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I Introduction 

 

1 Nucleic Acid Based Therapy 

 

The field of nucleic acid-based therapy holds enormous promise in the treatment of a 

broad range of genetic and acquired diseases by targeting their cause, at gene level. 

Thereby a genetic defect can be compensated or target genes, which are either 

pathogenic or indispensable for cell viability, can be silenced with the result of an 

indirectly mediated therapeutic effect.  

Over 1800 clinical trials on nucleic acid-based therapeutics have been or still are 

conducted [1]. Whereas mostly functional genes, preferentially delivered by viral 

vectors, are inserted into the human genome to replace defective gene sections.  

The indications cover genetic disorders like cystic fibrosis, haemophilia or severe 

combined immunodeficiency (SCID) [2-4] as well as acquired diseases like HIV [5, 6], 

neuropathological diseases [1] or DNA vaccination [7]. Although noteworthy success 

has been achieved, e.g. in treatment of SCID or haemophilia B, reported side effects 

have to be taken into account and safety concerns about intervention with the human 

genome remain. 

The main application of gene therapy is still cancer therapy [1]. Silencing gene 

expression that facilitates cancer growth or introducing therapeutic genes that 

hamper tumor growth by inducing apoptosis of tumor cells are the main ways to 

accomplish therapeutic effects in cancer treatment [8, 9]. Ordinary gene therapy is 

based, as described above, on the integration of genetic information into target cells 

to mediate the expression of certain proteins. In 1998 Andrew Fire and Craig Mellow 

discovered in Caenorhabditis elegans that the introduction of double-stranded RNA 

(dsRNA), encoding for a specific gene, led to silencing of its gene product [10]. It was 

found that the introduction of long exogenous dsRNA into target cells, inhibits cellular 

protein expression, causes innate immune response by interferon activation and 

induces apoptosis. In 2001 Tuschel et al. published that a specific gene knockdown 

without significant side effects can be achieved by application of small synthetic 21-

23 nucleotide interfering RNA (siRNA) duplexes [11]. When dsRNA enters the cell 

cytosol, it is recognized by an enzyme named Dicer [12]. This Dicer cleaves the 

dsRNA into siRNA duplexes. Instead of the introduction and cleavage of dsRNA, 

synthetically produced siRNA duplexes can be processed immediately [11]. As small 
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synthetic RNAs reach the cytosol of a cell, they are incorporated in a multiprotein 

complex named RNA induced silencing complex (RISC) (Figure 1). After the siRNA is 

incorporated into the RNA induced silencing complex, the enzyme Argonaute 2 

unwinds the siRNA and the sense strand is cleaved [13, 14]. The antisense strand 

remains incorporated in the RISC and activates RISC to cleave complementary 

messenger RNA (mRNA) of the cell, thus avoiding translation [15]. Since the 

activated RISC is able to repeatedly cleave mRNA, this process effectively silences 

genes over a significant period of several days. Hence the system of siRNA mediated 

gene silencing has become an essential tool for the downregulation of single genes 

on post-transcriptional level as well as for studying gene function in mammalian cells. 



I Introduction  9 

 

Figure 1: Mechanisms of gene silencing by introduction of siRNA and dsRNA.  

RISC: RNA induced silencing complex, mRNA: messenger RNA, siRNA: small interfering RNA, 

dsRNA: double-stranded RNA. 
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Notwithstanding these promising achievements, nucleic-acid based therapy still holds 

a lot of challenges. Up to now naked siRNAs have only been applied successfully to 

tissues locally, e.g. adult late stage wet macular degeneration (AMD) was 

successfully treated by injections into the eye in mice and nonhuman primates [16, 

17]. Also intramuscular injection, electroporation and hydrodynamic injections with 

plasmid DNA led to positive results [18-21]. Nucleic acids are highly hydrophilic, 

relatively large (siRNA: ~13 kDa) and can consequently not permeate the lipid layer 

of a cellular membrane. In addition they are, when injected in vivo, quickly degraded 

by nucleases primarily in the blood stream [22-25]. 

Nevertheless, for a breakthrough of this technology in the broad field of clinical 

utilization easy-to-handle systemic applications are obligatory. 

For this intention, carrier systems have to be developed that protect siRNA from 

extracellular environment and efficaciously deliver it into the cytosol of target cells. 

Non-viral and viral delivery systems are being investigated, whereas viral gene 

vectors show high efficacy, but the production is quite expensive and there are safety 

concerns as mentioned above. Amidst the field of non-viral transfer systems, there 

are few approaches including lipids [26, 27], lipid-modified polymer formulations [28-

31], conjugated RNAs [32] and cationic polymers [33-37]. 

 

 

2 Non-Viral Carrier Systems for siRNA Delivery 

 

Up to now more than 60% of clinical gene therapy trials use viral vectors [1]. As 

natural gene delivery systems, viruses are highly capable to deliver their genes to 

their target cells. Because of the evolution process they are ideally adapted to 

overcome the general hurdles of delivery. In general, viruses target a distinct cell type 

and not a population of cells. However, domestication might cause inherent problems 

including immune and toxic reactions and the potential for viral recombination as 

mentioned above. Chemical modifications for de- or retargeting reasons are also 

difficult [38-40]. A dramatic disadvantage of viral gene transfer systems for siRNA 

delivery is the insufficient compatibility. For viral gene transfer the gene of interest is 

introduced into a plasmid. A special packaging cell line is transfected with this 

plasmid with the gene of interest, leading to the amplification of this DNA and 

incorporation as DNA or RNA into the intracellular produced viruses [41]. As siRNAs 
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are completely chemically synthesized, it is impossible to incorporate them into 

viruses with the virus production method described before. There are a few 

approaches to overcome this problem [42]. 

Hence a broad range of synthetic vectors have been developed. One main 

advantage of synthetic vectors is that they can be tailored to specific needs, including 

subsequent functionalizations, like shielding moieties or targeting. However, their 

transfection efficiency is rather low compared to viral gene vectors, which was shown 

by Brown et al. in 2001.  

The class of liposomal siRNA formulations has become one of the most investigated 

of synthetic vectors [43]. Representatives for lipid based siRNA vectors are 

liposomes and lipoplexes. Cationic lipids are amphiphilic mainly consisting of three 

parts, a hydrophobic lipid tail, a linker group, such as an ester, amide or carbamate 

and a positively charged head-group, which condenses with negatively charged 

nucleic acids. These characteristics cause cationic lipids to assemble into 

nanospheric liposomes when put into aqueous solutions [44]. In case of liposomes 

nucleic acid is incorporated in the liposome and protected against endogenous 

nucleases and in addition liposomes are able to destabilize the endosomal 

membrane by lipidic interaction and release their cargo into the cellular cytosol [43]. 

In case of lipoplexes nucleic acid is incorporated at the outside shell of the liposome 

[45], thereby successful hampering of tumor progression could be shown [46, 47]. 

Cationic lipids are often combined with so called helper lipids e.g. 

dioleoylphosphatidylethanolamine (DOPE) or cholesterol [48]. A major drawback of 

lipidic systems is their high accumulation in the liver. As liposomes and other 

hydrophobic particles show remarkable liver affinity, they need a strong shielding to 

be efficiently directed to other tissues [49]. 

Cationic polymers also show high potential to condense nucleic acids. They are able 

to complex nucleic acids and form nanoparticles with them, through their positive 

charge by ionic interaction with the negatively charged phosphate groups of the 

nucleic acids [50]. Amongst this group, linear structures like poly-lysine (PLL) [51], 

linear polyethylenimine (LPEI) [52] or branched structures like polyamidoamine 

(PAMAM) [53], branched polyethylenimine (brPEI) [54] or polypropylenimine (PPI) 

[55] have been explored. In the line of polyplexes, polyethylenimine PEI is the “gold 

standard” for gene transfection due to its superior transfection efficacy [56, 57]. This 

molecule bears many advantages in the process of gene delivery. If formulated with 
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nucleic acids it builds stable complexes under physiological conditions. Since the 

polymer is highly positive charged these polyplexes in general have a positive zeta 

potential. This enables the attachment to cellular membranes of target cells via ionic 

interactions and thereafter results in endocytosis. Inside the endosome, PEI leads to 

an escape from the endosome via the so called “proton sponge effect” [58, 59]. As a 

result of its strong buffering capacity, the polycation hinders the acidification of the 

cellular endosome. Therefore more and more protons accumulate in the endosome, 

followed by chloride as counter ion. This process leads to a strong osmotic pressure, 

causing an influx of water. If the osmotic pressure becomes too strong, the 

endosomal membrane bursts and releases its payload into the cytosol of the cell [59]. 

In addition to the proton sponge effect, it seems to be important, too, that the 

polycationic charge is presented on the surface for interaction and destabilization of 

the endosomal membrane [34]. Standard PEI is an inefficient carrier for siRNA in 

vitro [60]. In spite of this, Aigner et al. demonstrated efficient siRNA delivery in a 

murine model [61]. Apart from this, cells cannot degrade the high molecular weight 

polymers, such as PEI, which results in accumulation and interactions with DNA, 

proteins and cellular membranes [62]. This accumulation in reticular organs, such as 

lung or liver, results in acute toxicity [63]. In vivo the highly positive charged 

polyplexes interact with blood components, resulting in strong aggregation, thus 

toxicity and undesired side effects [64, 65]. 

Therefore e.g. succinylation of PEI to block some of the positive polymer charges 

was explored and led to an efficient siRNA carrier with strongly reduced cytotoxicity 

[54]. Another approach is the shielding with polyethylenglycol (PEG) that prevents the 

polyplexes from uptake of macrophages and thus rapid removal from the blood 

stream as well as aggregation of positively charged polyplexes with erythrocytes 

causing embolism [64, 66-68]. The problem of non-biodegradability can be overcome 

by new biodegradable polymers that are stable in the extracellular surrounding and 

degrade, after having delivered their cargo into the cell, to non-toxic metabolites in 

the intracellular environment [55, 69]. To enhance the transfection efficacy at least 

two bottle necks have to be taken into account: These are endosomal escape, as 

mentioned above and specific uptake of the polyplexes by the targeted cells.  

When polyplexes are incorporated by endosomes, they have to escape from them, 

otherwise the endosome gets acidified and turns into a lysosome degrading polyplex 

and nucleic acid. Polymers like PEI avoid degradation by the proton sponge effect 
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but enough polymer has to be inside one endosome to mediate this effect. Another 

approach is endosomolytic peptides. Those are derived e.g. from the sequence of 

the aminoterminus of the influenza virus haemagglutinin [70, 71]. A modification of 

the sequence resulted in a peptide that is only lytic at endosomal pH (pH 5.5) and not 

at an ordinary pH (pH 7.4) of the organism, minimizing undesired side-effects [72]. 

Moreover, new structures lacking a buffering capacity can be tested as feasible 

carrier systems [73], if combined with endosomolytic agents. A second peptide is 

derived from the bee venom, whose lytic activity is not pH dependent [74-77]. 

Artificially synthesized peptides like GALA or KALA are another solution [78-83]. 

The combination of polycationic backbones and fatty acids that have comparable 

properties has been a further reasonable approach overcoming this crucial step of 

endosomal escape [30, 84].  

To allow specific cellular uptake, polyplexes have on the one hand to be stable in the 

blood stream [36, 85], on the other hand have to target distinct tissues. The field of 

tumor targeting can be divided into two approaches, active and passive targeting. 

Since a fully shielded polyplex is not able to interact with cells, an additional domain 

has to be incorporated to address receptors on the cell surface [86]. An enormous 

advantage is that almost all tissues differ in the expression level of cell surface 

receptors what makes them distinguishable. As endocytosis is needed for efficient 

gene delivery, receptors mediating endocytosis such as the transferrin receptor (Tf-

R), the epidermal growth factor receptor (EGF-R), the folic acid receptor (FolA-R) or 

integrins (e.g. αvβ3) are mainly addressed [87-91] and, in addition, are highly 

upregulated in tumor tissue [92-95]. The second strategy to address tumor tissue is 

passive targeting. Non targeted polymers have already shown to work very efficiently 

in case of DNA delivery into tumor tissue. This can be explained by the enhanced 

permeability and retention (EPR) effect [96]. When solid tumors reach a certain size, 

they are limited in blood supply of the existing vessels and therefore massive 

angiogenesis is the result. Tumors become hypervascularized, at the same time the 

lymphatic drainage is hardly developed and the vessel endothelium is fenestrated 

and leaky [97]. When complexes are injected intravenously, they pass the leaky 

tumor blood vessels and diffuse through the endothelium into the tumor. When drug 

concentration in the blood stream decreases, small molecules are able to diffuse 

back into the blood stream, whereas bigger molecules can’t and accumulate in the 

tumor [98]. 
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3 Assessments of Nucleic Acid Carrier Systems 

 

Due to ethical and economic reasons, newly designed gene transfer systems need to 

be tested for efficacy and toxicity in vitro before they are applied in vivo. Thereafter 

they are, only if they have revealed high efficacy and low toxicity, tested in an in vivo 

mouse model. Efficacy measurement of siRNA delivery systems is quite a challenge 

in vivo, as it has to be geared for consecutive measurements as well as fast and easy 

analysis, be highly sensitive and specific, it should lead to statistically significant 

results and not at least be compatible with the animal welfare. 

Up to now literally no in vivo method meets all these demands. The next chapters 

especially deal with in vivo methods focusing on methods for efficacy evaluation. 

 

 

3.1 Distribution 

 

The distribution assessment of a new siRNA carrier plays a pivotal role in gene 

transfer in vivo as by the distribution a forecast for desired as well as for undesired 

effects is possible. I.e. mostly whether the carrier or the siRNA is tagged with a 

reporter and can therefore be easily detected. Common methods to measure drug 

distribution in vivo are radioisotopes (Positron Emission Tomography (PET), Single 

Photon Emission Computed Tomography (SPECT) as well as quantum dots and 

fluorescent dyes [99-102]. Another approach is measurement of the drug 

concentration in body fluids e.g. urine, blood and faeces. However, carrier distribution 

cannot be equated with carrier efficacy. A high accumulation of e.g. a labeled 

polymer in the liver does not mean that the siRNA, incorporated by the time of 

injection, is also located in the liver or, as another possibility the polyplex is stuck in 

an endosome and therefore not functional. Thus it is very important to prove efficacy 

as well as distribution [63]. 
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3.2 Toxicity 

 

Toxicity is divided into acute and chronic toxicity as well as reproductive and 

teratogenic toxicity [103], therefore animals have to be monitored carefully during and 

after the experiment. However, first toxicity tests mainly focus on peracute and acute 

adverse reactions. In case of polycationic delivery systems those are primarily 

caused by interference of the polyplexes with blood components, lung or liver tissue 

[63, 64, 66, 67]. Before polymer/siRNA complexes are injected in vivo they have to 

pass erythrocyte leakage assays and blood aggregation assays to predict the 

interaction of the polymers with blood components [51, 55, 104].  

Liver enzymes such as aspartate aminotransferase (AST or SGOT) and alanine 

aminotransferase (ALT or SGPT) are well known parameters that rise in case of liver 

damage [88]. Histopathological examination can also be used as a tool for visualizing 

liver and lung toxicity. Light and also fluorescence microscopy, in combination with 

distinct stains like the TUNEL stain, can reveal pathological changes such as adverse 

cell metabolism apoptosis or necrosis [63, 88].  Nevertheless, one of the easiest and 

fastest parameter in mice is body weight that increases and decreases due the 

general condition.  

