Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München

Phosphane:

Effiziente Synthese und Anwendungen

Jan Keller

aus

Bad Soden am Taunus

Erklärung

Diese Dissertation wurde im Sinne von § 13 Abs. 3 bzw. 4 der Promotionsordnung vom 29. Januar 1998 von Prof. Dr. Herbert Mayr betreut.

Ehrenwörtliche Versicherung

Diese Dissertation wurde selbstständig, ohne erlaubte Hilfe erarbeitet.

München, am 29.05.2007

Jan Keller

Dissertation eingereicht am 29.05.2007

- 1. Gutachter Prof. Dr. Bernd F. Straub
- 2. Gutachter Prof. Dr. Herbert Mayr

Mündliche Prüfung am 20.06.2007

Meinen Eltern

An dieser Stelle möchte ich mich ganz herzlich bei Prof. Dr. Bernd F. Straub für seine beispielhafte Betreuung während der Durchführung meiner Arbeit, die interessante Themenstellung und seine stete Diskussionsbereitschaft bedanken.

Weiterhin gilt mein Dank Herrn Prof. Dr. Herbert Mayr, der mir eine Durchführung der Forschungstätigkeit unter optimalen Arbeitsbedingungen ermöglichte.

Bei Clemens, Christoph und Tobi möchte ich mich für ihren großen Einsatz bei der Durchführung experimenteller Arbeiten und die humorvolle und gewinnbringende Arbeit bedanken.

Meinen Laborkollegen Martin, Nick und ganz besonders Jörg sei gedankt für ein super Arbeitsklima und ihre große Hilfsbereitschaft.

Nicht zuletzt danke ich Jana, Jörg, Nick und meinem Vater für die kritische und zügige Durchsicht dieser Arbeit.

Mein herzlicher Dank geht weiterhin an diejenigen, die mich in letzter Zeit in irgendeiner Form unterstützt haben und somit – vielleicht auch unbewusst – ihren persönlichen Teil zum Gelingen dieser Arbeit beigetragen haben.

Ein ganz herzlicher und persönlicher Dank geht an meine Eltern, die mich während der Dissertation uneingeschränkt unterstützt haben und mir mein Chemiestudium ermöglicht haben.

Publikationen:

J. Keller, C. Schlierf, C. Nolte, P. Mayer, B. F. Straub*, Synthesis 2006, 354.

J. Keller, C. Schlierf, B. F. Straub*, Chem. Eur. J., Manuskript eingereicht.

J. Keller, C. Nolte, B. F. Straub*, Organometallics, in Vorbereitung.

INHALTSVERZEICHNIS

A	BKÜR	ZUNGSVERZEICHNISII	[]
1		Finleitung	1
1	11	Phosphor in der organischen Chemie	1
	1.2	Phosphane	2
	1.2	Synthese von Phosphanen	$\frac{2}{2}$
	1.2.1	Verwendung	5
	13	Suzuki-Miyaura-Kreuzkunnlung	8
	1.5		0
2		Aufgabenstellung1	1
D	ISKUS	SSION1	12
3		Fintanfeunthesen zur Darstellung von tertiären Phosphanen. Phosphiniten und Phosphoniten	
5		durch selektive schriftweise nukleonbile Substitution von Phenovid-Cruppen an P(OPh).	3
	31	Finleitung	3
	3.1	Selektive Darstellung von Phosphonigsäuredinhenvlestern	6
	33	Selektive Darstellung von Phosphinigsäurenhenvlestern 2	2
	3.4	Darstellung von tertjären Phosphanen unter Verwendung von P(OPh) ₂	5
	011		č
4	4.1	Eintopfsynthesen tertiärer nicht homoleptischer Phosphane unter Verwendung von PCl ₃	5 5
	4.2	Selektive Darstellung von tertiären nicht homoleptischen Phosphanen in Anlehnung an Buchwalds	
		S-Phos-Liganden	6
	4.3	Selektive Darstellung von tertiären nicht homoleptischen Phosphanen mit sterisch anspruchsvollen	
		Substituenten4	0
	4.4	Selektive Darstellung von tertiären unsymmetrischen Phosphanen mit tertiären, sekundären und	
		primären Alkylsubstituenten4	3
	4.5	Demonstration der Eintopfmethodik anhand einer konventionellen Phosphansynthese5	0
	4.6	Darstellung neuer Phosphan-Ligandensysteme unter Verwendung von Polyethylenglykol- und	
		Kronenether-Fragmenten5	2
	4.7	Versuch der Darstellung von tertiären Phosphanen in Enantiomeren-angereicherter Form über eine	
		Eintopfreaktion	6
5		Kinetische Aspekte zur Selektivität von PCl ₃ und P(OPh) ₃ mit Metallorganylen6	0
	5.1	Zur Selektivität bei der Darstellung von Phosphonigsäurediphenylestern	0
	5.2	Zur Selektivität bei der Darstellung von Dichloralkylphosphanen	51
6		Suzuki-Miyaura-Kreuzkupplung	4
-		31D NIMED Consider a loss to	~
1	71	P-NMR-Spektroskopie	0
	7.1	Efficiency 7	0
	73	$\begin{array}{llllllllllllllllllllllllllllllllllll$	0 8
	1.5		0
8		Palladium-Komplex	3
9		Zusammenfassung	6
'	91	Darstellung von tertiären Phosphanen Phosphiniten und Phosphoniten durch selektive schrittweise	U
	7.1	nukleonhile Substitution von Phenoxid-Gruppen an P(OPh) ₂	6
	911	Selektive Darstellung von Phosphonigsäuredinhenvlestern	6
	9.1.2	Selektive Darstellung von Phosphinigsäurenhenvlestern 8	7
	9.1.3	Darstellung von tertjären Phosphanen unter Verwendung von P(OPh) ₂	8
	9.2	Eintopfsynthesen tertiärer nicht homoleptischer Phosphane unter Verwendung von PCl ₂ 9	1
	9.2.1	Selektive Darstellung von tertiären nicht homoleptischen Phosphane mit sterisch anspruchsvollen	•
		Substituenten	1
	9.2.2	Selektive Darstellung von tertiären unsymmetrischen Phosphanen mit tertiären, sekundären und	-
		primären Alkylsubstituenten	2

9.3	³¹ P-NMR-Spektroskopie)5
9.4	Suzuki-Miyaura-Kreuzkupplung)6
9.5	Pd-Komplex)7
EXPER	RIMENTELLER TEIL)8
10	Allgemeine Arbeitsmethoden, Chemikalien und physikalische Messgeräte9	19
11	Generelle Methodik)4
10	Selekting Deutstellung von Diegenkoniten. Diegenkiniten und teutiänen Diegenkonen aus D(ODk) 10	0
12	Selektive Darstellung von Phosphoniten, Phosphiniten und tertiaren Phosphanen aus P(OPh) ₃ 10 Selektive Darstellung von Phosphoniceäuredinkenvileetern	19
12.1	Selective Darstellung von Phoenbinice Surenhanvlastern	19
12.2	Selektive Darstellung von Phosphinigsaurephenylestern	.2
12.3	Darstenung von ternaren Phosphanen aus P(OPh) ₃ 11	9
13	Eintopfsynthesen tertiärer nicht homoleptischer Phosphane unter Verwendung von PCl ₃ 13	33
13.1	Selektive Darstellung von tertiären nicht homoleptischen Phosphanen in Anlehnung an Buchwalds	-
	S-Phos-Liganden	33
13.2	Selektive Darstellung von tertiären unsymmetrischen Phosphanen mit tertiären, sekundären und	
	primären Alkylsubstituenten	4
13.3	Selektive Darstellung von tertiären unsymmetrischen Phosphanen mit Alkyl- oder Arylsubstituenter	n
	aus Dichlorphenylphosphan	68
13.4	Eine konventionelle Phosphansynthese	54
13.5	Phosphan-Ligandensysteme unter Verwendung von Polyethylenglykol- und Kronenether-	
	Fragmenten	55
13.6	Darstellung einer chiralen Trietherverbindung (90)17	0'
14	Pd(0)-Komplex	4
15	Suzuki-Miyaura-Kreuzkupplung	/6
		-
16	Kristallographische Daten	8
16.1	Kristallographische Daten von Diphenyl 2-(2´,6´-dimethoxybiphenylyl)phosphonit (10)17	8
16.2	Kristallographische Daten von Phenyl-tert-butyl-2-(2',6'-dimethoxybiphenylyl)phosphinit (20)18	;3
16.3	Kristallographische Daten von Tris-2-(4,4'-di-tert-butylbiphenylyl)phosphan (32)18	;8
16.4	Kristallographische Daten von 9-Anthryl-1-naphthylphenylphosphan (27)20)0
16.5	Kristallographische Daten von Methyl-bis-[2-(2´,6´-dimethoxybiphenylyl)]phosphan (33)20	16
16.6	Kristallographische Daten von Pd-Komplex (94)	2
17	Titanatuman siskuis	
1/		4

Abkürzungsverzeichnis

Ac	Acetyl
Äquiv.	Äquivalente
Ar	Aryl
ber.	berechnet
Bu	Butyl
Bz	Benzyl
Су	Cyclohexyl
d	Tag, Dublett
d	deuteriert
dba	Dibenzylidenaceton
dd	Dublett von Dubletts
E^+	Elektrophil
ee	Enantiomeric excess, d.i. Enantiomerenüberschuss
EI	Electron-impact ionization, d.i. Elektronenstoßionisation
ESI	Electron-spray ionization, d.i. Elektronensprühionisation
Et	Ethyl
EtOAc	Ethylacetat
Et ₂ O	Diethylether
FG	Funktionelle Gruppe
GC	Gaschromatographie
GC-MS	Gaschromatographie-gekoppelte Massenspektrometrie
gef.	gefunden
h	Stunde
i	iso-
IR	Infrarotspektroskopie
iPr	Isopropyl
J	Indirekte Kopplung, hochgestellte Zahl gibt Anzahl der
	beteiligten Bindungen an, tiefgestellte Zahl gibt Art der
	Koppelnden Kerne an.
LC	Liquid chromatography, d.i. Flüssig-Chromatographie
LM	Lösemittel
М	Metall, mol L^{-1}

m	Multiplett
m	meta-
\mathbf{M}^+	Molekülsignal in Massenspektren
Me	Methyl
Mes	Mesityl
min	Minute(n)
MS	Massenspektrometrie
m/z	Masse pro Ladung
n	normal- (geradkettig-)
Np	Neopentyl (2,2-Dimethyl-1-propyl)
NMR	Kernresonanzspektroskopie
η	hapto-
0	ortho-
OTs	Tosylat
р	Druck
p	para-
Ph	Phenyl
ppm	Parts per million
Pr	Propyl
q	Quartett
R	organischer Rest
RT	Raumtemperatur/Zimmertemperatur
S	Singulett
S	sec-
t	Triplett
t	tert-
<i>t</i> Bu	tert-Butyl
<i>t</i> BuOMe	tert-Butylmethylether
THF	Tetrahydrofuran
Zers.	Zersetzung
Х	Funktionelle Gruppe, Halogenid, C- oder Heteroatom

1 Einleitung

1.1 Phosphor in der organischen Chemie

Die Organophosphorchemie hat ihren Ursprung Ende des 19. Jahrhunderts. Pionierarbeiten dazu lieferte zwischen 1874 und 1916 besonders der Chemiker *Karl Arnold August Michaelis* von der Universität Rostock. Er entdeckte und charakterisierte einige der funktionellen Gruppen und entwickelte Synthesen, die bis heute noch in den Laboratorien Anwendung finden.^[1]

In den dreißiger Jahren und dem darauffolgenden 2. Weltkrieg erlangten Organophosphorverbindungen in Form von Phosphor- und Phosphonsäurederivaten traurige Bekanntheit durch ihre Verwendbarkeit als chemische Waffen, die glücklicherweise nicht zum Einsatz kamen. Die Kampfstoffe mit den Namen *Sarin, Tabun, Soman* und *VX* prägen die Klasse der Nervenkampfstoffe.

Nach dem 2. Weltkrieg erlangte die Organophosphorchemie ein besonderes und diesmal erfreulicheres Interesse für die Industrie, nachdem man herausfand, dass die Toxizität einiger dieser hochgiftigen Phosphor- und Phosphonsäurederivate gegenüber Säugetieren durch strukturelle Veränderungen deutlich gesenkt werden konnte, sie dennoch sehr wirksam als Insektizide eingesetzt werden konnten.

Malathion besitzt beispielsweise eine exzellente Toxizität gegenüber Insekten und ist für Menschen deutlich weniger gefährlich ($LD_{50} = 4100 \text{ mg/kg}$) (Abbildung 1).^[1]

Malathion

Abbildung 1: Insektizid Malathion.

Bereits in den siebziger Jahren waren weit über 100 000 Organophosphorverbindungen bekannt und es fanden sich weitere nützliche Anwendungsgebiete, wie Herbizide, Flammschutz, medizinische Wirkstoffe und Olefinierungsreaktionen, die heute zu der "klassischen" Organophosphorchemie zählen.^[1-3] Die Organophosphorverbindungen erweckten in den letzten Jahrzehnten erneut das Interesse der organischen Synthese, nachdem sie erfolgreich als Liganden in übergangsmetallkatalysierten organischen Reaktionen eingesetzt werden konnten. Im Fokus stehen hierbei insbesondere Phosphane, Phosphonite oder Phosphinite, die in den folgenden Kapiteln näher behandelt werden.

1.2 Phosphane

1.2.1 Synthese von Phosphanen

Organische Derivate des Phosphans entstehen durch den formalen Austausch von Wasserstoff "H" gegen organische Reste "R".

Je nach Substitutionsgrad wird daher zwischen dem Monophosphan, einem primären Phosphan, einem sekundären Phosphan und einem tertiären Phosphan unterschieden (Schema 1).

R = Alkyl oder Aryl

Schema 1: Nomenklatur von Phosphanen.

Obwohl es in den letzten Jahrzehnten einige nützliche Verbesserungen und Erweiterungen von Methoden gab, muss man ehrlicherweise zugestehen, dass seit Anfang der siebziger Jahre keine grundlegend neuen Synthesewege für Phosphane entwickelt wurden.^[4, 5]

Betrachtet man in Bezug auf die verfügbaren Edukte die Spaltungsmöglichkeiten in Schema 2, wird deutlich, dass sich drei Synthesewege abzeichnen, mit denen der Großteil der P-Coder P-H-Bindungen abgedeckt werden kann: Die Umsetzung metallorganischer Reagenzien mit Halogenphosphanen (1) oder Metallphosphiden mit Organohalogenverbindungen (2) zur Bildung von P-C-Bindungen und Hydrid-Reduktionen von Phosphorelektrophilen für die Bildung von P-H-Bindungen (4).

(1)	$P-C \implies$	P ⁺ + C ⁻	(4)	P-H ⇒	P ⁺ + H ⁻
(2)	$P-C \implies$	P⁻ + C⁺	(5)	P−H \implies	P⁻ + H⁺
(3)	$P-C \implies$	P [.] + C [.]	(6)	$_{\rm P-H} \Longrightarrow$	P· + H·

Schema 2: Spaltungsmöglichkeiten von P-C- oder P-H-Bindungen.

Im Rahmen dieser Arbeit wurde nicht mit sekundären und primären Phosphanen gearbeitet, daher werden diese nicht im Detail behandelt.

Für die Bildung von tertiären Phosphanen ist die Verwendung von metallorganischen Reagenzien und Halogenphosphanen die Methode der Wahl (Schema 3).^[5] Dafür spricht, dass beide Edukte sehr gut zugänglich sind und auch kommerziell günstig zu erhalten sind.

Schema 3: Umsetzung metallorganischer Reagenzien mit einem Trihalogenphosphan zum tertiären Phosphan.

Aryl- und primäre Grignard-Reagenzien lassen sich problemlos mit Trihalogenphosphanen in hohen Ausbeuten zu tertiären Phosphanen umsetzen. Der Phenylrest dominiert in der Organophosphorchemie nicht zuletzt deshalb, weil sich PPh₃ leicht aus PhCl, Na und PCl₃ herstellen lässt^[6] und Ph₂PCl und PhPCl₂ industriell durch erhitzen von PPh₃ mit PCl₃ erhalten werden können.^[7]

Tertiäre und auch sekundäre Grignard-Reagenzien hingegen liefern oft keine vollständigen Umsetzungen zu tertiären Phosphanen (Schema 4).^[5]

Schema 4: Reaktion zum Monochlorphosphan trotz überschüssigem Nukleophil.

Eine weniger übliche Alternative besteht darin, nukleophilen Phosphor, meist ein Metallphosphid mit Organohalogenverbindungen umzusetzen (Schema 5).^[5]

X = CI, Br, I

Schema 5: Reaktion eines nukleophilen Phosphors mit Organohalogenverbindungen.

Phosphortrihalogenide sind einfacher und schneller zugänglich als Metallphosphide, die unter anderem erst durch Deprotonierung von Monophosphanen, sekundären oder primären Phosphanen erzeugt werden müssen. Aufgrund der schwachen Basizität von Phosphanen müssen starke Basen wie Amide oder *n*BuLi verwendet werden (Schema 6a). Alternativ können die Metallphosphide auch aus einer reduktiven Metallierung oder einem Metall-Metall-Austausch erhalten werden (Schema 6b+c). Auch die Spaltung einer P-C-Bindung mit einem Alkalimetall führt zu Phosphiden und letztendlich können binäre Metallphosphide auch aus den Elementen erhalten werden (Schema 6d+e).

a)	Me ₂ PH	+	<i>n</i> BuLi	\rightarrow	Me ₂ PLi + BuH
b)	Ph ₂ PCl	+	2 Li	>	Ph ₂ PLi + LiCl
c)	MgBr ₂	+	2 Ph ₂ PK	\rightarrow	$Mg(Ph_2P)_2 + 2 KBr$
d)	PPh_3	+	2 Li	\rightarrow	PPh ₂ Li + PhLi
e)	P _n	+	3n Na	\rightarrow	n Na ₃ P

Schema 6: Wege zur Darstellung von Metallphosphiden.^[8] a) durch Deprotonierung, b) durch reduktive Metallierung, c) durch Metall-Metall-Austausch, d) durch P-C-Bindungsspaltung mit einem Alkalimetall oder e) durch Kombination der Elemente.

Welche der verschiedenen Methoden in der Synthese Verwendung findet, bestimmen die Verfügbarkeiten der Edukte und weitere Reaktionsbedingungen, unter Umständen bedingt durch Folgereaktionen.

Darüber hinaus können nebst den besprochenen P-C-Bindungs-Bildungsmöglichkeiten tertiäre Phosphane auch aus Organophosphor(V)verbindungen durch Reduktion erhalten werden.^[5] In Frage kommen dabei Phosphanoxide und -sulfide vom Typ $R_3P=X$ oder Phosphoniumsalze vom Typ $[R_4P]^+ X^-$ (X = Cl, Br, I). Die tertiären Phosphane können über Reduktion, beispielsweise unter Verwendung von Reduktionsmitteln wie LiAlH₄, Silanen (z.B. Cl₃SiH) oder auch durch elektrolytische Reduktion erhalten werden. Auf den ersten Blick mag es nicht sinnvoll erscheinen, Organophosphor(V)verbindungen zu verwenden, da sie größtenteils aus tertiären Phosphanen hergestellt werden. Doch um optisch aktive tertiäre Phosphane zu erhalten, ist es oftmals die effizienteste Möglichkeit, von Oxiden oder Phosphoniumsalzen auszugehen.

1.2.2 Verwendung

Organophosphorverbindungen sind von enormer Bedeutung für übergangsmetallkatalysierte Reaktionen.^[9-15] Ein Großteil der dort verwendeten Liganden sind Phosphorverbindungen und davon die meisten tertiäre Phosphane. Sie sind für die Übergangsmetallkatalyse von besonderem Interesse, weil man mit ihnen recht einfach unterschiedlichste strukturelle oder elektronische Variationen durch Veränderung der Reste am Phosphor erhält und somit die Aktivität des Katalysators gesteigert werden kann.

Als Beispiele für übergangsmetallkatalysierte Reaktionen mit tertiären Phosphanen seien die asymmetrische Hydrierung, die Alken-Metathese, die Hydroformylierung und die Kreuzkupplung genannt.

Die von *Noyori et al.* entwickelte rutheniumkatalysierte, asymmetrische Hydrierung von allylischen Alkoholen, α , β -ungesättigten Carbonsäuren und ungesättigten α -Aminosäuren verwendet u.a. ein chelatisierendes, chirales Bisphosphan (BINAP) als Ligand.^[16] Wie in Schema 7 zu sehen ist, kann beispielsweise unter Verwendung geringster Mengen eines aktiven Rutheniumkatalysators ein allylischer Alkohol in hohen Ausbeuten und in 98% Enantiomerenüberschuss hydriert werden.

Schema 7: Asymmetrische Hydrierung nach Noyori.

Auch bei den Ruthenium-Carben-*Grubbs*-Katalysatoren der ersten und zweiten Generation für die Metathesereaktion sind tertiäre Phosphane in Form von Liganden am Ruthenium gebunden.^[17]

Abbildung 2: a) *Grubbs*-Katalysator der ersten Generation, b) *Grubbs*-Katalysator der zweiten Generation.

Alternativ zu den tertiären Phosphanen kommen bei der Hydroformylierung auch Phosphonite und Phosphinite (Kapitel 3.1) zum Einsatz. Diese beiden Verbindungstypen werden ebenfalls später behandelt; daher soll anhand eines Beispiels gezeigt werden, dass auch sie von Interesse für übergangsmetallkatalysierte Reaktionen sind (Schema 8). Bei der Hydroformylierung ist es im Gegensatz zu vielen anderen Reaktionen wichtig, dass der Ligand dem Metall nicht zu viel Elektronendichte verleiht. Andernfalls bindet das Kohlenstoffmonoxid so stark an das Rhodium, dass es sich nur noch schwer lösen kann. Konsequenz ist eine deutliche Verlangsamung der Reaktion, bzw. eine Erhöhung der Aktivierungsbarriere.

Phosphonite und Phosphinite sind aufgrund ihrer elektronenziehenden Sauerstoffgruppen schwächere Donoren als die meisten tertiären Phosphane und daher attraktiv als Liganden für Hydroformylierungsreaktionen.

Schema 8: Hydroformylierungsreaktion unter Verwendung eines Liganden von Börner et al.^[18]

Größte Aufmerksamkeit genießen wohl derzeit die tertiären Phosphane als Liganden in palladiumkatalysierten C-C-, C-O- und C-N-Kreuzkupplungen. Phosphane gehören hier zu den aktivsten und universell einsetzbarsten Liganden. Besonders bei der *Suzuki-Miyaura*-Kreuzkupplung konnten in den letzten Jahren durch die Entwicklung neuer Phosphan-Ligandensysteme enorme Steigerungen der Aktivität des Katalysators erhalten werden.^[19-21] Dies ist nicht zuletzt der angenehmen Eigenschaft des Phosphors zu verdanken, Liganden modular aufzubauen, um somit sterische und elektronische Eigenschaften beeinflussen zu können.

1.3 Suzuki-Miyaura-Kreuzkupplung

Die Palladium-katalysierte Kreuzkupplungsreaktion von Aryl- und Vinylhalogeniden, bzw. -tosylaten mit organischen Verbindungen der Boronsäure ist allgemein bekannt als *Suzuki-Miyaura*-Reaktion.^[22] Sie wurde vor fast 30 Jahren entwickelt und im Laufe der Jahrzehnte zusehends verbessert und erweitert, so dass die Reaktion mittlerweile eine der wichtigsten Methoden zur Knüpfung neuer C-C-Bindungen ist.^[23, 24] Auch in der industriellen Synthese finden sich viele Anwendungen.^[25] Beliebt ist die *Suzuki-Miyaura*-Reaktion nicht zuletzt wegen ihrer anwenderfreundlichen Bedingungen. So sind die verschiedensten Boronsäuren kommerziell erhältlich, weder intrinsisch toxisch wie Stannane, noch sauerstoff-, hitze- oder wasserempfindlich.

Schema 9: Suzuki-Miyaura-Kreuzkupplung von zwei Arylderivaten.

Der Reaktionsablauf der Suzuki-Miyaura-Reaktion kann im groben folgendermaßen skizziert werden.

Schema 10: Postulierter Reaktionsmechanismus für die Suzuki-Miyaura-Kreuzkupplung.^[23]

Der Ablauf der Reaktion in Schema 10 ist bewusst nur grob umrissen, da die mechanistischen Details nicht vollständig geklärt bzw. bewiesen sind. Weder der Bildungsweg noch die Struktur der aktiven Spezies selbst sind eindeutig geklärt. Viele Experimente und Studien deuten jedoch darauf hin, dass es sich bei der aktiven Spezies um einen Monophosphan-Komplex der Form LPd⁰ handelt, welcher im Gleichgewicht mit dem Bisphosphan-Komplex L₂Pd⁰ liegt.^[9, 23, 24, 26-29] Sterisch anspruchsvolle Liganden verschieben das Gleichgewicht zur LPd⁰-Spezies und würden damit die Bildung der aktiven Spezies beschleunigen. Elektronenschiebende Liganden sorgen dafür, dass ein elektronenreicher Komplex gebildet wird, der eine schnelle *oxidative Addition* mit Arylhalogeniden eingehen kann. Je elektronenreicher das zu kuppelnde Arylhalogenid ist, desto höher ist die Aktivierungsbarriere für die Insertion der aktiven Palladium-Spezies in die C-Hal-Bindung. Zusätzlich wird die Insertion in der Reihenfolge von C-I, C-Br, C-CI, C-OTs bis C-F erschwert.

Im nächsten Schritt erfolgt eine *Transmetallierung*, bei der die Boronsäure den organischen Rest auf die Palladiumspezies überträgt. In diesem Schritt des Reaktionscyclus können ebenfalls noch keine genauen Aussagen über den Ablauf gemacht werden. *Suzuki* vermutete, dass die für den Erfolg der Reaktion essentiell zuzusetzende Base ein Organopalladiumhydroxid bildet, welches mit einer Organoboronat-Spezies, die aus einem weiteren Äquivalent Base gebildet wird, eine *Transmetallierung* durchführt.^[30] Ein Organopalladiumhydroxid konnte aber spektroskopisch nicht nachgewiesen werden.^[31] Die Ergebnisse aktueller Rechnungen geben Anlass zu der Vermutung, dass die Base lediglich eine Organoboronat-Spezies bildet, die anschließend nukleophil am Palladium angreift.^[32-34]

Die C-C Bindungsknüpfung zwischen "R" und "Ar" geschieht unter *reduktiver Eliminierung*, wodurch sich die aktive Pd⁰-Spezies wieder bildet. Es wird allgemein angenommen, dass elektronenarme Komplexe eine *reduktive Eliminierung* erleichtern, da sie angenehme Bedingungen für die Reduktion des Palladiums von +II auf +0 erzeugen. Elektronenreiche Liganden können jedoch ihr Defizit durch hohen sterischen Anspruch kompensieren und damit eine Beschleunigung der *reduktiven Eliminierung* herbeiführen.^[9]

Seit der erstmaligen Publikation der Reaktion im Jahre 1979 haben zahlreiche Verbesserungen von mehreren Arbeitsgruppen eine breite Anwendung ermöglicht und anfängliche Beschränkungen auf Bromide und Iodide beseitigt. So können nun zum Beispiel auch elektronenreiche und sterisch gehinderte Arylchloride^[35] gekuppelt werden, die im Gegensatz zu den Bromiden und Iodiden wesentlich einfacher erhältlich und billiger sind. Auch die erforderlichen Katalysatormengen konnten reduziert werden und Kupplungen bei Zimmertemperatur sind erfolgreich durchgeführt worden.^[19, 36-44]

Ein Großteil der Verbesserungen beruht auf der Entwicklung verschiedener Palladiumkomplexe, die eine erhöhte katalytische Aktivität aufweisen. Eine entscheidende Rolle nehmen hierbei die Liganden ein, die an das Palladium koordinieren.

Zwei hoch aktive Liganden in Kreuzkupplungreaktionen sind in Abbildung 3 gezeigt. Es handelt sich um die in der Gruppe von *Buchwald* entwickelten S-Phos-(1) und X-Phos-(2) Liganden.^[23, 45]

Abbildung 3: Zwei hoch aktive Liganden für die palladiumkatalysierte Kreuzkupplung, entwickelt von *Buchwald et al.*

2 Aufgabenstellung

Vor dem Hintergrund der Bedeutung von tertiären Phosphanen in der übergangsmetallkatalysierten organischen Synthese, sollten neue Methoden entwickelt werden, um tertiäre Phosphane mit bis zu drei unterschiedlichen organischen Resten herzustellen. Ausgehend von den günstigen Edukten PCl₃ oder P(OPh)₃ war es das Ziel, durch Verwendung von Organometallverbindungen, einen schrittweisen nukleophilen Austausch der Substituenten am Phosphor zu ermöglichen (Schema 11).

$$P(OPh)_{3} \xrightarrow{1) R^{1}M} \xrightarrow{R^{1}P} \begin{array}{c} R^{2} \\ 2) R^{2}M \\ 3) R^{3}M \end{array} \xrightarrow{R^{1}P} \begin{array}{c} R^{2} \\ R^{3} \\ 3) R^{3}M \end{array} \xrightarrow{R^{1}R^{3}} \begin{array}{c} 2) R^{2}M \\ R^{3} \\ 3) R^{3}M \end{array} \xrightarrow{R^{1}R^{3}} \begin{array}{c} R^{2} \\ R^{3} \\ 3) R^{3}M \end{array} \xrightarrow{R^{1}R^{3}} \begin{array}{c} R^{2} \\ R^{3} \\ R^{3} \\ 3) R^{3}M \end{array}$$

Schema 11: Darstellung nicht homoleptischer tertiärer Phosphane ausgehend von P(OPh)₃ oder PCl₃.

Nach erfolgreicher Entwicklung solcher Methoden war es von großem Interesse, die stark vereinfachten Synthesewege zu verwenden, um tertiäre Phosphane basierend auf Biphenylfragmenten herzustellen, die auf Aktivität in der *Suzuki-Miyaura*-Kreuzkupplung untersucht werden sollten (Schema 12).

Schema 12: Suzuki-Miyaura-Kreuzkupplung.

Durch partielle Veränderung der Struktur und elektronischer Eigenschaften bestehender erfolgreicher Ligandensysteme sollten Tendenzen in der Reaktivität aufgezeigt werden, die unter Umständen Informationen zu mechanistischen Details der Kreuzkupplungsreaktion offenbaren.

Nachdem es möglich war, tertiäre unsymmetrische Phosphane einfach herzustellen, drängte sich die Frage auf, ob sich auf ähnlichem Wege Phosphane auch in Enantiomeren-angereicherter Form darstellen lassen. Diskussion

3 Eintopfsynthesen zur Darstellung von tertiären Phosphanen, Phosphiniten und Phosphoniten durch selektive schrittweise nukleophile Substitution von Phenoxid-Gruppen an P(OPh)₃

3.1 Einleitung

Die selektive Darstellung von Phosphanen, Phosphoniten und Phosphiniten ist für die organische Chemie eine wichtige Aufgabe (Abbildung 4).

Abbildung 4: Nomenklatur von Phosphorliganden.

Phosphonite, Phosphinite und insbesondere tertiäre Phosphane finden Anwendung in der metallorganischen Chemie in Form von Liganden an späten Übergangsmetallen.

Üblicherweise werden tertiäre Phosphane aus PCl₃ durch Zugabe von metallorganischen Verbindungen hergestellt.^[1, 46] Arylphosphite, –phosphonigsäurediphenylester und –phosphinigsäurephenylester erhält man durch Zugabe von Phenolderivaten zum jeweiligen Chlorphosphan.^[47]

Die Strategie besteht darin, Chlorid durch Phenolat als Abgangsgruppe zu ersetzen und damit an Triphenylphosphit – $P(OPh)_3$, nukleophile Substitutionen mit metallorganischen Verbindungen durchzuführen (Schema 13).

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} 3 \ RMgX \\ \hline oder \ 3 \ RLi \end{array} \end{array} & \begin{array}{c} R_{3}P \\ \hline 30-85\% \end{array} \end{array}$$

$$R = C_{6}D_{5}, C_{2}D_{5}, CD_{3}, CH_{3}, CH=CH_{2}, 3-Indenyl, \\ 2,4,6-(MeO)_{3}C_{6}H_{2} \end{array}$$

Schema 13: Homoleptische tertiäre Phosphane aus P(OPh)₃, analog der PMe₃-Synthese von *Schmidbaur* und *Wolfsberger*.^[48]

Im Gegensatz zu Chlorphosphanen sind Phosphite, Phosphonite und Phosphinite aufgrund ihrer starken P-O-Bindung und ihres sterischen Anspruchs nicht hydrolyseempfindlich und können daher wässrig aufgearbeitet werden. P(OPh)₃ ist kostengünstig in großen Mengen kommerziell erhältlich^[49], es ist weder hygroskopisch noch oxidationsempfindlich.

Die Umsetzung von P(OPh)₃ mit metallorganischen Verbindungen ist wohlbekannt. Jedoch sind fast alle Synthesen auf die Einführung von drei identischen Substituenten beschränkt.^[48, 50-63] Bislang waren die Umsetzungen von Phosphiten mit Carbanionen bekannt für ihre geringe Selektivität.^[64] Man erhielt Mischungen aus mono-, di- und trisubstituierten Produkten. Ein Überschuss von 12 Äquivalenten P(OMe)₃ ist nötig, um das Dimethyl-biphenyl-2-yl-phosphonit (**3**) in situ als *Michaelis-Arbuzov*-Produkt **4** zu erhalten (Schema 14).^[65]

Schema 14: Unterdrückung der Phosphinitbildung durch überschüssigen Einsatz des Substrats P(OMe)₃.

Emrich und *Jolly* entwickelten eine Synthese, um 1-Alkylphospholane in einer Eintopfreaktion durch stöchiometrische Zugabe von Alkyllithiumverbindungen und 1,4-Dilithiumbutan zu $P(OMe)_3$ in einer Ausbeute von 47–56% zu erhalten (Schema 15).^[66]

$$P(OMe)_{3} \xrightarrow{\text{RLi} \\ \text{Hexan/Et}_{2}O \\ -30 \text{ °C bis -10 °C}}_{-\text{LiOMe}} \xrightarrow{\text{R}} P_{OMe} \xrightarrow{\text{OMe} \\ -10 \text{ °C} \\ -2 \text{ LiOMe}} \xrightarrow{\text{R}} P_{OMe} \xrightarrow{\text{COMe} \\ -2 \text{ LiOMe}} \xrightarrow{\text{R}} P_{OMe} \xrightarrow{\text{R}} \xrightarrow{\text{R}} P_{OMe} \xrightarrow{\text{COMe} \\ -2 \text{ LiOMe}} \xrightarrow{\text{R}} \xrightarrow{\text{R}} P_{OMe} \xrightarrow{\text{R}} \xrightarrow{$$

Schema 15: Eintopfsynthese von Phospholanen.

Die in der Literatur bislang einzige bekannte Synthese, bei der eine selektive nukleophile Substitution am $P(OPh)_3$ stattfindet, ist die Umsetzung mit zwei Äquivalenten Ferrocenyllithium zum Phosphinit (**5**). Phenyldiferrocenylphosphinit (**5**) wurde in Form eines Boranaddukts isoliert. Um zu einem tertiären Phosphan zu gelangen, bediente sich die Gruppe um *Kagan* einer mehrstufigen Reaktion.^[67] Das Phosphinit wurde sauer hydrolysiert und das erhaltene sekundäre Phosphanoxid (**6**) zum Phosphan reduziert. Nachdem es mit Boran geschützt wurde, deprotonierte man das sekundäre Phosphan und führte eine elektrophile Methylierung durch, gefolgt von einer Entschützung zum tertiären Phosphan **7** (Schema 16).

Schema 16: Mehrstufige Phosphansynthese aus P(OPh)₃ nach Kagan.

Die Selektivität in Schema 16 beruht jedoch auf der Darstellung von Phosphiniten und nicht auf der von Phosphoniten. Die Reaktivität von Phosphoniten mit Carbanionen ist erheblich größer als die von Phosphiniten. Die selektive Darstellung von Phosphoniten ist daher eine größere Herausforderung.

Ein Ziel dieser Arbeit war es, sich dieser Herausforderung zu stellen und die drei Phenoxid-Abgangsgruppen selektiv nukleophil durch Carbanionen zu substituieren. Tauscht man alle drei Phenoxid-Gruppen schrittweise aus, so gelangt man zu einem tertiären unsymmetrischen Phosphan – einem Phosphan mit drei unterschiedlichen Resten. Des Weiteren sollte der Vorteil der Unempfindlichkeit der Phosphonite und Phosphinite gegenüber Hydrolyse ausgenutzt werden. Daher sollten auch ein- und zweifach substituierte Phosphonite, bzw. Phosphinite durch wässrige Aufarbeitung isoliert werden können.

In sämtlichen Synthesen von Phosphorverbindungen konnten die Umsetzungen ³¹P{¹H}-NMR-spektroskopisch kontrolliert werden. Das hatte den Vorteil, Proben direkt aus der Reaktionsmischung nehmen zu können, ohne Aufarbeitung und Verwendung von deuterierten Lösemitteln. Bei Bedarf konnte die Reaktion weitergeführt werden oder das entsprechende Nukleophil in entsprechender Menge nachgegeben werden. Die hier eingesetzten und synthetisierten Phosphorverbindungen ergaben jeweils nur ein Signal im ³¹P{¹H}-NMR-Spektrum, so dass die Bildung und Vollständigkeit der Umsetzungen sehr gut überprüft werden konnten (Kapitel 7.3).

3.2 Selektive Darstellung von Phosphonigsäurediphenylestern

Die Reaktion von $P(OPh)_3$ mit weniger als drei Äquivalenten einer sterisch ungehinderten Organometallverbindung führt zu einer Mischung aus dem Edukt, dem Phosphonit, dem Phosphinit und dem Phosphan (Schema 17).

$$P(OPh)_{3} \xrightarrow{RM, THF} P(OPh)_{3} + R^{-}P(OPh)_{2} + \frac{R}{R} P(OPh) + \frac{$$

Schema 17: Unselektive Reaktion von P(OPh)₃ mit kleinen Nukleophilen.

Bei der schrittweisen nukleophilen Substitution der Phenoxid-Abgangsgruppen durch Carbanionen ist die erste Substitution zum Phosphonit die weitaus unselektivste, weil das entstandene und etwas weniger reaktive Phosphonit in Konkurrenz zum Phosphit tritt. Die Unterschiede in der Selektivität zwischen der Erst- und Zweitsubstitution sind auf die sich ändernden elektronischen und sterischen Eigenschaften zwischen Phosphonit und Phosphinit zurückzuführen.

Am Phosphit sind drei elektronenziehende Gruppen gebunden, die dem Phosphoratom Elektronendichte entziehen und es daher gegenüber Nukleophilen sehr reaktiv machen. Das Phosphonit ist im Vergleich zum Phosphit unreaktiver, weil am Phosphor nur zwei elektronenziehende Gruppen gebunden sind und das Phosphonit durch einen Arylsubstituenten zusätzlich Elektronendichte bekommt. Beim Phosphinit fehlt eine weitere Phenoxid-Gruppe und ein zweiter elektronenreicherer Rest ist am Phosphor gebunden. Hinzu kommt, dass durch größere Substituenten das Phosphoratom zunehmend abgeschirmt wird.

Um selektiv ein Phosphonit herzustellen, muss daher die Bildung des Phosphinits erschwert werden. Das ist der Fall, wenn der erste eingeführte Substituent sterisch so anspruchsvoll ist, dass der Eintritt eines weiteren Carbanions gehindert ist.

Anhand des Übergangszustands lässt sich erklären, wie es zu sterischen Abstoßungen zwischen dem Phosphonit und dem Carbanion kommt. Die Substitution der Abgangsgruppe am Phosphoratom durch Nukleophile geschieht unter Inversion^[68] der Konfiguration, analog der *Walden*-Inversion bei S_N2-Reaktionen an Kohlenstoffelektrophilen.^[69-73] Der angenommene Übergangszustand kann analog der *Bentschen* Regeln^[74, 75] als eine trigonale Bipyramide beschrieben werden (Abbildung 5).

Abbildung 5: Trigonale Bipyramide als angenommener Übergangszustand bei der nukleophilen Substitution am Diphenyl-9-anthrylphosphonit.

Das freie Elektronenpaar des Phosphoratoms befindet sich in der äquatorialen Position, während das angreifende Nukleophil die apikale Position belegt. Wo sich dabei das Lithium-Kation befindet, ist nicht klar. Möglich wäre, dass es entweder an das freie Elektronenpaar koordiniert oder sich frei in Lösung befindet. Zwischen dem sterisch anspruchsvollen Substituent am Phosphor und dem angreifenden Nukleophil kommt es zu sterischen Abstoßungen, die zu einer Erhöhung der Aktivierungsbarriere für die Bildung des Phosphinits führen. Als Konsequenz daraus wird die Bildung des Phosphonits begünstigt und die selektive Bildung kann durch genaue stöchiometrische Zugabe des eingesetzten Nukleophils erreicht werden.

Hohe Selektivitäten hängen aber nicht nur von dem sterischen Anspruch des Nukleophils ab, auch die Temperatur hat einen entscheidenden Einfluss. Tiefe Temperaturen sorgen für einen exponentiellen Abfall der Geschwindigkeitskonstanten.

Im Rahmen dieser Arbeit wurde untersucht, welche sterischen Mindestanforderungen das Nukleophil besitzen muss, um selektiv mit P(OPh)₃ zum Phosphonit zu reagieren.

Es wurden nur Organolithiumverbindungen verwendet, da Grignard-Reagenzien bei Folgereaktionen bis zum tertiären Phosphan Probleme bereiteten, auf die in einem späteren Kapitel eingegangen wird.

Die Herstellung der Aryllithiumverbindungen wurde über einen Brom-Lithium-Austausch ^[76-78] unter Standardbedingungen durchgeführt. Dabei wurde, ausgenommen zweier Substituenten, bei -78 °C *n*BuLi langsam zu dem vorgelegten Bromderivat zugegeben. Der Austausch erfolgt quantitativ innerhalb weniger Sekunden (Schema 18).

Schema 18: Brom-Lithium-Austausch als Standardmethode zur Herstellung von Aryllithiumverbindungen.

Erste Reaktionen wurden mit einem Äquivalent 2-Lithium-2´,6´-dimethoxybiphenylid (**9**) als Nukleophil in Et₂O durchgeführt (Schema 19). Die Reaktion führte bei Temperaturen über -70 °C nicht selektiv zum gewünschten Phosphonit (**10**). Erst bei Temperaturen unter -70 °C konnte man das Phosphonit (**10**) selektiv erhalten. Zwingende Voraussetzung für den Erfolg der Reaktion war eine sehr gute Durchmischung der Reaktionskomponenten. Man musste dafür sorgen, dass genügend Lösemittel vorhanden war, um das gebildete Lithiumorganyl (**9**) in Lösung zu halten, bzw. um leicht rührbare Suspension zu erhalten. Et₂O erwies sich als ungeeignetes Lösemittel, da die Lithiumorganyle schon bei geringen Konzentrationen Suspensionen bildeten. Ferner erfolgte ein Brom-Lithium-Austausch an Arylbromiden bei -78 °C nur nach Stunden, so wie auch die Folgereaktionen mit P(OPh)₃. THF hingegen verbesserte die Löslichkeit der Metallorganyle bedeutend und die Reaktionen liefen innerhalb von wenigen Sekunden vollständig ab.

Da P(OPh)₃ einen Schmelzpunkt von 22–24 °C besitzt, muss es vor Zugabe in wenig THF gelöst werden, um Gefrieren des P(OPh)₃-Tropfens zu vermeiden. Diese würden zu eingeschränkter Vermischung führen und damit auch zu lokalem Überschuss des Nukleophils und somit zu einer deutlichen Senkung der Selektivität.

Schema 19: Selektive Darstellung von 2-(2´,6´-Dimethoxybiphenylyl)diphenylphosphonit (10).

Um herauszufinden, welcher sterische Mindestanspruch eines angreifenden Nukleophils für eine selektive Bildung des Phosphonits erforderlich ist, wurde ausgehend von kleinen Arylderivaten der sterische Anspruch zunehmend gesteigert, bis eine selektive Reaktion zum Phosphonit eintrat.

Abbildung 6: Sukzessive Steigerung des sterischen Anspruchs des Erstsubstituenten.

Zwar stieg der Anteil an gebildetem Phosphonit mit zunehmendem sterischen Anspruch, doch mit den abgebildeten Lithiumorganylen **11a–e** in Abbildung 6 konnte kein Phosphinit unter den angegebenen Bedingungen von Schema 19 selektiv erhalten werden. Selbst ein langsames

Zutropfen des Lithiumorganyls zu P(OPh)₃ (um hohe lokale Konzentrationen des Nukleophils zu verhindern) unter starkem Rühren erhöhte kaum den Anteil gebildeten Phosphonits.

Der Einsatz von sterisch anspruchsvollen Lithiumorganylen aus Abbildung 7 führte selektiv zum jeweiligen Phosphonit (Schema 20).

Abbildung 7: Nukleophile mit ausreichendem sterischen Anspruch für die selektive Erstsubstitution an P(OPh)₃.

Bei Verwendung des Arylpyrrolderivats **12** musste besonders darauf geachtet werden, dass eine optimale Durchmischung während der Zugabe des $P(OPh)_3$ vorhanden war, um eine Weiterreaktion zum Phosphinit zu verhindern. Auch mussten die Temperaturen für die Herstellung der Phosphonite **15** und **17** auf –95 °C gesenkt werden, um optimale Selektivitäten zu erreichen.

Schema 20: Selektive Darstellung von sterisch anspruchsvollen Phosphonigsäurediphenylestern.

Verbindungen **10** und **17** der vier Phosphonite aus Abbildung 7 wurden isoliert und vollständig charakterisiert. Die Phosphonite **15** und **16** wurden direkt zu tertiären Phosphanen umgesetzt. Im Allgemeinen sind sterisch anspruchsvolle Phosphonite luftstabil und können daher ohne Ausschluss von Sauerstoff wässrig aufgearbeitet und isoliert werden.

Durch die zwei an den Phosphor gebundenen Phenoxid-Gruppen sind die Schmelzpunkte der Phosphonite, verglichen mit denen von Dichlorphosphanen, wesentlich höher. Verbindungen 10 und 17 sind Feststoffe. Aus den erhaltenen Einkristallen von Phosphonit 10 wurde eine Röntgenstruktur angefertigt (Abbildung 8).

Abbildung 8: ORTEP-Modell von Phosphonit 10, erhalten aus einer Einkristall-Röntgenstrukturanalyse.

Wie zu erwarten ist das freie Elektronenpaar des Phosphoratoms auf das 2',6'-Dimethoxyphenylfragment gerichtet. Der POCC-Diederwinkel beträgt 34.3°. Durch das nicht planare Phenoxy-Phosphorfragment wird vermutlich die Konjugation zwischen dem Sauerstoffatom und dem π -Sytem der Phenylgruppe geschwächt. Das hätte zur Folge, dass sich die Qualität als Abgangsgruppe verbessert.

3.3 Selektive Darstellung von Phosphinigsäurephenylestern

Die Darstellung von Phosphiniten verläuft analog der Darstellung von Phosphoniten (Schema 21).

Ar
$$-P(OPh)_2$$

10, **15-17**
RLi, THF, -78 °C
- LiOPh
R
Ar
POPh
R

Schema 21: Selektive Darstellung von Phosphinigsäurephenylestern aus Phosphonigsäurediphenylestern.

Phosphinite sind, wie bereits oben diskutiert, weniger reaktiv und zumeist sterisch abgeschirmter als Phosphinite. Unselektive Reaktionen zu tertiären Phosphanen sind daher nicht zu erwarten. Es ließen sich Reste mit wesentlich geringerem sterischen Anspruch selektiv einführen (Schema 22).

Ar-P(OPh)₂

Schema 22: Selektive Eintopfsynthesen von sterisch anspruchsvollen Phosphiniten.

Die Reaktionen fanden weiterhin bei gleichen Temperaturen wie bei der Herstellung von Phosphoniten statt, um einen zweiten nukleophilen Angriff zum tertiären Phosphan auszuschließen. Es wurden keine Untersuchungen unternommen, eine Korrelation zwischen Temperatur und Selektivität aufzuzeigen.

Die Darstellung von Butyl(2´,6´-dimethoxybiphenyl-2-yl)phenylphosphinit beispielsweise führte zu geringer Bildung des Dibutyl-2-(2´,6´-dimethoxybiphenylyl)phosphans (**24**) (ca. 20%). Auch bei der Verwendung von PhLi erhielt man nur durch starkes Rühren und langsames Zutropfen bei –85 °C das entsprechende Phosphinit selektiv.

Andererseits musste bei der Zugabe von sterisch anspruchsvollen Nukleophilen wie **18a** und **18b** auf die genaue Einhaltung der Stöchiometrie nicht geachtet werden, da eine zweite Sub-

stitution zum Phosphan aus sterischen Gründen ausgeschlossen werden kann. Die sterische Abschirmung ist bei Phosphinit **20** in Abbildung 9 gut zu erkennen.

Abbildung 9: ORTEP-Modell von Phosphinit 20, erhalten aus einer Einkristall Röntgenstrukturanalyse.

Ein weiterer nukleophiler Angriff eines zweiten *t*BuLi ist auch nicht durch überschüssige Zugabe möglich, da ein Rückseitenangriff durch die *tert*-Butylgruppen und das Biphenylderivat verhindert wird. Der abrupte Abbruch der Reaktion trotz überschüssigem Nukleophil ist ein Indiz dafür, dass die nukleophile Substitution streng nach dem S_N 2-Mechanismus abläuft. Durch Zugabe von MeLi beispielsweise konnte eine nahezu quantitative Umsetzung zum tertiären Phosphan erreicht werden.

Bei Phosphinit **20** ist das freie Elektronenpaar ebenfalls auf das 2´,6´-Dimethoxyphenylfragment gerichtet. Der POCC-Diederwinkel beträgt 46.9°.

Wie bereits oben angesprochen wurden für sämtliche Synthesen Organyllithiumverbindungen verwendet. Organyllithiumverbindungen besitzen eine höhere Nukleophilie als Grignard-Reagenzien. Zwar reagierten Grignard-Reagenzien mit P(OPh)₃ zu Phosphoniten, jedoch benötigte man einen sehr großen Überschuss, um eine zweite Substitution am weniger reaktiven und sterisch gehinderteren Phosphonit **10** durchführen zu können. Auch die Aktivierung des CyMgCl durch LiCl und 1,4-Dioxan^[79] führte lediglich zur Bildung des Phosphinits **22** (Schema 23).

Schema 23: Selektive Darstellung von Phenylcyclohexyl-2-(2´,6´-dimethoxybiphenylyl)phosphinit (22).

Verwendet man Grignard-Reagenzien im ersten Schritt, so kann man die Reaktion in einer Eintopfsynthese zum Phosphinit oder Phosphan nicht fortsetzen, da bei Zugabe einer Organyllithiumverbindung eine Ummetallierung mit dem in der Reaktionsmischung vorhandenen MgCl₂ zu einer Grignardverbindung stattfindet.

3.4 Darstellung von tertiären Phosphanen unter Verwendung von P(OPh)₃

Mit Hilfe der beschriebenen Methoden zur selektiven Darstellungen von Phosphoniten und Phosphiniten gelangt man nach weiterer Zugabe eines Nukleophils zu einem tertiären Phosphan mit bis zu drei unterschiedlichen Resten (Schema 24).

$$\begin{array}{ccc} Ar & & R^{2}Li, THF, RT & & Ar \\ POPh & & & \\ R^{1} & & & LiOPh & & \\ R^{1} & & & & \\ \end{array}$$

Schema 24: Selektive Darstellung von tertiären Phosphanen aus Phosphinigsäurephenylestern.

Die Zugabe der Organyllithiumverbindung erfolgte bei Zimmertemperatur im leichten Überschuss (1.5–2.0 Äquivalent) um eine vollständige Umsetzung zum Phosphan zu gewährleisten.

2´,6´-disubstituierte Biphenyl-2-ylphosphane sind hoch aktive Liganden für palladiumkatalysierte Kreuzkupplungsreaktionen.^[20, 23, 80, 81] Ein Großteil der hergestellten Phosphane hat *Buchwalds* 2´,6´-Dimethoxybiphenyl-2-yl-Rest am Phosphor gebunden, da unter anderem nach aktiven Liganden für die palladiumkatalysierte Kreuzkupplung gesucht wurde.

Die maximale Größe des dritten Substituenten ist abhängig von der Größe des Erst- und Zweitsubstituenten. Besonders *ortho*-substituierte Aryl- und tertiäre Alkylsubstituenten erschweren den Angriff des dritten Nukleophils. Trotz Zugabe von 1-Lithium-2,4,6-trimethoxyphenylid (**18a**) im Überschuss zu Phosphonit **10** erfolgte nur eine Substitution zum Phosphinit **19**. Das Phosphinit wurde daher mit *n*BuLi, einem kleinen Nukleophil, zum Phosphan **23** umgesetzt (Schema 25). Das Phosphan **23** konnte nur in schlechten Ausbeuten isoliert werden. Grund dafür war die Bildung von Phosphoniumsalzen aus dem hergestellten Phosphan **23** und *n*-Butylbromid, welches als Nebenprodukt beim Brom-Lithium-Austausch entsteht.

Je elektronenreicher das tertiäre Phosphan ist, desto eher findet ein nukleophiler Angriff an das Butylbromid statt. In diesem Fall ist Phosphan **23** durch den 2,4,6-Trimethoxyphenyl- und den *n*-Butylrest sehr elektronenreich.

Schema 25: Übersicht synthetisierter tertiärer Phosphane mit *Buchwalds* 2´,6´-Dimethoxybiphenyl-2-yl-Substituent.

Als problemlos erwiesen sich die Darstellungen der Phosphane 24, 25 und 26. Nach der selektiven Darstellung des Phosphonits 10 wurden die jeweiligen Carbanionen im leichten Überschuss zugegeben und auf Zimmertemperatur erwärmt. Nach Aufarbeitung konnte man die erhaltenen Phosphane in den oben angegebenen Ausbeuten isolieren. Die vereinzelten schlechten Ausbeuten korrelieren nicht mit schlechten und unselektiven Umsetzungen; vielmehr waren die erhaltenen Ausbeuten stark abhängig von der Kristallisierbarkeit des jeweiligen Phosphans. Die Optimierung der Ausbeuten wurde nicht weiter verfolgt.

Mit der Isolierung und Charakterisierung von 9-Anthryl(1-naphthyl)phenylphosphan (27) konnte eindrucksvoll demonstriert werden, dass man in einer Eintopfreaktion drei verschiedene Reste an den Phosphor binden kann (Schema 26). Nach der Anzahl der
jeweiligen aromatischen Ringe pro Rest wurde Verbindung **27** der eingängige Trivialname "3-2-1-Phosphan" gegeben.

Schema 26: Selektive schrittweise Synthese des "3-2-1-Phosphans" (27).

Die Zugabe von Phenyllithium zum Phosphinit erfolgte bei Zimmertemperatur. Das "3-2-1-Phosphan" (27) wurde in einer Ausbeute von 66% isoliert.

Von Phosphan **27** konnten Einkristalle gewonnen werden, mit denen eine Röntgenstrukturanalyse angefertigt wurde (Abbildung 10).

Abbildung 10: ORTEP-Modell des "3-2-1-Phosphans" (27), erhalten aus einer Einkristall-Röntgenstrukturanalyse.

Die C-P-C Winkel zeigen eine typische Spanne von 103° bis 106°. Die Bindungslängen von 1.83 Å bis 1.85 Å sind ebenfalls typisch für tertiäre Phosphane.

Analog zu *Buchwalds* Biphenyl-2-ylphosphanen verwendete die Gruppe von *Beller N*-Arylpyrrol-2-yl-Substituenten gebunden am Phosphor ebenfalls erfolgreich im Einsatz bei der palladiumkatalysierten Kreuzkupplung.^[82, 83] Pyrrole können einfach aus kommerziell erhältlichem Dimethoxytetrahydrofuran und Anilinen erhalten werden (Schema 27).^[84, 85]

Schema 27: Herstellung von N-(3',5'-Dimethylphenyl)pyrrol (28).

Die Lithiierung erfolgte durch Deprotonierung mit *n*BuLi und Zugabe von N,N,N',N'-Tetramethylethylendiamin in Et₂O als Lösemittel innerhalb von 30 Minuten.

Der fünfgliedrige Pyrrolring besitzt im Vergleich zu Sechsringen, größere Außenwinkel. Die sterische Abschirmung ist demzufolge geringer. In der Darstellung zum Phosphonit **15** resultiert eine geringere Selektivität. 5–10% von P(OPh)₃ und Phosphinit-Nebenprodukt führten zu

unerwünschten Phosphanen, die jedoch durch Umkristallisation vollständig entfernt werden konnten.

Schema 28: Eintopfsynthese des [N-(3',5'-Dimethylphenyl)pyrrol-2-yl]di(9-phenanthryl)phosphans (29).

Mit der Darstellung der tertiären Phosphane Di-(9-anthryl)(2-methoxyphenyl)phosphan (**31**) (Schema 29) und Tris-2-(4,4'-di-tert-butylbiphenylyl)phosphan (**32**) (Schema 30), die über die Synthese mit P(OPh)₃ erzielt wurden, konnte die bislang maximale sterische Beanspruchung am Phosphoratom erreicht werden.

Schema 29: Eintopfsynthese des Di-(9-anthryl)(2-methoxyphenyl)phosphans (31).

Die Darstellung des Phosphans **31** erfolgte durch Zugabe von $P(OPh)_3$ zu zwei Äquivalenten 9-Lithiumanthracenylid bei -85 °C und anschließender Zugabe von Anisyllithium bei Zimmertemperatur.

Schema 30: Eintopfsynthese des Tris-2-(4,4'-di-*tert*-butylbiphenylyl)phosphans (32).

Phosphan **32**, das einzig hergestellte homoleptische Phosphan, wurde durch Zugabe von $P(OPh)_3$ zu drei Äquivalenten des Lithiumorganyls **13** bei Zimmertemperatur erhalten. Abweichend zu den bereits vorgestellten Synthesen erfolgten die Lithiierung und die nukleophile Substitution in Et₂O als Lösemittel. Die Lithiierung des 2-Iod-4,4'-di-*tert*-butylbiphenyls wurde nicht mit *n*BuLi sondern mit zwei Äquivalenten Lithiumgranalien durchgeführt. Grund dafür waren eingetretene Nebenreaktionen bei der Verwendung von *n*BuLi. Die Verwendung von Et₂O als Lösemittel stellte sich als essentiell heraus, da bei der Verwendung von THF als Lösemittel eine Reduktion zum Biphenylderivat stattfindet. Bei der Lithiierung konnten in Et₂O zumindest Umsetzungen in Höhe von 75% erzielt werden.

Das hoch symmetrische Phosphan **32** konnte aus Aceton in Form von großen Einkristallen erhalten werden (Abbildung 11).

Abbildung 11: ORTEP-Modell von Phosphan 32, erhalten aus einer Einkristall-Röntgenstrukturanalyse. Der Übersichtlichkeit halber wurden kokristallisiertes Aceton, ungeordnete *tert*-Butyl-Methyl-Gruppen und die am Kohlenstoff gebundenen Wasserstoffatome weggelassen.

Im Einkristall sind die *ortho*-Arylgruppen in Richtung des freien Elektronenpaars gerichtet und sorgen für eine sterische Abschirmung. Phosphan **32** ist eines der am stärksten abgeschirmten Phosphane, die es bislang gibt.^[12, 86] Den Weltrekord hält jedoch vermutlich das Tris-9-anthrylphosphan oder ein anderes hexa-*ortho*-substituiertes Triphenylphosphanderivat.^[87, 88]

In einer raumerfüllenden Darstellung von Phosphan **32** ist die extreme sterische Abschirmung des Phosphors besonders gut erkennbar (Abbildung 12).

Abbildung 12: Frontal-Ansicht auf das freie Elektronenpaar vom Phosphor von Verbindung 32 im Kalottenmodell. Kokristallisiertes Aceton wurde der Übersicht halber weggelassen. Kohlenstoff: schwarz, Wasserstoff: grau, Phosphor: weiß.

Es wurde weiterhin versucht, das 2´,6´-Dimethoxybiphenylfragment dreimal an den Phosphor zu binden. Die Darstellung blieb erfolglos, es konnten lediglich zwei Phenoxid-Gruppen nukleophil substituiert werden. Für eine dritte Substitution zum Phosphan wurde die kleinstmögliche Organyllithiumverbindung MeLi verwendet, welche innerhalb von Minuten nach Zugabe bei Zimmertemperatur zum tertiären Phosphan **33** führte (Schema 31).

Schema 31: Eintopfsynthese des Methyl-bis-[2-(2',6'-dimethoxybiphenylyl)]phosphans (33).

Die isolierte Ausbeute der mehrmals durchgeführten Reaktion in Schema 31 konnte bis auf 75% gesteigert werden, unter anderem weil Phosphan **33** sich sehr gut aus Ethanol umkristallisieren ließ. Von den erhaltenen Einkristallen wurde eine Röntgenstrukturanalyse durchgeführt (Abbildung 13).

Abbildung 13: ORTEP- Modell von Phosphan 33, erhalten aus einer Einkristall-Röntgenstrukturanalyse.

Wie schon bei den anderen vorgestellten Kristallstrukturen zeigen die *ortho*-Arylgruppen in Richtung des freien Elektronenpaars des Phosphoratoms. Im Vergleich zu Verbindung **32** ist durch den kleinen Methylsubstituenten wesentlich mehr Platz für die Biphenylylfragmente, sich im Raum auszurichten. So entsteht potentieller Freiraum für eine Koordination von Übergangsmetallen an das Phosphoratom.

Das Phosphan **33** wurde erfolgreich auf Aktivität als Ligand in der *Suzuki-Miyaura*-Kreuzkupplung getestet. Unter Verwendung von $Pd(OAc)_2$ als Katalysator und K_3PO_4 als Base wurden mehrere Kreuzkupplungen von Chloraromaten mit Boronsäuren durchgeführt, die in einem späteren Kapitel besprochen werden.

4 Eintopfsynthesen tertiärer nicht homoleptischer Phosphane unter Verwendung von PCl₃

4.1 Einleitung

Die Darstellung von tertiären Phosphanen erfolgt fast ausschließlich unter Verwendung von Phosphortrichlorid – PCl₃. Die Tatsache, dass es kommerziell sehr günstig und in großen Mengen erhältlich ist, macht es als Edukt sehr attraktiv. Die Verwendung von Grignard- oder Lithium-Reagenzien für die nukleophile Substitution ist ebenfalls von Vorteil, da sie sich leicht und schnell darstellen lassen. Auch können aus funktionalisierten Bromderivaten Grignard-Reagenzien durch Brom-Magnesium-Austausch erhalten werden,^[89] so dass man eine Vielzahl an verschiedenen tertiären Phosphanen synthetisieren kann. Das als Nebenprodukt anfallende LiCl bzw. MgCl₂ lässt sich problemlos durch wässrige Aufarbeitung entfernen und stellt keine Umweltbelastung dar. Somit erscheint die Reaktion als die Methode der Wahl, tertiäre Phosphane herzustellen.

Obwohl es bereits einige Phosphansynthesen gibt, ist die Herstellung von tertiären nicht homoleptischen Phosphanen noch immer eine Herausforderung.

Der erste Substitutionsschritt von PCl₃ mit einem Äquivalent RM führt üblicherweise zu Produktmischungen (Schema 32). Nur in wenigen Fällen konnten Chlorphosphane in guten Selektivitäten erhalten werden.^[90-94]

PCI₃ + RM- MCI PCI₃ + RPCI₂ + R₂PCI + R₃P R = Alkyl, Aryl; M = Li, MgX; X = Cl, Br, I

Schema 32: Niedrige Chemoselektivität von reaktiven Grignard-Reagenzien gegenüber PCl₃.

Baccolini et al. haben einige Eintopfreaktionen mit einem regenerierbaren Benzothiadiphosphol-Reagenz durchgeführt, bei denen sie sekundäre, cyclische und sogar tertiäre unsymmetrische Phosphane in moderaten Ausbeuten erhielten.^[95-97] Jedoch konnten die erhaltenen Phosphane nicht selektiv dargestellt werden.^[96]

Eine weitere Möglichkeit, nicht homoleptische Phosphane zu erhalten, ist die Verwendung von RPClNR₂-Derivaten nach *Nicholas et al.* (Schema 33).^[98] An Dichlorphosphanen lassen

sich selektiv nukleophile Substitutionen mit LiNMePh zu Chloraminophosphanen (**34**) durchführen. Die schwache Abgangsgruppe NR_2^- lässt sich nur durch Lithiumorganyle substituieren, so dass die Verwendung von Grignard-Reagenzien in einer selektiven Reaktion zum Aminophosphan (**35**) führt. Durch die anschließende Zugabe eines Lithiumorganyls erhält man das gewünschte Phosphan. Doch die Synthese ist mit Nachteilen behaftet, da sie ein Dichlorphosphan voraussetzt. Da selektive Darstellungen von Dichlorphosphanen bislang sehr aufwendig sind, wurden folglich die Synthesen auf zwei kommerziell erhältliche Dichlorphosphane beschränkt, das Dichlorethyl- und das Dichlorphosphan.

Schema 33: Phosphansynthese nach Nicholas et al.^[98]

Hinzu kommt, dass Verbindung **35** vom MgCl₂ befreit werden muss, um bei Zugabe des Lithiumorganyls eine Ummetallierung zum unreaktiveren Grignard-Reagenz zu vermeiden. Weitere Phosphansynthesen reduzieren Chlorphosphane und addieren die PH-Fragmente an C=C Mehrfachbindungssysteme.^[1, 99]

Auch die reduktive Spaltung von P-C Bindungen von Phosphanen wie PPh₃ und Abfangen mit Alkylhalogeniden gibt einen mehrstufigen Zugang zu unsymmetrischen Phosphanen.^[100] Analog der Darstellung von tertiären nicht homoleptischen Phosphanen aus P(OPh)₃, wurde untersucht, ob und inwieweit sich das Konzept auf PCl₃ übertragen lässt.

4.2 Selektive Darstellung von tertiären nicht homoleptischen Phosphanen in Anlehnung an *Buchwalds* S-Phos-Liganden

Die bei den Phosphansynthesen aus P(OPh)₃ gesammelten Erfahrungen wurden auf die Synthese von Phosphanen mit PCl₃ mit Carbanionen angewendet. Da das Chlor wesentlich kleiner ist als die Phenoxid-Gruppe und durch den stärkeren Elektronenzug das Phosphoratom elektrophiler ist, war es naheliegend, dass selektive Reaktionen mit Carbanionen zum Dichlorphosphan nur schwer zu bewerkstelligen sind. Bei dem Versuch, unter gleichen Bedingungen wie in Kapitel 3.2 eine nukleophile Substitution mit 2-Lithium-2´,6´-dimethoxybiphenylid (**9**) an PCl₃ durchzuführen, wurden jedoch gleiche Selektivitäten erzielt wie mit P(OPh)₃ (Schema 34).

Schema 34: Selektive Darstellung des Dichlor-2-(2´,6´-dimethoxybiphenylyl)phosphans (36).

Erwartungsgemäß konnte durch Zugabe eines weiteren Lithiumorganyls gleichen sterischen Anpruchs wie die Zweitsubstituenten bei der Umsetzung mit $P(OPh)_3$ das Chlorphosphan selektiv erhalten werden. Nach Zugabe eines dritten Nukleophils wurden ebenfalls tertiäre unsymmetrische Phosphane in vergleichbaren Ausbeuten isoliert.

Die literaturbeschriebenen Synthesen von PBu₃ oder anderen Phosphanen mit drei gleichen Resten setzten hauptsächlich Phosphortrihalogenide mit drei Äquivalenten eines Grignard-Reagenzes um.^[101] Das gab Anlass zu der Vermutung, dass auch im zweiten und sogar dritten Substitutionsschritt Grignard-Reagenzien eingesetzt werden können. Die Umsetzung von Dichlorphosphan **36** mit überschüssigem CyMgCl (>2 Äquivalente) bei –78 °C und anschließenden Erwärmen auf Zimmertemperatur führte zu *Buchwalds* aktiven Phosphanliganden S-Phos (**1**) in 70% Ausbeute (Schema 35).

Schema 35: Darstellung von Buchwalds S-Phos-Liganden (1) in einer Eintopfreaktion.

Ziel war es, eine ganze Reihe von Phosphanen, abgeleitet vom S-Phos-Liganden (1), herzustellen, um zu untersuchen, ob durch Veränderung der sterischen oder elektronischen Eigenschaften eine Steigerung der Aktivität in der Kreuzkupplung bewirkt werden kann. Der sterische Anspruch sollte unter anderem durch Vergrößerung und Verkleinerung der Ringgrößen variiert werden. Verwendet wurden dabei Cyclopentyl- und Cycloheptylgrignard-Reagenzien. Des Weiteren wurde auf die Grignard-Reagenzien *iso*-Propylmagnesiumchlorid und 3-Pentylmagnesiumbromid zurückgegriffen.

Statt der Cyclohexylgruppen ließen sich problemlos zwei *iso*-Propylgruppen unter gleichen Bedingungen einführen (Schema 36). Das Phosphanderivat **37** wurde in einer *Suzuki-Miyaura*-Kreuzkupplung auf seine Aktivität untersucht (Kapitel 6). Die anderen vorgeschlagenen Verbindungen **38–40** konnten unter den oben gezeigten Bedingungen nicht isoliert werden (Schema 36).

Schema 36: Reaktivität von Dichlor-2-(2´,6´-dimethoxybiphenylyl)phosphan mit Grignard-Reagenzien.

Zwar konnten im ³¹P{¹H}-NMR die Signale den Zielverbindungen zugeordnet werden, doch lagen die Umsetzungen zu den Phosphanen **38**, **39** und **40** meist nur bei 20–30%. Neben dem Produktsignal konnten zwei weitere Signale, die des jeweiligen Mono- und Dichlorphosphans, identifiziert werden. Weitere Signale, die im für tertiäre Phosphane typischen Bereich der chemischen Verschiebung zu sehen waren, konnten nicht zugeordnet werden.

Der dritte nukleophile Angriff zu den tertiären Phosphanen **39** und **40** wird durch sterische Abschirmung erschwert. Die Reaktion verläuft langsamer und findet erst bei höheren Temperaturen statt, so dass bei Zimmertemperatur über Nacht gerührt werden musste. Die notwendige Temperaturerhöhung und die längere Rührdauer der Reaktionsmischung führten allerdings auch zu unerwünschten Nebenreaktionen.

Ein Nebenprodukt, welches sogar bei der Darstellung von Phosphan **1** in geringen Mengen (<10%) entstand, konnte über säulenchromatographische Trennung angereichert werden. Die analytischen Daten, speziell das Massenspektrum, deuteten daraufhin, dass es sich bei der angereicherten Substanz um das Cyclohexyl(2´,6´-dimethoxybiphenyl-2-yl)(tetrahydrofuran-2-yl)phosphan (**41e**) handeln könnte (Abbildung 14). Die chemische Verschiebung der angereicherten Verbindung im ³¹P{¹H}-NMR-Spektrum würde für Verbindung **41a**, unter Verwendung der ³¹P-NMR-Gruppenbeiträge (siehe Kapitel 7.2) einen realistischen Wert darstellen.

Da die Trennung und Aufreinigung nicht vollständig gelang, blieb ein sicherer spektroskopischer Beweis aus. Da die Reaktion mit THF als Lösemittel durchgeführt wurde, könnte auch in den anderen Synthesen (**37–40**) ein entsprechendes Tetrahydrofuranylphosphan (**41a–d**) als Nebenprodukt aufgetreten sein. Der Ersatz von THF durch ein anderes Lösemittel war aufgrund der dadurch gemilderten Reaktivität der Organometallverbindungen schwierig. Möglicherweise traten auch Reduktionen, Ringöffnungen, Ummetallierungen oder Radikalreaktionen auf, welche durch die reaktiven Organometallverbindungen verursacht wurden.

41b: R = Cyclopentyl 41c: R = 3-Pentyl 41d: R = Cycloheptyl 41e: R = Cyclohexyl

Abbildung 14: Mögliches Nebenprodukt bei den Synthesen von Schema 35 und Schema 36.

4.3 Selektive Darstellung von tertiären nicht homoleptischen Phosphanen mit sterisch anspruchsvollen Substituenten

Die hohe Aktivität des S-Phos- (1) und X-Phos- (2) Liganden machten es naheliegend, Derivate des 2´,6´-Dimethoxybiphenylyl- und des 2´,4´,6´-Triisopropylbiphenylyl-Fragments zu synthetisieren und diese als Reste ein- oder zweimal an den Phosphor zu binden. Ziel war es, durch Anfügen von zusätzlichen Methoxygruppen in 4- und 5-Position des Biphenyls das Phosphan zusätzlich elektronenreicher zu machen und damit die Aktivität zu steigern.

Die Darstellung der 2-Brombiphenyle **43** und **44** erfolgte wie bei Verbindung **8** mit einem 1,2-Dihalogenid, an dem in 4- und 5-Position Methoxygruppen gebunden sind. Das 1,2-Dibromveratrol (**42**) wurde aus dem kommerziell erhältlichen Veratrol hergestellt und konnte in 94% Ausbeute isoliert werden.

Schema 37: Herstellung von 1,2-Dibromveratrol.

Das 2,4,6-Triisopropylphenyl-Magnesiumhalogenid wurde durch Insertion mit Magnesium in THF hergestellt. Von einem Brom-Lithium-Austausch musste abgesehen werden, da eine Deprotonierung der *iso*-Propylgruppen erfolgte. Der 2-Lithiumdimethylresorcinether wurde durch Deprotonierung des Dimethylresorcinethers mit *n*BuLi bei 0 °C in THF hergestellt.

Schema 38: Derivate von *Buchwalds* 2',6'-Dimethoxybiphenylyl- und 2',4',6'-Triisopropylbiphenylyl-Fragmenten.

Die Darstellung des Biphenylderivats **44** erfolgte durch langsame Zugabe von Dibromveratrol zu einer Lösung aus 2-Lithiumdimethylresorcinether in THF bei Zimmertemperatur. Die Reaktion war nach 12 Stunden abgeschlossen.

Das auf 65 °C erwärmte, durch LiCl/Dioxan aktivierte 2,4,6-Triisopropylphenylgrignard-Reagenz wurde mit Dibromveratrol versetzt und weitere zwei Stunden bei konstanter Temperatur gerührt. Um eine Reaktion von noch vorhandenem Magnesium mit Verbindung **43** zu dem entsprechenden Grignard-Reagenz zu vermeiden, wurde 1,2-Dibromethan zugefügt, welches mit Magnesium unter Bildung von MgBr₂ und Ethen abreagierte. Die Reaktionsmischung wurde weitere 20 Stunden bei Zimmertemperatur gerührt. Beide Biphenylderivate **43** und **44** konnten durch Umkristallisation isoliert werden. Die Ausbeuten wurden im Rahmen dieser Arbeit nicht optimiert.

Analog der Darstellung von Phosphan 1 in Schema 35, wurde ein Brom-Lithium-Austausch an Verbindung 44 durchgeführt und bei -85 °C das PCl₃ zugefügt. Das Dichlorphosphan 45

wurde mit überschüssigem CyMgCl (>2 Äquivalente) umgesetzt und auf Zimmertemperatur erwärmt (Schema 39).

Schema 39: Synthese des in 4,5-Position substituierten S-Phos-Liganden 46.

Das in 24% Ausbeute isolierte Phosphan **46** wurde auf Aktivität als Ligand in der *Suzuki-Miyaura*-Kreuzkupplung untersucht (siehe Kapitel 6).

Durch die vielversprechenden Ergebnisse aus der Verwendung von Phosphan **33** in der Kreuzkupplung, wurde zweimal das Biphenylderivat **44** nach einem Brom-Lithium-Austausch an den Phosphor gebunden und mit MeLi in das Phosphan **48** überführt (Schema 40).

Schema 40: Darstellung von Methyl-bis-[2-(4,5,2',6'-tetramethoxybiphenylyl)]phosphan (48).

Alternativ zu dem hergestellten Phosphan **48** in Schema 40, wurden die Biphenyleinheiten durch Einsatz von Verbindung **43** variiert und ebenfalls mit MeLi unter gleichen Bedingungen wie in Schema 40 in das Phosphan **49** überführt (Abbildung 15).

Abbildung 15: Methyl-bis-[2-(4,5-dimethoxy-2´,4´,6´-triisopropylbiphenyl)]phosphan (49).

4.4 Selektive Darstellung von tertiären unsymmetrischen Phosphanen mit tertiären, sekundären und primären Alkylsubstituenten

Metallorganische Spezies reagieren mit PCl₃ meist unselektiv und führen zu Produktgemischen (Kapitel 4.1) (Schema 32). Die niedrige Chemoselektivität von PCl₃ ergibt sich aus der schnellen Reaktion mit metallorganischen Reagenzien. Ist der Carbanionentransfer zu PCl₃ oder zu RPCl₂ nahe der Diffusionskontrolle (in anderen Worten "entropiegesteuert" oder "ohne enthalpische Barriere"), so sind niedrige Chemoselektivitäten zu erwarten (Schema 41). Zwei konkurrierende Reaktionen nahe der Diffusionskontrolle haben annähernd gleiche Reaktionsgeschwindigkeiten und sind daher unselektiv.^[102] R[M] + LM _____ R[M](LM)

 $PCI_{3} \xrightarrow{+ R[M](LM)} RPCI_{2} \xrightarrow{+ R[M](LM)} R_{2}PCI_{2} \xrightarrow{+ R[M](LM)} R_{2}PCI_{2}$

R = Alkyl oder Aryl; [M] = $Li(LM)_n$, Mg(LM)_nX, etc. X = Cl, Br, I; LM = THF, Et₂O, *t*BuOMe

Schema 41: Möglicher Grund für die niedrige Chemoselektivität: Vorgleichgewicht des metallorganischen Reagenzes mit Koordinationszahl 5 am Metall, gefolgt von einem unselektiven, diffusionskontrollierten Carbanionentransfer.

Für selektive Darstellungen von Dichlorphosphanen müssen daher enthalpische Barrieren eingeführt werden, die die Bildung von R₂PCl-Derivaten verhindern.

Wie bereits in den oberen Kapiteln angesprochen wurde, sind die Nukleophile in Form von Lithiumorganylen reaktiver und damit auch unselektiver als die entsprechende Magnesiumspezies. Der Fokus für die selektive Darstellung von Dichlorphosphanen mit sterisch ungehinderten Alkylsubstituenten lag daher auf der Verwendung von Grignard-Reagenzien.

Arbeiten von *Knochel et al.* zeigen, dass die Zugabe von starken Donoren wie 1,4-Dioxan und 15-Krone-5 zu Grignard-Reagenzien eine deutliche Steigerung der Aktivität bewirken.^[79]

Im Umkehrschluss wurde zur Steigerung der enthalpischen Barriere, bzw. zur Schwächung der Reaktivität des Grignard-Reagenzes, nach extrem schwachen Donoren gesucht. Es war bereits bekannt, dass die Nukleophile unter Verwendung von Et₂O als Lösemittel vergleichsweise langsamer reagieren als in THF. *t*BuOMe ist ein noch schwächerer Donor, weil eine Koordination an das Sauerstoffatom durch die sterisch anspruchsvolle *tert*-Butylgruppe erschwert wird. Die Koordination an THF oder Et₂O ist wesentlich leichter (Abbildung 16).

