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1 Einleitung 

1.1 Aufbau und Funktion von Säugerspermien 

1.1.1 Aufbau einer Spermienzelle 

Die einzige Aufgabe eines Spermiums besteht darin, eine Eizelle zu befruchten, um so 
seine DNA an die entstehenden Nachkommen weiterzugeben [Lefievre et al., 2009]. 
Zur optimalen Erfüllung dieser Aufgabe sind Spermien hochgradig spezialisierte Zellen, 

die sich aus zwei strukturell und funktionell getrennten subzellulären Kompartimenten 
zusammensetzen: Dem Kopf als Träger des genetischen Materials und der Motoreinheit 
des Flagellums [Zitranski et al., 2010].  

Der Spermienkopf besteht hauptsächlich aus dem Zellkern mit dem stark kondensierten, 
haploiden Chromosomensatz sowie einem großen Vesikel, dem sogenannten Akrosom 
[Florman et al., 2008]. Dieses akrosomale Vesikel entsteht während der Spermiogenese 

durch die Fusion einzelner, aus dem Golgi-Apparat abgeschnürter kleiner Vesikel 
[Escalier et al., 1991; Kierszenbaum et al., 2007] und beinhaltet eine Vielzahl an hydro-
lysierenden Enzymen [Kim et al., 2008]. Beim Kontakt des Spermiums mit der Glyko-

protein-reichen Hülle der Eizelle, der Zona pellucida (ZP), wird der Inhalt des 
akrosomalen Vesikels exocytiert, ein Prozess, der als Akrosomreaktion bezeichnet wird 
(siehe Abschnitt 1.1.2.4). Die dabei freigesetzten Enzyme verdauen die Zona pellucida 

partiell und erlauben es so dem Spermium, zur Plasmamembran der Eizelle vor-
zudringen und mit dieser zu verschmelzen.  

 

Abbildung 1.1:  Schematische Darstellung eines humanen Spermiums. 
Ein Spermium ist morphologisch in zwei subzelluläre Kompartimente unterteilt (gestrichelte Linie): Den 
Kopf und das lange Flagellum. Der Kopf des Spermiums besteht im Wesentlichen aus dem Zellkern 
[Nukleus] sowie dem akrosomalen Vesikel [Akrosom]. Der Spermienschwanz unterteilt sich in drei 
funktionelle Abschnitte: das Mitochondrien-reiche Mittelstück, das Hauptstück und das Endstück. (Bild: 
Heike Borth) 
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Im Gegensatz zum Spermienkopf, der für die direkte Interaktion mit der Eizelle ver-
antwortlich ist, wird der Spermienschwanz hauptsächlich für die Fortbewegung der 
männlichen Keimzelle benötigt. Dieses Flagellum, das das Spermium nutzt, um nach 

der Ejakulation die lange Wegstrecke bis zur Eizelle aktiv zu überwinden, setzt sich aus 
drei funktionellen Abschnitten zusammen: dem Mittel-, Haupt- und Endstück 
(Abbildung 1.1). Strukturell zeichnet sich das Mittelstück vor allem durch eine hohe 

Anzahl Energie-liefernder Mitochondrien aus, die das Axonem spiralförmig um-
schließen. Das Axonem, welches das Mittel- und Hauptstück durchzieht, weist eine 
typische 9 + 2 Mikrotubuli-Struktur auf [Inaba, 2003] und ist für die geißelartige 

Bewegung des Flagellums verantwortlich [Summers und Gibbons, 1971].  
Reife Spermien besitzen kaum Cytoplasma und kein endoplasmatisches Retikulum [Gur 
und Breitbart, 2008; Lefievre et al., 2009] und weisen, bis auf sehr wenige Ausnahmen 

[Gur und Breitbart, 2006], keine transkriptionelle oder translationelle Aktivität auf 
[Vogt, 2004]. Die Änderungen physiologischer Spermienfunktionen, die während der 
Passage durch den weiblichen Genitaltrakt notwendig sind, können deshalb nur über 

posttranslationale Modifikationen wie Proteinphosphorylierungen, Veränderungen der 
intrazellulären Ionenkonzentration und des pH-Wertes sowie die Generierung von 
second messengern vermittelt werden [Lefievre et al., 2009]. Zentrale Regulatoren 

stellen dabei vor allem die intrazellulären Ca2+- und cAMP-Konzentrationen sowie der 
cytosolische pH-Wert der Spermienzelle dar. Besonders Calcium, das als elementares 
Signaltransduktionsmolekül an der Steuerung multipler Funktionen in verschiedensten 

Zelltypen beteiligt ist [Clapham, 1995], spielt bei der Regulation aller wichtigen 
Prozesse der Spermienzelle, wie z. B. Motilität, Wegfindung und Akrosomreaktion eine 
essentielle Rolle [Yanagimachi und Usui, 1974; Florman et al., 1989; Florman et al., 

1992; Ren et al., 2001; Ho et al., 2002].  

1.1.2 Aufgaben eines Spermiums im weiblichen Genitaltrakt 

Bis zur erfolgreichen Befruchtung einer Eizelle muss ein Spermium in den 

verschiedenen Abschnitten des weiblichen Genitaltrakts eine Vielzahl komplexer 
Aufgaben erfüllen, die u.a. aktives Schwimmen (Motilität), einen sekundären Reifungs-
prozess (Kapazitierung), die Wegfindung zur Eizelle und die Akrosomreaktion 

umfassen (Abbildung 1.2) und die im Folgenden detailliert beschrieben werden. 



Einleitung  3 

 

 

Abbildung 1.2:  Übersicht über physiologische Aufgaben eines Spermiums im weiblichen Genital-
trakt bis zur Befruchtung einer Eizelle. 

Während der Wanderung der Spermien zum Ort der Befruchtung in der Ampulle des Eileiters kommt es zu 
einer drastischen Reduzierung der Spermienzahl (rote Ziffern) [A]. Die noch verbleibenden Spermien 
durchlaufen im Bereich des Isthmus im proximalen Teil des Eileiters eine sekundäre Reifung 
(Kapazitierung), bevor ihre Wegfindung zur Eizelle (Thermotaxis und Chemotaxis) beginnt. Nach dem 
erfolgreichen Auffinden der Eizelle bindet das Spermium an die Glykoprotein-reiche Hülle der Eizelle 
(Zona pellucida), wodurch es zur Akrosomreaktion kommt, die es dem Spermium erlaubt bis zur Oocyte 
vorzudringen und mit dieser zu verschmelzen (Fertilisation).  

1.1.2.1 Motilität  
Nach der Ejakulation in den weiblichen Genitaltrakt findet durch den erhöhten pH-Wert 
des Seminalplasmas (6,7 - 7,4) [Suarez und Pacey, 2006] eine Alkalisierung der 
Spermien statt [Babcock und Pfeiffer, 1987; Hamamah et al., 1996], wodurch das 

Spermienflagellum anfängt zu schlagen und das Spermium somit aktiv zu schwimmen 
beginnt [Hamamah und Gatti, 1998]. Dieser Flagellumschlag ermöglicht es dem 
Spermium, die enorme Wegstrecke zum Eileiter, die mehr als das 1000fache der 

eigenen Länge ausmacht, zu überwinden [Eisenbach und Tur-Kaspa, 1999; Suarez und 
Pacey, 2006]. Dabei gelingt die Durchquerung des schleimgefüllten Gebärmutterhalses 
(Cervix) [Sobrero und Macleod, 1962] nur motilen, morphologisch intakten Spermien 

[Hanson und Overstreet, 1981; Barros et al., 1984; Katz et al., 1990], so dass nur ein 
Bruchteil der ejakulierten Spermien den Beginn des Eileiters (Isthmus) überhaupt 
erreicht [Williams et al., 1993] (Abbildung 1.2 [A], rote Ziffern). 

