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 ABSTRACT 

Tropical forests store huge amounts of carbon and are responsible for high annual 

emissions rates. Deforestation and forest degradation in the tropics contribute 6 - 17% 

of global anthropogenic carbon dioxide emissions. Additionally, tropical peatlands 

make a significant contribution to the terrestrial carbon stock in terms of thick 

belowground peat deposits (up to 20 m) and aboveground forests. The largest share of 

tropical peat swamp forest occurs in Indonesia and is a huge carbon sink due to the 

amount of carbon stored in the peat. The forests are under severe anthropogenic 

pressure, mainly for the needs of logging activities and large scale plantation 

development (mostly oil palm). The peat is being drained and the forest cover is being 

reduced resulting in a high susceptibility to fire which is commonly used to clear 

forested areas. Between 1990 and 2010, Borneo lost approximately half of its initial 

peat swamp forest cover mainly caused by legal and illegal logging, extensive 

plantation development, enormous drainage, land-development projects, and a very 

strong El Niño episode in 1997/1998 being responsible for a prolonged drought period. 

Hence, Indonesia became one of the largest greenhouse gas emitters worldwide and is 

therefore in the focus of REDD+ projects which aim at reducing emissions from 

deforestation and forest degradation. These projects require a precise monitoring of 

national forest carbon stocks which are generally derived from aboveground biomass 

(AGB) estimations. Remote sensing has been identified as the most cost effective way 

to monitor these remote and hardly accessible forests. Even though field inventory 

measurements are laborious, time consuming and, they are mandatory to calibrate 

satellite or airborne signals to estimate AGB.  

The main goals of this thesis are to monitor hydrological effects of peat restoration 

measurements with continuous SAR (synthetic aperture radar) imagery and to evaluate 

the potential and accuracy of multi-frequency SAR, multispectral RapidEye, and multi-

temporal airborne LiDAR (light detection and ranging) data for AGB retrieval. The 

study area is located in Central Kalimantan on Borneo, Indonesia, and is dominated by 

peat swamp forests. Analysis of multi-temporal combined X- and L-band SAR imagery 

showed promising results for estimating AGB up to 300 t/ha. A comparison of methods 

revealed that artificial neural network (ANN) was superior to multivariate linear 

regression (MLR) and support vector regression (SVR) models. AGB estimations based 
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on spectral unmixed RapidEye data were more accurate than using multi-frequency 

SAR data but were affected by frequent cloud cover and saturation of the satellite 

signal. Multi-temporal airborne LiDAR (light detection and ranging) measurements 

successfully proved to precisely quantify even small scale AGB dynamics without the 

constraint of saturation due to the detailed determination of the vertical vegetation 

structure. This evaluation of different sensors for AGB retrieval in tropical peat swamp 

forests is very important, especially in the context of REDD+.  
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 ZUSAMMENFASSUNG 

Tropische Wälder bilden einen großen Kohlenstoffspeicher und setzen jedes Jahr große 

Mengen davon frei. Entwaldung und Walddegradierung in den Tropen trägt jährlich 

6 - 17% zu den anthropogenen Kohlenstoffdioxidemission bei. Tropische, bewaldete 

Torfgebiete leisten durch tiefe, unterirdische Torfvorkommen (bis zu 20 m) und darauf 

wachsende Wälder einen besonderen Beitrag zum terrestrischen Kohlenstoffspeicher. 

Das größte Vorkommen tropischer Torfsumpfwälder befindet sich in Indonesien und 

bildet durch den im Torf gebundenen Kohlenstoff einen enormen Speicher. Diese 

Wälder sind starken anthropogenen Einflüssen ausgesetzt, hauptsächlich aufgrund von 

Holzeinschlag und großflächigen Plantangen (überwiegend für Palmöl). Der Torf wird 

dabei trockengelegt und der Waldbestand reduziert. Dies führt zu einer hohen 

Anfälligkeit für Feuer, welches üblicherweise dazu genutzt wird, bewaldete Flächen zu 

roden. Zwischen 1990 und 2010 hat Borneo ungefähr die Hälfte des ursprünglichen 

Torfsumpfwaldes verloren, vorwiegend aufgrund von legalem und illegalem 

Holzeinschlag, großflächigen Plantagen, massiver Trockenlegung des Torfes, sowie 

einer extremen El Niño Trockenperiode in den Jahren 1997/1998. Dadurch wurde 

Indonesien zu einem der größten Treibhausgasemittenten weltweit und rückte daher in 

den Fokus von REDD+ Projekten, die auf eine Verringerung der Emissionen durch 

Entwaldung und Walddegradierung abzielen. Diese Projekte benötigen eine genaue 

Kontrolle der nationalen Kohlenstoffbestände der Wälder, welche im Allgemeinen von 

der Biomasse abgeleitet werden. Die Analyse von Fernerkundungsdaten erwies sich als 

die wirtschaftlichste Methode diese abgelegenen und kaum zugänglichen Wälder zu 

überwachen. Auch wenn die Erhebung von Felddaten arbeitsintensiv, zeitaufwendig 

und teuer ist, ist dies dennoch zwingend erforderlich für die Kalibrierung von luft- oder 

satellitengestützten Fernerkundungsdaten im Hinblick auf die Bestimmung der 

Biomasse.  

Das Hauptziel dieser Arbeit ist eine Evaluation der hydrologischen Effekte der 

Torfrenaturierung mithilfe von Radardatenzeitreihen sowie die Möglichkeit und 

Genauigkeit der Biomassebestimmung auf Basis von Radardaten verschiedener 

Frequenzen, multispektralen RapidEye und multitemporalen flugzeuggetragenen 

LiDAR (light detection and ranging) Messungen. Das Untersuchungsgebiet liegt in 

Zentral Kalimantan auf Borneo, Indonesien, und wird von Torfsumpfwälder dominiert. 
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Die Verwendung von multitemporalen kombinierten X- und L-Band Radardaten zeigte 

vielversprechende Ergebnisse für eine Bestimmung der Biomasse bis zu 300 t/ha. Ein 

Methodenvergleich demonstrierte, dass künstliche neuronale Netze besser geeignet 

waren als multivariate lineare Regressionen oder Support Vektor Regressionen. 

Biomassebestimmungen basierend auf optischen, spektral entmischten RapidEye Daten 

erzielten eine höhere Genauigkeit als die Verwendung von Radardaten verschiedener 

Frequenzen. Nachteile sind jedoch die häufige Bewölkung in tropischen Regionen 

sowie eine Sättigung des Satellitensignal. Mithilfe von multitemporale 

flugzeuggetragenen LiDAR Messungen konnten auch kleinräumige Änderungen der 

Biomasse beobachtet werden, was durch die detailgetreue Darstellung der vertikalen 

Vegetationsstruktur ermöglicht wird. Diese Evaluierung verschiedener Sensoren zur 

Bestimmung der Biomasse in tropischen Torfsumpfwäldern ist besonders für REDD+ 

Projekten sehr bedeutend. 
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I. Introduction 

1. Importance of tropical forest monitoring 

Tropical forests are among the most carbon (C) rich and structurally complex 

ecosystems in the world and are therefore in the focus of climate change mitigation 

mechanism projects (Streck et al. 2008). Deforestation and forest degradation of tropical 

forests contribute to atmospheric greenhouse gas emissions through combustion of 

forest biomass and decomposition of remaining plant material and soil carbon. In total, 

228.7 Gt of carbon is stored in tropical woody vegetation and the total net emission of 

carbon from tropical deforestation is estimated at 1.0 Gt of carbon per year annualized 

over the period from 2000-2010 (Baccini et al. 2012). These activities are responsible 

for 6 - 17% of global anthropogenic carbon dioxide (CO2) emissions (van der Werf et 

al. 2009). Considering also carbon emissions from tropical peatland burning and 

oxidation in Southeast Asia, the contribution of forest and peatland decline amounted 

even to 23% of global anthropogenic CO2 emissions (van der Werf et al. 2009).  

Tropical peatlands make an important contribution to the terrestrial carbon storage not 

only in terms of their forests but also in terms of their underlying thick peat deposits 

(Page et al. 1999). The total area of tropical peatland is estimated at 441.025 km² 

whereby Southeast Asia encompasses the largest portion (247.778 km², 56%). Indonesia 

comprises the largest area of peat within Southeast Asia (206.950 km², 47% of total 

tropical peatland area) and contains a total carbon stock of approximately 74 Gt of 

which 19 Gt is stored aboveground in forests and 55 Gt belowground in peat deposits 

(Baccini et al. 2012; Jaenicke et al. 2008; Page et al. 2011). 

Due to widespread felling and burning of rain forests and carbon rich peat swamp 

forests, Indonesia became one of the world’s largest greenhouse gas emitter and moved 

therefore into focus of climate change mitigation mechanisms aiming at avoided 

deforestation (Sloan et al. 2012). REDD+ is an example for such a mechanism and deals 

with reducing emissions from deforestation and forest degradation, conservation of 

forest carbon stocks, sustainable management of forest land and enhancement of forest 

carbon stocks (Campbell 2009). Deforestation is defined as conversion from forest land 

to non-forest land which means a reduction in crown cover below a certain threshold 

(typically between 10% and 30%) (GOFC-GOLD 2011). Deforestation typically results 

from conversion of forest to annual crop land, conversion to perennial plants (oil palm 
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or shrubs) and conversion to urban lands or other human infrastructure (GOFC-GOLD 

2011). Forest degradation is defined as decrease in canopy cover or biomass density, 

mainly caused by selective logging or understory fire (DeFries et al. 2007). REDD+ was 

approved at the United Nations Climate Change Conferences in 2009 and 2010, and the 

year 2011 provided the starting point for the development of a worldwide forest 

monitoring system. The aim of the REDD+ mechanism is to rapidly and radically 

reduce the rate of deforestation and degradation across the tropics via performance 

related payments to countries that reduce these emissions. The financing needs for 

2010 to 2015 are estimated at 20 - 30 billion USD. Developed countries made an initial 

payment of 4 billion USD for the years 2010 to 2012 (Clements 2010). Norway and 

Indonesia concluded a landmark deal which obligated Norway to provide 1 billion USD 

for Indonesia's advancing forest emission reduction. A major component is a 

moratorium on new agricultural and logging licenses which aims to support Indonesia's 

goal of reducing national emissions by 26% until 2020 and to prepare Indonesia to draw 

payments from industrial nations via the REDD+ scheme (Sloan et al. 2012).  

REDD+ is promoted as a win-win situation for climate change mitigation and tropical 

forest conservation. It could end up contributing to a global economy based on carbon 

and ecosystem services (Asner 2011). Co-benefits of REDD+ are supposed to be 

conserving biodiversity, alleviating poverty, and climate change adaptation. However, 

there are also REDD+ related problems, such as leakage or displacement of carbon 

emissions within a country. Therefore, a nationwide carbon stock monitoring is needed 

to prevent that reduced deforestation or forest degradation could occur in one part of the 

country but increase in another one (DeFries et al. 2007). A challenge for REDD+ 

projects is to accurately estimate the carbon stock and to monitor its changes. Remote 

sensing has been identified as a very efficient and cost effective method (Herold et al. 

2007).  

2. Tropical carbon stock monitoring using remote sensing 

The amount of carbon stored in vegetation is generally derived from aboveground 

biomass (AGB) estimates by assuming a carbon content of dry biomass of 50% (Goetz 

et al. 2009). Field inventory measurements are the most accurate way to retrieve AGB 

but they are difficult to obtain because their collection is laborious and expensive, 

especially in remote and highly inaccessible tropical forests. Therefore, remote sensing 
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is an effective way to retrieve spatially explicit AGB estimation maps. However, field 

inventory derived AGB data are mandatory as reference for remote sensing based AGB 

estimations.  

Different kinds of approaches have been developed to retrieve AGB estimation maps 

from remote sensing data. The indirect approach is based on a land cover classification 

whereby a certain AGB value or range is linked to each of the land cover classes. This 

approach is limited by the wide range of AGB variability within any land cover class 

and by ambiguities in the definition of those classes. A more sophisticated way to 

produce carbon stock maps is the direct AGB estimation method in which satellite 

measurements are calibrated directly to field inventory AGB data (Goetz et al. 2009). 

The direct AGB estimation adapted from optical, SAR (synthetic aperture radar) and 

LiDAR (light detection and ranging) data as well as the sensor basics are described in 

detail in the following chapters. Table I-1 provides an overview of the different sensors 

and their characteristics. A general distinction is made between active and passive 

systems. Active systems emit energy and measure the radiation that is reflected or 

scattered back, whereas passive systems detect the natural available radiation that is 

emitted or reflected.  

 

Table I-1: Overview of different remote sensing sensors and their characteristics. 

 Optical SAR LiDAR 

System passive active active 

Radiation reflected sunlight microwave pulses pulses of infrared light 

Spectrum UV - infrared microwave infrared 

Wavelengths 0.3 – 14 µm 0.75 – 100 cm around 1 µm 

Acquisition time day day & night day & night 

Signal dependence 

on weather 

blocked by clouds penetrate clouds blocked by clouds 

 

2.1. Optical data 

Optical remote sensing is a passive system which makes use of electromagnetic 

radiation which is emitted by the sun and reflected off the earth's surface. The optical 

spectrum includes ultraviolet (UV), visible, near-, mid-, and thermal-infrared 
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wavelengths which range from 0.3 - 14 μm (Lillesand et al. 2008). The acquisition 

depends on daylight and can be hindered by clouds, haze or smoke. The different 

materials on the earth's surface have different characteristics of reflection and 

absorption at different wavelengths which means that targets can be differentiated by 

their spectral reflectance signatures. Multispectral sensing includes data which are 

acquired simultaneously in several spectral bands.  

AGB estimations derived from optical imagery are mostly based on spectral reflectance 

collected by moderate or medium resolution sensors, e.g. MODIS (Moderate Resolution 

Imaging Spectroradiometer) (1 km) or Landsat (30 m) imagery (Avitabile et al. 2012; 

Baccini et al. 2008; Li et al. 2010; Tangki et al. 2008). 

Vegetation indices are combinations of two or more spectral bands and can be 

calculated by rationing, differencing, rationing differences and sums, and by forming 

linear combinations. Vegetation indices are intended to highlight a particular property 

of the vegetation signal, while minimizing solar irradiance and soil background effects. 

AGB estimations derived from Landsat vegetation indices were conducted by Foody et 

al. (2001) and Freitas et al. (2005), for example. Boyd et al. (1999) estimated AGB from 

a combination of spectral reflectance and vegetation indices of moderate resolution 

(1 km) NOAA AVHRR (National Oceanic and Atmospheric Administration, Advanced 

Very High Resolution Radiometer) imagery.  

Image texture is another method to derive AGB estimations from optical data and is 

defined by the multi-dimensional variance observed in a moving window passed 

through the image (e.g. 3 x 3 pixels window). Sarker et al. (2011) found image texture 

superior to using vegetation indices or spectral reflectance at high resolution (10 m) 

ALOS AVNIR-2 (Advanced Land Observation Satellite, Advanced Visible and Near 

Infrared Radiometer type 2) data. Eckert (2012) also found a superior performance of 

image texture to estimate AGB from very high resolution (0.5 m) WorldView-2 

imagery. Lu (2005) and Lu et al. (2012) retrieved best results in estimating AGB on the 

basis of Landsat spectral signatures and image texture.  

Spectral mixture analysis (SMA) is a technique for comparing mixed spectral signatures 

to "pure" reference data, e.g. bare soil, green vegetation (GV), non-photosynthetic 

vegetation (NPV), or shade. Mixed pixels include more than one reference spectrum or 

land cover type on ground. The result is an estimate of the approximate proportions of 

the ground area of each pixel that are occupied by each of the reference class. For 
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example, Lu et al. (2005) and Clark et al. (2011) used SMA to estimate AGB in tropical 

forests.  

AGB estimations derived from optical imagery are limited in high biomass ranges by 

the saturation of the satellite signal. Generally, the saturation level strongly depends on 

forest structure, vegetation characteristics as well as quality of reference and remote 

sensing data. Different saturation levels have been reported in tropical forests. Reported 

saturation levels for AGB estimations based on Landsat imagery range from 150 t/ha to 

300 t/ha (Avitabile et al. 2012; Li et al. 2010; Lu et al. 2012). MODIS data were capable 

to retrieve AGB even up to 450 t/ha (Baccini et al. 2008).  

2.2. SAR data 

SAR is an active remote sensing instrument which transmits microwave pulses towards 

the earth's surface and measures the backscattered energy to the sensor. An important 

advantage of the SAR system is the daylight and weather independence as the signal 

can penetrate through clouds, haze and smoke. SAR systems have different band 

designations which indicate their wavelengths of operation. The wavelengths range 

from 0.75 cm to 100 cm (Lillesand et al. 2008). The longer the wavelength, the deeper 

is the penetration into the vegetation. An overview of the most important SAR bands 

and their characteristics is given in Table I-2. At X-band, the sources of scattering are 

leaves and twigs from the upper part of the canopy (Le Toan et al. 1992). The scatter 

targets of the C-band are leaves and small branches, whereas branches and trunks build 

the main scatterers of L- and P-band (Le Toan et al. 2001). Principally, longer 

wavelengths are more sensitive to AGB and the saturation level increases with 

decreasing frequencies. However, AGB estimations are also sensitive on forest 

structure, incidence angle, and polarization of the radar signal (Koch 2010; Le Toan et 

al. 2001). 
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Table I-2: Characteristics of SAR bands commonly used for AGB estimations.  

Band 

designation 

Wavelength 

[cm] 

Frequency 

[GHz] 

Penetration 

depth [cm] 

Scatter 

objects 

Examples of 

satellites 

X-band 2.40 - 3.75 12.5 - 8.0   3 leaves, twigs TerraSAR-X 

C-band 3.75 - 7.50  8.0 - 4.0   5 leaves, 

branches 

ENVISAT ASAR, 

RADARSAT-2 

L-band 15.0 - 30.0  2.0 - 1.0 25 branches, 

trunk 

JERS-1,  

ALOS PALSAR 

 

SAR signals can be transmitted and received in different modes of polarizations, either 

horizontal (H) or vertical (V) which results in four typical polarization combinations 

(HH, HV, VV, VH) where the first letter indicates the transmitted polarization and the 

second indicates the received polarization (Lillesand et al. 2008). In most cases, cross-

polarized backscatter is more sensitive to variations in forest biomass (Hamdan et al. 

2011; Le Toan et al. 1992; Mitchard et al. 2012; Pandey et al. 2010; Wijaya et al. 2009). 

SAR backscatter is generally affected by soil roughness (as it changes the directionality 

of scattering), moisture (it changes the total proportion of scattering) as well as other 

environment factors and thus influences AGB analyses (Ryan et al. 2012).  

X-band SAR data has found up to date only little application for AGB estimations in 

tropical forests. Low or negligible correlation has been most often detected between 

AGB and C-band backscatter (Lu 2006). In contrast to that, Pandey et al. (2010) found a 

correlation between C-band ENVISAT ASAR (Environmental Satellite, Advanced 

Synthetic Aperture Radar) backscatter and AGB up to 250 t/ha. Most AGB studies in 

tropical forests were conducted on the basis of L-band SAR data (Hamdan et al. 2011; 

Mitchard et al. 2011; Ryan et al. 2012; Wijaya et al. 2009). Sarker et al. (2012) 

successfully predicted AGB in a subtropical forest on the basis of L-band ALOS 

PALSAR texture. P-band backscatter has proven to allow more accurate AGB 

predictions than L-band backscatter (Saatchi et al. 2011b). 

Also SAR based AGB retrieval suffers from saturation of the backscatter signal in the 

higher biomass range. The saturation level of L-band SAR is between 50 t/ha and 

200 t/ha, whereby HV polarized data featured higher saturation levels than HH 

polarized data (Hamdan et al. 2011; Mitchard et al. 2012; Mitchard et al. 2009; Saatchi 

et al. 2007; Saatchi et al. 2011b). P-band SAR backscatter has been found to saturate at 

approximately 300 t/ha (Saatchi et al. 2011b).  
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2.3. LiDAR data 

LiDAR is an active remote sensing technique that sends out pulses of light, usually in a 

narrow wavelength in the infrared spectrum, and records the time it takes for each pulse 

of light to return to the sensor (Gleason et al. 2011). The return time is used to calculate 

the distances between the sensor and the various surfaces on or above the ground 

(Lillesand et al. 2008). The LiDAR signal is prepared as three-dimensional (3D) 

coordinates which have the ability to estimate the height and to map the three-

dimensional structure of the vegetation.  

Airborne LiDAR data acquisition is costly and requires processing of large data 

volumes. Currently, the capacity to collect annual data over whole countries does not 

exist currently (Mitchard et al. 2012). GLAS (Geoscience Laser Altimeter System) 

onboard NASA ICESat (Ice, Cloud, and land Elevation Satellite), was the first 

spaceborne LiDAR system, capable of providing global datasets of the earth's 

topography with a footprint of 65 m and data is available from 2003 to 2009 (Schutz et 

al. 2005).  

Many studies demonstrated the great potential of airborne LiDAR measurements to 

precisely predict AGB of tropical forests (Asner et al. 2010; Asner et al. 2012; Clark et 

al. 2011; Mascaro et al. 2011b). Kronseder et al. (2012) estimated AGB from in-situ 

data and airborne LiDAR measurements in Central Kalimantan on Borneo for lowland 

dipterocarp forests and peat swamp forests. 

Ballhorn et al. (2011) used airborne LiDAR AGB estimations based on field inventory 

measurements to estimate AGB from ICESat GLAS data. Baccini et al. (2008) and 

Lefsky et al. (2005) are further examples of AGB estimations in tropical forests on the 

basis of ICESat GLAS.  

As LiDAR instruments are able to map the three-dimensional structure and height of the 

vegetation in great detail, AGB estimations are not restricted in terms of saturation in 

high biomass ranges.  
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3. Tropical peat swamp forests 

3.1. Characteristics 

Peatlands are terrestrial ecosystems in which the production of organic matter exceeds 

its decomposition (Page et al. 2006). Approximately 11% of the global peatland areas 

occur in the tropics in Southeast Asia, Africa, the Caribbean, Central and South 

America and are predominantly located at low altitude, although some can be found in 

the mountains of Africa, South America, and Papua New Guinea (Page et al. 2011). 

Most of them have developed in Southeast Asia and are domed, ombrogenous systems 

(Page et al. 2006). 

Lowland tropical peat is relatively homogenous and mainly consists of slightly or 

partially decomposed debris of the former forest vegetation. Well preserved tree trunks, 

branches, twigs and coarse roots are found within a matrix of dark brown, amorphous 

organic material in various stages of humification (Page et al. 2006) (Figure I-1A). Peat 

swamp forests are moist tropical forests growing on peat and are oligotrophic (deficient 

in nutrients) because the lack of mineral input and leaching of organic compounds 

causes the water to become extremely acidic (pH 4 or less) (Posa et al. 2011).  

There are two major categories of peat swamp forests: topogenous and ombrogenous. 

Topogenous peat swamp forests are characterized by a shallow accumulation of organic 

material (< 50 cm) and are flooded by a river in the wet season and are formed in areas 

with high water table where nutrients are available from seasonal flooding or underlying 

mineral soils. Ombrogenous peat swamp forests, which occur within the study area, 

have peat deposits which are deeper than 50 cm and water and nutrient supply is only 

derived from aerial depositions. Ombrogenous peat swamp forests develop inland on 

flat or gently convex areas between rivers in places with year-round rainfall (Rieley et 

al. 1997). 

Peat swamp forests find their origin at the beginning of the Holocene, approximately 

11,000 years before present, where the sea level rose and the temperatures and rainfall 

increased. Swamps and lakes became gradually filled. Decomposers, i.e. 

microorganisms, could not thrive in these wet environments and organic material began 

to accumulate. Thus peat swamp forests could evolve. The peat grew in depth and the 

water table rose aboveground water level and the plant community became solely 
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dependent on rain water for nutrient input, and so ombrogenous peat swamp forests 

evolved (Sorensen 1993).  

The vegetation of tropical peat swamp forests is dominated by trees. Many of them have 

buttress or stilt root that provide stability on the waterlogged peat. Breathing roots 

(pneumatophores) that protrude above the peat surface enable respiratory gas exchange 

(Figure I-1B) (Page et al. 2006). Peat swamp forests in Southeast Asia support unique 

flora and fauna that are partially endemic and contribute to the exceptionally high levels 

of biodiversity (Miettinen et al. 2012).  

 

 

Figure I-1: (A) Peat layer of a disturbed area viewed from a drainage canal. (B) Typical stilt roots of 

peat swamp forest trees (© S. Englhart). 

 

Vegetation is not only influenced by the total annual rain, which generally exceeds 

2,500 mm, but also by the rainfall distribution throughout the year (Page et al. 2006). 

The annual pattern of precipitation is characterized by a dry season from May to 

October and a wet season from November to April (MacKinnon et al. 1996). Periodic El 

Niño events appearing in intervals of two to seven years prolong the dry season. The 
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last El Niño events occurred in 2006/2007 and in 2009/2010. The next one is expected 

in 2012/2013 (NOAA Climate Prediction Center 2012).  

3.2. Threats 

Due to the balance that exists between vegetation, peat and hydrology, peat swamp 

forests are highly susceptible to disturbance. There is a positive feedback loop among 

deforestation, drainage and fire which means that peatlands are easily degraded once the 

balance is upset (Hoscilo et al. 2011). This feedback is disrupted once the area is highly 

degraded. After a few consecutive fires, most of the aboveground vegetation is 

eliminated and many years are required before the vegetation regrowths sufficiently. 

Hence, there is a lot of fuel load which sustains new fires (Hoscilo et al. 2011).  

3.2.1. Logging 

Peat swamp forests contain a number of valuable timber species and have been 

intensively exploited (Posa et al. 2011). Roads and drainage channels allow loggers 

access into previously highly inaccessible forests (Boehm et al. 2004). Logging 

operations are possible though exhausting manual labor. Valuable trees are felled, cut 

into manageable pieces and then dragged along skid trails to the nearest river or canal 

where the logs can be floated away (Figure I-2). Logging creates gaps in the forest 

canopy which dries out the forest microclimate. Additionally, canals, which are used for 

transportation, further drain the peat. The resulting low water table in the peat causes 

trees to die and the forests become susceptible to fires (Boehm et al. 2004). Even where 

hydrology is not comprised, impacts of logging are noticeable in flora and fauna. 

Selective logging causes changes in forest structure and composition as well as in 

orangutan densities (Hadisuparto 1996; Morrogh-Bernard et al. 2003).  
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Figure I-2: Logging within Central Kalimantan. (A) Transportation of logs on a drainage canal. (B) 

Logging skid trail. (C) Illegal logging camp on a canal with skid trail. (D) Old logging skid trails within 

a burned forest (© S. Englhart, P. Navratil, F. Siegert). 

 

3.2.2. Land conversion 

Large scale conversions of infertile peatlands into agricultural land requires clearance, 

drainage, fertilizer application and liming in order to increase the pH value and to boost 

microbial activity (Posa et al. 2011). Construction of canal systems for drainage and 

water table management are often the first steps. Next, fire is a cheap method for land 

clearing. Often no efforts are made to control the area burned. Thus, fires easily spread 

and run out of control (Page et al. 2009a).  

The most severe peatland conversion was caused by the Mega Rice Project (MRP) in 

Central Kalimantan which was established by the Government of Indonesia in 1995. It 

was planned to convert one million hectare of tropical forest, mostly peatland (61%), to 

cultivated land, e.g. rice fields. More than 4,500 km of drainage and irrigation canals 

were built. Finally, the project was officially terminated in 1999. Between 1990 and 

2010, 40% of the initial forest cover was deforested whereby 31% was lost during the 
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1990s, partly facilitated by the severe El Niño event in 1997/1998 and the drained MRP 

area was particularly effected (Miettinen et al. 2012).  

Forested peatlands are still being deforested, drained and burned for agricultural 

development, mainly oil palm and pulpwood plantations (Figure I-3). Especially 

domestic and international interests in oil palm for biofuel production are a driving 

force.  

