihood 

Based on the partial log-likelihood (7.7) with the extended predictor (7.2) the posterior has the general 

form 

 ( ) ( )
zp

2 2 2 2 2 2
j , j , j

j 1

p , , , , , | exp pl( , , | ) p( | )p( ) p( | )p( | )p( )p( )α β α α β β

=

∝ τ τ ⋅∏α β γ τ τ ρ α β γ α β τ τ ρ ρ γD D . 
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9.2.1. Full conditionals of the predictor components 

Unregularized linear regression coefficients γ  

To construct the IWLS proposals of the regression coefficients, we proceed as in the previous Section 

9.1.1, but we replace the log-likelihood l( | )ϑϑϑϑ D  in the expressions through the partial log-likelihood 

pl( | )ϑϑϑϑ D  as well as the score vector and Hessian matrix of the full likelihood matrix through 

corresponding derivatives of the partial likelihood. For the unpenalized linear effects γ  with Gaussian 

prior distribution (8.1), | , ~ N( , )γ γ γ γγ µ Σ µ Σ , with γ ≠µ 0  and 1− ≠γΣ 0 , the full conditional is given 

by 

 ( ) ( ) 1 11
p | exp pl |

2
− −
γ γ γ

 
′ ′⋅ ∝ − + 

 
γ γ Σ γ γ Σ µϑϑϑϑ D . 

In particular the score vector pl ( ) pl( | )γ = ∂ ∂s γ γϑϑϑϑ D  and the Hessian matrix pl 2( ) pl( | )γ ′= ∂ ∂ ∂H γ γ γϑϑϑϑ D  

of the logarithm of the partial likelihood are represented by 

 ( ) k i

k i
u

n
n

k kj(t t )k 1pl
i ij n

i 1 k(t t )k 1 1 j p

1 exp( )u
d u

1 exp( )

≥=
γ

= ≥= ≤ ≤

  η
  = −
  η  

∑
∑

∑
s γ

ɶ ɶ

ɶ ɶ

 

and  

 ( )
k i k i k i

k i k i k i

u

n n n

k kj km k kj k km(t t ) (t t ) (t t )n
k 1 k 1 k 1pl

i n n n
i 1

k k k(t t ) (t t ) (t t )
k 1 k 1 k 1 1 j,m p

1 exp( )u u 1 exp( )u 1 exp( )u

d

1 exp( ) 1 exp( ) 1 exp( )

≥ ≥ ≥

= = =
γ

=
≥ ≥ ≥

= = = ≤ ≤

  
η η ⋅ η  

  = − −
  η η ⋅ η    

∑ ∑ ∑
∑

∑ ∑ ∑
H γ

ɶ ɶ ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ ɶ ɶ

. 

The penalized score vector and the penalized Hessian matrix in the second order Taylor expansion of 

f ( ) log p( | )= ⋅γ γ  are according to (9.3) and (9.4) written as 

 ( ) ( ) ( ) ( )pl 1 1 pl 1,− − −
γ γ γ γ γ γ γ γ= − + = −s γ s γ Σ γ Σ µ H γ H γ Σ . 

Under a flat Gaussian prior we set γ =µ 0  and 1−
γ =Σ 0 , and the resulting mean vector and covariance 

matrix of the multivariate Gaussian proposal distribution of regression coefficients γ  are  

 ( ) ( ) ( )( )
1

(c) (c) pl (c) pl (c) (c) (c) pl (c)ˆ ˆˆ ,
−

γ γ γ γ γ γ = − = − µ Σ s γ H γ γ Σ H γ , (9.25) 

where pl (c)( )γs γ  and pl (c)( )γH γ  denote the score vector and the Hessian matrix of the partial log-

likelihood evaluated at the current state (c)γ  and the actual states of the remaining model parameters 
(c) (c)( , )−γ = α βϑϑϑϑ  in the predictor. To compute the mean vector (p)ˆ γµ  and covariance matrix (p)ˆ

γΣ  of the 

proposed new value (p)γ , which are required to compute the acceptance probability, the score vector 
pl (p)( )γs γ  and Hessian matrix pl (p)( )γH γ  are evaluated at the proposed state (p)γ  keeping the remaining 

model parameters of the predictor fixed at their actual states −γϑϑϑϑ .  

Regularized linear regression coefficients β  

Straightforward, the full conditional of the regularized linear effects β  with the prior (8.2) reads 

 ( ) ( ) 11
p | exp pl |

2
−
β

 
′⋅ ∝ − 

 
β β Σ βϑϑϑϑ D  
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with 1 2diag( )− −
β β=Σ τ  and the corresponding multivariate Gaussian proposal distribution of the 

regularized effects has mean and covariance matrix 

 ( ) ( ) ( )( )
1(c) (c) pl pl (c) pl(c) (c) (c) (c) 1ˆ ˆˆ ,

−
−
ββ β β β β β = − = − + µ Σ s β H β β Σ H β Σ  (9.26) 

with score vector pl ( ) pl( | )β = ∂ ∂s β βϑϑϑϑ D  and Hessian matrix pl 2( ) pl( | )β ′= ∂ ∂ ∂H β β βϑϑϑϑ D .  

Regularized nonlinear regression coefficients jα  

Finally, using the prior (8.12) the full conditionals of the basis functions coefficients jα  are  

 ( ) ( )
j

j j j j z2

1
p | exp pl | , j 1,...,p

2 α

  
′⋅ ∝ − = 

τ  
α α K αϑϑϑϑ D , 

with mean and covariance matrix of the multivariate Gaussian proposal distribution given by 

 ( ) ( ) ( )j j j j j

j

1

(c) (c) pl (c) pl (c) (c) (c) pl (c)
j zj j j j 2

1ˆ ˆˆ , , j 1,...,p

−

βα α α α α

α

 
 = − = − + =    τ 

µ Σ s α H α α Σ H α K , (9.27) 

with 
j

pl
j j( ) pl( | )α = ∂ ∂s α αϑϑϑϑ D  and 

j

pl 2
j j j( ) pl( | )α

′= ∂ ∂ ∂H α α αϑϑϑϑ D .  

9.2.2. Full conditionals of the regularization parameters 

The rest of the model parameters 
1 pz

2 2 2( ,..., )α α α= τ ττ , 2
βτ , ρ  and are updated by Gibbs steps with the 

full conditionals as listed above in Subsection 9.1.2. 

9.2.3. Computational details 

Detail 1: The generic way to sample a new proposal from multivariate Gaussian proposals is based on 

the algorithms described in Rue (2001), and shortly sketched in Subsection 6.1.7. 

Detail 2: The most costly computations in running the whole MCMC samplers are the inversions of 

the precision matrices within the IWLS parts of the corresponding parameter vectors. To reduce the 

running time in the case of high-dimensional parameters, we can update these parameters in blocks of 

smaller size than the size of the whole parameter vector. We use per default a maximal block size of 

20 covariates per block. This option can be specified with the blocksize argument. 

9.3. Update of the parameters 

The Markov chain is generated via MCMC simulations based on drawing from the full conditionals of 

parameters or parameter blocks given the remaining parameters and the data as derived in the previous 

sections. The methods are implemented in the following software. The inferential procedures for 

fitting the parametric and nonparametric models based on the full likelihood with P-spline and Weibull 

baseline are implemented in the regress method of the free BayesX software available from 

http://www.stat.uni-muenchen.de/~bayesx/. The procedures based on the partial likelihood are 

implemented in the R-function bcoxpl() which will be provided from the author on request. The 

usage of both functions is described in the Appendix D.3 to D.4. 
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9.3.1. Preprocessing 

Standardization: To ensure that comparable regression coefficient sizes imply comparable effect 

sizes, covariates are standardized in advance. This avoids the extensive covariate-specific tuning of the 

priors for different covariate scales. We standardize covariates with linear effects to zero empirical 

mean and unit empirical variance. To obtain that smooth covariates taking values in [ 1,1]− , we can 

apply the transformation  

 ij j,min*
ij

j,max j,min

2(z z )
z 1

z z

−
= −

−
. 

Starting values in the BayesX method regress: In BayesX the starting values for the regression 

coefficients , ,α β γ  are computed via backfitting within Fisher scoring using the fixed variance 

parameters 2(0)2(0) ,α βτ τ  initially specified, and finally the resulting estimates are used as initial states 
(0) (0) (0), ,α β γ  of the chain. 

Starting values in the R-function bcoxpl(): An automatic computation of starting values is not 

implemented in the function bxoxpl() and in our simulations and applications we start with weakly 

specified models. If preprocessing is desired, the starting values for the regression coefficients 
(0) (0) (0), ,α β γ  can optionally be computed with the R function coxph{survival} using e. g. the 

ridge{survival} and pspline{survival} terms in the formula with fixed penalty parameter. 

9.3.2. Pseudocode 

[1] Initialization:  

Specify the regularization priors of the linear effects: Set the values of the hyperparameters 

1, ,h ,hλ 2 λ  to specify the gamma prior for the shrinkage parameter 2( )λ λ in the Bayesian ridge or 

lasso prior. For the Bayesian NMIG prior set the values 0 1v ,v  of the indicator jI , set the values 

of the hyperparameters 1, ,h ,hψ 2 ψ  of the inverse gamma prior for the variance parameter 2
jψ  and 

set the hyperparameters 1, 2,h ,hω ω  of the beta prior for the complexity parameter ω . 

Specify the non-linear effects: Set number jg  of B-spline basis functions and choose the order 

jd  of the random walk penalty for basis function weights. 

Standardize the covariates according to Subsection 9.3.1. 

Set the number C of iterations, set c 0=  and repeat the following steps until c C< . 

[2] Update of the unregularized regression coefficients: 

Draw a new value (p)γ  from the Gaussian proposal distribution (p) (p)ˆˆ( | , )γ γϕ ⋅ µ Σ  with mean vector 

and covariance matrix given in (9.9). Accept the proposed state as new state of the chain with 

acceptance probability 

 ( )
( ) ( )
( ) ( )

(p) (c) (p) (p)

(p) (c)
accept

(c) (p) (c) (c)

ˆˆp | | ,
p , min 1,

ˆˆp | | ,

γ γ

γ γ

 ⋅ ϕ 
=  

⋅ ϕ  

γ γ µ Σ
γ γ

γ γ µ Σ
. 

If the proposal is accepted, set (c 1) (p)+ =γ γ , else set (c 1) (c)+ =γ γ . 

[3] Update of the regularized regression coefficients: 

Draw a new value (p)β  from the Gaussian proposal distribution (p) (p)ˆˆ( | , )β βϕ ⋅ µ Σ  with mean vector 
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and covariance matrix given in (9.11). Accept the proposed state as new state of the chain with 

acceptance probability 

 ( )
( ) ( )
( ) ( )

(p) (p)(p) (c)

(p) (c)
accept

(c) (c)(c) (p)

ˆˆp | | ,
p , min 1,

ˆˆp | | ,

β β

β β

 ⋅ ϕ 
=  

⋅ ϕ  

β β µ Σ
β β

β β µ Σ
. 

If the proposal is accepted, set (c 1) (p)+ =β β , else set (c 1) (c)+ =β β . 

[4] Update of the shrinkage- and selection-prior components: 

Bayesian ridge (A): Draw a new value of the complexity parameter (c 1)
j

+λ  from the conditional 

gamma distribution given by (9.17) and set the variance parameter 
j

2,(c 1) (c 1)
j1 2+ +

βτ = λ , 

xj 1,...,p= . 

Bayesian ridge (B): Draw a new value of the complexity parameter (c 1)+λ  from the conditional 

gamma distribution given in (9.18) and set the variance parameter 2,(c 1) (c 1)1 2+ +
βτ = λ . 

Bayesian lasso: Draw a new value of the variance parameter 
j

2,(c 1)+
βτ , xj 1,...,p= , from the 

conditional inverse Gaussian distribution given in (9.19). Draw a new value of the complexity 

parameter 2,(c 1)+λ  from the conditional gamma distribution given in (9.20). 

Bayesian NMIG: Draw a new value of the indicator 
j

(c 1)I +
β , xj 1,...,p= , from the conditional 

Bernoulli distribution given in (9.21). Draw a new value of the variance parameter 
j

2,(c 1)+
βψ , 

xj 1,...,p= , from the conditional inverse gamma distribution given in (9.22). Draw a new value 

of the complexity parameter (c 1)+ω  from the conditional beta distribution given in (9.23). 

[5] Update of the regularized spline coefficients: 

Draw a new value 
j

(p) (p) (p)
j j,1 j,g( ,..., )′= α αα , zj 0,1,...,p=  from the Gaussian proposal distribution 

(p) (p)
, j , j

ˆˆq( | , )α α⋅ µ Σ with mean vector and covariance matrix given by (9.13). Accept the proposed 

state as new state of the chain with acceptance probability 

 ( )
( ) ( )
( ) ( )

(p) (c) (p) (p)
j j , j , j(p) (c)

j j (c) (p) (c) (c)
j j , j , j

ˆˆp | | ,
accept , min 1,

ˆˆp | | ,

α α

α α

 ⋅ ⋅ϕ 
=  

⋅ ⋅ϕ  

α α µ Σ
α α

α α µ Σ
. 

If the proposal is accepted, set (c 1) (p)
j j

+ =α α , else set (c 1) (c)
j j

+ =α α . To center the functions 

compute the mean of function evaluations at the observed data points 
n(c 1) (c 1)1

j,k ijj j,ki 1
c n B (z )+ +−

=
= α∑ . Adjust the current states of (c 1)

j
+α  by (c 1) (c 1)

j jc+ +−α  and adjust the 

intercept (c 1)+γ  by 
z

(c 1) (c 1)(c 1)
1 pc ... c+ ++γ + + + . 

[6] Update of the smoothing variances: 

Draw a new value of the variance parameters 
j

2,(c 1)+
ατ , zj 0,1,...,p=  from the conditional inverse 

gamma distribution given by (9.24). 

 

Modifications for the Weibull model  

For the Weibull model we replace in step [5] the update of the log-baseline hazard coefficients 0α  by 

the update of the shape parameter 0α . We use the proposal distribution given in (9.16) and the full 

conditional from (9.15), compare Section 9.1.1. The update of 
0

2
ατ  is dropped out in step [6].  
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Modifications for the partial likelihood 

Using the partial likelihood for inference we have to exchange the mean vector and covariance matrix 

expressions in steps [2], [3] and [5] based on the full likelihood by those based on the partial 

likelihood, (9.25), (9.26) and (9.27) from Section 9.2.1. The updates of 0α  and 
0

2
ατ  are skipped. 
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PART III. SIMULATIONS 

10. AFT-type models K10.A1 

In this section we investigate the performance of the Bayesian regularization priors in the extended 

accelerated failure time model (AFT) as described in Section 2. At first, in Subsection 10.1, we 

consider the regularization in the AFT model concerning the smooth estimation of the error 

distribution density modeled as penalized Gaussian mixture (PGM). In particular the different variants 

for the update of the mixture weights, presented in Section 6.1.3, are explored (neglecting initially the 

effect of covariates) and compared with selected competing Bayesian and frequentist procedures 

available in the R software. In the subsequent sections covariates are also included in the simulation 

models. We regard the Bayesian regularization priors for the linear effects, as described in Sections 

4.1 to 4.3, in the low-dimensional case xp n< , where the number of covariates xp ∈ℕ  does not 

exceed the number of observations n ∈ℕ . In particular in Subsection 10.2 the number of covariates is 

fixed to xp 25=  and the observations vary from n 100=  to n 500= . Further, in Subsection 10.3, the 

linear covariates are modeled by Bayesian P-splines which induce a high-dimensional predictor. 

Finally, the high-dimensional case with respect to the number of covariates is considered by increasing 

step by step the number of covariates until it exceeds the number of observations xp n> . We focus 

here mainly on the impact under the Bayesian NMIG prior. 

While the continuous regularization priors for the linear effects cause the shrinkage of these effects 

toward zero, the used MCMC estimation methods do not directly enforce simultaneous variable 

selection, like, e. g., the algorithms of the frequentist lasso do. To build a final model with a subset of 

the available covariates, we use the heuristic selection criteria based on the 95% credible interval and 

the one standard deviation interval as described in Section 4.4. In particular the Bayesian NMIG 

regularization prior provides the additional opportunity to access the importance of the linearly 

modeled features by utilizing the posterior relative frequencies of the two indicator variable values 0v  

and 1v . We investigate the reliability of these procedures to identify important features and compare 

the performance with those from frequentist feature selection based on the AIC criterion under 

Gaussian error assumption. In the various situations we focus further on the question, which 

constellation of xp  versus n enables reasonable estimates of the parameters, since the number of 

model parameters (including the latent ones) is comparatively high in the Bayesian AFT model with 

PGM error and extended predictor.  

Functions and methods 

The Bayesian algorithms to estimate the extended AFT model are implemented in the R-function 

baftpgm(), which is available from the author by request. In Appendix D.5 we describe the usage of 

this function. As Bayesian competitor for the extended AFT model we use the R-function 

bayessurvreg2() of the package {bayesSurv} by A. Komárek, where the baseline error 
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distribution is also modeled as PGM. Besides various censoring schemes, like, e. g., right or interval 

censoring, this function supports estimation of unpenalized linear effects and random effects in the 

predictor. As frequentist competitor, in particular in the case without covariates and censoring in the 

data, we utilize the function pendensity() as implemented in the correspondent R-package 

{pendensity} by Schellhase and Kauermann (2011). The authors provide a penalized basis function 

approach with B-spline or Gaussian basis functions to approximate the baseline error density. 

Frequentist maximum likelihood estimation of the AFT model with parametric error distributions is 

carried out with the R-function survreg() of the R-package {survival}. Variable selection is 

practiced by forward-backward-stepwise procedures based on the AIC (Akaike-Information-Criterion) 

criterion and accomplished by the R-function step(). Also ridge regularization of linear effects and 

combined estimation of nonlinear effects is possible within the function survreg(), but the values of 

the shrinkage resp. smoothing parameters need to be predefined. 

Estimation accuracy 

In the simulation studies the mean squared error (MSE) of an estimate is used as performance criterion 

to measure the estimation accuracy within each dataset of R ∈ℕ  replications. For example the 

MSE of the estimated regularized linear effects β  in the r-th replication, r 1,...,R= , is given by 

 (r) (r) (r) (r)
(r)

1ˆ ˆ ˆMSE ( ) ( ) ( )
n

′′= − −β β β X X β β , 

where n ∈ℕ  is the common number of observations in each simulation setting, (r )β̂  is the vector of 

estimated regression coefficients and (r )X  denotes the associated design matrix of the regularized 

predictor component in r-th replication. For P-spline-based nonlinear effects jf ( )⋅  of covariates jz , 

with observations (r)
i, jz , i 1,...,n= , in the r-th replication, we have 

 (r) (r)
(r) j j jj j

1ˆ ˆ ˆMSE (f ) ( ) ( )
n

′= − −f f f f , (10.1) 

where (r) (r) (r) (r) (r)
j j 1, j j n , j

ˆ ˆˆ (f (z ),...,f (z ))′=f  denotes the vector of function evaluations of the estimator (r )
jf̂ (z)  

in the r-th replication and (r) (r)
j j j1, j n , j(f (z ),..., f (z ))′=f  is the corresponding vector of the “true” underlying 

nonlinear effect jf ( )⋅ . The computation of the MSEs of function estimates representing the baseline 

quantities, like the logarithm of the baseline hazard function 0 0 0f (t) log( (t))= λ + γ  in the CRR model 

or the distribution density 
0Yf ( )⋅  of the baseline error 0 0Y = γ + σε  in the AFT model, is 

straightforward in terms of (10.1). In the CRR model the baseline hazard function 0 ( )λ ⋅  and the 

associated estimate are evaluated at the observed survival times (r)
itɶ , i 1,...,n= , of each replication and 

the baseline error density 
0Yf ( )⋅  and the associated estimate in the AFT model are evaluated on a 

predefined number of equidistant grid points 1 k(e ,....,e )  that cover uniformly the margins of the “true” 

underlying density 
0Yf ( )⋅ . 

In this work the Bayesian point estimates θ̂  of the model parameters θ  are generally based on the 

mean of the marginal posterior distribution, approximated by the component specific empirical mean 

of the generated MCMC sample (s)θ , s 1,...,S= . Further summary statistics of the parameter specific 

marginal posterior distributions like the median, standard deviation or quantiles are also approximated 

by their empirical counterparts. In particular function estimates are given as the mean of the sample 

function evaluations (s)
jf ( )⋅  at each of the considered grid points. For nonlinear model components 

jf ( )⋅  formed by P-spline basis functions j(z)′b  this results in (r )
j j j

ˆ ˆf ( ) ( )′⋅ = ⋅b α , where jα̂  is the mean 
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vector of the sampled basis function weights (s)
j ⊂α θ . With respect to the identifiability of the 

predictor components, function estimates are horizontally centered around zero. The baseline error 

density 
0Y 0 0f ( | , , )⋅ γ σα  is computed for all iterations of the MCMC sampler using the current sampled 

states of the associated parameters (s)
0 ⊂α θ , (s)

0γ ∈θ , (s)σ ∈θ . Due to the non-identifiability of the 

location and the scale parameter, the resulting density estimate of the error ε  is standardized - during 

or after the iterations - to achieve zero mean and unit variance, inducing a simultaneous adjustment of 

the location and scale parameter (s)
0γ  and (s)σ  as described in Section 6.2.1. Finally, the estimate of the 

baseline error density 
0Yf̂ ( )⋅  is computed as the average of the function evaluations 

00

(s) (s) (s) (s)
Y 0 0Yf ( ) f ( | , , )⋅ = ⋅ γ σα  at the grid points. 

To visually compare the performance of the different methods, the MSEs of the interesting parameters 

in the replications are summarized utilizing box plots. In the low-dimensional cases, we additionally 

report the average number of correctly and incorrectly classified zero and nonzero regression 

coefficients of the final models obtained after applying one of the hard shrinkage selection rules and 

compare them for the different shrinkage priors. The used abbreviations to denote various models and 

the different update schemes of the error weights are summarized in the Reference Section. 

10.1. Baseline error density estimation 

Error models 

In the simulation studies we use the following four target baseline error distributions (BED) to assess 

the performance of the PGM approach for the error density in the log-linear version of the AFT model: 

• BED 1: 0Y ~ Gumbel( 3, 1.5)µ = σ =  

• BED 2: 2 2
0Y ~ 0.75 N( 3, 1) 0.25 N( 2, 1)⋅ µ = − σ = + ⋅ µ = σ =  

• BED 3: 2 2
0Y ~ 0.4 N( 3, 1) 0.6 N( 0, 3.5)⋅ µ = − σ = + ⋅ µ = σ =  

• BED 4: 2 2
0Y ~ 0.5 N( 0, 1) 0.5 N( 0, 3.5)⋅ µ = σ = + ⋅ µ = σ =  

Figure 10.1 displays the densities of the four baseline error models. The first baseline error model 

BED 1 uses the Gumbel (maximum extreme value) distribution with cumulative distribution function 

0YF (y) exp( exp( [(y ) / ]))= − − − µ σ , where µ∈ℝ  and 0σ >  denote the location and scale parameter. 

The mean and variance of the Gumbel distribution is given by 0 E(Y ) = µ − σγE  and 
2 2

0ar(Y ) 6= π σV , with Eγ  as the Euler constant ( E 0.577γ ≈ ). With the parameters specified in error 

model BED 1 we obtain 0(Y ) 2.124≈ −E  and 0ar(Y ) 3.701≈V . The remaining baseline error models 

are represented as mixtures of two Gaussian distributions with mean and variance given by 

0(Y ) 1.75= −E , 0ar(Y ) 5.6875=V  (BED 2), 0(Y ) 1.2= −E , 0ar(Y ) 9.91=V  (BED 3) and 0(Y ) 0=E , 

0ar(Y ) 6.625=V  (BED 4).  

Data generation 

For each error model we generate R 50=  replicated simulation datasets with n 500=  observations, 

on the one hand with 0% and on the other hand with 25% censored observations. In particular, the log-

transformed survival times i iy log(t )= , i 1,...,n= , are generated by drawing i.i.d. random numbers 

0,iy  from the specific target baseline error distribution BED 1 to BED 4, i. e. 0,i iidy ~ BEDℓ , 
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{1,...,4}∈ℓ . To explore the performance of the several update schemes for the transformed error 

weights, no covariates are considered here, so the log-survival times for baseline error model BEDℓ  

are directly given as  

 i 0,i 0,i iidy y , y ~ BED , i 1,...,n= =ℓ . 

Censoring times ic  are generated as draws from uniform distributions i iid BED ,0.001 BED ,0.999C ~ Uni[q ,q ]ℓ ℓ , 

where BED ,0.001q ℓ  and BED ,0.999q ℓ  denote the 0.001- and 0.999-quantile of the respective target baseline 

error distribution. After the first run the resulting observed survival times are given as i i iy min(y ,c )=ɶ . 

To achieve the desired percentage of censored observations, we generate in additional runs censoring 

times for the uncensored observations of the previous run until the percentage of right censored 

observations fits. 
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Figure 10.1: Densities of the four baseline error distributions BED 1 (upper left panel), BED 2 (upper right 
panel), BED 3 (lower left panel) and BED 4 (lower right panel).  

Function and parameter specification 

Methods: For the Bayesian estimation of the error density we use the function bayessurvreg2() 

and baftpgm(). In both functions the PGM error is specified through 0g 21=  equidistant knots jm  

placed in the interval [ 4.5,4.5]− , i. e., 1 21m 4.5,...,m 4.5= − =  with distance 0.45. The variance of the 

Gaussian basis functions is uniformly set to 2 2
js 0.25= , 0j 1,...,g= , and we use the third-order random 

walk prior to control the smoothness of the estimate. In particular for the “dirichlet” update scheme of 

the error weights we select a reduced number of 0g 7=  equidistant knots in the interval [ 4.5,4.5]−  

with basis variances 2 2
js 0.35= . Within the function bayessurvreg2() we use the slice sampler as 

default update scheme for the error weights. In the function baftpgm() we utilize the option 

scalebasis to specify the standardization of error density within the loops of the sampler, compare 

Section 6.2.1. The standardization within the sampler (scalebasis=TRUE) causes a varying 

positioning of the knots jm  while the knots are fixed if the standardization is suppressed 

(scalebasis=FALSE). In the annotation of the figures the method names assigned with the suffix 

“FK” indicate the fixed knots, i. e. suppressed standardization. For some methods we vary the update 
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order of the error weights. The suffixes “R0”, “R1” and “R2” indicate the specifications 

order.alpha=”fix2”, ”order.alpha=random1” and ” order.alpha=random2”.  

The function pendensity() is applied to the uncensored data without covariates to get a non 

Bayesian flexible estimate of the baseline error density. We specify here the optional Gaussian basis 

with 21 knots and with the third-order differences penalty for the basis function weights. The estimates 

with the survreg() procedure are carried out utilizing the extreme value, Gaussian and a logistic 

error distributions. 

Hyperparameters: In general the prior hyperparameters of the scale parameter 2σ  are set to 

1, 2,h h 0.01σ σ= =  and those of the smoothing variance to 
01,h 1τ = , 

02,h 0.01τ = . For the update schemes 

“mhcond” and “mhmarg” these basic values are sometimes modified in order to increase the 

smoothing (justification follows below). We specify a zero mean, diffuse Gaussian prior with variance 
2100  for the fixed effects - especially for the location parameter 0γ  in the use of the function 

bayessurvreg2(). 

Starting values: We pass on pre-estimation of the model parameters to find appropriate initial values 

of the chain in regions close to the parameter estimates. For the transformed error weights 0, jα , 

j 1,...,21= , with exception of the middle weight 0,11 : 0α = , each starting value is set to (0)
0, j 0.01α =  

resulting in a flat error density in the range [ 4.5,4.5]− . The location and scale parameter start in 
(0)
0 1γ = , 2(0) 1σ =  and the smoothing variance is initially set to 

0

2(0) 0.01ατ = . The component labels (0)
ir  

are randomly assigned to one of the 0g  error basis densities. 

Estimation: For the MCMC algorithms we use 30000 iterations, where the first 15000 iterations are 

discarded as burnin of the Markov chain and the remaining iterations are thinned using a step width of 

15. The resulting 1000 states of the chain build the sample of the posterior distribution and the 

empirical basis to compute the estimates. The simulations ran on various PCs and Servers with 

different specifications. For this reason and due to the variety of the update schemes we present in the 

following only the range of the observed running times for orientation. In general, shortest running 

times are obtained with the “dirichlet” and the longest under the “mhmag” update scheme. In the 

simulations of this section we observed 7−20 min (pro replication) in the data without censoring and 

10−23 min in the data with 25% censoring, in particular under the under the “mhmag” update scheme 

we have about 60 min. In the following, the main results of the simulations are summarized and 

presented. 

Results 

MSE of the baseline error density 

Figure 10.2 shows the MSEs of the estimated error densities, 
0Y

ˆMSE(f ) , for the two baseline error 

models BED 2 and BED 3 resulting under the different single and block update schemes for the error 

weights as described in Section 6.1.3. The upper panel contains the results from the data with no 

censoring and the lower panel the corresponding results with 25% censored observations in the data. 

The MSE results from the frequentist “survreg” procedure are omitted due to the poor performance 

(particularly with a Gaussian error the MSEs exceed always the value of 054e− ). 

Apart from some exceptional cases with comparably poor performance (“mhmarg” and “mhcond” in 

BED 2 with 25 % censoring), none of the Bayesian update schemes of the transformed error weights 
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appear to be uniformly superior across the error models. Compared to the simulations with the 

uncensored data, the censoring increases the level of the MSE across all applied methods. But, with 

exception of the update scheme “mhcond” in BED2, the MSE pattern given by the boxes does not 

clearly vary. 
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Figure 10.2: Mean squared errors of the estimated baseline error density, 0Y
ˆMSE(f ) , in the AFT model with 

baseline error distribution BED 2 (upper panel) and BED 3 (lower panel), without censoring (left panel) and 
under 25% censoring (right panel) in the simulation data. 

Focusing on the update schemes “slice” and “mcondstep” under varying update order (“R0“, “R1“, 

“R2“) of the transformed error weights, we found also no systematic benefit in the estimates and the 

results in terms of the MSE are almost comparable. In particular the “dirichlet” update scheme, where 

no penalty controls the smoothness of the error density, performs surprisingly well in two of the four 

error distribution models. Especially in the settings BED 3 and BED 4 (not shown), it achieves the 

best performance within the uncensored and censored data. In the first two error settings, BED 1 (not 

shown) and BED 2, we observe conversely an increased MSE compared to the other methods. The 

frequentist competitor “pendensity”, only used in the simulations with the uncensored data, performs 

best in the estimation of the bimodal distribution BED 2. 

As mentioned before, we modify the tuning of smoothing variance prior for the update schemes 

“mhmarg” and “mhcond” in some of the simulations. The outstanding comparatively poor 

performance with the update scheme “mhmarg” and the update scheme “mhcond” in error setting 

BED 2 with the censored observations is explained by the induced stronger smoothing of the error 

density. In particular under error model BED 2 with censoring, the regularization is further increased 

for the cross over from the fixed to the flexible knot option. We observed that, if the smoothing 
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penalty is too weak, the weights of the basis densities at the right and/or left border get close to zero. 

As a consequence, the number of occupied classes of the mixture density decreases during the 

sampling, so that finally the component labels ir  are assigned to a few of the 0g  error basis densities. 

This also affects the acceptance rates that decrease too. Further, the option to standardize the error 

density during the sampler boosts this effect. Standardization shifts the border knots with close to zero 

weights towards ±∞  (i. e. we get a large distance between the knots) and the number of occupied 

classes of the mixture decreases further and the component labels ir  are assigned to at least one or two 

of the 0g  error basis densities. As consequence of the small border weights and the optional 

standardization, the associated sum of squared differences of the transformed error weights increases 

and we counterbalance with a stronger penalization through the smoothing variance. We observed the 

described effects in general for all update methods, if the smoothing regularization is too weak, but in 

particular the Metropolis-Hastings update schemes required an enhanced regularization. For both 

update schemes “mhmarg” and “mhcond” we adapt the first hyperparameter 
01,h τ  of the inverse 

gamma prior of the smoothing variance 
0

2
ατ  to varying values in the range of 5 to 15. Further the 

acceptance rates of the transformed error weights profit from the stronger regularization. The values 

are consistently close to 80% for both update schemes under comparable regularization across the 

error models. Under weaker regularization, used e. g. in the error models BED 3 and BED 4, the 

acceptance rates of the “mhcond” scheme are generally smaller with values in the range of 50% to 

20%, and censoring decreases the acceptance rates further.  

We observed also, that the acceptance rates of the transformed error weights in the Metropolis update 

schemes are very different. For the update scheme “mcondblock” we always obtain very low values 

around 5%, but the few accepted new states are uniformly distributed over the sample. Since the 

model parameters converge and show also a good mixing (except the transformed error weights), we 

utilize this scheme without further adaption of the smoothing hyperparameters to consider the impact 

of these low acceptance rates. In contrast, the acceptance rates of the update scheme “mcondstep”, 

with the iteratively updated transformed error weights, are in general relatively high with values 

around 70%. 

Penalty of the transformed error weights 

The induced stronger regularization, if applied, is reflected in the log-penalty term 
0

2
0 0 0α− ′τ α K α . 

Figure 10.3 shows the resulting log-error penalties for the error model BED 2 and BED 3 under 25 % 

censoring in the data. Due to the increased regularization under the update scheme “mhmarg” we 

observe very small values for the sum of (third order squared) differences 0 0 0′α K α , compare Figure 

10.4, and values of the smoothing variance 
0

2
ατ  close to zero (not shown) are leading in summary to 

the smaller log-penalty values, compared to the other update schemes. The basic regularization 

(
01,h 1τ = ) under the update scheme “mhcond”, as in the error models BED3 and BED 4, comes along 

with increased values for the sum of differences. But the larger value of the associated smoothing 

variance 
0

2
ατ  causes at last that the penalty has the same range as, e. g., the single update schemes. The 

same holds for the “slice” update scheme, which has under the basic regularization by trend a higher 

sum of differences 0 0 0′α K α  compared to the block update schemes. Under the basic setting the 

regularization with the “mcond” schemes is by trend weaker as e. g. with the “slice” update scheme, 

but the associated differences in the penalty are only marginally reflected in the MSEs of the baseline 

error density estimation. 
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Figure 10.3: Logarithm of the estimated error density penalty term , 
0

2
0 0 0

−
α ′−τ α K α , in the AFT model with 

baseline error distribution BED 2 (left side) and BED 3 (right side) under 25% censoring in the simulation data. 
The scale of the y-axis changes at the tick mark within the interval [ 12, 11]− − .  
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Figure 10.4: Estimated sum of the error penalty differences, 0 0 0′α K α , in the AFT model with baseline error 
distribution BED 2 (left side) and BED 3 (right side) under 25% censoring in the simulation data.  

Baseline error density 

Figure 10.5 shows a couple of the estimated baseline error densities under the error model BED 2 

with 25% censoring in the simulation data. Displayed are estimates obtained via the update schemes 

“mhmarg” and “mhcond”, with increased regularization in BED 2, together with the estimates under 

the unregularized “dirichlet” update scheme and the estimates from “bayessurvreg2” as competitor. 

We note that the increased regularization corrupts the fit in some error density regions which causes 

finally the increase in the associated MSEs. In particular the fit in the cavity between the two modes 

and the right mode declines compared e. g. to the method “bayessurvreg2”. 
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Figure 10.5: Estimated baseline error densities in the AFT model with baseline error distribution BED 2 under 
25% censoring in the simulation data for six selected update schemes of the error weights. Displayed are the 

posterior mean estimates of the error density (colored lines) together with the true error density (black line) for 
“bayessurvreg2” (upper left panel) and under the update schemes “dirichlet” (lower left panel), “mhcond” 

(middle panel) and “mhmarg” (right panel) for the error weights. The dashed lines mark the minimum of the 
lower 2.5% quantile and maximum of upper 97.5% quantile in the replications.  
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Figure 10.6: Estimated scale (upper panel) and location parameter (lower panel) of the baseline error in the AFT 
model with baseline error distribution BED 3, without censoring (left panel) and under 25% censoring (right 
panel) in the simulation data. The black horizontal lines mark the true scale 0Yσ  and location 0Yµ  parameters 

under BED 3.   
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Baseline error location and scale 

The estimated location and scale parameter of the baseline error distribution model BED 3 under the 

different update schemes are given in the lower and upper panel of Figure 10.6. We observe in 

general a higher variability in the estimates of the scale σ  than in the location 0γ  parameter and often 

also wider interquartile ranges (IQR) of the boxes under censoring, reflecting the increased 

uncertainty. 

In general the estimates under the Metropolis schemes “mcondstep” and “mcondblock” differ from 

the remaining update schemes. While the differences in location parameter are rather marginal, they 

are more obvious for the scale parameter especially in the error settings BED 3 and BED 4. By trend 

we observe smaller absolute values for the location parameter and larger values for the scale 

parameter.  
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Figure 10.7: Trace plots of three selected sampled error density weights 1w , 9w  and 16w  in the AFT model 
with baseline error distribution BED 2. Displayed are the results achieved with the three update schemes 

“sliceR0”, “mhcond” and “mcondblock” for the error weights, if the error density is not scaled (right panel) or 
scaled (left panel) within the sampler.  

With respect to the MSE performance of the baseline error density estimates we found, that, e. g., the 

MSE superiority of the “pendensity” procedure under BED2 or the “dirichlet” update scheme under 

BED 3 and BED 4 is not reflected in an improved fit to the location and scale parameter. Vice versa 

also the procedures with poor MSE performance, like, e. g., the “mhmarg” update, show a comparable 

fit to both parameters. Especially the “survreg” procedure with Gaussian error provides location and 
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scale estimates with comparable boxes like, e. g., those of bayessuarvreg2. So, comparing the fit to the 

location and scale parameter of the various update schemes enables very limited conclusions about the 

associated fit to the baseline error density (and reversed), and we present in the following sections 

only the MSE of the baseline error density estimate. 

Baseline error weights 

Figure 10.7 displays the sample paths of three selected error weights for one selected simulation 

dataset from baseline error model BED 2 without (left panel) and with (right panel) the sampler 

internal standardization of the error density. The option, to standardize the error density during the 

sampling, introduces more stability in the paths of the larger error weights for the block update 

schemes, as shown e. g. in the second row of the figure. But nevertheless, to show the desired 

stationarity of the error weights a recomputation of the weights, as described in Section 6.3.3, is 

essential.  

With the described approximative method we compute the paths given in Figure 10.8. Also the low 

acceptance rates of the update scheme “mcondblock” are reflected by the piecewise constant values of 

the (thinned) sampled weights. In the displayed replication we have an acceptance rate of 3.8 %. The 

acceptance rates of the displayed “mcondblock” update scheme are higher than 80%. 
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Figure 10.8: Trace plots of three selected recomputed error density weights 1w , 9w  and 16w  in the AFT model 
with baseline error distribution BED 2. Displayed are the results achieved with the three update schemes 

“sliceR0”, “mhcond” and “mcondblock” for the error weights, if the error density is not scaled (right panel) or 
scaled (left panel) within the sampler.  
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In summary, none of the considered update schemes has shown a uniformly superiority across the four 

different error models. Also the option to standardize the error within the sampling or the variation of 

the update order of the error mixture weights has not shown any systematic impact on the performance 

of the density estimate, and the same holds for the “mcondblock” update scheme with the low 

acceptance rates. The main influence is caused by the regularization, where a stronger regularization 

induces a loss of performance. 

10.2. Low-dimensional predictor 

Data generation 

Now covariates are added to investigate additionally the shrinkage properties of the regularization 

priors and the impact on the baseline error density estimation. We include xp 25=  linear covariate 

effects ranging from three to zero, in particular 

 i i 0,i 0,i iidy y , y ~ BED , i 1,...,n′= + =x β ℓ , 

with 

 (3,3,0,0,2,2,0,0,1,1,0,0,0.5,0.5,0,0,0.2,0.2,0,0,0.1,0.1,0,0,0)′=β ,  (10.2) 

where 0,i iidy ~ BEDℓ , {1,...,4}∈ℓ , denotes the associated baseline error distribution from models 

BED 1 to BED 4. The corresponding covariates are generated with zero mean, unit variance and the 

correlation between jx  and kx  is set to j k
i, j i ,kcorr(x ,x ) −= ρ  with 0.5ρ = . The log-survival times iy  

are generated by adding the individual specific, covariate dependent value of the predictor i i′η = x β  to 

the random errors 0,iy , that are drawn respectively from BED1 to BED 4, i. e. i i 0,iy y= η + . Further, 

the censoring times and the desired percentage of censored survival times are generated as described 

in the previous Subsection 10.1. We use again R 50=  replicated datasets for each of the four baseline 

error models with n 500=  observations and 25% censoring in the data.  

To explore the performance of the applied estimation methods, when the number of observations and 

parameters varies, this basic setting is modified. In particular in this subsection we consider in the 

following 

• xp 25=  linear modeled covariates in combination with n 500=  observations under the four 

error models BED 1 to BED 4, 

• xp 25=  linear modeled covariates in combination with a decreasing number of observations 

n 400,300,200,100=  under the error model BED 2. 

In the next Subsection 10.3 we increase also the number of parameters by modeling the xp 25=  

covariates as nonlinear and by increasing the number of covariates xp . 

Function and parameter specification 

Methods: For the Bayesian estimation of the error distribution density with the function baftpgm() 

we use commonly the selected update schemes “sliceR0” (as single update), “mcondblock” (due to 

low acceptance rates and weaker penalty under standard smoothing prior configuration), “mcondstep” 

(as iterative block update with higher acceptance rates), “mhcond” (due to the stronger smoothness 
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regularization), “dirichlet” (due to no smoothness regularization) together with the Gaussian error 

assumption, “gauss” (to consider the impact of the miss-specification of the baseline error). We 

present the results obtained with the option scalebasis=TRUE that force the standardization of the 

baseline error density within the sampler. 

The linear effects of the predictor are estimated unregularized and regularized by utilizing the 

Bayesian ridge (non-adaptive version B), the lasso and the NMIG shrinkage prior. Further, we 

estimate the linear effects unregularized with the full predictor (PGM.B) and true predictor structure 

(PGM.BT), where the covariates with zero effects are omitted, using the function bayessurvreg(). 

Hyperparameters: The hyperparameters of the error priors are set to the same values as in the previous 

Subsection 10.1. With the same reasoning we tune the smoothness prior of the error density for the 

update schemes “mhmarg” and “mhcond” to enforce a stronger regularization. Particularly under 

error model BED 2 with decreasing number of observations we use 
01,h 5τ =  ( n 500= ), 

01,h 15τ =  

(100 n 400< ≤ ) and 
01,h 20τ =  ( n 100= ). Under the basic setting 

01,h 1τ =  we obtained with the update 

scheme “mhcond” and n 500=  observations reasonable results in combination with the Bayesian 

NMIG regularization and the unregularized estimation of the linear effects and the presented results 

are obtained with the basic setting. With n 100=  observations the sampler frequently stucks under 

“mhmarg” update scheme and the results are omitted.  

The hyperparameters of the regularization priors for the linear effects are set to the following values: 

For the shrinkage parameter prior of the Bayesian lasso and Bayesian ridge regularization we set 

1, 2,h h 0.01λ λ= =  to enable data driven estimates of the associated model components. Due to the 

selected sizes of the regression coefficients we use the NMIG prior setting 1v 1= , 0v 0.005= , 

1,h 5ψ = , 2,h 50ψ =  for the components of the variance parameter together with 1,h 1ω =  and 2,h 1ω =  

for the complexity parameter. With respect to the results from Section 4.5 effects with absolute value 

larger than 1 should be less regularized. The second alternative NMIG hyperparameter setting is 

considered in the CRR simulations. We use a block size of 25 for the regression coefficients, which 

entails that 25 effects are simultaneously updated. 

Starting values: The parameters associated to the error component start with the values listed in the 

previous Subsection 10.1. For the additional starting values of the linear effects we choose values 

close to zero, i. e. (0)
j 0.01β = , xj 1,...,p= . The Bayesian NMIG prior components start with (0)

0jI v= , 
2(0)
j 0.0416ψ =  , which corresponds to the left mode of the bimodal variance prior, and (0) 0.5ω = , 

while the shrinkage parameter for the Bayesian lasso and ridge prior starts in (0) 1λ = . 

