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Abstract

The construction of manifold structures and fundamental classes on the (com-
pactified) moduli spaces appearing in Gromov-Witten theory is a long-standing
problem. Up until recently, most successful approaches involved the imposi-
tion of topological constraints like semi-positivity on the underlying symplectic
manifold to deal with this situation. One conceptually very appealing approach
that removed most of these restrictions is the approach by K. Cieliebak and K.
Mohnke via complex hypersurfaces, [CM07]. In contrast to other approaches
using abstract perturbation theory, it has the advantage that the objects to be
studied still are spaces of holomorphic maps defined on Riemann surfaces.

In this thesis this approach is generalised from the case of surfaces of genus 0
dealt with in [CMO07] to the general case.

In the first section the spaces of Riemann surfaces are introduced, that take
the place of the Deligne-Mumford spaces in order to deal with the fact that the
latter are orbifolds. Also, for use in the later parts, the interrelations of these
for different numbers of marked points are clarified.

After a preparatory section on Sobolev spaces of sections in a fibration, the
results presented there are then used, after a short exposition on Hamilto-
nian perturbations and the associated moduli spaces of perturbed curves, to
construct a decomposition of the universal moduli space into smooth Banach
manifolds. The focus there lies mainly on the global aspects of the construction,
since the local picture, i.e. the actual transversality of the universal Cauchy-
Riemann operator to the zero section, is well understood.

Then the compactification of this moduli space in the presence of bubbling is
presented and the later construction is motivated and a rough sketch of the
basic idea behind it is given.

In the last part of the first chapter, the necessary definitions and results are
given that are needed to transfer the results on moduli spaces of curves with
tangency conditions from |[CMO07|]. There also the necessary restrictions on the
almost complex structures and Hamiltonian perturbations from [[P03] are in-
corporated, that later allow the use of the compactness theorem proved in that
reference.

In the last part of this thesis, these results are then used to give a definition of
a Gromov-Witten pseudocycle, using an adapted version of the moduli spaces
of curves with additional marked points that are mapped to a complex hyper-
surface from [CMO7]. Then a proof that this is well-defined is given, using the
compactness theorem from [IP03] to get a description of the boundary and the
constructions from the previous parts to cover the boundary by manifolds of
the correct dimensions.






Zusammenfassung

Die Konstruktion von Mannigfaltigkeitsstrukturen und Fundamentalklassen auf
den in der Gromov-Witten Theorie auftretenden (kompaktifizierten) Modulrdumen
ist ein lange wahrendes Problem. Bis vor kurzem beinhalteten die meisten erfol-
greichen Losungsansitze die Auferlegung topologischer Einschrankungen, wie
zum Beispiel Semipositivitdt, an die dem Problem zu Grunde liegende sym-
plektische Mannigfaltigkeit. Ein konzeptuell sehr interessanter Zugang der die
meisten dieser Einschrankungen unnétig machte ist der Zugang von K. Cieliebak
und K. Mohnke mit Hilfe komplexer Hyperflachen, [CMO7]. Im Unterschied zu
anderen Zugangen unter Verwendung von abstrakter Storungstheorie hat dieser
den zusatzlichen Vorteil dass die betrachteten Objekte immer noch Rdume holo-
morpher Abbildungen auf Riemannschen Fléachen sind.

In dieser Arbeit wird dieser Zugang von der Betrachtung von Flachen von
Geschlecht 0 auf den allgemeinen Fall verallgemeinert.

Im ersten Abschnitt werden die Rdume von Riemannschen Flachen eingefiihrt
die die Stelle der Deligne-Mumford Radume einnehmen, um mit der Tatsache
umgehen zu kénnen dass die letzteren Orbifaltigkeiten darstellen. Des weiteren
werden zur spateren Verwendung die Beziehungen zwischen diesen Rdumen fiir
unterschiedliche Anzahlen von markierten Punkten beleuchtet.

Im Anschluss an einen vorbereitenden Abschnitt {iber Sobolev Rdume von
Schnitten in einer Faserung werden diese Resultate dann, nach einer kurzen
Darstellung iiber Hamiltonsche Stérungen und die zugehérigen Modulraume
gestorter Kurven, verwendet um eine Zerlegung des universellen Modulraums
in glatte Banachmannigfaltigkeiten zu konstruieren. Der Blick wird hierbei vor
allem auf die globalen Aspekte der Konstruktion gerichtet, da das lokale Bild,
d. h. die eigentliche Transversalitdt des universellen Cauchy-Riemann Operators
gut verstanden ist.

Danach wird die Kompaktifizierung dieses Modulraumes unter Beriicksichti-
gung der Blasenbildung vorgestellt und die spéatere Konstruktion wird motiviert
sowie ein grober Umriss der zugrundeliegenden Idee gegeben.

Im letzten Teil des ersten Kapitels werden die benétigten Definitionen und
Ergebnisse fiir die Ubertragung der Resultate aus [CMO7] prisentiert. Ebenfalls
werden dort die notwendigen Einschriankungen an die fast komplexen Struk-
turen und Hamiltonschen Storungen aus [IP03| beriicksichtigt, die spéter die
Verwendung des dort bewiesenen Kompaktheitssatzes ermoglichen.

Im letzten Teil dieser Arbeit werden diese Resultate verwendet um eine Def-
inition eines Gromov-Witten Pseudozykels zu geben, unter Verwendung einer
angepassten Version des Modulraumes von Kurven mit zuséatzlichen markierten
Punkten die in eine komplexe Hyperfliche abgebildet werden, wie in [CMOT].
Hierauf wird ein Beweis gefithrt dass dies wohldefiniert ist, unter Verwen-
dung des Kompaktheitssatzes aus [IP03| fiir die Beschreibung des Randes wie



auch unter Verwendung der Ergebnisse der vorhergehenden Abschnitte um eine
Uberdeckung des Randes mit Mannigfaltigkeiten der korrekten Dimension zu
erhalten.
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CHAPTER 1

Introduction

A much studied question in contemporary symplectic geometry concerns the
existence of holomorphic curves. In its simplest form, this means that given
a closed symplectic manifold (X,w) and an w-compatible (or tame) almost
complex structure J on X, as well as a Riemann surface (.5, j) and a homology
class A € Hy(X), does there exist a holomorphic map u : S — X, i.e. Jo
du = du o j, that represents the homology class A (if A = 0, then a trivial
answer to this question is provided by the constant maps)? The usual strategy
to answer this question is the following: Find a way to “count” holomorphic
curves (in homology class A) for a set of almost complex structures on X that
are dense (at least in a connected neighbourhood of the given J) in J,(X)
(the set of w-compatible almost complex structures on X) and in a way that
is invariant under deformations of the almost complex structures. Invariance
here means that for a homotopy/deformation (J;)ic[o,1), the counts of Jo- and
of Jj-holomorphic curves coincide. Then by Gromov’s compactness theorem,
cf. [Hum97] and the references therein, one can conclude the existence of an,
although broken, J-holomorphic curve. The way this question is studied is
usually the following;:

Fix numbers g,n € Ny with 2g —2+n > 0. Then (see Definitions and

for the notation used in the following)

Mg n(X, A, J):={(S, 4,7, u) | (S,7,7«) smooth marked Riemann surface
of type (g,n), u: S — X j-J-holomorphic,
[u] = A}/~,

where (S, j, 7, u) ~ (S, 7,7, u) iff there exists a diffeomorphism
¢ € DIff((S, 7,74), (S, 4, r.)) with ¢*u’ = . This comes with two maps

ev:Mgn(X, A J)— X"
[(S, 74, 7,u)] = [u(r1), ... u(ry)],
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and

N Myn(X, A, J) = My,
[(S, 7, e, w)] = [(S, 7, 74)];

where My, is the moduli space of smooth marked Riemann surfaces of type
(g,n), defined by

Mgy, ={(S,4,7+) | (S,j,7«) smooth marked Riemann
surface of type (g,n)}/~,

where (S, j,7.) ~ (S, 7', r,) iff Diff((S, j,7«), (S, 5',7%)) # 0.

“Counting invariant under deformations” then usually refers to the question of
whether, for a dense subset of J in J.,(X), My (X, A, J) is an oriented manifold
of a certain expected dimension that carries a fundamental class s. t.

X ev: Myn(X, A, J) = My, x X" (1.1)

defines a (singular or otherwise) chain and hence homology class in the image.
One asks that for any two such almost complex structures Jy, J1 there exists a
deformation (Ji)ep,1) 8-t Usepo,) Mgin (X, A, Ji) defines a cobordism between
Mgn(X, A, Jy) and My (X, A, J1) that via ﬂﬂj‘fl x ev induces a chain equiva-
lence between the chains defined by these two spaces so that the corresponding
homology classes coincide. Assuming that one can construct a well-defined ho-
mology class in this way, one would then like to use Poincaré-duality in the
image, in the form of intersection theory in homology, to define numerical in-
variants.

Unfortunately none of the above is true if taken literally. The two most bla-
tantly obvious reasons the above can’t work (for any X') are that neither is My,
a manifold nor is it compact, so one can’t expect there to be Poincaré-duality
in singular homology. This also applies, e.g. by taking X to be a point, to
My n(X, A, J), since in general only closed oriented manifolds can be expected
to carry a fundamental class in singular homology.

To fix the second problem, one has to compactify M, and My, (X, A, J). For
M., this is done via the Deligne-Mumford compactification

Mg :={(S,j,re,v) | (S, 4,7, v) stable marked nodal
Riemann surface of type (g,n)}/~,

where (S, 7,7, v) ~ (S, 5,7, V) iff Diff((S, 4, r«,v"), (S, 5,7, V")) # 0. The
compactification of My (X, A, J) by Gromov is a more difficult concept that
requires some more preparation. But a first step is to define the moduli space
of nodal holomorphic curves in X,

My n(X, A, J) :={(S, j,r,v,u) | (S,j, 74, ) stable marked nodal Riemann surface
of type (g,n), u: S — X j-J-holomorphic,
u(n1) = u(n2) V{ni,n2} € v, [u] = A}/,



where (S, 7y, j,v,u) ~ (S',7l, 7,V u') iff there exists a diffeomorphism ¢ €
Diff ((S, 4, r«,v), (S, 7', 7, V) with ¢*u' = w.
Analogously to before there are then also canonical extensions

s Myn(X, A, J) = My,
and
ev: Myn(X,A,J) — X"

This still leaves the first problem, namely that (for g > 1) M, (as well as
My, ;) is not a manifold but only a complex orbifold, as is shown in [RS06]. So
M, (as a topological space) can be decomposed in two ways: By signature,
i.e. by homeomorphism type of the underlying surface, and via the stratifica-
tion coming from the orbifold structure. Since the morphisms in the groupoids
(from [RS06]) defining the orbifold structure are given by ismorphisms of nodal
surfaces, which in particular preserve the signature, this stratification is com-
patible with the decomposition by orbit type. More explicitely, if as in [RS06],
esp. Definitions 6.2 and 6.4, (7 : ¥ — M, R,) is a universal marked nodal family
of type (g,n) and (M,T',s,t,e,i,m) is the associated groupoid, then M has a
stratification by locally closed submanifolds. Here, two points b,b" € M lie on
the same stratum iff 3, and X; have the same signature (as marked nodal Rie-
mann surfaces). If an orbit of the groupoid structure on M intersects a stratum
of this stratification, then it is completely contained in that stratum. Although
this gives M, ,, a stratification with a connected top-dimensional stratum and all
other strata of codimension at least two, this does not suffice to have Poincaré-
duality in singular homology (examples for this can be found e.g. in [Mac90]).
The standard way, started in [Mum83|, to remedy this is to regard instead of
M g,n» certain closed complex manifolds M i with maps 7 : M — M g,n that
are, in a certain sense, branched coverings (for existence results, see e. g. [LLo094]
or [BP0O0] and the references therein). Since one of the goals in this text is to
keep to manifolds and smooth maps, esp. to the description of M, provided
in [RS06], it is hard to make this precise. But at least the part M* of such a
manifold 7" that maps to My, € M, has an easy description: Remembering
that if T, denotes Teichmiiller space and Iy ,, denotes the mapping class group
(both of smooth surfaces of type (g, n)), then My, = Ty /r, .. fT* C Ty, isa
finite index normal subgroup that operates freely on T, ,,, then M A= g/ r),

is a smooth manifold on which the finite group G* := Lyn /Fén operates and
the canonical projection M* = Tgvn/FQn — (Tg,n/rg Ver = Tgn/ry,, = Mgn

is an orbifold covering. Now assume that such a manifold M = M has been
picked and let v : M — Mg n be the projection.

This requires to also modlfy the definition of M, (X, A, J), for there is no a
priori reason for the map 7rM : Mgn(X AJd) — Mgn to factor through M.
Also, since the goal is to define a manifold of maps, it stands to reason to first
of all fix the domains on which the maps that are the elements of this mani-
fold are defined. Since Mg,n contains equivalence classes of surfaces of different
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homeomorphism types, one first of all has to define a notion of smooth fam-
ily of such nodal surfaces. The notion used in this text is that of a (regular)
marked nodal family of Riemann surfaces as in [RS06]. So the goal is not only
to have a manifold M as above together with a map v : M — M, but for
this map to be defined via a regular marked nodal family of Riemann surfaces
(r: ¥ — M,R,) i.e. the map v : M — M,, is supposed to map b € M to
the equivalence class of the fibre ¥ of X over b. Or, in the reverse direction,
(m:¥ — M, R,) is a smooth choice of a marked nodal Riemann surface in the
equivalence class v(b) for each b € M. Collecting the basic definitions for and
properties of such families is done at the beginning of this thesis in Section
Aside from this, that section also contains two results, Propositions and
that are not found in [RS06], but will be important in the later parts of
this text, esp. in the definition of the Gromov compactification in Section [[T.4]
Namely first there is a natural operation on a stable marked nodal Riemann
surface of type (g,n + 1), that forgets the last marked point and stabilises,
i.e. contracts every component that becomes unstable after removing the last
marked point. This provides a well-defined map

n+l . A7 AT
fstab : Mg’"JFl - MQ»"'

And second, there is an action
Sy X Mgp — Mgn

of the permutation group §,, of {1,...,n} on Mg,n by permuting the labels of
the marked points of a marked nodal Riemann surface. The question addressed
in Propositions and then is, assuming that for every n a marked nodal
family (7™ : X" — M"™, R") with induced map v" : M™ — M, as above has
been chosen, of whether or not one can lift these maps and actions to smooth
ones on the manifolds M"™ which are covered by bundle morphisms on the ¥,
i.e.

yntl —— = 3 Sy X X ——= 3"
W"*ll lﬂ'” idXﬂ”J/ lﬂ-”
M ——— A7 Sp x M" ——> )"
U”+1l iv" idxv"l lv"
_ foar . !
Mg,n—i—l — Mg,n Sp X Mg,n - Mg,n

This has the additional advantage that along the way the question of existence of
the regular marked nodal family of Riemann surfaces (7 : ¥ — M, R,) defining
v is reduced to the case n = 0 and given such a choice, for all other values
of n there is then a natural one. Also, it gives concrete differential-geometric
meaning to the adages that “the universal curve over M, , is isomorphic to
Mgmﬂ” and that adding marked points to a marked nodal Riemann surface
kills automorphisms and doesn’t add new ones. Section concludes with
a remark about the construction of invariants, given the data that has been
established so far.



Now given a nodal family of marked Riemann surfaces (7 : ¥ — M, R,), one
can for b € M and a desingularisation 7 : S — ¥ C 3 make the definition

My(2, X, A,J) =={u:% — X |i*u: S — X is j-J-holomorphic, [u] = A},

M(Z, X, A, J) = H My(2, X, A, J).
beM

The important difference to the definitions from before is that the elements of
M(X, X, A, J) now are actual maps defined on the fibres of ¥ and not equiv-
alence classes of maps any more (“all automorphisms have been fixed”). By
definition there are canonical maps

M(E, X, A, J) —= My (X, A, J)

|

M M.

Now that one has an actual set of maps to work with, there is a better chance
to equip this set with a manifold structure using the usual methods from the
Fredholm-theory of the Cauchy-Riemann operator.

To do so, in Section[[T.2]the technical results needed for this are presented. That
section is largely independent of the rest of the text. It mainly deals with the
necessary analytical results that need to be proved in order to be able to give a
rigorous definition of Banach manifolds of sections of a Riemannian submersion.
It is actually easily possible to skip that section and just take notice of the main
results in Subsection In case of a trivial (topologically and geometrically)
bundle, i. e. when dealing with maps from one Riemannian manifold to another,
this has been done e. g. in [Eic07]. It is most likely actually possible to use this
to define spaces of sections via the implicit function theorem as subspaces of
the space of maps from the base to the total space that when composed with
the projection to the base give the identity. This is not done here in this way
for a couple of reasons. For one, it is usally nicer to have intrinsic definitions
that make use of a naturally given structure instead of making noncanonical
choices and these results may be of independent interest. Also, when done as
suggested above, one does not get an explicit description for the charts on this
manifolds. First, this makes it harder to calculate the coordinate expressions
and their linearisations, of the Cauchy-Riemann operator. And second, charts
on the moduli space of holomorphic sections as zero set of the Cauchy-Riemann
operator are now given via the implicit function theorem applied to an operator
defined on a manifold that is defined via the implicit function theorem itself.
When dealing with questions of elliptic regularity which constitute a large part
of the construction of the manifold structure on the moduli spaces of curves
studied later, this causes some unwanted complications, since one has to com-
pare Sobolev spaces of different types. The intrinsic definition from Section
on the other hand allows for rather straightforward proofs, which usually
boil down to calculating some coordinate expression and then applying some
result from the theory of linear Cauchy-Riemann operators (on vector bundles).
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The fact that all the manifolds of sections constructed are subsets of the same
topological space and the manifold structures are all defined using transition
functions that all come from the set-theoretically same maps, then makes the
transition from these local coordinate calculations to global statements work.

Using this setup, in Section the construction of a smooth structure on
M(X2, X, A, J), or rather a generalisation of that space, is examined. First
of all, remember that on M there is the stratification by signature, where a
stratum is defined by the condition that the homeomorphism type of the fibres
does not change. Since general gluing results are quite difficult to prove and
outside of the scope of the methods employed in this text, smooth structures
will only be defined on the restrictions of the (universal) moduli spaces to these
strata. Over one of these strata the situation then basically can be reduced to
the consideration of a smooth fibre bundle p : S — B with typical fibre a fixed
smooth surface. Also, a smooth bundle endomorphism j : V.S — V.S (VS is the
vertical tangent bundle) with j? = —id is given, that turns every fibre S; into
a Riemann surface (S, jp), together with sections R; : B — S, i =1,...,n. If
this bundle is (topologically) trivial, then the construction follows the lines of
the discussion in [MS04] or [CMO07] rather closely: For a fixed Riemann surface
(i. e. the case where B is a point), one constructs the universal Cauchy-Riemann
operator w.r.t. an appropriately chosen Banach manifold of perturbations and
hence the universal moduli space just as in these references. At this point
some familiarity with (universal) Cauchy-Riemann operators, and this line of
argument via the Sard-Smale theorem is assumed. Since we allow surfaces of
arbitrary genus, this necessitates the use of Hamiltonian perturbations as in
Chapter 8 in [MS04]. For the constant maps are always holomorphic, w.r.t. to
any holomorphic structure on the target and it is easy to see that this also holds
for domain dependent complex structures as used in [CMQ7]. But the Fredholm
index of the Cauchy-Riemann operator at a constant map in the case of genus
greater than 1 is negative, which contradicts transversality. So instead of the
space M(X, X, A, J) one considers spaces M(X, A, J, H), where X 1= ¥ x X
is the trivial bundle and H is a Hamiltonian perturbation on X as defined in
Subsection [L.3.1] and the references therein.

If B is not a point but the bundle S over B is topologically trivial, then the
construction of the universal moduli space is essentially a parametrised version
of the previous one.

In the case of varying complex structures that is not dealt with in [MS04]
(which only deals with a fixed complex structure and varying marked points
and [CMOT] restricts to the genus 0 case, where there is essentially only one
complex structure) one has to consider the case of a topologically nontrivial
family of surfaces. The problem here is that there no longer is a globally defined
Banach manifold on which to define a universal Cauchy-Riemann operator (see
the explanation on page and the references there) due to the failure of the
diffeomorphism group of the base to act smoothly on the Sobolev spaces of
sections of a fibre bundle over that base. This requires one to patch together
universal moduli spaces obtained via a trivialisation after restricting to an open
subset of B “by hand”. This is done in the discussion leading up to Corollary



Similar but slightly less difficult problems also arise for the smoothness
of the evaluation maps at the varying marked points, which are dealt with in

Subsection [L.3.41

At that point, what one has achieved is the following: A universal moduli space
M(X, A, J,H(X)) has been defined that comes together with three maps

e M(X, A, J,H(
ev: M(X, A, J, H(

) = M,

X
X)) — X"

and

s M(X, A, J, H(X)) = H(X)

s.t. if B € M is a stratum of the stratification on M by signature then
(m7)~1(B) is a smooth Banach manifold and the restriction of 3 to (m3y) 1 (B)
is a Fredholm map of the correct expected index dimg (X )x+2¢; (A)+dimg (B),
where x is the Euler characteristic of the surfaces in the family ¥ (which is
21— g)).

Section [[T.4] then first of all equips this space with a topology that makes all
of the above maps continuous, which is basically a variation of the classical
Gromov topology.

Unfortunately, with this topology M(f( ,A,J, H) is not compact, due to the
well-known bubbling phenomena. Usually, these are dealt with by imposing
topological conditions like semipositivity on X, see e. g. [MS04], Section 6.4. In
[CMO7] a different approach was first introduced for the genus 0 case, which in
this text will be extended to the case of positive genus. To do so first of all a
description of the problem is given: Remember that there were the operations
of forgetting the last marked point and stabilising and permuting the marked
points on the Deligne-Mumford moduli spaces Mg,rw These lift to maps and
actions, for ¢ > ¢,

~0 N
LI ngEfLZE
WZ\L \Lﬂl idXﬂl\L lwe

~ ﬂ'g ot
ME—— M¢ 8¢ x Mt —— MY,

where 7¢ : ©¢ — M? is obtained from 7 : ¥ — M by adding ¢ > 0 additional
marked points. There are then induced maps

(R0) = (rf ) MRS X, A, J, () H(X)) — M((75)* X, A, J, (75)*F(X))
and actions

G 8 x M((FE)* X, A, J, (7E)*H(X)) = M((7E)* X, A, J, (7E)*H(X)).

Using these structures one can define the Gromov compactification M M(X, A, J,H(X))
of M(X, A, J,H(X)) as the colimit of the spaces M((#§)*X, A, J, (7§)* ( X))



8 Chapter I. Introduction

over the above maps and actions (cf. Definition and Remark [[L.11)). More
explicitely, this compactification consists of the union over all the spaces
M((78)*X, A, J, (7)*H(X)) for £ > 0, where two holomorphic sections u’ and
u” with domains Egi and E,‘;Z are identified if there exists the following: An
(> 0,0" and a b € M’ as well as a holomorphic section « with domain )4
s. t. Eg; is obtained from E£ by forgetting the last £ — ¢ marked points and the
corresponding map Eﬁ — Eii pulls v’ back to u. Also, after possibly reordering
the last ¢ marked points, Efx is obtained from Eﬁ by forgetting the last £ — ¢”
marked points and the corresponding map Eg — ng pulls u” back to u.

As before, M(X, A, J, 5(X)) comes with natural maps 73+ : M(X, A, J, H(X)) —
M and 7' : M(X, A, J, (X)) — H(X). Roughly, the transversality problem
then is that the Hamiltonian perturbations (7§)*H € (#§)*3((X) vanish on
ghost components, i.e. those components of ¥ that are mapped to a point
under 7?5 or equivalently those that become unstable after forgetting the last ¢
marked points. The solution to this problem, first applied in the genus 0 case
in [CMO07] and which will be extended to the present situation in the rest of
this text, can now roughly be described as follows:

Construct subsets K¢ C H((75)*X) of Hamiltonian perturbations, compat-
ible under 74 in the sense that (7§)*X‘ C X’ and for every ¢ sufficiently

large a subset NE(KY) C M((#0)*X, A, J,%%) with =0 (NC(KY)) C M’ (the
part corresponding to smooth curves, as in Section s.t. the closure of
NE(KE) in ﬂ((ﬁg)*f(,A, J, K%, which then in particular is compact, lies in
M((7§)*X, A, J, K.

Since over ]\o/[ ¢ fré is an isomorphism on every fibre, for every H € K there is
a well-defined map (7). : N((75)*H) — M(X, A, J, H) (the left-hand side is
defined in the obvious way) given by u ((ﬁé7b)_1)*u, where 7% (u) = b.
Then for generic H € K° the above will be s.t. N*((7#§)*H) is a manifold of
the correct dimension, invariant under the §-action and the map (#§). is an £I-
sheeted covering on the complement of a subset of codimension at least 2 (see
Lemma . For Hamiltonian perturbations of this form, apart from com-
pactness, unfortunately not much can be said about the closure of N*((7§)*H).
But for generic H € X! it will be shown that the boundary of N*(H) can be
covered by manifolds of real dimension at least 2 less than that of N*(H), which
suffices for the definition of a pseudocycle.

Roughly speaking, the N*(K*) will be defined as follows:

Under the assumption that [w] € H?(X;Z), N*(X*) and X* depend on a choice
of J € J,(X) and a closed J-complex submanifold ¥ C X of real codimension
2 with PD(Y) = D[w] for some integer D € IN. Then for ¢ := Dw(A), let
X=2x X, Y := 2! xY. The K’ then are spaces of Hamiltonian perturba-
tions on X* that are compatible with Y in a certain way, see Definition If

o [e]
¢ and M* denote the parts of X and M?, respectively, that correspond to the
smooth curves, then the N¢(X?) are defined to be those holomorphic sections

o ~
with domains in ¥¢ that map the last ¢ markings to Y.



One then has to show that the thus defined spaces Ne(fKe ) satisfy the properties
above. A major point in showing this is the positivity of intersection numbers
of a holomorphic curve with a complex hypersurface. Namely one can show
that a (connected) holomorphic curve either has only a finite number of inter-
section points with a complex hypersurface or is completely contained in the
hypersurface. Furthermore, at each intersection point, the holomorphic curve
is tangent to the hypersurface of some finite order k and each such intersection
point contributes by k + 1 to the (homological) intersection number. That all
this still holds in a suitable sense in the presence of a Hamiltonian perturbation
that satisfies suitable compatibility conditions is shown in Subsection [[T.4.2]
Since for a holomorphic curve u in the homology class A, [Y]-[u] =[Y]- A =
PD(Y)(A) = Dw(A) = ¢, it follows that if there are ¢ disjoint intersection
points, then these are unique up to reordering. So for H € K, N*((7§)*H) de-
fines an (!-sheeted covering of its image in M(X, A, J, H). To show that, after
a suitable perturbation, the complement of this image has codimension at least
2, one has to consider spaces of holomorphic curves that intersect Y in fewer
than ¢ points. But, as was stated above, these then need to have a tangency
of higher order at one of the intersection points. It was shown in [CMOQ7] that
these tangency conditions cut out, again after a suitable perturbation, subman-
ifolds of the moduli space of holomorphic curves that have the correct (i. e. high
enough) codimensions.

Another major point is that, extending a result from the same reference, one
can show that for suitably chosen Y, J and H, X‘(H) has compact closure
in M(X% A, J,H). The boundary of X(H) in M(X’ A,J,H) can then be
described in terms of nodal holomorphic curves that have some components
mapped into Y and some components intersecting the complement of Y in X.
Via a transversality argument, one then has to show that the spaces of such
curves can be covered by manifolds of codimension at least 2. To do so, one
first of all shows that, again for suitably chosen H, any component that lies in
Y needs to represent homology class 0.

In the genus 0 case this suffices, for a result in [CMO07] shows that one can
choose J s.t. any holomorphic sphere with image in Y is constant (which is
used in the proof of the compactness statement above). This means that one
can actually replace each such component with a point, i. e. such a curve factors
through a nodal curve with fewer components. It is then shown in [CMO7] that
this implies a tangency condition to Y for this curve which suffices to give the
necessary estimates on the dimension.

In the case of higher genus curves, this argument does not suffice for the fol-
lowing reason:

Assume the domain S of a curve in the boundary of N*(H) has several com-
ponents, some of which are mapped to Y, denoted by Siy , say, and the others,
denoted SJX , intersect Y only in a finte number of points. Then this curve lies
in a moduli space that is the subset, cut out by the matching conditions at the
nodes, of the product of the moduli spaces of curves defined on the SZ-Y with
target Y and of the moduli spaces of curves defined on the SJX with target X.
The reason one has to regard moduli spaces of curves in Y (naively, a curve in
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Y is in particular a curve in X) is that because of the compatibility condition
of the Hamiltonian perturbations with Y, one otherwise can’t achieve transver-
sality.

If the genus of Siy is le then the contribution to the dimension formula of the
moduli space of curve on S} in Y by the Riemann-Roch theorem is (for vanish-
ing homology class) given by dime(Y)(2—2g)) = dime(X)(2—-2g)) +2g) -2,
which is larger than that for curves in X. Hence although these moduli spaces
then cover the boundary of N(H), their dimensions are too large.

A further problem is that some of the additional ¢ marked point may lie on
a component that is mapped to Y. This means that the condition that these
marked points lie on Y does not provide for a nontrivial condition on these
curves and does not serve to cut down the dimension of the moduli space any
more.

The solution to this problem is to use an SFT-type compactness theorem, in
this text from [[P03], for related results see also [BEHT03|, esp. the “stretch-
ing of the neck” construction. This provides a more detailed description of the
boundary of N¢(H). The important consequence of this result here is that every
component that is mapped to Y comes together with a nonvanishing meromor-
phic section of the normal bundle of Y in X along the image of the curve. First
of all this provides an additional condition on the moduli spaces associated to
the parts of a curve that are mapped to Y, which serves to cut down the di-
mension by exactly the factors 2(1 — giY ) above by which these were too large.
Additionally, these meromorphic sections are known to have zeroes only at
the nodes and at the additional marked points and to have poles only at the
nodes. Also these satisfy the following matching conditions: If at a node, both
components of the curve that border on the node are mapped into Y and the
meromorphic section over one has a zero of order k, then the other has a pole
of order k£ and vice versa. If one component is mapped to Y and the other
intersects Y only in a finite number of points, then the meromorphic section
over the first has a pole of some order k and the other has a tangency to X at
the node of order k. Since every component in Y represents homology class 0,
the first Chern number of the pullback of the normal bundle to Y in X under
the holomorphic map vanishes. Hence the total order of the poles equals the
total order of the zeroes of a meromorphic section on every component. The
matching conditions above then imply that the total order of tangency to Y of
the part of the curve that is not mapped into Y is still given by £.
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Construction of smooth structures and the main
transversality results

I1.1 Families of complex curves

When regarding moduli spaces of holomorphic curves in a symplectic manifold,
where the complex structure on the domain is not fixed, as e.g. in [MS04],
Chapter 8, but is allowed to vary, before one can hope to define a smooth
structure on such a moduli space, first of all one has to decide on a smooth
space over which the complex structure on the domain is allowed to vary. To
a certain extent this is a matter of choice, the following constructions certainly
work for an arbitrary family p : S — B, where B is any manifold, S — B
is a smooth fibre bundle and j € I'(End(V'S)) is a smooth family of (almost)
complex structures on the vertical tangent bundle V'S = ker p, of S. On the
other hand, usually one would like to use the “universal family” of Riemann
surfaces of a given genus g and a given number of marked points n, the moduli
space Mg, of Riemann surfaces of genus g with n marked points, or to get
a compact moduli space, the Deligne-Mumford moduli space M, of nodal
Riemann surfaces. But unless one is in the genus g = 0 case, neither M, ,,
nor M, is a smooth manifold (not even a set in certain interpretations), but
depending on point of view an orbifold, Deligne-Mumford-stack, etc. To make a
definite choice in notation, without further qualification Mgm will always denote
the (compact Hausdorff) topological space underlying the Deligne-Mumford
orbifold. Then, at least locally, a function B — M, for a manifold B should
be given by a family of (nodal) Riemann surfaces of genus g over B together
with n sections defining the marking. Regarding Mg’n simply as the quotient
space of the groupoid with objects all nodal Riemann surfaces of genus g with n
marked points and morphisms biholomorphic maps that respect the markings,

11
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the map corresponding to a family simply maps a point in B to the equivalence
class of the fibre over b. The for the present purpose best way to make the
above precise can be found in [RS06] and hence all the notions of (proper étale)
Lie groupoid, (universal, marked) nodal family and related concepts used in
this text are exactly the ones from [RS06], Sections 2-6. More explicitely, the
following are the basic notions to be dealt with here, all taken from [RS06]:

Definition II.1.

1. A surface is a closed oriented 2-dimensional manifold S.

2. A nodal surface is a pair (S,v), consisting of a surface S together with a
set of unordered pairs

V= {{n},n%}, S {nclb ng}}

of pairwise distinct points, called the nodal points, n%, e ,nz € S. The
points n and n? defining one of the unordered pairs in v will be said
to correspond to the same node. Note that S in this definition is still a
smooth surface.

A surface S is considered as the nodal surface (S, 0).

3. A marked nodal surface is a triple (S, r«, v), where (S, v) is a nodal surface
and

Te = (T1,...,Tn)

is an ordered tuple of pairwise distinct points on S, called the marked
points, that are disjoint from all the nodal points.

The marked and nodal points are also called special points.

A nodal surface (S, v) is considered as the nodal surface (5,0, v).

4. The signature of a marked nodal surface (5,7, v) is the labelled graph
with vertices {S;}ics the connected components of S and for every pair of
nodal points n]l, n? corresponding to the same node an edge from S;, to
Si,, where njl € S;, and n? € S;,. Each vertex 5; is labelled by the genus

g; of S; and the subset {r; € {r,...,r,} | r; € S;}.

5. The Euler characteristic x(S,v) of a nodal surface (S,v) is defined as
the Euler characteristic of the smooth surface obtained by removing disk
neighbourhoods of each pair of nodal points corresponding to the same
node and gluing the resulting boundary components by an orientation
reversing diffeomorphism. If that same smooth surface is connected, then
(S,v) is called connected.

6. A marked nodal surface (.S, 7., v) is said to be of type (g,n), where g,n €
Ny, if (S, v) is connected, x(S,v) =2(1 — ¢g) and ry = (r1,...,75).
Its signature is then also said to be of type (g,n).

7. An isomorphism of marked nodal surfaces (S,r«,v) and (S’,r,,v') is an
orientation preserving diffeomorphism ¢ : S — S’ s.t. ¢(r.) = r}, and
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¢sv = V' in the sense that if r. = (r1,...,7,), then v, = (¢(r1), ..., ¢(r0))
and ¢ maps each pair of nodal points on S correponding to the same node
to a pair of nodal points on S’ corresponding to the same node.

An automorphism of (S, rs,v) is an isomorphism from this marked nodal
surface to itself.

The sets consisting of these will be denoted by Diff((S, r«,v), (S, 7, V"))
and Aut(S,r.,v) (which is a group), respectively.

Remark 11.1. 1. Two marked nodal surfaces are isomorphic iff their signa-
tures are isomorphic as labelled graphs.

2. If the number of pairs of nodal points of a marked nodal surface (S, 7., v)
is d € INg and {S;};cs are the connected components of S, then x(S,v) =
Yoicr X(Si) —2d =3, 2(1 — gi) — 2d, where g; is the genus of S;.

Definition II.2. 1. A marked nodal Riemann surface is a tuple (.S, j,7«, V)
consisting of a marked nodal surface (5,7, v) together with a complex
structure j € I'(End(T'S)), j2 = —id, that induces the given orientation
on S.

2. An isomorphism of marked nodal Riemann surfaces (S, j,r«,v) and
(S', 7,7, V") is an isomorphism ¢ of the marked nodal surfaces (S, 7., v)
and (S, r,, V) s.t. ¢.j = j'. The set of these will be denoted

Diff((S, 4, 74, v), (8, 5,7, v)).

An automorphism of (S, j, r«, v) is an isomorphism of this marked nodal
Riemann surface to itself. The group of automorphisms of (S, j, 7., v) will
be denoted by Aut(S, j, 7., v).

3. A marked nodal Riemann surface is called stable, if Aut(S, j, 7+, v) is finite.
This is the case iff every component of .S of genus zero contains at least
three special points and every component of S of genus one contains at
least one special point.

The signature of a stable marked nodal Riemann surface is called a stable
stgnature.

4. For g,n € No with n > 2(1 — g), as a set, the Deligne-Mumford moduli
space (of type (g,m)) Mgy is the set of isomorphism classes of stable
marked nodal Riemann surfaces of type (g,n).

Remark 11.2. That M, indeed is a set is shown by picking, for every isomor-
phism class of stable signature of type (g,n), a marked nodal surface of this
signature. There are only finitely many choices of ismorphism classes of stable
signatures of fixed type. For each such choice one then considers ismorphism
classes of complex structures on a fixed surface, which, as sections of a bundle,
form a set.

The above only defines M, as a set, so next a description of the smooth (or
holomorphic) structure is required. One way to define such a structure is by
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describing holomorphic functions from complex manifolds into Mg,n. Because
My, is supposed to serve as a kind of moduli space for marked nodal Rie-
mann surfaces, a holomorphic map into Mg,n should correspond to holomorphic
families of marked nodal Riemann surfaces, where by family of marked nodal
Riemann surfaces, the following is meant:

Definition II.3. 1. A marked nodal family of Riemann surfaces is a pair

(m: ¥ — B, R,), where ¥ and B are complex manifolds with dim¢(X) =
dimg(B) + 1, m : ¥ — B is a proper holomorphic map and R, =
(Ry,...,Ry) is a sequence of pairwise disjoint complex submanifolds of ¥
s.t. the following hold:
For every z € 3, there exist holomorphic coordinates (to,...,ts), s =
dimg(B) = dimg(X — 1), around z in ¥ and (vy,...,vs) around 7(z) in
B, mapping z to 0 € C**! and 7(z) to 0 € C%, respectively, s.t. in these
coordinates, 7 is given by either

(toy - ts) = (t1, .. ty) (IL1)
or

(to,...,ts) — (totl,tg,...,ts). (112)

In the first case, p is called a regular point, in the second case, p is called
a node of nodal point.

Furthermore, for each i = 1,...,n, 7|g, : Ri — B is assumed to be a
diffeomorphism. Each R; hence defines a section of = : ¥ — B, with
which it will usually be identified.

2. A desingularisation of a fibre (X, Ry ), for b € B and R, p := R, N, of
a marked nodal family of Riemann surfaces (7 : ¥ — B, R,) is a marked
nodal Riemann surface (5, j, r«, V) together with a surjective holomorphic
immersion ¢ : S — X, C X, that is an embedding from the complement of
the nodal points on S onto the complement of the nodes on ¥, and maps
every pair of nodal points on S corresponding to the same node to a node
on Y. Furthermore, if R, = (Ry,...,Ry), then r, = (r1,...,r,) and for
eachi=1,...,n, i(r;) =X, N R;.

3. A morphism between marked nodal families of Riemann surfaces (7 : ¥ —
B,R,) and (7' : ¥ — B’, R)) is a pair of holomorphic maps ¢ : B — B’
and @ : ¥ — Y s.t. 7 o® = pon : ¥ — B’. Furthermore, for every
b e B, if (S,j,7v) is a marked nodal Riemann surface and i : S — %
is a desingularisation of the fibre of % over b, then ®oi: 5 — E;(b) isa
desingularisation of the fibre of X’ over ¢(b).

4. The signature of a fibre (¥, Ry ), for b € B, of a marked nodal family
of Riemann surfaces (7 : ¥ — B, R,) is the (isomorphism class of the)
signature of a desingularisation of (X, Ry ).

(X, Ry p) is said to be stable (of type (g,n)), if a desingularisation of
(Xp, Ry p) is stable (of type (g,n)).
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(m: X — b, R,) is called stable (of type (g,n)), if every fibre is stable (of
type (g,7))-

The above is well-defined by Lemma 4.3 in [RS06], i. e. every fibre of a marked
nodal family of Riemann surfaces has a desingularisation and for any two desin-
gularisations of the same fibre, there is a unique isomorphism of the marked
nodal Riemann surfaces that commutes with the maps to the fibre.

Hence every stable marked nodal family of Riemann surfaces of type (g,n)
comes with a well-defined map to M, mapping a point in the base to the
isomorphism class of a marked nodal Riemann surface of a desingularisation
of the fibre over the point. The requirement that the maps obtained in this
way are smooth then gives a criterion by which one can define a topology on
Mg,ny namely the finest one s.t. all the maps of this form are continuous. This
abstract way of defining the topology does not provide a way to deal with the
usual questions of topology like the verification of the Hausdorff property, 27d-
countability and compactness. To deal with these, one singles out a special type
of stable marked nodal family that serve as charts for an orbifold structure on
Mg,n and define the topology as well:

Definition I1.4. Let (S, j, r«, v) be a stable marked nodal Riemann surface of
type (g,n). A (nodal) unfolding of (S, j,r«,v) is a stable marked nodal family
of Riemann surfaces of type (g,n) (7 : ¥ — B, R,) together with a point b € B
and a desingularisation 7 : S — ¥, C X of the fibre over b.

The unfolding is called universal, iff for every other nodal unfolding (7' : ¥/ —
B',R,),b € B',i' : S — Xj,, there exists a unique germ of a morphism (®, ¢) :
(m:X¥ = B,R,) — (7 : ¥ = B R,) s.t. $(b) =V and Poi=1.

Some of the main theorems from [RS06] can now be summed up as follows:

Theorem II.1. 1. A marked nodal Riemann surface admits a universal un-
folding iff it is stable.

2. If(m: ¥ — B,Ry),b€ B,i: S — Xy is a universal nodal unfolding of the
marked nodal Riemann surface (S, j,r«,v), then there exists a neighbour-

hood U C B of b s. t. it is a universal unfolding of every desingularisation
of every fibre Xy for b € U.

Definition I1.5. A local universal marked nodal family of Riemann surfaces of
type (g,n) is a stable marked nodal family of Riemann surfaces (7 : ¥ — B, R,)
of type (g, n) with the property that for every b € B and every desingularisation
i:S — 3 of ¥ by a stable marked nodal Riemann surface (S, j, r«, v) of type
(g,n), (m: X — B,R,),b,i:S — % is a universal unfolding of (S, j, 7, v).

If the canonical map B — Mg,n is surjective, then it is called a universal marked
nodal family of Riemann surfaces of type (g,n).

