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1. Einleitung 

1.1. Impfungen 

1.1.1. Aktive und passive Impfung 

Impfungen dienen der Prophylaxe von Infektionskrankheiten. Des Weiteren werden 

Impfstoffe auch zur Vorbeugung nicht-infektiöser Krankheiten und zu therapeutischen 

Zwecken eingesetzt [2]. Es wird zwischen aktiver und passiver Impfung unterschieden. Eine 

aktive Impfung regt die Zellen des adaptiven Immunsystems zur Bildung schützender 

Antikörper oder spezifischer Abwehrzellen an. Die Gedächtniszellen des Immunsystems 

gewährleisten einen lang anhaltenden Schutz vor der Erkrankung [2-5]. Eine passive Impfung 

erfolgt durch die Verabreichung eines Antiserums oder aufgereinigter Antikörper. Diese 

neutralisieren Krankheitserreger oder binden an menschliche zelluläre Antigene. Passive 

Impfungen werden vor oder während der Exposition gegenüber einer Infektionskrankheit 

eingesetzt, sofern die Zeitspanne für eine aktive Impfung zu kurz ist oder kein aktiver 

Impfstoff zur Verfügung steht. Der Schutz oder die therapeutische Wirkung einer passiven 

Impfung besteht, solange die übertragenen Antikörper im Körper des Empfängers aktiv sind 

[2, 6].  

1.1.2. Korrelat des Schutzes 

Die aktive Immunisierung setzt Mechanismen des adaptiven Immunsystems in Gang, die den 

natürlichen Reaktionen auf einen Krankheitserreger oder dessen Proteinen während einer 

Infektion gleichen: Aktivierung, Differenzierung und Vermehrung von Lymphozyten [7, 8]. 

Die wesentlichen Mechanismen des Schutzes werden durch Antikörper, CD4+ T-Zellen und 

CD8+ T-Zellen ausgeübt.  

 Die Mehrzahl der verfügbaren Impfstoffe wirkt durch die Induktion schützender 

Antikörper. Sie werden durch B-Zellen produziert und wirken durch folgende Mechanismen: 

die Bindung und Neutralisierung von Toxinen und Viren, die Unterstützung der Phagozytose 

extrazellulärer Bakterien durch Opsonierung und durch die Aktivierung der 

Komplementkaskade [2, 9, 10].  

 Ein charakteristisches Merkmal von Krankheiten wie HIV, Malaria oder 

Tuberkulose ist die intrazelluläre Vermehrung der Erreger. Eine wirksame Schutzimpfung 

gegen diese Krankheiten sollte daher eine Immunität herbeiführen, die durch T-Zellen 
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vermittelt wird [11-13]. Gleiches gilt für die Entwicklung neuer Impfstoffe und 

therapeutischer Ansätze gegen Krebserkrankungen. Im Folgenden werden daher zunächst 

die Merkmale der zellulären Abwehr des Immunsystems beschrieben und darauffolgend 

Methoden zur Induktion von T-Zell-Immunität aufgeführt. 

1.1.3. T-Zellen 

Die Abwehr intrazellulärer Erreger oder entarteter körpereigener Zellen erfolgt durch T-

Lymphozyten. Das Erkennungsinstrument der T-Zellen ist der T-Zell-Rezeptor (TCR). Jede T-

Zelle ist aufgrund ihres T-Zell-Rezeptors für ein bestimmtes Antigen spezifisch. Ein 

Repertoire von etwa 1015 verschiedenen T-Zell-Rezeptoren garantiert, dass jedes beliebige 

Antigen erkannt werden kann [14]. T-Lymphozyten erkennen keine freien Antigene, sondern 

an MHC-Komplexe gebundene Peptidfragmente, die auf der Oberfläche von körpereigenen 

Zellen präsentiert werden. An der Immunantwort auf eine Impfung sind CD4+ T-Helferzellen 

und CD8+ zytotoxische T-Zellen beteiligt. Welcher dieser beiden Zelltypen induziert wird, 

hängt von der Art der Aufnahme und Verarbeitung des Antigens durch die 

antigenpräsentierende Zelle (APC) ab. Professionelle APCs sind B-Lymphozyten, 

Makrophagen und insbesondere Dendritische Zellen (DCs) [15-17]. Wie im Folgenden 

detailliert beschrieben wird, können APCs die Antigene über den MHC Klasse II- oder MHC 

Klasse I-Antigenpräsentationsweg verarbeiten.  

 Exogene Proteine, die durch Phagozytose, Makropinozytose oder Endozytose 

aufgenommen wurden, werden auf dem MHC Klasse II-Antigenpräsentationsweg verarbeitet 

[15]. Die Proteine befinden sich nach der Aufnahme im endosomalen Kompartiment der 

Zelle. Hier werden die Proteine bei niedrigem pH-Wert durch Proteolyse zu kleinen 

Peptidfragmenten mit einer Größe von 10 bis 30 Aminosäuren degradiert [18, 19]. MHC 

Klasse II-Komplexe werden im Endoplasmatischen Retikulum (ER) synthetisiert. Mithilfe 

spezieller Transportmoleküle wie dem Chaperon Ii gelangen die MHC Klasse II-Komplexe zu 

den Endosomen. Dort findet die Beladung der MHC Klasse II-Komplexe mit den 

Peptidfragmenten statt [20, 21]. Der Verbund aus MHC Klasse II-Molekül und dem Antigen-

Peptid wird in Vesikeln zur Zelloberfläche transportiert und dort an CD4+ T-Zellen präsentiert 

[19]. Diese werden auch als CD4+ T-Helferzellen bezeichnet. Sie spielen eine komplexe Rolle 

in der Regulation der Zellen des angeborenen Immunsystems sowie der Regulation von B-

Zellen und CTLs [17]. Mit wenigen Ausnahmen induzieren alle Impfstoffe CD4+ T-Zellen [22]. 
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 Proteine, die aus dem Zytosol der Zelle stammen, werden über den MHC Klasse I-

Antigenpräsentationsweg verarbeitet [23]. Bei diesen Proteinen handelt es sich um 

körpereigene Proteine, um Proteine entarteter Körperzellen oder um Proteine von 

Krankheitserregern, die sich im Zytosol der Zelle vermehren [24]. Die zytosolischen Proteine 

werden von einem multikatalytischen Komplex, dem Proteasom, degradiert und in das 

Lumen des ER transportiert. Den Transport gewährleisten die Proteine TAP 1 und TAP 2 

(Transporter assoziiert mit Antigenprozessierung) [24, 25]. Im ER findet eine weitere 

Verkleinerung der Peptidfragmente durch Aminopeptidasen statt. Die Peptidfragmente 

haben danach eine Länge von 8 bis 12 Aminosäuren. Sie werden an einen MHC Klasse I-

Komplex gebunden und gemeinsam mit diesem an der Zelloberfläche präsentiert [19, 26]. 

Die Fähigkeit zur MHC Klasse I-Präsentation besitzen alle kernhaltigen Körperzellen. Zur 

Induktion antigenspezifischer CD8+ T-Zellen durch MHC Klasse I-Präsentation sind 

insbesondere die DCs fähig [27]. CD8+ T-Zellen werden auch T-Killerzellen oder zytotoxische 

T-Lymphozyten (CTLs) genannt. Sie sind in der Lage, infizierte oder anderweitig beschädigte 

Zellen zu erkennen und deren Tod herbeizuführen [28]. Um durch einen Impfstoff 

antigenspezifische CD8+ T-Zellen induzieren zu können, muss das Antigen in das Zytosol der 

APCs dirigiert werden. Unter den zugelassenen Impfstoffen sind hierzu die abgeschwächten 

Lebendimpfstoffe fähig [2]. In experimentellen Ansätzen kann T-Zell-Immunität außerdem 

durch DNA-Impfstoffe, Prime-Boost-Impfstoffe und durch rekombinante lebende 

Impfstoffträger, sog. Vektoren, herbeigeführt werden [29]. Im Rahmen dieser Arbeit werden 

Salmonellen als Vektoren zur Induktion antigenspezifischer CD8+ T-Zellen vorgestellt. 

1.2. Salmonella enterica Serovar Typhimurium 

1.2.1. Pathogenese 

Ein intensiv beforschter Impfvektor für orale Immunisierungen ist Salmonella enterica 

Serovar Typhimurium (S. typhimurium) [30, 31]. S. typhimurium ist ein gramnegatives, 

fakultativ intrazellulär lebendes Stäbchenbakterium. Bei immunkompetenten Menschen 

verursacht es eine spontan ausheilende Gastroenteritis und gehört daher der Gruppe der 

nicht-typhoiden Salmonellen (NTS) an [32]. Zu den typhoiden Salmonellen zählen Salmonella 

typhi (S. typhi) und Salmonella paratyphi. Sie verursachen die systemische Erkrankung 

Typhus abdominalis (auch typhoides Fieber oder enterisches Fieber genannt) [33]. Einziger 

Wirt von S. typhi ist der Mensch. 
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 Da S. typhimurium in Mäusen ein typhusähnliches Krankheitsbild mit systemischer 

Infektion hervorruft, dient es als Modell zur Ergründung der Pathomechanismen des Typhus 

abdominalis [32, 34-36].  

 Die Infektion mit Salmonella erfolgt oral. Die Salmonellen dringen im distalen 

Ileum oder Kolon über verschiedene Wege in die intestinale Schleimhaut ein, um sich von 

dort systemisch auszubreiten. Als wichtige Eintrittspforten gelten villöse oder in Peyerschen 

Plaques (PP) lokalisierte M-Zellen und phagozytierende Zellen wie Makrophagen oder DCs 

[37]. Des Weiteren besteht die Möglichkeit der induzierten Aufnahme durch üblicherweise 

nicht phagozytierende Enterozyten oder die parazelluläre Überwindung der intestinalen 

Schleimhaut [38-43].  

 Wichtig für die Invasion sind verschiedene Virulenzfaktoren. Diese sind im Genom 

von S. typhimurium auf sog. Pathogenitätsinseln kodiert. Die Salmonella Pathogenitätsinseln 

1 und 2 (SPI 1 und SPI 2) enthalten die genetische Information zur Ausbildung von Typ III 

Sekretionssystemen (T3SS). Diese dienen dem Transport von Salmonellen-Proteinen in die 

Wirtszellen. Die Salmonellen-Proteine können darauffolgend die Wirtszellen zugunsten des 

Bakteriums manipulieren [44]. Bei in vitro Experimenten lassen sich zwei verschiedene Arten 

des Transportes über das T3SS beobachten: Sekretion und Translokation [45]. Sekretion 

bezeichnet den Transport der Effektorproteine in das Medium, das die Bakterien umgibt. 

Translokation bezeichnet die Beförderung von Effektorproteinen in das Zytosol der 

Wirtszellen [45]. Bei der Translokation funktioniert das T3SS wie eine molekulare Nadel, mit 

deren Hilfe die Effektorproteine durch die Zellmembran der Wirtszelle in dessen Zytosol 

injiziert werden [46, 47]. Die besondere Bedeutung der T3SS für die Entwicklung von 

Impfstoffen wird im weiteren Verlauf noch genauer beschrieben. Einen Überblick des 

Aufbaus der T3SS gibt Abb. 1. 
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 Die Effektorproteine der SPI 1 bewirken strukturelle Veränderungen der 

Zellmembran und hierdurch die gezielte Aufnahme Salmonellas in die Wirtszelle [48]. 

Wichtige SPI 1-Effektoren sind das „Salmonella outer protein E2“ (SopE2) oder die 

„Salmonella proteine tyrosine phosphatase“ (SptP). SopE2 kann in der Wirtszelle das sog. 

„membrane ruffling“ auslösen, wodurch die Salmonelle über Makropinozytose in die 

eukaryontische Zelle eindringen kann [49-51]. SptP ist ein GTPase-aktivierendes Protein und 

induziert durch die Hemmung von G-Proteinen die Wiederherstellung des ursprünglichen 

Zustandes des Zytoskeletts der Wirtszelle [51, 52]. Um nach der Aufnahme das intrazelluläre 

Überleben von Salmonella zu sichern und um eine Phago-Lysosomenfusion zu verhindern, 

wird ein spezielles Kompartiment ausgebildet. Dieses wird durch die Effektorproteine der SPI 

2 geschaffen und als „Salmonella containing vacuole“ (SCV) bezeichnet. Ein wichtiger 

Vertreter der SPI 2 Effektoren ist SspH2 [1].  

 

 

Abbildung 1 Nadelkomplex des Salmonella Typ III Sekretionssystems. A zeigt den Nadelkomplex 

auf der Hülle osmotisch geschockter Salmonellen. B zeigt elektronenmikroskopische Bilder 

aufgereinigter Nadelkomplexe. C zeigt ein Schema des T3SS: die Proteine PrgH, PrgK und InvG 

bilden die Basis, PrgI formt die Nadelstruktur [1]. 
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1.2.2. S. typhimurium als Vakzin-Vektor 

Abgeschwächte Lebendimpfstoffe erzeugen komplexe mukosale und systemische 

Immunantworten. Lebendimpfstoffe können insbesondere auch die zelluläre Abwehr und 

somit antigenspezifische CD8+ T-Zellen aktivieren und finden als Träger für heterologe 

Antigene vielfältige Anwendung in der Impfstoffentwicklung. S. typhimurium wird in 

Tierversuchen als effektiver Impfstoff-Vektor eingesetzt. Ein besonderer Vorteil Salmonellas 

ist die Fähigkeit zur Besiedelung sowohl der intestinalen Schleimhaut als auch systemischer 

Organe. 

 Beim Einsatz von S. typhimurium als Vakzin-Vektor ist jedoch die Induktion der 

CD8+ T-Zell-Immunität eingeschränkt. Wie oben dargestellt verweilt Salmonella während der 

intrazellulären Replikationsphase in der SCV. Von einem Salmonella-Impfvektor sekretierte 

heterologe Antigene werden daher bevorzugt über den MHC Klasse II-Pfad nach dem Muster 

eines extrazellulär aufgenommenen Antigens prozessiert, siehe hierzu auch Abbildung 2. 

Über den MHC Klasse II-Präsentationsweg präsentierte Antigene aktivieren CD4+ T-Zellen, 

nicht jedoch die zytotoxischen CD8+ T-Zellen. 

 S. typhimurium 

membrane ruffling 

CD4 T-Zelle 

MHC Klasse II-
Präsentation 

SCV 

a) 

b) 

 

Abbildung 2 MHC Klasse II-Antigenpräsentation. Salmonellen-Proteine werden in die SCV 

sekretiert (siehe a). Aufgrund der Lokalisation in einem membrangebundenen Kompartiment 
werden die Proteine über den MHC Klasse II-Präsentationsweg verarbeitet (siehe b). Somit 

werden CD4+ T-Zellen induziert. 
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 Rüssmann und Kollegen entwickelten eine Strategie, um dieses Problem zu 

umgehen. Das Salmonella-T3SS wurde ausgenutzt, um antigenspezifische CD8+ T-Zellen zu 

induzieren. Hierzu wurden Mäuse oral mit rekombinanten, abgeschwächten S. typhimurium 

immunisiert. Diese trugen ein immunogenes Nukleoprotein des lymphozytären 

Choriomeningitis-Virus (LCMVNP118-126) oder des Influenza-Virus (IVNP366-374), gekoppelt an 

das bereits oben beschriebene T3SS-Effektorprotein SptP [53]. Das Fragment des Virus-

Proteins wurde gemeinsam mit SptP über das Salmonella-T3SS in das Zytosol der Wirtszelle 

befördert. Aufgrund der so erreichten intrazellulären Lokalisation dieses Proteins wurde es 

über den MHC Klasse I-Präsentationsweg verarbeitet. Durch die MHC Klasse I-

Antigenpräsentation konnten antigenspezifische CD8+ T-Zellen induziert werden [53]. Diese 

waren in der Lage, vor einer Infektion mit dem Choriomeningitis- oder dem Influenza-Virus 

zu schützen. Diese Methode erlaubte die Translokation, also das zytosolische Deponieren, 

von kleinen heterologen Antigenen. 

  In weiteren Studien wurde nach größeren Trägerproteinen für heterologe 

Antigene gesucht. Das „Yersinia outer protein E“ (YopE) ist ein T3SS-Effektorprotein des 

Bakteriums Yersinia enterocolitica [54]. Da bekannt war, dass YopE über das T3SS von S. 

typhimurium transportiert werden kann, wurde das immunogene Protein p60130-477 von 

Listeria monocytogenes (L. monocytogenes) an YopE gekoppelt und anschließend das 

Fusionsprotein YopE1-138/p60130-477  in das Genom von S. typhimurium Stamm SB824 

eingefügt [55]. SB824 ist ein virulenzabgeschwächter S. typhimurium-Stamm [56]. Durch das 

Einfügen des YopE1-138/p60130-477 Fusionsproteins in SB824 entstand SB824 (pHR241) [57]. 

Dieser Stamm wurde bei allen Salmonellen-Immunisierungsversuchen im Rahmen dieser 

Arbeit verwendet. Die Salmonellen translozierten nach oraler Immunisierung von Mäusen 

das YopE1-138/p60130-477 Fusionsprotein über das T3SS in das Zytosol der Wirtszellen. 

