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Abstract

Understanding nature is a deep human desire. Therefore, experiments are carried out and
measurements are performed to shed light onto what is so far unknown. But experiments only
lead to an information gain which is restricted to very limited circumstances and conditions.
In order to generalize information, to derive conclusions relevant to a broader scale, and to
make well-founded predictions, in short, to actually “learn” something, abstract models have
to be established.

Model selection, i.e., finding a suitable model class (here: defining the mathematical frame-
work of the model) is a challenging task. A good model has to strike the balance between
a sufficiently detailed description of the observations (complexity) and a good generaliza-
tion performance (simplicity). More precisely, it has to be as accurate as possible without
overparametrization and overfitting. Graphical models reduce the complexity by encoding
dependencies among random variables, enabling the factorization of the joint probability
distribution into a product of simpler “local” distributions.

After a suitable model class has been selected, the parameters describing it can be estimated
based on the observations (parameter inference). Bayesian methods approach this task by
including prior knowledge and maximizing the posterior probability of the parameters, con-
sidered as random variables, given the observations. Due to the inherent complexity of the
chosen model class, however, this posterior distribution can’t be accessed analytically in many
situations. Approximation algorithms such as Markov Chain Monte Carlo sampling solve this
problem and avoid complex or even infeasible calculations by drawing representative samples
from the distribution of interest. In addition to a simple “best fit”, they provide valuable
information on the uniqueness of the solution and the variability of the parameter estimates
as a function of the data.

Both model selection and parameter inference benefit from the development of increasingly
faster computer systems in recent years, which facilitate the exploration of large model spaces.
Basically, model selection and parameter inference are subject to three major kinds of error:
The model bias arises from the fact that essentially every model class is an abstract and
usually compressed version of the true physical processes involved and hence necessarily not
correct. Since it is difficult if not practically impossible to identify the best model within a
model class, the estimation bias quantifies the difference between the best fit and the estimate
that has been obtained from the inference algorithm. The variance represents the error that
is due to the stochastic nature of measurements. The extent of these errors can and must be

assessed by simulations.
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This thesis is at the interface of statistics and biochemistry. In order to be self contained,
I included the necessary basics from both fields. The focus of this thesis is on parameter
inference using Markov Chain Monte Carlo sampling, i.e., on the parameter estimation within
a given model class. I introduce three approaches which have been developed for different
biological applications. First, I present MC EMINEM, a sampling scheme that combines
Expectation Maximization with MCMC sampling in the class of NEMs. MC EMiNEM has
been developed for the reconstruction of regulatory networks and was applied to a set of four
perturbation studies on the yeast Mediator, a transcriptional cofactor. We were able to derive
new insights into the functional dependencies within the complex and its interactions with
gene specific transcription factors. Second, I present an analysis method for the processive
degradation or synthesis of biomolecules, based on a set of ordinary differential equations. In
close collaboration with Karl-Peter Hopfner and Sophia Hartung, this method was applied to
quantitatively analyze RNA degradation by the archaeal exosome. The results lead to a more
profound understanding of the involved kinetics, in dependence of both substrate features and
the architecture of the exosome. Third, I describe a reversible-jump MCMC algorithm for
simultaneous model selection and parameter inference. Here, we use the recently developed
class of factor graphs to model cellular decision processes. The method has been applied to

hematopoietic stem cell genealogies.
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Part |I.

Mathematical Background



1. A brief outline on statistical modeling

1.1. Model selection

A model is an abstract and usually compressed description of the observed data, in terms of a
certain model class, and a set of parameters that identify the concrete model within this class.
Its construction can be based on established knowledge, extrapolation from similar models
or even merely on intuition. It can be rather specific, such as the 3D model for a protein, or
very general, such as Michaelis-Menten kinetics which can be applied to a variety of enzymes.
Depending on the availability of knowledge and data it can be simple, containing only few
parameters, or rather complex. Ideally, a model enables the generalization of information
gained from specific experiments under predefined circumstances and conditions to derive
conclusions on broader implications, and to make well-founded predictions [50, Chapter 1.2].
This generalizability is the reason why the process of building a model from given data is
commonly referred to as “learning”.

Finding a suitable model is a challenging task. A model has to be appropriate for the situation
it is applied to, which means that it has to answer the questions it is designed for and that it has
to find a reasonable trade-off between complexity and simplicity: On the one hand it has to fit
the measured data at the best, on the other hand it must be able to make general predictions.

In other words, it has to represent all necessary details without overfitting [50, Chapter 4.4].

1.1.1. Overparametrization and overfitting

Overfitting occurs when the amount of (or the kind of) data used to fit a model (the training
set) is insufficient. It means that the model’s parameters are overly dependent on the
training set and results in a poor prediction quality on other datasets [8, Chapter 3.2]. The
risk of overfitting is addressed by Occam’s razor which states that if two model classes are
equally capable of explaining the data, it is better to choose the simpler one. This principle
is supported for three reasons: First, simplicity is preferred for aesthetic reasons, second,
Occam’s razor has shown to be successful in practice, and third, Bayesian inference actually
embeds Occam’s razor and so the simpler solution is indeed more probable |65, Chapter 28].
Reasonable parametrization of the model is in line with Occam’s razor: the number of
parameters describing a model and the amount of experimental data have to be kept sensibly
balanced. If there are not enough measurements available to distinguish between different
parameter choices, the model is overparameterized (also underdetermined or ill-determined),

and notoriously sensitive to overfitting.