A further important result about universal unfoldings, apart from the existence
result above and uniqueness result built into the definition is that one can
actually give a fairly explicit construction for them. The relevant results can
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be found in the proof of Theorem 5.6 in [RS06], which comes in two parts, in
Section 8 in the proof of Theorem 8.9 for the case of a marked Riemann surface
without nodes and in Section 12 in the presence of nodes:

Construction II.1. 1. For a marked (nodal) Riemann surface (S, j,7s, ()
of type (g,n) with S connected and g > 2, one can choose (7 : ¥ —
B,R,),be€ B,i: S — ¥ in the following way:

e B =D39"1 x D" = P3lg—D+n,

b={0,0};

e X =B xS,

e The complex structure on ¥ is of the form Ty )% = T, B x 1,5 >
(X,€) = (iX, j(bo)€), for b= (b, (b1, ...,by)) € B =D3~D x D,
where i is the standard complex structure on D301 x D" and j :
D31 é] (S) is a holomorphic map to the set of complex structures
on S with 5(0) = j.

e The markings are of the form R;(b) = (b, ¢;(bo, b;)), for b = (bg, (b1,...,by)) €
B = D361 x D", where ti(bo,0) = r; and for every by € D3-1),
the ¢;(bg,-) : D — S are j(by)-holomorphic embeddings with pairwise
disjoint images.

2. For a marked (nodal) Riemann surface (S, 7,7, 0) of type (1,n) with S
connected and n > 1, one can choose (7 : X — B, Ry),b€ B,i: S — %
in the following way:

e B=D x Dl =p3l-b+n,

b={0,0};

e X =BxS,

The complex structure on X is of the form Tjy )X = T,B X T,.S >

(ng) = (ixaj(b0)£)7 for b = (b07 (bla .. '7bn71)) €eB=D >f Dn_l7

where i is the standard complex structure on D x D"~ and j : D —

J(S) is a holomorphic map to the set of complex structures on S

with 7(0) = j.

e The markings are of the form R;(b) = (b,r1) and for i = 2,...,n,
Rz<b) = (b, Li(bo,bi», for b = (bo,(bl,... ,bn)) € B=Dx ]anl,
where ¢;(by,0) = r; and for every by € D, the ¢;(bg,:) : D — S are
J(bp)-holomorphic embeddings with pairwise disjoint images that do
not contain 71 in their closures.

3. For a marked (nodal) Riemann surface (S, j,7«,0) of type (0,n) with S
connected and n > 3, one can choose (7 : X — B, R,),b€ B,i: S — %
in the following way:

e B =3 =~ D3(g71)+n;
e b={0};
e X =BxS,
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e The complex structure on X is the product of the standard complex
structure on D" and j.

e The markings are of the form R;(b) = (b,r;) for ¢ = 1,2,3 and for
1 =4,...,n, Rz(b) = (b,Li(bi)), for b = (bl,...,bn) € B = ]D)n_3,
where ¢;(0) = r; and the ¢; : D — S are j-holomorphic embeddings
with pairwise disjoint images that do not contain ri,r9,r3 in their
closures.

4. In the general case (S, j, 7+, V), choose a numbering v = {{n},n}}, ..., {n},n2}}
and consider the marked Riemann surface (without nodes) (S, 5, (r«, nl, n2), 0)
where all the nodes have been replaced by marked points. Denote by
{S;}ier the connected components of S and by g; their genera. Then for
every i € I, (S;, jls,, (%, na', nil)) is a marked Riemann surface of one of
the types above, where 7% consists of those rj with r; € S; and analogously
for ni" and n2". Let (m; : B — By, (RL, N;', N2")),0 € By, i+ Si = Sig
be the corresponding universal unfolding from above. If n; := |ri|, d} :=
[nl?], d* := |n??|, then dim¢(B;) = 3(g; — 1) + n; + d** + d**. Define
B = (Xiel Bi) x D% and ¥ := |l;c; prj i, where pr; : B — B; is the pro-
jection. B has dimension dimg(B) = > ,c;dime(B;) +d = >, (3(1 —
gi)+ni+d" +d*)+d = 3(3,c;(9i—1)+d)+n = 3(g—1)+n. Denote by
#: % — B the obvious projection. This comes with markings R., ]\7*1, Nf ,
which are the pullbacks of the markings of the R?, N} ’i, N2 above. Also,
one can choose disjoint open sets U;, V; C i, i=1,...,d that are tubular
neighbourhoods of the N,},Nf that do not meet the R, and come with
holomorphic functions x; : U; — D and y; : V; — D s.t. .CCZ(NZI) =0,
yi(N?) = 0 and (#, ;) and (#,y;) are coordinates on 3. For each i =
L....d, let K; == {& € Ui | (&) < |z, 7(&) = (b,z1,...,24),2i # 0}
and L; := {& € Vi | yi(¢) < |z|,7(&) = (b,21,...,24),2 # 0}. Also let
3= E\Ule K;UL;. Now define ¥ := %'/, where the equivalence rela-
tion on 3 is generated by the following identification, for & € U;, &' € V;:

{~¢ e w1 =7(E) = (b2, %)
and either z;(£)y;(¢') = 2; # 0

or ;(§) = yi(¢') = 2: = 0.

The projection 7 : ¥ — B is given by 7([¢]) := 7(§) and the markings are
given by the images of the R, under the projection onto the quotient.
The above differs from the construction in the proof of Theorem 5.6 in
[RS06] by the removal of the subsets K; and L; from 3. But otherwise it
seems to me the map 7 : X — B thus constructed does not have as fibres
nodal surfaces.

The existence and explicit construction of the universal unfoldings above is
useful for a number of reasons:

1. Let # : ¥ — B be the unfolding of a marked nodal Riemann surface
(S,4,74,v) with d nodes from case {4 above. Then B is of the form
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B = By x D%, so has coordinates (b, 21, ..., 24) and is stratified by the
following locally closed submanifolds: Let N C {1,...,d} be a subset.
Then one can look at the subset BY := {(bg,21,...,24) € B | z =
0 for i € N}. These are precisely the subsets for which all ¥, b € BN,
have the same signature. Since the signatures of the fibres are preserved
under morphisms of nodal families, these stratifications of the universal
unfoldings of all stable marked nodal Riemann surfaces of type (g,n)
induces a stratification of M, called the stratification by signature.
Also, if (7 : ¥ — B, R,) is any local universal marked nodal family of
Riemann surfaces of type (g,n), it also carries an induced stratification
by signature.

. If (7 : ¥ — B,R,) is a local universal marked nodal family of Riemann

surfaces of type (g,n), then over every stratum of the stratification by sig-
nature one has the following parametrised version of a desingularisation.
Namely let b € B and let (S, j,r«,v),i : S — 3 be desingularisation of
Eb. Associated to this desingularisation is the universal unfolding from
4| above, which defines a smooth (trivial) fibre bundle 7 : 3 — C, where
C = CyxD?, d being the number of nodes on . Makmg B small enough
this comes Wlth a unique pairof maps ¢ : C — Band @ : £ — X. If & [~
the quotient that defines the universal unfolding as in[d above, then there
is a unique morphism (', ¢) from 3/ to ¥ s.t. ¢ maps (0,0) € By x D?
to b € B and one can define ® as the composition of ® with the projec-
tion from ¥ to £/.. Then €’ := Cy x {0} C C is precisely the part of
C that gets mapped to the stratum B’ of the stratification by signature
on B that Corresponds to the signature of (S J, 7%, V). Also, the restric-
tion S := E\c/ is a holomorphic famlly p: S — C' of smooth Riemann
surfaces, with a complex structure j on S that comes with n sections
R, corresponding to the markings on S and d pairs of section N*I,N*Q
corresponding to the nodes. Furthermore, it comes with canonical maps
: " — B and Z S —> % that have the property that for every c¢ € C,
(Sc,jc,R* o {{N, ZC, 2 1} ) together with i, : S — ¥ J(c) 18 a desingu-
larisation of ¥, ). By the universal properties of a universal unfolding
and local universal marked nodal family, one can do this for every b € B’,
and the resulting (trivial) fibre bundles as above patch together to a fibre
bundle over p : S — B’ with fibres smooth Riemann surfaces and that
comes with n sections R,. Furthermore, the N}, N2 define a discrete sub-
bundle N C § with structure group 8(d, 2) defined to be the subgroup of

permutations of a set (ni,n?, ... ,n}l, né), generated by the permutations

in the lower indices, (n},n?,...,n},n3) — (nclr(l),ni(l), .. ,ni(d),ni(d))

for o € 8(d) and switching a pair of upper indices, (n},n?,...,nk,n3) —
1 d

(n%,n%,...,n;( ),n;( ), ,nk,n2) for T € §(2). So

(p:S—C' R, N)

is a triple consisting of a smooth fibre bundle with fibre S and structure
group Aut(S,r.,v), an n-tuple of sections of S and a discrete subbundle
with fibre a d-tuple of pairs of points and structure group 8(d, 2).
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Definition I1.6. A (parametrised) desingularisation of a marked nodal
family of Riemann surfaces is a tuple (p : S — C',R* N,.,i), where
P S — (' is a smooth fibre bundle equipped with a smooth family
of complex structures j. R, = (Rl, e ,Rn) is an n-tuple of sections of
p:8—C' NCSisa8(d,2)-subbundle and ¢ : ¢’ — B is an embedding
of C’ as a locally closed submanifold of B. Furthermore, for every b € C’,
(S, jb, Bu(b), Np), 0(b), 0y = Sp — 3, (v) is a desingularisation in the original
sense.

3. It allows to single out “especially nice” maps to Mg,n that come from
nodal families. The most desirable case here would be the (local) universal
marked nodal families. Unfortunately, for the definition of invariants, one
would like for the base of the (universal) family of marked nodal Riemann
surfaces to be compact, which in general is not possible. The next best
kind of maps are the following: Let w : ¥ — B be a nodal family, b € B
and let (S, 7,7, v),k 1 S — % be a desingularisation of ¥y. Associated
to (S, 4,7, v) is a universal unfolding (7 : > — B,R.),b=(0,0) € B,i:
S — %, where B = D30=D+n=d 5 d and d is the number of nodes on
3. By the universal property there then exists a neighbourhood U C B
of b and a morphism

> -
Yy ——=3%

ﬂlqﬁlﬁ

U——=B.
Choosing U to be a coordinate neighbourhood of b, holomorphically equiv-
alent to D", r := dimg(B), with complex coordinates (z1,...,2,), ¢ is
equivalent to a map D" — D3@—D+n—d w d_ A requirement one can then
pose on the nodal family 7 : ¥ — B is that dim¢(B) = 3(g — 1) +n and
that around every point b € B one can choose the coordinate system as
above s.t. in these coordinates ¢ is given by the map

D3(g—1)+n N ]D)3(g—1)+n—d % Dd

(Zla o 723(g—1)+n) = ((217 < 23(g—1)+n— d) ( l(g 1) 4n—d+12" "1 éoég 1)+n))

for some constants Iy,...,l; € IN? (depending on b € B), or in other
words a branched covering that branches exactly over the strata of the
stratification by signature.

Definition IL.7. A marked nodal family of Riemann surfaces of type
(g,n) with the properties above is called an orbifold branched covering of
M g, that branches over the Deligne-Mumford boundary.

This implies that on B there also is a well-defined stratification by sig-
nature, where each stratum is a locally closed submanifold of complex
codimension given by the number of nodes of a surface of that signature
(i. e. the number of edges of the graph). If ¢, U and B are as above, then
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the restriction of ¢ to every stratum of the stratification by signature on
U is a (non-branched) covering of the corresponding stratum on B. Also,
one can pull back the parametrised desingularisations from [2| above over
the strata on each B to the strata on B to get over each such stratum B;
a parametrised desingularisation (p : S — Bj, R, N ).

. Last, one can examine the interactions between universal families of type

(g,n), where g is fixed, but for different values of n, in these local models.
In the genus g = 0 case, it is well known that Mg, is a closed complex
manifold itself (follows from the results in [RS06] because a stable sphere
carries no nontrivial automorphisms) and there is a well-defined smooth
map Mo 41 — Mo, that is defined by forgetting the (n + 1)** marked
point and stabilising. Furthermore, this map M, On+l — M, o,n defines a
universal marked nodal family, see [RS06], Example 6.7.

In the higher genus case, the situation is built around the following model:
Let (S, j,r«,v) and (5‘ 7 s V) be stable marked nodal Riemann surfaces
of types (g, n) and (g,n+1), respectively. (S, j, 7., v) is said to be obtained
from (S J, T, U) by forgetting the last marked point and stabilising, if the
following holds: Let S; be the connected component of S with 7 Tntl € S;.
One has to distinguish three cases:

(a) If S; together with the specnal pomts on it other than 7,4 is still
stable, then define S" := S, j/ := j, 7. := (71,...,7,) and ¥ := i,

Otherwise, define &’ := S\ S; and j' := ﬂg, S; then is a sphere with
three special points, for if the genus of S; is > 2, then it is stable without
any special points and if the genus is 1, then because (g, n) is also a stable
type, i.e. n > 1, and S is connected, S; either contains a marked point
other than 7,41 (1f S = S; is connected) or a nodal point. The other two
special points apart from 7,41 then are either a nodal point and another
marked point or two nodal points.

(b) In the first case, let 7 be the second marked point on S; and let nA
be the nodal point on S;. Define 7, = (74, . .. ,ﬁé, ..., Tp), where ﬁ}l
replaces 7, and o' := {{n{,n3},...,{n}_ ;.72 ;}}.

(¢) In the second case, the two nodal points cannot correspond to the
same node, for that would imply by connectedness of S that S = S;,

so g = 1 and there would be at least two marked points. So assume

v = {{nl,A%},..., {7, 72}} and that the two nodal points on S; are
ﬁfl_l and ﬁcll. Define 7, := (71,...,7,) and
V= {{ﬁ%a ﬁ%}a SR {ﬁglf27 ﬁ‘d72}7 {ﬁzlflv ﬁd}}

In all of these cases, (S', 7,7, 7') is a stable marked nodal surface of type
(g,n). If (S',7,7.,7) and (S, j,rs,v) are isomorphic, then the latter is
said to be obtained from the former by forgetting the last marked point
and stabilising.

Furthermore, the choice of such an isomorphism defines a (open and
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closed) holomorphic embedding of S into S that maps special points to
special points (but may map a marked point to a nodal point). Also,
this inclusion defines an injection of Aut(S’ , ]y Te, D) into Aut(S, 7,74, v)
(because the automorphism group of a sphere with three special points
is trivial). More precisely, there is a one-to-one correspondence between
points on S that are not nodal points or pairs of nodal points correspond-
ing to the same node and stable marked nodal surfaces (5’ PR V) of type
(g,m+ 1) up to unique equivalence as above:

If z € S is neither a marked point nor a nodal point, define S := S, j := j,
7 :=r; fori=1,...,n, rpp1 := z and ¥ := v. This corresponds to case
(a) above, which conversely defines z := 7,,;.

If 2z =1 € S for some | € {1,...,n}, define S := S II S?, where
S%2 = CU {0}, jls = j and j|g2 is the standard complex structure,
Ffi=mrifori=1,...,nwithi #1, 7 =00 € 82, Frpq := 1€ 5% and
7= vU{{r,0}} (0 € S?). This corresponds to case (b) above, which
conversely defines z := 7.

Ifw.lo.g v={{nl,n?},....{nk ;02 }}and 2 = {n} | ,n2 |}, define
S :=SIS?% j|lg = j and j|g2 the standard complex structure, 7; = r;
fori=1,...,n, rpy1:=1¢€ 5% and

~ . 2 2 2

V.= {{nia nl}? cety {ntlif% nd*Z}v {ntlifh 0}7 {007 ndfl}}'

This corresponds to case (c) above, which conversely defines z := {}_|,73}.

Marked nodal families of Riemann surfaces of type (g, n) that define an orbifold
branched covering of M, that branches over the Deligne-Mumford boundary
(hence in particular local universal marked nodal families) are a special case of
a type of marked nodal family that is called regular in [RS06] (Definition 12.1)
and for which the above construction of forgetting the last marked point and
stabilising has a global generalisation.

Definition I1.8. Let (7 : ¥ — B, R,) be a marked nodal family of Riemann
surfaces. Let C C ¥ be the submanifold of nodal points, which comes with the
immersion 7|c : C — B. Given b € B, (7 : ¥ — B, R,) is called regular at b if
all self-intersections of 7(C') in b are transverse in the following sense: Either
bg m(C)orifben(C),let Cp:=CNEy={n,...,nq}, a finite set of points.
Then foralll1<m <d,1<i1 <<ty <d

dime (Im(myn, ) N -+ NIM(Tsp,, ) = dime(B) — m.

(m: X — B, R,) is called regular if it is regular at all points b € B.

By definition of a marked nodal family of Riemann surfaces, in the notation
of the previous definition and if b € w(C), the following hold: For i = 1,...,d
there exist neighbourhoods U; C ¥ of the n; not containing any of the marked
points, neighbourhoods V; C B of b and holomorphic maps z;,y; : U; — D,
z; + V; — D obtained from a nodal coordinate system as in Equation
s.t. (wi,y;) : Uy — D? and z; : V; — D are submersions and z; o 7|y, = zy; :
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Ui — D. Also, CNU; = (x,4:)71(0,0), my : ker((w,yi)«) — ker(z;.) is an
isomorphism and im(7, ;) = ker(z;,). Making the U; and V; smaller, one
can assume that V3 = --- = V3 =: V. The transversality condition above
then states that the z;,;, : T, B — TyD are linearly independent. By the
implicit function theorem, after possibly making V and the U; smaller, one
hence can find holomorphic functions ¢,...,t; : V — D, k := dime(B) — d,
St (215005 2dy b1, -« -5 tg) + V = Ddme(B) ig a holomorphic coordinate system on
Bands.t. (z1o7|y;, - - ., zic107|u;, iy Vi, Zig197| U, - - - 2d0T| Uy, t1om |y, - .- tgO
7ly,) : Uy — DIme) s a holomorphic coordinate system on .

Lemma IL.1. Let (7 : ¥ — B, R.) be a reqular marked nodal family of Riemann
surfaces of type (g,n). Then there exists a regular marked nodal family of
Riemann surfaces (7 : & — X, R,) of type (g,n+1) together with a holomorphic
map 7 : ¥ — X with the following properties:

B

> —=RB

H

commutes. Also, let (S,7,7«,v),b € B,1: S — X be a desingularisation of ¥
cmd let (S,], 7, D) be a stable marked nodal Riemann surface of type (g,n + 1)

t. (S,4,7«,v) is obtained from (S,7,7, ) by forgetting the last marked point
and stabilising. Let k : S — S be the resulting embedding. Then there exists a
unique z € Xy, and a unique i : S — ¥, C X s.t. (S,],74,0),z€ 8,0: 5 =32
1 a desingularisation and T ot ok = i:

o

§—ts3.

im

The stratification by signature on X as base space of the marked nodal family
(7 : Y — %, R, ) is given in the following way: For every stratum C C B of the
stratification by signature on B consider the following subsets of 7=1(C): The
complement of the markings and nodes in w—*(C), for every marking R; the
subset R;(C) and the connected components of the set of nodes in ©7=*(C). In
particular, the restriction of w to each of these is a submersion onto C.

If (m : ¥ — B, R.) is a local universal family or defines an orbifold branched
covering of M, then so does (7 : % — X, R.) (of M yni1).

Proof. Let (m : ¥ — B, R,) be as in the statement of the lemma. The goal is
to show that for every z € X there exists a neighbourhood U’ C X of z that is
the domain of a (nodal) coordinate system as in Definition and is also
the base of a marked nodal family of the type indicated in the statement of
the lemma. I will only indicate the definitions of ¥, #, # and the R;, which
are a variation of the constructions in the proof of Theorem 5.6 in [RS06]. The
smooth structure on ¥ is then also defined analogously to the smooth structures
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defined in that reference and the other properties of 7 follow from the remarks
in[4 preceeding Definition

The statements about local universal families and orbifold branched coverings
then follow because applying the construction below to the explicit local models
from Construction produces again one of those local models.

If z € 3, is not one of the marked or nodal points, let U’ C X be a neighbour-
hood of z disjoint from all the marked or nodal points and s.t. 7|y : U’ — B is
a holomorphic submersion onto B. Define S|y = (7|y)* X, 7~r|2|U, Xy = U
is the canonical projection, R; := (7|g#)*R; for i = 1,...,n and Rp41(2') =
2 € Yreny = 3../. The restriction 7?|2|U/ : B|gr — X is given by the canonical
map (7|yr)*E — 3.

If z = Ry(b) for some I € {1,...,n}, then there exists a neighbourhood U’ C X
of z that does not contain any nodal points or marked points aside from those
of the form Ry(b') for b’ € B. Also, as in Construction , one can assume
that there exists a holomorphic function 2/ : U’ — D s.t. («w|yr,2') : U —
B x D is a holomorphic coordinate system on U’ and that z/(R;) = {0}. Define
U := (w|y)*U' C (r|p)*Y and 2 := 2 o ® : U — D, where ® : U — U’ is the
canonical bundle map covering 7|¢ : U’ — B. Consider V := U’ xD C U’ x 52
and the function y : V' — D given by projection onto the second factor. Let
q: (m|g)*S = U, qo : U' x 2 — U’ be the projections and let K := {¢ €
U | [2(6)] < 1a/(@1(E)] £ 0}, L= {€ € V | [y(€)] < |+(qa(£)] £ 0}. Denoting
Y1 = (m|p)* T\ K, B := (U' x S?)\ L one can define |y := 31 11 39/,
where the equivalence relation is defined as in Construction [T.1, @] Namely
E~Efor e U, ¢ eV with ¢1(€) = g2(¢') and either z(&)y(&') = 2'(¢1(£)) # 0
or z(§) = y(&') = 2'(q1(§)) = 0. .
The projection 7~T|2‘U, : 3|y — U’ is then induced by the map ¢ IIgo : 311139 —
U'.

The markings R; for i € {1,...,n} \ {I} are defined by R; := (|p")*R;
(T )* S\ U C Blgr. By := U x {oo} C U x §2\V C |y and Ry,qq
U x{1} CU x S?\V C |y

The restriction fr\ilw : B|gr — ¥ is given as follows: On (7|p/)*Y \ U, ﬁ‘iluf

N

is given by the canonical morphism (7|y/)*Y — 3. To define ﬁ’i\,}, on the

remaining part of X[y, let ¢ € U'. If 2/(¢) = 0, SC is the union of 3y with S2,
with Rj(7(¢)) € Xr(¢) and 0 € 5? identified. Let fr\iC be the identity on ¥, )

and on S? the constant map to R;(w(¢)). If 2/(¢) # 0, ¢ is given by the union
of S {7 € Br(e) [ 12/(2)] < |2"()]} with S*\{2" € 82 [ [¢/] < |2(¢)[}, where
weD\ {2 eS| <)} CS?\{ € S?| || <I|2/(¢)|} is identified
with (2/], )7 (M) where U2 ) i= U’ (1 Sn(¢). Let g, be the identity

w(¢ w

on Sy \ {2 € Za() | [#/(2)] < [#/(Q)]} and on 82\ {' € 82 | 2] < |/(O)]}
)7t (#) This is then a well-defined
)7H0) = Ri(7(C))

be given by the map w — (x’]Ur(O

holomorphic diffeomorphism that maps oo € S? to (@' |y "
and 1 € S2 to (m’|U/(C )@ () =¢.

)
)
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Finally, for z one of the nodes, let the notation be as in the remark just before
the statement of the lemma and assume w. 1. 0. g. that 2 = ny. Denote U’ := Uy,
(,y) == (v1,91) : U — D2 2/ := 2 : V = D. Let C; := CNU;, C' := C;. Note
that (7|y)*(X\ C') is a well- deﬁned complex manifold and the projection onto
U’ at every point is either a holomorphic submersion or has a neighbourhood
that is the domain of nodal coordinates as in Le. (mlg)*(2\C") = U’
satisfies the definition of a marked nodal family of Riemann surfaces, apart
from the properness condition and the fibres are punctured marked nodal sur-
faces instead of marked nodal surfaces. This is clear away from the subsets
(w|yr)*C;, for the projection 7 is a submersion away from the nodes. In a
neighbourhood of one of the (7|y/)*C; for i > 2, i = 2, say, w.r.t. the co-
ordinates described before the statement of the lemma, an explicit descrip-
tion of (m|y)*(X\ C') — U’ is the following: =|py : U’ — V in coordi-
nates is the map f; : DF*L — DF (2,9, 20,...,21) — (zy,20,...,2k), k =
dimg(B), whereas 7|y, : Uy — V in coordinates is the map fo : DFF! — Dk,
(21, 2,92, 23, ..., 2k) — (21, T2Y2, 23, ..., 2;). The pullback of the latter by the
former hence explicitely is given by the map with domain

{(w1,wg) € D1 5 DM | fi(wr) = fa(wa)}

= {((937%5522/27237 . "Zk)a (xy,fL'Q,yQ,Z;g, .. .,Zk)) S Dk+1 X ]D)k+1 |
($7y7$27y27237 cee ,Zk) S Dk+2} = Dk+2
and prOjeCtiOn given by (x7y7x27y27237 .. '7Zk) — (xaya T2Y2, 23, .. . ,Zk). Now

to turn (7|7 )*(X\ C”) into a marked nodal family, work in the local coordinates
as before and consider the subset

K:={(¢,?)eU x S*|x(¢) #0,2| <|z(Q)|}

/ / 2 / L
UL(¢2) e U x 57 [y(¢) #0, [ = TGl

of U'x S2. Then Xy := (w|p)*(2\C) (U’ x S?\ K)/~, where the equivalence
relation is defined as follows:

If ¢ € U’ has coordinates (x(¢),y(¢),21(¢), ..., 2x(¢)) with z(¢) # 0, y({) # 0,
then 2’ € {¢}xS?\K is identified with the pomt on ((m|g)*(E\C"))¢ = Ere)\C’

with coordinates (x@,z y(€), 22(0), ..., zk(g)).

If ¢ € U’ has coordinates (x(¢),y(¢),21(¢), ..., 2x(¢)) with z(¢) =0, y(¢) # 0,
then 2’ € {¢} x S?\ K with 2’ # 0 is identified with the point on ((7|g/)* (2 \
C")¢ = By \ €' with coordinates (0, 2'y(¢), 22(C), - - -, 2&(C))-

Analogously, if ¢ € U’ has coordinates (x(¢),y(¢), z1(C), ..., zx(¢)) with z(¢) #
0, y(¢) = 0, then 2’ € {¢} x %\ K with 2’ # oo is identified with the point on
((mlg)*(B\NC)e = Yr(o) \ C’ with coordinates (xi,O,O, 29(C), . .. ,zk(C)>.
Finally, if ¢ € U’ has coordinates (0,0, z1(¢), ..., 2k(¢)), then no identification
takes place. }

The projection ﬁ-‘ib/ : X|gr — U’ is induced by the projections (m|y)*(Z \
C") = U and U’ x S? = U'.

}
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The markings Ry fori = 1,...,n are given by the images of the pullbacks
(7|p7)*R; under the projection to the quotient X|y» and R, is the image of
U’ x {1} under the projection to |y

The restriction fr[ilw : Y|y — ¥ to the image of (w|pr)*(X\ C') is given
by the canonical map to . This covers all of f]\U/ apart from the points
{(¢,0) € U' x §? [ 2(¢) = 0}, {(C,00) € U' x 8% | y(¢) = 0} and {(¢,%) €
U' x S? | 2(¢) = y(¢) = 0}. Each such point ((,2’) is mapped to the point
ZW(C) NC’ in EW(C)‘

Note that by construction, under fr|S|U/, the point corresponding to ((,1) €
U' x 52, i.e. Ry1(C) is mapped to C.

The important thing here is the following: In the notation from before, lo-
cally the projection in a neighbourhood of the first node looks like the map

fi: DFFY 5 DR (2,9, 29, ..., 2k) — (2Y, 22, ..., 2k), and analogously for the
other nodes. In these local coordinates, the pullback of f; for i > 2 by f;
gave a well-defined nodal coordinate system. But for ¢ = 1 this is not the

case, because both the subset {x = 0} and the subset {y = 0} get mapped to
{0} x D*=1 the stratum along which the first node perseveres. So the set of
nodes in the naive pullback of fi by itself would have a set of nodes that looks
like two hyperplanes intersecting transversely at the origin, which is not a sub-
manifold, hence there can’t exist a nodal coordinate system at this intersection.
The construction above then “resolves” this intersection by inserting a sphere,

producing two different nodes at (0,0, 22, ..., zx), one corresponding to the one
which perseveres along (0,y, 22, ..., 2x), the other to the one that perseveres
along (z,0, z2,. .., 2k). d

As long as one does not impose any compactness condition, the existence of a
local universal family s.t. the induced map to Mg, is surjective is shown in
[RS06], Proposition 6.3. In the genus g = 0 case, one can also find such a family
even with compact base space, for My, itself is a complex manifold. In the
case of genus g > 0, such a result will not hold true. But one can ask instead
for the existence of a marked nodal family (7 : ¥ — B, R,) that defines an
orbifold branched covering of Mg’n that branches over the Deligne-Mumford
boundary, maps B surjectively onto Mg,n and has a compact base space B. By
the previous lemma, if one can show such a result for Riemann surfaces of type
(g,m), then the result also holds for all (g,n’) with n’ > n. First results in this
direction were proved by Looijenga in [Loo94], where it is shown that M, has
a finite branched covering by a smooth projective variety. The difference to the
result that I would like to use here is that this covering morphism does not come
from a marked nodal family (which requires in particular the total space 3 to be
smooth), which is not the case for the branched covering constructed in [Loo94].
But, although the construction in [Lo094] doesn’t produce the desired result, see
Proposition 1.4 in [BP00], there seems (to the author’s limited understanding
of algebraic geometry) to be a generalisation of that construction, see Theorem
3.9 in op. cit. This shows, in conjunction with the previous lemma, i.e. apply
Theorem 3.9 in [BP00] to get the marked nodal family (7 : ¥ — M, R,) below
and then apply the previous Lemma to get the families (7% : ©¢ — M? R: TY)
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for £ > 1, the following conjecturally stated result.

Proposition I1.1. There exists a sequence of marked nodal families (1° : £ —
M RETY) for € > 0 of Riemann surfaces of type (g,n + €), with markings
Rf,...,RfL, Tf,...,Tf s.t. ¥ = M for all £ > 0, together with maps ° :
N 0 st

£—1 ~0—2 ~1

e+ 5 Tyt 5! 20 ——

PN
lwe+1 iﬂz lwél lﬂl lﬂo lﬂ

041 Vi -1 0—2 1 0
e M

T MZ T MZ—I T Ml m MO

ﬁ_é

ﬁ.l+1

.. 7T4> M€+1

ﬁ.[—l
EZ Hzf—l
el lﬂg ,re_li \}Rgfl Vi=1,....n
Yy
ME HMEfl
A1

e . -1

T;C lﬂz ”“l >T;1 Vi=1,....0-1

all commute,
#loTf =id: 2 - M

and where M is assumed to be closed, and hence so are the MY for all ¢ > 0.
Furthermore, for all £ >0, (nt: 2¢ — M RL,TY) defines an orbifold branched
covering of Mg,n% that branches over the Deligne-Mumford boundary and for
every z € Xt = ML putting b := 775(2) e M*, the map

A (B RI(2), - Ry (2), T (2), - T (2)) =
— (L RUHD), . R0, TD), L T (D))
1s stabilising, i. e. biholomorphic on every stable component of
(E£7 Ri(z)a et sz(z)v TIZ(Z)v ce 7TKZ—1(Z))

and constant on every unstable component (of which there is at most one). For
£ > k denote the compositions

k+1o”_o7¢‘_571:2€_>2k’
and
7r£ i=gforhtl o ontl s MY — MF.

If Mf is a stratum of the stratification of M*¢ by signature, then for k < { there

evists a signature j(i) s.t. wh| e+ ME — Mf(i) is a submersion.
7
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Definition I1.9. In the notation of the proposition above, a component of ¥¢,
for any b € M*¢ and ¢ € IN, that is mapped to a point under 7%5 is called a ghost
component.

On the spaces in Proposition[[I.1]there are also canonical actions of permutation
groups of the last £ markings, as follows directly from the construction of the
spaces ©f, M’ and maps =¢, #’.

Proposition I1.2. In the notation of the previous proposition:

For £ > 1, let 8 be the group of permutations {1,...,¢}. Then there exist

actions o' and 6° of 84 on M* and ¥t s. t.

~0
S x Bt —T—= 5t (IL.3)

idXﬂzi \LW’Z
4

SEXMKL.MZ

commutes.
Furthermore, for any g € 8¢ and k € {1,...,¢},

~ 0 4 4 74
Gy-10 Tpoo, = Tg(k) (IL.4)
and under the inclusion 8y C 8441 as permutations of {1,...,0+1} leaving £+ 1

fized and the identification X = M1,

~0+1 o_£+1
Tl L s sl M = gttt (I1.5)
ﬁ.(l \Lﬁ_e ﬂll J/WZ
Z O.E
E@ %g. E MZ %g. ME
commute and
6" ="t g, apen 1 80 x B — X (IL.6)

Denoting by 1o ¢+1 € Sp41 the transposition exchanging £ and €+ 1,

#t=rloolll M =% 5 M =5 (IL.7)

Proof. Again, not a complete proof, just a description of the construction of
the actions.

Actually, the above characterisation serves at the same time as definition of
these actions by induction: Because 81 = {id}, the actions on M' and ! are
automatically the identity. Now assume that the actions of 8 for k =1,...,¢
have been defined. Equation [I1.6| defines the restriction of o**! to 8 x M ”1
Equation requires that, for g€ 8, ie gl+1)=¢+1,and b € MF!,
YT (b)) = T (ol (D). Equation ﬁ then gives ag o AT H (b)) =
AK(TZ—H( E+1(b))) c e

l+1
Efr ¢y 18 Obtained from

) Defining z := #*(T, IH(b)) c %t this shows that

041 wt(b)’
by forgetting the last marked point and stabilising

[(b
/41
®) 2y
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/41
(1(8) ot

the last marked point and stabilising associated to the point 65(2). Lemma m

associated to the point z and Zfr , is obtained from by forgetting

. . sep al+1 . v (41 ~l .y l
then gives a unique lift 6,7 : 37" — Eggﬂ(b) of 6 : Enf(b) — Eaf](wf(b)) that
041 041
maps T, (b) to T, (o5 (b))
Because 8¢, is generated by 8, and 7y 441, it suffices to define Uﬁjelﬂ and &ﬁj}iﬂ.

Now M*‘*! by definition in Lemma is the union of (¢ X e ppe e B9\ C,
where C' is the diagonal in this fibre product over the nodes and markings in

»¢, with a collection of spheres. The action of afzrir . 1s then the one induced

by the action on ©¢ Xt Mt »! exchanging the factors, and the identity on the
spheres filling in C.

(}ﬁﬁﬂ is then defined analogously to 65*1 for g € 8, before. n

The compactness statement in Proposition is important for the following
reason: In the genus g = 0 case, M(),n is a compact complex manifold, hence
in particular it is oriented and carries a fundamental class in its top homology
group (with any coefficient group). Hence any smooth (or continuous) map
from My, to another manifold defines a homology class in that manifold. Now
in the case of positive genus this holds no longer true for Mg’n itself. But for
any universal marked nodal family (7 : ¥ — M, R) of type (g,n), M, is the
quotient space of the associated groupoid as in Definition 6.4 in [RS06]. As such
both M, as its quotient space and M as the space of objects of this groupoid
carry a stratification by orbit type, see [PPT10], esp. Section 5. A stratum
of M in this stratification is a connected component of an equivalence class
of the relation on M given by abstract isomorphism of automorphism groups.
The stratification on Hg,n is then the one induced by the quotient map. Since
the morphisms of the associated groupoid are given by isomorphisms of nodal
surfaces, this stratification respects the stratification by signature. Now let (7 :
¥ — M, R,) be a marked nodal family of Riemann surfaces of type (g,n) with
M closed and s.t. the induced map v : M — Mg,n defines an orbifold branched

covering that branches over the Deligne-Mumford boundary. Let ]\O/[ be the top-
dimensional part of the stratification by signature, i.e. the set of those b € M
s.t. Xy is a smooth Riemann surface. Let correspondingly M, , be the part of
M, consisting of the equivalence classes of smooth Riemann surfaces. Then
My ,, is an orbifold, an orbifold structure (in the sense of Definition 2.4 in [RS06])
being defined by the restriction of the orbifold structure for Mg,n constructed

in [RS06]. By definition, v := U’]\‘}[ : M — My, defines a (finite non-branched)
orbifold covering. Defining ¥ := E|]\o4, R, = }2*\]\047 one can hence form the

associated groupoid to the marked family of Riemann surfaces (gl — ]\O/[ , ]%L*) as
in Definition 6.4 in [RS06], which defines a groupoid structure on M . v as a
branched orbifold covering is an open map and since M is assumed compact,
it is also a closed map. Since M,,, is connected, the restriction of v to every
connected component of M is surjective and one can assume w. 1. 0. g. that M is

o
connected as well. Since the complement of M in M consists of submanifolds of
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[}
real codimension at least two, M is then connected as well. Since the groupoid
o o [¢]
associated to (X — M, R,), being complex is oriented, the stratification by orbit
[¢]
type on M has a unique connected top-dimensional stratum and all other strata
o

have codimension at least two in M. Denote this top-dimensional stratum by
e]e)

M.
Because M is compact, one can assign two Well defined numbers, |(‘)( )| the
length of the orbit O(b) of any point b € M (by compactness of M this is

a finite number) and |Aut( )| the order of the automorphism group Aut(b)

of any point b € M (which is a finite number by properness of the groupoid,
irrespective of whether M is compact or not). With the help of these, to any
map f : Mgn — X, where X is any manifold, s.t. fOW% M —- X
is smooth, 7TM being the quotient projection, one can assign a well-defined
rational pseudocycle (as defined in Section 1 of [CMO07])

1
s fomit e
| Aut(M)||0(M)| i
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I1.2 Spaces of sections

This section is preparatory in nature. Since it is also largely independent of the
rest of the text, it is suggested to only read the necessary definitions in Sub-
section and then skip to the definitions of the Sobolev spaces of sections
defined in Subsections [[.2.3] and [T1.2.4

11.2.1 Riemannian submersions and the vertical exponential map

Definition II.10. A Riemannian submersion is a surjective submersion 7 :
W — ¥ between Riemannian manifolds (W, g) and (X, h) s.t. the distribution
HW = VW+ CTW (i.e. H,W = (V,W)+ C T,W for all w € W) given
by the orthogonal complement to the vertical distribution VW = ker Dm has
the property that Dr|gw : HW — T'% is a fibrewise isometry and hence in
particular defines the horizontal distribution of a connection on 7 : W — X.
Denote by pr‘:CVV[(, : TW — VW the orthogonal projection along HW.

For 0 < k < oo, denote by I'*(TW) the space of sections of 7 : W — X of class
Ck, T(W) :=T>®(W).

Remark 11.3. Denote by WVTVW : TW — W the tangent bundle projection and
by WI‘//VW = W%W‘VW : VW — W that of VIW. The latter then defines a
Riemannian vector bundle equipped with a Riemannian connection: The metric
is simply the restriction of the metric on TW and the covariant derivative is
given by V& = priWW(VW¢), for ¢ e T(VW), X € TW, where on the right
hand side the Levi-Civita covariant derivative on W features. This gives a
well-defined covariant derivative that is compatible with the metric: Linearity
is immediate, the Leibniz rule follows from pr‘T/—VmV/\VW =1id and for X € TW,
§,Cel(VIV),

X(€,¢) = (VHE Q) + (6, VR )
= (priyy (VX ), C) + (&, primy (VX Q)
= (Vx&,0) + (6, Vx().

It follows that for u € I'(W), u*VW is a Riemannian vector bundle equipped
with a Riemannian connection. The covariant derivative on sections I'(u*VW) =
{€:8 5 VW | a0 ¢ = u} is given by V& = prg‘{,VV(VIjDVu(X)ﬁ). This
is well-defined (remember that u, being a section, is an embedding), for if
v : (—e,e) — X is a path with 4(0) = X, then w o~ is a path in W with
4(0) = Du(X) and £ o~y defines a vector field along this path.

The main goal in the following is to define Sobolev spaces of sections of a
Riemannian submersion 7 : W — X. The rough guide to this is to define charts
around smooth sections u : X — W of 7 by considering the Sobolev space of
sections of the pullback vector bundle v*VW. The Riemannian structure is
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as defined above and the Sobolev class high enough for this Sobolev space to
consist of continuous sections. These are mapped to I'Y(W) via the vertical
exponential map exp® : VIW — W, which for £ € V, W, w € W, n(w) =2z € %,
i.e. £ € T,W,, is given by the exponential map in the fibre W, with the induced
metric. The main result to be proved for this to be well-defined is smoothness
(or differentiability of class C* for some k > 0) of the transition functions.

Definition II.11. Let 7 : W — ¥ be a Riemannian submersion. The vertical
exponential map is the map

expt VW = W

WTF w
éw = €XPw ( >(€u})7
where expy”(“’) : TwWirwy = VoW — Wiy € W is the exponential map on
the Riemannian manifold (with the induced metric as a submanifold of W)
Ww(w) = Wﬁl(ﬁ(w))'

To compute the differentials of the transition functions mentioned above, one
needs to consider the differential of this vertical exponential map, D exp™’ :
TVW — TW. The range TW of this map, as a bundle over W, decomposes
into the subbundles HW and VW given by the structure of a Riemannian
submersion. The domain TVW of this map, as a vector bundle over VW,
decomposes into a number of subbundles, the decomposition being given by the
connection on VW and structure of Riemannian submersion in the following
way: First, because the vector bundle WI‘,/VW : VW — W carries a connection,
TVW 2 HVW @ VVW = (rfV)*TW) & ((m?V)*VW). Second, because
one has the decomposition TW = HW @& VW, one can further decompose
(V) TW = ((rpV ) HW) @ ((mV)*VW) and hence

TVW 2 (mfV )y HW) @ (7Y ) VW) @ (mV ) VIV). (IL.8)
Denote the first of these summands by H® HW, the second one by HYHW | i.e.

HYHW == {X € HVW | (mj{"" )«(X) € HW}
HYHW = {X € HVW | (mj}/' )«(X) € VW}.

