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1. INTRODUCTION 

1.1 Nucleic Acid Therapy 

Nucleic acid therapies have been considered as a confident chance for the 

treatment of life-threatening illnesses like cancer and genetic diseases1. The 

approach is based on technologies which deliver therapeutic nucleic acids into 

target tissues. Direct uptake into target cells is hindered because of the high 

molecular weight and the negative charge of nucleic acids. Nucleic acid therapies 

may occur within the patient’s body (in vivo) or outside the body (ex vivo) using 

isolated body cells. Therapeutic gene vectors can directly regulate gene expression 

as viral vectors encapsulating a gene expression vector2-3, or nonviral plasmid 

DNA (pDNA) expression vectors4. This strategy is promising for the treatment of 

inherent deficiencies by replacing either missing or unfunctional genes. In the 

case of DNA-based vectors, the nucleic acid needs to be introduced into the 

nucleus where it has to be maintained in accessible, active form to be expressed 

by the host cell transcription machinery.  

With time, other nucleic acid therapeutics have obtained increasing importance 

where nucleic acids can influence gene expression more indirectly than gene 

vectors do, most importantly small interfering RNAs (siRNA)5, but also single-

stranded oligonucleotides6-8, or immune system stimulating nucleic acids9. RNA 

interference (RNAi) mediated by 21-23 bp long double stranded siRNA operates 

in the cytosol10-12. Among the two strands the guide strand is designed to be 

complementary to the target mRNA, whereas the passenger strand normally has 

no complementarity. After cellular uptake the siRNA duplex is bound to several 

proteins like Ago2, Dicer and transactivating response RNA binding protein 

(TRBP), forming the RISC (RNA induced silencing complex) loading complex 

(RLC)13-14. Following 5´phosphorylation by ATP leads to unwinding of the 

siRNA and the cleavage of the passenger strand by Ago2, resulting in the mature 

RISC complex15. Complementary mRNA is recognized by RISC and 

consequently cleaved, by PIWI a subunit of Ago2, opposite to nucleotide 10 from 

the 5´end16-18. Active RISC complex can be recycled and repeatedly silence 

mRNA for several weeks. This demonstrates the high specificity and effectivity of 

siRNAs ideal for functional studies and therapeutic applications (Figure 1). 
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Similar effects are mediated by endogenous microRNAs19-20 (miRNA). Around 

1600 miRNAs have been found in humans (miRBase), regulating processes by 

translational repression. The main difference to siRNAs is the reduced 

complementarity of miRNAs to their target mRNAs resulting in translational 

repression without mRNA cleavage. miRNAs are explored as biomarkers21 for 

several illnesses and as targets for future therapies22.  

 

Figure 1 siRNA structure and mechanism: a) siRNA double strand consisting of passenger and guide 
strand with 3´overhangs. b) siRNA is phosphorylated after cellular uptake and loaded into the RISC complex. 
The guide strand mediates mRNA recognition and binding which leads in case of a perfect match to mRNA 
cleavage.(Modified from Shukla et al.23)  

Oligonucleotides (ON) are short single stranded nucleic acids or stabilized nucleic 

acid analogs with 20 or fewer bases. ONs can be used for several purposes, acting 

either in the cytosol or the nucleus. As antisense molecules they may bind to 

complementary mRNA and inhibit their translation or to miRNAs avoiding the 

inhibition24. ONs have also been used as agents in exon-skipping, to repair 
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defective mRNA by alternative splicing25, and as antagomirs, blocking natural 

micro RNAs6,26. 

1.2 siRNA Design 

Computational models have been developed to increase the likelihood of selecting 

effective and specific siRNAs27. Besides the selection of a siRNA sequence the 

stability of nucleic acids is critical because they are targets of ubiquitous 

occurring nucleases. Unmodified siRNAs have a serum half life of less than 15 

min, so they are impractical for therapeutic applications28. Modifications 

improving nuclease resistance are incorporated into the siRNA sequence either 

into the backbone, sugar, base or 3´and 5´ ends. Common backbone modifications 

include the replacement of non bridging oxygen by sulfur in the phosphate 

backbone (phosphorothioate) leading to improved nuclease resistance29. This 

phosphorothioate modification leads to less efficient RISC loading if used heavily 

in the guide strand. Widely used sugar modifications include 2´-OMe, 2´-fluoro 

and 2´-MOE30.  All of these sugar modifications increase the melting temperature 

and improve nuclease resistance. Another modification with high impact on the 

melting temperature is the incorporation of locked nucleosides31. In this method 

the position 2´and 4´of the ribose ring are linked through a methylene bridge. 

Furthermore, the thermodynamic properties of both siRNA ends influence RISC 

loading. Passenger strand modification increasing the 5´end melting temperature 

lead to selective incorporation of the guide strand32.  

In addition to stability reasons, modifications are necessary to combat the 

immunostimulatory effect of unmodified siRNAs. The effects are mainly 

mediated due to the activation of toll like receptors TLRs 3, 7 and 8 and cytosolic 

proteins like RIG-1 (retinoic acid inducible protein), or MDA-5 (melanoma 

differentiation associated protein)33. All these receptors can recognize double 

stranded RNAs and induce immune response mediated by interferons, cytokines 

and interleukin-6. For example TLR 3 is activated by double stranded nucleotides 

longer than 21-23bp, whereas the TLR 7 and 8 are activated by different motifs in 

the nucleotide sequence. Therefore, several modifications, for example 2´-OMe, 

are necessary to generate siRNAs without immunostimulatory effects. Great 

progress in the field of nucleic acid chemistry enabled the synthesis of nucleic 

acids with high serum stability and low immunostimulatory effects23,34-35. 
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1.3 Polymers and Oligomers for siRNA Delivery 

Nonviral delivery systems have been proposed as safer alternatives to viral 

vectors, because polymers and liposomes avoid the inherent immunogenicity of 

viral proteins and the expensive production in mammalian cell culture systems. 

Hence, several reasons have supported the use of polymers, including the fact that 

nucleic acids themselves are polymers which by the nature of their negative 

charges spontaneously form complexes (‘polyplexes’) with cationic polymers36. 

Nature utilizes the mechanism in multiple variations, for example in packaging 

genetic material with basic protein polymers into chromatin, strongly condensing 

DNA in sperm heads, or compacting DNA into virus core particles. Evolution has 

optimized such packaging into precise bioresponsive processes, where both 

assembly and disassembly can occur in a controlled manner. In contrast to nature, 

the first two to three decades of polymer based gene transfer development have 

yielded first encouraging, but still very primitive solutions. Low transfer 

efficiency of polyplexes, significant toxicity, polymer polydispersity and poorly 

understood delivery mechanisms are road blocks in the way towards 

therapeutically useful polymer formulations. Fortunately, recent developments 

present solutions for many of the obstacles37. Improved chemistry has resulted in 

the design of monodisperse polymer structures like dendrimers38 or other 

sequence defined oligomers39-41. Biodegradable oligomers with reduced 

cytotoxicity have been designed, allowing the incorporation of targeting ligands 

and surface shielding polymers. Shielded polyplexes minimize side effects due to 

unspecific interactions, whereas targeting ligands like small molecules or peptides 

allow specific interactions with cancer cells. Better understanding of delivery 

pathways and improved imaging methods42-45 contributed to the design of 

improved carriers for siRNA delivery. These bioresponsive carriers can change 

their properties, for example their conformation, through protonation, or by 

cleavage of covalent bonds in various biological compartments. This means the 

biological micro-environment can be used to trigger the oligomer and therefore 

the polyplex characteristics during the delivery process in a favorable dynamic 

way. Such dynamic processes are well-known from cellular entry of viruses, 

bacteria, toxins, and other cellular events. Major delivery tasks (Figure 2) are the 

transport of a siRNA without undesired interactions in blood and non-target sites. 
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In contrast, specific interactions with the target cell surface should trigger 

intracellular uptake followed by endosomal escape. 

 

Figure 2 Uptake process of functionalized polyplexes into the target cell: Hurdles for the efficient siRNA 
delivery are the stable binding of the nucleic acid, interactions with the cell surface, endosomal escape and 
the release of the siRNA into the cytosol (modified from D. Edinger et al.46) 

1.3.1  siRNA Packaging  

In the first instance the oligomer has to stably bind the nucleic acid outside the 

cell, to compact and protect the cargo from nucleases. Inside the cell the polyplex 

has to disassemble and release the siRNA, so the cargo can be effective. Different 

chemical characteristics outside the cell, in the endosome, the cytosol, and the 

nucleus have to manage the “assembly-disassembly” process. Therapeutic nucleic 

acids can be either noncovalently complexed or covalently conjugated to the 

carrier (Figure 3). Release of the nucleic acid at the target location from the 

polymer may proceed for example by exchange processes against polyions such 

as intracellular RNA47, by polymer degradation, or cleavage of the nucleic acid 

from the polymer attachment sites. 



Introduction     6 

 

 

Figure 3 Assembly-disassembly process: Nucleic acids can be bound electrostatic or covalent by the 
polymers. Electrostatic assembled polyplexes can be stabilized by reversible caging. After entering the cell, 
the nucleic acid is released through exchange reactions or polymer degradation. (from D. Edinger et al.46) 

Electrostatic binding of siRNA to cationic oligomers is weaker as compared to 

pDNA, due to the lower number of negative charges in the short phosphate 

backbones. To overcome this hurdle chemically synthesized siRNAs can be 

covalently bound to their carriers48. This can be performed in a bioresponsive, 

reversible way, for example, disulfide bonds are stable in the bloodstream, but can 

be easily cleaved in the cytosol. Rozema et al. applied this strategy for the 

synthesis of “dynamic polyconjugates” of siRNA with polymers consisting of 

receptor-targeted, PEG-masked poly-butyl amino vinyl ethers49. In a mouse model 

they could show dose dependent hepatocyte-specific gene knockdown without 

detectable side effects, monitored by the control of liver enzymes and cytokine 

levels. Meyer et al. coupled siRNA with a 5´thiol modified sense strand to 

modified polylysine (PLL) with an endosomolytic peptide via bioreducible 

disulfide bonds50. The covalent character of the conjugates was demonstrated in 

that the conjugates were only cleavable through a combination of heparin with a 

reducing reagent. Nucleic acids modified with several functional domains like 

targeting, shielding and endosomal escape offer a promising approach for future 

siRNA therapeutics51. 

In contrast to the covalent binding of siRNA cationic polymers, primarily binding 

nucleic acids via electrostatic interactions with the negatively charged phosphate 

backbone have been synthesized. Nucleic acid binding depends on charge density, 
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size, shape, and flexibility/rigidity of polymers. For example, linear polymers 

such as poly(L)lysine52 or linear polyethylenimine (LPEI)53, branched structures 

such as branched PEI (brPEI)54, or dendrimers including polyamidoamines 

(PAMAMs) 55-58 have been used. In addition to electrostatic interaction, hydrogen 

bonding59 and hydrophobic polymer interactions60-61 can increase the stability of 

polyplexes, but stronger nucleic acid affinity does not necessarily directly 

correlate with higher transfection efficiency. Apparently an optimum has to be 

reached. Also the big difference in the size of different types of nucleic acids 

(pDNA with several thousand negative charges as opposed to siRNA with 42 

negative charges) has to be considered in this respect. For example, 22 kDa LPEI 

and 25 kDa brPEI have been successfully used for pDNA transfection, but do not 

effectively work for siRNA transfection62. Besides the weak silencing activity 

PEI-siRNA polyplexes are dissociated in full human serum monitored by 

fluorescence fluctuation spectroscopy63. Concatemerization of siRNA into larger 

structures (“sticky siRNA”)64 or change to other polymer backbones can partly 

but not completely overcome the problem.  

Bioresponsive carriers are a logical solution for the insufficient stability outside 

but too high stability inside the cell. Encouraging strategies including the design 

of biodegradable high-molecular weight polymers or polymer cages intracellularly 

degrading into low molecular weight nontoxic fragments have been applied. 

Polymers with cleavable bonds including hydrolysable esters65-67, acetal bonds 

degrading in the acidic environment of endosomes68-69, or disulfide bonds which 

are reduced in the cytosol have been synthesized70-72.  

Polyplexes can further be stabilized by caging, this means chemical crosslinking 

of the siRNA bound polymers via cleavable linkers. For example, Russ et al.73 

synthesized pseudodendrimers called HDO consisting of low molecular weight 

oligoethylenimine (OEI) and diacrylate esters delivering siRNA with moderate 

gene silencing efficiency in vitro. Lateral stabilization by crosslinking surface 

amines via bifunctional crosslinker (DSP) resulted in improved stability and high 

knockdown efficiency74. The design of pseudo amino acids suitable for solid-

phase-supported synthesis in combination with natural amino acids and fatty acids 

allowed the design of structure defined oligomers for siRNA transfection. From 

this approach nice structure activity relationships for effective siRNA carriers can 

be derived75. In contrast to the first generation of polydisperse carriers this new 
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concept also simplifies the GMP production of monodisperse carriers important 

for future clinical trials.    

1.3.2  Endosomal Escape  

Polyplexes are commonly taken up by a clathrin-, caveolin- dependent or related 

endocytic pathway, with polyplexes ending up inside endosomes. In time the 

endosomal pH decreases and endosomes fuse and mature to lysosomes. To deliver 

the siRNA into the cytosol, polyplexes have to escape this harsh environment. 

Either the carrier polymer itself or an endosomolytic domain has to mediate this 

process76-77. Because lipid membrane interaction and lysis would be a toxic event 

if occurring at the cell surface or mitochondrial membrane, the lytic activity has to 

be limited to the endosomes. Again bioresponsive polymers demonstrating an 

endosomal dependent lytic activity78-80 are the solution to this problem (Figure 4). 

In contrast, small polyplexes can show alternative uptake-mechanisms avoiding 

the endosomal pathway81-82. 

 

Figure 4 Endosomal escape: a) mediated by the proton sponge effect, b) pH dependent lytic activity, c) pH 
triggered lytic activity, d) or by a reductive mechanism (from D. Edinger et al.46). 

PEI or PAMAM dendrimers are highly active in gene transfer, because these 

polymers are “proton sponges”, displaying about 20% protonation of nitrogens at 

neutral pH (important for nucleic acid binding), which increases with endosomal 

acidification. The increased density of positive charges leads to an influx of 
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chloride and water into the endosome83. Finally, as consequence of the so called 

“proton sponge effect”, the endosome bursts due to the elevated osmotic pressure 

and the membrane destabilizing effect of positively charged polymer domains. 

Efficient endosomal escape however, still presents a bottle neck to be optimized 

for the delivery process of therapeutic nucleic acids. For PEI the window between 

effective dose for endosome disruption and cytotoxic dose is very narrow. For 

efficient siRNA delivery brPEI 25 kDa was modified with succinic acid (PEI-

Succ10)54. This modification diminishes positive charges at neutral pH, but the 

polymer still presents a proton sponge, containing both protonable carboxylates 

and nitrogens. Because of a far lower cytotoxicity it is possible to apply higher 

doses of the polymer and to improve endosomal escape in this way.  

In contrast, polymers like polylysine (PLL) cannot destabilize endosomes 

themselves. Hence, natural or synthetic lytic domains must be incorporated into 

such carriers. For example viruses have developed strategies to efficiently 

overcome the endosomal barrier. In several cases fusion peptides, such as those 

occurring at the N-terminus of the influenza virus haemagglutinin subunit 2 

(HA2), can generate a fusion pore in the membrane, triggering viral and host 

membrane fusion. Plank et al. suggested the HA2 subunit Inf7 consisting of the 23 

amino terminal amino acids as pH specific endosome disruptive peptide84.  Also 

lipid-free viruses such as adenovirus or rhinovirus have developed endosomal 

membrane destabilizing peptides. Therefore, incorporation of synthetic analogs of 

viral peptides, whole inactivated virus particles2, recombinant fusion proteins 

derived from bacteria78, toxins and other natural sources have strongly enhanced 

endosomal escape84-87.  

1.3.3  Polyplex Shielding 

Electrostatic siRNA binding generally results in positively charged polyplexes. 

This positive charge enhances target cell interaction, but also provokes unintended 

interactions with biological surfaces including protein surfaces, extracellular 

matrix and nontarget cells. Shielding the surface charges of polyplexes provides 

improved solubility, reduced aggregation with serum proteins, better 

biocompatibility, and prolonged blood circulation. For this reason the addition of 

Polyethylenglycol (PEG) has been broadly explored. The shielding domain can 

either be bound through, covalent incorporation of PEG to the polymeric carrier88-
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92, direct PEGylation of the nucleic acid51,93-95, or by PEGylation after polyplex 

formation96-97. In addition to PEG, other hydrophilic molecules like 

polyhydroxypropylmethacrylate (pHPMA)98-99, hyaluronan100  or hydroxyethyl 

starch (HES)101 have been applied reducing the positive surface charge of 

polyplexes. HES is a biodegradable shield, therefore shielded particles are slowly 

deshielded in the circulation by α-Amylase. In contrast to the stable, irreversible 

surface shielding of other shielding agents, this was advantageous for in vivo 

applications enabling the interaction with cell surfaces and lipid membranes102.  

 

Figure 5 Different PEGylation methods: Polymers can be PEGylated through diversely cleavable linkers. 
The dePEGylation of these cleavable linkers may take place in the microenvironment of the tumor 
(enzymatic), or inside the endosomes (ionic, acid labile) (from D. Edinger et al.46). 

For PEGylated polyplexes bioresponsive deshielding strategies have been 

developed as possible solutions (Figure 5), capitalizing location-specific changes 

in enzymatic activity103, disulfide reducing potential99 or pH89,93,96,104. Another 

method to regain particle cell interactions is the incorporation of targeting 

moieties.  

1.3.4  Receptor Targeting 

In many types of cancer certain surface receptor levels are upregulated. Therefore, 

targeting these cell surface receptors offers the possibility to address defined cells 

in a tissue. Especially shielded particles used for in vivo application profit from 
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the incorporation of targeting ligands. Several ligands have been shown to be 

suitable for targeted gene delivery, these are for example vitamins, carbohydrates, 

peptides, proteins and glycoproteins, antibodies in various modifications, small 

molecules, or nucleic acid aptamers.  

For example the epidermal growth factor receptor (EGFR) is upregulated in many 

cancers, like lung cancer, colorectal cancer and glioblastomas. For this reason 

various EGFR binding molecules, including EGF recombinant protein, EGFR 

binding antibodies, or EGFR binding phage derived peptides105 have been 

explored in polyplexes as interesting targeting ligands. Targeting the EGFR also 

accelerates the cellular uptake of polyplexes. Single particle tracking allowed 

distinguishing between three phases during the uptake process. In the first phase 

particle movement is slow, it includes all processes up to the internalization of the 

polyplexes. The following second phase is characterized by diffusion processes in 

the cytosol, while in the third phase polyplexes are rapidly transported along 

microtubules. Cellular uptake of EGFR targeting complexes resulted in a 

shortening of phase one and so contributed to a faster uptake of the polyplexes. 

Another often upregulated receptor is the transferrin receptor (TfR), a 

glycoprotein responsible for iron ion transport in mammals. After binding to the 

TfR, the complex consisting of receptor and ligand is absorbed by the cell through 

a clathrin dependent pathway and then integrated into the endocytic cycle. For this 

reason Tf has been frequently used as a targeting ligand for siRNA delivering 

polyplexes106-109. Tietze et al used TfR targeted, PEG-shielded crosslinked 

oligoethylenimines for siRNA delivery into Neuro2A tumor bearing mice109. 

Davis and colleagues110-112 used Tf targeted cyclodextrin to deliver siRNA, 

targeting the M2 subunit of ribonucleotide reductase. These targeted polyplexes 

were evaluated in human clinical trials and they were the first polymeric carriers 

to show gene knockdown in solid human tumors113.  

Apart from protein and peptide ligands, also low molecular weight targeting 

ligands such as the vitamin folic acid have been used for nucleic acid delivery. 

The related folate receptor (FR) is upregulated in various cancers, mediating 

cellular uptake of the vitamin folic acid via a caveolin mediated pathway114. 

Thomas et al. could show the impressive targeting efficacy of folic acid using 

siRNA covalently bound to folate via a short linker. The particles specifically 

bind to tumor tissues in vitro and in vivo, but failed to show gene transfer activity 
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because of lacking carriers115. Dohmen et al. combined siRNA linked to folic acid 

with defined oligomers synthesized by solid-phase-supported macromolecule 

assembly. This combination showed great and selective uptake and strong marker 

gene knockdown in folic acid overexpressing KB cells51,116. Methotrexate (MTX) 

has high structure similarity to folic acid and can also be used as a targeting 

ligand117 combining the use of a classical chemotherapeutic with the novel 

approach of RNAi. 

1.4 Target Genes  

Selection of target genes suitable for therapeutic assays is very complex. Clear 

correlation between target mRNA and illness have to be identified. For example 

the knockdown of Apolipoprotein B mRNA in the liver led to reduced cholesterol 

levels in the bloodstream of mice118. Reduced mRNA levels were detectable in the 

liver for several days up to some weeks because target gene knockdown did not 

affect cell viability119. In contrast, the treatment of cancer cells commonly aims at 

killing the tumor cell. Therefore, target gene knockdown is only detectable for a 

short period of time.  

Eg5 (Kif11, KSP) was suggested as a therapeutic target for cancer therapy by our 

collaboration partner Axolabs (formerly Roche Kulmbach)120-121. Eg5 is involved 

in the assembly and organization of the mitotic spindle apparatus, a self-

assembled and dynamic microtubule based structure which is important for 

chromosome segregation in dividing cells122. During mitosis Eg5 is responsible 

for centrosome separation thus playing a pivotal role in cell division. In 

consequence, Eg5 knockdown blocks mitosis and leads to G2 arrest especially 

harming rapidly dividing cancer cells. The mitotic blockade comparable to the 

small molecule monastrol leads to the typic “aster formation” of nuclear DNA123. 

