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Abstract

Abstract

Most of the commonly used antidepressants block monoamine reuptake
transporters to enhance serotonergic or noradrenergic neurotransmission.
Effects besides or downstream of increased monoaminergic
neurotransmission are poorly understood and yet presumably important for
the drugs’ mode of action. In my PhD thesis | employed proteomics and
metabolomics technologies combined with in silico analyses and identified
cellular pathways affected by antidepressant drug treatment. DBA/2 mice
were treated with paroxetine as a representative Selective Serotonin
Reuptake Inhibitor (SSRI). Hippocampal protein levels were compared
between chronic paroxetine- and vehicle-treated animals using in vivo °N
metabolic labeling combined with mass spectrometry. | also studied chronic
changes in the hippocampus using unbiased metabolite profiling and the time
course of metabolic changes with the help of a targeted polar metabolomics
profiling platform. | identified profound alterations related to hippocampal
energy metabolism. Glycolytic metabolite levels acutely increased while Krebs
cycle metabolite levels decreased upon chronic treatment. Changes in energy
metabolism were influenced by altered glycogen metabolism rather than by
altered glycolytic or Krebs cycle enzyme levels. Increased energy levels were
reflected by an increased ATP/ADP ratio and by increased ratios of high-to-
low energy purines and pyrimidines. Paralleling the shift towards aerobic
glycolysis upon paroxetine treatment | identified decreased levels of Krebs
cycle and oxidative phosphorylation enzyme levels upon the antidepressant-
like "N isotope effect in high-anxiety behavior mice. In the course of my
analyses | also identified GABA, galactose-6-phosphate and leucine as
biomarker candidates for the assessment of chronic paroxetine treatment
effects in the periphery and myo-inositol as biomarker candidate for an early
assessment of chronic treatment effects. The identified antidepressant drug
treatment affected molecular pathways and novel SSRI modes of action
warrant consideration in antidepressant drug development efforts.
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1 INTRODUCTION

1 INTRODUCTION

1.1 Major depressive disorder and the monoamine deficiency
hypothesis of depression

1.1.1 Major depressive disorder

Major depressive disorder (MDD) is a severe and life-threatening disease
(about 15% of depressed patients commit suicide (Maniji et al., 2001)) with a
population prevalence of 17% (Kessler et al., 2007; Burmeister et al., 2008).
By the year 2030 major depression is projected to be the second leading
contributor to the global burden of disease (disability adjusted life years,
DALY) and the leading contributor in high-income countries (Mathers and
Loncar, 2006).

MDD etiology is poorly understood and there are no objective diagnostic tests
available. The diagnosis of depression is based on a highly subjective and
variable set of symptoms such as depressed mood, loss of interest,
diminished sense of pleasure, irritability, low self-esteem, weight loss or
weight gain, insomnia or hypersomnia or recurrent thoughts of death and
suicide that last for more than two weeks and disrupt normal social and

occupational functioning (Nestler et al., 2002; Mann, 2005).

1.1.2 Current antidepressant treatment and the monoamine deficiency
hypothesis of depression

More than 50 years ago it was observed serendipitously that the monoamine
oxidase inhibitor (MAOQOI) iproniazid, initially developed for the treatment of
tuberculosis (Bloch et al.,, 1954), and the tricyclic agent (TCA) imipramine,
initially developed for the treatment of psychotic disorders (Kuhn, 1958),
exerted antidepressant effects in man. Iproniazid increased monoamine levels
by inhibiting their catabolism by monoamine oxidase and imipramine amplified

monoamine signaling by inhibiting monoamine reuptake at the presynapse.
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Based on these findings the monoamine deficiency hypothesis of depression
proposed that increasing synaptic availability of monoamines elicits
antidepressant effects and that MDD involved the decrease of monoamines in
the brain (Schildkraut, 1965; Coppen, 1967; Wong and Licinio, 2004).

In the 1980s, based on the monoamine deficiency hypothesis of depression,
antidepressant drug development efforts focused on the rational design of
agents with selective monoamine-uptake inhibitory properties. Selective
Serotonin Reuptake Inhibitors (SSRIs, e.g. paroxetine, fluoxetine) (Vaswani et
al.,, 2003, see Figure 1) and, to a lesser extent, Selective Noradrenaline
Reuptake Inhibitors (SNRIs, e.g. reboxetine) (Brunello et al., 2003) were
developed that did not affect other neuroreceptor systems for increased safety
and tolerability. According to meta-analyses, SSRIs and SNRIs exhibit
favorable side effect profiles but equal treatment efficacy and onset of action
compared to TCA treatment (Song et al., 1993; Montgomery et al., 1994;
Anderson, 2000; Peretti et al., 2000). Shortcomings of current monoaminergic
antidepressant treatment include a delayed onset of therapeutic action (up to
2-8 weeks), adverse side effects (e.g. sexual dysfunction or sleep
disturbances) and a low response rate (about 50-80%) (Holsboer, 2001;
Wong and Licinio, 2004; Berton and Nestler, 2006).

To face the challenges of increasing numbers of depressive patients and
increasing economic burden in the coming decades it is mandatory to have
better antidepressant drugs at hand with increased efficacy, less side effects

and faster onset of therapeutic action.
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Figure 1. Mode of SSRI drug action.
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1.2 Antidepressant treatment effects beyond monoamine
reuptake inhibition

Contrary to the monoamine deficiency hypothesis of depression, monoamine
depletion does not induce depression in healthy humans (Ruhe et al., 2007).
Moreover, although pharmacological modulation of monoamine receptors
represents an acute antidepressant treatment effect therapeutic effects are
delayed by several weeks (Gould and Maniji, 2002). Additionally, a study by
Nickel et al. (Nickel et al., 2003) found that serotonin reuptake inhibition (by
paroxetine treatment) and serotonin reuptake enhancement (by tianeptine
treatment) elicit antidepressant effects. Both paroxetine and tianeptine
treatment normalized hypothalamic-pituitary-adrenal (HPA) axis reactivity,
indicating that opposite effects on the serotonin system may lead to common
downstream pathway alterations.

The most parsimonious explanation for these findings is that monoamine
elevation per se is not the only source for therapeutic antidepressant activity
but secondary long-term downstream effects may also be involved in the
alleviation of depressive symptoms (Brady et al., 1992; Michelson et al., 1997,
Holsboer, 2001). It is tempting to speculate that for improved antidepressant
treatment it would be beneficial to pharmacologically interfere with these

downstream mechanisms directly.
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The following chapters (1.2.1-1.2.4) overview the major hypotheses of
antidepressant treatment effects beyond monoamine reuptake inhibition. It is
important to note that this overview is not exclusive, there is no consensus on
which effects are most relevant for therapeutic action and molecular

antidepressant treatment effects in general remain elusive.

1.2.1 Intracellular signaling events upon antidepressant treatment
Monoaminergic neurotransmission is mainly mediated via G-protein coupled
receptor (GPCR) signaling and different monoamine receptor families are
coupled to different G-proteins. Dependent on the receptor subtype two major
‘prototypical” intracellular signal transduction pathways are involved: (1)
cAMP signaling upon Gj, or Gg activation and (2) phosphatidylinositol
signaling upon G, activation. Gy, inhibits adenylate cyclase (AC) activity
leading to reduced second messenger cAMP generation and in turn reduced
protein kinase A (PKA) activity whereas Gs activates AC activity leading to
increased PKA activity. Gq activates phospholipase C (PLC) leading to
increased generation of the second messengers inositol phosphate (IP) and
diacylglycerol (DAG) and in turn increased protein kinase C (PKC) activity.
PKA and PKC mediated protein phosphorylation eventually lead to gene
expression alterations (Millan et al., 2008). PKA phosphorylates the cAMP
response element binding protein (CREB) that in turn binds to the cAMP
response element (CRE), a gene element found in the promoters of a few
thousand genes (Gould and Maniji, 2002; Impey et al., 2004).

Despite extensive cross-talk between PKA and PKC mediated systems,
antidepressant treatment is believed to mainly influence cAMP/PKA signaling
cascades and phosphatidylinositol/PKC signaling seems less relevant
(Shelton, 2000; Perera et al., 2001). Specifically, chronic antidepressant
treatment alters mRNA and protein levels of G protein alpha subunits in a
brain region- and antidepressant drug-specific manner (Lesch and Maniji,
1992; Li et al.,, 1996; Li et al., 1997; Raap et al., 1999). Antidepressant
treatment also induces a translocation of PKA from the cytosol to the nucleus
in rat frontal cortex cells (Nestler et al., 1989) and increases PKA dependent
phosphorylation events (Perez et al., 1989; Perez et al., 1991).

4
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1.2.2 Induced neurogenesis upon antidepressant treatment

Long-term antidepressant treatment increases cellular CREB mRNA, CREB
protein and CREB/CRE binding in the hippocampus (Nibuya et al., 1995;
Nibuya et al.,, 1996; Duman et al., 1997). The same studies found that the
CREB regulated gene products BDNF and its receptor trkB were upregulated
upon long-term treatment. Other studies indicate that antidepressant
treatment regulates CREB in a brain region-specific manner and that CREB
exerts opposing effects on depression-like features in different brain regions
(Schwaninger et al., 1995; Nibuya et al., 1996; Manier et al., 2002; Newton et
al., 2002).

CREB and the neurotrophin BDNF have been considered key regulators of
neuronal survival and plasticity, including neurogenesis and synaptogenesis
(Nakagawa et al., 2002; Castren, 2004; Malberg and Blendy, 2005; Gass and
Riva, 2007). Antidepressant treatment appears to protect against hippocampal
volume loss in depressed patients (Sheline et al., 2003), antidepressant drugs
enhance neurogenesis in rodent hippocampi (Malberg et al., 2000) and
Santarelli et.al. (Santarelli et al., 2003) have shown that hippocampal
neurogenesis is required for antidepressant induced behavioral effects in
mice. Based on these findings the neurotrophic hypothesis of depression
postulates that hippocampal neuronal atrophy (due to stress and decreased
expression of BDNF and other growth factors) contributes to depression and
antidepressant treatment effects derive from an upregulation of BDNF in the

hippocampus (Wong and Licinio, 2004; Duman and Monteggia, 2006).

1.2.3 Altered stress response upon antidepressant treatment

Hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis is a putative
risk factor predisposing to the development of depression. A significant
percentage of depressed patients exhibit HPA axis hyperactivity due to, at
least in part, impairment of corticosteroid receptor function which is also
reflected by an inappropriate response in the dexamethasone/corticotropin-
releasing hormone (DEX/CRH) test (Holsboer, 2001; Pariante and Lightman,

2008). Successful antidepressant treatment is associated with resolution of
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the impairment in the negative feedback on the HPA axis by glucocorticoids
(Pariante, 2006).

The CRH promotor region contains a CRE sequence (Spengler et al., 1992)
and antidepressants may influence the stress system via PKA mediated
signaling and regulation of CREB. Indeed, antidepressant treatment reduces
CRH concentrations in the cerebrospinal fluid (CSF) (Nemeroff et al., 1991;
De Bellis et al., 1993; Veith et al., 1993; Heuser et al., 1998). Additionally,
antidepressant treatment decreases HPA axis stress reactivity associated with
increased binding capacity of corticosteroid receptors in the hippocampus
(Reul et al., 1994), alters glucocorticoid receptor (GR) expression, and
improves GR function and GR-mediated feedback inhibition (Brady et al.,
1991; Brady et al., 1992; Michelson et al., 1997; Holsboer, 2001; Pariante and
Lightman, 2008).

1.2.4 Unifying link between distinct mechanisms of antidepressant drug
action

A recent study identified a putative link between antidepressant treatment
induced changes on intracellular PKA mediated signaling (see chapter 1.2.1),
neurogenesis (see chapter 1.2.2) and the HPA axis (see chapter 1.2.3).
Specifically, in vitro experiments indicated that induced neurogenesis upon
SSRI (sertraline) treatment is dependent on GR function that is associated
with GR phosphorylation via PKA activity (Anacker et al., 2011). This and
other findings indicate that distinct hypotheses for the mode of antidepressant
action do not compete and exclude each other but rather complement each
other (Perera et al., 2001).

Taken together, despite tremendous efforts during the last decades, the
precise mechanism of antidepressant action remains elusive and studies on
current antidepressant treatment effects are in great demand for a better

understanding of antidepressant elicited therapeutic as well as side effects.
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1.3 Biomarker discovery

1.3.1 Biomarkers and surrogate endpoints

Biomarkers are used as diagnostic tools for the objective determination of
disease state, disease progression, disease prognosis or treatment effects
and response. According to the National Institutes of Health, a biomarker is “a
characteristic that is objectively measured and evaluated as an indicator of
normal biological processes, pathogenic processes, or pharmacological
responses to a therapeutic intervention” (Biomarkers Definitions Working
Group, 2001). A biomarker that is reasonably likely to predict clinical benefit
may also be used as surrogate endpoint, i.e. be used as “biomarker that is
intended to substitute for a clinical endpoint. A surrogate endpoint is expected
to predict clinical benefit (or harm or lack of benefit or harm) based on
epidemiologic, therapeutic, pathophysiologic, or other scientific evidence”

(Biomarkers Definitions Working Group, 2001).

1.3.2 Biomarkers for antidepressant treatment effects

At present there are no biomarkers that are used in clinical practice for any
psychiatric disorder. Biomarkers for antidepressant treatment response could
accelerate drug discovery as surrogate endpoints and hence reduce
production costs and pipeline development time (Schwarz and Bahn, 2008).
Biomarkers could help to predict antidepressant treatment response early in
the course of treatment in order to minimize protracted serial trial-and-error
(Rush et al., 2009; Leuchter et al., 2010), inform on drug dosing and help
minimize inter-individual variation in antidepressant treatment response
(Biomarkers Definitions Working Group, 2001).

Because psychiatric diseases are considered complex disorders of the brain,
major affected biochemical pathways in disease or upon treatment are
expected to be primarily altered in the brain. Plasma, on the other hand, is the
preferred specimen for a biomarker assay due to its accessibility, reproducible
sampling methods and the fact that small brain molecules are excreted via

plasma (Leuchter et al., 2010). The ideal biomarker for psychiatric disorders
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would be measured in the periphery and represent a highly sensitive and
specific indicator of disease pathways in the brain.

Due to the complex etiology and polygenic character of psychiatric disorders
biomarker signatures rather than single biomarkers are expected to depict
more accurately behavioral phenotype changes (Filiou et al., 2011a). A single
biomarker will usually have small effect sizes and several biomarkers need to
be combined for a robust prediction of disease state or treatment effects
(Singh and Rose, 2009).

1.4 Mouse models in antidepressant treatment research
Although human material is the most relevant specimen for the analysis of
psychiatric disease etiology and antidepressant treatment effects, exploratory
studies frequently rely on the investigation of rodent brains (Nakatani et al.,
2004; Wong and Licinio, 2004; Yamada and Higuchi, 2005; Conti et al., 2007;
Sillaber et al., 2008) for the following reasons: (1) fresh human brain tissue,
the most relevant organ for psychiatric disorders, is inaccessible due to ethical
reasons (Sullivan et al., 2006); (2) human post mortem brain, cerebrospinal
fluid (CSF) or plasma are of limited availability; (3) the inter-individual genetic
and life style variability combined with the low sample quantity available pose
serious challenges for analytical efforts (Filiou and Turck, 2011); (4) the
presence of confounding factors like brain pH, post mortem interval, age, use
of antidepressant or other drugs, smoking or substance abuse complicate
statistical data analyses and thus (5) a great number of biological replicates is
needed (Kim and Webster, 2009).