1.1.2.2 Kapazitierung 
Am Isthmus des Eileiters angekommen heften sich die Spermien an das Epithel des 
Oviductes [Pacey et al., 1995a; Baillie et al., 1997; Reeve et al., 2003], wo sie komplexe 
sekundäre Reifungsprozesse durchlaufen, die zusammengefasst als Kapazitierung 

bezeichnet werden [De Jonge, 2005; Suarez und Pacey, 2006; Visconti et al., 2011], 
(Abbildung 1.2 [B]) und durch die die Zellen erst die Kompetenz erlangen, eine Eizelle 
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befruchten zu können [Austin, 1951; Chang, 1951; Austin, 1952; Mahi und 
Yanagimachi, 1973]. 
Dem Isthmus kommt dabei eine Rolle als funktionelles Spermienreservoir zu 

[Yanagimachi und Chang, 1963; Suarez und Osman, 1987; Pacey et al., 1995b; De 
Jonge, 2005; Suarez und Pacey, 2006], in dem die Zellen während der Kapazitierung 
gespeichert und lebensfähig gehalten werden [Kervancioglu et al., 1994; Murray und 

Smith, 1997; Holt und Lloyd, 2010], bis sie sich nach und nach vom Epithel ablösen 
[Smith und Yanagimachi, 1991; Demott und Suarez, 1992; Lefebvre und Suarez, 1996; 
Suarez und Ho, 2003; Ho et al., 2009]. 

Spermien können jedoch nicht nur in vivo kapazitieren; dieser sekundäre Reifungs-
prozess kann auch in vitro durch eine Inkubation mit Puffern induziert werden, die Ca2+, 
Bicarbonat und bovines Serum-Albumin (BSA) enthalten [Yanagimachi, 1994; de 

Lamirande et al., 1997]. Die Inkubation in einem solchen Kapazitierungspuffer bewirkt, 
wie auch in vivo am Isthmus des Eileiters, einen Anstieg der intrazellulären Ca2+-
Konzentration [Baldi et al., 1991; DasGupta et al., 1993] und des intrazellulären pH-

Wertes der Spermien [Carr und Acott, 1989; Parrish et al., 1989; Galantino-Homer et 
al., 2004; Lishko et al., 2010]. Die intrazelluläre Alkalisierung resultiert in einer 
Erhöhung der Leitfähigkeit eines Kaliumkanals (SLO3) in der Plasmamembran 

[Schreiber et al., 1998; Navarro et al., 2007; Santi et al., 2010]; als Folge davon kommt 
es zur Hyperpolarisation der Spermienzellmembran auf -60 bis -70 mV, die 
charakteristisch für kapazitierte Keimzellen ist [Zeng et al., 1995; Arnoult et al., 1999; 

Munoz-Garay et al., 2001; Demarco et al., 2003; Zeng et al., 2011].  
Eine weitere entscheidende Veränderung der Spermienzelle stellt der Anstieg des intra-
zellulären cAMP-Spiegels während der Kapazitierung dar [Garbers et al., 1982; 

Visconti et al., 1995b; Visconti et al., 2002]. Dieser wird durch einen speziellen Typ 
von Adenylylcyclasen bewirkt, einer löslichen Adenylylcyclase (soluble adenylate 

cyclase, [sAC]), die im Gegensatz zu membranständigen Adenylylcyclasen (mAC) 

[Sunahara und Taussig, 2002] nicht durch G Proteine reguliert wird und auch keine 
Aktivierbarkeit durch Forskolin zeigt [Seamon und Daly, 1986; Dessauer und Gilman, 
1996; Litvin et al., 2003]. Stattdessen wird diese sAC durch Bicarbonat aktiviert [Chen 

et al., 2000; Jaiswal und Conti, 2003; Litvin et al., 2003], wobei ihre Aktivität 
zusätzlich durch die intrazelluläre Ca2+-Konzentration [Jaiswal und Conti, 2003; Litvin 
et al., 2003; Carlson et al., 2007] und durch einen negativen Rückkopplungs-

mechanismus über die Proteinkinase A (PKA) reguliert wird [Nolan et al., 2004; Burton 
und McKnight, 2007]. Das Bicarbonat zur Aktivierung dieser sAC wird während der 
Kapazitierung durch einen Einstrom von extrazellulärem HCO3

- aus dem 

Kapazitierungspuffer bzw. dem Milieu des weiblichen Genitaltrakts [Maas et al., 1977] 
bereit gestellt. Dies geschieht vermutlich über einen Natrium/HCO3

--Cotransporter 
[Demarco et al., 2003], einen Natrium/Protonen-Austauscher (NHE) [Wang et al., 2003] 

oder in Form von CO2, das in Spermien durch eine Carboanhydrase zu HCO3
- umgesetzt 

werden kann [Wandernoth et al., 2010].  
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Die elementare Bedeutung der löslichen Adenylylcyclase für die Kapazitierung konnte 
in Studien an Gen-defizienten Mäusen bestätigt werden: In Spermien von sAC-
Knockout Mäusen wurde eine stark reduzierte cytoplasmatische cAMP-Konzentration 

registriert [Xie et al., 2006], was zur Folge hatte, dass die Zellen keine progressive 
Motilität und Hyperaktivierung (siehe unten) mehr aufwiesen [Esposito et al., 2004; 
Hess et al., 2005] und die Männchen infertil waren [Xie et al., 2006].  

Für die Produktion von cAMP während der Kapazitierung wird allerdings auch eine 
Beteiligung von mACs diskutiert [Baxendale und Fraser, 2003]. Dabei wird 
angenommen, dass die Aktivierung solcher mACs durch G Protein-gekoppelte 

Rezeptoren (G protein-coupled receptor [GPCR]) erfolgt, die lösliche Liganden des 
weiblichen Genitaltrakts binden können [Fraser et al., 2006]. Ein solcher Detektions-
mechanismus könnte in vivo entscheidend zur Regulation der Kapazitierung durch 

Liganden im luminalen Milieu des weiblichen Genitaltrakts beitragen. Die physio-
logische Relevanz dieser mACs konnte bislang jedoch nicht eindeutig geklärt werden 
und wird gerade in jüngster Zeit kontrovers diskutiert [Baxendale und Fraser, 2003; 

Hess et al., 2005; Xie et al., 2006; Kaupp et al., 2008]. 
Der Anstieg der intrazellulären cAMP-Konzentration bewirkt schließlich die Akti-
vierung von PKA [Visconti et al., 1995b; Desseyn et al., 2000; Nolan et al., 2004]. Die 

PKA aktiviert anschließend Tyrosinkinasen [Leclerc et al., 1996], welche für die 
umfangreichen Proteinphosphorylierungen verantwortlich sind, die für die 
Kapazitierung charakteristisch sind [Visconti et al., 1995a; Visconti et al., 1995b; Naz 

und Rajesh, 2004; Salicioni et al., 2007]. 
Die Lipidkomposition der Spermienmembran erfährt im Verlauf der Kapazitierung 
ebenfalls elementare Veränderungen: cAMP- und PKA-abhängig kommt es zu einem 

Phospholipid-Scrambling [Gadella und Harrison, 2000; Harrison und Miller, 2000; 
Gadella und Harrison, 2002], wodurch die Membranfluidität erhöht und damit die für 
die Kapazitierung charakteristische Extraktion von Cholesterol aus der Membran 

ermöglicht wird [Eliasson, 1966; Cross, 1998; Gadella und Harrison, 2000; Flesch et al., 
2001; De Jonge, 2005; Jones et al., 2010]. 
Auch das Bewegungsmuster und die Schwimmkraft der Spermienzellen verändern sich 

während der Kapazitierung gravierend. Diese Änderungen sind auf zellulärer Ebene 
durch eine Erhöhung der flagellaren Bewegungsamplitude und asymmetrische 
peitschenartige Bewegungen des Spermienschwanzes gekennzeichnet und werden als 

Hyperaktivierung bezeichnet [White und Aitken, 1989; Suarez, 2008a; Kirichok und 
Lishko, 2011]. Molekular wird die Hyperaktivierung vor allem durch einen Einstrom 
von Ca2+ durch den CatSper-Kanal (Cationic Channel of Sperm) [Ren et al., 2001] 

induziert, einen Spermien-spezifischen, hoch-selektiven, schwach spannungs-
abhängigen Ca2+-Kanal [Kirichok et al., 2006; Lishko et al., 2012], der im Hauptstück 
von Spermien exprimiert wird. Fehlt dieser Kanal wie z. B. bei Mäusen, die Gen-

defizient für eine der α-Untereinheiten sind, so zeigen die Spermien der betroffenen 
Tiere keine Hyperaktivierung mehr und die Männchen sind infertil [Quill et al., 2001; 