In consequence reduced Eg5 protein levels hinder mitosis and lead to cell death. 

But also high Eg5 levels lead to spindle defects, genetic instability, and tumors, 

demonstrating the important role of Eg5 during mitosis124. Similar to the effects of 

Eg5 knockdown classical chemotherapeutics like vinca alkaloids and taxanes also 

influence the microtubule assembly and disassembly. 
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Figure 6 Role of Eg5 during mitosis: Tetrameric Eg5 motors help to organize microtubules forming the 
mitotic spindle. Eg5 moves towards the plus-ends of antiparallel microtubules, leading to the poleward drift 
of the centrosomes (modified from Valentin et al.122). 

Another therapeutic relevant target is the RAS related nuclear protein (Ran)125-126. 

As a member of the RAS superfamily, Ran mediates nuclear import and export of 

proteins and oligonucleotides during interphase. Furthermore Ran is involved in 

DNA synthesis and in cell cycle progression127-128. Ran can exist either in GTP or 

GDP bound form and has an intrinsic GTPase activity. Activated due to the 

interaction with Ran GTPase activating protein (Ran-GAP), Ran-GTP is 

converted into Ran-GDP. Ran-GAP is located in the cytosol reducing Ran-GTP 

levels in the cytosol. Ran-GEF (RCC1) another protein involved in the Ran cycle 

is located in the nucleus mediating the exchange of GDP and GTP. Hence, the 

localisation of the two proteins leads to an imbalance of Ran-GTP in the nucleus 

and cytosol. This concentration gradient is used for active transport of cargo into 

or out of the nucleus. High Ran expression levels are associated with cancer129-130, 

therefore Ran is used as a target for siRNA therapy. 
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Figure 7 Role of Ran: Ran cycle with high Ran-GDP levels in the cytosol mediated by Ran-GAP and high 
Ran-GTP levels in the nucleus due to Ran-GEF expression. This concentration gradient enables directed 
transport of cargo into the nucleus or the cytosol. 

In contrast, marker genes are usually selected for polymer screening assays, 

enabling an easy quantification of mRNA knockdown75,131. Therefore, the marker 

genes eGFP or Luciferase are commonly used. After establishing cell lines 

expressing one or both of this marker genes, mRNA knockdown can be easily 

detected.   

1.5 Aims of the Thesis 

Discovery of RNAi was a major breakthrough for the research of biological 

processes and may become an option for the treatment of severe diseases. 

Especially as siRNAs have the potential to be effective where classical 

therapeutics, antibodies, and small molecules fail. Target specificity on the one 

hand and the possible selection of several ten thousand target genes on the other 

hand are making siRNAs a promising approach for future therapies. However, the 

broad application of siRNAs is hampered by its size and negative charge. These 

limitations can either be overcome by minimizing the size and charge of the 

nucleic acids, by the use of carriers or by a combination of both. The current 

thesis focusses on the characterization of oligomeric carriers suitable for 



Introduction     15 

 

successful siRNA transfection in vitro and in vivo. For this purpose many 

different biodegradable oligomeric carriers have been synthesized by solid-phase-

supported synthesis. This novel strategy allowed the selective incorporation of 

diverse components like cysteines, tyrosines (stabilization) and histidines 

(improved endosomal escape) into structures with different topologies. The first 

aim of the thesis was the in vitro evaluation of numerous siRNA carriers to define 

several requirements for successful in vitro gene silencing. Improved 

understanding of the requirements led to the synthesis of carriers with higher 

transfection efficiency and greater stability against serum proteins. The second 

aim of the thesis was the in vivo evaluation of different oligomers with successful 

gene silencing in vitro. For this reason, assays for the detection of fluorescence 

labeled siRNAs in sections or living animals had to be established. Thereby, the 

distribution and clearance of different polyplexes could be compared in living 

animals or tumor sections. Furthermore, altered transfection efficiency of in vitro 

active carriers should be compared in an intratumoral assay. Therefore, two 

therapeutic siRNAs were explored in vitro for their target specificity by qPCR and 

Western blot and their knockdown related cytotoxicity by CellTiter Glo assays. 

Both therapeutic siRNAs were also evaluated in an intratumoral assay and Ran 

siRNA was chosen for the comparison of different oligomers. The intratumoral 

comparison of different polyplexes is an important step towards the in vivo use of 

siRNA therapeutics. The third aim of the thesis was the evaluation of 

multifunctional siRNA polyplexes in vitro and in vivo. Folic acid bound to an 

oligomeric backbone was used as a targeting ligand, whereas siRNA´s passenger 

strand was modified with the endosomolytic peptide Inf7 for improved endosomal 

escape. At first suitable cell lines overexpressing the folic acid receptor had to be 

evaluated. Furthermore, in vitro transfection experiments were conducted to 

demonstrate the activity of the different functional domains. The focus was the in 

vivo application of the polyplexes to monitor circulation halflife, targeting and the 

establishment of histological assays to analyze target gene knockdown. Besides 

the in vivo evaluation of folic acid linked oligomers the in vitro classification of 

novel methotrexate (MTX) containing targeting oligomers was performed. The 

assays should demonstrate the effectivity and the targeting efficiency of polymer 

linked MTX. 
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2  MATERIALS AND METHODS 

2.1 Materials  

Consumables (dishes, well plates, flasks) were obtained from NUNC (Germany) 

or TPP (Switzerland). Cell culture 5 x lysis buffer and D-luciferin sodium salt 

were obtained from Promega (Germany). Cell culture media, antibiotics, stable 

glutamine, and fetal calf serum (FCS) were purchased from Invitrogen (Germany) 

and Hepes was purchased from Biomol GmbH (Germany).  

2.2 siRNAs 

The applied siRNA duplexes were ordered from Dharmacon (ThermoFisher, 

USA) or Axolabs (Germany, former Roche Kulmbach). They were diluted in 

RNAse free water and the stocks (20 µg/µl) were stored at -80°C. For use in cell 

culture, stocks were diluted to 0,5 µg/µl, whereas for in vivo use stocks were 

diluted to 2-5 µg/µl. RAN siRNA was ordered in in vivo qualities and their 

sequences is shown in the table below. Small letters represent 2-Methoxy sugar 

modifications and s represents phosphorothioate backbone modifications. Some 

siRNAs were further modified with Inf7 peptide by C. Dohmen to demonstrate 

lytic activity in the endosomes116.   

siRNA Target Supplier siRNA sequence 

siGFP GFP Axolabs AuAucAuGGccGAcAAGcAdTsdT (Sense) 

UGCUUGUCGGCcAUGAuAUdTsdT (Antisense) 

siControl  Axolabs AuGuAuuGGccuGuAuuAGdTsdT 

CuAAuAcAGGCcAAuAcAUdTsdT 

siAHA1 AHA1 Axolabs GGAuGAAGuGGAGAuuAGudTsdT 

ACuAAUCUCcACUUcAUCCdTsdT 

siEg5 Eg5/KSP Axolabs ucGAGAAucuAAAcuAAcudTsdT 

AGUuAGUUuAGAUUCUCGAdTsdT 

siRan Ran Dharmacon UAGUACUGAAGAUUCUUCUUU 

AGAAGAAUCUUCAGUACUAUU 

siGlo  Dharmacon AUGUAUUGGCCUGUAUUAG 

(Cy3)thiol-AUGUAUUGGCCUGUAUUAG 

siAHA1-Cy5  Axolabs GGAuGAAGuGGAGAuuAGudTsdT 

(Cy5)(NHC6)ACuAAUCUCcACUUcAUCCdTsdT 

siAHA1-Cy7  Axolabs GGAuGAAGuGGAGAuuAGudTsdT 

(Cy7)(NHC6)ACuAAUCUCcACUUcAUCCdTsdT 
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siGFP-Inf  Axolabs (C. Dohmen) (Inf-SSC6)AuAucAuGGccGAcAAGcAdTsdT 

UGCUUGUCGGCcAUGAuAUdTsdT 

siControl-Inf  Axolabs (C. Dohmen) (Inf-SSC6)AuGuAuuGGccuGuAuuAGdTsdT 

CuAAuAcAGGCcAAuAcAUdTsdT 

siEg5-Inf  Axolabs (C. Dohmen) (Inf-SSC6)ucGAGAAucuAAAcuAAcudTsdT 

AGUuAGUUuAGAUUCUCGAdTsdT 

2.3 Oligomers 

Oligomers were synthesized by solid-phase-supported synthesis as previously 

described116,132-133. The table demonstrates polymer sequences, polymer shapes 

and polymer IDs. Freeze dried oligomers were diluted in deionized, sterile water 

for all experiments. 

Polymer ID Polymer shape Polymer sequence 

49 T-Shape C-Stp2-[(OleA)2-K]K-Stp2-C  

229 i-Shape C-Stp3-C-K-(LinA)2 

386 Branched [(C-Stp3)2]K-Stp3-C 

216 T-Shape A-Stp2-[(OleA)2-K]K-Stp2-A  

332 T-Shape Y3-Stp2-[(OleA)2-K]K-Stp2-Y3  

454 T-Shape C-Y3-Stp2-[(OleA)2-K]K-Stp2-Y3-C  

468 T-Shape C-Stp2-[(Y3)2-K]K-Stp2-C 

333 T-Shape Y3-Stp2-[(Y3)2-K]K-Stp2-Y3  

464 T-Shape C-Y3-Stp2-[(Y3)2-K]K-Stp2-Y3-C  

356 Targeted Fol-PEG24-K(STP4C)2  

188 Targeted A-PEG24-K(STP4C)2  

482 Targeted Fol-PEG48-K(STP4C)2  

483 Targeted Fol-PEG72-K(STP4C)2  

646 Targeted A-PEG120-K(STP4C)2 

647 Targeted A-PEG192-K(STP4C)2  

484 Targeted Fol-PEG24-K(STP4Y3C)2  

481 Targeted Fol-PEG24-K(STP4K(KCapA)2C)2  

480 Targeted Fol-PEG24-K(STP4K(KSteA)2C)2  

638 Targeted K(PEG24-MTX)-K(STP4-C)2 

639 Targeted K(PEG24-E2-MTX)-K(STP4-C)2 

640 Targeted K(PEG24-E4-MTX)-K(STP4-C)2 

641 Targeted K(PEG24-E6-MTX)-K(STP4-C)2 

642 Targeted K(PEG24-αMTX)-K(STP4-C)2 
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2.4 Polyplex Formation  

Polyplex were prepared as follows, unless the use of different solvents is 

indicated. 500 ng siRNA per well or per slot for untargeted oligomers, 200 ng 

siRNA per well or per slot for targeted or 50 µg siRNA per animal and the 

calculated amount of oligomer were diluted in separate Eppendorf tubes each in 

HBG (20 mM Hepes buffered 5% glucose pH 7.4). The amount of polymer was 

calculated as follows:  

�	������	 =
m	�siRNA	 	∗ 	negative	charges	�siRNA	 ∗ 	

�

�
	 ∗ M	�Oligomer	

M	�siRNA		∗ 	protonable	amines	�Oligomer	
 

For screening experiments several N/P (protonable amines/Phosphates) were 

tested. The oligomer solution was added to the siRNA, rapidly mixed by gently 

pipetting up and down (no air bubbles) and incubated for at least 45 min at room 

temperature in order to allow stable polyplexes formation. 

2.5 Biophysical Characterization  

2.5.1 Particle Size and Zeta Potential Measurement  

Particle sizes of siRNA formulations were measured by dynamic-laser-light 

(DLS) scattering using a Zetasizer Nano ZS (Malvern Instruments, U.K.). siRNA 

polyplexes N/P 12 (10 µg siRNA in 50 µl buffer) were prepared according to the 

previous mentioned formula and mixed in 20 mM Hepes pH 7.4 buffer. Before 

DLS measurement polyplexes were diluted 1:20 in Hepes pH 7.4 and measured in 

a folded capillary cell (DTS1060) with laser light scattering using a Zetasizer 

Nano ZS with backscatter detection. Samples were measured 3 times each with 10 

sub-runs of 10 seconds. Results were displayed as Z-average, whereby the 

standard deviation shows the difference between the 3 runs. The zeta potentials 

were also analyzed with the Zetasizer Nano ZS. Samples were measured 3 times, 

with 10 up to 30 sub-runs of 10 s at 25°C. 

2.5.2 Agarose Gel Shift Assay  

For gel shift assays a 2% agarose gel was prepared by dissolving 2 g ultrapure 

agarose in 100 ml TBE buffer (trizma base 10.8 g, boric acid 5.5 g, disodium 

EDTA 0.75 g and 1 l of water). The mixture was heated in a microwave to 

dissolve the agarose in TBE buffer. After the solution cooled down 80 µl GelRed® 
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(VWR, USA) were added for the detection of nucleic acids and the clear solution 

was filled into an electrophoresis chamber. Polyplexes in different N/P ratios, 

containing 500 ng siRNA in 20 µl HBG mixed with 5 x loading buffer (prepared 

from 6 ml of glycerine, 1.2 ml of 0.5 M EDTA, 2.8 ml of H2O, 0.02 g xylene 

cyanol) were placed into the sample pockets and electrophoresis was performed at 

120 V for 40 min. 

2.5.3 Serum Stability Assay 

A 2% agarose gel was prepared as described above. For the stability assays 

500 ng siRNA and the oligomer at N/P 12 were diluted in separate tubes to a total 

volume of 12.5 µl in 20 mM Hepes pH 7.4. The nucleic acid solution was added 

to the diluted polycation, mixed and incubated for 45 min at room temperature. 

Afterwards fetal calf serum (FCS) was added to the samples. All samples had a 

final concentration of 90% FCS. The samples were incubated either at room 

temperature or 37°C for different time points. After 0, 10, 30, and 90 min, 4 µl 

loading buffer were added and 20 µl of the samples were placed into the sample 

pockets. Electrophoresis was performed at 120 V for 40 min.  

2.6 Biological Chararacterization in vitro  

2.6.1 Cell Culture 

Different cell lines were used and cultured in the appropriate medium, except for 

targeting experiments where cells were cultured in folic acid free medium if 

possible. All media were supplemented with 10% FCS, 4 mM stable Glutamine, 

100 U/ml Penicillin and 100 µg/ml Streptomycin (cell lines for animal 

experiments were cultured without antibiotics). The cells were cultured in 

ventilated flasks inside incubators at 37°C with 5% CO2 in a humidified 

atmosphere. Cell lines were allowed to grow until 80% confluence and splitted 

when necessary. Cell lines stably expressing the eGFPLuc gene were generated by 

A. Cengizeroglu through lentiviral transduction and eGFPLuc positive cells were 

sorted by J. Ellwart. 
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Cell line Origin Media eGFP/Luc 

Neuro2A Murine; Neuroblastoma DMEM + 10%FCS + 1%Glutamine 

+ 1% P/S 
eGFPLuc 

HUH7 Human; Hepatocellular carcinoma DMEM/HAM´s F12 + 10%FCS + 

1%Glutamine + 1% P/S 
Luc 

HEPG2 Human; Hepatocellular carcinoma DMEM + 10%FCS + 1%Glutamine 

+ 1% P/S 
eGFPLuc 

KB Human; Cervical carcinoma RPMI + 10%FCS + 1%Glutamine + 

1% P/S 
eGFPLuc 

IGROV Human; Ovarian carcinoma RPMI + 10%FCS + 1%Glutamine + 

1% P/S 
eGFPLuc 

A431 Human; Epidermoid carcinoma DMEM + 10%FCS + 1%Glutamine 

+ 1% P/S 
 

A549 Human; Alveolar 

Adenocarcinoma 

DMEM + 10%FCS + 1%Glutamine 

+ 1% P/S 
 

MCF7 Human; Breast cancer DMEM + 20%FCS + 1%Glutamine 

+ 1% P/S 
 

MDA-MB 231 Human; Breast Cancer L15 + 10%FCS + 1%Glutamine + 

1% P/S 
 

Az521 Human; Gastric Adenocarcinoma EMEM + 10%FCS + 1%Glutamine 

+ 1% P/S 
eGFPLuc 

2.6.2 GFP Knockdown Assay 

Gene silencing experiments were by default performed in stably transfected 

Neuro2A-eGFPLuc or KB-eGFPLuc cells using 500 ng (untargeted oligomers) or 

200 ng (targeted oligomers) siRNA per well of either GFP siRNA for silencing of 

the eGFPLuc protein, or control siRNA for the detection of polyplex related 

cytotoxicity (siRNA sequences are displayed in the previously mentioned table). 

Experiments were performed in 96-well plates with 5 × 103 cells per well. After 

seeding, the cells were incubated for 24 h to guarantee proper cell adhesion. 

Before transfection the medium was replaced with 80 µl fresh growth medium 

containing 10% FCS. Transfection complexes for siRNA delivery were formed in 

20 µl HBG at different N/P and added to the wells in triplicates. Untargeted 

polyplexes were incubated for 48 h while targeted polyplexes were incubated for 

45 min on the cells. After 48 h cells were lysed with 100 µl cell lysis buffer. 

Luciferase activity in the cell lysate was measured using a luciferase assay kit 

(100 µl Luciferase Assay buffer, Promega, Germany) and a Centro LB 960 plate 

reader luminometer (Berthold Technologies, Germany). The relative light units 

(RLU) are presented as percentage of the luciferase gene expression obtained with 
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buffer treated control cells. 

2.6.3 Quantitative Real Time Polymerase Chain Reaction 

1.5 × 105 Neuro2A cells per well were seeded in 2000 µl medium (DMEM with 

10% FCS) using 6-well plates. After 24 h, medium was replaced with 900 µl fresh 

medium (DMEM with 10% FCS). Polyplexes were prepared in a total volume of 

100 µl as described above and added to the wells after 45 min incubation time. All 

experiments were performed in triplicates using either Eg5 siRNA, Ran siRNA or 

control siRNA (sequences see above). Transfected cells were incubated for 24, 48, 

and 72 h without medium change. After 24, 48, and 72 h cells were lysed and total 

RNA was isolated using High Pure RNA Tissue Kit® (Roche, Germany) and 

transcribed with the Transcriptor High Fidelity cDNA Synthesis Kit® (Roche, 

Germany) according to the manufacturer’s protocol. Quantitative real-time PCR 

was performed using UPL Probes and Probes Master (both Roche, Germany) on a 

LightCycler 480® system (Roche, Germany) with GAPD as housekeeper. Primers 

used include murine GAPD (ready to use Universal Probe library assay Roche), 

Eg5 (UPL Probe #100) forward: TTCCCCTGCATCTTTCAATC, reverse: 

TTCAGGCTTATTCATTATGTTCTTTG; Ran (UPL Probe #2) forward: 

ACCCGCTCGTCTTCCATAC, reverse: ATAATGGCACACTGGGCTTG. 

Results were analysed using the ∆CT method, therefore CT values of the 

housekeeper were subtracted from CT values of the gene of interest. The ∆CT 

values of control transfected cells were set to 100% and compared to Eg5 and Ran 

siRNA transfected cells. 

2.6.4 Western Blot 

1.5 × 105 Neuro2A cells per well were seeded in 2000 µl medium (DMEM with 

10% FCS) using 6-well plates. After 24 h, medium was replaced with 900 µl fresh 

medium (DMEM with 10% FCS). Transfection complexes were prepared in a 

total volume of 100 µl as described above. After 24, 48, and 72 h cells were lysed 

and total protein concentration was determined using a BCA (Bicinchonic acid) 

assay. 50 µg of protein per lane were separated by SDS-PAGE under reducing 

conditions, transferred on a nitrocellulose membrane, and blocked with NET 

Gelatine or milk powder (5% in TBST) for 1 hour at room temperature. 

Immunostaining was performed using either primary Ran anti rabbit antibody 

(Cell Signaling, Germany; 1:500), or Eg5 anti goat antibody (Santa Cruz 
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Biotechnology Inc., USA; 1:200) or GAPD anti rabbit antibody (Cell Signaling, 

Germany; 1:5000) overnight at 4°C. After the incubation with primary antibodies 

membranes were washed 3 times with NET Gelatine or TBST (Tris buffered 

saline and Tween 20) before incubating with a peroxidase labeled secondary 

antibody (Vector Laboratories, France) for 1 h. After another 3 washing cycles, 

proteins were visualized using Lumi-Light Western blotting substrate (Roche, 

Germany). Blots were quantified using Image J software (NIH, USA). 

2.6.5 Flow Cytomerty 

2.6.5.1 Receptor Level Studies 

Cell lines expressing the folic acid receptor were identified by flow cytometry. 

For this experiment cells were either cultivated in the previously mentioned cell 

culture medium or in folate free RPMI medium if possible. 1 x 106 cells were 

collected in 150 µl FACS buffer and 10 µl APC-conjugated anti folic acid 

receptor 1 mouse IgG1 (R&D Systems, USA) were added. After 30 min cells were 

washed twice with FACS buffer, resuspended in 500 µl FACS buffer and 

analyzed using a Cyan® ADP flow cytometer (Dako, Germany). Doublets were 

discriminated by accurately gating forward/sideward scatter and forward 

scatter/pulse width, while counterstaining with DAPI (4,6-Diamidin-2-phenylindol) 

allowed distinguishing between dead and living cells. The amount of folic acid 

receptor positive cells was analyzed through excitation of the dye at 635 nm and 

detection of emission at 665/20 nm. For each sample 5 x 104 events were counted 

using Summit® software (Summit, USA) and evaluated using FlowJo® software 

(FlowJo, USA).     