Estimation: For the MCMC algorithms we use again 30000 iterations, where the first 15000 iterations 

are discarded as burnin of the Markov chain and the remaining iterations are thinned using a step 

width of 15. We observed running times of the sampler within the range 12−17 min ( xp 25,n 100= = ) 

and 12−40 min ( xp 25,n 500= = ). 

Results 

MSE of the baseline error density  

Results with n = 500 observations: Figure 10.9 presents the MSEs of the estimated error densities, 

0Y
ˆMSE(f ) , under the Bayesian lasso regularization of the linear effects for the case with n 500=  

observations. The shown error model specific MSE pattern, induced by the various update schemes of 
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the error weights, is almost identical under all three regularization priors and if the linear effects are 

estimated unregularized. Further, the upper panel of Figure 10.10 shows the results for error model 

BED 2 with n 500=  observations under the three shrinkage priors and for the unregularized effects. 
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Figure 10.9: Mean squared errors of the estimated baseline error density, 0Y
ˆMSE(f ) , in the AFT model with 

baseline error distribution BED 1 (left side) to BED 4 (right side), xp 25=  covariates and n 500=  observations 
under the Bayesian lasso regularization of the linear effects. Displayed are the estimates under the update 

schemes “sliceR0”, “mhcond”, “mcondstep”, “mcondblock” and “dirichlet” for the error weights. PGM.BT 
denotes the corresponding results from the model using the true predictor structure. The red dotted line marks the 

value 5e-5.  

Under the error models BED 1 and BED 2 the results from Figure 10.9 are almost comparable, with 

respect to the median, to those when no covariates are included in the models (Figure 10.2). Under the 

error models BED 3 and BED 4 we generally observe an increase of the MSEs when covariates are 

added, but the “dirichlet” update scheme still has the best performance, even if compared to the model 

using the true predictor (PGM.BT). Further, under error model BED 1, the “dirichlet” update scheme 

seems to profit from the inclusion of the covariates, since the median MSE is decreased. At the 

opposite, under the error model BED 2, a clear increase for the “dirichlet” scheme is shown except for 

the Bayesian NMIG regularization, see upper right panel of Figure 10.10. The variability in the MSEs 

of the scheme “mhcond” under model BED 2, as shown in the upper panel of Figure 10.10 (second 

column), is caused by the different amounts of regularization of the baseline error. As mentioned in 

the function and parameter specification, we use the standard setting, 
01,h 1τ = , for the error only in 

combination with the PGM.B and PGM.BN regularization of the linear effects and n 500=  

observations. In both cases the resulting MSEs are comparable to those obtained with the update 

scheme “sliceR0”, where the basic setting is generally used.  

In summary, in the case of n 500=  observations the various regularization methods of the linear 

effects cause no systematic differences in the (update scheme specific) MSE of the baseline error, as 

shown in the upper panel of Figure 10.10. With exception of the “dirichlet” and the Metropolis 

update scheme “mhcond” the MSEs are almost comparable to the MSE resulting from the model with 

the true predictor structure (PGM.BT). The stronger smoothness regularization under the “mhcond” 

update scheme causes a loss in the performance as already observed in the models without covariates.  

Results with n <<<< 500 observations: When the sample size decreases from n 500=  to n 100=  

observations, the MSEs of the error density estimate generally increase. But also a change in the MSE 

performance, caused by the specific regularization method of the linear effects, is exposed. This is 
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shown in the lower panel of Figure 10.10 by means of the error model BED 2 with n 100=  

observations, where the performance under the three shrinkage priors is clearly improved in 

comparison to the unregularized estimation of the linear effects. Especially the MSEs under the 

Bayesian lasso and NMIG prior are lower as under the Bayesian ridge prior, with an advance for the 

Bayesian NMIG regularization. 
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Figure 10.10: Mean squared errors of the estimated baseline error density, 0Y
ˆMSE(f ) , in the AFT model with 

baseline error distribution BED 2, xp 25=  covariates and n 500=  (upper panel) to n 100=  (lower panel) 
observations under various shrinkage priors with the update schemes “sliceR0” (first column), “mhcond” 

(second column), “mcondblock” (third column) and “dirichlet” (fourth column) for the error weights. Displayed 
are the estimates under no, Bayesian ridge, Bayesian lasso and Bayesian NMIG regularization of the linear 

effects. PGM.BT denotes the results from the model using the true predictor structure. The red dotted line marks 
the value 5e-5.   

Again some specific behavior is observable for the update schemes “mhcond” and “dirichlet”. As 

before, the poor performance results under the update scheme “mhcond” are explained by the stronger 

smoothing of the error density across the shrinkage priors, but the hierarchy of the performances, with 

respect to the regularization variant of the linear effects, is identical to the other update schemes and 

the best results are obtained under the Bayesian NMIG prior. Especially the MSE performance of the 

“dirichlet” update scheme gets increasingly better, with respect to the other update schemes, when the 

sample size decreases from n 500=  (Figure 10.9). Already with n 300=  observations (results not 

shown) the MSE of the “dirichlet” update scheme is comparable to the MSEs of the other update 

schemes and decreases further to the low values shown in Figure 10.10. In particular for n 100=  

observations the MSE performance under the Bayesian lasso and NMIG prior is higher as for the 

model with the true predictor.  

Result with Gaussian error: Finally, we consider the results under the Gaussian error assumption, see 

Figure 10.11. The MSEs of the frequentist AFT models with Gaussian error (AFT), stepwise selection 
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(AFT.Step) and the true predictor structure (AFT.T) are almost comparable to each other and we show 

only the results for the stepwise selection.  

With respect to the Bayesian methods, the frequentist approaches yield only with error model BED 4 

lower MSEs. Within the specific baseline error model the performance of the density estimation under 

the various Bayesian shrinkage priors is almost comparable in the case of n 500=  observations and 

with decreasing sample size the shrinkage of the linear effects improves the performance, but by a 

smaller amount as under the PGM error model. In the case of n 100=  observations the previously 

observed performance hierarchy of the regularization priors is reversed and the best results are 

obtained with the ridge prior followed by the lasso and the NMIG prior, but the differences are 

marginal.  
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Figure 10.11: Mean squared errors of the estimated baseline error density, 0Y
ˆMSE(f ) , in the AFT model with 

baseline error distribution BED 1 to BED 4, xp 25=  covariates and n 500=  or n 100=  observations under 
various shrinkage priors and the Gaussian error assumption. Displayed are the estimates under no, Bayesian 
ridge, Bayesian lasso and Bayesian NMIG regularization of the linear effects and the frequentist stepwise 

selection, AFT.Step. PGM.BT denotes the results from the model using the true predictor structure. The red 
dotted line marks the value 5e-5. 

We have also observed a stronger deviation in the estimated location and scale parameter, when the 

sample size decreases. But, as before in Section 10.1, the differences in the MSE of the estimated error 

densities are in general not reflected in the location and scale parameter estimates. 

Baseline error density 

Figure 10.12 shows the estimated error densities under model BED 2 for three update schemes of the 

error weights with the Bayesian NMIG regularization of the linear effects. From the upper to the lower 

panel the number of observations is decreased. Compared to Figure 10.13, that shows the 

corresponding results for the unregularized linear effects, the estimates are often more concentrated 

around the true baseline error density. In the middle column we see the impact of the stronger 

regularization under the “mhcond” scheme (if n 200,100= ). With n 200=  observations the right 

mode is shifted towards the right border and with n 100=  observations the stronger regularization 

often avoids the adaptation of the estimates to the two modes and the cavity between the two modes 

and the estimates are often unimodal. These effects are less pronounced under the NMIG prior as 

under the unregularized linear effects. 
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Figure 10.12: Estimated error distribution densities in the AFT model with baseline error distribution BED 2, 

xp 25=  covariates and n 500=  (upper panel), n 200=  (middle panel) or n 100=  (lower panel) observations 
under the Bayesian NMIG prior for selected update methods of the error weights. Displayed are the posterior 
mean estimates of the error density (colored lines) together with the true error density (black line) under the 
update schemes “sliceR0” (left panel), “mhcond” (middle panel) and “dirichlet” (right panel) for the error 

weights. The dashed lines mark the minimum of the lower 2.5% quantile and maximum of upper 97.5% quantile 
in the replications.  

MSE of the regression coefficients 

Results with n = 500 observations: The results for the cases with n 500=  observations are given in 

Figure 10.14, which shows the MSEs of the estimated regularized regression coefficients, ˆMSE( )β , in 

the error models BED 1 to BED 4 under the Bayesian lasso prior, and in the upper panel of Figure 

10.10, which shows the results for error model BED 2 with n 500=  observations under the three 

shrinkage priors and for the unregularized effects. 

If we compare Figure 10.14 and Figure 10.9, we see that the error model specific differences in the 

MSEs of the baseline error density, caused by the various update schemes, are less pronounced in 

terms of the MSEs of the regression coefficients. In particular the outstanding high or low baseline 

error performances, observed e. g. under the “dirichlet” and “mhcond” update scheme, are only 

marginally reflected, but in general we can recognize a similar MSE structure as in Figure 10.9 with 

weaker differences. With the given structure of the underlying effects (10.2) we do not reach MSEs 

comparable to the model using the true predictor structure (PGM.BT), but we notice that the MSE 

decreases under all error models from the Bayesian ridge over the Bayesian lasso to the Bayesian 

NMIG regularization, with sometimes marginal differences under the last two priors, compare upper 
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panel of Figure 10.15.  
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Figure 10.13: Estimated error distribution densities in the AFT model with baseline error distribution BED 2, 

xp 25=  covariates and n 500=  (upper panel), n 200=  (middle panel) or n 100=  (lower panel) observations 
under unregularized linear effects for selected update methods of the error weights. Displayed are the posterior 

mean estimates of the error density (colored lines) together with the true error density (black line) under the 
update schemes “sliceR0” (left panel), “mhcond” (middle panel) and “dirichlet” (right panel) for the error 

weights. The dashed lines mark the minimum of the lower 2.5% quantile and maximum of upper 97.5% quantile 
in the replications.  
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Figure 10.14: Mean squared errors of the estimated regression coefficients, ˆMSE( )β , in the AFT model with 
baseline error distribution BED 1 (left side) to BED 4 (right side), xp 25=  covariates and n 500=  observations 

under the Bayesian lasso regularization of the linear effects. Displayed are the estimates under the update 
schemes “sliceR0”, “mhcond”, “mcondstep”, “mcondblock” and “dirichlet” for the error weights. PGM.BT 

denotes the corresponding results from the model using the true predictor structure.  
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Results with n <<<< 500 observations: With decreasing sample size also the MSE of the estimated 

regression coefficients increases, but the observed MSE trend under the various Bayesian 

regularization priors with n 500=  observations is retained and becomes more obvious, compare lower 

panel of Figure 10.15. Further, the observed MSE pattern of the regression coefficients coincides with 

the previously seen pattern in terms of the MSE of the baseline error density, compare Figure 10.10, 

so that the specific regularization of the regression coefficients affects also the performance of the 

baseline error density estimation. Vice versa also the dependence on the baseline error density fit 

becomes more pronounced with decreasing sample size, e. g. the MSEs under the update scheme 

“mhcond”, with stronger regularized error density, are clearly increased compared to the other update 

schemes by preserving the specific hierarchy induced by the different shrinkage priors. In addition the 

MSE of the “dirichlet” update becomes more and more comparable to the MSEs under the other 

update schemes and from n 300<  observations the performance is even higher. In summary, the 

performance of the baseline error is connected to the performance of the predictor, where the basic 

level of the performance is rather determined by the fit of the baseline error and improvements are 

possible with an improved fit of the predictor. 
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Figure 10.15: Mean squared errors of the estimated regression coefficients, ˆMSE( )β , in the AFT model with 
baseline error distribution BED 2, xp 25=  covariates and n 500=  (upper panel) to n 100=  (lower panel) 
observations under various shrinkage priors with the update schemes “sliceR0” (first column), “mhcond” 

(second column), “mcondblock” (third column) and “dirichlet” (fourth column) for the error weights. Displayed 
are the estimates under no, Bayesian ridge, Bayesian lasso and Bayesian NMIG regularization of the linear 

effects. PGM.BT denotes the results from the model using the true predictor structure.  

Result with Gaussian error: The observed improved performance induced by the shrinkage priors, is 

also observable under the Gaussian error assumption, see Figure 10.16. The best performance is 

obtained under the Bayesian NMIG regularization followed by the Bayesian lasso and ridge, where in 

particular the Bayesian NMIG always outperforms the results from the frequentist stepwise selection. 
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With respect to the results of the error density estimation, see Figure 10.11, we found that the clearly 

improved performance in the predictor is not notably reflected in the performance of the error 

distribution in contrast to the results with the PGM error.  
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Figure 10.16: Mean squared errors of the estimated regression coefficients, ˆMSE( )β , in the AFT model with 
baseline error distribution BED 1 to BED 4, xp 25=  covariates and n 500=  or n 100=  observations under 
various shrinkage priors and the Gaussian error assumption. Displayed are the estimates under no, Bayesian 
ridge, Bayesian lasso and Bayesian NMIG regularization of the linear effects and the frequentist stepwise 

selection, AFT.Step. AFT.T denotes the results from the frequentist model using the true predictor structure.  
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Figure 10.17: Mean squared errors of the estimated regression coefficients, ˆMSE( )β , in the AFT model with 
baseline error distribution BED 2, xp 25=  covariates and n 500=  (upper panel) or n 100=  (lower panel) 

observations under the update schemes “sliceR0” (first column), “mhcond” (second column), “mcondblock” 
(third column) and “dirichlet” (fourth column) for the error weights. Displayed are the estimates under no, 

Bayesian ridge, Bayesian lasso and Bayesian NMIG regularization of the linear effects together with the 
corresponding MSEs resulting from the hard shrinkage variable selection criteria. PGM.BT denotes the results 

from the model using the true predictor structure.  
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Results under variable selection: Figure 10.17 summarizes the MSEs of the regression coefficients 

obtained under error model BED 2 (Figure 10.15) together with the resulting MSEs, if the hard 

shrinkage selection rules HS.STD, HS.CRI and HS.IND, as described in Section 4.4, are applied. In 

the figures the MSEs under the HS.IND selection rule are omitted, we obtain with n 500=  median 

values about MSE 1≈  and if n 100=  the median MSEs are comparable to those under the HS.CRI 

criterion.  

We find in general that variable selection does not improve the predictive performance with respect to 

the corresponding prior-specific full model. With n 500=  observations, upper panel of Figure 10.17, 

the selection criterion based on one standard deviation interval (HS.STD) is leading to sparse final 

models with MSE comparable to the full models that include all 25 covariates. The criterion based on 

the 95% credible interval (HS.CRI) and the NMIG indicator frequencies (HS.IND) set too many 

nonzero coefficients to zero, compare Table 10.1, which increases the MSE of the associated final 

sparse models. With reduced sample size, e. g. n 100=  observations, the performance of the Bayesian 

NMIG models increases further, relative to the Bayesian ridge and lasso prior models, and the 

HS.STD selection rule still yields sparse models with comparable MSE as the associated full models, 

compare Figure 10.17 (lower panel). Similar results are obtained under the Gaussian error 

assumption. 

NMIG indicators 

Results with n = 500 observations: The variable importance feature of the Bayesian NMIG prior is 

highlighted in the upper panel of Figure 10.18, where estimated inclusion probabilities based on 

posterior relative frequencies of the NMIG indicator variable value j 1I v=  are shown under three 

selected update schemes for the error weights and under the Gaussian error assumption.  

As induced by the specific configuration of the NMIG prior in this section, the inclusion probability 

for covariates with absolute effect sizes within the range from 1.5 to 0.1 decreases monotonically, 

where by trend effects larger than 0.7 reach inclusion probabilities that exceed the cut off value 0.5 of 

the hard shrinkage selection criterion HS.IND, compare also Section 4.5. Based on this threshold the 

effects 9 10 1β = β =  are separated from the effects 13 14 0.5β = β =  in the sense, that the hard shrinkage 

selection rule HS.IND removes the estimated effects with (absolute) size smaller than or equal to 0.5 

from the final model. In our specific simulation setting (10.2) six nonzero effects 

( 9 10 13 14 17 18, , , , ,β β β β β β ) with sizes 0.5, 0.2 and 0.1 are affected by this decision rule and, as a 

consequence of ignoring these effects, the mean squared errors of the regression coefficients included 

in the resulting final models increase considerably. Especially the Gaussian error assumption in the 

bimodal error model BED 2 increases the uncertainty in the classification (larger box-widths) and the 

classification of larger effects ( 9 10,β β ) to the component j 0I v= , compared PGM error representation. 

Nevertheless, the variable separation with HS.IND-threshold of 0.5 is not affected here and the 

number of correctly classified zero and nonzero effects is almost comparable with the PGM error 

models. 

Results with n <<<< 500 observations: With decreasing sample size the separation of the effects gets 

blurred, since the interquartile distances of the nonzero effects frequencies increase. The lower panel 

of Figure 10.18 shows the results for the case of n 100=  observations. The reduced information in the 

data enhances the classification uncertainty and we observe an increase in the classification of larger 
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effects to the component j 0I v=  and conversely the classification of smaller effects to the component 

j 1I v= . Besides the effect at the interquartile range also the number of extreme values and outliers 

increases. As observed before under the Gaussian error assumption, also the stronger smoothness 

regularization used in the “mhcond” update scheme increases further classification of larger effects to 

the component j 0I v= . The shown inclusion probabilities of the “mhcond” update scheme are 

comparable to those under the Gaussian assumption with n 100=  observations. Finally, reduced 

sample sizes cause that larger effects are stronger and smaller effects are weaker regularized, compare 

also right column of Figure 10.20. Nevertheless, the separation with the threshold 0.5 is still only 

marginally affected due to the (conveniently selected) effect sizes in (10.2), compare Table 10.1. 
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Figure 10.18: Estimated inclusion probabilities based on posterior relative frequencies of the Bayesian NMIG 
indicator variable value j 1I v=  in the AFT model with baseline error distribution BED 2, xp 25=  covariates 

and n 500=  (upper panel) or n 100=  (lower panel) observations. Displayed are the relative frequencies under 
the update schemes “sliceR0”, “mhcond” and “dirichlet” for the error weights and under the Gaussian error 

assumption (“gauss”). The red horizontal line marks the cut off value 0.5 of the hard shrinkage selection 
criterion HS.IND.  

Linear effects 

Figure 10.19 and Figure 10.20 show the estimates of four selected regression coefficients 1 3β = , 

9 1β = , 13 0.5β =  and 23 0β =  under baseline error model BED 2 with the various shrinkage priors for 

the linear effects. The results presented in Figure 10.19 are obtained with the “sliceR0” update 

scheme for the PGM weights and under the Gaussian error assumption with n 500=  observations and 

Figure 10.20 shows the results under the “sliceR0” and the “mhcond” update scheme for n 100=  

observations. 

We can observe the specific shrinkage property of the Bayesian NMIG prior (PGM.BN) in the sense 

of the weaker regularization of larger effects, like 1 3β = , where the estimates are close to the 
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unregularized estimates (PGM.B) and a stronger regularization of smaller effects, like 13 0.5β = , 

compared to the Bayesian lasso (PGM.BL) and ridge (PGM.BR) prior. As shown in Figure 10.18 the 

shrinkage begins to increase for effects with absolute values smaller than 1.5, but in the cases with 

n 500=  observations the likelihood dominates the prior information and the shrinkage is only 

marginal. Under the Gaussian error the deviations to the true effects increase, as reflected by the 

increased interquartile ranges and the location of the median and the resulting MSE of the regression 

coefficients. Especially for the zero effects the differences are enlarged. With decreasing sample size 

the interquartile ranges of the estimates increase and the shrinkage gets more pronounced. In particular 

the stronger concentration of the estimates around zero for the zero effects under the Bayesian NMIG 

prior is more emphasized. Under the stronger smoothness regularization, used in the “mhcond” 

scheme with n 100=  observations, we observe a stronger regularization under the NMIG prior for the 

effects 9β  and 10β  explained by the enhanced variation of the inclusion probabilities. 
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Figure 10.19: Regression coefficient estimates β̂  for four selected estimated regression coefficients β1 = 3 
(upper left panel), β9 = 1 (upper right panel), β13 = 0.5 (lower left panel) and β23 = 0 (lower right panel) in the 

AFT model with baseline error distribution BED 2, xp 25=  covariates and n 500=  observations. Displayed are 
the estimates resulting from “sliceR0” update scheme of the error weights (left sides) and the Gaussian error 

assumption “gauss” (right sides). The black horizontal lines mark the true values of the regression coefficients.   

Classification 

Table 10.1 and Table 10.2 show the obtained average number of the correctly classified nonzero 

coefficients ( ˆ 0, 0β ≠ β ≠ ) and correctly classified zero coefficients ( ˆ 0, 0β = β = ) for the 50 simulation 

datasets under the different variable selection methods in the AFT model. Table 10.1 contains the 

results under baseline error distribution BED 1 to BED 4 with n 500=  observations and the results 

under baseline error distribution BED 2 with decreasing number of observations n 400=  to n 100=  

are given in Table 10.2.  
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Figure 10.20: Regression coefficient estimates β̂  for four selected estimated regression coefficients β1 = 3 
(upper left panel), β9 = 1 (upper right panel), β13 = 0.5 (lower left panel) and β23 = 0 (lower right panel) in the 

AFT model with baseline error distribution BED 2, xp 25=  covariates and n 100=  observations. Displayed are 
the estimates resulting from “sliceR0” (left sides) and “mhcond” (right sides) update scheme of the error 

weights. The black horizontal lines mark the true values of the regression coefficients.  

With increased length of the hard shrinkage selection interval the average number of correctly 

classified zero effects increases and the average number of correctly classified nonzero effects 

decreases. This is reflected by the results from the application of the HS.STD rule, based on the 

standard deviation, and the HS.CRI rule, based on the 95 % credible region of the estimated regression 

coefficients. The best results in terms of the MSE of the regression coefficients are obtained under the 

NMIG prior combined with the HS.STD criterion and the associated final models have a higher 

average number of correctly classified nonzero effects as under the HS.CRI criterion. By trend, the 

highest correct classification of the nonzero effects is achieved under BED 2 and the lowest under 

BED 3 across the update schemes of the error weights, but the difference is about 1 coefficient. 

Especially under the HS.STD criterion, most of the true nonzero effects are detected with only a 

marginal, negligible benefit in combination with the Bayesian NMIG prior. The same structure, as 

shown in Table 10.1, results under the Gaussian error assumption with exception that the highest 

correct classification of the nonzero effects is achieved under BED 1. 

For an effect structure like (10.2) with exact zero effects, the selection-type shrinkage of the Bayesian 

NMIG prior in combination with the HS.IND criterion detects them all, resulting in the optimal value 

of 13 correctly classified zero effects. Induced by the prior tuning and the selection of the HS.IND-

threshold 0.5, only the six largest effects are included in the final model which is reflected by the 

comparably low average number of 6.02 correctly classified nonzero coefficients and an increased 

MSE of the associated sparse final model. In Section 11.5 we consider variations of the HS.IND-

threshold. With the therein obtained results we can conclude that a smaller value of the HS.IND-
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threshold, e. g. 0.1, increases the correctly classified nonzero coefficients (obvious) and the predictive 

performance of the associated final models (since the MSE gets closer to the MSE of the full model).  
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BEST 12 13 12 13 12 13 12 13 

AFT.Step 10.02 10.70 9.58 10.66 9.08 10.40 9.52 10.58 

PGM.B-HS.STD  10.64 9.00 11.24 8.60 9.86 8.78 10.14 9.40 

PGM.BL-HS.STD 10.66 9.64 11.24 8.90 9.86 9.60 10.06 9.92 

PGM.BR-HS.STD 10.68 9.18 11.22 8.28 9.98 8.72 10.16 9.28 

PGM.BN-HS.STD 10.76 9.80 11.30 8.98 9.90 10.00 10.12 10.00 

PGM.B-HS.CRI  9.28 12.54 9.92 12.24 8.44 12.54 8.68 12.38 

PGM.BL-HS.CRI 9.32 12.64 9.84 12.54 8.28 12.72 8.62 12.54 

PGM.BR-HS.CRI 9.30 12.46 9.88 12.30 8.40 12.50 8.74 12.40 

PGM.BN-HS.CRI 9.32 12.70 9.80 12.38 8.24 12.84 8.64 12.64 

PGM.BN-HS.IND 6.06 13.00 6.02 13.00 5.98 13.00 6.02 13.00 

Table 10.1: Average number of correctly classified coefficients for the AFT models under baseline error 
distributions BED 1 to BED 4 with n 500=  observations after variable selection. Displayed are the results under 
the “sliceR0” update scheme for the transformed error weights. Especially ˆ 0, 0β ≠ β ≠  denotes the case that the 

estimated effect is nonzero ( ˆ 0β ≠ ) when the corresponding true effect is nonzero ( 0β ≠ ), and ˆ 0, 0β = β =  
denotes the case that the estimated effect is zero ( ˆ 0β = ) when the corresponding true effect is zero ( 0β = ). 

AFT.Step: AFT model with Gaussian error assumption.  

With decreasing sample size the average number of correctly classified regression coefficients 

decreases for the HS.STD and HS.CRI criterion and is reduced about two regression coefficients from 

the simulations with n 500=  to n 100=  observations. There is hardly any variation in the 

classification observable for the HS.IND rule. 
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BEST 12 13 12 13 12 13 12 13 

AFT.Step 9.64 10.54 9.34 10.48 8.82 10.56 8.24 9.44 

PGM.B-HS.STD  11.08  8.54 10.80  8.96 10.26  9.06 9.32  8.52 

PGM.BL-HS.STD 11.08  9.30 10.74  9.38 10.18  9.74 9.18  9.24 

PGM.BR-HS.STD 11.14  8.58 10.82  8.88 10.28  9.04 9.32  8.60 

PGM.BN-HS.STD 11.16  9.26 10.76  9.52 10.26  9.90 9.00 10.24 

PGM.B-HS.CRI   9.94 12.48  9.32 12.38  9.00 12.46 7.20 11.86 

PGM.BL-HS.CRI  9.92 12.54  9.32 12.62  8.90 12.68 7.20 12.54 

PGM.BR-HS.CRI  9.94 12.36  9.34 12.48  8.92 12.44 7.34 11.96 

PGM.BN-HS.CRI  9.92 12.52  9.30 12.64  8.88 12.74 7.28 12.84 

PGM.BN-HS.IND  6.02 13.00  6.06 13.00  6.06 13.00 5.96 13.00 

Table 10.2: Average number of correctly classified coefficients for the AFT models under baseline error 
distributions BED 2 with n 400=  to n 100=  observations after variable selection. Displayed are the results 

under the “sliceR0” update scheme for the transformed error weights. Especially ˆ 0, 0β ≠ β ≠  denotes the case 
that the estimated effect is nonzero ( ˆ 0β ≠ ) when the corresponding true effect is nonzero ( 0β ≠ ), and 

ˆ 0, 0β = β =  denotes the case that the estimated effect is zero ( ˆ 0β = ) when the corresponding true effect is zero 
( 0β = ). AFT.Step: AFT model with Gaussian error assumption.  
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Penalties of the linear effects 

Finally, Figure 10.21 and Figure 10.22 show the covariate specific penalties expressed in terms of the 

inverse variance parameters 
j

2−
βτ  of four selected regression coefficients 1 3β = , 9 1β = , 13 0.5β =  and 

23 0β =  under baseline error model BED 2. The figures show almost similar results for n 500=  and 

n 100=  observations and are associated to Figure 10.19 and Figure 10.20. The Bayesian ridge 

penalty is constant across the regression coefficients, while the Bayesian lasso penalty is smaller for 

larger regression coefficients and increases for smaller effects. Under the NMIG prior the penalty is 

close to zero for the lager effects, resulting in a clearly reduced shrinkage, and for smaller effects the 

penalty increases. The results from Section 4.5 have shown that in particular under the NMIG prior the 

posterior mean estimate of 
j

2−
βτ  for smaller effects covers only a small range of applied penalization, so 

that the displayed penalties represents rather a lower bound for the penalization of small effects under 

the NMIG prior.  
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Figure 10.21: Estimates of the covariate specific penalty 
j

2ˆ−
βτ  under the Bayesian ridge, lasso and NMIG 

regularization in the AFT model with baseline error distribution BED 2, xp 25=  covariates and n 500=  
observations. Displayed are the Bayesian estimates associated to the four selected estimated regression 

coefficients β1 = 3 (upper left panel), β9 = 1 (upper right panel), β13 = 0.5 (lower left panel) and β23 = 0 (lower 
right panel) resulting from the “sliceR0” update scheme of the error weights (left sides) and the Gaussian error 

assumption “gauss” (right sides).  

The estimated shrinkage parameters of the Bayesian regularization priors are almost comparable under 

the four baseline error models and vary marginally with decreasing sample size. We obtain in the data 

with n 500=  observations median estimates about 0.45 for the Bayesian ridge and 1.7 for the 

Bayesian lasso shrinkage parameter. The Bayesian NMIG complexity parameter has median values 

about 0.29. When the sample size decreases the shrinkage parameters of the Bayesian ridge and lasso 

prior decrease marginally and the complexity parameter of the NMIG prior increases marginally. 
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Figure 10.22: Estimates of the covariate specific penalty 
j

2ˆ−
βτ  under the Bayesian ridge, lasso and NMIG 

regularization in the AFT model with baseline error distribution BED 2, xp 25=  covariates and n 100=  
observations. Displayed are the Bayesian estimates associated to the four selected estimated regression 

coefficients β1 = 3 (upper left panel), β9 = 1 (upper right panel), β13 = 0.5 (lower left panel) and β23 = 0 (lower 
right panel) resulting from the“sliceR0” (left sides) and “mhcond” (right sides) update scheme of the error 

weights.  

10.3. High-dimensional predictor 

In this section we consider the impact of an increased number of model parameters by modeling the 

xp 25=  covariates in the simulation data of the previous subsection as nonlinear and by increasing the 

number of covariates xp  with linear effects. 

10.3.1. Nonlinear predictor 

In general it is not clear, if the effect of a covariate is really linear, and we can use the nonlinear 

modeling of covariate effects for a visual inspection of the shape of the influence on the response. If 

continuous covariates are modeled as nonlinear, e. g. via P-splines, the number of parameters to 

estimate increases clearly. In addition, the AFT model with flexible PGM error model consists of a 

high number of parameters to estimate the error distribution density. We investigate in this subsection 

the performance of the baseline density estimation and the behavior of the regularization priors in the 

framework, when the number of parameters exceeds the number of observations.  

In the following we reconsider the simulation data of the previous Subsection 10.2, where the xp 25=  

linear effects are assumed to be smooth functions jf ( )⋅ , j 1,...,25= , of the covariates, i. e. we state the 

following predictor structure 

 i 1 i,1 25 i,25f (x ) ... f (x ), i 1,...,nη = + + = . 
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The smooth functions are modeled via Bayesian P-splines jg
j k, j kk 1f ( ) b ( )

=
⋅ = α ⋅∑ , where we use jg 20=  

cubic B-spline basis functions kb ( )⋅  in each representation and the associated basis function weights 

j 1, j 20, j( ,..., )′= α αα  are equipped with second-order random walk priors to control the smoothness. In 

summary, the predictor consists of 500 basis function weights to estimate, and we consider this high-

dimensional predictor structure under the baseline error models BED 1 to BED 4 with n 500=  

observations and under the baseline error model BED 2 with decreasing number of observations 

n 400,300,200,100= . 

Function and parameter specification 

We use same methods as before in Subsection 10.2 with the given hyperparameter specification of the 

error priors. The hyperparameter 
01,h τ  of the smoothness prior for the PGM error weights is still 

increased under the “mhcond” update scheme and we use this update scheme mainly in error model 

BED 2. In addition the hyperparameters of the inverse gamma smoothing variance prior for the 

nonlinear effects are set to 
j j1, 2,h h 0.001τ τ= =  and we use (0) (0)

1, j 20, j... 0.01α = = α =  and 
j

2(0) 1ατ =  as initial 

states of the regularized components. With the nonlinear predictor we observed running times of the 

sampler within the range of 1 hour − 1 hour 47 min ( xp 25,n 100= = ) and 60 min − 2 hours 20 min 

( xp 25,n 500= = ). 

Results 

MSE of the baseline error density 

Results with n = 500 observations: Figure 10.23 shows the MSEs of the estimated baseline error 

density under the four error models BED 1 to BED 4 from the replications with n 500=  observations. 

The results under the Gaussian error assumption are not visualized, but the median MSEs are given in 

the annotations of Figure 10.23 and Figure 10.24 for comparison. With exception of the Gaussian 

error results, the increase in the MSE is still rather moderate compared to the models with the strictly 

linear predictor. So far, the best performances in the error models BED 3 and BED 4 are obtained with 

the “dirichlet” update scheme. Here, with the nonlinear predictor, this result is not approved, but in 

BED 1 and BED 2 the MSEs are still comparable to the models with linear predictor. Under the 

“slice” update-scheme we observe an increased MSE, compared to the MSEs of the block update 

schemes “mcondstep” and “mcondblock”.  

Results with n <<<< 500 observations: As shown in Figure 10.24 the reduction of the sample size 

increases step by step the MSE of the baseline error density. As previously observed, the stronger 

smoothing lets the “mhcond” scheme sand out with an enhanced MSE compared to the other update 

schemes, but in particular with n 100=  observations the stronger smoothness regularization is leading 

to a benefit, because the interquartile range is clearly decreased (compared to the other update 

schemes) and the median is now comparable to the median of “sliceR0”. Nevertheless, the 

performances under the “sliceR0” and “mhcond” update schemes are really poor and the MSEs act, 

with respect to the median, on a level comparable to the MSE under the Gaussian error assumption. As 

previously observed under the strictly linear predictor, the performance obtained with the “dirichlet” 

update scheme increases relative to the other update schemes, when the number of observations is 

reduced and the best performance for n 100=  observations is obtained with this update scheme. In 

general the MSEs of the baseline error densities cross the marked value 5e-4  between n 300=  and 
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n 200=  observations, under the linear predictor the crossing happens between n 200=  and n 100=  

observations. 
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Figure 10.23: Mean squared errors of the estimated baseline error density, 0Y
ˆMSE(f ) , in the AFT model with 

baseline error distribution BED 1 (left side) to BED 4 (right side), xp 25=  covariates and n 500=  observations, 
if the covariate effects are modeled by cubic P-splines. Displayed are the estimates under the update schemes 

“sliceR0”, “mhcond”, “mcondstep”, “mcondblock” and “dirichlet” for the error weights. PGM.BT denotes the 
corresponding results from the model using the true linear predictor structure. The red dotted line marks the 
value 5e-5. The corresponding median MSEs under the Gaussian error assumption are for are for BED 1: 

0YAFT.BS
ˆMSE (f ) 12.1e-4≈ , for BED 2: 0YAFT.BS 47.9ˆMSE (f ) e-4≈ , for BED 3: 0YAFT.BS 9.2ˆMSE (f ) e-4≈  and for 

BED 4: 0YAFT.BS 13.7ˆMSE (f ) e-4≈ .  
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Figure 10.24: Mean squared errors of the estimated baseline error density, 0Y
ˆMSE(f ) , in the AFT model with 

baseline error distribution BED 2, xp 25=  covariates and n 400=  (left side) to n 100=  (right side) 
observations, if the covariate effects are modeled by cubic P-splines. Displayed are the estimates under the 
update schemes “sliceR0”, “mhcond”, “mcondstep”, “mcondblock” and “dirichlet” for the error weights. 
PGM.BT denotes the corresponding results from the model using the true linear predictor structure. The red 

dotted line marks the value 5e-5. The corresponding median MSEs under the Gaussian error assumption with 
n 100=  observations is 0YAFT.BS

ˆMSE (f ) 58.9e-4 0.0058≈ = .  

Baseline error density 

The resulting estimates of the baseline error density under error model BED 2 with decreasing number 

of observations are displayed in Figure 10.25. If the sample size is reduced, the fit gets poorer, but 

with sample sizes n 200≥  the information in the data is still sufficient to reflect the bimodal nature of 

the baseline error in the estimates. With less than n 200=  observations the bimodal shape of the 
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baseline error density is rarely detected and the estimates under the “mhcond” update are almost 

always unimodal, due to the stronger smoothness regularization. Under the “sliceR0” update the 

weaker regularization enables often a bimodal estimate with extremely varying locations of the modes, 

and the estimates under the “dirichlet” scheme are rather undulating and the cavity between the two 

modes is not detected. 
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Figure 10.25: Estimated error distribution densities in the AFT model with baseline error distribution BED 2, 

xp 25=  covariates and n 500=  (upper panel), n 200=  (middle panel) or n 100=  (lower panel) observations 
when the covariates are modeled as P-splines for selected update methods of the error weights. Displayed are the 
posterior mean estimates of the error density (colored lines) together with the true error density (black line). The 

dashed lines mark the minimum of the lower 2.5% quantile and maximum of upper 97.5% quantile in the 
replications.  

MSE of the nonlinear effects 

Figure 10.26 shows the resulting sum of the spline individual MSEs, i. e. 25
jj 1

ˆ ˆMSE(f ) MSE(f )
=

=∑ , 

under the error models BED 1 to BED 4 with n 500=  observations and Figure 10.27 shows the 

corresponding results under error model BED 2 with decreasing number of observations. The MSE is 

clearly increased compared to the strictly linear modeling of the effects, as indicated by the increased 

differences to the ˆMSE( )β  of the model with the true predictor structure (PGM.BT). As previously 

observed with the strictly linear predictor, the differences in the performance of the baseline error 

density estimation, caused by the various update schemes, are again less pronounced in terms of the 

MSEs of the regression coefficients. Even, the MSEs of the “dirichlet” and “mhcond” update scheme 

are almost comparable to the other update schemes. If the sample size decreases, the performance of 
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the “dirichlet” scheme is again improved in comparison to the remaining update schemes and the 

performance is best in the case of n 100=  observations. In particular, for the sample size of n 100=  

the MSE under the Gaussian error assumption is almost in the same range as the MSE with the PGM 

error. In the case of n 200=  observations the spline MSE ( ˆMSE(f ) ) is comparable to the MSE with 

the unregularized linear predictor for n 100=  observations.  
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Figure 10.26: Sum of the mean squared errors of the nonlinear effects, ˆMSE(f ) , in the AFT model with 
baseline error distribution BED 1 (left side) to BED 4 (right side), xp 25=  covariates and n 500=  observations, 

where the effects are modeled by cubic P-splines. Displayed are the estimates under the update 
schemes“sliceR0”, “mhcond”, “mcondstep”, “mcondblock” and “dirichlet” for the error weights and the 

Gaussian error assumption (“gauss”). PGM.BT denotes the corresponding results from the model using the true 
linear predictor structure.   
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Figure 10.27: Sum of the mean squared errors of the nonlinear effects, ˆMSE(f ) , in the AFT model with 
baseline error distribution BED 2, xp 25=  covariates and n 400=  (left side) to n 100=  (right side) 

observations, where the effects are modeled by cubic P-splines. Displayed are the estimates under the update 
schemes“sliceR0”, “mhcond”, “mcondstep”, “mcondblock” and “dirichlet” for the error weights and the 

Gaussian error assumption (“gauss”). PGM.BT denotes the corresponding results from the model using the true 
linear predictor structure.  

Nonlinear effects 

Finally, Figure 10.28 shows the nonlinear function estimates 14f̂ , 18f̂ , and 25f̂  in the AFT model with 

baseline error distribution BED 2 and n 300=  observations (upper panel) and n 100=  observations 

(lower panel) for one replicated dataset. The black dashed line marks the associated true linear effect. 
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Figure 10.28: Estimations of the nonlinear effects of the covariates x14 (first column), x18 (second column), and 
x25 (third column), in the AFT model with baseline error distribution BED 2, xp 25=  covariates and n 300=  

(upper panel) and n 100=  (lower panel) observations. Displayed are the posterior mean estimates of the 
coefficients (colored solid lines) together with the corresponding 95% pointwise credible bands (colored dashed 

lines) of one selected dataset and the true effect (black dotted line).  

10.3.2. Bayesian NMIG prior 

Data generation 

In this section we investigate the high-dimensional case, where the number of covariates is increased 

with respect to the previous sections. We consider in particular the AFT model with baseline error 

model BED 2 and the number of covariates increases from xp 100=  to xp 600= . The covariates, log-

survival times and the 25% censoring times are generated as described before in the Subsection 10.2. 

The so far used vector (3,3,0,0,2,2,0,0,1,1,0,0,0.5,0.5,0,0,0.2,0.2,0,0,0.1,0.1,0,0,0)′=β  is pasted 

back-to-back repeatedly until the desired number of effects xp  is attained. Particularly we use the 

predictor 

 
x xi i,1 1 i,2 2 i,p px x ... x , i 1,...,nη = β + β + + β = , (10.3) 

with 

• xp 250,300,400,500,600=  in combination with n 500=  observations, 

• xp 100,200,300=  in combination with n 200=  observations, 

• xp 400=  in combination with n 300=  observations. 

The regularization of the linear effects is carried out by means of the Bayesian NMIG prior and we 

summarize in the following the results for the combinations xn 500,p 250= =  and xn 200,p 100= = , 

where the number of covariates is still smaller than the number of observations, and for the 

combinations xn 200,p 300= =  and xn 300,p 400= = , where the number of covariates exceeds the 

number of observations. 
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Function and parameter specification 

We use the function and parameter settings as given in the previous Sections 10.1 and 10.2. For the 

high-dimensional combinations xn 200,p 300= =  and xn 300,p 400= =  we observe under the so far 

used constellation of the hyperparameters a critical convergence in the sample paths of the parameters 

associated to baseline error density, and a further adaption of the smoothing prior has also shown no 

improvement. In general the paths of regression coefficients and shrinkage prior components are less 

concerned from the convergence problems. However, we summarize shortly the results under the so 

far used prior tuning and interpret the associated results carefully. For some of the combinations we 

use additional runs without the standardization of the error distribution within the sampler 

(scalebasis=FALSE) and we present these results for the respective combinations. With the higher-

dimensional predictors we observed running times of the sampler about 30 min ( xp 100,n 200= = ), 50 

min ( xp 300,n 200= = ), 1h 40min ( xp 400,n 300= = ) and 1h 30min ( xp 250,n 500= = ). 

Results 

Baseline error location and scale 

If the number of covariates is increased with respect to the number of observations, we observe in 

general a larger deviation of the estimated location and scale parameters from the true values of the 

underlying baseline error distribution. Until now, the option to standardize the error density during the 

iterations of the MCMC sampler has shown no obvious impact onto the results. Here, with an 

increased number of covariates, the standardization is leading to a higher concentration of the 

estimated moments around true moments of the baseline error density, as shown in Figure 10.29. The 

larger deviations in the high-dimensional combination xn 300,p 400= =  are explained by the weak 

convergence of the error parameters.  

MSE of the baseline error density 

As observed in the previous sections the fit to the error moments does not affect the performance of 

the baseline error density, Figure 10.30. With respect to comparable sample sizes, the MSEs of the 

error density clearly increase with the increasing number of covariates in the model. As previously 

noticed the “dirichlet” update scheme performs well (relative to the other update schemes) in 

situations with a low sample size, and also here with increased numbers of covariates the best 

performances are achieved with this unregularized update scheme. In the simulations with n 200=  

observations the MSE of the “dirichlet” update scheme is comparable to the MSE of the PGM error 

model with the true predictor structure (PGM.BT).  