For z € ¥, one has the inclusion W, < W which results in an inclusion TW, —
TW, with image (by definition of VW) VW/|y, € TW and hence another
inclusion TTW, — TVW. Now TTW,, W, being a Riemannian manifold
with the induced metric, and hence equipped with the Levi-Civita connection,
decomposes into horizontal and vertical subspaces HT'W, and VI'W, as well.
A basic result about Riemannian submersions, see e.g. [Sak96], Section II.6,
Proposition 6.1, p. 75, shows that this decomposition coincides with the second
and third summand of the above decomposition:

TVW|w, = H'VW|rw, ® HTW, ® VTW., (I11.9)

or in other words, TTW, = HYVW |rw, ®V VW |rw, Also, the second and third
summand above, under Dexpt : TVW — TW = HW @ VW, get mapped to
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V.
The reason this is relevant is the following: Let u E — W be a smooth section
and let € € D(w*VW), i.e. £: ¥ — VW with m;' o £ = u. Then one in par-
ticular wants to compute D(exptof) = Dexp* oD§ :TY — TW. Now D¢ :
T8 - TVW With respect to decomposition is given by (D", DVu,V.£),
where DM := prf HW o Du is glven by horlzontal lift from 7Y to TW, because
u is a section, and DVu = prVW o Du. That this decompomtlon coincides with
decomposition m means that for X € T.%, to evaluate Dexp’ on DE(X) =
(D"u(X), DVu(X), Vx§), one can regard (D¥u(X),Vx¢) € HTW, S VTW, =
TTW,, where W, is regarded as a Riemannian manifold by itself and evaluate
the differential of its exponential map on this vector.
Also because expt : VIW — W is a fibrewise map, i.e. m o exp™ = m o
v VW—>EforzEEwEWWrchﬂ():zandfGVWwith
K/W(g) = w, if X € T,¥ with horizontal lift X,, € H,W and further hori-

zontal lift Xg € H"WW as well as horizontal lift X, € Heypr(eyW, then
prity (D exp (Xg)) = Xexpl(g).

To summarise:

exp(§)

Lemma I1.2. Let m : W — X be a Riemannian submersion and let z € X.
Then under the decompositions

TVW |rw, = HVW rw, @ H'VW |rw, ® VVW 1w,
= IVW|rw., @ HTW, © VTW,
~ H'WW|rw, @ TTW,

and

TW = HW & VW,

the differential
Dexpt : TVW — TW
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of the vertical exponential map exp™ : VW — W satisfies D exp™ lrTw, C
VW w, 2TW, and

DeXpJ' |TTWZ : TTWZ — TWZ
s given by the differential of the exponential map
expWZ TW, — W,

on the Riemannian manifold W, (with the induced metric).

Furthermore, for ¢ € VW with m(mjV¢) = 2z = n(expt(§)) € %, under the
identifications H?VW = T.% and Hep1 (o)W = TLX given by the differentials
of the projections and horizontal lifts,

Xp

corresponds to the identity.

Definition II.12. Denote by
7= prigy o Dexp’ | guyw : HPVW — VW

the annoying part of the differential of the vertical exponential map.
Forze X ue W, €€ Vu~W and X € T, with horizontal lift X € HW |y,

and second horizontal lift Xg € H, ?VW, denote

7e(X) = r(Xe).

Corollary I1.1. Let u € TY(W), £ € TH(u*VW). Then the section expy(£) €
'Y (W) satisfies, for z € %, X € T,%,

(DY expy (€))(X) = DY exp,iz) (Vx€) + D" explys) (D¥u(X)) + 7¢(X).

Now let the following be given: u € I'(WW) a section and a neighbourhood
U C W of u(X) s.t. for every z € ¥, U, := U N W, is a neighbourhood of
u(z). Assume that U, is the diffeomorphic image under the exponential map
on W, of a ball around 0 € T,\W, = VW], i.e. U is diffeomorphic to a
neighbourhood of the zero section in ©*VW via exp’. Then one can consider
the map (expy) ™' : W DU = VW, w (expzzgj)))_l(w) and the next goal
is to compute its differential

D(expt) ™ i TW|y 2 HW|y @ VW|y —» TVW < H'VW & H'VW @ VVIV.

Actually, one is only interested in priVV. o D(expy) ™! : TW |y — VVW. If one

denotes by DM exp™= : HTW, — TW, = VW|w, and D expV= : VIW, —
TW, the horizontal and vertical parts, respectively, of D expV= : TTW, — TW,
(again using HYVW |pw, & HTW,, VVW|pw, 2 VIW, and TW, = VW|w.),
then one can use that DVexp"= at a point £ € TW, with m;) = (&) = u(z) is

given by the differential (D expzé))g cTe Ty W = VeTW, — TW,, of the map
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esz[EZ) : TyzyW> — W,. This map is a diffeomorphism on a neighbourhood of
0, hence if § € V)W, then (DY expWZ)g is invertible if £ € Vo \W =T,,,) W,
is s.t. expt(§) e U CW.

Now first of all, one can observe that D(expy )|y, takes values in VVIW

and is given by the differential D(expz[f; ))*1 : TW,|uy. — VTW, on every fibre

W.. Now let & € V,,) be s.t. wg := exp(¢) € U and let X,,, € H,W be
the horizontal lift of X € T,¥. Let w : [0,1] — W be a horizontal path with
w(0) = wp and w(0) = X,,. Then exp™ o(expyl) ! (w) = w is horizontal, so

dli—ogexpt o(expl)H(w) = DexptoD(expi)~!(Xy,) has vanishing vertical
part. From the calculations in the previous lemma, hence,

0 = D¥exp"* (pri Vi o D(expy) ™ (Xuy)) +
+ DM exp' (DYu(X)e) +
+ 7e(X).

It follows that

priyAY o D(expr) ™ (Xuw,) = —(DY exp™z)~1 (Dh expWZ(DVu(X)g) + Tg(X)) :
Again summarising,

Lemma I1.3. Let 7 : W — 3 be a Riemannian submersion and let u € T'(W).
Let furthermore U C W be a neighbourhood of w(X) which is diffeomorphic
under exp™ to a neighbourhood of the zero section in w*VW. Let & € Vau)W,
for some z € X, be from this neighbourhood of 0 s.t. exp™(£) = w € U. Then
for (X, ¢) € T,W = H,W & V,, W,

pr\@‘(/‘ijﬂvf ° (D(expi)_l)w(Xw, Q)=

(DY exp™)e) ™ (¢ = D exp™=(DYu(X)¢) — 7e(X))

Combining these results yields the following:

Proposition I1.3. Let 7 : W — ¥ be a Riemannian submersion, let u,v €
(W) and let ¢ € T(v*VW) be s.t. expt(¢) lies in a neighbourhood of u(X)
which is the diffeomorphic image under exp™ of a neighbourhood of the zero
section in u*VW . Thus

€= (expl) L oexpt(¢) e T(w*VW)
1s well-defined and for X € TY,
Vx§ = (D exp™)) " (0¥ exp™*)e(VxC) +
+ (D"exp”)¢(DV0(X)) — (D" exp'*)e(DVu(X)) +

+ 7e(X) = el X))
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11.2.2 Jacobi equations and the higher derivatives of the vertical
exponential map

The sole purpose of this subsection is to calculate or rather estimate the higher
derivatives of the map (expy)~! o exp;- for u,v € T'(W), mapping an appropri-
ately defined subset of I'(v*VW) to I'(u*VW). To do so, a number of constants
have to be introduced, that are the supremums-norms of certain curvature
quantites associated to the Riemannian submersion and will be defined on the
following pages. Because this subsection is very technical, the main result and
the definition needed for its formulation are presented here, so the reader can
skip the rest of this subsection more easily.

Definition II1.13. Let 7 : W — X be a Riemannian submersion. Define for
r € Ny, z € ¥ and any u € I'"(W),

o (V)X (.. .4)
cor =
: S“p{ IXTEl - T&

CEr = (VR RY|

CEY = sup{ (V" RV ) || | w € W}
CO = sup{||(V" Q) || | w € W2}
oTr.— sup{|[(V'T) ]| | w € W,}
C = sup{[|(V" Al | w € W.}
Cr = (V) DY) |,

Xel,X & eVu,Wwe WZ}

where X denotes the horizontal lift of X € TS, V= and R* denote the Levi-
Civita covariant derivative and Riemannian curvature tensor on X, respectively.
V14 and VT are as in Equations V denotes the induced covariant deriva-
tive on tensors, R" is the Riemannian curvature on W, Q- is the curvature of
VW — W and T and A are as in If U C 3 is any subset and C denotes
any of the constants above, define Cj}; := sup{C7 | z € U} and C* := C5..
Additionally, define the following quantities:

Rt = QJ-\VW, i.e. for w € W, is Ri the Riemannian curvature tensor of W,
at the point w under V,,W = T,,W,.

R'isasin Proposition explicitely given in terms of pr?{,VVRW, T and VAT
in Lemma

With these define

ry = sup{|[ Ryl | w € W2}

ke = sup{|[Ryll | w € W}

N W

. 1 1
§, := min (7)%, 7;)
and

§:=inf{o, | z € X}.
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Remark 11.4. Note that the above constants are not mutually independent, see

e.g. Lemma [[T.4]

Remark 11.5. If W, is compact, then the C2" € [0, 0] are all finite. If ¥ and
W are both compact, then the C*" € [0, 00] and CZ" € [0,00] for all z € ¥ are
finite.

Proposition I1.4. Let m: W — X be a submersion.

Let g,g be Riemannian metrics on W that each turn m: W — X into a Rie-
mannian submersion. Denote all quantities associated to g by adding”™ to the
symbol.

Consider the identity as a map idy : (W, g) — (W, g) and define for z € ¥ and
r € INg

CI7 .= sup {||(V" Didw ) || | w € W} .

Didy : TW — TW here is considered as a bundle morphism, where the left-
hand side is equipped with the metric g and Levi-Civita connection associated
to g and the right hand side is equipped with the metric g and Levi-Civita con-
nection associated to §. Assume that both (W, g.) and (W, g.) are complete.
Let u,v € TF(W), let z € & and let { € TF(*VW). Assume that 0,0, > 0 and
that |[C(2)]] < 6z, d(exp*(((2)), u(2)) < 5.

Then & = (expy)™' o expt(C) is a well-defined section of w*VW in a neigh-
bourhood of z. Assume w.l. 0. g. that £ is well-defined everywhere (otherwise
restrict to an open subset of X).

Then there are constants EX* € [0,00] that are universal expressions in the
constants (V=)' R®, (VZ)'R> for0 <r <k+{—3,C¥", CY" for1<r <k,
cgdr oBYr oRNr oA g GRYr GRYTGAT for0 < 1 < k£ and O,
I and ¢, T for0<r<k+/{+1 s.t. at the point z € 2

Ha ng < EMt Z Z H Hvk |VZ“’775H
" ki +-+k] +
+ i1+ Fip= k'
k; >0, 1;20, r€lNg
Here, %%%m@kf is defined recursively by
8£+1 ~ d 8K B
V= O ————VF(E+ A )
P on ST @D N (€ + Aneta)

The rest of this subsection is dedicated to a sketch of the proof of this propo-
sition, which will then be used in the next subsection to define Sobolev spaces
of sections.

To do so, the first goal is to compute the terms appearing in Proposition
namely DVexp"= and its inverse, D"exp"= and 7. It is well known that
DY exp™= and D" exp"= satisfy the usual Jacobi equation. It will be shown
that 7 satisfies a Jacobi equation, too, but this time an inhomogeneous one.
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This is a lengthy calculation, laid out over the course of the next three lemmas,
which the reader is strongly advised to skip over and to proceed to Proposi-
tion straight away, in which the main consequence, namely that the maps
above all satisfy Jacobi equations with coefficients expressions in the tensors
that appeared in Definition is summarised.

But for the actual calculation of 7, first, a bit of notation has to be introduced,
taken from [Sak96|, Section IL.6, p. 74f. Given a Riemannian submersion 7 :
W — ¥ and vertical vector fields £,n € X(W) (i.e. &, € VW for all
w € W), for every z € ¥, one can regard &|w.,n|w, as tangent vector fields
to W,. Proposition 6.1 in [Sak96] then shows that Vén coincides with the

Levi-Civita derivative on the fibres. As before, VW denotes the Levi-Civita
derivative of the total space W of the fibration, so for a vertical vector field &
and any vector Z € TW | by definition

Ve =priWve (I1.10a)

and one can analogously define for a horizontal vector field X and any vector
Z eTW,

VX =pri vy (I1.10Db)

Then two tensor fields A and T are defined via

Iy Z = erW(v Wypl“VWZ) + pr\T/‘I//VV(VWTWyPI‘HWZ) (IL.11a)

Ay Z = erW(VprE%YprVWZ) + prVW(V T Ypr W.7) (IL.11Db)
and if &, n are vertical, X,Y horizontal, vector fields, then

Ve = Ven+ Ten VX =TeX +V{ X (IT.12a)
VVE = V& + Ax¢ VWY = AxY + VLY (IL.12b)
hold, see Proposition 6.1 in [Sak96]. Let also R+ denote the Riemannian cur-
vature tensor in the fibres, i.e. for w € W, R} is the curvature tensor of W (w)

at w € Wr(y), let RW denote the Riemannian curvature tensor on W and let
finally Q1 denote the curvature tensor of V- on VIW — W.

Lemma I1.4. Let Y, Z € T,,IW for some w € W. Then
(VYpriw)(2) = —Apaw s (0t 2) — Tpowy (prijw Z) +

evw
TW TW
+ Aprng{,Y(prVWZ) + Tprq‘;%Y(prVWZ) )

cHW

in particular VY prilV.(HW) C VW and VY priV (VW) C HW. Also, VWprHll, =
—VWpr‘T,I{/VV. If in addition ¢ € T(VW), then the curvature Q+ of V* is given
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by

OL(Y, 2)€ = prll RV (Y, Z)¢ -
_ (AprTWY( L Z§ + A T Zf) T%Z(Tprgwyf + Aprql;“//vvyg)

+ T, TWY( TWZ§—|-A TWZ§) T, TWZ( TWyf—l—A TWY§)>

Proof. For the claim on VWprVW, by the formulas|[1.12 for Y, Z € HW,

(VY priW)(Z2) = VY (priy Z) — priw (Ay Z + pripy (VY Z))
-0
— Ay Z,

forYe HW, Z e VW,

(VWorlW)(2) = VY (el 2) — prii (VY Z)
——
=7
= erWVWZ
— Ay Z,

for Y e VW, Z e HW,

(V¥ priw)(Z) = V¥ (o Z) — priw (T Z + pripy (VY 2))
=0
— Ty Z

and for Y e VW, Z e VW,

(VWprti)(2) = V¥ (prtW Z) — priy (VY 2)
N —
=7
= erWv}VYZ
=1TvZ.

The second claim follows immediately from prjl;vv‘[/, =id — prg‘{,VV
Now let Y, Z € X(W) with [Y, Z] =0 and let £ € I'(VW). Then

QH(Y, 2)6 = (VyVz = VzVy)E
= priw (VY priw VY — V2 prify Vi )¢
= priw (VY prim ) VZ +prig VY vy —
— (VY i) VY —prig Vy VY )¢
= primy RV (Y, Z)¢ + pring (VY pris )prif Vi € —

— prow (VY privy)priy Vy €
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by the first part of the statement

= priy R (Y, 2)€ + pri (VY prii ) (Tpmw £€ + Aprw Z€) —

TW oW _TW
- prVW(vZ prVW)(Tprngf + Apr}_}vv"/,Yé.L

by formulas Applying the first part of the statement to this shows the
formula for Q. O

Lemma IL.5. Let 7 : W — X be a Riemannian submersion, w € W, m(w) =
z €3, X €T.X and § € V,W. Let X be the horizontal lift of X to HW

along W, f(g that to H?VW and denote by 7 : [0,00) — W, ~(t) := exp™(tf)
the vertical geodesic in the direction of &. Then Te(X) = pri\V.J(t), where .J :

[0,00) = TW is a vector field along v that satisfies the following homogeneous
2" _order linear ordinary differential equation:

VYV = Tow 7y + T5(VE D) + R (4, D)3 + (VI )5
J(0) = Xy, VYJ(0)=0.

Proof. One proceeds as in the standard derivation of the Jacobi equation.
Notation is as in the statement of the lemma. Let w' : (—e,e) — W be an
integral curve of X', where X’ is an extension of X to a vector field on ¥, with
w' (0) = w and @' (0) = X,,. Let Jy : (—e,e) — VW be parallel transport of &
along w’. Consider the 2-parameter family « : (—¢,¢) x [0,00) — W, (s,t) —
expt(tJo(s)). Then with J(t) := %(O,t), by definition, pri¥V.J(t) = e (X).
To show the initial conditions, first note that a(s,0) = w'(s), hence J(0) =

88—“;/ = ' (0) = X,. To show the second initial condition, note that

s=0

)
V5 J(0) = Vi o

1
t
s=0 exp( JO(S))L:O

Js

exp™ (tJo(s))
t=0

s=0 Ot

by a standard result from Riemannian geometry, see [Sak96], Lemma 2.2 from
Chapter 11, p. 35.

Now again using [Sak96], Lemma 2.2 from Chapter II, p. 35, and denoting for
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shortness V; := V% and V, v@a:
ot ds

1oJe
Os |,
Oa
875
O
ot s=0

by [Sak96], Lemma 6.1 from Chapter II, p. 75, since 2% is vertical and V3, 2% =

ViViJ = ViVy —

= ViV,

=0

= V,Vi—

Jda da\ O«
W PR— PR— PR—
+ A <8t’85> at |,

+ RV (%, J)%

ot da
ot
0, the curves t — «(t, s) being vertical geodesics
. Oa Oa Woe e
= (V)3 + Ty ga - + T%(:Vsa - + R (%, J)Y
= (VY D) + Tow ;5 + Ty VY T + RV (3, 0)4,
using VS%—? = Vtg—‘;‘ as before. O

Alternatively, one can derive 7 from an inhomogeneous Jacobi equation:

Lemma I1.6. Let 7 : W — X be a Riemannian submersion, w € W, m(w) =
zeX, X eTl, Y and § € V,W. Let X be the horizontal lift of X to HW along

W, X that to H?VW and denote by v : [0,00) — W, y(t) := exp™(t£) the ver-
tical geodesic in the direction of &. Then 7ye(X) = JH(t), where J* : [0,00) —
VW is the vector field along v that satisfies the following inhomogeneous Jacobi
equation:
VEVEIE = o (B (5, T+ (VD)5 + (VY T)5 0% +
Tt o)
+ ol (R (5, 3+ (VT -
— (VT X — Tps X + T,V X)
JH0)=0, V5JH(0)=-TX,

Proof. Using the notation of the previous lemma, let J* := prVWJ Because
by construction, for every t € [0,00), s — a(s,t) is a section of W along the
path s — 7(a(t,s)) in 2, J(t) = J£(t) + X. With Lemma one calculates
VYTt = VY (prig J)
(Vz"pr%‘{,)J + prTWVWJ
=T (JJ_ ) + prVWVWJ
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using J = J+ + X and Lemma
VYWY It = (VYT (- X) + T (VW(JL X)) +
+ (V¥ prim ) VY T + prig VY VY T

hence

priyy VY VY T = prif (VY Ty) (J' — X) + prifp T3 (VY (J5 = X)) +
+ pTVWT (VW(JL + X)) + pl"VWVWVWJ

—z—’
=vy¥J
= priy (VY T3) (T = X) + 200 T (V3 I + T50) +
N———

=Vt
+ perVWVWJ
= prVW(Vﬂ-V/VTﬁ)(JL — X)) + 20y T Ty T+ priy Tvgvj"y +

——
cHW

+ priy T (VY T) + prip RY (3, )% + pridy (VY T)s

for T, V+J+ € HW and by Lemma [[1.5
Ty

E— (vWT (It = X) + 2Ty Ty JH + RV (3, )4 +

+ (VBVTHV) priy T5(Va J ) +pri i T5T5J - +
\_v_/

evw
N———
eHW

+ priw Ty (VWX)
because VY'J = V¥ (J+ + X) = VEJ+ + TJ+ + VIV X, hence
V#V#JL prvwvyprg%ijl
= prvw(varvw)vWJJ_ + pI‘VWVWVWJJ‘
= =TTy + priy, VY VY T+

because VI.;VJL = V,Jy‘Jl —i—T7JL
—_—— =
cVWw EHW

= prf (VY T) T + (VD)5 + R (3, 745 +
+ 2T ) 4 o (VE )54 - (VT X +
+ BV (3, X)7 + T (VY X))

Finally, note that V¥4 = V34 + T34 = T34 and hence VY Ty = (V¥'T)5 +
Tr.4. The lemma now follows from the Formulas
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Proposition 11.5. Let w : W — X be a Riemannian submersion. There are
tensors

R e T(Hom(VW @ VW @ VWV, VW))
Vi € T(Hom(VW @ VWV @ HW, VW)
Vs € T(Hom(VW @ HW, VIV))
s.t. for everyw € W, w(w) =z € 3, X € T,Y and § € Vi(, W, if v : [0,00) —

W, ~v(t) := exp(tf), denotes the vertical geodesic in the direction of &, then
for every n € Vu,W, there are vertical vector fields J2, J¥, J™ along v with

nren
(D" exp™*)e(n) = J, (t)
VEVEIE = RM(3, 04
JH0)=n  ViJr(0)=0

(DY exp" ) = 3 1)
Vi Vidy = R85
J0)=0  ViJy(0)=n
Te(X) = J7(t)
ViV = RT(%,J)F + Vi34, X) + Va(%, V4 X)
JT0)=0  ViJ(0)=-TeX

Proof. This just sums up the discussion of the previous lemmas together with
the well known Jacobi equation for the derivative of the exponential map (ap-
plied here in one fibre W, as a Riemannian manifold), which can be found in
any book on Riemannian geometry. Observe here, that the curvature R of the
fibre W, is given by Q|7.. d

The following corollary, the proof of which can be found in the Appendix,
Section now allows to give estimates on the Jacobi fields in the above
theorem and hence on the derivatives of the (vertical) exponential map.

Corollary I1.2. Let M be a complete Riemannian manifold, p € M and &£ €
TyM. Lety : [0,1] — M, t = exp,(t), be the geodesic through p in the
direction of . Let k > 0 be s.t. ||R(X,Y)Z| < | X||||Y||[|Z] for all t € [0,1],
XY, Z € Ty;yM. Denote X 1= V5 X for avector field X : [0,1] — TM along ~y
and let V : [0,1] — T'M be a vector field along . Assume that J : [0,1] — TM
is another vector field along 7y satisfying the inhomogeneous Jacobi equation

J+R(JA)y=V.
Then for [|€] < ==,

. . 2t
196) = (5 () + L] < & (1 + el + 55 [ vesas)
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and in particular,

t
7@ < (1 +12) (IIJ(O)H +|J(O)] +t/0 IIV(S>IId8> :

Furthermore,

17(8) = (Ilo 1T (O)] < t(1 + ) <||J( M+t O + 5 /IIV IIdS)

and in particular

O < 1501+ #1-+2) (170 -+ 150+ 1 [ vl as).

Finally, if J(0) =0, then
IGa0) | <200+ (o0 + ;[ visas).

Before the estimates, one can simplify matters in the following way: In the nota-
tion and under the assumptlons of PrOpOSlthHlIEI, for z € ¥ and Xy,..., X}, €
T.3, one needs to calculate D 3771 vk X1 ng Because 877873 is symmetrlc
inny,...,n, by polarisation one can write this as a sum over terms of the form
O for certain 7; € T'(v*VIW) that are linear combinations of the 7; with coef-

8 é
ficients that are universal constants (depending on ¢ but nothing else).
V’)f(l ..x,, on the other hand is not symmetric in the X3,..., Xj. But, it is “sym-

metric up to lower order terms involving the curvature”. This actually holds for
a general vector bundle £ — M, where (M, g) is a Riemannian manifold with
Levi-Civita covariant derivative VM and Riemannian curvature tensor R, and
V is the covariant derivative associated to a connection on F, with curvature
form 2. In the case k = 2 this then is simply the definition of the curvature

V%QY - V%f,x =Q(X,Y),
for X, Y € T, M for some x € M, or more explicitely for a section £ € T'(E),
Viyé— Vixé=VxVyl - Vouy§ = (VyVx€ — Vo x)
=VxVy{—VyVx{—Vyory guxé
=VxVy&—VyVx{—Vixy)§
= Q(X,Y)E.

This generalises to the general curvature identities for all £ € IN in the sense
that for o € 8, the group of permutations of {1,...,k},
v§(1,...,Xk _v];( :A(X17"‘7Xk)7

o'(l)v"'vXo'(k)

where A is given by a universal expression in V", V"Q and (VM)"R for 0 < r <
k — 2. Although it is possible to give explicit formulas for the tensors A, they
are exceptionally long and here only the consequences stated above are needed.
From this, by repeated polarisation, one can show the following lemma:
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Lemma I1.7. Let E — M be a vector bundle over a Riemannian manifold
(M, g) with Levi-Civita covariant derivative VM and Riemannian curvature
tensor R. Let also V be the covariant derivative associated to a connection on
E, with curvature form Q. Then for any k > 2 and Xq,..., X, € T, M for
somex € M and £ € T'(E),

-----

- N
i*vj* . . T
+ Z Z Arvs (X.]l’ ce 7Xjk7r)vyg*;vj*7.“y:§7j* g}
s=1 ’ ’

{jl:"'v.jkf’r}

where the CF are constants that only depend on k and the Y; are linear com-
binations of the Xi,..., X with coefficients only depending on k. Also, the
Ny only depend on k, r and the partition i, j« of {1,...,k} and the A"
are unwersal expressions in the tensors ViQ for 0 <t < k—2—r. Finally, the
Yl = Yoy (X, ..., Xi,) are images of the X, ..., X; under multilinear
maps that are universal expressions in the (VMR for 0 <t <k —3 —r.

Proof. Omitted. O

A consequence of the above is that to give the estimates in Proposition
instead of WV’}(LMka for all £,/ € INyg and general tu;;his Mye-y N €
Fk(U*VW) and Xq,..., X, € T,%, it suffices to estimate BB—MV%._Xf for a
single € T*(v*VW) and a single X € T.%. Furthermore, one can assume that
X € T,% is the evaluation at z of a vector field on ¥ with the property that
(VX)"X), =0 for all » > 1, i.e. by assuming that the flow line of X through
z is a geodesic for some short time. . .

This has the added advantage that one can easily calculate V])’“( &=V x)FE.

Lemma II.8. Given a Riemannian submersion m : W — X, k£ € Ny, u €
TEW), &n,p € TR VW) and X € X(2) s.t. (V)" X), =0 for all 7 > 1.
Assume that W, is complete for all z € ¥ and let

ug := expr(€) € TFW).
Also define families of sections for & € TF(u*VW) by
OL (P)exp (¢ = (DY exp"*)ero (p(21)),

Per(Pexp(e/()) = (D" exp™)er() (p()),
q)g’ (X)expi- (&' (=")) =T (X)eXPJ‘ (€'(=")

and

Lo (Xexp(¢1(=)) = D e (Xexp (¢r())
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along exp(¢'). Then for such a family of sections per for & € T*(W) define

VJ_

Oype = ——|  peray:
K dA | —o g

where Z—)\ — denotes the covariant derivative along the path exp®(& + An).

Let z € ¥ and assume that 0, > 0 and that ||£(2)]| < 9.

k0

Then there are constants C3; € [0,00] that are universal expressions in the

constants Cf , C’? T for0<r < k+€ and C7, CIT foro < r <
E+04+1and CY" for1 <r<k.
With these, at the point expt(£(2)),

1007)°(V g ()" @E (o )H <

Ckez Z HH L

r=0 ki+--+k, s=1
Fi1+- i
+i=k, ks>1,
1,1520

)Huw

HI(Vx)el

1) (VD (x) @2 )H <

cy ¥ e

r=0 ki+--+k, s=1
+i14--+ip
+i=k, ks>1,
1,05 >0

)HHVX

05 (Th MO < O3 Y 1 [[cvste

r=0 ki+---+k, s=1

!Hnw

+i1+-+ip
+’L:k7 ksZL
1,15 >0

1O (V g 0)) @e(X ety ¥ HHvst

r=0 ki+--+k, s=1
+i1+-+ip
+i=k, ks>1,
1,150

(H(Vx)iV)&H + H(Vx)iDVu(X)H + 1)

\Huw

Proof. 1 will give only a very rough sketch of the proof, for doing all the details
would get out of hand very quickly.

The last inequality follows immediately from the previous three and Corollary
IL1l
The proof of the first three inequalities is by double induction over k and £.
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The case k = £ = 0 for ®"(p), ®"(p) and ®7(X) follows directly from Proposi-
tion and Corollary

Now for the induction step: Given n, X as above, let, for € > 0 some constant,
z(+) : (—€,€) — X be a flowline of X. Depending on whether one is dealing with
nor X, let a: [0, ] (—€,€) — W be either the map a(t, \) := exp™(t(£ + \n))
or a(t,\) := exp(t&(z(N))). In elther case, there are two commuting vector
fields along «a, % := %—“ and p 1= ﬁ By definition, p(t,0) is either t®j(n) or

Claim. Let J be a vertical vector field on W along « that satisfies an inhomo-
geneous Jacobi equation of the form

VyVid = A A +V(3,4)
J(0,0) = Jo(N), (V5 )(0,2) = Jo(A).

Then VéJ satisfies an inhomogeneous Jacobi equation of the form

Vi Vi (V) = AR,V J) + Vol3, 4, p, ) +
+ Vi(3, VEp, J) + Va(¥, p, V2 J) + (VAV)(3,7)
Vo J(0,0) =Vydo(A), (VY ))(0,0) =V, Jo(N) + Q5 (5, p) Jo(N),

where the Vj are tensorial expressions in V., A, V1A, QO and VQL.

Proof. One calculates using that [p,7] = 0, in particular VLp VL% and the
Jacobi equation for J

ViViVoJ =Vy(VyVid+ Q5 (5, 0)J)
=V ViVad + Q5 (4, p)ViJ + (V4 Q5 (3, p)J +
+ QN3 Vip)J + (5, p) Vi T
= (Vy A (3,4 + A(Vyp,4)d + A3, Vip)d +
+ AFGANV, D) + (Vo V) (5, 9) + V(V#p, 1) +
+ V(3,V35p) + @4, ) V3 + (V520) (4, 0)J +
+ Q5 (3, Vyp)d + QN (3, p) Vi J.

Now resort all the terms above. O

For kK, > 0, the estimates then follow by induction using the claim above
and Corollary for the estimate, where in each step the estimates from
the previous step are used to estimate all the terms appearing in the inho-
mogeneous Jacobi equations. When doing this for @g(X ), because of the

initial condition V#JT( ) = —T¢X in Proposition one has to calculate

T \ T T ~ T T3 _ 9
VDutg(X)X vautg(X)-i—XX V (X)X+VXX Now VXX = VXX (See
Proposition 6.1 in [Sak96]), which was assumed to vanish at 2. The other term
vT

D¥uge( X)X , and similar ones obtained by repeating this procedure, then are
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the reason for the appearance of the constants C"" in Definition and
Proposition [[T.4]

Making all of the above precise is then just an extremely long, tedious and
annoying matter of bookkeeping.

In the induction step for ¢ > 0 there is one caveat, because ®¥(p); is given
by $J3(t), where Jy(t) is as in Proposition Then Vf)uté(X) ($+J3(1) =

%Véut& x)In (t), because Duy(X) is by definition parallel to {t = const}. The

same holds for @2’5(77) as long as 1 and p are perpendicular, by Gauss’ lemma.
The problem is hence the case where ¢ and 7 are parallel. Then as before,
(Vl%utg ( X))kfb‘é (p) is given by 1.J(t), where J(t) solves an inhomogeneous Jacobi
equation. Furthermore, one can show that J(0) = 0 and that J(¢) has bounded
derivatives in ¢ of all orders. The term to be estimated is then (V#)Z(%J(t)),
which can be done via Taylor’s expansion. O

Using the lemma above, one can then prove Proposition [[T.4]

Again, I will give a sketch of the proof here for ¢ = §, making the general case
precise is then a straightforward, although quite substantial matter of book-
keeping.

In the notation and under the assumptions of the proposition, let £ = £(() :=
(expy) ! o expi(¢) and let ug := expi(£), ve = expy(¢). Then ug = v and
hence DVuge(X) = DVve(X). The estimation process then consists of two steps
which in turn each consist of an induction over three steps:

First, by induction over k, one gives the following estimates, where the induc-
tion start & = 0 is just the assumption ||£(z)|| < ¢, and the induction step is as
follows:

One estimates (Vf)ug(x))vaug(X) = (VI%UC(X))]CDVUC(X) in terms of the ||(V.x)*C||
fori=0,...,k+ 1 using Lemma applied to v and ( instead of u and &.
Then one estimates (Vf)u5 (X))kDVu5(X) — (Vf)u5 (X))k@z(vxf), which is given
DY (Ve (x) 88 + (Vi (x)) PE(X), again using Lemma but this time
the estimate is in terms of the ||(Vx)*¢||, only for ¢ =0, ..., k. By the induction
hypothesis, the ||(Vx)%|| then are estimated in terms of the ||(Vx)C]|.

And third, one estimates (Vf)ué(x))k@g(vxﬁ) - @g((vx)kvxﬁ), again using
Lemmam in terms of the ||(Vx)%]|, only for i =0,...,k.

And again, by the induction hypothesis, the ||(Vx )| then are estimated in
terms of the ||(Vx)¢||. Because of the assumption [|£(2)[| < &, [|((DY exp=)¢) 71| <
2 (see Corollary 4.6.1 in [Jos02]), so this gives an estimate for (V. )**1¢ in terms
of the ||(Vx)¥|| for i =0,...,k+1.

These results one then uses as induction start for an induction over ¢, basically
going over the same three steps above, but this time involving 8% and 8#.
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I1.2.3 Definition of manifolds of sections of a Riemannian sub-
mersion

For similar notions of geometric boundedness in the linear case and for trivial
bundles, see e.g. [Aub82] or [Eic07].

Definition I1.14. A Riemannian submersion 7 : W — ¥ is said to be of
bounded geometry up to order r, if the following hold for the constants from

Definition [LI3k

inj(X) > 0,¢ := inf {inj(W,) | z € £} >0,

C*®% < oo for s =0,...,r — 3, CRW’S,CQL’T,CA’S < oo for s =0,...,7,
C~*,CTs <o for s=0,...,r+1and § > 0.

If 7 : W — ¥ is of bounded geometry up to order r for allr > 0, thenw : W — X
is said to be of bounded geometry.

Remark 11.6. The lower bound on the injectivity radii of the fibres in the defi-
nition above implies in particular that inj(W,) > 0 for all z € 3 and hence that
every fibre W, is a complete Riemannian manifold.

Definition II.15. Let (X, k) be an oriented Riemannian manifold of dimension
nand let k € IN, 1 < p < oo with kp > n (so LFP(X) C CO(%,R)). A (k,p)-
Sobolev function on ¥ is a continuous function s™FP : & — (0, 00), z s?’k’p,
s. t.

1F(2)| < sZFP| fllpww YV f€LFP(D), 2 € X

If this function is constant, then its image, again denoted by s>FP e (0,00), is
called a (k,p)-Sobolev constant.

Lemma II.9. Let (X,h) be an oriented Riemannian manifold of dimension n
and let k € IN, 1 < p < oo with kp > n (so LFP(X) C C°(Z,R)). Then a (k,p)-
Sobolev function s™*P exists and has the property that for every Riemannian
vector bundle p : E — % equipped with a Riemannian connection,

1€)|| < sZFP|€| prw VE € LFP(E),z € 5.

Proof. See [MS04], Remark 3.5.1, p. 67f. O

Construction I1.2. Let 7 : W — X be a Riemannian submersion of bounded
geometry, let & € INg, p > 1 with kp > dim¥ and let s™FP € (0,00) be a
(k,p)-Sobolev constant.

The basic idea behind the construction of Sobolev spaces of sections of 7 :
W — ¥ is to define LFP(W, 7, g) as a subset of T?(W) (with the compact-open
topology) s.t. the inclusion is continuous. Having this explicit embedding of
the Sobolev spaces in the spaces of continuous sections already present in the
construction, as opposed to more abstract definitions of L¥P(W, ,g), has the
added advantage that one can always more easily compare the Sobolev spaces
for different k,p and their topologies and smooth structures. So take a section
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u € TH(W) and consider the Riemannian vector bundle «*VW — ¥. In addi-
tion, assume that u has bounded derivatives up to order k, i.e. C*" < oo for
all 7 = 1,...,k. There is then a Sobolev space LFP(u*VW,h,g, V1) that is
defined as a Banach space in one of the usual ways (completion of the space of
smooth section or via weak derivatives). The important properties these have
to satisfy are the following, irrespective of the precise definition:

First of all, the smooth sections of finite L¥P-norm form a dense linear sub-
space, cf. Proposition 3.2, p. 15, in [Eic07].

Second, the Sobolev embedding theorems hold, c¢f. Theorem 3.4, p. 16, in
[Eic07].

And third, the module structure theorem holds, cf. Theorem 3.12, p. 20, in
[Eic07].

Apart from the fact that the boundedness assumption on the covariant deriva-
tives of DYu are necessary for the embedding and module structure theorems
quoted above to hold, they are also necessary to be able to use Proposition [[T.4]
in the construction of the transition functions later on.

But on the other hand, these are the only results about the (linear) Sobolev
space needed for the construction below, so one can easily replace them by
weighted Sobolev spaces, for example.

To shorten notation, in the following, L*?(u*VW) will be written instead of
LFP(w*VW, h, g, V5.

Since kp > n := dim X, the Sobolev embedding theorem shows the existence
of a canonical continuous injection ¥, : LFP(w*VIW) — TO(u*VIW). As a
consequence, the map ®, : LEP(w* VW) — TO(W), € = (2 = expi(z)(f(z))),
is well defined and continuous as it factors through W¥,. The next step is to
find a neighbourhood V, of the zero section in L*¥P(u*V W) that gets mapped
injectively by ®,, into I'Y(W), to serve as a chart of a Banach manifold structure.
Here a problem arises if ¥ is noncompact. Ideally, injectivity should result
from pointwise injectivity, which requires that for every z € X, || ¥, (£)(2)|| <
injyy,, where injy;, denotes the injectivity radius of the fibre W, over the point
z € . Because the existence of a Sobolev constant s>*P was assumed and
remembering that the constant ¢ from Definition bounds the injectivity
radii of the W, from below, since the W, are complete, one can take the open
subset V,, := {¢€ € LEP(w*VW) | ||€]lpre < §/(3s¥%P)}. Anyway, one can
tentatively define

L W,mg) = |J @u(Va) STOW).

The topology on this set is defined to be the topology generated by the union of
the induced topology on L*P(W, 7, g) as a subset of I'°(W) and the topologies
on the subsets ®,(V,) induced by the Banach space topologies on the V,, C
LFP(w*VW). This is clearly a Hausdorff space, the topology being finer than
the (Hausdorff) topology on I'°(W). But it is not yet clear that it is 27
countable. At this point a caveat has to be issued, for it is not clear that
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the natural candidates for coordinate maps, the ®,,, are homeomorphisms onto
their image, with continuity possibly failing (they are continuous w.r.t. the
C®-topology, but this does not imply continuity w.r.t. the finer topology on
LFP(W,m,g)), although they are open injections by definition of the topology
on L*P(W,m, g). Another way to phrase this is by noting that the natural
candidate for a transition function, ®, o ®, for ®,(V,)N®,(V,) # 0, restricted
to @, 1(®,(Vy)) C Vi, need not be a homeomorphism between open subsets of
V, and V,,.

So assume that there exist ( € V,, £ € V,, with ®,(¢) = ®,(§). As before,
denote ®,(§) =: ug = ve = ®,(¢) € T(W). Then for all & € V,, and 2z €

3, d(v(z), 2u(€)(2)) < d(v(z2),v¢(2)) + d(ug(z),u(2)) + d(u(z), Pu(£')(2)) < 6
by definition of V,,. And analogously for ¢’ € V, with the roles of u and v
exchanged. This implies that there are well-defined maps, by abuse of notation,

O lod,: V, = IO(u*VIV)
and
O lod, : V, = T V).
Denote V¥ := V, N T*(v*VW) and analogously V¥ := V,, N T*(«*VW). Then

for n € LFP(v*VW)NT¥(v*VW) small enough, denote ¢ = ¢'(n) := (+n € VL.
Then from Proposition [[T.4] follow pointwise estimates

P m r .
<Y Y TV IPIvlP,

K'=0r K} s=1

0
I m(b—l @U /
PN

where C is a constant that depends on all the bounds above, esp. C*" and CV"
for r =1,...,k, but not on anything else. Integration over 3 and applying the
module structure theorem, for m = 0, ..., k, then gives a global estimate

< O zeollnll oo

0
7@71 (p'u /
|t o) »

The mean value theorem then implies that for ¢’ € VF, & tod,(¢') € LEP(u*VIV).
In particular, for n small enough, i.e. ¢’ close enough to ¢, in L*P-norm,
1o ®,(¢") € VF. The same clearly also holds with the roles of u and v
interchanged. This implies that

©,t o @y @ (Ru(V))) = Vi

is a well-defined Lipschitz continuous map that hence has a well-defined Lips-
chitz continuous completion to a map

O lod,: o (D, (Vy)) = Vi

In particular, ®,1(®,(V,)) C V, is an open subset. Again, the same holds with
the roles of u and v interchanged and the resulting maps are inverses to each
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other.
Now the same line of arguments above using Proposition [[I.4] and the module
structure theorem implies that the map

b lod,: o LD, (VF) = VF

has Lipschitz continuous derivatives of all orders. By Corollary this in turn
implies that the completion

O lod,: o (D, (Vy)) = Vi

is smooth.

So far, this turns L*P(W, 7, g) into an a priori non-2"%-countable Banach man-

ifold. If ¥ is compact, then the standard argument via choosing a C*-dense
countable subset {u;}icwy of I'*(W) and in the charts above around each wu;
a L*P-dense countable subset applies, for the boundedness condition on the
covariant derivatives of the DVu; are automatically satisfied and any smooth
section of w*VW lies automatically in L¥?(u*VIV).

In general, for the above to carry over, one immediate condition is that the
Banach spaces L*P(u*VW) need to be separable. But if u,u’ € T*(W) satisfy
Cur O < ooforr =1,...,r, then u and u/ C*-close does not imply that one
lies in the chart around the other. So it does not suffice to take dense subsets
of the V,, for u in a C*-dense subset of T*(W) as before.

