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Though much is taken, 
much abides; and though 

We are not now that 
strength which in old days 

Moved earth and heaven; 
that which we are, we are; 

One equal temper of 
heroic hearts, 

Made weak by time and 
fate, but strong in will 

To strive, to seek, to find, 
and not to yield. 

 

Ulysses - Alfred, Lord Tennyson 
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1. Introduction 

 

1.1 Cancer and cancer therapy 

 

1.1.1 Cancer 

“Cancer” is a generic term that covers all malignant neoplasms in general that 

all have certain hallmarks in common. The continuing progress achieved by medical 

science in recent years allowed to increasingly clarify the picture of these very 

complex diseases. In 2000, Hanahan and Weinberg (Hanahan and Weinberg, 2000) 

proposed six hallmarks of cancer as biological capabilities that are acquired during 

the development of these neoplastic diseases: sustaining proliferative signalling, 

evading growth suppressors, resisting cell death, enabling replicative immortality, 

inducing angiogenesis and activating invasion and metastasis. More than ten years 

later, this list has been extended by the two emerging hallmarks of deregulating 

cellular energetics and avoiding immune destruction as well as by the two enabling 

characteristics of genome instability and mutation and tumor-promoting inflammation 

(Hanahan and Weinberg, 2011). 

The insights into cancer research gained so far elucidated only parts of the 

very complex biology of cancer. As a result, it is very unlikely that it will be possible to 

find the one universal drug to cure every specific cancer entity, but it becomes 

increasingly obvious that the fight against these diseases is a process that requires 

the development of customized cancer therapies that are tailor made and 

individualized for each patient. Along this way, numerous approaches have been 

investigated, one of which is gene therapy. 

 

1.1.2 Gene therapy 

In a pharmaceutical view, genes can be considered as drugs that are able to 

prevent, detect, alleviate, or cure diseases. Gene therapy can therefore be defined 

as an experimental method that uses the genetic information of deoxyribonucleic 

acids (DNA) as a pharmaceutical agent. DNA is used in order to supplement or to 

alter genetic information of an individual’s cells in an attempt to restore, to correct, or 

to influence physiological functions by a pharmacological, immunological, or 

metabolic action. 
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Over the last two decades, one particular gene has gained remarkable 

attention throughout the gene therapy society since its cloning in 1996 (Dai et al., 

1996; Smanik et al., 1996) and has evolved as a highly promising potential candidate 

gene for gene therapy approaches as it combines both, diagnostic and therapeutic 

properties, in one single gene. 

 

1.2 The sodium iodide symporter (NIS) 

 

1.2.1 The physiological role of NIS 

The sodium iodide symporter (NIS or SLC5A5) is an intrinsic transmembrane 

glycoprotein with thirteen transmembrane domains that mediates the cellular uptake 

of iodine from the bloodstream (Dai et al., 1996; Smanik et al., 1997). Most 

endogenous NIS expression can be found in thyroid follicular cells or in cells of the 

lactating breast (Dohan et al., 2003). Thyroidal NIS expression is required to provide 

the thyroid gland with sufficient iodide for thyroid hormone synthesis and lactating 

mammary glands express NIS in order to supply infants with iodine-enriched breast 

milk (Semba and Delange, 2001). In thyroid cells, iodide is organified after NIS-

mediated uptake. That means, iodide is oxidized by the thyroid peroxidase (TPO) in 

the presence of H2O2 and covalently bound to the tyrosyl residues of thyroglobulin 

(Tg). Thyroid hormones tri-iodothyronine (T3) and tetra-iodothyronine (T4) are 

synthesized by coupling of iodinated tyrosyl residues and stored within the colloid 

space until Tg is taken up by thyroid follicular cells and hormones are released into 

the blood stream (Carrasco, 1993). Thyroid hormones play an important role in 

metabolism, growth and maturation of a variety of organ systems, particularly the 

nervous system. 

              
Fig. 1:  Schematic model of the protein structure of the human sodium iodide symporter (NIS) protein 

(left) and its role in iodine transport and thyroid hormone synthesis in the thyroid gland (right). 
With permission reproduced from Spitzweg et al., J Clin Endocrinol Metab, 2001. 
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1.2.2 NIS-mediated radioiodine therapy 

The ability of NIS to concentrate iodine intracellularly with high efficiency 

provides the possibility of diagnostic (123I, 124I, 125I, 99mTcO4
-, [18F]-TFB) and 

therapeutic (131I, 188Re, 211At) application of radioiodine or other radioactive 

substrates of NIS (Dohan et al., 2003; Jauregui-Osoro et al., 2010; Spitzweg and 

Morris, 2002; Van Sande et al., 2003; Willhauck et al., 2008a; Willhauck et al., 2007; 

Zuckier et al., 2004). This has successfully been used for more than 70 years in the 

management of thyroid cancer patients based on the expression of NIS - although at 

a usually lower level - in follicular cell-derived thyroid cancer cells. Due to 

organification of therapeutic radioiodine in follicular thyroid cancer cells the tumoral 

iodide retention time is substantially prolonged leading to sufficiently high tumor 

absorbed doses of 131I thereby providing clinicians with the most effective form of 

systemic anticancer radiotherapy available today. In the routine management of 

patients with differentiated thyroid cancer, radioiodide whole body imaging is able to 

visualize local and metastatic residual or recurrent disease and quantification of 

tracer uptake allows for exact dosimetric calculations of tumor absorbed doses for 131I 

before therapeutic 131I application, thereby aiming at maximal therapeutic efficacy at 

minimal toxicity in a personalized manner. NIS-based thyroid cancer radioiodine 

therapy is a clinically already approved anticancer therapy with a well-understood 

therapeutic window and safety profile. High doses of radiation are able to destroy 

cells by damaging cellular proteins and induction of DNA double strand breaks 

leading to subsequent apoptosis (Magnander and Elmroth, 2012). β-emitting 131I 

(maximum energy 0.61 MeV) was one of the first radionuclides used for therapy in 

clinical oncology (Beierwaltes, 1979) and is nowadays routinely used for therapeutic 

ablation of residual NIS-expressing thyroidal cancer cells after total thyroidectomy. 

In order to extend the numerous advantages of NIS-mediated radioiodine 

therapy also to the treatment of non-thyroidal cancers, a promising cytoreductive 

gene therapy strategy based on targeted delivery of the theranostic NIS gene in 

extrathyroidal tumors followed by radioiodine application was developed. 

 

1.2.3 NIS and its role as reporter gene 

Recent technological advances in nuclear medicine, magnetic resonance 

spectroscopy, optical and bioluminescence imaging have resulted in a variety of new, 
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exciting developments in the field of molecular imaging, aiming at non-invasive 

imaging of endogenous and exogenous gene expression and intracellular signal 

transduction pathways (Ahn, 2012; Alberti, 2012; Brader et al., 2013; Thorek et al., 

2012). In addition, the field of gene therapy has made considerable strides in the last 

decade by the development of new vectors and an increasing repertoire of 

therapeutic genes. Non-invasive monitoring of the in vivo distribution of viral and non-

viral vectors, as well as monitoring of the biodistribution, level and duration of 

transgene expression have been recognized as critical elements in the design of 

clinical gene therapy trials. The need for this technology is further highlighted by the 

advent of replication-competent viruses for cancer gene therapy where it is critically 

important to monitor biodistribution, replication and elimination in vivo. 

Cloning of NIS has provided us with one of the most promising reporter genes 

available today. NIS has many characteristics of an ideal reporter gene, as it 

represents a non-immunogenic protein with a well-defined body biodistribution and 

expression that mediates the transport of readily available radionuclides, such as 131I, 
123I, 125I, 124I, 99mTc, 188Re, or 211At. Therefore, the experimental use of NIS as 

reporter gene can employ various imaging techniques in order to visualize 

radionuclide uptake. 

Besides 2-dimensional gamma camera scintigraphy, 3-dimensional images 

can be acquired using emerging imaging techniques like single-photon emission 

computed tomography (SPECT) or positron emission tomography (PET) that have 

been shown to provide significant advantages for exact localization and quantitative 

analysis of NIS-mediated radioiodine accumulation due to enhanced resolution and 

sensitivity (Baril et al., 2010; Dingli et al., 2006; Groot-Wassink et al., 2004; Merron et 

al., 2007; Penheiter et al., 2012; Richard-Fiardo et al., 2011). These images can 

further be correlated with computed tomography (CT) or magnetic resonance 

tomography (MRT) scans for exact anatomical identification of regions of tracer 

uptake. Recently, [18F]-tetrafluoroborate ([18F]-TFB), a known alternative substrate of 

NIS, has been evaluated as new PET imaging agent in preclinical models, 

demonstrating high sensitivity and significantly improved resolution as compared to 
124I (Jauregui-Osoro et al., 2010; Weeks et al., 2011). This is particularly important for 

systemic NIS gene delivery approaches in orthotopic and metastatic tumor models 

with low volume disease and/or overlap with organs that physiologically accumulate 

iodide, in particular stomach. 
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In addition to non-invasive imaging of radioiodine accumulation after NIS gene 

transfer by the different imaging techniques described above, several investigators 

including the group of Christine Spitzweg have studied the potential of NIS as 

reporter gene in various applications, demonstrating that in vivo imaging of 

radioiodine accumulation correlates well with the results of ex vivo gamma counter 

measurements as well as NIS mRNA and protein analysis (Baril et al., 2010; 

Blechacz et al., 2006; Goel et al., 2007; Merron et al., 2007). 

In several studies, NIS was successfully used as a reporter gene to monitor in 

vivo biodistribution of replication-competent viral vectors, including oncolytic measles 

virus in liver cancer and myeloma xenograft models, oncolytic vesicular stomatitis 

virus in a myeloma xenograft model, as well as oncolytic adenovirus in peritoneal 

tumors or colon and prostate cancer xenograft models using conventional 123I- or 
99mTc-gamma camera imaging or 99mTc-SPECT/CT fusion imaging  (Blechacz et al., 

2006; Goel et al., 2007; Merron et al., 2010; Merron et al., 2007; Peerlinck et al., 

2009; Penheiter et al., 2011; Touchefeu et al., 2011; Trujillo et al., 2010). Non-

invasive imaging is further able to provide information about the in vivo biodistribution 

of several target cells, such as tumor cells, immune cells, or stem cells. 

In particular, mesenchymal stem cells (MSCs) have been the object of recent 

research activity in the fields of both gene and cellular therapies. However, to date, 

there is insufficient information about the exact in vivo biodistribution, survival and 

biological compartment of these cells in targeted tissues. In this context, NIS reporter 

gene imaging also provides a means for non-invasive, repeated and quantitative 

tracking of stem cell implant or transplant from initial deposition to survival, migration 

and differentiation of stem cells, which has been successfully demonstrated by 

several groups including our own (Hwang et al., 2008; Knoop et al., 2011; Knoop et 

al., 2013; Lee et al., 2008). 

These studies convincingly demonstrate that NIS represents one of the most 

promising reporter genes for molecular imaging offering a broad range of application 

possibilities, in particular in the context of innovative molecular therapies. 

 

1.2.4 NIS as novel therapeutic gene 

Based on its well characterized dual function as reporter and therapy gene, in 

a first step, NIS can be used for direct, non-invasive multimodal imaging of vector 

biodistribution and functional NIS expression by 123I-scintigraphy/SPECT imaging and 
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124I- or [18F]-TFB-PET imaging, as described above. The data acquired by imaging 

analysis allow for exact dosimetric calculations before proceeding to therapeutic 

application of 131I, followed by the in vivo and ex vivo monitoring of the therapy 

response after NIS-targeted radionuclide therapy in a multimodal concept. 

As the molecular basis of 131I therapy of benign and malignant thyroid 

diseases, NIS provides several advantages as therapy gene. In clinical routine, the 

individualized radioiodine therapy shows overall good clinical tolerability due to 

relatively mild side effects as known from the extensive experience with radioiodine 

therapy in thyroid cancer. Moreover, NIS gene therapy is associated with a 

substantial bystander effect based on the crossfire effect of the β-particles emitted by 
131I with a path length of up to 2.4 mm (Dingli et al., 2003a). This bystander effect 

allows that not only transduced but also neighbouring non-transduced tumor cells 

can be reached by the radiation, which reduces the level of transduction efficiency 

required for a therapeutic response. Another advantage is, that NIS expression 

outside the thyroid gland is very low and therefore does not cause significant toxicity 

to non-target organs after therapeutic application of radioiodine. To prevent damage 

to the thyroid gland, thyroidal uptake of therapeutic radioiodine can be reduced by 

thyroid hormone pretreatment thereby effectively downregulating thyroidal NIS 

expression (Wapnir et al., 2004). Further, NIS is a normal human gene and protein 

and causes no toxicity or diminished efficacy by immune responses as it is often 

observed after the use of other protein and gene therapeutics (Duffy et al., 2012).  

Several studies have demonstrated, that even if the iodine organifying cellular 

machinery is absent after NIS gene transfer in non-thyroidal tumor cells, the 

accumulated dose can be high enough to reach a therapeutic effect of radioiodine, 

clearly demonstrating that iodide organification is not a mandatory requirement for a 

therapeutic effect of 131I (Dadachova et al., 2005; Klutz et al., 2009; Klutz et al., 

2011a; Klutz et al., 2011b; Klutz et al., 2011c; Knoop et al., 2011; Knoop et al., 2013; 

Petrich et al., 2006; Spitzweg et al., 2001b; Spitzweg et al., 2000; Spitzweg et al., 

1999; Willhauck et al., 2008a; Willhauck et al., 2007). 
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1.3 Gene delivery concepts 

 

1.3.1 Gene transfer 

The greatest barrier for the evaluation of any gene therapy approach is the 

efficient, safe, and selective transduction of target cells inside the patient’s body. 

Once inside these cells, the DNA is translated into the therapeutic protein. In case of 

cancer metastases target cells might be spread throughout the whole patient‘s body 

and therefore, intravenous vector administration is undeniably the only possible and 

promising route of administration. However, anionic charge, large size, and 

degradability of nucleic acids by nucleases preclude systemic administration of naked 

nucleic acids and subsequent location at the target site (Krebs and Alsberg, 2011; 

Mintzer and Simanek, 2009). To make systemic gene delivery feasible, special DNA 

carriers, called vectors, have been developed to facilitate the delivery of genetic 

material to target cells. These vectors can be divided into two main subgroups, the 

viral and the non-viral systems. 

 

1.3.2 Non-viral gene delivery vectors 

In order to overcome the major bottlenecks for efficient delivery of nucleic acid 

therapeutics to target cells, synthetic carriers for the different types of nucleic acids 

have been designed and steadily evolved over the past decades. Particular progress 

in this area had been achieved by the pioneering work of Ernst Wagner and Manfred 

Ogris (Felgner et al., 1997; Ogris and Wagner, 2002a; Ogris and Wagner, 2002b; 

Ogris and Wagner, 2011; Russ and Wagner, 2007; Scholz and Wagner, 2012; 

Troiber and Wagner, 2011; Wagner, 2004; Wagner, 2007). It is important that the 

synthetic delivery vectors, which are usually cationic liposomes, peptides, or 

polymers, build a stable complex with the negatively charged therapeutic nucleic acid 

based on electrostatic interaction to avoid enzymatic degradation by nucleases in the 

blood stream and destabilization by electrostatic interactions with serum proteins 

(Burke and Pun, 2008). 
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Fig. 2:  Polycationic polymer binds to negatively charged DNA based on electrostatic interactions. This 

subsequently leads to a hydrophobic collapse resulting in particle formation in the nanometer range 

(polyplexes). 

 

Further barriers for successful DNA delivery are the need of efficient 

endocytosis, endolysosomal escape, cytoplasmatic trafficking, vector unpacking, and 

nuclear import (Chen et al., 2008; Grosse et al., 2006; Midoux et al., 2008; Nishiyama 

et al., 2006). Most synthetic gene delivery vectors have been developed for tumor-

targeted nucleic acid delivery and therefore utilize the specific properties of tumor 

tissues. The DNA-carriers with a size of about ≤ 300 nm show elongated plasma 

circulation times and passive accumulation at tumor sites due to leaky tumor 

vasculature combined with an inadequate lymphatic drainage, resulting in the 

enhanced permeability and retention (EPR) effect (Maeda, 2001). 

Synthetic vectors offer certain advantages, such as a promising safety profile 

with low immunogenic potential, enhanced biocompatibility, low mutagenic risk, and 

easy handling and manufacturing, although their major drawback is the relatively low 

efficiency of transgene expression (Gao and Huang, 2009; Lin et al., 2008; Schaffert 

and Wagner, 2008; Wolff and Rozema, 2008). For polymers, the stability and 

transfection efficiency of polyplexes formed with plasmid DNA depend on the 

chemical type, molecular weight, and topology of the cationic polymer, as well as the 

ratio of conjugate to plasmid (c/p ratio) (Christie et al., 2010; Itaka et al., 2004; 

Kunath et al., 2003). 

Polyamine structures, like polyamidoamine (PAMAM) dendrimers, are a 

commonly used class of synthetic vector system and also able to form stable 

complexes with plasmid DNA (Bielinska et al., 1996; Haensler and Szoka, 1993; 

Tang et al., 1996). Dendritic structures are highly ordered and built from a series of 

branches extending outward from an inner core with positively charged primary 
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amino groups on their surface at physiological pH. The structure comprises three 

individual parts: a core, branching units, and branches that can be chemically 

modified. Each iteration leads to a higher generation material and subsequently to 

dendrimers with larger molecular diameter and higher molecular weight (Ravina et 

al., 2010). 

 

1.3.3 Non-viral NIS gene delivery 

For the first pioneering proof-of-principle studies of systemic non-viral NIS 

gene transfer in a syngeneic neuroblastoma mouse model, Klutz et al. in Christine 

Spitzweg’s laboratory used novel biodegradable and highly efficient polycations as 

gene delivery vehicles that are based on oligoethylenimine (OEI)-grafted 

polypropylenimine dendrimers (G2-HD-OEI) and were developed in the laboratory of 

Ernst Wagner (Klutz et al., 2009). This study clearly showed the high potential of 

branched polycations based on OEI-grafted polypropylenimine dendrimers for tumor-

specific delivery of the NIS gene after systemic application. NIS in its well 

characterized function as reporter gene allowed for non-invasive imaging of 

functional NIS expression by 123I-scintigraphy. Tumor-specific iodide accumulation 

was further shown to be sufficiently high for a significant delay of tumor growth 

associated with increased survival in syngeneic mice bearing neuroblastoma tumors 

after two cycles of NIS-polyplex application followed by 131I therapy. Data of a 

subsequent study using the same polyplexes for systemic delivery in a murine 

xenograft model of human hepatocellular carcinoma correlated well with the previous 

findings and demonstrated that the application of these synthetic nanoparticles is not 

restricted to a specific tumor model, but is suitable for many cancers with 

hypervascularized tumors (Klutz et al., 2011b). These studies demonstrated 

therapeutic efficacy of the NIS gene therapy concept using non-viral gene delivery 

systems. 

With the aim of optimizing tumor selectivity polyplexes can be actively targeted 

to tumor cells by the attachment of receptor-specific active targeting ligands, which in 

addition to passive tumoral accumulation facilitate receptor-mediated endocytosis. In 

this regard, a further study by Klutz et al. demonstrated the feasibility of novel 

synthetic nanoparticle vectors based on linear polyethylenimine (LPEI), shielded by 

polyethylenglycol (PEG), and coupled with the synthetic peptide GE11 as an 

epidermal growth factor receptor (EGFR)-specific ligand for targeting the NIS gene to 
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human hepatocellular carcinoma overexpressing EGFR (Klutz et al., 2011a). These 

novel polymers were developed in Manfred Ogris’ group. LPEI as the “gold standard” 

of PEI-based gene carriers represents an alternative polymeric backbone as 

compared to those gene carriers based on dendrimers. LPEI is the linear form of PEI, 

and used with a molecular weight of 22 kDa. The major drawback of LPEI is its 

significant toxicity after systemic application due to acute and long-term toxic effects, 

especially to the lungs (Chollet et al., 2002). Shielding of LPEI-based polyplexes by 

hydrophilic polymer, like PEG, can reduce unspecific toxicity and at the same time 

prolong blood circulation times (Zintchenko et al., 2009). The PEGylation of the DNA 

complexes can block the interaction with several plasma components and 

erythrocytes and strongly changes the in vivo characteristics of particles leading to 

gene expression in distant tumor tissue after systemic vector administration (Ogris et 

al., 1999). However, PEGylation also results in decreased cell-binding capacity and 

subsequently reduced efficacy. Adding of receptor-specific targeting ligands to these 

shielded polyplexes was shown to provide the vector with active tumor-targeting 

thereby enhancing transfection efficiency and tumor selectivity (de Bruin et al., 2007; 

Klutz et al., 2011a). 

In conclusion, non-viral gene delivery systems provide the feasibility of a 

combination of both, passively and actively, targeted systemic NIS gene delivery and 

show high transduction efficiencies in vivo as well as a promising safety profile. This 

class of synthetic polymer-based gene delivery vehicles is often referred to as 

“synthetic viruses” implicating that there is another highly effective class of gene 

delivery vehicles based on infectious virus particles. 

 

1.3.4 Viral gene delivery vectors 

Viruses themselves cannot replicate in a self-sustaining manner and are 

therefore dependent on an individual’s cellular machinery. The viruses transfer their 

genes into the cells of an individual organism thereby driving them to express their 

viral proteins in order to produce progeny virions. This process generally proceeds in 

a pathogenic way and the human immune system has several antiviral immune 

response strategies. Viruses have therefore evolved over countless years of 

evolution as transfer vehicles for their own genes in order to overcome the hurdles of 

their host’s immune response. This virus’ ability for gene transfer is being used in 
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medical science as the viral genome can be easily genetically manipulated in order to 

exchange disease-causing genes with therapeutic genes. 

However, one has to be aware of the fact, that in particular viral gene therapy 

holds some potential risks. Viruses may be recognized and attacked by the patient‘s 

immune system. This may cause inflammation and, in severe cases, organ failure 

(Raper et al., 2003). Since many viruses are able to infect more than only one single 

cell type there is a certain risk of infection of non-target cells and this may result in 

undesirable side-effects of anti-cancer therapy. Another scenario that has to be taken 

into consideration regarding the vector‘s safety profile is the possibility that the virus 

recovers its original ability to cause disease. Furthermore, depending on the type of 

virus used for gene delivery, there is a possible risk of insertional mutagenesis. If the 

carried genes are inserted directly into the DNA, insertion in the wrong location owns 

the risk to result in tumorigenesis (Gabriel et al., 2012). 

Despite these potential drawbacks, due to a number of positive characteristics 

various virus strains have been analyzed to date for their potential use in cancer 

gene therapy (Cattaneo et al., 2008). Every strain has its particular advantages and 

disadvantages and the choice of the most suitable vector highly depends on the 

specific type of disease to be treated and the therapeutic setup. After basic research 

and proof-of-principle studies one has to have in mind the potential methodological 

transfer into the clinic. It is noticeable that at the Mayo Clinic (Rochester, MN, USA) 

the first NIS-expressing adenovirus is currently Food and Drug Administration 

approved for a human clinical trial in patients with locally recurrent prostate cancer 

(U.S. National Institute of Health, 2012). 

