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1 Introduction 

‘It was a wonderful sight when the liquid, which looked almost unreal, was seen for 

the first time. It was not noticed when it flowed in. Its presence could not be 

confirmed until it had already filled up the vessel. Its surface stood sharply against 

the vessel like the edge of a knife.‘[1]  

These words were used by Heike Kammerlingh Onnes describing an experiment 

from 1908 and which has paved the road for a new era of science, the properties of 

matter at low temperatures (for which the Nobel Prize of Physics was awarded to 

Kammerlingh Onnes in 1913). The liquid he was talking about was helium, the last 

of the known elements, which resisted its liquefaction (having a boiling point of 

only 4.2 K). Soon after his successful experiment, it was possible to reach 

temperatures as low as 1 K in Kammerlingh Onnes’s Laboratory - and the discovery 

of superconductivity by cooling mercury below 4.2 K followed only three years 

later.  

Superconductivity is the property of some materials to completely loose their 

electrical resistance below a certain temperature (which is called critical 

temperature Tc). It is understandable that Kammerlingh Onnes was fascinated by 

this phenomenon because he was able to construct an electrical circuit with a 

current flowing theoretically forever - something that must have looked like a 

perpetual motion[2]. It is probably this ability that explains the great fascination and 

attraction of superconducting materials even today. 

Since those early days, a lot of superconducting materials have been found. While 

the first 20 years were restricted to discovering superconducting elements, with Nb 

having the highest Tc of all elements (9.4 K), this development was followed by the 

observation of superconductivity in compounds like NbN and intermetallic 

compounds like Nb3Sn and Nb3Ge[3, 4]. The latter two compounds were found to be 

superconducting by Bernd Matthias and it was him who also discovered the most 

superconducting materials overall. This might have been because Matthias was 
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following an alternative approach, trying to find new correlations between 

properties like the chemical structure or the number of valence electrons per atom 

and high critical temperatures (‘Matthias Rule’ 1955)[5, 6], instead of following any 

known theoretical predictions. These empirical rules are particularly suited for the 

type of intermetallic compounds mentioned above. They belong to the so-called 

A15 compounds and they crystallize in the in the V3Si-type structure (often called 

A15-type). The discovery of superconductivity in the A15 compounds also gave 

hope to overcome the two main difficulties for the technical application of 

superconductors: 

Already Kammerlingh Onnes had realized that superconductors could be used as 

electromagnets to generate high magnetic fields. One problem however had been, 

that in the early-discovered materials the superconducting state is destroyed even 

by small magnetic fields, making it unrealistic to build magnets from 

superconducting wires of these materials. Conventional electromagnets made of 

copper coils and an iron core can however produce magnetic flux densities of up 

to 1.6 T[7], a flux density where the superconducting state of all early-discovered 

materials already is destroyed. In 1960, it was found that Nb3Sn could withstand 

flux density of up to 9 T in real applications and nowadays flux densities of even 

over 20 T can be achieved in superconducting magnets made of Nb3Sn wires[2, 5, 8]. 

Superconducting magnets today are used in many applications - for magneto 

resonance imaging, for analytical tools like NMR or in magnetometers equipped 

with SQUID sensors. Even at particle accelerators like the Large Hadron Collider at 

CERN, thousands of superconducting magnets cooled by tons of liquid helium at 

1.9 K and 4.2 K are employed[9]. 

The second, more obvious problem, that makes a technical application of 

superconductors often uneconomical, is the cost of the coolant, i. e. liquid helium. 

This makes it understandable why, after almost two decades of stagnation in 

reaching higher Tcs (the above-mentioned Nb3Ge was the record holder for a long 

time), the discovery of the so-called cuprate superconductors has caused an 

enormous uproar in the 1980s. First reports of possible high Tc superconductivity 
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in the Ba-La-Cu-O System by Bednorz and Müller have therefore unleashed an 

avalanche of reports about new high Tc cuprate superconductors, such as the 

famous YBCO (YBa2Cu3O7-x, Tc ~ 90 K) [10, 11]. 

The theoretical framework to explain superconductivity at low temperatures had 

been established in the mid-1950s. According to the BCS theory, two electrons 

form a Cooper Pair, which cannot be scattered by the crystal lattice anymore and 

as a result the resistance of the compound is zero (for details see [5, 12, 13]). However, 

according to the BCS theory the transition temperature is expected not to exceed 

~ 30 K, which is possibly a reason that there had seemed to be little hope to find 

high Tc superconductors before the groundbreaking discovery by Bednorz and 

Müller.  

But as quick as the hope to overcome the chore of helium cooling and to use the 

way more economic nitrogen cooling instead had risen, the disillusionment had set 

in. Because of their ceramic character, the cuprates are very brittle making it 

difficult to construct flexible materials such as wires. This, together with the 

anisotropy of the physical properties, make cuprate superconductors only 

applicable in niche products and this is also the reason why conventional 

superconductors like the A15 compounds are still preferably used in technical 

applications.  

Therefore, finding new superconducting materials by intuition, chemical 

understanding and the help of theoretical forecasts, is still one of the most 

challenging but also worthwhile tasks of modern solid-state chemistry and physics 

– both from a theoretical point of view as well as the objective to improve 

everyday life. It should take more than 20 years since the discovery of 

superconductivity in the cuprates to find a new class of high-temperature 

superconductors. In 2006 and 2008, reports about superconducting LaFePO and 

LaFeAsO1-xFx were published[14, 15]. The latter with a reported Tc of 26 K has 

triggered a new gold rush, comparable to the discovery of high-temperature 

superconductivity in the 1980s and new results have been proposed almost daily 

on the pre-print server of the Cornell University (arxiv.org). The non-
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superconducting parent compound LaFeAsO has already been known since 2000 

but was not getting much attention from the superconductivity community. This is 

because LaFeAsO contains iron, which in its elemental form is a strong 

ferromagnet. Since ferromagnetism destroys the superconducting state, it has 

been an unspoken law that compounds containing iron cannot achieve high 

transition temperatures or even show superconducting properties at all, although 

it should be clear, that properties of the elements cannot automatically be 

transferred to compounds containing these elements. The discovery of high Tc 

superconductivity in the iron arsenides is therefore another example that 

swimming against the tide and trying an unconventional approach may be 

worthwhile in superconductivity research. 

A closer look at the properties of the non-superconducting parent compound 

LaFeAsO revealed that below ~ 155 K, a structural phase transition followed by 

anitferromagnetic ordering at ~ 138 K occurs (details will be discussed later), which 

is indicated by anomalies in the electrical resistance and magnetic susceptibility[15-

17]. Another already known iron arsenide compound, BaFe2As2 showed comparable 

anomalies in physical properties and is built up of similar structural units [18, 19]. 

Going straight forward, shortly after the report of superconducting LaFeAsO1-xFx, a 

critical temperature as high as 38 K in Ba1-xKxFe2As2 has been achieved[20]. 

According to their structure, iron arsenide superconductors can be divided into 

different classes. LaFeAsO1-xFx belongs to the so-called 1111 class and Ba1-xKxFe2As2 

was the first representative of the 122 family, where the numbers simply represent 

the corresponding compositions. 

LaFeAsO and other 1111 compounds crystallize in the tetragonal ZrCuSiAs-type 

structure (space group P4/nmm), a filled variant of the PbFCl type. LaFeAsO is built 

up from two-dimensional iron arsenide layers (edge sharing FeAs4/4 tetrahedra), 

which are separated by two-dimensional lanthanum oxide layers (edge sharing 

OLa4/4 tetrahedra)[21, 22]. Replacing the OLa4/4 layers by AEF4/4 –layers (AE = Ca, Sr, 

Eu) leads to the isostructural 1111 compounds AEFeAsF which are the parent 

compounds of some other high-temperature superconductors (e. g. Ca1-xNdxFeAsF 
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with Tc = 56 K, for details see chapter 4)[23-27]. The two-dimensional iron pnictide 

layers constitute the structural motif, which is shared by all of the new iron-based 

superconductors. Beside the already mentioned 1111- and 122- class, there are 

superconductors with 111- (NaFeAs, LiFeAs, 2008)[28-30], 11 (FeSe and 

Fe1+y(Te1-xSex), 2008)[31, 32] or more complicated 21311- stoichiometry (Sr2VO3FeAs, 

2009) [33]. Even the most recently discovered iron platinum arsenide 

superconductors (Ca10(Fe1-xPtxAs)10(PtzAs8), 2010) contain iron-arsenide tetrahedra. 

For comparison, the crystal structures of some iron arsenide superconductors (or 

parent compounds) are depicted in Figure 1.1. 

 
Figure 1.1: Crystal structure of some iron-based superconductors showing one representative of 
each class. Removing the Na atoms from NaFeAs and replacing As by Se leads to the structure of 
FeSe. 

In the different compounds, the iron arsenide layers are separated either by alkali 

atoms (111), alkaline earth atoms (122), rare earth oxide or alkaline earth fluoride 

layers (1111), perovskite-like layers (21311) or by Ca / PtAs layers (1038). In the 11 

family, the iron-pnictide layers are not separated by any other atoms or structural 

motifs, but are stacked directly. It is therefore obvious, that the iron pnictide layers 

are the key to the physical properties of all compounds. Indeed, early theoretical 

calculations of non-superconducting LaFeAsO revealed that the electronic states 

near the Fermi-Energy EF are dominated by contributions from Fe-3d and As-p 

states. Band structure calculations also showed that LaFeAsO is a semi-metal, 
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forming so-called hole- and electron-pockets (for details see [34-36]) and Fermi 

surface calculations proposed a spin density wave (SDW) antiferromagnetic ground 

state at low temperatures[37]. As mentioned above, LaFeAsO undergoes a magnetic 

transition at TN ~ 137 K which was found by neutron diffraction experiments and 

confirmed the proposed SDW anitferromagnetism and also revealed a stripe-like 

ordering of the magnetic moments (the magnetic moments lie horizontally within 

the ab-plane and are antiferromagnetically aligned along the a- and c- axis but 

ferromagnetically aligned along the b-axis)[38]. Well above the Néel temperature, a 

structural transition was observed (Ts ~ 155 K). The crystal structure changes from 

the tetragonal space group P4/nmm to orthorhombic Cmme with aortho = √2 ∙ atetra 

– δ; bortho = √2 ∙ btetra + δ and cortho ~ ctetra [39]. 

Similar electronic properties and phase transitions have been observed for the 122 

parent compound BaFe2As2. The structure changes from tetragonal to 

orthorhombic symmetry and the magnetic ordering is a stripe-like 

antiferromagnetic alignment (with Ts and TN at 140 K)[18, 40]. Introducing electrons 

(e.g. LaFeAsO1-xFx) or holes (e.g. Ba1-xKxFe2As2) by doping with elements having a 

different number of valence electrons or by applying pressure (e. g. SrFe2As2 or 

BaFe2As2) leads to a gradual decrease of Ts and TN and finally superconductivity is 

induced [15, 20, 41]. To illustrate the relation between these different phases and the 

doping level x, the phase diagram of LaFeAsO1-xFx is exemplarily shown in      

Figure 1.2. 
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Figure 1.2: Electronic phase diagram of LaFeAsO1-xFx. Reprinted by permission from Nature 
Publishing Group: Nature Materials[42]. Copyright 2009. 

Up to the present day, nearly any possible substitution of elements in the parent 

compounds has been realized by which many superconducting compounds have 

been published (for an overview see [43]). Contrary to the cuprates, 

superconductivity in the iron arsenides can even be induced by substituting the 

iron metal itself, referred to as direct doping. BaFe2-xCoxAs2 (Tc = 22 K) and 

LaFe1-xCoxAsO (Tc = 14 K) are two examples of such directly electron-doped 

systems[44, 45]. On the other hand, direct hole-doping in LaFe1-xMnxAsO or 

BaFe2-xMnxAs2 does not lead to superconducting properties (which will be 

discussed in detail in chapter 7)[46-48]. 

There have been many attempts to find a correlation between structural and/or 

electronic changes and the occurrence of (high-Tc) superconductivity. One 

structural parameter that has often been discussed to be crucial for high Tcs is the 

As-Fe-As bond angle ε. The highest Tcs in the 122 compounds (Ba0.6K0.4Fe2As2) and 

the 1111 compounds (SmFeAsO1-xFx)[49] are found when the tetrahedral angle ε is 

close to the ideal value of 109.47°[43, 50, 51]. Another correlation was found between 

the distance of the iron pnictide layers (and therefore the dimensionality of the 

structure) and the highest attainable critical temperatures in the corresponding 

structure types. Before superconductivity in the 21311 family was discovered in 

early 2009, the largest distance between the iron arsenide layers (corresponding to 
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the highest Tc) had been found in the 1111 family (max. Tc = 56 K in SmFeASO1-xFx 

and Ca1-xNdxFeAsF) followed by the 122 family (max. Tc = 38 K in Ba1-xKFe2As2) and 

the 111 family (max. Tc = 18 K in LiFeAs). The smallest distance and the lowest Tc 

had been found in the 11 family (max. Tc = 8 K in FeSe). Therefore, a promising 

task was to find compounds with large interlayer distances. However, in both the 

21311 and the 1038 structures, the interlayer distances are larger compared to the 

1111 family, but the maximum attainable critical temperatures (Tc = 37 K in 

Sr2VO3FeAs [33] and 35 K for Ca10(FeAs)10(Pt4As8)[52]) remain well below the ones 

obtained in the 1111 compounds.  

Newest investigations about the interplay between doping and structural changes 

in doped BaFe2As2 show that it is more probable that charge modifications play a 

more important role for the suppression of magnetism and the emergence of 

superconductivity: Zinth et al. have shown that charge compensation in 

Ba1-xKxFe1.86Co0.14As2 (x ≈ 0.14) recovers the behavior of the parent compound 

(magnetic and structural transition) and superconductivity re-emerges at lower 

(electron-doped) as well as higher (hole-doped) potassium concentrations[53]. This 

shows that the physical properties can be controlled by modifying the charge in 

BaFe2As2, despite the structural disorder induced by simultaneous doping of 

potassium and cobalt into the system. Overviews of the relationship between 

structural and/or electronic properties and superconductivity are given by 

Johnston[43], Stewart[54] and Johrendt [36]. 

 

When work on this thesis had started in the beginning of 2009, the above-

mentioned correlation between the interlayer distance and the critical temperature 

had not been proven to be invalid. Therefore, one goal was to find compounds 

with structural motifs similar to the iron pnicitdes (with large distances between 

the building blocks) and possible superconducting properties upon doping. In 

chapter 3 (La3Pd4-xFexGe4) and chapter 4 (ZrMAs (M = Ti, V)) such compounds are 

discussed and their physical and structural details are presented. The latter have 

already been known for eight years, but the physical properties have not been 
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studied yet and the example of LaFeAsO teaches us, that it sometimes can be 

worthwhile to check the physical properties of seemingly unspectacular 

compounds. 

The efforts to synthesize BiFeAsO, a hypothetical compound isostructural to 

LaFeAsO, led to the development of a solid-state metathesis synthesis route 

suitable for (superconducting) iron-arsenide compounds of the 1111 family. 

Chapter 5 discusses general considerations about this synthesis route, its 

advantages compared to conventional methods as well as the reaction pathway at 

the example of the series LaFeAsO1-xFx. Since the latter yielded samples of high 

purity, this alternative synthesis route has been extended to the synthesis of 

CaFeAsF and Ca0.4Nd0.6FeAsF, presented in chapter 6. 

Finally chapter 7 (LaFe1-xMnxAsO1-yFy,) is dedicated to the interplay between 

structural and electronic changes upon doping and the resulting physical 

properties and it also shows the large variability of the used metathesis reaction. Is 

it possible to recover the physical properties of the parent compound LaFeAsO in 

charge-compensated LaFe0.9Mn0.1AsO0.1F0.1 or even induce superconductivity in 

formally electron doped LaFe0.9Mn0.1AsO1-yFy (y > 0.2)?  

And how does the structure change upon doping simultaneously with Mn and F?  

These questions, along with the unexplained absence of superconductivity in 

directly hole-doped iron arsenide compounds like LaFe1-xMnxAsO are within the 

scope of the present thesis, thus providing new insights into this interesting and 

highly topical class of materials. Furthermore, the search for alternative synthesis 

routes and the thereby possibly increased sample quality is one of the very 

important tasks when it comes to questions about applicability of these new 

materials or the synthesis of still unknown compounds.  
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2 Synthesis and Analytical Methods 

2.1 Synthesis 

2.1.1 Synthesis conditions  
Unless stated otherwise, the storage and handling of the starting materials and all 

products was realized using a glove-box (BRAUN, MB150-Gl, O2 < 1 ppm, H2O < 

1 ppm) containing an atmosphere of purified argon. Generally, the starting 

materials were well homogenized using an agate mortar and filled into the desired 

reaction vessels. For reaction mixtures which contained very fluffy components 

(e. g. LaOCl), a brush was used to transfer the mixture to the vessels. All reactions, 

except the synthesis of LaOCl, were performed under an atmosphere of purified 

argon. The argon (Argon 5.0, AIR LIQUIDE) was dried by passing the gas through 

columns filled with BTS-catalyst (copper (I) oxide dispersed on a ceramic carrier 

matrix, FLUKA) kept at 393 K, molecular sieve (pore size 0.4 nm, Merck) and 

phosphorous pentoxide (MERCK).  