Abbildung 16: Steigende Reaktivität des Grignard-Reagenzes mit abnehmenden sterischem Anspruch des Lösemittels.

Mit *t*BuOMe als Lösemittel konnten einige selektive Reaktionen mit PCl₃ erfolgreich durchgeführt werden. Ein weiterer wichtiger Schlüsselschritt für eine erfolgreiche selektive Reaktion zum Dichlorphosphan mit Alkyl-Reagenzien ist, dass nicht PCl₃ zugegeben wird, sondern das Grignard-Reagenz langsam über einen Tropftrichter zugetropft wird. Dadurch ist stets das PCl₃ in der Reaktionsmischung im Überschuss vorhanden. Durch die tropfenweise Zugabe ist das Nukleophil nur in kleinsten Mengen in der Reaktionsmischung vorhanden. Unumgänglich sind selbstverständlich auch hier tiefe Temperaturen. Die Reaktionen wurden bei –85 °C unter starkem Rühren durchgeführt, um eine optimale Vermischung zu gewährleisten.

Die Herstellung von Grignard-Reagenzien in *t*BuOMe gelang ausschließlich mit MeI, so dass für die Insertion von Mg in C-Br-Bindungen Et₂O verwendet wurde.^[103] Nachdem die Reaktion vollständig abgelaufen war, wurde Et₂O im Vakuum entfernt und *t*BuOMe zugegeben. Das Grignard-Reagenz bildete mit dem *t*BuOMe eine farblose, feine Suspension. Auf THF als Lösemittel für die Herstellung von Grignard-Reagenzien musste in den meisten Fällen verzichtet werden, weil es sich im Vakuum nicht vollständig vom Grignard-Reagenz entfernen ließ. Reste von THF in der *t*BuOMe-Suspension reichten bereits aus, um die Reaktion nicht selektiv durchführen zu können.

Unter Beachtung aller aufgeführten Aspekte wurden primäre, sekundäre und tertiäre Alkylgrignard-Reagenzien als Nukleophile für die Umsetzung zum Dichlorphosphan eingesetzt. Es stellte sich heraus, dass tertiäre, sekundäre und sogar einige primäre Grignard-Reagenzien selektiv mit PCl₃ zu RPCl₂ umgesetzt werden können. *Sec*-Butyl-, *tert*-Butyl- und 3-Pentyl-Grignard-Reagenzien ergaben sogar hohe Selektivitäten unter Verwendung von reinem Et₂O. Für selektive Darstellungen von Dichlorphosphanen mit *iso*-Propyl-, *iso*-Butyl-, Cyclopentyl-, Cyclohexyl-, Cycloheptyl- und Neopentylresten war die Durchführung der Reaktion in *t*BuOMe essentiell (Schema 42).

PCl₃

$$\frac{1) + R^{1}MgX, LM, -85 \circ C}{2) + R^{2}MgX \text{ oder } R^{2}Li, THF, -85 \circ C}$$

$$R^{1}-R^{2}$$

$$R^{3}$$

$$R^{1} = \text{Neopentyl, Cycloalkyl, iPr, iBu in tBuOMe}{sec-Butyl, 3-Pentyl, tBu in Et_{2}O}$$

$$R^{2} = \text{Aryl, Alkyl ohne primäre n-Alkyle}$$

$$R^{3} = \text{beliebige Alkyl- oder Arylgruppe}$$

$$X = Cl, Br, l$$

Schema 42: Eintopfreaktion von tertiären unsymmetrischen Phosphanen.

Die Verwendung von Phenyl- oder *n*-Alkylgruppen als Erstsubstituent führte zu nicht zufriedenstellenden Ergebnissen. Besonders *n*-Alkylgrignard-Reagenzien bildeten viskose Suspensionen in *t*BuOMe, die sich nur schwer über Tropftrichter dosieren ließen. Bei Zugabe zu der gekühlten PCl₃-Lösung kam es zu starken Verklumpungen, die die Rührgeschwindigkeit beeinträchtigten und somit nicht mehr zu selektiven Reaktionen führten. Es ist daher von Verbindungen dieses Typs für die Erstsubstitution abzuraten.

Die Zweitsubstitution ist aufgrund zweier fehlender Chloratome und der damit geringeren Elektrophilie des Chlorphosphans selektiver. Für die selektive Bildung von Monochlorphosphanen konnten bereits Lithiumorganyle oder Grignard-Reagenzien, die in THF gelöst sind, verwendet werden. Elektronenziehende Substituenten sollten im dritten Schritt eingeführt werden.

Um die Möglichkeit, drei unterschiedliche Reste an den Phosphor binden zu können, zu visualisieren, wurde, analog der Methode mit $P(OPh)_3$ (Kapitel 3.4), ein Phosphan mit drei Cycloalkanen jeweils unterschiedlicher Ringgröße synthetisiert – das Cycloheptyl(cyclohexyl)cyclopentylphosphan (**50**) (Schema 43). Das Phosphan wurde nach der Anzahl der Kohlenstoffe pro Ring bezeichnet: "7-6-5-Phosphan".

Schema 43: selektive Darstellung des "7-6-5-Phosphans" (50) in einer Eintopfreaktion.

Die Ausbeuten ließen sich durch Vergrößerung der Ansatzgröße verbessern. Gute Ausbeuten konnten mit 100 mmol-Ansätzen erhalten werden (Tabelle 1). Grund dafür waren vergleichsweise geringere Verluste bei der Aufarbeitung und der Destillation. Der begrenzende Faktor für die Vergrößerung von Ansätzen waren die gleichmäßige Kühlung und die Rühreffizienz.

Verb.	R1	LM für	R2	R3	Reaktions-	Isolierte
		ersten			größe	Ausbeute
		Schritt			[mmol]	
50 ^a	cyclo-C ₇ H ₁₃	tBuOMe	cyclo-C ₆ H ₁₁	cyclo-C ₅ H ₉	50	71%
51	$cyclo-C_6H_{11}$	<i>t</i> BuOMe	ortho-Anisyl ^b	CH ₃ ^b	30	38%
52	$cyclo-C_6H_{11}$	tBuOMe	9-Phenanthryl ^b	1-Naphthyl ^b	30	52% ^c
53	cyclo-C ₅ H ₉	tBuOMe	iso-Butyl	<i>n</i> -Butyl ^b	10	80%
54	Neopentyl	tBuOMe	ortho-Anisyl ^b	CH ₃ ^b	10	57%
55	iso-Propyl	tBuOMe	para-Tolyl ^b	para-Tolyl ^b	30	66%
56	iso-Propyl	tBuOMe	Mesityl ^b	<i>n</i> -Butyl ^b	100	83%
57 ^d	iso-Butyl	<i>t</i> BuOMe	<i>tert</i> -Butyl ^b	<i>n</i> -Butyl ^b	10	72%
58	sec-Butyl	Et ₂ O	para-Tolyl ^b	para-Tolyl ^b	20	63%
59	3-Pentyl	Et ₂ O	ortho-Anisyl ^b	para-Anisyl	10	47%
60	tert-Butyl	Et ₂ O	2-Pyridyl ^b	<i>n</i> -Butyl ^b	10	60%
61	tert-Butyl	Et ₂ O	ortho-Anisyl ^b	<i>n</i> -Butyl ^b	30	66%

Tabelle 1: Übersicht der hergestellten Phosphane in einer Eintopfreaktion unter Angabe des Lösemittels für den ersten Substitutionsschritt. Ansatzgröße und Ausbeute sind auf PCl₃ bezogen.

^aCyclohexyl und Cyclopentyl sind ebenfalls mögliche Erstsubstituenten (analog **51**, **52**, und **53**). ^b Unter Verwendung eines Lithiumorganyls. ^c Isoliert durch Kristallisation. ^d *tert*-Butyl ist ebenfalls ein möglicher Erstsubstituent.

Abbildung 17: Übersicht der hergestellten tertiären unsymmetrischen Phosphane ausgehend von PCl₃.

Zwar konnte eine Phenylgruppe nicht selektiv als Erstsubstituent eingeführt werden, doch ist das Dichlorphenylphosphan kommerziell erhältlich. Somit konnte es als Vorläufer für weitere selektive Substitutionen zu tertiären Phosphanen eingesetzt werden. Die Durchführung fand dabei analog zu der Darstellung von Phosphanen, ausgehend von PCl₃, statt.

Schema 44: Eintopfreaktion von tertiären unsymmetrischen Phosphanen ausgehend von Dichlorphenylphosphan.

Es wurden einige Phenylcyclopentylphosphane mit unterschiedlichen heterocyclischen oder fluorierten Arylgruppen hergestellt (Tabelle 2). Selbstverständlich sind auch andere Zweitsubstituenten, wie bei der PCl₃-Methode, selektiv einführbar.

Tabelle 2: Übersicht der hergestellten tertiären unsymmetrischen Phosphane ausgehend von Dichlorphenylphosphan. Ansatzgröße und Ausbeute beziehen sich auf Dichlorphenylphosphan. Ansatzgröße: [10 mmol]

Verbindung	R ¹	\mathbf{R}^2	Isolierte Ausbeute
62 ^a	cyclo-C ₅ H ₉	$2-(H_3C)NC_4H_3^{b}$	48%
63 ^a	cyclo-C ₅ H ₉	2-Furyl ^b	36%
64 ^a	cyclo-C ₅ H ₉	$3,5-(F_3C)_2C_6H_3^{b}$	92%
65 ^a	<i>cyclo</i> -C ₅ H ₉	$C_6 F_5^{\ b}$	75%
66 ^c	iso-Butyl	Me	55%

^a Unter Verwendung von THF als Lösemittel. ^b Unter Verwendung von Lithiumorganylen. ^c Unter Verwendung von Et₂O als Lösemittel.

Abbildung 18: Übersicht der hergestellten tertiären unsymmetrischen Phosphane ausgehend von Dichlorphenylphosphan.

4.5 Demonstration der Eintopfmethodik anhand einer konventionellen Phosphansynthese

Um das Potential der Eintopfreaktion von PCl₃ mit metallorganischen Verbindungen zu demonstrieren, wurde Di-*tert*-butylmethylphosphan (**67**) (1 g > 15 €)^[49] unter Verwendung von 0.5 mol PCl₃ hergestellt. Der Versuch sollte zeigen, dass auch Standardreaktionssequenzen^[91] durch die Anwendung der Eintopfstrategie deutlich vereinfacht werden können. Nach Literaturvorschrift wird das Zwischenprodukt Di-*tert*-butylchlorphosphan vom MgCl₂-Niederschlag befreit und anschließend aufgereinigt. Durch Zugabe von MeLi oder MeMgX (X = Cl, Br, I) erhält man Di-*tert*-butylmethylphosphan.

Die Eintopfmethode erspart einem die oben genannten mühsamen Prozesse (Schema 45).

Schema 45: Selektive schrittweise Eintopfreaktion von Phosphan 67 (oben und unten) und Nebenreaktion zu *t*Bu₂PH (Mitte).

Die *t*BuMgCl-Darstellung erfolgte durch langsame Zugabe von *t*BuCl, gelöst in THF, zu Magnesium. Die langsame Zugabe war wichtig, weil die Zersetzung des Grignard-Reagenzes eine Reaktion zweiter Ordnung sein dürfte (jeweils erster Ordnung bezüglich Grignard-Reagenz und *t*BuCl) und im Gegenzug dazu die Magnesium-Insertion eine Oberflächen-Reaktion nullter bis erster Ordnung ist (Schema 46). Eine niedrige Konzentration von *t*BuCl führt daher zu einer hohen Ausbeute an *t*BuMgCl.

Schema 46: tBuMgCl-Darstellung und Nebenreaktionen.

Es ist wichtig, dass genau zwei Äquivalente *t*BuMgCl eingesetzt werden, um die Bildung von *t*BuPCl₂ als Zwischenprodukt zu vermeiden; andernfalls würde es nach Zugabe von MeMgCl zum *t*BuPMe₂ als Nebenprodukt führen.

Andererseits führt ein Überschuss an *t*BuMgCl zwar nicht zum $P(tBu)_3$, doch ein Hydridtransfer zum Monochlorphosphan verursacht die Bildung von *t*Bu₂PH (Schema 45). Während der Zugabe von *t*BuMgCl zu PCl₃ in THF darf die Reaktion –40 °C nicht überschreiten. Damit eine Temperatur von –40 °C im Kolben garantiert ist, wurde das Kühlbad auf –60 °C heruntergekühlt. Nach der Hälfte der Zugabe (1 Äquivalent) des Grignard-Reagenzes nimmt die Exothermie ab und der Gradient der Temperatur innerhalb/außerhalb des Kolbens fällt von größer 20 °C auf kleiner 10 °C. Auch hier ist es wieder wichtig, die Vollständigkeit der Reaktion mit ³¹P{¹H}-NMR zu überprüfen, was 1–2 Stunden nach der Zugabe durchgeführt werden sollte.

Vor der Zugabe von MeMgCl (halber Preis der entsprechenden Menge MeLi)^[49] wurde die Reaktionsmischung zum Sieden erhitzt, um MgCl₂-Niederschlagsbildung zu vermeiden.

Nachdem die Reaktion vollständig abgelaufen war, wurde auf Zimmertemperatur abgekühlt und mit H₂O unter Stickstoffatmosphäre aufgearbeitet. Das Produkt **67** konnte nach Destillation in einer Ausbeute von 73% isoliert werden.

Es konnte anhand eines einfachen Beispiels gezeigt werden, dass vorteilhafte Eintopfreaktionen in der Phosphansynthese möglich sind. Verglichen mit den bekannten Synthesen ist die Verfahrensweise wesentlich einfacher und billiger. Nicht zuletzt konnte das Phosphan **67** in einer deutlich höheren Ausbeute erhalten werden.

4.6 Darstellung neuer Phosphan-Ligandensysteme unter Verwendung von Polyethylenglykol- und Kronenether-Fragmenten

Ein neuer Ansatzweg zur Steigerung der Aktivität der aktiven Spezies in der palladiumkatalysierten Kreuzkupplung mit tertiären Phosphanen als Liganden war die Verwendung von Polyethylenglykol- oder Kronenether Fragmenten (Abbildung 19).

Abbildung 19: Phosphanliganden mit Polyethylenglykol- und Kronenether-Fragmenten.

Sowohl Polyethylenglykole als auch Kronenether erhöhen die Löslichkeit von Salzen in organischen Lösemitteln durch Koordination des Kations. Es war zu erwarten, dass die bessere Löslichkeit der eingesetzten Alkalisalze (mit Alkalikationen passender Größe für Kronenether) reaktivitätssteigernd auf die Kreuzkupplung wirkt.

Weiterhin sollte das Kation, welches sich in unmittelbarer Umgebung zum Phosphan befindet, durch seine positive Ladung für eine bevorzugte Bildung von Palladium(0)-Anionen sorgen und damit eine oxidative Addition erleichtern.

Die Synthesen und Isolierungen von Phosphanderivaten analog derer aus Abbildung 19 gestalteten sich extrem aufwendig und mühsam. Die Verwendung von metallorganischen Verbindungen führte auch bei Temperaturen unter -80 °C zu Nebenreaktionen, so dass Synthesen, wie in den oberen Kapiteln beschrieben, sehr schnell durchgeführt werden mussten. Als Nebenreaktionen traten meist Ringöffnungen auf. Die Isolierung bereitete in sofern Probleme, als dass sich bereits bei der Synthese die Kationen der gebildeten Salze in den Kronenether einlagerten und eine wässrige Aufarbeitung erschwerten, da sich die Phasen nicht trennen ließen.

Schema 47: Synthese von Phosphan 68.

Schema 48: Synthese von Phosphan 69.^[104, 105]

Bei den tertiären Phosphanen mit Polyethylenglykol- oder Kronenether-Fragmenten handelt es sich stets um Öle. Sie konnten säulenchromatographisch nicht gereinigt werden, da die hergestellten Phosphane vermutlich von Kieselgel oxidiert wurden und weitere Nebenreaktionen eingingen. Auch eine Destillation war aufgrund der hohen Massen nicht möglich. Lediglich die zwei tertiären Phosphane aus Abbildung 19 konnten durch wässriges Aufarbeiten und Verzicht auf weitere Aufreinigungen in ca. 80% Reinheit erhalten werden.

Die Phosphane **68** und **69** wurden in verschiedenen palladiumkatalysierten Kreuzkupplungen getestet, lieferten aber keine zufriedenstellenden Ergebnisse.

Von einer vollständigen Isolierung und Charakterisierung der Verbindungen **68** und **69** wurde daher abgesehen.

Phosphan **69** wurde unter den Bedingungen in Schema 49 in einer *Suzuki-Miyaura*-Kreuzkupplung als Ligand eingesetzt. Nach 14 Stunden Reaktionszeit erhielt man lediglich eine Umsetzung von 44%. Es ist fraglich, wie groß der Einfluss der Kronenetherfragmente auf die Reaktivität der aktiven Spezies ist. Denn auch Phosphan **26**, an dem statt der Kronenether-Reste zwei Phenylgruppen am Phosphor gebunden sind, ist aktiv in der Kreuzkupplung.

Schema 49: Suzuki-Miyaura-Kreuzkupplung unter Verwendung der Liganden 68 und 69.

Phosphan **68** wurde in den unterschiedlichsten Kreuzkupplungen getestet. Es wurden Aminierungen, *Kumda*-Kreuzkupplungen und *Suzuki-Miyaura*-Kreuzkupplungen durchgeführt. Die Aminierungsreaktion aus Schema 50 war aus ungeklärten Gründen nicht reproduzierbar. Die Umsetzungen der Reaktionen schwankten zwischen 30 und 87% (GC-MS-Ausbeuten).

Schema 50: Aminierung unter Verwendung des Liganden 68.

Die Ergebnisse aus der *Kumada*-Kreuzkupplung (Schema 51) waren ebenfalls enttäuschend und nicht konkurrenzfähig zu bereits erzielten Ergebnissen von anderen Arbeitsgruppen.^[106, 107]

Schema 51: Kumada-Kreuzkupplung unter Verwendung des Liganden 68.

4.7 Versuch der Darstellung von tertiären Phosphanen in Enantiomeren-angereicherter Form über eine Eintopfreaktion

Aufbauend auf der Möglichkeit, tertiäre unsymmetrische Phosphane einfach darstellen zu können, wurde nach Wegen gesucht, Enantiomer-angereicherte Phosphane ebenfalls in einer Eintopfreaktion herzustellen.

Die Strategie bestand darin, im zweiten Substitutionsschritt eine metallorganische Verbindung zuzusetzen, an der ein chirales Reagenz koordiniert ist, so dass bevorzugt nur ein bestimmtes Chloratom am enantiotopen Dichlorphosphan substituiert wird.

Als chirales Reagenz wurde unter anderem (–)-Spartein verwendet, welches bereits in vielen enantioselektiven Synthesen erfolgreich eingesetzt wurde und kommerziell erhältlich ist.^[108]

Für die Synthese wurde unter anderem das kommerziell erhältliche Dichlorphenylphosphan eingesetzt, zu dem bei –80 °C langsam eine Lösung aus der metallorganischen Spezies (so-wohl Lithium- als auch Grignard-Reagenzien) und einem Äquivalent (–)-Spartein (gelöst in verschiedenen Lösemitteln: THF, Et₂O, *t*BuOMe, Hexan) gegeben wurde. Anschließend wurde zu dem Chlorphosphan ein weiteres Äquivalent Metallorganyl gegeben.

Das erhaltene tertiäre Phosphan wurde in der Reaktionsmischung mit *t*BuOOH unter vollständiger Retention der Konfiguration zum Phosphanoxid oxidiert^[109] und ein chirales Shift-Reagenz [(R)-(–)-*N*-(3,5-Dinitrobenzoyl)- α -phenylethylamin] zugesetzt um aus den Enantiomerenpaaren Diastereomere zu bilden, die im ³¹P{¹H}-NMR eine unterschiedliche chemische Verschiebung besitzen.^[110, 111] Es wurden auf diesem Wege verschiedene tertiäre unsymmetrische Phosphane hergestellt und untersucht, ob sie in Enantiomeren-angereicherter Form vorliegen. In keiner der durchgeführten Synthesen wurde eines der Enantiomere in einem nennenswerten Überschuss, so weit es sich durch die ³¹P{¹H}-NMR-Spektroskopie beurteilen ließ, erhalten (Schema 52).

Schema 52: Darstellung von Phosphanoxiden.

Alternativ zum (–)-Spartein sollte ein stärker koordinierender, zweizähniger Ligand verwendet werden, der nicht über Stickstoff sondern über Sauerstoff in Form eines Ethers an der metallorganischen Spezies koordiniert. Es wurde ein Triether (**90**) synthetisiert, an dem zwei (–)-Menthyl-Gruppen gebunden sind, die die chirale Information übertragen sollten (Schema 53). In einer vierstufigen Synthese erhielt man den Ligand in moderaten Ausbeuten (41%).^[112]

Schema 53: Syntheseweg des Triethers (90).

Der Triether (90) wurde unter den gleichen Bedingungen und für verschiedene Synthesen eingesetzt, wie bereits oben für (–)-Spartein beschrieben. Auch hier konnten keine tertiären Phosphane in Enantiomeren-angereicherter Form erhalten werden.

Ferner wurden Synthesen mit $P(OPh)_3$ in der Erwartung durchgeführt, dass durch die größeren Phenoxid-Abgangsgruppen eine höhere Differenzierung der enantiotopen Seiten des Phosphonits eintritt. Hier trat jedoch das bekannte Problem auf, dass Grignard-Reagenzien im zweiten Substitutionsschritt nur sehr schlecht mit dem sterisch anspruchsvollen Phosphonit **10** reagieren. Bei der Verwendung von einem Äquivalent MeMgCl erfolgte eine Substitution, je-

doch bis hin zum tertiären Phosphan. Folglich konnte kein unsymmetrisches Phosphinit erhalten werden.

Zwar wurde ein sterisch anspruchsvolles Phosphanoxid (**91**) mit Biphenylfragmenten unter den Bedingungen in Schema 54 erhalten, doch konnte der enantiomeren Überschuss nicht bestimmt werden, weil das Shift-Reagenz nicht oder nur so schwach an das Phosphanoxid (**91**) koordinierte, dass keine Aufspaltung des ³¹P-Signals im Spektrum zu beobachten war (Schema 54).

Schema 54: Darstellung von sterisch anspruchsvollen Phosphanoxiden.

Bei Verwendung des Triethers **90** lag die Vermutung nahe, dass einer der äußeren und das mittlere Sauerstoffatom an das Metall der Organometallspezies koordinieren, so dass die Sterik nicht ausreicht, um zwischen den enantiotopen Seiten des Dichlorphosphans zu differenzieren.

Jegliche Versuche, tertiäre Phosphane in einer Eintopfreaktion im enantiomeren Überschuss zu erhalten, blieben bislang erfolglos. In Anbetracht des großen Interesses an chiralen tertiären Phosphanen sollte man jedoch nichts unversucht lassen und nach weiteren alternativen chiralen Reagenzien suchen, die eine solch einfache Darstellung ermöglichen.

5 Kinetische Aspekte zur Selektivität von PCl₃ und P(OPh)₃ mit Metallorganylen

Auch wenn es auf den ersten Blick so aussehen mag, dass die Ursache für die hohen Selektivitäten der beiden vorgestellten Eintopfreaktionen aus Kapitel 3 und 4 auf denselben Parametern beruhen, sind die Gemeinsamkeiten doch nur gering. Entscheidende Parameter, die bei der $P(OPh)_3$ -Methode nicht beachtet wurden, waren für den Erfolg der selektiven Darstellung von Dichlorphosphanen essentiell – und umgekehrt. So wurden die Phosphane ausgehend von $P(OPh)_3$ mit Organyllithiumverbindungen in THF als Lösemittel hergestellt. Die meisten der aus PCl_3 erhaltenen tertiären Phosphane mussten in *t*BuOMe als Lösemittel unter Verwendung von Grignard-Reagenzien dargestellt werden. Die Gleichartigkeit in der Durchführung lässt sich auf die tiefen Temperaturen und die gute Durchmischung beschränken. Beide Reaktionen laufen nach einem S_N 2-Mechanismus ab.

5.1 Zur Selektivität bei der Darstellung von Phosphonigsäurediphenylestern

Die selektive Darstellung von Arylphosphoniten (Schema 21) ist zwingend abhängig vom sterischen Anspruch der metallorganischen Spezies. Die Bruttoreaktionsgeschwindigkeit der S_N 2-Reaktion wird durch die Konzentrationen der Edukte und der Geschwindigkeitskonstante k bestimmt (Formel 2).

Wie bereits in Kapitel 3.2 diskutiert wurde, wird durch die sterische Abstoßung des zweiten angreifenden Nukleophils (Abbildung 5) mit den Resten am Phosphoratom die Aktivierungsbarriere E_A erhöht. Aktivierungsbarriere und Geschwindigkeitskonstante stehen in exponentieller Beziehung zueinander (Formel 3). Auch wenn sich unter Verwendung von sterisch anspruchsvollen Nukleophilen die Aktivierungsbarriere für den ersten Substitutionsschritt etwas erhöht, so erhöht sie sich im zweiten Schritt vergleichsweise stärker.

Bei konstanter Temperatur lässt sich die Geschwindigkeitskonstante in Abhängigkeit der Aktivierungsbarriere in Form der Funktion $f(x) = A \cdot e^{-x/n}$ beschreiben (Formel 3). So nehmen Reaktionsgeschwindigkeiten von Reaktionen durch Erhöhung der Aktivierungsbarriere E_A stark ab.

Ein entscheidender Parameter für den Erfolg der selektiven Reaktion sind tiefe Temperaturen. Temperatur und Reaktionsgeschwindigkeit stehen ebenfalls in exponentieller Beziehung zueinander (Formel 3). Bei konstanter Aktivierungsbarriere lässt sich die Geschwindigkeitskonstante in Abhängigkeit der Temperatur in Form der Funktion $f(x) = A \cdot e^{-m/x}$ beschreiben. Eine Senkung der Temperatur bewirkt besonders bei tiefen Temperaturen eine starke Verlangsamung der Reaktion. Bei zwei konkurrierenden Reaktionen mit unterschiedlicher Aktivierungsbarriere driften die Geschwindigkeitskonstanten mit sinkender Temperatur auseinander.

Da die Selektivität der Phosphonitdarstellung der kinetischen Kontrolle unterliegt, konnte durch tiefe Temperaturen und hohen sterischen Anspruchs des Nukleophils die Folgereaktion zurückgedrängt werden.

$$Nu^{-} + R - X \xrightarrow{k} Nu - R + X^{-}$$

Formel 1: S_N2-Reaktion

$$\frac{d[Nu-R]}{dt} = k[Nu^{-}][R-X]$$

Formel 2: Bruttoreaktionsgeschwindigkeit

$$k = A \cdot e^{-\frac{E_A}{RT}}$$

Formel 3: Arrhenius-Gleichung

5.2 Zur Selektivität bei der Darstellung von Dichloralkylphosphanen

Entscheidenden Ausschlag für den Erfolg der selektiven Darstellung von Dichloralkylphosphanen ergaben die Verwendung von *t*BuOMe als Lösemittel, langsames Zutropfen des Grignard-Reagenzes und die Durchführung der Reaktionen bei tiefen Temperaturen. Der Temperatureinfluss auf die Reaktionsgeschwindigkeit wurde bereits oben diskutiert. Ansonsten wurde diesmal versucht, die Aktivierungsbarriere über die Reaktivität des Nukleophils zu erhöhen.

Grignard-Reagenzien sind weniger reaktiv als Lithiumverbindungen, weil sie weniger polarisiert sind. Bei Verwendung der Grignard-Reagenzien in THF und oft auch in Et₂O konnten nur schlechte Selektivitäten erhalten werden. Erst die Verwendung von *t*BuOMe als Lösemittel scheint die Reaktivität des Grignard-Reagenzes so stark zu senken, dass die Bildung des Dichlorphosphans gegenüber der disubstituierten Spezies bevorzugt war. Das Lösemittel hat einen entscheidenden Einfluss auf die Reaktivität der Grignard-Reagenzien. Die Aktivierungsbarriere sinkt mit steigender elektronischer Sättigung am Magnesiumzentrum. Sowohl höhere Koordinationszahlen als auch stärkere Elektronendonorliganden am Magnesium

Vermutlich liegt das *Schlenk*-Gleichgewicht von Grignard-Reagenzien in THF und Et₂O weiter auf der rechten Seite als bei Verwendung von *t*BuOMe (Schema 55). Da angenommen wird, dass R₂Mg die aktive Spezies bildet, wäre eine Gleichgewichtsverschiebung nach links eine Erklärung für die geringere Aktivität des Grignard-Reagenzes in *t*BuOMe. Triebkraft für die Gleichgewichtsverschiebung nach rechts ist die Bildung des höher koordinierten MgCl₂-Koppelprodukts. Durch den sterischen Anspruch von *t*BuOMe können nicht so viele Lösemittelmoleküle an das Magnesium koordinieren, so dass die Triebkraft, die Bildung einer höher koordinierten MgCli2.

Das koordinierende Lösemittel kann bei der Verwendung von *t*BuOMe jedoch nicht ausschließlich *t*BuOMe sein, da die Grignard-Reagenzien in Et₂O hergestellt wurden. Vielmehr wird eine Koordination durch beide Moleküle in einem undefinierten Verhältnis angenommen, die jedoch ausreicht, um die Aktivität des Grignard-Reagenzes so herabzusetzen, dass die Zweitsubstitution verhindert wird.

2 RMg(thf)₂Cl
- (n-2) THF
$$R_2Mg(thf)_2 + MgCl_2(thf)_n$$

n = 2, 3, oder 4

Schema 55: Schlenk-Gleichgewicht in THF.

Durch die Koordination der sterisch anspruchsvollen Lösemittelmoleküle wird das Magnesiumzentrum abgeschirmt, so dass auch eine sterische Hinderung, wie es bei der P(OPh)₃-Methode der Fall ist, für eine Erhöhung der Aktivierungsbarriere sorgt. Immer wieder auffällig war, wie wichtig eine schnelle Durchmischung der Reaktionskomponenten, sowohl bei der P(OPh)₃-Methode als auch bei der PCl₃-Methode, für die erfolgreiche selektive Einfachsubstitution ist. Wurden die Reaktionspartner nicht schnell genug durchmischt, reagierten sie mit den unmittelbar benachbarten möglichen Reaktionspartnern, so dass Zwei- oder sogar Dreifachsubstitutionen auftraten. Die Abhängigkeit der Selektivität von der Rührgeschwindigkeit deutet darauf hin, dass es sich um eine makroskopische Diffusionskontrolle handelt.^[113, 114] Die Reaktionsgeschwindigkeiten liegen daher vermutlich im Sekundenbereich. Andernfalls ist es nicht zu erklären, warum bei guter Durchmischung ausschließlich die monosubstituierte Phosphorverbindung entsteht.

Daher ist anzunehmen, dass sich, unabhängig von der Erhöhung der Aktivierungsbarriere bei den vorgestellten Eintopfreaktionen, die Reaktionsgeschwindigkeiten von PCl₃ und P(OPh)₃ mit Metallorganylen prinzipiell nahe, aber trotzdem unterhalb der Diffusionskontrolle befinden. Vielmehr wird vermutet, dass sich geringe Selektivitäten durch die Inhomogenität der Reaktionsmischung begründet, die durch herkömmliche Rührer nicht verhindert werden kann und ebenfalls auf eine makroskopische Diffusionskontrolle zurückzuführen ist.
6 Suzuki-Miyaura-Kreuzkupplung

Einige der in den oberen Kapiteln vorgestellten tertiären Phosphane wurden auf ihre Aktivität als Liganden in der *Suzuki-Miyaura*-Kreuzkupplung untersucht (Abbildung 20).

Als Maßstab galt hierbei der in der Gruppe von *Buchwald* entwickelte S-Phos-Ligand (1), einer der universell am meisten einsetzbaren und aktivsten Liganden für Kreuzkupplungen. Er findet am häufigsten Verwendung in der *Suzuki-Miyaura*-Kreuzkupplung.

Um einen genauen Vergleich der Aktivitäten von den dargestellten Phosphanen in Abbildung 20 zu dem S-Phos-Liganden zu erhalten, wurden stets zwei Kreuzkupplungen parallel unter exakt gleichen Bedingungen angesetzt, d.h. Verwendung gleicher Edukte, Eduktmengen, Lösemittel, Kolbengrößen, Reaktionszeiten und Temperatur. Die gleichen Reaktionstemperaturen wurden dadurch garantiert, dass beide *Schlenk*-Kolben in nur einem Ölbad platziert wurden.

Die Kupplungspartner bei der *Suzuki-Miyaura*-Kreuzkupplung sind häufig Halogenaromaten und Arylboronsäuren. In der Einleitung wurde bereits erwähnt, dass die Insertion der aktiven Palladium-Spezies in die C-Hal-Bindung eine umso höhere Aktivierungsbarriere besitzt, je elektronenreicher der Aromat ist. Zusätzlich wird die Insertion in der Reihenfolge von C-I, C-Br, C-Cl, C-F erschwert.

Hohe Ausbeuten mit elektronenreichen Chloraromaten sind keine Neuigkeiten. Die Verwendung von noch aktiveren Liganden würde jedoch Verbesserung folgender vier Kriterien bedeuten:

- Verkürzung der Reaktionszeiten
- Reaktionen mit sterisch anspruchsvollen Kupplungspartnern möglich
- den Einsatz von teurem und giftigen Pd(OAc)₂ deutlich senken zu können
- Reaktionen bei Zimmertemperatur in kürzester Zeit durchführen zu können.

Schema 56: Suzuki-Miyaura-Kreuzkupplung.

Für das Vergleichsexperiment wurde ein sehr unreaktiver Halogenaromat, das *para*-Chloranisol mit der Phenylboronsäure gekuppelt. Mit 0.5 mol% Pd(OAc)₂, 1 mol% Ligand, 1.5 Äquivalenten Phenylboronsäure und 2.5 Äquivalenten K₃PO₄ wurden ähnliche Bedingungen zu den aus den Literaturvorschriften von *Buchwald et al.* übernommen (Schema 56).^[23]

Für eine Reaktionskontrolle wurden aus beiden *Schlenk*-Rohren in regelmäßigen Zeitabständen Proben entnommen und über GC-MS analysiert. Im GC-MS konnten das *para*-Chloranisol und das entstandene Produkt 4-Methoxybiphenyl detektiert werden. Die Phenylboronsäure konnte aufgrund zu hoher Polarität nicht detektiert werden.

Die Signale im GC wurden mit Hilfe des Massenspektrometers eindeutig zugeordnet. *para*-Chloranisol hat erwartungsgemäß eine geringere Retentionszeit (5.57 Minuten) als das Produkt 4-Methoxybiphenyl (**92**) (7.97 Minuten). Über Integration des jeweiligen Edukt-, bzw. Produktpeaks konnten die prozentualen Umsätze der Kupplungsreaktionen ermittelt werden. Die Integration der im GC-MS erhaltenen Signale spiegelt nicht den genauen prozentualen Umsatz der Reaktion wider. Es können Abweichungen von bis zu 10 % gegenüber dem genauen Umsatz auftreten. Demzufolge können die Werte nur Tendenzen aufzeigen.

Die Verbindungen 23, 24 und 25 erwiesen sich als nicht konkurrenzfähig zu dem S-Phos-Liganden. Zwar fand unter Verwendung der drei tertiären Phosphane eine Kreuzkupplung statt, jedoch waren die Reaktionen um ein vielfaches langsamer als unter Verwendung von Ligand 1 im direkten Vergleich. Hinzu kam, dass die langsam ablaufende Kreuzkupplung Nebenreaktionen der Boronsäure ermöglichte. Es kam zur Bildung von so genannten Homokupplungen der Boronsäuren, die zum Biphenyl führten. Eine genaue Erklärung für das schlechte Abschneiden der Liganden 23, 24 und 25 ist schwer zu finden, da der genaue Ablauf der Reaktion bislang nicht vollständig aufgeklärt ist. Fest steht, dass der Ligand für einen aktiven Pd-Komplex elektronenreich und sterisch anspruchsvoll sein muss. Das schlechte Abschneiden der Phosphane 23, 24 und 25 wird aufgrund von elektronenreichen Resten nicht durch Elektronenmangel sondern durch sterisch ungünstige Anordnungen der Reste am Phosphoratom begründet sein.

Phosphan **37**, welches den sterischen Verhältnissen von Phosphan **1** sehr nahe kommt, war in einem Konkurrenzexperiment ebenfalls langsamer.

Nach 60 Minuten hatte die Reaktion mit dem S-Phos (1) Liganden einen Umsatz von ca. 85%, die Reaktion mit Phosphan **37** befand sich nach 60 Minuten erst bei einem Umsatz von ca. 50%.

Nach 140 Minuten Reaktionszeit war die Reaktion mit S-Phos (1) bereits abgeschlossen, während der Umsatz mit 37 ca. 60% erreicht hatte. Erst nach mehrstündigem Rühren über Nacht konnte das *para*-Chloranisol vollständig umgesetzt werden. Auffällig war, dass nach insgesamt 20 Stunden Rühren bei 65 °C kein Palladiummetall ausgefallen ist. Demnach

müssen noch immer Phosphanliganden am Palladium gebunden gewesen sein, was auf hohe Koordinationskräfte zwischen Phosphor und Metall zurückzuführen sein könnte. Eine mögliche Erklärung für das schlechte Abschneiden von Ligand **37** könnte sein, dass durch den geringeren sterischen Anspruch im Vergleich zu Ligand **1** die aktive Spezies deutlich langsamer gebildet wird. Nach *Buchwald* herrscht ein Gleichgewicht zwischen $L_2Pd(0)$ und der aktiven Spezies LPd(0). Ligand **1** verschiebt das Gleichgewicht durch seine Größe auf die Seite des Komplexes mit einem Liganden. Durch den geringeren sterischen Anspruch der *iso*-Propylgruppen, verglichen mit den Cyclohexylgruppen von Phosphan **1**, können zwei Liganden besser an das Palladium binden, so dass das Gleichgewicht weiter auf der Seite von $L_2Pd(0)$ liegt.

In einem weiteren Versuch, der die These untermauern würde, dass elektronenreiche Reste am Phosphor für die Aktivität in Kreuzkupplungen zweitrangig sind, wurde Verbindung **46** als Ligand eingesetzt. Die Idee war, von der erfolgreichen räumlichen Anordnung des S-Phos-Liganden zu profitieren und dem Phosphoratom zusätzlich Elektronendichte zu verleihen, um es damit in der Kreuzkupplung aktiver zu machen. Phosphan **46** ist von der Größe nahezu identisch zu Phosphan **1**. Die Methoxygruppen in 4- und 5-Position des Biphenylfragments ändern fast nichts an der räumlichen Umgebung des Phosphoratoms – sie machen es jedoch elektronenreicher. Der direkte Vergleich der Liganden **46** und **1** zeigte, dass die zusätzlichen Methoxygruppen am Liganden keinerlei Wirkung auf die Aktivität des Pd-Komplexes haben. Es ist daher in Frage zu stellen, inwieweit zusätzliche Elektronendichte am Phosphoratom die Aktivität der aktiven Spezies steigert. Vielleicht gibt es auch analog des sterischen Anspruchs ein Optimum an elektronischer Dichte am Zentralatom.

Der Einsatz von tertiären Phosphanen, an denen zwei Biphenylfragmente gebunden sind (**33**, **48**, **49**), zeigte in der Kreuzkupplung eine vergleichsweise hohe Aktivität. Besonders Phosphan **33** konnte in der durchgeführten Kreuzkupplung nach Schema 56 im Vergleich zu der Kreuzkupplung mit Phosphan **1** eine schnelle Umsetzung erzielen.

Bei der Durchführung der Reaktion nach Schema 56 erhielt man bereits nach 30 Minuten unter Verwendung von 1.9 mol% des Liganden **33** einen Umsatz von ca. 56% zum 4-Me-thoxybiphenyl. Der S-Phos-Ligand (1) brachte es in der gleichen Zeit nur zu einer Umsetzung von ca. 14%. Doch während sich mit Verbindung 1 die Umsetzung fast linear bis hin zur vollständigen Umsetzung vollzog, nahm die Bildungsgeschwindigkeit des 4-Methoxybiphenyls unter Einsatz von Verbindung **33** mit steigendem Umsatz ab. Nach zwei Stunden war die Umsetzung mit Phosphan **1** bereits höher als unter Verwendung von Phosphan **33**. Die

Reaktionsmischung mit Ligand **33** wurde nach zwei Stunden dunkler und man konnte einen feinen Palladiumniederschlag erkennen. Dies ist ein Hinweis darauf, dass sich im Laufe der Reaktion der Ligand vom Palladium gelöst hat und in Form von unreaktivem elementarem Metall zurückbleibt. Dies würde die Abnahme der Reaktionsgeschwindigkeit bei Verwendung von Phosphan **33** erklären, die nach einigen Minuten eintritt. Die Instabilität des Palladium-komplexes ist vermutlich auf den hohen sterischen Anspruch des Phosphans **33** zurück-zuführen, der nur eine schwache Koordination an das Palladium gewährt. Andererseits könnte der sterische Anspruch von Phosphan **33** auch Grund für eine starke Gleichgewichtsverschiebung zu der LPd(0)-Spezies sein. Das würde die hohe Aktivität des Palladiumkomplexes in der Anfangsphase erklären.

Der Erfolg der Reaktion war somit auch stark abhängig von der eingesetzten Menge des Liganden. Für einen hohen Umsatz mussten die Äquivalente des Liganden von 2.0 auf 3.8, bezogen auf Pd(OAc)₂, erhöht werden. Dementsprechend führte eine Verdoppelung auf 7.6 Äquivalente zu einer noch schnelleren Umsetzung in höheren Ausbeuten, was jedoch für die Durchführung von Reaktionen in großen Maßstäben als nicht wünschenswert erscheint.

Um die hohe Aktivität von Ligand **33** in der Anfangsphase auszunutzen, wurde das Lösemittel THF durch 1,4-Dioxan ersetzt und die Reaktionstemperatur auf 100 °C erhöht. Die Umsetzung lag nach 30 Minuten bereits bei über 90%.

Durch Variation der Base und des Lösemittels stellte sich heraus, dass K_3PO_4 die beste Base und THF und 1,4-Dioxan die besten Lösemittel für die Kreuzkupplung mit Phosphan **33** sind. Weniger elektronenreiche Chloraromaten, wie das 2-Chlortoluol, konnten in geringerer Zeit und nahezu quantitativ zum Biphenylderivat umgesetzt werden.

Alles in allem konnten mit Ligand **33** erfreulich gute Ergebnisse erzielt werden, so dass seine Aktivität unter verschiedensten Bedingungen mit unterschiedlichen Kupplungspartnern untersucht und optimiert wurde. Es war jedoch nicht möglich, Bedingungen und Kupplungspartner zu finden, unter denen Ligand **33** den S-Phos-Liganden überlegen ist.

Auch in diesem Konkurrenzexperiment konnten wieder Hinweise gesammelt werden, dass die Liganden, was den sterischen Anspruch betrifft, ein Optimum für hohe Aktivitäten und gleichzeitig Stabilität im Komplex mit Palladium in der Kreuzkupplung zu durchlaufen scheinen.

Die hohe Aktivität mit Ligand **33** ist fast ausschließlich durch den sterischen Anspruch zu erklären, weniger durch die hohe Elektronendichte am Metall. Diese ist nämlich geringer als in der aktiven Spezies mit dem S-Phos-Liganden (**1**); ein weiteres Indiz für die untergeordnete Bedeutung der elektronischen Verhältnisse am Phosphoratom. Ligand **48** und **49** schnitten in der Kreuzkupplung nach Schema 56 schlechter ab als Ligand **33**. Die Methoxygruppen in 4und 5-Position konnten die erhoffte Steigerung der Aktivität durch Vergrößerung der Elektronendichte am Phosphoratom nicht erfüllen. Auch der Einsatz des X-Phos-Fragments, modifiziert durch Methoxygruppen in 4- und 5-Position, brachte keine Reaktivitätssteigerung. Die Palladiumkomplexe waren aufgrund noch höherem sterischen Anspruchs lediglich kurzlebiger.

Der Gruppe von *Buchwald* scheint mit der Synthese der hochaktiven S-Phos- (1) und X-Phos-(2) Liganden ein Optimum an Größe, bzw. an räumlicher Ausrichtung der Reste am Phosphor in Kombination mit hoher Elektronendichte gelungen zu sein. Die Liganden bilden mit dem Palladium stabile Komplexe, die über Stunden auch bei hohen Temperaturen nicht zerfallen. Trotzdem schafft es der Ligand durch den hohen sterischen Anspruch das Gleichgewicht auf die Seite der aktiven Spezies LPd(0) zu verschieben.

Im Rahmen dieser Arbeit ist es durch Herstellung *Buchwald*-ähnlicher Phosphanliganden gelungen, Kreuzkupplungen mit deaktivierten Chloraromaten durchzuführen, die in kürzester Zeit hohe Umsetzungen erzielen. Die Kurzlebigkeit der aktiven Spezies führt jedoch im Vergleich zu der mit dem S-Phos-Liganden (1), zu nicht vollständigen Umsetzungen. Die Konkurrenzfähigkeit von Phosphan **33** zum S-Phos-Liganden (1) ist daher in Frage zu stellen.

7 ³¹P-NMR-Spektroskopie

7.1 Einleitung

Wie in den vorhergegangenen Kapiteln zu sehen ist, war die ³¹P{¹H}-NMR-Spektroskopie das wichtigste Mittel für die Analytik und Identifizierung der hergestellten Phosphane und ihrer Zwischenstufen. Mit ihr lassen sich auf einfachstem Wege jegliche Umsetzungen von Phosphorverbindungen im Spektrum beobachten. Die Zuordnung und Identifizierung der jeweiligen Signale ist jedoch essentiell. Im Gegensatz zur ¹H-NMR-Spektroskopie ist eine Integration der Signale nicht hilfreich, da sie keine Aufschlüsse über die Verbindung gibt. Für eine Zuordnung der Signale im NMR-Spektrum ist es daher nützlich, wenn man Vorhersagen treffen kann, in welchem Bereich die gewünschte Verbindung erscheint. Auch viele der in der Literatur angegebenen chemischen Verschiebungen sind kritisch zu betrachten.

7.2 Gruppenbeiträge in der ³¹P{¹H}-NMR-Spektroskopie

Mit Hilfe von so genannten Gruppenbeiträgen oder Inkrementen (GC, group contributions) lässt sich vorhersagen, bei welcher chemischen Verschiebung ein primäres, sekundäres oder tertiäres Phosphan im ³¹P{¹H}-NMR Spektrum zu sehen sein wird. Die *Van Wazer* Gruppe und die *Grim* Gruppe fanden heraus, dass der Einfluss der Substituenten (Gruppen) auf die chemische Verschiebung des Phosphors additiv ist.^[115-117] Besonders für tertiäre Phosphane ist die Übereinstimmung der Vorhersage mit der experimentell gefundenen chemischen Verschiebung relativ hoch.^[1, 118] Für primäre, sekundäre und tertiäre Phosphane ergeben sich folgende Abschätzungen:

Primäre Phosphane RPH ₂	$\delta(^{31}\text{P, in ppm}) = -111 + 2.5 \text{ GC} (\text{R})$
Sekundäre PhosphaneR ¹ R ² PH	$\delta(^{31}\text{P, in ppm}) = -36 + 1.5 \text{ GC} (\text{R}^1) + 1.5 \text{ GC} (\text{R}^2)$
Tertiäre Phosphane $R^1R^2 R^3P$	$\delta(^{31}\text{P, in ppm}) = \text{GC}(\text{R}^{1}) + \text{GC}(\text{R}^{2}) + \text{GC}(\text{R}^{3})$

Im Rahmen dieser Arbeit konnte die Liste der bereits vorhandenen Inkremente ^[1, 116, 118] um einen beträchtlichen Teil durch direktes Messen von tertiären Phosphanen als auch durch Literaturrecherche erweitert werden (Tabelle 3–11).

Das "3-2-1-Phosphan" (27) beispielsweise setzt sich aus den Inkrementen für 9-Anthryl (-15), 1-Naphthyl (-11) und Phenyl (-3) zusammen (Schema 57).

Schema 57: Berechnung der theoretischen chemischen Verschiebung des "3-2-1-Phosphans" (27).

In der Summe ergeben die drei Werte –29, was mit der chemischen Verschiebung von $\delta = -28.4$ ppm sehr gut übereinstimmt.

Mit Hilfe der Inkrementrechnung konnten in den Arbeiten auch viele Nebenprodukte identifiziert werden. Auftauchende Probleme konnten durch Identifizierung der Nebenprodukte gelöst werden.

Unbekannte Gruppenbeiträge können ermittelt werden, indem man die tertiären Phosphane mit drei gleichen Resten herstellt (z. B. Tricylclopentylphosphan, Tricycloheptylphosphan). Nach Division der chemischen Verschiebung des resultierenden Phosphansignals durch drei erhält man den ungefähren Gruppenbeitrag des Substituenten.

Die Genauigkeit der Vorhersage liegt üblicherweise zwischen $\Delta \delta = 3$ und $\Delta \delta = 6$ ppm. Es ist kein Beispiel bekannt, bei dem die Abweichung über $\Delta \delta = 10$ ppm lag.

Die folgenden Tabellen sind eine Erweiterung der in der Literatur bereits vorhandenen Gruppenbeiträge, die die chemischen Verschiebungen von tertiären, sekundären und primären Phosphanen voraussagen können. Die Vorhersagegenauigkeit ist besonders aussagekräftig für tertiäre Phosphane. Das *tert*-Butyl, das 1-Adamantyl und [2-(1-X)-ethyl]ferrocenyl-Substi-

tuenten (X = Amino, Acetoxy etc.) besitzen zwei verschiedene Gruppenbeiträge. Interessanterweise besitzen tBu_2P -Fragmente (Gruppenbeitrag von jeweils +10 oder +20) manchmal die Summe von +40 oder +30, aber niemals die Summe von +20.

Einem Hinweis folgend sind um die 10% der NMR-Daten nicht korrekt (Charakterisierung der falschen Verbindung, falsch kalibrierte Spektren, etc.).^[118] Die gesammelten Erfahrungen aus experimentell bestimmten und recherchierten chemischen ³¹P{¹H}-NMR-Verschiebungen gehen mit dem Hinweis in Einklang. In der zusammengestellten Datensammlung war der Hauptgrund für falsche Daten die fehlende oder fehlerhafte Kalibrierung mit dem externen Standard 85% H₃PO₄. In manchen Veröffentlichungen besitzen nämlich alle berichteten chemischen Verschiebungen die gleiche Abweichung verglichen zu anderen Literaturwerten. Anhand einer Bewertung in Form einer Skala von einem Stern bis fünf Sterne, die unten erläutert ist, wurden die Inkremente in Tabelle 3–11 auf ihre Verlässlichkeit eingestuft.

- ***** sehr verlässlich, Gruppenbeiträge konnten durch viele Beispiele bestätigt werden, sehr geringe Abweichung.
- **** verlässlich, Gruppenbeiträge konnten durch einige Beispiele bestätigt werden, geringe Abweichungen.
- *** Gruppenbeiträge wurden von wenigen Beispielen bestätigt, akzeptable Abweichungen.
- **! Gruppenbeiträge wurden in vielen Beispielen gefunden, haben jedoch vermutlich zwei verschiedene Gruppenbeiträge.
- ** Gruppenbeiträge wurden von wenigen Beispielen bestätigt, könnten größere Abweichung verursachen.
- *! Gruppenbeiträge wurden aus einigen oder vielen Beispielen berechnet, große Abweichung von berechneten und experimentell erhaltenen Werten.
- * nur eine oder sehr wenige Beispiele, Gruppenbeitrag nicht sicher, Verlässlichkeit unbekannt.

Substituent am tertiären Phosphan PR ¹ R ² R ³		³¹ P-NMR Gruppenbei- trag GC	Verläs- slichkeit	Hergeleitet aus folgender Literatur
Allzylarunnon				
Aikyigi uppen				
Methyl	CH ₃	-21	*****	[1, 117, 119-122]
Ethyl	C_2H_5	-7	****	[1, 117, 119, 120, 122]
Propyl	C_3H_7	-11	****	[1, 117, 119, 120]
Isopropyl	$CH(CH_3)_2$	+6	****	[1, 117, 119, 120]
Butyl	C_4H_{10}	-11	****	[1, 117, 119, 120, 122]
Isobutyl	$CH_2CH(CH_3)_2$	-14	****	[1, 117, 119, 120]
sec-Butyl	$CH(CH_3)(C_2H_5)$	+2	****	[1, 119, 120]
tert-Butyl	C(CH ₃) ₃	$+20^{a}, +10^{a}$	**!	[1, 91, 119, 120, 123]
n-Alkyl (n > 2)	$(CH_2)_{n-1}CH_3$	-11	****	[1, 119, 120]
Neopentyl	$CH_2C(CH_3)_3$	-18	****	[1, 119, 120]
3-Pentyl	$CH(CH_2CH_3)_2$	-3	*	[122]
Cyclopentyl	cyclo-C ₅ H ₉	+1	****	[1, 119, 120, 122, 124, 125]
Cyclohexyl	cyclo-C ₆ H ₁₁	+2 ^b , -11 ^c	****	[1, 20, 117, 119, 120, 122]
Cycloheptyl	cyclo-C ₇ H ₁₃	+15	*	[122]
Benzyl	$CH_2C_6H_5$	-4	****	[1, 119, 120, 126]
2-Menthyl		-8	*!	[127-129]
stellenweise fluoriertes <i>n</i> -Alkyl	$CH_2CH_2(CF_2)_{n-3}CF_3$	-8.5	****	[128-130]
komplett fluoriertes <i>n</i> -Alkyl (n>3)	$(CF_2)_{n-1}CF_3$	+13	**	[1, 119, 120]
Trifluormethyl	CF ₃	(<u>+1</u> bis +8)	*!	[131, 132]
1-Adamantyl	$C_{10}H_{15}$	$+21^{a}, +11^{a}$	**!	[83, 133]
2-Adamantyl	$C_{10}H_{15}$	-8	*	[123]

 Tabelle 3: ³¹P{¹H}-NMR Gruppenbeiträge von Alkylgruppen.

^a entweder/oder siehe Text, ^b äquatorial, ^c axial.

Ungesättigte Kohlenwasserstoffe		³¹ P-NMR Gruppenbei- trag GC	Verläs- slichkeit	Lit.
Vinvl	C ₂ H ₃	-7	****	[1, 63, 119,
·	02113	,		120]
Ethinyl	C ₂ H	-31	*	[1, 119, 120]
1-Allvl	CH ₂ CH=CH ₂	-12	***	[134]
1-Alkylvinyl	$CR=CH_2$ (R > Et)	+4	*	[135]
Cyclopentadienyl	C5H5	-19	*	[136]
1-Indenvl	C_0H_7	-17	***	[137]
9-Fluorenyl	$C_{13}H_9$	+8	***	[137, 138]

Tabelle 4: ³¹P{¹H}-NMR Gruppenbeiträge von ungesättigten Kohlwasserstoffen.

 Tabelle 5: ³¹P{¹H}-NMR Gruppenbeiträge von Arylgruppen.

Arylgruppen		³¹ P-NMR Gruppenbei- trag GC	Verläs- slichkeit	Lit.
Phenyl	C_6H_5	-3	****	[1, 117-122]
4-(Trifluormethyl)phenyl	$4-C_{6}H_{4}(CF_{3})$	-2	****	[118, 123]
4-Alkylphenyl,	$4-C_{6}H_{4}R$, $4-C_{6}H_{4}X$	-3	****	[118]
4-Halophenyl,				
4-Alkoxyphenyl				
4-(Dimethylamino)phenyl	$4 - C_6 H_4 N(CH_3)_2$	-4	****	[118]
3-Anisyl	$3-C_{6}H_{4}(OCH_{3})$	-1	****	[118]
3-Alkylphenyl,	$3-C_6H_4R$, $3-C_6H_4X$	-2	****	[118]
3-Halophenyl,				
3-Alkoxyphenyl				
Pentafluorphenyl	C_6F_5	-26	**	[118]
2-Tolyl	$2-C_{6}H_{4}(CH_{3})$	-10	***	[118, 122]
Mesityl	$2,4,6-C_6H_2(CH_3)_3$	-13	**	[118, 127]
2-Anisyl	$2-C_{6}H_{4}(OCH_{3})$	-12	***	[122]
2-(Trifluormethyl)phenyl	$2-C_{6}H_{4}(CF_{3})$	-6	*	[118]
3,5-Bis(trifluormethyl)-	$3,5-C_6H_3(CF_3)_2$	0	**	[122]
phenyl				
2-Chlorphenyl	$2-C_6H_4Cl$	-7	*	[118]
2,6-Dimethoxyphenyl	$2,6-C_6H_3(OCH_3)_2$	-22	***	[118]
2,4,6-Trimethoxyphenyl	$2,4,6-C_6H_2(OCH_3)_3$	-22	***	[122]
1-Naphthyl	$1 - C_{10}H_7$	-11	****	[121, 122]
2-Naphthyl	$2 - C_{10}H_7$	-2	**	[139]
9-Anthryl	$9-C_{14}H_{9}$	-15	****	[121, 122]
9-Phenanthryl	$9-C_{14}H_{9}$	-12	***	[121, 122]
2-Biphenylyl	$2 - C_6 H_4 (C_6 H_5)$	-9	**	[123]
2´,6´-Dimethoxybiphenyl-	$2 - C_6 H_4 [2', 6' -$	$-12^{\rm a}$, $-7^{\rm b}$	****	[20, 122]
2-yl	$C_{6}H_{3}(OCH_{3})_{2}$]	•		
2´,4 [×] ,6´-	2-C ₆ H ₄ [2´,4´,6´-	$-13^{\rm a}, -8^{\rm b},$	***	[23]
Triisopropylbiphenyl-2-yl	$C_6H_2\{CH(CH_3)_2\}_3]$			

^a bei Dialkylphosphinofragmenten, ^b bei Diarylphosphinofragmenten und bei Alkylarylphosphinofragmenten

Heteroarylgruppen		³¹ P-NMR Gruppenbei- trag GC	Verläs- slichkeit	Lit.
2-Pyridyl	2-C5H4N	+3	****	[139-141]
N-Methylpyrrol-2-yl	$2-C_4H_3NMe$	-27	*	[122]
N-Arylpyrrol-2-yl	$2-C_4H_3NAr$	-25	***	[122]
N-Arylindol-2-yl	$2-C_8H_5NAr$	-26	***	[83]
2-Furyl	$2-C_4H_3O$	-24	**	[127-129, 140]
3-Furyl	$3-C_4H_3O$	-28	*	[1, 119, 120]
2-Thiophenyl/2-Thienyl	$2-C_4H_3S$	-15	*	[122]
2-(1,3-Thiazolyl)	$2-C_3H_2SN$	-11	*	[124]
2-Benzothiazolyl	$2-C_7H_4SN$	-6	**	[124]
N-Methylimidazol-2-yl	$2 - C_4 H_5 N_2$	-20	*	[124]
N-Methylbenzimidazol-2-yl	$2 - C_8 H_7 N_2$	-18	***	[124]
Ferrocenyl	$C_{10}H_9Fe$	-12	***	[123]
2-(1- <i>N</i> , <i>N</i> -	2-[(Me ₂ N)MeCH]	$-17^{\rm a}, -25^{\rm a}$	**!	[142]
Dimethylaminoethyl)	C ₁₀ H ₈ Fe			
2-(1- <i>N</i> -Methylaminoethyl) ferrocenyl	2- [(MeHN)MeCH]	-17^{a} , -25^{a}	**!	[142]
2-(1-Acetoxyethyl)ferrocenyl	C ₁₀ H ₈ Fe 2-[AcO(Me)CH] C ₁₀ H ₉ Fe	$-17^{a}, -25^{a}$	**!	[142]
2-(1-Dicyclohexylphosphino- ethyl)ferrocenyl	$2-[Cy_2P(Me)CH]$ $C_{10}H_{*}Fe$	$-17^{a}, -25^{a}$	**!	[142]
Cyclopentadienid-Lithiumsalz	$C_5H_4L_i$ (in THF)	-12	*	[143]
Indenvl-Lithiumsalz	C_0H_4Li (in THF)	-26	*	[136]
Fluorenyl-Lithiumsalz	$C_{13}H_8Li$ (in THF)	-37	*	[136]

Tabelle 6: ³¹P{¹H}-NMR Gruppenbeiträge von Heteroarylgruppen.

^a entweder/oder siehe Text

 Tabelle 7: ³¹P{¹H}-NMR Gruppenbeiträge von Carbaboranylgruppen.

Carbaboranylgruppen		³¹ P-NMR Gruppenbei- trag GC	Verläs- slichkeit	Lit.
1,2-Dicarba-closo- dodecaboran-1-yl	$C_2 B_{10} H_{11}$	+36	**	[144]
2-Phenyl-1,2-dicarba- closo-dodecaboran-1-yl	$C_2B_{10}H_{10}(C_6H_5)$	+22	**	[144]
2-Methyl-1,2-dicarba- closo-dodecaboran-1-yl	$C_2B_{10}H_{10}(CH_3)$	+18	**	[144]
2-Phosphino-1,2-dicarba- closo-dodecaboran-1-yl	$C_2B_{10}H_{10}(PR_2)$	+17	**	[145]

 Tabelle 8: ³¹P{¹H}-NMR Gruppenbeiträge von Acylgruppen.

Acylgruppen		³¹ P-NMR Gruppenbei- trag GC	Verläs- slichkeit	Lit.
Acetyl	$C(=O)(CH_3)$	+21	***	[1, 119, 120]
Methoxycarbonyl	CO ₂ Me	+5	*	[1, 119, 120]
Pivaloyl	$COC(CH_3)_3$	+3	*	[1, 119, 120]
Benzoyl	COC_6H_5	+14	*	[1, 119, 120]
Trifluoracetyl	COCF ₃	+30	*	[1, 119, 120]
Cyano	CN	-46	*!	[1, 119, 120,
2				126]

Tabelle 9: ³¹P{¹H}-NMR Gruppenbeiträge von Alkylsubstituenten mit N, O, Cl.

Alkylsubstituenten mit N, O, Cl		³¹ P-NMR Gruppenbei- trag GC	Verläs- slichkeit	Lit.
2-Cyanoethyl	CH ₂ CH ₂ CN	-8	*!	[126, 146]
3-Aminopropyl	CH ₂ CH ₂ CH ₂ NH ₂	-11	****	[146]
Methylaminomethyl	CH ₂ NHCH ₃	-17	*	[147]
Diethylaminomethyl	$CH_2N(CH_2CH_3)_2$	-22	*	[1, 119, 120,
	_ 、			126]
Methoxycarbonylmethyl	CH ₂ CO ₂ CH ₃	-11	***	[148]
Hydroxymethyl	CH ₂ OH	-10	***	[1, 119, 120,
5 5 5	2			149]
3-Alkoxypropyl	CH ₂ CH ₂ CH ₂ OR	-11	****	[146, 150]
1-Methyl-3-alkoxypropyl	CH(CH ₃)CH ₂ CH ₂ OR	+3.5	****	[150]
Chlormethyl	CH ₂ Cl	-2	*	[1, 119, 120]
3-Chlorpropyl	CH ₂ CH ₂ CH ₂ CH ₂ Cl	-11	****	[146]

Alkylsubstituenten mit Si, Sn		³¹ P-NMR Gruppenbei- trag GC	Verläs- slichkeit	Lit.
Trimethylsilylmethyl	CH ₂ Si(CH ₃) ₃	-14	***	[151]
(Neosyl)				[161]
Trimethylstannylmethyl	$CH_2Sn(CH_3)_3$	-9	****	[151]
Triphenylstannylmethyl	$CH_2Sn(C_6H_5)_3$	-11	**	[152]
2-Trimethylstannylvinyl	CH=CHSn(CH ₃) ₃	+2 (E)	**	[153]
	(- <i>-</i> ,-	-5(Z)		
1-Phenyl-2-	CPh=CHSn(CH ₃) ₃	+15(E)	**	[153]
(trimethylstannyl)vinyl		+14 (Z)		
1-Butyl-2-	C(C ₄ H ₉)=CHSn(CH ₃) ₃	+10 (E)	**	[153]
(trimethylstannyl)vinyl		+13 (Z)		
1-Benzyl-2-	$C(C_7H_7)=CHSn(CH_3)_3$	+10 (E)	**	[153]
(trimethylstannyl)vinyl		+12 (Z)		
1-(Diethylaminomethyl)-	$C(CH_2NEt_2) =$	+11 (E)	**	[153]
2-(trimethylstannyl)vinyl	$CHSn(CH_3)_3$	+8 (Z)		
1-(2-Methoxyethyl)-2-	C(CH ₂ CH ₂ OCH ₃)=CH	+11 (E)	**	[153]
(trimethylstannyl)vinyl	$Sn(CH_3)_3$	+13 (Z)		
2-(Trimethylstannyl)allyl	$CH_2C[Sn(CH_3)_3]=CH_2$	-13	**	[153]

Tabelle 10: ³¹P{¹H}-NMR Gruppenbeiträge von Alkylsubstituenten mit Si, Sn.

Tabelle 11: ³¹P{¹H}-NMR Gruppenbeiträge von Alkylsubstituenten mit P, As, Sb.

Alkylsubstituenten mit P, As, Sb		³¹ P-NMR Gruppenbei- trag GC	Verläs- slichkeit	Lit.
Diphenylphosphinomethyl	$CH_2P(C_6H_5)_2$	-14	***	[91]
Dialkylphosphinomethyl	CH_2PR_2	-11	****	[91, 127]
Phosphinoethyl	CH ₂ CH ₂ PR ₂	-6	***	[146, 154]
Phosphinopropyl	CH ₂ CH ₂ CH ₂ PR ₂	-11	****	[1, 119, 120,
				146]
Dialkylarsinomethyl	CH ₂ AsR ₂	-12	**	[127]
Dialkylstibinomethyl	CH ₂ SbR ₂	-10	***	[152]

7.3 Reaktionsverfolgung von Phosphan 37 im ³¹P{¹H}-NMR

Anhand der Synthese von Phosphan **37** soll gezeigt werden, wie die Reaktionsverfolgung über ³¹P{¹H}-NMR-Spektroskopie der Eintopfreaktion ausgehend von PCl₃ abläuft (Schema 58).

Schema 58: Eintopfreaktion von Phosphan 37 ausgehend von PCl₃.

PCl₃ gelöst in CDCl₃ erscheint im ³¹P{¹H}-NMR-Spektrum bei einer chemischen Verschiebung von δ = 220.6 ppm (Abbildung 21).

Abbildung 21: ³¹P{¹H}-NMR-Spektrum von PCl₃.

In den folgenden Abbildungen ist der Reaktionsverlauf der Synthese von **37** anhand von ${}^{31}P{}^{1}H$ -NMR-Spektren dokumentiert.

Nach der Zugabe von einem Äquivalent PCl_3 zu **9** erscheint das gebildete Dichlorphosphan **36** ca. 50 ppm im Hochfeld verschoben bei $\delta = 163.5$ ppm. Das PCl_3 -Signal ist, soweit es durch das Signal-Rausch-Verhältnis beurteilt werden kann, vollständig verschwunden (Abbildung 22). Die erste selektive Substitution scheint nahezu vollständig abgelaufen.

Abbildung 22: ³¹P{¹H}-NMR-Spektrum des Dichlorphosphans 36.

Auch die beiden weiteren Substitutionen der Chloratome zum tertiären Phosphan lassen sich so Stück für Stück verfolgen. Mit jeder weiteren nukleophilen Substitution rückt die chemische Verschiebung des Signals der Verbindungen weiter in den Hochfeldbereich.

Abbildung 23: ³¹P{¹H}-NMR-Spektrum des Monochlorphosphans 93.

Abbildung 23 zeigt das ³¹P{¹H}-NMR-Spektrum der Reaktion nach Zugabe eines Äquivalents *i*PrMgCl bei –85 °C und 15 Minuten Reaktionszeit. Die nukleophile Substitution zum Monochlorphosphan **93** verschiebt die Phosphorverbindung erneut um ca. 60 ppm in den Hochfeldbereich bei $\delta = 104.3$ ppm. Der kleine Alkylrest bindet sehr schnell an den bereits durch den Biphenylrest sterisch abgeschirmten Phosphor. Soweit es durch das Signal-Rausch-Verhältnis beurteilt werden kann, wurde das Dichlorphosphan **36** vollständig zum Monochlorphosphan **93** umgesetzt.

Die Reaktion des zweiten Äquivalents *i*PrMgCl mit dem Monochlorphosphan **93** zum tertiären Phosphan **37** ist bedeutend langsamer. Das ³¹P{¹H}-NMR-Spektrum in Abbildung 24 wurde nach einer Stunde Reaktionszeit bei Zimmertemperatur aufgenommen. Während sich das Produkt **37** bereits zu ca. 50% gebildet hat ($\delta = 0.3$ ppm), ist **93** ($\delta = 104.3$ ppm) noch zu gleichen Teilen vorhanden. Selbst bei einer Temperaturerhöhung von 100 °C ist die Reaktionszeit bedeutend länger.

Abbildung 24: ³¹P{¹H}-NMR-Spektrum der Reaktion zum tertiären Phosphan 37 bei ca. 50% Umsatz.

Durch Addition der Gruppenbeiträge (Biphenyl-Ligand (-12), *iso*-Propyl (+6)) ergibt sich als Vorhersage für die chemische Verschiebung von Phosphan **37** ein Wert von 0, der mit dem experimentell gefundenen Wert von $\delta = 0.3$ ppm in guter Übereinstimmung ist.

Abbildung 25 zeigt das ³¹P{¹H}-NMR Spektrum der Reaktionsmischung nach einer weiteren Stunde bei Zimmertemperatur. Die Reaktion ist nahezu vollständig abgelaufen, so dass eine Aufarbeitung erfolgen kann. Nach der Isolierung des Produkts konnte die Verbindung **37** durch ¹H-NMR-Spektroskopie und Massenspektrometrie eindeutig identifiziert werden (Kapitel 13.1).

Abbildung 25: ³¹P{¹H}-NMR-Spektrum des tertiären Phosphans 37 in der Reaktionsmischung, nach nahezu vollständiger Umsetzung.

8 Palladium-Komplex

Was die Konkurrenzexperimente in Kapitel 6 betraf, waren zwar alle hergestellten und getesteten Phosphane nicht konkurrenzfähig zu dem S-Phos-Liganden (1), doch mit der Synthese von Phosphan **33** konnte ein in der Anfangsphase der Reaktion hoch aktiver Ligand erhalten werden. In den ersten 30 Minuten der Kreuzkupplung war er dem S-Phos-Liganden (1), was die Reaktionsgeschwindigkeit betraf, überlegen. Es war von besonderem Interesse herauszufinden, wie die hohe Aktivität des Bis(biphenylyl)methylphosphans (**33**) zustande kommt.

In den Arbeiten von *Fink et al.* und *Buchwald et al.* wurden Röntgenstrukturanalysen von Palladium(0)komplexen angefertigt, um Hinweise auf die hohe Aktivität von Biphenyl-Liganden zu erhalten.^[20, 23, 155] Unter anderem wurde ein Palladium(0)-Komplex vermessen, an dem der S-Phos-Ligand (1) und dba (Dibenzylidenaceton) am Palladium gebunden sind. Es wurde festgestellt, dass es in dem Komplex zu einer ungewöhnlichen Wechselwirkung zwischen dem Palladium und dem *ipso*-C des Biphenylfragments kommt [η^1 Pd-C(ipso)]. Dies ist ein Typ von Wechselwirkung, welcher bereits in vorhergehenden Arbeiten von *Kocovosky* und *Lloyd-Jones* für einen Pd(II)-Komplex postuliert wurde.^[156]

Die Vermutungen gingen dahin, dass eine η^1 Pd-C(ipso)-Wechselwirkung den Komplex stabilisiert und zu der Langlebigkeit des Katalysators beiträgt. Die π -Wechselwirkung zwischen Pd(0) und dem *ipso*-C sorgt für zusätzliche Elektronendichte am Metall.^[155] Durch die stabilisierende Wirkung wird auch vermutlich das Gleichgewicht von L₂Pd(0) auf die Seite von LPd(0) verschoben.

Dass es sich bei dem Pd(1)(dba)-Komplex nicht um η^2 - oder η^3 -Wechselwirkungen mit den *ortho*-C-Atomen des unteren aromatischen Rings handelt, konnte durch den Vergleich der Pd-C(ortho) und der Pd-C(ipso) Abstände angenommen werden. Die Pd-C(ortho)-Abstände betragen 2.696 Å und 2.788 Å, während der Pd-C(ipso)-Abstand nur 2.374 Å beträgt.

Um eine nähere Vorstellung davon zu bekommen, wie das Phosphan **33** im Palladium-Komplex koordiniert ist, wurde analog des oben besprochenen Komplexes eine Röntgenstrukturanalyse von Pd(**33**)(dba) (**94**) angefertigt (Abbildung 26).

Schema 59: Herstellung des Palladium-Komplexes 94.

Der Komplex konnte durch Erhitzen einer Lösung aus Pd_2dba_3 und Phosphan **33** in Benzol auf 65 °C nach drei Stunden in guten Ausbeuten (75%) hergestellt werden (Schema 59). Durch langsames Eindiffundieren von Pentan in die Benzollösung konnten große rote Einkristalle von Komplex **94** erhalten werden.

Abbildung 26: ORTEP-Modell von Pd-Komplex 94, erhalten aus einer Einkristall-Röntgenstrukturanalyse.

Wie aus der Röntgenstruktur auf den ersten Blick zu sehen ist, kommt es in Komplex **94** ebenfalls zu einer η^1 Pd-C(ipso)-Wechselwirkung. Der Abstand vom Palladium zum *ipso*-C beträgt 2.371 Å, ist damit sogar geringfügig kürzer als im Pd(**1**)dba-Komplex und kommt dem Pd-P-Abstand mit 2.269 Å sehr nahe.

Auch im Komplex **94** sind η^2 - oder η^3 -Wechselwirkungen unwahrscheinlich, da die Pd-C(ortho)-Abstände 2.739 Å und 2.719 Å betragen. Auffällig sind die nahe beieinander

liegenden Pd-C(ortho)-Abstände, die auf eine nahezu senkrechte Lage des Palladiums auf dem *ipso*-C hindeuten. Im Vergleich dazu sind die Unterschiede der Pd-C(ortho)-Abstände im Pd(1)(dba)-Komplex mehr als doppelt so groß.

Die aromatischen Ringe der Biphenylfragmente, sowohl die des am Palladium koordinierten Fragments, als auch die des freien Biphenylfragments, stehen fast senkrecht zueinander. Auffällig ist, dass die am Palladium koordinierte Biphenyleinheit leicht eingeknickt ist und zwischen C(1)-C(2)-C(3) keinen Winkel von 180° sondern von 161.9° bildet. Verantwortlich dafür ist vermutlich eine partielle Umhybridisierung am *ipso*-C.

Dass die η^1 Pd-C(ipso)-Wechselwirkung in unmittelbaren Zusammenhang mit der Aktivität des Komplexes steht, ist aufgrund der erhaltenen Ergebnisse nicht unwahrscheinlich. Der Ligand **33** ist ebenfalls hoch aktiv und zeigt in der Röntgenstrukturanalyse ebenfalls eine η^1 Pd-C(ipso)-Wechselwirkung.

Doch ob sie für die Stabilität und Langlebigkeit in Palladiumkomplexen verantwortlich ist, lässt sich schwer beurteilen. Demnach müsste Komplex **94** aufgrund seines sogar kürzeren Pd-C(ipso)-Abstands als bei dem Komplex von *Buchwald* eine höhere Stabilität aufweisen. Das ist jedoch, wie in den Experimenten gezeigt werden konnte, bei der aktiven Spezies jedenfalls nicht der Fall.

9 Zusammenfassung

Im Rahmen der Doktorarbeit wurden neue Methoden entwickelt, um tertiäre nicht homoleptische Phosphane in einer Eintopfreaktion in hohen Ausbeuten zu synthetisieren (Schema 60).

Schema 60: Synthesewege für die schrittweise nukleophile Substitution an PCl₃ / P(OPh)₃.

9.1 Darstellung von tertiären Phosphanen, Phosphiniten und Phosphoniten durch selektive schrittweise nukleophile Substitution von Phenoxid-Gruppen an P(OPh)₃

9.1.1 Selektive Darstellung von Phosphonigsäurediphenylestern

Phosphonigsäurediphenylester konnten erstmals selektiv aus $P(OPh)_3$ mit Hilfe von sterisch anspruchsvollen Aryllithiumverbindungen durch nukleophile Substitution der Phenoxid-Abgangsgruppe bei tiefen Temperaturen erhalten werden (Schema 61).

$$P(OPh)_{3} \xrightarrow{ArLi, THF} Ar - P(OPh)_{2}$$

Schema 61: Selektive Darstellung von Phosphonigsäurediphenylestern.

Die Phosphonite sind sauerstoffunempfindlich und hydrolysestabil. Zwei der selektiv darstellbaren Phosphonite wurden isoliert und charakterisiert (Schema 62). Die Phosphonigsäurediphenylester besitzen durch die Phenoxid-Gruppen hohe Schmelzpunkte, die eine Kristallisation der Derivate ermöglichen.

Schema 62: Selektiv hergestellte Phosphonigsäurediphenylester.

9.1.2 Selektive Darstellung von Phosphinigsäurephenylestern

Es konnten erstmals selektiv Phosphinigsäurephenylester mit zwei unterschiedlichen Substituenten in einer Eintopfreaktion in guten Ausbeuten erhalten werden. Voraussetzung für den Erfolg der Reaktion war die stöchiometrische Zugabe einer Organyllithiumverbindung oder eines Grignard-Reagenzens zu einem Phosphonigsäurediphenylester bei tiefen Temperaturen.

Schema 63: Selektive Darstellung von Phosphinigsäurephenylestern.

Auf Aufarbeitung und Isolation von Zwischenstufen kann im Vergleich zu bisher üblichen Synthesen verzichtet werden. Die erhaltenen Phosphinite sind analog den Phosphoniten hydrolysestabil und nicht sauerstoffempfindlich. Einige Phosphinite wurden isoliert und charakterisiert (Abbildung 27). Auch hier sorgt die Phenoxid-Gruppe für hohe Schmelzpunkte, die eine Kristallisation vieler Derivate ermöglicht. Der Großteil wurde jedoch ohne Aufarbeitung weiter zu einem tertiären Phosphan umgesetzt.

Abbildung 27: Dargestellte Phosphinigsäurephenylester.