6 Einleitung 

Ren et al., 2001; Lobley et al., 2003; Quill et al., 2003; Carlson et al., 2005; Qi et al., 
2007; Carlson et al., 2009]. Interessanterweise führen Mutationen im CatSper 1 oder 
CatSper 2 Gen, die zwei der CatSper α-Untereinheiten codieren, auch beim Menschen 

zur männlichen Unfruchtbarkeit [Avidan et al., 2003; Zhang et al., 2007a; Avenarius et 
al., 2009; Hildebrand et al., 2010].  
Bei der Aufklärung der Aktivierungsmechanismen dieses Ca2+-Kanals mit Hilfe der 

Patch-Clamp Technik [Kirichok et al., 2006], stellte sich spannenderweise heraus, dass 
der Kanal nicht nur durch eine Erhöhung des pH-Wertes aktiviert wird [Kirichok et al., 
2006; Lishko et al., 2010], sondern in humanen Spermien auch durch nanomolare 

Konzentrationen von Progesteron aktiviert werden kann [Lishko et al., 2011; Strunker et 
al., 2011], das z. B. in follikulärer Flüssigkeit vorkommt (siehe Abschnitt 1.1.2.3) und 
beim Eisprung freigesetzt wird. Diese Aktivierung des Kanals durch Progesteron und 

der resultierende Ca2+-Einstrom könnten somit einen Mechanismus repräsentieren, mit 
dem die Hyperaktivierung eines Spermiums funktionell an das Vorhandensein einer 
befruchtungsfähigen Eizelle gekoppelt werden könnte. Dieses Modell erscheint 

besonders attraktiv, da das veränderte Schwanzschlagmuster hyperaktivierter Zellen 
diesen nicht nur hilft, den Weg im Mucus-gefüllten Eileiter bis hin zur befruchtungs-
fähigen Eizelle zurückzulegen [Jansen, 1980; Suarez et al., 1983; Suarez et al., 1991; 

Quill et al., 2003], sondern auch für das Loslösen vom Epithel des Eileiters nach der 
Kapazitierung notwendig ist [Stauss et al., 1995; Quill et al., 2001; Ren et al., 2001; 
Carlson et al., 2003; Quill et al., 2003; Ho et al., 2009]. Die Aktivierung des CatSper 

durch Progesteron aus follikulärer Flüssigkeit könnte folglich dafür sorgen, dass sich 
die am Isthmus während der Kapazitierung arretierten Spermien gerade dann verstärkt 
vom Epithel ablösen, wenn auch eine befruchtungsfähige Eizelle zur Verfügung steht. 

1.1.2.3 Wegfindung zur Eizelle 
Die Tatsache, dass nur ein überraschend geringer Anteil der ursprünglich immensen 
Zahl von Spermien im Ejakulat am Isthmus des Eileiters ankommt (siehe Abschnitt 
1.1.2.1 und Abbildung 1.2 [A]) [Williams et al., 1993] und von diesen immer nur ein 

geringer Teil zur gleichen Zeit kapazitiert und damit befruchtungskompetent ist (ca. 
10 % beim Menschen) [Cohen-Dayag et al., 1995; Giojalas et al., 2004], legt die 
Vermutung nahe, dass es Orientierungshilfen zur Wegfindung des Spermiums durch 

den Eileiter gibt, die eine erfolgreiche Befruchtung sicherstellen [Eisenbach und 
Giojalas, 2006].  
Für diese Wegfindung vom Isthmus bis hin zur trichterförmigen Erweiterung des 

Eileiters, der Ampulle (Abbildung 1.2), in der die Befruchtung stattfindet, wurden in 
den vergangenen Jahren unterschiedliche Navigationsmechanismen diskutiert. 
Inzwischen wird ein Modell favorisiert, das zwei der verschiedenen Hypothesen zur 

Wegfindung von Spermien vereinigt: Über lange Distanzen, in diesem Fall vom 
Isthmus bis zur Ampulle des Eileiters, orientieren sich Spermien offenbar anhand eines 
Temperaturgradienten (Thermotaxis) [Bahat et al., 2003]. Dabei können Spermien einen 

Ovulations-abhängigen Temperaturunterschied von 1 - 2 °C [Hunter und Nichol, 1986; 
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Bahat et al., 2005] zwischen dem kühleren Isthmusbereich und der wärmeren Ampulle 
wahrnehmen [Bahat et al., 2003; Bahat und Eisenbach, 2010]. Der molekulare 
Mechanismus dieser sehr sensitiven Temperaturwahrnehmung und Bewegungs-

steuerung ist bislang jedoch unklar. In jüngsten Untersuchungen konnten zwar Hinweise 
dafür gefunden werden, dass thermotaktische Prozesse in Spermien eine Aktivierung 
von Phospholipase C (PLC) und des IP3-Rezeptors (IP3R) bewirken und die Freisetzung 

von Ca2+ aus intrazellulären Speichern induzieren; die verantwortlichen molekularen 
Temperatursensoren konnten bislang jedoch nicht identifiziert werden [Bahat und 
Eisenbach, 2010]. 

Befinden sich die Spermien dann in der Nähe der Eizelle in der Ampulle, so kommen 
chemische Lockstoffe als Navigationshilfen zum Tragen [Eisenbach, 1999; Babcock, 
2003] (Abbildung 1.2 [B]), die dem Spermium ein gezieltes Auffinden der weiblichen 

Keimzelle ermöglichen (Chemotaxis) (zur Übersicht siehe [Eisenbach und Giojalas, 
2006]). Bislang konnte die Chemotaxis von Spermien beim Menschen [Cohen-Dayag et 
al., 1994; Sun et al., 2005], aber auch bei Mäusen [Giojalas und Rovasio, 1998; Oliveira 

et al., 1999] und Kaninchen [Fabro et al., 2002] nachgewiesen werden.  
Der Nachweis der chemoattraktiven Eigenschaft von follikulärer Flüssigkeit 
[Villanueva-Diaz et al., 1990; Ralt et al., 1991; Ralt et al., 1994], die beim Eisprung 

freigesetzt wird, ergab erste Hinweise darauf, dass die Eizelle und die sie umgebenden 
Cumuluszellen solche Spermienlockstoffe produzieren könnten. Später konnte bestätigt 
werden, dass sowohl die Oocyte als auch isolierte Cumuluszellen kontinuierlich chemo-

attraktive Substanzen freisetzen [Sun et al., 2005], so dass über die Ovulation hinaus ein 
chemischer Gradient um die Eizelle herum gebildet wird. Während Progesteron als die 
chemotaktisch aktive Substanz identifiziert werden konnte, die von den Cumuluszellen 

synthetisiert wird [Guidobaldi et al., 2008; Oren-Benaroya et al., 2008], ist derzeit nicht 
klar, ob und welche Lockstoffe die Eizelle selbst produziert [Sun et al., 2005].  
Die wohl am besten charakterisierte chemoattraktive Substanz für Säugerspermien stellt 

das Hormon Progesteron dar, das bereits in picomolaren Konzentrationen eine Chemo-
taxis humaner Spermien verursacht [Teves et al., 2006] und dementsprechend eine sehr 
effektive chemotaktische Substanz repräsentiert [Oren-Benaroya et al., 2008; 

Publicover et al., 2008; Teves et al., 2009]. Neben Progesteron wurden aber auch 
verschiedene andere chemische Substanzen und Proteine bzw. Peptide mit chemo-
attraktiven Eigenschaften identifiziert. Für die Duftstoffe Lyral und Bourgeonal, die 