2.1.1.1 Syntheses in resistance furnaces 

Depending on the components of the reaction mixture, alumina crucibles, niobium 

tubes or a combination of both (alumina crucible inside the Nb tube) were used as 

reaction vessels. These vessels were sealed in pre-dried silica ampoules (HSQ300, 

Øext = 14 mm, wall thickness 1.2 mm, VOGELSBERGER QUARZGLASTECHNIK) using an 

oxyhydrogen burner, under static inert gas conditions. Prior to sealing, the vessel 

containing ampoules were evacuated and re-filled with argon several times. 

Evacuation was achieved by using a rotary vane pump (RZ5, suction capacity 

5.6 m3/h, VACUUBRAND). The syntheses were performed in tubular resistance 

furnaces equipped with programmable temperature controllers (model 24089, 

EUROTHERM) and Pt/PtRh or NiCr/Ni thermocouples. The reaction temperatures 
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varied between 773 K and 1373 K and all reaction mixtures were cooled to room 

temperature after the heating steps. Unless stated otherwise the cooling rate was 

200 K/h. The used heating rates and reaction times of the various syntheses can be 

found in the detailed descriptions of the corresponding chapters. After the first 

annealing step the samples where ground, checked for purity and annealed again 

if necessary.  

2.1.1.2 Arc melting syntheses  

To gain good homogeneity of the reaction mixture and prevent the loss of 

reactants, the starting compounds were pressed into pellets with a diameter of 4 

to 5 mm. The pellets were then placed in a water-cooled copper head in the arc 

melting furnace. To obtain inert conditions the whole gadget was evacuated 

several times and flooded with inert gas (argon) in between. The pellets were arc 

melted twice (once each side) using a current of 15–60 A. To check for evaporation 

during arc melting, the reaction mixture was weighed before and after the 

reaction; weight losses of smaller than 2 wt% were tolerated. 

 

2.1.2 Starting Materials 
An overview of the commercially available materials used in this work is given in 

Table 2.1. The purity (%), molecular weight (g/mol), appearance and the supplier 

are listed. 
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Table 2.1: Commercially available Chemicals used in this thesis. 

Material Purity m. w.  Appearance Supplier 

Ammonium chloride (NH4Cl) 99.9 53.4910 Powder FLUKA 

Arsenic (As) 99.999 74.9216 Pieces ALFA AESAR 

Calcium (Ca) 99.99 40.0780 Pieces SIGMA ALDRICH 

Calcium chloride (CaCl2) 99.999 110.984 Powder ALFA AESAR 

Calcium fluoride (CaF2) 99.999 78.0750 Powder ALFA AESAR 

Germanium (Ge) 99.999 72.6400 Pieces SIGMA ALDRICH 

Iron (Fe) 99.9 55.8450 Powder CHEMPUR 

Lanthanum (La) 99.9 138.9055 Ingot SMART ELEMENTS 

Lanthanum fluoride (LaF3) 99.99 195.9007 Powder SIGMA-ALDRICH 

Lanthanum oxide (La2O3) 99.999 325.8020 Powder ALFA AESAR 

Manganese (Mn) 99.99 54.9380 Granules ALFA AESAR 

Neodymium fluoride (NdF3) 99.9 201.2350 Powder ALFA AESAR 

Palladium (Pd) 99.95 106.4200 Grated 
ALLG. GOLD- UND 

SILBERSCHEIDE- 
ANSTALT AG 

Sodium (Na) 99.8 22.9898 Ingot ALFA AESAR 

Titanium (Ti)  99.5 47.8670 Powder ALFA AESAR 

Vanadium (V) 99.90 50.9415 Powder ABCR 

Zirconium (Zr) 99.97 91.2240 Pieces SMART ELEMENTS 

 

2.1.2.1 Binary and ternary iron arsenides (FeAs, NaFeAs, NaMnAs) 

For the synthesis of the binary iron arsenide FeAs, stoichiometric amounts of the 

elements were heated directly in silica ampoules, without using any additional 

crucibles. The final reaction temperature was 973 K (heated at a rate of 50 K/h) and 

the mixture was kept there for 20 h. 

The as-synthesized FeAs was heated with stoichiometric amounts of sodium to 

obtain the ternary iron arsenide NaFeAs. The mixture was heated to 1023 K in a 

niobium crucible sealed in a silica ampoule (to avoid the reaction of the alkali 
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metal with the silica ampoule) and kept at this temperature for 48 h[55]. In contrast 

to NaFeAs, NaMnAs could be prepared better from the elements rather than the 

binary metal arsenide[56]. It turned out that a combination of an alumina crucible 

and a sealed niobium tube (see section 2.1.1.1) inside of the sealed silica ampoule 

works best for this synthesis. For the reaction, very slow heating rates of 30 K/h 

between 623 K and 873 K (with heating for 10 h at 873 K) are necessary. 

2.1.2.2 LaOCl 

According to the following reaction equation, stoichiometric amounts of La2O3 and 

NH4Cl (with an excess of 0.15 eq.) were put on an alumina boat, which was placed 

inside a gas flow furnace. After evacuating the reaction aperture several times, the 

product was synthesized in a dynamic atmosphere of nitrogen at temperatures 

between 773 K and 1173 K. This synthesis is a slightly modified version of[57]. The 

obtained product was a phase-pure, colourless and very fluffy powder. 

La2O3 + 2 NH4Cl    
N2→

2.1.2.3 CaFCl 

    2 LaOCl + 2 NH3  + H2O 

Equal amounts of CaF2 and CaCl2 were heated in a sealed silica tube at 923 K for 

10 h, with a heating rate of 100 K/h to give a white, single phase powder of 

CaFCl[58]. Higher temperatures led to higher amounts of CaF2 and CaCl2 as impurity 

phases, indicating that CaFCl decomposes at higher temperatures[58]. 

2.2 Analytics 

2.2.1 X-ray powder diffraction and Rietveld refinements 
The obtained sample powders were characterized by recording X-ray powder 

diffraction patterns. Less air-sensitive samples were measured using flat sample 

holders, with the sample powders placed in between two polyacetate films. 
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Air-sensitive samples were sealed in argon-filled glass capillaries with outer 

diameters between 0.1 mm and 0.3 mm (HILGENBERG). The diffraction patterns were 

recorded on the following computer controlled diffractometers: 

• HUBER G670 Guinier Imaging Plate Diffractometer (Cu-Kα1 radiation, 

λ = 154.06 pm, Ge(111) monochromator, silicon dioxide and silicon as 

external standards, oscillating flat sample holder, controlled by the HUBER-

G670 Imaging Plate Guinier Camera control software[59]). 

• HUBER G670 Guinier Imaging Plate Diffractometer (Co-Kα1 radiation, 

λ = 179.02 pm, Ge(111) monochromator, silicon as external standard, 

oscillating flat sample holder, controlled by the HUBER-G670 Imaging Plate 

Guinier Camera control software[59]). 

• STOE STADI P (Cu-Kα1 radiation, λ = 154.06 pm, Ge(111) monochromator, 

silicon as external standard, rotating capillary (Debye-Scherrer geometry) or 

oscillating flat sample holder (transmission geometry), controlled by the 

WinXPOW software package[60]). 

• STOE STADI P (Mo-Kα1 radiation, λ = 70.93 pm, Ge(111) monochromator, 

silicon as external standard, rotating capillary (Debye-Scherrer geometry) or 

oscillating flat sample holder (transmission geometry), controlled by the 

WinXPOW software package[60]). 

Temperature-dependent X-ray data between 298 K and 1033 K were collected on 

the STOE STADI P (Mo-Kα1 radiation) diffractometer, equipped with a high-temper-

ature furnace (STOE capillary furnace). Data collected with the Huber diffractometer 

were pre-processed with the program HConvert[61] (see [13] for details). For phase 

identification and phase purity checks, the software package WinXPOW was used. 

The package included the programs GRAPHIC[62], THEO[63] (which was used for 

simulating theoretical patterns) and the semi-automatic search routine Search[64] 

(for phase analyses) which accesses the PDF 2 or the PDF 4+ JCPDS-database[65, 66]. 
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To identify unknown phases, the patterns were automatically indexed using the 

TOPAS[67] or manually using the CMPR[68] program. 

Rietveld refinements of the recorded diffraction patterns were performed with the 

TOPAS package using the fundamental parameter approach to generate the 

reflection profiles. If necessary, a modified approach of Le Bail and Jounneaux[69] 

was used to describe small peak half width and shape anisotropy effects. A 

description of the implemented approach and several other diffractometer-specific 

templates (created by M. Tegel) which were used can be found in[13]. Giving 

consideration to possible preferred orientations of the crystallites, spherical 

harmonics functions with orders of 4, 6 or 8 were used. For capillary 

measurements, absorption was corrected using the capillary diameter (as sample 

thickness), the estimated powder densities (50-70 % of the crystallographic 

densities) and the calculated linear absorption coefficients. If necessary, empirical 

absorption corrections have been performed for flat sample holder measurements 

with the parameters described above, but an estimated sample thickness instead 

of the well-defined capillary diameter.  

2.2.2 Single crystal X-ray diffraction 
A first selection of suitable single crystals was done under a stereo microscope 

(Leica MZ6, LEICA). The selected crystals were fixed on very tiny silica glass filaments 

with superglue, which themselves were placed on brass pins. For a second quality 

check of the crystals, Laue diffraction patterns were recorded on imaging plates[70] 

using a precession camera (Buerger Precession Camera 205, HUBER), which 

operates with white Mo radiation. (Röntgengenerator Kristalloflex 760, SIEMENS). 

The recorded patterns were scanned with a laser scanner (BAS 2500 Bio Imaging 

Analyser, FUJI PHOTO FILM CORPORATION), read in with the BASREADER[71] software 

and displayed by the program TINA[72]. 

Single crystal data were measured using a STOE IPDS single-crystal x-ray 

diffractometer (Mo-Kα1 radiation, λ = 70.93 pm, graphite monochromator). The 

programs X-RED 32 [73], XPREP [74] and XSHAPE [75] were used for data reduction, 
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absorption correction and crystal shape optimization. Crystal structures were 

solved and refined using the WinGX [76, 77] software and the implemented programs 

SHELXS-97 and SHELXL-97 [78-80]. The crystal structures were visualized with 

DIAMOND[81]. 

2.2.3 Energy dispersive X-ray analyses (EDX) 
Samples for scanning electron microscopy (powder or single crystals) were put on 

double sided adhesive carbon discs (PANO, Wetzlar) on brass sample holders. EDX 

was used for semi-quantitative analyses of the samples’ chemical composition. A 

JEOL (model JSM-6500F) scanning electronic microscope equipped with an OXFORD 

EDX detector (model 7418) was used to perform the analyses based on the 

characteristic X-ray emissions of elements due to electron bombardment. The 

INCA [82] software package was used for the collection of the spectra. For accuracy 

reasons, at least 5 different spots of a sample were recorded and the obtained 

compositions were averaged, if reasonable.  

2.2.4 Electrical resistance measurements 
Measurements of the electrical resistance between 8 K and 320 K were performed 

on cold pressed pellets of the samples (Ø= 4-6 mm, thickness: 0.8–1.3 mm). The 

cold pressed samples were usually heated to 873-1173 K for 40 h after being 

sealed in the same reaction vessel type which was used for the synthesis. The 

current-reversal four-terminal sensing method was applied[83, 84] to measure the 

voltage drop across each sample. Therefore, the pellets were fixed on brass sample 

holders using the epoxy resin Stycast (2850FT, EMERSON & CUMING; with 

Tetraethylenepentamine as catalyst). Four copper wires were attached to each 

pellet and contacted with silver conducting paint. Two wires were connected to the 

source meter (Source Meter 2400. KEITHLEY, square waves with amplitudes between 

2 µA and 5 mA, frequency of 2 Hz), the other two wires were connected to a 

KEITHLEY 2182 nanovoltmeter in differential voltage setup. The sample resistance 



18  2  Synthesis and Analytical Methods  

 

was determined using Ohm’s law and the specific resistivity according to the Van-

der-Pauw method[85]. Measurements between 8 K and 320 K were realized in a 

closed-cycle He-cryostat (CRYODYNE 22 CP closed-cycle cold head with 8200 

compressor, CTI CRYOGENICS) connected to a LAKESHORE temperature controller 

(model 311). High-vacuum conditions were achieved by using a turbomolecular 

vacuum pump (PFEIFFER VACUUM, pressure < 1∙10-6 mbar). Temperature control and 

data acquisition was performed by using the LEITMESS[86] software. The obtained 

data were processed and visualized in ORIGIN[87]. 

2.2.5 Magnetic measurements 
Magnetic characterizations of polycrystalline samples were either performed on a 

SQUID magnetometer (MPMS-XL5, Quantum Design Inc.) or a self-manufactured 

AC susceptometer[13].  

The MPMS-XL5 employs a SQUID sensor (Superconducting Quantum Interference 

Device) and allows external magnetic fields up to 50 kOe and operating 

temperatures between 1.8 K and 400 K. A detailed description of the different 

measurement methods and technical details of the SQUID magnetometer can be 

found elsewhere[88, 89]. The magnetometer was controlled and data were collected 

with the MPMS MultiVu software[90]. For each measurement, 30 mg to 50 mg of 

substance were put into a gelatine capsule, which was fixed in a straw as sample 

holder. The generated data files were either processed with Origin[87] or with the 

fully automatic SQUID processor software[91]. Corrections were made for 

diamagnetic contributions of the sample holder and the diamagnetic increments 

of the ions, which can be found in[92]. 

The fully automatic dual-coil AC susceptometer operates in the temperature range 

from 3.5 K to 320 K and alternating magnetic fields of up to 8 Oe (usually 3.5 Oe 

were applied). A detailed description of the susceptometer setup, calibration 

procedure and operating modes can be found in[13]. As for the SQUID 

magnetometer, samples were put into gelatine capsules fixed in straws. The AC 
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susceptometer control software was used for operating the AC susceptometer and 

for data processing. 

For the collected magnetic data, the CGS unit system was used. The definition of 

the used magnetic quantities in this thesis can be found elsewhere[92, 93]. 
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3 La3Pd4-xFexGe4  

3.1 Motivation 

In the beginning of 2009, there seemed to be some structural preconditions for the 

occurrence of superconductivity in the iron arsenide family. One of these was the 

distance between two iron arsenide layers. Considering the compounds Li1-xFeAs 

(Tc = 18 K), Ba1-xKxFe2As2 (Tc = 38 K) and Sr1-xSmxFeAsF (Tc = 56 K), there is an 

empirical correlation between the FeAs4/4-layer distance and the critical 

temperature, i. e. the highest Tc is observed in the compound with the largest 

interlayer distance[20, 94, 95]. The interlayer distance also seems to play a role in the 

122- iron arsenides (crystallizing in the ThCr2Si2-type structure). Whereas in 

BaFe2As2 and SrFe2As2, it is possible to induce superconductivity by applying an 

external pressure, this is not the case in CaFe2As2
[96, 97]. In CaFe2As2, the interlayer 

distance is not only the smallest in the latter compounds, but under pressure the 

structure becomes even three-dimensional by the formation of As–As bonds along 

the c axis. In each of the REFe2As2 - compounds (RE = ca, Sr, Ba) the structural 

distortion to the orthorhombic crystal system is suppressed (and superconductivity 

is induced in BaFe2As2 and SrFe2As2) when external pressure is applied. However in 

CaFe2As2, the lattice parameter c decreases by 9.5 % upon cooling from ambient 

temperature to 50 K under an external pressure of 0.63 GPa[98]. This low-

temperature phase is sometimes improperly called the ‘collapsed tetragonal’ 

phase[98]. 

Even before the discovery of superconductivity in Ba1-xKxFe2As2, intermetallic 

compounds of the ThCr2Si2-type structure had been extensively studied and they 

had showed a large variety of possible element combinations. Among the 

germanides, LaFe2Ge2 and LaPd2Ge2 are two representatives of this structure  

type[99, 100]. Whereas the iron germanide does not show superconducting 

properties, the Pd compound exhibits superconductivity with a critical temperature 
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of 1.12 K. In both compounds, the shortest Ge–Ge distances are in the range of the 

interatomic distance of elemental germanium (2.45 Å). This leads to the formation 

of dimers along the c-axis, which can be written as [Ge2]6- units following the Zintl-

concept, and a very short distance between the tetrahedral layers and therefore a 

more three-dimensional structure - similar to CaFe2As2 under pressure. Earlier 

investigations had shown that it is not possible to induce superconductivity in 

hole-doped La1-xAExFe2Ge2 (AE = Ca, Sr)[93] in an analogous way it has been 

realized for Ba1-xKxFe2As2.  

Since a small interlayer distance of the metal-based tetrahedral layers had seemed 

to have contrary effects for the occurrence of superconductivity, a major goal was 

to find compounds with larger distances. One compound, which consists of similar 

transition metal-based layers as the above-mentioned iron arsenides / germanides 

and which additionally has a very large interlayer distance, is La3Pd4Ge4 with the 

orthorhombic U3Ni4Si4-type structure (Figure 3.1) [101, 102].  

