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Abstract

Understanding nature is a deep human desire. Therefore, experiments are carried out and
measurements are performed to shed light onto what is so far unknown. But experiments only
lead to an information gain which is restricted to very limited circumstances and conditions.
In order to generalize information, to derive conclusions relevant to a broader scale, and to
make well-founded predictions, in short, to actually “learn” something, abstract models have
to be established.
Model selection, i.e., finding a suitable model class (here: defining the mathematical frame-
work of the model) is a challenging task. A good model has to strike the balance between
a sufficiently detailed description of the observations (complexity) and a good generaliza-
tion performance (simplicity). More precisely, it has to be as accurate as possible without
overparametrization and overfitting. Graphical models reduce the complexity by encoding
dependencies among random variables, enabling the factorization of the joint probability
distribution into a product of simpler “local” distributions.
After a suitable model class has been selected, the parameters describing it can be estimated
based on the observations (parameter inference). Bayesian methods approach this task by
including prior knowledge and maximizing the posterior probability of the parameters, con-
sidered as random variables, given the observations. Due to the inherent complexity of the
chosen model class, however, this posterior distribution can’t be accessed analytically in many
situations. Approximation algorithms such as Markov Chain Monte Carlo sampling solve this
problem and avoid complex or even infeasible calculations by drawing representative samples
from the distribution of interest. In addition to a simple “best fit”, they provide valuable
information on the uniqueness of the solution and the variability of the parameter estimates
as a function of the data.
Both model selection and parameter inference benefit from the development of increasingly
faster computer systems in recent years, which facilitate the exploration of large model spaces.
Basically, model selection and parameter inference are subject to three major kinds of error:
The model bias arises from the fact that essentially every model class is an abstract and
usually compressed version of the true physical processes involved and hence necessarily not
correct. Since it is difficult if not practically impossible to identify the best model within a
model class, the estimation bias quantifies the difference between the best fit and the estimate
that has been obtained from the inference algorithm. The variance represents the error that
is due to the stochastic nature of measurements. The extent of these errors can and must be
assessed by simulations.
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This thesis is at the interface of statistics and biochemistry. In order to be self contained,
I included the necessary basics from both fields. The focus of this thesis is on parameter
inference using Markov Chain Monte Carlo sampling, i.e., on the parameter estimation within
a given model class. I introduce three approaches which have been developed for different
biological applications. First, I present MC EMiNEM, a sampling scheme that combines
Expectation Maximization with MCMC sampling in the class of NEMs. MC EMiNEM has
been developed for the reconstruction of regulatory networks and was applied to a set of four
perturbation studies on the yeast Mediator, a transcriptional cofactor. We were able to derive
new insights into the functional dependencies within the complex and its interactions with
gene specific transcription factors. Second, I present an analysis method for the processive
degradation or synthesis of biomolecules, based on a set of ordinary differential equations. In
close collaboration with Karl-Peter Hopfner and Sophia Hartung, this method was applied to
quantitatively analyze RNA degradation by the archaeal exosome. The results lead to a more
profound understanding of the involved kinetics, in dependence of both substrate features and
the architecture of the exosome. Third, I describe a reversible-jump MCMC algorithm for
simultaneous model selection and parameter inference. Here, we use the recently developed
class of factor graphs to model cellular decision processes. The method has been applied to
hematopoietic stem cell genealogies.
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Part I.

Mathematical Background



1. A brief outline on statistical modeling

1.1. Model selection

A model is an abstract and usually compressed description of the observed data, in terms of a
certain model class, and a set of parameters that identify the concrete model within this class.
Its construction can be based on established knowledge, extrapolation from similar models
or even merely on intuition. It can be rather specific, such as the 3D model for a protein, or
very general, such as Michaelis-Menten kinetics which can be applied to a variety of enzymes.
Depending on the availability of knowledge and data it can be simple, containing only few
parameters, or rather complex. Ideally, a model enables the generalization of information
gained from specific experiments under predefined circumstances and conditions to derive
conclusions on broader implications, and to make well-founded predictions [50, Chapter 1.2].
This generalizability is the reason why the process of building a model from given data is
commonly referred to as “learning”.
Finding a suitable model is a challenging task. A model has to be appropriate for the situation
it is applied to, which means that it has to answer the questions it is designed for and that it has
to find a reasonable trade-off between complexity and simplicity: On the one hand it has to fit
the measured data at the best, on the other hand it must be able to make general predictions.
In other words, it has to represent all necessary details without overfitting [50, Chapter 4.4].

1.1.1. Overparametrization and overfitting

Overfitting occurs when the amount of (or the kind of) data used to fit a model (the training
set) is insufficient. It means that the model’s parameters are overly dependent on the
training set and results in a poor prediction quality on other datasets [8, Chapter 3.2]. The
risk of overfitting is addressed by Occam’s razor which states that if two model classes are
equally capable of explaining the data, it is better to choose the simpler one. This principle
is supported for three reasons: First, simplicity is preferred for aesthetic reasons, second,
Occam’s razor has shown to be successful in practice, and third, Bayesian inference actually
embeds Occam’s razor and so the simpler solution is indeed more probable [65, Chapter 28].
Reasonable parametrization of the model is in line with Occam’s razor: the number of
parameters describing a model and the amount of experimental data have to be kept sensibly
balanced. If there are not enough measurements available to distinguish between different
parameter choices, the model is overparameterized (also underdetermined or ill-determined),
and notoriously sensitive to overfitting.



1.2 Graphical models 3

The choice of parameters has turned out to be especially challenging in Part III. The aim
of this project was to analyze the impact of various mutations in the archaeal exosome on
its efficiency to degrade RNA depending on the length of the substrate. The data consisted
of measurements of the total amount of RNA for each length at predefined time points,
and the process of RNA degradation was modeled as a set of ordinary differential equations
(ODEs). Yet, the intuitive model consisting of the pure decay rate, as well as association and
dissociation of the substrate to, respectively, from the exosome turned out to be ill-specified
(Section 11.3). A reparametrization of the model together with a reduction in the number of
free parameters could solve the problem. If one still wishes to extend the aim of the project
with regard to a more precise definition of the impact caused by the mutations, additional
measurements will be required.

1.1.2. Strategies for model selection

Model selection can be performed manually based on knowledge and intuition, or automat-
ically based on predefined criteria. Increasingly faster computer systems make it possible
to explore increasingly larger model spaces. Automated model selection has been used in
the reversible-jump MCMC approach applied to the hematopoietic stem cell genealogies in
Part IV. In this case, parameter estimation and model selection alternate since the best model
class is not known a priori. More details are provided in the corresponding part of this thesis,
as well as in Section 2.4.
To avoid overfitting and to provide a sound and unbiased evaluation of the generalization per-
formance of the selected model, three steps based on three different datasets are recommended.
The training set is used to fit the model, i.e., to tune the hyperparameters (e.g., the weight of
the sparseness prior in Part II). Then, the validation set is used to calculate the prediction
error of the current model and to decide whether it is appropriate or not. After a model has
been selected, the test set is used for the final assessment. The amount of data required for
these steps depends on the quality of the data (signal-to-noise ratio) and on the complexity of
the model. It can be reduced by cross-validation or bootstrapping methods [37, Chapter 7.2].
The prediction error of a model is measured by loss functions. An example is the squared error
L(Θ) := ∑

(x,y)(y − f(x; Θ))2, where y is the true target parameter, f(x; Θ) is a prediction
model with parameter set Θ, and x is a data point on which the prediction is based. The aim
is to minimize this loss function [37].

1.2. Graphical models

A model is an abstract representation of observations usually described by a set of parameters.
A statistical model interprets the observations as random variables and assigns probability
distributions {P (D|θ) : θ ∈ Θ} to them, where D is the observed data and θ is an unknown
parameter set taken from the parameter space Θ [107, Chapter 6]. This makes the model
accessible to statistical methods.
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Figure 1.1: In a graphical model, nodes repre-
sent variables and edges represent the dependen-
cies between these variables. Here, the depen-
dency structure allows the following decomposition
of the joint probability distribution: p(a, b, c) =
p(a|c) · p(b|c) · p(c). The figure has been modified
from [8, Chapter 8.2].

Graphical models encode dependencies among the random variables and thus offer a way
to factorize the joint probability distribution into a product of simpler “local” distributions,
that depend only on a subset of variables. As a result, the inference of graphical models
decomposes into inferring the dependency structure on the one hand, and learning the
individual parameters of the local distributions on the other hand [8, Chapter 8]. In general,
this leads to a simplification of the distributions that have to be learned, and hence reduces the
amount of data needed for parameter inference. An example is provided in Fig. 1.1 where the
graphical model allows the decomposition of a joint probability distribution of three random
variables into three local distributions: p(a, b, c) = p(a|c)·p(b|c)·p(c). If one assumes that every
variable may take ten values, at least 103 = 1000 measurements will be required to cover all
possible realizations of the joint probability distribution. However, by taking into consideration
the decomposition enabling the individual assessment of the local probabilities, significantly
less measurements, max. 102 + 102 + 10 = 230, are required. Repeated measurements for all
possible events are the prerequisite for reliable inference, and so this reduction in the amount
of required data or the considerable increase in inference quality for the same amount of data,
respectively, is tremendous. Yet, this factorization comes at a cost. An increase in the number
of distributions can entail an increase in the number of hyperparameters that have to be learned.
Reducing this number of hyperparameters and the complexity of the probability distributions
too much, however, reduces the flexibility of the model, and leads to its oversimplification.
Graphical models are applied in all three parts of this thesis: Every Nested Effects Model
in Part II is a graphical model by itself. In Part III, the structure of the graphical model
is provided by the structure of the kinetic systems. In Part IV, factor graphs are used to
represent cellular decision processes. Taking advantage of the local probability structure, fast
algorithms enable the efficient estimation of parameters in this class of graphical models.

1.3. Bayesian modeling

Bayesian modeling is a special case of statistical modeling. It aims at maximizing the posterior
P (Θ|D) ∝ L(Θ)·π(Θ) = P (D|Θ)·π(Θ), by including prior knowledge on Θ given as probability
distribution prior π(Θ). [37, Chapter 8.3]. So, defining a model in the spirit of Bayesian
statistics, as it is done in all three scenarios described in this thesis, includes defining a
likelihood distribution and a prior. A more elaborate motivation for the use of Bayesian
methods in model selection and parameter inference is provided in Section 2.2.
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Choice of the prior distribution

The prior distribution needs to be chosen with utmost care. An overly strong prior may
override or bias any evidence from the data, while a weak prior may result in an unnecessarily
disperse posterior distribution.
The definition of the prior was particularly important in Part III for the quantitative analysis
of processive RNA degradation by the archaeal exosome: It is reasonable to assume that
the decay efficiency is similar for RNA molecules of consecutive lengths. This constraint
could be incorporated by defining of a smoothness prior which had a strong effect on the
prediction quality. In graphical models, sparseness of edges is a common assumption which
greatly simplifies the learning task. The beneficial effect of a sparseness prior is demonstrated
in Part II. Apart from knowledge-driven approaches for prior specification, data-driven
approaches exist. One of them is the Empirical Bayes method which was applied in Part II
(see Sections 6.2.2 and 7.2.1).

Choice of the likelihood function

The choice of an error model has been crucial in Part III. There, the definition of the likelihood
necessitates the specification of the expected measurement errors which are not known a priori.
We thus developed an adaptive likelihood MCMC where the error model is updated regularly
during the sampling process.

1.4. Bias and variance

Basically, three types of errors play a role in the model selection process. They are illustrated
in Fig. 1.2. The model bias is the mathematical counterpart to George E. P. Box’s appropriate
statement: “Essentially, all models are wrong, but some are useful” [13, p. 424]. It arises from
the fact that each model explains only certain aspects of reality and will in some way or other
differ from the truth. Thus, the model bias describes the difference between reality and the
best model in the selected model class. Since the task of finding the best model within a given
model class can itself be very difficult if not practically impossible, the learning algorithm
may return a model which is not identical to the best one. The estimation bias thus extends
the model bias by quantifying the difference between the best fit and the average estimated
model within the model class. The combination of model bias and estimation bias is referred
to as bias. The bias is a systematic error, and knowing about it allows to correct for it and
to keep it in mind when interpreting the results [37, Chapter 7].
In contrast, the variance is an unsystematic error that originates from the variability within
the data (random fluctuation, e.g., due to measurement errors and replicates). It leads to
a variation within the model space, and thus describes the expected deviation of individual
predictions from the mean (standard deviation) [37, Chapter 7]. It can be assessed through
repeated estimations based on re-sampled data (bootstrapping), however, it is not possible
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to correct for it [50, Chapter 4.2]. Nevertheless, the quantification of a model’s variance
is important to assess the reliability of the predictions made by the model. To allow for
this variability during parameter estimation, an appropriately chosen error model has to be
defined. In Part III, this error model could not be determined beforehand and so an adaptive
likelihood approach with a stepwise adaption of the error model has been developed (see
Section 12.1).
A good model has to find a trade-off between its bias and its variance. High complexity leads
to a good fit of the training sample, i.e., a low bias, but to a high dependence on this dataset,
i.e., a high variance. In contrast, low complexity leads to more robust predictions, i.e., a
low variance, but to a potentially less precise fit of the training sample, i.e., a high bias. To
avoid overfitting, model design and model fitting have thus to be conducted with utmost care,
and the incorporation of an independent test sample is indispensable to find a compromise
between low bias and low variance [37, Chapter 7].

Figure 1.2.: Model bias (light red line), estimation bias (dark red line), and variance (green circles)
are the three major errors in the model selection process. A detailed introduction to the topic is
provided in Section 1.4. Here, they are illustrated based on a true model and two different model
classes (model space 1 and model space 2), which are both more or less appropriate to describe some
observations (data) generated by the true model. Different parametrization leads to a model class
of higher complexity (model space 2; lower variance but higher bias) and to one of lower complexity
(model space 1; lower bias but higher variance). The black dots within the small green circular areas
represent the average estimate within a given model class. Depending on the quality of the estimation
procedure, the average predictions can deviate significantly from the best model (transition point from
the light red line to the dark red line).



2. Parameter inference

When the mathematical model structure is defined (e.g., the system of ordinary differential
equations in Part III), the parameters (e.g., the decay rates in Part III) can be identified
based on the measured data (e.g., the amount of RNA of different lengths at different time
points in Part III). If the model is correct (and identifiable), the data is free of measurement
errors, and enough data (including all essential information) is available, one can simply
identify exactly one set of parameters that is able to reproduce the observed data. However,
as already stated before, this is rarely the case in real-world scenarios, and mathematical
methods have to be applied to derive parameter estimates which approximate the true values
at the best. Estimating model parameters from noise-containing observations is called an
inverse problem [50, Chapter 4.2].

2.1. The frequentist approach

The standard frequentist approach to parameter identification is to find a parameter set
that maximizes a likelihood function L(Θ) = P (D|Θ), i.e., the maximum likelihood estimate
θ̂ML = arg maxθ L(θ), θ ∈ Θ. Under the assumption of independent observations with
Gaussian measurement errors, this function is the sum of the squared errors, and the resulting
approach is well-known as least squares estimation. The question posed by this approach
is rather counterintuitive: “How should the parameters look like to make the data more
probable?” [50, Chapter 4.2]. In this scenario, the likelihood is not considered as a probability
distribution and the parameters are treated as fixed but unknown. The data however is
treated as reproducible, and probability is seen as frequency based on a large number of
observations [9, Chapter 1].

Confidence intervals

It is pointless to assign probabilities to parameters that are treated as fixed [9, Chapter 1].
This has a major influence on the interpretation of confidence intervals: A confidence interval
of confidence level x% only states that, for many repeated estimations based on different
datasets, x% of the calculated confidence intervals include the true parameter. A common
misinterpretation is to say that the parameter is inside the interval with a probability of x%.
This statement would contradict the basic assumption that the parameter is fixed and thus
either is inside the interval or not [65, Chapter 37].
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Nuisance parameters

In some situations, only a subset Θ1 of the model parameters are interesting. If this is the
case, it is important that the remaining parameters (Θ2, the nuisance parameters) do not
interfere with the estimation process. The frequentist approach incorporates the nuisance
parameters by calculating the profile likelihood

LP (Θ1) = sup
Θ2|Θ1

L(Θ1,Θ2),

which results in
LP (Θ1) = L(Θ1, Θ̂2|Θ1).

However, simply plugging the maximum conditional likelihood values into the joint likelihood
function does not take into account uncertainties about the nuisance parameters [9, Chapter 1].

Drawbacks of the approach

Typically, an inverse problem is ill-posed, i.e., a solution does not necessarily exist, and if
one exists it does not have to be unique, and it may vary unstably in response to small
changes in the measurements. A sound parameter estimation procedure therefore needs to
address all these issues by not only producing one single parameter fit, but by providing
additional information about the goodness of this fit and the variability of the estimation
process [50, Chapter 4.2].
This is not met by the frequentist approach to parameter estimation: Even though the
likelihood function is helpful to verify that the model can approximate the data, it only
chooses the (single) best-fitting parameter set and nothing can be said about the uniqueness
of the solution or the variability of the parameter estimates. On the contrary, the Bayesian
approach provides a comprehensive characterization of the posterior distribution of the
parameters given the data. This distribution can be used to assign probabilities to any
hypothesis about the parameters or their relations [50, Chapter 4.2].

2.2. Bayesian parameter estimation

The Bayesian viewpoint to parameter estimation considers the probability as a degree of
believe, and the parameters as random variables which depend on the given data and which
may vary according to our prior beliefs. In other words, starting with a pre-defined prior
parameter distribution, the data is used to update our beliefs, and to arrive at a posterior
parameter distribution which contains all information on the parameters that can be learned
from the data [9]. In particular, in Part III one can answer questions like: “Are the association
and dissociation parameters for one RNA length dependent?” or “Is the parameter distribution
of the catalytic efficiency narrow or wide?” in a precise way by calculating statistical measures
of dependence or dispersion, respectively. If two posterior distributions from two different
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experiments are available, one can even compare models, e.g., by asking for the probability that
the catalytic efficiency for a given RNA length in experiment 1 is higher than in experiment 2.
A comparison between least-squares fitting and Bayesian parameter estimation based on the
RNA decay model is provided in Section 13.1.6.

The posterior distribution

The posterior distribution can be derived from the likelihood and the prior using the Bayes
theorem [9, Chapter 1]:

P (Θ|D) = P (D|Θ) · π(Θ)
P (D) = P (D|Θ) · π(Θ)´

P (D|Θ) · π(Θ)dΘ

Due to the fact that the integral can be difficult to evaluate and that, in general, it is not
necessary to know the exact posterior, the following approximation which provides the same
shape information is used in most applications [9, Chapter 1]:

P (Θ|D) ∝ P (D|Θ) · π(Θ)

Compared to the frequentist approach, the question posed here is rather intuitive: “Given the
data, which is the most probable parameter?” [50, Chapter 4.2]. In this setting, the analogue
of the maximum likelihood estimate is the maximum a posteriori estimate, a parameter set
which maximizes the posterior. However, the Bayesian spirit is better met by taking into
account the mean of the posterior distribution which minimizes the mean-squared error loss
function [9, Chapter 1].

Credible intervals

Unlike the confidence interval in the frequentist approach, the Bayesian credible (or confidence)
interval can easily be interpreted and offers the statement which is usually desired: Based
on the posterior distribution, a x% credible interval can be calculated which actually implies
that the true parameter is inside this interval with a probability of x% [9, Chapter 3].

Nuisance parameters

Unlike the frequentist likelihood, the Bayesian posterior is a probability distribution, and thus
the incorporation of nuisance parameters differs significantly from the frequentist approach.
Here, the marginal posterior for the parameters of interest Θ1 can be calculated by integrating
out the nuisance parameters Θ2:

P (Θ1|D) =
ˆ
P (Θ1,Θ2|D)dΘ2
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This approach allows for all uncertainties with regard to the nuisance parameters [9, Chapter 1].
Integrating out parameters can be time-consuming and thus methods like the Expectation-
Maximization (EM) algorithm have been developed for a more efficient approximation. We
developed an EM algorithm for Nested Effects Models (NEMs) in Part II to deal with their
two-part network structure. More details are provided in Section 7.1.

2.3. The need for computational methods

The main obstacle to Bayesian parameter estimation is that generally the posterior distribution
cannot be derived analytically and that even a numerical analysis is often infeasible. This
long-standing problem was brilliantly solved by Markov Chain Monte Carlo (MCMC) sampling,
one of the major breakthroughs in 20th century statistics. MCMC outputs a sequence of
parameter sets (Markov chain) whose empirical distribution, for long sequences, approximates
(converges to) the posterior distribution [9, Chapter 1].

2.4. Markov Chain Monte Carlo sampling

Markov Chain Monte Carlo sampling provides an elegant way to assess the parameters of a
model, even if the corresponding posterior distribution is not accessible analytically. It outputs
a sample of parameters whose empirical distribution, for long sequences, converges to the true
posterior. Thus, any question that one might ask about the posterior parameter distribution
can, in theory, be answered by looking at a corresponding Markov chain [9, Chapter 2].

2.4.1. Monte Carlo simulation

The idea for today’s Monte Carlo simulation traces back to 1946, when Stan Ulam tried to
figure out the chances to win a particular solitaire laid out with 52 cards. As calculations
turned out to be complicated and exhausting, he had the idea to just play several times and
count. This principle, approximating a complex combinatorial problem by the much easier
process of drawing samples, is the basic idea of Monte Carlo simulations [2, Chapter 1].
Monte Carlo approaches aim at approximating a target density p(x), x ∈ X (with X being a
high-dimensional space) by generating an independent and identically distributed (i.i.d.) set
of samples {x(i)}Ni=1. This set of samples can then be used to estimate, for example, integrals
or maxima of the target function. For simple forms of p(x), straightforward sampling routines
are available. In all other situations, i.e., in most real-world applications, more elaborate
techniques such as Markov Chain Monte Carlo Sampling are required [2, Chapter 2].
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2.4.2. Markov chains

A Markov chain is a stochastic process which yields a sequence of states where one state
depends only on the directly preceding one (the so-called Markov property):

P (x(i)|x(i−1), ..., x(1)) = P (x(i)|x(i−1))

Possible transitions between the states are specified by a transition matrix

T (x(i)|x(i−1)), with
∑
x(i)

T (x(i)|x(i−1)) = 1∀i

If T , T (x(i)|x(i−1)) remains invariant for all i the Markov chain is called homogeneous. A
distribution p(x) is called invariant if the transition matrix is constructed such that after
several steps and for any starting point the chain converges to this distribution. This is
exactly the behavior which is desired if MCMC sampling is used to approximate a posterior
distribution that can’t be assessed otherwise. To induce an invariant distribution, the
stochastic, homogeneous transition matrix T has to be irreducible and aperiodic. Irreducibility
means that any state can be reached from any other state at some point, aperiodicity means
that the chain won’t get caught in cycles. The detailed balance condition (or reversibility) is
a sufficient but not necessary condition for the invariance of a target distribution p(x):

p(x(i))T (x(i−1)|x(i)) = p(x(i−1))T (x(i)|x(i−1))

Thus, by ensuring detailed balance, it is possible to ensure that a target distribution p(x) is
invariant [2, Chapter 3].