Therefore, for the exploratory phase of the antidepressant-affected pathways
or biomarker signature discovery pipeline, animal model based studies tend to
have higher success rates (Turck et al., 2005; Filiou and Turck, 2011). Animal
models in combination with proteomic and metabolomic technologies promise
to be useful tools for the hypothesis-free discovery of biomarker candidates
(Turck et al., 2005; Reckow et al., 2008; Filiou and Turck, 2011).
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1.4.1 Mouse models for psychiatric disorders

Major depression involves complex thought processes and emotions and it is
not possible to model depression in mice in its entirety (Wong and Licinio,
2004). However, mouse models were successfully developed that model
certain features, i.e. endophenotypes, of the disease by resembling selected
characteristics of the human condition. Current animal models for depression-
like behavior include uncontrollable stress models (e.g. forced swim test
(FST), tail suspension test (TST)), reward models (e.g. sucrose prevalence),
olfactory bulbectomy, chronic mild stress, drug withdrawal, maternal
deprivation, neonatal clomipramine and genetic models (reviewed in (Wong
and Licinio, 2004)). Important criteria for mouse models of depression are (1)
face validity, i.e. whether the model phenomenologically resembles the human
condition; (2) predictive validity, i.e. whether the performance of the model in a
test is predictive for human performance and (3) construct/etiological validity,
i.e. how accurately the test models the human condition and whether the
model is based on known etiological factors. Predictive validity is sometimes
used to indicate pharmacological isomorphism, i.e. whether the model
predicts antidepressant treatment response in humans (Van Dam and De
Deyn, 2006; Markou et al., 2009).

There are various models available to investigate the effects of currently used
and novel antidepressants in mice. The following chapter (1.4.2) will focus on
an animal model that was utilized in the present thesis for (1) the
characterization of antidepressant treatment affected molecular pathways and
(2) for the identification of biomarker candidates for antidepressant treatment
effects. The subsequent chapter (1.4.3) will focus on an animal model of
anxiety-related behavior and the recently discovered antidepressant-like °N
isotope effect that was utilized for correlating antidepressant-like effects with
molecular pathway alterations.

1.4.2 Paroxetine treatment of DBA/2 mice

Paroxetine is the most potent inhibitor of serotonin reuptake (Sanchez and
Hyttel, 1999; Bourin et al., 2001) and a weak inhibitor of norepinephrine
reuptake (Kelly and Leonnard, 1995; Sugimoto et al., 2011). The ratio of

9
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inhibition of uptake of norepinephrine to serotonin (NE/5-HT) is second only to
that of citalopram. There is a negligible affinity for other receptor systems,
including catecholaminergic, dopaminergic, histaminergic and muscarinic
cholinergic systems (Bourin et al., 2001). Next to depression the SSRI
paroxetine is also used for treating panic disorder, obsessive compulsive
disorder and social phobia (Wagstaff et al., 2002).

The inbred DBA/2 mouse strain displays a high level of innate anxiety-like
behavior (Ohl et al., 2003) that is potentially linked to distinct neurotransmitter
receptor densities (Yilmazer-Hanke et al., 2003), may exhibit aspects of
hippocampal dysfunction (Thinus-Blanc et al., 1996) and displays a reduced
HPA axis feedback inhibition compared to other inbred mouse strains
(Thoeringer et al., 2007). DBA/2 mice are more sensitive towards paroxetine
treatment compared to other mouse strains, as determined in the FST
(Sugimoto et al., 2011). These studies suggest that DBA/2 mice reflect some
psychiatric disorders endophenotypes and therefore might be suitable for the
investigation of molecular antidepressant treatment effects (Sillaber et al.,
2008). Paroxetine treatment of DBA/2 mice results in decreased passive
stress coping behavior in the FST, an indication of antidepressant treatment
efficacy in rodents (Porsolt et al., 1977).

Sillaber et al. investigated paroxetine induced alterations in DBA/2 mice at the
MRNA level using transcriptomic analyses (Sillaber et al., 2008). In the
present thesis the focus was expanded to the identification of molecular
pathway alterations using proteomic and metabolomic analyses and the
identification of biomarker candidates for antidepressant treatment effects.

1.4.3 The HAB/LAB mouse model and the antidepressant-like '°N isotope
effect in anxious HAB mice

The high anxiety-related behavior (HAB)/low anxiety-related behavior (LAB)
mouse model is based on selective bidirectional breeding of mice for
behavioral extremes according to their performance on the elevated plus-
maze (EPM), a behavioral paradigm assessing anxiety-related behavior. HAB
mice spend most of their time in the closed arms whereas LAB mice spend

most of their time in the open arms (Pellow et al., 1985; Kromer et al., 2005).

10
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Selective bidirectional inbreeding led to the enrichment of the genetic material
associated with the anxiety phenotype (Landgraf et al., 2007; Plomin et al.,
2009). The high comorbidity of anxiety with depression is reflected in HAB
mice by an increased passive stress coping behavior in the FST and TST
compared to LAB mice (Kromer et al., 2005; Landgraf et al., 2007).

In previous efforts for relative protein quantification >N metabolic labeling was
applied to the HAB/LAB mouse model for the comparison of HAB and LAB
proteomes (Filiou et al., 2011b; Zhang et al., 2011b). For that purpose mice
were fed a diet enriched with the stable, heavy '°N isotope (>97% '°N)
resulting in an enrichment of the °N isotope in the organism. Intriguingly, the
introduction of the stable N isotope resembled antidepressant treatment
effects on the behavioral phenotype of HAB mice in the TST. We therefore
carried out unbiased proteomic analyses of this antidepressant-like °N
isotope effect in order to discover pathways that are potentially involved in

antidepressant-like actions in the HAB mouse model (Frank et al., 2009).

1.5 Mass spectrometry based quantitative proteomics and
metabolomics

1.5.1 Genomics and functional genomics in psychiatry research

Major depression is a complex, hereditary and polygenetic disease. The
interplay of the genetic setup with environmental factors is believed to play a
crucial role in psychiatric disease development (Taurines et al., 2011). There
is a great demand for integrative analyses across a wide range of fields
including omics-based systems biology strategies for a better understanding
of disease related pathways (Kitano, 2002; Barabasi and Oltvai, 2004).

After the complete sequencing of the human genome about 10 years ago
(Lander et al., 2001; Venter et al.,, 2001), psychiatry research has applied
genomic approaches in human studies leading to valuable, though
unfortunately limited, insights into disease pathways, treatment response and
novel drug targets (Lucae et al., 2006; Burmeister et al., 2008; Sillaber et al.,
2008; McQuillin et al., 2009).
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Functional genomics (i.e. post-genomics) including transcriptomics,
proteomics and metabolomics adds a very important new dimension to the
study of psychiatric disorders: the analysis of spatial and temporal system
alterations. Consequently, functional genomics facilitates an accurate and
unbiased generation of hypotheses for pathophysiology and drug action
mechanisms (Turck et al., 2005; Geschwind and Konopka, 2009).

Both transcriptomics and proteomics were successfully applied to the
elucidation of antidepressant treatment affected pathways in rodents
(Khawaja et al., 2004; Carboni et al., 2006; Cecconi et al., 2007; McHugh et
al., 2008; Sillaber et al., 2008; McHugh et al.,, 2010). Compared to
transcriptomics, proteomics exhibits several advantageous characteristics: (1)
the level of MRNA does not always reflect protein expression indicating the
need for complementary proteomics analyses; (2) proteomics allows for
organelle specific analyses facilitating e.g. synapse specific alterations; (3)
protein post-translational modifications (PTM) play an important role in protein
function and activity, but this aspect is undetectable by transcriptomics and (4)
proteins are the actual contributors to biochemical pathway activities and
biological processes and therefore are more closely related to disease
phenotype.

With the advance of novel instrumentation and data analysis strategies
metabolomics represents the latest of functional genomics technology.
Metabolomics complements transcriptomics and proteomics investigations
especially in the area of systems biology and pathway analysis because
metabolites are the final products of interactions between gene expression,
protein expression and the cellular environment (Kaddurah-Daouk and
Krishnan, 2009). At present only a limited number of studies have been
performed investigating effects of antidepressant treatment at the metabolome
level (Paige et al., 2007; Dai et al., 2010; Ji et al., 2011; Su et al., 2011).

The following chapters describe quantitative proteomic (1.5.2) and
metabolomic (1.5.3) technologies with a focus on methods that were used in

the current thesis.
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1.5.2 Quantitative proteomics

Traditional proteomics strategies predominately exploited two-dimensional gel
electrophoresis for high resolution protein separation and relative protein
quantification. Complex protein mixtures (e.g. derived from brain tissue) are
first separated according to their isoelectric point and in a second dimension
by molecular weight. Staining of the proteins allows the identification of both
quantitative (expression level) and qualitative (mainly post-translational
modification) protein differences. Differentially expressed proteins between
disease/treatment vs. control are then identified using mass spectrometry
(O'Farrell, 1975). Limitations of two-dimensional gel electrophoresis include
low throughput, limited dynamic range, low sensitivity, high technical variability
and incompatibility for hydrophobic membrane proteins (Fey and Larsen,
2001; Lubec et al.,, 2003). Therefore quantitative proteomics has recently
shifted towards shotgun proteomics approaches that aim at identifying and
quantifying as many proteins as possible in a given sample by utilizing highly
sensitive mass spectrometry (MS) in combination with multidimensional

protein and peptide separation techniques.

1.5.2.1 The impact of tandem mass spectrometry in modern proteomics
Mass spectrometry is an analytical approach that measures the mass-to-
charge (m/z) ratio of ions. In a typical bottom-up proteomics experiment MS is
used to analyze peptides in complex protein digests (Steen and Mann, 2004).
Peptide information is then conferred to corresponding proteins. For increased
sensitivity sample complexity has to be reduced prior to mass spectrometry
analysis at the protein level (e.g. by SDS gel electrophoresis or isoelectric
focusing) and/or at the peptide level (e.g. by strong cation exchange or
reversed phase high performance liquid chromatography).

The main components of a mass spectrometer are an ionization source, a
mass analyzer and an ion detector. Current MS-based proteomics became
possible only after the introduction of soft ionization methods like matrix-
assisted-laser-desorption ionization (MALDI) (Karas and Hillenkamp, 1988),
electrospray ionization (ESI) (Whitehouse et al., 1985) and, for increased

sensitivity, nanospray ionization (NSI) (Shevchenko et al., 1996b; Shevchenko
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et al., 1996a; Wilm and Mann, 1996; Wilm et al., 1996). There are different
kinds of mass analyzers that, depending on the analytical question, exhibit
distinct strengths and advantages. Mass analyzers include quadrupole (Q)
mass filter, linear ion trap (LTQ), Orbitrap, time-of-flight (TOF), magnetic
sector, ion cyclotron resonance (ICR), and combinations thereof like Triple-
Quadrupole (QqQ), Q-TOF or LTQ-Orbitrap instruments.

LTQ-Orbitrap hybrid mass spectrometers are the instruments of choice for
shotgun proteomics due to the high sensitivity, high scan rate, high dynamic
range (>10%), high mass accuracy (<5 ppm) and high mass resolution (up to
100.000 at m/z 400) (Yates et al., 2006). The final readout of all mass
spectrometers is a mass spectrum (MS spectrum) which is a recording of the
signal intensity of the ion at each value of the m/z scale (Steen and Mann,
2004).

Tandem mass spectrometry involves the fragmentation of precursor ions and
m/z determination of product ions resulting in the generation of MS/MS
spectra. By in silico comparison of precursor ion and fragment ion masses
with a protein database it is then possible to identify peptides and
corresponding proteins (Eng et al., 1994; Perkins et al., 1999). Fragmentation
methods include collision-induced dissociation (CID), higher energy collision
dissociation (HCD), or electron transfer dissociation (ETD).

1.5.2.2 Quantitative proteomics using stable isotope labeling

Mass spectrometry signal intensities are not a measure of protein amount
because different peptides have different physico-chemical properties like
solubility or ionization efficiency. However, because these factors are
reproducible relative quantification is possible by using label free quantitation
strategies (Bondarenko et al., 2002; Chelius and Bondarenko, 2002; Higgs et
al., 2008) or strategies based on stable isotope labeling (Gygi and Aebersold,
2000; Steen and Mann, 2004).

According to the isotope dilution theory (De Leenheer, 1992), peptides that
differ only in isotopic composition behave identically during an LC-MS
experiment. Therefore, the ratio of unlabeled and labeled peptides within a

mass spectrum or the ratio of extracted ion chromatograms represents an
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accurate measure of relative protein concentration (Steen and Mann, 2004).
Stable isotopes that are used for labeling of proteins or peptides include 2H,
3¢, °N and "0, leading to a great variety of different methods for relative
protein quantification like ICAT (Gygi et al., 1999), ICPL (Schmidt, 2005),
iTRAQ (Ross et al., 2004), '®0 labeling (Reynolds et al., 2002), SILAC (Ong
et al., 2002) and "°N metabolic labeling (Oda et al., 1999). Unlabeled and
labeled samples are combined at different experimental stages leading to
different quantitation accuracies. If unlabeled and labeled samples are
combined at the very beginning of sample preparation, as is the case for
SILAC or "N metabolic labeling, quantitation accuracy is maximal because
potential experimental biases affect both labeled and unlabeled sample in the
same way and the ratio remains unchanged (Bantscheff et al., 2007;
Bantscheff et al., 2012)(Figure 2). Therefore, SILAC and "N metabolic
labeling represent the current gold standard for accurate relative protein
quantification. N metabolic labeling has been used in several model
organisms including yeast (Oda et al., 1999), bacteria(Pan et al., 2008),
Drosophila melanogaster (Krijgsveld et al., 2003), Caenorhabditis elegans
(Dong et al., 2007), plants (Huttlin et al., 2007), mice (Huttlin et al., 2009;
Filiou et al., 2011b; Zhang et al., 2011b) and rats (Wu et al., 2004). To avoid
any biases due to the labeling itself the labeled sample is frequently used as
internal standard for indirect comparison of relative protein levels (Pan et al.,
2008).
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Figure 2. Quantitative proteomics workflows. If samples are combined
prior to sample preparation, as seen in metabolic labeling approaches,
quantitation accuracy is optimal. Blue and orange boxes represent two
experimental conditions, horizontal lines indicate when samples are combined
and dashed lines indicate possibilities for experimental variation. Reproduced

with permission from (Bantscheff et al., 2007).

1.5.3 Quantitative metabolomics

Quantitative metabolomics complements previous -omics efforts due to its
integrative capacity and was recently introduced into psychiatric research
(Kaddurah-Daouk et al., 2007; Paige et al., 2007; Dai et al., 2010; Ji et al.,
2011; Su et al., 2011).

A major challenge in metabolomic analyses is the large dynamic range (>106)
and great chemical diversity of metabolites like amino acids, amino sugars,
oligosaccharides, fatty acids or lipids. Another drawback is the absence of
reliable and automated metabolite identification tools (Moco et al., 2007).

Due to the chemical variety diverse complementary analytical methods

including sample preparation need to be applied for a comprehensive and
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hypothesis-free holistic analysis. Depending on the biological question,
however, the analysis of sub-metabolomes or targeted analyses may reveal
significant insights into the system of interest. Most commonly used platforms
are based on LC-MS (liquid chromatography-MS), GC-MS (gas
chromatography-MS) and NMR (nuclear magnetic resonance) (Moco et al.,
2007; Theodoridis et al., 2012).

Acquisition of NMR spectra of complex mixtures like biofluids, so called NMR
fingerprinting, is used for the identification of biomarker patterns. NMR is a
quantitative technique well suited for metabolomics analyses but lacks
sensitivity compared to MS-based methods.

GC-MS was applied to metabolomics studies much earlier than LC-MS and
offers high sensitivity, high resolution power, high throughput, excellent
reproducibility, and highly reproducible fragmentation patterns. Disadvantages
include tedious sample preparation because samples need to be derivatized
before analysis and only volatile (or volatile-made) metabolites with molecular
weights below 400-500Da can be analyzed (Tolstikov, 2009; Theodoridis et
al., 2012).