 
Figure 3.1: Crystal structure of La3Pd4Ge4 with the different building blocks (left) and some 
interatomic distances (right)[102]. 
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The U3Ni4Si4–type structure is built up from alternating BaAl4-type and AlB2-type 

layers, where each BaAl4 unit is separated by two AlB2 units[103]. The ThCr2Si2-type 

structure is an ordered ternary derivate of the BaAl4-type[104]. Therefore, La3Pd4Ge4 

is composed of LaPd2Ge2 layers (hosting the PdGe4/4 tetrahedra), separated by two 

La(Pd0.5Ge0.5)2 layers, which are a ternary variant of the AlB2-type (Figure 3.1). In the 

AlB2-type layers, the Pd atoms are coordinated trigonally planar by Ge atoms. 

Since one of these atoms (Ge(1)) is shared with the BaAl4-type layers, where it is 

part of the germanide tetrahedra, the distance between the AlB2 units and the 

BaAl4 units is only 2.5 Å. This means that although the distance between the 

tetrahedral layers is increased, the structure is three-dimensional because of bonds 

between these layers. Nevertheless, the insertion of AlB2 units into LaPd2Ge2 and 

the enlargement of the distance between the PdGe4/4-layers (from 2.5 Å in 

LaPd2Ge2 to 9.9 Å in La3Pd4Ge4) doubles the critical temperature from 1.12 K to 

2.75 K in La3Pd4Ge4 [100, 102]. A summary of the crystallographic parameters of 

La3Pd4Ge4 is given in Table 3.1. 

Table 3.1: Structural parameters of La3Pd4Ge4
[102]

. 

Spacegroup Immm (79), Z = 2    

Lattice parameters [pm] a = 422.93(1); b = 438.23(1); c = 2501.09(8)  

Atom Site x y z Occ. 

La(1) 2a 0 0 0 1 

La(2) 4j ½ 0 0.3513(2) 1 

Pd(1) 4j ½ 0 0.0979(2) 1 

Pd(2) 4i 0 0 0.2501(2) 1 

Ge(1) 4j ½ 0 0.1972(2) 1 

Ge(2) 4i 0 0 0.4503(3) 1 

 

In this chapter, the synthesis and characterization of the solid solution 

La3Pd4-xFexGe4 (x = 0.7, 1.0, 1.5, 2.0, 3.0, 4.0) is presented. The goal was to 

investigate, if a partial substitution of Pd by Fe is possible and if this enhances the 

critical temperature of the superconducting parent compound. Since iron should 
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prefer a tetrahedral coordination, it was expected that the substitution of the Pd(2) 

atom should be favored. A comparison of the transition metal–germanium 

distances in the LaTM2Ge2 compounds shows that the Fe–Ge distance is slightly 

shorter than the corresponding Pd–Ge distance. This means that the Fe–Ge 

distance in the tetrahedral layers of iron-substituted La3Pd4Ge4 should be shorter, 

which in turn would lead to an increase of the Pd(1)–Ge(1) distance and the two 

dimensional character as well.  

3.2 Synthesis 

Samples of the solid solution were synthesized by arc-melting the elements in the 

desired composition. The preparation of the reagent pellets and a detailed 

description of the arc-melting process can be found in chapter 2. It has to be 

noted that the used argon gas of the arc-melting furnace has not been dried and 

purified for preparing these compounds. The batch size of the experiments was 

400 mg and the used current was between 60 A and 70 A. The arc-melting process 

was performed on both sites of the pellet and the weight loss during arc melting 

was less than 1 wt%. The obtained melted bullets were ground in an agate mortar 

and annealed at 1273-1373 K over a period of 4-7 days and if it seemed necessary, 

several times. 

3.3 Compositional characterization 

All obtained samples where characterized by means of Rietveld refinements from 

X-ray powder diffraction data and additional EDX measurements. The Rietveld 

refinements were performed using the TOPAS package. If necessary, an empirical 

absorption correction with an assumed sample thickness of 0.02 mm was 

performed. It should be noted that all stated compositions of the samples are 

nominal compositions and deviate from the effective ones. 
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The samples with the lowest Fe contents of the series (x = 0.7, 1.0) were annealed 

once. This led to smaller reflection widths and the disappearance of LaGe2-xPdx as 

impurity phase, which has been identified by indexing the diffraction data and is 

isotypic to LaGe1.33Fe0.67 (AlB2-type structure) (see section 3.6). Nevertheless, the 

samples still contained some La2O3 and LaPd2Ge2 (x = 0.7), as well as Fe and Pd 

(x = 1.0). The Rietveld refinements were performed with a free Pd:Fe ratio on both 

transition metal atom positions and showed that in both samples only the Pd(2) 

positions are occupied by Fe atoms, however the effective Fe content is lower than 

the nominal one. The refined compositions are La3Pd3.64(2)Fe0.36(2)Ge4 (x = 0.7) and 

La3Pd3.36(2)Fe0.64(2)Ge4 (x = 1.0). The effective doping levels have also been 

confirmed by at least 5 EDX measurements of each sample showing deviations 

smaller than 1 % from the refined compositions. With increasing nominal iron 

content, it becomes more difficult to make clear statements of the effective 

compositions. This is either due to unidentified impurity phases (x = 1.5) or that 

the targeted compound occurs in only small amounts (x = 2.0 sample only 22 

wt %, with LaGe2-xPdx being the main phase). Additional annealing steps did not 

lead to sample quality improvements. The refinement of nominal La3Pd2.5Fe1.5Ge4 

with an refined x of 0.94 leads to a mixed occupancy of both the Pd(2) and the 

Pd(1) positions with Fe atoms (0.7 : 0.24 ratio), but there is a quite large deviation 

in the EDX measurements with an averaged composition of La3Pd2.97Fe0.81Ge4.2. 

Since for nominal LaPd2Fe2Ge4 the Rietveld refinement is only of limited reliability 

because of the large amount of impurities, only the comparison of the obtained 

lattice parameters gives hints about the effective composition. The lattice 

parameters are close to that of nominal LaPd2.5Fe1.5Ge4 so that a similar doping 

level is assumed for the obtained U3Ni4Si4-type product (see Table 3.2). For the 

samples with the highest doping levels (x = 3.0 and 4.0), the targeted compounds 

did not emerge at all. Here, LaGe2-xPdx, LaFe2Ge2 and La2O3 were the main 

components of the obtained mixture. The cell parameters of La3Pd4Ge4 and the 

series La3Pd4-xFexGe4 (x = 0.7-2.0) are listed in Table 3.2. With increasing x the unit 

cell decreases along a and b but increases along c. The cell volume decreases 
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slightly with increasing Fe content. The development of the unit cell parameters 

shows that the effective doping levels increase with the nominal ones. The refined 

Fe content as well as the identified impurities are summarized in Table 3.2.  

Table 3.2: Cell parameters and sample quality of La3Pd4-xFexGe4 (x =0.0-2.0). 

La3Pd4-xFexGe4 
Refined 

x 
a [pm] b [pm] c [pm] V [Å3] Impurities  

x = 0 [102] --- 422.9(1) 438.2(1) 2501.1(1) 463.49(5) --- 

x = 0.7 0.36 419.7(1) 437.3(1) 2507.6(1) 460.30(3) La2O3, 7 wt%; 
LaPd2Ge2, 3 wt% 

x = 1.0 0.64 418.2(1) 435.1(1) 2512.0(1) 457.09(3) Pd, 4 wt%; 
Fe, 3 wt%; 

La2O3, 3 wt% 

x = 1.5 0.94 421.2(1) 432.7(1) 2518.1(2) 458.89(6) La2O3, 12 wt%; 
Fe, 3 wt%; 

x % unidentified 

x = 2.0 0.92 421.3(1) 431.3(1) 2519.5(1) 457.84(5) LaGe2-xPdx,  
68 wt%; 

Fe, 7 wt%; 
La2O3, 4 wt% 

 

A single crystal of good quality was selected from the LaPd3.3Fe0.7Pd4 sample. The 

crystallographic data is summarized in Table 3.3. The refined composition matches 

the one from the Rietveld refinement. The obtained interatomic distances show 

that doping with Fe does not lead to a significant increase of the Pd(1)–Ge(1) 

distance (249 pm to 250 pm), meaning the distance between the AlB2 units and the 

BaAl4 building blocks remains unchanged. Likewise, the metal- germanide 

distances within the tetrahedra remain more or less unchanged (there is a minimal 

decrease along a and a minimal increase along b). 

From the results of the Rietveld refinements and the single crystal analysis it can be 

summarized that a partial substitution of Pd by Fe in La3Pd4-xFexGe4 is possible, 

although the nominal doping levels cannot be achieved. For low doping 
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concentrations, iron prefers the tetrahedral coordination instead of a trigonal 

planar environment. An increasing Fe content leads to a slight decrease of the a 

and b lattice parameters and an increase of the c lattice parameters, but this does 

not change the interatomic distances drastically. This means that the structural 

conditions remain more or less unchanged upon Fe doping. The question if the 

changed charge carrier concentration due to Fe doping leads to a change of the 

physical properties is presented in the next section. 

Table 3.3: Crystallographic data of La3Pd3.66Fe0.34Ge4. 

Nominal composition La3Pd3.3Fe0.7Ge4  

Refined composition La3Pd3.66(2)Fe0.34(2)Ge4  

Temperature 293 K  

Diffractometer STOE IPDS  

Radiation Mo Kα, λ = 0.71073 Å  

Space group Immm (79)  

Lattice parameters a = 418.05 (8) pm; b = 439.61 (9) pm; c = 2510.6 (5) pm 

Cell volume 0.4614(2) Å3  

Z 2  

Calculated density 8.03 g/cm3  

Absorption coefficient  33.75 mm-1  

2θ range   7.50 – 65.6  

Reflections (total) 3321  

Reflections (independent),  538  

Reflections with I > 2σ(I)  387  

Refined Parameters 26  

Rint, Rσ  0.118, 0.063  

R1, wR2 [I > 2σ(I)] 0.030, 0.059  

R1, wR2 [all data] 0.048, 0.064  

Goodness of fit (GooF) 0.862  

Largest resid. peak, hole 2.173 e/Å3, -2.053 e/Å3  
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Atomic parameters, with atomic displacement parameters U in pm2: 

La(1) 2a (0,0,0)  occ. 1 U11 = 68(3); U 22 = 74(4);  
U33 = 92(3) 

La(2) 4j (½, 0, z) z = 0.3517 (1) occ. 1 U11 = 76(3); U22 = 78(3);  
U 33 = 77(2) 

Pd(1) 4j (½, 0, z) z = 0.0977(1) occ. 1 U 11 = 154(3); U 22 = 53(3);  
U 33 = 71(3) 

Pd(2) 4i (0, 0, z) z = 0.2501(1) occ. 0.83(1) U 11 = 93(4); U 22 = 103(4); 
U 33 = 83(3) 

Fe 4i (0, 0, z) z = 0.2501(1) occ. 0.17(1) U 11 = 93(4); U 22 = 103(4);  
U 33 = 83(3) 

Ge(1) 4j (½, 0, z) z = 0.1974(1) occ. 1 U 11 = 101(3); U 22 = 113(4); 
U 33 = 71(3) 

Ge(2) 4i (0, 0, z) z = 0.4502(1) occ. 1 U 11 = 153(5); U 22 = 58(5); 
U 33 = 55(3) 

Interatomic distances:   

Ge(2)–Pd(1) 250.5(1) pm  2x 

Pd(1)–Ge(1) 250.3(2) pm  1x 

Ge(1)–Pd(2)/Fe 256.4(1) pm  2x along b 

Ge(1)–Pd(2)/Fe 247.3(1) pm  2x along a 

Ge(2)–Ge(2) 250.2(1) pm  1x  

Pd(2)/Fe–Pd(2)/Fe 303.3(1) 4x 

Ge(1)–Ge(1) 991.2(1) pm  1x along c 

Interatomic angles:   

Ge(1)–Pd(2)/Fe–Ge(1) 105.97(2)° 4x 

 115.38(5)° 1x 

 118.06(5)° 1x 
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3.4 Physical Properties 

The electrical resistance of the samples with nominal doping levels of x = 0.7, 1.0 

and 1.5 has been measured between 10 K and 300 K. The relative change of the 

resistance with temperature (R / R300K) is shown in Figure 3.2. All samples showed a 

slight decrease of the resistance with decreasing temperature, which is typical for 

metallic compounds. The measured resistivity values ρs(300K) ranged between 

2.7 ∙ 10-5 Ωm (x = 0.7) and 2.8 ∙ 10-4 Ωm (x = 1.5) and are characteristic for poor 

metal conductors. With increasing doping levels, the samples became poorer 

electrical conductors, since the resistivity ρs(300K) is increased and the relative 

decrease of resistance with temperature is smaller. This is probably due to grain 

boundary effects and / or an increased amount of non-conducting impurities 

(La2O3).  

 
Figure 3.2: Electrical resistivity versus temperature for La3Pd4-xFexGe4 (x = 0.7 – 1.5). 

Because no superconducting transition has been observed down to 10 K, 

additional magnetic measurements were performed down to a temperature of 

1.8 K (for x = 0.7 and 1.5). Figure 3.3 depicts the χ vs. T plot for the x = 0.7 sample. 

The magnetic susceptibility is nearly temperature independent (Pauli 

paramagnetic), as one would expect for metallic compounds. No superconducting 
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signal has been detected over the whole temperature range. The measured 

susceptibilities are well above the ones expected for metals. This increase of the 

magnetic signal is probably due to small amounts of ferromagnetic impurities 

(iron) in the x = 0.7 sample. Since the x = 1.5 sample contains large amounts of Fe 

as impurity (3 wt%), the susceptibility was empirically corrected to χmol = ΔM/ΔH = 

(Mmol (20 kOe) – Mmol (10 kOe)) / (2 kOe – 1 kOe). This correction takes into 

account, that at an external magnetic field of 10 kOe, the ferromagnetic impuritiy 

is already saturated (as obtained from isothermal magnetization measurements). 

The obtained diagram is displayed in the inlay of Figure 3.3. The amount of 

elemental Fe in the x = 1.5 sample was estimated from the saturation moment of 

the isothermal magnetization measurement to be ~ 4 %, which is consistent with 

the result from the Rietveld refinement. 

 
 
Figure 3.3: Susceptibility versus temperature for La3Pd4-xFexGe4 (x = 0.7 and 1.5 (inlay)). 
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3.5 Conclusion 

It was shown that a partial substitution of Pd by Fe in La3Pd4Ge4 is possible and 

that iron prefers the tetrahedral coordinated metal position for low doping 

concentrations. However, the structural changes and the change of the interatomic 

distances upon iron doping remain small. This means that the distance between 

the BaAl4 type units and the AlB2-type is still very small and a three-dimensional 

character of the structure is supposed. Futhermore doping with iron leads to a less 

distinctive metallic character and even seems to destroy the superconducting 

properties of the parent compound La3Pd4Ge, since no superconducting transition 

has been observed in the obtained samples.  

3.6 Synthesis of LaGe1.33Pd0.67 

As mentioned above, prior annealed samples and samples with high nominal x of 

the series La3Pd4-xFexGe4 often contained a hexagonal product as impurity phase. 

The indexed diffraction pattern (cell parameters a = 431.0 pm; c = 423.9 pm) was 

compared with entries in the JCPDS-database[65, 66] but no matching compound 

was found. Since the indexed cell parameters were very close to listed LaGe1.33Fe0.67 

(spacegroup P6/mmm, AlB2- structure, a = 422.3 pm; c= 431.6 pm))[105] the 

Rietveld refinements were performed under the assumption that the hexagonal 

byproduct could be isotypic LaGe1.33Pd0.67, which led to a good explanation of the 

recorded diffraction patterns. To prove this assumption and the existence of the 

hexagonal La-Pd-Ge AlB2-type compound, LaGe1.33Pd0.67 was tried to be obtained 

as single product. 

3.6.1 Synthesis 
LaGe1.33Pd0.67 was synthesized by arc melting (I = 60 A) the elements in the desired 

composition using the procedure described above.  
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3.6.1 Characterization 
The Rietveld analysis of the arc-melted sample showed, that the desired LaGe2-xPdx 

(P6/mmm, AlB2-type) was the main component of the obtained mixture (87 wt %) 

with LaPd2Ge2 (8 wt%) and La2O3 (5 wt%) being impurity phases. Since the 

diffraction signals of the main phase were broadened a certain phase width of 

LaGe2-xPdx was assumed, which could probably be narrowed by additional 

annealing steps. The refined composition was LaGe1.28(1)Pd0.72(1) and the cell 

parameters were refined as a = 432.1(1) pm and c = 422.7(1) pm  The diffraction 

pattern and the obtained crystal data from the Rietveld refinement can be found at 

the appendix. Additional EDX measurements showed an averaged composition of 

La1.25Pd0.66Ge1.33O0.56 (the excess of La and O is probably due to La2O3 impurities).  