2.4.3. MCMC sampling using the Metropolis-Hastings algorithm

MCMC sampling combines the Monte Carlo principle of approximating a distribution by
drawing random samples with the principle of Markov chains, which offers a mathematical
framework to ensure that the derived sample has the desired properties. In this setting, the
unknown parameters are the states of the Markov chain, and a proposal function that suggests
a new set of parameters based on the current one replaces the transition matrix. The main
challenge is to ensure that the Markov chain and the proposal function fulfill the required
properties such that the desired posterior distribution is the invariant distribution of the chain.
To this end, various methods exist. One of them is the Metropolis-Hastings algorithm which I
will introduce in the following. The combination of these methods allows to approximate the
posterior distribution even if it is not possible to sample from it directly.
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The standard algorithm

The Metropolis-Hastings algorithm has first been suggested in 1953 [70] and further extended
in 1970 [38]. Let Θ be the set of unknown parameters, q(Θn → Θn+1) the proposal function,
L(Θ) = P (D|Θ) the likelihood function, and π(Θ) a predefined prior. The Markov chain
is created by starting with an initial set of parameters, and then repeatedly suggesting a
new one and either accepting or rejecting it by turns. The proposal / acceptance steps are
repeated until the chain has converged, and a sufficiently large sample has been derived. This
procedure is delineated in the following:

1. Initialize Θ0

2. Proposal step: Given Θn , draw a candidate Θ′ from the proposal
distribution q(Θn → Θ′)

3.1 Calculate the quantity A = L(Θ′)
L(Θn) ·

π(Θ′)
π(Θn) ·

q(Θ′→Θn)
q(Θn→Θ′)

3.2 Acceptance step: With probability min(A, 1), let Θn+1 = Θ′ (accept).
Otherwise, let Θn+1 = Θn (reject)

4. Increment n by one and repeat steps 2. and 3. until convergence

The quotient in step 3.1 allows to decide upon acception / rejection of the newly suggested pa-
rameter set based on the true posterior distribution without actually requiring the normalizing
factor:

P (Θ′|D)
P (Θn|D) =

L(Θ′)·π(Θ′)
P (D)

L(Θn)·π(Θn)
P (D)

= L(Θ′) · π(Θ′)
L(Θn) · π(Θn)

It can easily be shown that a chain generated by this mechanism fulfills all requirements
(detailed balance with respect to P (Θ|D), aperiodicity, and irreducibility), and actually
converges to the desired posterior distribution [2, Chapter 3].

Requirements, challenges and pitfalls

A MCMC approach has to be designed such that its invariant distribution is the target
distribution, and that it converges quickly to this distribution [2, Chapter 3]. In the following
I will discuss some practical implications.

Initialization The Markov Chain has to converge to the invariant distribution independent
of the initially chosen parameter set [2, Chapter 3]. When setting up a MCMC sampling
approach, this has to be verified in simulation runs.

Choice of the proposal function An appropriate choice of the proposal function is crucial
for the convergence properties of the Markov chain. If the proposal is too wide, the attempted
jumps will be too large and the rejection rate might be very high. This would result in high
correlations between the states which disagrees with the Markov property. If, in contrast,
the proposal is too narrow, the chain will not be able to explore the whole parameter
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space [2, Chapter 3]. A method to assess this so-called mixing behavior of the chain is
introduced in Section 13.2.2 and Fig. 13.15 in Part III. In this application, the proposal function
is adjusted by setting the standard deviation of a log-normal distribution appropriately. In
Part II, the width of the proposal function corresponds to the number of signals graph edges
that are changed in one sampling step (see Section 7.2.2).

Convergence speed, chain length and burn-in phase The convergence speed of the Markov
chain is measured by the number of steps it takes for the chain to reach its stationary
distribution (the so-called burn-in phase). The standard visual control is offered by a
convergence plot which displays the trace of each parameter along the sampling procedure,
see Fig. 13.5 in Part III for an example. After convergence, in the so-called stationary phase,
the variation of the chain does not decrease any further. Only the stationary phase reliably
approaches the probability distribution, and so the burn-in phase is discarded.
The chain has to be long enough to converge to the target distribution, and to produce enough
samples for the subsequent analysis. At the same time, the number of steps are obviously
subject to computational restrictions. A reasonable trade-off has to be found in simulation
runs.

2.4.4. Other MCMC approaches

MCMC without likelihood

MCMC sampling based on the Metropolis-Hastings algorithm allows to approximate a posterior
distribution even if it is not accessible analytically. Yet, it must still be possible to calculate
the likelihood of the parameters. For situations where this is not the case, a Markov Chain
Monte Carlo without likelihoods approach has been developed [66]. In this approach, the
likelihood of the parameters is replaced by the quality of so-called summary statistics. The
summary statistics are calculated from datasets that are simulated based on the parameters
in question, and describe meaningful features of the data. Comparing them to the summary
statistics that have been calculated from the observed data allows to approach the probability
of the underlying parameters.
We tried this approach for the analysis of the hematopoietic stem cell differentiation process
(Part IV) based on various summary statistics (e.g., the branch size or the relative frequency
of double-death siblings). Yet, the approach actually described in the corresponding part of
this thesis turned out to be more successful.

Reversible Jump MCMC sampling

The Metropolis-Hastings approach as described above can only be used when model selection
has already been completed. If the choice of the best model should be incorporated into the
sampling process, the method has to be extended. The reversible jump algorithm yields a
Markov chain where p(m,Θm) is the invariant distribution, with M = {Mm}m=1,...,N being a
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family of models and Θm being the corresponding parameter set. It includes steps where the
model class is changed (so-called model jumps), as well as steps where only the parameters
within the same model class are updated. The main obstacle is that probabilities for model
classes with different dimensions can’t be compared directly, which has to be considered in
the acception step. An efficient solution for this problem has been developed in 1995 [33]. The
acception step is adapted such that it allows jumps between different models. [2, Chapter 3].
More details are provided in the Appendix, Section C.1.
This approach was used in Part IV where the MCMC sampling includes jumps between
the selective and the instructive scenario for hematopoietic stem cell differentiation. In the
selective scenario, differentiation is due to varying cell death rates, while the instructive
scenario implies varying differentiation rates. The respective other parameter is the same for
all lineages that are included in the model.



3. Importance of simulation

Simulations are of tremendous importance both during model selection and parameter inference.
Whether a model is appropriate and whether the designed parameter estimation process
(e.g., MCMC sampling) works properly can’t be evaluated based on the observed data only.
In a simulation scenario, a realistic “true” parameter set is chosen, and noise-containing
measurements are simulated based on this set. In this way, as many datasets as desired can
be produced. Some major advantages of simulation runs prior to the actual analysis of the
observed data are summarized in the following:

Model Selection

• If it is unclear whether all parameters are identifiable in the model, simulations help to
reveal parameter dependencies. See Part III, Section 13.1.1 for an example.

• Bias and variance can be assessed if data exists for which the true parameters are known.
See Part III, Section 13.1.4 for an example.

Parameter inference / MCMC sampling

• Simulations serve to assess the convergence properties of the Markov chain. Multiple,
differently initialized Markov chains are run in order to guarantee a sufficiently fast
convergence as well as an appropriate mixing of the chain. Importantly, the length of the
burn-in phase can be determined, and independence of the initialization can be tested.

• The parameters of the proposal function can be determined.

• The prediction quality of the approach (e.g., sensitivity and specificity) can only be
determined if the true parameters are known. See Part II, Fig. 8.5 for an example.



Part II.

MC EMiNEM maps the interaction
landscape of the Mediator



4. Introduction

The Mediator is a highly conserved, large multiprotein complex that is involved essentially
in the regulation of eukaryotic mRNA transcription. It acts as a coactivator by integrating
regulatory signals from gene-specific activators or repressors to the RNA Polymerase II. The
internal network of interactions between Mediator subunits that conveys these signals is largely
unknown.
Active interventions into the cellular system followed by phenotypic measurements, as op-
posed to purely observational data, provide insight into the functions and interactions of
the respective gene products. Along this line, perturbation experiments have been carried
out with low-dimensional readouts (such as cell viability or growth [31, 108]) as well as
with high-dimensional phenotypes (such as genome-wide expression or DNA binding mea-
surements [41, 43]). While the reconstruction of regulatory networks from observational
high-dimensional gene expression data has been investigated thoroughly (e.g., [5, 88,89]) the
statistical analysis and interpretation of perturbation data is an active field of research [28,109].
Here, we introduce MC EMiNEM, a novel method for the retrieval of functional dependencies
between proteins that have pleiotropic effects on mRNA transcription. MC EMiNEM is
an efficient and robust learning algorithm for Nested Effects Models (NEMs), a class of
probabilistic graphical models that extends the idea of hierarchical clustering. MC EMiNEM
combines mode-hopping Monte Carlo (MC) sampling with an Expectation-Maximization (EM)
algorithm for NEMs. A meta-analysis of four Mediator perturbation studies in Saccharomyces
cerevisiae provides new insight into the Mediator signaling network. In addition to the known
modular organization of the Mediator subunits, MC EMiNEM reveals a hierarchical ordering
of its internal information flow, which is putatively transmitted through structural changes
within the complex. We identify the N-terminus of Med7 as a peripheral entity, entailing only
local structural changes upon perturbation, while Med19 and the C-terminus of Med7 appear
to play a central role. MC EMiNEM associates Mediator subunits to most directly affected
genes, which, in conjunction with gene set enrichment analysis, allows us to construct an
interaction map of Mediator subunits and transcription factors.

The content of this part has been published in Niederberger et al. [77]. Some sections
refer to the supplementary material of this paper which are provided in digital form along
with this thesis. The MC EMiNEM method is freely available as a part of the R/Bioconductor
package nem [25,30,44]. All datasets have been provided by members of the Cramer lab at
the Gene Center.



5. Biological background

Phenotypic diversity and environmental adaptation in genetically identical cells are achieved
by an exact tuning of the cell’s transcriptional program. A variety of components contributes
to this program, including the polymerase, general transcription factors, coactivators, gene
specific transcription factors, and promoter elements. Unraveling parts of the complex network
of involved components and associated interactions is a challenging task. Here, we shed light
on the role of the Mediator complex in transcription regulation in yeast.

5.1. The yeast Mediator complex

The Mediator, first discovered in 1994 [49,51], is a large multiprotein complex which is highly
conserved in eukaryotes [11]. It is a coactivator acting as an interface between gene-specific tran-
scription factors (TFs) and the core transcription machinery (e.g., Polymerase II (Pol II)), and it
is required for basal transcription as well as for activated transcription or repression [17,53,58].
Despite its importance and even though, in the last years, many successful efforts have been
made to gain insight into both structural and functional aspects [10,45,55,56], large parts
of its structure and function are still unknown. This is mainly due to the large size of the
Mediator, as well as to its complexity and flexibility.

Structure

Yeast Mediator consists of 25 subunits with a total molecular weight of more than 1 MDa. It is
organized in 4 different modules (head, middle, tail, and kinase module) which are supposed to
contribute in different ways to the overall function of the Mediator. A schematic representation
of the whole complex is provided in Fig. 8.9, already including the results of this study.
Recently, an excellent review of the state-of-the-art understanding of both Mediator structure
and function has been published [58]. It states that, at the moment, atomic structures are
available for (parts of) 13 subunits which is less than 20% of the total structure. The head
module is best characterized while only few is known about the tail module. It is striking
that most of the folds observed in Mediator do not appear in other parts of the transcription
machinery and that some of them are duplicated within the Mediator (e.g., a four-helix
bundle in Med11/Med22 and Med7/Med21), suggesting the existence of common building
blocks. The structural studies also reveal the existence of functional submodules and the
corresponding flexible linkers connecting them to the rest of the Mediator. These include
for example Med7N/Med31 [56] and Med8c/Med18/Med20 [59]. Furthermore, the review



5.2 A meta-analysis of four Mediator perturbation studies 19

discusses evidence for extensive structural changes of the Mediator complex upon activator
and Pol II binding. These structural changes seem to vary for different activators and are
supposed to promote Pol II binding as well as additional interactions with transcription-related
proteins. In particular, interactions with TBP and TFIIH have been reported suggesting that
the Mediator stabilizes the preinitiation complex.

Function

The Mediator contains so-called activator-binding domains (ABDs) which interact with the
transactivation domains (TADs) of the transcriptional activators. It has been shown that
some subunits contain several ABDs and that some TADs can interact with diverse ABDs
which is supposed to be enabled by the conformational flexibility of the TADs [58]. This
variance of possible interactions induces a great diversity of gene-specific effects, some of
which are reviewed in [10].
The diverse roles of the Mediator in transcription regulation are supposed to include transcrip-
tion initiation (facilitation of the preinitiation complex (PIC) formation by Pol II recruitment
to the core promoter, PIC stabilization), promotion of transcription elongation (by elongation
factor recruitment), or transcript processing (by stimulation of Pol II CTD phosphoryla-
tion) [10,17]. The tail module is thereby believed to establish the contact to the gene-specific
transcription factors while the head and middle module apparently contact Pol II [93]. Conse-
quently, the head module is highly conserved, whereas the tail module is the most evolutionary
divergent one. This is in line with a high structural and functional variability of transcription
factors among eukaryotes [17]. The role of the kinase module is unclear. It is not necessarily
part of the complex and has long been considered as repressive since studies showed that its
presence prevents the binding of Mediator and Pol II [22]. Recent studies, however, suggest
activating roles, in particular, with respect to transcription elongation and the release of
paused Pol II [17].

5.2. A meta-analysis of four Mediator perturbation studies

We combined expression profiles of S.cerevisiae Mediator subunit deletion mutants dMed2,
dMed15, dMed20, dMed31 with data from intervention studies. Those comprise mutations of
Med7 (N- and C-terminal deletion), and point mutants of Med10, Med19, and Med21 (for more
details on the data, please refer to [77]). The raw data is available at ArrayExpress. Although
there exist even more high-quality gene expression data of Mediator mutants (e.g., [3,59]), we
restricted our analysis to experiments that were obtained on the Affymetrix yeast 2.0 array
under similar environmental conditions. Some data are redundant in different experiments
which enabled us to correct for batch-specific effects and to remove outlier genes (for data
pre-processing, see Appendix Section A.4.1). After removing uninformative genes, this results
in a total of 9 perturbations and ∼2500 measurements.



6. A model for the Mediator signaling network

6.1. Nested Effects Models

Nested Effects Models (NEMs) are probabilistic graphical models designed for the analysis of
gene expression perturbation screens [1,24,26,67,68,102,105,110] (see [27] for a summary) by
reconstructing the dependency structure of the perturbation signals. They perform particularly
well if this structure is hierarchical [68] and have so far been applied successfully to the ER-α
pathway of human MCF-7 breast cancer cells [27] and to a signaling pathway in Drosophila
melanogaster [67].

6.1.1. A two-part graphical model

The graph underlying a NEM contains two types of nodes: the perturbed entities (the signals
S, here: the Mediator subunits) and the genes for which expression has been measured (the
effects E). The edges of that graph describe the flow of regulatory information between the
nodes. NEMs split this flow into two parts: the signals graph Θ containing the edges between
the perturbed entities, and the effects graph H describing the assignment of the effect nodes
to the signal nodes. We identify the graphs Θ and H with their respective adjacency matrices
Θ ∈ {0, 1}S×S , H ∈ {0, 1}S×E . The experimental data is summarized in an S × E matrix
D = (Djk), where Djk corresponds to the expression data obtained from measurements
of effect k upon perturbation of signal j. NEMs aim at reconstructing the signals graph,
assuming a particularly simple regulatory structure: The perturbation of a signal j implies
the perturbation of other signals that are children of j. This in turn perturbs the effect nodes
that are the children of the perturbed signals in the effects graph (see Fig. 6.1). In other
words, the NEM predicts an effect of gene k upon perturbation in signal j exactly if there is a
two-step path from j to k, i.e., if (ΘH)jk > 0.

6.1.2. Parametrization and probability model

These binary predictions of our model are then linked to the actual measurements by specifying
a probability model for the individual effects gene measurements,

pjk = P (Djk|j has an effect on k) = P (Djk|(ΘH)jk > 0) , and

qjk = P (Djk|j has no effect on k) = P (Djk|(ΘH)jk = 0)
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Figure 6.1: NEMs - an example. S = {X,Y, Z},
E = {a, b, c, ..., l}. Shaded matrix fields Dj,k cor-
respond to an expression change of effect gene k
upon perturbation of signal j, white fields indicate
no change in expression. The edges Y → X and
Y → Z cause an effect in genes directly attached to
signal X and Z respectively, when Y is perturbed.

There is extensive literature on the estimation of these two distributions, see [91, 97]. We
adhere to the method proposed in [102]. Consequently, a NEM is parametrized by the tuple
(Θ, H) ∈MS ×ME , whereMS is the space of binary S ×S matrices with unit diagonal, and
ME ⊂ {0, 1}S×E is the space of effects graphs. We assume that the effects graph is sparse,
such that each effect is linked to at most one signal (i.e., each column of H ∈ ME equals
either a unit base vector of dimension n, or the null vector). It is convenient to transform the
data matrix D into the log-odds matrix R = (Rjk) = log(pjk

qjk
). According to [102], the log

posterior of the signals graph is given by

logP (Θ, H|D) = trace(ΘHRT ) + log π(Θ, H) + const (6.1)

For a derivation of Eq. 6.1, see also the Appendix, Section A.1.

6.1.3. Applying NEMs to the Mediator

In this application, the signals S correspond to the perturbed Mediator subunits, while the
effects E correspond to the genes for which expression has been measured. The distinction
between signals graph and effects graph allows the selective optimization of the regulatory
structure among the Mediator subunits, and to make use of the underlying attachment
of effects to signals at the same time. Due to an expected hierarchical structure of the
transcriptional effects upon Mediator subunit perturbation (see Section 8.2.2, first paragraph),
NEMs are the suitable model class for this analysis.
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6.2. Prior choice

We assume edge-wise independent priors, π(Θ, H) = πS(Θ) · πE(H), and π(Θ) = ∏
i,j π

S(Θij),
πE(H•k) = ∏

k π
E(H•k).

6.2.1. The signals graph prior

In the absence of prior knowlege, a uniform prior is chosen (i.e., edge frequency = 0.5).

6.2.2. The effects graph prior

It is not obvious how the effects graph prior should be defined. Being most conservative, πE

can be chosen uniform, i.e., πE(H) = const for all effects graphs H ∈ ME . The posterior
P (Θ|D) is then proportional to the marginal likelihood P (D|Θ). On the other side, upon
availability of precise prior knowledge, πE can be chosen deterministic, i.e.,

πE(H) =

1 if H = Hprior

0 otherwise

for some fixed adjacency matrix Hprior. In this case, the posterior is proportional to the full
likelihood P (D | Hprior,Θ). As a trade-off between these two extremes, we initialize πE in a
data-driven fashion (based on R), namely

πEk (H•k = v) ∝


pjk

pjk+qjk
= (1 + expRjk)−1 if v = ej , j ∈ S

mean( pjk

pjk+qjk
|j ∈ S) if v = 0

, k ∈ E (6.2)

This prior will be updated regularly during the MCMC sampling in an Empirical Bayes
procedure (see Section 7.2.1 for more details).

6.3. Structure learning in NEMs

The problem of structure learning in probabilistic graphical models is generally computationally
hard (see [60]). A range of methods has been proposed for the maximization of Eq. 6.1. It
has been observed that it is very difficult to estimate the effects graph H reliably. This is
not surprising, since the adjacency matrix H has the same dimensions as the data matrix D.
The main interest being the reconstruction of the signals graph Θ, several approaches try to
maximize the (marginal) structure posterior P (Θ|D) by integrating out the hidden parameters
H (for a methods review, see [27]). This marginalization however is a time consuming step
that increases the complexity of the respective algorithms by at least a factor of |E|, making
the analysis of larger effects sets (such as in microarray studies) slow or even impossible. We
avoid this drawback and develop an efficient Expectation-Maximization (EM) algorithm for
the optimization of the NEM structure posterior (EMiNEM), which, even for large expression
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datasets, is able to detect a local maximum within seconds. Since the landscape of the
structure posterior is rugged (Fig. 6.2), we combine EMiNEM with mode-hopping Markov
Chain Monte Carlo sampling (MC EMiNEM) for an efficient optimization of the structure
posterior.

Figure 6.2.: NEM posterior distribution. This figure illustrates how the likelihood varies when only
few edges (here: 1 to 3) are changed, based on randomly sampled fixed graphs (white lines) and relative
to a fixed representative random graph sample (light gray). The underlying data is the real Mediator
perturbation data, where Med10 and Med21 are combined to one signal node (i.e., |S| = 9), as a prior
for the effects graph the data-driven prior has been used (according to the initialization of the MCMC
sampling). On the x-axis, different graph densities are compared. The strong variation within very
similar graphs demonstrates how rugged the landscape is. Given that the underlying data of this figure
is the real data, the observed decrease of likelihoods following the increase of edge frequency yields
extra information: It shows that the Mediator graph we are looking for tends to be rather sparse, which
is a confirmation for the choice of the earlier mentioned sparseness prior during MCMC sampling.



7. Parameter estimation by EM and MCMC
sampling

7.1. Finding a maximum a posteriori estimate with the EM
algorithm

Throughout this section, the data D respectively the matrix R is considered given and fixed.
We want to find the maximum a posteriori estimate Θ̂ for the signals graph,

Θ̂ = arg max
Θ

P (Θ|D) = arg max
Θ

∑
H∈ME

P (Θ, H|D) (7.1)

This is the classical situation in which Expectation-Maximization is applicable [19]. For
excellent introductions to the EM-algorithm, we recommend the tutorials of [18,72,76]. Briefly,
given some guess Θt for Θ̂, the EM algorithm describes how to find an improved guess Θt+1

such that the sequence (P (Θt|D))t=1,2,... is monotonically increasing, and converges (under
mild additional assumptions that are met in our case) to a local maximum of P (Θ|D).
The expectation (E-)step of the EM algorithm involves calculating the expected log-posterior
with respect to the distribution of H, given the current guess Θt:

Q(Θ; Θt) = EP (H|D,Θt) [ logP (Θ, H|D) ] (7.2)

The maximization (M-)step of the EM algorithm then consists of finding the maximizer
Θt+1 = arg maxΘQ(Θ; Θt). This is usually a much easier task than solving Eq. 7.1 directly.
We derive an analytical solution, which leads to an efficient closed-form update step for Θt+1:

Θt+1
ab =

1 if ∑k∈E Rakπ
E
bk exp((RTΘt)kb)(Ak)−1 + τab > 0

0 otherwise
for a, b ∈ S (7.3)

A precise definition of the variables contained in Eq. 7.3, together with a detailed derivation
of this formula is deferred to the Appendix, Section A.1, as it involves elementary but tedious
calculations.
The EM algorithm is guaranteed to find a local maximum which, for unimodal distributions,
equals the global optimum. In practice, the posterior landscape P (Θ|D) can be very rugged
(see also Fig. 6.2). The outcome of the EM algorithm may therefore strongly depend on its
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Figure 7.1: Pitfalls: local maxima. Considering
an extract ofMS , where Θ includes the edge a→ c,
two different states are possible: either both edges
a→ b and b→ c are missing (medium probability,
indicated by orange) or both of them exist (high
probability, indicated by red). A graph which in-
cludes only one of them has a low probability (in-
dicated by blue). Thus, based on a Θt = {a→ c},
EMiNEM is not able to cross the low-probability
states to arrive at the high probability state, chang-
ing only one edge at the same time.

initialization, and it may be far from the global optimum (see also Fig. 7.1). This raises the
need to explore the set of local maxima provided by EMiNEM.

7.2. Sampling of the signal posterior’s local maxima

Markov Chain Monte Carlo sampling offers a way to reliably explore the set of local maxima
derived by EMiNEM. Similar so-called mode hopping optimization approaches have been
established in [62,75,90,106], with applications in areas such as protein folding [15], nanocluster
structure analysis [48] and reconstruction of signaling pathways [47]. A theoretical motivation
is provided in Appendix Section A.2.1. For a general introduction to Markov Chain Monte
Carlo sampling and its requirements and challenges (in particular, the importance of the
features discussed in the following), please refer to Section 2.4.
The basic MC EMiNEM procedure is illustrated in Fig. 7.2. It deviates from the classical
Metropolis-Hastings MCMC approach by adding an EM step to every acception/rejection
step to restrict the estimation of parameters to the local maxima. In this context, Θ ∈MS
refers to an element of the general signals graph space, while Θ̂ ∈ N refers to an element of
the space of local maxima. The details of the implementation are explained in Section 7.2.2.