9.1.3 Darstellung von tertiären Phosphanen unter Verwendung von P(OPh)₃

Die Konsequenz aus der erfolgreichen selektiven Darstellung von Phosphinigsäurephenylestern war die Herstellung tertiärer Phosphane in einer Eintopfreaktion mit bis zu drei unterschiedlichen Resten. Aufgrund geringer Elektrophilie des Phosphinits reagieren ausschließlich Organyllithiumverbindungen und keine Grignard-Reagenzien im dritten Substitutionsschritt zum tertiären Phosphan (Schema 64).

$$\begin{array}{c} Ar \\ POPh \\ R^{1} \end{array} \xrightarrow{ \begin{array}{c} R^{2}Li, THF, RT \\ - LiOPh \end{array}} \begin{array}{c} Ar \\ P \\ R^{1} \end{array}$$

Schema 64: Selektive Darstellung von tertiären Phosphanen.

Für die Synthese von tertiären Phosphanen mit mindestens einem sterisch anspruchsvollen Substituenten konnte eine einfache, schnelle und sehr kostengünstige Methode entwickelt werden. Zu den bislang sehr mühsamen und teilweise mit spärlichen Ausbeuten behafteten Synthesen zur Darstellung von tertiären nicht homoleptischen Phosphanen bietet die entwickelte Eintopfmethode eine attraktive Alternative.

Die synthetisierten tertiären Phosphane konnten ohne Ausschluss von Sauerstoff wässrig aufgearbeitet und in meist guten Ausbeuten erhalten werden (Abbildung 28).

27

Eintopfreaktion, 66% isoliert

26 Eintopfreaktion, 74% isoliert

31

Eintopfreaktion, 65% isoliert

23 Eintopfreaktion, 13% isoliert

24

Eintopfreaktion, 26% isoliert

25

61% (ausgehend vom Phosphonit) oder Eintopfreaktion 19%

65% isoliert

33 Eintopfreaktion,

Eintopfreaktion, 35% isoliert

Abbildung 28: Dargestellte tertiäre Phosphane aus P(OPh)₃.

9.2 Eintopfsynthesen tertiärer nicht homoleptischer Phosphane unter Verwendung von PCl₃

9.2.1 Selektive Darstellung von tertiären nicht homoleptischen Phosphanen mit sterisch anspruchsvollen Substituenten

Es konnte gezeigt werden, dass sich analog der Darstellungsweise mit $P(OPh)_3$ tertiäre, sterisch anspruchsvolle Phosphane in einer Eintopfreaktion ausgehend von PCl_3 herstellen lassen (Schema 65).

Schema 65: Allgemeiner Syntheseweg zur Darstellung von tertiären Phosphanen mit sterisch anspruchsvollen Biphenylyl-Resten.

Die Überlegenheit der Synthese mit PCl₃ gegenüber der mit Einsatz von P(OPh)₃ zeigt sich dadurch, dass sich Grignard-Reagenzien bis hin zum letzten Substitutionsschritt als Nukleo-

phile einsetzen lassen. Ferner können bei Verwendung von PCl₃ aufgrund höherer Elektrophilie und kleinerer Abgangsgruppen bis zu drei di-*ortho*-substituierte Arylgruppen an den Phosphor gebunden werden. Anhand der Darstellung von einigen den S-Phos- und X-Phosabgeleiteten Liganden konnte das Potential und die Möglichkeit der modularen Bauweise dieser Eintopfmethodik unter Beweis gestellt werden (Abbildung 29).

Abbildung 29: Hergestellte tertiäre Phosphane mit sterisch anspruchsvollen Biphenylyl-Resten.

9.2.2 Selektive Darstellung von tertiären unsymmetrischen Phosphanen mit tertiären, sekundären und primären Alkylsubstituenten

Es wurde gezeigt, dass unter Verwendung von *t*BuOMe oder Et₂O als Lösemittel, tertiäre, sekundäre und sogar einige primäre Alkylgrignard-Reagenzien für eine selektive nukleophile Substitution an PCl₃ einsetzbar sind. Der hohe sterische Anspruch und die damit einhergehenden schlechten Donoreigenschaften des *t*BuOMe wurden ausgenutzt, um die nukleophile Substitution zu verlangsamen und damit selektiver zu gestalten. Weiterhin entscheidend für den Erfolg der Reaktion sind die Verwendung von Grignard-Reagenzien im ersten Substitutionsschritt und das langsame Zutropfen des Nukleophils zum PCl₃. Allgemein können die Kriterien für eine hohe, bzw. niedrige Chemoselektivität in folgender Abbildung zusammengefasst werden (Abbildung 30):

Abbildung 30: Korrelation von Reaktionsparametern mit der Chemoselektivität.

Mit der Methodik ist es erstmals gelungen, tertiäre unsymmetrische Phosphane mit kleinen Alkylresten in einer Eintopfreaktion herzustellen (Schema 66). Mühsame Isolationen und Aufreinigungen von Zwischenstufen werden dadurch überflüssig.

Eine Reihe interessanter tertiärer unsymmetrischer Phosphane konnten in Eintopfreaktionen erhalten werden (Abbildung 31).

 PCI_3

1) R¹MgX, LM, -85 °C
2) R²MgX oder R²Li, THF, -85 °C
3) R³MgX oder R³Li, THF, RT
R¹ = Neopentyl, Cycloalkyl, *i*Pr, *i*Bu in *t*BuOMe sec-Butyl, 3-Pentyl, *t*Bu in Et₂O
R² = Aryl, Alkyl ohne primäre *n*-Alkyle
R³ = beliebige Alkyl- oder Arylgruppe
X = Cl, Br, I

Schema 66: Eintopfreaktion zur Herstellung von tertiären unsymmetrischen Phosphanen 50-61.

38%

71%

47%

83%

52%

60%

72%

58%

Abbildung 31: In Eintopfreaktionen hergestellte tertiäre Phosphane ausgehend von PCl₃.

Ausgehend von dem kommerziell günstig zu erhaltenden PhPCl₂ konnten ebenfalls tertiäre unsymmetrische Phosphane in einer Eintopfreaktion in guten Ausbeuten erhalten werden (Abbildung 32).

Abbildung 32: In Eintopfreaktionen hergestellte tertiäre Phosphane ausgehend von PhPCl₂.

9.3 ³¹P-NMR-Spektroskopie

Die von der *Van Wazer-* und *Grim-*Gruppe herausgefundene Möglichkeit, die chemische Verschiebung von Phosphanen im ³¹P{¹H}-NMR über Gruppenbeiträge der einzelnen Substituenten am Phosphor voraussagen zu können, war von großem Interesse und Nutzen für die Phosphansynthese. Im Rahmen der Doktorarbeit konnte die bestehende Liste an Inkrementen um einen beträchtlichen Teil erweitert werden, so dass die chemische Verschiebung im ³¹P{¹H}-NMR einer Vielzahl von möglichen synthetisierbaren Phosphanen mit geringen Abweichungen vorhergesagt werden kann.

Abbildung 33: Beispiel für eine Vorhersage der chemischen Verschiebung im ³¹P{¹H}-NMR von Phosphan 51.

9.4 Suzuki-Miyaura-Kreuzkupplung

Bei der Untersuchung einiger hergestellter tertiärer Phosphane auf Aktivität als Ligand in der *Suzuki-Miyaura*-Kreuzkupplung konnte mit Verbindung **33** ein Phosphan gefunden werden, welches in den ersten Minuten der Reaktion hohe Umsetzungen ermöglicht. Das Phosphan **33** ist vermutlich einer der aktivsten Liganden, der zwei Biphenylfragmente besitzt. Man kann Verbindung **33** in einer Eintopfreaktion in hohen Ausbeuten herstellen.

Schema 67: Suzuki-Miyaura-Kreuzkupplung mit elektronenreichem Chloraromaten.

9.5 Pd-Komplex

Es konnte ein Palladium(0)-Komplex (94) aus dem Phosphan 33 und Pd₂dba₃ erhalten werden, der analog zum Palladium(0)-Komplex Pd(1)(dba) von *Buchwald* eine η^1 Pd-C(ipso)-Wechselwirkung aufweist (Abbildung 34).

Abbildung 34: (a) Die Zeichnung zeigt die Pd-C(ipso)-C(ortho)-Ebene. (b) ORTEP-Modell von Pd-Komplex 94, erhalten aus einer Einkristall-Röntgenstrukturanalyse.

Die η^1 Pd-C(ipso)-Wechselwirkung von Pd-Phosphan-Komplexen wurde unter anderem mit der hohen Aktivität in Kreuzkupplungen in Verbindung gebracht. Ein experimenteller oder theoretischer Nachweis steht dennoch bislang aus.

Experimenteller Teil

10 Allgemeine Arbeitsmethoden, Chemikalien und physikalische Messgeräte

Durchführung

Sämtliche Reaktionen wurden, soweit nicht anders beschrieben, in Glasapparaturen durchgeführt, die unter Vakuum ausgeheizt und anschließend mit Stickstoff befüllt wurden. Die zum Transfer von Reagenzien und Lösemitteln verwendeten Spritzen und Kanülen wurden vor Gebrauch stets mit Stickstoff gespült.

Vakuumpumpen

Folgende nicht korrigierte Enddrücke wurden für die verwendeten Vakuumpumpen gemessen:

- Membranpumpenvakuum:	p = 5 mbar
- Ölpumpenvakuum:	$p = 10^{-3} mbar$

Lösemittel

Alle verwendeten Lösemittel wurden für hydrolyseempfindliche Reaktionen unter unten angegebenen Standardmethoden getrocknet.

THF wurde über Molsieb (4 Å) über Nacht vorgetrocknet und anschließend über Natrium unter Rückfluss erhitzt.

 Et_2O wurde über Molsieb (4 Å) über Nacht vorgetrocknet und anschließend über Natrium unter Rückfluss erhitzt.

1,4-Dioxan wurde über Molsieb (4 Å) über Nacht vorgetrocknet und anschließend über Natrium unter Rückfluss erhitzt.
*t***BuOMe** wurde über Molsieb (4 Å) über Nacht vorgetrocknet und anschließend über Natrium unter Rückfluss erhitzt.

Reagenzien

2-Chlorobutan 99% (Acros), Cyclohexylchlorid 98% (Acros), 3-Brompentan 97% (Aldrich und Alfa Aesar), 2-Chlorpropan 99.5% (Fluka), Cycloheptylbromid 97% (Acros), Cyclopentylbromid 98% (Alfa Aesar), Neopentylbromid 98% (Alfa Aesar), Isobutylbromid 98% (Merck), Phenyldichlorphosphan 97% (Aldrich), 1.6 M MeLi in Et₂O (Acros), Brom-3,5-bis(trifluormethyl)benzol 98% (Alfa Aesar), Iodpentafluorbenzol 97% (Alfa Aesar), Furan 98% (Merck), 20% MeMgCl in THF (Merck), *N*-Methylpyrrol 99+% (Acros), 1-Brommesitylen 99% (Acros), 2-Bromanisol 97% (Acros), 15% *n*BuLi in Hexan (Chemetall), 1-Bromnaphthalin 96% (Acros), Brom reinst (Chemikalienausgabe), 9-Bromphenanthren 96% (Acros), 4-Bromtoluol 99% (Acros), 4-Bromanisol 99% (Aldrich), 2-Brompyridin 98% (Merck), *t*BuLi 15 % in Pentan (Chemetall), *tert*-Butylchlorid 99% (Acros), Veratrol 99+% (Acros), Resorcindimethylether 99% (Acros).

Die Gehaltsbestimmungen von Lösungen von Organomagnesium- und Organolithiumverbindungen erfolgte nach der Methode von *Paquette* durch Titration.^[157]

Analytische Methoden

¹H-NMR-Spektren

Die ¹H-NMR und ¹H-¹H-COSY Spektren wurden mit den Geräten *MERCURY-200* (199.97 MHz) und *INOVA-400* (399.94 MHz) der Firma VARIAN sowie mit den Geräten *ARX* 300 (300.13 MHz) und *AMX* 600 (599.88 MHz) der Firma BRUKER aufgenommen. Die Angabe der chemischen Verschiebung δ erfolgt in ppm. Die Angabe der Kopplungskonstanten *J* erfolgt in Hertz (Hz). Als interner Standard wurde der nichtdeuterierte Anteil des CDCl₃, C₆D₆ beziehungsweise des d⁶-Acetons, verwendet (CDCl₃ δ = 7.26, C₆D₆ δ = 7.16, d⁶-Aceton δ = 2.04). Die Signalmultiplizität wird wie folgt abgekürzt: s = Singulett, d = Dublett,

t = Triplett, q = Quartett, quin = Quintett, sept = Septett und m = Multiplett, t_{pseudo} = Pseudotriplett, t_{pseudo} = Pseudotriplett vom Pseudotriplett, tq_{pseudo} = Triplett vom Pseudoquartett.

¹³C-NMR-Spektren

Die ¹³C{¹H}-NMR und HSQC-Spektren wurden mit den Geräten *INOVA-400* (100.57 MHz) der Firma VARIAN sowie mit den Geräten *ARX 300* (75.47 MHz) und *AMX 600* (150.83 MHz) der Firma BRUKER aufgenommen. Das angegebene Lösemittel wurde als interner Standard verwendet (CDCl₃ δ = 77.4, C₆D₆ δ = 128.0).

³¹P{¹H}-NMR-Spektren

Die ³¹P{¹H}-NMR-Spektren wurden mit dem Gerät *MERCURY-200* (199.97 MHz) der Firma VARIAN und dem Gerät *ARX 300* (300.13 MHz) der Firma BRUKER aufgenommen. Als externer Standart diente H₃PO₄ 85 % [δ (³¹P) = 0.0].

Elementaranalysen

Die Elementaranalysen wurden mit dem Gerät *Vario EL* der Firma ELEMENTAR im mikroanalytischen Laboratorium des Departments Chemie und Biochemie der Ludwig-Maximilians-Universität München angefertigt.

Massenspektroskopie

EI-Messungen wurden an einem FINNIGAN *MAT 95* durchgeführt (FINNIGAN *MAT*, Bremen, Deutschland). Die Auflösung war bei Niederauflösung auf etwa 1000 und bei Hochauflösung auf etwa 5000 eingestellt. Je nach Methode wurden Massenbereiche von 40 bis 3040 u aufgenommen. Elektronenstoß Ionisation (EI) und Chemische Ionisation (CI) wurde bei einer Quellentemperatur von 250 °C und einer Elektronenenergie von 70 eV durchgeführt. Für EI Spektrenvergleiche diente die NIST/EPA/NIH *Mass Spectral Library 05* (NIST, Gaithersburg 2002), für CI wurde Isobutan als Reaktandgas bei einem Quellenaußendruck von 2×10^{-4} bar verwendet. Direktverdampfungsproben (DEP/EI, DEP/CI) wurden auf einem Platinfaden von 20 bis 1600 °C mit einer Rate von 120 Grad/min geheizt, Direktinsertionsproben (DIP/EI, DIP/CI) in einem Aluminiumtiegel von 20 bis 400 °C mit einer Rate von 60 Grad/min. FAB-Messungen wurden mit dem Gerät *Jeol Mstation JMS 700* durchgeführt.

Schmelzpunkte

Schmelzpunkte wurden mit der Schmelzpunktapparatur BÜCHI *B-540* bestimmt. Die angegebenen Temperaturen sind nicht korrigiert.

Siedepunkte

Die Drücke bei den Siedepunkten wurden in der Hochvakuumanlage, hinter der mit flüssigem Stickstoff gefüllten Kühlfalle, gemessen. Daher sind die Siedepunkte nur zur Orientierung.

Gaschromatographie-Massenspektrometrie (GC-MS)

Die Massenspektren wurden mit dem Gaschromatographen/Massenspektrometer der Firma AGILENT angefertigt (AGILENT 5973 MSD, HP-5MS-Kapillarsäule von AGILENT Technologies, Länge 30 m, Durchmesser 0.25 mm, Flussrate 1.0 mL/min, Injektor, Split (20 mL/min), Trägergas He, Quadrupol-Massenspektrometer). Die Retentionszeiten sind in den jeweiligen Präparationsvorschriften enthalten.

Methode	Ofentemperatur	Massenbereich
70-1	70 °C (2) – 25 °C/min à 150 °C – 50 °C/min à 250 °C (12)	50–500u
70-1LL	70 °C (2) – 25 °C/min à 150 °C – 50 °C/min à 250 °C (28)	50–550u
110L	110 °C (2) – 50 °C/min à 270 °C (25)	100–700u

Temperaturprogramm:

Infrarotspektren

IR-Spektren wurden mit einem PERKIN ELMER *1420 Infrared Spectrometer* aufgenommen. Die Wellenzahl ist in cm⁻¹ angegeben. Feststoffe wurden als Preßlinge einer KBr-Verreibung, Öle und Flüssigkeiten als Filme zwischen KBr-Platten gemessen.

Des Weiteren wurden IR-Spektren in Substanz mit der ATR-Einheit *Spectrum BX-59343* der Firma PERKIN ELMER mit dem Detektor *DuraSampl IR II* der Firma SMITHS DETECTION aufgenommen. Der Messbereich umfasst 4500 bis 650 cm⁻¹.

Zur Charakterisierung der beobachteten Banden wurden die folgenden Abkürzungen benutzt: vs (sehr stark), s (stark), m (mittel) und w (schwach).

11 Generelle Methodik

Generelle Methodik zur Darstellung von Grignard-Reagenzien

$$R-X \xrightarrow{Mg} R-MgX$$

$$X = CI, Br$$

Ein Zweihals- oder Dreihalskolben mit Rückflusskühler, Tropftrichter, magnetischem Rührkern und Mg-Spänen (1.1 Äquiv.) wurde evakuiert und mit Heißluftfön einige Minuten ausgeheizt. Nachdem die Apparatur mit Stickstoff geflutet wurde, gab man das Alkyl- oder Arylbromid (1.0 Äquiv.), gelöst in Et₂O oder THF, langsam zu den Mg-Spänen. Nach einigen Minuten setzte die Reaktion ein. Nach vollständiger Zugabe des Bromids bzw. Chlorids wurde eine Stunde bei Zimmertemperatur gerührt.

Um Grignard-Reagenzien als Suspensionen in *t*BuOMe zu erhalten, wurde das jeweilige Grignard-Reagenz in Et₂O oder THF nach obiger Anleitung hergestellt und anschließend unter Vakuum vom Lösemittel befreit. Zu dem farblosen Feststoff oder Öl wurden ca. 1 mL *t*BuOMe pro mmol Grignard-Reagenz zugefügt und einige Minuten bei Zimmertemperatur gerührt.

Generelle Methodik zur Darstellung von Phosphonigsäurediphenylestern (Methode 1)

Ar-Br
$$\begin{array}{c} 1) nBuLi, THF, -78 °C \\ -BuBr \\ 2) P(OPh)_3, THF, -95 °C \\ -LiOPh \end{array} Ar-P(OPh)_2$$

In einem trockenen *Schlenk*-Kolben mit magnetischem Rührkern, geflutet mit Stickstoff und mit Septum verschlossen, wurde die Bromarylverbindung in THF (30–50 mL) gelöst. Nachdem die Lösung auf –78 °C gekühlt wurde, fügte man über eine Spritze eine 1.5 M *n*BuLi-Lösung (1.10 Äquiv.) langsam hinzu und rührte die entstandene Suspension 10 Minuten. Zu der auf –95 °C herunter gekühlten Aryllithiumverbindung wurde unter starkem Rühren $P(OPh)_3$ (0.95 Äquiv.), gelöst in THF (ca. 4 mL), über eine Spritze zugefügt. Nach der Zugabe wurde die Lösung langsam auf Zimmertemperatur erwärmt. Die Reaktion ist abgeschlossen, nachdem aus der Suspension eine klare Lösung entstanden ist. Die selektive Bildung des Phosphonits konnte mittels ³¹P{¹H}-NMR-Spektrospopie kontrolliert werden.

Die Reaktionsmischung kann für eine weitere Substitutionsreaktion entweder weiter umgesetzt werden, oder das entstandene Phosphonit wird isoliert.

Für die Isolation des Phosphonits wurde die Reaktionsmischung mit H₂O versetzt (1–5 mL) um überschüssige Lithiumorganyle zu hydrolisieren. Anschließend wurde das THF mit Hilfe eines Rotationsverdampfers entfernt. Es wurde Et₂O (10–150 mL) zugefügt um das Phosphonit zu extrahieren und H₂O zugefügt um die organische Phase von Salzen zu befreien. Die wässrige Phase wurde mit Et₂O (2 × 25 mL) gewaschen. Die vereinigten Et₂O-Phasen wurden mit Na₂SO₄ getrocknet, filtriert und erneut eingeengt.

Aus dem jeweils entstandenen Öl oder Feststoff konnte über Kristallisation oder Waschen in einem organischen Lösemittel das gewünschte Phosphonit als farbloses Pulver erhalten werden.

Generelle Methodik zur Darstellung von Phosphinigsäurephenylestern (Methode 2)

Ar
$$-P(OPh)_2$$

$$\xrightarrow{R^1Li, THF, -78 \circ C} \qquad Ar \qquad POPh$$

$$\downarrow I \qquad IOPh \qquad R^1$$

Bei -78 °C wurde analog Methode 1, aus einer Bromarylverbindung (0.93 Äquiv.) mit *n*BuLi (0.98 Äquiv.) die jeweilige Aryllithiumverbindung in THF hergestellt. Über eine Spritze wurde die Aryllithiumverbindung bei -78 °C zu der Reaktionsmischung des Phosphonits zugegeben und langsam auf Zimmertemperatur erwärmt. Die selektive Bildung des Phosphinits wurde mittels ³¹P{¹H}-NMR-Spektrospopie überprüft (falls nötig konnte noch mehr von der Aryllithiumverbindung zugesetzt werden, um einen vollständigen Umsatz zu erhalten).

Die Reaktionsmischung kann entweder für eine dritte Substitutionsreaktion weiter umgesetzt werden, oder das entstandene Phosphinit wird isoliert.

Für die Isolation des Phosphinits wurde die Reaktionsmischung mit H₂O versetzt (1–5 mL), um überschüssige Lithiumorganyle zu hydrolisieren. Anschließend entfernte man das THF mit Hilfe eines Rotationsverdampfers. Es wurde Et₂O (10–150 mL) zugefügt um das Phosphinit zu extrahieren und anschließend wässrig aufgearbeitet. Die wässrige Phase wurde mit Et₂O (2×25 mL) gewaschen. Die vereinigten Et₂O-Phasen wurden mit Na₂SO₄ getrocknet, filtriert und erneut eingeengt. Aus dem jeweils entstandenen Öl oder Feststoff konnte über Kristallisation oder Waschen in einem organischen Lösemittel das gewünschte Phosphonit als kristallines Pulver erhalten werden.

Generelle Methodik zur Darstellung von Phosphanen aus P(OPh)₃ (Methode 3)

$$\begin{array}{ccc} Ar & R^{2}Li, THF, RT & Ar & R^{2}R^{2}\\ POPh & & & \\ R^{1} & & & \\ R^{1} & & & \\ R^{1} & & & \\ \end{array}$$

Analog zur Herstellung eines Phosphinits wurde eine Aryllithiumverbindung hergestellt, die bei Zimmertemperatur zu der Reaktionsmischung des Phosphinits über eine Spritze langsam zugegeben wurde. Man rührte eine weitere Stunde bei Zimmertemperatur bevor man die Reaktionsmischung mit H₂O (1–5 mL) hydrolisierte, um überschüssige Lithiumorganyle zu vernichten. Anschließend entfernte man am Rotationsverdampfer das THF und fügte Et₂O (10–150 mL) und H₂O (10–150 mL) zu. Die Phasen wurden getrennt und die wässrige Phase mit Et₂O (2 × 25 mL) gewaschen. Die vereinigten Et₂O-Phasen wurden mit Na₂SO₄ getrocknet, filtriert und erneut eingeengt. Aus dem jeweils entstandenen Öl oder Feststoff konnte über Kristallisation oder Waschen in einem organischen Lösemittel das gewünschte Phosphan als kristallines Pulver erhalten werden.

Generelle Methodik zur Darstellung von Phosphanen aus PCl₃ (Methode 4)

PCI₃

$$\frac{1) + R^{1}MgX, LM, -85 \circ C}{2) + R^{2}MgX \text{ oder } R^{2}Li, THF, -85 \circ C}$$

$$R^{1}-R^{2}$$

$$R^{3}MgX \text{ oder } R^{3}Li, THF, RT$$

$$R^{1} = \text{Neopentyl, Cycloalkyl, iPr, iBu in tBuOMe}{sec-Butyl, 3-Pentyl, tBu in Et_{2}O}$$

$$R^{2} = \text{Aryl, Alkyl ohne primäre } n\text{-Alkyle}$$

$$R^{3} = \text{beliebige Alkyl- oder Arylgruppen}$$

$$X = Cl, Br, l$$

In einen trockenen *Schlenk*-Kolben mit Tropftrichter, magnetischem Rührkern und mit Stickstoff geflutet, wurde PCl₃ (1.0 Äquiv.), gelöst in *t*BuOMe oder Et₂O (20–50 mL), auf -85 °C gekühlt. Über Tropftrichter gab man Tropfen für Tropfen das jeweilige Grignard-Reagenz (suspendiert in *t*BuOMe, oder als Lösung in Et₂O) unter starkem Rühren hinzu. Die Stöchiometrie wurde entweder durch vorige Titration des Grignard-Reagenzes kontrolliert^[157] oder alternativ wurden geringe Mengen des Grignard-Reagenzes zugefügt und anschließend die Phosphorspezies der Reaktionsmischung über ³¹P{¹H}-NMR-Spektroskopie quantifiziert, so lange, bis die gewünschte Stöchiometrie erreicht wurde.

Nach 10 Minuten Rühren wurde bei gleichbleibender Temperatur das zweite Grignard-Reagenz, bzw. Lithiumorganyl langsam über eine Spritze zugegeben. Nach weiteren 10 Minuten Rühren bei -85 °C wurde ein drittes Grignard-Reagenz (alternativ auch eine Organo-lithiumverbindung), gelöst in THF oder Et₂O, im leichten Überschuss (1.2–1.5 Äquiv.) zugegeben, um das letzte Chlor am Phosphor zu substituieren.

Man ließ die Reaktionsmischung auf Zimmertemperatur aufwärmen und arbeitete unter Schutzgas wässrig auf. Dabei wurde im Stickstoffgegenstrom H₂O (10–30 mL) zugefügt und kräftig gerührt. Nachdem sich die Phasen getrennt hatten, wurde die untere wässrige Phase abkanüliert und das Verfahren zwei Mal wiederholt. Anschließendes Trocknen der organischen Phase mit Na₂SO₄ und fraktioniertes Destillieren unter Vakuum führte zum gewünschten Phosphan.

12 Selektive Darstellung von Phosphoniten, Phosphiniten und tertiären Phosphanen aus P(OPh)₃

12.1 Selektive Darstellung von Phosphonigsäurediphenylestern

Diphenyl-2-(2´,6´-dimethoxybiphenylyl)phosphonit (10)

Entsprechend Methode 1 wurde 2-Brom-2´,6´-dimethoxybiphenyl (**8**) (1.00 g, 3.40 mmol, 1.13 Äquiv.) mit *n*BuLi (2.5 mL, 3.75 mmol, 1.24 Äquiv.) in 30 mL THF umgesetzt und anschließend P(OPh)₃ (0.93 g, 3.00 mmol, 1.00 Äquiv.), gelöst in THF (4 mL), langsam zugespritzt.

Nach Aufarbeitung wurde der erhaltene farblose Feststoff aus Aceton umkristallisiert. Man erhielt ein farbloses, mikrokristallines Pulver (0.94 g, 2.20 mmol, 72%).

IR (**KBr**): 3049 (w), 3011 (w), 2962 (w), 2936 (w), 2837 (w), 2182 (w), 1922 (w), 1784 (w), 1596 (s), 1483 (s), 1472 (s), 1453 (m), 1430 (m), 1300 (w), 1282 (w), 1250 (s), 1223 (s), 1196 (s), 1172 (w), 1158 (m), 1128 (w), 1109 (s), 1073 (w), 1032 (w), 1022 (w), 1001 (w), 954 (w), 910 (w), 893 (w), 873 (m), 851 (s), 824 (w), 784 (m), 770 (s), 752 (w), 737 (m), 722 (m), 693 (m), 674 (w), 612 (w), 594 (w), 556 (w), 540 (w), 512 (w), 502 (w), 486 (w), 463 (w).

Schmelzpunkt: 127 °C.

¹**H-NMR** (399.94 MHz, CDCl₃): δ = 3.65 (s, 6 H, OCH₃), 6.63 (d, ³*J*_{HH} = 8.4 Hz, 2 H, 3',5'-H), 6.84 (m, 4 H, *o*-H), 7.00 (ttd, ³*J*_{HH} = 8.4 Hz, ⁴*J*_{HH} = 1 Hz, ⁵*J*_{PH} = 0.5 Hz, 2 H, *p*-H), 7.18 (dd, ³*J*_{HH} = 8.4 Hz, ³*J*_{HH} = 8.4 Hz, 4 H, *m*-H), 7.29 (dddd, ³*J*_{HH} = 7.6 Hz, ⁴*J*_{PH} = 4.4 Hz, ⁴*J*_{HH} = 1.4 Hz, ⁵*J*_{HH} = 0.4 Hz, 1 H, 6-H), 7.34 (t, ³*J*_{HH} = 8.4 Hz, 1 H, 4'-H), 7.48 (t_{pseudo}d, ³*J*_{HH} = 7.5 Hz, ⁴*J*_{HH} = 1.4 Hz, 1 H, 4- oder 5-H), 7.56 (t_{pseudo}d, ³*J*_{HH} = 7.5 Hz, ⁴*J*_{HH} = 1.4 Hz, 1 H, 4- oder 5-H), 7.56 (t_{pseudo}d, ³*J*_{HH} = 1.5 Hz, ⁵*J*_{HH} = 0.4 Hz, 1 H, 2-H).

¹³C{¹H}-NMR (100.57 MHz, CDCl₃): δ = 55.7 (s, OCH₃), 103.8 (s, 3′,5′-CH), 117.1 (d, ${}^{3}J_{PC} = 8$ Hz, 1′-C), 119.8 (d, ${}^{3}J_{PC} = 9$ Hz, *o*-CH), 123.0 (s, *p*-CH), 127.3 (s, 4- oder 5-CH), 128.9 (d, ${}^{2}J_{PC} = 4.4$ Hz, 3-CH), 129.2 (s, *m*-CH), 129.6 (s, 4′-CH), 130.7 (s, 5- oder 4-CH), 131.0 (d, ${}^{3}J_{PC} = 5$ Hz, 6-CH), 138.1 (d, ${}^{1}J_{PC} = 38$ Hz, 2-CP), 139.5 (d, ${}^{2}J_{PC} = 17$ Hz, 1-C), 155.5 (d, ${}^{2}J_{PC} = 7.5$ Hz, POC), 158.0 (s, 2′,6′-COMe).

³¹**P**{¹**H**}-**NMR** (80.95 MHz, CDCl₃): δ = 157.6.

MS (EI): m/z (%) = 430.2 (0.05) [M⁺], 415.2 (0.07) [(M – Me)⁺], 399.2 (100) [(M – OMe)⁺].

Elementaranalyse für C₂₆H₂₃PO₄:

berechnet (%):	C: 72.55,	H: 5.39
gefunden (%):	C: 72.28,	H: 5.49.

Diphenyl-9-anthrylphosphonit (17)

Entsprechend Methode 1 wurde 9-Bromanthracen (1.00 g, 3.89 mmol, 1.05 Äquiv.) mit *n*BuLi (2.7 mL, 4.05 mmol, 1.09 Äquiv.) in 50 mL THF umgesetzt und anschließend P(OPh)₃ (1.15 g, 3.70 mmol, 1.00 Äquiv.), gelöst in THF (4 mL), langsam zugespritzt. Nach Aufarbeitung wurde der erhaltene gelbe Feststoff aus Et₂O umkristallisiert. Man erhielt ein gelbes mikrokristallines Pulver (1.02 g, 1.60 mmol, 70%).

IR (KBr): 3049 (w), 1948 (w), 1621 (w), 1592 (m), 1550 (w), 1514 (w), 1490 (s), 1452 (w), 1306 (w), 1213 (s), 1197 (s), 1160 (m), 1152 (m), 1104 (w), 1069 (w), 1022 (w), 949 (w), 922 (w), 905 (w), 895 (m), 874 (s), 846 (s), 820 (m), 776 (m), 764 (w), 738 (s), 712 (m), 688 (m), 668 (w), 612 (w), 598 (w), 581 (w), 560 (w), 523 (w), 498 (m).

Schmelzpunkt: 121–124 °C.

¹**H-NMR** (399.94 MHz, C₆D₆): $\delta = 6.79$ (tq_{pseudo}, ³*J*_{HH} = 7.4 Hz, 2 H, *p*-H), 6.96 (t_{pseudo}t_{pseudo}, *J* = 8 Hz, *J* = 2.4 Hz, 4 H, *m*-H), 7.16 (dm, *J* = 7.5 Hz, 4 H, *o*-H), 7.24 (ddd, ³*J*_{HH} = 8.5 Hz, ³*J*_{HH} = 6.5 Hz, ⁴*J*_{HH} = 1 Hz, 2 H, 3,6-H), 7.39 (ddd, ³*J*_{HH} = 9 Hz, ³*J*_{HH} = 6.5 Hz, ⁴*J*_{HH} = 1 Hz, 2 H, 3,6-H), 7.39 (ddd, ³*J*_{HH} = 9 Hz, ³*J*_{HH} = 6.5 Hz, ⁴*J*_{HH} = 1 Hz, 2 H, 2,7-H), 7.76 (dd, ³*J*_{HH} = 8.5 Hz, ⁴*J*_{HH} = 1 Hz, 2 H, 4,5-H), 8.22 (s, 1 H, 10-H), 9.71 (ddd, ³*J*_{HH} = 9 Hz, ⁴*J*_{PH} = 3.3 Hz, ⁴*J*_{HH} = 1 Hz, 2 H, 1,8-H).

¹³C{¹H}-NMR (100.57 MHz, C₆D₆): $\delta = 120.2$ (d, ³*J*_{PC} = 9.4 Hz, *o*-CH), 123.8 (s, *p*-CH), 125.5 (s, 3,6-CH), 127.0 (d, ⁴*J*_{PC} = 2.5 Hz, 2,7-CH), 127.0 (d, ³*J*_{PC} = 29.4 Hz, 1,8-CH), 129.6 (s, 5,6-CH), 130.0 (s, *m*-CH), 131.8 (d, ³*J*_{PC} = 4.4 Hz, 4′,10′-C_q), 132.6 (d, ¹*J*_{PC} = 27.5 Hz, 9-C_qP), 133.1 (s, 10-CH), 134.9 (d, ²*J*_{PC} = 17.5 Hz, 8′,9′-C_q), 156.4 (d, ²*J*_{PC} = 10.6 Hz, POC_q).

³¹**P**{¹**H**}-**NMR** (80.95 MHz, C_6D_6): $\delta = 171.0$.

MS (EI): m/z (%) = 394.2 (26.67) [M⁺], 301.1 (100) [(M – OPh)⁺], 317.1 (1.00) [(M – Ph)⁺], 223.1 (14.19) [(M – OPh, – Ph)⁺], 207.1 (16.90) [(M – 2 OPh)⁺].

Elementaranalyse für C₂₆H₁₉O₂P:

berechnet (%):	C: 79.18,	H: 4.86
gefunden (%):	C: 78.96,	H: 4.70.

12.2 Selektive Darstellung von Phosphinigsäurephenylestern

Phenyl-tert-butyl-2-(2',6'-dimethoxybiphenylyl)phosphinit (20)

Entsprechend Methoden 1 und 2 wurde 2-Brom-2',6'-dimethoxybiphenyl (2.00 g, 6.80 mmol, 1.13 Äquiv.) mit *n*BuLi (4.80 mL, 7.20 mmol, 1.20 Äquiv.) in 40 mL THF umgesetzt und anschließend P(OPh)₃ (1.57 g, 6.00 mmol, 1.00 Äquiv.), gelöst in THF (4 mL), langsam zugespritzt. Die anschließende Zugabe von *t*BuLi (6.53 mL, 11.10 mmol, 1.85 Äquiv.), führte zum gewünschten Phosphinit (**20**). Nach Aufarbeitung erhielt man ein farbloses Öl, welches in *n*-Pentan gewaschen und in EtOH auskristallisiert wurde. Das farblose, mikrokristalline Pulver wurde in 26% (198 mg, 0.57 mmol) Ausbeute erhalten.

IR (KBr): 3050 (w), 2996 (w), 2954 (m), 2939 (m), 2897 (w), 2862 (w), 2833 (w), 1595 (m), 1493 (m), 1471 (m), 1455 (m), 1430 (m), 1364 (w), 1301 (w), 1283 (w), 1246 (m), 1226 (m), 1165 (w), 1109 (s), 1072 (w), 1036 (w), 1000 (w), 896 (w), 866 (m), 829 (w), 810 (w), 783 (m), 766 (m), 746 (w), 721 (m), 692 (m), 668 (w), 613 (w), 598 (w), 540 (w), 504 (w), 474 (w), 462 (w).

Schmelzpunkt: 123 °C.

¹**H-NMR** (599.80 MHz, CDCl₃): $\delta = 0.93$ (d, ³ $J_{PH} = 12.7$ Hz, 9 H, C(CH₃)₃), 3.67 (s, 3 H, OCH₃), 3.67 (s, 3 H, OCH₃), 6.60 (d, ³ $J_{HH} = 8.4$ Hz, 1 H, 3′- oder 5′-H), 6.60 (d, ³ $J_{HH} = 8.4$ Hz, 1 H, 5′- oder 3′-H), 6.95 (t_{pseudo}, ³ $J_{HH} = 7.3$ Hz, 1 H, p-H), 7.07 (d, ³ $J_{HH} = 8.4$ Hz, 2 H, o-H), 7.20 (m, 1 H, 6-H), 7.22 (t_{pseudo}, ³ $J_{HH} = 8.4$ Hz, 2 H, m-H), 7.31 (t, ³ $J_{HH} = 8.4$ Hz, 1 H, 4′-H), 7.36 (t_{pseudo}d, ³ $J_{HH} = 7.6$ Hz, ⁴ $J_{HH} = 1.2$ Hz, 1 H, 4- oder 5-H), 7.43 (t_{pseudo}, ³ $J_{HH} = 7.4$ Hz, 1 H, 5- oder 4-H), 7.78 (ddd, ³ $J_{HH} = 7.7$ Hz, ³ $J_{PH} = 3.0$ Hz, ⁴ $J_{HH} = 1.0$ Hz, 1 H, 3-H).

¹³C{¹H}-NMR (150.83 MHz, CDCl₃): $\delta = 24.8$ (d, ²*J*_{PC} = 17 Hz, C(*C*H₃)₃), 33.8 (d, ¹*J*_{PC} = 14 Hz, *C*Me), 55.2 (s, OCH₃), 55.4 (s, OCH₃), 103.5 (s, 3'-CH oder 5'-CH), 103.5 (s, 5'-CH oder 3'-CH), 118.1 (d, ³*J*_{PC} = 6 Hz, 1'-C), 119.2 (d, ³*J*_{PC} = 9 Hz, *o*-CH), 121.6 (s, *p*-CH), 126.3 (s), 129.0 (s, *m*-CH), 129.1 (s), 130.5 (s), 131.2 (d, ²*J*_{PC} = 5 Hz, 3-CH), 138.8 (d, ¹*J*_{PC} = 32 Hz, 2-CP), 139.0 (d, ²*J*_{PC} = 29 Hz, 1-C), 156.9 (s, *COMe*), 158.2 (s, *COMe*), 158.3 (d, ²*J*_{PC} = 8 Hz, POC).

³¹**P**{¹**H**}-**NMR** (80.95 MHz, CDCl₃): δ = 128.2.

MS (EI): m/z (%) = 363.2 (100) [(M – OMe)⁺] 307.2 (16.03) [(M – OMe, – tBu)⁺], 229.1 (36.23) [(M – OMe, – tBu, – Ph)⁺].

Elementaranalyse für C₂₄H₂₇O₃P:

berechnet (%):	C: 73.08,	H: 6.90
gefunden (%):	C: 72.92,	H: 6.95.

Phenyl-cyclohexyl-2-(2´,6´-dimethoxybiphenylyl)phosphinit (22)

Entsprechend Methode 1 wurden 2-Brom-2´,6´-dimethoxybiphenyl (1.00 g, 3.40 mmol, 1.13 Äquiv.) mit *n*BuLi (2.5 mL, 3.75 mmol, 1.24 Äquiv.) in 30 mL THF umgesetzt und anschließend P(OPh)₃ (0.93 g, 3.00 mmol, 1.00 Äquiv.), gelöst in THF (4 mL), langsam zugespritzt. Bei Zimmertemperatur wurde zu der Reaktionsmischung CyMgCl · LiCl (15 mL, 7.50 mmol, 2.50 Äquiv.), gelöst in THF und 10% 1,4-Dioxan, zugegeben und über Nacht gerührt. Nach Aufarbeitung erhielt man ein farbloses Öl, welches mit EtOH auskristallisiert wurde. Das farblose, mikrokristalline Pulver wurde in < 20% Ausbeute erhalten.

IR (KBr): 3058 (w), 3015 (w), 2984 (w), 2902 (w), 2941 (m), 2818 (w), 1951 (w), 1630 (w), 1568 (w), 1458 (w), 1440 (w), 1422 (w), 1404 (w), 1277 (w), 1232 (w), 1203 (w), 1176 (w), 1150 (w), 1040 (s), 919 (w), 906 (m), 841 (w), 753 (w), 731 (w), 693 (w), 654 (w), 594 (w), 580 (w), 536 (w), 489 (w), 434 (w).

Schmelzpunkt: 114 °C.

¹**H-NMR** (599.80 MHz, CDCl₃): $\delta = 0.96-1.08$ (m, 1 H), 1.08–1.22 (m, 3 H), 1.24–1.40 (m, 1 H), 1.50–1.68 (m, 4 H), 1.70–1.82 (m, 2 H), 3.65 (s, 3 H, OCH₃), 3.69 (s, 3 H, OCH₃), 6.61 (d_{pseudo}, ³*J*_{HH} = 8.4 Hz, 2 H, 3′,5′-H), 6.93 (t, ³*J*_{HH} = 8 Hz, 1 H, *p*-H), 7.02 (d, ³*J*_{HH} = 8 Hz, 2 H, *o*-H), 7.17 (ddd, ³*J*_{HH} = 7 Hz, ⁴*J*_{PH} = 3 Hz, ⁴*J*_{HH} = 1 Hz, 1 H, 6-H), 7.19 (t_{pseudo}, ³*J*_{HH} = 8 Hz, 2 H, *m*-H), 7.32 (t_{pseudo}, ³*J*_{HH} = 8.4 Hz, 1 H, 4′-H), 7.39 (t_{pseudo}d, ³*J*_{HH} = 7 Hz, ⁴*J*_{HH} = 1 Hz, 1 H, 4- oder 5-H), 7.43 (t_{pseudo}d, ³*J*_{HH} = 7 Hz, ⁴*J*_{HH} = 1 Hz, 1 H, 5- oder 4-H), 7.77 (ddd, ³*J*_{HH} = 7 Hz, ⁴*J*_{HH} = 1 Hz, 1 H, 5- oder 4-H), 7.77 (ddd, ³*J*_{HH} = 7 Hz, ⁴*J*_{HH} = 1 Hz, 1 H, 3-H).

¹³C{¹H}-NMR (150.83 MHz, CDCl₃): δ = 26.4 (s, CH₂), 26.6 (d, J_{PC} = 19 Hz, CH₂), 26.8 (d, J_{PC} = 8 Hz, CH₂), 27.0 (s, CH₂), 27.1 (d, J_{PC} = 6 Hz, CH₂), 42.5 (d, ¹ J_{PC} = 13 Hz, PCH), 55.3 (s, OCH₃), 55.6 (s, OCH₃), 103.3 (s, 3'- oder 5'-CH), 103.7 (s, 5'- oder 3'-CH), 117.8 (d, J_{PC} = 6 Hz, 1'-C), 118.9 (d, ³ J_{PC} = 10 Hz, *o*-CH), 121.6 (s, *p*-CH), 127.0 (s), 128.9 (s), 129.0 (s, *m*-CH), 129.2 (s), 129.3 (s), 130.7 (d, ² J_{PC} = 4 Hz, 3-CH), 138.2 (d, ¹ J_{PC} = 32 Hz, 2-CP), 140.4 (d, ² J_{PC} = 27 Hz, 1-C), 157.2 (s, COMe), 158.2 (s, COMe), 158.4 (d, ² J_{PC} = 9 Hz, POC).

³¹**P**{¹**H**}-**NMR** (80.95 MHz, CDCl₃): δ = 123.3.

MS (EI): $m/z = 419.2 (0.1) [(M - H)^+], 405.2 (0.1) [(M - Me)^+], 389.2 (100) [(M - OMe)^+].$

Elementaranalyse für C₂₆H₂₉PO₃:

berechnet (%):	C: 74.27,	H: 6.95
gefunden (%):	C: 73.71,	H: 6.89.

Phenyl-2-(2´,6´-dimethoxybiphenylyl)(2,4,6-trimethoxyphenyl)phosphinit (19)

Analog der Methoden 1 bis 2 wurde aus 2-Brom-2´,6´-dimethoxybiphenyl (1.000 g, 3.40 mmol, 1.13 Äquiv.), gelöst in THF (30 mL), mit *n*BuLi (2.5 mL, 3.75 mmol, 1.24 Äquiv.) das **9** erzeugt, welches mit P(OPh)₃ (930 mg, 3.00 mmol, 1.00 Äquiv.) weiter zum Phosphinit umgesetzt wurde. Anschließende Zugabe von 1-Lithium-2,4,6-trimethoxy-phenylid (4.50 mmol, 1.50 Äquiv.), hergestellt aus 1,3,5-Trimethoxybenzol (756 mg, 4.50 mmol, 1.50 Äquiv.) und *n*BuLi (3 mL, 4.50 mmol, 1.50 Äquiv.) in Et₂O bei Zimmertemperatur (2 h), führte zum gewünschten Phosphinit. Nach Aufarbeitung erhielt man ein farbloses Pulver welches in EtOH gewaschen wurde (878 mg, 1.74 mmol, 58%).

IR (**KBr**): 3049 (w), 3001 (w), 2936 (w), 2834 (w), 1592 (s), 1492 (m), 1472 (s), 1430 (m), 1406 (m), 1333 (m), 1285 (w), 1250 (m), 1223 (s), 1205 (m), 1157 (m), 1112 (s), 1089 (m), 1037 (w), 1000 (w), 951 (w), 920 (w), 861 (m), 813 (w), 782 (w), 761 (m), 729 (w), 692 (w), 672 (w), 640 (w), 611 (w), 594 (w), 565 (w), 504 (w), 463 (w).

Schmelzpunkt: 150 °C.

¹**H-NMR** (300.13 MHz, d⁶-Aceton): $\delta = 3.14$ (s, 3 H, 4^{**}-OCH₃), 3.37 (s, 6 H, 2^{**},6^{**}-OCH₃), 3.72 (s, 3 H, 2^{*}- oder 6^{*}-OCH₃), 3.77 (s, 3 H, 6^{*}- oder 2^{*}-OCH₃), 5.94 (d, ⁴*J*_{PH} = 2.3 Hz, 2 H, 3^{**},5^{**}-H), 6.26 (dd, ³*J*_{HH} = 8.4 Hz, ⁴*J*_{HH} = 0.6 Hz, 1 H, 3^{*}- oder 5^{*}-H), 6.62 (dd, ³*J*_{HH} = 8.4 Hz, ⁴*J*_{HH} = 0.6 Hz, 1 H, 5^{*}- oder 3^{*}-H), 6.86–6.93 (m, 2 H), 7.02–7.09 (dm, ³*J*_{HH} = 8 Hz, 2 H, *o*-H), 7.20 (t, ³*J*_{HH} = 8.4 Hz, 1 H, 4^{*}-H), 7.15–7.28 (m, 3 H), 7.33 (t_{pseudo}dd, ³*J*_{HH} = 7.5 Hz, *J* = 1.3 Hz, *J* = 1 Hz, 1 H). 7.95 (dddd, ³*J*_{HH} = 7.7 Hz, ³*J*_{PH} = 3.3 Hz, ⁴*J*_{HH} = 1.4 Hz, ⁵*J*_{HH} = 0.4 Hz, 1 H, 3-H). ¹³C{¹H}-NMR (75.48 MHz, d⁶-Aceton): $\delta = 55.1$ (s, OCH₃), 55.7 (s, OCH₃), 55.8 (s, OCH₃), 56.1 (d, ⁴*J*_{PC} = 2 Hz, OCH₃), 91.4 (s, 3^{''}, 5^{''}-CH), 103.8 (s, 3[']- oder 5[']-CH), 104.7 (s, 5[']- oder 3[']-CH), 108.0 (d, ¹*J*_{PC} = 34 Hz, 1^{''}-CP), 118.4 (d, ³*J*_{PC} = 5 Hz, 1[']-C), 119.4 (d, ³*J*_{PC} = 13 Hz, *o*-CH), 121.9 (s, *p*-CH), 126.2 (s), 127.5 (s), 129.8 (s), 129.9 (s, *m*-CH), 130.7 (d, *J*_{PC} = 5 Hz), 131.3 (d, *J*_{PC} = 3 Hz), 136.7 (d, ¹*J*_{PC} = 30 Hz, 2-PC), 143.2 (d, *J*_{PC} = 17 Hz, 1-C), 158.3 (s, 2[']-oder 6[']-COMe), 158.8 (s, 2[']- oder 6[']-COMe), 159.5 (d, ²*J*_{PC} = 13 Hz, POC), 165.2 (s, 4^{''}-COMe), 165.5 (d, ²*J*_{PC} = 12 Hz, 2^{''}, 6^{''}-COMe).

³¹**P**{¹**H**}-**NMR** (80.95 MHz, CDCl₃): δ = 95.1.

MS (EI): m/z (%) = 505.3 (0.11) [(M + H)⁺], 504.3 (0.05) [(M)⁺], 489,2 (0.25) [(M - CH₃)⁺], 473.3 (100) [(M - OCH₃)⁺].

Elementaranalyse für C₂₉H₂₉PO₆:

berechnet (%):	C: 69.04,	H: 5.79
gefunden (%):	C: 68.68,	H: 5.80.

Phenyl-9-anthryl-1-naphthylphosphinit (21)

Entsprechend Methode 2 wurde 1-Lithiumnaphthylid (3.6 mmol, 0.97 Äquiv.), welches aus 1-Bromnaphtalin (3.6 mmol, 0.97 Äquiv.) und *n*BuLi (3.8 mmol, 1.02 Äquiv.) hergestellt wurde, innerhalb einer Minute zu der Reaktionsmischung von Verbindung **9** zugegeben. Die Reaktion wurde weitere 10 Minuten gerührt und dann langsam auf Zimmertemperatur erwärmt. Nach Aufarbeitung wurde der erhaltene gelbe Feststoff aus *n*-Hexan umkristallisiert. Man erhielt ein gelbes mikrokristallines Pulver (729 mg, 1.7 mmol, 46%).

¹**H-NMR** (300.13 MHz, CDCl₃): $\delta = 7.00$ (tt, ³*J*_{HH} = 7 Hz, ⁴*J*_{HH} = 1.5 Hz, 1 H, *p*-CH), 7.11– 7.22 (m, 4 H), 7.30 (t_{pseudo}d, ³*J*_{HH} = 8 Hz, ⁴*J*_{HH} = 1.5 Hz, 1 H), 7.35 (t_{pseudo}d, ³*J*_{HH} = 8 Hz, ⁴*J*_{HH} = 1.5 Hz, 1 H), 7.41–7.46 (m, 6 H), 7.58 (ddd, ³*J*_{HH} = 7 Hz, ³*J*_{PH} = 5 Hz, ⁴*J*_{HH} = 1 Hz, 1 H, 2-CH_{Naphthyl}), 7.81 (t_{pseudo}, *J* = 9 Hz, 2 H, 7'-CH_{Naphthyl}), 8.00 (m, 2 H), 8.23 (d, ³*J*_{HH} = 8.4 Hz, 1 H, 8'-CH_{Naphthyl}), 8.58 (s, 1 H, 10-CH), 9.18 (m, 2 H, 1,8-CH).

¹³C{¹H}-NMR (75.48 MHz, CDCl₃): δ = 118.8 (d, J_{PC} = 11 Hz, *o*-CH), 122.5 (s, *p*-CH), 125.2 (s), 125.7 (s), 125.9 (s), 126.5 (s), 126.7 (d, ³ J_{PC} = 27 Hz, 1,8-CH), 127.2 (s), 128.9 (s), 129.3 (s), 129.5 (s), 129.6 (s), 129.6 (s), 130.0 (s), 130.1 (s), 131.5 (d, J_{PC} = 4 Hz), 132.4 (s), 133.7 (s), 133.8 (d, J_{PC} = 19 Hz), 135.6 (d, J_{PC} = 15 Hz), 136.0 (d, J_{PC} = 18 Hz), 157.5 (d, ² J_{PC} = 12 Hz, POC_q).

³¹**P**{¹**H**}-**NMR** (80.95 MHz, CDCl₃): δ = 108.4.

MS (**EI**): m/z (%) = 428.1 (83.81) [M⁺], 335.1 (100) [(M - OPh)⁺], 302.1 (30.5) [(M - Naphthyl)⁺].

Phenyl-bis-2-(4,4´-di-tert-butylbiphenylyl)phosphinit (70)

4,4'-Di(*tert*-butyl)-2-iod-1,1'-biphenyl (1.33 g, 3.33 mmol, 5.53 Äquiv.) wurden in einen trockenen mit Stickstoff gefluteten 50 mL *Schlenk*-Kolben vorgelegt und in Et₂O (20 mL) gelöst. Anschließend wurden Li-Granalien (47 mg, 6.66 mmol, 11.06 Äquiv.) zugegeben und über Nacht bei Zimmertemperatur gerührt. Man kühlte die Reaktionsmischung auf –65 °C herunter und gab zu dem entstandenen 4,4'-Di(*tert*-butyl)-2-lithium-1,1'-biphenylid über eine Spritze P(OPh)₃ (186 mg, 0.60 mmol, 1.00 Äquiv.). Anschließend wurde die Reaktions-

mischung auf Zimmertemperatur erwärmt und über Nacht gerührt. Nachdem die Reaktion mittels ³¹P-NMR-Spektroskopie auf Vollständigkeit überprüft wurde, arbeitete man wässrig auf und extrahierte mit Et₂O (3×30 mL). Die vereinigten organischen Phasen wurden über Na₂SO₄ getrocknet, filtriert und das Lösemittel unter vermindertem Druck entfernt. Das Rohprodukt wurde durch Kristallisation aus Aceton gereinigt (183 mg, 0.28 mmol, 46%).

Schmelzpunkt: 168.5–170.5 °C.

¹**H-NMR** (599.7 MHz, CDCl₃) δ = 1.33 (s, 18 H, C(CH₃)₃), 1.37 (s, 18 H, C(CH₃)₃), 6.56 (d, *J* = 8.1 Hz, 2 H), 6.86 (t_{pseudo}, ³*J*_{HH} = 7.3 Hz, 1 H, *p*-H), 7.04 (t_{pseudo}, *J* = 7.4 Hz, 2 H), 7.13 (d, *J* = 7.1 Hz, 4 H, 3′,3′′,5′,5′′-H), 7.31 (d, *J* = 8.0 Hz, 4 H, 2′,2′′,6′,6′′-H), 7.32 (d, *J* = 8.0 Hz, 2 H), 7.50 (ddd, *J* = 8.0 Hz, *J* = 2.1 Hz, *J* = 0.7 Hz, 2 H), 7.73 (dd, *J* = 3.0 Hz, *J* = 2.3 Hz, 2 H)

¹³C{¹H}-NMR (150.79 MHz, CDCl₃): $\delta = 35.0$ (s, C(CH₃)₃), 34.7 (s C(CH₃)₃), 31.6 (s, C(CH₃)₃), 31.6 (s, C(CH₃)₃), 119.5 (d, J = 9.9 Hz), 122.1 (s) 124.9 (s), 126.7 (s), 129.1 (s), 129.3 (d, J = 2.2 Hz), 129.8 (d, J = 4.6 Hz), 130.0 (d, J = 4.0 Hz), 138.2 (d, J = 9.5 Hz), 138.3 (d, J = 9.4 Hz,), 144.0 (d, ¹ $J_{PC} = 29.0$ Hz, PC), 149.8 (s, 4- oder 4'-CH) , 150.0 (s, 4- oder 4'-CH) 157.7 (d, J = 11.4 Hz, POC).

³¹**P**{¹**H**}-**NMR** (80.95 MHz, CDCl₃): δ = 105.0.

MS (EI): $m/z = 654.6 (75.59) [M^+], 653.6 (100.0) [(M - H)^+], 597.4 (13.1) [(M - tBu)^+].$

Elementaranalyse für C46H55PO:

berechnet (%):	C: 84.36,	H: 8.46
gefunden (%):	C: 84.11,	H: 8.39.

12.3 Darstellung von tertiären Phosphanen aus P(OPh)₃

2-(2',6'-Dimethoxybiphenylyl)diphenylphosphan (26)

Analog der Methoden 1 bis 3 wurde aus 2-Brom-2',6'-dimethoxybiphenyl (**8**) (1.00 g, 3.40 mmol, 1.13 Äquiv.), gelöst in THF (30 mL), mit *n*BuLi (2.5 mL, 3.75 mmol, 1.24 Äquiv.) das 2-Lithium-2',6'-dimethoxybiphenylid (**9**) hergestellt, welches mit P(OPh)₃ (0.93 g, 3.00 mmol, 1.00 Äquiv.), weiter zum Phosphinit umgesetzt wurde. Anschließende Zugabe von Phenyllithium (8.00 mmol, 2.66 Äquiv.), hergestellt aus Brombenzol (1.25 g, 8.00 mmol, 2.66 Äquiv.) und *n*BuLi (5.7 mL, 8.5 mmol, 2.83 Äquiv.), führte zum gewünschten Phosphan. Nach Aufarbeitung erhielt man ein gelbes Öl, welches in *n*-Pentan gewaschen und der erhaltene farblose Feststoff aus Aceton umkristallisiert wurde (0.89 g, 2.22 mmol, 74%).

IR (KBr): 3048 (w), 3002 (w), 2964 (w), 2935 (w), 2834 (w), 1587 (m), 1467 (m), 1428 (m), 1299 (w), 1286 (w), 1247 (m), 1168 (w), 1106 (s), 1029 (w), 1000 (w), 920 (w), 782 (w), 760 (w), 745 (m), 734 (w), 699 (m), 664 (w), 594 (w), 544 (w), 515 (w), 506 (w), 491 (w), 465 (w).

Schmelzpunkt: 138 °C.

¹**H-NMR** (300.13 MHz, CDCl₃): $\delta = 3.43$ (s, 6 H, OCH₃), 6.51 (d, ³*J*_{HH} = 8.4 Hz, 2 H, 3',5'-H), 7.10–7.30 (m, 14 H), 7.40 (t_{pseudo}dd, ³*J*_{HH} = 7.4 Hz, ⁴*J*_{HH} = 1 Hz, ⁵*J*_{HH} = 0.4 Hz, 1 H).

¹³C{¹H}-NMR (75.47 MHz, CDCl₃): δ = 55.3 (s, OMe), 103.5 (s, 3′,5′-CH), 119.1 (d, ³*J*_{PC} = 8 Hz, 1′-C), 127.2 (s), 127.9 (s, *p*-CH), 128.0 (d, ²*J*_{PC} = 7 Hz, *m*-CH), 128.7 (s), 129.1 (s), 130.9 (d, ²*J*_{PC} = 6 Hz, 3-CH), 133.6 (d, ²*J*_{PC} = 20 Hz, *o*-CH), 134.0 (s), 137.7 (d, ²*J*_{PC} = 10 Hz, 1-C), 138.2 (d, ¹*J*_{PC} = 13 Hz, *ipso*-C), 141.4 (d, ¹*J*_{PC} = 33.7 Hz, 2-CP), 157.8 (s, COMe).

³¹**P**{¹**H**}-**NMR** (80.95 MHz, CDCl₃): $\delta = -11.6$.

MS (EI): m/z (%) = 367.1 (100) [(M – OMe)⁺], 352.1 (6.1) [(M – OMe, – Me)⁺].

Elementaranalyse für C₂₆H₂₃PO₂:

berechnet (%):	C: 78.38,	H: 5.82
gefunden (%):	C: 78.05,	H: 5.86.

2-(2´,6´-Dimethoxybiphenylyl)bis(2-methoxyphenyl)phosphan (25)

Analog der Methoden 1 bis 3 wurde aus 2-Brom-2´,6´-dimethoxybiphenyl (**8**) (1.00 g, 3.40 mmol, 1.13 Äquiv.), gelöst in THF (30 mL), mit *n*BuLi (2.5 mL, 3.75 mmol, 1.24 Äquiv.) das 2-Lithium-2´,6´-dimethoxybiphenylid (**9**) erzeugt, welches mit P(OPh)₃ (0.93 g, 3.00 mmol, 1.00 Äquiv.) weiter zum Phosphonit (**10**) umgesetzt wurde. Anschließende Zugabe von 2-Anisyllithium (8.00 mmol, 2.66 Äquiv.), hergestellt aus 2-Bromanisol (1.49 g, 8.00 mmol, 2.66 Äquiv.) und *n*BuLi (5.7 mL, 8.50 mmol, 2.83 Äquiv.), führte zum gewünschten Phosphan (**25**). Nach Aufarbeitung erhielt man ein farbloses Pulver, welches in EtOH gewaschen wurde (346 mg, 0.88 mmol, 27%).

IR (KBr): 3057 (w), 3005 (w), 2934 (w), 2834 (w), 1588 (m), 1572 (m), 1472 (s), 1430 (m), 1272 (m), 1244 (s), 1179 (w), 1162 (w), 1110 (s), 1072 (w), 1041 (w), 1025 (m), 1002 (w), 784 (w), 756 (m), 730 (w), 594 (w), 520 (w), 504 (w).

Schmelzpunkt: 199 °C.

¹**H-NMR** (300.13 MHz, CDCl₃): δ = 3.42 (s, 6 H, OCH₃), 3.60 (s, 6 H, OCH₃), 6.53 (d, ³*J*_{HH} = 8.4 Hz, 2 H, 3′,5′-H), 6.76–6.88 (m, 6 H), 7.12 (dddd, ³*J*_{HH} = 7.6 Hz, *J*_{PH} = 3.8 Hz, ⁴*J*_{HH} = 1.5 Hz, ⁵*J*_{HH} = 0.5 Hz, 1 H), 7.18–7.31 (m, 5 H), 7.39 (t_{pseudo}dd, ³*J*_{HH} = 7.8 Hz, ⁴*J*_{HH} = 1.5 Hz, *J* = 0.6 Hz, 1 H).

¹³C{¹H}-NMR (75.47 MHz, CDCl₃): $\delta = 55.1$ (s, OCH₃), 55.5 (s, OCH₃), 103.5 (s, 3['],5[']-CH), 110.1 (s, 3^{''}-CH), 119.2 (d, ³*J*_{PC} = 7 Hz, 1[']-CH), 120.5 (s, 5^{''}-CH), 126.5 (d, ¹*J*_{PC} = 14 Hz, 1^{''}-CP), 126.7 (s), 128.2 (s), 128.8 (s), 129.3 (s, 4^{''}-CH), 131.0 (d, ²*J*_{PC} = 6.4 Hz, 6^{''}-CH), 134.1 (s), 134.5 (s), 137.1 (d, *J*_{PC} = 9 Hz), 141.1 (d, ¹*J*_{PC} = 35 Hz, 2-CP), 157.8 (s, 2['],6^{'-}COMe), 161.3 (d, ²*J*_{PC} = 16 Hz, 2^{''}-COMe).

³¹**P**{¹**H**}-**NMR** (80.95 MHz, CDCl₃): $\delta = -33.3$.

MS (EI): m/z (%) = 427.2 (100) [(M – OMe)⁺], 381.2 (4.7) [(M – OMe, – OMe, – Me)⁺].

Elementaranalyse für C₂₈H₂₇PO₄:

berechnet (%):	C: 73.35,	H: 5.94
gefunden (%):	C: 72.94,	H: 6.03.

Dibutyl-2-(2´,6´-dimethoxybiphenylyl)phosphan (24)

Analog der Methoden 1 bis 3 wurde aus 2-Brom-2',6'-dimethoxybiphenyl (8) (1.00 g, 3.40 mmol, 1.13 Äquiv.), gelöst in THF (30 mL), mit *n*BuLi (2.5 mL, 3.75 mmol, 1.24 Äquiv.) das 2-Lithium-2',6'-dimethoxybiphenylid (9) hergestellt, welches mit P(OPh)₃ (0.93 g, 3.00 mmol, 1.00 Äquiv.) weiter zum Phosphonit (10) umgesetzt wurde. Die anschließende Zugabe von *n*BuLi (5.3 mL, 8.00 mmol, 2.66 Äquiv.) führte zum gewünschten Phosphan (24). Nach Aufarbeitung erhielt man ein gelbes Öl, welches über Nacht auskristallisierte. Der erhaltene farblose Feststoff wurde aus Et₂O umkristallisiert (198 mg, 0.57 mmol, 19%). Ausgehend vom isolierten Phosphonit konnte in einer einstufigen Synthese eine Ausbeute von 61% (636 mg, 1.83 mmol) erhalten werden.

IR (**KBr**): 3044 (w), 3006 (w), 2956 (m), 2924 (m), 2870 (m), 2834 (s), 2183 (w), 1589 (s), 1557 (w), 1471 (s), 1427 (m), 1378 (w), 1305 (w), 1282 (w), 1244 (s), 1172 (w), 1109 (s), 1035 (w), 1004 (w), 949 (w), 895 (w), 779 (w), 765 (w), 742 (w), 726 (m), 705 (w), 598 (w), 544 (w), 498 (w), 460 (w).

Schmelzpunkt: 100 °C.

¹**H-NMR** (300.13 MHz, CDCl₃): $\delta = 0.82$ (t, ³*J*_{HH} = 7.0 Hz, 6 H, 2 CH₃), 1.24 (m, 8 H, CH₂CH₂CH₃), 1.42–1.66 (m, 4 H, 2 PCH₂), 3.70 (s, 6 H, OCH₃), 6.54 (d, ³*J*_{HH} = 8.4 Hz, 2 H, 3′,5′-H), 7.16 (m, 1 H, 6-H), 7.32 (t, ³*J*_{HH} = 8.4 Hz, 1 H, 4′-H), 7.38 (m, 2 H, 4,5-H), 7.57 (m, 1 H, 3-H).

¹³C{¹H}-NMR (75.47 MHz, CDCl₃): $\delta = 13.8$ (s, Me), 24.5 (d, ${}^{3}J_{PC} = 12$ Hz, CMe), 28.2 (d, ${}^{2}J_{PC} = 15$ Hz, CCMe), 28.6 (d, ${}^{1}J_{PC} = 12$ Hz, PCH₂), 55.5 (s, OCH₃), 103.4 (s, 3['],5[']-CH), 119.6 (d, ${}^{3}J_{PC} = 6$ Hz, 1[']-C), 127.1 (s), 128.2 (s), 128.9 (s), 129.7 (s), 130.5 (d, ${}^{2}J_{PC} = 6$ Hz, 3-CH), 139.4 (d, ${}^{2}J_{PC} = 15$ Hz, 1-C), 141.4 (d, ${}^{1}J_{PC} = 31$ Hz, 2-CP), 157.6 (s, COMe).

³¹**P**{¹**H**}-**NMR** (80.95 MHz, CDCl₃): $\delta = -33.5$.

MS (EI): m/z (%) = 343.2 (16.21) [(M + H)⁺)], 327.2 (100) [(M - Me)⁺], 301.2 (4.7) [(M - OMe)⁺].

Elementaranalyse für C₂₂H₃₁PO₂:

berechnet (%):	C: 73.72,	H: 8.72
gefunden (%):	C: 73.52,	H: 8.81.

Butyl-2-(2',6'-dimethoxybiphenylyl)(2,4,6-trimethoxyphenyl)phosphan (23)

Analog der Methoden 1 bis 3 wurde aus 2-Brom-2',6'-dimethoxybiphenyl (8) (6.00 g, 20.5 mmol, 1.02 Äquiv.), gelöst in THF (100 mL), mit *n*BuLi (14 mL, 21.0 mmol, 1.05 Äquiv.) das 2-Lithium-2',6'-dimethoxybiphenylid (9) erzeugt, welches mit P(OPh)₃ (6.20 g, 20.0 mmol, 1.00 Äquiv.), weiter zum Phosphonit umgesetzt wurde. Anschließende Zugabe von 1-Lithium-2,4,6-trimethoxyphenylid (30.0 mmol, 1.50 Äquiv.), hergestellt aus 1,3,5-Trimethoxybenzol (5.04 g, 30.0 mmol, 1.50 Äquiv.) und *n*BuLi (14 mL, 21.0 mmol, 1.05 Äquiv.) in Et₂O bei Zimmertemperatur (über Nacht), führte zum Phosphinit (10). 10 wurde mit *n*BuLi (15 mL, 22.5 mmol, 1.13 Äquiv.) weiter zum Phosphan (23) umgesetzt. Nach Aufarbeitung erhielt man ein hellbraunes Öl welches in EtOH gewaschen wurde. Man erhielt ein farbloses, mikrokristallines Pulver (1.69 g, 3.6 mmol, 18%).

IR (**KBr**): 3047 (w), 2996 (w), 2954 (m), 2934 (m), 2870 (w), 2833 (m), 1590 (s), 1472 (s), 1430 (m), 1405 (m), 1328 (m), 1304 (w), 1283 (w), 1247 (m), 1222 (s), 1204 (m), 1157 (m), 1112 (s), 1088 (m), 1038 (w), 1002 (w), 951 (w), 919 (w), 896 (w), 814 (w), 781 (w), 758 (w), 744 (w), 723 (w), 670 (w), 638 (w), 594 (w), 543 (w), 506 (w), 467 (w).

Schmelzpunkt: 99 °C.

¹**H-NMR** (300.13 MHz, CDCl₃): $\delta = 0.85$ (t, ³*J*_{HH} = 7 Hz, 3 H, CH₃), 1.10–1.50 (m, 4 H, CH₂CH₂CH₃), 1.97–2.28 (m, 2 H, PCH₂), 3.22 (s, 3 H, *p*-OCH₃), 3.42 (s, 6 H, *o*-OCH₃), 3.77 (s, 3 H, 2′- OCH₃), 3.78 (s, 3 H, 6′-OCH₃), 5.88 (d, ⁴*J*_{PH} = 2 Hz, 2 H, 3′′,5′′-H), 6.24 (d, ³*J*_{HH} = 8.3 Hz, 1 H, 3′- oder 5′-H), 6.59 (d, ³*J*_{HH} = 8.3 Hz, 1 H, 5′- oder 3′-H), 6.98 (m, 1 H, 6-CH), 7.17 (t_{pseudo}, ³*J*_{HH} = 8.3 Hz, 1 H, 4′-H), 7.21–7.34 (m, 2 H, 4,5-H), 7.60 (dm, ³*J*_{HH} = 7 Hz, 1 H, 3-H).

¹³C{¹H}-NMR (75.47 MHz, CDCl₃): $\delta = 13.8$ (s, *C*H₃), 24.0 (d, ¹*J*_{PC} = 10 Hz, P*C*H₂), 24.7 (d, ³*J*_{PC} = 14 Hz, *C*H₂CH₃), 28.5 (d, ²*J*_{PC} = 20 Hz, PCH₂CH₂), 54.8 (s, *p*-OCH₃), 55.1 (s, 2'- oder 6'-OCH₃), 55.3 (s, 2 *o*-OCH₃), 56.0 (s, 6'- oder 2'- OCH₃), 90.6 (s, 3'',5''-CH), 102.7 (s, 3'- oder 5'-CH), 103.9 (s, 5'- oder 3'-CH), 105.3 (d, ¹*J*_{PC} = 23 Hz, 1''-CP), 119.4 (d, ³*J*_{PC} = 3 Hz, 1'-C), 126.1 (s), 126.3 (s), 128.2 (s), 130.3 (s), 138.5 (d, ¹*J*_{PC} = 25 Hz, 1-CP), 141.3 (d, ²*J*_{PC} = 15 Hz), 157.6 (s, 2'- oder 6'-COMe), 157.7 (s, 6'- oder 2'-COMe), 162.3 (s, 4''-COMe), 164.7 (d, ²*J*_{PC} = 8 Hz, 2'', 6''-COMe).

³¹**P**{¹**H**}-**NMR** (80.95 MHz, CDCl₃): $\delta = -41.4$.

MS (EI): m/z (%) = 467.3 (0.14) [(M – H)⁺], 437.2 (100) [(M – OMe)⁺], 393.2 (1.72) [(M – OMe, – OMe, – Me)⁺].

Elementaranalyse für C₂₇H₃₃PO₅:

berechnet (%):	C: 69.22,	H: 7.10
gefunden (%):	C: 68.99,	H: 7.11.

Tris-2-(4,4´-di-*tert*-butylbiphenylyl)phosphan (32)

4,4´-Di(*tert*-butyl)-2-iod-1,1´-biphenyl (2.000 g, 5.00 mmol, 8.3 Äquiv.) wurden in einen trockenen mit Stickstoff gefluteten 100 mL *Schlenk*-Kolben vorgelegt und in Et₂O (30 mL) gelöst. Anschließend wurden Li-Granalien (70 mg, 10.00 mmol, 16.6 Äquiv.) zugegeben und über Nacht bei Zimmertemperatur gerührt. Man kühlte die Reaktionsmischung auf –65 °C herunter und gab zu dem entstandenen 4,4´-Di(*tert*-butyl)-2-lithium-1,1´-biphenylid über eine Spritze P(OPh)₃ (186 mg, 0.6 mmol, 1.0 Äquiv.) zu. Anschließend wurde die Reaktionsmischung auf Zimmertemperatur erwärmt und über Nacht gerührt. Nachdem die Reaktion mittels ³¹P-NMR-Spektroskopie auf Vollständigkeit überprüft wurde, arbeitete man wässrig auf und extrahierte mit Et₂O (2 × 30 mL). Die vereinigten organischen Phasen wurden über Na₂SO₄ getrocknet, filtriert und das Lösemittel unter vermindertem Druck entfernt. Das Rohprodukt wurde durch Kristallisation aus Aceton gereinigt (322 mg, 0.39 mmol, 65%).

IR (**KBr**): 3055 (w), 3027 (w), 2963 (s), 2903 (m), 2867 (m), 2711 (w), 1902 (w), 1787 (w), 1612 (w), 1595 (w), 1513 (w), 1480 (m), 1393 (m), 1383 (w), 1362 (m), 1267 (m), 1202 (w), 1154 (w), 1120 (w), 1081 (w), 1025 (w), 1004 (w), 923 (w), 898 (w), 825 (s), 786 (w), 759 (w), 741 (w), 732 (w), 681 (w), 642 (w), 621 (w), 582 (m), 515 (w), 476 (w).

Schmelzpunkt: 240 °C.

¹**H-NMR** (300.13 MHz, CDCl₃): $\delta = 1.18$ (s, 27 H, C(CH₃)₃), 1.33 (s, 27 H, C(CH₃)₃), 6.88 (dq_{pseudo}, ³*J*_{HH} = 9 Hz, *J* = 2–3 Hz, 6 H, 2′,6′-H), 6.94 (dd, ³*J*_{PH} = 3 Hz, ⁴*J*_{HH} = 2 Hz, 3 H, 3-H), 7.06–7.14 (m, 9 H, 6-H und 3′,5′-H), 7.29 (dd, ³*J*_{HH} = 7.9 Hz, ⁴*J*_{HH} = 2 Hz, 3 H, 5-H).

¹³C{¹H}-NMR (75.47 MHz, CDCl₃): $\delta = 31.2$ (s, C(CH₃)₃), 31.4 (s, C(CH₃)₃), 34.37 (s, CMe₃), 34.45 (s, CMe₃), 123.8 (s, 3′,5′-CH), 124.6 (s, 6-CH), 128.8 (d, ³*J*_{PC} = 5 Hz, 3-CH), 129.4 (d, ⁴*J*_{PC} = 5 Hz, 2′,6′-CH), 132.2 (s, 6-CH), 136.7 (d, ³*J*_{PC} = 20 Hz, 1′-C), 138.9 (d, ²*J*_{PC} = 6 Hz, 1-CH), 144.9 (d, ¹*J*_{PC} = 30 Hz, PC), 148.7 (s, C-*t*Bu), 149.0 (s, C-*t*Bu).

³¹P{¹H}-NMR (80.95 MHz, CDCl₃): $\delta = -27.3$.

MS (EI): m/z (%) = 827.5 (12) [M⁺], 825.5 (100) [(M - 2 H)⁺], 768.7 (10.73) [(M - tBu)⁺].

Elementaranalyse für C₆₀H₇₅P:

berechnet (%):	C: 87.12,	H: 9.14
Elementaranalys	e für C ₆₀ H ₇₅ P ·	C ₃ H ₆ O:
berechnet (%):	C: 85.47,	H: 9.22
gefunden (%):	C: 85.13,	H: 9.38.

9-Anthryl-1-naphthylphenylphosphan "3-2-1 Phosphan" (27)

Gemäß Methode 3 wurde Phenyllithium (6.0 mmol, 1.62 Äquiv.), welches aus Brombenzol (942 mg, 6.0 mmol, 1.62 Äquiv.) und *n*BuLi (4.3 mL, 6.4 mmol, 1.73 Äquiv.) hergestellt wurde, innerhalb einer Minute zu der Reaktionsmischung von Phosphinit **21** zugegeben. Es wurde eine Stunde bei Zimmertemperatur gerührt und anschließend aufgearbeitet. Das Rohprodukt wurde aus Aceton umkristallisiert. Man erhielt ein gelbes, mikrokristallines Pulver (1.00 g, 2.4 mmol, 66%).

Schmelzpunkt: 214–218 °C.

IR (KBr): 3049 (m), 1711 (w), 1619 (w), 1585 (w), 1511 (w), 1482 (w), 1434 (m), 1385 (w), 1322 (w), 1258 (w), 1140 (w), 1022 (w), 895 (w), 842 (w), 798 (m), 776 (m), 734 (s), 699 (w), 660 (w), 608 (w), 542 (w), 528 (w), 486 (w), 458 (w).

¹**H-NMR** (399.94 MHz, CDCl₃): $\delta = 7.05-7.11$ (m, 3 H, *o*,*p*-H), 7.15–7.22 (m, 5 H), 7.26–7.40 (m, 5 H), 7.72 (d, ³*J*_{HH} = 8.2 Hz, 1 H), 7.77 (d, ³*J*_{HH} = 8.2 Hz, 1 H), 7.94 (dd, ³*J*_{HH} = 8.5 Hz, ⁴*J*_{HH} = 0.5 Hz, 2 H), 8.19 (ddd, ³*J*_{HH} = 8.5 Hz, ⁴*J*_{PH} = 3.6 Hz, ⁴*J*_{HH} = 0.8 Hz, 1 H, 8-H_{naphthyl}), 8.53 (s, 1 H, 10-H), 8.78 (ddd, ³*J*_{HH} = 9.0 Hz, ⁴*J*_{PH} = 4.8 Hz, ⁴*J*_{HH} = 0.8 Hz, 2 H, 1,8-H).