Leitsubstanz des synthetischen Maiglöckchenduftes, wurde ein chemoattraktiver Effekt 
auf murine bzw. humane Spermien beschrieben [Spehr et al., 2003; Fukuda et al., 2004; 
Spehr et al., 2004]. Dieser Effekt wurde zunächst den in Spermien identifizierten olfak-

torischen Rezeptoren [Parmentier et al., 1992; Vanderhaeghen et al., 1997; Spehr et al., 
2003; Fukuda et al., 2004; Spehr et al., 2006] zugeschrieben. Kürzlich publizierte 
Befunde, die darauf hindeuten, dass Duftstoffe wie Bourgeonal, Helional, Undecanal 

und Cyclamal in der Lage sind, den CatSper-Kanal im Flagellum von Spermien direkt 
zu aktivieren, werfen allerdings die Frage auf, ob die chemoattraktive Wirkung von 
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Odorantien tatsächlich auf eine Erkennung durch olfaktorische Rezeptoren zurück-
zuführen ist oder durch den CatSper vermittelt wird [Brenker et al., 2012]. Da der 
CatSper zudem auch noch durch Prostaglandine, wie z. B. Prostaglandin E1 (PGE1) 

[Schaefer et al., 1998], sowie durch eine Vielzahl lipophiler Substanzen wie z. B. 
Menthol oder cyclische Nukleotid-Analoga aktiviert wird [Brenker et al., 2012], könnte 
er somit möglicherweise einen polymodalen Chemosensor repräsentieren, der im weib-

lichen Genitaltrakt für die Detektion verschiedener kleiner, überwiegend lipophiler 
Substanzen verantwortlich ist [Brenker et al., 2012] und neben der Hyperaktivierung 
auch an chemotaktischen Prozessen von Spermien beteiligt sein könnte [Lishko et al., 

2011; Strunker et al., 2011]. 
Eine chemotaktische Wirkung wird aber auch verschiedenen deutlich hydrophileren 
Substanzen mit peptiderger bzw. proteinerger Struktur zugeschrieben. Dazu gehört das 

Chemokin RANTES (Regulator on Activation Normally T-cell Expressed and Secreted 

Chemokine) [Schall et al., 1990; Alam et al., 1993; Isobe et al., 2002], das chemo-
attraktiv auf humane Spermien wirkt und u. a. in follikulärer Flüssigkeit zu finden ist 

[Isobe et al., 2002]. Auch für das Chemokin SDF1 (stromal cell-derived factor-1) und 
das atriale natriuretische Peptid [Brenner et al., 1990], welche ebenfalls im weiblichen 
Genitaltrakt vorkommen [Sundsfjord et al., 1989; Zuccarello et al., 2011], sowie für 

Allurin, ein Protein der CRISP-Familie (Cysteine-Rich Secretory Protein), konnten 
Befunde gesammelt werden, die auf einen chemotaktischen Effekt in Spermien 
hindeuten [Zamir et al., 1993; al-Anzi und Chandler, 1998; Zuccarello et al., 2011]. In 

der Arbeitsgruppe von Michael Eisenbach (Weizmann-Institut, Israel) konnten zudem 
Hinweise auf verschiedene weitere kleine chemoattraktive Peptide bzw. Proteine (<1.3 
und ca. 13 kDa) gefunden werden, die jedoch bislang nicht näher identifiziert wurden 

[Eisenbach und Giojalas, 2006].  

1.1.2.4 Akrosomreaktion und Fusion mit der Eizelle 
Trifft ein Spermium nach dieser langen Wegstrecke zur Ampulle des Eileiters auf ein 
befruchtungsfähiges Ei, muss es zunächst die Schicht der Cumuluszellen durchdringen, 

die die Eizelle umgeben, bevor es an die Zona pellucida binden kann. Diese dicke extra-
zelluläre Hülle der Eizelle [Clark und Dell, 2006] besteht bei Mäusen aus einem Netz-
werk dreier stark polymerisierter Glykoproteine: ZP1, ZP2 und ZP3 [Bleil und 

Wassarman, 1980; Greve und Wassarman, 1985; Wassarman und Litscher, 2008b]; in 
der Zona pellucida des Menschen ist zusätzlich noch ein viertes Glykoprotein (ZP4) zu 
finden [Gupta et al., 2007; Serres et al., 2008; Gupta et al., 2009]. 

Durch die Bindung des Spermiums an die Zona pellucida wird die Akrosomreaktion 
ausgelöst, eine irreversible, Ca2+-abhängige Exocytose des akrosomalen Vesikels 
[Yanagimachi und Usui, 1974; Bleil und Wassarman, 1983; Roldan et al., 1994]. Der 

molekulare Mechanismus der dieser Spezies-spezifischen Erkennung der Eizellhülle 
durch das Spermium zu Grunde liegt, ist allerdings bisher nicht eindeutig geklärt: Als 
Liganden auf der Oberfläche der Eizelle kommen Oligosaccharide des ZP3-Proteins in 

Frage, z. B. an Serin-Resten (Ser332 und Ser334) [Florman und Wassarman, 1985; 
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Wassarman, 1990; Tulsiani et al., 1997; Chen et al., 1998; Clark und Dell, 2006; 
Williams et al., 2006; Gupta und Bhandari, 2011]. Resultate neuerer Untersuchungen 
führten hingegen zu der These, dass nicht einzelne ZP-Proteine oder deren 

Kohlenhydratreste die Akrosomreaktion auslösen, sondern dass vielmehr die 
dreidimensionale Struktur der Zona pellucida für die Bindung des Spermiums von 
zentraler funktioneller Bedeutung sein könnte [Rankin et al., 2003; Gahlay et al., 2010]. 

Gegenwärtig wird außerdem diskutiert, dass die Bindung an die Zona pellucida allein 
nicht ausreicht, um die akrosomale Exocytose zu induzieren, sondern dass diese erst 
durch mechanosensorische Transduktionsmechanismen beim Penetrieren der Zona 

pellucida ausgelöst wird [Baibakov et al., 2007; Gahlay et al., 2010]. 
Trotz der elementaren funktionellen Relevanz der Akrosomreaktion für eine erfolg-
reiche Befruchtung konnten die molekularen Erkennungsmoleküle in der Spermien-

membran, mit denen das Spermium die Zona pellucida detektiert, bisher nicht eindeutig 
identifiziert werden [Gupta et al., 2007; Florman et al., 2008; Hirohashi et al., 2008; 
Litscher et al., 2009]. Als solche „Zona-Rezeptoren” des Spermiums kommen 

möglicherweise β-1,4-Galaktosyltransferase [Asano et al., 1997; Nixon et al., 2001], 
sp56 [Sinowatz et al., 1998], β-Mannosidase [Cornwall et al., 1991; Tulsiani et al., 
1992] und Zonadhesin [Gao und Garbers, 1998] als Kandidaten in Betracht. Alternativ 

wird eine Hypothese diskutiert, nach der ein bislang nicht identifizierter GPCR im 
Spermium als Erkennungsmolekül der Zona pellucida fungiert [Florman et al., 1989; 
Evans und Florman, 2002]. In Studien an Knockout-Mäusen, die Gen-defizient für 

einzelne der potentiellen Zona-Rezeptoren sind, wurde bislang zumeist nur eine Ein-
schränkung der Fertilität, aber keine vollständige Sterilität festgestellt [Okabe und 
Cummins, 2007], so dass an der Erkennung der Zona pellucida in vivo möglicherweise 

auch eine Kombination verschiedener Rezeptorproteine beteiligt sein könnte [van 
Gestel et al., 2007; Darszon et al., 2011].  
 

Beim Kontakt des Spermiums mit der Zona pellucida wird die akrosomale Exocytose 
durch funktionell gekoppelte Signaltransduktionsprozesse und distinkte, sequentielle 
Ca2+-Signale ausgelöst [Florman et al., 1989; Arnoult et al., 1996b; Rockwell und 

Storey, 2000; Florman et al., 2008; Darszon et al., 2011], deren Verlauf in Abbildung 
1.3 schematisch dargestellt ist.  
Dabei soll die Zona pellucida durch einen bislang unbekannten GPCR detektiert 

werden, der ein Pertussis-Toxin sensitives Gi Protein aktiviert [Endo et al., 1988; Ward 
et al., 1994], welches u. a. eine Erhöhung des intrazellulären pH-Wertes des Spermiums 
induziert [Florman et al., 1989; Arnoult et al., 1996a]. Zusätzlich erfolgt ein schneller, 

transienter Anstieg der intrazellulären Ca2+-Konzentration. Aktuell wird kontrovers 
diskutiert, ob dieser erste kurze Ca2+-Einstrom durch Spannungs-abhängige Ca2+-
Kanäle (Cav) erfolgt [Ward et al., 1994; Arnoult et al., 1996a; Florman et al., 1998; 

Darszon et al., 2001; Breitbart, 2002a; Primakoff und Myles, 2002; Fukami et al., 2003; 
Lopez-Gonzalez et al., 2003; Escoffier et al., 2007] und/oder durch den CatSper [Xia 
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und Ren, 2009], der durch die intrazelluläre Alkalisierung aktiviert werden könnte 
[Kirichok et al., 2006], vermittelt wird [Florman et al., 2008; Darszon et al., 2011; 
Lishko et al., 2012].  