In practice, it is then easier to just restrict the set of C*-sections around which
Lk’i”(VV, T, g) is constructed to a countable subset, tailored to the concrete prob-
lem.

An example for this would be the maps with cylindrical ends used in SFT-
Fredholm theory.

In the compact case, i.e. W and hence ¥ compact, all of these problems vanish,
because all the assumptions on finiteness of the constants C*" are automatically
satisfied. Also in this case the constants C99" appearing in Proposition m
in case m : W — ¥ is equipped with two different structures of Riemannian
submersion, are automatically finite, which implies that the Banach manifold
structure on L*P(W, 7, g) is independent of g.

Lemma I1.10. If 7 : W — ¥ is a Riemannian submersion and W is compact,
then L*P(W, 7, g) is a 2"%-countable Hausdorff Banach manifold and the under-
lying set as well as the Banach manifold structure on this set are independent

of g.

Proof. Only independence of the Riemannian structure needs to be shown.

For this, what one wants to show is that the set-theoretic identity defines a
smooth map between the Banach manifolds built with respect to two different
choices of Riemannian structures, given by metrics g and g on W. Expressing
the identity in local charts around a point u € T*(W) means that one has to
look at maps of the form Q:); Lo @, where ®,, is as in the construction above,
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but w.r.t. the metric §g. The proof that this defines a smooth map between
open subsets then proceeds literally as the corresponding proof outlined in the
construction above using Proposition O

One last easy consequence of the construction of L*P(W,, g) above is the non-
linear version of the Sobolev embedding theorem. For this, note that one can
construct Banach manifolds of sections of class C* very analogously to the L*»-
spaces above. Given a vector bundle p : £ — B together with a Riemannian
metric b on B, a fibre metric g on F and a metric connection V, the space of
sections of class C¥, for k € Ny, is the Banach space (|| - || denotes the usual
supremums-norm on functions)

k
TH(E, h,g,V) == {£ € THE) | D IV¢][loc < o0},
1=0

where |V¢| € CF(B) denotes the norm on (A“T*B) ® E induced by h and g.

Construction I1.3. If 7 : W — ¥ is a Riemannian submersion of bounded
geometry, then in the notation of Definition [I1.13} for v € T'*(W) with C%" <
ocoVr=1,...,k, let

Us i= {€ € T*w VIV, g, V) |l oo < 6.

Then analogously to the previous construction, there are well-defined injective
maps

W, : U, — TFW).

Using these, one defines the space of sections of class C* of 7: W — X as

T*Worg) = |J @u(Va)CTOW).

It follows directly from Proposition [[I.4] that the maps ¥,, define an atlas for a
Banach manifold structure on T*(W, 7, g).

Then the following nonlinear version of the Sobolev embedding theorem is an
immediate consequence of the linear Sobolev embedding theorem and the con-
structions of the Banach manifolds involved.

Lemma IL.11. Let 7 : W — X be a Riemannian submersion of bounded geom-
etry. Let furthermore k.0 € Ny an p € (1,00) with k — % > (. Then there
18 a smooth embedding

Lk’p(m 7T)g) — ]'_‘Z(VVY? ﬂ-)g))

defined by the restriction of the set-theoretic identity on TO(W).
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I1.2.4 Bundles of sections of a vector bundle

Another important concept used in the next part of this thesis are the Banach
space bundles of sections of a vector bundle one constructs over the spaces of
sections of a Riemannian submersion from the previous subsection. So let 7 :
W — ¥ be a Riemannian submersion of bounded geometry and let p: E — W
be a vector bundle equipped with a fibre metric ¢ and a metric connection
VE.

Definition 11.16. Let p : E — W be a vector bundle over a Riemannian
manifold equipped with a fibre metric ¢¥ and a metric connection VF. Let QF
be the curvature of V¥ and denote for s € IN

C% = sup{ (VP Qf | | w e W},

p: E — W is said to be of bounded geometry up to order r € Ny, if C2"5 < o
forall s=0,...,r.
If this holds for all € INg, then p : E — W is said to be of bounded geometry.

Construction II.4. Assume now that p : £ — W as wellas 7 : W — X
are of bounded geometry. For k,¢ € Ny, p € (1,00) with k& — % >/, by
Lemma LFP(W,m,g) C TY(W, m,g). In particular, for u € LFP(W,r,g),
u*E — ¥ is a vector bundle of class C¢, equipped with a fibre metric and a
connection of class C¢, as well. Furthermore, because by assumption (m: W —
Y. geometrically bounded) there is a lower bound on the injectivity radius of X
and the C*" are finite. So by Proposition 3.2, p. 15 in [Eic07], the sections of
class C* in LP(w*E) := L'P(u*E,u*g?, u*VF) are dense. So one can define,
as a set,
LB, g% VE W,m,g9)= [ L*°WE),
ueLkr(W,r,g)

which comes with a canonical projection
II: LY (E, g%, VE W, n,g) = LFP(W, 7, g).

The goal is now to turn this into a smooth Banach space bundle. The standard
way to do so is to define local trivialisations over the charts on LKP(W, , g)
defined in Construction via parallel transport:

In the notation used there, let for u € T*(W) with C*" < oo for r =0, ..., k,

®, : LFP(u*VW) DV, — LFP(W,m, g) C TO(W)

a chart. Then the trivialisation of LtP(E, g%, VE W, x, g) over ®,(V,),

Vu X L@,p(u*E) &> L&p(EagEv an W/’ 7T7g)|¢'u(vu)

| |

v, 2 B, (V2),
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is given by )
04 (€, 0) = (lls=0 PulsE))o,

where for z € X,

(lizo ®u(s€))z : (WE). = Eyiy = By e))x) = (Pu(§)*E):

denotes parallel transport along the path ((®4(s£)(2)))se0,1] from u(2) to (®,(£))(2) =
exp™ (£(2))-

For the above to be well-defined, it has to be proved that the associated tran-
sition maps are smooth. In detail, for u,v € T*(W) with C*" OV < 0o Vr =
0,...,k, let Vi, := ®,1(®,(V,)) C V, and analogously V,, := ®;1(®,(V,)) C
V. Then smoothness of the map

P od, : Vyy x LP(W*E) = Vi x L'P(u*E)
has to be proven, or equivalently, that of the map
By i=pryod;tod, : Vi, x LYP(0*E) = LYP(u*E).

This means that for n1,...,7m, € LFP(v*VW), £ € Vi, and o € L*P(v*E), one
needs to estimate at some fixed z € 3, in analogy to Proposition [[T.4]

am ia
877m C ,amv (I)Uu(g’o-)'
The basic procedure here is the same as previously for the Banach manifold
structure on L¥P(W, 7, g). One first of all makes pointwise estimates for o €
LYP(v*E) of class C* and € € Vi, of class C* by setting up an induction scheme.
To do so, one first of all follows the line of reasoning on page |43|f. to reduce to
the calculation of gm 3
%—m(vx)@w(g,a) (I1.13)
for n € LFP(v*VW) and X € T, for a fixed z € ¥. Then, by integrating and
using the module structure theorem one deduces the corresponding estimates
in L*P- and L%P-norms. And finally one uses the density argument provided
by Corollary [AT] for the general case.
The main step in setting up the induction scheme, that takes the place of
Proposition [[T.4] is the following calculation, which replaces Proposition [[I.5}
Let £ : (—e,e) = VW for some € > 0 be a path. The two cases of interest here
are the following:
First, for some ¢ € V, and some 1 € LFP(v*VIV) as well as some z € X,
E(N) = £(2) + An(2).
And second, for some ¢ € V,, and a path z: (—¢,e) = X, &'(A) := £(2(N)).
Denote also for p € VW,

of [0,1] = W, t+— exp(tp).

Then one has the following property for the covariant derivative of a section of
E along the path expt of’ : (—¢,¢) — W, where d—v)\ denotes the total covariant
derivative along a path:
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Lemma I1.12. Let &' : (—¢,e) = VW for some € > 0 be a path. Then for any
section o of E along exptof' : (—e,e) = W,

\V4 / B / .V / , _
V(5 af M) e (5 af @) Y o = 5(€(0), 2 (0)) (|14 o€ @)1,
d\ =0 d\ =0
where

1

3(€(0), 2. (0)) = / SH(s) ds

0

and

H(s) = (130 @) " 08 (D expb)e)(% (0)). (0¥ exp).e €0) (b ax¢©)

Proof. Let u: (—e,e) — W be defined by u()\) := prj;/V o€’. Then by definition,

v 1 oeony-1, _ 4
dA )\:0(”0a ) 0= d)\

(=0 v(rA) " (ly=o exp(r&'(N)) ~'o
A=0
and one can write

(lr=o u(rA) ™ (llr=o exp™(re’ (V)™ =
= (llr=o w(r) " (llr=o exp™(r€'(A)) ™!
(Il7=0 exp™ (&' (rA))(Ilr=0 exp™ (r€'(0)))
(Il7=0 exp™ (r€'(0))) ™ (lly=o exp™ (&'(rA)) "
= (

70 7)) (lr=0 exp™ (r€(0)) ™ (lly—o exp™(¢'(rN)))

where 7 : [0,4] — W is the piecewise smooth closed loop defined by

expt(r&’(0)) 0<r<1
exp(€((r— D) 1<7 <2
expt((3-r)¢'(\) 2<r<3’
u((4 —7)A) 3<r<4

) =

This loop is contractible via a piecewise smooth contraction H* : [0, 1] x [0, 4] —
W, (s,7) = HX(r), where

p*(sr¢'(0)) 0<r<
exp( "(r—=1)s\)) 1<r<2
expt(s(3—r)¢'(s)) 2<r<3
u((4 —r)sA) 3<r<4

) =

and H1 = ~4*. By a result which can be found e.g. in [RW06], Corollary 3,
|#_g ¥ (r) can be expressed as

NN N
I () = g, + / / (I H20)oRF (H2 o HY 5ol H(0) drds,
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where QF € Q?(W, End(F)) denotes the curvature 2-form of the connection on
E. Nowfor0<r<1land3<r <4, H*% and H*% are linearly dependent, so
for these values of 7, the curvature term in the integrand of the above formula
vanishes. For 1 < r < 3 one calculates

0 {D" expt (€'((r — 1)) + s(r — DAD exp™ (% ((r — 1)s)) 1<r <2
" s (3 — ) DY exp(€/(s))) + s(3 — r)AD exp (% (1)) 2<r<3

mo s2AD expt (%5 (1 — 1)s\)) 1 <r <2
“or —sDV expt(£'(s))) 2<r<3

Hence after reparametrising in r and again using that Q¥(X,Y) = 0 for X and
Y parallel as well as the antisymmetry of QF,

1
. 2
=0 ¥ =idg, +)‘/0 § (

1
/0 (It r HN(6)oQP (Dexp™ (55 (rs))), DY exp (&' (rs))))o(li2g H2(¢)) dr +

1
+/0 (1=r) (2 H2(1))oQ" (D exp™ (55 (sX)), DY exp™ (¢'(sM\))o([I155 H (¢ ))d7“> ds.

One also calculates for 0 <r <1 and A =0,

lita HO() =]l exp™(ts€'(0))

722 HO() =]y exp™ (ts€'(0))
Iy HO(8) =llg exp (1 = £)s€(0))
ey HO®) =l exp™ (1 — £)s€(0))

So defining the path ¢’ (t) := exp*(ts€’(0)),

1 ! -1 /
o], M=ot = / s (I @™ @) " QF (D expt) e (55(0)),
@ expﬂse(m (€0)) (1§ a*©) as +
g0 L oE L o’
r (115 @ @) QF (D exph ey (35 (0)),
" e e € 0)) (15 a* @) ards
1 ! -1 /
= [ (16 @) " 07 ((Dexpber (35 )
(DY expb)er)(€'(0))) (Ilh @ ™) ds +
1 1 , 1 ,
[ ] rs (18am©) " 0P ((Dexpbyraeo (5 0)),
0 JO

(DY expb) oy (€10))) (15 a7 ©) sdrdis

A=
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and denoting for simplicity

H(t) = (1§ 0 ®) " 08 ((Dexp o) (%5 0))

(DY expt) e (€'(0))) (11§ 0 @),

d 1 1,1
||;44:0 ’y)‘ = / 82H(s) ds + / / rsH(rs) sdrds
A=0 0 0 0

ar
_ /0 1 <5(5H(s))+ /0 tH(t) dt> ds

Ls [y tH(t)dt

- /0 1 sH(s) ds.

O]

Using this lemma together with Proposition[[I.4] one can now estimate the norm
of analogously to Proposition Since the details are quite analogous
to the discussion before, simpler, actually, they will be left out.

Example II.1. A canonical example of this is gained by applying the above
construction to the vector bundle Hom(7T%, VW) with Hom(T%, VW), =
Hom (T ()%, VW) & T;(w)E ® Vi, W with the induced metric h* ® g|yw and

connection V=+.

Finally, note the following two results, which follow fairly easily from the defi-
nitions.

Lemma I1.13. The vertical derivative DV defines a section
DY . LFP(W,m,g) — LF"YP(Hom(TS, VW), h* @ glyw, V', W, g).

If u € T"(W,m,g) then in the chart around u in L*P(W,m,g), this section is
given by the formula from Lemma i.e. for £ € LFP(w*VW), choosing any
measurable section representing & and any measurable section representing VE,
for z € %, X € T,%, DY exp(€) is represented by

X > (DY expi (€))(X) = Dexp"*(DYu(X), Vx&) + 7e(X).

Lemma I1.14. Let (p : E — W, g V) and (0 : F — W,g", V) be Rie-
mannian vector bundles over W of bounded geometry. Let ® : E — F be a
(linear) bundle morphism (covering the identity on W) s.t. |[V*®|| < oo for
all s € Ng. Then the map
LB, g%, VF, W,m,g) = L' (F.g", V" W,7,g)
e—~>doe

1s @ Banach bundle morphism.
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I1.3 Construction of smooth structures on moduli spaces

Throughout this section, fix a marked nodal family (7 : ¥ — M, R,) of type
(g,n) and choose a metric h on ¥ that is hermitian on every fibre of . Fur-
thermore, let (k : X — M,w) be a family of symplectic manifolds with fibres
symplectomorphic to a closed symplectic manifold (Xg,wp) (in other words a
fibre bundle with fibre Xy and structure group Symp(Xo,wp), the symplecto-
morphism group of (Xo,wp)). Define % : X — ¥ as the pullback of x : X — M
to ¥ via w. As before, J,(X) is the set of w-compatible vertical almost complex
structures on X, i.e. bundle morphisms J € End(VX) with J? = —id and
s.t. w(+,J-) defines a metric on VX. In other words, for any b € M, J, is a
compatible almost complex structure on the symplectic manifold (Xp,wp). Such
aJ € J,(X) is chosen and X is equipped with the almost complex structure
given by the pullback of J to ¥ via the projection onto M (and again denoted
by .J), and the metric g7 on VX defined by w and J. Finally, a locally trivial
family A of 2°d homology classes (Ap)penr, Ap € Ho(Xp; Z), in the fibres of X
is fixed in the sense that there exists a covering (U;);e;r of M and trivialisations

i - X‘UL = U, x Xg s.t. (pI‘Q)* o ((bi’Xb)*Ab S HQ(X();Z) is independent of
beU,.

11.3.1 Hamiltonian perturbations

For almost all of the notions and results on Hamiltonian perturbations, see
[IMS04], Section 8.1.

The basic Banach space from which all perturbations will be chosen is defined
in analogy with [CMO7], Section 3.

Definition I1.17. Let € = (€i)ien, be a fixed sequence of positive numbers.
Denote by & : X — ¥ the projection. The space of Floer’s C¢-sections of £*T*%
is

I¢(R*T*Y) == {H € T(R*T*Y |Zel||HHCz<oo}

Let C' C X be the set of special points, i.e. the union of all the markings and
nodal points, and define C' := #~}(C) € X. C C ¥ is a submanifold that
intersects every fibre of ¥ in a finite number of points. Define (cl denotes the
closure)

D5(R*T*Y) == cl{H € I°(&*T*Y) | supp(H) C X \ C}.

Let 0 < 6 < %. The space of Hamiltonian perturbations is defined to be the

open ball of radius ¢ in I'§(F*T*Y), i.e

H.5(X) = {H € T5(R*'T*Y) | ZEZHHHCz <6},
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where ¢ is chosen as in [F1o88|, Lemma 5.1. The subscripts € and ¢ will usually
be dropped, i.e. H(X) := H, 5(X).

The reason for the appearance of the constant § in the above definition is
so one can apply Exercise 8.1.3 from [MS04], and for any desingularisation
by : Sp — 2y C X, for b € M, of a fibre of X, equip the total space X, of the
pullback of the fibration X to S, with a symplectic form.

Construction IL.5. Let (S, j,74,v),b € M,i: S — 3 be a desingularisation of
Yy and let X := *X with projection & : X5, Using X = §x Xj, an element
H € H(X) defines a linear map Hj, : T'S — I.cs C™(X.,R) = S x C®(X;, R)
in the following way: If ¢, € 7.9, = V.S C T..S, then Hy(¢:) : X = X, = R,

T+ Hyg(i4(2), where i : X — X is the canonical map covering i : S — 3. In
this way, Hp is considered as a 1-form on S with values in the smooth functions
on the fibres of X.

Furthermore, for ¢, € T.S, to the function Hy((,) € C’OO(XZ,IR) corresponds
a Hamiltonian vector field Xp, (¢, € X(X.). In this way one gets a fibrewise
linear function X : T'S — [],cq X(X.), i.e. a 1-form with values in the space
of Hamiltonian vector fields on the fibres of X.

H, then defines a connection on X with projection onto the vertical tangent
bundle given by

Tl TX =TS xTX, — VX 28§ x TX,
(Cz»vx) = (Zavx) + (ZvXHb(Qz)(x))'
Definition I1.18. For H € H(X) and b € M as above, Xp, : TS — X(X3)

from the previous construction is called the Hamiltonian vector field on S as-
sociated to H and

1
0,1 . .
Xy, = i(XHb + Jp o Xp, o jp)
is its complex antilinear part.

Definition I1.19. Let J € J,(X) and let H € H(X), b € M. Using the
notation from the previous construction, the almost complex structure J JHe on X
defined by J and H is given by J b|V ¢ = Jp, using the canonical identification

VX =S x VX and ij\HX = i*j w.r.t. the decomposition TX = VX @ HX
defined by the connection associated to H.

Remark 11.7. For (w,v) € TX =TS x TX,,
jH"(w,’U) = (jw, Jyv + 2JbX211(w))

The main existence result for Hamiltonian perturbations:

Lemma I1.15. Let (S, j,ry,v),b € M,i: S — %} be a desingularisation of ¥y C

Y. Given any z € S\ (UZ 1T U U,L Anl n? ), where v = {{n},n?},....{nk n2}},
any x € i* X with © *R(z) =z, anyn € Hgm(TzS, VxZ*X') and any neighbourhood

U of x in i*X, there exists an H € H(X) s.t. i*H € H(i*X) has support in U
and satisfies (Xppr)e = 1.
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Proof. Choose a coordinate neighbourhood V' C M of B and a symplectic
trivialisation X|y = V x Xy of X. Because z does not coincide with any
of the special points, there exists a coordinate neighbourhood V' C X that

is mapped by m onto V and s.t. there exist coordinates (tg,...,tx) € C x
C*, k := dimg(M) on V and coordinates on V s.t. 7|p; : V. — V in these
coordinates is the map (t,¢',...,t%) — (¢',...,t*) and 2 corresponds to the

point (0,...,0). Furthermore, let 2/ := i(x) € X, where 7 : i*X — X is the
canonical map covering i. Then there exists a neighbourhood of 2’ in X |y of the
form V x W, where W C X is a coordinate neighbourhood with coordinates
(z',...,2") € RY, 1 := dimg(X(), mapping 2’ to zero. One can assume that
Vx WnE(z=1(b)) Ci(U), so i (V x W) C U. Choose two smooth cutoff
functions dx : RY™X — [0,1] and dx : € x C* — [0, 1] which are identically 1
in a neighbourhood of 0 and have compact support inside the neighbourhoods
of 0 corresponding to W and V, respectively. Let 8??’ 1=0,...,k,7=1,2, be
the coordinate vector fields for the real coordinates ]associated to the complex
coordinates t'. Then t" defines a complex coordinate in a neighbourhood of z

in S and one can evaluate w(n(%), ) =>", Ajmda™ for some \;,, and define
J

H € 3(X) as the 1-form that vanishes identically outside V x W and in the
9

above coordinates maps the 8‘?2.' for ¢ > 0 to zero and maps the W(to o) to
J 7 (t0,¢1,...,
the function that vanishes identically outside W and maps
(@ ah) = an (0t )k (e ) A ™
m
O

For such Hamiltonian perturbations H € H(X) and points b € M, one can
define the moduli spaces of holomorphic curves in the family ¥ with values in
X. These are the main objects to be studied in this thesis:

Definition I1.20. Let H € H(X), let b € M and let (S,j,7.,v),b € M,i :
S — Y be a desingularisation, t*X := X. Then
My(X, A, J,H) :={u:%y, = X | kou=idy,, [pry o u] = Ay € Ha(Xy; Z),
Fu: S — X is j—ij—holomorphic},
which is independent of the choice of desingularisation and where pry : X Iy, =
>y X Xp — Xp is the projection. Hence

MX, A JHX)) = [ My(X,A J H)
beM
HeH(X)
is well-defined and comes with two projections
e M(X, A, T, H(X)) = M

and

mr M(X, A, J, H(X)) — H(X).
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The remainder of this chapter consists of defining (Banach) manifold structures
over certain subsets of this space (although not on all of M(X, A, J, H(X))) in
such a way that it reflects the stratified structure of M by the stratification by
signature (where well-defined) and to define a topology on M(X, A, .J, H(X))
compatible with the manifold topologies on these parts.

I1.3.2 The case of a fixed Riemann surface

In this first subsection, the case of a fixed Riemann surface and a fixed trivial
symplectic fibre bundle over this surface, equipped with (fixed) almost complex
and Hamiltonian structures, is treated. First, the respective Fredholm problem
is set up, i.e. a Banach space bundle & — B and a Cauchy-Riemann opera-
tor 0 as a section of this bundle are defined. Then the linearisation of this
Cauchy-Riemann operator is calculated and using this, first, it is shown that
this operator is Fredholm of the expected index (Corollary . Then a condi-
tion is derived for when the linearisation of 9 is complex linear (Corollary ,
which will mainly be needed in the last third of this text. Finally, the well-
known elliptic regularity result will be derived, namely that the elements in the
solution set & (0) of the Fredholm problem actually consist of smooth sections.
Most of these are rather well-known results, but first of all, they are all crucial
for the later discussion, and second, using the results from the previous chapter
and assuming the standard results for linear Cauchy-Riemann operators, the
proofs are actually rather short. Most of the proofs here actually follow the
same scheme: By expressing everything in a chart for B and a trivialisation
for €, the problem is reduced to a known result about linear Cauchy-Riemann
operators.

Construction I1.6. Let, for now, (X,w) be a fixed closed symplectic manifold
and let A € Hy(X). Let (S, j) be a smooth Riemann surface of Euler character-
istic x equipped with a hermitian metric h, let J € J,(X) and let H € f}C(X),
where X := S x X. Then there are the connection defined by H as in Construc-
tion m together with h and the metric on X defined via the connection by the
metric g7 := w(-, J-) on the fibres of X and the pullback of & via the projection
on the horizontal tangent bundle. These turn pr; : X — S into a Riemannian
submersion. The covariant derivative on vertical vector fields will be denoted
by VH. Now over X there are the two vector bundles Hom(T'S,VX) and its
subbundle of complex antilinear morphisms

Hom; ;(T'S,VX) := {n € Hom(T'S,VX) | noj = —J on}.

Both of these inherit a metric from the metrics h and ¢/ on T'S and VX,
respectively. Hom(7T'S, VX ) also inherits a connection from the connections
on TS and VX. But in general, this connection does not restrict to a well
defined connection on Hom; 5y, since this subbundle is not invariant under
parallel transport. The problem here being that the Levi-Civita connection
on X (coming from g7) is not hermitian (the metric h on S is automatically
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Kaéhler, S being twodimensional). This can be solved by replacing the Levi-
Civita connection on X by the hermitian connection V defined by g7 and J. It
is shown in [MS04], Appendix C.7, that

- 1
VxY = VxY - JJ(VxJ)Y.

\V/ preserves J and the metric g7, but it is not torsion free, its torsion being
given by

s 1
T™V(X,Y) = —Ni(X,Y),
where N; denotes the Nijenhuis tensor of J. Also, the map

mriiom |« Hom(Ts, VX) — Hom; 5y(TS,VX)

HOm(j“]

1 .
nH§(n+JOWOJ)

defines a smooth bundle morphism.
Using these structures, one can make the following definitions:
Fix, once and for all, a real number p > 2. Furthermore, let k € IN.

where LFP (X ,PTy, g”) is the Sobolev space of sections of X, defined in Con-
struction This is a Banach manifold, since it is a union of connected
components, hence an open subset, of LFP (X' ,pry, 9”7 ). For a continuous path
in this space via the Sobolev embedding theorem defines a continuous path
of continuous functions, hence two sections in the same connected component
define the same homology class. Proceeding,

eFLP(X, A, J H) == {(n,u) € L" "P(Hom; ;(TS,VX),h* @ ¢’ V® @ V#,
X,pri,g”) |ue B (X, A, J,H)},

which, as a restriction of the Banach space bundle L*~1-P (Hoim(j, (TS, VX ), h*®
¢/ VS Ve X, pry,g”) from Construction and Example to an open
subset, is a Banach space bundle over B*?(X, A, J, H). The projection of this
bundle will be denoted by »*? : Ek=1r(X A, J H) — B*?(X, A, J, H).

To define the Cauchy-Riemann operator, note that just the same way, there
also is the Banach space bundle

FLe(X A, J H) = {(n,u) € L¥"YP(Hom(TS,VX), h* @ g, VS @ VI,
X,pri,g7) |ue B (X, A, J, H)}

over Bk’p(X,A, J,H) which by Lemma [[I.13| comes with the section DV :
BRP(X, A, J, H) — F=LP(X, A, J, H). Additionally, by Lemma [[I.14} the bun-

dle morphism 71322 from above induces a morphism of Banach space bundles
(3,7

from F¥~LP(X, A, J, H) to €~ 1P(X, A, J, H), hence the composition of the sec-

tion DV with this morphism defines a section of Sk_l’p(f(, A, J, H).

Finally, note that J induces almost complex structures on both VX and Hoim@ (TS, VX ),
which via Lemmaturn both TB*P(X, A,.J,H) and &¥~12(X A, J, H) into

complex Banach space bundles over B*» (X VA, J H).
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Definition I1.21. The (nonlinear) Cauchy-Riemann operator on X is the sec-
tion

et BEP(X A, J H) — EFLP(X, A, J, H)

1
U <2(Dvu + Jo D oj),u>
of the Banach space bundle

sFP L ERLP (XA T H) — BRP(X, A, J, H).

The next result is very technical, but necessary, for later the exact form of the
linearisation of the Cauchy-Riemann operator is needed. The relevant result
here is Corollary [[I.4 Still somewhat relevant to note may be the fact that
this lemma shows that the linearisation of the Cauchy-Riemann operator is a
(compact) perturbation of a linear Cauchy-Riemann operator (of some Sobolev
class) at all points, not just the differentiable ones.

The statement, as well as all the other statements in the corollaries and lemmas
following it, is to be read as follows: Pick measurable sections representing &,
V¢, n and V. Then there is a measurable section p of Hom(7'S, u*V X) s. t. for
ZeT,S, p.(Z) € Vu(Z)X is given by the formula in the lemma. The equivalence
class of this section in the relevant Sobolev space gives a well-defined element
in EF-1P(Hom(T'S,VX), A, J, H).

Alternatively, one can take the formula literally on differentiable sections and
use a standard density argument for differentiable sections in L*®-sections.

Lemma I1.16. Let u € T*(X, pry, g)NBF?(X, A, J, H), £,n € LF?(w*VX) and
assume that & is small enough that it lies in the chart around uw. Then w. r. t. the
chart for Bk’p(f(, A, J, H) and the trivialisation of E¥~1?(Hom(T'S, VX), A, J H)
around u from C’onstructions and m respectively, the linearisation of gé’H
at exp(€) in the direction 1 and evaluated on Z € T,S is given by

_ -1 o1
(155 exot se(e) {0 ex e (Vn + ) +
+ %(V%A“:ﬁ(-, Z) + IV A §Z)) —
1

n %(n,@aé”’expi(g)(m},
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where

Je(2) = (
ne(2) := (DY exp e(z)(1(2))
AME((, Z) = (D exp™)(D"u(2), V €) + 7(2)

F(n,€)(=) = | ¢ (I3} expi(s€)) o BY (DY exp™)yen(2),

0

DY expe)ely o T o (DY exp™ e

[y

(DY eprz)tg(z)f(z)> o (\ ij expi‘(s{)>_1 dt.

Proof. Let u, € and n be as in the statement of the Lemma and let A € R
be so small that £ + An lies in the open subset of Lk’p(u*VX h,g”,V) on
which the chart around w is defined. For a vertical path «a : [0, 1] — X,
i.e. pryoa = const : [0,1] — S, denote by [|55§ a(s) : Vao )X -V, (1)X parallel
transport w.r.t. the connection V on X that respects J. Here, the fibre X,
of X over a point z € S is identified with X. Note also that over each such
fibre, the connection on Hoim(j, ) (TS, VX )| %, s given by composition with Vv,
e. (Vn)(Z) = V(1(Z)) for n a section of Homy; j(T'S, VX')\XZ and Z € T,S.
For this fibre is canonically identified with 7S x T X i. e. the covariant deriva-
tive in the first factor is the trivial one.
Then by definition, in the chart around v and the trivialisation of 8'“_14’()2 VA, J, H)
over this chart, the derivative of (Dgé’H) at the point exp-(¢) € B¥?(X, A, J, H)
in the direction 7 and evaluated on Z € T,.S is given by

d -1_
x| (= expitote + ) 95" el €+ 2)(2) =

(1ot 0) " 35| (B enbtersin) 35" el an(2) +

+ 30n.6) (135 expi(s6)) 95" expb (€)(2).

The right hand side is calculated in Lemma with QF in this case given
by the curvature of V. Here and in the following, a number of evaluations of &
and 7 on z € S will be omitted, for otherwise the formulas become completely
unmanageable. E.g. above, instead of

d

(b ek st wn) 98" e (¢ )2

it should actually read

d% - (128 expi (s(6(2) + An(2))) oL expi (e + wn)(2).

The rule here is that £ and 7 should be replaced by &(z) and 7n(z) unless they
appear behind a differential operator such as e.g. Vz¢£ or gé’H expi (€)(2).
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Proceeding,
d _1*J,H L
(b et + ) 35" exvis €+ M) (2)
Xy
d -1 1 v 1
= o], (b expirte+sam)  5(DY expile +an)(2) +
+ JoDVexpj(gjL)\n)(jZ))
-2 (H exp (§+3An))_ LD expi (€ + An)(Z) +
d\ \—o s=0 u 2 u
270 5] (Ihemie+shn) DY expd (€ + M)(i2)
2 dx —o 5= OeXpu SAN CXPy mJ4),

because parallel transport w.r.t. the connection V preserves .J by definition.
Hence it suffices to calculate (and then use the same result with Z replaced by

iZ)

ddA N (IIS 0 €XPy (§+3An))_ DY expi (€ +n)(Z) =
= % N (Hs o expy (€ + sAn))_1 ((D exp™ ) e (DY u(Z), V7 (€ + An)) +
+ T£+An(Z)>
= % - (Iliié expy, (¢ +s>\n))_ ((D exp™*)e an(D¥u(Z), V 2€) +
+ Tera(2)) + d% . A (1328 expi (€ 4+ 52m)) (D exp™)einy (Vrm)
=V (b exp el ((Deprz (DVu(2), V7€) + 7(Z)) + (DY exp™)e(V 71)

).

)

Ve Al Z) + (DY exp™*)e(Vzn)

Vi Al Z) = =J (Ve DA, Z) + (DY exp™=)e(V 2m).

1
2

Now it only remains to sort all the different terms, noting that J(V,.J) =

—(VyeJ)J (differentiate J? = —id), and to relate 3 to H via an easy calculation
using the composition property of parallel transport to finish the proof. ]

Lemma IL.17. Let u € Fk(X,prl,gJ) N Bk’p(X,A, J, H) Then w.r.t. the
chart for B¥?(X, A, J, H) and the trivialisation of EF~1P(X, A, J, H) around u

JH .
from Constructions and respectively, the linearisation of O3 at u is
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given by (for Z € TS)
(DIL™),  TBEP(X, A, J, H) — eF-12(X, A, J, H),
_ 1 -
(DD )un(2) = V'n = 57 (V4 7)0u(2 >+7rTX<vHJH>z)
) < J (Vi) o

=V — Kju(n,0u(Z) + Z) —

where

1
Vi = §(Vz77 + IV izn),

ou(Z) i= %(DVU(Z) — ID"u(jZ)),

K ;4 is the symmetric part of the bundle morphism
TX@TX 5 VX, (1,6) ( JH (VHJH) 5)

and where Z denotes the horizontal lift of Z € TS to X, VH denotes the Levi-
Civita connection on X and JH denotes the almost complex structure on X
defined by J, j and the connection gwen by H as in Definition [II.19

Proof. This is the special case of Lemma for £ = 0. One checks easily that
in this case Jg = J, ne = n and H(n, &) = 0 as well as (||} expy(sé(2))) ! =
(D epr(Z)) ¢(z) = id. Also, by elementary properties of the differential of the
(full) exponential map together with Lemma [[1.5, A“?(0,Z) = DYu(Z). This
accounts for the first and second summand in the formula. Again by elementary
properties of the differential of the exponential map together with Lemma
V,A0(0,2) = —W‘:C))g@fz, where Z denotes the horizontal lift. So

1 1
§(V,7A“’0(-,Z)~|—JV,,A“’O(-,jZ):f( rIXVHZ  prTAN0H j7)

o\ Tvx Ym vx Y/
= VX2(VHZ+JHVH]Z)
Now
JAVH 7 =VH( iz Y- (VEJHYiZ
—
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So
%(VWAW(-, Z) + IV, A0 5 7)) = %w%(@gf JhJH 7
_ —éwgﬁjHZ(@fjH)
= IR,

which accounts for the remaining term in the formula.

The last equality follows from the decomposition of a linear morphism TX ®
TX — VX into its symmetric and antisymmetric part together with the right
formula in line (C.7.5) of Lemma C.7.1, p. 566, in [MS04]. O

This result seems to differ by the term involving Z from the corresponding
formula in [MS04], Section 8.3, p. 257f., esp. Remark 8.3.8. Although that is
not a real argument for why the formula above is correct, Corollary and
Lemma at least show that it produces the consequences one (or at least
the author) would hope for.

Corollary II.3.
vt BRP(X A, J H) — V(X A, J, H)
s a Fredholm operator of index

dime (X)X + 2¢1(A).

Proof. By Lemmalll.16| the differential of Dgé’H at a point exp(€) in BFP(X, A, J, H)
with v differentiable and ¢ a L*P-section of u*V X, in the trivialisations around
u, is given by the operator defined, on n € L¥P(u*V X), by

1

s=1 1 -1 \s X
1.8 5 2 = (|132h expi (s€(2))) {(D ex*)e(e) 5 (Vi + eV jzm) +

b STy A, 2) + IV A 2)) -
— LI )A(E, 2) — AU 7)) +

T T, )T expt<s><z>}.

Claim. The expression z — (||5=} expj(s{(z)))f1 o(DY eprZ)g(Z) defines an el-
ement W of L¥?(Hom(u*V X, u*V X)), with image in the bundle isomorphisms.

Proof. That for fixed z € S this defines an isomorphism of Vu(z)f( is clear from

the standing assumption on ||| in the chart for B*P(X, A, J, H) around w.

For ¢ = 0, ¥ is clearly the identity. Using Lemma[[.§ and Lemma[[T.12] and the
line of argument used in Subsection one then shows that, in the notation
used there, a%Vi\I/, for &,p € Fk(u*X) and ¢ = 0,...,k, can be bounded in
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LP-norm by a multiple of the L¥P-norms of ¢ and p. Hence the L*P-norm of
6%\1' can be bounded by a multiple of the L¥P-norms of ¢ and p as well. The
claim then follows by the density argument via the mean value theorem used
before. O

By the Sobolev multiplication theorem (remember that kp > 2), such a section
defines an isomorphism LF~1P(u*VX) — LF12(4*V X). One can hence dis-
regard this part of the first summand. The second part of the first summand,
n+— %(V.n + J¢Vj.n), defines a linear Cauchy-Riemann operator of class Lk,
by the following claim:

Claim. If ¢ is of class L¥P then so is Je.

Proof. The proof follows along the same lines of argument as the previous one.
O

All the remaining summands factor through the compact inclusion of L¥P in
C" (by the Sobolev embedding theorem, see [MS04], Theorem B.1.11, p. 517),
hence the above operator is a compact perturbation of a linear Cauchy-Riemann
operator of class L*P?. By the Riemann-Roch theorem, see [MS04], Theorem
C.1.10, p. 545, this is a Fredholm operator of the given index. O

Corollary IL4. Let u € B¥(X, A, J, H), n € T,B**(X, A, J, H). If 95" u =
0, then

(D)) (Jn) — T(DDS))n)(Z) = 7L N ju (0, Du(Z)),

where Du : TS — TX is the usual differential. In particular, if Ny (n,v) =0
for alln € VX]imu and v € im Du, then

(DO, : T, BRP(X, A, J,H) — €5 12(X, A, J, H),
s a complex linear operator.

Proof. First, assume that 7 is of class C*. Then by definition, Vzn = W‘T/‘)f{@g w(z)"
(in case k = 1, the right hand side of this formula does not make any literal sense
for sections of class L*P, whereas the left hand side does by definition of the
LFP_spaces), where one considers 7 as a vertical vector field on X on the image of

u. Furthermore, because 7 is a vertical vector field, Jn = JH 1 and 77‘:;*;(( JH = 7.
Also, by definition of gé’Hu and Ou, Du(Z) = gé’Hu(Z) +0u(Z) + Z, in par-
ticular Du(Z) = du(Z) + Z if gé’Hu = 0. With this, by the second formula for
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(Dgg’H)u from Lemma [[1.17

(D™ (In) = J(DIG)u)m)(2) = w5§;<<<05é’H>u><JHn) — JH(Dag"))n)(2)

by the Leibniz rule and the left formula in line (C.7.5) of Lemma C.7.1, p. 566,

in [MS04]. The claim for 1 of class C* now follows from the right formula in

line (C.7.5) of Lemma C.7.1, p. 566, in [MS04].

The general case (7 of class L*P) then follows by the standard density argument.
O

The following lemma should motivate the appearance of the almost complex
structure J¥ in the lemma and corollary above.

Lemma I1.18. In the notation of the above construction, for a sectwn u €
TE(X, h, g’ , VIYNB*P (X, A, J, H), 7 oas u=0and oas u=203"u,
where JH is the almost complex structure on X as in Constructzon and

=JH ‘ .
Jg s the standard Cauchy-Riemann operator on functions between the almost

complex manifolds S and X. In particular, u satisfies géHu =0i¢ffu:5— X
is a (j, JH)-holomorphic map.

Proof. By definition of J#,

__jH 1 A
% w=(Du+J"o Duoj)
1
:2( VXoDu—I—Jo7r oDuoj+
+ 71- oDu+(7T*|HX) Lojomo (HX) o Duoj)

, 1 _ o
= U+5((7T*\Hf<) P (Ml gg) "o g o)

because by definition of a connection 7, o (7 T))(()* =, and 7,0 Du = id as well

as 77?)(( o Du = (| ¢)

="
O

Lemma IL.19. Let v € ’Bk’p(X',A, J, H) with gijg’Hv = 0. Then v is smooth,
i.e. v € I'(X,pry,g7).
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Proof. In a chart around an element u € Fk(X',h,g,V), v is given by v =
exp, (&) for some & € L¥P(u*VX). By the formula given in Lemma [I1.13] for
zZeT,S,

ag"o(z) = %(D exps (DVu(Z), V7€) +7¢(Z) +

+ D expXH(D¥u(jZ), V;28) + Ire(§2)),

hence gé’Hv(Z) =0&

(DY eprz (Vz&) + JDY GXPXZ (V;z§)) =

DN |

- %(Tg(Z) +J7e(jZ) + (D" exp™) (D u(Z)) + T (D" exp™*) (DVu(j 2))).

Composing from the left with (DY eprZ)E_(IZ) and defining J¢ := (DY eprZ)gé) o
Jo (DY eprz)f(Z) as before, yields

1 1 T\ — )
5(Vz&+ Je o Viz€) = —5 (D" exp™*) oy (1e(2) + Tre (i Z)es +

+ (D" exp™) (Du(2)) + J (D" exp™*) (D u(j2))).

By the second claim in the proof of Corollary J¢ is an almost complex struc-
ture on the vector bundle u*V X of the same class as & (here, a priori L*P) and
the right hand side of the above equation defines a section of Hom(T'S, u*V X)
also of the same class (again a priori L*P) as &. This is shown using the same
proof as in that of smoothness of the transition functions in Subsection [[1.2.3]
After going to local charts of this bundle, one can apply the bootstrapping pro-
cedure from Appendix B.4 in [MS04], esp. Lemma B.4.6 and Proposition B.4.9,
to show the Lemma. O

11.3.3 The case of a smooth family of Riemann surfaces

Construction II.7. In the course of this construction, it will very soon be
necessary to work with universal moduli spaces, in particular to fix some space
of perturbations. Hence it is easier to start out with two families, namely a nodal
family over which the perturbations are defined and a smooth desingularisation
of this family over some locally closed submanifold. So let (7 : ¥ — M, R) be a
nodal family of Riemann surfaces of Euler characteristic y with n markings and
let (p:5 — B,R, N,,i) be a desingularisation of ¥ over B as in Definition
Also, fix a metric h on S that induces a hermitian metric hj on every
fibre S, := p~1(b) over a point b € B. As stated in the beginning of this
section, let (k : X — M,w) be a family of symplectic manifolds with fibres
symplectomorphic to a closed symplectic manifold (Xg,wp). Define & : X ¥
as the pullback of kK : X — M to X via 7w and as before, let A be a locally trivial
family of 2" homology classes in the fibres of X. Assume that M is connected,
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hence there is a well-defined first Chern class ¢;(A) := ¢l **(Ay) for any b € M.
Let finally H € H(X) be a Hamiltonian connection on X. Using ¢ : B — M
and 7 : S — X, one can pull all these structures back to B and S, i.e. p: X =
i*X =S x X — S is again a symplectic fibre bundle on which *J and i*H
define almost complex and Hamiltonian structures, respectively. For simplicity
and by abuse of notation, ¢*J and i* H will be denoted by J and H, respectively.
For b € B, denote by Jp, ggf and H the pullbacks of J, ¢/ and H to Xb = X|5b,
considered as a symplectic fibration over Sy via the restriction pp of p. Also
denote by j, the complex structure on the Riemann surface S;. Denote

By? (X, A, J H) := BP(Xy, A, Jy, Hy).
Also, denote X R
EZI:_LP(Xa A7 Ja H) = 8k_17p(Xb7 Aa Jba Hb)
and denote the bundle projection by

Al ey V(XA J H) — BPP(X, A, J, H).