 

1.3.5 Adenovirus-mediated gene transfer 

Currently, adenoviruses are the most widely used vectors in clinical trials 

(Duffy et al., 2012). Adenoviruses are particularly suitable for gene therapy of cancer 

because they have a rather harmless pathology, a stable genome that is relatively 

easy to manipulate, low risk of genomic integration, and with little effort can also be 

produced clinically under GMP conditions in large quantities and to high titers. In 

particular, gene therapy strategies that have no need for long-term transfection but 

whose goal is to maximize short-term transfection combined with minimum toxicity 

benefit from the use of adenoviruses. Genetically engineered oncolytic adenovirus 

vectors bear the potential to kill cancer cells by their viral replication cycle and 
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improve the therapeutic effect by production of progeny virions. These, in turn, are 

able to infect neighbouring tumor cells and at the same time amplify the therapeutic 

transgene. Previous clinical trials with oncolytic adenoviruses have shown promising 

safety with low toxicity and no major adverse side effects (Toth et al., 2010). 

Therefore, the future challenges for researchers are the integration of oncolytic 

virotherapy in existing therapy regimens and to further improve the efficiency and 

safety of these vectors, in particular because wild-type adenovirus vectors are not 

well suited for systemic vector administration. 

 

1.4 Adenovirus-mediated NIS gene therapy 

 

1.4.1 Intratumoral adenoviral NIS gene delivery 

Local intratumoral application of adenovirus gene delivery vectors allows for 

treatment of accessible neoplastic lesions. Furthermore, this type of application is 

basically needed to prove in a first step the feasibility of a newly developed viral gene 

delivery construct. In 2001, Spitzweg et al. injected prostate cancer xenografts in 

nude mice with a replication-deficient adenovirus carrying the NIS gene linked to the 

cytomegalovirus (CMV) promoter, which led to highly active uptake of radioiodine 

(Spitzweg et al., 2001a). These results showed for the first time that in vivo NIS gene 

delivery into non-thyroidal tumors is capable of inducing accumulation of 

therapeutically effective doses of radioiodine. 

In a next step, tumor-specific promoters can be used for targeted radioiodine 

therapy of non-thyroidal cancers (Cengic et al., 2005; Kakinuma et al., 2003; 

Spitzweg et al., 2007; Willhauck et al., 2008c). In this way, adenovirus transgene 

expression can be restricted to specific cell types. Kakinuma et al. demonstrated 

probasin promoter (ARR2PB)-driven, prostate-specific expression of the NIS gene for 

targeted radioiodine therapy of prostate cancer after in vitro application of a 

genetically engineered replication-deficient adenovirus (Kakinuma et al., 2003). In a 

further study, Spitzweg et al. demonstrated a therapeutic effect of 131I in vivo in 

medullary thyroid cancer cell xenografts after replication-deficient adenovirus-

mediated induction of tumor-specific iodide accumulation using the carcinoembryonic 

antigen (CEA) promoter to drive NIS expression (Spitzweg et al., 2007). Furthermore, 

Klutz et al. reported on NIS-mediated radionuclide (131I, 188Re) therapy of liver cancer 
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xenografts after transcriptionally targeted, alpha fetoprotein (AFP)-driven intratumoral 

in vivo NIS gene delivery using a replication-deficient adenovirus (Klutz et al., 2011c).  

Trujillo et al. extended this approach to NIS-mediated radiovirotherapy of 

prostate cancer using a conditionally replicating adenovirus under control of the 

prostate-specific probasin promoter, in order to combine adenovirus-mediated 

oncolysis with NIS-mediated radioiodine therapy (Trujillo et al., 2010). In its well 

characterized dual function as reporter gene as well as therapy gene associated with 

a significant bystander effect, NIS represents an ideal candidate gene for replication-

selective adenovirus-mediated gene-virotherapy, providing the potential to monitor in 

vivo biodistribution of virus replication in addition to stimulation of therapeutic efficacy 

of oncolytic virotherapy by additional radionuclide therapy. 

 

1.4.2 Radiovirotherapy 

Oncolytic viruses are able to selectively kill human tumor cells during their 

replication cycle. At the same time oncolytic viruses can be genetically engineered in 

order to deliver therapeutic transgenes selectively into tumor cells. The term 

“radiovirotherapy” describes the combined use of oncolytic viral vectors that are able 

to induce tumoral uptake of therapeutic radioisotopes. 

 
Fig. 3:  Replication-selective adenovirus vectors replicating and expressing NIS under control of tumor-

specific promoters are able to selectively infect cancer cells. Tumor cells are killed by oncolytic virus 

replication during the production of progeny virions (virotherapy) and this treatment can be additionally 

combined with NIS-mediated 131I radiotherapy (radiovirotherapy). 
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These two therapeutic strategies are particularly suitable for combination 

because they can have synergistic antitumor effects. Viral infection may sensitize 

tumor cells for ionizing radiation and in turn radiation can enhance viral replication 

and oncolysis (Advani et al., 2006; Hart et al., 2007; Hart et al., 2005; Hingorani et 

al., 2008a; Hingorani et al., 2008b). Trujillo et al. demonstrated that local in vivo NIS 

gene transfer using a replication-selective oncolytic adenovirus is able to induce a 

significant therapeutic effect, which can be further enhanced by additional 131I 

application (Trujillo et al., 2012a; Trujillo et al., 2010; Trujillo et al., 2012b). Moreover, 

the feasibility of combined radiovirotherapy using NIS-encoding adenovirus has been 

studied and proven by multiple groups in several tumor models (Barton et al., 2011; 

Hakkarainen et al., 2009; Huang et al., 2011; Oneal et al., 2012; Peerlinck et al., 

2009; Trujillo et al., 2012a; Trujillo et al., 2010; Trujillo et al., 2012b). 

 

1.4.3 Systemic adenoviral gene delivery 

The greatest barrier for systemic adenoviral gene delivery is the interaction 

with several blood components like platelets, erythrocytes, and coagulation factors. In 

particular, binding of hexon protein on the adenovirus’ surface to coagulation factor X 

leads to hepatic sequestration and profound liver transduction (Waddington et al., 

2008). Moreover, due to its negative surface charge the adenovirus is recognized by 

the Kupffer cells’ scavenger receptor, which leads to uptake by these resident liver 

macrophages, subsequent virus inactivation, and contributes to the host inflammatory 

response (Lieber et al., 1997). Furthermore, due to the widespread anti-adenovirus 

immunity in humans (Molnar-Kimber et al., 1998; Yang et al., 1995), pre-existing anti-

adenovirus antibodies clear the adenovirus rapidly from the bloodstream and strong 

immune responses are triggered, most likely by interaction with antigen-presenting 

cells such as macrophages and dendritic cells, resulting in the release of 

proinflammatory cytokines/chemokines such as interleukin-6 (IL-6), tumor necrosis 

factor-α, interferon γ inducible protein-10, and RANTES, resulting in unwanted toxic 

side effects as well as low antitumor efficacy (Lieber et al., 1997; Liu et al., 2003; 

Muruve et al., 1999; Schnell et al., 2001; Zaiss et al., 2002; Zhang et al., 2001). 

Additionally, high promiscuity due to widespread expression of the coxsackie-

adenovirus receptor (CAR), and on the other hand potential lack of CAR on tumor 

cells strongly limit its clinical application. As all these drawbacks are initially mediated 
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by interactions with adenovirus capsid proteins masking of the adenovirus’ surface 

represents a promising approach to overcome these hurdles. Therefore, different 

strategies have been developed in order to blind the vector for off-targets by 

combining viral and synthetic vectors into a hybrid vector, including covalent 

conjugation of reactive polymers based on polyethylene glycol (PEG) or N-[2-

hydroxypropyl]methacrylamide (HPMA) (Laga et al., 2012) and non-covalent 

modification of the negatively charged adenovirus’ surface by electrostatic interaction 

with cationic polymers (Yao et al., 2011a). These new technologies demonstrated 

first evidence to provide the vector with the ability to overcome neutralizing anti-

vector antibodies, to escape liver tropism and to reduce innate and adaptive immune 

responses and liver toxicity even after systemic vector application, while maintaining 

its natural biological activity (Laga et al., 2012). 

 

1.4.4 Dendrimer coating of adenovirus vectors for systemic NIS gene delivery 

Vetter et al. recently reported on a novel strategy developed in Manfred Ogris’ 

laboratory in order to modify the adenovirus’ tropism and evade the patient’s immune 

system, and proved that improvement of adenoviral vectors for gene delivery can be 

achieved by surface modification using the same class of synthetic polymer as 

previously established for non-viral gene delivery (as described under 1.3.2 and 

1.3.3) (Vetter et al., 2013). With the goal of developing an adenovirus-based vector 

suitable for systemic vector application, chemically well-defined dendritic PAMAM 

(poly(amidoamine)) dendrimers bearing positively charged terminal amines were 

utilized in order to coat the negatively charged adenoviral capsid based on 

electrostatic interaction. By attachment of the positively charged polymer, the surface 

charge of the virus is inverted, thereby allowing it to bind to the cell surface (Davis et 

al., 2004). This modification allowed efficient internalization and transduction of tumor 

cells in vitro otherwise refractory towards adenoviral transduction. 
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Fig. 4:  The negatively charged adenovirus capsid can be shielded by coating with polycationic 

polymers in order to form a complex based on electrostatic interaction. 

 

Besides the capacity of dendrimer-coated adenovirus to infect tumor cells with 

high efficiency through CAR-independent uptake mechanisms, dendrimer coating 

was further shown to form stable complexes in the presence of serum, and to protect 

the adenovirus, at least in part, from neutralizing antibodies. Protection from 

neutralizing antibodies raises hope for a prolonged blood circulation time, as it was 

shown by Green et al. (Green et al., 2004). An evasion from neutralizing antibodies 

may further make a second systemic vector injection feasible without the need to 

suppress the patients’ immune system. 

After the proof-of-principle of dendrimer coating of the adenoviral surface in 

vitro, shielding and targeting can be further improved by coating of adenoviruses with 

a conjugate consisting of cationic PAMAM dendrimer linked to the peptidic, EGFR-

specific ligand GE11 in order to redirect the virus tropism (Vetter et al., 2013). 

 
Fig. 5:  The synthetic dendrimer used for adenovirus’ surface modification can be coupled to tumor-

specific targeting ligands enabling receptor-mediated cellular vector uptake. 
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In vitro experiments demonstrated CAR-independent but EGFR-specific 

transduction efficiency. The specificity for tumor cell infection was increased by 

targeting the coated adenovirus to the EGFR and selectivity for EGFR has been 

demonstrated. 
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1.5 Aim of the thesis 

 

After the proof-of-principle of the diagnostic and therapeutic potential of the 

NIS gene therapy concept in the previous work of Christine Spitzweg and her group, 

the major challenge on the way to future clinical application now is to develop and 

characterize new gene delivery constructs that allow for safe application in humans 

and that are able to selectively transduce tumor cells with high efficiency after 

systemic application in order to detect and to treat neoplastic malignancies also in the 

metastatic stage. 

Therefore, the first aim of this thesis was the basic characterization of a newly 

developed, conditionally replicating adenovirus construct that expresses the NIS 

gene. We studied the in vitro and in vivo efficacy of NIS gene transfer and the 

therapeutic potential of oncolytic virotherapy combined with radioiodine therapy after 

intratumoral vector application in a xenograft mouse model of hepatocellular 

carcinoma (HCC) with respect to selectivity and efficacy of replication and transgene 

expression. 

The next logical step was the evaluation of the newly developed adenovirus 

construct for systemic vector application. Currently, major limitations for clinical 

application of adenovirus-mediated gene therapy are high prevalence of neutralizing 

antibodies, widespread expression of the coxsackie-adenovirus receptor (CAR) and 

adenovirus sequestration by the liver after systemic application. Therefore, based on 

the previous findings of Alexandra Vetter in Manfred Ogris’ laboratory, we used the 

theranostic NIS gene to investigate whether coating of adenovirus vectors with 

synthetic dendrimers can be useful to overcome these hurdles in order to develop 

adenoviral vectors for combination of systemic oncolytic virotherapy and NIS-

mediated radiotherapy of mice bearing HCC xenografts. Based on the dual function 

of the NIS gene encoded by our adenovirus as reporter and therapy gene, at first we 

investigated its potential for non-invasive imaging of vector biodistribution and 

transgene expression of our targeted and shielded adenovirus by molecular imaging. 

Furthermore, the potential of stimulation of therapeutic efficacy of adenovirus-

mediated oncolysis was investigated by subsequent combination with systemic NIS-

mediated radiotherapy (radiovirotherapy). 

To further improve safety, shielding and targeting of the surface-modified 

adenovirus vectors, we physically coated replication-selective adenoviruses carrying 



  Introduction 
 

19 

 

the NIS gene with a conjugate consisting of cationic poly(amidoamine) (PAMAM) 

dendrimer linked to the peptidic, epidermal growth factor receptor-specific ligand 

GE11. We investigated the potential improvement of safety and transduction efficacy 

in vitro and subsequently analyzed the specificity and biodistribution of functional NIS 

expression as well as the therapeutic efficacy of oncolytic virotherapy in combination 

with 131I after systemic, EGFR-targeted NIS gene delivery. 

Another critical issue that has to be taken into consideration during preclinical 

evaluation of therapeutic approaches is the possibility of limited validity and clinical 

transferability of data gained in xenograft animal models. Despite outstanding 

effectiveness of a series of compounds in vitro and in xenograft models in vivo, the 

results of clinical trials are sometimes conflicting. Therefore, we used recently 

characterized non-viral gene delivery vehicles developed in Manfred Ogris’ laboratory 

for NIS gene delivery in a genetically engineered mouse model of pancreatic cancer, 

which may be better suited to adequately reflect the clinical situation. 
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2.1 Abstract 

In the present study we determined the in vitro and in vivo efficacy of sodium 

iodide symporter (NIS) gene transfer and the therapeutic potential of oncolytic 

virotherapy combined with radioiodine therapy using a conditionally replicating 

oncolytic adenovirus. For this purpose we used a replication-selective adenovirus in 

which the E1a gene is driven by the mouse alpha-fetoprotein promoter and the 

human NIS gene is inserted in the E3 region (Ad5-E1/AFP-E3/NIS). Human 

hepatocellular carcinoma cells (HuH7) infected with Ad5-E1/AFP-E3/NIS 

concentrated radioiodine at a level that was sufficiently high for a therapeutic effect in 

vitro. In vivo experiments demonstrated that 3 days after intratumoral injection of 

Ad5-E1/AFP-E3/NIS HuH7 xenograft tumors accumulated approximately 25% ID/g 
123I as shown by 123I gamma camera-imaging. A single intratumoral injection of Ad5-

E1/AFP-E3/NIS (virotherapy) resulted in a significant reduction of tumor growth and 

prolonged survival, as compared to injection of saline. Combination of oncolytic 

virotherapy with radioiodine treatment (radiovirotherapy) led to an additional 

reduction of tumor growth that resulted in markedly improved survival as compared to 

virotherapy alone. In conclusion local in vivo NIS gene transfer using a replication-

selective oncolytic adenovirus is able to induce a significant therapeutic effect, which 

can be enhanced by additional 131I application. 
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2.2  Introduction 

Hepatocellular carcinoma (HCC) is the sixth most prevalent cancer worldwide 

and the third leading cause of cancer deaths in the world with an increasing 

incidence in the western world (Forner et al., 2012; Siegel et al., 2012). Due to limited 

response to conventional radio- or chemotherapy, surgery including partial 

hepatectomy or liver transplantation is the only potentially curative therapy that is 

currently available. Despite the development of various alternative therapeutic 

options, such as kinase inhibitors, the prognosis of patients suffering from advanced 

HCC is still poor (Cao et al., 2012). Consequently the development of novel 

therapeutic strategies is indispensable.  

The sodium iodide symporter (NIS) is an intrinsic transmembrane glycoprotein 

that mediates the uptake of iodide into thyroid follicular cells (Carrasco, 1993; Jhiang 

et al., 1998). Due to its expression in differentiated thyroid cancer cells, NIS 

represents the molecular basis for the diagnostic and therapeutic application of 

radioiodine, which has been successfully used for over 70 years in the treatment of 

thyroid cancer patients. In the last 15 years NIS has been identified as a novel 

promising therapeutic gene for the treatment of extrathyroidal tumors by directed NIS 

gene transfer into tumor cells followed by diagnostic and therapeutic application of 

radioiodine. The capacity of the NIS gene to induce radioiodine accumulation in non-

thyroidal tumors has been investigated in a variety of tumor models by several 

groups including our own (Hingorani et al., 2010; Klutz et al., 2009; Klutz et al., 

2011a; Richard-Fiardo et al., 2011; Scholz et al., 2005; Spitzweg et al., 2000; 

Willhauck et al., 2008b). These data clearly demonstrate the potential of NIS as a 

novel reporter and therapy gene for the treatment of extrathyroidal tumors. 

To ensure tumor specificity of radiation exposure, the application of tumor-

specific promoters offers the ability to transcriptionally target NIS gene expression 

exclusively to tumor cells. Alpha-fetoprotein (AFP) is only expressed in the yolk sac 

and liver of mammals during embryonic development and nearly disappears after 

birth. Reinitiation of AFP expression during neoplastic transformation in HCCs and 

teratocarcinomas provides us with a well characterized and frequently used tumor 

marker (Chan et al., 1986; Johnson, 1999). Due to its high specificity, the AFP 

promoter is an ideal tool for transcriptional targeting of gene delivery for the treatment 

of HCCs (Watanabe et al., 1987). 

The current study was developed as a result of the successful induction of 
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tumor-specific iodide uptake activity in a xenograft mouse model of hepatocellular 

carcinoma (HepG2) after local infection with a replication-deficient adenovirus 

carrying the human NIS gene linked to the mouse AFP promoter (Klutz et al., 2011c). 

With the goal of a possible future systemic application, as a next step we aimed at 

extending this promising technique to a replication-selective oncolytic adenovirus 

using the same AFP promoter construct for transcriptional targeting of NIS 

expression. The use of genetically engineered replication-competent adenoviruses 

has emerged as a powerful approach for increasing transduction efficiency and 

therapeutic efficacy by an additional oncolytic effect due to cancer-selective virus 

replication. We therefore examined the feasibility of oncolytic virotherapy following 

replication-selective adenovirus-mediated human NIS gene transfer in a HCC 

xenograft mouse model. In the newly developed Ad5-E1/AFP-E3/NIS construct the 

E1a gene, which is essential for viral replication, is driven by the HCC-specific AFP 

promoter resulting in tumor-specific replication. Since the NIS gene is inserted in the 

E3 region under control of the replication-dependent E3 promoter, NIS expression 

only occurs in HCC cells, where adenoviral replication takes place. We further 

evaluated, if tumor-specific NIS expression allows for enhancement of the therapeutic 

effect of virus-mediated oncolysis through additional radioiodine therapy 

(radiovirotherapy). 
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2.3  Materials and Methods 

Cell culture 

The human HCC cell line HuH7 (JCRB 0403) was cultured in DMEM/F12 

medium (Invitrogen Life Technologies Inc., Karlsruhe, Germany) supplemented with 

10% fetal bovine serum (v/v) (PAA, Colbe, Germany), 5% L-glutamine (Invitrogen 

Life Technologies Inc.) and 1% penicillin/streptomycin (v/v) (Invitrogen Life 

Technologies Inc.) and the human melanoma cell line 1205 Lu (kindly provided by 

Meenhard Herlyn, The Wistar Institute, Philadelphia, PA, USA) was grown in MCDB 

153 medium (Invitrogen Life Technologies Inc.) supplemented with 20% Leibovitz´s 

L-15 medium (v/v) (Invitrogen Life Technologies Inc.), 10% fetal bovine serum (v/v), 5 

µg/ml insulin (Sigma, Munich, Germany) and 1% penicillin/streptomycin (v/v). The 

human follicular thyroid carcinoma cell line FTC-133 (kindly provided by Björn E. 

Wenzel, University of Lübeck, Lübeck, Germany) was grown in DMEM/F12 medium 

supplemented with 10% fetal bovine serum (v/v) and 1% penicillin/streptomycin (v/v). 

Cells were maintained at 37°C and 5% CO2 in an incubator with 95% humidity. Cell 

culture medium was replaced every second day and cells were passaged at 85% 

confluency. 

 

Recombinant replication-selective adenovirus production 

The human NIS cDNA (kindly provided by Sissy M Jhiang, Ohio State 

University, Columbus, OH, USA) was cloned into the shuttle vector (pVQAd-AscI-

NpA) and linked to the mouse AFP promoter/enhancer I fragment (kindly provided by 

M. Geissler, Esslingen, Germany) using Kpn I and Xho I. A replication-competent 

human recombinant type 5 adenovirus (Ad5-E3) carrying the human NIS gene linked 

to the mAFP basal promoter/enhancer element I (Ad5-E1/AFP-E3/NIS) was 

developed by ViraQuest Inc. (North Liberty, IA, USA). As control, a replication-

deficient adenovirus carrying the NIS cDNA under the control of the tumor specific 

AFP promoter (Ad5-AFP/NIS), generated as described previously, was used (Klutz et 

al., 2011c). As further control an empty adenovirus (Ad5-control) was used. 

 

Adenovirus-mediated NIS gene delivery in vitro 

For in vitro infection experiments, HuH7, 1205 Lu and FTC-133 cells (1.5x105 

cells/well in 12-well plates) were washed and incubated with 25 MOI (multiplicity of 

infection)/well of Ad5-E1/AFP-E3/NIS or with control virus in OptiMEM medium 
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(Invitrogen Life Technologies Inc.) for 45 min at 37°C and 5% CO2. Plates were 

slightly shaken every 15 min to ensure an equal distribution of the virus. Medium was 

replaced by fresh culture medium and virus-infected cells were further maintained for 

up to 4 days, before iodide accumulation was measured (see below) to determine 

levels of functional NIS protein expression. 

 
125I uptake studies in vitro 

Following infection with Ad5-E1/AFP-E3/NIS or Ad5-control, iodide uptake of 

HuH7 or control cells was determined at steady-state conditions as described 

previously (Spitzweg et al., 1999; Weiss et al., 1984). Results were normalized to cell 

viability and expressed as cpm/A 490 nm. 

 

Cytopathic effect (CPE) assay 

HuH7 or FTC-133 cells were seeded in 12-well plates (1.5x105 per well). Cells 

were infected with increasing doses (0, 1, 5, 10, 25, 50 MOI) for 45 min with 

replication-selective Ad5-E1/AFP-E3/NIS or replication-deficient Ad5-AFP/NIS. Cells 

were fixed after 4 days with 10% TCA over night at 4°C and stained with 0.5% 

sulforhodamine B (SRB, Sigma-Aldrich, Darmstadt, Germany) in 1% acetic acid. 

Quantification was done by photometric measurement at 590 nm after dissolving 

dried SRB with 10 mM tris buffer at pH 8. 

 

Cell viability assay 

Cell viability was measured using the commercially available MTS-assay 

(Promega Corp., Mannheim, Germany) according to the manufacturer's 

recommendations as described previously (Unterholzner et al., 2006). 

 

Analysis of NIS mRNA expression and fiber DNA level using quantitative real-

time PCR 

After infection with 25 MOI Ad5-E1/AFP-E3/NIS or Ad5-control total RNA was 

isolated from HuH7 xenografts using the RNeasy Mini Kit (Qiagen, Hilden, Germany) 

according to the manufacturer's recommendations. The level of NIS mRNA was 

analyzed via quantitative real-time PCR (qPCR) as described previously (Klutz et al., 

2009). 

After infection with Ad5-E1/AFP-E3/NIS or Ad5-AFP/NIS total DNA was 
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isolated from HuH7 and FTC-133 cells using the QIAamp DNA Mini Kit (Qiagen) 

according to the manufacturer's recommendations. Quantitative real-time PCR was 

performed with 100 ng DNA using the SYBR green PCR master mix (Qiagen) in a 

Rotor Gene 6000 (Corbett Research, Mortlake, New South Wales, Australia). 