 

 

Figure I-3: (A) Aerial and (B) ground photo of a large scale oil palm plantation in Central Kalimantan 

(© F. Siegert, P. Navratil). 

 

3.2.3. Fire 

Forest fires are playing an important role in deforestation. The increase of fire 

occurrence is strongly related to peat swamp forest disturbance, as intact forests are 

unlikely to burn because they retain large amounts of moisture (Langner et al. 2007; 

Langner et al. 2009). The effects of fire are lower canopy cover, decreased species 

richness, and reduced tree and sapling density (Yeager et al. 2003). Due to the high 

combustibility of drained peat, fires can burn both above- and belowground (Page et al. 

2009a). Deep peat fires can smolder below the surface for months and are difficult to 

extinguish. These subsurface fires affect the seed bank and cause the collapse of 

overlying material, creating additional tree mortality (Posa 2011). 

During extreme droughts, often associated with strong El Niño events, peat swamps are 

extremely prone to burning, as evidenced by recent large wildfires that have destroyed 

hundreds of thousands of hectares on Borneo (Langner et al. 2009; Page et al. 2009a). 

Previous disturbance increases the susceptibility to fire. For instance, logging creates 
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gaps in the canopy, which dries out the forest microclimate and thus increases the 

temperature of the peat surface. Whereas drainage causes a decrease in the water table 

which can result in shrinkage and irreversible drying out of the peat (Wosten et al. 

2006). Repeated and extensive peatland fires in Central Kalimantan follow drainage as 

well as selective logging and played an important role in land cover dynamics and forest 

loss from 1973 to 2005 (Hoscilo et al. 2011). Additionally, peat swamp forest that has 

burned once has a high probability of burning again because of the accumulation of 

unburned dead biomass and the regrowth of fire-prone vegetation (fuel load) (Page et al. 

2009a; Siegert et al. 2001).  

3.3. Restoration 

Restoration attempts to recover the natural resource functions of degraded ecosystems. 

There are different measures of peatland restoration, for example restoration of 

hydrology, restoration of vegetation cover in order to protect the peat surface from 

direct sunlight and to reduce water streams at the surface level caused by drainage 

canals. Rewetting of peat is the most effective way to prevent peat decomposition, soil 

subsidence and annual fires (Page et al. 2009b). To achieve this, blocking of drainage 

canals by dam building is necessary in order to raise the water level of the surrounding 

peat (Jaenicke et al. 2010; Page et al. 2009b). The resultant reduced water flow in the 

canals allows sedimentation of organic and mineral material upstream of the dam which 

in turn facilitates the regrowing of vegetation. Some drainage canals are used for 

navigation and transportation by local people, which sometimes results in dam damages 

(Figure I-4). Therefore, planning, monitoring and maintenance of dams is very 

important ofr a successful peatland restoration (Jaenicke et al. 2010). 
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Figure I-4: Broken dam due to transportation needs (© P. Navratil).  

 

4. Objectives of this thesis 

In the context of climate change mitigation, restoration of degraded tropical peatlands 

and conservation of peat swamp forests are crucial elements. The peat swamp forests on 

Borneo, Indonesia, are threatened by different human activities. Enormous amounts of 

CO2 and other greenhouse gases have already been released into the atmosphere. 

Therefore, it is crucial to rehabilitate degraded peatlands with restoration measures and 

to monitor the success. Furthermore, tropical peat swamp forests must be protected, for 

example through REDD+ projects which require accurate carbon stock estimations in 

order to assign carbon credits.  

In Chapter II, continuous C-band ENVISAT ASAR data from 2004 to 2009 and L-band 

ALOS PALSAR data from 2007 to 2009 were used to monitor the hydrological effects 

of restoration measurements, more precisely blocking of drainage canals through dam 

construction. The sensitivity of SAR data to soil moisture was utilized to monitor 

hydrological changes in the peat soil and vegetation. 

Chapter III and IV aimed at an intensive examination of the potential of X-band 

TerraSAR-X and L-band ALOS PALSAR imagery for AGB retrieval in intact and 

degraded peat swamp forests on Borneo. Field inventory data were first related to 
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airborne LiDAR measurements to estimate AGB across large areas and ecosystems. 

These LiDAR based AGB estimations were then related to SAR backscatter. This 

upscaling approach from field inventory to LiDAR AGB estimations was used because 

it provided numerous AGB reference data over the whole biomass range from woody 

regrowth to pristine forest. The mono- and multi-temporal relationships of SAR signals 

and biomass were analyzed in Chapter III. Single as well as combined frequencies were 

considered to develop regression models for AGB estimation and evaluate the 

saturation. On the basis of the results achieved so far, three different methods were 

analyzed and compared for AGB estimation based on multi-temporal combined 

TerraSAR-X and ALOS PALSAR in Chapter IV, namely multivariate linear regression 

(MLR), artificial neural network (ANN) and support vector regression (SVR).  

Chapter V reveals the direct relationship between field inventory derived AGB and 

different SAR frequencies or multispectral RapidEye data. On the one hand, different 

polarizations of X-band TerraSAR-X, C-band RADARSAT-2 and L-band ALOS 

PALSAR data were analyzed for their correlation to AGB. On the other hand, 

multispectral RapidEye imagery was evaluated for its potential to estimate AGB using 

spectral mixture analysis (SMA). Furthermore, the direct AGB estimation approach, i.e. 

calibrating RapidEye signals to field inventory measurements, was compared to the 

indirect AGB estimation approach, i.e. linking specific AGB values to each land cover 

class of a detailed RapidEye land cover classification.  

In Chapter VI, multi-temporal airborne LiDAR measurements from 2007 and 2011 

were analyzed to quantify small scale AGB and canopy height dynamics. Canopy height 

models (CHMs) were created and AGB regression models were developed on the basis 

of field inventories and LiDAR height histogram metrics. Finally, changes in canopy 

height and AGB were evaluated with a special focus on unaffected, selective logged and 

burned peat swamp forests.  
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1. Abstract 

In the context of the ongoing climate change discussions the importance of peatlands as 

carbon stores is increasingly recognized in the public. Drainage, deforestation and peat 

fires are the main reasons for the release of huge amounts of carbon from peatlands. 

Successful restoration of degraded tropical peatlands is of high interest due to their huge 

carbon store and sequestration potential. The blocking of drainage canals by dam 

building has become one of the most important measures to restore the hydrology and 

the ecological function of the peat domes. This study investigates the capability of using 

multi-temporal radar remote sensing imagery for monitoring the hydrological effects of 

these measures. The study area is the former Mega Rice Project area in Central 

Kalimantan, Indonesia, where peat drainage and forest degradation is especially intense. 

Restoration measures started in July 2004 by building 30 large dams until June 2008. 

We applied change detection analysis with more than 80 ENVISAT ASAR and ALOS 

PALSAR images, acquired between 2004 and 2009. Radar signal increases of up to 

1.36 dB show that high frequency multi-temporal radar satellite imagery can be used to 

detect an increase in peat soil moisture after dam construction, especially in deforested 

areas with a high density of dams. Furthermore, a strong correlation between cross-

polarized radar backscatter coefficients and groundwater levels above -50 cm was 
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found. Monitoring peatland rewetting and quantifying groundwater level variations is 

important information for vegetation re-establishment, fire hazard warning and making 

carbon emission mitigation tradable under the voluntary carbon market or REDD 

(Reducing Emissions from Deforestation and Degradation) mechanism. 

 

Keywords: ALOS PALSAR; Canal blocking; Carbon dioxide mitigation; ENVISAT 

ASAR; Hydrology; Restoration; Soil moisture; Tropical peat 

 

2. Introduction 

Natural lowland tropical peatlands are covered with trees (peat swamp forests) and are 

important reservoirs of biodiversity, carbon and water. With an average peat thickness 

of 4.5 m and an estimated amount of 55 Gt carbon stored, the Indonesian peatlands are 

one of the largest near-surface reserves of terrestrial organic carbon (Jaenicke et al. 

2008). On average, the Indonesian peat swamp forests store about 2800 tons carbon per 

hectare which is 20 times as much as tropical rainforest of the same size without peat 

soil. European peatlands, which mainly developed from loose mosses and grasses, have 

an average thickness of only 1.75 m (Byrne et al. 2004), and the carbon storage of 

German peat is about 1.6 Gt (Höper 2007). However, in the past decade, large areas of 

the Indonesian peatlands have experienced serious damage as a result of human 

activities such as logging and drainage. Peatland site development is often associated 

with the construction of drainage canals in order to make the land useable for 

agriculture or more often for oil palm and pulp wood plantations. The forest clearing 

rate in Indonesia is the second highest worldwide, after Brazil (FAO 2006); an areal 

reduction of lowland forest extent by 41.3% in 15 years (1990-2005) for the Indonesian 

islands of Sumatra and Borneo (Kalimantan) indicates a highly unsustainable rate of 

deforestation (Hansen et al. 2009). A recent study of the province of Riau, Sumatra, 

showed that deforestation is decreasing in dryland forest due to depletion but is 

accelerating in peat swamp forests (Uryu et al. 2008). Increased pressure on the wet, 

acid and nutrient poor peatlands is caused by the currently raised demand for biofuel in 

Europe and the US. Of the 22 million ha of peatlands in Indonesia, about 60% are 

forested but mainly logged (illegally) and drained, 5% are cultivated and managed, and 
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35% are a mixture of small scale agriculture and severely degraded “wasteland” 

(Hooijer et al. 2006). 

Canals and ditches are not only built to control and lower the groundwater level for 

agriculture but also to facilitate access to the peat swamp forest and to extract timber. 

Naturally, the groundwater level is close to the peat surface throughout the year and 

fluctuates with the intensity and frequency of rainfall. Once peat is drained, it oxidizes 

due to microbial activity and releases stored carbon to the atmosphere as carbon 

dioxide. This ongoing rapid peat decomposition leads to the irreversible process of 

peatland subsidence (Furukawa et al. 2005; Wösten et al. 1997). Another severe 

consequence of drainage is that the peat surface becomes dry and thus susceptible to fire 

during the dry season, which usually lasts from May until October. During prolonged El 

Niño related droughts fires are most severe, as in 1997/98 when about 2.4 - 6.8 million 

ha of peatlands burnt in Indonesia, releasing huge amounts of the greenhouse gas CO2 

(Page et al. 2002; van der Werf et al. 2008). The water absorption and retention 

properties of these degraded peatlands are impaired, and hence cause vast flooding 

during the rainy season with impacts on downstream habitations (Wösten et al. 2008). 

Mainly due to peat fires, Indonesia became one of the largest producer of greenhouse 

gases worldwide (Hooijer et al. 2006). Therefore, restoration and conservation of 

tropical peatlands play a crucial role in global climate change mitigation. 

Restoration of the hydrological functions is a pre-requisite for the establishment of a 

positive or, at least, neutral peatland carbon balance and for the re-establishment of 

forest vegetation (Page et al. 2009b). Complete rewetting is the only way to prevent 

fires and peat oxidation. One of the most important restoration measures of tropical 

peatlands is blocking of drainage canals with dams and thus raising the groundwater 

level of the surrounding peatland (CKPP 2008; Jaenicke et al. 2010; Jauhiainen et al. 

2004; Suryadiputra et al. 2005). The dam construction must be designed to cope with 

the high hydraulic conductivity and low load bearing capacity of tropical peat (Salmah 

1992; Wösten et al. 2001). The dams mainly act as barriers to prevent water flow but 

cannot store water for long periods because it seeps away through the surrounding peat. 

The blocking of a canal can be regarded as successful if the blocked canal sections 

continue to hold water during the dry season. Damming activities in Central Kalimantan 

have led to an increase in canal surface water levels between 50 cm to over 1 m (CKPP 

2008). Jauhiainen et al. (2008) reported a raise of groundwater levels in a deforested 
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and forested area near the city of Palangka Raya, Central Kalimantan, after dam 

construction. In the field, peat groundwater levels are measured by using tube wells; for 

monitoring the effect of dam constructions it is recommended to install these in 

transects perpendicular to the blocked canals (Jaenicke et al. 2010). Studies of tropical 

peatland restoration are at an early stage (Page et al. 2009b). Therefore, monitoring the 

effects of hydrological restoration measures is essential in order to optimize the 

techniques applied. Since tropical peatlands have been recognized as major sources of 

carbon dioxide emissions peatland rehabilitation projects are of high interest for carbon 

trading, especially on the growing voluntary carbon market (Couwenberg et al. 2010; 

Jaenicke et al. 2010; van der Werf et al. 2009). Quantifying the rise in groundwater 

level, which is the main control on carbon dioxide emissions from peatlands, is 

important information to make greenhouse gas emission mitigation tradable under the 

voluntary carbon market or REDD (Reducing Emissions from Deforestation and 

Degradation) mechanism. 

In situ groundwater level measurements are laborious and very time-consuming since 

access to the wet and densely vegetated tropical peatlands is difficult. Therefore, this 

paper aims to investigate the capabilities of radar remote sensing for monitoring the 

effects of tropical peatland restoration by canal blocking. The study area is the Mega 

Rice Project area in Central Kalimantan, Indonesia, a severely drained and degraded 

peatland where dam constructions started in July 2004. The principal advantage of 

remote sensing over field measurements is the possibility of continuously monitoring 

vast areas. Compared to optical satellite data, radar imagery is available at high 

temporal frequency due to cloud penetration and daylight independency and is sensitive 

to changes in soil moisture. In general, vegetation or soil with high moisture content 

returns more energy to the radar sensor than if it is dry (Lillesand et al. 2008). Several 

studies have demonstrated the relationship between radar backscatter and surface soil 

moisture content under varying terrain conditions (Dubois et al. 1995; Paloscia et al. 

2005; Ulaby et al. 1982). Hashim et al. (2002) found a strong correlation between radar 

backscatter (L-band) and soil moisture as well as groundwater level in drained tropical 

peatland in Malaysia. We applied change detection analysis with a time series of 

ENVISAT ASAR and ALOS PALSAR radar imagery, acquired before and after 

rewetting measures (2004 - 2009). Mean radar backscatter values of more than 40 

deforested and forested test sites near the dams were compared with reference test sites 
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in undrained regions. Square “test sites” of 220 m - 550 m in size, depending on the 

radar sensor used, were chosen. Changes in radar backscatter were validated with in situ 

groundwater level measurements and with rainfall data. Radar backscatter variations 

resulting from vegetation cover changes were considered by analyzing optical Landsat 

satellite imagery and MODIS fire hotspot data. 

3. Study area and materials 

3.1. The Mega Rice Project area 

The study area is located within the so called Mega Rice Project area, which extends 

south east of the city of Palangka Raya in the southern lowlands of the Indonesian 

province of Central Kalimantan on Borneo (Figure II-1). The landscape comprises flat 

alluvial plains with dome-shaped peat deposits that have accumulated to a thickness of 

more than 10 m (Jaenicke et al. 2008; Rieley et al. 2005). In 1995, the Mega Rice 

Project (MRP) was initiated by the Indonesian government under President Suharto. 

Despite warnings by scientists, it was planned to convert 1 million ha of peatlands for 

rice cultivation, accompanied by a transmigration program. A massive network of 

drainage canals was built, with a combined length of 4,500 km and depth of up to 10 m, 

but rice production appeared to be impossible. Intensive deforestation took place during 

the El Niño induced drought in 1997/98. Fifteen years of drainage and recurrent fires in 

2002, 2004, 2006 and 2009 have severely degraded the MRP area (Langner et al. 2009). 

The MRP is the most disastrous example of unsustainable peatland management 

(Muhamad et al. 2002).  

The MRP area is divided into different “Blocks” (A, B, C, D and E). This study focuses 

on Block A and C, where peatland restoration has been conducted in the course of 

different projects. In July 2004, hydrological restoration measures started in Block A 

under the CCFPI (Climate Change Forests and Peatlands in Indonesia) project by 

building 5 large dams (Figure II-1). 
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Figure II-1: ALOS PALSAR satellite image (HH, HV) from June 2009 showing the study area located in 

Central Kalimantan on the island of Borneo, Indonesia. Peat swamp forests appear in green, fire scars in 

purple. Not all of the 30 dams are shown due to very small distances between some of them. 

 

Financed by the Central Kalimantan Peatland Project (CKPP), 19 additional dams were 

constructed in this area in 2007 and 2008. Within the framework of the Academy of 

Finland funded project “Keys for Securing Tropical Peat Carbon” (KEYTROP) and the 

EU funded RESTORPEAT (Restoration of Tropical Peatland for Sustainable 

Management of Renewable Natural Resources) project, 6 dams were built in 2005 in the 

drainage canals of Block C, which is located in the most western part of the MRP area 

(Figure II-1). Adjacent to two of these dams automatic groundwater level loggers were 

placed. The dams in Block C are up to 25 m long, 4 m wide and 3 m high, and were 

made of a timber frame which was sealed with plastic sheeting and filled with peat 

(Figure II-2). Trees were planted on top and behind the dams to increase resistance. The 

water flow reduction capability increases with time because organic sediments 

accumulate upstream of the dams. The dams in Block A are very similar to those in 

Block C in terms of size and design (CKPP 2008). 
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Figure II-2: Large dam constructed across a drainage canal in degraded peatland in Block C, Mega Rice 

Project area. A timber frame was sealed with plastic sheeting and then filled with peat (© K. Kusin). 

 

3.2. Radar imagery 

The Indonesian peatlands are covered by clouds 70-80% of the year; in addition haze 

from smoldering fires during the dry period often impedes the visibility (Langner et al. 

2007). Therefore, continuous and cost-efficient monitoring is only possible with radar 

satellite remote sensing. The Advanced Synthetic Aperture Radar (ASAR) instrument 

onboard ENVISAT satellite, which was launched by the European Space Agency in 

March 2002, provides radar data in different modes with varying spatial and temporal 

resolution and alternating polarization at C-Band wavelength (5.6 cm). Twenty-eight 

ASAR scenes, acquired between July 2004 and March 2009 in dual polarization mode 

(VV, VH) and with an incidence angle of 23°, were available for monitoring the dams 

in Block C (Table II-1). The pixel spacing is 12.5 m and the temporal resolution 35 

days. No ASAR imagery was available for monitoring Block A. The Phased Array type 

L-band (23.6 cm wavelength) Synthetic Aperture Radar (PALSAR) was launched 

onboard the Japanese ALOS satellite in January 2006. Four scenes are required to cover 

the whole study area (Block A and C) and were available at an incidence angle of 38.8° 

since the beginning of 2007 (Table II-1). The polarization mode is switched periodically 

between single mode (HH) during the wet season and dual mode (HH, HV) during the 

dry season, with a temporal resolution of 46 days. The pixel spacing is 6.25 m for single 
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and 12.5 m for dual polarization. Altogether 58 PALSAR scenes acquired between 

January 2007 and October 2009 were analyzed in this study. The absolute calibration 

accuracy of PALSAR data is 0.219 dB, using the Amazon rainforest as calibration 

target (Shimada et al. 2009), and it is 0.31 dB for the ASAR data used, using ASAR 

transponders as calibration targets (Rosich et al. 2007). 

 

Table II-1: Description of radar imagery available for this study. 

Sensor Period Path/Frame Incidence 

Angle 

Wave-

length 

(cm) 

Polari-

zation 

Pixel 

spacing 

(m) 

ASAR 

AP* 

2004-2009 -2.29; 114.13 

(scene centre) 

  23°  5.6 VV, VH 12.5 

PALSAR 

FBS** 

2007-2009 

(wet season) 

421-422/ 

7130-7140 

38.8° 23.6 HH 6.25 

PALSAR 

FBD*** 

2007-2009 

(dry season) 

421-422/ 

7130-7140 

38.8° 23.6 HH, HV 12.5 

* AP = Alternating Polarization, ** FBS = Fine Beam Single, *** FBD = Fine Beam Dual. 

 

3.3. Auxiliary data 

When analyzing radar imagery it is essential to consider the weather conditions because 

rain occurring at the time of data acquisition can change the physical and dielectric 

properties of the surface soil and vegetation, thus affecting backscatter. Daily 

precipitation data collected by a weather station near Palangka Raya (Figure II-1) 

between 1997 and February 2008 as well as data from the Global Precipitation 

Climatology Project (GPCP) were analyzed for this purpose. Due to problems with the 

data logger, in situ rainfall measurements were available only until February 2008 and 

thus complemented with GPCP data. GPCP data incorporates infrared and microwave 

satellite retrievals and rain gauge observations. It is freely available since 1997 with a 

spatial resolution of 1 degree latitude and longitude. Daily mean groundwater level data 

were recorded at a forested and deforested area next to dams in Block C between April 

2004 and November 2007 (see Figure II-1), and were used for comparison with radar 

backscatter. The “deforested area” was burnt down in 1998 and now mainly consists of 

ferns, sedges and scrub. No in situ groundwater level measurements were available for 
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Block A. Another important parameter for monitoring the effect of damming is the flow 

direction of the canal water. This information was derived from a digital elevation 

model of the whole study area and from punctual in situ measurements. Since changes 

in surface roughness, e.g. by burning or vegetation regrowth, can alter the radar 

backscatter, fire events in the study area were analyzed with Landsat optical satellite 

imagery, acquired between June 1991 and October 2009 (seventeen 80% cloud-free 

scenes). Active fires were analyzed using the thermal infrared MODIS sensor onboard 

TERRA satellite (FIRMS 2009). 

4. Methods 

4.1. Image processing 

The radar imagery was calibrated using ERDAS Imagine 9.3 software by Leica 

Geosystems and a digital elevation model (DEM) from the Shuttle Radar Topography 

Mission (SRTM) with 90 m pixel spacing. This DEM resolution is sufficient because 

tropical peatlands are very flat, with elevation gradients of only 0.2 m - 1 m per 

kilometer in the centre (Rieley et al. 2005). ASAR data was calibrated to radar 

backscatter coefficients (σ
0
) using an algorithm implemented in the Imagine software. 

The PALSAR digital numbers (DN) were transformed into backscatter coefficients 

applying the following equation (Shimada et al. 2009): 

(1) CFDNdB  ²)(log*10)( 10

0
 

where CF is the calibration factor which varies between -80.2 and -83.4, depending on 

the processing date, incidence angle and polarization mode. The JAXA PALSAR 

product has already included the correction of the local incidence angle during the SAR 

image production. The multi-temporal radar imagery was co-registered with an 

accuracy of less than one pixel, using a Landsat ETM+ image from August 2007 as 

master. The Landsat dataset used for validation of the radar backscatter analysis and 

acquired after May 2003 had to be “de-striped”, i.e. scan gaps due to Scan Line 

Corrector (SLC) malfunction were filled. This was done by 1) image registration of the 

primary scene and fill scenes and 2) histogram-matching (USGS 2009). 
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4.2. Change detection analysis 

The intensity of radar returns is determined by several surface parameters such as 

dielectric constant and roughness. The dielectric constant is highly dependent on soil 

moisture because there is a large difference between dry soil (typically 2-3) and water 

(approximately 80). The C-Band ASAR sensor is able to penetrate regenerating tropical 

forest and to detect soil moisture variations underneath (Grover et al. 1999), while the 

longer wavelength L-Band ALOS sensor is even capable of observing soil moisture 

fluctuations and seasonal flooding dynamics under a closed peat swamp forest canopy 

(Aziz et al. 2003; Hoekman 2007; Romshoo 2004; Stahlhut et al. 2005). This forms the 

basis for measuring changes in peat moisture. 

In this study, mean backscatter values of “test sites” located close to the dams and of 

reference “test sites” in undrained regions were analyzed before and after dam 

construction. Random interference of microwaves produces a characteristic backscatter 

fluctuation known as speckle noise on Synthetic Aperture Radar (SAR) data. To reduce 

radiometric resolution errors due to speckle, backscatter values of a certain amount of 

pixels were averaged (Laur et al. 1998). Baup et al. (2007) demonstrate that the 

backscattering coefficient σ
0
 and the associated radiometric resolution vary as a 

function of the size of the sampling window. Therefore, by calculating the radiometric 

resolution, the optimal sampling window size of a “test site” can be determined. The 

radiometric resolution Rrad of the measured intensity is defined as (Laur et al. 1998): 

(2) )
1

1(log*10 10
ENL

Rrad   

(3) with 
R

NL
NLNNENL ra

azrapixelazpixel *** __  

where ENL is the equivalent number of looks, Npixel_az and Npixel_ra are the number of 

azimuth and range pixels of the sampling window, NLaz and NLra are the number of 

azimuth and range looks, and R is the number of pixels per independent pixel in the data 

product (Table II-2). R is calculated as follows: 

(4) 
ra

ra

az

azR





*  
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where ρaz, ρra and Δaz, Δra denote the azimuth and ground range spatial resolution, and 

the azimuth and range pixel spacing, respectively (Table II-2).  

Prerequisite for the calculation of image radiometric resolution is homogeneity within 

the test site. It was found that test site sizes of 550 m x 550 m for ASAR AP data, 220 m 

x 220 m for PALSAR FBS and 300 m x 300 m for PALSAR FBD data are large enough 

to obtain a good accuracy and to ensure homogeneity. With such windows, the 

radiometric resolution is ±0.14 dB (Table II-2). Forty-two test sites next to dams, i.e. 

with a distance of about 100 m minimum, and 10 reference test sites in undrained 

regions were investigated. Of the 42 test sites next to dams, 12 were placed in Block C 

(4 in the forest and 8 on degraded area) and 30 in Block A (10 in the forest and 20 on 

degraded area). The reference test sites were distributed over the whole study area of the 

MRP and placed where undrained, undisturbed peat swamp forest remained in order to 

check the stability of the radar backscatter over the whole time period analyzed. Some 

test sites were set with increasing distance to a dam in order to examine the extent of a 

possible rewetting effect by damming. Furthermore, the influence of the flow direction 

of the canal water was analyzed by placing test sites on both sides of a dam. 

In addition to the evaluation of mean backscatter values of “test sites” up to 0.3 km² in 

size, a multi-temporal image stack was produced to visualize and investigate peat 

moisture changes in Block A on a regional scale. For this, three mosaic PALSAR 

images (6 scenes, 8,000 km² in size) acquired during the dry season of 2007, 2008 and 

2009, respectively, were chosen. During dry conditions it can be assumed that there is 

no temporal variation in dielectric properties of the imaged surface due to rainfall. To 

reduce speckle in the radar scenes, a Lee-Sigma filter with a 5x5 and 9x9 moving-

window was applied. 

 

Table II-2: Radar image parameters to calculate the image radiometric resolution. 

Sensor Number of looks 

(azimuth x range) 

Spatial 

resolution 

R Test site size Rrad (dB) 

ASAR AP* 4 x 1 22 x 25 3.52 550 x 550 ±0.14 

PALSAR FBS** 2 x 1 10 x 10 2.56 220 x 220 ±0.14 

PALSAR FBD*** 4 x 1 20 x 20 2.56 300 x 300 ±0.14 

* AP = Alternating Polarization, ** FBS = Fine Beam Single, *** FBD = Fine Beam Dual. 
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5. Results 

5.1. Rainfall and fire occurrence 

The annual rainfall in Central Kalimantan varies between 2000 - 4000 mm and is 

influenced by periodic El Niño induced drought events. Figure II-3 shows daily 

precipitation measurements during times of radar image acquisition (2004 - 2009). The 

prolonged drought in 2006 is clearly visible and resulted in extremely low groundwater 

levels of up to -2 m in drained peat swamp forest. A comparison of the in situ and 

GPCP rainfall data showed that GPCP does not record precipitation events higher than 

60 mm per day; however, the trend of monthly and yearly averages is the same. To date, 

GPCP data is processed and made available only until April 2009, but it is known from 

global weather observations (CPC 2009), local observations and from remotely sensed 

fire and burn scar detection that 2009 was an extremely dry year with many fire events 

occurring in the study area between mid-August and the end of September. With an 

annual average rainfall of about 3000 mm, 2004 and 2005 were normal precipitation 

years, whereas 2007 was an unusually wet La Niña influenced year (nearly 4000 mm) 

and 2008 slightly above average (ca. 3400 mm). 