Durch den aktivierten GPCR wird außerdem eine Phospholipase C aktiviert (PLC δ4), 
die durch die Spaltung von Phosphatidylinositol-4,5-bisphosphat (PIP2) eine Erhöhung 
der cytosolischen Inositoltrisphosphat (IP3)-Konzentration bewirkt [Roldan et al., 1994; 

Walensky und Snyder, 1995; Fukami et al., 2001; Fukami et al., 2003; Roldan und Shi, 
2007]. Dieses IP3 aktiviert den IP3-Rezeptor in der akrosomalen Membran, woraufhin 
Ca2+ aus dem Akrosom freigesetzt wird [Walensky und Snyder, 1995; De Blas et al., 

2002; Herrick et al., 2005] und es zu einem lang anhaltenden, langsamen Anstieg der 
intrazellulären Ca2+-Konzentration kommt [Florman et al., 2008]. Zum anderen kommt 
es, vermutlich durch einen Ca2+-abhängigen Aktvierungsmechanismus von Vertretern 

der transient receptor potential (TRP) Ionenkanalfamilie (z. B. TRPC2) [Jungnickel et 
al., 2001], möglicherweise aber auch durch STIM/Orai-Kanäle zu einem zusätzlichen 
Einstrom von extrazellulärem Ca2+ in die Zelle [O'Toole et al., 2000; Costello et al., 

2009; Darszon et al., 2012]. 

 

Abbildung 1.3:  Molekularer Ablauf der Akrosomreaktion. 
Die Bindung des ZP3-Proteins [ZP3] an einen bislang unbekannten Rezeptor [ZP-R] in der Plasma-
membran [PM] des Spermiums induziert verschiedene sequentielle Signaltransduktionsprozesse, die eine 
Erhöhung des intrazellulären pH-Wertes sowie der Ca2+- und cAMP-Konzentration zur Folge haben (rot 
gekennzeichnet). Durch den Anstieg der intrazellulären cAMP- und Ca2+-Spiegel wird schließlich die 
Fusion zwischen Plasmamembran und äußerer akrosomaler Membran [ÄAM] induziert. Zum genauen 
Ablauf der verschiedenen Ca2+-Signale siehe Text. 

Der Anstieg der intrazellulären Ca2+-Konzentration nach der Zona-Bindung bewirkt 
außerdem eine Aktivierung der sAC [Litvin et al., 2003; Steegborn et al., 2005], woraus 
eine Erhöhung der intrazellulären cAMP-Konzentration der Spermienzelle resultiert. 

Das so generierte cAMP aktiviert anschließend das GEF-Protein (guanine nucleotide 

exchange factor) EPAC (exchange protein directly activated by cAMP), das im 
Zusammenspiel mit der erhöhten Ca2+-Konzentration die Exocytose des akrosomalen 
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Vesikels durch Ca2+-abhängige SNARE (soluble N-ethylmaleimide-sensitive-factor 

attachment receptor)-Proteine vermittelt [Ramalho-Santos et al., 2002; Tomes et al., 
2002; Tomes et al., 2005; Mayorga et al., 2007].  

Durch die Fusion der äußeren akrosomalen Membran mit der Plasmamembran kommt 
es zur Ausschüttung der akrosomalen, vorwiegend hydrolytischen Enzyme wie z. B. 
Akrosin [Adham et al., 1997; Tranter et al., 2000]. Diese freigesetzten Enzyme ver-

dauen die Zona pellucida partiell und ermöglichen es dem Spermium somit, diese zu 
durchqueren. Durch die Exocytose kommt es außerdem zur Freilegung der inneren 
akrosomalen Membran, wodurch die Verschmelzung von Spermium und Eizelle 

ermöglicht wird [Monroy, 1985; Florman et al., 2008; Wassarman und Litscher, 2008a]. 

1.1.3 Zusammensetzung des luminalen Milieus im weiblichen Genital-
trakt 

Die Tatsache, dass die vorangehend beschriebenen Prozesse u. a. durch Protonen, Bicar-

bonat und Progesteron im luminalen Milieu des weiblichen Genitaltrakts reguliert 
werden, macht deutlich, dass die Funktion von Spermien maßgeblich durch ihre extra-
zelluläre Umgebung beeinflusst wird [Suarez, 2007]. Um eine erfolgreiche Befruchtung 

zu ermöglichen, zeichnen sich deshalb sowohl der caudale Teil des Nebenhodens, in 
dem Spermien vor der Ejakulation gespeichert werden, als auch die verschiedenen 
Abschnitte des weiblichen Genitaltrakts durch eine charakteristische Zusammensetzung 

ihres luminalen Milieus aus. 
So wird im caudalen Teil des Nebenhodens durch einen niedrigen pH-Wert von 5,5 -
 6,8 [Acott und Carr, 1984; Carr und Acott, 1984; Shum et al., 2009], sehr niedrige 

Ca2+- (0,2 mM) und Na+-Konzentrationen (ca. 40 mM) [Levine und Marsh, 1971; 
Jenkins et al., 1980; Turner, 1991; Weissgerber et al., 2011] sowie eine geringe 
Bicarbonat-Konzentration (3 - 4 mM) [Levine und Marsh, 1971; Okamura et al., 1985] 

sichergestellt, dass die männlichen Keimzellen während der Speicherung in einem 
immotilen und inaktiven Zustand gehalten werden.  
Wenn die Spermien bei der Ejakulation mit Seminalplasma vermischt werden und in 

den weiblichen Genitaltrakt gelangen, ändert sich die Zusammensetzung ihrer extra-
zellulären Umgebung deutlich (Abbildung 1.4). Durch den pH-Wert des Seminal-
plasmas (pH = 6,7 - 7,4) [Suarez und Pacey, 2006] wird der niedrige vaginale pH-Wert 

(pH ≈ 5) nach der Ejakulation zunächst neutralisiert [Fox et al., 1973], wodurch der pH-
Wert der Spermien ansteigt und diese motil werden. Im Cervixmucus liegt der pH-Wert 
dann sogar bei bis 8 - 9, während er im Oviduct ca. 7 beträgt [Maas et al., 1977; Qi et 

al., 2007]. Neben dem pH-Wert sind aber auch die Ca2+- (ca. 2 mM) und Na+-Konzen-
trationen (140 - 150 mM) und die Bicarbonat-Konzentration, die im Oviduct ca. 20 mM 
beträgt [Maas et al., 1977], im weiblichen Genitaltrakt deutlich höher [Mann, 1964; 

Borland et al., 1980], was sowohl für die aktive Bewegung der Spermien als auch für 
ihre Kapazitierung essentiell ist.  
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Außerdem kommen die männlichen Keimzellen im weiblichen Genitaltrakt mit ver-
schiedenen Hormonen in Kontakt. Dazu gehört vor allem Progesteron, welches z. B. in 
follikulärer Flüssigkeit vorhanden ist und an chemotaktischen Prozessen beteiligt ist 

[Schuetz und Dubin, 1981; Westergaard et al., 1986; Osman et al., 1989; Frederick et 
al., 1991; Sun et al., 2005; Correia et al., 2007; Guidobaldi et al., 2008] und auch 
Östradiol [Westergaard et al., 1986; Frederick et al., 1991; Munuce et al., 2006], sowie 

verschiedene Prostaglandine (PGF2α, PGE2 und PG-I2) [Schuetz und Dubin, 1981; 
Espey, 2006].  