Following primers were used: fiber-fw (5`-AAGCTAGCCCTGCAAACATCA-3`) and 

fiber-rev (5`-CCCAAGCTACCAGTGGCAGTA-3`). Cycling conditions started with 

initial enzyme activation at 95°C for 15 min, followed by 40 cycles of 15 sec 

denaturation at 95°C, 15 sec annealing at 55°C, and 15 sec elongation at 72°C. 

 

In vitro clonogenic assay 

HuH7 cells were infected with 25 MOI of Ad5-E1/AFP-E3/NIS as described 

above. After 48 h the cells were incubated for 7 h with increasing doses (7.4 MBq, 

14.8 MBq and 29.6 MBq) of 131I in HBSS (Invitrogen Life Technologies Inc.) 

supplemented with 10 µmol/l NaI and 10 mmol/l HEPES (pH 7.3) at 37°C. After 

incubation with 131I, the HuH7 cells were detached by incubation with 0.05% 

trypsin/0.02% EDTA in PBS for 10 min at 37°C. The HCC cells were then plated at 

cell densities of 250, 500 and 1000 cells/well in 12-well plates. Two weeks later, after 

colony development, cells were fixed with methanol, stained with crystal violet, and 

HCC colonies containing more than 50 cells were counted. Parallel experiments were 

performed using HBSS without 131I or with uninfected cells, respectively and all 

values were adjusted for plating efficiency. The percentage of survival represents the 

percentage of cell colonies after 131I treatment, compared with mock treatment with 

HBSS. 

 

Establishment of HuH7 xenografts 

HuH7, FTC-133 and 1205 Lu xenografts were established in 5 weeks old 

female CD-1 nu/nu mice (Charles River, Sulzfeld, Germany) by subcutaneous 

injection of 5 x 106 HuH7, 1.5 x 106 FTC-133 or 5 x 106 1205 Lu cells suspended in 

100 µl PBS into the flank region. Animals were maintained under specific pathogen-

free conditions with access to mouse chow and water ad libitum. The experimental 

protocol was approved by the regional governmental commission for animals 

(Regierung von Oberbayern, Munich, Germany). 

 

In vivo NIS gene transfer in HuH7 xenografts 
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Experiments started when tumors had reached a size of 5-6 mm. After a 10-

day pretreatment with L-T4 (L-thyroxin Henning, Sanofi-Aventis, Frankfurt, Germany) 

(5 mg/l) in their drinking water to reduce radioiodide uptake by the thyroid gland, 

animals were anesthetized with ketamin (Hameln pharmaceuticals, Hameln, 

Germany) (100 µg/g) and xylazine 2% (v/v) (Bayer, Leverkusen, Germany) (10 µg/g). 

Thereafter, 5 x 108 PFU (1.83 x 1010 vp), diluted with PBS to a total volume of 100 µl) 

of the recombinant Ad5-E1/AFP-E3/NIS were injected at different injection sites 

directly into the tumor using tuberculin syringes with a 30-gauge x 0.5-inch needle. 

The needle was moved to various sites within the tumor during injection to maximize 

the area of virus exposure. 

 

Radioiodine uptake studies in vivo after local NIS gene transfer 

On days 3, 4 and 7 after intratumoral injection of Ad5-E1/AFP-E3/NIS or Ad5-

control mice received 18.5 MBq 123I intraperitoneally (i.p.) and radioiodine distribution 

was monitored by serial imaging on a gamma camera (Forte, ADAC Laboratories, 

Milpitas, CA, USA) equipped with a VXHR (Ultra High Resolution) collimator as 

described previously (Willhauck et al., 2007). The control mice were injected i.p. with 

2 mg of the competitive NIS-inhibitor sodium perchlorate 30 min before 123I 

administration. Regions of interest were quantified and expressed as a fraction of the 

total amount of applied radionuclide per gram tumor tissue. The retention time within 

the tumor was determined by serial scanning after radioiodine injection, and 

dosimetric calculations were performed according to the concept of MIRD, with the 

dosis factor of RADAR-group (www.doseinfo-radar.com). 

 

Radionuclide therapy study in vivo 

Subcutaneous HuH7 xenografts were established in four groups of mice as 

described above. When tumors reached about 5-6 mm in diameter, one group of 

mice was used as saline-injected control (NaCl-control, n=12), a second group 

received a single intratumoral dose of Ad5-E1/AFP-E3/NIS at 5 x 108 PFU 

(virotherapy, n=14), the third group received a single intratumoral dose of Ad5-

E1/AFP-E3/NIS at 5 x 108 PFU and 3 days later a single intraperitoneal dose of 55.5 

MBq (1.5 mCi) 131I (radiovirotherapy 1, n=16), and the fourth group received a single 

intratumoral dose of Ad5-E1/AFP-E3/NIS at 5 x 108 PFU and two intraperitoneal 

doses of 55.5 MBq (1.5 mCi) 131I each on day 3 and 5 after virus administration 
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(radiovirotherapy 2, n=12). Tumor measurements started at the day of virus 

administration and were performed twice weekly thereafter, tumor volume was 

estimated using the equation: tumor volume = length × width × height × 0.52. Mice 

were followed for a total of 100 days or until tumor burden was such that animals had 

to be killed. The end point event was set at tumor burden ≥ 1500 mm3. 

 

Immunohistochemical analysis of NIS protein expression 

Immunohistochemical staining of paraffin embedded tissue sections derived 

from HuH7 tumors after adenovirus-mediated gene delivery was performed using a 

mouse monoclonal antibody directed against amino acid residues 468–643 of human 

NIS (kindly provided by John C. Morris, Mayo Clinic, Rochester, MN, USA) as 

described previously (Spitzweg et al., 2007). For histological examination parallel 

slides were also routinely stained with hematoxylin and eosin. 

 

Indirect immunofluorescence assay 

Indirect immunofluorescence staining was performed on frozen tissues using 

an antibody against human Ki67 (Abcam, Cambridge, UK) and an antibody against 

mouse CD31 (BD Pharmingen, Heidelberg, Germany) as described previously 

(Willhauck et al., 2007). 

 

Statistical methods 

All in vitro experiments were carried out in triplicates. Results are represented 

as means +/- SD of triplicates. Statistical significance was tested using Student's t-

test. Statistical significance of survival curves was tested using logrank test. 
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2.4  Results 

Iodide uptake studies in vitro 

Transduction conditions using Ad5-E1/AFP-E3/NIS were optimized in HuH7 

cells by measurement of perchlorate-sensitive iodide uptake activity. At a dose of 25 

MOI we achieved highest transduction efficiency at low cytotoxicity, which was used 

for all subsequent in vitro experiments (data not shown). The perchlorate-sensitive 

iodide uptake activity was measured at various time points after Ad5-E1/AFP-E3/NIS 

infection (Fig. 1A). Maximum iodide uptake activity was observed 3 days following 

infection, when cells showed a 79-fold increase in perchlorate-sensitive 125I 

accumulation as compared to HuH7 cells infected with the control virus (Ad5-control) 

(***P < 0.001; Fig. 1A). Tumor specificity of Ad5-E1/AFP-E3/NIS was confirmed by 

infection of control cancer cell lines (FTC-133, 1205 Lu) not expressing AFP showing 

lack of perchlorate-sensitive iodide uptake activity (Fig. 1B). 

 
Fig. 1:  (A) Kinetics of NIS-mediated 125I uptake. HuH7 cells were infected with 25 MOI Ad5-E1/AFP-

E3/NIS or Ad5-control and 125I uptake was measured on days 1, 2, 3 and 4. Maximum iodide uptake 

with low toxicity was observed 3 days following infection with Ad5-E1/AFP-E3/NIS, when cells showed 

an eightfold increase in perchlorate-sensitive uptake activity as compared with day 1 after infection 
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(***P<0.001). (B) Specificity of NIS-mediated 125I uptake. HuH7 cells infected with Ad5-E1/AFP-E3/NIS 

(25 MOI) showed a 79-fold increase in perchlorate-sensitive 125I accumulation. In contrast, no iodide 

uptake above background level was observed in HuH7 cells infected with Ad5-control or in control 

cancer cells (FTC-133 and 1205 Lu) infected with Ad5-E1/AFP-E3/NIS (***P<0.001). cpm, counts per 

minute; d, day. 

 

Analysis of tissue-selective viral replication in vitro 

Quantitative real-time PCR (qPCR) analysis revealed a strong nearly 50,000-

fold increase of fiber DNA level in HuH7 cells 3 days after infection with 25 MOI Ad5-

E1/AFP-E3/NIS as compared to infection of AFP-negative control cells or HuH7 cells 

infected with the replication-deficient Ad5-AFP/NIS, which showed no significant 

increase of fiber DNA level (***P < 0.001; Fig. 2A). 

 
Fig. 2:  (A) Tissue-specific replication of Ad5-E1/AFP-E3/NIS. Analysis of fiber protein DNA level in 

HuH7 and FTC-133 cells 3 days after infection with replication-selective Ad5-E1/AFP-E3/NIS or 

replication-deficient Ad5-AFP/NIS. HuH7 cells showed a 10 000-fold increase in fiber protein DNA 

level, as compared with AFP-negative FTC-133 cells. In contrast, replication-deficient adenovirus 

showed no increase in fiber protein DNA level (***P<0.001). 

 

Induction of cytopathic effect (CPE) 

To investigate whether Ad5-E1/AFP-E3/NIS and Ad5-AFP/NIS induce CPE in 

HCC and control cell lines, a CPE assay was performed. As shown in Figure 2B, 

Ad5-E1/AFP-E3/NIS caused strong cytolysis of infected HuH7 cells at day 4 in a 

dose dependent manner (upper panel). In contrast, no CPE could be detected in 

Ad5-E1/AFP-E3/NIS-infected AFP-negative FTC-133 control cells (lower panel) or in 

HuH7 cells after infection with the replication-deficient Ad5-AFP/NIS virus. 
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Fig. 2:  (B) Tissue-specific CPE of Ad5-E1/AFP-E3/NIS. Assessment of AFP-dependent, virus-

mediated cell killing, 4 days after infection with different MOI of Ad5-E1/AFP-E3/NIS using a CPE 

assay. Strong cytolysis was observed in HuH7 cells (upper panel), as opposed to AFP-negative FTC-

133 cells (lower panel) or HuH7 cells infected with the replication-deficient adenovirus, thereby 

demonstrating replication selectivity of the vector (***P<0.001). 

 

In vitro clonogenic assay 

To evaluate the therapeutic potential of 131I in hepatoma cells (HuH7) after 

Ad5-E1/AFP-E3/NIS-mediated NIS gene transfer in vitro, a clonogenic assay was 

performed at increasing doses (7.4 MBq, 14.8 MBq and 29.6 MBq) of 131I (Fig. 3). 

100% of uninfected hepatoma cells survived the exposure to 29.6 MBq 131I, while up 

to 90% of Ad5-E1/AFP-E3/NIS-infected hepatoma cells were killed by the treatment 

with 131I in a dose-dependent manner (***P < 0.001). Without radioiodine treatment, 

uninfected hepatoma cells showed survival rates comparable to those of Ad5-

E1/AFP-E3/NIS-infected cells 48 h after infection. This indicates that at this time point 

no major cell lysis has occurred and therefore survival of the cells was not dependent 

on viral infection in this experimental setup. 
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Fig. 3:  In vitro clonogenic assay. For evaluation of the therapeutic effect of 131I in vitro HuH7 cells 

infected with Ad5-E1/AFP-E3/NIS were exposed to 7.4, 14.8 or 29.6 MBq 131I. While 100% of the cells 

incubated with 29.6 MBq 131I only or cells treated with the adenovirus only survived, up to 90% of Ad5-

E1/AFP-E3/NIS-infected cells were killed by radioiodine in a dose-dependent manner (***P<0.001). 

 

Radioiodine uptake studies after local in vivo NIS gene transfer 

Radioiodine biodistribution was monitored in tumor bearing mice on days 3, 4 

and 7 after intratumoral (i.t.) injection of 5 x 108 PFU (1.83 x 1010 virus particles (vp)) 

Ad5-E1/AFP-E3/NIS using a gamma camera to determine propagation of the virus 

and the peak of adenoviral spread by in vivo imaging of NIS expression. Highest 

transduction efficiency was observed 3 days after single intratumoral injection of the 

replication-selective adenovirus (Fig. 4A). Thus, all following imaging experiments 

were carried out 3 days after adenoviral infection. 

 
Fig. 4:  123I uptake studies in vivo. Scans of nude mice bearing xenografts, show the kinetics of NIS 

expression 3, 4 and 7 days following i.t. injection of 5x108 PFU Ad5-E1/AFP-E3/NIS (A). 
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Although no specific radioiodide accumulation was detected in HuH7 tumors 

after infection with Ad5-control (Fig. 4B), Ad5-E1/AFP-E3/NIS-infected HuH7 tumors 

(Figure 4A) showed a significant time-dependent uptake of 123I with a maximum at 3 

days after virus injection. As determined by serial scanning, 25% ID/g (percentage of 

the injected dose per gram tumor tissue) 123I were accumulated 1 h post injectionem 

(p.i.) in NIS-transduced xenograft tumors with an effective half-life of 5.5 h (Fig. 4A). 

Considering a tumor mass of 1g and an effective half-life of 3.6 h for 131I, a tumor 

absorbed dose of 126 mGy/MBq was calculated. In addition to tumoral uptake, 

significant radioiodide accumulation was observed in tissues physiologically 

expressing NIS, including stomach and thyroid, and tissues involved in iodide 

elimination (bladder). 

 
Fig. 4:  Three days after injection with Ad5-E1/AFP-E3/NIS (A, C–E) or Ad5-control (B), Ad5-E1/AFP-

E3/NIS-infected HuH7 tumors showed an 123I uptake of 25% ID g-1, which was completely abolished 

on pre-treatment with NaClO4 (C), whereas Ad5-control-infected HuH7 tumors showed no significant 
123I uptake (B). In contrast, FTC-133 (D) and 1205 Lu (E) control xenografts infected with Ad5-

E1/AFP-E3/NIS showed no tumoral iodide accumulation. d, day, p.i., post injection. 

 

To confirm that tumoral iodide uptake was indeed NIS-mediated, Ad5-E1/AFP-

E3/NIS-injected mice were additionally treated with the competitive NIS-inhibitor 

sodium perchlorate (NaClO4) 30 min before 123I administration, which completely 

blocked tumoral iodide accumulation in addition to the physiological NIS-mediated 

iodide uptake in stomach and thyroid gland (Fig. 4C). Furthermore, hepatoma-

specificity of Ad5-E1/AFP-E3/NIS was confirmed by infection of control tumor 
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xenografts (FTC-133, 1205 Lu), which did not result in tumoral iodide uptake activity 

(Fig. 4D, E). 

 

Analysis of NIS mRNA expression in HuH7 xenografts 

The mRNA of tumors was analyzed for the level of NIS mRNA expression 

after intratumoral Ad5-E1/AFP-E3/NIS-mediated NIS gene transfer in vivo by 

quantitative real-time PCR (qPCR) (Fig. 5). A 29-fold increase in NIS mRNA 

expression of HuH7 xenografts was detected 72 h after intratumoral injection of Ad5-

E1/AFP-E3/NIS (***P < 0.001). In contrast, no significant NIS mRNA expression 

above background level was observed in untreated tumors or in tumors treated with 

the control adenovirus (Ad5-control). 

 
Fig. 5:  Analysis of NIS mRNA expression in HuH7 xenografts. A significant increase in the NIS mRNA 

level was observed after i.t. injection of Ad5-E1/AFP-E3/NIS. In contrast, no significant NIS expression 

above background level was found in tumors after infection with Ad5-control or in untreated tumors 

(***P<0.001). 

 

Radionuclide therapy study in vivo 

 All saline treated tumors continued their extensive growth throughout the 

observation period (Fig. 6A). In contrast, a single intratumoral injection of 5 x 108 

PFU (1.83 x 1010 vp) Ad5-E1/AFP-E3/NIS (virotherapy) resulted in a significant 

reduction of tumor growth with prolonged survival of virus-injected mice (Fig. 6A, B). 

A single i.p. injection of 55.5 MBq 131I 72 h after i.t. injection of Ad5-E1/AFP-E3/NIS 

(radiovirotherapy 1) led to an additional slowdown of tumor growth (Fig. 6A), that 

resulted in markedly improved survival as compared to virotherapy alone (Fig. 6B). 
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Two i.p. injections of 55.5 MBq 131I on days 3 and 5 after Ad5-E1/AFP-E3/NIS 

treatment (radiovirotherapy 2) were able to further reduce tumor growth of HuH7 

xenografts (Fig. 6A) with further extension of survival of mice (Fig. 6B). While all mice 

in the control group had to be killed within the first 3 weeks after onset of the 

experiments due to excessive tumor growth, 92% of mice treated twice with 131I after 

local in vivo NIS gene transfer survived approx. 7-8 weeks (Fig. 6B). Taken together, 

these results indicate that the combination of radiotherapy and cytolytic virotherapy 

was significantly superior to virotherapy alone (***P<0.001). No mouse showed major 

adverse effects after virus or radionuclide administration in terms of body weight loss, 

lethargy or respiratory failure. 

 
Fig. 6:  (A, B) Therapy studies of mice bearing HuH7 tumor xenografts. Injection of a single i.t. dose of 

Ad5-E1/AFP-E3/NIS (virotherapy) resulted in a significant delay in tumor growth (A) that was 

associated with markedly improved survival (B) as compared with the control group (NaCl-control) that 

was injected with saline only. A single i.t. dose of Ad5-E1/AFP-E3/NIS followed by either a single i.p. 

dose of 55.5 MBq 131I 3 days later (radiovirotherapy 1) or by two i.p. doses of 55.5 MBq 131I on days 3 

and 5 post injectionem (radiovirotherapy 2) further significantly decreased tumor growth (A) and 

enhanced overall survival (B). 
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Immunohistochemical analysis of NIS protein expression in HuH7 xenografts 

Three days after the start of treatment mice were sacrificed and HuH7 

xenografts were dissected and processed for immunohistochemical analysis using a 

hNIS specific antibody (red). Analysis revealed a patchy staining pattern with areas of 

NIS-specific immunoreactivity in tumors after intratumoral application of Ad5-E1/AFP-

E3/NIS (Fig. 6C). In contrast, tumors treated with saline only (NaCl-control) showed 

no NIS-specific immunoreactivity (Fig. 6D). Parallel control slides with the primary 

and secondary antibodies replaced in turn by PBS and isotype-matched non immune 

immunoglobulin were negative (data not shown). 

 
Fig. 6:  (C, D) Immunohistochemical staining of HuH7 tumors 3 days after (C) Ad5-E1/AFP-E3/NIS 

application using a hNIS-specific antibody showed clusters of NIS-specific immunoreactivity. In 

contrast, HuH7 tumors treated with saline only (D) did not reveal NIS-specific immunoreactivity. 

Magnification: x20. 

 

Immunofluorescence analysis 

Eight days after the start of treatment mice were sacrificed and tumors were 

dissected and processed for immunofluorescence analysis using a Ki67-specific 

antibody (green) and an antibody against CD31 (red, labeling blood vessels) (Fig. 6E, 

F). Ad5-E1/AFP-E3/NIS-treated tumors (Fig. 6E) exhibited a significantly lower 

intratumoral blood vessel density and proliferation index after 131I therapy when 

compared to saline-treated tumors (Fig. 6F). 
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Fig. 6:  (E, F) Immunofluorescence analysis using a Ki67-specific antibody (green) and an antibody 

against CD31 (red, labeling blood vessels) showed significantly decreased proliferation and blood 

vessel density in (E) NIS-transduced tumors following radiovirotherapy (Ad5-E1/AFP-E3/NIS + 131I 

treatment) as compared with (F) saline-treated tumors. Magnification: x100. 
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2.5 Discussion 

Our previous work in various tumor models has convincingly demonstrated the 

high efficacy of radionuclide therapy after tumor-selective NIS gene delivery 

(Kakinuma et al., 2003; Klutz et al., 2009; Klutz et al., 2011a; Klutz et al., 2011b; 

Klutz et al., 2011c; Spitzweg et al., 2007; Spitzweg et al., 2001a). In its dual role as 

reporter and therapy gene NIS allows direct, non-invasive imaging of functional NIS 

expression by 123I-scintigraphy, 123I-SPECT-imaging or 124I-PET-imaging, as well as 

exact dosimetric calculations before proceeding to therapeutic application of 131I or 

alternative radionuclides (Dingli et al., 2003b; Hingorani et al., 2010; Spitzweg and 

Morris, 2002). 

Tissue-specific promoters may serve as targeting mechanisms for gene 

expression and have been described to mediate tissue-specific expression, also in 

the context of NIS gene therapy of different types of cancer, thereby introducing 

cancer specificity for improved safety and efficacy (Cengic et al., 2005; Klutz et al., 

2011c; Scholz et al., 2005; Spitzweg et al., 2007; Spitzweg et al., 2001a; Spitzweg et 

al., 2000; Spitzweg et al., 1999; Trujillo et al., 2009; Trujillo et al., 2010; Willhauck et 

al., 2008c). In previous studies we already reported hepatoma-specific NIS 

expression after application of the alpha-fetoprotein (AFP) promoter (Klutz et al., 

2011c; Willhauck et al., 2008c). To target NIS gene expression to HCC cells, we 

applied a 2666 bp mouse AFP promoter construct consisting of the basal promoter 

and enhancer I element that already proved maximal tissue specificity and promoter 

activity (Willhauck et al., 2008c; Zhang et al., 1992). 

Species C adenoviruses are some of the best-studied viruses and most 

frequently used for oncolytic vectors (Russell, 2009). The anti-tumor efficacy 

described for oncolytic adenoviruses is promising and they have been reported to be 

remarkably safe in animals in efficacy studies, with no significant toxicity reported 

(Shirakawa, 2008; Toth et al., 2010). A replication-deficient adenovirus vector 

carrying the NIS gene under control of the hepatoma-specific AFP promoter was able 

to induce tumor-specific functional NIS expression in AFP-positive hepatocellular 

carcinoma cells, which was sufficiently high to allow a cytoreductive response to 

accumulated 131I in vitro as well as in vivo after local application (Klutz et al., 2011c). 

As a next crucial step towards clinical application we have now explored the 

combination of the two approaches of targeted oncolytic virotherapy and NIS-

mediated radiotherapy to further increase transduction efficiency and therapeutic 
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efficacy. In the current study we therefore designed a replication-selective adenovirus 

Ad5-E1/AFP-E3/NIS carrying the NIS gene under the control of the same AFP 

promoter fragment that already proved high activity and tumor specificity in our 

former studies (Klutz et al., 2011c; Willhauck et al., 2008c). A prerequisite for 

functional activity of the NIS protein is its proper targeting to the cell membrane 

(Kaminsky et al., 1993). This functional membrane-associated NIS protein expression 

after replication-selective adenoviral NIS gene transfer was confirmed by 

measurement of in vitro radioiodine uptake, which showed high transduction 

efficiency and tumor selectivity of Ad5-E1/AFP-E3/NIS with maximal transduction 

efficiency 72 h after virus application. The ability to concentrate high levels of 

radioiodine resulted in a significant therapeutic effect of 131I in hepatoma cells in vitro 

which was confirmed by a clonogenic assay, performed with increasing doses of 131I. 

Studies by Ma et al. and Klutz et al. previously reported efficient and specific cell 

killing of hepatoma cells in vitro using a NIS-expressing replication-deficient 

adenovirus under control of the AFP promoter combined with 131I treatment (Klutz et 

al., 2011c; Ma et al., 2009). 