Hierdurch wurden p60217-225-spezifische CD8+ T-Zellen induziert. Diese vermittelten Schutz 

vor einer üblicherweise tödlichen Dosis L. monocytogenes [57]. Siehe hierzu auch Abb. 3. 
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1.2.3. L. monocytogenes als Modellerreger 

Das Bakterium L. monocytogenes wird über kontaminierte Lebensmittel übertragen und 

verursacht bei immunkompetenten Menschen eine selbstlimitierende Gastroenteritis. Bei 

immungeschwächten oder schwangeren Patienten können jedoch schwere Verlaufsformen 

mit systemischer Erregerausbreitung, Meningitis, Enzephalitis oder Aborten auftreten [58]. 

Das grampositive Bakterium vermehrt sich im Zytosol infizierter Zellen und kann sich von 

Zelle zu Zelle ausbreiten [59]. Nach dem Eindringen in die Zelle befindet sich Listeria in einer 

membrangebundenen Vakuole. Mithilfe des Zytolysins „Listeriolysin O“ (LLO) können 

Listerien diese Vakuole auflösen und gelangen in das Zytosol der Zelle [60]. Sobald Listeria in 

das Zytosol der Zelle gelangt ist, beginnt die Produktion des Proteins „Actin nucleator A“ 

(ActA). Dieses polymerisiert das Aktin der Wirtszelle und befähigt Listeria, sich direkt von 

Zelle zu Zelle zu verbreiten [61]. Somit kann Listeria sich ausbreiten, ohne extrazellulären 

Abwehrmechanismen ausgesetzt zu sein [62]. Ein weiterer Virulenzfaktor von L. 

monocytogenes ist das im Rahmen dieser Arbeit als Modellantigen verwendete p60-Protein. 

Diese Mureinhydrolase ist an Zellkontakten beteiligt und remodelliert die 

Peptidoglykanschicht von Listeria während der Zellteilung [63-65].  

 

SCV 

a) 

a) 

b) 

c) 

Modell-Antigen 
(p60, Listeria) 

T3SS-Trägerprotein 
(YopE, Yersinia) 

Intrazellularraum 

YopE/p60 

Translokation über das T3SS 

Nadelkomplex 

CD8 T-Zelle 

MHC Klasse I-
Präsentation 

a) 

 

 

Abbildung 3 Translokation über das Salmonella T3SS. Das YopE/p60 Fusionsprotein wird über 
das T3SS in das Zytosol der APC transportiert (siehe a und Vergrößerung). Durch die Prozessierung 

über den MHC Klasse I-Präsentationsweg werden p60-spezifische CD8+ T-Zellen induziert (siehe b 

und c). 
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 Aufgrund der intrazellulären Vermehrung der Listerien werden Listerien-Proteine 

wie LLO oder p60 über den MHC Klasse I-Präsentationsweg verarbeitet. Zytotoxische CD8+ T-

Zellen sind daher wesentlich an der Immunantwort auf Listerien-Infektionen beteiligt. 

Studien im Mausmodell ergaben, dass nach intravenöser Listerien-Infektion hauptsächlich 

LLO- und p60-spezifische CD8+ T-Zellen induziert werden [66, 67]. Harty und Pamer konnten 

nachweisen, dass p60217-225-spezifische CD8+ T-Zellen adoptiv übertragbaren Schutz vor einer 

Listerien-Infektion vermitteln [68]. Diese Ausführungen erklären die besondere Eignung des 

p60-Proteins als Modellantigen für Studien über zytosolisch deponierte Antigene. 

1.2.4. Die orale Immunisierungsroute 

Impfstoffe werden überwiegend intramuskulär oder subkutan injiziert [69]. Im 

Muskelgewebe befinden sich eine Vielzahl von DCs, Neutrophilen und Monozyten. Diese 

werden durch das Antigen oder Adjuvans des Impfstoffes aktiviert, phagozytieren das 

Antigen und wandern in die drainierenden Lymphknoten. Dort aktivieren 

antigenpräsentierende DCs die B- und T-Zellen [2, 69]. Injizierte Impfstoffe haben jedoch 

eine eingeschränkte Fähigkeit, um Immunität in den Schleimhäuten des Körpers 

herbeizuführen. Da geschätzte 90 % der Infektionskrankheiten durch Eindringen des Erregers 

über die Schleimhäute des Körpers initiiert werden [70], ist häufig eine mukosale Immunität 

erforderlich. Diese kann induziert werden, wenn das Impfantigen über die Schleimhäute des 

Körpers aufgenommen wird. So resultiert eine systemische Immunität gleichsam mit einer 

mukosalen Immunität. Daher werden immer mehr Impfstoffe entwickelt, die nasal oder oral 

appliziert werden können [71].  

 Die oben beschriebene S. typhimurium-Immunisierungsstrategie profitiert von 

diesem Vorteil der oralen Applikation. Die Übertragung dieses Konzeptes auf eine klinische 

Anwendung beinhaltet allerdings mehrere Herausforderungen. Da S. typhimurium der 

murine Modellerreger für Typhus abdominalis ist, sollte für humane Immunisierungen 

S. typhi verwendet werden [72]. Eine orale Impfung mit S. typhi auf dem natürlichen 

Immunisierungsweg ist jedoch mit erheblichen Risiken für den Patienten verbunden. Zu 

benennen sind hier die Gefahr der ungewollten systemischen Ausbreitung des Impfvektors, 

die Entwicklung einer übermäßig starken Immunantwort sowie die Möglichkeit der 

Übertragung des Lebendimpfstoffes auf Kontaktpersonen oder die Umwelt. Eine 

systemische Erkrankung mit der Gefahr einer Sepsis könnte bei gesunden und insbesondere 

auch bei immungeschwächten Patienten auftreten. Mögliche postinfektiöse Reaktionen 
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beinhalten Arthritis, Uveitis und Urethritis, die auch bei natürlichen Infektionen mit 

Salmonellen beobachtet werden [73, 74].  

 Mit dem Lebendimpfstoff Ty21a existiert seit den 1970er Jahren ein attenuierter 

(virulenzabgeschwächter) S. typhi-Stamm, dessen Sicherheit in vielen klinischen Studien 

erprobt wurde [75]. Für eine effektive Impfung gegen Typhus muss dieser Impfstamm 

allerdings drei- bis viermal verabreicht werden [76]. Durch Verwendung rekombinanter 

DNA-Technologie wurden weitere attenuierte S. typhi Stämme entwickelt. Hierzu gehören 

Ty800 [77] oder CVD908 [78], die nur einmalig verabreicht werden müssen. Es zeigte sich 

jedoch, dass all diese Stämme beim Transport heterologer Antigene nur schwach 

immunogen sind. Aufgrund dieser Ergebnisse wurde angenommen, dass optimal attenuierte 

Typhus-Impfstoffe für den Einsatz als Vektoren für heterologe Antigene bereits zu stark 

attenuiert sein könnten [72].  

 Eine weitere Strategie zur Optimierung der Sicherheit eines S. typhi 

Lebendimpfstoffes könnte daher in einer Verkürzung der Kolonisierungsdauer liegen. Daher 

sollte in der hier vorliegenden Arbeit der Einfluss einer Vektorreduktion auf die Induktion 

antigenspezifischer CD8+ T-Zellen untersucht werden. Diese Untersuchungen sollten zeigen, 

wie viele Tage der Lebendimpfstoff auf seinem natürlichen Immunisierungsweg kolonisieren 

muss, bis eine schützende Frequenz antigenspezifischer CD8+ T-Zellen induziert wird. 
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1.3. Ziel der Arbeit 

Die vorliegende Arbeit beschäftigt sich mit einer neuartigen Impfstrategie. S. typhimurium 

diente als Träger heterologer Antigene zur Induktion antigenspezifischer CD8+ T-Zellen im 

oralen Maus-Immunisierungsmodell. In vorherigen Studien konnten antigenspezifische CD8+ 

T-Zell-Populationen generiert werden, die Schutz vor Viren, intrazellulären Bakterien oder 

Tumoren vermittelten [53, 79]. 

 Nach oraler Immunisierung von Mäusen mit dem Stamm SB824 (pHR241) wurde 

das heterologe Antigen p60, ein immunogenes Protein des Bakteriums L. monocytogenes, 

über das Salmonella-T3SS in das Zytosol von APCs transloziert. Aufgrund der Verarbeitung 

des Antigens über den MHC Klasse I-Antigenpräsentationsweg wurden p60217-225-spezifische 

CD8+ T-Zellen induziert. Diese vermittelten Schutz vor einer Belastungsinfektion mit L. 

monocytogenes [57]. 

 Es sollte überprüft werden, wie eine quantitative Reduktion des Salmonella-

Impfvektors zu verschiedenen Zeitpunkten nach der Immunisierung die Induktion 

antigenspezifischer CD8+ T-Zellen beeinflusst. Zunächst musste eine Methode zur Reduktion 

des Impfvektors etabliert werden. Analog zu klinischen Empfehlungen bei Typhus- und 

Paratyphus-Erkrankungen wurde das Fluorchinolon Ciprofloxacin verwendet [33, 80, 81]. Als 

nächster Schritt wurde der Einfluss dieser Vektorreduktion auf die Induktion p60217-225-

spezifischer CD8+ T-Zellen evaluiert. In verschiedenen Gruppen wurde an den Tagen 0, 2 oder 

4 nach oraler Immunisierung eine Reduktion der Impfvektormenge durch eine mehrtägige 

Ciprofloxacingabe begonnen. An Tag 11 wurde die Menge der generierten p60217-225-

spezifischen CD8+ T-Zellen im Vergleich zwischen den einzelnen Gruppen und einer 

immunisierten Kontrollgruppe ohne Antibiotikagabe analysiert. Die Frequenz p60217-225-

spezifischer CD8+ T-Zellen wurde mithilfe der Tetramer-Technologie durchflusszytometrisch 

quantifiziert. Zusätzlich wurden die T-Zellen auch phänotypisch charakterisiert. Hierzu wurde 

die funktionelle Aufteilung der generierten T-Zell-Subpopulationen untersucht. Die 

Effektivität der Immunisierung wurde außerdem durch eine letale Belastungsinfektion mit L. 

monocytogenes überprüft. 
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 Diese Untersuchungen sollten zeigen, ab welchem Zeitpunkt nach der 

Immunisierung mit einer Antibiotikaverabreichung begonnen werden kann, ohne die 

Generierung schützender CD8+ T-Zell-Populationen zu beeinträchtigen. Hierdurch sollte, 

auch im Hinblick auf eine mögliche klinische Anwendung, ein wichtiger Beitrag zur 

Optimierung der Sicherheit dieser neuartigen Impfstrategie geleistet werden. 
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2. Material und Methoden 

2.1. Geräte 

Tab. 1 Verwendete Geräte 

Gerät Typ Hersteller 

Analysenwaage  Kern 440-33  Sartorius, Göttingen  

Brutschrank  Typ B 20  Heraeus, Hanau  

Bunsenbrenner  Gasprofi 1 micro  WLD -TEC GmbH, Göttingen  

CO2-Inkubator  Cytoperm 2  Heraeus, Hanau  

Durchflusszytometer  FACSCantoTMII  BD, Heidelberg  

Homogenisator  MM 2000  Retsch, Wuppertal  

Magnetrührer  IKA RET  Eppendorf, Hamburg  

pH-Meter  320 pH-Meter  Eppendorf, Hamburg  

Pipetten  Gilson  Limburg-Offheim  

Pipetten Eppendorf Eppendorf, Hamburg 

Pipettierhilfe  Accu-Jet Pro  Brand, Wertheim  

Schüttelinkubator  Certomat BS-1  Bio-Rad, München  

Schlundsonden  Nicht näher bezeichnet 
Thermo Fisher Scientific, 

Schwerte  

Spektralphotometer  Spectronic 20  Heraeus, Hanau  

Sterilwerkbank  Herasafe HS 12  
Thermo Electron Corporation, 

Langenselbold  

Wasserbad  WB/OB7-45  Eppendorf, Hamburg  

Zentrifugen  Eppendorf 5417C und 5810R  Sorvall, Langengelsbold  

Zentrifugen Sorvall super-21  Kendro, Hanau  

 

Neben oben aufgelisteten Geräten wurden Labor-Standard-Geräte verwendet. 
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2.2. Verbrauchsmaterialien 

Tab. 2 Verbrauchsmaterialien 

2.3. Chemikalien und Biochemikalien 

Tab. 3 Verwendete Chemikalien und Biochemikalien 

 

Produkt Hersteller 

Einmalspritzen 10 ml Braun Melsungen 

FACS-Röhrchen Beckton Dickinson, Heidelberg 

Injektionsnadeln Braun, Melsungen 

Metallkugeln NeoLab, Heidelberg 

Nylonfilter 50 µm Hartenstein, Würzburg 

Petrischalen (Plastik) Greiner Bio-one, Frickenhausen 

Sterilfilter 0,22 µm u 0,45 µm Millipore, Schwalbach 

Sterilfilter Groß Millipore, Schwalbach 

Reaktionsgefäße 1,5 ml und 2 ml Eppendorf, Hamburg 

Reaktionsgefäße 15 ml und 50 ml Beckton Dickenson, Heidelberg 

Zellsiebe 70 µm Beckton Dickenson, Heidelberg 

96 Lochplatten, Mikrotiter Rundboden Hartenstein, Würzburg 

Chemikalie/Biochemikalie Hersteller 

Antibiotika Sigma-Aldrich, Taufkirchen 

Bayer, Leverkusen 

BHI Fluka, Sigma-Aldrich, Taufkirchen 

BSA PAN, Aidenbach 

DPBS Gibco, Invitrogen, Karlsruhe 

EMA Sigma-Aldrich, Taufkirchen 

FACS-Antikörper Becton Dickinson, Heidelberg 

FCS Invitrogen, Karlsruhe 

LB-Agar Invitrogen, Karlsruhe 

LB-Base Invitrogen, Karlsruhe 

RPMI 1640 Gibco, Invitrogen, Karlsruhe 

Tetramere Prof. Dr. Dirk H. Busch, TU München 

Trypanblau Invitrogen, Karlsruhe 
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2.4. Puffer und Nährmedien 

Tab. 4 Verwendete Puffer und Nährmedien 

2.5. Bakterien und Plasmide 

2.5.1. S. typhimurium SB824 (pHR241) 

S. typhimurium SB824 [53] enthält das sptP::kan Allel aus Stamm SB237 [82], eingeführt in 

den ΔaroA Stamm SL3261 [56]. Für orale Immunisierungen wurde SB824 (pHR241) 

eingesetzt. Der Ursprungsvektor des Plasmides pHR241 ist pWSK29. Das Plasmid trägt die 

genetische Information, um chimäres YopE1-138/p60130-477/M45 unter Expressionskontrolle 

des lac Promotors zu translozieren. Dieser ist konstitutiv aktiv in Salmonella. Durch 

Elektroporation wurde pHR241 in Salmonella enterica Serovar Typhimurium Stamm SB824 

transformiert [57]. 

2.5.2. L. monocytogenes 

Für die Schutzversuche mit L. monocytogenes wurde der Wildtyp-Stamm 10403s verwendet 

[83]. 

Puffer/Nährmedium Zusammensetzung 

ACT NH4Cl 0,15 M; Tris/HCl 0,017 M, pH 7,4  

BHI-Agar 33g BHI, 15g Bacto Agar ad 1L H2O 

BHI-Medium 33g BHI ad 1L H2O 

FACS-Puffer 1L PBS, 5g BSA 

LB-Agar 15g Bacto Agar, 10g Bacto-Trypton, 5g 

Bacto-Hefeextrakt, 5g NaCl ad 1L H2O 

LB-Medium 10g Bacto-Trypton, 5g Bacto-Hefeextrakt, 

5g NaCl ad 1L H2O 

LB NaCl 0,3M  10g Bacto-Trypton, 5g Bacto-Hefeextrakt, 

17,53g NaCl  ad 1L H2O 

PBS 8g NaCl, 0,2g KCl, 1,44g Na2HPO4, 0,24g 

KH2PO4 ad 1L H2O 

Trypanblau-Lösung 0,05g Trypanblau ad 10 ml PBS 

T-Zell-Medium RPMI, 10 %(V/V) FCS, 1 %(V/V) Penicillin 

(10000 U/ml), 1 %(V/V) Streptomycin (10 

mg/ml), 0,1 %(V/V) Ciprofloxacin (10 

mg/ml) 
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2.6. Antikörper 

Tab. 5  Für FACS-Färbungen eingesetzte Antikörper 

 

2.7. Antibiotika 

Tab. 6 Verwendete Antibiotika 

 

2.8. Tetramere 

Die Spezifität von CD8+ T-Zellen wird durch den TCR vermittelt. Dessen natürlicher Ligand ist 

der MHC Klasse I-Komplex [84]. Um die p60-spezifischen CD8+ T-Zellen ex vivo zu 

identifizieren, wurden MHC Klasse I-Tetramere verwendet, welche freundlicherweise im 

Labor von Prof. Dr. Dirk Busch, München, hergestellt wurden. Hierzu wurde ein 

rekombinantes H2-Kd Epitop, welches eine Biotinylierungsseite trägt, in Escherichia coli 

exprimiert. Die H2-Kd und humane β2-Mikroglobulin Einschlusskörperchen (β2m) wurden in 

Gegenwart von p60217-225 (Biosynthan, Berlin) gefalten. Durch Verwendung der Biotin-

Protein-Ligase BirA wurden die gefalteten Komplexe, bestehend aus H2-Kd, β2m und p60217-

225 Antigen-Peptid, enzymatisch biotinyliert. Die Verbindung zu einem viergliedrigen 

Tetramer erfolgte durch Phycoerythrin (PE)-gekennzeichnetes Streptavidin (SA-PE, 

Molecular Probes, Eugene, USA). Nach Aufreinigung durch Gelfiltration wurden die 

Spezifität  

(gegen Maus) 

Klon Format Hersteller 

CD4 RM4-5 PerCP Becton Dickinson, Heidelberg 

CD8a 53-6.7 APC Becton Dickinson, Heidelberg 

CD8a 53-6.7 APC eFluor 780 NatuTec, Frankfurt am Main 

CD8a 53-6.7 PE Becton Dickinson, Heidelberg 

CD8a 53-6.7 FITC Becton Dickinson, Heidelberg 

CD62L MEL-14 FITC Becton Dickinson, Heidelberg 

CD 127  A7R34 APC NatuTec, Frankfurt am Main 

Antibiotikum Stock-Konzentration End-Konzentration 

Ampicillin 10 mg/ml in H2Odest 100 µg/ml 

Ciprofloxacin 10 mg/ml in H2Odest 2 mg/ml und 10 mg/ml 

Kanamycin 5 mg/ml in H2Odest 50 µg/ml 

Penicillin - 10000 U/ml 

Streptomycin 8 mg/ml in H2Odest 50 µg/ml 
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Tetramere in einer Konzentration von 2-5 mg/ml bei 4-8°C in PBS (pH 8,0), welches 0,02 % 

Natriumazid, 1 mg/ml Pepstatin, 1 mg/ml Leupeptin und 0,5 ml EDTA enthielt, dunkel 

gelagert [85, 86]. 

