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Abstract 

i 
 

Abstract 
 

Most of the commonly used antidepressants block monoamine reuptake 

transporters to enhance serotonergic or noradrenergic neurotransmission. 

Effects besides or downstream of increased monoaminergic 

neurotransmission are poorly understood and yet presumably important for 

the drugs’ mode of action. In my PhD thesis I employed proteomics and 

metabolomics technologies combined with in silico analyses and identified 

cellular pathways affected by antidepressant drug treatment. DBA/2 mice 

were treated with paroxetine as a representative Selective Serotonin 

Reuptake Inhibitor (SSRI). Hippocampal protein levels were compared 

between chronic paroxetine- and vehicle-treated animals using in vivo 15N 

metabolic labeling combined with mass spectrometry. I also studied chronic 

changes in the hippocampus using unbiased metabolite profiling and the time 

course of metabolic changes with the help of a targeted polar metabolomics 

profiling platform. I identified profound alterations related to hippocampal 

energy metabolism. Glycolytic metabolite levels acutely increased while Krebs 

cycle metabolite levels decreased upon chronic treatment. Changes in energy 

metabolism were influenced by altered glycogen metabolism rather than by 

altered glycolytic or Krebs cycle enzyme levels. Increased energy levels were 

reflected by an increased ATP/ADP ratio and by increased ratios of high-to-

low energy purines and pyrimidines. Paralleling the shift towards aerobic 

glycolysis upon paroxetine treatment I identified decreased levels of Krebs 

cycle and oxidative phosphorylation enzyme levels upon the antidepressant-

like 15N isotope effect in high-anxiety behavior mice. In the course of my 

analyses I also identified GABA, galactose-6-phosphate and leucine as 

biomarker candidates for the assessment of chronic paroxetine treatment 

effects in the periphery and myo-inositol as biomarker candidate for an early 

assessment of chronic treatment effects. The identified antidepressant drug 

treatment affected molecular pathways and novel SSRI modes of action 

warrant consideration in antidepressant drug development efforts. 
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1 INTRODUCTION 

 

1.1 Major depressive disorder and the monoamine deficiency 
hypothesis of depression 

 

1.1.1 Major depressive disorder 
 

Major depressive disorder (MDD) is a severe and life-threatening disease 

(about 15% of depressed patients commit suicide (Manji et al., 2001)) with a 

population prevalence of 17% (Kessler et al., 2007; Burmeister et al., 2008). 

By the year 2030 major depression is projected to be the second leading 

contributor to the global burden of disease (disability adjusted life years, 

DALY) and the leading contributor in high-income countries (Mathers and 

Loncar, 2006).  

MDD etiology is poorly understood and there are no objective diagnostic tests 

available. The diagnosis of depression is based on a highly subjective and 

variable set of symptoms such as depressed mood, loss of interest, 

diminished sense of pleasure, irritability, low self-esteem, weight loss or 

weight gain, insomnia or hypersomnia or recurrent thoughts of death and 

suicide that last for more than two weeks and disrupt normal social and 

occupational functioning (Nestler et al., 2002; Mann, 2005). 

 

1.1.2 Current antidepressant treatment and the monoamine deficiency 
hypothesis of depression 
 

More than 50 years ago it was observed serendipitously that the monoamine 

oxidase inhibitor (MAOI) iproniazid, initially developed for the treatment of 

tuberculosis (Bloch et al., 1954), and the tricyclic agent (TCA) imipramine, 

initially developed for the treatment of psychotic disorders (Kuhn, 1958), 

exerted antidepressant effects in man. Iproniazid increased monoamine levels 

by inhibiting their catabolism by monoamine oxidase and imipramine amplified 

monoamine signaling by inhibiting monoamine reuptake at the presynapse.  
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Based on these findings the monoamine deficiency hypothesis of depression 

proposed that increasing synaptic availability of monoamines elicits 

antidepressant effects and that MDD involved the decrease of monoamines in 

the brain (Schildkraut, 1965; Coppen, 1967; Wong and Licinio, 2004). 

In the 1980s, based on the monoamine deficiency hypothesis of depression, 

antidepressant drug development efforts focused on the rational design of 

agents with selective monoamine-uptake inhibitory properties. Selective 

Serotonin Reuptake Inhibitors (SSRIs, e.g. paroxetine, fluoxetine) (Vaswani et 

al., 2003, see Figure 1) and, to a lesser extent, Selective Noradrenaline 

Reuptake Inhibitors (SNRIs, e.g. reboxetine) (Brunello et al., 2003) were 

developed that did not affect other neuroreceptor systems for increased safety 

and tolerability. According to meta-analyses, SSRIs and SNRIs exhibit 

favorable side effect profiles but equal treatment efficacy and onset of action 

compared to TCA treatment (Song et al., 1993; Montgomery et al., 1994; 

Anderson, 2000; Peretti et al., 2000). Shortcomings of current monoaminergic 

antidepressant treatment include a delayed onset of therapeutic action (up to 

2-8 weeks), adverse side effects (e.g. sexual dysfunction or sleep 

disturbances) and a low response rate (about 50-80%) (Holsboer, 2001; 

Wong and Licinio, 2004; Berton and Nestler, 2006). 

To face the challenges of increasing numbers of depressive patients and 

increasing economic burden in the coming decades it is mandatory to have 

better antidepressant drugs at hand with increased efficacy, less side effects 

and faster onset of therapeutic action. 
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Figure 1. Mode of SSRI drug action.  

Selective serotonin reuptake inhibitors 

increase serotonergic neurotransmission 

by blocking serotonin transporters in the 

presynapse.  

Reproduced with permission from 

(Mann, 2005), Copyright Massachusetts 

Medical Society. 

 

 

 

 

 

1.2 Antidepressant treatment effects beyond monoamine 
reuptake inhibition 
 

Contrary to the monoamine deficiency hypothesis of depression, monoamine 

depletion does not induce depression in healthy humans (Ruhe et al., 2007). 