 

 

3.3 Efficacy 

 

To evaluate the siRNA transfection efficacy of newly designed polymers a specific 

gene has to be silenced by interaction with the corresponding mRNA leading to a 

silenced protein translation. Hence transfection efficacy can be evaluated either on 

the nucleic acid or on the protein level. To determine efficacy on the protein level in 

vivo imaging is a very convenient method. There are many approaches such as 

magnetic resonance imaging (MRI), positron emission tomography (PET), computed 

tomography (CT), single photon emission tomography (SPECT), fluorescence and 

bioluminescence imaging [105, 106]. 

Magnetic resonance imaging relies on nuclear magnetic resonance. It reveals images 

with high spatial resolution, high contrasts and clear tissue delineation. CT imaging is 

based on absorption of X-rays by diverse tissues, hence resulting in high anatomical 

resolution imaging (but with relatively low contrast in soft tissue) of small animals 
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[107, 108]. Nevertheless, a major disadvantage lies within the relatively long 

acquisition and processing time and the low sensitivity (MRI) or contrast (CT). In 

siRNA based therapy systems CT and MRI can only be used to measure therapeutic 

effects, e.g. the size of a treated tumor [109]. There are new approaches to improve 

sensitivity and contrast [110-117]. PET imaging is based on isotopes emitting 

positrons (e.g. 11C, 13N, 15O, 18F), whereas for SPECT imaging isotopes emit gamma-

rays (e.g. 99mTc, 123I) [118-125]. The most prominent disadvantage of those imaging 

techniques is that mice are exposed to radiation. In contrast optical imaging is not 

based on radiation the acquisition and processing time is relatively short but with 

increasing depth the signal is attenuated. Furthermore, the usage of the same 

reporter gene in vitro and in vivo is possible, which is useful. Optical imaging consists 

of fluorescence imaging and bioluminescence imaging, whereas the light emitted is 

measured by a charge-coupled device (CCD) camera. In fluorescence imaging 

external light excitates a fluorochrome and thereby it emits light of another 

wavelength which is detected by the CCD camera. It is in general a very sensitive 

method hence autofluorescence of body tissue is very low. For this purpose there are 

several fluorochromes available. One of the first was green fluorescent protein 

(GFP), first isolated from the jellyfish Aequorea Victoria with an emission peak at 509 

nm and its variations, e.g. eGFP, that has a longer emission wavelength and is also 

brighter than the wildtyp GFP [126, 127], red fluorescent protein (RFP) (emission 

peak at 574 nm) and it’s variations offer a higher stability and a longer emission 

wavelength which is beneficial, because of low body tissue absorption, especially 

cyanine fluorochromes that were also used in this work [128-131].  

 

 

3.3.1 In Vivo Bioluminescence Imaging for siRNA Efficacy Studies 

 

Bioluminescent imaging has become an important tool for in vivo monitoring, mainly 

because almost no background signal is produced as the light is expressed by 

certain luciferase enzymes. Diverse luciferases serve as reporter enzymes. These 

enzymes catalyze the emission of photons by a reaction that is dependent on the 

presence of a certain substrate as well as other co-factors and/or oxygen thereby 

photons are emitted and detected by a CCD camera. Photons are attenuated by 

body tissue because of absorption and light scattering by melanin or haemoglobin 
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[132]. In the visible spectrum the intensity of photons, such as those produced by 

luciferases, is attenuated about 10-fold per cm of body tissue. Coming along with the 

importance of luciferases as reporter enzymes the most commonly used one is 

Photinus pyralis, derived from the North American firefly. Photinus pyralis oxidizes its 

substrate, luciferin, to oxyluciferin. Thereby light with a broad emission spectrum and 

a peak at approximately 560 nm, is produced [133] but the reaction is dependent on 

energy in the form of Adenosine-5'-triphosphate (ATP) and oxygen.  

Luciferases derived from the sea pansy Renilla reniformis and Gaussia princeps, a 

mesopelagic copepod, react with coelenterazine independently from ATP but 

necessarily with oxygen. The reaction creates light with an emission peak at around 

480 nm [134-138] and as the luciferase is secreted tumor sizes can indirectly be 

measured. Coelenterazine is applied directly into the blood stream, whether through 

tail vein or intracardiac injection [139, 140]. A major drawback of Renilla reniformis 

and Gaussia princeps is auto-oxidation of coelenterazine and a rapid kinetic peak 1 – 

2 minutes after injection demanding excellent time management [135].  

Click beetle red and green luciferases were isolated from Pyrophorus 

plagiophtalamus from the Elateridae superfamily, they are optimized for different 

wavelengths than Photinus pyralis (544 and 611 nm, respectively) but also rely on 

the same enzymatic reaction [141, 142]. 

Photinus pyralis luciferase has a half-life of about 3 – 4 hours, which should not limit 

daily performed quantitative bioluminescence imaging. Likewise the enzyme itself, 

biodistribution and pharmacology of the substrates are important parameters and 

have to be taken into consideration for reproducible quantification of 

bioluminescence. Increased substrate concentrations and also local application of 

substrate increased the signal output significantly with dependence on localization of 

the enzyme [143].  Another pivotal parameter is bioluminescence kinetics of the firefly 

luciferase that reaches its peak after approximately 10 – 20 minutes. These 

parameters were analyzed and optimized by Dr. Gelja Maiwald and are part of her 

vet MD thesis [LMU 2010]. 

As mentioned above successful siRNA delivery in living beings will consecutively 

lead to silencing of the targeted protein expression. Protein depletion can be 

determined directly by bioluminescence imaging, if the luciferase enzyme itself or a 

protein that influences the expression of luciferase is targeted. Another way leading 
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to an increased bioluminescent signal is the usage of cell death mediating siRNAs 

[88, 144-146]. 
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4 Kinesin Spindle Protein 

 

In this work the potential therapeutic effect of mRNA knockdown in tumor cells had to 

be studied. EG5 is a member of the Bim-C class of kinesin related proteins (Figure 

2). 

 

Figure 2: Crystal structure of the mitotic Kinesin Eg5 in complex with Mg-ADP [147]. 

 

The Protein influences the assembly and organization of the mitotic spindle, a self-

assembled and dynamic microtubule-based structure that orchestrates chromosome 

segregation in dividing cells [148] (Figure 3). The EG5 protein plays a pivotal role in 

cell division. If there is no EG5 in the cytoplasm, abnormal monopolar spindles occur, 

which prevent successful cell division [149].  
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Figure 3: Schematic depicting EG5 activity in the mitotic spindle. Tetrameric EG5 motors (pink) 
help to organize microtubules (green) to form the mitotic spindle. (A) At the onset of mitosis, the 
duplicated centrosomes (light blue) separate and nucleate two microtubule asters. Processive EG5 
motors may translocate to the plus-ends of microtubules, located distal to the centrosomal organizing 
center and by crosslinking antiparallel microtubules, may promote bipolarity. (B) By metaphase, a 
stable bipolar spindle has formed. EG5 motors likely provide structural integrity and also slide 
microtubules toward the centrosomes, contributing to the generation of poleward flux. (C) A close-up 
depiction of Eg5 motors walking to the plus ends of antiparallel microtubules, moving both poleward 
simultaneously. Figure modified from Valentin M. 2006. 
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Assembly, maintenance and functionality of the mitotic spindle depend on 

centrosome migration, organization of microtubule arrays, and force generation by 

microtubule motors. Therefore defects in this complex structure lead to chromosome 

missegregation and genomic instability. High amounts of the EG5 protein lead to 

disruption of the normal spindle development and hence result in tetraploid cells. 

Mice with this defect show higher incidences of tumor formation. EG5 overexpression 

disrupts the unique balance of forces associated with normal spindle assembly and 

function, and thereby leads to the development of spindle defects, genetic instability, 

and tumors [150]. We wanted to utilize a siRNA directed against the EG5 mRNA to 

silence protein translation. Because of its pivotal role in cell division (Figure 3), our 

hypothesis was that downregulation of the EG5 protein results in apoptosis of our 

targeted tumor cells. 

 

  



I Introduction  22 

5 Ran Protein 

 

The Ran protein is a 25Kda protein and belongs to the Ras superfamily. It’s a small 

GTPase and has been implicated in a large number of nuclear processes including 

formation and organization of the microtubule network and regulation of nuclear 

transport and formation [151-154].  

 

 

 

Figure 4: Ras-related nuclear protein Ran (Ran-GDP) [147]. 

 

High expression of Ran GTPase in cells is associated with appearance of cancer 

[155, 156]. Because it was recently identified by an RNAi based screen as possible 

target in cancer therapy [157], we utilized a siRNA directed against the Ran mRNA to 

silence protein translation. Because of its pivotal role in nuclear transport (Figure 5), 

our hypothesis was that downregulation of the Ran protein results in apoptosis of our 

targeted cells. Inside the cell Ran occurs in two nucleotide-bound forms: GDP-bound 

and GTP-bound. The transport into the nucleus through the nuclear pore complex is 

driven by a Ran/GTP concentration gradient, with a high concentration of Ran/GDP 

in the cytoplasm and a high concentration of Ran/GTP in the nucleus. Cargo proteins 

that are supposed to be transported into the nucleus contain a nuclear localization 

signal (NLS) that forms complexes with importin α and importin β in the cytoplasm, 

where Ran is in the GDP bound form. Following transport through the nuclear pore 

complex, Ran/GTP binds to importin β and releases importin α and the cargo protein 

within the nucleus. The GTPase-activation in the nucleus then leads to transportation 

of this Ran/GTP/importin β complex to the cytoplasm. Here hydrolysis of the bound 
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GTP occurs, and a Ran/GDP complex is formed, releasing importin β forming a 

Ran/GDP complex and releasing importin β and hence closing the Ran cycle. 

 

Figure 5: Role of Ran protein in nuclear transport. 
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6 Aims of the Thesis 

 

In this dissertation, in vivo delivery of siRNAs complexed with polycationic delivery 

systems, systemically or intratumorally, should be analyzed.  

The in vivo application is so far hampered by the lack of stable delivery systems that 

are able to protect siRNA in the blood stream and safely deliver it to the desired 

target cells. Nevertheless, several novel polycationic vectors that had been 

established in our lab, led to promising in vitro results for siRNA delivery. 

In the actual work an in vivo model for the administration siRNA/polymer complexes 

should be established and furthermore optimized. As tumor cell line, the murine 

neuroblastoma cell line Neuro2A was chosen, hence a good correlation between in 

vitro and in vivo tests was expected, as these cells have been used for in vitro 

experiments.  

In the beginning labeled siRNAs should be used to prove the transfection capability.  

Thereafter, therapeutically relevant EG5 and Ran siRNAs should be utilized to prove 

if the transfection efficacy can be identified pathohistologically. 

Furthermore, therapeutically relevant Ran siRNA should be used to try to influence 

the growth of subcutaneous and intrasplenic Neuro2A-eGFPLuc tumors, 

metastasizing to the liver, in a syngeneic mouse model as well as in a xenograft one. 

Size measurements of tumors were to be determined via bioluminescence as is the 

most advantageous in vivo imaging method especially for tumors inside the abdomen 

where caliper measurement is impossible.  

Another aim was to evaluate different biodegradable polymers that had been 

established in our laboratory for their efficacy and safety in in vivo applications.  

We wanted to show that our biodegradable polymers can reach a high in vivo 

efficiency with an excellent tolerability and the possibility of repeated application. 

Furthermore, we were interested in clarifying the impact of the siRNA on efficiency 

and toxicity of the treatment. In this case, the effect of repeated systemic and 

intratumoral applications of siRNA/polymer formulations on the mouse organism as 

well as tumor tissue and skin should be investigated. 
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II Materials and Methods 

 

1 Materials 

 

1.1 Cell Culture 

 

Murine neuroblastoma Neuro   LGC Standards (ATCC CCI-131) 

2A cells 

 

Neuro 2A-eGFP Luc cells   NeuroAa cells stably expressing a fusion 

protein of eGFP and Photinus pyralis 

luciferase 

 

DMEM 1 g glucose   - DMEM, 4.5 g glucose/L, with L-glutamine, 

with NaHCO3 (Biochrom, Berlin, Germany): 

10.15 g 

- NaHCO3 p.A.: 3.7 g 

- ad 1 liter with aqua bidest 

 

OptiMEM      Invitrogen (Karlsruhe, Germany) 

 

Penicillin-Streptomycin    Biochrom (Berlin, Germany) 

 

FBS       Invitrogen (Karlsruhe, Germany) 

 

L-alanyl-L-glutamine   Biochrom (Berlin, Germany) 

 

G418       Invitrogen (Karlsruhe, Germany) 

 

Puromycin      SIGMA-Aldrich (Steinheim, Germany) 

 

Hygromycin      SIGMA-Aldrich (Steinheim, Germany) 
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Cell culture plates     TPP (Trasadingen, Switzerland) 

 

Cell culture flasks     TPP (Trasadingen, Switzerland) 

 

TE       Biochrom (Berlin, Germany) 

 

PBS  - Phosphate buffered saline (Biochrom, 

Berlin, Germany): 9.55 g 

- ad 1 liter with aqua bidest 

 

 

1.2 In Vitro and in Vivo Transfection Experiments 

 

HBS      - Hepes (Biomol, Hamburg, Germany): 2.38 g 

- ad 300 mL with aqua bidest 

- adjust with NaOH (VWR International, Darmstadt, 

Germany) on pH 7.1 

- NaCl  

(VWR International, Darmstadt, Germany): 4.383 g 

- check pH, ad 500 mL with aqua bidest 

 

HBG      - Hepes (Biomol, Hamburg, Germany): 2.38 g 

- ad 300 mL with aqua bidest 

- correct with NaOH (VWR International, Darmstadt, 

Germany) on pH 7.1 

- Glucose-monohydrate (Merck, Darmstadt, 

Germany):27.5 g 

- check pH, ad 500 mL with aqua bidest 

 

HBS      0,5 HBS/HBG: 1/1

 

D-luciferin sodium salt   Promega (Mannheim, Germany) 
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Luciferase cell culture lysis reagent Promega (Mannheim, Germany) 

 

Luciferase assay buffer  Promega (Mannheim, Germany) 

 

LAR      - 1 M Glycylglycin  

(Merck, Darmstadt, Germany): 2 mL 

- 100 mM MgCl  

(Carl Roth, Karlsruhe, Germany): 1 mL  

- 500 mM EDTA  

(SIGMA-Aldrich, Steinheim, Germany): 20 µL 

- DTT  

(SIGMA-Aldrich, Steinheim, Germany): 50.8 mg 

- ATP (Roche, Mannheim, Germany): 27.8 mg 

- Coenzym A  

(SIGMA-Aldrich, Steinheim, Germany): 0.5 mL 

- ad 100 mL with aqua bidest 

- adjust with NaOH (VWR International, Darmstadt, 

Germany) on pH 8 – 8.5 

 

Deferoxamine    SIGMA-Aldrich (Steinheim, Germany) 

 

Isoflurane ®     cp Pharma (Burgdorf, Germany) 

 

Bepanthene®    Roche (Grenzach-Whylen, Germany) 

 

Ketavet® 100 mg/mL   Pfizer, Pharmacia GmbH (Karlsruhe, Germany) 

 

Rompun® 2%    Bayer Vital GmbH (Leverkusen, Germany) 

 

Syringes     Heiland (Hamburg, Germany) 

 

Needles     Heiland (Hamburg, Germany) 

 

Isotonic sodiumchloride solution  Braun Melsungen AG (Melsungen, Germany)  
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1.2.1 Polymers 

Polymers were synthesized by Christina Troiber, Irene Martin and Dr. Naresh 

Badgujar. 

