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ZUSAMMENFASSUNG I

ZUSAMMENFASSUNG

Diese Arbeit beschiftigt sich mit der Entwicklung flexibler zeitstetiger Uberlebenszeitmodelle, die auf
dem Accelerated Failure Time (AFT) Modell fiir die Uberlebenszeit und dem Cox Relative Risk
(CRR) Modell fiir die Hazardrate basieren. Die Flexibilisierung betrifft zum einen die Erweiterung des
Pradiktors, um gleichzeitig eine Vielfalt von verschiedenartigen Kovariableneffekten zu
beriicksichtigen. Zum anderen werden die oftmals zu restriktiven parametrischen Annahmen iiber die
Verteilung der Uberlebenszeit durch semiparametrische Ansiitze ersetzt, die flexiblere Formen der
Uberlebenszeitverteilung ermdglichen. Wir verwenden die Bayesianische Methodik fiir die Inferenz.
Die auftretenden Probleme, wie zum Beispiel die Penalisierung der hochdimensionalen linearen
Effekte, die Glittung nicht linearer Effekte und die Glittung der Basis-Uberlebenszeit Verteilung,
werden durch Regularisierungs-Prioris gelost, die fiir die jeweilige Anforderung speziell angepalt
werden.

Durch die betrachtete Erweiterung der beiden Modellklassen konnen verschiedene Herausforderungen,
die in der praktischen Analyse von Lebensdauerdaten auftreten, bewéltigt werden. Beispielsweise
konnen die Modelle mit hochdimensionalen Merkmalsriumen umgehen (z. B. Genexpressionsdaten),
sie ermoglichen die Variablenselektion aus der Menge oder einer Teilmenge der verfiigbaren
Kovariablen und erlauben gleichzeitig die Modellierung irgendeiner Art nicht linearer Effekte fiir
Kovariable, die immer in das Modell eingeschlossen werden sollen. Die Moglichkeit der nichtlinearen
Modellierung von Kovariableneffekten, ebenso wie die semiparametrische Modellierung der
Uberlebenszeitverteilung, ermoglichen dariiber hinaus die visuelle Priifung der Linearititsannahme fiir
Kovariableneffekte beziehungsweise der parametrischer Annahmen iiber die Uberlebenszeitverteilung.

In dieser Arbeit wird gezeigt, wie das p >n Paradigma, die Relevanz von Untersuchungsmerkmalen,
die semiparametrische Inferenz fiir funktionale Effektformen und die semiparametrische Inferenz fiir
die Uberlebenszeitverteilung in einem vereinheitlichten Bayesianischen Rahmen behandelt werden
konnen. Wegen der Moglichkeit, die Stirke der Regularisierung bei den betrachteten Prioris fiir die
linearen Regressionskoeffizienten zu kontrollieren, ist es nicht notwendig, konzeptionell zwischen den
Féllenp <n und p>n zu unterscheiden. Um die gewiinschte Regularisierung durchzufiihren, werden
die Regressionskoeffizienten mit entsprechenden Schrumpfungs-, Selektions- oder Glittungs-Prioris
verbunden. Da die verwendeten Regularisierungs-Prioris alle eine hierarchische Darstellung
unterstiitzen, ermoglicht die resultierende modulare Priori Struktur, in Kombination mit angemessenen
Unabhingigkeitsannahmen fiir die Parameter der Prioris, die Schaffung eines einheitlichen
Bayesianischen Rahmens und die Mboglichkeit, effiziente MCMC Ziehungsschemen fiir die
gemeinsame Schrumpfung, Selektion oder Glittung in flexiblen Klassen von Lebensdauermodellen zu
konstruieren. Die Bayesianische Formulierung erméglicht somit die gleichzeitige Schitzung aller

Modellparameter ebenso wie die Priadiktion und Unsicherheitsaussagen iiber die Modellspezifizierung.

Die dargelegten Methoden wurden durch den flexiblen und allgemeinen Ansatz der strukturiert

additiven  Regression (STAR) fiir Zielvariable aus einer Exponentialfamilie  und
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Uberlebenszeitmodelle vom CRR-Typ angeregt. Derartige systematische und flexible Erweiterungen
sind im allgemeinen fiir AFT Modelle nicht verfiigbar. Ein Ziel dieser Arbeit ist, die Klasse der AFT
Modelle zu erweitern, um eine ebenso reichhaltige Klasse von Modellen bereitzustellen wie die, die
aus den STAR Ansatz resultieren, wobei das Hauptaugenmerk auf der Schrumpfung von linearen
Effekten, der Selektion von Kovariablen mit linearen Effekten und der Glittung von nichtlinearen
Effekten stetiger Kovariablen, als typischem Bespiel einer nicht-linearen Modellierung, liegt. Im
Speziellen werden der Bayesianische Lasso, der Bayesianische Ridge und der Bayesianische NMIG
(eine Art Spike-and-Slab Priori) Ansatz zur Regularisierung der linearen Effekte kombiniert mit dem
P-Spline Ansatz der die Glittung der nichtlinearen Effekte und der Basiszeitverteilung regularisiert.
Um die Fehlerverteilung im AFT Modell flexibel zu gestalten, werden die parametrischen Annahmen
iber die Basis-Fehlerverteilung durch die Annahme einer endliche Gauss-Mischverteilung ersetzt. Fiir
den Spezialfall der Spezifizierung einer einzigen Mischungskomponente reduziert sich das
Schitzproblem auf die Schitzung eines log-normalen AFT Modells mit STAR Pridiktor. Zusitzlich
wird die bestehende Klasse von CRR survival Modellen mit STAR Pridiktor, bei der ebenfalls die
Basis-Hazardfunktion durch P-Splines approximiert wird, erweitert, um die Regularisierung der
linearen Effekte mit den genannten Prioris zu ermdglichen, was den Anwendungsbereich dieser
reichhaltigen Klasse von CRR Modellen weiter verbreitert. SchlieBlich wird der kombinierte
Schrumpfungs-, Selektions- und Glittungsansatz auch in das semiparametrische CRR Modell
eingefiihrt, bei dem die Basis-Hazardfunktion unspezifiziert bleibt und die Inferenz auf der Partiellen
Likelihood basiert.

Neben der Erweiterung der beiden Uberlebenszeit Modellklassen werden die verschiedenen
Regularisierungseigenschaften der betrachteten Schrumpfungs- und Selektions-Prioris untersucht. Die
entwickelten Methoden und Algorithmen sind in der 6ffentliche verfiigbaren Software BayesX und in
R-Funktionen implementiert und die Leistungsfidhigkeit der Methoden und Algorithmen wird

umfangreich in Simulationsstudien getestet und anhand von drei realen Datensédtzen dargestellt.
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ABSTRACT

This thesis is concerned with the development of flexible continuous-time survival models based on
the accelerated failure time (AFT) model for the survival time and the Cox relative risk (CRR) model
for the hazard rate. The flexibility concerns on the one hand the extension of the predictor to take into
account simultaneously for a variety of different forms of covariate effects. On the other hand, the
often too restrictive parametric assumptions about the survival distribution are replaced by
semiparametric approaches that allow very flexible shapes of survival distribution. We use the
Bayesian methodology for inference. The arising problems, like e. g. the penalization of high-
dimensional linear covariate effects, the smoothing of nonlinear effects as well as the smoothing of the
baseline survival distribution, are solved with the application of regularization priors tailored for the

respective demand.

The considered expansion of the two survival model classes enables to deal with various challenges
arising in practical analysis of survival data. For example the models can deal with high-dimensional
feature spaces (e. g. gene expression data), they facilitate feature selection from the whole set or a
subset of the available covariates and enable the simultaneous modeling of any type of nonlinear
covariate effects for covariates that should always be included in the model. The option of the
nonlinear modeling of covariate effects as well as the semiparametric modeling of the survival time
distribution enables furthermore also a visual inspection of the linearity assumptions about the

covariate effects or accordingly parametric assumptions about the survival time distribution.

In this thesis it is shown, how the p>n paradigm, feature relevance, semiparametric inference for
functional effect forms and the semiparametric inference for the survival distribution can be treated
within a unified Bayesian framework. Due the option to control the amount of regularization of the
considered priors for the linear regression coefficients, there is no need to distinguish conceptionally
between the cases p<n and p>n. To accomplish the desired regularization, the regression
coefficients are associated with shrinkage, selection or smoothing priors. Since the utilized
regularization priors all facilitate a hierarchical representation, the resulting modular prior structure, in
combination with adequate independence assumptions for the prior parameters, enables to establish a
unified framework and the possibility to construct efficient MCMC sampling schemes for joint
shrinkage, selection and smoothing in flexible classes of survival models. The Bayesian formulation
enables therefore the simultaneous estimation of all parameters involved in the models as well as

prediction and uncertainty statements about model specification.

The presented methods are inspired from the flexible and general approach for structured additive
regression (STAR) for responses from an exponential family and CRR-type survival models. Such
systematic and flexible extensions are in general not available for AFT models. An aim of this work is
to extend the class of AFT models in order to provide such a rich class of models as resulting from the
STAR approach, where the main focus relies on the shrinkage of linear effects, the selection of

covariates with linear effects together with the smoothing of nonlinear effects of continuous covariates
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as representative of a nonlinear modeling. Combined are in particular the Bayesian lasso, the Bayesian
ridge and the Bayesian NMIG (a kind of spike-and-slab prior) approach to regularize the linear effects
and the P-spline approach to regularize the smoothness of the nonlinear effects and the baseline
survival time distribution. To model a flexible error distribution for the AFT model, the parametric
assumption for the baseline error distribution is replaced by the assumption of a finite Gaussian
mixture distribution. For the special case of specifying one basis mixture component the estimation
problem essentially boils down to estimation of log-normal AFT model with STAR predictor. In
addition, the existing class of CRR survival models with STAR predictor, where also baseline hazard
rate is approximated by a P-spline, is expanded to enable the regularization of the linear effects with
the mentioned priors, which broadens further the area of application of this rich class of CRR models.
Finally, the combined shrinkage, selection and smoothing approach is also introduced to the
semiparametric version of the CRR model, where the baseline hazard is unspecified and inference is

based on the partial likelihood.

Besides the extension of the two survival model classes the different regularization properties of the
considered shrinkage and selection priors are examined. The developed methods and algorithms are
implemented in the public available software BayesX and in R-functions and the performance of the
methods and algorithms is extensively tested by simulation studies and illustrated through three real

world data sets.
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INTRODUCTION 1

INTRODUCTION

1. Introduction to the basic concepts

1.1. Basic concepts of survival analysis

In continuous-time survival analysis the focus of attention is on a nonnegative random variable T,
that is defined as the time to a predefined event, i. e. the duration time, where an individual is under a
special unique risk (in contrast to competing risk models) until the interesting event occurs. T is
usually called survival or failure time. As a generic example, the risk could be the diagnosis of
infection with a deadly disease and the corresponding event is the death of an individual in the study
who is infected. The survival time in this example is the duration from the diagnosis until death and as
also reflected by this example, the interesting event has only two complementary states, 0 = “event not

occurred” and 1 = “event occurred”, and transitions from the state 1 to the state O are excluded.

Symptomatic for the collected survival data set is its incompleteness due to the fact that the exact
survival time of some individuals is unknown, censored, and the only available information is that the
event occurred in a certain period of time. A special and most common censoring scheme is the right
censoring, where an individual’s survival time becomes incomplete at the right side of the observation
period, i. e., the only available information is, that the event happens at any time after the follow up.
Reasons that hinder the observation of the exact survival time are, for example, that the event doesn’t
occur during the end of the finite follow-up period in the study or the individual is lost during the
study or withdrawn due to an event that is not of interest (e. g., cured or another competing risk). As a
consequence of the censoring summary statistics of survival time distributions, such as the sample
mean or the standard error for the mean, do not have desired statistical properties like unbiasedness as
an example. Therefore, to accommodate for censoring, numerous methods have been developed for
handling these incompletely observed survival times adequately, and survival analysis became a
special topic in statistical research with applications in many fields of study like economics, medicine,
biology, public health or epidemiology.

There is a great variety of literature devoted to the analysis of survival data. A detailed introduction to
survival analysis from a frequentist perspective and description of the possible censoring and
truncation schemes can be found, e. g., in Klein and Moeschberger (2003) or Kalbfleisch and Prentice
(2002). A powerful tool for a unified, efficiently handling of survival and event history data arises
using the counting process representation of the corresponding models, which is exposed, e. g., in
Andersen et al. (1993). For a general introduction and overview for full parametric and nonparametric
Bayesian approaches for survival models we refer to Ibrahim et al. (2001), who give also a
comprehensive review on Bayesian survival analysis.



2 1. INTRODUCTION TO THE BASIC CONCEPTS

1.1.1.  Survival quantities

Let the absolutely continuous, nonnegative random variable T >0 represent the survival time. For
simplicity we assume in this subsection that the survival times T, i=1,...,n, of all patients follow the

same general distribution T; ~ T . Besides the probability density function (p.d.f.)

fT(t)=limA[_>o+iIP(tST<t+At), t=0, (1.1

and the corresponding cumulative distribution function (c.d.f.)

F. () =P(T<t) :jo‘fT(s)ds, >0,

there are also some other quantities available to describe the probability distribution of the survival

time T . In the survival analysis context it is common to use the survival function

St(t)=1-EFE(t)=P(T>t), t=0,

which is the probability that an individual will survive till time t>0 and the hazard rate function
Ar(t) >0, which is defined by

kT(t):limAHmﬁIP(tST<t+AtIT2t), £>0, (1.2)

and interpreted as the instantaneous risk of failure in the interval [t,t+ At), given survival up to time
t>0. In general the interpretation of the hazard rate as probability is not valid, but for small At >0
the hazard rate expression A;(t)At is approximately the conditional probability of failure in the
interval [t,t+At) given survival up to time t, i. e.,, P(t<T<t+AtIT>t)=A;(t)At. Finally the

cumulative hazard function is given as

AT(t):jo‘xT(s)ds, £20. (1.3)

While each of the functions fr(t), F(t), Sp(t), Ar(t) and Ar(t) illustrate different aspects of the
survival distribution, they separately provide mathematically equivalent full specifications of the
survival distribution. Therefore, there exist some important one-to-one relationships of these
quantities. In particular the connection

fr(t
A=Y (1.4)
Sr(t)
which is derived immediately from the definition of the hazard function and
St(t) =exp(—Ar(t)) (1.5)

are mainly used in the following.

1.1.2. Data structure

To accommodate censoring in the data, in the statistical model and in the methods, an additional
positive and continuous random variable C =0 is introduced to describe the censoring process, where
C;, i=1,...,,n, denote the corresponding potential censoring times of each individual. An individual’s

observed survival time T, is said to be right censored at time C; =20, if the exact value T, is not
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known and we only know, that it is greater than or equal to C;. The observed survival time for each

subject in the sample is then given as the minimum of the true survival time and the censoring time
T, =min(T,C), i=L..,n,

and the so called censoring indicator
D, =I(C/<T), i=l..,n,

reports, if an observation is right censored (D; =0) or not (D; =1) using the indicator function I(-)
for definition. Beside the survival times there are usually sets of covariates collected, which may have
an individual specific influence on the survival times. In summary, the observed right censored

survival data is represented as
D ={(t.d;,v))i=L...,n},

where t; 20 is the observed survival time, d; e {0,1} is the censoring indicator and v; = (Vi,l,...,Vi,p)/

is the p-dimensional vector of observed covariates for the n individuals of the sample.

1.1.3.  Survival regression models

The distribution over the survival times T; =0 is no longer independent of individual specific
characteristics, if additional covariates v; are available, where some of them are suspected to have an
influence on the individual’s survival times. Influential individual specific characteristics cause
heterogeneity in the population and require conditioning the survival distribution on the associated
parameters, yielding a separate survival distribution for each individual in the sample. Heterogeneity
in the population is addressed by the formulation of regression models to describe the functional
dependence between the distribution of the survival times and the set of covariates with the task, to
build a model that adequately describes the available data in terms of explanation and prediction. We
consider two major approaches in continuous-time survival regression, which address different aspects
of the survival distribution. For simplicity we take account for linear effects B of time-independent
covariates X; C v;, which build a subset of the observed covariates v; in the collected data ®. This
assumption is abandoned in the later sections.

Cox relative risk model (CRR model)

A popular survival regression model is the relative risk model of Cox (1972). In contrast to the AFT
model, introduced below, the relationship of the covariates and the survival time T; 20 is implicitly

defined by the specification of the hazard function as

Ai(t1B,R0) = Ao () exp(xiB) (1.6)

where Ay(-) 20 is an unspecified, arbitrary baseline hazard function and B=(,,...,3,, Y denotes the
px -dimensional vector of regression coefficients associated to the time-independent covariates
Xi = (Xit5eees Xip, ) c v;. The impact of the covariates is subsumed in the predictor 1, =m;(B) =xB,
which acts through the exponential function (to ensure a nonnegative hazard function) as individual

specific modifier at the common baseline hazard function in the population. In addition, the model
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formulation (1.6) separates the effects of the covariates completely from the baseline hazard, i. e. from
the underlying baseline survival distribution of the population.

In particular, the factor exp(m;) =exp(x;B), also called relative risk , summarizes the effects of
different personal characteristics and scales the baseline hazard individual specific, while the single
covariate effect exp(By) corresponds to the unit change of the hazard function with respect to a unit
change in the covariate x; . The famous property of the CRR model arises, when the hazard rate ratio

of two individuals with covariates X;,X;, 1# j is considered

xl(tll}’}\‘o) —

A (LB o) eXP(T'Ii —le) =CXP((Xi -X;) B)

For time-independent covariates the hazard ratio is constant for any two covariate combinations
leading to proportional hazard rates. The crucial, rather strong property, that the hazard rate functions
of different individuals can not cross, must be seriously verified to hold in practice. Another special
and remarkable feature of the CRR model is the presence of the partial likelihood, compare
Subsection 1.1.4, which enables suitable likelihood inference for the regression coefficients without
the need to specify baseline hazard function. A possible parametric specification for inference arises
from Weibull regression model, where the hazard is given by

Ai(tlo,B) = at*" exp(xp),

with shape parameter o >0. The Weibull model is adequate, if the baseline hazard A,(t) =ot®" is
assumed to be monotone increasing ( >1), monotone decreasing (o <1) or constant (ot =1), where

in the latter case the survival times have an exponential distribution T, ~ Exp(x(B) .

Accelerated failure time model (AFT model)

A regression model that specifies the direct impact of the covariates on the survival time T, 20 is the
accelerated failure time model, also introduced by Cox (1972). The functional relationship in the AFT
model is described by

T =T, CXP(X:B) ) (1.7)

where Ty; 20 are covariate independent baseline survival times and B=(B,....,, Y is a py-
dimensional vector of regression parameters that represents the linear effects of time-independent
covariates Xi=(xi1,...,xipx)'cvi. In contrast to the CRR model the predictor 1; =m;(B)=xp
determines the so-called acceleration factor exp(n;) =exp(x;B) for the baseline survival time T;,
where a negative value of the predictor 1, =x{p<0 causes an acceleration and a positive value
M =X >0 a deceleration (= negative acceleration) of the baseline survival time T,;. Through the
exponential link function in (1.7) each single covariate causes a multiplicative change of T,; and in
particular exp(B;) reflects the unit change of the survival time T, with respect to a unit change in the
covariate X;. The baseline survival times Ty; 20 can be interpreted as the individual lifespan if
x; =0, but in general the baseline survival time T, is an unobservable model component. For
parametric inference the baseline survival times T,;, i=1,...,n, are assumed to be independent and
identical distributed (i.i.d.) with subject to the baseline survival time distribution of T, =0 in the
population. Under this assumption, the ratio of the mean survival times of two individuals with

observed covariates X;,X;, i# ],
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E(T, 1) _

BT, 1) exp(M; —1N;) =€Xp((Xi —-Xj) ﬁ)a

is constant, for any two time independent covariate combinations leading to proportional changes of
the survival time means, and especially exp(By) quantifies this proportion with respect to a unit
change in the covariate x; compared to xj . The generic form of the hazard rate function is given by

A (11B) = o (t-exp(—xB)) exp(~XB) . (1.8)

where A,(-) >0 denotes the baseline hazard function that describes the covariate independent baseline
survival time distribution. In contrast to the hazard function in the CRR model the covariates affect
also the baseline hazard A,(-) and Figure 1.1 visualizes the different impact of a binary covariate on
the baseline hazard in the CRR and AFT model.

An alternative and often used representation of the AFT model is obtained, when the logarithmic

transformation is applied to (1.7). On the log-scale the AFT model gets an additive structure
Y, :=log(T,) = xB + o¢;, (1.9)

that is much closer to conventional regression models with response Y; :=log(T;) and random baseline
error term OF€; :=log(T,;) . The interpretation of the covariate effects in the log-linear version of the
AFT model is straightforward in terms of Y;. The random baseline error term is further decomposed
in a fixed scale factor 6 >0 and random error terms €; € R which are assumed to be i.i.d. with density
fe(). In the later sections we use the definition Y, :=f,+ o€, including the common intercept 3, to

describe the common baseline error distribution of the population.

The error €; is often assumed to have a density from a standard location-scale family, where the
location parameter is equal to zero and scale parameter is equal to one. Since the location-scale
distribution family is invariant for linear (affine) transformations, the location parameter of the log-
survival time Y; in (1.9) is modeled by the predictor M; =x|B and the scale parameter is given by
6 > 0. Using for example i.i.d. baseline errors € ~ N(0,1) from the standard Gaussian distribution in
the log-linear representation, the log-survival times Y;|p,c also have a Gaussian distribution, where
the location parameter 1; =X;B determines the mean and the scale parameter ¢ >0 determines the
standard deviation. On the associated time-scale we get a lognormal distribution for the survival times,
T, IB,o ~ LogN(x{B,0) , with shape parameter 6 and scale parameter 1; =x;B . Using alternatively
i.i.d. baseline errors from a standard extreme value distribution with density f.(€) =exp(e—exp(€)),
the popular and widely used Weibull regression is obtained. The resulting distribution of the log-
survival times Y;|B,0 is also an extreme value distribution, where the location parameter 1; = X
corresponds to the mode. Returning to time-scale, the associated survival times have a Weibull
distribution, T;|B,0 ~ WB(a,,A), with shape parameter o.=1/0, scale parameter A =exp(—x;B/c)
and the hazard function

1 1
Ai(tIB,o)= lt?1 exp(—xiB)e .
c

The unique feature of the Weibull regression model is that it can either be viewed as special case of
the AFT model or as special case of the CRR model. Note that in the CRR context the Weibull
regression model has another parameterization as in the AFT context with the one-to-one connections

o=06" and Bjcrr =—0"'Pjarr . To simplify the notation and disburden the common treatment of the
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AFT and CRR model in this introductory section, the scale parameter ¢ >0 of the AFT model is from
now on assumed to be known, so that P is the parameter of primary interest. Inference for the scale

parameter is outlined in the subsequent sections.

20
1

Ao(t)

15

Acrr(t x=1)

hazardfunction
1.0

Aaer(t x=1)

0.0
|

time t

Figure 1.1: Hazard functions of the AFT and CRR model. The baseline hazard A,(t) (black line) corresponds to
x =0 and is compared to the hazard function for x =1 under the CRR model (blue line) with B = 2/ 3 and an
AFT model (magenta line) with = —2/ 3.

This subsection is concluded with the short remark that also semiparametric versions of the AFT
model, with unspecified baseline survival times/errors, can be considered for inference of the
regression parameters P, similar to the semiparametric version of the CRR model. The methods are
based on censored rank statistics and there is a lot of literature dealing with the development of these
statistics and adequate inferential methods, so that meanwhile the AFT model can also be viewed as
practical semiparametric alternative to the CRR model, even in the context with time-dependent
covariates. However, the methods are numerical challenging and computationally intensive and there
is no inferential pendant to the partial likelihood of the CRR model. We refer to Kalbfleisch and
Prentice (2002) for a comprehensive treatment of parametric and nonparametric parametric AFT
models and to Wei (1992) for a review of inference procedures for nonparametric models in the

frequentist setting.
1.1.4. Likelihood structure

Full likelihood

For estimation of parametric survival regression models it becomes also necessary to model explicitly
the introduced censoring mechanism. In general the censoring time C; =0 is treated as a survival
time, where the interesting event is the censoring and C; |y denotes the corresponding distribution
which depends on a set of parameters ye W . The survival distribution T; 10 is assumed to depend on
the parameters @€ ® which are the parameters of main interest. For simplicity we can think about
0 =P, but in parametric models, like e. g. the Weibull model, we have generally more parameters of
interest, i. e. = (f’,a)". To derive an adequate likelihood, further assumptions are useful to simplify

the likelihood structure of a survival regression model. Often the censoring process is assumed to be
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noninformative, so that the distribution of the lifetimes T,10 and censoring times C; |y of each
individual i=1,...,n, do not share common parameters of interest, i. e. the intersection of 0 and y is
empty. Further assumptions are that given the covariates the lifetimes T;10 are conditional
independent, the censoring times C; |y are conditional independent and the lifetimes and censoring
times are conditional independent of each other. At least the likelihood contribution for a possibly

right censored observation is given by the joint distribution of the observable quantities T, and D; as
L (0,y1D)="f; ;, (T.di 10,w)=(fr, (T 10)% S (1 10)% ) (fe, (L 1w)™Se, (G 1y)¥ ). (1.10)

The noninformative censoring induces that the components concerning the censoring process act as
constants and can be neglected if the focus relies on 0. Finally, the likelihood contribution for the
observation of a true survival time ("I"i =T,) given the data ® is simply L;(01®D)=f,(t;10) and for a
right censored observation (Ti =, ) the contribution is given by L;(019)=P(T, > t10)=S,(t;10). In
summary, the full likelihood for right censored survival data is represented by

L(01D) =L (01) =] [ (i.10)"s,(i.10)™" (1.11)

In terms of the hazard function using the relationships (1.4) and (1.5) the full likelihood is expressed

L(e|33):f[Li(ema):f[ki(fi 10)" exp(~A (19)). (1.12)

If there is sufficient evidence for a parametric specification of the survival distribution, maximum
likelihood methods based on the full likelihood can be used to estimate the model parameters 6 ®

leading to usual properties like asymptotic normality and unbiasedness of the estimates.

Partial Likelihood

As proposed in Cox (1972) and further discussed in Cox (1975), the inference of the regression
coefficients B in the semiparametric CRR model (1.6) can be carried out in terms of the partial
likelihood

pL(ﬁ|®)=IHI{ n exp(xm)(x,m} ) (1.13)

=1 o Lasn) €Xp

The indicator function 1;;, in the denominator is used to describe the risk set R(t;)={k:t, >t} at
the observed survival time t,, which consists of all individuals who are event-free and still under
observation just prior to time t;. In contrast to the full likelihood, e. g. (1.11), there is no separate
contribution to the partial likelihood for a censored observation d; =0 and information from censored
individuals enters the likelihood only via the risk set. To practice the estimation, the partial likelihood
is treated as a usual likelihood function and the maximum partial likelihood estimator of f is shown to
be consistent and asymptotically normal, compare, e. g., Andersen and Gill (1982). The estimation in
the CRR model is often continued by the estimation of the cumulative baseline hazard function in
terms of the Breslow estimate AER (), Breslow (1972, 1974), which is given by the step function

. n L d
ABr(t) = Godi
' ( ) ;ZLII({@E) CXP(X;B)

(1.14)



8 1. INTRODUCTION TO THE BASIC CONCEPTS

and depends on the estimator fi from the maximization of the partial likelihood. The Breslow
estimator can be jointly derived with the partial likelihood from a profile likelihood approach,
assuming a piecewise constant baseline hazard between two consecutive distinct uncensored failure
times, compare, €. g., Breslow (1972, 1974), Murphy and Van der Vaart (2000) or van Houwelingen et
al. (2006) for details. The asymptotic properties of this estimator were also established by Andersen
and Gill (1982).

Since the partial likelihood only depends on the observed order, not on the exact values of the failure
times, corrections are required if fies (identical survival times) are present to take account for the
permutation of those individuals with identical survival times, because if more than one individual has
its event at the same time, the ordering is no longer unique. For a moderate number of ties among the
uncensored survival times, so that the use of the continuous time Cox model is still justified, there are
several suggestions to approximate the partial likelihood, compare, e. g., Therneau and Grambsch
(2000), Klein and Moeschberger (2003). The correction proposed by Breslow (1972, 1974) arises
naturally from the profile likelihood approach by treating the tied observations at a given time as
distinct contributions to the likelihood, and in particular the formulation of the partial likelihood in
(1.13) results in the Breslow correction in the presence of ties. The partial likelihood approach can also
be applied for extensions of the Cox model, e. g., with nonlinear covariate effects, Sleeper and
Harrington (1990), Gray (1992), time-varying effects, Verweij and van Houwelingen (1995), frailties,
Therneau and Grambsch (2000), or time-varying covariates, Klein and Moeschberger (2003).

1.1.5. Bayesian Inference

An alternative concept to the likelihood inference is the Bayesian inference. Bayesian inference relies
on the posterior distribution of the model parameters @€ @ given the observed data ® and the
operational core is the Bayes theorem, where the density of the posterior distribution p(81®) is
defined as

L(019D)p(8)

p(01D)=
j L L(01D)p(8)do

< L(O1D)p(0). (1.15)

The posterior distribution is expressed in terms the prior density p(@), which represents the prior
knowledge of the complete set of model parameters 8 @ and the likelihood L(01%), that may also
depend only on a subset of 0. The so called marginal likelihood in the denominator does not depend
on model parameters and acts as normalization constant of the posterior density. This causes the

annotated proportionality of the posterior density to the product of the prior density and the likelihood.

For posterior maximization, the normalizing constant is negligible, and finding the mode of the
posterior density is equivalent to the maximization of the right hand side of (1.15). The corresponding

optimization problem has the general form

0= arg maxy{logp(01®)} =argmax,{logL(©10)+logp(0)}. (1.16)

and 6 denotes the maximum a posteriori (MAP) estimate. If weakly informative priors are used, the
prior term acts like a proportionality constant and the Bayesian optimization problem for finding the
mode is equivalent to the optimization of log-likelihood, and hence the posterior mode estimate
coincides with the maximum likelihood estimate of @ @ . Despite this interesting connection to the

likelihood inference, the posterior mode is not in general the unique or best choice to obtain a



INTRODUCTION 9

Bayesian point estimate. In the Bayesian-risk sense, for example under the squared error loss function,
the optimal choice for a point estimate of the regression parameters is given by the posterior mean
instead of the posterior mode. However, Bayesian inference is rather based on the access to whole
posterior distribution than just finding its mode and under a full Bayesian approach, the evaluation of

the posterior provides a probabilistic basis to consider the uncertainty of a model.

In practice the entailed integral calculations to evaluate the normalizing constant in the denominator
(1.15) are often not feasible and as a consequence the posterior density has no closed analytical form.
In such situations the posterior can be explored by generating samples from the posterior distribution
by Markov Chain Monte Carlo (MCMC) techniques. The main goal of MCMC methods is to generate
(dependent) samples 0%, s=1,2,..,S, from a given distribution, in particular the posterior

distribution. By utilizing MCMC integration, e. g., with
1 K
[, 2®)p®1D)d0 =E a0, (2(8)) = 20,
k=1

it is possible to approximate the mean of a functional g(-) using the generated sample of the
parameters 0%,...,0® . For example, the posterior mean of 0 is estimated using the identity function
g(-)=1d(-) . Uncertainty about the model parameters is considered by the corresponding empirical
counterparts of the standard deviation or credible intervals. We refer at this point, e. g., to Gelman et
al. (2004) or Gilks et al. (1996) for a detailed illustration of the basic concepts of Bayesian analysis
and posterior inference based on MCMC methods and in the special context of survival analysis to
Ibrahim et al. (2001). Bayesian analysis of the CRR model has also been studied in terms of the partial
likelihood, where the full likelihood L(019) in (1.15) is replaced by the partial likelihood pL(01%).
This approach is often justified by showing that the posterior, based on the partial likelihood,
approximates the full marginal posterior of the regression coefficients with a very diffuse prior on the
cumulative baseline hazard function. We sketch the idea in Section 7.4.2 and refer for details to
Kalbfleisch (1978), Sinha et al. (2003) and Kim and Kim (2009).

1.2. Basic concepts of regularization

Regularized estimation approaches have emerged as a general tool to address different problems in
applied regression analysis like shrinkage of highly correlated covariate effects to uniquely solve
underdetermined estimation equation systems, selection of important covariates from the set of
available covariates or for smoothing of nonlinear effects to reflect a more complex influence of the
covariates. As an example consider gene expression data. With today’s analytical methods, thousands
of genes can be analyzed simultaneously for any given patient, but acquisition of suitable patients is
often difficult and time consuming and so sparse data sets arise with huge feature spaces, but only very
few data points. One of the resulting problems is to compensate identification problems of an
estimator, if a lot of parameters have to be estimated and/or heavy correlations inducing
multicollinearity are present. In such situations the estimation equation system is often
underdetermined and as a consequence, there is no unique solution available and the optimization
procedure becomes numerically unstable. Regularization is used to find unique solutions by
introducing additional constraints supporting the identification of the regression parameters. Also the
prediction can be enhanced by constructing estimators with a little bit of bias to obtain a smaller
variance, known e. g. from ridge regression. Another goal is the separation of influential variables and
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nuisance covariates that are not associated with the response. Also variable selection, as a form of
model selection in which the class of considered models is represented by subsets of the available
covariates in the data, becomes an important task especially in high-dimensional feature spaces, where
a lot of covariates are suspected to be rather unimportant. To answer questions concerning the
relevance of individual features, regularization methods are utilized that shrink the regression
coefficient estimates toward zero and simultaneously enforce some coefficients to be set equal to zero,
which are then interpreted as unimportant nuisance variables. A prominent representative is given by
the lasso regression, Tibshirani (1996). Beside the gene expressions often additional patient specific
characteristics, like age or weight, are available, and we want to enable more flexible shapes to reflect
the impact of such covariates on the survival time. In modeling nonlinear effects, smoothness penalties
have a long tradition in semiparametric regression, with smoothing splines and penalized polynomial
splines as the most prominent examples, see Wood (2006) or Ruppert et al. (2003) for overviews. In
this case, the penalty represents a roughness measure for unknown functions that avoids overfitting

induced by overly flexible function estimates.

1.2.1.  Frequentist regularization

In summary, the general idea of regularized regression relies on the incorporation of additional
assumptions about the model parameters into the estimation problem. In practice, a penalty term is
added to the estimation function to enforce that the solutions are determined with respect to these

constraints. The resulting optimization problem is reflected by the penalized (log-) likelihood

longen([i,X)=logL(B|@)—pen(ﬁ;7\,), (117)

where logL(B1®) denotes the logarithm of the model specific likelihood L(B1®) and pen(B;A) is
the penalty term that splits into two components pen(p;A) =Apen(). The term pen(p) defines the
form of the penalty and A >0 is the regularization parameter, which determines the impact of pen(f)
at the solution of the regularized optimization problem

ﬁ(k):argmax,}{longen(B,k)}. (1.18)

For the special case of A =0 the regularized solution coincides with the maximum likelihood estimate
fi(O) = ﬁML. Otherwise the estimate is, e. g., shrunken towards zero and the various values of A >0
trace out a path of solutions, where the resulting bias of the estimate is due to the associated size of the
penalty term incorporated in the likelihood. The behavior at the limit A — o depends on the specific
selected penalty, but for shrinkage-towards-zero penalties we obtain ﬁ(?») — 0. A particular solution
of (1.18) is often determined by crossvalidation, where A is chosen to minimize the prediction error.
The selection of a special type of the penalty term allows to handle the before mentioned demands on
the resulting estimate. Some well-known examples include the ridge penalty pen(f):=L,(B) =), jBf ,
Hoerl and Kennard (1970), which is used to find a unique estimate for an underdetermined estimation
equation system. The topic of variable selection is addressed e. g. by the lasso penalty
pen(f)=L,(B)=>), i IB;1 proposed by Tibshirani (1996). Due to the special shape of the contours of
both penalty functions, the covariate estimates are shrunken towards zero. In contrast to the ridge
penalty, the square-cut contours of the lasso penalty enable that small covariates can be estimated to
be exactly zero, when maximizing the penalized likelihood, so that the solution to the lasso regularized

optimization problem is sparse and simultaneously accomplishes the goals of estimation and model
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selection. We provide more details to this topic in Sections 4.1 to 4.3. The ridge and lasso penalty are
special cases of the more general L -penalty with L,(p)= Zj|Bj|q , @>0. Another topic that can be
addressed is the smoothing of unknown functions f(-) of continuous covariates x, which are
approximated, e. g., by linear combinations of basis functions B, (-), i. e. f(x) =3¢ BBy (x), where
the regression coefficients B, represent the corresponding weights of the basis functions. Besides the
selection of the basis functions, especially choosing the right number ge N of basis functions is a
hard task, since it determines the flexibility in the shape of the linear combination and therefore the fit
to the unknown function. Using only few basis functions may be too restrictive to reflect possible
shape variations of the unknown function. A large number of basis functions enables a high flexibility
to fit the function, but coincides with the problem of interpolating the data or overfitting. A penalty
based on the squared differences of the coefficients, like pen(f)= zj(Bj —B;-1)*, can be used to avoid
overfitting and to enforce a smooth estimate of the unknown function, compare, e. g., Eilers and Marx
(1996) for details.

Regularization based regression methods are primarily explored in the context of the classical linear
model. In survival regression based on the CRR model, regularization is considered by several
authors, e. g. Verweij and van Houwelingen (1994) and van Houwelingen et al. (2006) proposed a
ridge regularized CRR model, where the partial likelihood is used to form the penalized partial
likelihood in (1.17) and the shrinkage parameter is determined by minimizing the cross-validated
partial likelihood, Verweij and van Houwelingen (1993). Tibshirani (1997), Gui and Li (2005) and
Park and Hastie (2007) applied the lasso penalty to the partial likelihood and Zhang and Lu (2007) use
the adaptive lasso, Zou (2006), to handle the variable selection and model estimation simultaneously.
Under some mild conditions the estimator is shown to have sparse and oracle properties. They use the
Bayesian Information Criterion (BIC) for tuning parameter selection and a bootstrap variance
approach for standard error. The adaptive lasso, the elastic net, Zou and Hastie (2005), and the SCAD
penalty, Fan and Li (2001), are used for high-dimensional Cox models by Benner et al. (2010). Their
article also provides a good comparative review of these penalized partial likelihood approaches. Fan
and Li (2002) applied the SCAD penalty to the CRR model considering also gamma frailties. Gray
(1992) used an additive model for the predictor to take account for smooth nonlinear covariate effects,

modeled by penalized splines, covariate interactions and time-varying effects.

Several authors investigated also the regularization of the AFT model, e. g. Huang et al. (2006)
considered variable selection via the /asso penalty and Huang and Ma (2010) via the bridge penalty,
Fu (1998), in the semiparametric AFT model with unspecified error distribution, where inference is
carried out in terms of weighted least squares with Kaplan-Meier weights. Johnson et al. (2008) use
the lasso, elastic net, SCAD and adaptive lasso penalty for variable selection in the semiparametric
AFT model, where inference is based on the penalized Buckley-James estimator, Buckley and James
(1979). Wang et al. (2008) and Engler and Li (2009) apply the elastic net regularization to gene
expression data. Datta et al. (2007) considered the lasso in the high-dimensional parametric AFT

model with Gaussian and log-Weibull errors using partial least squares for estimation.

1.2.2. Bayesian regularization

From a Bayesian perspective there is a natural close relationship to the frequentist regularization,
since, under certain conditions, the penalty terms correspond to log-prior terms that express specific

information about the regression coefficients. Using the Bayesian formula (1.15) with an informative
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prior p(BIA) for the regression coefficients given the tuning parameter A >0 and an additional
(independent) hyperprior p(A) for the shrinkage parameter, the posterior for an observation model
L(®IpP) is given as

P(B.A1D) o< L(DIB)p(BI M)p(R) (1.19)

with 0= (B’,A)" and p(0)=p(BIA)p(X). If the regularization parameter A is assumed to be known or
fixed, the prior p(A) is negligible and the resulting maximization problem (1.16) becomes

|A3(7\,) =argmax{logL(DIP)+logp(BIA)}. (1.20)

Comparing the Bayesian optimization problem (1.20) with the frequentist optimization problem (1.18)
shows, that the posterior mode estimate ﬁ(?») is equivalent to regularized maximum likelihood
estimate, if the negative log-prior —logp(B|A) is proportional to the regularization term pen(B;A) .
Under this conjunction the penalized log-likelihood can be interpreted as the logarithm of the posterior
distribution density p(p1®,A) e logL,..(B,A) and consequently the frequentist regression parameter
estimates (1.18) can be interpreted as mode of the posterior distribution. With the exception of the
SCAD penalty all of the previous mentioned penalties comprise Bayesian versions of priors. E. g., the
ridge and lasso estimates have a Bayesian interpretation as MAP estimates formulating i.i.d. Gaussian
priors  p(B;IA)ecexp(-AY,.B7) or double exponential priors p(B;IA)o<exp(-AYIB;l) on the
regression coefficients, which are both special cases of the exponential power prior

p(B; 1) o< exp(-A % 1B; 1) .

Besides the close connection between the Bayesian and the frequentist regularization approach also
some differences and advantages arise from the Bayesian perspective. One difference is that the tuning
parameter A, which controls the regularization, is in general not assumed to be fixed and there is also
a prior p(A) specified. Full Bayesian inference enables that all model parameters are simultaneously
estimated and in particular the regression parameters B and the tuning parameter A are jointly
estimated. This offers new methods to estimate the complexity parameter A by using the usual point
estimates like the mode, mean or median of the marginal posterior p(A1®) or the corresponding
empirical counterparts from the MCMC sample of A . In frequentist regularization crossvalidation is a
popular method to determine reasonable values of the tuning parameter A . Compared to the burden,
which crossvalidation can cause for complex models in practice, the Bayesian approach provides a
comparatively easy access to an estimate A . Further, the recruited prior p(A) incorporates uncertainty
about the tuning parameter A into the model, and uncertainty in estimating the tuning parameter can
be addressed by the marginal posterior p(A1®). In addition, integrating over the tuning parameter
creates marginal priors for the regression coefficients P, which differ from those when the tuning
parameter is assumed to be fixed and induce a different kind of regularization behavior of the
corresponding marginal penalty of the regression coefficients. A further challenge of some frequentist
variable selection approaches like the lasso is the estimation of the standard error associated to the
zero estimated regression coefficients, compare e. g. Tibshirani (1996) or Kyung et al. (2010). In
MCMC based inference, standard errors for regression coefficients or other model parameters are a

byproduct from the sampling based approach to the posterior.

Several authors have investigated the Bayesian regularization concept (mainly for Gaussian
responses), proposing a lot of priors to address the before mentioned regression tasks and connections.

In particular Lindley and Smith (1972) showed that using i.i.d. Gaussian priors for the regression
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coefficients P is leading to the ridge regression estimate as posterior mode. Tibshirani (1996) and
Park and Casella (2008) showed that the lasso estimate results as posterior mode, if i.i.d. Laplace
priors for the regression coefficients B are selected. Park and Casella (2008) provide also a full
Bayesian version of the lasso by assuming an additional gamma prior for the squared shrinkage
parameter. Griffin and Brown (2005) investigated various regularization priors that support a scale
mixture of normal representation for the regression coefficients, West (1987). Under certain
conditions, compare Section 4.1 to 4.3, such priors induce an adaptive, covariate specific shrinkage
which avoids the overshrinkage of large regression coefficients. Armagan and Zaretzki (2010) use the
scale mixture of normal representation to derive an adaptive ridge prior for posterior mode estimation
in the linear regression model. Recently Polson and Scott (2011) describe the corresponding prior
distribution that results in the bridge regression estimate, and Li and Lin (2010) and Hans (2011)
investigate the prior associated to the elastic net penalty. Other Bayesian approaches for variable
selection are based on bimodal spike-and-slab priors for the regression coefficients, where the spike-
mode is exactly or close around zero to remove unimportant variables and the slab-mode is rather flat
and differs form zero to retain important variables, compare George and McCulloch (1993), Smith and
Kohn (1996), Ishwaran and Rao (2005b) and Li and Zhang(2010). The squared difference penalty,
typically applied in penalized spline smoothing, Eilers and Marx (1996), is related to a Gaussian
random walk assumption for the polynomial spline coefficients as shown in Lang and Brezger (2004),
Brezger and Lang (2006).

Although the Bayesian regularization approaches for possibly high-dimensional linear predictors can
be carried straightforward to the survival context the Bayesian literature dealing with these topics is
quite sparse. In the framework of the CRR regression model Kaderali (2006) used a time-constant
baseline hazard with a Normal-Gamma prior, Griffin and Brown (2005), for the regression
coefficients. Recently Tachmazidou et al. (2010) used the Bayesian lasso, Park and Casella (2008), in
combination with an exponential distribution of the survival times. Joint estimation of the baseline
hazard and unregularized linear covariate effects in the CRR model has also been considered by Sinha
(1993), who suggests a gamma process prior for the cumulative baseline hazard function. Lee et al.
(2011) developed a semiparametric model for handling high-dimensional data by extending the
Bayesian lasso to the CRR model, where the cumulative baseline hazard function is modeled
nonparametrically by a discrete gamma process, compare Kalbfleisch (1978). Rockova et al. (2012)
review hierarchical Bayesian formulations of various regularization and selection priors and apply
them to Probit and Weibull survival regression models. Fahrmeir et al. (2010), Kneib et al. (2011) and
Konrath et al. (2013) provide a unified approach to combined shrinkage, selection and smoothing in
the framework of exponential family and hazard regression. The AFT model has not received much
attention in the Bayesian regularization framework. Sha et al. (2006) propose for AFT models with
log-normal and log-t distributional assumptions a Bayesian variable selection approach based on
mixture priors for the regression coefficients, in the spirit of George and McCulloch (1993). There are
several approaches to model the baseline survival quantities in order to get more flexible shapes for
the survival time distribution. An example that fits in the Bayesian regularization framework is given
by Komdrek et al. (2005) who replaced the error distribution by a semiparametric penalized Gaussian
mixture and Komadrek et al. (2007) who extended this approach to interval censored data AFT with

random effects.
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1.3. Outline

Approaches for combined regularization with respect to shrinkage, selection and smoothing have a
direct application to possibly high-dimensional regression problems. For example, in the presence of
influential clinical predictors we may want to select important microarray features, while the clinical
effects are assumed to be linear or nonlinear. Although regularization of high-dimensional coefficient
vectors or smoothing of nonlinear effects or the development of flexible semiparametric versions of
the CRR or AFT model have gained a lot of attention in the recent years, publications on the

combination of the approaches are very rare.

The aim of this work is to derive flexible classes of AFT and CRR survival models by casting various
regularization approaches into one general, unified Bayesian framework. The presented methods are
based on the flexible and general approach for structured additive regression (STAR) for responses
from exponential family models, Fahrmeir et al. (2004), and CRR-type survival models, Hennerfeind
et al. (2006). On the one hand flexibility is addressed in terms of an extended version of the predictor,
where various effect types are additively combined, each equipped with a suitable regularization prior.
The structured additive modeling of the predictor is convenient for both, the inference and the
interpretation of the different covariate effects. On the other hand flexibility is addressed in terms of
the baseline survival distribution, which is modeled nonparametrically and smoothness priors are used
to prevent overfitting. Each extension separately and both in combination provide large classes of

flexible AFT-type and CRR-type regression models.

The unified Bayesian approach relies on the hierarchical model representation combined with suitable
conditional independence assumption about the model parameters to support a modular structure. One
major building block is the hierarchical formulation of the regularization priors for linear effects
obtained through the representation as scale mixture of normals, West (1987). Auxiliary latent
variance parameters enable a reformulation of the prior in terms of the product of a conditionally
Gaussian prior given the variance parameter and a prior for the variance parameter given further
hyperparameters. Besides the advantageous hierarchical representation, additional priors for the
hyperparameters entail marginally a modification of the regularization prior for the regression
coefficients. Such hyperpriors are very useful to enforce an adaptive (covariate-specific) shrinkage of
the regression coefficients and hence to avoid the overshrinkage of large regression coefficients, as
observed e. g. under the lasso penalty. In particular we consider the Bayesian lasso and ridge prior and
a Normal Mixture of Inverse Gamma (NMIG) prior. Another major building block is given by the
basis function representation of the various non-linear model components. The basis function
representation preserves the linear structure for the non-linear predictor components and random walk
priors for the basis function coefficients allow also a hierarchical reformulation with (improper)
conditional Gaussian densities given variance or smoothing parameters as shown e. g. in Brezger and
Lang (2006). In particular we consider smooth effects of continuous covariates as one representative
of the various effect-types which support a basis function representation. Also the flexible extensions
of the baseline quantities are also expressed by linear combinations of basis functions with random
walk smoothness priors. In the AFT model the baseline error is modeled as penalized Gaussian
mixture, Komdrek et al. (2007) and in the CRR model the logarithm of baseline hazard rate is
approximated by penalized B-splines, Hennerfeind et al. (2006). Besides the full likelihood
specification, inference in the CRR model is also carried out in terms of the partial likelihood, where

the baseline hazard is left unspecified.
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The full Bayesian framework has the advantage that it facilitates a joint modeling and estimation of
the baseline quantities and the regression coefficients of the extended predictor. No asymptotic
assumptions or conjectures are needed for finite sample inference and the case n <p is automatically
covered. In addition, the Markov chain Monte Carlo simulation techniques build a versatile tool for
the joint estimation. The derived MCMC samplers are based on Gibbs sampling or Metropolis-
Hastings within Gibbs sampling. In particular in the CRR regression model, the full conditionals of the
regression coefficients in the predictor are non-Gaussian. Samples from non-Gaussian full conditionals
can be drawn in a unified computationally efficient way from IWLS proposals, introduced by
Gamerman (1997). The general idea of IWLS proposals is to obtain a Gaussian proposal by matching
the mode and the curvature of the full conditional at the current state of parameter vector in each
update step. Metropolis-Hastings-steps with these multivariate Gaussian IWLS proposals have several
advantages. The proposal can be used with multivariate coefficient vectors to take correlations into
account. In addition, the proposal automatically adapts to the form of the full conditional and thereby
avoids a manual tuning of the proposal density and typically leads to samplers with satisfactory
mixing and convergence properties. Due to the hierarchical prior representation and conjugate
hyperprior specification, Gibbs sampling remains possible for variance parameters and the model
parameters on hierarchical stages below, like the shrinkage parameter. For AFT regression models, or
models with a latent Gaussian structure such as Probit models, the conjugate conditional Gaussian
priors for the regression coefficients induce full conditionals of the regression coefficients that are also
Gaussian and facilitate Gibbs sampling. Finally, the provided modular hierarchical framework
supports the extensibility of our approaches. In particular we can link the priors for combined
regularization straightforward to various kinds of observation models arising e. g. from exponential
family regression models. Due to the resulting modular structure of MCMC algorithms, it is also easy
to extend the model at some places without having to re-implement the rest of the estimation

algorithm.

Under the MCMC sampling approach for a full Bayesian inference the sharp variable selection
property of some regularization priors gets alleviated. This is due to the fact, that the proposed MCMC
techniques provide samples from the (marginal) posterior distribution, but they do not maximize the
posterior. As a consequence, there is no exact zero estimate of a regression coefficient obtainable,
even for a set of samples close to zero. From the theoretical point of view using the posterior mean
instead of the posterior mode is not a drawback, since the posterior mode does not play the central role
in Bayesian inference and Park and Casella (2008) or Hans (2009) give realistic examples, where the
lasso posterior mean outerperforms the posterior mode in prediction and estimation. However, still
regularization of the regression coefficients takes place and coefficients corresponding to covariates
with minor effect are even so shrunken close to zero. Variable selection is supported through the
inspection of the posterior distribution of individual regression coefficients or through posterior
inclusion probabilities as provided by the NMIG prior and carried out in a post inferential step by hard
shrinkage selection. In our simulations and applications we consider several empirical thresholding
procedures as used in Konrath (2007) and recently proposed in Li and Lin (2010) with respect to their

predictive performance.

The developed and described procedures are implemented in public available software, like Bayesx
for the extended CRR model based on the full likelihood and exponential family regression or in R-
functions for the extended AFT model and the extended CRR model based on the partial likelihood.



16 1. INTRODUCTION TO THE BASIC CONCEPTS

The performance of the developed methods and algorithms is extensively tested by simulation studies

and illustrated by three real world data sets.

1.4. Organization

The rest of this work is organized as follows: Part I is devoted to the extension of the AFT model. The
considered extensions and their modeling are provided in Section 2, and Section 3 to Section 5 provide
the associated priors for the model components. In particular in Section 4, we introduce the utilized
Bayesian regularization priors for the joint shrinkage, selection and smoothing and investigate and
illustrate their specific shrinkage properties. Finally, Section 6 addresses the posterior inference for
model parameters based on MCMC simulations. Part II considers the extension of the CRR model and
in particular Section 7 introduces the model extensions. Prior specification and posterior inference is
carried out in Section 8 and Section 9. Simulations to test and demonstrate the flexibility and
applicability of the proposed methodology are provided in Sections 10 (AFT model) and Section 11
(CRR model) of Part III and the data applications in Section 12 to Section 14 of Part IV. Optional
results for the simulations and applications will be provided in an electronic supplement. Finally, the

concluding Sections 15 and 16 contain a summary and comments on directions of future research.
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PART I. BAYESIAN REGULARIZATION IN THE
AFT MODEL

2. Extended AFT model

2.1. Basic AFT model

Let T, 20, i=1,...,n, denote the random variable representing the non negative, continuous survival
time of an individual i from a heterogeneous population. This heterogeneity of the population is
caused by individual-specific characteristics that effect the individual’s survival time, like sex, age or
medical treatment of a patient in a clinical study. The functional dependence of the survival time on
the covariates is determined in terms of the transformation Y;:=log(T;)e R by the log-linear

representation of the AFT regression model as introduced in (1.9)

Y; =log(T;) =m; + o8, 2.1

where M; € R denotes the predictor that summarizes the covariate effects and ¢ >0 is a scale factor
for the covariate independent random error terms €; € R. The errors are assumed to be independent
and identically distributed with absolutely continuous density f.(-). This implies that the log-survival
times Y;, i=1,...,n, are conditional independent given the covariates. In parametric AFT models the
error term is often assumed to belong to a specific location-scale family, like the Gaussian or extreme

value distribution for example. The observed right censored survival data is given as

:g:{(yhdbvz),i:l’”',n} s (22)
where ¥; :log(fi) is the logarithm of the observed survival time, d; € {0,1} the censoring indicator
and v; = (Vif,..., Vi )’ is the p-dimensional vector of the observed covariates for the n individuals of the
sample.

This thesis considers two extensions of the AFT model to enable a more refined and flexible
formulation of this model: On the one hand the predictor m; is additively expanded to enable the
regularization of some or all covariates with linear effects. Further nonlinear effects are considered,
where functional forms of the effects are utilized to represent flexible relationships between the
response and the corresponding covariates. In summary, the predictor gets a structured additive form,
where each summand reflects the specific form of the covariate impact on the log-survival time. The
covariate-specific predictor components are equipped with informative regularization priors, compare
Section 4, to enforce the desired shrinkage of linear effects or the smoothing of the nonlinear effects.
On the other hand the parametric assumptions of the error distribution are replaced by flexible
semiparametric assumptions, where the error distribution is modeled by a penalized Gaussian mixture
distribution.
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2.2. Extended predictor

To attain a higher flexibility in modeling various functional relationships between the covariates and
the response, the predictor is partitioned into three subgroups that represent the specific assumption
about the functional form of the impact of the covariates. Accordingly, the vector of explanatory
covariates is partitioned as v; = (u},x{,z;)" to reflect by notation the different ways how the covariates
are treated. In particular, the predictor 1m; is assumed to summarize the different functional forms of

the covariates in a structured additive form given by
N =wy+xB+f(z)+...+1, (zp,) . (2.3)

The components of the predictor are used to describe

® Linear effects ujy of a moderate low number of unregularized, time-independent, categorical or
continuous covariates w; = (o Ujy,..., Ujp, Y C Vi, p.<n, that are forced into the model. The
regression coefficients y = (Yo, Yi,-...Y,,) model at least the global intercept term defined by 7,
(with u;y =1, i=1,...,n), which is in general not regularized and is also required for the
identifiability of the optional nonlinear terms.

® Regularized linear effects xip of possibly high-dimensional categorical or continuous time-
independent covariates  X; = (Xiy,..., Xip, Ycv;,, with p,<n or p,>n. The regression
coefficients p=(,,....,, )" are equipped with an informative shrinkage- or selection-type prior

to identify those effects with the highest impact on the response.

® Smooth nonlinear effects fi(z;), j=1,...,p,, which are defined by smooth functions f;(-) of
time-independent continuous covariates z; that need to be regularized to avoid overfitting. A
suitable tool to model unknown functional forms of covariates is provided by semiparametric
basis function approaches, where each of the unknown functions f;(-) in the predictor (2.3) is

represented in terms of a linear combination
gj ,
fi(z) = 0By (2) =bj(2)a; (2.4)
k=1

of a finite number g;<eo of known basis functions b;(-) =(Bj(),...,Bjg ()" and a vector of
coefficients @ =(0tj,...,0l,,) . In particular, the Bayesian penalized splines (P-splines)
approach, as developed by Lang and Brezger (2004) is considered, which builds the Bayesian
counterpart of the P-splines proposed by Eilers and Marx (1996). In this approach the numerical
advantageous B-splines of De Boor (2001) are picked as basis functions and placed using a set
of (inner, equidistant) knots &;,...,&; , with min(z;) =&, <...<&,, =max(z;), from the support of
the j-th covariate z;. The number of B-spline basis functions with degree q; is determined as
g;=s;+q;—1. Since the B-splines are bounded and have local support over the range of a few
knots, the corresponding design matrices are sparse (as well as the associated penalty matrices)
and computational efficient matrix inversion is possible. In practice we often use cubic B-
splines, i. e. q; =3. As trade-off for the number of basis functions the use of a moderate large
number is proposed, that provides sufficient flexibility in the shape for a well suited
approximation. This is combined with a Bayesian regularization of the distances between

adjacent basis coefficients @;=(a,...,0;;,)" by utilizing a Gaussian random walk prior that

igj
enforces the desired smoothness of the approximation and avoids overfitting. For identifiability
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reasons it is necessary to center all functions horizontally about zero and include an intercept

term in the linear component of the predictor.

Further effect-types like varying coefficients, random effects, spatial effects, time-dependent effects or
interactions can also be included in the predictor and cast into the unified modeling via basis function
expansions as shown, e. g., in Brezger and Lang (2006) for exponential family regression, Kneib and
Fahrmeir (2007), Hennerfeind et al. (2006) for geoadditive Cox-type survival regression models or in
Fahrmeir and Kneib (2011) for both regression model types. The focus here relies on smooth nonlinear
effects to demonstrate the methodological principle, but the implementation of other effect types is
straightforward. A note about this generalization and the inclusion of time-dependent covariates is

given in the Outlook Section 16.

Generic notation: Due to the linear structure of the basis function approach (2.4), the vector
f,= (fj(zlj),...,(znj))' of function evaluations at the observed values z;, i=1,..,n, of covariate z; can
be expressed as the matrix product f;=Z;a;, where the design matrix Z; has the elements
by =By (z;), 1<k<g;, 1<i<n. In summary, with the design matrices X and U of the linear
effects y and B, that have rows x; and u}, it turns out, that the vector n=(1,...,n,)" of extended

predictors can always be represented in generic matrix form
n=Uy+Xp+Za, +..+Z, 0, 2.5)
with components
M =Wy +xB+bi(z)a, +...+b, (z,,)a,, (2.6)

and a possibly high-dimensional parameterization of the predictor.

2.3. Extended error distribution

Assuming that the distribution of the error stems, e. g., from a location-scale family leads to models,
where only a few number of parameters are used to describe this distribution. Picking up, e. g., the
Weibull model from Section 1.1.3, where the error has a standard extreme value distribution, shows
that there are only monotone baseline hazard functions possible. Checking parametric assumptions for
the error is in general difficult in the presence of censoring. For this reasons the conventional
parametric assumption of the error is replaced by a semiparametric distribution that is defined in terms
of a finite penalized Gaussian mixture (PGM) as in Komdrek et al. (2005). The density of the error
distribution in the log-linear specification of the AFT model is approximated by a flexible continuous

mixture distribution € ~ ¥ w,N(m,,s}) with density

fg(slw)ziwk(p(elmk,sﬁ), 2.7

k=1

where w=(wy,..., Wy, " is the vector of mixture weights corresponding to the finite set of Gaussian

mixture densities @(€lm,,s;), k=1,...,g,, with fixed means m = (m;,...,m,, " m,<..<m, , and

g0
fixed variances s = (s%,...,sgo ), 8¢ >0. The mean and variance of the error distribution are given by

£0 £0
He =E(elw)=) wym,, o?=Var(elw)=> w,(m}+s?)-p2, (2.8)

k=1 k=1

compare Appendix A.1.1.
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Additional conditions are required to ensure that (2.7) is a probability density and to identify the
location and scale parameter of the AFT model (2.1). To guarantee that (2.7) is a probability density
with '[fe (elw)de=1, the weights have to be positive w, >0 with w,+...+w,, =1. To fulfill both

constraints, the generalized logit-reparametrization of the weights

exp)
D exp(0lo )

Wy = Wk((l()) = = L'"ag() ) (2'9)

in terms of unrestricted basis coefficients o = (Olo,...,0o, ) € R® is used. Since this reparametrization
is not unique, w;(a,+c)=w;(a,) for any scalar c, one of the g, unrestricted coefficients in @, is set

equal to zero

aoyk = 0, kE {1,...,g0} . (210)

To guarantee identifiability, the location and scale parameter of the error distribution need to be fixed
or at least standardized with

20 20
Me :ZWk(ao)mk =0, o ZZWk((lo)(mi +S§)3:1-

k=1 k=1

As shown in the Appendix A.l.2, standardization can be achieved by expressing two of the
unrestricted coefficients a,, €. g. Oy, and O, through the remaining coefficients. The weights
have to match the constraints

203
Oy = log (zk=1 exp(0lo )Ck,go—l F Cogo1 ) ’

803
Olg,—» =log (zk:l eXP(Qlo x )Ci gg—2 + Cgy 002 ),

with
2
my —mg,_, l—s*—mym,
Ck,g()fl = . 1 B . ) kzla""g0_3vg07
Mg, =My 1—=8" =My My;
2
my —mg; 1-s*—mym, ,
Ck,g072:_ . . ’ kzla""g0_3vg07

— —q2_
Mg, mgo—ll 8 Mg, My,

when equal basis variances si =s*, k=1,...,g,, and the identifiability constraint o,, =0 are used.
Since these restrictions are hard to implement in the Bayesian context, we use an alternative strategy

to standardize the error distribution in the constructed MCMC sampler, compare Section 6.2.1.

Similar to the Bayesian P-spline approach, used to extend the predictor, the error density (2.7) can be
viewed as a basis function expansion, where the set of mixture densities @(-Im,,s?), k=1,...,g,, acts
as basis functions positioned at the mean values m = (m,,...,m,,)" that may be denoted as the knots of
the basis, and the mixture weights w = (w,..., Wy, ) correspond to the basis coefficients. In the spirit
of Bayesian P-spline smoothing, a moderate large number g, of basis functions is used to guarantee
the flexibility of the approximation in combination with an imposed random walk regularization prior,
which controls the variation to achieve the desired smoothness. With respect to the reparametrization
in (2.9), the regularization prior is finally formulated for the unrestricted coefficients
oy = (g1,-.-, Qo g, ) . The grid points m, , the basis variances s; as well as the constraints of a, for
standardization can be chosen independently from the location and the scale of the true distribution of
Y;. Komidrek et al. (2005) recommend placing the knots on an equidistant grid in the interval
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[—4.5,4.5] with the distance m, —m,_; =0.3 between consecutive knots and the use of common
variances s; =2(my —m,_;)=0.2. This implies g, =31 as number of basis function and that the
mixture density is practically zero outside the interval (—6.6,6.6). If only one mixture density is used,
g, =1, the mixture distribution collapses to the parametric case with Gaussian error. In principle, any
mixture density can be used to specify the error distribution and there is no need using Gaussian
mixtures, but sampling of truncated observations from the mixture components should be feasible to

impute the survival times, compare Section 3.

Distribution of the log-survival time

Due to the structure of the model, the log-survival times also follow a mixture distribution, since one
can associate to each observation (y;,v;) a latent error quantity €& =(y; —1;)/0. The density of the

log-survival time Y; 10 is in general given by
f(y:10) =, (umoj .
c c

Using the mixture representation of the error we get the mixture distribution density of the log-

survival time as

N 1 i — T
f(10)= Ewi (a) Lo i |

= N Mexp —
k=1 \/ﬁﬁsk 207%s;

20
=Y wi(a)o(y; In; +om,,0%} )
k=1

(yi—ni—cmk)QJ @2.11)

with the extended predictor 1; of (2.6) and the corresponding parameters 0= (a,’,y’,6)", with
u:(af),af,...,a;z Y, o5 = (0l j,..., Qo g, ). The resulting conditional mean and conditional variance of

the response y; given the model parameters resp. covariates are
Wy =E(Y;10)=n; +ou., o3 =Var(Y;10)=0°c;.
If the error distribution € is standardized with u, =0 and 6% =1, one gets

Ly, =E(Y,10)=7,, o2 =Var(Y;10)=02. (2.12)

Distribution of the baseline error

We introduce the notation Y, to describe the baseline error Y, =7, + o€, with
Wy, = E(Y,10) =7y, +ou,, o3, =Var(Y,10)=0c;, (2.13)

as the associated location and squared scale of the baseline error distribution. Since the standardization
is in general not implemented in the software, we can compute these expressions from the posterior

samples of the involved quantities to verify the convergence or mixing.

These expressions reduce to

l"l’Y(J = E(YO | 9) = Yo, G%vo = Var(YO | 0) = 62 . (2 14)
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if the error distribution € is standardized.

2.4. Likelihood

The parameterization 0= (o’,p’,y’,0)" of the extended model terms enables a full likelihood
specification with respect to the partial knowledge caused by the right censoring of the survival times
of some individuals. Based on the generic formulation in (1.11) the full likelihood of the extended

AFT model under non-informative right censoring is given as
L(D10)=]TL:(D:108) =TT (5:10)" S. (5:10)"™" .
i=1 i=1

To complete the AFT regression model from the Bayesian point of view, all model parameters have to
be equipped with suitable prior distributions. In the next section we consider at first the priors
associated to the data augmentation. The priors of the predictor components will be derived in the

subsequent section.

3. Data augmentation priors

It is often advantageous for inference to introduce additional latent model parameters, which simplify
the structure of complex models, compare Tanner and Wong (1987). In the extended AFT model the
censoring and the formulation of the error as mixture distribution complicate the inference. The
individual likelihood contributions to the model likelihood have the complex form

L (®;10) =£,(¥; |9)d* S; (Vi |0)1’d' , where for an uncensored observation (d; =1) the mixture density
£i (¥ |9) = 2 Wi (00)Q(F; IM; —omy,67s%) ,
k=1

and for a censored observation (d; =0 ) the survival function
Si(3:10) =] fi(slo.B.y.07)ds

need to be evaluated. To bypass the mixture density representation and the evaluation of the integral in
the survival function, three further groups of latent quantities are introduced to augment the likelihood.
The problem of censoring can be overcome by treating the unobserved true survival times as latent
data, and the imputation of these latent quantities is leading to an uncensored regression model that is
fitted in each MCMC iteration. Considered are in particular the vector of latent exact survival times
t=(ty,...,t,)" and the vector of exact censoring times c¢=(c,,...,c,), which are both partially
unobserved since we observe under right censoring either an exact survival or an exact censoring time
(t, =min(t;,c;) ). To solve the task concerning the mixture representation, we rewrite the likelihood in
terms of latent mixture component labels r=(x,...t,)", t € {l,...,g,}, which is leading to conditional
Gaussian likelihood contributions. In summary, the complete data containing the latent quantities is
denoted as

)comp ={(Ei,di,tiychrhvi)’izl""’n} .

With respect to the complete data we obtain a likelihood-prior structure that simplifies the derivation
of the conditional posterior distributions and enforces Gibbs sampling for almost all model parameters.
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Augmented survival times

For the moment we disregard the latent component labels r = (x;,...1,)” and consider the partially latent
survival and censoring times. The first augmentation concerns the possibly right censored observations
of the survival times T, =min(T;,C;), i=1,...,n. The sample population is split into two groups, those
individuals for which a survival time Tl =T, D; =1 is observed and those for which a censoring time
"I"i =C;, D; =0 is observed. Let 0 denote the parameters of the survival time distribution T; 10 and
v the parameters of the censoring time distribution C; |y . Since T, is either T, or C; the joint
distribution of Ti,Di,Ti,Ci is given as

fipomc (ti.di, b, 10,9) =15, 1 ¢ (di, ti,c 10,y) .
For a censored observation D; = O,Ti =C; we obtain withT; > C; the relationship
P(D; =0,T e [t;,t; +h,),Ci € [c,c; +h,) 10, )
:]P)(Ti >C;, T e[t,ti+h)),Ci e [c,¢ +h2)|9,‘|’)
= P(Tl >c; 1T elt,t;+h),C e[ci,c +h2))P(Ti elt,t;+hy)l B)P(Ci elci,c +h2)|‘|’),

where the last equality utilizes the conditional independence of the survival and censoring times and
that ¢; is a fixed number . Using further the relationships fr (t; |9) =limy, o P(T; € [t;,t; + hy)| 9)/ h,
and f (G |\|I) =limy, , P(C; € [c;,c; + h2)|\|1) / h, , compare (1.1), the joint distribution reads

P(Di =0,T e [t;,t; + hy),C € [c5,¢; +h2)|9,‘|’)

fo, 1.c. (0,t,¢10,y) = &121})

h,—0

=P(T, >¢; I T, =t;,C; =c)fy (4 [0)fc, (c; |w)
= i, o (8 )f, (50X, (i ).

Similar steps for an uncensored observation D; =1, Tl =T, withT, <C; are leading to

£, 0 (Lt e 10,9) =1, o ()f, (¢ [w)Er (1,10) .

Consequently the complete data likelihood contribution for the i-th observation can be written as
X d; 1-d;
Li (D 10,y) = {1, ) (), (e [ W), (6 10)} {1, oy (8 Fr, (4]0, (i [w)]

and insertingt; = t; if d; =1 and ¢; =¢t; if d; =0 is leading to

d; 1-d;

Li (D 10,y) ={1;, ., (), (c; [w)fs (6 10)] " {17 o) (07, (6 [0)fc, (G [w)) 3.1

The marginalization over the i-th latent quantity, which is either in the censoring case a true survival
time, or vice versa a censoring time for an uncensored observation, results in

1-d;

L; (’D | 9,\|’) = (fT, (t;10)- IR+ Iii, ) (©fc, (c \Il)dC) | (fci (t; | y)- J‘R+ L, o) (Of (€1 ﬂ)dt)
- (fT‘ (f‘ 18)-Sc, (El | ‘I’))d‘ (fc, (El ly)- Sy, (fl |G))1_di )

which coincides with the i-th likelihood contribution from (1.10), so that in summary the (observed)
data likelihood L(0,y|®) can be interpreted as the marginal likelihood of the complete data

likelihood L(O,y|®°™) of the latent exact survival and censoring times. If the censoring is
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independent and noninformative, one can neglect the components of the censoring process for

inference on the parameter 0 of main interest and we get from (3.1)
L(Dem |9) o< In]lﬁhw)(ti)lfd' f1, (,]0) o< L(D>™ 10, y)
i=1
or in terms of the log-transformed survival times Y; =log(T;)
L(Dm10) o IiIlm (YD) (31[0).