The successful synthesis of LaGe2-xPdx is the first example of a La-Pd-Ge compound 

crystallizing in the AlB2-type structure and was helpful for the refinement of the 

diffraction patterns of the La3Pd4-xFexGe4 series. 
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4 Synthesis and physical properties of ZrTiAs and 
Zr1+xV1-xAs 

4.1 Structural details and motivation 

Since the interplay of the crystal structure and physical properties is one of the 

crucial questions of solid state chemistry, a structure prediction tool can be a 

helpful device for the synthesis of new compounds crystallizing in known 

structure-types. Such a tool, a structure map, was presented in 2000 for metal-rich 

pnictides and chalcogenides M2Q (including the ternaries M2-xMx’Q)[106]. In 2001 

and 2002 this semi empirical structure map was used to successfully predict the 

structures of ZrTiAs and ZrVAs (ZrMAs), respectively[107, 108]. Both compounds 

crystallize in the tetragonal space group I4/mmm forming the CeScSi-type 

structure, which is the ordered variant of the LaSb2 – type[109-111]. The main 

structural motifs of the ZrMAs compounds are As – centered tri-capped trgional 

prisms, where As is surrounded by 5 Zr and 4 M atoms, and empty distorted Zr2M4 

octahedra whose faces are capped by As (see Figure 4.1).  

 
Figure 4.1: Crystal structure of ZrMAs emphasizing the filled polyhedra (left) and the empty Zr2M4 
octahedra which are interconnected via common corners (right). 
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The trigonal prisms are connected via common faces (forming linear chains parallel 

to [100]) and via common edges, leading to a three-dimensional structure[107]. The 

3d metal atoms M occupy the Wykoff position 4c ((0, ½, 0); see Table 4.1 and 

Figure 4.1) and form M-M square nets within the ab-plane. Similar to the structures 

of the iron arsenide superconductors, the 3d metal atoms are surrounded by 4 As 

atoms, though forming distorted square planes instead of tetrahedra. The Zr atom 

is surrounded by 5 As atoms inside a distorted square pyramide. The structure is 

stabilized through strong M–M, Zr–As and M–As bonds as well as intermediate   

Zr–M and weaker Zr–Zr interactions[108].First principle calculations proposed a 

metallic character of both compounds and showed that the states around the 

Fermi Energy are mainly composed of Zr and M d states. Furthermore crystal 

orbital Hamiltonion populations calculations (COHP) revealed that only bonding 

states are filled, though ZrVAs being on the border were antibonding V-V states 

occur[107, 108]. 

Table 4.1: Crystal parameters of ZrTiAsa and Zr0.85V1.15Asb
 
[107, 108]. 

Spacegroup I4/mmm (139), Z = 4    

Lattice parameters [pm] ZrTiAs:         a = 379.3(1); c = 1480.2(3), V = 212.9(1)  

and cell volume [Å3] Zr0.85V1.15As: a = 375.8(1); c = 1400.2(3), V = 197.7(1)  

Atom Site x y za zb 

Zr 4e 0 0 0.32097(6) 0.3270(1) 

M 4c 0 ½ 0 0 

As 4e 0 0 0.13029(7) 0.1290(1) 

 

The goal was to synthesize ZrTiAs and ZrVAs to reveal their physical properties. 

Since a phase range of Zr1+xV1-xAs (-0.15 ≤ x ≤ 0.43) was reported[108], samples with 

x = 0.20, 0.25, 0.35 and 0.50 were synthesized to investigate if this direct hole-

doping of the VAs-layers changes the physical properties of the parent compound 

ZrVAs. Despite the three-dimensional character of the CeScSi-type structure, 

common features to the structures of the iron arsenid superconductors can be 

seen in the coordination of the 3d metal, which is coordinated by 4 As atoms, and 
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the strong interactions between the 3d metal atoms. If these common features are 

sufficient for similar properties will be shown in the following chapter. 

4.2 Synthesis 

According to the desired composition Zr1+xM1-xAs the elements were pre-reacted 

in sealed alumina crucible at 1073 K for 48 h. The as-prepared mixtures were 

pressed to pellets and arc-melted twice with a current of 25 A. A detailed 

description of the arc-melting process can be found in chapter 2. The weight loss 

during arc melting was less than 1 wt%. 

4.3 Sample quality 

Samples of high quality were obtained for ZrTiAs and the series Zr1+xV1-xAs 

(x = 0.20 -0.35). No additional phases were detected in the case of ZrTiAs and only 

small amounts of ZrAs (< 2 wt %) were identified as impurity phase for the V 

containing samples (additional to some small unidentified peaks for the x > 0 

samples). For a nominal x of 0.50, a mixture of Zr1+xV1-xAs (with x = 0.29), ZrAs, VAs 

and some other unidentified compounds was obtained, which is in accordance 

with the reported maximum of x = 0.43[108]. A single crystal of good quality was 

selected from the ZrTiAs sample, the obtained crystallographic data can be found 

at the appendix section. Interestingly the Rietveld refinement of ZrTiAs as well as 

the single crystal data showed a slight deficiency at the Ti position (ZrTi0.96(1)As). 

This explains the smaller cell parameters compared to literature data (see Table 4.1 

and Table 4.2) and could be an interesting effect concerning the physical 

properties. The refined cell parameters of ZrVAs are well in between the ones 

published for Zr1.43V0.57As and Zr0.85V1.15As [108]. 
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Table 4.2: Refined cell parameters and composition of ZrTiAs and Zr1+xV1-xAs. Please note that the 
mixed occupancy in the Zr rich samples (x > 0) is only present at the Wykoff position 
4c (V site). 

nominal refined a [pm] c [pm] V [Å3] 

ZrTiAs ZrTi0.96(1)As 376.8(1) 1474.5(4) 209.3(1) 

ZrVAs ZrV0.98(1)As 376.8(1) 1411.7(1) 200.3(1) 

Zr1.20V0.80As Zr1.20(1)V0.80(1)As 377.4(1) 1433.3(1) 204.1(2) 

Zr1.25V0.75As Zr1.29(1)V0.71(1)As 377.0(4) 1434.2(1) 203.9(1) 

Zr1.35V0.65As Zr1.36(1)V0.64(1)As 378.2(1) 1457.4(2) 208.4(1) 

 

The Rietveld refinements of the Zr-rich samples Zr1+xV1-xAs (x = 0.20, 0.25, 0.35) 

showed that the effective compositions deviate only slightly from the nominal 

ones. The Zr:V ratio was allowed to be refined freely on both metal sites, but a Zr / 

V mixed occupancy is only present at the Wykoff position 4c. It is notable that the 

unit cell parameters are drastically increased for x = 0.35 compared to lower Zr 

concentrations, but are still smaller than for reported Zr1.43V0.57As (a = 382.4(1) pm, 

c = 1486.8(6) pm)[108]. This means that the unit cell parameters do not increase 

linearly with the Zr concentration. Complete crystal data can be found at the 

appendix.  

4.4 Physical properties 

Resistivity and susceptibility measurements of ZrMAs confirmed the proposed 

metallic character of these metal rich arsenides. As one can see from Figure 4.2 the 

resistivity of the samples decreases with decreasing temperature and the 

susceptibility shows a nearly temperature independent (Pauli paramagnetic) 

behavior, typical for metallic compounds (see appendix for the magnetic 

measurements). The measured resistivity values ρs(300K) of 2.4 ∙ 10-5 Ωm (ZrTiAs) and 

2.7 ∙ 10-6 Ωm (ZrVAs) are characteristic for poor metal conductors, but the 

resistivity of ZrVAs is one order of magnitude smaller than the typical values 

obtained for the iron arsenide parent compounds. 
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Figure 4.2: Electrical resistivity versus temperature for ZrTiAs and ZrVAs. 

The resistivity measurement of Zr1.25V0.75As showed a sudden drop of the 

resistance value at a temperature of about 4 K, which could have been indicative 

for a superconducting transition (Figure 4.2). However, magnetic measurements of 

the sample revealed that the superconducting volume fraction (SVF) is only as 

small as 0.8 % (Figure 4.4) and the critical fields of the superconducting phase are 

as low as ~ 1000 Oe. Similar critical temperatures and small SVFs have also been 

found for the other Zr rich samples (x = 0.20 and 0.35), so that it is most likely that 

the superconducting behavior originates from unidentified binaries like V0.987Zr0.013, 

which is known to show a superconducting transition at a comparable Tc
[112]. The 

increased ρs(300K) value of Zr1.25V0.75As (2.4 ∙ 10-5 Ωm) compared to the one of ZrVAs 

is probably due to an increased amount of impurities and / or a higher disorder in 

the V layers due to Zr doping. 
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Figure 4.3: Electrical resistivity versus temperature for Zr1.25V0.75As. Inlay: low temperature regime 
between 3.5 K and 6.0 K. 

 
Figure 4.4: Magnetic measurements of Zr1.25V0.75As. Red: zero-field-cooled and field-cooled 
susceptibility measurement with an applied of 15 Oe. Inlay: Field dependent magnetization 
measurement at 1.8 K with detected critical fields of 221 Oe and 1100 Oe. 
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4.5 Conclusion 

The metal rich arsenides ZrTiAs and Zr1+xV1-xAs (x = 0.20-0.35) have been 

characterized as metallic compounds which can be obtained by arc melting pre-

reacted mixtures of the elements. Decreasing the valence electron concentration in 

ZrVAs by additional Zr (direct hole-doping of the VAs-layers) does not lead to a 

significant change of the physical properties. The metallic character is only slightly 

decreased upon Zr doping, as can be seen from the measured ρs(300K) value of 

Zr1.25V0.75As, which is probably due to an increased disorder within the VAs-layers. 

No anomaly in the resistivity or magnetic measurements has been detected, what 

could have been indicative for similar structural or magnetic transitions as found 

for some parent compounds of the iron arsenide superconductors. 
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5 Synthesis of LaFeAsO1-xFx via solid state metathesis 
reaction 

Parts of this chapter are published in: R. Frankovsky, A. Marchuk, R. Pobel, 

D. Johrendt, Solid State Communications 2012, 152, 632. 

Doi: 10.1016/j.ssc.2011.11.028 

http://www.sciencedirect.com/science/article/pii/S0038109811006326 

Copyright © 2012 Elsevier Ltd. 

5.1 Motivation 

One way to think about new compounds is to simply replace atom fragments by 

isoelectronic ones. In 2009, this has been successfully achieved by finding the new 

superconducting compounds Sr2ScO3FeP (Tc = 17 K) and Sr2VO3FeAs (Tc = 37 K), 

which consist of two-dimensional iron-pnictide tetrahedral layers, separated by 

perovskite-like metal oxide interlayers[33, 113]. These compounds have been derived 

from known compounds containing CuS layers[114, 115] instead of the iron pnictide 

layers and were the first representatives of the so-called 21311 iron pnictide 

superconductor family. Going the other way round, Ubaldini et al. presented the 

oxycoppersulfide superconductor BiOCu1-xS (Tc = 5.8 K) with ZrCuSiAs-type 

structure and which is therefore isostructural to LaFeAsO[116]. It has to be noted 

that the parent compound BiOCuS has already been known since 1994[117]. To 

possibly enhance the critical temperature of the bismuth compound, the goal was 

to synthesize the analogue iron arsenide compound BiOFeAs. Indeed, with a 

phenomenological relation between Tc and competing instabilities a Tc as high as 

42 K was predicted for hypothetical BiOFeAs[118]. For this reason, enormous efforts 

have been made to synthesize this possible high temperature superconductor. 

Since conventional synthesis routes (reaction of binary oxides and / or arsenides 
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with the elements) did not lead to BiOFeAs, an alternative synthesis route was 

developed.  

One approach to obtain control of solid-state reactions is based on the concept of 

building blocks developed mainly by Ferey, Yaghi and O’Keeffe[119-121]. It was 

initially applied to assemble metal-organic frameworks from precursor molecules 

with fitting structural properties. Infinite two-dimensional building blocks were 

proposed by Cario et al., who predicted and synthesized transition metal pnictide 

compounds with the ZrCuSiAs-type structure by solid state metathesis (SSM) 

reaction [122, 123]. The driving force behind SSM reactions is the formation of stable 

by-products, often alkaline halides[124], which can easily be removed afterwards. 

Since the ZrCuSiAs structure is built of alternating fluorite and anti-fluorite-type 

layers, precursors containing these fragments have been used. As an example, 

BaFZnP was obtained from BaFCl with flourite-type (BaF)+ building blocks and 

NaZnP with anti-fluorite-type (ZnP)−-building blocks, giving NaCl as by-product 

(see Figure 5.1)[122]. 

 
Figure 5.1: Structure prediction for BaFZnP on the concept of building blocks. Reprinted with 
permission from[122]. Copyright 2005 American Chemical Society. 

Transferring this concept to the synthesis of BiOFeAs, BiOCl and NaFeAs were 

chosen as starting materials. However, the obtained samples from the metathesis 

reactions showed similar compositions like the ones obtained by conventional 
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synthesis routes and consisted mainly of elemental Bi, FeAs and Fe3O4. An 

explanation for the formation of the latter products can be found in the 

habilitation thesis of P. Schmidt, where an electrochemical series for solid state 

compounds, valid at high temperatures (700 K -1300 K), was presented[125]. 

According to this electrochemical series, oxidic compounds with oxidation states of 

Fe+II/Bi+III, which would be the case in BiOFeAs, cannot be obtained by 

thermodynamic reaction control, since the difference of the electrochemical 

potential leads to the oxidation of Fe+II and the reduction of Bi+III to form the 

thermodynamic equilibrium. This is consistent with the observation of Bi, FeAs and 

Fe3O4 as main products of the above mentioned syntheses. 

Since BiOFeAs could not be obtained via solid state metathesis reaction, it was 

decided to test the general suitability of this approach for the synthesis of another 

ZrCuSiAs-type compound, LaFeAsO and the superconducting solid solution series 

LaFeAsO1-xFx
[15]. The synthesis of LaFeAsO1-xFx by classical solid-state reactions 

leads to samples with relatively high amounts of impurity phases (mainly LaOF)[15, 

126]. Therefore, another purpose of using this alternative synthesis approach was to 

optimize the product quality.  

For the synthesis of LaFeAsO, LaOCl and NaFeAs were used as starting materials. 

Following the concept of Cario, LaOCl contains the fluorite-type units (LaO)+ and 

NaFeAs contains the anti-fluorite-type units (FeAs)-, meaning the two structural 

motifs of LaFeAsO (OLa4/4 – and FeAs4/4- tetrahedral layers) are already present in 

the starting materials. In other words, combining the PbFCl- type structure (LaOCl) 

with the anti-PbFCl-type structure (NaFeAs) formally leads to the formation of a 

filled variant of the PbFCl-type structure (ZrCuSiAs – type, LaFeAsO). Figure 5.2 

illustrates the general synthesis pathway, where the high lattice energy of NaCl is 

expected to shift the equilibrium to the desired product. From this scheme one 

may assume that the product formation could be topotactic, that is without bond 

cleavage in the LaO- and FeAs-layers of the precursors. To what extent this 

assumption is true, and whether the physical properties of the products differ from 

those obtained by classical methods will also be shown in this chapter. 
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Figure 5.2: Scheme of the SSM reaction using the concept of building blocks. 

5.2 Synthesis 

According to the scheme illustrated in Figure 5.2, LaFeAsO was synthesized by 

heating LaOCl and NaFeAs in a molar ratio of 1:1. In a first three-step attempt, the 

reaction mixture was heated to 1023, 1123 and 1223 K and reacted for 48 h, 

respectively. The mixture was cooled down and well homogenized between each 

step. As can be seen in Figure 5.3, the amount of the desired product was 

increased with each reaction step. The formation of the binary arsenides LaAs and 

Fe2As after the primary heating treatment was a first hint that the reaction pathway 

does not follow a topotactic route. 

 
Figure 5.3: Composition of the reaction mixture after different reaction steps of the synthesis 
optimization process. 
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Combining these three steps to a one-step synthesis led to the temperature 

program, which generally was used to synthesize 1111 compounds of the La-Fe-

As-O system via the metathesis route. The mixtures therefore were heated to 

1023 K for 48h, followed by heating to 1223 K and reaction for 96 h. To remove the 

co-formed salts NaCl and NaF, the obtained mixtures were washed with water 

(three times) and ethanol, followed by drying the product under high vacuum. For 

the synthesis of the LaFeAsO1-xFx (x = 0.05, 0.10, 0.15) series, stoichiometric 

amounts of LaOCl, NaFeAs, LaF3 and elemental Na were reacted in the one-step 

synthesis, mentioned above, according to the following reaction equation. 

 

(1-x) LaOCl + NaFeAs + x LaF3 + x Na   →   LaFeAsO1-xFx + (1-x) NaCl + 2x NaF 

 

The reaction mixtures of the whole series (x = 0-0.15) were heated in the following 

reaction vessel setup: alumina crucibles, welded in niobium tubes enclosed by 

silica tubes (see chapter 2 for details). 

5.3 Reaction pathway 

As mentioned earlier, the formation of intermediate binary compounds at lower 

temperatures raised first doubts about the topotactic character of the reaction. 