2.9. Molekularbiologische Methoden 

2.9.1. Kultivierung von S. typhimurium 

Eine 3 ml Luria-Bertani-Lösung mit 50 µg/ml Kanamycin und 100 µg/ml Ampicillin wurde mit 

dem Stamm SB824 (pHR241) beimpft und über Nacht bei 37°C und 180 Umdrehungen pro 

Minute (rounds per minute, rpm) inkubiert. Am folgenden Tag wurde die Übernachtkultur in 

LB NaCl 0,3 M im Verhältnis 1:40 verdünnt und wieder bei 37°C und 180 rpm inkubiert. Nach 

etwa drei bis vier Stunden wurde mit einem Photometer bei 600 nm Wellenlänge die 

optische Dichte der Kultur bestimmt. Nach der Formel 

ml

CFU
OD

1

105
0,1

8
×

=  

wurde die aktuelle Anzahl von Salmonellen in der Kultur berechnet. Die benötigte Menge an 

Kulturflüssigkeit wurde wie folgt berechnet: 

nZielvolume
ionKonzentratIst

ionKonzentratZiel
×

−

−
. 

Diese Flüssigkeitsmenge wurde mit 8000 rpm für 10 Minuten bei 4°C zentrifugiert und nach 

Abschütten des Überstandes in dem festgelegten Zielvolumen gelöst. Dieses betrug 20 µl 

PBS für jede zu immunisierende Maus. 

2.9.2. Sensitivität von SB824 gegenüber Ciprofloxacin 

Zur Bestimmung der minimalen bakteriziden Konzentration (MBC) von Ciprofloxacin 

gegenüber dem Impfstamm SB824 (pHR241) wurde die antimikrobielle Wirkung des 

Antibiotikums in verschiedenen Verdünnungsstufen getestet. Eine LB-Lösung mit den 

Antibiotika Ampicillin (100 µg/ml) und Kanamycin (50 µg/ml) wurde hergestellt. Die 

Nährlösung wurde mit mehreren Kolonien SB824 (pHR241) beimpft und bei 37°C und 180 

rpm über Nacht inkubiert. Am nächsten Tag wurde die Lösung im Verhältnis 1:20 mit LB-

Medium verdünnt und erneut bei 37°C und 180 rpm inkubiert. Nach etwa zwei Stunden 

wurde durch Photometrie (siehe Kapitel „Kultivierung von Salmonella“) die Anzahl der 

Bakterien in der Lösung bestimmt und die Lösung auf eine Konzentration von 5 x 105 CFU/20 

µl („colony forming units“, Kolonie bildende Einheiten) verdünnt. Parallel dazu wurden 
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Reagenzgläser mit jeweils 1 ml LB-Medium und zusätzlich Ciprofloxacin in den 

Konzentrationen 1 mg/ml, 0,1 mg/ml, 10 µg/ml, 1 µg/ml sowie 0,1 µg/ml hergestellt. Jedes 

Reagenzglas wurde mit 20 µl der zuvor erstellten Salmonellen-Lösung beimpft. Das 

entsprach pro Reagenzglas 5 x 105 CFU. Die beimpften Ciprofloxacinlösungen wurden 

wiederum über Nacht bei 37°C und 180 rpm inkubiert. Nach 24 Stunden wurden jeweils 100 

µl aus jeder Probe auf Agarplatten ausgestrichen. Als bakterizide Wirkung der jeweiligen 

Ciprofloxacinkonzentration wurde eine Reduktion der Salmonella CFU in der Lösung um 

99,9 % definiert. 

2.9.3. Kultivierung von L. monocytogenes 

Der Stamm LM 10403s [83] lagerte bei -20 °C in einer BHI-Glycerinkultur. Davon wurden 10 

µl in 10 ml BHI gegeben und bei 90 rpm und 37°C über Nacht inkubiert. Am folgenden Tag 

wurde die Lösung 1:20 verdünnt und wiederum für zwei Stunden inkubiert. Nach der Formel  

µl100

102
1,0

5
CFU

OD
×

=  

wurde bei einer Wellenlänge von 600 nm die Listerien-Konzentration photometrisch 

ermittelt. Anhand der unter „Kultivierung von S. typhimurium“ genannten Methode wurde 

eine Konzentration von 2 x 104 CFU/100 µl in PBS hergestellt. 

2.10. Tierexperimentelle Versuche 

2.10.1. Orale Immunisierung von Mäusen mit Salmonellen 

Am Tag vor der Immunisierung erhielten die Mäuse eine Vorbehandlung mit dem 

Antibiotikum Streptomycin. Hierzu wurden 20 mg Streptomycin gelöst in 100 µl H20 oral 

über eine Schlundsonde verabreicht [87]. Einige Stunden vor der Immunisierung wurde den 

Mäusen Wasser und Futter entzogen. Sie waren somit zum Zeitpunkt der Immunisierung 

nüchtern. Die Salmonellen-Suspension enthielt 5 x 108 CFU SB824 (pHR241) gelöst in 20 µl 

PBS. Jede Maus wurde mit einer 20 µl Pipette langsam gefüttert, bis die gesamte Menge 

verschluckt war. Das Inokulum wurde anschließend zur Dosiskontrolle in entsprechender 

Verdünnung auf LB-Platten aufgebracht und über Nacht bei 37°C inkubiert. 

2.10.2. Applikation von Ciprofloxacin 

Zur Manipulation der Kolonisierungskinetik des Salmonella-Impfstammes wurde das 

Antibiotikum Ciprofloxacin verwendet [81]. In ersten Experimenten zur Ermittlung einer 
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geeigneten Applikationsart wurde die intravenöse mit der intraperitonealen Verabreichung 

verglichen. Zusätzlich wurde das Antibiotikum in beiden Gruppen auch oral appliziert. Die 

Behandlung erfolgte im Abstand von 12 Stunden über 4 Tage. Daraus ergaben sich 8 

Einzeldosen. Die Dosis bei der intraperitonealen und intravenösen Verabreichung betrug 0,5 

mg Ciprofloxacin, gelöst in 50 µl destilliertem Wasser (H2Odest). Die oral verabreichte Menge 

betrug ebenfalls 0,5 mg, gelöst in 50 µl H2Odest. Hieraus ergaben sich eine 

Ciprofloxacinkonzentration von 10 mg/ml H2Odest und eine Gesamtdosis von 2 mg 

Ciprofloxacin pro Maus pro Tag. Als Vergleichsgruppe dienten Mäuse, die nur den 

Salmonella-Impfstamm ohne weitere Intervention erhielten. 

 Bei allen nachfolgenden Experimenten wurde das Ciprofloxacin kombiniert 

intraperitoneal und oral verabreicht. Dieses geschah über 4 Tage im Abstand von jeweils 12 

Stunden. Die Dosis bei der intraperitonealen Applikation betrug 1 mg Ciprofloxacin gelöst in 

500 µl H2Odest (2 mg Ciprofloxacin/ml H2Odest), die oral verabreichte Dosis betrug 0,5 mg 

Ciprofloxacin gelöst in 50 µl H2Odest (10 mg Ciprofloxacin/ml H2Odest). Hieraus ergab sich eine 

Gesamtdosis von 3 mg Ciprofloxacin pro Maus pro Tag. 

2.10.3. Organentnahme 

Zur Organentnahme wurden Mäuse durch Inhalation von CO2-Gas getötet. Die äußere 

Desinfektion erfolgte durch Baden in einer 70 % Isopropanollösung. Zur Bestimmung des 

Grades der Kolonisierung durch Listeria oder Salmonella wurden nach medianem 

Bauchschnitt Zökum-Inhalt und die Milz entnommen. Proben wurden in einem 2 ml 

Reaktionsgefäß, das 500 µl PBS und eine Stahlkugel beinhaltete, auf Eis gelagert. Die 

Messung der p60-spezifischen CD8+ T-Zell-Frequenz erfolgte durch Analyse von Splenozyten. 

Diese wurden aus der Milz gewonnen. Die Milzen wurden hierzu nach lateralem 

Bauchschnitt entfernt und in einem 15 ml Reaktionsgefäß mit 3 ml T-Zell-Medium auf Eis 

gelagert. 

2.10.4. Salmonella-Kolonisierungsstudien 

Zur Bestimmung der lokalen Darmkolonisierung und der systemischen Kolonisierung wurden 

stellvertretend Kot, Zökum-Inhalt und Milz der Mäuse untersucht. Die Stuhlproben wurden 

von der lebenden Maus aufgefangen, Zökum-Inhalt und Milz dagegen der toten Maus 

entnommen. Die Proben wurden mithilfe des Homogenisators für 3 Minuten bei einer 

Amplitude von ca. 70-80 homogenisiert. Das Gewicht einer Probe wurde mit einer 
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Feinwaage bestimmt. Verschiedene Verdünnungsreihen wurden auf LB-Agar aufgebracht. 

Nach Übernacht-Inkubation bei 37°C wurde die Anzahl der CFU determiniert. Die 

Organkolonisierung wurde danach durch Umrechnung in CFU pro Gramm angegeben. Die 

Besiedelung der Stuhlproben wurde in CFU pro Milligramm angegeben. 

2.10.5. Belastungsinfektionen mit Listerien 

Die Schutzversuche mit L. monocytogenes wurden am 12. Tag nach der Immunisierung 

durchgeführt. Listerien wurden wie oben beschrieben kultiviert. Jeweils 100 µl PBS mit 2 x 

104 CFU Listeria wurde den Mäusen in die Schwanzvene injiziert. Dazu wurden die Tiere 

zuvor für einige Minuten unter eine UV-Wärmelampe gestellt, damit die Schwanzvene 

besser sichtbar wurde. Zur Kontrolle der Infektionsdosis wurde die Listerien-

Infektionsflüssigkeit, also das Inokulum, nach entsprechender Verdünnung auf BHI-Platten 

ausgestrichen und für 24 Stunden bei 37°C inkubiert. Drei Tage später, am 15. Tag nach 

Immunisierung, wurden die Mäuse getötet und die Listeria CFU Belastung in der Milz 

bestimmt. Dazu wurden die homogenisierten Milzen in verschiedenen Verdünnungsstufen 

auf BHI-Agarplatten aufgetragen und für 24 Stunden bei 37°C inkubiert. Danach wurde die 

Organkolonisierung durch Auszählen der CFU und Umrechnung in CFU pro Gramm  

angegeben. 

2.11. Immunologische Methoden 

2.11.1. Durchflusszytometrie 

Die Durchflusszytometrie („Fluorescence activated cell sorting“, FACS) eignet sich zur 

Charakterisierung und Analyse von Zellen und anderen Mikropartikeln wie beispielsweise 

Viren. Die zu analysierenden Zellen werden in der Regel speziell aufbereitet. Dazu werden 

sie mit bestimmten Antikörpern gefärbt. Diese Antikörper markieren charakteristische 

Strukturen der Zelle und sind in der Lage zu fluoreszieren. Häufig sind Antikörper gegen die 

CD-Moleküle („Cluster of differentiation“) der Zellen gerichtet. So können verschiedene 

Zellpopulationen voneinander abgegrenzt oder bestimmte Merkmale einzelner Zellen sehr 

genau untersucht werden. Bei der Durchflusszytometrie wird bestimmt, wie die einzelnen 

mit Antikörpern verbundenen Zellen einfallendes Laserlicht streuen und Fluoreszenz 

emittieren. Hierzu werden die Zellen durch einen Flüssigkeitsstrom gesaugt und einzeln mit 

Lasern verschiedener Wellenlänge angestrahlt. Hierdurch erhält man eine Information über 

Größe, Granularität und Fluoreszenz jeder Zelle einer Probe. Die Größe wird anhand der 
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Vorwärtsstreuung („forward light scatter“, FSC), die Granularität anhand der 

Seitwärtsstreuung („side scatter“, SSC) bestimmt. Unter Verwendung der fluoreszierenden 

Antikörper lassen sich dann weitere Eigenschaften der Analysezellen ermitteln. So können 

die bereits oben erwähnten p60217-225-spezifischen CD8+ T-Zellen durch Verwendung von 

fluoreszierenden CD8 Antikörpern und p60-Tetrameren selektiv quantifiziert und analysiert 

werden. Des Weiteren wurden die Zellen mit Antikörpern gegen CD127 und CD62L gefärbt. 

Diese lassen eine Untersuchung der Untergruppierungen antigenspezifischer CD8+ T-Zellen 

zu [81]. 

2.11.2. Aufbereitung der Splenozyten für die Tetramerfärbungen 

Die induzierten CD8+ T-Zellen wurden in der Milz der Versuchstiere detektiert. Die Milzen 

lagerten in 3 ml T-Zell-Medium. In einem ersten Schritt wurden die Milzen mit dem Stempel 

einer 10 ml Spritze durch ein Zellsieb in eine Petrischale gedrückt und homogenisiert. Die 

Petrischale wurde mit 5 ml des T-Zell-Mediums ausgespült und das Homogenisat bei 1500 

rpm und Raumtemperatur (RT) für sieben Minuten zentrifugiert. Der Überstand wurde 

verworfen und das Pellet in 5 ml ACT zwecks Erythrozytenlyse aufgenommen. Nach 7 

Minuten Inkubation bei 37°C wurde die Lyse durch Zugabe von 5 ml des T-Zell-Mediums 

gestoppt und die Suspension erneut bei 1500 rpm und RT, für 7 Minuten zentrifugiert. Das 

annähernd weiße Pellet wurde erneut resuspendiert, in 10 ml Medium aufgenommen und 

durch einen Nylonfilter filtriert. Zur Bestimmung der Zellzahl wurden daraus 10 µl in 190 µl 

vorgelegte Trypanblau-Lösung gegeben. Aus dieser wiederum wurden 10 µl zur Bestimmung 

der Zahl der lebenden Zellen in eine Neubauer Zählkammer pipettiert. Unter dem 

Lichtmikroskop wurden die nicht blau gefärbten, also lebenden Zellen, gezählt. Nach der 

Formel 

410×××= sfaktorVerdünnungSuspensionderVolumenZellzahlzahlGesamtzell  

wurde danach die Gesamtzahl lebender Zellen in der Splenozyten-Suspension berechnet. Die 

nun gefilterte Suspension wurde erneut zentrifugiert. Nachdem der Überstand verworfen 

worden war, wurde das Pellet in der notwendigen Menge FACS-Medium (siehe Formel in 

Kapitel 1.9.1) gelöst, um eine Konzentration von 108 Splenozyten/ml zu erreichen. Hieraus 

wurden jeweils 60 µl der Suspension in je ein Loch einer 96-Well Platte gegeben, so dass sich 

nun in jedem Analyse-Segment 6 x 106 lebende Zellen befanden. 
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2.11.3. Färbung der Splenozyten 

Die Färbung erfolgte in zwei Schritten: Einer Lebend/Tod-Färbung mit Ethidiumbromid 

Monoazid (EMA) und der anschließenden Tetramer-Färbung. Die Proben wurden permanent 

auf Eis gelagert. Zur späteren Lebend/Tod-Bestimmung wurden die Zellen in 100 µl FACS-

Puffer mit 0,1 % EMA und 1 % FC-Block für 20 Minuten unter einer Lampe gefärbt. EMA (2 

mg/ml DPBS) eignet sich zur Markierung toter Zellen. Dabei diffundiert EMA während der 

Färbung in tote Zellen und bindet unter Lichteinfluss kovalent an die DNA. Hierdurch können 

tote Zellen während der späteren Auswertung der Durchflusszytometrie erkannt und 

ausgeschlossen werden. FC-Block ist gegen CD16/CD32 gerichtet und blockiert den FCγ-

Rezeptor. Anschließend wurden die Proben zweimal mit FACS-Puffer gewaschen. 