Due to these assumptions, the true censoring times are not required for inference about the parameter
0 and we only need to impute the partially latent, exact survival times corresponding to the censored

observations.

Augmented mixture distribution

The second augmentation concerns the mixture representation of the baseline error. In general a
mixture model, defined by mixture distribution with g, components like in (2.11), can be viewed as
an incomplete data problem, when the allocation of each observation to one of the components
{1,...,g0} 1is treated as missing data, compare e. g. Friihwirth-Schnatter (2006). Let R denote a
discrete indicator variable with values in the set {l,...,g,} that labels the g, components of the
mixture distribution. For each observation of an exact log-survival time y; =log(t;), i=1,....,n, the
realization 1, € {1,...,g,} of the discrete allocation variable R; indicates from which of the g, mixture
components the i-th observation is assumed to arise. Conditional on knowing the mixture component
with label r,, the distribution of Y;Ir,0 is Gaussian with mean E(Y;|5,0)=1m; —om, and variance
Var(Y; I5,0)=07s; ,i.e.

p(yi I%,0) = @(y; I, —om,,67s}),
and the probability, that Y; belongs to the r; -th mixture component, is discrete with
pE10)=P(R;=510)=w, (a).
The resulting joint density of the completed data (Y;,R;), i=1,...,n, is displayed as
p(yi.1: 10) =p(y; I1,0)p(r; 10) = @(y; Im; —om, , 675} )w, (o)

and at last, the finite mixture arises as marginal distribution over the component labels, if it is not

possible to record the group indicator R; and only the random variable Y; =log(T,) is observed

20 20
p(yi 1) =) p(yi.518) =D W, (00)9(y; I, —om, ,6%?) .

;=1 5=1

Thereby and with the argumentation of the last subsection the augmented likelihood contribution with

respect to the complete data is finally given as
L; (D7 10) o< 15, ) (%)™ P(Y: [5,.0)p(s; 10)

In this complete data representation we associate the components p(y; |n,6) and p(r, 10) to the prior-
part of the Bayesian model and identify 1;;, ..,(y;)"™* as the likelihood-part.
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In summary, we obtain the degenerated augmented likelihood
L(D<™ 0) Hl[y oy DT =L(Dly) (3.2)
and, given the independence of Y;,R;10, i=1,...,n, the joint prior of the latent data (y,r) is
pLY.r10) =p(y Ir0)p(r10) = [ Tty 5.0 [ pcs 19).

With the definitions X, :=067S, and p, =n-om,, with S, :=diag(s?,...,s?) and m, :=(m,,...,m,)’,

we get for the first component of the joint prior a multivariate Gaussian distribution
YIr,0 ~N(p,, X)) (3.3)

with mean vector p,, covariance matrix X, and density

’

E;‘(y—uy)j-

1 1
[r,0) o< —exp| ——(y—
p(y ) |Zy| P( 2(y "y)
The second component is the product of n discrete multinomial distributions,

R; lay ~ MulNom(1,w(ay,)), 3.4)

W(o) = (W, (0p),..., Wy, (019))”, with probability

p(rle)zp(rlao)znwn (ao):ﬁw (o) (Zexp 0o | J ﬁexp(njao,j),

where n; =Y I(5 =) is the number of observations for which the component label r equals j. In
the last equation we use the reparametrization of the mixture weights (2.9). Because marginalization

over the latent variables is leading to the original (marginal) posterior
[L(D™10)dydr =< L(D10)p(6),

marginal characteristics of the parameter 0 are the same, irrespective if they are obtained from the

complete or marginal posterior.

4. Regularization priors

In this section continuous regularization priors for shrinkage, selection and smoothing of the various
regression model components are considered and compared. The presented priors support a
hierarchical reformulation in terms of conditional Gaussian densities given variance parameters, where
the variance parameters play the central role to control the desired kind of regularization. The various
Bayesian regularization strategies for shrinkage, selection and smoothing are generated by varying the

prior specifications on several stages of the hierarchical model.

Shrinkage or selection of linear predictor components, compare Subsections 4.1 to 4.3, relies on the
interpretation of the associated priors as scale mixtures of normal distributions, West (1987). The prior

distribution for the regression coefficients B;, j=1L,...,p, , is represented as
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p(B; 1) = [o(B; 10,73 )p(t}, 1)dT3, , @.1)

where @(-Im,s?) denotes the density of a Gaussian distribution with mean m and variance s* and
p(tfﬁ,j |-) is the density of the mixing distribution of the variance parameter ’cé]. The switch from the
marginal to the conditional prior representation leads to a hierarchical prior formulation in terms of the
conditional Gaussian distribution f3;10, ’céj assigned to the regression coefficients and the distribution
’céj |- assigned to the variance parameter. In this formulation the variance parameters control the
concentration of the Gaussian prior for the regression coefficients around zero and determine the
amount of shrinkage, where small variances induce a strong concentration and a heavy shrinkage
towards zero. In addition, the scale mixture representation allows for a flexible kind of regularization,
since each regression coefficient is equipped with its own variance parameter. A covariate-specific
shrinkage is advantageous to avoid the overshrinkage of larger regression coefficients. E. g. Zou
(2006) showed this in terms of the adaptive lasso penalty, pen(f;1)= §=*lkj|Bj|, where covariate-
specific penalties A; are introduced to support the unbiasedness for larger regression coefficient
estimates. In contrast the lasso penalty, pen(B;A)= ;’;17»|Bj|, with its uniform shrinkage of all
coefficients, produces biased estimates also for large regression coefficients, because all regression
coefficients share a common regularization parameter A . The flexibility of the regularization is further
supported by the option to utilize additional priors for the hyperparameters of the variance distribution
'céj |-, which leads marginally to a modification of the mixing variance distribution. Finally, this
modifies marginally the regularization prior of the regression coefficients and enables more

sophisticated types of shrinkage and selection priors.

Under the conditional independence assumption for the regression coefficients given the variance
parameters, the prior hierarchy is represented by the multivariate Gaussian prior distribution
Bl ~ N(pg,Xp) with zero mean vector pg =0 and covariance matrix X = diag(t,...., 75 ) and the
joint prior distribution of the mixing variances T3 !-, 7§ = (13, ,...,répx ), given further hyperparameters.
Under conditional independence given the hyperparameters, the prior 73 |- is the product of the priors
of the single variance parameters. Since large variance parameters induce less shrinkage, the priors for
the unregularized linear regression coefficients y can also be cast in this representation. We write
v ~N(p,,2y), with p, =0 and X, =clI, ¢>0 large, or X;' -0 to denote the assigned weakly
informative Gaussian priors. These priors cause virtual no regularization and are appropriate for low-
dimensional numbers of covariates that should always enter the model. Smoothing of nonlinear
predictor terms or model components, like the baseline error distribution density in the AFT model or
the log-baseline hazard function in the CRR model, rely on the basis function representation of these
components. The recruited random walk smoothing priors for these semiparametric model
components, compare Subsection 4.6, allow a similar hierarchical reformulation in terms of (partially
improper) conditional Gaussian densities for the basis function coefficients a;, j=0,L,...,p,, given
variance parameters 'céj, i.e a; |r§j ~ N(py,, Il,,) with p,, =0 and appropriate precision matrix I,
that depends on T, .

Finally, the conditional Gaussian priors of the predictor components act as intermediate quantities in
the joint prior to separate the priors of the associated variances and further parameters from lower
stages of the hierarchy from the likelihood. This means, that the likelihood is not involved in the
MCMC update of the variance parameters and the hyperparameters on hierarchical stages below and,
as a consequence, the associated full conditionals have a closed form and enable fast Gibbs sampling.

In addition, for Gaussian or latent Gaussian observation models, due to self-conjugacy, Gibbs
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sampling can be applied to update the predictor components. Also for non Gaussian observation
models the quadratic structure of the conditional Gaussian prior of the regression coefficients
simplifies the structure of the constructed IWLS-proposal distribution as shown, e. g. in CRR

inference Section 9.

4.1. Bayesian ridge prior

4.1.1.  Prior hierarchy

A well known penalty to deal with multicollinearity or the problem of p, >n in classical regression is
the ridge penalty. In ridge regression the penalized least squares criterion is minimized with respect to
the penalty pen(p;\) :7"2?21 i, A>0. The Bayesian version of the ridge penalty is given by the

assumption of i.i.d. (conditional) Gaussian priors for the regression coefficients
Bj |7\'~iid N(O,I/ZX), jzl,...,px, (42)

that leads to the joint prior density

p(BI2) =ljp:Ip(Bj ) =(\/%J exp{—kjﬁlﬁﬁ} : (4.3)

For a given value of the shrinkage parameter A >0, posterior mode estimation corresponds to
maximum penalized likelihood estimation, compare (1.20). The prior (4.3) has the scale mixture of
normals representation [3; I‘céj ~ N(O;‘céj) with ‘céj IA ~ 8y (‘céj). The symbol §,(t) denotes the
Kronecker function which equals 1, if t=a, and 0, if t#a. A full Bayesian specification is obtained,
when additionally the shrinkage parameter A is assumed to be a random variable and is equipped with

an appropriate prior. Due to conjugacy to the Gaussian family using a gamma prior,
A ~Gamma(h,;.h,5); hy;,h,, >0, (4.4)

is convenient to support a Gibbs update for this parameter. The deterministic connection &y (Téj)
between the shrinkage parameter and the variance parameters is leading to identical variance
parameters T3 =T§J and an identical proportion of shrinkage for all regression coefficients. This
somehow artificial notation of the hierarchy, with a gamma prior for the shrinkage parameter A
instead of an inverse gamma prior for the variance parameter T3, prevents the interpretation of A as
shrinkage parameter similar to the lasso prior. In summary we obtain, due to the identical variance
parameters, a multivariate scale mixture of normals, compare e. g. Eltoft et al. (2006), and we express

the hierarchy as
Bl ~ NO:T8), IR~ 8y (T8), 4.5)

to reflect the identical shrinkage also in the notation.

To obtain the univariate scale mixture of normals representation, we utilize regression coefficient

specific shrinkage parameters A; resulting in the hierarchy
Biltd ~N(0:%3 ). T 1A~ 8y (T3 ). (4.6)

with
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}\‘j ~iid Gamma(hl,)h,hzjh); hl,?th,X >0 (4.7)

In this representation each regression coefficient has a representation as scale mixture of normal
distributions (4.1) with individual inverse gamma mixing distribution, which bypasses the identical
proportion of shrinkage for all regression coefficients. We consider in the following the more general
case (4.6) with (4.7), since the properties of the multivariate scale mixture (4.5) can be derived as a
special case. More details are provided in Subsection 4.1.3.

4.1.2. Shrinkage properties

Marginal priors

To investigate the shrinkage properties, we consider the univariate marginal priors of the regression
coefficients f3; and the associated variance parameter ’Céj , induced by the hierarchical prior structure

given above. For the mixing variance parameter we obtain
T3, 1hy, by ~ IGamma (hyz,3h,, ), (4.8)

and further marginalization over the variance parameter, compare Appendix B.1, is leading to a scaled
Student t-distribution as marginal distribution of the regression coefficients given the hyperparameters
h 1A h2,7\

p(B;1hixhsn) = [ N(B;10,73 ) 1Gamma (T 1hix,4hss )t =¢(B;12hi2,4/hss /2, ), (4.9)

with densities p(B;1d,s)=T(Z(d+1)) / (nds?)*T(1d)(1+p?/ds> )_%(dﬂ) , where d =2h,, are the degrees
of freedom and s :«/hm/th is the scale parameter. For d=s? =1, i.e., h;; =0.5 and h,; =1, the
standard Cauchy distribution is obtained as special case. Finally, the full Bayesian specification is
leading to a marginal distribution of the regression coefficients, which has a representation as scale

mixture of normal distributions with an inverse gamma mixing distribution.

The additional prior assumptions about the shrinkage parameters are leading to a more flexible
modeling of our prior knowledge and a refinement of the prior tuning, i. e., the shrinkage of the
regression coefficients is controlled by the two hyperparameters of the scaled Student t-distribution
p(B; lh;y.,h,,) in comparison to the single parameter Gaussian prior p(B;|A). The associated penalty
function simply incorporates the term in the logarithm of the prior, —logp(;1h,;,h,,), that depends
on PB; and is given by pen(Bj;h;s,h,;)=(h;; +0.5)1log(1+p?/h,;). From the optimization
perspective, the penalized ML or MAP estimate solves the penalized log-likelihood equations with
respect to the penalty term pen(B;h,;,h,;)=(h;, + O.S)Zg’gllog(l+ﬁf/h2,x) )

Shrinkage properties in terms of the marginal prior of the regression coefficients

The shrinkage behavior of a prior distribution is determined by the specific shape of the density. A
concentration of the probability mass around the origin enforces a strong shrinkage of the regression
coefficients, while more mass in the tails of the density, enables larger values of the regression
coefficients and supports the unbiasedness of the larger regression coefficient estimates. At the limit,
for very noninformative, diffuse priors, the regression coefficients are distributed around their ML

estimates. In the case of a scaled Student t-distribution the scale parameter equals 1, if h,; =2h,; in
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our parameterization. If h,, > 2h,,, the scale parameter is larger than one, s >1, and more probability
mass is allocated to the tails of the t-distribution and vice versa, if h,; <2h;,, we have s<1 and the
probability mass is more concentrated around zero. Also the degrees of freedom d =2h,; determine
the shrinkage, since larger degrees of freedom concentrate the t-distribution around zero and induce a
stronger shrinkage. In summary, the constellation of the two hyperparameters h,, and h,, controls
the amount shrinkage of smaller regression coefficients and the size of the bias for larger regression
coefficients.

Figure 4.1 shows the univariate marginal log-priors of one regression coefficient, log(p(B;!-)),
associated to the various regularization priors considered in this section. The used hyperparameters are
selected to obtain q,,; =—4 as the lower 5% quantile of each prior distribution, but in the case of more
than one hyperparameter the selection is not unique. In particular the left panel of Figure 4.1 contains,
amongst others, the marginal Gaussian prior (4.2), denoted with BR(A=0.169), and the marginal
Student t-prior (4.9), denoted with BR(h,; =0.45,h,; =0.248). In contrast to the light-tailed Gaussian
distribution, the Student t-distribution has a more beneficial shape for regularization, since it shows a
distinctive peak at zero and a strong decline, similar like the heavy tailed Cauchy distribution,
BR(h,; =0.5,h;, =1), if the absolute values of P increase. Therefore, the shrinkage of large

coefficients towards O is only moderate, whereas shrinkage of small coefficients towards O is
encouraged.

This is also shown in Figure 4.2 in terms of the associated penalty functions.
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Figure 4.1: Univariate marginal log-priors of the regression coefficients logp(B1-) resulting from the various
regularization schemes. Upper panel: Log-priors in the range [-5,5]. Lower panel: Log-priors in the left margin
[-20,-5]. The hyperparameters given in the legends are selected to obtain q,,; = —4 as the lower 5% quantile
of the marginal prior of the regression coefficient.
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Figure 4.2: Univariate marginal penalty of the regression coefficients pen(IBIl-) resulting from the various
regularization schemes. The hyperparameters given in the legends are selected to obtain q,,s =—4 as the lower
5% quantile of the marginal prior of the regression coefficient.

Especially in the linear regression model with Gaussian error the amount of shrinkage can be
quantified and expressed in terms of the ML-estimate. For simplicity we assume in this context
orthogonal predictors. Solving the penalized score equations dlogL,., (ﬁpen ,7) / dop =0 is leading to the
connection [ASJ«YML —Bj,pen =($2sign(f3j,pen ypen’(l ﬁj,pen [;), where ﬁj,pen denotes the penalized estimate,
pen’(I1B; ;) =—dlogp(IB; II-)/dB; is the first derivate of the penalty function with respect to B; and ©
is the standard error of the ML estimate BLML . It follows, that the derivate of the penalty controls the
amount of shrinkage and, if the derivate tends to zero for large values of BJ«YML , the penalized estimate
gets close to the ML estimate Bj,pen zBJ«,ML and is nearly unbiased. Fan and Li (2001) formulated
several conditions to define a good penalty function. The unbiasedness of the resulting estimator,
when the true unknown parameter is large, is one of the conditions and it is sufficient to show
pen’(IB;1;-) >0 for IB;| large. The resulting estimator is said to be a thresholding rule for the MAP
estimation, if the minimum of the thresholding function T(B;):=1p;+c>pen’(IB;1) is positive, that is
TP := ming ., T(B;)>0. In this case the penalty is sparse, since the penalized estimate is set to
Bj,pen =0, if I[%ML I<TP, and the model complexity is reduced. For continuity of the penalized
estimator in the data a necessary and sufficient condition is that the threshold TP is attained at 0. This
avoids instability of the estimators as e. g. resulting from all subset selection. In summary, the penalty
function must be singular at the origin.

Figure 4.3 shows the derivate of the univariate marginal log-priors of the regression coefficients
dlogp(B;1-)/dB; at the positive x-axis and the derivate of penalty function pen(IB;l;-) is obtained by
reflection across the positive half of the x-axis. The penalty of the Gaussian prior (4.2) is given by
pen(IB; 1;A)=AI1B; P with derivate pen’(IB;I;A)=2AIB;|. From this formula we can easily see the
well known results, that the estimators resulting from this penalty are always biased, since the penalty
does not converge towards zero for large If;l, and it is obvious that the minimum TP of the
thresholding-function T(B;)=1P;1+2AIB;162(X'X)™" with respect to B; is attained at zero, so this
penalty does not produce sparse solutions. The penalty of Student t-prior (4.9), is leading to the
derivate pen’(IB;1:h,,,h,)=(2h,, +1)IB;I(h,, +B})™", compare right panel of Figure 4.3, which
converges to zero if |BJ| gets large and, as a consequence, we obtain less biased estimates. But, due to
the smoothness of the Student t-prior at the origin, the derivate of the log-prior is continuous at the
origin, so that the minimum TP is attained at zero (TP =0), and consequently there are no sparse
solutions obtainable with this penalty resp. prior.
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Figure 4.3: First derivate of the univariate marginal log-priors of the regression coefficients dlogp(B1-) / dp
resulting from the various regularization schemes.The hyperparameters given in the legends are selected to
obtain q,,; =—4 as the lower 5% quantile of the marginal prior of the regression coefficient. The derivate of the
penalty function is obtained by reflection across the x-axis.

Shrinkage properties in terms of the marginal prior of the variance parameters

An intuitive way to understand the shrinkage properties is provided by the analysis of the marginal
prior of variance parameters ‘cé} , since small variances ‘céj — 0 induce a strong and large variances
ré} — oo induce a weak shrinkage of the regression coefficients 3;, with respect to the scale mixture
representation. Carvalho et al. (2010) suggested the use of the standardized constraint parameter
K= l/ a+ Téj )€ [0,1] instead of the variance parameters to improve the comparison of various priors.
The associated prior distribution of k; is derived by the density transformation p(X;)=p. (Klj—l)Kj’ 2,
where p.(-) denotes the marginal prior of the variance parameters réj . The behavior of the prior
p(x;) close to x;=1 (‘céj — 0) controls the shrinkage of the smaller regression coefficients, while

prior p(x;) close to x; =0 (rél — oo ) controls the tail robustness of the prior.
For the inverse gamma distribution of the variance parameter in (4.8) we obtain the density
hy hia-l .
= (OOShz’k) (KJ) eXp —O.Shz’}L KJ .
C(hy)  (1—x;)m 1-x;

]

p(x;)

At the right limit x; —1 the prior is always zero, p(x;) — 0, and at the left limit k; — 0 the prior
behavior depends on the hyperparameters h;; and h,,. We obtain for x; =0 that p(x;) =0, if
hiy >1, p(x;) = 0.5h,, ,if h;; =1, and p(x;) = o, if h;, <I.

Figure 4.4 shows the prior of the parameter «; under various hyperparameter constellations. From the
upper left panel to the lower right panel the hyperparameter h,, decreases, within the panels we
sweep through the scale of the prior by decreasing the hyperparameter h,, with fixed value for h,; .
The magenta lines mark the values, where the scale parameter of the Student t-prior for the regression
coefficients equals one. Within each panel, if the hyperparameter h,, decreases, more prior mass is
assigned to the neighborhood of «; =1 and shrinkage is enforced. The prior p(k;) becomes strongly
peaked near x;=0, if h,, is small enough. On the other hand, decreasing the hyperparameter h,,
places more probability mass in the neighborhood of k; =0 which promotes the tail robustness and
we obtain infinite spikes at k; =0 for h;, <1 in the lower panel. The density p(x;) associated to the
heavy tailed Cauchy prior is displayed in the lower left panel (magenta line). Here the prior p(x;)
equals zero at ;=1 and is unbounded at x;=0 with prior mass P(x;€[0,0.25])=0.53 and
P(x;€[0.25,0.75]) = 0.43 .
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Figure 4.4: Prior densities of the standardized constraint parameter ¥; for the marginal variance prior (4.8)
under various hyperparameter combinations given in the legends.The magenta line in the lower left panel
corresponds to the Cauchy density as marginal prior of the regression coefficients.
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Figure 4.5: Prior densities of the standardized constraint parameter K; for various regularization priors. The
hyperparameter combinations given in the legends are used in the simulations and applications.

Due to the trade-off between the magnitude of shrinkage and tail robustness, the hyperparameters have
to be selected carefully. To enable data driven estimates, we specify diffuse gamma priors for the
shrinkage parameter with small values of the hyperparameters h;; and h,, . For our general settings
hiy =h,; =0.01 (with P(x;€[0,0.25]) =0.943 and P(x;€[0.25,0.75]) = 0.023), h;, =h,, =0.001
(with P(x;€[0,0.25])=0.991 and P(x;€[0.25,0.75])=0.0025) used in the simulations and
applications, we obtain a lot of mass in the tails and an enhanced shrinkage for k; =1. For the various
shrinkage priors used in the simulations and applications, the distributions of the standardized
constraint parameters are compared in Figure 4.5 together with the horseshoe, Carvalho et al. (2010),
and the Normal-Jeffrey prior.
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4.1.3. Extensions

In Subsection 4.1.1 we have introduced two versions of the Bayesian ridge prior. One version
corresponds to the prior hierarchy in (4.6) and (4.7)

Biltd ~N(0:73 ). T IAi~8m (7). A;~Gamma(hy;.hy;) (A)
and the other corresponds to (4.5) and (4.4)
Biltg ~N(0;73), T3IA~8ym(t3), A~Gamma(h,;.,h,,). (B)

The first version (A) leads to a marginal Student t-distribution for each regression coefficient B;, as
described above, and enables an individual shrinkage of each regression coefficient via the coefficient-
specific variance parameter ré}. The joint prior of the regression coefficients B is the product of
univariate t-densities. The second version (B) leads to a multivariate Student t-distribution as marginal
prior of the regression coefficients P, with d=2h,; degrees of freedom and scale matrix
Y= h,,/2h, 1, , compare Appendix B.1, and induces an identical proportion of shrinkage for all
regression coefficients, due to the common variance parameter t3. Both versions differ, because the
product of univariate t-densities is not equivalent to a multivariate t-density. But, since the
distributions of the marginal variance parameter(s) are in both cases inverse gamma distributions,
IGamma(h,;,2h,,), the analysis of the distribution of the standardized constraint parameter K can
also be applied to analyze the shrinkage behavior under version (B). We use version (B) throughout in

the simulations and the applications.

In the upper panel of Figure 4.6 the different shapes of both versions are shown in terms of the 2-
dimensional log-priors of the regression coefficients. The adaptive ridge version (A) behaves similar
as the lasso prior (4.15) with ridges at the axes, but conversely we have rounded edges at the axes
under the ridge prior (A). In contrast the ridge version (B) produces elliptical contours, compare lower
panel of Figure 4.6. In the software both versions of the ridge prior are implemented. Version (A) is
specified as “adaptive ridge” method and (B) simply as “ridge”. The term adaptive indicates in
general, that covariate-specific complexity parameters are used, where each can be equipped in
addition with its own hyperparameters if desired. Covariate-specific hyperparameters enable to
“stretch” or “compress” the marginal priors of the regression coefficients covariate-specific which
increases again the flexibility of the joint prior. Such adaptations may be useful to take into account
correlations of the covariates or various covariate scales. In contrast, e. g. the lasso prior (compare
Subsection 4.2) is leading to covariate-specific shrinkage, even if a common prior for the shrinkage

parameter is introduced.

Group priors

The simultaneous selection of associated covariate groups, arising e. g. from categorical covariates or
from pathways representing predefined sets of interconnected genes, is also an important feature of
regularization priors. Group sparsity can be handled by assuming identical variance parameters for the
associated subgroups of regression coefficients, similar to the ridge version (B), to induce an identical
proportion of shrinkage for all regression coefficients within the subgroup. More formal, let
|~3 i =(Bj1,-Bjx,) denote the j=1,...,p, associated subgroups of regression coefficients with group size
k;=1. For each group je{l..px} we use the hierarchical structure ﬁj Iréj ~ N(0; r?JIkJ) ,

ré} IAj ~ Sy, (réj), A; ~is Gamma (h,;,h,, ), where I, denotes the k;-dimensional identity matrix
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Figure 4.6: Marginal 2-dimensional log-priors of the regression coefficients, log p(B;,B, |-), and equicontours,
log p(B;,B, |-) = const , resulting from the Bayesian ridge version (A) and (B), the lasso and the NMIG
regularization scheme.



BAYESIAN REGULARIZATION IN THE AFT MODEL 35

and réj is the group-specific variance parameter. Concordantly to the ridge version (B), we obtain
multivariate Gaussian scale mixtures for each group of associated regression coefficients f; with
marginal k;-dimensional Student t-distributions, each having d = 2h,, degrees of freedom and a scale
matrix X jlz =./hy / 2hy, I, . This version is not implemented in the software yet.

4.2. Bayesian lasso prior

4.2.1.  Prior hierarchy

Just as well known as the ridge regression in the context of collinearity, is the lasso regression,
Tibshirani (1996), if simultaneous variable selection and estimation should be achieved. The Bayesian
version of the lasso penalty pen(B,A) = 7"2?;' B;1 can be formulated with i.i.d. centered Laplace priors

B; I\ ~is Laplace(0,A), j=L,....ps., (4.10)

where A >0 represents the inverse scale parameter of the Laplace distribution, and joint density

p(BIA) =Ip"[p (B; 1) (&jxexp[—kiuﬂ} 4.11)

compare, €. g., Park and Casella (2008). Figure 4.1 shows the Laplace prior, BL(A =0.576), in the
univariate case. As in ridge regression, for given values of A, posterior mode estimation corresponds

to penalized likelihood estimation.

The Laplace density p(B;|A) is expressed as scale mixture of normals (4.1), with an exponential prior

on the mixing variances
Bilts ~N(0:3 ), 7 1A%~y Exp(42?). (4.12)
For full Bayesian inference, we use in addition a gamma prior for the squared shrinkage parameter A*
A* ~Gamma(h,;,h,;), hy;.h,; >0, (4.13)
where small values of the hyperparameters h;, >0,h,, >0 define diffuse gamma priors and allow
data driven estimates of the model parameters.

4.2.2. Shrinkage properties

Marginal priors

The introduction of the hyperprior for the shrinkage parameter is leading to the following marginal
density for the mixing variance parameter 'cgj

(hy+1)
h 2
p(% 1hihys) = [Exp(t 144%)Gamma (A2 Ih,;, by )dA? = 2111;{2112}“} . (419

This is the density of generalized Pareto (gP) distribution (pgp(x;a,s,m)zs’1(1+(x—m)/ as)™ !,
a>0, x=2m), with zero location parameter m=0, scale parameter s=2h,; /hl,k and shape

parameter a=h,; . As mentioned before, conditionally on the variance parameter 73 , the prior for [3;
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is Gaussian, but the marginal density of the regression coefficients is non Gaussian and can be

expressed as

p(B;1his,hsp) = [N(B 10,83 ) gPareto( 3 1h5,h,; )d}

(4.15)
hm i B; IB;
[(hy, +1/2)ex D,y | ———
,— ,—2 hos 1A / P(4 oh,, 2(hy 2 +1/2) I—th;h

with the parabolic cylinder Function D, (-), compare Appendix B.2 for details to the derivation. In

summary, the derived marginal distribution can be expressed as scale mixture of normals with a
generalized Pareto mixing distribution. The hyperparameter h,, plays the role of a scale parameter in
the marginal distribution of the regression coefficients, in particular the scale factor is given by
S :\/m . With respect to the unscaled distribution (h,; =0.5), smaller values h,; <0.5
concentrate more mass around zero and enforce the shrinkage, while larger values h,, >0.5 shift
more mass to the tails of the distribution. Using the connection D, (0) = 23 n%F’l(l‘TV) , we obtain at the
origin p(B; :OIhl,;h,hm):hl,,h(4h2,;h)’%l“(h1,k +5)I " (h;, +1). As reflected by this expression, the
hyperparameter h,, determines the level of the prior at the abscissa B; =0 and larger values are
leading to higher ordinates, which also enforce the shrinkage.

In contrast, e. g., to the ridge prior, the marginal prior (4.15) lacks a simple analytic form and the
theoretical properties of the resulting shrinkage estimators are hard to access in terms of the parabolic
cylinder function. Armagan et al. (2013) utilize a gamma prior for the shrinkage parameter,
A ~ Gamma(h,;,h,;), which leads marginally to a generalized double Pareto (gdP) distribution as
prior for the regression coefficients, i. e.

(hi+1)
Pear (B hia,han ) = ILaplace(Bj 10,A)Gamma (A1 h,;,h,; )dA :ﬁ[l By +1} , (4.16)
2hy | hoy

and the mixing scheme is interpreted as scale mixture of Laplace distributions. The simple analytical
expression of the marginal prior enables the formulation of a compact penalty function with
summands pen(B;;h;s,hya) = (hy, +1)log(IB;1+h,,) and pen’(l B;l:h;,h,,)=(h,; + 1)/(I B;1+h,,)
as first derivate to study the properties of the resulting posterior mode estimator. Armagan et al. (2013)
show, in the spirit of Fan and Li (2001), that the MAP estimator resulting from this penalty function is
continuous in the data, nearly unbiased, if the absolute value of the true parameter |f3;| is large, and
that small estimated coefficients are set to zero, if h,, <2./h;; +1, i. e. the prior reduces the model
complexity. Lee et al. (2012) showed that the gdP-prior, the exponential power prior and the Student t-
prior can be viewed as special cases of a generalized t-prior with four hyperparameters and investigate

the shrinkage and selection properties in this general framework.

In the frequentist context, Zou (2006) shows similar oracle properties for the adaptive lasso, where
covariate-specific weights w; are introduced in the penalization term pen(IB; ;A,w;) =Aw; |BJ| of the
regression coefficients. This leads to coefficient-specific penalties A;=Aw; in comparison to the
frequentist lasso, pen(IB;;A) = X|Bj| , with its uniform shrinkage of all coefficients. The author state,
that under an appropriate choice of the weights w;, e. g. as the inverse ML estimates, the adaptive

lasso can asymptotically perform as well as if the correct submodel was known.
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Shrinkage properties in terms of the marginal prior of the regression coefficients

The right panel of Figure 4.1 shows the marginal priors of the regression coefficients for the Bayesian
lasso prior (4.15), BL(h,; =0.21,h,; =0.129), and the generalized double Pareto prior (4.16),
gdP(h;;3 =1.90,h,, =1.70) in the univariate case. By trend, both priors behave very similar.
Compared to the one parameter Laplace-prior, BL(A =0.576), we obtain also peaks around zero and
non continuous first derivates at the origin, but the two hyperparameters enable shapes, which assigns
more probability mass to the tails. Under the selected hyperparameter constellations the gdP-prior is
slightly more concentrated around zero, which results in (marginally) lighter tails. But both prior tails
are almost comparable to the Cauchy- or the Bayesian ridge prior tails. Comparing the marginal log-
priors from the Bayesian lasso hierarchy, BL(h,; =0.21,h,; =0.129), and the Bayesian ridge
hierarchy, BR(h,; =0.45,h,, =0.248) , we see that both approaches are not so far from each other as
in their one-parameter versions, BL(A=0.576) and BR(A=0.169), with marginal Laplace and
Gaussian prior. Figure 4.6 displays the 2-dimensional shape of the lasso prior (4.15) and the
associated equicontours. The contours are similar the L,-penalty with q<1.

In the univariate case the contribution to the lasso penalty arising from the Laplace prior (4.10) is
given by pen(B;;A) =AIB;1, see Figure 4.2, with derivate pen’(IB;;A)=A, see Figure 4.3. The
Bayesian lasso penalty has the contributions pen(Bj;hl,Xhz,k):B?/Shu +logD_2(hM+I/2)(I B, I/\/ﬂ),
with derivate

(Zhl,x + 1) sz(hmﬂ) (‘Bj‘/\/ 2h,, )
\/ZhM D—Z(hu+l/2) (‘BJ‘/\/ th,x)

compare Appendix B.2. The right panel of Figure 4.3 shows the first derivate of the univariate

pen'(l B, I;hm,hm) =

marginal log-priors of the regression coefficients, dlogp(B;!-)/dB;, for the lasso variants. In contrast
to the Laplace prior, the Bayesian lasso and gdP prior do not inherit the problem of overshrinking
large coefficients, since the derivates vanish if If;| increases, resulting in a reduction of bias. In
contrast to the Bayesian ridge or NMIG (Subsection 4.3) regularization, the Bayesian lasso
regularization (also Laplace and gdP) produce a nonzero derivate of the penalty at the origin ; =0,
because the priors are not continuous differentiable there. With respect to the thresholding function
T(B;), the derivate of the penalty evaluated at the origin, pen’(IB;I=01-), determines the threshold
TP >0 in the linear model with orthogonal predictors, and the MAP resp. penalized ML estimates
with IBML,J« I<TP are set to zero. We obtain at the origin for the Bayesian lasso prior
pen’(0lh,;,h,, )= \/al“(hm +DI' (hy;, +1), for the gdP prior pen(0;h,,h,,)=(h, +1)/h,, and
pen’(0;A) = A for the Laplace prior.

Shrinkage properties in terms of the marginal prior of the variance parameters
For the generalized Pareto distribution of the variance parameter ré} in (4.14) we obtain the density

h 1 1 1-x% ~(uatt) h 1—x —(hia+1)
p(i;) = —+—— L+l e M R i |
2h,; K| 2h,; K 2h,, 2h,,

]

for the standardized constraint parameter ¥;. At the right margin k; —1 we have always finite
nonzero values p(x;) — hl,k/ZhM . At the left margin k; — 0 we obtain for the prior p(k;) —0, if
hy, >1, p(Kj)—>(2hm(l+1/2hm)2)’1, if h;, =1 and p(x;) = oo, if h;, <1. The influence of the



38 4. REGULARIZATION PRIORS

hyperparameters h;, and h,, is visualized in Figure 4.7, which shows the prior of the parameter x;
under various hyperparameter constellations. From the upper left panel to the lower right panel the
hyperparameter h,, decreases, within the panels the hyperparameter h,, varies with constant value
for h,, . Increasing h,, shifts more probability mass to the right support of ;. The magenta colored
densities result if h;; =h,; . For h;; <1 and small values h,; we obtain a horseshoe like shape for
the prior p(k;), i. e. we have high probabilities at the right margin, which determine the shrinkage,
and at the left margin, which determine the tail behavior. The shapes of p(x;) under the ridge and the
lasso prior are almost comparable for small values of the hyperparameters, with the exception that
under the ridge prior p(x;) vanishes at x;=1. We obtain for the two hyperparameter settings
hi, =h,, =0.01 (P(x;€[0,0.25])=0.951 and P(x;e[0.25,0.75])=0.023) and h;, =h,, =0.001
(P(x;€[0,0.25]) =0.992 and P(x;€[0.25,0.75]) =0.0025 ), that are used in the simulations and
applications, a lot of mass in the tails and an enhanced shrinkage near «;=1. The resulting
distributions of the standardized constraint parameters are compared in Figure 4.5 and we see that the

densities p(k;) under the lasso and ridge prior almost coincide.
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Figure 4.7: Prior densities of the standardized constraint parameter ¥; for the marginal variance prior (4.14)
under various hyperparameter combinations given in the legends.

4.2.3. Extensions

Group regularization: We can modify the hierarchical structure of the Bayesian lasso, similar as in
Subsection 4.1.3, to obtain a common regularization for an associated group of covariates. Assuming a
common variance parameter within each k;-dimensional group results in a multivariate Gaussian
scale mixture representation ﬁj ~ N(O,r?jlkj) with ‘cé} IA? ~;s Gamma(3 (k;+1),4A%) for the j-th
group of associated regression coefficients B; and marginally in a multivariate Laplace-distribution of
the regression coefficients ﬁj, compare Kyung et al. (2010) for details. The provided MCMC
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sampling methods for Bayesian inference can easily be extended to consider group sparsity, but this

not implemented yet.

Adaptive priors: To achieve more flexibility, we can equip the hierarchical models above with
covariate-specific shrinkage parameters and the resulting models are additionally named with
“adaptive”. For example, the adaptive version of the lasso prior is given through t; IA] ~ Exp(k? / 2)
with 7\,12 ~iid Gamma(hl,;b,bz,;h). It is straightforward to use also covariate-specific hyperparameters,
hyy,,bsy,, which can e. g. be utilized, if the covariates are not standardized, to take account for
different scales. However, one should keep in mind, that the number of parameters to estimate is
increased in the adaptive versions, which can cause problems in situations with low sample sizes. The

adaptive versions can be specified in the software if desired, compare Appendix D.3 to D.5.

4.3. Bayesian NMIG prior

4.3.1.  Prior hierarchy

Finally, we consider a normal mixture of inverse gamma distributions, shortly named as NMIG prior.
This prior has been suggested by Ishwaran and Rao (2003) for the regularization of high-dimensional
linear regression models. The conditional prior distribution for the regression coefficients is Gaussian,

as in the lasso and ridge case,
B 11y ~ N(0:%8 =Ly3), (4.17)

but in contrast, the variance parameters T are specified through a spike and slab mixture distribution,

modeled by the product of the two components
Ij [ Vo, Vi, ® ~iiq Bernoulli(ﬂ);Vo,VI), \VJZ | hl,\u7hl,\|l ~iid IGamma(hl’w,hzyw). (418)

The first component in (4.18) is a Bernoulli distributed indicator variable I; with point mass at the
values vy, >0 and v, >0. In particular the parameter v, should have a positive value close to zero, to
induce small variances, but we assume v, #0 to avoid degenerated priors. The value of v, should be
large compared to v, and we can use, e. g.,v; =1. The binary indicator variable takes the value v,
with probability P(I;=v,)=1-® and v, with probability P(I;=v;)=0®. Since the parameter ®
controls how likely the binary variable I; equals v, or v,, it takes on the role of a complexity
parameter which controls the size of the models. The assumptions in (4.18) are leading to a
continuous, bimodal distribution for the variance parameter ‘céj =Ly} given the hyperparameters v,

vi, hiy, hy,, ®.In particular, we obtain a mixture of scaled inverse gamma distributions
Té] | VO ,Vl 9h1,\11 ’h2,‘l/ ,(0 ~ (1 - 0)) IGaIIlma (hls‘V s Vth’W) + OJIGaInma (hl,\y s VIhZ,W) 5 (4 19)

with common shape parameter h,, and scale parameters v,h,, and v;h,, , compare Appendix B.3.
The priors in (4.18) can alternatively be derived on the base of the mixture distribution (4.19) using
the data augmentation approach depicted in Section 3. In the first mixture component, the so-called
spike, probability mass is strongly concentrated on small values of the variances and in the second
mixture component, the so-called slab, we obtain a more diffuse distribution with probability mass on
a wide support for larger variance values. Variance parameters arising from the spike component
induce a strong shrinkage of the regression coefficients, while variance parameters from the slab
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component enforce a reduced shrinkage. The prior locations of the two modes of the inverse gamma
mixture components are independent of ® and fixed at

h,
—*— mode,, =V,

mode,, =V, , .
hy, +1 hy, +1

The shape and scale hyperparameter of the inverse gamma distributed variances y; determine a basic
location of the mode, which is then adjusted by the values of v, and v,. We select the
hyperparameters h,,, and h,, with respectto h,, <h,, , to enforce a basic mode h,,, / (hyy +1)>1.
In addition, we assume a beta prior for the complexity parameter ®

®~ Beta(h,4,hy0) (4.20)

with mean E(wlh,,,h,,)=h, / (hy» +h,,)="H,. The beta prior reduces to the uniform prior in the
special case h;, =h,, =1, which enables to express an indifferent prior knowledge about the model
complexity. With an appropriate choice of the hyperparameters h,;,,b,, >0 it is possible to favor
more or less sparse models. In particular, for overparameterized models sparse solutions can be
enforced by choosing h;, <b,.

In the context of Bayesian variable selection George and McCulloch (1993) use a mixture prior (SSVS
prior) at the higher level of the regression coefficients, i. e. B;11; ~ (1-1;)N(0,75;) + I;N(0,7¢;), with
I;€{0,1} and pre-specified small and large values of the variance parameters T;; and t;;. The NMIG
prior mimics this variable selection strategy, since variances T3 = voy; from the spike component of
the mixture (4.19) induce a strong shrinkage similar 1j;, whereas variances T3 = v,y; from the slab
component of the mixture (4.19) support less biased estimates for relevant covariates similar to 77;.
The full Bayesian model specification avoids the direct selection of the values for the variance
parameters T5; and Tf; due to utilizing hyperpriors for 7. It facilitates an absolutely continuous
prior, due to v, #0, and straightforward Gibbs sampling to update the components I; and 3
simultaneously with the update of the complexity parameter ®. A common feature of the NMIG prior
and the SSVS prior is that the regression coefficients can be rated due to their relevance for prediction.
Since the sampled indicator values I; =v, contain the main information for variable selection, we can
utilize the posterior relative frequencies of the state I; =v, as relevance measure for the covariate
rating. Finally, variable selection is practiced by utilizing a threshold rule for the posterior relative
frequencies of the indicators I; = v,, compare Subsection 4.4. Nevertheless, we have, in contrast to the
lasso and the ride prior, an increased number of six hyperparameters to manipulate the shape of the
marginal prior of the regression coefficients, and the costs for the obtained flexibility is an enhanced
tuning effort. To guide the specification of the hyperparameters, we investigate in the following how
the hyperparameters affect the shape of the marginal priors and the shrinkage properties. Further we
analyze the behavior of the inclusion probability for a covariate with I; = v, in terms of the associated
full conditional.

4.3.2. Shrinkage properties

Marginal priors

The marginal density for the mixing variance parameters, after integrating out the parameter ®, is the

mixture of two inverse gamma distributions
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hye hie
T |-~ ——=—.IGamma(h,, Voh,, ) + ——=—-IGammac(h,, V;h,, ), (4.21)
hl,m+ 2,0 1,0)+ 2,0
which corresponds to the conditional variance density (4.19) for ® fixed at the prior mean (@w=H,).
Due to the high number or hyperparameters, we use the dot abbreviation to denote the set
{vo,vi,hiy,hyy ,hy,h, ) in the notation of the marginal distributions. The marginal distribution for

the regression coefficients 3; is a mixture of two scaled Student t-distributions

Bj|.~—h2’°° t(2hw, Vl(’lhz’W}r Mo tLZhw, Vlllhwj, (4.22)

1,0 + 2,0 hl,u) + h2,u) Ly

with d =2h,, degrees of freedom and the scale parameters s, =,/voh,, /hw and s, :Jvlhw/hl,w ,

compare Appendix B.3 for the derivation. We obtain as marginal inclusion probability of a covariate

given B; the expression

1
hiy 5 —(hyy+05) °
hio\ v, B: +2vh,,

Shrinkage properties in terms of the marginal prior of the regression coefficients

P(L;=v,1B;,) = (4.23)

The left side of Figure 4.1 shows the univariate marginal log-prior of the regression coefficients
resulting from the NMIG regularization scheme. We have a finite rounded “spike” at the origin and
observe a clear concentration of the log-prior around zero, which is stronger than under the other
regularization priors. The slope of the prior gets large within in the region [—1,1] and outside the prior
it is comparatively flat and initially indicates a reduction of the shrinkage, separately and compared to
the other priors. An inspection of the tails exposes over a broad range a prior behavior similar to the
Laplace prior, but the differences become larger as IB | increases and the log-prior is flattened. In this

region the NMIG prior indicates a stronger shrinkage compared to the Bayesian lasso or ridge prior.

The two points on the log-prior mark the intersection points, where the weighted “spike” component
of the mixture distribution (4.22) coincides with the weighted “slab” component. Both intersection

points are located at the roots

2 2h, ,, 2 2h, ,,

2h 1 — 2h 1
2v0h2,w(hl,m) et (v, )2y 2v1b2,w(hm) et (v )2hy

ISP, =+

2hy 2 2h

2
(hz,m )T“'Jrl (V() )2hl-w+1 - (];'11,(”)2}11,\4;+1 (V1 )2hw+1

This expression is clearly simplified, if v, =1 and a uniform prior for the complexity parameter is
used, i. e. h;, =h,,=1. Within the range [ISP;,—ISP;] the spike component dominates the slab
component and the location of the intersection points can guide the hyperparameter selection. In
addition, it turns out that at the intersection points ISPy the marginal prior inclusion probability (4.23)
always equals )5, i. e. P(I;=v,|B; =FISP;,-)=0.5. That means, regression coefficients outside the
interval [ISP;,—ISP;] have a higher prior inclusion probability than )4 and those within have a lower
inclusion probability. At the origin B; =0 we obtain P(I; = v, 1B;=0,-) = (1+h, y\/V, /hior/Ve) "

Figure 4.6 shows the 2-dimensional marginal log-prior of the regression coefficients and the
associated equicontours in comparison to the lasso and ridge prior. Close to the origin we observe

typical ridge (A) type contours, since the spike part of the log-prior dominates here. Then moving
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along the diagonal, if B, =, >0.5, we observe near the axes contours similar to L,-penalty, with
g <1 and rounded corners. Regression coefficients in this areas are mainly shrunken towards one of
the two axes, i. e. the [, -axis, if B, <P,, or vice versa towards the P, -axis, if B, >f,, but the
effective direction depends on the shape of the log-likelihood contours, the size of the regression
coefficients and their correlation, compare e. g. Konrath (2007) for a detailed 2-dimensional
visualization in terms of the lasso and ridge prior. Moving further along the diagonal, if B, =, >1,
we observe the area of the t-distributed slab part with initially convex contours with a reduced ridge
(A) type shrinkage, when both regression coefficient components are not too close to the axes. The
transition to the region, where the contours become concave, is outside the plotting area. In the
univariate case we obtain the first derivate on the marginal log-prior as

2y, +3 2h,, +3

(-H,)(2h, +DB,( B | *  H,Ch,+DB( B ) °
2v,h,,,

dlogp(B;;) _ J2voh,, 2vhs,, J2vih,, 424

2hiy +1 2hy, +1
dB; 1-H Bz ) 2 H B )
1+ + 1+
\2voh,,, 2voh,, A/2V,h,,, 2vh,,

We can easily proof that the derivate of the penalty pen’(IB;l;) =—dlogp(IB;1l-)/dB; converges

towards zero for large regression coefficients |;|— oo, so that large estimates are less biased, but the
convergence is slow compared to the other regularization schemes as shown in the right panel of
Figure 4.3 in terms of the derivate of the log-prior. For small coefficients we observe the clear
regularization from the spike component, which quickly decreases with increasing values of |f; 1. For
medium values |B;| around 1 the penalization is reduced, but the amount of penalization increases
again with the transition to the slab component and reduces there slowly for increasing values
IB;l—oo.

Figure 4.8 to Figure 4.10 display the marginal prior of the inclusion probabilities (4.23), the
corresponding marginal log-prior of the regression coefficients (4.22) and the first derivate (4.24) on
the right half for ;€ [0,3] under the variation of the hyperparameters. In the upper panels we have
h;y, =2.5 and in the lower panels h,, =5. From the left to the right h,, varies with values
h,, =25,50,100. Within each panel the parameter v, increases with values from v,=2.5e-5
(yellow) to v, =0.005 (magenta). Overall the value of v, is fixed to 1 and we set h;,=h,,=1.
Within each panel of Figure 4.8 we observe that the prior inclusion probability becomes larger, at
fixed values of the regression coefficients, with decreasing values of v,. Simultaneously, the prior
inclusion probability of very small or zero effects becomes smaller and we obtain at the origin the
value P(I;=v,IB; =0,-)=(1+1/ \/V_O ). This implies in terms of the log-prior of the regression
coefficients, logp(B;1-), that the intersection point of the two mixture components is shifted towards
the origin, if v, is decreased and the log-prior becomes more and more concentrated, compare Figure
4.9. The derivate dlogp(B;1-)/dB; in Figure 4.10 shows accordingly that lager effects get less
penalized and that the penalty of small effects increases. If we move from the left to the right panels in
the figures we observe that the decrease of the scale component h,,, is leading to the same effects on
the displayed quantities as for decreasing values of v,. In contrast the increase of the degrees of
freedom h;,, from the top to the bottom panels, induces more concentrated prior inclusion
probabilities at the origin with converse effects. Both changes have no impact on the prior inclusion
probability at the origin since P(I;=v,If;=0,)) does not depend on h;, and h,,. Figure 4.11
shows the impact on the 3 displayed quantities, if the prior mean of the complexity parameter
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Hy,=h 4 / h;,thy, is increased. The larger the prior mean H,,, the smaller is the size of the
regression coefficient with prior inclusion probability equal to larger than ), i. e. the regularization
from the spike component is reduced and we observe a clear impact on the inclusion probabilities of
small and zero effects which increase.
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Figure 4.8: Marginal prior inclusion probability of the indicator variable I;, P(I; = v, | B;,-) givenin (4.23), as
function of the regression coefficient {3; with the hyperparameters given in the upper left legend. In the upper
panel the hyperparameter h, ,, is setto h;,, =2.5 and in the lower panel to h;,, =5 . From the left side to the

right side the hyperparameter h,,, varies with values h,, =25,50,100. The values v, are given in the legend.
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Figure 4.9: Marginal log-prior of the regression coefficients, logp(;1-) given in (4.22), as function of the
regression coefficient 3; with the hyperparameters given in the lower left legend. In the upper panel the
hyperparameter h,,, is set to h;, =2.5 and in the lower panel to h,,, =35 . From the left side to the right side
the hyperparameter h, ., varies with values h,, =25,50,100. The values v, are given in the legend.
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Figure 4.10: Derivate of the marginal log-prior of the regression coefficients, dlogp(B;-) / dB; givenin (4.24),
as function of the regression coefficient [3; with the hyperparameters given in the upper left legend. In the upper
panel the hyperparameter h,,, is setto h,, =2.5 and in the lower panel to h,,, =5. From the left side to the
right side the hyperparameter h,,, varies with values h,, =25,50,100. The values v, are given in the legend.
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Figure 4.11: Marginal prior inclusion probability of the indicator variable I;, P(I; = v, IB;,") givenin (4.23),
(left side), marginal log-prior of the regression coefficients, logp(B; 1) given in (4.22), (middle), and derivate of
the marginal log-prior of the regression coefficients, dlogp(B;1-)/dB; given in (4.24), (right side), as function
of the regression coefficient B; with the prior mean of the complexity parameter Hy, :=h, / h; o +h,, givenin
the legend.

Shrinkage properties in terms of the marginal prior of the variance parameters

We highlight now the shrinkage properties in terms of the standardized constraint parameter ;. For
the mixture distribution of the variance parameter ‘céj in (4.14) we obtain for x; the mixture density

p(ic;) = hoo  (voho )™ (k)™ exp Vol yK;
" hethye T(hy) (I—k)he 1-x
ho, (viho )" (k)" ex vihy , K;
hio+hyy T(hy) (I—wp)h 1-x;

Due to the similarity, we can use the results from the ridge section to derive the limiting behavior of
the mixture density p(x;) at the margins. At the limit k; =1 both prior mixture components are
always zero and in summary p(K;) — 0. For k; —0 we obtain concordantly p(x;) =0, if h;, >1,
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p(x;) = (hyuVohay +hyoVihyy)/(hg +hye), if hy, =1 and p(x;) > if h,, <1. Figure 4.12
shows the prior of the parameter K; under various hyperparameter constellations. In the left panel the
parameters h,, and h,, are varied keeping the constellation of the remaining parameters fixed. In the
middle panel the parameters v, and v, are varied and in right panel we vary the parameters h,, and
h,, . The magenta density has identical hyperparameters in each panel. Increasing the hyperparameter
h,,, enforces that more probability mass is assigned to the left component of the mixture p(x;). This
supports the tail robustness, but leads simultaneously to a reduction of the shrinkage. Vice versa,
increasing the hyperparameter h,, is leading to an enhanced probability mass in the right mixture
component of p(x;), which reduces the tail robustness and enforces further shrinkage. Increasing v,
causes mainly that the prior mass from the left component of the reference mixture p(x;) is shifted
towards k; =0, the right component coincides almost with the right component of reference
distribution. In terms of the decreased parameter v,, the prior mass from the right component of the
reference mixture is shifted towards x;=1. In summary, the parameters h,, and h,, determine the
amount of probability assigned to the left and right mixture component of p(k;) and the parameters
v; and v, determine the location of the probability at the right and left margins ;=0 and x;=1.
The hyperparameters h,,, and h,, determine the shape and scale of the mixture components similar
as outlined under the ridge prior in Subsection 4.1.2. Increasing h,, enhances the mass near k; =0
and increasing h,, enhances the mass near k; =1. The values of the hyperparameter h,, determine
weather the limit of the prior at x; =0 is finite or infinite. From this point of view it seems to be
appealing to work also with values h,, <1 to support the tail robustness, e. g. h;,, <0.9 as displayed

in the right panel of Figure 4.12, and adjusting v, to a smaller value to emphasize the shrinkage.
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Figure 4.12: Prior densities of the standardized constraint parameter K; for the marginal variance prior (4.21)
under various hyperparameter combinations given in the legends. In the middle panel the reference density
(magenta) is given by the dotted line.

In our simulations and applications we use the two parameter constellations h;, =5, h,, =50,
vo =0.005, with P(x;€[0,0.25])=0.499 and P(x;e[0.25,0.75])=0.003, or h,, =5, h,, =25,
vo =2.5e-5, with P(x;€[0,0.25]) =0.458 and P(x;€[0.25,0.75])=0.126), both in combination
with v, =1 and h;,=h,,=1. The first setting is suggested by Ishwaran and Rao (2005b) for
standardized covariates and rescaled responses in the linear model. This setting is used in the
simulations of Section 10 based on the extended AFT model. In the second hyperparameter
constellation the selection of smaller effects is emphasized. We use this in the simulations of Section
11 with the extended Cox model and the applications. For both settings the density of the parameter

K; is shown in Figure 4.5. The prior mass in the left and right component of p(x;) is in both cases
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close to 0.5 and we have wide areas between the components with close to zero probability mass. In
Subsection 4.5 we compare the shrinkage properties of the different shrinkage priors with various

hyperparameter constellations in terms of the Weibull model.

Conditional posterior inclusion probability

In the applications we consider the evolution of the parameter estimates if the complexity parameter is
varied. The Bayesian paths of the estimates are computed by fixing the complexity parameter ® to the
initial value and skip the update of ® within the MCMC sampler. We observed that the parameter
paths, in particular the path of the indicator variable, are wiggly and become very unstable for larger
regression coefficients at small values of the complexity parameter ®. To clarify this behavior, we
consider the full conditional of the indicator variable, compare (6.11), to analyze the probability of

sampling I; = v, as new state of the Markov chain. The probability is given by

_ _ 1Y
P, =v, )= 1+1—m\/£exp 1L(vi=vo) B}
0) VO 2 V()Vl llIJZ

and depends on the hyperparameters v, and v,, the current states of the regression coefficient f;, the
variance parameter \; and the complexity parameter ®. In the following we use the fixed
hyperparameter constellation h,,, =5, h,,, =50, v, =0.005 and v, =1 for demonstration purposes.
The hyperparameters h,,,h,, affect only the update of the complexity parameter and may be assumed
tobe h;,,h,,=1.

e Due to P(I;=v,I-)—>1, if B; >0, larger regression coefficients are associated with higher
probabilities of sampling I;=v, as new state. At the origin ;=0 we obtain
P(I; = v, I-)=(1+(1—0))\/V_1 / 0)\/V_0 )™' and the inclusion probability of a zero effect depends
only on the current state of ®.

® When the complexity parameter varies in its range e [0,1], we obtain an inclusion probability
Pd;=v,1-)—1 at the right margin ®—1 and P(I; =v,|-) = 0 at the left margin ®— 0.

¢ Finally, for small variances y; — 0 the probability converges to 1, P(I;=v,|-)—1, and for

larger variances Y7 — oo follows P(I; =v, 1) = 0.

The last point may be at the first sight somehow contra-intuitive, since we associate larger variances
y; with the slab component and suppose a higher probability to sample I; = v,. We can clarify this by
considering the full conditional of the variance parameter, compare (6.12), which is given by
Vi |- ~IGamma(h,, +0.5,h,, +0.5I;'B) , where the scale parameter depends on the current state of
the indicator variable and the regression coefficient. The smaller value I; =v, causes an increase in
the scale parameter, compared to I; =v,, and we obtain by trend larger sampled variances. Figure
4.13 shows the full conditional of y; as function of W7 and [; under the given hyperparameter
constellation. At the left side we see the full conditional given I;=v, and at the right side given
I; =v,. If we condition on I; =v,, the scale parameter h,, +0.55; increases for larger values of the
regression coefficients, but in the shown range f; € [0,3] the changes in the full conditionals for fixed
values f3; are only marginal. The marked 5% quantiles and the mean vary marginally within the range
of the two marked full conditionals at 3; =0.5 and3; =1. In contrast, we observe a strong dependence
on the values B; if we condition on I;=v,. For larger values [; the scale parameter
h, +0.5v¢'B; =h,, +100B; becomes very large and more probability mass is shifted to larger values
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of ;. The marked 5% quantiles and the mean vary clearly and the upper 5% quantile exceeds the
plotting area for ; =1. The classification of a larger regression coefficient to the component I; = v, is
leading to larger variance ; compared to I;=v, and to a decrease of the sampling probability
Pd;=v,1-), and vice versa the classification of a smaller regression coefficient to the component
I;=v, is leading to smaller variance W} compared to I; =v, and an increased sampling probability
Pd;=v, 1.
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Figure 4.13: Full conditional of the variance parameter p(y7 |B;,1;,h,, =5,h,, =50) as function of Wy} and
B;. At the left side we condition on I; = v, with v, =0.005, at the right side we condition on I; = v, with
v, =1. The bold dashed lines mark the full conditional for the fixed values B; =0.5 and B; =1. The blue points
mark the upper and lower 5% quantile and the green point the mean of the full conditional at the both fixed
values f3; =0.5,1. The dashed colored lines show the movement of the quantiles and the mean if B; varies in the
interval [0.5,1].

Figure 4.14 shows the resulting probability for sampling the value v,, P(I;=v,I-), as a function of
the current value of the regression coefficient in the range B; <€ [0,2]. From the left to the right panel
the complexity parameter increases with values ®=0.1,0.5,09. Variability in the complexity
parameter can be considered by analyzing the changes caused by the variation of ®. In the upper
panel we assume that the current state of the indicator is I;=v,, i. e. the variance parameter is
sampled from the full conditional of y; given I;=v, and in the lower panel we assume that the
current state of the indicator is I;=v, with corresponding variance ;. Within the panels the
inclusion probability is shown in dependence on various values of the current variance parameter ;.
We use the mean, the mode and the 5% upper and lower quantiles of the associated inverse gamma
full conditionals evaluated at the current state f3;, to compute the ranges of the inclusion probability in
order to get an impression of the variability caused by the variance parameter 7. In the upper and
lower panel the inclusion probability increases at the origin B; =0 with values 0.008, 0.07, 0.39 from
the left to the right with increasing ®. For large values of the complexity parameter, e. g. ®=0.9, the
probability for sampling I; = v, for a zero regression coefficient is about 0.39, irrespective from which
component the current state of the variance Y} is obtained. The sampling probabilities of I;=v,
obtained with lower and upper 5% quantile of the full conditional of 7 (left and right blue line)
provides a kind of upper and lower bound of the inclusion probability for a regression coefficient. In
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the upper panel, with the current value I; =v,, we see that the upper and lower bounds of the inclusion
probability are both close to 1, for regression coefficients larger than IB;1>1.5 if ®=0.1 and for
regression coefficients larger than IB;>1.0 if ®=09. For ®=0.1 we obtain for smaller regression
coefficients |B;1<0.25 close to zero sampling probabilities P(I; = v, |-). Dependent on ® we obtain
bounds for regression coefficients, given a certain hyperparameter constellation, which are almost
assigned to the spike or the slab component. For some values of the regression coefficients within the
area, where the upper and lower bound are close to 0 or 1, we have a high variability in the sampling
probability of I, =v,. If we consider, e. g. for ®=0.1, the inclusion probability at the mode of the full
conditional of 7, we find that regression coefficients |[3; 1= 0.6 have a sampling probability close to
0.5, but the sampling probability can vary within the range P(I; =v,|-)€[0.05,0.95]. For each fixed
value of ® we find such regions of the regression coefficients with a high variability in the sampling
probability of I, =v,. For adjacent values of fixed complexity parameters and regression coefficient
states that move within this high variability area, the resulting adjacent posterior inclusion
probabilities can show a high variability and the parameter paths become wiggly. If the value of the
complexity parameter increases, the variability in the sampling probability is reduced, since also the
bounds of the sampling probability of I; =v, increase and the parameter paths become more stable at
the right side. For smaller values of ®, the area of regression coefficients with high variability in the
sampling probability of I, =v, becomes a wider range and is shifted to larger values of the regression

coefficients. So, at the left side the parameter paths of such medium sized regression coefficients

become very unstable.
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Figure 4.14: Sampling probability from the full conditional density of the indicator variable,

Pd;=v, | Bj,\yf, ), as function of the regression coefficient Bj for the hyperparameters given in the upper left
legend. From the left side to the right side the complexity parameter ® varies from w=0.1 over ®=0.5 to
®=0.9. In the upper panel the blue solid lines mark the mode and the lower and upper 5% quantiles of the full
conditional p(l|IJ2 IB;,I; =v,) atthe corresponding value of B i and the green line marks the mean. In the lower
panel the blue solid lines mark the mode and the lower and upper 5% quantiles of the full conditional
p(\IIJ2 IB;,I; = Vo) at the corresponding value of Bj and the green line marks the mean.
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We further see, that even for small, close to zero, values of the complexity parameter, larger effects
can have sampling probability of I;=v, close to 1. Such influential coefficients have over a wide
range of the complexity parameter high posterior inclusion probabilities. Therefore, the parameter
paths under the NMIG penalty show different behavior as e. g. the lasso paths, where for small values
of the shrinkage parameter also influential coefficients are strongly shrunken close to zero. In the
lower panel, with the current value I; =v,, the sampling probability P(I; =v,|-) for small regression
coefficients is close to the sampling probability in the upper panel. With respect to the mean of the full
conditional of W} we have clearly smaller sampling probabilities for larger regression coefficients of
comparable size than in the upper panel. The sampling probability is not as close to zero for larger
regression coefficients and a current state I; =v, can be left. The results shown in Figure 4.14 are
almost comparable for the second hyperparameter constellation (h,, =5, h,, =25, v,=25e5,
vy =1) used in the simulations and applications with respect to a modified smaller range of the

regression coefficients.

4.3.3. Extensions

Similar to the derivation in the Bayesian ridge Section 4.1.3, we obtain for groups of associated
regression coefficients, using an identical amount of shrinkage for regression coefficients |~3 ; within
the groups, mixtures of multivariate Student t-distributions with d =2h,,, degrees of freedom and
scale matrices Zé =1I,/voh,hi}, . )21% =I,/voh,h7}, as marginal distributions of the regression
coefficients ﬁj, compare Appendix B.3. The adaptive version of the NMIG prior enables the
specification of covariate-specific inclusion probabilities P(I; =v,) =, through covariate-specific
hyperparameters utilized in the prior distributions ®; ~ Beta (h, ,,h,,).

4.4. Variable selection

In contrast to the optimization based methods for feature selection, the presented sampling based
Bayesian MCMC methods do not eliminate features completely. Sampling based summary statistics
from the posterior, like the mean or the median, are never exactly zero even under the Bayesian NMIG
prior. Hence, selection of important variables relies on the inspection of the posterior. To build sparse

final models, we consider hard shrinkage selection rules to accomplish variable selection.

A first interval criterion is constructed using the empirical standard deviation §3 of the sampled
regression coefficients ;. We eliminate a covariate x; from the predictor of the final model, if the
zero lies outside the one standard deviation interval around the estimated regression coefficient B i and

otherwise the covariate is retained, i. e.
HS.STD: B;=0 if 0e[f;—3;.B+8;1.

The second rule is similar, but based on the 95% credible interval with the empirical quantiles Qﬁjyoms

and (A]Bj,oms from the sample of the regression coefficients, i. e.
HS.CRI: Bj =0 if Oe [CAlBj,04025,CAlBj,o4975] .

By trend the HS.CRI interval has a wider range compared to the HS.STD interval and is leading to
sparser final models. In Konrath (2007) these selection rules are utilized in context of regularized

exponential family regression, recently Li and Lin (2010) utilized similar rules, where the margins of
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the intervals are determined via ROC curves. In contrast to the Bayesian lasso and ridge prior, the
NMIG prior provides a natural criterion to select covariates on the base of the MCMC samples of the
indicator variables I;. Covariates with considerable influence should be frequently assigned to the
mixing distribution component corresponding to the indicator with values I;=v,. The higher the
percentage of the values v, in the sample, the larger is the evidence that the corresponding covariate
has a non negligible effect. In our simulations and applications we use the intuitive cut-off value of 0.5
as selection threshold and covariates with higher relative frequency of the associated indicator variable

value I; =v,; are included in the final model. In summary, the third criterion is given by
HSIND: ;=0 if PJ,=v,)<0.5,

where I@’(I i = V1) denotes the estimated inclusion probability based on posterior relative frequencies of
the Bayesian NMIG indicator variable value I; =v,. In the Simulation Section 11.5 we consider some
variations of the threshold value.

4.5. Simulation

In the following we demonstrate the properties of the presented shrinkage priors in a simple setting for
various hyperparameter constellations. In the later simulation and application sections we use only a
reduced number of methods and hyperparameter constellations with very different settings for the
AFT and CRR model. Since there is no connection between the extended versions of AFT and CRR
model, the results there are not directly comparable with each other.

Data generation

We use p, =10 covariates X; =(X;,...,X; o) which are randomly drawn from a multivariate Gaussian
distribution with zero mean, unit variance and no correlation between the covariates. The survival
times T, i=1,...,n, are generated from an exponential hazard model with constant baseline hazard
Ao(t)=1,1.¢e.

Ai(t) =exp(x/p), P=(0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9),

while the censoring variables C;, i=1,...,n, are generated as i.i.d. draws from the uniform distribution

U[0,c,] with ¢, chosen to obtain the desired censoring rates in each dataset.
We use R =50 replicated datasets with
e 1n=50,100,200 observations,

o with 0% and 25% censored observations in the data.

Simulation setting

We fit with the software package Bayesx a Bayesian Weibull model, compare Section 9.1.1 for
details, to the data with 15000 iterations, a burnin of 5000 iterations and we thin the chain by 10 which
results in an MCMC sample of size 1500. Posterior parameter estimates are in general based on the

empirical mean of the associated sample from the posterior.

The hyperparameters of the regularization priors are set to the following values.
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Bayesian ridge, compare (4.5) and (4.4):
® BRI: h;; =h,, =0.001, to allow a great amount of adaptiveness to the data.
® BR2: h;), =5, h,; =0.5, to induce a stronger shrinkage, compare Figure 4.4.
® BR3: h;;, =0.5, h,, =1, to obtain a marginal Cauchy prior.
Bayesian adaptive ridge, compare (4.6) and (4.7):
e ABRI: h;; =h,; =0.001, to allow a great amount of adaptiveness to the data.
® ABR2: h;;, =5, h,, =0.5, to induce a stronger shrinkage, compare Figure 4.4.
® ABR3: h;;, =0.5, h,, =1, to obtain a marginal Cauchy prior.
Bayesian lasso, compare (4.12) and (4.13):
e BLI: h;; =h,; =0.001, to allow a great amount of adaptiveness to the data.
e BL2: h;; =5, h,; =0.5, to induce a stronger shrinkage compared to BL1, see Figure 4.7.
Bayesian NMIG, compare (4.17), (4.18) and (4.20):
®* BNI: v,=1, vy=0.005, h;, =5, hy,, =50, h,, =1 and h,, =1 (ISF; = 0.558).
® BN2: v,=1, v,=25e-5, h=5, h,, =25, h,=1 and h,,=1 to induce a stronger

regularization of small regression coefficients (ISP, = 0.045).
Results

Regression coefficients

Figure 4.15 displays the median and the interquartile range of the estimated regression coefficients for
n =50 observation in the upper panel and n =200 observations in the lower panel. The left panel
shows the results for the uncensored data and the right panel those with 25 % censored observations.
Within the panels the unregularized estimates (B) are compared with the Bayesian lasso (BL1, BL2),
ridge (BR1, BR2) and NMIG (BN1, BN2) estimates.

For n =50 we observe a clear shrinkage of the regression coefficients under the shown regularization
priors. Since for the smaller regression coefficients B; <0.3 the unpenalized estimates (B) are close to
the true effects, we obtain by trend an overshrinkage of the smaller regression coefficients. This is
reversed for the larger effects, where the unpenalized estimates overestimate the true effects.
Comparing the NMIG results under the BN1 and BN2 hyperparameter setting, the stronger shrinkage
of the smaller effects is confirmed for BN2, with more concentrated boxes for B, =0 and 3, =0.1.
The amount of shrinkage is almost comparable with respect to the median for the regression
coefficient B; =02 and the larger regression coefficients are less penalized with BN2, similar to the
BR2 estimates. The strongest shrinkage is obtained with the NMIG prior followed by the lasso and the
ridge prior. In the presence of censored observations the uncertainty is increased and we observe wider
interquartile ranges of the boxes for all model parameters. If more information in terms of an increased
number of observations is available, e. g. n =200, the influence of the likelihood to the posterior gets
more pronounced, compared to the prior contribution, and the shrinkage of the regression coefficients
is reduced.
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Figure 4.15: Regression coefficient estimates 3;, j=1,...,10, under the regularization priors given in the
legends. The red horizontal lines mark the true value of the regression coefficient corresponding to the covariates

given at the x- axis. Upper panel: Replications with n

50 observations under no censoring (left side) and 25%

censoring (right side). Lower panel: Replications with n =200 observations under no censoring (left side) and

25% censoring (right side).