We have further investigated application of the Ad5-E1/AFP-E3/NIS virus 

construct for in vivo delivery of the NIS gene in hepatocellular carcinoma xenografts. 

NIS as novel reporter and suicide gene offers the possibility of non-invasive 

monitoring of NIS expression by radioiodine imaging and thereby allows exact 

planning of the NIS gene therapy approach (Spitzweg and Morris, 2002). The timing 

of administration of the therapeutic radionuclide after oncolytic virus-mediated NIS 

gene transfer is crucial to improve therapeutic efficacy (Msaouel et al., 2009; 

Peerlinck et al., 2009; Penheiter et al., 2010). In this context, molecular imaging of 

the level of Ad5-E1/AFP-E3/NIS-mediated NIS expression over time prior to 

administration of the therapeutic radionuclide provides essential information on the 

time point of maximal NIS expression and is a prerequisite for an optimized 

combination therapy strategy (Penheiter et al., 2010). In these in vivo imaging 

experiments, HuH7 cell xenografts showed highest NIS expression 72 h after 

oncolytic virus administration. Other studies that used NIS-expressing replication-

selective adenoviral vectors revealed comparable results and showed the peak of 

tumoral NIS expression to be 3 to 4 days after intratumoral injection of the adenovirus 

(Merron et al., 2007; Trujillo et al., 2010). 

72 h following intratumoral injection of the replication-selective Ad5-E1/AFP-
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E3/NIS, tumor-specific 123I accumulation of approximately 25% ID/g with an effective 

half-life of 5.5 h was observed resulting in a tumor-absorbed dose of 126 mGy/MBq 
131I. In comparison, in our former study using a replication-deficient adenovirus 

carrying the NIS gene under control of the AFP promoter (Ad5-AFP/NIS) HepG2 

xenografts accumulated approximately 14.5% ID/g 123I with an effective half-life of 13 

h and a tumor absorbed dose of 318 mGy/MBq 131I was calculated (Klutz et al., 

2011c). Although we accumulated a higher amount of radioiodine the resulting tumor 

absorbed dose in our current study is lower, which is mainly due to the shorter half-

life of the tumoral 123I accumulation. A possible reason might be differences in virus 

dissemination and NIS expression patterns due to the oncolytic activity of the 

replication-selective adenovirus used in the current study. A further explanation might 

be differences in tumor biology as different HCC cell lines were used in both studies. 

Therapy studies after intratumoral injection of Ad5-E1/AFP-E3/NIS in HuH7 

xenografts resulted in distinct oncolytic activity leading to a significant delay of tumor 

growth associated with significantly prolonged survival as compared to the saline-

treated control group. Despite the distinct effect of Ad5-E1/AFP-E3/NIS for oncolytic 

virotherapy and promising results from other studies, selectively-replicating viruses, 

when used as single agents, may have limited efficacy primarily due to limited viral 

spread in the tumor (Toth et al., 2010). The oncolytic effect can be further enhanced 

by simultaneous expression of therapeutic genes, e.g. the NIS gene allowing for 

additional radionuclide therapy of tumor tissue. Radiation therapy causes damage to 

cellular proteins and nucleic acids leading to cell death (Singh and Kostarelos, 2009). 

Adenoviruses are particularly attractive as carrier of the NIS gene for radiotherapy 

because adenoviruses themselves act as radiosensitizers through their natural 

functions (Hart et al., 2007; Hart et al., 2005). Conversely, delivery of ionizing 

radiation to the tumor site has been shown to create an environment that is more 

sensitive to adenoviral transduction and replication, which might enhance 

transduction efficiency and oncolytic activity (Advani et al., 2006; Hingorani et al., 

2008a; Hingorani et al., 2008b). In fact, clinical trials have shown improved results 

when combining virus vectors with radiotherapy (Kumar et al., 2008). Moreover, NIS-

mediated radionuclide therapy is associated with a substantial bystander effect, 

based on the crossfire-effect of the beta-emitter 131I with a path length of up to 2.4 

mm, thereby compensating limited viral spread in the tumor and reducing the level of 

transduction efficiency required for a therapeutic response (Dingli et al., 2003a). In its 
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well characterized dual function as reporter gene as well as therapy gene associated 

with a significant bystander effect, NIS represents an ideal candidate gene for 

replication-selective adenovirus-mediated gene-virotherapy, providing the potential of 

non-invasive whole-body monitoring of in vivo biodistribution and kinetics of virus 

replication in addition to image-guided radiotherapy combined with oncolytic 

virotherapy. 

In the current study, intratumoral injection of the replication-selective Ad5-

E1/AFP-E3/NIS led to a significant delay in tumor growth due to a distinct oncolytic 

effect. Moreover, local Ad5-E1/AFP-E3/NIS-mediated NIS gene transfer resulted in 

tumor-specific iodide uptake activity, which was sufficiently high for a significant 

therapeutic effect of 131I additional to oncolysis. Combination of oncolytic virotherapy 

with radioiodine treatment resulted in a further decrease of tumor growth as well as 

prolongation of survival. As discussed above, monitoring of tumoral radioiodine 

accumulation displayed highest uptake activity 3 days after local virus administration 

with slowly decreasing levels of NIS expression within time. Therefore, we tested the 

feasibility and the impact of repeated administration of 131I on days 3 and 5 after a 

single intratumoral injection of the replication-selective adenovirus for combination 

therapy. Two injections of radioiodine after the single administration of Ad5-E1/AFP-

E3/NIS further decelerated tumor growth and improved survival. These data are 

consistent with previous radiovirotherapy studies in different tumor models showing 

higher therapeutic efficacy of oncolytic virotherapy when combined with NIS-

mediated radiotherapy (Goel et al., 2007; Msaouel et al., 2009; Peerlinck et al., 2009; 

Trujillo et al., 2010). Penheiter et al. observed a trend towards decreased tumor 

volume and increased mouse survival, but no complete eradication, with no 

significant benefit of 131I radiovirotherapy over virotherapy alone using a NIS-

encoding measles virus (Penheiter et al., 2010). This study demonstrated that 

appropriate timing of 131I administration after viral infection and the best possible 

intratumoral vector distribution are critical factors for efficient radiovirotherapy of 

tumor xenografts. 

In the current study we used a therapeutic dose of 55.5 MBq 131I to be able to 

compare the results with our earlier studies after in vivo NIS gene transfer in 

xenograft mouse models (Klutz et al., 2009; Klutz et al., 2011a; Klutz et al., 2011b; 

Klutz et al., 2011c; Knoop et al., 2011; Willhauck et al., 2007; Willhauck et al., 

2008c). Initially, this dose was empirically tested in stably NIS expressing xenograft 
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tumor models and chosen in consideration of radiation safety, tolerability as well as 

accordance with animal protection laws. Based on our dosimetric calculations, a total 

tumor absorbed dose of approximately 7 Gy was achieved, which is less than the 

generally assumed target dose of 80 Gy needed for a therapeutic effect in lymph 

node metastases according to Maxon et al. (Maxon et al., 1997), but it is in the range 

of target doses reported for 131I therapy in thyroid cancer patients (0.5-288 

Gy/lesion)(Chiesa et al., 2009; Lassmann et al., 2010) and was clearly high enough 

for a significant therapeutic effect of 131I in addition to the oncolytic effect in our 

presented study. In an attempt to transfer these dosimetric calculations to humans, 

we would reach a tumor-absorbed dose of approximately 93.3 Gy after therapeutic 

application of 7.4 GBq (200mCi) 131I, a dose generally applied to patients with thyroid 

cancer metastases. In comparison, a recent clinical trial quantified the volume and 

magnitude of hNIS gene expression in human prostate cancers following local 

injection of a high dose of a NIS expressing oncolytic adenovirus, and estimated the 

radiation dose that would be delivered to the prostate after 131I administration with 

curative intent (Barton et al., 2011). Assuming a standard radiation dose of 7.4 GBq 

(200 mCi) 131I, the mean absorbed dose to the prostate was calculated to be only 7.2 

± 4.8 Gy (range 2.1–13.3 Gy). Differences in the cancer entity, the experimental 

approach as well as adenovirus engineering might explain this pronounced 

discrepancy. 

Inefficient intratumoral viral spread limits the therapeutic effect by reduction of 

oncolytic cell killing as well as hampered effectiveness of radioiodine treatment. 

Although this is partially compensated by the crossfire effect of the β-emitting 131I, it 

could be the therapy-limiting factor in our current study, in which therapy with Ad5-

E1/AFP-E3/NIS slowed the progression of HuH7 xenografts, but did not lead to 

complete ablation of the tumors except in two mice in group radiovirotherapy 2 that 

had complete tumor regression up to 100 days after onset of the experiment. In 

addition, immunofluorescence analysis showed markedly reduced proliferation 

associated with decreased tumoral blood vessel density after local adenovirus-

mediated NIS gene transfer followed by 131I application, suggesting oncolytic efficacy 

and radiation-induced tumor stromal cell damage in addition to tumor cell death. The 

crossfire effect of 131I might be responsible for stromal cell damage leading to 

reduced angiogenesis and secretion of growth-stimulatory factors, thereby enhancing 

therapeutic efficacy. However, it has been proven, that virotherapeutics not only 
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show anticancer effect by their direct oncolytic effect, but are also able to elicit a 

tumor-specific immune response, thereby breaking tumor tolerance (Woller et al., 

2011). To address this aspect, we are currently planning future studies using NIS-

expressing oncolytic adenoviruses in an immunocompetent mouse model. 

In conclusion, our data clearly demonstrate that tumor-specific NIS gene 

transfer using a replication-selective adenoviral gene delivery vector allows for 

targeted NIS-mediated, imaging-guided radionuclide therapy of extrathyroidal tumors, 

which enhances the therapeutic effect of oncolytic virotherapy and proves its 

potential use for clinical application. 
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3.1 Abstract 

Currently, major limitations for clinical application of adenovirus-mediated 

gene therapy are high prevalence of neutralizing antibodies, widespread expression 

of the coxsackie-adenovirus receptor (CAR) and adenovirus sequestration by the 

liver. In the current study we used the sodium iodide symporter (NIS) as theranostic 

gene to investigate whether coating of adenovirus with synthetic dendrimers can be 

useful to overcome these hurdles in order to develop adenoviral vectors for 

combination of systemic oncolytic virotherapy and NIS-mediated radiotherapy. 

Methods:  We coated replication-deficient (Ad5-CMV/NIS) and replication-selective 

(Ad5-E1/AFP-E3/NIS) adenovirus serotype 5 carrying the hNIS gene with 

poly(amidoamine) dendrimers generation 5 (PAMAM-G5) in order to investigate 

transduction efficacy and altered tropism of these coated virus particles by 123I 

scintigraphy and to evaluate their therapeutic potential for systemic radiovirotherapy 

in a liver cancer xenograft mouse model. 

Results:  After dendrimer coating Ad5-CMV/NIS demonstrated partial protection from 

neutralizing antibodies and enhanced transduction efficacy in CAR-negative cells in 

vitro. In vivo 123I-scintigraphy of nude mice revealed significantly reduced levels of 

hepatic transgene expression after intravenous (i.v.) injection of dendrimer-coated 

Ad5-CMV/NIS (dcAd5-CMV/NIS). Evasion from liver accumulation resulted in 

significantly reduced liver toxicity and increased transduction efficiency of dcAd5-

CMV/NIS in hepatoma xenografts. After PAMAM-G5 coating of the replication-

selective Ad5-E1/AFP-E3/NIS a significantly enhanced oncolytic effect was observed 

following i.v. application (virotherapy) that was further increased by additional 

treatment with a therapeutic dose of 131I (radiovirotherapy) and was associated with 

markedly improved survival. 

Conclusion:  These results demonstrate efficient liver detargeting and tumor 

retargeting of adenoviral vectors by coating with synthetic dendrimers thereby 

representing a promising innovative strategy for systemic NIS gene therapy. 

Moreover, based on its function as theranostic gene allowing non-invasive imaging of 

NIS expression by 123I-scintigraphy, our study provides detailed characterization of in 

vivo vector biodistribution as well as localization, level and duration of transgene 

expression, an essential prerequisite for exact planning and monitoring of clinical 

gene therapy trials with the aim of individualization of the NIS gene therapy concept. 
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3.2 Introduction 

Genetically engineered replication-selective adenoviruses represent very 

efficient gene transfer vehicles with the advantage of potentiating therapeutic efficacy 

of gene therapy by its own oncolytic activity (Duffy et al., 2012). Due to limited virus 

spread in the tumor, virotherapy is ideally combined with therapeutic genes that are 

associated with a bystander effect. In its well characterized dual function as reporter 

and therapy gene associated with a significant physical bystander effect, the sodium 

iodide symporter (NIS) represents an ideal candidate gene for replication-selective 

adenovirus-mediated gene-virotherapy. It provides the possibility of detailed non-

invasive monitoring of biodistribution of virus infection and replication in addition to 

stimulation of therapeutic efficacy of oncolytic virotherapy by additional NIS-mediated 

radionuclide therapy (Baril et al., 2010; Grünwald et al., 2012). 

However, recombinant adenoviruses still face hurdles that strongly limit 

efficient and safe application, in particular for systemic gene delivery, including 

induction of immune and inflammatory responses, elimination by neutralizing 

antibodies, high promiscuity due to widespread expression of the coxsackie-

adenovirus receptor (CAR), and significant pooling in the liver (Kreppel and 

Kochanek, 2008). Besides genetic engineering (Yao et al., 2011a), chemical 

modification of the adenovirus’ surface represents a convenient method to shield the 

virus from undesired interactions with blood components and allows its re-targeting to 

tumor cells lacking adenoviral receptors (Kreppel and Kochanek, 2008). Therefore, 

different strategies have been developed in order to combine viral and synthetic 

vectors into a hybrid vector, including covalent conjugation of reactive polymers 

based on polyethylene glycol (PEG) or N-[2-hydroxypropyl]methacrylamide (HPMA) 

(Laga et al., 2012) and non-covalent modification of the negatively charged 

adenovirus surface by electrostatic interaction with cationic polymers (Yao et al., 

2011a). These new technologies demonstrated first evidence to provide the vector 

with the ability to overcome neutralizing anti-vector antibodies, to escape liver tropism 

and to reduce innate and adaptive immune responses and liver toxicity even after 

systemic vector application, while maintaining its natural biological activity (Laga et 

al., 2012).  

We have recently utilized chemically well-defined dendritic PAMAM 

(poly(amidoamine)) dendrimers bearing positively charged terminal amines to coat 

the negatively charged adenoviral capsid by virtue of electrostatic interaction (Vetter 



  Chapter 2 
 

48 

 

et al., 2013). This modification allowed efficient internalization and transduction of 

tumor cells in vitro otherwise refractory towards adenoviral transduction.  

In the present study, we used this technology for coating of adenovirus vectors 

carrying the hNIS gene followed by the analysis of altered transduction efficiency, 

biodistribution, vector-related toxicity and therapeutic potential after systemic 

adenovirus-mediated NIS gene delivery. Based on its function as theranostic gene, 

NIS was used for non-invasive imaging of biodistribution and transduction efficiency 

by 123I-scintigraphy. Evaluation of tumor-specific oncolytic efficacy (virotherapy) was 

followed by the assessment of NIS-mediated therapy response after the application 

of an additional therapeutic dose of 131I (radiovirotherapy). 
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3.3 Materials and Methods 

Cell culture 

The human cell lines HuH7 (HCC, JCRB 0403), SKOV-3 (ovarian carcinoma, 

ATCC, HTB-77), and U87 MG (glioblastoma, ATCC, HTB-14) were cultured as 

described previously (Vetter et al., 2013). Analysis of cellular CAR receptor levels by 

flow cytometry was carried out as described previously (Vetter et al., 2013). 

 

Production and dendrimer coating of recombinant adenovirus 

The replication-deficient adenovirus Ad5-CMV/NIS (1.1x1012 particles = 

5.0x1010 PFU) carrying the hNIS cDNA under the control of the unspecific 

cytomegalovirus (CMV) promoter (Spitzweg et al., 2001a) and the replication-

selective adenovirus Ad5-E1/AFP-E3/NIS (1.1x1012 particles = 3.0x1010 PFU) 

carrying the human NIS gene linked to the mouse alpha-fetoprotein promoter 

(Grünwald et al., 2012) were developed as described previously. Amine-terminated 

generation 5 PAMAM dendrimer was used as described previously (Vetter et al., 

2013). For surface modification, the adenovirus was dispensed with serum-free 

OPTI-MEM (Invitrogen) to a volume of 50 µL (in vitro experiments) or 125 µL (in vivo 

experiments) and gently mixed with an equal volume of PAMAM-G5 (10 ng or 300 

ng) diluted in HBG. The mixture was incubated at room temperature for 30 min 

before use. Dendrimer coating of the virus with 10 ng PAMAM-G5 is indicated in 

writing by the prefix dc10 and with 300 ng PAMAM-G5 by the prefix dc300. 

 

In vitro NIS gene delivery 

 24 h after seeding (1.5x105 cells/well in 12-well plates) cells were incubated 

with increasing MOI (multiplicity of infection) of Ad5-CMV/NIS, dc10Ad5-CMV/NIS or 

dc300Ad5-CMV/NIS per well in serum-free OPTI-MEM for 45 min at 37°C. Medium 

was replaced by fresh culture medium and virus-infected cells were further 

maintained for 4 days, before iodide uptake was measured at steady-state conditions 

as described previously (Spitzweg et al., 1999). Results were normalized to cell 

viability as described previously (Unterholzner et al., 2006) and expressed as cpm/A 

490 nm. 

For in vitro neutralization experiments, Ad5-CMV/NIS or dc300Ad5-CMV/NIS 

were incubated for 30 min with increasing amounts of polyvalent adenovirus-

neutralizing IgG (Privigen, CSL Behring, Marburg, Germany) at room temperature. 
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The final concentration of IgG was between 0.1-3.0 mg/mL as indicated. HuH7 cells 

were infected with virus at 100 MOI per well and analyzed for iodide uptake activity. 

   

In vivo NIS gene transfer and biodistribution imaging studies 

For proof of principle of systemic NIS gene transfer using a dendrimer-coated 

adenovirus the HuH7 xenograft mouse model was chosen that had already been 

used in our previous studies and that was established as outlined previously 

(Grünwald et al., 2012). The experimental protocol was approved by the regional 

governmental commission for animals (Regierung von Oberbayern, Munich, 

Germany). Experiments started when tumors had reached a size of 7-9 mm (123I 

biodistribution studies) or 4-5 mm (131I radiovirotherapy studies). After a 10-day 

pretreatment with L-T4 (l-thyroxine, Henning, Sanofi-Aventis, Germany) (5 mg/L) in 

their drinking water to reduce iodide uptake by the thyroid gland and maximize 

radioiodine uptake in the tumor animals were injected intravenously (i.v.) via the tail 

vein with 1x109 PFU of the respective adenovirus. 

Four days after systemic adenovirus injection mice received 18.5 MBq 123I 

intraperitoneally (i.p.) and radioiodine biodistribution was monitored by serial gamma 

camera imaging as described previously (Willhauck et al., 2007). Regions of interest 

in the liver were quantified and expressed as a fraction of the amount of accumulated 

radionuclide in the livers of mice injected with the unmodified Ad5-CMV/NIS. Regions 

of interest in the tumor were quantified and expressed as a fraction of the total 

amount of applied radioiodine per gram tumor tissue (%ID/g). The retention time 

within the tumor was determined by serial scanning after radioiodine injection, and 

dosimetric calculations were performed according to the concept of MIRD, with the 

dosis factor of RADAR-group (www.doseinfo-radar.com). 

For serial iodide uptake studies mice were imaged for 123I biodistribution on 

the indicated days after i.v. administration of Ad5-E1/AFP-E3/NIS or dc300Ad5-

E1/AFP-E3/NIS. Regions of interest in the tumor were quantified and expressed as 

percent of the injected dose per 100 mm3 tumor tissue (%ID/100 mm3). 

 

Ex vivo analysis 

After systemic adenovirus injection, NIS mRNA expression levels of liver, lung, 

spleen, kidney, and tumors were analyzed via quantitative real-time PCR as 

described previously (Klutz et al., 2011a). Immunofluorescence staining of paraffin 
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embedded tissue sections derived from livers and HuH7 xenografts was performed 

using a hNIS-specific antibody directed against amino acid residues 625-643 of 

human NIS (Millipore) at a dilution of 1:750. Four days after systemic adenovirus 

injection mice were sacrificed and blood serum samples were collected to assess 

alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels 

(measured at the Department of Clinical Biochemistry and Pathobiochemistry, 

Klinikum rechts der Isar, Munich, Germany). Subsequently, liver tissues were 

harvested and embedded in paraffin for hematoxylin and eosin staining. 

 

Radiovirotherapy study 

HuH7 xenografts were established in 5 groups of mice. The first group was 

injected i.v. with saline only (NaCl-control). A second group received a single i.v. 

injection of 1x109 PFU of the conditionally replicating Ad5-E1/AFP-E3/NIS, and a 

third group received 1x109 PFU of dc300Ad5-E1/AFP-E3/NIS. The fourth group 

received 1x109 PFU of Ad5-E1/AFP-E3/NIS and 3 days later a single i.p. dose of 

55.5 MBq 131I, and the fifth group received 1x109 PFU of dc300Ad5-E1/AFP-E3/NIS 

and 3 days later 55.5 MBq 131I. Tumor measurements were performed twice weekly 

thereafter. Mice were followed for a total of 70 days or until tumor burden was such 

that animals had to be killed (≥ 1500 mm3). 

 

Statistical methods 

All in vitro experiments were carried out in triplicates. Results are represented 

as means +/- SD of triplicates. Statistical significance was tested using Student's t-

test (*, P≤0.05; **, P≤0.01; ***, P≤0.001). Statistical significance of in vivo 

experiments has been calculated using Mann–Whitney U test (two-tailed). 
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3.4 Results 

Influence of dendrimer coating in vitro 

Transfection efficacy of uncoated Ad5-CMV/NIS correlated well with levels of 

CAR expression (Figs. 1A-C; Supplemental Fig. 1). 

 
Suppl. Fig. 1:  Fluorescence-activated cell scanning (FACS) analysis of CAR expression. FACS 

analysis revealed high levels of CAR expression on the cell surface of HuH7, low CAR levels on U87 

MG cells, and confirmed SKOV-3 cells to be CAR-negative. 

 

CAR-positive HuH7 cells showed a MOI-dependent increase in perchlorate-

sensitive 125I accumulation of up to 70-fold as compared to uninfected cells, which 

was significantly increased after infection with dc10Ad5-CMV/NIS and further retained 

after infection with dc300Ad5-CMV/NIS (Fig. 1A). The low CAR level cell line U87 MG 

showed very low transduction efficacy when incubated with Ad5-CMV/NIS. In 

contrast, U87 MG cells treated with dc10Ad5-CMV/NIS or dc300Ad5-CMV/NIS (Fig. 

1B) showed an up to 5.5-fold increase in iodide uptake activity. The CAR-negative 

SKOV-3 cells showed no iodide accumulation above background level, even when 

incubated with high MOI of Ad5-CMV/NIS. Coating of Ad5-CMV/NIS led to an up to 

22-fold increase in iodide uptake activity (Fig. 1C). NIS gene transfer did not alter cell 

viability (data not shown). 

Ad5-CMV/NIS was rapidly neutralized by increasing amounts of human IgG 

solution. In contrast, dc300Ad5-CMV/NIS showed partial protection from neutralizing 

antibodies as demonstrated by a decelerated decrease in iodide uptake activity (Fig. 