The reason for the additional superscript H in comparison to the previous
notation will become clearer a little bit later.

With this define

BEP(X, A, J H) = [ By"(X, A, J. H),
beB

el (X A g H) =] &y (X, A J H)
beB

and
=[] s "X, A, 7, H) - B (X, A, J, H).
beB

Furthermore, one can define a section (set-theoretically, at this point) of »H by

= as"™ : BR#(X, A, J, H) —» e*1#(X, A, J,H).
beB

Definition I1.22. The moduli space of (J, H)-holomorphic curves in the family
S and representing the homology class A is defined as the subset

M(X, A, J, H) = <5J’H) )

of Bk’p(X,A,J, H) for any £k € IN, p > 1 with kp > 2, where 0 denotes the
image of the zero section in E¥~1P(X, A, J, H). This is well-defined by Lemma
ULL19i

The goal now is to equip this set with a manifold structure. Following the usual
course of action, to achieve this one wants to turn s : 8k_1’p(X,A, J H) —

Bp (X ,A,J, H) into a Banach space bundle and 37" into a Fredholm section.
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The straightforward way to attempt to define charts on B*P (X' ,A, J, H) would
be, for a point a € B, to pick an open neighbourhood U C B of a and a smooth
trivialisation

1R

¢a:UXSa—>S|UgS,

inducing maps

(bab : Sa — Sln Z = ¢a<b7 Z)
for b € U. Defining

B (X, A, J,H) = [ ByP(X, A, J, H),
beU

there is a bijection

bo: BIF(X,A,J,H) = U x BEP(X, A, J, H)
BYP(X, A, J, H) 3w (b, ¢lyu),

where for z € Sy, if u(z) = (2,u(2)) € Sy x X, then for w € S,, ¢} u(w) =
(w,u(pap(w))). This map is well-defined, because first of all, it is clear that
for u € BPP(X, A, J,H), ¢u € BPP(X|(s, (45 A (65T, (95H)p), where
X ]( Say(92),) denotes Xa, but with the base space S, now equipped with the
complex structure (¢F7) instead of j,. But by Lemma as Banach mani-
folds,

‘Bkyp(X’(Sm(d):;j)b)’ A, ((sz)b? (¢:H)b) = Bk,p(Xm A, Ja, Ha))

in the sense of a literal equality of sets as well as of equivalence classes of
Banach manifold atlases. This raises the question why then to use the notation
Bk’p(f(m A, Ja, H,), and analogously Ek_lvp(f(a, A, Ja, Hg), instead of the much
shorter BF?(X,, A) and €5-12(X,, A, J,) (in the latter case J, is actually part
of the definition). The reason is mainly due to the next construction where
a copy of Bk“"’(f(a,A, J, H) appears for every H € J—C(f(), which would then
necessitate notation such as {H} x B¥?(X,, A). Also this notation serves as a
reminder that every B*P (Xa, A, J,, H,) comes with a distinguished atlas.
Now for another such chart given by an open subset V' C B, trivialisation
eV x S, 2 S|y and corresponding trivialisation

O, BUP(X, A J H) = V x BEP(X, A, J, H)
’Bll?p(XvAa J7 H) Sur (baw:bu)7

the transition functions would be given by

(UNV)x B*(X A, J H) - (UNV)x B(X, A, J H)
(b7 U) = (b7 ¢Zb(w6b*u))7

where if u(w) = (w,a(w)) € X, for w € S, then for z € Sy, ¢, (Vepat)(2) =
(z,a(¢;, ¢ap(2))). In other words, there is a map U NV — Diff(S,, S,), b
Py Lo ¢pgp and the transition functions are given in terms of the action of this
map. But as is explained e. g. in [Weh09] or [Weh12], the induced action of the
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diffeomorphism group on Sobolev spaces simply is not smooth. So the charts
that have just been defined do not patch together to give an atlas and it does

not even make sense to ask whether or not 8" defines a smooth (Fredholm)
section. At this point one has to make a decision on how to proceed. The
more definitive way would be to use the sc-manifold/polyfold framework of
Hofer, Wysocki and Zehnder, for an introduction see e.g. the introduction by
the inventors themselves [HWZ10], the slides cited above, or [FEGW12].

Here, I will take a slightly different route. Namely remember that it is actually
the spaces of holomorphic curves one is interested in, i. e. the zero set of EJ’H and
one should actually look at the restriction of the transition functions above to
this set. By this what is meant is the following: In analogy to B’gp(f(, A, J, H),
define

e (X A H) =] &y (XA T H),
beU

il = %H|8kU,1,p(X’ A ey (X, A, J H) = B (X, A, J, H)
and

=JH  =JH kp /o k—1p/

oy =20 |B’5’P(X,A,J,H) :BHP(X,A T H) — & P(X,A,J, H).
Consequently,

M % ._ (a)H -1 _ % k.p /v
v(X, A, J H) = (aU ) (0) = M(X, A, J, H)nBEP(X, A, J, H).

Blf}p (X’ ,A,J,H) can be turned into a Banach manifold, giving it the product
manifold structure of U x B’;’p(f(, A, J, H) via the bijection above. This struc-
ture then obviously depends on a choice of trivialisation ¢, of S|y and will be
denoted by Blz,ﬁa (X,A,J, H). Analogously, 85_1’7’(X, A, J,H) can be given a
smooth Banach space bundle structure over TBI;}Z;Q (X, A, J, H) by identifying it
with U x E¥P(X, A, J, H) via the map

bz & P(X AT H) = U x EF1P(X A J H)

EFTIP(XL AT H) 2 (n,u) v (b, (G0 gy %)),

Homgj,, 74)

For this to be well-defined it is assumed that U is small enough s. t.

Hi * * P A R A~
- Om((¢a3)b’(¢aJ)b) . Hom((¢?;])b7(¢);])b) (TSa, VXa) — Hom(ja’Ja)(TSa, VXG/)

HOIn(jaJu.)

is an isomorphism for all b € U. Again, 8’5—1”’ (X' , A, J, H) equipped with this
smooth structure will be denoted 8’5@1’][’ (X,A,J, H).
Finally, defining

g, U X BEP(X, A JH) — U x E719(X, A, J, H)

Hom// « ; * (% *
(65D (85 D) B(Pa )by (65 H)p
(b, u) = (b, ﬂ-HOm(ja,Ja) 8(5a7(¢2j)b) );
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all of the above fit into a commutative diagram

Ero (X, AT H) RINGS ERIP(X, A, J H) (IL.14)
| | .y l >ag;{a

R . R
‘Bl;]’f;ﬁa(X7A7J7H)*>U X ‘Blacvp(XaAaJaH>

With this setup, EéH is a parametrised version of a Cauchy-Riemann operator,
which hence is a Fredholm operator itself and the Fredholm index can be com-
puted fairly easily. ¢1(A) here is the first Chern number as in the beginning of
this subsection.

Lemma I1.20. In the notation of the previous construction,
B (XA JH) - &5 P(X, AT H)
is a Fredholm section of index

ind(@;") = dime(X) ¥ + 2c1(A) + dimg (U).

Proof. (Sketch only) The result will follow from the following functional analytic
claim:

Claim. Let X,Y be Banach spaces, let V. C X and U C R" be open subsets
and let F': V x U — Y be a continuously differentiable map with the property
that for every b € U, the map F(-,b) : V — Y is a (nonlinear) Fredholm map
of index d. Then F' is Fredholm of index d + n.

Proof. Let (u,b) € V x U. Denote by D1F(,3 and DaoF(,s the (partial)
derivatives of F' at (u,b) in the direction of V and U, respectively. By as-
sumption, D1F(,p) : X — Y is a Fredholm operator of index d. It follows
that Dy F(,p) opry; : X x R®™ — Y is a Fredholm operator of index d + n (it
clearly has the same image as D1F{, ) and its kernel is ker(D1 F{, 3)) x R". The
operator DaF{, ) opry : X X R" — Y is compact, for the image of the unit ball
in X x R™ is just the image of the (compact) unit ball in R", hence compact.
Hence DF{,p) = D1F(yp)opry +DaF(, p)oprs is the sum of a Fredholm operator
of index d + n and a compact operator, hence a Fredholm operator of index
d + n by a standard result about Fredholm operators. O

To apply this claim, around a point a € B, consider diagram and the
definition of 5%& from the previous construction above. In that definition,
every

(G5 (SEH) I by
O i " BEP(X, A, J, H) = BEP(X,, A, Jo, Ha) —

EFTLP (X (5, (02000 As (B3 )b, (S5 H )
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is a Fredholm operator of index d = dim¢ (X)X +2c1(A) by Corollary Com-
posing with the bundle isomorphism Ek_lvp(X| (Sa(¢2i)s)r A (e )b, (9 H )p) —

eN1P(X, A, J, H) defined by = HOM (@i @50 does not change this. Choosing

Hom(Ja Ja)

a chart for B,(X, A, J, H) and a local trivialisation for £,(X, A, .J, H) around
a given point then brings one to the situation of the claim above. O

Construction II.8. Using the same notation as in the previous construction,
define

BRP(X, A JH(X)) = [[ B"(X. A J H)
HeH(X)
EFIP(X, A T HX)) = [ €F'P(X, A0 H)
HeH(X)
and
= [ #7:EFP(X A T H(X)) = BPP(X, A, T, H(X))
EH(X)
M= [T M BRR(X, AT, H(X)) - (X, A, ,30(X)).
HeH(X)
There are natural projections
T BRP(X A, T, H(X)) = H(X)
and
wE ERTIP(X AL T, H(X)) = H(X).
Definition I1.23.
N ~ _ -1
M(X, A, J,H(X)) = (a"’“) (0.

Again, given an open neighbourhood U C B of a € B and a smooth trivialisa-
tion ¢ : U X Sy = S|y, define
B (X, 4, 0.90X)) =[] By"(X.A,7.H)
HeH(X)
e (XA L HX) = [ er (X, AL H)
HeH(X)
and
df =[] #M e (XA T H(X)) = BRP(X, A, T, H(X))
HeH(X)
= I 3" BEP(X,A LK) = el (XA, T (X))
HeH(X)
My(X, A, J,H(X)) == M(X, A, J, H(X)) N BEP(X, A, J,H(X))
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as sets. Denote by Bk’p (X, A, J,H(X)) the set ng(X,A, J, H(X)) equipped
with the product Banach manifold structure of H(X) XBI;J’{;G (X, A, J, H) for any
fixed chosen H € H(X), again identifying all the ‘Bk’p (X, A, J, H) for different

H by the set theoretic identity. 8U¢ P(X, A, J,H(X)) is defined as a Banach
manifold in the same way. In the trivialisations of these spaces defining their

A
smooth structures, 0;;  is given by

W= 11 9w
HeH(X)

UxBR(X, A, J H) x H(X) = U x EE-IP(X A, J, H) x H(X).
Lemma I1.21. In the notation of the above construction,
By BYY (X, A, J,9(X)) - € (X, A, ,5(X)

18 smooth. X } R

Given (b,u, H) € U x B’;’p(X,A, J,H) x H(X) with u € T*(X|g,), w.r.t. the
charts on B];]’Za (X’,A, J,H(X)) from the previous construction and the stan-
dard chart for ’Bg’p(X,A, J,H) around u, the linearisation of 5#{ at ¢pu €
B]Z’p(X,A, J, H) in the direction (e, &, h), wheree € TyU, € € TuB§7p(X, A, J, H)
and h is a C*-section of priT™*%, is given by

(Déﬁfﬂ) (b,u,H) (e h) =

Hom * * J *H
T A (DG SH™) €+ Kopwan(€) + (63X )

Hom<jayx7a)

with
Kbt (€) = 5 Du(637)(e) 0 Do (63)s +
+ % (Xpyorm)(e) + (@5 )o © XDy m)(e) © (Dd)b) +
+ 5630 D¥uo (Dy(@ii)(e)

where D¥u denotes the vertical derivative of u w. r. t. the connection on S, X X
defined by (¢ H)p and b — (¢ J)p, b— (¢ H)p and b — (¢kj)y are regarded as
maps from U to the space of w-compatible almost complex structures on X, the
space of Hamiltonian structures on S, X X and the space of complex structures
on S,, respectively.

Remark 11.8. For the moment the only two important things about the map
K (4,1) above are that it defines a compact operator, for it factors through the
finite dimensional space T,U and that its image consists of C" '-sections if u
is of class C".

Lemma I1.22. In the same situation as in the previous lemma, let V C qbZX
be an open subset and let W C u=1 (V) be an open subset that intersects every
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conmnected component of {b} x S, nontrivially. Let X C TyH(X) be the closure
of the span of those Hamiltonian perturbations that have support in prf1 (W)nv
(as sections of priT*X¥). Let furthermore z; € S, i = 1,...,7 be a collection of
points on S,. Then the following maps are surjective:

a) The restriction of (Dgaj;)(b " to {0} x{€ € TyBEP(X, A, J,H) | £(z;) =
0Vi=1,...,r} x K. h

b) The map

—=J,H B
<D8U7¢a> X EVig X+ o+ X €Vypy X (7TU>* :

(byu,H)
TyU x T,BEP(X A, J, H) x K —
EFLP(X A J H) x (WVX),, x-x (wVX), x T,U

(e.6,h) 1= <(Dai’f,§a) <e,£,h>,5(z1>,...,§<zr>7e>

(byu,H)

Proof. |E[) follows immediately from E{) and the proof of @) follows exactly the
same line of argument that appears several times in [MS04], e.g. Proposition
3.2.1, Proposition 3.4.2, Proposition 6.2.7, or the most closely related Theorem
8.3.1, or in [CMO7] Lemma 4.1. O

Definition I1.24. For a closed affine subspace K C H(X), meaning the inter-
section of a closed affine subspace of the space of C*-sections of pri7T*% with
H(X), see Definition [I1.17| define

. -1
M(X, A, J, %) == (w%) (%)
C M(X, A, J, H(X)),
where w% = W%|M<X,A7J7U{(X)) and analogously Mb(X,A, J,X) for b € B and

MU(X,A, J,X) for U C B open. .
Furthermore, given any open subset V' C X, define

HY (X)
to be the closure of the set of those H € H(X) that have support in V and

MY (X, A, J,K) = {u e My(X, A, J,K) | u(Sp;) Ni (V) # 0 for every

connected component Sy, ; of Sy},

where 7 : X — X is the canonical map and analogously MX(X ,A, J,XK) and
MY(X, A, J,X).

Lemma I1.23. In the notation of the above construction,

By B, (X, A, H(X)) = € HP(X, 4, 1,54(X))
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is split transverse to the zero section and MU(X', A J, .'J-C(X)) s a split Banach
submanifold of Bk’p (X, A, J, H(X)).

Furthermore, with respect to this Banach manifold structure, ) : My (X, A, J, H(X)) —
H(X) is a Fredholm map of index

ind(mf) = dimg(X)x + 2¢1(A) + dimg (U).
Given an open subset V.C X, for any H € J-C(X),
MG(X, A, J, H +HY (X))

inherits a Banach manifold structure from MU(X, A, J,H(X)) s.t. the projec-
tion onto H + Y (X) is a Fredholm map of the same index as before.

Proof. Lemma A.3.6 in [MS04], and the previous Lemma together with Lemma
(A6 O

The set My (X, A, J, H(X)) equipped with the Banach manifold structure from
the previous lemma, which a priori does depend on k, p and ¢,, will be denoted
by

M (X, A, J,3(X)).

The goal now is to show that the Banach manifold structure onM (X A, J,H(X))
does not depend on the choice of k& > 1 and p > 1 with kp > 2 nor on

¢a : U x S, = S|ly. Hence writing My(X, A, J, H(X )) makes sense, and
consequently given any trivialisation (Uj, ¢q,)icr of S, the Banach manifolds

My (X, A, J,H(X)) patch together to a Banach manifold structure on M(X, A4, J, H(X)).
To sum the argument up in two words: Elliptic regularity.

Lemma I1.24. Let k,/ € IN, 1 < p,q < oo with kp,{q > 2 and assume
that k > ¢ and k — % > [ — %. Then the inclusion B%ZG(X,A,J,J{(X)) —
Bff% (X, A, J,H(X)) defined m'a~ the Sobolev embedding tfzeorem induces a dif-
feomorphism M%ﬁ,a (X, A, J,H(X)) = Mi}?% (X, A, J,H(X)).

Proof. By Lemmalll.19] one has the set-theoretic identity Mk’p (X, A, J,H(X)) =
My (X, A, J,H(X)).

Fair warning: In the following I will prove that the identity is a diffeomorphism,
so I likely am missing something obvious.

To show that this map also induces a diffeomorphism, one has to express it
in charts defining the differentiable structures on Mf]’za (X, A, J,H(X)) and
Mf}?% (X VA, J, J—C(X )), respectively. Said charts are given via the implicit func-
tion theorem, Theorem which unfortunately means that one has to go
through the proof of said theorem, since the standard formulation does not pro-
vide much control over the implicitely defined function. Given any (b,u, H) €
Mﬁ}q(f(, A, J,H(X)) = M@p(f(, A, J,H(X)), first of all observe that the stan-
dard charts for the surrounding spaces BKU’?% (X, A, J,H(X)) and B?ffz&a (X, A, J,H(X))
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around (b,u, H) have the property that the coordinate map for the latter
space is just the restriction of the coordinate map of the former, with tar-
get U x T,BEY X, A, J, H) x H(X) =U x LYu*VX,...) x H(X) restricted
to the (non-closed) subspace U x LFP(u*VX,...) x H(X). Also, the Cauchy-
Riemann operator on the latter space is just the restriction of the Cauchy-
Riemann operator on the former space. To shorten notation, the situation can
also be described as follows: Given Banach spaces R", X, Y, Z taking the roles of
U, LF"?(uw*VX,...), H(X) and Le_l7q(%(jajJa)(TSa7U*VX), ...), respec-
tively, and linear subspaces X' C X, Z' C Z (corresponding to L*P(w*V X, ...)
and Lk_l’p(m(ja7Ja)(TSa,U*VX), ...)), but equipped with a finer topology
than the induced one, and a smooth map f : R x X x Y — Z that re-
stricts to a well-defined smooth map f' : R” x X’ x Y — Z’ (corresponding
to the Cauchy-Riemann operator). Furthermore, f~%(0) = (f")~1(0). Both
f and f’ are split surjective, so around every point (b,x,y) € f~1(0) there
exist open neighbourhoods V- C X and V' C X' around (b, z,y) together
with smooth maps ¢ : V. — X and ¢ : V! — X’ fixing (b, x,y) and that
are diffeomorphisms onto their images. Furthermore, ¢ maps f~%(0) NV to
ker D 5.,y f and 9" maps (f')71(0) N V' to ker Dy 541 f. Dy f is of the
form (e,&, h) — Dyf(e) + Dy f(§) + Dy f(h), where in the notation of Lemma
123 in the formula for the linearisation of the universal Cauchy-Riemann op-

erator, D, f(§) corresponds to the term involving Ddﬁ:&igﬁ;ﬂb, Dyf(e) to

that involving K., my(e) and Dy f(h) to that involving (gZ)ZX,?’l)b and corre-
spondingly for f’, where actually Dy f’(e) = Dy f(e) and Dy f'(h) = Dy(h). For
any (e,§,h) € ker Dy, ;. ) f, € satisfies the equation D, f(§) = Dyf(e) + Dy f(h)
and by Lemma Remark and Lemma the right hand side is
smooth. Because D, f is a smooth Cauchy-Riemann operator by Lemma
and Lemma it follows from the linear elliptic regularity theorem, that &
is smooth. Hence ker Dy, ;) f = ker D, ;) f" with the norms on both sides
being equivalent as well. The final piece of data needed for the construction
of ¢ and ¢’ are right inverses Q : Z — X and Q' : Z' — X' of Dy, f and
Do) f's respectively. If @ can be chosen as the restriction of @, then the
construction presented on p. f. shows that indeed the resulting v’ is the
restriction of ¥. Now these splitting maps are produced via Lemma A.3.6 of
[MS04] in the following way, see the proof of said lemma: Consider the map
Dyf + D.f : R* x X — Z. This is a Fredholm operator, for the second
term is the Cauchy-Riemann operator and the first term is compact, since it
is defined on a finite dimensional domain. So one can choose complements
X CR"x X and Z C Z of ker(Dyf + Dpf) € R™ x X and im(Dyf 4+ D, f),
respectively. Since Dyf + D, f + D, f is surjective, one can choose a sub-
space Y C Y s.t. D, f defines an isomorphism from Y to Z. Then define
Q = ((Dof + Dmf)\j()fl o prfn(Dbersz) + (Dyf|§~,)71 o prg. Similarly, Q' is
defined by choosing X’ C X’ and Z’ C Z'. The proof now finishes by ob-
serving that, because by elliptic regularity as above and because Dy f = Dy f’,
ker(Dyf' + Dy f') = ker(Dyf + D, f). Hence given a choice of X, X' := X N X’
is first of all an algebraic complement and because the topology on X’ is finer
than the topology on X, it is a closed subspace as well. Also, given a choice
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of Z', since the Fredholm indices of Dyf 4+ Dy f and Dyf’ + D, f’ coincide and
their kernels are the same, by dimension reasons Z’ is an algebraic complement
of im(Dyf + D, f), as well. Being finite dimensional it is also a closed sub-
space of Z. With these choices, Q' becomes the restriction of . Note that
the above argument via Fredholm indices in a sense turns the line of argument
upside down, for the fact that Z and Z’ can be chosen as the same space is
actually used to show that their Fredholm indices coincide, see the proof of the
Riemann-Roch theorem, Theorem C.1.10 in [MS04]. O

Lemma I1.25. Using the notation of Construction let o, a : U X Sy —>
Slu be two smooth trivialisations and let r € IN. Then the set-theoretic inclusion

BETP(X, A, 7,30(X)) < BEE, (X, A, J,3(X))

is a map of class C"™1.

Proof. Let p := pryot;to¢, : Ux S; — S,. In other words, p is a family
b 2 Sa — Sa, b € U, of diffeomorphisms of S,. Fix any H € H(X). Then
in the trivialisations BZJ;QP(X,A, JH(X)) = U x BETP(X, A, J, H) x H(X)
and BIICJJZZ)@ (X, A, J,H(X)) = UxBEP(X, A, J, H) x H(X) defining their smooth
structures, the coordinate expression for the inclusion is the map

U x BM™P(X A, J,H) x H(X) = U x B¥(X, A, J, H) x H(X)
(byu, H) — (b,uo py, H).

The only question about differentiability of this map arises from the middle
component, the map

U x BM™P(X A, J, H) — BP(X, A, J, H)
(b,u) — wo py.

Fix a point (b,u) € U x BE"P(X A, J H) with u of class C*". We want
to express ¥ in coordinates around (b,u) and ¥(b,u) = u o py. First, assume
that U is an open subset of some R? Then the coordinate expression U :
U x LM (w*VX,) — LFP((uwo py)*VX,) of W is given by the string of maps

(b, €) = (1, expy (€)) = expy (€) 0 py > (exXPioy, )~ (expy (€) 0 py).

For simplicity from now on I will drop the subscript a on S, and consequently
X, and denote by S the Riemann surface S, and by X the trivial fibre bundle
S x X over S with fibres X, 2 X at the points z € S. Then the above formula
can be evaluated at some point z € S and the definition of exp™® for the fibre
bundle X can be inserted to give

VW, €)(2) = (expis, ) <expi”;;;f§;) (€o pbf<z>>> :

First, note that the right hand side is well-defined for ||| L1V X) small

enough, independent of ¥, because by compactness, sup{inj(X.) | z € S} is
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finite and an L'P-bound on ¢ implies a pointwise bound by the Sobolev em-
bedding theorem. Second, this can be written as

X -1 X (2)
(C Sy <expufjb,(z) (§o Pb/(@)) =

o b'e X b'e
() oewiid ) o ((ewuizd) " ceni ) €om e,
() (%)

which can be interpreted as follows: Over U x .S, consider the two fibre bundles
p*X and prgX , where pry : U X § — S is the projection. Both of these bundles
are canonically identified with the trivial one, but carry two different structures
of Riemannian submersion. Furthermore v is a section of X , and so is u o pp.
Hence p*u and prj(uo pp) are sections of p*X and pr’ﬁf( , respectively, and p*¢ is
a section of Vp*X = p*V X (along p*u). Then the first term () above is the co-
ordinate expression for the identification L7 (pr3X) = LF¥7P(p*X) induced
by the canonical identification of prj = p*X in charts around the section
priy(uo pp), whereas the second one (*x) is the usual coordinate transformation
on L¥P(p*X) from the chart around p*u to the chart around pri(uo p,). So the
above map ¥ can be interpreted as mapping £ to p*€ € Lk”’p((p*u)*Vp*X),
then applying the two coordinate transformations above and finally restricting
to the slice {b} x X C pr5X. A derivative of (¥, £) in the first variable b’ then
corresponds to a covariant derivative of p*¢ in a direction tangent to the first
factor of U x S. The maps (x) and (xx) have bounded derivatives of all orders
after restricting to V' x S, where V' C U is a precompact open subset of U, by
Lemma

Now V#p*¢ can be expressed (by the Leibniz rule, basically) as a linear combi-
nation of &,..., V¢ with coefficients depending on the s-jet of p. Again after
restricting to a precompact subset V' C U, these coefficients can be bounded.
Combining the above, at least for £ € I'* (u* VX ) and b’ € V, via these pointwise
estimates one can estimate ||(D*%) (', &) || prp < > =0 ciIVIE | pre < €|l prtan
for some constants c;,c. Applying the usual density argument, Lemma
which causes the loss of one derivative (hence it says C"~!, not C”, in the
statement), shows the lemma. O

Corollary I1.5. The set-theoretic identity defines a diffeomorphism
Mug, (X, A, LH(X)) = My, (X, A, J,5H(X)).

In particular, any choice of covering (U;)icr of the base B of S and trivial-
isations (¢; : Ui X S, = S|u,)ier defines a cocycle for a Banach manifold
structure on M(X, A, J,H(X)) independent of these choices.

If @ is any other Banach manifold and f : BFoP(X A, J,H(X)) — C, for some
ko € N and p > 1 with kop > 2, a map with the property that there exists an
re,r <kys.t f]Bkyp(XA’Jﬁ(X)) BRP(X A, J,H(X)) = Cis of class CF—"
for every k > ko, then f’M(X,A,J,J—C(X)) :M(X, A, J,H(X)) — € is smooth.
With respect to this Banach manifold structure,

i M(X, A, J, H(X)) = H(X)
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is a Fredholm map of index
ind(m}) = dimg(X)x + 2¢1(A) + dimg(B).

Given an open subset V C X and any H € }g(f(), the same holds for MY (X, A, J H+
HY(X)) and the projection onto H + H" (X).

Proof. Immediate from the preceding three lemmas. O

11.3.4 Evaluation maps and nodal families

Of interest are two kinds of evaluation maps: Evaluation at the marked points
R and at the points corresponding to the nodes of ¥|p. While the former
can be defined as maps on J\/[(X,A, J, 9—((5()), the latter can not. For the
nodes only form a discrete subbundle of ¥|p or their desingularisations one
of S. The evaluations at these points are of importance since in the desin-
gularisation S of X|p all the nodes are resolved to pairs of points and hence
the space M(X, A, J, H(X)) contains “too many” curves in the sense that one
is only interested in those which map each pair of points corresponding to a
node to a single point. For only on this set does there exist an inclusion into
M(X, A, J,3(X)). But one can still choose a covering (U;)ier and triviali-
sations (¢; : U; X Sq; — S|u,)ier with the property that ¢; trivialises N|y,
as well, i.e. after choosing some numbering N;’l(ai),N;’Q(ai), j=1,...,d,
of Ng, s.t. N;’l(ai) and N;’Z(ai) correspond to the same node and defining

N (b) := (b, Ny (a:)), N2 (b) := ¢s(b, N1 (a;)), for b€ Uy, j =1,...,d, one

has N, = {N;’l(b),N;’2(b) |7 =1,...,d}. N;’l(b) and N;’2(b) here naturally

are always supposed to correspond to the same node. This allows the definition
of evaluation maps (as always, kp > 2)
GVJWJ’NL2 : ‘B’(Zp(Xa Aa J,J'C(X)) - (X @ X)@d
k, % i; i’
By P (X, A, T, H) 3w ((pra(u(Ny (9))), pra(u(NT (8)))) -
i, i1
(pra(u(Ng" (b)), pra(u(Ng' (b))))-
In contrast, the marked points Ri,...,R, : B — S allow the definition of a
globally defined evaluation map
vl BRP(X A T H(X) - RiIX @@ REX
ByP(X, A, J, H) 5w (w(Ry (D), ..., u(Ra(b)))

with a well-defined restriction to M (X, A, J,H(X)). The target space of the
above map is the fibre bundle over B which is the Whitney sum of the fibre
bundles R} X. Writing u € B}g’p(X,A, J, H) in the form z — (z,7u(z)) € Sp X
X = X, then ev®(u) = (b,u(R1()), ..., u(Ru(b))). As before for the N;’l, N;’z,
assume that the ¢; preserve the markings in the sense that ¢;(b, R;(a;)) = R;(b)
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for all b € U;, i € I. The reason for this is the following: If f : M — N is
a map between manifolds, and v : R — M is a path in M, then %f('y(t)) =
df (4(t)) depends on the first derivative of f, and correspondingly for the higher
derivatives. If f is of some Sobolev class, then this is only well defined by
the Sobolev embedding theorem as long as f has enough weak derivatives.
This problem is circumvented here, because with the choices of ¢; above, the
markings and nodal points under the ¢; correspond to constant points on the
S,,. Hence the restriction ev? : Efj’f’@ (X, A, J,HX)) » RIX D @ RX]y,
is actually smooth w.r.t. to the smooth structure defined via ¢; and hence by
the previous corollary

v M(X, A, L HX) = RiX - o R X
is a smooth map. Analogously, all the restrictions
ev™ N ML (X A, T, H(X)) = (X @ X)®

are smooth maps.
Letting A := {(z,2) € X ® X | = € X}, the space of holomorphic curves, at

i1 iz 71 Lo
least over one of the Uj, is the preimage (eVN N2 (A?), which is the space

of those curves mapping each pair of points in a desingularisation corresponding
1 1 -1 ..
to a node to a single point. Furthermore, <eVN TN ’2) (A9) is independent

of the choice of the N}’l and N;72, since any compatible reordering (in j or

switching NV ;’1 and N;’Q for a fixed j) leaves the set A? invariant. Hence there
are well-defined sets

- - i1 iz —1
M (X1, A, H(X)) = (o) ad)
which patch together to a well-defined set

M(X|p, A, J, H(X)) := | My, (X5, A, J,H(X))
i€l

in the sense that for any 7, j € I and for any b € U; N Uj, the sets of those points
in My, (X |, A, J,H(X)) and My, (X|B, A, J,H(X)) lying over b coincide and
furthermore, M(X|p, 4, J, H(X)) is independent of choices. Given V C X and
H € H(X), there are analogously defined sets

My, (X|g, A, J,H + 3" (X)) and MY (X|p, A, J, H + H" (X)).

Also, one can restrict ev? to the above subsets. At this point it also makes sense
to introduce what is mainly a change in notation. Namely remember that X
was the pullback of X under the desingularisation i : S — ¥ of the restriction
of the nodal family ¥ to the subset ¢ : B — M, where M was the base of the
family 3. Also, the markings R of S were the pullbacks of the markings R of
. So one can canonically identify R*X & -- - @ R*X ¥ RIX & --- & R:X|3.
Note that because X was defined to be the pullback 7*X and because the R;
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are sections, every Rf)z' is canonically identified with X . But to distinguish the
factors, the above notation is kept. Using this, write

vl i=ev? |\ kipasciy  M(X| B, A, L H(X)) » RiX @ - o Ry X|p
Lemma I1.26. For any choice of U;, ¢; and N>', N*? as above, the maps
oM N s ev My (XA H(X)) = (XD x RiX @@ REX

are submersions.

The sets My,(X|p, A, J,H (X)) are split submanifolds of My,(X, A, J, H(X))
that define a cocycle that equips J\/[(X\B,A, J, H(X)) with the structure of a
split Banach submanifold of M(X, A, J,H(X)) of codimension dimg(X)d =
dime(X) 2d.

Furthermore,

evlt: M(X|p, A, J,H(X)) = R{X ®---®R:X|p
s a submersion and in particular so are
n M(X|, A, J,H(X)) = B,
the composition of ev® with the projection R{)N( @ - ~EBR;'.‘L)~(|B — B, and every
ev;R : J\/[(X\B,A, J,U'f(f()) — R2X|B

for 1 <i < n, the composition of ev with, the projection RiX @---®R:X|p —
R:X|p.
Finally, ~ B .

™ M(X |, A, J, H(X)) = H(X)

18 a Fredholm map of index
ind(m}) = dimg(X)x + 2¢1(A) + dimg(B).

GivenAan open subset V' C X and any Ij’ € 9{(5(), the same statements hold with
My, (X, A, J, H(X)) replaced by My, (X, A, J, H+HY (X)), M(X |5, A, J, H(X))
replaced by MY (X |, A, J, H + HY (X)) and H(X) replaced by H + H" (X).

Proof. Lemma Lemma Lemma [A.7] O

Corollary I1.6. For generic H € fH(X'), M(X\B,A, J,H) is a manifold of
dimension

dimM(X|p, A, J, H) = dimg(X)x + 2¢1(A) + dimg(B).

Proof. Sard-Smale and Lemma [[T.26] O
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I1.4 Compactification and transversality via hyper-
surfaces

I1.4.1 The Gromov compactification of M(X, A, J, H(X))

So far, a topology has only been defined on M(X|z, A, J, H(X)), where B C M
is a locally closed submanifold over which there exists a desingularisation of
Y. But even if M has a well-defined stratification by signature, this does not
define a well-behaved topology on all of M(X, A, J, H(X )). Well-behaved here
is to mean at least that the maps e M(X, A, J,H(X)) — M and 73} :
M(X, A, J, H(X)) = H(X) are to be continuous.

Furthermore, to be able to apply the compactness results from [Hum97] and
[BEHT03], this topology has to be chosen to be compatible in a sense to that of
Deligne-Mumford convergence. The relevant construction here can be found in
the proof of Theorem 13.6 in [RS06] (the direction (ii) = (i)). The implication
of this theorem can be stated as saying that the map M — M, from the base
space of a marked nodal family of Riemann surfaces of type (g, n) to the Deligne-
Mumford space equipped with the topology of Deligne-Mumford convergence
(as defined e.g. in [Hum97] or [BEHT03]) is continuous. The topology on
M(X, A, J,HX )) will be described in terms of convergence of sequences as in
Section 5.6 of [MS04]. To do so the following result from [RS06] will be used,
where still (7 : ¥ — M, R,) is an arbitrary family of marked nodal Riemann
surfaces of type (g,n):

Construction I1.9. Let b € M. Then there exists a neighbourhood U C M of
b with the following properties: Let nq,...,nqg € ¥p be the nodal points on X.
For i = 1,...,d there are pairwise disjoint neighbourhoods N; C 3 of the n;
with 7(N;) = U ands.t. R;NAN; =0Vj=1,...n,i=1,...,d and holomorphic
maps

(Ti,9i) : Ny > D% 2:U =D, t;:U — Dlime@®)-1

(Z“ z) U_>Dd1m@(M)

(@i, yirti o 7|y,) + Ny — DAme)
are holomorphic coordinate systems with
(i, yi)(ni) = (0,0) and w;y; = 2 o 7|N;,.
Denote for ¥’ € U and i = 1,...,d

L) = {2 € Sy N N; | |z:(2)| = |yi(2)| = V]z:(0)|}
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and

d

L) = JTuv), T:=JT0).

=1 beU

Then each I'(?) is a disjoint union of nodal points (one for each ¢ with z;(0’) = 0)
and pairwise disjoint embedded circles (one for each ¢ with z;(b') # 0) disjoint
from all the nodal and marked points. Especially I';(b) = n; and hence I'(b) =
{n1,...,nq}. Also, for every b’ € U there exists a continuous map

Yy - Dy — Dy

with the following properties:

o Yy (L)) =mn;foralli=1,...,d.
o Yyly, @) Sy \ L) = Zp \ {n1,...,nq4} is a diffeomorphism.
e The map

w:E|U\I‘—>U>< (Eb\{nl...,nd})
Z = (ﬂ(z)awﬂ'(z)(z))

is a diffeomorphism.

These maps have the property that if (b;);ew C U is a sequence converging to b,
then the sequence (j;);ew of complex structures on 3 \ {n1,...,nq} defined by
Ji := v, «Jb;» where jp, denotes the complex structure on X, \ I'(0), converges
in the C'*°-topology to the restriction of j, to Xy \ {n1,...,n4}.

With this one can define sequential convergence in M(X, A, J, H(X)).
Definition I1.25. Let (u;)ienw C M(X, A, J,H(X)) be a sequence. Then u;
converges to u € M(X, A, J, H(X)) iff the following hold:

1—00

o Let b; := 1)\ (u;) and b := 73t (u). Then b; == b in M.
o Let H; := m)(u;) and H := m}(u). Then H; =5 H in H(X).

e In the notation of Construction for v/ € U, let ¢p := (zpbzlgb,\p(b/))_l :
e\ {n1,...,na} = p. Let N € N bes.t. b € U for all i > N. Then
ui o ¢y, + Xp \ {n1,...,nq} — X, for i > N, converges uniformly to

u|2b\{n17---7nd}'

Due to bubbling, see [Hum97] Section V.3, even for M compact, the moduli
space M(X, A, J, H(X)) will not be compact. To remedy this situation and still
get a compact moduli space, the Gromov compactification of M(X, A, .J, H(X))
has to be introduced. To describe this space, first of all assume that the marked
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nodal family of Riemann surfaces (7 : ¥ — M, R,) is regular. For £ >0, let
( 28— MY RLTE, ©f = MY and 7 Lowe DI s zf — Xk
7rk M! — MPF be the marked nodal famlhes and maps from Lemma and
Proposition [IL.1] _ Also, for all £ > 1, let ¢¢ and &% be the actions of Sg, by
reordering the last ¢ marked points, on M* and X¢, from Proposition

Then the following is proved in the monograph [Hum97], Chapter V (esp. The-
orem 1.2, Theorem 3.3, Proposition 1.1 and the proofs of these results) as well
as, in a generalised version, in [BEHT03].

Proposition I1.6. Let (u;)icn be a sequence in M(X, A, J, H(X)), bi := 735 (u;),
H; = m(u;), s.t. b b b for some b € M and H; — H for some

1— 00
H € H(X). Then there ezzst the following:

e an integer £ € Ny,

e a subsequence (u;;)jen of (ui)ien,

o Bij € M with 7r0(l; ) =b;.

)

e and an element 4 € Mé((ﬁé)*X,A, J, (frﬁ)*H)}

for some b € M* with ©§(b) = b and

(70); wi; — .
1]‘ j*)OO

Furthermore, the bZ , b and @ can be chosen s. t. the following holds: Let Ee be
a component of Eé on which 7 7r0 1s not a homeomorphism, 1. e. either WO(ZZ ) =
{n;}, for some node n; € X or TFO(EE ) ={R;(b)} for somej=1,...,n. Then

u\ze has nonvanishing vertical homology class and hence defines a nonconstant

J- holomorphzc sphere in an. or XR],( b)-

Definition I1.26. Let

and

M((76)* X, A, J, (76) H(X)) = (m3) ™ (76) " H (X))
J

Then for any /, ¢ € Ny with ¢ < 7 there is a canonical map

(79" : (xf)" MU((76)* X, A, J, (7§) H(X)) - M((75)" X, A, J, (76)"H(X)
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of topological spaces, where
() M((RG)* X, A, J, (75)*H(X)) = M((7G)* X, A, J, (76)*H(X)) X 28 M M

is the fibred product of topological spaces.
Furthermore, for all £ > 1, the actions ¢ and 6¢ of 8, on M’ and ¢, respec-
tively, induce actions

&'+ S0 x M((#0)" X, A, J, (#5)"5H(X)) = M((#6)" X, A, J, (75)"3(X),

compatible via W% with the actions ¢ in the obvious way.

Together, the spaces M((7§)* X, A, J, (7§)*H (X)), maps (#5)* and actions &°
form a system of topological spaces, whose colimit is called the Gromov com-
pactification of M(X, A, J, %(X)) and denoted by

M(X, A, J,H(X)).

It is equipped with canonical maps

e M(X, A, J,H(X)) = M

and

L M(X, A, J, H(X)) — H(X).

Remark T1.9. For u € M((7§)* X, A, J, (7)*H (X)) with 73t (u) = b, mf (u) = H

and b e M s.t. b= rl(b),
(Fh) u € My((75)7 X, A, J, (#0)"H) € M((#5)* X, A, J, (7)*3(X)).

For ¢ = ¢ + 1 this is clear, for on every component of Eg, ﬁg is either a dif-
feomorphism or a constant map onto a point. On each component on which

¢ is constant (which then is diffeomorphic to a sphere), (#¢)*H vanishes, so

the restriction of a section u € M((7§)*X, A, J, (#5)*H) to such a component
is just given by a J-holomorphic map to Xj. In particular, the constant map
corresponding to the restriction of (ﬁf)*u to such a component is holomorphic.
For ¢ > 1, the claim follows by induction.

Remark 11.10. Note that in the above definition, (7§)* : H(X) — H((7§)*X)
is an injection.