Figure 4.16 compares the estimates obtained with the adaptive versions of the ridge prior (ABRI,
ABR2, ABR3), the lasso priors (BL1, BL2) and the Cauchy-prior setting (BR3) from the data with

50 observations. The estimates under the three adaptive ridge priors are almost comparable to

n=

0, where the concentration of the boxes decreases from ABR2 to

each other with exception for f3,

ABR3. The adaptive ridge priors induce for smaller regression coefficients a stronger shrinkage

compared to the lasso priors, but the difference in the shrinkage is reduced for lager regression

coefficients and the adaptive ridge versions become comparable to BL1.

25%

50, cens =

n=

ABR2(hy=5, h=0.5)

BR3(hy,=0.5, hy=1)
B ABR1(hy;=0.001, h=0.001)

W BL1(hy;=0.001, hy=0.001)
BL2(hy;=5, h=0.5)

=0%

50, cens

n=

1)

ABR3(h13=0.5, hyp=

ABR2(h;=5, hy;=0.5)

BL2(hy;=5, hy=0.5)
BR3(hy;=0.5, hy=1)

W BL1(hy;=0.001, hy=0.001)

o_| @ ABR1(h;;=0.001, h,,=0.001)

o
©
o
©
<]
<
o
o
o
o
o
o
=]

oLx

6%

0LXx

6%

8x

X

99X

GX

§ 28

£Xx

X

, under the regularization priors given in the

4.16: Regression coefficient estimates [3;, j=1,...,10
legends. The red horizontal lines mark the true value of the regression coefficient corresponding to the covariates

Figure
given at the x

50 observations under no censoring (left side) and

- axis. Both sides show the replications with n

25% censoring (right side) in the data.



BAYESIAN REGULARIZATION IN THE AFT MODEL 53
o
= BN1(hyy=5, h2,=50, v=0.005)  BN2(hyy=5, hay=25, vg=2.5¢-5)
- n=50,cens =0% - n=50,cens =0% . L3
o | H . .
] = , - 3
o _| 0% o
o L ) »
s oo
‘5 © R
Py R, )
N L ) !
T - . ,3,,3;. ® beta 1 ! ® beta1
5 ° R4 A ® beta2 + j ® beta2
2 o : ® beta 3 ; i @ peta 3
S i ; ® beta 4 ; i ® beta4
J . beta 5 ! j beta 5
! ! @ beta 6 ! ! ! @ beta6
| | @ beta7 h i | | | @ beta7
1 : beta 8 \ : : 1 : 1 beta 8
: : beta 9 : : : : : : beta 9
| | beta 10 | | | | | | | beta 10
T T T T T T T T T T T T T T
N - BL2(hy3=5, hp=0.5) < BR2(hy;=5, h»=0.5)
| n=50,cens =0% | n=50,cens =0%
o | & i R
© i 14 \ ] ] -
c 7 . T sev e
s _ 4s 5 a 2 “"‘
2 4 S
° 28
X 5 FOT
H ® betal | | G ! @ betal
H ® beta 2 n&?’ ] j @ beta2
e ® beta 3 = : . @ beta3
® beta 4 ' ; | ® beta 4
beta 5 ! ! ! beta 5
@ beta 6 ! ! ! @ beta6
® beta7 | | | @ beta7
beta 8 H 1 1 beta 8
beta 9 1 1 1 beta 9
beta 10 | | | beta 10
T T T T T T T T T T T T T T
02 01 00 01 02 03 04 05 06 07 08 09 10 11 12 02 -01 00 01 02 03 04 05 06 07 08 09 10 11 12
unpenalized beta unpenalized beta
N < BR3(hy;=0.5, hy=1) < ABR1(h;;=0.001, hy;=0.001)
| n=50,cens = 0% s | n=50,cens =0%
o | POl | e
- — o .’ - - 3a .
v .
s 1 wieh
3 St
o .
o
Q
N h
® ® beta1 1 @ beta1
s ® beta 2 ! @ beta2
e ® beta 3 | 1 @ beta3
® beta 4 | | ® beta4
beta 5 y ! ! beta 5
® beta 6 i ! ! ! @ beta6
® beta7 i : 1 1 1 @ beta7
beta 8 Eohy i i 1 i i beta 8
betag | 7| ot A P beta 9
beta 10 | P o beta 10
T T T T T T T T T T T T
N < ABR2(hy;=5, hy=05) — ABR3(hy;=0.5, hy=1)
| n=50,cens = 0% | n=50,cens =0%
o | 3 i 3%
— S, ‘i = .ha
* ¥ . 03 4
» T Ly ¥
b
13
o
o
] N
s < | '...\,‘.:9"'; ® beta 1 @ betal
g ° PO : ® beta 2 @ peta 2
o o et 7 :*OC? | | ® beta3 @ beta3
o | | ® beta 4 @ beta4
! ! beta 5 beta 5
! ! ® beta 6 @ beta6
| | @ beta7 @ beta7
| | beta 8 beta 8
| | beta 9 beta 9
L beta 10 beta 10
T T T T T T T T T T T T T
02 01 00 01 02 03 04 05 06 07 08 09 10 11 12 -02 -01 00 01 02 03 04 05 06 07 08 09 10 11 12

unpenalized beta

unpenalized beta

Figure 4.17: Shrinkage of the regularized regression coefficient estimates B i» j=1,..,10, from the replications
with n =50 observations and no censoring in the data under the various regularization priors given in the upper
left legends. The x-coordinates represent the unpenalized estimate and the y-coordinates the penalized estimate
of the corresponding effect coded by the colors given in the lower right legends. The colored dashed lines mark

the associated true values of the regression coefficients on both axes.
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Figure 4.18: Shrinkage of the regularized regression coefficient estimates G i» j=1,...,10, from the replications
with n =100 observations and no censoring in the data under the various regularization priors given in the upper
left legends. The x-coordinates represent the unpenalized estimate and the y-coordinates the penalized estimate
of the corresponding effect coded by the colors given in the lower right legends. The colored dashed lines mark
the associated true values of the regression coefficients on both axes.



BAYESIAN REGULARIZATION IN THE AFT MODEL 55

To visualize the amount of shrinkage from another point of view, the regularized estimates under the
various priors are plotted against the unregularized Bayesian estimates, compare Figure 4.17 (n =50)
and Figure 4.18 (n=100). The true effect sizes are coded by the colors given in the legends. In
particular the amount of shrinkage under the NMIG prior reminds somehow on the SCAD penalty,
Fan and Li (2001).

Penalty

In the hierarchical representation of the shrinkage priors, the variance parameters ‘céj determine the
concentration of the conditional Gaussian distribution of the regression coefficients around zero and
smaller variances ré} induce a stronger shrinkage of the regression coefficients. The regularization of
the regression coefficients is reported in Figure 4.19 (for BN1, BN2, BL1, BR1) and Figure 4.20 (for
BR3 ABRI1, ABR2, ABR3) in terms of the logarithm of the inverse variance parameter log(%[;f).
Displayed are the results obtained with the estimated empirical posterior mean, median, 10% and 90%

quantile of ‘céj over the replicated uncensored data with n =50 observations.

Under the NMIG prior we observe a great variation in the various location parameter estimates, but
each location parameter reflects the decreasing penalty for increasing sizes of the regression
coefficients. The penalty is clearly increased for smaller effects in setting BN2, but the variability is
clearly reduced for the larger effects. Note that the ridge priors BR induce the same proportion of
shrinkage for all regression coefficients. We obtain a covariate-specific penalty under the ABR, BN
and BL regularization with a stronger penalization of the smaller and a weaker penalization of the
larger regression coefficients. In general we construct the parameter estimates in terms of the
empirical mean of the posterior sample, and consequently we report in the simulation and application
sections the estimated log-penalty also on the base of the posterior mean of ‘céj . By the displayed
variability in the location parameter estimates we have to keep in mind that the mean estimate under
the NMIG prior is rather a lower bound to get an impression about the strength of the regularization.
Compared e. g. to the lasso BL1, the log-penalties from the adaptive ridge priors indicate the stronger
shrinkage of smaller effects and the weaker regularization of the larger effects. Under the settings
ABR2 and ABR3 we observe a concentration of the location parameters for B, =0, further the
resulting marginal posteriors of the variance parameters seem to be extremely skewed, since the mean
estimates fall within the region of the 10 % quantile. With respect to this result, ranking the covariates
on the basis of the variance parameters réj should be rather based on the posterior median than on the

posterior mean.

Figure 4.21 and Figure 4.22 show the associated results to Figure 4.19 and Figure 4.20 in terms of
the estimated regression coefficients, i. e., we see the empirical posterior mean, median, 10% and 90%
quantile of B; over the replicated uncensored data with n=50 observations under the priors BN,
BN2, BL1 and BR1. In general the clear differences observed in the estimated location parameters of
the variances T;j are less pronounced for the regression coefficients f3;. The empirical mean and
median estimates of [3; are almost comparable for most of the regularization priors, even for the
Bayesian NMIG prior under the hyperparameter setting BN1. Larger differences for the smaller
regression coefficients (B;,B,,B;) are obtained with the setting BN2, where the median estimates are
much more concentrated around zero than the mean estimates. The relative positions of the shown
estimated location parameters indicate almost symmetric marginal posterior distribution for the
regression coefficients in contrast to the estimates of the variance parameters.



56

4. REGULARIZATION PRIORS

BN1(hyy=5, hy,=50, v=0.005) 10% quantile BN2(hy,=5, hp,=25, vo=2e-5) 10% quantile
mean o B mean
i median 1 1 median
¥ M 90% quantile * . s L ? N ﬁ . il A M 90% quantile
* ® £ ? g é H H H r o - ul M 4.
UL T R B FO 1
o . . . ﬁ | ) I} ©
z |
[} i
g 3 Bl ‘ 1 H
1= ! H ' | | T
o | i 1 .
=1 1 1 I ] o
o [ 4 I I ol oL |-
o ‘ I RO S R R T
1 | . ! . f i ! . el He T !i B, e = e e T
n =50, cens = 0% . E : 8 n =50, cens = 0%
BL1(h4;=0.001, h»,=0.001) 10% quantile BR1(h;=0.001, h;=0.001) 10% quantile
mean mean
<4 i H 7 median < 4 median
a E] H ! T ¥ 90% quantile ¥ 90% quantile
N M S H B Q ‘ 1 : ol T : : : : : ! 1 H 1
NI I T TR SAN T N T PO I PO TN VR T VR PO TN TN P
s | . 1 . A R 3 . H 4 B B B B B By By By B
3 U ST ETN PO T l S ! ) ﬂ f ﬂ ﬂ E ﬂ it ﬂ it
B e . w8 (O S PR B Bt B B B B B e e .
i T i g ' : ! l‘. I - ! R i ! R R L H L !
o o
n =50, cens = 0% n =50, cens = 0%
- N [¢] < wn © ~ @ [} o - N [¢] < wn © ~ @ (=2} o
% Y 9 I e % 2 2 g Y 9 - 2 % 2 2 2
Figure 4.19: Log-penalty estimates log(%gf) , j=1,...,10, for the replications with n =50 observations and no

censoring in the data under the regularization priors given in the upper left legends. Shown are the upper and
lower 10% quantiles, the median and the mean of the log-penalty.
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Figure 4.20: Log-penalty estimates log(57), j=1,...

,10, for the replications with n =50 observations and no

censoring in the data under the regularization priors given in the upper left legends. Shown are the upper and
lower 10% quantiles, the median and the mean of the log-penalty.
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Indicator variables

Figure 4.23 shows the estimated posterior inclusion probabilities for the two settings of the NMIG
prior BN1 and BN2. The estimates are based on posterior relative frequencies of the Bayesian NMIG
indicator variable value I, =v, in the replications with n =50 and n =200 observations, each with
and without censoring in the data.

Under the setting BN1 we observe a slow increase of the estimated inclusion probabilities for
increasing size of the regression coefficients. The smaller regression coefficients (B,,B,.0;) have
inclusion probabilities close to zero and the largest regression coefficient [, obtains an inclusion

99

probability about 0.8. The uncertainty in the classification to the “spike” and ‘“slab” mixture
component, as shown in Figure 4.14, is indicated by the larger box-widths for increased regression
coefficients. The uncertainty in the classification decreases for larger values of the regression
coefficients and the boxes become smaller. Due to the range of the regression coefficients, this
behavior can clearly be observed in terms of the setting BN2, but the boxes get also smaller with the
setting BN1 for larger coefficients than 0.9. We obtain estimated complexity parameters ® with
median = (.37 in the uncensored data with n =50 observations. Censoring in the data increases the
uncertainty and we have larger box-widths. The inclusion probabilities increase by trend and we
obtain an increase of the estimated complexity parameter (median = 0.4) with the data containing 25%
censored observations. Conversely, when the number of observations is increased to n =200, the
estimated inclusion probabilities commonly decrease about a small amount, leading also to a reduction

in the estimated complexity parameter (median of the estimates = 0.31).
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Figure 4.23: Estimated inclusion probabilities, I@’(I i=Vvi), j=1,..,10, based on posterior relative frequencies of
the Bayesian NMIG indicator variable value I; = v, for the two hyperparameter settings given in the legends.
Upper panel: Replications with n =50 observations under no censoring (left side) and 25% censoring (right
side). Lower panel: Replications with n =200 observations under no censoring (left side) and 25% censoring

(right side). The red horizontal line marks the cut off value 0.5 of the hard shrinkage selection criterion HS.IND.
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With the NMIG prior setting BN2 the estimated inclusion probabilities also increase with increasing
effect size, but there we observe basically different and larger sizes of the estimated inclusion
probabilities and a rapidly increase compared to the setting BN1. In the data with n =50 observations,
effects larger than By =0.7 have an inclusion probability about = 1 and the smaller effects around zero
about = 0.45 with respect to the median. We obtain estimated complexity parameters ® in the
replications with median = 0.75 that reflect the higher model complexity. The impact of the censoring
is transferable from the setting BN1, but with increased sample size n =200 we observe a somewhat
different effect. The uncertainty of the classification concerns mainly the effects B, and B, the
inclusion probabilities for the effects larger than 3, are clearly increased and we have a reduced
inclusion probability for B,. This is also reflected in the estimates of the complexity parameter which
increase the median = 0.8 for n =200 uncensored observations. It may be somehow confusing at the
first sight that the estimated inclusion probability of the zero effect [, is not as close to zero as one
may possibly expect due to the strong shrinkage of this effect. But we have seen in the right panels of
Figure 4.14 that large values of the complexity parameter ® increase the sampling probability of the
indicator value I;=v, for zero effects. On the other side we observe sizes of the zero regression
coefficients in a broad range around zero, compare Figure 4.22, and such effects have a broad range
of possible nonzero sampling probabilities also shown in Figure 4.14. This explains the high

uncertainty in the classification observed for the zero effect under the setting BN2.

If the HS.IND selection rule of Subsection 4.4 was applied, we would remove by trend the covariates
X, to X4 in almost all replications from the final models under the prior setting BN1 and the covariate
Xy with true effect B, =0.9 would always be included. Under the setting BN2 the covariates x, to

X0 would frequently appear in the final models while the covariate x; would be often removed.

4.6. Random walk prior

Prior hierarchy

Nonparametric model components, like smooth effects, the error term in the flexible AFT model or the
log-baseline hazard in the Cox model, are represented as linear combinations of basis functions
defined by B-Splines or Gaussian densities. To guarantee smoothness, we assume Bayesian random
walk priors of d;-th order for the basis function weights a;, j=0,1,...,p,, as suggested in Lang and
Brezger (2004), to counterbalance the flexibility provided by utilizing a large number of basis

functions. In particular, the first or second order random walk priors are given by,
OCj,k = (x‘j,k—l + uJ‘,k or OCj,k = 2(X‘j,k—l - aj,k_z + uj,k 5 (4.25)

with i.i.d. Gaussian errors u;, ~ N(O, rij) , j=0,1,...,p,, and diffuse priors for the initial values
p(ai;;) o< const or p(at;;)=p(0ai;,) o< const. The first order random walk prior controls abrupt jumps in
the differences AVa; =0, — 0, , while the differences corresponding to the second order random
walk prior AP, =0, — 20, + O, penalizes deviations from a linear trend. Higher order
differences with d;>2 are recursively defined via Ao, =A%, —A“Pa;,, and diffuse
priors for the d; coefficients p(aij;) o< const,..., p(Q;4, ) o< const . The variance parameter ‘cij controls
the smoothness with the connection, that large values of the variance parameter allow a clear variation
in the basis function weights corresponding to wiggly function estimates, while small variances

implicate smoothed curves as estimates.
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The joint prior for the parameter a;, j=0,l,..,p,, is derived as the product of the conditional

Gaussian densities (4.25) and has the form

~

i

2
p(o;12 ) e [%J exp[—%ﬁja;KJ«aJ}, j=0,1,...p,, (4.26)
where K; denotes the penalty matrix with k; :rank(K j): g;—d;. The term oK;a; represents the
sum of the quadratic differences o/K;o; =5 dﬁl(A(d”(xj,k )> and the penalty matrix can be written as
K; =D/D;, where D; is the corresponding d;-th order difference matrix of dimension (g; —d;)xg;.
In general, the penalty matrix K; does not have full rank, i. e. k; <dim(a;), and this rank deficiency
represents the fact, that specific parts of the function remains unpenalized. For example, a polynomial
of order (d;—1) remains unpenalized by the d;-th order penalty matrix. In particular a second order
penalty applied to smooth predictor terms f;(-) is leading to a linear modeled effect in the limiting
case, when the variance parameter decreases ‘céj — 0. As a consequence, the conditional Gaussian

prior (4.26) is partially improper with precision matrix II;:= ’C&?K i» and with respect to the partial

2

impropriety the covariance matrix is written as X = T;

K7, where Kj denotes a generalized inverse
of the penalty matrix K;. Theoretical results to the propriety of the resulting posterior are given, e. g.,
in Fahrmeir and Kneib (2009) in the context of structured additive exponential family and hazard

regression and in Hennerfeind et al. (2006) in the context of geoadditive survival models.

The conditional distributions o Iaj,_k,'cij of the single basis function weights o;, given the
remaining weights a; :(Ocj’l,...,(xjyk,l,ocjykﬂ,...,ocjyg])' are also Gaussian with mean and variance
2
L K[k o, 2y T

, Var(ocjyklaj,,k,‘ca])——,

Kj[k,k] K, [k,k]

E((X‘j,k | (ljy,k ,Téj ) = (427)
where Kj[k,/] denotes the element of the penalty matrix in the k-th row and / -th column. In a full
Bayesian approach the variance parameters réj , j=0,1,...,p, , are commonly equipped with conjugate

inverse gamma priors
T, ~ IGamma(h, . ,h, ). (4.28)

To specify almost diffuse inverse gamma priors, we select small values of the hyperparameters
hi;, >0,h,, >0. Common choices in this work are h,; =1 and a small values h, € {0.01,0.001} or
also h, € {0.01,0.001} . The choice of diffuse, but proper, inverse gamma priors is usually not crucial
for smoothing variances to obtain proper full conditionals, compare, e. g., Fahrmeir and Kneib (2009)
who provide conditions for propriety of posteriors.

5. Priors for the extended AFT model

In the following the priors of the extended AFT model (2.1) with predictor (2.7) and error distribution
(2.6) are briefly summarized. In addition to the estimation of the parameter vector (a’,p’,y’,6)" from
the extended AFT model, the (partially) latent log-survival times y and the vector of latent component
labels r need to be imputed. Together with the hierarchical representation of the regularization priors
for the predictor components we obtain a beneficial hierarchical model representation to derive fast
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MCMC update schemes for posterior inference since most of the priors have a closed and conjugate

form.

Joint prior distribution

The complete parameter vector 0=(a’,p’,y’, 72,1 ,p’,0)" consists of the regularized regression
coefficients &= (a,a],...,a;, ) , @;=(0lj,....0, ) , representing the basis function weights of the

nonlinear modeled covariate effects in the predictor and the transformed mixture weights of the error

2
ot

distribution as well as the associated smoothness parameters g =(T; ,T ..,‘cip )" and the scale
parameter G . Further contained are the unregularized linear effects y = (y;....,¥,,)” and the regularized
linear effects B =(B;,....B,,)" with the associated variance parameters 3 = (T3, s T Y and p, which
is the generic notation for prior-specific hyperparameters from further stages of the hierarchical

formulation, like the shrinkage parameters.

With the independence and distributional assumptions of the latent quantities from Section 3 we obtain
the hierarchical prior structure p(y,r,ﬁ) =p(ylIr,0)p(r10)p(@). The mean and covariance matrix of
the log-survival times y depend on the regression parameters of the predictor and the scale parameter,
hence we write p(ylr,0)=p(ylr,a,,...,a,, ,B,y,0). Accordingly, we have for the component labels
the dependence on the (transformed) mixture weights p(r!10)=p(rIw)=p(rla,). In summary, the
joint prior is given by
p(y;rae) = p(y Ir,ala'"aapz aB;Y’G)p(r | ao)p(e) ) (51)
with
Pz
p(0) =] [p(e; 172 )p(t2 ) - p(B 1 T8)p(T} | P)P(P)P(Y)P(G?), (5.2)
=0

where the factorization in p(0) reflects the implied independence assumptions formulated in Section

4. The joint prior consists of the following conditional priors for the parameter components.

Prior of the survival times

At the first stage of the prior hierarchy the joint distribution of the log-survival times Y is multivariate

Gaussian
Yir,a,..,a,,.B,v,0~N(p,,X,), (5.3)

with mean vector p,=m+om,, m,=(m,,..,m, Y and covariance matrix X, =0°S,,
S, = diag(sf} ,...,sf“), compare Section 3. The components m, and sf‘ , ne{l,...,go}, are the mean and

variance of the r -th error mixture component.

Prior of the latent component labels

On the second stage the distribution of the component labels rla, is the product of n discrete

multinomial distributions R; ~ MulNom(1, w(a,)) with density

p(rlay)= I—Olw}” (a)= [Zolexp(oto,j )} I—(J[exp(njoco,j) : (5.4)
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The probability of a single component label is p(x | ay) = w, (ay) and the last term in expression (5.4)

results with the reparametrization of the mixture weights (2.9).

Prior of the unregularized linear effects

The prior distribution of the unregularized regressions coefficients ¥ = (Y,....,¥,,)” in the predictor can
be taken to be the product of independent diffuse priors p(Y;) e const., j=1,...,p,, or the product of
independent zero mean, highly dispersed Gaussian priors. In the second case we obtain a multivariate

Gaussian prior

’Yluy’zy ~N(uy727)s (55)

with p, =0 and X;' — 0. In both cases the prior of y is denoted with p(y). The general form in
(5.5) is used to derive the general structure of the full conditionals when the prior is a multivariate

Gaussian distribution.

Prior of the regularized linear effects

As seen in the Sections 4.1 to 4.3, the general form of the priors for the regularized regression
coefficients B=(B,,....p,, )" are zero mean Gaussian distributions letéj ~N(0,r§j), where the
variance parameters ’Céj in combination with further hyperparameters p drive the specific kind of
shrinkage or variable selection. Under the conditional independence assumption we obtain a

multivariate Gaussian prior
Blt3 ~N(0,%) (5.6)

with diagonal covariance matrix Xg =D :diag(‘cél,...,‘cép ), that determines the shrinkage of the

regression coefficients towards the mean pg =0.
The associated priors for the variance and shrinkage parameters are:

Bayesian ridge version (A) (p=(A,,...,A,.))

Téj |}\‘~81/27uj(1§j)7j=17"'7pxa (5‘7)
}\‘j ~iid Gamma(hljuhl,?\.); hl,?uhl,?\. >0 ’jzl""’px . (58)

Bayesian ridge version (B) (p=12\)
T[%)I}\‘~81/2)L(Té)’j=1a'"apx7 (5‘9)
A ~Gamma(h,;.,h;;); hy;.h;>0. (5.10)

Bayesian lasso (p=27\)
A? .

'téj |}\42 ~iid EXP(TJ , le,...,px , (511)

A* ~Gamma (h,;,h;3); hy;h; >0. (5.12)
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Bayesian NMIG with t; =Ly} (p=0)

I 1vg, vy, ® ~;q Bernoulli(w; vy, vy), j=1,...,py, (5.13)
WJZ lhl,w’hZ,w ~iid IGamma(hl,w’h2,\|l)’ hl,w’hZ,w > 0 > .] = L--wpx s (514)
0~ Beta(hl,m,hlm); hl,(,\)’hZ,O) > 0 . (5.15)

Prior of the nonlinear effects and the transformed mixture weights

For the basis function weights a;=(0j;,....,0;,, Y, j=0,1,..,p,, of the nonlinear predictor
components f;(-) and the mixture error density f.(-) the priors are specified by random walks of d;-th
order. This is leading to an intrinsic Gaussian Markov Random Field (GMRF) prior as defined in the
Section 4.6

;172 ~N(0,2;), j=0.L...p,, (5.16)

with covariance matrix X = 'céjKj‘, where K7 denotes a generalized inverse of the penalty matrix
K; with rank rg(K;)=g;—q;. In addition diffuse priors are used for the q; coefficients
p(atj;) o< const.,..., p(Qjg )< const. The smoothness controlling variances Tij are equipped with
inverse gamma distributions

w2 ~IGamma(h, . h, ). hyo g >0 j=0,1,....p,. (5.17)

Prior of the scale parameter

Finally, for the scale parameter the prior is specified as an inverse gamma distribution

62 ~ InvGamma (h,,hs,), hig,h,6>0. (5.18)

6. MCMC inference for the extended AFT model

In the following subsections the update of the model parameters and the sampling algorithm are
described. Bayesian Inference of the model parameters is carried out with MCMC techniques by
consecutively updating conditional posterior distributions (full conditionals) of single parameters or
blocks of parameters given the rest of the parameters and the data. The full conditional for a group of
parameters is proportional to the posterior distribution density and derived by disregarding all factors
that are independent of the considered parameter group. The derived MCMC sampler is based on
Gibbs sampling or Metropolis-Hastings (MH) within Gibbs sampling. Gibbs sampling is used, if the
full conditional of the considered parameter or parameter block given the current values of the
remaining parameters has a standard form. Sampling from standard distributions is also a very
efficient way to achieve a new state of the Markov chain. Another general way is to perform a
Metropolis-Hastings (MH) update, where at first a new candidate state is drawn from a proposal
distribution and this candidate is then accepted or rejected as new state of the Markov chain based on
the ratio of probability densities of the candidate and the current state of the chain. This method is

often applied, if the full conditional has no closed form. E. g. for the update of the mixture weights a
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version of the Metropolis-Hastings algorithm based on IWLS proposals, as proposed in Gamerman
(1997) and described in Brezger and Lang (2006), is used. With symmetric (Gaussian) proposals that
are centered at the current state of the chain, we obtain the so called Metropolis update, a simplified
special case of the MH update scheme. For univariate full conditionals from nonstandard distributions
we use alternatively the slice sampling method of Neal (2003). The described inferential procedure is

implemented in the function baftpgm (), compare the Appendix D.5 for a description and the usage.

6.1. Conditional posterior densities
From the Bayesian theorem (1.15) the joint posterior distribution of the model and augmented
parameters is obtained as

p(y.r,01D)<L(Dly,r,0)p(y.r.0),

with the likelihood from (3.2)
L(D1y.r,0)=L(DIy)=] ]l )",
i=1
and the prior from (5.1) and (5.2)

Pz
p(y.r,0)=p(yIr,0,,....a,.B,y,0)prl0o)] [ple; 172 )p(t2 ) p(B1TH)p(t} | p)p(P)P(Y)D(G?),
=0
with specifications (5.4) to (5.18). The shown hierarchical structure of the priors with the implied
independence assumptions simplifies in the following the derivation of the full conditionals for the

model parameters of the extended AFT.
6.1.1.  Full conditionals of the predictor components

Unregularized linear regression coefficients y

The full conditional of the unregularized linear regression coefficients y is obtained by using the
proportionality of the posterior to the product of the multivariate Gaussian prior of the log-survival
times p(ylr,o,,...,0, ,B,7,0)=p(y I p,,X,) given in (5.3) and the multivariate Gaussian prior of the
regression coefficients p(y)=p(yIpn,,X,) from (5.5). To simplify the notation, working observations
Yy, =y-(m-Uy)-om, =y —p, + Uy, with p, =n+o0m,, are introduced by deleting the component
Uy from the predictor. In summary we get

p(yl)ep(yIp,, Z)p(yin,,X,)
1 , 1 ,
o< eXp —E(y—uy) E;l(y—uy)—z(v—uy) E;I(v—uy)j

1 . e 1 , (6.1)
o< exp _E(YY -Uy)E (¥, - Uy) —5(7 -n) I (y —uy)J

1 ’ 2 7 /s ~
o< exp —5(7 (UL U+Z))y -2y ULy, + E?uy))j.

This full conditional has the kernel of a multivariate Gaussian distribution, yI-~N(p,,X, ), with

mean vector p,. =IE(y|-) and covariance matrix X,, = Cov(y|-) given by
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n, =X, (UL'§, +Zn,), £, =UEU+Z)". (6.2)

It turns out, that the multivariate Gaussian distribution is the general form of the full conditionals for
all predictor components and, as a consequence, Gibbs sampling can be employed. The derivation
(6.1) serves as the building block to obtain the full conditionals of the remaining predictor
components, where the specific mean and covariance structure of (6.2) results from the specific prior
structure. Since the linear effects y are assumed to be unregularized, we simply set p, =0 and the
precision to X;' =0 and get

p, =2, UZ]y,, =,=U%U)". (6.3)

Regularized linear regression coefficients 8

With (5.3) and (5.6) the full conditional of the regularized linear effects is proportional to the product
p(B!-) o< p(y lpy,X,)p(Blps,Xg) . The mean vector of the Gaussian prior of the regularized regression
coefficients equals zero, pg=0, and the covariance matrix is given by Xg=diag(ts,..T5,,)-
Adapting the general form in (6.2) to the working observations yg: =y —p, + XB, we get for the
regularized linear effects also a multivariate Gaussian full conditional distribution, Bl-~ N(pug,Xp),

with mean vector py =E(BI-) and covariance matrix X = Cov(f!-) defined by

!,lm_ = Em_X’Z;lyB, Em = (X’E;IX + EEI )_1. (64)

Regularized nonlinear regression coefficients a;

In completely concordance to the former derivations we obtain with (5.3) and (5.16) the full
conditional for the basis coefficients a;, j=1,....p,, via p(a;l-) o< p(yIp,, X, )p(e;lpy,,Xs ), where
X, =II,, denotes the generalized inverse of the prior precision matrix Il =T;°K;. Since the prior
mean is p, =0, we get with (6.2) and the working observations ¥y, =y —p, +Z;o; multivariate
Gaussian distributions @ |-~ N(pg,,X,,), j=1,....p,, as full conditionals. The mean vector

W, =E(a;!-) and covariance matrix X, =Cov(a;|-) are given by
Hoj1 = Eaer;Z;lyaj DS (Z;Z§1Zj +11,, ) (6.5)

Centering of the spline: In general the mean levels of the unknown functions f;(-) are not identifiable.
To ensure identifiability of the model, we center the estimated functions f;(-) in every iteration of the
sampler to have zero mean fj* =n"')" f(z;;)=0.To do so, we recompute the basis function weights

(lj as
(X‘;;k = Otj,k _Cj N (66)

wherec, =n"' " fi(z, )=n"'>" > % o, B, (z;) denotes the mean of the function evaluations f;(-)
at the observed data points. We verify that f':=n"'>" > o Bji(z;) has zero mean since
Y 2B (zi ) =20 2 0B (2 ) — 2L 6 2 Bin (i) = XL £(zi ) —ne; =0, where  we
used in the fourth equation the fact 3 B, (z)=1.

The shift of the basis function weights does not affect the penalty, since the differences Ao, are
invariant, i. e. A%a;, =AY (o, —c) for any scalar ¢, and the addition of the subtracted means
c;e R, j=1,..,p,, to the intercept 7y, avoids that the posterior is changed.
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6.1.2.  Full conditionals of the regularization parameters

Ridge regularization

Version (A): With the deterministic connection ‘céj :1/ 2A; in (5.7) the Gaussian prior of the
regression coefficients from (5.6) becomes p(B;IA;)e< \/7\7 exp(—A3;) . The full conditional of the
shrinkage parameter A; is proportional to the product of this prior and the gamma prior of the
shrinkage parameter p(A;) o< 7\,?”_1 exp(—h,,A;) from (5.8). We simply see that we obtain gamma

densities
A |~~Gamma(hm +%,hm +[3J3), j=L..px» (6.7)

as full conditionals.

Version (B): With a similar argumentation we obtain the full conditional of the shrinkage parameter
A . Using the product of p(BIk)oc\/xj " exp(-A2.7 B7) from (5.6) and the gamma prior of the
shrinkage parameter p(A) o< A"+~ exp(—h,;A) from (5.10) we obtain also a gamma density

Px
7»|-~Gamma[hm +p—2X,hM +ZBJZJ (6.8)
=L

Lasso regularization

We derive the full conditionals for the variance parameters ‘CEJ from the product of the prior for the
regression coefficients p(f; Itéj ) o< 'cgjl exp(—PB} / 2’c§j), compare (5.6), and the exponential prior for the
variance parameters p(réj IA?) < A2 exp(— Xz'céj / 2) from (5.11)
. 1 MR ;
P 195 -B3/25 15 = “"‘P{ b 407

B;

T M1 )
< [P T T
T, 2 Mt 1B

Using the definition p;:=./A*/B7 and applying the change of variables t? :1/1:[25j is leading to
p(t7 1) o< (1) exp(=A*(2u;t]) ™' (t; —p;)*), which is the kernel of an inverse Gaussian density with
mean U; >0 and shape parameter A*. Finally the full conditionals for the variance parameters réj are

inverse Gaussian distributions

2
%|'~IHVG8.USS E,?& ,j=1,..,py . (6.9)
T, Bl
The full conditional for the quadratic shrinkage parameter is proportional to the product of the gamma
prior p(A?)oc (A*)M*exp(—h,,A%) from (5.12) and the product of the exponential priors of the
variance parameters p(tjlA®)oc (A*)P exp(—A* ?jl ‘cgj / 2), compare (5.11). We obtain as full

conditional the gamma density

Px
A2 I~~Gamma(hm +py,hoa +%ZT§J}. (6.10)
=l
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NMIG regularization

Under the Bayesian NMIG prior the variance parameter is the product of two variance components
Té] =IL,y;. The full conditionals of the covariate-specific binary indicator variables I; are Bernoulli

distributions

1 8y, (1)) 1 8y (1))
LI)=|1l-—— _ , 6.11
p(11) ( 1+Aj/BJ (1+Aj/BJ (1D

with

Aj_
B;

1—wﬁexp{<v0—vl) B; }

(0] A [ VO V()Vl ZWJZ

which is derived from the product of the indicator prior p(I;|®,vy,v,) o< @™ (1—@)*>" in (5.13)
and the prior of the regression coefficients p(B; 15 ) > /I exp(=f} /2Ly?) in (5.6).

For the second variance parameter component W} the full conditionals are proportional to the product
of the Gaussian prior of the regression coefficients p(f;| Tg,) o< AW 2 exp(—B2/21L,y?) in (5.13) and the
inverse gamma prior in (5.14) p(y?)e< (yi) ™" exp(=h,, / y?), which results in inverse gamma

densities

2

Y7 |-~ InvGamma hl,\|,+l,h2,\l,+ﬁ ,j=10px - (6.12)
2 21,

With the beta prior (5.15) for the complexity parameter p(®) o< @"™'(1—®)"*™" and the product of the

indicator priors (5.13) p(Il®,vy,v;) o< @ (1—w)™, with ng = #{j I = Vo} and n, = #{j I = vl} , the

full conditional for the mixing parameter is also a beta density

ol-~Beta(h,,+n;;h,+0). (6.13)

Smoothing parameters

The full conditionals of the smoothing parameters are proportional to the product of the inverse
gamma prior p(t}, ) e< (T3, )5 exp(—h,y, /Té,) from (5.17) and the partial improper multivariate
Gaussian prior of the basis function weights p(a; 11} ) o< (T, kKD exp(—aK @ / 213 ) from (5.16).
We can easy reproduce that the full conditionals are all proper inverse gamma distributions

rank(K;) 1

‘cij [- ~ InvGamma[hMJ + ,hz,TJ +Ea3KjajJ, j=0,1...,p,. (6.14)

6.1.3.  Full conditional of the mixture weights

In this section we derive several alternatives for the update of the (transformed) mixture weights.
Besides a single-update of the mixture weights we consider several block-update schemes to
investigate the impact on the convergence of the mixture weights in combination with a
standardization of the error distribution within the MCMC sampler, compare Subsection 6.2.1. The
particular method is specified in the function baftpgm() through the argument method.alpha

within the errorpri list, compare Appendix D.5.
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Update scheme “mhcond’ (Metropolis-Hastings based block update)

To update the block of transformed mixture weights, we use Metropolis-Hastings steps with IWLS
proposals as in detail described e. g. in Brezger and Lang (2006) and shortly summarized in the
Appendix C. The general idea of IWLS proposals is to obtain a Gaussian proposal by matching the
mode and the curvature of the full conditional at the current state of parameter vector in each update
step. The proposal distribution is constructed by a second order Taylor expansion of the logarithm of
the full conditional at the current state of the chain. The full conditional for the transformed mixture
weights is proportional to the product of the smoothing prior (5.16) and the prior of the component
labels (5.4)

20 1 ,
p(aol-)«p(rmo)p(aolrao)cxexp[znjlog(ijo))—w KJ
=1 O
Due to the identifiability constraint o, =0, for one ke {l,..., gy}, the mixture weights w;(a,)
depend effectively on the parameters @ = (Clo;,..., 0o k-1, Olo s1»---» Qo g )" and also the full conditional
depends effectively on @, . With respect to this constraint we write the full conditional as

~ 20 20 1 e

p(@o!-)<exp Z n,0l, —n-log(1+ Z exp(oco,/)]— — 80K, |, (6.15)
(=1,0k (=1,0#k 217%

where KO denotes the reduced difference matrix, if the k-th row and k-th column are removed from

K. To construct the IWLS proposal, the score vector sS4, (@,) and the Hessian matrix Hg, (@,) of the

logarithm of the full conditional, f(@,) =log(p(a, ), are required. With

20 20
g(ay) = Z ngocw—n~log[l+ Z exp(ocw)j,

(=1,0#k (=1,0#k
we derive the first and second order partial derivates of g(:) as

Jg (i)

=n,—-nw;(a,), j#k,
aaoyj j J( 0) J

a2g(&0) __naWj((lo):{H(Wj((lo)z_wj(ao)) i=j, andi,j#k (6.16)

aaoyjaaoyi B 8060’1 nWj(ao)Wi(ao) 1 * j, and l,J * k

With the definitions n:=(ny,...,N, N, Ny, ", w(ag) = (wl(ao),...,wk_l(ao),wk+1(a0)...,wg0(ao))'
and W(ao):z diag(W(ao))—W(ao)\Tv'(ao) the score vector and Hessian matrix of the function
£(8o) = log(p(@, 1)) are

- - - 1 -~ . ~ ~ 1 -
sdo(ao)zn—n-w(ao)—?Koao, Hdo(ao)z—nW(ao)—TKo.
We note from (6.16) that in general the matrix of the first derivates of the weights w(a,) with respect
to @, is given by W(a,):=0w(a,)/da, = (0W;(0,)/00 ;) ju1. e, =diag(w(ay))—w(a,)W'(a,), and
we obtain the representation W(ao) by removing the k-th row and k-th column from W(a,), i. e.
W(a0)=W(a0)[—k,—k]. The second order Taylor expansion of f(a,)=1og(p(d,l-)) around the

current state of the parameter vector @ has the general form

F(ay) = £ (85) + (@0 @) sa, (ag@)%(ao —a) H, (5)(@ —ay).
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Taking the exponential exp(f (@y)) and neglecting the components that do not depend on @, leads to a
multivariate Gaussian distribution density

~ A (c c 1 ~/ ~(c ~ ~/ c c C
o(a, Iy, Z(%))oc exp(zuoHdo (ug))uo +u0(sd (aﬁ))) H, (af,’)ag’)j, (6.17)
with mean vector fiy’ =-H (ot(“))(sm0 (a’)-H, (a(”)a(”) ay’ —Hg! (a”)ss (@4’) and covariance
matrix E(.C) =—H;! (@) . The representation of mean vector in the second equality shows, that the

mean of the Gaussian proposal @(-1fif’,

Zf;u)) can be interpreted as one step approximation to the
mode of the full conditional obtained by a single Fisher scoring step from the current state. To update
the transformed mixture weights based on the current state @’ of the chain, the new value @y is
proposed by drawing a random number from the multivariate Gaussian proposal distribution
Ny, Z(”) with density @(-|fi§, Z(”) where the mean vector fiy’ =E(d,las’) and covariance

matrix Z(C) =Cov(a, lay’) are given by
ny = Z(C) (n nw( (“))+nW(a“))a(“)), )A:f;o) = (nW(aEf))+r&iI~(o)4. (6.18)

Finally, the proposed state @ is accepted as new state of the chain with probability

p(a1-)-o(as 1ae 20

p(&ff) I-)-(p(&f,p) lﬁf;f Eg;))

Paceept (@, @7 ) = min 1, (6.19)

The nominator and denominator contain the full conditional (6.15) and proposal density (6.17), each
evaluated at the current state @’ and proposed state @{’ , whereat i’ and }A:ffo) are obtained by
inserting the proposal into (6.17) and computing the resulting mean and covariance. We specify this

method with method.alpha=“mhcond” in the function baftpgm().

Update scheme “mhmarg” (Metropolis-Hastings based block update):

This update scheme is based on the marginal likelihood f;(y;10)=w"(ay)@(y;) from (2.11), with

O(Y:) = (Q1(¥i)s s P, (¥1)) = ((y; IM; —Om,, 6787),...,0(y; IM; —om,,,6%2 ). With the smoothing
prior (5.16) the full conditional is given as

p(aol-)e<p(y10)p(a, 72, )< exp[Zlog(w'(ao)(p(yi))— - aﬁ,Koaoj.

i=1 oo

Since one of the transformed mixture weights fulfills the identifiability constraint, i. e. 04, =0,

ke{l,...g0}, we use from above the reduced vector @y := (0., 0ok 150 ks1sesOog, ) tO cONStruct

the IWLS proposal, compare Appendix C. From the previous subsection the first derivate of the

weights w(e,) with respect to @, is given by W(a,) :=0w(a,)/da, = diag(w(ag))—w(ee)W (a) .

With respect to the identifiability constraint we remove now the k-th column of the matrix W(a,) that

contains the first derivate of the weights w(a,) with respect to 0,,, and define the resulting

g0 X(go—1) dimensional matrix as W(uo) = W(a,)[,—k]. With this representation we write the score
vector of the function

d ) = ilog(W’(ao)tp(yi))

i=1

as
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n W(ao)o(y;)
S w(o)e(y)

Sq, (@) =

Using the Fisher information matrix as an approximation to the negative Hessian matrix, i. e.
E(—H,4(0)) = Cov(se(0)) = E(s¢(0)s5(0)) , we obtain the Hessian matrix as

" W (00)o(y:)o (yl)W(ao)
i=1 (W (ao)(P(YJ)

H,, (d)~-

Taking into account the first and second order derivates of the penalty term, like in the previous
subsection, the second order Taylor expansion of f(a,)=1log(p(a,|-)) with respect to the current state

of the chain @’ results in a multivariate Gaussian proposal distribution @, | @y’ ~ (pifﬂ’ ngo)) with

N —

mean vector fii =E(d, @) and covariance matrix 2(“) =Cov(a, lay’) given by

ﬁ&?—E(“ iW( (Q)(P(y')_i_zw( (C)) (Yi)(P(YI) W( (Q)&gc)

G

’

= wWeg)e(y) o (W ((l(c))(P(Yi))
| (6.20)
s [ 3 V(@)oo ) Wle) 1 g
® =1 (W (a(c))(l)(}’i))2 Ta

with af” = (of],..., 01, 0,005, 02 ). The proposed state @’ is then accepted as new state of

0.0
the chain with probability given in (6.19). We specify this method with method.alpha="mhmarg” in

the function baftpgm ().

Update scheme “mcondblock” (Metropolis based block update)

To achieve higher acceptance rates, Brezger and Lang (2006) suggest using the posterior mode of the
previous iteration u(“ " for computing the IWLS proposal. More precisely the mean vector and
covariance matrix in (6.18) are evaluated by replacing the current state @’ with fiy ", i
~ -1

iy —E(”(n nw(u(“ 1))+nW( (e “)af,c)), E(” —(nW( o= 1))+1&§K0)

With this modification the proposal distribution becomes independent from the current state @’ of
the chain and we bypass the recomputation of the mean ﬁﬁf) and the covariance )A:.g;) to calculate the
proposal density @@y’ |3, X)) at the current state @ . This decreases the computational effort for
the evaluation the acceptance probability (6.19) and increases the speed of the algorithm. If in addition
the mean vector of the proposal is exchanged by the current state of the chain, i. e. p(c) =ay’ , wedoa

simpler Metropolis update since the proposal becomes symmetric and the proposal ratio equals 1.

We have implemented a Metropolis update, where the mean vector and covariance matrix of the
Gaussian proposal distribution are given by

1

u(c) _u(u) Z(C) — Z(C 1) _(nw( (e~ 1))+’C 2K0) . (6.21)

The update is done e. g. via the Cholesky decomposition of the covariance matrix £&™ =LL’. With

the sample X =(Xi,...,Xg Y ~N(0,I) from a standard multivariate Gaussian distribution we compute

(p)

the proposal via @’ =ay’ +Lx, compare computational detail 2 in Subsection 6.1.7, and accept this

proposal with probability
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( (p)| )
accept (@(”,a(” ) = min 1,— . (6.22)

p(as1)

We specify this method with method.alpha="mcondblock” in the function baftpgm().

Update scheme “mcondstep” (Metropolis based block update)

In a further version we use multiple Metropolis acceptance steps within the update of the transformed
mixture weights. The mean vector and covariance matrix of the Gaussian proposal distribution are
given by (6.21) and we use again the Cholesky decomposition of the covariance matrix 25.;0-” =LL .
Let X=(Xy,...;Xgp11 ) ~ N(0,I) denote a sample from a multivariate standard Gaussian distribution and
e; denotes the ¢ -th unit vector of dimension (g, —1). We can represent the sample v=Lx from the
multivariate Gaussian distribution N(O,ﬁ‘.g{;”) as sum of componentwise updates Lx = fil_lLefxf ,
where the ¢ -th summand Le,x, is the ¢ -th column of the lower triangular matrix L. multiplied with

. It is obvious, that the proposal a” =a{’ +Lx from the previous subsection is also obtained with
the componentwise update 1. e. a(") =ay + ZgU_lLe,x ., and we can rewrite the update iteratively as
af) =ay)  +Lez,, (=1,.,g,—1, starting with the current state @{):=a'“. Based on this
representation, the proposal arises as sequential modification of the /+1,...,go —1 components of the

current value @ =ff’ .

In the “mcondstep” update scheme we use this iterative construction of the proposal with an
additional acceptance step after each iteration. In summary, the proposal is iteratively computed in
(go—1)-steps via af) =a), +Lez,, (=1,...,g,—1, starting with the current state @) :=a'” and we
accept the new components of the proposal in each iteration with probability

p(ap 1)

((lf,pgll ) ,

The “mcondblock” update scheme is obtained as special case of the “mcondstep” scheme if the

accept(a(p) lag) 1)= min1 1, (=1,..,g,-1. (6.23)

acceptance probabilities all equal 1. We specify this method with method.alpha="“mcondstep” in
the function baftpgm (). In addition we have several options to vary the order of the update of the

transformed mixture weights by specifying the argument order . alpha, compare Subsection 6.2.2.

Update scheme “‘slice” (single parameter update)

For a single update of the transformed weights o, ;, j=1,...,g¢, we require the conditional distribution
p(0t,; Iao,_j,‘téj) of the weight o, ; given the remaining weights a,_; = (0,..., 0, Qjs1,..., Olg, Y. As
pointed out in the Regularization Section 4.6 the conditional distribution o ;la,_;,T;, , depends only

on the nearest neighbors and is Gaussian with mean and variance given as

Kyl k|o 2
21# O[J ] o s Var(oco,j Iao,_j)z_ﬁcao_ ER
Ko [} ]] Ko [} ]]

E(ot, l0g_;)= (6.24)

where K, denotes the penalty matrix.

In summary, the full conditional distributions of the transformed weights o, ; are proportional to the
product of this Gaussian prior and the prior of the component labels (5.4)
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exp(n;o ;) exp 1 (Oco,j —E(o, |‘lo,7j,'))2
(Zgo exp((xo,k))n 2 Var(ocoyj |a’0,fj,')

k=1

p(Qlo; lagj,7) o< . j=L..g,. (6.25)

Due to the identifiability constraint ¢, =0 for one ke {l,...,g,}, we update only the parameters
Qo 15-+05 Og k15 Olg 1., Olg . and keep O fixed at zero in each iteration. As for the update of the scale
parameter (next subsection) we use the univariate slice sampling of Neal (2003). Since this density is
log-concave also adaptive rejection sampling, Gilks and Wilde (1992), is a possible alternative. We
specify this method with method.alpha="slice” in the function baftpgm (). In addition we have
several options to vary the order of the update of the transformed mixture weights by specifying the

argument order.alpha, compare Subsection 6.2.2.

Update scheme ““dirichlet”’ (unregularized block update)

To compare the performance of smoothing the baseline error, also an unregularized approach for the
weights w=(w,...,W,, )" of the baseline error mixture distribution is considered. In contrast to the
smoothing penalty a conjugate Dirichlet prior for the component weights is utilized, compare
Friihwirth-Schnatter (2006), i. e.

W ~ DiriChlet(noh-"’nOgO) ’

with density

£o
r(): no«)
@ no -1 .wr‘ozo‘l.

gor(noj) 1 e g

=l

p(w)=
In this case the full conditional for the weights is
£0 £0 20
p(wi)ecp(ri®)p(w)=][w JTwr" =] Jw,
j=l il j=l
which is also the density of a Dirichlet distribution:

wl-~ Dirichlet(nl +ng,..., Ny, +nogo). (6.26)

Since there is no smoothing in this case, we do not require an update of the parameter T, .

6.1.4. Full conditional of the scale parameter

With the multivariate conditional Gaussian prior of the log-survival times p(y Ip,,X,) from (5.3) and

the inverse gamma prior p(62) e (62) ™= exp(—h,,/06?) for the scale parameter 6> from (5.18) the

)

1 1 1 1
—(y-p)Ey-pn)=—GF-S!(y-m)——(F-n)'S;'m, +—m;S;'m,
2(y ny) Xy —my) 262(y WS (y-n G(y n) 5

full conditional is given as

hc,z
62

1 £+h0,1+1 1 ,
p(02|')“(;j exp(_z(y_“y)zyl(y_uy)_

To separate the dependence of scale parameter, we use the identity
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with m, =(m,,...,m, )" and S, = diag(sf1 ,...,sfn) . The last summand in the identity does not depend on
the scale parameter and is omitted. Inserting this identity into the expression of the full conditional and

using further the definitions
Ag = % +hs;+1, Bsi= % (y—=n'S;'(y—m)+h,,, Co:=(y—m)'S;'m, (6.27)

the full conditional is finally built as
) 1) 1 1
p(c?l)e<| = | exp| —Bs+—Cs |, (6.28)
c’ c’ c

which is obviously not an inverse gamma density or of any standard form. It is shown in the Appendix
A.2 that this density is unimodal and the univariate slice sampler, as described in Neal (2003) and
implemented in the R-function uni.slice{R}, is used to update the scale parameter.

6.1.5.  Full conditionals of latent component labels

Since the allocations to the mixture components are not known, we need to impute this latent
component labels. The discrete allocation indicator R; associates each observation with a certain
component of the mixture distribution. The classification of the log-survival times y;, i=1,...,n, via
the allocation variable 1, € {1,...,g,} is obtained from the product of the Gaussian density of the log-
survival times p(y; In; —Gmn,02sfi)=(p(yi I —om, ,02sfi), (5.3), and the multinomial prior of the
component labels p(r la,)=w,(a), (5.4), i.e.

p(r 1)< @(yiImi —om,,0%2)w, (a) .

Thus the full conditional of each allocation variable r,, i=1,...,n, is discrete with the normalized

probability
. w;(a)@(y; IM; —om;, 6%} .
pi=P(r=jl)= - (G ( j J) RS (6.29)
ZWk(‘lo)(P(Yi I —Gmk,02s§)
k=1
which is the special case of a multinomial distribution 1, ~ MNom(l,p;,..., Pig, ) -

6.1.6.  Full conditional of the censored log-survival times

As shown in the previous sections, the vector of exact (log-) survival times y is required to update the
remaining model parameters. The exact survival times are only partially known, in particular for the
uncensored individuals. The survival times of the right censored individuals with censoring time ¥;
have to be imputed in each update step. Using the likelihood contribution for a censored observation
L(®;1y;) =1Ly (y)"™, d;=1, and the associated prior component of the exact survival time

p(yi I5,04,...,0, ,B,v,0) from (5.3), the full conditional for a censored log-survival time is given as

(yi—ni—Gmn)zj,

1
p(yil") o< g (Yi)c—exp(—

which is the density of a truncated Gaussian distribution with location parameter m; +om, , squared

scale parameter G°s; and support [¥;,oo)
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p(y1 | ) ~ TN[S’i»“’) (T]l + Gmr‘ ,sti ) . (630)

Sampling from a truncated normal distribution is described in Robert (1995) and practiced using the

R-function rtnorm{msm}.

6.1.7. Computational details

Detail 1: The generic way to update the predictor components is described in terms of the
unregularized linear effects y , where we assume p, #0 and II, =X;' #0 for the moment to keep the
generality of the derivation. To draw the random samples efficiently from a possibly high-dimensional
multivariate Gaussian distribution y |- ~ N(p,,,II;}) with precision matrix I, , we follow Rue (2001)
and start with computing the Cholesky decomposition of the precision matrix
I, = (U'Z;'U+X;")=LL" such that L denotes the corresponding lower triangular matrix. With the
p. -dimensional sample x=(X,...,X,, Y from a standard Gaussian distribution x; ~ N(0,1) we solve
the equation L'y" =x via backward substitution to get a sample from y*|-~ N(0,II;') . Finally, the
sum p, +7° is the desired sample of N(p,,,II;!) . We can also compute the mean p.,, in terms of the
Cholesky decomposition. Via the connection IL,p, =LL'p, =(UZ]'y, +Z;'n,), we solve at first
the equation Lv=(UX]'y,+X;'n,) via forward substitution and then the equation L'p, =v via
backward substitution. Since the precision matrix of the nonlinear terms has band structure, the

Cholesky decomposition can be computed by sparse matrix operations.

Detail 2: An alternative is to use the methods implemented in the R function rmvnorm{mvtnorm} to

draw in terms of the covariance matrix X, , instead of the precision matrix, a new state from a

7
multivariate Gaussian distribution yl-~N(n,.,X, ). The procedure based on the e Cholesky
decomposition of the covariance matrix uses the steps described in Rue (2001), i. e. with the
decomposition X, =LL’ and the p.-dimensional sample X =(X,...,X,, ", x; ~N(0,1), the vector
Lx=17" is computed to obtain the sample from y"I-~N(0,X ). Finally, the mean vector is added

and the sum p,, +7v" is the desired sample of N(u,.,X,,).

Detail 3: For large parameter vectors we can partition the vector of regression coefficients randomly in
blocks of fix size and update sequentially the blocks until each coefficient is updated instead of
updating the whole coefficient vector at once. The random sample is then generated from a
multivariate Gaussian distribution with the corresponding subvector of the mean and the submatrix of
the covariance matrix conditional on the remainder of the regression coefficients and other parameters
(argument blocksize in the function baftpgm () ).

6.2. Algorithmic variants

6.2.1. Standardization of the baseline error distribution

As outlined in Subsection 2.3 we require constraints on the transformed weights a, to achieve a
standardized baseline error distribution to enforce the interpretation of the predictor m; as the mean
E(Y;10)=uy, and the scale parameter &* as the variance Var(Y;|0)= G%(‘ of the conditional
distribution Y; [0, compare (2.12) and (2.14). In this case the trace plots of the samples of the global
intercept parameter 7, , the scale parameter ¢* and the samples of the mixture weights w(a,) of the

corresponding baseline error distribution Y, |7,,6 indicate the desired convergence. With an
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unconstrained estimation of the transformed mixture weights a, the mean p. = Zﬁilwk(ao)mk and
the variance o7 = 1° w (a))(mg +s¢) —uZ, of the error distribution €la,, (2.8), can take any values
L. € R and o7 >0. The corresponding mean and variance of the baseline error distribution Y, |7,,0
are given by Wy, =7, +0U, and 63 =6°C;, compare (2.13), and the interpretation of the parameters
Yo and o as global intercept and variance of the conditional distribution Y; 10 is not feasible. As a
further consequence of the unconstrained update of @, the parameters Yy, and p. of the mean
Wy, =Yo +OU, as well as the parameters 6> and G; of the variance 63 =6°6; of the conditional
distribution Y, 1vY,,6 are not identifiable. This is due to the fact, that for any scalar ce R,
Yo =7Yo +0c in combination with [, =L, —c, and 6> =c’6? in combination with 62 =cc?, does not
change the mean [y, and the variance o7, . It follows that only the trace plots of the mean [y, and
variance Gy, of the baseline error distribution show the desired stationarity, but stationarity is not
indicated by the trace plots of the single components of these expressions and the mixture weights

w(a,) .

The unconstrained estimation requires also an adjustment of the hyperparameters of the intercept 7,
and the scale parameter ¢ in the algorithm, if informative instead of diffuse priors are used for these
parameters. Consider as an example the scale parameter G*. In the case of a standardized error
distribution € ~ (0,1), our prior knowledge of the baseline variance Var(Y,|Y,,0) of the conditional
distribution Y, 1v,,0 is reflected by the hyperparameters h,, and h,, of an inverse gamma
distribution, compare (5.18). For an unstandardized baseline error distribution our knowledge concerns
the product of the scale parameter and the variance of the baseline error distribution, i. e.
Var(Y, 1 v,,0) = 662 ~ InvGammac(h, 4,h, ) . Due to the identification problem of the variance, the
single components 6; and G* can take any positive value in each iteration and we have to adjust the
hyperparameters of the prior for the scale parameter o> with respect to the values of 6?2 in the
iterations according to 6° ~ InvGamma(h, 4, h, / G2) . The same argumentation holds for the intercept

and is leading to the adjustment y, ~ N(h,,, =6, h3 ) in every iteration of the sampler.

We advocate the following strategy to obtain a standardized baseline error distribution, which avoids
the direct implementation of constraints in the update of the (transformed) mixture weights. Let
He =230 Wi(ag)m, and of =) " Wi (0)(mi +s¢)—u? denote the mean and the variance of the
unstandardized error distribution with density f.(-la,)= ﬁllwk(ao)(p(lmk,sﬁ) from (2.7). The
density of the standardized baseline error distribution €,la, is obtained via the transformation
(::():(%:—ue)/csE as fz (lag)= iilwk(ao)(ptlrho,kﬁ&k) with basis knots m,, and basis variances
% given by

_ 2
g =g = k=l 6.31)

C. C:
This transformation shifts and scales only the basis knots and variances to match the zero mean and
unit variance condition, but leaves the mixture weights unchanged. To avoid a change of the posterior
we have to ensure, that the mean [y, =7Y,+0l. and the variance 67 =02%0? of the baseline error
distribution Y, |Y,,0, now expressed in terms of the standardized error distribution &, lda,, does not
change. With the relationship Y, =%,+6&, =7, + o, +066.E, follows that we have to adjust the
intercept and the scale parameter according to

Yo ="Yo+OU., 6’ =07C;. (6.32)
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To reformulate the standardized baseline error density in terms of the initial basis knots m, and basis
variances s{, we have to recompute the weights at the basis knots m, by solving the linear equation

system

zgo Wip(m, Imy,s7) =fe, (m, lay), /=1...g, (6.33)

k=1

with respect to the constraints Y ¥ W, =1 and W, >0 . The standardized baseline error density is then
given by fy (1@,) =25 Wi (@)Q(:Imy,s?), where @, denotes the corresponding transformed

mixture weights.

In the simulations we try two alternatives. We run the MCMC iterations without the standardization of
the baseline error density within the algorithm described in Section 5.2.3 and standardize the error
density in post-processing steps with the listed corrections (6.32) applied to the samples of the
involved parameters. Alternatively, we standardize the baseline error density according to (6.32)
within the sampling algorithm, after every update of the mixture weights, but we leave the weights
unchanged to avoid in the next iteration sampling from possibly unfavorable conditional posterior
regions arising probably from the recomputation of the mixture weights according to (6.33). In this
version the knot positions and basis variances change in each iteration of the sampler and need to be
stored in addition to the samples of the parameters. The option for a within-standardization is selected
in the function baftpgm() with the argument scalebasis=TRUE. The weights are optionally
recomputed after the simulation to show the convergence also in terms of the mixture weights.

6.2.2. Varying the update order of the transformed mixture weights

If we specify the methods method.alpha=“mcondstep” or method.alpha=%“slice” in the
function baftpgm (), we have the following options to vary the order of the update of the transformed

mixture weight in every loop of the sampler (we assume e. g. o,, =0 for identifiability):
® order.alpha="fix1"”. The order of the indices is fixed to (1,2,3,....,go—1).

® order.alpha="fix2"”. The fixed order of the coefficients is determined in the way, that the
coefficient j, which is just updated, does not depend on the coefficients used for the update of
the previous coefficient j—1. If d, denotes the used difference order, the update order is
j—j+(dy+1)—> j+2(dg+1) >,...,j=1,...,dy +1. This is the default setting.

® order.alpha="randoml”. In each update step a random permutation of the indices
1,2,3,....,g0 —1) is used.

® order.alpha ="random2”. In the order of the option order.alpha="fix2” in each step

one random cut is used to exchange the update order.

6.2.3. Varying the update of the component labels
We have several alternatives to classify the observations to the mixture components.

® method.rlabel="gibbs”: Random assignment by sampling the labels with p; from (6.29),
which is the default option.

® method.rlabel="fix-maxprob”: Hard assignment to the class with maximum probability
pi,max = maX{p(rl = k) : k = la«"ag()} .
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® method.rlabel="fix-interval”: Hard assignment to intervals I; around the knots that
build a partition of the domain of the error distribution. E. g. for equidistant knots and
homoscedastic basis variances these intervals are I;=(0.5(m;,;+m;),0.5(m;+my,)],

j=1,...,8,and m_; :=—co,m, , ;= o0.

6.2.4. Scale dependent implementation

In addition a variant with scale-dependent covariance matrices in the priors of the regularized
predictor components (5.6) and (5.16) is implemented, i. e. ,X3 =6°D,, and X = Gz’cinj‘. With this
parametrization the values of the scale parameter strengthen or relax the regularization. The derivation
of the associated full conditionals is straightforward. We can select this option with the argument

scaledpri=TRUE.

6.3. Update of the parameters

The Markov chain is generated via MCMC simulations based on drawing from the full conditionals of
parameters or parameter blocks given the remaining parameters and the data as derived in the previous
sections. The methods are implemented in the R-function baftpgm () which will be provided from the
author on request. The usage of the function is described in the Appendix D.5.

6.3.1.  Preprocessing

Standardization: To ensure that comparable regression coefficient sizes imply comparable effect
sizes, the covariates are standardized in advance. This avoids the extensive covariate-specific tuning of
the priors for different covariate scales. We standardize covariates with linear effects to zero empirical
mean and unit empirical variance. To obtain that smooth covariates taking values in [-1,1], we can
apply the transformation

Zu _ 2(Zij _Zj,min) 1.
Zjmax — Zjmin

Starting values: In general we avoid preprocessing steps to fit the model in order to obtain suitable

starting values. An automatic computation of starting values is not implemented in the function

baftpgm() and in our simulations and applications we start with weakly specified models. The

accurately starting values and prior specifications are given corresponding sections. If desired, starting

values can e. g. be computed by a view iterations with the R-function bayessurvreg2{bayesSurv}.

6.3.2. Pseudocode
[1] Initialization:

Specify the PGM: Set number g, of Gaussian basis functions and choose the location of the
means m;, the scales s; and the order d, of the random walk prior for the (transformed)
mixture weights. Select the hyperparameters h,,,h, to specify the inverse gamma prior for the

scale parameter G.

Specify the regularization priors of the linear effects: Set the values of the hyperparameters

hy,,h,, to specify the gamma prior for the shrinkage parameter A(A?) in the Bayesian ridge or
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(2]

(3]

(4]

(5]

(6]

lasso prior. For the Bayesian NMIG prior set the values v,,v; of the indicator I;, set the values
of the hyperparameters h,,,,h,, of the inverse gamma prior for the variance parameter y; and

set the hyperparameters h,,,h,, of the beta prior for the complexity parameter ®.

Specify the non-linear effects: Set number g; of B-spline basis functions and choose the order

d; of the random walk prior for basis function weights.
Select optionally variants described in Subsection 6.2.

Standardize the covariates according to Section 6.3.1 and choose appropriate starting values for

the parameters 0 = (a’,8’,y’, 72,73 ,p’,0).
Set the number C of iterations, set ¢ =0 and repeat the following steps until c < C.
Update of the unregularized linear regression coefficients:

Draw a new value y©*" from a multivariate Gaussian full conditional with mean vector and

covariance matrix given in (6.3).
Update of the regularized linear regression coefficients:

Draw a new value BV from a multivariate Gaussian full conditional with mean vector and

covariance matrix given in (6.4).
Update of the shrinkage- and selection-prior components:

Bayesian ridge (A): Draw a new value of the complexity parameter kg”” from the conditional

gamma distribution given by (6.7) and set the variance parameter ;" = 120, j=1,..,p, .

Bayesian ridge (B): Draw a new value of the complexity parameter A from the conditional

gamma distribution given by (6.8) and set the variance parameter 3" =1/2A¢*" .

Bayesian lasso: Draw a new value of the variance parameter ‘cg’(“‘“), j=L..,px, from the

conditional inverse Gaussian distribution given by (6.9). Draw a new value of the complexity
parameter A>“*" from the conditional gamma distribution given by (6.10).

(c+l)

Bayesian NMIG: Draw a new value of the indicator I, j=1...,px, from the conditional

Bernoulli distribution given in (6.11). Draw a new value of the variance parameter W,

gl

j=1L,...,p., from the conditional inverse gamma distribution given in (6.12). Draw a new value

of the complexity parameter ®“*" from the conditional beta distribution given in (6.13).
Update of the regularized spline coefficients of the nonlinear effects:

Draw a new value &/, j=1,..,p,, from a multivariate Gaussian full conditional with mean

vector and covariance matrix given by (6.5).

To center the functions, compute the mean of the function evaluations at the observed data
points ¢ =n"'Y" ol B i (z;) -

(_c+1)

Adjust the current states of @/ by a{*" —c!

(c+1) (c+1) (c+1)
Y+ e

, j=L,...,p,, and adjust the intercept YV by

Update of the smoothing variances associated to the spline coefficients:

2,(c+1)
(o] >

Draw a new value of the variance parameters T j=1,...,p,, from the conditional inverse

gamma distribution given by (6.14).
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[7]

[8]

[9]

Update of the scale parameter:

Draw with slice sampling a new value of the variance parameters 6> from the conditional
inverse gamma distribution given by (6.28) with (6.27).

Update of the transformed mixture weights:

Option 1: (Method “mhcond”) Draw a new value @ =(o),..., 0y, 0, ,....0%)" from a
multivariate Gaussian proposal distribution with mean vector and covariance matrix given by
(6.18). Accept the proposed state as new state of the chain with the acceptance probability given
in (6.19). If the proposal is accepted, set ay™ =a, else set ay™ =a .

Option 2: (Method “mhmarg”) Draw a new value @y =(ouf),..., 0, 0’L, ... 04%)" from a
multivariate Gaussian proposal distribution with mean vector and covariance matrix given by

(6.20). Accept the proposed state as new state of the chain with the acceptance probability given

in (6.19). If the proposal is accepted, set ay™ =a’, else set af™ =af’ .
Option 3: (Method “mcondblock”) Draw a new value @ =(0/,..., 0 0, O, s 0L

from the Gaussian proposal distribution with mean vector and covariance matrix given by (6.21)
and accept the proposed state as new state of the chain with the acceptance probability given in

(6.22). If the proposal is accepted, set a;*" =a, else set af™ =ay’ .

Option 4: (Method “mcondstep”) Draw a new value a(") from the multivariate Gaussian
proposal distribution with mean vector and covariance matrix given by (6.21) and the stepwise
update. Accept in each step ¢ =1,...,g,—1, the proposed state as new state of the chain with the
acceptance probability given in (6.23). If the proposal is accepted, set af™ =af?), else set

(c+l) _ ,(c)
Oy =07

Option 5: (Method “slice”) Draw a new value with slice sampling to update each component
(u+l)

, j=1,....k=Lk+1,...,g,, from the conditional distribution given by (6.25).

Option 6: (Method “dirichlet”) Draw a new value state of the component weights w'® from
the Dirichlet distribution (6.26).

Skip the update of the smoothing variance parameter in [9].

Option 7: (scalebasis=TRUE) To standardize the error distribution to zero mean and unit
variance, compute the mean and variance of the error distribution at the current values of the

basis knots m{® and basis variances s}’

g S g
l-lém) - Zjo W (u(ul))mgg), ot = zjo W ((l(““))( 2,(c) +s2 (L)) Mg,(m) .

Update the basis means and variances according to (6.31) with

(c) (c+1) 2,(¢c)
m. — S
m(c+1) _ J € S;,(c+l) — J

j - GE:CH) ) j Gg'(”l) s _] = 1,...a g() .

Finally, adjust the intercept V5™ — y5™ +o0> D)  and the scale parameter

G — o> (Do) according to (6.32).
Update of the smoothing variance of the mixture weights:

Draw a new value of the variance parameter ‘ci’(f”” from the conditional distribution given by
(6.14).
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[10] Update of the latent component labels:

Draw a new value of the latent component labels r“"el{l,..,g,}, i=L..,n, from the
conditional multinomial distribution with probabilities given by (6.29). Update the number of
observations in the mixture components n{" = #{i: " = j} , j=L...,g0.

[11] Update of the latent exact log-survival times:

(c+1)
i

For the censored observations i€ {1,...,n} draw a new value of the latent log-survival time y

from the truncated Gaussian distribution given by (6.30).

6.3.3. Postprocessing

Standardization of the error: As outlined in Subsection 6.2.1 the unconstrained estimation of the
baseline error is leading to the non-identifiability of the parameters defining the baseline error
distribution Y, =, + o€ and the involved parameters do not show the desired convergence. When the
basis function means m, and standard deviations s, are fixed during the sampler
(scalebasis=FALSE), we have to compute the standardized error density in post-processing steps
utilizing the obtained MCMC sample. We do this by applying the same transformation of the mean
m, and standard deviation s, as described in Option 7 to the sampled values of the location and scale
parameter. The resulting, adjusted sample values of the intercept Y, and the scale parameter ¢ show

the desired convergence.