LC-MS is the most widely used technique in metabolomics. Metabolites are
first separated using reversed phase (RP) chromatography for hydrophobic
compounds (e.g. phenolic acids, flavonoids) and hydrophilic chromatography
(HILIC) for hydrophilic and neutral compounds (e.g. sugars, amino acids,
nucleotides) (Tolstikov and Fiehn, 2002). Metabolite ions are generated by
electrospray ionization (ESI, in positive or negative mode) or atmospheric
pressure ionization (APIl). lons are then analyzed mainly using quadrupole-
time-of-flight (Q-TOF) instruments because of their high sensitivity, mass
resolution (about 10.000) and mass accuracy with limitations in dynamic
range. Metabolite ions may also be analyzed using FT-Orbitrap or FT-ICR-MS
instruments for highest mass resolution (100.000-1.000.000) and mass
accuracy (<2ppm) facilitating metabolite identification. Metabolites are
identified using characteristic parameters like metabolite mass, isotopic
distribution, fragmentation pattern and retention time (Moco et al., 2007).
Metabolomics analyses may also be performed in a targeted fashion.
Targeted analyses mainly exploit Multiple-Reaction-Monitoring (MRM) on

Triple-Quadrupole mass spectrometers that allow for accurate and

17



1 INTRODUCTION

unambiguous quantification of metabolite precursor and product ions (Lu et
al.,, 2008). Recently, a metabolomics platform was introduced targeting
metabolites involved in cellular metabolism using LC-MRM-MS. The platform
reliably quantifies more than 250 metabolites involved in major metabolic
pathways, including glycolysis, Krebs cycle and metabolism of amino acids
(Kelly et al., 2011; Yuan et al., 2012).
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1.6 Aim and scope of thesis
The aim of the current thesis was to define antidepressant treatment effects at

the molecular pathway level in mouse models using state of the art proteomic

and metabolomic technologies. A further aim was to identify biomarker

candidates for antidepressant treatment effects.

Specific aims of the individual manuscripts:

Chapter 2.1: Metabolite profiling of antidepressant drug action reveals novel

drug targets beyond monoamine elevation

Identification of paroxetine treatment affected molecular pathways
beyond serotonin reuptake inhibition in hippocampus of chronically
treated DBA/2 mice at the metabolome level.

Identification of potential drug targets that may modulate these
pathways.

Identification of metabolite biomarker candidates in plasma.

Chapter 2.2: Proteomic and metabolomic profiling reveals time-dependent

changes in hippocampal metabolism upon paroxetine treatment and

biomarker candidates

Identification of paroxetine treatment affected molecular pathways
beyond serotonin reuptake inhibition in hippocampus at the
metabolome and proteome levels.

Identification of time course alterations.

Identification of metabolite biomarker candidates in plasma.

Chapter 2.3: The N isotope effect as a means for correlating phenotypic

alterations and affected pathways in a trait anxiety mouse model

Identification of molecular correlates of the behavioral antidepressant-

like "°N isotope effect in various brain regions at the proteome level.
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Metabolite profiling of antidepressant drug action
reveals novel drug targets beyond monoamine
elevation

C Webhofer™2, P Gormanns', V Tolstikov®, W Zieglgénsberger'?, | Sillaber', F Holsboer' and CW Turck'-2

Currently used antidepressants elevate monoamine levels in the synaptic cleft. There is good reason to assume that this is not
the only source for antidepressant therapeutic activities and that secondary downstream effects may be relevant for alleviating
symptoms of depression. We attempted to elucidate affected biochemical pathways downstream of monoamine reuptake
inhibition by interrogating metabolomic profiles in DBA/20la mice after chronic paroxetine treatment. Metabolomic changes
were investigated using gas chromatography-mass spectrometry profiling and group differences were analyzed by univariate
and multivariate statistics. Pathways affected by antidepressant treatment were related to energy metabolism, amino acid
metabolism and hormone signaling. The identified pathways reveal further antidepressant therapeutic action and represent
targets for drug development efforts. A comparison of the central nervous system with blood plasma metabolite alterations
identified GABA, galactose-6-phosphate and leucine as biomarker candidates for assessment of antidepressant treatment

effects in the periphery.

Translational Psychiatry (2011) 1, e58; doi:10.1038/tp.2011.56; published online 13 December 2011

Introduction

Major depression is a severe and life-threatening disease with
a population prevalence of 17%' and is projected to be the
second leading contributor to the global burden of disease
(DALYs) by the year 2020.2 At present, selective serotonin
reuptake inhibitors, selective noradrenaline reuptake inhibi-
tors and monoamine oxidase inhibitors are the most com-
monly prescribed antidepressants.# Shortcomings of current
antidepressant treatments include a delayed onset of thera-
peutic action, adverse side effects and response in only
a subset of patients.*®

The elevation of serotonin or noradrenaline levels by tricyclic
and currently used antidepressants had led to the monoamine
deficiency hypothesis of depression®” with clinical research
over the past 40 years suggesting that increased monoami-
nergic neurotransmission is essential for antidepressant
efficiency.® However, contrary to this hypothesis, monoamine
depletion does not induce depression in healthy humans.®
Moreover, a study by Nickel et al.® found that paroxetine, a
serotonin reuptake inhibitor and tianeptine, a serotonin
reuptake enhancer are both effective antidepressants. A
common downstream effect of both drugs was to normalize
hypothalamic-pituitary-adrenal (HPA) axis reactivity. These
findings indicate that opposite effects on the serotonin system
may lead to common downstream pathway alterations. The
most parsimonious explanation is that monoamine elevation
per se is not the only source for antidepressant activity but
secondary downstream effects may also be involved in the

alleviation of depressive symptoms.'®'2 Therefore, it is
tempting to speculate that for improved antidepressant treat-
ment it would be beneficial to pharmacologically interfere with
these downstream mechanisms directly. Proposed antide-
pressant downstream effects include neurogenesis,'3'*
strengthened neuronal plasticity'® and attenuation of HPA
axis reactivity.'%'® Despite several suggested modes for anti-
depressant action beyond monoamine elevation, the precise
mechanisms at the cellular metabolism and pathway levels
remain elusive. Activation of postsynaptic monoamine recep-
tors in response to antidepressant treatment triggers intracel-
lular signaling cascades relayed by G proteins that are coupled
to several effector systems including adenylate cyclase,
phospholipase C, phospholipase A, and ion channels.'”'8
Second messengers like cyclic AMP and diacylglycerol induce
intracellular protein phosphorylation events mediated by
protein kinase A and protein kinase C, respectively. Phos-
phorylation events cause gene expression alterations through
transcription factors like cyclic AMP response element-binding
protein resulting in further downstream alterations.'®2?
Several studies have investigated the effects of antidepres-
sants in unbiased transcriptomic or proteomic studies. Sillaber
et al.?® identified a number of paroxetine-induced changes on
the transcriptome of DBA/2 mice, including alterations in glial
fibrillary acidic protein and brain-derived neurotrophic factor
(BDNF) mRNA expression. Proteomic studies include parox-
etine treatment effects on embryonic stem cell-derived neural
cells?®® and fluoxetine and venlafaxine effects on the rat
hippocampus and frontal cortex?>® protein expression.

'Max Planck Institute of Psychiatry, Munich, Germany; 2Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Planegg-Martinsried,
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Metabolites reflect the ultimate response of an organism
to any biological effect?” as they are the final products of
interactions between gene expression, protein expression
and the cellular environment.?® Therefore, metabolite profiling
holds great promise for the identification of affected pathways
in depression, and for the study of antidepressant drug
treatment.

Recent studies have used metabolomic methods to
interrogate psychiatric drug treatment effects. Atypical
antipsychotic treatment influenced metabolism of specific
lipid classes in patients with schizophrenia.?® Metabolomic
studies on treatment effects of traditional Chinese medicine
in rats identified potential biomarker candidates.®%3' Ji et a/.3?
applied a pharmacometabolomic approach to guide targeted
pharmacogenomic analyses in antidepressant responders
versus non-responders. A pilot study in depressed patients
of old age revealed alterations in plasma metabolite levels
of GABA, glycerol and several fatty acids compared with
controls.®® Most importantly, many of these alterations
normalized after remission. Unfortunately, in this study,
metabolomic changes could not be unambiguously attributed
to depression or antidepressant treatment-related alterations.

In this study, we have for the first time analyzed meta-
bolomic changes after chronic paroxetine treatment in
DBA/20la mice. Using multivariate and univariate statistics,
we have identified affected biochemical pathways down-
stream of serotonin reuptake inhibition and potential anti-
depressant drug targets in the hippocampus. Alterations in
the plasma as the preferred specimen in a clinical setting
represent a starting point for the implementation of a clinical
biomarker assay for an early assessment of antidepressant
treatment response.

Materials and methods

Antidepressant treatment of DBA/20la mice and organ
sampling. Eight-week-old DBA/20laHsd mice were
purchased from Harlan Laboratories (Harlan Winkelmann,
Borchen, Germany). Upon arrival, mice were housed singly
in standard cages and habituated for 2 weeks under standard
laboratory conditions (food and water ad libitum, 12 h dark—
light cycle: lights on 0700-1900 hours, 45-55% humidity,
21+ 2°C). After 2 weeks, mice received either paroxetine at
10mgkg™" (1mg paroxetine-hydrochloride—hemihydrate
(Sigma-Aldrich, St Louis, MO, USA) in 1ml tap water,
thoroughly mixed before each application) or vehicle (tap
water) twice per day (between 0800 and 0900 hours and
1800 and 1900 hours) by gavaging for 28 days. In the
morning of day 29, mice received a final treatment, and
60 min later, the behavior in the forced swim test (FST),
water temperature 25-26 °C, was observed during a 5-min
test period. Immediately after the FST, mice were killed by an
overdose of Forene isoflurane (Abbott, Wiesbaden,
Germany), and blood was drawn by heart puncture and
collected in EDTA tubes (Kabe Labortechnik, Nuembrecht-
Elsenroth, Germany). Plasma was separated from serum by
centrifugation (1300g, 10min) and immediately frozen in
liquid nitrogen. Mice were perfused with 0.9% ice-cold saline
(Merck, Darmstadt, Germany) and their brains sampled.
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Hippocampi were dissected, weighed, individually shock
frozen in liquid nitrogen and stored at —80 °C until further
analysis.

Metabolite analysis. Metabolite analysis was performed
by the UC Davis Metabolomics Core Facility (http:/www.
metabolomics-core.ucdavis.edu/) using validated protocols
and standard operation procedures (see Supplementary
Figure S1). For quality control purposes, 30 standard meta-
bolites were included in the samples in each randomized
batch. FAMEs C08-C30 were used as internal references for
retention index (RI) calibration, the Leco proprietary decon-
volution protocol for peak finding (Leco, St Joseph, MI, USA)
and the BinBase database (http:/fiehnlab.ucdavis.edu/db/)
for metabolite annotation.

Metabolite extraction. Per 10 mg of frozen hippocampus,
500 pl pre-chilled extraction solution (acetonitrile, isopropa-
nole, water, 3:3:2 (v/v/v)) was added and the mixture was
homogenized for 45s using Tissue Master 125 (Omni
International, Kennesaw, GA, USA). After centrifugation
(13,000 g, 5min), supernatants were dried and resuspen-
ded with 500l acetonitrile:water (1:1, v/v). After centri-
fugation (140009, 2min), supernatants were completely
dried and stored in darkness under argon for further analysis.
Plasma metabolite extraction was performed as described
previously by Urayama et al.®*

Sample derivatization and GC-time of flight-mass
spectrometry metabolite profiling. Sample derivatization
with methoxylamine hydrochloride in pyridine and N-methyl-
N-trimethylsilyltrifluoroacetamide was performed as des-
cribed previously.®* Gas chromatography (GC)-time of
flight-mass spectrometry analysis was performed using
an Agilent 6890N gas chromatograph (Agilent, Palo Alto,
CA, USA) interfaced to a time-of-flight Pegasus Ill mass
spectrometer (Leco). Automated injections were performed
using an MPS2 programmable robotic multipurpose sampler
(Gerstel, Muhlheim an der Ruhr, Germany). The GC system
was fitted with both an Agilent injector and a Gerstel
temperature-programmed injector, cooled injection system
(model CIS 4), with a Peltier cooling source. An automated
liner exchange (ALEX) designed by Gerstel was used to
eliminate cross-contamination from sample matrix occurring
between sample runs. Multiple baffled liners for the GC inlet
were deactivated with 1-pl injections of MSTFA. The Agilent
injector temperature was held constant at 250 °C, whereas
the Gerstel injector was programmed (initial temperature
50 °C, hold 0.1 min and increased at a rate of 10°Cs™ ' to a
final temperature of 330 °C, hold time 10min). Injections of
1ul were made in the split (1:5) mode (purge time 120s,
purge flow 40 mimin~").

Chromatography was performed on an Rtx-5Sil MS column
(30m x 0.25 mm i.d., 0.25-um film thickness) with an Integra-
Guard column (Restek, Bellefonte, PA, USA). Helium carrier
gas was used at a constant flow of 1mimin~". The GC oven
temperature program was 50 °C initial temperature, with 1-min
hold time and ramping at 208 °C/min to a final temperature of
330 °C with 5-min hold time. Both the transfer line and the
source temperatures were 250 °C. The Pegasus lll time of



flight-mass spectrometer ion source operated at —70kV
filament voltage. After a solvent delay of 350 s, mass spectra
were acquired at 20 scans per second with a mass range of
50-500 m/z.

Data analysis and statistics. 2-Monostearin, fructose,
glucose, glucose-6-phosphate, glycine and phenylalanine
were identified twice during chromatographic separation in
different chemical derivatization states and their signal
intensities were summed up for further analysis. Metabolite
signal intensities were normalized by the total sum of all
metabolite intensities. Pareto scaled metabolite signal
intensities were then analyzed using MetaboAnalyst (http://
www.metaboanalyst.ca).3®

Downstream pathway analysis in the hippocampus and
antidepressant drug targets. Identification of altered
metabolites for subsequent pathway analysis in the
hippocampus was performed by a combined univariate and
multivariate data analysis strategy. Metabolites with altered
concentrations were identified by SAM (significance analysis
of microarrays)®*® applying a gvalue threshold of 15%.
Multivariate data structure was revealed by partial least
square—discriminant analysis considering metabolites with a
variable importance in projection > 1, using just one compo-
nent (accuracy and R?>80%, Q2=0.57 and P<0.18 in
permutation tests).3” By exclusively considering the overlap
between the two statistically different methods, we improved
robustness of data analysis and increased confidence in
significantly altered metabolites.

Pathway analysis was performed using the Pathway Studio
software v7.1 (Ariadne Genomics, Rockville, MD, USA),
which contains literature-based relations between proteins,
functional classes, small molecules and cellular processes.
For an increased confidence, relations were only considered if
there were at least two reported literature references.

For identification of affected molecular pathways, a search
for common molecular upstream regulators was performed
including proteins and functional classes and for down-
stream targets including proteins, functional classes and
cellular processes of altered metabolites. A conservative
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hypergeometric test®® was performed to detect significant
overrepresented (P<0.05) common regulators and targets.
The background for each common regulator/target was set
to the number of metabolites it relates to (minimum two
references) in the Ariadne database. Owing to the conserva-
tive test, common regulators/targets with only a few inter-
actions are highly penalized.®® Finally, metabolites along
with their regulators and targets were grouped according to
biological function into pathway clusters. In addition to the
identified pathway clusters, potential antidepressant drug
targets were identified. These comprise common regulators
and targets (proteins and functional classes) that modulate
these pathways.

Biomarker candidates in the hippocampus and plasma.
To detect biomarker candidates for antidepressant treatment
effects in the hippocampus, SAM was performed by applying
a g-value threshold of g<0.05. Each metabolite is presented
by a scatter plot indicating inter- and intra-group biological
variabilities. Metabolite/behavior correlation was assessed
using Pearson’s correlation of metabolite intensities versus
floating behavior in the FST. In addition, mice were grouped
according to floating time independent of treatment group
and corresponding average metabolite intensities are shown.
To detect biomarker candidates in the plasma, we corre-
lated hippocampal and plasma metabolite intensities
(SAMhippocampus 4<<0.05, Pearson’s correlation P<0.10).