1.2 Graphical models 3

The choice of parameters has turned out to be especially challenging in Part The aim
of this project was to analyze the impact of various mutations in the archaeal exosome on
its efficiency to degrade RNA depending on the length of the substrate. The data consisted
of measurements of the total amount of RNA for each length at predefined time points,
and the process of RNA degradation was modeled as a set of ordinary differential equations
(ODESs). Yet, the intuitive model consisting of the pure decay rate, as well as association and
dissociation of the substrate to, respectively, from the exosome turned out to be ill-specified
(Section [I1.3)). A reparametrization of the model together with a reduction in the number of
free parameters could solve the problem. If one still wishes to extend the aim of the project
with regard to a more precise definition of the impact caused by the mutations, additional

measurements will be required.

1.1.2. Strategies for model selection

Model selection can be performed manually based on knowledge and intuition, or automat-
ically based on predefined criteria. Increasingly faster computer systems make it possible
to explore increasingly larger model spaces. Automated model selection has been used in
the reversible-jump MCMC approach applied to the hematopoietic stem cell genealogies in
Part [[V] In this case, parameter estimation and model selection alternate since the best model
class is not known a priori. More details are provided in the corresponding part of this thesis,
as well as in Section

To avoid overfitting and to provide a sound and unbiased evaluation of the generalization per-
formance of the selected model, three steps based on three different datasets are recommended.
The training set is used to fit the model, i.e., to tune the hyperparameters (e.g., the weight of
the sparseness prior in Part . Then, the validation set is used to calculate the prediction
error of the current model and to decide whether it is appropriate or not. After a model has
been selected, the test set is used for the final assessment. The amount of data required for
these steps depends on the quality of the data (signal-to-noise ratio) and on the complexity of
the model. It can be reduced by cross-validation or bootstrapping methods |37, Chapter 7.2].
The prediction error of a model is measured by loss functions. An example is the squared error
L(©) := Yz — f(z; 0))2, where y is the true target parameter, f(x;©) is a prediction
model with parameter set ©, and x is a data point on which the prediction is based. The aim

is to minimize this loss function [37].

1.2. Graphical models

A model is an abstract representation of observations usually described by a set of parameters.
A statistical model interprets the observations as random variables and assigns probability
distributions {P(D|6) : 6 € ©} to them, where D is the observed data and 6 is an unknown
parameter set taken from the parameter space © [107, Chapter 6]. This makes the model

accessible to statistical methods.
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G Figure 1.1: In a graphical model, nodes repre-
sent variables and edges represent the dependen-
cies between these variables. Here, the depen-
dency structure allows the following decomposition
of the joint probability distribution: p(a,b,c) =

e Q p(ale) - p(ble) - p(c). The figure has been modified

from [8, Chapter 8.2].

Graphical models encode dependencies among the random variables and thus offer a way
to factorize the joint probability distribution into a product of simpler “local” distributions,
that depend only on a subset of variables. As a result, the inference of graphical models
decomposes into inferring the dependency structure on the one hand, and learning the
individual parameters of the local distributions on the other hand [8, Chapter 8]. In general,
this leads to a simplification of the distributions that have to be learned, and hence reduces the
amount of data needed for parameter inference. An example is provided in Fig. where the
graphical model allows the decomposition of a joint probability distribution of three random
variables into three local distributions: p(a, b, ¢) = p(alc)-p(blc)-p(c). If one assumes that every
variable may take ten values, at least 103 = 1000 measurements will be required to cover all
possible realizations of the joint probability distribution. However, by taking into consideration
the decomposition enabling the individual assessment of the local probabilities, significantly
less measurements, max. 10?4+ 102 4 10 = 230, are required. Repeated measurements for all
possible events are the prerequisite for reliable inference, and so this reduction in the amount
of required data or the considerable increase in inference quality for the same amount of data,
respectively, is tremendous. Yet, this factorization comes at a cost. An increase in the number
of distributions can entail an increase in the number of hyperparameters that have to be learned.
Reducing this number of hyperparameters and the complexity of the probability distributions
too much, however, reduces the flexibility of the model, and leads to its oversimplification.

Graphical models are applied in all three parts of this thesis: Every Nested Effects Model
in Part [[I] is a graphical model by itself. In Part the structure of the graphical model
is provided by the structure of the kinetic systems. In Part [[V] factor graphs are used to
represent cellular decision processes. Taking advantage of the local probability structure, fast

algorithms enable the efficient estimation of parameters in this class of graphical models.

1.3. Bayesian modeling

Bayesian modeling is a special case of statistical modeling. It aims at maximizing the posterior
P(©|D) x L(©)-7(0) = P(D|O)-7(©), by including prior knowledge on O given as probability
distribution prior 7(0). [37, Chapter 8.3]. So, defining a model in the spirit of Bayesian
statistics, as it is done in all three scenarios described in this thesis, includes defining a
likelihood distribution and a prior. A more elaborate motivation for the use of Bayesian

methods in model selection and parameter inference is provided in Section



1.4 Bias and variance )

Choice of the prior distribution

The prior distribution needs to be chosen with utmost care. An overly strong prior may
override or bias any evidence from the data, while a weak prior may result in an unnecessarily
disperse posterior distribution.