Recomputation of the weights: With the procedure described in Option 7 we achieve a standardized
error distribution, €, ~ PGM(0,1), but the resulting variability in the locations m, and scales §, of
the Gaussian basis function sometimes prevents the direct detection of the convergence of basis
function weights. Finally, to show in addition the convergence of the weights, we compute the
estimated standardized version of error density f (-) at a fixed number of grid points. For the
standardized densities we can e. g. use the starting knots m = (m;,...,my, Y of the Gaussian basis
densities, but any set of grid points is possible. With respect to (6.33), we have to solve the constrained
linear equation system B®w® =f" subject to W{’>0 and 2w =1, where
B® =(@(m, Im’,5%)) <, denotes the matrix of the Gaussian basis functions @(-Im{’,3”*) with

adjusted mean ™" and standard deviation §, k=1,....,g,, evaluated at each grid point m,,

l(=1,...,g,. Further w® = (\X/{S),...,v”vfg?)' is the vector of recomputed basis function weights and
£ = (£ (e)),....f" (ey,))" is the vector of the standardized error density computed with the parameter
values of the s-th iteration. Since some of the border weights are often very close to zero, solving the
constrained equation system becomes often numerically instable. To approximate the solution, we
replace one component of the system B®w® =f{* to satisfy Y :° Wi’ =1 and use the optim()
optimization method in R to minimize the problem (B®w® —f®)(B®w® —f) with respect to the
positivity constraint of the weights. If some of the basis function weights have close to zero values, e.
g., at the border knots, the associated recomputed weight often match the lower bound of the box

constraints specified in optim ().
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PART II. BAYESIAN REGULARIZATION IN THE
CRR MODEL

7. Extended CRR model

The second popular regression model for continuous right-censored data treated in this work is the
semiparametric relative risk model of Cox (1972), where the functional dependence of the survival
time on the covariates is specified through the hazard rate function.

A very general, broad and flexible class of Cox type hazard regression models is already proposed by
Hennerfeind et al. (2006). The authors extended the Cox model in two directions. On the one hand the
logarithm of the nonparametric baseline survival hazard function is modeled by penalized B-splines
that allow flexible, smooth shapes for the baseline hazard in the Cox model. On the other hand the
predictor is extended to a structured additive predictor in the spirit of GAMs to model, in addition to
the linear effects of some covariates, further covariates with other effect types, like smooth effects,
time-varying effects, varying coefficients, nonlinear covariate interactions, random effects or spatial
effects. The unified Bayesian modeling approach for this rich class of survival models is based on the
fact that non-linear effects, including also the logarithm of the baseline hazard, can be expressed or
approximated as linear combination of basis functions, where the basis function weights act as linear
regression coefficients. This representation forces a purely linear structure of the predictor with
appropriate defined design matrices. A common hierarchical model structure results, since all
regression parameters in the predictor are equipped with conditional Gaussian priors given variance
parameters, which drive the various forms of covariate-specific regularization, like smoothing of
nonlinear or spatial effects. Finally, hyperpriors are assigned to the variance parameters to enable full
Bayesian inference based on the full likelihood. The variance parameters, as an integral part of the
model, are estimated jointly with the different covariate effects and the baseline hazard by MCMC
simulation techniques.

In the subsequent section, the previous work of Hennerfeind et al. (2006) is expanded to take into
account linear regularized effects utilizing informative shrinkage- and selection-type priors to consider
also possibly high-dimensional covariates arising, e. g., in microarray-based survival studies. It is
shown, that the inference of the regularized linear effects can be treated within the provided unifying
framework, since the presented shrinkage priors also enable a hierarchical representation in terms of
conditional Gaussian priors given variance parameters that drive the shrinkage towards zero.
Therefore, inference for regularized linear effects is only described in combination with smooth effects
of continuous covariates, because the inference is straightforward for model terms reflecting the
previous mentioned other kinds of effects. The inferential procedures are implemented in the free

software BayesX.
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Bayesian analysis of the Cox model has also been studied in terms of the partial likelihood, where the
estimation of the covariate effects is of primary interest and the baseline hazard is treated as a nuisance
parameter. In the framework of the partial likelihood we consider also an extended predictor to model
jointly regularized linear effects and nonlinear smooth effects of continuous covariates as prototype.
Since the unified building block for representing the various kinds of effects does not change, if
inference is based on the partial instead the full likelihood, the extensions to consider the manifold of
effects listed above are managed identically. In summary, the unified modeling approach of the
various types of covariate effects, as described in Hennerfeind et al. (2006), is also applicable to model
the predictor and the corresponding priors under the partial likelihood. The inferential procedure is

implemented in the R-function bcoxpl ().

7.1. Basic CRR model

Let T, 20, i=1,...,n, denote the random variables representing the non negative, continuous survival
times of the individuals from a heterogeneous population with the assumption that the survival times
T;, i=1...,n, are conditionally independent given covariates and parameters. The observed right
censored survival data is given as D ={(t,,d;,v)),i=L...,n}, where t, =min(t;,c;) is the observed
survival time, d; =1(t; <c;) € {0,1} is the observed censoring indicator and v; = (vil,...,vip)' is the p-
dimensional vector of the observed covariates for the n individuals of the sample. As pointed out in
(1.6.) the hazard function A;(-) for individual i is assumed to be built as the product on an unspecified,
covariate independent baseline hazard function A,(-)>0 and the exponential link exp(m;) of the

predictor ;€ R that imports the summarized covariate effects, i. e.

Ai(t19) = Ao (Dexp(n;), (7.1)

where ¥ is an appropriate vector of regression parameters which will be specified in the following.

7.2. Extended predictor

As in Section 2.2 we partition the vector of explanatory covariates into three different treated

subgroups of covariates v;=(uj,x{,z))" and consider a semiparametric form of the predictor
M =Mi(Y) given by

M =wy+xB+1f(zi)+...+1, (zi,) (7.2)
that summarizes the different functional forms of the covariates.

The first component of the predictor describes the linear effects y = (Yo,Yi,---»Yp,) of a moderate low
number of time-independent, categorical or continuous covariates w; = (UjoU;...,U;p, Y c v, with
pu. < n, that are forced into the model and should not be regularized. In general it is not necessary to
model an intercept term as regression parameter, because this parameter is common to all individuals
and is therefore included in the baseline hazard. But for identifiability reasons, with respect to the level
of the optional nonlinear terms, at least the global intercept term Yy, with u;, =1, i=1L...,n, is
modeled. The second component describes regularized linear effects p=(Bi,....B,, )" of possibly high-
dimensional categorical or continuous time-independent covariates X; = (Xj ..., Xjp, Y cv;, with p, <n
or p, >n. The regression coefficients P are equipped with an informative shrinkage- or selection-

type prior as provided in Sections 4.1 to 4.3 to identify those effects with the highest impact on the
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response. The remaining functions f;(-), j=1,...,p,, are smooth nonlinear effects of time-independent
continuous covariates z; that need to be regularized to avoid overfitting. As outlined in Section 2.2
modeling of these unknown functions f;(-) is based on Bayesian P-splines, compare Lang and Brezger

(2004), where each function is approximated as a linear combination
gj
fj (Z) = z (X‘j,kBj,k (Z) = b; (Z)(IJ
k=1

of B-spline basis functions b;(-) =(Bj;("),...,Bjg, ())" and basis coefficients 0= (Og,eens Ol Y. The
basis functions with degree q; are defined on a sequence of equally spaced (inner) knots
min(z;) =&, <...<&, =max(z;), g;=s;+q;—1, from the domain of the j-th covariate z; with
additional boundary knots. A moderate number of knots is used to maintain the flexibility of the
approximations in combination with Gaussian random walk priors for the basis coefficients that

control the smoothness. For identification, the functions are centered horizontally about zero.

Further predictor components, like random effects to model unit- or cluster-specific heterogeneity, can
be treated in a natural way in the Bayesian framework, where all parameters per se are considered as
random variables. In particular, the distributional assumption about the random effects acts as the prior
and can be cast into the regularized regression context, e. g. the Gaussian random intercept model with
d; ~ N(0,73) in combination with an inverse gamma prior for the variance parameter t§ corresponds
to the Bayesian ridge prior of Section 4.1. Other optional components like time-dependent covariates
(zi'j (t)a;), varying coefficients (f;(zy)z;, where f;(-) is a function of covariate z, that modifies the
effect of the covariate z;), time-varying effects (f;(t)z;, where f;(-) is a time-dependent function that
modifies the effect of the covariate z;) or spatial effects (defined by smooth functions f,, (-) of spatial
indices of the geographical areas) can also be included in the predictor and cast into the unified
modeling via penalized basis function expansions as shown e. g. in Brezger and Lang (2006) for
exponential family regression, Kneib and Fahrmeir (2007), Hennerfeind et al. (2006) for geoadditive
Cox-type survival regression models. By incorporating smooth effects or time-dependent covariate
effects into the predictor the proportional hazards property is relaxed and the application of the
resulting structured additive CRR regression models is not longer restricted to the assumption of

proportional hazards.

7.3. Extended baseline hazard function

To obtain a flexible baseline survival distribution in the Cox model, the rather strong parametric
assumptions for the baseline hazard function, like e. g. in the Weibull model, are relaxed by placing a
P-spline model for the logarithm of the baseline hazard as suggested by Hennerfeind et al. (2006). In
the similar manner like the smooth effects of the predictor, the log-baseline hazard is approximated by

a linear combination of B-spline basis functions, i. e.

£y (t) :=log Ao (t) =bg(t)a,,

where @, = (0lg,...,0lg, )" denotes the vector of basis function weights corresponding to an appropriate
set of B-spline basis functions b, (-) = (Bg,("),...,Bgg, (-)) evaluated at the observed survival times t; ,
i=1L...,n. In particular, the piecewise exponential model, which states a step function for the baseline
hazard function, is included as a special case when B-splines of degree zero are used. In this case the

random walk prior prevents too large jumps between adjacent values of the baseline hazard pieces.
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Modeling the log-transformation of the baseline hazard is advantageous, since it allows specifying the
smoothness prior for the basis coefficients without any non-negativity restrictions for the regression

coefficients a, to ensure the condition Ay (t) =0, te R§.

Generic notation: Rewriting the hazard function as A;(t) =exp(fy(t)+m;), the time-independent
semiparametric predictor m; in (7.2) can be further extended to take into account the time-dependent
baseline hazard function

i (1) =wy + X+ by (Ve + b (zy)a, +...+ b}, (2, )L, - (7.3)

Due to the linear structure, the vector of predictors n(f) = (T]l(fl),...,nn(fn ))", evaluated at observed
lifetimes t;, i=1,...,n, can always be represented in generic matrix form

Nt =Xp+Uy+Zoy +...+Z 0, ,

using appropriately defined design matrices X and U, with rows x| and u}, for the linear effects and
the nxg;-dimensional design matrices Z;, with rows by (t;), j=0, and b;(zij), i=L....p.,

i=1,...,n, representing the evaluations of the basis functions.

7.4. Likelihood

7.4.1. Full likelihood

Joint inference for covariate effects and the baseline hazard is based on the full likelihood. For right
censored data the full likelihood is given in (1.12). Inserting the hazard function with representation
Ai(t)=m;(t) from (7.3) into the expression of the full likelihood we obtain the following log-

likelihood expression
1(91D) =logL(81D) = Z(dmi (t) —J.:i exp (M (s))ds) , (7.4)
i=1

where 9= (o7, with @ =(ag,a],....a,, )", denotes the vector of regression parameters.

The evaluation of the log-likelihood (7.4) requires the computation of the cumulative hazard function
A 19) = f (; exp(1;(s))ds by integration over all time-dependent terms in the predictor. Because in
our considerations the log-baseline hazard function f;(t)=1og(A,(t)) is the only time-dependent
function, the expression of the cumulative baseline hazard simplifies to A;(t19)=Ay(t)-exp(n;),
where m; is the time-independent part of the predictor 1, =m;(t;)—by(t;)a, given in (7.2) and

Ay(t):=Ay(tlay) denotes the cumulative baseline hazard function defined by
t t ,
Ao(t) = jo Ao(s)ds = jo exp (bj(s)a,)ds. (7.5)

Using the special functional form of the cumulative hazard function, the log-likelihood can finally be
written as

n

1(81D)=>"(dm; (1) — Ay (t)exp(m)). (7.6)

i=1

Apart from simple parametric forms or using B-splines of degree 0 or 1 to model the log-baseline
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hazard f,(t), the integral in (7.5) can not be solved analytically and has to be evaluated numerically

using, e. g., the trapezoidal rule.

7.4.2. Partial likelihood

A special feature of the CRR model (7.1) is the possibility to estimate the relationship between the
hazard rate and the explanatory variables by treating the baseline hazard function A,(-) as nuisance
parameter. Inference is carried out on the base of the partial likelihood (1.13), where A, (-) is discarded
and hence we do not have to worry about the shape of the baseline hazard function. The logarithm of

the partial likelihood is given as

pl(81D) =logpL(819) =Y d, [ni ~tog(X0 Lo expmk))}, (1.7)

i=1
where m; denotes the extended predictor from (7.2). The indicator function in the log-likelihood (7.7)
is used to describe the risk set R(f;)={k:t, >t} at the observed survival time t,, which consists of
all individuals who are event-free and still under observation just prior to time t;. To estimate the
distribution associated with the baseline hazard function (7.1), Breslow (1972, 1974) proposed to

estimate for the cumulative baseline hazard A,(t) in a post-inferential step by

N = 1 1. < di

R ()= e
i=1 zk=11(1sz.) exp(fix)
where the Breslow estimate ABR(-) is computed on the base of the regression parameter estimates
Ik = nk(ﬁ) from the partial likelihood.

) (7.8)

Bayesian justification of the partial likelihood

While the partial likelihood is a widespread tool for frequentist inference of the CRR model, it is in
general not clear, if the partial likelihood is valid for posterior analysis based on the Bayesian theorem
(1.15), where commonly the full likelihood is used. The Bayesian partial likelihood approach is often
justified by showing, that the posterior based on the partial likelihood approximates the full likelihood
based marginal posterior of the regression coefficients, if a very diffuse prior for the baseline
cumulative hazard function is assumed. We sketch the idea in the following and refer for details, e. g.,
to Kalbfleisch (1978), Sinha et al. (2003) and Kim and Kim (2009).

For simplicity we consider the case of linear effects %=1 . In this case Bayesian inference is based on
the posterior density pp.(y!®) o< PL(YI®)p(y), which is proportional to the product of the partial
likelihood PL(y1®) and an arbitrary prior p(y) of y. The Bayesian justification of pp (y19) for
continuous univariate survival data and time-constant covariates is due to Kalbfleisch (1978). Under
the assumption of a very diffuse gamma process prior used for the cumulative baseline hazard
Ao(t) ~ GP(cAy(t),c) he showed, that the posterior density pp (Y!®) can be viewed as an
approximation of the marginal posterior of y

Py 1D) o< [ Ly, Ay 1D)P(Y)P(A)dA, = p(¥) [ L(¥, A¢ 1D)P(Ag)dA, , (7.9)

where L(y,Ay1®) denotes the full joint likelihood of y and A,(t), and p(A,) denotes the gamma
process distribution density. As expressed in (7.9), the prior for the regression parameter p(y) is

assumed to be independent of p(A,) . The distribution parameter A,(t) can be interpreted as an initial
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guess for the cumulative baseline hazard A (t) and is often assumed to be a known differentiable
parametric function depending on further hyperparameters, while the positive real number ¢ >0 is a
weight attached to this guess. It is shown, that the corresponding marginal density
I:(y [9) = f L(y,A¢ I®D)p(Ag)dA, , which depends on the hyperparameters ¢ >0 and those of A*(t),
can be interpreted as likelihood function for y given the data. In addition L(y|®) provides for
different choices of the weight parameter c¢ a spectrum of likelihoods, where two limiting cases are of
particular interest. For the very diffuse case ¢ — 0, placing a little faith on the prior guess Aq(t), this
marginal likelihood L(y1®) is proportional to the partial likelihood pL(y|®), so that the marginal
posterior of ¥ in (7.9) is approximated by pp. (YD) o< PL(71®)p(y). On the other hand, for a strong
trust in Ag(t) with ¢ —eo, the full likelihood L(y,A;l®) results with Ay(t)=Ag(t). The
examination of this marginal likelihood for varying values of the parameter c>0 enables the
evaluation how assumption-dependent the analysis is. Kalbfleisch (1978) showed also that, if the value
¢ is small, the mean of the posterior distribution of the cumulative hazard is approximated by the

Breslow estimate (7.8).

Sinha et al. (2003) picked up the approach and extend the results to take into account (external) time-
dependent covariates, time-dependent effects, multivariate survival data (if frailties are modeled) and
grouped survival data. Since the partial likelihood only depends on the observed order not on the exact
values of the failure times, corrections are required if ties are present to take into account the
permutation of those individuals with identical survival times. This is due to the fact, that the partial
likelihood considers only the observed order of the survival times and, if more than one individual has
its event at the same time, the ordering is no longer unique. In the Bayesian framework Kim and Kim
(2009) investigate corrections of the partial likelihood when many ties are present and they provide a

Bayesian justification of using the exact partial likelihood of Peto (1972) in such situations.

8. Priors for the extended CRR model

To complete the Bayesian formulation of the CRR regression model, the regression parameters are
equipped with more or less informative regularization priors as presented in the Section 4. The priors
are identical to the priors used in the extended AFT model, which emphasizes again the uniformity of
the Bayesian approach. We use again p as generic notation for the shrinkage prior-specific

hyperparameters from further stages of the hierarchical formulation.

Prior of the unregularized linear effects

The prior for the low-dimensional linear effects y=(Y;....,Y,, ), Which are forced into the model, is

assumed to be weakly informative Gaussian

Yluy’zy ~N(HY,EY), (81)

with p,=0 and X;' ->0. Alternatively we use the product of independent diffuse priors
p(Y;) < const., j=0,1,...,p,. In general we use the formulation (8.1) as blueprint to derive the
conditional posterior densities, because the remaining regularization priors are also conditional

Gaussian and differ only in the specification of the mean vector and covariance matrix.
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Prior of the regularized linear effects

For possibly high-dimensional regularized linear effects p=(B,,....0,,)" we use the shrinkage or
selection priors corresponding to the Bayesian lasso, Bayesian ridge or Bayesian NMIG hierarchy as

described in Sections 4.1 to 4.3. In particular, all priors are conditional Gaussian
Blti ~N(0,%), 8.2)

with diagonal covariance matrix Xy =D, = diag(réI ,...,rép ), where the variance parameters ’CEJ drive
the covariate-specific shrinkage of the regression coefficients towards the mean pg=0. The

associated priors for the variance and shrinkage parameters are:

Bayesian ridge version (A) (p=(\,...,\,,))

‘cé} A~ dyn, (‘céj) ,j=L....px s (8.3)
7“] ~iid Gal’mna(hl,;b,hl,)h); hl,k5hl,7u > 0 . J = 1,...,px . (84)

Bayesian ridge version (B) (p=1)
T[%|x~61/27»(r[%)’j:1’--"px’ (85)
A ~Gamma(h;;,h;3); hy;.h; >0. (8.6)

Bayesian lasso (p=L\)
A2 .

Té] I}\«z ~iid EXP(TJ , le,...,px , (87)
A?* ~Gammal(h,;.h;;); hy;,h; >0. (8.8)

Bayesian NMIG with t; =Ly} (p=0)

I; vy, vi,® ~;q Bernoulli(w; vo,v,), j=1,...,py, (8.9)
WJZ l hl,w’hZ,w ~iid IGamma(hl,\y’hl\V)’ hl,w’hZ,w > 0 s .] = 1’---’ px s (810)
o~ Beta(hl’w,hzyw); hl,u)’hZ,(o >O (811)

Prior of the nonlinear effects and the log-baseline hazard

The priors for the basis function coefficients @ :=(a,0;,...,a,, )" of the nonlinear effects and the log-
baseline hazard are specified by random walks of d;-th order. We obtain conditional, partially

improper Gaussian smoothing priors as defined in Section 4.6 with
;172 ~N(0.25). j=0.L...p,. (8.12)

where X = réjK 7 denotes the covariance matrix and K7 is a generalized inverse of the penalty
matrix K; with rank rank(K;)=g;—q;. Diffuse priors are initially used for the q; coefficients
p(Qy) o< const,...,  p(Qlj,)o<const and the smoothness controlling variance parameters

T = (T,. T, -, ) are equipped with inverse gamma distributions
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2~ InvGamma(h, . h, ), j=0.L....p, . (8.13)

Joint prior distribution

With the independence assumptions implied in the prior definitions, i. e. that all priors are
conditionally and mutually independent, the joint prior distribution of the set of model parameters

0 =(9,75,73.p) is given by the product

Pz
p(®) =] [p(o; 1 t2)p(t2) - p(B1TH)p(Td | pP)p(P)P(Y). (8.14)

=0
where p is a generic notation for the shrinkage prior-specific hyperparameters from further stages of
the hierarchical formulation. If inference is based on the partial likelihood, the factors

p(a, 1 t20)p(T2,), modeling the assumptions of baseline hazard, are discarded.

9. MCMUC inference in extended CRR model

Bayesian Inference via MCMC simulation is based on updating full conditionals of single parameters
or blocks of parameters given the rest of the parameters and the data. The unified prior structure for
functions and parameters is leading to full conditionals with a similar unified structure. For non
Gaussian responses, Gibbs sampling as for the regression parameters in the AFT model, is no longer
feasible and more general Metropolis-Hastings (MH) algorithms are required. We construct a Markov
chain with MH steps using IWLS fashioned proposals, as suggested by Gamerman (1997) and shortly
described in Appendix C. Due to the beneficial hierarchical structure of the model, Gibbs sampling for
the regularization parameters is still feasible. We first describe MCMC inference for the extended
model based on the full likelihood (7.6) with the predictor (7.3), where joint shrinkage and smoothing
of covariate effects together with a smooth estimation of the log-baseline hazard are of primary
interest. Inference for shrinkage and smoothing of covariate effects based on the partial likelihood

(7.7) with the extended predictor (7.2) is outlined subsequently.

9.1. Conditional posterior densities based on the full likelihood

Using the Bayes theorem, the joint posterior p(017%) is proportional to the product of the model
likelihood L(01%) and the joint prior density of the model parameters p(0). Based on the full log-
likelihood (7.6) of the extended Cox model with the extended predictor given in (7.3) and the prior
(8.14) the posterior has the general form

p(e.B.y. 2. 77.p1D) o= exp(1(e. by 1)) [ [ plet; 172,)p(T3) - p(B 1 THP(TE I PIP@IP(Y) . (O.1)

=0
9.1.1.  Full conditionals of the predictor components

Unregularized linear regression coefficients y

In the following we derive the general structure of the full conditionals and the proposal distributions
for the predictor components 9= (a,’,y")" in terms of the unpenalized regression coefficients y
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assuming for a while the prior (8.1), yIp,, X, ~N(n,,X,), with p, #0 and X;'#0 to preserve the
generality. Discarding the factors in the posterior (9.1) that do not depend on ¥ , the full conditional of

the regression parameter y is given by
1 y -1 e -1
p(y!-)e<exp 1(13IZ))—57{Z‘.Y7+721y [T 9.2)

To construct the Gaussian IWLS proposal, we apply a second order Taylor expansion to the logarithm
of the full conditional f(y)=1log(p(y!|-)) at the current state of the parameter vector y®, compare
Appendix C for details. Differentiating f(y) with respect to y gives the score vector

(31D
s, (Y) Z%_EVIY"‘ZYHW 93)
and the hessian matrix
2B 1D) B
H =————--_¥1 94
Y (Y) ayay/ Y ( )

with the following contributions from the differentiation of the log-likelihood

al%’ylm - Zdiui _J.Ol‘ u; exp(M;(s))ds = Zdiui — Ao (),
i=1 i1
IUBID) _ —Zn:_[ ’ u;u; exp(n; (s))ds = —Zn:/\ (tHmuu;
ayay, < 0 i p 1 - o\t iy -
The second order Taylor expansion of f(y) around the current state of the parameter vector y© has
the form
2 . oY . 1 oY . .
E(r)=f(r)+(r=v9) s, (v) + 5 (v=7) H, (v) (v =v), 95)

where s,(y“) and H,(y©) denote the score vector (9.3) and the Hessian matrix (9.4) evaluated at
the current state y© and the current states of the remaining involved parameters 9., =(a”,p).
Building the exponential of approximation (9.5) and neglecting the components that do not depend on

v provides the following structure of the proposal density
Alc) N (c 1 . ’ . .
Oy IR, () o< exp {EYHY (Y )y +v (s (v) = H, (v) )} :

which represents the kernel of a multivariate Gaussian distribution density @(:| ﬁ(f),)i(f)) with mean

vector and covariance matrix
=50 (5 (1)~ (). 857 = (-, (1)) 06

As already mentioned in the context of the extended AFT model, the reformulation of the mean as
R =y —H,(y“)s,(y©) enables the interpretation as one-step-approximation to the mode of the
full conditional obtained by a single Fisher scoring step from the current state.

Using the notation A(t19®):=(A(t; 19),...,A(t, | 9))" as the vector of the cumulative baseline hazards
evaluated at the observed survival times t; and d:=(d,,...,d,)" as the vector of censoring indicators,
the score vector has the compact form
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s,(19)=U'(d=AdIY,9.)) -7 + E/'n, 9.7
and the Hessian matrix reads
H,(v9)=-Udiag(A(tly©,9.))U-Z;'. (9.8)

Finally, a new proposed value y® of the Markov chain is obtained by drawing a random number
from the Gaussian distribution with density (p(-lﬁg(”,)igf)). The new state is accepted with the

probability

p(Y® 1)@y AP, ZP))
p(Y@ 1) o(y™ 1R, £) |

paccept ('Y(p) 77(0) ) = mjn {17

where p(y® 1) and p(y© |-) denote the evaluations of the full conditional (9.2) at the proposed state
y® and the current state y© with respect to the current states of the remaining involved model
parameters ¥_,. The mean vector i’ and the covariance matrix ):TE,P), appearing in the acceptance
probability, are computed by the evaluation of the expressions in (9.6) at the proposed value v
keeping the remaining parameters -, fixed at their current states.

In particular, since we assume a flat Gaussian prior for the unregularized effects y that corresponds to
the limiting case p, =0 and X;' =0, the mean and covariance matrix of the Gaussian proposal for the
unregularized effects y are given as

o = £ [U’d ~UA(Tly®,8.,) + Uldiag(A(T! ym,ﬁ_Y))Uy(C)],
(9.9)

-1

£ =(U'diag(A(E17.9,))U)

Regularized linear regression coefficients f3

For the remaining regression coefficients @ and B the IWLS proposal densities can conceptually be
carried out in the same way as above for y. We obtain the corresponding expressions for the mean
and the covariance matrix of the Gaussian proposal by replacing the design matrix U, the precision
matrix X' and the mean p, in (9.7) and (9.8) with the associated quantities from the priors of the
regularized linear effects and the smooth effects. Proceeding as before, using the conditional Gaussian
prior BlT§ ~ N(0,X5) from (8.2) the full conditional of B is given as

p(Bl-) o exp{1(m©)-%;s'ngﬁ}. 9.10)

Given the current state B and the current states of the remaining regression coefficients
¥ =(a,y9), proposals are drawn from a Gaussian density with mean vector and covariance
matrix

Ay = £ [X’d ~X'A(E1B©,0.5) + X'diag(A(f1 B@,ﬂ_ﬁ))xw]
(9.11)
A~ - -1
£ =(X'diag (A (E1p©.0,5))X-D7') .
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Regularized nonlinear regression coefficients a;

Using the conditional Gaussian priors a; I1:§cj ~ N(0, Zgj) from (9.12), the full conditionals of the

basis function weights coefficients a; are

p(a;l-)e exp{l(ﬁl@)—%a}Kﬂj}, i=0.1,....p, . (9.12)
T

O
(c)
j
9, = (af,c),...,aﬁﬁ},agi{,...,a;‘;),y“),[&“)), proposals are drawn from a Gaussian distribution with mean

Given the current state a;” and the current states of the remaining regression coefficients

vector and covariance matrix

i

i) = 25| Zid-ZiA (1o, 0., )+ Zidiag (A (T10, 9., ) Z,el” |

i 2
o

) LY (9.13)
e =£Z3diag(A(qu(” ﬁaj))zj——KjJ :

In particular the band structure of the precision matrices of the Gaussian proposal distributions for the
basis coefficients a; enables an efficient computation of the Cholesky decomposition and a fast
implementation of the algorithm of Rue (2001), compare Section 6.1.7, to draw a new proposal and
compute the acceptance probability. To identify the model, the B-spline coefficients are centered as

described in Section 6.1.1.

The computational efforts increase for the update of the baseline hazard coefficients a,, because the
time-dependent cumulative baseline hazard function A,(t) = I (: exp(bg(s)aods and the associated time-
dependent derivates are involved, complicating the computation of the score function and the Hessian
matrix of the likelihood. We obtain

al(gs'ul Q) — i dibo (tl) - exp(ni )J-()[‘ b()(S) exp(b:) (S)(lo)ds ,
PIBID) & ,
doda, ;‘”‘P(“')L by ()b (s) exp(by (), )ds ,

and we have to evaluate this time-dependent expressions concerning the log-baseline hazard P-spline
model by numerical integration in every iteration of the sampler. As computationally more efficient
alternative, one may use MH steps with conditional prior proposals, as developed in Knorr-Held
(1999) for state space models and applied to geoadditive hazard rate models in Hennerfeind et al.

(2006), which require only the evaluation of the log-likelihood and not evaluation of the derivates.

Weibull baseline hazard model

In addition to the P-spline based approach, we consider a simple parametric Weibull model to model
the baseline hazard with A, (t) == aet®™" and A;(t10) =0, t® exp(n;(t)) as competitor. In the extended
predictor (7.3) the nonlinear log-baseline component f,(t) =1og(A,(t)) has in this case the special
form f;,(t) =log(o)+ (0, —1)log(t).

Typically a gamma prior is employed to model the prior knowledge about the shape parameter o,

compare e. g. Ibrahim et al. (2001), i. e,

(XO ~ Gamma(hl’% ’h2,050 ), hl,ao > 09h2,0(0 > O (914)
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with [E(cy) =h,,, / h,, and Var(a,)=h,,, / hg’% . If identical hyperparameters like h,, =0.01 and
h;q, =0.01 are used, the prior mean of 0 equals one, which corresponds to a constant hazard over
time with a large variance of 100. The update of the log-baseline hazard in this parametric case is
achieved by the update of the single parameter «,. With the prior assumption (9.14), and the
likelihood contributions 1;(¥] %) =d; log(a,) +d; (0, —l)log(fi)+dini —A;(t;19) the full conditional
of o, is given by

p(0t 1) e< eXp{Zn‘,di log(aty) +di (0t —1)log(t) = Ai(t; 19) + (h 4, —1)10g(oco)—h2,%0co}, (9.15)

i=1

where in our case of time-independent covariates in the predictor the expression for the cumulative
baseline hazard is simplified to A;(t; |9) = ;% exp(n;). Since the full conditional does not have a
closed form, we use again MH steps to update the shape parameter 0. The proposal o is drawn
from a gamma distribution

q(-10”.dy, ) ~ Gamma (dg, 0, do, ) (9.16)

based on the current value o, which leads to the acceptance probability

p(OLf,") I-)q(oaﬁ,“‘) |chp)’du0)
p(os 1-)q (o Toy,dy, )

paccepl ((XBP) s (XE)C) ) = min {1’

The value of d,, is determined during the burnin to achieve reasonable acceptance rates. In addition
slice sampling is possible, because the full conditional is log-concave, see Ibrahim et al. (2001), and
thereby also adaptive rejection sampling can be applied to update the shape parameter of the Weibull
model. However, the update of the remaining model parameters is practiced as in the case when the
baseline is modeled by a P-spline. In particular, we only have to replace the logarithm of the baseline
hazard and the cumulative baseline hazard by the corresponding expressions of the Weibull model.

9.1.2.  Full conditionals of the regularization parameters

Due to the stage of the hierarchical model structure, there is no direct connection between the
regularization parameters T3, T3, p and the likelihood and, as a consequence, the full conditionals
have a closed form to draw directly a new state of the MCMC chain by Gibbs sampling. The same
holds, if the partial likelihood is used for inference. The full conditionals of the regularization
parameters are derived as in Section 6.1.2 and we shortly summarize here only the results.

Bayesian ridge

Version (A): We have for the variance parameters the deterministic connection T; = 1/2A; and the full
conditionals of the shrinkage parameters are gamma distributions

Ajl~ Gamma[hm +%,hm +ij , j=1..p,. (9.17)

Version (B): We have for the variance parameters the deterministic connection T3 = l/ 2\ and the full

conditional of the shrinkage parameter is a gamma distribution

Px
MwGamma(hl,ﬁp—;,hlx+ZB§J. (9.18)
=
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Bayesian lasso

The full conditional of the variance parameters T3 ; are inverse Gaussian distributions

2
iasz ajzl""pxa (9.19)

B

and we have a gamma full conditional of the complexity parameter

i [-~ InVGauss[

2
TBj

1 Px
A2~ Gamma[hm +px,hoa +52‘c§j J . (9.20)
=l
Bayesian NMIG

Under the Bayesian NMIG prior the variance parameter is the product of two variance components
75, =1;y7 . The full conditionals of the covariate-specific binary indicator variables I; have Bernoulli

distributions
| Buo (Ij) 3y (1))
Ll )=|1-——— _ =104, 9.21
p(1;1) [ 1+Aj/BJ [1+Aj/BJ ! P ©-21)
with
A _l_m\/V_l (Vo—Vy) BJZ
—= exp >
Bj (O] \/V_O VoVy 2WJ

and the variance parameters have inverse gamma distributions

2
W~ InvGamma[hw +%,hw +E—IJJ ,i=1p. (9.22)
j

The full conditional for the mixing parameter is a beta density

ol-~Beta(h,,+n;;h,, +19) (9.23)

with ng =#{j:I;=vo}, n, =#{j:;=v,}.

Smoothing variances:

The full conditionals for the variance parameters 'céj are (proper) inverse gamma distributions

rank(K;)

2

To, |~ InVGamma(hMJ + 5

hog +la3Kjujj, j=0,1...,p,. (9.24)

9.2. Conditional posterior densities based on the partial likelihood

Based on the partial log-likelihood (7.7) with the extended predictor (7.2) the posterior has the general
form

p(e.B,y.t2,73.p1D) o< exp(pl(a, B,y @)Hp(ﬂj | 75.)p(te) - p(B1TH)p(T3 | P)P(P)P(Y) -

=l
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9.2.1.  Full conditionals of the predictor components

Unregularized linear regression coefficients y

To construct the IWLS proposals of the regression coefficients, we proceed as in the previous Section
9.1.1, but we replace the log-likelihood 1(¢1®) in the expressions through the partial log-likelihood
pl(¥1®) as well as the score vector and Hessian matrix of the full likelihood matrix through
corresponding derivatives of the partial likelihood. For the unpenalized linear effects y with Gaussian
prior distribution (8.1), yIp,.X, ~ N(pn,,X,), with p, #0 and X;' %0, the full conditional is given
by

1 e e
p(yl)e exp{pl(ﬁl@)—av EVIY+Y)371M}-

In particular the score vector s?'(y) =dpl(91D)/dy and the Hessian matrix HE'(y) = 9?pl(81D)/dydy’
of the logarithm of the partial likelihood are represented by

st (v) = idi [uij _ zkz}il(ikzﬂ) exp(Mi )ukj]
i=1
Ij<py

zm L, i) exp(M)

and

n zl(sz{i) eXP(Mi Uy Ui Zl(szf,) eXp(Mi )y 'Zl(ikzﬂ) eXp(Mi)Uim
H$1(y) = -Sg,| = = k=1

= kZI:l(Ikzi,) exp(My) kZI: L st exp(Mi) - ;1@2&) exp(My)

1<j,m<p,

The penalized score vector and the penalized Hessian matrix in the second order Taylor expansion of

f(y)=logp(y!-) are according to (9.3) and (9.4) written as

se(v) =9 (v)-Zy'v + Ei'my, Hy(v) =HY (v)-X;".

Under a flat Gaussian prior we set p, =0 and X;' =0, and the resulting mean vector and covariance

matrix of the multivariate Gaussian proposal distribution of regression coefficients y are
e = £© [551 (v©)—Hg (v )Y(C)} Bo = (—Hgl (v ))’1, (9.25)

where sP'(y“) and H(y“) denote the score vector and the Hessian matrix of the partial log-
likelihood evaluated at the current state y' and the actual states of the remaining model parameters
¥, =(a,p) in the predictor. To compute the mean vector [i{’ and covariance matrix 2;@ of the
proposed new value y® , which are required to compute the acceptance probability, the score vector
sb'(y®) and Hessian matrix HJ'(y®) are evaluated at the proposed state y® keeping the remaining

model parameters of the predictor fixed at their actual states O, .

Regularized linear regression coefficients 8

Straightforward, the full conditional of the regularized linear effects f with the prior (8.2) reads

p(Bl) e exp{pl(ﬂl D) _%B’ZEIB}
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with X' =diag(ts’) and the corresponding multivariate Gaussian proposal distribution of the

regularized effects has mean and covariance matrix
0 (C s (¢ c c C (¢ c — -1
= 25 (s (6) -y (B ], 257 = (-Hy (p) + 27 926

with score vector s}'(B) =0pl(91D)/0p and Hessian matrix HE (B) =9’pl(81D)/dpop’.

Regularized nonlinear regression coefficients o;

Finally, using the prior (8.12) the full conditionals of the basis functions coefficients a; are

., :
p(ajI-)c><exp{pl(ﬁl@)—ﬁajKjuj}, j=L...p.,

O

with mean and covariance matrix of the multivariate Gaussian proposal distribution given by

-1
ﬁgj)=ig>[ssj(a§”)—Hﬁfj(a§°>)ag°>], ﬁéa:(_ngj(agw)Jr%KjJ . J=L..p.,  (927)

Oj

with sf, (a;) = dpl(#1D)/da; and H, (a;) = 9’pl(¥1D)/da0a; .

9.2.2.  Full conditionals of the regularization parameters

The rest of the model parameters g =(1g,,....To ), T3, p and are updated by Gibbs steps with the

full conditionals as listed above in Subsection 9.1.2.

9.2.3. Computational details

Detail 1: The generic way to sample a new proposal from multivariate Gaussian proposals is based on
the algorithms described in Rue (2001), and shortly sketched in Subsection 6.1.7.

Detail 2: The most costly computations in running the whole MCMC samplers are the inversions of
the precision matrices within the IWLS parts of the corresponding parameter vectors. To reduce the
running time in the case of high-dimensional parameters, we can update these parameters in blocks of
smaller size than the size of the whole parameter vector. We use per default a maximal block size of
20 covariates per block. This option can be specified with the blocksize argument.

9.3. Update of the parameters

The Markov chain is generated via MCMC simulations based on drawing from the full conditionals of
parameters or parameter blocks given the remaining parameters and the data as derived in the previous
sections. The methods are implemented in the following software. The inferential procedures for
fitting the parametric and nonparametric models based on the full likelihood with P-spline and Weibull
baseline are implemented in the regress method of the free BayesX software available from

http://www.stat.uni-muenchen.de/~bayesx/. The procedures based on the partial likelihood are

implemented in the R-function bcoxpl () which will be provided from the author on request. The
usage of both functions is described in the Appendix D.3 to D .4.
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9.3.1. Preprocessing

Standardization: To ensure that comparable regression coefficient sizes imply comparable effect
sizes, covariates are standardized in advance. This avoids the extensive covariate-specific tuning of the
priors for different covariate scales. We standardize covariates with linear effects to zero empirical
mean and unit empirical variance. To obtain that smooth covariates taking values in [-1,1], we can

apply the transformation

Zt = 2(Zij - Zj,min) 1.

ij
Zj,max - Zj,min

Starting values in the BayesX method regress: In BayesXx the starting values for the regression

coefficients a,B,y are computed via backfitting within Fisher scoring using the fixed variance

parameters T2”,7;" initially specified, and finally the resulting estimates are used as initial states

a” B y© of the chain.

Starting values in the R-function bcoxpl(): An automatic computation of starting values is not
implemented in the function bxoxpl () and in our simulations and applications we start with weakly
specified models. If preprocessing is desired, the starting values for the regression coefficients
a@ B y© can optionally be computed with the R function coxph{survival} using e. g. the
ridge{survival} and pspline{survival} terms in the formula with fixed penalty parameter.

9.3.2. Pseudocode
[11 Initialization:

Specify the regularization priors of the linear effects: Set the values of the hyperparameters
hy,,h,, to specify the gamma prior for the shrinkage parameter A(A*) in the Bayesian ridge or
lasso prior. For the Bayesian NMIG prior set the values v, v, of the indicator I;, set the values
of the hyperparameters h,,,h,, of the inverse gamma prior for the variance parameter y; and

set the hyperparameters h,,,h,, of the beta prior for the complexity parameter ®.

Specify the non-linear effects: Set number g; of B-spline basis functions and choose the order
d; of the random walk penalty for basis function weights.

Standardize the covariates according to Subsection 9.3.1.
Set the number C of iterations, set ¢ =0 and repeat the following steps until c <C.
[2] Update of the unregularized regression coefficients:

Draw a new value y® from the Gaussian proposal distribution @(:| ﬁg(l’),ﬁ‘.(yp)) with mean vector
and covariance matrix given in (9.9). Accept the proposed state as new state of the chain with
acceptance probability

p(y® |')(P(’Y(°) mgwj;%p))
p(v© I-)(p(y<P> |fl(y°),73(y°))

Paccept (’Y(p) ,Y(C) ) =min 1,

If the proposal is accepted, set y© =y® else set ) =y©
[3]1 Update of the regularized regression coefficients:

Draw a new value B from the Gaussian proposal distribution @(-| ﬁfip),)i(ﬁp)) with mean vector
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[4]

[5]

[6]

and covariance matrix given in (9.11). Accept the proposed state as new state of the chain with
acceptance probability

p(p® I-)(p(ﬁ(°> mgp)’ﬁép))
P(B(C) |.)(p(l3<p> |flff),ﬁé°))

Paccept (B®,B©) = min 11,

If the proposal is accepted, set ) =B, else set ) =« .
Update of the shrinkage- and selection-prior components:

Bayesian ridge (A): Draw a new value of the complexity parameter 7\,2“‘”) from the conditional

gamma distribution given by (9.17) and set the variance parameter ré;(””zl/ 20
j=1...,px-

Bayesian ridge (B): Draw a new value of the complexity parameter A from the conditional

gamma distribution given in (9.18) and set the variance parameter T3 =1/21¢" .

Bayesian lasso: Draw a new value of the variance parameter ‘cé;(””, j=1,....px, from the

conditional inverse Gaussian distribution given in (9.19). Draw a new value of the complexity
parameter A>*" from the conditional gamma distribution given in (9.20).

Bayesian NMIG: Draw a new value of the indicator I(ﬁf”), j=1,...,p«, from the conditional

Bernoulli distribution given in (9.21). Draw a new value of the variance parameter y;**",

j=1,...,p« , from the conditional inverse gamma distribution given in (9.22). Draw a new value
of the complexity parameter ®“™" from the conditional beta distribution given in (9.23).

Update of the regularized spline coefficients:

Draw a new value a'®” =(a'?,...,a®” )", j=0,1,...,p, from the Gaussian proposal distribution
j Jil 1:8j

q(-l ﬁgﬁ},f}gﬁ})with mean vector and covariance matrix given by (9.13). Accept the proposed

state as new state of the chain with acceptance probability

p(a1)-ofa 1), 20)
p(a1)-o{og” 1. 253)

accept(agp) 0 ) =min-< 1,

If the proposal is accepted, set a{"’ =a{”, else set a{"’ =a!{”. To center the functions
compute the mean of function evaluations at the observed data points
it = n"zin:l o!SVBjx(z;) . Adjust the current states of a{* by a{"*" —c{“Y and adjust the
intercept Y by Y +¢[V +. 4+

Update of the smoothing variances:

Draw a new value of the variance parameters Ti’f”l), j=0,1,...,p, from the conditional inverse
gamma distribution given by (9.24).

Modifications for the Weibull model

For the Weibull model we replace in step [5] the update of the log-baseline hazard coefficients a, by

the update of the shape parameter o,. We use the proposal distribution given in (9.16) and the full

conditional from (9.15), compare Section 9.1.1. The update of 7, is dropped out in step [6].
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Modifications for the partial likelihood

Using the partial likelihood for inference we have to exchange the mean vector and covariance matrix
expressions in steps [2], [3] and [5] based on the full likelihood by those based on the partial
likelihood, (9.25), (9.26) and (9.27) from Section 9.2.1. The updates of a, and 'céo are skipped.
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PART III. SIMULATIONS

10. AFT-type models

In this section we investigate the performance of the Bayesian regularization priors in the extended
accelerated failure time model (AFT) as described in Section 2. At first, in Subsection 10.1, we
consider the regularization in the AFT model concerning the smooth estimation of the error
distribution density modeled as penalized Gaussian mixture (PGM). In particular the different variants
for the update of the mixture weights, presented in Section 6.1.3, are explored (neglecting initially the
effect of covariates) and compared with selected competing Bayesian and frequentist procedures
available in the R software. In the subsequent sections covariates are also included in the simulation
models. We regard the Bayesian regularization priors for the linear effects, as described in Sections
4.1 to 4.3, in the low-dimensional case p, <n, where the number of covariates p, € N does not
exceed the number of observations ne N. In particular in Subsection 10.2 the number of covariates is
fixed to p, =25 and the observations vary from n =100 to n =500 . Further, in Subsection 10.3, the
linear covariates are modeled by Bayesian P-splines which induce a high-dimensional predictor.
Finally, the high-dimensional case with respect to the number of covariates is considered by increasing
step by step the number of covariates until it exceeds the number of observations p, >n. We focus

here mainly on the impact under the Bayesian NMIG prior.

While the continuous regularization priors for the linear effects cause the shrinkage of these effects
toward zero, the used MCMC estimation methods do not directly enforce simultaneous variable
selection, like, e. g., the algorithms of the frequentist lasso do. To build a final model with a subset of
the available covariates, we use the heuristic selection criteria based on the 95% credible interval and
the one standard deviation interval as described in Section 4.4. In particular the Bayesian NMIG
regularization prior provides the additional opportunity to access the importance of the linearly
modeled features by utilizing the posterior relative frequencies of the two indicator variable values v,
and v,. We investigate the reliability of these procedures to identify important features and compare
the performance with those from frequentist feature selection based on the AIC criterion under
Gaussian error assumption. In the various situations we focus further on the question, which
constellation of p, versus n enables reasonable estimates of the parameters, since the number of
model parameters (including the latent ones) is comparatively high in the Bayesian AFT model with
PGM error and extended predictor.

Functions and methods

The Bayesian algorithms to estimate the extended AFT model are implemented in the R-function
baftpgm (), which is available from the author by request. In Appendix D.5 we describe the usage of
this function. As Bayesian competitor for the extended AFT model we use the R-function

bayessurvreg2 () of the package {bayesSurv} by A. Komadrek, where the baseline error
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distribution is also modeled as PGM. Besides various censoring schemes, like, e. g., right or interval
censoring, this function supports estimation of unpenalized linear effects and random effects in the
predictor. As frequentist competitor, in particular in the case without covariates and censoring in the
data, we utilize the function pendensity() as implemented in the correspondent R-package
{pendensity} by Schellhase and Kauermann (2011). The authors provide a penalized basis function
approach with B-spline or Gaussian basis functions to approximate the baseline error density.
Frequentist maximum likelihood estimation of the AFT model with parametric error distributions is
carried out with the R-function survreg() of the R-package {survival}. Variable selection is
practiced by forward-backward-stepwise procedures based on the AIC (Akaike-Information-Criterion)
criterion and accomplished by the R-function step (). Also ridge regularization of linear effects and
combined estimation of nonlinear effects is possible within the function survreg (), but the values of

the shrinkage resp. smoothing parameters need to be predefined.

Estimation accuracy

In the simulation studies the mean squared error (MSE) of an estimate is used as performance criterion
to measure the estimation accuracy within each dataset of Re N replications. For example the

MSE of the estimated regularized linear effects B in the r-th replication, r=1,...,R , is given by

R 1 N /7 4 o
MSE(r)(B) :H(B(r) _B) X® X(r)(ﬁ(r) _B) ,

A

where ne N is the common number of observations in each simulation setting, B is the vector of
estimated regression coefficients and X” denotes the associated design matrix of the regularized
predictor component in r-th replication. For P-spline-based nonlinear effects f;(-) of covariates z;,
with observations z{", i=1,...,n, in the r-th replication, we have

L)

R 1 ~ e
MSE(I)(fj):;(fj(r)_fj) (fj( )_fj)7 (10.1)

where fj“) = (fj(”(szj)),...,fj(”(z(r?))' denotes the vector of function evaluations of the estimator fj“)(z)

n,j
in the r-th replication and f; = (f;(z{"),....f;(z\"}))" is the corresponding vector of the “true” underlying
nonlinear effect f;(-) . The computation of the MSEs of function estimates representing the baseline
quantities, like the logarithm of the baseline hazard function f,(t) =log(A,(t))+7Y, in the CRR model
or the distribution density fy () of the baseline error Y,=7Y,+06€¢ in the AFT model, is
straightforward in terms of (10.1). In the CRR model the baseline hazard function Ay(-) and the
associated estimate are evaluated at the observed survival times fi“) ,i=1,...,n, of each replication and
the baseline error density fy,(-) and the associated estimate in the AFT model are evaluated on a
predefined number of equidistant grid points (e,,....,e;) that cover uniformly the margins of the “true”

underlying density fy, (-) .

In this work the Bayesian point estimates 0 of the model parameters 0 are generally based on the
mean of the marginal posterior distribution, approximated by the component specific empirical mean
of the generated MCMC sample 0, s=1,...,S. Further summary statistics of the parameter specific
marginal posterior distributions like the median, standard deviation or quantiles are also approximated
by their empirical counterparts. In particular function estimates are given as the mean of the sample
function evaluations fj(”(-) at each of the considered grid points. For nonlinear model components

f;(-) formed by P-spline basis functions b’(z) this results in fj(~) =b(a}”, where @; is the mean
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vector of the sampled basis function weights ags) c 0. With respect to the identifiability of the
predictor components, function estimates are horizontally centered around zero. The baseline error
density fy, (-lay,Y,0) is computed for all iterations of the MCMC sampler using the current sampled
states of the associated parameters a’ <0, Yy’ €0, 6 € 0. Due to the non-identifiability of the
location and the scale parameter, the resulting density estimate of the error € is standardized - during
or after the iterations - to achieve zero mean and unit variance, inducing a simultaneous adjustment of
the location and scale parameter Y, and 6 as described in Section 6.2.1. Finally, the estimate of the
baseline error density fyo () is computed as the average of the function evaluations

£8'() =1y, (laf’,75’,6%)) at the grid points.

To visually compare the performance of the different methods, the MSEs of the interesting parameters
in the replications are summarized utilizing box plots. In the low-dimensional cases, we additionally
report the average number of correctly and incorrectly classified zero and nonzero regression
coefficients of the final models obtained after applying one of the hard shrinkage selection rules and
compare them for the different shrinkage priors. The used abbreviations to denote various models and

the different update schemes of the error weights are summarized in the Reference Section.

10.1. Baseline error density estimation

Error models

In the simulation studies we use the following four target baseline error distributions (BED) to assess

the performance of the PGM approach for the error density in the log-linear version of the AFT model:
e BEDI: Y,~Gumbel(u=3,06=1.5)
e BED2: Y,~0.75-N(u=-3,6>=1)+0.25-N(u=2,6>=1)
e BED3: Y,~04-Nu=-3,6>=1)+0.6-N(u=0,06>=3.5)
e BED4: Y,~05-Nu=0,6>=1)+0.5-N(u=0,62=3.5)

Figure 10.1 displays the densities of the four baseline error models. The first baseline error model
BED 1 uses the Gumbel (maximum extreme value) distribution with cumulative distribution function
K, (y) =exp(—exp(-[(y—n)/c])), where pe R and 6>0 denote the location and scale parameter.
The mean and variance of the Gumbel distribution is given by [E(Y,)=p-oyz and
Var(Y,) =n’02/6, with y; as the Euler constant (y; =0.577 ). With the parameters specified in error
model BED 1 we obtain E(Y,)=-2.124 and Var(Y,)=3.701. The remaining baseline error models
are represented as mixtures of two Gaussian distributions with mean and variance given by
E(Y,)=-1.75, Var(Y,)=5.6875 (BED 2), E(Y,)=-1.2, Var(Y,)=9.91 (BED 3) and E(Y,)=0,
Var(Y,) =6.625 (BED 4).

Data generation

For each error model we generate R =50 replicated simulation datasets with n =500 observations,
on the one hand with 0% and on the other hand with 25% censored observations. In particular, the log-
transformed survival times y; =log(t;), i=1,...,n, are generated by drawing i.i.d. random numbers

yo; from the specific target baseline error distribution BED 1 to BED 4, i. e. y,; ~ys BED/,
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lefl,...,4}. To explore the performance of the several update schemes for the transformed error
weights, no covariates are considered here, so the log-survival times for baseline error model BED /

are directly given as

i=1,..,n.

Yi=Yoi>» Yoi ~iid BED/,

Censoring times c; are generated as draws from uniform distributions C; ~;; Uni[qgeps 0001, qBEDC.0999 ] 5
where qgeprogor and Qgeprosee denote the 0.001- and 0.999-quantile of the respective target baseline
error distribution. After the first run the resulting observed survival times are given as ¥; = min(y;,c;).
To achieve the desired percentage of censored observations, we generate in additional runs censoring
times for the uncensored observations of the previous run until the percentage of right censored
observations fits.

BED 1 BED 2
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Figure 10.1: Densities of the four baseline error distributions BED 1 (upper left panel), BED 2 (upper right
panel), BED 3 (lower left panel) and BED 4 (lower right panel).

Function and parameter specification

Methods: For the Bayesian estimation of the error density we use the function bayessurvreg?2 ()
and baftpgm (). In both functions the PGM error is specified through g, =21 equidistant knots m;
placed in the interval [-4.5,4.5], i. e., m; =—4.5,...,m,, =4.5 with distance 0.45. The variance of the
Gaussian basis functions is uniformly set to sf =0.25%, j=1,...,g, and we use the third-order random
walk prior to control the smoothness of the estimate. In particular for the “dirichlet” update scheme of
the error weights we select a reduced number of g, =7 equidistant knots in the interval [—4.5,4.5]
with basis variances sf =0.352. Within the function bayessurvreg2 () we use the slice sampler as
default update scheme for the error weights. In the function baftpgm() we utilize the option
scalebasis to specify the standardization of error density within the loops of the sampler, compare
Section 6.2.1. The standardization within the sampler (scalebasis=TRUE) causes a varying
positioning of the knots m; while the knots are fixed if the standardization is suppressed
(scalebasis=FALSE). In the annotation of the figures the method names assigned with the suffix

“FK” indicate the fixed knots, i. e. suppressed standardization. For some methods we vary the update
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order of the error weights. The suffixes “R0O”, “RI” and “R2” indicate the specifications

order.alpha="fix2"”, "order.alpha=randoml” and ” order.alpha=random2”.

The function pendensity () is applied to the uncensored data without covariates to get a non
Bayesian flexible estimate of the baseline error density. We specify here the optional Gaussian basis
with 21 knots and with the third-order differences penalty for the basis function weights. The estimates
with the survreg () procedure are carried out utilizing the extreme value, Gaussian and a logistic

error distributions.

Hyperparameters: In general the prior hyperparameters of the scale parameter G> are set to
h;; =h,,=0.01 and those of the smoothing variance to h,,, =1, h,, =0.01. For the update schemes
“mhcond” and “mhmarg” these basic values are sometimes modified in order to increase the
smoothing (justification follows below). We specify a zero mean, diffuse Gaussian prior with variance
100? for the fixed effects - especially for the location parameter 7y, in the use of the function

bayessurvreg2 ().

Starting values: We pass on pre-estimation of the model parameters to find appropriate initial values
of the chain in regions close to the parameter estimates. For the transformed error weights o,
j=1,...,21, with exception of the middle weight «,, :=0, each starting value is set to ocg(?j) =0.01

resulting in a flat error density in the range [—4.5,4.5]. The location and scale parameter start in

2(0) —
oy

v =1, 6> =1 and the smoothing variance is initially set to T 0.01. The component labels r”

are randomly assigned to one of the g, error basis densities.

Estimation: For the MCMC algorithms we use 30000 iterations, where the first 15000 iterations are
discarded as burnin of the Markov chain and the remaining iterations are thinned using a step width of
15. The resulting 1000 states of the chain build the sample of the posterior distribution and the
empirical basis to compute the estimates. The simulations ran on various PCs and Servers with
different specifications. For this reason and due to the variety of the update schemes we present in the
following only the range of the observed running times for orientation. In general, shortest running
times are obtained with the “dirichlet” and the longest under the “mhmag” update scheme. In the
simulations of this section we observed 7—20 min (pro replication) in the data without censoring and

¢

10-23 min in the data with 25% censoring, in particular under the under the “mhmag” update scheme
we have about 60 min. In the following, the main results of the simulations are summarized and

presented.
Results

MSE of the baseline error density

Figure 10.2 shows the MSEs of the estimated error densities, MSE(fYO) , for the two baseline error
models BED 2 and BED 3 resulting under the different single and block update schemes for the error
weights as described in Section 6.1.3. The upper panel contains the results from the data with no
censoring and the lower panel the corresponding results with 25% censored observations in the data.
The MSE results from the frequentist “survreg” procedure are omitted due to the poor performance

(particularly with a Gaussian error the MSEs exceed always the value of 4e™%).

Apart from some exceptional cases with comparably poor performance (“mhmarg” and “mhcond” in

BED 2 with 25 % censoring), none of the Bayesian update schemes of the transformed error weights
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appear to be uniformly superior across the error models. Compared to the simulations with the
uncensored data, the censoring increases the level of the MSE across all applied methods. But, with
exception of the update scheme “mhcond” in BED2, the MSE pattern given by the boxes does not
clearly vary.
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Figure 10.2: Mean squared errors of the estimated baseline error density, MSE(fYO) , in the AFT model with
baseline error distribution BED 2 (upper panel) and BED 3 (lower panel), without censoring (left panel) and
under 25% censoring (right panel) in the simulation data.

Focusing on the update schemes “slice” and “mcondstep” under varying update order (“RO“, “RI*,
“R2*) of the transformed error weights, we found also no systematic benefit in the estimates and the
results in terms of the MSE are almost comparable. In particular the “dirichlet” update scheme, where
no penalty controls the smoothness of the error density, performs surprisingly well in two of the four
error distribution models. Especially in the settings BED 3 and BED 4 (not shown), it achieves the
best performance within the uncensored and censored data. In the first two error settings, BED 1 (not
shown) and BED 2, we observe conversely an increased MSE compared to the other methods. The
frequentist competitor “pendensity”, only used in the simulations with the uncensored data, performs
best in the estimation of the bimodal distribution BED 2.

As mentioned before, we modify the tuning of smoothing variance prior for the update schemes
“mhmarg” and “mhcond” in some of the simulations. The outstanding comparatively poor
performance with the update scheme “mhmarg” and the update scheme “mhcond” in error setting
BED 2 with the censored observations is explained by the induced stronger smoothing of the error
density. In particular under error model BED 2 with censoring, the regularization is further increased
for the cross over from the fixed to the flexible knot option. We observed that, if the smoothing
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penalty is too weak, the weights of the basis densities at the right and/or left border get close to zero.
As a consequence, the number of occupied classes of the mixture density decreases during the
sampling, so that finally the component labels r; are assigned to a few of the g, error basis densities.
This also affects the acceptance rates that decrease too. Further, the option to standardize the error
density during the sampler boosts this effect. Standardization shifts the border knots with close to zero
weights towards oo (i. e. we get a large distance between the knots) and the number of occupied
classes of the mixture decreases further and the component labels r; are assigned to at least one or two
of the g, error basis densities. As consequence of the small border weights and the optional
standardization, the associated sum of squared differences of the transformed error weights increases
and we counterbalance with a stronger penalization through the smoothing variance. We observed the
described effects in general for all update methods, if the smoothing regularization is too weak, but in
particular the Metropolis-Hastings update schemes required an enhanced regularization. For both
update schemes “mhmarg” and “mhcond” we adapt the first hyperparameter h,, of the inverse
gamma prior of the smoothing variance T, to varying values in the range of 5 to 15. Further the
acceptance rates of the transformed error weights profit from the stronger regularization. The values
are consistently close to 80% for both update schemes under comparable regularization across the
error models. Under weaker regularization, used e. g. in the error models BED 3 and BED 4, the
acceptance rates of the “mhcond” scheme are generally smaller with values in the range of 50% to

20%, and censoring decreases the acceptance rates further.

We observed also, that the acceptance rates of the transformed error weights in the Metropolis update
schemes are very different. For the update scheme “mcondblock” we always obtain very low values
around 5%, but the few accepted new states are uniformly distributed over the sample. Since the
model parameters converge and show also a good mixing (except the transformed error weights), we
utilize this scheme without further adaption of the smoothing hyperparameters to consider the impact
of these low acceptance rates. In contrast, the acceptance rates of the update scheme “mcondstep”,
with the iteratively updated transformed error weights, are in general relatively high with values
around 70%.

Penalty of the transformed error weights

The induced stronger regularization, if applied, is reflected in the log-penalty term —‘céoaf)Koao.
Figure 10.3 shows the resulting log-error penalties for the error model BED 2 and BED 3 under 25 %
censoring in the data. Due to the increased regularization under the update scheme “mhmarg” we
observe very small values for the sum of (third order squared) differences a;K,a,, compare Figure
10.4, and values of the smoothing variance T, close to zero (not shown) are leading in summary to
the smaller log-penalty values, compared to the other update schemes. The basic regularization
(h;;, =1) under the update scheme “mhcond”, as in the error models BED3 and BED 4, comes along
with increased values for the sum of differences. But the larger value of the associated smoothing
variance T causes at last that the penalty has the same range as, e. g., the single update schemes. The
same holds for the “slice” update scheme, which has under the basic regularization by trend a higher
sum of differences 0(Kym, compared to the block update schemes. Under the basic setting the
regularization with the “mcond” schemes is by trend weaker as e. g. with the “slice” update scheme,
but the associated differences in the penalty are only marginally reflected in the MSEs of the baseline
error density estimation.
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Figure 10.3: Logarithm of the estimated error density penalty term , —T;2a)K @, , in the AFT model with
baseline error distribution BED 2 (left side) and BED 3 (right side) under 25% censoring in the simulation data.
The scale of the y-axis changes at the tick mark within the interval [-12,-11].
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Figure 10.4: Estimated sum of the error penalty differences, a,K,a,, in the AFT model with baseline error

distribution BED 2 (left side) and BED 3 (right side) under 25% censoring in the simulation data.

Baseline error density

Figure 10.5 shows a couple of the estimated baseline error densities under the error model BED 2
with 25% censoring in the simulation data. Displayed are estimates obtained via the update schemes
“mhmarg” and “mhcond”, with increased regularization in BED 2, together with the estimates under
the unregularized “dirichlet” update scheme and the estimates from “bayessurvreg2” as competitor.
We note that the increased regularization corrupts the fit in some error density regions which causes
finally the increase in the associated MSEs. In particular the fit in the cavity between the two modes
and the right mode declines compared e. g. to the method “bayessurvreg2”.
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model with baseline error distribution BED 3, without censoring (left panel) and under 25% censoring (right
under BED 3.

Figure 10.6: Estimated scale (upper panel) and location parameter (lower panel) of the baseline error in the AFT
panel) in the simulation data. The black horizontal lines mark the true scale ¢y, and location Ly, parameters
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Baseline error location and scale

The estimated location and scale parameter of the baseline error distribution model BED 3 under the
different update schemes are given in the lower and upper panel of Figure 10.6. We observe in
general a higher variability in the estimates of the scale ¢ than in the location Yy, parameter and often
also wider interquartile ranges (IQR) of the boxes under censoring, reflecting the increased
uncertainty.

In general the estimates under the Metropolis schemes “mcondstep” and “mcondblock” differ from
the remaining update schemes. While the differences in location parameter are rather marginal, they
are more obvious for the scale parameter especially in the error settings BED 3 and BED 4. By trend
we observe smaller absolute values for the location parameter and larger values for the scale

parameter.
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Figure 10.7: Trace plots of three selected sampled error density weights w,, w, and w,, in the AFT model
with baseline error distribution BED 2. Displayed are the results achieved with the three update schemes
“sliceR0”, “mhcond” and “mcondblock” for the error weights, if the error density is not scaled (right panel) or
scaled (left panel) within the sampler.

With respect to the MSE performance of the baseline error density estimates we found, that, e. g., the
MSE superiority of the “pendensity” procedure under BED2 or the “dirichlet” update scheme under
BED 3 and BED 4 is not reflected in an improved fit to the location and scale parameter. Vice versa
also the procedures with poor MSE performance, like, e. g., the “mhmarg” update, show a comparable
fit to both parameters. Especially the “survreg” procedure with Gaussian error provides location and
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scale estimates with comparable boxes like, e. g., those of bayessuarvreg2. So, comparing the fit to the
location and scale parameter of the various update schemes enables very limited conclusions about the
associated fit to the baseline error density (and reversed), and we present in the following sections
only the MSE of the baseline error density estimate.

Baseline error weights

Figure 10.7 displays the sample paths of three selected error weights for one selected simulation
dataset from baseline error model BED 2 without (left panel) and with (right panel) the sampler
internal standardization of the error density. The option, to standardize the error density during the
sampling, introduces more stability in the paths of the larger error weights for the block update
schemes, as shown e. g. in the second row of the figure. But nevertheless, to show the desired
stationarity of the error weights a recomputation of the weights, as described in Section 6.3.3, is
essential.

With the described approximative method we compute the paths given in Figure 10.8. Also the low
acceptance rates of the update scheme “mcondblock” are reflected by the piecewise constant values of
the (thinned) sampled weights. In the displayed replication we have an acceptance rate of 3.8 %. The
acceptance rates of the displayed “mcondblock” update scheme are higher than 80%.
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Figure 10.8: Trace plots of three selected recomputed error density weights w,, w, and w,, in the AFT model
with baseline error distribution BED 2. Displayed are the results achieved with the three update schemes
“sliceR0O”, “mhcond” and “mcondblock” for the error weights, if the error density is not scaled (right panel) or
scaled (left panel) within the sampler.
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In summary, none of the considered update schemes has shown a uniformly superiority across the four
different error models. Also the option to standardize the error within the sampling or the variation of
the update order of the error mixture weights has not shown any systematic impact on the performance
of the density estimate, and the same holds for the “mcondblock” update scheme with the low
acceptance rates. The main influence is caused by the regularization, where a stronger regularization

induces a loss of performance.

10.2. Low-dimensional predictor

Data generation

Now covariates are added to investigate additionally the shrinkage properties of the regularization
priors and the impact on the baseline error density estimation. We include p, =25 linear covariate

effects ranging from three to zero, in particular
Vi =XiB+Yoi» Yoi~aa BED/, i=1,.,n,
with
B=(3,3,0,0,2,2,0,0,1,1,0,0,0.5,0.5,0,0,0.2,0.2,0,0,0.1,0.1,0,0,0)", (10.2)

where yo; ~ig BED/?, f€{l,...,4}, denotes the associated baseline error distribution from models
BED 1 to BED 4. The corresponding covariates are generated with zero mean, unit variance and the
correlation between X; and X, is set to corr(X; j,X;x) = p‘j’k‘ with p=0.5. The log-survival times y;
are generated by adding the individual specific, covariate dependent value of the predictor 1, =x{B to
the random errors y,;, that are drawn respectively from BED1 to BED 4, i. e. y; =n; + Y, . Further,
the censoring times and the desired percentage of censored survival times are generated as described
in the previous Subsection 10.1. We use again R =50 replicated datasets for each of the four baseline

error models with n =500 observations and 25% censoring in the data.

To explore the performance of the applied estimation methods, when the number of observations and
parameters varies, this basic setting is modified. In particular in this subsection we consider in the

following

® p, =25 linear modeled covariates in combination with n =500 observations under the four
error models BED 1 to BED 4,

® p, =25 linear modeled covariates in combination with a decreasing number of observations
n =400,300,200,100 under the error model BED 2.

In the next Subsection 10.3 we increase also the number of parameters by modeling the p, =25

covariates as nonlinear and by increasing the number of covariates p;, .

Function and parameter specification

Methods: For the Bayesian estimation of the error distribution density with the function baftpgm ()
we use commonly the selected update schemes “sliceR0” (as single update), “mcondblock” (due to
low acceptance rates and weaker penalty under standard smoothing prior configuration), “mcondstep”

(as iterative block update with higher acceptance rates), “mhcond” (due to the stronger smoothness
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regularization), “dirichlet” (due to no smoothness regularization) together with the Gaussian error
assumption, “gauss” (to consider the impact of the miss-specification of the baseline error). We
present the results obtained with the option scalebasis=TRUE that force the standardization of the

baseline error density within the sampler.

The linear effects of the predictor are estimated unregularized and regularized by utilizing the
Bayesian ridge (non-adaptive version B), the lasso and the NMIG shrinkage prior. Further, we
estimate the linear effects unregularized with the full predictor (PGM.B) and true predictor structure

(PGM.BT), where the covariates with zero effects are omitted, using the function bayessurvreg ().

Hyperparameters: The hyperparameters of the error priors are set to the same values as in the previous
Subsection 10.1. With the same reasoning we tune the smoothness prior of the error density for the
update schemes “mhmarg” and “mhcond” to enforce a stronger regularization. Particularly under
error model BED 2 with decreasing number of observations we use h,;,, =5 (n=500), h,, =15
(100<n<400) and h,,, =20 (n=100). Under the basic setting h,,, =1 we obtained with the update
scheme “mhcond” and n =500 observations reasonable results in combination with the Bayesian
NMIG regularization and the unregularized estimation of the linear effects and the presented results
are obtained with the basic setting. With n =100 observations the sampler frequently stucks under

“mhmarg” update scheme and the results are omitted.

The hyperparameters of the regularization priors for the linear effects are set to the following values:
For the shrinkage parameter prior of the Bayesian lasso and Bayesian ridge regularization we set
h;, =h,, =0.01 to enable data driven estimates of the associated model components. Due to the
selected sizes of the regression coefficients we use the NMIG prior setting v, =1, v,=0.005,
h,, =5, h,, =50 for the components of the variance parameter together with h,, =1 and h,, =1
for the complexity parameter. With respect to the results from Section 4.5 effects with absolute value
larger than 1 should be less regularized. The second alternative NMIG hyperparameter setting is
considered in the CRR simulations. We use a block size of 25 for the regression coefficients, which

entails that 25 effects are simultaneously updated.