Moreover, although pharmacological modulation of monoamine receptors 

represents an acute antidepressant treatment effect therapeutic effects are 

delayed by several weeks (Gould and Manji, 2002). Additionally, a study by 

Nickel et al. (Nickel et al., 2003) found that serotonin reuptake inhibition (by 

paroxetine treatment) and serotonin reuptake enhancement (by tianeptine 

treatment) elicit antidepressant effects. Both paroxetine and tianeptine 

treatment normalized hypothalamic-pituitary-adrenal (HPA) axis reactivity, 

indicating that opposite effects on the serotonin system may lead to common 

downstream pathway alterations. 

The most parsimonious explanation for these findings is that monoamine 

elevation per se is not the only source for therapeutic antidepressant activity 

but secondary long-term downstream effects may also be involved in the 

alleviation of depressive symptoms (Brady et al., 1992; Michelson et al., 1997; 

Holsboer, 2001). It is tempting to speculate that for improved antidepressant 

treatment it would be beneficial to pharmacologically interfere with these 

downstream mechanisms directly.  
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The following chapters (1.2.1-1.2.4) overview the major hypotheses of 

antidepressant treatment effects beyond monoamine reuptake inhibition. It is 

important to note that this overview is not exclusive, there is no consensus on 

which effects are most relevant for therapeutic action and molecular 

antidepressant treatment effects in general remain elusive. 

 

1.2.1 Intracellular signaling events upon antidepressant treatment 
 

Monoaminergic neurotransmission is mainly mediated via G-protein coupled 

receptor (GPCR) signaling and different monoamine receptor families are 

coupled to different G-proteins. Dependent on the receptor subtype two major 

´prototypical´ intracellular signal transduction pathways are involved: (1) 

cAMP signaling upon Gi/o or Gs activation and (2) phosphatidylinositol 

signaling upon Gq activation. Gi/o inhibits adenylate cyclase (AC) activity 

leading to reduced second messenger cAMP generation and in turn reduced 

protein kinase A (PKA) activity whereas Gs activates AC activity leading to 

increased PKA activity. Gq activates phospholipase C (PLC) leading to 

increased generation of the second messengers inositol phosphate (IP) and 

diacylglycerol (DAG) and in turn increased protein kinase C (PKC) activity. 

PKA and PKC mediated protein phosphorylation eventually lead to gene 

expression alterations (Millan et al., 2008). PKA phosphorylates the cAMP 

response element binding protein (CREB) that in turn binds to the cAMP 

response element (CRE), a gene element found in the promoters of a few 

thousand genes (Gould and Manji, 2002; Impey et al., 2004). 

Despite extensive cross-talk between PKA and PKC mediated systems, 

antidepressant treatment is believed to mainly influence cAMP/PKA signaling 

cascades and phosphatidylinositol/PKC signaling seems less relevant 

(Shelton, 2000; Perera et al., 2001). Specifically, chronic antidepressant 

treatment alters mRNA and protein levels of G protein alpha subunits in a 

brain region- and antidepressant drug-specific manner (Lesch and Manji, 

1992; Li et al., 1996; Li et al., 1997; Raap et al., 1999). Antidepressant 

treatment also induces a translocation of PKA from the cytosol to the nucleus 

in rat frontal cortex cells (Nestler et al., 1989) and increases PKA dependent 

phosphorylation events (Perez et al., 1989; Perez et al., 1991).  
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1.2.2 Induced neurogenesis upon antidepressant treatment 
 

Long-term antidepressant treatment increases cellular CREB mRNA, CREB 

protein and CREB/CRE binding in the hippocampus (Nibuya et al., 1995; 

Nibuya et al., 1996; Duman et al., 1997). The same studies found that the 

CREB regulated gene products BDNF and its receptor trkB were upregulated 

upon long-term treatment. Other studies indicate that antidepressant 

treatment regulates CREB in a brain region-specific manner and that CREB 

exerts opposing effects on depression-like features in different brain regions 

(Schwaninger et al., 1995; Nibuya et al., 1996; Manier et al., 2002; Newton et 

al., 2002).  

CREB and the neurotrophin BDNF have been considered key regulators of 

neuronal survival and plasticity, including neurogenesis and synaptogenesis 

(Nakagawa et al., 2002; Castren, 2004; Malberg and Blendy, 2005; Gass and 

Riva, 2007). Antidepressant treatment appears to protect against hippocampal 

volume loss in depressed patients (Sheline et al., 2003), antidepressant drugs 

enhance neurogenesis in rodent hippocampi (Malberg et al., 2000) and 

Santarelli et.al. (Santarelli et al., 2003) have shown that hippocampal 

neurogenesis is required for antidepressant induced behavioral effects in 

mice. Based on these findings the neurotrophic hypothesis of depression 

postulates that hippocampal neuronal atrophy (due to stress and decreased 

expression of BDNF and other growth factors) contributes to depression and 

antidepressant treatment effects derive from an upregulation of BDNF in the 

hippocampus (Wong and Licinio, 2004; Duman and Monteggia, 2006).  

 

1.2.3 Altered stress response upon antidepressant treatment 
 

Hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis is a putative 

risk factor predisposing to the development of depression. A significant 

percentage of depressed patients exhibit HPA axis hyperactivity due to, at 

least in part, impairment of corticosteroid receptor function which is also 

reflected by an inappropriate response in the dexamethasone/corticotropin-

releasing hormone (DEX/CRH) test (Holsboer, 2001; Pariante and Lightman, 

2008). Successful antidepressant treatment is associated with resolution of 
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the impairment in the negative feedback on the HPA axis by glucocorticoids 

(Pariante, 2006). 