Therefore, the reaction was monitored by means of temperature-dependent X-ray 

diffraction. A mixture of LaOCl and NaFeAs was sealed in a silica capillary and 

heated with a rate of 120 K/h on a diffractometer equipped with a high 

temperature furnace (see chapter 2 for details). The measured diagrams show that 

the formation of the intermediate binary phases starts at about 973 K, the same 

temperature where the first reflections of the product (LaFeAsO) appear (Figure 

5.4). Hence, the reaction obviously proceeds via intermediate binaries formed by 

decomposition of the precursors, and is therefore not of topotactic character. 
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Figure 5.4: Temperature-dependent X-ray pattern monitoring the reaction of LaOCl and NaFeAs. 

The in situ formation of the intermediate binaries quite likely improves the overall 

homogeneity of the reaction mixture and therefore leads to products of higher 

purity (as will be shown later in this chapter) compared to conventional synthesis 

methods. 

5.4 Sample quality 

The phase purity of the obtained samples was checked by Rietveld refinements of 

powder diffraction patterns (HUBER G670, Cu-Kα1 radiation and STOE STADI P, Mo-Kα1 

radiation). Since the effective F content cannot be derived from Rietveld 

refinements or EDX measurements, the O:F ratio was held constant at the nominal 

composition and the evolution of the lattice parameters was used as indicator of 

the effective F content in the samples. Empirical absorption corrections were 

performed, estimating sample thicknesses of 0.02mm (see chapter 2 for details) for 

patterns recorded with the HUBER diffractometer. As an example, the Rietveld 

refinements of the LaFeAsO0.9F0.1 sample before and after the removal of the by-

products are shown in Figure 5.5 (patterns recorded on the HUBER G670 

diffractometer). 
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Figure 5.5: Rietveld refinement of the x = 0.1 sample, before (above) and after (below) the removal 
of the co-formed salts NaCl and NaF (main reflections marked with *). 

An additional diffraction pattern of higher quality has been recorded for the 

LaFeAsO0.9F0.1 sample (STOE STADI P, Mo-Kα1, 60 h measuring time) after the removal 

of the co-formed salts (see Figure 5.6). The corresponding Rietveld refinement 

revealed traces of LaAs as additional impurity phase. The obtained lattice 

parameters as well as the identified impurities of the LaFeAsO1-xFx (x = 0-0.15) 

series are summarized in Table 5.1 (the data for LaFeAsO0.9F0.1 is the one obtained 

from the STOE STADI P refinement). 
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Figure 5.6: Rietveld refinement of LaFeAsO0.9F0.1 on a long term diffraction pattern (STOE STADI P, 
Mo-Kα1, 60 h) after the removal of the co-formed salts NaCl and NaF. 

Table 5.1: Lattice parameters and sample quality of LaFeAsO1-xFx synthesized by SSM reaction. 

LaFeAsO1-xFx a [pm] c[pm] V [Å3] Impurities  

x = 0 403.2(1) 873.8(1) 142.0(1) --- 

x = 0.05 402.8(1) 872.3(1) 141.6(1) LaAs, 1.0 wt% 

x = 0.10 402.6(1) 871.2(1) 141.2(1) LaAlO3
 1.0 wt%; 

LaAs 0.8 wt% 

x = 0.15 402.0(1) 869.7(1) 140.6(1) LaAs 3.5 wt%; 
LaAlO3 1.4 wt% 

 

As expected, the cell volume decreases with increasing fluoride content due to the 

smaller ionic radius of fluoride compared to oxide. This, in combination with the 

low content of impurity phases, shows that the effective compositions of the 

samples are very close to the (or even exact the) nominal ones. Compared to 

conventional synthesis methods, the amount of impurity phases (FeAs and LaOF)[15, 

126] was decreased by using the SSM reaction. The occurrence of the LaAlO3 

impurity is due to the reaction with the alumina crucible. Alternative reaction vessel 

setups did however not improve sample quality. 
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5.5 Physical properties 

To check whether the physical properties of the samples prepared by the SSM 

reaction differ from the ones obtained by conventional methods, electrical 

resistance as well as low-temperature XRD measurements of LaFeAsO have been 

performed. Furthermore, magnetic susceptibilities of the LaFeAsO1-xFx (x = 0.05–

0.15) were measured under zero-field-cooled and field-cooled (zfcfc) conditions. 

As mentioned earlier, LaFeAsO undergoes a structural phase transition from the 

tetragonal space group P4/nmm to orthorhombic Cmme at around 160 K (Ts) and 

a magnetic transition to an antiferromagnetic phase at around 140 K (TN) [39, 127]. 

The low-temperature XRD diagrams of LaFeAsO have been recorded between 

180 K and 130 K on a HUBER G670 diffractometer (Co-Kα1 radiation, equipped with 

a closed cycle He-cryostat) and were refined with the Rietveld method using the 

TOPAS package[67]. The development of the lattice parameters with decreasing 

temperature is illustrated in Figure 5.7. Consistent with earlier publications, a 

splitting of the lattice parameters a and b was found below 162 K indicating the 

structural transition. The lattice parameters were allowed to be refined equal when 

the difference was < 0.6 pm and a Rwp value of at least 1.7 was achieved with 

equally refined parameters a and b.  
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Figure 5.7: Development of the lattice parameters of LaFeAsO with temperature, showing the 
structural transition below ~162 K. Please note that the error bars of a and b are within the size of 
the chosen symbols. 

As it was first shown by Klauss et al., the structural and magnetic transitions can be 

observed on the derivation of the electrical resistance dρ/dT [127]. The 

measurement of the electrical resistance of LaFeAsO is shown in Figure 5.8. As can 

be seen the structural transition is indicated by a sign change of the first derivation 

(~ 165 K) and the magnetic transition is observed at its maximum (~ 140K). 

 
Figure 5.8: Temperature dependence of the electrical resistivity ρ of LaFeAsO together with the 
derivative dρ/dT. Ts and TN mark the strucutral and magnetic phase transition respectively 
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Results of the magnetic susceptibility measurements are depicted in Figure 5.9. 

The maximum Tc of 26 K has been detected for LaFeAsO0.9F0.1 and bulk 

superconductivity has been confirmed for the x = 0.10 and 0.15 (Tc = 9 K) samples, 

but only a small superconducting volume fraction of 4 % has been observed for 

the x = 0.05 sample (Tc= 11 K). Because the latter sample is only on the verge of 

the superconducting composition (x > 0.04)[126], small changes of the true 

composition could lead to the loss of the superconducting properties. The 

paramagnetic susceptibility above Tc is relatively high, indicating possible traces of 

ferromagnetic impurities. However, the weight fraction of the ferromagnetic 

impurity was estimated to be less than 0.5 wt% under the assumption that this 

impurity is metallic iron. 

 

 
Figure 5.9: Zero-field-cooled and field-cooled susceptibility measurements of the LaO1-xFxFeAs 
samples with an applied field of 15 Oe. 
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5.6 Conclusion 

A new method to synthesize LaFeAsO and superconducting LaFeAsO1-xFx (x = 0.05, 

0.10, 0.15) by solid state metathesis (SSM) reaction has been developed. Samples 

of high purity have been obtained by using LaOCl and NaFeAs as precursors. 

Temperature dependent X-ray diffraction shows that the reaction pathway 

proceeds via decomposition of the precursor to binary intermediates (LaAs, La2O3, 

Fe2As) and is thus not of topotactic character, as one may assume at first. 

Nevertheless, the in situ formation of the binary intermediates leads to a better 

homogeneity of the reaction mixture which improves the phase purity. 

Superconductivity was confirmed in agreement with conventionally prepared 

compounds. The results prove the general suitability of the SSM reaction to 

produce iron based superconductors and may be useful to explore new 

compounds that are difficult or impossible to synthesize by conventional methods. 
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6 Synthesis of CaFeAsF and Ca0.4Nd0.6FeAsF via solid 
state metathesis reaction 

The 1111 compounds AEFeAsF (AE = Ca, Sr, Eu) have been reported at the end of 

2008[23-26]. The parent compounds show the typical anomaly in resisitvity- and 

magnetic measurements. For CaFeAsF and SrFeAsF these anomalies could be 

attributed to similar spin density wave transitions as found for the REFeAsO 

compunds (RE = rare earth metal). The structure changes from tetragonal 

(spacegoup P4/nmm) to orthorhombic (Cmme) symmetry below ~ 120 K (CaFeAsF) 

and 175 K (SrFeAsF) respectively[128]. In the case of SrFeAsF, magnetic ordering was 

detected by means of Mößbauer spectroscopy, and neutron experiments showed 

that the onset of the magnetic transition is as low as 133 K [24, 129] which is the 

largest temperature difference between structural and magnetic transition in the 

iron arsenide family and therefore has intensively been studied[130]. For CaFeAsF 

the magnetic behavior at low temperatures has not been investigated in detail yet. 

Like in the REFeAsO compounds, superconductivity can be induced by indirect-

electron doping (e. g. Ca1-xNdxFeAsF or Sr1-xLaxFeAs) [27, 131] or direct electron-

doping (CaFe1-xCoFeASF and SrFe1-xCoAsF) [25, 26, 128]. To extend the applicability of 

the solid state metathesis reaction developed for the LaFeAsO1-xFx series, the 

concept was transferred to the synthesis of stoichiometric and doped CaFeAsF. 

6.1 CaFeAsF 

6.1.1 Synthesis and reactivity 
Following the concept of a solid state metathesis reaction, the starting materials 

for the synthesis of CaFeAsF were CaFCl and NaFeAs, according to the reaction 

equation: 

 

CaFCl + NaFeAs    CaFeAsF + NaCl 
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CaFCl is isostructural to LaOCl (PbFCl-type, which was used for the synthesis of 

LaFeAsO) and contains FCa4/4 tetrahedral layers[58], the same structural motif which 

is found in CaFeAsF. General considerations about the solid state metathesis 

reaction are described in chapter 5.2. Interestingly, the above formulated reaction 

would mean a selective halide reaction with sodium. As will be seen this is indeed 

the case, although one would expect NaF to be the more stable byproduct, 

compared to NaCl. On the other hand Cl- atoms are too large to replace the F- 

atoms in the tetrahedral holes of the FCa4/4-layers and a hypothetical CaFeAsCl 

crystallizing in the ZrCuSiAs type structure seems unrealistic. 

As compared with the metathesis syntheses in the LaFeAsO system (chapter 5 

and 7) slightly milder reaction conditions had to be chosen. The starting materials 

were pressed to a pellet and heated to 873 K for 20h, followed by heating to 

1173 K and reaction for 40 h. First attempts at higher temperatures of the first 

heating step, led to higher amounts of impurity phases, especially CaF2. This is 

probably due to the decomposition of CaFCl to CaF2 at temperatures above 973 K, 

which has already been observed at the synthesis of CaFCl (see chapter 2). 

Therefore, a first step at moderate temperatures seems to be necessary for the 

formation of reactive intermediate products, assuming a similar reaction pathway 

as found for the synthesis of LaFeAsO. 

6.1.2 Sample quality and physical properties 
The optimization of the reaction conditions led to samples of high purity 

( > 96 wt%) with CaF2 and traces of Fe (< 0.5 wt%) being the only detected 

impurities. As an example a Rietveld refinement after the removal of NaCl is 

depicted in Figure 6.1. The obtained lattice parameters of a = 387.5 (1) pm and 

c = 858.4 (1) pm are consistent with previously reported[23]. 
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Figure 6.1: Rietveld refinement of CaFeAsF. 

In first reports of CaFeAsF being a possible parent compound for new iron 

arsenide superconductors, anomalies in resistivity and magnetic measurements 

were detected at 118 K, implying structural and magnetic transitions analogous to 

LaFeAsO[16, 17]. To verify these findings and prove the suitability of the solid state 

metathesis reaction, the physical properties of CaFeAsF were measured. Figure 6.2 

shows the temperature dependent resistivity- and susceptibility (100 Oe, inlay) 

measurements. The sharp drop of the resistivity at 118 K and the less pronounced 

drop in the susceptibility measurement confirm the findings by H. H. Wen[23]. The 

high susceptibility values are probably due to iron as ferromagnetic impurity.  
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Figure 6.2: Temperature dependence of the resistivity and susceptibility of CaFeAsF. The anomaly 
indicating a structural and / or magnetic transition is clearly visible at 118 K.  

6.2 Ca0.4Nd0.6FeAsF 

Simultaneously with the report about the parent compound CaFeAsF, high Tc 

superconductivity was reported for rare earth doped Ca1-xRExFeASF (x = Nd, Pr)[27]. 

A very high critical temperature of 56 K was reported for Ca0.4Nd0.6FeAsF, which 

one is of the highest reported for the new iron arsenide superconductors. The 

conventionally prepared (solid state reaction of the binary compounds) samples of 

Cheng et al. contained large amounts of impurities, mainly CaF2, NdAs and Fe2As. 

Quoting reference [27]: ‘…Therefore it would be helpful for forming the 

superconducting phase by blocking the formation of the CaF2 phase and thus the 

Fe2As and REAs (RE =Nd and Pr’. After the successful synthesis of high purity 

samples of LaFeAsO1-xFx and CaFeAsF using a solid state metathesis reaction, the 

goal was to increase the purity of Nd doped CaFeAsF samples, by a similar 

synthesis route. 
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6.2.1 Synthesis, sample quality and magnetism 
The samples were prepared by heating the starting materials acoording to the 

reaction equation: 

 

NaFeAs + 0.4 CaFCl + 0.6 NdF3 + 0.6 Na  Ca0.4Nd0.6FeAsF + 0.4 NaCl + 1.2 NaF 

 

Since elemental sodium had to be used to react with additional fluoride, the 

starting materials could not be pressed to pellets directly, but were pre-reacted at 

423 K for 5 h. The as prepared mixtures were compressed to pellets afterwards and 

heated using different temperature programs: 

a. 873 K for 48 h 

b. 1173 K for 60 h 

c. 1173 K for 20 h followed by 1323 K for 96 h 

d. 973 K for 20 h followed by 1223 for 96 h 

e. 1173 K for 40 h 

The Rietveld refinements of the obtained samples revealed that NdAs, CaF2, 

NaNdF4 and probably Fe, together with the co-formed NaF and NaCl were the 

main constituents. The desired ZrCuSiAs type phase Ca1-xNdxFeAsF was only 

detected in samples b. and e. with amounts < 4 wt%. The Ca : Nd ratio was held 

constant for the refinement according to the nominal composition (0.4 : 0.6). In 

both samples the 1111 compound was refined with similar cell parameters of 

a ~ 395 pm and c ~ 855 pm, where the a axis is elongated and the c axis is a little 

bit shortened compared to the undoped compound (details of the refinements of 

both samples can be found at the appendix). Cheng et al. have found lattice 

parameters of a = 394.5 pm and c = 859.3 pm for Ca0.4Nd0.6FeAsF[27]. The change 

of the lattice constants therefore indicates a successful replacement of Ca by Nd. 

However, to what extend Nd was doped into CaFeAsF cannot be said reliably. 

Interestingly no traces of Ca1-xNdxFeAsF have been found when reacting at high 
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temperatures (> 1173 K). Contrary to this, the reaction temperature of the 

conventional synthesis performed by Cheng was as high as 1323 K (with yields 

higher than 4 wt%). This could be due to the formation of NaNdF4, whose 

formation was favored at the high temperature SSM experiments. To avoid the 

formation of NaNdF4 another experiment has been performed using LiFeAs plus 

elemental Li instead of NaFeAs and Na. This, however, did not lead to an 

improvement of the sample quality, indicating that the formation of very stable 

CaF2 and NdAs should be the main problem for obtaining samples of high purity. 

A zero-field-cooled and field-cooled measurement has been performed on the 

sample of reaction b. As can be seen from Figure 6.3 a splitting of the zfc- and the 

fc-signal was observed at a temperature of ~ 55 K, which can be indicative for a 

superconducting transition. However, the amount of the superconducting phase 

must be very low, since the magnetic signal remains positive. This is 

understandable, since the diamagnetism of the superconductor interfers with the 

strong magnetism of elemental iron for example, which results in a positive signal 

if the amount of the superconducting phase is as low as detected from the 

Rietveld refinements. Additionally to the probable superconducting transition, an 

antiferromagnetic signal is visible at 13 K, which matches with the reported Néel 

temperature of NdAs[132]. 
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Figure 6.3: Zero-field-cooled (zfc) and field-cooled (fc) susceptibility measurements of the mixture 
obtained from reaction b with an applied field of 15 Oe. 

6.3 Conclusion 

The replacement of LaOCl by isostructural CaFCl as starting material for the solid 

state metathesis reaction with NaFeAs, expanded the applicability of this 

alternative synthesis route to another family of 1111 iron-arsenide compounds, 

namely the alkaline earth fluoride iron arsenides. Due to the structural conditions 

of the targeted compound the reaction is halide selective, as only NaCl is formed 

as co-product of the metathesis reaction. The physical properties of as-prepared 

CaFeAsF are consistent with the ones reported for the conventionally prepared 

compound. However, the formation of the very stable byproduct CaF2 could not be 

suppressed completely. This together with the formation of other stable 

compounds like NdAs and NaNdF4 made it difficult to obtain pure samples of Nd 

doped CaFeAsF. Nevertheless, the small traces of the ZrCuSiAs-type compound 

showed unit cell parameters as one would expect for Nd doped CaFeAsF. This, 

together with the performed magnetic measurement can be seen as a 

confirmation of the superconducting properties of Nd doped CaFeAsF
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7 Co-substituted LaFe1-xMnxAsO1-yFy 
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7.1 Motivation 

Charge-doping suppresses structural transitions from tetragonal to orthorhombic 

symmetry and SDW antiferromagnetism in stoichiometric parent compounds of 

1111- and 122-type iron arsenides like LaFeAsO or BaFe2As2, and 

superconductivity is induced in the proximity of magnetism[15, 20]. In stark contrast 

to the cuprates, also substitution of the iron atoms by transition metals with the 

same or higher number of valence electrons induces superconductivity, for 

example in Ba(Fe1-xCox)2As2.[45] However, whether transition metal substitution 

leads to charge doping or acts as scattering centers is still under debate[133-135]. 