Starting values: The parameters associated to the error component start with the values listed in the
previous Subsection 10.1. For the additional starting values of the linear effects we choose values
close to zero, i. e. Bi” =0.01, j=1,...,p, . The Bayesian NMIG prior components start with I!"’ =v,,
2(0)
Vi

while the shrinkage parameter for the Bayesian lasso and ridge prior starts in A® =1.

=0.0416 , which corresponds to the left mode of the bimodal variance prior, and ®® =0.5,

Estimation: For the MCMC algorithms we use again 30000 iterations, where the first 15000 iterations
are discarded as burnin of the Markov chain and the remaining iterations are thinned using a step
width of 15. We observed running times of the sampler within the range 12—17 min (p, =25,n=100)
and 12—40 min (p, =25,n =500).

Results

MSE of the baseline error density

Results with n = 500 observations: Figure 10.9 presents the MSEs of the estimated error densities,
MSE(fYO), under the Bayesian lasso regularization of the linear effects for the case with n =500

observations. The shown error model specific MSE pattern, induced by the various update schemes of
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the error weights, is almost identical under all three regularization priors and if the linear effects are
estimated unregularized. Further, the upper panel of Figure 10.10 shows the results for error model
BED 2 with n =500 observations under the three shrinkage priors and for the unregularized effects.

| BED1:PGMBL (n=500, p=25) < | BED2:PGMBL (n=500, p=25) + | BED3:PGMBL (n=500, p=25) < | BED4:PGMBL (n=500, p=25)
e B g | NS G
[o] (] [o] (3 °
0 ro) 0 ro)
9 -
< < ° - < < o |
< < ! < 4 < i
i
2 2 o < 2
a i :
c
§3 o 3 ‘ - 3 3| - °T
T o 27 8 ' - ! @ @ ! ! !
I i ! ! ; i ® ! P
5 ° i : ' - o ! ! i !
i , : —_ '
w3 - 31 T P T3 0 T T |3 o B T
L 9 i ] ' ' ! ' ] 1 | ' ! . : , ©° i
= o [ ! N i ! [ | ! ! N | . ° !
—— o ‘. g I
i - ' J
< ' o 1 < ! - < £
o ' - ' =} ! o . =} '
d> | e : g 1 d’ | . ; Q 1 . d> 1 . E . ; . d’ | I B I .
- - 1 T ' - - -

' -t ! ' T ' T
= R e 5 T =
Q] 4= - = - < Q1 -4 = - = Q] - 4L = 4 =
Y @ Y @

S T T T T S T T T S T T T S T T T T
g g 3 K a g 2 § 3 ® & 2 g T = a g 2 8§ 3 &® &
@ k7] ° 5 [} 8 7] L 5 - [} k7] ° 5 : [} 8 k7 o S :
o ° el 2 = o e ° el e > o ° el 5] = o e ° el e =
= c ° = [0} = < c kel = [0} = c ° = [0} = < < kel = [0}
@ S = © T @ £ <} < S s @ S c © o @ € 1] < S T
g 3 g 3 g g g 3
£ £ £ £

Figure 10.9: Mean squared errors of the estimated baseline error density, MSE(fYO) , in the AFT model with
baseline error distribution BED 1 (left side) to BED 4 (right side), p, =25 covariates and n =500 observations
under the Bayesian lasso regularization of the linear effects. Displayed are the estimates under the update
schemes “sliceR0”, “mhcond”, “mcondstep”, “mcondblock” and “dirichlet” for the error weights. PGM.BT
denotes the corresponding results from the model using the true predictor structure. The red dotted line marks the
value 5e-5.

Under the error models BED 1 and BED 2 the results from Figure 10.9 are almost comparable, with
respect to the median, to those when no covariates are included in the models (Figure 10.2). Under the
error models BED 3 and BED 4 we generally observe an increase of the MSEs when covariates are
added, but the “dirichlet” update scheme still has the best performance, even if compared to the model
using the true predictor (PGM.BT). Further, under error model BED 1, the “dirichlet” update scheme
seems to profit from the inclusion of the covariates, since the median MSE is decreased. At the
opposite, under the error model BED 2, a clear increase for the “dirichlet” scheme is shown except for
the Bayesian NMIG regularization, see upper right panel of Figure 10.10. The variability in the MSEs
of the scheme “mhcond” under model BED 2, as shown in the upper panel of Figure 10.10 (second
column), is caused by the different amounts of regularization of the baseline error. As mentioned in
the function and parameter specification, we use the standard setting, h,,, =1, for the error only in
combination with the PGM.B and PGM.BN regularization of the linear effects and n =500
observations. In both cases the resulting MSEs are comparable to those obtained with the update
scheme “sliceR0”, where the basic setting is generally used.

In summary, in the case of n=500 observations the various regularization methods of the linear
effects cause no systematic differences in the (update scheme specific) MSE of the baseline error, as
shown in the upper panel of Figure 10.10. With exception of the “dirichlet” and the Metropolis
update scheme “mhcond” the MSEs are almost comparable to the MSE resulting from the model with
the true predictor structure (PGM.BT). The stronger smoothness regularization under the “mhcond”

update scheme causes a loss in the performance as already observed in the models without covariates.

Results with n < 500 observations: When the sample size decreases from n=500 to n=100
observations, the MSEs of the error density estimate generally increase. But also a change in the MSE

performance, caused by the specific regularization method of the linear effects, is exposed. This is
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shown in the lower panel of Figure 10.10 by means of the error model BED 2 with n =100
observations, where the performance under the three shrinkage priors is clearly improved in
comparison to the unregularized estimation of the linear effects. Especially the MSEs under the
Bayesian lasso and NMIG prior are lower as under the Bayesian ridge prior, with an advance for the
Bayesian NMIG regularization.

BED 2: (sliceR0, n=500, p=25) BED 2: (mhcond, n=500, p=25) BED 2: (mcondblock, n=500, p=25) BED 2: (dirichlet, n=500, p=25)
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Figure 10.10: Mean squared errors of the estimated baseline error density, MSE(fYO) , in the AFT model with
baseline error distribution BED 2, p, =25 covariates and n =500 (upper panel) to n =100 (lower panel)
observations under various shrinkage priors with the update schemes “sliceR0” (first column), “mhcond”

(second column), “mcondblock” (third column) and “dirichlet” (fourth column) for the error weights. Displayed
are the estimates under no, Bayesian ridge, Bayesian lasso and Bayesian NMIG regularization of the linear
effects. PGM.BT denotes the results from the model using the true predictor structure. The red dotted line marks
the value Se-5.

Again some specific behavior is observable for the update schemes “mhcond” and “dirichlet”. As
before, the poor performance results under the update scheme “mhcond” are explained by the stronger
smoothing of the error density across the shrinkage priors, but the hierarchy of the performances, with
respect to the regularization variant of the linear effects, is identical to the other update schemes and
the best results are obtained under the Bayesian NMIG prior. Especially the MSE performance of the
“dirichlet” update scheme gets increasingly better, with respect to the other update schemes, when the
sample size decreases from n =500 (Figure 10.9). Already with n =300 observations (results not
shown) the MSE of the “dirichlet” update scheme is comparable to the MSEs of the other update
schemes and decreases further to the low values shown in Figure 10.10. In particular for n =100
observations the MSE performance under the Bayesian lasso and NMIG prior is higher as for the
model with the true predictor.

Result with Gaussian error: Finally, we consider the results under the Gaussian error assumption, see
Figure 10.11. The MSE:s of the frequentist AFT models with Gaussian error (AFT), stepwise selection



114 10. AFT-TYPE MODELS

(AFT.Step) and the true predictor structure (AFT.T) are almost comparable to each other and we show
only the results for the stepwise selection.

With respect to the Bayesian methods, the frequentist approaches yield only with error model BED 4
lower MSEs. Within the specific baseline error model the performance of the density estimation under
the various Bayesian shrinkage priors is almost comparable in the case of n =500 observations and
with decreasing sample size the shrinkage of the linear effects improves the performance, but by a
smaller amount as under the PGM error model. In the case of n =100 observations the previously
observed performance hierarchy of the regularization priors is reversed and the best results are
obtained with the ridge prior followed by the lasso and the NMIG prior, but the differences are

marginal.
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Figure 10.11: Mean squared errors of the estimated baseline error density, MSE(fYO) , in the AFT model with
baseline error distribution BED 1 to BED 4, p, =25 covariates and n =500 or n =100 observations under
various shrinkage priors and the Gaussian error assumption. Displayed are the estimates under no, Bayesian

ridge, Bayesian lasso and Bayesian NMIG regularization of the linear effects and the frequentist stepwise
selection, AFT.Step. PGM.BT denotes the results from the model using the true predictor structure. The red
dotted line marks the value 5e-5.

We have also observed a stronger deviation in the estimated location and scale parameter, when the
sample size decreases. But, as before in Section 10.1, the differences in the MSE of the estimated error

densities are in general not reflected in the location and scale parameter estimates.

Baseline error density

Figure 10.12 shows the estimated error densities under model BED 2 for three update schemes of the
error weights with the Bayesian NMIG regularization of the linear effects. From the upper to the lower
panel the number of observations is decreased. Compared to Figure 10.13, that shows the
corresponding results for the unregularized linear effects, the estimates are often more concentrated
around the true baseline error density. In the middle column we see the impact of the stronger
regularization under the “mhcond” scheme (if n=200,100). With n =200 observations the right
mode is shifted towards the right border and with n =100 observations the stronger regularization
often avoids the adaptation of the estimates to the two modes and the cavity between the two modes
and the estimates are often unimodal. These effects are less pronounced under the NMIG prior as

under the unregularized linear effects.
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Figure 10.12: Estimated error distribution densities in the AFT model with baseline error distribution BED 2,
P, =25 covariates and n =500 (upper panel), n =200 (middle panel) or n =100 (lower panel) observations
under the Bayesian NMIG prior for selected update methods of the error weights. Displayed are the posterior
mean estimates of the error density (colored lines) together with the true error density (black line) under the
update schemes “sliceR0” (left panel), “mhcond” (middle panel) and “dirichlet” (right panel) for the error
weights. The dashed lines mark the minimum of the lower 2.5% quantile and maximum of upper 97.5% quantile
in the replications.

MSE of the regression coefficients

Results with n = 500 observations: The results for the cases with n =500 observations are given in
Figure 10.14, which shows the MSEs of the estimated regularized regression coefficients, MSE(ﬁ), in
the error models BED 1 to BED 4 under the Bayesian lasso prior, and in the upper panel of Figure
10.10, which shows the results for error model BED 2 with n =500 observations under the three
shrinkage priors and for the unregularized effects.

If we compare Figure 10.14 and Figure 10.9, we see that the error model specific differences in the
MSEs of the baseline error density, caused by the various update schemes, are less pronounced in
terms of the MSEs of the regression coefficients. In particular the outstanding high or low baseline
error performances, observed e. g. under the “dirichlet” and “mhcond” update scheme, are only
marginally reflected, but in general we can recognize a similar MSE structure as in Figure 10.9 with
weaker differences. With the given structure of the underlying effects (10.2) we do not reach MSEs
comparable to the model using the true predictor structure (PGM.BT), but we notice that the MSE
decreases under all error models from the Bayesian ridge over the Bayesian lasso to the Bayesian
NMIG regularization, with sometimes marginal differences under the last two priors, compare upper
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panel of Figure 10.15.
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Figure 10.13: Estimated error distribution densities in the AFT model with baseline error distribution BED 2,
Px =25 covariates and n =500 (upper panel), n =200 (middle panel) or n =100 (lower panel) observations
under unregularized linear effects for selected update methods of the error weights. Displayed are the posterior
mean estimates of the error density (colored lines) together with the true error density (black line) under the
update schemes “sliceR0O” (left panel), “mhcond” (middle panel) and “dirichlet” (right panel) for the error
weights. The dashed lines mark the minimum of the lower 2.5% quantile and maximum of upper 97.5% quantile
in the replications.

wn (= © 0
@ BED 1: PGMBL (n=500, p=25) N BED 2: PGMBL (n=500, p=25) S 7 BED 3: PGMBL (n=500, p=25) S 7 BED 4: PGMBL (n=500, p=25)
& ° o o ° ° 8
I o < | R
o 9 i o o | o
&4 ? o T 5] e _ - — 8 S o o 0
o| &+ - ' ' | ! ° o - T
' - ' -— ' I ! —_ T
H i | 1 1 i i ! —_ = == ! ) - i 1 -— -
o | 1 | ' 1 I ! ! ' 2 | ' )
& i | : | o ' ' i ! ' - ! ' o (=] ' i | ] |
R : 1 : =3 I T S T S < : : : : R S S S
Y o : s : s1 : : : T
2 o1 ‘ T | ol |
—_ - ' ° - ' ! :
24 ‘ ‘ ; N I Fooe-d 1 e S e S
- i 1 i ! 1 ! ! | i o ! : 1 i ' 1
T = I A sl L 4L L e I .
[T+) | - - ' o
(= o —_ v
IS . ' -
. _._ .
g 8] 2 2
o T T T T T © T T T T T T T T T T T T T T T T T
o a < ] = =] o a = D = =] Q < D = =] o a = ko =
$ § & 3 2 T 5 2 8 £ =2 g & % 2 =& 2 2 8 % % B
get T 3 2 z e 2 T 3 g 2 2 kel g 2 z e 2 T 3 g z
@ 5 g =5 9 % E § 2 B 9 ® 5 g 5 9 % E § 2 B ¢
g 8 g 8 g 8 g 8
E g £ £ £

Figure 10.14: Mean squared errors of the estimated regression coefficients, MSE(ﬁ) , in the AFT model with
baseline error distribution BED 1 (left side) to BED 4 (right side), p, =25 covariates and n =500 observations
under the Bayesian lasso regularization of the linear effects. Displayed are the estimates under the update
schemes “sliceR0”, “mhcond”, “mcondstep”, “mcondblock” and “dirichlet” for the error weights. PGM.BT
denotes the corresponding results from the model using the true predictor structure.
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Results with n < 500 observations: With decreasing sample size also the MSE of the estimated
regression coefficients increases, but the observed MSE trend under the various Bayesian
regularization priors with n =500 observations is retained and becomes more obvious, compare lower
panel of Figure 10.15. Further, the observed MSE pattern of the regression coefficients coincides with
the previously seen pattern in terms of the MSE of the baseline error density, compare Figure 10.10,
so that the specific regularization of the regression coefficients affects also the performance of the
baseline error density estimation. Vice versa also the dependence on the baseline error density fit
becomes more pronounced with decreasing sample size, e. g. the MSEs under the update scheme
“mhcond”, with stronger regularized error density, are clearly increased compared to the other update
schemes by preserving the specific hierarchy induced by the different shrinkage priors. In addition the
MSE of the “dirichlet” update becomes more and more comparable to the MSEs under the other
update schemes and from n <300 observations the performance is even higher. In summary, the
performance of the baseline error is connected to the performance of the predictor, where the basic
level of the performance is rather determined by the fit of the baseline error and improvements are
possible with an improved fit of the predictor.
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Figure 10.15: Mean squared errors of the estimated regression coefficients, MSE(ﬁ) , in the AFT model with
baseline error distribution BED 2, p, =25 covariates and n =500 (upper panel) to n =100 (lower panel)
observations under various shrinkage priors with the update schemes “sliceR0” (first column), “mhcond”

(second column), “mcondblock” (third column) and “dirichlet” (fourth column) for the error weights. Displayed
are the estimates under no, Bayesian ridge, Bayesian lasso and Bayesian NMIG regularization of the linear
effects. PGM.BT denotes the results from the model using the true predictor structure.

Result with Gaussian error: The observed improved performance induced by the shrinkage priors, is
also observable under the Gaussian error assumption, see Figure 10.16. The best performance is
obtained under the Bayesian NMIG regularization followed by the Bayesian lasso and ridge, where in
particular the Bayesian NMIG always outperforms the results from the frequentist stepwise selection.
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With respect to the results of the error density estimation, see Figure 10.11, we found that the clearly
improved performance in the predictor is not notably reflected in the performance of the error

distribution in contrast to the results with the PGM error.
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Figure 10.17: Mean squared errors of the estimated regression coefficients, MSE(B) , in the AFT model with
500 (upper panel) or n =100 (lower panel)

observations under the update schemes “sliceR0” (first column), “mhcond” (second column), “mcondblock”

Bayesian ridge, Bayesian lasso and Bayesian NMIG regularization of the linear effects together with the
from the model using the true predictor structure.

(third column) and “dirichlet” (fourth column) for the error weights. Displayed are the estimates under no,
corresponding MSEs resulting from the hard shrinkage variable selection criteria. PGM.BT denotes the results

baseline error distribution BED 2, p, =25 covariates and n
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Results under variable selection: Figure 10.17 summarizes the MSEs of the regression coefficients
obtained under error model BED 2 (Figure 10.15) together with the resulting MSEs, if the hard
shrinkage selection rules HS.STD, HS.CRI and HS.IND, as described in Section 4.4, are applied. In
the figures the MSEs under the HS.IND selection rule are omitted, we obtain with n =500 median
values about MSE =1 and if n=100 the median MSEs are comparable to those under the HS.CRI
criterion.

We find in general that variable selection does not improve the predictive performance with respect to
the corresponding prior-specific full model. With n =500 observations, upper panel of Figure 10.17,
the selection criterion based on one standard deviation interval (HS.STD) is leading to sparse final
models with MSE comparable to the full models that include all 25 covariates. The criterion based on
the 95% credible interval (HS.CRI) and the NMIG indicator frequencies (HS.IND) set too many
nonzero coefficients to zero, compare Table 10.1, which increases the MSE of the associated final
sparse models. With reduced sample size, e. g. n =100 observations, the performance of the Bayesian
NMIG models increases further, relative to the Bayesian ridge and lasso prior models, and the
HS.STD selection rule still yields sparse models with comparable MSE as the associated full models,
compare Figure 10.17 (lower panel). Similar results are obtained under the Gaussian error

assumption.

NMIG indicators

Results with n = 500 observations: The variable importance feature of the Bayesian NMIG prior is
highlighted in the upper panel of Figure 10.18, where estimated inclusion probabilities based on
posterior relative frequencies of the NMIG indicator variable value I,=v, are shown under three

selected update schemes for the error weights and under the Gaussian error assumption.

As induced by the specific configuration of the NMIG prior in this section, the inclusion probability
for covariates with absolute effect sizes within the range from 1.5 to 0.1 decreases monotonically,
where by trend effects larger than 0.7 reach inclusion probabilities that exceed the cut off value 0.5 of
the hard shrinkage selection criterion HS.IND, compare also Section 4.5. Based on this threshold the
effects By =P =1 are separated from the effects B;; =B, =0.5 in the sense, that the hard shrinkage
selection rule HS.IND removes the estimated effects with (absolute) size smaller than or equal to 0.5
from the final model. In our specific simulation setting (10.2) six nonzero effects
(Bo,B10,P135B14as P17, Bis) with sizes 0.5, 0.2 and 0.1 are affected by this decision rule and, as a
consequence of ignoring these effects, the mean squared errors of the regression coefficients included
in the resulting final models increase considerably. Especially the Gaussian error assumption in the
bimodal error model BED 2 increases the uncertainty in the classification (larger box-widths) and the
classification of larger effects (3y,[,0) to the component I; =v,, compared PGM error representation.
Nevertheless, the variable separation with HS.IND-threshold of 0.5 is not affected here and the
number of correctly classified zero and nonzero effects is almost comparable with the PGM error

models.

Results with n < 500 observations: With decreasing sample size the separation of the effects gets
blurred, since the interquartile distances of the nonzero effects frequencies increase. The lower panel
of Figure 10.18 shows the results for the case of n =100 observations. The reduced information in the

data enhances the classification uncertainty and we observe an increase in the classification of larger
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effects to the component I; =v, and conversely the classification of smaller effects to the component
I; =v,. Besides the effect at the interquartile range also the number of extreme values and outliers
increases. As observed before under the Gaussian error assumption, also the stronger smoothness
regularization used in the “mhcond” update scheme increases further classification of larger effects to
the component I;=v,. The shown inclusion probabilities of the “mhcond” update scheme are
comparable to those under the Gaussian assumption with n =100 observations. Finally, reduced
sample sizes cause that larger effects are stronger and smaller effects are weaker regularized, compare
also right column of Figure 10.20. Nevertheless, the separation with the threshold 0.5 is still only
marginally affected due to the (conveniently selected) effect sizes in (10.2), compare Table 10.1.
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Figure 10.18: Estimated inclusion probabilities based on posterior relative frequencies of the Bayesian NMIG
indicator variable value I; =v, in the AFT model with baseline error distribution BED 2, p, =25 covariates
and n =500 (upper panel) or n =100 (lower panel) observations. Displayed are the relative frequencies under
the update schemes “sliceR0”, “mhcond” and “dirichlet” for the error weights and under the Gaussian error
assumption (“gauss”). The red horizontal line marks the cut off value 0.5 of the hard shrinkage selection
criterion HS.IND.

Linear effects

Figure 10.19 and Figure 10.20 show the estimates of four selected regression coefficients 3, =3,
By =1, B3 =0.5 and B; =0 under baseline error model BED 2 with the various shrinkage priors for
the linear effects. The results presented in Figure 10.19 are obtained with the “sliceRO” update
scheme for the PGM weights and under the Gaussian error assumption with n =500 observations and
Figure 10.20 shows the results under the “sliceRO” and the “mhcond” update scheme for n =100

observations.

We can observe the specific shrinkage property of the Bayesian NMIG prior (PGM.BN) in the sense

of the weaker regularization of larger effects, like P, =3, where the estimates are close to the
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unregularized estimates (PGM.B) and a stronger regularization of smaller effects, like B,3=0.5,
compared to the Bayesian lasso (PGM.BL) and ridge (PGM.BR) prior. As shown in Figure 10.18 the
shrinkage begins to increase for effects with absolute values smaller than 1.5, but in the cases with
n =500 observations the likelihood dominates the prior information and the shrinkage is only
marginal. Under the Gaussian error the deviations to the true effects increase, as reflected by the
increased interquartile ranges and the location of the median and the resulting MSE of the regression
coefficients. Especially for the zero effects the differences are enlarged. With decreasing sample size
the interquartile ranges of the estimates increase and the shrinkage gets more pronounced. In particular
the stronger concentration of the estimates around zero for the zero effects under the Bayesian NMIG
prior is more emphasized. Under the stronger smoothness regularization, used in the “mhcond”
scheme with n =100 observations, we observe a stronger regularization under the NMIG prior for the
effects By and B, explained by the enhanced variation of the inclusion probabilities.
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Figure 10.19: Regression coefficient estimates ﬁ for four selected estimated regression coefficients ; = 3
(upper left panel), Bo = 1 (upper right panel), B3 = 0.5 (lower left panel) and B,; = 0 (lower right panel) in the
AFT model with baseline error distribution BED 2, p, =25 covariates and n =500 observations. Displayed are
the estimates resulting from “sliceRO” update scheme of the error weights (left sides) and the Gaussian error
assumption “gauss” (right sides). The black horizontal lines mark the true values of the regression coefficients.

Classification

Table 10.1 and Table 10.2 show the obtained average number of the correctly classified nonzero
coefficients (B #0,B#0) and correctly classified zero coefficients (B =0,=0) for the 50 simulation
datasets under the different variable selection methods in the AFT model. Table 10.1 contains the
results under baseline error distribution BED 1 to BED 4 with n =500 observations and the results

under baseline error distribution BED 2 with decreasing number of observations n =400 to n=100
are given in Table 10.2.
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Figure 10.20: Regression coefficient estimates ﬁ for four selected estimated regression coefficients B; =3
(upper left panel), Bo = 1 (upper right panel), B3 = 0.5 (lower left panel) and B,; = 0 (lower right panel) in the
AFT model with baseline error distribution BED 2, p, =25 covariates and n =100 observations. Displayed are
the estimates resulting from “sliceR0” (left sides) and “mhcond” (right sides) update scheme of the error
weights. The black horizontal lines mark the true values of the regression coefficients.

With increased length of the hard shrinkage selection interval the average number of correctly
classified zero effects increases and the average number of correctly classified nonzero effects
decreases. This is reflected by the results from the application of the HS.STD rule, based on the
standard deviation, and the HS.CRI rule, based on the 95 % credible region of the estimated regression
coefficients. The best results in terms of the MSE of the regression coefficients are obtained under the
NMIG prior combined with the HS.STD criterion and the associated final models have a higher
average number of correctly classified nonzero effects as under the HS.CRI criterion. By trend, the
highest correct classification of the nonzero effects is achieved under BED 2 and the lowest under
BED 3 across the update schemes of the error weights, but the difference is about 1 coefficient.
Especially under the HS.STD criterion, most of the true nonzero effects are detected with only a
marginal, negligible benefit in combination with the Bayesian NMIG prior. The same structure, as
shown in Table 10.1, results under the Gaussian error assumption with exception that the highest
correct classification of the nonzero effects is achieved under BED 1.

For an effect structure like (10.2) with exact zero effects, the selection-type shrinkage of the Bayesian
NMIG prior in combination with the HS.IND criterion detects them all, resulting in the optimal value
of 13 correctly classified zero effects. Induced by the prior tuning and the selection of the HS.IND-
threshold 0.5, only the six largest effects are included in the final model which is reflected by the
comparably low average number of 6.02 correctly classified nonzero coefficients and an increased
MSE of the associated sparse final model. In Section 11.5 we consider variations of the HS.IND-
threshold. With the therein obtained results we can conclude that a smaller value of the HS.IND-
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threshold, e. g. 0.1, increases the correctly classified nonzero coefficients (obvious) and the predictive

performance of the associated final models (since the MSE gets closer to the MSE of the full model).

sliceRO BED 1 BED 2 BED 3 BED 4
n=500,p,=25 n=500,p,=25 n=500,p,=25 n=500,p,=25
Bz0 PB=0 B=0 P=0 Pz0 PB=0 B=0 P=0
B0 PB=0 BP0 P=0 Px0 =0 Px0 Pp=0
BEST 12 13 12 13 12 13 12 13
AFT.Step 10.02 10.70 9.58 10.66 9.08 10.40 9.52 10.58

PGM.B-HS.STD 10.64 9.00 11.24 8.60 9.86 8.78 10.14 9.40
PGM.BL-HS.STD  10.66 9.64 1124 8.90 9.86 9.60 10.06 9.92
PGM.BR-HS.STD  10.68 9.18 1122 8.28 9.98 872  10.16 9.28
PGM.BN-HS.STD 10.76 9.80 11.30 8.98 990 10.00 10.12  10.00
PGM.B-HS.CRI 9.28  12.54 992 1224 8.44 1254 8.68 12.38
PGM.BL-HS.CRI 9.32  12.64 9.84 12.54 828 12.72 8.62 1254
PGM.BR-HS.CRI 9.30 1246 9.88 1230 8.40 1250 874 1240
PGM.BN-HS.CRI 9.32  12.70 9.80 12.38 824 1284 8.64 12.64
PGM.BN-HS.IND 6.06 13.00 6.02 13.00 598  13.00 6.02 13.00

Table 10.1: Average number of correctly classified coefficients for the AFT models under baseline error
distributions BED 1 to BED 4 with n =500 observations after variable selection. Displayed are the results under
the “sliceRO” update scheme for the transformed error weights. Especially |§ #0,B # 0 denotes the case that the

estimated effect is nonzero (B # 0) when the corresponding true effect is nonzero (B # 0), and B =0,=0
denotes the case that the estimated effect is zero (B =0) when the corresponding true effect is zero (f=0).
AFT.Step: AFT model with Gaussian error assumption.

With decreasing sample size the average number of correctly classified regression coefficients
decreases for the HS.STD and HS.CRI criterion and is reduced about two regression coefficients from
the simulations with n=500 to n=100 observations. There is hardly any variation in the
classification observable for the HS.IND rule.

sliceRO BED 2 BED 2 BED 2 BED 2
Px=251n=400 p,=25,n=300 p,=25,n=200 p,=25n=100
Bz0 B=0 B=0 P=0 P20 PB=0 Bz0 P=0
B0 pB=0 P00 P=0 Pzx0 PB=0 P00 P=0
BEST 12 13 12 13 12 13 12 13
AFT.Step 9.64 10.54 9.34 1048 8.82  10.56 8.24 9.44

PGM.B-HS.STD 11.08 854 10.80 896 10.26 9.06 9.32 8.52
PGM.BL-HS.STD 11.08 9.30 10.74 9.38 10.18 9.74 9.18 9.24
PGM.BR-HS.STD 11.14 8.58 10.82 8.88 10.28 9.04 9.32 8.60
PGM.BN-HS.STD 11.16 926 10.76 9.52  10.26 9.90 9.00 10.24
PGM.B-HS.CRI 994 1248 932 1238 9.00 1246 720 11.86
PGM.BL-HS.CRI 9.92 1254 932  12.62 890 12.68 720  12.54
PGM.BR-HS.CRI 9.94 1236 934 1248 892 1244 734  11.96
PGM.BN-HS.CRI 9.92 1252 9.30 12.64 8.88 1274 7.28 12.84
PGM.BN-HS.IND 6.02 13.00 6.06 13.00 6.06 13.00 596  13.00

Table 10.2: Average number of correctly classified coefficients for the AFT models under baseline error
distributions BED 2 with n =400 to n =100 observations after variable selection. Displayed are the results
under the “sliceR0” update scheme for the transformed error weights. Especially B # 0,3 # 0 denotes the case
that the estimated effect is nonzero (B #0) when the corresponding true effect is nonzero (B#0), and
B 0, =0 denotes the case that the estimated effect is zero (B 0) when the corresponding true effect is zero
(B=0). AFT.Step: AFT model with Gaussian error assumption.
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Penalties of the linear effects

Finally, Figure 10.21 and Figure 10.22 show the covariate specific penalties expressed in terms of the
inverse variance parameters T[gjz of four selected regression coefficients B, =3, By =1, B;3=0.5 and
B,; =0 under baseline error model BED 2. The figures show almost similar results for n =500 and
n =100 observations and are associated to Figure 10.19 and Figure 10.20. The Bayesian ridge
penalty is constant across the regression coefficients, while the Bayesian lasso penalty is smaller for
larger regression coefficients and increases for smaller effects. Under the NMIG prior the penalty is
close to zero for the lager effects, resulting in a clearly reduced shrinkage, and for smaller effects the
penalty increases. The results from Section 4.5 have shown that in particular under the NMIG prior the
posterior mean estimate of ‘t[;jz for smaller effects covers only a small range of applied penalization, so

that the displayed penalties represents rather a lower bound for the penalization of small effects under
the NMIG prior.
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Figure 10.21: Estimates of the covariate specific penalty ’c[gjz under the Bayesian ridge, lasso and NMIG
regularization in the AFT model with baseline error distribution BED 2, p, =25 covariates and n =500
observations. Displayed are the Bayesian estimates associated to the four selected estimated regression
coefficients B; = 3 (upper left panel), By = 1 (upper right panel), B;3 = 0.5 (lower left panel) and B,3 = 0 (lower
right panel) resulting from the “sliceR0O” update scheme of the error weights (left sides) and the Gaussian error
assumption “gauss” (right sides).

The estimated shrinkage parameters of the Bayesian regularization priors are almost comparable under
the four baseline error models and vary marginally with decreasing sample size. We obtain in the data
with n=500 observations median estimates about 0.45 for the Bayesian ridge and 1.7 for the
Bayesian lasso shrinkage parameter. The Bayesian NMIG complexity parameter has median values
about 0.29. When the sample size decreases the shrinkage parameters of the Bayesian ridge and lasso

prior decrease marginally and the complexity parameter of the NMIG prior increases marginally.
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Figure 10.22: Estimates of the covariate specific penalty i’gjz under the Bayesian ridge, lasso and NMIG
regularization in the AFT model with baseline error distribution BED 2, p, =25 covariates and n =100
observations. Displayed are the Bayesian estimates associated to the four selected estimated regression
coefficients B; = 3 (upper left panel), By = 1 (upper right panel), B;3 = 0.5 (lower left panel) and .3 = 0 (lower
right panel) resulting from the “sliceR0” (left sides) and “mhcond” (right sides) update scheme of the error
weights.

10.3. High-dimensional predictor

In this section we consider the impact of an increased number of model parameters by modeling the
p. =25 covariates in the simulation data of the previous subsection as nonlinear and by increasing the
number of covariates p, with linear effects.

10.3.1. Nonlinear predictor

In general it is not clear, if the effect of a covariate is really linear, and we can use the nonlinear
modeling of covariate effects for a visual inspection of the shape of the influence on the response. If
continuous covariates are modeled as nonlinear, e. g. via P-splines, the number of parameters to
estimate increases clearly. In addition, the AFT model with flexible PGM error model consists of a
high number of parameters to estimate the error distribution density. We investigate in this subsection
the performance of the baseline density estimation and the behavior of the regularization priors in the
framework, when the number of parameters exceeds the number of observations.

In the following we reconsider the simulation data of the previous Subsection 10.2, where the p, =25
linear effects are assumed to be smooth functions f;(-), j=1,...,25, of the covariates, i. e. we state the
following predictor structure

ni :fl(xi,1)+"'+f25(xi,25)’ i=l,...,n.
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The smooth functions are modeled via Bayesian P-splines f;(-) =)\’ oy by (-), where we use g; =20
cubic B-spline basis functions b, (-) in each representation and the associated basis function weights
a; = (0l j,...,0y ;)" are equipped with second-order random walk priors to control the smoothness. In
summary, the predictor consists of 500 basis function weights to estimate, and we consider this high-
dimensional predictor structure under the baseline error models BED 1 to BED 4 with n =500
observations and under the baseline error model BED 2 with decreasing number of observations
n =400,300,200,100.

Function and parameter specification

We use same methods as before in Subsection 10.2 with the given hyperparameter specification of the
error priors. The hyperparameter h,, of the smoothness prior for the PGM error weights is still
increased under the “mhcond” update scheme and we use this update scheme mainly in error model
BED 2. In addition the hyperparameters of the inverse gamma smoothing variance prior for the
nonlinear effects are set to h,, =h,, =0.001 and we use o} =...=ay); =0.01 and ‘ci(jo) =1 as initial
states of the regularized components. With the nonlinear predictor we observed running times of the
sampler within the range of 1 hour — 1 hour 47 min (p, =25,n=100) and 60 min — 2 hours 20 min
(px =25,n=500).

Results

MSE of the baseline error density

Results with n = 500 observations: Figure 10.23 shows the MSEs of the estimated baseline error
density under the four error models BED 1 to BED 4 from the replications with n =500 observations.
The results under the Gaussian error assumption are not visualized, but the median MSEs are given in
the annotations of Figure 10.23 and Figure 10.24 for comparison. With exception of the Gaussian
error results, the increase in the MSE is still rather moderate compared to the models with the strictly
linear predictor. So far, the best performances in the error models BED 3 and BED 4 are obtained with
the “dirichlet” update scheme. Here, with the nonlinear predictor, this result is not approved, but in
BED 1 and BED 2 the MSEs are still comparable to the models with linear predictor. Under the
“slice” update-scheme we observe an increased MSE, compared to the MSEs of the block update

schemes “mcondstep” and “mcondblock”.

Results with n < 500 observations: As shown in Figure 10.24 the reduction of the sample size
increases step by step the MSE of the baseline error density. As previously observed, the stronger
smoothing lets the “mhcond” scheme sand out with an enhanced MSE compared to the other update
schemes, but in particular with n =100 observations the stronger smoothness regularization is leading
to a benefit, because the interquartile range is clearly decreased (compared to the other update
schemes) and the median is now comparable to the median of “sliceRO”. Nevertheless, the
performances under the “sliceRO” and “mhcond” update schemes are really poor and the MSEs act,
with respect to the median, on a level comparable to the MSE under the Gaussian error assumption. As
previously observed under the strictly linear predictor, the performance obtained with the “dirichlet”
update scheme increases relative to the other update schemes, when the number of observations is
reduced and the best performance for n =100 observations is obtained with this update scheme. In

general the MSEs of the baseline error densities cross the marked value 5e-4 between n =300 and
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n =200 observations, under the linear predictor the crossing happens between n =200 and n =100

observations.
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Figure 10.23: Mean squared errors of the estimated baseline error density, MSE(fy, ) , in the AFT model with

baseline error distribution BED 1 (left side) to BED 4 (right side), p, =25 covariates and n =500 observations,
if the covariate effects are modeled by cubic P-splines. Displayed are the estimates under the update schemes
“sliceR0O”, “mhcond”, “mcondstep”, “mcondblock” and “dirichlet” for the error weights. PGM.BT denotes the
corresponding results from the model using the true linear predictor structure. The red dotted line marks the
value Se-5. The corresponding median MSEs under the Gaussian error assumption are for are for BED 1I:
MSE sfr s (fy, ) = 12.1e-4 , for BED 2: MSE g ps (fy, ) = 47.9¢-4, for BED 3: MSE zgrps(fy,) = 9.2e-4 and for
BED 4: MSE jprps (fy,) =13.7e-4.
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Figure 10.24: Mean squared errors of the estimated baseline error density, MSE(fYO) , in the AFT model with
baseline error distribution BED 2, p, =25 covariates and n =400 (left side) to n =100 (right side)
observations, if the covariate effects are modeled by cubic P-splines. Displayed are the estimates under the
update schemes “sliceR0”, “mhcond”, “mcondstep”, “mcondblock” and “dirichlet” for the error weights.
PGM.BT denotes the corresponding results from the model using the true linear predictor structure. The red
dotted line marks the value 5e-5. The corresponding median MSEs under the Gaussian error assumption with
n =100 observations is MSE gt ps(fy, ) = 58.9e-4 = 0.0058 .

Baseline error density

The resulting estimates of the baseline error density under error model BED 2 with decreasing number
of observations are displayed in Figure 10.25. If the sample size is reduced, the fit gets poorer, but
with sample sizes n =200 the information in the data is still sufficient to reflect the bimodal nature of
the baseline error in the estimates. With less than n =200 observations the bimodal shape of the
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baseline error density is rarely detected and the estimates under the “mhcond” update are almost
always unimodal, due to the stronger smoothness regularization. Under the “sliceRO” update the
weaker regularization enables often a bimodal estimate with extremely varying locations of the modes,
and the estimates under the “dirichlet” scheme are rather undulating and the cavity between the two
modes is not detected.
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Figure 10.25: Estimated error distribution densities in the AFT model with baseline error distribution BED 2,
Px =25 covariates and n =500 (upper panel), n =200 (middle panel) or n =100 (lower panel) observations
when the covariates are modeled as P-splines for selected update methods of the error weights. Displayed are the
posterior mean estimates of the error density (colored lines) together with the true error density (black line). The
dashed lines mark the minimum of the lower 2.5% quantile and maximum of upper 97.5% quantile in the
replications.

MSE of the nonlinear effects

Figure 10.26 shows the resulting sum of the spline individual MSEs, i. e. MSE(f )= 212:51 MSE(fj),
under the error models BED 1 to BED 4 with n =500 observations and Figure 10.27 shows the
corresponding results under error model BED 2 with decreasing number of observations. The MSE is
clearly increased compared to the strictly linear modeling of the effects, as indicated by the increased
differences to the MSE(ﬁ) of the model with the true predictor structure (PGM.BT). As previously
observed with the strictly linear predictor, the differences in the performance of the baseline error
density estimation, caused by the various update schemes, are again less pronounced in terms of the
MSEs of the regression coefficients. Even, the MSEs of the “dirichlet” and “mhcond” update scheme
are almost comparable to the other update schemes. If the sample size decreases, the performance of
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the “dirichlet” scheme is again improved in comparison to the remaining update schemes and the
performance is best in the case of n =100 observations. In particular, for the sample size of n =100
the MSE under the Gaussian error assumption is almost in the same range as the MSE with the PGM
error. In the case of n =200 observations the spline MSE (MSE(f ) ) is comparable to the MSE with
the unregularized linear predictor for n =100 observations.
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Figure 10.26: Sum of the mean squared errors of the nonlinear effects, MSE(f ), in the AFT model with
baseline error distribution BED 1 (left side) to BED 4 (right side), p, =25 covariates and n =500 observations,
where the effects are modeled by cubic P-splines. Displayed are the estimates under the update

schemes “sliceR0”,

”»

“mhcond”,

“mcondstep”, “mcondblock” and “dirichlet” for the error weights and the

Gaussian error assumption ( “gauss”). PGM.BT denotes the corresponding results from the model using the true

linear predictor structure.
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Figure 10.27: Sum of the mean squared errors of the nonlinear effects, MSE(f ), in the AFT model with
baseline error distribution BED 2, p, =25 covariates and n =400 (left side) to n =100 (right side)
observations, where the effects are modeled by cubic P-splines. Displayed are the estimates under the update

schemes “sliceR0”,

”»

“mhcond”,

“mcondstep”, “mcondblock” and “dirichlet” for the error weights and the

Gaussian error assumption ( “gauss”). PGM.BT denotes the corresponding results from the model using the true
linear predictor structure.

Nonlinear effects

Finally, Figure 10.28 shows the nonlinear function estimates fM , flg , and fzs in the AFT model with
baseline error distribution BED 2 and n =300 observations (upper panel) and n =100 observations
(lower panel) for one replicated dataset. The black dashed line marks the associated true linear effect.
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Figure 10.28: Estimations of the nonlinear effects of the covariates x4 (first column), x;3 (second column), and
Xos (third column), in the AFT model with baseline error distribution BED 2, p, =25 covariates and n =300
(upper panel) and n =100 (lower panel) observations. Displayed are the posterior mean estimates of the
coefficients (colored solid lines) together with the corresponding 95% pointwise credible bands (colored dashed
lines) of one selected dataset and the true effect (black dotted line).

10.3.2. Bayesian NMIG prior

Data generation

In this section we investigate the high-dimensional case, where the number of covariates is increased
with respect to the previous sections. We consider in particular the AFT model with baseline error
model BED 2 and the number of covariates increases from p, =100 to p, =600 . The covariates, log-
survival times and the 25% censoring times are generated as described before in the Subsection 10.2.
The so far used vector B=(3,3,0,0,2,2,0,0,1,1,0,0,0.5,0.5,0,0,0.2,0.2,0,0,0.1,0.1,0,0,0)" is pasted
back-to-back repeatedly until the desired number of effects p, is attained. Particularly we use the

predictor
M =XuPi+xiBo +oo+ X, By, i=1..01m, (10.3)
with
* p, =250,300,400,500,600 in combination with n =500 observations,
e p, =100,200,300 in combination with n =200 observations,

® p, =400 in combination with n =300 observations.

The regularization of the linear effects is carried out by means of the Bayesian NMIG prior and we
summarize in the following the results for the combinations n =500,p, =250 and n =200,p, =100,
where the number of covariates is still smaller than the number of observations, and for the
combinations n =200,p, =300 and n =300,p, =400, where the number of covariates exceeds the

number of observations.
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Function and parameter specification

We use the function and parameter settings as given in the previous Sections 10.1 and 10.2. For the
high-dimensional combinations n =200,p, =300 and n =300,p, =400 we observe under the so far
used constellation of the hyperparameters a critical convergence in the sample paths of the parameters
associated to baseline error density, and a further adaption of the smoothing prior has also shown no
improvement. In general the paths of regression coefficients and shrinkage prior components are less
concerned from the convergence problems. However, we summarize shortly the results under the so
far used prior tuning and interpret the associated results carefully. For some of the combinations we
use additional runs without the standardization of the error distribution within the sampler
(scalebasis=FALSE) and we present these results for the respective combinations. With the higher-
dimensional predictors we observed running times of the sampler about 30 min (p, =100,n =200 ), 50
min (p, =300,n =200 ), 1h 40min (p, =400,n =300 ) and 1h 30min (p, =250,n =500).

Results

Baseline error location and scale

If the number of covariates is increased with respect to the number of observations, we observe in
general a larger deviation of the estimated location and scale parameters from the true values of the
underlying baseline error distribution. Until now, the option to standardize the error density during the
iterations of the MCMC sampler has shown no obvious impact onto the results. Here, with an
increased number of covariates, the standardization is leading to a higher concentration of the
estimated moments around true moments of the baseline error density, as shown in Figure 10.29. The
larger deviations in the high-dimensional combination n =300,p, =400 are explained by the weak

convergence of the error parameters.

MSE of the baseline error density

As observed in the previous sections the fit to the error moments does not affect the performance of
the baseline error density, Figure 10.30. With respect to comparable sample sizes, the MSEs of the
error density clearly increase with the increasing number of covariates in the model. As previously
noticed the “dirichlet” update scheme performs well (relative to the other update schemes) in
situations with a low sample size, and also here with increased numbers of covariates the best
performances are achieved with this unregularized update scheme. In the simulations with n =200
observations the MSE of the “dirichlet” update scheme is comparable to the MSE of the PGM error
model with the true predictor structure (PGM.BT).

Baseline error density

Figure 10.31 shows the estimates of the baseline error density for the combinations p, =250,n =500
(upper panel) and n=300,p, =400 (lower panel). Even in the cases with more covariates than
observations the estimates, e. g. under the “sliceR0” or “mcondblock” update scheme, are still smooth
and a stronger regularization of the smoothness (results not shown) can not counterbalance the obvious
lack of fit due to the weak information in the data, which is also observable for the models with the

true predictor structure.



132 10. AFT-TYPE MODELS

wn n
o | BED 2: PGMBN (n=200, p=100) ™ | BED 2: PGMBN (n=500, p=250) ™ 7 BED 2: PGMBN (n=200, p=300) ™~ BED 2: PGM.BN (n=300, p=400)
—_ v
o o © - —_ ! ©+4 o °
24 = : - ; T
ol : i — | w0/ ° T
w| — — — —— | e : ; ‘ ‘ b o
B T T 1 ' 24 -7 T--3 i : : o i N
o ' ' - | | T
s EEEEE = [l == I A S
a o : i ' : o R H .
a o B SRR ‘
o © o o o 1 1
£ [ H Rl R R B '
®w 0] - 1 : T : 1
- o o o e T Al P
B 1 ! ! H !
2 s I Fo= == R
- — v - - d —ta ' - ! : ! ' 4
- - L|TiE ey 2L
0 e} -
S S 1 © 1
0 © o
' BED 2: PGM.BN (n=200, p=100) &1 BED 2: PGMBN (n=500, p=250) BED 2: PGMBN (n=200, p=300) BED 2: PGM.BN (n=300, p=400)
i © - © - -
+~ 4 -4 1 -
| d o
! il
3 ° < 10, T
c © o4--1---TF T - i '
; :
H SEE - & - F -
3 Eﬂ -
8 7 T ‘ ' P
s - o T T P4 © o :
. m—__E—__E___ =R = % _— T — T
o 4 0 ! H o 4 8 - | — =
= = 5+ |mE e S
i 8 ° == -
1 7 \E .
| oo
: i
L
1 ¥ @ © 4 o--ck:
o aQ x k! X ¥ ¥ ¥ © a x g o a x ko ¥ ¥ ¥ X © a x g
o k) 8 = L L iiaxc & 8 2 c k) 8 = L L oL & g =
8 2 2 5 g § 33 8 835 5 8 z 2 kS 2§ 3% 38 8835
% < ° = s B S § % £ T £ = < ° = s ®» 2§ % £ T =
o c © 8 8 © S o € T o c © 8 8 © © o € T
g g s 5§ 2 5 g 8 g g s § % s g g
£ g § ° € £ g g ° €
E £ E g

Figure 10.29: Estimated scale (upper panel) and location parameter (lower panel) in the AFT model with
baseline error distribution BED 2, p, =100 covariates and n =200 observations (first column), p, =250
covariates and n =500 observations (second column), p, =300 covariates and n =200 observations (third
column) and p, =400 covariates and n =300 observations (last column) under the Bayesian NMIG
regularization of the regression coefficients. Displayed are the estimates under various update schemes for the
error weights. The black horizontal lines mark the true scale ¢y, and location Ly, of the associated baseline
error distribution.
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Figure 10.30: Mean squared errors of the estimated baseline error density, MSE(fYO) , in the AFT model with
baseline error distribution BED 2, p, =100 covariates and n =200 observations (first panel), p, =250
covariates and n =500 observations (second panel), p, =300 covariates and n =200 observations (third
panel) and p, =400 covariates and n =300 observations (last panel) under the Bayesian NMIG regularization
of the regression coefficients. Displayed are the estimates under various update schemes for the error weights.
AFT.T denotes the results from the frequentist AFT model with Gaussian error using the true predictor structure
and PGM.BT denotes the corresponding results from the Bayesian AFT model with PGM error.
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Figure 10.31: Estimated baseline error densities in the AFT model with baseline error distribution BED 2,

p. =250 covariates and n =500 observations (upper panel) and p, =400 covariates and n =300 observations
(lower panel) under the Bayesian NMIG regularization of the regression coefficients. Displayed are the posterior
mean estimates of the error density (colored lines) together with the true error density (black line). The dashed
lines mark the minimum of the lower 2.5% quantile and maximum of upper 97.5% quantile in the replications.

MSE of the regression coefficients

The MSEs of the estimated regression coefficients, MSE(ﬁ) , are standardized to reflect the portion of
25 regression coefficients, e. g. in the case of p, =100 covariates we divide the MSE of the regression
coefficients with 4. Under comparable sample sizes the MSE of the estimated regression coefficients
increases with increasing number of covariates in the model. As previously observed, the loss of
performance in the error density estimation is also reflected in the level of the performance of the

regression coefficient estimates, shown in Figure 10.32.

With the given structure of the underlying effects (10.2) we do not reach MSEs comparable to the
model using the true predictor structure (PGM.BT), as already observed under the NMIG prior with
the low-dimensional linear predictor. If in addition the hard shrinkage selection rules are applied to
find sparse final models, compare Figure 10.33, we observe a similar, but more pronounced trend of
the resulting MSEs as in the previous Subsection 10.2.

For the high-dimensional cases, with still more observations than covariates (n > p,, Figure 10.33
upper panel), the MSE increases clearly from the HS.STD over the HS.CRI to HS.IND selection rule.
The low performance trend of HS.IND criterion is reversed in the high-dimensional case, with less
observations than covariates (n<p,, Figure 10.33 lower panel). In that case, the range of the
associated MSE is comparable close to the MSEs resulting form the HS.STD rule and we will find
similar results with the high-dimensional simulations in the CRR model, compare Section 11.4. But in
general, all hard shrinkage rules yield sparse final models with lower performance than those
including the full covariate set, especially in the n<p, setting. Table 10.3 shows the associated

classification results of the estimated effects under the hard shrinkage variable selection.
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Figure 10.32: Mean squared errors of the estimated regression coefficients, MSE(ﬁ) , in the AFT model with
baseline error distribution BED 2, p, =100 covariates and n =200 observations (first panel), p, =250
covariates and n =500 observations (second panel), p, =300 covariates and n =200 observations (third
panel) and p, =400 covariates and n =300 observations (last panel) under the Bayesian NMIG regularization
of the regression coefficients. Displayed are the estimates under various update schemes for the error weights.
AFT.T denotes the results from the frequentist AFT model with Gaussian error using the true predictor structure
and PGM.BT denotes the corresponding results from the Bayesian AFT model with PGM error.
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Figure 10.33: Mean squared errors of the estimated regression coefficients, MSE(B) , in the AFT model with

baseline error distribution BED 2 together with the MSEs resulting from the hard shrinkage variable selection
criteria. Displayed are the MSEs under various update schemes for the error weights with p, =100 covariates
and n =200 observations (upper left panel), p, =250 covariates and n =500 observations (upper right panel),
px =300 covariates and n =200 observations (lower left panel) and p, =400 covariates and n =300
observations (lower right panel).
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NMIG indicators

Concordantly, the constellation between the number of observations and the number of covariates
affects the classification of the covariate specific binary variance component I; to the values v, and
v;. The lack of definition, that comes along with an increased number of covariates or reduced
number of observations, is indicated by larger interquartile ranges of the estimated inclusion
probabilities, based on posterior relative frequencies of the Bayesian NMIG indicator variable value
I, =v,, followed by and an increased number of extreme values.
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Figure 10.34: Estimated inclusion probabilities based on posterior relative frequencies of the Bayesian NMIG
indicator variable value I; =v, in the AFT model with baseline error distribution BED 2, p, =100 covariates
and n =200 observations (upper panel) or p, =250 covariates and n =500 observations (lower panel).
Displayed are the frequencies corresponding to the selected effects of the covariates annotated at the x-axis via
three different update schemes for the error weights. The red horizontal line marks the cut off value 0.5 of the
hard shrinkage selection criterion HS.IND.

If still more observations than covariates are available, (n > p, ), the selected threshold 0.5, used in the
HS.IND criterion, separates the effects that are larger or equal than =1 from those smaller or equal
than B=0.5, compare Figure 10.34. As in the simulations with the low-dimensional predictor,
covariates with effects B3 =P, =0.5 have still higher inclusion probabilities compared to the
inclusion probabilities of the covariates with smaller or the zero effects. But, as shown in Figure
10.35, this separation gets blurred if the sample size is smaller than the number of covariates (n < p, )
and is shifted to larger coefficients. Due to the decreased inclusion probabilities, the HS.IND-threshold
separates now covariate effects f=2 and B =1, and in particular in the cases with lower sample sizes,
like n =200 (upper panel), this effect is pushed since the inclusion probabilities of the larger effects
B =2 are further shifted towards the cut of value of 0.5. In addition the inclusion probabilities of the
covariates with effects B3 =B, =0.5 do not longer differ from the inclusion probabilities of the
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covariates with smaller or the zero effects. With respect to the results from Section 11.5 the decrease
of the HS.IND-threshold value increases the number of correctly classified nonzero effects and
improves the performance of the sparse final models obtained with the HS.IND criterion. The
improvement is mainly caused by the inclusion of the covariates with larger effects, since the inclusion
probabilities of the covariates with smaller effects are not distinguishable from the inclusion
probabilities of the covariates with zero effects.
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Figure 10.35: Estimated inclusion probabilities based on posterior relative frequencies of the Bayesian NMIG
indicator variable value I; = v, in the AFT model with baseline error distribution BED 2, p, =300 covariates
and n =200 (upper panel) or p, =400 covariates and n =300 (lower panel) observations. Displayed are the
frequencies corresponding to the selected effects of the covariates annotated at the x-axis via three different
update schemes for the error weights. The red horizontal line marks the cut off value 0.5 of the hard shrinkage
selection criterion HS.IND.

Classification

As indicated by the posterior inclusion probabilities, the HS.IND selection rule detects almost always
all true zero effects reliable and as a consequence the proportion of correctly classified zero effects
(B= 0,8=0) matches well the optimal value of 0.52, compare Table 10.3. Mainly affected by the
transition from the n >p, to the n <p, case, is the proportion of correctly classified nonzero effects
(B;t 0,B #0) which decreases from 0.23 (p, =100 ) to 0.14 (p, =300) with sample size n =200 and
from 0.24 (p, =250) to 0.21 (p, =600 ) with sample size n =500 . Since the proportion of correctly

classified zero effects is almost constant the number of misclassifications increase.

Linear effects

Lower inclusion probabilities enhance the relative frequencies of the Bayesian NMIG indicator values
I; = v, and induce a stronger regularization of the associated effects {3;. The impact of the stronger
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regularization of the regression coefficients is shown in Figure 10.36 by means of four selected effects
with different size in the data with n =200 observations, where at the right sides the predictor
includes p, =100 and at the left sides p, =300 covariates. If we switch from the n > p, (left side) to
the n <p, (right side) case, we see the increased shrinkage of the larger regression coefficients. The
shrinkage is clearly increased for the effects By =1 and B,; =0.5, where the estimates are very close to

Z€ro.

iceRO BED 2 BED 2 BED 2 BED 2
n=200,p,=100 n=500,p,=250 n=200,p,=300 n=300,p,=400
B0 p=0 Bz0o Pp=0 Pp=0 PB=0 PHz0 Pp=0
B+#0 Bp=0 B#0 Bp=0 B#0 B=0 B+#0 B=0
BEST 0.48 0.52 0.48 0.52 0.48 0.52 0.48 0.52
AFT.Step 0.38 0.29 - - - - - -
PGM.BN-HS.STD  0.36 0.42 0.39 0.39 0.15 0.48 0.20 0.48
PGM.BN-HS.CRI  0.28 0.51 0.32 0.50 0.11 0.51 0.15 0.51
PGM.BN-HS.IND 0.3 0.52 0.24 0.52 0.14 0.49 0.17 0.51

Table 10.3: Average fraction of correctly classified coefficients for the AFT models under baseline error
distributions BED 2 after variable selection. Displayed are the results under the “sliceR0” update scheme.
Especially [3 #0,B # 0 denotes the case that the estimated effect is nonzero ([3 #0) when the corresponding true
effect is nonzero (B #0), and [3 0,8 =0 denotes the case that the estimated effect is zero (B 0) when the
corresponding true effect is zero (3 =0). AFT.Step: AFT model with Gaussian error assumption.
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Figure 10.36: Regression coefficient estimates ﬁ for four selected estimated regression coefficients ; = 3
(upper left panel), g = 1 (upper right panel), B3 = 0.5 (lower left panel) and B3 =
AFT model with baseline error distribution BED 2, p, =100 covariates and n =200 observations (left sides) or
px =300 covariates and n =200 observations (right sides). The black horizontal lines mark the true values of
the regression coefficients. AFT.T denotes the results from the frequentist AFT model with Gaussian error using
the true predictor structure and PGM.BT denotes the corresponding results from the Bayesian AFT model with
PGM error.

0 (lower right panel) in the
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Penalties of the linear effects and shrinkage parameters

Figure 10.37 shows the associated covariate specific penalties expressed in terms of the inverse
variance parameters rg? that indicate also the increased shrinkage if the number of covariates in the
predictor increases. The increased shrinkage causes also a decrease in the estimated complexity
parameter ® as shown in Figure 10.38. The adaption of the hyperparameters h,, and h,, to force a
higher model complexity ® leads to higher inclusion probabilities for all covariates and does not
solve the problem that especially in higher-dimensional covariate cases the inclusion probabilities of
moderate effects are not separable from the inclusion probabilities covariates with smaller or zero
effects, compare also Section 11.4.
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Figure 10.37: Covariate specific penalty %gjz for the Bayesian NMIG prior in the AFT model with baseline error
distribution BED 2, p, =100 covariates and n =200 observations (left sides) or p, =300 covariates and
n =200 observations (right sides). Displayed are the Bayesian estimates associated to the four selected
estimated regression coefficients §; = 3 (upper left panel), By = 1 (upper right panel), B3 = 0.5 (lower left panel)
and 53 = 0 (lower right panel) under various update schemes for the error weights.

Final remarks

In summary, the performance of the AFT is considered in terms of the performance of the baseline
error density and the predictor. We have seen that the performance of both model components is
connected and an improved performance of the baseline error induces an improved performance of the
predictor and vice versa.

The several strategies applied in the estimation of the baseline error have shown limited effects on the
performance. Across the four used baseline error models none of the used update schemes of the error
mixture weights has shown superiority. We have seen that the unregularized “dirichlet” update
scheme performs very well (and best compared to the other update schemes) in some of the four error



SIMULATIONS 139

models and that the performance is improved relative to the other update schemes, when the sample
size decreases or the number of covariates increases. Nevertheless, due to the lack of information in
the higher-dimensional cases with lower sample sizes, the estimated densities do not reflect the
underlying error density, even if the performance of “dirichlet” update scheme is higher than the
performance of the other methods. Due to the long running times of the sampler, the enhanced tuning
effort and the required increased regularization of the smoothness that causes a loss of performance we
found no benefits in using the Metropolis-Hastings based update schemes. Finally, the low acceptance
rates for the “mcondstep” scheme have shown no impact on the performance of the model component
estimates. Also the standardization of mixture error density within the sampler has shown no benefit
for the estimation of the model components. Possibly in other frameworks, like e. g. in quantile
regression, where the scale parameter is modeled covariate-dependent (G;(x)=x/{) in combination
with informative priors for { it may be of any importance (e. g. with respect to the hyperparameter
specification, compare Section 6.2.1).
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Figure 10.38: Estimated shrinkage parameter @ in the AFT model with baseline error distribution BED 2, p, =
100 covariates and n = 200 observations (left figure), px = 250 covariates and n = 500 observations (second
figure), px = 200 covariates and n = 300 observations (third figure) and p, = 400 covariates and n = 300
observations (right figure) under the Bayesian NMIG regularization of the regression coefficients. Displayed are
the estimates under various update schemes for the error weights.

If we consider the estimation of the predictor components, we have seen that the application of the
regularization priors to the linear covariate effects increases in general the performance compared to
the unregularized estimation. In particular, the best performance results (with respect to the used effect
model) are obtained with the specific shrinkage of the Bayesian NMIG prior, even with enough
information in the data, where the impact of the likelihood dominates the impact of the regularization
priors on the estimates, and even in the models with the Gaussian error assumption, where the error
model is miss-specified. But, in the miss-specified Gaussian error model, the improved performance
resulting from the regularization of the linear effects has only a marginal impact on the performance of
the error density. In general, variable selection has shown no benefits for the improvement of the
predictive performance, but with the HS.STD criterion we often found sparse models, under all three
regularization priors, with a comparable performance as the full models. We have seen, that the
posterior inclusion probabilities for the covariates, as provided by the NMIG prior, reflect very well
the importance of the covariates. Nevertheless, also variable selection guided by the ranking of the

covariates, with respect to the inclusion probabilities, shows in general no improvement of the
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predictive performance. In the high-dimensional-covariate or low-sample-size cases the inclusion
probabilities are shifted towards zero and the separation of the covariates with moderate effects from

the covariates with small or zero effects vanishes.

From the variations of the sample size and the number of covariates we found that the AFT model
with PGM error can be applied with sample sizes about n =200 and a low number of covariates e. g.
px =25, where some of them can also be modeled as nonlinear. With respect to the results of the
baseline error estimation we do not recommend the use of the PGM error in higher-dimensional cases
with p, >n/2, because regularization can compensate only limited the lack of information in the data
to estimate reliably the high-parametric AFT model with PGM error.

11. CRR-type models

In this section we investigate the performance of the Bayesian ridge, lasso and NMIG prior under the
extended Cox relative risk (CRR) model as described in Section 7. The results obtained from the
Bayesian methods are compared with the associated frequentist versions of the ridge or lasso penalty
and a backward-stepwise procedure based on the AIC criterion. In addition to the semiparametric
approach and the P-spline based modeling, we consider also a parametric Weibull model A,(t) = ot*™

for the baseline hazard as competitor.

We start in Subsection 11.1 with the case n > p,, where more observations ne N than covariates
p. € N are available and assume a simple linear shape of the baseline hazard in the data generation
process. The models in Subsection 11.2 consider more complex shapes of the baseline hazard and
additional nonlinear covariate effects. One of these models is revisited in Subsection 11.3, where we
utilize an AFT model with PGM error for inference to explore the consequences, if the survival model
is miss-specified. We proceed with the higher-dimensional case in Subsection 11.4, where the number
of linear modeled covariates p, is sequentially increased until it exceeds the sample size n . Finally,
in Subsection 11.5, this section is concluded by considering modifications of the hard shrinkage

selection criterion based on posterior relative frequencies of the Bayesian NMIG indicator values.

Functions and methods

Frequentist inference for the CRR model relies on the partial likelihood and we utilize the R-functions
coxph () of the package {survival} and penalized() of the {penalized} R-package from J.
Goeman for estimation. Frequentist variable selection, based on the AIC criterion, is practiced with
coxph () in combination with the backward-stepwise search as provided by the step () function. The
function penalized() enables the estimation of lasso- and ridge-regularized linear regression
coefficients, where the optimal shrinkage parameter A is determined by n-fold (leave-one out)
generalized cross validation. To select genes that are related to the patient’s survival, Gui and Li
(2005) proposed also a LARS-COX procedure which uses L;-penalized estimation for the CRR model
as well. In this procedure, the least angle regression method, Efron et al. (2004), was applied to solve
the computational difficulty in high-dimensional-covariate and low-sample-size cases. Further the R-
package {glmpath},Park and Hastie (2007), is available as competitor, where the coefficients are
computed on a grid of values for A at which the set of non-zero coefficients changes. As typical for

the frequentist lasso, all these methods can select at most n variables. Due to the similarity, we restrict
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the presentation of the regularized frequentist results to those achieved with the penalized ()

function.

Bayesian inference for the CRR model is either based on the partial likelihood or on the full
likelihood, if a parametric Weibull or nonparametric P-spline baseline hazard function is assumed. The
MCMC sampling based inference algorithms for the model components are described in Section 9. In
particular the partial likelihood based algorithms are implemented in the R-function bcoxpl (), which
is available from the author by request. Inference with the full likelihood is carried out with the

method regress as implemented in the free software Bayesx (available from http://www.stat.uni-

muenchen.de/~bayesx). The usage of both functions is described in the Appendix D.3 and D.4. The

Bayesian point estimates of model parameters are based on the empirical mean of the associated,
generated sample from the marginal posterior distribution. Further summary statistics, like the

standard deviation or quantiles, are also computed using their empirical counterparts.

Estimation accuracy

We measure the estimation accuracy in terms of the mean squared errors (MSE) as defined in Section
10 over R =50 runs. Further, we report the average number of correctly and incorrectly classified
zero and nonzero coefficients after applying the hard shrinkage rules presented in Section 4.4. To
compute the cumulative baseline hazard function Ao(t) =j(: Xo(u)du associated to the estimated P-
spline baseline hazard A,(-), the trapezoidal rule is used so that the results become comparable to the
corresponding Breslow estimates AP (t) from the partial likelihood. A selection of the main results is
presented in the next sections. The used abbreviations that describe the models and inferential methods

are summarized in the Reference Section.

11.1. Low-dimensional linear predictor

Data generation

For our first simulations we use the configuration of the data generating process from Tibshirani
(1997). Nine covariates X; =(X;,...,X;o) are randomly drawn from a multivariate Gaussian
distribution with zero mean, unit variance and covariance matrix chosen such that the correlation
between x; and X, is corr(xi,j,xi,k):p‘j’k‘ with p=0.5. The survival times T,, i=1,...,n, are

generated from an exponential hazard model with constant baseline hazard A,(t) =1, i. e.

Ai(t) =exp(xiB),

while the censoring variables C;, i=1,...,n, are generated as i.i.d. draws from the uniform distribution
U[0,c,] with ¢, chosen to obtain censoring rates about 25 % in each dataset. For the various CRR

models with the following nine regression coefficients
CRR 1: B=(-0.7,-0.7,0,0,0,—0.7,0,0,0),
CRR2: B=(0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1)’,

CRR 3: B=(-0.4,-0.3,0,0,0,-0.2,0,0,0),
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we produced R =50 datasets with n =200 life times in each case. The first and the second model
were used in Tibshirani (1997), who compared the frequentist lasso regularization in the CRR model
with the stepwise procedure, and the first and third model were used in Zhang and Lu (2007) in the

context of the adaptive lasso with covariate-specific penalties.

Function and parameter specification

Methods: We us the functions coxph () and step () for frequentist estimation and penalized ()
for the frequentist lasso and ridge regularization. For Bayesian inference we use the R- function
bcoxpl () and the BayesX method regress with the ridge, lasso and NMIG regularization of the
linear effects.

Hyperparameters: The hyperparameters for the shrinkage parameter of the Bayesian lasso and ridge
prior are set to the weakly informative values h;; =h,; =0.01 to enable a greater amount of
adaptiveness for the shrinkage parameter depending on the data. The hyperparameters for the two
variance parameter components of the Bayesian NMIG prior are v, =1, v, =0.000025, h;,, =5 and
h,, =25 in combination with h;, =1 and h,,=1 to define a uniform prior for the complexity

parameter ©.

Starting values: In BayesX the starting values for the regression coefficients are computed via
backfitting within Fisher scoring. In the function bxoxpl () we avoid preprocessing steps to fit the
model in order to obtain suitable starting values and start with a weakly specified model. For the
starting values of the linear effects we select values close to zero, i. e. Bgo) =0.01, j=1L...,px. The
Bayesian NMIG regularization components starts with I{”’ =v,, Y7 corresponding to the value left
mode dependent on the specification of the variance prior for y; and ®® =0.5. The shrinkage

parameter for the Bayesian lasso and ridge prior starts in A =1.

Estimation: For the Bayesian MCMC methods based on the full and partial likelihood we use 10000
iterations with a burnin of 2000 and thin the chain by 8, which results in an MCMC sample of size
1000. On a system with quad-core CPU (Intel Quad9550, 2.83 GHz) we need about 5 minutes for the
Bayesian partial likelihood based models estimated in R, and about 15 seconds for the full likelihood

based models in BayesX.
Results for model CRR 1

MSE of the linear effects

Figure 11.1 shows the mean squared errors for the estimated regression coefficients, MSE(ﬁ), under
the different regularization priors for the linear effects, when inference is based on the partial
likelihood (CPL) and the full likelihood (CFL) with P-spline baseline hazard. In addition we show the
MSEs obtained after applying the hard shrinkage selection criteria (HS.STD, HS.CRI, HS.IND) to the
Bayesian estimates of the regression coefficients as described in Section 4.4. Due to the similarity of
the results from the Weibull (WB) and the P-spline baseline hazard model (with exception of the

baseline hazard performance) the Weibull model results are often omitted in the following.

We note that the Bayesian NMIG model (CPL.BN, CFL.BN) performs best within each group of
survival models (CPL, CFL) and outperforms the stepwise procedure (CPL.Step) as well as the
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frequentist lasso (CPL.PenL) and the Bayesian lasso (CPL.BL, CFL.BL). The MSEs of the Bayesian
NMIG estimates are close to the MSE of the maximum partial likelihood estimates, if the predictor
with the true covariate structure under model CRR 1 is used (CPL.T). The MSEs of the corresponding
unpenalized Bayesian methods using the true predictor are comparable to the MSE of CPL.T and are
omitted in the figures. A marginal improvement in the MSE performance can be observed for the
sparse models resulting from hard shrinkage selection criterion based on the standard deviation. In
particular the MSE under the Bayesian lasso (CPL.BL-HS.STD, CFL.BL-HS.STD) and Bayesian
ridge (CPL.BR-HS.STD, CFL.BR-HS.STD) prior is reduced, compared to the associated models that
include all covariates. The MSE under the Bayesian lasso and ridge prior is further improved, if the
hard shrinkage criterion based on the 95% credible region is applied to the P-spline model (CFL.BL-
HS.CRI, CFL.BR-HS.CRI), but the high performance of the Bayesian NMIG models is not reached.
Furthermore, the HS.IND criterion only slightly changes the MSE of the resulting Bayesian NMIG
model, since the estimates of the zero effects, compare Figure 11.2, are very close to zero anyway, i.

e. it is negligible, if they are removed from the final model or not.
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Figure 11.1: Mean squared errors of the regression coefficient estimates, MSE(ﬁ) , under the different
regularization and variable selection methods in simulation model CRR 1. The right box (CPL.T) shows the
MSE(B) for the maximum partial likelihood estimations when the true predictor structure is used.

Classification

The second and third column in Table 11.1 show the resulting average number of the correctly
classified nonzero coefficients (ﬁ;ﬁ 0,B #0) and correctly classified zero coefficients (ﬁz 0,3=0) for
the 50 simulation datasets under the different variable selection methods. Column four displays the
frequencies of the final models (MF) with the true predictor structure, i. e. correctly specified zero and
nonzero coefficients.