Remark 11.11. The colimit over the above system of topological spaces is the
quotient space

[TM(E) X, A, J, (76)7H(X)) /-,

>0

1/ ind

M((75)" X, A, J, (7)) H(X) 3 0’ ~ " € M((7G )X, A, J, (7§ )*H(X))
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iff there exists an £ > ¢/, 0", an g € 8; and b € M s t. We/(b) = mt(u),
7 (o () = m(u) and

m%w:ﬁQ%x@
g

—1

") € MU X A () ().

In particular, this equivalence relation has the following property: If u €
M((ﬁé)*f( A, J, (7)*H(X)) is constant on a ghost component (as in Defini-
tion of its underlymg nodal Riemann surface, then there exists a k < ¢
and a v’ € M((75)* X, A, J, (7E)*H (X)), s.t. u and «’ define the same point in
ﬁ(X,A,J,}C(X)).

Remark 11.12. Also, directly from the definition, there is a canonical injection
M(X, A, J,H(X)) = M(X, A, J,HX)).
Corollary II.7.
A MK, A, T, H(X)) = M x H(X)

is a proper map and M(X, A, J, H(X)) is a Hausdorff topological space. In
particular, if M is compact, then for any H € H(X),

M(X, A, J,H) = (m x =)~ (M x {H})
is a compact Hausdorff topological space.

Lemma I1.27. If M is compact, then there exists an £ € Ng s. t. the canonical
map M((75)* X, A, J, (76)*H(X)) — M(X, A, J,H(X)) is surjective.

Proof. By the definition of M((7§)*X, A, J, (#§)*H(X)) and the definition of
H(X), there exists a universal bound on the vertical energy of every element of
M((76)* X, A, J, (75)*H (X)) independent of £, by Lemma 8.2.9 in [MS04], where
the vertical energy is defined as in Section 8.2 in [MS04], p. 249. By the usual
Gromov-Schwarz and Monotonicity lemmas, this implies a universal bound on
the number of components on which an element of M((7§)*X, A, J, (7§)*H(X))
can be nonconstant, which by definition of the equivalence relation in the defi-
nition of M(X, A, J, H(X)) implies the lemma. O

Furthermore, for ¢ < ¢ denote by M ¢ the set

M = ={be M’ | ﬁ';b Eb — ¥, is a homeomorphism}

w5 (b)

and by nht = ZZ|MM.

: M5 — MY and 750 = #f|;, D5 — 2L

S

In addition, let 75 := 7f|, 7,

~
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Lemma I1.28. 7% : M4 — MY is a surjective submersion of complex fibre
dimension £ — £ and $5¢ = (766)* 28 via 74,
Furthermore,

M((F)"(76)" X, AT, (7,) " (76)"H(X) = () M((76)" X, A, T, (76) " H(X)

Il

Proof. This again follows by induction from the case ¢ = ¢+ 1. But in this
case M! = M1 = 2t and M4 by Lerpma is the complement of the nodes
and markings in X¢. The restriction 4 of ©¢ to this subset, from the proof of
Lemma E is by definition the pullback of ¥ via ¢ and the restriction of frﬁ
is by definition the canonical map covering 7*.

The second claim follows directly from the definitions. O

To make sense of the following remark, remember that by definition M((7§) X, A, J, X),
for any subset X C H((7§)X), is a disjoint union of subsets that are mapped
to the strata of M’ in the stratification by signature under 71'%. By abuse of
language I will call these subsets strata, even though in general it is not claimed
that they are (Banach) manifolds or form any kind of reasonable stratification.
Also, by the codimension of such a subset I will mean the codimension of the

corresponding stratum in M?.

The transversality problem now can be formulated as follows:

Does there exist a (generic subset of) H € H(X) s.t. for every £ > 0 (and for
all generic H), M((7§)*X, A, J, (#§)* H) is stratified by smooth manifolds as in
the previous section, induced from the stratification by signature on M*. And
in such a way that ﬁ(f( , A, J, H) has a stratification by smooth manifolds, in-
duced by the canonical maps M((75)*X, A, J, (#§)*H) — M(X, A, J, H). So
that the stratification in particular coincides with the one from before on
M(X, A, J,H) under the inclusion from Remark [[.127 Furthermore, there
should be a top-dimensional stratum which coincides with the top-dimensional
stratum in M(X, A, J, H), corresponding to the smooth curves, and the codi-
mension of every other stratum should coincide with the codimension of the
stratum in M((7§)*X, A, J, (7§)*H) from which it arises.

In general, it is known that the answer to this question is no, for all the Hamil-

tonian perturbations of the form (frg)*H vanish on ghost components, so the

Banach space (7§)*H(X) is “too small” to achieve the transversality results in
Lemma [1.22]

One hence is faced with two conflicting aims: On the one hand one would like to
enlarge the spaces of perturbations in the construction of the universal moduli
spaces from (7)*H(X) = H(X) to H((7§)* X) to achieve transversality, on the
other hand one needs to restrict to perturbations coming from H(X) so that the
equivalence relation is preserved and the conditions on the dimensions of the
strata of the stratification one wants to construct have any chance of holding

true.
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The solution to this problem, first applied in the genus 0 case in [CM07] and
which will be extended to the present situation in the rest of this text, can now
roughly be described as follows (all these notions will be made precise later on):
For every ¢ > 0 there exists a subset X! C H((7§)*X) s.t. (#5)*K’ C %L

There also exists an £ € INg and for every £ > £ a subset NZ(JCK) - M((?TO) X, A, J, KK)

with WM(NK(IKZ)) C M (the part corresponding to smooth curves, as in Section
) s. t the closure ofNZ(IKe) in M((’/TO)*X A, J, SKE) lies in M((’]TO) X, A, J, 9(5).

Since M ‘ C M*> Ol for all ¢ < 0, for every H € K° there is a well-defined map

(75)« ZNZ(( O H) — J\/[(X~7 A, J, H) (the left-hand side is defined in the obvi-

ous way) given by u — ((7§,)” 1) u, where 75 (u) = b.

Then for generic H € K° the above will be s.t. N’((#§)*H) is invariant under

the 8-action and the map (7). is an ¢!-sheeted covering on the complement
of a subset of codimension at least 2 (see Lemma [I11.1)).

Roughly speaking, the N¢(K*) will be defined as spaces of holomorphic sections
that map the first ¢ additional marked points to a subbundle Y C X with real
codimension 2 fibres and the sets K¢ will be spaces of Hamiltonian perturbations
satisfying a set of compatibility conditions with this subbundle. Making these
notions precise and showing the properties above will be pretty much the rest
of this work.

11.4.2 Hypersurfaces and tangency

Throughout this section, let (7 : ¥ — M, R) be a stable marked nodal family
Riemann surfaces of type (g,n) and denote their Euler characteristic by x.
Furthermore, let (k : X — M,w) be a family of symplectic manifolds together
w1th a family (kly : Y — M,w|y) of symplectic hypersurfaces in X. Define

: X — ¥ as the pullback of Kk : X — M to ¥ via 7 and likewise for Y.
As before, J.,(X) is the set of w-compatible vertical almost complex structures
on X, i.e. bundle morphisms J € End(VX) with J? = —id and s.t. w(-,J-)
defines a metric on VX. In other words, for any b € M, J, is a compatible
almost complex structure on the symplectic manifold (Xp,wp).

To define the sets K¢ from the previous subsection, almost complex structures
and Hamiltonian perturbations compatible with the family of symplectic hyper-
surface Y in the sense of [IP03], Definition 3.2 are needed. The almost complex
structures are treated exclusively as parameters, i.e. they are never chosen by
applying the Sard-Smale theorem.

Definition I1.27. The set of Y -compatible vertical almost complex structures
on X is defined as

Ju(X,Y) :={J € du(X) | J(VY) =VY}.

The set of normally integrable Y-compatible almost complex structures on X
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is defined as
Joni(X,Y) :={J € Ju(X,Y) | M1 Ns(v,) = 0Vv € VY, £ € VY1 y € Y},

where N ; denotes the Nijenhuis tensor of J, VyYJ-W C V, X denotes the symplec-
tic orthogonal complement and 7, : VX — VYt denotes the projection
along VY.

VYJ-w

One considers J,,(X,Y) and J,ni(X,Y) as subsets of J,(X,Y) and Juni(X,Y),
respectively, via pullback.

The proof of Theorem A.2 in [IP03] shows:

Lemma I1.29. J, i(X,Y) is nonempty and path-connected.

Now remember that if for b € M, Sy is a smooth Riemann surface and ¢, : Sp —
3p € X a desingularisation of the fibre of 3 over b, then L;;X = (mo)*X is a
trivial bundle, for m o ¢} is the constant map to b. Likewise for the subbundle
Y C X. Making the identification with the trivial bundle, X, := S, x X} and
Yy := S x Y3, one can pull back any H € U'C(f() to Hy, € .‘H(X'b). Given such
H and any J € Jw(X), which induces a vertical almost complex structure on
every Xb, one hence gets an almost complex structure Jb on Xb as in Definition
IL.19]

Definition I1.28. Let H € H(X). H is called a Y -compatible Hamiltonian
perturbation, H € J{(X Y), if for every b € M and every desingularisation
WSy — Yy C %, Y, C X, is Hy-parallel, i. e. im X, (¢) |Y C VY, V(¢ eTS,.
Given J € J, m(X Y'), if furthermore for every b € M and every desingularisa-
tion ¢y : Sy — Xp C X,

Kfin (8.6) =0Vd € VjYp,E € VY g € Yy,
where V;Y 1o := {0} x TYI')J‘”, then H is called a J-compatible normally inte-

grable Hamiltonian perturbation, H € g'fni(X, Y, J).
This space has the two subspaces

Ho((X, Y, J) == {H € Hu(X,Y,J) | H|y = 0}
HOX,Y) =l ({H € H(X) | supp(H) C X\ Y compact}) ,

where cl denotes the closure in H(X).

In the course of the ensuing construction, Hamiltonian perturbations will be
chosen with increasing specialisation in the form H + H? + H starting with
some H € H(X,Y,J) (which actually lies in some other yet to be defined
subspace of H(X,Y,J)) and then modifying it to H+H° for H® € H%.(X,Y,J)
and subsequently to H + H° + H for some H? ¢ f}COO(X, }7)
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Remark 11.13. If one endows, for b € M, X, with a symplectic form @y, that is
of the form prjo + priw, for a symplectic form o3 on Sy, then {0} x TyY#W =

T@Y;—% for g = (z2,y) € Y}, so the definition of Hpi(X,Y,J) is in complete
analogy to that of Jo,ni(X,Y).

Lemma I1.30.
H(X,Y)={H e HX) |dH))(v) =0V e TS, veTY }.

defines a closed linear subspace of H( X).
Given any J € Jw(X ) for any b € M and every desingularisation vy : Sp —
Sp C X, Y, C X, is a Jb -complex hypersurface.

The following is the reason for the above definition, which recovers Lemma 3.3
from [IP03] in the present notation:

Corollary IL.8. Let J € Juni(X,Y), let H € H(X,Y,J), let b € M and
2 Sy = Xy € X a desingularisation. Then for any u € M(Xy, A, Jy, Hy) with
m(u) C Y,

VX Jy, H Crkp k1 0L k—1p s *17v Lo
Tk © (pag, b) L PP (VY — LFP(Homy, ) (TS, u* V)

is complex linear (for any k € N, p > 1 with kp > 2).
Proof. This is a special case of Lemma |[1.4 O

The following lemma and remark recover formulas (3.3) (b) and (c) from [IP03],
which will be used in Lemma [l1.32] below showing the existence of “enough”
normally integrable Hamiltonian perturbations:

Lemma I1.31. Let J € J,(X), H € H(X) and assume that X =¥YxX
is a trivial bundle. Then w.r.t. the decomposition TX = T x TX, for
(w,v),(0,§) €TX,

NjH ((w7 U)a (0’ 6)) = (Oa NJ(Uv f)) - (Oa Q(LJX%%U)>J)£)

In particular, for J € Juni(X,Y),
Hoi(X,Y,J) = {H € H(X,Y) | mhri. (LJXO: )J)g =0
Ywe TS, & € TY}.

Also, for J € Juni(X,Y),

1
W;X)ELW (LJXO p J)f 27TTYJ-w ([XH( ) 5] + J[XH(w)v Jf] +

H(w)
+ J([Xu(jw) & + T X H(jw) Jf]))-
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Proof. By definition of the Nijenhuis tensor and Remark

Nju((w,v),(0,€)) = [(w,0), (0,€)] + JH [T (w, ), (0,€)] +
+ I [(w,v), J7(0,6)] = [T (w,v), J(0,¢)]
= (0, [v,€]) + T [(w, Jo + 2T X35,,), (0,€)] +
+ T (w, ), (0, J€)] = [(ju, Jv + 2T X} ,), (0, TE)]
= (0, [v,€]) + T (0, [Jv. €] + 20T Xyt €]) +
+ JH(0, [v, J€]) = (0, [Tv, JE + 20T X}y, TE])
= (0, [v,&] + J[Jv, & + J[v, JE] — [Jv, JE) +
+ 200, JIX ()0 € = [T Xy TED)
= (0, Ny(v,)) = 200, [TX 1, T = T[T X0, €))
=(0,N;y(v,€)) — (072(LJX23W)J)€)7
for [TX 7y JE = TIX ()06l = L gxon (8 = JLyyor &= (Lyxor J)E+
TLyxos &= JLyxon €= (Lyxon J)E

To show the last equation, one can explicitely write out X%%w) to get

2([TX oy T8 = TIX )5 D) = [T Xt JE) = T[T X b1y €] —
= (Xagw) J& — J[XH(w),§])-

Now using that J € Jo,ni(X,Y), hence w%}),&w Njy(v,&) = W%éiw ([v, &)+ [v, JE]—
([Jv, JE] — J[Jv,€])) =0 for v € TY, £ € TY Y+, with v = X (w), shows the

last equation in the statement of the lemma. ]

Remark 11.14. If V denotes any torsion-free connection on X, then the second
part in the above formula for the Nijenhuis tensor can also be written as

0,1 0,1
2(LJX21’<1w)J)§ = QJ(Vg(JXH(w)) + JVJE(JXH(w)) — J(VJX?{’%UJ)J)S)’
which recovers formula (3.3) (c) in Definition 3.2 from [IP03], although it will
not be used in this form in this text. For starting with the second to last line
in the string of equalities in the above proof, because V is torsion-free,

X By 7€ =TT X i €] = Vyyo1 (JE) = Viye(TX ) —

(w)? H(w)

AN vg(JXI%}w))

H(w)

= (V,you J)E+JV JX%,(lw)g -V Jg(JXg}w)) _

H(w)

0,1
— JVJX;)I,?w)g + JV&(JXH(w))

= J(Ve(TX ) + ijg(JX%}w)) — J(V 01 J)E).

(w)

H(w)
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Lemma I1.32. There exists a continuous linear right inverse v : HY) —
H(X,Y) to the restriction map fH(X Y) = H(Y), H— ((— H()y), i e. the
restriction map H(X,Y) — H(Y) is a split surjection.

Furthermore, v can be chosen s.t. imt C J-Cni(f(,f/, J) for any J € Juni(X,Y).

Proof. First, choosing a locally finite covering of M over which X and Y are
trivial and a subordinate partition of unity, one can reduce to the case that X
and Y are trivial bundles, so assume that to be the case.

By the Weinstein symplectic neighbourhood theorem, Theorem 3.30, p. 101,
in [MS98], there exists a neighbourhood N(Y') of Y in X, symplectomorphic
to an open neighbourhood V of the zero section in TY "~ and mapping the
zero section to Y via the inclusion. w turns 7Y« into a symplectic vector
bundle. Choose any w-compatible Riemannian metric g on 7Y+ and let € > 0
be so small that for all y € Y, the ball of radius (w.r.t. g) in T, Y1~ lies
in V. Now choose a smooth cutoff-function p : [0,00) — [0,1] s.t. p(r) =1
for all 0 < r < ¢/3 and p(r) = 0 for all » > 2¢/3. Let 7 : TY'v — Y
the projection. Given Hy € C®(Y,R), define Hy : TY+* — R, Hy(v) :=
p(|[v|])7*H(v). Then Hy has compact support in V and by identifying V with
N(Y), Hy hence defines a function H € C*°(X,R). Furthermore, for v € TY 1+,
dH (v) = 0, for again identifying N(Y') with V| by construction and since p is
constant in a neighbourhood of zero, dH (v) = dHy(mwv) = dHp(0) = 0, for
v € TY*» = ker7,. Also, by definition, H|y = Hp. Denote the resulting
map 7 : C®°(Y,R) — C®(X,R). One can now define + : H(Y) — H(X,Y)
by Hy — (¢ — n(Ho(¢))). By Lemma this defines a right inverse to
the restriction map. To show the second statement, let J € g, ,i(X,Y) be
arbitrary. By Lemma [[I.31] it has to be shown that for the H just constructed

for all w € TY, ¢ € TY . I will show that each of the four summands
(Xt (w)s &l [XHw)> JE] [XHGw), §] [XH(w), JE] vanishes separately for a suit-
ably chosen extension of & to a locally defined vector field. Here and in the
following it is used that .J leaves TY and TY 1« invariant and so in particular
77%),(% oJ = Jwr%?ffL Let £ € TyYL“, yey, and w € T%. Choose local coor-
dinates around y in X of the form (y!, ..., y?" 2,2, 2?) by use of the Weinstein
symplectic neighbourhood theorem. By a smooth change of trivialisation in the
corresponding trivialisation of TY 1« over this neighbourhood one can assume
that J is the standard complex structure along Y in the coordinates z! and 22
ie J%‘$1:$2:0 = % and J%‘wlszZO = . Extend ¢ = a! ax + a2£2,
with a',a? € R, locally by the same formula. Then XH(w) can be written in
thlclase coordinates as Xp(,) = Ej bjaza with d -b) = 0 by construction of H.
Then

9 ; 0 ; 0 ;0
[XH(w)75”a:1:z2:0 = Zi:zj:bjayﬂxlx?oa axi—zj:zi:a %L’cl:x?:()b]aiyj =0
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Similarly,
.0 0 .0 0
(X b (w)s JE]|s1=02=0 = ijaiyjbl:ﬂ:o 1@ - ijafyjbl:ﬂ:oﬁ% -
J J
0 0 o,
1 2 _
_ Z(CL W —a @)’xlzagzob‘]aiyj =0.
J
The other two cases are completely analogous. O

For Y-compatible almost complex structures and Hamiltonian perturbations
one can now define the sets N* from the previous subsection. The main obser-
vation used in the definition is the following, which for convenience subsequently
is summarised from Section 7, in [CMO07].

Definition I1.29. Let (S, j) be a Riemann surface, f : S — X a differentiable
map. An isolated intersection of f with Y is a point z € f71(Y) s.t. there
exists a closed disk D C S around z and a closed disk B C Y around f(z) with
f~Y(B)ND = {z}.

Given such an isolated intersection z € f~1(Y), the local intersection number
t(f,Y;2) of f withY at z is defined as follows: Assume that f intersects Y in
z transversely. Then ¢(f, Y z) = 1, if the orientation on T(,) X agrees with the
orientation induced (via Ty(;)X = (f1.5) @ Ty(,)Y) by the orientations on TS
and Ty,)Y, and «(f,Y;2) = —1, otherwise. In general, choose a differentiable
perturbation f; : S — X, ¢t € [0,1], of f with compact support in the interior
of D and s.t. fi|p is transverse to B. Then

(f,Y;2) = Z u(f1,Y52)).
ZefrH(B)ND
If S is compact and all intersections of f with Y are isolated (in particular by

compactness there are only finitely many), then the intersection number of f
with Y is defined as

UfY) = Y ulfiY52).

zef~1(Y)

The adaptation of Proposition 7.1, in [CMO07] to the present situation.

Lemma I1.33. Let i € M(X, A, J,H(X,Y)). Define u :=pryoi: %, — X.
Then for every component (i. e. connected component of a desingularisation) Zé
of Ly, either u(X}) CY or (u!zz)_l(Y) is finite. In the latter case,

Wl Y) = ulgg] - [V],

i. e. the intersection number of u|zi with Y coincides with the topological inter-
section number of the homology classes in X defined by u|22 and Y. Further-

more, at each intersection point z € (u|22)_1(Y), u s tangent to Y of some
finite order s > 0 with
L(U|Ei,Y; z)=s+1.

In particular, each local intersection number L(u|zz, Y'; z) is positive.
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Proof. (X ’Zi ,JJH) is a complex manifold with 17\22 as a complex submanifold
by definition of H(X,Y’). Furthermore, ﬁ|zi Y = X ’ZZ is a holomorphic
map. Now observe that u(z) € Y iff u(z) € Y, and the orders of tangency
coincide. Now apply Proposition 7.1, in [CMO7] to ﬂ|22 ) O

This allows for the following definition:

Definition I1.30. Let (¢1,...,¢,) € (Z>-1)" and denote ¢; := min{0,¢;}.
Given any open subset V C X\ Y and H € H(X,Y), define

T L
Y 5320

and note that HY (X) C H(X,Y). Then
M(X, VGt AT H + HY (X)) o= (ev) (R;W’l ESRRES RZ?%) ,
for
vt MV(X, A, JH+H (X)) > RiX®---DRX.
Furthermore for any subset B C M,

MY (X|p, Yot AT H 4+ Y (X)) =
{ue MY (X, Y b)) A J H+H(X))|be B, u(u,Y]|s,; Ri(b)} = £;}.

By the previous lemma, if u is a holomorphic curve in X s.t. u intersects Y at
each of ¢ different marked points, the last £, say, u is not contained completely
in Y and [u] - [Y] = ¢, then u intersects Y transversely. Unfortunately one
cannot expect this behaviour to persevere under limits of sequences of such
maps. For example even for a fixed complex structure on the underlying curve,
two of the last £ marked points could converge on the domain forming a nodal
curve, built up of the original curve together with a sphere component that
gets mapped to Y. Since the restriction of Y to every fibre ¥ of X is trivial
by definition, it makes sense to say that the sphere component is constant. In
this case this map actually factors through a map from the original surface,
but with the two converging marked points replaced by the point at which the
sphere component is attached and which gets mapped to Y. At this new point,
the curve no longer needs to be transverse to Y, but the previous lemma states
that, if the curve does not lie completely in Y, the limit map can only have
tangencies of second order. So apart from moduli spaces of curves with marked
points lying on a given submanifold, a case already dealt with in Lemma [[T.26]
one should also construct moduli spaces of curves with tangencies to a given
complex hypersurface of (at least) a given order. The tangency of order 1-
condition is easy enough to define, if u € My(X, A, J, H) with u(R;(b)) € Y,
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then u is tangent to Y at R;(b) to first order simply if im (DVu)p, Rib) VY.
For J € J,(X,Y), VYLe is a Jb complex subspace of complex dimension 1.

If H e H(X,Y), then since é)b u =0, wv})i (D¥u) g, is a jp-Jp-complex

linear map from Vg, ;)X to Vy Ri(b))YJ-“. Hence over the subset of elements
of M(X, A, J,5(X,Y)) that map the i*" marked point to Y (a submanifold
by Lemma , one can consider the complex line bundle with line over u
given by Hom; 7)(Vg, %, Vi, )V}N/J-w) and the section u +— 7753),& (DVu)pg,. In
case of transversality of this sectlon to the zero section, the moduli space of
curves tangent to Y at the i*" marked point then has complex codimension
one in the submanifold of those curves that map the i*® marked point to Y.
Unfortunately the higher order tangency conditions do not seem to admit such
an easy description as global sections of a globally defined complex vector bundle
(of the “correct” rank) over the universal moduli space. |[CMO07], which allows
to use the transversality result (or rather a slight variation of its proof) from
[CMOT].

Construction IL.10. Let (p: S — B, R,1,0) be a desingularisation of ¥ over
B C M and as before denote X := = p**X = *X and Y = = p**Y = Y.
For a € B, let U C B be an open neighbourhood of a s.t. both X|y and
Y|y are trivial, and hence so are X\U and ?]U. Also let ¢q : U x Sq — S|y
be a trivialisation that preserves the marked points and nodes. Assume that
there are pairwise disjoint open neighbourhoods D; C S, of the marked points
Rj (a) € Sg, biholomorphically equivalent to the unit disk D C C and disjoint
from all the nodal points. These are assumed to have the property that for all
beU, qﬁab\pj :Sq¢ 2 Dj — Sy is a biholomorphic map from D, onto a neigh-
bourhood of R;(b) € Sy. Let ug € Ma(X|p, A, J, H) for some H € H(X,Y).
Fix some i € {1,...,n} and assume that ev?(ug) € Y, but that the component
of ¥, containing ]%i(a) does not get mapped completely to Y by wug. Using trivi-
ality of X and Y over U, pick a neighbourhood W C X of ele(uo) diffeomorphic
to U x Sy x C", where r := dimg(X), via a diffeomorphism ¥ that maps Y nw
to U x Sy x C"~1 x {0}. Also assume that this diffeomorphism covers ¢,. On the
right hand side then for any H € H(X,Y) and b € U, {b} x S, x C" is equipped
with the pullback complex structure ij of JH which turns {b} x S, x C" into
an almost complex manifold and {b} x S, x C"~! x {0} into a complex submani-
fold. Remember that the topology on My (X|p, A, J, H(X,Y)) is finer than the
topology induced by that on U x Bg’p(X|B,A, J, H) x H(X,Y) (for some k,p
with kp > 2) by the chart defined via ¢, from Construction And that the
topology on B ’p(X\B, A, J, H) in turn is finer than the C%-topology (which was
part of the definition of the topology on B, k.p (X |B, A, J,H)in Constructlon
Also, the intersection of up with Y at R; (a) is isolated by Lemma Hence
there is a neighbourhood V of ug in M(X|g, A, J, H(X,Y)) s. t. u(gf)ab( )) cw
for all u € V, m¥(u) = b. With the help of the above one can now assign, for
every j = 1,...,n and to every u € V with 7 (u) = b and TF%(U) = H an
(¢ here is the standard complex structure on D; = D) i—ij—holomorphic map
D; — {b} xD; x C". Now one is pretty much exactly in (a parametrised version
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of) the situation of Section 6 of [CMO7] and can follow the discussion leading
up to Proposition 6.9 almost to the letter, dropping the simplicity requirement
and replacing the space of perturbations of the almost complex structures by
the space of Hamiltonian perturbations used in this text, esp. in Lemma 6.6,
to show the following result:

Lemma I1.34. Let V C X be an open subset s.t. VY =0, let H € J—C(X',f/)
and let B C M be a stratum over which ¥ has a desingularisation. Then
for any n-tuple (01,...,0,) € (Z>_1)", MY (X|g, Y @rtn) A J H + HY (X))
is a Banach submanifold of MV (X|g, A, J,H + HY (X)) of real codimension
230 (G +1).






cHAPTER 111

Construction of the rational pseudocycle

In this final part, it is made precise in which sense the map [[.T] from the intro-
duction to this thesis defines a homology class, after suitable modifications.

To do so, the notion of a pseudocycle from [MS04], Section 6.5, will be used.
Also remember that in order to have a smooth moduli space of Riemann sur-
faces, the Deligne-Mumford space was replaced by a finite (branched) covering.
To get a well-defined count, the order of this covering has to be divided out,
so instead of integral pseudocycles, rational pseudocycles will be used, as in
[CMOT].

Since quite a few different notions are involved in this definition, for convenience
they are presented in the first subsection.

After that, the definition is given and a few basic properties are shown.

The compactness result presented then is the first step in showing that this
indeed does define a pseudocycle.

Most of the rest of this text is concerned with showing that (after imposing
some restrictions on J and H) the Q-limit set described by this compactness
result can be covered by manifolds of real codimension 2, hence showing that
the pseudocycle is indeed well-defined.

The thesis then concludes with a few words about independence of this defini-
tion of the choices made.

101
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I11.1 Definition of the pseudocycle and questions of
compactness

II1.1.1 The data involved in the definition

Given the following data (leaving questions of existence for the moment aside):

1. A closed symplectic manifold (X,w) with integer symplectic form, [w] €
H?(X,7).

2.0£4A€ Hy(X;Z2), E:=w(A)+ 1.

3. An orbifold branched covering (7 : ¥ — M) of Mg, and consequently
a sequence of marked nodal families (7* : ©¢ — M* R’ T*) for £ > 0 of
Euler characteristic x with n + ¢ marked points R‘i, e ,Rﬁ, Tf, e ,Tf,
as in Lemma and Proposition

.. 4>7Aré+l e+l it ne 7l -1 wt2 it L 7 30 by
ﬂ M i) M ﬁ M-t 2 M1 0 M0

Tf(iﬁé Wz_lj/BTfl Vi=1,...,0—1
-1 /

where M is assumed to be closed, and hence so are the M* for all ¢ > 0.
Furthermore, for every b € M*, putting b’ := 7¢~1(b) € M*~!, the map
my e (5, R0, RO(O), TH (D), T4 (1)) =
— (S, L RN, RN, TN, T ()
is assumed to be stabilising, i.e. to be biholomorphic on every stable

component of (X5, R{(b),..., RS(b), T(b),...,Tf (b)) and constant on
every unstable component. For £ > k denote the compositions

ﬁ_i::ﬁ_koﬁ_k‘-ﬁ-lou_oﬁ_é—l:E€_>Ek
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and
7T£ =gk orktlo ot At s MR

By the same argument as in Section assume that M and hence all
the M’ are connected.

4. Metrics h? on the XY, restricting to a hermitian metric on every Zg, be
M.

5. D eNN.

6. A Donaldson pair (Y,Jy) of degree D, i.e. Jy € J,(X) and ¥ C X
an, in the sense of [CMO07], Section 8, approximately Jy-holomorphic, in
particular symplectic, hypersurface with PD(Y) = D|w].

7. £:= Dw(A).

The existence of the marked nodal families (7 : £¢ — M?) from [3l above had
already been dealt with in Section [[I1]

The necessary existence and uniqueness results for hypersurfaces as in [6 can
be found in Theorem 8.1 from [CMO07] and the references quoted there.

Also, for later reference, introduce the following notation:
Denote by M** the strata (which are not assumed to be connected) of M*
by signature. The top stratum corresponding to the smooth surfaces will be
[¢] . .
denoted by M* = M*%°. Over every M%* there exists a desingularisation (p® :
Sht s MG RE T (BT of 8 i= ¢ s, Cover each MY by finitely
many open subsets Uf’z C M*%* 5. t. there exist trivialisations qﬁ;’z : Uf” X Sf’z —
SM|U“ and assume that the qbf’i have all the properties from the previous
7 . . . .
chapter: There exist points Rﬁ’; € Sf’l, s =1,...,n, and Tf’sl S Sf’l, s =
1,...,4, s.t. ¢§’i(b, Rj”s) = Rﬁz(b) as well as ¢§’i(b T.e’i) = sz(b) and pairs of

’ ]’s

points fo’l,Nf’:72, r=1,...,d% (for some d"* € INy), s.t. for all b € U;,

qﬁﬁ’i(b, Nf:?f’l), ng’i(b, ijﬁ’l) is a pair of points corresponding to a single node
on Xf. Furthermore, all the Rﬁ:;, Nf’ﬁ’l, Nﬁ’f,z are assumed to have mutually

disjoint neighbourhoods all biholomorphically equivalent to the open unit disk
in C and s.t. for all b € Uf’l, the restriction of (¢§’z)b : Sj’l — Sﬁ’z to every such
neighbourhood is holomorphic. Finally, assume that the Uf’i are compatible for
varying £ in the sense that for every ¢ > k, given ¢ and j there exist i’ and j’
s. t. 7rf;j|Uf,i : Ufﬂ — Ujk,’Z is a submersion.

I11.1.2 The definition of the pseudocycle

Let X! := %f x X, V! := %¢ x Y, where £ = Dw(A). The pseudocycle in
question will be of the following form, for appropriately chosen H:



104 Chapter III. Construction of the rational pseudocycle

Definition III.1. For H € H(X?), define

MXE YA J H) = {ue M(XZ\WA,J,H) | im(uoTf) CY* j=1,....4
im(u) N X4\ Y* £ 0}

and as before, for any (affine) subspace K C H(X?),

MKV A, 0,%) = | MKV A, T, H).
HeX

Also denote by M()N(g, Y A, J, H) the closure in M(XK, A,J, H) ofM()N(K, Y A, J, H).

Lemma III.1. For A # 0 and D large enough, for generic HY € 9{(17) C
H(X,Y) there exists a generic subset (depending on HY ) of HO(X,Y) s. t. for
each HY in this subset, outside a subset of M(X, A, J, HY + H%) with comple-
ment of codimension at least 2,

M(XE VA, T, (7 (HY + HO)) = M(X, A, J,HY + H)
~ 0\ * —1
U+— Uuo ((Wo)ﬂ]j\v}(u))

is an l!-sheeted covering.

Proof. As will be shown in Subsection [[I.2.2} for A # 0 and D large enough,
for generic HY € H(Y) and for any H® € 3((X,Y) one can assume that no

section in M(X, A, J, HY + H) lies completely in Y. Note that over ]\Oﬂ, frg
is a fibrewise isomorphism, hence the space (7§)*(HY + H%(X,Y)) is “large
enough” for all the transversality results in the following to hold for generic
H := HY + H in particular all the strata of M(X, A, .J, H) can be assumed
to be manifolds of the correct dimensions. Now every element of M(X' VA, J H)
has intersection number ¢ with Y, so M(f( ,A,J, H) is covered by a union of
spaces

M(XZ/| (Y/E’)(0,...,0,t1,...,t[/)’ A, J, (ﬁ'g)*H)

for 1 < ¢ < ¢ and Zf/:l(ti + 1) = £. For ¢ = ¢ this is just the space

o

M(X'z, Y A, J, (ﬁé)*H), where the fibre over a point is given by the ¢! choices
to label the ¢ intersection points with Y. And for ¢ < ¢, by Lemma [[1.34], this

space has dimension at least two less than M(Xé, Y A, J, (frg)*H). O

Remember from Section that on every M%" there is the induced stratifica-
tion from the stratification of M’ given by the groupoid structure. In particular,

[0
because the M*¢ were assumed connected, M! has a unique open and dense con-

oo oc .
nected stratum M? as well as a number of strata M%7 of codimension at least
2. Then for every Hy € H(X?),

m M(XE Y A, T Hy + 3K 7)) — MY
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. . . —1,2¢, . . . . .
is a submersion, so for every j, (ﬂ%) (M K’J) is a codimension at least 2 split

submanifold of M(X* Y* A, J, Hy + H°(X! Y*)) by Lemma |A.6 Hence by
Lemma and the Sard-Smale theorem, for generic H’ in H%(X* Y*), one
can assume that for every 7,

oo

M(XEYE A J Hy+ H') = {ueM(X, Y A J Hy+ H) | 7% (u) € M*}
and

J\/C[j(X€7?Z7A7 J; HO +Hl) = {’U S M(XE,Y/Z,A, J7 HO +Hl) | 77]3\/\4[<’U/) (= ]TZZ:J'}

are manifolds of the expected dimensions.
[e]e)

Furthermore, note that for such H := Hy + H', M(X’, Y A, J, H) carries a
natural orientation: First, note that M(f(é, Y A, J, J{(Xe, }ﬂ)) carries a natu-

ral coorientation as split submanifold of M(X*, A, J, H(X!, Y?)), since it is the
preimage under the evaluation map at the last £ marked points of Y*, which is
cooriented in X*.

Second, for the Fredholm map

MR, AT H(RE TY) — 3R T,

at a regular point the kernel of its differential is canonically oriented, since it is
identified with the kernel of the corresponding Cauchy-Riemann operator, by
Lemma A.3.6 in [MS04]. This in turn is oriented by the usual argument as in
the proof of Theorem 3.1.5, p. 50, in [MS04]. Hence the kernel of the restriction

s M(XE YEA, T, H(XE YY) = HXE YY),
at a regular point carries an induced orientation as well.

With this, the definition is as in Section [[L1] (H = Ho + H'):

Definition III.2. The pseudocycle associated to the above data is the rational
pseudocycle

1 1 oo . _
- evB  M(XE Y A T H) — M x X7,

[e]e}

| Aut(M) |0 (M)

where on the right-hand side X* = ¢ x X and the canonical map 7§ : M* — M
were used.

The remainder of this chapter now consists of the proof that, for appropriately
chosen H, the above is a well-defined pseudocycle. Following the course of ac-
tion as set out in [CMO07], first it will be shown that for an appropriate choice of
J and any choice of H, ﬁ(f(é, Yt A, H) is compact. The next order of busi-

ness then is to choose H appropriately s. t. M(XE, Y¢ A, Ii) is a smooth man-
ifold of dimension dimg(X)x + 2¢1(A) +dimg M and s.t. M(X*, Y4 A, J, H) \

(o]

M(X¢,Y! A, J, H) can be covered by finitely many manifolds of dimension at
most dime (X )x + 2¢1(A) + dimg M — 2.
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I11.1.3 The main compactness result

The appropriate conditions for compactness of ﬁ()? LYl A J H ) to hold have
been formulated in [CMO07], Section 8:

Definition II1.3. Let, for £ > 0, J,(X,Y; E) C 3,(X,Y) be the subset of
almost complex structures J € J,(X,Y) s.t.

1. All J-holomorphic spheres of energy < FE contained in Y are constant.

2. Every nonconstant J-holomorphic sphere of energy < E in X intersects
Y in at least 3 distinct points in the domain.

Also, define
Hw,ni(Xv Y’ E) = 30.)(Xa Y7 E) m Hw,ni(X, Y)

In the same reference, in Corollary 8.14, it has been shown that this condition
is non-void, which needs to be adapted to include the condition of normal
integrability:

Lemma III.2. There exists a constant D* = D*(X,w,Jy) and a nonempty
C-neighbourhood 3., (X; Jo) C 3, (X) of Jo s.t. if D > D*, then

Hw,ni(Xa Y; JOa E) = 8w,ni(Xa Y; E) N gw(X; JO)

is nonempty for every E > 0.
Moreover, any two elements in o, ni(X,Y; Jo, E) can be connected by a path in
Hw,ni(Xa Ya E)

Proof. Let J.,(X;.Jo) be the C%ball around Jy in J,(X) of radius o, where
05 is as in Corollary 8.14 of [CMO7]. Then by that reference, there exists a
J' € 3u(X,Y; E)NJ,(X;Jy). Applying the procedure in the proof of Theorem
A.2 in [IP03] yields an arbitrarily C-close (to J’, the endomorphism K in
equation (A.2) in said proof can be chosen arbitrarily small in C°, but not in
CH) J" € Juni(X,Y), in particular J” € J,(X;Jy), with J”|y = J'. Hence
J" still satisfies condition 1. in Definition [IL3l Now observe that condition
(ii) of Proposition 8.11 in [CMO07] can be achieved by a perturbation J of J”
s.t. J—J" lies in the closure of those endomorphisms of TX that have compact
support in the complement of Y. But such perturbations still lie in g, »i(X,Y).
Now if Jo, Ji € Juni(X,Y; Jo, E), then by Corollary 8.14 in op. cit. they can be
connected by a path (J7),co1] in du(X,Y; E). Again applying the procedure
from Theorem A.2 in [IP03] produces a path (J);cpo1], arbitrarily close to
(J7)refoa) in CP-topology, that coincides with (J7)rejo,1) along Y and satisfies
Jo = Jy = Jo as well as J{' = Jj = Ji. So in particular (J),;cp,q still
satisfies condition 1. in Definition Now proceed as before: Condition (ii)
of Proposition 8.12 in [CM07] can be achieved by a perturbation (J:)¢[o,1] of



IT1.1. Definition of the pseudocycle and questions of compactnessl07

(J7)ref0,1 8-t Jy — Jr vanishes for 7 = 0,1 and for 7 € (0,1) lies in the closure
of those endomorphisms of T X that have compact support in the complement
of Y. O

Finally, again in [CMOT], Proposition 9.5, the necessary compactness result is
given, which can easily be adapted to the present situation to show:

Lemma IIL.3. Let J € 3,(X,Y; E) and let ¢ = [Y]- A. Then
2 s R(RE VL AL H(RE 7)) > ME x 3(XE T

1S a proper map.

Proof. Let (u;)ien C M(XEYE A, fH(f(g, f/e)) be a sequence s. t. b; := mr (u;) —
b€ M* and H; := 7} (u;) — H € H(X*Y"). By Proposition there
then exists an ¢ € INy and a subsequence (uij )jen together with a sequence

bi, € (M*)°" and an element @ € M((#} )* X", A, J,H((7 )*X")), b := m5(1)
s.t. M (@) = H, 7¢ (b) = b and

(7§ )*ui; —
J]—00
Furthermore, either b € (M*)°Y and hence @ defines an element (u,b, H) €
M(XEYE A, T, H(XE YY), or there exists a component (Ze);’%’ with 7} ((24)%) =
z for some z € Eg either a node or a marked point. Furthermore, @ defines a
nonconstant J-holomorphic sphere in X! = X. Because J € J,(X,Y; E), the
image of this sphere is not contained in Y and intersects Y in at least 3 distinct

points, at least one of which is not one of the last £ marked points Tf(b). Now
proceed literally as in the proof of Proposition 9.5 in [CMO07]. O
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I11.2 The pseudocycle is well-defined

I11.2.1 A description of the boundary

The next order of business is a description of the boundary {W(i{ Lyt A JH )=

ﬁ()ﬂ, Y A, J, H) \M(X'Z, Y A, H), where from now on it will be assumed
that D > D* with D* from Lemma [[1I.2 and that J € Juni(X,Y;Jo, E). Asin
[[P03), OM (X, Y*, A, J, H) decomposes into a number of subsets. First of all,

the subsets defined analogously to M(X Lyt A J H ), but for the remaining
strata of M* as in Definition [IL1}
MUXE Y A T H) = {ueMy(X5 A J H) | be MY
wTi(b) €Y, j=1,....¢
im(uly, ) N X\ Y* # 0 for

every component 3 s of ¥p}.

Note that MO(X¢, Y A, J, H) = M(X%,Y* A, J, H) by the convention M40 =

M?*. This case is the easiest to deal with, because it already has been: From
Lemma and the ensuing discussion leading up to and including Lemma

[1.26| shows the following lemma (H + HOO(X!, Y?) denotes the affine subspace,
for the definition of H(X* Y*) see Definition |I1.28)

Lemma II1.4. Let H € 3((X). Then M(X',Y' A, J H + HO(X! YY) is a
smooth Banach manifold and the projection

NG (XE T AL H 4 IR T o H 4+ 3O, 70
is a Fredholm map of index

ind(m2) = dimg(X)x + 2¢1(A) + dimg (M5 — 2.

Proof. Let

Vi={ueMy(X“, A J H) [ be MY H € H+ KXY
im(uls, )N X\ Y*# 0 for

every component > s of ¥p}.