 

Polymer ID Topology Polymer Sequence 

229 i-shape  LinA2K-C-Stp-Stp-Stp-C 

386 three-arm  (C-Stp-Stp-Stp)2]K-Stp-Stp-Stp-C 

49 T-shape C-Stp-Stp-K(K-OleA2) Stp-Stp-C 

332 T-shape  Y3-Stp-Stp-K(K-OleA2) Stp-Stp-Y3 

454 T-shape  C-Y3-Stp-Stp-K(K-OleA2) Stp-Stp-Y3-C 
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1.2.2 siRNAs 

 

Axolabs (formerly Roche) Kulmbach: 

 

GFP-siRNA:  5'-AuAucAuGGccGAcAAGcAdTsdT-3' (sense) 

5'-UGCUUGUCGGCcAUGAuAUdTsdT-3' (antisense) 

(small letters: 2’methoxy-RNA; s: phosphorothioate) 

 

Control-siRNA: 5’-AuGuAuuGGccuGuAuuAGdTsdT-3’ (sense) 

5‘-CuAAuAcAGGCcAAuAcAUdTsdT-3‘(antisense) 

 

EG5-siRNA:   5’-ucGAGAAucuAAAcuAAcudTsdT-3’ (sense) 

5’-AGUuAGUUuAGAUUCUCGAdTsdT-3’ (antisense) 

 

Cy3-AHA1-siRNA:  (Cy3)-(NHC6)-5’-GGAuGAAGuGGAGAuuAGudTsdT-3’ (sense) 

5`-ACuAAUCUCcACUUcAUCCdTsdT-3’ (antisense) 

 

Dharmacon:   

 

Ran-siRNA:   5´-ACCCGCTCGTCTTCCATAC-3’ (sense)   

5´-ATAATGGCACACTGGGCTTG-3’ (antisense) 

 
 
 
HBG was used as buffer and solvent. 
 

 

1.2.3 Histopathology  

 

Tissue – Tek Cryomold  Sakura Finetek (Heppenheim, Germany) 

 

Tissue – Tek O.C.T. Compound  Sakura Finetek (Heppenheim, Germany)  

 

Tissue – Tek Mega-Casette  Sakura Finetek (Heppenheim, Germany) 
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Bovine Serum Albumin   Sigma Aldrich (Hamburg, Germany) 

 

Dako Pen     Dako (Glostrup, Denmark) 

 

Super Frost Plus slides   Menzel (Braunschweig, Germany) 

 

FluorSave™ Reagent   Merck (Darmstadt, Germany) 

 

VECTASHIELD® Mounting  Biozol (Eching, Germany) 

 

Texas Red Dextran 70 000 MW  Invitrogen (Karlsruhe, Germany) 

 

FITC Dextran 2 000 000 MW  Invitrogen (Karlsruhe, Germany) 

 

CD45 rat anti-mouse   BD Pharmingen (Heidelberg, Germany) 

 

Alexa 647 goat anti-rat   Invitrogen (Karlsruhe, Germany) 

 

Goat serum     Sigma Aldrich (Hamburg, Germany) 

 

TUNEL ApopTag® Fluorescein kit Qbiogene (Heidelberg, Germany) 

 

4',6-Diamidino-2-phenylindol (DAPI)

 

Hoechst 33342 dye  

 

 

1.2.4 Laboratory Animals 

 

 

A/JOlaHsd Harlan-Winkelmann (Borchen, Germany) 

NMRI-Foxn1nude (nu/nu) Janvier (Le Genest-St-Isle, France) 
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1.3 Instruments 

 

Luminometer Centro LB 960 Berchtold (Tuttlingen, Germany) 

 

Tecan SpectraFluor Plus   Tecan (Crailsheim, Germany) 

 

IVIS Lumina     Caliper Life Science (Rüsselsheim, Germany) 

 

B. Braun Aesculap cordless animal clipper Isis GT420 (Melsungen, Germany)

 

Caliper Digi-Met    Peisser (Gammertingen, Germany) 

 

PX2 Thermal Cycler   Thermo electron corporation (Karlsruhe, Germany) 

 

Light Cycler 480    Roche Diagnostics (Mannheim, Germany)  

 

Zeiss Axiovert 200 Fluorescence Microscope Carl Zeiss AG (Göttingen, Germany) 

 

Zeiss Laser Scanning Microscope LSM510 Meta Carl Zeiss AG (Göttingen, 

Germany) 

 

AxioCam     Carl Zeiss AG (Göttingen, Germany) 

 

Thermo Scientific Excelsior™ Tissue Processor Thermo Fisher Scientific  

                                                    (Massachusetts, USA) 

 

Fully Automated Rotary Microtome Leica RM2265 Leica Microsystems GmbH   

                                                    (Wetzlar, Germany)

 

Leica EG1150 Modular Tissue Embedding Center Leica Microsystems GmbH  

                                                    (Wetzlar, Germany)
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Research Cryostat Leica CM3050 S Leica Microsystems GmbH (Wetzlar, Germany)

 

Paraffin Tissue Floating Bath MEDAX GmbH & Co.KG (Neumünster, Germany) 

 

FastPrep®-24 Instrument   MP Biomedicals (Solon, USA) 

 

 

1.4 Software 

 

Graph Pad Prism 5 software  Graph Pad Software (San Diego, U.S.A.) 

 

Living Image 3.2    Caliper Life Science (Rüsselsheim, Germany) 

 

AxioVision LETM software   Carl Zeiss Microscopy GmbH (Jena, Germany)  

 

 

2 Methods 

 

2.1 Cell Culture 

 

2.1.1 Maintenance of Cultured Cells 

 

Mouse neuroblastoma Neuro2A cells (wildtype) and Neuro2A-eGFPLuc (stably 

transfected with the eGFPLuc gene), were grown in Dulbecco’s modified Eagle’s 

medium (DMEM). Medium was supplemented with 10% FCS, 4 mM stable glutamine, 

100 U/mL penicillin and 100 μg/mL streptomycin. All cultured cells were grown at 37 

°C in 5% CO2 humidified atmosphere. 

 

 

2.1.2. Luciferase Gene Silencing 

 

Gene silencing experiments were performed using 0.5 µg/well (unless otherwise 

mentioned) of Luc-siRNA for silencing of the eGFPLuc protein, or control-siRNA as 

control. siRNA delivery was performed in 96-well plates with 5 × 103 cells per well in 
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triplicates. Cells were seeded into wells 24 hours prior to transfection and then 

growth medium was replaced with 80 μL fresh medium containing 10% FCS. 

Transfection complexes for siRNA delivery (20 μL formed in HBG) were added to 

each well and incubated at 37 °C for 48 hours in 5% CO2 humidified atmosphere 

(unless otherwise mentioned). After transfection, cells were treated with 100 μL cell 

lysis reagent and luciferase activity in the cell lysate was measured from a 35 µl 

aliquot of the lysate using a luciferase assay kit and a plate reader luminometer. The 

relative light units (RLU) are presented as percentage of the luciferase gene 

expression obtained from with buffer treated control cells. 

 

 

2.2 Animal Experiments 

 

Animal experiments were performed according to the guideline of the German law of 

protection of animal life and were approved by the local animal experiments ethical 

committee. Mice were housed in individually vented cages (TECNIPLAST, 

Hohenpeißenberg) with up to 5 animals per cage under specific pathogen free 

conditions. Cages were equipped with wood shaving litter, a mouse house 

(TECNIPLAST, Hohenpeißenberg), a wooden rodent tunnel and cellulose bedding. 

Cages were changed once a week. Autoclaved water and standard breeding chow 

were provided ad libitum. A day and night cycle, 21 °C room temperature and 60% 

humidity were kept. Mice were allowed to adapt to the housing condition at least for 

one week before experiments started.  

 

 

2.2.1 Subcutaneous Tumor Models for Histological Analysis of Systemic siRNA 

Delivery 

 

For transfection studies female A/JOlaHsd mice, 6-8 week old mice were used. 

Neuro2A cells were grown in cell culture as described above, despite being kept in 

antibiotic free DMEM medium supplemented with 10% FCS for at least one week 

prior to injection. For harvesting, cells were detached using trypsin/EDTA. Trypsin 

was inactivated with medium and cells were centrifuged (1000 rpm; 5 min). The cell 

pellet was washed three times with PBS and diluted in ice cooled PBS at a 
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concentration of 106 cells per 100 µl. The injection site of the mice was clipped one 

day prior to tumor cell injection, using an Aesculap cordless animal clipper, a 1 ml 

syringe and a 25 gauge needle was used to inoculate subcutaneously 1 × 106 

Neuro2A cells in 150 μL of PBS into the left flank. After 10 days incubation 5 mice 

per group were injected intravenously via tail vein with conjugates containing 50 μg of 

siRNA (N/P 12) in 250 μL of HBG solution per 20 g of body weight. 

 

 

2.2.2 Fluorescence Microscopy of Cy3 Labeled siRNA Distribution in Vivo 

 

To detect siRNA distribution polyplexes containing Cy3 labeled siRNA were injected 

intravenously via tail vein. Mice were sacrificed 1 h after polyplex injection and 

organs (tumor, lung, liver, kidneys) were harvested. Organs were immobilized in 

TissueTek™ and immediately stored at -20° Celsius. 5 µm fine sections were cut 

using a cryotom. Slices were stained with Hoechst 33342 dye and results were 

documented using a Zeiss Axiovert 200 Fluorescence Microscope, a Zeiss Laser 

Scanning Microscope LSM510 and a MetaAxioCam. 

 

 

2.2.3 Fluorescence Microscopy of Aster Formation in Vivo 

 

24 h after EG5-siRNA containing polyplexes were injected intravenously via tail vein 

mice were sacrificed, tumors and organs (lung, liver, kidneys) were harvested. 

Organs were immobilized in TissueTek™ and immediately stored at -20° Celsius. 5 

µm fine sections were cut using a cryotom. Slices were fixed with paraformaldehyde 

(4%), stained with DAPI and results were documented using a Zeiss Axiovert 200 

Fluorescence Microscope, a Zeiss Laser Scanning Microscope LSM510 and a Meta 

Axio Cam.  
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2.2.4 TUNEL Stain and Fluorescence Microscopy of anti Ran Induced 

Apoptosis in Vivo 

 

24 h after Ran-siRNA containing polyplexes were injected intravenously via tail vein 

mice were sacrificed and tumors were harvested. For determination of apoptosis the 

ApopTag® Fluorescein kit from Qbiogene (Heidelberg, Germany) was used 

according to the manufacturers’ protocol. Briefly, organs were embedded in 

paraformaldehyde (4%), thereafter in paraffin and 5 µm fine sections were cut using 

a rotary microtome. Afterwards sections were deparaffinized and treated with 5 

mg/mL proteinase K for 15 min at room temperature and inactivated endogenous 

peroxidase with 3 % H2O2. Sections were then incubated with TdT enzyme and 

biotin-labeled and –unlabeled deoxynucleotides at room temperature for 30 min in 

the dark. Nuclei were counterstained with 4', 6-Diamidino-2-phenylindol (DAPI). 

Results were documented using a Zeiss Axiovert 200 Fluorescence Microscope, a 

Zeiss Laser Scanning Microscope LSM510 Meta and a Carl Zeiss AxioCam. 

 

 

2.2.5 Syngeneic Intrasplenic Tumor Model for Systemic siRNA Delivery 

 

36 A/JOlaHsd mice, 6-8 week old mice were used. 

A/JOlaHsd mice were clipped on the left lateral side of the abdomen behind the 

costal arch one day prior to tumor cell injection. Animals were anaesthetized by 

inhalation of isoflurane in oxygen (2.5% (v/v)) at a flow of 1 L/min and eye lube 

(Bepanthene® Augen- und Nasensalbe, Bayer, Leverkusen) was applied to prevent 

excessive eye drying. Rimadyl® (5 mg/kg) was injected subcutaneously prior to 

surgery. Mice were positioned on the right lateral side. The operating area was 

disinfected with ethanol 70% and Braunol® and thereafter the skin was carefully 

raised using a curved forceps and a vertical dermal incision of 5 mm caudal to the 

costal arche was set. The muscle-layer and the peritoneum were raised and another 

vertical incision was set to open the abdominal cavity. The lower part of the spleen 

was partially displaced out of the abdomen and 1 x 106 Neuro2A-eGFPLuc cells in 50 

µl PBS were slowly injected into the spleen, using a 1 ml syringe with a 27G needle. 

A cotton swab was gently pressed on the injection site to prevent cell reflux and 

bleeding and the spleen was placed back into the abdomen. The peritoneum, muscle 
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layer and skin were sutured using Monosyn® 5/0. Mice were separately housed in 

heated cages until they fully recovered from anesthesia. Up to three days after 

surgery mice received 5 mg/kg Rimadyl® every 24 hours. Bodyweight was also 

determined every day up to three days after surgery for monitoring the general 

condition. Body condition of the mice was scored every second day and mice were 

sacrificed at a score of five. 

 

 

 

Figure 6: Body condition scoring system. 

 

For bioluminescence imaging mice were anaesthetized by inhalation of isoflurane in 

oxygen (2.5% (v/v)) at a flow of 1 L/min. Bepanthene® eye lube was applied to 

prevent excessive eye drying. Thereafter 100 µL luciferin solution (c = 60 mg/mL) 

was injected intraperitoneally and allowed to distribute 15 minutes prior to 

bioluminescent measurement. Bioluminescent signal was measured every second 

day by a cooled-charge-coupled device (CCD) camera (Ivis 100, Caliper Life 

Sciences, Hopkinton, MA, USA) from day 4. Animals were separated into three 

groups (n = 6) and injected intravenously via tail vein with conjugates containing 50 

μg of EG5 siRNA, control-siRNA (N/P 16) in 250 μL of HBG solution per 20 g of body 

weight or 250 μL of HBG every second day. Results were analyzed using Living 

Image 3.0 software and statistical analysis was performed with Graph Pad Prism™ to 

compare siEG5, control-siRNA and HBG treated animals. 



II Materials and Methods  37 

 

Figure 7: Intrasplenic injection of A/JOlaHsd mouse with 1 x 10
6
 Neuro2A-eGFPLuc cells in 50 

µl PBS. 