While all methods reach the optimal value of 3 correctly classified nonzero regression coefficients, the
optimum of 6 correctly classified zero regression coefficients is only achieved with the Bayesian
NMIG regularization in combination with the HS.CRI criterion. The associated final models recover
in all 50 cases the true model. High numbers of correctly classified zero coefficients result also for the
models obtained with the HS.STD and HS.IND criterion, in particular the partial likelihood models
recover in 49 resp. 47 of 50 cases the true model. We note generally for all methods, that the average

number of true estimated zero effects tends to smaller values under the Weibull and P-spline model of
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the baseline hazard as under the partial likelihood, where the baseline is left unspecified. Under
comparable prior specification we often observe that the regression coefficients, obtained with the full
likelihood, are less regularized as those obtained with the partial likelihood, compare Figure 11.2.
This various amounts of shrinkage explain the variability in the performance under the different hard
shrinkage selection criteria. In summary, in model CRR 1, with clearly separable zero and nonzero
effects, the best results in terms of the MSE and the classification are obtained with Bayesian NMIG

prior.
Model 1 Model 2 Model 3
#0 =0 #0 =0 #0 =0
B0 Bzo MF RZ0 BZQ MF BZ0 RIp M
BEST 3 6 50 9 0 50 3 6 50
CPL.Step 3 4.90 19 3.94 0 0 2.66 4.58 6
CPL.PenL 3 3.60 2 6.42 0 2 2.88 3.86 7
CFL.B-HS.STD 3 4.18 5 4.58 0 0 2.80 3.90 2
WB.B-HS.STD 3 4.28 4 4.52 0 0 2.78 3.94 3
CPL.B-HS.STD 3 4.20 4 4.54 0 0 2.78 3.86 2
CFL.BL-HS.STD 3 4.38 6 4.38 0 0 2.78 4.26 4
WB.BL-HS.STD 3 4.56 9 4.36 0 0 2.78 4.40 8
CPL.BL-HS.STD 3 4.70 8 4.04 0 0 2.74 4.96 10
CFL.BR-HS.STD 3 4.30 4 4.66 0 0 2.80 3.94 2
WB.BR-HS.STD 3 4.26 3 4.52 0 0 2.80 4.08 4
CPL.BR-HS.STD 3 4.42 6 4.72 0 0 2.76 4.52 7
CFL.BN-HS.STD 3 5.82 42 2.04 0 0 2.12 5.74 12
WB.BN-HS.STD 3 5.82 42 1.94 0 0 2.06 5.78 14
CPL.BN-HS.STD 3 5.98 49 1.10 0 0 1.68 5.96 7
CFL.B.HS-CRI 3 5.68 38 1.62 0 0 2.26 5.66 15
WB.B-HS.CRI 3 5.64 36 1.48 0 0 2.22 5.66 14
CPL.B-HS.CRI 3 5.64 36 1.40 0 0 2.26 5.64 15
CFL.BL-HS.CRI 3 5.74 40 1.32 0 0 2.20 5.76 15
WB.BL-HS.CRI 3 5.68 38 1.32 0 0 2.16 5.78 13
CPL.BL-HS.CRI 3 5.84 43 0.92 0 0 1.98 5.90 13
CFL.BR-HS.CRI 3 5.68 37 1.44 0 0 2.30 5.68 15
WB.BR-HS.CRI 3 5.62 35 1.34 0 0 2.18 5.68 13
CPL.BR-HS.CRI 3 5.76 41 1.04 0 0 2.16 5.82 15
CFL.BN-HS.CRI 3 6.00 50 0.60 0 0 1.54 5.98 3
WB.BN-HS.CRI 3 6.00 50 0.56 0 0 1.52 5.98 4
CPL.BN-HS.CRI 3 6.00 50 0.40 0 0 1.04 5.98 0
CFL.BN-HS.IND 3 5.74 40 2.30 0 0 2.14 5.70 12
WB.BN-HS.IND 3 5.80 41 2.20 0 0 2.12 5.72 14
CPL.BN-HS.IND 3 5.94 47 1.20 0 0 1.68 5.94 7

Table 11.1: Average number of correctly classified regression coefficients for the models CRR 1, CRR 2 and
'CRR 3 after variable selection. Especially p# 0, # 0 denotes the case that the estimated effect is nonzero
(B #0) when corresponding true effect is nonzero (B #0), and p=0,=0 denotes the case that the estimated
effect is zero (p = 0) when corresponding true effect is zero (§ =0 ). The columns (MF) display the frequencies
of the final models that recover the true model.

Linear effects

Figure 11.2 presents the estimated values of two selected regression coefficients, Bs=0 and
Bs =—0.7 , obtained with the different estimation and regularization methods. If we focus on the
Bayesian NMIG prior, we see that the estimates (CPL.BN, CFL.BN) for the zero effects are much

more concentrated around zero, similar to the stepwise selection (CPL.Step) and the variable selection
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under frequentist lasso (CPL.PenlL), while the estimates of the nonzero effects are close to the
unregularized estimates. The estimates reflect the adaptive selection-type shrinkage property of the
Bayesian NMIG prior, with strong shrinkage of smaller and at the same time weak shrinkage of larger
regression coefficients, where the separation between “large” and “small” coefficients depends on the
specification of the NMIG prior hyperparameters. Obviously, the Bayesian ridge and lasso prior cause
less shrinkage of the nonzero regression coefficients in the P-spline model for the baseline hazard
(CFL.BR, CFL.BL) as in the semiparametric frequentist and Bayesian version, where inference is
based on the partial likelihood (CPL.BR, CPL.BL), compare also Figure 11.3. This demonstrates, as
previously mentioned in the Section 4.3, that the prior-specific real term regularization depends on the
shape of the likelihood. We will see this interdependency again in Subsection 11.3 and the application
sections, where we fit the CRR and the AFT model to the data. Due to the large values of the cross
validated shrinkage parameters A, displayed at the left side of Figure 11.4, we observe in general a
stronger regularization of the frequentist lasso (CPL.PenL) and ridge (CPL.PenR) estimates compared

to the Bayesian counterparts.
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Figure 11.2: Regression coefficient estimates ﬁ for two selected coefficients under different regularization
priors in simulation model CRR 1. The right box (CPL.T) shows the estimations when the true predictor
structure is used. The black horizontal lines in the box plots mark the values of the true regression coefficients
Bs = 0,8, =—0.7.

Penalties and shrinkage parameters

If we take a look at Figure 11.3, we see the different amount of the covariate-specific penalization for
the nine regression coefficients expressed in terms of the inverse variance parameters ‘cgjz , j=1...,9.
Shown are the results under the Bayesian lasso, ridge and NMIG prior with the partial (left side) and
full likelihood (right side). With the results from Section 4.5 we keep in mind that in particular under
the NMIG prior the posterior mean estimate of ‘cgjz for smaller effects covers only a small range of

applied penalization and represents rather a lower bound for the penalization.

The penalization of the nonzero effects B,, B,, Bs induced by the Bayesian NMIG prior leads to
much smaller values than those of the Bayesian lasso and Bayesian ridge prior. In contrast to the ridge
prior, the adaptive shrinkage, i. e. the small penalization for nonzero effects and larger penalization of
zero effects, is reflected by both, the Bayesian lasso and the Bayesian NMIG prior, but the NMIG
penalty values for the nonzero effects are very close to zero, so that the resulting regression coefficient

estimates are almost unregularized. The Bayesian ridge penalty is within the range of the Bayesian
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lasso penalty, i. e. smaller effects are less and larger effects are stronger regularized (compared to the
lasso). In the case of the P-spline (or Weibull) baseline hazard, when inference is carried out with the
full likelihood, we observe by trend a smaller penalization across the priors compared to the partial
likelihood approach, with less pronounced differences under the Bayesian NMIG prior.
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Figure 11.3: Estimates of the covariate-specific penalty i’[;jz for the Bayesian lasso (BL), NMIG (BN) and ridge
(BR) prior in simulation model CRR 1. Left side: The partial likelihood (CPL) is used for inference. Right side:
The full likelihood with baseline modeled as P-spline (CFL) is used for inference.

The estimated shrinkage parameters are given in Figure 11.4. In particular for the frequentist lasso
and ridge regularization the shrinkage parameter reflects the amount of penalization that is uniformly
applied to all regression coefficients. The penalty from the frequentist lasso is located within the range
of the covariate-specific penalty values of the Bayesian lasso, while the penalty from the frequentist
ridge clearly exceeds the Bayesian counterpart. The impact of the different amount of penalization
induced under the various methods is directly reflected in the estimates of the regression coefficients
shown in Figure 11.2. Finally, the estimated complexity parameter ® of the Bayesian NMIG prior is
displayed at the right side of Figure 11.4. We obtain very concentrated values around 0.4, and the
weaker regularization of the small effects, observed with the full likelihood approach, increases
(marginally) the model complexity.
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Figure 11.4: Estimated shrinkage parameters under the different regularization methods in simulation model
CRR 1. Left side: Shrinkage parameter A* and A of the frequentist and Bayesian lasso and ridge prior. Right
side: Shrinkage parameter ® of the Bayesian NMIG prior.
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NMIG indicators

The variable selection feature of the Bayesian NMIG prior is highlighted at the left side in Figure
11.5, where the estimated inclusion probabilities, based on posterior relative frequencies of the NMIG
indicator variable value I; =v,, are shown under the partial likelihood and the full likelihood with P-
spline baseline hazard. The inclusion probabilities of the nonzero effects are nearly one, with a very
small standard deviation. For the zero effects the inclusion probabilities are shifted towards zero and
clearly fall below the selection threshold 0.5 of the HS.IND criterion. Although inclusion probabilities
for the zero effects resulting from the full likelihood approach tend to be higher than those from the
partial likelihood, they provide a good resource to select the important covariates in both cases. At the
right side in Figure 11.5 the acceptance rates of the regression coefficients in the CRR model based on
the partial likelihood are shown. In general we achieved high acceptance rates in all simulation
models, also under the full likelihood, and often the rates under the Bayesian NMIG prior stand out
with notable high values.
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Figure 11.5: Left side: Estimated inclusion probabilities based on posterior relative frequencies of the Bayesian
NMIG indicator variable value I; = v, for simulation model CRR 1 based on the partial likelihood (CPL.BN)
and the full likelihood (CFL.BN). The red horizontal line marks the cut off value 0.5 of the hard shrinkage
selection criterion HS.IND. Right side: Acceptance rates of the regression coefficients in the CRR model based
on the partial likelihood.

MSE of the baseline quantities

A view at the MSEs of the estimated cumulative baseline hazards, MSE(/A\O), under the different
model classes shows the high performance of the baseline estimates produced with the full likelihood
approaches, compare Figure 11.6. In particular, the higher performance of the Weibull model
compared to the nonparametric P-spline model is plausible, since the underlying exponential baseline
is a special Weibull baseline with at=1.

Under the partial likelihood approach the Breslow estimators, as a step function, cause a loss in the
performance. This becomes apparent by considering the right side of Figure 11.7, which shows the
estimates of the cumulative baseline hazard for one selected simulation dataset if the Bayesian NMIG
prior is applied. In the time interval [0,1], where most of the observations occur, the P-spline based
estimate (CFL.BN) and the Breslow estimate (CPL.BN) approximate the true cumulative baseline very
well. When time increases, the less observations are available and the deviations get larger, which

results in an increasing MSE, in particular for the Breslow estimate. If we restrict the calculations of



148

11. CRR-TYPE MODELS

MSE(/A\O) to the interval [0,1] that contains most of the observations, the MSEs of the estimated
baselines as well as the MSE of the estimated cumulative baselines are very similar across all models.
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Figure 11.6: Mean squared errors for the estimated cumulative baseline hazard, MSE(AO) , under the different
regularization priors in simulation model CRR 1.

Finally, the left side of Figure 11.7 shows the P-spline estimates of the log-baseline hazard for one

selected simulation dataset under the Bayesian NMIG and unregularized estimation of the linear

effects. Both estimates are very close to each other and in summary we found that the specific

regularization of the linear effects induces only negligible differences in the global shape of the

baseline hazard estimates. Nevertheless, the shrinkage-type and shrinkage-strength of the linear effects

affect the estimate of the baseline hazard function, but this is often hard to detect. For a demonstration

we refer to the Application Section 12.3.2, Figure (12.10), where the impact of the regularization on

the baseline hazard estimate is shown in terms of the Bayesian lasso and NMIG prior with varying

shrinkage parameter.
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Figure 11.7: Estimation of the log-baseline hazard log io(t) (left side) and the cumulative baseline hazard
Ao(t) (right side) for one selected dataset under simulation model CRR 1. Left side: Posterior mean estimate of
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the time axis mark the observed event times (black) and censoring times (gray).
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Results for model CRR 2

This subsection considers the results for the various estimation methods under the different
regularization priors if all nine covariates in the predictor are assigned with small but nonzero effects,
i.e. B;=0.1, j=1..9.

MSE of the linear effects

Figure 11.8 summarizes the MSEs of the estimated regression coefficients of model CRR 2 under the
various applied methods. Best performances in this particular situation are obtained under the
frequentist and Bayesian ridge regularization and under Bayesian lasso regularization, where
especially the partial likelihood approaches (CPL.PenR, CPL.BR, CPL.BL) outperform all remaining
approaches, even the performance of the models utilizing the true predictor structure (CPL, CPL.B,
CFL.B). Especially the Bayesian lasso (CPL.BL) estimates achieve a slightly better performance than
the sparse estimates from frequentist lasso (CPL.PenL), with values that are comparable to those of the
ridge regularization. Also variable selection in terms of the hard shrinkage selection rules causes a
clear loss in the predictive performance. In particular the specific, selection-like regularization
property of the Bayesian NMIG prior, with enhanced shrinkage of smaller regression coefficients, has

negative effects on the MSE and the estimated models have a clearly poor performance.

Classification

The classification results for model CRR 2 are subsumed in Table 11.1, where the average number of
correctly identified nonzero coefficients (B #0,B#0) is recorded. Of course, it is not possible to reach
the optimal value of nine when variable selection is applied, but comparably high values result for the
frequentist lasso and the Bayesian ridge and lasso in combination with the HS.STD criterion. The

identification of the true predictor is out of reach, so all MF values are zero.
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Figure 11.8: Mean squared errors of the regression coefficient estimates, MSE(ﬁ) , under the different
regularization and variable selection methods in simulation model CRR 2.

NMIG indicators and penalties

The increased loss of performance under the Bayesian NMIG prior is further explained, when taking a

look at the left side of Figure 11.9, where the estimated inclusion probabilities based on posterior
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relative frequencies of the NMIG indicator variable value I,=v, are shown. Almost all inclusion

probabilities are of comparable size and tend to be closer to zero than to one, which induces the heavy

penalization of all regression coefficients, compare Figure 11.9 right side.

Under the various regularization priors we found again a difference between the full and partial

likelihood estimates with a trend for less penalization for the full likelihood estimates, which explains
the benefit in the MSE under the Bayesian NMIG prior with the full likelihood. But, the weaker
regularization obviously causes a drawback in the MSE under the Bayesian lasso and ridge prior.
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Figure 11.9: Left side: Estimated inclusion probabilities based on posterior relative frequencies of the Bayesian
NMIG indicator variable value I; = v, for simulation model CRR 2 based on the partial likelihood (CPL.BN)
and the full likelihood (CFL.BN). The red horizontal line marks the cut off value 0.5 of the hard shrinkage
selection criterion HS.IND. Right side: Estimates of the covariate-specific penalty %[gjz for the Bayesian lasso
(CPL.BL), NMIG (CPL.BN) and ridge (CPL.BR) prior in simulation model CRR 2 under the partial likelihood.

Linear effects

According to the penalization results the point estimates for the regression coefficients are more or

less shrunken towards zero and do not reflect the true model, compare Figure 11.10. The stepwise

procedure behaves similar as the Bayesian NMIG prior by producing zero estimates for the small

nonzero effects.
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MSE of the baseline quantities

Finally, the estimation of the baseline and cumulative baseline hazard functions leads to comparable
results as in model CRR 1 and the results are summarized in terms of the MSE for the cumulative
baseline hazard in Figure 11.11. Best results are again obtained with the Weibull model and further
the estimates under the Bayesian NMIG prior (WB.BN) show a marginal better performance than the
remaining Weibull hazard estimates with respect to the median and the box-width.

In summary, it is shown that in the setting of model CRR 2, if all effects have small but nonzero
values, variable selection or selection-like shrinkage causes a loss in the MSE performance. Further, it
seems to be advantageous to keep all effects regularized in the predictor, in combination with a
Bayesian or frequentist ridge or a Bayesian lasso penalty, and that a moderately stronger regularization
can improve the predictive performance. From the practical perspective we obtain similar results,
compare Application Section 14.3, in particular Figure 14.5, where the predictive performance of the
models (measured in terms of the IBS) is shown in dependence on varying values of the shrinkage

parameter.
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Figure 11.11: Mean squared errors for the estimated cumulative baseline hazard, MSE(AO) , under the different
regularization priors in simulation model CRR 2.

Results for model CRR 3

This subsection considers the results for the various estimation methods under the different
regularization priors, if the zero and nonzero effects are distributed to the nine covariates as in model
CRR 1, but assigned with smaller nonzero values, i. e. p=(-0.4,—-0.3,0,0,0,-0.2,0,0,0)".

MSE of the linear effects
Figure 11.12 shows the MSEs achieved for the regression coefficient estimation in the model CRR 3.

Again the MSEs of the maximum partial likelihood estimators with the true predictor structure are

recorded as a benchmark result.

As in the previous model CRR 2, the regularization based approaches achieve lower MSEs than those
without penalization and the best MSEs are again derived with the lasso and ridge penalty in
combination with the partial likelihood. We obtain a similar result also from the Application Section
14, where the predictive performance of the models is assessed in terms of the integrated Brier score.
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In contrast to model CRR 2 the Bayesian NMIG models achieve a better performance with less
pronounced differences to the lasso and ridge type models. But, none of the methods obtain the high
performance of the model utilizing the true predictor structure (CPL.T). Variable selection, as
automatically resulting with the frequentist lasso (CPL.PenL) or artificially enforced with the hard
shrinkage selection rules for the Bayesian estimates provides sparse models with comparable MSE to
the full models including all covariates.
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Figure 11.12: Mean squared errors the regression coefficient estimates § under the different regularization and
variable selection methods in simulation model CRR 3. The right box (CPL.T) shows the MSE(B) for the
maximum partial likelihood estimations when the true predictor structure is used.

Classification

As a further consequence we observe in Table 11.1 a decrease of the correctly classified nonzero
effects for model CRR 3 compared to model CRR 1. The best methods detect only in about 15 of 50
cases the true predictor structure.

NMIG indicators and penalties and linear effects

The improvement in the MSE using the NMIG prior (with resp. to model CRR 2) is revealed by taking
a look at left side of Figure 11.13, where the relative frequencies of the indicator variable value I, =v,
from the Bayesian NMIG model are displayed. The inclusion probabilities for the largest effect with
value B, =—0.4 is nearly to one and for the second largest effect with value , =—0.2 the HS.IND
cut-off value of 0.5 is still frequently passed. Further simulations (not all presented in this work) have
shown that, if the same prior settings as noted above are used for comparable models, effects with
absolute values larger than 0.3 can be separated from the zero effects very well by the cut-off value
0.5.

The Bayesian penalties are displayed at the right side of Figure 11.13. In contrast to the results from
model CRR 1 the Bayesian ridge penalty is here in the upper range of the Bayesian lasso penalty. This
is leading to a stronger regularization of the nonzero effects with the ridge prior compared to the lasso
prior and correspondingly a comparable regularization of the zero effects. Under the Bayesian NMIG
prior the penalty of the nonzero effects is again very small and close to zero so that these effects are

weakly regularized. The amount of penalization on the zero effects is only limited reflected by the
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penalty but exhibits in the associated regression coefficient estimates. Finally, the impact of the
various amounts of penalization on the regression coefficient estimates is displayed in Figure 11.14.
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Figure 11.13: Left side: Estimated inclusion probabilities based on posterior relative frequencies of the Bayesian
NMIG indicator variable value 1; = v, for simulation model CRR 3 based on the partial likelihood (CPL.BN)
and the full likelihood (CFL.BN). The red horizontal line marks the cut off value 0.5 of the hard shrinkage
selection criterion HS.IND. Right side: Estimates of the covariate-specific penalty i’[;jz for the Bayesian lasso
(CPL.BL), NMIG (CPL.BN) and ridge (CPL.BR) prior in simulation model CRR 3 under the partial likelihood.
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Figure 11.14: Regression coefficient estimates fi for four selected coefficients under different regularization
priors in simulation model CRR 3. The right box (CPL.T) shows the estimations when the true predictor
structure is used. The black horizontal lines in the box plots mark the values of the true regression coefficients
B, =—-0.4,B,=-0.3,8, =08, =—0.2 .
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11.2. Low-dimensional nonlinear predictor

Data generation

With the subsequent simulations we explore the changes caused by the inclusion of a nonlinear effect
in the predictor and more complex shapes of baseline hazard. The settings are similar to those in
Hennerfeind et al. (2006). Again we consider R =50 datasets, but now with an increased sample size
of n=1000 life times. Ten covariates are generated independently as random draws from an uniform
U[-3,3] distribution and the lifetimes are generated via the inversion method, compare Bender et al.
(2005), from the model

CRR 4: A(t) =Ao(t)exp(x'P+sin(x,)),
with the sinusoidal nonlinear effect f,(x,,)=sin(x,y,) of covariate X,, and the linear effects

B =(-0.7,-0.7,0,0,0,—0.7,0,0,0)".

To model more flexible baseline hazards, a linear (but non-Weibull) baseline hazard of the form

CRR4.a: Ay (t)=0.25+2t

and a bathtub-shaped baseline hazard

0.75(cos(t)+1.5), t<2m

CRR4b: Ao(t)=
' {0.75(1+1.5), t>2m

are chosen. The latter assumes an initially high baseline risk that decreases after some time and
increases again later on until time t=27 from where the hazard stays constant.

Censoring times are generated in two steps. First, a random proportion of 17% of the generated
observations T, is assigned to be censored. Then, in the second step, the censoring times for this
random selection are drawn from the corresponding uniform distributions U[0,T;]. The difference to
model CRR 1 is the additional inclusion of a nonlinear effect and the more complex shape of the

baseline hazard function.

Function and parameter specification

Methods: Inference is based on the full likelihood and carried out with the regress method as
implemented in Bayesx. The logarithm of the baseline hazard as well as the nonlinear effect of
covariate xo are modeled with 20 cubic B-spline basis functions equipped with a second-order random

walk prior for the associated basis function weights to control the smoothness.

Hyperparameters: The corresponding hyperparameters of both smoothing variances are set to the
default values h,, =h,., =0.001. In the Bayesian lasso and ridge prior for the linear effects the
hyperparameters of the shrinkage parameters are set to h;, =h,; =0.001 and those for the Bayesian
NMIG prior are set as in the section before to v, =1, v, =0.000025, h,,, =5, h,, =25, h;,=1 and
h,,=1.

Estimation: We use an increased number of 30000 iterations with a burnin of 10000 and thin the chain

by 20 which results in an MCMC sample of size 1000. The running times are about 6 minutes.
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Results for model CRR 4.b

We briefly summarize the results for the models CRR 4 by means of model CRR 4.b with bathtub-
shaped baseline due to the similarity of the results to each other and to the results of model CRR 1. We
further restrict ourselves to the Bayesian methods based on the full likelihood with P-spline
approximation for the log-baseline hazard. For the CRR model there are no rR-packages available to
perform frequentist lasso regression in combination with nonlinear effects. Ridge regression in
combination with spline estimation is possible within the function coxph (), but the regularization
parameters have to be specified in advance.

MSE linear effects

In Figure 11.15 the MSEs of the estimated regression coefficients, MSE(ﬁ), under the different
regularization priors for the linear effects are shown together with the MSEs after the hard shrinkage
selection criteria are applied. The MSE pattern is similar to those in Figure 11.1, which shows the
corresponding results for model CRR 1. As before in model CRR 1, the Bayesian NMIG model
performs better than the Bayesian lasso and ridge model regardless of whether hard shrinkage is
applied or not, and the MSEs are close to the model estimated with the true predictor structure
(CFL.BT).
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Figure 11.15: Mean squared errors of the regression coefficient estimates, MSE(ﬁ) , under the different
regularization and variable selection methods in simulation model CRR 4.b. The right box (CFL.BT) shows the
MSE(B) for the estimations when the true predictor structure is used.

Linear effects

The estimates of three selected regression coefficients 3,, Bs and ¢ are presented in Figure 11.16.
As before the boxes are very similar under the different regularization methods, also the zero
coefficient s shows a higher concentration around zero under the Bayesian NMIG prior.
Consequently the hard shrinkage rules applied to the Bayesian NMIG estimates are leading to
comparable results with respect to the MSE since the non-influential covariates are assigned with
effects very close to zero anyway.



156 11. CRR-TYPE MODELS

-0.5
I
-0.5

03
s

o

o

-0.6
|

Beta 2
0.7
Beta 5
-0. 0.0 0.1 .
L L L
odf I |
Beta 6
0.7

o
o
:

-0.8
N
-0.8

-0.9
N
-0.2
N

o ™ (=)
— [Shy —
o — [ z = o — o z = 0 — o z [
e 2 3 3 3 e s A S 3 3 3
— — = — — — i ] -
o L o o L o L o o ™ &) L . ™ .
o (8} (8} o o o o o o o o o

Figure 11.16: Regression coefficient estimates ﬁ for three selected coefficients under different regularization
priors in simulation model CRR 4.b. The right box (CFL.BT) shows the estimations when the true predictor
structure is used. The black horizontal lines in the box plots mark the values of the true regression coefficients
B,=-0.7,Bs=0, B =-0.7.

NMIG indicators and penalties

As shown in Figure 11.17, also the comparison of the regularization-specific penalty and the Bayesian
NMIG indicator variables are leading to similar results as in model CRR 1, when inference is based on
the full likelihood. We see also that the posterior inclusion probabilities reflect the number of true
nonzero and true zero effects very well, so that the HS.IND selection threshold 0.5 yields a sharp
separation of the zero from the nonzero effects.
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Figure 11.17: Left side: Estimated inclusion probabilities based on posterior relative frequencies of the Bayesian
NMIG indicator variable value I; = v, for simulation model CRR 4.b based on the full likelihood (CFL.BN).
The red horizontal line marks the cut off value 0.5 of the hard shrinkage selection criterion HS.IND. Right side:
Estimates of the covariate-specific penalty %[gjz for the Bayesian lasso (CFL.BL), NMIG (CFL.BN) and ridge
(CFL.BR) prior in simulation model CRR 4.b under the full likelihood.

Nonlinear effect and baseline hazard

The MSE results for the estimation of the log-baseline hazard and the nonlinear effect are displayed in
Figure 11.18 and the results are again almost comparable to each other with respect to the different
regularization priors.

The shrinkage methods for the linear effects do not clearly affect the performance of the estimates of
the nonlinear effect. In Figure 11.19 (right panel), the estimated P-spline is visualized together with
the 2.5% and 97.5% empirical quantiles for one selected dataset under the Bayesian NMIG prior as
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representative. Figure 11.19 (left panel) shows the corresponding results for the baseline hazard
estimation with the same selected dataset. We observe that the P-spline approximation of the log-
baseline hazard performs very well in the time region where most of the events occur.
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Figure 11.18: Mean squared errors for the estimated lo-baseline hazard, MSE(log 710) , (left side) and the
nonlinear effect, MSE(f (x,,)) , (right side) under the different regularization priors in simulation model CRR
4.b.
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Figure 11.19: Estimate of the log-baseline hazard log Xo(t) (left side) and the nonlinear effect fl(xm) (right
side) under the Bayesian NMIG regularization in simulation model CRR 4.b for one selected data set. Left side:
Estimation of the log-baseline hazard (solid green line) together with the 95% pointwise credible bands (dashed

green lines). Right side: Estimation of the nonlinear effect (solid green line) together with the 95% pointwise
credible bands (dashed green lines). In both figures the black dashed line marks the true log-baseline hazard and
nonlinear effect and the vertical rugs at the time axis mark the observed event times (black) and censoring times

(gray).

Deviance information criterion

If we take a look at the Deviance Information Criterion (DIC) and the effective number of parameters
(pD), Spiegelhalter et al. (2002), that are given in Figure 11.20, all regularization priors yield a
comparable DIC, but the Bayesian NMIG has the lowest effective number of parameters with value
close to the effective number of parameters of the model with the “true predictor” structure (CFL.BT).

Classification

The frequencies of final models (MF) with the true predictor structure and the number of correctly
classified zero and nonzero coefficients, when we apply the hard shrinkage selection rules, are



158 11. CRR-TYPE MODELS

collected in Table 11.2. Besides the results from the CRR model the results from the AFT model,
described in the following subsection, are displayed. In summary the CFL results of model CRR 4.b
are very close to those of model CRR 1 given in Table 11.1 and the again the highest frequencies of
models with the true predictor structure are obtained under the NMIG prior.
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side) under the different regularization priors for simulation model CRR 4.b. The right box (CFL.BT) shows the
results when the true predictor structure is used.

Model 4.b (CFL) Model 4.b (PGM)
#0 =0 #0 =0

B20 B0 MF O BIo pIo M
BEST 3 6 50 3 6 50
B.HS-STD 3 3.94 4 3 3.90 6
BL.HS-STD 3 4.06 5 3 4.32 10
BR.HS-STD 3 3.96 5 3 3.94 8
BN.HS-STD 3 5.90 45 3 5.92 47
B.HS-CRI 3 5.62 35 3 5.56 35
BL.HS-CRI 3 5.70 37 3 5.72 38
BR.HS-CRI 3 5.58 35 3 5.68 36
BN.HS-CRI 3 5.96 48 3 6.00 50
BN.HS-IND 3 5.82 43 3 5.92 47

Table 11.2: Average number of correctly classified coefficients for the models CRR 4.b after variable selection.
CFL marks the estimates based on the full likelihood of the CRR model and PGM marks the estimates of the
AFT model with PGM error distribution. Especially B #0,B # 0 denotes the case that the estimated effect is
nonzero (B # 0) when the corresponding true effect is nonzero ( # 0), and B =0, =0 denotes the case that

the estimated effect is zero (B =0) when the corresponding true effect is zero (B =0 ). The columns (MF)
display the average frequencies of the final models that recover the true model.

11.3. Miss-specification using the AFT model

To investigate the loss of performance when the AFT model with penalized Gaussian mixture (PGM)
as baseline error distribution is used to fit data generated from a CRR model, we revisit the simulation
scenario of the CRR model 4.b. Due to the parameterization of the AFT model, the estimates of linear
and nonlinear effects are multiplied with —1 to simplify the visual comparison of the results from the
CRR and AFT model.
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Function and parameter specification

Methods: For the Bayesian estimation of the error distribution density we use the function
baftpgm () with update scheme “sliceR0”, where the error density is specified as in the Simulation
Section 10.2 through g, =21 equidistant knots m;, j=1,...,g,, that are placed in the interval
[-4.5,4.5]. The variance of the Gaussian basis functions is uniformly set to s? =0.25?. We use again

the third-order random walk penalty to control the smoothness of the baseline error distribution.

The linear effects of the covariates xi,...,Xo are regularized with the Bayesian lasso, ridge and NMIG
prior. Further, the nonlinear effect of covariate x;, is modeled by a Bayesian P-spline with g, =20
cubic B-spline basis functions and a second-order random walk prior, which matches the setting used

before in Section 11.2.

Hyperparameters: The hyperparameters of the prior associated to the scale parameter 6° are set to
h;s =h,,=0.001, and those of the smoothing variance ‘céa are h,, =1, h,, =0.01. For the
regularization priors of the covariate effects we use the hyperparameter setting used in the previous
Section 11.2 for model CRR 4.b.

Starting values: The starting values are set as in the Simulation Section 10.2, i. e. for the transformed
error weights o ;, j=1,...,21, with exception of the middle weight o, :=0, each starting value is set
to o) =0.01. The location and scale parameter start in ¥’ =1, 6*® =1 and the smoothing variance
is set to 7,” =1. The component labels ” are randomly assigned to one of the g, error basis
densities and the starting values of the linear effects are set to BEO) =0.01, j=1,...,9. For the Bayesian
NMIG regularization the sampler starts with I\ =v,, y;” =0.0416, which is the left mode of the
bimodal NMIG variance parameter prior and ®” =0.5. The shrinkage parameter for the Bayesian

lasso and ridge starts with A® =1. The nonlinear effect starts with o}, =...=as,, =0.01 and

2(0) —
ap

T

Estimation: To fit the models, we use 20000 iterations, where the first 10000 iterations are discarded
as burnin of the Markov chain and the remaining iterations are thinned using a step width of 10. The
resulting 1000 states of the chain build the sample of the posterior distribution and the empirical basis

to compute the estimates. The running times of the sampler are about 32 minutes.
Results

MSE of the linear effects

Figure 11.21 illustrates the MSE of the estimated linear effects under the different regularization
priors together with the resulting MSEs, when the hard shrinkage selection rules are applied to obtain
sparse final models. While the level of the MSEs is generally larger than in the CRR 4.b model, the
results here show a similar MSE structure as those in Figure 11.15 or Figure 11.1.

The application of the hard shrinkage selection rules improves the performance with respect to all
priors with only small improvement for the Bayesian NMIG model that is almost close to the model
with the true predictor PGM.BT. Especially in the AFT model, the Bayesian lasso prior in
combination with the HS.CRI rule performs very well with lower MSEs compared to PGM.BT model

based on the true predictor structure.
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Figure 11.21: Mean squared errors of the regression coefficient estimates, MSE(ﬁ) , under the different
regularization and variable selection methods in simulation model CRR 4.b under the AFT model with PGM
error. The right box (CFL.BT) shows the MSE(P) for the estimations when the true predictor structure is used.

Linear effects

The basic increase in the MSE of the regression coefficients is explained by Figure 11.22 that shows
the box plots of the three selected estimated linear effects B, =—0.7, Bs =0 and B¢ =-0.7 under the
different regularization priors.

We observe larger deviations from the true values of the effects as when the CRR model is used for
inference, compare Figure 11.16, even for the model PGM.BT with the true predictor structure.
Further, the differences caused by the various regularization priors are more pronounced in the AFT
model. The absolute values of the estimates for the regression coefficient 3, are by trend larger than
the true value in the AFT model, and smaller than the true value in the CRR model (Figure 11.16).
This highlights again the dependence of the regularized estimates on both, the prior and the likelihood,
and that identical prior specifications can lead to a different shrinkage behavior if the regression model
is exchanged. In particular, this fact complicates the tuning of the NMIG prior in terms of the absolute
sizes of the regression coefficients that should fall into strong regularized prior area around origin,
compare threshold (ISPy ) in Section 4.3.2.
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Figure 11.22: Regression coefficient estimates |§ for three selected coefficients under different regularization
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of the true regression coefficients §, =-0.7, Bs =0, B, =—0.7.
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NMIG indicators and penalties

Figure 11.23 shows the posterior relative frequencies of the Bayesian NMIG indicator value I;=v,
(left side) and the covariate-specific penalties under the three regularization priors (right side). Similar
to the previous simulation results for model CRR 1 and CRR 4 we obtain a clear separation of the
nonzero effects from the zero effects if the AFT model is used to fit the data.
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Figure 11.23: Left side: Estimated inclusion probabilities based on posterior relative frequencies of the Bayesian
NMIG indicator variable value I; = v, for simulation model CRR 4.b under the AFT model with PGM error.
The red horizontal line marks the cut off value 0.5 of the hard shrinkage selection criterion HS.IND. Right side:
Estimates of the covariate-specific penalty %Ejz for the Bayesian lasso (PGM.BL), NMIG (PGM.BN) and ridge
(PGM.BR) prior in simulation model CRR 4.b under the AFT model with PGM error.

Classification

The classification results, if the three hard shrinkage selection rules are applied, are displayed in Table
11.2, which are in summary comparable to those, if a CRR model is used to fit the data. Again, the
best performances are obtained with the Bayesian NMIG prior in combination with the three hard
shrinkage selection rules and the optimal value is reached with the HS.CRI criterion.

MSE of the nonlinear effect

Further, there is no observable impact on the performance of the estimated nonlinear effect, caused by
the different regularization priors for the linear effects. As already noticed for the linear effects, also
the level of the MSE(ﬁ (X10)) under the AFT model is generally larger than under the CRR model. We
obtain across the unregularized and regularized methods values with lower and upper quartiles in the
range of 0.011 and 0.026 and the median values are in the range 0.018.

Nonlinear effects and baseline quantities

Finally, Figure 11.24 shows for one selected dataset the estimated nonlinear effect (right side) and the
associated estimated baseline error distribution density (left side), each with the 95% pointwise
credible bands.

In summary we have seen, that the miss-specification of the survival model causes a loss of
performance in terms of the MSE of the estimated predictor components. Nevertheless, the

regularization priors for the predictor components together with the hard shrinkage rules are leading,
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under a setting like in model CRR 1 or CRR 4, to comparable results if an AFT or CRR model is used
for fitting.

0.4
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Figure 11.24: Estimate of the baseline error density fo(y) (left side) and the nonlinear effect ﬁ(x 10) (right side)
under the AFT model with Bayesian NMIG regularization in simulation model CRR 4.b for one selected data
set. Left side: Estimation of the baseline error density (solid green line) together with the 95% pointwise credible
bands (dashed green lines). Right side: Estimation of the nonlinear effect (solid green line) together with the
95% pointwise credible bands (dashed green lines). In both figures the black dashed line marks the true log-
baseline hazard and nonlinear effect.

11.4. High-dimensional predictor

Data generation

To investigate the performance of the Bayesian regularization priors in the high-dimensional case,
where the number of covariates exceeds the number of observations, we consider again the CRR
model with exponential baseline hazard A,(t) =1 as used in the first two simulations of this section.
As before, covariates are generated with zero mean, unit variance and corr(xi,j,xi,k)zp“‘k‘ with
p=0.5 as correlation between x; and x,. In the basic setting, survival times T;, i=1,...,n, are

generated from the model

M) =exp(xB),

with the p, =20 regression coefficients

g =(-0.7,-0.7,0,0,-0.5,-0.5,0,0,-0.3,-0.3,0,0,-0.2,-0.2,0,0,-0.1,—0.1,0,0)". (11.1)

The number of covariates is increased to p, = 60,160,200 and the vector of linear effects f in (11.1)
is repeatedly pasted back-to-back until the associated number of linear effects is attained. We fix the
number of observations to n=160 and use again R =50 replicated datasets. Censoring times are
generated as i.i.d. draws from a uniform U[0,6] distribution until 25% censored observations in the

data are achieved.

Function and parameter specification

Methods: Bayesian and frequentist inference is carried out in terms of the regularized partial
likelihood. Bayesian inference is practiced with the function bcoxpl (). As competitor we use the

frequentist lasso and ridge regularization, carried out with the penalized () function, together with
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the frequentist model CPL.T, utilizing coxph (), that includes only the covariates with true nonzero

effects of the predictor.

Estimation: The number of iterations in the Bayesian MCMC sampler is set to 20000 with a burnin of
5000 and a thinning by 15, resulting in 1000 samples from the posterior distribution. We observe, €. g.
for Bayesian lasso, the following average runtimes: 6 minutes (p, =20), 11 minutes (p, =60), 25
minutes (p, =160) and 35 minutes (p, =200) on a system with quad-core CPU (Intel Quad9550,
2.83 GHz).

Hyperparameters: In the lower-dimensional cases, p, =20,60, the previous setting of the prior
hyperparameters is used, i. e., in the Bayesian lasso and ridge prior we set h;; =h,; =0.01 and the
Bayesian NMIG prior is specified with v, =1, v,=0.000025, h,, =5, by, =25,h;,=1 and
h,, =1. The block size is set to p, in each simulation run.

To achieve convergence in the higher-dimensional cases, p, =160,200, the shrinkage priors require a
tuning to control the regularization. If p, =160, we set the hyperparameters of the inverse gamma
prior for the shrinkage parameter to h;; =1000, h,; =10 for the Bayesian lasso and to h;; =440,
h,, =20 for the Bayesian ridge prior. For the Bayesian NMIG complexity parameter ® we specify a
beta prior with h;, =300 and h,,=1200. If p, =200, we set for the Bayesian lasso h;; =6400 and
h,, =40, for the Bayesian ridge h;; =900 and h,; =30, and for the Bayesian NMIG h,, =300 and
b, , =1500.

These hyperparameters are found in several runs with various hyperparameter constellations. E. g.
with the initial hyperparameter setting, the estimated values of the NMIG complexity parameter ®
decrease with increased number of covariates, and the estimates ® are close to zero in the models
with p, 2160 covariates. Consequently, the posterior inclusion probabilities and regression
coefficient estimates are close to zero, too. To counterbalance the strong regularization, we use
hyperparameter constellations h;,,h,, which are leading to a prior mean of H,=0.2 and an
estimated value @ of the same magnitude. With the described hyperparameters we obtain for the
estimates @ at last the following median values: ®@=0.36 (if p, =20), ®@=0.30 (if p,=60),
®=0.20 (if p, =160) and ®=0.18 (if p, =200). Another line of action is used to determine the
hyperparameters of the shrinkage parameter in the Bayesian lasso and ridge prior. With the initial
setting the sample-paths of the shrinkage parameters are very wiggly, but the paths do not diverge. We
select the hyperparameters to obtain shrinkage parameter estimates close to the mean estimate that
results from the initial setting, and stable sample-paths of the parameter estimates. Due to the resulting
high informative prior setting, the estimates of the shrinkage or complexity parameter show a clearly

decreased variability in the replications.

Starting values: In the lower-dimensional cases (p, =20,60) the starting values are set as in
Subsection 11.1. In the higher-dimensional cases (p,=160,200) we use the modified values
®® =0.2 (NMIG prior), A*@ =10 (lasso prior) and A =20 (ridge prior).

Results

MSE of the linear effects

Figure 11.25 shows the resulting mean squared errors of the estimated regression coefficients,

MSE(ﬁ), under the lasso, ridge and NMIG regularization, when the number of covariates included in
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the regression model increases from p, =20 (upper left panel) to p, =200 (lower right panel)
together with the resulting MSEs, when the hard shrinkage selection criteria HS.STD, HS.CRI and
HS.IND are applied to the Bayesian estimates. The MSEs are standardized by division with the

number of covariates in the model.
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Figure 11.25: Mean squared errors of the regression coefficient estimates, MSE(ﬁ) , under the different
regularization and variable selection methods in the CRR model with increasing number of covariates. The right
box (CPL.T) shows the MSE(B) for the maximum partial likelihood estimations when the true predictor
structure is used.

As to be expected, we have an increased loss of MSE performance across the regularization methods,
when the number of effects increases. We also observe that variable selection in the Bayesian models
does not improve the predictive performance, and that the MSEs of the sparse final models CPL.BN-
HS.STD and CPL.BN-HS.IND are almost comparable. The loss in the predictive performance induced
by the variable selection increases as the number of covariates is increased. A similar result is obtained
for the frequentist lasso (CPL.PenL) that always provides sparse models. If we compare the frequentist
lasso and ridge models (CPL.PenR), we find also that the MSE performance of the ridge models,
which include all covariates in the predictor, is almost comparable to those of the lasso models.

In the low-dimensional case (p, =20) the performance of the regularized models is almost
comparable, but we observe a marginal higher performance for the Bayesian models (CPL.BL,
CPL.BR, CPL.BN). Nevertheless, all MSEs are larger than the MSE of the frequentist model with the
true predictor structure (CPL.T). Increasing the number of covariates (p, =60) is leading to clearly
higher performances of the Bayesian models compared to the frequentist lasso and ridge models, and
the MSEs of the Bayesian models are close to the MSE of the CPL.T model. Within the Bayesian
models the lasso model (CPL.BL) has the best performance followed by the ridge (CPL.BR) and
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NMIG model (CPL.BN), and the HS.STD criterion, applied to the Bayesian lasso and ridge models, is
leading to sparse models with only a marginal loss of predictive performance.

While the performance of the Bayesian ridge and lasso models slightly dominates the performance of
the Bayesian NMIG in the lower-dimensional cases (p, = 20,60 ), this result is reversed in the higher-
dimensional cases (p, =160,200 ), where the Bayesian NMIG models achieve the lowest MSE values.
Interestingly, in the high-dimensional case the variable selection based on posterior relative
frequencies of the Bayesian NMIG indicator variable value I,=v, (CPL.BN-HS.IND) is leading to
final models with lower MSE values, compared to the models from the frequentist and Bayesian lasso
and ridge regularization.

NMIG indicators

Figure 11.26 displays for the first 20 covariate effects PB;, j=1,...,20, the estimated inclusion
probabilities given by the posterior relative frequencies of the associated Bayesian NMIG indicator
variable values I; =v,, j=1,...,20, when the dimension p, increases.
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Figure 11.26: Estimated inclusion probabilities based on posterior relative frequencies of the Bayesian NMIG
indicator variable value I; = v, for CRR model with increasing number of covariates. The red horizontal line
marks the cut off value 0.5 of the hard shrinkage selection criterion HS.IND.

In the lower-dimensional cases (p, =20,60 ) the structure of the inclusion probabilities fits well to the
effect sizes, i. e. the inclusion probabilities decrease if the size of the effects decrease and the inclusion
probabilities are small for the zero effects. In particular, in the case p, =20 (upper left panel) we can
clearly separate, in terms of the median inclusion probability, the effects B3 =B, =0.3 from the zero
effects, and the cut off value 0.5 of the HS.IND selection rule separates nonzero effects in the range of
0.2 (Bo,Bio) to 0.3 (Bi3,B14 ). When the number of covariates increases, the inclusion probabilities of
larger effects decrease. Especially when the number of covariates exceeds the number of observations
(px 2160), even the inclusion probabilities of the comparably large effects B, =P, =-0.7 and
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Bs =Ps=—0.5 fall below of our standard selection threshold of 0.5. Possibly an adaption of the
HS.IND-threshold to smaller values improves the predictive performance of the CPL.BN-HS.IND
models. We consider such adaptations in the following Subsection 11.5 and we will find, compare
Figure 11.31, that an adjustment to the threshold 0.2 indeed improves the predictive performance.
This holds also in the higher-dimensional cases, where we can hardly separate the smaller from the

zero effects, but here we force mainly the inclusion of the lager effects B, =3, =—-0.7.

In each of the four simulation models the fraction and size of the nonzero effects in the predictor is
identical, and we would expect a comparable model complexity. But, the decrease of the inclusion
probabilities with increased number of covariates is also reflected in the decreased estimated values of
the complexity parameter ®. In the lower-dimensional cases p, <60 we used an uniform prior for the
parameter ®. The estimated values @ are concentrated at 0.3, if p, =20, and at 0.2, if p, =60. With
the hyperparameter setting in the higher-dimensional cases p, 2160 we set with the beta prior the
focus on complexity parameter values in the range of 0.2, but we observe a further decrease of the
inclusion probabilities with almost comparable values of the complexity parameter estimate. So, in the
low-dimensional case the adjustment of the HS.IND selection threshold value to smaller values than
0.5 may be an ad hoc solution to improve the detection of the true nonzero effects, but in the higher-
dimensional case an adjustment of the prior is required to enhance the detection. We obtain a marginal
improvement by a further adjustment of the hyperparameters h,,, h,, to force a higher model
complexity, but the improvement is limited, since larger values of the complexity parameter ®
increases also the inclusion probability of the smaller effect and blurs the separation of small and zero
effects. E. g., if we fix the value ®=0.5 in the case of p, =200 covariates, we observe for some of
the zero effects inclusion probabilities of the same magnitude as the larger effects and variable
selection on the base of the HS.IND criterion leads to very low rates of correctly classified regression
coefficients (B;t 0,0, B =0, =0). Nevertheless, if performance is measured in terms of the MSE
instead of a high classification rate, we achieve good results with the used prior specifications without

variable selection.

Penalties

The observed trends in the evolution of the NMIG inclusion probabilities are also reflected in

associated penalties T3>

that are displayed in Figure 11.27 (green boxes). We observe an increase in
the penalty values for the larger effects, when the number of covariates increases, and in the resulting
estimates of the larger regression coefficients, Figure 11.29 (green boxes), are stronger shrunken
towards zero. In the two lower-dimensional cases the amount of penalization increases under the
Bayesian lasso and ridge prior only marginally if the number of covariates is increased from p, =60
to p, =160. In the higher-dimensional cases the penalty is mainly determined by our informative

hyperparameter setting and is clearly increased.

Figure 11.28 shows the penalty values A of the frequentist lasso and ridge regularization. We observe
that the penalty values of the frequentist ridge regression tend for each dimension to larger values
compared to the Bayesian counterpart. For the frequentist lasso the penalty varies in the lower-
dimensional cases within the range of the covariate-specific Bayesian lasso penalties, and in the
higher-dimensional cases the frequentist lasso penalty is clearly smaller than the penalties of the

Bayesian counterpart.
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Figure 11.27: Estimates of the covariate-specific penalty %gjz, j=15,10,14,18,20, of six selected covariates
under the different Bayesian regularization priors in the CRR models with increasing number of covariates.
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regularization in the CRR models with increasing number of covariates.

The impact on the shrinkage of the regression coefficient estimates, induced by the different ranges of

the penalty values, is summarized in Figure 11.29 by means of four selected regression coefficients
(B; =-0.7,B,0 =—0.3,B1s =—=0.2,B,, =0) of different sizes.

If we compare the estimates of the largest coefficient 3, in the higher-dimensional cases, we see the

reduced shrinkage of this effect under the Bayesian NMIG prior. In contrast, the shrinkage of the other

effects is more pronounced as under the remaining regularization methods. In summary, the resulting

smaller deviations of the estimates from the true value —0.7 of the larger effects in the predictor are
the main reason for the lower MSE of the NIMG models.
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Figure 11.29: Regression coefficient estimates ﬁ of four selected covariates under different regularization priors
for the CRR models with increasing number of covariates. The left box (CPL.T) shows the estimations when the
true predictor structure is used. The black horizontal lines in the figures mark the values of the true regression
coefficients B, =-0.7,B,, =-0.3,B,, =—-0.2,,, =0.

Classification

When the hard shrinkage selection rules are applied, we observe an impact on the average fraction of
correctly classified nonzero effects, G;tO,B;tO, which decreases clearly under all regularization
priors if the number of covariates increases, compare classification Table 11.3. The highest fractions
of correctly classified nonzero effects are achieved with the frequentist lasso regularization
(CPL.PenL), followed by Bayesian ridge regularization in combination with the standard deviation
based rule (CPL.BR-HS.STD), but the associated sparse final models are in general not the models
with the best performance in terms of the MSE of the regression coefficients. E. g. in the high-
dimensional case p, =200 the frequentist lasso CPL.PenL detects on average twice as much true
nonzero effects than Bayesian NMIG prior in combination with the HS.IND selection rule. But, the
resulting estimated model yields a larger value of the MSE(ﬁ), with a range twice as large as the
range of the final model achieved with CPL.BN-HS.IND.
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. =20 Py =60 py = 160 Py =200

B0 Pp=0 Pp=z0 P=0 P=x0 Pp=0 Pz0 Pp=0

B0 PB=0 Pzx0 P=0 Pzx0 P=0 PpBx0 pP=0

BEST 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
CPL.PenL 0.445 0283 0411 0332 0299 0380 0220 0416
CPLBL-HS.STD 0.393 0.396 0.358 0.406 0.187 0.477 0.120 0.486
CPLBR-HS.STD 0404 0348 0.383 0346 0238 0437 0.196 0.450
CPLBN-HS.STD 0287 0.492 0229 0485 0.142 0473 0.103 0.474
CPLBL-HS.CRI 0284 0490 0232 0.488 0.045 0499 0.011 0.499
CPLBR-HS.CRI 0.301 0.483 0264 0.470 0.068 0.498 0.031  0.499
CPLBN-HS.CRI 0208 0.500 0.162 0.497 0.094 0.490 0.060  0.490
CPLBN-HS.IND 0301 0.489 0241 0484 0.151 0468 0.111 0.470

Table 11.3: Average fraction of correctly classified coefficients for the CRR models after variable selection with
increasing number of covariates. Especially |§ #0,B # 0 denotes the case that the estimated effect is nonzero
([§ # 0) when the corresponding true effect is nonzero ( #0), and |§ =0, =0 denotes the case that the
estimated effect is zero ([§ =0) when the corresponding true effect is zero (=0).

11.5. Adaption of the Bayesian NMIG selection criterion

Finally, some variations of the hard shrinkage selection (HS.IND) criterion defined in Section 4.4 are
considered to improve the predictive performance of the resulting final models. Reconsidered are the
simulation results with the low-dimensional predictor from Subsection 11.1 and those with the high-

dimensional predictor from Subsection 11.4 based on the partial likelihood.

The hyperparameter values v, =0.000025,v, =1,h;,, =5,h,, =25 in the hierarchical representation of
the Bayesian NMIG prior were originally chosen to separate in sparse CRR models (® not too large)
effects in the range from 0.3 to 0.2, in the sense that “large” effects, with values larger than 0.3, are
less regularized and “small” effects, with values smaller than 0.2, are strong regularized. As shown in
the previous simulations, we achieve with the associative HS.IND threshold value 0.5 reasonable
results - in terms of the MSE performance and the misclassification rates - when n >p, and small and
large effects are clearly separable, as e. g. in simulation model CRR 1. But, we have also seen that for
fixed sample size with increasing number of covariates the separation of “small” and “large” effects
gets blurred, so that an adaption of the NMIG prior to the number p, of covariates is indicated.
Further, in cases with “small” or “moderate” effects, as considered in simulation models CRR 2 and
CRR 3, the performance of Bayesian NMIG models also decreases under the basic hyperparameter
constellation. In summary, there are a lot of situations, where we have to consider a modification of
the basic hyperparameter setting in the Bayesian NMIG prior. Nevertheless, in the following we try
several strategies to improve the MSE of the regression coefficients under the HS.IND selection

criterion without changing the hyperparameters.

e At first we adapt (i. e. decrease), after visual inspection of the posterior inclusion probabilities,
the threshold of the HS.IND selection rule to capture also smaller effects (HS.IND.1).

e At second we consider for covariate effects with an inclusion probability larger than 0.5 a
modified estimate, defined as the empirical mean over the MCMC subsample, where the

associated indicators equal v, (HS.IND.2).
¢ At last we combine both strategies HS.IND.1 and HS.IND.2 (HS.IND.3).
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Li and Lin (2010) utilize in the context of the Bayesian elastic net prior the receiver operating
characteristic (ROC) curve to adapt the o -level of the credible interval in the HS.CRI criterion. They
improve the variable selection accuracy by plotting the correct inclusion rate (sensitivity) against the
false inclusion rate (1-specificity) along the range of o in simulations and suggest using o0=0.5 in
practice, because a higher level of o results in a higher sensitivity but a lower specificity with the
elastic net prior. Besides an adjustment of our HS.CRI region this ROC based method provides also
another method to determine the HS.IND threshold, but we did not investigate this topic so far.

Results

Figure 11.30 and Figure 11.31 show the impact of these modifications on the MSE of the estimated
regression coefficients. Figure 11.30 summarizes the results for models CRR 1 to CRR 3 from
Subsection 11.1 and Figure 11.31 those with the higher-dimensional predictor from Subsection 11.4.

As expected, none of the modified selection rules does improve the MSE performance in the
simulation model CRR 1 with clearly separable large and small effects and estimated posterior
inclusion probabilities close to 1 and 0, compare left panel of Figure 11.30. For the remaining
simulations CRR 2 (middle panel) and CRR 3 (right panel), the largest improvements are achieved
with the first modification HS.IND.1, i. e. by adapting the selection threshold to the lower value 0.1.
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Figure 11.30: Mean squared errors of the regression coefficient estimates, MSE(ﬁ) , under the Bayesian NMIG
prior and the associated variable selection methods in the simulation models CRR 1 to CRR 3. The additional
boxes show the results under the modified HS.IND selection rule. HS.IND.1: Selection threshold 0.1. HS.IND.2:
Selection threshold 0.5 and the values of the nonzero regression coefficient estimates are computed using the
subsample where the indicator equals v,. HS.IND.3: Combination of HS.IND.1 and HS.IND.2.

With decreasing value of the HS.IND-threshold the MSE of the resulting final model moves in
direction of the MSE of the model CPL.BN, which includes all covariates in the predictor. In models
CRR 1 and CRR2, where the effects are smaller and not clearly separated, we have seen that the
application of the HS.IND criterion clearly decreases the MSE performance. In such situation it turns
out that adapting the threshold value to the smaller observed posterior inclusion probabilities is a
reasonable strategy to improve the predictive performance. With this line of action it is possible to get
sparse final models with comparable good performance as the CPL.BN model. But, the improvement
of the adaptation of the HS.IND-threshold is always limited by the MSE of the full CPL.BN model,
and in particular in models CRR 2 and CRR 3 we obtain smaller MSE values with other regularization
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methods, like the ridge regularization. In the high-dimensional simulations, compare Figure 11.31, we
obtain a similar result as for models CRR 2 and CRR 3. Due to the decreased estimated inclusion
probabilities, the MSE of the CPLBN-HS.IND model is clearly increased in comparison to the
CPL.BN model, and decreasing the threshold moves the MSE of the CPLBN-HS.IND in direction of
the MSE of the full CPL.BN model.
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Figure 11.31: Mean squared errors of the regression coefficient estimates, MSE(ﬁ) , under the Bayesian NMIG
prior and the associated variable selection methods in the CRR model with increasing number of covariates. The
additional boxes show the results under the modified HS.IND selection rule. HS.IND.1: Selection threshold 0.2.
HS.IND.2: Selection threshold 0.5 and the values of the nonzero regression coefficient estimates are computed
using the subsample where the indicator equals v,. HS.IND.3: Combination of HS.IND.1 and HS.IND.2.

The absolute values of the coefficient estimates, constructed under the HS.IND2 and HS.IND3
modification, are in general larger, since the samples with associated value I;=v, are ignored. Both
modifications do not improve the MSE, and the MSE resulting from the HS.IND2 criterion is clearly
increased in almost all models (not in CRR 1). So, we note that also the shrinkage of the “larger”
effects improves the predictive performance, in particular in the higher-dimensional cases. We refer
again to the application in Section 14 which shows similar results from the practical perspective.

Final remarks

In summary, the Bayesian NMIG prior performs best in sparse models, where covariates have mainly
“small” and “large” effects as in model type CRR 1. In the higher dimensions also the reduced
shrinkage of “larger” effects, if present, causes an improvement of the predictive performance. In
models with “moderate” or “smaller” effect sizes, like model types CRR 2 and CRR 3, the Bayesian
ridge or lasso prior achieve the best performance results. We have seen that in models with various
effect sizes the posterior inclusion probabilities for the covariates, as provided by the NMIG prior,
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reflect very well the importance of the covariates. But, as previously observed with the AFT
simulations, variable selection guided by the induced ranking of the covariates shows in general no
improvement of the predictive performance, even in models of CRR 1 type. We have also seen that
variable selection may improve the predictive performance, but often full models yield comparable or

higher performances as sparse final models.
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PART IV. APPLICATIONS

To illustrate the presented methods in applications, we analyze three survival datasets and compare the
results with those from available frequentist alternatives. We use the Bayesian methods to fit the
extended AFT and CRR models to the data. Inference for the CRR model is based on the partial
likelihood and the full likelihood using a P-spline model for the baseline hazard function. In the AFT
model the error distribution is specified as penalized Gaussian mixture (PGM) or assumed to be
Gaussian. For both survival model types we estimate on the one hand models that assume a strictly
linear impact of the available covariates on the patient’s survival time, utilizing the Bayesian lasso,
ridge and NMIG prior to shrink the effects towards zero. Additionally the hard shrinkage selection
rules of Section 4.4 are applied to the Bayesian approaches, in order to identify sparse final models
containing only the covariates with the strongest influence on the patient’s survival. On the other hand,
to take into account possibly nonlinear shapes of some effects, continuous covariates are modeled by
P-splines, each equipped with a random walk smoothing prior, in combination with the Bayesian
shrinkage priors for the remaining linear effects. Further, this extended setting of the predictor allows
an investigation of the variable selection stability under increasing model complexity.

As in the previous simulation sections Bayesian inference for the extended AFT model is carried out
with the R-function baftpgm (). Correspondingly, we utilize the R-function bcoxpl () for the
extended CRR model, if inference is based on the partial likelihood, and the Bayesx internal
regress method, if inference is based on the full likelihood. The various Bayesian results are
compared to the results from frequentist methods. We use the coxph () function to fit the frequentist
CRR model based on the partial likelihood and the survreg () function to fit an AFT model with
Gaussian error. Nonlinear covariate effects are modeled with the pspline () term within the formula
specification. Both functions are combined with the step () function for variable selection based on
the AIC criterion in a stepwise-backward procedure. The frequentist lasso and ridge regression in the
CRR model with strictly linear predictor is carried out with the function penalized (), Goeman
(2010). Cumulative baseline hazards associated with the partial likelihood estimates are computed via
the Breslow estimator and the cumulative baseline hazards associated with the P-spline estimates of
the baseline hazard are computed with the trapezoidal rule.

12. Primary biliary cirrhosis of the liver

12.1. Data

The presented methods for the extended AFT and CRR model are applied to the primary biliary
cirrhosis data, provided for example in the R-package {survival} or the book-homepage of
Therneau and Grambsch (2000). Primary biliary cirrhosis (PBC) is an autoimmune disease of the liver,
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marked by the slow progressive destruction of the small bile ducts (bile canaliculi) within the liver.
When these ducts are damaged, bile builds up in the liver and damages over time the tissue. This can

lead to scarring, fibrosis and cirrhosis inducing a liver failure and finally to the death of the patient.

In the following we give a short description of the data and refer to Therneau and Grambsch (2000) for
a more detailed presentation and an extended frequentist analysis based on the partial likelihood. In the
CRR regularization context the PBC data is also used in Tibshirani (1997), who compared the variable
selection property of the lasso penalty with a backward-forward stepwise procedure based on p-values.
Further, Zhang and Lu (2007) applied the adaptive lasso on this data, where, in contrast to the lasso
penalty, covariate-specific weights in the penalization term enable the coefficient-specific shrinkage.
In the context of regression spline models, e. g. Sleeper and Harrington (1990) used this data for a
sophisticated analysis, where some covariate effects are assumed to have a nonlinear shape modeled
by B-spline basis functions. Finally, the data is also analyzed in the context of regularized
semiparametric AFT models, in particular Johnson (2008) and Johnson (2009) apply the lasso, the
adaptive lasso and the elastic net penalization to ten preselected covariates.

time number of days between registration and the earlier event of death
or transplantation

status status at endpoint, 0 = censored, 1= transplant or dead

age age in years

alb albumin in gm/dl

alkphos alkaline phosphatase in U/liter

ascites presence of ascites (0 =no, 1 = yes)

bili serum bilirubin in mg/dl

chol serum cholesterol in mg/dl

copper urine copper in ug/day

edtrt presence of edema (0.0 = no edema and no diuretic therapy for

edema; 0.5 = edema present without diuretics, or edema resolved
by diuretics; 1.0 = edema despite diuretic therapy)

hepmeg presence of hepatomegaly, i. e. enlarged liver (0 = no, 1 = yes)

platelet platelets per cubic ml / 1000

protime standardized blood clotting time, prothrombin time in seconds

sex sex (0 = male, 1 = female)

sgot liver enzyme SGOT in U/ml

spiders blood vessel malformations in the skin, presence of spiders (0 = no,
1 =yes)

stage histologic stage of disease

trig triglicerides in mg/dl

trt treatment/drug (1= D-penicillamine, 2 = placebo)

Table 12.1: List of available covariates used in the analysis of the PBC data.

The data has been collected from the Mayo Clinic trial in primary biliary cirrhosis of the liver
conducted between 1974 and 1984. A total of 424 PBC patients, referred to the Mayo Clinic during
that ten-year interval, met eligibility criteria for the randomized placebo controlled trial of the drug D-
penicillamine. The first 312 cases in the data set participated in the randomized trial and contain
largely complete data. The additional 112 cases did not participate in the clinical trial, but consented to
have basic measurements recorded and to be followed for survival. Six of those cases were lost to
follow-up shortly after the diagnosis, so the data considered here consists of the additional 106 cases
as well as the 312 randomized participants. Discarding observations with missing values leaves finally
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n =276 observations with 58.42 % censoring and a mean survival time of 1889 days, ranging from 41
to 4191 days. The covariates used for analysis are listed in Table 12.1. To make our results
comparable to those in Tibshirani (1997), covariates were standardized to have zero mean and unit
variance. We have not applied log-transformations for covariates that have somehow skewed
distributions.

12.2. Analysis

We consider two structures for the predictor. The first is assumed to be strictly linear

N = Yo +Piacites; +P,edtrt; + Bshepmeg; + B,sex; + Psspiders; + Pgstage;
+PB,trt; + Bsage; + Boalb; + Proalkphos; +B,,bili; + B,chol; + Bisplatelet; (12.1)
+B,4protime; + B,ssgot; + Pistrig; + Bi;copper;,

and in the second version, the continuous covariates are modeled nonlinear

N = Yo +Piacites; +B,edtrt; + Bshepmeg; + B,sex; + Psspiders; + Pgstage;
+B,trt; + ) (age;) + f, (alb; ) + f, (alkphos; ) + £, (bili; ) + f5(chol;) (12.2)
+fs (platelet;) + f; (protime; ) + fg (sgot; ) + fo (trig; ) + ;o (copper;),

where f;(-), j=L...,10, are smooth functions of the 10 continuous covariates age, alb, alkphos, bili,
chol, platelet, protime, sgot, trig and copper, which are modeled by cubic P-splines. In the AFT model

yi =M; +O¢;, (12.3)

when the error density is specified as penalized Gaussian mixture, i. e. & ~ Zfﬁlw iN(m;,s}), we use
the same specification of the error as described in the simulation setting of Section 10.1. In summary,
g0 =21 basis functions with equidistant knots m;, placed in the interval [-4.5,4.5], and uniform
variances s? =0.25? are used to model the error density. A random walk prior with difference order
dy =3 controls the smoothness of the PGM. The hyperparameters of the scale parameter 6> are set to
h ;=h,,=0.01 and those of the smoothing variance to h,, =1, h,, =0.01. We utilize the
“sliceR0”, “mcondstep” and “mcondblock” update schemes for the transformed mixture weights.
Due to negligible differences, the presented results are based on the update scheme “sliceR0O” as
representative. As further competitor the error is assumed to be purely Gaussian.

The hyperparameters of the Bayesian lasso and ridge (version B) gamma prior for the shrinkage
parameter A are set, as in Section 11.1, to weakly informative values h;; =h,; =0.01. The
hyperparameters of the Bayesian NMIG variance parameter components T =Iy; are v, =1,
v, =0.000025, h;,, =5 and h,, =25 in combination with h;, =1 and h,, =1 to define a uniform
prior for the complexity parameter ®. For the representation of the nonlinear effects
fj(~):2i;10ck,jBk(-) in predictor (12.2) we use g;=20 cubic B-spline basis functions B() in
combination with second-order random walk priors, d; =2, for the associated basis function weights
;= (0l j,...,0, ;) . The hyperparameters of the inverse gamma prior for the smoothness controlling
variances ‘cé} are setto hy; =h,, =0.001.

The MCMC algorithms for inference in the AFT model ran with 30000 iterations, where 15000
iterations discarded as burnin and a thinning of 15. The running time is about 80 minutes with strictly

linear predictor and 120 minutes with the nonlinear predictor on a system with quad-core CPU (Intel
Quad9550, 2.83 GHz).
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To fit the CRR models

Ai(t) = Ao (t;) exp(M;) , (12.4)

we use with the Bayesian methods 20000 iterations with a burnin of 5000 and thin the chain by 10
which results in an MCMC sample of size 1500 (Running times: CFL: 2 -3 minutes, CPL linear
predictor: 20 minutes, CPL spline predictor: 6 hours!). Since there exists no functional connection
between the estimates resulting from the CRR and the AFT model, with exception of the Weibull
model, we use as default a common specification of the regularization priors in both survival model
classes. Within the Bayesx method regress we use the default values h;;, =h,, =0.001 to specify
the hyperparameters of the Bayesian lasso and ridge prior. The logarithm of the baseline hazard
fo(-) =logAy() is modeled, as the nonlinear effects f;(-), by cubic P-splines placed at g; =20 knots
and the basis function weights are equipped with second-order random walk priors to control the
smoothness. The associated hyperparameters of the smoothing variances are also set to the default
values h,, =h,. =0.001, j=0,1,..,10. Due to inferential problems arising with the estimation
procedure regress under the Bayesian NMIG prior in combination with predictor (12.2), the
covariate age is modeled linearly in this specific case.

To model the nonlinear covariate effects with the frequentist procedures, we use the pspline () term
within the formula of the R-functions survreg () and coxph (). The roughness penalty of the P-
splines is set to the value theta=0. 8. In the subsequent sections the main results of the analysis are

presented. The abbreviations that denote the models are listed in the Reference Section.

12.3. Results

Results for the linear predictor

Linear effects

We first summarize the results obtained under the purely linear structure of the predictor (12.1). A
selection of the point estimates in the CRR model together with the corresponding standard deviations
for the regression coefficients are displayed in the upper plot of Figure 12.1. The lower plot shows
results from the Bayesian methods after applying the hard shrinkage rules HS.STD and HS.IND to
select covariates for the final model together with the results from the stepwise procedure and the
frequentist lasso. The marked standard deviations for the frequentist lasso are obtained by the
approximate method described in Tibshirani (1997), and for the regression coefficients not included in

the final model the standard deviations are set to zero.

All presented methods are leading to final models that include the five covariates age, alb, bili, stage
and copper and eliminate hepmeg, platelet, spiders, trt and trig. The covariate ascites is only chosen
by the frequentist lasso (CPL.PenL), but the effect of ascites is generally very small. Obviously, as
designed, the Bayesian NMIG method (CPL.BN, CFL.BN) shrinks small effects to a larger extent than
the lasso- or ridge-based methods, so that most of the remaining covariates are excluded, if variable
selection is based on the HS.IND criterion. The HS.IND criterion uses the model inclusion probability
of each covariate estimated by posterior relative frequency of the NMIG indicator variables I;=v,,

compare Figure 12.3. In contrast to the results with the full likelihood, the inclusion probability of the
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covariate edrt under the partial likelihood falls just below the HS.IND selection threshold of 0.5 and
does not appear in the resulting final model.
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Figure 12.1: Estimated regression coefficients without (upper panel) and with variable selection (lower panel) in
the CRR model. The points mark the estimates of the regression coefficients and the solid lines display the
corresponding standard errors. For the Bayesian procedures the points mark the mean, the solid lines display the
standard errors and the additional dashes mark the median and the 95 % empirical quantiles of the marginal
posterior distribution of the regression coefficients.