Results

We performed a comparative metabolomic study in chronic
paroxetine- versus vehicle-treated DBA/2 mice. As expected,
paroxetine treatment significantly reduced depression-like
behavior in the FST, indicated by a reduced time of floating
(P<0.0001, Figure 1a). Six biological replicates per group
were selected for metabolite profiling based on immobility
behavior in the FST (Figure 1b).

A total of 270 metabolites were quantified in the hippocam-
pus and plasma, of which 110 were of known identity including
25 sugars, 24 amino acids, 17 fatty acids, 12 lipids, 12 organic
acids and 20 of other categories (Supplementary Tables S1
and S2).
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Figure 1 Behavioral analysis of paroxetine-treated mice. (a) Chronic paroxetine treatment reduced passive behavior in the forced swim test determined by time of floating,
P <0.0001, fioaiing (vehicle) = 90.3 £ 6.1s (mean * s.e.m.), foating (PAroxetine) = 20.6 + 4.2 s. (b) Six biological replicates were selected for metabolomics analysis based on
the time of floating, P=0.0014, fjsating (vehicle) =97.0 £ 11.0's (mean £ s.e.m.), fioaiing (Paroxeting) =22.7 + 12.9s.
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Downstream pathway analysis and antidepressant drug
target candidates in the hippocampus. For the investiga-
tion of affected hippocampal downstream pathways, we ana-
lyzed differences in metabolomic profiles using a combined
univariate and multivariate data analysis strategy as
described in the ‘Materials and methods’ section. In total,
28 metabolites including 9 amino acids, 5 sugars, 2 organic
acids, 1 fatty acid, 4 of other categories and 7 of unknown
identity were considered for pathway analysis (Table 1a).
Twenty four significantly altered metabolites in the hippo-
campus were present at higher levels upon paroxetine
compared with vehicle treatment. A log2 abundance factor
distribution of all metabolites for the hippocampus and
plasma is shown in Supplementary Figure S2, indicating
slightly higher metabolite levels in paroxetine-treated
hippocampi.

Identified pathway clusters included energy metabolism,
amino-acid metabolism and hormone signaling (Figure 2).
Regulators of these pathways, as illustrated in Figure 2 and
summarized in Table 2, represent antidepressant drug targets
that have the potential to modulate these pathways.

Energy metabolism. Most profound alterations at the
pathway level were found to be related to energy meta-
bolism. Glucose, glucose-6-phosphate and fructose-6-
phosphate, metabolites involved in glycolysis, were present
at 2—4-fold higher levels upon paroxetine treatment. Levels
of lactate, a metabolite linked to glycolysis, were reduced
by 30%. Potential tricarboxylic acid (TCA) cycle alterations
were reflected by a 2.5-fold increase in fumarate levels.
Regulators of energy metabolism were identified as hexo-
kinase 1 and 2, glucokinase, glycogen synthase 2, glucose
transporter, fructose 1,6 diphosphatase, mannose phos-
phate isomerase and fructose bisphosphatase 1.

Amino acid metabolism. Eight proteinogenic amino acids
were considered significant for pathway analysis (Ala, lle,
Leu, Pro, Ser, Thr, Tyr, Val), all being upregulated by paroxe-
tine treatment (23-72% increase). All but two (Ser, Thr)
amino acids are metabolically linked to TCA cycle interme-
diates linking amino-acid changes to energy metabolism
alterations. Potential regulators are represented by 3-methyl-
2-oxobutanoate dehydrogenase, an important enzyme in
branched-chain amino acid (BCAA), Val, Leu, lle, degrada-
tion and glutamate dehydrogenase, converting glutamate to
alphaketoglutarate, a TCA cycle intermediate.

Hormone signaling. Hormone signaling was dominated by
glucagon and insulin. Both control blood glucose levels and
the pre-hormone angiotensinogen that is involved in blood
pressure regulation.

Biomarker candidates in the hippocampus and plasma.

Biomarker candidates were identified by univariate data
analysis, as described in the ‘Materials and methods’ section.
A total of 34 metabolites were found in the hippocampus
(7 amino acids, 4 sugars, 2 fatty acids, 1 lipid, 2 organic
acids, 1 of other categories and 17 of unknown identity), of
which 24 were present at higher levels upon paroxetine
treatment (Table 1b). Galactose-6-phosphate (4.88), fumaric

Translational Psychiatry

acid (2.47), fructose (2.19) and xylulose (2.08) were among
the metabolites with the greatest fold change and the most
significant changes were found for threonic acid (q=0.009),
xylulose (g=0.024) and valine (g=0.024). Supplementary
Figure S3 provides detailed information on significant
metabolites (scatter plots and correlation analysis). For
many metabolites there was a high correlation between
metabolite intensities and depression-like behavior in the
FST. This represents a first hint that paroxetine-induced
metabolite alterations may be linked to a depression-like
phenotype and do not represent a mere side effect (Supple-
mentary Figure S3).

For identification of plasma biomarker candidates, a
correlation analysis of hippocampus versus plasma metabo-
lite intensities was performed. Out of 17 hippocampus
biomarker candidates (SAMpippocampus §<0.05) of known
identity, 3 metabolites show high correlation values (two-tailed
P<0.10) upon paroxetine treatment. Calculated Pearson’s
coefficient values were r=0.77 for GABA, r=0.75 for
galactose-6-phosphate and r=—0.73 for leucine (Figure 3).

Discussion

Metabolomic studies hold great promise for the identification
of molecular alterations upon drug treatment.2%-32:39

To exclude any metabolite level alterations that are caused
by environmental factors such as nutritional effects, animals
with homogeneous genetic backgrounds and housed under
controlled conditions are the preferred study objects. This
way, inter-individual variability that is commonplace in patient
studies can be avoided resulting in a better signal-to-noise
ratio of the drug-elicited metabolite level changes. To our
knowledge, this is the first study identifying metabolite
signatures in chronically paroxetine-treated DBA/2 mice. We
aimed at revealing treatment effects beyond elevation of
serotonin levels in the synaptic cleft that are involved in
therapeutic antidepressant effects. Understanding the cross-
talk between altered metabolomic pathways will greatly
enhance our understanding of the drug’s mode of action and
adverse side effects.

Affected downstream pathways in the hippocampus.
The selective serotonin reuptake inhibitor paroxetine inhibits
presynaptic serotonin transporters leading to enhanced
serotonergic synaptic transmission, which was previously
shown to be essential for therapeutic efficiency.® Our results
indicate that enhanced serotonin availability results in diverse
downstream pathway alterations.

Most significantly, paroxetine treatment altered hippocam-
pal energy metabolism (Figure 2, Tables 1a and 2),
particularly the initial steps of glycolysis. Recent studies have
linked antidepressant treatment to energy metabolism altera-
tions. Scaini et al.*® demonstrated increased mitochondrial
respiratory chain activity in selected brain regions after
chronic antidepressant treatment. Prefrontal cortex, hippo-
campal and striatal, but not cerebellar citrate synthase and
succinate dehydrogenase activities were increased after
paroxetine treatment.*! Santos et al.** found increased brain
creatine kinase activity after chronic paroxetine treatment. All
these findings indicate that in order to normalize metabolic
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Table 1 (a) Hippocampal metabolite level alterations after paroxetine treatment reveal affected pathways (PLS-DA VIP>1 and SAM g<0.15, see Figure 2).
(b) Hippocampal biomarker candidates for monitoring antidepressant treatment response (SAM g<0.05)

Metabolite Pubchem Chemical Fold PLS-DA, SAM, SAM,
CID class change VIP score P-value q-value

(a)

Alanine 5950 Amino acid 1.48 4.6 0.006 0.031
GABA 119 Amino acid 0.87 5.3 0.005 0.026
Isoleucine 6306 Amino acid 1.58 2.0 0.002 0.026
Leucine 6106 Amino acid 1.66 2.8 0.003 0.026
Proline 145742 Amino acid 1.65 2.2 0.039 0.075
Serine 5951 Amino acid 1.18 2.0 0.082 0.103
Threonine 6288 Amino acid 1.25 1.2 0.056 0.087
Tyrosine 6057 Amino acid 1.23 11 0.051 0.087
Valine 6287 Amino acid 1.72 2.8 0.001 0.024
Threonic acid 439535 Fatty acid 0.59 11 <0.001 0.009
Fumaric acid 444972 Organic acid 2.47 1.8 0.004 0.026
Lactic acid 612 Organic acid 0.70 3.3 0.018 0.054
Fructose 5984 Sugar 2.19 1.9 0.003 0.026
Fructose-6-phosphate 69507 Sugar 1.99 1.2 0.029 0.062
Glucose 5793 Sugar 3.75 29 0.033 0.067
Glucose-6-phosphate 5958 Sugar 2.55 1.6 0.027 0.061
Inositol myo- 892 Sugar 0.75 3.7 0.021 0.057
Ethanolamine 700 Other 1.69 3.3 0.003 0.026
Hypoxanthine 790 Other 1.09 1.2 0.108 0.125
Taurine 1123 Other 1.34 3.1 0.071 0.094
Uracil 1174 Other 1.27 1.4 0.022 0.057
199786 NA Unknown 1.32 1.1 0.026 0.061
202571 NA Unknown 3.08 1.0 0.017 0.054
203259 NA Unknown 1.50 1.1 0.025 0.060
223535 NA Unknown 1.69 1.2 0.013 0.046
227964 NA Unknown 414 1.1 0.031 0.064
295226 NA Unknown 1.61 1.8 0.016 0.052
301745 NA Unknown 1.75 1.6 0.049 0.087
(b)

Alanine 5950 Amino acid 1.48 4.6 0.006 0.031
B-Alanine 239 Amino acid 1.40 <1 0.002 0.026
GABA 119 Amino acid 0.87 5.3 0.005 0.026
Isoleucine 6306 Amino acid 1.58 2.0 0.002 0.026
Leucine 6106 Amino acid 1.66 2.8 0.003 0.026
Ornithine 6262 Amino acid 1.25 <1 0.008 0.034
Valine 6287 Amino acid 1.72 2.8 0.001 0.024
Lignoceric acid 11197 Fatty acid 0.65 <1 0.013 0.046
Threonic acid 439535 Fatty acid 0.59 11 <0.001 0.009
2-Monopalmitin 123409 Lipid 1.52 <1 0.011 0.044
Fumaric acid 444972 Organic acid 2.47 1.8 0.004 0.026
Ribonic acid 5460677 Organic acid 1.33 <1 0.005 0.026
Fructose 5984 Sugar 2.19 1.9 0.003 0.026
Galactose-6-phosphate 99058 Sugar 4.88 <1 0.002 0.026
Xylose 6027 Sugar 1.84 <1 0.004 0.026
Xylulose 5289590 Sugar 2.08 <1 <0.001 0.024
Ethanolamine 700 Other 1.69 3.3 0.003 0.026
199239 NA Unknown 0.77 <1 0.014 0.048
199553 NA Unknown 1.23 <1 0.004 0.026
202572 NA Unknown 3.45 <1 0.005 0.026
202573 NA Unknown 2.54 <1 0.001 0.026
214201 NA Unknown 2.29 <1 0.002 0.026
214537 NA Unknown 0.63 <1 0.007 0.032
216860 NA Unknown 1.31 <1 0.005 0.026
217797 NA Unknown 8.00 <1 0.004 0.026
219021 NA Unknown 1.93 <1 0.012 0.046
219169 NA Unknown 0.40 <1 0.012 0.045
223535 NA Unknown 1.69 1.2 0.013 0.046
231659 NA Unknown 0.62 <1 0.010 0.043
234563 NA Unknown 0.32 <1 0.005 0.027
236605 NA Unknown 2.93 <1 0.003 0.026
239332 NA Unknown 0.43 <1 0.001 0.026
241111 NA Unknown 2.79 <1 0.003 0.026
270407 NA Unknown 0.67 <1 0.008 0.034

Abbreviations: PLS-DA, partial least square—discriminant analysis; NA, not applicable; SAM, significance analysis of microarrays; VIP, variable importance in
projection.
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Figure 2 Pathway analysis of altered metabolites upon paroxetine treatment. Common targets and regulators of significant metabolites were identified by a conservative
hypergeometric test expression analysis systematic explorer (EASE), score < 0.05. Metabolites and targets/regulators were clustered into energy metabolism, amino acid

metabolism and hormone signaling pathways. Green: metabolites, red: proteins, yellow: cellular processes, orange: functional classes.

Table 2 Antidepressant drug target candidates that are regulators and targets of altered metabolites, expression analysis systematic explorer (EASE), score <0.05

Pathway cluster Antidepressant drug target candidate Category P-value EASE score
Carbohydrate metabolism ATP-dependent hexokinase Functional class 0.005 0.033
D-fructose 1,6-diphosphatase Functional class 4.1E-04 0.012
FBP1 (fructose bisphosphatase 1) Protein 0.004 0.042
GCK (glucokinase) Protein 8.8E-05 0.001
glucose transporter Functional class 0.002 0.021
GYS2 (glycogen synthase 2) Protein 0.001 0.008
HK1 (hexokinase 1) Protein 1.5E-04 0.006
HK2 (hexokinase 2) Protein 7.5E-05 0.004
MPI (mannose phosphate isomerase) Protein 1.5E-04 0.006
Amino acid metabolism 3-Methyl-2-oxobutanoate dehydrogenase Functional class 0.002 0.033
aa (amino acid) import Cellular process 0.005 0.048
Glutamate dehydrogenase Functional class 0.004 0.030
Hormone signaling AGT (angiotensinogen) Protein 0.012 0.047
DPP4 (dipeptidyl-peptidase 4) Protein 1.5E-04 0.006
GCG (glucagon) Protein 0.004 0.021
INS (insulin) Protein 0.003 0.013
Other Uchl1 (ubiquitin carboxyl-terminal esterase L1) Protein 0.002 0.032

hypoactivity, which is frequently observed in depressed
patients, energy pathways are a pharmacological target
worth pursuing. Increased ATP levels could also facilitate

Translational Psychiatry

energy-dependent antidepressant-treatment-associated cell-
ular processes like G-protein activity, protein kinase activi-
ties (protein kinase A, protein kinase C), synaptic activity
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Figure 3 Plasma metabolite biomarker candidates for monitoring antidepressant treatment response. Hippocampal metabolite intensities were correlated with plasma

metabolite intensities (P<0.10).

(transport of ions and neurotransmitter uptake) and protein
synthesis (BDNF).*3

We further identified significant alterations in amino acid
metabolism, which is closely linked to energy metabolism
through TCA cycle intermediates. However, from our data
it is not clear whether increased amino acid concentrations
contribute to or are a consequence of altered energy
metabolism and further studies are required to answer this
question.

We also identified significantly altered neuroactive amino
acid level including B-alanine, a glycine receptor agonist,
and decreased levels of GABA, the most prominent inhibi-
tory neurotransmitter, indicating a direct link of amino acid
metabolism to neurotransmission. Furthermore, significantly
increased levels of tyrosine, the amino acid precursor of
epinephrine, could contribute to elevated noradrenergic
neurotransmission, a target of selective noradrenaline reup-
take inhibitors.

Biomarker candidates for antidepressant treatment
effects in the hippocampus. Biomarkers for antidepres-
sant treatment response that indicate expected treatment
efficiency at an early time point are in great demand. The
metabolites identified in this study can provide a basis for
future in vivo studies using either nuclear magnetic
resonance spectroscopy, or cerebrospinal fluid and blood
samples, the latter being the preferred specimen for imple-
mentation of a clinical biomarker assay.