7.2.1. An Empirical Bayes method for the effects graph prior

As outlined in Section 6.2.2, the effects graph prior is initialized in a data-driven manner.
However, to the degree to which the Markov chain converges to the desired posterior distri-
bution in the sampling procedure, we gain information on the signals graph structure. To
incorporate this information into the remaining sampling steps, the prior is updated on a
regular basis: In an Empirical Bayes approach, we iteratively estimate P (Θ|D) and P (H|D),
and use these distributions as priors for the estimation of the other quantity, respectively.
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Figure 7.2.: The search strategy used by MC EMiNEM can be perfectly illustrated based on this
mountain view from the top of the Hintere Karlesspitze in the Stubai Alps. The green dots represent
the sampled signals graphs Θ ∈MS forming the underlying Markov chain (the green line). At every
step the EM algorithm is applied to identify the corresponding local maxima Θ̂ ∈ N (the red dots).
The sequence formed by the local maxima (one for every Θ in the Markov chain) is then used to assess
the posterior distribution. This combination of Expectation Maximization and MCMC sampling offers
a way to restrict the sequence derived from the sampling process to the most informative parameters.

Our Empirical Bayes procedure is:

1. Initialize πE in a data-driven fashion (Eq. 6.2); choose πS uniform.

2. Generate a representative sample (Θ̂i)i=1,2,... from P̂ (Θ|D) by mode-hopping MCMC,
given the prior distributions πE and πS .

3. Replace πE(H) by ∑
j P (H|Θ̂j , D), which is taken as an approximation for

P (H|D) = ∑
Θ∈MS P (H,Θ|D) = ∑

Θ∈MS P (H|Θ, D) · P (Θ|D). For more details,
see Appendix Section A.2.2.

4. Repeat steps 2 and 3 until convergence (see Section 7.2.2 for details).

7.2.2. Implementation of the sampling procedure

Initialization

The chain is initialized with a randomly sampled signals graph Θinit, based on a sparse edge
frequency (pedge = 1

|S|).

Proposal function

Suggesting a new signals graph Θ′ is based on the signals graph Θn of the previous step.
Thus, the proposal function is independent of the local maxima. Simulation has demonstrated
(results not shown) that randomly selecting 1.5 · |S| edges and replacing them according to
the predefined, sparse edge frequency (pedge = 1

|S|) yields a sufficient acceptance rate as well
as a good mixing behavior of the chain.



7.2 Sampling of the signal posterior’s local maxima 27

Acception / Rejection

The newly suggested parameter is accepted (and added to the chain), if

log(u) < min(0,
(
logL(Θ̂′) + log π(Θ̂′) + log q(Θ′ → Θn)

)
−
(
logL(Θ̂n) + log π(Θ̂n) + log q(Θn → Θ′)

)
+ wsparse ·

(
log πsparse(Θ

′)− log πsparse(Θn)
)
) , with u ∼ U(0, 1) ,

otherwise it is rejected and the old parameter is added once again. Note that Θ is the signals
graph suggested by the proposal function, while Θ̂ is the corresponding local maximum derived
by EMiNEM, as explained in the main text. Thus, due to the inclusion of the EM algorithm,
the suggestion of parameters refers to the whole signals graph spaceMS while the evaluation
of the proposal refers to the space N of local maxima.
An additional prior πsparse(Θ) for sparsity of the suggested graph is included and the corre-
sponding weighting parameter wsparse = 0.5 has been determined in simulation runs (variation
of wsparse did not change the results qualitatively, data not shown). For reasons of clarity, the
sparsity prior is shown separately in an extra line.

Chain length, Empirical Bayes and burn-in phase

Each chain consists of 60000 steps. According to the Empirical Bayes procedure, the effects
graph prior is updated every 5000 steps, which has proved to be most suitable in simulation
runs (data not shown). Determining the burn-in phase is trivial: traceplots of the simulation
runs showed that after well less than the 60000 steps the chain converges to one final Θ̂, i.e.,
the MCMC sampling can be seen as an additional EM algorithm (see Fig. 8.1). The MCMC
runs of the Mediator data showed the same behavior (see Fig. 8.6). Thus, any information
drawn from this final part of the sequence is good. However, for reasons of consistency, and
since the effect gene attachment is updated every 5000 steps, only parameters according to
the final attachment, i.e., the 5000 last parameters of the sequence are retained.

Best fit

The Markov chain provides an approximation of the posterior distribution of the parameters.
We extract one “resulting” signals graph from this chain by weighting all edges by their
frequency in the last 5000 steps and only retaining those that appear in at least 50%. In
general, this marginalization might result in a loss of information because dependencies
between edges are not considered any more. However, since the Markov chain in our case
converges very fast to a unique, dominating signals graph which will then be extracted as the
resulting graph, there basically is no marginalization and so this problem does not arise here.



8. Results & Discussion

8.1. Simulation

Datasets have been simulated as explained in Section A.3.1.

8.1.1. Assessment of the MCMC sampling behavior

Independence of initialization.

For six simulated NEMs, randomly chosen from two parameter settings (one with |S| = 8 and
β − level = 49%, the second with |S| = 11 and β − level = 20%) 10 runs have been performed,
each initialized with a different signals graph. For all six datasets, the ten results where the
same, i.e., independent of initialization (data not shown).

Convergence

The convergence of the Markov chain has been verified in simulation runs. Traceplots for
the example mentioned in Appendix Section A.3.1 (Fig. A.1, Fig. A.2) are shown in Fig. 8.1
(all edges) and Fig. 8.2 (selected edges). It is apparent that the sampled graphs comprise
significantly more edges than the local maxima and that they vary strongly throughout the
whole sampling process, while the local maxima vary slower in a more restricted model space
and converge in the second half of the Markov chain. This is in line with the construction of
the method and what has been discussed previously: Crucial for the success of the parameter
estimation is the convergence of the Markov chain of local maxima, on which the calculation of
the likelihood is based. Since several signals graphs from the underlying sequence of sampled
graphs can yield the same local maximum they are not distinguishable, as long as they are in
accordance with the general sparseness assumption.

Attachment of effects

The development of the attachment of effects to signal nodes during the Empirical Bayes
procedure, again for the examples in Fig. A.1 and Fig. A.2, is visualized in Fig. 8.3. Obviously,
some effects turn out to be rather deterministic, while others remain indecisive until the end
of the Markov chain. The attachments predicted by MC EMiNEM are compared to the true
ones in Fig. 8.4. While most of them agree very well, the attachments to signal node d are
poorly reproduced. This corresponds to the missing edges in the predicted signals graph,
which is depicted in Fig. A.2.
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Figure 8.1.: Traceplot of all edges, simulation. Here, |S| = 8 and β − level = 49%. The left panel
shows the traceplot for the sampled graphs (Θi)i=1,2,..., the right panel shows the traceplot for the
corresponding local maxima (Θ̂i)i=1,2,.... The MCMC steps are depicted on the y-axis (from top to
bottom), individual edges on the x-axis, thus, one line in the traceplot corresponds to the signals graph
of the corresponding MCMC step. Black fields indicate the presence, white fields the absence of a given
edge in a given MCMC step. Completely black columns represent self-loops, which are defined to be
present in the mathematical formulation and included here for reasons of clarity. The sampled graphs
comprise more edges and vary stronger, as compared to the sequence of local maxima. A discussion of
this behavior is provided in the main text (Section 8.1.1).
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Figure 8.2.: Traceplot of selected edges, simulation. Here, |signals| = 8 and β − level = 49%. The
upper panel shows the traceplots of selected edges in the sequence of local maxima (Θ̂i)i=1,2,..., the
lower panel shows the traceplot of these edges in the sequence of the underlying sampled signals graphs
(Θi)i=1,2,.... On the x-axis, extracts of the MCMC steps at the beginning (1 − 1500) and the end
(57500 − 60000) of the chain are depicted. Selected edges (edges that vary in the sequence of local
maxima) are depicted in different colors. Stacked on the y-axis are values of 0 and 1 for each edge,
corresponding to the absence and presence of the edge at a given MCMC-step. As in Fig. 8.1, the
sampled graphs comprise more edges and vary stronger, as compared to the sequence of local maxima.
A discussion of this behavior is provided in the main text (Section 8.1.1).
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Figure 8.3.: Development of attachment entropy, simulation. For each effect j in each Empirical
Bayes step l, the Shannon Entropy is calculated as −

∑
j∈S H

l
jk · log2 H

l
jk. On the y-axis, the Empirical

Bayes steps are depicted (from top to bottom), on the x-axis, the effects are listed. The colors indicate
the entropy, relative to the maximal one (when, for a given effect, the attachment probability is the
same for any signal node (or no signal node at all)). Obviously, even though the initial prior for
the effects graph is calculated according to the data matrix, the entropy is still very high. During
the Empirical Bayes procedure, some effects turn out to be rather deterministic, while others remain
flexible until the end of the Markov chain.

Figure 8.4.: Prediction quality for the effects graph. Here, an entry in row i and column k depicts the
probability that an effect, attached to signal node i in the simulated model, is attached to signal node
k in the predicted model (i.e., rows correspond to the true attachment, columns to the predicted one).
Light gray corresponds to low probabilities, dark gray to high ones (see the scale on the right-hand
side). The predicted attachment corresponds very well to the true one in most cases, except for effects
attached to signal node d – which corresponds very well to the missing edges including d during the
prediction the signals graph (Fig. A.2).
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8.1.2. Prediction quality

The prediction quality was assessed in seven parameter settings for different noise levels and
different numbers of signal nodes, with 1200 observed effect genes and a total number of 0.7 · |S|
edges in the signals graph. For each of these scenarios, 50 NEMs were randomly sampled
(for details see Appendix Section A.3.1). In each case, data were generated and afterwards
analyzed with various methods: a simple EMiNEM approach without Markov Chain Monte
Carlo sampling, the original NEM score [67], the Nessy method [102], and a random sampling
approach (for details on the competing methods, see Appendix Section A.3.2). For all methods,
the sensitivity strongly depends on the noise level and the number of signal nodes (Fig. 8.5A).
MC EMiNEM performs best throughout all tested parameter settings, except for low noise
where Nessy achieves a similar sensitivity. The specificity of all methods is very high, with a
value above 98% in all scenarios.

8.1.3. Influence of the Empirical Bayes procedure

Our approach attempts to maximize the marginal posterior P (Θ|D). This quantity implicitly
depends on the effects graph prior πE(H). Therefore, we seek a prior for which the true
signals graph Θtrue scores on the top end of the distribution P (Θ|D). It has been shown that
NEM models are asymptotically consistent and identifiable [102], i.e., given the true effects
graph as a deterministic prior πEtrue, the true signals graph will score best. Thus, a well-chosen
effects graph prior might greatly improve the prediction outcome. We tested the following
priors: a deterministic prior according to the true effects graph, our Empirical Bayes prior
(see Section 7.2.1), the data-driven prior used for the initialization of the MCMC sampling
(see Section 6.2), and a uniform effects graph prior. The quality of an effects graph prior is
assessed in two ways: First, we calculate the average L1-distance between the prior πE(H•k)
to the true prior πEtrue(H•k), where k ∈ E , and normalize it by dividing through the maximum
gene-wise L1-distance, which is 2. Secondly, we calculate the position of P (Θtrue|D) within
the marginal posterior distribution P (Θ|D). Each posterior distribution was approximated by
the empirical distribution of P (Θ|D) for a random sample of 5000 signals graphs. This was
done for the 50 NEM samples that were generated in the most realistic simulation scenario
(11 nodes, α = 0.05, β = 0.49, see Fig. 8.5A. The results show that the Empirical Bayes
prior approaches the true prior better than the other methods, according to the L1-distance.
Furthermore, the resulting posterior is better able to distinguish between signals graphs and
to identify the true one (the true graph is located at the 99.1%, 99.4%, and 99.9% quantile
for the uniform, data-driven and Empirical Bayes prior, respectively, and at the maximum for
the true effects graph; see Fig. 8.5B.
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Figure 8.5.: (A) Prediction quality. Comparison of the sensitivity of MC EMiNEM and four
alternative methods for four different noise levels (top) and four different signals graph sizes (bottom).
The sensitivity is depicted on the y-axis, each frame corresponds to one parameter setting. Top: For a
signals graph of 11 nodes, noisy datasets were generated such that for an optimal test with a type-I
error (α-level) of 5%, a type II error (β − level) of 0.04%, 20%, 49%, and 66% would be achieved,
respectively. Bottom: For a noise level corresponding to an error level of (α = 5%, β = 49%), signals
graph sizes of |S| = 5, 8, 11, 14 are investigated. We expect our application to range within the four
central scenarios. (B) Influence of the Empirical Bayes procedure. Here, for the standard setting
|S| = 11 and (α = 5%, β = 49%). The x-axis shows the calculated marginal posterior values P (Θ|D)
centered at P (Θtrue|D) (indicated by the dashed vertical line), on the y-axis the frequency is displayed.
In the table, the percentages of signals graphs scoring higher than Θtrue are provided, as well as the
L1-distances (relative to the maximum).
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8.2. Application: The signaling network of the yeast Mediator

8.2.1. Assessment of the MCMC sampling behavior

As for the simulation, the MCMC sampling behavior has also been assessed for the Mediator
data. Convergence traceplots are shown in Fig. 8.6 (all edges) and Fig. 8.7 (selected edges).
The development of the attachment of effects to signal nodes during the Empirical Bayes
procedure is visualized in Fig. 8.8. Basically, the Markov chains for the Mediator data show
the same behavior as for the simulated data (see Section 8.1.1). Due to more distinct entries
in the ratio matrix, however, the variance within the chains is reduced and the preferred
attachment of effects is clearer.

Figure 8.6.: Traceplot of all edges, Mediator data. Only the first 5000 MCMC steps are shown,
since the chain converges very fast to one final signals graph (see also Section 7.2.2). The left panel
shows the traceplot for the sampled graphs (Θi)i=1,2,..., the right panel shows the traceplot for the
corresponding local maxima (Θ̂i)i=1,2,.... The MCMC steps are depicted on the y-axis (from top to
bottom), individual edges on the x-axis, thus, one line in the traceplot corresponds to the signals graph
of the corresponding MCMC step. Black fields indicate the presence, white fields the absence of a given
edge in a given MCMC step. Completely black columns represent self-loops, which are defined to be
present in the mathematical formulation and included here for reasons of clarity.. The sampled graphs
comprise more edges and vary stronger, as compared to the sequence of local maxima. A discussion of
this behavior is provided in the main text (Section 8.2.1).
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Figure 8.7.: Traceplot of selected edges, Mediator data. The upper panel shows the traceplots of
selected edges in the sequence of local maxima (Θ̂i)i=1,2,..., the lower panel shows the traceplot of these
edges in the sequence of the underlying sampled signals graphs (Θi)i=1,2,.... On the x-axis, extracts of
the MCMC steps at the beginning (1− 1000) and the end (59000− 60000) of the chain are depicted.
Selected edges (edges that appear in > 40 MCMC steps in the sequence of local maxima) are drawn in
different colors. Stacked on the y-axis are values of 0 and 1 for each edge, corresponding to the absence
and presence of the edge at a given MCMC-step. As in Fig. 8.6, the sampled graphs comprise more
edges and vary stronger, as compared to the sequence of local maxima. A discussion of this behavior
is provided in the main text (Section 8.2.1).
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Figure 8.8.: Development of attachment entropy, Mediator data. For each effect j in each Empirical
Bayes step l, the Shannon Entropy is calculated as −

∑
j∈S H

l
jk · log2 H

l
jk. On the y-axis, the Empirical

Bayes steps are depicted (from top to bottom), on the x-axis, the effects are listed. The colors indicate
the entropy, relative to the maximal one (when, for a given effect, the attachment probability is the
same for any signal node (or no signal node at all)). Obviously, compared to the simulation results,
the overall entropy is already much lower in the initial effects graph prior. Furthermore, most effects
showing a high entropy in the first step converge to a preferred attachment very fast, only few edges
show no preferences.

8.2.2. Results

MC EMiNEM predicts a robust Mediator subunit network

The perturbation of a central Mediator subunit can have severe consequences on the structure of
the whole Mediator complex. It may cause the loss of whole modules or specific submodules [59,
99, 111]. The perturbation of a peripheral component might have only local effects on the
Mediator structure and, consequently, have fewer effects on transcription. From the structural
organization of the Mediator, we therefore expect a hierarchy of transcriptional effects upon
subunit perturbations, which makes NEMs a suitable tool for their analysis. As a result of a
NEM analysis, we expect the central Mediator subunits that have widespread effects upstream
in the signals graph, whereas the more peripheral components should lie downstream. Due to
its role as a general transcription factor involved in the formation of the transcription initiation
complex, a perturbation of the Mediator can entail global changes in gene expression [39].
Such effects are completely removed by our normalization procedure and can therefore not be
detected. Our focus in the present study, however, is on effects that are due to the interaction
of the Mediator with gene-specific transcription factors. These effects are restricted to the
target genes of the interacting transcription factors. They superimpose to the possible global
effects of a Mediator perturbation, and hence become visible only after removal of the global
effects.
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A straightforward application of the MC EMiNEM algorithm led to identical results in nine
out of ten independent MCMC runs; the tenth run differed only by one edge (see Appendix,
Fig. A.3 and Fig. A.4). The runs revealed a bi-directional edge assigned to the Med10 and
Med21 nodes, which means that these two subunits are indistinguishable in terms of their
intervention effects. Their attached effect genes are interchangeable without affecting the
model’s likelihood. Therefore, according to [102], we combine the two subunits and treat

Figure 8.9.: Mediator network inferred by MC EMiNEM, with associated transcription factors (the
basic Mediator cartoon was modified from [54]). The numbers of the Mediator subunits correspond
to the unified Mediator nomenclature [12] and subunits that are part of this study are enlarged and
have saturated colors. The two subunits Med10 and Med21 were merged as explained in the main text.
The N-terminus and the C-terminus of Med7, which are represented by two individual perturbations
in this study, are shown separately. Physically, they are connected by a flexible linker [55]. The arrows
between the Mediator subunits show the signals graph of our MC EMiNEM analysis, arrow colors
correspond to the module they originate from. The TFs surrounding the Mediator are the outcome of
a gene set enrichment analysis of the MC EMiNEM effects graph. TFs are grouped into gray areas
which link them to the Mediator subunit for whose target genes they are enriched. For each TF,
minus, respectively plus signs indicate whether their targets are down-, respectively upregulated upon
perturbation of the corresponding Mediator subunit. The results of the gene set enrichment analysis
were compared to known interactions between TFs and Mediator subunits in BioGRID [95,96]). Red:
the interaction with the corresponding Mediator subunit is known; orange: an interaction with a
Mediator subunit in the same module is known; dark yellow: confirmed interaction with the Mediator;
white: no known interaction.
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them as one node (see Appendix Section A.4.1). When Med10 and Med21 were combined,
ten independent MC EMiNEM runs gave identical signals graph predictions (Fig. 8.9 and
Appendix, Fig. A.5). The corresponding attachment of effects to signal nodes is provided in
the Supplementary file 3 of [77], which is provided in digital form along with this thesis.

MC EMiNEM confirms the Mediator architecture

The predicted Mediator network (the signals graph in Fig. 8.9) agrees well with current
knowledge about the Mediator structure [45, 55]: When removing the downstream Med7N
node, the signals graph is separated into three connected components that reflect the modular
organization of the Mediator (middle module: Med7C, Med19, Med10Med21, Med31; head
module: Med20; tail module: Med2, Med15). While the overall module organization of the
Mediator can also be recovered from a simple clustering analysis (see Fig. A.6), MC EMiNEM
reveals a much finer structure by assigning a directionality to each edge. Med7N is downstream
of all other nodes, indicating that among all perturbations that were applied, it has the least
effects on transcription. It shows that there is a set of effects genes (attached to Med7N
in the NEM) whose transcription depends on an entirely intact Mediator complex. The
middle module component consists of a Med7C, Med10Med21 and Med19 upstream part,
and a Med31, Med7N downstream part. Again, this conforms to its physical architecture:
Med7C/Med10Med21 and Med7N/Med31 form stable complexes [55]. We conclude that
the former are central architectural components, whereas the latter are peripheral. Indeed,
Med7N/Med31 are only weakly attached to the middle module, and easily dissociate from it,

Figure 8.10.: Effects graph inferred from the Mediator data. Shown are the log-odds ratios which
serve as MC EMiNEM’s input. Genes that are likely to change in a given condition are depicted in
red,and they are blue otherwise. Color saturation indicates the absolute value of the log-odds ratio (cf.
Appendix, Fig. A.5). Rows correspond to Mediator perturbation experiments, columns correspond to
genes, sorted according to their attachment to Mediator subunits. Mediator subunits are colored as in
Fig. 8.9 and Fig. 8.11.
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whereas Med7C/Med10Med21 are essential for its architecture [55]. The position of Med19
yet is still unclear [4, 98]. In our model, however, Med19 is clearly placed in the center of
the middle module. The tail module interacts with gene-specific transcription factors and is
structurally less analyzed [58]. The NEM includes an edge from Med15 to Med2 and thus
suggests a more central role for Med15 than for Med2, because the effects upon perturbation
of Med2 are a subset of the respective Med15 effects (see Fig. 8.10 and Fig. A.5).

Figure 8.11.: Gene set enrichment analysis. (A) Expression changes of the target genes of SKO1
across all experiments. Experiments correspond to rows; the respective Mediator subunit perturbations
are indicated by the colored boxes to the left of the heat map (coloring is in accordance with the
Mediator module structure in Fig. 8.9). Target genes correspond to columns. If a target gene is
attached to a Mediator subunit in the MC EMiNEM effects graph, this is indicated by a colored box
on top of the respective column, using the same color code as for the experiments. Expression changes
relative to wild type are color coded by the panel on the right. In the gene set enrichment analysis,
SKO1 target genes were found enriched for upregulated genes attached to the Med10Med21node in
the MC EMiNEM effects graph. These genes lie to the left of the bold vertical line in the heat map.
Briefly, our Mediator NEM model predicts that they should also change their expression in the Med19
and Med7C perturbations, which lie above the bold horizontal line. Ideally, the expression changes in
the upper left corner defined by the two bold lines should be strong and consistent, while those in the
remaining part should be weaker and less consistent. (B) Same plot as (A), for the target genes of
SWI5. Since SWI5 targets are enriched for downregulated genes attached to Med7N, and Med7N is
downstream of all other nodes in the signals graph, we expect consistent expression changes of the
Med7N attached genes across all perturbations.