By Lemma and the lemmas up to and including Lemma [[L.26] V is a
Banach manifold and the map

Ty ¥ 5 (R X @@ (RL) X 0 (T X & 0 (T} X!
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is a submersion. So by Lemma and Lemma
M(XE YA T H A+ HOXE YY) =

-1 - - . -
(evReﬂTé |V) ((Rﬁ)*Xﬁ ®---R)X e (THY e @ (Tf)*Y‘f>
and 7['}( have the properties stated. O

The next type of holomorphic sections in OM (X!, Y*, A, J, H) is given by those
sections u in ﬁ(f( CYt A JH ) that do not satisfy the conditions defining the
MH(XE Yt A, J, H). The condition im(u o Tf) CY!Vj=1,...,0is clearly
closed. So that leaves those sections with one or more components ending up
in Y.

I11.2.2 Reduction to the case of vanishing homology classes

Although probably not strictly necessary, the first goal is to show that one
can choose H s.t. every component of a section in ﬁ()ﬂ,)ﬂ,A, J, H) with
image contained in Y* needs to represent a vanishing homology class. Assum-
ing A # 0, this in particular implies that no section over a smooth curve in
M(f( Lyt A J H ) has image contained in Y¢. The way this will be proved
is by following the line of argument in [CMO7] leading up to Proposition 8.11.
First, the analogue of Lemma 8.9 in [CMO07]:

Lemma IIL.5. Let ¥ be a fized smooth Riemann surface equipped with a com-
patible volume form dvoly s.t. voly(X) = 1, let (X,w) be a closed symplectic
manifold, X = E x X, let J be an w-compatible almost complex structure
and let H € H(X ) be a hamiltonian perturbation with corresponding almost
complex structure J7 on X. Let u = (id,ug) : ¥ — X be a JH-holomorphic
section of X with [u] = A € Ho(W;Z). Then for constants p,r > 0 there
exists a constant D, = D (X,w, J,p, k) s.t. if ||[H||c1 < p and Ry < K, where
Ry : X = R is s. t. Rydvoly, is the curvature of the connection defined by H,
then (c1(TW), A) < Dy(w(A) + k).

Proof. Let H be as in the statement of the lemma. Then by [MS04], &, :=
prijw + pri(kdvoly) is a symplectic form on X s.t. JH is wx-compatible. Now
proceed as in the proof of Lemma 8.9 in [CM07]: Let o € Q2(X) be a closed
2-form that represents ¢1(7°X). Then

(1(TX),A) :/EUZQ

= / u*prao
)

< lpsgal,, o [ w'i
b
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as in op. cit., because u is JH -holomorphic and JH is wr-compatible

~prial o ([ o+ )

= [Ipracllay,gn (W(A) + k).
|prjafl, ju here denotes the norm w.r.t. the metric defined by @, and JH.
The claim now follows, because |[pria||, j» depends continuously on x and on

JH | which in turns depends continuously on the C'-norm of H, and coincides
with |lal|y,; for H = 0. O

Now consider one of the open subsets Uf’i C M*%. Assume that Uf’i is con-
nected and to simplify notation, drop the indices ¢ and j, i.e. assume that
(p* = pry : S= Ul x 8¢ — ULR T U — M U x S — »9)
is a desingularisation, where S* is a smooth 2-dimensional manifold. Also, let
Nf’l, Nf’z : UY — S¢ be sections parametrising the nodal points. Denote by Sf,
i=1,...,s, the connected components of S* and correspondingly S’f = Ufx Sf.
Then any

u' € My(XEYE A T H(XEYY) =
M(Xf’ ?Kv A, J, %(Xev 5}@)) N Mb(X£> A, J, }C(ng ?Z))

for b € L(UZ) pulls back to a u € M(X, A, J, fJ-C(XZ YZ)) where X* := (i)*X".
Denoting X =X E| st and correspondingly Yé vt | g¢» one can identify

M(XE’A“]?%(XZ’?E)) = H M(XfaAlajv %(Xg7?é)) X
=1 A=A
x M(XE, Ag, J,H(XE YY)

by mapping u € M(X¢, A, J, H(X!, YY) to
(u’8f7 ce 7“|S§) € M(va [prQ(u’S{)]a J: :}C(Xga Yﬁ)) X
- x M(XG, [pra(ulge)], J, H(XE YY),

Denoting u; := u|ge, u' as above having a component lying in Y* then means
that its pullback u has one of its components u; lying in

M(ffiea [pr2 (ul)]’ J, %(Xg7 f/f)) - M(va [pr2 (Uz)], J, J'C(Xg7 }”/E))

One would now like to reproduce ‘Ehe argument in [CMO07], Proposition 8.11
(a), to show that for generic H, M (Y}, Ai, J, H) = @~f0r~D large enough. Doing
just that, by Lemma [IL26] 7% : M(Y, 4;, J, H(XE YY) — H(XE YY) has
Fredholm index given by
ind(m3}) = dimg(Y)x(SY) 4 2¢8Y (4;) + dimg (UY)
< 2dimg(Y) 4 2(¢] ¥ (A;) — Dw(A;)) + dimg (M*)
< 2dimg(Y) + 2D.k + 2(Ds — D)w(A;) + dimg (M),
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where D, and k are as in Lemma But dimg(M?¢) = dim(M) + 2¢ =
dim(M) +2[Y]- A = dim(M) + 2Dw(A), choosing ¢ = [Y]- A to satisfy Lemma
ML3l So while the middle term in the above index formula decreases with
increasing D, the last term increases just as quickly, at least for A; = A. This
is a case that one definitely would like to deal with in this way. But observe
that if S¢ is a component of genus zero (a sphere) and H € H(X*, V) satisfies
(" g = 0, then any u; € M(}A/f,Ai, J, H) defines a J-holomorphic sphere
in Y. But for J € J(X,Y; E), the only such spheres are the constant ones,
implying A; = 0. This allows for the following construction, which first of all
requires the introduction of quite a bit of notation to signify the two parts of a
curve in the family X¢|;¢ that lie in Y and those that intersect X¢\ Y

1. Let I be the index set for the connected components of S¢, i.e. S¢ =
[icr Sf and let I = Ix [[ Iy be an arbitrary decomposition of I into two
subsets.

2. Then S* = S5X 1T 8%, where S5% :=[[,; Sf and S5 = [];c;, S;.
Correspondingly §¢ = §6X 11 §4Y = (Hielx Sf) IT (HiEIy S'f)

3. Denote by Ef]g the restriction of ¥ to U* and by Zi}f and Efﬁ/ the image
of S and S%Y under it, respectively, so that Ef}[ = b1 Efﬁ/.

Ut
4. Denote by x* and x¥ the Euler characteristics of the fibres of Efﬁ( and
Y respectivel
[¢ » respectively.

5. Let {1,...,¢} = Kx II Ky be the decomposition s. t. Tf(b) € Zg‘f for all
j € Kx and b€ U’ and T!(b) € %57} for all j € Ky and b € U”.

6. Among the nodal points on St , there is a subset of those pairs, where one
of the two points corresponding to a node lies on S4X and the other lies

on S%Y. Denote these by Nf’XY’X,Nf’XY’Y, r = 1,...,d, the first one
lying on S“X, the second one on S4Y .

7. Denote by Nf’y’l, Nf’Y’Z, r=1,...,d, the nodal points where both lie on
SLY

8. Regard both Zfﬁ( and Eé}; as families of nodal Riemann surfaces with

marked points (1Y) jery, (N )po1,.a) and (T9) jercy , (N2 1), 21,

respectively.

Now fix some b € U¢. Under frg ot : Sf’y — Y, a certain number of

SoY
genus zero components of ﬁf’y are mapped to points. This happens if and
only if a component contains fewer than three special points apart from the Zf’f ,
i.e. fewer than three nodal points or marked points among the Rf(b) These
can be grouped together into “collapsed subtrees” as in Section 2 in [CMO7]

in the following way: Call two components of Sﬁ’y connected if there exists
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an 7 s.t. No'(b) lies on one of them, Nf"*2(b) on the other. Now take the
equivalence relation this generates on the set of components of Sf’y on which

frg is constant. Since U’ was assumed to be connected, this is independent of

b e U*. An equivalence class of this equivalence relation then corresponds to a
collapsed subtree.

9. Denote the set of equivalence classes from above by €. This gives a de-
composition Iy = Iy I [[sce Iv,o, s-t. 7%5 (Hiely,c S*fvy> = const, for
every C € €, and fré\ 8, is a biholomorphic map onto its image for every
i€ Iyp, be U

10. € can be further decomposed into subsets Cp and €1, where every C € Cy
has the property that there exists at least one (and at most two) i € Iy,c

s.t. for every b € U, S’f’g/ is connected to 5”;{ for some j € Iy and €y :=
C\ Cp. Let SEY0 he the subfamily of $%Y consisting of the components
in Iy Ullcee, Iv.c:

11. Denote by EZU’E,/’O the image of SEY:0 i EZUZ under ¢, by X the Euler

characteristic of the fibres of Efﬁ/’o and denote by U the open subset of

the stratum of M to which U* gets mapped under 71'{_11.

12. Then 7§ is a well-defined map from E@/’O to a subfamily of Xy (the

restriction of ¥ to U), which will be denoted by X}, and has fibres of
Euler characteristic XE)/ as well.

One can now for any B € Hy(Y) look at the moduli spaces M(Y |y, B, J, H(Y)),
which are equipped with the smooth structure from Lemma The cal-

culation from before then shows that the Fredholm index of the projection
o M(Y\EE,B, J,H(Y)) = H(Y) can be bounded from above by

dimg(Y)xy + 2D,k + 2(D. — D)w(B) + dimg (M).

In particular, taking a bound for Xéf depending only on ¢ and n, there is a
constant Dy only depending on g, n and D, but not depending on ¢ s.t. for
D > Dy this is negative, provided that B # 0, due to integrality of w. So
from now on assume that D > Dj. Also, due to the choices made, one has an
isomorphism

MV |0, B, J, (7) (7)) = (m) M(¥ |y . B, J.H(T)).
vt
This means that by the Sard-Smale theorem there is a generic subset of H(Y)
s.t. for every H in this subset, if B # 0, then
M(Y gy, B, J, H) = M(Y|gevo, B, J, (76) H) = 0
924

and if B = 0, then M(f/z\ze,y,o,o, J, (#8)*H) is a smooth manifold of dimen-
1924

sion dimg(Y)x3 + dimg(U?) that comes with a canonical map to the manifold
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M(Y/\EE ,0,J, H) of dimension dim¢(Y)x¢ +dimg (U). Analogously, for C' € €y,
let SEY-C .= Hiely,c
in Iy,c and Zf}}j’c its image in ¢ under i. Then for any H € H(Y), for B # 0
again M(i/quﬁ/’c’ B, J, (7f)*H) = 0 and for B = 0,

A

S’f Y be the subfamily of S%Y consisting of the components

M(legycﬁ, T, (#6) H) 2= Y ye = (76)"(Y]v),

the isomorphism given by evaluation at any special point on E@/’C. Note that
the Euler characteristic xg of any fibre of S¢¥:C is 2. So

dimg (M(Y*|gev0,0,J, (7)) H)) = dime(Y)x¢ + dimg (U”).
Ut

Finally, one can take the intersection of all the generic subsets one gets via the
construction above, for all the countably many choices of data as above (i.e. U*,

Ix and Iy, B € Hy(Y), and so on), to get a generic subset Heg(Y) C H(Y).
So finally, one can summarise the results from this subsection:

Lemma II1.6. There exists an integer Dy depending only on g, n and D,

s.t. for D > Dy there exists a generic subset Hyeg(Y') C H(Y') with the property
that for every H € Hyeq(Y') and for any choice of data Ut Ix,Iy as above, for
0 7& B e H2 (Y)7
MY ey, B, J,(76) H) =0
(924
and M(?qze,y, 0,J, (#8)*H) is a smooth manifold diffeomorphic to
Ut

(m6)" [ M(Y gy, 0,7, )T T Yo
CeCy

and hence of dimension
dimpg <M(W\2g,y, 0,J, (frg)*H)) = dimg(Y)xY + dimg (U?).
Ut
Furthermore this manifold comes with the smooth evaluation map

d
e (Y a0, 7, (#)7H) = €D (VYY) X
ut r=1

I11.2.3 Construction of the manifolds covering the boundary

From now on, pick some H € j{reg(}}) and use the inclusion from Lemma |[1.32
to find an HY € Hy,;(X*, Y¥, J) restricting to (7§)*H along Y.

One now has to turn ones attention to the second part Efﬁ( of Efﬂ. Noting
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that for V := X\ Y*, 3V (X*) = #%(X* V"), by Lemma [I1.26] the moduli
space M(X£|EZ,X,A, J, HY + HO(X? Y?)) comes with a submersion
(924

0 0,XY,X ~ ~, ~
evie, xevl : M(X‘|E[,2{,A, JHY + HOXEYh) —
U
AR . exY,xX\* e
B (1)) 5o @ (v 5
JEKx r=1
Then
0 0,XY,X 20,XY,Y
ev%}x x ev x evl :

M(Xgex, A, J, H + HOXE YY) x MY yev, 0, J, (76) H) —
Ut Ut

d
* ko * o
P (7)) X e P (V) Ko (V) X i)
r=1

JEKx

is transverse to @ ¢k, <Tj€) Vie @le A, where A denotes the diagonal. So

MIX,IY (Xf’ ?Ka Av J: HY + }COO(ng YZ)) =

d
-1 *
<ev7;X x evV eVNe’XY’Y) @ (TJZ> Ve @ A (L)
jeKx r=1

is a split submanifold of codimension dimpg (U*)+2| K x|+2d dime(X) by Lemma
and by Lemma [A.7]

T My (X0 T0 A HY + HOKE T o HY + HO(KE, 7Y
is a Fredholm map of index

ind(m3}) = dimg (X)x~ + 2¢1(A) 4 dimg (U?) +
+ dimg(Y)xY + dimg (U?) —
— (dimg (U*) 4 dimg(X)2d + 2|Kx|)
= dimg(X) x4 dime(X)xY — dime(X)2d + 2¢1(A) +
+ dlmR(Ue) — QIK)(’ — XY
= dimg(X)x + 2¢1(A4) + dimg (U*) — 2|Kx| — x¥. (I11.3)
So again by the Sard-Smale theorem there exists a generic subset of 00 (X' ¢ f/e)
s.t. for any H% in this subset, My, 1, (X6 Y4 A T, HY + H) is a smooth
manifold of dimension ind(73{). The above can now be done for every U* = Uf’z
for © # 0, and all partitions Ix,Iy of the set of components of a fibre of
Ege and one can take the intersection of the generic subsets of JH%(X* Y¥)

from above to get a perturbation H% of HY s.t. Miy 1y (XZ,EN/Z,A, J HY +
H 00) is a smooth manifold of the dimension above for all U? and I x,ly as
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above. Also note that the Banach manifolds from Lemma are actually
the special case 9f t~he above for Iy = (). These sets, for all Ut and Ix,Iy
now cover OM (X, Y% A, J HY + H®). Unfortunately, this does not suffice

to show that M(Xf, YE A J HY + H) is a pseudocycle, because by formula
the dimensions of the above manifolds covering the boundary are not
of small enough dimension, i.e. real dimension at least 2 less than that of
M(XEYE A J HY + H). Comparing the dimension formula [[T1.3| with the
formula from Lemma [III.4] (in the case ¢ = 0), the failure of this is due to two
effects:

1. The Euler characteristic x¥ of the fibres of Zfﬁ/ might be strictly nega-
tive, so the term —yY in the formula above contributes positively to the
dimension.

2. It can happen that |Kx| < ¢, e.g. the case |[Kx| = 0 (all the marked
points Tf lie on components that are mapped completely into Yf) and
d =1 can’t be ruled out.

To deal with the first problem, if one denotes by g; the genus of the component
S¢ of the surface S*, the desingularisation of a fibre of ¥¢,,, then

Ut
X' =201 —g)—2d.

i€ly

Two kinds of terms contribute negatively to xY¥, the term d and the terms
2(1 — g;). The term 2d’ is not an issue, because the codimension of U in M*
is given by two times the total number of nodes in a fibre of Zég, which is at
least d’ + d. And one can assume d > 1, for A # 0, because by construction
of H, no curve in the family Ege is mapped completely into Y. Also, if g,
is zero or one, then 2(1 — g;) > 0, so the corresponding term contributes non-
negatively to x¥ . This leaves the components of genus g; > 2. Remember that
the contribution of these to the dimension formula arises in the following way:

M(}ﬂlzz,y,o, J, (7§)* H) is the preimage in M(?Z‘S&y, 0,J, (75)*H), whereas Y
(924

always is the pullback of Y to St of the diagonal under the evaluation map at
the nodal points,

dl
. * . * A
eV NI (Y g, 0,0, (76) H) — @D (M) ¥ @ (NEYR) Y
r=1

Because S%Y is the disjoint union of the S’f’y fori € Iy, M(y["sﬂg’y,o, J, (76)*H)

is the fibre product over U’ of terms M(}ﬂ\gg,y,o, J, (7§)*H) for i € Iy, each

of which has dimension
dimg (M(W\gg,y, 0,J, (frg)*H)) = dime(Y)2(1 — g;) + dimg (UY)
= dimg(X)2(1 — gi) 4 dimg (U*) — 2(1 — ¢).
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The important point now (which will be proved in the remainder of this section)
is that the image of M(f(ﬁ, Y A, J, H'), for any H' € 9—((5(5, Y/Z) that restricts
to (75)*H on Y¢, in J\/[(Yélg_z,y ,0, J, (76)* H) under the restriction can be covered
by countably many manifolds of codimension —2(1 — g;) + 2. The proof of this
uses a refined compactness result, of the type that, among others, has been
studied in [BEHT03] and in [[P03] (which, as is stated in the introduction
of [BEHT03]|, is a special case of the “stretching of the neck” construction in
[BEHT03]). But in the following I will use a different transversality result from
[IP03]. The setup of the formulation of the compactnes results above is actually
quite involved and will never be used in full generality in this text. So instead
of reciting the whole story, I will only describe a corollary of this, which sums
up the results as needed in the following. To do so, first observe that for any
u € Mb(f/qg{z,y, 0,J, (7§)* H), one can form the complex line bundle u*(V}A/be)L“

over the Riemann surface 5’5’;/ . Ifnow H' € Hyi (X4, Y, J) is so that it restricts
to HY along Y, then by Corollary the operator (as usual for some kp > 2)
—=H]  VX{ =0, Hy\
D, .= W(Vf/lf)i-w o (D@Sfby )u :

LPP(u* (V) ) = LEYP (Homg, g, (TS u(VYR)™))
is complex linear. By the Koszul-Malgrange integrability theorem, this means
that u*(VY))1« is actually (can be identified with) a holomorphic line bundle
over S’f’g/ with Equi as Cauchy-Riemann operator. Since [pry(u)] =0 € Hy(Y),
the bundle u*(VlA/bé)Lw has vanishing first Chern class and it follows that every
meromorphic section of this bundle has the same order of poles as of zeroes.

The compactness result from [BEHT03| or [TP03] then implies the following:
Let (uj)jeny € M(X* Y A, J, H') be a sequence that converges to

u € My(X4 Y A J H'), where b € U’. Assume that there are Ix,Iy as
above s.t. the components of E{; in Iy intersect X¢\ Y* nontrivially and the
components of Eﬁ in Iy are mapped into Y*. Assume that Iy # (). Then there
exist the following:

1. An integer k € IN and partitions Iy = I;k T I;kﬂ Im---a I;l as well as
Ky = K"+ T K

2. Up to reordering of the nodes Nf’y’l, Nf’y’z, i.e. reordering of the index
set {1,...,d'} and exchanging NAYYand NP2 for a fixed r, a partition
{1,...,d}=D7*1I...UD2UE*1U.---UE"', D :={1,...,d}.

3. For every j = —k,...,—1, r € DJ, an integer pﬁ e N.
For these, the following hold:

a) Forall j=—k,...,—1,r¢ K{/, Tf lies on Sf’y for some ¢ € I{,.

b) For all j = —k,...,—1, r € EJ, there are i,i’ € I{, s. t. Nf’y’l lies on S’f’y
and Nf’yg lies on Sﬁ’y.
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c) Forall j = —k,...,—2, 1 € Dj7 Nf’y’l lies on S’f’y for some ¢ € I{‘/ and
NSY2 lies on Sf’Y for some i € I€/+1~ The N;¥Y, r € D71, all lie on Sf’Y
for some i € I;l.

. ) Y A Y
d) For each j = —k,...,—1, denote Sij/ = Hie]{; Sf’ and by Upg the re-
striction of w to S*f’jyb. Analogously, denote by ur, the restriction of u to
Gx Y

. Then there exists a meromorphic section &) of u; (V}A/bf)Lw with the
Y

following properties:

i) Forall j = —k,...,—1, f{; has simple zeroes at the points Tf forr € K{,

ii) For all j = —k,...,—2,r € D/, I has a zero of order pﬁ at the point
N2
SR

iii) For all j = —k,...,—2, r € D, 5% has a pole of order p,l at the point
N

iv) For every r € D71, £, has a pole of order p, ! at the point NEXYY,

v) Other than the above, the ff; have no zeroes or poles.

vi) For every r € D™1, uy, is tangent to Y* to order p; ' — 1 at NX

Note that the above gives a countable number of choices: For the integer k, the
partitions I5-, Ky and D* II E* and the orders of the zeros and poles p} of the
{1{. Also note that as remarked above, every fﬂ has the same (total) order of
zeroes as of poles, i.e. at each level j the total order of zeroes of &) is given by
the total order of poles of fﬁ_l, plus the number of marked points T! and this
is the same as the total order of poles of &}

> bl =Ky

reD—k

Sopi=IK{+ > piTt Vi=-k+1,...,-1
reDJ reDi—1

In particular, the total order of poles of &, ! is given by |Ky|.

This partially solves the problem in formula [lI1.3|above of the term |K x| being

smaller than /: In the definition of My, 1, (XEYE A T, HY +3HO(XE, YY), the

part M(ngze,x,A, J, HY 4+ HO(X? Y*?) corresponding to the part of a curve
Ut

that does not get mapped into Y, with the zero order matching condition at
the nodal points N4XY-X see formulas [[11.1| and [I1.2, can now be replaced by
the subspace of those curves that also are tangent to Y at the N“XY>X of total

order given by |Ky |, see Lemma [I1.34
Lemma ITL7. Letu € My(X!, Y, A, J, H') for someb € Ut, H € Hpi (X, YE ).

Then there exist Ix, Iy, ps as above s.t. the restriction U|Ee,x lies in
Ut

MX(X%‘E?}?’ (Y/élzgf)(07..-70,Pf1,---,P;1)7A7 J, H/),
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for V i= X\ Y with Y prt = |Ky| —
Here E(}z has marked points Te € Kx and NZXYX r=1,...,d.

Furthermore, it also allows for a solution of the problem of the terms 2(1 — g;)
for g; > 2 contributing negatively to the Euler characteristic yY :

For every U’, Ix and Iy, k € N, partitions I, K5, D*, E* and integers
pi as above, consider the family of Riemann surfaces p : P — B, where the

base B is given by M(Y* \24 v,0,J, (#8)*H) and the family P of (disconnected

smooth) Riemann surfaces over B is given by (F%)*SZ’Y. Fibrewise deleting

the nodal points Nf’y’l and Nf’yg for r € D7 as well as the Tf for r € Kj,
where applicable, gives a family of punctured Riemann surfaces p : P — B.
Over P and by restriction over P, there is a complex line bundle Z — P,
where for v € B, Z|p, = (ur,)*(VY?)*~. The complex structure is given by
the restriction of J to (V}A/Z)J-“ and is compatible with the restriction of w. By
abuse of notation, both these structures will be denoted by J and w again. This
complex line bundle can hence be regarded as a symplectic fibre bundle with
real 2-dimensional fibres and deleting the zero-section also gives a symplectic
fibre bundle Z — P. An important property of this bundle is that it comes with
a free action of (C*)¥ (C* := €\ {0}) on the fibres of Z. For u € B, m(u) = b,
the i-th component of (C*)!¥ acts fibrewise on (u;)*(VY?)

restriction of the §j as above to the components of P, then defines a section of
Z over P,. Finally, this bundle also comes with a connection, mduced by the

Levi-Civita connection on V X¥. Next, observe that the operator D . above is
a complex linear Cauchy-Riemann operator in the sense of [MSO4], Appendix
C.1: Let u € My(Y"| 4 , (m5)* H) for any component given by i € Iy, where
H' € J‘Cni(f(g, Y?, J) restricts to HY along Y*. Then because J € J., m(f(e lﬂ)
H' € Hyi(X4, YY), by Lemma [[1.17} for a section & of u*(VY¥)l«, Z € TSZ b o

¢
—H VX! (

Diuf)(2) =7 L, VO — K (€, Du(Z))) . (I11.4)

These observations allow one to define a Fredholm problem whose solutions
are the meromorphic sections from above. Basically, one now goes through the
steps of the previous chapter. What was the bundle  : ¥ — B there now is the
bundle p : P — B, and what was the bundle X — ¥ there now is the bundle
Z — P. For the most part, the noncompactness of P and Z is not a problem,
for the analytical results in Section never referenced any compactness but
only required universal bounds for the different curvatures and their covariant
derivatives, as well as for the covariant derivatives for the smooth curves around
which the charts are defined. These clearly are still satisfied, for the latter
see the definition below. One just has to be more careful in the definition of
the (linear) Sobolev spaces, see e.g. [Loc81] and [Loc87], but as long as the
definition is such that the usual embedding theorems, elliptic estimates for the
Cauchy-Riemann operator, etc., hold, the details are not that important. Also
remember that S¢ — U’ was a (topologically but not holomorphically) trivial
bundle and that there are tubular neighbourhoods of all the marked points and
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nodal points on which the trivialisation preserves the complex structure in the
fibres of S*. This allows one to use the SFT Fredholm theory from [C7e06]. To
this end, denote pullbacks to P of the Nf’y’l, Nf’Y’Q, for r € D7, and T/ for r €
K, for some j, by N;F, 7 € I'T, and N,~, r € I, the latter incorporating the 77,
for index sets I*. Furthermore, denote by pi- € N, r € I'*,and p € N, r € I,
the orders of poles and zeroes at the N™ and N, respectively. For this part of
the discussion, the matching conditions from above on the poles and zeroes are
irrelevant. Because S¢ — U* was holomorphically trivial in a neighbourhood of
all the nodes, and hence so is P — B, one can pick holomorphic coordinates
defined on [0, 00) x S! to punctured disk neighbourhoods DF of the N in P
that are preserved under the (smooth) identification of the fibres of P. Denote
the resulting maps o : B x [0,00) x S — P. Also note that as was remarked
above, by the Koszul-Malgrange integrability theorem (and because everything
extends from a punctured disk to a disk), for every b € B, over D;%b one can

find a holomorphic trivialisation of Z| D¥, with fibre E:,Eb >~ C\{0},i.e. Z| ¥, =
be X E:fb. This gives maps 7, : B x ([0,00) x S1) x (C\ {0}) — Z covering
the maps of. If [0,00) x S — D\ {0}, (s5,0) — e+ is the standard
identification, then a zero or pole of order p that is given in standard coordinates
on D by z — c¢zP, for some ¢ = e~ (@) ¢ C, under this identification is the
map (s,0) — ce PH0) = g=Pstatief+9))  Fix some b e B, 1 € N, ¢ > 1 with
lg > 2, and a weight § > 0. Furthermore, fix a smooth function s : P — (0, 00)
that in all the coordinates o;" from above is given by the projection onto the
factor [0,00). Then for any metric vector bundle with connection E — Py, one
can define the weighted Sobolev space
499 () i {n € LL(B) | ¥y ¢ LM(B)},

loc

With these choices, let (cf. the first definition in Section 3 of [Cie06])

By = {¢: B, — 7 | £ a section of Zy — P, of class Lf(’)qc s.t.Vrel?,
(prao (7)o &oo,,)(s,0) :

(5,0) 1> e~ (L0 —(bF s4aF)) ilo(s.0)~(pF0-47)))

e Lb9([0,00) x S, €) for some
(aF,9F) € [0,00) x St and for all r}.

This is a Banach manifold, that around a smooth £ € By is modelled on the
Banach space leqﬁ(g *VZb), just with the Sobolev spaces used in the previous
chapter replaced by the weighted Sobolev spaces. Analogously to the situation
in the previous chapter there is then also a Banach space bundle &; over By,
with fibre

(8b)§ = Ll_l’q’é(I'Ioim(jb’Jb)(TPb, g*VZb))

over £ € By. €, — By, comes with a section V3, defined by the Cauchy-Riemann
operator from Equation and for an appropriate choice of § > 0, this is a
Fredholm operator. By definition of By, the zero set of V; is given by the
meromorphic sections of Z, — P, that have zeros and poles at the N~ and N,



120 Chapter III. Construction of the rational pseudocycle

of orders given by the numbers p~ and p*, respectively. Because V, is a linear
Cauchy-Riemann operator on Zj, its linearisation DV} in the sense of Section 3
in [Cie06] is (modulo canonical identifications) given by V,, itself. In particular
the operators S;(t) in op. cit. vanish identically, and the paths of symplectic
matrices ®;(¢), as in the same reference, are the constant paths at the identity.
By Corollary 3.6 in [Cie06], again for § > 0 sufficiently small, V, is a Fredholm
operator of index x(FP) = > ey, 2(1 — gi) (not x(By)), as was expected from
the classical Riemann-Roch theorem from the start. Now as in the previous
chapter, remembering that P and hence P were trivial, one can take the union
over all b € B to get a Banach manifold B, together with a projection to B, and
a Banach space bundle € over B, together with a Fredholm section V : B — €
of index ) ;. 2(1 — g;) + dimg(B). Remembering that V depends on the
choice of H' € Hyi (X4, Y, J), whereas B = M(Y* ey, 0,J, (7§)*H) and hence
Ut

P and Z only depend on the restriction of H ! to Y*. So one can look at the
affine subspace HY +H% (X* V¥, J) of 3, (X*, V¥, J). Making the dependence

on H' explicit and writing B /, e and VH , one can then as in the previous
chapter look at the spaces

s

BHY +H(X YD) 11 B

H'eHY +H0,(X4,Y4,J)

E(HY + HU(XEYE ) = 11 et
H'cHY +30,(X4,Y¢,J)

!

and the map

V= I1 v
H'eHY +H0,(X4,Y 4, J)
Finally, note that because H' € U'Cni(ffg,?e, J), Vs equivariant w.r.t. the
free (C*)%v-actions on B(_HY + HO(XE YA ) and E(HY + HO (XA Y )

induced by the one on P. Furthermore, the projections to B and H Y4
HO(XF, V!, J) are invariant under this action.

Definition III.4. Abbreviate D := (Ue,IX,I;,K;,D*,E*,pI).
MP(XEYE T, HY +HOU(XE Ve T)) = (V) 7H0)
and for HY € f]-(gi(ffz,ffé, J),
—HY L HO

MP(XEYE T HY + HY) = (V )~10).

The proof (not the statement) of Proposition 6.4 in [IP03] shows that v
is transverse to the zero section. One should note here that for any H €
HOXE, YL ), dH |, g¢ vanishes along Y, because the condition that H lies
in H(X¢ Y") implies that dH vanishes on (VY?)™ and the condition that
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H vanishes along V! implies that dH vanishes on VY?. From this it fol-
lows that in Formula m for ﬁHl, the term involving V%! is independent
of H € HY + H% (X% Y* J) since it only depends on the restriction of dH’
to VX! |y¢. For transversality, the crucial term is the second one, involving
K i, i.e. the symmetric part of the morphism %jH,(@H/ JH'). Together with
the vanishing of certain components of its antisymmetric part, which is given
by the Nijenhuis tensor, to satisfy normal integrability, this gives a number
of conditions on the Hessian of H along Y!. By the usual line of argument

using Lemma A.3.6 in [MS04], the universal moduli space (ﬁg{)_l(O) hence
is a smooth Banach manifold and the projection onto HY + ﬂ'fgi(f(e,lﬂ,(])
is a Fredholm map of index ), 2(1 — g;) + dimg(B). So by the Sard-
Smale theorem, for generic H' € HY + 3% (X*,Y*,J), (ﬁH,)fl(O) is a smooth
manifold of dimension » ., 2(1 — g;) + dimg(B). Also, it comes with a free
(C*)!v-action and projection /forgetful map (smooth for the generic H' above)
to M(f/ﬂze,?, 0, J, (#§)*H) invariant under this action.
U

The above discussion is summed up in the following two lemmas.

Lemma IIL.8. Let u € My(X*,Y* A, J,HY + HP) for some b € U*, H ¢
HO(XE,YE J). Then there ewists D = (U, Ix, I3, Ky, D*, E*,p}) as above
s. t. the restriction u|2e v lies in the image of the forgetful map of

Ul,b
MP(XEYE T, HY + HO) / (guyry in M(Y* A O H).

5

Lemma II1.9. Given any H € Hyee(Y), with _extension HY € Hu(XYE )
of (#§)*H, there exists a generic subset J-Creg(XZ,YZ, JyHY) of HO.(X4, Y, )
s.t. for every H® € fH?eg(Xe,Yg, J; HY) and every choice of

D = (U{IX)I;%KY’D* E*7PI)}
MP(XE Y g, HY + H®)/ @1y
18 a smooth manifold of dimension

dimp (M%(Xf, YeJ, HY + HO)/(@*)IY) = dimg(X)xY + dimg (U*) + 2d’ — 2|Iy|.

So finally, again for D = (U?, Ix, I3, K5, D*, E*, p;) and HY and HY regular,
one can first of all look at the Constructlon in Equations [[T.1] and where
by abuse of notation the pullback of evV" ™" to M2 XY T HY + H) /o
via the forgetful map is denoted by the same symbol again:

TE NZ,XY,X NZ,XY,Y .
evi, Xev X ev :

Jv[(f(ﬂzgf,A, J, HY + HO+ HO (X V) x MP(XE Y T HY + H) gy —

d
* ko * o
D (1) €@ ((ver) &e (ve) &)y
r=1

JEKx
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is transverse to B¢k, (Tf) Yi® @le A, where A denotes the diagonal. So

MP(XEYE A J HY + H + HOXE YY) =

d
—1 e
<eV1};ZX % eVNZ,XY,X y evNé,XY,Y) @ (Tf) Vi @A (I11.6)
jEKX r=1

is a split submanifold of codimension dimpg (U*)42|K x|+2d dim¢ (X) by Lemma
and by Lemma [A.7]

20RO (XE T AT HY + HO + 30K, 7)) o 1Y + HO + 3O0(XE ¥
is a Fredholm map of index

¢ = dimg(X)x ¥ + 2¢1(A) + dimg (UY) +
+ dime(X)xY + dimg(U*) + 2d' — 2|Iy| —
— (dimg (UY) + 2|K x| + 2d dimg(X))
= dimg(X)x + 2¢1(A) + dimg (U?) 4 2d' — 2| K x| — 2|Iy|.

By the same reasoning leading to Lemma [[1.34]

MP (XYY A T HY + H + HOXE YY) =

{fue MP(XEYE A T, HY + HO+ HOXE YY) |
be U’ u(uw,Y!|s,; NoXYX (b)) = pr i Vr=1,...,d}

is a smooth submanifold of real codimension 2 Zle p ' =2(|Ky| —d) and the
projection

MO (XL T AT HY + HO 4 3O T0) - HY + HO 4 30X, 7
is Fredholm of index (|Kx|+ |Ky| =)

ind(m3}) = dimg(X)x + 2¢1(A) + dimg (U*) + 2d' + 2d — 20 — 2|Iy|.

Because dimg (U?) is dimg (M?) = dimg (M) 4 2¢ minus 2 times the total num-
ber of nodes, which is at least 2(d’ + d),

ind(m}) < dimg(X)x + 2¢1(A) + dimg (M) — 2|Iy|.

So by the Sard-Smale theorem, there exists a generic subset of U{OO(XE,Y’Z)
s. t. for every H% in this subset, MP (X! Y¢ A, J, HY + HO+ H%) is a smooth
manifold of dimension at most dime(X)x + 2¢1(A) +dimg (M) — 2|Iy|. Taking
the intersection of all these generic subsets for the countably many choices of
D as well as the countably many generic subsets one gets via the Sard-Smale
theorem from Lemma making all the Mi(ffé, Yt A J HY + H° + H)
smooth manifolds of the expected dimension, one gets a generic subset
300 (XZ,Y/Z;HY + HO) C g_(OO(XEj}N/Z)'

reg
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Theorem IIL.1. There exists an integer D s.t. for every D > D and A €
Hy(X) with w(A) > 0, E := w(A) + 1, there exists a symplectic hypersurface
Y CX,PD(Y)=Dw], and J € Ju,ni(X,Y; E) s.t. the following hold:

1. Let ™ : X7 — M7, j >0 be as in Subsection |[II.1.1| and let £ := Dw(A).
Then there exist

e a generic subset H{reg(?),jdentiﬁed with a subset of J{ni(j{g,?:é, J)
by taking, for HY € Hyeg(Y), the image of (75 HY in Hu (XY T)
under the inclusion from Lemma[II.53

o For every HY € Hn(Y), a generic subset H?eg()ﬂ,f/f,]; HY) C
HO(XE Y ).

o For every HY € Hyeg(Y) and H € J—C?eg(fff,fff, J; HY) a generic
subset HO (X4, Y4 HY + HO) ¢ HO(XE, YY),

reg

And, for HY € Hieg(Y), H® € HO, (X4, Y, J; HY) and H® € HO, (X, Y4 HY +

H%), H := HY + H°+ H, the pseudocycle from Definition s well-
defined.

2. Furthermore, let Y be as above and let J; € J,(X), t € R, be a family
of almost complex structures s.t. Jy € Juni(X,Y; E) for allt € R and
Jy = Jy fort <0 as well as J; = J1 for t > 1. Then for any choice of
HY € Heeg(Y), HY € HO (XE, Y, T HY ) and HY € HO, (X, Y4 HY +
HZ-O), fori=1,2, the pseudocycles associated to Y, Jy, H[¥+H8+H80 and
Y, Ji, HY + H) + HY° are rationally cobordant.
In particular, given Y and J as above, the pseudocycle is independent of

the choice of Hamiltonian perturbation.

Proof. 1. Is just a summary of the results of this chapter so far.

2. For this consider the marked nodal families (7" : ¥ — M’ R'), where
Y= xR, M := MP xR, 7' := 7° xidR, (R"); = (Rg xidgr). These
space are stratified by taking the product of a stratum of the original space
with R. Correspondingly, define X" := ¥ x X and Y := ¥ x Y so
that .J. defines an w-compatible vertical almost complex structure on X*.
But, instead of the spaces H(Y”), H° (X", Y, J.) and HO(X" Y"), now
consider the spaces

HY t<0
HY t>1

}

HY' H ) = {H e HY") | H" |y, = {

H t<o0

HY ¢t>1"

0 (!t it 0 0 0 (vt v 0 H((]) t<0
HOX VT HY) 1= {HO € (X V) | By =405 o)
HY t>1

HOX Y HY) o= {HY € HOXY) | H® 3o,y = {
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These spaces of Hamiltonian perturbations are large enough for all the
transversality results to hold, because for ¢ < 0 or ¢t > 1, transversality
holds by choice of HY, HY and H® and for 0 < t < 1 one is free in
the choice of perturbation. For the analogue of Lemma [[IL.6] to hold, one
possibly has to replace D by D+1. So for generic choices of perturbations
in these spaces, as above, one gets strata-wise cobordisms between the
moduli spaces associated to HY , H), H)® and HY , HY, H.

O

Finally, one should say a few words about independence of the remaining choices
made. An easy consequence, which follows immediately from the way the pseu-
docycle was constructed is the following:

Lemma IIT.10. Let (7 : ¥ — M,R,), (7' : ¥ — M',R}) and (7" : ¥ —
M",R]) be orbifold branched coverings of Mg, that branch over the Deligne-
Mumford boundary and assume that there are morphisms

by

q>/ @H
™

Y/ M ¥
N
™ ™
M/ "
of marked nodal families. Then the rational pseudocycles from Definition [I11.9
associated to (m : X — M, R,) and (7' : ¥/ — M', R.,) , but with all other data

as in Subsection the same, are equivalent in the sense that the maps
(X' =% x X, etc.)

14
[e]e]

R
M(X A, J, & H) — = M x X"

P/* T qu/ xid
0o Rt

M(X"A,J H)— M x X"

induce equivalences between the corresponding pseudocycles.

By the analogous statement for (w : ¥ — M, Ry) and (z” : ¥ — M" R), the
rational pseudocycles associated to (' : X' — M', R.) and (7" : X" — M" RY)
then are equivalent as well.

The final choice that has been made and that one would like to show indepen-
dence of is that of the integer D € IN and hypersurface Y. Since most of this
consists of adapting the methods from |[CMO07], Section 10, by methods that
have been presented in this chapter before, I will only present a sequence of
steps one has to take to show this.

The first step is to describe in which sense the choice of Donaldson hypersurface
and adapted w-compatible almost complex structure is unique.
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Lemma II1.11. Let (Y;, J;) be Donaldson pairs of degrees D;, i = 0,1. Then
there exist

e an isotopy ¢. : [0,1] x X — X, ¢g = id, through symplectomorphisms,
e an integer D € N,
o a hypersurface Y C X of degree D,

e a path (jt)te[o,l} C Ju(X) s.t. Y is approzimately J;-holomorphic for all
t €10,1],

e a constant € > 0,
s. t. the following hold:

1. Juni(X,Y;Je, E) # 0 for all t € [0,1],

2. Juwni(X,Y0; J0, E) N Juomi(X,Y;J0,E) # 0 and Yo and Y intersect e-
transversely,

3. Hw,ni(X7 ¢1(Y1)7 (¢1)*J1,E) N 3w,ni(X7?;jlaE) 7& @ and ¢1(Y1) and ?
intersect e-transversely.

Here, Ju,ni(X,Y0; Jo, E), etc., are as in Lemma For the proof, use the
methods from the proof of Lemma to adapt Corollary 8.18 in [CMQ7] and
the relevant steps laid out in the proof of Theorem 1.3 in Chapter 10 of that
reference.

The remaining steps are then to show that from [I]{3] above it follows that the
pseudocycles associated to (Yp, Jy) and (Y7, J1) are equivalent.