 

 

2.2.6 Syngeneic Subcutaneous Tumor Model for Systemic and Intratumoral 

siRNA Delivery 

 

36 A/JOlaHsd mice, female, 6-8 weeks old were used.  

Neuro2A-eGFPLuc cells were grown in cell culture as described above, despite being 

diluted in 150 µl PBS. The injection site of the mice was clipped one day prior to 

tumor cell injection, using an Aesculap cordless animal clipper, a 1 ml syringe and a 

25G needle was used to inoculate subcutaneously 1 × 106 Neuro2A-eGFPLuc cells 

in 150 μL of PBS into the left flank. Bioluminescent imaging was performed as 

described above on day 3, 6, 9 and 12. Animals were separated into 6 groups (n = 3) 

on day 3. Three groups were injected intravenously via tail vein with conjugates 

containing 50 μg of EG5 siRNA, control-siRNA (N/P 12) in 250 μL of HBG solution 

per 20 g of body weight or 250 μL of HBG on day 3, 6, 9 and 12. The other three 

groups were injected intratumorally with conjugates containing 50 μg of EG5 siRNA, 
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control-siRNA (N/P 12) in 50 μL of HBG solution per 20 g of body weight or 50 μL of 

HBG on day 3, 6, 9 and 12. For the intratumoral injection, mice were anaesthetized 

by inhalation of isoflurane in oxygen (2.5% (v/v)) at a flow of 1 L/min in a humidified 

chamber and eye lube (Bepanthene® Augen- und Nasensalbe, Bayer, Leverkusen) 

was applied to prevent excessive eye drying. Thereafter, the skin of the left flank was 

gently lifted using a sterile curved forceps and treatment was applied with a 1 ml 

syringe and a 27G needle. Tumor size was measured by a digital caliper every 

second day and determined as a*(b2)/2 (a = length, b = width) until tumors reached a 

critical size. Afterwards size was determined every day. Mice were euthanized when 

first tumors reached a size of 1500 mm3 at day 14. Tumor weight was determined 

after tumors were explanted. 

Results were analyzed using Living Image 3.0 software and statistical analysis was 

performed with Graph Pad Prism™ to compare siEG5, control-siRNA and HBG 

treated animals as well as intravenous and intratumoral treatment. 

 

 

2.2.7 Detection of CD45 Positive Cells in Neuro2A Murine Neuroblastoma Cell 

Tumors by Immunohistochemical Staining 

 

To detect siRNA CD45 positive cells in Neuro2A tumors, they were explanted, 

immobilized in TissueTek™ and immediately stored at -20° Celsius. 5 µm fine 

sections were cut using a Leica cryotom. Tumor sections were marked with a CD45 

purified rat anti-mouse antibody and stained with a donkey anti-rat Alexa Flour 594 

antibody, nuclei were counterstained with DAPI. Results were documented using a 

Zeiss Axiovert 200 Fluorescence Microscope, a Zeiss Laser Scanning Microscope 

LSM510 Meta and a Carl Zeiss AxioCam.  

 

 

2.2.8 Subcutaneous Xenograft Tumor Model for Intratumoral siRNA Delivery 

 

21 NMRI-Foxn1nude mice, female, 6-8 weeks old were used.  

Neuro2A-eGFPLuc cells were grown in cell culture as described above, despite being 

diluted in 100 µl PBS. A 1 ml syringe and a 25G needle was used to inoculate 

subcutaneously 5 × 106 Neuro2A-eGFPLuc cells in 100 μL of PBS into the left flank. 
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Bioluminescent imaging was performed as described above on day 2, 4, 7, 9 and 11. 

Animals were separated into 7 groups (n = 3). Mice were injected intratumorally with 

conjugates containing 12,5 µg, 25 µg and 50 µg of EG5 siRNA or control-siRNA 

complexed with oligomer 49 (N/P 12) in 50 μL of HBG solution per 20 g of body 

weight or 50 μL of HBG on day 2, 4, 7, 9 and 11. Body weight was also determined 

on every treatment day for monitoring the general condition. Tumor size was 

measured by a caliper every second day and determined as a*(b2)/2 (a = length, b = 

width) until tumors reached a critical size. Afterwards, size was determined every 

day. Mice were sacrificed when first tumors of control groups reached a size of 1500 

mm3.  

Results were analyzed using Living Image 3.0 software and statistical analysis was 

performed with Graph Pad Prism™ to compare siEG5, control-siRNA and HBG 

treated animals. 

 

 

2.2.9 Subcutaneus Xenograft Tumor Model for Intratumoral siRNA Delivery to 

Compare anti EG5 siRNA and anti RAN siRNA 

 

40 NMRI-Foxn1nude mice, female, 6-8 weeks old were used.  

Neuro2A-eGFPLuc cells were grown in cell culture as described above, despite being 

diluted in 100 µl PBS. A 1 ml syringe and a 25 G needle were used to inoculate 

subcutaneously 5 × 106 Neuro2A-eGFPLuc cells in 100 μL of PBS into the left flank. 

Bioluminescent imaging was performed as described above on day 2, 4, 7, 9, 11 and 

14. Animals were separated into 4 groups (n = 10) on day 2 and mice were injected 

intratumorally with conjugates containing 50 µg of EG5 siRNA, Ran siRNA or control-

siRNA complexed with Oligomer 49 (N/P 12) in 50 μL of HBG solution per 20 g of 

body weight or 50 μL of HBG on day 2, 4, 7, 9, 11 and 14. Bodyweight was also 

determined on every treatment day for monitoring the general condition. Tumor size 

was measured by a caliper every second day and determined as a*(b2)/2 (a = length, 

b = width) until tumors reached a critical size. Afterwards size was determined every 

day. Mice were sacrificed when the first tumor reached a size of 1500 mm3.  

Results were analyzed using Living Image 3.0 software and statistical analysis was 

performed with Graph Pad Prism™ to compare siEG5, siRan, control-siRNA and 

HBG treated animals. 
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2.2.10 Subcutaneous Xenograft Tumor Model for Intratumoral siRNA Delivery 

to Compare Oligomer 49, 229 and 386 

 

30 NMRI-Foxn1nude mice, female, 6-8 weeks old were used.  

Neuro2A-eGFPLuc cells were grown in cell culture as described above, despite being 

diluted in 100 µl PBS. A 1 ml syringe and a 25G needle was used to inoculate 

subcutaneously 5 × 106 Neuro2A-eGFPLuc cells in 100 μL of PBS into the left flank. 

Bioluminescent imaging was performed as described above on day 2, 4, 8, 11 and 

15. Animals were separated into 6 groups (n = 5). Mice were injected intratumorally 

with conjugates containing 50 µg of Ran siRNA or control-siRNA complexed with 

oligomer 49, 229 and 386 (N/P 12) in 50 μL of HBG solution per 20 g of body weight 

on day 2, 4, 8, 11 and 15. Bodyweight was also determined on every treatment day 

for monitoring the general condition. Tumor size was measured by a caliper every 

second day and determined as a*(b2)/2 (a = length, b = width) until tumors reached a 

critical size. Afterwards, size was determined every day. Mice were sacrificed 24h 

after the last treatment.  

Results were analyzed using Living Image 3.0 software and statistical analysis was 

performed with Graph Pad Prism™ to compare siEG5, siRan, control-siRNA and 

HBG treated animals. 

 

 

2.2.11 Subcutaneous Xenograft Tumor Model for Intratumoral siRNA Delivery 

to Compare Oligomer 49, 386, 332 and 454 

 

34 NMRI-Foxn1nude mice, female, 6-8 weeks old were used.  

Neuro2A-eGFPLuc cells were grown in cell culture as described above and were 

diluted in 100 µl PBS. A 1 ml syringe and a 25G needle was used to inoculate 

subcutaneously 5 × 106 Neuro2A-eGFPLuc cells in 100 μL of PBS into the left flank. 

Bioluminescent imaging was performed as described above on day 2, 4, 8, 11, 14 

and 16. Animals were separated into 8 groups (n = 3-5). Mice were injected 

intratumorally with conjugates containing 50 µg of Ran siRNA or control-siRNA 

complexed with oligomer 49, 386, 332 and 454 (N/P 12) in 50 μL of HBG solution per 
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20 g of body weight on day 2, 4, 8, 11 and 15. Bodyweight was also determined on 

every treatment day for monitoring the general condition. Tumor size was measured 

by a caliper every second day and determined as a*(b2)/2 (a = length, b = width) until 

tumors reached a critical size. Afterwards size was determined every day. Mice were 

sacrificed when one tumor of a group reached a size of 1500 mm3.  

Results were analyzed using Living Image 3.0 software and statistical analysis was 

performed with Graph Pad Prism™ to compare siEG5, siRan, control-siRNA and 

HBG treated animals. 
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III Results 

 

 

1 Transfection Efficacy of Oligomers 49, 229, 386 and 278 

 

All synthesized oligomers were screened on the murine neuroblastoma cellline 

Neuro2A, stably transfected with the eGFPLuc reporter gene, for their gene silencing 

efficiency. In Figure 8, the efficiency of best performing oligomers of each topology 

classis is shown in Neuro2A-eGFPLuc murine neuroblastoma cells. 

Especially the T-shape 49, i-shape 229 and the three-armed 386 showed high 

transfection efficiency and were therefore chosen for further in vivo screening.  

All of them displayed good siRNA binding capacity, T-shape 49 and i-shape 229 

revealed pH-specific lytic potential and three-armed 386 high endosomal buffering 

capacity (data not shown). Unfortunately, the U-shape 278 showed severe toxicity in 

A/JOlaHsd mice when applied systemically. 
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Figure 8: Gene silencing ability of selected oligomers of the four major molecular shapes in 
Neuro2A-eGFPLuc murine neuroblastoma cells, stably transfected with the eGFPLuc fusion 
protein. Positive control: succinylated PEI (sPEI).Black: GFP-siRNA, white: control-siRNA. Oligomer 
sequences: 49 C-Stp-Stp-K(K-OleA2)Stp-Stp-C, 229 (LinA)2K-C-Stp-Stp-Stp-C, 386 (C-Stp-Stp-
Stp)2]K-Stp-Stp-Stp-C, 278 C-(LinA)2K]K-Stp-Stp-Stp-(LinA)2K]K-C. Data generated by Thomas 
Fröhlich, PhD thesis [LMU 2012]. 
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2 Utilization of Mouse Models for Effective siRNA Delivery 

 

 

2.1 Characterization of a Syngeneic Tumor Mouse Model for siRNA Delivery 

 

 

2.1.1 Histopathological Evaluation of Cy3 labeled siRNA and anti EG5 siRNA in 

Subcutaneous Neuro2A Murine Neuroblastoma Cells 

 

For the detection of successful siRNA delivery in vivo 1 x 106 Neuro2A cells were 

injected subcutaneously into the flank of A/JOlaHsd mice (n = 5). On day 10 after 

tumor cell implantation 50 µg of Cy3 fluorescently labeled siRNA was integrated into 

polyplexes with polymer 49, 229 (N/P 12) and injected intravenously into the tail vein 

of tumor bearing mice. One hour after administration mice were sacrificed and 

several organs as well as the tumor were harvested, immobilized in TissueTek™, 

immediately stored at -20° Celsius and 5 µm fine sections were cut using a cryotom. 

Cell nuclei were stained with Hoechst 33342 dye. The tissue images confirmed 

polymer 229, as well as polymer 49 are able to compact siRNA, protect it from 

degradation in the blood stream and deliver siRNA into murine tissue. The 

distribution of Cy3-siRNA in the kidney, lung, tumor, and liver is shown in Figure 9. 
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Figure 9: Representative tissue sections, illustrating siRNA distribution in vivo after systemic 

administration of polymer 49/Cy3-siRNA polyplexes (N/P 12; 50 µg siRNA per mouse) in tumor-

bearing mice (5 mice per group). Blue color: Hoechst 33342 stained cell nuclei. Red color: Cy3-

labeled siRNA. A) kidney, B) lung, C) tumor and D) liver. 
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Figure 10: Representative tissue sections, illustrating siRNA distribution in vivo after systemic 

administration of polymer 229 / Cy3-siRNA polyplexes (N/P 12; 50 µg siRNA per mouse) in 

tumor-bearing mice (5 mice per group). Blue color: Hoechst 33342 stained cell nuclei. Red color: 

Cy3-labeled siRNA. A) kidney, B) lung, C) tumor and D) liver. 

 

Polyplexes containing i-shape polymer 229 showed superior accumulation of Cy3-

siRNA in tumors (Figure 9, Figure 10) over polyplexes with the t-shape polymer 49. 

 

To confirm that the tested polymers also mediate endosomal escape and to show 

target mRNA knockdown in vivo, the same polymers were formulated with 

therapeutic EG5 siRNA and administered intravenously into subcutaneous tumor 

bearing mice. 24 hours after polyplex injection the tumors were harvested, 
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immobilized in TissueTek™, immediately stored at -20° Celsius and 5 µm fine 

sections were cut using a cryotom. Cell nuclei were stained with DAPI and sections 

were examined for aster formation (Figure 11). Both polymer 49 and 229 were able to 

effectively knock down EG5 mRNA in Neuro2A tumors, which resulted in cell cycle 

arrest and in consequence in the typical aster formation. EG5 is a validated cancer 

target with well-characterized mechanisms mainly active in rapidly dividing cells [21]. 

The detection of aster formation in tumor sections is much harder than in cell culture 

because of the heterogeneity of tumor sections. However aster formation is a positive 

readout system and control-siRNA treated cells did not show any aster formation. 

The small amount of cells showing mitotic figures are a proof for target mRNA 

knockdown in tumors. 

 

 

Figure 11: Representative images of in vivo aster formation in tumor sections of Neuro2A 

tumor-bearing A/JOlaHsd mice (5 mice per group), 24 hours after treatment with A) polymer 49 / 

EG5-siRNA polyplexes, B) polymer 229 / EG5-siRNA polyplexes (N/P 12; 50 µg siRNA per mouse), C) 

plain siRNA. Cell nuclei were stained with DAPI. 

 

 

2.1.2 Histopathological Evaluation anti Ran siRNA via TUNEL Stain in 

Subcutaneous Neuro2A Murine Neuroblastoma Cells 

 

For the detection of successful siRNA delivery the Ran protein was used as a second 

target. Hence 1 x 106 Neuro2A cells were injected subcutaneously into the flank of 

A/JOlaHsd mice (n = 3). On day 10 after tumor cell implantation 50 µg of Ran-siRNA 

or control-siRNA complexed with polymer 49 (N/P 12) were intratumorally injected. 

24 hours after administration mice were sacrificed and livers as well as the tumor 
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were harvested, embedded in paraformaldehyde (4%), thereafter in paraffin and 5 

µm fine sections were cut using a rotary microtome. Afterwards sections were 

TUNEL stained for apoptosis, cell nuclei were counterstained with DAPI. The tissue 

images confirmed again, that polymer 49 is able to compact siRNA, protect it from 

degradation and deliver siRNA into murine tumors resulting in apoptosis of tumor 

cells whereas liver tissue remained untreated (Figure 12). 

 

 

Figure 12:  Representative images of in vivo siRNA mediated apoptosis in tumor and liver 

sections of Neuro2A tumor-bearing A/JOlaHsd mice (3 mice per group), 24 hours after treatment 

with polymer 49 / Ran-siRNA polyplexes (N/P 12; 50 µg siRNA per mouse) and polymer 49 / control-

siRNA (N/P 12; 50 µg siRNA per mouse). Green color: TUNEL-positive fractions, cell nuclei were 

counterstained with DAPI. 
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2.1.3 Tumor Growth Inhibition of Intrasplenically Injected Neura2A-eGFPLuc 

Cells with anti EG5 siRNA 

 

Efficacy of polymer 49 was further determined in a treatment experiment with EG5 

siRNA. An intrasplenic injection of 1x106 Neuro2A-eGFPLuc cells was performed and 

mice were treated by repeated intravenous application of polyplexes containing 50 µg 

EG5 siRNA, control-siRNA and polymer 49 (N/P 16) in 250 µl of HBG or HBG only. 