Even less understood is the fact that hole-doping by transition metal substitution 

(Cr, Mn) has on no account induced superconductivity so far[46, 48, 136, 137]. 

Substitution of Fe by Cr or Mn in Ba(Fe1-xTMx)2As2 leads to a suppression of the 

structural transition for x ≥ 0.335 and x > 0.10 respectively[46, 136-138]. Even though 

the transition is absent for highly doped samples, a magnetic phase develops 

albeit with a magnetic structure different from the low doped samples[137, 139]. The 

antiferromagnetic ordering changes from stripe-like (SDW) to Néel-type (G-type) 

in Cr substituted compounds, which is consistent with the absence of the 

orthorhombic phase. A co-existence of both types of AFM ordering is reported for 

x = 0.305 and x = 0.335, although the structural transition is already suppressed for 
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the latter concentration [137]. This is unusual, since the stripe-like SDW is believed 

to be coupled to the orthorhombic transition by magnetoelastic effects[140-142]. For 

Ba(Fe1−xMnx)2As2 a more complicated behavior is observed. In first reports, 

magnetic ordering with a propagation vector (½ ½ 1) (stripe-like or SDW AFM) 

was observed in the absence of the orthorhombic distortion (x > 0.10) but no 

traces of Néel type fluctuations or ordering have been found[46]. However, recent 

neutron diffraction studies found co-existence of long-ranged stripe like 

antiferromagentic ordering and purely dynamic short-range Néel type spin 

fluctuations introduced by Mn in Ba(Fe0.925Mn0.075)2As2
[139]. Whether these short-

range fluctuations are also present in the samples with higher Mn concentrations 

has not been studied yet. NMR measurements of Ba(Fe1-xMnx)2As2 revealed 

localized Mn moments, which couple to the conduction electrons and induce a 

staggered spin polarization within the Fe-layer[135]. It was proposed that spin 

fluctuations (Néel-type) which arise from these local Mn moments could be 

disruptive for superconductivity[135, 139]. Actually, very recent theoretical calculations 

confirmed the suppression of superconductivity by Néel type fluctuations in the 

iron pnictides[143]. Meanwhile there is growing evidence for local Mn moments 

leading to a different type of (short range) magnetic fluctuations / ordering, which 

competes with the long range ordering developed by the Fe lattice. 

In contrast to this, very little is known about manganese substitution in 1111 

compounds. Substitution of Fe by Mn in CaFeAsF and LaFeAsO changes the 

resistivity behavior from metallic to semiconducting[48, 144]. Because this is already 

observed for very small Mn concentrations one may argue that Mn mainly acts as a 

scattering center in these compounds[144]. In LaFe1-xMnxAsO the structural 

distortion seems to be suppressed at x > 0.06 according to conductivity and 

thermoelectric power measurements[48]. However, information about the magnetic 

behavior of the 1111-compounds upon Mn substitution is still lacking. 

It is widely believed that in FeAs superconductors certain structural preconditions 

like interatomic distances, the pnictogen layer height or the distance between the 

iron-arsenide layers have to be fulfilled to induce superconductivity or to reach 
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high critical temperatures (for an overview see Ref. [43]). One of the most noticeable 

correlations of Tc to a structural parameter is found in the As–Fe–As angles of the 

FeAs tetrahedra. Lee et al. have collected structural data from many iron based 

superconductors and found that the highest Tcs appear in systems were the angles 

are close to the value of 109.47°, suggesting that the potential for high critical 

temperatures is biggest for regular tetrahedral[51]. It has been suggested that the 

angle is not only determined by the different atom sizes but that the electron 

count plays an important role as well[36]. Although the experimental data indicate 

that an ideal tetrahedral angle seems to be crucial for high Tcs, the most recent 

investigations about the interplay between doping and structural changes in 

doped BaFe2As2 have shown that charge modifications play the mayor role for the 

suppression of magnetism and the emergence of superconductivity. Zinth et al. 

have demonstrated that charge compensation in Ba1-xKx(Fe0.93Co0.07)2As2 (x ≈ 0.14) 

recovers the magnetic and structural transitions of the parent compound and 

superconductivity re-emerges for lower (electron-doped) as well as for higher 

(hole-doped) potassium concentrations.[53] This shows how the physical properties 

can be controlled by modifying the charge balance in BaFe2As2. 

To expand the knowledge about the influence of direct hole-doping on the 

structural, electronic and magnetic properties of 1111-type iron arsenides, the 

series LaFe1-xMnxAsO (x = 0.0 - 0.2) was investigated and a comparison is drawn 

with directly hole-doped 122 compounds. Furthermore the influence of charge 

compensation by additional electrons due to additional F doping in 

LaFe0.1Mn0.1AsO0.9F0.1 as well as the formally electron doped series 

LaFe0.9Mn0.1AsO1-yFy (y = 0.2-0.5) is presented. 

7.2 Synthesis 

The synthesis of the LaFe1-xMnxAsO1-yFy samples was performed by heating 

stoichiometric amounts of LaOCl, NaFeAs, NaMnAs, LaF3 (powder, 99.99 %) and Na 

(ingots, 99.8 %) according to the solid-state metathesis reaction: 
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(1-x) NaFeAs + x NaMnAs + (1-y) LaOCl + y LaF3 + y Na  

      LaFe1-xMnxAsO1-yFy + (1-y) NaCl + 2y NaF  

           (x = 0.05 – 0.20; y = 0.0 – 0.5 with x = 0.1) 

 

General considerations about the solid-state metathesis reaction are discussed in 

chapter 5. Here, it should be noted that NaMnAs is isostructural to NaFeAs and 

therefore it also contains the FeAs4/4 tetrahedral layers as a structural motif. The 

precursors were well homogenized, filled in alumina crucibles, welded in Niobium 

tubes enclosed by silica tubes. All crucibles and tubes contained a purified argon 

atmosphere. The reaction mixtures were heated to 1023 K for 48 h and 1223 K for 

96 h, followed by cooling to room temperature with 200 K/h. The co-formed salts 

NaCl and NaF were removed by washing the obtained mixture with water (3 times) 

and ethanol, followed by drying the product under high vacuum. The synthesis of 

the starting materials is described in chapter 2.  

7.3 Sample quality and structural changes upon doping  

The metathesis reaction yielded single phase samples of LaFe1-xMnxAsO. With 

increasing Mn concentration the cell parameters and the volume increase almost 

linearly, indicating that Mn is successfully inserted (see Figure 7.1). This, together 

with the sample purity, indicates that the effective Mn contents are very close to 

the nominal ones 

Parallel to the unit cell expansion, the Fe–As and metal–metal distances increase. 

The twofold As–Fe–As angle ε2 of the FeAs tetrahedra becomes more regular, 

decreasing from 113.1(2)° (x = 0) to 111.8(2)° (x = 0.20). The structural changes 

upon Mn-doping are therefore consistent with the ones reported by Bérardan et 

al. (x = 0-0.1)[48], but the reported cell parameters of the corresponding sample 

compositions are much larger than those we find. 
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Figure 7.1: Changes of the unit cell parameters (top) and interatomic distances (bottom) with 
increasing Mn fraction in LaFe1-xMnxAsO. The dotted black line marks the Mn concentration held 
constant for the series LaFe0.9Mn0.1AsO1-yFy. Some interatomic distances of similar 1111 compounds 
are listed for comparison. 

The effective doping levels have been confirmed by at least 5 EDX measurements 

of each sample and averaged compositions showing deviations of less than 1 % of 

the nominal compositions were obtained (Figure 7.2). 
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Figure 7.2: Rietveld refinement of LaFe0.8Mn0.2AsO (top) and results from EDX measurements on 
LaFe1-xMnxAsO (bottom; black circles: individual measurements; blue circles: averaged composition 
from individual measurements; red circles: nominal composition) 

Samples of the series LaFe0.9Mn0.1AsO1-yFy (y = 0.1 – 0.5) contained small amounts 

of LaAs (< 3 wt%, for y = 0.1 and 0.2) and with increasing y additional Na1.5La1.5F6 

(y = 0.3, 0.4, 0.5) and LaF2 (y = 0.4, 0.5) were identified as impurities, with the 

highest amount (sum of 20 wt%) for the highest nominal fluorine content. Since 

the effective F content cannot be derived from Rietveld refinements or EDX 

measurements, the evolution of the lattice parameters was used as indicator of the 

effective F content in the samples. As one can see from Figure 7.3, additional F in 
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LaFe0.9Mn0.1AsO leads to a decrease of the lattice parameter a, while the c axis is 

more or less unaffected after a small decrease for y = 0.1 Since the sample quality 

is very good for low F concentrations, the effective F content should be very similar 

to the nominal one in the low doping regime. The decreasing cell volume indicates 

that the effective F content further increases with nominal y, despite the higher 

amount of impurities. Therefore the nominal fluorine contents are stated keeping 

in mind that higher y also means higher effective F content (even though they 

might not be linearly related).  

 
Figure 7.3: Changes of the unit cell parameters (top) and interatomic distances (bottom) with 
increasing F content in LaFe0.9Mn0.1AsO1-yFy. 

Together with the shrinkage of the a-axis also the Fe-Fe bond length is decreased, 

which reaches a value similar to optimally electron doped LaFeAsO0.9F0.1, for 
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y = 0.3. The two-fold As–Fe–As angle ε2 further decreases with increasing y and 

almost reaches the ideal value of 109.47° for y = 0.5(≈ 110°). Because of the 

shrinkage of the a-axis (together with the ε2 angle) and the nearly unaffected 

length of the c axis, a geometrical consequence is a further increase of the metal-

arsenic distance. From a structural point of view, with additional F doping in 

LaFe0.9Mn0.1AsO the precondition for superconductivity appears to be fulfilled. 

Metal-metal distances similar to optimally electron doped LaFeAsO and an As–Fe–

As angle close to the ideal value are found. Counterproductive to this is the 

increasing metal-arsenic distance caused by the initially increase of the c axis by 

Mn doping. An increasing bond length can lead to more localized electrons due to 

a smaller orbital overlap. 

7.4 Physical properties 

A metal to semiconductor transition for Mn concentrations higher than 3 % and an 

increasing semiconducting behavior with increasing Mn content in LaFe1-xMnxAsO 

was reported[48]. The semiconducting behavior is associated to the suppression of 

the structural transition, which was concluded from thermopower 

measurements[48]. 

The resistivity measurements of the samples prepared by the solid-state 

metathesis reaction are consistent also for further Mn doping as can be seen from 

Figure 7.4. With increasing x, the semiconducting behavior gets more pronounced 

and the relative resistance ratio R12K / R300K is the highest for x = 0.2. The measured 

resistivity ρs at 300 K is increasing as well, and it is one order of magnitude higher 

for the highest Mn concentration compared to undoped LaFeAsO (4.7 ∙ 10-4 Ωm 

for x = 0.2 and 2.8 ∙ 10-5 Ωm for x = 0.0). Furthermore low temperature XRD 

measurements showed that the structural transition is absent for the whole series 

LaFe1-xMnxAsO (x = 0.05-0.20) 
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Figure 7.4: Temperature-dependence of the normalized resistivity R / R300K for LaFe1-xMnxAsO (top); 
evolution of R12K / R300K and resistivity ρ at 300 K with increasing Mn content (bottom). 

Additional electrons introduced by F doping lead to a higher charge carrier 

concentration within the FeAs-layer and the metallic behavior is regained with 

increasing F doping. Figure 7.5 shows that F doping in LaFe0.9Mn0.1AsO1-yFy leads to 

a decrease of the R12K / R300K values and the resistivity ρs at 300 K. The discordant 

values for ρs(300) of the y = 0.3 and 0.5 sample are probably due to increased 

contact resistances. No superconductivity was found for the formally electron-

doped samples (y > 0.2) nor any anomaly of the electrical resistivity was observed 

for charge compensated LaFe0.9Mn0.1AsO0.9F0.1, what could have been indicative for 

structural or magnetic transitions. Low temperature XRD measurements of 

LaFe0.9Mn0.1AsO1-yFy (y = 0.10 and 0.20) showed no transition from tetragonal to 

orthorhombic symmetry at low temperatures. 
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Figure 7.5: Temperature-dependence of the normalized resistivity R / R300K for LaFe0.9Mn0.1AsO1-yFy 
(top); evolution of R12K / R300K and resistivity ρ at 300 K with increasing F content (bottom). 

Magnetic measurements on the SQUID magnetometer showed temperature-

independent susceptibility and no anomaly that would indicate a magnetic 

transition. In some samples ferromagnetic impurities were found. Under the 

assumption that these impurities are iron, the amounts were estimated to be 

smaller than 0.5 wt %. For a more detailed study of the magnetic properties muon 

spin relaxation (µSR) experiments were performed on the x = 0.05-0.20 and the 

y = 0.10 and 0.20 samples at the πM3 beam line at the Paul-Scherrer-Institut 

(Switzerland). µSR as a local magnetic probe can provide valuable information on 

the magnetic volume fraction and the magnetic homogeneity. Figure 7.6 shows 

the zero field (ZF) µSR spectra for the Mn doped samples (y = 0). The data of 
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LaFeAsO (x = 0) are shown for comparison[145]. At high temperatures the muon 

spin polarization is only weakly relaxing as a function of time due to the interaction 

of the muon spin ensemble with the small magnetic fields originating from nuclear 

magnetic moments or diluted ferromagnetic impurities only. At low temperatures 

anyhow the muons might experience a much stronger internal magnetic field due 

to ordering of the electronic moments. This is the case for all Mn doped samples 

as evident from the strongly time dependent muon spin polarization observed in 

the ZF spectra. In a long range ordered magnet a coherent muon precession of the 

whole ensemble is observed giving rise to long-lived oscillations in the ZF µSR 

time spectra as it is the case for the x = 0.0 sample. The value of the precession 

frequency is proportional to local magnetic field and therefore to the ordered 

electronic magnetic moment. A damping of the µSR oscillation indicates a 

distribution of internal magnetic fields sensed by the muon ensemble and is 

therefore a measure of the disorder in the magnetic system. It is evident that the 

µSR precession is strongly damped for all Mn- doped samples. This proves that the 

doping of Mn ions into the magnetic Fe lattice introduces considerable disorder 

making the magnetic ordering short range in nature. The magnetic correlation 

length can be estimated with a rule of thumb: If the precession is just visible as in 

the x = 0.05 sample the magnetic correlation length is about 10 lattice constants 

only[146]. Interestingly the observed frequency is still 16.5 MHz for the x = 0.05 

sample compared to 23 MHz at x = 0. If the same stripe AFM magnetic structure is 

assumed this means that the average ordered magnetic moment is only reduced 

by 29% for this doping level. It should be noted that it seems unlikely that the 

stripe AFM order is realized since no structural distortion could be observed for x > 

0.05. From the local probe (µSR) data alone it is not possible to deduce the 

magnetic structure. Therefore it is also not possible to decide if the apparent 

magnetic disorder stems from localized magnetic Mn ions within a disordered 

stripe AFM phase or if it is due to a disordered mixture of different anti-

ferromagnetic phases as e.g. observed in Cr doped Ba(Fe1-xCrx)2As2 [137] or due to a 

new disordered magnetic structure e.g. of Néel-type as observed in LaMnAsO or 
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BaMn2As2.[147, 148] To clarify this point magnetic neutron scattering data would be 

indispensable. 

 
Figure 7.6: Zero field spectra of the LaFe1-xMnxAsO series, the data for x = 0.0 was taken from [145]. 

With a local probe like ZF µSR on the other hand it is possible to determine the 

magnetic volume fraction. In a 100% static magnetically ordered powder, 2/3 of 

the internal field components are perpendicular to the initial muon spin direction 

and cause a precession (or fast relaxation) while the remaining 1/3 fraction does 

not precess. It is clear from Figure 7.6 that in all Mn doped samples the full volume 

is statically magnetic at 5 K. In a dynamic magnetic state also the remaining 1/3 

component would show a relaxation [146] which is not the case here. In magnetically 

ordered Ba(Fe0.925Mn0.075)2As2 inelastic neutron scattering have detected magnetic 

spin fluctuations at two different wave vectors corresponding to the stripe and 

Néel type of magnetic order[139]. Here, no indications for spin fluctuations in 
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LaFe1-xMnxAsO are found. This does not necessarily mean the absence of these 

fluctuations, but that the fluctuations, if present, are too fast to be observed within 

the time window of the µSR technique. 