Figure 12.2 shows the corresponding results from the AFT model with Gaussian and PGM error. The
unpenalized estimates show by trend smaller absolute values than those under the CRR assumption
with exception of the covariates ascites and spiders. If we consider the estimates under the NMIG
prior, we see, e. g., that the effects of the covariates bili and edtrt are stronger regularized as the effects
of the covariates protime and sgot, while the unregularized estimates of these covariates are almost of
comparable size. In the CRR models we observe a similar behavior for the covariates age and bili or
edtrt and copper, where respectively also the covariates age and edtrt are stronger regularized. We
note again that the “effective” regularization of the linear effects depends also on the used survival

regression model and the modeling of the components within the specific survival model.

Nevertheless, we find for eleven covariates in both survival model classes comparable results with
respect to the covariates included in the final models after variable selection. Some differences occur
for the three covariates alkphos (CPL.Step), chol (CFL.BL-HS.STD) and edtrt (CPL.BN-HS.IND) and
for the remaining three covariates alb, ascites and spiders we observe differences more frequently.
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Figure 12.2: Estimated regression coefficients without (upper panel) and with variable selection (lower panel) in
the AFT model. The points mark the estimates of the regression coefficients and the lines display the
corresponding standard errors. For the Bayesian procedures the points mark the mean, the solid lines display the
standard errors and the additional dashes mark the median and 95 % empirical quantiles of the marginal posterior
distribution of the regression coefficients.

NMIG indicators

The posterior relative frequencies of the Bayesian NMIG indicator variables I; = v, are summarized in
Figure 12.3, for the CRR model under the full and partial likelihood, and in Figure 12.4, for the AFT
model with Gaussian and PGM error. The crosses at the bottom of the bars mark the covariates from
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Figure 12.3: Estimated inclusion probabilities based on posterior relative frequencies of the Bayesian NMIG
indicator variable value I; =v, in the CRR model based on the full likelihood (left side) and the partial
likelihood (right side). The crosses at the bottom of the bars mark the covariates from the corresponding

frequentist models, which are significant with respect to the p-value 0.05 (cyan) and which are selected by the
frequentist stepwise variable selection procedure (dark blue).
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Figure 12.4: Estimated inclusion probabilities based on posterior relative frequencies of the Bayesian NMIG
indicator variable value I; = v, in the AFT model with Gaussian error distribution (left side) and PGM error
distribution (right side). The crosses at the bottom of the bars mark the covariates from the corresponding
frequentist models, which are significant with respect to the p-value 0.05 (cyan) and which are selected by the
frequentist stepwise variable selection procedure (dark blue).

the corresponding frequentist models, which are significant with respect to the p-value 0.05 (cyan) and
which are selected by the frequentist stepwise variable selection procedure (dark blue). With exception
of the covariates alb in the AFT models and edtrt in the CPL model, almost all covariates are across
the various models commonly selected resp. deselected by the HS.IND criterion. Nevertheless, we see

that the impact of the covariates is more or less pronounced across the survival model classes, but also
varies within the survival model class with the model complexity.

Baseline quantities

The estimated log-baseline hazards, logA,(t)+7,, obtained from the full likelihood approach in the
CRR model with the lasso and NMIG prior, are depicted at the left side of Figure 12.5. The
corresponding cumulative baseline hazards, obtained by applying the trapezoidal rule for integration,
are shown at the right side of Figure 12.5 together with the Breslow estimate from the partial
likelihood based methods. We observe a close conformity of the estimates across the frequentist and
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Figure 12.5: Estimation of the log-baseline hazard and cumulative baseline hazard in the CRR model. Left side:
Posterior mean estimate of the log-baseline hazard for the Bayesian NMIG and Bayesian lasso regularization
based on the full likelihood (solid lines) with 95% pointwise credible bands (dashed lines). Right side:
Cumulative baseline hazards obtained as Breslow estimate for the partial likelihood methods and via the
trapezoidal rule for the full likelihood methods based on the posterior mean of the involved regression
coefficients.
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Figure 12.6: Estimation of the baseline error distribution in the AFT model. Left side: Posterior mean estimate
of the density (solid lines) when the error is modeled as PGM with 95% pointwise credible bands (dashed lines).
Right side: Posterior mean estimate of the density (solid lines) when the error is modeled by a Gaussian
distribution with 95 % pointwise credible bands (dashed lines).

Bayesian approaches and across the different types of regularization priors. The same holds for the
estimated baseline error densities (Y, =7, +0¢€,) in the AFT model, as shown in Figure 12.6, when a
PGM error (left side) or Gaussian error (right side) is assumed. The baseline hazard estimation
indicates that the risk to die increases monotonically, closely linear, over the years. In the AFT model
there is no eye catching asymmetry for the density estimation observable and the Gaussian error seems

to be a good proxy to the baseline error distribution.

Path results for the linear predictor

We compute the paths of the parameter estimates as function of the shrinkage parameter to investigate
the evolution of the estimates if the shrinkage parameter is varied. The frequentist lasso estimation
procedures provide the regression coefficient paths as add-on to the implemented functions. In the
Bayesian procedures the parameter paths are obtained by suppressing the update of the shrinkage
parameter in the MCMC process and choosing the starting value at the desired grid points in the range
of the penalty-specific shrinkage parameter. The frequentist and Bayesian lasso paths are plotted as a
function of the (standardized) complexity parameter t, with t:=)| ﬁj 17y BLML le [0,1], where ﬁj,ML
denote the unconstrained maximum likelihood estimates and Bj correspond to the regularized lasso
estimates with )| Bj le [0,>]] [ASJ«YML [] . For the Bayesian NMIG prior we show the results on grid points
in the range e [0.1,1], because for grid points @< 0.1 we observe very wiggly paths associated to
the covariates with larger effects, in particular for the indicator variables. As outlined in Section 4.3.2
larger regression coefficients can have high sampling probabilities for the sate I;=v,, even if ® is
small, so the paths become unstable until ®=0. This is also confirmed by the paths of the variance
parameters (not shown), where the variance parameters of the larger regression coefficients obtain

large values nearly over the whole range of the complexity parameter.

Paths of the regression coefficients

The paths of four selected regression coefficients from the Bayesian lasso regularized CRR and AFT
models are plotted in Figure 12.7. In addition, the associated paths of the pointwise empirical standard
deviation (dashed lines) and the pointwise empirical 95% credible region (dotted lines) are shown,

which are used to practice variable selection in terms of the HS.STD and HS.CRI criterion. The
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asterisks on the coefficient paths indicate the grid point t at which the estimates are computed and the
black dotted vertical line marks the estimated constraint parameter t (from the full Bayesian
approach). From the top to the bottom of the figure the paths are computed with the CRR model based
on the full and partial likelihood and the AFT model with PGM and Gaussian error. Figure 12.8
shows the corresponding results under the Bayesian NMIG prior. In both figures the coefficient paths
of the frequentist lasso (CPL.PenL) are marked as competitor (black dashed lines).
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Figure 12.7: Selected coefficient estimates from the Bayesian lasso regularization in the CRR (first two rows)
and AFT model (last two rows) as a function of the complexity parameter t. In the first row the estimates are
based on the full likelihood and in the second row on the partial likelihood. In the third row the error is modeled
by a PGM and in the last row the error is Gaussian. The vertical dashed line marks the corresponding coefficient
estimates at the particular (full) Bayesian estimate of the constraint parameter. The gray dotted and dashed lines
mark the evolution of the empirical 95% quantiles and standard deviation of the associated marginal posterior
distribution. The black dashed paths mark coefficient paths of the penalized lasso procedure.
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Figure 12.8: Selected coefficient estimates from the Bayesian NMIG regularization in the CRR (first two rows)
and AFT model (last two rows) as a function of the complexity parameter t. In the first row the estimates are
based on the full likelihood and in the second row on the partial likelihood. In the third row the error is modeled
by a PGM and in the last row the error is Gaussian. The vertical dotted line marks the corresponding coefficient
estimates at the particular (full) Bayesian estimate of the constraint parameter. The gray dotted and dashed lines
mark the evolution of the empirical 95% quantiles and standard deviation of the associated marginal posterior
distribution. The black dashed paths mark coefficient paths of the penalized lasso procedure.

In the CRR model the Bayesian and frequentist lasso paths show no strong differences. Due to the
sampling based MCMC inference, the Bayesian paths are not piecewise exactly equal to zero as the
frequentist lasso paths, where inference and variable selection is carried out simultaneously. For larger
regression coefficients the paths of the standard deviation or the credible interval, computed with the
partial likelihood (CPL.BL), often cross zero in the region where the frequentist lasso path is set to
zero. We remember that e. g. the covariate platelet is always excluded from all final models. If we
consider the development of the estimator for the covariate platelet, there is in all models strong
evidence that this covariate has a negligible effect, because the margins of the HS.STD interval always
include zero and the size of the effect marginally varies.
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Further, the figures highlight the different shrinkage properties of the Bayesian lasso and NMIG prior.
The shrinkage of larger regression coefficients, like those of age or stage, is suppressed by the
bimodal structure of the NMIG prior that leaves these larger effects over a wide range of the
complexity parameter virtually unpenalized. In comparison to the Bayesian NMIG paths the Bayesian

lasso paths indicate a more uniform shrinkage of small and large effects.

Paths of the NMIG posterior inclusion probabilities

The left panel of Figure 12.9 shows the posterior NMIG inclusion probabilities of the four selected
covariates age, alb, platelet and stage as a function of the complexity parameter ®. In the right panel
we see as competitor the estimated inclusion probabilities from the full Bayesian models, where the
shrinkage parameter is jointly estimated, compare Figure 12.3 and Figure 12.4. The vertical lines in

the left panel mark the associated estimated value @ from the MCMC sample.

For some of the covariates we observe a similar evolution along increasing values of ® as for the
estimated regression coefficients. The inclusion probabilities of the covariates age and stage increase
rapidly to relative high values exceeding the HS.IND selection threshold of 0.5. In contrast, the
inclusion probability of the covariate platelet only slightly changes over a wide range of the
complexity parameter and clearly increases only in the last third of the complexity parameter range.
Other covariates, like alb, show a different devolution in the CRR or AFT survival model class. In the
CRR model the inclusion probabilities of alb, obtained with the full and partial likelihood, quickly
increase, but in the AFT model with PGM and Gaussian error they stay longer on a lower level below
the threshold of 0.5. The inclusion probability values from the paths at the estimate @ are almost
comparable with the inclusion probabilities shown in the right panel. Finally, we observe that the paths
across the models and methods differ in the unsteadiness, where the wiggliest results are obtained
under the AFT model with PGM error, indicating a higher uncertainty in the classification to the

component I; =v, and I;=v,.

Paths of the baseline quantities

The following three figures show the impact on the baseline quantities if the shrinkage parameters are
varied. We display the impact under the Bayesian lasso and NMIG prior in the CRR model with P-
spline baseline hazard, Figure 12.10, the AFT model with PGM error, Figure 12.11, or Gaussian
error, Figure 12.12.

In contrast to the Bayesian lasso models (left sides of the figures), there are no rigorous changes in the
log-baseline hazard or baseline error density estimates observable under the Bayesian NMIG models
(right sides of the figures), if the complexity parameter is varied. Under the lasso prior the log-baseline
hazard estimates have a close to linear increase for large values of the complexity parameter t that
indicate a weak regularization. With decreasing complexity parameter t—0, i. e. enhanced
regularization, we obtain smaller slopes of the log-baseline hazard in the first 2000 days, and the slope

in this interval gets close to zero, if t =0, see Figure 12.10.

With decreasing complexity parameter t —0 we observe also the progress of the baseline error
density from a symmetric to a heavy skewed shape in the AFT model with PGM error, compare
Figure 12.11, and with the Gaussian error the density gets more mass in the tails, compare Figure
12.12.
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Figure 12.9: Selected posterior relative frequencies of the Bayesian NMIG indicator variables as a function of
the complexity parameter o (left column) and relative posterior frequencies of the Bayesian NMIG indicator
variable (right column) under the full Bayesian approach in the CRR and AFT model. The vertical dashed line in
the figures of the first column marks the corresponding coefficient estimates at the (full) Bayesian estimate of the
complexity parameter. In the first row the estimates are based on the full likelihood and in the second row on the
partial likelihood. In the third row the error is modeled by a PGM and in the last row it is Gaussian.
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Figure 12.10: Log-baseline hazard estimation for the different values of the shrinkage parameters in the CRR
model based on the full likelihood. Posterior mean estimations resulting from the paths of the Bayesian lasso
(right side) and the Bayesian NMIG (left side) regularization.
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Figure 12.11: Baseline error density estimation for the different values of the shrinkage parameters in the AFT
model with Gaussian error. Posterior mean estimations resulting from the paths of the Bayesian lasso (right side)
and the Bayesian NMIG (left side) regularization.
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Figure 12.12: Baseline error density estimation for the different values of the shrinkage parameters in the AFT
model with PGM error. Posterior mean estimations resulting from the paths of the Bayesian lasso (right side) and
the Bayesian NMIG (left side) regularization.

Selected samples for the linear predictor

To highlight again the different regularization structures of the Bayesian lasso and NMIG priors, we
consider the generated MCMC samples. The following four figures show the samples of four different
covariate effects under the Bayesian lasso and NMIG prior for different fixed values of the complexity
parameter t resp. ®. We use the results from the CRR model with P-spline model for the log-baseline
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Figure 12.13: MCMC sample of the regression coefficient of covariate age and the corresponding variance
parameter from the CRR model based on the full likelihood under the Bayesian lasso prior. Left column: Trace
plot of the sample of the regression coefficient Bage for the fixed values t = 0.10, 0.51, 0.70, 0.98. Middle
column: Corresponding kernel density estimates of the marginal posterior density based on Gaussian kernels.
Right column: Trace plot of the samples of the related variance parameter T2, . The red plots at the border of the
first and second column display summary statistics of the marginal posterior distribution. The red points mark
the mean, the red solid lines display the standard errors and the red dashes mark the median and 95 % empirical
quantiles.
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Figure 12.14: MCMC sample of the regression coefficient of covariate age and the corresponding variance
parameter from the CRR model based on the full likelihood under the Bayesian NMIG prior. Left column: Trace
plot of the sample of the regression coefficient B, for the fixed values ® = 0.1, 0.30, 0.70, 0.95. Middle
column: Corresponding kernel density estimates of the marginal posterior density based on Gaussian kernels.
Right column: Trace plot of the samples of the related variance parameter ’Cazge. The red plots at the border of the
first and second column display summary statistics of the marginal posterior distribution. The red points mark
the mean, the red solid lines display the standard errors and the red dashes mark the median and 95 % empirical
quantiles. In the left and right column the green and blue points mark the sampled values, if the sample value of
the corresponding indicator equals v, or v,. The posterior mean estimate of the Bayesian NMIG indicator is
given at the bottom right side of the figures in the first column.
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Figure 12.15: MCMC sample of the regression coefficient of covariate sgot and the corresponding variance
parameter from the CRR model based on the full likelihood under the Bayesian NMIG prior. Left column: Trace
plot of the sample of the regression coefficient Py for the fixed values o= 0.05, 0.30, 0.70, 0.95. Middle
column: Corresponding kernel density estimates of the marginal posterior density based on Gaussian kernels.
Right column: Trace plot of the samples of the related variance parameter T2 . The red plots at the border of the
first and second column display summary statistics of the marginal posterior distribution. The red points mark
the mean, the red solid lines display the standard errors and the red dashes mark the median and 95 % empirical
quantiles. In the left and right column the green and blue points mark the sampled values when the sample value
of the corresponding indicator equals v, or v,. The posterior mean estimate of the Bayesian NMIG indicator is
given at the bottom right side of the figures in the first column.
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Figure 12.16: MCMC sample of the regression coefficient of covariate edtrt and the corresponding variance
parameter from the CRR model based on the full likelihood under the Bayesian NMIG prior. Left column: Trace
plot of the sample of the regression coefficient By, for the fixed values ® = 0.1, 0.30, 0.70, 0.95. Middle
column: Corresponding kernel density estimates of the marginal posterior density based on Gaussian kernels.
Right column: Trace plot of the samples of the related variance parameter T2, . The red plots at the border of
the first and second column display summary statistics of the marginal posterior distribution. The red points
mark the mean, the red solid lines display the standard errors and the red dashes mark the median and 95 %
empirical quantiles. In the left and right column the green and blue points mark the sampled values when the
sample value of the corresponding indicator equals v, or v,. The posterior mean estimate of the Bayesian NMIG
indicator is given at the bottom right side of the figures in the first column.
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Figure 12.17: MCMC sample of the regression coefficient of covariate platelet and the corresponding variance
parameter from the CRR model based on the full likelihood under the Bayesian NMIG prior. Left column: Trace
plot of the sample of the regression coefficient By, for the fixed values o= 0.1, 0.30, 0.70, 0.95. Middle
column: Corresponding kernel density estimates of the marginal posterior density based on Gaussian kernels.
Right column: Trace plot of the samples of the related variance parameter tglmem . The red plots at the border of
the first and second column display summary statistics of the marginal posterior distribution. The red points
mark the mean, the red solid lines display the standard errors and the red dashes mark the median and 95 %
empirical quantiles. In the left and right column the green and blue points mark the sampled values when the
sample value of the corresponding indicator equals v, or v,. The posterior mean estimate of the Bayesian NMIG
indicator is given at the bottom right side of the figures in the first column.
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hazard. From the top to the bottom of the figures the complexity parameter is increased, i. e. the
regularization is reduced. From the left to the right we see the trace plot of the sample of the regression
coefficient (first column), the corresponding marginal posterior density (middle column, computed as
kernel density estimate with Gaussian kernel) and the trace plot of the variance parameter sample,
which controls the covariate-specific penalization. At the margins of the plots in the first and second
column the empirical posterior mean, median and 95% quantiles of the marginal distribution of the

regression coefficients are displayed.

In particular Figure 12.13 shows the associated samples for the covariate age under the Bayesian lasso
prior, if the complexity parameter t increases from t=0.1 to t=0.98. We clearly observe that the
sampled values of the variance Té] increase with increasing values t, inducing a decrease in the
covariate-specific penalty t;*. The impact of the decrease in the penalty is reflected in the sampled
values of the regression coefficients and in the associated density estimate, which both become less

concentrated around zero.

Figure 12.14 to Figure 12.17 show the samples of the covariates age, sgot, edtrt and platelet under
the Bayesian NMIG prior, if the complexity parameter ® increases from ®=0.1 to ®=0.95. The
green and blue dots in the samples mark the associated values I;=v, and I;=v, of the indicator
variable and the posterior relative frequency of the indicator value I; =v; are annotated at the right
bottom (mean(I=v,)). With increasing values of the complexity parameter ® we observe an increase
of the number of sampled values I; =v, associated with an increase of the sampled variances ‘téj . The
resulting global reduction of penalization is reflected in the samples of the regression coefficients and
the corresponding density estimate of the marginal posterior which both are shifted away from zero.
Nevertheless, the marginal posteriors of the regression coefficients (and variance parameters) show a
more or less pronounced bimodality in each figure, which depends on the effect size and the
frequencies of the indicators 1= v, . In particular small or large effects (as defined by the setting of the
NMIG hyperparameters), like that of platelet and age, are strongly or weakly regularized over a broad
range, as also shown in the coefficient paths, so that a notable bimodality of the effect distribution
mainly occurs at the right or left margins of the complexity parameter. In general, the bimodality of
the marginal posteriors derogates somehow the empirical mean as appropriate summary statistic in
cases when effects of moderate size are present. But, as seen in the Simulation Section 11.5, the
associative estimation strategy, using only the subsamples belonging to the nearly unregularized
component with I=v, for effects exceeding a given frequency threshold, has shown no improvement

in the predictive performance.

Results for the nonlinear predictor

We finally consider the results achieved for the extended AFT and CRR models given in (12.3) and
(12.4), when the predictor (12.2) with nonlinear effects of the continuous covariates is assumed. In
summary, we found no strong evidence for the nonlinear form of any effect under both survival

models, if the estimates are considered in the regions where most of the observations occur.

Nonlinear effects

Figure 12.18 displays the estimated nonlinear effect of the covariate bili as representative. Shown are

the results obtained under the Bayesian NMIG and Bayesian lasso prior for the linear effects together
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with the results from the stepwise variable selection. The left side of Figure 12.18 shows the results
for the estimated CRR model and the right side the corresponding results for the AFT model.

The shape of the estimated functions is similar at both sides of the figure, but under the Bayesian AFT
model the pointwise credible bands, indicating the uncertainty, are more concentrated in the regions
with most of the observations than those of the Bayesian CRR model and the slope is smaller. The

shift in the Bayesian CFL estimates is due to the internal centering of the spline estimates.

— CFLBN — PGMBN
—— CPL.Step — AFT.Step

- f(bili)
0

f(bili)
0

bili bili

Figure 12.18: Estimation of the nonlinear effect of the covariate bili when all continuous covariates are modeled
as P-splines in the CRR model (left side) and the AFT model (right side). Both figures display the posterior
mean estimates of the nonlinear effect (solid lines) with 95% pointwise credible bands (dashed lines) for the

Bayesian lasso and Bayesian NMIG regularization together with the corresponding estimates from the stepwise
selection of the frequentist CRR and AFT model with Gaussian error.

Linear effects

The estimates of the remaining seven linearly modeled covariate effects are displayed in Figure 12.19,
where the upper panel shows the estimates from the CRR model and the lower panel those from the
AFT model. The impact of the nonlinear modeling on the linear effects can be viewed by considering
the frequentist estimates, e. g. in terms of the covariates ascifes in the CRR model or stage in the AFT
model, that differ clearly in size compared to the estimates under strictly linear predictor.
Consequently, also the amount of shrinkage is prior-specific adapted and varies. In the CRR model
with strictly linear predictor the covariate ascites is often excluded from the final models if variable
selection (HS.STD, Step) is applied which is still not the case with the nonlinear predictor. The reverse
results in the AFT model, e. g. for the covariate edtrt. Finally, the effects of the covariates hepmeg and
trt are still close to zero as in the CRR and AFT models with strictly linear predictor. In summary, the

nonlinear modeling has a clear impact on the estimates of the linear effects and the variable selection.

NMIG indicators

In terms of the Bayesian NMIG prior this variation is reflected in the associated posterior relative
frequencies of the Bayesian NMIG indicator variable I;=v,. Figure 12.20 displays the resulting
posterior inclusion probabilities in the CRR model with P-spline hazard (left side) and the AFT model
with PGM error (right side). In comparison to the previous models with strictly linear predictor, we
observe changes in the inclusion probabilities of covariates stage and edtrt. Only the covariate stage
exceeds in the CRR model the frequency threshold 0.5 used in the HS.IND selection rule. This
covariate is also the only one marked as significant in the frequentist CRR model. The previously
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higher inclusion probability of the covariate edtrt decreases here and falls below the threshold 0.5.
Under the AFT model none of both, previously high, inclusion probabilities of stage and edtrt exceed
further the threshold.
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Figure 12.19: Estimated coefficients in the CRR (upper panel) and AFT model (lower panel) when all
continuous covariates are modeled as P-splines. The points mark the estimates of the regression coefficients and
the lines display the corresponding standard errors. For the Bayesian procedures the points mark the mean, the
solid lines display the standard errors and the additional dashes mark the median and 95 % empirical quantiles of
the marginal posterior distribution of the regression coefficients.
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Figure 12.20: Estimated inclusion probabilities based on posterior relative frequencies of the Bayesian NMIG
indicator variable value I; = v, in the CRR model with P-spline hazard (left side) and the AFT model with PGM
error (right side) when continuous covariates are modeled as P-splines. The crosses in the bars mark the
covariates from the corresponding frequentist models, which are significant with respect to the p-value 0.05
(cyan) and which are selected by the frequentist stepwise variable selection procedure (dark blue). The red
horizontal line marks the cut off value 0.5 of the hard shrinkage selection criterion HS.IND.
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Baseline quantities

Finally, Figure 12.21 shows the estimates of the log-baseline hazard in the CRR model (left side) and
the estimates of the baseline error densities in the AFT model (right side). The difference in the
vertical location of the log-baseline hazard under the Bayesian NMIG prior results, because the
covariate age is modeled linear in this specific case. The corresponding estimate under the Bayesian
ridge prior, with nonlinear modeled age, closely coincides with the displayed estimate of the log-
hazard function under the Bayesian lasso prior. The estimated shape of the log-baseline hazard shows
no obvious deviations to the shape when all covariate effects are assumed to be linear and the same
holds under the Bayesian versions of AFT model. The observed difference in the location to the
frequentist approach is due to the internal centering of the spline estimates.
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Figure 12.21: Estimation of the log-baseline hazard in the CRR model P-spline hazard (left side) and estimation
of the baseline error density in the AFT model with PGM error (right side) when continuous covariates are
modeled as P-splines. Left side: Posterior mean estimate of the log-baseline hazard function (solid lines) with
95% pointwise credible bands (dashed lines) for the Bayesian lasso and Bayesian NMIG regularization. Right
side: Posterior mean estimate of the baseline error density together (solid lines) with 95% pointwise credible
bands (dashed lines) for the Bayesian lasso and Bayesian NMIG regularization together with the frequentist
estimates of the AFT model with Gaussian error distribution and the corresponding result after stepwise
selection.

Final remark

In summary, the nonlinear modeling of continuous covariates has shown an impact of the remaining
linear effect estimates. Although none of the estimated nonlinear effects show a clear nonlinearity, the
size of some estimated linear covariate effects clearly changes compared to the models with strictly
linear predictor. The differences under the various regularization models are induced mainly by the
diversification of the linear effects, as shown in terms of the unregularized estimates. The shape of the
Bayesian estimates of the baseline quantities seems to be only marginally affected by the increased
model complexity introduced with the nonlinear modeling of some covariate effects. Sleeper and
Harrington (1990) found evidence for the nonlinear form of the covariate age, but they use a reduced
set of covariates in combination with the log-transformation of the continuous covariates alkphos and
bili in order to reduce the influence of outliers on the spline fits.
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13. Adult myeloid leukemia in northwest England

13.1. Data

The data set used in this section contains information of adult myeloid leukemia patients in northwest
England who have been diagnosed between 1982 and 1998. Previous analyses can be found in
Henderson et al. (2002), where the detection of spatial variation in survival times is based on strictly
linear covariate effects, while more flexible forms are considered in Kneib and Fahrmeir (2007) in the
context of geoadditive hazard regression models. The leukemia data was originally provided by
Leonhard Held (University of Zurich, UZH).

In the data we have n =1043 observations, where 15.8 % of the observations are right censored. The
mean survival time of a patient is 533 days with median 185 days and a range from 1 to 4977 days.
Table 12.1 displays the available variables of the dataset. For the Townsend index, which measures
the deprivation in the given 24 districts of residence, higher values indicate poorer regions while
smaller values correspond to wealthier regions. In the data the values of the Townsend index range
from —6.09 to 9.55. The 24 administrative districts of northwest England are shown in Figure 13.1.
For the analysis we use effect coded districts with reference to district 24. We restrict our analysis to
the level of the districts to enable the application of the shrinkage priors, while geostatistical models
are possible, if the available exact locations of the patient’s residences are used, compare Henderson et
al. (2002) and Kneib and Fahrmeir (2007).

time number of days between registration and death
cens status at endpoint, O = censored, 1= death
age age of the patient in years
sex sex of a patient (—1 = female, 1 = male)
whe white blood cell count at diagnosis
tpi Townsend deprivation index, which measures the deprivation for

the enumeration district of residence. Higher values indicate less
affluent areas.

district 24 districts of patient’s residence. The enumeration of the districts
is displayed in Figure 13.1

xcoord, ycoord Exact location coordinates (latitude, longitude) of the patient’s
residence

Table 13.1: List of available covariates used in the analysis of the leukemia data.

13.2. Analysis

Kneib and Fahrmeir (2007) analyzed the data in the framework of geoadditive hazard regression
models with a generalized mixed model based approach for inference. They consider, besides the
flexible shape of the baseline hazard, also nonlinear covariate effects and utilize the available spatial
information by means of a district level analysis, since the observations are clustered by the districts in
connected geographical regions. We apply the extended AFT and CRR model and specify, with
respect to this previous analysis, the effects of the three continuous covariates age, wbc and tpi
throughout nonlinear to make the results comparable, even though there was no strong evidence found

for a nonlinear influence of the covariates age and wbc.

The structure of the predictor is given by
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i = Yo T Y18€X; +f1(agei)+f2(WbCi)+f3(tpii)+2jjlﬁjdij ) (13.1)

where f,(-),f,(-) and f5(-) are smooth functions of the three continuous covariates which are modeled
by cubic P-splines. The linear effect of the covariate sex is kept unregularized and the district effects
B;, j=L1..,23, are equipped with the Bayesian shrinkage priors. Also in the frequentist stepwise

procedure only the district effects 3; are considered for the variable selection.

7 (Lancaster)

14 (Wyre) 10 (Ribble Valley)
8 (Pendle)
2 (Blackpool) 9 (Preston)
5 (Flyde)

3 (Burnley)
6 (Hy ndburn)

12 (South Ribble)

1 (Blackburn w. Darwen)
11 (Rossendale)

4 (Chorley)
13 (West Lancashire) 19 (Rochdale)
ochdale;
15 (Bolton) 16 (Bury)
18 (Oldham)
24 (Wigan)
20 (Salf ord) 22 (Tameside)

17 (Manchester)
23 (Trafford)

21 (Stockport)

Figure 13.1: Administrative districts of the ceremonial counties Lancashire (1-14) and Greater Manchester (15-
24) in North West England (Source: http://en.wikipedia.org/wiki/Subdivisions of England).

In contrast, Kneib and Fahrmeir (2007) model the districts with a spatial effect f,, (-), where the
spatial neighborhood structure is utilized in the inferential procedure. In particular they assume
fou () =B; =Nj' X5, By +u;, j=1...,24, with Gaussian error u;~N(0,75,,Nj'), where jed;
denotes that district j is a neighbor of district j, in the sense that they share a common boundary, and
N; is the number of neighbor districts. In summary, the effect of a district j is assumed to be

conditionally Gaussian, with the mean of the effects of neighbor districts as expectation and a variance
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that is inverse proportional to the number of its neighbors. We utilize the spatial term within the

BayesX-method regress, to reproduce the spatial results as competitor (CFL.BS).

To fit the AFT and CRR models, we use the same specification of the model components and priors as
for the analysis of the PBC data, compare Section 12.2. With the described basic prior specification
for the regularized linear effects we obtain in the AFT model with PGM error small, close to zero
estimates as district effects. Therefore we fit in addition the Bayesian AFT model with adjusted prior
versions to reduce the shrinkage and support a stronger influence of the districts in the final models.
The hyperparameters of the shrinkage parameters are set to h,; =1.1 for the Bayesian lasso and ridge
prior and h,;, =32, h,, =64 for the Bayesian NMIG prior. For the MCMC runs, we use 30000
iterations with a burnin of 15000 and thin the chain by 15, which results in a MCMC posterior sample
of size 1000.

To model the nonlinear effect of the covariates age, wbc and tpi, we use the default settings in the
pspline () term within the formula of the R-functions survreqg () and coxph (). The penalized

procedure is not applicable, because it does not support the combined estimation of nonlinear effects.

13.3. Results

Linear effects

The frequentist and Bayesian estimates of the district effects are summarized in Figure 13.2 for the
CRR model and in Figure 13.3 for the AFT model. Besides the point estimates the one-standard-
deviation region is marked by the solid lines around the point estimate and in addition for the Bayesian
estimates also the 95 % credible intervals are given by the dashed lines together with the posterior
median estimate. The standard deviation and credible regions are utilized to drive the Bayesian hard
shrinkage variable selection as formulated for the HS.STD and HS.CRI criterion together with the
Bayesian NMIG indicator based criterion HS.IND. In the lower panel of the figures we find some of
the results of the variable selection, in particular those from the stepwise selection, the Bayesian lasso
and ridge prior in combination with the HS.STD criterion and the Bayesian NMIG prior with HS.IND
criterion. For the spatial results (CFL.BS) we use the 80% pointwise credible interval as in Kneib and
Fahrmeir (2007) to select the districts.

Figure 13.2 shows the results for the CRR model obtained with the full likelihood under the P-spline
model for the log-baseline hazard and the partial likelihood based frequentist estimates. With the
frequentist analysis (CPL, CPL.Step) and Bayesian analysis under the different shrinkage priors
(CFL.BL, CFL.BR, CFL.BN) we find commonly a clear increased risk to die in district 6 and a clear
decreased risk in districts 9 and 11. Under the Bayesian ridge prior, with the uniform proportion of
shrinkage for all regression coefficients, we observe a weaker regularization of the estimates compared
to the lasso or NMIG prior.

The absolute values of the spatial district estimates (CFL.BS) tend in general to smaller values due to
the considered neighborhood structure. For example, the estimate of district 6 is affected by the
surrounding neighbor districts 1, 3, 10 and 11 and the spatial prior structure cause an adaption of this
estimate to the neighborhood mean that is by trend smaller. As a consequence, the spatial estimates of
the three particular districts 6, 9 and 11 have the largest differences to the estimates from the other
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Figure 13.2: Estimated district coefficients without (upper panel) and with variable selection (lower panel) in the

CRR model. The points mark the estimates of the regression coefficients and the lines display the corresponding

standard errors. For the Bayesian procedures the points mark the mean, the solid lines display the standard errors

and the additional dashes mark the median and 95 % empirical quantiles of the marginal posterior distribution of

the regression coefficients. The selection of the spatial district effects (CFL.BS) is based on hard shrinkage with
the empirical 80% quantiles.

remaining applied methods. If variable selection is applied only a few districts stay in the final models,
compare Figure 13.5 for a spatial visualization.

Figure 13.3 shows the results for the AFT model based on the modified hyperparameter setting. In
concordance to the CRR model the effects of districts 6 and 11 induce a clear decrease and increase of
the survival time under all methods. In contrast to the CRR model the influence of district 9 is
negligible, since the estimates are close to zero under all estimation procedures and this district does
not appear in the final models after variable selection.

In the analysis of the PBC data the absolute values of the unpenalized estimated effects obtained with
the AFT model were often smaller as those from the CRR model. In this section we observe the
opposite. This highlights again the aspect that the estimated effects from both model classes are not
directly comparable. However, besides the differences in the effect sizes, in summary we observe at
least the same direction in the risk / survival time affection for all estimates in the CRR and AFT
model and we find a range of districts (4, 10, 13, 15-22) that does not appear in the sparse final models
of both survival model classes.
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Figure 13.3: Estimated coefficients without (upper panel) and with variable selection (lower panel) in the AFT
model. In the frequentist model the error is modeled by a Gaussian distribution and in the Bayesian models by a
PGM. The points mark the estimates of the regression coefficients and the lines display the corresponding
standard errors. For the Bayesian procedures the points mark the mean, the solid lines display the standard errors
and the additional dashes mark the median and 95 % empirical quantiles of the marginal posterior distribution of
the regression coefficients.

Spatial visualization

The district importance structures resulting from the frequentist and Bayesian variable selection are
visualized for the CRR model in Figure 13.4 and for the AFT model in Figure 13.5. The results
correspond to the estimates in the lower panels of Figure 13.2 and Figure 13.3. The green shaded
districts have effects that increase the risk to die in CRR model or decrease the survival time in the
AFT model, and in contrast the blue shaded districts have effects that decrease the risk to die in CRR
model or increase the survival time in the AFT model. The shades change for effect sizes in the range
from —1.2 to 1.2 with difference 0.2.

Regions with an increased risk resp. shorter survival times are located in the northern and eastern part
of the map, while the regions with a decreased risk resp. longer survival times are located in the north-
western part. In the southern part of the map there are also some districts with enhanced or less

pronounced effects, but most of the districts there show no influence on the patient’s survival.



B

UKEMIA IN NORTHWEST ENGL

ULT MYELOID LE

N /WM/A&:’/// //

rtw
%wZ
—
S35
= e 8
82205
FEL
SHE g
. B S+ 5p
p—
ORI
s &= =
E535E
= o g
= 5
m.m.mb
O8 5o
25328
£ g 8 g
ananan
=", 9 o
55 sH 2
> c . 5
—_ g s 8
Q O 7
o3 =2
@ N =
0= -0 =0
=2 58 8 o
L a—= 5.5
.meuqt
52938
Vdr%S
(0]
ﬂmﬂ%g
5935 §
S%N.C..n.nv
2.8 g E
=] =
QO —= o O
.lem —_—
S g o
22958
eﬂsee
S 225 S
55558
9 =
WCMW..W
R
S o QAN
2 o= 2=
=D R
— D ..m
© £3 4
nbdd
23 E 5
=
s - = g
mOume
3 E M S
172] Ct
Ean
5§
. ﬁw
2z
.-
2EE 2
=5 2 Rz
g0 2o
o Whm
= ES S
Frﬂ
(]



)

, / o bt B

Figure 13.5: Estimation of the district coefficients with variable selection in the AFT model. Upper left:

Frequentist AFT model with Gaussian error and stepwise variable selection. Upper right to lower right: Bayesian

AFT model with PGM error and ridge, lasso and NMIG regularization. The colored legend ranges from -1.2 to
1.2, where the color changes at the distance 0.2.
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NMIG indicators

The posterior relative frequencies of the Bayesian NMIG indicator variables I;=v, utilized in the
HS.IND selection criterion are presented in Figure 13.6. The left panel shows the results from the
CRR model with the full likelihood (CFL.BN) the right panel the results from the AFT model with
PGM error (AFT.PGM). With the basic hyperparameter setting used so far, we achieve only with the
CRR model estimated inclusion probabilities that exceed the HS.IND threshold of 0.5. With exception
of district 8 the highest inclusion probabilities are given for those districts that are also selected by the
stepwise procedure (CPL.Step) marked at the bottom of the bars, i. e. for districts 2, 3, 6, 7, 9, 11 and
14.

1.0
1.0

CFL.BN a PGM.BN

0.8
0.8

0.6
0.6

indicator v1

0.4
0.4

0.2
0.2

1t 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 1t 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

district district

Figure 13.6: Estimated inclusion probabilities based on posterior relative frequencies of the Bayesian NMIG
indicator variable value I; =v, in the CRR model (left side) and in the AFT model with PGM error (right side).
The blue crosses mark the covariates which are selected by the frequentist stepwise variable selection procedure

in the CRR and AFT model. The red horizontal line marks the cut off value 0.5 of the hard shrinkage selection
criterion HS.IND.

In the AFT model the adjusted hyperparameters h;, =32, h,, =64 force an increase in the Bayesian
NMIG complexity parameter ® that reduces the shrinkage of the covariate effects. They are leading to
an estimate of the complexity parameter (®= 0.28 ) in the same range as obtained with the CFL.BN
model. Besides a general increase of all relative frequencies, compared to the results with the basic
hyperparameter setting h,, =h,, =1, we obtain a clear increase in the relative frequencies of the
districts 2, 6, 7, 11, 14, 23, which also have enhanced inclusion probabilities in the CFL model.
However, only two districts (6, 11) exceed the HS.IND-threshold 0.5. If we rank the districts
according to the sizes of the inclusion probabilities, or adjust the HS.IND-threshold, we could also
include districts 2 and 7. In Simulation Section 11.5 we have seen that the adaption of the threshold

often improves the predictive performance of the associated sparse final model.

Nonlinear effects and baseline quantities

Finally, we consider the estimates of the nonlinear effects in the predictor and the baseline quantities,
i. e. the log-baseline hazard function in the CRR model and the baseline error density in the AFT
model. As previously observed in the analysis of the PBC data, the estimated shapes of the nonlinear
effects are again only marginal affected by the specific regularization (or spatial) prior assumed for the
district effects. Since the same holds for the frequentist spline estimates, with and without stepwise

variable selection, we present in the following the results by means of the frequentist stepwise
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selection (Step) and the Bayesian NMIG (BN) prior. The differences in the location of the estimated
nonlinear effects or the location parameter in the AFT model are due to the centering of the nonlinear
effects in the Bayesian procedures.

Figure 13.7 illustrates the estimated nonlinear effects of the covariates #pi, age and wbc in the CRR
model together with the estimates of the log-baseline hazard function. The estimate of the log-baseline
hazard (CFL.BN) is compared to the resulting Bayesian estimate when the spatial neighborhood
information is used to model the district effects (CFL.BS). Neglecting the differences in the location,
the nonlinear effects from the Bayesian or frequentist models show a similar shape. Again the almost
linear influence of the covariates age and wbc is approved and both effects decrease the survival time
with increasing values. In the range of the interval with most of the observations the log-baseline
hazard decreases in general, but we observe some intervals, e. g. in the second year, where the log-
baseline increases (CFL.BS) or the slope is reduced (CFL.BN).

~— CFLBN 71— CFLBN
o4 — CPLStep —— CPL.Step

f(age)
0
f(wbc)

20 40 60 80 100
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Figure 13.7: Estimates of the nonlinear effect of the covariates age (upper left panel), wbc (upper right panel)
and tpi (lower left panel) and the log-baseline hazard (lower right panel) in the CRR model. Displayed are the
estimates under the Bayesian NMIG regularization prior in the CRR model based on the full likelihood
(CFL.BN) together with those from the frequentist stepwise variable selection (CPL.Step). The log-baseline
hazard estimate is compared with the Bayesian estimate utilizing the spatial neighborhood information
(CFL.BS). For the Bayesian models the solid lines show the posterior mean estimates and the dotted lines
mark the corresponding 95 % pointwise credible bands. The stripes at the x-axis mark the observed values
in the data.

Figure 13.8 shows the results for the AFT model (PGM.BN, AFT.Step). Neglecting also the
differences in the location, we achieve with the PGM error model a comparable shape of the error
density as in the frequentist counterpart, when the error is assumed to be Gaussian. The estimates of
the covariates age and wbc are almost linear as in the CRR model and the effect of fpi is rather

nonlinear, but the nonlinear effect show a larger slope in the AFT model.
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Figure 13.8: Estimates of the nonlinear effect of the covariates age (upper left panel), wbc (upper right panel)
and pi (lower left panel) and the log-baseline hazard (lower right panel) in the AFT model. Displayed are the
estimates under the Bayesian NMIG regularization prior in the AFT model with PGM error (AFT.BN) together
with those from the frequentist model under stepwise variable selection (AFT.Step). For the Bayesian models the
solid lines show the posterior mean estimates and the dotted lines mark the corresponding 95 % pointwise
credible bands. The stripes at the x-axis mark the observed values in the data.

14. Cytogenetically normal acute myeloid leukemia

14.1. Data

In this section we analyze data for patients diseased with cytogenetically normal acute myeloid
leukemia (CN-AML). AML is a cancer of the myeloid line of blood cells which is characterized by the
rapid growth of abnormal white blood cells that accumulate in the bone marrow and interfere with the
production of normal blood cells. Gene expression profiling can be used to develop a gene signature
that predicts the overall survival time of patients in combination with prognostic factors like molecular
markers and patient characteristics. The CN-AML data was provided by U. Mansmann (IBE, Munich)
and is analyzed, e. g., in Benner et al. (2010) and Metzeler et al. (2008).

The data comprises two independent cohorts of patients used as training and test cohort, where the
available second test data enables a further investigation in the predictive accuracy for the applied
methods. The training cohort stems from the multicenter AMLCG-199 trial of the German AML
Cooperative Group between 1999 and 2003 and consists of n=163 adult patients with CN-AML,
where 35.0 % of the observed survival times are censored. In the training data the median survival
time is 280 days with range from 0 to 2399 days. The independent test cohort consists of n =80
patients who were diagnosed with CN-AML in 2004. In the test data we have a median survival time
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of 247.5 days with range from 1 to 837 days and 57.5 % of censored survival times. In both cohorts,
survival time is defined as time from study entry until death from any cause. The original data consists
of p, =44757 covariates, i. e., 44754 microarray probe sets for each individual and additional (known
highly) prognostic covariates, like the age of the patient and the two molecular markers FLT3 (tandem
duplications of the fms-like tyrosine kinase 3) and NPMI (mutations in the nucleophosmin 1), are
recorded. To avoid manual tuning of the regularization priors, the continuous covariates in the training

and test data were standardized to have zero mean and unit variance.

14.2. Analysis

As in Metzeler et al. (2008), univariate Cox scores, measuring the correlation between each of the
probe sets and the survival time in the training cohort, are used to rank and to reduce the number of
probe sets. We present results based on the preselected probe sets with the 50 and 200 highest ranks of
the Cox score. As additional prognostic covariates, we include the age of the patient and the two
molecular markers FLT3, NPM1 into the models, where the effect of age is modeled either as linear or
nonlinear, utilizing P-splines. Further we fit models, where these three covariates are omitted to
consider only the impact of the p, =50 and p, =200 probe sets on the patients survival time. In

summary, we use the predictors

N =Yo + V\FLT3; +v,NPMI, + y;age; + z;zlﬁjprobeseti’j , (14.1)
M =0 + FLT3, + v, NPML; +fi (age;) + > " Bjprobeset; ;, (14.2)
=Y + Z?;ijrobeseti,j , (14.3)

T]i = YO + YIFLT31 + 'YzNPML + Y3agei . (14.4)

To fit the AFT and CRR models, we use the same specification of the model components and priors as
for the analysis of the PBC data, compare Section 12.2. In the frequentist framework the nonlinear
effect of the covariate age is modeled with the default settings for the pspline () term within the
formula of the R-functions survreg() and coxph (). In the CRR model with the strictly linear
predictors (14.1) and (14.3) we compute also the frequentist lasso and ridge estimates with the

penalized () function.

Performance

To measure predictive accuracy, we use the time-dependent empirical Brier score BS(t), as proposed
by Graf et al. (1999), which is defined as the time-dependent mean square error between the observed
survival status and the predicted survival probability. Under random censoring the empirical Brier

score is given as

BS(t) :li S(t | Xi)ZIA(ti <t d; = 1) " (1 _S(t | )ii))zl(ti > t)
D= G(t:) G(t)

where §(t | x;) is the estimated survival probability of the i-th individual at time t, I(-) denotes the

indicator function and G() is the Kaplan-Meier estimate of the censoring distributions survival
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function based on the observations (t;,1—d;), i=1,...,n. The average over time for a fixed time point

t* >0 is given by integrated version of the Brier score

IBS =tl [V BS(s)ds .

The integrated Brier score (IBS) can finally be viewed as a performance measure of the predicted
survival functions within the interval [0,t"], where lower values indicate a better performance.
Additionally, the IBS of a proposed prediction model can be used to derive a measure of explained
variation R ::I—IBS/ IBS, , with IBS, defined as the integrated Brier score corresponding to the
Kaplan-Meier estimate of the survival function S(t) . In the CRR model, when the partial likelihood is
used for inference, the estimate of the survival function is based on the Breslow estimator AER (t) for
the cumulative baseline hazard, i. e. S(t Ix;) :exp(—f\(t [x;)), with /A\(t Ix;) :/A\ER (t)exp(f);) , where
fli denotes the estimated linear predictor. In the case of the full likelihood we utilize the trapezoidal
rule to compute the cumulative baseline hazard from the estimate of the log-baseline hazard function.

14.3. Results

For a selection of the estimated models the IBSs in the training data (t" =2399 days) and test data
(t" =837 days) are visualized in the following figures. All figures show the results achieved with the
full predictor and with the reduced predictor, if variable selection is applied. The number of probe sets
included in the final models are displayed at the bottom of the bars. As competitors the IBSs of the
Kaplan-Meier estimate are marked (KM: IBS,;, =0.212 and IBS,, =0.205), together with the
resulting IBSs for the unregularized frequentist models using the predictor (14.4) which includes only
the three pheno-covariates (CPL3: IBS,,, =0.171 and IBS,, =0.190, AFT3 with Gaussian error:
IBS,.. =0.178 and IBS,, =0.192). The penalized lasso (CPL.PenL) applied to the complete number
of probe sets, p, =44754, using the purely linear predictor (14.1), is leading to a final CRR model
with 15 selected probe sets and to the integrated Brier scores IBS,,, =0.138 and IBS,, =0.182, both
marked as further benchmarks by black bars at the y-axis in the figures.

Integrated Brier score with 50 probe sets

The IBS-results, based on the reduced data with p, =50 preselected probe sets and predictor (14.1),
where the pheno-covariate age is modeled linear, are shown in Figure 14.1. Figure 14.2 shows the
corresponding results using predictor (14.2), where the covariate age is modeled as P-spline and
finally Figure 14.3 shows in terms of the CRR model the IBS-results with predictor (14.3) without the
pheno-variables.

We consider at first the results with the purely linear predictor in Figure 14.1. Compared to the
models from partial likelihood approach, the flexible modeling of the log-baseline hazard leads to
models with better performance in the trainings data, but the higher adaptiveness to the trainings data
causes a loss of performance in the test data. In the test data the IBSs of the full likelihood based
models (CFL) are larger than those of the associated partial likelihood based models (CPL) and
frequently exceed the reference IBS of the CPL3 model. Also the unregularized models (CPL,
CPL.Step, CPL.B, CFL.B) achieve comparatively large IBS values. The best predictive performances
are obtained with the CPL models in combination with the ridge penalty (CPL.PenR, CPL.BR),
closely followed by the models with the lasso penalty (CPL.PenL, CPL.BL). The Bayesian approaches
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achieve marginally smaller IBSs than their frequentist counterparts and the lowest value is obtained
under the Bayesian ridge prior (CPL.BR: IBS,., =0.168). Variable selection causes a loss of
performance as indicated by the results from the stepwise procedure, the frequentist lasso and the hard
shrinkage selection rules. Hard shrinkage via the standard deviation criterion is leading to sparse
models, including 6 probe sets in the final Bayesian ridge model (CPL.BR-HS.STD: IBS,, =0.172)
and 5 probe sets in the final Bayesian lasso model (CPL.BL-HS.STD: IBS,, =0.178), with only a
marginal loss in the predictive performance. Both values are smaller than the IBS of the sparse
penalized lasso model, IBS., =0.182, that selects the 15 covariates from the complete probe set
p. =44757 . Using the AFT model for inference, right panel of Figure 14.1, the best performances are
achieved under the assumption of a Gaussian error distribution, but the differences to the results with
the PGM error are less pronounced as differences between the CPL and CFL model. Comparing the
estimates for the baseline error under the Gaussian and PGM error assumption, see Figure 14.9, shows
also a high similarity. As in the CRR model the best performances are obtained with the ridge prior
(AFT.BR: IBS,, =0.175) and the lasso prior (AFT.BL: IBS,, =0.176), if all probe sets are included
in the predictor. Variable selection increases the IBS and we get IBS,., =0.184 if the HS.STD
criterion is applied in the Bayesian ridge model (AFT.BR-HS.SDT). The associated final model
includes, amongst others, the probe sets with Cox score ranks 11, 12 and 21 and these probe sets occur
in almost all predictors of the sparse CRR and AFT models.
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Figure 14.1: Integrated Brier scores in the test data (upper panel) and the trainings data (lower panel) for the
CRR model (left panel) and the AFT model (right panel) with predictor (14.1) using p, =50 preselected probe
sets. The blue horizontal line marks the IBS of the Kaplan-Meier-Estimate (IBS,,, =0.212 and IBS,, =0.205).
The magenta horizontal line marks the IBS of the frequentist CRR model (IBS,,, =0.171 and IBS,, =0.190)
and Gaussian AFT model (IBS,,, =0.178 and IBS,, =0.192) with predictor (14.4). The black bar at the y-axis
marks the IBS from the frequentist lasso using p, = 44754 probe sets (IBS,,, =0.138 and IBS,, =0.182). The

associated numbers of covariates included in the estimated predictor are displayed at the bottom of the bars.

test
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We found further that the nonlinear modeling of the covariate age does not clearly improve the IBS
performance in the test data, compare Figure 14.2, and also the visual inspection of the nonlinear
estimate, Figure 14.8, shows no strong evidence to model this covariate effect as nonlinear. For
example with the ridge prior we the get the values IBS,, =0.169 (CPL.BR) and IBS., =0.174
(AFT.BR), the application of the HS.STD selection criterion is leading to IBS,, =0.176 (CPL.BR-
HS.SDT) and IBS,, =0.183 (AFT.BR-HS.SDT). These values are almost comparable to the IBS
values obtained with the strictly linear predictor. In addition, with the nonlinear modeling the IBSs of
the full likelihood based CRR models and the AFT models with PGM error are further increased.
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Figure 14.2: Integrated Brier scores in the test data (upper panel) and the trainings data (lower panel) for the
CRR model (left panel) and the AFT model (right panel) with predictor (14.2) using p, =50 preselected probe
sets. The blue horizontal line marks the IBS of the Kaplan-Meier-Estimate (IBS,,, =0.212 and IBS,, =0.205).
The magenta horizontal line marks the IBS of the frequentist CRR model (IBS,,, =0.171 and IBS,, =0.190)
and Gaussian AFT model (IBS,,, =0.178 and IBS,, =0.192) with predictor (14.4). The black bar at the y-axis
marks the IBS from the frequentist lasso using p, = 44754 probe sets (IBS,., =0.138 and IBS,, =0.182). The

associated numbers of covariates included in the estimated predictor are displayed at the bottom of the bars.

test

In summary both covariate groups, the clinical covariates as well as the microarray features, separately
influence the predictive performance. The models including only the three unregularized pheno-
covariates (magenta lines) have a decreased IBS compared to the IBS of the Kaplan-Meier estimate
(blue lines), while the microarray features need to be regularized to enhance the predictive
performance. Figure 14.3 shows the IBSs of the CRR models with predictor (14.3) that includes only
the probe sets. Therein the regularized estimates provide models with an improved performance
compared to the model with only the three pheno-variables (CPL3), but the best predictive
performances are obtained if both covariate groups are commonly included in combination with a
ridge or lasso type shrinkage of the probe sets. With a reduced number of p, =50 preselected
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microarray features we are able to find models with a similar or improved predictive performance
compared to the frequentist lasso that searches the final model within all microarray features. The
increased flexibility resp. model complexity introduced by the P-spline model for the covariate age or
the P-spline model for the baseline quantity does not enhance the predictive performance. And finally
with respect to the results in the trainings data, where the CRR model indicates a higher adaptivity to
the data as the AFT model, we would rather use the CRR model to reflect the impact of the covariates

to the patient’s survival.
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Figure 14.3: Integrated Brier scores in the test data (left side) and the trainings data (right) for the CRR model
with predictor (14.3) and p, =50 preselected probe sets. The blue horizontal line marks the IBS of the Kaplan-
Meier-Estimate (IBS,,, =0.212 and IBS,, =0.205 ). The magenta horizontal line marks the IBS of the
frequentist CRR model (IBS,,, =0.171 and IBS,, =0.190). The associated numbers of covariates included in
the estimated predictor are displayed at the bottom of the bars.

test

Integrated Brier score with 200 probe sets

Figure 14.4 summarizes the results when inference is based on predictor (14.1) with age modeled as
linear and the increased number of p, =200 preselected probe sets. The left and right panel show
respectively the results for the CRR model with the partial likelihood and the AFT model with
Gaussian error. Due to the poor performance of the models with higher complexity, i. e. the CRR
model with P-spline log-baseline hazard and the AFT model with PGM error, the results are omitted.
Compared to the models with p, =50 probe sets we obtain an improvement in the predictive
performance for the models CPL.PenR, AFT.BR, AFT.BR-HS.STD and AFT.BL, where the best

performance results for the frequentist ridge model CPL.PenR (IBS,, =0.159) with all 200 probe sets

test

included in the final predictor.

In the CRR model the predictive performance of the Bayesian models with the lasso and ridge prior,
separately or combined with the HS.STD selection criterion, is almost comparable to the associated
models with p, =50 preselected probe sets. The IBS from the NMIG prior exceeds now the IBS of
the Kaplan-Meier estimate. We can also report a loss in the predictive performance for the final model
from the frequentist lasso procedure, the IBS of the model CPL.PenL is in the range of the model
CPL3 that merely includes the three pheno-covariates in the predictor. In the AFT model the
predictive performance of the models AFT.BR (IBS, =0.164), AFT.BL (IBS,, =0.164) is clearly
improved and now almost comparable to the model CPL.BR (IBS,, =0.162). The final predictor of the
model AFT.BR-HS.STD shares eight probe sets with the predictor from CPL.BR-HS.STD and

contains also the three probe sets (Cox score ranks 11, 12, 21) from the associated model based on

test
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p. =50 preselected probe sets. The models CPL.BR-HS.STD with p, =50 and p, =200 share two
probe sets (Cox score ranks 11, 12).

In summary, with an increased number of probe sets we obtain for some models an improvement in
the predictive performance. The models with the best performances include again all of the p, =200
preselected probe sets. With the hard shrinkage selection rule HS.STD we find sparse models with
comparable performance to the models with p, =50 preselected probe sets, but the included probe
sets in the final models differ and expert knowledge is required for the interpretation. The probe sets

with ranks 11 and 12 are also almost always included in the final spares models.
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Figure 14.4: Integrated Brier scores (IBS) in the test data (upper panel) and the trainings data (lower panel)
for the CRR model (left panel) and the AFT model (right panel) with predictor (14.1) using p, =200
preselected probe sets. The blue horizontal line marks the IBS of the Kaplan-Meier-Estimate
(IBS,., =0.212 and IBS,, =0.205). The magenta horizontal line marks the IBS of the frequentist CRR
model (IBS,,, =0.171 and IBS,, =0.190) and Gaussian AFT model (IBS,,, =0.178 and IBS,, =0.192)
with predictor (14.4). The black bar at the y-axis marks the IBS from the frequentist lasso using p, = 44754
probe sets (IBS,,, =0.138 and IBS,, =0.182). The associated numbers of covariates included in the
estimated predictor are displayed at the bottom of the bars.

test train test

train

Paths of the integrated Brier score

As further illustration, the upper panel Figure 14.5 displays the impact of the regularization parameter
on the IBS in the test data by means of the CRR model with predictor (14.1) using p, =50 preselected
probe sets. Shown are the IBS-paths under the Bayesian and frequentist lasso and ridge regularization
(upper left and right panel) and the Bayesian NMIG regularization (lower left panel). As further
competitor the results from the frequentist CPL model and the stepwise selection are shown for

increasing number of covariates in the predictor (lower right panel). The horizontal lines mark the
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IBS., =0.190 of the frequentist Cox model with predictor (14.4) including only the three pheno-
covariates (CPL3).

The first observation, that we can make from these figures is, that again the partial likelihood based
models with the ridge regularization of the probe sets leads to the smallest IBS values, and the IBS
path is also fairly insensitive with respect to the regularization parameter over a wide range of the
shrinkage parameter. In addition, the behavior of the frequentist ridge IBS-path (CPL.PenR) is quite
close to the Bayesian version (CPL.BR). With increased value of the shrinkage parameter A the
penalization of the probe sets is increased, which obviously improves the performance of the resulting
models. The strongest impact on the increase of the performance is observable in the range 0 <A <20,
while larger values A >20 increase the performance only marginally. Also the sparse models obtained
with the HS.STD criterion show the same development of the IBS-path, but on a higher level of the
IBS. Nevertheless, the path is clearly below the CPL3 benchmark for higher values of the shrinkage
parameter. For ridge regression in combination with the full likelihood (CFL.BR), there seems to be
some instability in estimation for A >5 that yields abrupt changes in the IBS even for small variations
of the regularization parameter.
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Figure 14.5: Paths of the integrated Brier scores for varying shrinkage parameter in the CRR model with
predictor (14.1) using p, =50 preselected probe sets. Upper panel: Lasso type regularization (left side) and
ridge type regularization (right side). Lower panel: Bayesian NMIG regularization (left side) and frequentist

CRR model with and without stepwise selection (right side) for increasing number of covariates in the predictor.
The black solid horizontal line marks the IBS,., =0.190 of the frequentist CRR model with predictor (14.4)
including only the 3 pheno-covariates.

In general, the CFL and CPL lasso variants are in closer agreement and the CPL lasso-path does not

show such an irregular behavior as under the ridge prior. Again, the Bayesian lasso estimates based on
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the partial likelihood (CPL.BL) performs remarkably well, but the full likelihood based estimates
(CPL.BL) are close and yield an improved performance for large regularization parameters A . The
IBSs achieved with the frequentist lasso, which always selects a subset from the 50 probe sets, do not
reach the low values possible with the Bayesian lasso or the (Bayesian and frequentist) ridge estimates
that include all 50 preselected probe sets in the predictor. Variable selection via the hard shrinkage
criterion HS.STD does not globally improve the predictive performance, but provides, dependent on
the particular value of the shrinkage parameter, sparse models with comparably good performance. In
contrast to the ridge-paths the predictive performance of the lasso-paths starts to decrease for larger
values of the shrinkage parameter. For the frequentist lasso this is easy to understand, because with
increased shrinkage parameter at least only the three pheno-covariates are included in the final model,
and the IBS-path must converge to the CPL3 benchmark. The Bayesian lasso-paths indicate a similar
behavior, but the decrease of the performance is less pronounced in the plotted range of the shrinkage

parameter. But, at the limit A — o0 or ® — 0 all regularized IBS-paths converge to CPL3 benchmark.
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Figure 14.6: Paths of the integrated Brier scores for varying shrinkage parameter under the frequentist
lasso (upper panel) and ridge (lower panel) regularized model using p, =50 (left panel) and p, =200
(right panel) preselected probe sets. The upper right legend identifies the additional unregularized pheno-
variables in the predictor. The black solid horizontal line marks the IBS,, =0.190 of the frequentist
CRR model with predictor (14.4) including only the 3 pheno-covariates. The paths of the penalized
lasso are evaluated at the values of the shrinkage parameter, where a covariate is removed
from the predictor.

The lower left panel in Figure 14.5 shows the results achieved with the NMIG prior structure and the
lower right panel shows the IBS path under the frequentist CRR model and combined stepwise
selection, when the number of probe sets p, included in the predictor increases according to the ranks

of the Cox scores. The reduced shrinkage of some influential regression coefficients under the
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Bayesian NMIG prior, compare Figure 14.7, leads to models with similar poor performance values as
the models obtained with the frequentist CPL and CPL.Step procedure. None of these methods

enhance the performance to the IBS-levels obtained under the lasso or ridge regularization.

Finally, Figure 14.6 shows the movement of the frequentist lasso (CPL.PenL) and ridge (CPL.PenR)
IBS-paths for increasing values of the shrinkage parameter if the number of pheno-variables in the
predictor are reduced. The left and right panels display the results with p, =50 and p, =200 probe
sets in the regularized predictor component. We obtain from this figure, that the inclusion of all three
pheno-covariates is important to improve the predictive performance of the estimated models. From
the lower left panel, where the CPL.PenR path is plotted over a wider range of the shrinkage
parameter as in Figure 14.5, we see, that similar to the lasso regularization, also the performance
under the ridge regularization decreases for larger values of the shrinkage parameter, where the

regularized estimates become closer to zero.

Paths of the regression coefficients

Figure 14.7 illustrates the associated paths of the estimated regression coefficients as a function of the
regularization parameter for the four selected probe sets with Cox score ranks 1, 11, 12, and 21. We
show the results from the CRR model with ridge, lasso and NMIG regularization of the p, =50
covariates in predictor (14.4). The vertical lines in the figure mark the estimated regression
coefficients at the estimated value of the complexity parameter.

It turns out that especially the probe sets associated with Cox score ranks 11 and 12 yield overall
larger estimates and are therefore deemed to be important over wide ranges of the complexity
parameter values. As previously mentioned, both probe sets are almost always included in the final
models resulting from any used selection method applied to the data with p, =50 and p, =200
preselected probe sets. Especially, in the case of the Bayesian and frequentist ridge model (upper
panel), the estimated effects at the estimated shrinkage parameter A have smaller values compared the
Bayesian and frequentist lasso (middle panel) and Bayesian NMIG estimates (lower left panel) and in
particular the effects of the important probe sets with Cox score ranks 11 and 12 are clearly smaller.
With respect to the previous IBS results, particularly the uniform shrinkage of all effects, as under the

ridge penalty, seem to improve predictive performance.

The lower right panel of Figure 14.7 shows the posterior relative frequencies of the binary NMIG
indicator I; =v, as a function of the complexity parameter. Here, the inclusion probabilities of the two
variables with Cox score ranks 1 and 21 rapidly decrease, if the complexity parameter moves towards
zero in direction with reduced model complexity. In contrast, the estimated inclusion probabilities for
the probe sets with Cox score ranks 11 and 12 do not vary very much in the plotted range of the
complexity parameter and always yield the conclusion that these probe sets should be contained in the
final model. But, higher inclusion probabilities cause a reduction of the shrinkage, compare lower left
panel of Figure 14.7, and this may be the main reason why the NMIG models have such a poor
performance. Due to the results from the ridge regression, the best performances are obtained if all
covariates, also the important ones, are uniformly shrunken with the same proportion, and this is
definitely not the case under the NMIG prior (as designed).
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Figure 14.7: Shrinkage parameter dependent paths of four selected estimated regression coefficients and NMIG
inclusion probabilities in the CRR model based on the full and partial likelihood with predictor (14.1) using

p. =50 preselected probe sets. The four probe sets are identified by the rank of the Cox score (rank CS) in the

legend of the last figure. Upper panel: Frequentist ridge (left side) and Bayesian ridge (right side) regularization.
Middle panel: Frequentist lasso (left side) and Bayesian lasso (right side) regularization. Lower panel: Bayesian
NMIG regularization (left side) and posterior inclusion probabilities based on the relative frequencies of

Bayesian NMIG indicator variable value I; = v, (right side), where the horizontal red line marks the 0.5 cut off

Nonlinear effects

value for variable selection. The vertical dashed lines in the figures mark the estimated values at the estimated
shrinkage parameter.

Figure 14.8 presents the estimated nonlinear effect of the covariate age with predictor (14.2) under the

CRR and AFT model. While the spline estimates in both survival model classes do show some

nonlinearity, the associated credible intervals all cover the linear effect so that there is only weak

evidence for the necessity of a nonlinear modeling. We have also seen from Figure 14.2 that the
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spline modeling of the age leads indeed to a better fit in the training data, but there is no remarkable

benefit for the predictive performance in the test data.
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Figure 14.8: Estimation of the nonlinear age effect the CRR model (left side) and the AFT model (right side)
with predictor (14.2) using p, =50 preselected probe sets. Left side: Estimations from the frequentist CRR
model and Bayesian lasso regularized model based on the full and partial likelihood. Right side: Estimations
from the frequentist Gaussian AFT model and the Bayesian Lasso regularized AFT model with Gaussian and

PGM error. For the Bayesian models the solid lines show the posterior mean estimates and the dotted lines mark
the corresponding 95 % pointwise credible bands. The black stripes at the x-axis mark the observed values.

Baseline quantities

In the following we shortly summarize the estimated components of the CRR and AFT survival model
with strictly linear predictor (14.1) using the p, =50 preselected probe sets under the various
approaches. The upper left side of Figure 14.9 displays the estimated log-baseline hazard rate in the
CRR model obtained with the full likelihood. After a short period of constant or moderately increasing
(or bathtub shaped) log-baseline hazard in the first 300 days, the hazard rate shows afterwards an
almost linear decrease, so there seems to be an enhanced risk to die in the last quarter of the first year.
The corresponding cumulative baseline hazards in comparison to the Breslow estimators based on the
partial likelihood are shown at the upper right side of Figure 14.9. In the first year period, that

contains most of the observations, the estimates from the full and partial likelihood closely coincide.

In the simulations we have seen that with low sample sizes it is hard to detect variations in the shape
of the baseline error density. Comparing the estimated baseline error densities achieved with the AFT
model assuming a Gaussian and a PGM error, lower panel of Figure 14.9, we observe a minor
asymmetry with the PGM estimate and in summary a Gaussian error seems to be a good proxy for the
underlying baseline error distribution also with respect to the enhanced predictive performance and the

low sample size.

Linear effects

In Figure 14.10 a selection of the estimated probe set effects in the CRR and AFT model are
displayed. With exception of the probe sets with Cox score ranks 1 and 5 we show the results for those
probe sets that frequently appear in the final models after variable selection. As previously observed in
the simulation section, with comparable prior tuning the estimates in the CRR model based on the full
likelihood are less regularized as those under the partial likelihood. This also explains the fall off in
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the predictive performance compared to the partial likelihood estimates, because with stronger
regularization the performance of the full likelihood estimates increases, compare Figure 14.5.

NMIG indicators

Under the adaptive Bayesian NMIG prior structure most of the p, =50 probe sets in the predictor
(14.1) are assigned to the close to zero component of the bimodal prior and are therefore strongly
regularized. Figure 14.11 shows the posterior relative frequencies of the binary NMIG indicator value
I; = v, in the CRR and AFT model. In the figures the probe sets with Cox score ranks 11, 12, 21, 41
and 46 stand out with larger posterior inclusion probabilities, but only the probe set with Cox score
rank 11 achieves commonly an estimated inclusion probability clearly exceeding the threshold of 0.5.
As a consequence the additional hard shrinkage variable selection based on the HS.IND-threshold 0.5
is leading to very sparse models with an IBS in the test data close to the IBS of the models AFT3 and
CPL3, that include only the three pheno-covariates in the predictor. Due to the reduced shrinkage of
the important probe set with rank 11, the adaptation of the threshold, to force more probe sets to the

final model, should not improve the predictive performance.
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Figure 14.9: Estimation of the baseline quantities in the CRR model (upper panel) and the AFT model (lower
panel) with predictor (14.1) using p, =50 preselected probe sets under the Bayesian lasso and NMIG
regularization of the linear effects. Upper left side: Estimates of the log-baseline hazard from the CRR model
based on the full likelihood. Upper right side: Estimation of the cumulative baseline hazard in the CRR model.
The dashed lines display the estimate from the full likelihood when the cumulative baseline hazard is computed
via numerical integration of the baseline hazard using the trapezoidal rule. Lower panel: Estimates from the AFT
model with lasso regularization and Gaussian error and Bayesian NMIG regularization with PGM error.
Commonly the solid lines show the posterior mean estimates and the dotted lines mark the corresponding 95 %
pointwise credible bands.
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Figure 14.10: Selected estimated regression coefficients in the CRR model (upper panel) and AFT model (lower
panel) with predictor (14.1) using p, =50 preselected probe sets. The probe sets are sorted according to the
rank of the Cox scores that are displayed at the x-axis. The points mark the estimates of the regression
coefficients and the lines display the corresponding standard errors. Additional for the Bayesian procedures the
dashes mark the median and the 95 % quantiles of the marginal posterior distribution of the regression
coefficients.

Final remark

In summary it becomes apparent that with increasing model complexity, formed by using flexible
baseline quantities or nonlinear effects, the adaptation in the training data increases, but the estimated
models loose their predictive performance in the test data. Besides a compromise regarding the model
complexity, the IBSs seem to suggest that the best strategy to achieve precise predictions is to include
all covariates without variable selection in the predictor, but to apply stronger regularization to the
regression coefficient vector. This claim is further supported by the results from the NMIG prior
structure, with the sophisticated selection-like shrinkage of small and large effects, which leads to
somewhat deteriorated IBSs, and the IBS results for the sparse models under the frequentist lasso
compared to the Bayesian counterpart that includes all covariates in the predictor. Nevertheless, also
variable selection for the Bayesian lasso and ridge regularized estimates, based on the standard
deviation (HS.STD) criterion, is leading to final models with comparably good predictive
performance, if one is willing to accept a little loss in the predictive performance for the benefit of a

sparse predictive model.