The CRH promotor region contains a CRE sequence (Spengler et al., 1992) 

and antidepressants may influence the stress system via PKA mediated 

signaling and regulation of CREB. Indeed, antidepressant treatment reduces 

CRH concentrations in the cerebrospinal fluid (CSF) (Nemeroff et al., 1991; 

De Bellis et al., 1993; Veith et al., 1993; Heuser et al., 1998). Additionally, 

antidepressant treatment decreases HPA axis stress reactivity associated with 

increased binding capacity of corticosteroid receptors in the hippocampus 

(Reul et al., 1994), alters glucocorticoid receptor (GR) expression, and 

improves GR function and GR-mediated feedback inhibition (Brady et al., 

1991; Brady et al., 1992; Michelson et al., 1997; Holsboer, 2001; Pariante and 

Lightman, 2008). 

1.2.4 Unifying link between distinct mechanisms of antidepressant drug 
action 
 

A recent study identified a putative link between antidepressant treatment 

induced changes on intracellular PKA mediated signaling (see chapter 1.2.1), 

neurogenesis (see chapter 1.2.2) and the HPA axis (see chapter 1.2.3). 

Specifically, in vitro experiments indicated that induced neurogenesis upon 

SSRI (sertraline) treatment is dependent on GR function that is associated 

with GR phosphorylation via PKA activity (Anacker et al., 2011). This and 

other findings indicate that distinct hypotheses for the mode of antidepressant 

action do not compete and exclude each other but rather complement each 

other (Perera et al., 2001).  

Taken together, despite tremendous efforts during the last decades, the 

precise mechanism of antidepressant action remains elusive and studies on 

current antidepressant treatment effects are in great demand for a better 

understanding of antidepressant elicited therapeutic as well as side effects.   
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1.3 Biomarker discovery 

 

1.3.1 Biomarkers and surrogate endpoints 
 

Biomarkers are used as diagnostic tools for the objective determination of 

disease state, disease progression, disease prognosis or treatment effects 

and response. According to the National Institutes of Health, a biomarker is “a 

characteristic that is objectively measured and evaluated as an indicator of 

normal biological processes, pathogenic processes, or pharmacological 

responses to a therapeutic intervention” (Biomarkers Definitions Working 

Group, 2001). A biomarker that is reasonably likely to predict clinical benefit 

may also be used as surrogate endpoint, i.e. be used as “biomarker that is 

intended to substitute for a clinical endpoint. A surrogate endpoint is expected 

to predict clinical benefit (or harm or lack of benefit or harm) based on 

epidemiologic, therapeutic, pathophysiologic, or other scientific evidence” 

(Biomarkers Definitions Working Group, 2001). 

 

1.3.2 Biomarkers for antidepressant treatment effects 
 

At present there are no biomarkers that are used in clinical practice for any 

psychiatric disorder. Biomarkers for antidepressant treatment response could 

accelerate drug discovery as surrogate endpoints and hence reduce 

production costs and pipeline development time (Schwarz and Bahn, 2008). 

Biomarkers could help to predict antidepressant treatment response early in 

the course of treatment in order to minimize protracted serial trial-and-error 

(Rush et al., 2009; Leuchter et al., 2010), inform on drug dosing and help 

minimize inter-individual variation in antidepressant treatment response  

(Biomarkers Definitions Working Group, 2001). 

Because psychiatric diseases are considered complex disorders of the brain, 

major affected biochemical pathways in disease or upon treatment are 

expected to be primarily altered in the brain. Plasma, on the other hand, is the 

preferred specimen for a biomarker assay due to its accessibility, reproducible 

sampling methods and the fact that small brain molecules are excreted via 

plasma (Leuchter et al., 2010). The ideal biomarker for psychiatric disorders 
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would be measured in the periphery and represent a highly sensitive and 

specific indicator of disease pathways in the brain. 

Due to the complex etiology and polygenic character of psychiatric disorders 

biomarker signatures rather than single biomarkers are expected to depict 

more accurately behavioral phenotype changes (Filiou et al., 2011a). A single 

biomarker will usually have small effect sizes and several biomarkers need to 

be combined for a robust prediction of disease state or treatment effects 

(Singh and Rose, 2009).  

 

1.4 Mouse models in antidepressant treatment research 
 

Although human material is the most relevant specimen for the analysis of 

psychiatric disease etiology and antidepressant treatment effects, exploratory 

studies frequently rely on the investigation of rodent brains (Nakatani et al., 

2004; Wong and Licinio, 2004; Yamada and Higuchi, 2005; Conti et al., 2007; 

Sillaber et al., 2008) for the following reasons: (1) fresh human brain tissue, 

the most relevant organ for psychiatric disorders, is inaccessible due to ethical 

reasons (Sullivan et al., 2006); (2) human post mortem brain, cerebrospinal 

fluid (CSF) or plasma are of limited availability; (3) the inter-individual genetic 

and life style variability combined with the low sample quantity available pose 

serious challenges for analytical efforts (Filiou and Turck, 2011); (4) the 

presence of confounding factors like brain pH, post mortem interval, age, use 

of antidepressant or other drugs, smoking or substance abuse complicate 

statistical data analyses and thus (5) a great number of biological replicates is 

needed (Kim and Webster, 2009).  