8.2 Application: The signaling network of the yeast Mediator 40

MC EMiNEM provides a map of specific transcription factor - Mediator interactions

Apart from an estimate of the internal flow of regulatory information in the signals graph,
MC EMiNEM returns a posterior probability of the attachment of effect genes to specific
Mediator subunits (Fig. 8.10). The attachment of effects genes to signal nodes in the NEM
framework does not necessarily represent a physical/direct interaction of the Mediator with
the DNA. In the case of the Mediator it is sensible to assume that the coupling is mediated
by transcription factors (TFs). We extend the analysis of our Mediator network and infer
the transcription factors by which this coupling has been achieved (cf. [105]). We group the
effect genes according to their attachment to signal nodes and according to the direction of
expression change upon perturbation. A gene set enrichment analysis for these 16 groups then
reveals interactions of gene-specific TFs with specific Mediator subunits / submodules. We
used the MGSA algorithm for the enrichment analysis [6], based on the gene-TF assignment by
Fraenkel [64] (see also Appendix Section A.4.3). Although the attachment of individual effects
to Mediator subunits is notoriously variable (see Fig. 8.3 and 8.8), the gene set enrichment
approach lends its robustness from combining evidence from many attached genes. The
result is a map of TF-Mediator interactions, summarized in Fig. 8.9 and listed in Appendix
Table A.1.
The 21 TFs-Mediator subunit interactions mapped by MC EMiNEM were validated using the
BioGRID database [95]. Two interaction pairs were known from the literature (YAP1-Med2,
SWI4-Med2). Another eight TFs were known to interact with a Mediator subunit from the
same module as the predicted interacting subunit ([GLN3/SWI5]-Med7N, RPN4-Med7C,
[SKN7/STB5/INO4/HAP3]-Med10Med21, ASH1-Med2). An interaction with the Mediator
has been described for three more TFs ([UME6/HAP4]-Med10Med21, SUM1-Med2), and
eight predicted interactions were new (MBP1-Med7C, [HSF1/SKO1]-Med10Med21, [TEC1/-
YAP6/GTS1]-Med2, [FKH2/YOX1]-Med7N).
All target genes of TFs associated with the tail module show downregulation after perturbation,
consistent with the tail’s function to contact gene specific transcription factors [17]. The
same holds for the target genes of TFs associated with Med7N. This is expected, as the genes
attached to Med7N are those that show an effect in all perturbations (Fig. 8.10) and therefore
presumably require a completely intact Mediator. The target genes of TFs associated to the
rest of the middle module show expression changes in both directions, in accordance with the
middle module described as an ambiguous regulator [104].
Fig. 8.11A offers a TF-centric excerpt on the MC EMiNEM map from Fig. 8.10. It drills in
to the target genes of SKO1, which are enriched in the set of upregulated genes attached to
Med10Med21. SKO1 is both a transcriptional activator and repressor and forms a complex
with the general repressor TUP1 (Saccharomyces Genome Database [16]). TUP1 in turn
targets Med21p [34]. A Mediator complex lacking this subunit might thus not be able to
forward repressive signals, resulting in upregulated target genes of SKO1.



8.2 Application: The signaling network of the yeast Mediator 41

The transcriptional activator SWI5 has a large number of physical interactions with Mediator
subunits from various modules (Med15, Med17, Med18, Med22, [16]). This suggests that any
change in the Mediator structure affects its interaction with SWI5. Consequently, target genes
of SWI5 should change their expression upon any Mediator subunit perturbation. Fig. 8.11B
confirms this behavior of the SWI5 targets: MC EMiNEM associates SWI5 to Med7N, because
SWI5 targets are enriched in the set of downregulated genes attached to Med7N, and these
are consistently downregulated in all perturbations.
Similar analyses were carried out for all TFs in the MC EMiNEM map (see Supplementary
file 2 of [77]; lists of genes that contribute to the respective TF enrichments are provided in
the Supplementary file 4 of [77]; both files are provided in digital form along with this thesis).
The most striking observation is that the sign of a gene’s expression change is consistent in
virtually all perturbations for which MC EMiNEM predicts an effect. Since our model is
completely blind with respect to the sign of regulation, the consistency in the direction of the
expression changes provides compelling evidence that the signals graph reflects regulatory
dependencies between Mediator subunits which are likely to be caused by structural changes.
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8.2.3. Summary & Outlook

The reconstruction of interaction networks from high dimensional perturbation effects is
still a challenge. We have developed MC EMiNEM, a method for the learning of a Nested
Effects Model. We introduced two major improvements, namely an Expectation-Maximization
algorithm for the very fast detection of local maxima of the posterior probability function.
Mode hopping Markov Chain Monte Carlo sampling was then used for the efficient exploration
of the space of local maxima. We applied MC EMiNEM to a combination of proper and
public gene expression data obtained from Mediator subunit perturbations. It turned out that
MC EMiNEM does not only shed light on structural dependencies of Mediator subunits, it
also identifies interactions of gene-specific transcription factors with Mediator subunits. Our
findings are consistent with the state-of-the-art knowledge about the Mediator architecture and
function. Hierarchical clustering has proved tremendously useful for the analysis of expression
data obtained from observational experiments. We have established MC EMINEM for the
analysis of expression data from intervention experiments, as the appropriate counterpart to
clustering.
In the future, it would be interesting to revise the construction of the data-driven prior and
the selection of effect genes. As for the data-driven prior, the putative probability that an
effect is attached to none of the signals (i.e., that it’s attached to the null node) is currently
set to its average probability of being attached to any of them. Two additional constructions
seem promising, however: First, setting this probability to the average of the attachment
probabilities of all effects to all signals (i.e., to the same value for all effects) would push genes
that show weak effects to the null node, while genes showing strong effects would be pulled
away from it. Second, it would be intuitive to set the odds-ratio for the null-node attachment
to 1 and to calculate the probability accordingly. By definition, a gene attached to the null
node shows the same reactions upon any perturbation and thus the probability for the data is
the same, independent of the underlying model.
A restriction of effects taken into account for the estimation process (for example only effects
k with max

j∈S
(Rjk) > r for a predefined threshold r are considered) could help to reduce noise

and to make the prediction more reliable (based on a more significant set of effects). However,
it could also lead to a loss of information with respect to the gene set enrichment analysis.
As can be seen from this discussion, the best way to design the estimation process is not
always obvious, if there is a “best way” at all. A careful assessment of the possibilities that
are worth being considered and a reasoned decision are thus crucial.
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9. Introduction

RNA exosomes are large multi-subunit protein complexes involved in controlled and processive
3’ to 5’ RNA degradation. They form large molecular chambers and harbor multiple nuclease
sites as well as RNA binding regions. This makes a quantitative kinetic analysis of RNA
degradation with reliable parameter and error estimates challenging. Consequently, RNA
degradation by RNA exosomes has scarcely been studied and little is known about the features
that contribute to efficient RNA degradation.
We propose the combination of a differential equation model with Bayesian Markov Chain
Monte Carlo (MCMC) sampling for a more robust and reliable analysis of such complex
kinetic systems. Using the exosome as a paradigm, it is shown that conventional “best
fit” approaches to parameter estimation are outperformed by the MCMC method. The
parameter distribution returned by MCMC sampling allows a reliable and meaningful com-
parison of the data from different time series. In the case of the exosome, we find that the
cap structures of the exosome have a direct effect on the recruitment and degradation of
RNA and that these effects are RNA length-dependent. The described approach can be
widely applied to any processive reaction with a similar kinetics, like the XRN1-dependent
RNA degradation, RNA/DNA synthesis by polymerases and protein synthesis by the ribosome.

The content of this part has been published in 2010 (Hartung, Niederberger et al. [36],
focus on biology) and in 2011 (Niederberger, Hartung et al. [78], focus on model selection),
and the work has been done in close collaboration with Karl-Peter Hopfner and Sophia
Hartung. My contribution to this work is the development of a reliable method for the analysis
of processive reactions that are described by ordinary differential equations (ODEs)., i.e.,
the development of the Markov Chain Monte Carlo sampling approach (see Chapter 12). In
addition, the application of the method to RNA degradation by the archaeal exosome required
a reparametrization of the model (i.e., the introduction of the catalytic efficiency, see Section
11.3) and an appropriate choice of the prior distribution (see Section 11.4.3). The data has
been generated and the basic model (the system of ODEs) has been developed by Sophia
Hartung and Karl-Peter Hopfner. Together with a maximum likelihood parameter fit, the
data and basic model have already been published in the PhD thesis of Sophia Hartung [35].
A discussion of alternative model classes that were not able to explain the data sufficiently
has been published there, they are not within the scope of this thesis. The interpretation of
the biological results has been done by and under the lead of Karl-Peter Hopfner.



10. Biological background

In all three domains of life, RNA degradation, i.e., nucleolytic cleavage, is associated with
essential cellular processes such as RNA maturation, RNA quality control and RNA turnover.
During RNA maturation, the precursor to any type of RNA is transformed into is functional,
mature form, e.g., by 3’ polyadenylation, 5’ capping or splicing. RNA quality control, e.g.,
the non-sense-mediated or the non-stop decay pathways, ensures that dysfunctional RNA
molecules are degraded quickly. RNA turnover maintains a balance between RNA synthesis
and decay. Deviations in any of these processes may have serious impacts on the functionality
of a cell [46].

10.1. The archaeal exosome

The exosome is a 3’-5’ exoribonuclease involved in RNA maturation, RNA quality control
and RNA turnover in eukaryotes and archaea. It has first been identified in yeast in 1997 [73]
and later on in archaea [23, 52]. It is closely related to the bacterial PNPase, which is also
present in mitochondria and chloroplasts. The similarity of the core complex between all
three domains of life indicates the existence of a common ancestor, and a strong evolutionary
conservation [40,86].

Structure

The central chamber of the 250 kDa archaeal exosome, a hexameric ring with a length of 50-60Å
(corresponding to ∼ 7−9 nucleotides), is formed by a trimer of heterodimers ((Rrp41:Rrp42)3).
Rrp41 and Rrp42 have been detected in connection with rRNAs (rRNA processing proteins)
first and possess RNase PH like domains enabling phosphorolytic ribonuclease activity. Even
though only the catalytic center of Rrp41 is still active, an intact dimer of Rrp41 and Rrp42 is
necessary for the correct positioning and binding of the RNA molecule. The existence of three
active sites in one exosome molecule ensures a high processivity during RNA degradation.
The central chamber might be entered by two sides. On the one opposite the active sites, a
trimer of either Csl4 or Rrp4 forms a flat, multidomain cap. Each Rrp4-molecule possesses
one S1 and one KH protein binding domain, while each Csl4-molecule possesses one S1 and
one zinc-ribbon RNA binding domain. The three S1 domains, very similar in structure and
location in both Rrp4 and Csl4, frame a central pore, denoted S1 pore (18Å with the Csl4
trimer, 15Å with the Rrp4 trimer). The RNA binding domains, their positive surface potential
and a negative charge distribution at the opposing opening of the hexameric ring indicate
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that the Csl4 and Rrp4 caps recruit the RNA molecules and regulate their access to the
active center via the S1 pore. The nucleotides resulting from the cleavage are supposed
to exit by the second, larger pore (denoted PH pore). The structure and location of the
KH and zinc-ribbon RNA binding domains differ strongly, which is assumed to enable the
recognition of different RNA types or cofactors by the Csl4 and the Rrp4 cap, respectively.
Their peripheral position in the cap as compared to the central position of the S1 binding
domains support this assumption. Even though only Rrp4 or Csl4 homotrimers have been
crystallized so far, heterotrimers are structurally possible in silico and might form in vivo.
A four nucleotide long RNA binding pocket in Rrp41 guides the RNA to the active site,
whose entrance is oriented contrary to the S1 pore. The only 8-10Å wide neck restricts the
access to the wider central chamber to molecules without secondary structure and enables
the advancement of one base at a time. Thus, additional cofactors such as RNA helicases are
needed to unwind structured or double-stranded RNA molecules.
The architecture of the eukaryotic exosome is more complex but nevertheless very similar to
the archaeal one. It contains a larger number of subunits whose assembly is both species- and
compartment-dependent.
This paragraph is based on [14,40,86].

Function

The exosome is involved in total RNA degradation as well as in RNA maturation, where only
a limited number of nucleotides is cleaved. It is still not clear how the distinction between the
two situations is possible, though it is assumed that additional cofactors and signals play an
important role. The fact, that only single-stranded, unfolded RNA substrates may enter the
central chamber suggests a model where regions of secondary structure or protein:RNA com-
plexes prevent the RNA substrate from further degradation and make an accurate trimming
of the 3’ end possible. In addition, the selective unwinding of structured RNA, for example
by the eukaryotic TRAMP or SKI complexes, allows the complete degradation of the RNA
substrate. Highly unstructured poly(rA)-tails may facilitate the initial threading of RNA into
the central chamber.
The RNase PH like domains enable phosphorolytic ribonuclease activity, which means that
the exosome cleaves the RNA using inorganic phosphate and releasing mononucleotide
5’-diphosphate products. In an environment with a high nucleotide diphosphate concen-
tration the inverse reaction (i.e., polymerization) is possible.
This paragraph is based on [40].
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10.2. Experimental setup

The following analysis is based on 7 variants respectively mutants of the Archaeoglobus fulgidus
exosome, which are depicted in Fig. 10.1. For detailed descriptions about their preparation and
the introduction of the mutations, please refer to [14, 36]. Since the reactions take place in an
excess of inorganic phosphate (10mM phosphate compared to only 3.6 mM ADP at the time all
RNA molecules are totally degraded), we may assume that no polymerization takes place. The
RNase assays have been performed with 5’-radioactively labeled poly(rA)-oligoribonucleotides.
The data consists of time series measurements of the amount of RNA of different lengths
(from 30 base pairs to 3 base pairs), which were resolved on a denaturing polyacrylamide gel
and quantified by phosphorimaging. The respective time points vary among the exosome
variants. The initial amount of RNA at time point 0 is 120nM in all cases, the initial amount
of the exosome at time point 0 is 30nM (Csl4 exosome, Rrp4 exosome, interface mutant),
60nM (capless exosome, Csl4 R65E mutant, Csl4 Y70A mutant) or 120nM (crosslink mutant).
The measurements for the Rrp4 cap and Csl4 cap exosomes are illustrated in Fig. 10.2.
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Figure 10.1.: This figure provides a schematic representation of the variants respectively mutants
used in this study: (A) The exosome with a Csl4-cap (wild type) (B) the exosome with a Rrp4-cap
(wild type) (C) the capless exosome (wild type) (D) the Csl4-exosome with a Y70A mutation (a tyrosine
replaced by an alanine close to the active site) in Rrp42 (E) the Csl4-exosome with a R65E mutation
(an arginine replaced by a glutamic acid in the neck) in Rrp41 (F) a rigidified crosslink mutant (G) an
interface mutant which can’t form the ring structure any more, resulting in three stable Rrp41:Rrp42
heterodimers. This figure has been modified from [35].

Figure 10.2: The denaturing polyacrylamide
gel for the Csl4-exosome (A) and the Rrp4-
exosome (B). At time point 0 only 30mer RNAs
are present, at the final time point mainly short
RNAs are present. The gel already shows length
dependencies as well as differences between the
degradation efficiencies of exosomes with dif-
ferent cap structures: While the Csl4-exosome
obviously needs some time to get started, it is
quit fast for long RNAs and than slows down
significantly for short RNAs (an accumulation
of RNAs is visible). The Rrp4-exosome on the
other hand shows a quick start but slows down
for long RNAs (again, an accumulation of RNAs
is visible), accelerates for RNAs of medium
length and slows down again for short RNAs. A
discussion of these observations will be provided
in Section 13.2.3. This figure has been modified
from [35].



11. A model for processive RNA degradation

Our model for RNA degradation by the archaeal exosome involves four different reactions,
namely the association of free RNA to the exosome, the dissociation of bound RNA from the
exosome, the cleavage of bound RNA, and the inverse reaction, i.e., the polymerization of
bound RNA. Please note that “bound” refers to the active center, not to the whole exosome
complex. A more complex model class might include this distinction, however this would lead
to clear overparametrization given the available data (see also Section 11.3).

11.1. Basic parametrization

The model we apply to RNA degradation is described by the following parameters: the
association rates ka,j , the dissociation rates kd,j , the cleavage rates kc,j , and the polymerization
rates kp,j , each for RNAs of lengths j, j ∈ J = {4, 5, ..., 30}, which results in a total of
4 · 27 = 108 parameters to be estimated. The 3mer RNA is considered as the final product
and thus excluded from the set of parameters. Since the reaction takes place in an excess
of inorganic phosphate (10mM phosphate compared to only 3.6 mM ADP at the time all
RNA molecules are totally degraded) we may assume that no polymerization takes place, i.e.,
kp,j = 0 for all j. Consistently, we saw no synthesis of longer RNAs in our reactions. This
reduces the number of parameters to 3 · 27 = 81 (Θ = {ka,j , kd,j , kc,j |j ∈ J}). A scheme for
the simplified kinetic model is presented in the following:

[Exosome:RNAj+1] ka,j+1
//

kc,j+1
��

[Exosome] + [RNAj+1]
kd,j+1oo

[Exosome:RNAj ] ka,j

//

kc,j

��

[Exosome] + [RNAj ]
kd,joo

[Exosome:RNAj−1] ka,j−1
// [Exosome] + [RNAj−1]

kd,j−1oo

Based on this scheme, the changes in the amounts of RNA of length j, j = 3, 4, ..., 30 with
regard to time can be modeled by ordinary differential equations (ODEs).
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11.2. Ordinary Differential Equations (ODEs)

We denote by rj = rj(t) the total amount of RNA of length j, j ∈ J? = {3} ∪ J . Let
the corresponding amount of exosome-bound RNA be xj = xj(t), the unbound fraction be
yj = yj(t). The (initial) amount of free exosome is denoted by e = e(t). The system of
ordinary differential equations (ODEs) that describes the dynamics in the kinetic system is
then parametrized by the set Θ = {ka,j , kd,j , kc,j |j ∈ J}:

rj(t) = xj(t) + yj(t)
dxj
dt

(t) = kc,j+1xj+1(t) + ka,jyj(t)e(t)− (kc,j + kd,j)xj(t) (11.1)
dyj
dt

(t) = kd,jxj(t)− ka,jyj(t)e(t)

The initial conditions are rj(0) = xj(0) = Rj , yj(0) = 0, e(0) = E, where the initial total
amount of RNA, Rj , and the initial amount of free exosome, E, are given. The signs in
Eq. 11.1 are chosen such that all parameter values are positive, thus our parameter space
is Ω = RJ>0 × RJ>0 × RJ>0. If we want to emphasize the dependence of the results on the
parameters Θ, we denote those in the superscript, e.g., we write rΘ

j (t) instead of rj(t) etc.
The experimental data consists of a matrix D = (Rj,k), where j ∈ J? runs through the lengths
of the measured RNA populations, and k ∈ {1, ...,K} enumerates the measurements that were
taken at times t ∈ {t1, ..., tK} respectively. A standard ODE solver (MATLAB® [69], ode15s,
default parameters) is used to calculate the predictions rΘ

j (t) of a model given by Θ. The
comparison of the measurements Rj,k with the predictions rΘ

j (tk) is the basis of our MCMC
sampling strategy.

11.3. Parametrization revised

It soon turned out that the parameters of the model were partly redundant, hence, that the
model was clearly overparameterized. A reparametrization together with a reduction in the
number of free parameters could solve the problem.

Overparametrization

After excluding polymerization due to the experimental conditions we still were left with 81
free parameters to be estimated reliably. This is unlikely to be feasible, based on an amount
of ∼ 1000 individual measurements. In addition, the amount of each RNA population is only
measured in total whereas the amount of free or bound RNA is not known. It can therefore
not be detected whether either association or cleavage are the bottleneck for the decay process.
More precisely, it is not discernible whether an average decay rate is caused by fast association
and slow cleavage (most of the RNA is bound to the exosome), slow association and fast
cleavage (most of the RNA is free) or by average association and average cleavage (free and
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bound RNA are well-balanced). Furthermore, a fast association / cleavage can be compensated
by a fast dissociation, leading to a similar overall decay as a slow association / cleavage and a
slow dissociation. A reparametrization in combination with a parameter reduction can cure
these problems. In search of an identifiable quantity that describes the efficiency of decay
appropriately we tested the straightforward guess ka·kc

kd
, and the catalytic efficiency ka·kc

kd+kc
.

Catalytic efficiency

The quantity catalytic efficiency e = ka·kc
kd+kc

is based on Michaelis-Menten type kinetics and a
measure of the velocity of the RNA intermediate’s degradation by the exosome. It has been
shown to be meaningful when comparing the reaction rates for multiple substrates competing
for one enzyme [57], where also the name specificity constant was coined. For a more detailed
derivation of the constant see Appendix Section B.1.

Parameter reduction

To determine the catalytic efficiency for each RNA length, not every parameter has to be
estimated individually. Taking into account the relations between association, cleavage and
dissociation we opt for the following procedure:

• Dissociation is fixed to one value for all RNA lengths (one manually fixed parame-
ter). This keeps the range of possible association / cleavage parameters limited. The
empirically determined value is high enough to avoid a limiting influence (kd = 10).

• Cleavage is sampled once for all RNA lengths (one free parameter). This offers more
flexibility for the association parameters.

• Association is sampled individually for each RNA length (27 free parameters, restricted
by our prior assumptions). It accounts for the length-dependent differences of RNA
decay.

The choice of association as the flexible parameter is motivated by the biochemical background
of RNA degradation by the exosome: The actual length of the remaining RNA molecule
seems to be quit insignificant for the split-off of the first base, when it is already bound to the
active center. However, for reaching this bound state, we surely expect some kind of length
dependency. Furthermore, since the interest of this approach is to determine the catalytic
efficiency of RNA decay, which is mainly driven by association and cleavage but antagonized
by dissociation, we excluded the possibility of dissociation being the flexible parameter.
This parameter reduction leaves 28 parameters to be estimated (Θ = {ka,j |j ∈ J}∪ kc), which
still suffice for a good approximation and are identifiable. Both simulated data and observed
data justify this approach, as illustrated in Section 13.1.1 and 13.2.1, respectively.
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11.4. Probability model

11.4.1. The likelihood distribution

To assess the probability of a given parameter set Θn, we solve Eq. 11.1 and compare the
predicted values rΘn

j (tk) with the observed values Rj,k. We assume that the observations
Rj,k, j ∈ J?, k = 1, ...,K, are realizations of a Gaussian N (rΘ

j (tk), σ2
j,k)-distributed random

variable respectively, i.e.,

P (Rj,k|rΘ
j (tk), σ) = 1√

2πσj,k
exp

(
−1

2
(Rj,k − rΘ

j (tk))2

σ2
j,k

)
, (11.2)

where the variances σ = {σj,k|j ∈ J?, k = 1, ...,K} have to be given a priori, or must
be determined from the data. This point is addressed in the following section. Assuming
independence of the measurement errors, the likelihood of the model becomes

L(Θ) =
30∏
j=3

K∏
k=1

P (Rj,k|rΘ
j (tk), σ) (11.3)

11.4.2. The measurement error model

We assume a common error model: the measurement variance is composed of a constant
“background” term β and a term which is proportional to the square of the intensity [21, 42],

(σj,k)2 = α(rΘtrue
j (tk))2 + β , for some α, β ≥ 0 (11.4)

Since the measurement variances are not known here a priori, we developed an adaptive
strategy for their estimation, which will be introduced in conjunction with the MCMC sampling
scheme in Section 12.1. This adaptive strategy is initialized rather conservatively with values
inferred from a good fit for the observed data (α = 0.9420, β = −0.0036).

11.4.3. The prior distribution

To avoid overfitting and to reduce the effective number of parameters, we did not choose a
uniform (pseudo-) prior on Θ. It is sensible to believe that consecutive catalytic efficiency
values ej , ej+1 tend to have similar values, since they reflect length (j) dependent properties of
the RNA-exosome interaction. Therefore we introduced a smoothness prior by assuming that
each of the consecutive differences ej − ej+1 (independently) follows a Gaussian distribution:

π(e) =
29∏
j=4

1√
2πλ

exp
(
−1

2
(ej − ej+1)2

λ2

)
, (11.5)

The hyperparameter λ was determined in simulation runs (see Section 13.1.2). The smoothness
prior introduces a bias-variance tradeoff by reducing the effective number of model parameters
with decreasing λ.



12. Parameter estimation by MCMC sampling

This chapter focuses on the application-specific implementation of Markov Chain Monte Carlo
sampling. In particular, this includes the choice of the proposal function and the development
of the adaptive likelihood MCMC sampling approach. A general introduction to Markov
Chain Monte Carlo sampling is provided in Section 2.4.