Successful delivery of EG5 siRNA into tumor cells results in cell cycle arrest and 

apoptosis of cells and should therefore slow down primary tumor progression in the 

spleen and metastatic spread of tumor cells with the blood circulation. As the tumor 

cells stably express the luciferase protein and can therefore be visualized using a 

bioimager, a higher bioluminescent signal indicates a larger number of tumor cells 

and hence a higher tumor burden. The intrasplenic tumors were treated from day 4 

on after inoculation and the bioluminescent signal from the stably eGFPLuc gene 

expressing tumor cells was collected every second day until euthanasia. As it is not 

possible to measure the exact size of a non-subcutaneous tumor, a body condition 

scoring system was created to determine a human endpoint for the experiment. Body 

condition scores and body weight were determined every second day until mice 

reached a critical amount of scoring points, thereafter scores were determined every 

day and mice were sacrificed when they reached a total of 5 points. The average 

bioluminescent signal of each group was compared until the first mouse of the group 

had to be sacrificed and a slight positive effect of the polymer/siRNA formulation on 

tumor growth compared to the HBG group could be observed but was not significant 

on any time point (Figure 13). Likewise the bioluminescent signal of the EG5 siRNA 

treated group did not differ from the signal of the control-siRNA treated group (Figure 

13). 

Based on the body condition scoring system, a Kaplan-Meier survival analysis was 

performed. HBG treated mice lived significantly shorter than siRNA/polyplex treated 

animals but no significant prolonged survival could be detected within the 

siRNA/polyplex treated groups (Figure 14).  
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Figure 13: Tumor growth of intrasplenic Neuro2A-eGFPLuc tumors in A/JOlaHsd mice after 

repeated systemical treatment (6 mice per group) with polymer 49 and EG5 siRNA, control-

siRNA (N/P 16) polyplexes or HBG. Tumor size was determined by imaging the bioluminescent 

signal of the Neuro2A-eGFPLuc cells after peritoneal injection of luciferin. Significance of the results 

was evaluated by t-test. 
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Figure 14: A – D) Kaplan Maier survival analysis of intrasplenic Neuro2A-eGFPLuc tumors in 

A/JOlaHsd mice after repeated systemical treatment (5 mice per group) with polymer 49 and 

EG5 siRNA, control-siRNA (N/P 16) polyplexes and HBG. Animals were treated with A) 50 µg EG5 

or control-siRNA per mouse, B) 50 µg EG5-siRNA or 250 µl HBG per mouse or C) 50 µg control-

siRNA or HBG per mouse at every second day from day 4 on. Significance of the results was 

evaluated by t-test. 

A)

0 10 20 30
0

50

100

150
EG5-siRNA

control-siRNA

day

p
e
rc

e
n

t 
s
u

rv
iv

a
l

B)

0 10 20 30
0

50

100

150
EG5-siRNA

HBG

day

p
e
rc

e
n

t 
s
u

rv
iv

a
l

C)

0 5 10 15 20 25
0

50

100

150
control-siRNA

HBG

day

p
e
rc

e
n

t 
s
u

rv
iv

a
l



III Results  51 

 
 

 

Figure 15: Body Condition Scoring of A/JOlaHsd mice bearing subcutaneous Neuro2A-

eGFPLuc tumors in A/JOlaHsd mice after repeated systemical treatment (5 mice per group) 

with polymer 49 and EG5 siRNA, control-siRNA (N/P 16) polyplexes and HBG. Mice were 

euthanized when scored a five. Total scoring points per group. 

 

Figure 16: A) & B) Tissue weight of A/JOlaHsd mice inoculated with Neuro2A-eGFPLuc cells 

into the spleen and therefore metastases in the liver after repeated systemic treatment (5 mice 

per group) with polymer 49 and EG5 siRNA, control-siRNA (N/P 16) polyplexes or HBG. A) liver 

and B) spleen. Significance of the results was evaluated by t-test. 
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Figure 17: Body weight of A/JOlaHsd mice inoculated with subcutaneous Neuro2A-eGFPLuc 

tumors during repeated systemic treatment (5 mice per group) with polymer 49 and EG5 siRNA, 

control-siRNA (N/P 16) polyplexes or HBG. Black arrow: time point of intrasplenic tumor cell 

injection. 

 

2.1.4 Tumor Growth Inhibition of Subcutaneous Neura2A-eGFPLuc Tumors 

with anti EG5 siRNA/Polymer 49 Formulation 

 

In order to compare the intravenous to the intratumoral treatment with EG5 

siRNA/polymer 49 formulations, an experiment with syngeneic subcutaneous tumors 

was set up. 36 A/JOlaHsd mice were inoculated with 1x106 Neuro2A-eGFPLuc cells 

and divided into 6 groups on day three. The subcutaneous tumors were treated from 

day three on after inoculation either intravenously or intratumorally with polyplexes 

comprising 50 µg EG5 siRNA, control-siRNA and polymer 49 (N/P 12) in HBG or 

HBG two times a week. As explained in chapter 2.2.2 bioluminescent signal and 

digital caliper measurement was used to determine tumor burden and performed at 

indicated time points. Experiments were terminated when first tumors reached a size 

of 1500 mm3. After euthanasia tumors were explanted and weight was determined. In 

the intravenously treated groups no significant difference, neither with caliper 

measurement, nor with bioluminescent imaging was detectable (Figure 18). Tumor 

weight shows a similar result (Figure 19). Body weight and behavior of mice stayed 

relatively constant over time indicating no excessive systemic toxicity of polymer 49 

at an N/P ratio of 12 with 50 µg siRNA. Within the intratumoral experiment the siRNA 

formulations hampered tumor growth significantly compared to HBG treated animals 

that served as control, confirmed by statistical analysis of the results. Unfortunately, 
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no difference in tumor growth between control and EG5 siRNA treated groups could 

be observed (Figure 18, Figure 19). 
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Figure 18: A) & B) Tumor growth of subcutaneous Neuro2A-eGFPLuc tumors in A/JOlaHsd 

mice after repeated intratumoral or intravenous treatment (6 mice per group) with polymer 49 

and EG5 siRNA or control-siRNA (N/P 12) polyplexes. Animals were treated with A) 50 µg siRNA 

per mouse intravenously, B) 50 µg siRNA per mouse intratumorally at day 3, 6, 9 and 12 after 

inoculation of the tumor cells. Tumor size was determined by imaging the bioluminescent signal of the 

Neuro2A-eGFPLuc cells after peritoneal injection of luciferin. Significance of the results was evaluated 

by t-test. 

 

 

 

Figure 19: A) & B) Tumor weight of subcutaneous Neuro2A-eGFPLuc tumors in A/JOlaHsd 

mice after repeated intratumoral or intravenous treatment (6 mice per group) with polymer 49 

and EG5 siRNA or control-siRNA (N/P 12) polyplexes. Animals were treated with A) 50 µg siRNA 

per mouse intravenously, B) 50 µg siRNA per mouse intratumorally at day 3, 6, 9 and 12 after 

inoculation of the tumor cells. Tumor size was determined after explantation. Significance of the 

results was evaluated by t-test. 

A)

H
B
G

co
ntr

ol-s
iR

N
A

E
G
5-

si
R
N
A

0

500

1000

1500

tu
m

o
r 

w
e
ig

h
t 

in
 m

g

B)

H
B
G

co
ntr

ol-s
iR

N
A

E
G
5-

si
R
N
A

0

200

400

600

800

tu
m

o
r 

w
e
ig

h
t 

in
 m

g



III Results  54 

2.1.4.1 Induction of Immune Response in Syngeneic Tumor Bearing Mice 

 

As explained in chapter 2.2.3 in the intratumorally treated group a huge difference 

between  the HBG and the siRNA/polymer treated group occurred concerning 

bioluminescent imaging as well as tumor weight. At the same time mice showed 

typical signs of inflammation as calor, rubor, dolor and tumor. Therefore, the question 

came up whether an activation of the mice immune system could be involved. As the 

experiments were performed under sterile conditions, a sterile inflammation was 

presumably present as there are many ways of induction [158]. Possible causing 

agents could be bacterial DNA that is incorporated in the Neuro2A-eGFPLuc cells 

and in addition expressing firefly luciferase, a foreign protein in the 

immunocompetent organism of a A/JOlaHsd mouse [159]. Likewise, synthetic 

siRNAs can sequence-dependently stimulate the immune response [160]. After 

explantation tumors were stained for CD45 targeting monocytes, B & T lymphocytes, 

granulocytes and thrombocytes. siRNA/polymer treated groups showed higher 

accumulation of CD45 positive cells than HBG treated ones (Figure 20). 

 

 

 

 

Figure 20: A-C) Representative tumor sections of subcutaneous Neuro2A-eGFPLuc tumors in 

A/JOlaHsd mice after repeated intratumoral treatment (6 mice per group) with polymer 49 and 

EG5 siRNA, control-siRNA (N/P 12) polyplexes or HBG. Animals were treated intratumorally with A) 

50 µg EG5 siRNA formulated with polymer 49 per mouse, B) 50 µg control-siRNA formulated with 

polymer 49 per mouse at day 3, 6, 9 and 12 after inoculation of the tumor cells. Tumor sections were 

marked with a CD45 purified rat anti-mouse antibody and stained with a donkey anti-rat Alexa Flour 

594 antibody, nuclei were counterstained with DAPI.  
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2.2 Characterization of a Xenograft Tumor Mouse Model for siRNA Delivery 

 

 

2.2.1 Tumor  Growth Inhibition of Subcutaneous Neura2A-eGFPLuc Tumors 

with Various Concentrations of anti EG5 siRNA 

 

According to the findings that our treatment, in combination with luciferase 

expression of the Neuro2A cells, caused immune system activation in 

immunocompetent mice, a new mouse strain was chosen for the following 

experiments. The NMRI-Foxn1nude mouse strain has a thymic dysgenesis and is T-

cell deficient. Therefore no specific immune reaction is possible. A dose response 

experiment was performed by repeated intratumoral application of 12.5 µg, 25 µg or 

50 µg EG5 siRNA or control-siRNA containing polyplexes in subcutaneous Neuro2A-

eGFPLuc tumors. Successful delivery of EG5 siRNA results in cell cycle arrest and 

apoptosis of tumor cells and should therefore slow down tumor progression. The 

subcutaneous tumors were treated from day two on after inoculation and the 

bioluminescent signal from the stably eGFPLuc gene expressing tumor cells was 

collected at indicated time points (Figure 21). Experiments had to be terminated on 

day 14 and 11, respectively, because of excessive tumor growth in the control 

groups. With a concentration of 12.5 µg siRNA, no positive effect of the polymer/EG5 

siRNA formulation on tumor growth could be observed after eleven days, whereas at 

25 µg EG5 siRNA per treatment a slight regression of growth was detected over time, 

although with a relatively large variation within the treatment group. For 50 µg EG5 

siRNA a significant decrease was measurable compared to control-siRNA treated 

animals, confirmed by statistical analysis of the results. Body weight stayed constant 

over time indicating that polymer 49 is not a high burden for the mouse organism 

when applied locally in utilized concentrations (Figure 22). The experiment 

demonstrates the ability of this new class of polymers to deliver siRNA in vivo and 

enable the siRNA to unfold its therapeutic potential. 
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Figure 21: A – C) Tumor growth of subcutaneous Neuro2A-eGFPLuc tumors in mice after 

repeated intratumoral treatment (3 mice per group) with polymer 49 and EG5 siRNA or control-

siRNA (N/P 12) polyplexes. Animals were treated with A) 12,5 µg siRNA per mouse, B) 25 µg siRNA 

per mouse, C) 50 µg siRNA per mouse at day 2, 4, 7, 9 and 11 after inoculation of the tumor cells. 

Tumor size was determined by imaging the bioluminescent signal of the Neuro2A-eGFPLuc cells after 

peritoneal injection of luciferin. The treatment group with 12.5 µg siRNA was terminated on day 11 due 

to excessive tumor size. Significance of the results was evaluated by t-test. 
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Figure 22: Body weight of NMRI-Foxn1
nude

 mice inoculated with subcutaneous Neuro2A-

eGFPLuc tumors during repeated intratumoral treatment (3 mice per group) with polymer 49 

and EG5 siRNA, control-siRNA (N/P 12) polyplexes or HBG. 

 

 

 

 

 

 

Figure 23: Representative pictures as seen by the CCD camera on day 11 after tumor cell 

inoculation. 
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2.2.2 Comparison of Tumor Growth Inhibition Efficacy of anti EG5 siRNA and 

anti Ran siRNA 

 

Due to promising cell culture data (performed by Daniel Edinger; PhD Thesis LMU, in 

progress), Ran siRNA was chosen for an in vivo experiment to slow down tumor 

progression. As described above the Ran protein is a nuclear import protein and its 

downregulation leads to apoptotic cell death. Therefore we hypothesized Ran siRNA 

to be even more effective in hampering tumor growth than anti EG5, because no cell 

division is needed to kill cells. A survival experiment was performed by repeated 

intratumoral application of 50 µg EG5 siRNA, Ran siRNA or control-siRNA containing 

polyplexes formulated in HBG or only HBG in subcutaneous Neuro2A-eGFPLuc 

tumors. Animals were inoculated with 5x106 Neuro2A-eGFPLuc cells and divided into 

4 (n = 9) groups on day two. 

The subcutaneous tumors were treated intratumorally from day two on after 

inoculation, the bioluminescent signal from the stably eGFPLuc gene expressing 

tumor cells and tumor size were collected as described above at indicated time points 

(Figure). siRNA formulation and HBG were applied 6 times. Mice were sacrificed 

when tumors reached a size of 1500 mm3 and bioluminescent signal was compared 

until the first mouse of a group had to be euthanized. After euthanasia tumors were 

explanted, and weight was determined to prove that mice were sacrificed at equal 

time points. With a concentration of 50 µg siRNA, both in the siEG5 and in the siRan 

treated group a significant regression of tumor growth was detectable from day 9 on. 

siRan did not lead to a significant, but clearly visible tumor growth reduction 

compared to siEG5, therefore siRan was chosen for further in vivo experiments. 

Unfortunately control-siRNA treatment led to smaller tumors than HBG treatment, 

revealing a slight local unspecific toxicity of polymer 49. The Kaplan Maier analysis, 

confirming the result of the bioluminescence imaging, showed that again, both siEG5 

(median survival = 25d) and siRan (median survival = 28d) treated mice, lived 

significantly longer than control-siRNA treated ones (median survival = 20,5d). 

Control-siRNA treated animals did not survive significantly longer than HBG treated 

ones (median survival = 18d) (Figure). 
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Figure 24: A – D) Tumor growth of subcutaneous Neuro2A-eGFPLuc tumors inNMRI-Foxn1nu 

mice after repeated intratumoral treatment (9 mice per group) with polymer 49 and EG5 siRNA, 

Ran siRNA, control-siRNA (N/P 12) polyplexes and HBG. Animals were treated with A) 50 µg EG5 

or control-siRNA per mouse, B) 50 µg Ran or control-siRNA per mouse, C) 50 µg control-siRNA or 

50µl HBG per mouse or D) 50 µg EG5 or Ran siRNA per mouse at day 2, 4, 7, 9, 11 and 14 after 

inoculation of the tumor cells. Tumor size was determined by imaging the bioluminescent signal of the 

Neuro2A-eGFPLuc cells after peritoneal injection of luciferin. Significance of the results was evaluated 

by t-test. 