Baseline error density 

Figure 10.31 shows the estimates of the baseline error density for the combinations xp 250,n 500= =  

(upper panel) and xn 300,p 400= =  (lower panel). Even in the cases with more covariates than 

observations the estimates, e. g. under the “sliceR0” or “mcondblock” update scheme, are still smooth 

and a stronger regularization of the smoothness (results not shown) can not counterbalance the obvious 

lack of fit due to the weak information in the data, which is also observable for the models with the 

true predictor structure. 
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Figure 10.29: Estimated scale (upper panel) and location parameter (lower panel) in the AFT model with 
baseline error distribution BED 2, xp 100=  covariates and n 200=  observations (first column), xp 250=  

covariates and n 500=  observations (second column), xp 300=  covariates and n 200=  observations (third 
column) and xp 400=  covariates and n 300=  observations (last column) under the Bayesian NMIG 

regularization of the regression coefficients. Displayed are the estimates under various update schemes for the 
error weights. The black horizontal lines mark the true scale 0Yσ  and location 0Yµ  of the associated baseline 

error distribution.  
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Figure 10.30: Mean squared errors of the estimated baseline error density, 0Y
ˆMSE(f ) , in the AFT model with 

baseline error distribution BED 2, xp 100=  covariates and n 200=  observations (first panel), xp 250=  
covariates and n 500=  observations (second panel), xp 300=  covariates and n 200=  observations (third 

panel) and xp 400=  covariates and n 300=  observations (last panel) under the Bayesian NMIG regularization 
of the regression coefficients. Displayed are the estimates under various update schemes for the error weights. 

AFT.T denotes the results from the frequentist AFT model with Gaussian error using the true predictor structure 
and PGM.BT denotes the corresponding results from the Bayesian AFT model with PGM error.  
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Figure 10.31: Estimated baseline error densities in the AFT model with baseline error distribution BED 2, 

xp 250=  covariates and n 500=  observations (upper panel) and xp 400=  covariates and n 300=  observations 
(lower panel) under the Bayesian NMIG regularization of the regression coefficients. Displayed are the posterior 
mean estimates of the error density (colored lines) together with the true error density (black line). The dashed 
lines mark the minimum of the lower 2.5% quantile and maximum of upper 97.5% quantile in the replications.  

MSE of the regression coefficients 

The MSEs of the estimated regression coefficients, ˆMSE( )β , are standardized to reflect the portion of 

25 regression coefficients, e. g. in the case of xp 100=  covariates we divide the MSE of the regression 

coefficients with 4. Under comparable sample sizes the MSE of the estimated regression coefficients 

increases with increasing number of covariates in the model. As previously observed, the loss of 

performance in the error density estimation is also reflected in the level of the performance of the 

regression coefficient estimates, shown in Figure 10.32.  

With the given structure of the underlying effects (10.2) we do not reach MSEs comparable to the 

model using the true predictor structure (PGM.BT), as already observed under the NMIG prior with 

the low-dimensional linear predictor. If in addition the hard shrinkage selection rules are applied to 

find sparse final models, compare Figure 10.33, we observe a similar, but more pronounced trend of 

the resulting MSEs as in the previous Subsection 10.2. 

For the high-dimensional cases, with still more observations than covariates ( xn p> , Figure 10.33 

upper panel), the MSE increases clearly from the HS.STD over the HS.CRI to HS.IND selection rule. 

The low performance trend of HS.IND criterion is reversed in the high-dimensional case, with less 

observations than covariates ( xn p< , Figure 10.33 lower panel). In that case, the range of the 

associated MSE is comparable close to the MSEs resulting form the HS.STD rule and we will find 

similar results with the high-dimensional simulations in the CRR model, compare Section 11.4. But in 

general, all hard shrinkage rules yield sparse final models with lower performance than those 

including the full covariate set, especially in the xn p<  setting. Table 10.3 shows the associated 

classification results of the estimated effects under the hard shrinkage variable selection. 
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Figure 10.32: Mean squared errors of the estimated regression coefficients, ˆMSE( )β , in the AFT model with 
baseline error distribution BED 2, xp 100=  covariates and n 200=  observations (first panel), xp 250=  

covariates and n 500=  observations (second panel), xp 300=  covariates and n 200=  observations (third 
panel) and xp 400=  covariates and n 300=  observations (last panel) under the Bayesian NMIG regularization 
of the regression coefficients. Displayed are the estimates under various update schemes for the error weights. 

AFT.T denotes the results from the frequentist AFT model with Gaussian error using the true predictor structure 
and PGM.BT denotes the corresponding results from the Bayesian AFT model with PGM error.  
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Figure 10.33: Mean squared errors of the estimated regression coefficients, ˆMSE( )β , in the AFT model with 
baseline error distribution BED 2 together with the MSEs resulting from the hard shrinkage variable selection 
criteria. Displayed are the MSEs under various update schemes for the error weights with xp 100=  covariates 

and n 200=  observations (upper left panel), xp 250=  covariates and n 500=  observations (upper right panel), 

xp 300=  covariates and n 200=  observations (lower left panel) and xp 400=  covariates and n 300=  
observations (lower right panel).  
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NMIG indicators 

Concordantly, the constellation between the number of observations and the number of covariates 

affects the classification of the covariate specific binary variance component jI  to the values 0v  and 

1v . The lack of definition, that comes along with an increased number of covariates or reduced 

number of observations, is indicated by larger interquartile ranges of the estimated inclusion 

probabilities, based on posterior relative frequencies of the Bayesian NMIG indicator variable value 

j 1I v= , followed by and an increased number of extreme values. 
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Figure 10.34: Estimated inclusion probabilities based on posterior relative frequencies of the Bayesian NMIG 
indicator variable value j 1I v=  in the AFT model with baseline error distribution BED 2, xp 100=  covariates 

and n 200=  observations (upper panel) or  xp 250=  covariates and n 500=  observations (lower panel). 
Displayed are the frequencies corresponding to the selected effects of the covariates annotated at the x-axis via 
three different update schemes for the error weights. The red horizontal line marks the cut off value 0.5 of the 

hard shrinkage selection criterion HS.IND.  

If still more observations than covariates are available, ( xn p> ), the selected threshold 0.5, used in the 

HS.IND criterion, separates the effects that are larger or equal than 1β =  from those smaller or equal 

than 0.5β = , compare Figure 10.34. As in the simulations with the low-dimensional predictor, 

covariates with effects 13 14 0.5β = β =  have still higher inclusion probabilities compared to the 

inclusion probabilities of the covariates with smaller or the zero effects. But, as shown in Figure 

10.35, this separation gets blurred if the sample size is smaller than the number of covariates ( xn p< ) 

and is shifted to larger coefficients. Due to the decreased inclusion probabilities, the HS.IND-threshold 

separates now covariate effects 2β =  and 1β = , and in particular in the cases with lower sample sizes, 

like n 200=  (upper panel), this effect is pushed since the inclusion probabilities of the larger effects 

2β =  are further shifted towards the cut of value of 0.5. In addition the inclusion probabilities of the 

covariates with effects 13 14 0.5β = β =  do not longer differ from the inclusion probabilities of the 
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covariates with smaller or the zero effects. With respect to the results from Section 11.5 the decrease 

of the HS.IND-threshold value increases the number of correctly classified nonzero effects and 

improves the performance of the sparse final models obtained with the HS.IND criterion. The 

improvement is mainly caused by the inclusion of the covariates with larger effects, since the inclusion 

probabilities of the covariates with smaller effects are not distinguishable from the inclusion 

probabilities of the covariates with zero effects. 
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Figure 10.35: Estimated inclusion probabilities based on posterior relative frequencies of the Bayesian NMIG 
indicator variable value j 1I v=  in the AFT model with baseline error distribution BED 2, xp 300=  covariates 
and n 200=  (upper panel) or xp 400=  covariates and n 300=  (lower panel) observations. Displayed are the 

frequencies corresponding to the selected effects of the covariates annotated at the x-axis via three different 
update schemes for the error weights. The red horizontal line marks the cut off value 0.5 of the hard shrinkage 

selection criterion HS.IND. 

Classification 

As indicated by the posterior inclusion probabilities, the HS.IND selection rule detects almost always 

all true zero effects reliable and as a consequence the proportion of correctly classified zero effects 

( ˆ 0, 0β = β = ) matches well the optimal value of 0.52, compare Table 10.3. Mainly affected by the 

transition from the xn p>  to the xn p≤  case, is the proportion of correctly classified nonzero effects 

( ˆ 0, 0β ≠ β ≠ ) which decreases from 0.23 ( xp 100= ) to 0.14 ( xp 300= ) with sample size n 200=  and 

from 0.24 ( xp 250= ) to 0.21 ( xp 600= ) with sample size n 500= . Since the proportion of correctly 

classified zero effects is almost constant the number of misclassifications increase. 

Linear effects 

Lower inclusion probabilities enhance the relative frequencies of the Bayesian NMIG indicator values 

j 0I v=  and induce a stronger regularization of the associated effects jβ . The impact of the stronger 
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regularization of the regression coefficients is shown in Figure 10.36 by means of four selected effects 

with different size in the data with n 200=  observations, where at the right sides the predictor 

includes xp 100=  and at the left sides xp 300=  covariates. If we switch from the xn p>  (left side) to 

the xn p<  (right side) case, we see the increased shrinkage of the larger regression coefficients. The 

shrinkage is clearly increased for the effects 9 1β =  and 13 0.5β = , where the estimates are very close to 

zero.  

 

sliceR0 
BED 2 

n = 200, px = 100 
BED 2 

n = 500, px = 250 
BED 2 

n = 200, px = 300 
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n = 300, px = 400 
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β =
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ˆ 0

0
β ≠
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ˆ 0

0
β =
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BEST 0.48 0.52 0.48 0.52 0.48 0.52 0.48 0.52 

AFT.Step 0.38 0.29 - - - - - - 

PGM.BN-HS.STD 0.36 0.42 0.39 0.39 0.15 0.48 0.20 0.48 

PGM.BN-HS.CRI 0.28 0.51 0.32 0.50 0.11 0.51 0.15 0.51 

PGM.BN-HS.IND 0.23 0.52 0.24 0.52 0.14 0.49 0.17 0.51 

Table 10.3: Average fraction of correctly classified coefficients for the AFT models under baseline error 
distributions BED 2 after variable selection. Displayed are the results under the “sliceR0” update scheme. 

Especially ˆ 0, 0β ≠ β ≠  denotes the case that the estimated effect is nonzero ( ˆ 0β ≠ ) when the corresponding true 
effect is nonzero ( 0β ≠ ), and ˆ 0, 0β = β =  denotes the case that the estimated effect is zero ( ˆ 0β = ) when the 

corresponding true effect is zero ( 0β = ). AFT.Step: AFT model with Gaussian error assumption.  
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Figure 10.36: Regression coefficient estimates β̂  for four selected estimated regression coefficients β1 = 3 
(upper left panel), β9 = 1 (upper right panel), β13 = 0.5 (lower left panel) and β23 = 0 (lower right panel) in the 

AFT model with baseline error distribution BED 2, xp 100=  covariates and n 200=  observations (left sides) or 

xp 300=  covariates and n 200=  observations (right sides). The black horizontal lines mark the true values of 
the regression coefficients. AFT.T denotes the results from the frequentist AFT model with Gaussian error using 
the true predictor structure and PGM.BT denotes the corresponding results from the Bayesian AFT model with 

PGM error.  
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Penalties of the linear effects and shrinkage parameters 

Figure 10.37 shows the associated covariate specific penalties expressed in terms of the inverse 

variance parameters 
j

2−
βτ  that indicate also the increased shrinkage if the number of covariates in the 

predictor increases. The increased shrinkage causes also a decrease in the estimated complexity 

parameter ω  as shown in Figure 10.38. The adaption of the hyperparameters 1,h ω  and 2,h ω  to force a 

higher model complexity ω  leads to higher inclusion probabilities for all covariates and does not 

solve the problem that especially in higher-dimensional covariate cases the inclusion probabilities of 

moderate effects are not separable from the inclusion probabilities covariates with smaller or zero 

effects, compare also Section 11.4.  
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Figure 10.37: Covariate specific penalty 
j

2ˆ−
βτ  for the Bayesian NMIG prior in the AFT model with baseline error 

distribution BED 2, xp 100=  covariates and n 200=  observations (left sides) or xp 300=  covariates and 
n 200=  observations (right sides). Displayed are the Bayesian estimates associated to the four selected 

estimated regression coefficients β1 = 3 (upper left panel), β9 = 1 (upper right panel), β13 = 0.5 (lower left panel) 
and β23 = 0 (lower right panel) under various update schemes for the error weights.  

Final remarks 

In summary, the performance of the AFT is considered in terms of the performance of the baseline 

error density and the predictor. We have seen that the performance of both model components is 

connected and an improved performance of the baseline error induces an improved performance of the 

predictor and vice versa.  

The several strategies applied in the estimation of the baseline error have shown limited effects on the 

performance. Across the four used baseline error models none of the used update schemes of the error 

mixture weights has shown superiority. We have seen that the unregularized “dirichlet” update 

scheme performs very well (and best compared to the other update schemes) in some of the four error 
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models and that the performance is improved relative to the other update schemes, when the sample 

size decreases or the number of covariates increases. Nevertheless, due to the lack of information in 

the higher-dimensional cases with lower sample sizes, the estimated densities do not reflect the 

underlying error density, even if the performance of “dirichlet” update scheme is higher than the 

performance of the other methods. Due to the long running times of the sampler, the enhanced tuning 

effort and the required increased regularization of the smoothness that causes a loss of performance we 

found no benefits in using the Metropolis-Hastings based update schemes. Finally, the low acceptance 

rates for the “mcondstep” scheme have shown no impact on the performance of the model component 

estimates. Also the standardization of mixture error density within the sampler has shown no benefit 

for the estimation of the model components. Possibly in other frameworks, like e. g. in quantile 

regression, where the scale parameter is modeled covariate-dependent ( i i( ) ′σ =x x ζ ) in combination 

with informative priors for ζ  it may be of any importance (e. g. with respect to the hyperparameter 

specification, compare Section 6.2.1). 
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Figure 10.38: Estimated shrinkage parameter ω̂  in the AFT model with baseline error distribution BED 2, px = 
100 covariates and n = 200 observations (left figure), px = 250 covariates and n = 500 observations (second 

figure), px = 200 covariates and n = 300 observations (third figure) and px = 400 covariates and n = 300 
observations (right figure) under the Bayesian NMIG regularization of the regression coefficients. Displayed are 

the estimates under various update schemes for the error weights.  

If we consider the estimation of the predictor components, we have seen that the application of the 

regularization priors to the linear covariate effects increases in general the performance compared to 

the unregularized estimation. In particular, the best performance results (with respect to the used effect 

model) are obtained with the specific shrinkage of the Bayesian NMIG prior, even with enough 

information in the data, where the impact of the likelihood dominates the impact of the regularization 

priors on the estimates, and even in the models with the Gaussian error assumption, where the error 

model is miss-specified. But, in the miss-specified Gaussian error model, the improved performance 

resulting from the regularization of the linear effects has only a marginal impact on the performance of 

the error density. In general, variable selection has shown no benefits for the improvement of the 

predictive performance, but with the HS.STD criterion we often found sparse models, under all three 

regularization priors, with a comparable performance as the full models. We have seen, that the 

posterior inclusion probabilities for the covariates, as provided by the NMIG prior, reflect very well 

the importance of the covariates. Nevertheless, also variable selection guided by the ranking of the 

covariates, with respect to the inclusion probabilities, shows in general no improvement of the 
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predictive performance. In the high-dimensional-covariate or low-sample-size cases the inclusion 

probabilities are shifted towards zero and the separation of the covariates with moderate effects from 

the covariates with small or zero effects vanishes.  

From the variations of the sample size and the number of covariates we found that the AFT model 

with PGM error can be applied with sample sizes about n 200≈  and a low number of covariates e. g. 

xp 25≈ , where some of them can also be modeled as nonlinear. With respect to the results of the 

baseline error estimation we do not recommend the use of the PGM error in higher-dimensional cases 

with xp n 2≥ , because regularization can compensate only limited the lack of information in the data 

to estimate reliably the high-parametric AFT model with PGM error. 

11. CRR-type models K11.A1 

In this section we investigate the performance of the Bayesian ridge, lasso and NMIG prior under the 

extended Cox relative risk (CRR) model as described in Section 7. The results obtained from the 

Bayesian methods are compared with the associated frequentist versions of the ridge or lasso penalty 

and a backward-stepwise procedure based on the AIC criterion. In addition to the semiparametric 

approach and the P-spline based modeling, we consider also a parametric Weibull model 1
0 (t) tα−λ = α  

for the baseline hazard as competitor. 

We start in Subsection 11.1 with the case xn p> , where more observations n ∈ℕ  than covariates 

xp ∈ℕ  are available and assume a simple linear shape of the baseline hazard in the data generation 

process. The models in Subsection 11.2 consider more complex shapes of the baseline hazard and 

additional nonlinear covariate effects. One of these models is revisited in Subsection 11.3, where we 

utilize an AFT model with PGM error for inference to explore the consequences, if the survival model 

is miss-specified. We proceed with the higher-dimensional case in Subsection 11.4, where the number 

of linear modeled covariates xp  is sequentially increased until it exceeds the sample size n . Finally, 

in Subsection 11.5, this section is concluded by considering modifications of the hard shrinkage 

selection criterion based on posterior relative frequencies of the Bayesian NMIG indicator values. 

Functions and methods 

Frequentist inference for the CRR model relies on the partial likelihood and we utilize the R-functions 

coxph() of the package {survival} and penalized() of the {penalized} R-package from J. 

Goeman for estimation. Frequentist variable selection, based on the AIC criterion, is practiced with 

coxph() in combination with the backward-stepwise search as provided by the step() function. The 

function penalized() enables the estimation of lasso- and ridge-regularized linear regression 

coefficients, where the optimal shrinkage parameter λ  is determined by n-fold (leave-one out) 

generalized cross validation. To select genes that are related to the patient’s survival, Gui and Li 

(2005) proposed also a LARS-COX procedure which uses L1-penalized estimation for the CRR model 

as well. In this procedure, the least angle regression method, Efron et al. (2004), was applied to solve 

the computational difficulty in high-dimensional-covariate and low-sample-size cases. Further the R-

package {glmpath},Park and Hastie (2007), is available as competitor, where the coefficients are 

computed on a grid of values for λ  at which the set of non-zero coefficients changes. As typical for 

the frequentist lasso, all these methods can select at most n variables. Due to the similarity, we restrict 
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the presentation of the regularized frequentist results to those achieved with the penalized() 

function.  

Bayesian inference for the CRR model is either based on the partial likelihood or on the full 

likelihood, if a parametric Weibull or nonparametric P-spline baseline hazard function is assumed. The 

MCMC sampling based inference algorithms for the model components are described in Section 9. In 

particular the partial likelihood based algorithms are implemented in the R-function bcoxpl(), which 

is available from the author by request. Inference with the full likelihood is carried out with the 

method regress as implemented in the free software BayesX (available from http://www.stat.uni-

muenchen.de/~bayesx). The usage of both functions is described in the Appendix D.3 and D.4. The 

Bayesian point estimates of model parameters are based on the empirical mean of the associated, 

generated sample from the marginal posterior distribution. Further summary statistics, like the 

standard deviation or quantiles, are also computed using their empirical counterparts. 

Estimation accuracy 

We measure the estimation accuracy in terms of the mean squared errors (MSE) as defined in Section 

10 over R 50=  runs. Further, we report the average number of correctly and incorrectly classified 

zero and nonzero coefficients after applying the hard shrinkage rules presented in Section 4.4. To 

compute the cumulative baseline hazard function 
t

0 00
ˆˆ (t) (u)duΛ = λ∫  associated to the estimated P-

spline baseline hazard 0
ˆ ( )λ ⋅ , the trapezoidal rule is used so that the results become comparable to the 

corresponding Breslow estimates Br
0

ˆ (t)Λ  from the partial likelihood. A selection of the main results is 

presented in the next sections. The used abbreviations that describe the models and inferential methods 

are summarized in the Reference Section.  

11.1. Low-dimensional linear predictor 

Data generation 

For our first simulations we use the configuration of the data generating process from Tibshirani 

(1997). Nine covariates i i ,1 i,9(x ,..., x )′=x  are randomly drawn from a multivariate Gaussian 

distribution with zero mean, unit variance and covariance matrix chosen such that the correlation 

between jx  and kx  is j k
i, j i,kcorr(x ,x ) −= ρ  with 0.5ρ = . The survival times iT , i 1,...,n= , are 

generated from an exponential hazard model with constant baseline hazard 0 (t) 1λ = , i. e. 

 i i i(t ) exp( )′λ = x β , 

while the censoring variables iC , i 1,...,n= , are generated as i.i.d. draws from the uniform distribution 

0U[0,c ]  with 0c  chosen to obtain censoring rates about 25 % in each dataset. For the various CRR 

models with the following nine regression coefficients 

 

CRR 1: ( 0.7, 0.7,0,0,0, 0.7,0,0,0) ,

CRR 2 : (0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1) ,

CRR 3: ( 0.4, 0.3,0,0,0, 0.2,0,0,0) ,

′= − − −

′=

′= − − −

β

β

β
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we produced R 50=  datasets with n 200=  life times in each case. The first and the second model 

were used in Tibshirani (1997), who compared the frequentist lasso regularization in the CRR model 

with the stepwise procedure, and the first and third model were used in Zhang and Lu (2007) in the 

context of the adaptive lasso with covariate-specific penalties. 

Function and parameter specification 

Methods: We us the functions coxph() and step() for frequentist estimation and penalized () 

for the frequentist lasso and ridge regularization. For Bayesian inference we use the R- function 

bcoxpl()and the BayesX method regress with the ridge, lasso and NMIG regularization of the 

linear effects. 

Hyperparameters: The hyperparameters for the shrinkage parameter of the Bayesian lasso and ridge 

prior are set to the weakly informative values 1, 2,h h 0.01λ λ= =  to enable a greater amount of 

adaptiveness for the shrinkage parameter depending on the data. The hyperparameters for the two 

variance parameter components of the Bayesian NMIG prior are 1v 1= , 0v 0.000025= , 1,h 5ψ =  and 

2,h 25ψ =  in combination with 1,h 1ω =  and 2,h 1ω =  to define a uniform prior for the complexity 

parameter ω .  

Starting values: In BayesX the starting values for the regression coefficients are computed via 

backfitting within Fisher scoring. In the function bxoxpl() we avoid preprocessing steps to fit the 

model in order to obtain suitable starting values and start with a weakly specified model. For the 

starting values of the linear effects we select values close to zero, i. e. (0)
j 0.01β = , xj 1,...,p= . The 

Bayesian NMIG regularization components starts with (0)
0jI v= , 2(0)

jψ  corresponding to the value left 

mode dependent on the specification of the variance prior for 2
jψ  and (0) 0.5ω = . The shrinkage 

parameter for the Bayesian lasso and ridge prior starts in (0) 1λ = . 

Estimation: For the Bayesian MCMC methods based on the full and partial likelihood we use 10000 

iterations with a burnin of 2000 and thin the chain by 8, which results in an MCMC sample of size 

1000. On a system with quad-core CPU (Intel Quad9550, 2.83 GHz) we need about 5 minutes for the 

Bayesian partial likelihood based models estimated in R, and about 15 seconds for the full likelihood 

based models in BayesX. 

Results for model CRR 1 

MSE of the linear effects 

Figure 11.1 shows the mean squared errors for the estimated regression coefficients, ˆMSE( )β , under 

the different regularization priors for the linear effects, when inference is based on the partial 

likelihood (CPL) and the full likelihood (CFL) with P-spline baseline hazard. In addition we show the 

MSEs obtained after applying the hard shrinkage selection criteria (HS.STD, HS.CRI, HS.IND) to the 

Bayesian estimates of the regression coefficients as described in Section 4.4. Due to the similarity of 

the results from the Weibull (WB) and the P-spline baseline hazard model (with exception of the 

baseline hazard performance) the Weibull model results are often omitted in the following. 

We note that the Bayesian NMIG model (CPL.BN, CFL.BN) performs best within each group of 

survival models (CPL, CFL) and outperforms the stepwise procedure (CPL.Step) as well as the 
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frequentist lasso (CPL.PenL) and the Bayesian lasso (CPL.BL, CFL.BL). The MSEs of the Bayesian 

NMIG estimates are close to the MSE of the maximum partial likelihood estimates, if the predictor 

with the true covariate structure under model CRR 1 is used (CPL.T). The MSEs of the corresponding 

unpenalized Bayesian methods using the true predictor are comparable to the MSE of CPL.T and are 

omitted in the figures. A marginal improvement in the MSE performance can be observed for the 

sparse models resulting from hard shrinkage selection criterion based on the standard deviation. In 

particular the MSE under the Bayesian lasso (CPL.BL-HS.STD, CFL.BL-HS.STD) and Bayesian 

ridge (CPL.BR-HS.STD, CFL.BR-HS.STD) prior is reduced, compared to the associated models that 

include all covariates. The MSE under the Bayesian lasso and ridge prior is further improved, if the 

hard shrinkage criterion based on the 95% credible region is applied to the P-spline model (CFL.BL-

HS.CRI, CFL.BR-HS.CRI), but the high performance of the Bayesian NMIG models is not reached. 

Furthermore, the HS.IND criterion only slightly changes the MSE of the resulting Bayesian NMIG 

model, since the estimates of the zero effects, compare Figure 11.2, are very close to zero anyway, i. 

e. it is negligible, if they are removed from the final model or not. 
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Figure 11.1: Mean squared errors of the regression coefficient estimates, ˆMSE( )β , under the different 
regularization and variable selection methods in simulation model CRR 1. The right box (CPL.T) shows the 

ˆMSE( )β  for the maximum partial likelihood estimations when the true predictor structure is used.  

Classification 

The second and third column in Table 11.1 show the resulting average number of the correctly 

classified nonzero coefficients ( ˆ 0, 0β ≠ β ≠ ) and correctly classified zero coefficients ( ˆ 0, 0β = β = ) for 

the 50 simulation datasets under the different variable selection methods. Column four displays the 

frequencies of the final models (MF) with the true predictor structure, i. e. correctly specified zero and 

nonzero coefficients. 

While all methods reach the optimal value of 3 correctly classified nonzero regression coefficients, the 

optimum of 6 correctly classified zero regression coefficients is only achieved with the Bayesian 

NMIG regularization in combination with the HS.CRI criterion. The associated final models recover 

in all 50 cases the true model. High numbers of correctly classified zero coefficients result also for the 

models obtained with the HS.STD and HS.IND criterion, in particular the partial likelihood models 

recover in 49 resp. 47 of 50 cases the true model. We note generally for all methods, that the average 

number of true estimated zero effects tends to smaller values under the Weibull and P-spline model of 
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the baseline hazard as under the partial likelihood, where the baseline is left unspecified. Under 

comparable prior specification we often observe that the regression coefficients, obtained with the full 

likelihood, are less regularized as those obtained with the partial likelihood, compare Figure 11.2. 

This various amounts of shrinkage explain the variability in the performance under the different hard 

shrinkage selection criteria. In summary, in model CRR 1, with clearly separable zero and nonzero 

effects, the best results in terms of the MSE and the classification are obtained with Bayesian NMIG 

prior. 

 

 Model 1 Model 2 Model 3 

 
ˆ 0

0
β ≠
β ≠

 
ˆ 0

0
β =
β =

 MF 
ˆ 0

0
β ≠
β ≠

 
ˆ 0

0
β =
β =

 MF 
ˆ 0

0
β ≠
β ≠

 
ˆ 0

0
β =
β =

 MF 

BEST 3 6 50 9 0 50 3 6 50 
CPL.Step 3 4.90 19 3.94 0 0 2.66 4.58 6 
CPL.PenL 3 3.60 2 6.42 0 2 2.88 3.86 7 

CFL.B-HS.STD 3 4.18 5 4.58 0 0 2.80 3.90 2 
WB.B-HS.STD 3 4.28 4 4.52 0 0 2.78 3.94 3 
CPL.B-HS.STD 3 4.20 4 4.54 0 0 2.78 3.86 2 

CFL.BL-HS.STD 3 4.38 6 4.38 0 0 2.78 4.26 4 
WB.BL-HS.STD 3 4.56 9 4.36 0 0 2.78 4.40 8 
CPL.BL-HS.STD 3 4.70 8 4.04 0 0 2.74 4.96 10 
CFL.BR-HS.STD 3 4.30 4 4.66 0 0 2.80 3.94 2 
WB.BR-HS.STD 3 4.26 3 4.52 0 0 2.80 4.08 4 
CPL.BR-HS.STD 3 4.42 6 4.72 0 0 2.76 4.52 7 
CFL.BN-HS.STD 3 5.82 42 2.04 0 0 2.12 5.74 12 
WB.BN-HS.STD 3 5.82 42 1.94 0 0 2.06 5.78 14 
CPL.BN-HS.STD 3 5.98 49 1.10 0 0 1.68 5.96 7 

CFL.B.HS-CRI 3 5.68 38 1.62 0 0 2.26 5.66 15 
WB.B-HS.CRI 3 5.64 36 1.48 0 0 2.22 5.66 14 
CPL.B-HS.CRI 3 5.64 36 1.40 0 0 2.26 5.64 15 

CFL.BL-HS.CRI 3 5.74 40 1.32 0 0 2.20 5.76 15 
WB.BL-HS.CRI 3 5.68 38 1.32 0 0 2.16 5.78 13 
CPL.BL-HS.CRI 3 5.84 43 0.92 0 0 1.98 5.90 13 
CFL.BR-HS.CRI 3 5.68 37 1.44 0 0 2.30 5.68 15 
WB.BR-HS.CRI 3 5.62 35 1.34 0 0 2.18 5.68 13 
CPL.BR-HS.CRI 3 5.76 41 1.04 0 0 2.16 5.82 15 
CFL.BN-HS.CRI 3 6.00 50 0.60 0 0 1.54 5.98 3 
WB.BN-HS.CRI 3 6.00 50 0.56 0 0 1.52 5.98 4 
CPL.BN-HS.CRI 3 6.00 50 0.40 0 0 1.04 5.98 0 

CFL.BN-HS.IND 3 5.74 40 2.30 0 0 2.14 5.70 12 
WB.BN-HS.IND 3 5.80 41 2.20 0 0 2.12 5.72 14 
CPL.BN-HS.IND 3 5.94 47 1.20 0 0 1.68 5.94 7 

Table 11.1: Average number of correctly classified regression coefficients for the models CRR 1, CRR 2 and 
CRR 3 after variable selection. Especially ˆ 0, 0β ≠ β ≠  denotes the case that the estimated effect is nonzero 

( ˆ 0β ≠ ) when corresponding true effect is nonzero ( 0β ≠ ), and ˆ 0, 0β = β =  denotes the case that the estimated 
effect is zero ( ˆ 0β = ) when corresponding true effect is zero ( 0β = ). The columns (MF) display the frequencies 

of the final models that recover the true model.  

Linear effects 

Figure 11.2 presents the estimated values of two selected regression coefficients, 5 0β =  and 

6 0.7β = − , obtained with the different estimation and regularization methods. If we focus on the 

Bayesian NMIG prior, we see that the estimates (CPL.BN, CFL.BN) for the zero effects are much 

more concentrated around zero, similar to the stepwise selection (CPL.Step) and the variable selection 
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under frequentist lasso (CPL.PenL), while the estimates of the nonzero effects are close to the 

unregularized estimates. The estimates reflect the adaptive selection-type shrinkage property of the 

Bayesian NMIG prior, with strong shrinkage of smaller and at the same time weak shrinkage of larger 

regression coefficients, where the separation between “large” and “small” coefficients depends on the 

specification of the NMIG prior hyperparameters. Obviously, the Bayesian ridge and lasso prior cause 

less shrinkage of the nonzero regression coefficients in the P-spline model for the baseline hazard 

(CFL.BR, CFL.BL) as in the semiparametric frequentist and Bayesian version, where inference is 

based on the partial likelihood (CPL.BR, CPL.BL), compare also Figure 11.3. This demonstrates, as 

previously mentioned in the Section 4.3, that the prior-specific real term regularization depends on the 

shape of the likelihood. We will see this interdependency again in Subsection 11.3 and the application 

sections, where we fit the CRR and the AFT model to the data. Due to the large values of the cross 

validated shrinkage parameters λ , displayed at the left side of Figure 11.4, we observe in general a 

stronger regularization of the frequentist lasso (CPL.PenL) and ridge (CPL.PenR) estimates compared 

to the Bayesian counterparts. 
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Figure 11.2: Regression coefficient estimates β̂  for two selected coefficients under different regularization 
priors in simulation model CRR 1. The right box (CPL.T) shows the estimations when the true predictor 

structure is used. The black horizontal lines in the box plots mark the values of the true regression coefficients 

5 60, 0.7β = β = − .  

Penalties and shrinkage parameters 

If we take a look at Figure 11.3, we see the different amount of the covariate-specific penalization for 

the nine regression coefficients expressed in terms of the inverse variance parameters 
j

2−
βτ , j 1,...,9= . 

Shown are the results under the Bayesian lasso, ridge and NMIG prior with the partial (left side) and 

full likelihood (right side). With the results from Section 4.5 we keep in mind that in particular under 

the NMIG prior the posterior mean estimate of 
j

2−
βτ  for smaller effects covers only a small range of 

applied penalization and represents rather a lower bound for the penalization.  

The penalization of the nonzero effects 1β , 2β , 6β  induced by the Bayesian NMIG prior leads to 

much smaller values than those of the Bayesian lasso and Bayesian ridge prior. In contrast to the ridge 

prior, the adaptive shrinkage, i. e. the small penalization for nonzero effects and larger penalization of 

zero effects, is reflected by both, the Bayesian lasso and the Bayesian NMIG prior, but the NMIG 

penalty values for the nonzero effects are very close to zero, so that the resulting regression coefficient 

estimates are almost unregularized. The Bayesian ridge penalty is within the range of the Bayesian 
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lasso penalty, i. e. smaller effects are less and larger effects are stronger regularized (compared to the 

lasso). In the case of the P-spline (or Weibull) baseline hazard, when inference is carried out with the 

full likelihood, we observe by trend a smaller penalization across the priors compared to the partial 

likelihood approach, with less pronounced differences under the Bayesian NMIG prior.  
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Figure 11.3: Estimates of the covariate-specific penalty 
j

2ˆ−
βτ  for the Bayesian lasso (BL), NMIG (BN) and ridge 

(BR) prior in simulation model CRR 1. Left side: The partial likelihood (CPL) is used for inference. Right side: 
The full likelihood with baseline modeled as P-spline (CFL) is used for inference.  

The estimated shrinkage parameters are given in Figure 11.4. In particular for the frequentist lasso 

and ridge regularization the shrinkage parameter reflects the amount of penalization that is uniformly 

applied to all regression coefficients. The penalty from the frequentist lasso is located within the range 

of the covariate-specific penalty values of the Bayesian lasso, while the penalty from the frequentist 

ridge clearly exceeds the Bayesian counterpart. The impact of the different amount of penalization 

induced under the various methods is directly reflected in the estimates of the regression coefficients 

shown in Figure 11.2. Finally, the estimated complexity parameter ω  of the Bayesian NMIG prior is 

displayed at the right side of Figure 11.4. We obtain very concentrated values around 0.4, and the 

weaker regularization of the small effects, observed with the full likelihood approach, increases 

(marginally) the model complexity. 
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Figure 11.4: Estimated shrinkage parameters under the different regularization methods in simulation model 
CRR 1. Left side: Shrinkage parameter 2λ  and λ  of the frequentist and Bayesian lasso and ridge prior. Right 

side: Shrinkage parameter ω  of the Bayesian NMIG prior.  
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NMIG indicators 

The variable selection feature of the Bayesian NMIG prior is highlighted at the left side in Figure 

11.5, where the estimated inclusion probabilities, based on posterior relative frequencies of the NMIG 

indicator variable value j 1I v= , are shown under the partial likelihood and the full likelihood with P-

spline baseline hazard. The inclusion probabilities of the nonzero effects are nearly one, with a very 

small standard deviation. For the zero effects the inclusion probabilities are shifted towards zero and 

clearly fall below the selection threshold 0.5 of the HS.IND criterion. Although inclusion probabilities 

for the zero effects resulting from the full likelihood approach tend to be higher than those from the 

partial likelihood, they provide a good resource to select the important covariates in both cases. At the 

right side in Figure 11.5 the acceptance rates of the regression coefficients in the CRR model based on 

the partial likelihood are shown. In general we achieved high acceptance rates in all simulation 

models, also under the full likelihood, and often the rates under the Bayesian NMIG prior stand out 

with notable high values. 
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Figure 11.5: Left side: Estimated inclusion probabilities based on posterior relative frequencies of the Bayesian 
NMIG indicator variable value j 1I v=  for simulation model CRR 1 based on the partial likelihood (CPL.BN) 

and the full likelihood (CFL.BN). The red horizontal line marks the cut off value 0.5 of the hard shrinkage 
selection criterion HS.IND. Right side: Acceptance rates of the regression coefficients in the CRR model based 

on the partial likelihood.   

MSE of the baseline quantities 

A view at the MSEs of the estimated cumulative baseline hazards, 0
ˆMSE( )Λ , under the different 

model classes shows the high performance of the baseline estimates produced with the full likelihood 

approaches, compare Figure 11.6. In particular, the higher performance of the Weibull model 

compared to the nonparametric P-spline model is plausible, since the underlying exponential baseline 

is a special Weibull baseline with 1α = .  

Under the partial likelihood approach the Breslow estimators, as a step function, cause a loss in the 

performance. This becomes apparent by considering the right side of Figure 11.7, which shows the 

estimates of the cumulative baseline hazard for one selected simulation dataset if the Bayesian NMIG 

prior is applied. In the time interval [0,1] , where most of the observations occur, the P-spline based 

estimate (CFL.BN) and the Breslow estimate (CPL.BN) approximate the true cumulative baseline very 

well. When time increases, the less observations are available and the deviations get larger, which 

results in an increasing MSE, in particular for the Breslow estimate. If we restrict the calculations of 
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0
ˆMSE( )Λ  to the interval [0,1]  that contains most of the observations, the MSEs of the estimated 

baselines as well as the MSE of the estimated cumulative baselines are very similar across all models.  
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Figure 11.6: Mean squared errors for the estimated cumulative baseline hazard, 0
ˆMSE( )Λ , under the different 

regularization priors in simulation model CRR 1.  

Finally, the left side of Figure 11.7 shows the P-spline estimates of the log-baseline hazard for one 

selected simulation dataset under the Bayesian NMIG and unregularized estimation of the linear 

effects. Both estimates are very close to each other and in summary we found that the specific 

regularization of the linear effects induces only negligible differences in the global shape of the 

baseline hazard estimates. Nevertheless, the shrinkage-type and shrinkage-strength of the linear effects 

affect the estimate of the baseline hazard function, but this is often hard to detect. For a demonstration 

we refer to the Application Section 12.3.2, Figure (12.10), where the impact of the regularization on 

the baseline hazard estimate is shown in terms of the Bayesian lasso and NMIG prior with varying 

shrinkage parameter. 
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Figure 11.7: Estimation of the log-baseline hazard 0
ˆlog (t)λ  (left side) and the cumulative baseline hazard 

0
ˆ (t)Λ  (right side) for one selected dataset under simulation model CRR 1. Left side: Posterior mean estimate of 
the log-baseline hazard (solid lines) based on the full likelihood together with the 2.5% and 97.5% pointwise 

credible bands (dashed lines) for the CFL.B and CFL.BN model when the baseline is modeled as P-spline. Right 
panel: Posterior mean estimate of the cumulative baseline hazard under the Bayesian NIMG prior. In both 

figures the black dashed line marks the true exponential log-/cumulative baseline hazard and the vertical rugs at 
the time axis mark the observed event times (black) and censoring times (gray).  
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Results for model CRR 2 

This subsection considers the results for the various estimation methods under the different 

regularization priors if all nine covariates in the predictor are assigned with small but nonzero effects, 

i. e. j 0.1β = , j 1,...,9= .  

MSE of the linear effects 

Figure 11.8 summarizes the MSEs of the estimated regression coefficients of model CRR 2 under the 

various applied methods. Best performances in this particular situation are obtained under the 

frequentist and Bayesian ridge regularization and under Bayesian lasso regularization, where 

especially the partial likelihood approaches (CPL.PenR, CPL.BR, CPL.BL) outperform all remaining 

approaches, even the performance of the models utilizing the true predictor structure (CPL, CPL.B, 

CFL.B). Especially the Bayesian lasso (CPL.BL) estimates achieve a slightly better performance than 

the sparse estimates from frequentist lasso (CPL.PenL), with values that are comparable to those of the 

ridge regularization. Also variable selection in terms of the hard shrinkage selection rules causes a 

clear loss in the predictive performance. In particular the specific, selection-like regularization 

property of the Bayesian NMIG prior, with enhanced shrinkage of smaller regression coefficients, has 

negative effects on the MSE and the estimated models have a clearly poor performance.  

Classification 

The classification results for model CRR 2 are subsumed in Table 11.1, where the average number of 

correctly identified nonzero coefficients ( ˆ 0, 0β ≠ β ≠ ) is recorded. Of course, it is not possible to reach 

the optimal value of nine when variable selection is applied, but comparably high values result for the 

frequentist lasso and the Bayesian ridge and lasso in combination with the HS.STD criterion. The 

identification of the true predictor is out of reach, so all MF values are zero. 
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Figure 11.8: Mean squared errors of the regression coefficient estimates, ˆMSE( )β , under the different 
regularization and variable selection methods in simulation model CRR 2.  

NMIG indicators and penalties 

The increased loss of performance under the Bayesian NMIG prior is further explained, when taking a 

look at the left side of Figure 11.9, where the estimated inclusion probabilities based on posterior 
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relative frequencies of the NMIG indicator variable value j 1I v=  are shown. Almost all inclusion 

probabilities are of comparable size and tend to be closer to zero than to one, which induces the heavy 

penalization of all regression coefficients, compare Figure 11.9 right side.  

Under the various regularization priors we found again a difference between the full and partial 

likelihood estimates with a trend for less penalization for the full likelihood estimates, which explains 

the benefit in the MSE under the Bayesian NMIG prior with the full likelihood. But, the weaker 

regularization obviously causes a drawback in the MSE under the Bayesian lasso and ridge prior. 
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Figure 11.9: Left side: Estimated inclusion probabilities based on posterior relative frequencies of the Bayesian 
NMIG indicator variable value j 1I v=  for simulation model CRR 2 based on the partial likelihood (CPL.BN) 

and the full likelihood (CFL.BN). The red horizontal line marks the cut off value 0.5 of the hard shrinkage 
selection criterion HS.IND. Right side: Estimates of the covariate-specific penalty 

j

2ˆ−
βτ  for the Bayesian lasso 

(CPL.BL), NMIG (CPL.BN) and ridge (CPL.BR) prior in simulation model CRR 2 under the partial likelihood.  

Linear effects 

According to the penalization results the point estimates for the regression coefficients are more or 

less shrunken towards zero and do not reflect the true model, compare Figure 11.10. The stepwise 

procedure behaves similar as the Bayesian NMIG prior by producing zero estimates for the small 

nonzero effects. 
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Figure 11.10: Regression coefficient estimates β̂  for two selected coefficients under different regularization 
priors in simulation model CRR 2. The black horizontal lines in the box plots mark the values of the true 

regression coefficients 5 60.1, 0.1β = − β = − .  
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MSE of the baseline quantities 

Finally, the estimation of the baseline and cumulative baseline hazard functions leads to comparable 

results as in model CRR 1 and the results are summarized in terms of the MSE for the cumulative 

baseline hazard in Figure 11.11. Best results are again obtained with the Weibull model and further 

the estimates under the Bayesian NMIG prior (WB.BN) show a marginal better performance than the 

remaining Weibull hazard estimates with respect to the median and the box-width. 

In summary, it is shown that in the setting of model CRR 2, if all effects have small but nonzero 

values, variable selection or selection-like shrinkage causes a loss in the MSE performance. Further, it 

seems to be advantageous to keep all effects regularized in the predictor, in combination with a 

Bayesian or frequentist ridge or a Bayesian lasso penalty, and that a moderately stronger regularization 

can improve the predictive performance. From the practical perspective we obtain similar results, 

compare Application Section 14.3, in particular Figure 14.5, where the predictive performance of the 

models (measured in terms of the IBS) is shown in dependence on varying values of the shrinkage 

parameter. 
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Figure 11.11: Mean squared errors for the estimated cumulative baseline hazard, 0
ˆMSE( )Λ , under the different 

regularization priors in simulation model CRR 2.  