In our analyses we found strong evidence for the importance of at least two probe sets associated with
Cox score ranks 11 and 12. Finally, our flexible model classes allow us to validate the assumption of

linearity of pheno-covariates that are often available in addition to genetic information, but we did not
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Figure 14.11: Estimated inclusion probabilities based on posterior relative frequencies of the Bayesian NMIG
indicator variable value I; = v, in the models with predictor (14.1) using p, =50 probe sets. First and second
row: CRR model based on the full and partial likelihood. Third and fourth row: AFT model with PGM and
Gaussian error. The probe sets are sorted according to the rank of the Cox scores that are displayed at the x-axis.
The crosses at the bottom of the bars mark the covariates from the corresponding frequentist models, which are
significant with respect to the p-value 0.05 (cyan) and which are selected by the frequentist stepwise variable

selection procedure (dark blue). The red horizontal line marks the cut off value 0.5 of the hard shrinkage
selection criterion HS.IND.
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find such evidence for a nonlinear effect in case of the clinical covariate age. Also the inspection of
the shape of the baseline quantities provides information for the need of the flexible modeling, and in
particular the Gaussian error in the AFT model seems to be appropriate to represent the baseline

survival time of the population.
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CONCLUSION

15. Results

We have developed different types of regularization priors for flexible accelerated failure time and
hazard regression models that allow the combined modeling of complex predictor structures together
with the regularization of linear effects of possibly high-dimensional covariate vectors. We considered
random-walk smoothing priors for the model components that are represented by linear combinations
of basis functions, like the baseline survival quantities or the nonlinear effects in the predictor. For the
regularization of the linear covariate effects we examined three different priors, the Bayesian ridge and
lasso prior and a normal mixture of inverse gamma distributions (NMIG) as prior that supplements
regularization with a natural possibility for variable selection based on latent indicator variables. The
developed methods are implemented in R-functions and the Bayesx software.

The provided Bayesian approach is of practical relevance, e. g. in the context of gene expression data,
since the flexible modeling of clinical covariates can be combined with the regularization of high-
dimensional microarray features and pre-specification (and validation) of parametric assumptions
about the underlying baseline survival time is redundant. The combined flexible modeling can be
viewed as improvement over a purely parametric approach, since it enables a visual inspection of the
linearity of effects or parametric shapes of baseline survival time and provides more flexible
functional shapes when needed. The flexible formulation of model components increases the model
complexity, which limits the scope of application for the extended modeling with respect to reliable
inference and also with respect to the predictive performance in cases, where only a few number of
observations are available. In such situations (simpler) parametric structures, e. g of the baseline

quantities, can be specified that are also included in our approaches as special cases.

The restriction that posterior mean estimates in regularized regression models do not directly provide
access to the variable selection property can be overcome by the application of hard shrinkage
selection rules for the regularized estimates of the regression coefficients or for the posterior inclusion
probabilities provided by the NMIG prior structure. But in our simulations and applications we found
some evidence that posterior mean models without variable selection are beneficial, even if the
sparsity assumption is fulfilled by the data under consideration or when considering the prediction
from regularized regression models. In most of our simulations we have seen that the predictive
performance of sparse final models rarely achieves the predictive performance of the models with the
full predictor. Similar results are obtained from the frequentist perspective, where the performance of
the frequentist ridge models with full predictor was often comparable or higher with respect to the
sparse models obtained with the frequentist lasso. We found also evidence from the practical
perspective, Section 14, that the predictive performance of an estimated model is enhanced, if the
covariate effects are regularized and all covariates are included in the model. In particular the reduced
shrinkage of larger effects with NMIG prior caused a clear loss of the predictive performance and the
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best results are obtained with the ridge regularization. In some of the considered simulations the
HS.STD criterion provided sparse final models with a comparable predictive performance as the full

model, also in combination with the NMIG prior.

In summary, our analyses allow to conclude that, depending on the specific purpose of the analysis,
different variants of Bayesian regularization seem to be more or less suitable. The NMIG prior
structure showed excellent results in the simulations if the underlying model is sparse and the effects
are well separated in clearly small or large effects. The estimated models have a high predictive
performance and (hard shrinkage) variable selection can lead in such cases to sparse final models with
a similar predictive performance as the models with the full predictor. In the higher-dimensional cases
the NMIG-specific reduced shrinkage of larger effects leads to an increased performance compared to
the ridge or lasso prior, but in models with moderate to small effects the estimates obtained with the
ridge or lasso prior outperform the estimates with the NMIG prior. Since we do not know in reality, if
the underlying model is really sparse or something about the effect sizes, it is hard to find
recommendations for the general use of a specific regularization prior or the unrestricted application of
variable selection.

16. Outlook

16.1. Prior tuning

A major topic of the future research is the further investigation of the shrinkage and selection prior
tuning. We provided in Section 4 some crude guidelines for the prior tuning in terms of the
standardized constraint parameter or the intersection points of the mixture components of marginal
NMIG prior for the regression coefficients. These guidelines consider the prior tuning from a “local”
univariate perspective for single regression coefficients and do take not into account the “global”
problem, where the regularization depends also on the number of regularized covariates, the

correlations between the covariates the sample size and the used regression model.

With respect to the results obtained with the higher-dimensional linear predictors there is a need for a
systematic investigation of the prior tuning to counterbalance (to a certain degree) the strong
regularization of larger effects. In particular in the case of the NMIG prior, modifications are required
to stabilize the estimation of inclusion probabilities according to the impact of the covariates and the
separation of moderately large from zero effects. We have seen that the effect of the sole modification
of the model complexity is limited, since it increases at last the inclusion probabilities of the zero
effects and does not promote the separation of the moderate from the zero effects. So the adaption
must also take place on the level of the variance parameters and we have to clarify which of the four
hyperparameters need to be modified and how they are to modify. In the case of the lasso or ridge
prior possibly the adaptive versions with covariate-specific shrinkage parameter (and common
hyperparameters) may help to reduce the strong shrinkage of the larger effects and we have to
determine how the hyperparameters change dependent on the dimension of the considered regularized
covariates. The investigation in models with adaptive versions of the proposed regularization priors
will also be of interest with respect to the front-up scaling of the covariates. Covariate-specific

shrinkage parameters, with individual hyperparameters, allow a covariate-specific tuning of the
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marginal prior of the regression coefficients, which leads to further flexibility and to the option to
adapt the prior to the scale of covariates. A systematic connection between the prior tuning and the
covariate scale could help to overcome the necessity to standardize covariates up-front, since the

priors are allowed to adapt to the varying covariate scales.

A strategy for tuning the priors becomes also important in the lower-dimensional cases, if we will
consider the group-prior versions. In particular with the NMIG prior, the inclusion probability
increases for larger groups of associated regression coefficients (with comparable sizes) and we have
to take into account the group size to avoid e. g. that large groups with small effects achieve a higher
or similar inclusion probability than small groups with large effects. So far we have not regarded the
correlation structure of the covariates with respect to the prior tuning, and this is also a topic for our
future research. Correlations of the covariates can be considered e. g. by the incorporation of the
empirical correlation matrix of the covariates into the Gaussian prior of the regression coefficients,
compare e. g. George and McCulloch (1993). In addition, the investigation of asymptotic properties of
the estimates under the NMIG prior, in analogy to the results presented in Ishwaran and Rao (2005b)
for Gaussian regression models, is of interest and in this case it might be also necessary to modify the

priors to achieve a non-vanishing impact of the regularization priors even for large sample sizes.

At last, the prior tuning must be verified in the specific (survival) regression model and possibly
adapted to the specific regression context, in particular the tuning of the NMIG prior. The NMIG
prior, with hyperparameter constellation used in the CRR simulations and applications, was tuned in
the CRR model. From the Section 13 we have seen that this basic tuning of NMIG prior leads to very
different shrinkage behavior in the AFT and CRR model. While the unregularized estimated effects
under the CRR or AFT model differ only moderately (some effects are larger in the AFT model) the
basic NMIG tuning leads to close to zero estimates for all inclusion probabilities in the AFT model. So
we have to verify the performance of this hyperparameter constellation in the AFT model or search for

alternatives.

16.2. Regularization priors

On the predictor side, in particular with respect to the regularization of linear covariate effects, there
are a lot of self-evident generalizations. Since the scale mixture of normals class is quite large, as
demonstrated for example in Griffin and Brown (2005), other types of regularization priors for linear
predictors, that support such a hierarchical representation, can be considered in the same unified
Bayesian framework. Recently Li and Lin (2010) represented the Bayesian elastic net prior as mixture
of normals with truncated gamma mixing distribution for the variance function which fits also in our

framework and can be utilized for correlated predictors.

In addition, the common regularization for associated groups of regression coefficients, arising e. g.
from categorical covariates, can be considered. We mentioned this expansion already in the Sections
4.1.3, 4.2.3 and 4.3.3, and there are only marginal modifications in the present implementation of the
methods necessary to enable the group-versions of the Bayesian ridge, lasso and NMIG regularization

(also the adaptive group-versions) for subsets of covariates in the extended predictor.

We can also think about a mixture of gdP-distributions as marginal prior of the regression as an
alternative to the mixture of Student t-distributions induced by the NMIG prior structure. This would

lead to a more beneficial behavior of the associated penalty at the origin, due the non-continuous first
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derivate of the marginal prior of the regression coefficients, and should lead to similar theoretical

properties as already derived for the gdP prior.

16.3. Generalized accelerated hazard model

Further it would be interesting to consider the NMIG prior in a kind of regression model selection
framework. Etezadi-Amoli and Ciampi (1987) formulate an extended model for the hazard rate
function that includes several survival model types as special cases. They assume that covariates

X = (X,,...x,)” change the hazard function according to

AMtIx)=A,(t- eXP(X/Bl)) : eXP(X,Bz) s

where two different covariate effects B, and B, modify the baseline hazard function A,(-) and the
hazard function A(-) separately. The authors use regression splines to model the baseline hazard and
the ML approach for inference. This generalized accelerated hazard (GAH) model provides a natural
generalization of the CRR and the AFT model, because the CRR model results for p; =0 and the AFT
model results for P, =PB,. Also the accelerated hazard (AH) model of Chen and Wang (2000) is
included as third special case if B, =0. The GAH model allows the simultaneous treatment of
different assumptions about the covariate impact in one unified regression model and provides the
possibility to discriminate covariates with respect to the fashion how they influence survival time. This
weakens the reliance on specific assumptions about the impact of the whole set of covariates and
provides a very flexible model class, where e. g. subsets of covariates can act in a AFT-, CRR- or AH-
fashioned way on the survival time. The extension of our methodology to the GAH model, in
particular the usage of the selection (or shrinkage) priors in the GAH models is appealing to uncover
either the underlying particular regression model class for the whole set of covariates (at least CRR
with B, =0 or AH with B, =0) or to classify single covariates due to their specific form of influence
(B1;=0 or B,;=0). To detect subsets of covariates with AFT like impact (f, =P, ), a modification of
the shrinkage behavior of the priors is necessary. One option is to allow the shrinkage of coefficients
toward multiple prior means (including the zero mean), where the grouping of coefficients around
specific values of a common grid of prior means for B, and B, may guide the classification. E. g.
MacLehose and Dunson (2010) use a Dirichlet process prior to induce a clustering of the regression
coefficients into groups in the context of the Bayesian lasso prior. For realization we can also think
about the expansion of the NMIG prior by introducing a finite mixture (with more than two
components) for the variance parameter, where the latent component labels (indicator variables) guide
the classification. At least also an extended structured additive predictor could be considered in this

general model class.

16.4. Time dependent covariates

In general, the AFT model would benefit from the further extension of the predictor to take into
account other covariate effects like random effects, covariate interactions or spatial effects and the
implementation of alternative censoring schemes to the right censoring. Another potential for the
generalization of our approach is the extension of the AFT (or GAH) model to take into account
effects of time-dependent covariates x(t) , which seems to be rather a practical and numerical than a
theoretical challenge. E. g. Cox and Oakes (1984) propose the generalization
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ty = (t,B) = [, exp(x(s)B)ds = [, exp(n(s))ds , ()

where t, is the unobservable baseline survival time and t the observable survival time. Inference is
carried out with the hazard rate formulation of the (right-censored) likelihood and the likelihood
contributions are based on the components  A(t)=Ay( I (: exp(n(s))ds)~exp(n(s)) and
Ao(f (:exp(n(s))ds), where A,(-) denotes the hazard function and A,() the cumulative hazard
function of the baseline survival time. To obtain a full likelihood function, Tseng et al. (2005) use (in
the context with longitudinal data) a piecewise constant hazard function to approximate the baseline
hazard, but flexible AFT models can also be obtained in a similar fashion like in the CRR model by
representing the log-baseline hazard as P-spline. It seems to be straightforward to derive a related
hierarchical model structure for the AFT model with time-dependent covariates as for the CRR model
in Sections 7 and 8, if we treat the unobservable baseline survival times t, as latent model variables
that are imputed according to (*). The further use of the IWLS proposals may be a point to think
about, since also first and second order derivates of the baseline hazard are involved in the
construction. In particular, the use of the conditional prior proposals, Knorr-Held (1999), may be
advantageous in this context, since this kind of proposal requires only the evaluation of the log-
likelihood and not the derivates. Due to the integral formulation (*), the computational effort for the
numerical evaluation of the integrals (including A,(-)) during the samplers increases. A similar
representation in terms of the log-linear AFT model with PGM error may be possible, but the
imputation of the exact event times is no longer feasible, since no measurements of the time-dependent

covariates are available after the observed event or censoring time to evaluate (*).

16.5. Software

The current versions of the functions baftpgm() and bcoxpl () enable the fitting of models with
predictors that describe linear and smooth effects of time independent covariates. Both functions will
be further developed to consider extensions of the predictor to take into account other effect types, to
incorporate alternative regularization priors that fit in our hierarchical model structure, to consider the
common regularization of associated groups of covariates, to incorporate alternative censoring
schemes to the right-censoring and to accelerate the samplers by outsourcing the basic routines e. g. to
C++.

Within the Bayesx software the predictor can capture a greater variety of effect types in combination
with the regularization of the linear effects utilizing the adaptive and non-adaptive versions on the
Bayesian ridge, lasso and NMIG prior. Besides the continuous time hazard regression for right
censored observations the methods are available for other censoring schemes like interval censoring or
a broader class of response distributions like right censored discrete time hazard regression, those from
the exponential family or categorical responses. Also the routine regress can be extended with low

expense to take into account the (adaptive) group-versions of the implemented regularization priors.
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APPENDIX

A Extended AFT model

A.1. Penalized Gaussian mixture

Let X follow a Gaussian mixture distribution, i. e., X ~ WlN(ml,s%)+...+ng(mg,sé), where w;,

j=L...,n, denote the mixture weights with w;>0 and w,+w,+..+w, =1, and m;, s?

i represent

the mean and variance of the associated Gaussian basis densities @(-) .

The mixture distribution density is defined as

A.1.1. Mean and variance

The mean and variance of the Gaussian mixture are given as

g g
iy =EX) =) wm;, c%=Var(X)=) w;(m}+s})-pi.

=1 J=1

This can be shown as follows: The expectation of a function h(-) with respect to the mixture

distribution density fx(-) is given by
g g g
E(h(X))= jh(x)fx(x)dx = jh(x)ijcp(x Im;,s?)dx = ZWjIh(X)(p(X Imj,s7)dx =Y wiE; (h(X)),
=1 =l j=l

where E;(h(X)) is the expectation of h(X) with respect to the j-th basis density @(-Im;,s?).

The mean Wy and the variance 6% of the mixture distribution are then obtained as special cases with
the specifications h(X) =X and h(X) =X -puyx)?,i.e.

e =B =Y wiE(X) =) wm;,
o% =Var(X) = ZJ: wiB (X —px) = ZJ: w B (X?) = 2ux ZJ: wm; + M%ZJ: W
=2 wi(Va(X?)+m?)—pk =% wy(s}+m?)—pi,

where m; =IE;(X) and s} = Var;(X) denote the expectation and the variance of X with respect to the
j-th basis density. In the equations for the variance we used the condition D w; =1 and the variance
partition Var(X)=E;(X*)-E;(X)=E;(X*)-mj.
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A.1.2. Standardization

To standardize the mixture distribution, ux =0 and 6% =1, we use the unconstrained coefficients
o =(0,...,0 )" as defined in Section 2.3 with the identifiability constraint o/, =0 and the connection
wy (o) =exp(0ly) / Zf:l exp(e;) , k=1,...,g . To shorten the notation, we write exp(at;) =e% .
For a standardized mixture distribution we obtain the following condition for the mean
g o
€ m, 0
ux=0 & Nt
j=1
g 0 _
=4 zjzle 'm; =0
-3 . 5 -
& 2:‘; e“m;+e™’ m, ,+e*' ' m, ; +m, =0

and for the variance

%_le“j —Z%_le“j (s; +m})
ox=1 & = = =0
¢ o
j=1
g
S ZG“J' (1-s7—-mj})=0
=1
g-3
= e (1-sf—mj)+e*?(1-s;, —mg,)+e*' (1-s;; —m; ) +1-s; —m; =0.

=

The specification of the coefficients o,_;,0, , from the mean condition is

g3 .
(I) % z_zeaj m; — % mg, M, ,
j=1 mg_; my_; Mgy
g-3
m; m,_ m
() g% =—) e% —l-—e% —t-——1
j=1 mg_, my., Mg,

The specifications of the coefficients o, ,a, , from the variance condition is

o3 22 22 22
() e =—Ze°‘l I—s; —m; % l=s,,—m,, B I-s, —mj;
1 2 2 1 2 2 1 2 2 2
j=1 —Sg —Mg —S, My, Eu T
o3 22 22 22
(V) %2 — _z % 1 §; —m; — %! 1 g1 L 1 Sy —My
1 2 2 1 2 2 1 2 2 :
j=1 —Sg 5 —My, —Sg 5 —My, =Sy~
Inserting (V) in (I) we get
g-3 ) g-3 —2_m?2 Q2 _m2 2 _ 2
et = _ze% m; N ze% 1—s{—mj b e I-sg —mg, I-s;-m; |m,, m,
2 2 2 2 2 2
j=1 mg_l j=1 1 - Sg—2 - mg_2 1 - Sg—2 - mg_2 1 - Sg—2 - mg_z mg_l mg_l
2 2 g3 ) —Z_m2 2 m2
el | 1— 1 =S —mpy My | _ —3 e m; l-sj-mj m,, l-s;—-m;, m,, m,
2 2 2 2 2 2
1 - Sg—2 - mg_2 mg_l _l=1 mg_l 1 - Sg—2 - mg_z mg_l 1 - Sg—2 mg_2 mg_l mg_l

g-3
—Z e® ((l —Sgp —my,)m; —(1=sf —m;)m,_, ) +(1—-s; —m;)m, , —(1—s;, —mz ,)m,
j=1

et =

(1- Sé—z - mé—z ym,_ —(1— Sé—l - mé—l ym,_,
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Inserting (III) in (II) we get accordingly

g-3 g-3 1_ 2 _m?2 2  _m?2 —2 _m?2
. m; _ ST —m; 1-s;,—-m;, 1-s;—m m,, m
el — _Z e% b4 ZeaJ - i ; @2 g2 i + - g i el g
J*l mg,z j:1 1 - ngl - mg,l 1 - ngl - mg,l 1 - ngl - mg,l mg,Q mg,z
1-s2,-m?, m,, &3 m; I-s?-m? m,, 1-s2-m? m,;,; m
eocg,g 1_ i i g - _ euj J - J ; g + . g i g _ g
1 - ngl - mg,l mg,Q j:1 mg,z 1 - ngl - mg,l mg,Q 1 - ngl - mg,l mg,z mg,Q

g-3
—z et ((1 =Sz —mg_)m; —(1-sf —m})m,_, ) +(-s; —m;)m, , —(1-s;; —m;_,)m,

el — j=1

a- Sé—l - mé—l ym,_, —(1— Séfz - méfz ym,_

With the definitions

2 2 2 2
- (I=s5, —mg_,)m; —(1—s{ —m7j)m,_, 1 3
J’g_l * 1_ 2 _ 2 _ 1_ 2 _ 2 > J ""’g 7ga
( Sg—2 mg—Z)mg—l ( Sg—l mg—l)mg—Z

. (1-sgy —mg )m; —(1—sf —mj)m,, .
Cign =~ 5 > 5 > , J=L..,g-3,g,
(1 - Sg—l - mg—l )mg—2 - (1 - Sg—2 - mg—2 )mg—l

and taking the logarithm we get, in addition to the identifying constraint o,, =0, the conditions
23 o g3 o,
Oy = log(Z:j=1 €% Cj g +Caoot ), Olyr = log(Z:j=1 €% Cjgn + cg,g,z),
to ensure, that the mixture density is standardized. Using equal basis variances s} =s*, j=1,....g, we

obtain

m-m,, l—-s>’—-mm,
_ J g2 i s
Cig1= > , J=L..g-3.g,
m,  —Mmy, 1-8*—m, m,,

—m. (1-s>—m.m._
m;—my,; (1-s mjmgz)’ i=1.g-3a

je2 1 2
ng,Q - ng,l b mg,lmg,2

A.1.3. Linear transformation

The linear transformation Y =p+06X of the Gaussian mixture distribution X is also a Gaussian

mixture distribution with density

where my ;:=W+0m, denote the knots and s} ;:=0"s] the variances of the associated Gaussian basis

densities @(-) . The mean and variance of Y are given as [y =L+ GOy and 63 =G Oy .

A.2. Full conditional of the scale parameter

With the definitions from Section 6.1.4

Aoi=2tho, 41, B %(y S (Y-t hess Coi=(y—m)'Sim,
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the full conditional of the scale parameter is built as
A
1Y)° 1 1
6% l-)oc| — | exp| ——Bs+—Cs |.

Unimodality of the full conditional

To see the unimodality of the full conditional, we consider the logarithm of the full conditional and the

first derivate with respect to ¢ :

1 1 1 B, C
logp(c®1-)=Aslog| — |-—Bs +—Co =—A,logo? —— +—=—,
gp( ) g(sz ¢’ o ¢ o \/g
A, B, C, 1

N N
ot 2

d
—logp(c*1-)=—
do? ep( ) o2 ot 20°

The possible two roots ¢, and G_ of the expression

—2—14(2A602 +C,06-2B,)=0
(o

from the first derivate (A.1) are given as

G, = ! (_Ccim)z 1 [_C6i|cc| 1+16AGBGJ-

4A, 4A Cs

Since A; >0, B, >0 and since the expression «/l+16AGBG/C(2, >1, we see that for each C, #0
there is only one of the roots positive, i. e. 6, =(—Cs ++/C3 +16A;B, )/ 4A, , which must then be the

single mode of the full conditional distribution.

B Marginal distributions of regularization prior components
In the following derivations we require some properties of the gamma function. The gamma function
is defined via an improper integral I'(x):= j : t*Texp(—t)dt, x >0 and satisfies

C(x+1)=xI(x). (B.1)

Based on the initial definition of the gamma function, we derive with x =a+1 and the substitution

x =t/b the representation

I(a+1)
b*

J‘:xa exp(—bx)dx = (B.2)

B.1. Bayesian ridge prior

Marginal distribution of the regression coefficients

Version (A): Using the hierarchy of the Bayesian ridge prior, version (A), compare Section 4.1.1, we
obtain with the inverse gamma prior of the variance parameters ‘céj Ihyy,hop ~ IGamma(hl,;b,O.ShM)

and with the Gaussian prior of the regression coefficients ;| 'céj ~ N(O,réj) the marginal prior
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p(B;1hizho) = [N(B;10, )- InvGamma (T3 1h;5,%hy; )deg
LThyy )M (hi a4+
e () (B o,
LA
| )
e e (TR UL O
2rl(hy;) ho,m(hys ) L has

2hy )+l

2h541
i r(2) (1 s B?h“ J
F( 2h21,7\ )\/Zh”‘ Zhhzli T 2h1,7» m

In the third conversion we use the connection (B.2). Thus the resulting distribution is a scaled Student
t-distribution with d =2h,;, degrees of freedom and scale parameter s =/h,, / 2h,,

B; Iy ~ t(df =2h .5 =fhy; /20, ).

Version (B): Using the hierarchy of the Bayesian ridge prior, version (B), compare Section 4.1.1, we
obtain with the inverse gamma prior of the variance parameters T3 |h;;,h,; ~ IGamma(hl,;b,O.ShM)
and with the multivariate Gaussian prior of the regression coefficients pt3 ~ N(0,73I) the marginal
prior
p(Blhiz,hor) = [N(B10,73)- InvGamma (<} Ih;5,hyy )d
1h hy s ,
=l () exp (B B+ 4 )55
21 F(hm)
(han Tl +8) gy o) D+ ) ( BB HJ“"”“)
= - S0y = N
$r'r(h,) Jrh, " (hy;) \haa

2hy A+l
2hy 5 +px , - 2
_ ) [, e
F(%M) 2h,; e npx 2h1~’“%

2h;

In the third conversion we use again the connection (B.2). Thus the resulting distribution is a
multivariate, p, -dimensional, scaled Student t-distribution with d=2h,, degrees of freedom and

scale matrix X* =,/h,,/2h,,1

Blh.ho; ~t(df =2h,, TF = fh,; /2h,,1).

B.2. Bayesian lasso prior

Marginal distribution of the variance parameters

Using the hierarchy of the Bayesian lasso prior, Section 4.2.1, we obtain with the gamma prior of the
shrinkage parameter A |h,;,h,; ~ Gamma(h,;,h,;) and with the exponential prior of the variances

75, |A? ~ Exp(3A?) the marginal prior of the variance parameter as
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p(‘téj Ihl,k,hz,k)=J‘Exp T, I%?&)Gamma(k2 Ih;,h,, )dA?

hh' Y (hya+l)-1
= A2 —1A%(t2 +2h dA?
2I'(hy ) j( ) exp( A M))

hyy  T(hy, +D2" iy (2hy,)"

B 2F(h1’k) (Té] + 2h2’;b)h")‘+l ("Cé] +2h2’x)h|_)ﬁrl

b ) _(hl,)ﬂ'l)
— hl,k(zhz,k) o — hl,x TBj +1
(2hy,)" (T3 + D)™ 2hy, | 2hy, ’

which is the density of a generalized Pareto distribution
T3, |hya,hoy ~ gPareto(shape = h, ;,scale = 2h,,/h;) .

In the third conversion we use the connections (B.1) and (B.2) to solve the integral.

Marginal distribution of the regression coefficients

To derive the marginal distribution of the regression coefficients, we require the following integral-

representations of the parabolic cylinder function D_,,(-) of order —2v and D_, () of order —2v+1

- e 2YI'(v m
Io x*Texp(-mx)(x+y) " dx = yl/(z )exp(yTjDZV(\ﬂym), (B.3)
- ot v 1/21—‘
IO x*exp(-mx)(x +y) I dx—m—/()e p( 5 jD 2v+1('\/2ym)’ (B.4)

compare e. g. Griffin and Brown (2005).

With the Gaussian prior of the regression coefficients [3; Itéj ~ N(O0, Téj) and the generalized Pareto
prior of the variance parameters the marginal prior of the regression coefficients is obtained as the

integral

(B Thys,hay) = [TN(B; 10,5 ) gPareto( T} |hl,x,h2,x)dr§j

—(hip+1)
hl?» < 1 BZ '
=M [T B4 dr.
2h,, 21 Jy o] - 2 2h2,x g

With the substitution x; = 1/ T; we get
]

2 —(h3+1)
Ihy,h,, ) = b ; 2ex B 1 +1 dx.
j p J

h2 Y 27[ 2 2h2,;hxj (B 5)

(h]‘)h+l)
hlk 1;»7 Bz J 1
= : 2exp| ——+x; || x + dx..
2hz,;bJ2nj p( 2 ) o, ’

If we use the representation (B.3) of the parabolic cylinder function D, () with the parameters
m=p}/2, v=h,; +1/2 and y=1/2h,,, we obtain for the marginal densities of the regression

coefficients

p(B; 1 his,h ):h 2 ['(hy; +1)exp| — LB p B
j A, o) LA 42h” =2(hy 2 +1/2) \/m
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Derivate of marginal log-prior of the regression coefficients
To obtain the derivate

&p(Bs1hyshsy)

d
_IOgP(lehlx,hzx) (B 'h,.h x)
sy, Dy

dp;

we have to evaluate the derivate in the nominator. Using the expression in (B.5) we obtain

—(h1‘7\+1)
hlkB h17\+ ( Bz j

lh,,,h ! 2exp| ——+x; || x;+ dx..
BJ (BJ LA 2k 2h2k\/ﬁj p 7 j J

If we use the representation (B.4) of the parabolic cylinder function D_,, () with the parameters
m=p}/2,v=h,; +3/2 and y=1/2h,, , we obtain

’

2h,,

1 h
_p(lehl?\.’hZ?\.) BJ L

2 1B,
——=2M*T(h;, +3)exp b Doy, 0| ——— |-
dp, NCE S (hus+3) (4 2h”] e 2[,/2th
Finally, we obtain with I'(h,; +2)=(h,, +3)['(h,, +1) from (B.1) the result
D,z 5 lBJ
Bj 2h1,?» +1 " \[2h27»

|Bj|\/2h2,x D [ IB;1
by -1 \/m

—logp(BJ Ihy,h,, )=
dp;

and the derivate of penalty function reads

(20, 41) Dy 3]/
\/2h2’7~ 72(h,_k+1/2)(‘Bj‘/\/2h2?~) |

Using the connection D, (0) = 2: ! (15%) we obtain at the origin the penalty

pen’(IB; hy;.h,, )=

2h;, +1 Doy, (0) 1 T(hip+1)

"(01hy;,hy5) = ~ '
pen’(01hy,,h,5) \/Zhg,x D_,,,(0) hy, T'(hip +4)

B.3. Bayesian NMIG prior

Conditional distribution of the variance parameter

With the hierarchy of the Bayesian MNIG prior from Section 4.3.1 we obtain for the variance
parameters T3 = Iy}, as the product of a Bernoulli distributed indicator I; and an inverse gamma

distributed variance 7, the densities

2
p(I_l\l.!J2 [ Vo, Vi ,0),h1’w,h2’\|,) = J‘ﬁ[(l — m)svo(x) 0)5v1 (X)iIIGa.l'nl'na.(ﬁC;J | hl’w,hg’wjdx

_ 2 2
= ! mIGamma(T—’ lhyy,hyy j +21Gamma (T—J | hl.w’hZ,wj

Vo Vo Vi Vi

=(1-o)-IGamma(7? I hyy,Voh,, ) + ®-IGamma(T} | h,,, v/h,, ),



234 APPENDIX

which are mixtures of scaled inverse gamma distributions with common shape parameter h;,, and the

scale parameters voh,, and vih,,, .

Marginal distribution of the variance parameters

The marginal densities of the variance parameters are obtained by marginalization of the complexity
parameter which is equipped with a beta prior, i. e. ® ~ Beta(h,,,h,):
[(hy,+hyg)
[(hio)T(hso)
ot vy ) o -0 ()0
I'(hy,+hy,)
[(hy ) (hyg)
_ I(hy+hy,) T(ho)C(hy,+1)
['(hyy)T(hye) T(hy+hse+1)
I'(h+hye) T(he+1)T(hy,)
['(hyy)T(hye) T(hy+hye+1)

h2 ) hl ®
= : IGamma(~t? lh,,voh,y )+ -
hl,u) + h2,u) ( ! Y ’ ZYW) hl,u) + h2,u)

p(il..)= [p(1w2 1vo,vi, 0, by, by )@ (1= )0 g (@) doo

IGamma (2 |h,,,vh,, )jofhwﬂ*l (1— )"} () do

IGamma (rf lhyy,vohs )

IGamma (’CJ2 Ihyy,vihay )
IGamma(T? Ihyy,vihsy )

In the last conversion we use the connection (B.1). In summary, the marginal distribution is a mixture
of inverse gamma distributions with common shape parameter h,, and scale parameters voh,, and

vih,

hy e hio
——2¢ .IGamma(h,,, voh,,) +h+ -IGamma(h,,,,Vih,,) . (B.6)

Tg, Lo~
hl,m+ 2,0 1,u)+ 2,0

Marginal distribution of the regression coefficients

With the Gaussian prior of the regression coefficients B; It5 ~ N(0,t; ) and with the marginal mixture
prior of the variance parameters (B.6) we obtain with similar conversions as in Subsection B.1, the

marginal prior of the regression coefficients as mixture of two scaled Student t-distributions with

d =2h,, degrees of freedom and scale parameters s, =/Voh,,, / h;, and s; =,/vh,, / hyy

Bj [- ~ Lt d= 2h1,W,S — V0h2,\|1 + hl,m tld= 21’11,\‘,,8 _ V1h2,\u .
Ly hl,m +h2,0) Ly

C Taylor expansion of second order

General approach

Let f:RPF >R, f (0) =1(0,,....0,) denote a real valued, two times continuous differentiable function
and let 0 = (e§°>,...,e§:>)’ denote the current state of the Markov chain. The quadratic approximation
f (-) to the function f(-) at the current state is obtained by second order Taylor expansion of the

function f(-) with respect to the current state of the chain 0, which is given as



APPENDIX 235

’

(0)=1(0)+(0-0%) s, () +(0-0) H, (0') (0-0") .1y

with the score vector and hessian matrix defined as the derivates

oy of(e“) oy 0f(0¢)
W (07) = )=

If the components of the approximation f(ﬁ) that do not depend on 0 are omitted, the exponential

function of the approximation

exp((0)) GXP(B’se (0(°>)+%0’He (6)0—0'H, (0 )e<°>J
= eXp(—%ﬂ’(—He (0))0+0"(s, (6 )~ H, (6 )0 )j

is proportional to the density of a multivariate Gaussian distribution with mean vector E(010'”) = fi;"

and precision matrix Prec(010) =TI given by
i =(TL) " (s,(0°) ~ H, ()0, TIy =—H, (0).

In the case of an improper Gaussian distribution, i. e. the Hessian matrix is not of full rank, the
expression (II{”)™" denotes a generalized inverse of the precision matrix. In terms of the covariance

matrix Cov(010) = )if,c) = (f[g;‘))*l we write
iy =0+ L, (0), ¢ =-H,'(0“) (C2)

and direc(fif’,0©) :=—Hjg' (0 )s,(0) = iy —0© denotes the difference vector between the current

state and the approximated mean vector.

Connection to Fisher-scoring

From the representation of the mean vector in (C.2) we can see the close connection to the Fisher-
scoring algorithm. If the function f(0)=1og(L(0)) denotes the log-likelihood function of the
parameter 0 and we want to maximize the function f(-), then we try to find the root of the score
function, 1i. e. Sg(ﬁ) =0. With the first order Taylor expansion to the score function
Se(0) =s4(0©)—Hg(0©)(0—-0©) the problem reads 0=~0© —H;5'(09)s,(0©). Starting with an
appropriate value 0, one iteratively compute the values

9+ =g — Hél (9(0) )Se (G(C))

until the algorithm converges to the desired solution 0, which also maximizes the likelihood
L(0) =exp(f(0)). Thus the mean vector fiy’ of (C.2) can be interpreted as a one step Fisher-scoring
approximation to the mode (i. e. the maximum) of the function exp(f(0)) in the direction
direc(ﬁg°>,9<°>) = maC) —0©

Additional quadratic penalty term

In the presence of an additional quadratic penalty term from a zero mean multivariate Gaussian
distribution, i. e. f,,(0)=f (0)+0.50'S,'0 we get accordingly using the Taylor expansion of f(-)
from (C.1)
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exp(fpen (9)) o exp(ﬂ'se (0¢) +%9’He (0)0—0'H, (0 )0" —%e’zelej

=eXP(—%9’(—H9 (0)+25')0+0'(s, (0°)) —H, (0 )0 )j

This is also a multivariate Gaussian density with mean vector E ., (010)) =}, and covariance

matrix Cov,,,(010) =X given as

R = £ (50 (09) —H, (09)09), £, =(—H, (09)+5;') . (C.3)

Approach with penalized score vector and Hessian matrix

The same result as in (C.3) is achieved, if the quadratic penalty is included in penalized score vector
and the penalized Hessian matrix while accomplishing the Taylor expansion to f,, (0) . The penalized

score vector and penalized Hessian matrix are then given as

O pen (0°')
00

O fpen (0°)

b (0°) = o0

=5,(0'7)-2,'0“, H,,,(0°)= =H,(0“)-xZ,',

and with

exp(fpen (8)) < exp (—%e’(—He,m (09))0+0"(sq 0 (0°)) — H,, (0¢)0¢ )j

we get the mean vector and the covariance matrix of the corresponding multivariate Gaussian

distribution as
ﬁgféen = ﬁgl))en (Se,pen (0(0) ) - He,pen (0(0) )0(0) ) ) ﬁéfl))en = _H;,lpen (0(0) ) ) (C4)

which coincides with the representations in (C.3). We can also write the mean as
fig), =0 +)A:.f,f;enseypen (G(C)), with the difference vector between the current state and the

approximated mean vector direc(fif e, ,0) = Xi S0 pen (0(” ) =g, —0.

D BayesX methods and R functions

Simulation studies and data analysis is carried out with the free software R and Bayesx. The sources
of the software and references, to obtain methodological or implementational details of the used
procedures, are listed in the Reference Section.

D.1. BayesX methods

regress: We use the method regress implemented in the software tool Bayesx (Belitz, C., Brezger,
A., Kneib, T., Lang, S. and Umlauf, N.) to fit the regularized CRR-type regression models based on
the full likelihood. The implemented MCMC simulation techniques are described in Section 9.1. In
general BayesX supports the estimation of structured additive regression models like generalized
additive models, generalized additive mixed models, generalized geoadditive mixed models, dynamic
models, varying coefficient models, as well as the regression for categorical responses, hazard

regression for continuous survival times and continuous time multi-state models within a unifying
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framework. The method regress is extended to consider the shrinkage priors of Section 4.1 to
Section 4.3. For details of the methodological background we refer to the Bayesx homepage, where a
complete list of references is available to download. The provided Bayesx reference manual contains
a detailed description of the Bayesx commands, in particular the subsection “Shrinkage of fixed
effects” covers the syntax for the Bayesian lasso, ridge and NMIG penalty. Below we shortly

summarize the syntax for the regularization of the linear effects for the Bayesx 2.1 version.

D.2. R functions

penalized: The penalized () (Goeman, J. J.) function of the R-package {penalized} is used to fit
frequentist penalized Cox regression models based on the partial likelihood with the lasso or ridge
penalty for the linear effects. The implemented algorithm for maximizing the penalized partial
likelihood follows the full gradient of the likelihood from a given starting value of the regression
coefficients at each step of the maximization, and switches to faster Newton-Raphson steps when it
gets close to the optimum. The tuning (resp. shrinkage) parameter A is determined by Cross-
validation as implemented in the package functions optL1 () and profL1l (). In particular for the Cox
model the cross-validated partial likelihood of Verweij and van Houwelingen (1993) builds the base
for choosing the tuning parameter. As recommended by the author of the package, we use in our
simulations and applications the function optL1 () in combination with the function profL1 () to

validate if optL1 () has converged to the desired optimum.

bayessurv2: As Bayesian competitor to the extended AFT model we used the function
bayessurv2 () of the R-package {bayesSurv} (Komadrek, A.). In this function the error distribution
1s also expressed as a penalized univariate Gaussian mixture with a finite fixed number of components.
The function supports the estimation of unregularized linear effects or random effects. The results for
intercept] und scalel from the generated file gspline.sim represent the samples of the location
component 7Y, and the scale component ¢ of the AFT model with respect to the unstandardized PGM.
No identification constraints for the location and the scale parameter are implemented and therefore,
the trace-plots of the parameters intercept! and scalel do not show stationarity anyhow. But the file
mixmoment.sim, which contains the mean and variance of the baseline error density fy,(y),
Y, =7, +0€, can be used to check the stationarity via the stationarity of the moment estimates. A

recomputation of the weights to show the stationarity is not supported.

pendensity: In the simulation section we also use the function pendensity () of the R-package
{pendensity} (Schellhase, C) for frequentist estimation the error distribution density in the AFT
model. This function is designed for the estimation of penalized densities using P-splines, with
Gaussian or B-spline basis functions, and also allows for the inclusion factor covariates. We only
applied the function to uncensored data without covariates to provide a frequentist competitor for the
results from the Bayesian methods. For details of the specific R-package functions we refer to the

corresponding help files of the package documentation.

baftpgm and bcoxpl : The described Bayesian approach to fit the Bayesian AFT models with extended
predictor and flexible error distribution is implemented in R-function baftpgm (). The corresponding
function for estimation of the Bayesian CRR model with extended predictor based on the partial
likelihood is implemented in R-function bcoxpl (). The following R-functions are used within the

functions baftpgm () or bcoxpl ().
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uni.slice (), ars{ars} for an optional single update of the transformed error weights of the PGM
error density in the AFT model using slice sampling (uni.slice) or adaptive rejection sampling

(ars).

tnorm{msm} to generate truncated normal random variables to impute the latent exact survival times
in the AFT model with PGM error.

rinvGauss{SuppDists} to generate inverse Gaussian random variables to update the variance

parameter ‘céj of the Bayesian lasso regularized linear effects.

rinvgamma{MCMCpack} to generate inverse gamma distributed random variables to update the

variance component ; of the Bayesian NMIG regularized linear effects.

rmvnorm{mvtnorm} to generate multivariate normal random variables of the regularized linear
effects B;. The procedures to determine the matrix root are based on the eigenvalue decomposition

(default), the singular value decomposition and the Cholesky decomposition of the covariance matrix.

rdiric{VGAM} to generate Dirichlet random variables.

D.3. Arguments of the BayesX method regress

The Bayesx syntax of the method regress is extended to consider linear effects that are equipped
with the lasso, ridge or NMIG shrinkage-prior. For the p2>1 regularized linear effects v;, j=1,...,p,
of the corresponding covariates X1,...,Xp the linear predictor components is given as

N=..+7Xl+..+v,Xp+....

The specific BayesxX 2.1 syntax of the individual model terms for the linear covariate effects has the
general form

Ridge-prior: X1 (ridge[,options])+...+ Xp(ridge[,options])
Lasso-prior: X1 (lasso[,options]) +...+ Xp(lasso[,options])
NMIG-prior: X1 (nigmix[,options]) +...+ Xp(nigmix[,options])

with the following shrinkage-prior specific options:

Optional arguments for lasso and ridge terms
a, b (%)

Non-negative, real values, to specify the hyperparameters a=h;;, >0 and bZh,; >0 of the
inverse gamma prior of the shrinkage parameter A. This option is specified in the first
lasso/ridge model term of the predictor.

Default value:  a=0.001,b=0.001
adaptive

Logical value, that specifies the adaptive version of the shrinkage priors, i. e. an individual
shrinkage parameter A; for each covariate effect is estimated. This option is specified in the
first shrinkage model term.

Default value: false
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effect

Real value, that enables to specify the starting value of the linear effect y;. As default, the
starting values are set to the posterior mode, which are initially computed via backfitting within
Fisher scoring steps, compare the BayesX methodology manual for details. If a large penalty for
the regularized effects is used, e. g. when the paths of the regression coefficients are computed,
the implemented computation of the starting values fails sometimes and the sampler does not
start. In such a situation the external specification of small starting values for the regularized
effects overcomes this problem.

Default value: -

shrinkage (*)

Non-negative real value, that specifies the starting value of the shrinkage parameter A . This
option is specified in the first 1asso/ridge model term of the predictor.

Default value:  shrinkage=1

shrinkagefix

tau2

Logical value, that specifies, if the shrinkage parameter A should be fixed at the value specified
in option shrinkage. The shrinkage parameter is treated as fixed, if this option is set in the
first lasso/ridge model term.

Default value:  false

Positive real value, that specifies the starting value of the variance parameter ‘cﬁj. Values have
to be set in each lasso/ridge model term if the default starting value should be modified.

Default value: tau2=0.1

Optional arguments for the nigmix terms

a, b (*)

Non-negative real values, to specify the hyperparameters aZh;, >0 and b=h,, >0 of the
inverse gamma prior of the variance component parameter ;. This option is specified in the
first nigmix model term of the predictor.

Default value:  a=5, b=50

aw, bw (¥)

Non-negative real values, to specify the hyperparameters aw = h,, >0 and bwZ h,, >0 of the
beta prior for the complexity parameter ®. This option is specified in the first nigmix model
term of the predictor.

Default value:  aw=1, bw=1

adaptive

Logical value, that specifies the adaptive version of the shrinkage priors, i. e. an individual
shrinkage parameter ®; for each covariate effect is estimated. This option is specified in the
first shrinkage model term.

Default value: false
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effect

Real value, that enables to specify the starting value of the linear effect 7y;. As default, the
starting values are set to the posterior mode, which are initially computed via backfitting within
Fisher scoring steps, compare the BayesX methodology manual for details.

Default value: -

I
Sets the starting value of the indicator variable I;. Values have to be 0 or 1 to set the indicator
variable point mass at the values v, >0 or v, >0 and have to be set in each nigmix predictor
term.
Default value: 1=1

t2
Provides a starting value for the variance parameter 7. Values have to be positive and have to
be set in each nigmix predictor term.
Default value:  t2=11

v0, vl (¥)
Non-negative real values, to specify the point mass of the indicator variables at the values
v0Zv,>0 or viZv, >0.
Default value:  v0=0.005, vl=1

w (%)
Specifies the starting value of the complexity parameter ®. Values have to be in the interval
0,1).
Default value:  w=0.5

wfix

Logical value, that specifies, if the complexity parameter ® should be fixed at the value
specified in option w. The shrinkage parameter is treated as fixed, if this option is not omitted in
the first nigmix model term.

Default value: false

The options marked with (*) can be specified in each shrinkage term if the adaptive versions of the

penalties should be used.

As an example we consider two covariates X1 and x2. If the predictor is written as
X2 (lasso, shrinkagepar=2, shrinkagefix)+X1 (lasso, shrinkagepar=1.5) the procedure
uses the options of the first lasso term given by X2 (lasso, ...), i. e. the shrinkage parameter is
fixed at the value 2. The option shrinkagepar=1.5 of the second term is ignored. Since the
remaining possible lasso options are not modified the default settings are used.

By default the shrinkage parameter is estimated as well as all other model parameters. It is also
possible to fix the shrinkage parameter through the iterations in order to use a prespecified amount of
shrinkage or to compute the parameter paths as function of the shrinkage parameter. We used this
option to compute the Bayesian versions of the lasso and NMIG coefficient paths in the application

section.
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Resulting objects for lasso and ridge terms

The following listed files contain the associated results to the lasso regularization of the linear effects
and are additionally generated by the use of the method regress. The prefix * denotes the
replacement character for the user specified base-name prefix. If the covariates are regularized by the
ridge prior, the filenames contain the string ridge instead of lasso with the results from the ridge

regression in the corresponding files.

*_f lasso_hyperpar_startdata.raw: Contains the used values of the options a, b,
shrinkagefix and adaptive as explicit or implicit specified in the model terms. The
values 0/1 of shrinkagefix and adaptive correspond to the logical values false/true.
The values coincide per row in the non adaptive case.

*_f lasso_shrinkage.res: Contains summary statistics of the marginal empirical posterior
distribution of the shrinkage parameter A like the posterior mean, standard deviation
and quantiles.

*_f lasso_shrinkage_sample.raw: Contains the sampled values of the shrinkage parameter
A . The columns of the file coincide in the non adaptive case.

*_lasso_shrinkage_startdata.raw: Contains the starting values of the shrinkage parameter
A as set in the options. In the non adaptive case the values for each variable coincide.

*_f lasso_var.res: Contains summary statistics of the marginal empirical posterior distribution of
the covariate specific variance parameters tau2 like the posterior mean, standard
deviation and quantiles.

*_f lasso_variance_sample.raw: Contains the sampled values of the covariate specific variance
parameters tau?2.

*_f lasso_variance_startdata.raw: Contains the starting values of the tau2 parameters for
each penalized covariate effect.

*_lasso_Effects.res: Contains summary statistics of the marginal empirical posterior distribution
of the covariate effects ; like the posterior mean, standard deviation and quantiles. If the
number of regularized covariates is larger than the blocksize parameter (default value
blocksize=20, compare the BayesX manual), the results are partitioned in different
files, where each file contains the results of the covariates corresponding to one block
with the size given in blocksize. The file names run from *_lasso_Effectsl.res,
*_lasso_Effects2.res, ... to the number of the resulting blocks.

*_lasso_Effects_sample.raw: Contains the sampled values of the covariate effects B i - Files are

partitioned in blocks as described in *_lasso_Effects.res.

*_lasso_Effects_startdata.raw: Contains the starting values of the covariate effects P; if
specified in the effect option. Files are partitioned in blocks as described in

* lasso_Effects.res.

Resulting objects for the nigmix terms
Using the NMIG prior the resulting additional files are:

*_f nigmix_hyperpar_startdata.raw: Contains the used values of the options v0, v1, a, b, aw,
bw, wEfix and adaptive as explicit or implicit specified in the model terms. The values
0/1 of wfix and adaptive correspond to the logical values false/true. The values
coincide per row in the non adaptive case.
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*_f nigmix_shrinkage.res: Contains summary statistics of the marginal empirical posterior
distribution of the complexity parameter ® like the posterior mean, standard deviation
and quantiles.

*_f nigmix_shrinkage_sample.raw: Contains the sampled values of the complexity parameter

. The columns of the file coincide in the non adaptive case.

*f nigmix_shrinkage_startdata.raw: Contains the starting values of the complexity parameter
o as set in the options. In the non adaptive case the values for each variable coincide.

*_f nigmix_indicator.res: Contains relative frequencies of the indicator variable value v;.

*_f nigmix_indicator_sample.raw: Contains the sampled values of the covariate specific
variance parameter component I;. The values O or 1 indicate point mass at the values
vo >0 or v; >0.

*_f nigmix_indicator_startdata.raw: Contains the starting values of the variance parameter
component I; for each penalized covariate effect.

*_f nigmix_t2.res: Contains summary statistics of the marginal empirical posterior distribution of
the covariate specific variance parameter component ; like the posterior mean, standard
deviation and quantiles.

*_f nigmix_t2_sample.raw: Contains the sampled values of the covariate specific variance
parameter component \pjz .

*_f nigmix_t2_startdata.raw: Contains the starting values of the variance parameter
component ; for each penalized covariate effect.

*_f nigmix_var.res: Contains summary statistics of the marginal empirical posterior distribution
of the covariate specific variance parameters ’Eéj =TIy} like the posterior mean, standard
deviation and quantiles.

*_f nigmix_variance_sample.raw: Contains the sampled values of the covariate specific
1 2 — 2
variance parameters T; =I;y.
*_f nigmix_variance_startdata.raw: Contains the starting values of the variance parameters
T; =1;y; for each penalized covariate effect.
J

*_nigmix_Effects.res: Contains summary statistics of the marginal empirical posterior
distribution of the covariate effects f; like the posterior mean, standard deviation and
quantiles. Files are partitioned in blocks as described in *_lasso_Effects.res.

*_nigmix_Effects_sample.raw: Contains the sampled values of the covariate effects 3 ;- Files are
partitioned in blocks as described in *_lasso_Effects.res.

*_nigmix_Effects_startdata.raw: Contains the starting values of the covariate effects fB; if
specified in the effect option. Files are partitioned in blocks as described in

* lasso_Effects.res.

D.4. Arguments of the R-function bcoxpl

Usage
bcoxpl (dataset, unpenpri, penpri, splinepri,
simpar=1list (niter=10000,nthin=1,nburn=0,nwrite=10000,catniter=100),

dir=list (outdir=getwd (), outnam="bcpl",overwrite=F),dirfunctions)
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Arguments
dataset: a list, containing the data with the following components:
data

matrix containing, the variables in the model, i.e. the right censored survival times, the
censoring indicator and the covariates that enter the predictor.

time
character string, specifying the column of the data frame specified in the argument data
that is interpreted as the observed survival time.

delta

character string, specifying the column of the data frame specified in the argument data
that is interpreted as the censoring indicator with values O=alive and 1=death.

unpenpri: an optional list, to specify the parameters for the unpenalized linear effects:

names
a character vector, containing the column names of the data that identifies the covariates
corresponding to the unregularized linear effects of the predictor.

start.effect
a numeric vector (with the same length as names), containing the initial values of the
unpenalized effects.

blocksize

an integer, to define the size of the blocks for a simultaneous update of the corresponding
unpenalized effects partitioned into these blocks. The value has to be less than or equal to
the length of the names vector. Consider the situation with covariates X;,X,...,Xy and
the specification blocksize=10. Then the effects of the covariate blocks x;,X,,...,Xg
and X;;,Xj3,...,Xp are simultaneous updated. In each block-update the components of the
full conditional corresponding to the blocks, which are not updated at this time, are
discarded. If not specified, the blocksize is set to the minimum of the length of the names
vector and 20.
randomblocks

logical value, that indicates if the covariates are randomly assigned to the blocks for each
iteration. If not specified, the value is set to FALSE.

penpri: an optional list, to specify the parameters of the regularized linear effects:
type
a character string, that is assumed to name an element from "nigmix", "ridge",

"lasso", "adnigmix", "adridge" or "adlasso" to specify the NMIG, lasso ridge or
the corresponding adaptive priors.

names

character vector, containing the column names of the data that identify the covariates
corresponding to the effects that are regularized by the prior defined in type.

blocksize
the same explanation as in the unpenpri list.
randomblocks

the same explanation as in the unpenpri list.
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start.effect

a numeric vector with the same length as names, containing the initial values of the
regularized effects.

v0, vl

non-negative, numeric values, to specify the point mass of the NMIG-prior
(type="nigmix”) indicator variables I; at the values vO=v,>0 or v1Zv,>0. The
default values are v0=0.005 and v1=1.

hl.t2, h2.t2

both non-negative, numeric values, to specify the hyperparameters hl.t22 h;y, 20 and
h2.t22 h,, 20 of the inverse gamma prior for the variance component parameter ;
if the NMIG-prior (type="nigmix"”) is selected. The default values are h1.t2=5 and
h2.t2=5.

start.t2

non-negative numeric vector with the same length as names, that provides the initial
values for the variance component parameter ;.

start.I

a positive numeric vector with the same length as names, that gives the initial value of
the indicator variable I; for the NMIG-prior (t ype="nigmix”). Values have to be 0 or 1
to set the indicator variable point mass at the values v, >0 or v, >0.

start.tau2

a positive numeric vector with the same length as names, that specifies the initial values
of the variance parameter ’CEJ for the lasso- or ridge prior (type="lasso” or
type="ridge”).

hl.shrink, h2.shrink

each is a single positive numeric (or a positive numeric vector with the same length as
names if the adaptive prior versions are specified), to specify the hyperparameters
hl.shrink2 h;; 20 and h2.shrink 2 h,; 20 of the inverse gamma priors of the
shrinkage parameter A (type="lasso” or type="ridge”) or the hyperparameters
hl.shrink2 h;,,20 and h2.shrink £ h,,=0 of the beta prior for
(type="nigmix"”). The default values are hl.shrink=0.001, h2.shrink1=0.001, if
type="ridge” or type="lasso”, and hl.shrink=1, h2.shrinkl=1, if
type="nigmix”.

start.shrink

a single numeric (or a numeric vector with the same length as names if the adaptive prior
versions are specified), interpreted as the initial value of the shrinkage parameter A
(type="lasso” or type="ridge”) or ® (type="nigmix”). The default value is 0.5.

fix.shrink
Logical value, that specifies, if the shrinkage parameter A (type="”lasso” or
type="ridge”) or ® (type="nigmix”) should be fixed at the value given in option

start.shrink. If not specified, the default value is set to FALSE so that the shrinkage
parameter is estimated.

splinepri: an optional list, to specify the parameters of the regularized smooth effects:

names

a character vector, containing the column names of the data that identify the covariates
corresponding to the non linear effects of the predictor.
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blocksize

the same explanation as in the unpenpri list, but a vector with the same length as
names. As default, the blocksize of each spline corresponds to the number of used basis
functions.

randomblocks

the same explanation as in the unpenpri list, but a vector with the same length as

names.
degree

an integer vector with the same length as names, containing the degrees of the splines.
The components of degree vector are set per default to degree=3.

nbasis

an integer vector with the same length as names, containing the number of B-spline basis
functions to model the nonlinear effects.

difforder

an integer vector with the same length as names, containing the difference order of the
smoothing penalty.

hl.tau2, h2.tau2

both non-negative numeric vectors, with the same length as names containing the
hyperparameter values hl.tau22 hi; >0 and h2.tau2 2 h,., >0 of the inverse
gamma priors for the smoothing variances réj . The default values are h1.tau2=0.001
and h2.tau2=0.001.

start.tau2

non-negative numeric vector, with the same length as names containing the initial values
of the smoothing variances ‘céj . The components of starting vector are set per default to 1.

start.effect

a list, with the same length as names. Each component of the list is a numeric vector that
contains the initial values of the basis function weights.

simpar: a list, giving the parameters of the MCMC simulation:
niter
an integer, giving the number of iterations for the sampler.
nthin

an integer, giving the thinning parameter of the chain to compute the characteristics of the
parameter specific marginal empirical posterior distribution like the mean, standard
deviation and quantiles. The sequence from nburn to niter by nthin is used for
printing these results on the screen. In the output files all sampled values given by niter
are stored.

nburn

an integer, that sets the number of initial sampled values treated as burn-in values.
nwrite

an interval, with which the sampled values are written to the output files.
seed

an optional single value, interpreted as an integer to define the seed parameter of the
implied function set .seed ().
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catniter

an interval, at which information about the number of performed iterations is printed on
the screen.

dir: a list that specifies the directory information to store the sampled values with components:
outdir

a character string, that specify a directory where the output files should be stored. All
output files will be named with “outnam_" as prefix.

outnam
a character string, used as prefix of the generated output files.
overwrite

a logical value, which enables to overwrite existing files with the same outnam in the
outdir directory.

dirfunctions: a character string, specifying the directory where collection of implemented function
are stored.

Value

A character vector, that contains the storing paths of each generated file to load the results into R.

Files created
The * prefix denotes the replacement character for the user specified base name as defined in outnam.

*_mcmc_call.RData: File with the arguments of the function call.

*_mcmc_design.RData: File that contains the specification of all parameters of the function.
*_mcmc_result .RData: File that contains the storing paths of each generated file.
*_sim_unpen_gamma.RData: Optional file that contains the samples of the unpenalized effects.

*_sim_unpen_accepted.RData: Optional file that contains the acceptance status of the
unpenalized effects in each iteration. O=rejected, 1=accepted.

*_sim_pen_beta.RData: Optional file that contains the samples of the penalized effects.

*_sim_pen_accepted.RData: Optional file that contains the acceptance status of the penalized
effects in each iteration. O=rejected, 1=accepted.

*_sim_pen_I.RData: Optional file that contains the samples of the indicator variables if the NMIG-
prior is used.

*_sim_pen_t2.RData: Optional file that contains the samples of the variance components 7 if the
NMIG-prior is used.

*_sim_pen_shrink.RData: Optional file that contains the samples of the shrinkage parameter.
*_sim_pen_tau2.RData: Optional file that contains the samples of the variance parameters.

*_sim_spline_beta_xx.RData: Optional file that contains the samples of the basis function
weights. xx in the filename denotes the covariate name corresponding to the smooth
effect.

*_sim_spline_accepted_xx.RData: Optional file that contains the acceptance status of the
smooth effects in each iteration. O=rejected, 1=accepted. xx in the filename denotes the
covariate name corresponding to the smooth effect.
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*_sim_spline_tau2_xx.RData: Optional file that contains the samples of the smoothing variance
spline estimation. xx in the filename denotes the covariate name corresponding to the
smooth effect.

Example

# Using the veteran data from the R-package {survival}

my.veteran <- as.matrix(veteranf,-2])

bcoxpl (dataset= list (data=my.veteran,time="time",delta="status"),
penpri=list (type="lasso",names=c ("karno", "age"),
start.effect=rep(0.01,2),start.tau2 = rep(1/10,2),
hl.shrink = 0.01, h2.shrink = 0.01, start.shrink = 1),
simpar= list (niter=10000,catniter=100),

dirfunctions=file.path(".","RWD", "FUNCTIONS"))

D.5. Arguments of the R-function baftpgm

The function is described in the version that was used for the simulations.

Usage
baftpgm(dataset,
errorpar=1list (method.alpha="mhcond",order.alpha="fix1l",
method.rlabel="gibbs", djust.alpha="no",
scalebasis=FALSE, scalebasis.type="s"),
errorpri,unpenpri,penpri, splinepri,
simpar=1list (niter=10000,nthin=1, nburn=0,nwrite=10000,catniter =100),
dir=list (outdir=getwd (), outnam="bpgm", overwrite=FALSE),

dirfunctions, errorplot)

Arguments
dataset: a list, containing the data with the following components:
data

a matrix, containing the variables in the model, i.e. the right censored survival times, the
censoring indicator and the covariates that enters the predictor.

logT
a character string, specifying the column of the data frame specified in the argument
data that is interpreted as the logarithm of the observed survival time.

delta

a character string, specifying the column of the data frame specified in the argument
data that is interpreted as the censoring indicator with values O=alive and 1=death.

errorpar: a list, giving the method to update the error weights, compare Section 6.1.3:
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method.alpha

a character string, that is assumed to name an element from "ars", "slice",
"dirichlet", "mhmarg", "mhcond", "mcondstep" or "mcondblok" to specify the
update method of the error weights.

order.alpha

a character string, that is assumed to name an element from "fix1", "fix2",
"randoml" or "random2" to specify the order of the updated error weights. This
argument is only used in combination with method.alpha="mcondstep”,
method.alpha="ars” ormethod.alpha="slice”.

scalebasis

logical value. If specified as TRUE, in each iteration the basis knots and basis variances
are recomputed so that the error distribution has zero mean and unit variance.

errorpri: a list, giving the parameters of the error density:
type
a character string, which is assumed to name an element from "gaussian" or "pgm" to

specify, if the error distribution is assumed to be Gaussian or a penalized Gaussian
mixture (PGM).

difforder
an integer, giving the difference order of the smoothing penalty for the error distribution
if type="pgm”.

start.muknots

a numeric vector, specifying the position of the Gaussian basis function means m;. As
default g, =31 knots building a sequence from m; =—4.5 to m,, =—4.5 with differences
0.3 are used.

start.s2knots

a numeric value or numeric vector, with the same length as start .muknots specifying
the variances sJ? of the Gaussian basis functions. As default, all variances are set to the
value s7 =0.2%.

zero.alpha
an integer, giving the index of the reference knot. As default, the middle knot is used.
start.weight

a positive numeric vector of the same length as start .muknots, with the starting values
of the error weights w;.

start.alpha

an optional numeric vector of the same length as start.muknots, with the starting
values of the transformed error weights. If not specified, each transformed weight, except
the reference weight zero.alpha, is set to 0.01.

start.intercept
a numeric value, giving the initial value of the shift vy, of the error distribution.
start.rlabel

a vector, that specifies the initial labels r; of the mixture components, into which the
residuals are intrinsically assigned. The label have the values from {1,...,g,} .
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hl.sigma2, h2.sigma?2

both  non-negative  numeric  values, to  specify the  hyperparameters
hl.sigma22h,4>0 and h2.sigma22h,, >0 of the inverse gamma prior for the
scale parameter 6°. Default values are h1.sigma2=0.001 and h2.sigma2=0.001.

start.sigma2

a positive numeric, giving the initial value of the scale parameter 6> . The default value is

start.sigmaz=1.
slice.sigmaz2.m, slice.sigma2.w, slice.sigma2.lower, slice.sigmaZ2.upper

arguments correspond the arguments m, w, lower and upper of the R-function

uni.slice().
hl.tau2,h2.tau2

both non-negative numeric values, containing the hyperparameter values
hl.tau22 h;;,, 20 and h2.tau2 £ h,,, 20 of the inverse gamma prior for the
smoothing variance 1, for the error density. The default values are hl.tau2=0.001
and h2.tau2=0.001.

start.tau2

non-negative numeric, giving the initial value of the smoothing variances 7t . The
default value is start .tau2=0.001.

scaledpri

option, to specify the scale-dependent prior versions, compare Section 6.2.4 The default
is scaledpri=FALSE.

unpenpri: an optional list, to specify the parameters for the unpenalized linear effects:
For details compare the description of the function bcoxpl ().
penpri: an optional list, to specify the parameters of the regularized linear effects:
For details compare the description of the function bcoxpl ().
splinepri: an optional list, to specify the parameters of the regularized smooth effects:
For details compare the description of the function bcoxpl ().
simpar: alist, giving the parameters of the MCMC simulation:
For details compare the description of the function bcoxpl ().
dir: a list, that specifies a directory information to store the sampled values with components:
For details compare the description of the function bcoxpl ().
dirfunctions: a character string, specifying the directory with the implemented function:
For details compare the description of the function bcoxpl ().
errorplot: an optional list, to plot the estimated error density through the iterations in a postscript
file:
plotiter
an integer, to specify an interval at which the error density is printed in the output file.
rn.grid

a vector, that specifies the grid points at which the error density is evaluated and plotted.

Value

A character vector, that contains the storing paths of each generated file to load the results into R.
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Files created

The * prefix denotes the replacement character for the user specified base name as defined in outnam.

*_mcmc_call.RData: File with the arguments of the function call.

*_mcmc_design.RData: File that contains the specification of all parameters of the function.
*_mcmc_result .RData: File that contains the storing paths of each generated file.
*_sim_unpen_gamma.RData: Optional file that contains the samples of the unpenalized effects.
*_sim_pen_beta.RData: Optional file that contains the samples of the penalized effects.

*_sim_pen_I.RData: Optional file that contains the samples of the indicator variables if the NMIG-
prior is used.

*_sim_pen_t2.RData: Optional file that contains the samples of the variance components 7 if the
NMIG-prior is used.

*_sim_pen_shrink.RData: Optional file that contains the samples of the shrinkage parameter.
*_sim_pen_tau2.RData: Optional file that contains the samples of the variance parameters.

*_sim_spline_beta_xx.RData: Optional file that contains the samples of the basis function
weights. xx in the filename denotes the covariate name corresponding to the smooth
effect.

*_sim_spline_tau2_xx.RData: Optional file that contains the samples of the smoothing variance
spline estimation. xx in the filename denotes the covariate name corresponding to the
smooth effect.

In addition
*_sim_error_alpha.RData: Optional file that contains the samples of the transformed error
weights ol ;.

*_sim_error_accepted.RData: Optional file that contains the acceptance status of the
transformed error weights if method is set to “mhmarg”, “mhcond”, "mcondstep” Or
"mcondblock” in each iteration. O=rejected, 1=accepted.

*_sim_error_sigma2.RData: File that contains the samples of the scale parameter c~.
*_sim_error_tau2.RData: File that contains the samples of the smoothing parameter T, .

*_sim_error_muknots.RData: Optional file, if scalebasis=TRUE, that contains the corrected
positions of the basis function knots m; of each iteration.

*_sim_error_s2knots.RData: Optional file, if scalebasis=TRUE, that contains the corrected
positions of the basis function variances s} of each iteration.

*_sim_error_rlabel.RData: samples labels r, of the mixture components into which the
residuals are assigned.

*_sim_errorvideo.ps: File created if the option errorplot is specified.

Example

load(file.path(...,"pbcliver.RData"))

bpgm <- baftpgm(dataset=1list (data=pbcliver,logT="logtime",delta="delta"),
errorpar=1list (method.alpha="slice"),
errorpri=list (type="pgm", start.muknots=seq(-4.5,4.5, length.out=21),

start.s2knots=0.25"2,start.intercept=1,
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hl.sigma2=0.001,h2.sigma2=0.001, start.sigma2=1"2,
hl.tau =1,h2.tau2=0.001,start.tau2=0.001),
penpri=list (type="lasso",names=c ("chol", "age"),
start.effect=rep(0.01,2),start.tau2=rep(1/10,2),
hl.shrink=0.01,h2.shrink=0.01,start.shrink=1),
simpar=1list (niter=10000, catniter=100),
dirfunctions=file.path(".", "RWD", "FUNCTIONS"),

errorplot=1list (plotiter=100,rn.grid=seqg(l,15,by=0.1)))
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Abbreviations

We use the following abbreviations

AIC Akaike-Information-Criterion
DIC Deviance-Information-Criterion
gP generalized Pareto

gdP generalized double Pareto

IQR interquartile range

IBS integrated Brier score

MAP maximum a posteriori

MCMC Markov-Chain-Monte-Carlo
MH Metropolis-Hastings

ML maximum Likelihood

MSE mean squared error

PGM penalized Gaussian mixture
P-spline penalized spline

p.d.f. probability density function
c.d.f. cumulative distribution function
i.i.d. independent and identically distributed

For the description of the simulation and application results, the following abbreviations are used to
reduce the writing.
In the case of the accelerated failure time model of Section 10 we use the abbreviations

PGM: if the baseline error distribution is modeled by a penalized Gaussian mixture,

AFT: if the baseline error distribution is Gaussian.

For the Cox type hazard rate models of Section 11 we use
CPL: if inference is based on the partial likelihood,
CFL: if inference is based on the full likelihood P-spline baseline hazard,
WB: for the special case of the full likelihood corresponding to the Weibull model.

When results are achieved via Bayesian inference the previous abbreviations are combined with
B: to denote models without regularization of the linear effects,
BL: to denote models with Bayesian lasso regularization of the linear effects,

BN: to denote models with Bayesian NMIG regularization of the linear effects,
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BR: to denote models with Bayesian ridge regularization of the linear effects,

BT: to denote models where the predictor contains only the “true” nonzero effects.

The frequentist models are combined with

Step: to denote the backward stepwise selection based on AIC,

PenL: to denote a penalized partial likelihood based CRR model with lasso penalty,

PenR: to denote a penalized partial likelihood based CRR model with ridge penalty,

T: denote models where the predictor contains only the “true” nonzero effects.
For the Bayesian approaches, the hard shrinkage methods described in Section 4.4 are additionally
assigned with

HS.CRI: if hard shrinkage is done via the 95% credible region,

HS.STD: if hard shrinkage is done via the one standard error region,

HS.IND: if hard shrinkage is done via the NMIG indicator variables.
For example, WB.BN-HS.IND denotes the Bayesian Weibull model under NMIG penalty, if the
covariate specific indicators are used to select the covariates for the final model, and CPL.PenL is the

short cut for the frequentist lasso penalty applied to the linear predictors, if inference is carried out
with the partial likelihood.

The notation for different update schemes of the transformed error weights in the AFT model with
PGM error are introduced in Section 6.1.3. They are combined with the following suffixes to indicate
the specification of some options of the function baftpgm (), compare Appendix D.5:

FK: indicates the specification scalebasis=FALSE,
otherwise (if scalebasis=TRUE) the knots are transformed to standardize the error density

estimation in each iteration loop of the sampler. In particular the two update schemes “slice” and

“mcondstep” enable to vary order of the update of the transformed error weights:
RO: indicates the specification order.alpha="£ix2",
R1: indicates the specification order.alpha="randoml”,

R2:  indicates the specification order.alpha="random2"”.

For example, “sliceRIFK” denotes that the update schemes “slice” is used to update the transformed
error weights (method.alpha="slice”) with the options order.alpha="randoml” and
scalebasis=FALSE.
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