The definition of the prior was particularly important in Part for the quantitative analysis
of processive RNA degradation by the archaeal exosome: It is reasonable to assume that
the decay efficiency is similar for RNA molecules of consecutive lengths. This constraint
could be incorporated by defining of a smoothness prior which had a strong effect on the
prediction quality. In graphical models, sparseness of edges is a common assumption which
greatly simplifies the learning task. The beneficial effect of a sparseness prior is demonstrated
in Part Apart from knowledge-driven approaches for prior specification, data-driven

approaches exist. One of them is the Empirical Bayes method which was applied in Part [I]

(see Sections and [7.2.1)).

Choice of the likelihood function

The choice of an error model has been crucial in Part There, the definition of the likelihood
necessitates the specification of the expected measurement errors which are not known a priori.
We thus developed an adaptive likelihood MCMC where the error model is updated regularly

during the sampling process.

1.4. Bias and variance

Basically, three types of errors play a role in the model selection process. They are illustrated
in Fig. The model bias is the mathematical counterpart to George E. P. Box’s appropriate
statement: “Essentially, all models are wrong, but some are useful” [13, p. 424]. It arises from
the fact that each model explains only certain aspects of reality and will in some way or other
differ from the truth. Thus, the model bias describes the difference between reality and the
best model in the selected model class. Since the task of finding the best model within a given
model class can itself be very difficult if not practically impossible, the learning algorithm
may return a model which is not identical to the best one. The estimation bias thus extends
the model bias by quantifying the difference between the best fit and the average estimated
model within the model class. The combination of model bias and estimation bias is referred
to as bias. The bias is a systematic error, and knowing about it allows to correct for it and
to keep it in mind when interpreting the results [37, Chapter 7].

In contrast, the variance is an unsystematic error that originates from the variability within
the data (random fluctuation, e.g., due to measurement errors and replicates). It leads to
a variation within the model space, and thus describes the expected deviation of individual
predictions from the mean (standard deviation) [37, Chapter 7]. It can be assessed through

repeated estimations based on re-sampled data (bootstrapping), however, it is not possible
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to correct for it , Chapter 4.2]. Nevertheless, the quantification of a model’s variance
is important to assess the reliability of the predictions made by the model. To allow for
this variability during parameter estimation, an appropriately chosen error model has to be
defined. In Part [[TI] this error model could not be determined beforehand and so an adaptive
likelihood approach with a stepwise adaption of the error model has been developed (see
Section .

A good model has to find a trade-off between its bias and its variance. High complexity leads
to a good fit of the training sample, i.e., a low bias, but to a high dependence on this dataset,
i.e., a high variance. In contrast, low complexity leads to more robust predictions, i.e., a
low variance, but to a potentially less precise fit of the training sample, i.e., a high bias. To
avoid overfitting, model design and model fitting have thus to be conducted with utmost care,
and the incorporation of an independent test sample is indispensable to find a compromise
between low bias and low variance Chapter 7).

True Data
model oy servation(s PY

Model bias 2

Model bias 1

Model space 1

Model space 2 Space of all possible models

Figure 1.2.: Model bias (light red line), estimation bias (dark red line), and variance (green circles)
are the three major errors in the model selection process. A detailed introduction to the topic is
provided in Section [[.4] Here, they are illustrated based on a true model and two different model
classes (model space 1 and model space 2), which are both more or less appropriate to describe some
observations (data) generated by the true model. Different parametrization leads to a model class
of higher complexity (model space 2; lower variance but higher bias) and to one of lower complexity
(model space 1; lower bias but higher variance). The black dots within the small green circular areas
represent the average estimate within a given model class. Depending on the quality of the estimation
procedure, the average predictions can deviate significantly from the best model (transition point from
the light red line to the dark red line).



2. Parameter inference

When the mathematical model structure is defined (e.g., the system of ordinary differential
equations in Part , the parameters (e.g., the decay rates in Part can be identified
based on the measured data (e.g., the amount of RNA of different lengths at different time
points in Part [[TI). If the model is correct (and identifiable), the data is free of measurement
errors, and enough data (including all essential information) is available, one can simply
identify exactly one set of parameters that is able to reproduce the observed data. However,
as already stated before, this is rarely the case in real-world scenarios, and mathematical
methods have to be applied to derive parameter estimates which approximate the true values
at the best. Estimating model parameters from noise-containing observations is called an

inverse problem [50, Chapter 4.2].

2.1. The frequentist approach

The standard frequentist approach to parameter identification is to find a parameter set
that maximizes a likelihood function L(©) = P(D|©), i.e., the maximum likelihood estimate
Ot = argmaxy L(0), # € ©. Under the assumption of independent observations with
Gaussian measurement errors, this function is the sum of the squared errors, and the resulting
approach is well-known as least squares estimation. The question posed by this approach
is rather counterintuitive: “How should the parameters look like to make the data more
probable?” [50, Chapter 4.2]. In this scenario, the likelihood is not considered as a probability
distribution and the parameters are treated as fixed but unknown. The data however is
treated as reproducible, and probability is seen as frequency based on a large number of

observations |9, Chapter 1].