First of all one can note that the pseudocycles associated to (Y7,.J;) and
(p1(Y1), (¢1)+1) are equivalent. For (¢1).A = A, since ¢; is isotopic to the
identity, and ¢ induces a well defined map between the corresponding moduli
spaces. Hence one can assume that ¢. = id.

Next, one shows that it follows from [I| that the pseudocycles associated to
(Y, Jo) and (Y, J1) are equivalent. To do so, one chooses a subdivision 0 =
tp < t1 < -+ < tp = 1 of [0,1] s.t. there exist J! € J,ni(X,Y;Js, E) N
Joni(X,Y;Jy, ., E), i =0,...,k — 1, and then connects, by Lemma J!
and J/,; by a path in Ju,ni(X, Y;E). Theorem then shows equivalence of
the pseudocycles associated to (Y, Jo) and (Y, J1).

Finally, and most difficult, one shows that from 2| in the lemma above follows
equivalence of the pseudocycles associated to (Yp, o) and (Y, Jg), and analo-
gously for (Y1,J1) and (Y, J1) from

To simplify notation, write from now on (Y, J) for (Yy, Jo) and (Y, J) for (Y, Jo).
Also, let £ := Dw(A), 0 := Dw(A) and ¢ := { +7.
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Then define f}C(f(Z vt ?é) = J-C(f(é f/é) N J—C()N(é ?é) and analogously for

HOO(XY, ¢ Yz v! ) as well as with £ replaced by £. With these definitions, (7TZ) H(XE, Y Ye) C

U{(Xg, Ye, Yé) and analogously for H%.

Then, one considers the moduli spaces

MXEYEYL A T H) = {ue M(XZ\M,A, JH') | im(uoT)) C Y, j=1,....¢
m(uon) g?‘f, j=0+1,...,¢,
m(u) N X\ (Y UYY) # 0}

and defines pseudocycles (yet to be shown to be well-defined for generic choices
of H H' and H” as below)

1 j 00 _ s _ s ~-~
evB o M(X YO YA D H) > M x X™, (TILT)
IAut( Do)

as well as the ones from before,

1 ! — evRe:J(\)/[()?g,}ﬂ,A,J,H’)ﬁMxX” (II1.8)
4| awt(an)j0(37)|
and
1 1 I
= _evR  M(X YA T H) 5 M x X" (ITLY)
| Aut(A1)]|0(M)]

for J € Juni(X, Y3 J, E)uni(X, Y3 7, B), H € H(XE VYY), H € 350(XE VYY)
and H" € H(X', Y! YY),
It is important to note here that the factors — 1 in all three cases

[ Aut(M)[|O(M)]

coincide, i.e. do not depend ¢, ¢ and /.

Compactness of the closures ofM(XE, A, J, H), M(X* A, J H)and M(XZ, A, J, H),
respectively, has already been shown in the latter two cases and in the former,
J@t(f(f }7@ ?é A,J,H) C M()N(é ?2 A, J,H) by definition, which in turn has
compact closure in M(Xe A,J,H). To be more exact w.r.t. the last state-
ment, one may note that 5 and M? are canonically identified with (EE) and

(M é) , respectively, so one can literally apply Lemma [II1.3| where (7 : ¥ — M)
is replaced by (7t : %¢ — M?).

Then as before, the proof being the same as that of Lemma [[II.1} one can show
that given any Hj) € H(X*, Y, Y") for generic H' € HO(X¢, Y, YY),
ML VY AT (7 O (H, + H')) — M(XE, VY A, J, H, + HY)

is an fl-sheeted covering outside a subset of codimension at least 2.
Because this is symmetric in ¥ and Y, in the same way given any H| €
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J{(XZ, Y, ?Z) for generic H” € J-COO(XZ, vt ?Z),
(X VY A, g, (R (HY + H")) — M(XT, V0 A, 0, HY + H")
is an f!-sheeted covering outside a subset of codimension at least 2.
The difficulty then is to show the following two things:
First, that for generic H € ﬂ{(f(e,ffg,?e), 111.7| is a well-defined pseudocycle
and that for every two choices of generic H, one can find a generic path con-

necting them that gives a cobordism between the corresponding pseudocycles.
And second, that the statements in Theorem [[II.T] also hold when restricting to

Hamiltonian perturbations from H (X Lyt ,?Z).

Once these two statements have been shown, one can finish the proof of equiv-

alence of the pseudocycles and )

First, choose generic H' € H(X*, Y Y*) and H" € H(X', Y., Y")s. t.and
define pseudocycles and s. t. (possibly after perturbing further by elements
of 3{00(5(@, YZ,?E) and 3{00(5(2, 172, ?Z), respectively)

j@[()}'é7 ?éy ?éy A7 J7 (ﬁg)*H,) % J@[(Xé7 }767 A7 J’ H,)
and
MXL VYT A0, (#) H") — MK, ¥, A, T, H")

define ¢!- and ¢!-sheeted coverings, respectively. In particular for the two

choices H = (frg)*H " (ﬁg)*H " I[11.7| defines pseudocycles, since the correspond-
ing evaluation maps factor through those of |IH.8| and |IH.9L But (frg)*H’

and (fr%)*H " may not be generic choices in general, but only for the stra-

tum over M. Now connect (fré)*H’ and (frg)*H” by a path (Hy)icjo,) in
G{(X'é, }7@,72) with Hy = (frg)*H’ and Hy = (frg)*H” that induces a cobor-
dism [Ty M(XE VYT A, 0, Hy) between M(XY, VY7, A, J, ()7 H') and
M()N(E, Yé,?é,A, J, (frg)*H”) and is generic for t € (0,1).

I. e. the boundary of Hte[o,l] J\/[()N(é, 172, ?‘7, A, J, Hy) is the union of three parts.
Namely those parts for t = 0,1, where the evaluation maps factor through
the boundary of M(X’é, 57@,72, A, J, (frg)*H’) and J\/[(Xé, 172, ?2, A, J, (frg)*H”),
which can be covered by manifolds of codimension at least 2. And the part of
the boundary for ¢ € (0, 1), which can be covered by manifolds of codimension
at least 2 by a generic choice of (Hy)icpo,1)-

This finishes the proof of the equivalence of the pseudocycles and
modulo showing the two claims above.

The reason this is more difficult is that in contrast to the situation before, one
can only use Hamiltonian perturbations in the smaller sets %(X' Lyt ,?é) and
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}C(XZ, )ﬂ,?‘g), for which the transversality statements from before no longer
hold true. This is due to the fact that along the intersection vt ﬂ?z all Hamil-
tonian perturbations need to be compatible with both Y* and Y*. So in the
boundary of the pseudocycles one wishes to construct, where before one had to
deal with curves that have components lying in Y, one now has to deal with
curves that have components lying in V¢, components lying in Y* and com-
ponents lying in Y* N Y*. Before, the dimensions of the corresponding moduli
spaces were cut down by the existence of (meromorphic) sections of the normal
bundle, which also provided the necessary matching conditions for the tangen-
cies of the part of the curve that does not lie in Y. And this still suffices
to deal with components in Y* and Y?, but do not lie completely in Yinye.
But to deal with components that lie in Y*NY? and to achieve the necessary
matching conditions that provide the correct order of tangency of the part of
the curve that lies in the complement of YUY, a refined compactness theorem
as in [Tonll] is needed. Once that is established, the methods used here before
should extend in a rather straightforward way and the main challenge should
be in keeping the notation in check.



APPENDIX A

Notation and technical results

A.1 Notation and basic results on Banach manifolds
and -bundles

A.1.1 Banach manifolds, Banach bundles and tangent spaces

For the following basic results about differentiable maps between normed spaces,
see [Wer00], Section IIL.5.

For Banach spaces (X, | - |lx), (Y] - |ly), B(X,Y) is the Banach space of
bounded linear operators T': X — Y equipped with the operator norm ||T|| :=

sup{IT& | 0 £ 2 € X}. Their product (X x V|| - [[xxy) is the Banach
space given by the vector space X x Y equipped with the norm |[(z,y)||xxy =
max(||z||x, ||y|ly). With this choice, for another Banach space (Z,] - ||z), the
canonical map B(Z, X xY) — B(Z,X) x B(Z,Y), f — (pr; o f,pryo f), is an

isometry.

Definition A.1. Let (X, |- ||x), (Y, |- |ly) be Banach spaces and let U C X be
an open subset. A map f: U — Y is called (Fréchet-)differentiable at a point
xo € U, if there exists a continuous linear operator Df, € B(X,Y) s.t. the
continuous map 7 : U —x — Y, where U —z := {u — x | u € U}, defined by

flx+v)=f(zx)+Dfe(v) +r(v), forvelU—=x

satisfies lim 2 = 0.

v—=0 1Vl
f is called differentiable if it is differentiable at every point x € U. If the
resulting map Df : U — B(X,Y), x — Df,, is continuous, then f is called

continuously differentiable.

129
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Recursively one defines: f is n-times (continuously) differentiable if it is differ-

entiable and D f is (n — 1)-times (continuously) differentiable.

f is called smooth, if it is n-times (continuously) differentiable for all n € IN.

For n € N, let B (X,Y) :={T € B(X x --- x X,Y) | T multilinear} be the
—_——

n-times
Banach space of multilinear maps from X™ to Y. Then B(X, B D(X,Y)) =
BM(X,Y) via T — ((x,y1,- ., yn-1) = (T(x))(y1,...,Yn_1)) and one can in-
ductively define the higher derivatives of a n-times differentiable map f : U — Y
as
D"f:U — B™(X,Y)

via D"f = D(D"'f): U — B(X,B™)(X,Y)) = B™(X,Y).

Remark A.1. Differentiable maps are continuous, so the above definition makes
sense.

For the following, see [Wer(00], Satz I11.5.4, p. 120.

Theorem A.1. Let X,Y, Z be normed spaces U C X, V CY, be open subsets.

1. If f,g: U = Y are n-times (continuously) differentiable, then so are f+g
and A\f (A € R) with
D(f+g9)=Df+Dg, D(Af)=ADf.

2.If f:U =Y, g:V — Z are n-times (continuously) differentiable with

f(U) CV, then so is g o f with

D(go f)e = Dgsz)o Dfs Veel.

3. Amap f:U — Y xZ is n-times (continuously) differentiable iff the maps

priof:U—=Y and proo f: U — Z are.
4. The evaluation map

ev: BX,)Y)x X —>Y
(T,2) = T'(x)
is smooth.

5. (Mean value theorem) Let f : U — Y be differentiable, x € U and let
ueX bes.t.x+ ueUVAe[0,1]. Then

1f (2 +u) = f(@)lly < sup{[[Dfaraul [ A € [0, 1]} ]ullx.

6. (Taylor’s theorem) Let f : U — Y be (n+ 1)-times differentiable, x € U
and let we X be s.t. x+AueUVAel0,1]. Then

n

If(z+u) =) %Dkfx(u, o)y <
k=0 "

1 n n
e P ID sl |3 € (0.1}l
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The following lemma will be used repeatedly to construct differentiable maps
between open subsets of Banach spaces.

Lemma A.1. Let (X,| - |x), (Y,]| - [[y) be Banach spaces, let U C X be an
open subset and let Xg C X be a dense normed subspace. Define Uy := U N X
(which is an open subset of the normed space (Xo, || - ||x, = || - [ x]x,)) and
let @ map fo : Uy — Y be given. If fy is 2-times differentiable with bounded
first and second derivatives, then there exists a unique (Lipschitz) continuously
differentiable map f : U — Y with fly, = fo. Under the canonical isometry
v: B(X0,Y) 2 B(X,Y), with Dfy:=10Dfy: Uy — B(X,Y), Df|u, = Dfo-

Proof. Let x € U. Then for r > 0 small enough, the ball (in X) of radius r
around z is contained in U, and since the statement of the lemma is local (on
X!), one can replace U by this ball. In particular one can assume that U, and
hence Uy, is convex. Then by the mean value theorem above, since the derivative
of fy is bounded, fy is Lipschitz continuous and hence has a unique Lipschitz
continuous completion to f : U — Y. It remains to show that f is continuously
differentiable. Now via the canonical isometry B(Xy,Y) = B(X,Y), given by
the completion of a bounded linear operator in one direction and restriction to
a subspace in the other, one can regard Dfy as a map Df, : Uy — B(X,Y).
Again by the mean value theorem and because fj is assumed to have a bounded
second derivative, this map is Lipschitz continuous and has a unique Lipschitz
continuous completion Df, : U — B(X,Y). It remains to show that Df is
the derivative Df of f. Solet x € U and let u € X be so small that x +u € U.
Pick sequences (2, )new C Uy, (Um)men C Xo, s.t. zp + um € Uy and z,, — =
as well as u,, — u. Then

f@+u) = (@) = (Dfo)e(w) = f(x +u) = f(2n +tm) + [(2n + um) —

and so

1 (@ +u) = f(z) = (Dfo)z(W)lly < |[folxn +um) = fo(@n) = (Dfo)a, (um)lly +
+ [f @+ u) = f(@n +um)lly +
+ [1f () = f@)lly +
+ 1D fo)a, (um) = (D fo)a, (wlly +

+ (D Ffo)an (1) — (Dfg)u(u)]y-

In the above expression on the right hand side, because the second derivative of
fo is assumed to be bounded by a constant ¢ > 0, say, by Taylor’s theorem the
first summand on the right hand side can be estimated from above by §||um [|%,
independent of x,. Now first taking the limit m — oo and then the limit
n — oo, the first summand on the right hand side is estimated from above
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by |ul%, whereas the 2 to 5" summand vanish, by continuity of f, the
definition of Df, and the definition of D f,. In conclusion, || f(z +u) — f(z) —
(WO)I(U)HY < |lull%, showing that f is differentiable with differential given
by Df = Df,. 0

Corollary A.1. Let (X, |- ||x), (Y,||-|ly) be Banach spaces, let U C X be an
open subset and let Xo C X be a dense normed subspace. Define Uy := U N Xg
(which is an open subset of the normed space (Xo, | - |lx, == - llx|x,)) and let
a map fo: Uy —Y be given. If for some k € IN, fo is r + 1-times differentiable
with bounded first and second derivatives, then there exists a unique r-times
(Lipschitz) continuously differentiable map f: U — 'Y with fly, = fo.

Proof. Follows from the lemma by induction, noting that B(™ (Xo,Y) is canon-
ically isomorphic to B (X,Y) just as in the case n = 1. O

Definition A.2. Let B be a topological space. A (smooth) Banach manifold
atlas on B is given by the following data:

1. A covering (U;);cr of B by open sets,
2. a collection (B, || - ||i)ier of separable Banach spaces and

3. a collection (¢;);c; of homeomorphisms ¢; : U; — V; C B; onto open
subsets V; C B;,

s.t. for all 4,5 € I, ¢j; := ¢; 0 ¢;1 c0;(UsNU;) = ¢i(U; NU;) is a smooth
map (i.e. infinitely many times Fréchet-differentiable) between open subsets of
Banach spaces.

The maps ¢; : B D U; — V; C B; are called charts.

A continuous map f : B — B’ between topological spaces equipped with Ba-
nach manifold atlases (Us, (Bi, || - [l1), ¢i)ier) and (U}, (Bf, || - [|3), ¢})jes is called
smooth, if for alli € I,j € J, ¢} ofog;t:gi(f7HUY)) — By is a smooth map
between open subsets of Banach spaces.

A diffeomorphism is a smooth map between topological spaces equipped with
Banach manifold atlases that has a smooth inverse.

Two atlases on the same topological space are called equivalent if the identity
is a diffeomorphism, where the space is equipped with one atlas on the domain
and the other atlas on the image.

The above defines an equivalence relation on the class of Banach manifold at-
lases on a given topological space. A smooth map between topological spaces
equipped with Banach manifold atlases still defines a smooth map if any of the
two atlases (on the domain or target) are replaced by an equivalent one. So the
following makes sense:

Definition A.3. A (smooth) Banach manifold is a 2"-countable Hausdorff
topological space together with an equivalence class of Banach manifold atlases.
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Remark A.2. Clearly, open subsets of Banach manifolds are Banach manifolds
in a canonical way.

Construction A.1. Given a Banach manifold B with atlas (U;, (B, ||-||:), ¢i)icr-

Let Vi := ¢;(U;) C B; and Vij := ¢(U; NU;) C Vj. Define B := [] V;/~, where
el

for v; € Vi, vj € Vj, v ~ vy & v € Vi, vy € Vi and ¢ij(vj) = v;. Then there

is a canonical homeomorphism p : B — B induced by the map [[V; — B,
el

Vidwv — ¢;1(vz)

Now define (as a topological space) TB := [[V; x B;/~, where V; x B; >

el

(vi €1) ~ (vj,€5) € Vi x Bj & v € Vii,vj € Vi and (i (v5), D(dij); (¢5)) =

(v, e;). This topological space is second countable Hausdorff by general point

set topology.

Define TUZ = [V; X Bz] € TB, TBZ = Bz X Bi, and d¢l : TUI — V; X Bz - TBZ

as the inverse of the canonical map V; x B; — TB on its image TU;. This

defines a Banach manifold atlas on 7B, making it a Banach manifold.

Furthermore, the canonical map [[ V; x B; — [[ V; induces amap 7 : TB — B
el el

and hence a smooth map 7 := ploefr :TB — Bzeof Banach manifolds.

The fibres T,B := 7~ 1(b), called the tangent space at the point b € B, for b € B

are topological vector spaces in a canonical way, but in general, over points in

different connected components, are nonisomorphic. Furthermore, there is no a

priori distinguished norm on the fibre 7; B making it a Banach space, but only

an equivalence class of norms making it a topological vector space.

The above definition depends on the choice of atlas, but if 7 : TB — B is de-

fined by a different choice of atlas, then one can see that there exists a canonical

diffeomorphism p : TB — T'B making

78—~ TB
B—

commute and that is linear on each fibre. One can hence think of these choices
for different atlases on B as giving different but equivalent atlases on one fixed
space T'B.

Definition A.4. A Banach space bundle over a Banach manifold B is a Banach
manifold € together with the following;:

1. A smooth map 7 : & — B,
2. for every b € B a vector space structure on &, := 7~ 1(b) and

3. a continuous map (the norm) || - || : € = R,

s. t. the following hold:
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1. For every b € B, || - ||p :== | - |le, : €& — R makes (&, ] - ||») a Banach
space;

2. for every open subset U C B and every section o : U — 7 1(U) (i. e. smooth
map o : U — € with moo = idy), the map U — R, b +— ||o(b)||5 is smooth;

3. there exists a covering (U;);er of B together with a collection ((E;, | -
1:))ier of Banach spaces and a collection (1; : 7= 1(U;) — U; x Ej)ier of
diffeomorphisms making

7T_1(Ui) L U, x E;

U =—=1j

commute s.t. ¥} 1= pry o Yjle, : & — E; defines a linear map for each
beU,.

The covering (U;);e; together with the Banach spaces (E;);c; and the diffeo-
morphisms (1);)cr is called a trivialisation of the Banach space bundle.
A diffeomorphism 1 : 7=}(U) — U x E where U is an open subset of B and
FE a Banach space, that appears as a member of a trivialisation is called a local
trivialisation.
Definition A.5. Let 7 : € — B and p : F — C be Banach space bundles. A
(smogth} morphism between them is a pair (f, f) of smooth maps f: B — €
and f: & — F making the diagram

S

e
|
-t e

—_—

commute and s.t. for every b € B the induced map fb = f|gb 1€ = Ty s
linear.
Composition of morphisms and isomorphisms are defined the usual way.

Remark A.3. Any Banach space bundle is in particular a topological vector
bundle.

Lemma A.2. 1. Let m; : & — B, for i = 1,2, be Banach space bundles.
Their Whitney sum as topological vector bundles, E1®Es — B is a Banach
space bundle and the canonical maps pr; : €1 @ E9 — &; define morphisms
(pr;,idp) between €1 ® E2 — B and &; — B which for every b € B induce
an isometry (€1 ® E2)p = (E1)p X (E2)p-

2. Let w: &€ — B be a Banach space bundle and let f : € — B be a smooth
map of Banach manifolds. Then the pullback bundle as a topological vec-
tor bundle, f*m : f*€& — € is a Banach space bundle and the induced
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morphism f, where

re—toe

| .

C——3B

f

commutes, is a fibrewise isometry.

Construction A.2. Let B, B’ be Banach manifolds and let f : B — B’ be
a smooth map. Then there exists, as in the finite dimensional case, a map
Df : TB — TB defined in the usual way: Let (U, (B, | - |li), ¢i)ics be an
atlas on B, (U}, (Bj, | - |}, #;)jes an atlas on B’ and assume that for every
i € I there exists a j; € J s.t. f(U;) C U, and for i # ', j; # ji (otherwise
replace the atlases on B and B’ by compatible ones). Define V; := ¢;(U;) C B;,
Vi = ¢3(U;) C Bj and f; := ¢9iof|Uio¢;1 : V; = V. Then there is an induced
map [[;e; Vi x Bi = [, V), x Bj, — [;c; V] x Bj given on each summand
by Ui x B;  (w,e) = (fi(z),(Dfi)z(e)) € Vj, x Bj,. One can check that this
map is compatible with the equivalence relation on these disjoint unions as in
Construcion hence inducing a smooth map Df : TB — TB'.
Furthermore, D f induces, for every b € B, a linear map D f, : TyB — Ty B’

Lemma A.3. If B, B’ are Banach manifolds equipped with compatible Banach
norms and f : B — B’ is a smooth map then the pair (f,Df) defines a mor-
phism between the Banach space bundles TB — B and TB' — B’.

Lemma A.4. Let B be a Banach manifold. For every b € B and & € T, B
there exists an € > 0 and a smooth map v : (—e,e) — B s.t. v(0) = b and

(0) = (D)o = &

Construction A.3. Let m : € — B be a Banach space bundle. For e € € let
Ve€ :=ker Dme C Tc€. There is the usual canonical identification V& = &),
where €y 3 v = §(0), with 4*(t) := e + tv. Hence V€ carries an induced

Banach norm and V€ :=[] cCcE Ve.E C TE becomes a Banach space bundle.

Lemma A.5. Let w : € — B be a Banach space bundle. Then there is a
canonical isomorphism & — V' & which is a fibrewise isometry.

A.1.2 Submanifolds, transversality and Fredholm maps

Definition A.6. Let B be a Banach manifold. A subset € C B is called a
(Banach) submanifold if for every b € € there exists a chart ¢ : U — V C
B defined on an open neighbourhood U C B of b, mapping onto an open
neighbourhood V' of 0 in a Banach space B, and a closed subspace C C B
s.t.o(UNC)=VnC.

If in addition C splits B, i.e. there exists a closed subspace C' C B s.t. B &
C @ (', then C is called a split submanifold of B. If furthermore the dimension
of ¢’ is a finite number k, independent of the point b € €, then € is called a
submanifold of codimension codimg € = k.
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Remark A.4. Dropping the adjective “split” in the definition of a submanifold
of codimension k < oo is consistent, for if, in the notation of the definition
above, the Banach space B/¢ is finite dimensional, then one can choose a finite
number of e; € B s.t. the [e;] € B/¢ are a basis. Then C’ := span{e;} is a
complement of C' in B which is closed by virtue of being finite dimensional.

Remark A.5. Note that the usual holds: A Banach submanifold € of a Banach
manifold B is a Banach manifold itself, the inclusion ¢ : € — B is a smooth
map that is an embedding of topological spaces and there is a corresponding
inclusion T'C C T'B s. t. for every b € €, T;C is (more precisely can be identified
with) a closed subspace of the topological vectorspace TpB. In case of a split
submanifold, the subspace T},C splits 7B along a closed subspace N,C and one
can fit these together to a subbundle NC C /*T"B.

Example A.1. If 7 : £ — B is a Banach space bundle and ¢ : B — € is a
section, then o(B) C € is a split submanifold with No(B) = (*VE.

Definition A.7. Let B, B’ be Banach manifolds of class C" and let f : B — B’
be a C"-smooth map. Let €' C B’ be a submanifold. Then f is called a split
transverse to €', if for all b € f~1(€")

a) Tf(b)g/ = Tf(b) € 4 im Dfx

b) Dfy ' (Ty)€) splits TyB, i.e. there exists a closed subspace N, C TpB
s.t. TyB = Df;l(Tf(b)G’) @ Np.

Remark A.6. Note that condition @ is redundant in case that ¢’ C B’ is a split
submanifold of finite codimension codimg € < oo, for one can then choose,
for all b € f71(€'), a basis (e;) of Nyy)€ and lift the e; by condition [a)) to
é; € TyB. Then define N, := span{é;}, which is a closed subspace, because it
is finite dimensional.

Lemma A.6. Let B, B’ be Banach manifolds of class C" and let f : B — B’
be a C"-smooth map that is split transverse to a submanifold @ C B’. Then
C:= f~Y€") is a split submanifold of B s.t. for b € C, T,C = be_l(Tf(b)G/).
In particular, if ©' C B’ is a split submanifold of codimension codimp €' < oo,
then € C B is a split submanifold of codimension codimg € = codimg €.

Proof. The same as in finite dimensions, but using the implicit function theorem
from the next subsection. O

Definition A.8. Let B, B’ be Banach manifolds and let f : B — B’ be a
C™-map, r > 1. f is called Fredholm of index ind(f) € Z if for every b € B,
Dfy: TyB — Typ)B' is a Fredholm operator of index ind(f).

If #: & — B is a Banach space bundle equipped with a connection HE C TE,
then a section o : B — & is called a Fredholm section of index ind(o) € Z, if
for every b € B, (do)y : TyB — V)€ is a Fredholm operator of index ind(o).

Lemma A.7. Let f : B — B’ be a Fredholm map. Let C C B be a split
submanifold of codimension codimg € < oo. Then fle : € — B’ is a Fredholm
map of index ind f|e = ind f — codimg C.
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Proof. Let X,Y be Banach spaces and let ¢ : X — Y be a Fredholm operator.
Assume that X = Xy @ X, splits into two closed subspaces Xy, X7 € X with
dim X; < oco. Then ¢|x, : Xo — Y is Fredholm of index ind ¢|x, = ind f —
dim X;. For if + : Xy — X is the inclusion, then ¢ is Fredholm iff dim X < oo,
in which case ind¢ = —dim X (for kert = {0} and coker: = X/x, = X1).
Hence in this case ind f|x, = ind(f o¢) = ind f + ind¢ = ind f — dim X; by a
standard result about the composition of Fredholm operators. O

Note the following trivial consequence/extension of Lemma A.3.6 in [MS04]:

Lemma A.8. Let X,Y,Z be Banach spaces, where Y = Yy @Yy splits into two
closed subspaces with projections pr; : Y — Y;. Let D : X — 'Y be a bounded
operator s.t. Dy :=pry oD : X — Y] is Fredholm. Let furthermore L : Z —Y
be a bounded linear operator s.t. (D@ L)y = D1 ® Ly : X ® Z — Y] is onlo,
where D&L : X®Z =Y, (x,2) = Dx+Lz. Then (D®L);1 has a right inverse.
Moreover, the projection 11 : (D @ L)~ '(Yy) = ker(D @ L)1 — Z is Fredholm
with ker I1 = ker D1 = D~Y(Yp) and coker IT = coker Dy. In particular,

indII = ind D;.

Proof. Apply Lemma A.3.6 from [MS04] to D; : X - Yy and Ly : Z —» Y. O

Remark A.7. In the following, two applications of this lemma will be relevant.
First of all, of course, the special case Yy = {0}, reproducing Lemma A.3.6 from
IMS04] and second the case dim X,dimY]; < oo s.t. ind D; = dim X — dim Y].

A.1.3 The implicit function theorem in Banach spaces

Since heavily used in the construction of moduli spaces, and since the proof
is referenced in Lemma here is a short layout of the implicit function
theorem in Banach spaces.

The one recurring theme in this text is the construction of charts for (i.e. dif-
feomorphisms onto open subsets of) the zero set of a section of a vector bundle.
In its simplest form, the relevant result is the following corollary of the constant
rank theorem (which in turn follows from the inverse function theorem):

Theorem A.2. Let w : E — B be a vector bundle over a manifold B, equipped
with a linear connection and hence a covariant derivative V. Let o : B — E be
a section and let b € B. If the map Dy : TyB — Ey,, Xy, — Vx, 0, is surjective,
then there exists an open neighbourhood U C B of b, an open neighbourhood
V CTyB of 0 € Ty B and a bundle trivialisation (¢, ®) of E over U mapping b
to 0 and making the following diagram commute:

Y (U) 2>V x E,

0'7 \Lﬂ PHl ‘X(id,Db+ob)
\ . /

U |4
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Here, (id, Dy 4 0y) : TpB — Ty B X< Ep, Xp — (Xb,Db(Xb) + Ub).

An easy consequence of this is that if o h 0, then o71(0) is a closed submanifold
of B of dimension n — k, where n := dim B, k := rank F/, a chart around a point
b € 071(0) being given (in the notation of the theorem) by ¢ : U No~1(0) —
V Nker Dy, C ker Dy = R™F.

The main goal of this chapter is a quantitative version of this result in a Banach
manifold setting. To explain what is meant by “quantitative”, take a look at
the result in finite dimensions, first:

Let again m : E — B be a vector bundle with linear connection and covariant
derivative V. Let 0 : B — FE be a section and for b € B let Dy : T, B — Ej,
Xb — V X, 0-

In some applications (specifically when it comes to gluing of holomorphic curves),
one is not only interested in charts for 0~1(0) as above, given by the theorem
and centered around a point b € ¢~1(0), but rather around a point b € B with
“o(b) small”. Here is how this works: Let b € B be such that Dy is surjective
and let (¢, ®),U,V be as in the theorem. Define s := Dy + 0y : V. — Ep,
i.e. pryo ® o o|y = so ¢|y, in particular (U No~1(0)) = s71(0). Pick a right
inverse Qp : By — TpB of Dy. Then im Qp, C T, B is a complementary subspace
to ker Dy in T, B and @y o Dy, : T, B — Ty B defines the projection of T B onto
im @y along ker Dy. Likewise, id — @ o Dy, defines the projection of T, B onto
ker Dy, along im Q. If & := —Q4(0p), then Py, : Tp,B : T, B, v — (1 — QD)v + &
defines the projection of T,B onto s~1(0) along Q. Now if & € V, then
Vo := s71(0) NV is a neighbourhood of &, in s~1(0) NV, V' := P, (Vo) NV is
a neighbourhood of 0 in V', and P|y defines the projection V' — V; along Q.
In particular, if f : M — V' is a map from a manifold to V' that is transverse
to f(z)+im Qy for some x € M, then ¢~ o P,o f defines a diffeomorphism from
a neighbourhood of  in M onto an open neighbourhood of ¢~ (Py(f(z))) in
o~1(0). “Quantitative” now refers to giving conditions for this (i.e. for & € V)
to hold.

As a first step and for future reference, the model situation for a smooth map
between Banach spaces:

Let (X, - |lx),(Y,] - |ly) be Banach spaces, let U C X be open and let f :
U — Y be a smooth map. W.1l. o.g. assume that U = B4(0) for some d > 0 and
assume that the differential of f at 0, D := D fy : X — Y, has a bounded right
inverse () : Y — X. The goal is to find open neighbourhoods U’ C U,V C X of
0 and a diffeomorphism ¢ : V' — U’ with fo¢(z) = D(x)+ f(0). Furthermore,
one wants to find a good (i.e. depending on as little as possible) estimate for
sup{r > 0 | B,(0) € V}. The construction of ¢ proceeds as follows: Let
f:U—=Y, f(x):= f(z)— f(0). Then f(0) =0 and Df, = Df,. Consider the
function ¢ : U — X, 2 — (Q o f)(z) + (id — Q o D)(z). This function satisfies

€imQ Eker D
&(O) = 0 and D(ﬁo = idx, so by the inverse function theorem there exist open
neighbourhoods U’ C U,V C X of 0 s.t. ¢|y : U’ — V is a diffeomorphism.
Define ¢ := (@|pr)~' : V — U’. Furthermore, ¢(z) € imQ < =z € imQ
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and ¢(x) € kerD < f(x) = 0. This implies that ¢ restricts to a map
¢limg 1 iIm@Q — im @ and that (note that @ : Y — im @ is bijective, although

' _ A B Q Yz)=D(z) ,z€imQ
Q:Y — X isnot) fo¢(x) {O zckerD
the definition of f, f o ¢(z) = D(x) + f(0), as desired.

To arrive at the desired estimate for sup{r > 0 | B,(0) € V} one needs to
examine the proof of the inverse function theorem, as presented e. g. in [Con01],
Appendix B:

Let ¢ := id — ¢. Then V can be taken to be B, /2(0), where nn > 0 is so
small that (a) B,(0) C U, (b) D¢, is nonsingular for € B,(0) and that
(c) llo(z1) — ¥(z2)l|x < 5|l — x2l|x for 1,22 € By(0). Condition (a) just
says that n < d (d as above). Condition (b) is satisfied (by a general result
about operators on Banach spaces) if ||idx — D¢y|| = [|[D¢s|| < 1 (|| - || now
denotes the norm on B(X,Y")) and condition (c) is satisfied, by the mean value
theorem, if || Dy,|| < § for 2 € B,(0), which also implies (b). To examine this
further, calculate Dd, = Q o Df, + (idx — Q o D) = idx — Q o (D — Df,)
and hence D), = idx — Dy = Q o (D — Df,). The condition hence becomes

|Q(D — Df,)|| < 1. For this to hold it is sufficient that [|[D — D f,|| < m

Again applying the mean value theorem, this time to the function Df(n) : U —
B(X,Y), z — D fz(n), and remembering that D = D fy, gives |[(D—D f;)(n)| <
sup{||D(Df(n))xz(z)|| | A € [0,1]}. Hence if there is a bound on the second
derivative of f, i.e. a constant ¢ > 0 s.t. sup{|[D(Df(n))rz(x)|| | A € [0,1]} <
cllz|||ln|| for all z € U, X € [0, 1], or more generally if there is a constant ¢ > 0
s.t. ||D — Dfz]| < ¢|lz| for all z € U, then one can choose any 0 < n < 2CH1Q||‘
Putting everything together, one arrives at the following theorem:

, so together with

Theorem A.3. Let (X,| - ||x),(Y,]|-|ly) be Banach spaces, let U C X be an
open neighbourhood of 0 and let f : U — Y be a smooth map. Assume that
Dfy: X =Y, has a bounded right inverse @@ : Y — X and that there exists
a constant ¢ > 0 s.t. ||Dfo — Dfz| < c||z| for all z € U. Let d := sup{r >
0| B-(0) CU} and define

1
pi=min | ———, d) .
<4CHQH

Then there exists a map ¢ : B,(0) — U that is a diffeomorphism onto an open
neighbourhood U C U of 0 with ¢(0) = 0 and that satisfies |Dog| < 2 and

foo(x) = Dfo(x)+ f(0) for all x € B,(0).

The aforementioned condition &, := —Qpop € V in the terminology of the the-
orem then becomes (here, o, Qy, V, &, get replaced by f,Q, B,(0),§ := —Qf(0))

IQF(0)]| < p, which is satisfied if [|f(0)]| < gz and [£(0)I < &
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A.2 Jacobi estimates

In the following, a variant of Theorems 4.5.2 and 4.5.3 of [Jos02], for inhomoge-
neous Jacobi equations instead of homogeneous ones, is proved. Actually, the
proofs (and statements) of the following lemma and theorem are pretty much
literally taken from the proof of Theorem 4.5.2 of [Jos02].

Lemma A.9. Let 7 > 0 and let g1, g2 € C°([0,7),R) be continuous functions.
Let furthermore p > 0 and let f1, fo € C*([0,7),R) be solutions to the ODEs

fz_pfz:gza 7;:1727

with f1(0) = f2(0), f1(0) = f2(0). Then if gi(t) < ga(t) for all t € [0,7), then
fi(t) < fa(t) for allt € [0, 7).

> sinh(y/pt)  p > 0’

equation f—pf = 0 with £(0) = 0, (0) = 1. Define d := (fi—fa)'sp—(f1—f2)5,-
Then on [0, 7),

t =0
Proof. Let s, : R — R, t — { 1 P be the solution to the
0

d=(fi—f2)"sp = (f1 = f2)5)
= (p(f1 = f2) + 91 — 92)8, — (f1 — f2)psp
= (91 — 92)5p
<0

since for t € [0,7), s,(t) > 0 and g1 (t) < go(t) by assumption. It follows that for
t € (0,7) (hence s,(t) > 0), %(é(fl — f2)) = % < 0 and since (f1 — f2)(0) =0
as well as L(f1 — f2)(0) = 0, limp o spl(t)(fl — f2)(t) = 0. This shows that
é(fl — f2) <0 and since s, > 0 on (0,7), fi — f2 <0on [0,7). ]

Theorem A.4. Let M be a complete Riemannian manifold, p € M and £ €
TyM. Let vy : [0,1] — M, t = exp,(t), be the geodesic through p in the
direction of §. Let k > 0 be s. 1. ||R(X,Y)Z|| < &|| X||[|[Y || Z]| for all t € [0,1],
X,Y,Z € T,;yM. Denote X = V3 X for a vector field X : [0,1] — T'M along ~y
and let V : [0,1] = T'M be a vector field along . Assume that J : [0,1] — TM
is another vector field along v satisfying the inhomogeneous Jacobi equation

J+R(JA)y=V.

Then for k =0

17(2) = ([ls 1) (T(0) +J (0))]] < /Ot IV (s)[[(t = s)ds
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and for k >0
17() = (l5 1) (J(0) + £ (0)]| < (Cosh(\ﬂléllt) - DIJO) +

fHﬁH (sinh(Vsl€|lt) — VrlIgllL) 17 (0)] +

I
+ /O HV(S)H\/EMH sinh (V&[] ( — s)) ds

Proof. Let A : [0,1] — T'M be the vector field along  defined by A(t) := (|
) (tJ(0) + J(0)), i.e. A =0, A(0) = J(0), A(0) = J(0) and the goal is to
estimate ||J(t) — A(t)||. Let furthermore a : [0,1] — R be the solution of

i — wl€)*a = w7 A+ VI, a(0) = a(0) =0
and let b:[0,1] — R be the solution of
b= |27l + IV, b(0) =b(0) =0
If P:[0,1] - TM is a parallel vector field along v with ||P|| = 1, then
(J=A,P)" = (J,P) = ~(R(J,7)7 + V, P) < &l ]| + V.

So by the previous lemma, (J — A, P) < b, and hence ||J — A|| < bon [0,1]. It
follows that

b= &l + IV
< wllPlT — Al + sllElPAl+ (V]
< wllE76 + wlEl? AN+ VI,

SO
b — kllEl*b < slIEIPAl + [Vl
Again by the previous lemma, b < a and hence ||J — A < a.
t =0
Let again s, : R — R, t — _ p , be the solution to the
) W/ smh‘(ﬁt) p>0
equation f — pf = 0 with f(0) = 0, f(0) = 1. Then a is given by a(t) =
¢ L t
Jo (RIEPIASIHIV () ) ez (E—5) ds. If k= 0, this s just a(t) = [ [V (s)] (=
s)ds. For k > 0, one can estimate ||A(s)| < s||J(0)] + ||/(0)| and thus

a(t) < IIJ'(O)H/O sv/[|¢]| sinh(Vi[[E]|(t — 5)) ds +
+ IIJ(O)II/0 V€]l sinh(vE[E]I(E - 5)) ds +

t 1 .
+ / I\V(S)Hmsmh(\/ﬁllﬁll(t—S))ds

_ 1) .
= Tl SRl — VRleln) +

+117(0) II(cosh(\ﬂléllt) S+
/ vl \ﬂlfll sinh(VAJE](¢ — 5)) ds
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O]

Corollary A.2. Let M be a complete Riemannian manifold, p € M and & €
TyM. Let vy : [0,1] — M, t — exp,(t), be the geodesic through p in the
direction of . Let k > 0 be s.t. |R(X,Y)Z|| < &|| X|||[Y|IZ]| for all t € [0,1],
X,Y,Z € TyyM. Denote X = V4 X for a vector field X : [0,1] — T'M along v
and let V : [0,1] = TM be a vector field along . Assume that J : [0,1] — TM
is another vector field along v satisfying the inhomogeneous Jacobi equation

J+R(JA)y=V.

Then for |I€]| < 7=,

. X 2 t
1) = (5 ) + L] < & (1 + i)+ 55 [ visyas)

and in particular,
O < 142 (17 + el +¢ [ aN70! as).
Furthermore,
1966) = (U IO < 101+ (1O + el + 7 [ Vsl as)
and in particular
@ < 1)+ 101+ (IO + eIl + 5 [ vlas).

Finally, if J(0) =0, then

) <2042 (ol + 1 [ Iveles).

Proof. For k > 0 and ||| < ﬁ one can apply the estimates sinh(z) — x < 23,

cosh(z) —1 < 22 and sinh(z) < x(1+2?) < 22 to the formula from the previous
theorem to get

17(8) = (ll6 1) (T (0) + tJ ()| < [T )] + ¢*]7(0)] +/0 IVt = )1+ (= 5)*ds
< [ JO)] + 7 0)] + (1 +t2)/0 V()| ds.

This estimate clearly also holds for k = 0 by the previous theorem and the
second inequality in the statement then simply follows by the triangle inequality.
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For the following cf. the proof of Corollary 4.5.1 of [Jos02].
Let P(t) := (||l v)P(0) for P(0) € T,M with ||P(0)|| = 1 be a parallel unit
length vector field along . Then for ||| < ﬁ

(T (t) = (Il6 1) (0), P(O)'| = [(=R(J,4) + V, P)(t)]
< slElPITO1 + V@)l

< A+ )| TO) + (¢ + )17 (0)]] +2t/0 IV(s)l ds +
+ V@I,

so by integration
; t N T 13 Lo 1y
1) = (llo M) O < (€ + )T O + (57 + DI (O)I] +

t r t
+ / 2r/ HV(S)HdsdTJr/ IV (s)llds
0 0 0
| —

< [y IV(s)llds
t2 1, 2.
<t(1+ §)|!J(0)H + 5t 1+ 5)HJ(0)H +

+ (1+t2)/0 1V (s)]|ds

<(1+87) (tIIJ(O)H + 2 JO) +

+ /0 |V (s)l ds).

The estimate on ||J(t)|| then also follows simply by the triangle inequality.
For the last inequality, write

(FI0) = 1) = )
= (I - ()
1

= 5 (¢J(&) = t(llo 1) (0) + (5 7)(J (0) +£J(0)) — I (¢))
ey

= —(J(t) (Il 1)J(0)) - t%(J(t) — (6 M (0) + 1 (0))).

The last inequality then follows easily from this and the previous estimates. [
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