 

 

Figure II-3: Daily precipitation (in situ until February 2008, more recent satellite GPCP) and 

groundwater level data measured in the study area between 2004 and 2009. The dry months August – 

October are marked in red. 
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Landsat and MODIS fire hotspot analysis of the study area showed that in 2007 only 

one small fire event (400 m x 400 m) occurred in Block A, and no fires at all were 

recorded in 2008. Landsat imagery further revealed that the burn scars in the test site in 

Block C result from severe fires in 1997/98 and 2002, thereafter no fires occurred until 

September 2009. The burn scars in Block A originate mainly from the extremely dry 

years 1997/98 and 2006, with recurrent fires in between (Langner et al. 2007; Langner 

et al. 2009). The first vegetation after a severe fire event consists of ferns and sedges, 

which quickly cover the soil after the first rainfalls (Page et al. 2009b). Some few 

pioneer species will grow if the fire did not destroy all seeds. After 2 - 3 fires ferns and 

sedges set up as permanent vegetation. 

5.2. Correlation of groundwater level and radar backscatter 

The groundwater level (GWL) at the drained, deforested area in Block C varies between 

0 cm, i.e. the peat surface, recorded after high rainfall events during the wet season and 

a minimum value of -174 cm in November 2006 (Figure II-3). At the forested area, 

generally lower GWLs were registered but show the same course over the years. A 

long-term comparison of in situ GWL measurements and radar backscatter was only 

possible with ASAR C-band data due to failure of the loggers at the end of 2007. A 

first, visual comparison of the GWL data at the degraded area with σ
0
 backscatter 

coefficients averaged over a 550 m x 550 m test site at the logger station showed a 

positive relationship, i.e. higher σ
0

 values occurred with higher GWLs, but linear 

regression revealed bad correlation coefficients. After excluding all GWL values less 

than -50 cm, correlation coefficients of r=0.44 for VH polarization and 0.35 for VV 

polarization were reached and further improved to 0.72 (VH) and 0.46 (VV), 

respectively, if a delay in groundwater level reaction of nine weeks was assumed 

(Figure II-4a). This high value of r=0.72 suggests that a relationship exists between VH 

C-band backscatter of degraded peatland and GWL values (up to -50 cm) recorded nine 

weeks after image acquisition. A similar time delay was found between rainfall and 

GWL (Figure II-4b). While a comparison of daily values was not significant (r=0.32), 

mean values of both variables were calculated and very high correlation (r=0.94) 

reached by averaging rainfall values over a period of the past nine weeks before GWL 

measurements. There is a time delay between rainfall and changes of the groundwater 

level because the peat layer with its high permeability acts like a sponge, slowly 
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“filling” and “emptying”. The GWL threshold of -50 cm suggests that the sensitivity of 

the radar signal is not sufficient to detect changes in lower GWLs. Probably the 

roughness of the peat soil, in terms of L-band wavelength, prevents further decrease of 

the radar backscatter coefficients. At the forested area, no relationship between GWL 

and radar backscatter was found. 

 

 

Figure II-4: (a) Linear relationship with r=0.72 exists between radar backscatter coefficients σ
0

 (C-Band, 

VH) determined between July 2004 and October 2009 over deforested peatland and groundwater levels 

measured nine weeks later at the same area. (b) A similar time delay exists between rainfall and 

groundwater level; a very high correlation of r=0.94 is reached when comparing groundwater levels 

averaged over one week with precipitation averaged over the past nine weeks. 

 

5.3. Evaluation of the “test sites” 

Before evaluation of the test sites near dams, the temporal variability of the radar 

backscatter in undisturbed peat swamp forests was investigated, i.e. the reference test 

sites. Romshoo (2004) has shown that the L-Band (JERS-1 SAR) backscattering 

coefficient of dense, high biomass peat swamp forests is very constant. This was 

confirmed here by investigating 40 multi-temporal PALSAR scenes and ten reference 

test sites in undrained forests. Especially the cross-polarized HV backscatter is very 

stable; with a standard deviation (STD) of only 0.16 during the three year observation 

period, compared to 0.22 for like-polarized HH backscatter. The backscatter coefficient 

of primary forest in the study area does not vary more than 0.3 dB for HV polarization 

and 0.57 dB for HH, respectively. Thus, an increase or decrease of more than 0.3 dB in 

the HV backscattering coefficient could be reasonably attributed to anthropogenic or 

natural changes in the forest. The C-Band ASAR return from undisturbed peat swamp 
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forest shows no stability during the six year observation period (STDVH=0.54, 

STDVV=0.6). Due to signal instability, the ASAR data were not used to analyse forested 

test sites. 

Figure II-5a shows the result of the evaluation of seven forested test sites next to dams 

completed in January 2005 in Block A, in comparison to reference test sites of 

undrained forest. Up to a distance of 1 km from the dams, a backscatter increase of 

0.41 dB (PALSAR HV) was observed between May 2008 and August 2009. This 

increase, even though 2008 was a wet and 2009 a very dry year, suggests that the dams 

have a locally limited rewetting effect. In HH polarization mode no distinct increase 

(>0.57 dB) was detected. A distinct increase in L-band backscatter is observed at the 

forested test site in Block C which is located only about 200 m away from the dam 

(Figure II-5b). A comparison of a test site upstream and downstream of the dam clearly 

shows the influence of the water flow direction in canals. While there is a σ
0

HH 

backscatter increase of 0.86 dB between 9 July 2007 and 14 October 2009 upstream of 

the dam, the backscatter downstream the dam is very constant, except on 14 October 

2009. At this date a very strong increase of 3.7 dB is observed, caused by a double 

bounce mechanism of the HH polarized radar signal due to fire impact in September 

2009. Fire occurrence only downstream of the dam further suggests a (small scale) 

rewetting effect of the dam. In HV cross polarization mode a backscatter increase of 

even 1.36 dB was observed between 9 July 2007 and 14 October 2009 upstream of the 

dam. 
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Figure II-5: Comparison of PALSAR radar backscatter from forested, rewetted test sites with forested, 

undrained test sites. (a) In Block A, only a slight HV backscatter increase is observed between May 2008 

and August 2009, compared to the reference test sites in undrained forest. (b) In Block C, there is a HH 

backscatter increase of 0.86 dB upstream of the dam, compared to a very stable signal downstream of the 

dam (except of 14 October 2009, due to forest fire). 

 

Test sites on deforested peatland in Block C were investigated with multi-temporal 

ASAR images, which allowed a comparison of the radar backscatter before and after 

dam constructions. Evaluation of the results shows a backscatter increase after 

completion of the dam construction in September 2005 and a small decrease before 

(Figure II-6). The increase of 0.9 dB observed between October 2005 and March 2009 

is only visible in the cross-polarized VH imagery. During the wet seasons the radar 

backscatter is generally higher. The continuous backscatter increase after dam 

construction, even though 2006 had a very prolonged dry period, suggests successful 

peatland rewetting. Only two of the six dams in Block C show a rewetting effect, 

namely the most southern ones which have the highest water retention capability being 

at the end of a “cascade” of dams in terms of water flow direction. 
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Figure II-6: ASAR C-Band VH backscatter analysis of a deforested test site in Block C over a six year 

period shows an increase of about 0.9 dB after completion of dam construction in September 2005. 

 

5.4. Measuring peatland rewetting on a regional scale 

In order to investigate the spatial pattern of rewetting in Block A, a multi-temporal 

image stack, i.e. red-green-blue (RGB) color composite of three images acquired during 

dry conditions in 2007, 2008 and 2009, respectively, was produced. HH polarized data 

was chosen because of a better discrimination between peat swamp forest and fresh 

burn scars. An optical Landsat ETM+ image from 5 August 2007 shows the condition 

of the peatland surface at the beginning of the change detection analysis; the landscape 

is determined by burn scars from 2006 (Figure II-7a). Figure II-7b illustrates the 

resulting RGB composite, in which the image from 7 August 2007 represents the red 

channel, the image from 9 August 2008 the green channel and the image from 12 

August 2009 the blue channel. Areas that appear in grey (forests, burn scars) and white 

(riverine vegetation and some fresh burn scars in the southeast) show no significant 

changes among the three dates. Yellow areas indicate a backscatter decrease between 

2007 and 2009 (ca. 1.3 dB); while blue areas reveal an increase in σ
0

 values (ca. 0.7 

dB), even though 2009 was an extremely dry El Niño year. This suggests that peatland 

rewetting was successful in a ca. 6 km² large area after the construction of dams in 2007 

and 2008. 
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Figure II-7: (a) An optical Landsat ETM+ image shows the condition of the peatland surface in Block A 

at 5 August 2007; dark green: forested areas, red: burn scars from 2006; light green: vegetation 

regrowth. (b) RGB composite of three HH polarized PALSAR images (red: 7 August 2007, green: 9 

August 2008, blue: 12 August 2009) showing relative changes over three years: marked with a red circle 

is the area where a significant backscatter increase occurred in 2009; marked with yellow arrows are 

areas where a backscatter decrease occurred between 2007 and 2009 (white dams completed in January 

2005, orange in May 2007, pink in June 2008). 

 

6. Discussion 

This study shows that ASAR Alternating Polarization and PALSAR Fine Beam mode 

data are capable of monitoring peatland rewetting in Indonesia. Rewetting, which is 

achieved by damming drainage canals, is the most important restoration measure of 

tropical peatlands and a prerequisite for replanting trees and preventing carbon dioxide 

emissions. Relative changes in peat soil moisture before and after dam construction 

were observed with radar time series of up to six years. By calculating the radiometric 

resolution of the measured backscatter intensity, the optimal size of test sites for change 

detection analysis was determined. A multi-temporal stack of PALSAR images, 

acquired during dry weather conditions, proved to be successful in monitoring large 

scale temporal and spatial patterns of soil moisture. Variations in backscatter 

coefficients caused by changes in surface roughness could be excluded by analyzing 

optical Landsat imagery and MODIS fire hotspot data. Both radar wavelength bands 

investigated (C- and L-band) were able to penetrate post-fire regrowing vegetation, 

while only L-Band PALSAR data could detect soil moisture changes under a forest 
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canopy. Generally, cross polarization provided better results; probably because it is less 

sensitive to surface roughness and object orientation (Envisat 2007). A high correlation 

was found between C-band VH polarized backscatter and in situ groundwater level data 

above -50 cm, measured two months after image acquisition. This time delay also exists 

between rainfall and reaction of groundwater levels. 

The rewetting of drained, forested and deforested peatland in Block C of the Mega Rice 

Project area in Central Kalimantan, as detected by ASAR and PALSAR imagery, is 

confirmed by in situ groundwater level measurements. After restoration, higher annual 

minimum GWLs prevailed on both areas and the GWL remained considerably longer 

near the peat surface (Jauhiainen et al. 2008). However, radar image analysis showed 

that an increase in soil moisture occurred only close to the dams and is strongly 

influenced by the water flow direction in the drainage canal. In the whole Block A, a 

relatively small area of ca. 6 km² showed a distinct increase in radar backscatter 

between 2007 and 2009 which can be reasonably associated with soil moisture 

variations. The occurrence of fires in the study area during the 2009 El Niño also 

suggests that the dams do not (yet) achieve large scale peatland rewetting. In contrast to 

its surroundings, the rewetted area in Block A was not affected by the severe 2009 fires. 

Usually, fires are ignited where the peat is dry and where there is access (mainly via 

drainage canals). The rewetted area is the only one in Block A which is bordered by 

dams at each canal junction. This, together with the observations in Block C, support 

the theory by Wösten et al. (2007) that a cascade of dams is most effective in canal 

water retention and hence rewetting of the surrounding peatland. The dense network and 

large size of canals in Block A make this a long-term and cost-intensive task. 

Furthermore, rising groundwater levels in Block A are restricted by severe peatland 

subsidence along the canals which has created a “mini-dome” topography (CKPP 

2008). The 2009 El Niño fires make clear that peatland restoration must be 

accompanied by fire prevention, control and education, especially at the early stage. 

Even though these first results of monitoring the effect of peatland restoration with 

radar imagery are very promising, in situ groundwater level measurements distributed 

over the whole study area should be investigated along with the acquisition of additional 

images. A longer time series of dual polarized PALSAR imagery, which proved to have 

best monitoring capabilities, is important to reduce uncertainties introduced by frequent 

short and long term changes of weather conditions in Central Kalimantan. This study 
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clearly shows the advantage of remote sensing data over in situ measurements which are 

laborious and cost-intensive due to difficult peatland accessibility and a high need for 

maintenance; destruction of measuring instruments by animals, humans and fires have 

been frequently reported from the study area. The identification of areas that have been 

successfully rewetted is essential for specifically planning the re-establishment of 

vegetation. In addition, groundwater level prediction is a key element for fire hazard 

warning systems. It is known that -40 cm is a critical threshold below which irreversible 

drying occurs; a layer of dry peat is created on the surface being very susceptible to fire 

(Takahashi et al. 2003; Usup et al. 2004; Wösten et al. 2008). Knowing the effect of 

peatland restoration measures as well as large scale groundwater levels is necessary to 

estimate carbon dioxide mitigation in view of carbon trading projects on the voluntary 

carbon market or under the REDD mechanism. Jaenicke et al. (2010) estimated that 

successful rewetting of a 590 km² large area of drained peat swamp forest could result 

in mitigated emissions of 1.4 - 1.6 Mt CO2 yearly and Ballhorn et al. (2009) calculate 

that within a 27 900 km² large region in Central Kalimantan, including this study area, 

approximately 184 Mt CO2 were released during the 2006 El Niño event, which equates 

to 20% of all carbon dioxide emissions from transport in the European Union in 2007. 

Carbon dioxide emissions of these orders can be avoided if large scale hydrological 

restoration measures are accompanied by an efficient monitoring program. Compared to 

carbon dioxide, other greenhouse gases such as methane (CH4) and nitrous oxide (N2O) 

are relatively unimportant in tropical peatlands (Furukawa et al. 2005; Strack 2008). 
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1. Abstract 

In the context of reducing emissions from deforestation and forest degradation (REDD) 

and the international effort to reduce anthropogenic greenhouse gas emissions, a reliable 

assessment of aboveground forest biomass is a major requirement. Especially in tropical 

forests which store huge amounts of carbon, a precise quantification of aboveground 

biomass is of high relevance for REDD activities. This study investigates the potential 

of X- and L-band SAR data to estimate aboveground biomass (AGB) in intact and 

degraded tropical forests in Central Kalimantan, Borneo, Indonesia. Based on forest 

inventory data, aboveground biomass was first estimated using LiDAR data. These 

results were then used to calibrate SAR backscatter images and to upscale the biomass 

estimates across large areas and ecosystems. This upscaling approach not only provided 

aboveground biomass estimates over the whole biomass range from woody regrowth to 

mature pristine forest but also revealed a spatial variation due to varying growth 

condition within specific forest types. Single and combined frequencies, as well as 

mono- and multi-temporal TerraSAR-X and ALOS PALSAR biomass estimation 

models were analyzed for the development of accurate biomass estimations. Regarding 

the single frequency analysis overall ALOS PALSAR backscatter is more sensitive to 

AGB than TerraSAR-X, especially in the higher biomass range (>100 t/ha). However, 
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ALOS PALSAR results were less accurate in low biomass ranges due to a higher 

variance. The multi-temporal L- and X-band combined model achieved the best result 

and was therefore tested for its temporal and spatial transferability. The achieved 

accuracy for this model using nearly 400 independent validation points was r² = 0.53 

with an RMSE of 79 t/ha. The model is valid up to 307 t/ha with an accuracy 

requirement of 50 t/ha and up to 614 t/ha with an accuracy requirement of 100 t/ha in 

flat terrain. The results demonstrate that direct biomass measurements based on the 

synergistic use of L- and X-band SAR can provide large scale AGB estimations for 

tropical forests. In the context of REDD monitoring the results can be used for the 

assessment of the spatial distribution of the biomass, also indicating trends in high 

biomass ranges and the characterization of the spatial patterns in different forest types.  

 

Keywords: ALOS PALSAR, biomass, forest, Indonesia, REDD, TerraSAR-X 

 

2. Introduction 

Considering global climate change, carbon, as an element of the greenhouse gas carbon 

dioxide (CO2), plays a major role in trapping thermal radiation from sunlight and 

reducing the Earth's space release of energy (Read et al. 2001). The rise of atmospheric 

CO2 from about 280 ppm (in 1880) to 388 ppm (in 2009) was mainly caused by 

extensive burning of fossil fuels. Deforestation and land cover change caused 20% of 

global anthropogenic CO2 emissions in the 1990s and 12% in 2008 (Le Quere et al. 

2009). The total amount of global emissions from deforestation, forest degradation, and 

peatland fires is determined to be about 15% of global anthropogenic CO2 emissions 

from 1997 to 2006 (van der Werf et al. 2009). 

Tropical forests cover approximately 15% of the Earth's land surface (FAO 2009; Page 

et al. 2009a) and contain up to 40% of the terrestrial carbon (Page et al. 2009a). The 

main carbon pools are typically the living aboveground biomass (AGB) and the dead 

mass of litter, woody debris and soil organic matter (Gibbs et al. 2007). In Southeast 

Asia's peat swamp forests, both AGB and belowground thick peat deposits make a 

significant contribution to the carbon reservoir (Page et al. 2009a). Indonesia alone, 

where 48.8% of the land's surface is covered by forest, comprises a total carbon stock of 
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61 Gt to 63 Gt whereby aboveground forests store 6 Gt (FAO 2009) and belowground 

peatlands comprise between 55 Gt (Jaenicke et al. 2008) and 57 Gt (Page et al. 2011).  

Southeast Asia features the highest rate of deforestation worldwide at 1.3% per year 

(Achard et al. 2002; FAO 2000; Langner et al. 2009) and is therefore a prime target for 

reducing emissions from deforestation and forest degradation (REDD) initiatives. 

REDD is a key element emphasized at the United Nations Climate Change Conference 

in Copenhagen in December 2009 for the reduction of CO2 emissions. The most 

important requirements for a successful implementation of REDD are accurate biomass 

and carbon estimations and the subsequent monitoring of the forest carbon pool.  

AGB or carbon stocks in tropical forests can be monitored in various ways (FAO 2000; 

Gibbs et al. 2007; Goetz et al. 2009). The most accurate way of AGB retrieval is 

destructive sampling through harvesting, drying and weighting the living biomass, 

hereby assuming a carbon content of dry biomass from 50% (Goetz et al. 2009; Malhi et 

al. 2004). While this method is very precise, it is cost- and time-consuming and in 

tropical forests often impractical. Forest inventories are usually accomplished to collect 

in-situ biomass data. Allometric equations of ground-based measurements, such as 

diameter at breast height (DBH) and total tree height are used to extrapolate plot values 

to forest stands (Chave et al. 2005; FAO 1997; IPCC 2006). Forest inventories are also 

expensive and time-consuming, especially in remote and inaccessible tropical forests, 

but extrapolation of the results is reasonably accurate. The simplest but least precise 

method to derive AGB maps is the biome approach whereby forest type specific 

biomass values are linked to land cover map classes (Goetz et al. 2009). Land cover 

maps can be generated by remote sensing technology, and biomass values are available 

in the published literature (for example: Lasco 2002; Waldes et al. 2001). 

Observations and measurements by satellites have nowadays become the primary 

source for estimating AGB in tropical forests (Lu 2006). Since no remote sensing 

instrument can directly measure either biomass or carbon content, additional in-situ 

data is required for establishing a relationship between the remote sensing signal and 

the biomass (Rosenqvist et al. 2003). Various optical remote sensors have bands in the 

infrared, which allow the discrimination between different forest types and other land 

covers. However, frequent cloud coverage in the inner tropics often hampers the 

acquisition of high-quality data. Another major disadvantage is the low saturation level 
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of the spectral bands and the derived spectral indices regarding the biomass estimation 

(Gibbs et al. 2007).  

LiDAR (light detection and ranging) instruments mounted on airplanes send out active 

laser pulses and measure various echoes of the signal. This determines the three-

dimensional vertical structure of vegetation in great detail (Goetz et al. 2009). LiDAR 

has been proven to allow accurate estimates of tree height, canopy closure and AGB 

(Duncanson et al. 2010; Kronseder et al. 2012; Zhao et al. 2009). The disadvantage is 

that the acquisition of airborne LiDAR data requires sophisticated technical equipment, 

is very expensive especially in remote areas and has, therefore, not often been used in 

tropical forests (Gibbs et al. 2007). 

Spaceborne synthetic aperture radar (SAR) sensors such as the L-band ALOS PALSAR, 

the C-band ERS/SAR, RADARSAT/SAR or ENVISAT/ASAR and the X-band 

TerraSAR-X instrument are also active systems, transmitting microwave energy at 

wavelengths from 3.0 cm (X-band) to 23.6 cm (L-band). The major advantage of all 

SAR systems is their weather- and daylight-independency. Their penetration depth and 

therefore their ability to measure biomass mainly depend on the wavelength: the longer 

the wavelength, the deeper the penetration (Henderson et al. 1998; Le Toan et al. 2001). 

The ability to measure biomass is additionally affected by other sensor properties such 

as the polarization and the incidence angle, but also by the land cover and terrain 

properties, i.e. roughness and dielectric constant (Lu 2006).  

Various studies have analyzed the retrieval of AGB using radar data in tropical regions 

(Gama et al. 2010; Kuplich et al. 2005; Mitchard et al. 2009; Pandey et al. 2010; Santos 

et al. 2006). Longer wavelengths have proven to be more useful because of an 

increasing backscatter range with changing biomass (Castro et al. 2003; Dobson et al. 

1992; Lu 2006; Luckman et al. 1997). These biomass estimations are valid up to a 

certain threshold where saturation occurs, i.e. where the slope of the 

biomass/backscatter coefficient curve approaches zero (Lucas et al. 2007; Mitchard et 

al. 2009). 

The X- and C-band backscatter saturate at low biomass levels (30 - 50 t/ha). Pandey et 

al. (2010) found high r² values for a C-band backscatter/biomass relationship up to 

250 t/ha. For L-band backscatter published saturation levels range from 40 t/ha (Imhoff 

1995; Luckman et al. 1997) to 150 t/ha (Kuplich et al. 2005; Lucas et al. 2007; Mitchard 
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et al. 2009). Austin et al. (2003) stated that the L-band saturation level is possibly up to 

600 t/ha.  

Three different methods of calculating the saturation threshold are found in published 

literature. Luckman et al. (1997) established the saturation of an asymptotic 

backscatter/biomass relationship at 90% and 95% of the asymptotic intensity values. 

Rauste (2005) determined the saturation at regression analyses in a series of steps 

leaving a part of the stem volume range out. Watanabe et al. (2006) chose an arbitrary 

slope threshold of the backscatter/biomass curve of 0.01 dB ha/t.  

In general, the saturation level not only depends on the SAR frequency but also on the 

amount of reference data. In the above mentioned SAR studies the correlation between 

AGB and SAR backscatter signal was often assessed using only a very limited set of in-

situ data. Kuplich et al. (2005), Watanabe et al. (2006), Santos et al. (2006) and Lucas et 

al. (2007) made AGB predictions in the tropics on the basis of SAR imagery in 

combination with approximately 51 in-situ reference data, whereas Pandey et al. (2010) 

and Mitchard et al. (2009) analyzed up to 191 field inventory data. The latter found a 

limitation of biomass/backscatter correlation at 400 t/ha. Only Solberg et al. (2010) used 

upscaled biomass reference data from airborne LiDAR measurements, calibrated to in-

situ data, resulting in estimations valid up to 250 t/ha with interferometric X-band data 

for pine and spruce forests.  

In this study we investigated the capability of two different SAR sensors, TerraSAR-X 

(X-band) and ALOS PALSAR (L-band) in single and combined use as well as the use 

of mono- and multi-temporal data to retrieve AGB in tropical forest ecosystems in 

Kalimantan, Indonesia. The main focus is hereby on the impact of the different 

frequencies in regard to the biomass estimation capabilities for intact (high biomass) 

and degraded (low biomass) tropical forests using a novel approach. The upscaling 

approach included field inventory data and LiDAR based AGB estimations. 

3. Materials and Methods 

3.1. Study area 

The principal study area of 280,062 ha is located in the Indonesian province Central 

Kalimantan on the island of Borneo and encompasses parts of the Mega Rice Project 

(MRP) (Block C) near Palangka Raya and the upper catchment of the river Sebangau 
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(Figure III-1). It includes two types of peat swamp forests, regrown peat swamp forest 

on fire scars and heavily degraded forests after recurrent fire episodes (shrubs), as well 

as riparian forest and seasonally flooded wetlands. The Sebangau catchment was 

designated as a National Park in 2004 because of its conservation value and importance 

of natural resource functions. The forests of Block C have been drained several times 

and recurrent fires destroyed approximately 50% of the forest cover in the past decade. 

A second study area (34,652 ha) was used to analyze the spatial transferability of 

biomass regression models, meaning if the established model can be applied other areas. 

This site is located in the floodplain of Borneo's largest river, the Kapuas River, in West 

Kalimantan (Figure III-1). The vegetation cover is very similar to the Central 

Kalimantan site and comprises peat swamp, heath and riparian forest, shrubs and 

seasonally flooded wetlands. Forest inventory data was available for comparison for this 

site. 

Both areas are located in alluvial plains with extensive peatlands. The topography is 

extremely flat, which is advantageous for SAR analysis, avoiding shadow and layover 

effects. The ombrogenous (rain-fed) peat swamps are covered by peat swamp forests 

and are extremely deficient in mineral nutrients and acidic, fostering many endemic 

species. The peat deposits are between 0.5 m and 20 m thick and contain up to 10 times 

more biomass per ha than the forests growing on top of them (Jaenicke et al. 2008; 

MacKinnon et al. 1996; Rieley et al. 2005). Under undisturbed conditions, peatlands 

make a significant contribution to the global terrestrial carbon storage, both in terms of 

their forest AGB and belowground peat deposits (Page et al. 2009a).  
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Figure III-1: Multi-sensor image combining TerraSAR-X ScanSAR VV (30/08/2008, R) and ALOS 

PALSAR HV polarized (26/08/2008, GB) scenes featuring the study area located in Central Kalimantan 

(CK), Indonesia. The location of the study area in West Kalimantan (WK) is indicated in the outline map. 

Available LiDAR transects used for AGB calculations are illustrated in yellow.  

 

3.2. Aboveground biomass data 

Field inventory data was collected in 2007 and 2008 representing different forest and 

sub forest types and forests degraded by logging and fire. Data for more than 140 forest 

plots was collected using the angle count sampling method which estimates 

aboveground biomass within 1ha plots. Diameter at breast height (DBH), basal area, 

number of stems and tree species were gathered and used to calculate AGB based on 

allometric equations (Chave et al. 2005). The AGB sample plots were then related to 

airborne LiDAR measurements (Kronseder et al. 2012).  
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The small-footprint, full-waveform LiDAR dataset was acquired during a flight 

campaign conducted in August 2007. Altogether, 8,090 ha were used to analyze 

different biomass estimation models. The LiDAR data were differentiated into ground 

and vegetation echoes to obtain vegetation heights. The following point cloud statistics 

of the absolute vegetation heights within 1 ha plots were calculated and used as 

predictors: mean hmean, measures of dispersion including the standard error of the mean 

(SEM) hSEM, standard deviation (σ) hσ, variance hvar, range hrange and maximum hmax, and 

the quantiles corresponding to the 5, 10, ..., 95 percentiles of the distributions (h5,..,.95). 

As a further potential predictor, canopy cover (CC) was determined. Multiple linear 

regression analysis using the stepwise forward method was conducted relating all above 

mentioned variables to corresponding AGB values per ha: 
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The model with the best regression result for peat swamp forests was selected for 

further analysis. The applied model depends on the 50 percentile, provides AGB 

estimations ranging from 1.5 t/ha to 369 t/ha and its independent validation results were 

r²=0.32 with an RMSE of 94.77 t/ha. Although the independent validation is weak, this 

biomass estimation model performed best for estimations over the whole biomass range. 