2.6.5.2 Receptor Binding Studies 

Polyplex uptake into cells was monitored by flow cytometry. For uptake 

experiments 5 x 104 cells per well were seeded in 1000 µl medium using 24-well 

plates. 24 h later the medium was replaced with 450 µl fresh growth medium and 

polyplexes containing Cy5 labeled siRNA mixed in a total volume of 50 µl were 

added. The 24-well plates were incubated on ice for 45 min to hinder polyplex 

uptake. After 45 min medium was removed and cells were washed twice with cold 

PBS (phosphate buffered saline) and trypsinized. Trypsin was inactivated with 

1000 µl FACS buffer (10% FCS in PBS) and the cells were centrifuged 

(2000 rpm; 5 min). After two washing cycles with 1000 µl PBS the cells were 
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resuspended in 400 µl FACS buffer and analyzed using a Cyan® ADP flow 

cytometer (Dako, Germany). The amount of Cy5 positive cells was analyzed 

through excitation of the dye at 635 nm and detection of emission at 665/20 nm. 

Doublets were discriminated by accurately gating forward/sideward scatter and 

forward scatter/ pulse width, while counterstaining with DAPI (4,6-Diamidin-2-

phenylindol) allowed distinguishing between dead and living cells. For each 

sample 1 x 104 events were counted using Summit® software (Summit, USA) and 

evaluated using FlowJo® software (FlowJo, USA).     

2.6.5.3 Cell Cycle Measurement  

2.5 × 104 Neuro2A cells per well were seeded in 1000 µl medium (DMEM with 

10% FCS) using 24-well plates. After 24 h, medium was replaced by 450 µl fresh 

medium (DMEM with 10% FCS). Transfection complexes were prepared as 

described above. After the incubation time (24, 48, 72 h) cells were trypsinized, 

collected in their culture medium and centrifuged (2000 rpm; 5 min). The 

supernatant was discarded and the cell pellet was washed with PBS before 

staining with propidium iodide solution (0.1% sodium citrate; 0.1% Triton-X100; 

50 µg/ml propidium iodide in millipore water). After 3 h 1000 µl PBS were 

added, cells were centrifuged (2000 rpm; 5 min), resuspended in 500 µl PBS and 

measured with a Cyan® ADP flow cytometer (Dako, Germany). Doublets were 

discriminated by accurately gating forward/sideward scatter and forward scatter/ 

pulse width. The DNA content was measured through excitation of the dye at 

488 nm and detection of emission at 613/20 nm. For each sample 1 x 104 events 

were counted using Summit® software (Summit, USA) and evaluated using 

FlowJo® software (FlowJo, USA).     

2.6.6 Fluorescence Microscopy 

1 × 104 Neuro2A, KB or IGROV cells per well were seeded in 200 µl medium 

(DMEM or RPMI with 10% FCS) using 8-well Lab-tek® chamberslides (Sigma-

Aldrich, USA). 24 h after seeding medium was replaced by 180 µl fresh medium 

and 20 µl polyplex solution were added (in HBG). Cells transfected with 

polyplexes containing either Eg5 or control siRNA were incubated for 24 h 

(untargeted polyplexes) or 45 min (targeted polyplexes). After the incubation time 

medium was removed and cells were washed with 200 µl PBS and fixed with 4% 

paraformaldehyd (PFA). Fixed cells were stained with DAPI to visualize the DNA 
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and results were documented using Zeiss Axiovert 200 (fluorescence microscope, 

Carl Zeiss AG, Germany). 

2.6.7 CellTiter Glo Assay 

5 × 103 Neuro2A cells per well were seeded in 100 µl medium (DMEM with 10% 

FCS) using 96-well plates. 24 h later, medium was replaced by 80 µl fresh 

medium (DMEM with 10% FCS) and 20 µl polyplex solution were added. After 

24, 48, and 72 h 100 µl CellTiter Glo solution (Promega, USA) was added and the 

luminescence was recorded with a Luminometer (Lumat LB9507, Berthold, 

Germany).  

For the detection of methotrexate (MTX) related toxicity cells were also seeded in 

a 96-well plate as described above. To determine IC50 values of MTX, MTX 

targeted oligomers or MTX polyplexes the culture medium was also replaced after 

24 h by fresh medium containing different concentrations of the previously 

mentioned therapeutics. After 48 h 100 µl CellTiter Glo® solution (Promega, 

USA) was added and the luminescence was recorded with a Luminometer (Lumat 

LB9507, Berthold, Germany). IC50 values were calculated with GraphPad Prism® 

(GraphPad, USA) software. 

2.6.8 Dihydrofolatereductase Activity Assay 

Inhibition of dihydrofolatereductase (DHFR) through MTX or MTX containing 

oligomers was measured by a spectroscopic assay. All reagents despite the tested 

oligomers were supplemented in the dihydrofolate reductase assay kit (Sigma-

Aldrich, USA). The reduction of absorption is measured by a photospectrometer 

at 340 nm, as DHFR catalyses the reduction of dihydrofolic acid to tetrahydrofolic 

acid in a NADPH dependent reaction. MTX blocks the activity of the enzyme 

DHFR, in consequence the reduction of dihydrofolic acid is hampered leading to 

higher concentrations of NADPH/H+ and therefore higher absorption values at 

340 nm after 2.5 min. The absorption values without inhibition decreased and the 

reduction was compared to the reduction with inhibitor.  
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2.7 Biological Characterization in vivo  

2.7.1 Mouse Strains  

Female 5 week old A/J mice were purchased from Harlan Winkelmann 

(Germany) and female 5 week old NMRI-nu (nu/nu) from Janvier (France). After 

arrival the mice were allowed to acclimatize for one week before starting the 

experiments. All mice were housed in individually vented cages with food and 

water provided ad libitum and a 12 h day and night cycle. Animal experiments 

were performed according to guidelines of the German law of protection of 

animal life and were approved by the local animal experiments ethical committee.  

2.7.2 Histological Studies 

For histological assays 1 x 106 Neuro2A cells or 5 x 106 KB cells in a volume of 

150 µl PBS were subcutaneously injected into the left flank of A/J mice 

(Neuro2A) or NMRI mice (KB). After tumors reached a volume of about 

200 mm3 (10 days) polyplexes were injected.   

2.7.2.1 Polyplex Distribution 

Polyplexes distribution was measured by incorporation of Cy3 labeled siRNA into 

the intravenously injected polyplexes (N/P 12). Mice were sacrificed 1 h after tail 

vein injection of the polyplexes mixed in a total volume of 250 µl and organs 

(tumor, lung, liver, kidneys) were harvested. Organs were immobilized in 

TissueTek® and 5 µm fine sections were cut using a cryotom (Leica CM3050 S 

Leica Microsystems GmbH, Germany). Slices were stained with Hoechst 33342 

dye, sealed with FluorSave (Calbiochem, Merck Group, Germany) and analyzed 

with Zeiss Laser Scanning Microscope LSM510 Meta (Carl Zeiss, Germany). 

2.7.2.2 Aster Formation 

Mice were intravenously injected twice with Eg5 siRNA (for oligomers 422 and 

188 Inf7 modified siRNAs were chosen) containing polyplexes (N/P 12 for 

oligomers 49 and 229 or N/P 16 for oligomers 472 and 188) 24 and 48 h before 

euthanasia. Tumors and livers were harvested, immobilized in TissueTek® and cut 

into 5 µm fine sections using a cryotom (Leica CM3050 S Leica Microsystems 

GmbH, Germany). Slices were fixed with paraformaldehyde (4%), stained with 

DAPI and aster formations were documented using a fluorescence microscope 
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(Zeiss Axiovert 200, Carl Zeiss AG, Germany).  

2.7.2.3 H&E Staining 

Mice were intratumorally injected twice with Eg5-Inf7 siRNA containing 

polyplexes (N/P 16) 24 and 48 h before euthanasia. Tumors were harvested, fixed 

in formalin and embedded into paraffin. Tumors were sliced into 4.5 µm fine 

sections and stained with hematoxylin and eosin (H&E), following standard 

protocol. Results were documented using an Olympus BX41 microscope 

(Olympus, Germany).  

2.7.3 Polyplex Imaging 

For live polyplex imaging 5 x 106 Neuro2A or KB cells in a volume of 150 µl 

PBS were subcutaneously injected into the left flank (Neuro2A) or neck (KB) of 

NMRI mice. After tumors reached a volume of about 200 mm3 (10 days) 

polyplexes were injected.  

2.7.3.1 Polyplex Retention after i.t. Injection 

Near infrared (NIR) imaging was performed to display the different retention of 

intratumorally injected polyplexes (N/P 12) containing 50 µg siRNA including 

25 µg Cy7-labeled siRNA mixed in a total volume of 50 µl (HBG). Mice were 

anaesthetized with 3% isoflurane in oxygen, polyplexes were injected into the 

tumor and fluorescence was measured after 0, 0.25, 1, 4, 24, and 48 h with a CCD 

camera. After 48 h mice were sacrificed and tumors, kidneys, lungs, livers, and 

spleens were excised and fluorescence imaging was performed. All pictures were 

analyzed utilizing the IVIS Lumina system with Living Image software 3.2 

(Caliper Life Sciences, USA). For evaluation of images, efficiency of 

fluorescence signals was analyzed, after color bar scales were equalized. 

Targeted and untargeted polyplexes, containing 50 µg Cy7-labeled siRNA, or 

pure Cy7-labeled siRNA, were injected intratumorally in 50 µl HBG. NIR 

imaging was performed with a CCD camera 0, 4, 24, 48, 72, 96, and 120 h after 

polyplex injection. For evaluation of images, efficiency of fluorescence signals 

was analyzed, after color bar scales were equalized. For quantification of the 

tumor retention of the polyplexes, regions of interest (ROIs) were defined and 

total signals per ROI were calculated as total efficiency/area with Living Image 

software 3.2. The average signal intensities per group were compared over time 
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(mean ± S.E.M. of five mice per group). Pictures were taken with an exposure 

time of 5 s and medium binning.  

2.7.3.2 Polyplex Distribution after i.v. Injection 

Different untargeted polyplexes (N/P 12) containing 50 µg siRNA including 

25 µg Cy7-labeled siRNA were mixed in a total volume of 250 µl (HBG) and 

injected into the tail vein of tumor free NMRI mice. Fluorescence imaging was 

performed utilizing the IVIS Lumina system with Living Image software 3.2 

(Caliper Life Sciences, Hopkinton, MA, USA). After anesthetizing the mice with 

3% isoflurane in oxygen, polyplexes were injected into the tail vein and the 

distribution was measured after 0, 0.25, 0.5, 1, 4, and 24 h with a CCD camera. 

Experiments were performed in triplicates and pictures were analyzed using the 

Living Image software. Pictures were taken with an exposure time of 5 s and 

medium binning. 

Folate-oligomer containing targeted polyplexes with different PEG spacers (1 x, 

2 x, 3 x PEG24) or with hydrophobic modifications (tyrosine, caprylic acid, 

stearic acid) containing 50 µg Cy7-labeled siRNA, were mixed in 250 µl HBG 

and injected into the tail vein of KB tumors bearing NMRI mice. Untargeted 

polyplexes with 5 x or 8 x PEG24 chains were injected into tumor free NMRI 

mice. Each polymer was injected intravenously into three animals, with only one 

exception. The stearic acid containing polyplexes were injected once, as this 

mouse died after the application. NIR fluorescence measurement was started 

immediately after polyplex injection and repeated after 0.25, 1, 4, and 24 h 

(polyplexes with 1 x, 2 x, 3 x PEG24, tyrosine, caprylic acid or stearic acid) or 

after 0.25, 0.5, and 1 h (polyplexes with 5 x PEG24 and 8 x PEG24). For 

evaluation, the efficiency of the fluorescence signals was presented, using 

equalized color bar scales for each group. Pictures were taken with an exposure 

time of 5 s and medium binning. 

2.7.3.3 Gel Electrophoresis of Urine Samples 

Folate receptor targeted polyplexes with different PEG spacers (1 x, 3 x PEG24) 

containing 50 µg Cy7-labeled siRNA, were mixed in 250 µl HBG and injected 

intravenously into tumor free NMRI mice. The mice were injected with oligomer 

472 (n=2), 478 (n=2) polyplexes or pure siRNA (n=1). After 4 h, mice were 

anesthetized with 3% isoflurane in oxygen and placed in dorsal position. Bladders 
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were blindly punctured with an insulin syringe. Urine samples were analyzed in a 

2% (w/v) agarose gel in TBE buffer (800 mM Tris, 3.8 M boric acid, 2 mM 

EDTA) without further dilution. For staining, GelRed® was added to the liquid 

gel. Where indicated, 2 µl of a 0.5 M TCEP solution and 2 µl of a heparin solution 

were added. Gel electrophoresis was performed at 80 V for 60 min. 

2.7.4 Therapeutic Assays 

For therapeutic assays 5 x 106 Neuro2A cells in a volume of 150 µl PBS were 

subcutaneously injected into the left flank of NMRI mice.  

2.7.4.1 Dose Finding 

Two days after tumor inoculation, intratumoral treatment with polyplexes, 

containing 12.5, 25, or 50 µg Eg5 or control siRNA and oligomer 49 (N/P 12) 

mixed in a total volume of 50 µl was started. Treatment was repeated on day 4, 7, 

9, and 11. Bioluminescence signal was measured before each treatment and at day 

14 by a CCD camera (IVIS Lumina®) 15 min after peritoneal injection of 100 µl 

luciferin solution (c = 60 mg/ml). After the final measurement animals were 

sacrificed.  

2.7.4.2 siRNA Comparison 

Two days after tumor inoculation mice were separated into 4 groups (n=9) based 

on their bioluminescence signal (Caliper Life Sciences, USA). For this reason, 

bioluminescence imaging was performed using a CCD camera (IVIS Lumina®) 

and Living Image software 3.2, 15 min after intra peritoneal injection of 100 µl 

luciferin solution (c=60 mg/ml). Polyplexes consisting of oligomer 49 (N/P 12) 

either complexing Ran siRNA, Eg5 siRNA or control siRNA (50 µg/mouse) were 

mixed in a total volume of 50 µl (HBG), incubated for 60 min and injected 

intratumorally. Treatment was started at day 2 and repeated at day 4, 7, 9, 11, and 

14 (3 times per week). Tumor growth was recorded through bioluminescence 

imaging at day 4, 7, 9, 11, 14 and caliper measurement thrice a week. Mice were 

sacrificed after their tumors reached a size of 1500 mm3 (length x width2/2). 

Bioluminescence signals and tumor volumes were analyzed with GrapPad Prism® 

software. The dates when tumors reached the endpoint criteria were recorded and 

Kaplan-Maier Survival analysis was performed.  
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2.7.4.3 Oligomer Comparison  

Mice were injected with 5 × 106 Neuro2A-eGFPLuc cells subcutaneously into 

their left flank at day 0. 2 Days later the mice were separated into 6 groups (n=5) 

based on their bioluminescence signal (Caliper Life Sciences, USA). Polyplexes 

consisting of oligomers 49 (chloride salt), 386 (TFA salt in the first experiment, 

chloride salt in the second experiment), and 229 (TFA salt) (N/P 12) complexing 

either Ran or control siRNA (50 µg/mouse) in a total volume of 50 µl (HBG) 

were intratumorally injected. Treatment started at day 2 and was repeated at day 4, 

8, 11, 15 or at day 4, 8, 11, 14. Tumor growth was recorded through 

bioluminescence imaging at day 4, 8, 11, 15 or at days 4, 8, 11, 14, 16, 18. In the 

first experiment mice were sacrificed 2 days after the last treatment. In the second 

experiment mice were sacrificed when the tumor of the first mouse in the polymer 

group, Ran or control siRNA treated reached a volume of 1500 mm3 

(length x width2/2). Bioluminescence signals and tumor weights were analyzed 

with GrapPad Prism® software. 

2.8 Statistical Analysis 

Statistical analysis of all results (mean ± standard error of the mean) was 

performed using GraphPad Prism®. Statistical significance of the results was 

evaluated by one way t-test; ns = not; * p < 0.05; ** p < 0.01; *** p < 0.001.
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3 RESULTS 

3.1 Oligoamides for siRNA Delivery  

3.1.1 Design of Precise Carriers for siRNA Delivery 

Solid-phase-supported macromolecule assembly offered the possibility to 

synthesize a large library of diverse, sequence defined, synthetic oligomers133-134 

(Figure 8). Therefore, artificial Fmoc/Boc-protected amino acids with defined 1,2-

diaminoethane units were designed by D. Schaffert and N. Badgujar132. The 

diaminoethane motif in contrast to diaminopropane has unique properties as it is 

not completely protonated at physiological pH135. Diaminoethane motifs are 

protonated in the endosomes (pH 5.5) and mediate the so called “proton sponge 

effect”, responsible for the high transfection activity of polyethylenimine (PEI). 

Four artificial amino acids (Stp = Succinyl-tetraethyl-pentamine, Gtp = Glutaryl-

tetraethyl-pentamine, Ptp = Phthalyl-tetraethyl-pentamine and Gtt = Glutaryl-

triethyl-tetramine) were applied together with lysines (branching), cysteines 

(bioreversible disulfide-forming), tyrosines (stability), histidines (endosomal 

escape) and various fatty acids (stability and lysis) to generate a library of more 

than 600 defined structures by N. Badgujar, C. Dohmen, U. Lächelt, I. Martin, E. 

Salcher, D. Schaffert, C. Scholz, and C. Troiber75,133,136-137. Polycations with 

different topologies (T-shapes, i-shapes, U-shapes and branched structures) were 

synthesized to discover novel biodegradable, sequence defined siRNA carriers. 

The first two oligomer classes contain two terminal cysteines and a hydrophobic 

domain either in the middle (T-shape) or at the N terminus (i-shape). The third 

oligomer class is modified at the C and N terminus with hydrophobic domains (U-

shape) either with or without terminal cysteines. The last oligomer class contains 

three terminal cysteines for cross-linking (branched) and has no hydrophobic 

modifications. This novel approach also allowed the incorporation of shielding 

agents (for example Polyethylenglycol) and targeting ligands (for example folic 

acid, methotrexate). 
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Figure 8 Scheme of solid-phase-supported oligomer synthesis: Demonstrates the different steps during 
oligomer assembly like coupling, basic deprotection and acidic cleavage. 

3.1.2 Identification of Powerful siRNA Carriers 

To identify the requirements for successful siRNA delivery, oligomers consisting 

of different building blocks and with different topologies have been synthesized. 

Screening of these structures in a marker gene silencing screen in vitro revealed 

several structure-activity-relations75.  

Polymers containing Stp and Gtp building blocks showed the best transfection 

efficiencies in i-shape and branched structures. In contrast, the shorter Gtt 

building block was inactive in both topologies whereas the Ptp building block was 

only active in i-shaped oligomers. EtBr assays revealed Stp as the building block 

with the best binding capacity for siRNA. For branched structures and T-shapes at 

least two Stp units per arm were necessary to efficiently bind siRNA and mediate 

effective target gene knockdown. In contrast, U-shape oligomers with only one 

Stp unit were suitable for siRNA binding and mediated target gene knockdown.  

For better siRNA complexation and because of their lytic activity different fatty 

acids were incorporated into the lipo-oligomers (T-shape, i-shape and U-shape). 

Oligomers with linolic and oleic acid showed pH dependent lytic activity and 

performed best in transfection experiments compared to other fatty acids (for 

example myristic acid, stearic acid).  

Especially for branched structures, but also for T- and i-shaped oligomers 

stabilization by terminal cysteines was essential for successful siRNA 

transfection. On the contrary, U-shaped oligomers mediated efficient siRNA 

delivery without cysteines, because of the high amount of fatty acids. Serum 

challenge revealed that U-shaped oligomers with terminal cysteines form the most 

stable polyplexes, followed by U-shaped oligomers without cysteines, i-shaped 
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oligomers and branched structures.  

The different oligomer topologies mediated similar target gene knockdown in a 

murine neuroblastoma cell line (Neuro2A). On the other hand, different cell lines 

did react diversely to oligomers with different topologies. For further experiments 

three diversely shaped oligomers (49 = T-shape, 229 = i-shape, 386 = branched) 

have been chosen to demonstrate biophysical properties (siRNA binding, particle 

size) and in vitro gene silencing activity (Figure 9). U-shaped oligomers were 

excluded because they showed toxicity in a DNA transfection experiment in vivo. 

 

Figure 9 Oligomer classes: Sketches of T-shape oligomer 49 (n=2) containing 4 STP units and oleic acid, i-
shape oligomer 229 (n=3) containing 3 STP units and linolic acid and branched oligomer 386 (n=3) 
containing 9 STP units. 

3.1.2.1 Biophysical Characterization 

As described previously, effective binding of nucleic acids was a major hurdle for 

successful siRNA delivery. Different siRNA binding capacities of the three 

oligomers (49, 229, 386) were demonstrated (Figure 10). All 3 oligomers were 

able to complex the nucleic acid already at low N/P ratios. Oligomer 386 

completely bound siRNA at an N/P ratio of 3, whereas the other two carriers 

needed slightly higher oligomer amounts to completely bind siRNA.  

 

Figure 10 Gel shift assay: siRNA binding capacity of oligomers 49, 229 and 386 at different N/P ratios 
(experiment performed by C. Troiber and T. Fröhlich). 