1D). 
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Fig. 1:  In vitro iodide uptake studies and neutralization assay. In vitro iodide uptake experiments with 

dc10Ad5-CMV/NIS or dc300Ad5-CMV/NIS demonstrated retained transduction efficacy in CAR-positive 

cells (HuH7; A) and significantly enhanced transduction efficacy in low CAR level cells (U87 MG; B) or 

CAR-negative cells (SKOV-3; C), thereby indicating CAR-independent uptake mechanisms of 

dendrimer-coated adenovirus. Iodide uptake activity of cells infected with Ad5-CMV/NIS was 

progressively abolished by preincubation of the virus with increasing amounts of anti-Ad5 antiserum, 

whereas infection with dc300Ad5-CMV/NIS showed a reduced decrease in iodide uptake activity, 

suggesting effective antibody protection (D). MOI = multiplicity of infection. 

 

Virus biodistribution and toxicity studies in vivo 

In vivo experiments showed high levels of radioiodine accumulation in the liver 

of tumor-free mice after systemic injection of Ad5-CMV/NIS (n=5) due to hepatic 

pooling of the vector as shown by 123I γ-camera imaging 6 h p.i. (Fig. 2A, left), which 

was significantly (up to 70%) lower after systemic injection of virus particles coated 

with increasing amounts (10 ng, n=5; 300 ng, n=5) of PAMAM-G5 (Fig. 2A, right; 

Supplemental Fig. 2A). 



  Chapter 2 
 

54 

 

 
Fig. 2:  In vivo iodide uptake studies and analysis of liver toxicity. Livers of mice accumulated high 

levels of radioiodine after i.v. injection of uncoated Ad5-CMV/NIS as shown by 123I γ-camera imaging 

(A, left), which was markedly reduced after systemic injection of coated adenovirus (A, right). 

 

Significant radioiodine accumulation was also observed in tissues 

physiologically expressing NIS, including stomach and thyroid, as well as in the 

urinary bladder due to renal elimination of the radionuclide. The results were 

confirmed by quantification of hepatic iodide uptake ex vivo (Supplemental Fig. 2A) 

and qPCR analysis of hepatic NIS mRNA expression (Supplemental Fig. 2B), which 

revealed a 16-fold lower hepatic NIS mRNA expression after injection of dc300Ad5-

CMV/NIS as compared to Ad5-CMV/NIS. Analysis of liver enzymes after injection of 

Ad5-CMV/NIS (n=5) revealed an ALT increase of 120% and a strong AST increase of 

approx. 400%, which was significantly decreased after coating of the adenovirus prior 

to systemic administration (n=5) (Fig. 2B). 

 
Fig. 2:  Injection of Ad5-CMV/NIS led to increased levels of serum ALT and AST as compared to mice 

treated with saline only, which was mostly avoided by coating of the adenovirus prior to systemic 

administration (B). 
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Liver tissue correspondingly showed significantly increased fatty degeneration 

after injection of Ad5-CMV/NIS which was not observed after injection of dc300Ad5-

CMV/NIS (Supplemental Fig. 2C). 

 
Suppl. Fig. 2:  Adenoviral NIS gene transfer and toxicity. Hepatic accumulation of 123I after i.v. injection 

of Ad5-CMV/NIS was significantly reduced (up to 70%) by coating of the virus (A). These results were 

further confirmed by analysis of hepatic NIS mRNA expression (B) and correlated well with a 

simultaneous reduction of liver toxicity as seen by H/E staining of liver tissue (C). 

 

After i.v. injection of dc300Ad5-CMV/NIS (n=9) into mice bearing subcutaneous 

HuH7 xenografts, tumoral radioiodine accumulation was approximately 13% ID/g 123I 

(biological half-life 3.5 h) (Fig. 3A, right, 3B), while NIS-mediated radioiodine uptake 

in the liver was significantly lower after dendrimer coating (Fig. 3A, right) as 

compared to injection with the uncoated vector (Fig. 3A, left). Considering a tumor 

mass of 1 g and an effective half-life of 3 hours for 131I, a tumor absorbed dose of 

approximately 91 mGy/MBq 131I was calculated. In contrast, mice injected with the 

uncoated vector (n=10) showed only very low tumoral iodide accumulation above 

background level (approx. 3.5% ID/g, Fig. 3B). No additional uptake was observed in 

other non-target organs like lung, spleen or kidney. 
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Fig. 3:  In vivo iodide uptake studies in tumor bearing mice. In vivo experiments showed high levels of 

radioiodine accumulation in the liver of mice bearing HuH7 xenografts after i.v. injection of uncoated 

Ad5-CMV/NIS as shown by γ-camera imaging (A, left), which was significantly reduced after systemic 

injection of coated virus particles (A, right). Evasion from liver pooling of the adenovirus resulted in 

increased tumoral transduction as seen by significantly higher iodide uptake activity of HCC xenografts 

(A, right; B). 

 

Immunofluorescence and qPCR analysis  

QPCR analysis of hepatic NIS mRNA expression revealed a 28-fold decrease 

after i.v. injection of dc300Ad5-CMV/NIS (n=9) as compared to injection of Ad5-

CMV/NIS (n=10) (Fig. 4A, left). Moreover, a significant 10-fold increase of NIS mRNA 

expression above background level was induced in HuH7 tumors after systemic 

injection of dc300Ad5-CMV/NIS (Fig. 4A, right). In contrast, tumoral NIS mRNA 

expression of mice injected systemically with Ad5-CMV/NIS was only 2.5 times 

higher than in untreated tumors. The NIS mRNA expression in lung, spleen and 

kidney of mice showed no significant increase comparable to saline-treated mice 

(data not shown). 
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Fig. 4:  qPCR analysis. Analysis of hepatic NIS mRNA expression revealed a 28-fold decrease after 

systemic injection of coated virus particles as compared to uncoated adenoviruses (A, left). 

Significantly increased levels of NIS mRNA expression were induced in HuH7 tumors after systemic 

NIS gene transfer when dc300Ad5-CMV/NIS was used as compared to injection of Ad5-CMV/NIS (A, 

right). 

 

Immunofluorescence staining showed high levels of NIS-specific 

immunoreactivity in livers of mice after systemic injection of Ad5-CMV/NIS (Fig. 4B, 

left), whereas livers of mice injected with dc300Ad5-CMV/NIS showed only very low 

levels of hepatic immunoreactivity (Fig. 4B, left). Staining of HuH7 tumors revealed 

pronounced NIS-specific immunoreactivity after systemic injection of dc300Ad5-

CMV/NIS (Fig. 4B, right), which was significantly reduced after injection of Ad5-

CMV/NIS (Fig. 4B, right). 

 
Fig. 4:  Immunofluorescence staining. Immunofluorescence staining showed high levels of primarily 

membrane-associated NIS-specific immunoreactivity in livers of mice, systemically injected with Ad5-

CMV/NIS (B, left). In contrast, livers of mice injected with dc300Ad5-CMV/NIS showed only very low 

levels of immunoreactivity (B, left). After systemic injection of dendrimer-coated adenoviruses, tumors 

revealed high NIS-specific immunoreactivity as compared to low levels after injection of uncoated 

adenoviruses (B, right). 

 

Serial imaging 

Pronounced tumoral iodide uptake was detected up to 15-18 days after a 

single i.v. injection of the conditionally replicating dc300Ad5-E1/AFP-E3/NIS (n=7) 

(Fig. 5A). In contrast, only low tumoral iodide accumulation even after several days 
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was observed in mice injected with Ad5-E1/AFP-E3/NIS (n=6) (Fig. 5B). 

 
Fig. 5:  Serial iodide uptake studies. Serial 123I scintigraphy of mice bearing hepatoma xenografts after 

i.v. injection of Ad5-E1/AFP-E3/NIS with (A) or without (B) surface modification. Analysis of iodide 

uptake activity confirmed significantly higher levels of tumor-specific iodide accumulation after 

application of coated adenovirus (A) as compared to injection of uncoated virus (B). Pronounced 

tumoral iodide uptake was detected up to 15-18 days after infection with dendrimer-coated adenovirus. 

 

After injection of uncoated virus, serial scanning had to be stopped at day 11 

due to excessive tumor growth (Fig. 5B). In contrast, tumors of mice injected with the 

coated adenovirus grew slower due to viral replication (Fig. 5A) and therefore allowed 

measurement beyond day 11. Regions of interest were quantified and confirmed 

significantly higher levels of tumor-specific iodide accumulation after application of 

coated adenovirus with a maximum at day 3 as compared to injection of uncoated 

virus (Supplemental Fig. 3). 
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Suppl. Fig. 3: Quantification of tumoral iodine uptake. Serial quantification of tumoral iodide uptake 

activity over several days confirmed significantly higher levels of tumor-specific, NIS-mediated iodide 

accumulation after i.v. injection of dc300Ad5-E1/AFP-E3/NIS as compared to injection of Ad5-E1/AFP-

E3/NIS. 

 

The most pronounced difference was seen at day 11, when HuH7 xenografts 

of mice injected with Ad5-E1/AFP-E3/NIS accumulated only 1-2% ID/100 mm3 2 

hours after injection of 123I. In contrast, mice injected with dc300Ad5-E1/AFP-E3/NIS 

still showed distinct tumoral iodide uptake activity of 5-6% ID/100 mm3. 

 

Radionuclide therapy 

Mice injected with saline only (NaCl-control, n=8) showed an exponential 

tumor growth and had to be killed within 2-3 weeks after onset of the experiments 

(Figs. 6A, B). After a single i.v. injection of the conditionally replicating Ad5-E1/AFP-

E3/NIS (n=10), a significant delay in tumor growth was observed when dendrimer-

coated adenovirus was used (dc300Ad5-E1/AFP-E3/NIS, n=10) as compared to 

injection of uncoated adenovirus (Ad5-E1/AFP-E3/NIS, n=10) which showed no 

therapeutic effect, thereby indicating higher levels of viable virus reaching the tumor 

after dendrimer coating (Fig. 6A). One mouse treated with dc300Ad5-E1/AFP-E3/NIS 

showed complete tumor regression after 36 days until the end of the observation 

period (Fig. 6B). 
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Fig. 6:  Therapeutic efficacy. Radiovirotherapy studies in mice bearing HCC xenografts showed 

excessive tumor growth of the control group treated with saline only (NaCl-control, A). After a single 

i.v. injection of the conditionally replicating Ad5-E1/AFP-E3/NIS (without surface modification) no 

therapeutic effect was observed (A). In contrast, i.v. injection of dc300Ad5-E1/AFP-E3/NIS showed 

improved oncolytic efficacy (A). I.v. application of Ad5-E1/AFP-E3/NIS followed by a therapeutic dose 

of 131I revealed a comparable delay in tumor growth (A). I.v. injection of dc300Ad5-E1/AFP-E3/NIS 

followed by the additional application of 131I resulted in a strongly enhanced therapeutic effect, as seen 

by significantly delayed tumor growth (A) and prolonged survival (B). 

 

To further evaluate the therapeutic efficacy of combined radiovirotherapy 

treatment, in two additional therapy groups Ad5-E1/AFP-E3/NIS and dc300Ad5-

E1/AFP-E3/NIS were administered i.v. followed by injection of a therapeutic dose 131I. 

Mice treated with Ad5-E1/AFP-E3/NIS and 131I (Ad5-E1/AFP-E3/NIS + 131I, n=10) 

showed a significant delay in tumor growth and prolonged survival as compared to 

saline treatment or virus treatment alone (Figs. 6A, B). Remarkably, radiovirotherapy 

of mice injected with dc300Ad5-E1/AFP-E3/NIS (dc300Ad5-E1/AFP-E3/NIS + 131I, 

n=10) showed a strongly enhanced therapeutic effect, as seen by significantly 

delayed tumor growth and extensively prolonged survival (Figs. 6A, B). 
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3.5 Discussion 

As one of the oldest targets of molecular imaging and targeted radionuclide 

therapy, characterization of NIS as a novel reporter and suicide gene offers the 

possibility of NIS gene transfer in non-thyroidal tumors followed by diagnostic and 

therapeutic application of radioiodine (Spitzweg and Morris, 2002). Our previous work 

convincingly demonstrated the proof of principle of the NIS gene therapy concept 

(Grünwald et al., 2012; Klutz et al., 2009; Klutz et al., 2011a; Klutz et al., 2011b; 

Spitzweg et al., 2001a; Spitzweg et al., 1999; Willhauck et al., 2007). The next step 

towards clinical application has to be the development of gene transfer vehicles that 

are able to promote targeted and efficient systemic NIS gene transfer with the 

potential to reach tumor metastases. 

Species C adenoviruses have been shown to own high potential as vectors for 

gene transfer as well as for oncolytic virotherapy. However, following systemic 

application, wild-type adenovirus particles are rapidly cleared from the blood stream 

into the liver tissue by specific molecular mechanisms, including virus-coagulation 

factor interaction and Kupffer cell trapping (Duffy et al., 2012). Moreover, adenovirus 

infection relies on the widely expressed coxsackie-adenovirus receptor (CAR) on the 

cell surface, resulting in reduced tumor-selectivity (Vetter et al., 2013). Further 

obstacles for successful systemic application of adenoviruses are elimination by 

neutralizing antibodies as well as the induction of immune and inflammatory 

responses (Kang and Yun, 2010). With the goal of systemic adenovirus-mediated 

NIS gene delivery, in the current study we have explored the use of lower generation 

PAMAM dendrimers (Navarro et al., 2010) bearing terminal primary amino groups 

able to promote non-covalent electrostatic interaction with negatively charged amino 

acids on the external surface of the hexon protein of adenovirus serotype 5 in order 

to form a complex and provide efficient coverage. 

To overcome the limited therapeutic potential of oncolytic virotherapy alone, 

adenoviruses may be armed with therapeutic genes, such as the NIS gene that 

allows for enhanced radionuclide therapy of tumor tissue in addition to oncolysis. 

Combination of adenovirus-mediated virotherapy and NIS-mediated radiotherapy is 

particularly attractive as adenoviruses are known to have a radiosensitizing effect 

(Hart et al., 2005) and at the same time ionizing radiation has been shown to 

generate an environment that is more susceptible to adenoviral transduction and 

replication (Advani et al., 2006; Hingorani et al., 2008b). Moreover, NIS gene therapy 
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is associated with a substantial bystander effect based on the crossfire effect of the 

β-emitter 131I with a path length of up to 2.4 mm that provides a powerful means to 

compensate for the limited tumor spread of viral vectors (Dingli et al., 2003a), thus 

enhancing the efficacy of virotherapy. A potential limitation of the NIS gene therapy 

concept is the endogenous NIS expression in the thyroid gland that, however, can 

effectively be downregulated by thyroid hormone pretreatment due to the exquisite 

regulation of thyroidal NIS by TSH (thyroid stimulating hormone) as demonstrated in 

humans by Wapnir et al.(Wapnir et al., 2004). Another major argument that is 

frequently raised against the feasibility of using radioiodine therapy following NIS 

gene transfer into non-thyroidal tumours is the general assumption that organification 

of trapped radioiodine is a crucial prerequisite for effective radioiodine treatment due 

to increased retention of accumulated radioiodine. However, it has been shown that 

even thyroid carcinomas and their metastases often reveal a reduced capacity for 

iodide organification and thyroid hormone synthesis due to disrupted follicular 

architecture and function and lack of thyroglobulin expression (Mandell et al., 1999; 

Valenta, 1966). Because accumulated radioiodine is not organified in HuH7 

carcinoma cells, the data obtained using HuH7 cell xenografts and presented in the 

manuscript clearly indicate that iodide organification is not required to achieve a 

therapeutic effect of radioiodine in tumor tissue. In order to overcome the limitation of 

therapeutic efficacy by the lack of iodide organification, in the present study we are 

aiming at combining NIS-mediated radioiodine therapy with virus-mediated oncolysis. 

Synergies between oncolytic virotherapy and NIS-mediated radioiodine treatment 

have been reported previously (Dingli et al., 2004; Goel et al., 2007; Hakkarainen et 

al., 2009; Peerlinck et al., 2009; Trujillo et al., 2010). In a recent study, Haddad et al. 

(Haddad et al., 2012) used an oncolytic vaccinia virus encoding the human NIS gene 

for local and systemic therapy of pancreatic carcinoma in a murine xenograft model. 

They demonstrated the feasibility of long-term serial imaging of tumoral NIS 

expression as well as enhanced therapeutic response after combination of oncolytic 

virotherapy and NIS-mediated radiotherapy treatment. We previously illustrated the 

advantages of using oncolytic adenoviruses for successful realization of the NIS gene 

therapy approach (Grünwald et al., 2012). As a next step towards clinical application, 

here we are the first to show the feasibility of NIS-mediated radiovirotherapy using 

dendrimer-coated replication-selective adenovirus vectors for systemic 

administration. 
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In the first steps of dendrimer-coated vector analysis, we have modified our 

replication-deficient adenovirus (Ad5-CMV/NIS) by PAMAM-G5 coating, and have 

used NIS in its well characterized function as reporter gene to monitor transduction 

efficiency and CAR selectivity (Spitzweg and Morris, 2002). 

We have been able to demonstrate the capacity of dendrimer-coated Ad5-

CMV/NIS to infect tumor cells with high efficiency through CAR-independent uptake 

mechanisms, to form stable complexes in the presence of serum, and to protect the 

adenovirus, at least in part, from neutralizing antibodies (Vetter et al., 2013). Our 

results are consistent with a study from Kasman et al., who reported polymer-

enhanced adenoviral transduction of CAR-negative cancer cells (Kasman et al., 

2009). By attachment of the positively charged polymer, the surface charge of the 

virus is inverted, thereby allowing it to bind to the cell surface (Davis et al., 2004). 

Subsequently, cellular transduction in our study was significantly enhanced, 

especially in the low CAR or CAR-deficient cell lines. Protection from neutralizing 

antibodies raises hope for a prolonged blood circulation time, as it was shown by 

Green et al. (Green et al., 2004), with potential feasibility of repetitive applications in 

vivo. Based on our in vitro and in vivo data and the fact that both components of the 

complex were already applied in humans, we believe that clinical application of 

dendrimer-coated adenovirus is feasible and complexes will be stable in the blood 

stream. 

In vivo PAMAM-G5 coating of Ad5-CMV/NIS resulted in significantly lower 

hepatic accumulation of 123I after systemic application. Evasion from liver pooling 

facilitated significantly enhanced radioiodine accumulation in hepatoma xenografts 

based on enhanced functional NIS expression. Hence, a tumor absorbed dose of 91 

mGy/MBq for therapeutic 131I was calculated. In comparison, a study of Dingli et al. 

reported a comparable tumor absorbed dose of 108 mGy/MBq 131I after systemic 

injection of a NIS encoding measles virus which facilitated to eliminate tumors 

resistant to the virus alone (Dingli et al., 2004). Serial 123I γ-camera-imaging 

confirmed significantly higher levels of tumor-specific, NIS-mediated iodide 

accumulation after application of the coated replication-selective dc300Ad5-E1/AFP-

E3/NIS as compared to uncoated virus. Pronounced tumoral iodide uptake even after 

15-18 days demonstrates high transduction efficiency and efficient replication of Ad5-

E1/AFP-E3/NIS in the tumor. Evasion of the hybrid vector from scavenging by 

Kupffer cells could be the possible mechanism behind the observed liver detargeting 
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of transgene expression as it was suggested by Prill et al. (Prill et al., 2011). 

The enhanced permeability and retention (EPR) effect is a phenomenon, 

which describes the passive accumulation of macromolecules within the tumor 

stroma due to leaky tumor vasculature combined with inadequate lymphatic drainage 

(Klutz et al., 2011b), and is the basis for the observed passive tumor-targeting of 

dendrimer-coated adenovirus vectors after systemic delivery. Our dual targeting 

strategy was further enhanced by an active transcriptional tumor targeting using the 

AFP promoter for tumor-selective replication and NIS expression. Effective liver 

detargeting furthermore resulted in significantly lower extent of adenovirus-related 

liver toxicity in mice injected i.v. with dendrimer-coated adenovirus as shown by 

analysis of serum liver enzymes and liver histology, which is in agreement with 

previous studies (Green et al., 2004; Kim et al., 2011). 

Therapy studies demonstrated that coating of the replication-selective Ad5-

E1/AFP-E3/NIS prior to systemic administration significantly delayed tumor growth 

and extended survival as compared to injection of the uncoated adenovirus. Most 

importantly, the combined radiovirotherapy treatment using the dendrimer-coated 

Ad5-E1/AFP-E3/NIS followed by a single application of a therapeutic dose of 131I 

resulted in a strong further stimulation of the therapeutic effect, as seen by 

extensively delayed tumor growth and prolonged survival as compared to virotherapy 

alone or to control groups that used the uncoated vector. Our data suggest that 

dendrimer coating of adenoviral vectors increases the level of viable virus reaching 

peripheral tumor tissues. 

Taken together, our results indicate that non-covalent coating of adenoviral 

vectors with synthetic dendrimers shows considerable promise for effective 

adenovirus liver detargeting and tumor retargeting taking advantage of the merge of 

non-viral and viral vector technology, and therefore has the potential to improve 

current systemic gene delivery and tumor targeting strategies. It represents an 

innovative strategy to optimize efficacy and safety of systemic NIS gene delivery that 

allows imaging and radiovirotherapy of nonthyroidal cancers exploiting synergies 

between oncolytic virotherapy and NIS-mediated radionuclide therapy. 
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4.1 Abstract 

We recently demonstrated tumor-selective iodide uptake and therapeutic 

efficacy of combined radiovirotherapy after systemic delivery of the theranostic 

sodium iodide symporter (NIS) gene using a dendrimer-coated adenovirus. To further 

improve shielding and targeting we physically coated replication-selective 

adenoviruses carrying the hNIS gene with a conjugate consisting of cationic 

poly(amidoamine) (PAMAM) dendrimer linked to the peptidic, epidermal growth factor 

receptor (EGFR)-specific ligand GE11. In vitro experiments demonstrated coxsackie-

adenovirus receptor-independent but EGFR-specific transduction efficiency. 

Systemic injection of the uncoated adenovirus in a liver cancer xenograft mouse 

model led to high levels of NIS expression in the liver due to hepatic sequestration, 

which were significantly reduced after coating as demonstrated by 123I-scintigraphy. 

Evasion from liver pooling resulted in decreased hepatotoxicity and increased 

transduction efficiency in peripheral xenograft tumors. 124I-PET-imaging confirmed 

EGFR specificity by significantly lower tumoral radioiodine accumulation after 

pretreatment with the EGFR-specific antibody cetuximab. A significantly enhanced 

oncolytic effect was observed following systemic application of dendrimer-coated 

adenovirus that was further increased by additional treatment with a therapeutic dose 

of 131I. These results demonstrate restricted virus tropism and tumor-selective 

retargeting after systemic application of coated, EGFR-targeted adenoviruses 

therefore representing a promising strategy for improved systemic adenoviral NIS 

gene therapy. 
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4.2 Introduction 

We recently reported on the feasibility of non-covalent adenovirus surface 

modification using synthetic polycationic dendrimers resulting in partial protection 

from neutralizing antibodies, coxsackie-adenovirus receptor (CAR)-independent 

infectivity and efficient liver detargeting after systemic vector administration, leading 

to reduced toxicity as well as enhanced tumoral transduction and therapeutic efficacy 

(Grünwald et al., 2013; Vetter et al., 2013). 