Therefore, for the exploratory phase of the antidepressant-affected pathways 

or biomarker signature discovery pipeline, animal model based studies tend to 

have higher success rates (Turck et al., 2005; Filiou and Turck, 2011). Animal 

models in combination with proteomic and metabolomic technologies promise 

to be useful tools for the hypothesis-free discovery of biomarker candidates 

(Turck et al., 2005; Reckow et al., 2008; Filiou and Turck, 2011). 
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1.4.1 Mouse models for psychiatric disorders 
 

Major depression involves complex thought processes and emotions and it is 

not possible to model depression in mice in its entirety (Wong and Licinio, 

2004). However, mouse models were successfully developed that model 

certain features, i.e. endophenotypes, of the disease by resembling selected 

characteristics of the human condition. Current animal models for depression-

like behavior include uncontrollable stress models (e.g. forced swim test 

(FST), tail suspension test (TST)), reward models (e.g. sucrose prevalence), 

olfactory bulbectomy, chronic mild stress, drug withdrawal, maternal 

deprivation, neonatal clomipramine and genetic models (reviewed in (Wong 

and Licinio, 2004)). Important criteria for mouse models of depression are (1) 

face validity, i.e. whether the model phenomenologically resembles the human 

condition; (2) predictive validity, i.e. whether the performance of the model in a 

test is predictive for human performance and (3) construct/etiological validity, 

i.e. how accurately the test models the human condition and whether the 

model is based on known etiological factors. Predictive validity is sometimes 

used to indicate pharmacological isomorphism, i.e. whether the model 

predicts antidepressant treatment response in humans (Van Dam and De 

Deyn, 2006; Markou et al., 2009).  

There are various models available to investigate the effects of currently used 

and novel antidepressants in mice. The following chapter (1.4.2) will focus on 

an animal model that was utilized in the present thesis for (1) the 

characterization of antidepressant treatment affected molecular pathways and 

(2) for the identification of biomarker candidates for antidepressant treatment 

effects. The subsequent chapter (1.4.3) will focus on an animal model of 

anxiety-related behavior and the recently discovered antidepressant-like 15N 

isotope effect that was utilized for correlating antidepressant-like effects with 

molecular pathway alterations.   

 

1.4.2 Paroxetine treatment of DBA/2 mice  
 

Paroxetine is the most potent inhibitor of serotonin reuptake (Sanchez and 

Hyttel, 1999; Bourin et al., 2001) and a weak inhibitor of norepinephrine 

reuptake (Kelly and Leonnard, 1995; Sugimoto et al., 2011). The ratio of 
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inhibition of uptake of norepinephrine to serotonin (NE/5-HT) is second only to 

that of citalopram. There is a negligible affinity for other receptor systems, 

including catecholaminergic, dopaminergic, histaminergic and muscarinic 

cholinergic systems (Bourin et al., 2001). Next to depression the SSRI 

paroxetine is also used for treating panic disorder, obsessive compulsive 

disorder and social phobia (Wagstaff et al., 2002). 

The inbred DBA/2 mouse strain displays a high level of innate anxiety-like 

behavior (Ohl et al., 2003) that is potentially linked to distinct neurotransmitter 

receptor densities (Yilmazer-Hanke et al., 2003), may exhibit aspects of 

hippocampal dysfunction (Thinus-Blanc et al., 1996) and displays a reduced 

HPA axis feedback inhibition compared to other inbred mouse strains 

(Thoeringer et al., 2007). DBA/2 mice are more sensitive towards paroxetine 

treatment compared to other mouse strains, as determined in the FST 

(Sugimoto et al., 2011). These studies suggest that DBA/2 mice reflect some 

psychiatric disorders endophenotypes and therefore might be suitable for the 

investigation of molecular antidepressant treatment effects (Sillaber et al., 

2008). Paroxetine treatment of DBA/2 mice results in decreased passive 

stress coping behavior in the FST, an indication of antidepressant treatment 

efficacy in rodents (Porsolt et al., 1977).  

Sillaber et al. investigated paroxetine induced alterations in DBA/2 mice at the 

mRNA level using transcriptomic analyses (Sillaber et al., 2008). In the 

present thesis the focus was expanded to the identification of molecular 

pathway alterations using proteomic and metabolomic analyses and the 

identification of biomarker candidates for antidepressant treatment effects. 

 

1.4.3 The HAB/LAB mouse model and the antidepressant-like 15N isotope 
effect in anxious HAB mice 
 

The high anxiety-related behavior (HAB)/low anxiety-related behavior (LAB) 

mouse model is based on selective bidirectional breeding of mice for 

behavioral extremes according to their performance on the elevated plus-

maze (EPM), a behavioral paradigm assessing anxiety-related behavior. HAB 

mice spend most of their time in the closed arms whereas LAB mice spend 

most of their time in the open arms (Pellow et al., 1985; Kromer et al., 2005). 
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Selective bidirectional inbreeding led to the enrichment of the genetic material 

associated with the anxiety phenotype (Landgraf et al., 2007; Plomin et al., 

2009). The high comorbidity of anxiety with depression is reflected in HAB 

mice by an increased passive stress coping behavior in the FST and TST 

compared to LAB mice (Kromer et al., 2005; Landgraf et al., 2007). 

In previous efforts for relative protein quantification 15N metabolic labeling was 

applied to the HAB/LAB mouse model for the comparison of HAB and LAB 

proteomes (Filiou et al., 2011b; Zhang et al., 2011b). For that purpose mice 

were fed a diet enriched with the stable, heavy 15N isotope (>97% 15N) 

resulting in an enrichment of the 15N isotope in the organism. Intriguingly, the 

introduction of the stable 15N isotope resembled antidepressant treatment 

effects on the behavioral phenotype of HAB mice in the TST. We therefore 

carried out unbiased proteomic analyses of this antidepressant-like 15N 

isotope effect in order to discover pathways that are potentially involved in 

antidepressant-like actions in the HAB mouse model (Frank et al., 2009).   

 

 

1.5 Mass spectrometry based quantitative proteomics and 
metabolomics 

 

1.5.1 Genomics and functional genomics in psychiatry research 
 

Major depression is a complex, hereditary and polygenetic disease. The 

interplay of the genetic setup with environmental factors is believed to play a 

crucial role in psychiatric disease development (Taurines et al., 2011). There 

is a great demand for integrative analyses across a wide range of fields 

including omics-based systems biology strategies for a better understanding 

of disease related pathways (Kitano, 2002; Barabasi and Oltvai, 2004). 