  



III Results  60 

 

 

 

 

 

 

A)

0 10 20 30 40
0

50

100

150
control-siRNA

EG5-siRNA **

day

p
e
rc

e
n
t 

s
u
rv

iv
a
l

C)

0 10 20 30 40
0

50

100

150
control-siRNA

RAN-siRNA ***

day
p
e
rc

e
n
t 

su
rv

iv
a
l

B)

0 10 20 30
0

50

100

150
control-siRNA

HBG

day

p
e
rc

e
n
t 

su
rv

iv
a
l

D)

0 10 20 30 40
0

50

100

150
EG5-siRNA

RAN-siRNA

day

p
e
rc

e
n
t 

su
rv

iv
a
l

 

Figure 25: A – D) Kaplan Maier survival analysis of subcutaneous Neuro2A-eGFPLuc tumors 

inNMRI-Foxn1nu mice after repeated intratumoral treatment (9 mice per group) with polymer 49 

and EG5 siRNA, Ran siRNA, control-siRNA (N/P 12) polyplexes and HBG. Animals were treated 

with A) 50 µg EG5 or control-siRNA per mouse, B) 50 µg Ran or control-siRNA per mouse, C) 50 µg 

control-siRNA or 50µl HBG per mouse or D) 50 µg EG5 or Ran siRNA per mouse at day 2, 4, 7, 9, 11 

and 14 after inoculation of the tumor cells. Tumor size was determined by caliper measurement. 

Significance of the results was evaluated by t-test. 
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2.2.3 Comparison of Tumor Growth Inhibition Efficacy of anti Ran siRNA with 

Oligomer 49, Oligomer 229 and Oligomer 386 

 

In the last experiment siRan was shown to be more effective in hampering tumor 

growth. As the aim of this thesis was to compare the in vivo transfection efficacy of 

polymers, the first in vivo comparison experiment was set up. Animals were 

subcutaneously inoculated with 5x106 Neuro2A-eGFPLuc cells as described above 

and divided into 6 (n = 5) groups on day two. 

The subcutaneous tumors were treated intratumorally from day two on after 

inoculation with 50 µg siRan or control-siRNA, respectively, formulated with oligomer 

49, that had been used in the prior experiments, oligomer 229, that had been used in 

the siGlo trial, and oligomer 386 which had shown excellent in vitro knockdown 

efficacy. The bioluminescent signal from the stably eGFPLuc gene expressing tumor 

cells and tumor sizes were collected as described above at indicated time points 

(Figure). siRNA formulations were applied twice a week and 5 times in total. Mice 

were sacrificed on day 17, two days after the last treatment and bioluminescent 

signal was compared till day 15. After euthanasia tumors were explanted to compare 

their weight (Figure). With a concentration of 50 µg siRNA both, treatment twice a 

week and 5 applications in total no significant regression of tumor growth could be 

detected within a timeframe of 15 days neither in the bioluminescence imaging nor in 

tumor weight. Within the oligomer 49 and 386 treated groups a clearly visible tumor 

growth reduction could be detected, regarding siRan treated animals in contrast to 

control-siRNA treated ones. But in both cases a relatively high variation within the 

treatment group hindered a significant difference.  
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Figure 26: A – C) Tumor growth of subcutaneous Neuro2A-eGFPLuc tumors in NMRI-Foxn1nu 

mice after repeated intratumoral treatment (5 mice per group) with polymer 49, 229, 386 and 

EG5 siRNA, Ran siRNA, control-siRNA (N/P 12) polyplexes and HBG. Animals were treated with 

A) 50 µg Ran or control-siRNA complexed with polymer 49 per mouse, B) 50 µg Ran or control-siRNA 

complexed with polymer 229 per mouse, C) 50 µg Ran or control-siRNA complexed with polymer 386 

per mouse at day 2, 4, 8, 11 and 15 after inoculation of the tumor cells. Tumor size was determined by 

imaging the bioluminescent signal of the Neuro2A-eGFPLuc cells after peritoneal injection of luciferin. 

Significance of the results was evaluated by t-test. 
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Figure 27: A – C) Tumor weight of subcutaneous Neuro2A-eGFPLuc tumors inNMRI-Foxn1nu 

mice after repeated intratumoral treatment (5 mice per group) with polymer 49, 229, 386 and 

EG5 siRNA, Ran siRNA, control-siRNA (N/P 12) polyplexes and HBG. Animals were treated with 

A) 50 µg Ran or control-siRNA complexed with polymer 49 per mouse, B) 50 µg Ran or control-siRNA 

complexed with polymer 229 per mouse, C) 50 µg Ran or control-siRNA complexed with polymer 386 

per mouse at day 2, 4, 8, 11 and 15 after inoculation of the tumor cells. Tumor size was determined 

after explantation. Significance of the results was evaluated by t-test. 
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2.2.3 Comparison of Tumor Growth Inhibition Efficacy of anti Ran siRNA with 

Oligomer 49, 386, 332 and 454 

 

In the following experiment polymer 49 to 386, 332 and 454 were compared. 

Especially the last two structures showed excellent transfection efficacy and in 

addition prolonged serum stability. Therefore, animals were subcutaneously 

inoculated with 5x106 Neuro2A-eGFPLuc cells as described above and divided into 8 

(n = 3-5) groups on day two. 

The subcutaneous tumors were treated intratumorally from day two on after 

inoculation with 50 µg siRan or control-siRNA, respectively, formulated with oligomer 

49, oligomer 332, oligomer 454 and oligomer 386 which showed its therapeutic 

potential in the last in vivo experiment. Oligomer 332 and oligomer 454 had shown 

excellent in vitro knockdown efficacy as well as prolonged serum stability. The 

bioluminescent signal from the stably eGFPLuc gene expressing tumor cells and 

tumor sizes were collected as described above at indicated time points (Figure). 

siRNA formulations were applied twice a week and 5 times in total. Mice were 

sacrificed on day 16 and 18, respectively and bioluminescent signal was compared 

till euthanasia day. After euthanasia tumors were explanted to compare their weight 

(Figure). With a concentration of 50 µg siRNA both, treatment twice a week and 5 

applications in total a significant regression of tumor growth could be detected in the 

polymer 386/Ran siRNA treated group. The bioluminescence signal in this group was 

significantly lower than the control-siRNA treated groups from day 14. No significant 

difference was measurable within the other groups. Nevertheless, distinct but not 

significant hampering of tumor progression was visible in the polymer 49 and 332 

treatment groups. 

But in both cases a relatively high variation within the treatment group hindered a 

significant difference. No local or systemic toxicity was observed.  
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Figure 28: A – D) Tumor growth of subcutaneous Neuro2A-eGFPLuc tumors in NMRI-Foxn1
nude

 

mice after repeated intratumoral treatment (3-5mice per group) with polymer 49, 332, 454, 386 

and Ran siRNA, control-siRNA (N/P 12) polyplexes or HBG. Animals were treated with A) 50 µg 

Ran or control-siRNA complexed with polymer 49 per mouse, B) 50 µg Ran or control-siRNA 

complexed with polymer 332 per mouse, C) 50 µg Ran or control-siRNA complexed with polymer 454 

per mouse D) 50 µg Ran or control-siRNA complexed with polymer 386 per mouse at day 2, 4, 8, 11 

and 14 after inoculation of the tumor cells. Tumor size was determined by imaging the bioluminescent 

signal of the Neuro2A-eGFPLuc cells after peritoneal injection of luciferin. Significance of the results 

was evaluated by t-test. 
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Figure 29: A – D) Tumor weight of subcutaneous Neuro2A-eGFPLuc tumors in NMRI-Foxn1
nude

 

mice after repeated intratumoral treatment (3-5mice per group) with polymer 49, 332, 454, 386 

and Ran siRNA, control-siRNA (N/P 12) polyplexes or HBG. Animals were treated with A) 50 µg  

Ran or control-siRNA complexed with polymer 49 per mouse, B) 50 µg Ran or control-siRNA 

complexed with polymer 332 per mouse,C) 50 µg Ran or control-siRNA complexed with polymer 454 

per mouse D) 50 µg Ran or control-siRNA complexed with polymer 386 per mouse at day 2, 4, 8, 11 

and 14 after inoculation of the tumor cells. Tumor size was determined after explantation. Significance 

of the results was evaluated by t-test. 

 

 

 

 

A)

si
R
A
N

co
ntr

ol-s
iR

N
A

0

200

400

600

800

B)

si
R
A
N

co
ntr

ol-s
iR

N
A

0

500

1000

1500

C)

si
R
A
N

co
ntr

ol-s
iR

N
A

0

200

400

600

800

1000

D)

si
R
A
N

co
ntr

ol-s
iR

N
A

0

500

1000

1500

*



IV Discussion  67 
 

VI Discussion 

 

 

1. Choice of Mouse Strains 

 

The most prominent advantage of using mice in the field of research is the simple 

and relatively cost-effectively animal husbandry, even in greater quantities and the 

short reproduction time. With regard to bioluminescence imaging another advantage 

is the relatively small body size. Moreover were Neuro2A wild type are used in our 

laboratory for transfection experiments and a subcutaneous tumor model in 

A/JOlaHsd mice had already been established as well as in vivo bioluminescence 

imaging of various cell types.   

 

 

1.1 A/JOlaHsd 

 

The A/OlaHsd mouse strain is an albino inbred strain that was generated by Dr. LC 

Strong in 1921, by crossing the Cold Spring Harbor and Bagg albino random bred 

[161]. They are therefore related to Balb/C mice. Strain A was the third most widely 

used strain in cancer and immunology research [162]. Their breeding performance is 

intermediate, whereas the litter size is about 4.9, the sterility rate around 11.5%. 

A/JOlaHsd mice have a low intra-strain aggression and which is beneficial when 

housing them in groups and later on mixing the groups because of division into 

treatment and control groups [161]. Iwakawa et al generated already in 1994 a 

reproducible tumor model by injection of murine neuroblastoma cells. Animals were 

used in treatment groups as well as in control groups. 

 

 

1.2 NMRI-Foxn1nude 

 

Flanagan described in 1966 a spontaneous mutation resulting in nude mice which 

was found in the animal colony of the Virus Laboratory in the Ruchill Hospital, UK 

[161]. Pantelouris observed in 1968 that these mice lacked a thymus. In 1972 the 

institute of Animal Genetics (now Harlan Laboratories) crossed the nude gene into  
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the Swiss mouse NMRI, resulting in an outbred NMRI-nude stock [161]. NMRI-

Foxn1nude suffer, as described above, from a Foxn1 gene mutation leading to a 

thymic dysgenesis and a T-cell deficiency [163], this is especially advantageous for 

the Neuro2A-eGFPLuc cell model that stably expresses luciferase that is measured 

in this work because no severe interaction with the immune system was expected. 

Animals were used in treatment groups as well as in control groups. 

 

 

2 Utilization of Mouse Models for Detection of Effective siRNA Delivery 

 

As in our lab a new library of biodegradable polymers for siRNA delivery was 

synthesized, a screening system for in vivo efficacy had to be developed. For this 

intend fluorescence labeled siRNA and bioluminescent imaging of firefly luciferase 

expressing tumor cells appeared to be most advantageous [128, 157, 164, 165].   

In addition to the traditional negative readout system of bioluminescent imaging, a 

positive readout system with Cy3 labeled siRNA was evaluated. Neuro2A-eGFPLuc 

cells were chosen for in vivo studies because polymers used in this work had 

successfully proven their transfection capacity in vitro in this particular cell line [104]. 

Polymers were first screened for their systemic delivery efficacy via Cy3 labeled 

siRNA and analyzed histopathologically. Thereafter, therapeutic siRNA was 

introduced in systemic as well as local applications of polyplexes in various tumor 

and mouse models.  

 

 

2.1 Utilization of Cy3 Labeled siRNA for Detection of Effective siRNA Delivery 

 

The selected Neuro2A-eGFPLuc murine neuroblastoma tumor mouse model had to 

be specifically adapted according to the demands of siRNA delivery studies. Hence 

it’s a positive readout system, fluorescence labeled siRNA is especially beneficial for 

efficacy testing. Immunocompetent AJ mice were used for all histopathologic 

evaluation because the siRNA/polymer formulation was only injected once and 

experiments were terminated 1 hour after application and therefore an activation of 

the immune system should not interfere with the experiment. Tissue sections 

revealed that both, polymer 49 and 229 accumulate, as expected due to  
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their fatty acids, in liver and also kidneys where they are cleared. They 

serendipitously accumulate just marginally in the lung, regarding side effects such as 

lung embolism. Polymer 229 showed a higher accumulation of Cy3-labeled siRNA in 

the tumor, indicating a good Neuro2A-eGFPLuc transfection capacity. 

 

 

2.2 Utilization of Functional siRNA for Detection of Effective siRNA Delivery 

 

 

2.2.1 Utilization of anti EG5 siRNA for Detection of Effective siRNA Delivery 

 

In one part of the thesis the potential therapeutic effect of anti-EG5 siRNA in 

Neuro2A-eGFPLuc cells was studied. EG5 is a member of the Bim-C class of kinesin 

related proteins and influences the assembly and organization of the mitotic spindle 

that orchestrates chromosome segregation in dividing cells [148]. The EG5 protein 

plays a pivotal role in cell division. If there is no EG5 in the cytoplasm, abnormal 

monopolar spindles occur, hampering successful cell division [149]. 

We utilized a siRNA directed against the EG5 mRNA to silence protein translation. 

Because of its pivotal role in cell division, our hypothesis was that downregulation of 

the EG5 protein results in apoptosis of our targeted cells. 

 

 

2.2.1.1 Histological Evaluation of Effective anti EG5 siRNA Delivery 

 

As the previous experiment with fluorescently labeled siRNA revealed a good 

accumulation of siRNA in the tumor, the next step was to incorporate functional 

siRNA into the polyplexes. The two lead candidates of the library were formulated 

with therapeutic anti-EG5 siRNA, which lead to cell cycle arrest in neuroblastoma 

cells in vitro. The aim was to determine if the polymers are not only capable to 

transfer siRNA into target cells in vivo but also mediate endosomal escape and 

thereafter allow the siRNA to be functional inside the cells. The experimental design 

was similar to the previous one, polyplexes were applied systemically and mice were 

sacrificed 24 hours after treatment. Functional EG5 siRNA leads to mitotic figures 

that can be visualized by DNA staining. In this case DAPI was the stain of choice.  
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Luckily mitotic figures could only be detected in tumor sections of mice treated with 

polymer 49 and 229 and neither in control-siRNA treated tumors nor in other tissues 

such as liver, kidney, lung or muscle. But mitotic figures in general are far less 

frequently found in tumor tissue than in similarly treated cells in vitro. All in all 

histological evaluation of siRNA transfection in vivo is a good method to prove 

qualitative delivery capacity of polymers but a meaningful quantitative statement still 

remains difficult. 

 

 

2.2.1.2 Hampering of Tumor Growth with Therapeutical anti EG5 siRNA 

 

As systemic delivery of polyplexes with EG5 siRNA could be proven in tumor 

sections, the therapeutic scale was investigated in various tumor models and 

application methods.  