Results for model CRR 3 

This subsection considers the results for the various estimation methods under the different 

regularization priors, if the zero and nonzero effects are distributed to the nine covariates as in model 

CRR 1, but assigned with smaller nonzero values, i. e. ( 0.4, 0.3,0,0,0, 0.2,0,0,0)′= − − −β .  

MSE of the linear effects 

Figure 11.12 shows the MSEs achieved for the regression coefficient estimation in the model CRR 3.  

Again the MSEs of the maximum partial likelihood estimators with the true predictor structure are 

recorded as a benchmark result.  

As in the previous model CRR 2, the regularization based approaches achieve lower MSEs than those 

without penalization and the best MSEs are again derived with the lasso and ridge penalty in 

combination with the partial likelihood. We obtain a similar result also from the Application Section 

14, where the predictive performance of the models is assessed in terms of the integrated Brier score. 
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In contrast to model CRR 2 the Bayesian NMIG models achieve a better performance with less 

pronounced differences to the lasso and ridge type models. But, none of the methods obtain the high 

performance of the model utilizing the true predictor structure (CPL.T). Variable selection, as 

automatically resulting with the frequentist lasso (CPL.PenL) or artificially enforced with the hard 

shrinkage selection rules for the Bayesian estimates provides sparse models with comparable MSE to 

the full models including all covariates. 
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Figure 11.12: Mean squared errors the regression coefficient estimates β̂  under the different regularization and 
variable selection methods in simulation model CRR 3. The right box (CPL.T) shows the ˆMSE( )β  for the 

maximum partial likelihood estimations when the true predictor structure is used.  

Classification 

As a further consequence we observe in Table 11.1 a decrease of the correctly classified nonzero 

effects for model CRR 3 compared to model CRR 1. The best methods detect only in about 15 of 50 

cases the true predictor structure. 

NMIG indicators and penalties and linear effects 

The improvement in the MSE using the NMIG prior (with resp. to model CRR 2) is revealed by taking 

a look at left side of Figure 11.13, where the relative frequencies of the indicator variable value j 1I v=  

from the Bayesian NMIG model are displayed. The inclusion probabilities for the largest effect with 

value 1 0.4β = −  is nearly to one and for the second largest effect with value 2 0.2β = −  the HS.IND 

cut-off value of 0.5 is still frequently passed. Further simulations (not all presented in this work) have 

shown that, if the same prior settings as noted above are used for comparable models, effects with 

absolute values larger than 0.3 can be separated from the zero effects very well by the cut-off value 

0.5.  

The Bayesian penalties are displayed at the right side of Figure 11.13. In contrast to the results from 

model CRR 1 the Bayesian ridge penalty is here in the upper range of the Bayesian lasso penalty. This 

is leading to a stronger regularization of the nonzero effects with the ridge prior compared to the lasso 

prior and correspondingly a comparable regularization of the zero effects. Under the Bayesian NMIG 

prior the penalty of the nonzero effects is again very small and close to zero so that these effects are 

weakly regularized. The amount of penalization on the zero effects is only limited reflected by the 
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penalty but exhibits in the associated regression coefficient estimates. Finally, the impact of the 

various amounts of penalization on the regression coefficient estimates is displayed in Figure 11.14. 
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Figure 11.13: Left side: Estimated inclusion probabilities based on posterior relative frequencies of the Bayesian 
NMIG indicator variable value j 1I v=  for simulation model CRR 3 based on the partial likelihood (CPL.BN) 

and the full likelihood (CFL.BN). The red horizontal line marks the cut off value 0.5 of the hard shrinkage 
selection criterion HS.IND. Right side: Estimates of the covariate-specific penalty 

j

2ˆ−
βτ  for the Bayesian lasso 

(CPL.BL), NMIG (CPL.BN) and ridge (CPL.BR) prior in simulation model CRR 3 under the partial likelihood.  
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Figure 11.14: Regression coefficient estimates β̂  for four selected coefficients under different regularization 
priors in simulation model CRR 3. The right box (CPL.T) shows the estimations when the true predictor 

structure is used. The black horizontal lines in the box plots mark the values of the true regression coefficients 

5 61 2 0, 0.20.4, 0.3,β β = β = −= − β = − .  
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11.2. Low-dimensional nonlinear predictor 

Data generation 

With the subsequent simulations we explore the changes caused by the inclusion of a nonlinear effect 

in the predictor and more complex shapes of baseline hazard. The settings are similar to those in 

Hennerfeind et al. (2006). Again we consider R 50=  datasets, but now with an increased sample size 

of n 1000=  life times. Ten covariates are generated independently as random draws from an uniform 

U[ 3,3]−  distribution and the lifetimes are generated via the inversion method, compare Bender et al. 

(2005), from the model 

 ( )0 10CRR 4 : (t) (t)exp sin(x )′λ = λ +x β , 

with the sinusoidal nonlinear effect 1 10 10f (x ) sin(x )=  of covariate 10x  and the linear effects 

 ( 0.7, 0.7,0,0,0, 0.7,0,0,0)′= − − −β . 

To model more flexible baseline hazards, a linear (but non-Weibull) baseline hazard of the form 

 0CRR 4.a : (t) 0.25 2tλ = +  

and a bathtub-shaped baseline hazard 

 
( )
( )

0

0.75 cos(t) 1.5 , t 2
CRR 4.b : (t)

0.75 1 1.5 , t 2

 + ≤ π
λ = 

+ > π
 

are chosen. The latter assumes an initially high baseline risk that decreases after some time and 

increases again later on until time t 2= π  from where the hazard stays constant.  

Censoring times are generated in two steps. First, a random proportion of 17% of the generated 

observations iT  is assigned to be censored. Then, in the second step, the censoring times for this 

random selection are drawn from the corresponding uniform distributions iU[0,T ] . The difference to 

model CRR 1 is the additional inclusion of a nonlinear effect and the more complex shape of the 

baseline hazard function. 

Function and parameter specification 

Methods: Inference is based on the full likelihood and carried out with the regress method as 

implemented in BayesX. The logarithm of the baseline hazard as well as the nonlinear effect of 

covariate x10 are modeled with 20 cubic B-spline basis functions equipped with a second-order random 

walk prior for the associated basis function weights to control the smoothness.  

Hyperparameters: The corresponding hyperparameters of both smoothing variances are set to the 

default values 
0 01, 2,h h 0.001τ τ= = . In the Bayesian lasso and ridge prior for the linear effects the 

hyperparameters of the shrinkage parameters are set to 1, 2,h h 0.001λ λ= =  and those for the Bayesian 

NMIG prior are set as in the section before to 1v 1= , 0v 0.000025= , 1,h 5ψ = , 2,h 25ψ = , 1,h 1ω =  and 

2,h 1ω = .  

Estimation: We use an increased number of 30000 iterations with a burnin of 10000 and thin the chain 

by 20 which results in an MCMC sample of size 1000. The running times are about 6 minutes. 
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Results for model CRR 4.b 

We briefly summarize the results for the models CRR 4 by means of model CRR 4.b with bathtub-

shaped baseline due to the similarity of the results to each other and to the results of model CRR 1. We 

further restrict ourselves to the Bayesian methods based on the full likelihood with P-spline 

approximation for the log-baseline hazard. For the CRR model there are no R-packages available to 

perform frequentist lasso regression in combination with nonlinear effects. Ridge regression in 

combination with spline estimation is possible within the function coxph(), but the regularization 

parameters have to be specified in advance.  

MSE linear effects 

In Figure 11.15 the MSEs of the estimated regression coefficients, ˆMSE( )β , under the different 

regularization priors for the linear effects are shown together with the MSEs after the hard shrinkage 

selection criteria are applied. The MSE pattern is similar to those in Figure 11.1, which shows the 

corresponding results for model CRR 1. As before in model CRR 1, the Bayesian NMIG model 

performs better than the Bayesian lasso and ridge model regardless of whether hard shrinkage is 

applied or not, and the MSEs are close to the model estimated with the true predictor structure 

(CFL.BT). 
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Figure 11.15: Mean squared errors of the regression coefficient estimates, ˆMSE( )β , under the different 
regularization and variable selection methods in simulation model CRR 4.b. The right box (CFL.BT) shows the 

ˆMSE( )β  for the estimations when the true predictor structure is used.  

Linear effects 

The estimates of three selected regression coefficients 2β , 5β  and 6β  are presented in Figure 11.16. 

As before the boxes are very similar under the different regularization methods, also the zero 

coefficient 5β  shows a higher concentration around zero under the Bayesian NMIG prior. 

Consequently the hard shrinkage rules applied to the Bayesian NMIG estimates are leading to 

comparable results with respect to the MSE since the non-influential covariates are assigned with 

effects very close to zero anyway. 
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Figure 11.16: Regression coefficient estimates β̂  for three selected coefficients under different regularization 
priors in simulation model CRR 4.b. The right box (CFL.BT) shows the estimations when the true predictor 

structure is used. The black horizontal lines in the box plots mark the values of the true regression coefficients 

2 0.7β = − , 5 0β = , 6 0.7β = − .  

NMIG indicators and penalties 

As shown in Figure 11.17, also the comparison of the regularization-specific penalty and the Bayesian 

NMIG indicator variables are leading to similar results as in model CRR 1, when inference is based on 

the full likelihood. We see also that the posterior inclusion probabilities reflect the number of true 

nonzero and true zero effects very well, so that the HS.IND selection threshold 0.5 yields a sharp 

separation of the zero from the nonzero effects. 
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Figure 11.17: Left side: Estimated inclusion probabilities based on posterior relative frequencies of the Bayesian 
NMIG indicator variable value j 1I v=  for simulation model CRR 4.b based on the full likelihood (CFL.BN). 

The red horizontal line marks the cut off value 0.5 of the hard shrinkage selection criterion HS.IND. Right side: 
Estimates of the covariate-specific penalty 

j

2ˆ−
βτ  for the Bayesian lasso (CFL.BL), NMIG (CFL.BN) and ridge 

(CFL.BR) prior in simulation model CRR 4.b under the full likelihood.  

Nonlinear effect and baseline hazard 

The MSE results for the estimation of the log-baseline hazard and the nonlinear effect are displayed in 

Figure 11.18 and the results are again almost comparable to each other with respect to the different 

regularization priors.  

The shrinkage methods for the linear effects do not clearly affect the performance of the estimates of 

the nonlinear effect. In Figure 11.19 (right panel), the estimated P-spline is visualized together with 

the 2.5% and 97.5% empirical quantiles for one selected dataset under the Bayesian NMIG prior as 
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representative. Figure 11.19 (left panel) shows the corresponding results for the baseline hazard 

estimation with the same selected dataset. We observe that the P-spline approximation of the log-

baseline hazard performs very well in the time region where most of the events occur.  
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Figure 11.18: Mean squared errors for the estimated lo-baseline hazard, 0
ˆMSE(log )λ , (left side) and the 

nonlinear effect, 10
ˆMSE(f (x )) , (right side) under the different regularization priors in simulation model CRR 
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Figure 11.19: Estimate of the log-baseline hazard 0
ˆlog (t)λ  (left side) and the nonlinear effect 101̂f (x )  (right 

side) under the Bayesian NMIG regularization in simulation model CRR 4.b for one selected data set. Left side: 
Estimation of the log-baseline hazard (solid green line) together with the 95% pointwise credible bands (dashed 

green lines). Right side: Estimation of the nonlinear effect (solid green line) together with the 95% pointwise 
credible bands (dashed green lines). In both figures the black dashed line marks the true log-baseline hazard and 
nonlinear effect and the vertical rugs at the time axis mark the observed event times (black) and censoring times 

(gray).  

Deviance information criterion 

If we take a look at the Deviance Information Criterion (DIC) and the effective number of parameters 

(pD), Spiegelhalter et al. (2002), that are given in Figure 11.20, all regularization priors yield a 

comparable DIC, but the Bayesian NMIG has the lowest effective number of parameters with value 

close to the effective number of parameters of the model with the “true predictor” structure (CFL.BT).  

Classification 

The frequencies of final models (MF) with the true predictor structure and the number of correctly 

classified zero and nonzero coefficients, when we apply the hard shrinkage selection rules, are 
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collected in Table 11.2. Besides the results from the CRR model the results from the AFT model, 

described in the following subsection, are displayed. In summary the CFL results of model CRR 4.b 

are very close to those of model CRR 1 given in Table 11.1 and the again the highest frequencies of 

models with the true predictor structure are obtained under the NMIG prior. 
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Figure 11.20: Deviance Information Criterion DIC (left side) and the effective number of parameters pD (right 
side) under the different regularization priors for simulation model CRR 4.b. The right box (CFL.BT) shows the 

results when the true predictor structure is used.  

 

 Model 4.b (CFL) Model 4.b (PGM) 

 
ˆ 0

0
β ≠
β ≠

 
ˆ 0

0
β =
β =

 MF 
ˆ 0

0
β ≠
β ≠

 
ˆ 0

0
β =
β =

 MF 

BEST 3 6 50 3 6 50 
B.HS-STD 3 3.94 4 3 3.90 6 
BL.HS-STD 3 4.06 5 3 4.32 10 
BR.HS-STD 3 3.96 5 3 3.94 8 
BN.HS-STD 3 5.90 45 3 5.92 47 

B.HS-CRI 3 5.62 35 3 5.56 35 
BL.HS-CRI 3 5.70 37 3 5.72 38 
BR.HS-CRI 3 5.58 35 3 5.68 36 
BN.HS-CRI 3 5.96 48 3 6.00 50 

BN.HS-IND 3 5.82 43 3 5.92 47 

Table 11.2: Average number of correctly classified coefficients for the models CRR 4.b after variable selection. 
CFL marks the estimates based on the full likelihood of the CRR model and PGM marks the estimates of the 
AFT model with PGM error distribution. Especially ˆ 0, 0β ≠ β ≠  denotes the case that the estimated effect is 

nonzero ( ˆ 0β ≠ ) when the corresponding true effect is nonzero ( 0β ≠ ), and ˆ 0, 0β = β =  denotes the case that 
the estimated effect is zero ( ˆ 0β = ) when the corresponding true effect is zero ( 0β = ). The columns (MF) 

display the average frequencies of the final models that recover the true model.  

11.3. Miss-specification using the AFT model 

To investigate the loss of performance when the AFT model with penalized Gaussian mixture (PGM) 

as baseline error distribution is used to fit data generated from a CRR model, we revisit the simulation 

scenario of the CRR model 4.b. Due to the parameterization of the AFT model, the estimates of linear 

and nonlinear effects are multiplied with −1 to simplify the visual comparison of the results from the 

CRR and AFT model. 
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Function and parameter specification 

Methods: For the Bayesian estimation of the error distribution density we use the function 

baftpgm() with update scheme “sliceR0”, where the error density is specified as in the Simulation 

Section 10.2 through 0g 21=  equidistant knots jm , 0j 1,...,g= , that are placed in the interval 

[ 4.5,4.5]− . The variance of the Gaussian basis functions is uniformly set to 2 2
js 0.25= . We use again 

the third-order random walk penalty to control the smoothness of the baseline error distribution.  

The linear effects of the covariates 1 9x ,..., x  are regularized with the Bayesian lasso, ridge and NMIG 

prior. Further, the nonlinear effect of covariate 10x  is modeled by a Bayesian P-spline with 1g 20=  

cubic B-spline basis functions and a second-order random walk prior, which matches the setting used 

before in Section 11.2.  

Hyperparameters: The hyperparameters of the prior associated to the scale parameter 2σ  are set to 

1, 2,h h 0.001σ σ= = , and those of the smoothing variance 
0

2
ατ  are 

01,h 1τ = , 
02,h 0.01τ = . For the 

regularization priors of the covariate effects we use the hyperparameter setting used in the previous 

Section 11.2 for model CRR 4.b.  

Starting values: The starting values are set as in the Simulation Section 10.2, i. e. for the transformed 

error weights 0, jα , j 1,...,21= , with exception of the middle weight 0,11 : 0α = , each starting value is set 

to (0)
0, j 0.01α = . The location and scale parameter start in (0)

0 1γ = , 2(0) 1σ =  and the smoothing variance 

is set to 
0

2(0) 1ατ = . The component labels (0)
ir  are randomly assigned to one of the 0g  error basis 

densities and the starting values of the linear effects are set to (0)
j 0.01β = , j 1,...,9= . For the Bayesian 

NMIG regularization the sampler starts with (0)
0jI v= , 2(0)

j 0.0416ψ = , which is the left mode of the 

bimodal NMIG variance parameter prior and (0) 0.5ω = . The shrinkage parameter for the Bayesian 

lasso and ridge starts with (0) 1λ = . The nonlinear effect starts with (0) (0)
1,10 20,10... 0.01α = = α =  and 

10

2(0) 1ατ = .  

Estimation: To fit the models, we use 20000 iterations, where the first 10000 iterations are discarded 

as burnin of the Markov chain and the remaining iterations are thinned using a step width of 10. The 

resulting 1000 states of the chain build the sample of the posterior distribution and the empirical basis 

to compute the estimates. The running times of the sampler are about 32 minutes. 

Results 

MSE of the linear effects 

Figure 11.21 illustrates the MSE of the estimated linear effects under the different regularization 

priors together with the resulting MSEs, when the hard shrinkage selection rules are applied to obtain 

sparse final models. While the level of the MSEs is generally larger than in the CRR 4.b model, the 

results here show a similar MSE structure as those in Figure 11.15 or Figure 11.1.  

The application of the hard shrinkage selection rules improves the performance with respect to all 

priors with only small improvement for the Bayesian NMIG model that is almost close to the model 

with the true predictor PGM.BT. Especially in the AFT model, the Bayesian lasso prior in 

combination with the HS.CRI rule performs very well with lower MSEs compared to PGM.BT model 

based on the true predictor structure. 



160 11. CRR-TYPE MODELS 

P
G

M
.B

P
G

M
.B

-H
S

.S
T

D

P
G

M
.B

-H
S

.C
R

I

P
G

M
.B

L

P
G

M
.B

L
-H

S
.S

T
D

P
G

M
.B

L
-H

S
.C

R
I

P
G

M
.B

R

P
G

M
.B

R
-H

S
.S

T
D

P
G

M
.B

R
-H

S
.C

R
I

P
G

M
.B

N

P
G

M
.B

N
-H

S
.S

T
D

P
G

M
.B

N
-H

S
.C

R
I

P
G

M
.B

N
-H

S
.I
N

D

P
G

M
.B

T

0
.0

0
0

.0
1

0
.0

2
0

.0
3

0
.0

4
0

.0
5

M
S

E
 B

e
ta

 

Figure 11.21: Mean squared errors of the regression coefficient estimates, ˆMSE( )β , under the different 
regularization and variable selection methods in simulation model CRR 4.b under the AFT model with PGM 

error. The right box (CFL.BT) shows the ˆMSE( )β  for the estimations when the true predictor structure is used.  

Linear effects 

The basic increase in the MSE of the regression coefficients is explained by Figure 11.22 that shows 

the box plots of the three selected estimated linear effects 2 0.7β = − , 5 0β =  and 6 0.7β = −  under the 

different regularization priors.  

We observe larger deviations from the true values of the effects as when the CRR model is used for 

inference, compare Figure 11.16, even for the model PGM.BT with the true predictor structure. 

Further, the differences caused by the various regularization priors are more pronounced in the AFT 

model. The absolute values of the estimates for the regression coefficient 2β  are by trend larger than 

the true value in the AFT model, and smaller than the true value in the CRR model (Figure 11.16). 

This highlights again the dependence of the regularized estimates on both, the prior and the likelihood, 

and that identical prior specifications can lead to a different shrinkage behavior if the regression model 

is exchanged. In particular, this fact complicates the tuning of the NMIG prior in terms of the absolute 

sizes of the regression coefficients that should fall into strong regularized prior area around origin, 

compare threshold ( ISPβ ) in Section 4.3.2. 
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Figure 11.22: Regression coefficient estimates β̂  for three selected coefficients under different regularization 
priors in simulation model CRR 4.b under the AFT model with PGM error. The right box (PGM.BT) shows the 
estimations when the true predictor structure is used. The black horizontal lines in the box plots mark the values 

of the true regression coefficients 2 0.7β = − , 5 0β = , 6 0.7β = − .  
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NMIG indicators and penalties 

Figure 11.23 shows the posterior relative frequencies of the Bayesian NMIG indicator value j 1I v=  

(left side) and the covariate-specific penalties under the three regularization priors (right side). Similar 

to the previous simulation results for model CRR 1 and CRR 4 we obtain a clear separation of the 

nonzero effects from the zero effects if the AFT model is used to fit the data.  
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Figure 11.23: Left side: Estimated inclusion probabilities based on posterior relative frequencies of the Bayesian 
NMIG indicator variable value j 1I v=  for simulation model CRR 4.b under the AFT model with PGM error. 

The red horizontal line marks the cut off value 0.5 of the hard shrinkage selection criterion HS.IND. Right side: 
Estimates of the covariate-specific penalty 

j

2ˆ−
βτ  for the Bayesian lasso (PGM.BL), NMIG (PGM.BN) and ridge 

(PGM.BR) prior in simulation model CRR 4.b under the AFT model with PGM error.  

Classification 

The classification results, if the three hard shrinkage selection rules are applied, are displayed in Table 

11.2, which are in summary comparable to those, if a CRR model is used to fit the data. Again, the 

best performances are obtained with the Bayesian NMIG prior in combination with the three hard 

shrinkage selection rules and the optimal value is reached with the HS.CRI criterion. 

MSE of the nonlinear effect 

Further, there is no observable impact on the performance of the estimated nonlinear effect, caused by 

the different regularization priors for the linear effects. As already noticed for the linear effects, also 

the level of the 1 10
ˆMSE(f (x ))  under the AFT model is generally larger than under the CRR model. We 

obtain across the unregularized and regularized methods values with lower and upper quartiles in the 

range of 0.011 and 0.026 and the median values are in the range 0.018. 

Nonlinear effects and baseline quantities 

Finally, Figure 11.24 shows for one selected dataset the estimated nonlinear effect (right side) and the 

associated estimated baseline error distribution density (left side), each with the 95% pointwise 

credible bands.  

In summary we have seen, that the miss-specification of the survival model causes a loss of 

performance in terms of the MSE of the estimated predictor components. Nevertheless, the 

regularization priors for the predictor components together with the hard shrinkage rules are leading, 
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under a setting like in model CRR 1 or CRR 4, to comparable results if an AFT or CRR model is used 

for fitting. 
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Figure 11.24: Estimate of the baseline error density 0f̂ (y)  (left side) and the nonlinear effect 101̂f (x )  (right side) 
under the AFT model with Bayesian NMIG regularization in simulation model CRR 4.b for one selected data 

set. Left side: Estimation of the baseline error density (solid green line) together with the 95% pointwise credible 
bands (dashed green lines). Right side: Estimation of the nonlinear effect (solid green line) together with the 
95% pointwise credible bands (dashed green lines). In both figures the black dashed line marks the true log-

baseline hazard and nonlinear effect.  

11.4. High-dimensional predictor 

Data generation 

To investigate the performance of the Bayesian regularization priors in the high-dimensional case, 

where the number of covariates exceeds the number of observations, we consider again the CRR 

model with exponential baseline hazard 0 (t) 1λ =  as used in the first two simulations of this section. 

As before, covariates are generated with zero mean, unit variance and j k
i, j i ,kcorr(x ,x ) −= ρ  with 

0.5ρ =  as correlation between jx  and kx . In the basic setting, survival times iT , i 1,...,n= , are 

generated from the model 

 (t) exp( )′λ = x β , 

with the xp 20=  regression coefficients 

 ( 0.7, 0.7,0,0, 0.5, 0.5,0,0, 0.3, 0.3,0,0, 0.2, 0.2,0,0, 0.1, 0.1,0,0)′= − − − − − − − − − −β . (11.1) 

The number of covariates is increased to xp 60,160,200=  and the vector of linear effects β  in (11.1) 

is repeatedly pasted back-to-back until the associated number of linear effects is attained. We fix the 

number of observations to n 160=  and use again R 50=  replicated datasets. Censoring times are 

generated as i.i.d. draws from a uniform U[0,6]  distribution until 25% censored observations in the 

data are achieved. 

Function and parameter specification 

Methods: Bayesian and frequentist inference is carried out in terms of the regularized partial 

likelihood. Bayesian inference is practiced with the function bcoxpl(). As competitor we use the 

frequentist lasso and ridge regularization, carried out with the penalized() function, together with 
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the frequentist model CPL.T, utilizing coxph(), that includes only the covariates with true nonzero 

effects of the predictor.  

Estimation: The number of iterations in the Bayesian MCMC sampler is set to 20000 with a burnin of 

5000 and a thinning by 15, resulting in 1000 samples from the posterior distribution. We observe, e. g. 

for Bayesian lasso, the following average runtimes: 6 minutes ( xp 20= ), 11 minutes ( xp 60= ), 25 

minutes ( xp 160= ) and 35 minutes ( xp 200= ) on a system with quad-core CPU (Intel Quad9550, 

2.83 GHz). 

Hyperparameters: In the lower-dimensional cases, xp 20,60= , the previous setting of the prior 

hyperparameters is used, i. e., in the Bayesian lasso and ridge prior we set 1, 2,h h 0.01λ λ= =  and the 

Bayesian NMIG prior is specified with 1v 1= , 0v 0.000025= , 1,h 5ψ = , 2,b 25ψ = , 1,h 1ω =  and 

2,h 1ω = . The block size is set to xp  in each simulation run. 

To achieve convergence in the higher-dimensional cases, xp 160,200= , the shrinkage priors require a 

tuning to control the regularization. If xp 160= , we set the hyperparameters of the inverse gamma 

prior for the shrinkage parameter to 1,h 1000λ = , 2,h 10λ =  for the Bayesian lasso and to 1,h 440λ = , 

2,h 20λ =  for the Bayesian ridge prior. For the Bayesian NMIG complexity parameter ω  we specify a 

beta prior with 1,h 300ω =  and 2,h 1200ω = . If xp 200= , we set for the Bayesian lasso 1,h 6400λ =  and 

2,h 40λ = , for the Bayesian ridge 1,h 900λ =  and 2,h 30λ = , and for the Bayesian NMIG 1,h 300ω =  and 

2,b 1500ω = .  

These hyperparameters are found in several runs with various hyperparameter constellations. E. g. 

with the initial hyperparameter setting, the estimated values of the NMIG complexity parameter ω  

decrease with increased number of covariates, and the estimates ω̂  are close to zero in the models 

with xp 160≥  covariates. Consequently, the posterior inclusion probabilities and regression 

coefficient estimates are close to zero, too. To counterbalance the strong regularization, we use 

hyperparameter constellations 1,h ω , 2,h ω  which are leading to a prior mean of H 0.2ω ≈  and an 

estimated value ω̂  of the same magnitude. With the described hyperparameters we obtain for the 

estimates ω̂  at last the following median values: ˆ 0.36ω ≈  (if xp 20= ), ˆ 0.30ω ≈  (if xp 60= ), 

ˆ 0.20ω ≈  (if xp 160= ) and ˆ 0.18ω ≈  (if xp 200= ). Another line of action is used to determine the 

hyperparameters of the shrinkage parameter in the Bayesian lasso and ridge prior. With the initial 

setting the sample-paths of the shrinkage parameters are very wiggly, but the paths do not diverge. We 

select the hyperparameters to obtain shrinkage parameter estimates close to the mean estimate that 

results from the initial setting, and stable sample-paths of the parameter estimates. Due to the resulting 

high informative prior setting, the estimates of the shrinkage or complexity parameter show a clearly 

decreased variability in the replications. 

Starting values: In the lower-dimensional cases ( xp 20,60= ) the starting values are set as in 

Subsection 11.1. In the higher-dimensional cases ( xp 160,200= ) we use the modified values 
(0) 0.2ω =  (NMIG prior), 2(0) 10λ =  (lasso prior) and (0) 20λ =  (ridge prior). 

Results 

MSE of the linear effects 

Figure 11.25 shows the resulting mean squared errors of the estimated regression coefficients, 
ˆMSE( )β , under the lasso, ridge and NMIG regularization, when the number of covariates included in 
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the regression model increases from xp 20=  (upper left panel) to xp 200=  (lower right panel) 

together with the resulting MSEs, when the hard shrinkage selection criteria HS.STD, HS.CRI and 

HS.IND are applied to the Bayesian estimates. The MSEs are standardized by division with the 

number of covariates in the model. 
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Figure 11.25: Mean squared errors of the regression coefficient estimates, ˆMSE( )β , under the different 
regularization and variable selection methods in the CRR model with increasing number of covariates. The right 

box (CPL.T) shows the ˆMSE( )β  for the maximum partial likelihood estimations when the true predictor 
structure is used.  

As to be expected, we have an increased loss of MSE performance across the regularization methods, 

when the number of effects increases. We also observe that variable selection in the Bayesian models 

does not improve the predictive performance, and that the MSEs of the sparse final models CPL.BN-

HS.STD and CPL.BN-HS.IND are almost comparable. The loss in the predictive performance induced 

by the variable selection increases as the number of covariates is increased. A similar result is obtained 

for the frequentist lasso (CPL.PenL) that always provides sparse models. If we compare the frequentist 

lasso and ridge models (CPL.PenR), we find also that the MSE performance of the ridge models, 

which include all covariates in the predictor, is almost comparable to those of the lasso models. 

In the low-dimensional case ( xp 20= ) the performance of the regularized models is almost 

comparable, but we observe a marginal higher performance for the Bayesian models (CPL.BL, 

CPL.BR, CPL.BN). Nevertheless, all MSEs are larger than the MSE of the frequentist model with the 

true predictor structure (CPL.T). Increasing the number of covariates ( xp 60= ) is leading to clearly 

higher performances of the Bayesian models compared to the frequentist lasso and ridge models, and 

the MSEs of the Bayesian models are close to the MSE of the CPL.T model. Within the Bayesian 

models the lasso model (CPL.BL) has the best performance followed by the ridge (CPL.BR) and 
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NMIG model (CPL.BN), and the HS.STD criterion, applied to the Bayesian lasso and ridge models, is 

leading to sparse models with only a marginal loss of predictive performance. 

While the performance of the Bayesian ridge and lasso models slightly dominates the performance of 

the Bayesian NMIG in the lower-dimensional cases ( xp 20,60= ), this result is reversed in the higher-

dimensional cases ( xp 160,200= ), where the Bayesian NMIG models achieve the lowest MSE values. 

Interestingly, in the high-dimensional case the variable selection based on posterior relative 

frequencies of the Bayesian NMIG indicator variable value j 1I v=  (CPL.BN-HS.IND) is leading to 

final models with lower MSE values, compared to the models from the frequentist and Bayesian lasso 

and ridge regularization. 

NMIG indicators 

Figure 11.26 displays for the first 20 covariate effects jβ , j 1,...,20= , the estimated inclusion 

probabilities given by the posterior relative frequencies of the associated Bayesian NMIG indicator 

variable values j 1I v= , j 1,...,20= , when the dimension xp  increases.  
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Figure 11.26: Estimated inclusion probabilities based on posterior relative frequencies of the Bayesian NMIG 
indicator variable value j 1I v=  for CRR model with increasing number of covariates. The red horizontal line 

marks the cut off value 0.5 of the hard shrinkage selection criterion HS.IND.  

In the lower-dimensional cases ( xp 20,60= ) the structure of the inclusion probabilities fits well to the 

effect sizes, i. e. the inclusion probabilities decrease if the size of the effects decrease and the inclusion 

probabilities are small for the zero effects. In particular, in the case xp 20=  (upper left panel) we can 

clearly separate, in terms of the median inclusion probability, the effects 13 14 0.3β = β =  from the zero 

effects, and the cut off value 0.5 of the HS.IND selection rule separates nonzero effects in the range of 

0.2 ( 9 10,β β ) to 0.3 ( 13 14,β β ). When the number of covariates increases, the inclusion probabilities of 

larger effects decrease. Especially when the number of covariates exceeds the number of observations 

( xp 160≥ ), even the inclusion probabilities of the comparably large effects 1 2 0.7β = β = −  and 
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5 6 0.5β = β = −  fall below of our standard selection threshold of 0.5. Possibly an adaption of the 

HS.IND-threshold to smaller values improves the predictive performance of the CPL.BN-HS.IND 

models. We consider such adaptations in the following Subsection 11.5 and we will find, compare 

Figure 11.31, that an adjustment to the threshold 0.2 indeed improves the predictive performance. 

This holds also in the higher-dimensional cases, where we can hardly separate the smaller from the 

zero effects, but here we force mainly the inclusion of the lager effects 1 2 0.7β = β = − .  

In each of the four simulation models the fraction and size of the nonzero effects in the predictor is 

identical, and we would expect a comparable model complexity. But, the decrease of the inclusion 

probabilities with increased number of covariates is also reflected in the decreased estimated values of 

the complexity parameter ω . In the lower-dimensional cases xp 60≤  we used an uniform prior for the 

parameter ω . The estimated values ω̂  are concentrated at 0.3, if xp 20= , and at 0.2, if xp 60= . With 

the hyperparameter setting in the higher-dimensional cases xp 160≥  we set with the beta prior the 

focus on complexity parameter values in the range of 0.2, but we observe a further decrease of the 

inclusion probabilities with almost comparable values of the complexity parameter estimate. So, in the 

low-dimensional case the adjustment of the HS.IND selection threshold value to smaller values than 

0.5 may be an ad hoc solution to improve the detection of the true nonzero effects, but in the higher-

dimensional case an adjustment of the prior is required to enhance the detection. We obtain a marginal 

improvement by a further adjustment of the hyperparameters 1,h ω , 2,h ω  to force a higher model 

complexity, but the improvement is limited, since larger values of the complexity parameter ω  

increases also the inclusion probability of the smaller effect and blurs the separation of small and zero 

effects. E. g., if we fix the value 0.5ω =  in the case of xp 200=  covariates, we observe for some of 

the zero effects inclusion probabilities of the same magnitude as the larger effects and variable 

selection on the base of the HS.IND criterion leads to very low rates of correctly classified regression 

coefficients ( ˆ 0, 0β ≠ β ≠ , ˆ 0, 0β = β = ). Nevertheless, if performance is measured in terms of the MSE 

instead of a high classification rate, we achieve good results with the used prior specifications without 

variable selection.  

Penalties 

The observed trends in the evolution of the NMIG inclusion probabilities are also reflected in 

associated penalties 
j

2−
βτ  that are displayed in Figure 11.27 (green boxes). We observe an increase in 

the penalty values for the larger effects, when the number of covariates increases, and in the resulting 

estimates of the larger regression coefficients, Figure 11.29 (green boxes), are stronger shrunken 

towards zero. In the two lower-dimensional cases the amount of penalization increases under the 

Bayesian lasso and ridge prior only marginally if the number of covariates is increased from xp 60=  

to xp 160= . In the higher-dimensional cases the penalty is mainly determined by our informative 

hyperparameter setting and is clearly increased.  

Figure 11.28 shows the penalty values λ  of the frequentist lasso and ridge regularization. We observe 

that the penalty values of the frequentist ridge regression tend for each dimension to larger values 

compared to the Bayesian counterpart. For the frequentist lasso the penalty varies in the lower-

dimensional cases within the range of the covariate-specific Bayesian lasso penalties, and in the 

higher-dimensional cases the frequentist lasso penalty is clearly smaller than the penalties of the 

Bayesian counterpart. 
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Figure 11.27: Estimates of the covariate-specific penalty 
j

2ˆ−
βτ , j 1,5,10,14,18,20= , of six selected covariates 

under the different Bayesian regularization priors in the CRR models with increasing number of covariates.  
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Figure 11.28: Estimated penalty parameter λ̂  under the frequentist ridge (left side) and lasso (right side) 
regularization in the CRR models with increasing number of covariates.  

Linear effects 

The impact on the shrinkage of the regression coefficient estimates, induced by the different ranges of 

the penalty values, is summarized in Figure 11.29 by means of four selected regression coefficients 

( 1 10 14 200.7, 0.3, 0.2, 0β = − β = − β = − β = ) of different sizes.  

If we compare the estimates of the largest coefficient 1β  in the higher-dimensional cases, we see the 

reduced shrinkage of this effect under the Bayesian NMIG prior. In contrast, the shrinkage of the other 

effects is more pronounced as under the remaining regularization methods. In summary, the resulting 

smaller deviations of the estimates from the true value 0.7−  of the larger effects in the predictor are 

the main reason for the lower MSE of the NIMG models. 
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Figure 11.29: Regression coefficient estimates β̂  of four selected covariates under different regularization priors 
for the CRR models with increasing number of covariates. The left box (CPL.T) shows the estimations when the 

true predictor structure is used. The black horizontal lines in the figures mark the values of the true regression 
coefficients 1 10 14 200.7, 0.3, 0.2, 0β = − β = − β = − β = .  

Classification 

When the hard shrinkage selection rules are applied, we observe an impact on the average fraction of 

correctly classified nonzero effects, ˆ 0, 0β ≠ β ≠ , which decreases clearly under all regularization 

priors if the number of covariates increases, compare classification Table 11.3. The highest fractions 

of correctly classified nonzero effects are achieved with the frequentist lasso regularization 

(CPL.PenL), followed by Bayesian ridge regularization in combination with the standard deviation 

based rule (CPL.BR-HS.STD), but the associated sparse final models are in general not the models 

with the best performance in terms of the MSE of the regression coefficients. E. g. in the high-

dimensional case xp 200=  the frequentist lasso CPL.PenL detects on average twice as much true 

nonzero effects than Bayesian NMIG prior in combination with the HS.IND selection rule. But, the 

resulting estimated model yields a larger value of the ˆMSE( )β , with a range twice as large as the 

range of the final model achieved with CPL.BN-HS.IND. 
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 px = 20 px = 60 px = 160 px = 200 
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β ≠
β ≠
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0
β =
β =

 
ˆ 0

0
β ≠
β ≠

 
ˆ 0

0
β =
β =

 
ˆ 0

0
β ≠
β ≠

 
ˆ 0

0
β =
β =

 

BEST 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

CPL.PenL 0.445 0.288 0.411 0.332 0.299 0.380 0.220 0.416 

CPL.BL-HS.STD 0.393 0.396 0.358 0.406 0.187 0.477 0.120 0.486 

CPL.BR-HS.STD 0.404 0.348 0.383 0.346 0.238 0.437 0.196 0.450 

CPL.BN-HS.STD 0.287 0.492 0.229 0.485 0.142 0.473 0.103 0.474 

CPL.BL-HS.CRI 0.284 0.490 0.232 0.488 0.045 0.499 0.011 0.499 

CPL.BR-HS.CRI 0.301 0.483 0.264 0.470 0.068 0.498 0.031 0.499 

CPL.BN-HS.CRI 0.208 0.500 0.162 0.497 0.094 0.490 0.060 0.490 

CPL.BN-HS.IND 0.301 0.489 0.241 0.484 0.151 0.468 0.111 0.470 

Table 11.3: Average fraction of correctly classified coefficients for the CRR models after variable selection with 
increasing number of covariates. Especially ˆ 0, 0β ≠ β ≠  denotes the case that the estimated effect is nonzero 

( ˆ 0β ≠ ) when the corresponding true effect is nonzero ( 0β ≠ ), and ˆ 0, 0β = β =  denotes the case that the 
estimated effect is zero ( ˆ 0β = ) when the corresponding true effect is zero ( 0β = ).  

11.5. Adaption of the Bayesian NMIG selection criterion 

Finally, some variations of the hard shrinkage selection (HS.IND) criterion defined in Section 4.4 are 

considered to improve the predictive performance of the resulting final models. Reconsidered are the 

simulation results with the low-dimensional predictor from Subsection 11.1 and those with the high-

dimensional predictor from Subsection 11.4 based on the partial likelihood.  

The hyperparameter values 0 1 1, 2,v 0.000025,v 1,h 5,h 25ψ ψ= = = =  in the hierarchical representation of 

the Bayesian NMIG prior were originally chosen to separate in sparse CRR models ( ω  not too large) 

effects in the range from 0.3 to 0.2, in the sense that “large” effects, with values larger than 0.3, are 

less regularized and “small” effects, with values smaller than 0.2, are strong regularized. As shown in 

the previous simulations, we achieve with the associative HS.IND threshold value 0.5 reasonable 

results - in terms of the MSE performance and the misclassification rates - when xn p>  and small and 

large effects are clearly separable, as e. g. in simulation model CRR 1. But, we have also seen that for 

fixed sample size with increasing number of covariates the separation of “small” and “large” effects 

gets blurred, so that an adaption of the NMIG prior to the number xp  of covariates is indicated. 

Further, in cases with “small” or “moderate” effects, as considered in simulation models CRR 2 and 

CRR 3, the performance of Bayesian NMIG models also decreases under the basic hyperparameter 

constellation. In summary, there are a lot of situations, where we have to consider a modification of 

the basic hyperparameter setting in the Bayesian NMIG prior. Nevertheless, in the following we try 

several strategies to improve the MSE of the regression coefficients under the HS.IND selection 

criterion without changing the hyperparameters. 

• At first we adapt (i. e. decrease), after visual inspection of the posterior inclusion probabilities, 

the threshold of the HS.IND selection rule to capture also smaller effects (HS.IND.1).  

• At second we consider for covariate effects with an inclusion probability larger than 0.5 a 

modified estimate, defined as the empirical mean over the MCMC subsample, where the 

associated indicators equal 1v  (HS.IND.2).  

• At last we combine both strategies HS.IND.1 and HS.IND.2 (HS.IND.3). 
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Li and Lin (2010) utilize in the context of the Bayesian elastic net prior the receiver operating 

characteristic (ROC) curve to adapt the α -level of the credible interval in the HS.CRI criterion. They 

improve the variable selection accuracy by plotting the correct inclusion rate (sensitivity) against the 

false inclusion rate (1-specificity) along the range of α  in simulations and suggest using 0.5α =  in 

practice, because a higher level of α  results in a higher sensitivity but a lower specificity with the 

elastic net prior. Besides an adjustment of our HS.CRI region this ROC based method provides also 

another method to determine the HS.IND threshold, but we did not investigate this topic so far. 

Results 

Figure 11.30 and Figure 11.31 show the impact of these modifications on the MSE of the estimated 

regression coefficients. Figure 11.30 summarizes the results for models CRR 1 to CRR 3 from 

Subsection 11.1 and Figure 11.31 those with the higher-dimensional predictor from Subsection 11.4. 

As expected, none of the modified selection rules does improve the MSE performance in the 

simulation model CRR 1 with clearly separable large and small effects and estimated posterior 

inclusion probabilities close to 1 and 0, compare left panel of Figure 11.30. For the remaining 

simulations CRR 2 (middle panel) and CRR 3 (right panel), the largest improvements are achieved 

with the first modification HS.IND.1, i. e. by adapting the selection threshold to the lower value 0.1.  
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Figure 11.30: Mean squared errors of the regression coefficient estimates, ˆMSE( )β , under the Bayesian NMIG 
prior and the associated variable selection methods in the simulation models CRR 1 to CRR 3. The additional 

boxes show the results under the modified HS.IND selection rule. HS.IND.1: Selection threshold 0.1. HS.IND.2: 
Selection threshold 0.5 and the values of the nonzero regression coefficient estimates are computed using the 

subsample where the indicator equals 1v . HS.IND.3: Combination of HS.IND.1 and HS.IND.2.  