In conclusion, the gel shift assay demonstrated the absence of free siRNA at an 
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N/P ratio of 12 for oligomers 49, 229 and 386. Therefore, this N/P was chosen for 

further characterization, like particle size and zeta potential. DLS (dynamic light 

scattering) measurement revealed very small polyplexes size for the lipo-

oligomers 49 and 229 in a range of 20-50 nm. In contrast, oligomer 386 formed 

big particles with a size of approximately 600 nm (Table 1). Zeta potential of 

oligomers 49 and 386 were medium high, whereas oligomer 229 showed only low 

zeta potential. 

Oligomer ID Oligomer sequence Z-Average (nm) Zeta potential (mV) 

49 C-Stp2-[(OleA)2-K]K-Stp2-C 23 ± 4 24.9 ± 1.0 

229 C-Stp3-C-K-(LinA)2 48 6.12 

386 [(C-Stp3)2]K-Stp3-C 597 ± 3 20.8 ± 1.3 

Table 1 Size and zeta potential measurement: Polyplex size and zeta potential at N/P 12 of 
oligomer 49, 229 and 386 (experiment performed by C. Troiber and T. Fröhlich). 

The biophysical characterization demonstrated successful siRNA binding for the 

three oligomers and the formation of polyplexes with different sizes and zeta 

potentials.  

3.1.2.2 GFP Knockdown Screen 

Target gene silencing was examined in an eGFPLus silencing assay, enabling the 

comparison of different oligomers at several N/P ratios. For this reason, cell lines 

stably expressing the marker gene eGFPLuc have been generated by lentiviral 

transduction. These cell lines were transfected with polyplexes containing either 

GFP siRNA targeting the eGFPLuc or a scrambled control siRNA. Reduced 

luciferase signals in the GFP siRNA group, two days after siRNA transfection, 

demonstrated successful target gene silencing. In contrast, reduced luciferase 

signals in both groups indicated unspecific toxicity. First knockdown experiments 

were always carried out in the Neuro2A-eGFPLuc cell line. For comparison 

reasons Neuro2A cells were transfected with “gold standard” Lipofectamine 2000 

(LF2000, standard protocol), a modified Polyethylenimine54 (PEI Succ10, w/w = 

4/1), or the novel T-shape oligomer 49 (Figure 11).   
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Figure 11 eGFPLuc silencing assay: Target gene silencing of standard polymer PEI-Succ10 and standard 
liposome LF2000 was compared to sequence defined oligomer 49 at different N/P ratios. 

Both standards and oligomer 49 were able to mediate specific target gene 

knockdown, in the GFP siRNA group, without unspecific toxicity. Oligomer 49 

showed effective target gene knockdown beginning with N/P 3 and displayed no 

toxicity even in the high N/P of 40.  

 

Figure 12 eGFPLuc silencing assay: Target gene silencing of oligomer 49 polyplexes in standard cell line 
Neuro2A was compared to HUH7 and Az521 cell lines. 

For further evaluation eGFPLuc knockdown in Neuro2A cells was compared to 
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the knockdown in human hepatocellular carcinoma cells (HUH7) and a gastric 

cancer cell line (Az521) (Figure 12). The results demonstrated the diverse 

transfection efficiency of this oligomer in different cell lines. Oligomer 49 was a 

highly effective oligomer for the transfection of Neuro2A and HUH7 cells, 

whereas the gastric cancer cell line Az521 showed unspecific toxicity after 

transfection. Thereafter, the transfection efficiencies of oligomers 49, 229 and 386 

were compared in the Neuro2A cell line (Figure 13). The results demonstrated 

similar eGFPLuc silencing mediated by the lipo-oligomers 49 and 229 and the 

branched oligomer 386.  

 

Figure 13 eGFPLuc silencing assay: Target gene silencing of oligomer 49 polyplexes was compared to 
oligomer 229 and 386 polyplexes at N/P 6 and 12. 

In conclusion, all oligomers mediated marker gene knockdown comparable to the 

standards LF2000 and PEI Succ10. The successful marker gene knockdown and 

the low toxicity of the oligomers indicated their applicability for in vivo testing. 

3.1.3 Therapeutic Gene Silencing 

Knockdown of genes involved in cell division, metabolic processes or 

angiogenesis can affect tumor progression138-140. Hence, siRNA polyplexes 

targeting genes essential for cancer cells reduce tumor cell viability and in 

consequence lead to reduced tumor growth. The previous described target genes 

Eg5 and Ran were evaluated in vitro and in an intratumoral assay in vivo for this 

purpose. Knockdown of both therapeutic targets should lead to reduced tumor cell 
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viability and tumor growth.  

3.1.3.1 Eg5 and Ran Silencing on mRNA and Protein Level  

The knockdown of therapeutic targets, Eg5 and Ran, was determined by qPCR 

(Figure 14) and Western blot analysis (Figure 15), demonstrating delivery 

efficiency and knockdown kinetics of the applied oligomers 49, 229, and 386. 

Also, the target specificity of utilized siRNA sequences was assured by these 

assays. For this purpose, Neuro2A cells were transfected with either Eg5, Ran or 

control siRNA, and cells were lysed for mRNA or protein isolation after 24, 48, 

and 72 h. Results showed effective silencing of Eg5 mRNA after 24 h for all Eg5 

siRNA containing polyplexes (Figure 14a), however with a recovery after 48 h 

(Figure 14b) and nearly no difference of Eg5 and control siRNA transfected cells 

after 72 h (Figure 14c).  

 

 

Figure 14 Gene silencing on mRNA level: qPCR data of control, Eg5 and Ran siRNA (370 nM) transfected 
cells delivered by oligomers 49, 229 and 386. GAPDH was used as housekeeper for all experiments. ∆Ct 
values of control siRNA transfected cells were set to 100% and compared to the ∆Ct values of either Eg5 or 
Ran siRNA transfected cells. Graphs (a-c) demonstrate Eg5 knockdown and (d-f) Ran knockdown after 24, 
48, and 72h 

Western blot results indicated a similar but shifted time course with a delay of one 



Results     37 

 

day for Eg5 protein reduction. Protein knockdown at day 1 and 2 was followed by 

a recovery at day 3 (Figure 15). Efficiencies and kinetics of Ran knockdown on 

mRNA and protein level were similar to Eg5 knockdown. The main difference 

was an observed counter regulation of Ran mRNA expression (up to 150%) at 

72 h after Ran siRNA transfection (Figure 14f).  

 

Figure 15 Gene silencing on protein level: Western blot analysis of control, Eg5 and Ran siRNA (370 nM) 
transfected cells using oligomers 49, 229 and 386. GAPDH was used as loading control for all experiments. 
Western blots (a-c) demonstrate Eg5 knockdown and (d-f) demonstrate Ran knockdown after 24, 48, and 
72 h. Blots were further quantified with ImageJ software and control siRNA transfected relative intensities 
were set to 100%. 

These transfection results demonstrated the effective knockdown of Eg5 and Ran 

mRNA with minor differences in the time course, but no differences in the 

knockdown efficiency triggered by the different carriers. The branched oligomer 

386 showed the fastest kinetic, with strong protein and mRNA knockdown at day 

1 and the most persistent knockdown with significant Eg5 mRNA reduction at day 

3. Both lipo-oligomers, 49 and 229, showed comparable time courses, with 

oligomer 229 mediating slightly stronger target mRNA knockdown. These results 

demonstrated similar and efficient Eg5 and Ran knockdown on mRNA and 
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protein level. Thus they were, in accordance with our previous studies, showing 

effective eGFPLuc marker gene knockdown for the three oligomers. Further in 

vitro assays were carried out to gain a better understanding of the transfection 

efficiencies and the related biological effects.  

3.1.3.2 Cell Cycle Analysis 

Eg5 is responsible for the formation of bipolar mitotic spindles during mitosis, in 

consequence Eg5 knockdown caused cell-cycle arrest and induced apoptosis. 

Successful application of Eg5 siRNA was demonstrated by the detection of the 

typical monoastral spindles of cell nuclei in cell culture. Only dividing cells are 

affected by Eg5 knockdown, hence typical aster formation can be visualized in 

mitotic cells after DAPI (DNA) and tubulin (spindle apparatus) staining (Figure 

16).  

 

Figure 16 Aster formation assay: Eg5 knockdown by oligomer 49 polyplexes caused Aster formation in 
Neuro2A cells visualized by staining of nuclei (DAPI = blue) and tubulin (green).  

The previously successful oligomers 49 and 229 were compared in terms of their 

transfection efficiency in Neuro2A cells demonstrating successful Eg5 

knockdown for both oligomers (Figure 17). Aster formation is a positive readout 

system, therefore no mitotic figures could be observed after application of control 

siRNA.  
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Figure 17 Aster formation assay: Eg5 knockdown visualized by staining of nuclei (DAPI = blue) 
demonstrates aster formation in Neuro2A cells after transfection with polyplexes of oligomers 49 or 229. 
Control siRNA did not cause aster formation. 

Aster formation is equivalent to a mitotic block, because cells are unable to divide 

into daughter cells after Eg5 knockdown. This mitotic block led to accumulation 

of cells in G2 phase which were detectable through a flow cytometric assay. For 

this assay nuclear DNA of Eg5 and control siRNA transfected cells was stained 

with propidiumiodide (PI). Untransfected and control siRNA transfected cells 

showed typical histograms with a prominent G1-0 peak and a much smaller G2 

peak, while Eg5 transfected cells showed a diminished G1-0 peak and a much 

greater G2 peak (Figure 18). Cells between G1/G0 and G2 phase are in synthesis 

phase and were not affected by the transfection. 
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Figure 18 Cell cycle analysis by flow cytometry: Representative histograms of PI stained Neuro2A cells 
24 h after Eg5 (black) or control (light grey) siRNA transfection. The Peak at 20K demonstrates cells with 
haploid set of chromosomes (G1/G0) whereas the peak at 40K demonstrates cells with diploid set of 
chromosomes (G2). 

Again the two oligomers 49 and 229 were tested for their transfection efficiency 

in the flow cytometric assay. Significant difference between Eg5 siRNA treated 

and control siRNA treated samples was detected for both polymer formulations 

(Table 2). Although, both assays allowed the detection of successful Eg5 

knockdown in vitro, particularly the histological assay offered an interesting 

possibility for the detection of functional in vivo gene silencing. 

Polymer siRNA % of cells in 

sub G1-G0 

% of cells 

in G1-G0 

% of cells 

in S 

% of cells in 

sub G2-M 

49 
Eg5 2.4 ± 0.7 20.1 ±2.9 11.7 ± 0.2 65.8 ± 2.4 

Control 3.9 ± 0.4 57.1 ± 2.5 15.1 ± 1.1 23.6 ± 1.2 

229 
Eg5 4.4 ± 1.3 23.6 ± 8.5 14.5 ± 2.5 55.0 ± 7.8 

Control 3.3 ± 1.2 59.6 ± 0.6 14.3 ± 0.8 21.2 ± 3.3 

Table 2 Comparison of Eg5 knockdown by flow cytometry: Cell cycle stages of Neuro2A cells 24 h after 
transfection with oligomer 49 and 229 polyplexes. Cells in G1/G0, G2 and S phase were quantified after Eg5 
and control siRNA transfection.  

In a further flow cytometric assay the effects of Eg5, Ran and control siRNA, 

mediated by oligomers 49, 229 and 386 were compared to buffer treatment after 

24, 48, and 72 h (Figure 19). Altered cell cycle distribution for Eg5 and Ran 
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siRNA transfected cells was observed, while transfection with control siRNA 

showed no effect. This indicated the absence of notable unspecific oligomer 

effects.  

 

Figure 19 Effect of siRNA delivery on tumor cell cycle: Flow cytometric analysis of cell cycle distributions 
of control, Eg5 and Ran siRNA (370 nM) transfected Neuro2A cells using oligomers (a-c) 49, (d-f) 229 and 
(g-i) 386. Transfected cells were stained with propidium iodide after 24, 48, and 72 h. Eg5 and Ran siRNA 
transfected cells were compared to control siRNA and buffer (HBG) transfected cells. 

Ran knockdown caused cell death detectable through the increased sub G1/G0 

peak after 72 h (Figure 19a,d,g compared to Figure 19c,f,i), whereas Eg5 

knockdown principally led to cell cycle arrest in G2 phase (Figure 19a,d,g and 

Figure 19b,e,h) and consequently to cell death (Figure 19c,f,i). Therefore, Eg5 

knockdown could be detected by an increased G2 peak and a sub G1/G0 

population appearing 24 h after transfection (Figure 19a,d,g). The sub G1/G0 peak 

increased after 48 h (Figure 19b,e,h) and 72 h (Figure 19c,f,i), while the G2 peak 

decreased. This result indicated that transfected cells undergo cell death. In 

contrast, Ran siRNA transfected cells only showed a moderate increase of dead 

cells (sub G1/G0) after 48 and 72 h compared to control and buffer treated cells. 

The greatest effects on cell cycle were mediated by oligomer 49 (Figure 19a-c), 
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while oligomers 229 (Figure 19d-f) and 386 (Figure 19g-i) mediated the same but 

considerably reduced effects on cell cycle. This assay demonstrated that especially 

Eg5 knockdown had influence on the G2 peak, while both therapeutic siRNAs led 

to increased sub G1/G0 peaks. 

3.1.3.3 Cell Viability Assay 

A cell viability assay (by ATP measurement, CellTiter Glo) demonstrated reduced 

viability of tumor cells after Eg5 and Ran siRNA transfection. In accordance with 

previous assays, control siRNA transfected cells did not show reduced viability 

compared to buffer treated cells. Polyplexes containing either Eg5 or Ran siRNA 

decreased cell viability for the three tested oligomers.  

 

Figure 20 siRNA dependent tumor cell killing: Cell viability of Eg5, Ran and control siRNA (370 nM) 
transfected Neuro2A cells was measured 24, 48, and 72 h after transfection with oligomers (a) 49, (b) 229 and 
(c) 386. Viability of buffer treated cells was set to 100% cell viability and compared to Eg5, Ran and control 
siRNA transfected cells. 

However, differences between oligomers concerning kinetics and cell killing 

efficiency were observed (Figure 20). Oligomer 386 (Figure 20c) led to the fastest 

and strongest reduction of cell viability whereas oligomers 49 (Figure 20a) and 

229 (Figure 20b) showed slower kinetics and reduced effects on cell viability. In 

accordance with the Western blot experiments, the CellTiter Glo measurements 

confirmed the fast kinetic of oligomer 386. In summary, the in vitro assays 

demonstrated efficient siRNA delivery for all tested oligomers, as indicated by 

mRNA silencing. Furthermore, the target knockdown on mRNA and protein 

levels consequently leading to reduced tumor cell viability made the tested 

oligomers and siRNAs interesting for following in vivo experiments. 

3.1.4 Distribution of Fluorescence Labeled Polyplexes 

To determine polyplex retention after intratumoral injection or passive tumor 

targeting after intravenous injection siRNAs conjugated to fluorescent dyes were 
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incorporated into the polyplexes. Fluorescent polyplexes allowed the detection 

either in organ sections or in living animals. For imaging experiments near 

infrared dyes like Cy7 had to be applied because of the auto fluorescence of red 

blood cells and food ingredients. 

3.1.4.1 Histological Cy3 Analysis 

For the detection of successful siRNA delivery in vivo, Cy3 labeled siRNA was 

integrated into the polyplexes and injected intravenously into the tail vein of 

tumor bearing mice.  

 

Figure 21 LSM images of tumor, liver, kidney and lung cryo sections: Fluorescnece images of organ 
slices after intravenous polyplex injection were analyzed by laser-scanning-microscopy. Nuclei were stained 
with Hoechst dye (blue) and the slices were analyzed for Cy3 labeled siRNAs (red). Experiment performed 
together with Raphaela Kläger (veterinary MD thesis, LMU 2013). 

One hour after polyplex injection mice were sacrificed and tumors, livers, 

kidneys, and lungs were harvested. The tumor images confirmed that both 

polymers were able to compact siRNA, protect it from degradation in the blood 

stream and deliver siRNA into the tumors (Figure 21). LSM (laser-scanning-

microscopy) images revealed superior accumulation of Cy3 siRNA in tumors of 

oligomer 229 injected mice compared to tumors of oligomer 49 injected mice. 

Great accumulation in the liver and kidneys could be observed for both lipo-

oligomers, whereas the Cy3 signal in the lungs was very weak. Accumulation in 

the liver can be explained by the lipophilic character of the oligomers while the 

strong kidney signals are influenced by the clearance of pure siRNA or small 

particles.    
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3.1.4.2 Living Image 

For the comparison of oligomers 49, 229 and 386 after intratumoral injection, at 

first polyplex retention was assayed, because this is a crucial requirement for 

siRNA activity in vivo. Therefore, mice were injected intratumorally with 

polyplexes containing Cy7 labelled siRNA. 

 

Figure 22: Retention of siRNA in tumors. Fluorescence imaging of intratumoral injected polyplexes 
showed Cy7-siRNA signals in tumors over 48 h for all oligomers. Oligomer 386 showed increasing kidney 
signals already detectable right after injection. Experiment performed together with Raphaela Kläger 
(veterinary MD thesis, LMU 2013). 

Fluorescence signals were measured directly after polyplex injection and after 

0.25, 1, 4, 24, and 48 h (Figure 22). The images showed that all oligomers were 

able to retain siRNA in the tumors for 48 h. Oligomers 49 and 229 showed the 

best retention of siRNA with extensive Cy7 signals detectable in the tumor for 

48 h. In contrast to lipo-oligomers 49 and 229, polyplexes of oligomer 386 

showed additional early Cy7 siRNA signals in the kidneys of intratumoral 

injected mice. Cy7 signals in the tumors decreased but were still detectable after 

48 h, whereas kidney signals increased within the first 4 h and were not detectable 

after 24 and 48 h. This is consistent with renal clearance of free Cy7 siRNA after 

polyplex dissociation, analogously to the previous observation116,136. Hence, the 

Cy7 siRNA experiment demonstrated the higher stability and improved retention 

of polyplexes with the lipid-modified oligomers 49, 229 in contrast to oligomer 

386 without fatty acid modification. 
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Figure 23 Cy7 signals in mouse organs: Fluorescence imaging of i.t. injected polyplexes showed Cy7-
siRNA signals in tumors after 48 h for all oligomers. Oligomer 49 showed Cy7 signals detectable in the liver. 
Experiment performed together with Raphaela Kläger (veterinary MD thesis, LMU 2013). 

The results were confirmed by measuring the harvested organs after euthanasia of 

the mice (Figure 23). Only tumors showed measurable Cy7 signals and the lipo-

oligomer 49 and 229 showed stronger tumor signals than the branched oligomer 

386. 

3.1.5 Dose Escalation Study 

A dose response experiment was performed to determine the siRNA dose 

necessary for successful tumor growth reduction after intratumoral polyplex 

injection. For this experiment oligomer 49 was chosen and injected in an N/P of 

12 for all siRNA concentrations. Hence, 12.5, 25, or 50 µg Eg5 siRNA or control 

siRNA containing polyplexes were injected into subcutaneous Neuro2A-eGFPLuc 

tumors. Successful delivery of Eg5 siRNA has been previously demonstrated to 

result in cell cycle arrest and apoptosis of tumor cells. Therefore, successful Eg5 

knockdown slowed down tumor progression. The subcutaneous tumors were 

treated five times starting with day 2 (2, 4, 7, 9, 11) after tumor cell inoculation 

and the bioluminescent tumor signals were measured at indicated time points 

(Figure 24).  
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Figure 24 Dose escalation experiment: Tumor growth of subcutaneous Neuro2A-eGFPLuc tumors in mice 
after repeated intratumoral treatment (3 mice per group) with oligomer 49 and Eg5 or control siRNA (N/P 12) 
polyplexes. Animals were treated with 50 µg, 25 µg, or 12.5 µg siRNA per mouse at day 2, 4, 7, 9 and 11 
after tumor cell inoculation. The treatment group with 12.5 µg siRNA was terminated on day 11 due to 
excessive tumor size. Experiment performed together with Raphaela Kläger (veterinary MD thesis, LMU 
2013). 

Experiments had to be terminated on day 11 and 14, respectively, because of 

excessive tumor growth in the control groups. With a concentration of 12.5 µg 

siRNA, no positive effect of the Eg5 siRNA on tumor growth could be observed 

after 11 days. In contrast, 25 µg Eg5 siRNA per treatment slightly reduced tumor 

growth, but a relatively large variation within the treatment group was observed. 

Best results were achieved with 50 µg Eg5 siRNA per treatment resulting in 

significantly reduced tumor growth compared to control siRNA.  

 

Figure 25 Bioluminescence images of Neuro2A-eGFPLuc tumors: Polyplex treatment resulted in reduced 
tumor growth compared to buffer treatment. The Eg5 polyplexes mediated siRNA specific tumor growth 
reduction in contrast to control siRNA polyplexes. Experiment performed together with Raphaela Kläger 
(veterinary MD thesis, LMU 2013). 

The bioluminescence images demonstrated the dose dependency of tumor growth 

reduction mediated by Eg5 polyplexes (Figure 25). This experiment helped to 

determine the minimal siRNA doses per injection and demonstrated the ability of 

this new class of oligomers to deliver siRNA in vivo upon intratumoral injection. 
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3.1.6 Evaluation of Therapeutic siRNAs 

After the required dose for an intratumoral treatment had been defined, the effects 

of Eg5 and Ran siRNA on tumor growth were compared. Two days after 

implantation of Neuro2A-eGFPLuc cells, mice were imaged detecting the 

bioluminescence signals of implanted tumor cells. According to this, mice were 

divided into four groups receiving either buffer or siRNA polyplexes. Polyplexes 

consisting of oligomer 49 complexing either Eg5-, Ran- or control siRNA were 

injected directly into the tumor. The treatment was started at day 2 and repeated at 

days 4, 7, 9, 11, and 14.  