After the complete sequencing of the human genome about 10 years ago 

(Lander et al., 2001; Venter et al., 2001), psychiatry research has applied 

genomic approaches in human studies leading to valuable, though 

unfortunately limited, insights into disease pathways, treatment response and 

novel drug targets (Lucae et al., 2006; Burmeister et al., 2008; Sillaber et al., 

2008; McQuillin et al., 2009). 
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Functional genomics (i.e. post-genomics) including transcriptomics, 

proteomics and metabolomics adds a very important new dimension to the 

study of psychiatric disorders: the analysis of spatial and temporal system 

alterations. Consequently, functional genomics facilitates an accurate and 

unbiased generation of hypotheses for pathophysiology and drug action 

mechanisms (Turck et al., 2005; Geschwind and Konopka, 2009).  

Both transcriptomics and proteomics were successfully applied to the 

elucidation of antidepressant treatment affected pathways in rodents 

(Khawaja et al., 2004; Carboni et al., 2006; Cecconi et al., 2007; McHugh et 

al., 2008; Sillaber et al., 2008; McHugh et al., 2010). Compared to 

transcriptomics, proteomics exhibits several advantageous characteristics: (1) 

the level of mRNA does not always reflect protein expression indicating the 

need for complementary proteomics analyses; (2) proteomics allows for 

organelle specific analyses facilitating e.g. synapse specific alterations; (3) 

protein post-translational modifications (PTM) play an important role in protein 

function and activity, but this aspect is undetectable by transcriptomics and (4) 

proteins are the actual contributors to biochemical pathway activities and 

biological processes and therefore are more closely related to disease 

phenotype. 

With the advance of novel instrumentation and data analysis strategies 

metabolomics represents the latest of functional genomics technology. 

Metabolomics complements transcriptomics and proteomics investigations 

especially in the area of systems biology and pathway analysis because 

metabolites are the final products of interactions between gene expression, 

protein expression and the cellular environment (Kaddurah-Daouk and 

Krishnan, 2009). At present only a limited number of studies have been 

performed investigating effects of antidepressant treatment at the metabolome 

level (Paige et al., 2007; Dai et al., 2010; Ji et al., 2011; Su et al., 2011).  

The following chapters describe quantitative proteomic (1.5.2) and 

metabolomic (1.5.3) technologies with a focus on methods that were used in 

the current thesis.  
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1.5.2 Quantitative proteomics 
 

Traditional proteomics strategies predominately exploited two-dimensional gel 

electrophoresis for high resolution protein separation and relative protein 

quantification. Complex protein mixtures (e.g. derived from brain tissue) are 

first separated according to their isoelectric point and in a second dimension 

by molecular weight. Staining of the proteins allows the identification of both 

quantitative (expression level) and qualitative (mainly post-translational 

modification) protein differences. Differentially expressed proteins between 

disease/treatment vs. control are then identified using mass spectrometry 

(O'Farrell, 1975). Limitations of two-dimensional gel electrophoresis include 

low throughput, limited dynamic range, low sensitivity, high technical variability 

and incompatibility for hydrophobic membrane proteins (Fey and Larsen, 

2001; Lubec et al., 2003). Therefore quantitative proteomics has recently 

shifted towards shotgun proteomics approaches that aim at identifying and 

quantifying as many proteins as possible in a given sample by utilizing highly 

sensitive mass spectrometry (MS) in combination with multidimensional 

protein and peptide separation techniques.  

 

1.5.2.1 The impact of tandem mass spectrometry in modern proteomics 
 

Mass spectrometry is an analytical approach that measures the mass-to-

charge (m/z) ratio of ions. In a typical bottom-up proteomics experiment MS is 

used to analyze peptides in complex protein digests (Steen and Mann, 2004). 

Peptide information is then conferred to corresponding proteins. For increased 

sensitivity sample complexity has to be reduced prior to mass spectrometry 

analysis at the protein level (e.g. by SDS gel electrophoresis or isoelectric 

focusing) and/or at the peptide level (e.g. by strong cation exchange or 

reversed phase high performance liquid chromatography). 

The main components of a mass spectrometer are an ionization source, a 

mass analyzer and an ion detector. Current MS-based proteomics became 

possible only after the introduction of soft ionization methods like matrix-

assisted-laser-desorption ionization (MALDI) (Karas and Hillenkamp, 1988), 

electrospray ionization (ESI) (Whitehouse et al., 1985) and, for increased 

sensitivity, nanospray ionization (NSI) (Shevchenko et al., 1996b; Shevchenko 
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et al., 1996a; Wilm and Mann, 1996; Wilm et al., 1996). There are different 

kinds of mass analyzers that, depending on the analytical question, exhibit 

distinct strengths and advantages. Mass analyzers include quadrupole (Q) 

mass filter, linear ion trap (LTQ), Orbitrap, time-of-flight (TOF), magnetic 

sector, ion cyclotron resonance (ICR), and combinations thereof like Triple-

Quadrupole (QqQ), Q-TOF or LTQ-Orbitrap instruments.  

LTQ-Orbitrap hybrid mass spectrometers are the instruments of choice for 

shotgun proteomics due to the high sensitivity, high scan rate, high dynamic 

range (>103), high mass accuracy (<5 ppm) and high mass resolution (up to 

100.000 at m/z 400) (Yates et al., 2006). The final readout of all mass 

spectrometers is a mass spectrum (MS spectrum) which is a recording of the 

signal intensity of the ion at each value of the m/z scale (Steen and Mann, 

2004).   

Tandem mass spectrometry involves the fragmentation of precursor ions and 

m/z determination of product ions resulting in the generation of MS/MS 

spectra. By in silico comparison of precursor ion and fragment ion masses 

with a protein database it is then possible to identify peptides and 

corresponding proteins (Eng et al., 1994; Perkins et al., 1999). Fragmentation 

methods include collision-induced dissociation (CID), higher energy collision 

dissociation (HCD), or electron transfer dissociation (ETD).  