First, an intrasplenic injection of 1x106 Neuro2A-eGFPLuc cells was performed 

resulting in a solid tumor in the spleen and metastases in the liver. Tumor size was 

determined by bioluminescent imaging. A critical point in bioluminescent imaging is 

the application method of the luciferin substrate, including time point, amount and 

application site [166]. In the past 150 mg/kg body weight luciferin was injected, but it 

was also demonstrated that with this concentration it was not possible to evoke 

maximized bioluminescent signals [143]. Therefore 300 mg/kg body weight luciferin 

was used in the present studies as reported by Hildebrandt et al. [167].  

According to the findings of Dr. Gelja Maiwald (vet MD thesis [LMU 2010]), luciferin 

was injected intraperitoneally and bioluminescence imaging was performed 15 

minutes after application of the luciferin substrate. A further parameter that has an 

impact on the outcome of bioluminescent measurements is the position of the tissue 

to be evaluated and CCD camera to each other. Dr. Gelja Maiwald demonstrated in 

her work [LMU 2010] that slight changes in the position can alter the outcome of the 

measurement. Therefore tumor tissue was directly placed under the CCD-camera. A 

pivotal role in evaluation of tumor size by bioluminescent imaging of plays the fact 

that tumor progression develops differently in each individual, which over time 

causes increasing interindividual variances in treatment groups. Consequently, it is 

generally recommended to start tumor treatment as soon as possible. On the other 

hand successful systemic siRNA/polymer treatment relies on accessibility of tumors  
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via the tumor vascularization, depending on the tumor size. This hurdle is overcome 

by some working groups via utilization of a correction factor [168] or more simply by 

intratumoral injections. Another strategy of liver metastases that should be well 

supplied by the liver vascularization and therefore be accessible to systemic 

treatment, was investigated. A further point that has to be taken into account is 

anesthesia depth while bioluminescent measurement. During isoflurane inhalation, 

which is the method of choice when performing bioluminescence imaging, oxygen 

level in the mouse body decreases as well as the body temperature. These factors 

can have an influence on the distribution of reporter molecules [169]. Hence a 

standardized way of animal preparation and bioluminescence imaging was utilized to 

limit the effects from these factors. As described above mice were anaesthetized by 

inhalation of isoflurane in oxygen (2.5% (v/v)) at a flow of 1 L/min, thenceforth 100 µL 

luciferin solution (c = 60 mg/mL PBS ≙ 300 mg/kg body weight luciferin) were 

injected intraperitoneally and allowed to distribute for 15 minutes prior to 

bioluminescence measurement. In the beginning of this thesis the in vivo efficacy of 

polymer 49/EG5 siRNA (50 µg siRNA; N/P 16) complexes were evaluated in contrast 

to polymer 49/control-siRNA polyplexes and HBG treated animals. Therefore, 1x106 

Neuro2A-eGFPLuc cells were injected into the spleen of immunocompetent 

A/JOlaHsd mice, resulting in a solid spleen tumor with metastases in the liver. 

Animals were treated every second day from day 4 on. Polyplex treated animals lived 

longer than HBG treated ones indicating an unspecific local toxic effect and also 

tumor and liver blood vessels might have been blocked leading to a depletion of 

blood supply and hence resulting in tissue necrosis. In the following experiment 

1x106 Neuro2A-eGFPLuc cells were injected subcutaneously into immunocompetent 

A/JOlaHsd mice. The subcutaneous tumors were treated from day three on after 

inoculation whether intravenously or intratumorally with polyplexes comprising 50 µg 

EG5 siRNA, control-siRNA and polymer 49 (N/P 12) in HBG or HBG two times a 

week. In the intravenously treated groups no significant difference, neither with 

caliper measurement nor with bioluminescent imaging was detectable. This could 

have been caused by the lower N/P ratio (N/P 12 instead of N/P 16) or by 

interactions of the positively charged polyplexes with blood compounds and rapid 

clearance from the blood system. Body weight and behavior of mice stayed relatively 

constant over time indicating no excessive systemic toxicity of polymer 49 at an N/P 

ratio of 12 with 50 µg siRNA. 
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Within the intratumoral experiment the siRNA formulations hampered tumor growth 

significantly compared to HBG treated animals that served as control, confirmed by 

statistical analysis of the results. Unfortunately, no difference in tumor growth 

between control and EG5 siRNA treated groups could be observed, this might be 

evoked by activation of the immune system confirmed by histopathological results. 

Consequently in the next study NMRI-Foxn1nude mice with a thymic dysgenesis and 

are T-cell deficiency were used. A dose response experiment was performed by 

repeated therapeutic intratumoral application of 12.5 µg, 25 µg or 50 µg EG5 siRNA 

or control-siRNA containing polyplexes in subcutaneous Neuro2A-eGFPLuc tumors. 

Successful delivery of EG5 siRNA results in cell cycle arrest and apoptosis of tumor 

cells and should therefore slow down tumor progression. The subcutaneous tumors 

were treated from day two on after inoculation 3 times a week, five times in total. 

Experiments had to be terminated on day 11 and 14, respectively, because of 

excessive tumor growth in the control groups. With a concentration of 12.5 µg siRNA, 

no positive effect of the polymer/EG5 siRNA formulation on tumor growth could be 

observed after eleven days, whereas at 25 µg EG5 siRNA per treatment a slight 

regression of growth was detected over time, although with a relatively large variation 

within the treatment group. For 50 µg EG5 siRNA a significant decrease was 

measurable compared to control-siRNA treated animals, confirmed by statistical 

analysis of the results. Body weight stayed constant over time indicating that polymer 

49 is not a high burden for the mouse organism when applied locally in utilized 

concentrations. The experiment demonstrates that 50 µg siEG5 complexed with 

polymer 49 (N/P 12) is necessary for significant gene silencing in vivo when applied 3 

times a week.  

In the following experiment the therapeutic effect of anti EG5 siRNA and anti Ran 

siRNA was compared. As described above, the Ran protein is a nuclear import 

protein and its downregulation leads to apoptotic cell death. Therefore we 

hypothesized Ran siRNA to be even more effective in hampering tumor growth than 

anti EG5 because no cell division is needed to kill cells. A survival experiment was 

performed by repeated intratumoral application of 50 µg EG5 siRNA, Ran siRNA or 

control-siRNA containing polyplexes formulated with polymer 49 in HBG or only HBG 

in subcutaneous Neuro2A-eGFPLuc tumors. The subcutaneous tumors were treated 
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intratumorally three times a week from day two on after inoculation, 6 times in total. 

After euthanasia tumors were explanted and weight was determined to prove that 

mice were sacrificed at equal time points. With a concentration of 50 µg siRNA both, 

in the siEG5 treated group a significant regression of tumor growth was detectable 

from day 11 on whereas in the siRan treated group, a significant regression was 

detectable from day 9 on, indicating a higher efficacy in killing target cells. The 

difference was not clearly significant, but obviously visible. Therefore siRan was 

chosen for further in vivo experiments. Unfortunately control-siRNA treatment led to 

smaller tumors than HBG treatment revealing a slight local toxicity of polymer 49 

which was also partly visible at the injection sites. The Kaplan Maier analysis, 

confirming the result of the bioluminescence imaging, showed again that both siEG5 

(median survival = 25d) and siRan (median survival = 28d) treated mice, lived 

significantly longer than control-siRNA treated ones (median survival = 20,5d). 

Control-siRNA treated animals did not survive significantly longer than HBG treated 

ones (median survival = 18d). 

 

 

 

2.2.2 Utilization of Ran siRNA for Detection of Effective siRNA Delivery 

 

 

2.2.2.1 Histological Evaluation of Effective anti Ran siRNA Delivery 

 

As another therapeutic siRNA should be screened as tool for tumor therapy with the 

newly synthesized oligomers, histopathological evaluation was the first step. Tietze et 

al. had already shown that apoptosis can be achieved by a downregulation of Ran 

[88]. In our case polymer 49 of the library was formulated with therapeutic anti Ran 

siRNA, which lead to apoptosis in neuroblastoma cells in vitro (performed by Daniel 

Edinger; PhD Thesis, LMU, in progress). The aim was to determine if the new 

polymer 49 was capable to transfer anti Ran siRNA into target cells in vivo and allow 

the siRNA to be functional inside the cells. The experimental design was similar to 

the anti EG5 siRNA one but polyplexes were applied intratumorally and A/JOlaHsd 

mice were sacrificed 48 hours after treatment. Functional Ran siRNA causes cell  
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apoptosis that can be visualized by TUNEL staining. In this case cell nuclei were 

counterstained with DAPI. Fortunately, apoptotic cell were only visible in tumor 

sections of mice treated with polymer 49/siRNA and neither in control-siRNA treated 

tumors nor in liver tissue. All in all histological evaluation of anti Ran siRNA 

transfection in vivo is a beneficial qualitative method to prove delivery capacity of 

polymers but as the aim of the thesis was to create a method to compare polymer 

transfection efficacy in vivo a quantitative method is obligatory. 

 

 

2.2.2.2 Hampering of Tumor Growth with Therapeutical anti Ran siRNA 

 

In the last treatment experiment siRan was shown to be more effective in hampering 

tumor growth than siEG5 and as the aim of this thesis was to compare the in vivo 

transfection efficacy of polymers the best performing siRNA is needed to evaluate the 

transfection efficacy of diverse polymers of the library. Therefore, the first in vivo 

comparison experiment was set up. Animals were subcutaneously inoculated again 

with 5x106 Neuro2A-eGFPLuc cells as described above and divided into 6 groups on 

day two. The subcutaneous tumors were treated intratumorally from day two on after 

inoculation with 50 µg siRan or control-siRNA, respectively, formulated with oligomer 

49, that had been used in the prior experiments, oligomer 229, that had been used in 

the siGlo trial, and oligomer 386 which had shown excellent in vitro knockdown 

efficacy. siRNA formulations were applied twice a week and five times in total. Mice 

were sacrificed on day 17, two days after the last treatment. After euthanasia tumors 

were explanted to compare their weight. With a concentration of 50 µg siRNA both, 

treatment twice a week and 5 applications in total no significant regression of tumor 

growth could be detected within a timeframe of 15 days neither in the 

bioluminescence imaging nor in tumor weight. Within the oligomer 49 treated groups 

a clearly visible tumor growth reduction could be detected, regarding siRan treated 

animals in contrast to control-siRNA treated ones. But a relatively high variation 

within the treatment group hindered a significant difference. A significant difference 

could only be detected within tumor weight. Oligomer 386 seemed to show the most 

prominent tumor reduction in both groups, most likely because of incorporation of 

TFA salt. Nevertheless a distinct difference between the control-siRNA and the 

siRAN treated group could be observed, demanding a repetition of the experiment. 
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Consequently, the experiment was repeated to explore whether oligomer 49 is 

capable to hinder tumor growth with two applications a week and whether oligomer 

386 can also prevent tumor growth progression without TFA salt. In the meantime 

new polymers were synthesized and showed, apart from excellent in vitro knockdown  

efficacy, prolonged serum stability which is beneficial for an enlarged application 

interval. This time, oligomer 49, 386, 332 and 454 were investigated. Therefore 

animals were subcutaneously inoculated with 5x106 Neuro2A-eGFPLuc cells as 

described above and divided into 8 groups on day two. Animals were treated 

intratumorally from day two on after inoculation with 50 µg siRan or control-siRNA, 

respectively, formulated with oligomer 49, oligomer 332, oligomer 454 and oligomer 

386. Ran-siRNA formulations were applied twice a week and 5 times in total. Mice 

were sacrificed on day 16 and 18, respectively. With a concentration of 50 µg siRNA 

both, treatment twice a week and 5 applications in total, a significant regression of 

tumor growth could be detected in the polymer 386/Ran siRNA treated group. The 

bioluminescence signal in this group was significantly lower than the control-siRNA 

treated groups from day 14, revealing an excellent in vivo knockdown efficacy without 

TFA salt. No significant difference was measurable within the other groups. 

Nevertheless, distinct but not significant hampering of tumor progression was visible 

in the polymer 332 treatment group. But in this case a relatively high variation within 

the treatment group hindered significance. No significant tumor progression 

hampering was detected within the other groups. During the whole experiment no 

local or systemic toxicity was observed which allows the conclusion to be drawn that 

the oligomers are biocompatible as desired. Assuming that polymer 49 has shown in 

vivo efficacy several times when applied 3 times and was not effective when applied 

twice, 3 treatments are obligatory or polymers with higher serum stability are needed. 

Polymer 332 already showed a promising tendency and should be analyzed in a 

higher ratio. With those stable polymers as well as polymer 386 an excellent step 

towards tumor cell killing with intratumoral applications is achieved. Nevertheless, 

systemic therapeutic effects still remain a challenge but even this hurdle can be 

overcome by stable particles with prolonged circulation half-life, shielding (e.g. with 

PEG) and the incorporation of targeting ligands to enhance directed cellular uptake. 



V Summary  76 

V Summary 

 

The field of nucleic acid-based therapy holds enormous promise in the treatment of a 

broad range of genetic and acquired diseases by targeting their cause, at gene level. 

Thereby, a genetic defect can be compensated or target genes, which are either 

pathogenic or indispensable for cell viability, can be silenced, resulting in an indirectly 

mediated therapeutic effect. For achieving this goal, appropriate delivery agents are 

necessary for accumulation of the cargo inside target cells and polymers represent 

an interesting class of carriers for this purpose. 

For the development of potent siRNA delivery systems different factors have to be 

optimized. Ideal polycations protect the nucleic acids in blood flow and transport them 

securely and predominantly to the target cells. They should be biocompatible and not 

toxic, can be degraded by the organism to nontoxic metabolites and therefore be 

excreted from the body. This thesis describes in vivo studies to find and furthermore 

optimize in vivo models in which especially siRNA is delivered by new polymers 

created in our laboratory. A second aim was to investigate desired effects of 

therapeutic siRNA as well as potential toxic effects of delivery systems following 

systemic and intratumoral application. 

The first part describes the histopathological analysis of effective in vivo delivery of 

one labeled siRNA and afterwards of two therapeutic siRNA in subcutaneous 

Neuro2A murine neuroblastoma cells in A/JOlaHsd mice.  

Polymer 49, a T-shape structure and polymer 229, an i-shape structure, were 

evaluated for siRNA delivery in Neuro2A murine neuroblastoma cells in vivo, where 

polymer 229 showed a slightly higher accumulation.  

The first therapeutic siRNA was against the kinesin EG5, which is a member of the 

Bim-C class of kinesin related proteins influencing the assembly and organization of 

the mitotic spindle. If there is no EG5 in the cytoplasm, abnormal monopolar spindles 

occur, which prevent successful cell division [148]. Effective transfection was 

detected in the tumor sections by mitotic figures when stained with DAPI. The second 

siRNA used was against the Ras-related nuclear protein Ran, because it was 

recently identified as possible target in cancer therapy [156]. We utilized a siRNA 

directed against the Ran mRNA to silence protein translation. Because of its pivotal 

role in nuclear transport, our hypothesis was that downregulation of the Ran protein 

results in apoptosis of our targeted cells. Effective transfection was in this case 
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observed by staining of apoptotic cells by TUNEL stain. Both experiments were 

performed with polymer 49 and in case of EG5 also in addition with polymer 229.  