 

Figure 26 siRNA comparison after intratumoral treatment: Intratumoral injection of oligomer 49 
polyplexes for the treatment of subcutaneous Neuro2A-eGFPLuc tumors. Polyplexes were injected thrice 
weekly and in total 6 times. Left figure shows bioluminescence imaging of the subcutaneous tumors. Eg5 and 
Ran siRNA treated tumors showed significantly reduced bioluminescence starting with day 9 compared to 
control siRNA transfected tumors (Eg5: day 9*, day 11**, day 14**; Ran day 9*, day 11**, day 14***). 
Right figure shows the reduced tumor volumes of Eg5 and Ran siRNA transfected tumors compared to 
control siRNA transfection (Eg5: day 11*, day 14**, day 16***, day 18***; Ran day 11**, day 14**, day 
16***, day 18***). Experiment performed together with Raphaela Kläger (veterinary MD thesis, LMU 
2013). 

During the treatment period, tumor growth was detected by bioluminescence 

imaging (Figure 26). Altered bioluminescence signals concerning the different 

treatments could be detected starting with day 9. All polyplex treated mice 

showed reduced luciferase signals compared to buffer treated mice. However, Eg5 

and Ran siRNA treatment resulted in far more reduced bioluminescence signals 

than control siRNA treatment. From day 9 on, tumor growth was also determined 

by calliper measurement controlling the experimental endpoint criteria of 

1500 mm3 tumor volume (Figure 26). Mice were sacrificed, when tumors 

exceeded a volume of 1500 mm3 and dates were recorded enabling Kaplan-Maier 

survival analysis (Figure 27). The most significant reduction of tumor volume was 

mediated by Ran siRNA followed by Eg5 siRNA, whereas control siRNA and 

buffer treatment were far less effective (Figure 26a,b). Consequently, survival of 
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Ran and Eg5 siRNA treated groups was significantly prolonged compared to 

control siRNA and buffer treated groups.  

 

Figure 27 Kaplan Maier survival analysis: After the treatment interval tumors were allowed to grow until 
they reached a volume of 1500 mm3, then mice were sacrificed and Kaplan-Maier survival analysis was 
performed (Mean survival: HBG 18 d; control siRNA 20,5 d; Eg5 siRNA 25 d; Ran siRNA 28 d). 
Experiment performed together with Raphaela Kläger (veterinary MD thesis, LMU 2013). 

Mean survival after 6 intratumoral treatments with Ran siRNA was 28 days 

compared to Eg5 siRNA with 25 days, control siRNA with 20.5 days and buffer 

with 18 days (Figure 27). To exclude unspecific effects of oligomer 49, tumor 

growth reduction of Ran and Eg5 siRNA treated mice was always compared to 

control siRNA treatment. The reduced bioluminescence signals and tumor sizes, 

as well as a prolonged survival of Ran and Eg5 treated mice provided significant 

evidence of the positive in vivo effect of both therapeutic siRNAs.  

 

Figure 28 Aster formation assay in vivo: Intratumoral injection of oligomer 49 Eg5 siRNA polyplexes 
showed aster formation and confirmed Eg5 knockdown in Neuro2A tumor cells. Cryo sections were stained 
with Hoechst dye (blue) and analyzed with a fluorescence microscope. Experiment performed together with 
Raphaela Kläger (veterinary MD thesis, LMU 2013). 

Additionally, mitotic arrest by Eg5 siRNA indicated successful in vivo target gene 

silencing (Figure 28). Tumors were excised 24 h after polyplex injection and 5 µm 

fine sections were cut. After Hoechst staining aster formation was only detected in 

Eg5 siRNA treated tumors, in accordance with the previous in vitro results. Ran 

knockdown was demonstrated with a TUNEL assay, for the detection of apoptotic 

cells (Figure 29). This assay allowed the binding of fluorescent labelled 

nucleotides to the free 3´ends of DNA fragmented during apoptosis. Tumors 

treated with Ran siRNA polyplexes showed positive TUNEL staining in contrast 
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to control siRNA treated tumors. 

 

Figure 29 TUNEL assay for the detection of apoptotic cells: Intratumoral injection of oligomer 49 Ran 
siRNA polyplexes showed positive tunnel staining and confirmed that Ran knockdown led to apoptosis of 
Neuro2A tumor cells. Experiment performed together with Raphaela Kläger (veterinary MD thesis, LMU 
2013). 

Ran siRNA was chosen for subsequent experiments, as treated tumors showed the 

lowest bioluminescence signals, the smallest tumor volumes and the most 

extended survival. 

3.1.7 Comparison of Different siRNA Carriers 

Next, the three oligomers were evaluated using Ran siRNA polyplexes for 

intratumoral treatment as described before. Accordingly, mice were grouped 

based on their bioluminescence signal 2 days after the implantation of Neuro2A-

eGFPLuc cells and the intratumoral treatment with Ran or control siRNA was 

started. siRNA polyplexes consisting of oligomers 49, 229 and 386 were injected 

directly into the tumors. The injection interval was changed to only two injections 

per week compared to three injections per week in the previous study. Tumor 

progression was measured by bioluminescence imaging. Bioluminescence signals 

were detected at day 4, 8, 11, and 15 enabling the comparison of Ran and control 

siRNA treated groups. All animals were sacrificed two days after the last 

treatment and tumors were excised to compare tumor weights of the different 

groups. Despite the less frequent treatment regime, the previously tested oligomer 

49 still mediated a measurable antitumoral effect in the Ran siRNA treated group 
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(Figure 30b), which was confirmed comparing the tumor weights of Ran and 

control siRNA treated groups (Figure 30a). The i-shape oligomer 229 failed to 

mediate any positive effect on tumor growth for Ran siRNA treated animals 

(Figure 30c). In contrast, the branched oligomer 386 showed a great reduction of 

the bioluminescence signal and also a significant effect on tumor weight for the 

Ran siRNA treated mice (Figure 30d).  
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Figure 30 Comparison of different oligomer polyplexes in antitumoral efficacy: Intratumoral injection of 
oligomer 49, 229 and 386 containing polyplexes (50 µg siRNA per animal; N/P 12) for the treatment of 
Neuro2A-eGFPLuc tumors. Polyplexes containing either Ran or control siRNA were injected twice weekly in 
total 5 times.  (a) At 2 days after the last treatment mice were sacrificed and tumor weights were analyzed to 
compare the tumors of control and RAN siRNA treated mice. (b-d) show tumor bioluminescence counts of 
Ran and control siRNA treated mice with the (b) 49, (c) 229 and (d) 386 oligomer formulations.  (e) 
Intratumoral injection of oligomer 49 and 386 containing polyplexes for the treatment of Neuro2A-eGFPLuc 
tumors as described above. After the treatment period tumors were allowed to grow until one tumor in the 
oligomer groups reached a volume of 1500 mm3 (day 18 for 49, day 18 for 386). Mice were sacrificed and 
tumor weights were analyzed to compare the tumors of control and Ran siRNA treated mice. (f) Shows 
bioluminescence tumor counts of siRNA/386 polyplex treated mice. Experiment performed together with 
Raphaela Kläger (veterinary MD thesis, LMU 2013). 

This experiment allowed the separation of the oligomers which were all effective 

in vitro, into a clear in vivo efficiency order. In this first in vivo oligomer 

comparison all mice were sacrificed 2 days after the last treatment. Oligomers 229 

and 386 were used as trifluoroacetic acid (TFA) salts instead of chloride salt. 

Apparently TFA mediated some unspecific antitumoral toxicity, therefore in a 

second experiment only chloride salts of the previously active oligomers 49 and 
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386 were applied to allow better comparability between the oligomers. Mice were 

sacrificed at day 18 when the first mouse in the oligomer group reached a tumor 

volume of 1500 mm3. Tumors were excised to compare tumor weights of Ran 

siRNA and control siRNA treated mice. In conclusion, tumor weights and 

bioluminescence signals revealed significant tumor growth reduction in the Ran 

siRNA group of oligomer 386 (Figure 30e,f) in both experiments. In contrast, 

oligomer 49 showed borderline efficiency when injected twice a week, with 

significant effects on tumor weights in the first but without significant effects in 

the second experiment (Figure 30e, bioluminescence data not shown).  

3.1.8 Oligoamides with Enhanced Stability 

High stability is an important requirement for the in vivo administration of 

polyplexes. Particularly after intravenous injections, polyplexes interact with 

serum proteins and blood cells leading to dissociation of the particles141. 

Therefore, precise changes in the oligomer structure affecting size, charge and 

stability of the polyplexes can positively influence in vivo gene silencing. For this 

reason C. Troiber included tyrosine-trimers into the T-shaped structures replacing 

terminal cysteines, central fatty acids or in addition to terminal cysteines to 

enhance polyplex stability142. The new polyplexes were investigated according to 

biophysical properties, transfection efficiency, in vivo distribution upon 

intravenous injection and in vivo transfection efficiency after intratumoral 

injection.  

3.1.8.1 Biophysical Characterization 

Agarose gel shift assays were performed to demonstrate siRNA binding capacity 

of oligotyrosine containing polyplexes. Control oligomers 216 with only central 

fatty acids for stabilization and 468 with central oligotyrosines and terminal 

cysteines showed reduced siRNA binding capacity compared to standard oligomer 

49. In contrast, replacement of terminal cysteines by oligotyrosines (332) or the 

substitution of terminal cysteines and central fatty acids by oligotyrosines (333) 

displayed siRNA binding properties analogous to oligomer 49. This demonstrated 

that terminal oligotyrosines can substitute the stabilizing activity of either terminal 

cysteines or central fatty acids. Combination of terminal oligotyrosines and 

cysteines (454, 464) independent of their central modification improved siRNA 

binding compared to oligomer 49. Gel shift assays demonstrated the increased 
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stability of oligomers with compared to oligomers without additional 

oligotyrosines (Figure 31). 

 

Figure 31 Gelshift assay: siRNA binding capacity of oligomers at different N/P ratios was tested in 2% 
agarose gels (experiment performed by C. Troiber). 

For further characterization, particle size and zeta potential of the polyplexes were 

analyzed by DLS measurement (Table 3). Oligomer 468 polyplexes with solely 

central oligotyrosines could not be analyzed as no signal was measurable, whereas 

the sizes of all other siRNA polyplexes at N/P 12 was in a range applicable for 

further in vivo evaluations.  

Oligomer ID Oligomer sequence Z-average (nm) Zeta potential (mV) 

216 A-Stp2-[(OleA)2-K]-Stp2-A 32 ± 2 5.1 ± 0.3 

49 C-Stp2-[(OleA)2-K]-Stp2-C 23 ± 4 24.9 ± 1.0 

332 Y3-Stp2-[(OleA)2-K]-Stp2-Y3 150 ± 2 38.1 ± 0.8 

454 C-Y3-Stp2-[(OleA)2-K]-Stp2-Y3-C 99 ± 2 50.7 ± 0.8 

468 C-Stp2-[(Y3)2-K]-Stp2-C n.d.* n.d.* 

333 Y3-Stp2-[(Y3)2-K]-Stp2-Y3 334 ± 46 16.7 ± 0.3 

464 C-Y3-Stp2-[(Y3)2-K]-Stp2-Y3-C 243 ± 12 13.3 ± 0.4 

Table 3 Size and zeta potential measurement: Polyplex size and zeta potential of different 
oligomer at N/P 12 was determined by DLS measurement (experiment performed by C. Troiber). 

Simulating in vivo conditions, the polyplexes were analyzed for their stability in 

fetal calf serum (FCS). Therefore, polyplexes were formed in Hepes buffer, 

followed by the addition of FCS. The samples were incubated at 37°C for 0, 10, 

30, and 90 min. Afterwards, gel electrophoresis was performed to investigate 

whether the polyplexes were stable, partially stable, or instable. Moreover, 

polyplexes were treated with 50 I.U. of heparin per sample after 90 min in order 

to dissociate polyplexes, and to investigate if the siRNA was degraded by serum 

proteins. 
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Figure 32 Polyplex stability: Agarose gel shift assay demonstrate siRNA binding and release after addition 
of 90% FCS for several tyrosine modified oligomers at N/P 12. Polyplexes were incubated for 0, 10, 30, or 
90 min with FCS and afterwards analyzed by gel electrophoresis. For control reasons samples incubated for 
90 min in FCS were treated with heparin to dissociate the polyplex and visualize free siRNA (experiment 
performed by C. Troiber). 

The siRNA band of heparin treated samples was comparable to free siRNA at all 

points in time. Hence, no degradation of the complexed or free siRNA occurred 

during the incubation time. This is not unexpected as 2´methoxy stabilized siRNA 

was applied in the experiments. After gel electrophoresis, no siRNA migration 

was observable for 454 and 464 polyplexes, confirming the serum stability of 

these polyplexes (Figure 32). In contrast, 332 and 49 polyplexes dissociated 

partially at 37°C after 90 min, as a band at the free siRNA level appeared. The 

remaining oligomer polyplexes were instable in serum and free siRNA was 

detected immediately after addition of serum. This data showed that a 

combination of oligotyrosines and cysteines at the ends of our oligomers led to a 

favorable stabilization and improved resistance to serum protein mediated 

disassembly. The different polyplex stability was confirmed by C. Troiber through 

fluorescence correlation spectroscopy measurements136. 

3.1.8.2 GFP Knockdown Screen 

Target gene silencing of the stabilized polyplexes was examined in the previously 

described eGFPLuc marker gene assay. Oligomers 216 and 333 demonstrating 

low stability against FCS were also ineffective mediating eGFPLuc knockdown. 

In contrast, all other oligomers successfully mediated target gene silencing 

(Figure 33). The addition of terminal oligotyrosines was a favorable modification 

(oligomers 454 and 464) leading to stronger target gene knockdown compared to 

oligomer 49. In contrast, the alteration of the central domain (fatty acid 454, 

oligotyrosine 464) showed only moderate influence on the transfection efficiency. 

This experiment demonstrated that polyplex stability directly correlated with 

eGFPLuc knockdown in vitro. 
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Figure 33 eGFPLuc silencing assay: Target gene silencing of different unmodified and tyrosine modified 
polyplexes at N/P 6 and 12. Gene silencing of the novel oligomers was compared to standard oligomer 49.  

In summary, the class of oligotyrosine containing oligomers was efficient in 

siRNA transfection. Replacement of terminal cysteines by tyrosines generated 

oligomers with equal transfection efficiency to standard oligomer 49, whereas the 

addition of terminal oligotyrosines created carriers superior to standard oligomer 

49. 

3.1.8.3 Distribution of Fluorescence Labeled Polyplexes 

Polyplex distribution after systemic administration was evaluated through NIR 

fluorescence imaging. Pure Cy7 labeled siRNA revealed a short circulation time 

followed by fast renal clearance comparable to oligomer 216 polyplexes (Figure 

34). Renal clearence was possible for pure siRNA but not for polyplexes with a 

size above 30 nm. Therefore, Cy7 signals detectable in the kidneys and bladder of 

oligomer 216 polyplexes are caused by free siRNA after polyplex degradation in 

the blood stream.  
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Figure 34 Fluorescence imaging: Images of a representative mouse (n=3) demonstrating distribution of Cy7 
labeled siRNA or Cy7 labeled siRNA complexed with oligomer 216  in ventral (upper row) and dorsal (lower 
row) position. The efficiencies were recorded and all images were adjusted to same maxima and minima. 
Experiment performed together with Annika Hermann (veterinary MD thesis, LMU). 

In contrast, to oligomer 216 all other oligomers are able to complex siRNA more 

stably leading to longer circulation times for the polyplexes. The lipophilic 

character of the oligomers caused liver accumulation for oligomer 49 and 332 

polyplexes after intravenous injection. Replacing the terminal cysteines (49) by 

tyrosines (332) increased circulation times and liver accumulation (Figure 35).    
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Figure 35 Fluorescence imaging: Images of a representative mouse (n=3) demonstrating distribution of Cy7 
labeled siRNA complexed with oligomer 49 and 332 in ventral (upper row) and dorsal (lower row) position. 
The efficiencies were recorded and all images were adjusted to same maxima and minima. Experiment 
performed together with Annika Hermann (veterinary MD thesis, LMU). 

Oligomer 454 confirmed the previously described high stability and showed long 

circulation times (Figure 36). Cy7 signals were still detectable in the bloodstream 

4 h after polyplex injection demonstrating the presence of stable circulating 

polyplexes. Oligomer 468 polyplexes were not detectable in the circulation, 

because the fluorescence signal was quenched due to the strong compaction of the 

labeled siRNA.     
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Figure 36 Fluorescence imaging: Images of a representative mouse (n=3) demonstrating distribution of Cy7 
labeled siRNA complexed with oligomer 454 and 468 in ventral (upper row) and dorsal (lower row) position. 
The efficiencies were recorded and all images were adjusted to same maxima and minima. Experiment 
performed together with Annika Hermann (veterinary MD thesis, LMU). 

Oligomer 333 initially displayed good systemic tissue distribution, whereas after 

4 h only a high signal in the kidneys and the bladder was detected (Figure 37). 

Polyplexes of oligomers 464 also showed a strong quenching of the fluorescent 

Cy7 signal upon polyplex formation and hampered monitoring of polyplex 

distribution by NIR imaging. 
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Figure 37 Fluorescence imaging: Images of a representative mouse (n=3) demonstrating distribution of Cy7 
labeled siRNA complexed with oligomer 333 and 464 in ventral (upper row) and dorsal (lower row) position. 
The efficiencies were recorded and all images were adjusted to same maxima and minima. Experiment 
performed together with Annika Hermann (veterinary MD thesis, LMU). 

Excluding the non detectable oligomers, polyplexes of oligomers 49, 332, and 454 

initially displayed good systemic distribution. Shortly after polyplex injection, a 

liver signal was observed in dorsal position due to the lipophilic character of the 

oligomers. The 454 and 332 polyplexes showed the most beneficial distribution, 

followed by 49 polyplexes. This experiment proved the favorable characteristic of 

oligotyrosine modified polyplexes.  

3.1.8.4 Oligomer Screen 

Consequently, the polyplexes of oligomers 49 (control), 332, 454, 464 and 468 

were investigated for their therapeutic potential after intratumoral injection. 

According to the previous described intratumoral treatment, polyplexes containing 

either Ran or control siRNA were injected. Tumor growth of subcutaneously 

implanted Neuro2A-eGFPLuc tumors was again monitored by bioluminescence 

imaging (Figure 38). This time control oligomer 49 failed to reduce tumor growth 

in the Ran siRNA treated group compared to the control siRNA group. In 

contrast, mice treated with oligomers 332 and 468 Ran siRNA polyplexes showed 



Results     60 

 

reduced tumor growth compared to control siRNA treated mice. Only these two 

polyplexes were able to selectively reduce tumor volume and tumor weight in the 

Ran siRNA group, whereas mice treated with other polyplexes formulations could 

not reduce tumor growth. 

 

Figure 38 Bioluminescence signals and tumor weights of polyplex treated tumors: Bioluminescence 
imaging of subcutaneously implanted Neuro2A tumors after treatment with several T-shaped oligomer 
polyplexes either containing Ran siRNA or control siRNA. Mice were sacrificed when one mouse in the 
polymer group reached a tumor volume 1500 mm3 and tumor weights of the two groups were recorded. 
Experiment performed together with Raphaela Kläger (veterinary MD thesis, LMU 2013) and Annika 
Hermann (veterinary MD thesis, LMU). 

Contrary effects in the groups treated with oligomer 464 can be explained due to 

the strong necrotic effects caused by these polyplexes. Hence, the antitumoral 

effects in this group were mediated by the toxicity of the polyplexes and not by 

target gene knockdown. Oligomer 454 showed some effects on tumor growth in 

the Ran siRNA group between day 10 and day 15, but in conclusion 

bioluminescence signals and tumor weights were on the same level in both siRNA 

groups. In summary, oligomers 332 and 468 and in the previous study oligomer 

386 and 49 mediated tumor growth reduction in the Ran siRNA group. These 

results indicated that highly stable polyplexes were not suitable for intratumoral 

applications, in particular the less stable polyplexes showed good tumor reduction 

in the Ran siRNA group. After the evaluation of 7 oligomers and the exclusion of 

oligomer 464 because of necrotic effects this intratumoral assay allowed the 

classification of 6 in vitro effective oligomers into an in vivo effectivity order:       

229<454<49<468<332<386. Again polyplex stability was not the most important 

factor for successful gene silencing after intratumoral injection.  
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3.2 Targeted Oligoamides for siRNA Delivery 

3.2.1 Folic Acid Linked Targeting Oligomers  

Targeted structures were synthesized by solid-phase-supported peptide synthesis 

as afore described. C. Dohmen generated a cationic backbone consisting of two 

arms each with 4 STP units, terminal cysteines, and one central lysine (Figure 39). 

Monodisperse polyethylene glycol (PEG) was coupled to the central lysine, 

followed by region-selective coupling of folic acid as ligand for specific cell 

targeting. For control experiments alanine instead of folic acid was coupled to the 

monodisperse PEG. For the generation of a structure library different fatty acids 

(caprylic acid, stearic acid) and tyrosine-trimers were incorporated into the 

structures to increase polyplex size and stability. Also, extended PEG chains (2 x-, 

3 x-, 5 x-, 8 x 24 monomers) were introduced to increase polyplex size.   