Using continuous spatial datasets, as opposite to several point-based field inventories, 

provided an enormous amount of reference data featuring the spatial variability of the 

forest within the area of the SAR image. Thus, 3,970 data points (coming from the 

LiDAR estimates) within the study area, covering the entire biomass range and thereby 

characterizing the spatial distribution of biomass, were used. As the plots within the 

LiDAR transects are clustered (Figure III-1), the biomass reference data are not 

randomly distributed which is also represented by a Moran's Index of 0.88 indicating 

some spatial autocorrelation. However, plots were generated from 15 different LiDAR 

transects which were randomly distributed in the study area. 

This enormous set of biomass reference data for a tropical forest ecosystem is very 

valuable, since field inventories are very time-consuming and expensive to conduct. The 

huge number of samples enhances the accuracy of the biomass regression models.  
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3.3. Remote Sensing 

Various additional remote sensing datasets of the study area were available, leading to a 

better understanding of the landscape features. Land cover maps and land cover change 

maps based on optical imagery such as Landsat ETM+ (Enhanced Thematic Mapper 

Plus) and high resolution RapidEye images (6.5 meters spatial resolution) were 

available as additional data sources. The TerraSAR-X satellite was launched on 

15 June 2007 by the German Aerospace Center (DLR). It provides different acquisition 

modes with varying spatial resolution at X-band wavelength (3 cm) with a frequency of 

9.65 GHz. Six images acquired in 2008 and 2009 were available in the ScanSAR mode 

at VV polarization, with incidence angles between 29.9° and 36.2° and a pixel spacing 

of 8.25 m (Table III-1). The different incidence angles are supposed to have no effect on 

the radar signal of forests as the angular dependence between 20° and 40° of X-band 

VV polarized backscatter signals was proved to be less than 1 dB in an Aspen forest 

(Henderson et al. 1998; Sun et al. 1991; Wang et al. 1993).  

The Phased Array type L-band Synthetic Aperture Radar (PALSAR), on-board the 

Advanced Land Observing Satellite (ALOS), was launched on 24 January 2006 by the 

Japan Aerospace Exploration Agency (JAXA). It records data at a frequency of 

1.27 GHz (23.6 cm wavelength). In total, 9 images from 2007 to 2009 in dual mode at 

HH and HV polarization, with an incidence angle of 38.8° and a pixel spacing of 12.5 m 

were examined within this study (Table III-1). Preliminary analyses showed that HH 

polarized images were not sensitive to AGB and were therefore not included in the 

analysis.  

The preprocessing included radiometric calibration, georeferencing and Lee-Sigma 

speckle reduction, whereby the radiometric calibration was done on the basis of 

following equations:  
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where σ
0
 = backscattering coefficient, DNi = digital number of each pixel, 

ks/KdB = calibration coefficients, NEBN = noise equivalent beta naught and θi = local 

incidence angle. 

 

Table III-1: Properties of radar imagery available for the study areas in Central and West Kalimantan. 

Sensor date  polarization pixel incidence 

 (dd/mm/yyyy)  
spacing 

(m) 
angle 

Central Kalimantan, Block C 

ALOS PALSAR 07/09/2007 HV 12.5 38.8° 

fine resolution  24/08/2007 HV 12.5 38.8° 

 10/09/2007 HV 12.5 38.8° 

  26/05/2008 HV 12.5 38.8° 

  26/08/2008 HV 12.5 38.8° 

  11/10/2008 HV 12.5 38.8° 

TerraSAR-X 14/06/2008 VV 8.25 32.1° 

ScanSAR 08/08/2008 VV 8.25 29.9° 

  30/08/2008 VV 8.25 32.1° 

West Kalimantan, Kapuas Hulu 

ALOS PALSAR 02/07/2009 HV 12.5 38.8° 

fine resolution  17/08/2009 HV 12.5 38.8° 

  02/10/2009 HV 12.5 38.8° 

TerraSAR-X 07/06/2009 VV 8.25 34.1° 

ScanSAR 23/08/2009 VV 8.25 36.2° 

  03/09/2009 VV 8.25 34.2° 

 

The calibration coefficient of TerraSAR-X (ks) depends on the incidence angle θi, 

whereas the one of ALOS PALSAR (KdB) is a constant of -80.2 or -83.0 at dual mode 

HV polarized images, depending on the processing date. The digital number of each 

pixel DNi was transformed into a backscattering coefficient sigma naught (σ
0
) in 

decibels (dB). 

Additionally, ALOS PALSAR images were co-registered with a Landsat ETM+ master 

scene and speckle noise in ALOS PALSAR and TerraSAR-X scenes was reduced by 

applying Lee-Sigma filters with moving-windows of 5x5 and 9x9 pixels. 
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It is essential to consider the climatic conditions during image acquisition when 

analyzing radar data because rain can change physical and dielectric properties of the 

surface soil and vegetation, thus affecting backscatter. Daily precipitation data from the 

Global Precipitation Climatology Project (GPCP) of both study areas were analyzed for 

this purpose. GPCP data incorporates infrared and microwave satellite retrievals and 

rain gauge observations. It is freely available since 1997 with a spatial resolution of 1° 

latitude and longitude.  

In order to minimize any impact by rainfall, surface water and soil moisture, only radar 

imagery acquired during the dry season (May to October) were used in this study. The 

precipitation pattern of the two study areas and their similarities was analyzed by 

examining the daily GPCP data from January 2007 until April 2009 (only available for 

this period) and by relating the total monthly values of both study areas to each other. 

3.4. Biomass regression modeling 

The relationship between radar signals and AGB was analyzed using spatially averaged 

backscattering coefficients over a grid with a cell size of 100 m (1 ha). Different grid 

sizes were previously tested, but the chosen size of 100 m contained the best trade-off 

between radiometric accuracy and loss of spatial information and is similar to the one 

used for the LiDAR estimations. The radiometric accuracy was calculated according to 

Laur et al. (1998) and varies as a function of the size of the sampling window (Baup et 

al. 2007). It constitutes 0.52 dB, 0.27 dB and 0.18 dB in TerraSAR-X ScanSAR scenes 

and 0.79 dB, 0.41 dB and 0.28 dB in ALOS PALSAR dual polarized images for a cell 

size of 50 m, 100 m and 150 m, respectively.  

For mono-temporal analyses, a single image acquired in August was used. Multi-

temporal analyses included temporally averaged radar backscatter signals from three 

scenes acquired during the dry season of either 2007 or 2008 (May to October) and thus 

extreme conditions which might affect the radar signal are compensated. Surface 

moisture resulting from heavy rainfall, occurring especially in the tropics, can have an 

effect on the radar signal. In general, longer wavelengths are less affected by surface 

moisture (Henderson et al. 1998) but increases in the backscatter are reported (Dobson 

et al. 1991). The multi-temporal approach compensates possible extreme conditions and 

is supposed to be more feasible for biomass modeling.  

The mono- and multi-temporal ALOS PALSAR models of 2007 and 2008 can be 
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compared as the preprocessing of the imagery was the same. Furthermore, it was 

investigated if there is any systematic change in the backscatter signal of 2007 to 2008 

analyzing the descriptive statistics but no systematic change could be detected.  

As AGB reference data, a total of 3,970 points featuring the whole biomass range, were 

available, randomly 10% of the LiDAR-derived biomass reference data were left out of 

the modeling process for the subsequent independent validation. The preliminary 

modeling step was to investigate single frequency biomass models of X- or L-band SAR 

data. Both mono- and multi-temporal radar signals were related to AGB values 

examining these relationships. The combined biomass regression models included two 

frequencies, the X-band TerraSAR-X and L-band ALOS PALSAR, and multivariate 

regression analyses on the basis of mono- and multi-temporal backscattering values 

were conducted. The coefficient of determination r² for the linearized models were 

calculated for no-intercept models, as within the later analysis this type of model proved 

to be the most sufficient. The following formula was used as described by (Kvalseth 

1985):  

(8)   ²/)²ˆ(1² yyyr  

where ŷ  is fitted (calculated) value and y  is the actual value of the dependent variable 

(aboveground biomass). 

Subsequently the independent validation was used to evaluate the predictive accuracy of 

the model, comparing estimated to actual AGB values, whereby the coefficient of 

determination (r²) and root mean square error (RMSE) were calculated. The coefficient 

of determination r² of the independent validation was calculated as the square of 

Pearson's correlation coefficient r for a linear transformation of the model.  

Additionally, the mean error (ME) was determined, of which the algebraic is relevant. If 

the mean error is positive, the predicted values are underestimated and if it is negative, 

they are overestimated. 

3.5. Saturation level estimation 

Biomass analyses using radar imagery are limited by the saturation of the radar signal at 

high biomass values which occurs when the biomass/backscatter slope approaches zero. 

Similar to Watanabe et al. (2006), the saturation was determined on the basis of a 
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backscatter/biomass slope threshold which was calculated on the basis of the 

radiometric accuracy and a specific accuracy interval for the estimates. The radiometric 

accuracy of an area of 1 ha is, as above mentioned, 0.27 dB in TerraSAR-X ScanSAR 

images and 0.41 dB in ALOS PALSAR dual polarized scenes. The accuracy intervals of 

the estimates was set to 50 t/ha and 100 t/ha. Within the 50 t/ha accuracy interval the 

AGB estimations are supposed to be accurate whereas estimations within the 100 t/ha 

accuracy interval are only indicators for the spatial AGB distribution.  

The slope m of the saturation threshold can be calculated as follows:  

(9) 
AGB

m





0

 

where 
0  is difference of the backscattering coefficient σ

0
 (in this case: the 

radiometric accuracy of the respective sensor) and AGB is the difference of the 

aboveground biomass (the accuracy interval of the estimates). Above the calculated 

saturation point, the biomass estimations cannot be differentiated within the determined 

biomass accuracy interval due to the radiometric accuracy. The slopes of the saturation 

threshold with the different accuracy intervals are depicted in Table III-2. The saturation 

point of the different established biomass models was determined on the basis of the 

derivative of the respective regression model. The combined model was differentiated 

with respect to either TerraSAR-X or ALOS PALSAR backscatter signal and identified 

with the slope threshold depicted in Table III-2. 
 

 

Table III-2: Slopes of the biomass saturation threshold (in dB ha/t) for the respective sensors within two 

different accuracy intervals of the estimates calculated on the basis of equation (9).  

sensor 
accuracy interval of the estimates 

50 t/ha 100 t/ha 

TerraSAR-X 0.0054 0.0027 

ALOS PALSAR 0.0082 0.0041 
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3.6. Spatial application of biomass estimation models 

Finally, the biomass models were applied to the full extent of the study area in Central 

Kalimantan. The most accurate regression model was applied to the study area in 

Kapuas Hulu, West Kalimantan, testing the spatial transferability of the model. As 

TerraSAR-X data were only available for one year per study site, the temporal 

transferability was beforehand investigated by comparing mono- and multi-temporal 

ALOS PALSAR regression models covering a time period of two years (2007 and 

2008). 

As radar imagery was recorded only during the dry season and the multi-temporal 

approach compensates variable climatic conditions, the SAR backscatter is supposed to 

be constant. Romshoo (2004) has shown that the L-band (JERS-1 SAR) backscatter 

signal (of a scene recorded during the dry season) of peat swamp forests is very 

constant. This was confirmed by Jaenicke et al. (2011) who found the ALOS PALSAR 

HV polarized backscattering coefficient was very stable over a long time period. Both 

study areas comprise a very similar vegetation composition and forest structure. The 

preprocessing technique of the radar imagery of both study areas was the same and 

further potential errors were eliminated by using images recorded only during the dry 

season with the same incidence angles (Table III-1). These facts are very important 

preconditions as they increase the probability of the spatial transferability (Freitas et al. 

2005). There was no LiDAR data available for Kapuas Hulu, and only a limited set of 

field inventory data to evaluate the spatial transferability. Instead, a detailed Landsat 

ETM+ land-use/land cover classification considering different forest types was 

available for 2009. The different forest classes were linked to AGB values derived from 

literature and/or forest inventory data and compared to the averaged biomass estimation 

result of the model and the potential of the spatial transferability was examined.  

4. Results 

4.1. Regression modeling 

First, the relationship between AGB and backscattering coefficients was investigated for 

both X- and L-band data separately. By carefully examining the different curve 

progression of the correlation between biomass and radar signals, the optimal equation 

for mono- and multi-temporal single frequency regression models was found to be: 
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(10) 
bay )(exp* 0  

where σ
0
 = backscattering coefficient and a, b = coefficients depending on sensor and 

date.  

Equation (10) was fitted after a logarithmic transformation and for a least squares linear 

regression. The coefficients of determination (r²) are given for the logarithmic version 

of the models and were recalculated for no-intercept models. The results are 

summarized in Table III-3 and Table III-4 in which the exact date is listed for mono-

temporal and the respective year for multi-temporal models. The independent validation 

of the models is given within the AGB range up to the saturation threshold with 

accuracy requirements of 50 t/ha and 100 t/ha. The multi-temporal relationships 

between AGB and TerraSAR-X or ALOS PALSAR radar signals in 2008 are depicted 

in scatterplots in Figure III-2.  

 

Table III-3: Results of single frequency AGB regression modeling on the basis of equation (10) (n=3970; 

90% were used for regression modeling and 10% for the independent validation). The date indicates 

mono-temporal models, all others specify multi-temporal models of the respective year.. 

Sensor date 

regression model  
bay )(exp* 0  

r² a          b 

TerraSAR-X 08/08/2008 0.462 4.48*10
8 

2.04
 

  2008 0.462 26.94*10
8 

2.30
 

ALOS  24/08/2007 0.651 2.44*10
8 

1.02
 

PALSAR 2007 0.693 1.02*10
8 

0.95
 

  26/08/2008 0.637 3.97*10
8 

1.06
 

  2008 0.706 1.14*10
8 

0.97
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Table III-4: Results of the independent validation of equation (10) given within an accuracy requirement 

of 50 t/ha and 100 t/ha. The coefficients of determination (r²), root mean square error (RMSE) and mean 

error (ME) of the independent validation are depicted for the single frequency mono- (exact date) and 

multi-temporal (year) regression models. 

Sensor date 

saturation 
validation 

saturation 
validation 

(t/ha) (t/ha) 
accuracy 

 50 t/ha 
RMSE 

(t/ha) 
r² 

ME 

(t/ha) 
accuracy 

100 t/ha 
RMSE 

(t/ha) 
r² 

ME 

(t/ha) 

Terra 08/08/08    91 439.56 0.01 -67 181 542.68 0.05 -135 

 SAR-X 2008    80 117.10 0.12 -28 161 257.45 0.18 -65 

ALOS  24/08/07 119 158.54 0.27 -54 239 150.03 0.30 -47 

PALSAR 2007 128 122.42 0.32 -42 256 109.43 0.39 -23 

  26/08/08 115 151.42 0.23 -50 230 143.42 0.36 -54 

  2008 126 105.20 0.35 -38 252 103.33 0.48 -35 

 

 

Figure III-2: Single frequency multi-temporal correlation between TerraSAR-X VV (left) or ALOS 

PALSAR HV polarized backscatter (right) of 2008 and AGB with corresponding curve progressions. 

 

ALOS PALSAR backscatter is in general more sensitive to AGB than TerraSAR-X due 

to a higher backscatter range but the accuracies are lower in the low biomass range 

because of a higher variance. In detail, the independent validation of TerraSAR-X 

mono-temporal model features higher RMSEs and lower r² within the different accuracy 

requirements. These result from an extreme overestimation in the higher biomass range 

which is negatively influenced by extreme climatic conditions, such as moisture, which 

is not compensated in the mono-temporal model. However, the multi-temporal 
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TerraSAR-X model is considered to be useful in low biomass ranges. The ALOS 

PALSAR backscatter signal is in contrast sensitive to a wider biomass range which is 

indicated by higher saturation levels: 126 t/ha with an accuracy requirement of 50 t/ha 

and 252 t/ha with an accuracy requirement of 100 t/ha for the multi-temporal model of 

2008 while TerraSAR-X models saturate at 80 t/ha and 161 t/ha, respectively. 

Therefore, ALOS PALSAR imagery is considered to be appropriate for AGB 

estimations in the higher range up to the saturation.  

In a comparison of mono- to multi-temporal regression models from the same year, it 

was found that multi-temporal models are generally more accurate, as they are less 

influenced by any short-term variations. The mean error of all regression models is 

negative, indicating that the predicted biomass is overestimated. These results are 

comparable to previous studies that found longer wavelengths more adequate for AGB 

retrieval (Castro et al. 2003; Lu 2006). 

ALOS PALSAR imagery was available for the years 2007 and 2008. The respective 

mono- and multi-temporal biomass models for both years, the curve progression results, 

the parameters, validation and saturation levels are very similar, indicating the temporal 

stability of the models as well as their transferability to subsequent years. 

4.2. Combined X- and L-band regression models 

In a next step we combined X-band and L-band backscatter in the analysis. The best 

biomass model is described by the following equation: 

(11) )(exp*10*)(exp*10* 0306

TSXPSR bay    

where σ
0

PSR = ALOS PALSAR backscatter, σ
0

TSX = TerraSAR-X backscatter and 

a,b = variables. 

Again, the coefficients of determination (r²) were calculated for no-intercept models. 

The results of the mono- and multi-temporal regression model are depicted in Table 

III-5 and Table III-6. The independent validation results are given up to the saturation 

thresholds at 307 t/ha with an accuracy requirement of 50 t/ha and at 614 t/ha with an 

accuracy requirement of 100 t/ha for both mono- and multi-temporal biomass models. 

Figure III-3a shows ALOS PALSAR and TerraSAR-X signals in a 3D scatterplot and 

depicts the multi-temporal correlation with biomass values. The scattering of the 
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relationship in the low biomass range is less than for only using ALOS PALSAR, while 

a slight curve inclination is still visible in the high biomass range. Figure III-3b displays 

the corresponding scatterplot of estimated versus actual biomass values from the 

independent validation, also indicating the 1:1 line through the origin. Using the 

combined approach the low biomass range is slightly overestimated while the high 

biomass range (> 100 t/ha) is slightly underestimated and overall results in an 

underestimation which is indicated by the positive mean error. 

 

 

Figure III-3: a) Multi-temporal correlation between TerraSAR-X VV, ALOS PALSAR HV polarized 

backscatter and biomass. b) Corresponding actual versus predicted AGB values of the independent 

validation, shown with 1:1 line. 

 

The multi-temporal biomass model is, similar to the results presented above, more 

accurate than the mono-temporal model as short-term variations are compensated. Both 

combined models tend to generally underestimate the AGB, which is indicated by 

positive mean errors. Nevertheless, the bias is much lower than with single frequency 

models. 

To summarize, combined X- and L-band biomass regression models, both mono- and 

multi-temporal, achieved more significant results than the respective single frequency 

models, both in terms of regression analyses and model validation. They also have 

higher saturation thresholds demonstrating that they are applicable to a broader biomass 
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range. The most reliable biomass model is based on a multi-temporal combined X- and 

L-band dataset. 

 

Table III-5: Results of biomass regression modeling using a combination of TerraSAR-X and ALOS 

PALSAR data based on equation (11)(10). The exact date depicts the mono-temporal and the year the 

multi-temporal model (n=3,970; 90% were used for regression modeling and 10% for the subsequent 

independent validation). 

sensor date 

regression model  

)(exp*10*)(exp*10* 0306

TSXPSR bay    

r² a b 

Combined 
26/08/2008+ 

08/08/2008 
0.709 55.660

 
86.620

 

 2008 0.789 60.626
 

106.189
 

 

Table III-6: Results of the independent validation of equation (11) given with an accuracy requirement of 

50 t/ha and 100 t/ha. The coefficients of determination (r²), root mean square error (RMSE) and mean 

error (ME) are depicted for the X- and L-band combined SAR mono- (exact date) and multi-temporal 

(year) regression model. 

sensor date 

saturation 

(t/ha) 
validation 

saturation 

(t/ha) 
validation 

accuracy 

50 t/ha 
RMSE 

(t/ha) 
r² 

ME 

(t/ha) 

accuracy 

100 t/ha 

RMSE 

(t/ha) 
r² 

ME 

(t/ha) 

Combined 

26/08/08

+ 

08/08/08 

307 82.71 0.43 19 614 86.97 0.43 23 

 2008 307 75.72 0.53 4 614 78.77 0.53 8 

 

4.3. Large scale model application 

The validated multi-temporal regression models were applied to the 280,062 ha study 

area in Central Kalimantan. The spatial pattern of the biomass estimations indicating 

different vegetation types and degradation levels was compared to a multispectral 

satellite imagery showing these different vegetation types (Figure III-4). Biomass 

estimations are shown in aggregated classes from 0 t/ha (dark red) to 600 t/ha (dark 

green). Values exceeding 600 t/ha appear in grey and are assumed to overestimate the 



III. AGB retrieval in tropical forests based on SAR 

 

58 

actual biomass. The saturation levels for the two different accuracy levels (50 t/ha and 

100t/ha) are indicated within the legend. As expected, the spatial pattern of biomass 

show low values in degraded, deforested or burnt areas and high values in peat swamp 

forests.  

Subsets of deforested areas and peat swamp forest, whose locations are indicated in 

Figure III-4, are displayed in Figure III-5. TerraSAR-X estimated AGB is better in low 

biomass ranges (up to 100 t/ha where the saturation starts) while the performance is 

weaker at high biomass values above 150 t/ha which exceeds the saturation threshold of 

the 100 t/ha accuracy interval. ALOS PALSAR demonstrates opposite results: low 

biomass values were hardly resolved, while high biomass values show great detail up to 

150 t/ha (saturation level for 50 t/ha accuracy interval) and allow discrimination 

between different forest types up to 300 t/ha (saturation level for 100 t/ha accuracy 

interval). The regression model combining X- and L-band data estimates values in low 

biomass ranges and up to 300 t/ha within the 50 t/ha accuracy interval while it 

represents the spatial pattern of the vegetation over the whole biomass range (up to 

600 t/ha, saturation threshold for the 100 t/ha accuracy interval) which is also apparent 

in the Landsat image.  
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Figure III-4: Multi-temporal TerraSAR-X, ALOS PALSAR and combined regression models applied to 

the study area in Central Kalimantan in comparison to a Landsat scene from 19/05/2008 (RGB: bands 

543). The saturation threshold is indicated in the respective biomass legends for an accuracy interval of 

50 t/ha (solid line) and 100 t/ha (dashed line). The rectangles in the Landsat image indicate the extent of 

the subsets of a deforested area (solid line) and peat swamp forest (dashed line) shown in Figure III-5. 

Note the spatial variation in biomass in the large forest area to the left. The same pattern is visible as 

different shades of green in the Landsat image (white arrow). The pattern relates to different growth 

conditions due to various levels of flooding. 
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Figure III-5: Details of multi-temporal TerraSAR-X, ALOS PALSAR and combined biomass estimation 

models of deforested areas with low biomass (upper panels) and peat swamp forest areas with high 

biomass (lower panels). Left panels show a Landsat scene from 19/05/2008 (RGB: bands 543). 

Photographs show examples of different land covers indicated by arrows within the biomass maps  

(© F. Siegert).  

 

Figure III-6 displays a comparison of biomass estimations using multi-frequency SAR 

and LiDAR data, superimposed on an ALOS PALSAR image. The diagram depicts the 

AGB along the marked 9.6 km long transect shown on the Landsat image. The transect 

covers the whole biomass range and thus features a rather complex biomass pattern. 

Low biomass predictions appear in red and high biomass values in green. The spatial 

pattern of degraded areas (dark in ALOS PALSAR image and bright green or pink in 

the Landsat scene) and forest areas (bright in the ALOS PALSAR scene and dark green 

in the Landsat image) are clearly visible in both biomass estimations. In this example, 

the majority of LiDAR biomass estimations are lower than X- and L-band combined 

SAR estimations, which are mostly below 300 t/ha (saturation within an accuracy 
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requirement of 50 t/ha). SAR biomass estimations do not exceed the saturation level of 

600 t/ha (saturation with an accuracy requirement of 100 t/ha). However, the crucial 

point is that both estimation methods feature the same complex biomass variation 

pattern. This becomes obvious in a biomass transect with increasing biomass between 

km 3 and 4 when entering the peat swamp forest area and the rapid decrease in the fire 

scar at 6.7 km.  

 

 

Figure III-6: Multi-temporal combined X- and L-band SAR biomass estimation in comparison to LiDAR 

estimation along the marked transect superimposed on the Landsat image (19/05/2008; RGB bands: 

543). Both estimations are depicted on an ALOS PALSAR HV polarized scene from 26/08/2008. 
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In order to test the robustness and transferability of the multi-temporal combined 

biomass regression model, it was applied to the study area in West Kalimantan which 

represents a very similar ecosystem. In a preliminary step, the total monthly GPCP 

precipitation data from January 2007 to April 2009 of the two study areas were related 

to each other to test the climatic conditions. They result in a high correlation with a 

Pearson's coefficient of correlation of 0.6. This correlation demonstrates that both study 

areas feature similar climatic conditions during the time of image acquisition which is a 

very important precondition for analyzing the spatial transferability applying the same 

preprocessing algorithms on radar imagery and similar vegetation composition. 

TerraSAR-X imagery of this study area was only available for 2009. Hence, the 

regression model based on combined X- and L-band SAR data from 2008 was applied 

to 2009 data, in order to not only test the spatial transferability, but also to demonstrate 

the temporal transferability. Figure III-7 displays the resulting biomass estimation map 

in comparison to a Landsat image and a Landsat-based forest classification. The spatial 

distribution of the different forest types, which is depicted in the classification, is also 

identifiable in the biomass estimation map. Forest types with lower biomass (e.g. low 

pole peat swamp or dwarf forest), which are below the saturation threshold of 50 t/ha 

accuracy, appear in yellow/bright green in the biomass estimation map, indicating 

aggregated biomass classes from 50 t/ha to 200 t/ha. Forest types comprising higher 

biomass stands, such as the riparian forest, appear in dark green in the biomass 

estimation map, indicating aggregated biomass classes from 200 t/ha to 600 t/ha which 

are below the saturation level of 100 t/ha accuracy. To examine the spatial 

transferability, the average estimated biomass was compared to either field derived 

values and to indirectly estimated biomass values for each forest type (Table III-7). The 

indirect values were calculated by linking the respective forest types of the 

classification result with average biomass values from either the literature and/or field 

inventory data. The comparison, which includes only biomass values between 80 t/ha 

and 300 t/ha (which is below any saturation), is more accurate than the independent 

model validation, using the LiDAR based biomass values, in Central Kalimantan. The 

estimations of the biomass model are in comparison to broad scaled forest type AGB 

slightly underestimated which is indicated by the positive mean error. 

These results show that the multi-temporal combined regression model is transferable 

and still provides appropriate AGB estimations validated at a broad scale.  
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Figure III-7: Spatially and temporally transfer of the multi-temporal X- and L-band combined regression 

model to the study area in West Kalimantan in comparison to a Landsat image (13/05/2009, RGB: bands 

543). The saturation threshold is indicated in the biomass legend for an accuracy requirement of 50 t/ha 

(solid line) and 100 t/ha (dashed line). A detailed forest classification of 2009 on the basis of Landsat is 

shown on the right.  

 

Table III-7: AGB values of a forest type classification of 2009 in Kapuas Hulu, West Kalimantan, 

compared to average estimated values of the spatially and temporal transferred multi-temporal X- and L-

band combined regression model (psf = peat swamp forest). 

  Average 

aboveground 

biomass (t/ha) 

 Forest types             
tall to medium 

psf 
low pole psf psf 

heath 

forest 
dwarf 

forest 
riparian 

forest 
data base pristine open pristine open sparse       

classification 210 217 249 209 101 235 82 294 

X-/L-band 

synergy 2009 
186 214 139 175 83 196 140 199 

*RMSE=59 t/ha, r²= 0.49, ME= 33t/ha.  