 

1.5.2.2 Quantitative proteomics using stable isotope labeling 
 

Mass spectrometry signal intensities are not a measure of protein amount 

because different peptides have different physico-chemical properties like 

solubility or ionization efficiency. However, because these factors are 

reproducible relative quantification is possible by using label free quantitation 

strategies (Bondarenko et al., 2002; Chelius and Bondarenko, 2002; Higgs et 

al., 2008) or strategies based on stable isotope labeling (Gygi and Aebersold, 

2000; Steen and Mann, 2004).  

According to the isotope dilution theory (De Leenheer, 1992), peptides that 

differ only in isotopic composition behave identically during an LC-MS 

experiment. Therefore, the ratio of unlabeled and labeled peptides within a 

mass spectrum or the ratio of extracted ion chromatograms represents an 
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accurate measure of relative protein concentration (Steen and Mann, 2004). 

Stable isotopes that are used for labeling of proteins or peptides include 2H, 

13C, 15N and 18O, leading to a great variety of different methods for relative 

protein quantification like ICAT (Gygi et al., 1999), ICPL (Schmidt, 2005), 

iTRAQ (Ross et al., 2004), 18O labeling (Reynolds et al., 2002), SILAC (Ong 

et al., 2002) and 15N metabolic labeling (Oda et al., 1999). Unlabeled and 

labeled samples are combined at different experimental stages leading to 

different quantitation accuracies. If unlabeled and labeled samples are 

combined at the very beginning of sample preparation, as is the case for 

SILAC or 15N metabolic labeling, quantitation accuracy is maximal because 

potential experimental biases affect both labeled and unlabeled sample in the 

same way and the ratio remains unchanged (Bantscheff et al., 2007; 

Bantscheff et al., 2012)(Figure 2). Therefore, SILAC and 15N metabolic 

labeling represent the current gold standard for accurate relative protein 

quantification. 15N metabolic labeling has been used in several model 

organisms including yeast (Oda et al., 1999), bacteria(Pan et al., 2008), 

Drosophila melanogaster (Krijgsveld et al., 2003), Caenorhabditis elegans 

(Dong et al., 2007), plants (Huttlin et al., 2007), mice (Huttlin et al., 2009; 

Filiou et al., 2011b; Zhang et al., 2011b) and rats (Wu et al., 2004). To avoid 

any biases due to the labeling itself the labeled sample is frequently used as 

internal standard for indirect comparison of relative protein levels (Pan et al., 

2008). 
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Figure 2. Quantitative proteomics workflows. If samples are combined 

prior to sample preparation, as seen in metabolic labeling approaches, 

quantitation accuracy is optimal. Blue and orange boxes represent two 

experimental conditions, horizontal lines indicate when samples are combined 

and dashed lines indicate possibilities for experimental variation. Reproduced 

with permission from (Bantscheff et al., 2007).  

 

1.5.3 Quantitative metabolomics 
 

Quantitative metabolomics complements previous -omics efforts due to its 

integrative capacity and was recently introduced into psychiatric research 

(Kaddurah-Daouk et al., 2007; Paige et al., 2007; Dai et al., 2010; Ji et al., 

2011; Su et al., 2011).  

A major challenge in metabolomic analyses is the large dynamic range (>106) 

and great chemical diversity of metabolites like amino acids, amino sugars, 

oligosaccharides, fatty acids or lipids. Another drawback is the absence of 

reliable and automated metabolite identification tools (Moco et al., 2007).  

Due to the chemical variety diverse complementary analytical methods 

including sample preparation need to be applied for a comprehensive and 
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hypothesis-free holistic analysis. Depending on the biological question, 

however, the analysis of sub-metabolomes or targeted analyses may reveal 

significant insights into the system of interest. Most commonly used platforms 

are based on LC-MS (liquid chromatography-MS), GC-MS (gas 

chromatography-MS) and NMR (nuclear magnetic resonance) (Moco et al., 

2007; Theodoridis et al., 2012). 

Acquisition of NMR spectra of complex mixtures like biofluids, so called NMR 

fingerprinting, is used for the identification of biomarker patterns. NMR is a 

quantitative technique well suited for metabolomics analyses but lacks 

sensitivity compared to MS-based methods.  

GC-MS was applied to metabolomics studies much earlier than LC-MS and 

offers high sensitivity, high resolution power, high throughput, excellent 

reproducibility, and highly reproducible fragmentation patterns. Disadvantages 

include tedious sample preparation because samples need to be derivatized 

before analysis and only volatile (or volatile-made) metabolites with molecular 

weights below 400-500Da can be analyzed (Tolstikov, 2009; Theodoridis et 

al., 2012). 

LC-MS is the most widely used technique in metabolomics. Metabolites are 

first  separated using reversed phase (RP) chromatography for hydrophobic 

compounds (e.g. phenolic acids, flavonoids) and hydrophilic chromatography 

(HILIC) for hydrophilic and neutral compounds (e.g. sugars, amino acids, 

nucleotides) (Tolstikov and Fiehn, 2002). Metabolite ions are generated by 

electrospray ionization (ESI, in positive or negative mode) or atmospheric 

pressure ionization (API). Ions are then analyzed mainly using quadrupole-

time-of-flight (Q-TOF) instruments because of their high sensitivity, mass 

resolution (about 10.000) and mass accuracy with limitations in dynamic 

range. Metabolite ions may also be analyzed using FT-Orbitrap or FT-ICR-MS 

instruments for highest mass resolution (100.000-1.000.000) and mass 

accuracy (<2ppm) facilitating metabolite identification. Metabolites are 

identified using characteristic parameters like metabolite mass, isotopic 

distribution, fragmentation pattern and retention time (Moco et al., 2007).  

Metabolomics analyses may also be performed in a targeted fashion. 