¹³C{¹H}-NMR (100.57 MHz, CDCl₃): δ = 125.1 (s, CH), 125.6 (s, CH), 125.9 (s, CH), 126.0 (s, CH), 126.2 (d, $J_{PC} = 2$ Hz, CH), 126.6 (d, ${}^{2}J_{PC} = 23$ Hz, 8-CH_{Naphthyl}), 127.4 (s, *p*-CH), 128.1 (d, ${}^{3}J_{PC} = 25$ Hz, 1,8-CH), 128.3 (d, ${}^{2}J_{PC} = 6$ Hz, *o*-CH), 128.7 (d, $J_{PC} = 2$ Hz, CH), 129.2 (s, CH), 129.3 (s, CH), 131.0 (s, CH), 131.9 (s, 10-CH), 132.0 (d, $J_{PC} = 28$ Hz, C_q), 132.3 (d, $J_{PC} = 19$ Hz, 2-CH_{Naphthyl}), 132.8 (d, $J_{PC} = 16$ Hz, C_q), 133.5 (d, $J_{PC} = 4$ Hz, C_q), 135.3 (d, $J_{PC} = 24$ Hz, C_q), 136.9 (d, $J_{PC} = 14$ Hz, C_q), 137.2 (d, $J_{PC} = 12$ Hz, C_q).

Ein quartäres Kohlenstoffatom konnte nicht eindeutig identifiziert werden.

³¹**P**{¹**H**}-**NMR** (80.95 MHz, CDCl₃): $\delta = -28.4$.

MS (**EI**): m/z (%) = 412.2 (100) [M⁺], 334.1 (2.72) [(M - Ph)⁺], 283.1 (7.84) [(M - Naphthyl)⁺], 233.1 (7.27) [(M - Anthryl)⁺].

Elementaranalyse für C₃₀H₂₁P:

berechnet (%):	C: 87.36,	H: 5.13
gefunden (%):	C: 86.55,	H: 5.10.

Etherspuren konnten nicht entfernt werden, auch nicht im Vakuum bei >150 °C.

Di-9-anthryl-2-(methoxyphenyl)phosphan (31)

Analog der Methoden 1 bis 3 wurde aus 9-Bromanthracen (1.00 g, 3.9 mmol, 1.95 Äquiv.), gelöst in THF (20 mL), mit *n*BuLi (2.9 mL, 4.3 mmol, 2.15 Äquiv.) das 9-Lithiumanthracenylid hergestellt, welches mit P(OPh)₃ (0.62 g, 2.0 mmol, 1.00 Äquiv.) weiter zum Phosphinit umgesetzt wurde. Anschließende Zugabe von 2-Anisyllithium (2.9 mmol, 1.30 Äquiv.), hergestellt aus 2-Bromanisol (0.54 g, 2.9 mmol, 1.30 Äquiv.) und *n*BuLi (3.2 mmol, 1.6 Äquiv.), führte zum gewünschten Phosphan (**31**). Nach Aufarbeitung erhielt man ein gelborangenes Öl, welches aus Aceton zu gelbem, mikrokristallinem Pulver umkristallisiert wurde (0.37 g, 0.75 mmol, 38%).

IR (**KBr**): 3044 (w), 2933 (w), 2833 (w), 1944 (w), 1812 (w), 1619 (w), 1582 (w), 1570 (w), 1547 (w), 1510 (w), 1470 (m), 1446 (w), 1429 (m), 1396 (w), 1296 (w), 1270 (w), 1243 (m), 1179 (w), 1161 (w), 1130 (w), 1070 (w), 1041 (w), 1021 (m), 955 (w), 919 (w), 887 (w), 842 (w), 818 (w), 782 (w), 753 (w), 732 (s), 668 (w), 610 (w), 576 (w), 557 (w), 542 (w), 530 (w), 495 (w), 467 (w).

Schmelzpunkt: 306 °C (Zersetzung).

¹**H-NMR** (300.13 MHz, CDCl₃): $\delta = 3.40$ (s, 3 H, OCH₃), 6.67 (t_{pseudo}t_{pseudo}, ³*J*_{HH} = 7 Hz, ⁴*J* = 1 Hz, 1 H, 5'-H), 6.75 (ddd, ³*J*_{HH} = 8 Hz, ⁴*J*_{PH} = 4 Hz, ⁴*J*_{HH} = 1 Hz, 1 H, 3'-H), 6.86 (ddd, ³*J*_{HH} = 8 Hz, ³*J*_{HH} = 6 Hz, ⁴*J*_{HH} = 1 Hz, 1 H, 4'-H), 7.14 (ddd, ³*J*_{HH} = 9 Hz, ³*J*_{HH} = 6.6 Hz, ⁴*J*_{HH} = 1 Hz, 4 H, 2,7-H), 7.30 (m, 1 H, 6'-H), 7.34 (ddd, ³*J*_{HH} = 8.4 Hz, ³*J*_{HH} = 6.6 Hz, ⁴*J*_{HH} = 1 Hz, 4 H, 3,6-H), 7.96 (dd, ³*J*_{HH} = 8.4 Hz, ⁴*J*_{HH} = 1 Hz, 4 H, 4,5-H), 8.48 (s, 2 H, 10-H), 8.78 (ddd, ³*J*_{HH} = 9 Hz, ⁴*J*_{PH} = 4 Hz, ⁴*J*_{HH} = 1 Hz, 4 H, 1,8-H).

¹³C{¹H}-NMR (75.48 MHz, CDCl₃): δ = 55.3 (s, OCH₃), 110.1 (s, 3'-CH), 121.1 (s, 5'-CH), 124.7 (s, 3,6-CH), 125.7 (d, J_{PC} = 4 Hz, 2,7-CH), 126.1 (d, ${}^{1}J_{PC}$ = 13 Hz, 1'-CP), 127.2 (d, ${}^{3}J_{PC}$ = 21 Hz, 1,8-CH), 129.3 (s, 4,5-CH), 129.7 (s), 130.0 (d, ${}^{3}J_{PC}$ = 26 Hz, 9-CP), 130.3 (s), 131.5 (d, J_{PC} = 4 Hz), 132.7 (d, J_{PC} = 2 Hz), 135.5 (d, J_{PC} = 14 Hz), 161.3 (d, ${}^{2}J_{PC}$ = 19 Hz, 2'-COMe).

³¹**P**{¹**H**}-**NMR** (80.95 MHz, CDCl₃): $\delta = -39.6$.

MS (**EI**): m/z (%) = 492.2 (100) [M⁺], 461.2 (9.29) [(M - OMe)⁺], 384.2 (4.71) [(M - Anisyl)⁺], 283.1 (10.57) [(M - OMe - Anthryl)⁺].

N-[(3',5'-dimethylphenyl)pyrrol-2-yl]di-9-phenanthrylphosphan (29)

1-(3',5'-Dimethylphenyl)-1H-pyrrol (1.00 g, 5.8 mmol, 1.07 Äquiv.) und N,N,N',N'-Tetramethylethylendiamin (0.88 mL, 5.9 mmol, 1.09 Äquiv.) wurden in 20 mL Et₂O gelöst und bei Zimmertemperatur *n*BuLi (3.90 mL, 5.8 mmol, 1.07 Äquiv.) über eine Kanüle zugegeben. Nach 30 Minuten wurde die Lösung auf -78 °C gekühlt und das entstandene Lithiumorganylid mit P(OPh)₃ (1.64 g, 5.4 mmol, 1.00 Äquiv.) weiter zum Phosphonit (**15**) umgesetzt. Analog Methode 2, wurde durch anschließende Zugabe von 9-Lithiumphenanthren (15.7 mmol, 2.90 Äquiv.), hergestellt aus 9-Bromphenanthren (4.05 g, 15.7 mmol, 2.90 Äquiv.) und *n*BuLi (11.60 mL, 17.4 mmol, 3.20 Äquiv.), das gewünschte Phosphan (**29**) hergestellt. Nach Aufarbeitung erhielt man ein farbloses Pulver, welches in Aceton gelöst und vom unlöslichen Rückstand abfiltriert wurde. Nach Entfernen des Acetons am Rotationsverdampfer wurde der Rückstand aus Toluol umkristallisiert. Man erhielt 903 mg (1.83 mmol, 38%) analysenreines Produkt, in Form eines farblosen, feinkristallinen Pulvers. **IR (KBr):** 3055 (m), 2919 (m), 1953 (w), 1709 (w), 1611 (m), 1597 (m), 1511 (w), 1489 (m), 1473 (m), 1448 (m), 1367 (w), 1339 (w), 1290 (w), 1245 (w), 1232 (w), 1201 (w), 1166 (w), 1144 (w), 1128 (w), 1097 (w), 1060 (w), 1038 (w), 1003 (w), 973 (w), 951 (w), 899 (w), 850 (m), 816 (w), 787 (w), 763 (w), 747 (s), 723 (s), 696 (w), 650 (w), 616 (m), 560 (w), 488 (w), 476 (w), 465 (w).

Schmelzpunkt: 237 °C.

¹**H-NMR** (399.92 MHz, CDCl₃): $\delta = 2.10$ (s, 6 H, *m*-CH₃), 6.19 (dd, *J* = 3.5 Hz, *J* = 1.6 Hz, 1 H, H_{Pyrrol}), 6.30 (t, *J* = 3.2 Hz, 1 H, H_{Pyrrol}), 6.84 (s, 1 H, *p*-H), 6.97 (s, 2 H, *o*-H), 7.20 (dd, *J* = 5 Hz, *J* = 3 Hz, 1 H, 5-H_{pyrrol}), 7.49 (t_{pseudo}, *J* = 7 Hz, 2 H), 7.52 (t_{pseudo}, *J* = 7 Hz, 2 H), 7.61–7.68 (m, 8 H), 8.44 (dd, ³*J*_{HH} = 8.0 Hz, ⁴*J*_{PH} = 5.1 Hz, 2 H, 8-H_{Phen}), 8.70 (d, ³*J*_{HH} = 8.3 Hz, 2 H).

¹³C{¹H}-NMR (100.57 MHz, CDCl₃): δ = 21.1 (s, CH₃), 110.1 (s, CH_{Pyrrol}), 122.0 (s, CH_{Pyrrol}), 122.5 (s, CH), 122.8 (s, CH), 123.7 (d, $J_{PC} = 4$ Hz, CH), 126.5 (d, ${}^{3}J_{PC} = 9$ Hz, 5-CH_{Pyrrol}), 126.5 (s, CH), 126.6 (s, CH), 127.1 (d, ${}^{2}J_{PC} = 0.6$ Hz, CH), 127.2 (s, CH), 127.3 (d, ${}^{3}J_{PC} = 28$ Hz, 8-CH_{Phen}), 128.9 (s, CH), 129.0 (s, CH), 129.9 (s, C_q), 130.3 (d, $J_{PC} = 5$ Hz, C_q), 130.9 (s, C_q), 131.6 (d, $J_{PC} = 2$ Hz, C_q), 132.7 (d, $J_{PC} = 8$ Hz, C_q), 133.4 (d, $J_{PC} = 23$ Hz, C_q), 134.9 (s, CH), 138.5 (s, CMe), 140.4 (s, C_{Aryl}N).

³¹**P**{¹**H**}-**NMR** (80.95 MHz, CDCl₃): $\delta = -44.1$.

MS (**EI**): m/z (%) = 555.2 (100) [M⁺], 378.2 (4.09) [(M - Phen)⁺], 201.1 (3.83) [(M - 2 Phen)⁺].

Elementaranalyse für C₄₀H₃₀NP:

berechnet (%):	C: 86.46,	H: 5.44,	N: 2.52
gefunden (%):	C: 85.57,	H: 5.35,	N: 2.45.

Methyl-bis-[2-(2´,6´-dimethoxybiphenylyl)]phosphan (33)

In Anlehnung an die Methoden 1 bis 3 (statt P(OPh)₃ wurde PCl₃ verwendet) wurde aus 2-Brom-2´,6´-dimethoxybiphenyl (8) (15.00 g, 51.4 mmol, 2.27 Äquiv.), gelöst in THF (100 mL), mit *n*BuLi (37.3 mL, 56.0 mmol, 2.47 Äquiv.) das 2-Lithium-2´,6´-dimethoxybiphenylid (9) hergestellt, welches mit PCl₃ (7.01 g, 22.60 mmol, 1.00 Äquiv.) weiter zum Monochlorphosphan umgesetzt wurde. Die anschließende Zugabe von MeLi (16.5 mL, 26.40 mmol, 2.42 Äquiv.) in Et₂O, führte zum gewünschten Phosphan (**33**). Die Reaktionsmischung arbeitete man mit H₂O (2 × 50 mL) auf und verstärkte dabei die organische Phase mit Et₂O. Nach Trocknen mit Na₂SO₄ und Entfernen des Lösemittels unter reduziertem Druck erhielt man ein hellbraunes Öl. Durch Waschen in EtOH konnte man das Produkt als farbloses, mikrokristallines Pulver isolieren (7.92 g, 16.7 mmol, 75%).

IR (**KBr**): 3435 (m), 3047 (w), 3003 (w), 2935 (w), 2834 (w), 1589 (m), 1471 (s), 1431 (m), 1303 (w), 1282 (w), 1247 (s), 1172 (w), 1110 (s), 1036 (w), 1002 (w), 882 (w), 782 (w), 760 (w), 740 (w), 726 (w), 687 (w), 658 (w), 595 (w), 541 (w), 512 (w), 456 (w).

Schmelzpunkt: 161.6–162.5 °C.

¹**H-NMR** (300.13 MHz, CDCl₃): $\delta = 1.00$ (d, ²*J*_{PH} = 5.8 Hz, 3 H, PCH₃), 3.34 (s, 6 H, 2^{''}, 2^{'''}- oder 6^{''}, 6^{'''}-OCH₃), 3.66 (s, 6 H, 2^{''}, 2^{'''}- oder 6^{''}, 6^{'''}-OCH₃), 6.48 (d, ³*J*_{HH} = 8 Hz, 2 H, 3^{''}, 3^{'''}- oder 5^{''}, 5^{'''}-H), 6.55 (d, ³*J*_{HH} = 8 Hz, 2 H, 3^{''}, 3^{'''}- oder 5^{''}, 5^{'''}-H), 7.10–7.16 (m, 2 H), 7.18–7.39 (m, 8 H).

¹³C{¹H}-NMR (75.48 MHz, CDCl₃): $\delta = 12.0$ (d, ¹*J*_{PC} = 17 Hz, PCH₃), 55.3 (s, OCH₃), 55.5 (s, OCH₃), 103.5 (s, 3^{''}, 3^{'''}- oder 5^{''}, 5^{'''}-CH), 103.8 (s, 3^{''}, 3^{'''}- oder 5^{''}, 5^{'''}-CH), 119.5 (d, ³*J*_{PC} = 5 Hz, 1^{''}, 1^{'''}-C), 126.8 (s, 4,4[']- oder 5,5[']-CH), 127.6 (s, 4,4^{'-} oder 5,5[']-CH), 128.6 (s, 4^{'''}-CH), 130.8 (d, ²*J*_{PC} = 5 Hz, 3,3[']-CH), 132.6 (s, 6-CH), 139.8 (d, ¹*J*_{PC} = 30 Hz, 2,2^{''}-CP) 141.2 (d, ²*J*_{PC} = 16 Hz, 1,1^{'-}C), 157.8 (s, 2^{'''}, 2^{'''-} oder 6^{'''}, 6^{'''-}COCH₃), 158.0 (s, 2^{'''}, 2^{'''-} oder 6^{'''}, 6^{'''-}COCH₃).

³¹**P**{¹**H**}-**NMR** (80.95 MHz, CDCl₃): $\delta = -33.8$.

MS (EI): m/z (%) = 441.1 (100) [(M – OMe)⁺], 395.1 (2.6) [(M – 2 OMe, – Me)⁺], 213.0 (2.6) [(*Buchwald*biphenylyl)⁺].

Elementaranalyse für C₂₉H₂₉O₄P:

berechnet (%):	C: 73.71,	H: 6.19
gefunden (%):	C: 73.45,	H: 6.21.

13 Eintopfsynthesen tertiärer nicht homoleptischer Phosphane unter Verwendung von PCl₃

13.1 Selektive Darstellung von tertiären nicht homoleptischen Phosphanen in Anlehnung an *Buchwalds* S-Phos-Liganden

2-Brom-2´,6´-dimethoxybiphenyl (8)

Gemäß der Vorschrift von *Buchwald et al.*^[23, 93], wurde zu einer gekühlten Lösung (0 °C) von 1,3-Dimethylresorcinether (21.14 g, 153.0 mmol, 1.2 Äquiv.) in trockenem THF (300 mL), über einen Zeitraum von fünf Minuten, *n*BuLi (102.6 mL, 153.0 mmol, 1.2 Äquiv.) zugetropft. Die Lösung wurde anschließend für fünf Stunden bei Zimmertemperatur gerührt. Nach erneutem Abkühlen der Lösung auf 0 °C wurde 2-Bromchlorbenzol (15.0 mL, 128.0 mmol, 1.0 Äquiv.) über einen Tropftrichter in einem Zeitraum von 15 Minuten hinzugefügt. Die entstandene purpurfarbene Lösung wurde für weitere 16 Stunden gerührt.

Nach Einengen der Reaktionsmischung im Vakuum wurden Et_2O (300 mL) und H_2O (300 mL) zu dem Rückstand gegeben. Die Phasen wurden getrennt und die wässrige Phase dreimal mit Et_2O extrahiert. Anschließend wurden die vereinigten organischen Phasen mit einer Kochsalzlösung gewaschen und über MgSO₄ getrocknet. Nach dem Entfernen des Lösemittels wurde der ausgefallene Feststoff aus MeOH umkristallisiert. Man erhielt Verbindung **8** als leicht gelbes, mikrokristallines Pulver (30.06 g, 102.5 mmol, 80%).

¹**H-NMR** (399.92 MHz, CDCl₃): δ = 3.77 (s, 6 H, OCH₃), 6.65 (d, ³*J*_{HH} = 8.4 Hz, 2 H, 3',5'-H), 7.20 (m, 1 H, 4-H), 7.22–7.25 (m, 1 H, 6-H), 7.34 (t, ³*J*_{HH} = 8.4 Hz, 1 H, 4'-H), 7.33–7.37 (m, 1 H, 5-H), 7.66 (ddd, ³*J*_{HH} = 7.9 Hz, ⁴*J*_{HH} = 1.3 Hz, ⁵*J*_{HH} = 0.3 Hz, 1 H, 3-H).

GC-MS: $t_R = 8.80 \text{ min (70-1)}, m/z (\%) = 292 (34) [M^+], 213 (26) [(M - Br)^+], 198 (100) [(M - Br, - Me)^+], 183 (24) [(M - Br, - OMe)^+].$

Dicyclohexyl-2-(2´,6´- dimethoxybiphenylyl)phosphan (1)

In Anlehnung an die Methoden 1 bis 3 (statt P(OPh)₃ wurde PCl₃ verwendet) wurde aus 2-Brom-2',6'-dimethoxybiphenyl (8) (5.00 g, 17.1 mmol, 1.04 Äquiv.), gelöst in THF (80 mL), mit *n*BuLi (12 mL, 18.0 mmol, 1.09 Äquiv.) das 2-Lithium-2',6'-dimethoxybiphenylid (9) hergestellt, welches mit PCl₃ (2.26 g, 16.5 mmol, 1.00 Äquiv.) weiter zum Dichlorphosphan umgesetzt wurde. Die anschließende Zugabe von CyMgCl (40.0 mmol, 2.42 Äquiv.) in THF, führte zum gewünschten Phosphan (1). Die Aufarbeitung erfolgte durch eine kurze *flash*-Säule über Kieselgel, wobei mit EtOAc nachgespült wurde. Anschließend wurde das Lösemittel unter reduziertem Druck entfernt. Das blassgelbe Öl wurde durch Zugabe von Aceton und Kühlen auf 5 °C über Nacht zur Kristallisation gebracht (4.68 g, 11.4 mmol, 70%).

³¹**P**{¹**H**}-**NMR** (80.95 MHz, C_6D_6): $\delta = -8.0$.

Nach Mischen des Produkts mit dem kommerziell erhältlichen Phosphan erhielt man nur ein ³¹P-NMR-Signal.

Diisopropyl-2-(2´,6´-dimethoxybiphenylyl)phosphan (37)

Verbindung **37** wurde nach der in den Methoden 1–3 beschriebenen, allgemeinen Vorschrift synthetisiert (statt P(OPh)₃ wurde PCl₃ verwendet). 2-Brom-2´,6´-dimethoxybiphenyl (**8**) (0.5 g, 1.7 mmol, 1.0 Äquiv.), gelöst in THF (20 mL), wurden mit *n*BuLi (1.13 mL, 1.7 mmol, 1.0 Äquiv.) in das 2-Lithium-2´,6´-Dimethoxybiphenylid (**9**) überführt, welches mit PCl₃ (0.15 mL, 1.7 mmol, 1.0 Äquiv.) weiter zum Dichlorphosphan umgesetzt wurde. Die anschließende Zugabe von *i*PrMgCl (6.8 mmol, 4.0 Äquiv.) in THF, führte nach zwei Stunden Reaktionszeit zum gewünschten Phosphan (**37**). Anschließend wurde das Lösemittel unter reduziertem Druck entfernt. Das blassgelbe Öl wurde durch Zugabe von Aceton und Kühlen auf 5 °C über Nacht zur Kristallisation gebracht (231 mg, 11.4 mmol, 41%).

Schmelzpunkt: 117–119 °C.

¹**H-NMR** (399.92 MHz, C₆D₆): $\delta = 0.94-1.02$ (m, 12 H, CH(CH₃)₂), 1.84–1.94 (dsept, ³J_{HH} = 6.9 Hz, J = 0.7 Hz, 2 H, CH(CH₃)₂), 3.24 (s, 6 H, 2′,6′-OCH₃), 6.36 (d, ³J_{HH} = 8.3 Hz, 2 H, 3′,5′-H), 7.10–7.19 (m, 3 H), 7.30–7.34 (ddd, ³J_{HH} = 7.5 Hz, J = 3.4 Hz, J = 1.5 Hz, 1 H), 7.45 (d, $J_{\text{HH}} = 7.3$ Hz, 1 H).

¹³C{¹H}-NMR (100.57 MHz, C₆D₆): $\delta = 19.7$ (d, ²*J*_{PC} = 11 Hz, CH(*C*H₃)₂), 20.3 (d, ²*J*_{PC} = 20 Hz, CH(*C*H₃)₂), 24.5 (d, ¹*J*_{PC} = 15 Hz, PCH), 54.7 (s, OCH₃), 103.5 (s, 3['],5[']-CH), 120.6 (d, ³*J*_{PC} = 7 Hz, 1[']-C), 126.3 (s), 128.4 (d, *J*_{PC} = 1 Hz), 128.7 (s), 131.8 (d, ²*J*_{PC} = 6 Hz, 3-CH), 132.2 (d, *J*_{PC} = 3 Hz), 136.9 (d, ²*J*_{PC} = 20 Hz, 1-C), 143.5 (d, ¹*J*_{PC} = 32 Hz, 2-CP), 157.9 (d, *J*_{PC} = 1 Hz, 2['],6[']-COMe).

³¹**P**{¹**H**}-**NMR** (80.95 MHz, CDCl₃): δ = 0.3.
MS (EI): m/z (%) = 329.5 (0.44) [M⁺], 300.5 (39.88) [(M + H, - OMe)⁺], 299.5 (100) [(M - OMe)⁺], 284.4 (2.37) [(M - OMe, - Me)⁺].

Elementaranalyse für C₂₀H₂₇O₂P:

berechnet (%):	C: 72.70,	H: 8.24
gefunden (%):	C: 72.20,	H: 8.18.

4,5-Dibromveratrol (42)

In einem Dreihalskolben mit magnetischem Rührkern, Tropftrichter und Rückflusskühler wurde Veratrol (69.0 g, 0.50 mol, 1.00 Äquiv.) in 500 mL CH₂Cl₂ gelöst. Über einen Tropftrichter wurde innerhalb einer Stunde Brom (166.0 g, 1.04 mol, 2.08 Äquiv.) zugegeben. Man rührte über Nacht bei Zimmertemperatur. Anschließend wurde die Reaktionsmischung mit einer Na₂SO₃-Lösung ausgeschüttelt, um überschüssiges Brom zu vernichten. Die organische Phase wurde danach mit H₂O (2 × 200 mL) gewaschen. Man entfernte das Lösemittel unter reduziertem Druck und erhielt ein farbloses Pulver (124.1 g, 0.47 mol, 94%).

¹**H-NMR** (199.98 MHz, CDCl₃): $\delta = 3.81$ (s, 6 H, OCH₃), 7.01 (s, 2 H, 2,4-H).

2-Brom-4,5,2´,6´-tetramethoxybiphenyl (44)

In einem mit Stickstoff gefluteten Dreihalskolben mit magnetischem Rührkern, Tropftrichter und Rückflusskühler wurde 1,3-Dimethoxyphenyl-2-lithium (50.0 mmol, 1.00 Äquiv.) [hergestellt aus 1,3-Dimethoxybenzol (6.9 g, 50.0 mmol, 1.00 Äquiv.) und *n*BuLi (21 mL, 52.5 mmol, 1.05 Äquiv.) in 100 mL THF, 3 h bei Zimmertemperatur] vorgelegt. Es wurde langsam das 4,5-Dibromveratrol (**42**) (13.3 g, 45.0 mmol, 0.90 Äquiv.), gelöst in 25 mL THF, über Tropftrichter zugetropft. Während des Zutropfens erwärmte sich die Lösung. Es wurde über Nacht bei Zimmertemperatur gerührt. Die Reaktionsmischung arbeitete man mit H₂O (2×50 mL) auf und verstärkte dabei die organische Phase mit Et₂O. Nach Trocknen mit Na₂SO₄ und Entfernen des Lösemittels unter reduziertem Druck erhielt man ein hellbraunes Öl. Durch Umkristallisation aus Et₂O konnte man das Produkt als farbloses, mikrokristallines Pulver isolieren (5.7 g, 16.1 mmol, 32%).

Schmelzpunkt: 98.5–99.0 °C.

¹**H-NMR** (300.13 MHz, CDCl₃): $\delta = 3.76$ (s, 6 H, 2′,6′-OCH₃), 3.84 (s, 3 H, 4- oder 5-OCH₃), 3.90 (s, 3 H, 4- oder 5-OCH₃), 6.66 (d, ³*J*_{HH} = 8.4 Hz, 2 H, 3′,5′-H), 6.75 (s, 1 H, 6-H), 7.14 (s, 1 H, 3-H), 7.34 (t, ³*J*_{HH} = 8.4 Hz, 1 H, 4′-H).

¹³C{¹H}-NMR (75.48 MHz, CDCl₃): $\delta = 55.9$ (s, OCH₃), 56.0 (s, OCH₃), 56.0 (s, OCH₃), 104.1 (s, 3',5'-CH), 114.8 (s, 2- oder 6-CH), 115.0 (s, 2- oder 6-CH), 118.7 (s), 127.8 (s), 129.3 (s, 4'-CH), 148.0 (s, 4- oder 5-COCH₃), 148.5 (s, 4- oder 5-COCH₃), 157.8 (s, 2',6'-COCH₃). Ein quartäres C wurde nicht gefunden.

MS (EI): m/z (%) = 352.0 (58.7) [M⁺], 258.1 (100) [(M – Me, – Br)⁺], 243.1 (11.9) [(M – OMe, – Br)⁺].

Elementaranalyse für C₁₆H₁₇BrO₄:

berechnet (%):	C: 54.41,	H: 4.85,	Br: 22.62
gefunden (%):	C: 54.19,	H: 4.85,	Br: 22.48.

Dicyclohexyl-2-(4,5,2',6'-tetramethoxybiphenylyl)phosphan (46)

In Anlehnung an die Methoden 1 bis 3 (statt P(OPh)₃ wurde PCl₃ verwendet) wurde aus 2-Brom-4,5,2['],6[']-tetramethoxybiphenyl (**44**) (454 mg, 1.3 mmol, 1.08 Äquiv.), gelöst in THF (15 mL), mit *n*BuLi (0.86 mL, 1.3 mmol, 1.08 Äquiv.) das 2-Lithium-4,5,2['],6[']-tetramethoxybiphenylid hergestellt, welches mit PCl₃ (164 mg, 1.2 mmol, 1.00 Äquiv.) weiter zum Dichlorphosphan umgesetzt wurde. Die anschließende Zugabe von CyMgCl (6.0 mmol, 5.00 Äquiv.) in THF, führte zum gewünschten Phosphan (**46**). Die Reaktionsmischung arbeitete man mit H₂O (2 × 10 mL) auf und verstärkte dabei die organische Phase mit Et₂O. Nach Trocknen mit Na₂SO₄ und Entfernen des Lösemittels unter reduziertem Druck erhielt man ein gelbes Öl. Das gelbe Öl wurde in wenig Et₂O gewaschen und das erhaltene farblose Pulver anschließend aus Et₂O umkristallisiert (133 mg, 0.28 mmol, 24%).

Schmelzpunkt: 99.6–100.3 °C.

¹**H-NMR** (300.13 MHz, CDCl₃): $\delta = 0.95 - 1.35$ (m, 10 H, Cy), 1.45-1.80 (m, 12 H, Cy), 3.69 (s, 6 H, 2',6'-OCH₃), 3.84 (s, 3 H, 4- oder 5-OCH₃), 3.94 (s, 3 H, 4- oder 5-OCH₃), 6.58 (d, ³*J*_{HH} = 8.4 Hz, 2 H, 3',5'-H), 6.68 (d, *J* = 8.1 Hz, 1 H, 3-H), 7.05 (s, 1 H, 6-CH), 7.30 (t, ³*J*_{HH} = 8.4 Hz, 1 H, 4'-H).

¹³C{¹H}-NMR (75.48 MHz, CDCl₃): $\delta = 26.5$ (s), 27.5–27.8 (m), 29.1 (d, J = 8 Hz), 30.1 (d, J = 17 Hz), 34.4 (d, J = 14 Hz), 55.2 (s, 2′,6′-OCH₃), 55.5 (s, 4- oder 5-OCH₃), 56.0 (s, 4- oder 5-OCH₃), 103.1 (s, 3′,5′-CH), 113.8 (s), 114.8 (s), 119.8 (s), 126.6 (d, $J_{PC} = 18$ Hz), 128.7 (s), 136.1 (d, $J_{PC} = 33$ Hz), 147.1 (s, 4- oder 5-COCH₃), 149.1 (s, 4- oder 5-COCH₃), 157.6 (s, 2′,6′-COCH₃).

³¹**P**{¹**H**}-**NMR** (80.95 MHz, CDCl₃): $\delta = -8.2$.

MS (EI): m/z (%) = 469.4 (0.15) [(M – H)⁺], 467.4 (0.56), 438.3 (24.9), 437.3 (100), 199.1 (1.33).

Methyl-bis-[2-(4,5,2',6'-tetramethoxybiphenylyl)]phosphan (48)

In Anlehnung an die Methoden 1 bis 3 (statt P(OPh)₃ wurde PCl₃ verwendet) wurde aus 2-Brom-4,5,2',6'-tetramethoxybiphenyl (**44**) (852 mg, 2.4 mmol, 2.18 Äquiv.), gelöst in THF (20 mL), mit *n*BuLi (1.7 mL, 2.6 mmol, 2.36 Äquiv.) das 2-Lithium-4,5,2',6'-tetramethoxybiphenylid hergestellt, welches mit PCl₃ (151 mg, 1.10 mmol, 1.00 Äquiv.) weiter zum Monochlorphosphan umgesetzt wurde. Die anschließende Zugabe von MeLi (1.5 mL, 2.5 mmol, 2.27 Äquiv.) in Et₂O, führte zum gewünschten Phosphan (**48**). Die Reaktionsmischung arbeitete man mit H₂O (2×10 mL) auf und verstärkte dabei die organische Phase mit Et₂O. Nach Trocknen mit Na₂SO₄ und Entfernen des Lösemittels unter reduziertem Druck erhielt man ein hellbraunes Öl. Durch Waschen in EtOH konnte man das Produkt als farbloses, mikrokristallines Pulver isolieren (177 mg, 0.3 mmol, 28%). ¹**H-NMR** (300.13 MHz, CDCl₃): $\delta = 1.02$ (d, ²*J*_{PH} = 5.9 Hz, 3 H, PCH₃), 3.39 (s, 6 H, OCH₃), 3.72 (s, 6 H, OCH₃), 3.78 (s, 6 H, OCH₃) 3.86 (s, 6 H, OCH₃), 6.54 (d, ³*J*_{HH} = 8 Hz, 2 H, 3^{..},3^{...}- oder 5^{...},5^{...}-H), 6.6 (d, ³*J*_{HH} = 8 Hz, 2 H, 3^{...},3^{...}- oder 5^{...},5^{...}-H), 6.70 (d, *J*_{HH} = 3.2 Hz, 2 H), 6.89 (d, *J*_{HH} = 3.5 Hz, 2 H), 7.25 (t, ³*J*_{HH} = 8 Hz, 2 H, 4^{...},4^{...}-H).

¹³C{¹H}-NMR (75.48 MHz, CDCl₃): $\delta = 12.3$ (d, ¹*J*_{PC} = 17.2 Hz, PCH₃), 55.4 (s, OCH₃), 55.6 (s, OCH₃), 103.5 (s, 3^{''}, 3^{'''}- oder 5^{''}, 5^{'''}-CH), 104.0 (s, 3^{''}, 3^{'''}- oder 5^{''}, 5^{'''}-CH), 113.0 (d, ²*J*_{PC} = 7 Hz, 3, 3[']-CH), 115.1 (s, 6, 6[']-CH), 119.3 (d, ³*J*_{PC} = 5 Hz, 1^{''}, 1^{'''}-C), 128.6 (s, 4^{'''}, 4^{'''-}CH), 132.2 (d, *J*_{PC} = 16 Hz,), 132.6 (d, *J*_{PC} = 30 Hz), 147.3 (s, 4, 4^{'-} oder 5, 5^{''}-COCH₃), 148.5 (s, 4, 4^{'-} oder 5, 5^{''-COCH₃), 158.0 (s, 2^{'''}, 2^{'''-} oder 6^{'''}, 6^{'''-COCH₃), 158.2 (s, 2^{'''}, 2^{'''-} oder 6^{'''}, 6^{'''-COCH₃).}}}

³¹**P**{¹**H**}-**NMR** (80.95 MHz, CDCl₃): $\delta = -32.8$.

MS (EI): m/z (%) = 592.2 (0.7) [M⁺], 577.2 (4.3) [(M – Me)⁺], 561.1 (100) [(M – OMe)⁺].

1-Brom-2,4,6-triisopropylbenzol

In einem Dreihalskolben mit magnetischem Rührkern, Tropftrichter und Rückflusskühler wurde Triisopropylbenzol (102 g, 0.50 mol, 1.0 Äquiv.) in 350 mL CH₂Cl₂ gelöst. Man kühlte die Lösung auf 0 °C und gab unter Lichtausschluss über Tropftrichter innerhalb einer Stunde Brom (88 g, 0.55 mol, 1.1 Äquiv.) zu. Man rührte über Nacht bei Zimmertemperatur. Anschließend wurde die Reaktionsmischung mit einer Na₂SO₃-Lösung ausgeschüttelt, um überschüssiges Brom zu vernichten. Die organische Phase wurde danach mit H₂O (2 × 200 mL) gewaschen. Man entfernte das Lösemittel unter reduziertem Druck und erhielt ein farbloses Öl. Nach fraktionierter Destillation konnte man das Produkt isolieren (122 g, 0.43 mol, 86%).

¹**H-NMR** (199.98 MHz, CDCl₃): $\delta = 1.27$ (d, ³ $J_{\text{HH}} = 7.7$ Hz, 18 H, CH(CH₃)₂), 1.90 (quin, ³ $J_{\text{HH}} = 7.7$ Hz, 1 H, *p*-CCH(CH₃)₂, 3.50 (sept, 2 H, ³ $J_{\text{HH}} = 7.7$ Hz, *o*-CCH(CH₃)₂), 7.00 (s, 2 H, *m*-H).

2-Brom-4,5-dimethoxy-2´,4´,6´-triisopropylbiphenyl (43)

In einem mit Stickstoff gefluteten Dreihalskolben mit magnetischem Rührkern, Tropftrichter und Rückflusskühler wurde 2,4,6-Triisopropylbenzolmagnesiumbromid (53 mmol, 1.00 Äquiv.), hergestellt aus 1-Brom-2,4,6-triisopropylbenzol (15 g, 53 mmol, 1.00 Äquiv.) und Mg-Spänen (2.57 g, 106 mmol, 2.00 Äquiv.) in THF, vorgelegt. Zu der Lösung wurde LiCl (3 g, 70 mmol, 1.32 Äquiv.) und 10 vol% 1,4-Dioxan zugefügt. Man erhitzte auf 65 °C und tropfte langsam das Dibromveratrol (42) (17.15 g, 58 mmol, 1.10 Äquiv.) über Tropftrichter zu. Nach vollständiger Zugabe wurde weitere zwei Stunden bei konstanter Temperatur gerührt und Dibromethan (5.63 g, 30 mmol, 0.56 Äquiv.) zugefügt. Es wurde zwei Tage bei Zimmertemperatur gerührt. Die Reaktionsmischung arbeitete man mit wässriger NH₄Cl-Lösung auf und verstärkte die organische Phase mit Et₂O. Um die organische Phase von Salzen zu befreien, wurde anschließend mit H₂O (2 \times 50 mL) ausgeschüttelt. Nach Trocknen mit Na₂SO₄ und Entfernen des Lösemittels unter reduziertem Druck erhielt man ein dunkelbraunes Öl. Durch kurzes Waschen in EtOH konnte man das Produkt als farbloses Pulver isolieren (3.8 g, 9.0 mmol, 17%).

Schmelzpunkt: 129.2–130.2 °C.

¹**H-NMR** (599.80 MHz, CDCl₃): $\delta = 1.05$ (d, ³ $J_{HH} = 7$ Hz, 6 H, *o*-CCH(CH₃)₂), 1.16 (d, ³ $J_{HH} = 7$ Hz, 6 H, *o*-CCH(CH₃)₂), 1.31 (d, ³ $J_{HH} = 7$ Hz, 6 H, *p*-CCH(CH₃)₂), 2.51 (d_{pseudo}, ³ $J_{HH} = 7$ Hz, 2 H, *o*-CCH(CH₃)₂), 2.94 (d, ³ $J_{HH} = 7$ Hz, 1 H, *p*-CCH(CH₃)₂), 3.80 (s, 3 H, 4-oder 5-OCH₃), 3.93 (s, 3 H, 4-oder 5-OCH₃), 6.69 (s, 1 H, 6-CH), 7.05 (s, 2 H, *m*-CH), 7.13 (s, 1 H, 3-CH).

¹³C{¹H}-NMR (150.83 MHz, CDCl₃): $\delta = 23.6$ (s, *o*-CCH(CH₃)₂), 24.0 (s, *o*-CCH(CH₃)₂), 24.8 (s, *p*-CCH(CH₃)₂), 30.6 (*o*-CCH(CH₃)₂), 34.1 (*p*-CCH(CH₃)₂), 56.07 (s, 4- oder 5-OCH₃), 56.08 (s, 4- oder 5-OCH₃), 114.1 (s, *o*-CCH(CH₃)₂), 115.0 (s, 6-CH), 115.1 (s, *p*-CCH(CH₃)₂), 120.7 (s, *m*-CH), 133.5 (s), 135.6 (s), 146.4 (s), 147.9 (s, CBr), 148.3 (s, 5-COCH₃), 148.4 (s, 4-COCH₃).

MS (EI): m/z (%) = 418.3 (73.6) [M⁺], 374.3 (13.1) [(M - *i*Pr)⁺]), 340.2 (18.2) [(M - Br)⁺], 298.3 (17.4) [(M - Br, -iPr)⁺], 255.2 (100) [(M - Br, -2iPr)⁺].

Methyl-bis-[2-(4,5-dimethoxy-2',4',6'-triisopropylbiphenyl)]phosphan (49)

In Anlehnung an die Methoden 1 bis 3 (statt P(OPh)₃ wurde PCl₃ verwendet) wurde aus 2-Brom-4,5-dimethoxy-2',4',6'-triisopropylbiphenyl (**43**) (1.00 g, 2.4 mmol, 2.18 Äquiv.), gelöst in THF (20 mL), mit *n*BuLi (1.6 mL, 2.4 mmol, 2.18 Äquiv.) das 2-Lithium-4,5-dimethoxy-2',4',6'-triisopropylbiphenylid hergestellt, welches mit PCl₃ (137 mg, 1.0 mmol, 1.00 Äquiv.) weiter zum Monochlorphosphan umgesetzt wurde. Die anschließende Zugabe von MeLi (2.0 mL, 3.2 mmol, 3.20 Äquiv.) in Et₂O, führte zum gewünschten Phosphan (**49**). Die Reaktionsmischung arbeitete man mit H₂O (2×50 mL) auf und verstärkte die organische

Phase mit Et₂O. Nach Trocknen mit Na₂SO₄ und Entfernen des Lösemittels unter reduziertem Druck erhielt man ein hellbraunes Öl. Durch Umkristallisation aus EtOH konnte man das Produkt als farbloses, mikrokristallines Pulver isolieren (200 mg, 0.28 mmol, 28%).

Schmelzpunkt: 189.7–190.1 °C.

¹**H-NMR** (599.80 MHz, CDCl₃): δ = 0.603 (m, 3 H, P-CH₃), 0.87–1.32 (m, 36 H, CH(CH₃)₂), 2.23–2.63 (m, 4 H, CH(CH₃)₂), 2.88 (sept, ³*J*_{HH} = 6.9 Hz, 2 H, CH(CH₃)₂), 3.49–4.08 (m, 12 H, OCH₃), 6.64 (s, 2 H, 6-CH), 6.89 (s, 4 H, *m*-CH), 6.96 (s, 2 H, 3-CH). Starke Signalverbreiterung im ¹H-NMR-Spektrum.

¹³C{¹H}-NMR-Spektrum aufgrund von Signalverbreiterungen nicht interpretierbar.

³¹**P**{¹**H**}-**NMR** (80.95 MHz, CDCl₃): $\delta = -37.3$.

MS (EI): m/z (%) = 724.9 (13.1) [M⁺], 681.8 (100) [(M - *i*Pr)⁺].

Elementaranalyse für C₂₉H₂₉O₄P:

berechnet (%):	C: 77.86,	H: 9.04
gefunden (%):	C: 77.77,	H: 9.36.

13.2 Selektive Darstellung von tertiären unsymmetrischen Phosphanen mit tertiären, sekundären und primären Alkylsubstituenten

Cycloheptyl(cyclohexyl)(cyclopentyl)phosphan (,,7-6-5 Phosphan'') (50)

$$PCI_{3}$$
in *t*BuOMe
$$\begin{array}{c} 1) + cyclo-C_{7}H_{13}Mg(OEt_{2})_{n}Br, \\ tBuOMe, -85 \ ^{\circ}C \end{array}$$

$$\begin{array}{c} 2) + cyclo-C_{6}H_{11}MgCl \text{ in THF}, -85 \ ^{\circ}C \\ 3) + cyclo-C_{5}H_{9}MgBr \text{ in THF}, \\ -85 \ ^{\circ}C \longrightarrow RT \end{array}$$

Analog der Methode 4 wurde zu PCl_3 (6.86 g, 50.0 mmol, 1 Äquiv.), gelöst in 100 mL *t*BuOMe, langsam Cycloheptylmagnesiumbromid (hergestellt in Et₂O, suspendiert in *t*BuOMe) zugetropft, bis man selektiv das Dichlorphosphan erhielt. Die anschließende Zugabe von CyMgCl in THF führte zum Monochlorphosphan. Nach Zugabe einer von Cyclopentylmagnesiumbromid in THF wurde die Reaktionsmischung wässrig aufgearbeitet und fraktioniert destilliert. Man erhielt ein farbloses Öl (9.92 g, 35.5 mmol, 71%).

Siedepunkt: 130–155 °C (3.8×10^{-2} mbar).

¹**H-NMR** (399.92 MHz, C_6D_6): $\delta = 1.05-2.0$ (m).

¹³C{¹H}-NMR (100.57 MHz, C₆D₆): δ = 26.4 (d, *J* = 6.9 Hz), 26.6 (d, *J* = 7.2 Hz), 27.0 (d, *J* = 0.9 Hz), 28.1 (d, *J* = 9.5 Hz), 28.1 (d, *J* = 8.5 Hz), 28.4 (s), 28.5 (s), 29.3 (d, *J* = 8.7 Hz), 29.5 (d, *J* = 9.2 Hz), 31.5 (d, *J* = 11.0 Hz), 31.7 (d, *J* = 13.4 Hz), 32.2 (d, *J* = 16.6 Hz), 32.4 (d, *J* = 6.7 Hz), 32.6 (d, *J* = 1.6 Hz), 32.7 (d, *J* = 12.9 Hz), 33.2 (d, ¹*J*_{PC} = 18.3 Hz, PCH), 34.9 (d, ¹*J*_{PC} = 18.6 Hz, PCH), 35.0 (d, ¹*J*_{PC} = 18.3 Hz, PCH).

³¹**P**{¹**H**}-**NMR** (80.95 MHz, C_6D_6): $\delta = 18.3$.

MS (**EI**): m/z (%) = 280 (50.9) [M⁺], 211 (35.8) ([(M – Cyclopentyl)⁺], 198 (29.2) [(M – Cy)⁺], 184 (100) [(M – Cycloheptyl)⁺], 130 (83) [(M – Cyclopentyl, – Cyclohexyl)⁺], 117 (55.6) [(M – Cyclopentyl, – Cycloheptyl)⁺], 103 (68.9) [(M – Cyclohexyl, – Cycloheptyl)⁺].

2-Anisyl(cyclohexyl)(methyl)phosphan (51)

Analog Methode 4 wurde zu PCl₃ (4.12 g, 30 mmol, 1.00 Äquiv.), gelöst in 60 mL *t*BuOMe, langsam CyMgCl (hergestellt in Et₂O, suspendiert in *t*BuOMe) zugetropft, bis man selektiv das Dichlorphosphan erhielt. Die anschließende Zugabe von 2-Anisyllithium (32 mmol, 1.06 Äquiv.), hergestellt aus 2-Bromanisol (5.98 g, 32 mmol, 1.06 Äquiv.) und *n*BuLi (21.3 mL, 32 mmol, 1.06 Äquiv.) in THF, führte zum Monochlorphosphan. Nach Zugabe einer von MeMgCl (31 mmol, 1.03 Äquiv.) in THF wurde die Reaktionsmischung wässrig aufgearbeitet und fraktioniert destilliert. Man erhielt ein farbloses Öl (2.71 g, 11.4 mmol, 38%).

Siedepunkt: 95–99 °C (7×10^{-3} mbar).

¹**H-NMR** (399.92 MHz, C₆D₆): $\delta = 1.0-1.25$ (m, 5 H, C₆H₁₁), 1.16 (d, ²*J*_{PH} = 4.9 Hz, 3 H, PCH₃), 1.46–1.70 (m, 4 H, C₆H₁₁), 1.77 (m, 1 H, C₆H₁₁), 1.96 (m, 1 H, C₆H₁₁), 3.27 (s, 3 H, OCH₃), 6.46 (dd, *J* = 8.1 Hz, *J* = 3.2 Hz, 1 H, H_{Ar}), 6.84 (t_{pseudo}, *J* = 7.4 Hz, 1 H, H_{Ar}), 7.04–7.11 (m, 1 H, H_{Ar}), 7.31 (ddd, *J* = 7.4 Hz, *J* = 5.8 Hz, *J* = 1.7 Hz, 1 H, H_{Ar}).

¹³C{¹H}-NMR (100.57 MHz, C₆D₆): $\delta = 10.6$ (d, ¹*J*_{PC} = 17.7 Hz, PCH₃), 26.9 (d, *J*_{PC} = 1.1 Hz, CH₂), 27.5 (d, *J*_{PC} = 7.9 Hz, CH₂), 27.7 (d, *J*_{PC} = 12.2 Hz, CH₂), 28.8 (d, *J*_{PC} = 9.1 Hz, CH₂), 30.4 (d, *J*_{PC} = 15.7 Hz, CH₂), 36.6 (d, ¹*J*_{PC} = 12.1 Hz, PCH), 55.1 (d, *J* = 0.7 Hz, OCH₃), 110.6 (d, ³*J*_{PC} = 1.4 Hz, 3-CH), 121.0 (d, ³*J*_{PC} = 3.6 Hz, 5-CH), 127.9 (d, ¹*J*_{PC} =18 Hz, 1-CP, bestätigt in d₆-Aceton), 129.8 (s, 4-CH), 132.8 (d, *J*_{PC} = 10.4 Hz, 6-CH), 162.3 (d, ²*J*_{PC} = 10.8 Hz, 2-*C*OCH₃).

³¹**P**{¹**H**}-**NMR** (80.95 MHz, C_6D_6): $\delta = -30.5$.

MS (EI): m/z (%) = 236 (67) [M⁺], 205 (100) [(M – OMe)⁺], 154 (78.3) [(M – Cy)⁺].

Cyclohexyl(1-naphthyl)(9-phenanthrenyl)phosphan (52)

Analog Methode 4 wurde zu PCl₃ (4.12 g, 30 mmol, 1.00 Äquiv.), gelöst in 60 mL *t*BuOMe, langsam CyMgCl (hergestellt in Et₂O, suspendiert in *t*BuOMe) zugetropft, bis man selektiv das Dichlorphosphan erhielt. Die anschließende Zugabe von 2-Naphthyllithium (30 mmol, 1.00 Äquiv.), hergestellt aus 2-Bromnaphthalin (6.21 g, 30 mmol, 1.00 Äquiv.) und *n*BuLi (20.0 mL, 30 mmol, 1.00 Äquiv.), in THF führte zum Monochlorphosphan. Nach Zugabe von 9-Lithiumphenanthrylid (32 mmol, 1.06 Äquiv.), welches aus 9-Bromphenanthren (8.23 g, 32 mmol, 1.06 Äquiv.) in THF hergestellt wurde, arbeitete man die Reaktionsmischung wässrig auf und erhielt ein zähes braunes Öl. Durch Rühren in warmen EtOH konnte man ein farbloses Pulver isolieren. Das Produkt scheint Luftstabil zu sein, es wurde jedoch trotzdem unter Schutzgas aufgearbeitet, um eine Oxidation zum Phosphanoxid zu vermeiden. Man erhielt das gewünschte Produkt (**52**) in einer Ausbeute von 52% (6.53 g, 15.6 mmol).

Schmelzpunkt: 154 °C.

¹**H-NMR** (399.92 MHz, C₆D₆): $\delta = 1.00-1.26$ (m, 3 H, C₆H₁₁), 1.30–1.59 (m, 5 H, C₆H₁₁), 1.59–1.79 (m, 1 H, C₆H₁₁), 1.84–2.03 (m, 1 H, C₆H₁₁), 2.36–2.5 (m, 1 H, C₆H₁₁), 6.94–7.62 (m, 11 H), 7.98 (d, *J* = 3.7 Hz, 1 H), 8.32 (d, *J* = 8.2 Hz, 1 H), 8.36 (d, *J* = 8.1 Hz, 1 H), 9.02 (ddd, *J* = 7.3 Hz, *J* = 5.7 Hz, *J* = 1.6 Hz, 1 H), 9.19 (dd, *J* = 8.3 Hz, *J* = 5.6 Hz, 1 H).

¹³C{¹H}-NMR (100.57 MHz, C₆D₆): $\delta = 26.7$ (d, $J_{PC} = 1.2$ Hz, CH₂), 27.1 (d, $J_{PC} = 2.5$ Hz, CH₂), 27.2 (d, $J_{PC} = 1.4$ Hz, CH₂), 30.4 (d, $J_{PC} = 15$ Hz, CH₂), 31.1 (d, $J_{PC} = 17.1$ Hz, CH₂), 37.3 (d, ${}^{1}J_{PC} = 10.9$ Hz, PCH), 123.0 (s), 123.4 (d, J = 1.6 Hz), 125.8 (d, J = 0.9 Hz), 126.2 (d, J = 1.7 Hz), 126.6 (d, J = 9.8 Hz), 126.6 (s), 126.8 (d, J = 1.7 Hz), 126.9 (s), 126.9 (d, J = 2.0 Hz), 127.3 (d, J = 1.4 Hz), 127.6 (s), 129.0 (s), 129.0 (d, J = 1.7 Hz), 129.6 (s), 130.8 (d, J = 4.3 Hz), 131.2 (s), 131.4 (d, J = 1.8 Hz), 131.9 (d, J = 1.6 Hz), 132.3 (s), 134.2 (d, J = 3.5 Hz), 134.3 (d, J = 25.5 Hz), 134.8 (d, J = 21.3 Hz), 135.3 (d, J = 16.8 Hz), 137.4 (d, J = 23.7 Hz).

³¹**P**{¹**H**}-**NMR** (80.95 MHz, C_6D_6): $\delta = -32.7$.

Elementaranalyse für C₃₀H₂₇P:

berechnet (%):	C: 86.10,	H: 6.50
gefunden (%):	C: 85.81,	H: 6.42.

MS (**EI**): m/z (%) = 418.4 (100) [M⁺], 335.2 (32.0) [(M – Cy)⁺], 208.1 (35.2) [(M – Cy, – Naphthyl)⁺], 158.1 (30.2) [(M – Cy, – Anthryl)⁺].

Butyl(iso-butyl)(cyclopentyl)phosphan (53)

Analog Methode 4 wurde zu PCl₃ (1.37 g, 10 mmol, 1.0 Äquiv.), gelöst in 20 mL *t*BuOMe, langsam Cyclopentylmagnesiumbromid (hergestellt in Et₂O, suspendiert in *t*BuOMe) zugetropft, bis man selektiv das Dichlorphosphan erhielt. Die anschließende Zugabe des Grignard-Reagenzes *i*BuMgBr in THF führte zum Monochlorphosphan. Nach Zugabe von *n*BuLi (8 mL, 12 mmol, 1.2 Äquiv.) wurde die Reaktionsmischung wässrig aufgearbeitet und fraktioniert destilliert. Man erhielt ein farbloses Öl (1.72 g, 8 mmol, 80%).

Siedepunkt: 58–73 °C (7.4×10^{-2} mbar).

¹**H-NMR** (399.92 MHz, C₆D₆): $\delta = 0.88$ (t, ³*J*_{HH} = 7.2 Hz, 3 H, CH₂C*H*₃), 1.03 (d, ³*J*_{HH} = 6.6 Hz, 3 H, CH(C*H*₃)₂), 1.05 (d, ³*J*_{HH} = 6.6 Hz, 3 H, CH(C*H*₃)₂), 1.25–1.51 (m, 12 H), 1.51–1.65 (m, 3 H), 1.65–1.78 (m, 3 H).

¹³C{¹H}-NMR (100.57 MHz, C₆D₆): $\delta = 14.1$ (s, CH₂CH₃), 24.5 (d, $J_{PC} = 9.5$ Hz), 24.8 (d, $J_{PC} = 8.5$ Hz), 25.0 (d, $J_{PC} = 10.4$ Hz), 26.6 (d, $J_{PC} = 1.8$ Hz, *i*Bu-CH₃), 26.7 (d, $J_{PC} = 1.8$ Hz, *i*Bu-CH₃), 27.2 (d, $J_{PC} = 14.6$ Hz), 27.7 (d, $J_{PC} = 15.3$ Hz), 28.9 (d, $J_{PC} = 12.9$ Hz), 30.7 (d, $J_{PC} = 4.5$ Hz), 30.8 (d, $J_{PC} = 4.7$ Hz), 37.9 (d, ${}^{1}J_{PC} = 10.9$ Hz), 38.1 (d, ${}^{1}J_{PC} = 10.6$ Hz).

³¹**P**{¹**H**}-**NMR** (80.95 MHz, CDCl₃): $\delta = -22.1$.

MS (**EI**): m/z (%) = 214 (43.4) [M⁺], 158 (57.5) [(M – Bu)⁺], 146 (20.7) [(M – Cyclopentyl)⁺], 104 (46.2) [(M – *i*Bu, – *n*Bu)⁺], 89 (27.3) [(M – Cyclopentyl, – Bu)⁺].

2-Anisyl(methyl)(neopentyl)phosphan (54)

Analog Methode 4 wurde zu PCl₃ (1.37 g, 10.0 mmol, 1.0 Äquiv.), gelöst in 20 mL *t*BuOMe, langsam NpMgBr (hergestellt in Et₂O, suspendiert in *t*BuOMe) zugetropft, bis man selektiv das Dichlorphosphan erhielt. Die anschließende Zugabe von 2-Anisyllithium (10.0 mmol, 1.0 Äquiv.), hergestellt aus 2-Bromanisol (1.87 g, 10.0 mmol, 1.0 Äquiv.) und *n*BuLi (6.66 mL, 10.0 mmol, 1.0 Äquiv.), in THF führte zum Monochlorphosphan. Nach Zugabe von MeLi (12.0 mmol, 1.2 Äquiv.) wurde die Reaktionsmischung wässrig aufgearbeitet und fraktioniert destilliert. Man erhielt ein farbloses Öl (1.30 g, 5.8 mmol, 58%).

Siedepunkt: 75–86 °C (6.3×10^{-2} mbar).

¹**H-NMR** (399.92 MHz, C₆D₆): $\delta = 1.10$ (s, 9 H, C(CH₃)₃), 1.30 (d, ²*J*_{PH} = 5.0 Hz, 3 H, PCH₃), 1.43 (dd, ²*J*_{HH} = 14.0 Hz, ²*J*_{PH} = 5.6 Hz, 1 H, PCH₂), 2.03 (dd, ²*J*_{HH} = 14.0 Hz, ²*J*_{PH} = 3.3 Hz, 1 H, PCH₂), 3.32 (s, 3 H, OCH₃), 6.49 (ddd, *J* = 8.2 Hz, *J* = 3.4 Hz, *J* = 1.0 Hz, 1 H), 6.88 (d_{pseudo}dt, *J* = 7.4 Hz, *J* = 1.1 Hz, *J* = 0.5 Hz, 1 H), 7.12 (ddd, *J* = 8.1 Hz, *J* = 7.5 Hz, *J* = 1.7 Hz, 1 H), 7.38 (ddd, *J* = 7.5 Hz, *J* = 5.9 Hz, *J* = 1.7 Hz, 1 H).

¹³C{¹H}-NMR (100.57 MHz, C₆D₆): $\delta = 13.2$ (d, ¹*J*_{PC} = 14.9 Hz, PCH₃), 31.0 (d, ³*J*_{PC} = 9.3 Hz, C(CH₃)₃), 31.6 (d, ²*J*_{PC} = 5.3 Hz, C(CH₃)₃), 46.3 (d, ¹*J*_{PC} = 16.2 Hz, PCH₂), 54.9 (s, OCH₃), 110.5 (d, ³*J*_{PC} = 1.2 Hz, 3-C_{Ar}), 121.1 (d, ³*J*_{PC} = 3.7 Hz, 5-C_{Ar}), 129.6 (s, 4-C_{Ar}), 130.6 (d, ¹*J*_{PC} = 18.5 Hz, 1-PC_{Ar}), 131.8 (d, ²*J*_{PC} = 10.4 Hz, 6-C_{Ar}), 161.4 (d, ²*J*_{PC} = 10.9 Hz, 2-COCH₃).

³¹**P**{¹**H**}-**NMR** (80.95 MHz, CDCl₃): $\delta = -51.8$.

MS (EI): m/z (%) = 224 (41.5) [M⁺], 209 (20.8) [(M – Me)⁺], 193 (100) [(M – OMe)⁺], 167 (70.7) [(M – *t*Bu)⁺], 153 (57.5) [(M – Np)⁺].

Isopropyl-di-(4-tolyl)phosphan (55)

Analog Methode 4 wurde zu PCl₃ (4.12 g, 30.0 mmol, 1.00 Äquiv.), gelöst in 60 mL tBuOMe, langsam iPrMgCl (hergestellt in Et₂O, suspendiert in tBuOMe) zugetropft, bis man selektiv das Dichlorphosphan erhielt. Die anschließende Zugabe von 4-Tolyllithium (65.0 mmol, 2.16 Äquiv.), hergestellt aus 4-Bromtoluol (11.12 g, 65.0 mmol, 2.16 Äquiv.) und *n*BuLi (43.3 mL, 65.0 mmol, 2.16 Äquiv.), in THF führte zum gewünschten Phosphan (**55**). Nach wässriger Aufarbeitung und fraktionierter Destillation erhielt man ein farbloses Öl (5.20 g, 20.3 mmol, 66%).

Siedepunkt: 100–120 °C (1.4×10^{-2} mbar).

¹**H-NMR** (300.13 MHz, C₆D₆): $\delta = 1.06$ (d, ³*J*_{HH} = 6.9 Hz, 3 H, CH(CH₃)₂), 1.12 (d, ³*J*_{HH} = 6.9 Hz, 3 H, CH(CH₃)₂), 2.05 (s, 6 H, OCH₃), 2.31 (m, 1 H, CH(CH₃)₂), 6.95 (d, *J* = 7.9 Hz, 4 H, *m*-H), 7.49 (t_{pseudo}, *J* = 7.4 Hz, 4 H, *o*-H).

¹³C{¹H}-NMR (75.47 MHz, C₆D₆): δ = 19.9 (d, ²*J*_{PC} = 18.4 Hz, CH₃), 21.2 (s, *p*-CCH₃), 25.5 (d, ¹*J*_{PC} = 9.2 Hz, CH), 129.4 (d, ³*J*_{PC} = 7.1 Hz, *m*-CH), 133.9 (d, ²*J*_{PC} = 19.5 Hz, *o*-CH), 135.4 (d, ¹*J*_{PC} = 14.8 Hz, 1-CP), 138.4 (s, *p*-CCH₃).

³¹**P**{¹**H**}-**NMR** (80.95 MHz, C_6D_6): $\delta = -0.4$.

MS (EI): m/z (%) = 256 (72.6) [M⁺], 213 (100) [(M - *i*Pr)⁺], 165 (11.3) [(M - Tolyl)⁺], 122 (20.8) [(M - *i*Pr, - Tolyl)⁺].

Butyl(mesityl)(isopropyl)phosphan (56)

Analog Methode 4 wurde zu PCl₃ (13.73 g, 100.0 mmol, 1.00 Äquiv.), gelöst in 150 mL *t*BuOMe, langsam *i*PrMgCl (hergestellt in Et₂O, suspendiert in *t*BuOMe) zugetropft, bis man selektiv das Dichlorphosphan erhielt. Die anschließende Zugabe von 2-Mesithyllithium (105.0 mmol, 1.05 Äquiv.), hergestellt aus 2-Brommesithylen (20.90 g, 105.0 mmol, 1.05 Äquiv.) und *n*BuLi (70.0 mL, 105.0 mmol, 1.05 Äquiv.) in THF, führte zum Monochlorphosphan. Nach Zugabe von *n*BuLi (70.0 mL, 105.0 mmol, 1.05 Äquiv.) wurde die Reaktionsmischung wässrig aufgearbeitet und fraktioniert destilliert. Man erhielt ein farbloses Öl (20.77 g, 82.9 mmol, 83%).

Siedepunkt: 108 °C (1.2×10^{-2} mbar).

¹**H-NMR** (399.92 MHz, C₆D₆): $\delta = 0.79$ (t, ³ $J_{HH} = 7.2$ Hz, 3 H, CH₂CH₃), 0.9 (dd, ² $J_{PH} = 14.6$ Hz, ³ $J_{HH} = 6.9$ Hz, 3 H, CH(CH₃)₂), 1.14 (dd, ³ $J_{PH} = 16.9$ Hz, ³ $J_{HH} = 6.9$ Hz, 3 H, CH(CH₃)₂), 1.26–1.54 (m, 4 H, CH₂CH₂CH₃), 1.72 (m, 1 H, PCH₂CH₂), 1.96 (m, 1 H, PCH₂CH₂), 2.08 (s, 3 H, *p*-CCH₃), 2.32 (d_{pseudo-sept}, ² $J_{PH} = 13.6$ Hz, ³ $J_{HH} = 6.9$ Hz, 1 H, CH(CH₃)₂), 2.56 (s, 6 H, *o*-CCH₃), 6.76 (s, 2 H, H_{Ar}).

¹³C{¹H}-NMR (100.58 MHz, C₆D₆): $\delta = 14.0$ (s, CH₂CH₃), 20.6 (d, ²*J*_{PC} = 17.7 Hz, CH(*C*H₃)₂), 20.9 (s, 4-CCH₃), 21.0 (d, ²*J*_{PC} = 27.2 Hz, CH(*C*H₃)₂), 23.8 (d, ³*J*_{PC} = 18.9 Hz, *o*-CCH₃), 24.7 (d, ³*J*_{PC} = 12.9 Hz, CH₂CH₂CH₃), 25.7 (d, ²*J*_{PC} = 15.9 Hz, CH₂CH₂CH₃), 25.8 (d, ¹*J* = 10.2 Hz, CH(CH₃)₂), 30.7 (d, ¹*J*_{PC} = 19.4 Hz, PCH₂CH₂), 130.1 (d, ³*J*_{PC} = 3.6 Hz, *m*-CH), 130.8 (d, ²*J*_{PC} = 24.8 Hz, *o*-CCH₃), 138.6 (d, ⁴*J*_{PC} = 1.3 Hz, *p*-CCH₃), 145.1 (d, ¹*J*_{PC} = 14.0 Hz, 1-CP).

³¹**P**{¹**H**}-**NMR** (80.95 MHz, C_6D_6): $\delta = -12.3$.

MS (EI): m/z (%) = 250 (50) [M⁺], 221 (58.4) [(M – Et)⁺], 166 (96.2) [(M – Pr, -iPr)⁺], 152 (72.6) [(M – Bu, -iPr)⁺], 119 (100) [(M – Mesityl, -Me)⁺].

Butyl(isobutyl)(tert-butyl)phosphan (57)

Analog Methode 4 wurde zu PCl₃ (1.37 g, 10.0 mmol, 1.0 Äquiv.), gelöst in 20 mL *t*BuOMe, langsam *i*BuMgBr (hergestellt in Et₂O, suspendiert in *t*BuOMe) zugetropft, bis man selektiv das Dichlorphosphan erhielt. Die anschließende Zugabe von *t*BuLi (6.7 mL, 10 mmol, 1.0 Äquiv.) führte zum Monochlorphosphan. Nach Zugabe von *n*BuLi (7.3 mL, 11.0 mmol, 1.1 Äquiv.) wurde die Reaktionsmischung wässrig aufgearbeitet und fraktioniert destilliert. Man erhielt ein farbloses Öl (1.46 g, 7.2 mmol, 72%).

Siedepunkt: 41 °C (3.1×10^{-2} mbar).

¹**H-NMR** (399.92 MHz, C₆D₆): $\delta = 0.87$ (t, ³*J*_{HH} = 3.9 Hz, 3 H, CH₂C*H*₃), 0.97 (d, *J* = 11.0 Hz, 9 H, C(CH₃)₃), 1.02 (d, ³*J*_{HH} = 6.6 Hz, 3 H, CHC*H*₃), 1.05 (d, ³*J*_{HH} = 6.6 Hz, 3 H, CHC*H*₃), 1.07–1.53 (m, 8 H, 4 CH₂), 1.6–1.7 (m, 1 H, C*H*(CH₃)₂).

¹³C{¹H}-NMR (100.57 MHz, C₆D₆): $\delta = 14.1$ (s, CH₂CH₃), 24.2 (d, ³*J*_{PC} = 10.0 Hz, *i*Bu-CH₃), 24.9 (d, *J*_{PC} = 8.8 Hz, CH₂), 25.0 (d, *J*_{PC} = 10.3 Hz, *i*Bu-CH₃), 25.3 (d, *J*_{PC} = 25.3 Hz, CH₂), 27.6 (d, ²*J*_{PC} = 13.5 Hz, C(CH₃)₃), 27.6 (d, ²*J*_{PC} = 11.9 Hz, *i*Bu-CH), 27.9 (d, ¹*J*_{PC} = 18.0 Hz, PC(CH₃)₃), 30.3 (d, ¹*J*_{PC} = 19.1 Hz, PCH₂), 35.6 (d, ¹*J*_{PC} = 20.1 Hz, PCH₂).

³¹**P**{¹**H**}-**NMR** (80.95 MHz, CDCl₃): $\delta = -7.4$.

MS (EI): m/z (%) = 202 (27.4) [M⁺], 146 (43.4) [(M - *t*Bu)⁺], 104 (80.2) [(M - *t*Bu, - *i*Pr)⁺], 57 (100) [*t*Bu⁺].

sec-Butyl-di-(4-tolyl)phosphan (58)

Aufgrund des stereogenen Zentrums des *sec*-Butylsubstituenten, führen 3 verschiedene Substituenten am Phosphor zu diastereomeren Produktmischungen.

Analog Methode 4 wurde zu PCl₃ (2.75 g, 20.0 mmol, 1.00 Äquiv.), gelöst in 40 mL Et₂O, langsam *s*BuMgCl (hergestellt in THF, suspendiert in Et₂O) zugetropft, bis man selektiv das Dichlorphosphan erhielt. Die anschließende Zugabe von 4-Tolyllithium (45.0 mmol, 2.25 Äquiv.), hergestellt aus 4-Bromtoluol (7.70 g, 45.0 mmol, 2.25 Äquiv.) und *n*BuLi (30.0 mL, 45.0 mmol, 2.25 Äquiv.) in THF, führte zum gewünschten Phosphan (**58**). Nach wässriger Aufarbeitung und fraktionierter Destillation erhielt man ein farbloses Öl (3.38 g, 12.5 mmol, 63%).

Siedepunkt: 73–86 °C (6.0×10^{-2} mbar).

¹**H-NMR** (399.92 MHz, C₆D₆): $\delta = 0.92$ (t, ³*J*_{HH} = 7.4 Hz, 3 H, CH₂C*H*₃), 1.06 (dd, ¹*J*_{PH} = 14.6 Hz, ³*J*_{HH} = 6.9 Hz, 3 H, CHC*H*₃), 1.32 (m, 1 H, C*H*₂CH₃), 1.65 (m, 1 H, C*H*₂CH₃), 2.05 (s_{pseudo}, 6 H, *p*-CC*H*₃), 2.19 (m, 1 H, PCH), 6.95 (d_{pseudo}, *J* = 7.8 Hz, 4 H, *o*-H), 7.50 (t_{pseudo}, *J* = 7.5 Hz, 4 H, *m*-H).

¹³C{¹H}-NMR (100.58 MHz, C₆D₆): $\delta = 12.2$ (d, ${}^{3}J_{PC} = 12.5$ Hz, CH₂CH₃), 15.9 (d, ${}^{2}J_{PC} = 16.8$ Hz, CHCH₃), 21.2 (s_{pseudo}, *p*-CCH₃), 26.7 (d, ${}^{2}J_{PC} = 18.5$ Hz, CH₂CH₃), 32.3 (d, ${}^{1}J_{PC} = 10.2$ Hz, PCH), 129.4 (d, ${}^{3}J_{PC} = 5.4$ Hz, *o*-CH), 129.4 (d, ${}^{3}J_{PC} = 5.4$ Hz, *o*-CH), 133.9 (d, ${}^{2}J_{PC} = 19.4$ Hz, *m*-CH), 134.2 (d, ${}^{2}J_{PC} = 19.9$ Hz, *m*-CH), 135.1 (d, ${}^{1}J_{PC} = 15.0$ Hz, 1-CP), 135.3 (d, ${}^{1}J_{PC} = 14.7$ Hz, 1-CP), 138.4 (s, *p*-CCH₃), 138.4 (s, *p*-CCH₃).

³¹**P**{¹**H**}-**NMR** (80.95 MHz, CDCl₃): $\delta = -3.7$.

MS (EI): m/z (%) = 270 (100) [M⁺], 213 (79.2) [(M - sBu)⁺], 122 (66) [(M - sBu, - Tolyl)⁺].

2-Anisyl(4-anisyl)(3-pentyl)phosphan (59)

Analog Methode 4 wurde zu PCl₃ (1.37 g, 10.0 mmol, 1.0 Äquiv.), gelöst in 20 mL Et₂O, langsam 3-Pentylmagnesiumchlorid in Et₂O zugetropft, bis man selektiv das Dichlorphosphan erhielt. Die anschließende Zugabe von 2-Anisyllithium (10.0 mmol, 1.0 Äquiv.), hergestellt aus 2-Bromanisol (1.87 g, 10.0 mmol, 1.0 Äquiv.) und *n*BuLi (6.66 mL, 10 mmol, 1.0 Äquiv.) in THF, führte zum Monochlorphosphan. Nach Zugabe von 4-Anisyllithium (12.0 mmol, 1.2 Äquiv.), welches aus 4-Bromanisol (2.24 g, 12.0 mmol, 1.2 Äquiv.) und *n*BuLi (8.00 mL, 12.0 mmol, 1.2 Äquiv.) in THF hergestellt wurde, arbeitete man die Reaktionsmischung wässrig auf und destillierte fraktioniert. Man erhielt ein farbloses Öl (1.50 g, 4.7 mmol, 47%).

Siedepunkt: 87–130 °C (5.2×10^{-2} mbar).

¹**H-NMR** (399.92 MHz, C₆D₆): $\delta = 1.00$ (t, ³*J*_{HH} = 7.4 Hz, 3 H, CH₂CH₃), 1.04 (t, ³*J*_{HH} = 7.4 Hz, 3 H, CH₂CH₃), 1.46 (m, 2 H, CH₂CH₃), 1.63 (m, 2 H, CH₂CH₃), 2.33 (dq, *J* = 7.6 Hz, *J* = 4.4 Hz, 1 H, PCH), 3.25 (s, 3 H, OCH₃), 3.26 (s, 3 H, OCH₃), 6.49 (ddd, *J* = 8.2 Hz, *J* = 3.6 Hz, *J* = 0.7 Hz, 1 H, 3'-H), 6.70 (d, *J* = 8.5 Hz, 2 H, 3,5-H), 6.88 (ddd, *J* = 8.0 Hz, *J* = 4.2 Hz, *J* = 0.8 Hz, 1 H, 6'-H), 7.10 (dt, *J* = 7.4 Hz, *J* = 1.7 Hz, 1 H, 4'-H), 7.50 (ddd, *J* = 1.7 Hz, *J* = 7.4 Hz, *J* = 5.4 Hz, 1 H, 5'-H), 7.57 (dd, *J* = 8.5 Hz, *J* = 6.8 Hz, 2 H, 2,6-H).

¹³C{¹H}-NMR (100.58 MHz, C₆D₆): $\delta = 12.1$ (d, ${}^{3}J_{PC} = 5.5$ Hz, CH₂CH₃), 12.3 (d, ${}^{3}J_{PC} = 4.2$ Hz, CH₂CH₃), 23.0 (d, ${}^{2}J_{PC} = 13.5$ Hz, CH₂CH₃), 23.2 (d, ${}^{2}J_{PC} = 15.2$ Hz, CH₂CH₃), 38.2 (d, ${}^{1}J_{PC} = 12.7$ Hz, PCH), 54.1 (s, 4-COCH₃), 54.6 (d, ${}^{4}J_{PC} = 0.5$ Hz, 2'-COCH₃), 110.9 (d, ${}^{3}J_{PC} = 1.4$ Hz, 6'-CH), 114.1 (d, ${}^{3}J_{PC} = 8.2$ Hz, 3,5-CH), 121.0 (d, ${}^{3}J_{PC} = 2.8$ Hz, 4'-CH), 129.9 (s), 133.6 (d, ${}^{3}J_{PC} = 8.4$ Hz), 134.8 (d, ${}^{1}J_{PC} = 17.4$ Hz, PC), 135.3 (d, ${}^{1}J_{PC} = 21.1$ Hz, PC), 136.0 (d, ${}^{2}J_{PC} = 22.1$ Hz, 2,6-CH), 160.6 (s, 4-COMe), 162.2 (d, ${}^{2}J_{PC} = 11.9$ Hz, 2'-COMe).

³¹**P**{¹**H**}-**NMR** (80.95 MHz, CDCl₃): $\delta = -20.5$.

MS (EI): m/z (%) = 316 (68) [M⁺], 285 (94.3) [(M – OMe)⁺], 121 (100).

Butyl(tert-butyl)(2-pyridyl)phosphan (60)

Analog Methode 4 wurde zu PCl_3 (1.37 g, 10.0 mmol, 1.0 Äquiv.), gelöst in 20 mL Et₂O, langsam *t*BuMgCl (hergestellt in THF, suspendiert in Et₂O) zugetropft, bis man selektiv das Dichlorphosphan erhielt. Die anschließende Zugabe von 2-Pyridinyllithium (13.0 mmol, 1.3 Äquiv.), hergestellt aus 2-Brompyridin (1.87 g, 13.0 mmol, 1.3 Äquiv.) und *n*BuLi (8.66 mL, 13.0 mmol, 1.3 Äquiv.) in THF, führte zum Monochlorphosphan. Nach Zugabe von *n*BuLi (8.66 mL, 13.0 mmol, 1.3 Äquiv.) wurde die Reaktionsmischung wässrig aufgearbeitet und fraktioniert destilliert. Man erhielt ein farbloses Öl (1.34 g, 6.0 mmol, 60%).

Siedepunkt: 70–75 °C (1.2×10^{-2} mbar).

¹**H-NMR** (399.92 MHz, C₆D₆): $\delta = 0.84$ (t, ³*J*_{HH} = 7.2 Hz, 3 H, CH₂C*H*₃), 1.05 (d, *J* = 11.5 Hz, 9 H, C(C*H*₃)₃), 1.36–1.60 (m, 5 H, CH*H*CH₂C*H*₂CH₃), 2.62–2.76 (m, 1 H, PCH*H*CH₂), 6.62 (t_{pseudo}dd, *J* = 7.4 Hz, *J* = 4.8 Hz, *J* = 1.2 Hz, 1 H, H_{Ar}), 7.01 (t_{pseudo}t, *J* = 7.6 Hz, *J* = 2.0 Hz, 1 H, H_{Ar}), 7.41 (t_{pseudo}dd, 1 H, *J* = 7.4 Hz, *J* = 5.3 Hz, *J* = 0.9 Hz, 5-H), 8.60 (d, *J* = 4.7 Hz, 3-H).

¹³C{¹H}-NMR (100.58 MHz, C₆D₆): $\delta = 14.1$ (s, CH₂CH₃), 20.5 (d, ³*J*_{PC} = 13.6 Hz, CH₂CH₂CH₃), 24.9 (d, ²*J*_{PC} = 13.0 Hz, CH₂CH₂CH₃), 28.1 (d, ²*J*_{PC} = 13.1 Hz, C(CH₃)₃), 29.6 (d, ¹*J*_{PC} = 18.1 Hz, PCH₂CH₂), 29.6 (d, ¹*J*_{PC} = 12.9 Hz, *C*(CH₃)₃), 122.5 (s, 4-CH), 131.9 (d, ²*J*_{PC} = 40.4 Hz, 6-CH), 134.2 (d, ³*J*_{PC} = 10.0 Hz, 5-CH), 150.0 (d, ³*J*_{PC} = 3.6 Hz, 3-CH), 162.6 (d, ¹*J*_{PC} = 18.2 Hz, 1-CP).

³¹P{¹H}-NMR (80.95 MHz, C_6D_6): $\delta = 8.8$.