 

5. Discussion 

The regression modeling of AGB based on TerraSAR-X and ALOS PALSAR imagery, 

alone and in combination, show that multi-temporal regression models are more 

accurate than mono-temporal models featuring higher coefficients of determination and 

lower root mean square errors. Mono-temporal regression models can be affected by 

extreme climatic conditions and the spatial and temporal transferability is therefore 

limited. Multi-temporal models compensate extreme conditions, e.g. heavy rainfall, and 
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are more feasible for temporal and spatial transfer.  

The results also demonstrate that low biomass values can be better estimated with X-

band and high biomass with L-band data while biomass estimation in the higher range 

are extremely overestimated by single-frequency TerraSAR-X models. Both radar 

signals have different vegetation penetration depths: the L-band has a deeper 

penetration than the X-band signal and is therefore influenced by ground and double-

bounce interaction at low biomass levels. The X-band backscatter signal mainly 

interacts with leaves, twigs and small branches and the main scatter of the L-band are 

from primary and secondary branches (Henderson et al. 1998; Le Toan et al. 2001). The 

combined use of TerraSAR-X and ALOS PALSAR imagery achieves the most accurate 

estimation over the whole biomass range, combining both penetration depths (Figure 

III-4 and Figure III-5). 

Biomass analyses using radar imagery are normally limited by the saturation of the 

radar signal at high biomass values which occurs when the biomass/backscatter slope 

approaches zero. The saturation threshold within the 50 t/ha accuracy interval is at 

80 t/ha in multi-temporal TerraSAR-X and at 126 t/ha in multi-temporal ALOS 

PALSAR regression models of 2008 (Table III-4) and is clearly visible in the 

scatterplots in Figure III-2, while it is at 300 t/ha at the multi-temporal combined model 

(Table III-6 and Figure III-3). The saturation level within an accuracy requirement of 

100 t/ha is much higher (161 t/ha at TerraSAR-X, 252 t/ha at ALOS PALSAR and 

600 t/ha at the combined multi-temporal model of 2008) however it is not accurate 

enough for reliable AGB estimation but it can be used for indicating the spatial 

distribution of high biomass and different forest types.  

 Other studies also found valid biomass predictions based on radar data beyond the 

otherwise stated saturation. For example, Mitchard et al. (2009) used ALOS PALSAR 

imagery in tropical regions for biomass estimations up to 400 t/ha, indicating an 

increased capability in the use of SAR imagery for AGB retrieval than previously 

assumed, also in tropical regions with high biomass volumes. 

The regression models were calibrated with numerous biomass reference data 

(n=3,970), of which 10% were left out for the independent validation. This enormous 

amount of data was generated through an upscaling approach, using airborne LiDAR 

measurements in connection with field inventory data. Such an upscaling approach of 

this kind (forest inventory → LiDAR AGB estimation → SAR AGB estimation) has, to 
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date, only been performed by Solberg et al. (2010). Other previous studies often used a 

very limited amount of in-situ data, ranging from 51 up to 191 samples in total (Kuplich 

et al. 2005; Lucas et al. 2007; Mitchard et al. 2009; Pandey et al. 2010; Santos et al. 

2006; Watanabe et al. 2006). By using this upscaling approach the merit of only having 

a few in-situ data, which have to be divided into samples for the regression model 

training and the independent validation of the findings, is overcome. Additionally the 

independent validation, which utilized almost 400 data points excluded from the model 

calibration, provides a powerful basis for validating the regression models. Therefore, 

the results of the validation are very accurate. Due to the upscaling approach of biomass 

data, there were numerous data available covering the whole biomass range and 

representing the spatial variability of the complex tropical forest. This amount of data 

makes the biomass modeling more powerful. 

The accuracy of the biomass models is denoted by coefficients of determination and 

root mean square errors at the independent validation, but there are several factors 

which influence the overall accuracy; the radiometric accuracy of radar images is, for 

example, an important element. The radiometric accuracy of an area of 1 ha is 0.27 dB 

in TerraSAR-X ScanSAR scenes and 0.41 dB in ALOS PALSAR dual polarized 

images. As the biomass/backscatter slope decreases in high biomass ranges, the model 

is influenced by the radiometric accuracy in high rather than in low biomass ranges. 

Time lag is another potential influence of overall accuracy, firstly between field 

inventory and LiDAR measurements, and secondly between LiDAR biomass 

estimations and radar analysis, assuming that new growth is not balanced by stem 

mortality, but this is supposed to have no effect. Significant land cover changes were 

monitored by optical remote sensing and if necessary considered. A further aspect that 

has an impact on the overall accuracy of the biomass model is the error propagation 

from the upscaling approach. Field inventory biomass data generally contain only a 

small uncertainty, whereas LiDAR biomass estimations imply a higher uncertainty. The 

utilization of these biomass estimations for radar biomass modeling leads to an error 

propagation. Nevertheless, using LiDAR biomass estimations instead of field inventory 

data is advantageous because they represent the spatial biomass distribution and provide 

ample reference data. 

Finally, the temporal and spatial transferability of the multi-temporal X- and L-band 

combined biomass model was tested (Figure III-7). The model was proved to be 
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appropriate for AGB estimation of different broad scale forest classes in the study area 

in West Kalimantan which comprises the same ecosystem. Only radar imagery with the 

same preprocessing, same incidence angles and which were recorded during the dry 

season were used. These constraints are very important for the spatial transferability of 

biomass regression models (Freitas et al. 2005). Previous studies also found potential in 

the spatial transfer of biomass regression models. Mitchard et al. (2009) found a widely 

applicable general relationship between AGB and ALSO PALSAR HV polarized 

backscatter with expected errors of 20-30%. Chen et al. (2009) proved the spatial 

transferability of a biomass regression model from one study area to another, both 

comprising the same dominant land cover types. The validation result was r² = 0.81.  

In the current study, additional in-situ biomass data would be preferable for an exact 

model calibration and validation. The standard approach of linking one specific biomass 

value to different land cover classes implies a high uncertainty, as variability within a 

land cover class is disregarded and the definitions of the land cover classes are often 

ambiguous. The multi-temporal combined regression model can differentiate between 

biomass variations within different stages of forest (e.g. regeneration on burned scars, 

degraded forests due to logging or fire events or intact peat swamp forests) (Figure III-5 

and Figure III-6). The spatial distribution over the whole biomass range is displayed 

with the current approach but only validated for a broad scale. However, it implies 

crucial information for carbon stock assessment. 

Considering the needs of REDD, in the context of accuracy and the trade-off between 

feasibility and costs, the presented approach for estimating aboveground biomass in 

tropical inaccessible forests is a superior possibility for AGB values up to 300 t/ha and 

is furthermore able to indicate the spatial variability of the forest over the whole 

biomass range (up to 600 t/ha). 
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1. Abstract 

In the context of climate change mitigation mechanisms for avoiding deforestation, i.e. 

reducing emissions from deforestation and forest degradation (REDD+), comprehensive 

forest monitoring, especially in tropical regions, is of high relevance. A precise 

determination of forest carbon stocks or aboveground biomass (AGB) for large areas is 

of special importance.  

This study analyzes and compares three different methods for retrieving AGB in 

Indonesia's peat swamp forests from multi-frequency SAR backscatter data. Field 

inventory AGB data were related to LiDAR measurements allowing plentiful accurate 

AGB estimations. These estimated AGB data provided a powerful basis for SAR based 

AGB model calibration and validation. Multivariate linear regression (MLR), artificial 

neural network (ANN) and support vector regression (SVR) were examined for their 

performance to retrieve AGB on the basis of multi-temporal TerraSAR-X and ALOS 

PALSAR imagery.  

The MLR model resulted in lower coefficients of determination and higher error 

measures than the other two approaches and showed significant overestimations in the 

high biomass range. SVR modeled AGB was more accurate than ANN in terms of 
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independent validation, but showed less variation in the spatial distribution of AGB and 

saturated at approximately 260 t/ha. The ANN model showed a superior performance 

for modeling AGB up to 650 t/ha without a saturation in the lower biomass ranges.  

For the needs of REDD+, it is very important to know the possibilities, constraints and 

uncertainties of AGB retrieval based on satellite imagery. 

 

Keywords: ALOS PALSAR, artificial neural networks (ANN), biomass, forest, 

Indonesia, REDD+, regression, support vector regression (SVR). 

 

2. Introduction 

Tropical forests are known as a major carbon sink (Hooijer et al. 2010). In general, 78% 

of their living biomass is stored aboveground and 22% belowground in roots (Saatchi et 

al. 2011a). In contrast, tropical forested peatlands accumulate most of the carbon in 

thick belowground peat deposits which are sustained by intact forests on top of it. In 

Indonesia, forested peatlands cover approximately 11% of the land surface and 

comprise approximately 55 - 58 Gt of carbon (Jaenicke et al. 2008; Page et al. 2011). 

Due to strong economic and social pressure for timber as well as land for agriculture 

and oil palm or pulp tree plantations, these areas are being drained, deforested and often 

burned (Hooijer et al. 2010; Koh et al. 2009). Approximately half (47.6%) of the 

peatland areas in Southeast Asia had been deforested and mostly drained by 2006 

(Hooijer et al. 2010).  

Emissions from Southeast Asia, caused by deforestation, forest degradation and 

peatland fires, were estimated to be 12% of the global anthropogenic CO2 emissions in 

2008 and were therefore the second largest anthropogenic source of CO2 behind fossil 

fuel combustion (Le Quere et al. 2009; van der Werf et al. 2009). In 2006, peat fires in 

Indonesia released approximately 0.25 Gt of carbon which is equivalent to 16% of all 

global emissions by land use change in that year (Ballhorn et al. 2009). At present, 

Indonesia is the largest emitter of CO2 from ongoing peat decomposition (excluding 

fires), responsible for 82% of Southeast Asian emissions in 2006 (Hooijer et al. 2010).  

Due to the high emissions from land conversion, the implementation of environmental 

projects which aim at avoiding deforestation bear good prospects in Indonesia. One 

example for such a climate change mitigation mechanism is REDD+ (reducing 
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emissions from deforestation and forest degradation and the role of conservation, 

sustainable management of forests and enhancement of forest carbon stocks), which 

was accepted at the United Nations Climate Change Conference in December 2010. 

Forest activities which have been identified within the REDD+ context require a forest 

monitoring system to precisely assess the total amount of carbon stored within the 

vegetation and its spatial distribution, assuming a carbon content of dry biomass of 50% 

(Gibbs et al. 2007; Goetz et al. 2009).  

The most accurate way of AGB retrieval are forest inventories which use field based 

measurements (e.g. tree height, diameter at breast height) to extrapolate the biomass on 

the basis of allometric equations (Chave et al. 2005; Lu 2006). Although this method 

provides very precise AGB values, it is time consuming, laborious, difficult to 

implement in remote areas and lacks information on the spatial distribution (Lu 2006). 

Methods based on the use of satellite observations and measurements are less accurate. 

However, the major advantage is the ability to cover large and remote areas. Therefore, 

the technique has become the primary source of AGB estimation (Gibbs et al. 2007; Lu 

2006). Different approaches have been developed to assess AGB with remote sensing 

techniques. The simplest method is the 'indirect approach', which links a biomass value 

determined for a specific vegetation type to a remote sensing based land cover map 

(Goetz et al. 2009). A more accurate method is the 'direct approach', for which 

radiometric satellite measurements are calibrated to field based AGB values (Goetz et 

al. 2009). Regression analyses (Chen et al. 2009; Mitchard et al. 2009; Watanabe et al. 

2006) and different machine learning techniques, such as artificial neural networks 

(ANN) (Amini et al. 2009; Del Frate et al. 2004; Wijaya et al. 2010), are used to train 

an algorithm for estimating AGB. Support vector machines (SVM) are a promising 

alternative to ANN models and their implementation for regression and function 

approximation, the support vector regression (SVR), was successfully applied for the 

estimation of biophysical parameters from satellite imagery. Nevertheless, a SVR has, 

till now, rarely been used for estimating AGB from SAR data (Camps-Valls et al. 2006; 

Camps-Valls et al. 2009; Monnet et al. 2011).  

Airborne LiDAR (light detection and ranging) systems can directly measure 

components of the vegetation in great detail (e.g. canopy height) and has been proven to 

result in very accurate AGB estimations (Kronseder et al. 2012; Zhao et al. 2009). 

Unfortunately, LiDAR measurements are very expensive and are therefore often limited 
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to small areas (Gibbs et al. 2007). Optical remote sensing based AGB estimation in 

tropical regions is often restrained by clouds, but is considered to be appropriate using 

spectral signatures, vegetation indices or image texture (Sarker et al. 2011; Soenen et al. 

2010; Wijaya et al. 2010). SAR (synthetic aperture radar) systems have the ability to 

record data irrespective of weather or light conditions and have been extensively used in 

tropical regions to retrieve AGB (Englhart et al. 2011; Mitchard et al. 2009; Santos et 

al. 2006). Estimations of AGB using SAR imagery are limited by the saturation of the 

radar signal at high biomass values. The saturation level not only depends on the SAR 

wavelength but also on the amount and quality of AGB reference data (Englhart et al. 

2011). 

This work builds upon a detailed investigation on the relationship between AGB and X- 

and L-band SAR backscatter considering single-frequency and multi-frequency 

relationships and saturation levels (Englhart et al. 2011). Numerous AGB reference data 

were generated by relating forest inventory data to airborne LiDAR point cloud signals 

resulting in accurate AGB estimations representing the whole biomass range, from low 

growing bushes to mature tropical rainforest. This upscaling approach provided a 

powerful basis leading to a stronger biomass/backscatter relationship and higher 

saturation levels.  

The scope of this paper is to provide a comparison of methods for AGB estimation from 

multi-temporal combined TerraSAR-X and ALOS PALSAR data. Multivariate linear 

regression (MLR), ANN and SVR models were analyzed in detail and quantitatively 

compared to each other for their performance to retrieve AGB in tropical peat swamp 

forests. The different models were also examined for their ability to predict AGB over 

large areas, which is crucial for REDD+ projects. 

3. Materials and Methods 

3.1. Study area 

The study area, approximately 280,000 ha in size, is located in the Indonesian province 

of Central Kalimantan on the island of Borneo (Figure IV-1). The land cover is 

comprised by peat swamp forests, riparian forests, forest areas heavily degraded by fire 

(shrubs/regrowing forest) and seasonally flooded wetlands. The forests have been 

drained and deforested (mainly for agricultural development and plantations (Hooijer et 
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al. 2010) and recurrent fire events destroyed approximately 50% of the forest cover in 

the past decade. The belowground peat deposits store huge amounts of carbon (up to ten 

times more biomass per ha than the forests growing on top of them) as they were 

formed from plant debris under waterlogged conditions over thousands of years 

(MacKinnon et al. 1996; Posa et al. 2011). To protect these huge carbon stores, an intact 

forest cover is of high relevance, as the probability of recurrent fires increases 

dramatically in degraded forests (Langner et al. 2009).  

 

 

Figure IV-1: Multi-sensor TerraSAR-X ScanSAR VV (30/08/2008, RB) and ALOS PALSAR HV 

(26/08/2008, G) image showing the study area with a dynamic range of approximately 20 dB (TerraSAR-

X [-24.779;-4.548], ALOS PALSAR [-29.038;-10.226]) . The location of the forest inventory plots and of 

the LiDAR transects are depicted in red and yellow, respectively. Photos show examples of an intact 

forest and a degraded, regrowing area (© F. Siegert, S. Englhart). The outline map indicates the study 

site in Central Kalimantan (CK) on Borneo, Indonesia. 
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3.2. Aboveground biomass data 

The AGB reference data were generated by relating forest inventory AGB data to 

LiDAR measurements, taking advantage of LiDAR's ability to create accurate biomass 

predictions for an area within the SAR images. This upscaling from point data (field 

inventory) to transects (LiDAR) was chosen to provide a more powerful basis for AGB 

model calibration and validation from SAR backscatter data. As peat swamp forests are 

very difficult to access on the ground, this approach is the only possibility for getting 

comprehensive AGB data.  

Altogether, 140 forest plots were surveyed in 2007 and 2008 with the angle count 

method (Bitterlich 1951). The AGB was calculated for 1 ha using allometric equations 

(Chave et al. 2005) (some of them are located within the study area and are shown in 

Figure IV-1). The ground based AGB values were related to LiDAR transects acquired 

in 2007 in order to estimate biomass reference data using a previously established 

regression model. The model depends on the 50th percentile of the LiDAR point cloud 

within 1 ha and was calibrated with AGB field inventory values ranging from 1.5 t/ha to 

567.8 t/ha. Altogether, 3,790 AGB reference data were provided within the study area 

ranging from 1.5 t/ha to 369 t/ha. The independent validation resulted in a coefficient of 

determination of r²=0.32 and a root mean square error (RMSE) of RMSE=94.77 t/ha. 

The details of this method are described by Kronseder et al. (2012) and Englhart et al. 

(2011). Although the independent validation is weak, this AGB estimation model 

performed best over the whole biomass range, even showing variations in the low 

biomass range. 

3.3. SAR data 

TerraSAR-X ScanSAR VV and ALOS PALSAR fine beam HV polarized images were 

analyzed in combination for AGB retrieval. Three scenes from each sensor, acquired 

during the dry season (May to October) in 2008, were selected to minimize any 

influence of varying rainfall and soil moisture. Table IV-1 lists the properties of all 

investigated SAR scenes in detail. The preprocessing of the SAR images included the 

standard radiometric calibration, speckle filtering and co-registration and is described in 

detail by Englhart et al. (2011).  
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Table IV-1:Main characteristics of analyzed SAR imagery.  

Sensor date 

(dd/mm/yyyy) 
polarization pixel spacing 

 [m] 
incidence 

angle 

TerraSAR-X 14/06/2008 VV   8.25 32.1° 

ScanSAR 08/08/2008 VV   8.25 29.9° 

 30/08/2008 VV   8.25 32.1° 

ALOS PALSAR 26/05/2008 HV 12.50 38.8° 

fine resolution 26/08/2008 HV 12.50 38.8° 

 11/10/2008 HV 12.50 38.8° 

 

3.4. Aboveground biomass estimation 

Three different methods were analyzed and compared for their ability to retrieve AGB 

from multi-frequency, multi-temporal TerraSAR-X and ALOS PALSAR imagery: 

MLR, ANN and SVR models. Spatially averaged backscatter values over 1 ha plots 

were used and related to the LiDAR derived AGB estimates. To produce the multi-

temporal SAR images, both the TerraSAR-X and ALOS PALSAR backscatter 

coefficients were temporally averaged. The multi-temporal backscatter signals of the 

dry season are very stable and show little influence by climatic conditions (Englhart et 

al. 2011).  

The AGB reference dataset (n=3,790) was randomly split up to be used for training 

(90% of all data) and validating (10%) the AGB models. To allow a comparison of 

methods, the same training and validation data were used for each method.  

The regression modeling was conducted on the basis of a least-square MLR (Englhart et 

al. 2011). Based on our previous study (Englhart et al. 2011), exponential backscatter 

values of TerraSAR-X and ALOS PALSAR imagery were used to test their sensitivity 

to AGB in a MLR model. The backscatter signals were entered in a single step and r² 

was calculated.  

ANN models have the ability to learn patterns or relationships from training data and to 

generalize or extract results. An ANN consists of an input layer with multiple inputs 

(e.g. radar signals), a single or multiple hidden layer(s) with a certain number of 

processing nodes and a single output layer with the predicted variable(s). The inputs are 

usually linked to the neurons in the hidden layer, which are in turn fully connected to 
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the output node. The hidden layer consists of an optimal number of neurons, of which 

each multiplies the input signal I with a specific weight (Rumelhart et al. 1986): 

(12) 



n

i

ii bSwI
1

 

where I is the total input signal to a node, n is number of input signals Si, wi is the 

weight of an input signal and b is the bias associated with the node. The weights and 

bias term for each node are unique to that node and optimized by the network activation 

function. These optimal weights and biases minimize the error between the desired and 

actual output for all training patterns. A detailed description of ANN models is beyond 

the scope of this paper and are provided by Del Frate et al. (2004) and Mas et al. (2008). 

In this study a feed-forward multi-layer perceptron ANN was analyzed, which means 

that all input signals go directly through one hidden layer to the output node. The multi-

temporal spatially averaged TerraSAR-X and ALOS PALSAR backscatter values were 

used as input signals to estimate AGB. For training the ANN, 79.3% of the training 

dataset were used to train the network and the remaining 20.7% were used for testing 

the ANN which avoids over-fitting. The subsequent independent validation was 

executed with the validation dataset.  

SVM is also a supervised nonparametric statistical learning technique and is considered 

as a promising alternative to ANN models (Mountrakis et al. 2011; Smola et al. 2004). 

SVR, a special form of SVM, is a kernel method for regression and function 

approximation and has the ability to model complex, non-linear dependencies in high 

dimensional feature space (Smola et al. 2004).  

The SVR function )(xf  is defined as (Chang et al. 2001):  

(13) bxxkxf i
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where i and 
*

i  are Lagrange multipliers (which have to satisfy positivity constraints), 

);( xxk i is a kernel function with the training vector xi, and b is the bias term in the 

regression which is calculated during the SVR training (please refer to Smola et al. 

(2004) and Chang et al. (2001) for a detailed description). 
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The regression implementation of imageSVM 2.0 was used for estimating AGB with 

the SVR approach (Rabe et al. 2009a). The SVR was trained using a radial basis 

function kernel: 

(14) )exp();(
2

jiji xxgxxk   

where g is the kernel function parameter.  

The regularization parameter C, which is also determined during the SVR modeling 

(Smola et al. 2004), specifies the tradeoff between flatness of f(x) and the amount up to 

which deviations larger than ε (the parameter of Vapnik's ε-insensitive loss function) are 

tolerated (Chang et al. 2001). Although ε is in the same domain as the target, no explicit 

relationship between the chosen ε-loss and performance of the SVR exists (Rabe et al. 

2009b).  

Optimal values for the kernel parameter g and regularization parameter C were selected 

via a 2-dimensional grid search inside an interval of [0.1; 819.2] using a multiplier 

value of 2 and an optimization criteria of cross-validated mean absolute error (MAE). 

The loss function parameter was fixed to ε=0 and could not be changed. Hence, every 

training vector became a support vector but over-fitting was prevented by the grid 

search (Rabe et al. 2009b).  

3.5. Independent validation of AGB models 

For the subsequent independent validation, previously 10% (n=396) of the AGB 

reference data were randomly chosen to compare the performance of the different AGB 

estimation methods. The accuracy statistics included the RMSE, MAE, the mean error 

(ME) and the relative errors to the mean value of AGB. The value of the RMSE is 

affected by large errors which give disproportionately large weights because of the 

squaring process. Therefore, the MAE may be a more relevant criterion, as the true cost 

of the error is roughly proportional to the size of the error. The MAE is usually similar 

in magnitude to, but slightly smaller than the RMSE. In cases where outliers may 

seriously overstate the error, the MAE is a better summary measure of error than the 

RMSE (Chen et al. 2009). The ME is a signed measure of error which indicates whether 

the predicted AGB is biased. The predicted AGB is underestimated with a negative ME 

and overestimated with a positive ME. Additionally, the coefficient of determination (r²) 
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was calculated as the square of Pearson's correlation coefficient (r) for a linear 

transformation of the model.  

A supplementary independent validation was conducted by estimating AGB using the 

different approaches for a LiDAR transect not included in the AGB data generated 

previously. Thereby it is possible to analyze the modeling performances not only for 

point based, but also for wall-to-wall AGB estimations.  

4. Results 

The most accurate MLR model, in terms of r², for predicting AGB from SAR data 

resulted in an equation of the form:  

(15) )exp(*10*626,60)exp(*189,106 030

PSRTSXy    

where σ
0
 is the multi-temporal backscattering coefficient of TerraSAR-X (TSX) or 

ALOS PALSAR (PSR). R² was calculated for no-intercept models (Kvalseth 1985) and 

is r²=0.789. A detailed evaluation of the relationship between TerraSAR-X, ALOS 

PALSAR and AGB and its saturation is given in Englhart et al. (2011).  

AGB retrieval with ANN modeling resulted in a network with one hidden layer 

containing five processing nodes which have a hyperbolic tangent activation function of 

the form: 

(16) 
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where c is a threshold value. That means that the multi-temporal TerraSAR-X and 

ALOS PALSAR backscatter signals from the input layer were transferred to the 

processing nodes and transformed to the range [-1;1] by the activation function. The 

activation form of the output layer was identity which means that the incoming signal 

was processed unchanged. The architecture of the retrieved ANN is depicted in Figure 

IV-2. 

The optimal SVR for predicting AGB has a kernel function parameter of g=1.6 and a 

regularization parameter of C=51.2. The bias term was estimated to be b=-63.61. As 
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ε=0, every training vector became a support vector, so the SVR had 3,571 support 

vectors.  

 

 

 

Figure IV-2: Schematic architecture of the retrieved multilayer perceptron ANN with one hidden layer 

containing five nodes (N1-N5). AGB was predicted using multi-temporal TerraSAR-X ScanSAR VV and 

ALOS PALSAR HV imagery. 

 

The results of the independent validation of the different AGB models are depicted in 

Table IV-2. The SVR model featured the highest r² (r²=0.68) and the lowest error 

measures (RMSErel =41.0%, MAErel =28.5% and MErel =1.0%). No AGB value predicted 

by the SVR approach was higher than 262 t/ha which indicates a saturation effect. 

Altogether, the independent validation of the ANN is less accurate than of the SVR, but 

more precise in terms of error measures than of the MLR model. The MLR model 

resulted in the lowest r² (r²=0.47) and the highest errors (RMSErel =54.5%, 

MAErel =42.6% and MErel =-6.0%).  

As the algebraic sign of the ME indicates the bias, the MLR modeling underestimates 

the real AGB, while it is slightly overestimated by the ANN and SVR approach.  
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Table IV-2: Results of the independent validation using identical 10% of the AGB reference dataset 

(n=396) for three different approaches to estimate AGB from multi-temporal TerraSAR-X and ALOS 

PALSAR data. The coefficient of determination (r²), root mean square error (RMSE), mean absolute error 

(MAE) and mean error (ME) are depicted.  

estimation  r² RMSE RMSErel MAE MAErel ME MErel 

approach  [t/ha] [%] [t/ha] [%] [t/ha] [%] 

MLR 0.47 79.84 54.5 62.42 42.6 -8.81 -6.0 

ANN 0.63 64.84 44.3 52.07 35.6  4.85  3.3 

SVR 0.68 60.06 41.0 41.66 28.5  1.52  1.0 

 

 

Figure IV-3 depicts scatterplots of observed (LiDAR derived) versus predicted AGB as 

well as the respective histograms of the residuals. The scatterplots show a high 

scattering over the whole biomass range for the MLR and SVR model while there is less 

scattering for the ANN approach. A remarkable scattering occurs between 0 t/ha to 

20 t/ha for all three approaches which may result from ground signal interference or soil 

moisture, which is of great importance in peat swamp areas. The distribution of the 

residuals' frequencies depicts a high peak near zero in the SVR model, indicating a very 

accurate model in terms of validation. The distribution of the residuals of the MLR 

model is broader, showing a peak in the negative spectrum, but altogether there are 

more values in the positive interval, indicating an underestimation of AGB which is also 

denoted by the negative ME. The residuals of the ANN are distributed more 

consistently, featuring more values in the negative spectrum which indicates an 

overestimation of AGB.  
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Figure IV-3: Results of the independent validation for estimating AGB with MLR (left), ANN (middle) and 

SVR (right) models (n=396). Scatterplots showing observed vs. predicted AGB values are depicted in the 

upper panels and histograms featuring the frequency of the residuals in the lower panels. 

 

Figure IV-4 displays the spatial application of the different AGB estimation methods to 

the entire study area and the histograms of the respective AGB values up to a maximum 

of 600 t/ha. AGB values higher than 600 t/ha are assumed to overestimate the real 

biomass range in this area and were therefore excluded. Especially the MLR model 

predicts AGB values which are much higher than 600 t/ha (maximum: 3.21 Mt/ha). 