Confidence intervals

It is pointless to assign probabilities to parameters that are treated as fixed |9, Chapter 1].
This has a major influence on the interpretation of confidence intervals: A confidence interval
of confidence level % only states that, for many repeated estimations based on different
datasets, % of the calculated confidence intervals include the true parameter. A common
misinterpretation is to say that the parameter is inside the interval with a probability of x%.
This statement would contradict the basic assumption that the parameter is fixed and thus

either is inside the interval or not |65, Chapter 37].
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Nuisance parameters

In some situations, only a subset ©; of the model parameters are interesting. If this is the
case, it is important that the remaining parameters (0, the nuisance parameters) do not
interfere with the estimation process. The frequentist approach incorporates the nuisance

parameters by calculating the profile likelihood

Lp(@l) = sup L(@l,@Q),
02]01
which results in
Lp(©)) = L(©,65|0,).

However, simply plugging the maximum conditional likelihood values into the joint likelihood

function does not take into account uncertainties about the nuisance parameters [9, Chapter 1].

Drawbacks of the approach

Typically, an inverse problem is ill-posed, i.e., a solution does not necessarily exist, and if
one exists it does not have to be unique, and it may vary unstably in response to small
changes in the measurements. A sound parameter estimation procedure therefore needs to
address all these issues by not only producing one single parameter fit, but by providing
additional information about the goodness of this fit and the variability of the estimation
process [50, Chapter 4.2].

This is not met by the frequentist approach to parameter estimation: Even though the
likelihood function is helpful to verify that the model can approximate the data, it only
chooses the (single) best-fitting parameter set and nothing can be said about the uniqueness
of the solution or the variability of the parameter estimates. On the contrary, the Bayesian
approach provides a comprehensive characterization of the posterior distribution of the
parameters given the data. This distribution can be used to assign probabilities to any

hypothesis about the parameters or their relations [50, Chapter 4.2].

2.2. Bayesian parameter estimation

The Bayesian viewpoint to parameter estimation considers the probability as a degree of
believe, and the parameters as random variables which depend on the given data and which
may vary according to our prior beliefs. In other words, starting with a pre-defined prior
parameter distribution, the data is used to update our beliefs, and to arrive at a posterior
parameter distribution which contains all information on the parameters that can be learned
from the data [9]. In particular, in Part [IIIlone can answer questions like: “Are the association
and dissociation parameters for one RNA length dependent?” or “Is the parameter distribution
of the catalytic efficiency narrow or wide?” in a precise way by calculating statistical measures

of dependence or dispersion, respectively. If two posterior distributions from two different
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experiments are available, one can even compare models, e.g., by asking for the probability that
the catalytic efficiency for a given RNA length in experiment 1 is higher than in experiment 2.
A comparison between least-squares fitting and Bayesian parameter estimation based on the
RNA decay model is provided in Section

The posterior distribution

The posterior distribution can be derived from the likelihood and the prior using the Bayes
theorem [9, Chapter 1]:

D|®)-n(©)  P(D[6)- 7(6)
P(D) [P(D|®) - 7(0)do

pe|p) =

Due to the fact that the integral can be difficult to evaluate and that, in general, it is not
necessary to know the exact posterior, the following approximation which provides the same

shape information is used in most applications [9, Chapter 1]:
P(®|D) x P(D|©) - 1(©)

Compared to the frequentist approach, the question posed here is rather intuitive: “Given the
data, which is the most probable parameter?” |50, Chapter 4.2]. In this setting, the analogue
of the maximum likelihood estimate is the maximum a posteriori estimate, a parameter set
which maximizes the posterior. However, the Bayesian spirit is better met by taking into
account the mean of the posterior distribution which minimizes the mean-squared error loss
function |9, Chapter 1].

Credible intervals

Unlike the confidence interval in the frequentist approach, the Bayesian credible (or confidence)
interval can easily be interpreted and offers the statement which is usually desired: Based
on the posterior distribution, a % credible interval can be calculated which actually implies

that the true parameter is inside this interval with a probability of 2% [9, Chapter 3].

Nuisance parameters

Unlike the frequentist likelihood, the Bayesian posterior is a probability distribution, and thus
the incorporation of nuisance parameters differs significantly from the frequentist approach.
Here, the marginal posterior for the parameters of interest ©; can be calculated by integrating

out the nuisance parameters Oo:

P(04|D) = / P(©1,0,|D)dOs
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This approach allows for all uncertainties with regard to the nuisance parameters |9, Chapter 1].
Integrating out parameters can be time-consuming and thus methods like the Expectation-
Maximization (EM) algorithm have been developed for a more efficient approximation. We
developed an EM algorithm for Nested Effects Models (NEMs) in Part [II) to deal with their
two-part network structure. More details are provided in Section

2.3. The need for computational methods

The main obstacle to Bayesian parameter estimation is that generally the posterior distribution
cannot be derived analytically and that even a numerical analysis is often infeasible. This
long-standing problem was brilliantly solved by Markov Chain Monte Carlo (MCMC) sampling,
one of the major breakthroughs in 20th century statistics. MCMC outputs a sequence of
parameter sets (Markov chain) whose empirical distribution, for long sequences, approximates

(converges to) the posterior distribution [9, Chapter 1].