The temperature dependence of the magnetic volume fraction can be better 

determined in a series of weak transverse field (TF) µSR measurements. In this case 

a weak external magnetic field of 50 Oe is applied perpendicular to the initial 

muon spin direction. In a paramagnetic state all the muon spins precess in the 

external field. If the sample, on the other hand, is magnetic the muon spins precess 

in the much larger internal fields. Therefore the amplitude of the precession signal 

in the external magnetic field is a measure for the paramagnetic volume fraction. 

In Figure 7.7 the magnetic volume fraction is shown as a function of temperature 

for various Mn doping levels. The transition is rather broad for the Mn-doped 

samples, while it is sharp for the undoped compound. This indicates a certain 

amount of disorder and/or chemical inhomogeneity. In such a situation it is 

difficult to determine the true Néel temperature TN, therefore the values for 10%, 

50% and 90% magnetic ordering are highlighted. 

 
Figure 7.7: Development of the magnetic volume fraction as a function of temperature for 
LaFe1-xMnxAsO1-yFy, data for x = 0.0 are taken from Ref. [145]. 
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In Figure 7.8 the obtained magnetic phase diagram is shown. It resembles that for 

Mn doped BaFe2As2 with a minimum of TN around x = 0.10. For Mn concentrations 

of x ≥ 0.10 in Ba(Fe1-xMnx)2As2 only long-range magnetic order has been detected 

so far.[46, 138] On the contrary our data indicate short range / disordered magnetism 

for the 1111 system which can be understood if Mn acts predominately as a 

magnetic scattering centre, which presumably distorts the long range magnetic 

order of the iron atoms, or induces a different type of short range 

antiferromagnetic order itself. Additionally, it is natural to assume that the SDW 

magnetism of the Fe sublattice which is observed for the parent compound is 

destroyed or at least fairly disturbed by Mn doping with x ≥ 0.05 since the 

magnetoelastically coupled orthorhombic distortion is absent for these samples. 

 
Figure 7.8: Structural and magnetic phase diagram of LaFe1-xMnxAsO1-yFy. The structural data for 
x < 0.05 are taken from Ref.  [48]. The data for x = 0.0 are taken from Ref. [145]. The magnetic volume 
fraction has a color code in steps of 10% from white (0% magnetic) to red (90% magnetic). The 
compensated sample with x = 0.1 and y = 0.1 is non-magnetic down to the lowest measured 
temperature while weak magnetism develops in 30% of the sample in the x = 0.1, y = 0.2 sample 
below 5 K. 
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The zf spectra of the charge compensated (y = 0.10) and formally electron-doped 

sample (y = 0.20) are shown in Figure 7.9 (together with LaFe0.9Mn0.1AsO). 

Surprisingly, F doping leads to a complete suppression of the magnetic transition 

and the y = 0.1 sample is non-magnetic over the whole temperature range. The 

observation of an essentially non-magnetic state for a charge compensated 

sample is astonishing since it is completely different from Ba1-xKx(Fe0.93Co0.07)2As2 

(x ≈ 0.14), where the magnetism of the parent compound is regained for the 

charge compensated composition.[53] Actually we would like to point out that in 

the case of the 1111 family investigated here the charge compensated sample with 

x = y = 0.1 is the most non-magnetic sample investigated in this study. 

The y = 0.2 sample is similar to the y = 0.1 sample, but the magnetism is slightly 

stronger which can be appreciated by comparing the 5 K data in Figure 7.9. ZF, TF 

and LF µSR measurements show that the observed weak magnetism remains 

partially dynamic down to the lowest measured temperatures and that it does only 

occupy ≈ 30% of the sample volume (see Figure 7.7). In none of the investigated 

samples superconductivity could be observed. This means that although the 

magnetism can be suppressed or strongly weakened with further F doping it is not 

possible to induce superconductivity in F doped LaFe0.9Mn0.1AsO. 
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Figure 7.9:Zero field spectra of LaFe0.9Mn0.1AsO and LaFe0.9Mn0.1AsO1-yFy (y = 0.1 and 0.2). On the 
left side a short time window is shown as for the Mn doped series and on the right a long time 
window is displayed, since the magnetism is much weaker for the F doped compounds. 

From a NMR study Texier et al. [135] found that introducing Mn into 

Ba(Fe1-xMnx)2As2 does actually not introduce charge doping, and that the Mn ion 

carries a local moment due to the localization of the additional hole. These 

localized moments in turn can couple to the Fe electronic band and induce an 

alternating spin polarization into it. For the case of Ba(Fe1-xMnx)2As2 it was argued 

that these local Mn moments are unable to suppress the antiferromagnetic 
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ordering at low doping, but that they suppress superconductivity due to breaking 

of Cooper pairs. Texier et al. [135] speculate that this pair breaking should prevent 

superconductivity even if the long range magnetic order could be destroyed by 

other means. 

Similar conclusions can be drawn from the structural, magnetic and transport 

measurements on LaFe1-xMnxAsO1-yFy. The doping with relatively small amounts of 

x ≥ 0.05 Mn into LaFe1-xMnxAsO leads to a complete suppression of the tetragonal 

to orthorhombic transition usually concomitant with the stripe-like SDW AFM 

order. Upon further Mn doping short range magnetism is found to persist up to 

the highest doping level studied here. It is possible that a similar but more 

disordered kind of Néel magnetic order as observed for Cr and Mn doped 

BaFe2As2 compounds is established, even though this hypothesis cannot directly 

be proven with a local probe technique like µSR. As in the case of Ba(Fe1-xMnx)2As2 

no superconductivity is induced by Mn doping into LaFeAsO. On the contrary, the 

room temperature resistivity increases with Mn doping and the temperature 

dependence of the resistivity changes from metallic to increasingly 

semiconducting and the increasing bond lengths indicate a more localized 

electronic behavior. The electron doping by introducing F into of 

LaFe0.9Mn0.1AsO1-yFy in contrast increases the conductivity of the system as 

evidenced by resistivity measurements. In addition, the static magnetism is quickly 

suppressed by the electron doping and the structural prerequisites for high-Tc 

superconductivity like an almost regular Fe-As tetrahedron is successively 

approached. Nevertheless neither in the nominally charge compensated 

compound (x = 0.1, y = 0.1) nor in the nominally electron doped compound (x = 

0.1, y = 0.2) superconductivity is induced. Theoretically it has been shown, that the 

combination of short-range Néel fluctuations and pair-breaking impurity 

scattering effectively can suppress superconductivity[143]. Therefore it is reasonable 

to assume that a similar effect is at work in LaFe0.9Mn0.1AsO1-yFy as well with 

localized paramagnetic Mn magnetic moments and possibly residual Néel 

fluctuations acting as pair breakers in the otherwise non-magnetic samples. 
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7.5 Conclusion 

High quality Samples of LaFe1-xMnxAsO were obtained using a solid state 

metathesis reaction. Also the double substituted LaFe0.9Mn0.1AsO1-yFx series has 

been obtained in very good quality in a one step reaction, despite the use of five 

starting materials. Structural investigations revealed that upon additional F doping, 

parameters like the metal-metal distance or the As–Fe–As angle reach values which 

have been thought to be essential for the emergence of high superconducting Tcs. 

On the other hand, the increase of the metal-arsenic distances indicates a situation 

with stronger localization of the electrons. The magnetic behavior of the Mn 

doped 1111 compounds is different from the corresponding 122 compounds. 

From µSR measurements short ranged magnetic order was found, with the 

transition temperatures passing a minimum for x = 0.10. While the structural 

transition is present for Mn concentrations of up to ≈ 11 % in Ba(Fe1-x)2MnxAs2, the 

LaFe1-xMnxAsO series shows no structural transition down to 10 K. The previously 

reported semiconducting character of LaFe1-xMnxAsO (x = 0-0.1) [48] was confirmed 

and gets more pronounced with higher Mn concentrations. Together with the 

semiconducting character, the measured ρs(300K) values are further increased with 

increasing Mn concentration. 

Additional electron doping with F leads in turn to a more metallic behavior. On the 

other hand, the magnetic transition is completely suppressed for charge-

compensated LaFe0.9Mn0.1AsO0.9F0.1, which means that charge compensation does 

not lead to the regain of the parents compound properties as in 

Ba1-xKxFe1.86Co0.14As2 (x ≈ 0.14)[53]. The nominal optimal electron-doped 

LaFe0.9Mn0.1AsO0.8F0.2 shows very weak magnetism at temperatures below 5 K. Thus 

although the magnetic transition is suppressed and the electron count should lead 

to a superconducting state, the latter is not observed down to low temperatures. 

As stated above, it has been proposed that in such a case the localized Mn 

moments and possible residual Néel fluctuations may act as pair breakers. In 

agreement with this theoretical prediction, the results show that Mn impurities 
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within the FeAs layer are detrimental to superconductivity in electron doped 

LaFeAsO1-yFy. In summary, the series LaFe1-xMnxAsO1-yFy shows a complex 

structural, electronic and magnetic phase diagram in which electron and hole 

doping have very different electronic and magnetic effects. This is in stark contrast 

to the Ba1-xKx(Fe1-yCoy)2As2 system where the electron count essentially governs the 

physical properties[53]. 
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8 Summary  

La3Pd4-xFexGe4 

La3Pd4Ge4 crystallizes in the U3Ni4Si4 type structure (spacegroup Immm, Z = 2)[101, 

103]. The structure can be described by alternating layers of AlB2 type units and 

BaAl4 type units, which leads to two crystallographically independent Pd atom 

sites. Within the AlB2 type layers, Pd is trigonally planar coordinated by three Ge 

atoms and within the BaAl4 type units, the Pd atoms are located in the centre of 

edge sharing PdGe4/4 tetrahedra. The latter structural motif of metal- germanide / 

arsenide tetrahedra is also present in all iron based superconductors. La3Pd4Ge4 is 

superconducting with Tc = 2.75 K[101]. By partly substituting Pd by Fe atoms the 

concentration of the charge carriers was modified assuming to hereby improve the 

superconducting properties. For low Fe concentrations samples of good quality 

could be obtained by arc melting the elements at temperatures exceeding 3273 K. 

For nominal x ≤ 1.0 solely Pd atoms on tetrahedrally coordinated sites were 

substituted by iron. Measurements of the electric resistivity and magnetism 

characterized the samples with x ≤ 1.5 as metals but no superconducting behavior 

was observed down to a temperature of 1.8 K. 

 

ZrMAs (M = Ti, V) and Zr1+xV1-xAs 

The compounds ZrMAs (M = Ti, V) crystallize in the CeScSi type structure, in which 

the 3d metals M are coordinated by 4 As atoms, forming distorted square   

planes[107, 108]. Contrary to the superconducting iron arsenides, the structure of 

ZrMAs is rather three-dimensional since the metal-arsenide layers are not well 

separated by other layers or atoms. A similarity can be found in the strong metal–

metal bonds of the 3d metal atoms and the fact that the states around the Fermi 

Energy are mainly composed of M d states, thus being responsible for the 

supposed metallic character of these compounds[107, 108]. To reveal the true physical 

properties, high quality samples were synthesized by arc-melting pre-reacted 
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element mixtures. The theoretically predicted metallic character of these metal rich 

arsenides could be confirmed by measurements of the electric resistivity and 

magnetism. Additionally, the influence of a varying charge carrier concentration in 

the series Zr1+xV1-xAs (x = 0.20-0.35)[108], which can be understood as directly hole-

doped VAs-layers, was investigated. It was shown that Zr doping in ZrVAs does not 

lead to a significant change of the physical properties. The obtained compounds 

are still metallic, though showing higher resistivity values, which is probably due to 

the increased inhomogeneity of the samples and / or the increased disorder within 

the VAs-layers. 

 

LaFeAsO1-xFx (x = 0-0.15) via a solid state metathesis reaction 

A solid state metathesis reaction route was developed for the synthesis of 

LaFeAsO1-xFx
[15]. The parent compound LaFeAsO was obtained by using LaOCl and 

NaFeAs as starting materials, which consist of the same structural motifs as the 

targeted compound. The investigation of the reaction pathway by means of 

temperature-dependent X-ray diffraction showed that the reaction proceeds via 

intermediate binary products and is not of topotactic nature. For the synthesis of 

fluoride doped samples, LaF3 was used as F source. Compared to conventional 

syntheses the sample quality was improved drastically, with less than only 2 wt% of 

impurity phases in the F doped samples. The in situ formation of the binary 

intermediate products is most likely the reason for the better homogeneity of the 

reaction mixture and the consequentially improved sample quality. Measurements 

of the physical properties confirmed the structural and magnetic phase transitions 

of the parent compound LaFeAsO[39, 127] and the superconducting properties of the 

F doped samples. 

 

CaFeAsF and Ca0.4Nd0.6FeAsF via solid state metathesis reaction 

The general suitability of the synthesis of 1111 iron-arsenide compounds via solid 

state metathesis reaction was proven by expanding its applicability to the CaFeAsF 

system[23]. LaOCl was replaced by isotypic CaFCl as a starting material. The 
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structural conditions of the targeted product CaFeAsF lead to a halide selective 

reaction of NaFeAs and CaFCl, since only NaCl is obtained as co-product of the 

metathesis reaction. In a one step synthesis CaFeAsF was obtained with only small 

amounts of impurities. Resistivity and susceptibility measurements confirmed the 

reported anomaly at 118 K, which Nomura et al. attributed to the same structural 

transition as it was found for LaFeAsO[128]. Despite the good results achieved for 

the parent compound, it was very difficult to obtain samples containing Nd doped 

CaFeAsF, which was reported to have a very high Tc of 56K[27]. The targeted 

compounds were only obtained in small amounts due to the formation of very 

stable side products like NdAs and CaF2.  

 

Co-substituted LaFe1-xMnxAsO1-yFy  

An extensive study of the physical and structural properties of directly hole-doped 

LaFe1-xMnxAsO (x = 0.05-0.20) and charge compensated / electron-doped 

LaFe0.9Mn0.1AsO1-yFy (y = 0.1-0.5) has been created by means of (temperature-

dependent) powder X-ray-diffraction, resistivity measurements and magnetic 

characterizations (µSR measurements). Samples of good quality could be obtained, 

using a solid state metathesis reaction. The reported semiconducting properties of 

LaFe1-xMnxAsO[48] were confirmed whereby the metallic character is increased upon 

further F doping in LaFe0.9M0.1AsO. No superconducting signal was observed within 

the whole series LaFe0.9Mn0.1AsO1-yFy, although the electronic (in terms of charge 

doping) and allegedly structural preconditions were found to be fulfilled. The 

magnetic characterization of LaFe1-xMnxAsO by the µSR technique revealed static 

short range magnetic order. Interestingly, in F doped LaFe0.9Mn0.1AsO1-yFy (y = 0.1 

and 0.2) the static short range magnetism is quickly suppressed (y = 0.1). The 

observation of an essentially non-magnetic state for a charge compensated 

sample is astonishing since it is completely different from Ba1-xKxFe1.86Co0.14As2 (x ≈ 

0.14), where the magnetism of the parent compound is regained for the charge 

compensated composition[53]. The allegedly optimally electron doped 

LaFe0.9Mn0.1AsO0.8F0.2 shows very weak dynamic short range magnetism below 5 K. 
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Thus although the magnetic transition is suppressed and the electron count should 

lead to a superconducting state, the latter is not observed down to low 

temperatures. It was proposed, that in such a case the localized Mn moments 

could act as pair breakers for the Cooper pairs and therefore act destructive to the 

emergence of superconductivity[135, 139, 143]. Finally, the study about LaFe1-xMnxAsO1-

yFy shows that there are much more complicated correlations of electronic, 

magnetic and structural degrees of freedom to superconductivity than thought to 

be. 

 

Solid state metathesis reaction and building block concept 

Although the solid state metathesis reactions presented in this thesis are most 

likely not of a topochemic character, which has been shown for the synthesis of 

LaFeAsO, the use of starting materials which consist of similar building units as the 

targeted compounds can be very useful (building block concept). Figure 8.1 gives 

an overview of the developed solid state metathesis reactions, together with some 

hypothetical approaches which can be imagined to be successful. 
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Figure 8.1: Schematic overview of the successfully used solid state metathesis reactions and 
theoretical approaches for the synthesis of CaMnAsF and CaFe1-xMnxAsF. It has to be noted, that 
CaFe1-xMnxAsF has been conventionally synthesized by Matsuishi et al.[144].  

As can be seen, choosing the appropriate compounds keeps the total number of 

reactants low. This is particularly evident for the synthesis of the undoped parent 

compounds, which have been synthesized by the reaction of only 2 starting 

materials. Another advantage of the building block concept can be seen, when it 

comes to reaction planning. As an example, the LaFe1-xMnxAsO series was simply 

synthesized by combining NaFeAs and isostypic NaMnAs at the desired 

composition, which in turn left the total number of staring materials low again. 

Another example is the synthesis of the hypothetical compound CaMnAsF, which 

can easily be imagined to be synthesized out of NaMnAs and CaFCl. Thus the 

concept of the presented solid state metathesis reactions can be a very helpful tool 

to synthesize a great variety of 1111 iron-arsenide compounds and their doped 

derivatives in good sample quality.  
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Conclusion 

The results of this thesis can be divided into three major topics, which can also be 

seen as different approaches of solid state chemistry to reveal interesting features 

of known and unknown compounds and to develop alternative synthesis routes.  