Once a viral gene transfer vehicle has been developed that allows for systemic 

application and provides sufficiently high transgene expression in the target tissue, a 

key task is to further increase levels of oncolysis and tumoral transgene expression 

with optimal specificity and lowest possible toxicity in non-target organs (Choi et al., 

2012; Kim et al., 2011). A variety of different methods have been tested in recent 

times to make viral gene transfer even more secure and successful in terms of 

development of targeted and shielded vectors for future clinical applications in 

humans (Campos and Barry, 2007; Duffy et al., 2012). Among others, targeting 

ligands that have been tested recently to optimize tumor-selectivity of viral vectors 

include ligands of the epidermal growth factor receptor (EGFR), the fibroblast growth 

factor receptor 2, CGKRK motifs and alpha-v integrins on the cell surface (Rojas et 

al., 2012; Yao et al., 2011a; Yao et al., 2011b). Targeting the EGFR is of particular 

interest since it has been shown that EGFR triggers tumor growth and progression 

and is significantly upregulated in a large number of epithelial tumors (Harari, 2004). 

Therefore, the EGFR has been evaluated as a promising target structure for viral and 

non-viral gene transfer (de Bruin et al., 2007; Harvey et al., 2010; Kawashima et al., 

2011; Klutz et al., 2011a). In a recent study, we reported on systemic non-viral 

sodium iodide symporter (NIS) gene transfer using polyplexes coupled to the 

synthetic peptide GE11 as an EGFR-targeting ligand with high receptor affinity that 

does not activate the receptor tyrosine kinase (Li et al., 2005), capable of inducing 

high levels of tumor-specific transgene expression (Klutz et al., 2011a). NIS 

represents one of the oldest targets for molecular imaging and therapy. Due to its 

ability to concentrate iodine in the thyroid gland it provides the molecular basis for 

thyroid scintigraphy and radioiodine whole body scanning as well as therapeutic 

application of radioiodine in thyroid cancer - the most effective form of systemic 

anticancer radiotherapy available today (Spitzweg and Morris, 2002). Transduction of 

cancer cells with the theranostic NIS gene therefore gives us the possibility of non-
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invasive monitoring of NIS biodistribution before application of a therapeutic dose of 

radioiodine, which is of particular importance after systemic vector application 

(Hingorani et al., 2010; Spitzweg and Morris, 2004). 

In a further study we have previously reported on the feasibility of systemic 

NIS gene transfer using a dendrimer-coated replication-selective adenovirus. To 

further improve safety, tumor selectivity, and therapeutic efficacy of the dendrimer-

coated adenovirus vector, in the current study we added another level of tumor 

specificity by combining the two approaches through attachment of the EGFR-

specific peptide GE11 to the virus coating polymer. Thereby NIS transgene 

expression is not only detargeted from the liver after systemic virus administration 

and passively accumulated in the tumor by the enhanced permeability and retention 

(EPR) effect (Maeda, 2001), but also actively targeted to the EGFR expressing tumor 

cells. 

Based on the dual function of the NIS gene encoded by our adenovirus as 

reporter and therapy gene, at first we investigated its potential for non-invasive 

imaging of vector biodistribution and transgene expression of our targeted and 

shielded adenovirus by 2-dimensional 123I-scintigraphy as well as 3-dimensional high 

resolution 124I PET imaging. Furthermore, the potential of further stimulation of 

therapeutic efficacy of adenovirus-mediated oncolysis was investigated by 

subsequent combination with systemic NIS-mediated radiotherapy (radiovirotherapy). 
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4.3 Materials and Methods 

Cell culture 

The human HCC cell line HuH7 (JCRB 0403), the human ovarian carcinoma 

cell line SKOV-3 (ATCC, HTB-77), and the human HCC cell line HepG2 (ATCC, HB-

8065) were cultured as described previously.(Vetter et al., 2013) Flow cytometry 

analysis of EGFR levels was carried out as described previously.(Vetter et al., 2013) 

 

Recombinant adenovirus production and coating with EGFR-specific 

dendrimer 

The replication-deficient adenovirus Ad5-CMV/NIS carrying the hNIS gene 

under the control of the unspecific cytomegalovirus (CMV) promoter (Spitzweg et al., 

2001a) and the replication-selective adenovirus Ad5-E1/AFP-E3/NIS were generated 

as described previously. In Ad5-E1/AFP-E3/NIS replication is controlled by cloning 

the E1A region under control of the liver cancer-specific mouse alpha-fetoprotein 

(AFP) promoter and the hNIS gene is inserted in the E3 region under control of the 

replication-dependent E3 promoter (Grünwald et al., 2012). As a control, a 

replication-deficient adenovirus carrying the hNIS gene under the control of the AFP 

promoter Ad5-AFP/NIS was used as described previously (Klutz et al., 2011c). The 

replication-selective human recombinant type 5 adenovirus Ad5-E1/AFP-RSV/NIS 

(1.1x1012 particles = 1.0x1010 plaque forming units (PFU)) replicating under control of 

the mouse AFP promoter and expressing the human NIS gene under control of the 

unspecific RSV promoter was developed by ViraQuest Inc. (North Liberty, IA, USA). 

Synthesis of dendrimers PAMAM-G2-PEG-GE11, PAMAM-G2-PEG-Cys 

(Vetter et al., 2013), and adenoviral surface modification (Grünwald et al., 2013) were 

carried out as described previously. Dendrimer coating of the virus with 10 ng 

PAMAM-G2-PEG-GE11 is indicated in writing by the prefix dc10/GE11, with 300 ng 

PAMAM-G2-PEG-GE11 by the prefix dc300/GE11, and with 300 ng PAMAM-G2-PEG-

Cys by the prefix dc300/Cys. 

 

Adenovirus-mediated NIS gene delivery in vitro 

In vitro infection, iodide uptake experiments, and measurement of cell viability 

were carried out as described previously (Grünwald et al., 2013). 
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In vivo NIS gene transfer and radioiodine biodistribution studies 

Establishment of HuH7 xenografts (Grünwald et al., 2012) and in vivo NIS 

gene transfer (Grünwald et al., 2013) were carried out as described previously. The 

experimental protocol was approved by the regional governmental commission for 

animals (Regierung von Oberbayern, Munich, Germany). 

Four days after systemic adenovirus injection mice received 18.5 MBq 123I 

intraperitoneally (i.p.) and radioiodine biodistribution was monitored by serial gamma 

camera imaging as described previously (Willhauck et al., 2007). Quantification of 

regions of interest and dosimetric calculations were carried out as described 

previously (Grünwald et al., 2013). 

Three days after systemic injection of Ad5-E1/AFP-RSV/NIS or dc300/GE11Ad5-

E1/AFP-RSV/NIS mice received 10 MBq 124I i.p. and radioiodine biodistribution was 

monitored by a 15 min static acquisition 3 hours post injection using a micro PET 

system (Inveon, SIEMENS Preclinical Solutions, Erlangen, Germany). A subset of 

mice was pretreated i.p. with 0.25 mg of the EGFR-specific antibody cetuximab 

(Erbitux; Merck, Darmstadt, Germany) 24 hours prior to adenovirus administration. 

Mean tumoral radioiodine uptake was calculated in megabequerel per milliliter 

(MBq/mL) by manually placing 3D regions of interest in the tumor. 

 

Ex vivo analysis 

NIS mRNA expression levels of livers and tumors were analyzed ex vivo via 

quantitative real-time PCR as described previously (Klutz et al., 2011a). For analysis 

of hepatotoxicity, uncoated Ad5-E1/AFP-RSV/NIS or dendrimer-coated dc300/GE11Ad5-

E1/AFP-RSV/NIS were injected i.v. and 3 days thereafter, mice were sacrificed and 

blood serum samples were collected to assess alanine aminotransferase (ALT) and 

aspartate aminotransferase (AST) levels (measured at the Department of Clinical 

Biochemistry and Pathobiochemistry, Klinikum rechts der Isar, Munich, Germany). 

Subsequently, liver tissues were harvested and embedded in paraffin for hematoxylin 

and eosin (H/E) staining. 

 

Radiovirotherapy study in vivo 

HuH7 xenografts were established in 4 groups of mice. The first group was 

used as control and injected i.v. with saline only (NaCl-control, n=8). A second group 

received a single i.v. injection of 1x109 PFU of the dendrimer-coated replication-
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selective dc300/GE11Ad5-E1/AFP-E3/NIS (dc300/GE11Ad5-E1/AFP-E3/NIS, virotherapy, 

n=8). The third group received a single i.v. injection of 1x109 PFU of the dendrimer-

coated replication-deficient dc300/GE11Ad5-AFP/NIS and 3 days later a single i.p. dose 

of 55.5 MBq 131I (dc300/GE11Ad5-AFP/NIS + 131I, radiotherapy, n=7). The fourth group 

received a single i.v. injection of 1x109 PFU of the dendrimer-coated replication-

selective dc300/GE11Ad5-E1/AFP-E3/NIS and 3 days later a single i.p. dose of 55.5 

MBq 131I (dc300/GE11Ad5-E1/AFP-E3/NIS + 131I, radiovirotherapy, n=10). Tumor 

measurements were performed twice weekly thereafter. Tumor volume was 

estimated using the equation: tumor volume = length × width × height × 0.52. Mice 

were followed for a total of 100 days or until tumor burden was such that animals had 

to be killed (≥ 1500 mm3). 

 

Statistical methods 

All in vitro experiments were carried out in triplicates. Results are represented 

as means +/- SD of triplicates. Statistical significance was tested using Student's t-

test (*, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001). Statistical significance of in vivo 

experiments has been calculated using Mann–Whitney U test (two-tailed). 
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4.4 Results 

Influence of EGFR-targeted adenoviral surface modification in vitro 

Three cell lines with different levels of CAR and EGFR expression (HuH7: high 

CAR, high EGFR; SKOV-3: CAR-negative, high EGFR; HepG2: High CAR, low 

EGFR) as determined by flow cytometry (data not shown) were used. After infection 

with uncoated Ad5-CMV/NIS the CAR-positive cell lines HuH7 and HepG2 showed a 

dose-dependent increase in perchlorate-sensitive 125I uptake activity of up to 80-fold, 

which was fully retained after EGFR-targeted coating of the adenovirus with 

increasing amounts of dendrimer (Figs. 1A, C). The CAR-negative cell line SKOV-3 

showed no iodide accumulation above background level, even when incubated with 

high multiplicity of infection (MOI) of the uncoated Ad5-CMV/NIS. Adenovirus coating 

with increasing amounts of EGFR-targeted dendrimer led to an increase in 

perchlorate-sensitive iodide uptake activity of up to 6 orders of magnitude (Fig. 1B), 

thereby indicating CAR-independent uptake mechanisms of dendrimer-coated 

adenovirus. Replacement of the targeting ligand GE11 by a cysteine residue (Cys) 

significantly lowered transduction efficiency in EGFR-positive HuH7 and SKOV-3 

cells (Figs. 1A, B) whereas transduction efficiency in the low EGFR expressing 

HepG2 cells remained unchanged (Fig. 1C), thereby demonstrating targeting 

specificity and increased transduction efficiency by the use of the EGFR-specific 

targeting ligand. Viral NIS gene transfer using uncoated or dendrimer-coated Ad5-

CMV/NIS did not alter cell viability as measured by MTS assay (data not shown). 
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Fig. 1:  In vitro iodide uptake studies of EGFR-targeted adenovirus. In vitro transduction experiments 

with uncoated Ad5-CMV/NIS showed dose-dependent transduction efficiency in CAR-positive cells 

(HuH7, HepG2), which was fully retained after EGFR-targeted coating of the adenovirus with 

increasing amounts of dendrimer (A, C). The CAR-negative cell line SKOV-3 showed no iodide 

accumulation above background level, even when incubated with high MOI of the uncoated Ad5-

CMV/NIS but adenoviral coating with increasing amounts of EGFR-targeted dendrimer caused a 

significant increase in perchlorate-sensitive iodide uptake activity (B). Replacement of the targeting 

ligand GE11 by a cysteine residue (Cys) lowered transduction efficiency in EGFR-positive HuH7 and 

SKOV-3 cells (A, B) whereas transfection efficiency in the low EGFR expressing HepG2 cells 

remained unchanged (C). 
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Non-invasive imaging of EGFR-targeted NIS gene delivery 

Mice bearing high EGFR-expressing HuH7 xenograft tumors were imaged 

after intravenous vector administration for functional NIS expression via whole body 
123I-scintigraphy. In vivo imaging of vector biodistribution demonstrated high levels of 

NIS-mediated radionuclide accumulation in the livers of mice after systemic injection 

of uncoated Ad5-CMV/NIS due to hepatic sequestration of the vector. As a 

consequence of hepatic vector trapping only very low 123I accumulation above 

background level was observed in peripheral xenograft tumors (Fig. 2A). 

 
Fig. 2:  In vivo iodide uptake studies of EGFR-targeted adenovirus. 123I-scintigraphy of mice bearing 

high EGFR-expressing HuH7 xenografts demonstrated high hepatic and low tumoral NIS-mediated 

radionuclide accumulation after systemic injection of uncoated Ad5-CMV/NIS (A). Coating of Ad5-

CMV/NIS with EGFR-targeted PAMAM-G2-PEG-GE11 (dc300/GE11Ad5-CMV/NIS) prior to systemic 

administration strongly reduced liver transduction resulting in significantly increased transduction 

efficiency of xenograft tumors (B). Replacement of the dendrimer-coupled targeting ligand by a 

cysteine residue (dc300/CysAd5-CMV/NIS) still prevented liver pooling of the vector but significantly 

reduced tumor-specific radionuclide accumulation (C). 

 

By coating of Ad5-CMV/NIS with EGFR-targeted PAMAM-G2-PEG-GE11 

(dc300/GE11Ad5-CMV/NIS) prior to systemic administration liver transduction was 

strongly reduced by over 80% (Figs. 2B, 3A) resulting in significantly increased 

transduction efficiency of xenograft tumors. Serial scanning of mice revealed an 

accumulated dose of approximately 15% of the injected dose per gram tumor tissue 

(%ID/g) with an average biological half-life of 4.5 h (Figs. 2B, 3B), resulting in a 

calculated tumor-absorbed dose of 103 mGy for 131I. Replacement of the dendrimer-

coupled targeting ligand by a cysteine residue (dc300/CysAd5-CMV/NIS) still prevented 
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liver pooling of the vector but significantly reduced tumor-specific radionuclide 

accumulation nearly by half (Figs. 2C, 3A, B). In addition to 123I uptake in liver and 

tumor, radioiodine accumulation was also observed in stomach and thyroid that 

physiologically express NIS and in the urinary bladder due to radionuclide elimination 

but in no case in other non-target organs (Figs. 2A-C). Ex vivo analysis of NIS mRNA 

expression in livers and tumors correlated well with the radionuclide biodistribution 

observed and therefore confirmed the findings of 123I scintigraphy (Fig. 3C). 

 
Fig. 3:  Biodistribution of NIS transgene expression. Quantification of hepatic transgene expression 

revealed over 80% reduction after intravenous injection of dendrimer-coated dc300/GE11Ad5-CMV/NIS 

as compared to injection of uncoated Ad5-CMV/NIS (A). Detargeting of hepatic transgene expression 

resulted in significantly increased transduction efficiency of xenograft tumors (B). Replacement of the 

dendrimer-coupled targeting ligand by a cysteine residue (dc300/CysAd5-CMV/NIS) still prevented liver 

pooling of the vector but reduced tumor-specific radionuclide accumulation nearly by half (A, B). Ex 

vivo analysis of NIS mRNA expression in livers and tumors correlated well with the observed 

radionuclide biodistribution and confirmed the findings of 123I scintigraphy (C). 
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Influence of vector modification on hepatotoxicity 

Assessment of hepatotoxicity after intravenous injection of uncoated Ad5-

E1/AFP-RSV/NIS demonstrated a small 1.75-fold increase in ALT and a strong 128-

fold increase in AST (Fig. 4C) as well as a significant increase in fatty degeneration 

of liver tissue (Fig. 4A). Coating of the adenovirus before intravenous injection 

abrogated hepatotoxic effects almost completely as seen by a reduction of increase 

in ALT by half (45.6%) and in AST by 98.6 % (Fig. 4C) as well as liver histology 

without pathological findings (Fig. 4B). 

 
Fig. 4:  Analysis of liver toxicity. H/E staining of liver sections of mice injected intravenously with Ad5-

E1/AFP-RSV/NIS showed fatty degeneration of liver tissue (A), which was not observed in livers of 

mice treated with dc300/GE11Ad5-E1/AFP-RSV/NIS (B). Injection of Ad5-CMV/NIS without surface 

modification led to a minor increase in AST level and a strong increase in ALT level as compared to 

mice treated with saline only, which was mostly avoided by coating of the adenovirus prior to systemic 

administration (C). 
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EGFR-specificity of vector targeting 

3-dimensional high resolution 124I-PET-imaging was used to investigate 

EGFR-specificity of NIS gene delivery after intravenous injection of the targeted 

replication-selective dc300/GE11Ad5-E1/AFP-RSV/NIS. As shown before by 123I-

scintigraphy, i.v. injection of the uncoated vector (Ad5-E1/AFP-RSV/NIS) resulted in 

strong transduction of liver tissue that resulted in poor tumoral transduction (Figs. 5A, 

D). In contrast, coating of the adenovirus with PAMAM-G2-PEG-GE11 resulted in 

prevention of hepatic radioiodine accumulation and significantly enhanced 

transduction of tumor xenografts (Figs. 5B, D). By pretreatment of mice with the 

monoclonal anti-EGFR antibody cetuximab prior to systemic dc300/GE11Ad5-E1/AFP-

RSV/NIS administration tumoral radioiodine accumulation was significantly reduced 

while liver detargeting of NIS expression was not affected, thereby confirming EGFR-

specificity of the targeted vector (Figs. 5C, D). 

 
Fig. 5:  In vivo analysis of EFGR-specificity. 124I-PET-imaging demonstrated strong hepatic 

transduction after i.v. injection of the uncoated vector (Ad5-E1/AFP-RSV/NIS) (A) and quantification of 

radioiodine accumulation revealed only poor tumoral transduction (A, D). In contrast, coating of the 

adenovirus with PAMAM-G2-PEG-GE11 (dc300/GE11Ad5-E1/AFP-RSV/NIS) prior to systemic injection 

resulted in prevention of hepatic radioiodine accumulation and distinct transduction of tumor 

xenografts (B, D). By pretreatment of mice with the monoclonal anti-EGFR antibody cetuximab prior to 

systemic dc300/GE11Ad5-E1/AFP-RSV/NIS administration tumoral radioiodine accumulation was 

significantly reduced while liver detargeting of NIS expression was still effective (C, D). 

 

Radionuclide therapy study in vivo 

A single i.v. injection of the replication-deficient Ad5-AFP/NIS coated with 

PAMAM-G2-PEG-GE11 followed by a therapeutic dose of 131I (dc300/GE11Ad5-
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AFP/NIS + 131I, radiotherapy) showed a significant delay in tumor growth and 

improved survival (Figs. 6A, B) as compared to mice treated with saline only (NaCl-

control, Figs. 6A, B). I.v. application of the oncolytic replication-selective Ad5-

E1/AFP-E3/NIS with EGFR-targeted surface modification (dc300/GE11Ad5-E1/AFP-

E3/NIS, virotherapy) revealed a comparable delay in tumor growth and enhancement 

of survival due to the oncolytic activity of the adenovirus (Figs. 6A, B). Combined 

radiovirotherapy by i.v. injection of PAMAM-G2-PEG-GE11-coated replication-

selective Ad5-E1/AFP-E3/NIS followed by application of 131I (dc300/GE11Ad5-E1/AFP-

E3/NIS + 131I, radiovirotherapy) resulted in a strongly enhanced therapeutic effect, as 

seen by significantly delayed tumor growth and further improvement of survival (Figs. 

6A, B). While mice treated with saline only (NaCl-control) had to be killed within 2–3 

weeks after onset of the experiment due to excessive tumor growth, 50% of mice 

treated with combined radiovirotherapy survived at least 9 weeks and 30% were even 

still alive at day 100, the endpoint of the observation period (Fig. 6B). None of the 

treated mice, even with combined radiovirotherapy, showed major adverse effects in 

terms of lethargy or respiratory failure due to oncolytic virotherapy or radionuclide 

treatment. 

 
Fig. 6:  In vivo therapeutic efficacy. A single i.v. injection of the replication-deficient Ad5-AFP/NIS 

coated with PAMAM-G2-PEG-GE11 followed by a therapeutic dose of 131I (dc300/GE11Ad5-AFP/NIS + 
131I, radiotherapy) showed a significant delay in tumor growth and improved survival (A, B) as 

compared to mice treated with saline only (NaCl-control, A, B). I.v. application of the oncolytic 
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replication-selective Ad5-E1/AFP-E3/NIS with EGFR-targeted surface modification (dc300/GE11Ad5-

E1/AFP-E3/NIS, virotherapy) revealed a comparable delay in tumor growth and enhancement of 

survival (A, B). Combined radiovirotherapy treatment (dc300/GE11Ad5-E1/AFP-E3/NIS + 131I, 

radiovirotherapy) resulted in a strongly enhanced therapeutic effect, as seen by significantly delayed 

tumor growth and further improved survival (A, B). 
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4.5 Discussion 

The tropism of adenoviruses is greatly influenced by interaction with several 

blood components and the widespread expression of the coxsackie-adenovirus 

receptor (CAR) (Duffy et al., 2012; Kalyuzhniy et al., 2008; Vigant et al., 2008; 

Waddington et al., 2008). Aside from the inherent hepatic tropism after intravenous 

injection (Huard et al., 1995), the CAR-dependent way of infection results in a broad 

cellular tropism with no intrinsic cancer specificity of wild type adenovirus (Green et 

al., 2008). On the other hand, therapeutic efficacy of an adenovirus can be 

diminished by the lack of CAR on the tumor cell surface (Kanerva and Hemminki, 

2005). Hence, a variety of methods have been developed, to alter the natural virus 

tropism and to detarget the vector away from its natural receptors. Through surface 

modification by chemical or genetical engineering, the adenovirus can be retargeted 

to cancer cell-specific targets in order to achieve sufficient transgene expression in 

cancerous tissues while expression in non-target organs and toxic side effects are 

minimized (Cattaneo et al., 2008). In recent years, several studies provided evidence 

that adenoviruses can enter cells via cell surface molecules that are not natural viral 

receptors, for example the EGFR (Kim et al., 2012). Cancer specificity of the ligand 

chosen for retargeting purposes is of great importance since unspecific infection of 

non-target cells can significantly reduce the availability of the therapeutic vector 

(Green et al., 2008) as well as infection of non-target tissues may result in increased 

toxicity (Mizuguchi and Hayakawa, 2004), in particular regarding NIS-mediated 

radiotherapy. Moreover, targeted delivery of the NIS gene potentially allows for direct 

radiation treatment of tumors on-site and owns the advantage of achieving high 

radiation doses in the tumor while minimizing side effects to normal tissue. Although 

NIS as normal human protein is also endogenously expressed, in particular in the 

thyroid, the patient’s thyroid gland can be protected by pretreatment with thyroid 

hormone L-T4 (levothyroxine), which effectively downregulates thyroidal NIS 

expression. In fact, NIS-mediated radiotherapy is well known to be remarkably safe in 

humans and has been routinely used as standard therapy in the management of 

thyroid cancer patients for over 70 years (Hingorani et al., 2010). Moreover, NIS as 

normal human gene and protein causes no toxicity or diminished efficacy by immune 

responses as it is often observed after the use of other protein and gene therapeutics 

(Duffy et al., 2012). 