2.4. Markov Chain Monte Carlo sampling

Markov Chain Monte Carlo sampling provides an elegant way to assess the parameters of a
model, even if the corresponding posterior distribution is not accessible analytically. It outputs
a sample of parameters whose empirical distribution, for long sequences, converges to the true
posterior. Thus, any question that one might ask about the posterior parameter distribution

can, in theory, be answered by looking at a corresponding Markov chain |9, Chapter 2].

2.4.1. Monte Carlo simulation

The idea for today’s Monte Carlo simulation traces back to 1946, when Stan Ulam tried to
figure out the chances to win a particular solitaire laid out with 52 cards. As calculations
turned out to be complicated and exhausting, he had the idea to just play several times and
count. This principle, approximating a complex combinatorial problem by the much easier
process of drawing samples, is the basic idea of Monte Carlo simulations |2, Chapter 1].

Monte Carlo approaches aim at approximating a target density p(z), = € X (with X being a
high-dimensional space) by generating an independent and identically distributed (i.i.d.) set
of samples {x(i) N ,. This set of samples can then be used to estimate, for example, integrals
or maxima of the target function. For simple forms of p(x), straightforward sampling routines
are available. In all other situations, i.e., in most real-world applications, more elaborate

techniques such as Markov Chain Monte Carlo Sampling are required [2, Chapter 2].
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2.4.2. Markov chains

A Markov chain is a stochastic process which yields a sequence of states where one state

depends only on the directly preceding one (the so-called Markov property):
P(z®)x0=02M) = p(a®|20-D)
Possible transitions between the states are specified by a transition matrix

7)), with 3T (@O }a) = 1

(%)

If T2 T(2]20~1) remains invariant for all i the Markov chain is called homogeneous. A
distribution p(z) is called invariant if the transition matrix is constructed such that after
several steps and for any starting point the chain converges to this distribution. This is
exactly the behavior which is desired if MCMC sampling is used to approximate a posterior
distribution that can’t be assessed otherwise. To induce an invariant distribution, the
stochastic, homogeneous transition matrix 7" has to be irreducible and aperiodic. Irreducibility
means that any state can be reached from any other state at some point, aperiodicity means
that the chain won’t get caught in cycles. The detailed balance condition (or reversibility) is

a sufficient but not necessary condition for the invariance of a target distribution p(z):
P T D]a) = pa )T (@ ]aD)

Thus, by ensuring detailed balance, it is possible to ensure that a target distribution p(z) is

invariant |2, Chapter 3].

2.4.3. MCMC sampling using the Metropolis-Hastings algorithm

MCMC sampling combines the Monte Carlo principle of approximating a distribution by
drawing random samples with the principle of Markov chains, which offers a mathematical
framework to ensure that the derived sample has the desired properties. In this setting, the
unknown parameters are the states of the Markov chain, and a proposal function that suggests
a new set of parameters based on the current one replaces the transition matrix. The main
challenge is to ensure that the Markov chain and the proposal function fulfill the required
properties such that the desired posterior distribution is the invariant distribution of the chain.
To this end, various methods exist. One of them is the Metropolis-Hastings algorithm which I
will introduce in the following. The combination of these methods allows to approximate the

posterior distribution even if it is not possible to sample from it directly.
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The standard algorithm

The Metropolis-Hastings algorithm has first been suggested in 1953 [70] and further extended
in 1970 [38]. Let © be the set of unknown parameters, ¢(0,, — 0,.1) the proposal function,
L(©) = P(D|©) the likelihood function, and 7(©) a predefined prior. The Markov chain
is created by starting with an initial set of parameters, and then repeatedly suggesting a
new one and either accepting or rejecting it by turns. The proposal / acceptance steps are
repeated until the chain has converged, and a sufficiently large sample has been derived. This

procedure is delineated in the following:

Initialize O

2. Proposal step: Given ©,, , draw a candidate ©’ from the proposal
distribution ¢(©,, — ©")

3.1 Calculate the quantity A = LL((SQ) . :((g;)) . Zgg;i%tg

3.2 Acceptance step: With probability min(A, 1), let ©,1 = O’ (accept).
Otherwise, let ©,41 = 0,, (reject)

4.  Increment n by one and repeat steps 2. and 3. until convergence

The quotient in step 3.1 allows to decide upon acception / rejection of the newly suggested pa-

rameter set based on the true posterior distribution without actually requiring the normalizing

factor: L(©)x(©)
P@'|D) — —Pm)  _ L(®)-7(©)
T L(©,)m(©,) .
P(6,|D) (P)(Dg ) L(©y) - 7(Oy)

It can easily be shown that a chain generated by this mechanism fulfills all requirements
(detailed balance with respect to P(©|D), aperiodicity, and irreducibility), and actually

converges to the desired posterior distribution [2, Chapter 3].

Requirements, challenges and pitfalls

A MCMC approach has to be designed such that its invariant distribution is the target
distribution, and that it converges quickly to this distribution |2, Chapter 3]. In the following

I will discuss some practical implications.