2-Anisyl(butyl)(tert-butyl)phosphan (61)

Analog Methode 4 wurde zu PCl_3 (4.12 g, 30.0 mmol, 1.0 Äquiv.), gelöst in 60 mL Et₂O, langsam *t*BuMgCl (hergestellt in THF, suspendiert in Et₂O) zugetropft, bis man selektiv das Dichlorphosphan erhielt. Die anschließende Zugabe von 2-Anisyllithium (33.0 mmol, 1.1 Äquiv.), hergestellt aus 2-Bromanisol (6.17 g, 33.0 mmol, 1.1 Äquiv.) und *n*BuLi (22.0 mL, 33.0 mmol, 1.1 Äquiv.) in THF, führte zum Monochlorphosphan. Nach Zugabe von *n*BuLi (22.0 mL, 33.0 mmol, 1.1 Äquiv.) wurde die Reaktionsmischung wässrig aufgearbeitet und fraktioniert destilliert. Man erhielt ein farbloses Öl (5.00 g, 19.8 mmol, 66%).

Siedepunkt: 85–90 °C (1.3×10^{-2} mbar).

¹**H-NMR** (399.92 MHz, C₆D₆): $\delta = 0.8$ (t, ³*J*_{HH} = 7.1 Hz, 3 H, CH₂C*H*₃), 1.07 (d, *J* = 11.3 Hz, 9 H, C(C*H*₃)₃), 1.3–1.65 (m, 5 H, CH*H*C*H*₂C*H*₂CH₃), 1.92–2.08 (m, 1 H, PCH*H*CH₂), 3.33 (s, 3 H, OCH₃), 6.55 (ddd, *J* = 8.2 Hz, *J* = 3.7 Hz, *J* = 0.8 Hz, 1 H), 6.89 (t_{pseudo}d, *J* = 7.4 Hz, *J* = 1.0 Hz, 1 H), 7.13 (ddd, *J* = 8.3 Hz, *J* = 7.3 Hz, *J* = 1.7 Hz, 1 H), 7.39 (ddd, *J* = 7.4 Hz, *J* = 4.6 Hz, *J* = 1.7 Hz, 1 H).

¹³C{¹H}-NMR (100.58 MHz, C₆D₆): $\delta = 14.0$ (CH₂CH₃), 20.8 (d, $J_{PC} = 18.1$ Hz, CH₂CH₂CH₃), 24.9 (d, $J_{PC} = 12.7$ Hz, CH₂CH₂CH₃), 28.1 (d, $J_{PC} = 13.9$ Hz, C(CH₃)₃), 29.3 (d, ${}^{1}J_{PC} = 18.1$ Hz, PCH₂CH₂), 30.0 (d, ${}^{1}J_{PC} = 15.2$ Hz, C(CH₃)₃), 54.9 (d, ${}^{4}J_{PC} = 1.0$ Hz, OCH₃), 111.1 (d, $J_{PC} = 1.9$ Hz), 120.6 (d, $J_{PC} = 2.5$ Hz), 124.6 (d, ${}^{1}J_{PC} = 27.1$ Hz, 1-PC_{Ar}), 130.3 (s, 4-C), 134.0 (d, ${}^{2}J_{PC} = 6.3$ Hz, 6-C), 163.7 (d, ${}^{2}J_{PC} = 13.8$ Hz, 2-COMe).

³¹**P**{¹**H**}-**NMR** (80.95 MHz, C_6D_6): $\delta = -10.4$.

MS (EI): m/z (%) = 252 (68) [M⁺], 221 (31.1) [(M – OMe)⁺], 196 (20.8) [(M – tBu)⁺], 154 (100) [(M – tBu, – Pr)⁺].

13.3 Selektive Darstellung von tertiären unsymmetrischen Phosphanen mit Alkyl- oder Arylsubstituenten aus Dichlorphenylphosphan

Cyclopentyl-2-(N-methylpyrrolyl)(phenyl)phosphan (62)

Ausgehend von Dichlorphenylphosphan (1.73 g, 10.0 mmol, 1.0 Äquiv.), gelöst in *t*BuOMe, wurde analog zu Methode 4 Cyclopentylmagnesiumbromid, gelöst in THF, langsam zugetropft. Anschließend wurde 2-Lithium-*N*-methylpyrrolid (13.0 mmol, 1.3 Äquiv.) [hergestellt aus *N*-Methylpyrrol (1.05 g, 13.0 mmol, 1.3 Äquiv.), *N*,*N*,*N*,*N*'. Tetramethylethylendiamin (1.51 g, 13.0 mmol, 1.3 Äquiv.) und *n*BuLi (8.66 mL, 13.0 mmol, 1.3 Äquiv.) in Et₂O 30 Minuten bei Zimmertemperatur] zu dem Monochlorphosphan gegeben. Nach wässriger Aufarbeitung erhielt man ein farbloses Öl, welches fraktioniert destilliert wurde. Das isolierte farblose Öl konnte in einer Ausbeute von 48% erhalten werden (1.24 g, 4.8 mmol).

Siedepunkt: 98–104 °C (4.4×10^{-2} mbar)

¹**H-NMR** (399.92 MHz, C_6D_6): $\delta = 1.25-1.65$ (m, 8 H, 4 CH₂), 2.41–2.54 (m, 1 H, PCH), 3.14 (s, 3 H, NCH₃), 6.37 (dd, J = 3.6 Hz, J = 2.6 Hz, 1 H), 6.50 (dd, J = 4.2 Hz, J = 2.5 Hz, 1 H), 6.59 (dd, J = 3.6 Hz, J = 1.6 Hz, 1 H), 7.01–7.12 (m, 3 H, *o*- und *p*-H), 7.51 (t_{pseudo}d, J = 7.3 Hz, J = 1.6 Hz, 2 H, *m*-H). ¹³C{¹H}-NMR (100.58 MHz, C₆D₆): $\delta = 26.6$ (d, $J_{PC} = 8.1$ Hz, CH₂), 26.7 (d, $J_{PC} = 7.6$ Hz, CH₂), 31.3 (d, $J_{PC} = 21.0$ Hz, CH₂), 31.8 (d, $J_{PC} = 19.6$ Hz, CH₂), 34.6 (d, ¹ $J_{PC} = 14.0$ Hz, PCH), 37.1 (d, ³ $J_{PC} = 3.4$ Hz, NCH₃), 108.8 (d, $J_{PC} = 2.2$ Hz, C_{Het}), 116.5 (d, $J_{PC} = 1.9$ Hz, C_{Het}), 126.1 (d, $J_{PC} = 2.1$ Hz, C_{Het}), 128.2 (d, ¹ $J_{PC} = 34.5$ Hz, 2-C_{Het}), 128.3 (d, ³ $J_{PC} = 6.9$ Hz, *m*-CH), 128.5 (d, ⁴ $J_{PC} = 0.8$ Hz, *p*-CH), 133.2 (d, ² $J_{PC} = 19.1$ Hz, *o*-CH), 139.5 (d, ¹ $J_{PC} = 14.7$ Hz, 1-CP).

³¹**P**{¹**H**}-**NMR** (80.95 MHz, C_6D_6): $\delta = -28.9$.

MS (**EI**): m/z (%) = 257 (51) [M⁺], 188 (100) [M - Cyclopentyl)⁺], 111 (11.3) [M - Cyclopentyl, - Ph)⁺].

Cyclopentyl(2-furyl)(phenyl)phosphan (63)

Ausgehend von Dichlorphenylphosphan (1.73 g, 10.0 mmol, 1.0 Äquiv.), gelöst in *t*BuOMe, wurde analog zu Methode 4 Cyclopentylmagnesiumbromid, gelöst in THF, langsam zugetropft. Anschließend wurde 2-Furyllithium (13.0 mmol, 1.3 Äquiv.) [hergestellt aus Furan (884 mg, 13.0 mmol, 1.3 Äquiv.), N,N,N',N'-Tetramethylethylendiamin (1.51 g, 13.0 mmol, 1.3 Äquiv.) und *n*BuLi (8.66 mL, 13.0 mmol, 1.3 Äquiv.) in Et₂O 30 Minuten bei Zimmertemperatur] zu dem Monochlorphosphan gegeben. Nach wässriger Aufarbeitung erhielt man ein braunes Öl, welches fraktioniert destilliert wurde. Das isolierte farblose Öl konnte in einer Ausbeute von 36% erhalten werden (879 mg, 3.6 mmol).

Siedepunkt: 85–92 °C (5.2×10^{-2} mbar).

¹**H-NMR** (399.92 MHz, C_6D_6): $\delta = 1.15-1.80$ (m, 8 H, 4 CH₂), 2.60–2.80 (m, 1 H, PCH), 6.01 (m, 1 H, C_{Het}H), 6.57–6.60 (m, 1 H, C_{Het}H), 6.95–7.12 (m, 3 H, *o*- und *p*-H), 7.22–7.24 (m, 1 H, 5-C_{Het}H), 7.60 (pseudotd, J = 7.8 Hz, J = 1.5 Hz, 2 H, *m*-H).

¹³C{¹H}-NMR (100.58 MHz, C₆D₆): $\delta = 26.4$ (d, $J_{PC} = 4.4$ Hz, CH₂), 26.5 (d, $J_{PC} = 4.9$ Hz, CH₂), 30.8 (d, $J_{PC} = 21.7$ Hz, CH₂), 31.0 (d, $J_{PC} = 18.5$ Hz, CH₂), 36.1 (d, ¹ $J_{PC} = 4.0$ Hz, CHP), 110.5 (d, $J_{PC} = 6.2$ Hz, C_{Het}), 120.5 (d, $J_{PC} = 24.9$ Hz, C_{Het}), 128.4 (d, ³ $J_{PC} = 7.3$ Hz, *m*-CH), 128.8 (s, *p*-CH), 133.4 (d, ² $J_{PC} = 19.5$ Hz, *o*-CH), 137.2 (d, ¹ $J_{PC} = 11.9$ Hz, 1-CP), 146.7 (s, C_{Het}), 154.6 (d, ¹ $J_{PC} = 26.1$ Hz, 2-C_{Het}P).

³¹**P**{¹**H**}-**NMR** (80.95 MHz, C_6D_6): $\delta = -26.7$.

MS (EI): m/z (%) = 244 (100) [M⁺], 203 (49.1) [(M – Pr)⁺], 175 (81.1) [(M – Cyclopentyl)⁺], 98 (23.6) [M – Ph, – Cyclopentyl)⁺].

Cyclopentyl(phenyl)[3,5-bis(trifluormethyl)phenyl]phosphan (64)

Achtung: Konzentrierte Lösungen von Trifluormethylphenylgrignardreagenzien sind aufgrund starker und unkontrollierter exothermer Zersetzung sehr gefährlich:

R. Waymouth, E. J. Moore, *Chemical & Engineering News* **1997**, *75(11)*, 6 oder http://pubs.acs.org/cen/safety/19970317.html.

Ausgehend von Dichlorphenylphosphan (1.68 g, 9.7 mmol, 1.00 Äquiv.), gelöst in *t*BuOMe, wurde analog zu Methode 4 Cyclopentylmagnesiumbromid, gelöst in THF, langsam zugetropft. Anschließend wurde 3,5-Bis-(trifluormethyl)phenylmagnesiumbromid (18.0 mmol, 1.86 Äquiv.) [hergestellt aus 1-Brom-3,5-Bis-(trifluormethyl)benzol (5.20 g, 18.0 mmol, 1.86 Äquiv.) und Mg-Spänen (486 mg, 20.0 mmol, 2.06 Äquiv.) in THF, anschließend 30 Minuten bei Zimmertemperatur] zu dem Monochlorphosphan gegeben. Nach wässriger Aufarbeitung erhielt man ein dunkelbraunes Öl, welches fraktioniert destilliert wurde. Das isolierte farblose Öl konnte in einer Ausbeute von 92% erhalten werden (3.50 g, 8.9 mmol).

Siedepunkt: 80–95 °C (7.5×10^{-2} mbar).

¹**H-NMR** (599.80 MHz, C₆D₆): δ = 1.22–1.40 (m, 4 H, 2 CH₂), 1.41–1.62 (m, 4 H, 2 CH₂), 2.21 (m, 1 H, PCH), 7.03–7.06 (m, 3 H, 2,6- und 4-H), 7.27–7.32 (m, 2 H, 3,5-H), 7.68 (s, 1 H, 4'-H), 7.87 (d, ³*J*_{PH} = 5.4 Hz, 2 H, 2',6'-H).

¹³C{¹H}-NMR (150.83 MHz, C₆D₆): $\delta = 26.5$ (d, ${}^{3}J_{PC} = 7.2$ Hz, CH₂), 26.8 (d, ${}^{3}J_{PC} = 7.4$ Hz, CH₂), 30.9 (d, ${}^{2}J_{PC} = 3.8$ Hz, CH₂), 31.1 (d, ${}^{2}J_{PC} = 4.7$ Hz, CH₂), 35.6 (d, ${}^{1}J_{PC} = 9.8$ Hz, PCH), 122.1 (sept, ${}^{3}J_{CF} = 3.8$ Hz, 4′-CH), 124.0 (q, ${}^{1}J_{CF} = 273.0$ Hz, CF₃), 129.0 (d, ${}^{3}J_{PC} = 7.2$ Hz, 3,5-CH), 129.7 (d, ${}^{4}J_{PC} = 0.7$ Hz, 4-CH), 131.7 (qd, ${}^{2}J_{CF} = 33$ Hz, ${}^{3}J_{PC} = 5.5$ Hz, 3′,5′-CCF₃), 132.8 (dm, ${}^{2}J_{PC} = 15.2$ Hz, 2′,6′-CH), 133.9 (d, ${}^{2}J_{PC} = 19.8$ Hz, 2,6-CH), 137.0 (d, ${}^{1}J_{PC} = 14.0$ Hz, CP), 145.0 (d, ${}^{1}J_{PC} = 24.1$ Hz, CP).

 ${}^{31}P{}^{1}H$ -NMR (80.95 MHz, C₆D₆): $\delta = -1.6$.

MS (EI): m/z (%) = 390 (77.4) [M⁺], 349 (100) [(M – Pr)⁺], 322 (82.1) [(M – Cyclopentyl)⁺], 244 (20.7) [(M – Ph, – Cyclopentyl)⁺].

Cyclopentyl(pentafluorphenyl)(phenyl)phosphan (65)

Ausgehend von Dichlorphenylphosphan (1.66 g, 9.6 mmol, 1.00 Äquiv.), gelöst in *t*BuOMe, wurde analog zu Methode 4 Cyclopentylmagnesiumbromid, gelöst in THF, langsam zugetropft. Anschließend wurde 1-Pentafluorphenyllithium (15.0 mmol, 1.56 Äquiv.) [hergestellt aus 1-Brompentafluorbenzol (5.20 g, 15.0 mmol, 1.56 Äquiv.) und *n*BuLi (10 mL, 15.0 mmol, 2.56 Äquiv.) in THF, bei –85 °C] abweichend von Methode 4 bei –85 °C zu dem Monochlorphosphan gegeben. Nach wässriger Aufarbeitung erhielt man ein schwach violettes Öl, welches fraktioniert destilliert wurde. Das isolierte farblose Öl konnte in einer Ausbeute von 75% erhalten werden (2.47 g, 7.2 mmol).

Siedepunkt: 95–119 °C (3.9×10^{-2} mbar).

¹**H-NMR** (599.80 MHz, C₆D₆): δ = 1.21–1.50 (m, 4 H, 2 CH₂), 1.51–1.62 (m, 3 H, CH₂), 1.67–1.76 (m, 1 H, CH₂), 3.03 (m, 1 H, PCH), 7.05–7.13 (m, 3 H, 2,6- und 4-H), 7.50 (t_{pseudo}, ³*J*_{HH} = 7.3 Hz, 2 H, 3,5-H).

¹³C{¹H}-NMR (150.83 MHz, C₆D₆): δ = 26.5 (d, *J*_{PC} = 7.5 Hz, CH₂), 26.7 (d, *J*_{PC} = 8.3 Hz, CH₂), 30.7 (d, *J*_{PC} = 19.3 Hz, CH₂), 31.6 (d, *J*_{PC} = 29.7 Hz, CH₂), 32.6 (td, ¹*J*_{PC} = 8.6 Hz ${}^{4}J_{CF}$ = 4.8 Hz, PCH), 112.7 (m, 1´-CP), 128.8 (d, ³*J*_{PC} = 6.7 Hz, 3,5-CH), 129.4 (s, 4-CH), 133.0 (d, ²*J*_{PC} = 19.7 Hz, 2,6-CH), 136.1 (d, ¹*J*_{PC} = 15.7 Hz, PC_{Ar}), 137.6 (dm, ¹*J*_{CF} = 252.0 Hz, CF), 142.1 (dm, ¹*J*_{CF} = 254.8 Hz, CF), 148.7 (dm, ¹*J*_{CF} = 245.0 Hz, CF).

³¹**P**{¹**H**}-**NMR** (80.95 MHz, CDCl₃): $\delta = -22.1$.

iso-Butyl(methyl)(phenyl)phosphan (66)

Ausgehend von Dichlorphenylphosphan (1.73 g, 10 mmol, 1.00 Äquiv.), gelöst in *t*BuOMe, wurde analog zu Methode 4 *i*BuMgBr, gelöst in Et₂O, langsam zugetropft. Anschließend wurde MeLi (7 mL, 10 mmol, 1.00 Äquiv.) zu dem Monochlorphosphan gegeben. Nach wässriger Aufarbeitung erhielt man ein dunkelbraunes Öl, welches fraktioniert destilliert wurde. Das isolierte farblose Öl konnte in einer Ausbeute von 55% erhalten werden (990 mg, 5.5 mmol).

Siedepunkt: 50–58 °C (2.9×10^{-2} mbar).

¹**H-NMR** (399.94 MHz, C₆D₆): $\delta = 0.87$ (d, ³*J*_{HH} = 6.4 Hz, 3 H, CHC*H*₃), 0.93 (d, ³*J*_{HH} = 6.4 Hz, 3 H, CHC*H*₃), 1.05 (d, ²*J*_{PH} = 3.7 Hz, 3 H, PCH₃), 1.31 (m, 1 H, C*H*(CH₃)₂), 1.46–1.63 (m, 2 H, PCH₂), 7.02–7.13 (m, 3 H, *o*- und *p*-H), 7.37–7.44 (m, 2 H, *m*-H_{Ar}).

¹³C{¹H}-NMR (100.58 MHz, C₆D₆): $\delta = 13.0$ (d, ¹*J*_{PC} = 15.2 Hz, PCH₃), 24.3 (d, *J*_{PC} = 1.0 Hz, CH₃), 24.4 (d, *J*_{PC} = 1.2 Hz, CH₃), 26.6 (d, ²*J*_{PC} = 13.3 Hz, *i*Bu-CH₂), 42.1 (d, ¹*J*_{PC} = 13.2 Hz, PCH₂), 128.6 (d, *J*_{PC} = 6.6 Hz, *m*-CH), 128.6 (s, *p*-H), 132.0 (d, *J*_{PC} = 19.0 Hz, *o*-CH), 142.0 (d, ¹*J*_{PC} = 15.2 Hz, 1-CP).

³¹**P**{¹**H**}-**NMR** (80.95 MHz, CDCl₃): $\delta = -38.9$.

MS (EI): m/z (%) = 180 (56.6) [M⁺], 138 (100) [(M - *i*Pr)⁺], 124 (86.8) [(M - *i*Bu)⁺], 109 (50) [(M - *i*Bu, - Me)⁺].

13.4 Eine konventionelle Phosphansynthese

Di-tert-butylmethylphosphan (67)

In einem 2 L Dreihalskolben mit magnetischem Rührkern, Rückflusskühler und Tropftrichter wurden Mg-Späne (48 g, 2.000 mol) in Stickstoffatmosphäre über Nacht gerührt (drystirring). Über Tropftrichter gab man *t*BuCl, gelöst in 1000 mL THF, langsam (2.5 h) zu den Mg-Spänen unter starkem Rühren zu. Die Bildung von Isobuten und Isobutan als Nebenprodukte, verursacht durch die Reaktion von *t*BuMgCl mit *t*BuCl, führte zu einer leichten Gasentwicklung. Es wurde über Nacht bei Zimmertemperatur gerührt. Man kann eine Umsetzung zum Grignard-Reagenz von 65–80% erwarten.

Die Hälfte des Grignard-Reagenzes wurde in einen 500 mL Tropftrichter kanüliert.

In einen 4 L Dreihalskolben mit großem magnetischem Rührkern, geflutet mit Stickstoff, wurden PCl₃ (68 g, 0.500 mol) in 300 mL THF vorgelegt und auf –40 °C Innentemperatur heruntergekühlt. Über Tropftrichter wurde *t*BuMgCl tropfenweise der Lösung unter starkem Rühren zugegeben. Aufgrund der exotherm eintretenden Reaktion musste auf –60 °C gekühlt werden, um eine Innentemperatur von mindestens –40 °C gewährleisten zu können. Nach Zugabe von 320 mL *t*BuMgCl innerhalb einer Stunde nahm die Exothermie der Reaktion ab. Der Temperaturgradient Kolben innen/außen sank von > 20 °C auf < 10 °C ab. Nach weiterer Zugabe von 610 mL *t*BuMgCl war die Umsetzung zum Di-*tert*-butylchlorphosphan vollständig abgelaufen.

Die Reaktionsmischung wurde über Nacht bei Zimmertemperatur gerührt. Um MgCl₂ Niederschlagsbildung zu vermeiden, wurde die Reaktionsmischung während der Zugabe von MeMgCl (175 mL, 0.525 mol) über Tropftrichter zum Sieden erhitzt. Um das Monochlorphosphan vollständig zum Phosphan umzusetzen, wurde über Nacht bei Zimmertemperatur gerührt.

Zu der entstandenen Suspension wurden 500 mL entgastes H_2O zugegeben und für 10 Minuten gerührt. Die organische Phase wurde in einen 2 L *Schlenk*-Kolben kanüliert und zweimal mit entgastem H_2O gewaschen. Die wässrige Phase wurde zweimal mit Et₂O

gewaschen. Die vereinigten organischen Phasen wurden unter MgSO₄ getrocknet und anschließend unter Vakuum eingeengt. Die Lösung wurde in einen 500 mL *Schlenk*-Kolben überführt und das MgSO₄ zweimal mit Et₂O gewaschen. Man erhielt nach fraktionierter Destillation mit *Vigreux*-Kolonne ein farbloses Öl (58.5 g, 365 mmol, 73%).

Siedepunkt: 67 °C (40 mbar).

³¹**P**{¹**H**}-**NMR** (80.95 MHz, C_6D_6): $\delta = 12.3$.

13.5 Phosphan-Ligandensysteme unter Verwendung von Polyethylenglykol- und Kronenether-Fragmenten

2-Brom-4,6-ditert-butyl-[2-{2-(2-methoxyethoxy)ethoxy}ethoxy]-benzol (73)

In einem Rundkolben mit magnetischem Rührkern und Rückflusskühler wurden 2-Brom-4,6di-*tert*-butylphenol (**71**) (14.26 g, 50 mmol) und Verbindung **72** (14.06 g, 44 mmol) in THF (100 mL) gelöst. Nachdem NaOH (1.76 g, 44 mmol) zugegeben wurde, rührte man die Reaktionsmischung für drei Tage bei 75 °C.

Nach Abkühlen der Reaktionsmischung auf Zimmertemperatur wurde mit NaOH (konz.) ausgeschüttelt und anschließend mit H₂O (2×50 mL). Die Phasen wurden getrennt und die organische Phase mit Toluol verstärkt. Das Lösemittel wurde unter reduziertem Druck entfernt. Man erhielt das Produkt als farbloses Öl in 92% (19.87 g) Ausbeute.

Di*tert*-butyl-2-[4,6-di*tert*-butyl-[2-{2-(2-methoxyethoxy)ethoxy}ethoxy]-phenyl]phosphan (68)

In einem *Schlenk*-Kolben mit magnetischem Rührkern und mit Stickstoff geflutet, wurde Verbindung **73** (739 mg, 1.71 mmol) in THF gelöst und bei Zimmertemperatur *i*PrMgCl·LiCl (1.9 mmol) über eine Spritze zugefügt. Nach vier Stunden war der Brom-Magnesium-Austausch vollständig abgelaufen. Das Di-*tert*-butylchlorphosphan (343 mg, 1.9 mmol) wurde über eine Spritze zu der Reaktionsmischung zugegeben. Nach Zugabe von CuCl (188 mg, 1.9 mmol) entstand sofort unter Erwärmung eine dunkelviolette Suspension. Man rührte drei Tage bei 75 °C. Die Aufarbeitung erfolgte durch Ausschütteln mit NH₃-Lösung (3 × 10 mL) und anschließendes Ausschütteln mit NaCl-Lösung (2 × 10 mL). Die Phasen wurden getrennt und die organische Phase unter Na₂SO₄ getrocknet. Das Produkt wurde unter reduziertem Druck vom Lösemittel befreit und als farbloses Öl erhalten (36%, 340 mg).

¹**H NMR** (199.98 MHz, CDCl₃): δ = 1.13 (s, 9 H, C(CH₃)₃), 1.19 (s, 9 H, C(CH₃)₃), 1.30 (s, 9 H, C(CH₃)₃), 1.38 (s, 9 H, C(CH₃)₃), 3.38 (s, 3 H, CH₃), 3.51–3.59 (m, 2 H), 3.63–3.74 (m, 4 H), 3.76–3.82 (m, 2 H), 3.87–3.96 (m, 2 H), 4.29–4.40 (m, 2 H), 7.27–7.32 (m, 1 H), 7.49–7.55 (m, 1 H).

³¹**P**{¹**H**} **NMR** (80.95 MHz, CDCl₃): δ = 20.1.

GC-MS: $t_R = 17.6 \text{ min } (70\text{-}1\text{LL}), \ m/z \ (\%) = 495 \ (0.5) \ [(M-H)^+], \ 350 \ (100), \ 335 \ (16), \ 238 \ (65), \ 223 \ (51), \ 57 \ (82) \ [(tBu)^+].$

15-Hydroxy-1,4,7,10,13-pentaoxacyclohexadecan (76)^[104]

In einen 2 L Schlenkkolben mit großem magnetischem Rührkern wurden 194.23 g (1 mol) Tetraethylenglykol gegeben. Es wurden anschließend 200 g (5 mol) technisches NaOH (feinkörniges Granulat) im Stickstoffgegenstrom zugegeben. Man fügte weitere 500 mL 1,4-Dioxan zu und rührte die Reaktionsmischung, die sich dabei leicht erwärmte. Über einen Messzylinder wurden ebenfalls im Stickstoffgegenstrom 92.52 g (1 mol, 78.4 mL) Epichlorhydrin der Reaktionsmischung langsam zugefügt. Anschließend erwärmte man die Mischung auf 110 °C und rührte über Nacht.

Es wurde auf Zimmertemperatur abgekühlt und anschließend unter reduziertem Druck filtriert. Der Kolben und der Filterrückstand wurden sorgfältig mit 1,4-Dioxan nachgespült. Die basische Lösung wurde mit HCl (konz.) sauer eingestellt (pH zwischen 3 und 5). Das ausgefallene Salz wurde erneut unter reduziertem Druck abfiltriert. Danach entfernte man von der Reaktionsmischung das Lösemittel unter reduziertem Druck. Dem Rohprodukt wurde das restliche Lösemittel mit der Hochvakuumanlage entzogen.

Nachdem das Rohprodukt in einen 500 mL Kolben überführt wurde, destillierte man unter reduziertem Druck (ca. $1 \cdot 10^{-3}$ mbar) und unter starkem Erhitzen (mit Heißluftfönen) das Produkt über. Man erhielt ein farbloses Öl (42.5 g, 17%).

¹**H-NMR** (199.98 MHz, CDCl₃): $\delta = 3.52-3.77$ (m), 3.81-3.93 (m, 1 H).

GC-MS: $t_R = 8.6 \min (70-1), m/z (\%) = 250 (1) [(M - H_2O)^+], 133 (28), 103 (26), 87 (100), 73 (41), 59 (68).$

15-[(2-Brombenzyl)oxa]-1,4,7,10,13-pentaoxacyclohexadecan (78)^[105]

In einem *Schlenk*-Kolben mit magnetischem Rührkern und mit Stickstoff geflutet, wurde KH (200 mg, 5 mmol) in Toluol suspendiert und bei Zimmertemperatur Verbindung **76** (750 mg, 3.3 mmol) über eine Spritze zugefügt. Nachdem die Wasserstoffentwicklung abgenommen hatte, gab man das 3-Brombenzylbromid (**77**) (825 mg, 3.3 mmol) zu der Reaktionsmischung. Man rührte über Nacht bei Zimmertemperatur. Die Aufarbeitung erfolgte durch Ausschütteln mit H₂O (3×10 mL), wobei die organische Phase mit CH₂Cl₂ verstärkt wurde. Die Phasen wurden getrennt und die organische Phase unter Na₂SO₄ getrocknet. Das Produkt wurde unter reduziertem Druck vom Lösemittel befreit und als farbloses Öl erhalten. Das Produkt wurde säulenchromatographisch mit Kieselgel gereinigt (44%, 610 mg).

¹**H-NMR** (199.98 MHz, CDCl₃): δ = 3.58 (m, 21 H, [16]-Krone-5), 4.62 (s, 2 H, C_{Ar}-CH₂), 7.05–7.25 (m, 2 H), 7.18–7.20 (m, 1 H), 7.38 (s, 1 H).

GC-MS: $t_R = 12.0 \min (110L), m/z (\%) = 418 (0.1) [(M - H)^+], 169 (78), 133 (26), 87 (100).$

Bis-[15-(benz-2-yloxa)-1,4,7,10,13-pentaoxacyclohexadecan]-2-(2´,6´-dimethoxybiphenylyl)phosphan (69)

Analog der Methoden 1 bis 3 wurde aus 2-Brom-2',6'-dimethoxybiphenyl (**8**) (1.00 g, 3.40 mmol, 1.00 Äquiv.), gelöst in THF (30 mL), mit *n*BuLi (2.5 mL, 3.75 mmol, 1.10 Äquiv.) das 2-Lithium-2',6'-dimethoxybiphenylid (**9**) hergestellt, welches mit PCl₃ (467 mg, 3.40 mmol, 1.00 Äquiv.), weiter zum Dichlorphosphan umgesetzt wurde. Anschließende Zugabe der Lithiumverbindung von **78** (8.00 mmol, 2.35 Äquiv.), hergestellt aus **78** (3.34 g, 8.00 mmol, 2.35 Äquiv.) und *n*BuLi (5.3 mL, 8.00 mmol, 2.35 Äquiv.), führte zum gewünschten Phosphan. Nach Aufarbeitung (Nicht mit MgSO₄ oder Na₂SO₄ getrocknet!) erhielt man ein gelbes Öl (<30%).

¹**H-NMR** (199.98 MHz, CDCl₃): δ = 3.42 (s, 6 H, OCH₃), 3.44 (m, 42 H, [15]-Krone-5), 4.60 (s, 4 H, C_{Ar}-CH₂), 6.45 (m, 2 H, 3′,5′-H), 7.00–7.41 (m, 13 H).

³¹**P**{¹**H**} **NMR** (80.95 MHz, CDCl₃): $\delta = -11.3$.

MS (EI): m/z (%) = 892.1 (100) [(M - OMe)⁺], 705.6 (7), 409.1 (7), 394.1 (11).

13.6 Darstellung einer chiralen Trietherverbindung (90)

1-Chlor-3-*O*-(-)menthyl-propan-2-ol (87)^[112]

In einem Dreihals-Kolben mit magnetischem Rührkern, Rückflusskühler und Tropftrichter wurde ZnCl₂ (6.0 g, 43.8 mmol) unter Vakuum ausgeheizt. Anschließend wurde Menthol (**86**) (68.35 g, 438.0 mmol) im Stickstoffgegenstrom in den Kolben gegeben und in 250 mL trockenem Toluol gelöst. Nachdem man die farblose Suspension auf 70 °C erhitzte, löste sich das ZnCl₂ vollständig in Toluol. Über Tropftrichter gab man über einen Zeitraum von zwei Stunden Epichlorhydrin (**75**) (30.5 g, 328.5 mmol), gelöst in 40 mL Toluol, langsam zu der warmen Lösung. Es wurde 5 Stunden bei 100 °C weitergerührt.

Die Reaktionsmischung wurde auf Zimmertemperatur abgekühlt und mit wässriger Na₂CO₃-Lösung (alternativ mit NH₃-Lösung) ausgeschüttelt (2×50 mL). Nach Trennung der Phasen wurde die organische Phase über MgSO₄ getrocknet und anschließend das Lösemittel entfernt. Das Rohprodukt wurde unter reduziertem Druck destilliert (1.9×10^{-1} mbar, 120 °C). Man erhielt ein farbloses Öl in 91% (74.7 g) Ausbeute.

¹**H-NMR** (199.98 MHz, CDCl₃): $\delta = 0.73-1.08$ (m, 12H), 1.14–1.50 (m, 2 H), 1.54–1.73 (m, 2 H), 2.01–2.24 (m, 2 H), 2.53 (s, 1 H, OH), 3.01–3.17 (m, 1 H, CHOH), 3.35–3.49 (m, 1 H), 3.53–3.66 (m, 2 H), 3.68–3.77 (m, 1 H), 3.84–4.02 (m, 1 H).

GC-MS: $t_R = 7.9 \min (70-1), m/z (\%) = 248 (0.3) [M⁺], 163 (66), 139 (98), 83 (100).$

3-O-(-)Menthyl-propenoxid (88)^[112]

In einem Rundkolben mit Rückflusskühler wurden Verbindung **87** (74.7 g, 300 mmol), NaOH (36 g, 900 mmol) und Benzyltrimethylammoniumchlorid (16.7 g, 90 mmol) vorgelegt und mit Toluol (150 mL) und H₂O (40 mL) versetzt. Die Reaktionsmischung wurde unter starkem(!) Rühren für drei Stunden auf 100 °C erhitzt.

Die Reaktionsmischung wurde auf Zimmertemperatur abgekühlt und mit H₂O ausgeschüttelt $(2 \times 50 \text{ mL})$. Nach Trennung der Phasen wurde die organische Phase über MgSO₄ getrocknet und anschließend das Lösemittel entfernt. Das Rohprodukt wurde unter reduziertem Druck destilliert $(2.4 \times 10^{-2} \text{ mbar}, 85 \text{ °C})$. Man erhielt ein farbloses Öl in 74% (47.1 g) Ausbeute.

¹**H-NMR** (199.98 MHz, CDCl₃): δ = 0.71–0.98 (m, 12 H), 1.11–1.48 (m, 2 H), 1.52–1.73 (m, 2 H), 1.98–2.30 (m, 2 H), 2.54–2.84 (m, 1 H), 2.98–3.20 (m, 2 H), 3.28–3.46 (m, 1 H), 3.50–3.78 (m, 2 H), 3.82–4.03 (m, 1 H).

GC-MS: $t_R = 7.4 \text{ min (70-1)}, m/z (\%) = 212 (0.2) [M^+], 197 (1), 155 (4) [(Menthol)^+], 138 (55) [(Menthen - H)^+], 127 (100), 81 (62).$

1,3-Bis-[*O*-(–)menthyl]propan-**2-ol** (89)

In einem Dreihals-Kolben mit magnetischem Rührkern, Rückflusskühler und Tropftrichter wurde ZnCl₂ (4.5 g, 33 mmol) unter Vakuum ausgeheizt. Anschließend wurde Menthol (51.6 g, 330.0 mmol) im Stickstoffgegenstrom in den Kolben gegeben und in 250 mL trocke-
nem Toluol gelöst. Nachdem man die farblose Suspension auf 70 °C erhitzte, löste sich das ZnCl₂ vollständig in Toluol. Über Tropftrichter gab man über einen Zeitraum von zwei Stunden Verbindung **88** (47.1 g, 222.0 mmol), gelöst in 40 mL Toluol, langsam zu der warmen Lösung. Es wurde 5 Stunden bei 100 °C weitergerührt.

Die Reaktionsmischung wurde auf Zimmertemperatur abgekühlt und mit wässriger Na₂CO₃-Lösung (alternativ mit NH₃-Lösung) ausgeschüttelt (2×50 mL). Nach Trennung der Phasen wurde die organische Phase über MgSO₄ getrocknet und anschließend das Lösemittel entfernt. Das Rohprodukt wurde unter reduziertem Druck destilliert. Man erhielt ein farbloses Öl in 64% (52.0 g) Ausbeute.

GC-MS: $t_R = 12.0 \text{ min } (70-1), m/z \ (\%) = 368 \ (0.1) \ [M^+], 350 \ (8), 229 \ (7), 139 \ (97) \ [(Menthen)^+], 83 \ (100).$

1,3-Bis-[O-(-)-menthyl]-2-methoxypropan (90)

In einem trockenen *Schlenk*-Kolben, ausgestattet mit magnetischem Rührkern, wurde Verbindung **89** (34.98 g, 91.3 mmol) in THF (100 mL) gelöst und mit Septum verschlossen. Zu der auf 0 °C gekühlten Lösung wurde *n*BuLi (45 mL, 112.5 mmol, 2.5M) langsam über eine Spritze zugegeben. Man rührte weitere 10 Minuten und gab anschließend Me₂SO₄ (14.18 g, 115 mmol) ebenfalls langsam über eine Spritze zu. Die Reaktionsmischung wurde auf Zimmertemperatur erwärmt, mit NH₃-Lösung (2 × 50 mL) und anschließend mit H₂O ausgeschüttelt (2 × 50 mL). Nach Trennung der Phasen wurde die organische Phase über MgSO₄ getrocknet und anschließend das Lösemittel entfernt. Das Rohprodukt wurde unter reduziertem Druck destilliert. Man erhielt ein farbloses Öl in 95% (30.2 g) Ausbeute. ¹**H-NMR** (199.98 MHz, CDCl₃): δ = 0.70–1.04 (m, 24 H), 1.12–1.43 (m, 4 H), 1.52–1.70 (m, 4 H), 2.00–2.30 (m, 4 H), 2.93–3.12 (m, 2 H), 3.26–3.46 (m, 6 H), 3.56–3.77 (2 H).

GC-MS: $t_R = 11.3 \text{ min } (70-1), m/z \ (\%) = 382 \ (0.1) \ [(M - H)^+], 196 \ (6), 155 \ (11) \ [(Menthyl)^+], 139 \ (90) \ [(Menthen)^+], 83 \ (100).$

14 Pd(0)-Komplex

Palladium(0)methylbis[2-(2',6'-dimethoxybiphenylyl)]phosphan-(η^2)-dibenzylidenaceton (94)

In einem 10 mL *Schlenk*-Kolben mit magnetischem Rührkern wurden $Pd_2(dba)_3$ (210 mg, 0.23 mmol, 1.00 Äquiv.) in der Glove-Box eingewogen und der Kolben mit Septum verschlossen. Anschließend wurde das $Pd_2(dba)_3$ in 5 mL Benzol gelöst und Phosphan **33** (188 mg, 0.40 mmol, 1.74 Äquiv.) im Stickstoffgegenstrom zugegeben. Auf den *Schlenk*-Kolben wurde ein Rückflusskühler gesetzt und anschließend die Reaktionsmischung bei 65 °C über Nacht gerührt. Aus der anfangs dunkelvioletten Lösung wurde eine orange-rote Lösung. Die Vollständigkeit der Umsetzung konnte über ³¹P{¹H}-NMR kontrolliert werden.

Für die Isolation des Palladium-Komplexes **94** wurde das Lösemittel unter Vakuum entfernt. Zu dem zähen roten Öl wurde wenig Et_2O gegeben und zwei Stunden unter Stickstoffatmosphäre bei Zimmertemperatur gerührt. Man filtrierte die Suspension mit einer *Schlenk*-Fritte und erhielt ein orange-braunes Pulver (150 mg, 0.18 mmol, 45%).

Für die Kristallisation wurde der in Benzol gelöste Palladiumkomplex in ein kleines Reagenzglas gegeben, welches man in ein mit Stickstoff geflutetes *Schlenk*-Rohr stellte. Das *Schlenk*-Rohr wurde mit 1–2 mL Pentan befüllt und mit Glasstopfen verschlossen. Im Laufe der Zeit diffundierte das Pentan in die Benzollösung und es bildeten sich orange-rote Kristalle.

Schmelzpunkt: ab 80 °C Zersetzung

³¹**P**{¹**H**}-**NMR** (80.95 MHz, C_6D_6): $\delta = 5.7$.

Elementaranalyse für C46H43O5PPd:

berechnet (%):	C: 67.94,	H: 5.33
gefunden (%):	C: 67.76,	H: 5.58.

MS (FAB+NBA): m/z (%) = 813.0 (4.1) [(M + H)⁺], 812.0 (3.4) [M⁺], 578.0 (100) [(M - dba)⁺].

Aufgrund extremer Signalverbreiterung im ¹³C- und ¹H-NMR wahrscheinlich durch Bindungsrotationen im Komplex auf der NMR-Zeitskala können keine Daten angegeben werden.

15 Suzuki-Miyaura-Kreuzkupplung

4-Methoxybiphenyl (92)

Ein trockenes *Schlenk*-Rohr mit Septum und Magnetrührkern wurde mit $Pd(OAc)_2$ (0.5 mol%, 0.01 mmol, 2.3 mg), einen der Phosphanliganden aus Abbildung 20 (1.0–1.9 mol%, 0.020–0.038 mmol), bzw. dem S-Phos-Liganden (1) (1.0–1.9 mol%, 0.020–0.038 mmol), Phenylboronsäure (250.0 mg, 2.00 mmol, 2.0 Äquiv.) und wasserfreiem K₃PO₄ (1.00 g, 5.00 mmol, 2.5 Äquiv.) befüllt. Mit einer Spritze wurden 5 mL Lösemittel zugegeben und zu der entstandenen milchigen Suspension 4-Chloranisol (185 mg, 1.3 mmol, 1.3 Äquiv.) zugefügt. Die Reaktionsmischung wurde bei Zimmertemperatur oder Erwärmung zwischen 1 und 20 Stunden gerührt.

Für die GC-MS-Analyse wurden geringste Mengen aus der Reaktionslösung entnommen und in Et₂O/H₂O hydrolisiert.

4-Chloranisol:

GC-MS: $t_R = 5.5 \text{ min (70-1)}, m/z \ (\%) = 142 \ (100) \ [M^+], 127 \ (57) \ [(M - Me)^+], 99 \ (59) \ [(M - Me, -CO)^+].$

4-Methoxybiphenyl:

GC-MS: $t_R = 7.8 \text{ min (70-1)}, m/z (\%) = 184 (100) [M^+], 169 (44) [(M - Me)^+], 141 (39) [(M - Me, - CO)^+], 115 (25) [(M - Me, - CO, - C_2H_2)^+].$

2-Methoxy-2´-methylbiphenyl (96)

Ein trockenes *Schlenk*-Rohr mit Septum und Magnetrührkern wurde mit $Pd(OAc)_2$ (0.5 mol%, 0.01 mmol, 2.3 mg), Ligand **33** (1.9 mol%, 18 mg, 0.038 mmol), 2-Methylphenylboronsäure (272.0 mg, 2.00 mmol, 2.0 Äquiv.) und wasserfreiem K₃PO₄ (1.000 g, 5.00 mmol 2.5 Äquiv.) befüllt. Mit einer Spritze wurden 5 mL trockenes THF zugegeben und zu der entstandenen milchigen Suspension 2-Chloranisol (185 mg, 1.3 mmol, 1.3 Äquiv.) zugefügt. Die Reaktionsmischung wurde auf 65 °C erwärmt und über Nacht gerührt.

Die Reaktionsmischung wurde über Kieselgel und *Celite* mit EtOAc *flash*-chromatographisch mit Kieselgel gereinigt und anschließend vom Lösemittel befreit. Das erhaltene farblose Öl wurde in Pentan gewaschen (206 mg, 1.04 mmol, 80%).

¹**H-NMR** (199.9 MHz, CDCl₃): δ = 2.18 (s, 3H, CH₃), 3.81 (s, 3 H, OCH₃), 6.95–7.10 (m, 2 H), 7.17–7.42 (m, 6 H).

2-Chloranisol:

GC-MS: $t_R = 5.8 \text{ min (70-1)}, m/z (\%) = 142 (100) [M^+], 127 (46) [(M - Me)^+], 113 (4), 99 (57).$

2-Methoxy-2´-methylbiphenyl:

GC-MS: $t_R = 7.6 \min (70-1), m/z$ (%) = 198 (100) [M⁺], 183 (33) [(M – Me)⁺], 165 (40), 152 (17) [(M – Me, – OMe)⁺].

16.1 Kristallographische Daten von Diphenyl 2-(2´,6´-dimethoxybiphenylyl)phosphonit (10)

Crystal Data C26 H23 O4 P Formula Formula Weight 430.43 Crystal System Monoclinic Space group P21/c (No. 14)
 prace group
 P21/C
 (No. 14)

 a, b, c [Å]
 15.2157(3)
 12.8988(2)
 12.0060(2)

 alpha, beta, gamma [deg]
 90
 110.2438(7)
 90
 2210.79(7) V [Å³] 4 Ζ 1.293 $D(calc) [g/cm^3]$ μ (MoKa) [/mm] 0.154 F(000) 904 Crystal Size [mm] 0.12 x 0.16 x 0.20 Data Collection

Temperature (K)		200
Radiation [Å]	MoKa	0.71073
Theta Min-Max [Deg]		3.2, 27.5
Dataset	-19: 19 ; -16:	16 ; -15: 15
Tot., Uniq. Data, R(int)	9888,	5069, 0.023
Observed data $[I > 2.0 \sigma(I)]$		3758

Refinement

N_{ref} , N_{par}	5069, 372
R, wR2, S	0.0390, 0.1074, 1.01
$w = 1/[\langle s^{2}(F_{o}^{2}) + (0.0545P)^{2} + 0.4160P]$	where $P = (F_0^2 + 2F_c^2) / 3$
Max. and Av. Shift/Error	0.00, 0.00
Min. and Max. Resd. Dens. [e/Å ³]	-0.35, 0.21

Final Coordinates and Equivalent Isotropic Displacement Parameters of the non-Hydrogen atoms

Atom	x	У	Z	U(eq) [Å ²]
P	0.22695(3)	0.03017(3)	0.43975(3)	0.0302(1)
01	0.11463(7)	0.02118(8)	0.36323(10)	0.0400(4)
02	0.22106(7)	-0.00341(8)	0.57068(9)	0.0361(3)
03	0.41303(7)	0.06650(8)	0.37720(9)	0.0344(3)
04	0.15785(8)	-0.06883(9)	0.07198(9)	0.0450(4)
C1	0.06399(10)	0.11451(12)	0.33903(13)	0.0359(5)
C2	0.08886(12)	0.19286(13)	0.27744(15)	0.0413(5)
C3	0.03515(14)	0.28296(14)	0.25236(17)	0.0497(6)
C4	-0.04043(13)	0.29342(16)	0.28908(18)	0.0549(6)
C5	-0.06435(14)	0.21440(18)	0.34904(19)	0.0597(7)
C6	-0.01228(12)	0.12337(16)	0.37463(17)	0.0489(6)
C7	0.29623(11)	0.02288(11)	0.67159(13)	0.0305(4)
C8	0.27762(13)	0.04579(12)	0.77362(15)	0.0397(5)
C9	0.35100(14)	0.06958(14)	0.87635(15)	0.0470(6)
C10	0.44178(14)	0.07165(13)	0.87777(15)	0.0460(6)
C11	0.45964(13)	0.04839(13)	0.77587(16)	0.0423(5)
C12	0.38705(11)	0.02360(12)	0.67227(14)	0.0366(5)
C13	0.26260(9)	-0.09376(11)	0.39437(12)	0.0283(4)
C14	0.26888(11)	-0.18492(11)	0.45941(14)	0.0335(5)
C15	0.30203(12)	-0.27529(12)	0.42565(14)	0.0373(5)
C16	0.33064(12)	-0.27514(12)	0.32792(15)	0.0383(5)
C17	0.32445(11)	-0.18507(11)	0.26251(13)	0.0339(5)
C18	0.29060(9)	-0.09382(10)	0.29452(12)	0.0278(4)
C19	0.28310(10)	0.00385(11)	0.22420(12)	0.0283(4)
C20	0.34454(10)	0.08649(11)	0.27052(13)	0.0304(4)
C21	0.33476(12)	0.17976(12)	0.20952(15)	0.0385(5)

C22	0.26340(13)	0.18945(13)	0.10113(15)	0.0417(5)
C23	0.20280(12)	0.10900(13)	0.05117(14)	0.0396(5)
C24	0.21355(11)	0.01570(12)	0.11241(13)	0.0327(4)
C25	0.46891(14)	0.15198(14)	0.43842(18)	0.0467(6)
C26	0.09433(16)	-0.06768(19)	-0.04729(17)	0.0538(6)

U(eq) = 1/3 of the trace of the orthogonalized U Tensor

Hydrogen Atom Positions and Isotropic Displacement Parameters

Atom	х	У	Z	U(iso) [Ang ²]
 Н2	0.1428(13)	0.1862(14)	0.2507(15)	0.049(5)
Н3	0.0548(14)	0.3385(17)	0.2066(17)	0.062(6)
Н4	-0.0755(15)	0.3569(17)	0.2729(18)	0.064(6)
Н5	-0.1184(19)	0.220(2)	0.376(2)	0.094(8)
Нб	-0.0252(14)	0.0654(16)	0.4171(18)	0.060(6)
Н8	0.2163(14)	0.0439(15)	0.7685(16)	0.053(5)
Н9	0.3392(13)	0.0835(14)	0.9485(17)	0.053(5)
H10	0.4946(14)	0.0905(14)	0.9521(18)	0.055(5)
H11	0.5245(16)	0.0482(17)	0.7741(19)	0.070(6)
H12	0.4015(13)	0.0051(14)	0.6026(17)	0.051(5)
H14	0.2495(12)	-0.1825(14)	0.5296(16)	0.045(5)
H15	0.3051(12)	-0.3367(15)	0.4704(15)	0.044(5)
Н16	0.3556(12)	-0.3346(15)	0.3085(15)	0.045(5)
H17	0.3434(11)	-0.1845(12)	0.1936(14)	0.034(4)
H21	0.3753(13)	0.2375(14)	0.2396(15)	0.046(5)
H22	0.2581(12)	0.2512(15)	0.0614(16)	0.048(5)
Н23	0.1556(13)	0.1166(14)	-0.0201(16)	0.043(5)
H251	0.4283(14)	0.2040(17)	0.4544(17)	0.058(6)
H252	0.5119(14)	0.1220(15)	0.5132(17)	0.053(5)
H253	0.5072(15)	0.1827(17)	0.3888(19)	0.068(6)
H261	0.0630(16)	-0.1346(18)	-0.0567(18)	0.071(7)
H262	0.0483(15)	-0.0092(17)	-0.0570(18)	0.061(6)
H263	0.1297(16)	-0.0573(17)	-0.102(2)	0.072(7)

The Temperature Factor has the Form of Exp(-T) Where T = $8*(\pi^{**2})*U^*(\sin(\theta)/\lambda)**2$ for Isotropic Atoms

(An)isotropic Displacement Parameters

Atom	U(1,1) or (U(2,2)	U(3,3)	U(2,3)	U(1,3)	U(1,2)
 Р	0.0301(2)	0.0268(2)	0.0317(2)	-0.0015(2)	0.0082(2)	0.0018(2)
01	0.0323(6)	0.0311(6)	0.0484(7)	-0.0043(5)	0.0037(5)	0.0036(4)
02	0.0341(6)	0.0402(6)	0.0360(6)	-0.0021(5)	0.0148(5)	-0.0015(5)
03	0.0308(5)	0.0274(5)	0.0377(6)	-0.0014(4)	0.0025(5)	-0.0043(4)
04	0.0481(7)	0.0461(7)	0.0299(6)	-0.0001(5)	-0.0004(5)	-0.0163(5)
C1	0.0303(8)	0.0355(8)	0.0334(8)	-0.0046(7)	0.0003(6)	0.0059(6)
C2	0.0383(9)	0.0405(9)	0.0393(9)	-0.0022(7)	0.0060(7)	0.0020(7)
C3	0.0505(11)	0.0399(9)	0.0461(10)	0.0005(8)	0.0005(8)	0.0024(8)
C4	0.0445(10)	0.0472(11)	0.0573(11)	-0.0036(9)	-0.0025(9)	0.0197(9)
C5	0.0413(10)	0.0722(14)	0.0632(12)	-0.0037(11)	0.0150(10)	0.0204(10)
C6	0.0395(9)	0.0563(11)	0.0494(10)	0.0051(9)	0.0133(8)	0.0078(8)
C7	0.0378(8)	0.0232(7)	0.0311(7)	0.0010(6)	0.0126(6)	0.0034(6)
C8	0.0490(10)	0.0346(9)	0.0403(9)	0.0005(7)	0.0216(8)	0.0034(7)
C9	0.0723(13)	0.0386(9)	0.0326(9)	-0.0003(7)	0.0214(9)	0.0037(8)
C10	0.0581(11)	0.0336(9)	0.0362(9)	0.0027(7)	0.0036(8)	0.0031(8)
C11	0.0395(9)	0.0393(9)	0.0442(9)	0.0015(7)	0.0095(8)	0.0047(7)
C12	0.0392(9)	0.0365(8)	0.0362(8)	-0.0002(7)	0.0157(7)	0.0042(7)
C13	0.0251(7)	0.0262(7)	0.0297(7)	-0.0001(6)	0.0046(6)	-0.0007(5)
C14	0.0365(8)	0.0297(8)	0.0328(8)	0.0017(6)	0.0099(7)	-0.0014(6)
C15	0.0442(9)	0.0243(7)	0.0392(9)	0.0031(7)	0.0090(7)	-0.0021(6)
C16	0.0461(9)	0.0230(7)	0.0429(9)	-0.0070(7)	0.0118(7)	-0.0002(7)
C17	0.0387(8)	0.0293(8)	0.0331(8)	-0.0068(6)	0.0117(7)	-0.0042(6)
C18	0.0267(7)	0.0252(7)	0.0271(7)	-0.0021(6)	0.0039(6)	-0.0052(5)
C19	0.0301(7)	0.0264(7)	0.0285(7)	-0.0006(6)	0.0102(6)	-0.0013(6)
C20	0.0313(7)	0.0279(7)	0.0314(8)	-0.0011(6)	0.0099(6)	0.0000(6)
C21	0.0465(9)	0.0265(8)	0.0423(9)	-0.0001(7)	0.0150(8)	-0.0054(7)
C22	0.0567(11)	0.0295(8)	0.0398(9)	0.0090(7)	0.0178(8)	0.0040(7)
C23	0.0443(9)	0.0424(9)	0.0284(8)	0.0071(7)	0.0080(7)	0.0041(7)

C24	0.0351(8)	0.0356(8)	0.0275(7)	-0.0022(6)	0.0109(6)	-0.0040(6)
C25	0.0434(10)	0.0330(9)	0.0504(11)	-0.0072(8)	-0.0007(9)	-0.0090(8)
C26	0.0518(11)	0.0613(13)	0.0343(9)	-0.0045(9)	-0.0030(9)	-0.0106(10)

The Temperature Factor has the Form of Exp(-T) Where T = $8*(\pi^{**2})*U^*(\sin(\theta)/\lambda)**2$ for Isotropic Atoms T = $2*(\pi^{**2})*Sumij(h(i)*h(j)*U(i,j)*Astar(i)*Astar(j))$, for Anisotropic Atoms. Astar(i) are Reciprocal Axial Lengths and h(i) are the Reflection Indices.

Bond Distances (Å)

Ρ	-01	1.6406(12)	C19	-C20	1.400(2)
Р	-02	1.6626(11)	C19	-C24	1.401(2)
Р	-C13	1.8306(15)	C20	-C21	1.389(2)
01	-C1	1.4044(19)	C21	-C22	1.382(2)
02	-C7	1.3900(19)	C22	-C23	1.380(2)
03	-C20	1.3672(18)	C23	-C24	1.390(2)
03	-C25	1.431(2)	C2	-H2	0.98(2)
04	-C24	1.363(2)	C3	-H3	1.01(2)
04	-C26	1.424(2)	C4	-H4	0.96(2)
C1	-C2	1.380(2)	C5	-H5	0.99(3)
C1	-C6	1.373(3)	C6	-Нб	0.96(2)
C2	-C3	1.392(3)	C8	-H8	0.91(2)
C3	-C4	1.373(3)	C9	-H9	0.96(2)
C4	-C5	1.368(3)	C10	-H10	1.00(2)
C5	-C6	1.390(3)	C11	-H11	0.99(3)
C7	-C8	1.381(2)	C12	-H12	0.97(2)
C7	-C12	1.379(2)	C14	-H14	0.985(19)
C8	-C9	1.382(3)	C15	-H15	0.949(19)
C9	-C10	1.376(3)	C16	-H16	0.921(19)
C10	-C11	1.375(3)	C17	-H17	0.966(17)
C11	-C12	1.385(2)	C21	-H21	0.955(19)
C13	-C14	1.396(2)	C22	-H22	0.918(19)
C13	-C18	1.404(2)	C23	-H23	0.912(19)
C14	-C15	1.385(2)	C25	-H251	0.98(2)
C15	-C16	1.386(2)	C25	-H252	0.99(2)
C16	-C17	1.387(2)	C25	-H253	1.04(2)
C17	-C18	1.391(2)	C26	-H261	0.97(2)
C18	-C19	1.4988(19)	C26	-H262	1.01(2)
C26	-H263	0.99(2)			

			Bond Angles	(Degr	rees)		
01	-P	-02	97.15(6)	C15	-C16	-C17	120.06(15)
01	-P	-C13	97.48(6)	C16	-C17	-C18	120.75(15)
02	-P	-C13	99.93(6)	C13	-C18	-C17	119.14(13)
P	-01	-C1	116.48(9)	C13	-C18	-C19	119.60(12)
P	-02	-C7	117.60(10)	C17	-C18	-C19	121.26(13)
C20	-03	-C25	117.44(12)	C18	-C19	-C20	120.40(12)
C24	-04	-C26	118.16(14)	C18	-C19	-C24	121.10(13)
01	-C1	-C2	120.40(15)	C20	-C19	-C24	118.48(13)
01	-C1	-Сб	117.98(15)	03	-C20	-C19	114.60(12)
C2	-C1	-C6	121.58(16)	03	-C20	-C21	124.40(14)
C1	-C2	-C3	118.54(17)	C19	-C20	-C21	120.99(14)
C2	-C3	-C4	120.44(18)	C20	-C21	-C22	118.72(15)
C3	-C4	-C5	120.04(19)	C21	-C22	-C23	122.03(15)
C4	-C5	-C6	120.7(2)	C22	-C23	-C24	118.85(15)
C1	-C6	-C5	118.68(18)	04	-C24	-C19	115.12(13)
02	-C7	-C8	117.76(16)	04	-C24	-C23	124.01(14)
02	-C7	-C12	121.83(14)	C19	-C24	-C23	120.86(15)
C8	-C7	-C12	120.38(15)	C1	-C2	-H2	121.7(11)
C7	-C8	-C9	119.26(19)	C3	-C2	-H2	119.7(11)
C8	-C9	-C10	120.87(17)	C2	-C3	-H3	116.6(13)
C9	-C10	-C11	119.43(17)	C4	-C3	-H3	122.9(13)
C10	-C11	-C12	120.51(19)	C3	-C4	-H4	119.2(14)
C7	-C12	-C11	119.53(16)	C5	-C4	-H4	120.8(14)
P	-C13	-C14	122.61(11)	C4	-C5	-H5	121.5(15)
P	-C13	-C18	117.60(10)	C6	-C5	-H5	117.8(15)
C14	-C13	-C18	119.65(13)	C1	-C6	-нб	116.7(13)
C13	-C14	-C15	120.42(15)	C5	-C6	-нб	124.6(13)
C14	-C15	-C16	119.97(14)	C7	-C8	-H8	116.9(11)
C9	-C8	-H8	123.8(12)	C22	-C21	-H21	118.7(10)

C8	-C9	-H9	120.1(12)	C21	-C22	-H22	117.8(12)
C10	-C9	-H9	119.0(12)	C23	-C22	-H22	120.1(12)
C9	-C10	-H10	120.5(13)	C22	-C23	-H23	121.2(12)
C11	-C10	-H10	120.0(13)	C24	-C23	-H23	120.0(12)
C10	-C11	-H11	121.5(13)	03	-C25	-H251	109.1(13)
C12	-C11	-H11	118.0(12)	03	-C25	-H252	104.7(12)
C7	-C12	-H12	121.4(12)	03	-C25	-H253	110.4(12)
C11	-C12	-H12	119.0(12)	H251	-C25	-H252	110.8(16)
C13	-C14	-H14	118.0(11)	H251	-C25	-H253	111.6(18)
C15	-C14	-H14	121.6(11)	H252	-C25	-H253	110.0(18)
C14	-C15	-H15	119.2(11)	04	-C26	-H261	104.0(12)
C16	-C15	-H15	120.8(11)	04	-C26	-H262	109.1(12)
C15	-C16	-H16	119.4(11)	04	-C26	-H263	109.4(14)
C17	-C16	-H16	120.5(11)	H261	-C26	-H262	111(2)
C16	-C17	-H17	120.6(9)	H261	-C26	-H263	113.5(19)
C18	-C17	-H17	118.6(9)	H262	-C26	-H263	109.7(18)
C20	-C21	-H21	122.6(11)				

Torsion Angles (Degrees)

02	-P	-01	-C1	100.26(11)
C13	-P	-01	-C1	-158.69(11)
01	-P	-02	-C7	-160.95(10)
C13	-P	-02	-C7	100.12(11)
01	-P	-013	-C14	-92.74(13)
01	_D	-C13	-018	01 73(12)
01	- F	C13	C10	51.75(12) E 01/14)
02	-P	-CI3	-014	5.91(14)
02	-P	-013	-018	-169.61(11)
Р	-01	-CI	-C2	58.54(17)
P	-01	-C1	-C6	-123.77(14)
P	-02	-C7	-C8	147.53(12)
P	-02	-C7	-C12	-34.27(18)
C25	-03	-C20	-C19	-170.41(15)
C25	-03	-C20	-C21	10.2(2)
C26	-04	-C24	-C19	-171.49(16)
C26	-04	-C24	-C23	10.1(3)
01	-C1	-C2	-03	178 18(15)
01	1	- C2	-03	1/0.10(13)
C0 d0	-CI	-02	-03	1 0(2)
02	-01	-06	-05	-1.0(3)
01	-C1	-06	-05	-1/8.61(16)
C1	-C2	-C3	-C4	0.4(3)
C2	-C3	-C4	-C5	-1.1(3)
C3	-C4	-C5	-C6	0.7(3)
C4	-C5	-C6	-C1	0.3(3)
C12	-C7	-C8	-C9	0.1(2)
02	-C7	-C8	-C9	178.32(14)
02	-C7	-C12	-C11	-178.72(14)
C8	-07	-C12	-C11	-0.6(2)
C7	-08	-09	-C10	0.6(3)
0	00	CJ	C10	0.0(3)
00	-09	-CIU	-CII	-0.8(3)
C9	-010	-011	-012	0.4(3)
C10	-CII	-C12	-07	0.3(2)
Р	-C13	-C14	-C15	-175.78(13)
C14	-C13	-C18	-C17	-0.2(2)
C14	-C13	-C18	-C19	179.51(14)
P	-C13	-C18	-C19	-4.83(18)
C18	-C13	-C14	-C15	-0.3(2)
P	-C13	-C18	-C17	175.47(12)
C13	-C14	-C15	-C16	1.1(3)
C14	-C15	-C16	-C17	-1.2(3)
C15	-C16	-C17	-C18	0.7(3)
C16	-C17	-C18	-013	0.0(2)
C16	-C17	-C18	-C19	_179 67(15)
017	-C17	-C18	-019	-1/9.07(15) 109.09(17)
	-C10	-019	-C20	-100.20(17)
CI3	-018	-019	-020	/2.0(2)
C13	-C18	-C19	-C24	-106.46(17)
C17	-C18	-C19	-C24	73.2(2)
C18	-C19	-C24	-C23	175.51(15)
C20	-C19	-C24	-04	178.52(14)
C18	-C19	-C20	-03	4.6(2)
C18	-C19	-C20	-C21	-176.01(15)
C24	-C19	-C20	-03	-176.90(14)
C24	-C19	-C20	-C21	2 5(2)
C18	-019	-024	-04	-2.0(2)
C10	-010	-024	-0.33	-3.0(2)
C20	-CTA	-624	-623	-3.0(2)
CTA	-020	-021	-022	-0.6(3)
03	-C20	-C21	-C22	178.81(16)

C20	-C21	-C22	-C23	-1.0(3)
C21	-C22	-C23	-C24	0.5(3)
C22	-C23	-C24	-C19	1.5(3)
C22	-C23	-C24	-04	179.85(16)

Contact Distances(Å)

Ρ	.03	3.2049(12)	C17	.04	3.1454(19)
D	ann	2 2207/16)	a 2 0	P	2 2207/16
P	.020	3.2207(10)	CZU	· P	3.220/(10)
P	.H2	2.972(18)	C26	.C1 d	3,549(3)
-					
P	.HIZ	2./2(2)	C26	.CZ_a	3.561(3)
P	.H22 a	3.136(19)	C2	.H261 d	2.95(2)
-		2 1 4 2 4 (1 0)	a 2		2.55(2)
03	.CI3	3.1434(18)	C3	.H23_a	3.006(18)
03	P	3 2049(12)	C3	H261 d	3 00(2)
0.5	• -	5.2015(12)	0.5	.11201_u	5.00(2)
04	.C17	3.1454(19)	C7	.H14	3.097(18)
04	C4 h	3 346(2)	C7	H16 f	2 896(19)
01		5.510(2)	07	· III 0_1	2.000(10)
04	.C5_b	3.417(3)	C8	.H16_f	2.943(19)
01	44 h	262(2)	C 9	H21 a	3 073(18)
01	.114_0	2.02(2)	0	•1121_a	3.073(10)
02	.H14	2.432(18)	C10	.H251_a	3.06(2)
0.2	1110	2 002/10)	010	1101 0	204E(10)
03	. ПІ 2	2.003(19)	CIU	.nzı_a	2.945(10)
03	.H11 c	2.75(2)	C10	.H10 q	2.849(19)
0.2	TT12 a	2 00(2)	C11	1121 0	2 012/10)
03	.HIZ_C	2.90(2)	CII	.пzı_а	3.013(10)
03	.H252 c	2.81(2)	C12	.H16 f	3.064(19)
04	111 h		012	TTA b	2 02/21
04	.H4_D	2.75(2)	CIS	.n4_D	2.95(2)
04	.H5 b	2.90(3)	C13	.H12	2.947(19)
a 1			017	TT11 ~~	
CI	.C26_a	3.549(3)	CI/	.HII_C	3.05(2)
C2	.C26 d	3.561(3)	C17	.H252 c	3.08(2)
G 4		2,246(0)	G1 0		2,00(2)
04	.04_e	3.340(2)	CI9	.HII_C	3.00(3)
C5	.04 e	3.417(3)	C20	.H11 c	2.83(2)
a 0	d16 f	2 502(0)	d01		2 2000(10)
C.8	.CI6_I	3.592(2)	C21	.H251	2.806(19)
C10	C10 a	3 402(2)	C21	H253	2 76(2)
010	.010_9	5.102(2)	021	.112.5.5	2.70(2)
CT5	.CI3	3.555(2)	C22	.H9_1	2.83(2)
C13	.03	3,1434(18)	C22	.H2	2.98(2)
010 010	.00	3,2131(10)	a 022		2.50(2)
CT3	.C12	3.555(2)	C23	.H262	2.72(2)
C16	.C8 h	3,592(2)	C23	H263	2.79(2)
010 a00		2 012(10)			
C23	.H2	3.013(18)	H14	.02	2.432(18)
C23	н9 і	2 78(2)	н14	C7	3 097(18)
225		2:70(2)			5.057(±0)
C25	.H2I	2.567(17)	H15	.HI7_f	2.55(2)
C25	H12 C	298(2)	н16	C7 h	2 896(19)
225		2.90(2)			2.000(10)
C26	.H23	2.533(19)	HI6	.C8_h	2.943(19)
C26	H262 d	3 02(2)	н16	C12 h	3 064(19)
220	. <u></u>	5:02(2)	1110	.012_11	5.001(1)
Н2	.P	2.972(18)	HI7	.HII_C	2.60(3)
н2	C22	2 98(2)	H17	H15 h	2 55(2)
112	.022	2.50(2)	111 /	•	2.55(2)
H2	.C23	3.013(18)	H21	.C25	2.567(17)
Н4	01 e	262(2)	H21	H251	246(3)
11 1	.01_0	2.02(2)	1121	.112.51	2.10(5)
H4	.04_e	2.75(2)	H21	.H253	2.29(3)
н4	C13 e	2 93(2)	н21	C9 1	3 073(18)
	.015_0	2.95(2)			9.0/5(±0)
H5	.04_e	2.90(3)	HZT	.CI0_I	2.945(18)
нб	.H6 i	2.52(3)	H21	C11 1	3,013(18)
		2.02(0)			3.126(10)
Н9	.C22_K	2.83(2)	HZZ	.P_I	3.136(19)
Н9	C23 k	2.78(2)	H23	C26	2.533(19)
		21/0(2)			2.000(1)
HIU	.CIU_g	2.849(19)	H23	.H262	2.23(3)
H10	.H10 a	2.58(3)	H23	H263	2,43(3)
		2.55(5)			2.13(3)
HII	.03_c	2.75(2)	H23	.C3_1	3.006(18)
H11	C17 c	3.05(2)	H251	C21	2.806(19)
	.01/_0	3.03(2)	11201		2.000(1)
HII	.CI9_c	3.00(3)	H251	.H21	2.46(3)
н11	C20 C	283(2)	H251	C10 1	3 06(2)
					0.01(0)
HTT	.H17_C	2.60(3)	H252	.03_C	2.81(2)
H12	. P	2,72(2)	H252	.C17 c	3.08(2)
					0.56(2)
HT5	.03	2.883(19)	H253	.C21	2.76(2)
н12	C13	2.947(19)	H253	H21	2 29(2)
			11001		
HIZ	.03_C	2.90(2)	H261	.C2_d	2.95(2)
H12	.C25 c	2,98(2)	H261	.C3 d	3.00(2)
11000			11000		
H262	.023	2.72(2)	H262	.HZ62_d	∠.34(3)
H262	.H23	2.23(3)	H263	.C23	2.79(2)
				1100	
HZOZ	.C∠b_a	3.02(2)	н∠63	.HZ3	∠.43(3)

Hydrogen Bonds (Å, Deg)

C14 -- H14 .. O2 0.985(19) 2.432(18) 2.9100(18) 109.3(13) .

Translation of Symmetry Code to Equiv.Pos

а	= [4555.00]	= x, 1/2 - y, 1/2 + z
b	= [2545.00]	= -x, -1/2+y, 1/2-z
С	= [3656.00]	= 1-x, -y, 1-z
d	= [3555.00]	= -x,-y,-z
е	= [2555.00]	= -x, 1/2+y, 1/2-z
f	= [4545.00]	= x, -1/2 - y, 1/2 + z
g	= [3657.00]	= 1-x,-y,2-z
h	= [4544.00]	= x,-1/2-y,-1/2+z
i	= [1554.00]	= x,y,-1+z
j	= [3556.00]	= -x,-y,1-z
k	= [1556.00]	= x,y,1+z
1	= [4554.00]	= x,1/2-y,-1/2+z

16.2 Kristallographische Daten von Phenyl-*tert*-butyl-2-(2´,6´-dimethoxybiphenylyl)phosphinit (20)

Crystal Data

Formula Formula Crystal Space gr a, b, c alpha, b V $[Å^3]$ Z D(calc) μ (MoKa) F(000) Crystal	Weight System oup [Å] eta, gamma [d [g/cm ³] [/mm] Size [mm]	8. eg]	5163(2) 90	P21/c 32.6015(5) 104.4060(8) 0.08 x	C24 H27 O3 P 394.44 Monoclinic (No. 14) 7.9532(1) 90 2138.73(7) 4 1.225 0.150 840 0.12 x 0.12
		Data Co	llection		
Temperat Radiatio	ure (K) n [Å]			МоКа	200 0.71073
Theta Mi Dataset Tot., Un Observed	n-Max [Deg] iq. Data, R(i data [I > 2.	nt) Ο σ(I)]	-1	0: 10 ; -38: 18885,	3.2, 25.0 38; -9: 9 3708, 0.129 2671
		Refi	nement		
N_{ref} , N_{par} R, wR2, $w = 1/[\setminus Max. and$ Min. and	S s ² (F _o ²)+(0.051 Av. Shift/Er Max. Resd. D	4P) ² + 0.2461F ror ens. [e/Å ³])]	0.0455, where	3708, 362 0.1173, 1.07 $P=(F_o^2+2F_c^2)/3$ 0.00, 0.00 -0.29, 0.28
Final	Coordinates Paramet	and Equivale ers of the n	nt Isotro on-Hydro	opic Displac gen atoms	ement
Atom 	x 	У	Z 	U(eq)	[Å ²]
P 01 02 03 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12	$\begin{array}{c} 0.09329(6) \\ -0.06378(16) \\ 0.50023(17) \\ -0.0140(2) \\ -0.2094(2) \\ -0.2776(3) \\ -0.4246(3) \\ -0.5025(3) \\ -0.4327(3) \\ -0.2864(3) \\ 0.2531(3) \\ 0.2376(4) \\ 0.2394(3) \\ 0.4167(3) \\ 0.0944(2) \\ 0.1695(2) \end{array}$	0.09642(2) 0.06437(4) 0.16333(5) 0.19828(5) 0.07515(6) 0.11332(7) 0.12197(8) 0.09280(8) 0.05479(8) 0.04575(7) 0.05597(6) 0.03285(10) 0.02567(8) 0.07786(9) 0.11610(6) 0.15362(6)	-0.142 -0.1740 0.1920 -0.1438 -0.28 -0.28 -0.40 -0.51 -0.40 -0.9 -0.26 0.04 -0.04 0.07 0.13	$\begin{array}{ccccc} 57(6) & 0.0\\ 0(17) & 0.0\\ 2(19) & 0.0\\ 9(19) & 0.0\\ 82(2) & 0.0\\ 55(3) & 0.0\\ 55(3) & 0.0\\ 14(3) & 0.0\\ 69(3) & 0.0\\ 76(3) & 0.0\\ 51(3) & 0.0\\ 51(3) & 0.0\\ 51(3) & 0.0\\ 53(3) & 0.0\\ 27(4) & 0.0\\ 40(2) & 0.0\\ 11(2) & 0.0\\ \end{array}$	331(2) 388(5) 450(5) 496(6) 329(7) 422(8) 467(9) 454(8) 444(8) 390(8) 376(7) 63(11) 449(9) 493(9) 302(6) 314(6)

C13	0.1750(3)	0.16727(7)	0.2987(3)	0.0376(8)
C14	0.1039(3)	0.14473(7)	0.4071(3)	0.0408(8)
C15	0.0245(3)	0.10861(7)	0.3493(3)	0.0402(8)
C16	0.0195(3)	0.09452(7)	0.1843(3)	0.0359(7)
C17	0.2454(3)	0.17922(6)	0.0151(3)	0.0342(7)
C18	0.4136(3)	0.18263(6)	0.0462(3)	0.0396(8)
C19	0.4855(4)	0.20452(7)	-0.0657(3)	0.0491(9)
C20	0.3864(4)	0.22374(8)	-0.2068(3)	0.0546(10)
C21	0.2206(4)	0.22258(7)	-0.2388(3)	0.0480(9)
C22	0.1505(3)	0.20050(6)	-0.1269(3)	0.0395(8)
C23	0.6716(3)	0.16039(13)	0.2186(5)	0.0671(13)
C24	-0.1161(5)	0.21898(12)	-0.2887(4)	0.0684(11)

U(eq) = 1/3 of the trace of the orthogonalized U Tensor

Hydrogen Atom Positions and Isotropic Displacement Parameters

Atom	x	У	z U	(iso) [Ų]
Н2	-0.220(3)	0.1328(7)	-0.205(3)	0.056(7)
Н3	-0.471(3)	0.1474(7)	-0.395(3)	0.047(7)
Н4	-0.603(3)	0.0997(6)	-0.593(3)	0.046(6)
Н5	-0.487(2)	0.0327(7)	-0.597(3)	0.040(6)
нб	-0.235(2)	0.0203(7)	-0.400(3)	0.036(6)
H8A	0.127(3)	0.0193(8)	-0.301(3)	0.073(9)
H8B	0.322(3)	0.0130(9)	-0.255(3)	0.066(8)
H8C	0.245(3)	0.0516(8)	-0.364(3)	0.070(8)
H9A	0.133(3)	0.0127(7)	0.013(3)	0.053(7)
н9в	0.255(2)	0.0391(7)	0.161(3)	0.045(6)
H9C	0.326(3)	0.0048(7)	0.054(3)	0.048(6)
H10A	0.428(3)	0.0996(7)	-0.127(3)	0.056(7)
н10в	0.502(3)	0.0582(8)	-0.039(3)	0.065(8)
H10C	0.433(3)	0.0915(7)	0.067(3)	0.051(7)
Н13	0.227(2)	0.1941(7)	0.333(3)	0.040(6)
H14	0.106(2)	0.1547(7)	0.518(3)	0.045(6)
Н15	-0.026(2)	0.0927(6)	0.420(3)	0.040(6)
Н16	-0.033(3)	0.0691(7)	0.143(3)	0.046(6)
Н19	0.601(3)	0.2066(7)	-0.044(3)	0.043(6)
Н20	0.431(3)	0.2379(8)	-0.278(3)	0.059(8)
H21	0.150(3)	0.2352(7)	-0.331(3)	0.046(7)
H23A	0.707(3)	0.1431(10)	0.331(4)	0.093(10)
Н23В	0.717(4)	0.1891(10)	0.236(4)	0.088(10)
H23C	0.696(3)	0.1458(9)	0.127(4)	0.076(10)
H24A	-0.231(4)	0.2144(9)	-0.292(4)	0.088(10)
H24B	-0.105(3)	0.2078(9)	-0.403(4)	0.080(9)
H24C	-0.090(3)	0.2482(11)	-0.285(4)	0.084(10)

The Temperature Factor has the Form of Exp(-T) Where T = $8*(\pi^{**}2)*U^*(Sin(\theta)/\lambda)**2$ for Isotropic Atoms

(An)isotropic Displacement Parameters

Atom	U(1,1) or	U U(2,2)	U(3,3)	U(2,3)	U(1,3)	U(1,2)
 Р	0.0419(4)	0.0313(3)	0.0250(3)	0.0014(2)	0.0064(2)	-0.0025(3)
01	0.0429(9)	0.0348(8)	0.0325(8)	0.0054(6)	-0.0024(7)	-0.0052(7)
02	0.0407(9)	0.0511(10)	0.0433(9)	0.0052(8)	0.0108(7)	-0.0013(8)
03	0.0597(11)	0.0435(10)	0.0417(9)	0.0130(7)	0.0053(8)	0.0091(8)
C1	0.0400(12)	0.0349(12)	0.0227(10)	0.0032(9)	0.0057(9)	-0.0002(10)
C2	0.0504(15)	0.0399(14)	0.0351(12)	-0.0037(11)	0.0083(11)	-0.0011(12)
C3	0.0476(15)	0.0418(15)	0.0513(15)	0.0021(12)	0.0134(12)	0.0102(13)
C4	0.0377(13)	0.0531(16)	0.0420(13)	0.0062(12)	0.0037(11)	0.0026(13)
C5	0.0449(14)	0.0427(15)	0.0397(13)	-0.0019(11)	-0.0005(11)	-0.0062(12)
CG	0.0436(14)	0.0336(13)	0.0366(12)	0.0015(10)	0.0042(10)	0.0029(12)
C7	0.0435(13)	0.0351(12)	0.0342(11)	-0.0041(10)	0.0094(10)	-0.0017(10)
C8	0.067(2)	0.0523(18)	0.0511(17)	-0.0130(14)	0.0177(15)	0.0090(17)
C9	0.0437(15)	0.0363(14)	0.0519(16)	0.0061(12)	0.0064(12)	0.0055(13)
C10	0.0435(15)	0.0471(16)	0.0594(18)	-0.0038(14)	0.0169(13)	0.0015(13)
C11	0.0335(11)	0.0295(11)	0.0262(10)	0.0047(9)	0.0047(9)	0.0036(10)
C12	0.0361(11)	0.0289(11)	0.0286(11)	0.0040(9)	0.0069(9)	0.0070(10)
C13	0.0483(14)	0.0311(13)	0.0326(12)	0.0006(10)	0.0087(10)	0.0063(11)
C14	0.0530(14)	0.0436(14)	0.0280(12)	0.0017(11)	0.0140(11)	0.0103(12)

C15	0.0455(14)	0.0435(14)	0.0342(13)	0.0099(11)	0.0146(11)	0.0044(12)
C16	0.0385(12)	0.0362(13)	0.0329(12)	0.0036(10)	0.0087(10)	0.0003(11)
C17	0.0507(14)	0.0247(11)	0.0293(11)	-0.0032(9)	0.0139(10)-	-0.0038(10)
C18	0.0555(15)	0.0291(12)	0.0372(13)	-0.0044(10)	0.0172(11)-	-0.0027(11)
C19	0.0645(18)	0.0395(14)	0.0506(15)	-0.0036(12)	0.0283(14)-	-0.0094(13)
C20	0.088(2)	0.0355(14)	0.0516(17)	0.0042(12)	0.0385(16)-	-0.0058(14)
C21	0.081(2)	0.0273(13)	0.0370(14)	0.0056(10)	0.0174(13)	0.0023(13)
C22	0.0591(15)	0.0265(12)	0.0334(12)	0.0007(9)	0.0126(11)	0.0011(11)
C23	0.0433(16)	0.091(3)	0.068(2)	0.009(2)	0.0155(15)-	-0.0024(18)
C24	0.074(2)	0.067(2)	0.0571(19)	0.0214(17)	0.0031(16)	0.0219(19)

The Temperature Factor has the Form of Exp(-T) Where T = $8*(\pi^{**2})*U^*(\sin(\theta)/\lambda)**2$ for Isotropic Atoms T = $2*(\pi^{**2})*Sumij(h(i)*h(j)*U(i,j)*Astar(i)*Astar(j))$, for Anisotropic Atoms. Astar(i) are Reciprocal Axial Lengths and h(i) are the Reflection Indices.