As a consequence of our recent characterization of a high-affinity, EGFR-
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selective peptide (GE11) coupled to synthetic nanoparticles for systemic non-viral 

NIS gene delivery (Klutz et al., 2011a), in this study we combined dendrimeric 

adenovirus surface modification with the EGFR-targeting strategy in order to 

generate a shielded, targeted and armed adenovirus for systemic radiovirotherapy of 

high EGFR-expressing hepatocellular carcinoma. In this way a triple cancer-specific 

adenovirus was developed that is transcriptionally targeted to hepatocellular 

carcinoma by the use of the alpha fetoprotein (AFP) promoter (Grünwald et al., 2012) 

to control replication and NIS expression, that is actively targeted to the EGFR 

through attachment of the GE11 peptide (Klutz et al., 2011a) and passively targeted 

to leaky tumor vasculature through the EPR effect (Iyer et al., 2006). Here, we show 

the biodistribution and the retargeting capacity of adenovirus vectors coated with 

EGFR-specific dendrimer in vitro and in vivo using NIS in its dual function as reporter 

and therapy gene for non-invasive imaging of transgene expression and calculated 

radiotherapeutic treatment of hepatocellular carcinoma. 

In vitro experiments using the EGFR-targeted adenovirus proved that 

transduction efficiency in CAR-positive cancer cells is barely hampered after 

dendrimer coating with mild but non-significant improvement if the cells additionally 

express the EGFR. In contrast, the CAR-negative ovarian cancer cells SKOV-3, that 

were shown to be refractory to infection with uncoated adenovirus, can be efficiently 

infected by dendrimer-coated adenoviral vectors with a significant additional increase 

in transduction efficiency by attachment of the targeting ligand GE11. These 

experiments suggest that adenovirus vectors coated with targeted dendrimer can 

transduce cells CAR-independently by employing a different receptor for cell entry 

and may be of great potential for therapy of EGFR-expressing neoplasms lacking 

CAR. 

In the current study, 123I scintigraphy after intravenous administration of the 

dendrimer-coated adenovirus revealed strong detargeting of hepatic transgene 

expression that is usually caused by i.v. administration of the uncoated vector. The 

reduction in hepatic NIS-mediated iodine accumulation is even stronger than 

observed in our former study (Grünwald et al., 2013) (80 vs 70 %), which might be 

due to improved covering of the adenoviral surface epitopes by the smaller dendrimer 

used for surface modification (molecular weight PAMAM-G2 3,284 Da vs PAMAM-G5 

28,854 Da). By improved liver detargeting the vector was able to infect peripheral 

hepatoma xenografts of mice upon systemic delivery even more efficiently than the 
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previous vector (15 vs 13 %ID/g) with an increased average biological half-life and 

tumor absorbed dose calculated for therapeutic 131I (103 vs 91 mGy/MBq). This may 

be explained by active GE11-mediated tumor targeting combined with an extended 

blood circulation time of the vector enforcing the passive tumor targeting through the 

EPR effect as it was shown before by Yao et al. (Yao et al., 2011b). Substitution of 

the targeting ligand by a cysteine residue led to a significant decrease of tumoral 

transgene expression, thereby confirming the targeting benefit. These results were 

further corroborated by analysis of hepatic and tumoral NIS mRNA expression. To 

ensure that the targeting ligand was indeed targeting the EGF receptor, we 

pretreated mice bearing high EGFR expressing HuH7 xenografts with the high affinity 

anti-EGFR antibody cetuximab prior to infection with the targeted adenovirus. 

Pretreatment with cetuximab lowered the tumoral transduction efficiency of 

dc300/GE11Ad5-E1/AFP-RSV/NIS significantly as shown by high resolution 124I-PET-

imaging, while hepatic detargeting was not affected and remained stable. 

For reliable quantitative analysis of such experiments highly sensitive imaging 

modalities are needed to display even small changes in biodistribution that, however, 

may have great biological impact. Recently, [18F]-tetrafluoroborate, a known 

alternative substrate of NIS, was evaluated as new PET imaging agent in preclinical 

models, demonstrating high sensitivity and significantly improved resolution as 

compared to 124I, which will improve NIS biodistribution analysis in orthotopic tumor 

models with overlap in radioiodine accumulation with organs endogenously 

expressing NIS (Jauregui-Osoro et al., 2010; Weeks et al., 2011). 

Wild-type adenovirus is initially recognized by the scavenger receptors of 

Kupffer cells (KC) due to its negative surface charge leading to rapid clearance from 

the bloodstream as well as distinct liver pathology (Xu et al., 2008) as seen in the 

current study by strong liver transduction, increased liver transaminase levels, as well 

as pathologic liver histology. In contrast, the electrostatically coated adenovirus 

complex is no longer negatively charged as described by Vetter et al. (Vetter et al., 

2013) and the avoidance of liver toxicity observed in our study may be explained by 

preventing activation of KCs and the induction of proinflammatory processes. 

One approach to improve viral oncolytic therapy is its combination with 

standard anticancer therapies such as radiotherapy (Advani et al., 2006) as we and 

others have shown before (Dilley et al., 2005; Grünwald et al., 2012; Grünwald et al., 

2013). Thus, in the next step we addressed the question whether the advantage in 
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tumoral transduction efficiency is able to also improve therapeutic radionuclide 

application in liver cancer xenografts, after it had previously been demonstrated after 

local administration of a NIS-expressing adenovirus that the outcome of combined 

radiovirotherapy is highly dependent upon the viral dose that is delivered to the tumor 

(Trujillo et al., 2012a) possibly based on increased tumoral transduction subsequently 

leading to decelerated radioiodine efflux. In the current study, NIS-mediated 

radiotherapy using a replication-deficient dendrimer-coated adenovirus showed a 

significant delay in tumor growth that was associated with markedly improved survival 

as compared to control mice treated with saline only. A comparable delay in tumor 

growth has been reached by injection of the oncolytic replication-selective 

dc300/GE11Ad5-E1/AFP-E3/NIS. Furthermore, the effects of oncolysis and radiation 

therapy have been used synergistically and tumor-specific oncolysis was shown to be 

further enhanced by combination with NIS-mediated radiotherapy. Potent and 

selective systemic anti-tumoral efficacy was demonstrated. Radiovirotherapy using 

PAMAM-G2-PEG-GE11 instead of PAMAM-G5 (Grünwald et al., 2013) for coating of 

our replication-selective Ad5-E1/AFP-E3/NIS demonstrated further deceleration of 

tumor growth as well as improved survival of mice. The synergistic therapeutic 

effectiveness of the combination therapy may also allow a reduction of the doses 

usually applied in individual single therapies and thereby reduce potential toxic side 

effects as it was shown before (Lamfers et al., 2002). Moreover, Trujillo et al. (Trujillo 

et al., 2012b) recently showed after intratumoral application of a replication-selective 

adenovirus carrying the NIS gene that a minimal applied dose of 37 MBq 131I is 

required for radiovirotherapy in a murine xenograft model in order to improve efficacy 

of oncolytic virotherapy alone and that the doses needed to achieve reduced tumor 

growth and extended survival in mice are scaled well within doses currently clinically 

used for the treatment of thyroid cancer patients. With regards to potential clinical 

application of adenovirus-based NIS gene therapy it is noticeable that at the Mayo 

Clinic (Rochester, MN, USA) the first NIS-expressing adenovirus is currently Food 

and Drug Administration approved for a human clinical trial in patients with locally 

recurrent prostate cancer. 

In conclusion we developed a new adenovirus-based vector by EGFR-

targeted dendrimeric surface modification that retained the superior characteristics of 

dendrimer coating described in our former study (Grünwald et al., 2013) and 

additionally improved its biodistribution and selective transduction efficiency of 
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peripheral tumor tissues upon systemic vector administration by EGFR-specific 

targeting. The ability of the coated vector to improve NIS gene delivery to EGFR 

expressing tumor cells, combined with its reduced hepatic tropism and toxicity profile, 

which warrants further investigation in more advanced tumor models, highlights its 

potential as a prototype virus for future clinical investigation. 
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5.1 Abstract 

The pancreatic ductal adenocarcinoma (PDAC) belongs to the cancers with 

most unfavorable prognoses. Despite outstanding effectiveness of a series of 

compounds in vitro and in xenograft models, the results of clinical trials are 

predominantly disappointing and new treatment options are urgently needed. 

In the mouse a PDAC can be genetically induced by activation of constitutively 

active KrasG12D in combination with a deletion of p53, which shows the typical 

changes of human disease. This development of endogenous mouse models, away 

from the usual transplant models represents an important step as these tumor 

models are more suitable to predict clinical effectiveness of a specific cancer 

treatment. 

In previous studies using xenograft mouse models the sodium iodide 

symporter (NIS) as well characterized theranostic gene allowed detailed non-invasive 

analysis of vector biodistribution and transgene expression by 123I-

scintigraphy/SPECT and 124I-PET imaging, as well as highly effective therapeutic 

application of radionuclides (131I, 188Re). As a logical consequence of these proof-of-

principle studies and as a next step towards clinical application of the NIS gene 

therapy concept, in the current study we investigated tumor specificity and 

transduction efficiency of tumor-targeted polyplexes as systemic NIS gene delivery 

vehicles in an advanced genetically engineered mouse model (GEMM) of PDAC. 

Therefore, we used novel tumor-targeted polyplexes based on linear 

polyethylenimine (LPEI), polyethylene glycol (PEG), and the synthetic peptide GE11 

as an epidermal growth factor receptor (EGFR)-specific ligand (LPEI-PEG-GE11) to 

target a NIS-expressing plasmid to the high EGFR-expressing PDAC. 

In vitro iodide uptake studies with cell explants derived from murine EGFR-

positive and EGFR-knockout PDAC lesions demonstrated high transduction 

efficiency and EGFR-specificity of LPEI-PEG-GE11/NIS. In vivo 2-dimensional 123I γ-

camera imaging and 3-dimensional high-resolution 124I-PET imaging experiments 

were performed at different time points after systemic EGFR-targeted NIS gene 

transfer and showed significant tumor-specific accumulation of radioiodine in the 

PDAC of mice at a magnitude, that can be expected to result in a therapeutic effect of 
131I. These results were further confirmed by NIS-specific qPCR analysis and 

immunohistochemistry. A first series of therapy studies indicates that the tumoral 
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accumulation is indeed high enough for a therapeutic effect of 131I as demonstrated 

by a reduction in tumor volume that was measured by magnetic resonance imaging. 

In conclusion, our preclinical data in an advanced genetically engineered 

PDAC mouse model clearly demonstrate the high potential of systemic NIS gene 

therapy using EGFR-targeted synthetic gene transfer vehicles, opening the prospect 

of clinical application of targeted NIS-mediated radionuclide therapy in non-thyroidal 

cancers. 
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5.2 Introduction 

Pancreatic ductal adenocarcinoma (PDAC) is currently the fourth leading 

cause of cancer deaths in the Western world despite its comparably low incidence, 

which demonstrates the lack of efficient therapeutic strategies (Siegel et al., 2013). 

The median survival time after diagnosis is less than 6 months, mostly due to late 

diagnosis at the stage of inoperability and due to the high resistance of tumor cells to 

external beam radiation and chemotherapy (Li et al., 2004). Despite intensive 

scientific and industrial efforts, so far no significant extension of survival could be 

achieved by any of the numerous tested drugs (Mazur and Siveke, 2012). 

The genetic and morphological changes in the carcinogenesis of the PDAC 

are well known and include the initiation and progression of premalignant lesions to 

the invasive and metastatic pancreatic cancer (Hingorani et al., 2003; Izeradjene et 

al., 2007; Mazur and Siveke, 2012; Siveke and Schmid, 2005). The most common 

genetic changes include activating mutations in the Kras gene, inactivation of the 

tumor suppressor p16INK4a, p53 and SMAD4 genes, and activation of the EGF 

receptor and other receptors for growth factors such as MET (Ardito et al., 2012; 

Mazur and Siveke, 2012). 

In recent years, several complex genetically modified mouse models were 

generated (Bardeesy et al., 2006; Hingorani et al., 2003; Schneider et al., 2005; 

Siveke et al., 2007), in which pancreatic cancers arise from precursor lesions. In the 

mouse a PDAC can be induced by activation of constitutively active KrasG12D in 

combination with a conditional deletion of p53, which shows the typical changes of 

human disease (Bardeesy et al., 2006). This development of endogenous mouse 

models, away from the usual transplant models represents a significant step in the 

evolution of preclinical models (Singh et al., 2010). Clonal cells with very 

homogeneous molecular equipment are used in the xenograft transplantation models 

(e.g. long-term cultivated cell lines), thus the composition of established transplanted 

tumors is significantly different from endogenously grown tumors. The endogenously 

grown tumors are genetically heterogeneous and have a lower vascularization and 

significantly more stroma (Olive et al., 2009). These tumor models are therefore 

better suited to predict the clinical effectiveness of a specific cancer treatment. For 

these reasons, the use of an endogenous mouse model of PDAC is believed to be a 

promising preclinical method to evaluate the systemic effectiveness of polyplex-

mediated NIS gene transfer for subsequent radioiodine therapy. 
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In a recent study, Klutz et al. used synthetic polyplexes based on pseudo-

dentritic oligoamines with high intrinsic tumor affinity for NIS gene therapy in a 

subcutaneous human liver carcinoma mouse model (Klutz et al., 2011b). After 

systemic NIS gene transfer the tumor-selective accumulation of radioiodine was 

sufficient for a significant therapeutic effect. In addition to the intrinsic tumor affinity 

due to leaky vasculature, the tumor targeting of polyplexes can be further increased 

by the attachment of tumor-specific ligands. Therefore, in a subsequent study, Klutz 

et al. used polymers for NIS gene delivery, which were composed of linear 

polyethylenimine (LPEI), shielded by polyethylene glycol (PEG) and coupled to the 

synthetic peptide GE11 as an EGFR-specific ligand (LPEI-PEG-GE11) (Klutz et al., 

2011a). After systemic application of these polyplexes condensed with NIS cDNA 

(LPEI-PEG-GE11/NIS), effective and EGFR-specific tumor targeting could be 

demonstrated by tumor-specific radioiodine accumulation in a high EGFR-expressing 

xenograft mouse model of hepatocellular carcinoma. After the injection of a 

therapeutic dose of 131I tumoral iodine uptake was demonstrated to be sufficiently 

high for a significant delay of tumor growth and prolongation of survival. The 

endogenous PDAC mouse model examined in this study also expresses EGFR on a 

very high level and is therefore expected to facilitate active tumor targeting of the NIS 

gene by the EGFR-specific polyplexes LPEI-PEG-GE11/NIS. 

Overall, our preliminary studies in different xenograft tumor mouse models 

show, that synthetic polymers own an enormous potential for non-viral NIS gene 

delivery allowing the accumulation of a therapeutically effective 131I or 188Re dose 

(Grünwald et al., 2012; Grünwald et al., 2013; Klutz et al., 2009; Klutz et al., 2011a; 

Klutz et al., 2011b; Klutz et al., 2011c; Knoop et al., 2011; Knoop et al., 2013), and 

thus can offer an innovative and potentially curative treatment option for thyroidal and 

non-thyroidal tumors. In the current study, we investigated the potential of EGFR-

targeted polyplexes for systemic NIS gene therapy in an advanced, more complex 

endogenous mouse model of PDAC. 
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5.3 Materials and Methods 

Establishment of genetically modified mice 

 Establishment of the Ptf1a+/Cre;Kras+/LSL-G12D;p53LoxP/LoxP (CKP) and 

Ptf1a+/Cre;Kras+/LSL-G12D;p53LoxP/LoxP; Egfrfl/fl (CKP-EGFRKO) strains has been described 

previously (Hingorani et al., 2003; Kawaguchi et al., 2002; Lee and Threadgill, 2009; 

Marino et al., 2000; Natarajan et al., 2007). 

Animals were maintained under specific pathogen-free conditions with access 

to mouse chow and water ad libitum. The experimental protocol was approved by the 

regional governmental commission for animals (Regierung von Oberbayern, Munich, 

Germany). 

 

Preparation and culture of pancreatic ductal adenocarcinoma (PDAC) explants 

PDAC explants were isolated as described previously (Heid et al., 2011) and 

cultured in DMEM high glucose medium (Invitrogen, Karlsruhe, Germany) 

supplemented with 10% fetal bovine serum (v/v; PAA, Colbe, Germany), 1% 

penicillin/streptomycin (v/v; Invitrogen) and 1% non-essential amino acids (v/v; 

Invitrogen). Cells were maintained at 37°C and 5% CO2 in an incubator with 95% 

humidity. Cell culture medium was replaced every second day and explants were 

passaged at about 85% confluency. For each genotype, experiments with cell 

explants were performed with the following numbers of mice: CKP, n = 3; CKP-

EGFRKO, n = 2. 

Flow cytometry analysis of cellular EGFR expression was performed as 

described previously (Klutz et al., 2011a). 

 

Plasmid and polymer synthesis and polyplex formation 

The NIS cDNA and LPEI-based conjugates were synthesized as described 

previously (Klutz et al., 2011a). 

Plasmid DNA was condensed with polymers at indicated conjugate/plasmid-

ratios (c/p; w/w) in HEPES-buffered glucose [HBG: 20 mmol/l HEPES, 5% glucose 

(w/v), pH 7.4] as described previously (Russ et al., 2008) and incubated at room 

temperature for 20 min before use. Final DNA concentration of polyplexes for in vitro 

studies was 2 µg/ml, and for in vivo studies 200 µg/ml. 
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Transient transfection 

For in vitro transfection experiments, PDAC cell explants were grown to 60–

80% confluency. Explants were incubated for 4 hours with polyplexes in the absence 

of serum and antibiotics followed by incubation with complete growth medium for 24 

h. Either LPEI-PEG-GE11/NIS, LPEI-PEG-Cys/NIS, or LPEI-PEG-GE11 without DNA 

was added in c/p ratios as indicated. Transfection efficiency was evaluated by 

measurement of iodide uptake activity as described below. 

 

In vitro 125Iodide uptake assay 

Following transfections, iodide uptake of PDAC cell explants was determined 

at steady-state conditions as described previously (Spitzweg et al., 1999; Weiss et 

al., 1984). Results were normalized to cell survival measured by cell viability assay 

and expressed as cpm/A490 nm. 

Cell viability was measured using the commercially available MTS-assay 

(Promega, Mannheim, Germany) according to the manufacturer’s recommendations 

as described previously (Willhauck et al., 2007). 

 

Radioiodine uptake studies after systemic NIS gene transfer 

Experiments started when mice were about 6-8 weeks of age. For systemic in 

vivo NIS gene transfer, polyplexes (LPEI-PEG-GE11/NIS, c/p 0.8) were applied i.v. 

via the tail vein at a DNA dose of 2.5 mg/kg (50 µg DNA in 250 µl HBG). For the 

proof-of-principle of NIS-mediated PDAC-specific radioiodine accumulation in vivo, 

24 h after i.v. injection of polyplexes mice received 18.5 MBq 123I i.p. (n=9) and 

radioiodine distribution was monitored by serial imaging on a gamma camera (Forte, 

ADAC Laboratories, Milpitas, CA, USA) equipped with a VXHR (ultra-high resolution) 

collimator as described previously (Willhauck et al., 2007). Regions of interest were 

quantified and expressed as a fraction of the total amount of applied radionuclide per 

gram tumor tissue (% ID/g). The retention time within the tumor was determined by 

serial scanning after radioiodine injection. A subset of mice (n=2) was pretreated i.p. 

with 2 mg of the competitive NIS-inhibitor sodium perchlorate (NaClO4) 30 min before 
123I administration. For more detailed high-resolution molecular imaging in order to 

achieve better discrimination between uptake in the tumor and the adjacent stomach, 

24 or 48 h after i.v. injection of polyplexes (LPEI-PEG-GE11/NIS, each time point 

n=5; LPEI-PEG-GE11/antisense-NIS, each time point n=1) mice received 10 MBq 124I 
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i.p. and radioiodine biodistribution was monitored by a 15 min static acquisition 3 h 

post injection using a micro PET system (Inveon, SIEMENS Preclinical Solutions, 

Erlangen, Germany). Mean tumoral radioiodine uptake was calculated in 

megabequerel per milliliter (MBq/mL) by manually placing 3D regions of interest in 

the tumor. 

 

Analysis of NIS mRNA expression using qPCR 

Total RNA was isolated from PDAC or non-target tissues (liver, lungs) using 

the RNeasy Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer’s 

recommendations. Single-stranded oligo (dT)-primer cDNA was generated using 

SuperscriptIII Reverse Transcriptase (Invitrogen). Following primers were used: 

hNIS: (5′-ACACCTTCTGGACCTTCGTG-3′) and (5′-GTCGCAGTCGGTGTAGAACA-

3′), GAPDH: (5′-GAGAAGGCTGGGGCTCATTT-3′) and (5′-

CAGTGGGGACACGGAAGG-3′). qPCR was performed with the cDNA from 1 µg 

RNA using the SYBR green PCR master mix (Qiagen, Hilden, Germany) in a Rotor 

Gene 6000 (Corbett Research; Morthlake, New South Wales, Australia). Relative 

expression levels were calculated using the comparative ∆∆Ct method and internal 

GAPDH for normalization. 

 

Immunohistochemical analysis of NIS protein expression 

Immunohistochemical staining of paraffin-embedded tissue sections derived 

from PDAC after NIS gene delivery was performed using a mouse monoclonal 

antibody directed against aminoacid residues 468–643 of human NIS (kindly 

provided by John C Morris, Mayo Clinic, Rochester, MN, USA) as described 

previously (Spitzweg et al., 2007). For histological examination, parallel slides were 

also routinely stained with hematoxylin and eosin (H/E). 

 

Radioiodine therapy studies 
124I-PET imaging revealed highest tumoral radioiodine accumulation 48 h after 

i.v. NIS gene delivery. Therefore, 48 h after systemic administration of LPEI-PEG-

GE11/NIS polyplexes, a therapeutic dose of 55.5 MBq 131I was administered i.p. 

(LPEI-PEG-GE11/NIS + 131I). Control mice (NaCl-control; n=7) received saline only. 

The cycle consisting of systemic NIS gene transfer followed by radioiodine was 

repeated twice on days 4/6 and 8/10 (n=3), or additionally on day 11/13 (n=3). Tumor 
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sizes were assessed by high resolution magnetic resonance imaging (MRI) on a 3T 

clinical scanner (Philips Ingenia 3.0T; Royal Philips Electronics, Eindhoven, The 

Netherlands) before treatment and weekly thereafter (each radioiodine treatment 

group n=2). 

 

Statistical methods 

All in vitro experiments were carried out in triplicate. Results are represented 

as means ± SD of triplicates. Statistical significance was tested using Student’s t-test 

(two-tailed). 
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5.4 Results 

Iodide uptake studies in vitro 

Transfection conditions using LPEI-PEG-GE11/NIS were optimized in high 

EGFR-expressing PDAC cell explants, derived from CKP mice, by measurement of 

perchlorate-sensitive iodide uptake activity 24 hours following application of 

polyplexes (data not shown). We found an optimal conjugate/plasmid ratio of 0.8 (c/p 

0.8) resulting in highest transfection efficiency at lowest cytotoxicity. This ratio was 

used in all subsequent experiments. Twenty-four hours after transfection with LPEI-

PEG-GE11/NIS, cell explants showed a 22-26-fold increase in 125I accumulation as 

compared to cells incubated with the empty control vector LPEI-PEG-GE11 (Fig. 1A). 

Transfection with untargeted LPEI-PEG-Cys/NIS polyplexes resulted in significantly 

lower iodide uptake activity in EGFR-positive PDAC explants (Fig. 1A), thereby 

demonstrating the advantage in transduction efficiency gained by active EGFR-

specific tumor targeting. 