To increase the low endosomal escape ability particularly of carriers without fatty 

acid modification, the endosomolytic peptide Inf7 was coupled to the 5’-end of 

the siRNA sense strand by C. Dohmen (LMU, PhD thesis 2012). On the contrary 

to conventional delivery systems, the current design enabled the separation of 

requirements for successful siRNA delivery between carrier and siRNA. In the 

novel delivery system the oligomeric carrier was responsible for the binding of 

nucleic acids and specific transport to the target cell, whereas the siRNA provided 

the endosomal escape domain. C. Dohmen showed the efficient synthesis and 

purification of these molecules, including a qualitative and quantitative analysis of 

the products. 
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Figure 39 Chemical structures of the oligomer backbone and folic acid: Upper structure shows the 
backbone of standard oligomer 356 with n = 4 and x = 1. Folic acid is coupled via the γ-carboxy group 
indicated by the arrow. 

3.2.1.1 Biophysical Characterization 

Successful siRNA binding by the carrier was demonstrated through gel shift 

assays. The assays demonstrated siRNA binding of the standard structure (356) 

starting with N/P 3 and nearly complete siRNA binding at N/P 20 (Figure 40). 

This siRNA binding capacity was lower than for the previously described 

oligomers. Therefore, N/P 16 was chosen for further characterizations. 

Incorporation of longer PEG chains (maximum 8 x more than oligomer 356) 

reduced nucleic acid complexation detectable by reduced siRNA retardation in the 

gel shift assay.  

 

Figure 40 Gel shift assay: Targeted oligomer 356 demonstrating efficient siRNA binding at high N/P ratios. 
Oligomer 647 with maximal prolonged PEG chain showed low binding efficiency (experiment performed by 
C. Dohmen) 

The necessity of terminal cysteines for successful siRNA binding was previously 

demonstrated by T. Fröhlich (PhD thesis 2012) comparing oligomer 356 with and 
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oligomer 420 without terminal cysteines.  

Size of the nanoparticles and pure siRNA was measured by fluorescence 

correlation spectroscopy (C. Troiber, C. Dohmen and D. Edinger).  Standard 

oligomer 356 formed nanoparticles with a hydrodynamic diameter of only 5.8 nm, 

only 1.4-fold larger than free siRNA with 4.2 nm hydrodynamic diameter (Table 

4). Prolonged PEG spacer resulted in nanoparticles with a maximal size of 

50.8 nm hydrodynamic diameter. Increasing sizes of oligomers 482 < 483 < 646 

can be explained due to the prolonged PEG spacers. In contrast, the strongly 

increased size of oligomer 647 was caused by the looser particle formation also 

demonstrated in the gel shift experiment. Modification with tyrosines did not 

influence particle size whereas the incorporation of fatty acids led to structures 

with highly increased hydrodynamic diameters. 
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Oligomer ID Oligomer sequence rh (nm) 

 siRNA 2.1 ± 0.1 

356 Fol-PEG24-K(Stp4-C)2 3.0 ± 0.1 

482 Fol-PEG48-K(Stp4-C)2 3.2 ± 0.1 

483 Fol-PEG72-K(Stp4-C)2 4.4 ± 0.1 

646 Fol-PEG120-K(Stp4-C)2 5.8 ± 0.2 

647 Fol-PEG192-K(Stp4-C)2 25.4 ± 0.9 

484 Fol-PEG24-K(Stp4-Y3-C)2 2.8 ± 0.2 

481 Fol-PEG24-K[Stp4-K(K-CapA2)C]2 16.9 ± 0.2 

480 Fol-PEG24-K[Stp4-K(K-SteA2)C]2 160.3 ± 0.6 

Table 4 Particle size measurement by FCS: Fluorescence correlation spectroscopy revealed the 
hydrodynamic radius for folic acid targeted oligomers. (Experiments performed by C. Troiber) 

DLS measurements demonstrated an overall zeta potential of 0 mV (± 3 mV) for 

PEGylated siRNA nanoparticles whereas the same polyplexes lacking the PEG 

shielding showed significantly higher zeta potential between 10 and 15 mV 

(experiments performed by C. Dohmen). Low zeta potential is favorable for in 

vivo application because it inhibits interactions with cell surfaces and blood 

proteins (22, 23) through electrostatic interactions. To enable efficient cellular 

uptake, folic acid was covalently attached to the PEG shield. As this ligand has a 

very high binding affinity to its receptor, (24-25) it should selectively mediate cell 

attachment and endocytosis into its target cell.  

3.2.1.2 Folic Acid Receptor Levels in Different Cell Lines 

Before transfection experiments could be conducted cell lines expressing the folic 

acid receptor had to be determined. For this reason several cell lines were 

screened for their receptor status (Figure 41). In this screen only the ovarian 

carcinoma (IGROV) and the cervical carcinoma (KB derived from HeLa cells) 

cell lines showed high folic acid receptor status.  
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Figure 41 Folic acid receptor status of several cell lines: Flow cytometry experiments were performed to 
quantify the membrane bound folic acid receptor status after antibody staining.  

For this reason KB cells stably expressing the eGFPLuc plasmid were generated 

and used as standard cell line for transfection experiments with folic acid targeted 

nanocarriers. 

3.2.1.3 Uptake Studies in KB and IGROV Cells 

To verify the receptor mediated uptake, polyplexes were formed with Cy5 label 

siRNA. Transfection of KB cells, with folic acid targeted and untargeted 

nanoparticles, revealed increased uptake solely for targeted nanocarriers by flow 

cytometric analysis. Competition with an excess of free folic acid or the use of 

Neuro2A cells with a low folic acid receptor level, led to a strongly reduced 

cellular association. In summary, the requirement of targeting ligands for 

successful siRNA uptake and the receptor selective uptake was demonstrated by 

T. Fröhlich. Further experiments using folic acid receptor expressing KB and 

IGROV cells confirmed polyplex uptake with Cy3 containing siRNA polyplexes. 

Histological analysis of these pictures revealed high numbers of Cy3 positive cells 

in both cell lines after 45 min incubation time (Figure 42). 
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Figure 42 Histological analysis of polyplex uptake: KB and IGROV cells were transfected with Cy3 
siRNA containing polyplexes. Nuclei were stained with Hoechst (blue) to analyze Cy3 (red) positive cells by 
fluorescence microscopy.  

The results confirmed the flow cytometry studies performed by T. Fröhlich and 

showed efficient polyplex uptake after short incubation time. 

3.2.1.4 GFP and Eg5 Knockdown Studies in vitro 

KB cells stably expressing the eGFPLuc plasmid were used as a reporter system 

for marker gene silencing studies. To demonstrate the importance of every single 

component controls lacking the folic acid ligand, the endosomolytic peptide or 

incorporating control siRNA sequences were used.  

 

Figure 43 eGFPLuc silencing experiments: KB eGFPLuc cells were transfected with folic acid targeted 
(356) and untargeted (188) oligomers. GFP and control siRNAs modified with the lytic peptide Inf7 or 
without Inf7 modification were used to demonstrate siRNA specific silencing and the necessity of the lytic 
peptide Inf7.   

Standard polymer PEI-Succ10 demonstrated poor transfection efficiency on KB 

cells with unspecific eGFPLuc silencing in the control siRNA group (Figure 43). 

In contrast, the targeting oligomers demonstrated efficient target gene knockdown 
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with Inf7 modified siRNA in all tested ratios. Unmodified siRNAs required higher 

N/P ratios, for successful endosomal escape and efficient target gene knockdown. 

This finding was consistent with the postulated poor endosomal escape efficiency 

of the nanocarriers. Polyplexes incorporating control siRNA with and without 

Inf7 modification could not show any knockdown effect, demonstrating the 

absence of unwanted side effects. Untargeted oligomers only showed moderate 

target gene knockdown at high N/P ratios with Inf7 modified GFP siRNA, 

whereas all other untargeted groups did not show silencing effects. The results 

clearly showed the high transfection efficiency of the novel delivery system while 

all mentioned controls showed reduced or no silencing efficiency under the 

transfection conditions employed. 

 

Figure 44 Comparison of eGFP-Luc knockdown: Shows the transfection results of KB-eGFPLuc cells 
with targeted (356) oligomers compared to the gold standard LF2000 using  GFP and control siRNAs 
modified with the lytic peptide Inf7 or without Inf7 modification.   

Furthermore, transfection efficiency of the novel delivery system was compared 

to the efficiency of the gold standard (LF2000). Again the KB cells showed high 

sensitivity towards transfection reagents demonstrated by the unspecific reduction 

in the control siRNA group transfected with LF2000. GFP silencing was reduced 

compared to the novel carrier system because of the high toxicity of LF2000 

lipoplexes after 4 h incubation time (Figure 44). Reducing the incubation time to 

30 min reduced the cytotoxicity but also the knockdown efficiency of LF2000 

lipoplexes. In summary, the novel nanocarrier mediated improved silencing with 

reduced cytotoxicity compared to the gold standard for transfection experiments.  
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Figure 45 Titration of siRNA concentrations: In the upper row the amounts of oligomer and siRNA were 
reduced accordingly, whereas in the lower row only the amounts of siRNA were reduced.  

For previous transfection experiments relatively high amounts of siRNA (200 nM) 

were used. Hence, titration experiments were performed to examine the critical 

oligomer and siRNA concentrations for successful gene silencing (Figure 45). In a 

first experiment N/P ratios were kept constant for all siRNA ratios and the diverse 

polyplexes were incubated for 48 h on the cells. Targeted oligomer in 

combination with lytic GFP siRNA mediated about 50% target gene knockdown 

down to a siRNA concentration of 25 nM for N/P 20. Decreasing knockdown 

efficiencies for N/P 12 and 6 demonstrate the importance of critical oligomer 

amounts. Subsequently knockdown experiments were performed with constant 

amounts of oligomer for all siRNA ratios (increasing N/P ratios) and the diverse 

polyplexes were incubated for 45 min on the cells. The highest oligomer 

concentration with N/P 20 for siRNA concentrations of 200 nM demonstrated 

good GFP silencing down to siRNA concentrations of 6 nM. Medium oligomer 

concentrations were also effective down to siRNA concentrations of 6 nM, 

whereas the lowest oligomer concentration was only effective for the highest 

siRNA concentration. These experiments demonstrated the importance of critical 

oligomer concentration, whereas only very low siRNA concentrations are required 

for successful target gene knockdown.  

For further characterization a second target was selected. Again Eg5 silencing was 

chosen enabling the analysis of mitotic cell arrest and characteristic aster 

formation. In accordance with the eGFPLuc silencing experiments, only KB cells 



Results     69 

 

transfected with folic acid targeted carrier 356 demonstrated aster formations. 

Untargeted nanocarriers could not mediate target gene silencing because of the 

short incubation time of 45 min. After DAPI staining the microscopic pictures 

showed the characteristic aster formation only in the Eg5 siRNA group, 

demonstrating the effectiveness of this positive read out system (Figure 46). 

 

Figure 46 Aster formation assay: KB cells after transfection with Eg5-Inf7 and control-Inf7 siRNA. 
Polyplexes of targeted (356) and untargeted oligomer (188) were compared. 

Positive aster formation results were also important for further in vivo assays, 

providing a positive read out system for functional siRNA studies. 

3.2.1.5 Polyplex Distribution and Polyplex Retention in vivo  

After the novel multifunctional nanocarrier proved its efficiency in vitro, in vivo 

experiments were carried out to further evaluate the applicability. Initially a 

suitable in vivo testing system for the targeting efficiency had to be evaluated. 

Therefore, both folic acid overexpressing cell lines were injected into the left 

flank or the nape of NMRI mice. Tumor growth was recorded for several days, 

with tumors being palpable one day after subcutaneous injection of tumor cells. In 

contrast to Igrov cells, KB cells continued growing after implantation and reached 

a volume of about 200 mm3 after 10 days (Figure 47). 
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Figure 47 Comparison of tumor growth after subcutaneous injection of KB and Igrov cells: 5 x 106 KB 
and Igrov cells were injected into the left flank or the nape of NMRI mice and tumor volumes were measured 
with a caliper (length x width2/2). In the left graph tumor growth of KB and Igrov cells injected into the flank 
of NMRI mice were compared, whereas in the right graph tumor growth of Igrov cells injected into the flank 
or the nape were compared. Experiments were performed with Katarina Farkasova (veterinary MD thesis, 
LMU 2011). 

In a second experiment the injection site of the tumor cells was evaluated, but 

again Igrov cells failed to demonstrate appropriate tumor growth. Hence, KB cells 

were used for all in vivo experiments. 

For the first experiments polyplexes were injected intratumorally into 

subcutaneous KB tumors of NMRI nude mice to determine the targeting 

efficiency in vivo. NIR fluorescence imaging experiments using Cy7 labeled 

siRNA proved the significantly increased retention of folic acid targeted 

nanoparticles in tumor tissue compared to untargeted particles. Fluorescence 

signals decreased rapidly after intratumoral injection, but Cy7 signals were 

detectable in the tumors of mice injected with the folic acid targeted oligomer for 

120 h (Figure 48). In contrast, free siRNA and untargeted polyplexes were only 

detectable for 24 h. This experiment proved the receptor binding of folic acid 

targeted siRNA carriers in contrast to untargeted carriers after intratumoral 

injection. The small size of the multifunctional nanocarrier system was 

responsible for the fast elution and renal clearance of unbound polyplexes.  
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Figure 48 Fluorescence imaging after intratumoral polyplex injection: Different retention effect of pure 
Cy7 siRNA or Cy7 siRNA complexed by oligomers 356 or 188 after intratumoral injection into KB tumors of 
NMRI mice (n = 3). The diagram shows the calculated amount of Cy7 siRNA in the tumors after ROIs were 
placed on the tumors. Experiments were performed with Laura Schreiner (veterinary MD thesis, LMU 2013). 

As the intratumoral retention was shown to work efficiently the behavior of these 

nanosized particles after systemic application was evaluated. In accordance with 

the intratumoral experiment NIR fluorescence imaging revealed a short circulation 

time of oligomer 356 polyplexes followed by fast renal clearance with strong 

fluorescence signals detectable in the kidney and bladder. This can be explained 

by the small particle size. Significantly, due to the excellent shielding of the 

polyplexes unspecific affinity to tissues like lung, liver or spleen often observed 

with nanoparticles was not detected (Figure 49).  

 

Figure 49 Distribution of nanocarriers after intravenous injection: Fluorescence imaging of oligomer 356 
polyplexes after intravenous injection revealed short circulation times followed by renal clearance. 
Circulation time was compared to different untargeted polyplexes by placing ROIs over the left kidney and 
Cy7 signals were compared after several timepoints. Experiments were performed with Laura Schreiner 
(veterinary MD thesis, LMU 2013). 

Renal clearance was not influenced by the presence/absence of the folate targeting 
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ligand. Compared to other carriers, kidney signals of untargeted and targeted 

nanocarriers increased shortly after polyplex injection and reached a maximum 

after 10 min. Previously mentioned oligomer 386 without fatty acids showed 

longer circulation times with increasing kidney signals after 20 min, whereas the 

very lipophilic U-shape oligomer 278 is cleared through the liver (Figure 49).  

To investigate if bladder signals were caused by pure siRNA or by polyplexes 

L. Schreiner (verterinary MD thesis, LMU 2013) collected urine samples of living 

mice 4 h after polyplexes injection. In a gel shift assay, performed by C. Dohmen, 

free siRNA was only detectable after preincubation of the urine samples with 

TCEP and heparin, demonstrating the stability of the nanocarrier. In summary, the 

particles were very stable in the circulation as no free siRNA could be detected 

after 4 h but the circulation time was short and the polyplexes did not show tumor 

targeting.  

To prolong circulation half life and improve tumor targeting carriers with longer 

precise PEG spacers, increasing the size of nanoparticles from 5.8nm (356) up to 

8.8nm (483) hydrodynamic diameter were injected. These polyplexes have very 

comparable gene silencing efficiency in an eGFPLuc silencing assay (reported by 

T. Fröhlich). However, the nanocarriers with slightly increased sizes behaved very 

similar to oligomer 356 polyplexes after intravenous injection. Strong kidney and 

bladder signals were detected shortly after polyplex injection proving the fast 

clearance through the kidneys (Figure 50).  As polyplex size increased with 

integration of a greater amount of monodisperse PEG spacers, this concept was 

used to further increase polyplex size.  

 

Figure 50 Circulation time of nanocarriers with increasing amount of PEG after intravenous injection: 
Oligomer 356 (1 x PEG24), oligomer 482 (2 x PEG24) and oligomer 478 (3 x PEG24) were compared after 
intravenous injection in NMRI mice (n = 3). Experiments were performed with Laura Schreiner (veterinary 
MD thesis, LMU 2013). 
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Polyplexes with 5 PEG spacers and a size of 11.6 nm (646) showed the longest 

circulation time, while oligomers with 8 PEG spacers and a size of 50.8 nm (647) 

showed circulation times comparable to the standard carrier 356. The short 

circulation time of oligomer 647 with 8 PEG spacer must be influenced by the low 

stability of these polyplexes demonstrated in the gel shift assay. However, the 

circulation time was only slightly prolonged by the incorporation of longer PEG 

chains with limitations due to particle stability (Figure 51). Further backbone 

modifications had to be tested aiming on an increased circulation time.   

 

Figure 51 Circulation time of nanocarriers with increasing amount of PEG after intravenous injection: 
Oligomer 356 (1 x PEG24), oligomer 646 (5 x PEG24) and oligomer 647 (8 x PEG24) were compared after 
intravenous injection in NMRI mice (n = 3). Oligomers were synthesized by U. Lächelt (PhD thesis, LMU). 
Experiments were performed with Laura Schreiner (veterinary MD thesis, LMU 2013). 

The backbone of the oligomeric carrier was modified with fatty acids or tyrosines 

which already showed their positive influence on particle stability and size for 

untargeted oligomers. Therefore, C. Dohmen synthesized oligomers containing 

tyrosine, caprylic acid and stearic acid modifications.  
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Figure 52 Circulation time of nanocarriers with different backbone modifications after intravenous 
injection: Oligomer 356, oligomer 484 (tyrosines), oligomer 481 (caprylic acid) and oligomer 480 (stearic 
acid) were compared after intravenous injection in NMRI mice (n = 3). Experiments were performed with 
Laura Schreiner (veterinary MD thesis, LMU 2013). 

Modifications with tyrosines did not increase particle size and therefore could not 

prolong circulation halflife. Only the liver signals slightly increased for these 

modified nanocarriers. Integration of fatty acids into the backbone led to increased 

liver signals for both nanocarriers 480 and 481 and fatal neuronal toxicity for 

stearic acid modified polyplexes. In conclusion, the modifications could not 

significantly increase circulation half life and improve tumor targeting compared 

to the standard oligomer 356.    

3.2.1.6 Eg5 Knockdown Study in vivo 

For the evaluation of functional gene silencing after intravenous and intratumoral 

application the previously described aster formation assay was used. Although no 

significant detectable amounts of labeled siRNA were found in the tumor tissue 

after intravenous injection, still moderate aster formation was observed using 

Eg5-Inf7 siRNA. On the contrary, mice treated with control-Inf7 siRNA did not 

show any aster formation. The quantification of aster formation is very 

complicated and did not allow a reliable quantitative comparison of targeted and 

untargeted structures. However, the tumor sections displayed in Figure 53 showed 

superior aster formation for mice treated with folic acid targeted nanocarriers 

compared to untargeted carriers.  
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Figure 53 Aster formation after intravenous polyplex injection: 10 days after subcutaneous injection of 
5 x 106 KB cells into NMRI mice (n = 5) polyplexes were injected intravenously. After mice were sacrificed 
DAPI staining in cryo sections displayed aster formation only for Eg5-Inf7 siRNA containing polyplexes. 
Untargeted and targeted polyplexes containing Eg5-Inf siRNA showed moderate aster formation. 
Experiments were performed with Laura Schreiner (veterinary MD thesis, LMU 2013). 

For the detection of mitotic figures after intratumoral polyplex injection an H&E 

staining was established according to the assay published by Judge et al.120. After 

H&E staining, mitotic figures were analyzed and Eg5-Inf7 and control-Inf7 

tumors were compared. Mitotic figures also included dividing cells, whereas aster 

formation only detected cells after mitotic block. Therefore, control siRNA treated 

tumors also displayed mitotic figures to some extent. However, higher amounts of 

mitotic figures were detectable because of the mitotic block in the Eg5-Inf7 

siRNA treated tumors. These results proved the successful target gene silencing 

with the multifunctional nanocarrier system. 

 

Figure 54: Mitotic figures after intravenous polyplex injection: 10 days after subcutaneous injection of 
5 x 106 KB cells into NMRI mice (n = 5) polyplexes were injected intratumorally. Mice were killed 24 h after 
the treatment and tumors were stored in paraformaldehyde. H&E staining of paraffin sections displayed aster 
formation mainly in Eg5-Inf7 siRNA containing polyplexes. Experiments were performed with Laura 
Schreiner (veterinary MD thesis, LMU 2013). 

3.2.2 Methotrexate linked Targeting Oligomers 

After demonstrating successful targeting and siRNA induced gene silencing with 

folic acid linked targeting oligomer 356, the targeting ligand was changed to 
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methotrexate (MTX). MTX has almost the same chemical structure as folic acid 

apart from the positions marked with red circles in Figure 55. Generally, the 

ubiquitous expressed reduced folate carrier is responsible for MTX uptake143, 

whereas in cells overexpressing the folic acid receptor MTX may also be taken up 

through folate receptor mediated endocytosis144.  