Darauffolgend wurden die Zellen jeder einzelnen Probe in 50 µl FACS-Puffer für 60 Minuten 

im Dunkeln gefärbt. Der FACS-Puffer enhielt die folgenden Antikörper für die Tetramer-

Färbung: 

Tab. 7 Antikörper der Tetramer-Lösung 

 

Zur Kompensation bei der späteren Durchflusszytometrie wurden außerdem je 5 x 106 Zellen 

aus einem Gemisch aller Proben in 50 µl FACS-Puffer zusammen mit einem der folgenden 

Antikörper, wie oben beschrieben, gefärbt: 

Tab. 8 Antikörper zur Einzel-Färbung 

 

Nach Ablauf einer Stunde wurden drei Waschschritte mit FACS-Puffer durchgeführt, die 

gefärbten Zellen in 200 µl FACS-Puffer aufgenommen, dunkel und kühl gelagert und 

innerhalb von zwei Stunden mit dem Durchflusszytometer FACSCantoTMII analysiert. Die 

Antikörper Menge Verdünnungsfaktor 

CD8 APC e Fluor 780 0,5 µl 1:100 

CD62L FITC 0,5 µl 1:100 

CD127 APC 1 µl 1:50 

p60 PE (Tetramer) 1 µl 1:50 

Antikörper Menge Verdünnungsfaktor 

CD8a PE 0,5 µl 1:100 

CD8a FITC 0,5 µl 1:100 

CD8 APC 0,5 µl 1:100 

CD4 PerCP 0,5 µl 1:100 

CD 8a APC eFluor 780 0,5 µl 1:100 
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Auswertung der in der Durchflusszytometrie generierten Daten erfolgte unter zur 

Hilfenahme des Computerprogramms FLOWJO Flow Cytometry Analysis Software (Tree Star, 

Ashland). 

2.12. Statistische Tests und Auswertung 

Die statistische Auswertung der Experimente erfolgte durch den nicht-parametrischen 

Mann-Whitney-U-Test. Für die Auswertung wurde die SPSS-Software (SPSS, Chicago, IL) 

verwendet. Dargestellt werden Mittelwerte mit Standardabweichung. 
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3. Ergebnisse  

3.1. Immunisierung mit S. typhimurium 

3.1.1. Induktion p60217-225-spezifischer CD8
+ 

T-Zellen 

Durch die Immunisierung mit dem eingangs detailliert beschriebenen SB824 (pHR241) 

Impfvektor wurden CD8+ T-Zellen induziert, die spezifisch für das immunogene Epitop 

p60217-225 des Bakteriums L. monocytogenes waren. Im Rahmen einer Belastungsinfektion 

vermittelten diese p60217-225-spezifischen CD8+ T-Zellen Schutz vor einer üblicherweise 

tödlichen Dosis L. monocytogenes [57]. 

 Die Menge der generierten p60217-225-spezifischen CD8+ T-Zellen wurde in der Milz 

der immunisierten Mäuse bestimmt. Die Milz ist als sekundäres lymphatisches Organ 

bedeutend für die Entstehung einer Immunantwort und lässt sich überdies auch praktisch 

entnehmen und verarbeiten [88]. Um die Menge der antigenspezifischen T-Zellen in der Milz 

zu detektieren, wurden die aufbereiteten Milzzellen durchflusszytometrisch untersucht.  

 Die p60217-225-spezifischen CD8+ T-Zellen konnten hierbei anhand der Antikörper 

gegen das CD8 Oberflächenprotein sowie der speziellen Tetramere identifiziert werden. Die 

Tetramere banden an die p60217-225-spezifischen T-Zell-Rezeptoren. Abb. 4 zeigt 

exemplarisch die typischen Dot plots, die bei der Auswertung der FACS-Analyse beobachtet 

wurden. Die hier gezeigten T-Zell-Frequenzen wurden durch Untersuchung der Milz an Tag 

11 nach der Immunisierung bestimmt. 
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Abbildung 4 Durchflusszytometrie von Splenozyten. Gezeigt ist der Anteil p60217-225-spezifischer 

CD8+ T-Zellen an den CD8+ T-Zellen der Milz. Hier werden examplarisch die FACS-Analysen zweier 

BALB/c Mäuse (siehe a und b) dargestellt. Die Tiere wurden mit dem Impfvektor SB824 (pHR241) 
immunisiert. Die Messung der T-Zell-Frequenzen fand an Tag 11 nach der Immunisierung statt. Als 

Kontrolle diente eine nicht immunisierte Maus (siehe c). 
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In Abb. 5 wird detailliert visualisiert, wie mithilfe der FlowJo Software die 

durchflusszytometrisch generierten Daten ausgewertet wurden. In einem ersten Dot plot 

(Abb. 5.a) zeigten sich alle in der Probe vorhandenen Zellen, charakterisiert durch die 

Eigenschaft der Vorwärtsstreuung. Diese ist abhängig von der Fläche. FSC-A („Forward 

scatter area“) und FSC-H („Forward scatter height“) können vereinfacht als Breite und Höhe 

der Zelle interpretiert werden. In diesem ersten Auswertungsschritt sollten Zellen, die 

paarweise zusammenhafteten, aussortiert werden. Die rote Figur in Abb. 5.a stellt ein sog. 

Gate dar. Durch Erzeugung eines Gates war es möglich, eine Gruppe von Zellen auszuwählen 

und in einem weiteren Dot plot separat nach anderen Eigenschaften darzustellen. Alle 

einzelnen Zellen befanden sich bei dieser Ansicht tendenziell auf einer Geraden. Durch 

Erzeugung des roten Gates wurden die Einzelzellen ausgewählt und konnten in Fenster 5.b 

separat betrachtet werden. In dem zweiten dargestellten Dot plot waren somit nur noch die 

einzelnen Zellen vorhanden. Die Gruppe der Einzelzellen wird im Fenster 5.b anhand der 

Eigenschaften der Größe (FSC) und Granularität (SSC) dargestellt. Durch Erzeugen eines 

weiteren Gates, dem grünen Kreis in Abb. 5.b, wurden hieraus die Leukozyten für die 

weitere Auswertung selektiert. Alle Zellen aus dem Leukozyten-Gate erschienen dann in 

einem weiteren Dot plot (Abb. 5.c). Dort wurden anhand der Fluoreszenz des EMA- und des 

PE-Farbstoffes die toten Zellen durch Bildung des blauen Gates ausgeschlossen. Die toten 

Zellen zeichneten sich durch eine starke Aufnahme von EMA aus. Die verbliebenen lebenden 

Zellen wurden wiederum in einem Dot plot (Abb. 5.d) anhand der Marker für CD8 und dem 

Tetramer p60-PE aufgeführt. Hieraus wurden die CD8+ T-Zellen durch Erzeugung des gelben 

quadratischen Gates selektiert. Wie in Abb. 5.e deutlich wird, konnte danach der Anteil der 

p60217-225-spezifischen (p60-PE Tetramer positiven) CD8+ T-Zellen an der Gesamtmenge der 

CD8+ T-Zellen der Milz bestimmt werden (Abb. 5.e: orangefarbener Kreis). Es zeigte sich in 

der hier analysierten Milz, dass 1,8 % aller CD8+ T-Zellen p60217-225-spezifische CD8+ T-Zellen 

waren. Als Kontrollen bei den FACS-Analysen dienten die Milzen naiver, nicht immunisierter 

Mäuse. Dort betrug der Anteil p60217-225-Tetramer positiver CD8+ T-Zellen an der Gesamtzahl 

der CD8+ T-Zellen zwischen 0,01 % und 0,05 %. 
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3.1.2. Kinetik der p60217-225-spezifischen CD8
+ 

T-Zell-Antwort 

In den nachfolgenden Versuchen wurde die Entwicklung der Menge p60217-225-spezifischer 

CD8+ T-Zellen zu unterschiedlichen Zeitpunkten nach der Immunisierung untersucht. Abb. 6 

veranschaulicht die verschiedenen Versuchsgruppen. Die Mäuse der Gruppen 1-5 wurden 

am Tag 0 mit SB824 (pHR241) immunisiert. An den Tagen 6, 9, 10, 11 oder 18 wurde der 

Anteil p60217-225-spezifischer CD8+ T-Zellen an den CD8+ T-Zellen der Milz durchfluss-

zytometrisch bestimmt. In Abb. 7 wird die Kinetik der Entwicklung p60217-225-spezifischer 

CD8+ T-Zellen gezeigt. Der Anteil p60217-225-spezifischer CD8+ T-Zellen an den CD8+ T-Zellen 

der Milz betrug im Mittel 0,06 % ± 0,06 % in Versuchsgruppe 1 (an Tag 6), 0,09 % ± 0,11 % in 

Versuchsgruppe 2 (an Tag 9), 0,56 % ± 0,72 % in Versuchsgruppe 3 (an Tag 10), 1,38 % ± 

0,89 % in Versuchsgruppe 4 (an Tag 11) und 1,58 % ± 0,73 % in Versuchsgruppe 5 (an Tag 

18). Diese Versuche zeigten, dass ab Tag 11 mehr als 1 % der CD8+ T-Zellen spezifisch für 

p60217-225 waren. Daher wurde für die nachfolgenden Untersuchungen über die Entwicklung 
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Abbildung 5 Schema der Auswertung von FACS-Analysen mithilfe der FlowJo-Software. 

Fenster a) beinhaltet alle isolierten Milzzellen. Durch den roten Ausschnitt werden hier alle 
einzelnen Zellen ausgewählt. Fenster b) beinhaltet die in a) ausgewählten einzelnen Zellen, durch 

den grünen Kreis werden Leukozyten ausgewählt. Fenster c) zeigt die in b) ausgewählten 

Leukozyten, durch die blaue Figur werden lebende Zellen ausgewählt. Diese werden in Fenster d) 

dargestellt. Dort werden durch das gelbe Rechteck die CD8+ T-Zellen ausgewählt. Fenster e) zeigt 

alle CD8+ T-Zellen, durch den orangefarbenen Kreis werden die p60217-225-spezifischen CD8+ T-

Zellen markiert. 
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der Menge p60217-225-spezifischer CD8+ T-Zellen bei veränderten Kolonisierungskinetiken der 

Tag 11 zur FACS-Auswertung ausgewählt. 

Abbildung 6 Versuchsgruppen 1-5. Mäuse wurden an Tag 0 mit SB824 (pHR241) immunisiert. An den 

Tagen 6 (Gruppe 1), 9 (Gruppe 2), 10 (Gruppe 3), 11 (Gruppe 4) und 18 (Gruppe 5) wurde die Anzahl 

p60217-225-spezifischer CD8+ T-Zellen in der Milz durchflusszytometrisch bestimmt. Jede 

Versuchsgruppe bestand aus 10 Mäusen. 
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Abbildung 7 Kinetik der Entwicklung p60217-225-spezifischer CD8
+ 

T-Zellen in der Milz 

(Versuchsgruppen 1-5). Mäuse wurden mit SB824 (pHR241) immunisiert. An den Tagen 6 

(Versuchsgruppe 1), 9 (Versuchsgruppe 2), 10 (Versuchsgruppe 3), 11 (Versuchsgruppe 4) und 18 

(Versuchsgruppe 5) wurde die Menge p60217-225-spezifischer CD8+ T-Zellen in der Milz 

durchflusszytometrisch analysiert. Dargestellt sind Mittelwerte und Standardabweichung des 

prozentualen Anteils p60217-225-spezifischer CD8+ T-Zellen an der Gesamtzahl der CD8+ T-Zellen der 

Milz. Jede Gruppe bestand aus 10 Mäusen. 

 

3.2. Beeinflussung der Kolonisierungskinetik durch Ciprofloxacin 

3.2.1. Wirksamkeit von Ciprofloxacin in vitro 

Zur Manipulation der Kolonisierungskinetik im Sinne einer Reduktion des Lebendimpfstoffes 

sollte den immunisierten Mäusen das Fluorchinolon Ciprofloxacin appliziert werden. Ziel war 

es zunächst, die Wirksamkeit des Antibiotikums gegenüber dem Stamm SB824 (pHR241) in 

vitro zu ermitteln. Um eine ausreichende Sensitivität des Stammes SB824 (pHR241) 

gegenüber dem Antibiotikum sicherzustellen, wurde die MBC in vitro bestimmt. Die 

niedrigste Ciprofloxacinkonzentration, bei der 99,9 % der Salmonellen in einer Testkultur 

getötet wurden, lag bei 1 µg/ml. 



 30 

3.2.2. Applikationswege von Ciprofloxacin 

Der nächste Schritt bestand in der Etablierung einer Ciprofloxacinbehandlung in dem Maus-

Immunisierungsmodell. Zur Entwicklung eines geeigneten Schemas zur Verabreichung des 

Antibiotikums wurde in einem Vorversuch die intravenöse mit der intraperitonealen 

Applikation verglichen. Drei Gruppen von jeweils 3 Mäusen wurden mit SB824 (pHR241) 

immunisiert (Abb. 8, Versuchsgruppen 6-8). Die Mäuse der Versuchsgruppe 6 dienten als 

Kontrollgruppe. Die Mäuse der Versuchsgruppe 7 erhielten das Antibiotikum oral und 

intravenös, die Mäuse der Versuchsgruppe 8 erhielten das Antibiotikum oral und 

intraperitoneal. Die Ciprofloxacinbehandlung wurde über 4 Tage jeweils zweimal täglich 

durchgeführt. Die Dosis bei der intraperitonealen und intravenösen Verabreichung betrug 

0,5 mg Ciprofloxacin, gelöst in 50 µl H2Odest. Die oral verabreichte Menge betrug ebenfalls 

0,5 mg, gelöst in 50 µl H2Odest. Die Konzentration betrug also jeweils 10 mg Ciprofloxacin pro 

ml H2Odest. Hieraus ergab sich eine Gesamtdosis von 2 mg Ciprofloxacin pro Maus pro Tag. 

Der Behandlungseffekt wurde durch Analyse der Salmonella-CFU-Belastung der 

Versuchsgruppen 6-8 an Tag 11 in der Milz bestimmt. 

 Abbildung 9 zeigt die mittlere Salmonella-CFU-Belastung pro g Milzgewebe. In der 

Versuchsgruppe 6 (Kontrollgruppe) wurden am Tag 11 nach der Immunisierung im Mittel 

1568 ± 995 CFU pro g Milz detektiert. In der Versuchsgruppe 7 (orale plus intravenöse 

Ciprofloxacinapplikation) ließen sich an Tag 11 im Mittel 1356 ± 636 CFU pro g Milz 

nachweisen. In der Versuchsgruppe 8 (orale und intraperitoneale Ciprofloxacinapplikation) 

wurden am Tag 11 nach der Immunisierung im Mittel 1133 ± 472 CFU pro g Milz entdeckt. 

Die Unterschiede in den einzelnen Gruppen waren statistisch nicht signifikant. Aufgrund der 

stärkeren Reduktion der Salmonellen in der Versuchsgruppe 8 (orale und intraperitoneale 

Applikation) und aufgrund technischer Schwierigkeiten bei mehrfacher intravenöser 

Injektion des Antibiotikums in die Schwanzvene der Mäuse wurde das Applikationsschema 

der Versuchsgruppe 8 für alle weiteren Versuche verwendet. Studien ergaben, dass bei einer 

Ciprofloxacinkonzentration größer als 2 mg/ml H2Odest die Gefahr der Ausfällung des 

Antibiotikums im Gewebe besteht; daher wurde die Konzentration der intraperitonealen 

Applikationslösung auf 2 mg/ml abgesenkt [89].  
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Abbildung 8 Versuchsgruppen 6-8, Verschiedene Applikationsarten des Ciprofloxacins. Mäuse 
wurden oral mit SB824 (pHR241) immunisiert. Mäuse der Versuchsgruppe 7 und 8 erhielten von Tag 

7 bis Tag 10 Ciprofloxacin (8 Einzeldosen in 4 Tagen, 2 mg pro Maus pro Tag). In der Gruppe 7 wurde 

das Ciprofloxacin oral und intravenös verabreicht. In der Versuchsgruppe 8 wurde das Antibiotikum 

oral und intraperitoneal verabreicht. Versuchsgruppe 6 diente als immunisierte Kontrollgruppe. Am 

Tag 11 nach der Immunisierung wurde die Kolonisierung der Milz untersucht. Jede Gruppe bestand 

aus 3 Mäusen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Abbildung 9 Vergleich der Applikationswege für die Ciprofloxacinbehandlung. Mäuse wurden oral 

mit SB824 (pHR241) immunisiert. Mäuse der Versuchsgruppe 7 und 8 erhielten von Tag 7 bis Tag 10 
Ciprofloxacin (8 Einzeldosen in 4 Tagen, 2 mg pro Maus pro Tag). In Gruppe 7 wurde Ciprofloxacin 

oral und intravenös verabreicht. In Versuchsgruppe 8 wurde das Antibiotikum oral und 

intraperitoneal verabreicht. Versuchsgruppe 6 diente als immunisierte Kontrollgruppe. Am Tag 11 

nach der Immunisierung wurde die Kolonisierung der Milz untersucht. Jede Gruppe bestand aus 3 

Mäusen. 
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 Aus diesen Vorversuchen ergab sich für alle folgenden Versuche eine Dosis von 0,5 

mg Ciprofloxacin gelöst in 50 µl H2Odest (10 mg Ciprofloxacin/ml H2Odest) für die orale 

Applikation, kombiniert mit 1 mg Ciprofloxacin gelöst in 500 µl H2Odest (2 mg 

Ciprofloxacin/ml H2Odest) für die intraperitoneale Injektion des Antibiotikums. Die Dauer von 

4 Tagen Behandlung wurde beibehalten. Hieraus resultierte eine Gesamtdosis von 3 mg 

Ciprofloxacin pro Maus pro Tag. 