Branched chain amino acids. Concentrations of the
essential amino acids valine, leucine and isoleucine
increased by 50-70% upon paroxetine treatment. Elevated
levels of these amino acids, especially leucine, have been
shown to increase protein synthesis through increased
mammalian target of rapamycin signaling in liver, skeletal
muscle, kidney and adipose tissues.*4™*¢ Until now, however,
there is no evidence that BCAAs also induce protein
synthesis in the brain. Mammalian target of rapamycin
signaling, which is closely linked to synaptic plasticity,*”
was shown to be inhibited by the selective serotonin reuptake
inhibitor sertraline leading to decreased, not elevated, protein
synthesis,48 seen in other tissues. Rapamycin, an inhibitor
of mammalian target of rapamycin signaling exhibited
antidepressant-like effects in mice and rats,*® whereas

antidepressant effects of ketamine in treatment-resistant
depressed patients were attributed to activated mammalian
target of rapamycin signaling.*®

Different pathways could be affected by increased BCAA
levels in the hippocampus since BCAA metabolism is directly
connected to energy metabolism. Specifically, oxidative
BCAA degradation leads to Krebs cycle intermediates.'%?
Thus, alterations in energy metabolism upon paroxetine treat-
ment could, at least in part, be influenced by altered BCAA
concentrations. Furthermore, alterations in Krebs cycle
intermediates were shown to result in altered neurotransmitter
synthesis,>® suggesting that increased BCAA levels could
also influence synaptic transmission.

Biomarker candidates for antidepressant treatment
effects in the plasma. Metabolite alterations in the plasma
were less pronounced than those in the hippocampus. This
finding is not unexpected as paroxetine primarily targets
cerebral neurotransmission. To see whether central nervous
system alterations are also reflected in the plasma, we
performed a brain/plasma metabolite correlation analysis.
We identified GABA, galactose-6-phosphate and leucine as
biomarker candidates for antidepressant treatment effects.
All three plasma biomarker candidates represent alterations
also observed in the brain. Further studies need to validate
these findings in humans by a targeted analysis in specimens
from antidepressant treatment responders versus non-
responders.

Future studies. Although we have identified a significant
intensity level/phenotype correlation for a number of meta-
bolites (Supplementary Figure S3), we cannot unambiguo-
usly associate identified pathway alterations or biomarker
candidates with antidepressant therapeutic effects. To
address this issue further, one line of investigation could
include a pharmacological analysis of different mouse
models of depression including chronic mild stress,®* social
defeat®®® or early-life stress through maternal separation,®’
wherein antidepressant treatment effects could be more
directly associated with decreased depression-like behavior.
Directly targeting the identified pathways in mouse models of
depression may also help in this endeavor. In this pilot study,
we have identified molecular changes upon antidepressant
treatment at the metabolome level in DBA/2 mice that reflect

~
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pathway alterations beyond monoamine reuptake inhibition.
On the basis of pathway information, we revealed putative
antidepressant drug targets and biomarker candidates for the
assessment of antidepressant treatment effects elicited
through novel modes of action.
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Most of the commonly used antidepressants block monoamine reuptake transporters to enhance sero-
tonergic or noradrenergic neurotransmission. Effects besides or downstream of monoamine reuptake
inhibition are poorly understood and yet presumably important for the drugs’ mode of action. In the
present study we aimed at identifying hippocampal cellular pathway alterations in DBA/2 mice using
paroxetine as a representative Selective Serotonin Reuptake Inhibitor (SSRI). Furthermore we identified
biomarker candidates for the assessment of antidepressant treatment effects in plasma. Hippocampal

g:g’:gg:ﬁis protein levels were compared between chronic paroxetine- and vehicle-treated animals using in vivo >N
Metabolomics metabolic labeling combined with mass spectrometry. We also studied the time course of metabolite
Paroxetine level changes in hippocampus and plasma using a targeted polar metabolomics profiling platform. In

silico pathway analyses revealed profound alterations related to hippocampal energy metabolism.
Glycolytic metabolite levels acutely increased while Krebs cycle metabolite levels decreased upon
chronic treatment. Changes in energy metabolism were influenced by altered glycogen metabolism
rather than by altered glycolytic or Krebs cycle enzyme levels. Increased energy levels were reflected by
an increased ATP/ADP ratio and by increased ratios of high-to-low energy purines and pyrimidines. In the
course of our analyses we also identified myo-inositol as a biomarker candidate for the assessment of
antidepressant treatment effects in the periphery. This study defines the cellular response to paroxetine
treatment at the proteome and metabolome levels in the hippocampus of DBA/2 mice and suggests novel
SSRI modes of action that warrant consideration in antidepressant development efforts.

© 2012 Elsevier Ltd. All rights reserved.

Brain metabolism
Aerobic glycolysis
Time course

1. Introduction only after several weeks of medication in only a subset of patients
(Berton and Nestler, 2006). Novel antidepressants with rapid onset
and high treatment efficacy are in great demand. Biomarkers that
facilitate prediction of treatment outcome are required in this
endeavor.

Besides monoamine reuptake inhibition other downstream
effects have been implicated in alleviating symptoms of depression
(Moretti et al., 2003). An in-depth analysis of currently used anti-
depressants at the cellular and molecular level may reveal novel
targets for drug development. Direct pharmacological targeting of

Major depression is one of the leading causes of morbidity and
mortality worldwide. Antidepressant treatment which selectively
inhibits monoamine reuptake alleviates symptoms of depression

Abbreviations: FDR, False Discovery Rate; GABA, y-Aminobutyric acid; MeOH,
methanol; mg, milligram; min, minute; ml, milliliter; m/z, mass-to-charge ratio;
PLS-DA, Partial Least Squares Discriminat Analysis; R, Pearson’s correlation coeffi-

cient; RP, Reversed Phase; s, second; SAM, Significance Analysis of Microarrays;
SRM, Selected Reaction Monitoring; SSRI, Selective Serotonin Reuptake Inhibitor;
VIP, Variable Importance in Projection; w/v, weight/volume.

* Corresponding author. Max Planck Institute of Psychiatry, Proteomics and
Biomarkers, Kraepelinstrasse 2-10, 80804 Munich, Germany. Tel.: +49 89
30622317; fax: +49 89 30622610.

E-mail address: turck@mpipsykl.mpg.de (C.W. Turck).

0022-3956/$ — see front matter © 2012 Elsevier Ltd. All rights reserved.
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relevant cellular pathways represents a promising strategy for the
development of novel antidepressants. Non-hypothesis driven
approaches — like transcriptomics, proteomics or metabolomics —
can identify such cellular pathway alterations (Filiou et al., 2011) and
represent suitable tools to investigate antidepressant treatment
effects (Sillaber et al., 2008).
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With the help of unbiased metabolite profiling we have recently
shown that chronic paroxetine treatment targets hippocampal
glucose metabolism and identified antidepressant drug target
candidates (Webhofer et al., 2011).

In the present study we have extended our efforts to identify
cellular alterations at the proteome level after chronic paroxetine
treatment using °N metabolic labeling combined with mass
spectrometry. To corroborate our findings we investigated cellular
metabolism by using a targeted polar metabolomics profiling
platform (Yuan et al., 2012). In order to shed light on the delayed
onset of therapeutic SSRI action in patients we performed time
course experiments and studied acute versus chronic treatment
effects on metabolic pathways. Furthermore, we have identified
a biomarker candidate that can be used for monitoring hippo-
campal antidepressant treatment effects in the periphery.

2. Materials and methods
2.1. Paroxetine treatment and organ sampling

Male DBA/20laHsd mice (8 weeks old at arrival, Harlan Win-
kelmann, Borchen, Germany) were singly housed upon arrival for
two weeks under standard laboratory conditions (food and water
ad libitum, 12 h dark—light cycle with lights on at 7 am, 45—55%
humidity, 21 & 2 °C).

After habituation mice were treated twice per day (between 8
and 9 am and 6—7 pm) with paroxetine (10 mg/kg, paroxetine-
hemihydrate, Sigma—Aldrich, St. Louis, MO, USA) or vehicle (tap
water) by gavaging. Paroxetine was prepared freshly before each
treatment by dissolving it in tap water (1 mg/ml). One hour after
the last treatment mice were euthanized by an overdose of iso-
flurane (Forene®, Abbott, Wiesbaden, Germany). Blood was drawn
by heart puncture and collected in EDTA tubes (Kabe Labortechnik,
Nuembrecht-Elsenroth, Germany). Plasma was separated from
serum by centrifugation (1300g, 10 min, 4 °C). Organs were
perfused with 0.9% ice-cold saline solution (Merck, Darmstadt,
Germany). Mice were decapitated, brains harvested and dissected.
Plasma and hippocampi were shock frozen in liquid nitrogen and
stored at —80 °C until further analysis.

The experiments were performed in accordance with European
Communities Council Directive 86/609/EEC. The protocols were
approved by the committee for the Care and Use of Laboratory
Animals of the Government of Upper Bavaria, Germany.

2.2. Quantitative proteomics analysis

2.2.1. Protein sample preparation

Hippocampal soluble proteins were extracted according to Emili
and Cox (Cox and Emili, 2006). To all biological replicates the same
15N-labeled internal standard was mixed at equal protein amounts.
In vivo ®N-labeled hippocampal proteins were derived from DBA/2
mice that were raised with a >N mouse diet (Silantes GmbH,
Munich, Germany) for 12 weeks (Filiou et al., 2011). One hundred
pg of the N/N protein mixture were separated by one-
dimensional SDS gel electrophoresis. Separated proteins were
fixed and stained with Coomassie Brilliant Blue R-250 (Biorad,
Hercules, CA, USA). The gel was destained and each gel lane was cut
into 2.5 mm slices (22—23 slices per biological replicate) and tryptic
in-gel digestion and peptide extraction were performed as
described previously (Filiou et al., 2011).

2.2.2. Liquid chromatography-tandem mass spectrometry (LC-MS/
MS) analysis

Tryptic peptides were dissolved in 0.1% formic acid and analyzed
with a nanoflow HPLC-2D system (Eksigent, Dublin, CA, USA)

coupled online to an LTQ-Orbitrap mass spectrometer (Thermo
Fisher Scientific, Bremen, Germany). Samples were on-line desalted
for 10 min with 0.1% formic acid at 3 pl/min (Zorbax-C18 (5 um)
guard column, 300 pm x 5 mm, Agilent Technologies, Santa Clara,
CA, USA) and separated via RP-C18 (3 um) chromatography (in-
house packed Pico-frit column, 75 um x 15 cm, New Objective,
Woburn, MA, USA). Peptides were eluted with a gradient of 95%
acetonitrile/0.1% HCOOH from 10% to 45% over 93 min at a flow rate
of 200 nl/min. Column effluents were directly infused into the mass
spectrometer via a nanoelectrospray ion source (Thermo Fisher
Scientific). The mass spectrometer was operated in positive mode
applying a data-dependent scan switch between MS and MS/MS
acquisition. Full scans were recorded in the Orbitrap mass analyzer
(profile mode, m/z 380—1600, resolution R = 60000 at m/z 400). The
MS/MS analyses of the five most intense peptide ions for each scan
were recorded in the LTQ mass analyzer in centroid mode. Other MS
parameters were set as described previously (Filiou et al., 2011).

2.2.3. Protein identification and quantitation

Peptides were identified by N and N database searches against
a decoy Uniprot mouse protein database (release 2010_02) con-
taining 119,128 entries (including forward and reverse sequences)
using Sequest (implemented in Bioworks v3.3, Thermo Fisher).
Enzyme specificity was set to trypsin. Mass accuracy settings were
10 ppm and 1 Da for MS and MS/MS, respectively. Two missed
cleavages were allowed, carboxyamidomethylation of cysteine was
set as fixed and oxidation of methionine as variable modifications.
15N peptide identification was facilitated by a variable modification of
—0.9970 Da for lysine and arginine to account for the frequent shift
from >N monoisotopic to most intense °N isotopomer (at 90% °N
incorporation) as described previously (Zhang et al., 2009). Peptide
hits were filtered at a ‘False Discovery Rate (FDR)’ of 1% using Pep-
tideProphet, N and °N database searches were combined using
iProphet and protein groups were detected using ProteinProphet
using default parameters (FDR < 1%)(Keller and Shteynberg, 2011).

Relative protein quantitation was performed with the ProRata
software (v1.0) using default parameters and excluding ambiguous
peptides (Pan et al., 2006). Log, (**N/1°N) ratios of protein groups
were then compared between biological replicates. Briefly, protein
identifications were assigned to the protein group’s logy (N/°N)
ratio. As protein identifications from different biological replicates
could be assigned to distinct protein groups (due to the existence of
different peptide sets identified by shotgun proteomics) we initially
considered each protein identification individually for inter-
experimental comparison. To avoid redundancies in final protein
quantification, protein identifications with identical log; (“*N/"°N)
ratios assigned to the same protein group were combined again.

2.3. Targeted metabolomics analysis

2.3.1. Polar metabolite extraction

Hippocampal tissue was ground (2 min x 1200 min~', homog-
enizer PotterS, Sartorius, Gottingen, Germany) in 30-fold (w/v)
ice-cold 80% MeOH. Samples were centrifuged (14,000 g, 10 min,
4 °C) and supernatants incubated on dry ice. Tissue pellets were
further disrupted in 6-fold (w/v) ice-cold 80% MeOH (Branson
Sonifier, Branson Ultrasonics, Danbury, CT, USA) and combined
with previous supernatants. Plasma metabolites were extracted
twice in 80% ice-cold MeOH. Metabolite extracts were vortexed and
centrifuged (14,000 g, 10 min, 4 °C). Supernatants were evaporated
and stored at —80 °C until further analysis.

2.3.2. Targeted LC-MS/MS
Samples were re-suspended using 20 pl LC-MS grade water for
mass spectrometry. Ten pl were injected and analyzed using
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a 5500 QTRAP triple quadrupole mass spectrometer (AB/SCIEX,
Framingham, MA, USA) coupled to a Prominence UFLC HPLC system
(Shimadzu, Columbia, MD, USA) via selected reaction monitoring
(SRM) of a total of 254 endogenous water soluble metabolites for
steady-state analyses of samples. Samples were delivered to the mass
spectrometer via normal phase chromatography using a 4.6 mm
i.d x 10 cm Amide Xbridge HILIC column (Waters Corp., Milford, MA,
USA) at 350 pl/min. Gradients were run starting from 85% buffer B
(HPLC grade acetonitrile) to 42% B from 0 to 5 min; 42% B to 0% B
from 5 to 16 min; 0% B was held from 16 to 24 min; 0% B to 85% B
from 24 to 25 min; 85% B was held for 7 min to re-equilibrate the
column. Buffer A was comprised of 20 mM ammonium hydroxide/
20 mM ammonium acetate (pH = 9.0) in 95:5 water:acetonitrile.
Some metabolites were targeted in both positive and negative ion
modes for a total of 285 SRM transitions using positive/negative
polarity switching. ESI voltage was +4900 V in positive ion mode
and —4500 V in negative ion mode. The dwell time was 4 ms per SRM
transition and the total cycle time was 1.89 s. Approximately 9—12
data points were acquired per detected metabolite. Peak areas from
the total ion current for each metabolite SRM transition were inte-
grated using MultiQuant v2.0 software (AB/Sciex).

2.4. Statistics and data analysis

2.4.1. Significant protein alterations

Median normalized protein group log, (paroxetine/vehicle) was
used for statistical analysis. Protein groups were considered for
further analysis if they were quantified in all biological replicates.
Significance Analysis of Microarrays (SAM) was used to identify
significantly altered protein groups (FDR < 0.05) using Metabo-
Analyst (Xia et al., 2009).

2.4.2. Significant metabolite alterations

Metabolite intensities were median normalized and Pareto
scaled for statistical analysis. Missing values (10% allowed for
individual metabolites) were replaced by the half of the minimum
values in all replicates. Significant metabolite level changes after 24
days of treatment were identified by SAM (p < 0.05, FDR < 0.05).
Time course analysis of median log, (paroxetine/vehicle) was per-
formed by hierarchical cluster analysis for metabolites that were
significantly altered after chronic (24 days) treatment.