With decreasing value of the HS.IND-threshold the MSE of the resulting final model moves in 

direction of the MSE of the model CPL.BN, which includes all covariates in the predictor. In models 

CRR 1 and CRR2, where the effects are smaller and not clearly separated, we have seen that the 

application of the HS.IND criterion clearly decreases the MSE performance. In such situation it turns 

out that adapting the threshold value to the smaller observed posterior inclusion probabilities is a 

reasonable strategy to improve the predictive performance. With this line of action it is possible to get 

sparse final models with comparable good performance as the CPL.BN model. But, the improvement 

of the adaptation of the HS.IND-threshold is always limited by the MSE of the full CPL.BN model, 

and in particular in models CRR 2 and CRR 3 we obtain smaller MSE values with other regularization 
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methods, like the ridge regularization. In the high-dimensional simulations, compare Figure 11.31, we 

obtain a similar result as for models CRR 2 and CRR 3. Due to the decreased estimated inclusion 

probabilities, the MSE of the CPLBN-HS.IND model is clearly increased in comparison to the 

CPL.BN model, and decreasing the threshold moves the MSE of the CPLBN-HS.IND in direction of 

the MSE of the full CPL.BN model. 
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Figure 11.31: Mean squared errors of the regression coefficient estimates, ˆMSE( )β , under the Bayesian NMIG 
prior and the associated variable selection methods in the CRR model with increasing number of covariates. The 
additional boxes show the results under the modified HS.IND selection rule. HS.IND.1: Selection threshold 0.2. 
HS.IND.2: Selection threshold 0.5 and the values of the nonzero regression coefficient estimates are computed 

using the subsample where the indicator equals 1v . HS.IND.3: Combination of HS.IND.1 and HS.IND.2.  

The absolute values of the coefficient estimates, constructed under the HS.IND2 and HS.IND3 

modification, are in general larger, since the samples with associated value j 0I v=  are ignored. Both 

modifications do not improve the MSE, and the MSE resulting from the HS.IND2 criterion is clearly 

increased in almost all models (not in CRR 1). So, we note that also the shrinkage of the “larger” 

effects improves the predictive performance, in particular in the higher-dimensional cases. We refer 

again to the application in Section 14 which shows similar results from the practical perspective. 

Final remarks 

In summary, the Bayesian NMIG prior performs best in sparse models, where covariates have mainly 

“small” and “large” effects as in model type CRR 1. In the higher dimensions also the reduced 

shrinkage of “larger” effects, if present, causes an improvement of the predictive performance. In 

models with “moderate” or “smaller” effect sizes, like model types CRR 2 and CRR 3, the Bayesian 

ridge or lasso prior achieve the best performance results. We have seen that in models with various 

effect sizes the posterior inclusion probabilities for the covariates, as provided by the NMIG prior, 
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reflect very well the importance of the covariates. But, as previously observed with the AFT 

simulations, variable selection guided by the induced ranking of the covariates shows in general no 

improvement of the predictive performance, even in models of CRR 1 type. We have also seen that 

variable selection may improve the predictive performance, but often full models yield comparable or 

higher performances as sparse final models. 
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PART IV. APPLICATIONS 

To illustrate the presented methods in applications, we analyze three survival datasets and compare the 

results with those from available frequentist alternatives. We use the Bayesian methods to fit the 

extended AFT and CRR models to the data. Inference for the CRR model is based on the partial 

likelihood and the full likelihood using a P-spline model for the baseline hazard function. In the AFT 

model the error distribution is specified as penalized Gaussian mixture (PGM) or assumed to be 

Gaussian. For both survival model types we estimate on the one hand models that assume a strictly 

linear impact of the available covariates on the patient’s survival time, utilizing the Bayesian lasso, 

ridge and NMIG prior to shrink the effects towards zero. Additionally the hard shrinkage selection 

rules of Section 4.4 are applied to the Bayesian approaches, in order to identify sparse final models 

containing only the covariates with the strongest influence on the patient’s survival. On the other hand, 

to take into account possibly nonlinear shapes of some effects, continuous covariates are modeled by 

P-splines, each equipped with a random walk smoothing prior, in combination with the Bayesian 

shrinkage priors for the remaining linear effects. Further, this extended setting of the predictor allows 

an investigation of the variable selection stability under increasing model complexity. 

As in the previous simulation sections Bayesian inference for the extended AFT model is carried out 

with the R-function baftpgm(). Correspondingly, we utilize the R-function bcoxpl() for the 

extended CRR model, if inference is based on the partial likelihood, and the BayesX internal 

regress method, if inference is based on the full likelihood. The various Bayesian results are 

compared to the results from frequentist methods. We use the coxph() function to fit the frequentist 

CRR model based on the partial likelihood and the survreg() function to fit an AFT model with 

Gaussian error. Nonlinear covariate effects are modeled with the pspline() term within the formula 

specification. Both functions are combined with the step() function for variable selection based on 

the AIC criterion in a stepwise-backward procedure. The frequentist lasso and ridge regression in the 

CRR model with strictly linear predictor is carried out with the function penalized(), Goeman 

(2010). Cumulative baseline hazards associated with the partial likelihood estimates are computed via 

the Breslow estimator and the cumulative baseline hazards associated with the P-spline estimates of 

the baseline hazard are computed with the trapezoidal rule.  

12. Primary biliary cirrhosis of the liver K12.A1 

12.1. Data 

The presented methods for the extended AFT and CRR model are applied to the primary biliary 

cirrhosis data, provided for example in the R-package {survival} or the book-homepage of 

Therneau and Grambsch (2000). Primary biliary cirrhosis (PBC) is an autoimmune disease of the liver, 
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marked by the slow progressive destruction of the small bile ducts (bile canaliculi) within the liver. 

When these ducts are damaged, bile builds up in the liver and damages over time the tissue. This can 

lead to scarring, fibrosis and cirrhosis inducing a liver failure and finally to the death of the patient. 

In the following we give a short description of the data and refer to Therneau and Grambsch (2000) for 

a more detailed presentation and an extended frequentist analysis based on the partial likelihood. In the 

CRR regularization context the PBC data is also used in Tibshirani (1997), who compared the variable 

selection property of the lasso penalty with a backward-forward stepwise procedure based on p-values. 

Further, Zhang and Lu (2007) applied the adaptive lasso on this data, where, in contrast to the lasso 

penalty, covariate-specific weights in the penalization term enable the coefficient-specific shrinkage. 

In the context of regression spline models, e. g. Sleeper and Harrington (1990) used this data for a 

sophisticated analysis, where some covariate effects are assumed to have a nonlinear shape modeled 

by B-spline basis functions. Finally, the data is also analyzed in the context of regularized 

semiparametric AFT models, in particular Johnson (2008) and Johnson (2009) apply the lasso, the 

adaptive lasso and the elastic net penalization to ten preselected covariates. 

 

time number of days between registration and the earlier event of death 
or transplantation 

status status at endpoint, 0 = censored, 1= transplant or dead 

age age in years 

alb albumin in gm/dl 

alkphos alkaline phosphatase in U/liter 

ascites presence of ascites (0 = no, 1 = yes) 

bili serum bilirubin in mg/dl 

chol serum cholesterol in mg/dl 

copper urine copper in ug/day 

edtrt presence of edema (0.0 = no edema and no diuretic therapy for 
edema; 0.5 = edema present without diuretics, or edema resolved 
by diuretics; 1.0 = edema despite diuretic therapy) 

hepmeg presence of hepatomegaly, i. e. enlarged liver (0 = no, 1 = yes) 

platelet platelets per cubic ml / 1000 

protime standardized blood clotting time, prothrombin time in seconds 

sex sex (0 = male, 1 = female) 

sgot liver enzyme SGOT in U/ml 

spiders blood vessel malformations in the skin, presence of spiders (0 = no, 
1 = yes) 

stage histologic stage of disease 

trig triglicerides in mg/dl 

trt treatment/drug (1= D-penicillamine, 2 = placebo) 

Table 12.1: List of available covariates used in the analysis of the PBC data. 

The data has been collected from the Mayo Clinic trial in primary biliary cirrhosis of the liver 

conducted between 1974 and 1984. A total of 424 PBC patients, referred to the Mayo Clinic during 

that ten-year interval, met eligibility criteria for the randomized placebo controlled trial of the drug D-

penicillamine. The first 312 cases in the data set participated in the randomized trial and contain 

largely complete data. The additional 112 cases did not participate in the clinical trial, but consented to 

have basic measurements recorded and to be followed for survival. Six of those cases were lost to 

follow-up shortly after the diagnosis, so the data considered here consists of the additional 106 cases 

as well as the 312 randomized participants. Discarding observations with missing values leaves finally 
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n 276=  observations with 58.42 % censoring and a mean survival time of 1889 days, ranging from 41 

to 4191 days. The covariates used for analysis are listed in Table 12.1. To make our results 

comparable to those in Tibshirani (1997), covariates were standardized to have zero mean and unit 

variance. We have not applied log-transformations for covariates that have somehow skewed 

distributions. 

12.2. Analysis 

We consider two structures for the predictor. The first is assumed to be strictly linear 

 

i 0 1 i 2 i 3 i 4 i 5 i 6 i

7 i 8 i 9 i 10 i 11 i 12 i 13 i

14 i 15 i 16 i 17 i

acites edtrt hepmeg sex spiders stage

trt age alb alkphos bili chol platelet

protime sgot trig copper ,

η = γ + β + β + β + β + β + β

+β + β + β + β + β + β + β

+β + β + β + β

 (12.1) 

and in the second version, the continuous covariates are modeled nonlinear 

 

i 0 1 i 2 i 3 i 4 i 5 i 6 i

7 i 1 i 2 i 2 i 4 i 5 i

6 i 7 i 8 i 9 i 10 i

acites edtrt hepmeg sex spiders stage

trt f (age ) f (alb ) f (alkphos ) f (bili ) f (chol )

f (platelet ) f (protime ) f (sgot ) f (trig ) f (copper ),

η = γ + β + β + β + β + β + β

+β + + + + +

+ + + + +

 (12.2) 

where jf ( )⋅ , j 1,...,10= , are smooth functions of the 10 continuous covariates age, alb, alkphos, bili, 

chol, platelet, protime, sgot, trig and copper, which are modeled by cubic P-splines. In the AFT model  

 i i iy = η + σε , (12.3) 

when the error density is specified as penalized Gaussian mixture, i. e. 0g 2
ji j jj 1~ w N(m ,s )=ε ∑ , we use 

the same specification of the error as described in the simulation setting of Section 10.1. In summary, 

0g 21=  basis functions with equidistant knots jm , placed in the interval [ 4.5,4.5]− , and uniform 

variances 2 2
js 0.25=  are used to model the error density. A random walk prior with difference order 

0d 3=  controls the smoothness of the PGM. The hyperparameters of the scale parameter 2σ  are set to 

1, 2,h h 0.01σ σ= =  and those of the smoothing variance to 
01,h 1τ = , 

02,h 0.01τ = . We utilize the 

“sliceR0”, “mcondstep” and “mcondblock” update schemes for the transformed mixture weights. 

Due to negligible differences, the presented results are based on the update scheme “sliceR0” as 

representative. As further competitor the error is assumed to be purely Gaussian. 

The hyperparameters of the Bayesian lasso and ridge (version B) gamma prior for the shrinkage 

parameter λ  are set, as in Section 11.1, to weakly informative values 1, 2,h h 0.01λ λ= = . The 

hyperparameters of the Bayesian NMIG variance parameter components 2 2
j j jIτ = ψ  are 1v 1= , 

0v 0.000025= , 1,h 5ψ =  and 2,h 25ψ =  in combination with 1,h 1ω =  and 2,h 1ω =  to define a uniform 

prior for the complexity parameter ω . For the representation of the nonlinear effects 
jg

j k, j kk 1f ( ) B ( )
=

⋅ = α ⋅∑  in predictor (12.2) we use jg 20=  cubic B-spline basis functions kB ( )⋅  in 

combination with second-order random walk priors, jd 2= , for the associated basis function weights 

jj 1, j g , j( ,..., )′= α αα . The hyperparameters of the inverse gamma prior for the smoothness controlling 

variances 
j

2
ατ  are set to 

j j1, 2,h h 0.001τ τ= = .  

The MCMC algorithms for inference in the AFT model ran with 30000 iterations, where 15000 

iterations discarded as burnin and a thinning of 15. The running time is about 80 minutes with strictly 

linear predictor and 120 minutes with the nonlinear predictor on a system with quad-core CPU (Intel 

Quad9550, 2.83 GHz).  
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To fit the CRR models 

 i i 0 i i(t ) (t )exp( )λ = λ η , (12.4) 

we use with the Bayesian methods 20000 iterations with a burnin of 5000 and thin the chain by 10 

which results in an MCMC sample of size 1500 (Running times: CFL: 2 -3 minutes, CPL linear 

predictor: 20 minutes, CPL spline predictor: 6 hours!). Since there exists no functional connection 

between the estimates resulting from the CRR and the AFT model, with exception of the Weibull 

model, we use as default a common specification of the regularization priors in both survival model 

classes. Within the BayesX method regress we use the default values 1, 2,h h 0.001λ λ= =  to specify 

the hyperparameters of the Bayesian lasso and ridge prior. The logarithm of the baseline hazard 

0 0f ( ) : log ( )⋅ = λ ⋅  is modeled, as the nonlinear effects jf ( )⋅ , by cubic P-splines placed at jg 20=  knots 

and the basis function weights are equipped with second-order random walk priors to control the 

smoothness. The associated hyperparameters of the smoothing variances are also set to the default 

values 
j j1, 2,h h 0.001τ τ= = , j 0,1,...,10= . Due to inferential problems arising with the estimation 

procedure regress under the Bayesian NMIG prior in combination with predictor (12.2), the 

covariate age is modeled linearly in this specific case.  

To model the nonlinear covariate effects with the frequentist procedures, we use the pspline() term 

within the formula of the R-functions survreg() and coxph(). The roughness penalty of the P-

splines is set to the value theta=0.8. In the subsequent sections the main results of the analysis are 

presented. The abbreviations that denote the models are listed in the Reference Section. 

12.3. Results 

Results for the linear predictor 

Linear effects 

We first summarize the results obtained under the purely linear structure of the predictor (12.1). A 

selection of the point estimates in the CRR model together with the corresponding standard deviations 

for the regression coefficients are displayed in the upper plot of Figure 12.1. The lower plot shows 

results from the Bayesian methods after applying the hard shrinkage rules HS.STD and HS.IND to 

select covariates for the final model together with the results from the stepwise procedure and the 

frequentist lasso. The marked standard deviations for the frequentist lasso are obtained by the 

approximate method described in Tibshirani (1997), and for the regression coefficients not included in 

the final model the standard deviations are set to zero.  

All presented methods are leading to final models that include the five covariates age, alb, bili, stage 

and copper and eliminate hepmeg, platelet, spiders, trt and trig. The covariate ascites is only chosen 

by the frequentist lasso (CPL.PenL), but the effect of ascites is generally very small. Obviously, as 

designed, the Bayesian NMIG method (CPL.BN, CFL.BN) shrinks small effects to a larger extent than 

the lasso- or ridge-based methods, so that most of the remaining covariates are excluded, if variable 

selection is based on the HS.IND criterion. The HS.IND criterion uses the model inclusion probability 

of each covariate estimated by posterior relative frequency of the NMIG indicator variables j 1I v= , 

compare Figure 12.3. In contrast to the results with the full likelihood, the inclusion probability of the 
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covariate edrt under the partial likelihood falls just below the HS.IND selection threshold of 0.5 and 

does not appear in the resulting final model. 
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Figure 12.1: Estimated regression coefficients without (upper panel) and with variable selection (lower panel) in 
the CRR model. The points mark the estimates of the regression coefficients and the solid lines display the 

corresponding standard errors. For the Bayesian procedures the points mark the mean, the solid lines display the 
standard errors and the additional dashes mark the median and the 95 % empirical quantiles of the marginal 

posterior distribution of the regression coefficients.  

Figure 12.2 shows the corresponding results from the AFT model with Gaussian and PGM error. The 

unpenalized estimates show by trend smaller absolute values than those under the CRR assumption 

with exception of the covariates ascites and spiders. If we consider the estimates under the NMIG 

prior, we see, e. g., that the effects of the covariates bili and edtrt are stronger regularized as the effects 

of the covariates protime and sgot, while the unregularized estimates of these covariates are almost of 

comparable size. In the CRR models we observe a similar behavior for the covariates age and bili or 

edtrt and copper, where respectively also the covariates age and edtrt are stronger regularized. We 

note again that the “effective” regularization of the linear effects depends also on the used survival 

regression model and the modeling of the components within the specific survival model. 

Nevertheless, we find for eleven covariates in both survival model classes comparable results with 

respect to the covariates included in the final models after variable selection. Some differences occur 

for the three covariates alkphos (CPL.Step), chol (CFL.BL-HS.STD) and edtrt (CPL.BN-HS.IND) and 

for the remaining three covariates alb, ascites and spiders we observe differences more frequently.  



178 12. PRIMARY BILIARY CIRRHOSIS OF THE LIVER 

age alb alkphos ascites bili chol edtrt hepmeg platelet protime sex sgot spiders stage trt trig copper

-0
.6

-0
.4

-0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

s
u

m
m

a
ry

: 
- 

B
e

ta

AFT

AFT.BL

PGM.BL

AFT.BN

PGM.BN

age alb alkphos ascites bili chol edtrt hepmeg platelet protime sex sgot spiders stage trt trig copper

-0
.6

-0
.4

-0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

s
u

m
m

a
r
y

: 
- 

B
e

ta

AFT.Step

AFT.BL-HS.STD

PGM.BL-HS.STD

AFT.BN-HS.IND

PGM.BN-HS.IND

 

Figure 12.2: Estimated regression coefficients without (upper panel) and with variable selection (lower panel) in 
the AFT model. The points mark the estimates of the regression coefficients and the lines display the 

corresponding standard errors. For the Bayesian procedures the points mark the mean, the solid lines display the 
standard errors and the additional dashes mark the median and 95 % empirical quantiles of the marginal posterior 

distribution of the regression coefficients.  

NMIG indicators 

The posterior relative frequencies of the Bayesian NMIG indicator variables j 1I v=  are summarized in 

Figure 12.3, for the CRR model under the full and partial likelihood, and in Figure 12.4, for the AFT 

model with Gaussian and PGM error. The crosses at the bottom of the bars mark the covariates from  
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Figure 12.3: Estimated inclusion probabilities based on posterior relative frequencies of the Bayesian NMIG 
indicator variable value j 1I v=  in the CRR model based on the full likelihood (left side) and the partial 
likelihood (right side). The crosses at the bottom of the bars mark the covariates from the corresponding 

frequentist models, which are significant with respect to the p-value 0.05 (cyan) and which are selected by the 
frequentist stepwise variable selection procedure (dark blue).  
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Figure 12.4: Estimated inclusion probabilities based on posterior relative frequencies of the Bayesian NMIG 
indicator variable value j 1I v=  in the AFT model with Gaussian error distribution (left side) and PGM error 

distribution (right side). The crosses at the bottom of the bars mark the covariates from the corresponding 
frequentist models, which are significant with respect to the p-value 0.05 (cyan) and which are selected by the 

frequentist stepwise variable selection procedure (dark blue).   

the corresponding frequentist models, which are significant with respect to the p-value 0.05 (cyan) and 

which are selected by the frequentist stepwise variable selection procedure (dark blue). With exception 

of the covariates alb in the AFT models and edtrt in the CPL model, almost all covariates are across 

the various models commonly selected resp. deselected by the HS.IND criterion. Nevertheless, we see 

that the impact of the covariates is more or less pronounced across the survival model classes, but also 

varies within the survival model class with the model complexity. 

Baseline quantities 

The estimated log-baseline hazards, 0 0log (t)λ + γ , obtained from the full likelihood approach in the 

CRR model with the lasso and NMIG prior, are depicted at the left side of Figure 12.5. The 

corresponding cumulative baseline hazards, obtained by applying the trapezoidal rule for integration, 

are shown at the right side of Figure 12.5 together with the Breslow estimate from the partial 

likelihood based methods. We observe a close conformity of the estimates across the frequentist and 
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Figure 12.5: Estimation of the log-baseline hazard and cumulative baseline hazard in the CRR model. Left side: 
Posterior mean estimate of the log-baseline hazard for the Bayesian NMIG and Bayesian lasso regularization 

based on the full likelihood (solid lines) with 95% pointwise credible bands (dashed lines). Right side: 
Cumulative baseline hazards obtained as Breslow estimate for the partial likelihood methods and via the 
trapezoidal rule for the full likelihood methods based on the posterior mean of the involved regression 

coefficients.  
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Figure 12.6: Estimation of the baseline error distribution in the AFT model. Left side: Posterior mean estimate 
of the density (solid lines) when the error is modeled as PGM with 95% pointwise credible bands (dashed lines). 

Right side: Posterior mean estimate of the density (solid lines) when the error is modeled by a Gaussian 
distribution with 95 % pointwise credible bands (dashed lines).   

Bayesian approaches and across the different types of regularization priors. The same holds for the 

estimated baseline error densities ( 0 0 0Y = γ + σε ) in the AFT model, as shown in Figure 12.6, when a 

PGM error (left side) or Gaussian error (right side) is assumed. The baseline hazard estimation 

indicates that the risk to die increases monotonically, closely linear, over the years. In the AFT model 

there is no eye catching asymmetry for the density estimation observable and the Gaussian error seems 

to be a good proxy to the baseline error distribution.  

Path results for the linear predictor 

We compute the paths of the parameter estimates as function of the shrinkage parameter to investigate 

the evolution of the estimates if the shrinkage parameter is varied. The frequentist lasso estimation 

procedures provide the regression coefficient paths as add-on to the implemented functions. In the 

Bayesian procedures the parameter paths are obtained by suppressing the update of the shrinkage 

parameter in the MCMC process and choosing the starting value at the desired grid points in the range 

of the penalty-specific shrinkage parameter. The frequentist and Bayesian lasso paths are plotted as a 

function of the (standardized) complexity parameter t, with j j,ML
ˆ ˆt : | | / | | [0,1]= β β ∈∑ ∑ , where j,MLβ̂  

denote the unconstrained maximum likelihood estimates and jβ̂  correspond to the regularized lasso 

estimates with j j,ML
ˆ ˆ| | [0, | |]β ∈ β∑ ∑ . For the Bayesian NMIG prior we show the results on grid points 

in the range [0.1,1]ω∈ , because for grid points 0.1ω <  we observe very wiggly paths associated to 

the covariates with larger effects, in particular for the indicator variables. As outlined in Section 4.3.2 

larger regression coefficients can have high sampling probabilities for the sate j 1I v= , even if ω  is 

small, so the paths become unstable until 0ω = . This is also confirmed by the paths of the variance 

parameters (not shown), where the variance parameters of the larger regression coefficients obtain 

large values nearly over the whole range of the complexity parameter.  

Paths of the regression coefficients 

The paths of four selected regression coefficients from the Bayesian lasso regularized CRR and AFT 

models are plotted in Figure 12.7. In addition, the associated paths of the pointwise empirical standard 

deviation (dashed lines) and the pointwise empirical 95% credible region (dotted lines) are shown, 

which are used to practice variable selection in terms of the HS.STD and HS.CRI criterion. The 
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asterisks on the coefficient paths indicate the grid point t at which the estimates are computed and the 

black dotted vertical line marks the estimated constraint parameter t̂  (from the full Bayesian 

approach). From the top to the bottom of the figure the paths are computed with the CRR model based 

on the full and partial likelihood and the AFT model with PGM and Gaussian error. Figure 12.8 

shows the corresponding results under the Bayesian NMIG prior. In both figures the coefficient paths 

of the frequentist lasso (CPL.PenL) are marked as competitor (black dashed lines).  

0.0 0.2 0.4 0.6 0.8 1.0

-0
.6

-0
.4

-0
.2

0
.0

0
.2

0
.4

0
.6

s
u

m
m

a
ry

: 
B

e
ta

CFL.BL: age

0.0 0.2 0.4 0.6 0.8 1.0

-0
.6

-0
.4

-0
.2

0
.0

0
.2

0
.4

0
.6

CFL.BL: platelet

0.0 0.2 0.4 0.6 0.8 1.0

-0
.6

-0
.4

-0
.2

0
.0

0
.2

0
.4

0
.6

CFL.BL: alb

0.0 0.2 0.4 0.6 0.8 1.0

-0
.6

-0
.4

-0
.2

0
.0

0
.2

0
.4

0
.6

CFL.BL: stage

0.0 0.2 0.4 0.6 0.8 1.0

-0
.6

-0
.4

-0
.2

0
.0

0
.2

0
.4

0
.6

s
u

m
m

a
ry

: 
B

e
ta

CPL.BL: age

0.0 0.2 0.4 0.6 0.8 1.0

-0
.6

-0
.4

-0
.2

0
.0

0
.2

0
.4

0
.6

CPL.BL: platelet

0.0 0.2 0.4 0.6 0.8 1.0

-0
.6

-0
.4

-0
.2

0
.0

0
.2

0
.4

0
.6

CPL.BL: alb

0.0 0.2 0.4 0.6 0.8 1.0

-0
.6

-0
.4

-0
.2

0
.0

0
.2

0
.4

0
.6

CPL.BL: stage

0.0 0.2 0.4 0.6 0.8 1.0

-0
.6

-0
.4

-0
.2

0
.0

0
.2

0
.4

0
.6

s
u

m
m

a
ry

: 
- 

B
e
ta

PGM.BL: age

0.0 0.2 0.4 0.6 0.8 1.0

-0
.6

-0
.4

-0
.2

0
.0

0
.2

0
.4

0
.6

PGM.BL: platelet

0.0 0.2 0.4 0.6 0.8 1.0

-0
.6

-0
.4

-0
.2

0
.0

0
.2

0
.4

0
.6

PGM.BL: alb

0.0 0.2 0.4 0.6 0.8 1.0

-0
.6

-0
.4

-0
.2

0
.0

0
.2

0
.4

0
.6

PGM.BL: stage

0.0 0.2 0.4 0.6 0.8 1.0

-0
.6

-0
.4

-0
.2

0
.0

0
.2

0
.4

0
.6

shrinkageparameter t

s
u

m
m

a
ry

: 
- 

B
e

ta

AFT.BL: age

0.0 0.2 0.4 0.6 0.8 1.0

-0
.6

-0
.4

-0
.2

0
.0

0
.2

0
.4

0
.6

shrinkageparameter t

AFT.BL: platelet

0.0 0.2 0.4 0.6 0.8 1.0

-0
.6

-0
.4

-0
.2

0
.0

0
.2

0
.4

0
.6

shrinkageparameter t

AFT.BL: alb

0.0 0.2 0.4 0.6 0.8 1.0

-0
.6

-0
.4

-0
.2

0
.0

0
.2

0
.4

0
.6

shrinkageparameter t

AFT.BL: stage

 

Figure 12.7: Selected coefficient estimates from the Bayesian lasso regularization in the CRR (first two rows) 
and AFT model (last two rows) as a function of the complexity parameter t. In the first row the estimates are 

based on the full likelihood and in the second row on the partial likelihood. In the third row the error is modeled 
by a PGM and in the last row the error is Gaussian. The vertical dashed line marks the corresponding coefficient 
estimates at the particular (full) Bayesian estimate of the constraint parameter. The gray dotted and dashed lines 
mark the evolution of the empirical 95% quantiles and standard deviation of the associated marginal posterior 

distribution. The black dashed paths mark coefficient paths of the penalized lasso procedure.  
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Figure 12.8: Selected coefficient estimates from the Bayesian NMIG regularization in the CRR (first two rows) 
and AFT model (last two rows) as a function of the complexity parameter t. In the first row the estimates are 

based on the full likelihood and in the second row on the partial likelihood. In the third row the error is modeled 
by a PGM and in the last row the error is Gaussian. The vertical dotted line marks the corresponding coefficient 
estimates at the particular (full) Bayesian estimate of the constraint parameter. The gray dotted and dashed lines 
mark the evolution of the empirical 95% quantiles and standard deviation of the associated marginal posterior 

distribution. The black dashed paths mark coefficient paths of the penalized lasso procedure.  

In the CRR model the Bayesian and frequentist lasso paths show no strong differences. Due to the 

sampling based MCMC inference, the Bayesian paths are not piecewise exactly equal to zero as the 

frequentist lasso paths, where inference and variable selection is carried out simultaneously. For larger 

regression coefficients the paths of the standard deviation or the credible interval, computed with the 

partial likelihood (CPL.BL), often cross zero in the region where the frequentist lasso path is set to 

zero. We remember that e. g. the covariate platelet is always excluded from all final models. If we 

consider the development of the estimator for the covariate platelet, there is in all models strong 

evidence that this covariate has a negligible effect, because the margins of the HS.STD interval always 

include zero and the size of the effect marginally varies.  
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Further, the figures highlight the different shrinkage properties of the Bayesian lasso and NMIG prior. 

The shrinkage of larger regression coefficients, like those of age or stage, is suppressed by the 

bimodal structure of the NMIG prior that leaves these larger effects over a wide range of the 

complexity parameter virtually unpenalized. In comparison to the Bayesian NMIG paths the Bayesian 

lasso paths indicate a more uniform shrinkage of small and large effects. 

Paths of the NMIG posterior inclusion probabilities 

The left panel of Figure 12.9 shows the posterior NMIG inclusion probabilities of the four selected 

covariates age, alb, platelet and stage as a function of the complexity parameter ω . In the right panel 

we see as competitor the estimated inclusion probabilities from the full Bayesian models, where the 

shrinkage parameter is jointly estimated, compare Figure 12.3 and Figure 12.4. The vertical lines in 

the left panel mark the associated estimated value ω̂  from the MCMC sample. 

For some of the covariates we observe a similar evolution along increasing values of ω  as for the 

estimated regression coefficients. The inclusion probabilities of the covariates age and stage increase 

rapidly to relative high values exceeding the HS.IND selection threshold of 0.5. In contrast, the 

inclusion probability of the covariate platelet only slightly changes over a wide range of the 

complexity parameter and clearly increases only in the last third of the complexity parameter range. 

Other covariates, like alb, show a different devolution in the CRR or AFT survival model class. In the 

CRR model the inclusion probabilities of alb, obtained with the full and partial likelihood, quickly 

increase, but in the AFT model with PGM and Gaussian error they stay longer on a lower level below 

the threshold of 0.5. The inclusion probability values from the paths at the estimate ω̂  are almost 

comparable with the inclusion probabilities shown in the right panel. Finally, we observe that the paths 

across the models and methods differ in the unsteadiness, where the wiggliest results are obtained 

under the AFT model with PGM error, indicating a higher uncertainty in the classification to the 

component j 0I v=  and j 1I v= . 

Paths of the baseline quantities 

The following three figures show the impact on the baseline quantities if the shrinkage parameters are 

varied. We display the impact under the Bayesian lasso and NMIG prior in the CRR model with P-

spline baseline hazard, Figure 12.10, the AFT model with PGM error, Figure 12.11, or Gaussian 

error, Figure 12.12. 

In contrast to the Bayesian lasso models (left sides of the figures), there are no rigorous changes in the 

log-baseline hazard or baseline error density estimates observable under the Bayesian NMIG models 

(right sides of the figures), if the complexity parameter is varied. Under the lasso prior the log-baseline 

hazard estimates have a close to linear increase for large values of the complexity parameter t that 

indicate a weak regularization. With decreasing complexity parameter t 0→ , i. e. enhanced 

regularization, we obtain smaller slopes of the log-baseline hazard in the first 2000 days, and the slope 

in this interval gets close to zero, if t 0≈ , see Figure 12.10.  

With decreasing complexity parameter t 0→  we observe also the progress of the baseline error 

density from a symmetric to a heavy skewed shape in the AFT model with PGM error, compare 

Figure 12.11, and with the Gaussian error the density gets more mass in the tails, compare Figure 

12.12. 
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Figure 12.9: Selected posterior relative frequencies of the Bayesian NMIG indicator variables as a function of 
the complexity parameter ω (left column) and relative posterior frequencies of the Bayesian NMIG indicator 

variable (right column) under the full Bayesian approach in the CRR and AFT model. The vertical dashed line in 
the figures of the first column marks the corresponding coefficient estimates at the (full) Bayesian estimate of the 
complexity parameter. In the first row the estimates are based on the full likelihood and in the second row on the 

partial likelihood. In the third row the error is modeled by a PGM and in the last row it is Gaussian.  
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Figure 12.10: Log-baseline hazard estimation for the different values of the shrinkage parameters in the CRR 
model based on the full likelihood. Posterior mean estimations resulting from the paths of the Bayesian lasso 

(right side) and the Bayesian NMIG (left side) regularization.  
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Figure 12.11: Baseline error density estimation for the different values of the shrinkage parameters in the AFT 
model with Gaussian error. Posterior mean estimations resulting from the paths of the Bayesian lasso (right side) 

and the Bayesian NMIG (left side) regularization.  
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Figure 12.12: Baseline error density estimation for the different values of the shrinkage parameters in the AFT 
model with PGM error. Posterior mean estimations resulting from the paths of the Bayesian lasso (right side) and 

the Bayesian NMIG (left side) regularization.  

Selected samples for the linear predictor 

To highlight again the different regularization structures of the Bayesian lasso and NMIG priors, we 

consider the generated MCMC samples. The following four figures show the samples of four different 

covariate effects under the Bayesian lasso and NMIG prior for different fixed values of the complexity 

parameter t  resp. ω . We use the results from the CRR model with P-spline model for the log-baseline  
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Figure 12.13: MCMC sample of the regression coefficient of covariate age and the corresponding variance 
parameter from the CRR model based on the full likelihood under the Bayesian lasso prior. Left column: Trace 

plot of the sample of the regression coefficient ageβ  for the fixed values t = 0.10, 0.51, 0.70, 0.98. Middle 
column: Corresponding kernel density estimates of the marginal posterior density based on Gaussian kernels. 

Right column: Trace plot of the samples of the related variance parameter 2
ageτ . The red plots at the border of the 

first and second column display summary statistics of the marginal posterior distribution. The red points mark 
the mean, the red solid lines display the standard errors and the red dashes mark the median and 95 % empirical 

quantiles.  
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Figure 12.14: MCMC sample of the regression coefficient of covariate age and the corresponding variance 
parameter from the CRR model based on the full likelihood under the Bayesian NMIG prior. Left column: Trace 

plot of the sample of the regression coefficient ageβ  for the fixed values ω = 0.1, 0.30, 0.70, 0.95. Middle 
column: Corresponding kernel density estimates of the marginal posterior density based on Gaussian kernels. 

Right column: Trace plot of the samples of the related variance parameter 2
ageτ . The red plots at the border of the 

first and second column display summary statistics of the marginal posterior distribution. The red points mark 
the mean, the red solid lines display the standard errors and the red dashes mark the median and 95 % empirical 
quantiles. In the left and right column the green and blue points mark the sampled values, if the sample value of 

the corresponding indicator equals 0v  or 1v . The posterior mean estimate of the Bayesian NMIG indicator is 
given at the bottom right side of the figures in the first column.  



188 12. PRIMARY BILIARY CIRRHOSIS OF THE LIVER 

 

0 200 400 600 800 1000

-0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

sample

B
e
ta

sgot : w = 0.1

I=v 0

I=v 1 mean(I=v 1) = 0.07

-0.2 0.0 0.2 0.4 0.6
0

5
1

0
1
5

2
0

sgot

d
e
n

s
it

y

sgot : w = 0.1

0 200 400 600 800 1000

0
5

1
0

1
5

2
0

2
5

3
0

sample

v
a
ri

a
n

c
e

sgot : w = 0.1

0 200 400 600 800 1000

-0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

sample

B
e
ta

sgot : w = 0.3

I=v 0

I=v 1 mean(I=v 1) = 0.25

-0.2 0.0 0.2 0.4 0.6

0
5

1
0

1
5

2
0

sgot

d
e
n

s
it

y

sgot : w = 0.3

0 200 400 600 800 1000

0
5

1
0

1
5

2
0

2
5

3
0

sample

v
a

ri
a
n

c
e

sgot : w = 0.3

0 200 400 600 800 1000

-0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

sample

B
e
ta

sgot : w = 0.7

I=v 0

I=v 1 mean(I=v 1) = 0.51

-0.2 0.0 0.2 0.4 0.6

0
5

1
0

1
5

2
0

sgot

d
e
n

s
it

y

sgot : w = 0.7

0 200 400 600 800 1000

0
5

1
0

1
5

2
0

2
5

3
0

sample

v
a
ri

a
n

c
e

sgot : w = 0.7

0 200 400 600 800 1000

-0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

sample

B
e
ta

sgot : w = 0.95

I=v 0

I=v 1 mean(I=v 1) = 0.88

-0.2 0.0 0.2 0.4 0.6

0
5

1
0

1
5

2
0

sgot

d
e
n

s
it

y

sgot : w = 0.95

0 200 400 600 800 1000

0
5

1
0

1
5

2
0

2
5

3
0

sample

v
a
ri

a
n

c
e

sgot : w = 0.95

 

Figure 12.15: MCMC sample of the regression coefficient of covariate sgot and the corresponding variance 
parameter from the CRR model based on the full likelihood under the Bayesian NMIG prior. Left column: Trace 

plot of the sample of the regression coefficient sgotβ  for the fixed values ω = 0.05, 0.30, 0.70, 0.95. Middle 
column: Corresponding kernel density estimates of the marginal posterior density based on Gaussian kernels. 

Right column: Trace plot of the samples of the related variance parameter 2
sgotτ . The red plots at the border of the 

first and second column display summary statistics of the marginal posterior distribution. The red points mark 
the mean, the red solid lines display the standard errors and the red dashes mark the median and 95 % empirical 
quantiles. In the left and right column the green and blue points mark the sampled values when the sample value 
of the corresponding indicator equals 0v  or 1v . The posterior mean estimate of the Bayesian NMIG indicator is 

given at the bottom right side of the figures in the first column.  
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Figure 12.16: MCMC sample of the regression coefficient of covariate edtrt and the corresponding variance 
parameter from the CRR model based on the full likelihood under the Bayesian NMIG prior. Left column: Trace 

plot of the sample of the regression coefficient edtrtβ  for the fixed values ω = 0.1, 0.30, 0.70, 0.95. Middle 
column: Corresponding kernel density estimates of the marginal posterior density based on Gaussian kernels. 
Right column: Trace plot of the samples of the related variance parameter 2

edtrtτ . The red plots at the border of 
the first and second column display summary statistics of the marginal posterior distribution. The red points 
mark the mean, the red solid lines display the standard errors and the red dashes mark the median and 95 % 
empirical quantiles. In the left and right column the green and blue points mark the sampled values when the 

sample value of the corresponding indicator equals 0v  or 1v . The posterior mean estimate of the Bayesian NMIG 
indicator is given at the bottom right side of the figures in the first column.  
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Figure 12.17: MCMC sample of the regression coefficient of covariate platelet and the corresponding variance 
parameter from the CRR model based on the full likelihood under the Bayesian NMIG prior. Left column: Trace 

plot of the sample of the regression coefficient plateletβ  for the fixed values ω = 0.1, 0.30, 0.70, 0.95. Middle 
column: Corresponding kernel density estimates of the marginal posterior density based on Gaussian kernels. 

Right column: Trace plot of the samples of the related variance parameter 2
plateletτ . The red plots at the border of 

the first and second column display summary statistics of the marginal posterior distribution. The red points 
mark the mean, the red solid lines display the standard errors and the red dashes mark the median and 95 % 
empirical quantiles. In the left and right column the green and blue points mark the sampled values when the 

sample value of the corresponding indicator equals 0v  or 1v . The posterior mean estimate of the Bayesian NMIG 
indicator is given at the bottom right side of the figures in the first column.  



APPLICATIONS 191 

hazard. From the top to the bottom of the figures the complexity parameter is increased, i. e. the 

regularization is reduced. From the left to the right we see the trace plot of the sample of the regression 

coefficient (first column), the corresponding marginal posterior density (middle column, computed as 

kernel density estimate with Gaussian kernel) and the trace plot of the variance parameter sample, 

which controls the covariate-specific penalization. At the margins of the plots in the first and second 

column the empirical posterior mean, median and 95% quantiles of the marginal distribution of the 

regression coefficients are displayed.  

In particular Figure 12.13 shows the associated samples for the covariate age under the Bayesian lasso 

prior, if the complexity parameter t increases from t 0.1=  to t 0.98= . We clearly observe that the 

sampled values of the variance 
j

2
βτ  increase with increasing values t, inducing a decrease in the 

covariate-specific penalty 
j

2−
βτ . The impact of the decrease in the penalty is reflected in the sampled 

values of the regression coefficients and in the associated density estimate, which both become less 

concentrated around zero. 

Figure 12.14 to Figure 12.17 show the samples of the covariates age, sgot, edtrt and platelet under 

the Bayesian NMIG prior, if the complexity parameter ω increases from 0.1ω =  to 0.95ω = . The 

green and blue dots in the samples mark the associated values j 0I v=  and j 1I v=  of the indicator 

variable and the posterior relative frequency of the indicator value j 1I v=  are annotated at the right 

bottom ( 1mean(I v )= ). With increasing values of the complexity parameter ω  we observe an increase 

of the number of sampled values j 1I v=  associated with an increase of the sampled variances 
j

2
βτ . The 

resulting global reduction of penalization is reflected in the samples of the regression coefficients and 

the corresponding density estimate of the marginal posterior which both are shifted away from zero. 

Nevertheless, the marginal posteriors of the regression coefficients (and variance parameters) show a 

more or less pronounced bimodality in each figure, which depends on the effect size and the 

frequencies of the indicators 1I v= . In particular small or large effects (as defined by the setting of the 

NMIG hyperparameters), like that of platelet and age, are strongly or weakly regularized over a broad 

range, as also shown in the coefficient paths, so that a notable bimodality of the effect distribution 

mainly occurs at the right or left margins of the complexity parameter. In general, the bimodality of 

the marginal posteriors derogates somehow the empirical mean as appropriate summary statistic in 

cases when effects of moderate size are present. But, as seen in the Simulation Section 11.5, the 

associative estimation strategy, using only the subsamples belonging to the nearly unregularized 

component with 1I v=  for effects exceeding a given frequency threshold, has shown no improvement 

in the predictive performance. 

Results for the nonlinear predictor 

We finally consider the results achieved for the extended AFT and CRR models given in (12.3) and 

(12.4), when the predictor (12.2) with nonlinear effects of the continuous covariates is assumed. In 

summary, we found no strong evidence for the nonlinear form of any effect under both survival 

models, if the estimates are considered in the regions where most of the observations occur. 

Nonlinear effects 

Figure 12.18 displays the estimated nonlinear effect of the covariate bili as representative. Shown are 

the results obtained under the Bayesian NMIG and Bayesian lasso prior for the linear effects together 
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with the results from the stepwise variable selection. The left side of Figure 12.18 shows the results 

for the estimated CRR model and the right side the corresponding results for the AFT model.  

The shape of the estimated functions is similar at both sides of the figure, but under the Bayesian AFT 

model the pointwise credible bands, indicating the uncertainty, are more concentrated in the regions 

with most of the observations than those of the Bayesian CRR model and the slope is smaller. The 

shift in the Bayesian CFL estimates is due to the internal centering of the spline estimates. 
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Figure 12.18: Estimation of the nonlinear effect of the covariate bili when all continuous covariates are modeled 
as P-splines in the CRR model (left side) and the AFT model (right side). Both figures display the posterior 
mean estimates of the nonlinear effect (solid lines) with 95% pointwise credible bands (dashed lines) for the 

Bayesian lasso and Bayesian NMIG regularization together with the corresponding estimates from the stepwise 
selection of the frequentist CRR and AFT model with Gaussian error.  

Linear effects 

The estimates of the remaining seven linearly modeled covariate effects are displayed in Figure 12.19, 

where the upper panel shows the estimates from the CRR model and the lower panel those from the 

AFT model. The impact of the nonlinear modeling on the linear effects can be viewed by considering 

the frequentist estimates, e. g. in terms of the covariates ascites in the CRR model or stage in the AFT 

model, that differ clearly in size compared to the estimates under strictly linear predictor. 

Consequently, also the amount of shrinkage is prior-specific adapted and varies. In the CRR model 

with strictly linear predictor the covariate ascites is often excluded from the final models if variable 

selection (HS.STD, Step) is applied which is still not the case with the nonlinear predictor. The reverse 

results in the AFT model, e. g. for the covariate edtrt. Finally, the effects of the covariates hepmeg and 

trt are still close to zero as in the CRR and AFT models with strictly linear predictor. In summary, the 

nonlinear modeling has a clear impact on the estimates of the linear effects and the variable selection. 