3.2.3. Wirksamkeit von Ciprofloxacin im Mausmodell 

Nach Etablierung dieses Behandlungsregimes wurde der Effekt der Antibiotikabehandlung 

auf die Salmonellen-Kolonisierung der Mäuse weiter untersucht. In diesem Rahmen wurden 

Stuhlproben, Darminhalt und Milzen der Tiere analysiert.  

 In Abb. 10 werden die Versuchsgruppen zur Analyse der Ciprofloxacinwirkung 

anhand von Stuhlproben vorgestellt. Mäuse der Versuchsgruppen 9-12 wurden oral mit 

SB824 (pHR241) immunisiert. Die Gruppe 9 diente als immunisierte Kontrollgruppe. Die 

Mäuse der Gruppen 10, 11 und 12 wurden mit Ciprofloxacin nach dem zuvor erarbeiteten 

Schema behandelt. In Gruppe 10 begann die Behandlung an Tag 0, in Gruppe 11 begann die 

Behandlung an Tag 2 und in Gruppe 12 begann die Behandlung an Tag 4. Jede 

Versuchsgruppe bestand aus 10 Mäusen. Der Behandlungsbeginn an den Tagen 0, 2 und 4 

wurde gewählt, da in späteren Versuchen (siehe Abb. 15) der Effekt dieses 

Behandlungsregimes auf die Induktion antigenspezifischer CD8+ T-Zellen untersucht werden 

sollte. Um die unverzügliche Wirkung des Ciprofloxacins zu unterstreichen, wurde der 

Behandlungseffekt bereits 2 Tage nach Beginn der Ciprofloxacingabe ausgewertet. In Abb. 

11 werden die Ergebnisse der Stuhluntersuchung zusammenfassend dargestellt. 

 Bei der Untersuchung von Stuhlproben wird der Behandlungserfolg durch das 

Fluorchinolon sehr deutlich. In einer immunisierten Kontrollgruppe (Versuchsgruppe 9) 

wurden am Tag 2 nach der Immunisierung im Mittel 35.798 ± 39.755 CFU/g Stuhl detektiert, 

am Tag 4 wurden 53.023 ± 42.163 CFU/g Stuhl gefunden und am Tag 6 wurden 51.545 ± 

27.749 CFU/g Stuhl entdeckt. Im Gegensatz hierzu wurden in Versuchsgruppe 10 am Tag 2 

im Mittel 0 ± 0 CFU/g Stuhl, in Versuchsgruppe 11 am Tag 4 im Mittel 0 ± 0 CFU/g Stuhl und 

in Gruppe 12 am Tag 6 im Mittel 0,4 ± 1,26 CFU/g Stuhl nachgewiesen. Bei der Analyse der 

Stuhlproben konnte eine Reduzierung des Impfvektors um mehr als 5 Log-Stufen durch eine 

zweitägige Ciprofloxacingabe beobachtet werden. 
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Abbildung 10 Untersuchung der Ciprofloxacinwirkung anhand von Stuhlproben - Schematische 

Darstellung der Versuchsgruppen 9-12. Mäuse aller Gruppen wurden mit SB824 (pHR241) 

immunisiert. Die Versuchsgruppe 9 (schwarze Gerade) diente als Positivkontrolle. In Stuhlproben der 

Mäuse wurde die Salmonella-CFU-Menge an den Tagen 2, 4 und 6 untersucht. Die Mäuse der Gruppe 

10 (rote Gerade) wurden an den Tagen 0 und 1 mit Ciprofloxacin behandelt. Am Tag 2 wurde die 

Salmonella-CFU-Menge in Stuhlproben bestimmt. Analog erhielten die Mäuse der Versuchsgruppe 11 
(blaue Gerade) an den Tagen 2 und 3 und die Mäuse der Versuchsgruppe 12 (grüne Gerade) an den 

Tagen 4 und 5 Ciprofloxacin. Der Effekt der Ciprofloxacingabe wurde in Gruppe 11 an Tag 4 und in 

Gruppe 12 an Tag 6 anhand von Stuhlproben ermittelt. Hier wurde nur 2 Tage mit Ciprofloxacin 

behandelt, um den unverzüglichen Wirkungseintritt zu unterstreichen. 

Abbildung 11 Untersuchung von Stuhlproben nach zweitägiger Ciprofloxacinbehandlung. Die 

schwarze Gerade zeigt die Salmonella-CFU-Menge in Stuhlproben immunisierter Mäuse an den 

Tagen 2, 4 und 6 (Versuchsgruppe 9). Die rote Gerade zeigte den Effekt einer Ciprofloxacingabe ab 
Tag 0 (Versuchsgruppe 10), die blaue Gerade verdeutlicht die Ciprofloxacinwirkung bei Gabe ab Tag 2 

(Versuchsgruppe 11), die grüne Gerade zeigt die Reduktion der Anzahl der Salmonellen bei 

Antibiotikagabe ab Tag 4 (Versuchsgruppe 12). 

Immunisierte Kontrolle 

Ciprofloxacin ab Tag 0 

Ciprofloxacin ab Tag 2 

Ciprofloxacin ab Tag 4 
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 Nach erfolgreichem Nachweis der Ciprofloxacinwirkung in Stuhlproben sollte der 

Effekt von Ciprofloxacin auch direkt in einzelnen Organen der Mäuse untersucht werden. 

Der Versuchsaufbau wird durch Abbildung 12 verdeutlicht. Mäuse der Versuchsgruppen 13 

und 14 wurden mit dem Impfstamm SB824 (pHR241) immunisiert. Die Behandlung mit 

Ciprofloxacin wurde in Gruppe 14 am Tag 4 begonnen. Gruppe 13 diente als immunisierte 

Kontrollgruppe. Bereits nach 2 Tagen der Antibiotikagabe wurden am Tag 6 Zökum und Milz 

der Mäuse analysiert. Als Zeitpunkt der Auswertung wurde der Tag 6 nach Immunisierung 

gewählt, da aus Vorarbeiten unserer Arbeitsgruppe bekannt war, dass der Stamm SB824 

(pHR241) zu diesem Zeitpunkt die Mäuse systemisch besiedelt. Nur so war ein Vergleich 

zwischen den Gruppen 13 und 14 möglich [90]. 

 Aus Abb. 13 wird die Reduktion des Impfstammes durch die Antibiotikagabe in 

Versuchsgruppe 14 ersichtlich. Gezeigt ist hier der Effekt auf die Besiedelung von Zökum und 

Milz der Tiere. Mäuse der Versuchsgruppe 13 (immunisierte Kontrolle) zeigten am Tag 6 im 

Mittel eine Kolonisierung von 26957 ± 26316 CFU/mg im Zökum und 5997 ± 8265 CFU/g in 

der Milz. Die mit Ciprofloxacin behandelten Mäuse der Versuchsgruppe 14 zeigten am Tag 6 

im Mittel eine Kolonisierung von 4 ± 11 CFU/mg im Zökum und 205 ± 179 CFU/g in der Milz. 

Die Unterschiede zwischen den Versuchsgruppen 13 und 14 waren hoch signifikant (Zökum: 

p < 0,001, Milz: p < 0,01) 

 

 

Abbildung 12 Versuchsgruppen 13 und 14 - Analyse der Ciprofloxacinwirkung in Zökum und Milz. 

Mäuse der Versuchsgruppen 13 und 14 wurden mit SB824 (pHR241) immunisiert. Mäuse der Gruppe 

14 erhielten Ciprofloxacin an Tag 4 und 5. An Tag 6 wurde die Kolonisierung von Zökum und Milz 
bestimmt. Mäuse der Gruppe 13 dienten als immunisierte Kontrollgruppe. Jede Gruppe bestand aus 

10 Mäusen. 
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Abbildung 13 Versuchsgruppen 13 und 14 - Analyse der Ciprofloxacinwirkung in Zökum und Milz. 

Mäuse der Versuchsgruppen 13 und 14 wurden mit SB824 (pHR241) immunisiert. Mäuse der Gruppe 

14 erhielten Ciprofloxacin an Tag 4 und 5. An Tag 6 wurde die Kolonisierung von Zökum und Milz 

bestimmt. Mäuse der Gruppe 13 dienten als immunisierte Kontrollgruppe. Jede Gruppe bestand aus 

10 Mäusen. (** p < 0,001, * p < 0,01). 

 

3.3. Einfluss der Antibiotikagabe auf die p60217-225-spezifische 

CD8
+ 

T-Zell-Frequenz 

Als nächster Schritt wurde der Einfluss dieser Impfvektorreduktion auf die Menge der 

induzierten p60217-225-spezifischen CD8+ T-Zellen untersucht. Mäuse wurden mit dem 

Impfstamm SB824 (pHR241) immunisiert. Zur Vektorverringerung wurde das Antibiotikum 

Ciprofloxacin nach dem zuvor erarbeiteten viertägigen Schema eingesetzt. Die 

Antibiotikagabe wurde zu unterschiedlichen Zeitpunkten nach der Immunisierung begonnen. 

Abb. 14 zeigt den Versuchsaufbau mit einer Zeittafel. Tiere der Versuchsgruppe 15, die nur 

die Immunisierung am Tag 0 empfingen, dienten als Positivkontrolle der Immunisierung. Mit 

dieser Versuchsgruppe wurden alle nachfolgenden Gruppen verglichen.  

 Bei den übrigen Gruppen (16-18) wurde die Kolonisierung durch den 

Lebendimpfstoff mithilfe einer Ciprofloxacingabe reduziert. Diese Reduktion des Impfvektors 

wurde an Tag 0, Tag 2 oder Tag 4 nach der Immunisierung begonnen. Ziel war es 

festzustellen, ab wann eine Impfvektorreduktion möglich ist, ohne die T-Zell-Induktion im 

Vergleich zur Positivkontrolle abzuschwächen oder zu verhindern. Daher wurden die Mäuse 

der Versuchsgruppe 16 bereits am Tag 0, etwa 10 Minuten nach der Immunisierung, 

erstmals mit Ciprofloxacin behandelt. In einer weiteren Gruppe wurde das Antibiotikum 

beginnend mit dem Tag 2 gegeben (Gruppe 17). Den Mäusen der letzten Gruppe wurde 

Ciprofloxacin ab Tag 4 verabreicht (Gruppe 18). 
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 Am 11. Tag nach der Immunisierung wurde die Menge der p60217-225-spezifischen 

CD8+ T-Zellen in der Milz der Tiere durchflusszytometrisch bestimmt. In Abb. 15 wird der 

Vergleich dieser vier Gruppen dargestellt. In der Positivkontrollgruppe (Gruppe 15), in der 

über 11 Tage eine unbeeinflusste Kolonisierung durch Salmonella stattgefunden hatte, 

waren im Mittel 1,38 % ± 0,89 % der CD8+ T-Zellen in der Milz für das p60217-225 Tetramer 

positiv. Wurde das Antibiotikum ab dem Tag 0 gegeben (Gruppe 16), waren am Tag 11 im 

Mittel 0,27 % ± 0,32 % der CD8+ T-Zellen der Milz p60217-225-spezifische CD8+ T-Zellen. Diese 

T-Zell-Frequenz war im Vergleich zur Positivkontrollgruppe (Gruppe 15) signifikant geringer 

(p < 0,001). Wurde mit der Vektorreduktion ab Tag 2 nach der Immunisierung begonnen 

(Gruppe 17), so konnten im Mittel 0,99 % ± 0,69 % p60217-225-spezifische CD8+ T-Zellen unter 

den CD8+ T-Zellen der Milz entdeckt werden. Bei dieser Versuchsgruppe zeigte sich kein 

signifikanter Unterschied zur Positivkontrollgruppe. Wurde das Antibiotikum ab Tag 4 nach 

der Immunisierung gegeben (Versuchsgruppe 18), so wurden im Mittel 1,51 % ± 1,08 % 

p60217-225-spezifische CD8+ T-Zellen induziert. Es bestand hier ebenfalls kein signifikanter 

Unterschied zu der Positivkontrollgruppe. 
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Abbildung 14 Einfluss der Kolonisierungskinetik auf die Induktion p60217-225-spezifischer 

CD8
+ 
T-Zellen - Versuchsgruppen 15-18. Mäuse der Versuchsgruppen 15-18 wurden mit SB824 

(pHR241) immunisiert. Am Tag 11 nach der Immunisierung wurde die Frequenz p60217-225-spezifischer 

CD8+ T-Zellen in der Milz bestimmt. Die Versuchsgruppe 15 diente als Positivkontrolle. Mäuse der 

Versuchsgruppen 16-18 erhielten das Antibiotikum Ciprofloxacin mit Beginn von Tag 0, Tag 2 oder 

Tag 4. Das Ciprofloxacin wurde über 4 Tage nach zuvor beschriebenem Schema verabreicht. Jede 

Gruppe bestand aus 10 Mäusen. 
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Abbildung 15 Einfluss der Ciprofloxacinbehandlung auf die Induktion p60217-225-spezifischer 

CD8
+ 
T-Zellen - Versuchsgruppen 15-18. Gezeigt ist die Frequenz p60217-225-spezifischer CD8+ T-Zellen 

gemessen an Tag 11 in der Milz. Die Frequenz p60217-215-spezifischer CD8+ T-Zellen in Gruppe 16 

(Ciprofloxacin ab Tag 0) ist signifikant niedriger als in Gruppe 15 (Kontrolle). Im Vergleich zwischen 
den Gruppen 17 (Ciprofloxacin ab Tag 2) und 18 (Ciprofloxacin ab Tag 4) mit Gruppe 15 (Kontrolle) 

besteht hingegen kein signifikanter Unterschied. Die dargestellten Mittelwerte und 

Standardabweichungen resultieren aus zwei unabhängigen Experimenten mit jeweils 5 Tieren pro 

Gruppe. (* p < 0,001) 

 

3.4. Einfluss der Antibiotikagabe auf die Funktionalität der p60217-227-

spezifischen CD8
+ 

T-Zellen 

3.4.1. Methoden zur Analyse der T-Zell-Qualität 

Es wurde deutlich, dass eine Kolonisierungszeit von nur 2 Tagen vor der erstmaligen Gabe 

einer Antibiotikadosis ausreichend ist, um eine große Menge p60-spezifischer CD8+ T-Zellen 

zu induzieren. Daraufhin sollte überprüft werden, ob die induzierten T-Zellen auch Schutz 

vermitteln können. Hierzu wurden zwei Ansätze gewählt. Durch die Untersuchung der 

Untergruppen dieser Zellpopulation lässt sich eine erste Aussage über die Funktionalität 

antigenspezifischer CD8+ T-Zellen treffen. Die zweite Methode zur Kontrolle der 

Schutzfunktion p60217-225-spezifischer CD8+ T-Zellen ist eine Belastungsinfektion mit dem 

Bakterium L. monocytogenes selbst. Beide Methoden wurden in dieser Arbeit durchgeführt 

und werden im Folgenden näher beschrieben. 
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3.4.2. T-Zell-Subpopulationen 

Antigenspezifische CD8+ T-Zellen lassen sich in mindestens drei Subpopulationen einteilen. 

Darunter die Effektor-T-Zellen (effector T cells: TEC), die zentralen Gedächtniszellen (central 

memory T cells: TCMC) und die Effektor-Gedächtniszellen (effector memory T cells: TEMC) [91]. 

Der Großteil der antigenspezifischen T-Zellen wird von den kurzlebigen TEC gebildet, die sich 

nach einer Antigenexposition rasch wieder zurückbilden. Die beiden 

Gedächtniszellpopulationen hingegen sind langlebiger. Die TEMC wandern bevorzugt in nicht-

lymphatische Organe und überleben dort für eine sehr lange Zeit. Beim erneuten 

Zusammentreffen mit dem Antigen können sie rasch proliferieren und Zytokine ausschütten. 

Die TCMC hingegen verweilen in lymphatischen Geweben. Auch sie expandieren stark bei 

erneutem Antigenkontakt.  

 Von großer Bedeutung in Listeria-Infektionsmodellen sind die TEMC. Diese spielen 

die Hauptrolle bei der Vermittlung des Schutzes vor einer Listerien-Infektion [92]. Es wurde 

daher untersucht, ob durch die Immunisierungsstrategie mit verschiedenen 

Kolonisierungskinetiken jeweils genügend TEMC entstanden sind. 

Anhand der Oberflächenantigene CD62L und CD127 können die T-Zell-

Untergruppierungen unterschieden werden [92]. Die homing-Rezeptoren CD62L (L-selektin) 

und CCR7, ein Chemokinrezeptor, werden von T-Zellen benötigt, um in Lymphknoten 

einzutreten. Dort ermöglichen die homing-Rezeptoren den T-Zellen das Anhaften am 

Endothel der arteriellen Blutgefäße, damit diese durchwandert werden können [91, 93, 94]. 