 

Abbildung 1.4:  Übersicht über charakteristische Bestandteile des extrazellulären Milieus im 
weiblichen Genitaltrakt. 

Gezeigt ist eine Übersicht über charakteristische Veränderungen im luminalen Milieu des weiblichen 
Genitaltrakts, denen Spermien auf ihrem Weg zur Eizelle begegnen (rote gestrichelte Linie) und die 
elementare Prozesse wie Motilität, Kapazitierung und Chemotaxis regulieren. Es sind die Bestandteile 
angegeben, die im jeweiligen Abschnitt des weiblichen Genitaltrakts ihre höchste Konzentration haben 
bzw. wichtige regulatorische Funktionen erfüllen. Zur Vereinfachung sind nur ausgewählte Komponenten 
des luminalen Milieus aufgeführt, zur detaillierten Erklärung siehe Text.  

Im weiblichen Genitaltrakt befinden sich aber auch andere Stoffe, oftmals eher 
hydrophilen Charakters, die distinkte Konzentrationsgradienten ausbilden und somit 

ebenfalls an der Regulation einzelner Spermienfunktionen beteiligt sein könnten. So 
sind im Lumen des weiblichen Genitaltrakts und in follikulärer Flüssigkeit eine Vielzahl 
essentieller und nicht-essentieller Aminosäuren gelöst [Harris et al., 2005; Jozwik et al., 

2006]. Interessanterweise weist dabei Glutamat im Vergleich zu anderen nach-
gewiesenen Aminosäuren deutliche Unterschiede in seiner Konzentrationsverteilung 
auf: Während das Konzentrationsmaximum der meisten detektierten Aminosäuren im 

weiblichen Genitaltrakt im Bereich des Eileiter liegt, ist die Konzentration von 
Glutamat im Uterus am höchsten (Abbildung 1.4), nimmt dann aber im Verlauf des 
Eileiters bis zur Ampulle, wo sich das befruchtungsfähige Ei befindet, kontinuierlich ab 

[Harris et al., 2005].  
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Auch Kohlenhydrate und Metabolite des Kohlenhydratstoffwechsels, wie Glucose, 
Lactat und Pyruvat, konnten in follikulärer Flüssigkeit und im Eileiter in unterschied-
lichen Konzentrationen nachgewiesen werden [Leese et al., 1981; Harris et al., 2005]. 

Dabei ist z. B. bei weiblichen Mäusen die Konzentration von Lactat und Pyruvat in 
follikulärer Flüssigkeit höher als im Oviduct und Uterus, während die Glucose-Konzen-
tration im Oviduct doppelt so hoch ist wie in follikulärer Flüssigkeit [Harris et al., 

2005]. 
Weitere potentielle Liganden, die einzelne Spermienfunktionen beeinflussen könnten, 
stellen diverse im Seminalplasma und im weiblichen Genitaltrakt nachgewiesene 

Moleküle dar, wie Endocannabinoide [Schuel und Burkman, 2005; Kirichok et al., 
2006; El-Talatini et al., 2009], Katecholamine [Owman et al., 1986], Nucleoside 
[Fabiani und Ronquist, 1995; Schuh et al., 2006], sowie verschiedene Peptide und 

Proteine [Sundsfjord et al., 1989; Fraser et al., 2003; Suarez, 2008b; Aviles et al., 2010].  
Trotz dieser erstaunlichen Vielzahl chemischer Substanzen, die in der unmittelbaren 
extrazellulären Umgebung von Spermien identifiziert wurden, sind die Erkennungs-

moleküle auf der Spermienoberfläche, die diese verschiedenen pH-Werte, unterschied-
liche Ionenkonzentrationen oder Gradienten von Hormonen, Aminosäuren und Zuckern 
detektieren können, bislang jedoch nur wenig verstanden. Ebenfalls unklar ist, welche 

Signaltransduktionsmoleküle daran beteiligt sein könnten, die Aktivierung dieser 
Sensorproteine in eine zelluläre Antwort umzusetzen und damit die Interaktion 
zwischen Spermien und dem weiblichen Genitaltrakt zu vermitteln, die für eine 

erfolgreiche Befruchtung essentiell ist.  
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1.2 Chemische Sinnesorgane 

Der Detektion von chemischen Substanzen kommt vom Einzeller über Insekten, bis hin 
zu Säugern und schließlich dem Menschen eine zentrale Bedeutung zu. Säugetiere 

besitzen für diese elementare Aufgabe ganz unterschiedliche Sinnesorgane (Abbildung 
1.5), die vielfältige Funktionen wie die Nahrungserkennung und -bewertung, die 
Orientierung in der Umwelt, die Wahrnehmung von Artgenossen und/oder Feinden, 

sowie die Steuerung von Partnerwahl und Sexualverhalten erfüllen. 

 

Abbildung 1.5:  Übersicht über die chemosensorischen Organe einer Maus. 
Schematische Darstellung eines Längsschnitts durch den Kopf einer Maus. Farbig eingezeichnet sind die 
einzelnen chemosensorischen Organe mit den jeweils vorkommenden G Protein-gekoppelten Rezeptoren 
und möglichen Liganden. Modifiziert nach [Matsunami und Amrein, 2003]. 

Der Geschmackssinn übernimmt als ausgesprochener Nahsinn die Funktion, eine 
Qualitätsbeurteilung der inkorporierten Nahrung vorzunehmen. Die so genannten 

Geschmacksknospen, die auf der Zunge und auch im Rachenraum lokalisiert sind 
(Abbildung 1.5, rote Punkte), sind in der Lage, wasserlösliche Nahrungsbestandteile 
wie Zucker, Salze, Aminosäuren und Protonen zu erkennen; darüber hinaus werden 

auch bittere, meist giftige Geschmacksstoffe, die vorwiegend als lipophile Substanzen 
vorliegen, von Sinneszellen der Geschmacksknospen erkannt (siehe unten).  
Der Geruchssinn ist hingegen ein typischer Fernsinn und dient der Wahrnehmung vor-

nehmlich flüchtiger Substanzen in der Umgebung; diese flüchtigen Duftstoffe werden 
hauptsächlich durch chemosensorische Neurone im olfaktorischen Epithel der Nasen-
höhle registriert (Abbildung 1.5, blaue Markierung). Bemerkenswerterweise besitzen 

die meisten terrestrisch lebenden Säuger darüber hinaus ein zusätzliches Geruchsorgan, 
das so genannte Vomeronasalorgan (VNO) (Abbildung 1.5, grüne Markierung), 
welches darauf spezialisiert ist, Signalmoleküle von Artgenossen (Pheromone) zu 
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detektieren. Deshalb wird diesem sensorischen System, ähnlich wie dem Septalorgan 
und dem Grüneberg Ganglion (Abbildung 1.5, gelbe bzw. braune Markierung), eine 
zentrale Funktion bei der intraspezies-spezifischen Kommunikation zugeschrieben (zur 

Übersicht siehe [Brennan, 2010] und [Ma, 2010]). 
Obwohl sich die von den genannten Sinnesorganen detektierten Stoffe chemisch sehr 
unterscheiden, erfolgt die Erkennung in der Regel durch zwei unterschiedliche Familien 

von GPCRs, die sich vor allem in der Länge ihrer N-Termini unterscheiden. Die 
Bindung von lipophilen Substanzen, wie Duftstoffen, Bitterstoffen und manchen 
Pheromonen, erfolgt durch GPCRs, die sich durch eine relativ kurze N-terminale 

Domäne auszeichnen (Abbildung 1.5, OR, Tas2r bzw. V1R) [Mombaerts, 1999]. 
Wasserlösliche Liganden hingegen, wie beispielsweise MHC-Peptide mit 
Pheromoncharakter, Zucker, Aminosäuren oder auch süße Proteine, werden bevorzugt 

durch Vertreter der Familie C der GPCRs detektiert, wobei die Bindung der Liganden in 
diesen Fällen zumeist in der extrem langen N-terminalen Region stattfindet (Abbildung 
1.5, Tas1r, V2R) [Pin et al., 2003]. 