NMIG indicators 

In terms of the Bayesian NMIG prior this variation is reflected in the associated posterior relative 

frequencies of the Bayesian NMIG indicator variable j 1I v= . Figure 12.20 displays the resulting 

posterior inclusion probabilities in the CRR model with P-spline hazard (left side) and the AFT model 

with PGM error (right side). In comparison to the previous models with strictly linear predictor, we 

observe changes in the inclusion probabilities of covariates stage and edtrt. Only the covariate stage 

exceeds in the CRR model the frequency threshold 0.5 used in the HS.IND selection rule. This 

covariate is also the only one marked as significant in the frequentist CRR model. The previously 
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higher inclusion probability of the covariate edtrt decreases here and falls below the threshold 0.5. 

Under the AFT model none of both, previously high, inclusion probabilities of stage and edtrt exceed 

further the threshold. 
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Figure 12.19: Estimated coefficients in the CRR (upper panel) and AFT model (lower panel) when all 
continuous covariates are modeled as P-splines. The points mark the estimates of the regression coefficients and 
the lines display the corresponding standard errors. For the Bayesian procedures the points mark the mean, the 

solid lines display the standard errors and the additional dashes mark the median and 95 % empirical quantiles of 
the marginal posterior distribution of the regression coefficients.   
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Figure 12.20: Estimated inclusion probabilities based on posterior relative frequencies of the Bayesian NMIG 
indicator variable value j 1I v=  in the CRR model with P-spline hazard (left side) and the AFT model with PGM 

error (right side) when continuous covariates are modeled as P-splines. The crosses in the bars mark the 
covariates from the corresponding frequentist models, which are significant with respect to the p-value 0.05 
(cyan) and which are selected by the frequentist stepwise variable selection procedure (dark blue). The red 

horizontal line marks the cut off value 0.5 of the hard shrinkage selection criterion HS.IND.  
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Baseline quantities 

Finally, Figure 12.21 shows the estimates of the log-baseline hazard in the CRR model (left side) and 

the estimates of the baseline error densities in the AFT model (right side). The difference in the 

vertical location of the log-baseline hazard under the Bayesian NMIG prior results, because the 

covariate age is modeled linear in this specific case. The corresponding estimate under the Bayesian 

ridge prior, with nonlinear modeled age, closely coincides with the displayed estimate of the log-

hazard function under the Bayesian lasso prior. The estimated shape of the log-baseline hazard shows 

no obvious deviations to the shape when all covariate effects are assumed to be linear and the same 

holds under the Bayesian versions of AFT model. The observed difference in the location to the 

frequentist approach is due to the internal centering of the spline estimates. 
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Figure 12.21: Estimation of the log-baseline hazard in the CRR model P-spline hazard (left side) and estimation 
of the baseline error density in the AFT model with PGM error (right side) when continuous covariates are 

modeled as P-splines. Left side: Posterior mean estimate of the log-baseline hazard function (solid lines) with 
95% pointwise credible bands (dashed lines) for the Bayesian lasso and Bayesian NMIG regularization. Right 
side: Posterior mean estimate of the baseline error density together (solid lines) with 95% pointwise credible 
bands (dashed lines) for the Bayesian lasso and Bayesian NMIG regularization together with the frequentist 

estimates of the AFT model with Gaussian error distribution and the corresponding result after stepwise 
selection.   

Final remark 

In summary, the nonlinear modeling of continuous covariates has shown an impact of the remaining 

linear effect estimates. Although none of the estimated nonlinear effects show a clear nonlinearity, the 

size of some estimated linear covariate effects clearly changes compared to the models with strictly 

linear predictor. The differences under the various regularization models are induced mainly by the 

diversification of the linear effects, as shown in terms of the unregularized estimates. The shape of the 

Bayesian estimates of the baseline quantities seems to be only marginally affected by the increased 

model complexity introduced with the nonlinear modeling of some covariate effects. Sleeper and 

Harrington (1990) found evidence for the nonlinear form of the covariate age, but they use a reduced 

set of covariates in combination with the log-transformation of the continuous covariates alkphos and 

bili in order to reduce the influence of outliers on the spline fits. 
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13. Adult myeloid leukemia in northwest England K13.A1 

13.1. Data 

The data set used in this section contains information of adult myeloid leukemia patients in northwest 

England who have been diagnosed between 1982 and 1998. Previous analyses can be found in 

Henderson et al. (2002), where the detection of spatial variation in survival times is based on strictly 

linear covariate effects, while more flexible forms are considered in Kneib and Fahrmeir (2007) in the 

context of geoadditive hazard regression models. The leukemia data was originally provided by 

Leonhard Held (University of Zurich, UZH).  

In the data we have n 1043=  observations, where 15.8 % of the observations are right censored. The 

mean survival time of a patient is 533 days with median 185 days and a range from 1 to 4977 days. 

Table 12.1 displays the available variables of the dataset. For the Townsend index, which measures 

the deprivation in the given 24 districts of residence, higher values indicate poorer regions while 

smaller values correspond to wealthier regions. In the data the values of the Townsend index range 

from −6.09 to 9.55. The 24 administrative districts of northwest England are shown in Figure 13.1. 

For the analysis we use effect coded districts with reference to district 24. We restrict our analysis to 

the level of the districts to enable the application of the shrinkage priors, while geostatistical models 

are possible, if the available exact locations of the patient’s residences are used, compare Henderson et 

al. (2002) and Kneib and Fahrmeir (2007). 

 

time number of days between registration and death 

cens status at endpoint, 0 = censored, 1= death 

age age of the patient in years 

sex sex of a patient (−1 = female, 1 = male) 

wbc white blood cell count at diagnosis 

tpi Townsend deprivation index, which measures the deprivation for 
the enumeration district of residence. Higher values indicate less 
affluent areas. 

district 24 districts of patient’s residence. The enumeration of the districts 
is displayed in Figure 13.1 

xcoord, ycoord Exact location coordinates (latitude, longitude) of the patient’s 
residence 

Table 13.1: List of available covariates used in the analysis of the leukemia data. 

13.2. Analysis 

Kneib and Fahrmeir (2007) analyzed the data in the framework of geoadditive hazard regression 

models with a generalized mixed model based approach for inference. They consider, besides the 

flexible shape of the baseline hazard, also nonlinear covariate effects and utilize the available spatial 

information by means of a district level analysis, since the observations are clustered by the districts in 

connected geographical regions. We apply the extended AFT and CRR model and specify, with 

respect to this previous analysis, the effects of the three continuous covariates age, wbc and tpi 

throughout nonlinear to make the results comparable, even though there was no strong evidence found 

for a nonlinear influence of the covariates age and wbc.  

The structure of the predictor is given by 
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23

i 0 1 i 1 i 2 i 3 i j ijj 1
sex f (age ) f (wbc ) f (tpi ) d

=
η = γ + γ + + + + β∑ , (13.1) 

where 1 2f ( ),f ( )⋅ ⋅  and 3f ( )⋅  are smooth functions of the three continuous covariates which are modeled 

by cubic P-splines. The linear effect of the covariate sex is kept unregularized and the district effects 

jβ , j 1,...,23= , are equipped with the Bayesian shrinkage priors. Also in the frequentist stepwise 

procedure only the district effects jβ  are considered for the variable selection.  

1 (Blackburn w. Darwen)

2 (Blackpool)

3 (Burnley )

4 (Chorley )

5 (Fly de)

6 (Hy ndburn)

7 (Lancaster)

8 (Pendle)

9 (Preston)

10 (Ribble Valley )

11 (Rossendale)

12 (South Ribble)

13 (West Lancashire)

14 (Wy re)

15 (Bolton)
16 (Bury )

17 (Manchester)

18 (Oldham)

19 (Rochdale)

20 (Salf ord)

21 (Stockport)

22 (Tameside)

23 (Traf f ord)

24 (Wigan)

 

Figure 13.1: Administrative districts of the ceremonial counties Lancashire (1-14) and Greater Manchester (15-
24) in North West England (Source: http://en.wikipedia.org/wiki/Subdivisions_of_England).  

In contrast, Kneib and Fahrmeir (2007) model the districts with a spatial effect spatf ( )⋅ , where the 

spatial neighborhood structure is utilized in the inferential procedure. In particular they assume 

j

1
spat j j j jjf ( j) N u−

′′∈δ= β = β +∑ , j 1,...,24= , with Gaussian error 2 1
j spat ju ~ N(0, N )−τ , where jj′∈δ  

denotes that district j′  is a neighbor of district j , in the sense that they share a common boundary, and 

jN  is the number of neighbor districts. In summary, the effect of a district j is assumed to be 

conditionally Gaussian, with the mean of the effects of neighbor districts as expectation and a variance 
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that is inverse proportional to the number of its neighbors. We utilize the spatial term within the 

BayesX-method regress, to reproduce the spatial results as competitor (CFL.BS).  

To fit the AFT and CRR models, we use the same specification of the model components and priors as 

for the analysis of the PBC data, compare Section 12.2. With the described basic prior specification 

for the regularized linear effects we obtain in the AFT model with PGM error small, close to zero 

estimates as district effects. Therefore we fit in addition the Bayesian AFT model with adjusted prior 

versions to reduce the shrinkage and support a stronger influence of the districts in the final models. 

The hyperparameters of the shrinkage parameters are set to 2,h 1.1λ =  for the Bayesian lasso and ridge 

prior and 1,h 32ω = , 2,h 64ω =  for the Bayesian NMIG prior. For the MCMC runs, we use 30000 

iterations with a burnin of 15000 and thin the chain by 15, which results in a MCMC posterior sample 

of size 1000.  

To model the nonlinear effect of the covariates age, wbc and tpi, we use the default settings in the 

pspline() term within the formula of the R-functions survreg() and coxph(). The penalized 

procedure is not applicable, because it does not support the combined estimation of nonlinear effects. 

13.3. Results 

Linear effects 

The frequentist and Bayesian estimates of the district effects are summarized in Figure 13.2 for the 

CRR model and in Figure 13.3 for the AFT model. Besides the point estimates the one-standard-

deviation region is marked by the solid lines around the point estimate and in addition for the Bayesian 

estimates also the 95 % credible intervals are given by the dashed lines together with the posterior 

median estimate. The standard deviation and credible regions are utilized to drive the Bayesian hard 

shrinkage variable selection as formulated for the HS.STD and HS.CRI criterion together with the 

Bayesian NMIG indicator based criterion HS.IND. In the lower panel of the figures we find some of 

the results of the variable selection, in particular those from the stepwise selection, the Bayesian lasso 

and ridge prior in combination with the HS.STD criterion and the Bayesian NMIG prior with HS.IND 

criterion. For the spatial results (CFL.BS) we use the 80% pointwise credible interval as in Kneib and 

Fahrmeir (2007) to select the districts. 

Figure 13.2 shows the results for the CRR model obtained with the full likelihood under the P-spline 

model for the log-baseline hazard and the partial likelihood based frequentist estimates. With the 

frequentist analysis (CPL, CPL.Step) and Bayesian analysis under the different shrinkage priors 

(CFL.BL, CFL.BR, CFL.BN) we find commonly a clear increased risk to die in district 6 and a clear 

decreased risk in districts 9 and 11. Under the Bayesian ridge prior, with the uniform proportion of 

shrinkage for all regression coefficients, we observe a weaker regularization of the estimates compared 

to the lasso or NMIG prior.  

The absolute values of the spatial district estimates (CFL.BS) tend in general to smaller values due to 

the considered neighborhood structure. For example, the estimate of district 6 is affected by the 

surrounding neighbor districts 1, 3, 10 and 11 and the spatial prior structure cause an adaption of this 

estimate to the neighborhood mean that is by trend smaller. As a consequence, the spatial estimates of 

the three particular districts 6, 9 and 11 have the largest differences to the estimates from the other 
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Figure 13.2: Estimated district coefficients without (upper panel) and with variable selection (lower panel) in the 
CRR model. The points mark the estimates of the regression coefficients and the lines display the corresponding 
standard errors. For the Bayesian procedures the points mark the mean, the solid lines display the standard errors 
and the additional dashes mark the median and 95 % empirical quantiles of the marginal posterior distribution of 
the regression coefficients. The selection of the spatial district effects (CFL.BS) is based on hard shrinkage with 

the empirical 80% quantiles.  

remaining applied methods. If variable selection is applied only a few districts stay in the final models, 

compare Figure 13.5 for a spatial visualization. 

Figure 13.3 shows the results for the AFT model based on the modified hyperparameter setting. In 

concordance to the CRR model the effects of districts 6 and 11 induce a clear decrease and increase of 

the survival time under all methods. In contrast to the CRR model the influence of district 9 is 

negligible, since the estimates are close to zero under all estimation procedures and this district does 

not appear in the final models after variable selection. 

In the analysis of the PBC data the absolute values of the unpenalized estimated effects obtained with 

the AFT model were often smaller as those from the CRR model. In this section we observe the 

opposite. This highlights again the aspect that the estimated effects from both model classes are not 

directly comparable. However, besides the differences in the effect sizes, in summary we observe at 

least the same direction in the risk / survival time affection for all estimates in the CRR and AFT 

model and we find a range of districts (4, 10, 13, 15-22) that does not appear in the sparse final models 

of both survival model classes. 
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Figure 13.3: Estimated coefficients without (upper panel) and with variable selection (lower panel) in the AFT 
model. In the frequentist model the error is modeled by a Gaussian distribution and in the Bayesian models by a 

PGM. The points mark the estimates of the regression coefficients and the lines display the corresponding 
standard errors. For the Bayesian procedures the points mark the mean, the solid lines display the standard errors 
and the additional dashes mark the median and 95 % empirical quantiles of the marginal posterior distribution of 

the regression coefficients.  

 

Spatial visualization 

The district importance structures resulting from the frequentist and Bayesian variable selection are 

visualized for the CRR model in Figure 13.4 and for the AFT model in Figure 13.5. The results 

correspond to the estimates in the lower panels of Figure 13.2 and Figure 13.3. The green shaded 

districts have effects that increase the risk to die in CRR model or decrease the survival time in the 

AFT model, and in contrast the blue shaded districts have effects that decrease the risk to die in CRR 

model or increase the survival time in the AFT model. The shades change for effect sizes in the range 

from −1.2 to 1.2 with difference 0.2.  

Regions with an increased risk resp. shorter survival times are located in the northern and eastern part 

of the map, while the regions with a decreased risk resp. longer survival times are located in the north-

western part. In the southern part of the map there are also some districts with enhanced or less 

pronounced effects, but most of the districts there show no influence on the patient’s survival. 

 



200 13. ADULT MYELOID LEUKEMIA IN NORTHWEST ENGLAND 

-1 10

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15 16

17

18

19

20

21

22

23

24

CPL.Step

-1 10

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15 16

17

18

19

20

21

22

23

24

CFL.BS-HS.CRI (80)

-1 10

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15 16

17

18

19

20

21

22

23

24

CFL.BL-HS.STD

-1 10

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15 16

17

18

19

20

21

22

23

24

CFL.BN-HS.IND

 

Figure 13.4: Estimation of the district coefficients with variable selection in the CRR model. Upper left: 
Frequentist CRR model based on the partial likelihood and stepwise variable selection. Upper right to lower 
right: Bayesian CRR model with spatial, lasso and NMIG regularization. The selection of the spatial district 

effects is based on the hard shrinkage with the empirical 80 % quantiles. The colored legend ranges from -1.2 to 
1.2, where the color changes at the distance 0.2.  
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Figure 13.5: Estimation of the district coefficients with variable selection in the AFT model. Upper left: 
Frequentist AFT model with Gaussian error and stepwise variable selection. Upper right to lower right: Bayesian 
AFT model with PGM error and ridge, lasso and NMIG regularization. The colored legend ranges from -1.2 to 

1.2, where the color changes at the distance 0.2.  

 



202 13. ADULT MYELOID LEUKEMIA IN NORTHWEST ENGLAND 

NMIG indicators 

The posterior relative frequencies of the Bayesian NMIG indicator variables j 1I v=  utilized in the 

HS.IND selection criterion are presented in Figure 13.6. The left panel shows the results from the 

CRR model with the full likelihood (CFL.BN) the right panel the results from the AFT model with 

PGM error (AFT.PGM). With the basic hyperparameter setting used so far, we achieve only with the 

CRR model estimated inclusion probabilities that exceed the HS.IND threshold of 0.5. With exception 

of district 8 the highest inclusion probabilities are given for those districts that are also selected by the 

stepwise procedure (CPL.Step) marked at the bottom of the bars, i. e. for districts 2, 3, 6, 7, 9, 11 and 

14.  
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Figure 13.6: Estimated inclusion probabilities based on posterior relative frequencies of the Bayesian NMIG 
indicator variable value j 1I v=  in the CRR model (left side) and in the AFT model with PGM error (right side). 
The blue crosses mark the covariates which are selected by the frequentist stepwise variable selection procedure 
in the CRR and AFT model. The red horizontal line marks the cut off value 0.5 of the hard shrinkage selection 

criterion HS.IND.  

In the AFT model the adjusted hyperparameters 1,h 32ω = , 2,h 64ω =  force an increase in the Bayesian 

NMIG complexity parameter ω  that reduces the shrinkage of the covariate effects. They are leading to 

an estimate of the complexity parameter ( ˆ 0.28ω ≈ ) in the same range as obtained with the CFL.BN 

model. Besides a general increase of all relative frequencies, compared to the results with the basic 

hyperparameter setting 1, 2,h h 1ω ω= = , we obtain a clear increase in the relative frequencies of the 

districts 2, 6, 7, 11, 14, 23, which also have enhanced inclusion probabilities in the CFL model. 

However, only two districts (6, 11) exceed the HS.IND-threshold 0.5. If we rank the districts 

according to the sizes of the inclusion probabilities, or adjust the HS.IND-threshold, we could also 

include districts 2 and 7. In Simulation Section 11.5 we have seen that the adaption of the threshold 

often improves the predictive performance of the associated sparse final model. 

Nonlinear effects and baseline quantities 

Finally, we consider the estimates of the nonlinear effects in the predictor and the baseline quantities, 

i. e. the log-baseline hazard function in the CRR model and the baseline error density in the AFT 

model. As previously observed in the analysis of the PBC data, the estimated shapes of the nonlinear 

effects are again only marginal affected by the specific regularization (or spatial) prior assumed for the 

district effects. Since the same holds for the frequentist spline estimates, with and without stepwise 

variable selection, we present in the following the results by means of the frequentist stepwise 
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selection (Step) and the Bayesian NMIG (BN) prior. The differences in the location of the estimated 

nonlinear effects or the location parameter in the AFT model are due to the centering of the nonlinear 

effects in the Bayesian procedures. 

Figure 13.7 illustrates the estimated nonlinear effects of the covariates tpi, age and wbc in the CRR 

model together with the estimates of the log-baseline hazard function. The estimate of the log-baseline 

hazard (CFL.BN) is compared to the resulting Bayesian estimate when the spatial neighborhood 

information is used to model the district effects (CFL.BS). Neglecting the differences in the location, 

the nonlinear effects from the Bayesian or frequentist models show a similar shape. Again the almost 

linear influence of the covariates age and wbc is approved and both effects decrease the survival time 

with increasing values. In the range of the interval with most of the observations the log-baseline 

hazard decreases in general, but we observe some intervals, e. g. in the second year, where the log-

baseline increases (CFL.BS) or the slope is reduced (CFL.BN). 
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Figure 13.7: Estimates of the nonlinear effect of the covariates age (upper left panel), wbc (upper right panel) 
and tpi (lower left panel) and the log-baseline hazard (lower right panel) in the CRR model. Displayed are the 

estimates under the Bayesian NMIG regularization prior in the CRR model based on the full likelihood 
(CFL.BN) together with those from the frequentist stepwise variable selection (CPL.Step). The log-baseline 

hazard estimate is compared with the Bayesian estimate utilizing the spatial neighborhood information 
 (CFL.BS). For the Bayesian models the solid lines show the posterior mean estimates and the dotted lines  
mark the corresponding 95 % pointwise credible bands. The stripes at the x-axis mark the observed values  

in the data.  

Figure 13.8 shows the results for the AFT model (PGM.BN, AFT.Step). Neglecting also the 

differences in the location, we achieve with the PGM error model a comparable shape of the error 

density as in the frequentist counterpart, when the error is assumed to be Gaussian. The estimates of 

the covariates age and wbc are almost linear as in the CRR model and the effect of tpi is rather 

nonlinear, but the nonlinear effect show a larger slope in the AFT model. 
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Figure 13.8: Estimates of the nonlinear effect of the covariates age (upper left panel), wbc (upper right panel) 
and tpi (lower left panel) and the log-baseline hazard (lower right panel) in the AFT model. Displayed are the 

estimates under the Bayesian NMIG regularization prior in the AFT model with PGM error (AFT.BN) together 
with those from the frequentist model under stepwise variable selection (AFT.Step). For the Bayesian models the 

solid lines show the posterior mean estimates and the dotted lines mark the corresponding 95 % pointwise 
credible bands. The stripes at the x-axis mark the observed values in the data. 

14. Cytogenetically normal acute myeloid leukemia K14.A1 

14.1. Data 

In this section we analyze data for patients diseased with cytogenetically normal acute myeloid 

leukemia (CN-AML). AML is a cancer of the myeloid line of blood cells which is characterized by the 

rapid growth of abnormal white blood cells that accumulate in the bone marrow and interfere with the 

production of normal blood cells. Gene expression profiling can be used to develop a gene signature 

that predicts the overall survival time of patients in combination with prognostic factors like molecular 

markers and patient characteristics. The CN-AML data was provided by U. Mansmann (IBE, Munich) 

and is analyzed, e. g., in Benner et al. (2010) and Metzeler et al. (2008). 

The data comprises two independent cohorts of patients used as training and test cohort, where the 

available second test data enables a further investigation in the predictive accuracy for the applied 

methods. The training cohort stems from the multicenter AMLCG-199 trial of the German AML 

Cooperative Group between 1999 and 2003 and consists of n 163=  adult patients with CN-AML, 

where 35.0 % of the observed survival times are censored. In the training data the median survival 

time is 280 days with range from 0 to 2399 days. The independent test cohort consists of n 80=  

patients who were diagnosed with CN-AML in 2004. In the test data we have a median survival time 
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of 247.5 days with range from 1 to 837 days and 57.5 % of censored survival times. In both cohorts, 

survival time is defined as time from study entry until death from any cause. The original data consists 

of xp 44757=  covariates, i. e., 44754 microarray probe sets for each individual and additional (known 

highly) prognostic covariates, like the age of the patient and the two molecular markers FLT3 (tandem 

duplications of the fms-like tyrosine kinase 3) and NPM1 (mutations in the nucleophosmin 1), are 

recorded. To avoid manual tuning of the regularization priors, the continuous covariates in the training 

and test data were standardized to have zero mean and unit variance. 

14.2. Analysis 

As in Metzeler et al. (2008), univariate Cox scores, measuring the correlation between each of the 

probe sets and the survival time in the training cohort, are used to rank and to reduce the number of 

probe sets. We present results based on the preselected probe sets with the 50 and 200 highest ranks of 

the Cox score. As additional prognostic covariates, we include the age of the patient and the two 

molecular markers FLT3, NPM1 into the models, where the effect of age is modeled either as linear or 

nonlinear, utilizing P-splines. Further we fit models, where these three covariates are omitted to 

consider only the impact of the xp 50=  and xp 200=  probe sets on the patients survival time. In 

summary, we use the predictors 

 xp

i 0 1 i 2 i 3 i j i, jj 1
FLT3 NPM1 age probeset

=
η = γ + γ + γ + γ + β∑ , (14.1) 

 xp

i 0 1 i 2 i 1 i j i, jj 1
FLT3 NPM1 f (age ) probeset

=
η = γ + γ + γ + + β∑ , (14.2) 

 xp

i 0 j i, jj 1
probeset

=
η = γ + β∑ , (14.3) 

 i 0 1 i 2 i 3 iFLT3 NPM1 ageη = γ + γ + γ + γ . (14.4) 

To fit the AFT and CRR models, we use the same specification of the model components and priors as 

for the analysis of the PBC data, compare Section 12.2. In the frequentist framework the nonlinear 

effect of the covariate age is modeled with the default settings for the pspline() term within the 

formula of the R-functions survreg() and coxph(). In the CRR model with the strictly linear 

predictors (14.1) and (14.3) we compute also the frequentist lasso and ridge estimates with the 

penalized() function. 

Performance  

To measure predictive accuracy, we use the time-dependent empirical Brier score BS(t) , as proposed 

by Graf et al. (1999), which is defined as the time-dependent mean square error between the observed 

survival status and the predicted survival probability. Under random censoring the empirical Brier 

score is given as 

 
2 2n

i i i i i

i 1 i

ˆ ˆ1 S(t | x ) I(t t,d 1) (1 S(t | x )) I(t t)
BS(t)

ˆ ˆn G(t ) G(t)=

 ≤ = − >
= + 

 
∑ , 

where iŜ(t | x )  is the estimated survival probability of the i-th individual at time t, I( )⋅  denotes the 

indicator function and Ĝ( )⋅  is the Kaplan-Meier estimate of the censoring distributions survival 
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function based on the observations i i(t ,1 d )− , i 1,...,n= . The average over time for a fixed time point 
*t 0>  is given by integrated version of the Brier score 

 
*t

0*

1
IBS BS(s)ds

t
= ∫ . 

The integrated Brier score (IBS) can finally be viewed as a performance measure of the predicted 

survival functions within the interval *[0, t ] , where lower values indicate a better performance. 

Additionally, the IBS of a proposed prediction model can be used to derive a measure of explained 

variation 2
IBS 0R : 1 IBS IBS= − , with 0IBS  defined as the integrated Brier score corresponding to the 

Kaplan-Meier estimate of the survival function Ŝ(t) . In the CRR model, when the partial likelihood is 

used for inference, the estimate of the survival function is based on the Breslow estimator BR
0

ˆ (t)Λ  for 

the cumulative baseline hazard, i. e. i i
ˆ ˆS(t | ) exp( (t | ))= −Λx x , with BR

i 0 i
ˆ ˆ ˆ(t | ) (t)exp( )Λ = Λ ηx , where 

iη̂  denotes the estimated linear predictor. In the case of the full likelihood we utilize the trapezoidal 

rule to compute the cumulative baseline hazard from the estimate of the log-baseline hazard function.  

14.3. Results 

For a selection of the estimated models the IBSs in the training data ( *t 2399=  days) and test data 

( *t 837= days) are visualized in the following figures. All figures show the results achieved with the 

full predictor and with the reduced predictor, if variable selection is applied. The number of probe sets 

included in the final models are displayed at the bottom of the bars. As competitors the IBSs of the 

Kaplan-Meier estimate are marked (KM: trainIBS 0.212=  and testIBS 0.205= ), together with the 

resulting IBSs for the unregularized frequentist models using the predictor (14.4) which includes only 

the three pheno-covariates (CPL3: trainIBS 0.171=  and testIBS 0.190= , AFT3 with Gaussian error: 

trainIBS 0.178=  and testIBS 0.192= ). The penalized lasso (CPL.PenL) applied to the complete number 

of probe sets, xp 44754= , using the purely linear predictor (14.1), is leading to a final CRR model 

with 15 selected probe sets and to the integrated Brier scores trainIBS 0.138=  and testIBS 0.182= , both 

marked as further benchmarks by black bars at the y-axis in the figures.  

Integrated Brier score with 50 probe sets 

The IBS-results, based on the reduced data with xp 50=  preselected probe sets and predictor (14.1), 

where the pheno-covariate age is modeled linear, are shown in Figure 14.1. Figure 14.2 shows the 

corresponding results using predictor (14.2), where the covariate age is modeled as P-spline and 

finally Figure 14.3 shows in terms of the CRR model the IBS-results with predictor (14.3) without the 

pheno-variables. 

We consider at first the results with the purely linear predictor in Figure 14.1. Compared to the 

models from partial likelihood approach, the flexible modeling of the log-baseline hazard leads to 

models with better performance in the trainings data, but the higher adaptiveness to the trainings data 

causes a loss of performance in the test data. In the test data the IBSs of the full likelihood based 

models (CFL) are larger than those of the associated partial likelihood based models (CPL) and 

frequently exceed the reference IBS of the CPL3 model. Also the unregularized models (CPL, 

CPL.Step, CPL.B, CFL.B) achieve comparatively large IBS values. The best predictive performances 

are obtained with the CPL models in combination with the ridge penalty (CPL.PenR, CPL.BR), 

closely followed by the models with the lasso penalty (CPL.PenL, CPL.BL). The Bayesian approaches 
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achieve marginally smaller IBSs than their frequentist counterparts and the lowest value is obtained 

under the Bayesian ridge prior (CPL.BR: testIBS 0.168= ). Variable selection causes a loss of 

performance as indicated by the results from the stepwise procedure, the frequentist lasso and the hard 

shrinkage selection rules. Hard shrinkage via the standard deviation criterion is leading to sparse 

models, including 6 probe sets in the final Bayesian ridge model (CPL.BR-HS.STD: testIBS 0.172= ) 

and 5 probe sets in the final Bayesian lasso model (CPL.BL-HS.STD: testIBS 0.178= ), with only a 

marginal loss in the predictive performance. Both values are smaller than the IBS of the sparse 

penalized lasso model, testIBS 0.182= , that selects the 15 covariates from the complete probe set 

xp 44757= . Using the AFT model for inference, right panel of Figure 14.1, the best performances are 

achieved under the assumption of a Gaussian error distribution, but the differences to the results with 

the PGM error are less pronounced as differences between the CPL and CFL model. Comparing the 

estimates for the baseline error under the Gaussian and PGM error assumption, see Figure 14.9, shows 

also a high similarity. As in the CRR model the best performances are obtained with the ridge prior 

(AFT.BR: testIBS 0.175= ) and the lasso prior (AFT.BL: testIBS 0.176= ), if all probe sets are included 

in the predictor. Variable selection increases the IBS and we get testIBS 0.184=  if the HS.STD 

criterion is applied in the Bayesian ridge model (AFT.BR-HS.SDT). The associated final model 

includes, amongst others, the probe sets with Cox score ranks 11, 12 and 21 and these probe sets occur 

in almost all predictors of the sparse CRR and AFT models. 
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Figure 14.1: Integrated Brier scores in the test data (upper panel) and the trainings data (lower panel) for the 
CRR model (left panel) and the AFT model (right panel) with predictor (14.1) using xp 50=  preselected probe 
sets. The blue horizontal line marks the IBS of the Kaplan-Meier-Estimate ( trainIBS 0.212=  and testIBS 0.205= ). 
The magenta horizontal line marks the IBS of the frequentist CRR model ( trainIBS 0.171=  and testIBS 0.190= ) 

and Gaussian AFT model ( trainIBS 0.178=  and testIBS 0.192= ) with predictor (14.4). The black bar at the y-axis 
marks the IBS from the frequentist lasso using xp 44754=  probe sets ( trainIBS 0.138=  and testIBS 0.182= ). The 

associated numbers of covariates included in the estimated predictor are displayed at the bottom of the bars.  
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We found further that the nonlinear modeling of the covariate age does not clearly improve the IBS 

performance in the test data, compare Figure 14.2, and also the visual inspection of the nonlinear 

estimate, Figure 14.8, shows no strong evidence to model this covariate effect as nonlinear. For 

example with the ridge prior we the get the values testIBS 0.169=  (CPL.BR) and testIBS 0.174=  

(AFT.BR), the application of the HS.STD selection criterion is leading to testIBS 0.176=  (CPL.BR-

HS.SDT) and testIBS 0.183=  (AFT.BR-HS.SDT). These values are almost comparable to the IBS 

values obtained with the strictly linear predictor. In addition, with the nonlinear modeling the IBSs of 

the full likelihood based CRR models and the AFT models with PGM error are further increased. 
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Figure 14.2: Integrated Brier scores in the test data (upper panel) and the trainings data (lower panel) for the 
CRR model (left panel) and the AFT model (right panel) with predictor (14.2) using xp 50=  preselected probe 
sets. The blue horizontal line marks the IBS of the Kaplan-Meier-Estimate ( trainIBS 0.212=  and testIBS 0.205= ). 
The magenta horizontal line marks the IBS of the frequentist CRR model ( trainIBS 0.171=  and testIBS 0.190= ) 

and Gaussian AFT model ( trainIBS 0.178=  and testIBS 0.192= ) with predictor (14.4). The black bar at the y-axis 
marks the IBS from the frequentist lasso using xp 44754=  probe sets ( trainIBS 0.138=  and testIBS 0.182= ). The 

associated numbers of covariates included in the estimated predictor are displayed at the bottom of the bars.  

In summary both covariate groups, the clinical covariates as well as the microarray features, separately 

influence the predictive performance. The models including only the three unregularized pheno-

covariates (magenta lines) have a decreased IBS compared to the IBS of the Kaplan-Meier estimate 

(blue lines), while the microarray features need to be regularized to enhance the predictive 

performance. Figure 14.3 shows the IBSs of the CRR models with predictor (14.3) that includes only 

the probe sets. Therein the regularized estimates provide models with an improved performance 

compared to the model with only the three pheno-variables (CPL3), but the best predictive 

performances are obtained if both covariate groups are commonly included in combination with a 

ridge or lasso type shrinkage of the probe sets. With a reduced number of xp 50=  preselected 
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microarray features we are able to find models with a similar or improved predictive performance 

compared to the frequentist lasso that searches the final model within all microarray features. The 

increased flexibility resp. model complexity introduced by the P-spline model for the covariate age or 

the P-spline model for the baseline quantity does not enhance the predictive performance. And finally 

with respect to the results in the trainings data, where the CRR model indicates a higher adaptivity to 

the data as the AFT model, we would rather use the CRR model to reflect the impact of the covariates 

to the patient’s survival. 
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Figure 14.3: Integrated Brier scores in the test data (left side) and the trainings data (right) for the CRR model 
with predictor (14.3) and xp 50=  preselected probe sets. The blue horizontal line marks the IBS of the Kaplan-

Meier-Estimate ( trainIBS 0.212=  and testIBS 0.205= ). The magenta horizontal line marks the IBS of the 
frequentist CRR model ( trainIBS 0.171=  and testIBS 0.190= ). The associated numbers of covariates included in 

the estimated predictor are displayed at the bottom of the bars.  

Integrated Brier score with 200 probe sets 

Figure 14.4 summarizes the results when inference is based on predictor (14.1) with age modeled as 

linear and the increased number of xp 200=  preselected probe sets. The left and right panel show 

respectively the results for the CRR model with the partial likelihood and the AFT model with 

Gaussian error. Due to the poor performance of the models with higher complexity, i. e. the CRR 

model with P-spline log-baseline hazard and the AFT model with PGM error, the results are omitted. 

Compared to the models with xp 50=  probe sets we obtain an improvement in the predictive 

performance for the models CPL.PenR, AFT.BR, AFT.BR-HS.STD and AFT.BL, where the best 

performance results for the frequentist ridge model CPL.PenR ( testIBS 0.159= ) with all 200 probe sets 

included in the final predictor. 

In the CRR model the predictive performance of the Bayesian models with the lasso and ridge prior, 

separately or combined with the HS.STD selection criterion, is almost comparable to the associated 

models with xp 50=  preselected probe sets. The IBS from the NMIG prior exceeds now the IBS of 

the Kaplan-Meier estimate. We can also report a loss in the predictive performance for the final model 

from the frequentist lasso procedure, the IBS of the model CPL.PenL is in the range of the model 

CPL3 that merely includes the three pheno-covariates in the predictor. In the AFT model the 

predictive performance of the models AFT.BR ( testIBS 0.164= ), AFT.BL ( testIBS 0.164= ) is clearly 

improved and now almost comparable to the model CPL.BR ( testIBS 0.162= ). The final predictor of the 

model AFT.BR-HS.STD shares eight probe sets with the predictor from CPL.BR-HS.STD and 

contains also the three probe sets (Cox score ranks 11, 12, 21) from the associated model based on 
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xp 50=  preselected probe sets. The models CPL.BR-HS.STD with xp 50=  and xp 200=  share two 

probe sets (Cox score ranks 11, 12).  

In summary, with an increased number of probe sets we obtain for some models an improvement in 

the predictive performance. The models with the best performances include again all of the xp 200=  

preselected probe sets. With the hard shrinkage selection rule HS.STD we find sparse models with 

comparable performance to the models with xp 50=  preselected probe sets, but the included probe 

sets in the final models differ and expert knowledge is required for the interpretation. The probe sets 

with ranks 11 and 12 are also almost always included in the final spares models. 
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Figure 14.4: Integrated Brier scores (IBS) in the test data (upper panel) and the trainings data (lower panel)  
for the CRR model (left panel) and the AFT model (right panel) with predictor (14.1) using xp 200=  

preselected probe sets. The blue horizontal line marks the IBS of the Kaplan-Meier-Estimate  
( trainIBS 0.212=  and testIBS 0.205= ). The magenta horizontal line marks the IBS of the frequentist CRR 

 model ( trainIBS 0.171=  and testIBS 0.190= ) and Gaussian AFT model ( trainIBS 0.178=  and testIBS 0.192= )  
with predictor (14.4). The black bar at the y-axis marks the IBS from the frequentist lasso using xp 44754=  

probe sets ( trainIBS 0.138=  and testIBS 0.182= ). The associated numbers of covariates included in the  
estimated predictor are displayed at the bottom of the bars.  

Paths of the integrated Brier score  

As further illustration, the upper panel Figure 14.5 displays the impact of the regularization parameter 

on the IBS in the test data by means of the CRR model with predictor (14.1) using xp 50=  preselected 

probe sets. Shown are the IBS-paths under the Bayesian and frequentist lasso and ridge regularization 

(upper left and right panel) and the Bayesian NMIG regularization (lower left panel). As further 

competitor the results from the frequentist CPL model and the stepwise selection are shown for 

increasing number of covariates in the predictor (lower right panel). The horizontal lines mark the 
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testIBS 0.190=  of the frequentist Cox model with predictor (14.4) including only the three pheno-

covariates (CPL3). 

The first observation, that we can make from these figures is, that again the partial likelihood based 

models with the ridge regularization of the probe sets leads to the smallest IBS values, and the IBS 

path is also fairly insensitive with respect to the regularization parameter over a wide range of the 

shrinkage parameter. In addition, the behavior of the frequentist ridge IBS-path (CPL.PenR) is quite 

close to the Bayesian version (CPL.BR). With increased value of the shrinkage parameter λ  the 

penalization of the probe sets is increased, which obviously improves the performance of the resulting 

models. The strongest impact on the increase of the performance is observable in the range 0 20< λ < , 

while larger values 20λ >  increase the performance only marginally. Also the sparse models obtained 

with the HS.STD criterion show the same development of the IBS-path, but on a higher level of the 

IBS. Nevertheless, the path is clearly below the CPL3 benchmark for higher values of the shrinkage 

parameter. For ridge regression in combination with the full likelihood (CFL.BR), there seems to be 

some instability in estimation for 5λ >  that yields abrupt changes in the IBS even for small variations 

of the regularization parameter. 
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Figure 14.5: Paths of the integrated Brier scores for varying shrinkage parameter in the CRR model with 
predictor (14.1) using xp 50=  preselected probe sets. Upper panel: Lasso type regularization (left side) and 
ridge type regularization (right side). Lower panel: Bayesian NMIG regularization (left side) and frequentist 

CRR model with and without stepwise selection (right side) for increasing number of covariates in the predictor. 
The black solid horizontal line marks the testIBS 0.190=  of the frequentist CRR model with predictor (14.4) 

including only the 3 pheno-covariates.  

In general, the CFL and CPL lasso variants are in closer agreement and the CPL lasso-path does not 

show such an irregular behavior as under the ridge prior. Again, the Bayesian lasso estimates based on 
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the partial likelihood (CPL.BL) performs remarkably well, but the full likelihood based estimates 

(CPL.BL) are close and yield an improved performance for large regularization parameters λ . The 

IBSs achieved with the frequentist lasso, which always selects a subset from the 50 probe sets, do not 

reach the low values possible with the Bayesian lasso or the (Bayesian and frequentist) ridge estimates 

that include all 50 preselected probe sets in the predictor. Variable selection via the hard shrinkage 

criterion HS.STD does not globally improve the predictive performance, but provides, dependent on 

the particular value of the shrinkage parameter, sparse models with comparably good performance. In 

contrast to the ridge-paths the predictive performance of the lasso-paths starts to decrease for larger 

values of the shrinkage parameter. For the frequentist lasso this is easy to understand, because with 

increased shrinkage parameter at least only the three pheno-covariates are included in the final model, 

and the IBS-path must converge to the CPL3 benchmark. The Bayesian lasso-paths indicate a similar 

behavior, but the decrease of the performance is less pronounced in the plotted range of the shrinkage 

parameter. But, at the limit λ → ∞  or 0ω →  all regularized IBS-paths converge to CPL3 benchmark. 
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Figure 14.6: Paths of the integrated Brier scores for varying shrinkage parameter under the frequentist  
lasso (upper panel) and ridge (lower panel) regularized model using xp 50=  (left panel) and xp 200=   

(right panel) preselected probe sets. The upper right legend identifies the additional unregularized pheno-
variables in the predictor. The black solid horizontal line marks the testIBS 0.190=  of the frequentist  
CRR model with predictor (14.4) including only the 3 pheno-covariates. The paths of the penalized  

lasso are evaluated at the values of the shrinkage parameter, where a covariate is removed  
from the predictor.  

The lower left panel in Figure 14.5 shows the results achieved with the NMIG prior structure and the 

lower right panel shows the IBS path under the frequentist CRR model and combined stepwise 

selection, when the number of probe sets xp  included in the predictor increases according to the ranks 

of the Cox scores. The reduced shrinkage of some influential regression coefficients under the 
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Bayesian NMIG prior, compare Figure 14.7, leads to models with similar poor performance values as 

the models obtained with the frequentist CPL and CPL.Step procedure. None of these methods 

enhance the performance to the IBS-levels obtained under the lasso or ridge regularization. 

Finally, Figure 14.6 shows the movement of the frequentist lasso (CPL.PenL) and ridge (CPL.PenR) 

IBS-paths for increasing values of the shrinkage parameter if the number of pheno-variables in the 

predictor are reduced. The left and right panels display the results with xp 50=  and xp 200=  probe 

sets in the regularized predictor component. We obtain from this figure, that the inclusion of all three 

pheno-covariates is important to improve the predictive performance of the estimated models. From 

the lower left panel, where the CPL.PenR path is plotted over a wider range of the shrinkage 

parameter as in Figure 14.5, we see, that similar to the lasso regularization, also the performance 

under the ridge regularization decreases for larger values of the shrinkage parameter, where the 

regularized estimates become closer to zero.  

Paths of the regression coefficients 

Figure 14.7 illustrates the associated paths of the estimated regression coefficients as a function of the 

regularization parameter for the four selected probe sets with Cox score ranks 1, 11, 12, and 21. We 

show the results from the CRR model with ridge, lasso and NMIG regularization of the xp 50=  

covariates in predictor (14.4). The vertical lines in the figure mark the estimated regression 

coefficients at the estimated value of the complexity parameter.  

It turns out that especially the probe sets associated with Cox score ranks 11 and 12 yield overall 

larger estimates and are therefore deemed to be important over wide ranges of the complexity 

parameter values. As previously mentioned, both probe sets are almost always included in the final 

models resulting from any used selection method applied to the data with xp 50=  and xp 200=  

preselected probe sets. Especially, in the case of the Bayesian and frequentist ridge model (upper 

panel), the estimated effects at the estimated shrinkage parameter λ̂  have smaller values compared the 

Bayesian and frequentist lasso (middle panel) and Bayesian NMIG estimates (lower left panel) and in 

particular the effects of the important probe sets with Cox score ranks 11 and 12 are clearly smaller. 

With respect to the previous IBS results, particularly the uniform shrinkage of all effects, as under the 

ridge penalty, seem to improve predictive performance.  