12.1. Adaptive likelihood MCMC

The measurement variances are not known a priori in our situation. Instead of guessing
these values beforehand, we introduce an adaptive strategy for their estimation. Starting
with very high initial variances, i.e., a very flat likelihood function, we estimate the variances
from the comparison of predicted and measured RNA values after every 100 steps in the
Markov chain, and we update the variances by moving their current values into the direction
of these estimates. More specifically, let σ̂old = {σ̂oldj,k |j ∈ J?, k = 1, ...,K} be the current set
of variance estimates. Let rΘs

j (tk), s = 1...100, be the predictions that were produced during
100 steps in a Markov chain (Θs)s=1,...,100, using σ̂old as variance parameters. Assuming that
the parameters Θs are close to the true parameters, the measurement error for the RNA
population of length j at time point tk is roughly Rj,k − rΘs

j (tk). A sensible guess for the
variance (σ̂newj,k )2 is thus

(σ̂estj,k)2 = mean((Rj,k − rΘs
j (tk))2|s = 1, ..., 100) (12.1)

We used (σ̂estj,k)2in place of (σj,k)2 to fit the parameters α∗, β∗ of the error model in Eq. 11.4.
Plugging α∗, β∗, and rΘs

j (tk) into Eq. 11.4 again produces smoothed estimates (σ̂est∗j,k )2 [82].
One could replace the old variances (σ̂old)2 by these estimates. Such a procedure has desirable
properties: Since we are starting with permissive values for σ, the initial likelihood landscape
is flat, which makes the chain fully explore the model space and reduces the danger of
getting irreversibly caught in a local maximum. During the adaptation process, the variances
tend to drop, which can be understood as a kind of annealing. Individual variances σj,k
may remain disproportionally large if the corresponding measurements are faulty/flawed,
therefore providing an automatic outlier detection mechanism. On the other hand, a too fast
diminishment of the variances may precipitately fix some kinetic parameters to wrong values.
We guard against such effects by smoothly adjusting the old variances into the direction of
the new ones:

(σ̂newj,k )2 = δ · (σ̂est∗j,k )2 + (1− δ) · (σ̂oldj,k )2 (12.2)
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δ ∈ [0, 1] has been determined empirically (data not shown) and set to δ = 0.05. To restrict the
range of possible variances, an empirical boundary has been set to σ2

min = 0.5 and σ2
max = 150.

12.2. Implementation of the sampling procedure

Initialization

The MCMC sampling has been initialized with both random and uniform parameters to
assess its robustness with regard to initialization. For the final analysis it has been initialized
with “good” parameters derived from preliminary runs on the observed data to produce a
fast-converging sample.

Choice of the proposal function

Each individual parameter in Θ = {ka,j |j ∈ J} ∪ kc is independently sampled on a log scale
from a Gaussian distribution, centered at the previous parameter value,

k′aj ∼ LN (kna,j , τ2
a ) , j ∈ J (12.3)

k′c ∼ LN (knc , τ2
c )

The width of the proposal distribution is given by the variances τ2
x . Simulation runs have

demonstrated (data not shown) that setting τ2
a = 0.05 and τ2

c = 0.005 yields a sufficient
acceptance rate as well as a good mixing behavior of the chain. ka,j , j ∈ J and kc are sampled
alternating.

Chain length and burn-in phase

Each chain consists of 2 · 105 steps. The length of the burn-in phase varies among the datasets
and has been set to a safe value of 1.5 · 105 .



13. Results & Discussion

13.1. Simulation

Datasets have been simulated as explained in Section B.2.1. For each dataset M = 5 Markov
chains, each with S = 2 · 105 steps, have been created, producing the parameter values
Θm
s = {kma,j,s|j ∈ J} ∪ kmc,s, s = 1, ..., S, m = 1, ...,M .

13.1.1. Assessment of parameter dependencies

In this application, the simulation was especially useful to analyze parameter dependencies
and to detect an identifiable parameter. As has been discussed before (Section 11.3), the
association, cleavage and dissociation rates are highly redundant, which is illustrated in
Fig. 13.1. This problem has been solved by the introduction of the catalytic efficiency as an
identifiable parameter (see Fig. 13.2). These figures refer to the predicted parameters for
the 30mer RNA, based on a simulated dataset with a noise level of α = 10%. Choosing the
association rate rather than the cleavage rate as the flexible parameter (i.e., to be sampled RNA
length-dependent) is motivated by biochemical reasons as well as by comparative simulation
runs (see Fig. 13.3).

13.1.2. Choice of the prior strength

We performed several MCMC runs to determine the strength of the prior. The goal is to
optimize the bias-variance trade-off by restricting the parameter fluctuation from RNA length
j to length j+1. This is based on the assumption that the catalytic efficiency changes smoothly
from step to step rather than making big jumps. The results are depicted in Fig. 13.4. In
simulation runs the best trade-off was met at a hyperparameter choice λ = 0.5.

13.1.3. Assessment of the MCMC sampling behavior

Fig. 13.5 illustrates the convergence speed of a Markov chain based on a simulated dataset.
We define by eye a value U after which the variation of the chain does not decrease further.
The first steps s = 1, ..., U (the burn-in phase) are excluded from further analysis and only
the steps s = U + 1, ..., 2 · 105 (the stationary phase) are taken into account.
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Figure 13.1.: Association, dissociation and cleavage can’t be determined on an absolute value, but
are related to each other. (A) The traceplots of the association, dissociation and cleavage parameters
show that neither of them converges in the course of the sampling process. (B) In the top right corner,
association, cleavage and dissociation parameters are plotted against each other. Here, the colors
indicate the development in the course of the sampling process, as shown in the traceplots (bottom left
corner). Importantly, note that even the derived parameters association

dissociation , association · cleavage and
cleavage · dissociation do not converge well, they show a slight drift throughout the second half of the
MCMC run.

Figure 13.2.: The catalytic efficiency converges and has a narrow posterior distribution, as opposed
to those of the individual parameters. The plot on the left-hand side shows the development of the
catalytic efficiency ka·kc

kd+kc
during the MCMC procedure, while on the right-hand side nominator and

denominator are plotted against each other.
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Figure 13.3.: The catalytic efficiency values can be derived by either sampling the association or the
cleavage parameter individually for all RNA lengths, while the respective other one stays the same.
Here, the two possibilities are compared, based on a simulated dataset with a noise level of α = 5%.
The plot in the middle shows the predicted catalytic efficiencies when all association rates but only
one cleavage rate is sampled, the one on the right shows the predicted catalytic efficiencies when all
cleavage rates but only one association rate is sampled. On the left-hand side, the simulated catalytic
efficiencies are depicted. It can be seen that the plot in the middle fits slightly better, although the
basic curve stays the same. Combined with the biochemical reasons outlined before, this leads to the
choice of association as the flexible parameter.

Figure 13.4.: This figure compares the influence of different smoothness priors for the catalytic
efficiency parameters. On the left-hand side, the simulated catalytic efficiencies are shown, on the
right-hand side the predicted catalytic efficiencies for different prior strengths are depicted. It is
obvious that an absent prior (red) or a prior that is not strong enough (negligible prior strength, green:
λ = 3.5) lead to a strong variation and jumps amongst the parameters, while a prior that is too strong
(yellow: λ = 0.1) does not afford the flexibility needed to adapt the parameters correctly. Based on
these results, our prior of choice is λ = 0.5 (blue).
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Figure 13.5.: The exemplary burn-in parameter U is chosen based on the catalytic efficiency traceplot,
here for a simulation run (2 · 105 MCMC steps and 27 catalytic efficiency parameters, depicted by
different colors; noise level of the dataset: α = 25%). It indicates the boundary between burn-in phase
(s = 1, ..., U) and stationary phase (s = U + 1, ..., 2 · 105). Here, the challenge is to find a trade-off
between fast converging parameters (the ones with lower values) and slow-converging parameters (the
ones with higher values).

Figure 13.6.: For every catalytic efficiency parameter, the relative bias (A) and the coefficient of
variation (B) are depicted, here for a dataset with a noise level of α = 25%. For the bias, red color
indicates that the mean of the predicted parameters is shifted down with regard to the simulated
parameter, blue color indicates that it is shifted up.
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13.1.4. Assessment of bias and variance

For each catalytic efficiency value ej , j ∈ J the relative bias and variance respectively standard
deviation of its marginal posterior distribution can be assessed as

Biasj =
mean(Ej)− etruej

etruej

, stdj = std(Ej)
etruej

, (13.1)

with Ej = {emj,s, s > U , m = 1, ...,M}. Bias and variance are visualized in Fig. 13.6.

13.1.5. Prediction quality

To assess the prediction quality of our method we simulated datasets based on the measure-
ments for the interface mutant (see Fig. 10.1). Noise was added using varying error levels
(α = 5%, 10%, 25% and β = 0). Then we applied the MCMC sampling approach to the noisy
simulated datasets and drew 1000 parameter sets at random from the stationary phase of the
Markov chain. The average of the predictions for these parameter sets has then be used to
calculate the relative squared error

( |Datareal/noisy−Datapredicted|
Datareal/noisy

)2
, both between the predicted

and the true simulated data as well as between the predicted and the noisy simulated data.
The results are shown in Fig. 13.7 and Fig. 13.8.

13.1.6. Bayesian methods vs. least-squares fitting

We compared our Bayesian MCMC sampling approach to a straightforward optimization
method for the minimization of the quadratic loss (using the MATLAB [69] function fminsearch,
with the parameter MaxIter and MaxFunEval both set to 50000 · |Θ|). Fig. 13.9 shows the
relative squared error for the least-squares fitting approach (see Fig. 13.8 for the MCMC
sampling’s relative squared error). In Fig. 13.10, the quality and the reliability of the
parameters estimated by the least-squares approach and by the MCMC sampling approach
are compared. Bayesian sampling clearly exhibits less variance and a smaller bias than
least-squares fitting.
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Figure 13.7.: Goodness of fit for a simulation run. Circles in the lower plot are the unperturbed time
series measurements as produced by the simulated parameter set, while the circles in the upper plot
are the noisy counterparts. The MCMC approach has been applied to the noisy data (α = 25%) and
1000 parameter sets have been randomly drawn from the stationary phase of the Markov chain. The
predictions for these parameter sets are depicted by boxplots. It can be seen that our model offers a
better description of the true simulated data (lower plot) than it does for the noisy simulated data.
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Figure 13.8.: The relative squared error induced by the MCMC sampling approach is calculated
based on the averaged predictions of 1000 parameter sets, randomly sampled from the stationary phase
of a Markov chain. For a more detailed visualization, the color scheme has been scaled such that all
values ≥ 0.07 have the same color. Every column of diagrams corresponds to a given noise (5%, 10%
and 25%) used to generate noisy datasets. The first row of diagrams displays how the noisy simulated
data deviate from the true (without noise) simulated data, the second row displays the relative squared
error of the estimate from the MCMC sampling compared to the noisy simulated data and the third
row displays the relative squared error of the estimate from the MCMC sampling compared to the
true simulated data. The results allow several conclusions: First, individual RNA measurements with
higher values can be fitted very well, while areas with lower amounts of RNA are fitted relatively
poorly. Second, our predictions fit the true simulated data better than the noisy simulated data, which
has actually been used for fitting. Third, our procedure appears to be robust against considerable
amounts of noise, since the increase in α does not visibly reduce the fit to the true simulated data.
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Figure 13.9.: The relative squared error induced by the least-squares fit is calculated based on
predictions of the estimated parameters. For a more detailed visualization, the color scheme has been
scaled such that all values ≥ 0.07 have the same color. Every column of diagrams corresponds to a
given noise (5%, 10% and 25%) used to generate noisy datasets. Just as the MCMC sampling approach,
the least-squares fitting has to be initialized with some set of parameters. In the first row of diagrams,
the initialization is the same as for the MCMC sampling. The relative squared error is calculated with
respect to the noisy simulated data. In the second row, the initialization of the least-squares fitting
corresponds to the mean of a random sample from the stationary phase of the Markov chain (i.e., to a
good set of parameters, see Fig. 13.8). Again, the relative squared error is calculated with respect to
the noisy data. In the third row, the initialization is the same as in the second one, but the relative
squared error is calculated with respect to the true simulated data. It is clearly visible, that while the
straightforward optimization method yields good results (respectively, results that are similar to those
of the MCMC approach) when the initial parameters are already close to the true ones, it performs
very poorly when no prior information is available.



13.2 Application: RNA degradation by the archaeal exosome 63

Figure 13.10.: Simulation study comparing the parameter estimation quality for (A) least-squares
fitting and (B) Bayesian MCMC sampling. The blue points represent the simulated (“true”) kinetic
parameters that were fixed throughout the whole simulation. To obtain realistic parameters, they have
been randomly sampled from a preceding MCMC run based on the data of the Rrp4-exosome. The
corresponding dataset has been generated by applying measurements errors that have been estimated
from the exosome data. The quantile profile plots are based on 100 least-squares estimates and 100
parameter sets that have been randomly drawn from different Markov chains, respectively: The red
(yellow) band marks the central 90% (50%) intervals for the estimated catalytic efficiencies ej , for
j = 30, ..., 4 nt. (A) shows the central 90% (50%) intervals of the 100 least squares parameter estimates.
(B) shows Bayesian confidence intervals, averaged over 100 runs. Bayesian sampling clearly exhibits
less variance (narrower bands) and a smaller bias (bands are closer to the true parameters) than
least-squares fitting.

13.2. Application: RNA degradation by the archaeal exosome

For every exosome variant we used an initial MCMC run to determine the set of parameters
that, from a chain of 105 steps, best describes the data (least sum of squared errors). Those
where used (1) to initialize two Markov chains for each exosome variant that converge very
fast due to the the good initial parameters and that are used for further analysis (this is not
just a continuation of the original Markov chain, since the error model is reset to the initial
one) and (2) to initialize three additional runs for some other exosome variant to analyze the
robustness of our approach with regard to the initial parameter values.

13.2.1. Assessment of parameter dependencies

As has been discussed before (Section 11.3), the association, cleavage and dissociation rates
are highly redundant, which is illustrated in Fig. 13.11. This problem has been solved by the
introduction of the catalytic efficiency as an identifiable parameter (see Fig. 13.12). These
figures refer to the predicted parameters for the 30mer RNA for the Rrp4-exosome. See also
Section 13.1.1 for results on simulated datasets.
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Figure 13.11.: Association, dissociation and cleavage can’t be determined on an absolute value, but
are related to each other. This figure is based on on the measurements for the Rrp4 exosome. (A)
The traceplots of the association, dissociation and cleavage parameters show that only the association
rate converges in the course of the sampling process. (B) In the top right corner, association, cleavage
and dissociation parameters are plotted against each other. Here, the colors indicate the development
in the course of the sampling process, as shown in the traceplots (bottom left corner). Importantly,
note that even the derived parameters association

dissociation , association · cleavage and cleavage · dissociation
do not converge well.

Figure 13.12.: The catalytic efficiency converges and has a narrow posterior distribution, as opposed
to those of the individual parameters. The plot on the left-hand side shows the development of the
catalytic efficiency ka·kc

kd+kc
during the MCMC procedure, while on the right-hand side nominator and

denominator are plotted against each other.
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Figure 13.13.: The traceplots of five MCMC runs, based on the Rrp4 measurements and initialized
with different sets of parameters, show that the result of the MCMC sampling is independent of
initialization. A common catalytic efficiency distribution (first plot) is obtained in all cases, whether
the initial parameters are close to the final ones (second and third plot), based on the results obtained
for another exosome mutant (fourth and fifth plot) or set to the same value (sixth plot). The beginning
of the chain is enlarged for the fourth and the sixth plot to emphasize the differences between the
initial and the final parameters.

Figure 13.14.: The traceplots of five MCMC runs for the 4mer RNA, based on the Rrp4 measurements
and initialized with 4 different sets of parameters (top right corner), show that the initial parameters
(black circles) have no influence on the result of the sampling procedure. The first 2500 steps are
enlarged in the top left corner. Boxplots of the stationary phases of the 5 Markov chains are depicted
in the third plot (please note the changed scaling of the y-axis).
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Figure 13.15.: Autocorrelation plots of the catalytic efficiency values for an MCMC chain in stationary
phase, based on the Rrp4 data. Each plot shows the autocorrelation of the parameters for one RNA
population, ranging from 30mers (top left corner) to 4mers (bottom right corner). The x-axes represent
the values of k, the y-axes represent the autocorrelation values. Further information on the calculation
of the autocorrelation values is provided in the main text.

13.2.2. Assessment of the MCMC sampling behavior

Robustness w.r.t. initial parameter values

Fig. 13.13 displays the traceplots for five different MCMC runs, based on the Rrp4 mea-
surements and initialized with different sets of parameters. Even though the convergence
time depends on the choice of these initial parameters, a common invariant distribution is
always reached in reasonable time (∼ 50000− 100000 steps). The chain for the 4mer catalytic
efficiency is extracted in Fig. 13.14 for a more detailed analysis.

Mixing

An important criteria for the quality of the sample is the “mixing”. Mixing describes the
efficiency with which we sample from the whole distribution, i.e., the speed with which the
empirical distribution of n consecutive individual parameter samples Θ1, ...,Θn from a Markov
chain converges against the true posterior distribution. The autocorrelation function [20] is
an indicator for the mixing behavior. It can be estimated by

a(k) = 1
(n− k)σ2

n−k∑
t=1

(Θt − Θ̄)(Θt+k − Θ̄) , (13.2)

with sample mean Θ̄ and sample variance σ2. The quantity a(k) tells how a sequence of
numbers correlates with a copy of itself which has been shifted by k entries. If the entries
of the sequence were totally uncorrelated, a(k) should be approximately zero for all k. In
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a sequence that has been generated by a MCMC run, consecutive entries are correlated by
construction, but it is a desirable property of a MCMC chain that this correlation decreases
rapidly for entries that are k > 1 places apart from each other. That is, the sooner a(k)
decreases to zero, the better the mixing behavior of the chain. A plot of the autocorrelation
functions for all parameter samples Kx,j is shown in Fig. 13.15.

13.2.3. Results

The traceplots as well as the boxplots for the final posterior distributions (the burn-in has
been set to 150000) for all exosome variants (see Section 10.2 for details) are shown in the
Appendix, Fig. B.1. The convergence speed as well as the variance in the stationary phase (i.e.,
the identifiability of the parameters) vary among the exosome variants. Appendix Table B.1
and Appendix Table B.2 specify median, 1stquartile and 3rdquartile of the catalytic efficiency
posterior distributions for all RNA lengths. Appendix Fig. B.2 and Appendix Fig. B.3 depict
the relative squared error

( |Datareal−Datapredicted|
Datareal

)2
of the predictions derived by our MCMC

approach and by the straightforward least-squares optimization method (see Section 13.1.6)
compared to the original measurements. The results for the R65E mutant of the Csl4-exosome
have turned out to be highly sensitive to small changes of the model specification, hence
hardly reliable (data not shown). This variant has thus been excluded from further analysis.
In the following, I will summarize the main results of the MCMC sampling approach applied
to the RNA degradation by the archaeal exosome. For a more detailed explanation of the
results and their biochemical foundations and implications please refer to [36], since this is
not within the scope of this thesis.

The efficiency of RNA degradation depends on the length of the substrate

The results of the MCMC sampling confirmed what a first glance at the data (see Fig. 10.2)
had already suggested: The efficiency of RNA degradation depends on the length of the
substrate (see Fig. 13.16 and Appendix, Fig. B.1). On the whole, three main phases can be
identified. First, the initial degradation steps are very slow, presumably restricted by the
initial threading of the substrate in the central chamber. Second, the degradation of medium
length RNA molecules that are already bound is fast and relatively constant. Third, the
degradation efficiency decreases rapidly for short RNAs. This comparatively slow decay of
short RNAs may be explained by the exosome structure. While longer RNAs might still reach
the neck structure while being degraded, which would have a stabilizing influence, short RNAs
might lose this contact and therefore easily diffuse from the active site. This hypothesis is
addressed in the next paragraph. The exact meaning of “long”, “medium” and “slow” depends
on the exosome variant, in general the decay efficiency decreases at around 13 nucleotides.
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Figure 13.16.: Comparison of the exosome variants. The quantile profile plot shows the 50% Bayesian
confidence intervals (dark color) and the 100% intervals (light color) of the predicted catalytic efficiencies.
If two bands do not overlap at some length i, this means that under the assumptions of the model, the
catalytic efficiencies ei differ with an estimated probability of 99.99%. For all variants, the catalytic
efficiency depends on the length of the RNA substrate. (A) Tyr70Rrp42 is supposed to be important
for RNA binding. The Y70A mutant of the Csl4-exosome (green) thus supports the hypothesis that
long RNAs are additionally stabilized by the neck. (B) The degradation efficiency depends on the
cap structure (red: Csl4-exosome, blue: Rrp4-exosome, purple: capless exosome). (C) Comparing the
crosslink mutant (orange) and the interface mutant (black) suggests that conformational flexibility of
the ring is important for efficient RNA degradation.
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Tyr70Rrp42 is important for RNA binding

Tyr70Rrp42 close to the active site is supposed to be important for RNA binding [35]. To test
the hypothesis that longer RNAs are additionally stabilized by the neck structure we analyzed
the Y70A mutant of the Csl4-exosome, where the tyrosine is mutated to an alanine. The
results are depicted in Fig. 13.16A. Even though the overall shape is the same, the catalytic
efficiency is lower for the mutant than for the wild-type exosome for all RNA lengths. However,
the difference is increasingly pronounced, the shorter the RNA molecules are: While for long
RNAs (> 13nt) the difference is only ∼ 2− to 3 − fold (about 1 log unit), it is ∼ 20− to
150− fold (about 3 to 5 log units) for shorter RNAs. This is consistent with the hypothesis
that long RNAs are additionally stabilized by the neck structure, while shorter RNAs lose
this contact and fully rely on the active site. That the additional stability is actually provided
by the neck rather than by the cap structure is illustrated by the degradation profile of the
capless exosome (see for example Fig. 13.16B): The capless exosome shows the same decrease
in degradation efficiency for short RNAs as the Csl4- and the Rrp4-exosomes.

The cap-structure influences the degradation efficiency

Next we analyzed the influence of the cap structure on the degradation efficiency by comparing
the Csl4-exosome, the Rrp4-exosome and the capless exosome (see Fig. 13.16B). The initial
degradation step is considerably faster for the Rrp4 exosome as compared to the two other
variants (∼ 7− fold, about 2 log units). This indicates that Rrp4 recruits the RNA molecules
more efficiently, possibly due to a more specific binding site. However, the same binding site
seems to prevent the RNA molecules from proceeding further towards the active center since,
in the next steps, RNA degradation by the Rrp4-exosome is significantly slower as compared
to the Csl4-exosome (∼ 3− to 7− fold , about 1 to 2 log units). Surprisingly, exosomes with
different cap structures also differ in their efficiency to degrade small RNAs which are too
short to be in contact with the active site and the cap proteins at the same time. From the
crystal structures for both exosome variants, we know that the Rrp4 protein interacts more
intimately with the ring of the processing chamber than Csl4 [14]. It is not unlikely that this
interaction can influence the flexibility of the core ring and hence the degradation dynamics.
Furthermore, compared to the Csl4-exosome, the catalytic efficiency of the capless exosome
is significantly higher for all intermediates, indicating that the Csl4-cap has no stimulating
influence on the degradation of the poly(rA) substrate.