TCMC sind durch eine große Dichte dieser beiden Rezeptortypen auf ihrer Zelloberfläche 

gekennzeichnet. Sind diese beiden Rezeptortypen niedrig exprimiert, werden die T-Zellen als 

TEMC bezeichnet [95]. Um die TEMC und die Gruppe der TEC zu unterscheiden, die beide CD62L 

in geringer Menge exprimieren, kann der Oberflächenmarker CD127 verwendet werden. 

CD127 ist die α-Kette des Interleukin-7-Rezeptors. Dieser wird auf allen ruhenden 

peripheren CD4+  und CD8+ T-Zellen exprimiert [51]. TEC exprimieren CD127 in geringer 

Menge, TEMC exprimieren CD127 in großer Menge [93].  

Zusammenfassend können die verschiedenen T-Zell-Subpopulationen durch ein 

CD127low/CD62Llow Expressionsmuster der TEC, ein CD127high/CD62Llow Expressionsmuster der 

TEMC und ein CD127high/CD62Lhigh Expressionsmuster der TCMC beschrieben werden. Abb. 16 

verdeutlicht diese unterschiedlichen Expressionsmuster. 
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Abbildung 16 Unterscheidung der T-Zell-Subpopulationen anhand der Oberflächenmarker CD127 

und CD62L. Antigenspezifische CD8 T-Zellen können anhand der unterschiedlich ausgeprägten 

Expression von CD127 und CD62L in TEC (CD127low/CD62Llow), TCMC (CD127high/CD62Lhigh)und TEMC 

(CD127high/CD62Llow) unterteilt werden. 

 

 Um die Aufteilung der einzelnen T-Zell-Subpopulationen zu analysieren, wurden 

bei den FACS-Färbungen der Versuchsgruppen 15-18 am Tag 11 zusätzlich auch Färbungen 

für die Oberflächenmarker CD127 und CD62L durchgeführt. Die Auswertung der T-Zell-

Subpopulationen wird in Abb. 17 dargestellt. Als Vergleichsstandard diente die Gruppe der 

Positivkontrolle der Immunisierung (Versuchsgruppe 15). Mit dieser Gruppe wurden die 

Gruppen mit Ciprofloxacingabe ab Tag 2 (Versuchsgruppe 17) und ab Tag 4 (Versuchsgruppe 

18) verglichen. Die Ergebnisse der Versuchsgruppe 16 (Ciprofloxacin ab Tag 0) wurden 

aufgrund der sehr niedrigen p60217-225-spezifischen CD8+ T-Zell-Frequenzen nicht in diese 

Auswertung aufgenommen. 

 Die Mäuse der Versuchsgruppe 15 (Positivkontrolle) zeigten ein Verteilungsmuster 

der T-Zell-Subpopulationen von 8,8 % ± 6,5 % TCMC, 48,4 % ± 5,8 % TEMC und 41,4 % ± 8,0 % 

TEC. Im Vergleich hierzu wurde bei den Mäusen der Versuchsgruppe 18 (Antibiotikagabe ab 

Tag 4) kein signifikanter Unterschied in der Aufteilung der T-Zell-Subpopulationen 

festgestellt. Mäuse dieser Gruppe wiesen eine Aufteilung von 9,6 % ± 7,7 % TCMC, 48 % ± 6,0 

% TEMC und 38,3 % ± 13,2 % TEC auf. Die Mäuse der Versuchsgruppe 17 (Antibiotikagabe ab 
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Tag 2) zeigten signifikante Unterschiede in der Aufteilung der T-Zell-Subpopulationen im 

Vergleich mit Mäusen der Positivkontrollgruppe (Versuchsgruppe 15). In Versuchsgruppe 17 

zeigte sich Verteilung von 7,1 % ± 3,4 % TCMC, 36,7 % ± 8,2 % TEMC und 53,8 % ± 8.0 % TEC 

festgestellt. Hieraus wird deutlich, dass bei Versuchgruppe 17 der Anteil der TEMC im 

Vergleich zu Versuchsgruppe 15 signifikant niedriger war (p < 0,01). Gleichzeitig war der 

Anteil der TEC bei Versuchsgruppe 17 im Vergleich zu Versuchsgruppe 15 signifikant höher 

(p < 0,01). 

 

Abbildung 17 Aufteilung der CD8 T-Zell-Subpopulationen. Mäuse wurden mit dem Impfstamm 

SB824 (pHR241) immunisiert. Das Antibiotikum wurde mit Beginn ab Tag 2 oder Tag 4 verabreicht. 

Am Tag 11 wurden die Milzen der Tiere im Hinblick auf die induzierten p60217-225-spezifischen 

CD8 T-Zell-Subpopulationen untersucht. Die gezeigten Mittelwerte und Standardabweichungen 

resultieren aus zwei unabhängigen Experimenten mit jeweils 5 Tieren pro Gruppe. (* p < 0,01) 

 

3.4.3. Belastungsinfektionen mit L. monocytogenes 

Die zweite Methode zur Analyse der Funktionalität der erzeugten p60217-225-spezifischen 

CD8+ T-Zellen besteht in der Belastungsinfektion der immunisierten Tiere mit L. 

monocytogenes. Die Listerien-Infektion des Menschen entsteht in der Mehrzahl aller Fälle 

durch kontaminierte Lebensmittel. Die Haupteintrittspforte ist der Gastrointestinaltrakt. Bei 

gesunden Individuen entsteht eine Gastroenteritis mit Fieber. Bei immungeschwächten 
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Patienten kann aber auch eine systemische Infektion mit Sepsis oder Enzephalitis auftreten 

[96]. Bei den Versuchen im Rahmen dieser Arbeit wurden die Listerien den Mäusen 

intravenös injiziert. Der Versuchsaufbau der Belastungsinfektionen mit Listeria basierte auf 

einer Erweiterung der Versuchsgruppen 15-17. Der Versuchsaufbau der Versuchsgruppe 18 

(Ciprofloxacin ab Tag 4) wurde für diese weiteren Studien nicht mehr verwendet. Die 

Schutzfunktion der in Versuchsgruppe 18 induzierten p60217-225-spezifischen CD8+ T-Zellen 

wurde als hinreichend bestätigt betrachtet, da sowohl die p60217-225-spezifische T-Zell-

Frequenz als auch die Aufteilung der T-Zell-Subpopulationen bei dieser Gruppe nicht 

signifikant von den Werten der Positivkontrolle abwichen. 

 Die Versuchsgruppen 15.B, 16.B und 17.B – das „B“ steht für Belastungsinfektion – 

wurden mit SB824 (pHR241) immunisiert. Gruppe 15.B diente als Positivkontrolle der 

Immunisierung. Die Mäuse der Versuchsgruppen 16.B und 17.B erhielten eine viertägige 

Ciprofloxacinbehandlung mit Beginn an Tag 0 (Gruppe 16.B) oder an Tag 2 (Gruppe 17.B). 

Am 12. Tag nach der Immunisierung erhielten Mäuse der Gruppen 15.B, 16.B und 17.B eine 

Dosis von 2 x 104 CFU Listerien in die Schwanzvene injiziert. Als nicht-immunisierte 

Kontrollgruppe dienten naive BALB/c Mäuse. Diese bildeten die Versuchsgruppe 19. Diese 

Mäuse erhielten lediglich die Dosis von 2 x 104 CFU Listerien ohne weitere Vorbehandlung. 

Drei Tage später, an Tag 3 nach der Belastungsinfektion, wurden die Mäuse aller 4 Gruppen 

getötet und auf die Listeria-Belastung in der Milz untersucht. Abb. 18 zeigt diesen 

erweiterten Experimentaufbau.  
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 In Abb. 19 ist die Auswertung der Belastungsinfektionen zusammenfassend 

dargestellt. Die Gruppe der naiven Mäuse (Versuchsgruppe 19) wurde in hohem Maße durch 

die Listerien kolonisiert. In den Milzen dieser Tiere wurden im Mittel 2,1 x 108 ± 1,7 x 108 

CFU/g gefunden. Mäuse der positiven Immunisierungskontrollgruppe (Versuchsgruppe 15.B) 

hingegen waren sehr gut geschützt. Bei 8 von 10 Tieren waren in der Milz keine Listerien zu 

finden. In zwei Mäusen konnten in der Milz Listerien detektiert werden. Eine dieser Milzen 

war mit 490 CFU/g, eine weitere mit 13 CFU/g kolonisiert. Hieraus ergab sich eine mittlere 

Kolonisierung von 50 ± 155 CFU/g in Versuchsgruppe 15.B. Wurde die Kolonisierungskinetik 

durch eine Antibiotikaverabreichung ab dem Tag 0 manipuliert (Versuchsgruppe 16.B), so 

waren die Tiere signifikant schlechter geschützt (p < 0,001). Bei diesen Tieren wurde eine 

durchschnittliche Listeria-Belastung von 4,6 x 107 ± 4,6 x 107 CFU/g Milz gemessen. Wurde 

die Kolonisierung durch den Impfvektor hingegen erst ab Tag 2 nach der Immunisierung 

durch Ciprofloxacin verringert (Versuchsgruppe 17.B), so stellte sich wiederum ein 

wirksamer Schutz ein. Die Mäuse dieser Versuchsgruppe waren mit durchschnittlich 391 ± 

527 CFU/g Milz besiedelt. Obwohl in der Aufteilung der CD8+ T-Zell-Subpopulationen ein 

 
 
Abbildung 18 Versuchsgruppen 15.B-17.B + 19. Belastungsinfektionen mit L. monocytogenes. 

Mäuse der Versuchsgruppen 15.B-17.B wurden mit SB824 (pHR241) immunisiert. Mäuse der 

Versuchsgruppe 19 dienten als nicht immunisierte Kontrollgruppe. An Tag 12 wurde den Mäusen 

aller Gruppen eine letale Dosis L. monocytogenes (2 x 104 CFU) intravenös injiziert. Am Tag 3 nach 

der Belastungsinfektion mit Listeria bzw. Tag 15 nach der Immunisierung mit Salmonella wurde 

die Menge der Listerien in der Milz der Mäuse bestimmt. 
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signifikanter Unterschied zwischen den Versuchsgruppen 15 (positive Immunisierungs-

kontrolle) und 17 (Ciprofloxacin ab Tag 2) bestand (siehe Abb. 17), konnte kein signifikanter 

Unterschied in der Schutzfunktion der induzierten p60217-225-spezifischen CD8+ T-Zellen 

beider Gruppen festgestellt werden. 

 

 

Abbildung 19 Belastungsinfektion mit L. monocytogenes – Versuchsgruppen 15.B-17.B + 19. 

BALB/c Mäuse der Gruppen 15.B-17.B wurden mit SB824 (pHR241) immunisiert. Mäuse der 

Gruppe 19 dienten als naive Kontrolle. Mäusen der Gruppen 16.B und 17.B wurde das 

Ciprofloxacin mit Beginn von Tag 0 (Gruppe 16.B) oder 2 (17.B) verabreicht. Am Tag 12 erhielten 

alle Gruppen eine Belastungsinfektion mit 2 x 104 CFU L. monocytogenes. Am Tag 15 (Tag 3 nach 
der Belastungsinfektion) wurde die Menge an Listerien in der Milz der Mäuse ermittelt. Die 

gezeigten Mittelwerte und Standardabweichungen resultieren aus 2 unabhängigen Experimenten 

mit jeweils 5 Tieren pro Gruppe. (* p< 0,001) 
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4. Diskussion 

4.1. Salmonella-Impfvektoren 

Wie in der Einleitung beschrieben, besteht der Bedarf zur Entwicklung von Impfstoffen, die 

antigenspezifische CD8+ T-Zellen induzieren. Diese Impfstoffe sollen in der Prävention und 

Therapie einer Vielzahl von Krankheiten eingesetzt werden. Hierzu zählen Krankheiten, die 

durch intrazellulär replizierende Erreger verursacht werden, ebenso wie Krebs- oder 

Autoimmunerkrankungen. Robinson und Amara beschreiben fünf Kategorien von 

Impfstoffen, die zur Induktion antigenspezifischer CD8+ T-Zellen imstande sind [29]. Vertreter 

der ersten Gruppe sind die abgeschwächten viralen und bakteriellen Lebendimpfstoffe. Die 

zweite und dritte Gruppe bilden replikationsfähige bzw. nicht-replikationsfähige 

Lebendvektoren. Die vierte Gruppe besteht aus DNA-Impfstoffen, die fünfte Gruppe wird 

von heterologen Prime-Boost-Impfstoffen repräsentiert. Bei Impfungen mit Prime-Boost-

Impfstoffen wird das gleiche Antigen auf zwei verschiedene Arten präsentiert. Diese 

Strategie wurde erstmals bei der Entwicklung von HIV-Impfstoffen angewendet [97] und 

danach auf andere Fragestellungen übertragen [98]. 

 Im Rahmen dieser Arbeit wurde ein attenuierter S. typhimurium-Stamm als 

lebender Vektor für heterologe Antigene im Maus-Immunisierungsmodell verwendet. 

Formal und Kollegen setzten im Jahr 1981 erstmals einen S. typhi-Stamm als Vektor für 

heterologe Antigene ein [99]. Der Typhus-Lebendimpfstoff Ty21a wurde genetisch 

modifiziert, um ein Oberflächenantigen von Shigella sonnei zu sekretieren. Nach oraler 

Immunisierung waren Mäuse nicht nur gegen Typhus, sondern auch gegen Shigellose 

geschützt. 

 Rüssmann und Kollegen entwickelten eine neue Methode zur Induktion 

antigenspezifischer CD8+ T-Zellen, welche dieser Arbeit zugrunde liegt. Das Salmonella-T3SS 

wurde verwendet, um Modellantigene direkt in das Zytosol von APCs zu translozieren. 

Aufgrund der zytosolischen Lokalisation wurde das Antigen über den MHC Klasse I-

Antigenpräsentationsweg prozessiert, wodurch im Mausmodell antigenspezifische 

CD8+ T-Zellen generiert werden konnten [53, 57, 79]. Durch diese Impfstrategie konnte in 

experimentellen Ansätzen Immunität gegenüber Viren, Bakterien und Tumoren erzeugt 

werden [53, 57, 100-103]. Zudem konnten Roider und Kollegen die therapeutische 

Wirksamkeit dieser Impfmethode bei murinen Fibrosarkomen nachweisen [104]. 
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 Zur besonderen Eignung von Salmonellen als Vakzin-Vektor zählen Zhang und 

Kollegen verschiedene Gründe auf [105]:  

1. Das Genom von Salmonella lässt sich einfach manipulieren. 

2. Durch S. typhimurium ist ein Mausmodell zur Erforschung der Pathomechanismen des 

Typhus abdominalis vorhanden [32]. 

3. Mit Ty21a ist bereits ein oraler Lebendimpfstoff gegen Typhus beim Menschen erprobt 

und zugelassen [33].  

 Cheminay und Hensel weisen auf den Vorteil hin, dass rekombinante Salmonellen-

Stämme oral verabreicht werden können. Über den natürlichen Infektionsweg verabreichte 

Salmonella-Impfvektoren sind in der Lage, eine mukosale und systemische Immunität zu 

induzieren. Hierbei werden sowohl humorale wie auch zelluläre Immunantworten generiert 

[106]. Kotton und Hohmann merken zwei weitere Vorzüge bakterieller Lebendvektoren an: 

zum einen ist die Produktion der Impfstoffe als sehr kostengünstig zu beurteilen, zum 

anderen wird aufgrund der einfachen Applikation eine gute Compliance bei den Patienten 

gewährleistet. Kotton und Hohmann erläutern auch Nachteile und Risiken oraler 

Lebendimpfstoffe. Zu den Risiken zählen sie die Möglichkeit einer ungewollten systemischen 

Ausbreitung des Impfvektors, die Gefahr der Übertragung des Vektors auf Kontaktpersonen 

des Impflings oder eine mögliche Kontamination der Umwelt mit den rekombinanten 

Bakterien. Die ungewollte systemische Ausbreitung des Impfstoffes könnte gesunde, 

besonders aber auch abwehrgeschwächte Patienten betreffen [73]. 

 Eine Studie an Krebspatienten deckte weitere Risiken auf. Den 

Studienteilnehmern, die an einem metastasierten malignen Melanom litten, wurde S. 

typhimurium intravenös verabreicht. Aufgrund der Fähigkeit von Salmonella, sich in 

Tumorgewebe anzureichern und dessen Wachstum zu inhibieren [107], wurden 24 Patienten 

intravenös mit einem attenuierten S. typhimurium-Stamm behandelt. Zu den unerwünschten 

Wirkungen dieser Immunisierung gehörten Thrombozytopenie, Anämie, persistierende 

Bakteriämie, Hyperbilirubinämie, Diarrhö, Erbrechen und Übelkeit. Eine Tumorregression 

konnte bei keinem der Patienten beobachtet werden [108]. 