The lower right panel of Figure 14.7 shows the posterior relative frequencies of the binary NMIG 

indicator j 1I v=  as a function of the complexity parameter. Here, the inclusion probabilities of the two 

variables with Cox score ranks 1 and 21 rapidly decrease, if the complexity parameter moves towards 

zero in direction with reduced model complexity. In contrast, the estimated inclusion probabilities for 

the probe sets with Cox score ranks 11 and 12 do not vary very much in the plotted range of the 

complexity parameter and always yield the conclusion that these probe sets should be contained in the 

final model. But, higher inclusion probabilities cause a reduction of the shrinkage, compare lower left 

panel of Figure 14.7, and this may be the main reason why the NMIG models have such a poor 

performance. Due to the results from the ridge regression, the best performances are obtained if all 

covariates, also the important ones, are uniformly shrunken with the same proportion, and this is 

definitely not the case under the NMIG prior (as designed).  
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Figure 14.7: Shrinkage parameter dependent paths of four selected estimated regression coefficients and NMIG 
inclusion probabilities in the CRR model based on the full and partial likelihood with predictor (14.1) using 

xp 50=  preselected probe sets. The four probe sets are identified by the rank of the Cox score (rank CS) in the 
legend of the last figure. Upper panel: Frequentist ridge (left side) and Bayesian ridge (right side) regularization. 
Middle panel: Frequentist lasso (left side) and Bayesian lasso (right side) regularization. Lower panel: Bayesian 

NMIG regularization (left side) and posterior inclusion probabilities based on the relative frequencies of 
Bayesian NMIG indicator variable value j 1I v=  (right side), where the horizontal red line marks the 0.5 cut off 
value for variable selection. The vertical dashed lines in the figures mark the estimated values at the estimated 

shrinkage parameter.  

Nonlinear effects 

Figure 14.8 presents the estimated nonlinear effect of the covariate age with predictor (14.2) under the 

CRR and AFT model. While the spline estimates in both survival model classes do show some 

nonlinearity, the associated credible intervals all cover the linear effect so that there is only weak 

evidence for the necessity of a nonlinear modeling. We have also seen from Figure 14.2 that the 
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spline modeling of the age leads indeed to a better fit in the training data, but there is no remarkable 

benefit for the predictive performance in the test data. 
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Figure 14.8: Estimation of the nonlinear age effect the CRR model (left side) and the AFT model (right side) 
with predictor (14.2) using xp 50=  preselected probe sets. Left side: Estimations from the frequentist CRR 
model and Bayesian lasso regularized model based on the full and partial likelihood. Right side: Estimations 
from the frequentist Gaussian AFT model and the Bayesian Lasso regularized AFT model with Gaussian and 

PGM error. For the Bayesian models the solid lines show the posterior mean estimates and the dotted lines mark 
the corresponding 95 % pointwise credible bands. The black stripes at the x-axis mark the observed values.  

Baseline quantities 

In the following we shortly summarize the estimated components of the CRR and AFT survival model 

with strictly linear predictor (14.1) using the xp 50=  preselected probe sets under the various 

approaches. The upper left side of Figure 14.9 displays the estimated log-baseline hazard rate in the 

CRR model obtained with the full likelihood. After a short period of constant or moderately increasing 

(or bathtub shaped) log-baseline hazard in the first 300 days, the hazard rate shows afterwards an 

almost linear decrease, so there seems to be an enhanced risk to die in the last quarter of the first year. 

The corresponding cumulative baseline hazards in comparison to the Breslow estimators based on the 

partial likelihood are shown at the upper right side of Figure 14.9. In the first year period, that 

contains most of the observations, the estimates from the full and partial likelihood closely coincide.  

In the simulations we have seen that with low sample sizes it is hard to detect variations in the shape 

of the baseline error density. Comparing the estimated baseline error densities achieved with the AFT 

model assuming a Gaussian and a PGM error, lower panel of Figure 14.9, we observe a minor 

asymmetry with the PGM estimate and in summary a Gaussian error seems to be a good proxy for the 

underlying baseline error distribution also with respect to the enhanced predictive performance and the 

low sample size.  

Linear effects 

In Figure 14.10 a selection of the estimated probe set effects in the CRR and AFT model are 

displayed. With exception of the probe sets with Cox score ranks 1 and 5 we show the results for those 

probe sets that frequently appear in the final models after variable selection. As previously observed in 

the simulation section, with comparable prior tuning the estimates in the CRR model based on the full 

likelihood are less regularized as those under the partial likelihood. This also explains the fall off in 
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the predictive performance compared to the partial likelihood estimates, because with stronger 

regularization the performance of the full likelihood estimates increases, compare Figure 14.5. 

NMIG indicators 

Under the adaptive Bayesian NMIG prior structure most of the xp 50=  probe sets in the predictor 

(14.1) are assigned to the close to zero component of the bimodal prior and are therefore strongly 

regularized. Figure 14.11 shows the posterior relative frequencies of the binary NMIG indicator value 

j 1I v=  in the CRR and AFT model. In the figures the probe sets with Cox score ranks 11, 12, 21, 41 

and 46 stand out with larger posterior inclusion probabilities, but only the probe set with Cox score 

rank 11 achieves commonly an estimated inclusion probability clearly exceeding the threshold of 0.5. 

As a consequence the additional hard shrinkage variable selection based on the HS.IND-threshold 0.5 

is leading to very sparse models with an IBS in the test data close to the IBS of the models AFT3 and 

CPL3, that include only the three pheno-covariates in the predictor. Due to the reduced shrinkage of 

the important probe set with rank 11, the adaptation of the threshold, to force more probe sets to the 

final model, should not improve the predictive performance. 
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Figure 14.9: Estimation of the baseline quantities in the CRR model (upper panel) and the AFT model (lower 
panel) with predictor (14.1) using xp 50=  preselected probe sets under the Bayesian lasso and NMIG 

regularization of the linear effects. Upper left side: Estimates of the log-baseline hazard from the CRR model 
based on the full likelihood. Upper right side: Estimation of the cumulative baseline hazard in the CRR model. 
The dashed lines display the estimate from the full likelihood when the cumulative baseline hazard is computed 

via numerical integration of the baseline hazard using the trapezoidal rule. Lower panel: Estimates from the AFT 
model with lasso regularization and Gaussian error and Bayesian NMIG regularization with PGM error. 

Commonly the solid lines show the posterior mean estimates and the dotted lines mark the corresponding 95 % 
pointwise credible bands.   
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Figure 14.10: Selected estimated regression coefficients in the CRR model (upper panel) and AFT model (lower 
panel) with predictor (14.1) using xp 50=  preselected probe sets. The probe sets are sorted according to the 

rank of the Cox scores that are displayed at the x-axis. The points mark the estimates of the regression 
coefficients and the lines display the corresponding standard errors. Additional for the Bayesian procedures the 

dashes mark the median and the 95 % quantiles of the marginal posterior distribution of the regression 
coefficients.  

Final remark 

In summary it becomes apparent that with increasing model complexity, formed by using flexible 

baseline quantities or nonlinear effects, the adaptation in the training data increases, but the estimated 

models loose their predictive performance in the test data. Besides a compromise regarding the model 

complexity, the IBSs seem to suggest that the best strategy to achieve precise predictions is to include 

all covariates without variable selection in the predictor, but to apply stronger regularization to the 

regression coefficient vector. This claim is further supported by the results from the NMIG prior 

structure, with the sophisticated selection-like shrinkage of small and large effects, which leads to 

somewhat deteriorated IBSs, and the IBS results for the sparse models under the frequentist lasso 

compared to the Bayesian counterpart that includes all covariates in the predictor. Nevertheless, also 

variable selection for the Bayesian lasso and ridge regularized estimates, based on the standard 

deviation (HS.STD) criterion, is leading to final models with comparably good predictive 

performance, if one is willing to accept a little loss in the predictive performance for the benefit of a 

sparse predictive model.  

In our analyses we found strong evidence for the importance of at least two probe sets associated with 

Cox score ranks 11 and 12. Finally, our flexible model classes allow us to validate the assumption of 

linearity of pheno-covariates that are often available in addition to genetic information, but we did not 
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Figure 14.11: Estimated inclusion probabilities based on posterior relative frequencies of the Bayesian NMIG 
indicator variable value j 1I v=  in the models with predictor (14.1) using xp 50=  probe sets. First and second 

row: CRR model based on the full and partial likelihood. Third and fourth row: AFT model with PGM and 
Gaussian error. The probe sets are sorted according to the rank of the Cox scores that are displayed at the x-axis. 
The crosses at the bottom of the bars mark the covariates from the corresponding frequentist models, which are 
significant with respect to the p-value 0.05 (cyan) and which are selected by the frequentist stepwise variable 

selection procedure (dark blue). The red horizontal line marks the cut off value 0.5 of the hard shrinkage 
selection criterion HS.IND.  
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find such evidence for a nonlinear effect in case of the clinical covariate age. Also the inspection of 

the shape of the baseline quantities provides information for the need of the flexible modeling, and in 

particular the Gaussian error in the AFT model seems to be appropriate to represent the baseline 

survival time of the population. 
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CONCLUSION 

15. Results 

We have developed different types of regularization priors for flexible accelerated failure time and 

hazard regression models that allow the combined modeling of complex predictor structures together 

with the regularization of linear effects of possibly high-dimensional covariate vectors. We considered 

random-walk smoothing priors for the model components that are represented by linear combinations 

of basis functions, like the baseline survival quantities or the nonlinear effects in the predictor. For the 

regularization of the linear covariate effects we examined three different priors, the Bayesian ridge and 

lasso prior and a normal mixture of inverse gamma distributions (NMIG) as prior that supplements 

regularization with a natural possibility for variable selection based on latent indicator variables. The 

developed methods are implemented in R-functions and the BayesX software. 

The provided Bayesian approach is of practical relevance, e. g. in the context of gene expression data, 

since the flexible modeling of clinical covariates can be combined with the regularization of high-

dimensional microarray features and pre-specification (and validation) of parametric assumptions 

about the underlying baseline survival time is redundant. The combined flexible modeling can be 

viewed as improvement over a purely parametric approach, since it enables a visual inspection of the 

linearity of effects or parametric shapes of baseline survival time and provides more flexible 

functional shapes when needed. The flexible formulation of model components increases the model 

complexity, which limits the scope of application for the extended modeling with respect to reliable 

inference and also with respect to the predictive performance in cases, where only a few number of 

observations are available. In such situations (simpler) parametric structures, e. g of the baseline 

quantities, can be specified that are also included in our approaches as special cases. 

The restriction that posterior mean estimates in regularized regression models do not directly provide 

access to the variable selection property can be overcome by the application of hard shrinkage 

selection rules for the regularized estimates of the regression coefficients or for the posterior inclusion 

probabilities provided by the NMIG prior structure. But in our simulations and applications we found 

some evidence that posterior mean models without variable selection are beneficial, even if the 

sparsity assumption is fulfilled by the data under consideration or when considering the prediction 

from regularized regression models. In most of our simulations we have seen that the predictive 

performance of sparse final models rarely achieves the predictive performance of the models with the 

full predictor. Similar results are obtained from the frequentist perspective, where the performance of 

the frequentist ridge models with full predictor was often comparable or higher with respect to the 

sparse models obtained with the frequentist lasso. We found also evidence from the practical 

perspective, Section 14, that the predictive performance of an estimated model is enhanced, if the 

covariate effects are regularized and all covariates are included in the model. In particular the reduced 

shrinkage of larger effects with NMIG prior caused a clear loss of the predictive performance and the 
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best results are obtained with the ridge regularization. In some of the considered simulations the 

HS.STD criterion provided sparse final models with a comparable predictive performance as the full 

model, also in combination with the NMIG prior. 

In summary, our analyses allow to conclude that, depending on the specific purpose of the analysis, 

different variants of Bayesian regularization seem to be more or less suitable. The NMIG prior 

structure showed excellent results in the simulations if the underlying model is sparse and the effects 

are well separated in clearly small or large effects. The estimated models have a high predictive 

performance and (hard shrinkage) variable selection can lead in such cases to sparse final models with 

a similar predictive performance as the models with the full predictor. In the higher-dimensional cases 

the NMIG-specific reduced shrinkage of larger effects leads to an increased performance compared to 

the ridge or lasso prior, but in models with moderate to small effects the estimates obtained with the 

ridge or lasso prior outperform the estimates with the NMIG prior. Since we do not know in reality, if 

the underlying model is really sparse or something about the effect sizes, it is hard to find 

recommendations for the general use of a specific regularization prior or the unrestricted application of 

variable selection.  

16. Outlook 

16.1. Prior tuning 

A major topic of the future research is the further investigation of the shrinkage and selection prior 

tuning. We provided in Section 4 some crude guidelines for the prior tuning in terms of the 

standardized constraint parameter or the intersection points of the mixture components of marginal 

NMIG prior for the regression coefficients. These guidelines consider the prior tuning from a “local” 

univariate perspective for single regression coefficients and do take not into account the “global” 

problem, where the regularization depends also on the number of regularized covariates, the 

correlations between the covariates the sample size and the used regression model. 

With respect to the results obtained with the higher-dimensional linear predictors there is a need for a 

systematic investigation of the prior tuning to counterbalance (to a certain degree) the strong 

regularization of larger effects. In particular in the case of the NMIG prior, modifications are required 

to stabilize the estimation of inclusion probabilities according to the impact of the covariates and the 

separation of moderately large from zero effects. We have seen that the effect of the sole modification 

of the model complexity is limited, since it increases at last the inclusion probabilities of the zero 

effects and does not promote the separation of the moderate from the zero effects. So the adaption 

must also take place on the level of the variance parameters and we have to clarify which of the four 

hyperparameters need to be modified and how they are to modify. In the case of the lasso or ridge 

prior possibly the adaptive versions with covariate-specific shrinkage parameter (and common 

hyperparameters) may help to reduce the strong shrinkage of the larger effects and we have to 

determine how the hyperparameters change dependent on the dimension of the considered regularized 

covariates. The investigation in models with adaptive versions of the proposed regularization priors 

will also be of interest with respect to the front-up scaling of the covariates. Covariate-specific 

shrinkage parameters, with individual hyperparameters, allow a covariate-specific tuning of the 
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marginal prior of the regression coefficients, which leads to further flexibility and to the option to 

adapt the prior to the scale of covariates. A systematic connection between the prior tuning and the 

covariate scale could help to overcome the necessity to standardize covariates up-front, since the 

priors are allowed to adapt to the varying covariate scales.  

A strategy for tuning the priors becomes also important in the lower-dimensional cases, if we will 

consider the group-prior versions. In particular with the NMIG prior, the inclusion probability 

increases for larger groups of associated regression coefficients (with comparable sizes) and we have 

to take into account the group size to avoid e. g. that large groups with small effects achieve a higher 

or similar inclusion probability than small groups with large effects. So far we have not regarded the 

correlation structure of the covariates with respect to the prior tuning, and this is also a topic for our 

future research. Correlations of the covariates can be considered e. g. by the incorporation of the 

empirical correlation matrix of the covariates into the Gaussian prior of the regression coefficients, 

compare e. g. George and McCulloch (1993). In addition, the investigation of asymptotic properties of 

the estimates under the NMIG prior, in analogy to the results presented in Ishwaran and Rao (2005b) 

for Gaussian regression models, is of interest and in this case it might be also necessary to modify the 

priors to achieve a non-vanishing impact of the regularization priors even for large sample sizes.  

At last, the prior tuning must be verified in the specific (survival) regression model and possibly 

adapted to the specific regression context, in particular the tuning of the NMIG prior. The NMIG 

prior, with hyperparameter constellation used in the CRR simulations and applications, was tuned in 

the CRR model. From the Section 13 we have seen that this basic tuning of NMIG prior leads to very 

different shrinkage behavior in the AFT and CRR model. While the unregularized estimated effects 

under the CRR or AFT model differ only moderately (some effects are larger in the AFT model) the 

basic NMIG tuning leads to close to zero estimates for all inclusion probabilities in the AFT model. So 

we have to verify the performance of this hyperparameter constellation in the AFT model or search for 

alternatives. 

16.2. Regularization priors 

On the predictor side, in particular with respect to the regularization of linear covariate effects, there 

are a lot of self-evident generalizations. Since the scale mixture of normals class is quite large, as 

demonstrated for example in Griffin and Brown (2005), other types of regularization priors for linear 

predictors, that support such a hierarchical representation, can be considered in the same unified 

Bayesian framework. Recently Li and Lin (2010) represented the Bayesian elastic net prior as mixture 

of normals with truncated gamma mixing distribution for the variance function which fits also in our 

framework and can be utilized for correlated predictors. 

In addition, the common regularization for associated groups of regression coefficients, arising e. g. 

from categorical covariates, can be considered. We mentioned this expansion already in the Sections 

4.1.3, 4.2.3 and 4.3.3, and there are only marginal modifications in the present implementation of the 

methods necessary to enable the group-versions of the Bayesian ridge, lasso and NMIG regularization 

(also the adaptive group-versions) for subsets of covariates in the extended predictor. 

We can also think about a mixture of gdP-distributions as marginal prior of the regression as an 

alternative to the mixture of Student t-distributions induced by the NMIG prior structure. This would 

lead to a more beneficial behavior of the associated penalty at the origin, due the non-continuous first 
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derivate of the marginal prior of the regression coefficients, and should lead to similar theoretical 

properties as already derived for the gdP prior.  

16.3. Generalized accelerated hazard model 

Further it would be interesting to consider the NMIG prior in a kind of regression model selection 

framework. Etezadi-Amoli and Ciampi (1987) formulate an extended model for the hazard rate 

function that includes several survival model types as special cases. They assume that covariates 

1 p(x ,...x )′=x  change the hazard function according to 

 0 1 2(t | ) (t exp( )) exp( )′ ′λ = λ ⋅ ⋅x x β x β , 

where two different covariate effects 1β  and 2β  modify the baseline hazard function 0 ( )λ ⋅  and the 

hazard function ( )λ ⋅  separately. The authors use regression splines to model the baseline hazard and 

the ML approach for inference. This generalized accelerated hazard (GAH) model provides a natural 

generalization of the CRR and the AFT model, because the CRR model results for 1 =β 0  and the AFT 

model results for 1 2=β β . Also the accelerated hazard (AH) model of Chen and Wang (2000) is 

included as third special case if 2 =β 0 . The GAH model allows the simultaneous treatment of 

different assumptions about the covariate impact in one unified regression model and provides the 

possibility to discriminate covariates with respect to the fashion how they influence survival time. This 

weakens the reliance on specific assumptions about the impact of the whole set of covariates and 

provides a very flexible model class, where e. g. subsets of covariates can act in a AFT-, CRR- or AH-

fashioned way on the survival time. The extension of our methodology to the GAH model, in 

particular the usage of the selection (or shrinkage) priors in the GAH models is appealing to uncover 

either the underlying particular regression model class for the whole set of covariates (at least CRR 

with 1 =β 0  or AH with 2 =β 0 ) or to classify single covariates due to their specific form of influence 

( 1, j 0β =  or 2, j 0β = ). To detect subsets of covariates with AFT like impact ( 1 2=β β ), a modification of 

the shrinkage behavior of the priors is necessary. One option is to allow the shrinkage of coefficients 

toward multiple prior means (including the zero mean), where the grouping of coefficients around 

specific values of a common grid of prior means for 1β  and 2β  may guide the classification. E. g. 

MacLehose and Dunson (2010) use a Dirichlet process prior to induce a clustering of the regression 

coefficients into groups in the context of the Bayesian lasso prior. For realization we can also think 

about the expansion of the NMIG prior by introducing a finite mixture (with more than two 

components) for the variance parameter, where the latent component labels (indicator variables) guide 

the classification. At least also an extended structured additive predictor could be considered in this 

general model class. 

16.4. Time dependent covariates 

In general, the AFT model would benefit from the further extension of the predictor to take into 

account other covariate effects like random effects, covariate interactions or spatial effects and the 

implementation of alternative censoring schemes to the right censoring. Another potential for the 

generalization of our approach is the extension of the AFT (or GAH) model to take into account 

effects of time-dependent covariates x(t) , which seems to be rather a practical and numerical than a 

theoretical challenge. E. g. Cox and Oakes (1984) propose the generalization 
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t t

0 0 0
t f (t, ) exp(x(s) )ds exp( (s))ds= β = β = η∫ ∫ , ( )∗  

where 0t  is the unobservable baseline survival time and t  the observable survival time. Inference is 

carried out with the hazard rate formulation of the (right-censored) likelihood and the likelihood 

contributions are based on the components ( )
t

0 0
(t) ( exp (s) ds) exp( (s))λ = λ η ⋅ η∫  and 

( )
t

0 0
( exp (s) ds)Λ η∫ , where 0 ( )λ ⋅  denotes the hazard function and 0 ( )Λ ⋅  the cumulative hazard 

function of the baseline survival time. To obtain a full likelihood function, Tseng et al. (2005) use (in 

the context with longitudinal data) a piecewise constant hazard function to approximate the baseline 

hazard, but flexible AFT models can also be obtained in a similar fashion like in the CRR model by 

representing the log-baseline hazard as P-spline. It seems to be straightforward to derive a related 

hierarchical model structure for the AFT model with time-dependent covariates as for the CRR model 

in Sections 7 and 8, if we treat the unobservable baseline survival times 0t  as latent model variables 

that are imputed according to ( )∗ . The further use of the IWLS proposals may be a point to think 

about, since also first and second order derivates of the baseline hazard are involved in the 

construction. In particular, the use of the conditional prior proposals, Knorr-Held (1999), may be 

advantageous in this context, since this kind of proposal requires only the evaluation of the log-

likelihood and not the derivates. Due to the integral formulation ( )∗ , the computational effort for the 

numerical evaluation of the integrals (including 0 ( )Λ ⋅ ) during the samplers increases. A similar 

representation in terms of the log-linear AFT model with PGM error may be possible, but the 

imputation of the exact event times is no longer feasible, since no measurements of the time-dependent 

covariates are available after the observed event or censoring time to evaluate ( )∗ . 

16.5. Software 

The current versions of the functions baftpgm() and bcoxpl() enable the fitting of models with 

predictors that describe linear and smooth effects of time independent covariates. Both functions will 

be further developed to consider extensions of the predictor to take into account other effect types, to 

incorporate alternative regularization priors that fit in our hierarchical model structure, to consider the 

common regularization of associated groups of covariates, to incorporate alternative censoring 

schemes to the right-censoring and to accelerate the samplers by outsourcing the basic routines e. g. to 

C++. 

Within the BayesX software the predictor can capture a greater variety of effect types in combination 

with the regularization of the linear effects utilizing the adaptive and non-adaptive versions on the 

Bayesian ridge, lasso and NMIG prior. Besides the continuous time hazard regression for right 

censored observations the methods are available for other censoring schemes like interval censoring or 

a broader class of response distributions like right censored discrete time hazard regression, those from 

the exponential family or categorical responses. Also the routine regress can be extended with low 

expense to take into account the (adaptive) group-versions of the implemented regularization priors. 
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APPENDIX 

A Extended AFT model APP.A 

A.1. Penalized Gaussian mixture 

Let X follow a Gaussian mixture distribution, i. e., 2 2
1 1 1 g g gX ~ w N(m ,s ) ... w N(m ,s )+ + , where jw , 

j 1,...,n= , denote the mixture weights with jw 0>  and 1 2 gw w ... w 1+ + + = , and jm , 2
js  represent 

the mean and variance of the associated Gaussian basis densities ( )ϕ ⋅ .  

The mixture distribution density is defined as 

 ( ) ( )
g

2
X j j j

j 1

f x w x | m ,s
=

= ϕ∑ . 

A.1.1. Mean and variance 

The mean and variance of the Gaussian mixture are given as 

 ( )
g g

2 2 2 2
X j j X j j j X

j 1 j 1

(X) w m , ar(X) w m s
= =

µ = = σ = = + − µ∑ ∑E V . 

This can be shown as follows: The expectation of a function h( )⋅  with respect to the mixture 

distribution density Xf ( )⋅  is given by 

 ( ) ( )
g g g

2 2
X j j j j j j j j

j 1 j 1 j 1

h(X) h(x)f (x)dx h(x) w (x | m ,s )dx w h(x) (x | m ,s )dx w h(X) ,
= = =

= = ϕ = ϕ =∑ ∑ ∑∫ ∫ ∫E E  

where j(h(X))E  is the expectation of h(X)  with respect to the j-th basis density 2
j j( | m ,s )ϕ ⋅ .  

The mean Xµ  and the variance 2
Xσ  of the mixture distribution are then obtained as special cases with 

the specifications h(X) X=  and 2
Xh(X) (X )= − µ , i. e. 

 
g g

X j j j jj 1 j 1
(X) w (X) w m

= =
µ = = =∑ ∑E E , 

 
( ) ( )

g g g g2 2 2 2
X j j X j j X j j X jj 1 j 1 j 1 j 1

g g2 2 2 2 2 2
j j j X j j j Xj 1 j 1

ar(X) w (X ) w (X ) 2 w m w

w ar (X ) m w s m ,

= = = =

= =

σ = = − µ = − µ + µ

= + − µ = + − µ

∑ ∑ ∑ ∑

∑ ∑

V E E

V

 

where j jm (X)= E  and 2
j js ar (X)= V  denote the expectation and the variance of X with respect to the 

j-th basis density. In the equations for the variance we used the condition jw 1=∑  and the variance 

partition 2 2 2 2
j j j jar(X) (X ) (X) (X ) m= − = −V E E E . 
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A.1.2. Standardization 

To standardize the mixture distribution, X 0µ =  and 2
X 1σ = , we use the unconstrained coefficients 

1 g( ,..., )′= α αα  as defined in Section 2.3 with the identifiability constraint g 0α =  and the connection 
g

k k jj 1w ( ) exp( ) exp( )
=

= α α∑α , k 1,...,g= . To shorten the notation, we write j
jexp( ) eαα = .  

For a standardized mixture distribution we obtain the following condition for the mean 

 

j

j

j

j g 2 g 1

g

jj 1
X g

j 1

g

jj 1

g 3

j g 2 g 1 gj 1

e m
0 0

e

e m 0

e m e m e m m 0− −

α

=

α

=

α

=

− α α α
− −=

µ = ⇔ =

⇔ =

⇔ + + + =

∑
∑

∑

∑

 

and for the variance 

 

j j

j

j

j g 2 g 1

g g 2 2
j jj 1 j 12

X g

j 1

g
2 2
j j

j 1

g 3
2 2 2 2 2 2 2 2

g 2 g 2 g 1 g 1 g gj j
j 1

e e (s m )
1 0

e

e (1 s m ) 0

e (1 s m ) e (1 s m ) e (1 s m ) 1 s m 0.− −

α α

= =

α

=

α

=

−
α α α

− − − −

=

− +
σ = ⇔ =

⇔ − − =

⇔ − − + − − + − − + − − =

∑ ∑
∑

∑

∑

 

The specification of the coefficients g 1 g 2,− −α α  from the mean condition is 

 

g 1 j g 2

g 2 j g 1

g 3
j g 2 g

g 1 g 1 g 1j 1

g 3
j g 1 g

g 2 g 2 g 2j 1

m m m
(I) e e e ,

m m m

m m m
(II) e e e .

m m m

− −

− −

−
−α α α

− − −=

−
−α α α

− − −=

= − − −

= − − −

∑

∑
 

The specifications of the coefficients g 1 g 2,− −α α  from the variance condition is 

 

g 1 j g 2

g 2 j g 1

2 2 2 2 2 2g 3
j j g 2 g 2 g g

2 2 2 2 2 2
j 1 g 1 g 1 g 1 g 1 g 1 g 1

2 2 2 2 2 2g 3
j j g 1 g 1 g g

2 2 2 2 2 2
j 1 g 2 g 2 g 2 g 2 g 2 g 2

1 s m 1 s m 1 s m
(III) e e e ,

1 s m 1 s m 1 s m

1 s m 1 s m 1 s m
(V) e e e .

1 s m 1 s m 1 s m

− −

− −

−
− −α α α

= − − − − − −

−
− −α α α

= − − − − − −

− − − − − −
= − − −

− − − − − −

− − − − − −
= − − −

− − − − − −

∑

∑
 

Inserting (V) in (I) we get  

 g 1 j j g 1

2 2g 3 g 3 2 2 2 2
j j j g 1 g 1 g g g 2 g

2 2 2 2 2 2
g 1 g 2 g 2 g 2 g 2 g 2 g 2 g 1 g 1j 1 j 1

1 s mm 1 s m 1 s m m m
e e e e

m 1 s m 1 s m 1 s m m m
− −

− −
− − −α α α α

− − − − − − − − −= =

 − − − − − −
= − + + + − 

− − − − − − 
∑ ∑  

 g 1 j

2 2g 32 2 2 2
g 1 g 1 g 2 j j j g 2 g g g 2 g

2 2 2 2 2 2
g 2 g 2 g 1 g 1 g 2 g 2 g 1 g 2 g 2 g 1 g 1j 1

1 s m1 s m m m m 1 s m m m
e 1 e

1 s m m m 1 s m m 1 s m m m
−

−
− − − − −α α

− − − − − − − − − − −=

   − −− − − −
− = − − + −   

− − − − − −   
∑  

 

( )j

g 1

g 3
2 2 2 2 2 2 2 2
g 2 g 2 j g 2 g g g 2 g 2 g 2 gj j

j 1

2 2 2 2
g 2 g 2 g 1 g 1 g 1 g 2

e (1 s m )m (1 s m )m (1 s m )m (1 s m )m

e .
(1 s m )m (1 s m )m

−

−
α

− − − − − −

=α

− − − − − −

− − − − − − + − − − − −

=
− − − − −

∑
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Inserting (III) in (II) we get accordingly 

 g 2 j j g 2

2 2g 3 g 3 2 2 2 2
j j j g 2 g 2 g g g 1 g

2 2 2 2 2 2
g 2 g 1 g 1 g 1 g 1 g 1 g 1 g 2 g 2j 1 j 1

1 s mm 1 s m 1 s m m m
e e e e

m 1 s m 1 s m 1 s m m m
− −

− −
− − −α α α α

− − − − − − − − −= =

 − − − − − −
= − + + + − 

− − − − − − 
∑ ∑  

 g 2 j

2 2g 32 2 2 2
g 2 g 2 g 1 j j j g 1 g g g 1 g

2 2 2 2 2 2
g 1 g 1 g 2 g 2 g 1 g 1 g 2 g 1 g 1 g 2 g 2j 1

1 s m1 s m m m m 1 s m m m
e 1 e

1 s m m m 1 s m m 1 s m m m
−

−
− − − − −α α

− − − − − − − − − − −=

   − −− − − −
− = − − + −   

− − − − − −   
∑  

 

( )j

g 2

g 3
2 2 2 2 2 2 2 2
g 1 g 1 j g 1 g g g 1 g 1 g 1 gj j

j 1

2 2 2 2
g 1 g 1 g 2 g 2 g 2 g 1

e (1 s m )m (1 s m )m (1 s m )m (1 s m )m

e .
(1 s m )m (1 s m )m

−

−
α

− − − − − −

=α

− − − − − −

− − − − − − + − − − − −

=
− − − − −

∑
 

With the definitions 

 
2 2 2 2
g 2 g 2 j g 2j j

j,g 1 2 2 2 2
g 2 g 2 g 1 g 1 g 1 g 2

(1 s m )m (1 s m )m
c : , j 1,...,g 3,g,

(1 s m )m (1 s m )m

− − −

−

− − − − − −

− − − − −
= − = −

− − − − −
 

 
2 2 2 2
g 1 g 1 j g 1j j

j,g 2 2 2 2 2
g 1 g 1 g 2 g 2 g 2 g 1

(1 s m )m (1 s m )m
c : , j 1,...,g 3,g,

(1 s m )m (1 s m )m

− − −

−

− − − − − −

− − − − −
= − = −

− − − − −
 

and taking the logarithm we get, in addition to the identifying constraint g 0α = , the conditions 

 ( ) ( )j j
g 3 g 3

g 1 j,g 1 g,g 1 g 2 j,g 2 g,g 2j 1 j 1
log e c c , log e c c ,

− −α α
− − − − − −= =

α = + α = +∑ ∑  

to ensure, that the mixture density is standardized. Using equal basis variances 2 2
js s= , j 1,...,g= , we 

obtain 

 

2
j g 2 j g 1

j,g 1 2
g 1 g 2 g 1 g 2

2
j g 1 j g 2

j,g 2 2
g 2 g 1 g 1 g 2

m m 1 s m m
c , j 1,...,g 3,g,

m m 1 s m m

m m (1 s m m )
c , j 1,...,g 3,g.

m m 1 s m m

− −
−

− − − −

− −
−

− − − −

− − −
= − = −

− − −

− − −
= − = −

− − −

 

A.1.3. Linear transformation 

The linear transformation Y X= µ + σ  of the Gaussian mixture distribution X is also a Gaussian 

mixture distribution with density 

 

( ) ( )

( )

g g
2j2

Y X j j j i i j2 2
j 1 j 1 jj

g
2 2

j j j

j 1

w1 y 1 y 1
f y f w | m ,s exp y m

2 s2 s

w y | m , s

= =

=

 − µ − µ   
= = ϕ = − − η σ    

σ σ σ σ σπσ     

= ϕ µ + σ σ

∑ ∑

∑

−−−−

, 

where Y,j jm : m= µ + σ  denote the knots and 2 2 2
Y, j js : s= σ  the variances of the associated Gaussian basis 

densities ( )ϕ ⋅ . The mean and variance of Y are given as Y Xµ = µ + σµ  and 2 2 2
Y Xσ = σ σ . 

A.2. Full conditional of the scale parameter 

With the definitions from Section 6.1.4 

 1 1
,1 r ,2 r r

n 1
A : h 1, B : ( ) ( ) h , C : ( )

2 2
− −

σ σ σ σ σ′ ′= + + = − − + = −y η S y η y η S m  
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the full conditional of the scale parameter is built as 

 ( )
A

2

2 2

1 1 1
p | exp B C

σ

σ σ

   
σ ⋅ ∝ − +   

σ σ σ   
. 

Unimodality of the full conditional 

To see the unimodality of the full conditional, we consider the logarithm of the full conditional and the 

first derivate with respect to 2σ : 

 ( )2 2

2 2 2 2

1 1 1 B C
log p | A log B C A log σ σ

σ σ σ σ

 
σ ⋅ = − + = − σ − + 

σ σ σ σ σ 
, 

 2 2

2 2 4 3 4

d A B C 1 1
log p( | ) A C B

d 2 2
σ σ σ

σ σ σ

 
σ ⋅ = − + − = − σ + σ − 

σ σ σ σ σ  
. (A.1) 

The possible two roots +σ  and −σ  of the expression 

 ( )2

4

1
2A C 2B 0

2
σ σ σ− σ + σ − =

σ
 

from the first derivate (A.1) are given as  

 ( )2
/ 2

1 1 16A B
C C 16A B C C 1

4A 4A C
σ σ

+ − σ σ σ σ σ σ

σ σ σ

 
σ = − ± + = − ± +  

 
. 

Since A 0σ > , B 0σ >  and since the expression 21 16A B C 1σ σ σ+ > , we see that for each C 0σ ≠  

there is only one of the roots positive, i. e. 2( C C 16A B ) 4A+ σ σ σ σ σσ = − + + , which must then be the 

single mode of the full conditional distribution.  

B Marginal distributions of regularization prior componentsAPP.B 

In the following derivations we require some properties of the gamma function. The gamma function 

is defined via an improper integral x 1
0

(x) : t exp( t)dt
∞ −Γ = −∫ , x 0>  and satisfies 

 ( ) ( )x 1 x xΓ + = Γ . (B.1) 

Based on the initial definition of the gamma function, we derive with x a 1= +  and the substitution 

x t b=  the representation  

 ( )
( )a

a0

a 1
x exp bx dx

b

∞ Γ +
− =∫ . (B.2)  

B.1. Bayesian ridge prior 

Marginal distribution of the regression coefficients 

Version (A): Using the hierarchy of the Bayesian ridge prior, version (A), compare Section 4.1.1, we 

obtain with the inverse gamma prior of the variance parameters ( )
j

2
1, 2, 1, 2,| h ,h ~ IGamma h ,0.5hλ λ λ λβτ  

and with the Gaussian prior of the regression coefficients 
j j

2 2
j | ~ N(0, )β ββ τ τ  the marginal prior 
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( ) ( ) ( )

( )
( ) ( )

( )
( )

( ) ( ) ( )
( )

j j j

11,
1, 2

j j j

1, 1
1, 2

2 2 21
j 1, 2, j 1, 2,2

h1 (h ) 12,2 2 2 2 21 1
j 2,2 2

1,

h1 1 1 2
h2, 1, 1, j2 2 221 1

j 2,2 2
2,1, 2, 1,

p | h ,h N | 0, InvGamma | h , h d

( h )
exp ( h ) d

2 h

( h ) h h
h 1

h2 h h h

λ
λ

λ
λ

λ λ λ λβ β β

+ +
λ − −

λβ β β

λ

− +λ λ λ

λ

λλ λ λ

β = β τ ⋅ τ τ

= τ − β + τ τ
πΓ

Γ + Γ +  β
= β + = +

πΓ πΓ 

∫

∫

( )

( )
( )

1
1, 2

2 h 11,
21,

2,1, 2 ,
1,1,

h

2h 1
2

2 j

h2h h
1, 2h1,2 2h

1 .
2h2h

λ

+λ

λ

λ
λ λ

λ
λ

− +

−+

λλ




Γ  β
= +  Γ π  

 

In the third conversion we use the connection (B.2). Thus the resulting distribution is a scaled Student 

t-distribution with 1,d 2h λ=  degrees of freedom and scale parameter 2, 1,s h 2hλ λ=  

 ( )j 1, 2, 1, 2, 1,| h ,h ~ t df 2h ,s h 2hλ λ λ λ λβ = = . 

 

Version (B): Using the hierarchy of the Bayesian ridge prior, version (B), compare Section 4.1.1, we 

obtain with the inverse gamma prior of the variance parameters ( )2
1, 2, 1, 2,| h ,h ~ IGamma h ,0.5hβ λ λ λ λτ  

and with the multivariate Gaussian prior of the regression coefficients 2 2| ~ N( , )β βτ τβ 0 I  the marginal 

prior 

 

( ) ( ) ( )

( )
( ) ( )

( )
( )

( ) ( ) ( )
( )

p1, x
1, 2

x

x x1, px
1, 2

x x

2 2 21
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h1
(h ) 12,2 2 2 21 1
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2,2 2p p
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( h ) h h
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h2 h h h

λ
λ
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λ

λ λ β β λ λ β

+ +λ − −
β λ β β

λ

λ λ λ− +

λ

λλ λ λ

= τ ⋅ τ τ

′= τ − + τ τ
π Γ
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π Γ π Γ

∫

∫

β β 0

β β

β β
β β

( )

( )
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1
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2 h 11,
21, x

x 2,
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h
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λ


 



Γ  ′
= +  

Γ π  

β β

 

In the third conversion we use again the connection (B.2). Thus the resulting distribution is a 

multivariate, xp -dimensional, scaled Student t-distribution with 1,d 2h λ=  degrees of freedom and 

scale matrix 
1
2

2, 1,h 2hλ λ=Σ I  

 ( )1
2

1, 2, 1, 2, 1,| h ,h ~ t df 2h , h 2hλ λ λ λ λ= =β Σ I . 

B.2. Bayesian lasso prior 

Marginal distribution of the variance parameters 

Using the hierarchy of the Bayesian lasso prior, Section 4.2.1, we obtain with the gamma prior of the 

shrinkage parameter ( )2
1, 2, 1, 2,| h ,h ~ Gamma h ,hλ λ λ λλ  and with the exponential prior of the variances 

j

2 2 21
2| ~ Exp( )βτ λ λ  the marginal prior of the variance parameter as 
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( ) ( ) ( )

( )
( ) ( )

j j

1,
1,

j

1, 1, 1,

1, 1,

j j

1,

2 2 2 2 21
1, 2, 1, 2,2

h
h 1 12, 2 2 2 21
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1,

h h 1 h
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h 1 h 12 2
1, 2, 2,

h
1, 2,

p | h ,h Exp | Gamma | h ,h d

h
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λ
λ
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λ

+
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Γ
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∫

∫

( )1,

j

1, 1,
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h 12
1,

h 1 h 121
2, 2, 2,2h

h
1 ,

(2h ) ( 1) 2h 2h

λ
λ

λ λ

λ

− +

βλ

+ +
λ λ λβ

τ 
= + 

τ +  

 

which is the density of a generalized Pareto distribution 

 
j

2
1, 2, 1, 2, 1,| h ,h ~ gPareto(shape h ,scale 2h h )λ λ λ λ λβτ = = . 

In the third conversion we use the connections (B.1) and (B.2) to solve the integral. 

Marginal distribution of the regression coefficients 

To derive the marginal distribution of the regression coefficients, we require the following integral-

representations of the parabolic cylinder function 2D ( )− ν ⋅  of order 2− ν  and 2 1D ( )− ν+ ⋅  of order 2 1− ν +  

 ( )( )
( ) ( )1 21

21 20

2 ym
x exp mx x y dx exp D 2ym

y 2

ν
∞ −ν−ν−

− ν

Γ ν  
− + =  

 
∫ , (B.3) 

 ( )( )
( ) ( )

1 2
1 21

2 11 20

2 ym
x exp mx x y dx exp D 2ym

m 2

ν−
∞ −ν+ν−

− ν+

Γ ν  
− + =  

 
∫ , (B.4) 

compare e. g. Griffin and Brown (2005). 

With the Gaussian prior of the regression coefficients 
j j

2 2
j | ~ N(0, )β ββ τ τ  and the generalized Pareto 

prior of the variance parameters the marginal prior of the regression coefficients is obtained as the 

integral 

 

( ) ( ) ( )j j j

1,

j

j j

j

2 2 2
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(h 1)22
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β β
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∫

∫
 

With the substitution 
j

2
jx 1 β= τ  we get 
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1,

1,

1,
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23
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∫

∫

 (B.5) 

If we use the representation (B.3) of the parabolic cylinder function 2D ( )− ν ⋅  with the parameters 
2
jm 2= β , 1,h 1 2λν = +  and 2,y 1 2h λ= , we obtain for the marginal densities of the regression 

coefficients 

 ( ) ( ) ( )

1,

1,

2h
j j1, 1

j 1, 2, 1, 2 h 1 22
2,2, 2,

| |h 2 1
p | h ,h h exp D

4 2h2h 2h

λ

λ

λ
λ λ λ − +

λλ λ

  β β
β = Γ +     π    

. 
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Derivate of marginal log-prior of the regression coefficients 

To obtain the derivate 

 ( )
( )

( )
j

d
j 1, 2,d

j 1, 2,

j j 1, 2,

p | h ,hd
log p | h ,h

d p | h ,h

λ λβ

λ λ

λ λ

β
β =

β β
, 

we have to evaluate the derivate in the nominator. Using the expression in (B.5) we obtain 
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( )1,
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21

h1, j j
2

j 1, 2, j j j j
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 β β 
β = − − +  β π    

∫  

If we use the representation (B.4) of the parabolic cylinder function 2 1D ( )− ν+ ⋅  with the parameters 
2
jm 2= β , 1,h 3 2λν = +  and 2,y 1 2h λ= , we obtain  

 ( ) ( )1,
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2
j j j1, h 1 3
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. 

Finally, we obtain with ( ) ( )3 1 1
1, 1, 1,2 2 2h (h ) hλ λ λΓ + = + Γ +  from (B.1) the result 
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and the derivate of penalty function reads 
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Using the connection 
1

2 2 1 1
2D (0) 2 ( )

ν
− −ν

ν = π Γ  we obtain at the origin the penalty 
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B.3. Bayesian NMIG prior 

Conditional distribution of the variance parameter 

With the hierarchy of the Bayesian MNIG prior from Section 4.3.1 we obtain for the variance 

parameters 
j

2 2
j jIβτ = ψ , as the product of a Bernoulli distributed indicator jI  and an inverse gamma 

distributed variance 2
jψ , the densities  
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which are mixtures of scaled inverse gamma distributions with common shape parameter 1,h ψ  and the 

scale parameters 0 2,v h ψ  and 1 2,v h ψ . 