Initialization The Markov Chain has to converge to the invariant distribution independent
of the initially chosen parameter set |2, Chapter 3]. When setting up a MCMC sampling

approach, this has to be verified in simulation runs.

Choice of the proposal function An appropriate choice of the proposal function is crucial
for the convergence properties of the Markov chain. If the proposal is too wide, the attempted
jumps will be too large and the rejection rate might be very high. This would result in high
correlations between the states which disagrees with the Markov property. If, in contrast,

the proposal is too narrow, the chain will not be able to explore the whole parameter
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space [2, Chapter 3]. A method to assess this so-called mixing behavior of the chain is
introduced in Section[I3.2.2)and Fig. [13.15]in Part [[TI] In this application, the proposal function
is adjusted by setting the standard deviation of a log-normal distribution appropriately. In
Part [[T} the width of the proposal function corresponds to the number of signals graph edges
that are changed in one sampling step (see Section .

Convergence speed, chain length and burn-in phase The convergence speed of the Markov
chain is measured by the number of steps it takes for the chain to reach its stationary
distribution (the so-called burn-in phase). The standard visual control is offered by a
convergence plot which displays the trace of each parameter along the sampling procedure,
see Fig. in Part [[T]) for an example. After convergence, in the so-called stationary phase,
the variation of the chain does not decrease any further. Only the stationary phase reliably
approaches the probability distribution, and so the burn-in phase is discarded.

The chain has to be long enough to converge to the target distribution, and to produce enough
samples for the subsequent analysis. At the same time, the number of steps are obviously
subject to computational restrictions. A reasonable trade-off has to be found in simulation

runs.

2.4.4. Other MCMC approaches
MCMC without likelihood

MCMC sampling based on the Metropolis-Hastings algorithm allows to approximate a posterior
distribution even if it is not accessible analytically. Yet, it must still be possible to calculate
the likelihood of the parameters. For situations where this is not the case, a Markov Chain
Monte Carlo without likelihoods approach has been developed [66]. In this approach, the
likelihood of the parameters is replaced by the quality of so-called summary statistics. The
summary statistics are calculated from datasets that are simulated based on the parameters
in question, and describe meaningful features of the data. Comparing them to the summary
statistics that have been calculated from the observed data allows to approach the probability
of the underlying parameters.

We tried this approach for the analysis of the hematopoietic stem cell differentiation process
(Part based on various summary statistics (e.g., the branch size or the relative frequency
of double-death siblings). Yet, the approach actually described in the corresponding part of

this thesis turned out to be more successful.

Reversible Jump MCMC sampling

The Metropolis-Hastings approach as described above can only be used when model selection
has already been completed. If the choice of the best model should be incorporated into the
sampling process, the method has to be extended. The reversible jump algorithm yields a

Markov chain where p(m, ©,,) is the invariant distribution, with M = {M,,};n=1,... .~ being a
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family of models and ©,, being the corresponding parameter set. It includes steps where the
model class is changed (so-called model jumps), as well as steps where only the parameters
within the same model class are updated. The main obstacle is that probabilities for model
classes with different dimensions can’t be compared directly, which has to be considered in
the acception step. An efficient solution for this problem has been developed in 1995 [33]. The
acception step is adapted such that it allows jumps between different models. [2, Chapter 3].
More details are provided in the Appendix, Section

This approach was used in Part [V] where the MCMC sampling includes jumps between
the selective and the instructive scenario for hematopoietic stem cell differentiation. In the
selective scenario, differentiation is due to varying cell death rates, while the instructive
scenario implies varying differentiation rates. The respective other parameter is the same for

all lineages that are included in the model.



3. Importance of simulation

Simulations are of tremendous importance both during model selection and parameter inference.
Whether a model is appropriate and whether the designed parameter estimation process
(e.g., MCMC sampling) works properly can’t be evaluated based on the observed data only.
In a simulation scenario, a realistic “true” parameter set is chosen, and noise-containing
measurements are simulated based on this set. In this way, as many datasets as desired can
be produced. Some major advantages of simulation runs prior to the actual analysis of the

observed data are summarized in the following:

Model Selection

o If it is unclear whether all parameters are identifiable in the model, simulations help to
reveal parameter dependencies. See Part Section [13.1.1] for an example.

o Bias and variance can be assessed if data exists for which the true parameters are known.

See Part [[TI], Section for an example.

Parameter inference / MCMC sampling

e Simulations serve to assess the convergence properties of the Markov chain. Multiple,
differently initialized Markov chains are run in order to guarantee a sufficiently fast
convergence as well as an appropriate mixing of the chain. Importantly, the length of the

burn-in phase can be determined, and independence of the initialization can be tested.
e The parameters of the proposal function can be determined.

o The prediction quality of the approach (e.g., sensitivity and specificity) can only be
determined if the true parameters are known. See Part [[I, Fig. for an example.



Part II.

MC EMINEM maps the interaction
landscape of the Mediator



4. Introduction

The Mediator is a highly conserved, large multiprotein complex that is involved essentially
in the regulation of eukaryotic mRNA transcription. It acts as a coactivator by integrating
regulatory signals from gene-specific activators or repressors to the RNA Polymerase II. The
internal network of interactions between Mediator subunits that conveys these signals is largely
unknown.