These values are beyond the saturation threshold of 600 t/ha which was evaluated in 

Englhart et al. (2011).  
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Figure IV-4: AGB maps showing the spatial application of the different AGB modeling approaches to 1 

ha plots in comparison to a Landsat scene of 05/08/2007 (RGB: bands 543) indicating the study area. 

The histograms depict the frequencies of predicted AGB values within the biomass range lower than 600 

t/ha. 

 

The AGB map modeled by the ANN seems more homogenous and there are only very 

few overestimations up to 650 t/ha, but there are several underestimations up to -

125 t/ha. AGB values lower than 0 t/ha are unrealistic and were assumed to be equal to 

0 t/ha. The spatial application of the SVR model barely depicts any variation in the low 

(0 - 50 t/ha) or in the high biomass range (150 - 600 t/ha), whereby the maximum 

estimated AGB value of 262 t/ha is certainly a constraint, clearly indicating a saturation 

of the SVR. The spatial distribution of different degradation levels or forest types are 

hardly visible. In addition to the independent validation, AGB was estimated by the 

different approaches for an independent LiDAR transect (Table IV-3). Figure IV-5 

shows the different AGB estimation in comparison to the LiDAR derived values along a 
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part of the transect. The transect is located over a burnt and degraded area and the 

biomass is therefore lower than in a pristine forest (only up to 170 t/ha). The area of the 

transect partly burnt in the years 2004, 2006 and 2009. The end of the transect (from 

kilometer 2.6 on) burnt in 2009 and the biomass is therefore very low. 

 

Table IV-3: Validation results of a LiDAR transect which was not used for model calibration for 

estimating AGB from multi-temporal TerraSAR-X and ALOS PALSAR data (n=71). The coefficient of 

determination (r²), root mean square error (RMSE), mean absolute error (MAE) and mean error (ME) 

are depicted.  

estimation  r² RMSE RMSErel MAE MAErel ME MErel 

approach  [t/ha] [%] [t/ha] [%] [t/ha] [%] 

MLR 0.87 28.34 48.5 20.31 52.6 -6.30 -10.8 

ANN 0.93 19.58 33.5 13.53 35.1   3.13    5.4 

SVR 0.91 32.18 55.1 17.14 44.4 13.31   22.8 

 

 

 

Figure IV-5: AGB comparison of different estimation approaches of a LiDAR transect which was not 

used for calibrating the models. 

 

The validation errors indicate that the ANN outperforms the MLR and SVR model. 

Overall, one can state that the independent validation results are very good.  

In the high biomass range, AGB is clearly overestimated by the SVR approach and 

underestimated by the MLR model (Figure IV-5). This is also indicated by a positive 

ME of the SVR and by a negative ME of the MLR model (Table IV-3). 
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AGB predicted by the ANN is the best approximation, as under- and overestimation is 

mostly balanced (Figure IV-5). The positive ME specifies a minor overall 

overestimation.  

The low biomass range is clearly overestimated by the MLR and slightly overestimated 

by the SVR (Figure IV-5). Values modeled by the ANN are, again, the best 

approximation in the low biomass spectrum.  

5. Discussion 

This study compares the ability of MLR, ANN and SVR for modeling AGB from multi-

temporal TerraSAR-X and ALOS PALSAR data.  

The upscaling from field based AGB values using LiDAR measurements provided 

numerous AGB reference data. This approach presents not only a powerful basis for the 

modeling process but also leads to error propagation. An opportunity to reduce the 

source of error would be to collect enough in-situ AGB data within the study area 

distributed evenly over the whole biomass range which is very expensive, time-

consuming and difficult to implement in remote tropical forests.  

 The independent validation results of the MLR model featured the lowest r² and the 

highest errors. The ME indicates that the real biomass is underestimated, while the 

spatial application to the entire study area partly results in extreme overestimations. 

When using MLR models to estimate AGB from SAR data, a saturation level is often 

specified. The calculation of the saturation threshold was conducted on the basis of the 

radiometric accuracy and a specific accuracy requirement. The saturation of the 

presented MLR model was determined at 600 t/ha for an accuracy requirement of 

100 t/ha and at 300 t/ha for an accuracy requirement of 50 t/ha (Englhart et al. 2011). 

AGB values within an accuracy requirement of 50 t/ha are supposed to be accurate 

enough for the needs of REDD+, while AGB predictions within the 100 t/ha interval 

show the spatial distribution in the high biomass spectrum (Englhart et al. 2011).  

The independent validation of the SVR model concludes that this is a superior method 

for calculating AGB featuring the lowest errors and highest r². In contrast, the spatial 

application resulted in mostly low (0 - 50 t/ha) and medium (150 - 250 t/ha) biomass 

values were estimated. The range in-between (50 - 150 t/ha) and the spatial variation is 

almost not represented. Potentially, this biomass range is not sufficiently incorporated 

within the training data for the needs of SVR models. The maximum estimated biomass 
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value (262 t/ha) denotes a saturation effect, which means that AGB estimations higher 

than this value cannot be differentiated. This saturation also affects the error measures; 

the error values are lower due to the low maximum AGB value. However, in total there 

is a larger difference between predicted and observed values.  

The ANN method was the most appropriate for the estimation of AGB from multi-

temporal SAR data. The different ranges of low and high biomass are clearly visible and 

there is no effect of saturation (predicted AGB values range from -124 t/ha to 647 t/ha). 

The estimations below zero clearly underestimate the real biomass, thus they are 

considered to be equal to 0 t/ha. The underestimation occurs in regions which are 

flooded or very wet. Despite the possible biomass range is supposed up to 600 t/ha, the 

estimation of 647 t/ha is considered to be feasible. The comparison with multispectral 

optical imagery (Landsat, RapidEye) and video material acquired during flight surveys 

suggests that the spatial distribution of AGB represents a good estimate of the real AGB 

(Figure IV-5). Biomass values of the entire area are mostly in the low biomass range 

(up to 50 t/ha) in deforested or burnt areas and in the high biomass range (150 - 600 

t/ha) in previously logged and pristine forested areas. The transition between the low 

and high biomass range (50 - 150 t/ha, predominantly forest regrowth after fire impact) 

makes up only a small fraction of the total. A limitation of the ANN model is that it 

does not reveal the mathematical relationship between the SAR signals and AGB. 

A comparison of methods is very valuable, as most studies assess only one method, 

making it difficult to compare various approaches using different data in diverse 

ecological environments (Lu 2006). Some previous studies already compared different 

methods to retrieve ecological parameters from remotely sensed data. ANN models 

were superior to regression models (Foody et al. 2003; Wijaya et al. 2010; Xie et al. 

2009) or achieved similar results (Muukkonen et al. 2005). Other studies stated that 

SVR outperformed ANN (Camps-Valls et al. 2006) or also obtained similar results with 

a regression model (Monnet et al. 2011).  

These findings are comparable to the results of this study, stating that the ANN 

outperformed the MLR model. In contrast to Camps-Valls et al. (2006), we found out 

that ANN performed better for large scale AGB estimations than SVR, even if the 

independent validation of the SVR model was more accurate. Unlike Monnet et al. 

(2011), this study reveals a better performance of the SVR compared to the MLR 

model. 
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Despite the constraints, the ANN approach is considered a superior method to retrieve 

AGB from multi-temporal TerraSAR-X and ALOS PALSAR data in tropical peat 

swamp forests in Indonesia and to be accurate enough to meet the requirements of 

REDD+ projects. An area-wide AGB estimation in that area is very important, as 

tropical peat swamp forests are difficult to assess on the ground and contain huge 

carbon stores which must be preserved. In general, estimating AGB with the 'direct' 

instead of the 'indirect' remote sensing approach provides information on the spatial 

distribution of the biomass and its variation. This information is very important, 

especially for the needs of REDD+, as AGB can vary extremely within one land cover 

class, making an indirect AGB estimation using single biomass values per calls rather 

vague. 
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1. Introduction 

Tropical forests store huge amounts of carbon, the majority (78%) in aboveground 

trunks, branches, and leaves as well as in belowground roots (22%) (Saatchi et al. 

2011a). In addition, forested tropical peatlands accumulate carbon in belowground peat 

deposits which are sustained by intact forests. In Indonesia, approximately 55-58 Gt of 

carbon is stored belowground in peatlands and 18.6 Gt aboveground in forests (Baccini 

et al. 2012; Jaenicke et al. 2008; Koh et al. 2009). Peatlands are often drained, 

deforested or burned for industrial agricultural development such as the establishment 

of oil palm and pulp wood plantations, which causes massive carbon emissions that are 

released to the atmosphere (Hooijer et al. 2010).  

Emissions from deforestation and forest degradation in Southeast Asia, including 

tropical peatland burning and oxidation amounted to 23% of total anthropogenic CO2 

emissions worldwide between 1997 and 2006 (van der Werf et al. 2009). Hooijer et al. 

(2012) estimated the carbon loss from converting peat swamp forests into agriculture to 

be on average 100 tCO2 per hectare per year annualized over 25 years. Through these 

processes, Indonesia became one of the largest producers of CO2 worldwide. 

Considering these high emission rates, projects aiming at forest conservation offer good 

prospects for climate change mitigation in developing countries. One example is 

REDD+ which aims at reducing emissions from deforestation and forest degradation, 
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conservation of forest carbon stocks, sustainable management of forest land and 

enhancement of forest carbon stocks (Campbell 2009). REDD+ was approved at the 

United Nations Climate Change Conferences in 2009 and 2010, the year 2011 was the 

starting point for the development of a worldwide forest monitoring system. The system 

considers current technical capabilities to monitor greenhouse gas emissions and 

removals from deforestation, reforestation and degradation activities in forest land 

remaining forest land (GOFC-GOLD 2011). REDD+ intends for conditional payments 

to countries reducing emissions, and conditional payments from national levels to forest 

stewards reducing emissions (Campbell 2009). Implementation of REDD+ policies 

depends on accurate and precise estimates of emissions avoided at national scale. A 

nationwide monitoring is needed to prevent leakage within a country, where reduced 

deforestation or forest degradation could occur in one part of the country but increase in 

another through displaced activities (DeFries et al. 2007).  

In May 2010, a contract between the Indonesian and Norwegian government was signed 

providing 1 billion USD for a cooperation on REDD+. A major component is a 

moratorium on new agricultural and logging licenses which aims to support Indonesia's 

goal of reducing national emissions by 26% until 2020 and to prepare Indonesia to draw 

payments from industrial nations via the REDD+ scheme (Sloan et al. 2012).  

A crucial element for REDD+ is the estimation of current carbon emissions. The 

Intergovernmental Panel on Climate Change (IPCC) provides Guidelines for National 

Greenhouse Gas Inventories which refer to two basic inputs for calculating greenhouse 

gas inventories: activity data, which specifies the extent of deforestation, reforestation 

and forest degradation/enhancements in unit area, and emission factors, which describe 

emissions/removals of greenhouse gases per unit area (IPCC 2006). Uncertainties of 

both activity data and emission factors are an important element of greenhouse gas 

inventories to identify the contributions to the overall accuracy (Grassi et al. 2008). The 

guidelines include three different tiers which represent the level of methodological 

complexity: Tier 1 uses IPCC default values to estimate emissions, Tier 2 requires 

country specific carbon data, and Tier 3 is based on a detailed national inventory.  

The most accurate way of aboveground biomass (AGB) and carbon stock retrieval using 

Tier 3 are forest inventories which use field based measurements (e.g. diameter at breast 

height (DBH), tree height, tree species specific wood density) to extrapolate the 

biomass on the basis of allometric equations (Brown 1997; Chave et al. 2005). The 
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carbon stock is generally derived from AGB estimates by assuming a carbon content of 

dry biomass of 50% (Goetz et al. 2009). Albeit this method provides very precise AGB 

values, it is time consuming, laborious, difficult to implement in remote areas and most 

importantly lacks information on the spatial variability (Lu 2006). Monitoring AGB by 

remote sensing is less accurate but the major advantage is the ability to generate 

spatially explicit and potentially 'wall-to-wall' carbon stock estimations in large and 

remote areas. Most approaches are based on an assessment of historic, current and 

future deforestation rates based on detectable changes in forest area using satellite or 

airborne data (Boettcher et al. 2009). The accuracy of AGB estimations depends on the 

size of the area and the quality of the remote sensing data. Moderate to coarse resolution 

data (e.g. MODIS) is normally used for global carbon stock estimation (Baccini et al. 

2012) and medium resolution data (e.g. ALOS PALSAR) is usually selected for AGB 

estimations at national or regional scales (Englhart et al. 2012; Ryan et al. 2012). 

Monitoring systems that allow for credible measurements, reporting and verification 

(MRV) of forest carbon stocks and their changes in REDD+ project sites are among the 

most crucial elements for a successful implementation of REDD+.  

Different approaches have been developed to assess AGB by remote sensing using 

additional forest inventory AGB data. The indirect approach is a simple way to retrieve 

a carbon stock map by linking a single AGB value (or a defined range, ideally derived 

from field inventories) determined for a specific vegetation type to a remote sensing 

based land cover map (Goetz et al. 2009). A major disadvantage of the indirect 

approach is the lack of information on the spatial variance of AGB within one land 

cover class. 

A more sophisticated technique is the direct approach at which radiometric satellite 

measurements are calibrated to field based AGB measurements to derive a wall-to-wall 

AGB estimation map also indicating the spatial distribution of the carbon stock (Goetz 

et al. 2009). Examples using LiDAR, optical and SAR data for a direct estimation of 

AGB are described in the following paragraph.  

LiDAR has the potential to assess the three-dimensional vertical structure of the 

vegetation in great detail and its use has increased for retrieving AGB (Koch 2010). 

Airborne sensors provide highly accurate AGB estimates in tropical forests (Asner et al. 

2012; Kronseder et al. 2012; Treuhaft et al. 2010), but the associated large data volume 

and high costs usually limit a repetitive application. As an alternative, the first 
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spaceborne LiDAR system, the GeoScience Laser Altimeter System (GLAS) onboard 

NASA's Ice, Cloud and land Elevation Satellite (ICESat), has also proven to be valuable 

for AGB assessment in tropical forests (Baccini et al. 2012; Ballhorn et al. 2011; 

Helmer et al. 2009). However, with a footprint of about 65 m, the ICESat/GLAS sensor 

does not allow spatially continuous AGB maps.  

Optical satellite images have been widely used to derive AGB in tropical regions using 

vegetation indices (Li et al. 2010; Zhang et al. 2009), spectral signatures (Avitabile et 

al. 2012; Baccini et al. 2008; Li et al. 2010; Tangki et al. 2008), image texture (Lu 

2005; Nichol et al. 2011; Sarker et al. 2011; Wijaya et al. 2010), and spectral mixture 

analysis (SMA) (Soenen et al. 2010). Major constraints of using optical data for AGB 

estimation are the saturation of the signal in the high biomass ranges, the dependence on 

daylight, and the obstruction by clouds, which is a crucial point in tropical regions. 

Active SAR systems can operate day and night while penetrating through haze, smoke, 

and clouds. The correlation of backscatter signal and biomass is mainly dependent on 

wavelength, polarization, and incidence angle. Longer wavelengths have been proven to 

be more useful for AGB estimation because of an increasing backscatter range with 

changing biomass (Lu 2006; Luckman et al. 1997) and a higher saturation level in 

regard to the biomass range (Englhart et al. 2011; Saatchi et al. 2011b).  

In order to compare the performance of SAR and optical satellite data in their ability to 

directly estimate AGB, a case study was established in a tropical peat swamp forest area 

in Central Kalimantan, Indonesia. The potential of different approaches and data 

sources are demonstrated in the context of REDD+ requirements. The objectives of this 

case study are therefore (i) an evaluation of either different SAR frequencies and 

polarizations or spectral mixture analysis of multispectral RapidEye data to estimate 

AGB directly and (ii) a comparison of the direct and indirect AGB estimation method 

using the example of RapidEye data. 

2. Methodology 

2.1. Study area 

The study area is located east of Palangka Raya, the capital of the province Central 

Kalimantan, on the island of Borneo, Indonesia (Figure V-1).  
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Figure V-1: (A) Overview map of the study area in Central Kalimantan on Borneo. (B) Landsat ETM+ 

satellite image from 10/02/2010 (bands R:5, G:4, B:3) showing the study area. Field inventory locations 

are depicted in red. (C) shows an aerial photo of an intact forest and (D) depicts a degraded regrowing 

area (© F .Siegert, S. Englhart); typically locations are indicated by arrows.  

 

Peat swamp forest is the predominant vegetation type besides riparian forest, forest 

areas heavily degraded by fire (shrubs and regrowing forest) and seasonally flooded 

wetlands. The peatlands have been drained and deforested, mainly for agricultural 

development and plantations (Hooijer et al. 2010) and recurrent fire events destroyed 

approximately 50% of the forest cover in the past decade. The most severe impact was 

caused by the Mega Rice Project (MRP), conceptualized by the Indonesian government 

in 1995 in order to convert an area of one million hectare for rice cultivation through the 

construction of about 4,000 km of drainage and irrigation channels in peatlands (Boehm 

et al. 2004; Page et al. 2002). 
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2.2. Data 

2.2.1. Field inventory data 

Field inventory data was collected in the years 2008, 2010 and 2011. Forest inventory 

plots with different plot sizes were established in forested and regrowing areas (Figure 

V-1B depicts the plot locations).  

For regrowing forests, a 20 m x 50 m rectangular plot was chosen and all trees within 

this area were recorded. For forests, three circular nested plots with radii of 4 m, 14 m, 

and 20 m were sampled. In each nest, trees of a certain DBH were measured depending 

on degradation intensity: 2 cm to 10 cm or 5 cm to 20 cm (within the 4 m radius), 10 cm 

to 20 cm or 20 cm to 50 cm (within 14 m radium), and greater than 20 cm or 50 cm 

(within 20 m radius).  

Within the regrowing and forested plots, the following parameters were recorded: DBH, 

tree height, and species of all trees in order to estimate their wood density. Tree specific 

wood densities were derived from databases provided by Chudnoff (1984), World 

Agroforestry Centre (2011), and IPCC (2006). If the tree species could not be identified, 

an average specific wood density for Asian tropical trees of 0.57 Mg m
−3

, was applied 

(Brown 1997).  

AGB was calculated using a combination of allometric models from Hughes et al. 

(1999) for saplings (if DBH < 5 cm and height ≤ 1.3 m) or trees (if DBH < 5 cm and 

height > 1.3 m) and Chave et al. (2005) for moist tropical forest stands including DBH 

and tree height (if DBH ≥ 5 cm and height > 1.3 m).  

Altogether 107 plots were sampled, 48 plots in regrowing vegetation ranging from 

0.0 t/ha to 19.6 t/ha and 59 plots in forested areas ranging from 8.7 t/ha to 458.4 t/ha.  

2.2.2. SAR data 

X-, C- and L-band data in HH and HV polarizations were investigated for their ability 

to estimate AGB. Four TerraSAR-X ScanSAR HH polarized images with a pixel 

spacing of 8.25 m and an incidence angle of 34.2° (acquired on: 11/07/2011, 

22/07/2011, 13/08/2011, and 24/08/2011) and three RADARSAT-2 standard mode HH 

and HV polarized images with a pixel spacing of 8.00 m and an incidence angle of 

36.6° (22/07/2011, 15/08/2011, and 08/09/2011) were analyzed. In addition, six ALOS 

PALSAR fine beam HH and HV polarized images with a pixel spacing of 12.5 m and 

an incidence angle of 38.8° were evaluated, as two different paths were necessary to 
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cover the whole study area (path 421: 30/06/2010, 15/08/2010, 30/09/2010; path 422; 

17/07/2010, 01/09/2010, 17/10/2010). It is important to note that all images were 

acquired during the dry season (May to October) to minimize any impact of rainfall and 

soil moisture. 

The preprocessing of the SAR images included standard radiometric calibration for 

sigma naught (Englhart et al. 2011; Fritz 2009; Luscombe 2009; Richter 1997; Shimada 

et al. 2009), frost speckle filtering with a moving window of 7x7 pixel, and co-

registration.  

Multi-temporal backscatter coefficients were used because averaging backscatter in 

time reduces speckle without losing spatial resolution. And in a previous study we 

found that multi-temporal backscatter values were superior to mono-temporal values for 

estimating AGB (Asner et al. 2009; GOFC-GOLD 2011; Souza et al. 2005).  

2.2.3. Multispectral RapidEye imagery 

A RapidEye scene was used to analyze the potential of estimating AGB using spectral 

mixture analyses (SMA). RapidEye data has a pixel resolution of 5 m and contains five 

spectral bands. An image recorded on 21/06/2010 was preprocessed including an 

geometric and atmospheric correction (Adams et al. 1986; GOFC-GOLD 2011). SMA 

have a high potential to derive forest parameters from remote sensing data (Mundt et al. 

2007; Williams et al. 2002). Forests degraded by logging or fire are characterized by 

mixed pixels due to the reflectance from green vegetation (GV), non-photosynthetic 

vegetation (NPV), soil, shade etc., within the area of on image element (pixel). The 

advantage of SMA is that sub-pixel components can be detected, whereby continuous 

values of sub-pixel abundances of components are derived. A special type of SMA, the 

Mixture Tuned Matched Filtering (MTMF) was applied. A detailed description of SMA 

and MTMF is provided by Adams et al. (1986), Williams et al. (2002), and Mundt et al. 

(2007). The result of the MTMF is a grey-scale matched filtering (MF) fraction image 

representing the estimated relative degree to which each pixel matches the reference 

spectrum (Williams et al. 2002). The matched fractions derived from the RapidEye 

image were scaled to values between 0 and 1, where 1 indicated a perfect match of the 

pixel spectrum to the reference spectrum. 
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2.3. AGB estimation 

2.3.1. Direct AGB estimation using SAR and multispectral data 

The relationship between SAR backscatter or RapidEye matched fractions and AGB 

was analyzed using spatially averaged signals over a grid with a cell size of 

40 m x 40 m. This size was chosen as it is similar to the size of the biggest nested field 

plot (radius 20 m). Due to the saturation in high biomass ranges, only field data smaller 

than 300 t/ha were used for the regression modeling. The AGB field data was randomly 

split up to be used for training (85% of all data) and validating (15%) the AGB models. 

For the SAR images, all 98 AGB reference samples were applicable, while for 

RapidEye only 53 AGB samples were available due to clouds and area coverage. In a 

first step, the relationship of each single input signal and AGB was analyzed. Based on 

the resultant dependencies, a combined regression model was tested. Therefore, a least-

square multivariate linear regression was conducted using exponential values of either 

SAR backscattering coefficients or RapidEye derived matched fractions of GV, soil and 

NPV.  

2.3.2. Comparison direct vs. indirect AGB estimation using multispectral imagery 

A comparison of direct and indirect AGB estimation was conducted on the basis of 

RapidEye. The direct AGB estimation is based on the SMA fractions and the indirect 

AGB is determined by a land cover classification linking a single AGB value derived 

from field inventory data to each land cover class. The RapidEye land cover 

classification is based on the scene from 21/06/2010 and a object based classification 

approach was used. A hierarchical rule set defining the different classes was applied 

using spectral, spatial, geometric, thematic or topologic criteria.  

In total, eleven land cover classes were defined whereby only six are relevant for carbon 

stock comparison (primary and secondary peat swamp forest, riparian 

forest/agroforestry, bush/shrubs/regrowth, grassland/fern/agriculture, recently 

burned/sparse regrowth). For a quantitative accuracy assessment of the land cover 

classification, 75 sample plots, mapped according to the LCCS (land cover 

classification system) standard and recorded with differential GPS, were evaluated.  
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3. Results 

3.1. Direct AGB estimation using SAR and multispectral data 

The relationship between SAR backscattering coefficients of X-, C- and L-band data or 

RapidEye spectral unmixed fractions was investigated separately. The relationships 

between SAR backscatter signals and RapidEye fractions are depicted in scatter plots in 

Figure V-2. A correlation between SAR backscatter and AGB was only found with 

TerraSAR-X HH and ALOS PALSAR HV polarized data (Figure V-2). Two of the field 

inventory plots were located in a freshly burned area and are visible in the ALOS 

PALSAR HV polarized scatter plot (Figure V-2, ALOS PALSAR HV circle). Trunks of 

dead trees scattered on the ground cause double bounce backscatter and thus high 

backscatter signals. RADARSAT-2 HH and HV and ALOS PALSAR HH polarized 

backscatter showed no correlation to AGB. All investigated RapidEye fractions show a 

correlation to AGB. Different curve progressions were examined, but the exponential 

one yielded in all cases the best results. The exponential dependency is also linked to 

saturation in higher biomass ranges as the slope flattens in higher biomass ranges. The 

saturation effect is visible in the scatter plots depicted in Figure V-2, showing similar 

backscatter or fraction values from approximately 100 t/ha.  

On the basis of the exponential dependencies, a multivariate linear regression using 

exponential values from either the SAR signals or the RapidEye matched fractions was 

also analyzed. Table V-1 depicts the regression and independent validation results of all 

investigated relationships. The multivariate regression using either SAR backscatter 

coefficients or RapidEye matched fractions turned out to be more accurate for AGB 

estimation than using only a single variable (Table V-1). A regression model which 

combed SAR backscatter and RapidEye fractions was also evaluated but the achieved 

accuracy was not higher than the multivariate RapidEye regression model and was 

therefore not further analyzed. The independent validation demonstrates that AGB 

derived from RapidEye SMA fractions is more accurate, resulting in higher coefficients 

of determination (r²) and lower root mean square errors (RMSE). The multivariate SAR 

AGB model was more accurate than the single variable TerraSAR-X or ALOS 

PALSAR model in terms of the independent validation. The multivariate RapidEye 

model achieved a higher r² during the regression modeling, but the results of the 

independent validation resulted in slightly lower r² and slightly higher RMSE than the 
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GV and soil fraction model. The NPV model is the least accurate model of the 

RapidEye matched fractions with a remarkably high RMSE.  

 

 

Figure V-2: Scatter plots showing AGB versus SAR backscatter signal of TerraSAR-X, RADARSAT-2 and 

ALOS PALSAR (upper panel: HH polarization, middle panel: HV polarization; n=98) or RapidEye GV, 

soil, and NPV fraction (lower panel; n=53). 
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Table V-1: Results of regression modeling (reg.) and subsequent independent validation (val.) on the 

basis of TerraSAR-X HH and ALOS PALSAR HV polarized data (n=98) or RapidEye GV, soil, and NPV 

fractions (n=53). 

Input data r² 

(reg.) 
r² 

(val.) 
RMSE 

[t/ha] 
RMSE 

[%] 

TerraSAR-X 0.51 0.30 81.71 110% 

ALOS PALSAR 0.68 0.69 63.77 86% 

TerraSAR-X & ALOS PALSAR 0.68 0.50 60.92 82% 

RapidEye GV 0.86 0.86 37.11 37% 

RapidEye soil 0.89 0.82 38.11 38% 

RapidEye NPV 0.70 0.87 67.87 67% 

RapidEye GV & soil & NPV 0.92 0.83 44.17 44% 

 

The validated regression models were applied to a 1.893 ha test area (Figure V-3). 

Biomass estimations are shown in aggregated classes from 0 t/ha (dark red) to 300 t/ha 

(dark green). Estimations exceeding 300 t/ha appear in dark green and are assumed to 

be equal to 300 t/ha due to the saturation effect. TerraSAR-X performed better in low 

biomass ranges and worse in high biomass ranges and ALOS PALSAR showed 

opposite results. Due to double bounce on fresh burned scars, ALOS PALSAR derived 

AGB clearly overestimates biomass in these areas (see Figure V-3 arrow). AGB 

estimations derived from the combined TerraSAR-X and ALOS PALSAR regression 

model are higher in the low biomass range than derived from either TerraSAR-X or 

ALOS PALSAR. AGB of burned areas is also overestimated by the combined 

TerraSAR-X and ALOS PALSAR model due to the double bounce of the ALOS 

PALSAR HV polarized signal.  