Bond Distances (Å)

P	-01	1.6666(15)	C20	-C21	1.372(5)
P	-C7	1.865(2)	C21	-C22	1.390(4)
P	-C11	1.8358(17)	C2	-H2	0.95(2)
01	-C1	1.388(2)	C3	-H3	0.93(2)
02	-C18	1.364(3)	C4	-H4	0.94(2)
02	-C23	1.425(3)	C5	-H5	0.99(2)
03	-C22	1.375(3)	C6	-нб	0.94(2)
03	-C24	1.428(4)	C8	-H8A	1.01(3)
C1	-C2	1.376(3)	C8	-H8B	0.95(3)
C1	-C6	1.377(3)	C8	-H8C	1.00(2)
C2	-C3	1.386(4)	C9	-H9A	0.97(3)
C3	-C4	1.373(4)	C9	-H9B	0.99(2)
C4	-C5	1.375(4)	C9	-H9C	0.99(2)
C5	-C6	1.377(4)	C10	-H10A	1.00(2)
C7	-C8	1.536(4)	C10	-H10B	0.96(3)
C7	-C9	1.523(3)	C10	-H10C	0.96(2)
C7	-C10	1.528(4)	C13	-H13	0.99(2)
C11	-C12	1.402(3)	C14	-H14	0.94(2)
C11	-C16	1.396(3)	C15	-H15	0.94(2)
C12	-C13	1.395(3)	C16	-H16	0.96(2)
C12	-C17	1.504(3)	C19	-H19	0.96(3)
C13	-C14	1.382(3)	C20	-H20	0.89(3)
C14	-C15	1.379(3)	C21	-H21	0.92(2)
C15	-C16	1.381(3)	C23	-H23A	1.04(3)
C17	-C18	1.396(4)	C23	-H23B	1.01(3)
C17	-C22	1.398(3)	C23	-H23C	0.94(3)
C18	-C19	1.395(4)	C24	-H24A	0.98(4)
C19	-C20	1.376(4)	C24	-H24B	1.01(3)
C24	-H24C	0.98(4)			

			Bond Angles	(Deg	grees)		
01	-P	-C7	96.03(9)	C14	-C15	-C16	119.8(2)
01	-P	-C11	100.16(8)	C11	-C16	-C15	121.2(2)
C7	-P	-C11	102.94(9)	C12	-C17	-C18	120.94(19)
P	-01	-C1	119.51(12)	C12	-C17	-C22	121.4(2)
C18	-02	-C23	118.3(2)	C18	-C17	-C22	117.7(2)
C22	-03	-C24	117.1(2)	02	-C18	-C17	115.3(2)
01	-C1	-C2	122.06(17)	02	-C18	-C19	123.2(2)
01	-C1	-C6	117.43(18)	C17	-C18	-C19	121.4(2)
C2	-C1	-C6	120.50(19)	C18	-C19	-C20	118.4(3)
C1	-C2	-C3	119.2(2)	C19	-C20	-C21	122.2(3)
C2	-C3	-C4	120.7(2)	C20	-C21	-C22	118.8(2)
C3	-C4	-C5	119.3(2)	03	-C22	-C17	115.0(2)
C4	-C5	-C6	120.8(2)	03	-C22	-C21	123.6(2)
C1	-C6	-C5	119.5(2)	C17	-C22	-C21	121.3(2)
P	-C7	-C8	105.66(18)	C1	-C2	-H2	117.9(15)
P	-C7	-C9	114.96(18)	C3	-C2	-H2	122.9(15)
P	-C7	-C10	107.15(15)	C2	-C3	-H3	118.2(15)
C8	-C7	-C9	109.43(19)	C4	-C3	-H3	121.0(15)
C8	-C7	-C10	110.0(2)	C3	-C4	-H4	118.3(13)
C9	-C7	-C10	109.5(2)	C5	-C4	-H4	122.4(12)
P	-C11	-C12	120.27(13)	C4	-C5	-H2	121.5(12)
P	-C11	-C16	121.12(15)	C6	-C5	-H5	117.7(12)
C12	-C11	-C16	118.61(16)	C1	-C6	-нб	117.0(13)

C11	-C12	-C13	119.46(17)	C5	-C6	-Нб	123.5(13)
C11	-C12	-C17	121.08(15)	C7	-C8	-H8A	108.7(14)
C13	-C12	-C17	119.45(18)	C7	-C8	-H8B	110.4(14)
C12	-C13	-C14	120.7(2)	C7	-C8	-H8C	112.3(14)
C13	-C14	-C15	120.1(2)	H8A	-C8	-H8B	111(2)
H8A	-C8	-H8C	107(2)	C11	-C16	-H16	117.8(15)
H8B	-C8	-H8C	107(2)	C15	-C16	-H16	120.9(14)
C7	-C9	-H9A	108.5(14)	C18	-C19	-H19	121.0(14)
C7	-C9	-H9B	112.1(13)	C20	-C19	-H19	120.6(14)
C7	-C9	-H9C	107.3(14)	C19	-C20	-H20	119.0(17)
H9A	-C9	-H9B	110.2(18)	C21	-C20	-H20	118.8(16)
H9A	-C9	-H9C	110(2)	C20	-C21	-H21	125.0(16)
H9B	-C9	-H9C	108.6(18)	C22	-C21	-H21	116.2(16)
C7	-C10	-H10A	112.5(15)	02	-C23	-H23A	103.4(15)
C7	-C10	-H10B	109.1(16)	02	-C23	-H23B	108(2)
C7	-C10	-H10C	112.4(16)	02	-C23	-H23C	109.7(17)
H10A	-C10	-H10B	107(2)	H23A	-C23	-H23B	112(3)
H10A	-C10	-H10C	105.4(19)	H23A	-C23	-H23C	109(3)
H10B	-C10	-H10C	110(2)	H23B	-C23	-H23C	115(3)
C12	-C13	-H13	116.9(13)	03	-C24	-H24A	110.6(18)
C14	-C13	-H13	122.3(13)	03	-C24	-H24B	112.5(17)
C13	-C14	-H14	119.6(13)	03	-C24	-H24C	110.4(18)
C15	-C14	-H14	120.2(13)	H24A	-C24	-H24B	104(2)
C14	-C15	-H15	122.0(13)	H24A	-C24	-H24C	111(2)
C16	-C15	-H15	118.2(13)	H24B	-C24	-H24C	108(2)

Torsion Angles (Degrees)

C7	-P	-01	-C1	-149.81(14)
C11	-P	-01	-C1	105.84(13)
01	-P	-C7	-C8	68.07(18)
01	-P	-C7	-C9	-52.70(17)
01	-P	-C7	-C10	-174.63(17)
C11	-P	-C7	-C8	169.98(17)
C11	-P	-C7	-C9	49.21(18)
C11	-P	-C7	-C10	-72.72(18)
01	-P	-C11	-C12	-158.48(14)
01	-P	-C11	-C16	20.76(18)
C7	-P	-C11	-C12	102.85(16)
C7	-P	-C11	-C16	-77.90(19)
P	-01	-C1	-C2	-46.8(2)
P	-01	-C1	-C6	134.46(17)
C23	-02	-C18	-C17	171.0(2)
C23	-02	-C18	-C19	-9.2(3)
C24	-03	-C22	-C17	-179.0(2)
C24	-03	-C22	-C21	2.1(3)
C6	-C1	-C2	-C3	-0.3(3)
01	-C1	-C2	-C3	-179.04(19)
01	-C1	-C6	-C5	178.8(2)
C2	-C1	-C6	-C5	0.1(3)
C1	-C2	-C3	-C4	0.5(4)
C2	-C3	-C4	-C5	-0.4(4)
C3	-C4	-C5	-C6	0.1(4)
C4	-C5	-C6	-C1	0.0(4)
P	-C11	-C12	-C13	-177.37(16)
Р	-C11	-C16	-C15	177.96(18)
C12	-C11	-C16	-C15	-2.8(3)
C16	-C11	-C12	-C17	-177.1(2)
Р	-C11	-C12	-C17	2.1(2)
C16	-C11	-C12	-C13	3.4(3)
C11	-C12	-C13	-C14	-1.6(3)
C11	-C12	-C17	-C22	72.3(3)
C17	-C12	-C13	-C14	178.9(2)
C11	-C12	-C17	-C18	-108.0(2)
C13	-C12	-C17	-C18	71.5(3)
C13	-C12	-C17	-C22	-108.2(2)
C12	-C13	-C14	-C15	-0.9(4)
C13	-C14	-C15	-C16	1.5(4)
C14	-C15	-C16	-C11	0.3(4)
C12	-C17	-C22	-C21	-176.9(2)
C18	-C17	-C22	-03	-175.69(18)
C12	-C17	-C18	-02	-3.6(3)
C12	-C17	-C18	-C19	176.58(19)
C22	-C17	-C18	-02	176.21(18)
C22	-C17	-C18	-C19	-3.6(3)
C12	-C17	-C22	-03	4.1(3)
C18	-C17	-C22	-C21	3.3(3)

C17	-C18	-C19	-C20	1.5(3)
02	-C18	-C19	-C20	-178.3(2)
C18	-C19	-C20	-C21	1.1(4)
C19	-C20	-C21	-C22	-1.4(4)
C20	-C21	-C22	-C17	-0.8(3)
C20	-C21	-C22	-03	178.0(2)

Contact Distances(Å)

D	03	3 4434(17)	C3	11227 h	2 73(3)
т П	.05	2 426(2)	C3	.112.5A_0	2.75(5)
P	.022	3.420(2)	C3	.HIUA_C	2.0/(2)
P	.HZ	2.85(3)	C4	.HZ3A_D	2.90(3)
02	.C3_a	3.414(3)	C4	.H8C_c	3.03(3)
02	.C4_a	3.267(3)	C9	.H16	2.98(3)
02	.C10	3.331(3)	C11	.H10C	3.01(3)
02	.C13	3.095(3)	C11	.H9B	2.86(2)
03	.P	3.4434(17)	C11	.H2	3.07(2)
03	.C11	3.200(2)	C12	.H4_a	3.09(2)
01	.H8A	2.58(3)	C13	.H4 a	2.89(2)
01	. H9A	2.57(2)	C14	.H4_a	2.90(2)
01	.H16	2.47(2)	C15	H23A C	2.90(3)
02	H10C	255(2)	C16	H9B	2.74(2)
03	н2	2.33(2) 2.73(2)	C18	H10A	3 05(2)
C3	02 h	2.75(2) 3.414(3)	C18	H10C	2.03(2)
C3	.02_D	2 550(4)	C10	.III 0C	2.90(2)
C3	.023_0	3.330(4)	C18 G10	.H20_u	2.93(3)
C4	.02_b	3.267(3)	C19 G10	.H23B	2.75(3)
09	.016	3.282(4)	C19	.H23C	2.80(3)
CIO	.02	3.331(3)	C19	.H20_d	3.08(2)
C10	.C18	3.490(4)	C20	.H13_e	3.05(2)
C11	.03	3.200(2)	C21	.H14_f	2.94(2)
C13	.02	3.095(3)	C21	.H24B	2.80(3)
C15	.C23_c	3.378(4)	C21	.H24C	2.71(3)
C16	.C9	3.282(4)	C21	.H13_e	2.77(2)
C18	.C10	3.490(4)	C23	.H10C	3.07(2)
C22	.P	3.426(2)	C23	.H19	2.52(2)
C23	.C3_a	3.550(4)	C24	.H2	3.07(2)
C23	.C15 q	3.378(4)	C24	.H21	2.43(3)
Н2	.P	2.85(3)	H10B	.H9C	2.53(4)
н2	.03	2.73(2)	H10B	H9C i	2.54(4)
н2	C11	3 07(2)	H10C	02	2.55(2)
н2	C24	3,07(2)	H10C	C11	3 01(3)
112 114	C12 h	3 09(2)	H10C	C18	2.02(2)
11 I 11 A	.C12_b	2.00(2)	u10C	.010	2.00(2)
п ч ц/	.CI3_D	2.09(2)	HIOC	.C23	3.07(2)
114	.CI4_D	2.90(2)	H10C	. D20 d	2.52(3)
пр 115	.H9B_D	2.54(5)	п13 1112	.C20_a	3.05(2)
HS	. H8B_II	2.53(3)	H13	.C21_a	2.77(2)
H8A	.01	2.58(3)	HI4	.CZI_K	2.94(2)
H8A	.H9A	2.49(3)	H16	.01	2.4/(2)
H8B	.H9C	2.46(3)	HI6	.09	2.98(3)
H8B	.H10B	2.48(4)	H19	.C23	2.52(2)
H8B	.H5_h	2.53(3)	H19	.H23B	2.27(4)
H8C	.C4_g	3.03(3)	Н19	.H23C	2.43(4)
H9A	.01	2.57(2)	Н20	.C18_e	2.93(3)
H9A	.H8A	2.49(3)	Н20	.C19_e	3.08(2)
H9A	.H9A_i	2.37(4)	H21	.C24	2.43(3)
Н9В	.C11	2.86(2)	H21	.H24B	2.29(4)
Н9В	.C16	2.74(2)	H21	.H24C	2.21(4)
Н9В	.H5_a	2.54(3)	H23A	.C3_a	2.73(3)
Н9В	.H10C	2.52(3)	H23A	.C4_a	2.90(3)
H9C	.H8B	2.46(3)	H23A	.C15_q	2.90(3)
H9C	.H10B	2.53(4)	H23B	.C19	2.75(3)
H9C	.н10в і	2.54(4)	H23B	.H19	2.27(4)
H10A	.C3 a	2.87(2)	H23C	.C19	2.80(3)
H10A	.C18	3.05(2)	H23C	.H19	2.43(4)
H10B	H8B	2.48(4)	H24R	C21	2.80(3)
H24B	н21	2 29(4)	H24C	н21	2 21(4)
H24C	C21	2,22(1)		• 114 1	2.21(7)
		2.11(3)			

Hydrogen Bonds (Å, Deg)

C8	H8A 01	1.01(3)	2.58(3)	3.022(4)	106.3(17)	
C9	H9A Ol	0.97(3)	2.57(2)	3.013(3)	107.5(16)	
C10	H10C O2	0.96(2)	2.55(2)	3.331(3)	138.4(18)	
C16	H16 O1	0.96(2)	2.47(2)	2.930(3)	109.0(17)	•

Translation of Symmetry Code to Equiv.Pos a = [1656.00] = 1+x, y, 1+zb =[1454.00] = -1+x,y,-1+z c =[1455.00] = -1+x,y,z d = [4555.00] = x, 1/2-y, 1/2+ze = $\begin{bmatrix} 4554.00 \end{bmatrix}$ = x,1/2-y,-1/2+z f = $\begin{bmatrix} 1554.00 \end{bmatrix}$ = x,y,-1+z g =[1655.00] = 1+x,y,z h =[3554.00] = -x,-y,-1-z i = [3555.00] = -x, -y, -zj =[3655.00] = 1-x,-y,-z k =[1556.00] = x,y,1+z

16.3 Kristallographische Daten von Tris-2-(4,4'-di-tert-butylbiphenylyl)phosphan (32)

Crystal Data Formula P, 3(C20 H25), O C3 H6 885.29 Formula Weight Crystal System Monoclinic Space group P21/n (No. 14) a, b, c [Å] 12.4568(15) 16.8045(19) 27.990(3) alpha, beta, gamma [deg] 90 101.596(14) 90 V [Å³] 5739.6(12) Ζ 4 $D(calc) [g/cm^3]$ 1.025 μ (MoKa) [/mm] 0.085 F(000) 1928 Crystal Size [mm] 0.33 x 0.42 x 0.50 Data Collection Temperature (K) 200 Radiation [Å] MoKa 0.71073 -14: 14 ; -19: 19 ; -32: 33 Theta Min-Max [Deg] Dataset Tot., Uniq. Data, R(int) 36025, 9925, 0.049 Observed data $[I > 2.0 \sigma(I)]$ 6665 Refinement 9925, 670 N_{ref} , N_{par} 0.0570, 0.1653, 0.99 R, wR2, S $w = 1/[\langle s^{2}(F_{o}^{2}) + (0.1091P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2}) / 3$ Max. and Av. Shift/Error 0.00, 0.00 Min. and Max. Resd. Dens. [e/Å³] -0.33, 0.49 Final Coordinates and Equivalent Isotropic Displacement Parameters of the non-Hydrogen atoms U(eq) [Å²] Atom x У z ___ _ _ _ _ _ _ _ _____ 0.59249(4) 0.17702(3) 0.81117(2) Ρ 0.0319(2) 0.51085(17) 0.20555(12) 0.85640(8)C1 0.0353(7) 0.40092(19) 0.18125(15) C2 0.84624(9) 0.0457(8)0.1986(2) 0.88032(11) 0.0649(10) CZ 0.3374(2)C4 0.3792(2) 0.24056(18) 0.92232(10) 0.0597(10) 0.4868(2) 0.26726(14) 0.93261(8) 0.55111(18) 0.24825(13) 0.89869(8) C5 0.0431(7) C6 0.0383(7) C7 0.5351(2) 0.31360(15) 0.97915(9)0.0514(9) 0.3362(5) 1.0071(2) 0.2613(4) 1.01029(19) *C8 0.4469(5) 0.088(3) *C9 0.6193(6) 0.079(2) *C10 0.5905(6) 0.075(2)

0.3222(4)0.1764(2)0.75685(13)0.1017(16)0.2794(4)0.1359(2)0.71414(13)0.1059(18)0.2654(2)0.0558(2)0.71269(10)0.0633(10)

0.0504(8)

0.35303(19) 0.13779(16)

C11

C12 C13 C14

C15	0.3001(3)	0.0174(2)	0.75564(12)	0.0825(14)
C16	0.3427(3)	0.0573(2)	0.79856(11)	0.0787(13)
C17	0.2165(3)	0.0125(2)	0.66483(11)	0.0757(13)
*C18	0.0936(12)	0.0373(7)	0.6492(5)	0.105(4)
*C19	0.2118(8)	-0.0810(4)	0.6720(3)	0.098(3)
*C20	0.2807(8)	0.0271(8)	0.6272(3)	0.123(5)
C21	0.65266(18)	0.08233(12)	0.83634(7)	0.0342(6)
C22	0.70945(19)	0.03799(13)	0.80712(7)	0.0372(7)
C23	0.7696(2)	-0.02717(15)	0.82732(9)	0.0537(9)
C24	0.7687(3)	-0.05156(16)	0.87457(9)	0.0642(10)
C25	0.7077(3)	-0.01122(14)	0.90299(8)	0.0575(9)
C26	0.6516(2)	0.05607(13)	0.88342(8)	0.0436(8)
C27	0.7031(4)	-0.03867(18)	0.95473(11)	0.111(2)
*C28	0.7091(12)	-0.1233(5)	0.9603(5)	0.094(5)
*029	0 8374(6)	-0.0251(6)	0 9841(2)	0 109(4)
*030	0 6525(12)	0.0120(10)	0.9845(5)	0.089(5)
C31	0.70472(19)	0.0120(10) 0.05815(12)	0 75458(7)	0.005(3)
C32	0.60533(19)	0.05938(13)	0.72184(8)	0.0373(7)
C32	0.000000(10)	0.03330(13) 0.07288(13)	0.67265(8)	0.0101(7)
C34	0.6046(2)	0.07200(13) 0.08549(14)	0.65434(8)	0.0457(7)
025	0.0040(2)	0.00549(14)	0.69729(0)	0.0407(0)
026	0.7920(2)	0.00022(15) 0.07229(14)	0.00720(9)	0.0308(9)
027	0.7907(2)	0.07220(14) 0.009/5(17)	0.73003(8)	0.0440(8)
020	0.0913(3) 0.7201(4)	0.09843(17) 0.1912(2)	0.59902(9)	0.0012(10)
C30	0.7291(4) 0.5725(4)	0.1012(2)	0.59100(12)	0.1000(10)
C39 C40	0.5755(4)	0.0095(3)	0.50949(12)	0.119(2)
C40	0.7022(4)	0.0300(3)	0.50204(13)	0.110(2)
C41 042	0.71322(10) 0.71320(17)	0.241/6(12)	0.82821(7)	0.0304(6)
C42	0.71330(17)	0.31266(12)	0.801/1(/)	0.0337(6)
C43	0.7984(2)	0.305/5(14)	0.81595(8)	0.0456(8)
044	0.8855(2)	0.3485/(15)	0.85403(9)	0.0469(8)
C45	0.88955(17)	0.2///2(14)	0.8/940(7)	0.0387(7)
C46	0.80172(17)	0.22583(13)	0.86605(7)	0.0357(7)
C47	0.9849(2)	0.25457(17)	0.92065(9)	0.0513(8)
C48	1.0760(2)	0.3172(2)	0.92906(11)	0.0747(13)
C49	0.9443(3)	0.2442(3)	0.96791(10)	0.0828(13)
C50	1.0341(3)	0.1762(2)	0.90662(13)	0.0807(11)
C51	0.62469(18)	0.32989(12)	0.75848(7)	0.0343(6)
C52	0.6154(2)	0.28568(13)	0.71621(8)	0.0425(7)
C53	0.5346(2)	0.30238(14)	0.67559(8)	0.0476(8)
C54	0.4602(2)	0.36329(15)	0.67583(8)	0.0480(8)
C55	0.4698(2)	0.40710(15)	0.71860(9)	0.0524(8)
C56	0.55074(19)	0.39077(14)	0.75911(8)	0.0439(8)
C57	0.3703(3)	0.38332(19)	0.63129(11)	0.0699(10)
C58	0.2582(3)	0.3604(3)	0.64315(15)	0.1036(16)
C59	0.3851(4)	0.3390(3)	0.58617(12)	0.116(2)
C60	0.3673(4)	0.4732(2)	0.62287(14)	0.1132(16)
*C18	0.2875(19)	-0.0542(11)	0.6590(5)	0.117(8)
*C19	0.225(2)	0.0763(11)	0.6204(5)	0.125(8)
*C20	0.108(2)	-0.001(2)	0.6625(10)	0.145(15)
*C28	0.5759(8)	-0.0814(7)	0.9471(3)	0.143(5)
*C29	0.7618(13)	-0.1103(8)	0.9714(7)	0.164(9)
*C30	0.6802(16)	0.0253(11)	0.9850(4)	0.117(7)
*C9	0.6622(9)	0.3301(8)	0.9858(3)	0.098(5)
*C10	0.5261(10)	0.2658(6)	1.0249(3)	0.092(4)
*C8	0.4776(14)	0.3939(7)	0.9804(4)	0.135(7)
0	1.0123(4)	0.2318(3)	0.67251(18)	0.183(3)
C61	1.0029(4)	0.2697(4)	0.7090(2)	0.124(2)
C62	0.9662(8)	0.3493(5)	0.7061(3)	0.214(5)
C63	1.0254(6)	0.2289(4)	0.7580(2)	0.159(3)

 ${\tt U}({\tt eq})$ = 1/3 of the trace of the orthogonalized U Tensor

Starred Atom sites have a S.O.F less than 1.0

Hydrogen Atom Positions and Isotropic Displacement Parameters

Atom	х	У	Z	U(iso)	[Ų]
*H9C	0.67520	0.24610	0.99190	0	0.1180
*H10B	0.64660	0.37110	0.94690	0	0.1120
*H10C	0.62490	0.41560	0.99460	0	0.1120
*H10A	0.53610	0.42080	0.94470	0	0.1120
*H9A	0.58360	0.21330	1.01950	0	0.1180
*Н9В	0.65380	0.29030	1.03970	0	0.1180
Н3	0.26340	0.18120	0.87460	0	0.0780

H4	0.33310	0.25150	0.94480	0.0720
Нб	0.62540	0.26520	0.90480	0.0460
*H8A	0.41070	0.28800	1.01560	0.1330
*H8B	0.39280	0.37070	0.98670	0.1330
*H8C	0.48040	0.36460	1.03700	0.1330
*H19C	0.17950	-0.10620	0.64080	0.1480
*H20A	0.24720	-0.00110	0.59730	0.1840
*H20B	0.35570	0.00780	0.63860	0.1840
*H20C	0.28210	0.08430	0.62060	0.1840
H23	0.81240	-0.05570	0.80850	0.0640
H24	0.81060	-0.09660	0.88760	0.0770
H26	0.61090	0.08540	0.90280	0.0520
*H28A	0.75170	-0.14570	0.93760	0.1410
^HZ8B	0.63500	-0.14580	0.95330	0.1410
^HZ8C	0.74490	-0.13650	0.99390	0.1410
^НZ9А *U20D	0.85440	0.03190	0.98600	0.1630
*11296	0.84810	-0.03220	1 01710	0.1630
*H30A	0.65670	0.01730	0 97380	0.1340
*H30B	0.69050	0.00700	1.01860	0.1340
*H30C	0.57550	-0.00330	0.98150	0.1340
H32	0.53950	0.05080	0.73330	0.0480
Н33	0.53110	0.07350	0.65100	0.0520
H35	0.85840	0.09650	0.67590	0.0610
Н36	0.86790	0.07240	0.75830	0.0540
H38A	0.72650	0.18900	0.55610	0.1510
H38B	0.80450	0.18860	0.60910	0.1510
H38C	0.68110	0.22010	0.60240	0.1510
H39A	0.57380	0.09790	0.53490	0.1730
H39B	0.52570	0.12900	0.58040	0.1730
H39C	0.54630	0.03590	0.57410	0.1730
H40A	0.76000	0.04460	0.54720	0.1760
H40B	0.73480	-0.01640	0.58740	0.1760
H40C	0.83780	0.04220	0.60010	0.1760
H43	0./9/40	0.41510	0.79930	0.0550
п44 u/6	0.94310	0.30010	0.00200	0.0500
1140 11/07	1 12500	0.17730	0.88330	0.0430
H40A H48B	1 04630	0.36810	0.93570	0.1120
H48C	1 10490	0.30010	0.93700	0.1120
H49A	1.00590	0.22970	0.99410	0.1240
H49B	0.88880	0.20210	0.96390	0.1240
H49C	0.91190	0.29430	0.97620	0.1240
H50A	1.09560	0.16050	0.93260	0.1210
H50B	1.06010	0.18360	0.87610	0.1210
H50C	0.97790	0.13450	0.90220	0.1210
H52	0.66500	0.24320	0.71500	0.0510
H53	0.53040	0.27120	0.64690	0.0570
H55	0.41970	0.44920	0.72010	0.0630
Н56	0.55540	0.42200	0.78780	0.0530
H58A	0.19970	0.37260	0.61510	0.1560
H58B	0.24640	0.39080	0.67150	0.1560
H58C	0.25750	0.30340	0.65040	0.1560
H59A	0.32620	0.35360	0.55880	0.1740
H59B	0.38260	0.28100	0.59200	0.1740
H59C	0.45000	0.35310	0.57840	0.1740
H60B	0.31010	0.40000	0.55440	0.1700
H60C	0.15050	0.50020	0.65170	0.1700
H12	0.33020	0.23260	0.75580	0.1220
H13	0.25910	0.16530	0.68470	0.1270
H15	0.29490	-0.03890	0.75630	0.0990
H16	0.36550	0.02750	0.82770	0.0940
*H18A	0.05590	0.02710	0.67610	0.1570
*H18B	0.05890	0.00630	0.62060	0.1570
*H18C	0.08900	0.09410	0.64110	0.1570
*H19A	0.16690	-0.09320	0.69610	0.1480
*H19B	0.28610	-0.10160	0.68350	0.1480
*H8D	0.50980	0.42210	1.01050	0.2020
*H8E	0.39930	0.38510	0.97930	0.2020
*H8F	0.48680	0.42580	0.95220	0.2020
*H9D	0.68780	0.35940	1.01620	0.1480
*H9E +H0⊡	0.67610	0.36170	0.95830	0.1480
^НУЕ *1110D	0.70150	0.27940	U.98710	U.1480
~п⊥∪D *u1∩⊏	0.55/50	U.290/U 0 21560	1 02510	U.138U 0 1200
*H1UE	0.3002U A 44880	0.21000	1 02310	0.1300 A 1300
*H18D	0.36230	-0,03470	0,66030	0.1750
-		· · · · · ·		

*H18E	0.26050	-0.07980	0.62740	0.1750
*H18F	0.28760	-0.09270	0.68520	0.1750
*H19D	0.17970	0.12320	0.62330	0.1900
*H19E	0.19810	0.05070	0.58880	0.1900
*H19F	0.30110	0.09270	0.62280	0.1900
*H20D	0.07110	0.04980	0.66670	0.2150
*H20E	0.09810	-0.03760	0.68840	0.2150
*H20F	0.07500	-0.02370	0.63070	0.2150
*H28D	0.52010	-0.04240	0.93280	0.2140
*H28E	0.56250	-0.09880	0.97880	0.2140
*H28F	0.57230	-0.12740	0.92530	0.2140
*H29D	0.76310	-0.14530	0.94350	0.2460
*H29E	0.72530	-0.13760	0.99460	0.2460
*H29F	0.83710	-0.09690	0.98730	0.2460
*H30D	0.63570	0.06560	0.96480	0.1760
*H30E	0.74920	0.04920	1.00190	0.1760
*H30F	0.64000	0.00470	1.00910	0.1760
H62A	0.95330	0.36710	0.67210	0.3210
H62B	1.02190	0.38320	0.72600	0.3210
H62C	0.89780	0.35290	0.71820	0.3210
H63A	1.05180	0.17470	0.75440	0.2390
Н63В	0.95780	0.22680	0.77080	0.2390
H63C	1.08130	0.25880	0.78070	0.2390

The Temperature Factor has the Form of Exp(-T) Where T = $8*(\pi^{**2})*U^*(\sin(\theta)/\lambda)^{**2}$ for Isotropic Atoms

(An)isotropic Displacement Parameters

Atom	U(1,1) or U	J U(2,2)	U(3,3)	U(2,3)	U(1,3)	U(1,2)
Р	0.0329(3)	0.0353(3)	0.0277(3)	0.0014(2)	0.0065(2)	0.0011(2)
C1	0.0342(12)	0.0359(11)	0.0372(11)	0.0032(9)	0.0103(9)	0.0027(9)
C2	0.0358(12)	0.0538(14)	0.0482(13)	0.0004(11)	0.0100(10)-	-0.0023(11)
C3	0.0354(14)	0.096(2)	0.0675(18)	-0.0085(16)	0.0204(13)-	-0.0088(14)
C4	0.0482(15)	0.0790(19)	0.0601(16)	-0.0063(14)	0.0302(13)	0.0029(14)
C5	0.0519(14)	0.0421(12)	0.0394(12)	0.0023(10)	0.0192(11)	0.0065(11)
C6	0.0375(12)	0.0407(12)	0.0387(12)	0.0001(9)	0.0127(10)	0.0006(10)
C7	0.0651(17)	0.0512(14)	0.0425(13)	-0.0046(11)	0.0217(12)	0.0056(13)
C11	0.0342(13)	0.0633(16)	0.0536(15)	-0.0028(12)	0.0089(11)-	-0.0085(12)
C12	0.138(4)	0.065(2)	0.077(2)	0.0007(18)	-0.038(2)	-0.006(2)
C13	0.138(4)	0.087(3)	0.068(2)	0.0020(19)	-0.038(2)	-0.003(3)
C14	0.0447(15)	0.087(2)	0.0562(17)	-0.0115(15)	0.0051(13)-	-0.0149(15)
C15	0.103(3)	0.072(2)	0.069(2)	-0.0136(17)	0.0092(19)	-0.030(2)
C16	0.106(3)	0.074(2)	0.0522(17)	0.0010(15)	0.0069(17)-	-0.0269(19)
C17	0.0536(18)	0.111(3)	0.0604(18)	-0.0229(18)	0.0063(14)-	-0.0189(18)
C21	0.0396(12)	0.0331(11)	0.0294(10)	-0.0002(8)	0.0056(9)	-0.0032(9)
C22	0.0441(13)	0.0357(11)	0.0310(11)	0.0003(9)	0.0055(9)	0.0013(10)
C23	0.0760(18)	0.0457(14)	0.0397(13)	0.0012(11)	0.0121(12)	0.0196(13)
C24	0.103(2)	0.0466(15)	0.0409(14)	0.0073(11)	0.0097(14)	0.0276(15)
C25	0.100(2)	0.0395(13)	0.0320(12)	0.0052(10)	0.0112(13)	0.0103(14)
C26	0.0638(16)	0.0374(12)	0.0312(11)	0.0009(9)	0.0133(11)	0.0020(11)
C27	0.244(6)	0.0546(18)	0.0396(16)	0.0191(14)	0.043(3)	0.042(3)
C31	0.0492(13)	0.0320(11)	0.0324(11)) -0.0009(9)	0.0111(10)	0.0051(10)
C32	0.0454(13)	0.0429(12)	0.0345(11)) -0.0014(9)	0.0119(10)	0.0034(10)
C33	0.0532(14)	0.0448(13)	0.0323(11))-0.0012(10)	0.0068(10)	0.0065(11)
C34	0.0658(17)	0.0426(13)	0.0355(12)	0.0024(10)	0.0189(12)	0.0089(12)
C35	0.0547(16)	0.0555(15)	0.0488(14)	0.0058(12)	0.0262(12)	0.0056(12)
C36	0.0429(13)	0.0479(13)	0.0442(13)	0.0027(10)	0.0115(11)	0.0053(11)
C37	0.088(2)	0.0652(17)	0.0354(13)	0.0068(12)	0.0242(14)	0.0108(15)
C38	0.173(4)	0.077(2)	0.064(2)	0.0220(17)	0.053(2)	0.005(2)
C39	0.135(4)	0.169(4)	0.0390(17)	0.016(2)	0.013(2)	-0.011(3)
C40	0.195(5)	0.116(3)	0.058(2)	0.009(2)	0.064(3)	0.059(3)
C41	0.0304(11)	0.0360(11)	0.0257(10)) -0.0001(8)	0.0079(8)	0.0047(9)
C42	0.0368(11)	0.0350(11)	0.0297(10)	0.0015(8)	0.0075(9)	0.0042(9)
C43	0.0500(14)	0.0379(12)	0.0448(13)	0.0082(10)	-0.0004(11)-	-0.0065(11)
C44	0.0422(13)	0.0473(13)	0.0477(13)	0.0032(11)	0.0009(11)-	-0.0098(11)
C45	0.0320(12)	0.0506(13)	0.0328(11)	0.0005(10)	0.0049(9)	0.0018(10)
C46	0.0366(12)	0.0399(12)	0.0311(10)	0.0062(9)	0.0078(9)	0.0046(10)
C47	0.0374(13)	0.0716(17)	0.0406(13)	0.0079(12)	-0.0021(10)-	-0.0014(12)
C48	0.0474(16)	0.106(3)	0.0621(18)	0.0110(17)	-0.0096(13)-	-0.0164(17)
C49	0.0580(18)	0.143(3)	0.0413(15)	0.0204(17)	-0.0047(13)	-0.016(2)
C50	0.0550(18)	0.090(2)	0.087(2)	0.0122(18)	-0.0100(16)	0.0232(17)
C51	0.0386(12)	0.0309(10)	0.0319(10)	0.0056(9)	0.0034(9)	-0.0006(9)
C52	0.0515(14)	0.0363(12)	0.0371(12)	0.0043(10)	0.0030(10)	0.0060(11)

C53	0.0623(16)	0.0428(13)	0.0341(12)	0.0018(10)	0.0013(11)	-0.0018(12)
C54	0.0534(15)	0.0471(14)	0.0382(12)	0.0082(10)	-0.0038(11)	-0.0013(12)
C55	0.0508(15)	0.0491(14)	0.0516(14)	0.0016(12)	-0.0034(12)	0.0126(12)
C56	0.0467(14)	0.0429(13)	0.0393(12)-	-0.0016(10)	0.0023(10)	0.0056(11)
C57	0.073(2)	0.0672(18)	0.0551(16)	0.0113(14)	-0.0213(14)	0.0007(16)
C58	0.068(2)	0.125(3)	0.099(3)	0.005(2)	-0.028(2)	0.007(2)
C59	0.139(4)	0.143(4)	0.0450(18)	-0.010(2)	-0.033(2)	0.043(3)
C60	0.154(4)	0.080(2)	0.079(2)	0.029(2)	-0.040(3)	0.015(3)
C18	0.129(16)	0.129(14)	0.077(9)	-0.049(10)	-0.015(10)	0.008(12)
C19	0.23(2)	0.101(11)	0.041(6)	-0.002(7)	0.017(10)	-0.005(12)
C20	0.065(13)	0.28(4)	0.089(15)	-0.09(2)	0.014(11)	-0.06(2)
C28	0.178(11)	0.201(11)	0.055(4)	0.032(6)	0.037(5)	-0.092(10)
C29	0.130(14)	0.22(2)	0.153(14)	0.148(15)	0.055(11)	0.077(13)
C30	0.249(19)	0.092(7)	0.010(4)	-0.001(4)	0.023(6)	-0.040(10)
C9	0.103(8)	0.133(11)	0.064(6)	-0.044(7)	0.029(5)	-0.042(7)
C10	0.128(10)	0.100(7)	0.049(4)	0.009(4)	0.020(5)	-0.022(7)
C8	0.229(17)	0.076(7)	0.085(7)	-0.027(6)	-0.003(9)	0.064(9)
0	0.175(4)	0.221(5)	0.158(4)	-0.053(4)	0.047(3)	-0.004(4)
C61	0.094(3)	0.149(5)	0.129(4)	-0.027(4)	0.022(3)	-0.018(3)
C62	0.257(10)	0.164(7)	0.214(8)	0.012(6)	0.029(7)	0.080(7)
C63	0.180(6)	0.168(6)	0.129(5)	0.006(4)	0.029(4)	-0.036(5)

The Temperature Factor has the Form of Exp(-T) Where

T = $8*(\pi^{**2})*U^*(Sin(\theta)/\lambda)**2$ for Isotropic Atoms

 $\label{eq:tau} \begin{array}{l} T = 2^{\star}(\pi^{\star\star2})^{\star} \text{Sumij}(h(i)^{\star}h(j)^{\star}U(i,j)^{\star}\text{Astar}(i)^{\star}\text{Astar}(j))\,, \text{ for}\\ \text{Anisotropic Atoms. Astar}(i) \text{ are Reciprocal Axial Lengths and}\\ h(i) \text{ are the Reflection Indices.} \end{array}$

Bond Distances (Å)

P	-C1	1.840(2)	C30	-C27	1.432(17)
Ρ	-C21	1.838(2)	C30	-C27	1.424(16)
P	-C41	1.840(2)	C11	-C16	1.359(4)
0	-C61	1.229(8)	C11	-C12	1.363(4)
C1	-C2	1.402(3)	C12	-C13	1.386(5)
C1	-C6	1.389(3)	C13	-C14	1.357(5)
C8	-C7	1.531(13)	C14	-C15	1.356(4)
C8	-C7	1.520(7)	C14	-C17	1.538(4)
C2	-C3	1.387(4)	C15	-C16	1.385(5)
C2	-C11	1.495(4)	C21	-C26	1.392(3)
C9	-C7	1.581(12)	C21	-C22	1.399(3)
C9	-C7	1.505(7)	C22	-C23	1.382(3)
C3	-C4	1.380(4)	C22	-C31	1.499(3)
C10	-C7	1.535(9)	C23	-C24	1.387(4)
C10	-C7	1.498(7)	C24	-C25	1.383(4)
C4	-C5	1.388(4)	C25	-C26	1.383(3)
C18	-C17	1.46(2)	C25	-C27	1.532(4)
C18	-C17	1.562(15)	C31	-C36	1.384(3)
C5	-C7	1.533(3)	C31	-C32	1.385(3)
C5	-C6	1.397(3)	C32	-C33	1.385(3)
C19	-C17	1.661(17)	C33	-C34	1.388(4)
C19	-C17	1.587(8)	C34	-C35	1.376(3)
C20	-C17	1.36(3)	C34	-C37	1.539(3)
C20	-C17	1.466(10)	C35	-C36	1.388(3)
C28	-C27	1.431(9)	C37	-C39	1.546(6)
C28	-C27	1.713(11)	C37	-C40	1.507(6)
C29	-C27	1.437(15)	C37	-C38	1.503(5)
C29	-C27	1.724(9)	C41	-C46	1.393(3)
C41	-C42	1.404(3)	C9	-H9E	0.9788
C42	-C43	1.382(3)	C9	-H9A	0.9803
C42	-C51	1.493(3)	C9	-н9в	0.9786
C43	-C44	1.390(3)	C9	-H9C	0.9794
C44	-C45	1.382(3)	C3	-H3	0.9495
C45	-C46	1.390(3)	C10	-H10B	0.9792
C45	-C47	1.531(3)	C10	-H10C	0.9801
C47	-C49	1.518(4)	C10	-H10E	0.9798
C47	-C50	1.537(4)	C10	-H10A	0.9798
C47	-C48	1.531(4)	C10	-H10D	0.9788
C51	-C52	1.382(3)	C10	-H10F	0.9804
C51	-C56	1.379(3)	C4	-H4	0.9512
C52	-C53	1.387(3)	C18	-H18D	0.9815
C53	-C54	1.382(4)	C18	-H18E	0.9803
C54	-C57	1.536(4)	C18	-H18F	0.9777
C54	-C55	1.390(3)	C18	-H18B	0.9798

	C55	-C56	1.385(3)	C18	-H18C	0.9801	
	C57	-C60 -C59	1.528(5) 1.509(5)	C18 C19	-H18A -H19C	0.9793	
	C57	-C58	1.548(5)	C19	-H19E	0.9801	
	C8	-H8F	0.9797	C19	-H19A	0.9806	
	C8	-H8C	0.9808	C19	-H19B	0.9800	
	C8	-H8A	0.9794	C19	-H19D	0.9821	
	C8	-H8B	0.9806	C19	-H19F	0.9765	
	C8	-H8E	0.9809	C6	-H6	0.9503	
	C8 C9	-H8D -H9F	0.9795	C20	-H20D	0.98//	
	C9	-H9D	0.9793	C20	-H20E	0.9796	
	C20	-H20B	0.9798	C32	-H32	0.9497	
	C20	-H20C	0.9796	C33	-H33	0.9499	
	C20	-H20A	0.9791	C35	-H35	0.9506	
	C28	-H28F	0.9802	C36	-H36	0.9491	
	C28	-H28C	0.9818	C38	-H38C	0.9808	
	C28	-H28R	0.9811	C38	-H38B	0.9808	
	C28	-H28E	0.9799	C39	-H39A	0.9792	
	C28	-H28D	0.9803	C39	-Н39В	0.9806	
	C29	-H29F	0.9802	C39	-H39C	0.9800	
	C29	-H29D	0.9804	C40	-H40B	0.9792	
	C29	-H29E	0.9786	C40	-H40C	0.9794	
	C29	-H29A -H20P	0.9801 0.9812	C40	-H40A	0.9788	
	C29	-H29C	0.9812	C43	-H43 -H44	0.9501	
	C30	-H30E	0.9800	C46	-H46	0.9501	
	C30	-H30F	0.9805	C48	-H48A	0.9795	
	C30	-H30C	0.9802	C48	-H48C	0.9803	
	C30	-H30D	0.9796	C48	-H48B	0.9804	
	C30	-H30A	0.9810	C49	-H49B	0.9797	
	C30 C12	-нзов -н12	0.9800	C49 C49	-H49C -H49D	0.9814	
	C12	-H13	0.9504	C50	-H50A	0.9805	
	C15	-H15	0.9487	C50	-H50B	0.9805	
	C16	-H16	0.9506	C50	-H50C	0.9806	
	C23	-H23	0.9511	C52	-H52	0.9492	
	C24	-H24	0.9496	C53	-H53	0.9514	
	C26	-H26	0.9512	C55	-H55	0.9499	
	C58	-H58A	0.9795	C61	-C62	1,411(11)	
	C58	-H58B	0.9794	C61	-C63	1.508(8)	
	C58	-H58C	0.9795	C62	-H62A	0.9795	
	C59	-H59C	0.9801	C62	-H62B	0.9802	
	C59	-н59в	0.9798	C62	-H62C	0.9800	
	C59	-H59A	0.9795	C63	-H63A	0.9804	
	C60 C60	-H60C	0.9801	C63	-H63C	0.9798	
			0.2727	000		0.0011	
			Bond Angles	(De	egrees)		
C1	-P	-C21	101.60(10)	C2	-C11	-C16	122.4(2)
C1	-P	-C41	101.75(9)	C12	-C11	-C16	115.8(3)
C21	-P	-C41	99.41(10)	C11	-C12	-C13	121.7(3)
P	-C1	-C2	115.91(17)	C12	-C13	-C14	122.5(3)
P C2	-C1	-C6	124.49(17) 119 6(2)	C13	-C14	-C15 -C17	121 4(3)
C1	-C2	-C3	117.9(2)	C15	-C14	-C17	123.1(3)
C1	-C2	-C11	121.4(2)	C14	-C15	-C16	122.5(3)
C3	-C2	-C11	120.7(2)	C11	-C16	-C15	122.0(3)
C2	-C3	-C4	121.6(2)	C18	-C17	-C14	108.2(5)
C3	-C4	-C5	121.7(2)	C19	-C17	-C14	112.1(4)
C4 C4	-05 -05	-00	122 6(2)	C20 C18	-C17	-C14	108 6(7)
C6	-C5	-C7	120.9(2)	C19	-C17	-C14	105.8(6)
C1	-C6	-C5	122.6(2)	C20	-C17	-C14	109.7(12)
C8	-C7	-C5	111.3(3)	C18	-C17	-C19	103.9(6)
C9	-C7	-C5	107.7(3)	C18	-C17	-C20	113.6(7)
CT0	-C7	-C5	108.4(3)	C19	-C17	-C20	LU7.2(7)

111.2(5)

113.7(4)

111.2(4)

109.9(4)

110.4(4)

109.0(4) 107.7(8)

C18

C18

C19

Ρ

Ρ

C22

C21

-C17

-C17

-C17

-C21

-C21

-C21

-C22

-C19

-C20

-C20

-C22

-C26

-C26

-C23

106.3(10)

119.1(17)

106.5(15)

116.89(15)

123.82(16)

119.12(19)

118.63(19)

C8

C9

C10

C8

C8

C9

C8

-C7

-C7

-C7

-C7

-C7

-C7

-C7

-C5

-C5

-C5

-C9

-C10

-C10

-C9

C 8	-07	-010	109 2(6)	C21	-022	-031	121 90(19)
C0	07	C10	102 E(G)	022	C22	021	110 E(2)
C9	-07	-CIU	103.5(0)	C23	-022	-C31	119.5(2)
CZ	-CII	-012	121.8(3)	CZZ	-023	-024	121.1(2)
C23	-C24	-C25	121.0(3)	C34	-C37	-C39	111.2(3)
C24	-C25	-C26	117.7(2)	C34	-C37	-C40	109.1(2)
C24	-C25	-C27	121.7(3)	C38	-C37	-C39	107.3(3)
C26	-C25	-C27	120.6(3)	C38	-C37	-C40	111.2(3)
C21	-C26	-C25	122.3(2)	C39	-C37	-C40	108.0(3)
C28	-027	-C25	113 0(6)	P	-C41	-C42	116 89(15)
C29	-027	-025	101 2(4)	- D	-C41	-C46	124 36(16)
C2)	027	C25	110 - 2(7)	E (1)	C41	C40	110 72(10)
C30	-027	-025	118.6(7)	C42	-041	-046	118.72(19)
C28	-C27	-C25	102.6(4)	C41	-C42	-C43	118.54(19)
C29	-C27	-C25	116.5(8)	C41	-C42	-C51	120.93(18)
C30	-C27	-C25	112.5(6)	C43	-C42	-C51	120.53(19)
C28	-C27	-C29	93.2(7)	C42	-C43	-C44	121.5(2)
C28	-C27	-C30	123.4(9)	C43	-C44	-C45	121.0(2)
C29	-C27	-C30	98.2(7)	C44	-C45	-C46	117.2(2)
C28	-C27	-C29	95.0(8)	C44	-C45	-C47	123.3(2)
C28	-C27	-C30	95.7(9)	C46	-C45	-C47	119.5(2)
C29	-027	-030	125 8(10)	C41	-046	-C45	122.9(2)
C22	-021	-030	120 4(2)	C1E	-047	- C19	1122.9(2)
C22	-C31	-032	120.4(2)	045	-047	-040	112.3(2)
	-031	-036		C45	-047	-049	110.0(2)
C32	-C31	-C36	117.79(19)	C45	-C47	-050	108.3(2)
C31	-C32	-C33	121.0(2)	C48	-C47	-C49	108.1(3)
C32	-C33	-C34	121.4(2)	C48	-C47	-C50	107.9(2)
C33	-C34	-C35	117.2(2)	C49	-C47	-C50	110.1(3)
C33	-C34	-C37	122.2(2)	C42	-C51	-C52	120.70(19)
C35	-C34	-C37	120.5(2)	C42	-C51	-C56	121.36(18)
C34	-C35	-C36	121.8(2)	C52	-C51	-C56	117.9(2)
C31	-C36	-C35	120.7(2)	C51	-C52	-C53	121.0(2)
C34	-037	-038	110 1(2)	C52	-053	-054	121 5(2)
052	-05/	CEE	117 1(2)	UQE	- 0	- 40 5	100 57
C22		057	122 - 6(2)	07	C0	IIOD	100.07
C53	-C54	-057	122.0(2)	07	-09		109.40
C55	-054	-C57	120.4(2)	07	-09	-H9D	109.51
C54	-055	-056	121.5(2)	C7	-09	-H9A	109.43
C51	-C56	-C55	121.0(2)	H9B	-09	-H9C	109.49
C54	-057	-C58	108.3(3)	H9A	-09	-H9C	109.37
C54	-C57	-C59	112.3(3)	C7	-C9	-H9E	109.50
C54	-C57	-C60	109.4(3)	C2	-C3	-H3	119.20
C58	-C57	-C59	108.9(3)	C4	-C3	-H3	119.23
C58	-C57	-C60	106.5(3)	C7	-C10	-H10E	109.43
C59	-C57	-C60	111.2(3)	C7	-C10	-H10B	109.47
C7	-C8	-H8B	109.35	C7	-C10	-H10D	109.43
C7	-C8	-H8C	109.47	H10A	-C10	-H10C	109.47
H8A	-C8	-H8B	109.53	C7	-C10	-H10C	109.42
H87	-08	-480	109 44	H10A	-C10	-H10B	109 58
U0D	0	-190	100.51	07	-C10	U1 0 A	109.30
пов	-00	-100	109.51		-CI0	-HIUA	109.40
HOD	-08	-H8F	109.53	HIUE	-010	-HIUF	109.41
07	-08	-H8A	109.53	HIOR	-010	-HIUC	109.49
C7	-C8	-H8E	109.46	H10D	-C10	-H10E	109.51
C7	-C8	-H8F	109.43	H10D	-C10	-H10F	109.59
C7	-C8	-H8D	109.48	C7	-C10	-H10F	109.45
H8E	-C8	-H8F	109.50	C5	-C4	-H4	119.12
H8D	-C8	-H8E	109.43	C3	-C4	-H4	119.19
H9D	-C9	-H9E	109.41	C17	-C18	-H18C	109.46
C7	-C9	-H9F	109.45	C17	-C18	-H18B	109.49
C7	-09	-H9C	109.53	C17	-C18	-H18E	109.44
нод	-09	-H9B	109 53	C17	-018	-H18F	109 53
ноп	-09	_H9F	109.33	ц18р	-C18	_H18F	109.33
и10 D	-019	U1 0 E	100.59	1110D 1120D	-020	_U20E	109.55
	C10	TILOF	100.50	112015	-C20	11201	100.00
HIGE	-018	-H18F	109.50	HZUA	-020	-H20C	109.54
HI8A	-C18	-H18C	109.48	HZUB	-020	-H20C	109.53
HI8B	-C18	-HI8C	109.46	HZUA	-C20	-H20B	109.44
C17	-C18	-H18D	109.40	H20D	-C20	-H20E	108.94
C17	-C18	-H18A	109.42	H28B	-C28	-H28C	109.42
H18A	-C18	-H18B	109.52	H28E	-C28	-H28F	109.48
H19D	-C19	-H19F	109.50	H28D	-C28	-H28E	109.47
H19E	-C19	-H19F	109.70	H28D	-C28	-H28F	109.46
C17	-C19	-H19D	109.38	H28A	-C28	-H28C	109.45
C17	-C19	-H19E	109.31	C27	-C28	-H28B	109.58
C17	-C19	-H19F	109.74	H28A	-C28	-H28B	109.44
C17	-C19	-H19R	109 57	C27	-028	-H28D	109 44
C17	-019	_H19C	100 50	C27	-028	_H28F	100 50
ст/ ш10л	_C10	_11_00	100.00	C27	_020	_1120E	100.00
итэн 1110л	-010	_U100	100.00	027	-020	_U70C	100 40
птан птан	-019	-п190	100 24	C27	-620	-nZQL	LUY.48
итав	-019	-H19C	100.34		-028	-HZ8A	109.51
нтар	-019	-HI9E	109.20	н29В	-029	-H29C	109.52
CT./	-618	-HI9A	109.56	C27	-C29	-H29A	109.48

C1	-C6	-нб	118.68	H29D	-C29	-H29F	109.39
C5	-06	-H6	118 68	H29E	-029	-H29F	109 65
C17	-020	_H207	109 44	ц 201	-029	_U29F	109.03
017	C20	1120A	100.44	027	C29	11295	100.57
	-020	-HZUB	109.44		-029	-HZ9C	109.52
	-020	-HZUD	109.40	HZ9A	-029	-HZ9B	109.41
CI/	-020	-HZUE	110.00	HZ9A	-029	-H29C	109.50
CI7	-C20	-H20F	109.89	C27	-C29	-H29F	109.46
C17	-C20	-H20C	109.44	C27	-C29	-H29D	109.44
H20D	-C20	-H20F	108.93	C27	-C29	-H29E	109.53
C27	-C29	-H29B	109.40	C33	-C32	-H32	119.48
H30A	-C30	-H30C	109.49	C34	-C33	-H33	119.35
C27	-C30	-H30B	109.55	C32	-C33	-H33	119.29
H30B	-C30	-H30C	109.49	C36	-C35	-H35	119.14
H30A	-C30	-H30B	109.49	C34	-C35	-H35	119.04
H30D	-C30	-H30F	109.46	C35	-C36	-H36	119.68
H30E	-C30	-H30F	109.41	C31	-C36	-H36	119.62
C27	-030	-H30F	109 39	C37	-038	-H38A	109 51
н30р	-030	-H30E	109 57	C37	-038	-H38B	109 49
027	-C30	-4302	109.37	U387	-038	-H38B	109.13
027	-C30	-1130A	100.31	1130A 1130A	C30	_U20C	109.43
007	-030	-H30E	109.40	d 2 7	-030	-H30C	109.49
027	-030	-H30D	109.53	037	-038	-H38C	109.53
C27	-030	-H30C	109.49	H38B	-038	-H38C	109.39
CI3	-C12	-H12	119.06	H39B	-039	-H39C	109.48
C11	-C12	-H12	119.20	C37	-C39	-H39B	109.48
C14	-C13	-H13	118.66	C37	-C39	-H39A	109.48
C12	-C13	-H13	118.80	H39A	-C39	-H39C	109.44
C16	-C15	-H15	118.79	C37	-C39	-H39C	109.45
C14	-C15	-H15	118.74	H39A	-C39	-H39B	109.49
C11	-C16	-H16	118.97	C37	-C40	-H40A	109.42
C15	-C16	-H16	119.05	H40A	-C40	-H40B	109.52
C22	-C23	-H23	119.41	C37	-C40	-H40B	109.42
C24	-023	-H23	119.48	C37	-C40	-H40C	109.49
C25	-C24	-H24	119 53	н40д	-C40	-H40C	109 47
C23	-C24	_H24	119 51	H40B	-C40	-H40C	109.17
C25	-026	_U26	118 85	C44	-C43	42	110 26
C2J	C20	-1120	110.05	C11	C43	-1143	110.20
C21 021	-020	-HZ0	110.09	045	-043	- 114 3	119.24
C31	-032	-H32	119.40	C45	-044	-644	119.45
C43	-C44	-H44	119.54	C51	-056	-H56	119.50
C41	-C46	-H46	118.51	C57	-C58	-H58A	109.51
C45	-C46	-H46	118.55	C57	-C58	-H58C	109.50
H48A	-C48	_H48B		H58A	C E O		
H48A		II IOD	109.51	115011	-050	-H28B	109.37
C47	-C48	-H48C	109.51	C57	-C58	-H58B -H58B	109.37 109.44
C47	-C48 -C48	-H48C -H48A	109.51 109.51 109.50	C57 H58B	-C58 -C58 -C58	-H58B -H58B -H58C	109.37 109.44 109.46
	-C48 -C48 -C48	-H48C -H48A -H48B	109.51 109.51 109.50 109.44	C57 H58B H58A	-C58 -C58 -C58	-H58B -H58B -H58C -H58C	109.37 109.44 109.46 109.55
C47	-C48 -C48 -C48 -C48	-H48C -H48A -H48B -H48C	109.51 109.51 109.50 109.44 109.48	C57 H58B H58A H59A	-C58 -C58 -C58 -C58 -C59	-H58B -H58B -H58C -H58C -H59C	109.37 109.44 109.46 109.55 109.43
C47 H48B	-C48 -C48 -C48 -C48 -C48	-H48C -H48A -H48B -H48C -H48C	109.51 109.51 109.50 109.44 109.48 109.38	C57 H58B H58A H59A H59A	-C58 -C58 -C58 -C58 -C59 -C59	-H58B -H58B -H58C -H58C -H59C -H59B	109.37 109.44 109.46 109.55 109.43 109.45
C47 H48B C47	-C48 -C48 -C48 -C48 -C48 -C48 -C49	-H48C -H48A -H48B -H48C -H48C -H49A	109.51 109.50 109.44 109.48 109.38 109.43	C57 H58B H58A H59A H59A C57	-C58 -C58 -C58 -C58 -C59 -C59 -C59 -C59	-H58B -H58B -H58C -H58C -H59C -H59B -H59A	109.37 109.44 109.46 109.55 109.43 109.45 109.43
C47 H48B C47 C47	-C48 -C48 -C48 -C48 -C48 -C48 -C49 -C49	-H48C -H48A -H48B -H48C -H48C -H49A -H49B	109.51 109.50 109.44 109.48 109.38 109.43 109.51	C57 H58B H58A H59A H59A C57 C57	-C58 -C58 -C58 -C59 -C59 -C59 -C59 -C59	-H588 -H588 -H58C -H58C -H59C -H59B -H59B -H59B	109.37 109.44 109.46 109.55 109.43 109.45 109.43 109.43
C47 H48B C47 C47 C47	-C48 -C48 -C48 -C48 -C48 -C49 -C49 -C49	-H48C -H48A -H48B -H48C -H48C -H49C -H49B -H49C	$109.51 \\ 109.50 \\ 109.44 \\ 109.48 \\ 109.38 \\ 109.43 \\ 109.51 \\ 109.41 $	C57 H58B H58A H59A H59A C57 C57 H59B	-C58 -C58 -C58 -C59 -C59 -C59 -C59 -C59 -C59	-H58B -H58B -H58C -H58C -H59C -H59B -H59B -H59B -H59C	109.37 109.44 109.46 109.55 109.43 109.43 109.43 109.46 109.58
C47 H48B C47 C47 C47 H49A	-C48 -C48 -C48 -C48 -C48 -C49 -C49 -C49 -C49	-H48C -H48A -H48B -H48C -H48C -H49C -H49B -H49C -H49B	109.51 109.50 109.44 109.48 109.38 109.43 109.51 109.41 109.56	C57 H58B H58A H59A H59A C57 C57 H59B C57	-C58 -C58 -C58 -C58 -C59 -C59 -C59 -C59 -C59 -C59	-H58B -H58B -H58C -H58C -H59C -H59B -H59B -H59B -H59C -H59C	109.37 109.44 109.46 109.55 109.43 109.45 109.43 109.46 109.58 109.48
C47 H48B C47 C47 C47 H49A H49A	-C48 -C48 -C48 -C48 -C48 -C49 -C49 -C49 -C49 -C49	-H48C -H48A -H48B -H48C -H48C -H48C -H49A -H49B -H49C -H49B -H49C	109.51 109.50 109.44 109.48 109.43 109.43 109.51 109.51	C57 H58B H58A H59A H59A C57 C57 H59B C57 C57	-C58 -C58 -C58 -C59 -C59 -C59 -C59 -C59 -C59 -C59 -C59	-H58B -H58B -H58C -H58C -H59C -H59B -H59A -H59B -H59C -H59C -H60B	109.37 109.44 109.46 109.55 109.43 109.45 109.43 109.46 109.58 109.58 109.48 109.48
C47 H48B C47 C47 C47 H49A H49A	-C48 -C48 -C48 -C48 -C48 -C49 -C49 -C49 -C49 -C49 -C49 -C49	-H48C -H48A -H48B -H48C -H48C -H48C -H49A -H49B -H49C -H49B -H49C -H49C	109.51 109.50 109.44 109.48 109.38 109.43 109.51 109.51 109.51 109.51 109.51 109.51 109.41	C57 H58B H58A H59A C57 C57 C57 C57 C57 C57 C57	-C58 -C58 -C58 -C59 -C59 -C59 -C59 -C59 -C59 -C59 -C59	-H588 -H58C -H58C -H59C -H59C -H59B -H59B -H59B -H59C -H60B -H60C	$109.37 \\ 109.44 \\ 109.46 \\ 109.55 \\ 109.43 \\ 109.43 \\ 109.43 \\ 109.44 \\ 109.58 \\ 109.58 \\ 109.48 \\ 109.41 \\ 109.47 \\ 100.47 \\ 1$
C47 H48B C47 C47 C47 H49A H49A H49B	-C48 -C48 -C48 -C48 -C48 -C49 -C49 -C49 -C49 -C49 -C49 -C49 -C49	-H48C -H48A -H48B -H48C -H48C -H48C -H49A -H49B -H49C -H49C -H49C -H49C -H49C -H49C	109.51 109.50 109.44 109.48 109.43 109.43 109.51 109.51 109.51 109.51 109.54 109.54 109.54 109.41 109.56 109.41 109.41 109.41 109.41 109.41	C57 H58B H58A H59A C57 C57 C57 C57 C57 C57 C57 C57 C57	-C58 -C58 -C58 -C59 -C59 -C59 -C59 -C59 -C59 -C59 -C59	-H588 -H588 -H58C -H59C -H598 -H598 -H598 -H598 -H59C -H59C -H608 -H600	109.37 109.44 109.46 109.55 109.43 109.45 109.43 109.46 109.58 109.48 109.41 109.47
C47 H48B C47 C47 C47 H49A H49A H49B H50B	-C48 -C48 -C48 -C48 -C48 -C49 -C49 -C49 -C49 -C49 -C49 -C49 -C49	-H48C -H48A -H48B -H48C -H48C -H48C -H49A -H49B -H49C -H49B -H49C -H49C -H49C -H49C -H49C	109.51 109.50 109.44 109.48 109.43 109.43 109.51 109.51 109.51 109.51 109.41 109.56 109.41 109.40	C57 H58B H58A H59A C57 C57 C57 C57 C57 C57 C57 C57	-C58 -C58 -C58 -C59 -C59 -C59 -C59 -C59 -C59 -C59 -C59	-H58B -H58C -H58C -H59C -H59B -H59B -H59B -H59C -H59C -H60B -H60C -H60A	109.37 109.44 109.46 109.55 109.43 109.45 109.43 109.46 109.58 109.48 109.41 109.47 109.49
C47 H48B C47 C47 C47 H49A H49A H49B H50B C47	-C48 -C48 -C48 -C48 -C49 -C49 -C49 -C49 -C49 -C49 -C49 -C49	-H48C -H48A -H48A -H48C -H48C -H49C -H49A -H49C -H49C -H49C -H49C -H50C -H50C	109.51 109.50 109.44 109.48 109.38 109.43 109.51 109.51 109.51 109.51 109.41 109.46 109.48 109.48 109.44	C57 H58B H58A H59A C57 C57 H59B C57 C57 C57 C57 C57 H60A	-C58 -C58 -C58 -C59 -C59 -C59 -C59 -C59 -C59 -C59 -C59	-H58B -H58B -H58C -H59C -H59B -H59B -H59B -H59C -H59C -H60B -H60C -H60C	109.37 109.44 109.46 109.55 109.43 109.43 109.46 109.58 109.48 109.41 109.47 109.49 109.49
C47 H48B C47 C47 C47 H49A H49A H49B H50B C47 C47	-C48 -C48 -C48 -C48 -C49 -C49 -C49 -C49 -C49 -C49 -C49 -C49	-H48C -H48A -H48B -H48C -H48C -H49C -H49B -H49C -H49C -H49C -H49C -H50C -H50A	109.51 109.50 109.44 109.48 109.43 109.43 109.51 109.51 109.51 109.41 109.46 109.48 109.48 109.48	C57 H58B H58A H59A C57 C57 C57 C57 C57 C57 C57 H60A H60B	-C58 -C58 -C58 -C59 -C59 -C59 -C59 -C59 -C59 -C59 -C59	-H588 -H588 -H58C -H59C -H59B -H59A -H59B -H59C -H59C -H60B -H60C -H60C -H60C -H60C	109.37 109.44 109.46 109.55 109.43 109.43 109.43 109.46 109.58 109.48 109.41 109.47 109.49 109.50
C47 H48B C47 C47 C47 H49A H49A H49B H50B C47 C47 C47	-C48 -C48 -C48 -C48 -C49 -C49 -C49 -C49 -C49 -C49 -C49 -C49	-H48C -H48A -H48B -H48C -H48C -H49A -H49B -H49C -H49C -H49C -H49C -H49C -H49C -H50C -H50A -H50B	109.51 109.50 109.44 109.48 109.43 109.43 109.41 109.51 109.41 109.41 109.48 109.48 109.48 109.48 109.42	C57 H58B H58A H59A C57 C57 C57 C57 C57 C57 C57 H60A H60B H60A	-C58 -C58 -C58 -C59 -C59 -C59 -C59 -C59 -C59 -C59 -C59	-H58B -H58C -H58C -H59C -H59B -H59A -H59B -H59C -H59C -H60B -H60C -H60C -H60C -H60C -H60B	109.37 109.44 109.46 109.55 109.43 109.45 109.43 109.45 109.43 109.43 109.43 109.44 109.48 109.41 109.47 109.49 109.50 109.47
C47 H48B C47 C47 C47 H49A H49A H49B H50B C47 C47 C47 C47 H50A	$\begin{array}{c} -C48 \\ -C48 \\ -C48 \\ -C48 \\ -C49 \\ -C50 \\ -C50 \\ -C50 \\ -C50 \\ -C50 \end{array}$	-H48C -H48A -H48B -H48C -H48C -H49A -H49B -H49C -H49C -H49C -H49C -H50C -H50C -H50B -H50B	109.51 109.50 109.44 109.48 109.43 109.43 109.51 109.51 109.51 109.51 109.41 109.46 109.48 109.48 109.42 109.55	C57 H58B H58A H59A C57 C57 C57 C57 C57 C57 C57 C57 C57 C57	-C58 -C58 -C58 -C59 -C59 -C59 -C59 -C59 -C59 -C59 -C59	-H58B -H58C -H58C -H59C -H59B -H59B -H59B -H59C -H59C -H60B -H60C -H60C -H60C -H60B -H60C -H60B -C62	$109.37 \\ 109.44 \\ 109.46 \\ 109.55 \\ 109.43 \\ 109.43 \\ 109.43 \\ 109.44 \\ 109.43 \\ 109.44 \\ 109.48 \\ 109.41 \\ 109.47 \\ 109.49 \\ 109.50 \\ 109.50 \\ 109.47 \\ 121.8(6)$
C47 H48B C47 C47 C47 H49A H49A H49B H50B C47 C47 C47 C47 H50A H50A	$\begin{array}{c} -C48 \\ -C48 \\ -C48 \\ -C48 \\ -C48 \\ -C49 \\ -C50 \\ -C50 \\ -C50 \\ -C50 \\ -C50 \\ -C50 \end{array}$	-H48C -H48A -H48B -H48C -H48C -H49A -H49B -H49C -H49B -H49C -H49C -H50C -H50C -H50B -H50B -H50B -H50B -H50C	109.51 109.50 109.44 109.48 109.43 109.43 109.51 109.51 109.51 109.42 109.42 109.44	C57 H58B H58A H59A C57 C57 C57 C57 C57 C57 C57 C57 H60A H60B H60A O O	-C58 -C58 -C58 -C59 -C59 -C59 -C59 -C59 -C59 -C59 -C59	-H58B -H58C -H58C -H59C -H59B -H59B -H59B -H59C -H60B -H60C -H60C -H60C -H60C -H60C -H60B -C62 -C63	$109.37 \\ 109.44 \\ 109.46 \\ 109.55 \\ 109.43 \\ 109.45 \\ 109.43 \\ 109.46 \\ 109.58 \\ 109.48 \\ 109.48 \\ 109.41 \\ 109.47 \\ 109.49 \\ 109.50 \\ 109.50 \\ 109.51 \\ 109.50 \\ 109.51 \\ 109.50 \\ 109.51 \\ 109.50 \\ 109.51 \\ 109.50 \\ 109.51 \\ 109.50 \\ 1$
C47 H48B C47 C47 C47 H49A H49A H49B H50B C47 C47 C47 C47 H50A H50A C53	$\begin{array}{c} -C48\\ -C48\\ -C48\\ -C48\\ -C48\\ -C49\\ -C49\\ -C49\\ -C49\\ -C49\\ -C49\\ -C49\\ -C49\\ -C50\\ -C50\\ -C50\\ -C50\\ -C50\\ -C50\\ -C50\\ -C50\\ -C52\end{array}$	-H48C -H48A -H48B -H48C -H48C -H49A -H49B -H49C -H49C -H49C -H49C -H50C -H50C -H50B -H50B -H50B -H50C -H52	109.51 109.50 109.44 109.48 109.43 109.43 109.51 109.41 109.56 109.51 109.41 109.46 109.48 109.48 109.42 109.55 109.44 119.55	C57 H58B H59A H59A C57 C57 C57 C57 C57 C57 C57 C57 H60A H60B H60A O O C62	-C58 -C58 -C58 -C59 -C59 -C59 -C59 -C59 -C59 -C59 -C59	-H58B -H58C -H58C -H59C -H59B -H59B -H59C -H59C -H59C -H60B -H60C -H60C -H60C -H60C -H60B -C62 -C63 -C63	109.37 109.44 109.46 109.55 109.43 109.45 109.43 109.46 109.58 109.48 109.41 109.47 109.49 109.50 109.50 109.50 109.47 121.8(6) 118.8(6)
C47 H48B C47 C47 C47 H49A H49A H49B H50B C47 C47 C47 C47 H50A H50A C53 C51	$\begin{array}{c} -C48 \\ -C48 \\ -C48 \\ -C48 \\ -C49 \\ -C50 \\ -C50 \\ -C50 \\ -C50 \\ -C50 \\ -C50 \\ -C52 \\ -C52 \\ -C52 \end{array}$	-H48C -H48A -H48A -H48C -H48C -H49A -H49A -H49B -H49C -H49C -H49C -H50C -H50C -H50B -H50B -H50C -H52 -H52	109.51 109.50 109.44 109.48 109.43 109.43 109.51 109.41 109.56 109.41 109.41 109.46 109.48 109.48 109.48 109.48 109.42 109.55 109.44 119.55 119.46	C57 H58B H59A H59A C57 C57 C57 C57 C57 C57 C57 H60A H60B H60A O O C62 C61	-C58 -C58 -C58 -C59 -C59 -C59 -C59 -C59 -C59 -C59 -C60 -C60 -C60 -C60 -C61 -C61 -C61 -C62	-H58B -H58C -H58C -H59C -H59B -H59A -H59B -H59C -H59C -H60B -H60C -H60C -H60C -H60C -H60C -H60C -H60C -H60C -H60C -H60B -C62 -C63 -C63 -H62A	109.37 109.44 109.46 109.55 109.43 109.45 109.43 109.45 109.58 109.48 109.41 109.49 109.49 109.49 109.50 109.49 109.49 109.50 109.49 109.48
C47 H48B C47 C47 C47 H49A H49A H49B C47 C47 C47 C47 H50A C53 C51 C52	$\begin{array}{c} -C48\\ -C48\\ -C48\\ -C48\\ -C48\\ -C49\\ -C49\\ -C49\\ -C49\\ -C49\\ -C49\\ -C49\\ -C49\\ -C50\\ -C50\\ -C50\\ -C50\\ -C50\\ -C50\\ -C52\\ -C52\\ -C52\\ -C53\\ \end{array}$	-H48C -H48A -H48A -H48C -H48C -H49A -H49B -H49C -H49C -H49C -H49C -H50C -H50C -H50B -H50B -H50C -H52 -H52 -H53	109.51 109.50 109.44 109.48 109.43 109.43 109.51 109.41 109.56 109.51 109.44 109.46 109.48 109.48 109.48 109.42 109.55 109.44 119.55 119.46 119.21	C57 H58B H59A H59A C57 C57 C57 C57 C57 C57 C57 C57 H60A H60B H60A O C62 C61 C61	-C58 -C58 -C58 -C59 -C59 -C59 -C59 -C59 -C59 -C59 -C60 -C60 -C60 -C60 -C61 -C61 -C61 -C62 -C62	-H588 -H588 -H58C -H59C -H59B -H59A -H59B -H59C -H59C -H60B -H60C -H60C -H60C -H60C -H60C -H60B -C62 -C63 -C63 -H62B	109.37 109.44 109.46 109.55 109.43 109.45 109.43 109.46 109.58 109.48 109.41 109.47 109.49 109.50 109.47 121.8(6) 119.3(6) 118.8(6) 109.48 109.52
C47 H48B C47 C47 C47 H49A H49A H49B H50B C47 C47 C47 C47 H50A H50A C53 C51 C52 C54	-C48 -C48 -C48 -C48 -C49 -C49 -C49 -C49 -C49 -C49 -C49 -C49	-H48C -H48A -H48A -H48C -H48C -H49C -H49B -H49C -H49C -H49C -H49C -H49C -H49C -H50C -H50C -H50B -H50B -H50B -H52 -H52 -H53 -H53 -H53	109.51 109.50 109.44 109.48 109.43 109.43 109.41 109.51 109.41 109.46 109.48 109.48 109.48 109.48 109.48 109.48 109.48 109.48 109.48 109.46 109.55 109.44 119.55 119.46 119.21 119.27	C57 C57 H58B H59A C57 C57 C57 C57 C57 C57 C57 C57 C57 C57	-C58 -C58 -C58 -C59 -C59 -C59 -C59 -C59 -C59 -C59 -C59	-H58B -H58C -H58C -H59C -H59B -H59A -H59B -H59C -H59C -H60B -H60C -H60C -H60C -H60C -H60B -C62 -C63 -C63 -H62A -H62B -H62C	109.37 109.44 109.46 109.55 109.43 109.43 109.43 109.43 109.43 109.43 109.43 109.43 109.49 109.49 109.49 109.50 109.47 121.8(6) 119.3(6) 118.8(6) 109.48 109.48 109.49 109.52 109.44
$\begin{array}{c} {\rm C47} \\ {\rm H48B} \\ {\rm C47} \\ {\rm C47} \\ {\rm C47} \\ {\rm H49A} \\ {\rm H49A} \\ {\rm H49B} \\ {\rm C47} \\ {\rm C47} \\ {\rm C47} \\ {\rm C47} \\ {\rm H50A} \\ {\rm C53} \\ {\rm C51} \\ {\rm C52} \\ {\rm C54} \\ {\rm C54} \end{array}$	-C48 -C48 -C48 -C48 -C49 -C49 -C49 -C49 -C49 -C49 -C49 -C49	-H48C -H48A -H48A -H48C -H48C -H49C -H49B -H49C -H49C -H49C -H49C -H50C -H50C -H50C -H50B -H50B -H50C -H52 -H52 -H53 -H55	109.51 109.50 109.44 109.48 109.48 109.43 109.43 109.51 109.51 109.41 109.46 109.48 109.48 109.48 109.48 109.48 109.48 109.48 109.48 109.48 109.48 109.42 109.48 109.42 109.42 109.42 109.42 109.42 109.42 109.42 109.42 109.42 109.42 109.42 109.42 109.42 109.42 109.42 109.42 109.55 109.44 119.55 119.46 119.21 119.27 119.28	C57 C57 H58B H59A C57 C57 C57 C57 C57 C57 C57 C57 C57 C57	-C58 -C58 -C58 -C59 -C59 -C59 -C59 -C59 -C59 -C59 -C59	-H58B -H58C -H58C -H59C -H59B -H59B -H59B -H59C -H59C -H60B -H60C -H60A -H60C -H60A -H60C -H60B -C62 -C63 -C63 -H62B -H62C -H62B	109.37 109.44 109.46 109.55 109.43 109.45 109.43 109.46 109.58 109.48 109.41 109.41 109.47 109.49 109.50 109.47 121.8(6) 119.3(6) 118.8(6) 109.48 109.52 109.44 109.50
$\begin{array}{c} {\rm C47} \\ {\rm H48B} \\ {\rm C47} \\ {\rm C47} \\ {\rm C47} \\ {\rm H49A} \\ {\rm H49B} \\ {\rm H50B} \\ {\rm C47} \\ {\rm C47} \\ {\rm C47} \\ {\rm C47} \\ {\rm H50A} \\ {\rm C53} \\ {\rm C51} \\ {\rm C52} \\ {\rm C54} \\ {\rm C56} \end{array}$	$\begin{array}{c} -C48\\ -C48\\ -C48\\ -C48\\ -C48\\ -C49\\ -C49\\ -C49\\ -C49\\ -C49\\ -C49\\ -C49\\ -C50\\ -C50\\ -C50\\ -C50\\ -C50\\ -C50\\ -C50\\ -C52\\ -C52\\ -C52\\ -C53\\ -C55\\ -C55\\ -C55\\ \end{array}$	-H48C -H48A -H48A -H48C -H48C -H49A -H49B -H49C -H49C -H49C -H49C -H50C -H50C -H50C -H50C -H50B -H50B -H50B -H50C -H52 -H52 -H53 -H55 -H55	109.51 109.50 109.44 109.48 109.38 109.43 109.51 109.51 109.41 109.51 109.41 109.41 109.46 109.48 109.48 109.48 109.48 109.48 109.48 109.42 109.55 109.44 119.55 119.46 119.21 119.27 119.28 119.21	C57 H58B H59A H59A C57 C57 C57 C57 C57 C57 C57 C57 C57 C57	-C58 -C58 -C58 -C59 -C59 -C59 -C59 -C59 -C59 -C59 -C59	-H58B -H58C -H58C -H59C -H59B -H59A -H59B -H59C -H59C -H60B -H60C -H60C -H60C -H60C -H60C -H60C -H60C -H622 -C63 -C63 -H62A -H622 -H622 -H622 -H622 -H622 -H622 -H622	109.37 109.44 109.46 109.55 109.43 109.45 109.43 109.46 109.48 109.48 109.41 109.49 109.49 109.49 109.50 109.48 109.52 109.48 109.52 109.44
C47 H48B C47 C47 H49A H49A H49B H50B C47 C47 C47 C47 C47 C47 C47 C47 C47 C450A C53 C51 C52 C54 C54 C55	$\begin{array}{c} -C48\\ -C48\\ -C48\\ -C48\\ -C48\\ -C49\\ -C49\\ -C49\\ -C49\\ -C49\\ -C49\\ -C49\\ -C50\\ -C50\\ -C50\\ -C50\\ -C50\\ -C50\\ -C50\\ -C52\\ -C52\\ -C52\\ -C53\\ -C55\\ -C55\\ -C55\\ -C55\\ -C55\end{array}$	-H48C -H48A -H48B -H48C -H48C -H49A -H49A -H49B -H49C -H49C -H49C -H50C -H50C -H50A -H50B -H50C -H52 -H52 -H53 -H55 -H55 -H56	109.51 109.50 109.44 109.48 109.43 109.43 109.51 109.41 109.56 109.51 109.41 109.46 109.48 109.48 109.48 109.42 109.55 109.44 119.55 119.46 119.21 119.27 119.28 119.21 119.52	C57 H58B H59A H59A C57 C57 C57 C57 C57 C57 C57 C57 C57 C57	-C58 -C58 -C58 -C59 -C59 -C59 -C59 -C59 -C59 -C59 -C59	-H58B -H58C -H58C -H59C -H59B -H59B -H59B -H59C -H59C -H60B -H60C -H60C -H60C -H60C -H60C -H60C -H60C -H622 -C63 -C63 -H62A -H62B -H62C -H62C -H62C -H62C	109.37 109.44 109.46 109.55 109.43 109.45 109.43 109.46 109.58 109.48 109.41 109.47 109.49 109.50 109.50 109.50 109.42 119.3(6) 118.8(6) 109.48 109.52 109.44 109.52 109.43 109.43 109.45
C47 H48B C47 C47 C47 H49A H49A H49B C47 C47 C47 C47 C47 C47 C47 C47 C47 C45 C47 C45 C47 C45 C47 C45 C47 C45 C47 C45 C47 C45 C47 C47 C45 C47 C47 C45 C47 C47 C47 C47 C47 C47 C47 C47 C47 C47 C47 C47 C47 C47 C47 C47 C45 C53 C51 C52 C54 C55 C55 C55 C61	$\begin{array}{c} -C48\\ -C48\\ -C48\\ -C48\\ -C48\\ -C49\\ -C49\\ -C49\\ -C49\\ -C49\\ -C49\\ -C49\\ -C49\\ -C50\\ -C50\\ -C50\\ -C50\\ -C50\\ -C50\\ -C52\\ -C52\\ -C52\\ -C52\\ -C53\\ -C55\\ -C55\\ -C55\\ -C56\\ -C63\\ \end{array}$	-H48C -H48A -H48A -H48C -H48C -H49C -H49A -H49B -H49C -H49C -H49C -H50C -H50C -H50A -H50B -H50C -H52 -H52 -H53 -H55 -H55 -H55 -H56 -H63A	109.51 109.50 109.44 109.48 109.43 109.43 109.51 109.41 109.56 109.51 109.44 109.46 109.48 109.48 109.42 109.42 109.55 109.44 119.55 119.46 119.21 119.27 119.28 119.21 119.52 109.49	C57 H58B H59A H59A C57 C57 C57 C57 C57 C57 C57 C57 C57 C57	-C58 -C58 -C58 -C59 -C59 -C59 -C59 -C59 -C59 -C59 -C59	-H588 -H588 -H58C -H59C -H597 -H598 -H598 -H598 -H597 -H597 -H608 -H607 -H608 -H607 -H608 -C62 -C63 -C63 -C63 -H628 -H628 -H628 -H628 -H628 -H628 -H628 -H628 -H628 -H638	109.37 109.44 109.46 109.55 109.43 109.45 109.43 109.46 109.58 109.43 109.46 109.58 109.49 109.49 109.49 109.50 109.47 121.8(6) 119.3(6) 118.8(6) 109.52 109.44 109.52 109.43 109.55 109.43 109.55
C47 H48B C47 C47 C47 H49A H49B H50B C47 C47 C47 C47 C47 C47 C47 C47 C50A C51 C52 C54 C55 C54 C55 C56 C61	$\begin{array}{c} -C48\\ -C48\\ -C48\\ -C48\\ -C48\\ -C49\\ -C49\\ -C49\\ -C49\\ -C49\\ -C49\\ -C49\\ -C49\\ -C50\\ -C50\\ -C50\\ -C50\\ -C50\\ -C50\\ -C52\\ -C52\\ -C52\\ -C53\\ -C55\\ -C55\\ -C56\\ -C63\\ -C63\\$	-H48C -H48A -H48A -H48B -H48C -H49C -H49B -H49C -H49C -H49C -H49C -H50C -H50C -H50A -H50B -H50B -H50B -H50B -H50C -H52 -H53 -H55 -H55 -H55 -H56 -H63B	109.51 109.50 109.44 109.48 109.43 109.43 109.51 109.41 109.56 109.41 109.46 109.48 109.48 109.48 109.48 109.42 109.55 109.44 119.55 119.46 119.21 119.27 119.28 119.21 119.52 109.49 109.42	C57 H58B H58A H59A C57 C57 C57 C57 C57 C57 C57 C57 C57 C57	-C58 -C58 -C58 -C59 -C59 -C59 -C59 -C59 -C59 -C59 -C59	-H588 -H588 -H58C -H597 -H598 -H598 -H598 -H598 -H598 -H597 -H608 -H608 -H600 -H608 -H600 -H608 -C62 -C63 -C63 -H628 -H622 -H628 -H622 -H628 -H622 -H638 -H630	109.37 109.44 109.46 109.55 109.43 109.45 109.43 109.46 109.58 109.48 109.48 109.41 109.47 109.49 109.50 109.47 121.8(6) 119.3(6) 118.8(6) 109.48 109.52 109.44 109.50 109.43 109.45 109.46