Marginal distribution of the variance parameters 

The marginal densities of the variance parameters are obtained by marginalization of the complexity 

parameter which is equipped with a beta prior, i. e. 1, 2,~ Beta(h ,h )ω ωω : 
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In the last conversion we use the connection (B.1). In summary, the marginal distribution is a mixture 

of inverse gamma distributions with common shape parameter 1,h ψ  and scale parameters 0 2,v h ψ  and 

1 2,v h ψ  

 
j

2, 1,2
1, 0 2, 1, 1 2,

1, 2, 1, 2,

h h
| ... ~ IGamma(h ,v h ) IGamma(h , h )

h h h h
ω ω

ψ ψ ψ ψβ
ω ω ω ω

τ ⋅ + ⋅ ν
+ +

. (B.6) 

Marginal distribution of the regression coefficients 

With the Gaussian prior of the regression coefficients 
j j

2 2
j | ~ N(0, )β ββ τ τ  and with the marginal mixture 

prior of the variance parameters (B.6) we obtain with similar conversions as in Subsection B.1, the 

marginal prior of the regression coefficients as mixture of two scaled Student t-distributions with 

1,d 2h λ=  degrees of freedom and scale parameters 0 0 2, 1,s v h hψ ψ=  and 1 1 2, 1,s v h hψ ψ=  

 0 2, 1 2,2, 1,
j 1, 1,

1, 2, 1, 1, 2, 1,

v h v hh h
| ~ t d 2h ,s t d 2h ,s

h h h h h h
ψ ψω ω

ψ ψ

ω ω ψ ω ω ψ

   
β ⋅ = = + = =      + +   

. 

C Taylor expansion of second order APP.C 

General approach 

Let pf : →ℝ ℝ , ( ) 1 pf f ( ,..., )= θ θθ  denote a real valued, two times continuous differentiable function 

and let (c) (c) (c)
1 p( ,..., )′= θ θθ  denote the current state of the Markov chain. The quadratic approximation 

f̂ ( )⋅  to the function f ( )⋅  at the current state is obtained by second order Taylor expansion of the 

function f ( )⋅  with respect to the current state of the chain (c)
θ , which is given as 
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 ( ) ( ) ( ) ( ) ( ) ( )( )(c) (c) (c) (c) (c) (c)1
f̂ f

2
θ θ

′ ′≈ + − + − −θ θ θ θ s θ θ θ H θ θ θ  (C.1) 

with the score vector and hessian matrix defined as the derivates 

 ( )
( )

( )
( )(c) 2 (c)

(c) (c)
f f

: , :θ θ

∂ ∂
= =

′∂ ∂ ∂

θ θ
s θ H θ

θ θ θ
. 

If the components of the approximation f̂ ( )θ  that do not depend on θ  are omitted, the exponential 

function of the approximation 
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1ˆexp f exp
2

1
exp

2

θ θ θ

θ θ θ
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 
′ ′= − − + − 

 

θ θ s θ θH θ θ θH θ θ

θ H θ θ θ s θ H θ θ

 

is proportional to the density of a multivariate Gaussian distribution with mean vector (c) (c)ˆ( | ) = θθ θ µE  

and precision matrix (c) (c)ˆPrec( | ) = θθ θ Π  given by 

 ( ) ( ) ( )( ) ( )
1(c) (c) (c) (c) (c) (c)ˆˆ , H

−

θ θ θ= − = −θ θ θµ Π s θ H θ θ Π θ . 

In the case of an improper Gaussian distribution, i. e. the Hessian matrix is not of full rank, the 

expression (c) 1( )−
θΠ  denotes a generalized inverse of the precision matrix. In terms of the covariance 

matrix (c) (c) (c) 1ˆ ˆov( | ) ( )−= =θ θθ θ Σ ΠC  we write 

 ( ) ( )(c) (c) (c) (c) (c) 1 (c)ˆ ˆˆ , −
θ θ= + = −θ θ θµ θ Σ s θ Σ H θ  (C.2) 

and (c) (c)(c) 1 (c) (c) (c)ˆ ˆdirec( , ) : ( ) ( )−
θ θ= − = −θ θµ θ H θ s θ µ θ  denotes the difference vector between the current 

state and the approximated mean vector.  

Connection to Fisher-scoring 

From the representation of the mean vector in (C.2) we can see the close connection to the Fisher-

scoring algorithm. If the function f ( ) log(L( ))=θ θ  denotes the log-likelihood function of the 

parameter θ  and we want to maximize the function f ( )⋅ , then we try to find the root of the score 

function, i. e. ˆ( ) 0θ =s θ . With the first order Taylor expansion to the score function 
(c) (c) (c)ŝ ( ) s ( ) ( )( )θ θ θ≈ − −θ θ H θ θ θ  the problem reads (c) 1 (c) (c)ˆ ( )s ( )−

θ θ≈ −θ θ H θ θ . Starting with an 

appropriate value (0)θ , one iteratively compute the values 

 ( ) ( )(c 1) (c) 1 (c) (c)s+ −
θ θ= −θ θ H θ θ  

until the algorithm converges to the desired solution θ̂ , which also maximizes the likelihood 

L( ) exp(f ( ))=θ θ . Thus the mean vector (c)ˆ θµ  of (C.2) can be interpreted as a one step Fisher-scoring 

approximation to the mode (i. e. the maximum) of the function exp(f ( ))θ  in the direction 
(c) (c)(c) (c)ˆ ˆdirec( , ) = −θ θµ θ µ θ . 

Additional quadratic penalty term 

In the presence of an additional quadratic penalty term from a zero mean multivariate Gaussian 

distribution, i. e. 1
penf ( ) f ( ) 0.5 −

θ′= +θ θ θ Σ θ  we get accordingly using the Taylor expansion of f ( )⋅  

from (C.1) 
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1
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This is also a multivariate Gaussian density with mean vector (c) (c)
pen ,penˆ( | ) = θθ θ µE  and covariance 

matrix (c) (c)
pen ,pen

ˆov ( | ) = θθ θ ΣC  given as 

 ( ) ( )( ) ( )( )
1

(c) (c) (c) (c) (c) (c) (c) 1
,pen ,pen ,pen

ˆ ˆˆ , .
−

−
θ θ θ θ= − = − +θ θ θµ Σ s θ H θ θ Σ H θ Σ  (C.3) 

Approach with penalized score vector and Hessian matrix 

The same result as in (C.3) is achieved, if the quadratic penalty is included in penalized score vector 

and the penalized Hessian matrix while accomplishing the Taylor expansion to penf ( )θ . The penalized 

score vector and penalized Hessian matrix are then given as 

 ( )
( )

( ) ( )
( )

( )
(c) 2 (c)

pen pen(c) (c) 1 (c) (c) (c) 1
,pen ,pen

f f
: , :− −

θ θ θ θ θ θ

∂ ∂
= = − = = −
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θ θ
s θ s θ Σ θ H θ H θ Σ

θ θ θ
, 

and with  

 ( )( ) ( )( ) ( ) ( )( )(c) (c) (c) (c)
pen ,pen ,pen ,pen

1ˆexp f exp
2

θ θ θ

 
′ ′∝ − − + − 

 
θ θ H θ θ θ s θ H θ θ  

we get the mean vector and the covariance matrix of the corresponding multivariate Gaussian 

distribution as 

 ( ) ( )( ) ( )(c) (c) (c) (c) (c) (c) 1 (c)
,pen ,pen ,pen ,pen ,pen ,pen

ˆ ˆˆ , −
θ θ θ= − = −θ θ θµ Σ s θ H θ θ Σ H θ , (C.4) 

which coincides with the representations in (C.3). We can also write the mean as 

( )(c) (c) (c) (c)
,pen ,pen ,pen

ˆˆ θ= +θ θµ θ Σ s θ , with the difference vector between the current state and the 

approximated mean vector ( )(c) (c) (c) (c) (c) (c)
,pen ,pen ,pen ,pen

ˆˆ ˆdirec( , ) : sθ= = −θ θ θµ θ Σ θ µ θ . 

D BayesX methods and R functions APP.D 

Simulation studies and data analysis is carried out with the free software R and BayesX. The sources 

of the software and references, to obtain methodological or implementational details of the used 

procedures, are listed in the Reference Section. 

D.1. BayesX methods 

regress: We use the method regress implemented in the software tool BayesX (Belitz, C., Brezger, 

A., Kneib, T., Lang, S. and Umlauf, N.) to fit the regularized CRR-type regression models based on 

the full likelihood. The implemented MCMC simulation techniques are described in Section 9.1. In 

general BayesX supports the estimation of structured additive regression models like generalized 

additive models, generalized additive mixed models, generalized geoadditive mixed models, dynamic 

models, varying coefficient models, as well as the regression for categorical responses, hazard 

regression for continuous survival times and continuous time multi-state models within a unifying 
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framework. The method regress is extended to consider the shrinkage priors of Section 4.1 to 

Section 4.3. For details of the methodological background we refer to the BayesX homepage, where a 

complete list of references is available to download. The provided BayesX reference manual contains 

a detailed description of the BayesX commands, in particular the subsection “Shrinkage of fixed 

effects” covers the syntax for the Bayesian lasso, ridge and NMIG penalty. Below we shortly 

summarize the syntax for the regularization of the linear effects for the BayesX 2.1 version. 

D.2. R functions 

penalized: The penalized() (Goeman, J. J.) function of the R-package {penalized} is used to fit 

frequentist penalized Cox regression models based on the partial likelihood with the lasso or ridge 

penalty for the linear effects. The implemented algorithm for maximizing the penalized partial 

likelihood follows the full gradient of the likelihood from a given starting value of the regression 

coefficients at each step of the maximization, and switches to faster Newton-Raphson steps when it 

gets close to the optimum. The tuning (resp. shrinkage) parameter λ  is determined by Cross-

validation as implemented in the package functions optL1() and profL1(). In particular for the Cox 

model the cross-validated partial likelihood of Verweij and van Houwelingen (1993) builds the base 

for choosing the tuning parameter. As recommended by the author of the package, we use in our 

simulations and applications the function optL1() in combination with the function profL1() to 

validate if optL1() has converged to the desired optimum. 

bayessurv2: As Bayesian competitor to the extended AFT model we used the function 

bayessurv2() of the R-package {bayesSurv} (Komárek, A.). In this function the error distribution 

is also expressed as a penalized univariate Gaussian mixture with a finite fixed number of components. 

The function supports the estimation of unregularized linear effects or random effects. The results for 

intercept1 und scale1 from the generated file gspline.sim represent the samples of the location 

component 0γ  and the scale component σ  of the AFT model with respect to the unstandardized PGM. 

No identification constraints for the location and the scale parameter are implemented and therefore, 

the trace-plots of the parameters intercept1 and scale1 do not show stationarity anyhow. But the file 

mixmoment.sim, which contains the mean and variance of the baseline error density 
0Yf (y) , 

0 0Y := γ + σε , can be used to check the stationarity via the stationarity of the moment estimates. A 

recomputation of the weights to show the stationarity is not supported. 

pendensity: In the simulation section we also use the function pendensity() of the R-package 

{pendensity} (Schellhase, C) for frequentist estimation the error distribution density in the AFT 

model. This function is designed for the estimation of penalized densities using P-splines, with 

Gaussian or B-spline basis functions, and also allows for the inclusion factor covariates. We only 

applied the function to uncensored data without covariates to provide a frequentist competitor for the 

results from the Bayesian methods. For details of the specific R-package functions we refer to the 

corresponding help files of the package documentation. 

baftpgm and bcoxpl : The described Bayesian approach to fit the Bayesian AFT models with extended 

predictor and flexible error distribution is implemented in R-function baftpgm(). The corresponding 

function for estimation of the Bayesian CRR model with extended predictor based on the partial 

likelihood is implemented in R-function bcoxpl(). The following R-functions are used within the 

functions baftpgm() or bcoxpl(). 
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uni.slice(), ars{ars} for an optional single update of the transformed error weights of the PGM 

error density in the AFT model using slice sampling (uni.slice) or adaptive rejection sampling 

(ars). 

tnorm{msm} to generate truncated normal random variables to impute the latent exact survival times 

in the AFT model with PGM error. 

rinvGauss{SuppDists} to generate inverse Gaussian random variables to update the variance 

parameter 
j

2
βτ  of the Bayesian lasso regularized linear effects. 

rinvgamma{MCMCpack} to generate inverse gamma distributed random variables to update the 

variance component 2
jψ  of the Bayesian NMIG regularized linear effects. 

rmvnorm{mvtnorm} to generate multivariate normal random variables of the regularized linear 

effects jβ . The procedures to determine the matrix root are based on the eigenvalue decomposition 

(default), the singular value decomposition and the Cholesky decomposition of the covariance matrix.  

rdiric{VGAM} to generate Dirichlet random variables. 

D.3. Arguments of the BayesX method regress 

The BayesX syntax of the method regress is extended to consider linear effects that are equipped 

with the lasso, ridge or NMIG shrinkage-prior. For the p 1≥  regularized linear effects jγ , j 1,...,p= , 

of the corresponding covariates X1,...,Xp  the linear predictor components is given as 

 1 p... X1 ... Xp ...η = + γ + + γ + . 

The specific BayesX 2.1 syntax of the individual model terms for the linear covariate effects has the 

general form 

Ridge-prior:  X1(ridge[,options])+...+ Xp(ridge[,options]) 

Lasso-prior:  X1(lasso[,options]) +...+ Xp(lasso[,options]) 

NMIG-prior:  X1(nigmix[,options]) +...+ Xp(nigmix[,options]) 

with the following shrinkage-prior specific options: 

Optional arguments for lasso and ridge terms 

a, b (*) 

Non-negative, real values, to specify the hyperparameters 1,h 0λ ≥≙a  and 2,h 0λ ≥≙b  of the 

inverse gamma prior of the shrinkage parameter λ . This option is specified in the first 

lasso/ridge model term of the predictor. 

Default value: a=0.001, b=0.001 

adaptive 

Logical value, that specifies the adaptive version of the shrinkage priors, i. e. an individual 

shrinkage parameter jλ  for each covariate effect is estimated. This option is specified in the 

first shrinkage model term. 

Default value: false 
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effect 

Real value, that enables to specify the starting value of the linear effect jγ . As default, the 

starting values are set to the posterior mode, which are initially computed via backfitting within 

Fisher scoring steps, compare the BayesX methodology manual for details. If a large penalty for 

the regularized effects is used, e. g. when the paths of the regression coefficients are computed, 

the implemented computation of the starting values fails sometimes and the sampler does not 

start. In such a situation the external specification of small starting values for the regularized 

effects overcomes this problem. 

Default value: - 

shrinkage (*) 

Non-negative real value, that specifies the starting value of the shrinkage parameter λ . This 

option is specified in the first lasso/ridge model term of the predictor. 

Default value: shrinkage=1 

shrinkagefix 

Logical value, that specifies, if the shrinkage parameter λ  should be fixed at the value specified 

in option shrinkage. The shrinkage parameter is treated as fixed, if this option is set in the 

first lasso/ridge model term. 

Default value: false 

tau2 

Positive real value, that specifies the starting value of the variance parameter 
j

2
βτ . Values have 

to be set in each lasso/ridge model term if the default starting value should be modified. 

Default value: tau2=0.1 

Optional arguments for the nigmix terms 

a, b (*) 

Non-negative real values, to specify the hyperparameters 1,h 0ψ ≥≙a  and 2,h 0ψ ≥≙b  of the 

inverse gamma prior of the variance component parameter 2
jψ . This option is specified in the 

first nigmix model term of the predictor. 

Default value: a=5, b=50 

aw, bw (*) 

Non-negative real values, to specify the hyperparameters 1,h 0ω ≥≙aw  and 2,h 0ω ≥≙bw  of the 

beta prior for the complexity parameter ω . This option is specified in the first nigmix model 

term of the predictor. 

Default value: aw=1, bw=1 

adaptive 

Logical value, that specifies the adaptive version of the shrinkage priors, i. e. an individual 

shrinkage parameter jω  for each covariate effect is estimated. This option is specified in the 

first shrinkage model term. 

Default value: false 
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effect 

Real value, that enables to specify the starting value of the linear effect jγ . As default, the 

starting values are set to the posterior mode, which are initially computed via backfitting within 

Fisher scoring steps, compare the BayesX methodology manual for details. 

Default value: - 

I 

Sets the starting value of the indicator variable jI . Values have to be 0 or 1 to set the indicator 

variable point mass at the values 0v 0>  or 1v 0>  and have to be set in each nigmix predictor 

term. 

Default value: I=1 

t2 

Provides a starting value for the variance parameter 2
jψ . Values have to be positive and have to 

be set in each nigmix predictor term. 

Default value: t2=11 

v0, v1 (*) 

Non-negative real values, to specify the point mass of the indicator variables at the values 

0v 0>≙v0  or 1v 0>≙v1 . 

Default value: v0=0.005, v1=1 

w (*) 

Specifies the starting value of the complexity parameter ω . Values have to be in the interval 

(0,1). 

Default value: w=0.5 

wfix 

Logical value, that specifies, if the complexity parameter ω  should be fixed at the value 

specified in option w. The shrinkage parameter is treated as fixed, if this option is not omitted in 

the first nigmix model term. 

Default value: false 

The options marked with (*) can be specified in each shrinkage term if the adaptive versions of the 

penalties should be used.  

As an example we consider two covariates X1 and X2. If the predictor is written as 

X2(lasso,shrinkagepar=2,shrinkagefix)+X1(lasso,shrinkagepar=1.5) the procedure 

uses the options of the first lasso term given by X2(lasso,...), i. e. the shrinkage parameter is 

fixed at the value 2. The option shrinkagepar=1.5 of the second term is ignored. Since the 

remaining possible lasso options are not modified the default settings are used.  

By default the shrinkage parameter is estimated as well as all other model parameters. It is also 

possible to fix the shrinkage parameter through the iterations in order to use a prespecified amount of 

shrinkage or to compute the parameter paths as function of the shrinkage parameter. We used this 

option to compute the Bayesian versions of the lasso and NMIG coefficient paths in the application 

section. 
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Resulting objects for lasso and ridge terms 

The following listed files contain the associated results to the lasso regularization of the linear effects 

and are additionally generated by the use of the method regress. The prefix * denotes the 

replacement character for the user specified base-name prefix. If the covariates are regularized by the 

ridge prior, the filenames contain the string ridge instead of lasso with the results from the ridge 

regression in the corresponding files. 

*_f_lasso_hyperpar_startdata.raw: Contains the used values of the options a, b, 

shrinkagefix and adaptive as explicit or implicit specified in the model terms. The 

values 0/1 of shrinkagefix and adaptive correspond to the logical values false/true. 

The values coincide per row in the non adaptive case.  

*_f_lasso_shrinkage.res: Contains summary statistics of the marginal empirical posterior 

distribution of the shrinkage parameter λ  like the posterior mean, standard deviation 

and quantiles. 

*_f_lasso_shrinkage_sample.raw: Contains the sampled values of the shrinkage parameter 

λ . The columns of the file coincide in the non adaptive case. 

*_lasso_shrinkage_startdata.raw: Contains the starting values of the shrinkage parameter 

λ  as set in the options. In the non adaptive case the values for each variable coincide. 

*_f_lasso_var.res: Contains summary statistics of the marginal empirical posterior distribution of 

the covariate specific variance parameters tau2 like the posterior mean, standard 

deviation and quantiles. 

*_f_lasso_variance_sample.raw: Contains the sampled values of the covariate specific variance 

parameters tau2. 

*_f_lasso_variance_startdata.raw: Contains the starting values of the tau2 parameters for 

each penalized covariate effect. 

*_lasso_Effects.res: Contains summary statistics of the marginal empirical posterior distribution 

of the covariate effects jβ  like the posterior mean, standard deviation and quantiles. If the 

number of regularized covariates is larger than the blocksize parameter (default value 

blocksize=20, compare the BayesX manual), the results are partitioned in different 

files, where each file contains the results of the covariates corresponding to one block 

with the size given in blocksize. The file names run from *_lasso_Effects1.res, 

*_lasso_Effects2.res, ... to the number of the resulting blocks. 

*_lasso_Effects_sample.raw: Contains the sampled values of the covariate effects jβ . Files are 

partitioned in blocks as described in *_lasso_Effects.res. 

*_lasso_Effects_startdata.raw: Contains the starting values of the covariate effects jβ  if 

specified in the effect option. Files are partitioned in blocks as described in 

*_lasso_Effects.res. 

Resulting objects for the nigmix terms 

Using the NMIG prior the resulting additional files are: 

*_f_nigmix_hyperpar_startdata.raw: Contains the used values of the options v0, v1, a, b, aw, 

bw, wfix and adaptive as explicit or implicit specified in the model terms. The values 

0/1 of wfix and adaptive correspond to the logical values false/true. The values 

coincide per row in the non adaptive case.  
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*_f_nigmix_shrinkage.res: Contains summary statistics of the marginal empirical posterior 

distribution of the complexity parameter ω  like the posterior mean, standard deviation 

and quantiles. 

*_f_nigmix_shrinkage_sample.raw: Contains the sampled values of the complexity parameter 

ω . The columns of the file coincide in the non adaptive case. 

*f_nigmix_shrinkage_startdata.raw: Contains the starting values of the complexity parameter 

ω  as set in the options. In the non adaptive case the values for each variable coincide. 

*_f_nigmix_indicator.res: Contains relative frequencies of the indicator variable value 1v . 

*_f_nigmix_indicator_sample.raw: Contains the sampled values of the covariate specific 

variance parameter component jI . The values 0 or 1 indicate point mass at the values 

0v 0>  or 1v 0> . 

*_f_nigmix_indicator_startdata.raw: Contains the starting values of the variance parameter 

component jI  for each penalized covariate effect. 

*_f_nigmix_t2.res: Contains summary statistics of the marginal empirical posterior distribution of 

the covariate specific variance parameter component 2
jψ  like the posterior mean, standard 

deviation and quantiles. 

*_f_nigmix_t2_sample.raw: Contains the sampled values of the covariate specific variance 

parameter component 2
jψ . 

*_f_nigmix_t2_startdata.raw: Contains the starting values of the variance parameter 

component 2
jψ  for each penalized covariate effect. 

*_f_nigmix_var.res: Contains summary statistics of the marginal empirical posterior distribution 

of the covariate specific variance parameters 
j

2 2
j jIβτ = ψ  like the posterior mean, standard 

deviation and quantiles. 

*_f_nigmix_variance_sample.raw: Contains the sampled values of the covariate specific 

variance parameters 
j

2 2
j jIβτ = ψ . 

*_f_nigmix_variance_startdata.raw: Contains the starting values of the variance parameters 

j

2 2
j jIβτ = ψ  for each penalized covariate effect. 

*_nigmix_Effects.res: Contains summary statistics of the marginal empirical posterior 

distribution of the covariate effects jβ  like the posterior mean, standard deviation and 

quantiles. Files are partitioned in blocks as described in *_lasso_Effects.res. 

*_nigmix_Effects_sample.raw: Contains the sampled values of the covariate effects jβ . Files are 

partitioned in blocks as described in *_lasso_Effects.res. 

*_nigmix_Effects_startdata.raw: Contains the starting values of the covariate effects jβ  if 

specified in the effect option. Files are partitioned in blocks as described in 

*_lasso_Effects.res. 

D.4. Arguments of the R-function bcoxpl 

Usage 

bcoxpl(dataset,unpenpri,penpri,splinepri, 

       simpar=list(niter=10000,nthin=1,nburn=0,nwrite=10000,catniter=100), 

       dir=list(outdir=getwd(),outnam="bcpl",overwrite=F),dirfunctions) 
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Arguments 

dataset: a list, containing the data with the following components: 

data 

matrix containing, the variables in the model, i.e. the right censored survival times, the 
censoring indicator and the covariates that enter the predictor. 

time 

character string, specifying the column of the data frame specified in the argument data 
that is interpreted as the observed survival time. 

delta 

character string, specifying the column of the data frame specified in the argument data 
that is interpreted as the censoring indicator with values 0=alive and 1=death. 

unpenpri: an optional list, to specify the parameters for the unpenalized linear effects: 

names 

a character vector, containing the column names of the data that identifies the covariates 
corresponding to the unregularized linear effects of the predictor. 

start.effect 

a numeric vector (with the same length as names), containing the initial values of the 
unpenalized effects. 

blocksize 

an integer, to define the size of the blocks for a simultaneous update of the corresponding 
unpenalized effects partitioned into these blocks. The value has to be less than or equal to 
the length of the names vector. Consider the situation with covariates 1 2 20x ,x ,..., x  and 
the specification blocksize=10. Then the effects of the covariate blocks 1 2 10x ,x ,..., x  
and 11 12 20x ,x ,..., x  are simultaneous updated. In each block-update the components of the 
full conditional corresponding to the blocks, which are not updated at this time, are 
discarded. If not specified, the blocksize is set to the minimum of the length of the names 
vector and 20. 

randomblocks 

logical value, that indicates if the covariates are randomly assigned to the blocks for each 
iteration. If not specified, the value is set to FALSE. 

penpri: an optional list, to specify the parameters of the regularized linear effects: 

type 

a character string, that is assumed to name an element from "nigmix", "ridge", 
"lasso", "adnigmix", "adridge" or "adlasso" to specify the NMIG, lasso ridge or 
the corresponding adaptive priors. 

names 

character vector, containing the column names of the data that identify the covariates 
corresponding to the effects that are regularized by the prior defined in type. 

blocksize 

the same explanation as in the unpenpri list. 

randomblocks 

the same explanation as in the unpenpri list. 
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start.effect 

a numeric vector with the same length as names, containing the initial values of the 
regularized effects. 

v0, v1 

non-negative, numeric values, to specify the point mass of the NMIG-prior  
(type=”nigmix”) indicator variables jI  at the values 0v 0>≙v0  or 1v 0>≙v1 . The 
default values are v0=0.005 and v1=1. 

h1.t2, h2.t2 

both non-negative, numeric values, to specify the hyperparameters 1,h 0ψ ≥≙h1.t2  and 

2,h 0ψ ≥≙h2.t2  of the inverse gamma prior for the variance component parameter 2
jψ  

if the NMIG-prior (type=”nigmix”) is selected. The default values are h1.t2=5 and 
h2.t2=5. 

start.t2 

non-negative numeric vector with the same length as names, that provides the initial 
values for the variance component parameter 2

jψ . 

start.I 

a positive numeric vector with the same length as names, that gives the initial value of 
the indicator variable jI  for the NMIG-prior (type=”nigmix”). Values have to be 0 or 1 
to set the indicator variable point mass at the values 0v 0>  or 1v 0> . 

start.tau2 

a positive numeric vector with the same length as names, that specifies the initial values 
of the variance parameter 

j

2
βτ  for the lasso- or ridge prior (type=”lasso” or 

type=”ridge”). 

h1.shrink, h2.shrink 

each is a single positive numeric (or a positive numeric vector with the same length as 
names if the adaptive prior versions are specified), to specify the hyperparameters 

1,h 0λ ≥≙h1.shrink  and 2,h 0λ ≥≙h2.shrink  of the inverse gamma priors of the 
shrinkage parameter λ  (type=”lasso” or type=”ridge”) or the hyperparameters 

1,h 0ω ≥≙h1.shrink  and 2,h 0ω ≥≙h2.shrink  of the beta prior for ω  
(type=”nigmix”). The default values are h1.shrink=0.001, h2.shrink1=0.001, if 
type=”ridge” or type=”lasso”, and h1.shrink=1, h2.shrink1=1, if 
type=”nigmix”. 

start.shrink 

a single numeric (or a numeric vector with the same length as names if the adaptive prior 
versions are specified), interpreted as the initial value of the shrinkage parameter λ  
(type=”lasso” or type=”ridge”) or ω  (type=”nigmix”). The default value is 0.5. 

fix.shrink 

Logical value, that specifies, if the shrinkage parameter λ  (type=”lasso” or 
type=”ridge”) or ω  (type=”nigmix”) should be fixed at the value given in option 
start.shrink. If not specified, the default value is set to FALSE so that the shrinkage 
parameter is estimated. 

splinepri: an optional list, to specify the parameters of the regularized smooth effects: 

names 

a character vector, containing the column names of the data that identify the covariates 
corresponding to the non linear effects of the predictor. 
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blocksize 

the same explanation as in the unpenpri list, but a vector with the same length as 
names. As default, the blocksize of each spline corresponds to the number of used basis 
functions. 

randomblocks 

the same explanation as in the unpenpri list, but a vector with the same length as 
names. 

degree 

an integer vector with the same length as names, containing the degrees of the splines. 
The components of degree vector are set per default to degree=3. 

nbasis 

an integer vector with the same length as names, containing the number of B-spline basis 
functions to model the nonlinear effects. 

difforder 

an integer vector with the same length as names, containing the difference order of the 
smoothing penalty. 

h1.tau2, h2.tau2 

both non-negative numeric vectors, with the same length as names containing the 
hyperparameter values 

j1,h 0τ >≙h1.tau2  and 
j2,h 0τ >≙h2.tau2  of the inverse 

gamma priors for the smoothing variances 
j

2
ατ . The default values are h1.tau2=0.001 

and h2.tau2=0.001. 

start.tau2 

non-negative numeric vector, with the same length as names containing the initial values 
of the smoothing variances 

j

2
ατ . The components of starting vector are set per default to 1. 

start.effect 

a list, with the same length as names. Each component of the list is a numeric vector that 
contains the initial values of the basis function weights. 

simpar: a list, giving the parameters of the MCMC simulation: 

niter 

an integer, giving the number of iterations for the sampler. 

nthin 

an integer, giving the thinning parameter of the chain to compute the characteristics of the 
parameter specific marginal empirical posterior distribution like the mean, standard 
deviation and quantiles. The sequence from nburn to niter by nthin is used for 
printing these results on the screen. In the output files all sampled values given by niter 
are stored. 

nburn 

an integer, that sets the number of initial sampled values treated as burn-in values. 

nwrite 

an interval, with which the sampled values are written to the output files. 

seed 

an optional single value, interpreted as an integer to define the seed parameter of the 
implied function set.seed(). 
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catniter 

an interval, at which information about the number of performed iterations is printed on 
the screen. 

dir: a list that specifies the directory information to store the sampled values with components:  

outdir 

a character string, that specify a directory where the output files should be stored. All 
output files will be named with “outnam_” as prefix. 

outnam 

a character string, used as prefix of the generated output files. 

overwrite 

a logical value, which enables to overwrite existing files with the same outnam in the 
outdir directory. 

dirfunctions: a character string, specifying the directory where collection of implemented function 

are stored. 

Value 

A character vector, that contains the storing paths of each generated file to load the results into R. 

Files created 

The * prefix denotes the replacement character for the user specified base name as defined in outnam.  

*_mcmc_call.RData: File with the arguments of the function call. 

*_mcmc_design.RData: File that contains the specification of all parameters of the function. 

*_mcmc_result.RData: File that contains the storing paths of each generated file. 

*_sim_unpen_gamma.RData: Optional file that contains the samples of the unpenalized effects. 

*_sim_unpen_accepted.RData: Optional file that contains the acceptance status of the 

unpenalized effects in each iteration. 0=rejected, 1=accepted. 

*_sim_pen_beta.RData: Optional file that contains the samples of the penalized effects. 

*_sim_pen_accepted.RData: Optional file that contains the acceptance status of the penalized 

effects in each iteration. 0=rejected, 1=accepted. 

*_sim_pen_I.RData: Optional file that contains the samples of the indicator variables if the NMIG-

prior is used. 

*_sim_pen_t2.RData: Optional file that contains the samples of the variance components 2
jψ  if the 

NMIG-prior is used. 

*_sim_pen_shrink.RData: Optional file that contains the samples of the shrinkage parameter. 

*_sim_pen_tau2.RData: Optional file that contains the samples of the variance parameters. 

*_sim_spline_beta_xx.RData: Optional file that contains the samples of the basis function 

weights. xx in the filename denotes the covariate name corresponding to the smooth 

effect. 

*_sim_spline_accepted_xx.RData: Optional file that contains the acceptance status of the 

smooth effects in each iteration. 0=rejected, 1=accepted. xx in the filename denotes the 

covariate name corresponding to the smooth effect. 
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*_sim_spline_tau2_xx.RData: Optional file that contains the samples of the smoothing variance 

spline estimation. xx in the filename denotes the covariate name corresponding to the 

smooth effect. 

Example 

# Using the veteran data from the R-package {survival} 

my.veteran <- as.matrix(veteran[,-2]) 

bcoxpl(dataset= list(data=my.veteran,time="time",delta="status"),  

       penpri=list(type="lasso",names=c("karno","age"), 

       start.effect=rep(0.01,2),start.tau2 = rep(1/10,2), 

       h1.shrink = 0.01, h2.shrink = 0.01, start.shrink = 1), 

       simpar= list(niter=10000,catniter=100), 

       dirfunctions=file.path(".","RWD","FUNCTIONS")) 

D.5. Arguments of the R-function baftpgm 

The function is described in the version that was used for the simulations. 

Usage 

baftpgm(dataset, 

     errorpar=list(method.alpha="mhcond",order.alpha="fix1", 

                   method.rlabel="gibbs", djust.alpha="no", 

                   scalebasis=FALSE,scalebasis.type="s"), 

     errorpri,unpenpri,penpri,splinepri, 

     simpar=list(niter=10000,nthin=1,nburn=0,nwrite=10000,catniter =100), 

     dir=list(outdir=getwd(),outnam="bpgm", overwrite=FALSE), 

     dirfunctions,errorplot) 

Arguments 

dataset: a list, containing the data with the following components: 

data 

a matrix, containing the variables in the model, i.e. the right censored survival times, the 
censoring indicator and the covariates that enters the predictor. 

logT 

a character string, specifying the column of the data frame specified in the argument 
data that is interpreted as the logarithm of the observed survival time. 

delta 

a character string, specifying the column of the data frame specified in the argument 
data that is interpreted as the censoring indicator with values 0=alive and 1=death. 

errorpar: a list, giving the method to update the error weights, compare Section 6.1.3: 
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method.alpha 

a character string, that is assumed to name an element from "ars", "slice", 
"dirichlet", "mhmarg", "mhcond", "mcondstep" or "mcondblok" to specify the 
update method of the error weights. 

order.alpha 

a character string, that is assumed to name an element from "fix1", "fix2", 
"random1" or "random2" to specify the order of the updated error weights. This 
argument is only used in combination with method.alpha=”mcondstep”, 
method.alpha=”ars” or method.alpha=”slice”. 

scalebasis 

logical value. If specified as TRUE, in each iteration the basis knots and basis variances 
are recomputed so that the error distribution has zero mean and unit variance. 

errorpri: a list, giving the parameters of the error density: 

type 

a character string, which is assumed to name an element from "gaussian" or "pgm" to 
specify, if the error distribution is assumed to be Gaussian or a penalized Gaussian 
mixture (PGM). 

difforder 

an integer, giving the difference order of the smoothing penalty for the error distribution 
if type=”pgm”. 

start.muknots 

a numeric vector, specifying the position of the Gaussian basis function means jm . As 
default 0g 31=  knots building a sequence from 1m 4.5= −  to 

0gm 4.5= −  with differences 
0.3 are used. 

start.s2knots 

a numeric value or numeric vector, with the same length as start.muknots specifying 
the variances 2

js of the Gaussian basis functions. As default, all variances are set to the 
value 2 2

js 0.2= . 

zero.alpha 

an integer, giving the index of the reference knot. As default, the middle knot is used. 

start.weight 

a positive numeric vector of the same length as start.muknots, with the starting values 
of the error weights jw . 

start.alpha 

an optional numeric vector of the same length as start.muknots, with the starting 
values of the transformed error weights. If not specified, each transformed weight, except 
the reference weight zero.alpha, is set to 0.01. 

start.intercept 

a numeric value, giving the initial value of the shift 0γ  of the error distribution. 

start.rlabel 

a vector, that specifies the initial labels ir  of the mixture components, into which the 
residuals are intrinsically assigned. The label have the values from 0{1,...,g } . 
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h1.sigma2, h2.sigma2 

both non-negative numeric values, to specify the hyperparameters 

1,h 0σ ≥≙h1.sigma2  and 2,h 0σ ≥≙h2.sigma2  of the inverse gamma prior for the 
scale parameter 2σ . Default values are h1.sigma2=0.001 and h2.sigma2=0.001. 

start.sigma2 

a positive numeric, giving the initial value of the scale parameter 2σ . The default value is 
start.sigma2=1. 

slice.sigma2.m, slice.sigma2.w, slice.sigma2.lower, slice.sigma2.upper 

arguments correspond the arguments m, w, lower and upper of the R-function 
uni.slice(). 

h1.tau2, h2.tau2 

both non-negative numeric values, containing the hyperparameter values 

01,h 0τ ≥≙h1.tau2  and 
02,h 0τ ≥≙h2.tau2  of the inverse gamma prior for the 

smoothing variance 
0

2
ατ  for the error density. The default values are h1.tau2=0.001 

and h2.tau2=0.001. 

start.tau2 

non-negative numeric, giving the initial value of the smoothing variances 
0

2
ατ . The 

default value is start.tau2=0.001. 

scaledpri 

option, to specify the scale-dependent prior versions, compare Section 6.2.4 The default 
is scaledpri=FALSE. 

unpenpri: an optional list, to specify the parameters for the unpenalized linear effects: 

For details compare the description of the function bcoxpl(). 

penpri: an optional list, to specify the parameters of the regularized linear effects: 

For details compare the description of the function bcoxpl(). 

splinepri: an optional list, to specify the parameters of the regularized smooth effects: 

For details compare the description of the function bcoxpl(). 

simpar: a list, giving the parameters of the MCMC simulation: 

For details compare the description of the function bcoxpl(). 

dir: a list, that specifies a directory information to store the sampled values with components: 

For details compare the description of the function bcoxpl(). 

dirfunctions: a character string, specifying the directory with the implemented function: 

For details compare the description of the function bcoxpl(). 

errorplot: an optional list, to plot the estimated error density through the iterations in a postscript 

file: 

plotiter 

an integer, to specify an interval at which the error density is printed in the output file. 

rn.grid 

a vector, that specifies the grid points at which the error density is evaluated and plotted. 

Value 

A character vector, that contains the storing paths of each generated file to load the results into R. 
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Files created 

The * prefix denotes the replacement character for the user specified base name as defined in outnam.  

*_mcmc_call.RData: File with the arguments of the function call. 

*_mcmc_design.RData: File that contains the specification of all parameters of the function. 

*_mcmc_result.RData: File that contains the storing paths of each generated file. 

*_sim_unpen_gamma.RData: Optional file that contains the samples of the unpenalized effects. 

*_sim_pen_beta.RData: Optional file that contains the samples of the penalized effects. 

*_sim_pen_I.RData: Optional file that contains the samples of the indicator variables if the NMIG-

prior is used. 

*_sim_pen_t2.RData: Optional file that contains the samples of the variance components 2
jψ  if the 

NMIG-prior is used. 

*_sim_pen_shrink.RData: Optional file that contains the samples of the shrinkage parameter. 

*_sim_pen_tau2.RData: Optional file that contains the samples of the variance parameters. 

*_sim_spline_beta_xx.RData: Optional file that contains the samples of the basis function 

weights. xx in the filename denotes the covariate name corresponding to the smooth 

effect. 

*_sim_spline_tau2_xx.RData: Optional file that contains the samples of the smoothing variance 

spline estimation. xx in the filename denotes the covariate name corresponding to the 

smooth effect. 

In addition 

*_sim_error_alpha.RData: Optional file that contains the samples of the transformed error 

weights 0, jα . 

*_sim_error_accepted.RData: Optional file that contains the acceptance status of the 

transformed error weights if method is set to ”mhmarg”, ”mhcond”, ”mcondstep” or 

”mcondblock” in each iteration. 0=rejected, 1=accepted. 

*_sim_error_sigma2.RData: File that contains the samples of the scale parameter 2σ . 

*_sim_error_tau2.RData: File that contains the samples of the smoothing parameter 
0

2
ατ . 

*_sim_error_muknots.RData: Optional file, if scalebasis=TRUE, that contains the corrected 

positions of the basis function knots jm  of each iteration. 

*_sim_error_s2knots.RData: Optional file, if scalebasis=TRUE, that contains the corrected 

positions of the basis function variances 2
js  of each iteration. 

*_sim_error_rlabel.RData: samples labels ir  of the mixture components into which the 

residuals are assigned. 

*_sim_errorvideo.ps: File created if the option errorplot is specified. 

Example 

load(file.path(...,"pbcliver.RData")) 

bpgm <- baftpgm(dataset=list(data=pbcliver,logT="logtime",delta="delta"), 

        errorpar=list(method.alpha="slice"),  

        errorpri=list(type="pgm",start.muknots=seq(-4.5,4.5,length.out=21), 

                      start.s2knots=0.25^2,start.intercept=1, 
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                      h1.sigma2=0.001,h2.sigma2=0.001,start.sigma2=1^2, 

                      h1.tau =1,h2.tau2=0.001,start.tau2=0.001), 

         penpri=list(type="lasso",names=c("chol","age"), 

                     start.effect=rep(0.01,2),start.tau2=rep(1/10,2), 

                     h1.shrink=0.01,h2.shrink=0.01,start.shrink=1), 

         simpar=list(niter=10000,catniter=100), 

         dirfunctions=file.path(".","RWD","FUNCTIONS"),  

         errorplot=list(plotiter=100,rn.grid=seq(1,15,by=0.1))) 
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Abbreviations 

We use the following abbreviations 

AIC  Akaike-Information-Criterion 

DIC  Deviance-Information-Criterion 

gP  generalized Pareto 

gdP  generalized double Pareto 

IQR  interquartile range 

IBS  integrated Brier score 

MAP  maximum a posteriori 

MCMC Markov-Chain-Monte-Carlo 

MH  Metropolis-Hastings 

ML  maximum Likelihood 

MSE  mean squared error 

PGM  penalized Gaussian mixture 

P-spline penalized spline 

p.d.f.  probability density function 

c.d.f.  cumulative distribution function 

i.i.d.  independent and identically distributed 

For the description of the simulation and application results, the following abbreviations are used to 

reduce the writing.  

In the case of the accelerated failure time model of Section 10 we use the abbreviations  

PGM: if the baseline error distribution is modeled by a penalized Gaussian mixture, 

AFT: if the baseline error distribution is Gaussian. 

For the Cox type hazard rate models of Section 11 we use 

CPL: if inference is based on the partial likelihood, 

CFL: if inference is based on the full likelihood P-spline baseline hazard, 

WB: for the special case of the full likelihood corresponding to the Weibull model. 

When results are achieved via Bayesian inference the previous abbreviations are combined with  

B: to denote models without regularization of the linear effects, 

BL:  to denote models with Bayesian lasso regularization of the linear effects, 

BN:  to denote models with Bayesian NMIG regularization of the linear effects, 
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BR:  to denote models with Bayesian ridge regularization of the linear effects, 

BT:  to denote models where the predictor contains only the “true” nonzero effects. 

The frequentist models are combined with 

Step: to denote the backward stepwise selection based on AIC, 

PenL: to denote a penalized partial likelihood based CRR model with lasso penalty, 

PenR:  to denote a penalized partial likelihood based CRR model with ridge penalty, 

T:  denote models where the predictor contains only the “true” nonzero effects. 

For the Bayesian approaches, the hard shrinkage methods described in Section 4.4 are additionally 

assigned with 

HS.CRI: if hard shrinkage is done via the 95% credible region, 

HS.STD: if hard shrinkage is done via the one standard error region, 

HS.IND: if hard shrinkage is done via the NMIG indicator variables. 

For example, WB.BN-HS.IND denotes the Bayesian Weibull model under NMIG penalty, if the 

covariate specific indicators are used to select the covariates for the final model, and CPL.PenL is the 

short cut for the frequentist lasso penalty applied to the linear predictors, if inference is carried out 

with the partial likelihood. 

The notation for different update schemes of the transformed error weights in the AFT model with 

PGM error are introduced in Section 6.1.3. They are combined with the following suffixes to indicate 

the specification of some options of the function baftpgm(), compare Appendix D.5: 

FK:  indicates the specification scalebasis=FALSE, 

otherwise (if scalebasis=TRUE) the knots are transformed to standardize the error density 

estimation in each iteration loop of the sampler. In particular the two update schemes “slice” and 

“mcondstep” enable to vary order of the update of the transformed error weights: 

R0: indicates the specification order.alpha=”fix2”, 

R1:  indicates the specification order.alpha=”random1”, 

R2:  indicates the specification order.alpha=”random2”. 

For example, “sliceR1FK” denotes that the update schemes “slice” is used to update the transformed 

error weights (method.alpha=”slice”) with the options order.alpha=”random1” and 

scalebasis=FALSE. 
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