Active interventions into the cellular system followed by phenotypic measurements, as op-
posed to purely observational data, provide insight into the functions and interactions of
the respective gene products. Along this line, perturbation experiments have been carried
out with low-dimensional readouts (such as cell viability or growth [31,/108]) as well as
with high-dimensional phenotypes (such as genome-wide expression or DNA binding mea-
surements |41},/43]). While the reconstruction of regulatory networks from observational
high-dimensional gene expression data has been investigated thoroughly (e.g., [5,[88,89]) the
statistical analysis and interpretation of perturbation data is an active field of research [28,/109].
Here, we introduce MC EMiNEM, a novel method for the retrieval of functional dependencies
between proteins that have pleiotropic effects on mRNA transcription. MC EMINEM is
an efficient and robust learning algorithm for Nested Effects Models (NEMs), a class of
probabilistic graphical models that extends the idea of hierarchical clustering. MC EMiNEM
combines mode-hopping Monte Carlo (MC) sampling with an Expectation-Maximization (EM)
algorithm for NEMs. A meta-analysis of four Mediator perturbation studies in Saccharomyces
cerevisiae provides new insight into the Mediator signaling network. In addition to the known
modular organization of the Mediator subunits, MC EMiNEM reveals a hierarchical ordering
of its internal information flow, which is putatively transmitted through structural changes
within the complex. We identify the N-terminus of Med7 as a peripheral entity, entailing only
local structural changes upon perturbation, while Med19 and the C-terminus of Med7 appear
to play a central role. MC EMiINEM associates Mediator subunits to most directly affected
genes, which, in conjunction with gene set enrichment analysis, allows us to construct an

interaction map of Mediator subunits and transcription factors.

The content of this part has been published in Niederberger et al. [77]. Some sections
refer to the supplementary material of this paper which are provided in digital form along
with this thesis. The MC EMiNEM method is freely available as a part of the R/Bioconductor
package nem [251|30,44]. All datasets have been provided by members of the Cramer lab at
the Gene Center.



5. Biological background

Phenotypic diversity and environmental adaptation in genetically identical cells are achieved
by an exact tuning of the cell’s transcriptional program. A variety of components contributes
to this program, including the polymerase, general transcription factors, coactivators, gene
specific transcription factors, and promoter elements. Unraveling parts of the complex network
of involved components and associated interactions is a challenging task. Here, we shed light

on the role of the Mediator complex in transcription regulation in yeast.

5.1. The yeast Mediator complex

The Mediator, first discovered in 1994 [49,51], is a large multiprotein complex which is highly
conserved in eukaryotes [11]. It is a coactivator acting as an interface between gene-specific tran-
scription factors (TFs) and the core transcription machinery (e.g., Polymerase II (Pol II)), and it
is required for basal transcription as well as for activated transcription or repression [17,53}[58].
Despite its importance and even though, in the last years, many successful efforts have been
made to gain insight into both structural and functional aspects [10,45,55,56], large parts
of its structure and function are still unknown. This is mainly due to the large size of the

Mediator, as well as to its complexity and flexibility.

Structure

Yeast Mediator consists of 25 subunits with a total molecular weight of more than 1 MDa. It is
organized in 4 different modules (head, middle, tail, and kinase module) which are supposed to
contribute in different ways to the overall function of the Mediator. A schematic representation
of the whole complex is provided in Fig. already including the results of this study.

Recently, an excellent review of the state-of-the-art understanding of both Mediator structure
and function has been published [58]. It states that, at the moment, atomic structures are
available for (parts of) 13 subunits which is less than 20% of the total structure. The head
module is best characterized while only few is known about the tail module. It is striking
that most of the folds observed in Mediator do not appear in other parts of the transcription
machinery and that some of them are duplicated within the Mediator (e.g., a four-helix
bundle in Med11/Med22 and Med7/Med21), suggesting the existence of common building
blocks. The structural studies also reveal the existence of functional submodules and the
corresponding flexible linkers connecting them to the rest of the Mediator. These include
for example Med7N/Med31 [56] and Med8c/Med18/Med20 [59]. Furthermore, the review
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discusses evidence for extensive structural changes of the Mediator complex upon activator
and Pol II binding. These structural changes seem to vary for different activators and are
supposed to promote Pol II binding as well as additional interactions with transcription-related
proteins. In particular, interactions with TBP and TFIIH have been reported suggesting that

the Mediator stabilizes the preinitiation complex.

Function

The Mediator contains so-called activator-binding domains (ABDs) which interact with the
transactivation domains (TADs) of the transcriptional activators. It has been shown that
some subunits contain several ABDs and that some TADs can interact with diverse ABDs
which is supposed to be enabled by the conformational flexibility of the TADs [58]. This
variance of possible interactions induces a great diversity of gene-specific effects, some of
which are reviewed in [10].