Torsion Angles (Degrees)

C21	-P	-C1	-C2	-92.87(18)
C21	-P	-C1	-C6	87.0(2)
C41	-P	-C1	-C2	164.82(17)
C41	-P	-C1	-C6	-15.3(2)
C1	-P	-C21	-C22	171.74(17)
C1	-P	-C21	-C26	-13.2(2)

C41	-P	-C21	-C22	-84.10(18)
C41	-P	-C21	-C26	91.0(2)
C1	-P	-C41	-C42	-97.21(17)
C1	-P	-C41	-C46	81.06(19)
C21	-P	-C41	-C42	158.75(16)
CZI D	-P -C1	-041	-046	-23.0(2) 177 $4(2)$
P	-C1	-C2	-C11	-2.4(3)
CG	-C1	-C2	-03	-2.4(4)
C6	-C1	-C2	-C11	177.7(2)
P	-C1	-C6	-C5	-178.63(17)
C2	-C1	-C6	-C5	1.2(3)
C1	-C2	-C3	-C4	2.0(4)
C11	-C2	-C3	-C4	-178.2(3)
C1	-C2	-C11	-C12	-78.6(4)
C1	-C2	-C11	-C16	98.0(3)
C3	-C2	-C11	-C12	101.6(4)
C3 C3	-02	-CII	-C16	-81.9(4)
C2 C3	-03	-04	-05	-0.2(5) -1.1(4)
C3	-C4	-05	-07	-1797(3)
C4	-05	-C6	-C1	0.6(3)
C7	-C5	-C6	-C1	179.2(2)
C4	-C5	-C7	-C8	-8.6(4)
C4	-C5	-C7	-C9	111.9(4)
C4	-C5	-C7	-C10	-130.3(4)
C6	-C5	-C7	-C8	172.9(4)
C6	-C5	-C7	-C9	-66.6(4)
C6	-C5	-C7	-C10	51.2(4)
C2	-C11	-C12	-C13	179.0(4)
C16	-C11	-C12	-C13	2.2(6)
C2	-CII	-C16	-C15	-178.8(3)
C12 011	-CII	-C16	-C15	-2.1(5)
C112	-C12	-CI3 -C14	-C14 -C15	-2.4(6)
C12	-013	-C14	-C17	179 3(4)
C13	-C14	-C15	-C16	2.6(5)
C17	-C14	-C15	-C16	-179.2(3)
C13	-C14	-C17	-C18	-67.8(6)
C13	-C14	-C17	-C19	178.2(5)
C13	-C14	-C17	-C20	57.8(7)
C15	-C14	-C17	-C18	114.1(6)
C15	-C14	-C17	-C19	0.1(6)
C15	-C14	-C17	-C20	-120.3(6)
C14	-C15	-C16	-C11	-0.4(6)
P	-C21	-C22	-C23	170.43(18)
P	-C21	-C22	-C31	-10.9(3)
C26	-C21	-022	-023	-4.9(3) 172 9(2)
C20 D	-021	-026	-025	173.0(2)
C22	-C21	-C26	-C25	2.1(4)
C21	-C22	-C23	-C24	4.0(4)
C31	-C22	-C23	-C24	-174.7(2)
C21	-C22	-C31	-C32	-58.9(3)
C21	-C22	-C31	-C36	124.3(2)
C23	-C22	-C31	-C32	119.8(3)
C23	-C22	-C31	-C36	-57.1(3)
C22	-C23	-C24	-C25	-0.2(4)
C23	-C24	-C25	-C26	-2.7(5)
C23	-C24	-025	-027	1/8.2(3)
C24 C27	-025	-026	-C21	1.8(4) -179 2(3)
C24	-C25	-C20	-C28	-179.2(3) -33 5(8)
C24	-C25	-C27	-C29	64.8(5)
C24	-C25	-C27	-C30	170.7(8)
C26	-C25	-C27	-C28	147.4(7)
C26	-C25	-C27	-C29	-114.2(4)
C26	-C25	-C27	-C30	-8.3(9)
C22	-C31	-C32	-C33	-175.8(2)
C36	-C31	-C32	-C33	1.1(3)
C22	-C31	-C36	-C35	176.2(2)
C32	-031	-036	-035	-0.8(3)
C31	-032	-033	-034	U.L(3)
C32	-633	-C34 -C34	-C35 -C37	-⊥.♂(3) 178 4(2)
C32	-034	-035	-036	2 2(4)
C37	-C34	-C35	-C36	-178.0(2)
C33	-C34	-C37	-C38	114.7(3)
-	-	-	-	

C33	-C34	-C37	-C39	-4.0(4)
C33	-C34	-C37	-C40	-123.0(3)
C35	-C34	-C37	-C38	-65.1(4)
C35	-C34	-C37	-C39	176.2(3)
C35	-C34	-C37	-C40	57.1(4)
C34	-C35	-C36	-C31	-0.9(4)
Р	-C41	-C42	-C43	174.94(17)
Р	-C41	-C42	-C51	-6.2(3)
C46	-C41	-C42	-C43	-3.4(3)
C46	-C41	-C42	-C51	175.42(19)
Р	-C41	-C46	-C45	-177.07(16)
C42	-C41	-C46	-C45	1.2(3)
C41	-C42	-C43	-C44	3.2(3)
C51	-C42	-C43	-C44	-175.7(2)
C41	-C42	-C51	-C52	-68.1(3)
C41	-C42	-C51	-C56	112.8(2)
C43	-C42	-C51	-C52	110.7(3)
C43	-C42	-C51	-C56	-68.4(3)
C42	-C43	-C44	-C45	-0.6(4)
C43	-C44	-C45	-C46	-1.7(3)
C43	-C44	-C45	-C47	178.2(2)
C44	-C45	-C46	-C41	1.4(3)
C47	-C45	-C46	-C41	-178.5(2)
C44	-C45	-C47	-C48	-2.1(3)
C44	-C45	-C47	-C49	118.5(3)
C44	-C45	-C47	-C50	-121.1(3)
C46	-C45	-C47	-C48	177.8(2)
C46	-C45	-C47	-C49	-61.6(3)
C46	-C45	-C47	-C50	58.8(3)
C42	-C51	-C52	-C53	-178.7(2)
C56	-C51	-C52	-C53	0.4(3)
C42	-C51	-C56	-C55	179.0(2)
C52	-C51	-C56	-C55	-0.1(3)
C51	-C52	-C53	-C54	-0.3(4)
C52	-C53	-C54	-C55	0.0(4)
C52	-C53	-C54	-C57	179.7(3)
C53	-C54	-C55	-C56	0.4(4)
C57	-C54	-C55	-C56	-179.4(3)
C53	-C54	-C57	-C58	110.7(3)
C53	-C54	-C57	-C59	-9.6(4)
C53	-C54	-C57	-C60	-133.6(3)
C55	-C54	-C57	-C58	-69.6(4)
C55	-C54	-C57	-C59	170.2(3)
C55	-C54	-C57	-C60	46.1(4)
C54	-055	-056	-C51	-0.3(4)
	000	000	001	5.5(1)

Contact Distances(Å)

Ρ	.C12	3.404(5)	C10	.H6	2.7376
Ρ	.C16	3.662(4)	C10	.H4	2.9491
P	.C32	3.217(2)	C4	.H8E	2.8888
P	.C52	3.284(2)	C4	.H8A	2.6823
P	.H32	3.0177	C4	.H8B	2.8171
0	.H18C_k	2.7162	C4	.H10F	2.8319
C10	.C40_a	3.529(8)	C18	.H48C_e	3.0884
C6	.C46	3.445(3)	C18	.H15	2.7186
C6	.C26	3.521(3)	C18	.H13	3.0068
C12	.P	3.404(5)	C19	.H13	2.3128
C16	.P	3.662(4)	C19	.H15	2.4815
C23	.C62_c	3.565(10)	C6	.H10B	2.6177
C26	.C46	3.498(3)	C6	.H9F	2.8361
C26	.C6	3.521(3)	C6	.H26	2.8324
C32	.P	3.217(2)	C6	.H9C	2.7525
C36	.C56_e	3.570(3)	C6	.H9E	2.7925
C40	.C10_e	3.529(8)	C20	.H13	2.8688
C46	.C26	3.498(3)	C20	.H56_b	2.9817
C46	.C6	3.445(3)	C28	.H24	2.6410
C52	.P	3.284(2)	C28	.H10F_d	3.0394
C56	.C36_a	3.570(3)	C29	.H24	2.9134
C62	.C23_a	3.565(10)	C29	.H24	2.5490
C1	.H26	2.5818	C29	.H50A_i	3.0279
C8	.H4	3.0394	C30	.H26	2.5021
C8	.H4	2.4663	C30	.H26	2.5579
C9	.H6	2.4742	C13	.H19F	2.7229
C9	.H6	2.9696	C13	.H20C	2.7647
C10	.H28B_d	2.9930	C13	.H19D	2.6045
C13	.H18C	2.8895	C38	.H28A_a	3.0396

C13	.H20D	3.0338	C38	.H29D_a	3.0795
C15	.H19B	2.8222	C38	.H35	2.9532
C15	.H58B_b	3.0815	C39	.H33	2.4578
C15	.H19A	2.8059	C40	.H35	2.8423
C15 C15	.HZUE	2.9/05	C41	.H0	2.6250
C15	.H18F	2 6854	C44 C44	.H40D H48C	2 8024
C21	.H32	2.9919	C46	. нб	2.7195
C21	.H46	2.6013	C46	.H49B	2.7645
C23	.H36	2.9970	C46	.H50C	2.7024
C23	.H62C_c	2.9942	C48	.H44	2.5073
C24	.H29B	2.6754	C49	.H46	2.8812
C24	.H29D	2.5026	C50	.H46	2.8318
C24	.H28A	2.4104	C51	.H23_a	2.9010
C26	.H28D	2.8709	C52	.H23_a	2.9398
C26	.H46	2.7683	C53	.H59B	2.7203
C26	.H30D	2.3313	C53	.H23_a	3.0294
C26	.H30A	2.5248	C53	.H59C	2.8310
C31	.H43_e	2.8351	C54 C55	.HZ3_a	3.0936
C32	.H43_e	2.0200	CSS	.пдз_а	2 6/02
C33	. нзэс н43 р	2.7752	C55	.H00C	2.0493
C33	.1145_C	2.7306	C55	.1130B H20E f	3 0398
C35	.H38B	2.8103	C56	.H23 a	2.9315
C35	.H40C	2.7140	C56	.H20E f	2.8531
C36	.H43_e	2.9895	C56	.H43	3.0796
C36	.H23	2.9263	C58	.H55	3.0284
C59	.H53	2.4953	H8D	.H9D	2.4310
C60	.H55	2.6983	H8E	.C4	2.8888
Н3	.H50B_g	2.5416	H8E	.H10F	2.5488
Н4	.H8E	2.5165	H8E	.H4	2.5165
Н4	.H10F	2.4053	H8F	.H9E	2.5667
Н4	.C8	2.4663	H9A	.H8A	2.4763
Н4	.H8A	2.1137	H9B	.H10C	2.4442
H4	.C8	3.0394	H9B	.H8C	2.4829
H4	.C10	2.9491	H9C	.HIUB	2.4383
H4	. H8B	2.3644	H9C	.H6	2.4132
H0 U6	.C9	2.9090	нар	.Co uon	2./525
но н6	.H9C	2.4132	н9D н9D	.HOD H10D	2.4310
н6	C10	2.7376	н9Е	.пто <i>D</i> нб	2.3300
н6	.H10B	2.1214	H9E	.H8F	2.5667
Нб	.C41	2.6250	H9E	.C6	2.7925
Нб	.C46	2.7195	H9F	.H6	2.3204
Н6	.H9E	2.2115	H9F	.C6	2.8361
Нб	.H9F	2.3204	H9F	.H10E	2.4170
H8A	.C4	2.6823	H10A	.H20F_f	2.4627
H8A	.H9A	2.4763	H10A	.H8B	2.4740
H8A	.H4	2.1137	H10B	.H9C	2.4383
H8B	.H10A	2.4740	H10B	.C6	2.6177
H8B	.C4	2.8171	H10B	.H6	2.1214
H8B	.H4	2.3644	HIUC	.H9B	2.4442
H&C	.H9B	2.4829	HIUC	. H8C	2.4984
HOC UQD	.HIUC	2.4904	H10D	. ПОЛ	2.4405
H10E	.1110D H9F	2.4405	H18C	C13	2 8895
H10F	H8E	2.5488	H18D	.015	3.0528
H10F	.C4	2.8319	H18D	.H19F	2.4382
H10F	.H4	2.4053	H18E	.H19E	2.4986
H10F	.H28B_d	2.2503	H18E	.H48C_e	2.5490
H10F	.C28_d	3.0394	H18E	.H20F	2.5145
H13	.C18	3.0068	H18F	.H15	2.1710
H13	.C20	2.8688	H18F	.C15	2.6854
H13	.C19	2.3128	H18F	.H20E	2.5539
Н13	.H19D	1.9362	H19A	.H15	2.2659
H13	.H18C	2.5241	H19A	.H18A	2.4497
HI3	.H58C	2.5100	HI9A	.015	2.8059
H⊥3 u10	HZUC HIQE	2.3153 2.2646	нтав птав	.H13 U20P	2.2/69
птэ Н1Б	.п.эг С19	2.2040 2 <u>4</u> 015	птар П10р	.п206 С15	ム・サノダノ ク タククク
H15	.сту н19д	2.7010	H19C	.CIJ H18B	2.0222 2 4102
H15	.H58B b	2.4824	H19C	.H20A	2.3929
H15	.H62B C	2.5908	н190 Н19	.C13	2.6045
н15	.C18	2.7186	H19D	.H20D	2.3426
H15	.H18F	2.1710	H19D	.H13	1.9362
Н15	.H19B	2.2769	H19E	.H18E	2.4986
H18A	.H19A	2.4497	H19E	.H20F	2.4521
H18A	.H56_b	2.5740	H19F	.C13	2.7229

TT1 0 D	11100	2 4102	TT10E	11100	2 1202
птор	.HI9C	2.4102	птаг	.HIOD	2.4302
H18B	.H20A	2.5608	H19F	.H13	2.2646
H18C	.H20C	2.5879	H20A	.H19C	2.3929
11100	0 h	2 7162	11007	11100	2 5600
HIOC	.0_11	2.7102	HZUA	. 1105	2.5008
HT8G	.HI3	2.5241	H20B	.HI9B	2.4797
H20B	.H33	2.4101	Н26	.H30A	1.9778
H20C	H18C	2 5879	н26	C30	2 5021
11200		2.3073	112.0	.050	2.5021
H20C	.HI3	2.3153	H26	.01	2.5818
H20C	.C13	2.7647	Н2б	.C6	2.8324
H20D	H19D	2 3426	н26	нзор	1 7327
11200		2.0120	1120		2 0200
HZUD	.013	3.0338	HZ8A	.C38_e	3.0396
H20E	.C56_b	2.8531	H28A	.H24	1.8949
H20E	456 b	2 2523	H28A	C24	2 4104
11200		2.2020	112011		0 0150
HZUE	.C55_D	3.0398	HZ8A	.HZ9B	2.3159
H20E	.C15	2.9705	H28B	.H10F_d	2.2503
H20E	.H18F	2.5539	H28B	.C10 d	2,9930
11200	1110E	2.2000	11202		2.5550
HZUF	.HI9E	2.4521	HZOC	.HSUA_1	2.3003
H20F	.H10A_b	2.4627	H28C	.H29B	2.5051
H20F	.H18E	2.5145	H28C	.H29C	1.9964
1122	CE1 o	2 0010	U20D	ם ט כ ע	2 2772
112.5	.031_0	2.9010	11200	.1150D	2.5//2
H23	.C52_e	2.9398	H28D	.C26	2.8709
H23	.C36	2.9263	H28D	.H30F	2.4771
u)3	C54 e	3 0936	U28F	H30E	2 0850
1125	.054_0	3.0950	11205	.11501	2.0050
H23	.C55_e	3.0256	HZ8E	.H29E	2.0911
н23	.C53_e	3.0294	H28F	.H29E	2.4368
H23	C56 e	2 9315	H28F	н29D	2 3478
11215	.000_0	1 0040	11201		2.3170
H24	.H28A	1.8949	HZ9A	.H3UA	2.4894
Н24	.H29B	2.3248	H29A	.H30B	2.4341
н24	C29	2 9134	H29B	H28A	2 3159
112 1		2.5151	11200		2.3132
H24	.029	2.5490	HZ9B	.H24	2.3248
Н24	.H29D	1.9596	Н29В	.H28C	2.5051
н24	C28	2 6410	H29B	C24	2 6754
1106		0 5570	11200	1200	1 0004
HZO	.030	2.55/9	HZ9C	.H28C	1.9964
H29C	.H30B	2.1729	H33	.H39C	2.2873
H29C	.H50A i	2.3866	Н35	.C40	2.8423
H29C	H602 i	2 5255	H35	C38	2 9532
11200		0.0470	1135		0.0760
HZ9D	.H28F	2.34/8	H35	.H40C	2.2/62
H29D	.C24	2.5026	Н35	.H38B	2.4161
H29D	.H24	1,9596	Н36	. C23	2,9970
u20D	C38 e	3 0795	T387	1307	2 4208
112.50	.030_0	0.1000	1150A	.113574	2.1200
HZ9E	.H28F	2.4368	H38A	.H40A	2.4832
H29E	.H28E	2.0911	H38B	.Н35	2.4161
H29F	.H50A i	2.4731	H38B	.C35	2.8103
11207	1126	1 0770	11200	11400	2 5160
HSUA	.H20	1.9//0	пзов	. H40C	2.5100
H30A	.H29A	2.4894	H38C	.H53	2.5986
H30A	.C26	2.5248	H38C	.H39B	2.4476
H30B	Н29Д	2 4341	Н30Д	H38A	2 4208
11200		0 1700	11207	113011	2.1200
H30B	.H29C	2.1/29	H39A	.H40A	2.4453
Н30В	.H60A_j	2.3375	Н39В	.H33	2.1739
H30C	.H30C d	2.3251	Н39В	.H38C	2.4476
u20р	ц26	1 7227	U20D	022	2 7206
H30D	. H20	1./32/	п39Б	.033	2.7300
H30D	.H28D	2.3772	H39C	.H33	2.2873
H30D	.C26	2.3313	H39C	.H40B	2.4644
H30F	н59д і	2 3474	H30C	C33	2 7752
11200		2.0171	11350		2.1122
HJUF	.HZ8E	2.0850	H40A	.H38A	2.4832
H30F	.H28D	2.4771	H40A	.H39A	2.4453
H32	. P	3.0177	H40B	.H39C	2.4644
ц30	C21	2 0010	H40C	C35	2 7140
1152	.021	2.9919	11400	.035	2.7140
H33	.H20B	2.4101	H40C	.H38B	2.5160
Н33	.H39B	2.1739	H40C	.H35	2.2762
нзз	C39	2 4578	н43	C32 a	2 8258
1133		2.1570	11100	.052_a	2.0250
п43	.css_a	2.9//5	H49C	. 1405	2.49/1
H43	.C31_a	2.8351	H50A	.H29C_i	2.3866
Н43	.C56	3.0796	H50A	.C29_i	3.0279
н4२	C36 a	2 9895	нгод	н29F і	2 4721
11 1 3		2.2022	TIE OR		0 F17/
H44	.н48В	2.2462	HOUA	.нчуА	∠.5⊥74
H44	.C48	2.5073	H50A	.H28C_i	2.5883
Н44	.H48C	2.3183	H50A	.H48A	2.4549
ц 46	C26	2 7682	1150P	ш3 Ъ	2 5/16
пно 1146	20	4.1005	пров	- II-J_C II-	2.3410
H46	.C49	2.8812	H50B	.H48C	2.4753
Н46	.H49B	2.3297	H50C	.C46	2.7024
Н46	.H50C	2,2641	H50C	.H46	2,2641
цл <i>с</i>	CE0	2 0210	UE00	U/0D	2 5051
<u>п40</u>	.050	2.0310	прос	.п49В	2.5051
H46	.C21	2.6013	Н53	.H59B	2.1550
H48A	.H49A	2.4149	н53	.C59	2.4953
H482	TTEOD	2,4549	н53	H38C	2 5986
11 1011	. 6308				
U/0D	CAA	2 7762	บธว	UE0C	2 2000
H48B	.C44	2.7763	Н53	.H59C	2.3906

H48B	.H49C	2.4971	Н55	.C60	2.6983
H48C	.C44	2.8024	Н55	.H60C	2.1140
H48C	.H44	2.3183	Н55	.H58B	2.5086
H48C	.H50B	2.4753	Н5б	.C20_f	2.9817
H48C	.C18_a	3.0884	Н56	.H20E_f	2.2523
H48C	.H18E_a	2.5490	Н56	.H18A_f	2.5740
H49A	.H48A	2.4149	H58A	.H59A	2.4630
H49A	.H50A	2.5174	H58A	.H60A	2.4857
Н49В	.C46	2.7645	H58B	.C55	2.8430
Н49В	.H46	2.3297	H58B	.C15_f	3.0815
Н49В	.H50C	2.5051	H58B	.H15_f	2.4824
H58B	.H55	2.5086	H59C	.H60B	2.5857
H58B	.H60C	2.3852	H60A	.H58A	2.4857
H58C	.H13	2.5100	H60A	.H30B_1	2.3375
H58C	.H59B	2.5017	H60A	.H59A	2.4625
H59A	.H58A	2.4630	H60A	.H29C_1	2.5255
H59A	.H30E_1	2.3474	H60B	.H59C	2.5857
H59A	.H60A	2.4625	H60C	.C55	2.6493
Н59В	.H58C	2.5017	H60C	.H55	2.1140
Н59В	.C53	2.7203	H60C	.H58B	2.3852
Н59В	.H53	2.1550	H62B	.H15_a	2.5909
H59C	.C53	2.8310	H62C	.C23_a	2.9942
H59C	.H53	2.3906			

Translation of Symmetry Code to Equiv.Pos

а	=[2656.00]	=	3/2-x,1/2+y,3/2-z
b	= [2546.00]	=	1/2-x,-1/2+y,3/2-z
С	= [2646.00]	=	3/2-x,-1/2+y,3/2-z
d	= [3657.00]	=	1-x,-y,2-z
е	= [2646.00]	=	3/2-x,-1/2+y,3/2-z
f	= [2556.00]	=	1/2-x,1/2+y,3/2-z
g	= [1455.00]	=	-1+x,y,z
h	= [1455.00]	=	-1+x,y,z
i	= [3757.00]	=	2-x,-y,2-z
j	= [4555.00]	=	1/2+x,1/2-y,1/2+z
k	= [1655.00]	=	1+x,y,z
1	= [4454.00]	=	-1/2+x,1/2-y,-1/2+z

16.4 Kristallographische Daten von 9-Anthryl-1-naphthylphenylphosphan (27)

Crys	stal Data
Formula Formula Weight Crustal Sustem	P, C6 H5, C10 H7, C14 H9 412.46
Space group	P21/c (No. 14)
a, b, c [Å]	9.3146(2) 13.3473(3) 17.7321(4)
alpha, beta, gamma [deg] V [Å ³] Z D(calc) [g/cm ³] µ(MoKa) [/mm]	90 104.3712(10) 90 2135.55(8) 4 1.283 0.144
F(000) Crystal Size [mm] Data	864 0.07 x 0.16 x 0.20 a Collection
Temperature (K) Radiation [Å] Theta Min-Mar [Deg]	200 MoKa 0.71073 3 2 27 5
Dataset	-12: 12; -17: 17; -23: 22
Tot., Uniq. Data, R(int) Observed data [I > 2.0 $\sigma(I)$]	9488, 4881, 0.034 3432

Refinement

N _{ref} , N _{par}	4881, 364
R, wR2, S	0.0445, 0.1184, 1.02
$w = 1/[\langle s^2(F_o^2) + (0.0568P)^2 + 0.4463P]$	where $P=(F_o^2+2F_c^2)/3$
Max. and Av. Shift/Error	0.00, 0.00
Min. and Max. Resd. Dens. $[e/Å^2]$	-0.29, 0.45

Final Coordinates and Equivalent Isotropic Displacement Parameters of the non-Hydrogen atoms

Atom	х	У	Z	U(eq) $[Å^2]$
P	0.51766(5)	0.18267(4)	0.67363(3)	0.0309(1)
C1	0.40504(17)	0.26117(13)	0.59492(9)	0.0294(5)
C2	0.29505(17)	0.20948(13)	0.53829(10)	0.0305(5)
C3	0.2835(2)	0.10251(15)	0.53422(11)	0.0367(6)
C4	0.1763(2)	0.05578(17)	0.47914(11)	0.0434(7)
C5	0.0708(2)	0.11170(18)	0.42427(12)	0.0461(7)
C6	0.0770(2)	0.21287(17)	0.42524(11)	0.0427(7)
C7	0.18833(18)	0.26516(14)	0.48122(10)	0.0340(6)
C8	0.19493(19)	0.36888(16)	0.48162(11)	0.0385(6)
C9	0.30569(18)	0.42128(14)	0.53383(10)	0.0342(6)
C10	0.3150(2)	0.52758(15)	0.53002(11)	0.0425(6)
C11	0.4260(2)	0.57888(16)	0.57788(11)	0.0432(7)
C12	0.5342(2)	0.52643(15)	0.63396(11)	0.0400(6)
C13	0.52814(19)	0.42534(14)	0.64068(10)	0.0342(6)
C14	0.41349(17)	0.36698(13)	0.59127(9)	0.0300(5)
C15	0.70531(18)	0.18502(13)	0.65803(10)	0.0316(5)
C16	0.7399(2)	0.23990(14)	0.59942(11)	0.0365(6)
C17	0.8831(2)	0.23780(16)	0.58630(12)	0.0438(7)
C18	0.9911(2)	0.18059(16)	0.63204(12)	0.0448(7)
C19	0.96163(19)	0.11937(15)	0.69145(10)	0.0377(6)
C20	1.0708(2)	0.05531(17)	0.73666(12)	0.0482(7)
C21	1.0393(2)	-0.00595(18)	0.79172(12)	0.0519(7)
C22	0.8963(2)	-0.00655(18)	0.80458(12)	0.0493(7)
C23	0.7887(2)	0.05517(15)	0.76242(11)	0.0406(6)
C24	0.81622(18)	0.11972(14)	0.70454(10)	0.0342(6)
C25	0.53157(18)	0.25909(13)	0.76108(10)	0.0315(5)
C26	0.4002(2)	0.28439(15)	0.78030(11)	0.0387(6)
C27	0.4012(2)	0.33673(16)	0.84772(12)	0.0455(7)
C28	0.5342(2)	0.36278(15)	0.89837(11)	0.0432(7)
C29	0.6657(2)	0.33771(16)	0.88084(11)	0.0427(6)
C30	0.6648(2)	0.28681(15)	0.81217(11)	0.0377(6)

U(eq) = 1/3 of the trace of the orthogonalized U Tensor

Hydrogen Atom Positions and Isotropic Displacement Parameters

Atom	x	У	Z	U(iso) [Ų]
н3	0.355(2)	0.0625(16)	0.5716(11)	0.044(5)
Н4	0.168(2)	-0.0188(18)	0.4785(13)	0.058(6)
Н5	-0.001(2)	0.0780(17)	0.3849(13)	0.061(6)
Нб	0.010(2)	0.2541(16)	0.3875(12)	0.049(6)
Н8	0.125(2)	0.4057(15)	0.4413(11)	0.039(5)
H10	0.238(2)	0.5619(18)	0.4890(14)	0.065(7)
Н11	0.432(2)	0.6485(18)	0.5750(12)	0.051(6)
Н12	0.616(2)	0.5674(17)	0.6664(12)	0.050(6)
H13	0.6040(19)	0.3923(13)	0.6780(10)	0.028(4)
Н16	0.663(2)	0.2804(15)	0.5653(11)	0.040(5)
Н17	0.901(2)	0.2756(16)	0.5433(13)	0.052(6)
Н18	1.088(2)	0.1786(15)	0.6242(12)	0.049(6)
Н20	1.168(2)	0.0596(15)	0.7281(11)	0.046(5)
Н21	1.117(3)	-0.0532(18)	0.8219(13)	0.067(7)
Н22	0.877(2)	-0.0540(17)	0.8439(13)	0.054(6)
H23	0.699(2)	0.0529(15)	0.7707(11)	0.041(5)
Н26	0.307(2)	0.2674(14)	0.7464(11)	0.036(5)
Н27	0.306(3)	0.3595(18)	0.8586(14)	0.070(7)
Н28	0.534(2)	0.3971(16)	0.9455(12)	0.049(6)
Н29	0.760(2)	0.3520(17)	0.9178(13)	0.062(6)
Н30	0.760(2)	0.2721(15)	0.7995(11)	0.044(5)

The Temperature Factor has the Form of Exp(-T) Where T = $8*(\pi^{**2})*U^*(\sin(\theta)/\lambda)*2$ for Isotropic Atoms

(An)isotropic Displacement Parameters

Atom	U(1,1) or U	U(2,2)	U(3,3)	U(2,3)	U(1,3)	U(1,2)
 Р	0.0281(2) 0	.0330(3)	0.0304(2)	0.0020(2)	0.0049(2)	0.0002(2)
C1	0.0270(8) 0.	0340(10)	0.0278(8)	0.0012(7)	0.0081(7)	-0.0002(7)
C2	0.0268(8) 0.	0364(10)	0.0303(8)	-0.0007(7)	0.0107(7)	-0.0018(7)
C3	0.0357(9) 0.	0375(11)	0.0369(10)	-0.0014(8)	0.0091(8)	-0.0028(8)
C4	0.0429(10) 0.	0425(13)	0.0452(11)	-0.0074(9)	0.0118(9)	-0.0095(9)
C5	0.0338(10) 0.	0598(14)	0.0425(11)	-0.0127(10)	0.0051(9)	-0.0098(9)
C6	0.0306(10) 0.	0578(14)	0.0365(10)	-0.0028(9)	0.0025(8)	-0.0001(9)
C7	0.0278(8) 0.	0429(12)	0.0310(9)	0.0005(8)	0.0069(7)	0.0009(7)
C8	0.0340(9) 0.	0456(12)	0.0338(9)	0.0062(9)	0.0045(8)	0.0065(8)
C9	0.0364(9) 0.	0361(11)	0.0313(9)	0.0028(8)	0.0106(7)	0.0039(8)
C10	0.0502(11) 0.	0371(11)	0.0393(10)	0.0066(9)	0.0096(9)	0.0080(9)
C11	0.0597(12) 0.	0298(11)	0.0420(11)	0.0007(9)	0.0164(9)	0.0018(9)
C12	0.0486(11) 0.	0351(11)	0.0375(10)	-0.0059(8)	0.0128(9)	-0.0060(9)
C13	0.0345(9) 0.	0356(11)	0.0322(9)	0.0003(8)	0.0078(7)	-0.0013(8)
C14	0.0288(8) 0.	0333(10)	0.0292(8)	0.0000(7)	0.0094(7)	0.0008(7)
C15	0.0318(8) 0.	0330(10)	0.0295(8)	-0.0051(7)	0.0065(7)	0.0017(7)
C16	0.0380(10) 0.	0356(11)	0.0381(10)	-0.0014(8)	0.0135(8)	0.0023(8)
C17	0.0464(11) 0.	0467(12)	0.0441(11)	-0.0002(10)	0.0221(9)	-0.0015(9)
C18	0.0342(10) 0.	0565(13)	0.0479(12)	-0.0090(10)	0.0180(9)	-0.0007(9)
C19	0.0318(9) 0.	0441(11)	0.0351(9)	-0.0113(8)	0.0044(7)	0.0021(8)
C20	0.0341(10) 0.	0637(15)	0.0440(11)	-0.0102(10)	0.0046(9)	0.0084(9)
C21	0.0461(11) 0.	0616(15)	0.0410(11)	-0.0018(10)	-0.0022(9)	0.0177(10)
C22	0.0516(12) 0.	0547(14)	0.0390(11)	0.0049(10)	0.0061(9)	0.0108(10)
C23	0.0368(10) 0.	0469(12)	0.0380(10)	0.0023(9)	0.0089(8)	0.0046(8)
C24	0.0332(9) 0.	0382(11)	0.0302(9)	-0.0077(8)	0.0058(7)	0.0001(7)
C25	0.0334(9) 0.	0325(10)	0.0294(8)	0.0056(7)	0.0093(7)	0.0006(7)
C26	0.0318(9) 0.	0455(12)	0.0398(10)	0.0034(9)	0.0107(8)	0.0014(8)
C27	0.0463(11) 0.	0476(13)	0.0488(11)	0.0020(9)	0.0238(10)	0.0055(9)
C28	0.0568(12) 0.	0383(12)	0.0395(11)	-0.0048(9)	0.0215(10)	-0.0030(9)
C29	0.0448(11) 0.	0448(12)	0.0373(10)	-0.0063(9)	0.0078(9)	-0.0055(9)
C30	0.0339(9) 0.	0434(11)	0.0356(10)	-0.0034(8)	0.0084(8)	-0.0008(8)

The Temperature Factor has the Form of Exp(-T) Where T = $8*(\pi^{**2})*U^*(\sin(\theta)/\lambda)**2$ for Isotropic Atoms T = $2*(\pi^{**2})*Sumij(h(i)*h(j)*U(i,j)*Astar(i)*Astar(j))$, for Anisotropic Atoms. Astar(i) are Reciprocal Axial Lengths and h(i) are the Reflection Indices.

Bond Distances (Å)

P	-C1	1.8492(17)	C22	-C23	1.368(3)
Ρ	-C15	1.8365(18)	C23	-C24	1.411(3)
Ρ	-C25	1.8336(18)	C25	-C26	1.391(3)
C1	-C2	1.422(2)	C25	-C30	1.393(3)
C1	-C14	1.417(2)	C26	-C27	1.383(3)
C2	-C3	1.432(3)	C27	-C28	1.382(3)
C2	-C7	1.437(2)	C28	-C29	1.378(3)
C3	-C4	1.362(3)	C29	-C30	1.393(3)
C4	-C5	1.412(3)	C3	-H3	0.97(2)
C5	-C6	1.352(3)	C4	-H4	1.00(2)
C6	-C7	1.427(3)	C5	-H2	0.95(2)
C7	-C8	1.386(3)	CG	-Нб	0.97(2)
C8	-C9	1.392(3)	C8	-H8	0.973(19)
C9	-C10	1.424(3)	C10	-H10	1.00(2)
C9	-C14	1.436(2)	C11	-H11	0.93(2)
C10	-C11	1.350(3)	C12	-H12	1.00(2)
C11	-C12	1.413(3)	C13	-H13	0.948(18)
C12	-C13	1.357(3)	C16	-H16	0.978(19)
C13	-C14	1.432(2)	C17	-H17	0.96(2)
C15	-C16	1.374(3)	C18	-H18	0.947(19)
C15	-C24	1.444(2)	C20	-H20	0.956(19)
C16	-C17	1.410(3)	C21	-H21	1.01(3)
C17	-C18	1.359(3)	C22	-H22	0.99(2)
C18	-C19	1.413(3)	C23	-H23	0.884(19)

C19	-C20	1.415(3)	C26	-H26	0.953(19)
C19	-C24	1.430(3)	C27	-H27	1.00(3)
C20	-C21	1.360(3)	C28	-H28	0.95(2)
C21	-C22	1.406(3)	C29	-H29	0.98(2)
C30	-H30	0.987(19)			

			Bond Angles	(Deg	grees)		
C1	-P	-C15	105.04(8)	P	-C15	-C24	118.46(13)
C1	-P	-C25	103.35(8)	C16	-C15	-C24	119.03(16)
C15	-P	-C25	104.35(8)	C15	-C16	-C17	121.56(18)
P	-C1	-C2	115.61(13)	C16	-C17	-C18	120.20(19)
Р	-C1	-C14	124.87(12)	C17	-C18	-C19	121.18(18)
C2	-C1	-C14	119.32(15)	C18	-C19	-C20	121.77(17)
C1	-C2	-C3	123.44(16)	C18	-C19	-C24	119.10(17)
C1	-C2	-C7	119.83(16)	C20	-C19	-C24	119.10(17)
C3	-C2	-C7	116.73(16)	C19	-C20	-C21	121.14(18)
C2	-C3	-C4	121.67(18)	C20	-C21	-C22	120.1(2)
C3	-C4	-C5	120.8(2)	C21	-C22	-C23	120.2(2)
C4	-C5	-C6	119.93(19)	C22	-C23	-C24	121.64(18)
C5	-C6	-C7	121.25(18)	C15	-C24	-C19	118.79(16)
C2	-C7	-C6	119.54(17)	C15	-C24	-C23	123.41(16)
C2	-C7	-C8	119.41(16)	C19	-C24	-C23	117.80(16)
C6	-C7	-C8	121.05(17)	Р	-C25	-C26	117.42(13)
C7	-C8	-C9	122.02(17)	Р	-C25	-C30	124.22(14)
C8	-C9	-C10	120.86(17)	- C26	-C25	-C30	118.18(17)
C8	-C9	-C14	119.37(17)	C25	-C26	-C27	121.13(17)
C10	-C9	-C14	119.75(16)	C26	-C27	-C28	120.11(18)
C9	-C10	-C11	121.44(18)	C27	-C28	-C29	119.74(18)
C10	-C11	-C12	119,49(19)	C28	-C29	-C30	120.20(18)
C11	-C12	-C13	121.09(18)	C25	-C30	-C29	120.62(17)
C12	-C13	-C14	121.88(17)	C2	-C3	-H3	118.8(12)
C1	-C14	-C9	119.89(15)	C4	-C3	-H3	119.5(12)
C1	-C14	-C13	123.76(15)	C3	-C4	-H4	120.4(12)
C9	-C14	-C13	116.32(16)	C5	-C4	-H4	118.7(12)
P	-C15	-C16	122.27(14)	C4	-C5	-H2	119.9(14)
C6	-C5	-H5	120.1(14)	C19	-C20	-H20	116.7(12)
C5	-C6	-нб	122.8(13)	C21	-C20	-H20	122.1(12)
C7	-C6	-нб	115.9(13)	C20	-C21	-H21	120.2(15)
C7	-C8	-H8	118.7(12)	C22	-C21	-H21	119.6(15)
C9	-C8	-H8	119.1(12)	C21	-C22	-H22	117.5(12)
C9	-C10	-H10	116.8(14)	C23	-C22	-H22	122.2(12)
C11	-C10	-H10	121.7(14)	C22	-C23	-H23	118.9(13)
C10	-C11	-H11	121.2(12)	C24	-C23	-H23	119.4(13)
C12	-C11	-H11	119.3(13)	C25	-C26	-H26	120.5(12)
C11	-C12	-H12	116.4(13)	C27	-C26	-H26	118.4(12)
C13	-C12	-H12	122.5(13)	C26	-C27	-H27	120.3(14)
C12	-C13	-H13	118.9(11)	C28	-C27	-H27	119.5(14)
C14	-C13	-H13	119.2(11)	C27	-C28	-H28	119.6(12)
C15	-C16	-H16	119.3(12)	C29	-C28	-H28	120.6(12)
C17	-C16	-H16	119.1(12)	C28	-C29	-H29	120.2(12)
C16	-C17	-H17	118.5(12)	C30	-C29	-H29	119.5(12)
C18	-C17	-H17	121.3(12)	C25	-C30	-H30	120.3(11)
C17	-C18	-H18	121.3(13)	C29	-C30	-H30	119.0(11)
C19	-C18	-H18	117.5(12)				

Torsion Angles (Degrees)

C15	-P	-C1	-C2	112.66(13)
C15	-P	-C1	-C14	-72.52(16)
C25	-P	-C1	-C2	-138.23(13)
C25	-P	-C1	-C14	36.59(16)
C1	-P	-C15	-C16	2.06(17)
C1	-P	-C15	-C24	-172.14(14)
C25	-P	-C15	-C16	-106.33(16)
C25	-P	-C15	-C24	79.47(15)
C1	-P	-C25	-C26	60.32(16)
C1	-P	-C25	-C30	-124.66(16)
C15	-P	-C25	-C26	169.95(14)
C15	-P	-C25	-C30	-15.03(18)
Ρ	-C1	-C2	-C3	-8.9(2)
Ρ	-C1	-C2	-C7	171.25(13)
C14	-C1	-C2	-C3	176.02(16)
C14	-C1	-C2	-C7	-3.9(2)
Р	-C1	-C14	-C9	-170.69(13)

Р	-C1	-C14	-C13	11.4(2)
C2	-C1	-C14	-C9	4.0(2)
C2	-C1	-C14	-C13	-173.92(16)
C1	-C2	-C3	-C4	179.87(17)
C7	-C2	-C3	-C4	-0.2(3)
C1	-C2	-07	-06	-179.13(16)
C1	-C2	-07	-08	0 7(3)
C2	- C2	-07	- 26	1 0(2)
C3	-02	-07	-00	170 05(17)
03	-02	-07	-08	-1/9.25(1/)
C2	-C3	-C4	-C5	-0.8(3)
C3	-C4	-C5	-C6	1.1(3)
C4	-C5	-C6	-C7	-0.3(3)
C5	-C6	-C7	-C2	-0.7(3)
C5	-C6	-C7	-C8	179.51(18)
C2	-C7	-C8	-C9	2.6(3)
CG	-C7	-C8	-C9	-177.62(17)
C7	-C8	-C9	-C10	176.28(17)
C7	-C8	-C9	-C14	-2.5(3)
C8	-09	-C10	-C11	-176.78(18)
C14	-09	-C10	-C11	2 0(3)
C9	- 09	-C14	1	-0.9(2)
00	-09	-014	-C1	-0.0(Z)
C8	-09	-014	-013	177.21(10)
CIU	-09	-C14	-C1	-1/9.63(16)
CIO	-09	-C14	-C13	-1.6(2)
C9	-C10	-C11	-C12	-1.1(3)
C10	-C11	-C12	-C13	-0.2(3)
C11	-C12	-C13	-C14	0.5(3)
C12	-C13	-C14	-C1	178.32(17)
C12	-C13	-C14	-C9	0.4(3)
P	-C15	-C16	-C17	-177.46(15)
C24	-C15	-C16	-C17	-3.3(3)
Р	-C15	-C24	-C19	178.52(13)
P	-C15	-C24	-C23	-1.1(2)
C16	-C15	-C24	-C19	4 1 (3)
C16	-C15	-024	-023	$-175 \ 47(18)$
C15	-016	-017	0	1/3.1/(10)
016	-C10	-C17	-C10	0.0(3)
	-C17	-C10	-019	2.4(3)
	-018	-019	-020	1/6.5(2)
CI7	-C18	-C19	-C24	-1.4(3)
G18	-C19	-C20	-C21	-177.5(2)
C24	-C19	-C20	-C21	0.4(3)
C18	-C19	-C24	-C15	-1.8(3)
C18	-C19	-C24	-C23	177.81(18)
C20	-C19	-C24	-C15	-179.80(17)
C20	-C19	-C24	-C23	-0.2(3)
C19	-C20	-C21	-C22	0.0(3)
C20	-C21	-C22	-C23	-0.7(3)
C21	-C22	-C23	-C24	0.9(3)
C22	-C23	-C24	-C15	179.14(19)
C22	-023	-024	-C19	-0 5(3)
D	-025	-026	-027	176 14(16)
C30	-025	-026	-027	T 10.TI(TO)
000	-C25	-020	-C2/	U.O(3)
F	-020	-030	-029	-1/4.45(15)
026	d 3 F	020	a	
C26	-C25	-C30	-C29	0.5(3)
C26 C25	-C25 -C26	-C30 -C27	-C29 -C28	0.5(3) -1.6(3)
C26 C25 C26	-C25 -C26 -C27	-C30 -C27 -C28	-C29 -C28 -C29	0.5(3) -1.6(3) 1.0(3)
C26 C25 C26 C27	-C25 -C26 -C27 -C28	-C30 -C27 -C28 -C29	-C29 -C28 -C29 -C30	0.5(3) -1.6(3) 1.0(3) 0.4(3)

Contact Distances(Å)

Р	.H3	2.60(2)	C5	.H29_c	2.91(2)
P	.H13	2.907(17)	C5	.H27_b	2.75(3)
P	.H23	2.715(19)	C6	.H17_a	3.08(2)
C9	.C11_e	3.553(3)	CG	.H29_c	3.05(2)
C11	.C9_e	3.553(3)	C6	.H27_b	2.85(3)
C13	.C16	3.357(3)	C9	.H22_d	3.09(2)
C13	.C30	3.516(3)	C12	.H23_d	3.086(19)
C13	.C25	3.074(2)	C13	.H16	2.82(2)
C13	.C26	3.543(3)	C14	.H16	2.735(19)
C13	.C15	3.585(3)	C15	.H30	2.696(19)
C14	.C26	3.560(2)	C15	.H13	2.973(18)
C14	.C16	3.453(3)	C16	.H13	2.925(18)
C15	.C13	3.585(3)	C17	.H10_e	3.07(2)
C16	.C14	3.453(3)	C18	.H4_f	3.04(2)
C16	.C13	3.357(3)	C19	.H5_f	3.03(2)
C23	.C30	3.489(3)	C20	.H12_g	3.00(2)

C24	.C30	3.456(3)	C20	.H5_f	2.75(2)
C25	.C13	3.074(2)	C21	.H8_h	2.900(19)
C26	.C14	3.560(2)	C23	.H30	3.00(2)
C26	.C13	3.543(3)	C24	.H30	2.77(2)
C30	.C23	3.489(3)	C25	.H13	2.506(18)
C30	.C13	3.516(3)	C26	.H12_i	3.06(2)
C30	.C24	3.456(3)	C27	.H11_i	3.09(2)
C1	.H26	3.045(19)	C28	.H3_d	2.86(2)
C1	.H16	2.596(19)	C28	.H11_i	2.90(2)
C2	.H18_a	2.77(2)	C29	.H11_i	2.86(2)
C3	.H18_a	2.89(2)	C30	.H13	2.701(17)
C4	.H27_b	2.93(3)	C30	.H11_i	3.02(2)
Н3	.P	2.60(2)	Н13	.C30	2.701(17)
Н3	.C28_i	2.86(2)	H16	.C1	2.596(19)
Н3	.H28_i	2.49(3)	H16	.C13	2.82(2)
H4	.H29_i	2.49(3)	Н16	.C14	2.735(19)
Н4	.C18_f	3.04(2)	H16	.H10_e	2.58(3)
Н5	.C19_f	3.03(2)	H17	.C6_k	3.08(2)
Н5	.C20_f	2.75(2)	H17	.H10_e	2.52(3)
Нб	.H8	2.38(3)	H18	.C2_k	2.77(2)
нб	.H30_c	2.49(3)	H18	.C3_k	2.89(2)
Н8	.Нб	2.38(3)	Н18	.H20	2.41(3)
Н8	.H10	2.39(3)	Н20	.H18	2.41(3)
Н8	.C21_c	2.900(19)	Н20	.H12_g	2.39(3)
H10	.H8	2.39(3)	H22	.C9_i	3.09(2)
H10	.C17_e	3.07(2)	H23	.P	2.715(19)
H10	.H16_e	2.58(3)	Н23	.C12_i	3.086(19)
H10	.H17_e	2.52(3)	Н26	.C1	3.045(19)
H11	.C27_d	3.09(2)	Н27	.C4_1	2.93(3)
H11	.C28_d	2.90(2)	Н27	.C5_1	2.75(3)
H11	.C29_d	2.86(2)	Н27	.C6_1	2.85(3)
H11	.C30_d	3.02(2)	Н28	.H3_d	2.49(3)
H12	.C20_j	3.00(2)	Н29	.H4_d	2.49(3)
H12	.C26_d	3.06(2)	Н29	.C5_h	2.91(2)
H12	.Н20_ј	2.39(3)	Н29	.C6_h	3.05(2)
Н13	.P	2.907(17)	Н30	.C15	2.696(19)
Н13	.C15	2.973(18)	Н30	.C23	3.00(2)
Н13	.C16	2.925(18)	Н30	.C24	2.77(2)
H13	.C25	2.506(18)	Н30	.H6_h	2.49(3)

Hydrogen Bonds (Å, Deg)

C3	H3	P	0.97(2)	2.60(2)	3.056(2)	108.5(15)	
C23	H23	P	0.884(19)	2.715(19)	3.127(2)	109.7(15)	

Translation of Symmetry Code to Equiv.Pos

а	= L	1455.00]	= -1+x,y,z
b	= [4554.00]	= x,1/2-y,-1/2+z
С	= [4454.00]	= -1+x,1/2-y,-1/2+z
d	= [2656.00]	= 1-x, 1/2+y, 3/2-z
е	= [3666.00]	= 1-x,1-y,1-z
f	= [3656.00]	= 1-x,-y,1-z
g	= [2746.00]	= 2-x, -1/2+y, 3/2-z
h	= [4655.00]	= 1+x,1/2-y,1/2+z
i	= [2646.00]	= 1-x, -1/2+y, 3/2-z
j	= [2756.00]	= 2-x, 1/2+y, 3/2-z
k	= [1655.00]	= 1+x,y,z
1	= [4555.00]	= x,1/2-y,1/2+z

16.5 Kristallographische Daten von Methyl-bis-[2-(2´,6´-dimethoxybiphenylyl)]phosphan (33)

Crystal Data

Formula			C29 H29 O4 P
Formula Weight			472.51
Crystal System			Monoclinic
Space group		P21/c	(No. 14)
a, b, c [Å]	13.9610(2)	7.9753(1)	22.7330(3)
alpha, beta, gamma [deg]	90	106.1013(7)	90
V [Å ³]			2431.87(6)
Z			4
D(calc) [g/cm ³]			1.291
μ(MoKa) [/mm]			0.147
F(000)			1000
Crystal Size [mm]		0.07 x	0.20 x 0.28

Data Collection

Temperature (K)				200
Radiation [Å]			MoKa	0.71073
θ Min-Max [Deg]				3.2, 27.5
Dataset	-18:	16	; -10:	10 ; -28: 29
Tot., Uniq. Data, R(int)		29	9821,	5558, 0.045
Observed data [I > 2.0 $\sigma(I)$]				4327

Refinement

N_{ref} , N_{par}	Į.	5558,	423
R, wR2, S	0.0393, 0.3	1013, 1	1.04
$w = 1/[\langle s^{2}(F_{o}^{2}) + (0.0484P)^{2} + 0.5896P]$	where P=($F_o^2 + 2F_c$	²)/3
Max. and Av. Shift/Error		0.00, (0.00
Min. and Max. Resd. Dens. [e/Å ³]	-	-0.31,	0.22

Final Coordinates and Equivalent Isotropic Displacement Parameters of the non-Hydrogen atoms

Atom	х	У	Z	$U(eq) [Å^2]$
P	0.68664(3)	0.45335(4)	0.80706(2)	0.0248(1)
01	0.88872(8)	0.39223(15)	0.73565(5)	0.0428(4)
02	0.55611(8)	0.28207(14)	0.63253(5)	0.0365(3)
03	0.87968(7)	0.29773(12)	0.90217(5)	0.0307(3)
04	0.78085(8)	0.81136(12)	0.96498(5)	0.0332(3)
C1	0.69802(9)	0.23401(17)	0.78337(6)	0.0229(4)
C2	0.69423(10)	0.09656(18)	0.82060(6)	0.0266(4)
C3	0.71087(11)	-0.06514(18)	0.80361(7)	0.0303(4)
C4	0.73017(12)	-0.0939(2)	0.74802(7)	0.0351(5)
C5	0.73297(12)	0.04024(19)	0.70997(7)	0.0331(5)
C6	0.71811(10)	0.20435(17)	0.72706(6)	0.0256(4)
C7	0.72106(11)	0.34499(18)	0.68402(6)	0.0273(4)
C8	0.80729(11)	0.44107(19)	0.68994(7)	0.0321(4)
C9	0.80717(14)	0.5755(2)	0.65095(8)	0.0399(5)
C10	0.72133(14)	0.6127(2)	0.60535(8)	0.0416(5)
C11	0.63593(13)	0.5175(2)	0.59712(7)	0.0373(5)
C12	0.63631(11)	0.38398(19)	0.63640(6)	0.0304(4)
C13	0.97824(17)	0.4857(4)	0.74379(13)	0.0729(9)
C14	0.46357(13)	0.3268(3)	0.59002(8)	0.0416(5)
C15	0.66394(10)	0.42715(16)	0.88284(6)	0.0250(4)
C16	0.57333(11)	0.36629(19)	0.88956(7)	0.0330(5)
C17	0.55572(12)	0.3559(2)	0.94653(8)	0.0379(5)
C18	0.62841(12)	0.4042(2)	0.99847(7)	0.0356(5)
C19	0.71831(11)	0.46553(19)	0.99299(7)	0.0297(4)
C20	0.73661(10)	0.47993(16)	0.93562(6)	0.0236(4)
C21	0.83330(10)	0.55606(17)	0.93326(6)	0.0243(4)
C22	0.90527(10)	0.46134(18)	0.91607(6)	0.0261(4)
C23	0.99568(11)	0.5311(2)	0.91445(7)	0.0338(5)
C24	1.01468(12)	0.6972(2)	0.93060(8)	0.0375(5)
C25	0.94557(11)	0.7949(2)	0.94835(7)	0.0331(5)

C26	0.85504(10)	0.72405(18)	0.94945(6)	0.0265(4)
C27	0.94202(12)	0.2025(2)	0.87482(8)	0.0340(5)
C28	0.79935(14)	0.98342(19)	0.98163(8)	0.0347(5)
C29	0.55985(13)	0.5082(2)	0.76063(8)	0.0393(5)

U(eq) = 1/3 of the trace of the orthogonalized U Tensor

Hydrogen Atom Positions and Isotropic Displacement Parameters

Atom	х	У	Z	U(iso) [Ų]
 H2	 0 6811(12)	 0 117(2)	 0 8595(7)	0 032(4)
н3	0.7081(12)	-0.160(2)	0 8307(8)	0.041(5)
н4	0.7400(13)	-0.204(2)	0.7363(8)	0.043(5)
Н5	0.7458(13)	0.023(2)	0.6698(8)	0.046(5)
Н9	0.8665(14)	0.641(2)	0.6562(8)	0.045(5)
н10	0.7206(13)	0.711(2)	0.5780(8)	0.046(5)
H11	0.5777(13)	0.542(2)	0.5644(8)	0.040(5)
Н16	0.5217(13)	0.331(2)	0.8535(8)	0.042(5)
H17	0.4911(14)	0.314(2)	0.9493(8)	0.049(5)
Н18	0.6185(13)	0.393(2)	1.0400(8)	0.043(5)
Н19	0.7683(13)	0.505(2)	1.0292(8)	0.041(5)
Н23	1.0449(13)	0.460(2)	0.9019(8)	0.043(5)
Н24	1.0784(14)	0.747(2)	0.9291(8)	0.045(5)
Н25	0.9584(12)	0.910(2)	0.9586(8)	0.039(4)
H131	1.0274(18)	0.432(3)	0.7786(12)	0.076(7)
H132	0.962(2)	0.599(4)	0.7559(13)	0.093(10)
H133	1.000(2)	0.472(4)	0.7057(13)	0.096(9)
H141	0.4458(14)	0.445(3)	0.5993(9)	0.053(5)
H142	0.4683(15)	0.323(3)	0.5484(10)	0.055(5)
H143	0.4135(15)	0.240(3)	0.5960(9)	0.052(5)
H271	0.9484(12)	0.256(2)	0.8375(8)	0.040(5)
H272	1.0100(14)	0.184(2)	0.9050(8)	0.045(5)
Н273	0.9110(13)	0.094(2)	0.8659(8)	0.043(5)
H281	0.7377(14)	1.022(2)	0.9868(8)	0.040(5)
Н282	0.8158(13)	1.049(2)	0.9494(8)	0.045(5)
Н283	0.8545(13)	0.992(2)	1.0211(9)	0.045(5)
Н291	0.5642(14)	0.542(2)	0.7220(9)	0.049(5)
H292	0.5112(16)	0.413(3)	0.7552(10)	0.068(6)
Н293	0.5391(15)	0.603(3)	0.7813(9)	0.062(6)

The Temperature Factor has the Form of Exp(-T) Where T = $8*(\pi^{**2})*U^*(\sin(\theta)/\theta)*2$ for Isotropic Atoms

(An)isotropic Displacement Parameters

Atom	U(1,1) or U	U(2,2)	U(3,3)	U(2,3)	U(1,3)	U(1,2)
 Р	0.0287(2)	0.0202(2)	0.0249(2)	-0.0005(1)	0.0062(1)	-0.0019(1)
01	0.0334(6)	0.0503(7)	0.0446(6)	0.0145(6)	0.0105(5)	-0.0098(5)
02	0.0345(6)	0.0364(6)	0.0349(6)	0.0071(5)	0.0034(5)	-0.0018(5)
03	0.0276(5)	0.0282(5)	0.0393(6)	-0.0062(4)	0.0145(4)	-0.0011(4)
04	0.0333(6)	0.0254(5)	0.0425(6)	-0.0085(5)	0.0133(5)	-0.0047(4)
C1	0.0210(6)	0.0224(7)	0.0238(6)	0.0007(5)	0.0039(5)	-0.0016(5)
C2	0.0282(7)	0.0253(7)	0.0263(7)	0.0019(6)	0.0077(6)	-0.0018(6)
C3	0.0334(8)	0.0227(7)	0.0341(8)	0.0048(6)	0.0081(6)	-0.0016(6)
C4	0.0439(9)	0.0213(7)	0.0421(9)	-0.0018(7)	0.0154(7)	0.0031(6)
C5	0.0423(9)	0.0291(8)	0.0321(8)	-0.0012(6)	0.0174(7)	0.0027(7)
C6	0.0249(7)	0.0249(7)	0.0274(7)	0.0014(6)	0.0081(6)	-0.0005(5)
C7	0.0347(8)	0.0247(7)	0.0261(7)	0.0023(6)	0.0143(6)	0.0011(6)
C8	0.0366(8)	0.0331(8)	0.0300(7)	0.0034(6)	0.0150(6)	-0.0005(6)
C9	0.0479(10)	0.0364(9)	0.0422(9)	0.0057(7)	0.0238(8)	-0.0065(8)
C10	0.0601(11)	0.0331(9)	0.0377(8)	0.0113(7)	0.0238(8)	0.0031(8)
C11	0.0461(9)	0.0354(9)	0.0320(8)	0.0077(7)	0.0136(7)	0.0081(7)
C12	0.0384(8)	0.0280(7)	0.0279(7)	0.0016(6)	0.0144(6)	0.0033(6)
C13	0.0451(12)	0.091(2)	0.0743(16)	0.0354(16)	0.0025(12)	-0.0286(12)
C14	0.0367(9)	0.0445(10)	0.0395(9)	0.0036(8)	0.0035(7)	0.0063(8)
C15	0.0257(7)	0.0193(6)	0.0313(7)	-0.0035(6)	0.0100(6)	-0.0012(5)
C16	0.0288(8)	0.0301(8)	0.0412(8)	-0.0081(7)	0.0114(7)	-0.0077(6)
C17	0.0352(8)	0.0319(8)	0.0542(10)	-0.0068(7)	0.0251(8)	-0.0092(7)
C18	0.0445(9)	0.0311(8)	0.0392(8)	-0.0017(7)	0.0247(7)	-0.0022(7)
C19	0.0335(8)	0.0285(7)	0.0292(7)	-0.0030(6)	0.0120(6)	-0.0014(6)
C20	0.0250(7)	0.0197(6)	0.0279(7)	-0.0021(5)	0.0101(6)	-0.0002(5)
-----	------------	-----------	-----------	------------	-----------	------------
C21	0.0228(7)	0.0283(7)	0.0209(6)	-0.0005(5)	0.0045(5)	-0.0036(5)
C22	0.0245(7)	0.0278(7)	0.0248(6)	-0.0014(6)	0.0048(5)	-0.0022(6)
C23	0.0236(7)	0.0396(9)	0.0391(8)	-0.0038(7)	0.0101(6)	-0.0029(7)
C24	0.0258(8)	0.0434(9)	0.0436(9)	-0.0044(7)	0.0099(7)	-0.0108(7)
C25	0.0328(8)	0.0292(8)	0.0350(8)	-0.0034(7)	0.0055(6)	-0.0107(6)
C26	0.0265(7)	0.0285(7)	0.0233(6)	-0.0009(6)	0.0048(5)	-0.0022(6)
C27	0.0339(9)	0.0313(9)	0.0408(9)	-0.0002(7)	0.0171(7)	0.0056(7)
C28	0.0430(10)	0.0241(8)	0.0376(9)	-0.0032(7)	0.0121(8)	-0.0040(7)
C29	0.0416(9)	0.0375(9)	0.0340(8)	-0.0025(8)	0.0027(7)	0.0116(8)

The Temperature Factor has the Form of Exp(-T) Where T = $8*(\pi^{**2})*U^*(\sin(\theta)/\lambda)**2$ for Isotropic Atoms T = $2*(\pi^{**2})*Sumij(h(i)*h(j)*U(i,j)*Astar(i)*Astar(j))$, for Anisotropic Atoms. Astar(i) are Reciprocal Axial Lengths and h(i) are the Reflection Indices.