2.4.3. Protein and metabolite pathway analysis in the hippocampus

Pathway analysis was performed using the Pathway Studio
software v8.0 (Ariadne Genomics, Rockville, MD, USA), which
contains literature-based relations between proteins, metabolites,
functional classes and cellular processes. Subnetwork detection in
Pathway Studio was used to detect affected molecular pathways
and chemical reactions. Cellular processes were considered
affected if they were significantly enriched (pgenjamini—Hochberg
corrected < 0.05) by significantly altered proteins and at the same
time were not significantly enriched by all quantified
hippocampal proteins. Subnetworks were considered significantly
enriched at p-value thresholds after Benjamini—Hochberg correc-
tion (Benjamini and Hochberg, 1995) as indicated.

2.4.4. Biomarker discovery in the hippocampus and plasma

To detect metabolite biomarker candidates for antidepressant
treatment effects, multivariate PLS-DA analyses were performed for
hippocampal metabolite intensities at individual time points (3, 7,
14 and 24 days). At 14 days of treatment one biological replicate
was missing and data was imputed by average intensities of the
other biological replicates. This was necessary to calculate sophis-
ticated quality criteria for the PLS-DA model by Cross Validation.
The qualities of the models were assessed in terms of accuracy, R?

and Q2. Biomarker candidates in hippocampus were detected by an
increasing importance in the contribution to the model over time
by regression analysis (VIPhippocampus > 1 for all time points,
R > 0.6). Univariate changes of metabolite levels were identified
using Student’s t-test. To detect biomarker candidates in plasma,
hippocampal and plasma metabolite intensities were correlated
(p < 0.05) and manually validated.

3. Results
3.1. Chronic paroxetine treatment alterations at the proteome level

DBA/2 mice were chronically treated with the SSRI paroxetine
(2 x 10 mg/kg*day) and vehicle for 28 days. In order to quantify
paroxetine treatment induced proteome changes in the hippo-
campus we used a quantitative proteomics platform based on °N
metabolic labeling and LC-MS/MS analysis (Filiou et al., 2011;
McClatchy et al., 2007; Wu et al., 2004; Zhang et al., 2011). >N-
labeled proteins were used as internal standard for the indirect
comparison of paroxetine- versus vehicle-treated mice. In vivo
metabolic labeling of DBA/2 mice resulted in 90% >N incorporation
at postnatal day 94 allowing for accurate protein quantitation.
Using five biological replicates per group, 1366 non-redundant
protein groups were quantified in at least three biological repli-
cates per group, 1124 in at least four replicates per group and 800
protein groups were quantified in every biological replicate
(Supplemental Table S1). We found increased protein quantitation
accuracy for proteins that were quantified in every biological
replicate that correlated with increased quantified peptide
numbers per protein (Supplemental Table S2, Figure S1). For
increased robustness of subsequent data analysis we only consid-
ered protein groups quantified in every biological replicate because
overall protein concentration changes were relatively small
(Supplemental Figure S2). Using Significance Analysis of Microarrays
(SAM) we identified 54 significant protein group alterations
(FDR < 0.05, 24 increased and 30 decreased after paroxetine
treatment) (Supplemental Table S3, Figure S3).

Significantly enriched cellular processes were identified using
the Pathway Studio software as described in ‘Materials and
Methods’. Significant pathway alterations (pBenjamini—Hochberg
corrected < 0.05) included glycogen metabolism (NOS1, GAA, PYGM),
gametogenesis (NOS1, GLUL, UCHL1), membrane fluidity (GLUL,
ANXA4, SNCA) and contraction (CRYAB, NOS1, MYH9, PDE1A,
GIT1, MSN, MGEA5, SNCA, PYGM). In a previous study applying
identical treatment conditions we have identified profound
increases in early glycolytic metabolites (Webhofer et al., 2011).
Alterations in glycolysis, however, were not reflected by altered
glycolytic enzyme levels. We therefore decided to further interro-
gate paroxetine treatment induced downstream pathways by
complementary metabolomics analyses targeted at cellular
metabolism.

3.2. Time course paroxetine treatment effects on cellular
metabolism

We performed an independent paroxetine treatment time
course analysis. Mice were treated with paroxetine (2 x 10 mg/
kg*day) and vehicle for 3, 7, 14 and 24 days, respectively to
track acute, sub-chronic and chronic pathway alterations. A
metabolomics platform specific for the analysis of cellular
metabolism was applied to five biological replicates per time
point. Two hundred thirty metabolites were relatively quantified
of which 209 were KEGG annotated (Supplemental Table S4,
Figure S4).
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Significantly altered metabolites after chronic (24 days) parox-
etine treatment were identified using SAM. Ninety two metabolites
were considered significant (p < 0.05, FDR < 0.05, 17 increased and
75 decreased after paroxetine treatment) (Supplemental Table S5,
Figure S5). Hierarchical clustering of the time course data of
chronically altered metabolites revealed six metabolite clusters
with distinct temporal patterns (Fig. 1A). As expected, correlating
metabolites were linked to common pathways after performing
individual pathway analyses for metabolite time course clusters
(Fig. 1B).

3.2.1. Increased aerobic glycolysis

After chronic treatment, levels of all metabolites resulting from
the initial glycolytic steps were significantly increased up to 5-fold
(glucose-1P: 2.4-fold, glucose-6P: 2.1-fold, fructose-6P: 2-fold,
fructose-1,6PP: 3.8-fold, glyceraldehyde-3P: 4.7-fold and 3-P-glyc-
erate: 2.6-fold). These represent the most severe alterations in the
present dataset. Time course analyses indicated that these metabo-
lites cluster together and alterations were detectable within several
days of treatment (Fig. 2A).

3.2.2. Decreased Krebs cycle

Krebs cycle intermediates clustered together and paroxetine
treatment effects were delayed. Interestingly, all Krebs cycle
intermediates were decreased after 24 days of treatment con-
trasting increased glycolytic metabolite levels (Fig. 2B).

3.2.3. Altered glycogen metabolism

Increased glycolytic and decreased Krebs cycle metabolite levels
were not reflected by altered glycolytic and Krebs cycle enzyme
levels, respectively (Fig. 2). This phenomenon can be explained by
increased glucose uptake or increased glycogen degradation which
can both result in changes in glycolysis without affecting enzyme
levels. Indeed, our results indicate that the cellular process
“glycogen metabolism” was affected upon paroxetine treatment
(p < 0.05). “Glycogen phosphorylase” was identified as significant
regulator of metabolite alterations (p < 0.05) and glycogen itself
tended to be affected by altered proteins (p = 0.08). Five altered
proteins were significantly linked to altered metabolites (glutamine
synthetase, glycogen phosphorylase, nitric oxide synthase 1,
phosphoenolpyruvate carboxykinase 2, protein phosphatase 1
regulatory subunit 1B, p < 0.05). Remarkably, four of the five
proteins were involved in glycogen metabolism. This suggests that
altered glycogen metabolism constitutes a potential link between
the observed protein and metabolite alterations (Fig. 3).

3.2.4. Increased energy levels and altered redox state

We further investigated the ATP/ADP ratio, a measure of energy
state, and the NAD*/NADH ratio, a measure of redox potential. The
ATP/ADP ratio was increased (p < 0.05) whereas the NAD"/NADH
ratio tended to decrease (p < 0.10) after chronic treatment. NAD*
levels negatively correlated with ATP and NADH levels (Fig. 4). In
concordance with increased energy levels the ratios of high-to-low
energy adenosine phosphates were elevated after chronic parox-
etine treatment (ATP/ADP/AMP). Adenosine phosphate levels
highly correlated with guanosine, uridine and cytidine phosphate
levels (Supplemental Figure S6) and the ratios GTP/GDP/GMP, UTP/
UDP/UMP and CTP/CDP/CMP exhibited a similar pattern compared
to ratios of ATP/ADP/AMP (Supplemental Figure S7).

3.3. Biomarker candidates in the periphery

For the identification of predictive biomarker candidates for
paroxetine treatment response we performed multivariate data
analysis based on hippocampal metabolite intensities for all time
points (3, 7, 14 and 24 days). Quality criteria of the PLS-DA models
improved over time indicating that paroxetine treatment exerts its
effect on hippocampal metabolism chronically (Fig. 5A). Metabo-
lites with VIP > 1 at all time points were considered important
contributors to multivariate group separations. Importantly, these
metabolites indicated chronic changes already after 3 days of
treatment. Moreover, a specific cluster of these metabolites
showed increasing VIP scores over time (2-isopropylmalic acid,
acetylcarnitine, AMP, betaine, carbamoyl phosphate, glutamine,
glutathione, glycerophosphocholine, IMP, myo-inositol, phosphor-
ylcholine, taurine; Pearson’s correlation coefficient R > 0.6, Fig. 5B).
Metabolites with increasing significance in PLS-DA models and
prediction accuracy were considered important effectors of
paroxetine treatment induced alterations. This is further supported
by the fact that these metabolites exhibited significant univariate
level differences after chronic paroxetine treatment (eleven of
twelve metabolites p < 0.05, gluathione p < 0.10) (Fig. 5B).
Comparison of hippocampal and plasma metabolite levels revealed
a significant correlation for myo-inositol (p < 0.05) (Fig. 5C).

4. Discussion

We have for the first time combined proteomic and metab-
olomic analyses to unravel the in vivo effects of antidepressant
treatment at the cellular systems level. In silico pathway analyses
revealed altered energy metabolism as a key element of paroxetine
treatment effects. Importantly, we identified an energy metabolism
shift toward aerobic glycolysis. In support of increased aerobic
glycolysis we found (1) acutely increased glycolytic metabolite
levels, (2) chronically decreased Krebs cycle metabolite levels, (3)
increased ATP/ADP ratios, and (4) decreased NAD"/NADH ratios.
Altered glycogen metabolism represents a putative link between
protein and metabolite changes. Increased energy levels correlated
with elevated purine- and pyrimidine triphosphate levels that in
turn may be involved in modulating depression-like behavior as
has been reported previously (Moretti et al., 2003; Renshaw et al.,
2001).

For unraveling molecular antidepressant treatment effects we
focused on paroxetine as a representative SSRI in the inbred DBA/2
mouse strain. We aimed at elucidating downstream effects besides
serotonin reuptake inhibition that are involved in antidepressant
action (Berton et al., 2006). By using inbred mice under standard
laboratory and treatment conditions we significantly reduced bio-
logical variability for a better signal-to-noise ratio of paroxetine-
induced changes. Using a standardized proteomics platform
based on >N metabolic labeling and mass spectrometry we accu-
rately quantified paroxetine treatment effects for 800 proteins.
Proteomics data were complemented by targeted profiling of
hippocampal metabolism. We investigated the time course of
metabolic alterations to mimic long-term treatment effects in
patients.

We observed a profound increase in early glycolysis metabolite
levels within several days of treatment. These data extend our
previous findings that chronic paroxetine treatment increases early

Fig. 1. Paroxetine treatment metabolite pathway analysis. DBA/2 mice were treated with paroxetine (2 x 10 mg/kg*day) or vehicle for 3, 7, 14 and 24 days, respectively. (A)
Significantly altered metabolites after 24 days were identified by ‘Significance Analysis of Microarrays’ (p < 0.05, FDR<0.05) and hierarchical clustering of the time course data
performed. The size of each metabolite cluster is shown. (B) Chemical reaction analysis for individual metabolite clusters was performed using subnetwork detection with Pathway
Studio v8.0 (p < 0.01, Benjamini—Hochberg adjusted). Time course and number of metabolites in Ariadne pathways are presented.
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glycolytic metabolite levels (Webhofer et al., 2011). At the same
time we found decreased Krebs cycle intermediate levels after
chronic paroxetine treatment. An energy metabolism shift toward
aerobic glycolysis has been described in cancer cells by Otto War-
burg (Warburg et al., 1924). The “Warburg effect” describes excess
utilization of glucose under aerobic conditions to produce lactate
(Koppenol et al., 2011). In our case lactate dehydrogenase B levels
were reduced upon paroxetine treatment which could provide an
explanation for the unaltered lactate levels in paroxetine-treated
mice despite an increased aerobic glycolysis (Fig. 2A).

Proliferating cells utilize aerobic glycolysis for the generation of
nucleotides, amino acids or lipids needed to produce new cells
(Vander Heiden, Cantley, & Thompson, 2009). Neural cells also
extensively utilize glucose for aerobic glycolysis to reduce apoptosis
and increase long-term neuronal survival (Vaughn and Deshmukh,
2008). Aerobic glycolysis facilitates catabolic processes via the
“Pentose Phosphate Shunt” that was shown to be affected in our
study (Fig. 1B). Elevated aerobic glycolysis in SSRI-treated mice may
be responsible for facilitating neurogenesis which has been
repeatedly shown to be required for antidepressant effects
(Santarelli et al., 2003). Cells with increased aerobic glycolysis have
been reported to exhibit high ATP/ADP and low NAD"/NADH ratios,
both also found in the present study (Fig. 4) (DeBerardinis et al.,
2008). The fact that ATP/ADP and NAD"/NADH ratios were
altered only after chronic treatment could explain the delayed
onset of therapeutic action in a clinical setting.

Reduced levels of the inhibitory neurotransmitter GABA point
toward increased neuronal activity after paroxetine treatment.
Neuronal activity induces glucose uptake and astrocytic glycolysis,
but not oxidative phosphorylation (Fox et al., 1988). Glycolysis
predominantly takes place in astrocytes to fuel energy demands of
astrocytic Na™/K" ATPase activity, the main energy consuming
process in neural cells (Hertz et al, 2007). Two recent studies
revealed differential regulation of aerobic glycolysis in distinct
brain areas in healthy human brain (Vaishnavi et al., 2010) and
specific alterations in dementia of the Alzheimer type (Vlassenko
et al., 2010). The present study indicates for the first time that
shifting energy metabolism toward aerobic glycolysis might
provide a venue for an effective and fast acting antidepressive
treatment.

We have found elevated glucose 1-phosphate levels suggesting
that increased glycolytic metabolite levels derive from elevated
glycogenolysis and identified altered glycogen metabolism as
potential link between protein and metabolite changes (Fig. 3).
Glycogenolysis was shown to be induced at high energy demand
(Magistretti et al., 2000). Although brain glycogen levels are
comparably small, a significant amount is found in astrocytes
(Gruetter, 2003) further indicating an important role of astrocytes
in antidepressant action (Iwata et al., 2011). Strikingly, Allaman
et al. (Allaman et al.,, 2011) showed that fluoxetine and paroxetine
treatment reduced glycogen levels, increased glucose utilization
and lactate release by astrocytes. There is increasing evidence that

Fig. 2. Energy metabolism alterations. (A) Glycolysis (B) Krebs cycle. DBA/2 mice were treated with paroxetine (2 x 10 mg/kg*day) or vehicle. Metabolite log, (paroxetine/vehicle)
ratios (3, 7, 14 and 24 days) are depicted. Solid lines indicate log; = 0, dashed lines indicate |log,| = 1. Protein log, (paroxetine/vehicle) ratios (28 days) are shown. Red: Significant

upregulation, green: significant downregulation (FDR < 0.05) after chronic treatment.
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astrocytes influence synapse development, synaptic plasticity
and long-term potentiation (Paixao and Klein, 2010) and are
involved in the pathophysiology of major depression (Banasr and
Duman, 2008). Thus, astrocytic energy metabolism represents
a potential antidepressant drug target that warrants further
investigation.