 Gemessen am großen Erfolg von S. typhimurium als Vakzin-Vektor im Mausmodell 

waren die Resultate bei Anwendung dieser Impfstrategie im Rahmen klinischer Studien 

bisher enttäuschend. Galen und Kollegen berichten über 8 klinische Studien, bei denen 

S. typhi als Vektor für heterologe Antigene eingesetzt wurde [72]. Als gemeinsames Merkmal 
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dieser klinischen Studien stellte sich heraus, dass S. typhi-Vektoren in humanen 

Immunisierungen im Vergleich zu murinen S. typhimurium-Immunisierungen nur schwach 

immunogen waren [77, 109-115]. Galen und Kollegen sahen die Ursache für dieses 

Phänomen in einer zu starken Attenuierung der S. typhi-Vektoren [72]. Die verwendeten 

Vektoren waren rekombinant veränderte Typhus-Lebendimpfstoffe. Hieraus resultierte die 

Hypothese, dass optimal attenuierte Typhus-Impfstoffe als Träger heterologer Antigene 

bereits zu stark attenuiert sein könnten [72]. Curtiss und Kollegen machen den 

metabolischen Stress, der bei der Exprimierung heterologer Antigene in den Bakterien 

entsteht, für dieses Phänomen verantwortlich [116, 117]. Diese Autoren fanden zudem 

Hinweise dafür, dass der Grad der Attenuierung selbst die Immunugenität eines heterologen 

Salmonellen-Impfstoffes beeinflusst. Die gleichen Virulenzfaktoren, die Salmonella 

befähigen, in den Wirt einzudringen und diesen zu schädigen, wären demnach zugleich für 

eine starke Immunogenität des Impfstoffes notwendig. Unterstützung für diese These 

lieferten Experimente mit konditional attenuierten Salmonella-Vektoren. Konditionale 

Attenuierung bedeutet in diesem Zusammenhang, dass die Bakterien bei der Immunisierung 

theoretisch genauso virulent sind wie Wildtyp-Bakterien. Sobald die Salmonellen den Wirt 

kolonisieren und lymphatische Gewebe erreicht haben, manifestiert sich die Attenuierung. 

Bei Studien mit konditional attenuierten Salmonella-Vektoren, die ein heterologes Antigen 

des Bakteriums Streptococcus pneumoniae trugen, konnte eine vielfach stärkere 

Immunantwort als bei klassisch attenuierten Vektoren beobachtet werden [116, 117]. 

 Neben einer weiteren Verbesserung der Balance zwischen Attenuierung und 

Virulenz von Salmonella-Impfstämmen könnte auch eine externe Kontrolle der 

Kolonisierungsdauer zu mehr Sicherheit beitragen. Hierdurch könnte beispielsweise die 

Gefahr einer chronischen Persistenz des Vektors oder der Ausbreitung des Impfstammes auf 

Kontaktpersonen des Impflings wesentlich verringert werden. Im Rahmen dieser Arbeit 

wurde daher untersucht, wie lange ein Salmonella-Impfvektor auf dem natürlichen 

Immunisierungsweg kolonisieren muss, bis die Impfvektormenge durch eine Antibiotikagabe 

reduziert werden kann, ohne hierdurch die Induktion einer schützenden Population 

antigenspezifischer CD8+ T-Zellen zu verhindern. 
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4.2. Einfluss der Kolonisierungskinetik auf die Induktion 

antigenspezifischer CD8
+ 

T-Zellen 

4.2.1. Vektorreduktion durch Ciprofloxacin 

Um diese Frage zu beantworten, wurden Mäuse, wie in Kapitel 1.2.2 beschrieben, oral mit 

dem Stamm SB824 (pHR241) immunisiert. Die Vektormenge wurde zu verschiedenen 

Zeitpunkten nach der Immunisierung durch Verabreichung des Antibiotikums Ciprofloxacin 

stark reduziert. Ciprofloxacin wurde aufgrund von klinischen Empfehlungen zur Behandlung 

des Typhus abdominalis ausgewählt [118]. Darauffolgend wurde der Einfluss dieser 

veränderten Kolonisierungskinetik auf die Menge und Funktionalität der induzierten 

antigenspezifischen CD8+ T-Zellen analysiert (siehe Abb. 14). 

 In den ersten Versuchsreihen wurde die Wirksamkeit von Ciprofloxacin auf den 

Stamm SB824 (pHR241) getestet. Testreihen in vitro ergaben eine MBC von 1 µg/ml, die 

vergleichbar mit den Ergebnissen anderer Studien und den Herstellerangaben war [118]. 

Daraufhin wurden in vivo Experimente zur Applikationsart des Antibiotikums (Kapitel 3.2.2) 

durchgeführt. Hierbei wurde die intravenöse und intraperitoneale Applikation untersucht. 

Zusätzlich wurde das Ciprofloxacin immer auch oral verabreicht. Anfangs zeigte sich nur eine 

schwache Wirksamkeit des Ciprofloxacins. Als Ursache für dieses Phänomen wurde eine zu 

hohe Konzentration des Antibiotikums vermutet. Bei der intravenösen und intraperitonealen 

Applikation war das Ciprofloxacin bei den ersten Versuchen mit 10 mg/ml H2Odest sehr hoch 

konzentriert. Webb und Kollegen berichten, dass Ciprofloxacin in hoher Konzentration (> 2 

mg/ml H2Odest) im Gewebe schnell auskristallisiert und somit unwirksam wird [89]. Daher 

wurde die Konzentration der Ciprofloxacinlösung für die intraperitoneale Applikation auf 2 

mg/ml abgesenkt. Hierdurch konnte durch eine niedrigere Konzentration eine höhere 

Wirksamkeit erreicht werden. Die intravenöse Applikation wurde aus zwei Gründen nicht 

weiter durchgeführt: der Vergleich zwischen intraperitonealer und intravenöser 

Verabreichung zeigte zwar keinen signifikanten Unterschied, tendenziell war aber die 

Effektivität der intraperitonealen Applikation höher (siehe Abb. 9). Der zweite Grund 

bestand in technischen Schwierigkeiten bei mehrfacher Injektion des Ciprofloxacins in die 

Schwanzvene der Mäuse. Für die folgenden Versuche wurde daher die kombinierte 

intraperitoneale und orale Applikation des Ciprofloxacins gewählt. 

 Das Antibiotikum wurde im Abstand von 12 Stunden über einen Zeitraum von 4 

Tagen verabreicht. Über die optimale Behandlungsdauer mit Fluorchinolonen bei Typhus 



 48 

abdominalis besteht Uneinigkeit. Zwar wird eine Behandlungsdauer von 10-14 Tagen 

empfohlen, neuere Studien ergaben aber, dass eine zwei- oder dreitägige Behandlung 

ausreichend ist [118-121]. Laut Thaver und Kollegen ist eine Kurzzeit-Behandlung aufgrund 

niedrigerer Kosten, geringerer Nebenwirkungen und einer besseren Compliance der 

Langzeitbehandlung vorzuziehen [118]. Eine 2011 veröffentlichte Studie von Crull und Weiss 

über die Wirkung von Ciprofloxacin in einem S. typhimurium Maus-Immunisierungsmodell 

konnte ebenfalls eine gute Ciprofloxacinwirkung bei einer viertägigen Behandlung 

nachweisen [122]. In der hier vorliegenden Studie wurde deshalb, auch im Hinblick auf eine 

mögliche Übertragung auf klinische Studien, das Ciprofloxacin nur für 4 Tage verabreicht. 

 In den darauffolgenden Versuchen zur Ciprofloxacinwirkung (Kapitel 3.2.3) konnte 

dann eine deutliche Reduktion des Salmonella-Impfvektors sowohl in Stuhlproben als auch 

in Zökum- und Milzausstrichen nachgewiesen werden. In Stuhlproben konnte die Menge der 

Salmonellen um mehr als 5 Log-Stufen, im Zökum um mehr als 3 Log-Stufen und in der Milz 

um mehr als 1 Log-Stufe verringert werden. Zu berücksichtigen ist, dass durch die 

Antibiotikagabe eine zügige und starke Verminderung der Menge des Impfvektors erreicht 

wurde, jedoch keine vollständige Eradikation desselben. 

4.2.2. Alternative Methoden zur Vektorreduktion 

Der umfangreiche und teilweise unkontrollierte Einsatz von Antibiotika hat weltweit zur 

Ausbreitung vielfach resistenter Bakterienstämme geführt. Hierzu gehören grampositive 

Bakterien wie Staphylococcus aureus, Streptococcus pneumoniae und Enterokokken, ebenso 

wie multiresistente Mycobacterium tuberculosis- oder S. typhi-Stämme [123-125]. 

Erkrankungen durch multiresistente S. typhi-Stämme („multi drug resistant typhoid fever“, 

MDRTF) sind durch Resistenzen des Erregers gegenüber den 3 ursprünglichen Antibiotika der 

ersten Wahl bei Typhus abdominalis charakterisiert. Diese 3 Antibiotika waren 

Chloramphenicol, Ampicillin und Cotrimoxazol. Gegen Chloramphenicol resistente S. typhyi 

wurden bereits im Jahr 1950, nur 2 Jahre nach der Einführung dieses Antibiotikums, 

entdeckt. In den darauffolgenden Jahren traten ebenfalls Resistenzen gegen Ampicillin und 

Cotrimoxazol auf. Heute wird die Inzidenz von MDRTF in einigen asiatischen Ländern auf bis 

zu 65 % beziffert [126]. Auch gegenüber Ciprofloxacin, dem aktuellen Standardmedikament 

bei Typhus abdominalis, werden bei S. typhi-Stämmen immer mehr Resistenzen entdeckt 

[127, 128].  
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 Für eine mögliche Übertragung der hier vorgestellten Vektorreduktion auf eine 

klinische Anwendung wäre daher eine alternative Methode zur Verringerung der Impfvektor-

Menge wünschenswert.  

 Loessner und Kollegen entwickelten eine Methode, die eine externe Steuerung 

rekombinant veränderter Salmonellen durch Verabreichung des Zuckers L-Arabinose erlaubt. 

Sie wiesen anhand rekombinanter Salmonellen nach, dass heterologe Gene, die unter 

Kontrolle des Promoters PBAD stehen, durch L-Arabinose in vivo aktivierbar sind [129]. Stand 

das „lysin gene E“ des Bakteriophagen φX174 unter Kontrolle des PBAD Promoters, konnte 

durch Verabreichung von L-Arabinose eine Lyse der Bakterien in vivo induziert werden [129]. 

Diese Methode der Vektorreduktion stellt eine aussichtsreiche Alternative zur 

Verabreichung von Antibiotika dar. 

4.2.3. Einfluss der Vektorreduktion auf die Induktion p60217-225-spezifischer 

CD8
+ 

T-Zellen  

Nach der Etablierung der Antibiotikagabe als geeignete Methode zur Impfvektorreduktion 

wurde deren Einfluss auf die Induktion antigenspezifischer CD8+ T-Zellen analysiert. Hierzu 

wurden, wie in Kapitel 2.3 beschrieben, die Versuchsgruppen 15-18 miteinander verglichen. 

Wurde die Antibiotikagabe im direkten Anschluss an die Immunisierung begonnen 

(Versuchsgruppe 16), so wurde eine signifikant geringere Menge p60217-225-spezifischer CD8+ 

T-Zellen induziert. 

 Wurde die Antibiotikagabe hingegen erst am Tag 2 nach der Immunisierung 

begonnen (Versuchsgruppe 17), so war die Menge der induzierten p60217-225-spezifischen 

CD8+ T-Zellen im Vergleich zur Kontrollgruppe (Versuchsgruppe 15) nicht signifikant 

verringert. Wie im Folgenden noch diskutiert wird, waren die p60217-225-spezifischen CD8+ T-

Zellen der Versuchsgruppe 17 auch in ihrer biologischen Funktionalität im Vergleich zur 

Positivkontrollgruppe nicht limitiert. Gleiches gilt für die Gruppe, in der das Ciprofloxacin ab 

dem 4. Tag nach der Immunisierung verabreicht wurde (Versuchsgruppe 18). Weder Menge 

noch Funktion der p60217-225-spezifischen CD8+ T-Zellen unterschieden sich von denen der 

Kontrollgruppe (siehe Abb. 15). 

 Neben der Betrachtung der Menge induzierter p60217-225-spezifischer CD8+ T-Zellen 

wurde auch die Funktionalität dieser Zellpopulation genauer untersucht. Wie in Kapitel 3.4 

beschrieben wurde, kann die Funktionalität der im Rahmen dieser Arbeit induzierten 

antigenspezifischen CD8+ T-Zellen durch die Analyse der T-Zell-Subpopulationen oder durch 
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Belastungsinfektionen mit dem mauspathogenen Bakterium L. monocytogenes überprüft 

werden. Im Rahmen der Untersuchung der T-Zell-Subpopulationen wurde insbesondere auf 

den Anteil der TEMC geachtet. Diese Zellpopulation vermittelt den Schutz im Rahmen einer 

Belastungsinfektion mit L. monocytogenes (siehe Kapitel 3.4.2) [130]. Bei Mäusen der 

Positivkontrollgruppe (Versuchsgruppe 15) bildeten die TEMC mit einem Anteil von 48 % die 

größte Untergruppe der p60217-225-spezifischen CD8+ T-Zellen. Die Mäuse der 

Versuchsgruppe 18 (Ciprofloxacingabe ab Tag 4) wiesen eine Verteilung der T-Zell-

Subpopulationen auf, die nicht signifikant von der Verteilung der Positivkontrolle 

(Versuchsgruppe 15) abwich. Interessanterweise wiesen die Mäuse der Versuchsgruppe 17 

(Ciprofloxacingabe ab Tag 2) im Vergleich mit der Positivkontrolle (Versuchsgruppe 15) zwar 

keine signifikant niedrigere Menge p60217-225-spezifischer CD8+ T-Zellen auf, in der Verteilung 

der T-Zell-Subpopulationen konnte jedoch ein signifikanter Unterschied nachgewiesen 

werden. Mäuse der Versuchsgruppe 17 (Ciprofloxacingabe ab Tag 2) wiesen mit 37 % TEMC 

einen signifikant geringeren Anteil dieser Subpopulation der p60217-225-spezifischen 

CD8+ T-Zellen auf. Die TEC waren dagegen bei Versuchsgruppe 17 (Ciprofloxacingabe ab Tag 

2) mit einem Anteil von 53 % gegenüber einem Anteil von 41 % bei Versuchsgruppe 15 

(Positivkontrollgruppe) signifikant erhöht. 

 Darauffolgend wurden Belastungsinfektionen mit L. monocytogenes durchgeführt 

(Kapitel 3.4.3). Im Einklang mit Vorarbeiten aus unserer Arbeitsgruppe waren die Mäuse der 

Versuchsgruppe 15 (Positivkontrollgruppe) sehr gut vor einer Listerien-Infektion geschützt. 

Des Weiteren stellte sich heraus, dass Mäuse der Versuchsgruppe 16 (Ciprofloxacingabe ab 

Tag 0) nicht geschützt waren. Dieses Ergebnis entsprach der Beobachtung, dass in dieser 

Versuchsgruppe nur eine geringe Menge p60217-225-spezifischer CD8+ T-Zellen induziert 

werden konnte. Obwohl die Aufteilung der T-Zell-Subpopulationen in Versuchsgruppe 17 

(Ciprofloxacingabe ab Tag 2) einen signifikanten Unterschied zur Aufteilung der 

Versuchsgruppe 15 (Positivkontrollgruppe) aufwies, zeigte sich bei den 

Belastungsinfektionen mit Listeria kein signifikanter Unterschied zwischen diesen beiden 

Gruppen.  
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 Diese Untersuchungen liefern somit neue Erkenntnisse, die zur Beantwortung 

zweier bedeutsamer Fragen beitragen können. 

1. Wie lange muss der antigentragende Impfvektor im Körper der Maus verbleiben, damit       

    die CD8+ T-Zellen ausreichend reifen und expandieren können?  

2. Wo findet die Generierung der in der Milz detektierten antigenspezifischen CD8+ T-Zellen    

    statt? 

 Die Ergebnisse dieser Arbeit zeigen, dass bereits 2 Tage nach der Immunisierung 

eine hochgradige Vektorreduktion initiiert werden kann. Diese frühe Vektorreduktion 

beeinträchtigt die Induktion p60-spezifischer CD8+ T-Zellen nicht. Van Stipdonk und Kollegen 

beschrieben, dass bereits eine zweistündige Stimulation durch APC ausreicht, um eine 

weitere antigenunabhängige Reifung naiver CD8+ T-Zellen zu bewirken [131]. Dies wird durch 

eine Studie von Kaech und Kollegen untermauert [132]. Diese demonstrierten, dass einmal 

aktivierte T-Zellen antigenunabhängig mindestens 7 Teilungen durchführen und sich weiter 

zu Effektor- und Gedächtniszellen differenzieren können [133]. In 

Immunisierungsexperimenten mit L. monocytogenes konnten Mercado und Kollegen 

herausarbeiten, dass die Generierung antigenspezifischer CD8+ T-Zellen bereits innerhalb der 

ersten 24 Stunden initiiert wird [134]. Die Kolonisierung der Mäuse mit Listerien wurde 24 

Stunden nach oraler Immunisierung durch eine Ampicillingabe abgebrochen. Analog zu 

unseren Studien untersuchten Mercado und Kollegen die Generierung p60-spezifischer 

CD8+ T-Zellen. Mercado und Kollegen vermuteten, dass einmal aktivierte T-Zellen 

antigenunabhängig weiterreifen und expandieren. Als alternative Erklärung diskutierten sie, 

dass APC auch nach einer Antibiotikagabe weiterhin geringe Mengen des Antigens 

präsentieren. Hierdurch könnten T-Zellen weiterhin stimuliert werden. Ebenso wird 

vermutet, dass die Antigene in einem Depot für längere Zeit verweilen könnten [135].  