Targeted analyses mainly exploit Multiple-Reaction-Monitoring (MRM) on 

Triple-Quadrupole mass spectrometers that allow for accurate and 
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unambiguous quantification of metabolite precursor and product ions (Lu et 

al., 2008). Recently, a metabolomics platform was introduced targeting 

metabolites involved in cellular metabolism using LC-MRM-MS. The platform 

reliably quantifies more than 250 metabolites involved in major metabolic 

pathways, including glycolysis, Krebs cycle and metabolism of amino acids 

(Kelly et al., 2011; Yuan et al., 2012).  
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1.6 Aim and scope of thesis 

The aim of the current thesis was to define antidepressant treatment effects at 

the molecular pathway level in mouse models using state of the art proteomic 

and metabolomic technologies. A further aim was to identify biomarker 

candidates for antidepressant treatment effects. 

 

Specific aims of the individual manuscripts: 

 

Chapter 2.1: Metabolite profiling of antidepressant drug action reveals novel 

drug targets beyond monoamine elevation 

- Identification of paroxetine treatment affected molecular pathways 

beyond serotonin reuptake inhibition in hippocampus of chronically 

treated DBA/2 mice at the metabolome level. 

- Identification of potential drug targets that may modulate these 

pathways. 

- Identification of metabolite biomarker candidates in plasma. 

 

Chapter 2.2: Proteomic and metabolomic profiling reveals time-dependent 

changes in hippocampal metabolism upon paroxetine treatment and 

biomarker candidates 

- Identification of paroxetine treatment affected molecular pathways 

beyond serotonin reuptake inhibition in hippocampus at the 

metabolome and proteome levels.  

- Identification of time course alterations. 

- Identification of metabolite biomarker candidates in plasma.     

 

Chapter 2.3: The 15N isotope effect as a means for correlating phenotypic 

alterations and affected pathways in a trait anxiety mouse model 

- Identification of molecular correlates of the behavioral antidepressant-

like 15N isotope effect in various brain regions at the proteome level. 
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Declaration of contribution: Christian Webhofer designed the study, performed 

research, analyzed the data and wrote the manuscript in collaboration with co-

authors (for detailed information on author contributions see chapter 

´Eidesstattliche Versicherung/Affidavit´). 

 

Supplemental material is available on enclosed CD and upon request. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





















2 RESEARCH ARTICLES 

30 
 

2.2 Proteomic and metabolomic profiling reveals time-
dependent changes in hippocampal metabolism upon 
paroxetine treatment and biomarker candidates 

 

Webhofer C, Gormanns P, Reckow S, Lebar M, Maccarrone G, Ludwig T, 

Pütz B, Asara JM, Holsboer F, Sillaber I, Zieglgänsberger W, Turck CW 

(2013). Proteomic and Metabolomic Profiling Reveals Time-Dependent 

Changes in Hippocampal Metabolism Upon Paroxetine Treatment and 

Biomarker Candidates. J Psychiatric Res 47:289-298. 

 

 

Declaration of contribution: Christian Webhofer designed the study, performed 

research, analyzed the data and wrote the manuscript in collaboration with co-

authors (for detailed information on author contributions see chapter 

´Eidesstattliche Versicherung/Affidavit´). 

 

 

Supplemental material is available on enclosed CD and upon request.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 























 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 RESEARCH ARTICLES 

42 
 

2.3 The 15N isotope effect as a means for correlating 
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3 DISCUSSION AND FUTURE PERSPECTIVES 
 

The implementation of functional genomics in psychiatry research - in 

particular high throughput proteomics and metabolomics - is only at its very 

beginning and its great potential is just being realized. In a disease with 

unknown etiology like major depression exploratory and unbiased -omics 

studies in well-established mouse models are of major importance to generate 

novel hypotheses of disease etiology and mode of drug action. Before 

reaching clinical significance, generated hypotheses have to be further 

addressed, validated or modified in targeted studies in other mouse models 

and clinical settings.  

In the present study we employed proteomics and metabolomics technologies 

in combination with in silico pathway analyses in order to define 

antidepressant treatment effects in mouse models. DBA/2 mice were treated 

with paroxetine and molecular pathway alterations identified upon treatment 

with a representative SSRI. The antidepressant-like 15N isotope effect on the 

HAB proteome was investigated and antidepressant-like behavioral and 

molecular alterations correlated. In addition, metabolite biomarker candidates 

for paroxetine treatment effects that reflect hippocampal alterations were 

identified in plasma.  

Most importantly, we have shown that antidepressant treatment affects a 

great variety of biochemical pathways and is not restricted to alterations in 

monoaminergic neurotransmission. Novel hypotheses for the mode of 

antidepressant drug action were generated that lay the ground for future 

investigations in the quest for improved antidepressant treatment strategies. 

 

3.1 Antidepressant treatment influences key cellular 
processes 
 

Psychiatric disorders have traditionally been viewed as neurochemical 

diseases (Manji et al., 2001) and currently used antidepressants increase 

neurotransmitter availability. The present study has shown that apart from 

neurotransmission antidepressant treatment alters key cellular processes like 

energy metabolism supporting findings from previous functional genomic 
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studies (Khawaja et al., 2004; Carboni et al., 2006; McHugh et al., 2008). It is 

tempting to speculate that these altered key cellular processes are directly or 

indirectly involved in antidepressant therapeutic effects. 

 

3.1.1 Antidepressant treatment shifts energy metabolism towards 
aerobic glycolysis 
 

We identified significant alterations in energy metabolism upon paroxetine 

treatment (Webhofer et al., 2011). Most importantly, there was a fast and 

strong increase of early glycolytic intermediates in the hippocampus of DBA/2 

mice upon paroxetine treatment (Webhofer et al., 2013). Supporting the shift 

towards aerobic glycolysis upon antidepressant treatment, the antidepressant-

like 15N isotope effect in HAB mice correlated with decreases in Krebs cycle 

and oxidative phosphorylation enzyme levels (Filiou et al., 2012). In 

agreement with these results, Filiou et al. (Filiou et al., 2011b) found 

decreased Krebs cycle and oxidative phosphorylation enzyme levels in low 

anxiety LAB mice compared to anxious HAB mice. It is important to note that 

aerobic glycolysis not only provides ATP for neuronal activity but also 

influences other important cellular parameters like the redox state and 

pathways like neurogenesis (Vaishnavi et al., 2010) – a known target of 

antidepressant treatment (Santarelli et al., 2003). 