AGB estimated by RapidEye data is clearly affected by clouds which cover 12.8% of 

the study area. AGB estimations based on GV and NPV fractions are very similar. AGB 

predicted by soil fractions is overestimated in burned areas, but apart from that, similar 

to GV and NPV estimated AGB. AGB derived from the multivariate RapidEye model is 

predicted to be higher in the low biomass ranges than estimated by the single variable 

fractions model. In burned areas, AGB is again overestimated. 
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Figure V-3: Direct estimated AGB maps of the different regression models. A detailed RapidEye (RE) 

land cover classification of 21/06/2010 is shown for a comparison to the indirect AGB estimation method 

for which this map was used (example given in Figure V-4).  

 

3.2. Comparison direct vs. indirect AGB estimation using multispectral data 

The AGB directly estimated by the multivariate RapidEye model was compared to the 

indirectly estimated AGB using a detailed RapidEye land cover classification (Figure 

V-3) with an overall accuracy of 87.8%. AGB was either estimated by the multivariate 

RapidEye model (direct approach) or each land cover class was linked with a single 

value derived from field inventory data (indirect approach). Table V-2 depicts the 

median and the standard deviation AGB value for each land cover class. The number of 

40 m x 40 m grid cells used for averaging of estimated AGB values (direct approach) or 

used field inventory data (indirect approach) is given in brackets. Every predicted AGB 

value within one land cover class was used for the calculation of the direct AGB mean 



3. Results 

 

99 

value. The mean AGB value of the indirect approach was calculated on the basis of all 

available field inventory data within each class. Two additional field inventory plots of 

riparian forest which were located outside of the study area were used because no field 

inventory plot was located inside the study area. The directly estimated AGB of primary 

and secondary peat swamp forest is similar (196.7 t/ha and 183.1 t/ha, respectively) 

with a relatively low standard deviation (25.2 t/ha and 26.7 t/ha) whereas the indirectly 

estimated AGB values have a higher difference (220.2 t/ha and 178.4 t/ha) with a higher 

standard deviation (73 t/ha and 73.3 t/ha) although the number of field inventories is 

much lower than the number of direct AGB estimations. The field inventory values 

indicate a high biomass variability within these two classes. AGB of riparian 

forest/agroforestry is difficult to compare, as only two field inventory plots were 

available which were both located in riparian forest outside of the study area. 

Agroforestry is not included in the field data. Agroforestry and riparian forest cannot be 

differentiated in this region using RapidEye for the land cover classification and were 

therefore combined. These facts may explain the high difference between directly and 

indirectly estimated AGB (110.7 t/ha and 294.2 t/ha) of riparian forest/agroforestry. The 

class bush/shrubs/regrowth shows higher AGB values with a higher variability 

(indicated by a higher standard deviation) in the direct method (37.7 t/ha, std dev: 

33.1 t/ha) compared to the indirect approach (12.6 t/ha, std dev: 8.3 t/ha). It is assumed 

that the biomass variability of this class is not correctly represented by three field 

inventory plots. AGB of the class grassland/fern/agriculture was estimated very similar 

by the direct and indirect method (3.8 t/ha and 3.3 t/ha) but there is a higher standard 

deviation in the direct AGB estimations. AGB on recently burned/sparse regrowth areas 

is extremely overestimated by the direct approach which is also indicated in Figure V-3.  

Figure V-4 depicts an area of active logging showing the direct and indirect AGB 

estimation, the land cover classification used for the indirect AGB estimation and the 

true colored RapidEye image. The narrow logging tracks (2 m to 4 m wide) are clearly 

visible within the RapidEye scene (purple color) and the biomass loss from logging is 

indicated in the direct AGB map. The land cover classification does not differentiate 

different levels of degradation.  
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Table V-2: Comparison of directly and indirectly estimated AGB median and standard deviations (std) 

for different land cover classes. AGB values are either derived from a direct approach using SMA 

fractions or from an indirect approach by linking average field biomass values to each land cover class. 

The number of 40 m x 40 m grid cells used for averaging AGB estimations (direct approach) or field 

inventory data (indirect approach) are given in brackets. 

AGB 

(t/ha) 

Std 
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Figure V-4: Example of a logging area showing direct and indirect AGB estimations, RapidEye land 

cover classification (LCC) used for the indirect AGB estimation and the true color RapidEye scene from 

21/06/2010.  
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4. Discussion 

Different SAR frequencies and polarizations and RapidEye fractions were analyzed for 

their ability to predict AGB. The most accurate SAR AGB regression model is based on 

a multivariate TerraSAR-X HH and ALOS PALSAR HV model. The combined 

RapidEye matched fraction model achieved a higher accuracy. Combining RapidEye 

matched fractions and SAR backscatter was not found to be useful for AGB estimation, 

because a higher accuracy than the multivariate RapidEye fraction model could not be 

achieved. Both multivariate SAR and RapidEye AGB models overestimate AGB in 

recently burned areas (three years and less after the fire event). The combined 

TerraSAR-X and ALOS PALSAR AGB model is negatively influenced by double 

bounce from the ALOS PALSAR signal occurring in fresh burned areas (see Figure V-2 

circle and Figure V-3 arrow). The RapidEye fraction model is affected by high AGB 

estimations of the soil fractions in burned areas (Figure V-3). The soil fraction is 

relatively low in these areas due to the large amount of NPV (dead trees and trunks, 

standing and lying) and GV (rapid regrowth of young trees, fern and bushes). The 

acquisition of RapidEye imagery is hampered by frequent cloud cover occurring in this 

part of the humid tropics. For this reason it is very difficult to produce repetitive AGB 

maps and ensure area coverage, which can only be overcome by very short repetition 

cycles of acquisitions. The combined SAR model is not as accurate as the RapidEye 

AGB estimation, but SAR is able to penetrate clouds, smoke and haze and repetitive 

area coverage can be achieved. Since the SAR signal is influenced by water, it is very 

important to use multi-temporal SAR data acquired during the dry season to minimize 

any impact of precipitation or soil moisture.  

A further crucial point is the AGB field reference dataset. The range between 20 t/ha 

and 100 t/ha is underrepresented in the reference dataset (Figure V-2) as it is difficult to 

access these areas on the ground in the study area. On the one hand, regrowing areas 

contain mostly AGB values lower than 20 t/ha due to recurrent fire events. If a forest 

area has burned once, the risk of a repeated fire increases dramatically (Langner et al. 

2009). On the other hand, logged over or degraded forest areas mostly contain AGB 

higher than 100 t/ha. To improve the AGB estimation models, it is necessary to expand 

the AGB reference dataset representing the whole biomass range. 
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The most accurate direct AGB model, based on multivariate RapidEye fractions, was 

compared to indirect estimated AGB using a detailed RapidEye land cover 

classification. Due to our long-term experience in the study area, it is assumed that the 

real biomass variability of primary peat swamp forest is not correctly described by the 

direct approach which results from the saturation effect in high biomass ranges. AGB 

loss caused by severe degradation, e.g. intense selective logging, is visible in the direct 

estimated AGB map (Figure V-4). AGB of bush/shrubs/regrowth and 

grassland/fern/agriculture is estimated very accurate. The AGB of recently 

burned/sparse regrowth areas was extremely overestimated, due to low soil fractions 

caused by rapid regrowth and large quantities of dead wood debris. Considering these 

results, a combination of direct and indirect estimated AGB appears to be the most 

promising approach. Forest areas with high AGB values, such as primary peat swamp 

forest and recently burned/sparse regrowth areas, are suggested to be estimated 

indirectly, whereas areas with low AGB values such as secondary peat swamp forest, 

riparian forest/agriculture, bush/shrubs/regrowth and grassland/fern/agriculture via a 

direct approach.  

Using a combination of direct and indirect AGB estimations based on remote sensing 

and detailed field inventory data meets the Tier 3 definition of the IPCC guidelines, 

which describes the most complex methodological level of AGB estimation (IPCC 

2006). The combined approach of direct and indirect AGB estimation overcomes the 

problem of saturation in higher biomass ranges. It has still to be proven if the AGB of 

areas that experienced low impact degradation can be differentiated from secondary 

forest despite the saturation occurring in high biomass ranges.  

In general, LiDAR provides the most accurate AGB estimation due to the information 

that can be obtained on the vertical structure and height of the vegetation, but LiDAR 

measurements are mostly spatially limited. In contrast, the presented approach based on 

SAR and multispectral is very suitable for large scale sub national and national AGB 

carbon stock monitoring.  

Nevertheless, due to the challenge to monitor carbon stocks and its changes without 

gaps, with low uncertainties and defined time intervals within REDD+ requirements, it 

is advantageous to use all available data and to combine different approaches.  
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1. Abstract 

Tropical peat swamp forests in Indonesia store huge amounts of carbon and are 

responsible for a large proportion of carbon emissions every year due to forest 

degradation and deforestation. These forest areas are in the focus of REDD+ projects 

which require an accurate monitoring of their carbon stocks or aboveground biomass 

(AGB). Our study objective was therefore to evaluate multi-temporal LiDAR 

measurements of a tropical forested peatland area in Central Kalimantan on Borneo for 

quantifying canopy height and AGB dynamics with a special focus on unaffected, 

selective logged and burned forests. More than 11,000 ha were surveyed with airborne 

LiDAR in 2007 and 2011. The comparability of these datasets was examined and 

canopy height models were created. AGB regression models were developed on the 

basis of field inventory measurements and LiDAR derived height histograms for 2007 

(r²=0.77, n=79) and 2011 (r²=0.81, n=53), taking the different point densities into 

account. High resolution multispectral imagery was used to identify changes in the peat 

swamp forests. Unaffected forests accumulated on average 20 t/ha AGB with a canopy 

height increase of 2.3 m over the four year time period. Selective logged forests 

experienced an average AGB loss of 55 t/ha within 30 m and 42 t/ha within 50 m of 

detected logging trails, although the canopy height increased by 0.5 m and 1.0 m, 

respectively. Burned forests lost 92% of the initial biomass. These results demonstrate 
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the great potential of airborne LiDAR surveys to precisely quantify even small scale 

AGB and canopy height dynamics in remote tropical forests, thereby featuring the needs 

of REDD+.  

 

Keywords: aboveground biomass (AGB), Borneo, canopy height, carbon, change, 

LiDAR, multi-temporal, REDD+ (reducing emissions from deforestation and forest 

degradation), tropical peat swamp forest. 

 

2. Introduction 

Considering the global climate change, efforts are being made to reduce global 

greenhouse gas emissions. One example of such a climate change mitigation 

mechanism is REDD+ which aims at reducing emissions from deforestation, forest 

degradation and the role of conservation, sustainable management of forests and 

enhancement of forest carbon stocks (Campbell 2009). In the focus of REDD+ projects 

are tropical forests which are huge carbon reservoirs comprising 40% of the terrestrial 

carbon (FAO 2009; Page et al. 2009a). Tropical peatlands accumulate additional carbon 

in thick belowground peat deposits which are sustained by intact forests on top of it. 

The largest known tropical peat deposits occur in Southeast Asia, especially in 

Indonesia where 55 - 58 Gt of carbon is stored belowground and 18.6 Gt aboveground 

in forests (Baccini et al. 2012; Jaenicke et al. 2008; Page et al. 2011). Deforestation, 

forest degradation and peatland degradation in Southeast Asia produce considerable 

carbon emissions (Hooijer et al. 2012; Murdiyarso et al. 2010). Between 1997 and 2006, 

these activities were responsible for 23% of the total anthropogenic CO2 emissions 

worldwide (van der Werf et al. 2009). Particularly, Indonesia became one of the largest 

carbon emitters worldwide, largely caused by degradation and deforestation of its 

peatland areas and forests due to large-scale agricultural development and exploitation 

of forest timber resources (Miettinen et al. 2012). Once the forest is degraded, e.g. 

through logging activities, the fire vulnerability increases (Miettinen et al. 2012; Siegert 

et al. 2001). As a result of these activities and the resulting emission rates, Indonesia 

became a prime target for REDD+ projects. Norway and Indonesia concluded a 

landmark deal which includes a payment to Indonesia up to one billion USD for forest 

conservation and slowing down deforestation and greenhouse gas emission rates. 
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Although, Indonesia agreed to halt the license of new logging concessions (on 

peatlands), large parts of selective logged forests are excluded from this moratorium 

which means that logged forests are highly vulnerable to re-logging and conversion to 

plantations (Edwards et al. 2012).  

It is important to distinguish between managed or legal and unplanned or illegal 

selective logging. Managed logging constructs extensive infrastructure, for example 

substantial logging roads, railways along which the logs are being transported, and 

landing facilities. In contrast, illegal logging operations have no budget and equipment 

to establish regular roads or railways and their access tracks into the forest are limited. 

Illegal logging trails rather follow natural features, such as streams, drainage channels 

or abandoned logging tracks, and their spatial pattern is clearly different to that of 

straight extensive infrastructure of legal logging operations (Boehm et al. 2004). In 

Central Kalimantan, authorized and illegal logging increased in the 1990s as a direct 

result of the Mega Rice Project (MRP) which was initiated by the Indonesian 

government in 1995. The objective was to convert one million hectare of forest for rice 

cultivation. For this purpose, about 4,000 km of drainage and irrigation channels were 

excavated into the peatlands which allowed access into previously highly inaccessible 

peat swamp forests. Active illegal logging, which causes vast forest degradation, still 

takes place in Central Kalimantan’s forests, even if no new logging concessions are 

granted. The level of degradation is dependent on the forest type and its accessibility. 

On Borneo, dipterocarp forests provide easy access due to the firm ground and are 

therefore often affected by logging using bulldozers (Berry et al. 2010; Pinard et al. 

1996). In contrast, the access for heavy machinery is restricted to peat swamp forests 

due to the soft ground (Whitmore 1984). Hence, peat swamp forests which often contain 

high densities of valuable timer are logged by human power and the logs are mainly 

transported on nearby water courses. This way of logging is much less destructive than 

mechanized logging occurring in dipterocarp forests (Felton et al. 2003). 

Monitoring forest degradation and deforestation is a crucial component of REDD+ 

projects. In general, forest carbon stocks are derived from aboveground biomass (AGB) 

by assuming a carbon content of 50% (Goetz et al. 2011). The most effective 

monitoring is based on satellite or airborne observations due to the high inaccessibility 

of the forests (Gibbs et al. 2007). As no remote sensing instrument can directly measure 

AGB, field inventory measurements are mandatory for both calibrating and validating 
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spatial estimations of AGB (Goetz et al. 2011). Especially the use of LiDAR (light 

detection and ranging) measurements has rapidly evolved in the last years due to the 

ability to precisely quantify the vertical structure of the vegetation and forest attributes 

such as canopy height distribution, tree height, and crown diameter (Duncanson et al. 

2010; Gleason et al. 2011; Jung et al. 2012; Vincent et al. 2012). Particularly forest 

carbon stocks can be monitored with high accuracy (r²=0.75, RMSE=20 t/ha and r²= 

0.83, RMSE=21%) without the constraint of saturation in high biomass ranges (Ballhorn 

et al. 2011; Kronseder et al. 2012). Multi-temporal LiDAR measurements offer 

tremendous potential for REDD+ projects. It is possible to detect small scale changes in 

the canopy height or AGB because height and intensity metrics have been proven to be 

reproducible (Bater et al. 2011; Vepakomma et al. 2008). For example, Dubayah et al. 

(2010) conducted a multi-temporal LiDAR study in Costa Rica and proved that old 

growth forests have a slower height growth rate (-0.33 m ± 4.09 m) compared to 

secondary forests (2.08 m ± 3.71 m) and accumulate therefore less biomass per hectare 

per year (0.3 t/ha y
-1

 compared to 3.6 t/ha y
-1

).  

The primary objective of this study was to utilize multi-temporal LiDAR and field 

inventory data to predict AGB dynamics in tropical peat swamp forests in Central 

Kalimantan on Borneo, Indonesia. The study site was surveyed in 2007 and 2011 and 

the comparability of both acquisitions was examined. Canopy height models (CHMs) 

were created and AGB regression models were developed on the basis of field inventory 

measurements. Changes in canopy height and AGB accumulation or loss during this 

four year interval were quantified with a special focus on undisturbed, selective logged 

and burned peat swamp forests.  

3. Materials and Method 

3.1. Study site 

The study area is located east of Palangka Raya, the capital of the province Central 

Kalimantan, on the island of Borneo, Indonesia (Figure VI-1). The predominant 

vegetation type is peat swamp forest which has been under severe anthropogenic 

pressure for the last three decades, mainly through timber extraction and agricultural 

conversion (Boehm et al. 2004; Hooijer et al. 2010). The most severe impact was 
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caused by the MRP and the resulting degradation lead to recurrent fires which destroyed 

approximately 50% of the forest cover in the past two decades (Miettinen et al. 2012).  

Another driver of forest degradation is illegal selective logging which causes small 

scale impacts in the forest canopy. Valuable trees are felled, cut into appropriate lengths 

and then dragged along narrow skid trails to the nearest river or canal where they are 

transported away.  

The study area was legally logged during the 1980s and 1990s, thereby creating 

extensive infrastructure. Railways were built to grant access to the highly inaccessible 

peat swamp forests (Figure VI-2).  

 

 

Figure VI-1: True color RapidEye mosaic from 28 July 2009 and 29 July 2012 showing the study area 

with the overlapping LiDAR tracks of 2007 and 2011 (depicted in red). The location of the study area is 

indicated in orange in the outline map of Borneo. The location of field derived dGPS measurements used 

for assessing the accuracy of DTMs and the location of the transect shown in Figure VI-9 are also 

depicted.  

 

3.2. Data 

3.2.1. Field inventory data 

Field inventory campaigns were conducted in the years 2008, 2010 and 2011. Inventory 

plots with different plot sizes were established in forested and regrowing areas. The 

sample plot design of the field inventory was based on the guidelines provided by 

Pearson et al. (2005). 
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In forested areas, three circular nested plots with radii of 4 m, 14 m, and 20 m were 

recorded. Inside each nest, trees of a certain DBH (diameter at breast height) were 

measured depending on degradation intensity: 2 cm to 10 cm or 5 cm to 20 cm (within 

the 4 m radius), 10 cm to 20 cm or 20 cm to 50 cm (within 14 m radium), and greater 

than 20 cm or 50 cm (within 20 m radius). In regrowing areas, rectangular plots of 

20 m x 50 m were used and all trees within this area were recorded. 

Within both plot types, the following parameters were recorded: DBH, tree height, and 

tree species in order to estimate their wood density. Tree specific wood densities were 

derived from databases provided by Chudnoff (1984), World Agroforestry Centre 

(2011), and IPCC (2006). If the tree species could not be identified, an average specific 

wood density for Asian tropical trees of 0.57 Mg m
−3

, was applied (Brown 1997). 

AGB was calculated using a combination of allometric models from Hughes et al. 

(1999) for saplings (if DBH < 5 cm and height ≤ 1.3 m) or trees (if DBH < 5 cm and 

height > 1.3 m) and Chave et al. (2005) for moist tropical forest stands including DBH 

and tree height (if DBH ≥ 5 cm and height > 1.3 m).  

Altogether, 26 plots were sampled in 2008 which were located within the LiDAR tracks 

of 2007, ranging from 8.7 t/ha to 458.5 t/ha, and 53 plots were sampled in 2010 and 

2011 which were inside the LiDAR tracks of 2011 and ranged from 0.0 t/ha to 375 t/ha.  

3.2.2. LiDAR data 

LiDAR measurements were collected during the dry seasons (May to October) in 2007 

and 2011, respectively, thereby avoiding any influence of water during the DTM 

generation. The 2007 acquisition was conducted in August with a Riegl LMS-Q560 

flown 500 m aboveground. Full-waveform LiDAR data was recorded with a half scan 

angle of ±30°. Each LiDAR transect was generated by a single flight line, thus no strip 

matching was applied. In 2011, an Optech Orion M200 was used and data were 

acquired between August and October at a height of 800 m. Full-waveform LiDAR data 

were recorded with a half scan angle of ±11°. A strip adjustment procedure was applied 

resulting in an average vertical accuracy of a root mean square error (RMSE) of 

0.036 m. Further data specifications and acquisition details are provided in Table VI-1. 

The specifications of both LiDAR instruments differed in some aspects, e.g. flight 

height and wavelength, but the most important difference was in terms of point density. 

Figure VI-4 illustrates the difference in LiDAR survey point density between 2007 
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(1.5 points/m²) and 2011 (10.7 points/m²) within an undisturbed peat swamp forest. 

During the 2011 LiDAR acquisition, photos were taken from the aircraft and were 

processed to orthophotos with a spatial resolution of 0.25 m. The two LiDAR 

campaigns resulted in a total overlapping area of 11,726 ha and the land cover 

comprised peat swamp forests, partly affected by former and recent selective logging, 

old burned scars, fern, grassland, bushes, and agricultural land.  

 

Table VI-1: Specifications of LiDAR acquisitions. 

Specification 2007 2011 

LiDAR system Riegl LMS-Q560 Optech Orion M200 

Acquisition date 5 - 10 August 15 August - 14 October 

Power 100Khz 100Khz 

Nominal Altitude 500 m 800 m 

Wavelength 1.5 µm 1.064 µm 

Half Scan angle ±30° ±11° 

Average point density 1.5 points/m² 10.7 points/m² 

 

3.2.3. Multispectral imagery 

High-resolution RapidEye imagery has proven to detect small scale logging in peat 

swamp forests and was therefore chosen to monitor logging activities and fire impacts 

between both LiDAR acquisitions (Franke et al. 2012). The RapidEye satellite system is 

a constellation of five identical satellites, which were launched in August 2008, and the 

images have a pixel resolution of 5 m. Scenes used in this study were acquired on 22 

May 2009, 28 July 2009, 10 February 2010, 11 February 2010, 21 June 2010, 18 

August 2011, and 29 July 2012 and were atmospherically corrected and co-registrated.  

Medium resolution Landsat imagery was used to analyze historical managed logging 

during the 1980s and early 1990s. Landsat satellites have acquired scenes since 1972, 

mostly with a spatial resolution of 30 m. Former managed logging was investigated on 

the basis of a Landsat scene from 30 June 1991 which was atmospherically corrected 

and co-registrated (Figure VI-2). All logging activities before that date were included in 

the analyses.  
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Figure VI-2: Landsat scene from 30 June 1991 (RGB: bands 543) showing a managed selective logged 

peat swamp forest area within the study area. An abandoned logging railway is depicted in the 

photograph (© S. Englhart). 

 

3.3. Data analysis 

In a first step, the LiDAR point clouds of 2007 and 2011 were compared to each other 

and the effect of different point densities was examined. The distribution of the LiDAR 

signal of different layers of the vegetation and the comparability of both acquisitions 

was investigated. 

3.3.1. LiDAR filtering and DTM generation 

A crucial step within the digital terrain model (DTM) generation is the LiDAR filtering. 

A hierarchic robust filter was applied to the LiDAR point clouds, separating the ground 

and non-ground (vegetation) points (Pfeifer et al. 2001). The linear adaptable prediction 

interpolation (kriging) was utilized to generate the DTMs with a resolution of 1 m. The 

accuracy of the DTMs was evaluated on the basis of field derived differential Global 

Positioning System (dGPS) measurements. Altogether, 93 dGPS measurements were 

available within both LiDAR tracks covering different land cover classes (peat swamp 

forest, open forest, burned scars, fern and shrubs) (Figure VI-1). The 2007 and 2011 

DTM resulted in RMSE=0.41 m and RMSE=0.16 m, respectively. In comparison to each 

other, the DTM featured RMSE=0.37 m (Figure VI-3). The DTMs were further utilized 
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for the CHM creation and AGB estimation. Due to the difference of both DTMs, 

separated CHMs and AGB models for 2007 and 2011, which were based on the 

respective DTMs, were generated. Therefore, the difference of the DTMs does not 

influence the analyses as relative heights were used and are supposed to be stable 

(Hudak et al. 2012; Jenkins 2012).  

 

 

Figure VI-3: Scatterplots and accuracy of heights derived from generated DTMs of 2007 and 2011 and 

field derived dGPS measurements.  

 

3.3.2. Canopy height models 

CHMs of both years with a resolution of 1 m were produced by calculating the 

difference between the elevation of the digital surface model (DSM) and the underlying 

terrain of the DTM. The DSM was generated choosing the highest point within a grid of 

1 m. Pixels containing no data were filled using the highest point of the neighborhood 

and a morphological operator. The changes of the CHMs between 2007 and 2011 were 

analyzed by calculating the difference of both models and subsequent median filtering.  

3.3.3. Biomass estimation 

Due to the differences of both LiDAR measurements, especially in point density, each 

acquisition was treated as an independent assessment and the biomass models were 

therefore developed separately. Similarly, Hudak et al. (2012) used LiDAR 

measurements with significant differences in point densities and found out that different 

point densities do not affect AGB estimations if LiDAR measurements were 

independently analyzed.  
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Only 26 field inventory plots were available for the 2007 LiDAR analysis and it was not 

sufficient data to develop an accurate regression model. Hence, the 2011 LiDAR point 

density of the 2011 field inventory plots was reduced and added to the 2007 analysis as 

reference data. The LiDAR point density of 2011 was reduced by taking the highest and 

lowest point within a square with a side length of 1 m. The 2011 plots within the 

reduced LiDAR data of 2011 resulted in a mean point density of 1.99 points/m² whereas 

the 2007 plots within the 2007 LiDAR data had an average point density of 

1.52 points/m². In 2011, sufficient field inventory plots were available to develop an 

accurate AGB regression model.  

LiDAR height histograms have found to be very useful for AGB estimation (Asner et al. 

2010; Jubanski et al. 2012) and were calculated by normalizing all points within a grid 

of 35 m (similar to the size of the largest field inventory plot) to the ground using the 

DTMs as reference. A height interval of 0.5 m was defined and the number of points 

within this interval was stored in form of a histogram. The first height interval was 

considered as ground return and therefore excluded from the further processing. The 

centroid height (CH) of the height histogram was calculated by weighing each 0.5 m 

height interval with the relative number of LiDAR points stored within this interval 

(Jubanski et al. 2012). CH was related to field inventory derived AGB and regression 

models were developed. Jubanski et al. (2012) showed that the accuracy of AGB 

estimations derived from LiDAR height histograms increased with higher point density. 

For this reason, point density was also implemented in the regression in form of a 

weighting factor as already performed by Jubanski et al. (2012).  

The commonly used power function resulted in significant overestimations in the higher 

biomass range. The optimal regression model to predict AGB was found to be a 

combination of a power function (in the lower biomass range up to a certain threshold 

CH0) and a linear function (in the higher biomass range). The linear function is the 

tangent through CH0 and was calculated on the basis of the first derivative of the power 

function:  
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where CH is the centroid height, CH0 is the threshold of function change and a, b are 

coefficients.  

The threshold of CH0 was determined by increasing the value of CH0 in steps of 

0.001 m by identifying the lowest RMSE. 

The developed AGB regression models were independently validated by the Predictive 

Power of the Regression (PPR) as carried out by Asner et al. (2010). The PPR is the 

RMSE determined by running 1,000 iterations of the regression by randomly leaving out 

10% of the reference field inventory plots.  

The biomass models were applied to whole overlapping area of the LiDAR tracks. 

Changes in biomass were calculated over the four year time period by subtracting the 

2007 AGB map from the one of 2011. Positive values thus indicate net biomass gain 

while negative values indicate loss. 

3.3.4. Change analysis 

Canopy height and AGB dynamics during 2007 and 2011 were analyzed over the whole 

study area. The vegetation within the study area is under strong anthropogenic pressure 

and thus experiences many changes. On the basis of RapidEye imagery, areas of peat 

swamp forest were identified that remained unaffected, were selective logged or burned 

within the four year time period. Canopy height change and AGB accumulation or loss 

was quantified within these areas. Logging trails could be easily identified due to the 

high spatial and temporal resolution of the RapidEye data. On the basis of field surveys, 

orthophotos and long term experience within the study area as well as lack of literature 

reference data, an area with a buffer of 30 m and 50 m, respectively, was chosen for the 

investigation of AGB loss caused by selective logging. It is assumed that loggers do not 

remove trees that are further away from the logging trail than 50 m because new trails 

would then be constructed. 