We identified several alterations that are closely related to
mitochondrial function including the Krebs cycle and increased
energy levels. Several studies identified direct effects of anti-
depressive treatment on mitochondrial functionality apart from
serotonergic neurotransmission. Activities of mitochondrial elec-
tron transfer chain complexes were inhibited in isolated mito-
chondria upon clomipramine, desipramine and norfluoxetine
treatment (Abdel-Razaq et al., 2011). Citrate synthase and succinate
dehydrogenase enzyme activities were increased upon antide-
pressant treatment in diverse model systems (Scaini et al., 2011).
Fluoxetine treatment of isolated rat brain mitochondria interfered
with ATPase activity and decreased mitochondrial ATP production
(Curti et al., 1999). In line with reduced oxidative energy produc-
tion, oxygen consumption was reduced upon imipramine and
clorgyline treatments (Nag and Nandi, 1991). Taken together,
mitochondria appear to be targets for a wide range of antidepres-
sants. Future studies need to investigate whether these mito-
chondrial alterations are related to therapeutic actions or side effect
profiles of distinct antidepressant drugs.

We observed profound alterations in purine and pyrimidine
metabolism. Ratios of high-to-low energy purines and pyrimidines
increased after chronic treatment suggesting an involvement of
a delayed therapeutic treatment effect. Several purines and
pyrimidines act as neuroactive substances and therefore may
influence neurotransmission besides the monoaminergic system.
Extracellular ATP acts on ligand-gated P2X and G protein-coupled
P2Y receptors. UTP, ADP and UDP-glucose act on P2Y receptors
whereas adenosine acts on P1 receptors (Khakh and North, 2006).
Physiological effects of P2 receptor signaling involve changes in
proliferation and apoptosis (Ciccarelli et al., 2001), neuronal
maturation, neural outgrowth (Swanson et al., 1998) and the
expression of transmitter receptors on target cells (Choi et al.,
2003). ATP released from astrocytes may modulate neuronal and
synaptic activity (Khakh, 2001) and purinergic signaling modulates
neuron—glia interactions (Fields and Burnstock, 2006). Purinergic
signaling has been associated with panic disorder (Lam et al., 2005),
anxiety disorders (Erhardt et al, 2007) and fear behavior
(Corodimas and Tomita, 2001). P2X receptors modulate the release
of neurotransmitters like noradrenaline, GABA and glutamate (Gu
and MacDermott, 1997; Hugel and Schlichter, 2000) that play
important roles in antidepressant action (Krystal et al., 2002). The
P2X7 receptor gene was shown to be involved in major depression
(Lucae et al., 2006). Moreover, increased ATP levels are present in
antidepressant treatment responders compared to non-responders
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(losifescu et al., 2008) and it has been suggested that increased
purine levels may exert antidepressant effects (Renshaw et al,,
2001).

In addition to studying hippocampal antidepressant treatment
effects we identified a metabolite that reflects cerebral alterations in
the periphery. We focused on the identification of potential markers
that allow prediction of chronic hippocampal treatment effects and
identified myo-inositol as a predictive biomarker candidate in
plasma. Noteworthy, myo-inositol is also found in urine which can
be used as a source for future biomarker studies in patients. Based
on its biology myo-inositol represents a very interesting biomarker
candidate. On one hand it is involved in second messenger signaling
upon serotonergic neurotransmission, the primary target of parox-
etine treatment. At the same time myo-inositol is closely linked to
glucose and glycogen metabolism, pathways we found affected
upon paroxetine treatment in the hippocampus.

In the present study we have identified paroxetine treatment
effects in DBA/2 mice providing evidence for an involvement of
energy metabolism as a key mechanism at the cellular pathway
level. For a more detailed understanding of paroxetine treatment
effects future studies need to investigate which alterations
are induced by serotonin-dependent or serotonin-independent

mechanisms. Also, other antidepressants including monoamine
oxidase inhibitors, selective noradrenaline reuptake inhibitors and
tricyclic agents as well as different mouse models such as chronic
mild stress (Willner et al., 2005), social defeat (Kudryavtseva et al.,
1991) and early-life stress via maternal separation (Millstein et al.,
2007) ought to be considered for this purpose. Eventually, a better
understanding of current antidepressive treatment effects will
allow the development of tailored antidepressants with novel
modes of action.
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Stable isotope labeling techniques hold great potential for accurate quantitative proteomics
comparisons by MS. To investigate the effect of stable isotopes in vivo, we metabolically
labeled high anxiety-related behavior (HAB) mice with the heavy nitrogen isotope ®N. °N-
labeled HAB mice exhibited behavioral alterations compared to unlabeled (*N) HAB mice
in their depression-like phenotype. To correlate behavioral alterations with changes on the
molecular level, we explored the N isotope effect on the brain proteome by comparing protein
expression levels between PN-labeled and “N HAB mouse brains using quantitative MS.
By implementing two complementary in silico pathway analysis approaches, we were able
to identify altered networks in *N-labeled HAB mice, including major metabolic pathways
such as the tricarboxylic acid (TCA) cycle and oxidative phosphorylation. Here, we discuss the
affected pathways with regard to their relevance for the behavioral phenotype and critically
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assess the utility of exploiting the °N isotope effect for correlating phenotypic and molecular

alterations.
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1 Introduction

Stable isotope labeling techniques have provided quantitative
proteomics with a methodological toolbox that ensures high
accuracy and precision. In vivo metabolic labeling approaches
such as stable isotope labeling in cell culture (SILAC) [1] and
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stable isotope labeling of mammals (SILAM) [2] enable pro-
teome comparisons at a systemic or organismal level. °N
metabolic labeling has been applied to a wide variety of or-
ganisms [3, 4] and is a robust proteomics-based platform for
biomarker discovery [5].

We have previously applied N metabolic labeling to an
animal model of trait anxiety in order to compare the pro-
teomes of high anxiety-related behavior (HAB) versus low
anxiety-related behavior (LAB) mice [6, 7). The HAB/LAB
mouse model is based on selective bidirectional inbreeding of
mice for behavioral extremes according to their performance
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on the elevated plus-maze (EPM), a behavioral paradigm as-
sessing anxiety-related behavior. Mice that spent most of their
time in the closed arms gave rise to the HAB line whereas
mice that spent most of the time in the open arms gave
rise to the LAB line [8, 9]. Selective bidirectional inbreeding
led to an enrichment of the genetic material related to the
anxiety phenotype, while retaining similarity in nonselected
traits [10, 11].

Anxiety disorders are the most common psychiatric dis-
orders [12] and are highly comorbid with depression [13].
Intriguingly, we observed that the introduction of the N
isotope had an antidepressant-like effect on the behavioral
phenotype of HAB mice [14].

Although the N isotope effect has no clinical relevance
for depression treatment, the analysis of molecular corre-
lates of this effect may shed light on biological mechanisms
involved in depression-like behavior. We have investigated
the 1N isotope effect by comparing the brain proteomes of
15N-labeled and *N HAB mice. For an in-depth analysis of
the N isotope effect, we generated >N metabolically labeled
HAB mouse populations that were fed with two different **N-
enriched diets. Several subproteomes from different brain re-
gions were then subjected to quantitative mass spectrometry
(MS) analysis.

Since it is widely believed that affected networks rather
than individual proteins are responsible for complex brain
disorder phenotypes, we followed up our proteomics anal-
yses with an extensive in silico pathway investigation. Our
results show that the introduction of the N isotope results
in expression level changes of proteins involved in molecular
pathways that are critical for key organismal functions such
as energy metabolism, presumably leading to the behavioral
changes observed in the 1N-labeled HAB mice.

2 Materials and methods
2.1 Animals

HAB mice were housed under standard conditions (12 h
light/dark cycle, lights on at 6 am, room temperature 23 +
2°C, humidity 60%, tap water, and food ad libitum) in the
animal facility of the Max Planck Institute of Psychiatry. Only
male mice were studied. The animal experiments were ap-
proved by local authorities and conducted according to cur-
rent regulations for animal experimentation in Germany and
the European Union (European Communities Council Direc-
tive 86/609/EEC).

2.2 5N Metabolic labeling of HAB mice

15N metabolic labeling, breeding, behavioral testing, and tis-
sue acquisition were performed as described previously [14].
In brief, HAB mice were labeled with *N starting in utero
upon pregnancy detection and for 8 weeks post partum by
receiving an 1 N-labeled diet either based on Spirulina (Har-

© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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lan Laboratories, Andover, MA, USA) or Ralstonia eutropha
(U-15N-SILAM-Mouse, Silantes, Munich, Germany) [14]. To
avoid any diet-specific effects on the proteome, the unlabeled
HAB mice used for the proteomics comparisons, referred
to as N HAB mice, received an unlabeled (*N) Spirulina-
based (Harlan Laboratories) or Ralstonia eutropha based (U-
14N-SILAM-Mouse, Silantes) diet, respectively, with the same
composition as the corresponding 1°N diet.

Both N and "N-labeled HAB mice were bred simulta-
neously and subjected to the same feeding protocol. To as-
sess anxiety-related behavior, ultrasonic vocalization (USV)
and EPM were performed on postnatal day (PND) 5 and
49 [14], respectively. To assess depression-like behavior, the
tail suspension test (TST) was performed on PND 51. Brain
dissection for cingulate cortex, cerebrum, cerebellum, and
hippocampus was performed according to the mouse brain
atlas [15]. 1 N-labeling efficiency at different developmental
time points was estimated in the cerebellum with the Quan-
tiSpec software [16].

2.3 Experimental set up

From Spirulina-fed HAB animals, cerebrum cytosol was
analyzed. From Ralstonia eutropha fed HAB animals, cin-
gulate cortex synaptosomes and hippocampus cytosol were
analyzed. An overview of the specimens used for MS anal-
yses is provided in Table 1. The cerebrum cytosol was used
to assess protein expression level alterations in brain tissue.
In addition, we analyzed brain areas related to anxiety and fear
processing (i.e. hippocampus and cingulate cortex). These
analyses included hippocampus cytosol and cingulate cortex
synaptosomes. The latter was chosen due to its central role
for neurotransmission. To ensure that the N isotope ef-
fect is independent of the >N protein source, two different
1>N-enriched diets were used. For each data set, three N
HAB/“N HAB animal pairs were compared by quantitative
MS. The study design details are shown in Fig. 1.

2.4 Proteomics sample preparation

Cytosol from cerebrum and hippocampus was obtained ac-
cording to [17]. Synaptosomes from cingulate cortex were
enriched as described previously [18]. For each animal pair,
100 g subproteome fraction from the corresponding
“N/BN mixture was resolved by SDS gel electrophoresis.
In-gel digestion and peptide extraction were performed as
described elsewhere [14]. Peptides were lyophilized, and each
fraction was dissolved in 10 L 1% formic acid.

25 MS

Five microliters per SDS gel fraction were analyzed by liq-
uid chromatography-electrospray tandem mass spectrome-
try (LC-ESI-MS/MS) using a nanoflow HPLC-2D system
(Eksigent, Dublin, CA, USA) coupled online to an LTQ-
Orbitrap mass spectrometer (Thermo Fisher Scientific,
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Table 1. Proteomics data sets used for the '°N isotope effect analysis

2423

15N-enriched diet

Biological replicates
(No. of ™N/'®N pairs analyzed)

Ralstonia eutropha
Ralstonia eutropha
Spirulina

3
3
3

HAB specimen Subproteome
Cingulate cortex Synaptosomes
Hippocampus Cytosol
Cerebrum Cytosol
14N HAB 15N HAB
1:1
|
I Proteomics sample preparation|

|
AWL s,

NHAB | 'SNHAB

Quantitative proteomics

“N /5N protein abundance ratio estimation
. Replicate 1
,,Weighted cplicate
Mode* Replicate 2

per protein Replicate 3

Combined protein distribution Pooled protein distribution

N N
e ol LY
8 ) s Il] Dlﬂu lpu
[} [ T'] M []Dlﬂ uul]
0 gt o
0
—_—— —r

Binwise pathway enrichment Binwise pathway enrichment

Altered pathways between
“N/"*N HAB mice

Figure 1. Experimental study design. Experimental workflow for
each data set analyzed. '*N- and '®N-labeled homogenates were
mixed at a 1:1 ratio based on protein content. The protein popu-
lation of interest was enriched and separated by SDS gel elec-
trophoresis. After in-gel digestion and peptide extraction, the
“N/'°N peptide extracts were subjected to LC-ESI-MS/MS and
in silico pathway analyses. The proteomics data were analyzed
by two in silico pathway-based methods. Only significantly al-
tered pathways found with both methods after multiple testing
correction were considered affected.

© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Bremen, Germany). The mass spectrometer was operated
in the positive ion mode using a data-dependent automatic
scan switch between MS and MS/MS acquisition. Full scans
were recorded in the Orbitrap mass analyzer at a mass range
of 380-1600 m/z and a resolution of R = 60 000 (m/z 400) in
profile mode. The MS/MS analysis of the five most intense
peptide ions for each scan (top 5) was recorded in the LTQ
mass analyzer in centroid mode. All other parameters were
as described previously [18].

2.6 AQuantitative proteomics data analysis

MS raw files were searched twice against an N and an °N
decoy Uniprot mouse protein database (release 2010_02) uti-
lizing BioWorks (version 3.3.1) (Thermo Fischer Scientific,
San Jose, CA) and SEQUEST (version 28) (Thermo Fischer
Scientific). Peptide and fragment ion mass tolerance were
set to 20 ppm and 1 Da, respectively. Trypsin was chosen as
enzyme and up to two missed cleavage sites and only fully
tryptic peptides were allowed. Cysteine carboxyamidomethy-
lation was used as a static and methionine oxidation as a
variable modification. To facilitate >N peptide identification,
a variable modification of -1 Da for lysine and arginine
was introduced to account for the frequent shift from the
monoisotopic °N to the most intense °N isotopomer trig-
gered for MS/MS [19]. Peptide hits were filtered at a false
discovery rate of 1% using PeptideProphet [20]. N and °N
database searches were combined using iProphet [21] in the
trans-proteomic pipeline (TPP) [22]. Relative peptide quan-
tification was performed with the ProRata software (version
1.0) using default parameters [23]. Protein quantification was
done by a density estimation approach, which allows weigh-
ing replicates by the number of identified peptides and the
quality of the protein-specific peptide distribution. The S/N
ratio of each peptide was used to estimate a density distribu-
tion per peptide. The peptide density distributions per protein
were mixed and the protein abundance ratio was determined
using the point with the highest probability content. This ap-
proach has a similar success as the ProRata point estimation
(Supporting Information Table S1). The biological replicates
of *N/BN log, ratios of a protein were then combined by
weighing each protein abundance ratio using its probability
content. The probability content for each replicate is a re-
sult of the protein-specific peptide distribution, the number
of peptides and their corresponding S/N ratios (Supporting
Information Fig. S1). For details see Supporting Information.
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Figure 2. Behavioral alterations in '*N-labeled HAB mice. (A) The tail suspension test (TST) behavioral paradigm. Mice are hung by
their tails for 6 min and their immobility time, which is indicative of depression-like behavior, is measured (kindly provided by Markus
Nussbaumer, Max Planck Institute of Psychiatry). (B) Reduced depression-like behavior as indicated by the immobility time in TST in
5N-labeled compared to "*N HAB mice fed either Spirulina or Ralstonia eutropha diets (adapted from [14]).

2.7 In silico pathway analysis

To identify enriched Kyoto encyclopedia of genes and
genomes (KEGG) pathways [24], Uniprot IDs were first
mapped to Gene IDs and then to KEGG orthologue (KO)
IDs. p-values were calculated by the hypergeometric test im-
plemented in the statistical package R (www.R-project.org).
To account for multiple testing and to penalize pathways
with only a small number of entries, the input size of each
test was reduced by 1 [25]. The background was set to all
mouse KO IDs (3319). We used two different approaches
(combined and pooled) to address pathway alterations related
to >N metabolic labeling. In the combined approach, the
distribution of averaged protein log, (1¥N/*N) values was di-
vided into three bins: (—oo, —0.4), [-0.4, 0.4], (0.4, +00), and
enriched KEGG pathways were calculated for each bin. The
pooled approach focused on the general variation between
the biological replicates for each data set. We calculated a
pooled protein distribution for each data set and each data
set distribution was again divided into three bins (—oco, -0.4),
[<0.4, 0.4], (0.4, +00).