Bond Distances (Å)

Р	-C1	1.8501(14)	C18	-C19	1.384(2)
Р	-C15	1.8479(14)	C19	-C20	1.401(2)
Р	-C29	1.8446(19)	C20	-C21	1.495(2)
01	-C8	1.3670(19)	C21	-C22	1.397(2)
01	-C13	1.423(3)	C21	-C26	1.400(2)
02	-C12	1.3665(19)	C22	-C23	1.389(2)
02	-C14	1.428(2)	C23	-C24	1.381(2)
03	-C22	1.3666(17)	C24	-C25	1.384(2)
03	-C27	1.422(2)	C25	-C26	1.391(2)
04	-C26	1.3730(18)	C2	-H2	0.965(16)
04	-C28	1.4279(18)	C3	-НЗ	0.983(17)
C1	-C2	1.3949(19)	C4	-H4	0.939(16)
C1	-C6	1.4044(19)	C5	-H5	0.988(18)
C2	-C3	1.384(2)	C9	-H9	0.958(19)
C3	-C4	1.382(2)	C10	-H10	0.999(17)
C4	-C5	1.383(2)	C11	-H11	0.958(18)
C5	-C6	1.397(2)	C13	-H131	0.99(3)
C6	-C7	1.4965(19)	C13	-H132	0.99(3)
C7	-C8	1.402(2)	C13	-H133	1.00(3)
C7	-C12	1.399(2)	C14	-H141	1.01(2)
C8	-C9	1.391(2)	C14	-H142	0.97(2)
C9	-C10	1.382(3)	C14	-H143	1.02(2)
C10	-C11	1.382(3)	C16	-H16	0.971(18)
C11	-C12	1.389(2)	C17	-H17	0.98(2)
C15	-C16	1.402(2)	C18	-H18	0.995(18)
C15	-C20	1.4039(19)	C19	-H19	0.972(18)
C16	-C17	1.386(2)	C23	-H23	0.992(18)
C17	-C18	1.381(2)	C24	-H24	0.98(2)
C25	-H25	0.952(16)	C28	-H282	0.978(17)
C27	-H271	0.976(17)	C28	-H283	1.01(2)
C27	-H272	1.016(19)	C29	-H291	0.94(2)
C27	-H273	0.964(16)	C29	-H292	1.00(2)
C28	-H281	0.95(2)	C29	-H293	0.98(2)

			Bond Angles	(Degi	rees)		
C1	-P	-C15	102.43(6)	C7	-C12	-C11	121.30(15)
C1	-P	-C29	101.77(7)	Ρ	-C15	-C16	122.27(11)
C15	-P	-C29	100.07(7)	Ρ	-C15	-C20	119.52(11)
C8	-01	-C13	117.71(16)	C16	-C15	-C20	118.07(13)
C12	-02	-C14	117.81(13)	C15	-C16	-C17	121.44(14)
C22	-03	-C27	117.31(11)	C16	-C17	-C18	120.23(16)
C26	-04	-C28	117.49(13)	C17	-C18	-C19	119.41(15)
Р	-C1	-C2	123.07(10)	C18	-C19	-C20	121.09(14)
Р	-C1	-C6	118.66(10)	C15	-C20	-C19	119.72(13)
C2	-C1	-C6	118.13(12)	C15	-C20	-C21	122.47(12)
C1	-C2	-C3	121.69(13)	C19	-C20	-C21	117.79(12)
C2	-C3	-C4	120.00(14)	C20	-C21	-C22	121.15(12)
C3	-C4	-C5	119.33(14)	C20	-C21	-C26	120.75(12)
C4	-C5	-C6	121.24(14)	C22	-C21	-C26	118.08(13)
C1	-C6	-C5	119.60(13)	03	-C22	-C21	114.77(12)

C1	-C6	-C7	121.22(12)	03	-C22	-C23	123.88(13)
C5	-C6	-C7	119.16(12)	C21	-C22	-C23	121.35(13)
CG	-C7	-C8	121.71(13)	C22	-C23	-C24	119.09(15)
C6	-C7	-C12	120.11(13)	C23	-C24	-C25	121.30(16)
C8	-C7	-C12	118.18(13)	C24	-C25	-C26	119.13(14)
01	-C8	-C7	115.36(13)	04	-C26	-C21	115.40(12)
01	-C8	-C9	123.91(15)	04	-C26	-C25	123.55(13)
C7	-C8	-C9	120.73(15)	C21	-C26	-C25	121.05(14)
C8	-C9	-C10	119.41(17)	C1	-C2	-H2	118.2(10)
C9	-C10	-C11	121.32(16)	C3	-C2	-H2	120.1(10)
C10	-C11	-C12	119.01(15)	C2	-C3	-H3	120.2(10)
02	-C12	-C7	114.81(13)	C4	-C3	-H3	119.8(10)
02	-C12	-C11	123.90(14)	C3	-C4	-H4	119.7(11)
C5	-C4	-H4	121.0(11)	C18	-C19	-H19	119.6(11)
C4	-C5	-H5	121.0(9)	C20	-C19	-H19	119.2(11)
C6	-C5	-H5	117.8(9)	C22	-C23	-H23	119.1(10)
C8	-C9	-H9	119.5(10)	C24	-C23	-H23	121.8(10)
C10	-C9	-H9	121.1(10)	C23	-C24	-H24	119.2(10)
C9	-C10	-H10	119.5(11)	C25	-C24	-H24	119.5(10)
C11	-C10	-H10	119.2(11)	C24	-C25	-H25	121.0(11)
C10	-C11	-H11	120.5(10)	C26	-C25	-H25	119.8(11)
C12	-C11	-H11	120.5(10)	03	-C27	-H271	111.2(10)
01	-C13	-H131	105.5(15)	03	-C27	-H272	110.7(10)
01	-C13	-H132	104.7(17)	03	-C27	-H273	106.1(11)
01	-C13	-H133	107.3(17)	H271	-C27	-H272	110.9(15)
H131	-C13	-H132	110(2)	H271	-C27	-H273	110.7(14)
H131	-C13	-H133	110(2)	H272	-C27	-H273	107.0(14)
H132	-C13	-H133	119(2)	04	-C28	-H281	103.9(10)
02	-C14	-H141	108.7(11)	04	-C28	-H282	112.2(10)
02	-C14	-H142	111.1(13)	04	-C28	-H283	109.8(9)
02	-C14	-H143	105.4(12)	H281	-C28	-H282	109.1(15)
H141	-C14	-H142	108.7(18)	H281	-C28	-H283	111.2(15)
H141	-C14	-H143	112.8(18)	H282	-C28	-H283	110.5(15)
H142	-C14	-H143	110.2(18)	P	-C29	-H291	107.7(12)
C15	-C16	-H16	119.3(11)	P	-C29	-H292	113.6(13)
C17	-C16	-H16	119.3(11)	P	-C29	-H293	105.9(12)
C16	-C17	-H17	119.0(10)	H291	-C29	-H292	108.7(17)
C18	-C17	-H17	120.7(10)	H291	-C29	-H293	109.5(16)
C17	-C18	-H18	121.6(11)	H292	-C29	-H293	111.4(19)
C19	-C18	-H18	119.0(11)				

Torsion Angles (Degrees)

C15	-P	-C1	-C2	-3.09(13)
C15	-P	-C1	-C6	-178.66(11)
C29	-P	-C1	-C2	-106.31(13)
C29	-P	-C1	-C6	78.12(12)
C1	-P	-C15	-C16	-71.82(13)
C1	-P	-C15	-C20	112.57(11)
C29	-P	-C15	-C16	32.72(13)
C29	-P	-C15	-C20	-142.88(11)
C15	-P	-C29	-H292	-68.8(14)
C15	-P	-C29	-H293	53.7(13)
C1	-P	-C29	-H293	158.8(13)
C1	-P	-C29	-H291	-84.1(11)
C1	-P	-C29	-H292	36.3(14)
C15	-P	-C29	-H291	170.8(11)
C13	-01	-C8	-C9	0.4(2)
C13	-01	-C8	-C7	-179.85(17)
C14	-02	-C12	-C7	172.40(14)
C14	-02	-C12	-C11	-7.2(2)
C27	-03	-C22	-C23	-10.9(2)
C27	-03	-C22	-C21	169.90(13)
C28	-04	-C26	-C25	-0.9(2)
C28	-04	-C26	-C21	-179.78(13)
CG	-C1	-C2	-C3	0.8(2)
P	-C1	-C6	-C5	176.15(12)
P	-C1	-C2	-C3	-174.78(12)
C2	-C1	-C6	-C5	0.4(2)
C2	-C1	-C6	-C7	178.59(13)
P	-C1	-C6	-C7	-5.62(18)
C1	-C2	-C3	-C4	-1.1(2)
C2	-C3	-C4	-C5	0.2(2)
C3	-C4	-C5	-C6	0.9(3)
C4	-C5	-C6	-C1	-1.2(2)
C4	-C5	-C6	-C7	-179.51(15)
C5	-C6	-C7	-C12	82.97(19)

C1	-C6	-C7	-C12	-95.27(17)
C5	-C6	-C7	-C8	-97.19(18)
C1	-C6	-C7	-C8	84.58(19)
C6	-C7	-C8	-C9	-177.38(14)
C6	-C7	-C12	-02	-1.9(2)
C12	-C7	-C8	-01	-177.29(13)
C12	-C7	-C8	-C9	2.5(2)
C6	-C7	-C8	-01	2.9(2)
C8	-07	-C12	-C11	-2.1(2)
C6	-07	-C12	-C11	177 73(14)
C8	-07	-C12	-02	178 28(13)
01	-08	-09	-C10	178, 75(15)
C7	-08	-09	-C10	-1 0(2)
C8	-09	-C10	-C11	-0.9(3)
C0	0	C10	212	1 2(2)
C9 010	-CIU	-CII	-C12	1.3(3)
C10 C10	-CII	-C12	-07	U.3(Z) 170 04/1E)
C10	-CII	-C12	-02	1/9.04(15)
C20	-C15	-016	-017	
P	-015	-C20	-019	1//.85(11)
C16	-C15	-C20	-019	2.1(2)
C16	-C15	-C20	-C21	-176.36(13)
P	-C15	-C20	-C21	-0.57(18)
P	-C15	-C16	-C17	-176.51(12)
C15	-C16	-C17	-C18	-0.7(2)
C16	-C17	-C18	-C19	1.0(2)
C17	-C18	-C19	-C20	0.2(2)
C18	-C19	-C20	-C15	-1.8(2)
C18	-C19	-C20	-C21	176.70(14)
C15	-C20	-C21	-C26	113.54(15)
C15	-C20	-C21	-C22	-67.73(18)
C19	-C20	-C21	-C26	-64.91(18)
C19	-C20	-C21	-C22	113.82(15)
C26	-C21	-C22	-03	178.67(12)
C26	-C21	-C22	-C23	-0.5(2)
C20	-C21	-C26	-C25	178.90(13)
C22	-C21	-C26	-04	179.02(12)
C20	-C21	-C26	-04	-2.22(18)
C20	-C21	-C22	-C23	-179.30(13)
C20	-C21	-C22	-03	-0.09(18)
C22	-C21	-C26	-C25	0.1(2)
C21	-C22	-C23	-C24	0.4(2)
03	-C22	-C23	-C24	-178.69(14)
C22	-C23	-C24	-C25	0.1(2)
C23	-C24	-C25	-C26	-0.5(2)
C24	-C25	-C26	-04	-178.44(14)
C24	-C25	-C26	-C21	0 3(2)
621	220	C20	C21	0.5(2)

Contact Distances(Å)

Ρ	.03	3.2010(11)	C7	.C29	3.459(2)
Ρ	.C8	3.5247(16)	C8	.P	3.5247(16)
Ρ	.C22	3.3565(14)	C10	.C28_f	3.374(3)
Ρ	.H3_a	3.130(16)	C12	.C29	3.431(2)
01	.C1	3.3852(18)	C14	.04_e	3.295(2)
01	.C27	3.398(2)	C15	.03	3.0978(18)
02	.C5	3.241(2)	C16	.C2	3.377(2)
02	.C29	3.413(2)	C19	.04	3.0138(18)
03	.C2	3.1706(17)	C22	.C24_g	3.583(2)
03	.C1	3.1914(17)	C22	.P	3.3565(14)
03	.P	3.2010(11)	C24	.C22_g	3.583(2)
03	.C15	3.0978(18)	C27	.C1	3.473(2)
04	.C19	3.0138(18)	C27	.C2	3.440(2)
04	.C14_d	3.295(2)	C27	.01	3.398(2)
01	.H271	2.483(17)	C28	.C10_j	3.374(3)
02	.H18_b	2.855(18)	C29	.C7	3.459(2)
02	.H291	2.884(18)	C29	.C2_d	3.586(2)
03	.H282_c	2.533(17)	C29	.C12	3.431(2)
04	.H19	2.876(16)	C29	.02	3.413(2)
04	.H143_d	2.74(2)	C2	.H282_c	2.973(18)
C1	.01	3.3852(18)	C2	.H273	2.914(19)
C1	.03	3.1914(17)	C3	.H273	3.038(18)
C1	.C27	3.473(2)	C3	.H292_e	3.02(2)
C2	.03	3.1706(17)	C7	.H291	3.010(19)
C2	.C16	3.377(2)	C9	.H132	2.75(3)
C2	.C27	3.440(2)	C9	.H133	2.76(3)
C2	.C29_e	3.586(2)	C9	.H4_a	2.957(17)
C5	.02	3.241(2)	C10	.H281_f	2.968(18)

C11	.H141	2.73(2)	C27	.H9 i	2.99(2)
C11	н142	277(2)	C28	H25	2488(18)
C11	u17 d	2.060(17)	C20	- H25	2.100(16)
	.HI/_U	2.909(17)	C20	.пz_а	3.004(10)
	.HZ91	2./34(19)	029	. H10	2.713(17)
C12	.HI8_b	3.073(17)	H2	.C15	2.555(16)
C13	.H271	2.926(17)	H2	.C16	2.693(17)
C13	.Н9	2.492(18)	Н2	.C28_c	3.004(16)
C14	.H11	2.518(18)	H2	.H282_c	2.42(2)
C15	.H2	2.555(16)	H3	.P_c	3.130(16)
C15	.H143_d	2.81(2)	H3	.C26_c	3.046(17)
C16	.H2	2.693(17)	H4	.C9 c	2,957(17)
C16	.H293	3.03(2)	Н9	. C13	2.492(18)
C16	H292	2.96(2)	н9	.H132	2.31(3)
C16	н143 d	3 00(2)	H9	н133	2.32(3)
C17	и11 с	3 089(17)	119	C27 k	2.02(1)
C17	.птт_е	2 90(2)	19	.CZ/_K	2.99(2)
C20	.HI43_U	2.09(2)	П9 1111	.HZ/Z_K	2.52(3)
C23	.HZ/Z	2.788(10)	HII	.014	2.518(18)
C23	.H271	2.769(17)	HII	.H141	2.33(3)
C24	.H283_h	3.094(17)	HII	.H142	2.28(3)
C25	.H273_a	2.989(17)	H11	.C17_d	3.089(17)
C25	.H282	2.723(17)	H11	.H17_d	2.36(2)
C25	.H283	2.826(18)	H16	.C29	2.713(17)
C26	.H3_a	3.046(17)	H16	.H292	2.29(3)
C26	.H19	3.004(17)	H17	.C11_e	2.969(17)
C27	.H133_i	2.86(3)	H17	.H11_e	2.36(2)
C27	.H282 c	3.022(18)	H18	.02 1	2.855(18)
C27	.H23	2.484(17)	H18	.C12 1	3.073(17)
C27	H25 C	2.980(17)	H19	.04	2.876(16)
н19	C26	3 004(17)	H271	C23	2.769(17)
H23	C27	2 484(17)	H271	.023 н23	2.705(17) 2.35(2)
112.5	11271	2.101(17)	11271	.112.5	2.33(2)
H23	. HZ / I	2.35(2)	HZ/1	. HI 31	2.41(3)
HZ3	.HZ/Z	2.26(2)	HZ/Z	.023	2.788(16)
H24	.H283_n	2.43(2)	H272	.H23	2.26(2)
H25	.C27_a	2.980(17)	H272	.H9_i	2.52(3)
Н25	.C28	2.488(18)	H272	.H283_g	2.57(3)
Н25	.H273_a	2.50(2)	H273	.C2	2.914(19)
H25	.H282	2.24(2)	H273	.C3	3.038(18)
Н25	.H283	2.39(3)	H273	.C25_c	2.989(17)
Н25	.H25_h	2.40(2)	H273	.H25_c	2.50(2)
H131	.H271	2.41(3)	H273	.H133_i	2.50(3)
Н132	.C9	2.75(3)	H281	.C10_j	2.968(18)
H132	.Н9	2.31(3)	H282	.03 a	2.533(17)
H133	. C9	2.76(3)	H282	.C2 a	2,973(18)
н133	н9	2 32(4)	H282	C25	2723(17)
н133	C27 k	2.92(1) 2.86(3)	H282	C27 a	3.022(18)
ш122	U272 L	2.00(3)	11202	.cz/_a	2 42(2)
п135 u141	.11275_K	2.30(3)	11202	.112_a	2,42(2)
H141		2.73(2)	HZ0Z	. H25	2.24(2)
H141	. HII	2.33(3)	H283	.025	2.826(18)
H142	.011	2.77(2)	H283	.H25	2.39(3)
H142	.HII	2.28(3)	H283	.C24_h	3.094(17)
H143	.04_e	2.74(2)	H283	.H24_h	2.43(2)
H143	.C15_e	2.81(2)	H283	.H272_g	2.57(3)
H143	.C16_e	3.00(2)	H291	.02	2.884(18)
H143	.C20_e	2.89(2)	H291	.C7	3.010(19)
H271	.01	2.483(17)	H291	.C12	2.734(19)
H271	.C13	2.926(17)	H292	.C16	2.96(2)
H292	.H16	2.29(3)	H293	.C16	3.03(2)
Н292	.C3_d	3.02(2)			

Hydrogen Bonds (Å, Deg)					
С27 Н271 01	0.976(17)	2.483(17)	3.398(2)	156.1(14)	
C28 H282 O3	0.978(17)	2.533(17)	3.454(2)	156.9(13)	1_565

Translation of Symmetry Code to Equiv.Pos

а	= [1565.00]	= x,1+y,z
b	= [4554.00]	= x,1/2-y,-1/2+z
С	= [1545.00]	= x,-1+y,z
d	= [2656.00]	= 1-x, 1/2+y, 3/2-z
е	= [2646.00]	= 1-x, -1/2+y, 3/2-z
f	= [4564.00]	= x, 3/2 - y, -1/2 + z
g	= [3767.00]	= 2-x,1-y,2-z
h	= [3777.00]	= 2-x,2-y,2-z
i	= [2746.00]	= 2-x, -1/2+y, 3/2-z
j	= [4565.00]	= x,3/2-y,1/2+z
k	= [2756.00]	= 2-x, 1/2+y, 3/2-z
1	= [4555.00]	= x,1/2-y,1/2+z

16.6 Kristallographische Daten von Pd-Komplex (94)

Crystal Data

Formula Formula Weight	PD, C17	H14	0, P	04 C29	H29, C4	н10 О 887.35
Crystal System					Tri	clinic
Space group			I	2-1	(N	o. 2)
a, b, c [Å]	12.336	2(2)	13.	.7337(2)) 15.5	490(3)
alpha, beta, gamma [deg]	110.890	7(8)	102	.1621(9) 108.3	869(6)
V [Å ³]					2174	4.84(7)
Z						2
D(calc) [g/cm ³]						1.355
μ(MoKa) [/mm]						0.513
F(000)						924
Crystal Size [mm]				0.07 x	0.10 x	0.18

Data Collection

				200
		MoKa		0.71073
			3.2	, 27.5
-16:	16 ;	-17:	17 ;	-20: 20
	335	43,	9832,	0.069
				7818
	-16:	-16: 16 ; 335	MoKa -16: 16 ; -17: 33543,	MoKa 3.2 -16: 16 ; -17: 17 ; 33543, 9832,

Refinement

N_{ref} , N_{par}	9832, 523
R, wR2, S	0.0432, 0.1102, 1.03
$w = 1/[\langle s^{2}(F_{o}^{2}) + (0.0548P)^{2} + 0.5117P]$	where $P = (F_o^2 + 2F_c^2) / 3$
Max. and Av. Shift/Error	0.00, 0.00
Min. and Max. Resd. Dens. [e/Å ³]	-1.25, 0.62

Final Coordinates and Equivalent Isotropic Displacement Parameters of the non-Hydrogen atoms

Atom	х	У	Z	U(eq) [Ų]
Pd	0.16390(2)	0.42853(2)	0.78570(1)	0.0333(1)
P	0.14351(6)	0.30194(5)	0.63495(5)	0.0323(2)
01	0.2718(2)	0.70983(19)	1.01869(16)	0.0601(8)
02	0.5190(2)	0.48365(19)	0.72954(15)	0.0583(7)
03	0.2879(2)	0.11756(16)	0.46358(16)	0.0551(8)
04	0.03102(19)	0.52569(15)	0.64327(14)	0.0472(6)
05	-0.12069(18)	0.25316(16)	0.75259(13)	0.0437(6)
C1	0.3064(2)	0.3465(2)	0.89742(18)	0.0382(8)
C2	0.2045(3)	0.2788(3)	0.9075(2)	0.0522(11)
C3	0.1898(4)	0.1738(3)	0.9044(3)	0.0684(12)
C4	0.2783(4)	0.1351(3)	0.8930(3)	0.0736(16)
C5	0.3813(3)	0.2012(3)	0.8839(3)	0.0625(12)
C6	0.3947(3)	0.3065(3)	0.8861(2)	0.0485(10)
C7	0.3203(2)	0.4562(2)	0.89424(18)	0.0372(8)
C8	0.2685(2)	0.5270(2)	0.94375(18)	0.0385(8)
C9	0.2995(3)	0.6443(2)	0.95906(19)	0.0422(8)

C10	0.3628(3)	0.6839(2)	0.8980(2)	0.0422(9)
C11	0.3792(3)	0.7826(2)	0.8956(2)	0.0439(9)
C12	0.4396(3)	0.8268(2)	0.8371(2)	0.0426(9)
C13	0.4793(3)	0.9428(3)	0.8601(2)	0.0507(10)
C14	0.5432(3)	0.9895(3)	0.8109(3)	0.0609(11)
C15	0.5648(3)	0.9195(3)	0.7349(3)	0.0681(14)
C16	0.5228(4)	0.8041(3)	0.7083(3)	0.0697(16)
C17	0.4605(3)	0.7571(3)	0.7582(2)	0.0562(11)
C18	0.2239(2)	0.3519(2)	0.56081(18)	0.0349(8)
C19	0.1730(3)	0.4072(2)	0.5159(2)	0.0430(9)
C20	0.2228(3)	0.4491(3)	0.4572(2)	0.0522(10)
C21	0.3229(3)	0.4347(3)	0.4413(2)	0.0515(10)
C22	0.3764(3)	0.3839(2)	0.4877(2)	0.0453(9)
C23	0.3308(2)	0.3440(2)	0.54948(18)	0.0347(8)
C24	0.4038(2)	0.2977(2)	0.5994(2)	0.0400(8)
C25	0.5029(3)	0.3712(3)	0.6888(2)	0.0496(10)
C26	0.5775(3)	0.3294(4)	0.7307(3)	0.0675(13)
C27	0.5517(4)	0.2145(4)	0.6831(3)	0.0789(17)
C28	0.4557(4)	0.1399(3)	0.5950(3)	0.0678(14)
C29	0.3830(3)	0.1817(3)	0.5520(2)	0.0492(11)
C30	0.6243(3)	0.5650(4)	0.8172(3)	0.0802(14)
C31	0.2458(4)	-0.0053(3)	0.4194(3)	0.0710(13)
C32	-0.0164(2)	0.2476(2)	0.55725(18)	0.0348(8)
C33	-0.0683(3)	0.1605(2)	0.45925(19)	0.0457(9)
C34	-0.1883(3)	0.1240(3)	0.4029(2)	0.0533(10)
C35	-0.2589(3)	0.1727(3)	0.4427(2)	0.0520(10)
C36	-0.2098(3)	0.2584(2)	0.5398(2)	0.0437(9)
C37	-0.0880(2)	0.2967(2)	0.59770(17)	0.0340(8)
C38	-0.0399(2)	0.3915(2)	0.70165(18)	0.0359(8)
C39	0.0055(3)	0.5084(2)	0.7195(2)	0.0404(8)
C40	0.0145(3)	0.5941(3)	0.8052(2)	0.0527(10)
C41	-0.0238(3)	0.5652(3)	0.8735(2)	0.0560(11)
C42	-0.0672(3)	0.4530(3)	0.8609(2)	0.0500(10)
C43	-0.0740(2)	0.3671(2)	0.77553(18)	0.0384(8)
C44	0.1005(3)	0.6412(3)	0.6616(3)	0.0648(11)
C45	-0.1401(3)	0.2225(3)	0.8291(2)	0.0567(11)
C46	0.1543(3)	0.1694(2)	0.6263(2)	0.0436(9)
06	0.8824(2)	0.97560(18)	0.86138(15)	0.0556(8)
C47	0.8591(4)	0.8651(3)	0.7918(3)	0.0640(11)
C48	0.9249(4)	0.8727(3)	0.7240(3)	0.0774(14)
C49	0.8327(4)	0.9742(3)	0.9351(3)	0.0601(12)
C50	0.8600(4)	1.0942(3)	1.0039(3)	0.0672(14)

Hydrogen Atom Positions and Isotropic Displacement Parameters

Atom	x	У	Z	U(iso)	[Ų]
н2	0.14350	0.30540	0.91670)	0.0630
Н3	0.11840	0.12810	0.91020)	0.0820
Н4	0.26850	0.06300	0.89130)	0.0880
Н5	0.44290	0.17490	0.87620)	0.0750
нб	0.46580	0.35170	0.87970)	0.0580
Н7	0.36590	0.48010	0.85750)	0.0450
Н8	0.20960	0.49540	0.96850)	0.0460
Н10	0.39280	0.63590	0.85900)	0.0510
H11	0.34900	0.82940	0.93570)	0.0530
H13	0.46200	0.99130	0.91110)	0.0610
H14	0.57210	1.06960	0.82960)	0.0730
Н15	0.60890	0.95090	0.70070)	0.0820
Н16	0.53670	0.75570	0.65470)	0.0830
H17	0.43180	0.67690	0.73870)	0.0680
Н19	0.10270	0.41640	0.52570)	0.0520
H20	0.18760	0.48760	0.42830)	0.0630
H21	0.35510	0.45950	0.39860)	0.0620
H22	0.44680	0.37570	0.47730)	0.0540
Н26	0.64520	0.37970	0.79140)	0.0810
Н27	0.60200	0.18600	0.71200)	0.0950
Н28	0.43900	0.06060	0.56390)	0.0820
H30A	0.62480	0.64150	0.83870)	0.1200
Н30В	0.69890	0.56770	0.80350)	0.1200
H30C	0.62140	0.54140	0.86950)	0.1200
H31A	0.17790	-0.04080	0.35610)	0.1070
H31B	0.21740	-0.03420	0.46360)	0.1070
H31C	0.31320	-0.02480	0.40830)	0.1070
Н33	-0.01990	0.12650	0.43160)	0.0550
Н34	-0.22250	0.06530	0.33650)	0.0640

Н35	-0.34190	0.14750	0.40360	0.0620
Н36	-0.25960	0.29100	0.56680	0.0520
н40	0.04670	0.67220	0.81700	0.0630
H41	-0.02030	0.62410	0.93100	0.0670
H42	-0.09180	0.43520	0.90950	0.0600
H44A	0.11150	0.64060	0.60080	0.0980
H44B	0.18100	0.67390	0.71340	0.0980
H44C	0.05670	0.68810	0.68300	0.0980
H45A	-0.17370	0.13850	0.80290	0.0850
H45B	-0.19780	0.24980	0.85240	0.0850
H45C	-0.06180	0.25830	0.88430	0.0850
Н46А	0.23780	0.18780	0.66570	0.0650
Н46В	0.13460	0.11720	0.55710	0.0650
H46C	0.09620	0.13190	0.65150	0.0650
H47A	0.76990	0.82040	0.75340	0.0770
Н47В	0.88550	0.82400	0.82670	0.0770
H48A	0.90740	0.79490	0.67620	0.1160
H48B	1.01340	0.91580	0.76190	0.1160
H48C	0.89790	0.91240	0.68870	0.1160
H49A	0.86870	0.93940	0.97210	0.0730
Н49В	0.74280	0.92700	0.90400	0.0730
H50A	0.82500	1.09330	1.05480	0.1010
Н50В	0.82400	1.12820	0.96690	0.1010
H50C	0.94900	1.14030	1.03530	0.1010

The Temperature Factor has the Form of Exp(-T) Where T = $8*(\pi^{**2})*U^*(\sin(\theta)/\lambda)**2$ for Isotropic Atoms

(An)isotropic Displacement Parameters

Atom	U(1,1) or 1	U U(2,2)	U(3,3)	U(2,3)	U(1,3)	U(1,2)
Pd	0.0338(1)	0.0374(1)	0.0280(1)	0.0145(1)	0.0103(1)	0.0157(1)
P	0.0378(4)	0.0329(3)	0.0294(3)	0.0161(3)	0.0146(3)	0.0152(3)
01	0.0707(16)	0.0541(12)	0.0505(12)	0.0128(11)	0.0329(12)	0.0263(12)
02	0.0423(12)	0.0604(13)	0.0455(12)	0.0165(11)	0.0028(9)	0.0076(10)
03	0.0729(16)	0.0358(10)	0.0572(13)	0.0207(10)	0.0309(12)	0.0200(10)
04	0.0521(12)	0.0347(9)	0.0520(12)	0.0244(9)	0.0134(10)	0.0136(9)
05	0.0489(12)	0.0462(10)	0.0349(9)	0.0216(9)	0.0187(8)	0.0131(9)
C1	0.0332(14)	0.0470(15)	0.0319(13)	0.0216(12)	0.0064(11)	0.0135(12)
C2	0.0448(18)	0.0621(19)	0.0589(18)	0.0394(17)	0.0213(15)	0.0185(15)
C3	0.063(2)	0.068(2)	0.080(2)	0.051(2)	0.0248(19)	0.0160(18)
C4	0.083(3)	0.063(2)	0.084(3)	0.053(2)	0.019(2)	0.027(2)
C5	0.059(2)	0.064(2)	0.077(2)	0.0428(19)	0.0169(18)	0.0340(17)
C6	0.0398(16)	0.0562(17)	0.0535(17)	0.0321(15)	0.0133(13)	0.0194(14)
C7	0.0311(14)	0.0450(14)	0.0351(13)	0.0217(12)	0.0116(11)	0.0123(11)
C8	0.0298(14)	0.0444(14)	0.0305(13)	0.0135(12)	0.0093(11)	0.0084(11)
C9	0.0362(15)	0.0456(15)	0.0346(14)	0.0110(13)	0.0120(12)	0.0142(12)
C10	0.0363(15)	0.0415(15)	0.0445(15)	0.0156(13)	0.0163(12)	0.0153(12)
C11	0.0422(16)	0.0374(14)	0.0439(15)	0.0109(13)	0.0163(13)	0.0157(12)
C12	0.0372(15)	0.0434(15)	0.0452(15)	0.0194(13)	0.0131(12)	0.0169(12)
C13	0.0490(18)	0.0472(16)	0.0564(18)	0.0244(15)	0.0179(15)	0.0212(14)
C14	0.052(2)	0.0570(19)	0.075(2)	0.0375(19)	0.0184(17)	0.0195(16)
C15	0.055(2)	0.085(3)	0.079(2)	0.051(2)	0.0300(19)	0.028(2)
C16	0.072(3)	0.086(3)	0.071(2)	0.037(2)	0.043(2)	0.045(2)
C17	0.062(2)	0.0531(18)	0.0590(19)	0.0242(16)	0.0281(17)	0.0287(16)
C18	0.0389(15)	0.0284(12)	0.0307(12)	0.0137(11)	0.0106(11)	0.0077(11)
C19	0.0434(16)	0.0429(15)	0.0471(16)	0.0274(13)	0.0158(13)	0.0163(12)
C20	0.0470(18)	0.0520(17)	0.0535(17)	0.0368(15)	0.0091(14)	0.0076(14)
C21	0.0475(19)	0.0551(17)	0.0437(16)	0.0321(15)	0.0141(13)	0.0029(14)
C22	0.0403(16)	0.0439(15)	0.0417(15)	0.0194(13)	0.0166(12)	0.0054(12)
C23	0.0371(15)	0.0277(12)	0.0283(12)	0.0090(10)	0.0106(10)	0.0059(10)
C24	0.0333(14)	0.0474(15)	0.0458(15)	0.0260(13)	0.0206(12)	0.0154(12)
C25	0.0399(17)	0.0621(19)	0.0515(17)	0.0319(16)	0.0209(14)	0.0176(14)
C26	0.0374(18)	0.100(3)	0.069(2)	0.046(2)	0.0170(16)	0.0270(19)
C27	0.065(3)	0.108(3)	0.111(3)	0.076(3)	0.043(3)	0.056(3)
C28	0.066(2)	0.077(2)	0.098(3)	0.056(2)	0.048(2)	0.045(2)
C29	0.0533(19)	0.0535(17)	0.0608(19)	0.0351(16)	0.0347(16)	0.0270(15)
C30	0.051(2)	0.087(3)	0.055(2)	0.021(2)	-0.0012(17)	-0.0003(19)
C31	0.109(3)	0.0403(16)	0.076(2)	0.0298(18)	0.056(2)	0.0283(19)
C32	0.0382(15)	0.0312(12)	0.0294(12)	0.0161(11)	0.0111(11)	0.0064(11)
C33	0.060(2)	0.0371(14)	0.0298(13)	0.0136(12)	0.0180(13)	0.0097(13)
C34	0.060(2)	0.0417(16)	0.0313(14)	0.0142(13)	0.0046(14)	0.0006(14)
C35	0.0435(17)	0.0499(17)	0.0446(17)	0.0267(15)	-0.0012(14)	0.0038(14)
C36	0.0396(16)	0.0423(15)	0.0448(16)	0.0248(14)	0.0081(13)	0.0114(12)

C37	0.0349(14)	0.0331(12)	0.0318(13)	0.0191(11)	0.0090(11)	0.0092(11)
C38	0.0326(14)	0.0374(13)	0.0354(13)	0.0148(12)	0.0093(11)	0.0163(11)
C39	0.0353(15)	0.0397(14)	0.0415(15)	0.0179(13)	0.0066(12)	0.0159(12)
C40	0.0488(18)	0.0398(15)	0.0554(18)	0.0121(15)	0.0072(15)	0.0210(14)
C41	0.0502(19)	0.0570(19)	0.0445(17)	0.0047(15)	0.0115(14)	0.0287(16)
C42	0.0422(17)	0.067(2)	0.0371(15)	0.0151(15)	0.0167(13)	0.0276(15)
C43	0.0331(14)	0.0466(15)	0.0330(13)	0.0167(12)	0.0115(11)	0.0162(12)
C44	0.060(2)	0.0414(17)	0.076(2)	0.0329(18)	0.0075(18)	0.0057(15)
C45	0.057(2)	0.072(2)	0.0426(16)	0.0344(16)	0.0251(14)	0.0154(16)
C46	0.0534(18)	0.0433(15)	0.0503(16)	0.0289(14)	0.0292(14)	0.0245(13)
06	0.0651(15)	0.0527(12)	0.0493(12)	0.0243(11)	0.0264(11)	0.0209(11)
C47	0.061(2)	0.0562(19)	0.068(2)	0.0201(18)	0.0255(18)	0.0253(17)
C48	0.086(3)	0.072(2)	0.061(2)	0.020(2)	0.036(2)	0.024(2)
C49	0.069(2)	0.070(2)	0.064(2)	0.0430(19)	0.0356(18)	0.0348(19)
C50	0.080(3)	0.074(2)	0.056(2)	0.0297(19)	0.0335(19)	0.037(2)

The Temperature Factor has the Form of Exp(-T) Where T = $8*(\pi^{**2})*U^*(\sin(\theta)/\lambda)**2$ for Isotropic Atoms T = $2*(\pi^{**2})*Sumij(h(i)*h(j)*U(i,j)*Astar(i)*Astar(j))$, for Anisotropic Atoms. Astar(i) are Reciprocal Axial Lengths and h(i) are the Reflection Indices.

Bond Distances (Å)

Pd	-P	2.2693(7)	C10	-C11	1.321(4)
Pd	-C7	2.103(3)	C11	-C12	1.465(4)
Pd	-C8	2.174(2)	C12	-C17	1.393(5)
Pd	-C38	2.371(3)	C12	-C13	1.390(5)
Ρ	-C18	1.844(3)	C13	-C14	1.380(6)
P	-C32	1.825(3)	C14	-C15	1.370(6)
P	-C46	1.826(3)	C15	-C16	1.369(6)
01	-C9	1.232(4)	C16	-C17	1.380(6)
02	-C25	1.372(5)	C18	-C23	1.399(4)
02	-C30	1.430(5)	C18	-C19	1.398(4)
03	-C29	1.359(4)	C19	-C20	1.389(5)
03	-C31	1,435(5)	C20	-C21	1,369(6)
04	-C39	1.368(4)	C21	-C22	1.375(5)
04	-C44	1,432(5)	C22	-C23	1,396(4)
05	-C43	1.362(4)	C23	-C24	1,496(4)
05	-C45	1,437(4)	C24	-C25	1.397(4)
06	-C49	1.412(5)	C24	-C29	1.404(5)
06	-C47	1,407(5)	C25	-C26	1,396(6)
C1	-06	1.382(5)	C26	-C27	1.375(7)
C1	-C2	1 385(5)	C27	-C28	1 371(6)
C1	-C7	1,482(4)	C28	-C29	1,388(6)
C2	-C3	1,377(6)	C32	-033	1,403(4)
C3	-C4	1,373(7)	C32	-037	1,392(4)
C4	-C5	1,378(6)	C33	-C34	1,372(5)
C5	-06	1 390(6)	C34	-035	1 374(5)
C7	-08	1 418(4)	C35	-036	1 389(4)
C8	-09	1.448(4)	C36	-037	1,302(4)
C9	-C10	1,490(4)	C37	-038	1.506(3)
C38	-C39	1,420(4)	C30	-H30A	0.9799
C38	-C43	1,414(4)	C30	-H30B	0.9800
C39	-C40	1.382(4)	C31	-H31A	0.9802
C40	-C41	1 379(5)	C31	-H31B	0 9802
C41	-C42	1,385(6)	C31	-H31C	0.9802
C42	-C43	1,391(4)	C33	-H33	0.9488
C2	-H2	0.9496	C34	-H34	0.9498
C3	-H3	0.9502	C35	-H35	0.9497
C4	-H4	0.9488	C36	-H36	0.9499
C5	-H5	0.9502	C40	-H40	0 9498
CG	-H6	0.9302	C41	-H41	0 9495
C7	-H7	0.9504	C42	-H42	0.9510
C8	-H8	0.9499	C44	-H44B	0.9310
C10	-H10	0.9501	C44	-H44A	0 9805
C11	-H11	0 9507	C44	-H44C	0 9798
C13	_H13	0.9499	C45	-H45B	0 9791
C14	-H14	0.9500	C45	-H45C	0 9806
C15	-H15	0.9498	C45	-H45A	0.9801
C16	-H16	0.9502	C46	-H46C	0.9807
C17	-H17	0.9492	C46	-H46A	0.9796
C19	-H19	0.9499	C46	-H46B	0.9801
C20	-H20	0.9498	C47	-C48	1,472(7)
020	1120	0.9190	017	010	±•±/2(/)

	C21 C22 C26 C27 C28 C30 C49 C49 C50	-H21 -H22 -H26 -H27 -H28 -H30C -H49A -H49B -H50A	0.9496 0.9492 0.9510 0.9494 0.9504 0.9801 0.9894 0.9904 0.9801	C49 C47 C47 C48 C48 C48 C48 C50 C50	-C50 -H47A -H47B -H48A -H48B -H48C -H50B -H50C	1.488 0.99 0.99 0.99 0.99 0.99 0.99 0.99	(6) 899 895 804 808 808 803 797
			Bond Angles	(De	grees)		
P	-Pd	-C7	109.68(7)	Pd	-C8	-C7	67.96(14)
Ρ	-Pd	-C8	148.36(7)	Pd	-C8	-C9	101.90(17)
Ρ	-Pd	-C38	83.44(6)	C7	-C8	-C9	124.3(3)
C7	-Pd	-C8	38.69(10)	01	-C9	-C10	120.0(3)
C7 C8	-Pa -Pa	-C38	161.55(10) 127 $41(9)$	01	-C9 -C9	-C10	128.3(3) 121 7(3)
Pd	-P	-C18	120.85(9)	C9	-C10	-C11	123.1(3)
Pd	-P	-C32	105.02(9)	C10	-C11	-C12	126.2(3)
Pd	-P	-C46	116.19(9)	C11	-C12	-C13	119.9(3)
C18	-P	-C32	101.19(12)	C13	-C12	-C17	117.5(3)
CT8	-P	-C46	108.64(14)	CII CI2	-C12	-C17	122.6(3)
C25	-02	-C30	117.7(3)	C12	-C13	-C14 -C15	121.8(3) 119.5(4)
C29	-03	-C31	117.8(3)	C14	-C15	-C16	119.9(4)
C39	-04	-C44	118.3(2)	C15	-C16	-C17	120.9(4)
C43	-05	-C45	117.9(2)	C12	-C17	-C16	120.3(4)
C47	-06 -C1	-C49 -C6	113.3(3) 117.9(3)	Р С19	-C18 -C18	-019	114.7(2) 118 5(3)
C6	-C1	-C7	119.8(3)	P	-C18	-C23	126.7(2)
C2	-C1	-C7	122.3(3)	C18	-C19	-C20	121.5(3)
C1	-C2	-C3	121.4(4)	C19	-C20	-C21	119.7(4)
C2 C3	-C3	-C4	120.1(4)	C20	-C21	-C22	119.4(3) 122 3(3)
C4	-C5	-C6	119.7(4)	C18	-C23	-C22	118.4(3)
C1	-C6	-C5	121.1(4)	C22	-C23	-C24	115.8(3)
Pd	-C7	-C1	109.85(18)	C18	-C23	-C24	125.8(2)
Pd C1	-C7	-C8	73.35(15)	C23	-C24	-C29	120.5(2)
C23	-C24	-C25	120.8(3)	04	-C39	-C38	114.4(2)
02	-C25	-C26	124.4(3)	C39	-C40	-C41	119.4(4)
C24	-C25	-C26	120.6(4)	C40	-C41	-C42	122.1(3)
02	-C25	-C24	115.0(3)	C41	-C42	-C43	118.4(3)
C25	-C27	-C28	122.0(5)	C38	-C43	-C42	123.0(3) 121.7(3)
C27	-C28	-C29	119.1(4)	05	-C43	-C38	114.4(2)
03	-C29	-C28	124.7(3)	C3	-C2	-H2	119.35
C24	-C29	-C28	120.9(3)	C1	-C2	-H2	119.24
P P	-029	-C24 2 -C33	122.7(2)	C2	-03	-нз	119.96
- C33	-C32	-C37	119.5(3)	C5	-C4	-H4	120.08
Ρ	-C32	2 -C37	117.81(19)	C3	-C4	-H4	120.11
C32	-C33	B -C34	120.7(3)	C4	-C5	-H5	120.12
C34	-035	-C36	120.5(3)	C0 C1	-C5 -C6	-до -Нб	119.47
C35	-C36	5 –C37	120.3(3)	C5	-C6	-Нб	119.39
C32	-C37	-C36	119.2(2)	C1	-C7	-H7	118.57
C32	-C37	-C38	123.2(2)	C8	-C7	-H7	118.67
Pd	-C37 -C38	-C38	109.97(17)	Pd Pd	-07	-H7 -H8	100.44
Pd	-C38	-C39	87.88(19)	C7	-C8	-H8	117.84
C37	-C38	B -C39	119.7(2)	C9	-C8	-H8	117.84
C37	-C38	B -C43	120.0(2)	C9	-C10	-H10	118.40
039 DA	-038		11/.2(2) 88 04/16)	CII CI2	-C10 -C11	-HLU _H11	116 01
04	-C39	-C40	124.3(3)	C12	-C11	-H11	116.91
C38	-C39	-C40	121.1(3)	C12	-C13	-H13	119.15
C14	-C13	3 -H13	119.03	H30A	-C30	-H30B	109.52
C15	-C14	-H14	120.22	03	-C31	-H31B	109.47
C14	-C14	t −H⊥4	120.30	U3 1121 M	-C31	-H31C -H31D	109.49
C16	-C15	, -H15	120.09	H31A	-C31	-H31C	109.42
C17	-C16	5 -H16	119.54	H31B	-C31	-H31C	109.52
C15	-C16	5 -H16	119.53	03	-C31	-H31A	109.42
C10	-C17	-H17	119.87 110 00	C32	-C33	-H33 -H33	110 ED
<u> </u>		111 /	112.02	C34	600	222	119.02

C18	-C19	-H19	119.30	C35	-C34	-H34	120.04
C20	-C19	-H19	119.16	C33	-C34	-H34	120.11
C21	-C20	-H20	120.18	C36	-C35	-H35	119.74
C19	-C20	-H20	120.17	C34	-C35	-H35	119.79
C20	-C21	-H21	120.32	C35	-C36	-НЗб	119.81
C22	-C21	-H21	120.30	C37	-C36	-НЗб	119.87
C23	-C22	-H22	118.89	C39	-C40	-H40	120.36
C21	-C22	-H22	118.80	C41	-C40	-H40	120.24
C25	-C26	-H26	120.45	C42	-C41	-H41	118.95
C27	-C26	-H26	120.44	C40	-C41	-H41	118.93
C26	-C27	-H27	119.04	C41	-C42	-H42	120.72
C28	-C27	-H27	119.00	C43	-C42	-H42	120.83
C29	-C28	-H28	120.47	04	-C44	-H44B	109.51
C27	-C28	-H28	120.44	04	-C44	-H44C	109.51
02	-C30	-H30B	109.50	04	-C44	-H44A	109.40
02	-C30	-H30C	109.44	H44A	-C44	-H44C	109.53
02	-C30	-H30A	109.49	H44B	-C44	-H44C	109.52
H30A	-C30	-H30C	109.52	H44A	-C44	-H44B	109.36
H30B	-C30	-H30C	109.35	05	-C45	-H45A	109.49
05	-C45	-H45B	109.49	C47	-C48	-H48A	109.54
H45A	-C45	-H45B	109.54	C47	-C48	-H48B	109.48
H45A	-C45	-H45C	109.39	C47	-C48	-H48C	109.51
05	-C45	-H45C	109.48	H48A	-C48	-H48B	109.36
Н45В	-C45	-H45C	109.43	H48A	-C48	-H48C	109.43
P	-C46	-H46B	109.53	H48B	-C48	-H48C	109.51
Ρ	-C46	-H46C	109.50	06	-C49	-H49A	109.78
P	-C46	-H46A	109.51	06	-C49	-H49B	109.77
н4бА	-C46	-H46C	109.41	C50	-C49	-H49A	109.83
Н46В	-C46	-H46C	109.42	C50	-C49	-H49B	109.75
H46A	-C46	-Н46В	109.46	H49A	-C49	-H49B	108.26
06	-C47	-C48	110.9(4)	C49	-C50	-H50A	109.52
06	-C49	-C50	109.4(4)	C49	-C50	-H50B	109.49
06	-C47	-H47A	109.49	C49	-C50	-H50C	109.51
06	-C47	-H47B	109.45	H50A	-C50	-H50B	109.46
C48	-C47	-H47A	109.45	H50A	-C50	-H50C	109.48
C48	-C47	-H47B	109.48	H50B	-C50	-H50C	109.37
H47A	-C47	-H47B	108.04				

Torsion Angles (Degrees)

C7	-Pd	-P	-C18	-85.95(13)
C7	-Pd	-P	-C32	160.83(13)
C7	-Pd	-P	-C46	49.17(16)
C8	-Pd	-P	-C18	-84.38(18)
C8	-Pd	-P	-C32	162.40(17)
C8	-Pd	-P	-C46	50.7(2)
C38	-Pd	-P	-C18	107.40(13)
C38	-Pd	-P	-C32	-5.82(12)
C38	-Pd	-P	-C46	-117.47(15)
P	-Pd	-C7	-C1	-61.81(18)
Р	-Pd	-C7	-C8	178.68(14)
C8	-Pd	-C7	-C1	119.5(3)
Р	-Pd	-C8	-C7	-2.4(3)
P	-Pd	-C8	-C9	120.1(2)
C7	-Pd	-C8	-C9	122.4(3)
C38	-Pd	-C8	-C7	162.83(16)
C38	-Pd	-C8	-C9	-74.7(2)
Р	-Pd	-C38	-C37	6.44(18)
Р	-Pd	-C38	-C39	-114.54(16)
P	-Pd	-C38	-C43	128.18(16)
C8	-Pd	-C38	-C37	-165.81(17)
C8	-Pd	-C38	-C39	73.2(2)
C8	-Pd	-C38	-C43	-44.1(2)
P	-Pd	-C7	-H7	57.50
C8	-Pd	-C7	-H7	-121.18
Ρ	-Pd	-C8	-H8	-118.33
C7	-Pd	-C8	-H8	-115.96
C38	-Pd	-C8	-H8	46.87
C46	-P	-C18	-C23	-36.1(3)
Pd	-P	-C32	-C33	-175.5(2)
Pd	-P	-C18	-C19	-75.1(2)
Pd	-P	-C18	-C23	102.0(2)
C32	-P	-C18	-C19	40.1(2)
C32	-P	-C18	-C23	-142.8(2)
C46	-P	-C18	-C19	146.8(2)
C46	-P	-C32	-C37	127.0(2)
C18	-P	-C32	-C33	58.1(3)

C18	-P	-C32	-C37	-121.0(2)
Pd	-P	-C32	-C37	5.4(2)
C46	-P	-C32	-C33	-53.9(3)
Pd	-P	-C46	-Н46В	173.29
Pd	-P	-C46	-H46C	53.29
Pd	-P	-C46	-Н46А	-66.66
C32	-P	-C46	-H46C	-60.18
C18	-P	-C46	-H46C	-166.45
C18	-P	-C46	-Н46А	73.60
C18	-P	-C46	-Н46В	-46.45
C32	-P	-C46	-Н46А	179.86
C32	-P	-C46	-Н46В	59.81
C30	-02	-C25	-C26	4.6(5)
C30	-02	-C25	-C24	-175.4(3)
C31	-03	-C29	-C24	-168.4(3)
C31	-03	-C29	-C28	11.3(6)
C44	-04	-C39	-C38	-167.1(3)
C44	-04	-C39	-C40	16.8(5)
C45	-05	-C43	-C42	-13.5(4)
C45	-05	-C43	-C38	170.7(3)
C47	-06	-C49	-C50	-179.0(4)
C49	-06	-C47	-C48	-173.4(4)
C6	-C1	-C2	-C3	-1.3(4)
C7	-C1	-C2	-C3	176.1(3)
C'/	-Cl	-C6	-05	-176.8(3)
C6	-C1	-C7	-08	-152.8(3)
C2	-C1	-C6	-C5	0.6(4)
C6	-C1	-C7	-Pd	124.6(2)
C2	-C1	-C7	-Pd	-52.7(3)
C2	-CI	-C7	-08	29.9(4)
CI	-C2	-C3	-C4	1.3(5)
C2	-C3	-C4	-05	-0.5(6)
C3	-C4	-05	-06	-0.2(6)
C4	-C5	-06	-C1	0.1(5)
CI	-07	-08	-09	167.2(3)
Pa	-07	-08	-09	-89.6(3)
CI	-07	-08	-Pa	-103.2(2)
Pa	-08	-09	-01	123.6(3)
Pa	-08	-09	-C10	-54.4(3)
C7	-08	-09	-C10	16.9(4)
C7	-08	-09	-01	-165.1(3)
01	-09	-CIU	-CII	169.9(3)
01	-09	-CIU	-011	-8.1(5)
C9	-C10	-CII	-C12	-179.6(3)
CIU	-CII	-C12	-C17	16.4(5)
C10 017	-011	-C12	-013	-103.1(3)
C1 / 01 1	-C12	-CI3	-014	-3.0(5)
C11 C11	-C12	-C17	-C14	-176.0(4)
C11 C12	-012	-C13	-014	2 5 (5)
C12	-013	-C14	-C15	2.5(5)
C12	-014	-C14 -C15	-C16	2.3(0)
C14	-015	-C15	-017	-1 1(7)
C15	-016	-C17	-C12	-0.2(6)
D	-018	-C19	-020	-179 6(2)
C23	-C18	-C19	-020	3 0(4)
025 Р	-C18	-023	-C22	178 2(2)
C19	-C18	-C23	-C22	-4.8(4)
C19	-C18	-C23	-C24	174.1(3)
P	-C18	-C23	-C24	-2.9(4)
C18	-C19	-C20	-C21	1.0(5)
C19	-C20	-C21	-C22	-3.2(5)
C20	-C21	-C22	-C23	1.3(5)
C21	-C22	-C23	-C18	2.8(4)
C21	-C22	-C23	-C24	-176.3(3)
C22	-C23	-C24	-C29	-86.8(4)
C18	-C23	-C24	-C29	94.2(4)
C22	-C23	-C24	-C25	85.9(3)
C18	-C23	-C24	-C25	-93.0(4)
C23	-C24	-C25	-02	5.7(4)
C23	-C24	-C25	-C26	-174.2(3)
C29	-C24	-C25	-02	178.6(3)
C25	-C24	-C29	-C28	2.8(5)
C23	-C24	-C29	-03	-4.5(4)
C23	-C24	-C29	-C28	175.7(3)
C25	-C24	-C29	-03	-177.4(3)
C29	-C24	-C25	-C26	-1.4(5)
02	-C25	-C26	-C27	179.6(4)

C24	-C25	-C26	-C27	-0.4(6)
C25	-C26	-C27	-C28	0.8(7)
C26	-C27	-C28	-C29	0.6(7)
C27	-C28	-C29	-03	177.8(4)
C27	-C28	-C29	-C24	-2.5(6)
C37	-C32	-C33	-C34	0.5(5)
Ρ	-C32	-C37	-C36	179.0(2)
Ρ	-C32	-C37	-C38	-0.1(4)
C33	-C32	-C37	-C36	-0.2(4)
C33	-C32	-C37	-C38	-179.2(3)
Ρ	-C32	-C33	-C34	-178.6(3)
C32	-C33	-C34	-C35	-0.3(5)
C33	-C34	-C35	-C36	-0.3(6)
C34	-C35	-C36	-C37	0.6(5)
C35	-C36	-C37	-C38	178.8(3)
C35	-C36	-C37	-C32	-0.4(5)
C32	-C37	-C38	-C39	94.1(4)
C36	-C37	-C38	-C43	74.9(3)
C32	-C37	-C38	-Pd	-5.2(3)
C36	-C37	-C38	-C39	-85.0(4)
C36	-C37	-C38	-Pd	175.7(2)
C32	-C37	-C38	-C43	-106.0(3)
Pd	-C38	-C39	-04	95.4(3)
Pd	-C38	-C39	-C40	-88.4(3)
C37	-C38	-C39	-C40	159.7(3)
C37	-C38	-C43	-05	17.5(4)
C37	-C38	-C39	-04	-16.4(4)
Pd	-C38	-C43	-05	-95.1(2)
Pd	-C38	-C43	-C42	89.0(3)
C43	-C38	-C39	-04	-176.8(3)
C37	-C38	-C43	-C42	-158.4(3)
C39	-C38	-C43	-05	177.9(3)
C43	-C38	-C39	-C40	-0.7(5)
C39	-C38	-C43	-C42	1.9(4)
C38	-C39	-C40	-C41	-1.4(5)
04	-C39	-C40	-C41	174.3(3)
C39	-C40	-C41	-C42	2.4(6)
C40	-C41	-C42	-C43	-1.2(6)
C41	-C42	-C43	-C38	-1.1(5)
C41	-C42	-C43	-05	-176.6(3)

Contact Distances(Å)

Pd	.C11	4.199(3)	C9	.C41	3.586(5)
Pd	.C41	3.605(4)	C9	.C5_h	3.599(5)
Pd	.H2	3.0783	C10	.C5_h	3.534(5)
Pd	.H10	2.9393	C11	.Pd	4.199(3)
01	.C41	3.332(4)	C19	.C33	3.394(5)
01	.C45_a	3.179(4)	C19	.C44_e	3.577(5)
02	.C22	3.336(3)	C19	.04	3.256(4)
03	.C46	3.292(4)	C20	.04_e	3.372(4)
03	.C22	3.323(4)	C21	.C22_i	3.416(5)
04	.C32	3.367(4)	C22	.C21_i	3.416(5)
04	.C19	3.256(4)	C22	.C22_i	3.481(5)
04	.C20_e	3.372(4)	C22	.02	3.336(3)
05	.C31_f	3.094(5)	C22	.03	3.323(4)
05	.C36	3.294(3)	C24	.C46	3.225(5)
01	.H11	2.5122	C29	.C46	3.246(5)
01	.H14_b	2.7855	C31	.05_f	3.094(5)
01	.H50B_c	2.7946	C31	.C45_f	3.568(5)
01	.H45B_a	2.3358	C32	.04	3.367(4)
03	.H46B	2.6170	C33	.C19	3.394(5)
03	.H48C_d	2.7300	C36	.05	3.294(3)
04	.H20_e	2.6125	C40	.C9	3.509(5)
04	.H19	2.4369	C41	.C9	3.586(5)
05	.H31A_f	2.5581	C41	.Pd	3.605(4)
06	.H3_o	2.7435	C41	.01	3.332(4)
06	.H45A_o	2.9109	C44	.C19_e	3.577(5)
C5	.C10_h	3.534(5)	C45	.01_a	3.179(4)
C5	.C9_h	3.599(5)	C45	.C31_f	3.568(5)
C9	.C40	3.509(5)	C46	.03	3.292(4)
C46	.C29	3.246(5)	C28	.H31C	2.7004
C46	.C24	3.225(5)	C28	.H31B	2.8433
C2	.H8	2.7563	C29	.H46A	2.7685
C3	.H49A_g	2.9378	C29	.H46B	2.9362
C6	.H46A	3.0624	C30	.H26	2.5364
C7	.H10	2.6400	C31	.H46B	3.0694

C8	.H2	2.7695	C31	.H48C_d	3.0490
C10	.H17	2.7639	C31	.H28	2.5457
C10	.H7	2.6557	C31	.H15_i	2.9697
C11	.H13_b	3.0885	C31	.H45A_f	3.0420
C11	.H44B	2.8276	C32	.H31B_f	3.0401
C12	.H44B	2.9316	C32	.H19	2.5961
C15	.H49B	2.9962	C33	.H31B_f	2.8691
C15	.H35_e	2.7461	C33	.H46B	2.9855
C16	.H47A	2.8967	C34	.H44A_e	3.0945
C16	.H49B	3.0727	C34	.H31B_f	2.7963
C16	.H35_e	2.9281	C35	.H31B_f	2.8774
C17	.H10	2.7313	C35	.H44A_e	3.0253
C19	.H48A_d	2.9516	C36	.H31B_f	3.0318
C20	.H48A_d	2.8905	C37	.H19	3.0778
C21	.H22_i	2.8145	C39	.H20_e	2.9707
C21	.H48A_d	3.0668	C40	.H44C	2.7000
C22	.H16_i	2.9995	C40	.H44B	2.8963
C22	.H21_i	3.0082	C42	.H45B	2.6855
C24	.H46A	2.7538	C42	.H45C	2.8430
C26	.H30C	2.7312	C44	.H19	3.0695
C26	.H30B	2.7905	C44	.H19_e	3.0694
C26	.H6	2.9096	C44	.H40	2.5653
C45	.H50B_K	2.9123	HI3	.CII_b	3.0885
C45	.H3IA_I	2.8831	HI3	.HII	2.4309
C45	.H27_J	3.0969	H14	.H5_m	2.5199
C45	.H42	2.5367	H14	d_10.	2.7855
C46	.H33	3.0526	H15	.C31_1	2.9697
C48	.H33_1	2.9039	H15	.H3IC_1	2.4746
C50	.H40_b	3.0530	HI6	.H22_1	2.2972
H2	.H45C	2.2984	H16	.C22_1	2.9995
HZ	.Pd	3.0783	H1 /	.010	2.7639
H2	.08	2.7695	HI7	.HIU	2.2376
HZ	.H8	2.23/1	H19 1110	.C44_e	3.0694
112	.H49A_9	2.3209	H19 H10	.04	2.4309
пр Пр	.00_K	2.7435	п19 u10	.032	2.5901
пр 116	. H14_1	2.5199	п19 u10	.037	3.0776
по 116	.C20	2.9090	ц 1 1 2 0	.014	2 9707
но 117	.п/ С10	2.5240	H20 H20	.04	2.9707
п/ u7	.CIU	2.0337	п20 ц21	.04_e	3 0082
н7	н10 н10	2.0210	H21	.022_1 н22 i	2 4954
н8	.н110 H2	2.0100	H22	C21 i	2 8145
н8	C2	2 7563	H22	.021_1 н16 і	2 2972
H10	Pd	2 9393	н22	H21 i	2 4954
H10	.H17	2,2376	н26	H30B	2.3796
H10	.H7	2.0499	н26	.H30C	2.2651
H10	.C7	2.6400	Н26	.C30	2.5364
н10	.C17	2.7313	Н27	.H45B n	2.5752
Н11	.H13	2.4309	Н27	.C45 n	3.0969
Н11	.01	2.5122	Н28	.H31B	2.4720
Н28	.C31	2.5457	н40	.C44	2.5653
H28	.H31C	2.2099	H41	.H45C_a	2.5133
H30B	.H26	2.3796	H42	.H45C	2.4784
H30B	.C26	2.7905	Н42	.H45B	2.1862
H30C	.H26	2.2651	Н42	.C45	2.5367
H30C	.C26	2.7312	H44A	.C35_e	3.0253
H31A	.05_f	2.5581	H44A	.C34_e	3.0945
H31A	.C45_f	2.8831	H44B	.C12	2.9316
H31A	.H45A_f	2.3349	H44B	.C40	2.8963
H31A	.H48C_d	2.4721	H44B	.C11	2.8276
H31B	.H28	2.4720	H44B	.H40	2.5431
H31B	.C32_f	3.0401	H44C	.C40	2.7000
H31B	.C33_f	2.8691	H44C	.H40	2.1954
H31B	.C28	2.8433	H45A	.C31_f	3.0420
H31B	.C36_f	3.0318	H45A	.H31A_f	2.3349
H31B	.C34_f	2.7963	H45A	.06_k	2.9109
H31B	.C35_f	2.8774	H45B	.C42	2.6855
H31C	.H28	2.2099	H45B	.01_a	2.3358
HJTC	.H15_1	2.4746	H45B	.H27_J	2.5752
H3TC	.028	2.7004	H45B	. H42	2.1862
HJJ	.046	3.0526	H45C	.H2	2.2984
H33	. н40В	2.4942	H45C	. H42	2.4784
H33 H35	.C48_a	2.9039	H45C	.н41_а	2.5133
H35	.CI5_e	∠./40⊥ 2.0201	H45C	.042	2.8430
п35 ц40	.CTO_e	4.9201 9 5/91	п40А ц4сл	.00	3.0624 2 7520
1140 1140	.1133D H44C	2.3431 2 1054	1140A 1146A	C29	2.1000 2 7605
н 10 н 4 0	C50 c	3 0230	11 10A 11 10A	н33	2 1000
11-10	.000_0	0.0000	TITUD	ر ر ۱۱ .	4.4944

TTAGD	021	2 0604	11/00	021 -	2 0400
п40Б	.031	5.0094	H40C	.031_1	5.0490
H46B	.C33	2.9855	H48C	.H31A_i	2.4721
H46B	.03	2.6170	H49A	.H47B	2.3485
H46B	.C29	2.9362	H49A	.C3_h	2.9378
H47A	.C16	2.8967	H49A	.H3_h	2.3269
H47A	.H49B	2.4356	H49B	.C15	2.9962
Н47В	.H49A	2.3485	H49B	.C16	3.0727
Н47В	.H50C_p	2.4053	H49B	.H47A	2.4356
H48A	.C19_i	2.9516	H50B	.C45_o	2.9123
H48A	.C20_i	2.8905	H50B	.01_b	2.7946
H48A	.C21_i	3.0668	H50C	.H47B_p	2.4053
H48C	.03_i	2.7300			

Hydrogen Bonds (Å, Deg)

C19	H19 O4	0.9499	2.4369	3.256(4)	144.28	
C31	H31A 05	0.9802	2.5581	3.094(5)	114.39	2_556
C45	H45B 01	0.9791	2.3358	3.179(4)	143.86	2_567

Translation of Symmetry Code to Equiv.Pos

а	= [2567.00]	= -x,1-y,2-z
b	= [2677.00]	= 1-x,2-y,2-z
С	= [2677.00]	= 1-x,2-y,2-z
d	= [2666.00]	= 1-x,1-y,1-z
е	= [2566.00]	= -x,1-y,1-z
f	= [2556.00]	= -x,-y,1-z
g	= [2667.00]	= 1-x,1-y,2-z
h	= [2667.00]	= 1-x,1-y,2-z
i	= [2666.00]	= 1-x,1-y,1-z
j	= [1455.00]	= -1+x,y,z
k	= [1445.00]	= -1+x,-1+y,z
1	= [1545.00]	= x,-1+y,z
m	= [1565.00]	= x,1+y,z
n	= [1655.00]	= 1+x,y,z
0	= [1665.00]	= 1+x,1+y,z
р	= [2777.00]	= 2-x,2-y,2-z

17 Literaturverzeichnis

- [1] L. Quin, A Guide to Organophosphorus Chemistry, Wiley-Interscience, New York, 2000.
- [2] J. J. Kiddle, *Speciality Chemicals Magazine* **2002**, *22*, *22*.
- [3] J. I. C. R. Engel, *Synthesis of carbon-phosphorus bonds*, CRC Press LLC, Florida, **2004**.
- [4] L. Maier, Organic Phosphorus Compounds, Vol. 1, Wiley-Interscience, New York, 1972.
- [5] F. R. Hartley, *The Chemistry of Organophosphorus Compounds, Vol. 1*, John Wiley & Sons Ltd, **1990**.
- [6] Beyer, Walter, *Lehrbuch der organischen Chemie*, S. Hirzel Verlag, Stuttgart-Leipzig, **1998**.
- [7] K. A. Petrov, S. V. Agafonov, V. P. Pokatun, Zhurn. Obs. Khim. 1987, 57, 98.
- [8] G. Elsner, Organische Phosphorverbindungen 1, 4. ed., Georg Thieme, Stuttgart, 1982.
- [9] U. Christmann, R. Vilar, Angew. Chem. Int. Ed. 2005, 44, 366.
- [10] B. Cornils, W. A. Herrmann, R. Schloegl, *Catalysis From A to Z: A Concise Encyclopedia*, **2000**.
- [11] K. M. Pietrusiewicz, M. Zablocka, Chem. Rev. 1994, 94, 1375.
- [12] C. A. Tolman, *Chem. Rev.* **1977**, 77, 313.
- [13] K. V. L. Crepy, T. Imamoto, Adv. Synth. Catal. 2003, 345, 79.
- [14] K. V. L. Crepy, T. Imamoto, *Top. Curr. Chem.* 2003, 229, 1.
- [15] M. Beller, C. Bolm, Editors, *Transition Metals for Organic Synthesis, Volume 2*, Wiley-VCH, Weinheim, **2004**.
- [16] H. T. R. Noyori, Acc. Chem. Res. **1990**, 345.
- [17] S. J. Connon, S. Blechert, Angew. Chem. Int. Ed. 2003, 42, 1900.
- [18] D. Selent, K.-D. Wiese, D. Röttger, A. Börner, Angew. Chem. Int. Ed. 2000, 1639.
- [19] D. W. Old, J. P. Wolfe, S. L. Buchwald, J. Am. Chem. Soc. 1998, 120, 9722.
- [20] S. D. Walker, T. E. Barder, J. R. Martinelli, S. L. Buchwald, *Angew. Chem. Int. Ed.* **2004**, *43*, 1871.
- [21] J. P. Wolfe, R. A. Singer, B. H. Yang, S. L. Buchwald, J. Am. Chem. Soc. 1999, 121, 9550.
- [22] N. Miyaura, K. Yamada, A. Suzuki, *Tetrahedron Lett.* 1979, 3437.
- [23] T. E. Barder, S. D. Walker, J. R. Martinelli, S. L. Buchwald, J. Am. Chem. Soc. 2005, 127, 4685.
- [24] A. F. Littke, G. C. Fu, Angew. Chem. Int. Ed. 2002, 41, 4176.
- [25] G. B. Smith, G. C. Dezeny, D. L. Hughes, A. O. King, T. R. Verhoeven, J. Org. Chem. 1994, 8151.
- [26] F. Paul, J. Patt, J. F. Hartwig, J. Am. Chem. Soc. 1994, 116, 5969.
- [27] E. Galardon, S. Ramdeehul, J. M. Brown, A. Cowley, K. K. Hii, A. Jutand, *Angew. Chem. Int. Ed.* **2002**, *41*, 1760.
- [28] D. Hills Ivory, R. Netherton Matthew, C. Fu Gregory, Angew. Chem. Int. Ed. 2003, 42, 5749.
- [29] E. R. Strieter, D. G. Blackmond, S. L. Buchwald, J. Am. Chem. Soc. 2003, 125, 13978.
- [30] N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457.
- [31] A. O. Aliprantis, J. W. Canary, J. Am. Chem. Soc. 1994, 116, 6985.
- [32] A. A. C. Braga, N. H. Morgon, G. Ujaque, A. Lledos, F. Maseras, J. Organomet. *Chem.* **2006**, *691*, 4459.

- [33] A. A. C. Braga, G. Ujaque, F. Maseras, Organometallics 2006, 25, 3647.
- [34] A. A. C. Braga, N. H. Morgon, G. Ujaque, F. Maseras, J. Am. Chem. Soc. 2005, 127, 9298.
- [35] G. Altenhoff, R. Goddard, W. Lehmann Christian, F. Glorius, J. Am. Chem. Soc. 2004, 126, 15195.
- [36] D. Zim, A. S. Gruber, G. Ebeling, J. Dupont, A. L. Monteiro, Org. Lett. 2000, 2, 2881.
- [37] M. R. Netherton, C. Dai, K. Neuschuetz, G. C. Fu, J. Am. Chem. Soc. 2001, 123, 10099.
- [38] T. J. Colacot, E. S. Gore, A. Kuber, *Organometallics* **2002**, *21*, 3301.
- [39] J. H. Kirchhoff, M. R. Netherton, I. D. Hills, G. C. Fu, J. Am. Chem. Soc. 2002, 124, 13662.
- [40] C. W. K. Gstottmayr, V. P. W. Bohm, E. Herdtweck, M. Grosche, W. A. Herrmann, *Angew. Chem. Int. Ed.* **2002**, *41*, 1363.
- [41] Q.-S. Hu, Y. Lu, Z.-Y. Tang, H.-B. Yu, J. Am. Chem. Soc. 2003, 125, 2856.
- [42] G. Altenhoff, R. Goddard, C. W. Lehmann, F. Glorius, *Angew. Chem. Int. Ed.* **2003**, 42, 3690.
- [43] O. Navarro, A. Kelly Roy, 3rd, P. Nolan Steven, J. Am. Chem. Soc. 2003, 125, 16194.
- [44] Y. Kwong Fuk, S. Chan Kin, H. Yeung Chi, S. C. Chan Albert, *Chem. Commun.* **2004**, 2336.
- [45] C. H. Burgos, T. E. Barder, X. Huang, S. L. Buchwald, Angew. Chem. Int. Ed. 2006, 45, 4321.
- [46] P. J. Murphy, Editor, *Organophosphorus Reagents: A Practical Approach in Chemistry*, Oxford University Press, Oxford, **2004**.
- [47] J. Hernandez, F. M. Goycoolea, D. Zepeda-Rivera, J. Juarez-Onofre, K. Martinez, J. Lizardi, M. Salas-Reyes, B. Gordillo, C. Velazquez-Contreras, O. Garcia-Barradas, S. Cruz-Sanchez, Z. Dominguez, *Tetrahedron* 2006, 62, 2520.
- [48] W. Wolfsberger, H. Schmidbaur, Synth. React. Inorg. Met. Org. Chem. 1974, 4, 149.
- [49] *Acros Organics*, 50 Euro/kg, **2006/2007**.
- [50] M. Wada, S. Higashizaki, J. Chem. Soc. Chem. Commun. 1984, 482.
- [51] M. Wada, S. Higashizaki, A. Tsuboi, J. Chem. Rep. Synop. 1985, 38.
- [52] P. R. Sharp, Organometallics 1984, 3, 1217.
- [53] G. M. Whitesides, M. Hackett, R. L. Brainard, J. P. P. M. Lavalleye, A. F. Sowinski, A. N. Izumi, S. S. Moore, D. W. Brown, E. M. Staudt, *Organometallics* **1985**, *4*, 1819.
- [54] V. C. Gibson, C. E. Graimann, P. M. Hare, M. L. H. Green, J. A. Bandy, P. D. Grebenik, K. Prout, J. Chem. Soc. Dalton Trans. 1985, 2025.
- [55] T. T. Wenzel, R. G. Bergman, J. Am. Chem. Soc. 1986, 108, 4856.
- [56] L. Heuer, U. K. Bode, P. G. Jones, R. Schmutzler, Z. Naturforschung B 1989, 44, 1082.
- [57] M. L. Luetkens, Jr., A. P. Sattelberger, H. H. Murray, J. D. Basil, J. P. Fackler, Jr., *Inorg. Chem.* **1989**, *26*, 7.
- [58] M. L. Luetkens, Jr., A. P. Sattelberger, H. H. Murray, J. D. Basil, J. P. Fackler, Jr., *Inorg. Synth.* **1990**, 28, 305.
- [59] A. Ishii, I. Takaki, J. Nakayama, M. Hoshino, *Tetrahedron Lett.* 1993, 34, 8255.
- [60] M. T. Mizwicki, F. Haddadian, T. S. Kimmerling, B. S. Muehl, B.-J. Sheu, B. N. Storhoff, J. C. Huffman, *Organometallics* **2001**, *20*, 963.
- [61] Q. Wang, D. Deredas, C. Huynh, M. Schlosser, Chem. Eur. J. 2003, 9, 570.
- [62] A. Kornath, F. Neumann, H. Oberhammer, *Inorg. Chem.* 2003, 42, 2894.
- [63] U. Monkowius, S. Nogai, H. Schmidbaur, Organometallics 2003, 22, 145.
- [64] M. Sander, *Chem. Ber.* **1962**, *95*, 473.
- [65] E. Duran, D. Velasco, F. Lopez-Calahorra, Perkin 1 2000, 591.
- [66] R. Emrich, P. W. Jolly, *Synthesis* **1993**, 39.

- [67] D. Guillaneux, L. Martiny, H. B. Kagan, Coll. Czech. Chem. Commun. 2000, 65, 717.
- [68] M. Mikolajczyk, J. Omelanczuk, W. Perlikowska, *Tetrahedron* 1979, 35, 1531.
- [69] P. Walden, Ber. Dtsch. Chem. Ges. 1899, 32, 1855.
- [70] P. Walden, Ber. Dtsch. Chem. Ges. 1896, 29, 133.
- [71] P. Walden, Ber. Dtsch. Chem. Ges. 1895, 28, 1287.
- [72] P. Walden, Ber. Dtsch. Chem. Ges. 1895, 28, 2766.
- [73] P. Walden, Ber. Dtsch. Chem. Ges. 1893, 26, 210.
- [74] H. A. Bent, *Chem. Rev.* **1961**, *61*, 275.
- [75] H. A. Bent, J. Chem. Educ. **1960**, *37*, 616.
- [76] G. Wittig, U. Schollkopf, *Tetrahedron* **1958**, *3*, 91.
- [77] G. Wittig, U. Pockels, H. Droge, Ber. Dtsch. Chem. Ges. 1938, 71B, 1903.
- [78] H. Gilman, W. Langham, A. L. Jacoby, J. Am. Chem. Soc. 1939, 61, 106.
- [79] A. Krasovskiy, B. F. Straub, P. Knochel, Angew. Chem. Int. Ed. 2006, 45, 159.
- [80] T. E. Barder, S. L. Buchwald, Org. Lett. 2004, 6, 2649.
- [81] J. E. Milne, S. L. Buchwald, J. Am. Chem. Soc. 2004, 126, 13028.
- [82] A. Zapf, R. Jackstell, F. Rataboul, T. Riermeier, A. Monsees, C. Fuhrmann, N. Shaikh, U. Dingerdissen, M. Beller, *Chem. Commun.* **2004**, 38.
- [83] F. Rataboul, A. Zapf, R. Jackstell, S. Harkal, T. Riermeier, A. Monsees, U. Dingerdissen, M. Beller, *Chem. Eur. J.* **2004**, *10*, 2983.
- [84] N. Elming, N. Clauson-Kaas, Acta Chem. Scand. 1952, 867.
- [85] D. S. Black, Science of Synthesis 2002, 9, 441.
- [86] T. L. Brown, *Inorg. Chem.* **1992**, *31*, 1286.
- [87] S. Sasaki, K. Sutoh, F. Murakami, M. Yoshifuji, J. Am. Chem. Soc. 2002, 124, 14830.
- [88] R. T. Boere, Y. Zhang, J. Organomet. Chem. 2005, 690, 3864.
- [89] P. Knochel, W. Dohle, N. Gommermann, F. F. Kneisel, F. Kopp, T. Korn, I. Sapountzis, V. A. Vu, *Angew. Chem. Int. Ed.* **2003**, *42*, 4302.
- [90] G. Baba, S. A. Toure, C. G. Tea, J.-M. Denis, T. Y. N'Guessan, J. Soc. Ouest-Afric. Chim. 2002, 7, 25.
- [91] F. Eisentraeger, A. Goethlich, I. Gruber, H. Heiss, C. A. Kiener, C. Krueger, J. Ulrich Notheis, F. Rominger, G. Scherhag, M. Schultz, B. F. Straub, M. A. O. Volland, P. Hofmann, *New J. Chem.* **2003**, *27*, 540.
- [92] O. J. Scherer, G. Schieder, *Chem. Ber.* **1968**, *101*, 4184.
- [93] H. Tomori, J. M. Fox, S. L. Buchwald, J. Org. Chem. 2000, 65, 5334.
- [94] D. V. Shenai-Khatkhate, A. Amamchyan, M. B. Power, R. L. Dicarlo, J. E. Felton, (Rohm and Haas Electronic Materials, L.L.C., USA). Application: US, **2005**, p. 8 pp.
- [95] G. Baccolini, C. Boga, M. Mazzacurati, F. Sangirardi, Org. Lett. 2006, 8, 1677.
- [96] G. Baccolini, C. Boga, M. Mazzacurati, J. Org. Chem. 2005, 70, 4774.
- [97] G. Baccolini, C. Boga, M. Galeotti, Angew. Chem. Int. Ed. 2004, 43, 3058.
- [98] S. Singh, K. M. Nicholas, Chem. Commun. 1998, 149.
- [99] C. Baillie, J. Xiao, Curr. Org. Chem. 2003, 7, 477.
- [100] W. Wolfsberger, Chemiker-Zeitung 1989, 113, 351.
- [101] A. Attar, D. Bieniek, M. Bahadir, F. Korte, Chemiker-Zeitung 1986, 110, 368.
- [102] H. Mayr, A. R. Ofial, Angew. Chem. Int. Ed. 2006, 45, 1844.
- [103] R. V. H. Jones, R. C. Ewins, R. M. Mellor, (Imperial Chemical Industries PLC, UK). Application: WO, **1993**, p. 12 pp.
- [104] I. Ikeda, T. Katayama, K. Tsuchiya, M. Okahara, Bull. Chem. Soc. Jpn. 1983, 56, 2473.
- [105] P. R. Markies, T. Nomoto, G. Schat, O. S. Akkerman, F. Bickelhaupt, W. J. J. Smeets, A. L. Spek, *Organometallics* 1991, 10, 3826.
- [106] A. C. Frisch, F. Rataboul, A. Zapf, M. Beller, J. Organomet. Chem. 2003, 687, 403.
- [107] A. C. Frisch, N. Shaikh, A. Zapf, M. Beller, Angew. Chem. Int. Ed. 2002, 41, 4056.

- [108] D. Hoppe, T. Hense, Angew. Chem. Int. Ed. 1997, 36, 2282.
- [109] D. B. Denney, J. W. Hanifin, Jr., Tetrahedron Lett. 1963, 2177.
- [110] M. Deshmukh, E. Dunach, S. Juge, H. B. Kagan, Tetrahedron Lett. 1984, 25, 3467.
- [111] E. Dunach, H. B. Kagan, Tetrahedron Lett. 1985, 26, 2649.
- [112] A. Amano, T. Akiyama, T. Miura, T. Hagiwara, (Takasago International Corporation, Japan; Takasago Perfumery Co., Ltd.). Application: EP, 2002, p. 19 pp.
- [113] P. Rys, Acc. Chem. Res. 1976, 9, 345.
- [114] A. Nagaki, M. Togai, S. Suga, N. Aoki, K. Mae, J. Yoshida, J. Am. Chem. Soc. 2005, 127, 11666.
- [115] J. R. Van Wazer, C. F. Callis, J. N. Shoolery, R. C. Jones, J. Am. Chem. Soc. 1956, 78, 5715.
- [116] S. O. Grim, W. McFarlane, E. F. Davidoff, J. Org. Chem. 1967, 32, 781.
- [117] S. O. Grim, W. McFarlane, *Nature* **1965**, *208*, 995.
- [118] S. O. Grim, A. W. Yankowsky, Phosphorus Sulfur Relat. Elem. 1977, 3, 191.
- [119] E. Fluck, G. Heckmann, Methods in Stereochemical Analysis, Vol. 8, VCH, 1987.
- [120] L. Maier, P. J. Diel, J. C. Tebby, *Handbook of Phosphorus-31 Nuclear Magnetic Resonance Data*, CRC press, **1991**.
- [121] T. E. Muller, J. C. Green, D. M. P. Mingos, C. M. McPartlin, C. Whittingham, D. J. Williams, T. M. Woodroffe, J. Organomet. Chem. 1998, 551, 313.
- [122] aus dieser Arbeit.
- [123] J. P. Stambuli, S. R. Stauffer, K. H. Shaughnessy, J. F. Hartwig, J. Am. Chem. Soc. **2001**, *123*, 2677.
- [124] S. S. Moore, G. M. Whitesides, J. Org. Chem. 1982, 47, 1489.
- [125] R. L. Brainard, T. M. Miller, G. M. Whitesides, Organometallics 1986, 5, 1481.
- [126] L. Maier, *Helv. Chim. Acta* **1966**, *49*, 1718.
- [127] J. Wolf, M. Manger, U. Schmidt, G. Fries, D. Barth, B. Weberndorfer, D. A. Vicic, W. D. Jones, H. Werner, J. Chem. Soc. Dalton Trans. Inorg. Chem. 1999, 1867.
- [128] E. Vedejs, Y. Donde, J. Org. Chem. 2000, 65, 2337.
- [129] A. Klose, J. A. Gladysz, Tetrahedron: Asymmetry 1999, 10, 2665.
- [130] L. J. Alvey, D. Rutherford, J. J. J. Juliette, J. A. Gladysz, J. Org. Chem. 1998, 63, 6302.
- [131] U. Dieckbreder, G.-V. Roschenthaler, A. A. Kolomeitsev, *Heteroat. Chem.* **2002**, *13*, 650.
- [132] M. Goerg, G.-V. Roeschenthaler, A. A. Kolomeitsev, J. Fluorine Chem. 1996, 79, 103.
- [133] H. Remmele, A. Koellhofer, H. Plenio, *Organometallics* 2003, 22, 4098.
- [134] N. Bampos, L. D. Field, B. A. Messerle, R. J. Smernik, Inorg. Chem. 1993, 32, 4084.
- [135] D. Gelman, L. Jiang, L. Buchwald Stephen, Org. Lett. 2003, 5, 2315.
- [136] C. J. Schaverien, R. Ernst, W. Terlouw, P. Schut, O. Sudmeijer, P. H. M. Budzelaar, J. Mol. Catal. A: Chem. 1998, 128, 245.
- [137] H. G. Alt, M. Jung, J. Organomet. Chem. 1998, 568, 127.
- [138] E. D. Brady, T. P. Hanusa, M. Pink, V. G. Young, Jr., Inorg. Chem. 2000, 39, 6028.
- [139] J. J. M. De Pater, C. E. P. Maljaars, E. De Wolf, M. Lutz, A. L. Spek, B.-J. Deelman, C. J. Elsevier, G. Van Koten, *Organometallics* 2005, 24, 5299.
- [140] A. Scrivanti, V. Beghetto, E. Campagna, U. Matteoli, J. Mol. Catal. A: Chem. 2001, 168, 75.
- [141] S. Doherty, J. G. Knight, M. Betham, Chem. Commun. 2006, 88.
- [142] W. Chen, W. Mbafor, M. Roberts Stanley, J. Whittall, J. Am. Chem. Soc. 2006, 128, 3922.
- [143] C. P. Casey, R. M. Bullock, W. C. Fultz, A. L. Rheingold, *Organometallics* **1982**, *1*, 1591.

- [144] R. Nunez, C. Vinas, F. Teixidor, R. Sillanpaa, R. Kivekas, J. Organomet. Chem. 1999, 592, 22.
- [145] S. Paavola, F. Teixidor, C. Vinas, R. Kivekas, J. Organomet. Chem. 2002, 645, 39.
- [146] R. Uriarte, T. J. Mazanec, K. D. Tau, D. W. Meek, *Inorg. Chem.* **1980**, *19*, 79.
- [147] C. J. Curtis, A. Miedaner, R. Ciancanelli, W. W. Ellis, B. C. Noll, M. R. DuBois, D. L. DuBois, *Inorg. Chem.* 2003, 42, 216.
- [148] J. Podlaha, A. Jegorov, M. Budesinsky, V. Hanus, *Phosphorus Sulfur Relat. Elem.* **1988**, *37*, 87.
- [149] J. W. Ellis, K. N. Harrison, P. A. T. Hoye, A. G. Orpen, P. G. Pringle, M. B. Smith, *Inorg. Chem.* 1992, 31, 3026.
- [150] T. Okano, M. Yamamoto, T. Noguchi, H. Konishi, J. Kiji, Chem. Lett. 1982, 977.
- [151] H. H. Karsch, A. Appelt, Z. Naturforschung B 1983, 38B, 1399.
- [152] M. Manger, J. Wolf, M. Laubender, M. Teichert, D. Stalke, H. Werner, *Chem. Eur. J.* **1997**, *3*, 1442.
- [153] T. N. Mitchell, H. J. Belt, J. Organomet. Chem. 1990, 386, 167.
- [154] L. C. Baldwin, M. J. Fink, J. Organomet. Chem. 2002, 646, 230.
- [155] S. M. Reid, R. C. Boyle, J. T. Mague, M. J. Fink, J. Am. Chem. Soc. 2003, 125, 7816.
- [156] P. Kocovsky, S. Vyskocil, I. Cisarova, J. Sejbal, I. Tislerova, M. Smrcina, G. C. Lloyd-Jones, S. C. Stephen, C. P. Butts, M. Murray, V. Langer, J. Am. Chem. Soc. 1999, 121, 7714.
- [157] H.-S. Lin, L. A. Paquette, Synth. Commun. 1994, 24, 2503.

Lebenslauf

Persönliche Daten

Name	Jan Keller
geboren	15.06.1979
Geburtstort	Bad Soden am Taunus
Nationalität	deutsch
Familienstand	ledig

Studium

seit 07/04	Ludwig-Maximilians-Universität, München Promotion am Department Chemie und Biochemie
06/04	Ludwig-Maximilians-Universität, München Abschluss: Diplom-Chemiker Wahlfach: Polymerchemie
10/01	Ludwig-Maximilians-Universität, München Vordiplomsprüfung in Chemie

Zivildienst

07/98 – 08/99 Arbeiter-Samariter-Bund in Eschborn als Rettungsdiensthelfer im Rettungsdienst

Schulausbildung

08/89 – 07/98 Albert-Einstein-Gymnasium, Schwalbach/Ts. Abschluss: Abitur

08/85 – 07/89 Theodor-Heuss-Schule, Bad Soden/Ts. Grundschule