Additionally, areas affected by former managed selective logging with extensive 

infrastructure were identified on the basis of a Landsat scene from 30 June 1991. All 

logging activities before that date were included in the analyses.  

4. Results 

First, the different point densities of 2007 and 2011 were investigated whether they 

have an influence on the analysis. As set out in Table VI-1, the mean point density 
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differed by factor 7. Figure VI-4 shows an orthophoto taken in 2011 and the 

corresponding LiDAR point clouds of 2007 and 2011 within an unaffected peat swamp 

forest. Although the point density differences are clearly visible, the relative distribution 

over the different vegetation layers is basically similar. In the 2007 data, the relative 

number of LiDAR returns from the ground and lower vegetation layer is less than in the 

2011 data. Therefore, height histograms and consequently CH of both LiDAR 

measurements are slightly different. The point density also influences the accuracy of 

the generated DTMs which was assessed on the basis of 93 field derived dGPS 

measurements. The mean point densities on these locations were on average 

0.41 points/m² for 2007 and 19.11 points/m² for 2011 and the accuracy resulted in 

RMSE=0.41 and RMSE=0.16, respectively (Figure VI-3). For this reason, it was 

reasonable to develop separate AGB regression models for 2007 and 2011. 

 

 

Figure VI-4: Orthophoto taken on 13 October 2011 and the corresponding LiDAR point clouds of 2007 

and 2011 within an unaffected peat swamp forest. The locations of the higher tree crowns which are 

clearly visible within LiDAR point clouds are indicated by white circles in the orthophoto.  
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4.1. Canopy height models 

Changes in canopy height were evaluated on the basis of CHMs. In unaffected forests, it 

was possible to identify crowns of single high trees and to quantify the growth rates. 

Figure VI-5A depicts the 2007 and 2011 CHM of such a tree crown. Tree height 

increased by 0.6 m within the four years, from 29.3 m to 29.9 m. An example of a 

degraded forest area is shown in Figure VI-5B. The degradation was most likely caused 

by felling the trees. The two examples demonstrate that changes in the CHM helped to 

identify areas of growth and disturbance.  

 

 

Figure VI-5: Canopy height models of 2007 and 2011 of (A) an unaffected and (B) degraded peat swamp 

forest.  

 

4.2. AGB regression models 

Due to different point densities of both LiDAR acquisitions, two separated AGB 

regression models were developed on the basis of a combined power and linear function 

(equation (17)). Figure VI-6A shows scatter plots of AGB and CH for 2007 and 2011 

with the corresponding regressions. The part of the power function in the lower biomass 

range is depicted in turquoise and the linear part of the function in the higher biomass 

range in orange. The size of the reference field inventory plots depends on LiDAR point 

density, the higher the density, the bigger is the dot. Figure VI-6B displays the 

dependence of CH0, the threshold of function change, and RMSE for the 2007 and 2011 

AGB regression models. The lower the value of CH0, the lower is the proportion of the 

power function and the higher the value of CH0, the lower is the proportion of the linear 

function. The value with the lowest RMSE is marked and was chosen as CH0. The 2007 
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AGB regression model was developed on the basis of 79 field inventory measurements 

resulting in a coefficient of determination r²=0.77 with PPR=54.2 t/ha and 

CH0=8.086 m. For the 2011 AGB regression model, 53 field inventory plots were 

available for calibration and validation and resulted in r²=0.81, PPR=47.4 t/ha and 

CH0=8.841 m.  

 

 

Figure VI-6: (A) Correlation between AGB and CH of 2007 (left) and 2011 (right) datasets. The optimal 

AGB regression models based on a combined power and linear function (equation (17)) are also 

displayed. (B) Dependence of CH0 and RMSE. The CH0 value with the lowest RMSE was chosen as 

threshold for function change. 
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4.3. Change analyses 

The study area comprises several different land covers, such as peat swamp forest, 

former burned and regrowing areas containing fern, grassland, bushes, and agricultural 

areas. Due to the high variability, three main categories of change of initial peat swamp 

forests between both LiDAR acquisitions were evaluated on the basis of multi-temporal 

RapidEye images.  

First, undisturbed forest areas of 3,393 ha were determined that had no or no visible 

impact between 2007 and 2011. Second, logging trails were identified on the basis of 

high temporal and spatial resolution RapidEye data. Figure VI-7 depicts four different 

RapidEye scenes showing the example of a selective logged area. The narrow skid trail 

infrastructure, which is clearly visible, was fast evolving and the rapid regrowth of the 

vegetation after the logging activities stopped hindered the detection of the full extent of 

logging in the RapidEye images. All skid trails that cloud be detected with available 

RapidEye data are also shown in Figure VI-7 ("detected logging trails"). On the basis of 

repetitive field observations, the area within 30 m and 50 m of the detected logging 

trails was analyzed which amounted to 67 ha and 113 ha, respectively. Third, forested 

areas that burned once between both LiDAR acquisitions were evaluated. This is 

important because recurrent fires further reduce AGB. Altogether, 555 ha of initial peat 

swamp forests within the study area burned.  
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Figure VI-7: Multi-temporal RapidEye scenes of a selective logged peat swamp forest with the detected 

logging trails. Photos show an aerial image of a logged forest and an abandoned logging trail  

(© F. Siegert, P. Navratil). 

 

Table VI-2 depicts canopy height and AGB dynamics within these areas. In undisturbed 

peat swamp forests, the canopy height increased on average by 2.3 m and accumulated 

20 t/ha over this four year time period. In selective logged forests, the canopy height 

increased on average 0.5 m and mean AGB decreased by 55 t/ha within 30 m of the 

logging trails whereby a canopy height increase of 1.0 m and AGB loss of 42 t/ha was 

detected within 50 m of the logging trails. As expected, burned forests experienced an 

extensive loss in canopy height (9.4 m on average) and AGB (approximately 92%). The 

initial AGB of burned forests was on average 154 t/ha (compared to 203 t/ha of 

undisturbed peat swamp forest) which indicates that degraded forests are more 

vulnerable to fire.  
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Table VI-2: Quantification of changes in canopy height and AGB of unaffected, selective logged (within 

30 m and 50 m of logging trails) or burned peat swamp forests. The mean values and standard deviations 

(std) are depicted. 

forest condition unaffected 
selective logged 

within 
burned 

  30 m 50 m  

 mean std mean std mean std mean std 

area [ha] 3,393 67 113 555 

CHM 2007 [m] 14.0 5.8 13.5 6.0 13.2 6.0 11.1 6.7 

CHM 2011 [m] 16.3 4.7 13.9 5.9 14.2 5.8 1.7 4.0 

CHM change [m] +2.3 1.9 +0.5 3.1 +1.0 3.0 -9.4 5.3 

AGB 2007 [t/ha] 203 58 215 62 209 63 154 80 

AGB 2011 [t/ha] 223 47 160 57 167 57 12 21 

AGB change [t/ha] +20 33 -55 41 -42 44 -142 77 

 

Figure VI-8 depicts AGB of 2007 and 2011 as well as its changes in the selective 

logged peat swamp forest area of Figure VI-7. The areas within 30 m and 50 m of the 

detected logging trails were analyzed and are also depicted. The forest area has already 

been degraded in 2007, but has further been exploited between both acquisitions which 

is not only evident from multispectral imagery (Figure VI-7) but also from AGB loss 

(Figure VI-8). The spatial pattern of AGB loss clearly follows the skid trails whereas 

AGB accumulated in remaining small forest patches.  

 

 

Figure VI-8: AGB of 2007 and 2011 as well as its spatial dynamic in a selective logged peat swamp 

forest. The analyzed area was within 30 m and 50 m of the detected logging trails (Figure VI-7).  
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Figure VI-9 depicts a transect through a burned and adjacent unaffected peat swamp 

forest with the changes in canopy height and AGB. The extensive loss of AGB and 

canopy height is clearly visible within the burned area (C) as well as growth of canopy 

height and accumulation of AGB in the unaffected area (E). The transitions area (D) 

between the burned and unaffected area is characterized by single remaining trees which 

increased in height over the four years. This effect is visible in the canopy height 

change diagram. Even if single remaining trees increased in height, AGB of this 

transition area was reduced due to the fire impact.  

 

 

Figure VI-9: (A) Transect through a burned and adjacent unaffected peat swamp forest superimposed on 

a orthophoto from 11 October 2011. (B) Changes in canopy height and AGB. Photos of (C) a burned 

forest, (D) transition area of burned and unaffected forest and (E) undisturbed forest (© S. Englhart, 

F. Siegert). Locations of (C), (D), and (E) are indicated in the transect and graph. The location of the 

transect is shown in Figure VI-1. 
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Historical managed logged areas during the 1980s and early 1990s were identified on 

the basis of a Landsat scene from 30 June 1991. In total, 4,529 ha of the study area 

(39%) was affected by former managed logging of which 2,946 ha was degraded to 

shrubs, bushes, and grassland in 2007, whereby 110 ha were part of a large scale oil 

palm plantation. The remaining historical logged area (1,584 ha) was still forested in 

2007 of which 1,211 ha remained unaffected between 2007 and 2011. The average 

biomass of these forests was 219 t/ha in 2007 and 238 t/ha in 2011 with a mean canopy 

height of 14.2 m and 16.8 m, respectively. In contrast, unlogged and undisturbed forests 

contained 194 t/ha with a mean canopy height of 13.9 m in 2007 and 214 t/ha with a 

mean canopy height of 16.0 m in 2011. These results demonstrate that historical logged 

forests have in general a higher forest biomass than unaffected forests, even though they 

were degraded 20 years ago. This comparison also revealed that historical logged 

forests experienced a higher growth rate (on average 2.6 m) during this four year time 

period than primary forests (on average 2.1 m), thereby accumulating a similar amount 

of AGB (19 t/ha and 20 t/ha, respectively).  

5. Discussion 

Canopy height and AGB dynamics were examined over a four year time period in a 

tropical peat swamp forest. Multi-temporal LiDAR measurements were investigated for 

their potential to detect changes in tropical peat swamp forests between 2007 and 2011. 

The data specifications and acquisition details of both datasets differed from each other, 

mostly in point density (Table VI-1). The results of this study revealed that both 

acquisitions are comparable when treated as independent assessments because the 

relative distribution of the LiDAR returns slightly differed over the different vegetation 

layers (Figure VI-4). By developing two independent AGB regression models for 2007 

and 2011, the difference in point density does not affect the analysis. Hudak et al. 

(2012) also compared repetitive LiDAR measurements that had a 30-fold difference in 

point density and concluded that it does not affect biomass estimations and dynamics 

when treated as independent assessments with two independently developed regression 

models.  

Changes in canopy height were evaluated on the basis of CHMs. We found that single 

high trees could be identified in both models in unaffected forests and even small scale 

impacts, e.g. felling of one or more trees, were visible (Figure VI-5). Several other 
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studies have shown the potential of repetitive LiDAR observations to detect small scale 

changes in the forest canopy and its dynamics. Dubayah et al. (2010) evaluated the 

different growth and AGB accumulation rates of old growth and secondary forests in 

Costa Rica. Jenkins et al. (2012) successfully monitored forest growth in an Australian 

scrubby forest-woodland and Kellner et al. (2009) analyzed canopy disturbance and 

regeneration in an old growth tropical forest for a 8.5 year time period and proved the 

short-term stability of the tropical forest.  

AGB was quantified through regression modeling based on LiDAR CH and field 

inventory measurements. Two separate AGB regression models were developed for 

2007 and 2011 due to the different LiDAR data specifications and acquisitions. Our 

study revealed an optimal AGB regression on the basis of a combined power and linear 

function. Although many studies obtained good results for estimating AGB from 

LiDAR height metrics on the basis of a power function (Asner et al. 2009; Lefsky et al. 

2002; Saatchi et al. 2011a), we detected an extreme overestimation in the higher 

biomass range when using solely a power function. Additionally, AGB estimations 

derived from the power function were not as accurate as estimations derived from the 

combined power and linear function. The AGB regression model of 2007 solely based 

on the power function resulted in r²=0.75 and PPR=65.1 t/ha whereas the regression 

model based on a combined power and linear function resulted in r²=0.77 and 

PPR=54.2 t/ha. Similarly, the AGB model of 2011 based on the power function resulted 

in r²=0.78 and PPR=52.3 t/ha and the combined power and linear function resulted in 

r²=0.81 and PPR=47.4 t/ha. Mascaro et al. (2011a) developed a carbon estimation 

regression model on the basis of airborne LiDAR canopy height metrics in a tropical 

forest in Panama and also modified the power function of the AGB regression.  

Forested areas that remained unaffected, were selective logged or burned between both 

LiDAR acquisitions were identified on the basis of RapidEye images and changes in 

canopy height and AGB were quantified. In unaffected peat swamp forests, canopy 

height increased on average 2.3 m and accumulated 5 t/ha y
-1

. These unaffected forest 

areas included primary and secondary forests of different degradation levels as well as 

different peat swamp forest types. The growth and accumulation rates are an average of 

fast growth rates, e.g. in previously logged forests and slow growth rates, e.g. in 

primary forests. Sweda et al. (2012) and Boehm et al. (2012) analyzed some of the same 

2007 LiDAR data in combination with another LiDAR dataset also acquired in 2011 
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within the study area. They found a canopy growth of 1.9 m and an AGB accumulation 

of 3.7 t/ha y
-1

. The results might differ from each other mainly due to another spatial 

extent of the study area and also due to another LiDAR dataset of 2011.  

Illegal selective logging activities were monitored on the basis of RapidEye data. AGB 

loss and canopy height change was quantified within 30 m and 50 m of detected logging 

trails. As no reference data could be found in literature, the extent of the analyzed area 

was based on repetitive field observations on ground and during flight surveys as well 

as long term experience within the study area. It is assumed that trees which are more 

than 50 m away from the trails are unlikely to be logged because new logging trails 

would then be constructed in order to overcome the access difficulties in peat swamp 

forests. Within the 30 m area of the trails, canopy height increased by 0.5 m and AGB 

was reduced by 55 t/ha which makes up 26% of initial biomass. The analysis of the 

50 m area resulted in a canopy height increase of 1.0 m and AGB loss of 42 t/ha which 

is 20% of initial biomass. Although AGB was reduced in both cases, canopy height 

increased which is a result of the fast regrowth. Trees grow fast in height with thin 

trunks and thus slowly accumulate AGB. No other study on AGB loss due to selective 

logging in tropical peat swamp forests could be found. Mazzei et al. (2010) estimated 

AGB loss due to small impact logging in the eastern Amazon on the basis of field 

inventory data to 94.5 t/ha which is equivalent to 23% of the initial AGB. Other studies 

on managed selective logging also based on field measurements in dipterocarp forests 

reported an AGB loss between 33% and 56% of the initial forest biomass (Berry et al. 

2010; Pinard et al. 1996). This comparison emphasizes the different degradation levels 

caused by selective logging in dipterocarp and peat swamp forests.  

The quantitative assessment of burned peat swamp forests revealed that 92% of the 

initial 154 t/ha was lost. Three field inventory measurements were available within the 

study area before (2008) and after (2010) the fire in 2009. On average, 98% of 187 t/ha 

was lost due to fire. Hashimotio et al. (2000) and Hiratsuka et al. (2006) conducted field 

inventory measurements in East Kalimantan on a burned forest area and found 

remaining AGB of 8 - 10 t/ha and 9 -17 t/ha, respectively.  

Managed logged areas in the 1980s and early 1990s were identified on the basis of 

Landsat. In total, 4,529 ha of the study area were affected by logging of which 65% 

were degraded to shrubs, bushes and grassland in 2007 demonstrating the high 

vulnerability of degraded peat swamp forests. Different growth but similar AGB 
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accumulation rates were detected in former logged (2.3 m and 19 t/ha) and completely 

unaffected forests (1.9 m and 20 t/ha) demonstrating faster growth rates of secondary 

forests. Unaffected and unlogged forests contained on average less biomass per hectare 

than former managed logged forests after 20 years of regrowth. This fact can be 

explained by different forest types with various species composition. For example, low 

pole peat swamp forests grow to a maximum height of 20 m. They contain very few 

commercial tree species and only few of these provide good quality timber (Shepherd et 

al. 1997). In contrast, tall interior and mixed peat swamp forests reach a maximum 

height of 45 m and 35 m, respectively, and comprise several tree species of commercial 

importance. Hence, these forest types are subjected to the most intense logging 

(Shepherd et al. 1997). A more detailed analysis of different and repetitive degradation 

levels would be helpful to assess the carbon stocks, growth and AGB accumulation 

rates of the different peat swamp forest types. A variability of AGB up to 140% was 

found in a peat swamp forest within the study area (Jubanski et al. 2012). 

A next step could be the investigation of the variability of peat swamp forests 

considering different forest types and degradation levels leading to a better 

understanding of the forests and their environment. This study demonstrates the 

enormous potential of multi-temporal airborne LiDAR measurements for this kind of 

analyses by accurately estimating AGB dynamics and thereby meeting the requirements 

of REDD+.  
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VII. Synthesis 

1. Summary 

This thesis evaluates the feasibility of SAR imagery to monitor the hydrological effects 

of restoration measurements in tropical peatlands. Furthermore, it examines the 

capability, accuracy, and limitations of different sensors, namely different SAR 

frequencies and polarizations, multispectral RapidEye imagery, and airborne LiDAR 

measurements, to retrieve AGB in Indonesian tropical peat swamp forests. Especially 

for climate change mitigation mechanisms, such as REDD+, accurate spatially explicit 

AGB estimations of carbon rich tropical forests are of high importance. In this context, 

tropical peat swamp forests are relevant, as they store carbon not only aboveground in 

forests but also belowground in thick peat deposits. Field inventories of remote and 

hardly accessible forests are very rare, as they are expensive, time consuming and 

laborious to collect. Hence, remote sensing has been identified as the most cost effective 

way to produce large scale AGB maps. Nevertheless, field inventory measurements are 

mandatory to calibrate and validate AGB estimations based on remote sensing data.  

In a first step, the capability of multi-temporal ENVISAT ASAR (C-band) and ALOS 

PALSAR (L-band) imagery to monitor the hydrological effect of restoration 

measurements of peat was investigated. The restoration included blocking of drainage 

canals by dam building which is one of the most important measures to restore the 

hydrological and ecological functions of peat domes. The sensitivity of SAR to moisture 

was utilized to detect changes in peat soil moisture after dam construction. The 

rewetting of peat soils was successfully monitored, especially in deforested areas with a 

high density of dams resulting in a backscatter increase of up to 1.36 dB.  

This thesis focuses mainly on the potential, accuracy, and limitations of AGB retrieval 

from multi-frequency SAR. Furthermore, multispectral RapidEye and multi-temporal 

airborne LiDAR measurements were evaluated, whereby SAR was most intensively 

investigated. Due to insufficient field inventory plots within SAR images, LiDAR based 

AGB estimations were used to examine the potential of TerraSAR-X (X-band) VV and 

ALOS PALSAR HV polarized data for AGB retrieval. This upscaling from field 

inventory derived AGB to LiDAR estimations provided numerous AGB reference data 

over the whole biomass range from woody regrowth to mature pristine forest, including 
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the spatial variation. This reference dataset offered a powerful basis for SAR analyses in 

terms of sufficient data for AGB model calibration and validation. Multi-temporal SAR 

imagery proved to be more accurate for AGB retrieval than mono-temporal imagery as 

the influences of extreme climatic conditions (e.g. heavy rainfall) are compensated. The 

study further revealed that AGB can be estimated with higher accuracy if TerraSAR-X 

and ALOS PALSAR data are combined than using only single-frequency data, i.e. 

either TerraSAR-X or ALOS PALSAR. The advantage of the synergistic use is the 

combination of the different penetration depths of the SAR signals into the vegetation. 

The multi-temporal combined AGB model saturated at approximately 300 t/ha. Based 

on the results achieved so far, a comparison of methods for AGB retrieval based on 

multi-temporal combined TerraSAR-X and ALOS PALSAR imagery was carried out. 

Multivariate linear regression (MLR), artificial neural network (ANN) and support 

vector regression (SVR) models were examined. Considering not only statistical 

measures but also large scale application, ANN proved to be a superior method to 

predict AGB. Upon closer analysis, the ANN models turned out to require plenty of 

AGB reference data for calibration. Further field inventories had been collected and 

were now directly linked to satellite signals. This reference data set was not suitable to 

apply ANNs. Thus, regression modeling was evaluated to estimate AGB in further 

analyses. AGB derived from field inventory measurements was correlated with multi-

temporal TerraSAR-X HH, RADARSAT-2 (C-band) HH/HV, and ALOS PALSAR 

HH/HV polarized backscatter. Using directly field inventory derived AGB values 

instead of an upscaled reference dataset, a smaller grid size (40 m instead of 100 m) had 

was used because of the similarity to the size of the largest field inventory plot. No 

significant correlation between AGB and RADARSAT-2 HH and HV, and ALOS 

PALSAR HH polarized backscatter was retrieved. The regression modeling of 

TerraSAR-X HH polarized data and field inventory AGB resulted in a higher 

coefficient of determination (r²=0.51) than the correlation between TerraSAR-X VV 

polarized imagery and LiDAR derived AGB (r²=0.46). Furthermore, the regression 

modeling of ALOS PALSAR HV polarized backscatter and LiDAR derived AGB was 

more accurate (r²=0.71) than using field inventory derived AGB (r²=0.68). These results 

reveal that 1) TerraSAR-X HH polarized backscatter is more accurate for AGB 

estimation than TerraSAR-X VV polarized backscatter, and 2) AGB estimations with a 

spatial resolution of 100 m derived from LiDAR upscaled AGB reference data are more 
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accurate than AGB predictions with a resolution of 40 m derived from field inventory 

AGB values. In general, the resolution of AGB estimation influences the accuracy, the 

coarser the resolution, the more accurate are the predicted values (Mascaro et al. 

2011b). Additionally, the upscaling of the AGB reference dataset includes error 

propagation. Hence, an evaluation of AGB estimations of the same resolution based on 

either upscaled or field inventory derived values would be important to conclude if 

numerous upscaled AGB reference data (including error propagation) outperform field 

inventory derived AGB values.  

Furthermore, optical RapidEye imagery was analyzed for the capability to retrieve AGB 

and compared to SAR derived estimations. Spectral mixture analysis (SMA) was 

applied to obtain the amount of green vegetation (GV), non-photosynthetic vegetation 

(NPV) and soil in each pixel. The study revealed that AGB estimations based on 

RapidEye matched fractions are more accurate (r²=0.92) than derived from multi-

temporal combined TerraSAR-X and ALOS PALSAR data (r²=0.68). AGB loss caused 

by small scale selective logging activities was visible within RapidEye derived AGB 

estimations, although the matched fractions saturated around 100 – 150 t/ha.  

Airborne LiDAR measurements have already proven to allow very accurate AGB 

estimations during the upscaling of the AGB reference dataset for the SAR analyses. In 

a last step, multi-temporal airborne LiDAR tracks were investigated for the capability to 

monitor small scale dynamics in AGB and canopy height with a special focus on 

unaffected, selective logged and burned peat swamp forests. The effect of different 

point densities was evaluated first and it revealed no influence on the analyses when 

treated as two independent assessments. Accurate AGB regression models basing on 

LiDAR derived height histograms were developed for the years 2007 (r²=0.77, n=79) 

and 2011 (r²=0.81, n=53) taking also the different point densities into account. No 

constraint of saturation was detected in the higher biomass range. Unaffected peat 

swamp forests accumulated on average 20 t/ha and the canopy height increased by 

2.3 m over this four year time period. Illegal selective logged forests lost on average 

55 t/ha within 30 m and 42 t/ha within 50 m of detected logging trails, although the 

canopy height increased by 0.5 m and 1.0 m, respectively. The discrepancy between 

AGB loss and canopy height increase is explained by fast regrowth of vegetation in 

height with thin trunks thereby slowly accumulating AGB. Burned forests lost 

approximately 92% of the initial biomass. The results demonstrate the great potential of 
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airborne LiDAR measurements to monitor even small scale changes in AGB and 

canopy height with high accuracy.  

2. Benefits and constraints of different sensors for AGB estimation 

In this thesis, data of different sensors, namely SAR, optical, and airborne LiDAR were 

used to retrieve AGB of Indonesian tropical peat swamp forests. This chapter evaluates 

the benefits and constraints of the different sensors for AGB estimation. 

The capability of SAR signals to penetrate clouds, haze or smoke is particularly 

advantageous in the frequently clouded tropics. SAR backscatter is generally sensitive 

to moisture. However, the use of multi-temporal SAR data compensates extreme 

climatic conditions, although annual variability due to extreme dry or wet years 

(particularly influenced by El Niño and La Niña periods) may remain. AGB estimation 

based on SAR is affected by saturation in the higher biomass ranges. In general, the 

saturation level strongly depends on SAR frequency and polarization, forest structure, 

and ground conditions (Lu 2006). 

The acquisition of optical imagery is restrained by the frequent cloud cover in the 

tropics and is dependent on daylight. AGB estimations based on optical imagery are 

also affected by saturation in higher biomass ranges. High resolution RapidEye data 

proved to be more accurate than SAR data, especially when monitoring AGB loss due 

to logging activities. However, the saturation level of RapidEye unmixed fractions is 

with 100 – 150 t/ha lower than the saturation of SAR backscatter.  

LiDAR does not penetrate clouds but has the unique capability to determine the three-

dimensional structure of the vegetation in great detail (Goetz et al. 2009). LiDAR 

derived AGB estimations are widely based on airborne measurements, as only few 

LiDAR instruments operate from satellite platforms. Airborne LiDAR acquisition is 

very expensive and requires sophisticated technical equipment. In this thesis, airborne 

LiDAR derived AGB estimations yielded the most accurate predictions without the 

constraint of saturation in the higher biomass range. Even small scale changes in AGB, 

e.g. felling of one or more trees, could be monitored with high accuracy.  

Regardless from which sensor AGB estimations are derived, there always exists a trade-

off between costs, spatial extent, resolution, and accuracy. Nevertheless, it is very 

important to keep in mind that not always all requirements can be met. Other difficulties 

for monitoring long term AGB dynamics are the availability of repetitive acquisitions 
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and the comparability of multi-temporal datasets because the characteristics and 

conditions of vegetation are rarely stable.  

3. Future research 

Especially in the context of REDD+ and other climate change mitigation mechanisms, 

the importance of accurate carbon stock estimations of tropical forests is increasing. 

New technologies and satellites will provide opportunities for more accurate AGB 

estimations in future. For example, the ICESat-2 satellite is planned to be launched in 

2015 and the ALOS-2 satellite with the PALSAR-2 sensor onboard in 2013. These 

satellites hold out the prospect of data continuity.  

Irrespective of the sensor and its characteristics, the accuracy of AGB estimations 

depends on several other important factors which should be considered for future AGB 

monitoring. A major research topic is the correct choice of allometric equation to 

calculate AGB from field inventories. Several allometric equations have been developed 

for tropical forests (Chave et al. 2005; FAO 1997; IPCC 2006). Up to date, no 

allometric equation has been developed for tropical peat swamp forests. To generate one 

from destructive sampling would help to decrease the bias from generic models. The 

quality and quantity of field inventory plots emerged to be another crucial factor for 

both model calibration and validation. Ideally, plots are randomly distributed over the 

whole biomass range from woody regrowth to pristine mature forests. This is hardly 

possible due to the inaccessibility of tropical forests which would result in high field 

inventory costs. Furthermore, not all biomass ranges are equally distributed over the 

study area, for example regrowing areas containing biomass between 50 t/ha and 

100 t/ha are hard to find and to access within the study area. Additionally, the time gap 

between field inventories and remote sensing data must be considered due to a potential 

regrowth or degradation of the vegetation. Furthermore, the quality and resolution of 

remote sensing data also influences the accuracy of AGB estimations.  

This thesis emphasizes the importance to identify the needs, requirements, and 

capabilities of AGB estimations at the initial stage. 
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