The state of the ring structure influences the degradation efficiency

To test the influence of the ring structure on the degradation efficiency, we compared the
crosslink mutant (with a rigid ring structure, but with the same size and shape as the
capless exosome) and the interface mutant (which can’t form the ring structure any more
and results in three stable Rrp41:Rrp42 heterodimers) to the corresponding wild-type, the
capless exosome (see Fig. 13.16C). While the degradation efficiency of the crosslink mutant
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decreases considerably (∼ 500− to 2000− fold) across the whole range, the decrease induced
by the interface mutant is, if at all, only marginal. This observation suggests that the ring
architecture needs to breathe or display some conformational dynamics to increase the size of
the neck. Only after the RNA molecule is bound in the neck, the protein ring might tightly
close around its substrate. This flexibility is not provided in the rigidified crosslink mutant.
Furthermore, the interface mutant seems to compensate the higher dissociation rate induced
by the open conformation with higher association and cleavage rates: while in the wild type
exosome only one RNA molecule can be degraded at a time, three active centers are accessible
here simultaneously.

13.2.4. Summary & Outlook

Although the analysis described here has been tailored to the kinetics of the RNA degradation
by the archaeal exosome, it is by no means limited to this system. Needless to say, the Bayesian
sampling method is well suited to address the RNA degradation by the eukaryotic exosome,
for instance to reveal the interplay between endo- and exonuclease activities [61,85,87] and
biochemical differences between different Dis3/Dis3L isoforms as well as Rrp6 of the human
exosome complex [71,94,100]. Related systems of interest are the degradation of 5’ ends by
XRN1, RNA degradation by bacterial degradosomes, or in general any system that involves
the (semi)processive synthesis or degradation of biopolymers.
In the future, it would be interesting to try a prior based proposal approach where the
association parameters are sampled correlated. In this way, the smoothness prior is directly
incorporated in the proposal which might yield faster convergence. In addition, an extension
of the experimental setup with respect to different substrates would be interesting to analyze
the influence of the different cap structures.



Part IV.

Statistical analysis of a cellular
decision process: Differentiation of

hematopoietic stem cells



14. Introduction

Cytokines play a major role during the generation of blood cells (hematopoiesis). Yet, the
precise nature of their contribution is still unclear: In the selective (also: permissive) scenario
they allow the survival and proliferation only of specific cell types. In this case, the commitment
of a cell is determined purely intrinsically by transcription factors, independent of external
signals. In the instructive scenario, cytokines already influence the differentiation process
itself via specific signaling pathways [81]. Both scenarios lead to the same result: In the end,
there exists one predominant lineage - whether this is due to different cell death (selective
scenario) or differentiation rates (instructive scenario). As a consequence, it is not obvious
which scenario to prefer. This question is addressed by several publications [32,74,80,84].
Stem cell genealogical trees (in the following shortly genealogies) can provide an answer.
They trace the development of a stem cell including cell division events, cell death events,
and, ideally, the differentiation in various lineages. An example of a genealogy is provided in
Fig. 15.1A. So far, the amount and quality of the available data have been limited due to
technical restrictions. Yet, a bioimaging approach has been presented recently that enables
long-term observations on the single-cell level [80]. It produces a series of hematopoietic stem
cell genealogies including information on “stemness” and lineage commitment of the individual
cells. Such technical advances and the consequential increase in (new kinds of) data raise the
need for new analysis methods.
In this context, we developed a factor graph model for stem cell genealogies in combination
with a reversible-jump Markov Chain Monte Carlo sampling algorithm to infer the predominant
scenario as well as the corresponding lineage specific differentiation and cell death rates. The
factor graph model has been developed within the scope of a bachelor thesis I supervised
(see [103]), I will briefly summarize the main points here. The reversible-jump MCMC
sampling is work in progress, the manuscript for a publication is currently prepared. Again,
the implementation is done by a student assistant I supervise, Diana Uskat. She also prepared
the figures included in this part. For these reasons, I will only provide a short outline on
this project focusing on the development of the reversible-jump algorithm. Furthermore, I
will present some preliminary results on simulated datasets. They show that our method is
able to reliably infer the predominant scenario as well as the corresponding differentiation
and cell death rates. At present, we apply the approach to simulation data produced by a
more elaborate model [63,83] and to a recently published dataset [80]. These results will be
included in the publication.



15. A factor graph model for hematopoietic
stem cell differentiation

We developed a simple model to describe the differentiation of hematopoietic stem cells
including two possible lineages (see Fig. 15.1B, right-hand side). The genealogies based on
this model are represented as factor graphs as explained in the following.

15.1. Factor graphs

Factor graphs are bipartite graphical models that consist of two different types of nodes
(variable nodes and factor nodes) and edges that are only allowed between nodes of different
types. Variable nodes represent the variables, here the cells and their properties at predefined
time points. In this model, we consider three possible cell types: Stem cells, cells differentiated
to lineage 1 and cells differentiated to lineage 2. Factor nodes establish relationships among the
variable nodes they are connected to, i.e., they provide probabilities for potential transitions
between cells. The factor nodes included in this model are depicted in Fig. 15.1B. The high-
dimensional joint posterior distribution for a given genealogy can thus be easily factorized into
a multitude of local, low-dimensional distributions. These refer only to neighboring variable
nodes (where neighboring means being connected by the same factor node) and hence are easier
to derive. In particular, the local probability distributions are based on only three possible
transitions and do not increase the number of parameters to be estimated (see also Section 1.2).
The main merit of factor graphs is the existence of very fast algorithms for the calculation of
the highest probability and the corresponding variable setting (max-sum algorithm), or for
the calculation of marginal probability distributions (sum-product algorithm) [8, Chapter 8].
The basic factor graph model visualizes exactly the genealogy derived from the cell tracking
process. The variable nodes correspond to the cells, and the factor nodes correspond to the
observed transitions. A second set of factor nodes, one for each variable node, incorporates
additional information with regard to the properties of the cells, i.e., whether a cell still has its
stem cell properties or whether it already differentiated (respectively, to which degree). This
scheme is depicted in Fig. 15.1C. The observed data thus provide the topology of the factor
graph, as well as the probability distributions for the properties of the individual cells. We
account for measurement errors by defining these distributions accordingly, e.g., probabilities
of 1 or 0 are avoided.
A detailed introduction to factor graphs and the corresponding algorithms can be found
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in [8, Chapter 8]. Their adaption to the differentiation of hematopoietic stem cells has already
been discussed in the bachelor thesis of Diana Uskat (see [103]) and is not part of this thesis.

15.2. General parametrization

The following parameters determine the general differentiation model (see also Fig. 15.1B):

Θ = {pdiff1 , pdiff2 , pdeath1 , pdeath2 , pdiv0 , pdiv1 , pdiv2} ,

where pdiff is the probability that a stem cell differentiates (in lineage 1 or 2, respectively),
pdeath is the probability that a cell dies (possible for lineage 1 or 2, but not for stem cells)
and pdiv is the probability that a cell divides. The following conditions have to be met:

1 = pdiff1 + pdiff2 + pdiv0 + pcont0 (Stem cells) (15.1)

1 = pdeath1 + pdiv1 + pcont1 (Lineage 1)

1 = pdeath2 + pdiv2 + pcont2 (Lineage 2)

i.e., the probabilities for all possible events for one cell type have to add up to one. pcont
constitutes the probability that the cell’s properties won’t change from one time point to the
next one (i.e., it will not die, differentiate or divide). Since its value is uniquely determined
by the values of the other probabilities, it is not part of the model’s parametrization.

15.3. Model selection

The aim of this work is not to infer all parameters individually, but to decide whether
differentiation is driven by a selective or an instructive mechanism. The selective scenario
states that even though different lineages evolve equally, selection pressure favors one of
them. In the mathematical model, this scenario is represented by identical differentiation
probabilities pdiff1 = pdiff2 = pdiff, but different probabilities for cell death pdeath1 and pdeath2 .
The instructive scenario states that all lineages are equally probable to die, but that one of
them evolves with a higher probability. In the mathematical model, the instructive scenario is
thus represented by identical cell death probabilities pdeath1 = pdeath2 = pdeath, but different
differentiation probabilities pdiff1 and pdiff2 .
Obviously, the two scenarios have to be described by two different model classes with different
parametrizations: The model class for the selective scenario Msel includes the parameters
Θsel = {pdiff, pdeath1 , pdeath2 , pdiv0 , pdiv1 , pdiv2}, while the model class for the instructive scenario
Minstr includes the parameters Θinstr = {pdiff1 , pdiff2 , pdeath, pdiv0 , pdiv1 , pdiv2}. In this situation,
it is not possible to apply the standard Metropolis-Hastings MCMC approach since the model
classes have different dimensions and are not directly comparable. This problem is solved
by reversible-jump MCMC sampling which integrates both model selection and parameter
estimation into one sampling process.
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Figure 15.1.: (A) shows the basic data processing: Cell tracking produces a genealogy providing all
information that can be derived by the experimental setup. The schematic representation of the cell
tracking has been provided by the group of Ingo Röder. (B) shows the model specification. Factor
nodes are depicted as squares, variable nodes are depicted as circles (left-hand side). Three types
of factor nodes (i.e., cell division, cell death, and continuance/differentiation) can be formed by a
simple model including probabilities for cell division, differentiation and cell death (right-hand side).
Note that the topology alone provides no information on whether a stem cell persists (continuance) or
differentiates. Colors indicate the cell type: stem cells are colored in blue, cells differentiated to lineage
1 or 2 are colored in red and green, respectively. Note that our model excludes cell death events for
stem cells. (C) shows the factor graph model (variable nodes: cells, black factor nodes: transitions)
for a given observation (genealogy). Additional factor nodes (colored), each connected to exactly one
variable node, provide probability distributions for the characteristics of the cells (i.e., whether it is a
stem cell or already differentiated to a given cell type), according to what can be measured during cell
tracking (see Chapter 14).



16. Parameter estimation using
reversible-jump MCMC sampling

For numerical stability, all calculations were carried out in log-space. An introduction to
MCMC sampling in general can be found in Section 2.4. The reversible jump algorithm
includes steps suggesting jumps between model classes as well as pure parameter sampling
steps within the same model class. Here, this is realized by drawing u ∼ U[0,1] at every step to
decide whether a model jump is suggested (u ≤ α), or whether the model class is maintained
and a new set of parameters is suggested (u > α). The percentage of model jumps is set to
α = 0.05. In the following, both situations are explained in detail.

16.1. Jumps between model classes

Changing the model class involves comparing one common cell death and two lineage-specific
differentiation probabilities in the instructive scenario with one common differentiation and
two lineage-specific cell death probabilities in the selective scenario. This is not possible and
so the parameter spaces of the two scenarios have to be adjusted such that each scenario
contains two differentiation related and two cell death related parameters. In the following,
the application-specific implementation of the reversible-jump algorithm is explained in detail.
For the general case, please refer to Section C.1.

16.1.1. Jumping from the selective to the instructive scenario

Jumping from the selective (one common differentiation probability, two lineage-specific cell
death probabilities) to the instructive scenario (one common cell death probability, two lineage-
specific differentiation probabilities) involves suggesting a parameter set
Θ′instr = {p′diff1

, p′diff2
, p′death, p

′
div0

, p′div1
, p′div2

} based on the current parameter set
Θn

sel = {pndiff, pndeath1
, pndeath2

, pndiv0
, pndiv1

, pndiv2
}.

Extension of the parameter sets

To ensure a common measure, the parameter sets have to be extended with the param-
eters ∆diff and ∆death as follows: Θ̄n

sel = {pndiff,∆diff, p
n
death1

, pndeath2
, pndiv0

, pndiv1
, pndiv2

} and
Θ̄′instr = {p′diff1

, p′diff2
, p′death,∆death, p

′
div0

, p′div1
, p′div2

}.
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The model jump then involves the following assignments:

p′diff1 = pndiff + ∆diff

p′diff2 = pndiff −∆diff

p′death =
pndeath1

+ pndeath2

2

∆death =
pndeath1

− pndeath2

2

where ∆diff ∼ U[−
pn
diff
2 ,

pn
diff
2 ]

. The Jacobian for this transformation is 1 (see Appendix Section C.1

for a derivation). The division probabilities remain unchanged. The conditions p′death+p′div1
≤ 1

and p′death + p′div2
≤ 1 are met by definition, see Section 16.2.1.

Calculation of the acceptance probability

The general reversible-jump acceptance probability is explained in the Appendix, Section C.1.
Here, the model jump is accepted with probability min(Asel→instr, 1), with

Asel→instr = sum-product(Θ̄′instr)
sum-product(Θ̄nsel)

· 1 ·
1

p′death
1
pn
diff

· 1

and sum-product(Θ) being the output of the sum-product algorithm for a given parameter
set Θ, i.e., the probability for this set of parameters. The model jump is unambiguous
since only two different model classes are available and the probability for suggesting a
model jump is the same for both scenarios, hence q(Msel|Minstr) = q(Minstr|Msel) = α. Yet,
qsel→instr(∆diff|Θn

sel) and qinstr→sel(∆death|Θ′instr) have to be taken into account, since the ranges
from which ∆diff and ∆death are sampled differ.

16.1.2. Jumping from the instructive to the selective scenario

Jumping from the instructive (one common cell death probability, two lineage-specific
differentiation probabilities) to the selective scenario (one common differentiation prob-
ability, two lineage-specific cell death probabilities) involves suggesting a parameter set
Θ′sel = {p′diff, p′death1

, p′death2
, p′div0

, p′div1
, p′div2

} based on the current parameter set
Θn

instr = {pndiff1
, pndiff2

, pndeath, p
n
div0

, pndiv1
, pndiv2

}.

Extension of the parameter sets

To ensure a common measure, the parameter sets have to be extended with the param-
eters ∆death and ∆diff as follows: Θ̄n

instr = {pndiff1
, pndiff2

pndeath,∆death, p
n
div0

, pndiv1
, pndiv2

} and
Θ̄′sel = {p′diff,∆diff, p

′
death1

, p′death2
, p′div0

, p′div1
, p′div2

}.



16.2 Sampling new parameters 78

The model jump then involves the following assignments:

p′diff =
pndiff1

+ pndiff2

2

∆diff =
pndiff1

− pndiff2

2
p′death1 = pndeath + ∆death

p′death2 = pndeath −∆death

where ∆death ∼ U[−
pn
death

2 ,
pn
death

2 ]
. The Jacobian for this transformation is 1 (see Appendix

Section C.1 for a derivation). The division probabilities remain unchanged. The step is
repeated if p′death1

+ p′div1
> 1 or p′death2

+ p′div2
> 1 since this proposal is invalid. However,

due to small values for cell death and division probabilities this is usually not the case.

Calculation of the acceptance probability

The general reversible-jump acceptance probability is explained in the Appendix, Section C.1.
Here, the model jump is accepted with probability min(Ainstr→sel, 1), with

Ainstr→sel = sum-product(Θ̄′sel)
sum-product(Θ̄ninstr)

· 1 ·
1

p′diff
1

pn
death

· 1

and sum-product(Θ) being the output of the sum-product algorithm for a given parameter
set Θ, i.e., the probability for this set of parameters. The model jump is unambiguous since only
two different model classes are available and the probability for suggesting a model jump is the
same for both scenarios, so q(Minstr|Msel) = q(Msel|Minstr) = α. Yet, qinstr→sel(∆death|Θn

instr)
and qsel→instr(∆diff|Θ

′
sel) have to be taken into account, since the ranges from which ∆death

and ∆diff are sampled differ.

16.2. Sampling new parameters

New parameters are sampled according to the general Metropolis-Hastings algorithm. The set
of parameters that have to be sampled depends on the current model class (see Chapter 15).

16.2.1. Selective scenario

In the selective scenario, a new set of parameters Θ′sel = {p′diff, p′death1
, p′death2

, p′div0
, p′div1

, p′div2
}

(including two cell death probabilities and one differentiation probability) has to be sampled
based on the previous one (Θn

sel = {pndiff, pndeath1
, pndeath2

, pndiv0
, pndiv1

, pndiv2
}).
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This is done individually for each cell type:

(2 · p′diff, p′div0 , p
′
cont0) ∼ D(c · (2 · pndiff, pndiv0 , p

n
cont0)) (16.1)

(p′death1 , p
′
div1 , p

′
cont1) ∼ D(c · (pndeath1 , p

n
div1 , p

n
cont1))

(p′death2 , p
′
div2 , p

′
cont2) ∼ D(c · (pndeath2 , p

n
div2 , p

n
cont2))

As outlined in Eq. 15.1, pcont is the complementary event to the transitions that are possible
for a cell type, and is thus uniquely determined and not part of the parametrization of a model.
Nevertheless it has to be included in the sampling step. The proposal function (here, the
Dirichlet distributions with high parameter values, c = 500) suggests a new set of parameters
that are centered at the old ones, and add up to one for each cell type (for more details see
Appendix Section C.2). The probabilities for a stem cell to differentiate into lineage 1 or
lineage 2, respectively, are the same. To nevertheless maintain the proportions among the
possible stem cell transitions, pdiff is counted twice in the proposal function. In addition,
jumping from the selective to the instructive scenario has to be possible anytime. Therefore,
the following conditions have to be met:

p′death1
+p′death2
2 +p′div1

≤ 1 and
p′death1

+p′death2
2 +p′div2

≤ 1.
If this is not the case, the proposal step is repeated since the parameter combination is invalid.
Θ′sel is accepted with probability min(Asel, 1), with

Asel = sum-product(Θ′sel) · q(Θn
sel|c ·Θ′sel)

sum-product(Θn
sel) · q(Θ′sel|c ·Θn

sel)

and sum-product(Θ) being the output of the sum-product algorithm for a given parameter
set Θ, i.e., the probability for this set of parameters. q(Θn

sel|c ·Θ′sel) and q(Θ′sel|c ·Θn
sel) are the

products of the Dirichlet density functions for the respective parameter subsets (one for each
cell type, see Eq. 16.1).

16.2.2. Instructive scenario

In the instructive scenario, a new set of parameters Θ′instr = {p′diff1
, p′diff2

, p′death, p
′
div0

, p′div1
, p′div2

}
(including two differentiation probabilities and one cell death probability) has to be sampled
based on the previous one (Θn

instr = {pndiff1
, pndiff2

, pndeath, p
n
div0

, pndiv1
, pndiv2

}). Here, four proposal
functions have to be defined:

(p′diff1 , p
′
diff2 , p

′
div0 , p

′
cont0) ∼ D(c · (pndiff1 , p

n
diff2 , p

n
div0 , p

n
cont0)) (16.2)

p′death ∼ B(c · (pndeath, (1− pndeath)))

p′div1 ∼ B(c · (pndiv1 , (1− p
n
div1)))

p′div2 ∼ B(c · (pndiv2 , (1− p
n
div2)))

The proposal function (here, the Dirichlet distributions with high parameter values, c = 500)
suggests a new set of parameters that are centered at the old ones, and add up to one for the
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stem cell probabilities (for more details see Appendix Section C.2). To meet the condition
that the cell death probabilities in lineage 1 and 2 are the same, it is not possible to use the
same lineage specific proposal functions as in the selective scenario. Thus, transition specific
proposal functions based on the beta distribution (a special case of the multivariate Dirichlet
distribution) have been defined (see Appendix Section C.3 for details). If p′death + p′div1

> 1 or
p′death + p′div2

> 1, the proposal step is repeated because this parameter combination is not
included in the defined parameter space. However, small values for cell death and division
probabilities in combination with narrow proposal functions generally ensure that the cell type
specific transition probabilities will add up to one in spite of the different proposal functions.
Θ′instr is accepted with probability min(Ainstr, 1), with

Ainstr = sum-product(Θ′instr) · q(Θn
instr|c ·Θ′instr)

sum-product(Θn
instr) · q(Θ′instr|c ·Θn

instr)

and sum-product(Θ) being the output of the sum-product algorithm for a given parameter set
Θ, i.e., the probability for this set of parameters. q(Θn

instr|c ·Θ′instr) and q(Θ′instr|c ·Θn
instr) are

the products of the Dirichlet and beta density functions for the respective parameter subsets
(see Eq. 16.2).



17. Simulation results

We generated 50 trees for each scenario (selective and instructive) based on the model depicted
in Fig. 15.1B, and predefined transition probabilities. Fig. 17.1 summarizes the results outlined
in the following.

Assessment of the MCMC sampling behavior

We verified independence of initialization (data not shown). Fig. 17.1C shows a high acceptance
rate (with regard to both model jumps and newly suggested parameters) and fast convergence.

Prediction quality

The reversible-jump approach is able to infer the true scenario as well as the true parameters.
Applying it to datasets with increasing size reveals that a larger amount of data increases the
quality of the prediction significantly (see Fig. 17.1A).
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Figure 17.1.: Prediction quality and MCMC sampling behavior (simulation) for an instructive (left-
hand side) and a selective (right-hand side) scenario. (A) Boxplots for the predicted differentiation
(top) and cell death (bottom) probabilities for both lineages are shown, as well as the proportions of
the predicted scenarios (middle). The boxplots include only parameters that have been sampled in
the respective scenario. The horizontal green and red lines depict the simulated (“true”) parameter
values. On the x-axis the numbers of trees used for the predictions are depicted in increasing order.
Each dataset is a subset of the next one in size. Note that in the selective scenario the predictions for
the cell death probabilities based on only one tree have dropped out of the depicted range. (B) The
simulated trees used for the prediction (here: |Trees| = 10) are shown. Stem cells are colored in blue,
cells differentiated in lineage 1 and 2 are colored in red and green, respectively. (C) The traceplots
(for the first and the final 2000 steps of the Markov chains) for all parameters as well as for the jumps
between model classes are depicted. Grey color indicates that the corresponding parameter is the same
for both lineages in the currently selected model class. The dashed green and red lines depict the
simulated (“true”) parameter values.
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The inherent complexity of systems biology models requires advanced methods for the
identification of their parameters. While point estimates may be arbitrary, instable and not
reproducible, Markov Chain Monte Carlo methods embed estimates in confidence intervals.
These provide valuable information on the uniqueness and the variability of the parameter
estimates, making the results more reliable and meaningful. They enable comparisons between
different experiments as has been demonstrated in Part III (RNA degradation by the archaeal
exosome). Without the information on the parameter distributions, statements such as
“Short RNAs are degraded slower than long RNAs” or “The Tyr70Rrp42 mutation has a
negative influence on the degradation of short RNAs” would not be possible (or at least not
credible).
As for the success of a parameter estimation method, the number of parameters turned
out to be not necessarily the decisive factor. What seemed to be more important was the
appropriateness of the model and the quality of the data. For example, the estimation of
the 28 parameters in the RNA degradation model (Part III) was highly successful since the
model describes the biochemistry well and the available data is of high quality. In contrast,
estimating the 7 parameters in the stem cell factor graph model in Part IV is more difficult. It
is thus essential to carefully carry out the modeling process and to figure out which parameters
are the ones of interest and which might lead to overparametrization. It is important to take
into account the quality of the data as well as the amount and kind of data that is required
to describe the parameters of interest. This can be achieved by an appropriate error model
and, where necessary, a reparametrization of the model. In particular, it is important to
avoid redundancy as shown in Part III (RNA degradation by the exosome). There, it was
impossible to distinguish between the accumulation of bound or of free RNAs, i.e., between
fast association and slow cleavage or slow association and fast cleavage. Constructing smooth
probability landscapes for the parameters simplifies the estimation process, however, this is
easier for continuous parameter spaces (e.g., Part III) than for discrete ones. The rugged
probability landscape of the Nested Effects Models in Part II, for example, necessitated the
incorporation of an Expectation Maximization algorithm into the MCMC sampling scheme for
the exploration of the model space. To assess the usefulness and identifiability of parameters
when the model class is complex, extensive simulations are indispensable.
An important criterion for the success and reliability of a MCMC sampling method is the
convergence of the Markov chain. Again, obtaining good mixing and fast converging chains
is often easier in continuous than in discrete parameter spaces as can be seen by comparing
Part III (RNA degradation by the exosome) with Part II (yeast Mediator and NEMs). It
is thus essential to define the parameter neighborhood and construct the transition kernel
(i.e., the proposal function) carefully, and to take the time to verify MCMC convergence by
extensive simulations.
It has also turned out to be important to effectively narrow down the space of suitable
parameters, for example by choosing a suitable prior. While this was of great value in Part II
and Part III, it turned out to be the key breakthrough in Part IV (the differentiation model
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for hematopoietic stem cells). The intuitive model consisting of two differentiation and two
cell death probabilities was not identifiable, but splitting it into two simpler model classes
where either the differentiation probabilities (selective scenario) or the cell death probabilities
(instructive scenario) are a priori defined to be equal, turned out to be successful.
In conclusion, I have demonstrated in this thesis that Markov Chain Monte Carlo sampling
methods, if implemented carefully, can add great value to the interpretation of experimental
data.
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Appendix



A. Supplementary material for Part II -
MC EMiNEM and yeast Mediator

A.1. EM algorithm

This section is an extended version of the EM Section in the main text. We report the results
that arise from the EM algorithm when applied to our situation. The calculations involve only
elementary algebra but are sometimes tedious. According to [102], the likelihood function
(“structure likelihood”) of the signals graph in a NEM is

L(Θ, H) = P (D|Θ, H) =
∏
j∈S

∏
k∈E

P (Djk|(ΘH)jk) =
∏
j,k

pjk (A.1)

The log likelihood can be written as

log L(Θ, H) = logP (D|H,Θ) =
∏
j,k

pjk

= log
∏
j,k

[P (Djk|(ΘH)jk)/qjk] + log
∏
j,k

qjk

=
∑
j,k

log

pjk/qjk if (ΘH)jk > 0

1 if (ΘH)jk = 0
+ const

=
∑
j,k

Rjk if (ΘH)jk > 0

0 if (ΘH)jk = 0
+ const

=
∑
j,k

(ΘH)jkRjk + const

=
∑
j

[∑
k

(ΘH)jk(RT )kj
]

+ const

=
∑
j

(ΘHRT )jj + const (A.2)

= trace(ΘHRT ) + const (A.3)

The (full) posterior is then given by

logP (Θ, H|D) = logP (D|H,Θ) + log π(Θ, H) + const
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We assume edge-wise independent priors, π(Θ, H) = πS(Θ) ·πE(H), and πS(Θ) = ∏
i,j π

S(Θij),
πE(H•k) = ∏

k π
E(H•k).