Firstly, known compounds with related structural motifs to the superconducting 

iron-arsenides were investigated regarding their structural and physical properties. 

In case of La3Pd4Ge4 the influence of Fe doping on the properties was studied, 

whereas in the series ZrMAs (M = Ti, V) the physical properties have not yet been 

reported at all and were investigated for the first time. 

Secondly, an alternative synthesis route has been developed for the synthesis of 

superconducting LaFeAsO1-xFx. This solid state metathesis reaction distinctly 

increased the quality of the samples compared to conventionally prepared 

products. Furthermore, the reaction pathway was investigated and clarified, which 

helps to understand the processes during high temperature solid state metathesis 

reactions in general. 

Thirdly, this alternative synthesis route was expanded to other systems and new 

compounds like co-substituted LaFe1-xMnxAsO1-yFy were prepared and thoroughly 

investigated. This led to a complex study of the interplay of magnetism, electronic 

and structural conditions and the occurrence of superconducting properties. The 

investigation and understanding of such complex coherences will probably be 

decisive for the further understanding of the superconducting mechanism in iron 

based superconductors. 
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A. Appendix 

A.1 Rietveld refinement of LaGe2-xPdx 

 
Figure A.1: Rietveld refinement of LaGe2-xPdx (spacegroup P6/mmm) 

Table A.1: Crystallographic data of LaGe2-xPdx obtained from the Rietveld refinement. 

Diffractometer HUBER G670, Cu-Kα1, flat sample holder 

Spacegroup P6/mmm (191), Z = 1 

Lattice parameters  a = b = 432.1 (1) pm; c = 422.7(1) pm 

Cell volume  68.34(1) Å3 

Rp, RwP, RBragg, χ2 1.011, 1.407, 0.837, 0.912 

Atom Site x y z Occ. Uiso [pm2] 

La 1a 0 0 0 1 206(5) 

Ge 2d 1/3 2/3 1/2 0.64(1) 216(6) 

Pd 2d 1/3 2/3 1/2 0.36(1) 216(6) 

Detected phases LaGe1.28(1)Pd0.72(1) (87 wt%), LaPd2Ge2 (8 wt%), La2O3 (5 wt%) 
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A.2 Additional data for ZrMAs (M = V, Ti) and Zr1+xVxAs 

Table A.2: Crystallographic data of ZrTiAs from single crystal diffraction. 

Nominal composition ZrTiAs  

Refined composition Zr0.99(1)Ti0.95(1)As  

Temperature 293 K  

Diffractometer Stoe IPDS  

Radiation Mo.Kα, λ = 0.71073 Å  

Space group I4/mmm (139)  

Lattice parameters [pm] a = b = 376.8 (1) pm; c = 1478.4 (5) pm  

Cell volume [Å3] 209.92(6) Å3  

Z 4  

Calculated density 6.77 g/cm3  

Absorption coefficient  23.913 mm-1  

2θ range   2.76 – 30.20  

Reflections (total) 725  

Reflections (independent) 122  

Reflections with I > 2σ(I)  113  

Refined Parameters 13  

Rint, Rσ 0.046, 0.027  

R1, wR2 [I > 2σ(I)] 0.019, 0.039  

R1, wR2 [all data] 0.020, 0.040  

Goodness of fit (GooF) 1.125  

Largest resid. peak, hole 0.816 e-/Å3, -1.564 e-/Å3  

Atomic parameters, with atomic displacement parameters U in pm2: 

Zr 4e (0,0,z) z = 0.3209(1) occ. 0.99(1) U11 = U22 = 68(3); U33 = 63(3) 

Ti 4c (0, ½,0)  occ. 0.95(1) U11 = 140 (1) U22 = 83(7);  
U33 = 47(6) 

As 4e (0,0,z) z = 0.1300(1) occ. 1 U11 = U22 = 65(3); U33 = 61(3) 
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Table A.3: Crystallographic data of ZrTiAs obtained from the Rietveld refinement. 

Diffractometer STOE STADI P, Mo-Kα1, flat sample holder 

Spacegroup I4/mmm (139), Z = 4 

Lattice parameters  a = b = 376.8 (1) pm; c = 1474.5(1) pm 

Cell volume  209.3(7) Å3 

Rp, RwP, RBragg, χ2 2.523, 3.214, 1.550, 1.124 

Atom Site x y z Occ. Uiso [pm2] 

Zr 4e 0 0 0.3211(2) 0.99(4) 27(3) 

Ti 4c 0 ½ 0 0.96(1) 50(5) 

As 4e 0 0 0.1297(2) 1 32(3) 

Detected phases ZrTi0.96(1)As (100 wt%) 

 

Table A.4: Crystallographic data of ZrVAs obtained from the Rietveld refinement. 

Diffractometer STOE STADI P, Mo-Kα1, flat sample holder 

Spacegroup I4/mmm (139), Z = 4 

Lattice parameters  a = b = 376.8 (1) pm; c = 1411.7(1) pm 

Cell volume  200.3(1) Å3 

Rp, RwP, RBragg, χ2 2.389, 3.658, 1.048, 1.175 

Atom Site x y z Occ. Uiso [pm2] 

Zr 4e 0 0 0.3266(2) 1.00(1) 81(5) 

V 4c 0 ½ 0 0.98(1) 91(8) 

As 4e 0 0 0.1278(2) 1 72(5) 

Detected phases ZrV0.98(1)As (98.4 wt%), ZrAs (1.6 wt%) 
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Table A.5: Crystallographic data of Zr1.20V0.80As obtained from the Rietveld refinement. 

Diffractometer STOE STADI P, Mo-Kα1, flat sample holder 

Spacegroup I4/mmm (139), Z = 4 

Lattice parameters  a = b = 377.4 (1) pm; c = 1433.3(1) pm 

Cell volume  204.1(1) Å3 

Rp, RwP, RBragg, χ2 2.660, 3.621, 0.811, 2.013 

Atom Site x y z Occ. Uiso [pm2] 

Zr1 4e 0 0 0.3239(2) 1.00(1) 95(6) 

V 4c 0 ½ 0 0.80(1) 140(9) 

Zr2 4c 0 ½ 0 0.20(1) 140(9) 

As 4e 0 0 0.1282(2) 1 64(6) 

Detected phases Zr1.20(1)V0.80(1)As (main phase) + small unidentified peaks 

 

Table A.6: Crystallographic data of Zr1.25V0.75As obtained from the Rietveld refinement. 

Diffractometer STOE STADI P, Mo-Kα1, flat sample holder 

Spacegroup I4/mmm (139), Z = 4 

Lattice parameters  a = b = 377.0 (1) pm; c = 1434.2(1) pm 

Cell volume  203.9(1) Å3 

Rp, RwP, RBragg, χ2 2.431, 3.314, 0.511, 2.086 

Atom Site x y z Occ. Uiso [pm2] 

Zr1 4e 0 0 0.3266(2) 1.00(1) 92(6) 

V 4c 0 ½ 0 0.71(1) 231(10) 

Zr2 4c 0 ½ 0 0.29(1) 231(10) 

As 4e 0 0 0.1278(2) 1 82(6) 

Detected phases Zr1.29(1)V0.71(1)As (main phase) + small unidentified peaks 
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Table A.7: Crystallographic data of Zr1.35V0.65As obtained from the Rietveld refinement. 

Diffractometer STOE STADI P, Mo-Kα1, flat sample holder 

Spacegroup I4/mmm (139), Z = 4 

Lattice parameters  a = b = 378.2(1) pm; c = 1457.4(2) pm 

Cell volume  208.4(1) Å3 

Rp, RwP, RBragg, χ2 2.441, 3.122, 0.780, 1.228 

Atom Site x y z Occ. Uiso [pm2] 

Zr1 4e 0 0 0.3226(2) 1.00(1) 112(5) 

V 4c 0 ½ 0 0.64(1) 256(10) 

Zr2 4c 0 ½ 0 0.36(1) 256(10) 

As 4e 0 0 0.1315(2) 1 91(5) 

Detected phases Zr1.36(1)V0.64(1)As (main phase) + small unidentified peaks 

 

 

 
Figure A.2: Measurement of the magnetic susceptibility versus temperature with an applied field of 
1000 Oe for ZrMAs (M = Ti, V) 
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A.3 Rietveld refinement of LaFeAsO0.9F0.1 

 
Figure A.3: Rietveld refinement of LaFeAsO0.9F0.1 (spacegroup P4/nmm) on the STOE STADI P data. 

 

Table A.8: Crystallographic data of LaFeAsO0.9F0.1 obtained from the Rietveld refinement. 

Diffractometer STOE STADI P, Mo-Kα1, flat sample holder 

Spacegroup P4/nmm (129) (o2), Z = 2 

Lattice parameters  a = b = 402.6 (1) pm; c = 871.2(1) pm 

Cell volume  141.2(1) Å3 

Rp, RwP, RBragg, χ2 1.524, 2.012, 0.476, 1.373 

Atom Site x y z Occ. Uiso [pm2] 

La 2c ¼ ¼ 0.6459(1) 1 55(1) 

Fe 2a ¾ ¼ 0 1 58(2) 

As 2c ¼ ¼ 0.1528(2) 1 53(1) 

O 2b ¾ ¼ ½ 0.9 15(9) 

F 2b ¾ ¼ ½ 0.1 15(9) 

Detected phases LaFeAsO0.9F0.1 (98 wt%), LaAlO3 (1 wt%), LaAs (1 wt%) 
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A.4 Additional data for CaFeAsF and Ca0.4Nd0.6FeAsF 

Table A.9: Crystallographic data of CaFeAsF obtained from the Rietveld refinement (see chapter 6). 

Diffractometer HUBER G670, Cu-Kα1, flat sample holder 

Spacegroup P4/nmm (129) (o2), Z = 2 

Lattice parameters  a = b = 387.5 (1) pm; c = 858.3(1) pm 

Cell volume  128.9(1) Å3 

Rp, RwP, RBragg, χ2 1.128, 1.476, 0.153, 0.924 

Atom Site x y z Occ. Uiso [pm2] 

Ca 2c ¼ ¼ 0.6511(4) 1 92(6) 

Fe 2a ¾ ¼ 0 1 48(6) 

As 2c ¼ ¼ 0.1654(2) 1 63(4) 

F 2b ¾ ¼ ½ 1 22(12) 

Detected phases CaFeAsF (97 wt%), CaF2 (3 wt%), Fe (0.3 wt%) 
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Table A.10: Crystallographic data of Ca0.4Nd0.6FeAsF (sample b.) obtained from the Rietveld 
refinement (zCa and zAs were taken from the refinement of CaFeAsF). The thermal 
displacement parameters Uiso were constraint to 89 pm2. 

Diffractometer HUBER G670, Cu-Kα1, flat sample holder 

Spacegroup P4/nmm (129) (o2), Z = 2 

Lattice parameters  a = b = 394.9 (2) pm; c = 855.2(4) pm 

Cell volume  133.4(2) Å3 

Rp, RwP, RBragg, χ2 1.312, 1.992, 0.747, 1.653 

Atom Site x y z Occ. 

Ca 2c ¼ ¼ 0.6511 0.4 

Nd 2c ¼ ¼ 0.6511 0.6 

Fe 2a ¾ ¼ 0 1 

As 2c ¼ ¼ 0.1654 1 

F 2b ¾ ¼ ½ 1 

Detected phases 
CaF2 (23 wt%), NdAs (21 wt%), NaCl (17 wt%), NaF (27 wt%), 
NaNdF4 (5 wt%), Ca0.4Nd0.6FeAsF (4 wt%), Fe2As (3 wt%)  

 
Table A.11: Crystallographic data of Ca0.4Nd0.6FeAsF (sample e.) obtained from the Rietveld 

refinement (zCa and zAs were taken from the refinement of CaFeAsF). The thermal 
displacement parameters Uiso were constraint to 89 pm2. 

Diffractometer HUBER G670, Cu-Kα1, flat sample holder 

Spacegroup P4/nmm (129) (o2), Z = 2 

Lattice parameters  a = b = 394.7 (4) pm; c = 854.5(8) pm 

Cell volume  133.1(6) Å3 

Rp, RwP, RBragg, χ2 1.575, 2.218, 0.427, 0.880 

Atom Site x y z Occ. 

Ca 2c ¼ ¼ 0.6511 0.4 

Nd 2c ¼ ¼ 0.6511 0.6 

Fe 2a ¾ ¼ 0 1 

As 2c ¼ ¼ 0.1654 1 

F 2b ¾ ¼ ½ 1 

Detected phases 
CaF2 (23 wt%), NaNdF4 (11 wt%), NdAs (9 wt%), Fe2As(10 wt%), 
NaCl (17 wt%), NaF (26 wt%), Ca0.4Nd0.6FeAsF (4 wt%)  
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A.5 Synthesis of LaMnAsO 

Since LaMnAsO represents one end of the solid solution LaFe1-xMnxAsO, discussed 

in chapter 7, it was decided to synthesize the Mn containing parent compound via 

solid state metathesis reaction. Furthermore the latter served as test for the usage 

of NaMnAs as starting material. LaMnAsO is isotypic to LaFeAsO and crystallizes in 

the ZrCuSiAs-type structure (spacegroupP4/nmm (#129))[149]. LaMnAsO is 

antiferromagnetic (Néel-type) with TN = 317 K, which was found from neutron and 

synchrotron diffraction studies[147, 150]. Additionally LaMnAsO shows 

semiconducting behavior and giant magnetorresistance (GMR)[147].  

A.5.1 Synthesis 

LaMnAsO was synthesized by heating stoichiometric amounts of LaOCl and 

NaMnAs according to the solid-state metathesis reaction: 

 

LaOCl + NaMnAs  LaMnAsO + NaCl 

 

The reaction mixture was heated to 1023 K for 48 h and 1223 K for 96 h, followed 

by cooling to room temperature with 300 K/h. The co-formed NaCl was removed 

by washing the obtained mixture with water (3 times) and ethanol, followed by 

drying the product under high vacuum. 

A.5.2 Rietveld refinement of LaMnAsO 

The Rietveld refinement of LaMnAsO revealed small amounts of LaOCl as side 

phase and additionally some very small unidentified peaks (see Figure A.4). The 

obtained lattice parameters (Table A.12) are consistent with the ones obtained by 

Jeitschko et al. (a = 412.4, c = 903.0)[149, 151]. 
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Figure A.4: Rietveld refinement of LaMnAsO (spacegroup P4/nmm). 

 

Table A.12: Crystallographic data of LaMnAsO obtained from the Rietveld refinement. 

Diffractometer HUBER G670, Cu-Kα1, flat sample holder 

Spacegroup P4/nmm (129) (o2), Z = 2 

Lattice parameters  a = b = 411.9 (1) pm; c = 904.4(1) pm 

Cell volume  153.4(1) Å3 

Rp, RwP, RBragg, χ2 1.497, 1.985, 0.367, 0.804 

Atom Site x y z Occ. Uiso [pm2] 

La 2c ¼ ¼ 0.6325(1) 1 153(4) 

Mn 2a ¾ ¼ 0 1 214(9) 

As 2c ¼ ¼ 0.1683(1) 1 140(7) 

O 2b ¾ ¼ ½ 1 62(30) 

Detected phases LaMnAsO(98 wt%), LaOCl (2 wt%), 
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A.5.3 Resistivity measurement  

The performed resistivity measurement (Figure A.5) confirmed the previously 

reported semiconducting behavior of LaMnAsO[147]. 

 
Figure A.5: Temperature dependence of the electrical resistivity ρ of LaMnAsO. 
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Abbreviations 

Abbreviation Expression / Word 

2θ diffraction angle 

4πχV magnetic (e. g. superconducting) volume fraction 

° degree 

Ø diameter 

A Ampere 

Å Ångstrøm 

AC alternating current 

AE alkaline earth metal 

AFM antiferromagnetic 

BCS  acronym of Bardeen, Cooper, Schrieffer 

CGS centimeter gram second 

e- electron(s) 

EDX engergy dispersive X-ray analysis 

Ef Fermi energy 

eq. equivalents 

et al. et alii (“and others”) 

fc field-cooled 

h hour 

H magnetic field 

Hc1 lower critical field 

Hc2 upper critical field 

IPDS imaging plate diffraction system 

K Kelvin 

mg milligram 

Mmol magnetization per mole 

MPMS magnetic property measurement system 

nm nanometer 
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NMR nuclear magnetic resonance 

o2 origin choice 2 

occ.  atom site occupancy 

Oe Ørsted 

pm picometer 

RE rare earth metal 

SDW spin-density wave 

SQUID superconducting quantum interference device 

SSM solid state metathesis  

T Tesla 

Tc critical temperature 

TF transverse field 

TN Néel temperature 

Ts structural transition temperature 

V Volume 

wt% weight percent 

XRD X-ray diffraction 

YBCO YBa2Cu3O7-x 

Z Number of empirical formulas per unit cell 

ZF zero field 

zfc zero-field-cooled 

λ wavelength 

µSR muon spin relaxation 

χ magnetic susceptibility per volume (equivalent to χV)  

χ2 goodness of fit 

χg magnetic susceptibility per gram 

χmol magnetic susceptibility per mole 
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