 

Figure 55 Chemical structures of the oligomer backbone and methotrexate: Upper structure shows the 
standard oligomer with n = 4 and x = 1. Methotrexate is coupled via γ- (638), like in the case of the folate 
oligomers, or α-carboxy group (642) indicated by the arrows. To improve the methotrexate related effects 
glutamic acid spacer with 2 (639), 4 (640) or 6 (641) glutamic acid molecules between the γ-carboxy group of 
methotrexate and the PEG spacer were integrated. Oligomers were synthesized by U. Lächelt. 

Apart from the use as a targeting ligand, MTX is a well characterized drug applied 

for the treatment of cancer and rheumatoid arthritis. MTX binds with high affinity 

to the enzyme dihydrofolate reductase (DHFR) and inhibits the conversion of 

dihydrofolate to tetrahydrofolate145. Tetrahydrofolate is an important 1-carbon 

carrier, essential for the synthesis of purines, thymidine and methionine. During 

the 1-carbon transfer, tetrahydrofolate is oxidized to dihydrofoalte which is again 

reduced by the enzyme DHFR. Specifically, cells during the synthesis phase are 

harmed by the inhibition of DHFR because of the resulting low levels of 

thymidine and purine bases for DNA and RNA synthesis. Therefore, MTX 

targeted oligomers display the efficacy of this antimetabolic drug and allow the 

delivery of siRNA. MTX targeted oligomers can be combined with therapeutic 

siRNAs, for example Eg5 and Ran siRNA, with siRNAs targeting drug resistance 

mechanism, or with anti inflammatory siRNAs like TNF-α siRNA. Combination 

of MTX and siRNA in one compound ensures the simultaneous active principal 

inside the targeted cell.    
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3.2.2.1 Sensitivity of Different Cell Lines to MTX 

For further oligomer comparison cell lines sensitive and resistant to the treatment 

with MTX had to be identified. Hence, the IC50 values of different cell lines were 

evaluated with pure MTX after 48 h incubation time through an ATP dependent 

assay.  

 

Figure 56 Sensitivity of different cell lines to the treatment with MTX: Several cell lines were tested for 
their sensitivity to MTX treatment. Cell viability was determined by CellTiter Glo measurement 48 h after 
addition of MTX. 

Three cell lines highly sensitive to the treatment with MTX could be identified 

namely Neuro2A cells, A549 and the human epidermoid carcinoma A431. The 

human prostate cancer cell line DU145 showed medium sensitivity, whereas 

HUH7, KB and the human breast cancer cell lines MDA-MB 231 and MCF7 did 

not react to MTX treatment at all (Figure 56).  

3.2.2.2 Cytotoxicity of MTX Oligomers  

Initially the enzyme affinity of pure MTX and MTX linked oligomers was 

compared in a cell free system. For this experiment oligomers coupled through a 

PEG spacer to the α- or γ-carboxy group of MTX were synthesized. Furthermore, 

glutamic acid (E) spacers between the γ-carboxy group and the PEG group were 

integrated, to imitate the naturally occurring addition of glutamic acid molecules 

after cellular uptake to the free γ-carboxy group146. Addition of up to 6 glutamic 

acid groups, mediated by the enzyme folylpolyglutamate synthetase, was reported 

to be of utmost importance, as it enhances the enzyme affinity of MTX. In this 

experimental setting no addition of glutamic acid molecules was possible. 

Enzyme activity was determined through a photometric assay detecting the 

amount of NADPH/H+ at 340 nm. The enzyme activity without inhibitor was set 

to 100% and compared to the activity after addition of MTX or MTX targeted 

oligomers (Figure 57).    
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Figure 57 DHFR activity in a cell free system: Concentrations of NADPH/H+ were measured 
photometricaly to determine the enzyme activity. For the evaluation of the assay different MTX 
concentrations were tested (left panel). Thereafter MTX targeted oligomers 638 (MTX-PEG-STP), 639 
(MTX-2E-PEG-STP), 640 (MTX-4E-PEG-STP), 641 (MTX-6E-PEG-STP), 642 (αMTX-PEG-STP) were 
compared in the same photometric assay (right panel).   

A clear dose dependency was demonstrated for pure MTX in this assay and the 

highest MTX concentrations were chosen for further oligomer comparison. Pure 

MTX and oligomers 640 and 641 performed best in this assay, while oligomers 

638 and 639 showed reduced activity and oligomer 642 showed the lowest 

activity. This activity profile demonstrated the negative effect of α-carboxy 

coupling and the positive effect of oligoglutamate addition.  

Subsequently MTX sensitive A549 cells were treated with pure MTX or MTX 

linked oligomers (Figure 58). In this instance, coupling through the α-carboxy 

group was favorable in comparison to coupling through the γ-carboxy group 

because the free γ-carboxy group allowed oligoglutamate addition. The increased 

enzyme affinity after oligoglutamate addition outweighed the negative effect of α-

carboxy coupling in this cellular assay. Consistently, the synthetic addition of 

oligoglutamates reduced IC50 10 fold compared to the unmodified γ-carboxy 

coupled oligomer 638. 
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Figure 58 IC50 values of MTX and MTX oligomers: A549 cells were treated with pure MTX or oligomers 
638 (MTX-PEG-STP), 639 (MTX-2E-PEG-STP), 640 (MTX-4E-PEG-STP), 641 (MTX-6E-PEG-STP), 642 
(αMTX-PEG-STP) to determine IC50 values. 

In conclusion, coupling via the α-carboxy group (642) improved the IC50 4-fold 

compared to oligomer 638. The addition of glutamic acid spacers 2E, 4E, 6E 

improved the IC50 3.5-fold, 9-fold and 12-fold respectively. This assay 

demonstrates the necessity of the free γ-carboxy group or the pre addition of 

glutamic acid for the effectivity of coupled MTX. The IC50 values however were 

still > 50-fold higher than for free MTX.   

3.2.2.3 Uptake Studies 

Targeting efficiency of oligomers 638, 639, 640, 641 and 642 was determined by 

flow cytometry and compared to oligomer 188 (untargeted) and 356 (targeted by 

folic acid). Folic acid receptor overexpressing KB cells and minimal folic acid 

receptor expressing A549 cells were transfected applying MTX targeted 

oligomers and Cy5 labeled siRNA. After 45 min incubation time, cells were 

trypsinized, collected in FACS buffer (10% FCS in PBS), and analyzed in a flow 

cytometric assay. KB cells showed efficient polyplex uptake for all MTX linked 

oligomers. Uptake efficiency was slightly reduced compared to folic acid targeted 

oligomers, as expected because of the reduced folate receptor binding affinity of 

MTX, compensated by the high receptor density. Strongly reduced uptake of 

MTX linked polyplexes (as compared with folate linked polyplexes) in receptor-

low A549 cells demonstrated the receptor mediated uptake of targeted oligomers. 
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Figure 59 Polyplex uptake determined by flow cytometry: In the left graph polyplex uptake into KB cells 
with high and A549 cells with low folate receptor was compared by flow cytometry. Polyplexes were 
incubated for 45 min on the cells to compare the receptor binding capacity of different oligomers without 
targeting ligand, with folic acid or MTX as targeting ligands. In the right graph oligomers 188 (untargeted), 
356 (folic acid) and 640 (MTX) were compared in different cell lines to determine uptake either through the 
folic acid receptor or the reduced folate carrier.  

Following KB, A549, MCF7, MDA-MB 231 and A431 cells were compared due 

to the uptake of polyplexes targeted by MTX (640) or folic acid (356) (Figure 59 

right panel). Efficient uptake of folic acid targeted and moderately reduced uptake 

of MTX targeted oligomers described for KB cells indicated the involvement of 

solely folate receptors. In contrast, efficient uptake of both targeted oligomers 

indicated the presence of folic acid receptors and reduced folate carriers described 

for A431 cells (right panel, far right lanes). MCF7 and MDA-MB 231 showed 

superior uptake of MTX targeted oligomer 640, indicating the absence of folate 

receptor and uptake solely via the reduced folate carrier. Both targeting assays 

revealed receptor mediated uptake for MTX targeted oligomers (Figure 59). The 

experiment in combination with the previous testing of folic acid receptor levels 

indicated polyplex uptake for the MTX oligomers through the folic acid receptor 

in KB cells, the reduced folate carrier in MCF7 and MDA-MB 231 cells and a 

combination of both in A431 cells.  

3.2.2.4 GFP Knockdown in KB Cells   

For the detection of marker gene silencing, KB-eGFPLuc cells were chosen due to 

their high expression of folic acid receptors and their moderate susceptibility to 

the treatment with MTX. Knockdown after GFP siRNA transfection was 

compared to control siRNA and pure oligomer. To demonstrate efficient targeting 

MTX targeted and untargeted polyplexes were compared after an incubation time 

of 45 min.   
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Figure 60 Transfection experiments: KB-eGFPLuc cells were transfected with MTX targeted (638, 639, 
640, 641, 642) and untargeted (188) polyplexes. GFP and control siRNAs modified with the lytic peptide Inf7 
were used because previous experiments demonstrated the necessity of an endosomolytic siRNA. Polyplexes 
were mixed at an N/P of 16 with 200 ng siRNA per well and incubated for 45 min. 

The results demonstrated efficient target gene knockdown mediated through MTX 

linked oligomers similar as previously shown for folate linked oligomers, whereas 

untargeted oligomers did not show eGFPLuc silencing (Figure 60). In contrast to 

folate-linked oligomers, MTX oligomers and control siRNA polyplexes caused 

comparable unspecific eGFPLuc silencing (50% luciferase reduction) due to 

carrier related toxicity. In conclusion, all MTX linked oligomers showed similar 

and efficient marker gene knockdown in the GFP siRNA group with moderate 

toxicity caused by the MTX oligomers.  

3.2.2.5 Combined Toxicity of MTX/siEG5 Polyplexes 

Polyplexes consisting of MTX oligomer 640 and Eg5-Inf7 siRNA were mixed to 

demonstrate combined toxicity of the carrier and therapeutic siRNA. A431 cells 

were chosen because of their high susceptibility to MTX treatment and the 

effective uptake of MTX targeted oligomers demonstrated in the previous 

experiments. Cell viability of A431 cells after transfection with pure polymer or 

polyplexes containing either control or Eg5 siRNA was compared. 
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Figure 61 Cell viability assay: A431 cells transfected with control oligomer 188, folate oligomer 356 or 
MTX oligomer 640 polyplexes containing either Eg5 or control siRNA were compared due to the cell 
viability. Oligomer concentration of 100 µM was calculated and the siRNA concentration was adjusted to 
result in an N/P of 16.  

Transfection with Eg5 siRNA in combination with MTX targeted oligomer 640 

and folic acid targeted oligomer 356 resulted in reduced cell viability compared to 

buffer treatment (Figure 61). The pure MTX oligomer reduced cell viability very 

effectively, whereas control siRNA polyplexes displayed reduced effects on cell 

viability. The combination of oligomer 640 and Eg5 siRNA improved the 

cytotoxic effect indicating the potential of this combination. Consistent with the 

previous marker gene experiment oligomer 188 did not mediate any effect 

because of the short incubation time. 
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4 DISCUSSION 

4.1 Evaluation of Monodisperse, Sequence Defined siRNA 

Carriers 

Technological aspects, such as tumor targeting and insufficient delivery into the 

cytosol, are hindering the medical application of siRNA in cancer therapy147. To 

overcome this hurdle we built on a large library of sequence defined 

biodegradable oligomers for siRNA delivery133. This approach allowed the 

comparison of several oligomers to establish structure-activity relations for 

siRNA carriers75. Many modifications of the biodegradable oligomers, improving 

siRNA binding, cellular uptake and endosomal release of the polyplexes have 

been reported136. For further experiments two lipo-oligomers (49 with T-shape 

and 229 with i-shape topology) and a branched oligomer (386) were selected. 

These oligomers fulfil the previously defined requirements for successful siRNA 

delivery and were compared for silencing of the marker gene eGFPLuc and two 

therapeutic targets, Ran and Eg5.  

4.1.1 Oligomer Evaluation in vitro and in vivo  

Comparison of oligomer 49 to the gold standards Lipofectamine 2000 and PEI-

Succ10 displayed comparable high gene silencing efficiency for all carriers. The 

following comparison of oligomers 49, 229 and 386 revealed similar knockdown 

efficiency for the structurally different oligomers. This was an important fact as 

differences concerning the in vivo efficacy of these in vitro functional carriers 

should be demonstrated. Besides eGFPLuc also Eg5 and Ran silencing were 

evaluated in vitro to establish a therapeutic in vivo oligomer screening system. 

The experiments highlighted clear differences between the in vitro gene silencing 

and the corresponding in vivo antitumoral efficiencies of these carriers.  

Both antitumoral siRNAs, Eg5 and Ran, showed specific target gene knockdown 

on mRNA and protein level. Interestingly, target gene knockdown only persisted 

for a short period of time. Reduced mRNA levels were detectable 24 and 48 h 

after siRNA transfection, whereas after 72 h Eg5 mRNA levels of control and Eg5 

siRNA transfected cells were on the same level. Ran knockdown was also 

detectable after 24 and 48 h, but after 72 h an up-regulation of Ran mRNA was 
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observed. The fast growth rate of Neuro2A cells and the fact that successful 

transfection led to removal of cells by cell death, explained the short duration of 

target gene knockdown compared to other siRNA studies148. Eg5 knockdown 

resulted in aster formation and changed cell cycle stages compared to control 

siRNA or buffer transfected cells. DAPI and tubulin staining revealed typical 

mitotic figures, due to the blocked separation of the centrosomes after Eg5 

knockdown. Furthermore, increased G2 peaks and increasing sub G1/G0 peaks 

demonstrated the mitotic arrest, followed by cell death. In contrast, Ran 

knockdown only led to increased sub G1/G0 peaks. These findings were 

consistent with the biological mechanism of the target gene inhibition and 

demonstrated the antitumoral potential of both siRNAs. Furthermore, a cell 

viability assay confirmed the therapeutic tumor cell killing by both siRNAs in 

vitro. To evaluate the two target genes in vivo, three different siRNA 

concentrations were compared for intratumoral injection75. Only oligomer 49 

polyplexes with 50 µg siRNA per injection showed significant reduction of tumor 

growth in the Eg5 siRNA group compared to control siRNA treatment. In 

contrast, polyplexes with 25 and 12.5 µg siRNA per injection did not result in 

reduced tumor growth. This relatively high amount of siRNA is required because 

of the fast tumor growth after subcutaneous injection of 5 x 106 Neuro2A cells. 

Experiments comparing Eg5 and Ran siRNA were performed according to the 

previous dose finding experiment using oligomer 49. Mitotic arrest after 

transfection with Eg5 siRNA and apoptotic TUNEL staining after transfection 

with Ran siRNA indicated successful target gene knockdown in vivo. Both 

therapeutic siRNAs reduced tumor growth compared to control siRNA treatment. 

Control siRNA polyplexes had some inhibitory effect on tumor growth compared 

to buffer treated tumors, but did not result in significant prolonged survival. Ran 

siRNA polyplexes mediated the best antitumoral effects. Therefore, Ran silencing 

led to slower tumor growth rates and prolonged survival (28 days) compared to 

Eg5 mRNA knockdown (25 days). This might be explained by the effects of Ran 

(role in nuclear transport) knockdown on cells in all cell cycle stages, whereas 

knockdown of Eg5 (role in mitotic chromosome separation) only affects dividing 

cells. Due to these findings Ran siRNA was used for further in vivo experiments.  

For the oligomer comparison the three previously described, diversely shaped 

carriers were selected because of their high gene silencing efficacy in vitro. 
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Polyplex size and stability varied depending on the applied oligomer. Both lipo-

oligomers formed polyplexes in a range of 20-50 nm, whereas the branched 

oligomer 386 formed large particles with a size of about 600 nm. The lipo-

oligomers possess higher polyplex stability than the larger branched oligomer 386 

particles. This was confirmed through the findings by imaging polyplexes 

containing Cy7 labelled siRNA after intratumoral injection. Oligomers 49 and 229 

showed high intratumoral Cy7 signals for 48 h after polyplex injection, whereas 

Cy7 signals for oligomer 386 polyplexes decreased in this time range. The 

fluorescence signals in the kidneys (indicating slow release of free siRNA) 

confirm the partial instability of oligomer 386 polyplexes. Polyplex stability 

however was not critical and apparently sufficient in intratumoral administration 

with dosing at every 3 days, as antitumoral efficacy did not correlate with 

polyplex stability. After intravenous injection oligomers 49 and 229 showed 

accumulation in the liver > kidneys > tumor > lung detected by fluorescence 

microscopy of organ sections. Oligomer 229 showed superior tumor accumulation 

compared to oligomer 49. This could be influenced due to the lower zeta potential 

of oligomer 229 polyplexes, leading to reduced interaction with blood 

components and therefore increasing tumor accumulation after intravenous 

injection. 

In vitro knockdown efficiencies determined by qPCR and Western blot after Eg5 

and Ran silencing were in consistency with the marker gene studies demonstrating 

the same level of target gene silencing for the three oligomers. Furthermore, the 

effects on tumor cell viability and the kinetics of target gene knockdown were 

evaluated. Comparing the three oligomers, different silencing kinetics were 

detectable on protein level after 24 h, demonstrating the fastest Eg5 and Ran 

protein silencing mediated by oligomer 386. In accordance with these findings, 

oligomer 386 polyplexes containing either Eg5 or Ran siRNA decreased tumor 

cell viability at 48 h best. After 72 h all polyplexes containing therapeutic Eg5 or 

Ran siRNA mediated significant tumor cell killing, with oligomer 386 mediating 

the strongest effects. To compare antitumoral in vitro and in vivo efficacy of the 

three oligomers, an intratumoral siRNA treatment was started. Oligomer 229 

failed to reduce tumor growth comparing the Ran siRNA and the control siRNA 

groups. Oligomer 49 Ran siRNA polyplexes showed significantly reduced tumor 

growth compared to control siRNA polyplexes after 3 but not after 2 intratumoral 
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polyplex injections per week, indicating the necessity of frequent polyplex dosing 

in the fast growing Neuro2A tumor model. The best tumor growth reduction was 

mediated by oligomer 386. Tumor growth and tumor weights were significantly 

reduced in the Ran siRNA compared to the control siRNA transfected tumors in 

two independent experiments. In sum, oligomer 386 reduced tumor volume best, 

followed by oligomer 49, whereas oligomer 229 was inactive for local tumor 

treatment in vivo. 

The results demonstrate a discrepancy of the three tested oligomers in their in 

vitro and in vivo activity. Although all oligomers showed efficient target gene 

mRNA and protein knockdown in several in vitro assays, only oligomer 386 and 

to some extent oligomer 49 mediated reduced tumor growth in vivo. Only the fast 

knockdown kinetic and the high antitumoral activity of oligomer 386 in vitro can 

be correlated to the high in vivo efficiency. Of note, 386 forms the largest siRNA 

polyplexes with only moderate stability. These findings demonstrated the 

importance of in vivo testing for the development of potent siRNA delivery 

agents. Future experiments should demonstrate efficient tumor growth reduction 

after intravenous polyplex injection. For this reason stabilisation through the 

incorporation of tyrosines136 or PEGylation and targeting116,149 will be important 

factors. 

4.1.2 Tyrosine Trimer Stabilized T-shape Oligomers 

Improved polyplex stability plays an important role especially for the successful 

delivery of nucleic acids after intravenous injection141. Hence, certain 

components, like hydrophobic dioleic acid motifs and cysteines, were 

incorporated in the previous oligomeric structures to ensure polyplex stabilization. 

To further enhance polyplex stability an oligotyrosine motif was integrated into 

the sequence defined oligomers150. Subsequently, the stability and silencing 

efficiency of polyplexes containing cysteines, a dioleic acid motif, an 

oligotyrosine modification or a combination of these components were compared. 

Oligomers modified with solely tyrosines were less efficient in binding nucleic 

acid and displayed decreased transfection efficiency. All other oligomers, except 

the control oligomer 216, showed efficient eGFPLuc silencing. In conclusion, the 

efficient siRNA transfection requires the combination of two different stabilizing 

components. 
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Additionally, polyplex stability was analyzed in 90% serum and demonstrated 

superior stability of oligomers with lateral oligotyrosines to oligomers with 

terminal cysteines. Oligomers combining oligotyrosines and cysteines in the 

periphery displayed the best polyplex stability. On account of these beneficial 

properties, the in vivo distribution of Cy7 labeled siRNA polyplexes after 

intravenous injections was monitored. Oligomers 468 and 464 quenched the 

fluorescent signal of the Cy7-labeled siRNA, making an in vivo comparison of 

these polyplexes impossible due to detection reasons. Even though, the oligomers 

quenched the signal, no free Cy7-labeled siRNA was detected in the kidneys or 

the bladder. This allowed the conclusion that the polyplexes were still intact 

during the first hour. NIR fluorescence imaging revealed short circulation times 

followed by a fast renal clearance116,151 for free siRNA with a hydrodynamic 

radius of approximately 2.3 nm and for oligomer 216 polyplexes. As the sizes of 

the control polyplexes were larger than the renal filtration limit, dissociation must 

have occurred before elimination through the kidneys. According to previous 

stability assays oligomer 333 polyplexes showed partial instability with stable 

polyplexes accumulating in the liver and free siRNA being detectable in the 

kidneys after intravenous injection. In contrast, oligomers 49, 332, and 454 

polyplexes revealed a prolonged presence of complexed siRNA in the circulation 

compared to free siRNA and control oligomers. The modification with fatty acids 

increased polyplex accumulation in the liver152. Consistent with the high in vitro 

stability, longer circulation times of oligomers 332 and 454 polyplexes were 

recorded compared to oligomer 49 polyplexes. In summary, the higher serum 

stability of oligotyrosine modified polyplexes was beneficial for in vivo 

distribution, but oligomer characteristics, like the hydrophobicity, also played an 

important role.  