Future studies need to address the question whether directly targeting energy 

metabolism and shifting it towards aerobic glycolysis can have 

antidepressant-like effects in mouse models. In addition to assessing 

behavioral effects the emphasis of such studies should be on a critical 

evaluation of undesired side effects when directly interfering with a ubiquitous 

pathway such as energy metabolism. It may be beneficial to not directly target 

energy metabolism but related pathways that may be more relevant for 

antidepressant therapeutic effects. Future systems-based studies will 

eventually lead to an advanced understanding of neuronal and glial energy 

metabolism and its cross-talk with other pathways facilitating targeted 

therapeutic interventions. 
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3.1.2 Role of astrocytes in paroxetine treatment 
 

Combined proteomic and metabolomic analyses indicated that increased 

glycolytic intermediate levels may, at least in part, be a consequence of an 

altered glycogen metabolism (Webhofer et al., 2013). The involvement of 

glycogen metabolism points towards an important role of astrocytes, the 

primary source of glycogen in the brain (Magistretti et al., 2000), in 

antidepressant action as has been postulated before (Czeh and Di Benedetto, 

2012). It is therefore important that future studies elucidate specific roles of 

distinct cell types in antidepressant treatment. This notion is underscored by 

recent findings indicating that single cell types play distinct roles in 

antidepressant therapy (Schmidt et al., 2012) and that distinct cell types in 

different brain regions may elicit bidirectional effects on psychiatric 

phenotypes (Refojo et al., 2012). At present, however, functional genomic 

studies on single cell systems are analytically very challenging due to low 

tissue amounts and advances in analytical platforms are necessary to enable 

these studies.  

 

3.1.3 Paroxetine treatment influences amino acid metabolism 
 

Interestingly, there were opposing findings regarding proteinogenic amino 

acids that were significantly altered upon paroxetine treatment as described in 

chapters 2.1 and 2.2. Seven proteinogenic amino acids that were significantly 

increased in one study (chapter 2.1) were significantly decreased in the other 

study (chapter 2.2, alanine, leucine/isoleucine, serine, threonine, tyrosine and 

valine). GABA, a non-proteinogenic amino acid, was significantly decreased 

upon paroxetine treatment in both studies. Similar treatment paradigms but 

distinct sample preparation protocols and metabolomic platforms were 

employed in the two studies (Webhofer et al., 2011; Webhofer et al., 2013). 

Major differences between the studies included (1) duration of paroxetine 

treatment, i.e. 28 days versus 24 days, (2) metabolite extraction buffers and 

extraction protocol, i.e.  acetonitrile/isopropanol/water 3:3:2 versus 

methanol/water 4:1 and (3) metabolomics platform, i.e. GC-TOF-MS versus 

LC-SRM-MS/MS based metabolite quantitation. 
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Although the duration of chronic paroxetine treatment was similar (24 days 

versus 28 days) differences could still result from different treatment duration. 

However, both studies show increased glycolytic metabolites. The observed 

differences of proteinogenic amino acids may be due to distinct sample 

preparation strategies rather than random or systematic technical or treatment 

variability. We speculate that different sub-metabolomes may have been 

analyzed in the described studies. Future studies need to systematically 

investigate metabolic alterations in different subcellular compartments in order 

to address this question. A first line of investigation may include mitochondrial 

versus cytosol metabolite alterations upon antidepressant treatment with 

respect to the current findings related to energy metabolism. 

 

3.2 Future developments in functional genomics 
 

The present study has demonstrated the importance and benefits of 

integrated pathway analyses at both proteome and metabolome levels. 

Previous studies have also shown that there is a weak correlation between 

mRNA and protein levels (Nie et al., 2006; Gry et al., 2009) further supporting 

the need for integrated complementary -omics analyses. However, for 

successful data integration from different analytical platforms and realizing 

truly holistic answers, advances in post genomic studies have to be made. 

Post-genomic analyses are expensive and instrument-time consuming and it 

therefore takes a considerable amount of time to describe alterations at 

mRNA, protein and metabolite levels. Modern instrumentation that allows for 

reduced analysis time and increased throughput may help in this endeavor. In 

addition, instruments need to be sensitive for increased information output 

and robust in every day performance. There is also a great demand for novel 

computational tools integrating heterogeneous datasets from diverse 

analytical platforms to achieve a holistic, quantitative and predictive 

understanding of the system under investigation (Sauer and Zamboni, 2008). 

Finally, the current psychiatric pathway discovery pipeline should be 

expanded to shed light on disease etiology and mode of drug action from 

different perspectives. Important future paths may include studies on 

biological parameters such as mRNA turnover (Mitchell and Tollervey, 2001; 
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Munchel et al., 2011), protein turnover (Price et al., 2010; Zhang et al., 

2011a), protein post-translational modifications like phosphorylation 

(Christensen et al., 2010) and using diverse platforms such as single-cell 

analyses (Shi et al., 2012) or imaging studies like MALDI imaging 

(Schuerenberg et al., 2007) or multi-isotope imaging mass spectrometry 

(Steinhauser et al., 2012; Zhang et al., 2012).  

The integration of diverse technologies in combination with well characterized 

mouse models and clinical samples will lay the ground for an improved 

understanding of psychiatric diseases and treatment pathways and eventually 

lead to better diagnosis and improved treatment strategies. 
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