1.2.1 Funktion des Geschmackssinns 

Der Geschmackssinn dient der Detektion chemisch sehr unterschiedlicher Stoffe (siehe 
Abbildung 1.6) in unserer Nahrung, die die Geschmacksempfindungen süß, umami, 

salzig, bitter und sauer hervorrufen können [Yarmolinsky et al., 2009]. Seit kurzem 
wird zudem diskutiert, dass auch Fett eine eigene Geschmacksqualität darstellen könnte 
[Mattes, 2009]. Die Wahrnehmung dieser verschiedenen Geschmacksrichtungen dient 

der Identifizierung distinkter Nährstoffe, aber auch der Vermeidung der Inkorporation 
von toxischen bzw. unverdaulichen Substanzen in der Nahrung (zur Übersicht siehe 
[Chaudhari und Roper, 2010]) und stellt somit die Grundlage der qualitativen 

Bewertung von Nahrungsmitteln dar: So deuten der süße bzw. der umami-Geschmack 
von Kohlenhydrat- bzw. Protein-reicher Nahrung auf einen hohen Energiegehalt hin, 
während salzigen Substanzen eine Funktion zur Regulation des Elektrolythaushalts 

zugeschrieben wird. Ein bitterer oder saurer Geschmack wirkt hingegen überwiegend 
aversiv und warnt in der Regel vor toxischen Inhaltsstoffen bzw. schwer verdaulichen, 
unreifen oder gar verdorbenen Nahrungsmitteln [Chaudhari und Roper, 2010].  

1.2.2 Geschmacksstoffe 

Geschmacksstoffe, die durch die Sinneszellen der Zunge detektiert werden, reprä-
sentieren biophysikalisch sehr diverse Substanzen, deren chemische Struktur in 
Abbildung 1.6 exemplarisch dargestellt ist. Zwei der Hauptgeschmacksempfindungen 

werden durch Ionen ausgelöst: Der Geschmacksempfindung „sauer“ liegt die 
Erkennung von Protonen in Säure-haltiger Nahrung zu Grunde, während der 
Geschmackseindruck „salzig“ durch die Detektion von Natriumsalzen, z. B. Kochsalz 
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(NaCl), aber auch anderer Salze wie z. B. Kaliumchlorid ausgelöst wird (Abbildung 1.6 
[sauer] und [salzig] )[Lindemann, 1997; Lindemann, 2001].  
Die größte, sehr diverse Gruppe von Geschmacks-aktiven Substanzen stellen die 

zumeist toxischen bitteren Geschmacksstoffe dar. Typische Vertreter sind dabei 
chemische Substanzgruppen wie Alkaloide, Amide, Glycoside, Ester, Flavone, Harn-
stoffverbindungen, Lactone, N-heterozyklische Verbindungen, Peptide, Phenole, 

Terpene aber auch einige Metallsalze wie z. B. Magnesiumsulfat, das landläufig als 
Bittersalz bekannt ist (Abbildung 1.6 [bitter]) [Barratt-Fornell und Drewnowski, 2002; 
Meyerhof, 2005] 

 

Abbildung 1.6:  Typische Vertreter von Geschmacksstoffen der fünf Basisgeschmacksqualitäten 
süß, umami, salzig, sauer und bitter. 

Dargestellt ist die chemische Struktur einer exemplarischen Auswahl typischer Geschmacksstoffe der fünf 
Basisgeschmacksqualitäten. Zur detaillierten Beschreibung siehe 1.2.2. 

Als süß wahrgenommen werden hingegen verschiedene, meist stark hydrophile 

Substanzen wie Mono- und Disaccharide z. B. Glucose, Fructose, Saccharose, aber auch 
künstliche Süßstoffe wie Cyclamat, Saccharin, Acesulfam K und süß-schmeckende D-
Aminosäuren (Abbildung 1.6, [süß]) [Li et al., 2002; Nelson et al., 2002]. Die 

Geschmacksempfindung „süß“ kann außerdem durch einige pflanzliche Proteine wie 
Thaumatin [van der Wel und Loeve, 1972], Brazzein [Ming und Hellekant, 1994], 
Monellin [Morris und Cagan, 1972] und Neoculin [Shimizu-Ibuka et al., 2006] 

ausgelöst werden (zur Übersicht über die chemische Struktur süßer Liganden siehe auch 
[Behrens et al., 2011]). 
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Der umami-Geschmack wird beim Menschen durch L-Glutamat hervorgerufen 
(Abbildung 1.6 [umami]) [Li et al., 2002]; Mäuse detektieren hingegen fast alle L-
Aminosäuren als „umami“ [Nelson et al., 2002]. Interessanterweise wird die Wahr-

nehmung von L-Glutamat in Geschmackszellen der Zunge und auch in heterologen 
Expressionssystemen durch eine kombinatorische Gabe von 5´Ribonukleotiden wie 
Inosin-5´-monophosphat (IMP) oder Guanosin-5´-monophosphat (GMP), die in den 

verwendeten geringen Konzentrationen allein keine Geschmacksempfindung hervor-
rufen, stark potenziert (siehe auch 1.2.4.3) [Brand, 2000; Yamaguchi und Ninomiya, 
2000; Li et al., 2002; Nelson et al., 2002; Beauchamp, 2009]. 

1.2.3 Anatomischer Aufbau des Geschmackssystems 

Die Detektion von Geschmacksstoffen erfolgt in gustatorischen Sinneszellen, die vor-
wiegend auf der Zunge, aber auch am Gaumen und in der gesamten Mundhöhle zu 

finden sind. Die Sinneszellen der Zunge sind in Geschmackspapillen organisiert, die am 
Zungengrund (Wallpapille), am Zungenrand (Blätterpapille) oder über die gesamte 
Zungenoberfläche verteilt (Pilzpapillen) lokalisiert sind (Abbildung 1.7, [A]) [Hoon et 

al., 1999]. Ins Epithel dieser Geschmackspapillen eingebettet befinden sich einzelne, 
zwiebelförmige Geschmacksknospen, die aus circa 100 Zellen zusammengesetzt sind, 
und in denen lang gestreckte Geschmackssinneszellen auszumachen sind (Abbildung 

1.7 [B], gelbe, grüne und rote Zellen), die sich ca. alle 10 Tage aus rundlichen Basal-
zellen neu differenzieren (Abbildung 1.7 [B], graue Zellen) [Farbman, 1965].  

 

Abbildung 1.7:  Übersicht über das Geschmackssystem der Zunge. 
[A] zeigt eine schematische Übersicht über den Aufbau der Zunge und einzelner Geschmackspapillen. 
[B] stellt eine einzelne Geschmacksknospe grafisch dar. Die Zellen innerhalb der Geschmackspore 
können morphologisch in verschiedene Typen unterteilt werden: Die Sinneszellen vom Typ I (gelb), Typ II 
(grün) und Typ III (rot), sowie Basalzellen (Typ 4, grau). 
Modifiziert nach [Hoon et al., 1999] [A] bzw. [Behrens et al., 2011] [B]. 
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Die eigentliche Wahrnehmung der Geschmacksstoffe auf der Zunge erfolgt mit Hilfe 
mikrovillärer Fortsätze, die am apikalen Fortsatz der gustatorischen Sinneszellen 
lokalisiert sind. In kleinen Büscheln konzentriert, münden diese Mikrovilli in die 

Geschmackspore und erreichen so die Zungenoberfläche und damit die auf der Zunge 
befindlichen Geschmacksstoffe. 

1.2.4 Geschmacksrezeptormoleküle 

1.2.4.1 Salzig 
In Typ I Zellen der Geschmacksknospen (Abbildung 1.7 [B], gelbe Zellen) erfolgt die 
Wahrnehmung von Natriumchlorid [Vandenbeuch et al., 2008]. An der Detektion soll 
ein Amilorid-sensitiver Natrium-Kanal (epithelialer Natrium-Kanal [ENaC]) beteiligt 

sein (Abbildung 1.8 [A]), durch den Natrium-Ionen der Nahrung in die Zelle strömen 
und diese dann direkt depolarisieren [Heck et al., 1984; Lin et al., 1999; Lindemann, 
2001]. Diese Hypothese wird durch Untersuchungen an ENaC-defizienten Mäusen, die 

Einschränkungen in ihrer Salzwahrnehmung zeigen, unterstützt [Chandrashekar et al., 
2010]. Die Beteiligung eines TRPV-Kanals (transient receptor potential, vanniloid 

family), des TRPV1, an der Salzdetektion wird zusätzlich diskutiert [Lyall et al., 2004]. 