In accordance with the previously established intratumoral treatment, oligomer 

332, 468, 454 and 464 polyplexes were compared to oligomer 49 polyplexes. 

Again Neuro2A tumor bearing NMRI mice were treated with Ran or control 

siRNA polyplexes twice a week, in total 5 times. Oligomers 49, 454 and 464 

failed to mediate reduced tumor growth in the Ran siRNA group compared to the 

control siRNA group. Oligomer 464 polyplexes caused tumor necrosis making the 

bioluminescence evaluation of tumor growth impossible. In contrast, treatment 

with oligomer 468 and 332 Ran siRNA polyplexes reduced the tumor volume 
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compared to control siRNA polyplexes. These data confirmed the previous 

experiment demonstrating the efficacy of less stable polyplexes for the 

intratumoral treatment of Neuro2A tumor bearing mice. However, these highly 

stable polyplexes with increased circulation times will improve tumor 

accumulation after intravenous injection. In conclusion, the incorporation of 

oligotyrosine motifs improved polyplex stability of T-shaped oligomers and is an 

important option for the in vitro and in vivo stabilization of other carriers.   

4.2  Evaluation of Targeted Nanocarriers for siRNA Delivery 

On the contrary to polyplexes without targeting ligands, incorporation of targeting 

ligands allows target cell specific polyplex delivery153. Specifically shielded 

particles with low zeta potentials are dependent on targeting ligands, because the 

incorporation of targeting ligands regains polyplex cell interaction in a receptor 

specific way. For in vivo applications targeted structures with low zeta potentials 

are favored due to reduced unspecific interactions leading to reduced side effects. 

Targeted carriers were also synthesized by solid-phase-assisted macromolecule 

assembly, enabling the incorporation of different building blocks, PEG chains and 

targeting ligands116.  

4.2.1 Nanocarriers with Targeting Ligand Folic Acid 

The targeted nanocarriers were thoroughly analyzed, and the requirement of every 

single substructure was demonstrated. A cell line screen revealed only KB and 

Igrov cells highly expressing the folic acid receptor. Therefore, KB and Igrov 

cells were chosen for transfection and targeting experiments, demonstrating the 

high targeting specificity of the nanocarrier. Furthermore, the beneficial effect of 

influenza-peptide modified siRNA could be demonstrated in a marker gene 

silencing assay. In contrast to the high amounts of nanocarrier required for 

efficient endosomal escape the application of influenza peptide modified siRNA 

enabled efficient siRNA silencing at low N/P ratios. Moreover, the titration of 

polyplex or siRNA concentrations demonstrated the high efficiency of these 

nanocarriers down to a siRNA concentration of 6 nM. The comparison with the 

gold standard Lipofectamine 2000 revealed superior efficiency for the targeted 

nanocarrier system. In accordance, with the eGFPLuc screen silencing of the 

therapeutic protein Eg5 demonstrated aster formation only for targeted 

nanocarriers complexing Eg5-Inf7 siRNA. 
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For in vivo experiments KB cells were chosen because they developmened tumors 

of 200 mm3 after 10 days incubation time. In contrast, subcutaneous injection of 

Igrov cells did not result in fast growing tumors. Following in vivo experiments 

demonstrated tumor retention for 120 h after intratumoral injection of folic acid 

targeted nanocarriers. In contrast, untargeted nanocarriers and free siRNA were 

washed out of the tumor within 24 h and showed significantly reduced tumor 

retention. In consistency, with previous in vitro experiment this experiment 

demonstrated the positive effect of folic acid targeting in vivo.  

After intravenous injection the nanocarriers complexing Cy7 labeled siRNA were 

detectable by NIR imaging in the circulation without unspecific accumulation in 

non targeted tissue such as liver, lung, or spleen. However, the nanosized 

appearance (about 5.8 nm hydrodynamic diameter) of this functionally active 

carrier caused fast renal clearance, compared to the bigger branched oligomer 386 

polyplexes and the very lipophilic polyplexes of oligomer 278. KB tumors where 

implanted into the neck of NMRI mice, preventing the interaction of tumor and 

kidney signals. In this experiment kidney and bladder signals where caused by 

intact polyplexes and not by pure siRNA. Gel shift assays of urine samples taken 

4 h after polyplex injection proved the stability of the nanocarriers as free siRNA 

was only detectable after heparin and TCEP treatment. To increase circulation 

times and improve tumor targeting structures with longer PEG spacers, tyrosine, 

or fatty acid modification were synthesized. However, the resulting nanocarriers 

did not positively influence the in vivo distribution. Incorporation of longer PEG 

spacers increased particle size but reduced polyplex stability especially for 

oligomer 647 with 8 x more PEG than the standard oligomer 356. Oligotyrosines 

did not influence particle size and circulation time at all, only a moderate liver 

accumulation in consequence to their lipophilic character was detectable. 

Nanocarriers with fatty acid modification showed the worst effect with caprylic 

acid incorporation leading to liver accumulation of the polyplexes and stearic acid 

modification causing fatal side effects. Hence, the standard oligomer 356 was 

used for functional in vivo studies.  

Intravenous injection of targeted and untargeted nanocarriers with Eg5-Inf7 

siRNA showed histological aster formation 24 h after polyplex injection. 

Presumably, very little amounts of the nanocarriers undetectable by NIR imaging 

reached the tumor and caused target gene knockdown because of their high 
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efficiency. Apparently, targeted nanocarriers are more efficient as untargeted, but 

the quantification of aster formation was very complicated because of intense 

regional differences in this assay. 

Consequently, Eg5 knockdown was detected by H&E staining after intratumoral 

injection. This approach allowed a semi quantitative evaluation of mitotic figures. 

In contrast to the previously described aster formation, the analysis of mitotic 

figures is not a positive read out system, because also mitotic cells are detected. 

The analysis of H&E stained sections revealed a strong increase of mitotic figures 

after injection of Eg5-Inf7 siRNA incorporating nanocarriers compared to control-

Inf7 siRNA nanocarriers. Both assays proved successful siRNA delivery and Eg5 

silencing in vivo, demonstrating the high potential of this multifunctional 

nanocarrier.  

4.2.2 Nanocarriers with Targeting Ligand Methotrexate 

Pharmaceutically relevant drugs, like methotrexate with high structure similarity 

to folic acid, can be used for targeting in the multifunctional nanocarrier system. 

This approach combines the effect of a classical drug with the great potential of 

siRNA induced gene silencing. Several siRNAs can be included into the 

nanocarrier addressing targets related to the illness or causing drug resistance. The 

combination could allow dose reduction of the chemostatic drug yielding in 

reduced side effects or increased overall efficiency. Chemical synthesis of 

functionalized nanocarriers was complicated because the coupled drug has to 

maintain its efficiency.  

Several cancer cell lines were screened and three cell lines (A549, A431, 

Neuro2A) were identified to be highly sensitive to MTX treatment. We utilized 

the human alveolar A549 cells to screen the IC50 values of several MTX targeted 

oligomers either coupled through the α- or γ-carboxy group. To simulate the 

addition of glutamic acid and to improve the enzyme affinity after cellular uptake 

different glutamic acid spacers were introduced into the structure. At first DHFR 

inhibition was tested in a cell free system, demonstrating successful enzyme 

inhibition for MTX targeted carriers. Coupling through the α-carboxy group was 

unfavorable in a cell free system resulting in reduced enzyme affinity for the α-

carboxy modified carrier. In contrast, the α-carboxy modification was superior to 

the γ-carboxy modification in A549 cells, allowing the adhesion of glutamic acid 
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molecules after cellular uptake. In accordance, the use of glutamic acid spacers for 

γ-carboxy modified MTX carriers resulted in 10-fold lower IC50 values compared 

to γ-carboxy modified MTX carriers without glutamic acid spacers. However, the 

IC50 values of the best performing oligomer 641 with 6 glutamic acid spacers was 

still 60-fold higher than the IC50 value of pure MTX. Incorporation of acid labile 

or reducible bonds between PEG spacer and MTX could further reduce the IC50 

values and improve the efficiency.  

Receptor specificity was demonstrated through flow cytometric experiments. The 

experiment demonstrated efficient uptake of all MTX linked carriers into folic 

acid receptor highly expressing KB cells, whereas the uptake in A549 cells with 

low folic acid receptor level was significantly reduced. In comparison to folic acid 

linked nanocarriers the uptake was moderately decreased displaying the reduced 

receptor affinity. Further flow cytometric experiments were performed comparing 

the uptake of MTX and folic acid linked nanocarriers to distinguish between the 

uptake through folic acid receptors or the reduced folate carriers. KB cells 

expressed the folic acid receptor (Figure 41) and preferable took up folic acid 

targeted carriers154. In contrast, MCF7 and MDA-MB 231 cells did not express 

the folic acid receptor determined in a flow cytometric assay. Therefore, folic acid 

linked nanocarriers were not taken up and MTX linked nanocarriers were 

presumably primarily taken up through the reduced folate carrier. A431 cells 

expressed both, folic acid receptors and reduced folate carriers, and took up folic 

acid and MTX linked oligomers with equal efficiency.  

Transfection experiments were performed in KB cells moderately susceptible to 

MTX treatment because high carrier mediated toxicity would be unsuitable for the 

detection of target gene knockdown. All targeted siRNA binding nanocarriers 

mediated specific eGFPLuc silencing and proved superior efficiency over 

untargeted nanocarriers. Besides efficient targeting, all MTX nanocarriers 

mediated MTX specific toxicity detectable after control siRNA and pure carrier 

transfections. In conclusion, the assays demonstrated successful receptor binding, 

DHFR inhibition and siRNA delivery for the MTX targeted nanocarriers. 

Consequently, the most efficient nanocarrier 640 was combined with Eg5-Inf7 

siRNA for the transfection of A431 cells. Pure and control siRNA binding 

nanocarrier 640 significantly reduced cell viability compared to pure and Eg5 

binding untargeted nanocarrier 188, demonstrating the MTX related toxicity. 
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According to the previous experiments, the combination of Eg5 siRNA and MTX 

linked nanocarrier 640 showed the strongest effect and evidenced the proof of 

concept for the combination of MTX linked nanocarriers and therapeutic siRNAs. 
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5 SUMMARY 

Nucleic acid therapies, such as siRNA induced gene silencing, are considered as 

promising options for novel treatments of cancer and several other incurable 

diseases5,11,155-157. Successful siRNA application is hampered due to the difficult 

applicability of nucleic acids in general and the low serum stability of siRNAs in 

particular. Advances in carrier design, including polymers112,133,158 show the 

potential to overcome these problems and to establish this innovative class of 

drugs. In this thesis several in vitro and in vivo assays were established to 

demonstrate successful application of sequence defined, biodegradable oligomers 

for siRNA delivery.  

Several hundred monodisperse oligomers were synthesized by solid-phase-

assisted macromolecule assembly and screened to define structure-activity 

relationships. Three structurally diverse oligomers were selected and qPCR and 

Western blot assays were established to demonstrate successful target gene 

knockdown for the therapeutic relevant Eg5 and Ran siRNAs. In accordance with 

the previous screening assay, lipo-oligomers 49 (T-shape), 229 (i-shape) and the 

branched oligomer 386 mediated successful and efficient target gene silencing. 

Furthermore, flow cytometric, histological, and cell viability assays demonstrated 

the high therapeutic potential of Eg5 (aster formation, G2 arrest, cell death) and 

Ran (cell death) siRNA. First in vivo assays helped to define the required doses 

for intratumoral polyplex injections and enabled the comparison of Eg5 and Ran 

siRNA in vivo.  Silencing of Ran showed superior therapeutic effects with 

reduced tumor growth and prolonged survival compared to all other groups. The 

comparison of different oligomers revealed oligomer 386 as the most in vivo 

effective oligomer although all oligomers showed efficient target gene 

knockdown in vitro. In summary, this demonstrated the difficult correlation of in 

vitro and in vivo activity and proved the necessity of in vivo experiments for the 

design of efficient siRNA carriers. 

Additional integration of oligotyrosine motifs into the carriers resulted in 

improved polyplex stability detectable in serum gel shifts in vitro and through 

NIR imaging in vivo. After intratumoral injection high polyplex stability was not 

the most critical parameter. Therefore, this polyplexes did not improve Ran 

silencing. Exchange of terminal cysteines by oligotyrosine motifs slightly 
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increased the stability and showed Ran silencing after intratumoral application. In 

conclusion, the integration of oligotyrosines improves polyplex stability, but very 

high polyplex stability is not favorable for effective gene silencing after 

intratumoral injection. 

Effective shielding and the addition of folic acid as ligand for targeting in 

combination with siRNA coupled to the lytic influenza peptide resulted in highly 

efficient nanocarriers. Several experiments proved the necessity of every single 

domain like cysteines for stabilisation, folic acid for targeting and influenza 

peptide for endosomal escape. Further studies revealed the impressive targeting 

efficiency of this nanocarrier system after intratumoral injection and the short 

circulation time without any undesired accumulation after intravenous injection. 

Low tumor accumulation was detected after intravenous injection affected by the 

poor blood flow in the implanted KB tumors. However, nanocarriers binding Eg5-

Inf7 siRNA selectively showed aster formation indicating a low accumulation of 

nanocarriers in the tumor. Several modifications of the carrier did not result in the 

desired increased size and stability of the carrier system, but the synthetic 

approach and the increasing knowledge will allow the integration of further 

modifications to develop a more efficient nanocarrier. 

The synthetic approach also allowed the substitution of folic acid through other 

targeting ligands. The integration of the drug methotrexate extended targeting to 

the reduced folate carrier and combined targeting with a cytostatic activity of this 

ligand. Several chemically modified nanocarriers were tested to demonstrate the 

inhibition of dihydrofolate reductase and the targeting efficiency. In summary, the 

integration of a four glutamic acid long spacer between the PEG chain and 

methotrexate showed the best overall activity. This compound in combination 

with therapeutic Eg5 siRNA was tested in a cell viability assay and demonstrated 

superior efficiency compared to all controls. Improved oligomer backbones, as 

discussed for folic acid targeted nanocarriers, will turn this concept into a highly 

efficient siRNA carrier with cytostatic activity. 
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6 APPENDIX 

6.1 Abbreviations 

Ago2 Argonaute protein 2 

brPEI Branched PEI 

CapA Caprylic acid 

CCD Charge-coupled Device 

Cy3 Cyanine dye (ex. 550 ; em. 570) 

Cy5 Cyanine dye (ex. 650 ; em. 670) 

Cy7 Cyanine dye (ex. 743; em. 767) 

DAPI 4',6-diamidino-2-phenylindole 

DHFR Dihydrofolatereductase 

DMEM Dulbecco`s modified eagle medium 

DMSO Dimethyl sulfoxide 

DNA Deoxyribonucleic acid 

DSP Bifunctional crosslinker 

eGFP Enhanced green fluorescend protein 

EDTA Ethylenediaminetetraacetic acid 

EGF/EGFR Epidermal growth factor/ Epidermal growth factor 
receptor 

Eg5 Eglin 5, or KSP, Kinesin spindle protein 

EPR effect Enhanced permeability and retention effect 

EtBr Ethidium bromide 

FCS Fluorescence correlation spectroscopy 

FCS Fetal calf serum 

FolA Folic acid 

FR Folic acid receptor 

GDP/GTP Guanosine-diphosphat/ Guanosine-triphosphat 

GMP Good manufacturing practice 
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GTP Glutaryl-tetraethyl-pentamine 

GTT Glutaryl-triethyl-tetramine 

HA-2 Hemagglutinin subunit 2 

HBG Hepes buffered glucose 

HEPES N-(2-hydroxyethyl) piperazine-N’-(2-ethansulfonic 
acid) 

HES Hydroxyethyl starch 

INF7 Subunit of the influenca peptide 

i.p. Intraperitoneal(ly) 

i.v. Intravenous(ly) 

kDa Kilo Dalton 

LCA Leber congenital amaurosis 

LF2000 Lipofectamine 2000 

lPEI Linear polyethylenimine 

Luc Luciferin 

LSM Laser scanning microscopy 

MDR Multidrug resistance 

miRNA Micro ribonucleic acid 

mRNA Messenger ribonucleic acid 

MDA-5 Melanoma differentiation associated protein 

MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide 

MTX Methotrexate 

N/P Polymer nitrogen to nucleic acid phosphate ratio 

NIR Near infrared   

OEI Oligo ethylene imine 

ON Oligo nucleotide 

PAMAM Polyamidoamine dendrimer 

PBS Phosphate buffered saline 

pDNA Plasmid deoxyribonucleic acid 
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 PEG Polyethylene glycol 

PEG24 Polyethylene glycol with exactly 24 monomers  

PEI-Succ10 Branched polyethyleneimine modified with succinic 
acid 

pHPMA Polyhydroxypropylmethacrylate 

PLL Polylysine 

Ptp Phthalyl-tetraethyl-pentamine 

qPCR Quantitative polymerase chain reaction 

rh Hydrodynamic radius 

Ran RAS related nuclear protein 

RIG-1 Retinoic acid inducible protein 

RISC Ribonucleic acid induced silencing complex 

RLC RISC loading complex 

RNA Ribonucleic acid 

RNAi Ribonucleic acid interference 

ROI Region of Interest 

S.E.M. Standard Error of the Mean 

SCID Severe combined immunodeficiency 

siRNA Small interfering ribonucleic acid 

SteA Stearic acid 

Stp Succinyl-tetraethylen-pentamine 

TBE-buffer Tris-Boric acid-EDTA-buffer 

TCEP Tris(2-carboxyethyl)phosphine 

TFA Trifluoroacetic acid 

TfR Transferrin receptor 

TLR Toll like receptor 

TRBP  Transactivating response RNA binding protein 

Y3 Tyrosin-Tyrosin-Tyrosin (Tyrosin trimer) 
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6.2 Publications 

6.2.1 Original Papers 

Schaffert D, Troiber C, Salcher EE, Fröhlich T, Martin I, Badgujar N, Dohmen C, 

Edinger D, Kläger R, Maiwald G, Farkasova K, Seeber S, Jahn-Hofmann K, 

Hadwiger P, Wagner E (2011) Solid-phase synthesis of sequence-defined T-, i-, 

and U-shape polymers for pDNA and siRNA delivery. Angew Chem Int Ed Engl. 

2011 Sep12;50(38):8986-9 

Noga M, Edinger D, Rödl W, Wagner E, Winter G, Besheer A (2012) Controlled 

shielding and deshielding of gene delivery polyplexes using hydroxyethyl starch 

(HES) and alpha-amylase. J Control Release. 2012 Apr 10;159(1):92-103 

Fröhlich T*, Edinger D*, Kläger R, Troiber C, Salcher E, Badgujar N, Martin I, 

Schaffert D, Cengizeroglu A, Hadwiger P, Vornlocher HP, Wagner E (2012) 

Structure-activity relationships of siRNA carriers based on sequence-defined 

oligo (ethane amino) amides. J Control Release. 2012 Jun 28;160(3):532-41 

Dohmen C, Edinger D, Fröhlich T, Schreiner L, Lächelt U, Troiber C, Rädler J, 

Hadwiger P, Vornlocher HP, Wagner E (2012) Nanosized multifunctional 

polyplexes for receptor-mediated siRNA delivery. ACS Nano. 2012 Jun 

26;6(6):5198-208 

Fröhlich T, Edinger D, Russ V, Wagner E (2012) Stabilization of polyplexes via 

polymer crosslinking for efficient siRNA delivery. Eur J Pharm Sci. 2012 Dec 

18;47(5):914-20 

Troiber C, Edinger D, Kos P, Schreiner L, Kläger R, Herrmann A, Wagner E 

(2013) Stabilizing effect of tyrosine trimers on pDNA and siRNA polyplexes 

Biomaterials. 2013 Feb;34(5):1624-33 

Noga M, Edinger D, Kläger R, Wegner SV, Spatz JP, Wagner E, Winter G, 

Besheer A (2013) The effect of molar mass and degree of hydroxyethylation on 

the controlled shielding and deshielding of hydroxyethyl starch-coated polyplexes. 

Biomaterials. 2013 Mar;34(10):2530-8 
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Wagner (2013) Gene Silencing and Antitumoral Effects of Eg5 or Ran siRNA 

Oligoaminoamide Polyplexes. Drug Delivery and Translational Research 

Accepted 
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polyethylenimine copolymers for DNA delivery. European Journal of 
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Edinger D, Wagner E (2011) Bioresponsive polymers for the delivery of 

therapeutic nucleic acids. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2011 
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Ahmed Besheer, Matthäus Noga, Gerhard Winter, Ernst Wagner, Daniel Edinger 

Method for the controlled intracellular delivery of nucleic acids International 

Patent Application (WO2013021056A1) 

6.2.4 Poster Presentations 

Daniel Edinger, Alexander Philipp, Katarina Farkasova and Ernst Wagner 

Succinylated PEI as carrier for siRNA delivery in tumor xenograft models: 

evaluation by RT-qPCR. 4th Annual Symposium on Nanobiotechnology (NIM), 

October 5-7, 2010 LMU, Munich, Germany and 17th Annual Meeting German 

Society for Gene Therapy (DG-GT e.V.), October 7–9, 2010, LMU, Munich, 

Germany  

Raphaela Kläger*, Daniel Edinger*, Thomas Fröhlich, Christina Troiber and 

Ernst Wagner Development of oligo (aminoethane) amides for in vivo delivery of 
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