 In diesem Zusammenhang ist zu beachten, dass die Mechanismen der 

Immunsystem-Aktivierung zwischen Listerien und Salmonellen diverse Unterschiede 

aufweisen. Eine hohe Relevanz besitzt dabei die unterschiedliche Lokalisation der beiden 

Bakterien innerhalb der Körperzelle. Während Salmonellen in der SCV verweilen, können 

Listerien im Zytoplasma überleben [31, 136, 137]. Die in dieser Arbeit angewandte 

Translokation des p60-Antigens mittels des T3SS könnte diesen Unterschied jedoch 

relativieren. L. monocytogenes dient seit vielen Jahren als Modellerreger zur Erforschung 

von Infektionen mit intrazellulär replizierenden Erregern und trug maßgeblich zum 
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Verständnis der zellvermittelten Immunität bei [138]. Im Mausmodell wurde Listeria jedoch 

überwiegend intravenös verabreicht. Orale Immunisierungen von Mäusen sind aufgrund 

einer einzelnen veränderten Aminosäure des murinen E-Cadherin-Gens ineffektiv [139]. Es 

ist daher bemerkenswert, dass im Mausmodell mithilfe der hier vorgestellten Salmonellen-

Immunisierung auf dem natürlichen Immunisierungsweg Listerias eine adaptive 

Immunantwort gegen Listerien-Proteine induziert werden kann. 

 Um die Frage nach dem Ort der T-Zell-Induktion zu klären, ist eine genauere 

Betrachtung der frühen Mechanismen während einer Salmonelleninfektion erforderlich. Zur 

Entstehung der Immunantwort und Immunität als Reaktion auf lebende Salmonella-

Impfstoffe oder Salmonelleninfektionen existiert eine Vielzahl von Studien [37, 140, 141]. 

Diese beziehen sich jedoch auf die spezielle Art der Vermehrung der Salmonellen in der SCV. 

Zur Art der Prozessierung von Salmonellen-Proteinen, die über das T3SS in das Zytoplasma 

der APC befördert wurden, liegen bisher nur sehr wenige Studien vor. 

 Salmonellen gelangen hauptsächlich über die M-Zellen der PP aus dem 

Darmlumen in die Darmschleimhaut [39, 40, 140]. Weitere Mechanismen wurden bereits 

einleitend beschrieben und werden in Abb. 20 zusammenfassend visualisiert. Eine weiterer 

Eintrittsmechanismus ist das Überwinden der Epithelbarriere mithilfe von DCs. Diese 

nehmen die Salmonellen direkt aus dem Darmlumen auf [142-144]. Dieser Vorgang scheint 

jedoch vor allem für nicht-invasive bakterielle Krankheitserreger relevant zu sein und nimmt 

folglich für invasive Salmonellen eine nur geringe Rolle ein [145]. 

 Unumstritten hingegen ist, dass intestinale DCs die wichtigsten Zellen zur lokalen 

Antigenpräsentation an T-Zellen darstellen [146-149]. Das Priming der T-Zellen kann in 

mesenterialen Lymphknoten (MLN) und in PP stattfinden [140], siehe dazu auch Abb. 20. 

Salazar-Gonzalez und Kollegen berichten über eine DC-Untergruppe, die den Rezeptor CCR6 

trägt. CCR6 ist der Rezeptor für das Chemokin CCL20 [146]. Die CCR6-positiven (CCR6+) DCs 

spielen eine entscheidende Rolle beim frühen T-Zell-Priming in PP. Salazar und Kollegen 

untersuchten den Einfluss der CCR6+ DCs auf die Induktion von CD4+ T-Zellen. 

Untersuchungen von Le Borgne und Kollegen zur Folge spielen CCR6+ DCs jedoch ebenfalls 

eine entscheidende Rolle bei der Induktion antigenspezifischer CD8+ T-Zellen [150]. Eine 

weitere Untergruppe von DCs, die CX3CR1-positiven DCs, können Antigene in der Lamina 

propria und in PP aufnehmen und diese in die lokalen MLN transportieren [142-145]. Dort 

werden die Antigene den T-Zellen präsentiert. Uneinigkeit besteht darüber, ob die CX3CR1-
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positiven DCs auch Antigene, die sie aus dem Darmlumen aufgenommen haben, in die MLN 

befördern [151, 152]. 

 

 

Abbildung 20 Eintritt und Aufnahme von Salmonellen nach oraler Immunisierung. Salmonella kann 

das Darmepithel über verschiedene Eintrittspforten überwinden. Am häufigsten geschieht dies im 

distalen Ileum. Zwei dieser Eintrittspforten sind lymphatische Gewebe wie die PP und das solitäre 

intestinale lymphatische Gewebe („solitary intestinal lymphoid tissue“, SILT). Die verschiedenen 

Eintrittsmechanismen sind hier mit Nummern versehen. In PP können Salmonellen die epitheliale 

Barriere durch M-Zellen (1) oder Epithelzellen (2) überwinden. Im follikel-assoziierten Epithel (FAE) 

befinden sich DCs, die ebenfalls Salmonellen aufnehmen können (3). Salmonellen, die das Epithel 
einmal durchdrungen haben, können von DCs im sub-epithelialen Dom (SED) aufgenommen werden. 

DCs, die Salmonellen aufgenommen haben, können dann direkt T-Zellen stimulieren (T) oder in 

mesenteriale Lymphknoten (MLN) wandern um dort eine adaptive Immunantwort zu initiieren. 

Zusätzlich können Salmonellen über das SILT, möglicherweise ähnlich wie in PP, das Darmepithel 

durchdringen (4). Der Eintritt Salmonellas in die Darmzotten geschieht in Form einer 

Durchwanderung von M-Zellen (5), mithilfe von DCs, welche Salmonellen direkt aus dem Darmlumen 

aufnehmen (6), oder mittels Durchwanderung von Epithelzellen oder deren Zwischenräumen (7). 

Sobald die Salmonellen die Lamina propria erreicht haben, werden sie von wandernden DCs zu den 

MLN transportiert. Es ist außerdem möglich, dass Salmonellen als freie Bakterien zu den MLN 

gelangen. Ein weiterer Mechanismus der Ausbreitung ist der Transport in CD18+  Phagozyten (8). 
Salmonellen können die MLN als freie Bakterien oder assoziiert mit anderen Zellen verlassen und sich 

von dort über die Lymphbahnen oder die Blutbahn in weitere Körpergewebe ausbreiten. Abbildung 

und Text modifiziert nach [140]. 

 

 Zusätzlich ist eine Betrachtung der Kolonisierungskinetik Salmonellas notwendig. 

Invasive Salmonellen besiedeln zuerst den Darm, treten dann über M-Zellen in die Lamina 

Propria und die PP ein, gelangen über die Lymphe in die MLN und breiten sich erst dann 

systemisch in Organe wie Leber und Milz aus. Diesen Ablauf bestätigen die Erkenntnisse aus 

Vorarbeiten unserer Arbeitsgruppe im Einklang mit weiteren Studien. Sevil und Kollegen 
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haben die Kolonisierungskinetik des in dieser Arbeit verwendeten Salmonellen-Stammes 

SB824 nach oraler Immunisierung von Mäusen beschrieben. Die Salmonellen waren nach 2 

Tagen im Zökum, nach 4 Tagen in den MLN und nach 7 Tagen auch in der Milz nachweisbar 

[153]. Abweichend zu Sevils Studien konnten in der hier vorliegenden Arbeit schon am Tag 6 

Salmonellen in der Milz detektiert werden. Die von Sevil beschriebene Kolonisierungskinetik 

und die Ergebnisse unserer Arbeit stimmen ebenfalls mit den Berichten von Tam und 

Kollegen überein [140, 154, 155]. Sie erklären, dass zuerst die PP und MLN kolonisiert 

werden und daran anschließend die systemische Ausbreitung stattfindet. Die Bakterien 

verbreiten sich über die Lymphbahnen und über den Ductus thoracicus auch in die Blutbahn 

[156, 157]. 

 Diese Ausführungen lassen zusammenfassend darauf schließen, dass Salmonellen 

in der frühen Phase nach der Immunisierung nur den Darm besiedeln und dort Interaktionen 

mit dem mukosalen Immunsystem eingehen. Auch unter Berücksichtigung der im Rahmen 

dieser Arbeit vorgestellten Ergebnisse ist es naheliegend, dass die p60217-225-spezifischen 

CD8+ T-Zellen in MLN und PP induziert werden. Hierdurch ließe sich erklären, dass bereits 2 

Tage nach der Immunisierung mit einer Ciprofloxacingabe begonnen werden kann, ohne 

hierdurch die Induktion einer schützenden Frequenz antigenspezifischer CD8+ T-Zellen 

einzuschränken. 

 Im Widerspruch zu dieser These stehen die Berichte von Worley und Kollegen. Sie 

fanden in BALB/c Mäusen eine Gruppe von Phagozyten, die oral aufgenommene Salmonella 

typhimurium Stamm 14028s innerhalb weniger Minuten in die Blutbahn und somit in 

systemische Organe befördern können [43, 158, 159]. Die Milz als sekundäres lymphatisches 

Organ ist folglich ebenfalls als Ort der primären Generierung der von uns detektierten 

p60217-225-spezifischen CD8+ T-Zellen denkbar; auch unter Berücksichtigung der hier 

vorgestellten Vektorreduktion am Tag 2 nach der Immunisierung. 

 T-Zellen, die im Darm induziert werden, tragen die Oberflächenrezeptoren CCR9 

und α4β7 [160]. Diese werden auch als Homing-Rezeptoren bezeichnet, da sie den T-Zellen 

die Fähigkeit verleihen, wieder in den Darm zurückzukehren [161, 162]. Um die Frage nach 

dem Ursprung der p60-217-225-spezifischen CD8+ T-Zellen weiter zu verfolgen, sollten 

zukünftig weitere Experimente durchgeführt werden. Zusatzfärbungen mit α4β7 oder CCR9 

Antikörpern bei FACS-Analysen könnten hierzu einen wichtigen Beitrag leisten. 
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5. Zusammenfassung 

In der vorliegenden Doktorarbeit wurde eine neuartige Immunisierungsstrategie zur 

Induktion antigenspezifischer CD8+ T-Zellen verwendet. BALB/c Mäuse wurden oral mit 

einem attenuierten S. typhimurium-Stamm immunisiert. Dieser translozierte unter 

Verwendung des Salmonella Typ III Sekretionssystems das heterologe Antigen p60, ein 

immunogenes Protein des Bakteriums Listeria monocytogenes, direkt in das Zytosol von 

antigenpräsentierenden Zellen. Aufgrund der intrazellulären Lokalisation wurde p60 über 

den MHC Klasse I-Antigenpräsentationsweg verarbeitet. Hierdurch konnten p60217-225-

spezifische CD8+ T-Zellen induziert werden. Diese vermittelten Schutz vor einer 

Belastungsinfektion mit L. monocytogenes. 

 Bisher war nicht hinreichend bekannt, wie lange ein lebender Salmonellen-

Impfvektor auf dem natürlichen Immunisierungsweg kolonisieren muss, bis die Induktion 

einer schützenden Frequenz antigenspezifischer CD8+ T-Zellen initiiert wird. Daher wurde im 

Rahmen dieser Studie der Einfluss der Kolonisierungskinetik rekombinanter Salmonellen auf 

die Induktion p60217-225-spezifischer CD8+ T-Zellen untersucht. Hierzu wurden vier Gruppen 

von BALB/c Mäusen oral mit dem Salmonellen-Stamm SB824 (pHR241) immunisiert. Dieser 

trägt die genetische Information, um chimäres YopE1-138/p60130-477/M45 unter 

Expressionskontrolle des lac Promotors zu translozieren. Mäuse der ersten Gruppe dienten 

als Positivkontrolle der Immunisierung. Mäuse der drei weiteren Gruppen wurden mit 

Beginn an Tag 0, Tag 2 oder Tag 4 über einen Zeitraum von vier Tagen mit dem Fluorchinolon 

Ciprofloxacin behandelt. Ziel dieser Behandlung war eine Vektorreduktion. Die Wirksamkeit 

der Antibiotikagabe war zuvor durch mehrere Untersuchungen bestätigt worden. 

 Am 11. Tag nach der Immunisierung wurden die Milzen aller Mäuse mithilfe der 

Tetramer-Technologie durchflusszytometrisch auf die Menge p60217-225-spezifischer 

CD8+ T-Zellen untersucht. Hierbei zeigte sich, dass eine Antibiotikagabe bereits am Tag 2 

nach der Immunisierung begonnen werden kann, ohne die Menge der induzierten p60217-225-

spezifischen CD8+ T-Zellen im Vergleich zu den Mäusen der Positivkontrollgruppe signifikant 

zu verringern. 

 Darauffolgend wurden Studien zur Funktionalität der induzierten p60217-225-

spezifischen CD8+ T-Zellen durchgeführt. Diese sollten zeigen, ob die Vektorreduktion durch 

Ciprofloxacin neben der T-Zell-Menge auch die schützende Funktion der p60217-225-

spezifischen CD8+ T-Zellen beeinflusst. In den oben beschriebenen Gruppen wurden bei den 
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FACS-Analysen Zusatzfärbungen mit CD62L und CD127 durchgeführt. Hierdurch konnte die 

Aufteilung der p60217-225-spezifischen CD8+ T-Zellen in TEC (CD127low/CD62Llow), TEMC 

(CD127high/CD62Llow) und TCMC (CD127high/CD62Lhigh) analysiert werden. Die Mäuse der 

Gruppe, die Ciprofloxacin schon ab Tag 2 erhielten, wiesen im Vergleich mit der 

Positivkontrollgruppe signifikante Unterschiede in der Verteilung der T-Zell-Subpopulationen 

auf. Im Rahmen einer Belastungsinfektion mit L. monocytogenes waren diese Mäuse jedoch 

nicht signifikant schlechter geschützt, als Mäuse der immunisierten Kontrollgruppe. 

 Zusammenfassend konnte im Mausmodell gezeigt werden, dass eine Antibiotika-

Behandlung bereits 2 Tage nach oraler Immunisierung mit einem S. typhimurium Impfstoff-

Vektor begonnen werden kann, ohne hierdurch die Menge oder Funktionalität der 

induzierten antigenspezifischen CD8+ T-Zellen signifikant einzuschränken. 
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6. Summary 

In this study, we used a novel vaccination strategy to induce antigen-specific CD8 T cells. 

After oral vaccination of BALB/c mice with attenuated Salmonella typhimurium the 

immunodominant p60 antigen from Listeria monocytogenes was translocated via the 

Salmonella type III secretion system into the cytosol of antigen-presenting cells. Cytosolic 

delivery led to efficient MHC class I-restricted antigen presentation of the p60 nonamer 

peptide p60217-225 and the induction of p60217-225-specific CD8 T cells. These cells where able 

to confer protection against a lethal challenge with wild-type L. monocytogenes. 

 To date there has been limited information about how long Salmonella live vaccine 

strains need to colonize on their natural immunization route in order to induce protective 

antigen-specific CD8 T cells. Therefore, we analyzed the influence of Salmonella colonization 

kinetics on the induction of p60217-225-specific CD8 T cells. We orally immunized 4 groups of 

BALB/c mice with Salmonella strain SB824 (pHR241) expressing translocated YopE1-

138/p60130-477/M45 under control of the lac promoter. Mice of the first immunization group 

served as positive control of the immunization. Mice of the remaining groups received 

antibiotic treatment with the fluorquinolone ciprofloxacin from day 0, day 2 or day 4 over a 

period of 4 days. The efficiency of vector reduction due to antibiotic treatment has been 

demonstrated before. 

 Spleens of immunized mice were harvested on day 11 and analyzed for the 

frequency of p60217-225-specific CD8 T cells using tetramer technology in flow cytometry. 

Analysis showed that the antibiotic treatment could be initiated as soon as 2 days after 

immunization without significant impairment of p60217-225-specific CD8 T cell induction 

compared to the positive control immunization group. 

 In a next set of experiments, we investigated the biological functionality of the 

induced p60217-225-specific CD8 T cells. We were interested whether the vector reduction due 

to antibiotic treatment influences not only the quantity but also the protective capacity of 

p60217-225-specific CD8 T cells. Costaining of tetramer-positive p60217-225-specific CD8 T cells 

with CD62L and CD127 has been performed in the above described groups. This allowed 

distinguishing between TEC (CD127low/CD62Llow), TEMC (CD127high/CD62Llow) und TCMC 

(CD127high/CD62Lhigh). Mice receiving antibiotic treatment from day 2 revealed significant 

differences in the distribution of CD8 T cell subpopulations compared to the positive control 

group. Interestingly, after a lethal challenge infection with L. monocytogenes no significant 
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difference in the protection rate of mice treated with ciprofloxacin from day 2 compared 

with the positive control group could be detected. 

 In summary, we were able to show that antibiotic treatment of mice orally 

immunized with a S. typhimurium vaccine vector can be initiated as soon as 2 days after 

immunization without significantly impairing the quantity or functionality of the induced 

antigen-specific CD8 T cells. 
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