 
Fig. 1A:  Iodide uptake was measured in high EGFR-expressing PDAC cell explants following in vitro 

transfection with LPEI-PEG-GE11/NIS, control polyplexes LPEI-PEG-Cys/NIS, or with LPEI-PEG-

GE11 alone. Cells transfected with LPEI-PEG-GE11/NIS showed a significant increase in perchlorate-

sensitive 125I accumulation. After transfection with LPEI-PEG-Cys/NIS the iodide uptake was 

significantly decreased. In contrast, no perchlorate-sensitive iodide uptake above background level 

was observed in cells transfected with LPEI-PEG-GE11 without DNA. 

 

Additional in vitro iodide uptake studies in EGFR-knockout PDAC cell explants 

with very low EGFR expression levels, as determined by fluorescence-activated cell 

scanning analysis (data not shown), showed no significant difference between 
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transfection with targeted LPEI-PEG-GE11/NIS or untargeted LPEI-PEG-Cys/NIS 

polyplexes, thereby demonstrating EGFR-specificity of the targeting ligand (Fig. 1B). 

Polyplex-mediated NIS gene transfer did not alter cell viability as measured by MTS 

assay (data not shown).  

 
Fig. 1B:  Transfection efficiency of LPEI-PEG-GE11/NIS and LPEI-PEG-Cys/NIS was additionally 

investigated by in vitro iodide uptake studies in EGFR-knockout PDAC cell explants and showed no 

significant difference between transfection with targeted or untargeted polyplexes, thereby 

demonstrating EGFR-specificity of the targeting ligand. 

 

Preliminary scintigraphy of EGFR-targeted NIS gene delivery 

Mice with high EGFR-expressing PDAC (Fig. 2) were imaged after i.v. polyplex 

administration for functional NIS expression via whole body 123I scintigraphy. 

 
Fig. 2:  A genetically engineered mouse at the age of 8 weeks developed a pancreatic ductal 

adenocarcinoma (PDAC) which occupies a large portion of the abdominal cavity below the stomach. 
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In vivo 123I gamma camera imaging of radioiodine biodistribution demonstrated 

high levels of NIS-mediated radionuclide accumulation in the pancreatic tumors of 

mice after systemic injection of EGFR-targeted LPEI-PEG-GE11/NIS (Fig. 3A). 

 

Fig. 3:  123I scintigraphy of mice injected with LPEI-PEG-GE11/NIS demonstrated pancreatic tumoral 

radioiodine uptake (A) to be perchlorate–sensitive (B) and therefore indeed NIS-mediated. 124I PET-

imaging (C-F) confirmed findings of scintigraphy and facilitated better differentiation between tumor 

and stomach. Injection of mice with the control vector LPEI-PEG-GE11/antisense-NIS (D, F) showed 

no pancreatic iodide uptake activity above background level. 

 

Serial scanning of mice revealed an accumulated dose of approximately 7-10 

% of the injected dose per gram tumor tissue (% ID/g) with an average biological half-

life of 4.5 h (Fig. 4). 

 
Fig. 4:  Serial scanning on a gamma camera 24 h after injection of mice with LPEI-PEG-GE11/NIS 

demonstrated pancreatic tumors to accumulate 7-10 % ID/g 123I with an average biological half-life of 

4.5 h. 

 

In addition to 123I uptake in the PDAC, radioiodine accumulation was also 

observed in stomach and thyroid that physiologically express NIS and in the urinary 
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bladder due to renal radionuclide elimination but in no case in other non-target 

organs (Fig. 3). To confirm that tumoral iodide uptake was indeed NIS-mediated, 

LPEI-PEG-GE11/NIS-injected mice were additionally treated with the competitive 

NIS-inhibitor sodium perchlorate (NaClO4) 30 min before 123I administration, which 

completely blocked tumoral iodide accumulation in addition to the physiological NIS-

mediated iodide uptake in stomach and thyroid gland (Fig. 3B). 

 

High resolution 3-dimensional PET imaging of radioiodine biodistribution 

3-dimensional high resolution 124I-PET-imaging was used to better distinguish 

between tumoral uptake and iodine accumulation in the stomach (Fig. 3C-F). As 

shown before by 123I-scintigraphy (Fig. 3A), i.v. injection of LPEI-PEG-GE11/NIS 

resulted in strong transduction of tumor tissue (Fig. 3C, E). In contrast, systemic 

injection with LPEI-PEG-GE11/antisense-NIS resulted in no significant tumoral 

radioiodine accumulation (Fig. 3D, F). Quantification of tumoral 124I uptake revealed 

significantly higher radioiodine accumulation 48 h after i.v. injection of LPEI-PEG-

GE11/NIS as compared to 24h after NIS gene transfer (Fig. 5). 

 
Fig. 5:  Scanning of mice at different time points after LPEI-PEG-GE11/NIS-mediated NIS gene 

transfer demonstrated pancreatic tumors to accumulate significantly higher amounts 48 h after gene 

transfer as compared to 24h. 

 

Analysis of NIS mRNA expression in PDAC 

Ex vivo tumors and non-target organs (liver, lungs) were analyzed for the level 

of NIS mRNA expression by quantitative real-time PCR (qPCR) (Fig. 6). A 20-fold 
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increase in NIS mRNA expression of PDAC lesions was detected 48 h after i.v. 

injection of LPEI-PEG-GE11/NIS as compared to untreated tumors. In contrast, no 

significant NIS mRNA expression above background level was observed in non-

target organs and tumors of mice treated with the control vector LPEI-PEG-

GE11/antisense-NIS (Fig. 6). Thereby, NIS mRNA analysis correlated well with the 

radionuclide biodistribution observed and confirmed the findings of 124I-PET imaging 

(Fig. 3). 

 
Fig. 6:  NIS-specific qPCR analysis revealed a 20-fold increase of NIS mRNA expression level in 

pancreatic tumors of mice injected with LPEI-PEG-GE11/NIS as compared to tumors of untreated 

mice. In contrast, NIS mRNA expression was not increased in non-target organs and in tumors of mice 

injected with the control vector LPEI-PEG-GE11/antisense-NIS. 

 

Immunohistochemical analysis of NIS protein expression in PDAC 

48 h after the start of treatment, mice were sacrificed and PDAC lesions were 

dissected and processed for immunohistochemical analysis using a hNIS-specific 

antibody (red staining; yellow arrows). Analysis revealed a patchy staining pattern 

with areas of NIS-specific immunoreactivity in tumors after systemic application of 

LPEI-PEG-GE11/NIS (Fig. 7, left). In contrast, tumors treated with the control vector 

(LPEI-PEG-GE11/antisense-NIS) showed no NIS-specific immunoreactivity (Fig. 7, 

right). Parallel control slides with the primary and secondary antibodies replaced in 

turn by PBS and isotype-matched non immune immunoglobulin were negative (data 

not shown). 
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Fig. 7:  Immunohistochemical staining of sections of paraffin-embedded pancreatic tumors revealed a 

patchy staining pattern with areas of NIS-specific immunoreactivity in tumors after systemic application 

of LPEI-PEG-GE11/NIS. In contrast, tumors treated with the control vector (LPEI-PEG-

GE11/antisense-NIS) showed no NIS-specific immunoreactivity. 

 

Preliminary radioiodine therapy studies 

 Mice treated with three (empty labels) or four cycles (filled labels) of LPEI-

PEG-GE11/NIS followed by 131I showed a strong reduction of tumor volume (Fig. 8). 

No tumor regrowth was detectable until mice died after the end of therapy. 

 
Fig. 8:  Mice treated with 3 (empty labels) or 4 (filled labels) cycles of LPEI-PEG-GE11/NIS + 131I 

showed a strong reduction in tumor volume as determined by magnetic resonance imaging. 
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5.5 Discussion 

Despite numerous chemotherapy trials based on different clinical approaches 

the prognosis of patients with unresectable pancreatic cancer has not significantly 

changed over the last 15 years (Mazur and Siveke, 2012). The commonly used 

Gemcitabine in patients with advanced pancreatic cancer shows a significant, but 

small survival benefit and primarily improves the health-related quality of life of 

patients (Schneider et al., 2005). So far newer compounds have shown virtually no 

improvement in survival. Because the substances that have reached the clinical 

arena had previously shown promising therapeutic efficacy in in vitro cell culture 

systems as well as in in vivo xenograft models, it has to be adopted that such 

preclinical tests do not adequately simulate the complexity of the disease (Mazur and 

Siveke, 2012; Olive and Tuveson, 2006). This finding is not surprising, since the 

PDAC is characterized by a high rate of chromosomal instability with very 

heterogeneous genetic changes, high chemical resistance, very strong fibrosis as 

well as low vascularization and immunogenic activity. Since genetically engineered 

mouse models (GEMMs) are now available that are extremely similar to the 

carcinogenesis of human carcinoma, both the complex carcinogenesis and the 

pharmacological method of action of potential therapeutic substances can be 

evaluated in preclinical studies in a much more suitable manner. As an example of a 

non-clinical therapy platform, Singh et al. evaluated the utility of two state-of-the-art, 

mutant Kras-driven GEMMs - one of non-small-cell lung carcinoma and another of 

pancreatic adenocarcinoma - by assessing responses to existing standard-of-care 

chemotherapeutics, and subsequently in combination with EGFR and VEGF 

inhibitors (Singh et al., 2010). Comparisons with corresponding clinical trials indicated 

that these GEMMs model human responses well and these data built the foundation 

for the use of validated GEMMs in predicting outcome and interrogating mechanisms 

of therapeutic response and resistance. 

Human PDAC develop lesions usually from premalignant PanIN (intraepithelial 

pancreatic neoplasia) and IPMN (intraductal papillary mucinous neoplasia). In the 

endogenous PDAC mouse model used in this study (CKP) the combined pancreas-

specific recognition of a constitutively active Kras with G12D mutation and a deletion 

of p53 lead to the accelerated formation of invasive pancreatic carcinoma from PanIN 

lesions (Bardeesy et al., 2006). Pancreas-specific Cre secures that Kras and p53 are 

induced only in the pancreas. Normally, in this so-called “CKP” model the formation 
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of tumors begins 4 - 6 weeks after birth and the life span of mice usually does not 

exceed 60 days. Therefore, the life-prolonging effect of potential test substances in 

these mice can be determined very easily. In addition, the rapidly growing tumors 

show significant fibrosis similar to human tumors, which is regarded as an obstacle to 

effective availability of agents within the tumor. 

With regard to further development of the NIS gene therapy concept towards 

clinical application with the main challenge of sufficiently high tumor-specific NIS 

expression after systemic vector application, the genetically engineered PDAC 

mouse model is a highly interesting preclinical model to test the potential of synthetic 

polyplexes that have recently shown promising results in subcutaneous xenograft 

mouse models (Klutz et al., 2009; Klutz et al., 2011a; Klutz et al., 2011b). Based on 

the high expression levels of EGFR in the PDAC model, we chose the EGFR-

targeted LPEI-PEG-GE11 polymers (Klutz et al., 2011a; Li et al., 2005). We first 

investigated transduction efficiency and EGFR-specificity of LPEI-PEG-GE11 

polymers in vitro in tumor cells derived from PDAC explant cultures. After 

transduction with LPEI-PEG-GE11/NIS, the high EGFR-expressing PDAC cells 

showed significant perchlorate-sensitive accumulation of radioiodine, which was 

significantly reduced after transduction with non-targeted LPEI-PEG-Cys/NIS, 

thereby representing improved transduction efficiency by the use of the targeting 

ligand GE11. EGFR-specificity of targeting was further demonstrated in EGFR-

negative PDAC explant cultures derived from CKP-EGFRKO mice that showed no 

significant difference between transduction with EGFR-targeted or non-targeted 

vectors. As additional control, in vitro transduction with the empty vector LPEI-PEG-

GE11 led to no significant iodide accumulation above background level, thereby 

corroborating that accumulation of radioiodine is indeed NIS-mediated. 

After successful demonstration of feasibility of transduction in vitro, the next 

question was whether tumor-specific transduction can also be achieved in vivo after 

systemic vector application. Intravenous administration of LPEI-PEG-GE11/NIS 

resulted in a significant tumor-specific iodide uptake in mice bearing endogenous 

PDAC tumors, as demonstrated by 123I gamma camera imaging. The uptake was 

shown to be perchlorate-sensitive and of a magnitude that is comparable to what we 

have observed in previous xenograft studies using the same vector construct (Klutz 

et al., 2011a). Pancreatic tumors accumulated approx. 7-10 % ID/g with an average 

biological half-life of 4.5 h. Quantification of the tumoral radioiodine uptake was more 
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challenging in this endogenous tumor model due to partial overlap of the pancreatic 

tumor with the radioiodine accumulating stomach on 2-dimensional gamma camera 

images. Therefore, after the proof-of-principle of polyplex-mediated tumor-selective 

NIS gene transfer by gamma camera imaging, 124I PET imaging was employed as a 

more detailed high resolution 3-dimensional imaging technique with increased 

sensitivity and resolution. Mice injected systemically with LPEI-PEG-GE11/NIS were 

confirmed to accumulate high levels of radioiodine in endogenous tumors. Analysis of 

mice at different time points after NIS gene transfer demonstrated maximal tracer 

uptake 48 h after NIS gene transfer. Control experiments with LPEI-PEG-

GE11/antisense-NIS showed no significant tumoral radioiodine accumulation above 

background level and thereby confirmed LPEI-PEG-GE11/NIS to cause NIS-specific 

tumoral tracer uptake. These molecular imaging data were further corroborated by 

NIS-specific immunohistochemistry as well as qPCR analysis. 

High resolution and a certain degree of sensitivity is a crucial prerequisite of 

functional molecular imaging of NIS expression using 3-dimensional imaging 

techniques (Baril et al., 2010; Richard-Fiardo et al., 2011). To further improve 

resolution and sensitivity of PET-imaging of NIS expression, [18F]-TFB, a well-known 

substrate of NIS, had recently been characterized as PET-imaging agent (Jauregui-

Osoro et al., 2010; Weeks et al., 2011) with significantly improved imaging 

characteristics and resolution as compared to 124I. This is particularly important for 

systemic NIS gene delivery approaches in orthotopic and metastatic tumor models 

with low volume disease and/or overlap with organs that physiologically accumulate 

iodide, in particular stomach. 

In a next step we have evaluated the therapeutic effectiveness of 131I in this 

genetically engineered PDAC mouse model after LPEI-PEG-GE11-mediated 

systemic NIS gene delivery and in preliminary results we were able to demonstrate a 

strong reduction in tumor growth after application of 3 to 4 cycles of LPEI-PEG-

GE11/NIS followed by 55.5 MBq 131I 48 h later. 

In conclusion, our data clearly show the high potential of EGFR-targeted 

nanoparticle vectors for targeting the NIS gene to PDAC in a genetically engineered 

mouse model. Based on the role of NIS as potent and well characterized reporter 

gene allowing non-invasive imaging of functional NIS expression, this study allowed 

detailed characterization of in vivo biodistribution of functional NIS expression by 123I 

gamma camera imaging as well as 124I PET imaging, which is an essential 
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prerequisite for exact planning and monitoring of clinical gene therapy trials with the 

aim of individualization of the NIS gene therapy concept in the clinical setting. In a 

first therapy study, tumor-specific iodide accumulation was further demonstrated to 

be sufficiently high for a remarkable reduction of tumor growth in genetically 

engineered mice after three to four cycles of polyplex application followed by 131I 

therapy. Although the results will certainly have to be confirmed in a larger series, the 

data gained so far clearly demonstrate feasibility of the use of a genetically 

engineered mouse model of PDAC to predict the outcome and therapeutic response 

of systemic nanoparticle-mediated NIS gene therapy. This study therefore opens the 

exciting prospect of NIS-targeted radionuclide therapy of pancreatic ductal 

adenocarcinoma using EGFR-targeted polyplexes for systemic NIS gene delivery. 
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6. Summary 

The sodium iodide symporter (NIS) represents one of the oldest and most 

successful targets for molecular imaging and targeted radionuclide therapy. The 

capacity of the NIS gene to induce radioiodine accumulation in non-thyroidal tumors 

has been investigated in a variety of tumor models and the enormous potential of NIS 

as novel reporter and therapy gene has been convincingly demonstrated. However, 

one of the major hurdles on the way to efficient and safe application of the NIS gene 

therapy concept in the clinical setting, in particular in metastatic disease, is optimal 

tumor-specific targeting in the presence of low toxicity and high transduction 

efficiency of gene delivery vectors, with the ultimate goal of systemic vector 

application. 

In the course of this thesis, the establishment and characterization of novel 

tumor-targeted adenovirus-based gene delivery vectors for the purpose of systemic 

NIS gene therapy in a liver cancer xenograft mouse model as well as systemic non-

viral NIS gene therapy in a genetically engineered mouse model of pancreatic ductal 

adenocarcinoma are reported. 

In a first step, tumor selectivity and transduction efficacy of a genetically 

engineered replication-selective oncolytic adenovirus have been evaluated, in which 

E1A is driven by the AFP promoter and NIS is inserted in the E3 region driven by the 

replication-dependent E3 promoter (Ad5-E1/AFP-E3/NIS). The use of NIS as reporter 

gene provided us with the possibility of non-invasive imaging of vector biodistribution 

as well as monitoring of biodistribution, level and duration of transgene expression 

after local application of Ad5-E1/AFP-E3/NIS in a xenograft mouse model of 

hepatocellular carcinoma (HCC). The application of NIS as reporter gene confirmed 

high tumor-selectivity of virus replication as well as high transduction efficacy of Ad5-

E1/AFP-E3/NIS after local intratumoral injection, which also resulted in a significant 

reduction of tumor growth due to strong oncolytic activity in HCC xenografts 

(virotherapy). Moreover, combination of oncolytic virotherapy with radioiodine 

treatment (radiovirotherapy) led to an additional reduction of tumor growth that 

resulted in markedly improved survival as compared to virotherapy alone. These data 

clearly demonstrated that tumor-specific NIS gene transfer using a replication-

selective adenoviral gene delivery vector allows for targeted NIS-mediated, imaging-

guided radionuclide therapy of extrathyroidal tumors, which enhances the therapeutic 

effect of oncolytic virotherapy and proves its potential for clinical application. 
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With respect to the major hurdles for clinical application of systemic 

adenovirus-mediated gene therapy, we have investigated the potential of adenovirus 

surface coating with synthetic dendrimers to detarget adenoviral vectors away from 

the liver towards tumor-specific targets after systemic application. For this purpose, 

we first coated a replication-deficient adenovirus carrying the NIS gene under the 

control of the CMV promoter (Ad5-CMV/NIS) with poly(amidoamine) dendrimers 

(PAMAM-G5) and studied its biodistribution using NIS as reporter gene. 123I γ-camera 

imaging showed high levels of radioiodine accumulation in the liver of mice after i.v. 

injection of Ad5-CMV/NIS, which was significantly reduced by 70% after i.v. injection 

of dendrimer-coated virus particles. Inhibition of adenovirus liver pooling resulted in 

increased tumoral transduction efficiency as demonstrated by increased levels of 

tumoral iodide uptake after i.v. virus application. In a next step, we coated the 

replication-selective Ad5-E1/AFPE3/NIS and performed biodistribution analysis after 

i.v. injection in the HCC xenograft mouse model using 123I-scintigraphy. Serial 123I γ-

camera imaging showed significantly higher levels of tumor-specific iodide 

accumulation, which resulted in a significant delay in tumor growth in contrast to 

uncoated virus demonstrating, that dendrimer coating is very effective in increasing 

the load of viable virus reaching peripheral tumors by decreasing liver pooling. These 

results indicate that non-covalent coating of adenoviral vectors with synthetic 

dendrimers shows high promise for effective adenovirus liver detargeting and tumor 

retargeting taking advantage of the merge of non-viral and viral vector technology, 

and therefore has the potential to improve current systemic gene delivery and tumor 

targeting strategies. It represents an innovative strategy to optimize efficacy and 

safety of systemic NIS gene delivery that allows imaging and radiovirotherapy of non-

thyroidal cancers exploiting synergies between oncolytic virotherapy and NIS-

mediated radionuclide therapy. 

To further improve shielding and targeting of adenovirus-based vectors, we 

physically coated replication-selective adenoviruses carrying the hNIS gene with a 

conjugate consisting of cationic poly(amidoamine) (PAMAM) dendrimer linked to the 

peptidic, epidermal growth factor receptor (EGFR)-specific ligand GE11. In vitro 

experiments demonstrated CAR-independent but EGFR-specific transduction 

efficiency. Systemic injection of the uncoated adenovirus in a HCC xenograft mouse 

model led to high levels of NIS expression in the liver due to hepatic sequestration, 

which were significantly reduced after coating as demonstrated by 123I-scintigraphy. 
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Evasion from liver pooling resulted in decreased hepatotoxicity and increased 

transduction efficiency in peripheral xenograft tumors. 124I-PET-imaging confirmed 

EGFR specificity by significantly lower tumoral radioiodine accumulation after 

pretreatment with the EGFR-specific antibody cetuximab. A significantly enhanced 

oncolytic effect was observed following systemic application of dendrimer-coated 

adenovirus that was further increased by additional treatment with a therapeutic dose 

of 131I. These results demonstrate that we successfully developed new adenovirus-

based vectors by EGFR-targeted dendrimeric surface modification that retained the 

superior characteristics of dendrimer coating and additionally improved its 

biodistribution and selective transduction efficiency of peripheral tumor tissues upon 

systemic vector administration by EGFR-specific targeting. The ability of the coated 

vector to improve NIS gene delivery to EGFR-expressing tumor cells, combined with 

its reduced hepatic tropism and toxicity profile highlights its potential as a prototype 

virus for future clinical investigation and warrants further investigation in more 

advanced tumor models. 

Genetically engineered mouse models with endogenous tumors may be more 

suitable to predict the clinical effectiveness of a specific cancer treatment. As a 

logical consequence of the proof-of-principle studies in xenograft-bearing mice and 

as a next step towards clinical application of the NIS gene therapy concept, we 

investigated tumor specificity and transduction efficiency of tumor-targeted 

polyplexes as systemic NIS gene delivery vehicles in an advanced genetically 

engineered mouse model (GEMM) of pancreatic ductal adenocarcinoma (PDAC). For 

this purpose, we used tumor-targeted polyplexes based on linear polyethylenimine 

(LPEI), shielded with polyethylene glycol (PEG), and coupled with the EGFR-specific 

peptidic ligand (LPEI-PEG-GE11) to target a NIS-expressing plasmid to the high 

EGFR-expressing PDAC. In vitro iodide uptake studies with cell explants derived 

from murine EGFR-positive and EGFR-knockout PDAC lesions demonstrated high 

transduction efficiency of LPEI-PEG-GE11/NIS as well as EGFR-specificity of 

targeting. In vivo 2-dimensional 123I γ-camera and 3-dimensional high-resolution 124I-

PET imaging experiments were performed at different time points after systemic 

EGFR-targeted NIS gene transfer and showed significant tumor-specific 

accumulation of radioiodine in the pancreatic tumors of mice, that is expected to 

result in a therapeutic effect of 131I. In first therapy studies a strong reduction of tumor 
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growth was demonstrated after NIS-mediated radioiodine treatment that will have to 

be confirmed in ongoing therapy studies in a larger series. 

In conclusion, the data reported in this thesis clearly demonstrate the high 

potential of local and particularly systemic NIS gene therapy using targeted 

adenoviral, synthetic and combined gene transfer vehicles, opening the exciting 

prospect of clinical application of targeted NIS-mediated radionuclide therapy of non-

thyroidal cancers, even in the metastatic stage. 
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