In the combined approach, pathways of interest are sta-
tistically significant (p < 0.001) in the first or third bin
and have a better p-value compared to the second bin. This
implied a tendency of these pathways toward a regulation
direction (up or down in N compared to 1*N-labeled HAB
mice). Ideally, this was also reflected in the second approach
when biological variation was taken into account, allowing
an assessment of the robustness and regulation tendency of
enriched pathways found in the first approach.

© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

3 Results

3.1 '5N metabolic labeling of HAB mice

HAB mice were in vivo metabolically labeled using two dif-
ferent 1N-enriched diets based on Spirulina and Ralstonia eu-
tropha proteins. *N-labeling efficiency in the brain (cerebel-
lum) was monitored at different developmental time points
and found to be >91% for both diets on PND 56 [14]. The high
>N incorporation enabled an accurate relative quantification
of N/ N peptide pairs using MS analysis.

3.2 Behavioral alterations in *N-labeled HAB mice

Anxiety-related and depression-like behaviors were assessed.
No differences were observed in anxiety-related behavior in
EPM or USV tests between *N-labeled and *N HAB mice for
both diets [14]. However, in TST (Fig. 2A), a significant de-
crease in immobility time, which is indicative of a decreased
depression-like behavior, was observed for °N-labeled com-
pared to *N HAB mice for both diets (Fig. 2B) [14].

3.3 Relative protein quantification between *N- and
5N-labeled HAB mice

We focused our analyses on proteins that were quantified in
all three biological replicates per data set. This resulted in
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Figure 3. Venn diagram of quantified proteins. Only proteins
present in all three biological replicates of an analyzed data set
were used for the in silico pathway analysis. An overlap of 534
proteins was found for all three data sets.

1619, 1250, and 1191 quantified proteins in cingulate cortex
synaptosomes, cerebrum cytosol, and hippocampus cytosol,
respectively (Fig. 3). An overlap of 534 proteins was found for
all three data sets.

3.4 Pathway alterations in *N-labeled HAB mice

To identify pathways with a high level of significance altered
by the N isotope, we submitted the proteomics data to two
complementary in silico pathway analysis methods. We con-
sidered as affected only those pathways that were significantly
altered in both analyses after correction for multiple test-
ing (Supporting Information Tables S2 and S3). Alterations
were found in major energy metabolism pathways, including
the tricarboxylic acid cycle (TCA) cycle, oxidative phospho-
rylation, and glyoxylate and dicarboxylate metabolism. The
TCA cycle showed a predominant downregulation in N-
labeled HAB mice in the cingulate cortex synaptosomes. In
the pooled analysis, no significant (p = 0.204) enrichment
of the TCA cycle was found in the second bin, indicating
a clear trend toward downregulation (p = 2.49 x 10711). A
similar trend was confirmed in the cerebrum cytosol and
hippocampus cytosol with p-values in the pooled analysis in-
dicating a downregulation in N-labeled HAB mice (cere-
brum, p = 3.87 x 107%; hippocampus, p = 8.21 x 1072).
The combined analysis also showed downregulation for hip-
pocampus cytosol (p = 2.99 x 107) but not for the cere-
brum cytosol data (p = 0.0013) when compared to second bin

© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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p-values (hippocampus, p = 0.00014; cerebrum, p = 3.10 x
1079).

Oxidative phosphorylation was only altered in the cingulate
cortex synaptosomes data set. Both in the combined (p = 2.85
x 1072) and pooled (p = 7.88 x 107*) analyses a tendency
was found for a downregulation in N-labeled HAB mice.
This trend was not seen in cerebrum cytosol or hippocam-
pus cytosol. Even in the pooled analysis, no clear direction
of regulation could be identified. Finally, the glyoxylate and
bicarboxylate metabolism pathway was only found to be sig-
nificantly altered in the cerebrum cytosol (combined p-value
= 4.29 x 1075 pooled p-value = 3.61 x 107). Comparing
the p-values of the third and second bins showed a trend to-
ward downregulation. No pathways exclusively affected in the
hippocampus cytosol were identified.

4 Discussion

In the present study, we report for the first time an N iso-
tope effect on the mouse brain proteome. When comparing
15N-labeled and *N HAB mice, we found altered protein ex-
pression levels in all brain regions and subproteomes that
were analyzed. Employing an in silico pathway-based analy-
sis, we were able to pinpoint alterations in major metabolic
pathways such as the TCA cycle, oxidative phosphorylation,
and glyoxylate and bicarboxylate metabolism.

Although the ®N isotope effect has been considered in-
significant due to the small relative mass difference between
the N and >N isotopes, there are several lines of evidence
that support an N isotope effect on the molecular level. Al-
terations in growth rates have been observed in Escherichia coli
bacteria and fungi growing in *N-labeled compared to N
media (M. D. Filiou et al., submitted for publication) [3, 26].
Others have reported changes in spectroscopic properties be-
tween 1N- or 1*C-labeled and unlabeled Cu-thiolate clusters
in yeast, suggesting that the >N incorporation in an organ-
ism can affect protein architecture [27]. As a consequence,
enzymatic reactions and pathways could be altered in an un-
predictable manner.

In the current study, 1 N-derived protein expression alter-
ations in energy metabolism pathways were accompanied by
alterations in depression-like behavior in HAB mice. Inter-
estingly, several studies have already found a dysregulation
of these pathways in depression and other psychiatric con-
ditions. Energy metabolism imbalance has been repeatedly
reported in a series of rat models of depression [28-31]. In arat
model of social defeat, alterations in TCA cycle and electron
transport chain proteins were found [28]. Expression-level
changes of proteins involved in TCA cycle and glycolysis were
also observed in rats subjected to chronic mild stress [29].
Maternal separation and/or escitalopram treatment also
resulted in alterations of TCA cycle and subunits of the elec-
tron transport chain [30] whereas similar energy metabolism
alterations were reported for a gene-environment rat model
of depression [31]. Altered brain levels of energy metabolism

www.proteomics-journal.com



2426 M. D. Filiou et al.

enzymes were found in normal rats under chronic antide-
pressant treatment [32]. In human cohorts, enzymes of the
TCA cycle were also found differentially expressed between
patients suffering from major depression and controls [33].

Oxidative phosphorylation in the cingulate cortex synap-
tosomes was the most significantly altered pathway found
in the current study. Oxidative phosphorylation is not only
the major mechanism for ATP production in the cell but
also the main source of reactive oxygen species that cause
oxidative stress. There is a well-established link between ox-
idative stress and major psychiatric disorders including de-
pression [30], schizophrenia [34], anxiety [6], and bipolar dis-
order [35, 36]. The fact that different pathways were found af-
fected in the different data sets analyzed suggests a proteome-
and area-specific effect of the >N isotope, in line with the
spatially-dependent functional organization of the brain [37].

Taken together, the molecular changes observed in *N-
labeled compared to N HAB mice are related to the de-
creased depression-like behavior observed in these animals.
Our findings do not imply that the N incorporation has
antidepressant properties and care should be taken not to
overinterpret such isotope effects. In clinical practice, there
is no evidence that the introduction of the N isotope has
a therapeutic potential. However, in the trait anxiety mouse
model investigated in the present study, the introduction of
the N isotope results in behavioral changes similar to the
ones caused by antidepressant agents. The N isotope effect
can be exploited to learn about molecular correlates associ-
ated with the behavioral phenotype in an animal model. In
quantitative proteomics studies using stable isotopes, the °N
isotope effect can be circumvented by using appropriate label-
ing controls (i.e. "' N-labeled standard or reverse *N labeling).
By implementing such controls in a comparative proteomics
study design, the >N isotope effect will not influence the
quantification results.

Our exploratory study demonstrates that the in vivo in-
troduction of the N isotope can have unpredictable ef-
fects on molecular pathways and behavioral characteristics.
We therefore submit that the N metabolic labeling ap-
proach, apart from a method for accurate protein quantifi-
cation, has the potential to reveal molecular pathways in-
volved in phenotypic alterations. The investigation of the
15N isotope can be extended to behavioral phenotypes other
than anxiety and even to mice with different genetic back-
grounds. To this end, >N metabolic labeling may provide us
with a powerful tool for unraveling the molecular underpin-
nings of dysfunctional circuits relevant for neuropsychiatric
disorders.
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The implementation of functional genomics in psychiatry research - in
particular high throughput proteomics and metabolomics - is only at its very
beginning and its great potential is just being realized. In a disease with
unknown etiology like major depression exploratory and unbiased -omics
studies in well-established mouse models are of major importance to generate
novel hypotheses of disease etiology and mode of drug action. Before
reaching clinical significance, generated hypotheses have to be further
addressed, validated or modified in targeted studies in other mouse models
and clinical settings.

In the present study we employed proteomics and metabolomics technologies
in combination with in silico pathway analyses in order to define
antidepressant treatment effects in mouse models. DBA/2 mice were treated
with paroxetine and molecular pathway alterations identified upon treatment
with a representative SSRI. The antidepressant-like "°N isotope effect on the
HAB proteome was investigated and antidepressant-like behavioral and
molecular alterations correlated. In addition, metabolite biomarker candidates
for paroxetine treatment effects that reflect hippocampal alterations were
identified in plasma.

Most importantly, we have shown that antidepressant treatment affects a
great variety of biochemical pathways and is not restricted to alterations in
monoaminergic neurotransmission. Novel hypotheses for the mode of
antidepressant drug action were generated that lay the ground for future
investigations in the quest for improved antidepressant treatment strategies.

3.1 Antidepressant treatment influences key cellular
processes

Psychiatric disorders have traditionally been viewed as neurochemical
diseases (Maniji et al.,, 2001) and currently used antidepressants increase
neurotransmitter availability. The present study has shown that apart from
neurotransmission antidepressant treatment alters key cellular processes like

energy metabolism supporting findings from previous functional genomic
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studies (Khawaja et al., 2004; Carboni et al., 2006; McHugh et al., 2008). It is
tempting to speculate that these altered key cellular processes are directly or

indirectly involved in antidepressant therapeutic effects.

3.1.1 Antidepressant treatment shifts energy metabolism towards
aerobic glycolysis

We identified significant alterations in energy metabolism upon paroxetine
treatment (Webhofer et al., 2011). Most importantly, there was a fast and
strong increase of early glycolytic intermediates in the hippocampus of DBA/2
mice upon paroxetine treatment (Webhofer et al., 2013). Supporting the shift
towards aerobic glycolysis upon antidepressant treatment, the antidepressant-
like "N isotope effect in HAB mice correlated with decreases in Krebs cycle
and oxidative phosphorylation enzyme levels (Filiou et al., 2012). In
agreement with these results, Filiou et al. (Filiou et al., 2011b) found
decreased Krebs cycle and oxidative phosphorylation enzyme levels in low
anxiety LAB mice compared to anxious HAB mice. It is important to note that
aerobic glycolysis not only provides ATP for neuronal activity but also
influences other important cellular parameters like the redox state and
pathways like neurogenesis (Vaishnavi et al., 2010) — a known target of
antidepressant treatment (Santarelli et al., 2003).

Future studies need to address the question whether directly targeting energy
metabolism and shifting it towards aerobic glycolysis can have
antidepressant-like effects in mouse models. In addition to assessing
behavioral effects the emphasis of such studies should be on a critical
evaluation of undesired side effects when directly interfering with a ubiquitous
pathway such as energy metabolism. It may be beneficial to not directly target
energy metabolism but related pathways that may be more relevant for
antidepressant therapeutic effects. Future systems-based studies will
eventually lead to an advanced understanding of neuronal and glial energy
metabolism and its cross-talk with other pathways facilitating targeted

therapeutic interventions.
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3.1.2 Role of astrocytes in paroxetine treatment

Combined proteomic and metabolomic analyses indicated that increased
glycolytic intermediate levels may, at least in part, be a consequence of an
altered glycogen metabolism (Webhofer et al., 2013). The involvement of
glycogen metabolism points towards an important role of astrocytes, the
primary source of glycogen in the brain (Magistretti et al., 2000), in
antidepressant action as has been postulated before (Czeh and Di Benedetto,
2012). It is therefore important that future studies elucidate specific roles of
distinct cell types in antidepressant treatment. This notion is underscored by
recent findings indicating that single cell types play distinct roles in
antidepressant therapy (Schmidt et al., 2012) and that distinct cell types in
different brain regions may elicit bidirectional effects on psychiatric
phenotypes (Refojo et al., 2012). At present, however, functional genomic
studies on single cell systems are analytically very challenging due to low
tissue amounts and advances in analytical platforms are necessary to enable

these studies.

3.1.3 Paroxetine treatment influences amino acid metabolism
Interestingly, there were opposing findings regarding proteinogenic amino
acids that were significantly altered upon paroxetine treatment as described in
chapters 2.1 and 2.2. Seven proteinogenic amino acids that were significantly
increased in one study (chapter 2.1) were significantly decreased in the other
study (chapter 2.2, alanine, leucine/isoleucine, serine, threonine, tyrosine and
valine). GABA, a non-proteinogenic amino acid, was significantly decreased
upon paroxetine treatment in both studies. Similar treatment paradigms but
distinct sample preparation protocols and metabolomic platforms were
employed in the two studies (Webhofer et al., 2011; Webhofer et al., 2013).
Major differences between the studies included (1) duration of paroxetine
treatment, i.e. 28 days versus 24 days, (2) metabolite extraction buffers and
extraction protocol, i.e. acetonitrile/isopropanol/water 3:3:2 versus
methanol/water 4:1 and (3) metabolomics platform, i.e. GC-TOF-MS versus
LC-SRM-MS/MS based metabolite quantitation.
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Although the duration of chronic paroxetine treatment was similar (24 days
versus 28 days) differences could still result from different treatment duration.
However, both studies show increased glycolytic metabolites. The observed
differences of proteinogenic amino acids may be due to distinct sample
preparation strategies rather than random or systematic technical or treatment
variability. We speculate that different sub-metabolomes may have been
analyzed in the described studies. Future studies need to systematically
investigate metabolic alterations in different subcellular compartments in order
to address this question. A first line of investigation may include mitochondrial
versus cytosol metabolite alterations upon antidepressant treatment with

respect to the current findings related to energy metabolism.

3.2 Future developments in functional genomics

The present study has demonstrated the importance and benefits of
integrated pathway analyses at both proteome and metabolome levels.
Previous studies have also shown that there is a weak correlation between
mMRNA and protein levels (Nie et al., 2006; Gry et al., 2009) further supporting
the need for integrated complementary -omics analyses. However, for
successful data integration from different analytical platforms and realizing
truly holistic answers, advances in post genomic studies have to be made.
Post-genomic analyses are expensive and instrument-time consuming and it
therefore takes a considerable amount of time to describe alterations at
mRNA, protein and metabolite levels. Modern instrumentation that allows for
reduced analysis time and increased throughput may help in this endeavor. In
addition, instruments need to be sensitive for increased information output
and robust in every day performance. There is also a great demand for novel
computational tools integrating heterogeneous datasets from diverse
analytical platforms to achieve a holistic, quantitative and predictive
understanding of the system under investigation (Sauer and Zamboni, 2008).
Finally, the current psychiatric pathway discovery pipeline should be
expanded to shed light on disease etiology and mode of drug action from
different perspectives. Important future paths may include studies on

biological parameters such as mRNA turnover (Mitchell and Tollervey, 2001;
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Munchel et al., 2011), protein turnover (Price et al., 2010; Zhang et al.,
2011a), protein post-translational modifications like phosphorylation
(Christensen et al., 2010) and using diverse platforms such as single-cell
analyses (Shi et al, 2012) or imaging studies like MALDI imaging
(Schuerenberg et al., 2007) or multi-isotope imaging mass spectrometry
(Steinhauser et al., 2012; Zhang et al., 2012).

The integration of diverse technologies in combination with well characterized
mouse models and clinical samples will lay the ground for an improved
understanding of psychiatric diseases and treatment pathways and eventually

lead to better diagnosis and improved treatment strategies.
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