A.1.1. The general EM algorithm

Throughout this section, the data D, respectively the matrix R, is considered given and fixed.
We want to find the maximum a posteriori estimate Θ̂ for the signals graph,

Θ̂ = arg max
Θ

P (Θ|D) = arg max
Θ

∑
H∈ME

P (Θ, H|D) (A.4)

The Expectation-Maximization algorithm was developed exactly for this purpose, to per-
form a maximization task in the presence of hidden variables [19]. The EM proceeds by
iteratively constructing a sequence of parameter estimates Θt, t = 1, 2, ... such that the
sequence (P (Θt|D))t=1,2,... is monotonically increasing, and converges (under mild additional
assumptions that are met in our case) to a local maximum of P (Θ|D).
The expectation (E-)step of the EM algorithm involves calculating the expectation value
Q(Θ; Θt),

Q(Θ; Θt) = EP (H|D,Θt) [ logP (D,H|Θ) ] =
∑

H∈ME

logP (D,H|Θ) · P (H|D,Θt) . (A.5)

The maximization (M-)step of the EM algorithm then consists of finding

Θt+1 = arg max
Θ

[
Q(Θ; Θt) + log πS(Θ)

]
, (A.6)

which is usually a much easier task than solving (A.4) directly. In the following, both steps
are described in detail.

A.1.2. The E-step

Let us assume that the priors for Θ and H are independent, π(Θ, H) = πS(Θ)πE(H). Then,
the terms in Q(Θ; Θt) can be rearranged

Q(Θ; Θt) = EP (H|D,Θt) [ logP (D,H|Θ) ] (A.7)

=
∑
H

P (H|D,Θt) logP (D,H|Θ)

=
∑
H

P (D|H,Θt)P (H|Θt)
P (D|Θt) log(P (D|H,Θ)P (H|Θ))

=
π(H,Θ) =πE(H)πS(Θ) 1

P (D|Θt)
∑
H

P (D|H,Θt)πE(H)[ logP (D|H,Θ) + log πE(H) ]

= c−1∑
H

P (D|H,Θt)πE(H) logP (D|H,Θ) + const
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with a normalizing factor c = P (D|Θt) = ∑
H P (D|H,Θt)πE(H) and a constant that does not

depend on Θ. The problem of maximizing Q(Θ; Θt) is therefore equivalent to maximizing
Q̃(Θ; Θt), where

Q̃(Θ; Θt) = c−1∑
H

P (D|H,Θt)πE(H) logP (D|H,Θ) (A.8)

We seek for an expression for (A.6) which is amenable to analytic maximization strategies.
Let V = RE be an m-dimensional vector space, which is spanned by the unit column vectors
ek ∈ V , k ∈ E , and let e0 = 0 ∈ V . We assume further that the prior for H factorizes into
priors for each effect,

πE(H) =
∏
k∈E

πEk (Hek) . (A.9)

Let dj be the j-th unit column vector of dimension n, and d0 the n-dimensional null vector.
The NEM model assumes that each effect assigns to at most one signal, so πEk (v) = 0 for each
vector v 6∈ {dj , j = 0, ..., n}, k ∈ E , and

πEk (dj) = πjk , j = 0, 1, ..., n, and
n∑
j=0

πEjk = 1 . (A.10)

The m × m unit matrix is denoted by E. Be aware of the identity E = ∑
k∈E eke

T
k . We

take advantage of the fact that the trace of a quadratic matrix is a linear function, and that
tr(AB) = tr(BA) for arbitrary (compatible) matrices A, B.

tr(ΘHRT ) = tr(RTΘH) = tr(
∑
k∈E

eke
T
kR

TΘH) (A.11)

=
∑
k∈E

tr(ekeTkRTΘH) =
∑
k∈E

eTkR
TΘ(Hek)

Thus by (A.3), letting gk(v,Θ) = eTkR
TΘv,

logP (D|H,Θ) =
∑
k∈E

gk(Hek,Θ) + const. (A.12)

Analogously,
P (D|H,Θt) ∝ exp(tr(ΘtHRT )) =

∏
k∈E

fk(Hek,Θt) , (A.13)

with fk(v,Θt) = exp(gk(v,Θt)). For convenience we suppress the dependence of gk on Θ (and
write gk(v) instead of gk(v,Θ)) and of fk on Θt (and write fk(v) instead of fk(v,Θt)). Let
W = {0, 1}n. The evaluation of Q̃(Θ; Θt) can be simplified considerably. For r = 1, ...,m, let

Fr(Θ) =
∑
vr∈W

∑
vr+1∈W

...
∑

vm∈W

 m∏
l≥r

πEl (vl)fl(vl)

 ·
 m∑
k≥r

gk(vk)

 (A.14)
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Note that

Q̃(Θ; Θt) = c−1∑
H

P (D|H,Θt)πE(H) logP (D|H,Θ) (A.15)

(A.12,A.13)= c−1∑
H

(
m∏
l=0

πEl (Hel)fl(Hel)
)
·
(

m∑
k=0

gk(Hek)
)

= c−1 F1(Θ)

We introduce two more terms,

Ak =
∑
v∈W

πEk (v)fk(v) =
n∑
j=0

πEjkfk(dj)) (A.16)

Bk(Θ) =
∑
v∈W

πEk (v)fk(v)gk(v) =
n∑
j=0

πEjkfk(dj)gk(dj) . (A.17)

Fr can be calculated from Fr+1 via the recursive formula (A.18):

Fr(Θ) =
∑

vr+1,...,vm∈W

∑
vr∈W

πEr (vr)fr(vr) ·
m∏
l>r

πEl (vl)fl(vl)

 ·
 m∑
k≥r

gk(vk)

 (A.18)

=
∑

vr+1,...,vm∈W

 m∏
l>r

πEl (vl)fl(vl)

 · ∑
vr∈W

πEr (vr)fr(vr) ·

 m∑
k≥r

gk(vk)


=

∑
vr+1,...,vm∈W

 m∏
l>r

πEl (vl)fl(vl)

 · ∑
vr∈W

πEr (vr)fr(vr) ·

gr(vr) +
m∑
k>r

gk(vk)


=

∑
vr+1,...,vm∈W

 m∏
l>r

πEl (vl)fl(vl)

 ·
Br(Θ) +Ar

m∑
k>r

gk(vk)


= Br(Θ)

 m∏
l>r

∑
vl∈W

πEl (vl)fl(vl)

+
∑

vr+1,...,vm∈W

 m∏
l≥r+1

πEl (vl)fl(vl)

Ar m∑
k≥r+1

gk(vk)


= Br(Θ)

m∏
l>r

Al + Ar · Fr+1(Θ)

By reverse induction we prove the formula

Fr =

∏
l≥r

Al

∑
k≥r

Bk(Θ)
Ak

 , (A.19)

the initial case r = m is Fm(Θ) = ∑
v∈W πEk (v)fk(v)gk(v) = Bm(Θ) = Am · Bm(Θ)

Am
. The
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induction step is completed by

Fr
(A.18)= Br(Θ)

m∏
l>r

Al + Ar · Fr+1(Θ) (A.20)

= Br(Θ)
m∏
l>r

Al + Ar

∏
l>r

Al

∑
k>r

Bk(Θ)
Ak


= Br(Θ)

Ar

m∏
l≥r

Al +

∏
l≥r

Al

∑
k>r

Bk(Θ)
Ak


=

∏
l≥r

Al

∑
k≥r

Bk(Θ)
Ak


We realize that

c =
∑
H

P (D|H,Θt)πE(H)
(A.13), πE(H)=

∏
k∈E π

E
k (Hek)

=
∑

v1,...,vm∈W

(
m∏
k=1

πEk (vk)fk(vk)
)

=
m∏
k=1

∑
vk∈W

πEk (vk)fk(vk) =
m∏
k=1

Ak (A.21)

(note that gk(dj ,Θ) = eTkR
TΘdj = (RTΘ)kj). Note that for a deterministic prior, fixing an

effects gene assignment H ∈ {0, 1}n×m,

log c =
m∑
k=1

logAk

=
m∑
k=1

log

 n∑
j=0

πEjkfk(dj)

 =
m∑
k=1

log

 n∑
j=0

πEjk exp gk(dj ,Θt)


=

m∑
k=1

log

 n∑
j=0

πEjk exp (RTΘt)kj


=

m∑
k=1

log
(
H•k exp (RTΘt)k•

)
H∈{0,1}n×m

=
m∑
k=1

H•k(RTΘt)k•

= tr
(
HRT θt

)
(A.22)
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Finally, we obtain

Q̃(Θ; Θt) (A.15)= c−1 · F (Θ) (A.23)
(A.20),(A.21)=

(
m∏
k=1

Ak

)−1

·
(
m∏
l=1

Al

)(
m∑
k=1

Bk(Θ)
Ak

)

=
m∑
k=1

Bk(Θ)
Ak

A.1.3. The M-step

According to (7.2) and (A.23) we have to maximize

Q̃(Θ; Θt) + log πS(Θ) =
∑
k∈E

Bk(Θ)
Ak

+ log πS(Θ) . (A.24)

As a further simplification we assume edgewise independent priors:

πS(Θ) =
∏
i,j

(πSij)Θij (1− πSij)1−Θij , with 0 ≤ πSij ≤ 1 (A.25)

(we may disregard the cases in which πSij ∈ {0, 1}, because in this case the corresponding edge
Θij is fixed as absent or present and is therefore not subject to optimization). The log of the
prior is then a linear function in each Θab:

log πS(Θ) = log
∏
i,j

π
Θij

ij (1− πij)1−Θij (A.26)

=
∑
i,j

[ Θij log πij + (1−Θij) log(1− πij) ]

=
∑
i,j

[ Θij(log πij − log(1− πij) + log(1− πij) ]

=
∑
i,j

Θij log πij
1− πij

+ const =:
∑
i,j

Θijτ ij + const

This implies that the objective function (A.24) Q̃(Θ; Θt) + log πS(Θ) is a polynomial in
the variables {Θab|a = 1, ..., n; b = 1, ..., n} of total degree 1. The partial derivatives of the
objective function with respect to Θab are therefore constant, i.e., independent of Θ (Note
that Θdj equals the j-th column of Θ, so gk(dj ,Θ) = eTkR

TΘdj is linear in the entries of Θ):

∂gk(dj ,Θ)
∂Θab

= ∂

∂Θab
[(eTkRT )(Θdj)] = ∂

∂Θab

n∑
i=1

RikΘij (A.27)

=
n∑
i=1

Rik
∂

∂Θab
Θij = δj=bRak .
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Hence

∂Bk(Θ)
∂Θab

=
n∑
i=0

πEikfk(di,Θt) ∂

∂Θab
gk(ds,Θ) (A.27)=

n∑
i=0

πEikfk(di,Θt)δi=bRak (A.28)

= πEbkfk(db,Θt)Rak

Consequently,

∂Q̃(Θ; Θt)
∂Θab

= ∂

∂Θab

m∑
k=1

Bk(Θ)
Ak

=
m∑
k=1

πEbkfk(db,Θt)Rak
Ak

, (A.29)

which together with (A.26) implies

∂(Q̃(Θ; Θt) + log πS(Θ))
∂Θab

=
m∑
k=1

πEbkRak exp(gk(db,Θt))(Ak)−1 + τab , (A.30)

Using the step function step(x) =

1 if x > 0

0 if x ≤ 0
, the updated values in Θt+1 can be stated in

closed form:

Θt+1
ab = step

{
m∑
k=1

Rakπ
E
bk exp((RTΘt)kb)(Ak)−1 + τab

}
. (A.31)

In the general case of an arbitrary prior πS(Θ), it can be difficult to find a global optimum
of the objective function Q̃(Θ; Θt) + log πS(Θ). However it is not necessary to find a global
optimum, it is sufficient to find a Θt+1 that increases the value of the objective function over
the current value Q̃(Θ; Θt) + log πS(Θt). It has been shown in [72] that such a “stepwise”
EM still converges to a local maximum of P (Θ | D). Therefore, we start with Θ = Θt and
go through all edges Θab in a random order and check whether alteration of Θab improves
the objective function. If yes, we perform this change in Θ and continue until all edges were
checked. The resulting Θ is our new Θt+1.

A.2. MCMC sampling

A.2.1. A theoretical motivation for the sampling of local maxima

EMiNEM is viewed as a function EM : Θ 7→ Θ̂ = EM(Θ), which maps the signals graph
space MS onto the space N = EM(MS) of local maxima of the posterior. The current
section is devoted to constructing a sequence in N that provides a representative sample of
P |N , the restriction of the posterior probability P to N . Our task is complicated by the
fact that we cannot construct functions that sample from N directly, because the calculation
of each member requires the application of EMiNEM. Instead, we use Metropolis-Hastings
Markov Chain Monte Carlo (MCMC) sampling (see Section 2.4 for a general introduction)
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to construct a sequence in MS , and lift it to N . Let (Θi)i=1,2,... be a sequence of signals
graphs in MS obtained by MCMC sampling from the distribution P . The corresponding
sequence (EM(Θi))i=1,2,... is then an approximate empirical sample from the distribution
P̂ (Θ̂) = ∑

{P (Θ|D); EM(Θ) = Θ̂} ≈ P |N (Θ̂) on N . This approximation is valid under the
assumption that the probability of P (Θ̂ | D) is substantially larger than P (Θ | D) for all
other Θ ∈ EM−1(Θ̂), which is presumably the case. However, the convergence speed of this
Markov chain is very slow, the reason being implicit in the assumption: In order to move from
one local maximum to a different one, the underlying Markov chain inMS needs to traverse
regions of substantially lower probability. We remove this obstacle by sampling (Θi)i=1,2,...

from the distribution Q(Θ) ∝ P (EM(Θ)|D) instead of sampling from P . The corresponding
sequence (EM(Θi))i=1,2,... is then an approximate empirical sample from the distribution

P̂ (Θ̂) ∝
∑
{P (EM(Θ)|D); EM(Θ) = Θ̂} = P (Θ̂|D) · |{Θ; EM(Θ) = Θ̂}|

≈ P (Θ̂ | D) · c (A.32)

The last approximation assumes that the pre-image of Θ̂ under EM has a similar size c for all
Θ̂ ∈ N . In any case, we expect the relative probability P̂ (Θ̂1)

P̂ (Θ̂2) to be dominated by the quotient
P (Θ̂1|D)
P (Θ̂2|D) , which justifies our approximation in Eq. A.32 for the purpose of finding high-scoring
graphs Θ̂.

A.2.2. Empirical Bayes estimation of the effects graph prior

The attachment probability H i
jk of effect node k to signal node j, based on one signals graph

Θi, is:

H i
jk = P (H i

•k = ej |Θi, R,Hold) = exp f ik(j)∑
j exp f ik(j)

, with

f ik(j) =

log π(Hold
jk ) +R•kΘi

•j for jεS

log π(Hold
jk ) for j the null node

The new attachment probability, based on the preceding N = |chain|
12 steps of the Markov

chain, is then Hnew =
∑N

i=1 H
i

N .
In our approach, we do not sample from MS directly, but we sample from a set of local
maxima N . This set is much smaller and develops slower thanMS , as can be seen in the
traceplots. Note that this set changes every epoch, since the prior is updated empirically.
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Figure A.1: A simulated NEM.
Above, the signals graph is
shown, below the corresponding
R matrix, clustered according to
the gene attachment (rows: per-
turbations, columns: effects on
measured genes). Red color in-
dicates a positive log-ratio value,
blue color indicates a negative
log-ratio value. The stronger the
color of a fieldRkj , k ∈ E , j ∈ S,
the higher the probability that
the measured data is due to the
fact that there actually is an ef-
fect of signal j on gene k, or, that
there is no effect, respectively.

Figure A.2: Prediction for
Fig. A.1. Above, the signals
graph is shown, below the corre-
sponding R matrix, clustered ac-
cording to the gene attachment
(rows: perturbations, columns:
effects on measured genes). Red
color indicates a positive log-
ratio value, blue color indicates
a negative log-ratio value. The
stronger the color of a field
Rkj , k ∈ E , j ∈ S, the higher
the probability that the mea-
sured data is due to the fact
that there actually is an effect
of signal j on gene k, or, that
there is no effect, respectively.
The matrix here is the same as
in Fig. A.1, but the ordering
of genes (columns) is different,
since it depends on the gene at-
tachment derived by the MCMC
sampling.
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A.3. Simulation

A.3.1. Data generation

Simulated datasets have been generated using the method createNEM, provided by Nessy [101].
It takes as input the number of signals |S|true and effect genes |E|true, as well as the two
noise parameters µ and δ. Θtrue and Htrue are randomly sampled according to |S|true,
|E|true and a predefined edge frequency for the signals graph 0.7 · |S| that corresponds to
the expected number of edges in the observed data. The simulated (“true”) data matrix
(|S|true× |E|true) is calculated according to these graphs. A noisy log-odds ratio matrix is then
calculated based on the “true” effects by sampling its values from two normal distributions
with (mean = −µ

2 , sd = δ) and (mean = µ
2 , sd = δ), respectively. µ and δ have been chosen

such that for an optimal test with a type-I error (α− level) of 5%, a type II error (β − level)
of 0.04%, 20%, 49%, and 66% would be achieved, respectively. A simulated NEM and the
corresponding prediction of MC EMiNEM, for |S| = 8 and β − level = 49% are shown in
Fig. A.1 and Fig. A.2.

A.3.2. Prediction quality

To assess the prediction quality, MC EMiNEM has been compared to four other methods. In
the following, the results of this comparison (as depicted in Fig. 8.5A) are discussed and a
detailed explanation of the four methods is provided. In all cases, a uniform prior and the
data-driven prior have been chosen for the signals graph and the effects graph, respectively,
to ensure a fair basis for comparison. Randomly sampled sparse graphs with pedge = 1

|S| have
been used for initialization.

Random

For each NEM, 5000 random signals graphs have been sampled, according to the parameters
described above. Every (unique) graph has than been weighted by its posterior and a consensus
signals graph has been built including all edges with a (weighted) value of ≥ 0.5. This is the
most trivial method for parameter estimation.
As expected, this method yields quit good results for small numbers of signal nodes, where
the probability of randomly drawing reasonable graphs is higher. However, for larger number
of signal nodes, independent of the noise level, this method is not able to detect the correct
edges at all.

EMiNEM

This method is based on the random sampling approach, except that not the sampled signals
graphs but their corresponding local maxima have been weighted and combined to a consensus
signals graph.
EMiNEM is slightly better than random sampling, because by only taking into account
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local maxima unlikely graphs are excluded from the consensus. However, it still relies on
random drawing of signals graphs and only yields good results for small numbers of nodes.
By comparing it to the considerably better results of the more elaborate MC EMiNEM it
is clearly visible that the more complex and time-consuming Markov Chain Monte Carlo
approach, which leads to a reasonably “guided” exploration of the model space, is justified.

Nessy

Nessy is a publicly available NEM implementation [102]. Unlike (MC) EMiNEM it’s a
maximum full likelihood / posteriori approach, where not only the maximum for the signals
graph but also for the effects graph should be identified. Since no prior knowledge regarding
the signals graph is available, but a sparse graph is assumed, Nessy is initialized with the
empty graph.
MC EMiNEM is a maximum marginal posteriori approach, it only calculates the maximum for
the signals graph and marginalizes over the effects graph. For good data, with low amount of
noise, the effects graph is clearly identifiable and MC EMiNEM and Nessy perform comparably.
However, for higher noise the calculation of the maximum effects graph is error-prone and
the risk of getting stuck in the wrong model is high, so Nessy is clearly outperformed by
MC EMiNEM there.

nem

nem is the original NEM implementation, publicly available through Bioconductor [67].
Recently, [27] published a review of all currently available NEM algorithms, where they
recommend the Bayesian greedy hill climbing approach for small networks as the method of
choice. It calculates the original NEM score by integrating over all effects graphs. According
to these findings, we applied nem on the log-odds ratios with the following parameters:
inference=“nem.greedy”and type=“CONTmLLBayes”.

A.4. Application: The yeast Mediator signaling network

A.4.1. Data processing

Data processing has been done using R [79]. The arrays were read in and transformed to expres-
sion values one by one, using expresso() from the R/Bioconductor package affy [29] with the
following parameters for background correction and summarization: bgcorrect.method=“rma”,
pmcorrect.method=“pmonly”, summary.method=“avgdiff”. Some arrays included S.pombe
probes, they were filtered to S.cerevisiae. The median expression values were centered to
zero (on the log-scale) for each array (this step has only the purpose of generating a sensible
average expression distribution in the subsequent quantile normalization step). The expression
values were log2 transformed and quantile normalization was performed afterwards using
quantile.normalization() from the affy-package.
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The R/Bioconductor package limma [92] was used for further the assessment of differential
gene expression. A design matrix was constructed that takes into account batch-specific
effects as well as subunit-specific effects. The linear regression model was fitted using lmFit().
Finally, the log-odds ratios corresponding to subunit specific effects were extracted using
ebayes().
To accommodate the different experiments that have been combined, contrasts with respect
to batch effects have been created and fitted. Genes showing differential expression (here
with a fold change ≥ 2.5) with respect to these contrasts were removed from the subsequent
analysis. Additionally, genes that do not react to any perturbation (here with a log-odds ratio
< 0 in all cases) were removed.