In the second part retardation of tumor growth was investigated in several tumor 

models. At first with intrasplenically injected Neuro2A-eGFPLuc cells in A/JOlaHsd 

mice, several systemic anti-EG5 siRNA/polymer 49 polyplex treatments resulted in 

tumor growth reduction, but no siRNA specific tumor growth reduction was 

detectable. The systemic vs. intravenous anti-EG5 treatment was compared in 

subcutaneous Neuro2A-eGFPLuc cells in A/JOlaHsd mice, but again the tumor 

growth reduction was not siRNA-specific.  

According to the findings that our treatment, in combination with the artificial 

luciferase expression of the Neuro2A cells, caused immune reactions in 

immunocompetent mice, NMRI-Foxn1nude mouse strain was used. 

 A dose response experiment was performed by repeated intratumoral application of 

12.5 µg, 25 µg or 50 µg EG5 siRNA or control-siRNA containing polyplexes in NMRI-

Foxn1nude mice bearing subcutaneous Neuro2A-eGFPLuc tumors. For 50 µg EG5 

siRNA a significant decrease was measurable compared to control-siRNA treated 

animals. Body weight stayed constant over time indicating that polymer 49 is not a 

high burden for the mouse organism when applied locally in utilized concentrations.  

In the next part a survival experiment was performed by repeated intratumoral 

application of 50 µg EG5 siRNA, Ran siRNA or control-siRNA containing polyplexes 

formulated in HBG or only HBG in subcutaneous Neuro2A-eGFPLuc tumors to 

compare the growth inhibition efficacy of siRNA and siEG5. With a concentration of 

50 µg siRNA both, in the siEG5 and in the siRan treated group, a significant 

regression of tumor growth was detectable from day 9 on. siRan did not lead to a 

significant, but clearly visible tumor growth reduction compared to siEG5. Therefore 

siRan was chosen for further in vivo experiments. Unfortunately control-siRNA 

treatment led to smaller tumors than HBG treatment revealing a slight local toxicity of 

polymer 49. The Kaplan Maier analysis, confirming the result of the bioluminescence 

imaging, showed again that both siEG5 (median survival = 25d) and siRan (median 

survival = 28d) treated mice, lived significantly longer than control-siRNA treated 

ones (median survival = 20,5d). Control-siRNA treated animals did not survive 

significantly longer than HBG treated ones (median survival = 18d). 

Therefore, siRAN was used in the next experiment. As the aim of the thesis was to 

establish an in vivo model to compare various polymers in their transfection capacity 
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in vivo, we used polymer 49, polymer 229 and polymer 386. Animals were 

subcutaneously inoculated with 5x106 Neuro2A-eGFPLuc and treated with a 50 µg 

siRNA. With a treatment twice a week and 5 applications in total no significant 

regression of tumor growth could be detected within a timeframe of 15 days. Within 

the oligomer 49 and 386 treated groups a clearly visible tumor growth reduction could 

be detected, regarding siRan treated animals in contrast to control-siRNA treated 

ones.  

In the last experiment polymer 49, 386, 332 and 454 were compared within the 

established tumor model. Especially the last two structures showed excellent 

transfection efficacy and in addition prolonged murine serum stability in vitro. siRNA 

formulations were applied twice a week and 5 times in total. With a concentration of 

50 µg siRNA, treatment twice a week and 5 applications in total, a significant 

regression of tumor growth could be detected in the polymer 386/Ran siRNA treated 

group from day 14. No significant difference was measurable within the other groups. 

Nevertheless, distinct but not significant hampering of tumor progression was visible 

in the polymer 332 treated group, but a relatively high variation within the treatment 

group hindered a significant difference. No local or systemic toxicity was observed. 

This work demonstrates within the newly established in vivo model the ability of this 

new class of polymers to deliver siRNA in vivo and enable the siRNA to unfold its 

therapeutic potential. 
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VI Zusammenfassung 

 

Die Anwendung von therapeutischen Nukleinsäuren verspricht enorme Fortschritte in 

der biomedizinischen Forschung zur Behandlung von angeborenen sowie 

erworbenen Krankheitsbildern, indem sie an deren Ursprung, den Genen, ansetzt. 

Dabei können genetische Defekte kompensiert werden oder die Expression von 

Genbereichen, die entweder pathogen, oder unabdingbar für das Überleben von 

Zellen sind, gezielt herunterreguliert werden. Es müssen geeignete Träger für den 

Transport von Nukleinsäuren in die Zielzellen gefunden werden. Die in unserem 

Labor entwickelten Polymere stellen einen interessanten Ansatz dar, um dieses Ziel 

zu erreichen. 

Für die Entwicklung von potenten siRNA-Delivery-Systemen müssen 

unterschiedliche Komponenten optimiert werden. Ideale Polykationen schirmen 

siRNAs von Blutkomponenten ab und transportieren sie sicher zu den Ziel-Zellen. Sie 

sollten biokompatibel und nicht toxisch sein und durch den Organismus abgebaut, 

somit zu nicht toxischen Metaboliten umgewandelt und damit aus dem Körper 

ausgeschieden werden können.  

Diese Arbeit beschreibt in vivo Studien, für die in vivo Modelle etabliert und optimiert 

wurden, mit dem Ziel, die von unserem Labor entwickelten Polymere auf ihre siRNA 

Transfer Kapazität zu testen und untereinander zu vergleichen.  

Ein weiteres Ziel war es, die erwünschte therapeutische Wirkung von siRNAs, sowie 

mögliche toxische Wirkungen von Delivery-Systemen nach intratumoraler und 

systemischer Applikation zu untersuchen. 

Der erste Teil beschreibt die histopathologische Analyse einer erfolgreichen in vivo 

Verabreichung von markierter siRNA und zwei therapeutischen siRNAs in 

subkutanen Tumoren aus murinen Wildtyp-Neuroblastomzellen Neuro2A in 

A/JOlaHsd-Mäusen. Polymer 49, eine T-shape Struktur und Polymer 229 ein i-shape 

Struktur, wurden, komplexiert mit siRNA, systemisch verabreicht und anhand von 

Tumorschnitten beurteilt, wobei Polymer 229  eine leicht höhere Akkumulation zeigte. 

Der erste therapeutische siRNA Versuch war gegen das Kinesin Spindle Protein EG5 

gerichtet. EG5 gehört zur Bim-C-Klasse der Kinesine und ist essenziel für die 

eukaryotische bipolare Spindelformation während der Zellteilung. Wenn kein EG5 in 

der Zelle vorhanden ist, bilden sich abnorme monopolare Spindeln, die die 
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erfolgreiche Zellteilung verhindern. Effektiver siRNA-Transfer wurde durch DAPI 

angefärbte, abnorme mitotische Formationen in Tumorschnitten gezeigt. 

Die zweite, in dieser Arbeit verwendete siRNA, ist gegen die mRNA des Ran-

Proteins gerichtet. Da es vor kurzem als möglicher Ansatzpunkt in der Krebstherapie 

entdeckt wurde [156], nutzten wir die Ran-siRNA um die Proteintranslation von Ran 

vermindern. Da Ran eine pivotale Rolle im Zellkerntransport einnimmt, war unsere 

Hypothese, dass eine Herunterregulierung des Ran-Proteins in Apoptose der 

betreffenden Zelle resultiert. In diesem Fall wurde die erfolgreiche Transfektion der 

Zielzellen durch TUNEL-Färbung der apoptotischen Zellen demonstriert. Beide 

Experimente wurden mit Polymer 49 durchgeführt, der EG5-Versuch zusätzlich mit 

Polymer 229. 

In dem zweiten Abschnitt der Arbeit wurden die Auswirkungen der siRNAs, 

komplexiert mit diversen Polymeren, auf das Tumorwachstum in verschiedenen 

Tumormodellen untersucht. Zu Beginn wurden Neuro2A-eGFPLuc Zellen 

intrasplenisch in A/JOlaHsd-Mäuse injiziert und diese mehrmals mit anti-EG5 siRNA/ 

Polymer 49 Polyplexen behandelt, wobei keine siRNA spezifische Reduktion des 

Tumorwachstums nachweisbar war. Zudem wurde systemische und intratumorale 

Behandlung von subkutanen Neuro2A-eGFPLuc Tumoren in A/JOlaHsd Mäusen 

verglichen, doch wurde auch hier kein spezifischer Effekt nachgewiesen. 

Nachdem wir in Zusammenhang mit der Behandlung und den Luciferase 

exprimierenden Neuro2A-eGFPLuc Tumoren entzündliche immunologische 

Reaktionen in den immunkompetenten A/JOlaHsd-Mäuse festgestellt hatten, wurde 

auf NMRI-Foxn nude Mäuse umgestellt. Eine Dosis-Wirkungs-Studie wurde mit 12.5 

µg, 25 µg, 50 µg EG5 siRNA und der jeweiligen Menge Kontroll-siRNA in subkutanen 

Neuro2A-eGFPLuc-Tumoren in NMRI-Foxn1nude Mäusen durchgeführt. Bei einer 

Menge von 50 µg EG5 siRNA konnte ein deutlich messbarer Rückgang des 

Tumorwachstums gegenüber den Kontrolltieren festgestellt werden, wobei das 

Körpergewicht aller Tiere über die Behandlungszeit konstant blieb. Dies bezeugt, 

dass Polymer 49 in den eingesetzten Konzentrationen keine höhere Belastung für 

den Organismus darstellt. 

Im nächsten Teil wurden EG5-siRNA mit Ran-siRNA, Kontroll-siRNA und HBG in 

einem Überlebensexperiment miteinander verglichen. Komplexiert mit Polymer 49 

wurden wiederholt intratumorale Applikationen durchgeführt. 
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Bei einer Konzentration von 50 µg zeigte sich bei siEG5 und siRan eine signifikante 

Regression des Tumorwachstums ab Tag 9. siRan zeigte eine zwar nicht signifikante 

aber doch deutlich stärkere Wirkung als siEG5 und wurde deshalb für weitere in vivo 

Experimente verwendet. Unglücklicherweise führte die Kontroll-siRNA Behandlung 

zu kleineren Tumoren als die Behandlung mit HBG, was auf eine leichte lokale 

Toxizität von Polymer 49 schließen lässt. Die Kaplan Maier Analyse bestätigte das 

Ergebnis der Biolumineszenz-Auswertung indem sie zeigte, dass die mit siEG5 

(mediane Überlebenszeit = 25d) und siRan (mediane Überlebenszeit = 28d) 

behandelten Mäuse länger überlebten als kontrollbehandelte Tiere (mediane 

Überlebenszeit d = 20,5), wobei diese nicht signifikant länger lebten als die mit HBG 

behandelten Tiere (mediane Überlebenszeit = 18d). 

Deshalb wurde im darauffolgenden Experiment anti-Ran siRNA verwendet. Da es 

Ziel dieser Arbeit war, ein in vivo System zu entwickeln, in dem verschiedene 

Polymere auf ihre Transfektionskapazität getestet werden können, wurden Polymer 

49, 229 und 386 zum ersten Mal in vivo parallel eingesetzt. 5x106 Neuro2A-eGFPLuc 

Zellen wurden subkutan in die Flanken von NMRI- Mäusen injiziert und zweimal die 

Woche mit 50 µg Ran-siRNA behandelt, wobei innerhalb eines Zeitrahmens von 15 

Tagen zwar keine signifikante Regression des Tumorwachstums in den 

Behandlungsgruppen nachgewiesen werden konnte. Dennoch war in der Oligomer 

49 und 386 Gruppe eine deutlich sichtbare Reduktion des Tumorwachstums bei den 

mit Ran-siRNA behandelten Tieren zu erkennen. 

Im letzten Experiment wurden die Polymere 49, 386, 332 und 454 innerhalb des 

etablierten Tumormodells verglichen. Besonders die letzten beiden Strukturen 

zeigten exzellente Transfektionseffizienz in vitro und hohe Stabilität in murinem 

Serum. Die siRNA-Formulierungen wurden zweimal pro Woche und fünfmal 

insgesamt appliziert. Bei einer Konzentration von 50 µg siRNA (N/P 12), Behandlung 

zweimal pro Woche und 5 Anwendungen insgesamt, konnte eine signifikante 

Regression des Tumorwachstums in der mit Polymer 386/Ran siRNA behandelten 

Gruppe ab Tag 14 nachgewiesen werden. Innerhalb der anderen Gruppen konnte 

kein signifikanter Unterschied festgestellt werden. Dennoch konnte eine deutliche 

Hemmung des Tumorwachstums in der mit Polymer 332 und therapeutischer siRNA 

behandelten Gruppe gezeigt werden, wobei leider eine große Varianz innerhalb der 

Behandlungsgruppe eine Signifikanz verhinderte. Im gesamten Experiment wurde 

weder lokale noch systemische Toxizität festgestellt, was auf die gute Verträglichkeit 
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der hier getesteten Vektoren hinweist. Diese Arbeit zeigt innerhalb des etablierten 

und optimierten in vivo Modells, dass diese neue Polymerriege, die in unserem Labor 

entwickelt wurde, fähig ist, siRNAs in vivo in Neuro2A Zellen in therapeutisch 

wirksamer Form zu transferieren. 
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VII Appendices 

 

1 Abbreviations 

 

 

bPEI    branched polyethylenimine 

BSA     bovine serum albumine 

CCD    charge-coupled device 

cDNA    complementary desoxyribonucleic acid 

CMV     cytomegalovirus 

CT     computer tomography 

DAPI     4’,6-diamidino-2-phenylindole, dihydrochloride 

DNA     desoxyribonucleic acid 

DOPC    dioleoylphosphatidylcholine 

DOPE    dioleoylphosphatidylethanolamine 

DPPC    dipalmitoylphosphatidylcholine 

EGF     epidermal growth factor 

eGFP    enhanced green fluorescent protein 

EPO     erythropoietin 

GFP     green fluorescent protein 

GTP    guanosine triphosphate 

HBG     HEPES buffered glucose 

HBS     HEPES buffered saline 

HE     hematoxylin-eosin 

HEPES    2-[4-(2-Hydroxyethyl)-1-piperazinyl]ethanesulfonic acid 

HSV     herpes simplex virus 

min    minute 

MRI     magnetic resonance imaging 

mRNA    messenger ribonucleic acid 

MW     mean value 

Mw     molecular weight 

NIR     near infrared 

Nu/nu    NMRI nude 

N/P     nitrogen / phosphate 
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NA    nucleic acid 

OEI     oligoethylenimine 

PCR    polymerase chain reaction 

pDNA    plasmid desoxyribonucleic acid 

PEG     polyethylenglycol 

PEI     polyethylenimine 

PET     positron emission tomography 

RFP     red fluorescent protein 

RISC     ribonucleic acid induced silencing complex 

RLU     relative light units  

RNA     ribonucleic acid 

rtQPCR   real time quantitative polymerase chain reaction 

SCID     severe combined immunodeficiency 

SD     standard deviation  

sec    second 

siRNA    short interfering ribonucleic acid 

shRNA   short hairpin ribonucleic acid 

SPECT    single photon emission computed tomography 

SV     simian virus 

TNF α    tumor necrosis factor alpha 

TUNEL    TdT-mediated dUTP-biotin nick end labeling 

QD     quantum dot 

VEGF    vascular endothelial growth factor 

w    weight
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