The diverse roles of the Mediator in transcription regulation are supposed to include transcrip-
tion initiation (facilitation of the preinitiation complex (PIC) formation by Pol II recruitment
to the core promoter, PIC stabilization), promotion of transcription elongation (by elongation
factor recruitment), or transcript processing (by stimulation of Pol II CTD phosphoryla-
tion) [10L/17]. The tail module is thereby believed to establish the contact to the gene-specific
transcription factors while the head and middle module apparently contact Pol II [93]. Conse-
quently, the head module is highly conserved, whereas the tail module is the most evolutionary
divergent one. This is in line with a high structural and functional variability of transcription
factors among eukaryotes [17]. The role of the kinase module is unclear. It is not necessarily
part of the complex and has long been considered as repressive since studies showed that its
presence prevents the binding of Mediator and Pol II [22]. Recent studies, however, suggest
activating roles, in particular, with respect to transcription elongation and the release of
paused Pol IT [17].

5.2. A meta-analysis of four Mediator perturbation studies

We combined expression profiles of S.cerevisiae Mediator subunit deletion mutants dMed2,
dMed15, dMed20, dMed31 with data from intervention studies. Those comprise mutations of
Med7 (N- and C-terminal deletion), and point mutants of Med10, Med19, and Med21 (for more
details on the data, please refer to [77]). The raw data is available at ArrayExpress. Although
there exist even more high-quality gene expression data of Mediator mutants (e.g., [3.[59]), we
restricted our analysis to experiments that were obtained on the Affymetrix yeast 2.0 array
under similar environmental conditions. Some data are redundant in different experiments
which enabled us to correct for batch-specific effects and to remove outlier genes (for data
pre-processing, see Appendix Section . After removing uninformative genes, this results

in a total of 9 perturbations and ~2500 measurements.



6. A model for the Mediator signaling network

6.1. Nested Effects Models

Nested Effects Models (NEMs) are probabilistic graphical models designed for the analysis of
gene expression perturbation screens [1}24}264/67,68,102,/105,/110] (see [27] for a summary) by
reconstructing the dependency structure of the perturbation signals. They perform particularly
well if this structure is hierarchical [68] and have so far been applied successfully to the ER-«
pathway of human MCF-7 breast cancer cells [27] and to a signaling pathway in Drosophila

melanogaster [67].

6.1.1. A two-part graphical model

The graph underlying a NEM contains two types of nodes: the perturbed entities (the signals
S, here: the Mediator subunits) and the genes for which expression has been measured (the
effects £). The edges of that graph describe the flow of regulatory information between the
nodes. NEMs split this flow into two parts: the signals graph © containing the edges between
the perturbed entities, and the effects graph H describing the assignment of the effect nodes
to the signal nodes. We identify the graphs © and H with their respective adjacency matrices
0 € {0,1}5%°, H € {0,1}5%¢. The experimental data is summarized in an S x £ matrix
D = (Dji), where Dj;, corresponds to the expression data obtained from measurements
of effect k upon perturbation of signal j. NEMs aim at reconstructing the signals graph,
assuming a particularly simple regulatory structure: The perturbation of a signal j implies
the perturbation of other signals that are children of j. This in turn perturbs the effect nodes
that are the children of the perturbed signals in the effects graph (see Fig. [6.1). In other
words, the NEM predicts an effect of gene k£ upon perturbation in signal j exactly if there is a
two-step path from j to k, i.e., if (©H);; > 0.

6.1.2. Parametrization and probability model

These binary predictions of our model are then linked to the actual measurements by specifying

a probability model for the individual effects gene measurements,

pjr = P(Dji|j has an effect on k) = P(D;;|(©H);, > 0) , and
¢jr = P(Dj|j has no effect on k) = P(D;|(©0H);;, = 0)
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Figure 6.1: NEMs - an example. § = {X,Y, Z}

AX
i 1 . S={X,Y, 7},
€ = {a,b,c,...,l}. Shaded matrix fields D, cor-
AY D respond to an expression change of effect gene k
upon perturbation of signal j, white fields indicate
no change in expression. The edges Y — X and
V4 Y — Z cause an effect in genes directly attached to
signal X and Z respectively, when Y is perturbed.

There is extensive literature on the estimation of these two distributions, see . We

adhere to the method proposed in - Consequently, a NEM is parametrized by the tuple
(©,H) € Ms x Mg, where Mg is the space of binary S x § matrices with unit diagonal, and
Mg c {0, I}SXS is the space of effects graphs. We assume that the effects graph is sparse,
such that each effect is linked to at most one signal (i.e., each column of H € Mg equals
either a unit base vector of dimension n, or the null vector). It is convenient to transform the

data matrix D into the log-odds matrix R = (R;) = log(p ”“) According to |\ the log
posterior of the signals graph is given by

log P(©, H|D) = trace(@HRT) 4 log 7(©, H) + const (6.1)
For a derivation of Eq. see also the Appendix, Section

6.1.3. Applying NEMs to the Mediator

In this application, the signals S correspond to the perturbed Mediator subunits, while the
effects £ correspond to the genes for which expression has been measured. The distinction
between signals graph and effects graph allows the selective optimization of the regulatory
structure among the Mediator subunits, and to make use of the underlying attachment
of effects to signals at the same time. Due to an expected hierarchical structure of the
transcriptional effects upon Mediator subunit perturbation (see Section first paragraph),

NEMs are the suitable model class for this analysis.
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6.2. Prior choice

We assume edge-wise independent priors, 7(0, H) = 7°(0) - 7¢(H), and 7(0) = ivj 75(0;;),