A.4.2. Comparison with cluster analysis

Recently, “structure-function” analyses have been suggested and conducted [56, 104]. In a
clustering approach, they use expression profile similarity as a proxy for physical interaction,
respectively for common module membership. Their method was strikingly successful in
identifying physical interactions between Mediator subunits. However, it did not exploit the
fact that their data originated from active interventions into the cellular system.
In Fig. A.6, the clustering of Mediator subunits and genes based on fold changes and log-odds
ratios is depicted. Both approaches lead to an almost identical (isomorphic) dendrogram, which
also agrees well with the MC EMiNEM’s signals graph (if edge directions are ignored). This
means that the coarse grouping of Mediator subunits can already be read off the expression
profiles. However, MC EMiNEM provides more detailed information on the hierarchical
structure of the Mediator organization, as well as on the attachment of effects.

A.4.3. Gene set enrichment analysis for transcription factor targets

The gene set enrichment analysis was done according to [6], using the R/Bioconductor
package mgsa (version 1.2.0) [7], with the following parameters: p=seq(0.02,0.2,by=0.004),
alpha=seq(0.02,0.98,by=0.02), beta=seq(0.02,0.98,by=0.02), steps=(5 · 106), restarts=10.
Restraining p to small values ensures a sparse solution. For each gene set a mgsa run was
performed, taking into account only TFs being mapped to at least one gene of the study set.
The total population has been set to all effect genes being part of the corresponding Nested
Effects Model. Only TFs being enriched with a probability of = 50% were valued as significant
and further analyzed.
Two examples of enriched TFs are explained in more detail in the main text (see Fig. 8.11).
For similar figures for all Mediator subunit - transcription factor pairs, please refer to
Supplementary file 2 of [77], which is provided in digital form along with this thesis.
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Figure A.3.: The Mediator-NEM treating all subunits as individual nodes, version 1 (result of nine
runs out of ten). Above, the resulting signals graph is shown, below the underlying R matrix, clustered
according to the final gene attachment (rows: perturbations, columns: effects on measured genes). Red
color indicates a positive log-ratio value, blue color indicates a negative log-ratio value. The stronger
the color of a field Rkj , k ∈ E , j ∈ S, the higher the probability that the measured data is due to
the fact that there actually is an effect of signal j on gene k, or, that there is no effect, respectively.
There exists an edge Med10 → Med21 as well as Med21 → Med10.The similarity between the two
perturbations is also clearly visible in the perturbation profile. Thus, in the following, the two Mediator
subunits are treated as one node in the NEM.
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Figure A.4.: The Mediator-NEM treating all subunits as individual nodes, version 2 (result of one
runs out of ten). Above, the resulting signals graph is shown, below the underlying R matrix, clustered
according to the final gene attachment (rows: perturbations, columns: effects on measured genes). Red
color indicates a positive log-ratio value, blue color indicates a negative log-ratio value. The stronger
the color of a field Rkj , k ∈ E , j ∈ S, the higher the probability that the measured data is due to
the fact that there actually is an effect of signal j on gene k, or, that there is no effect, respectively.
There exists an edge Med10 → Med21 as well as Med21 → Med10.The similarity between the two
perturbations is also clearly visible in the perturbation profile. Thus, in the following, the two Mediator
subunits are treated as one node in the NEM.
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Figure A.5.: The final Mediator-NEM, where Med10 and Med21 are combined to one single node.
Above, the resulting signals graph is shown, below the underlying R matrix, clustered according to the
final gene attachment (rows: perturbations, columns: effects on measured genes). Red color indicates
a positive log-ratio value, blue color indicates a negative log-ratio value. The stronger the color of a
field Rkj , k ∈ E , j ∈ S, the higher the probability that the measured data is due to the fact that there
actually is an effect of signal j on gene k, or, that there is no effect, respectively. A detailed discussion
of the results can be found in the main text.
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Figure A.6.: Clustering of Mediator subunits and genes based on (A) fold changes and (B) log-odds
ratios. Mediator subunits are colored according to Fig. 8.9 and Fig. 8.10.

Study set TF in population in study set Estimate

Med2 - downregulated TEC1 42 14 0.999
YAP6 73 15 0.963
GTS1 10 3 0.808
SUM1 32 5 0.792
YAP1 25 7 0.780
SWI4 80 11 0.562
ASH1 20 4 0.513

Med7C - downregulated MBP1 77 22 0.991
Med7C - upregulated RPN4 44 11 0.907

Med7N - downregulated SWI5 51 7 0.910
FKH2 65 11 0.901
GLN3 63 8 0.664
YOX1 3 1 0.510

Med10Med21 - downregulated INO4 12 6 0.901
STB5 14 3 0.557

Med10Med21 - upregulated UME6 71 13 0.999
HSF1 29 9 0.994
HAP4 27 9 0.980
SKN7 93 17 0.904
SKO1 15 4 0.842
HAP3 13 3 0.519

Table A.1.: This table provides the results of the gene set enrichment analysis conducted as outlined
in Section A.4.3. First column: the studied gene set (i.e., the Mediator subunit and the direction of
expression change); Second column: The transcription factor (TF) whose targets are enriched; Third
column: the number of genes in the whole population annotated to this TF; Fourth column: the number
of genes in the study set; Fifth column: the estimate for the enrichment (cutoff for this study: 0.5).



B. Supplementary material for Part III - RNA
degradation by the exosome

B.1. A Michaelis-Menten based derivation of the catalytic
efficiency

Michaelis-Menten type kinetics apply to enzymatic reactions of the type

E + S k−1
// ES

k1oo
k2 // E + P

In this context, a specificity constant kcat
KM

has been defined, where kcat = k2 and KM = k−1+k2
k1

is the Michaelis-Menten constant [57]. We defined the RNA length-dependent catalytic
efficiency according to this specificity constant, with the association rate corresponding to k1,
the dissociation rate corresponding to k−1 and the cleavage rate corresponding to k2. Hence,
the catalytic efficiency for a RNA substrate of length j results in ej = kc,j ·ka,j

kd,j+kc,j
.

B.2. Simulation

B.2.1. Data generation

The simulations were carried out as follows: Starting with a realistic set of parameters
Θtrue = {ktruea,j |j ∈ J} ∪ ktruec (which usually was obtained by applying a maximum likelihood
parameter estimation method to our data), the “true” concentrations rΘtrue

j (tk) are computed
by the above mentioned ODE solver (ode15s). Then, an artificial dataset D = (Rj,k) is
generated by drawing

Rj,k ∼ N (rΘtrue
j (tk), (σtruej,k )2) , j ∈ J?, k = 1, ...,K (B.1)

We performed MCMC runs with (σtruej,k )2 calculated based on Eq. 11.4, rΘtrue
j (tk) and error

levels set to β = 0 and α = 5%, 10% and 25%.

B.3. Application: RNA degradation by the archaeal exosome

The results of the MCMC sampling approach applied to all exosome variants are presented in
Fig. B.1, Table B.1, Table B.2, Fig. B.2 and Fig. B.3.
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Figure B.1.: On the left-hand side the traceplots for all exosome variants are depicted, the right-hand
side shows the boxplots for the corresponding posterior distributions (burn-in = 150000). The Markov
chains vary with regard to both convergence speed and variability.
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Csl4 exosome Rrp4 exosome Csl4-Y70A exosome Csl4-R65E exosome

30
2.795E-04

[2.750E-04,2.839E-04]
1.539E-03

[1.497E-03,1.585E-03]
1.560E-04

[1.543E-04,1.578E-04]
6.016E-05

[5.965E-05,6.069E-05]

29
5.875E-03

[5.373E-03,6.454E-03]
1.814E-03

[1.721E-03,1.917E-03]
1.258E-03

[1.178E-03,1.339E-03]
1.362E-03

[1.254E-03,1.485E-03]

28
5.223E-03

[4.875E-03,5.606E-03]
1.808E-03

[1.712E-03,1.918E-03]
2.276E-03

[2.120E-03,2.461E-03]
6.174E-04

[5.727E-04,6.633E-04]

27
4.842E-03

[4.558E-03,5.146E-03]
1.768E-03

[1.673E-03,1.882E-03]
2.297E-03

[2.138E-03,2.493E-03]
1.643E-03

[1.511E-03,1.807E-03]

26
2.553E-03

[2.398E-03,2.749E-03]
1.885E-03

[1.771E-03,2.018E-03]
1.781E-03

[1.631E-03,1.938E-03]
3.421E-03

[2.968E-03,3.892E-03]

25
6.895E-03

[6.350E-03,7.578E-03]
1.849E-03

[1.719E-03,2.010E-03]
2.974E-03

[2.762E-03,3.236E-03]
3.364E-03

[2.945E-03,3.863E-03]

24
5.862E-03

[5.443E-03,6.366E-03]
1.440E-03

[1.331E-03,1.575E-03]
1.998E-03

[1.823E-03,2.191E-03]
3.170E-03

[2.819E-03,3.611E-03]

23
5.954E-03

[5.534E-03,6.471E-03]
3.824E-03

[3.333E-03,4.454E-03]
3.654E-03

[3.413E-03,3.946E-03]
3.655E-03

[3.237E-03,4.283E-03]

22
4.999E-03

[4.675E-03,5.339E-03]
5.574E-03

[4.767E-03,6.429E-03]
3.606E-03

[3.334E-03,3.987E-03]
3.304E-03

[2.897E-03,3.753E-03]

21
7.714E-03

[7.037E-03,8.450E-03]
7.352E-03

[6.372E-03,8.604E-03]
3.174E-03

[2.935E-03,3.447E-03]
3.090E-03

[2.745E-03,3.468E-03]

20
3.480E-03

[3.249E-03,3.796E-03]
8.446E-03

[7.308E-03,9.706E-03]
2.988E-03

[2.722E-03,3.250E-03]
2.874E-03

[2.539E-03,3.354E-03]

19
4.663E-03

[4.354E-03,4.994E-03]
1.041E-02

[9.314E-03,1.192E-02]
2.621E-03

[2.364E-03,2.874E-03]
3.022E-03

[2.641E-03,3.457E-03]

18
4.116E-03

[3.866E-03,4.390E-03]
9.138E-03

[8.162E-03,1.040E-02]
1.730E-03

[1.543E-03,1.966E-03]
2.905E-03

[2.536E-03,3.340E-03]

17
3.408E-03

[3.181E-03,3.685E-03]
9.433E-03

[8.392E-03,1.086E-02]
1.350E-03

[1.207E-03,1.514E-03]
2.574E-03

[2.237E-03,2.970E-03]

16
2.640E-03

[2.445E-03,2.880E-03]
1.186E-02

[1.061E-02,1.323E-02]
1.474E-03

[1.305E-03,1.671E-03]
2.311E-03

[1.986E-03,2.747E-03]

15
3.172E-03

[2.942E-03,3.405E-03]
1.267E-02

[1.121E-02,1.437E-02]
1.005E-03

[8.912E-04,1.130E-03]
2.254E-03

[1.987E-03,2.611E-03]

14
2.782E-03

[2.589E-03,2.990E-03]
1.324E-02

[1.177E-02,1.505E-02]
9.318E-04

[8.347E-04,1.052E-03]
2.908E-03

[2.557E-03,3.429E-03]

13
1.295E-03

[1.209E-03,1.396E-03]
1.203E-02

[1.061E-02,1.370E-02]
5.594E-04

[5.096E-04,6.235E-04]
3.481E-03

[2.917E-03,4.199E-03]

12
7.501E-04

[6.997E-04,8.093E-04]
7.407E-03

[6.578E-03,8.517E-03]
2.138E-04

[2.009E-04,2.288E-04]
4.000E-03

[3.526E-03,4.594E-03]

11
3.516E-04

[3.239E-04,3.829E-04]
4.556E-03

[3.939E-03,5.289E-03]
3.070E-05

[2.949E-05,3.199E-05]
4.172E-03

[3.695E-03,4.743E-03]

10
1.649E-04

[1.577E-04,1.731E-04]
3.109E-03

[2.751E-03,3.567E-03]
1.524E-05

[1.461E-05,1.588E-05]
3.902E-03

[3.382E-03,4.536E-03]

9
1.304E-04

[1.245E-04,1.373E-04]
2.572E-03

[2.331E-03,2.866E-03]
1.023E-05

[9.582E-06,1.091E-05]
3.403E-03

[2.975E-03,3.982E-03]

8
9.420E-05

[8.927E-05,9.982E-05]
1.621E-03

[1.467E-03,1.809E-03]
7.271E-06

[6.480E-06,7.954E-06]
2.767E-03

[2.446E-03,3.183E-03]

7
5.395E-05

[5.168E-05,5.629E-05]
9.026E-04

[8.251E-04,1.005E-03]
1.921E-06

[1.474E-06,2.351E-06]
1.933E-03

[1.715E-03,2.189E-03]

6
4.559E-05

[4.285E-05,4.825E-05]
6.090E-04

[5.677E-04,6.550E-04]
6.026E-07

[4.588E-07,7.562E-07]
8.088E-04

[7.044E-04,9.015E-04]

5
3.937E-05

[3.588E-05,4.347E-05]
5.328E-04

[5.014E-04,5.669E-04]
2.553E-07

[1.795E-07,3.244E-07]
9.304E-05

[8.226E-05,1.054E-04]

4
1.841E-05

[1.651E-05,2.039E-05]
1.952E-04

[1.856E-04,2.062E-04]
1.452E-07

[9.204E-08,2.228E-07]
1.946E-05

[1.771E-05,2.108E-05]

Table B.1.: Median [1st quartile, 3rd quartile] of the catalytic efficiency posterior distributions.
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Capless exosome Interface mutant Crosslink mutant
30 4.102E-04

[4.065E-04,4.139E-04]
4.616E-04

[4.528E-04,4.701E-04]
5.638E-05

[5.560E-05,5.717E-05]
29 2.649E-03

[2.566E-03,2.735E-03]
1.871E-03

[1.743E-03,2.027E-03]
4.112E-05

[3.881E-05,4.363E-05]
28 7.568E-03

[7.086E-03,8.075E-03]
2.295E-03

[2.055E-03,2.594E-03]
7.489E-05

[7.026E-05,8.029E-05]
27 1.048E-02

[9.778E-03,1.111E-02]
2.903E-03

[2.620E-03,3.278E-03]
1.004E-04

[9.299E-05,1.079E-04]
26 9.411E-03

[8.635E-03,1.024E-02]
4.090E-03

[3.627E-03,4.662E-03]
1.035E-04

[9.679E-05,1.123E-04]
25 1.302E-02

[1.217E-02,1.430E-02]
5.226E-03

[4.556E-03,5.903E-03]
8.996E-05

[8.405E-05,9.675E-05]
24 1.832E-02

[1.602E-02,2.018E-02]
6.806E-03

[6.107E-03,7.643E-03]
1.013E-04

[9.344E-05,1.088E-04]
23 1.444E-02

[1.240E-02,1.566E-02]
7.590E-03

[6.845E-03,8.514E-03]
1.157E-04

[1.072E-04,1.261E-04]
22 2.146E-02

[1.855E-02,2.557E-02]
6.305E-03

[5.449E-03,7.340E-03]
9.800E-05

[9.069E-05,1.056E-04]
21 2.747E-02

[2.395E-02,3.181E-02]
6.426E-03

[5.737E-03,7.165E-03]
7.569E-05

[7.070E-05,8.114E-05]
20 3.581E-02

[2.889E-02,4.279E-02]
5.992E-03

[5.351E-03,6.855E-03]
6.651E-05

[6.193E-05,7.145E-05]
19 3.121E-02

[2.567E-02,3.663E-02]
5.783E-03

[5.171E-03,6.542E-03]
5.327E-05

[5.025E-05,5.642E-05]
18 2.125E-02

[1.925E-02,2.306E-02]
6.058E-03

[5.460E-03,6.797E-03]
5.150E-05

[4.827E-05,5.524E-05]
17 1.965E-02

[1.786E-02,2.309E-02]
5.925E-03

[5.318E-03,6.782E-03]
3.556E-05

[3.331E-05,3.776E-05]
16 1.339E-02

[1.185E-02,1.462E-02]
6.396E-03

[5.737E-03,7.296E-03]
3.429E-05

[3.226E-05,3.669E-05]
15 1.394E-02

[1.277E-02,1.542E-02]
6.364E-03

[5.782E-03,7.048E-03]
1.918E-05

[1.795E-05,2.063E-05]
14 1.651E-02

[1.423E-02,1.825E-02]
4.508E-03

[4.023E-03,5.168E-03]
1.832E-05

[1.710E-05,1.955E-05]
13 1.394E-02

[1.282E-02,1.612E-02]
2.882E-03

[2.563E-03,3.289E-03]
1.298E-05

[1.187E-05,1.421E-05]
12 1.076E-02

[9.805E-03,1.170E-02]
2.378E-03

[2.132E-03,2.659E-03]
1.012E-05

[9.149E-06,1.128E-05]
11 2.205E-03

[2.126E-03,2.293E-03]
1.232E-03

[1.092E-03,1.415E-03]
7.864E-06

[7.083E-06,8.713E-06]
10 9.687E-04

[9.409E-04,9.954E-04]
9.045E-04

[8.203E-04,1.023E-03]
3.299E-06

[2.618E-06,4.042E-06]
9 7.784E-04

[7.556E-04,8.012E-04]
7.142E-04

[6.573E-04,7.831E-04]
1.112E-06

[8.742E-07,1.510E-06]
8 5.888E-04

[5.750E-04,6.086E-04]
5.883E-04

[5.429E-04,6.366E-04]
5.029E-07

[3.878E-07,7.019E-07]
7 3.935E-04

[3.848E-04,4.033E-04]
4.795E-04

[4.462E-04,5.175E-04]
2.157E-07

[1.576E-07,2.931E-07]
6 2.924E-04

[2.858E-04,2.989E-04]
2.929E-04

[2.740E-04,3.150E-04]
9.133E-08

[5.832E-08,1.239E-07]
5 2.806E-04

[2.744E-04,2.886E-04]
2.392E-04

[2.229E-04,2.567E-04]
3.399E-08

[1.893E-08,6.257E-08]
4 1.263E-04

[1.240E-04,1.290E-04]
7.528E-05

[7.206E-05,7.893E-05]
1.104E-08

[6.889E-09,3.346E-08]

Table B.2.: Median [1st quartile, 3rd quartile] of the catalytic efficiency posterior distributions.
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Figure B.2.: The relative squared error induced by the MCMC sampling approach is calculated for
each exosome variant based on the averaged predictions of 1000 parameter sets, randomly drawn from
the stationary phase of the final Markov chain. For a more detailed visualization, the color scheme has
been scaled such that all values ≥ 1 have the same color. Obviously, individual RNA measurements
with higher values can be fitted very well, while areas with lower amounts of RNA are fitted relatively
poorly, which is in accordance with the results derived from simulation runs (see Fig. 13.8).
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Figure B.3.: The relative squared error induced by the least-squares fitting is calculated for each
exosome variant based on predictions of the estimated parameter sets. For a more detailed visualization,
the color scheme has been scaled such that all values ≥ 1 have the same color. (A) The least-squares
fitting has been initialized with the same parameters used for the initialization of the MCMC sampling.
(B) The least-squares fitting has been initialized with a random sample from the stationary phase
of the Markov chain (the same that has been used to generate Fig. B.2). Again, the results are in
accordance with what has been seen in simulation runs (see Fig. 13.9): While the straightforward
optimization method yields good results (respectively, results that are similar to those of the MCMC
approach) when the initial parameters are already close to the true ones, it performs very poorly when
no prior information is available.



C. Supplementary material for Part IV -
Hematopoietic stem cell differentiation

C.1. Reversible-jump MCMC sampling

Letm,n ∈M , be part of a family of modelsM , and Θm and Θn be the corresponding parameter
sets. To ensure a common measure for different model classes, the parameter sets have to
be extended (Θ̄m = (Θm, um,n) and Θ̄n = (Θn, un,m)), and a deterministic, differentiable,
invertible dimension matching function f has to be defined such that fm→n(fn→m(Θ̄n)) = (Θ̄n).
To move from state (n,Θn) to state (m,Θm), un,m ∼ q(•|n,Θn) is generated. The move is
accepted with probability min(An→m, 1), with

An→m = p(m,Θ′m)
p(n,Θn) ·

q(n|m)
q(m|n) ·

qm→n(um,n|m,Θ′m)
qn→m(un,m|n,Θn) · Jfn→m

and with Θ′m = fn→m(Θn, un,m) and Jfn→mbeing the Jacobian of the transformation fn→m.
Since the implementation of a reversible-jump approach is strongly problem dependent, no
further details are provided here [2, Chapter 3]. An application for reversible-jump MCMC
sampling is presented in Part IV.

Derivation of the Jacobian

The Jacobian matrix includes the first-order partial derivatives of all functions included in
the transformation with regard to all current parameters. Here, this results in a |Θ̄n| × |Θ̄m|
matrix (|Θ̄n| = |Θ̄m| per definition) where the lines correspond to the functions and the
columns correspond to the parameters. The determinant of this square matrix is called the
Jacobian [2]:

Jfn→m = |det∂fn→m(Θn, un,m)
∂(Θn, un,m) |
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Jumping from the selective to the instructive scenario

Here, the Jacobian matrix is

pndiff ∆diff pndeath1
pndeath2

p′diff1
= pndiff + ∆diff 1 1 0 0

p′diff2
= pndiff −∆diff 1 −1 0 0

p′death =
pn
death1

+pn
death2

2 0 0 1
2

1
2

∆death =
pn
death1

−pn
death2

2 0 0 1
2 −1

2

Hence, Jsel→instr = 1.

Jumping from the instructive to the selective scenario

Here, the Jacobian matrix is

pndiff1
pndiff2

pndeath ∆death

p′diff =
pn
diff1

+pn
diff2

2
1
2

1
2 0 0

∆diff =
pn
diff1
−pn

diff2
2

1
2 −1

2 0 0
p′death1

= pndeath + ∆death 0 0 1 1
p′death2

= pndeath −∆death 0 0 1 −1

Hence, Jinstr→sel = 1.

C.2. The Dirichlet distribution

The density function of the Dirichlet distribution is given by

D(µ|α) = Γ(α0)
Γ(α1) · ... · Γ(αK) ·

K∏
k=1

µαk−1
k

with µ = (µ1, ..., µK)T , such that 0 ≤ µk ≤ 1, ∀k ∈ 1, ...,K and ∑K
k=1 µk = 1, and

α = (α1, ..., αK)T being the parameters of the distribution, with ak > 0, ∀k ∈ 1, ...,K
and α0 = ∑K

k=1 αk. Γ(αx) denotes the gamma distribution. The expectation value and
variance are then: E[µk] = αk

α0
and Var[µk] = α0·(α0−αk)

α2
0·(α0+1) [8, Chapter 2].

The Dirichlet distribution as proposal function

Here, we set α = c · θn, with θn ⊂ Θn being a subset of the model parameters and c = 500
ensuring high values for α. This means that if α is interpreted as the counts for the corre-
sponding transitions, θ′ = µ is sampled centered around their relative frequencies, i.e., around
θn. The width of the proposal function is determined by α (i.e., higher values of α result in a
narrower proposal function). The suggested model parameters θ′ add up to one by definition.
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C.3. The beta distribution

The density function of the beta distribution (which is a special case of the multivariate
Dirichlet distribution) is given by

B(µ|a, b) = Γ(a+ b)
Γ(a) · Γ(b) · µ

a−1 · (1− µ)b−1

with µ ∈ [0, 1], and a > 0, b > 0 being the parameters of the distribution. Γ(x) denotes
the gamma distribution. The expectation value and variance are then: E[µ] = a

a+b and
Var[µ] = ab

(a+b)2·(α+b+1) [8, Chapter 2].

The beta distribution as proposal function

Here, we set a = c ·pndeath/div1/2
and b = c · (1−pndeath/div1/2

), with c = 500 ensuring high values
for a and b. This means that if a is interpreted as the count for the corresponding transition,
p′death/div1/2

= µ is sampled centered around its relative frequency, i.e., around pndeath/div1/2
.

The width of the proposal function is determined by a and b (i.e., higher values of a and b
result in a narrower proposal function).
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