Die Relevanz dieses Kanalproteins ist allerdings unklar, da eine TRPV1-Deletion bei 
Mäusen nur geringe Effekte auf die Salzwahrnehmung zeigt [Ruiz et al., 2006; 
Treesukosol et al., 2007]. 

 

Abbildung 1.8:  Potentielle Rezeptormoleküle der Geschmacksqualitäten „salzig“ und „sauer“. 
[A] Der salzige Geschmack von Natriumchlorid wird wahrscheinlich durch einen ENaC vermittelt; eventuell 
könnte auch der TRPV1 an der Detektion von Na+ beteiligt sein. 
[B] Säure-haltige Nahrung führt zu einem Einstrom von Protonen durch einen bislang noch nicht 
identifizierten Ionenkanal oder Transporter [H+-Kanal]. Außerdem könnte ein Dimer aus PKD1L3 und 
PKD2L1 an der Detektion saurer Substanzen beteiligt sein. 

1.2.4.2 Sauer 
Saure Geschmacksstoffe werden in Typ III Geschmackszellen (Abbildung 1.7 [B], rote 
Zellen) detektiert [Tomchik et al., 2007]. Kürzlich konnten Hinweise darauf erbracht 

werden, dass Mitglieder der PKD-Familie (Polycystic kidney disease), die in diesen 
Zellen exprimiert werden, an der Detektion von Protonen beteiligt sein könnten [Huang 
et al., 2006; Ishimaru et al., 2006; LopezJimenez et al., 2006]: In Geschmackszellen, die 

Heterodimere aus den Subtypen PKD1L3 und PKD2L1 exprimieren (Abbildung 1.8 
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[B]), führt der Kontakt mit Säuren zu einer Depolarisation der innervierenden 
Geschmacksnerven [Kataoka et al., 2008; Ishimaru und Matsunami, 2009; Horio et al., 
2011]. Im heterologen Expressionssystem konnte ebenfalls eine Aktivierung des 

PKD1L3/PKD2L1 Dimers durch Protonen gezeigt werden [Ishimaru et al., 2006]. 
Allerdings können PKD1L3- und PKD2L1-defiziente Mäuse weiterhin saure 
Substanzen schmecken [Nelson et al., 2010] und zeigen nur eine leicht reduzierte 

Antwort auf saure Geschmacksstoffe [Horio et al., 2011]. Eine alleinige Erkennung 
saurer Substanzen durch das PKD-Dimer erscheint somit unwahrscheinlich. 
Als Kandidaten für die Detektion von Protonen werden auch ASIC-Kanäle (acid-

sensing ion channels) [Lindemann, 1996; Liu und Simon, 2001] und two pore domain 
Kalium-Kanäle, wie z. B. TASK-2, die durch intrazelluläre Ansäuerung moduliert 
werden [Lin et al., 2004; Richter et al., 2004; Shimada et al., 2006], diskutiert.  

Neuere elektrophysiologische Studien konnten hingegen belegen, dass bei Stimulation 
mit Säuren ein Einstrom von Protonen durch die apikale Membran von Sauer-
detektierenden Zellen erfolgt. Dieser depolarisierende Protonenstrom, der durch Zink-

Ionen blockierbar ist, soll dann durch Aktivierung spannungsabhängiger Kationen-
kanäle direkt ein Aktionspotential generieren können [Chang et al., 2010]. Die Identität 
des Kanals oder Transporters, der diesen direkten Protonen-Einstrom in die Zelle 

ermöglicht und für die Wahrnehmung saurer Substanzen elementar zu sein scheint, ist 
bislang aber unbekannt (siehe Abbildung 1.8 [B]) [Chang et al., 2010]. 

1.2.4.3 Geschmacksrezeptoren für „süß“, „umami“ und „bitter“ 
Während die Signaltransduktion von Salz– und Sauerreizen über apikal lokalisierte 

Ionenkanäle vermittelt wird (siehe oben, Abschnitte 1.2.4.1 und 1.2.4.2), erfolgt die 
Detektion von Süß- und Bitterstoffen sowie „umami“ durch GPCRs [Chandrashekar et 
al., 2000; Li et al., 2002; Nelson et al., 2002]. Die Rezeptoren und ihre G Protein-

gekoppelten Reaktionskaskaden werden in Typ II Zellen exprimiert (Abbildung 1.7 [B], 
grüne Zellen), welche deshalb auch als Rezeptorzellen bezeichnet werden [Chaudhari 
und Roper, 2010]. Die gustatorischen GPCRs (s. Abbildung 1.9) lassen sich in zwei 

Gruppen einteilen: Tas1-Rezeptoren, die für die Detektion der Geschmacksqualitäten 
süß und umami verantwortlich sind, und Tas2-Rezeptoren, die bittere Geschmacksstoffe 
erkennen [Li et al., 2002; Montmayeur und Matsunami, 2002] (s. auch Abbildung 1.9).  

Die Familie der Tas1-Rezeptoren, die aus den drei Rezeptorproteinen Tas1r1, Tas1r2 
und Tas1r3 besteht, gehört in die Superfamilie der Klasse C der GPCRs [Max et al., 
2001; Pin et al., 2003], die funktionelle Dimere bilden und ihre Liganden in der Venus-

Fliegenfallen-Struktur (venus flytrap [VFT]) ihres N-Terminus binden (Abbildung 1.9 
[A] und [B]) [Pin et al., 2004; Kniazeff et al., 2011]. 
Für die Detektion süßer Geschmacksstoffe ist ein heteromeres Dimer aus dem Tas1r2 

und dem Tas1r3 Protein verantwortlich [Morris und Cagan, 1972; Ming und Hellekant, 
1994; Kitagawa et al., 2001; Max et al., 2001; Montmayeur et al., 2001; Nelson et al., 
2001; Li et al., 2002; Nelson et al., 2002; Jiang et al., 2004; Xu et al., 2004; Shimizu-

Ibuka et al., 2006]. Die Erkennung von Zuckern und einigen künstlichen Süßstoffen 
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(z. B. Aspartam) durch dieses Dimer erfolgt, wie für Klasse C Rezeptoren üblich 
[Kniazeff et al., 2011], durch das VFT-Modul der Rezeptoren [Nie et al., 2005; 
Koizumi et al., 2007]. Andere süße Geschmacksstoffe werden hingegen in der Linker-

region des N-Terminus (Brazzein) oder in der Transmembranregion des Rezeptordimers 
gebunden [Jiang et al., 2004; Xu et al., 2004; Cui et al., 2006; Temussi, 2009]. Lactisol, 
das die Erkennung süßer Geschmacksstoffe am humanen Rezeptordimer inhibieren 

kann, interagiert ebenfalls mit den Transmembrandomänen des Tas1r3 Proteins [Xu et 
al., 2004]. 

 

Abbildung 1.9:  Schematische Übersicht über G Protein-gekoppelte Geschmacksrezeptoren und 
ihre möglichen Ligandenbindungsstellen. 

Dargestellt ist eine schematische Übersicht über Rezeptormoleküle der Zunge für süße [A], umami [B] und 
bittere Stimuli [C]. In diese Übersicht sind nachgewiesene und vermutete Bindungsstellen typischer 
Liganden eingezeichnet (modifiziert nach [Zhang et al., 2008] und [Behrens et al., 2011]). 

An der Geschmacksempfindung umami ist ein Heterodimer aus dem Tas1r1 und Tas1r3 
Rezeptor beteiligt, das L-Aminosäuren, wie z. B. L-Glutamat, in seiner VFT-Struktur 
binden kann [Li et al., 2002; Nelson et al., 2002]. Die Erkennung von Glutamat wird 

dabei durch IMP bzw. GMP potenziert [Nelson et al., 2002] (s. o.). Dieser positive 
synergistische Effekt von IMP ist wahrscheinlich darauf zurückzuführen, dass IMP an 
eine andere Bindestelle des VFT-Motivs bindet als Glutamat. Dabei soll IMP die 

geschlossene, aktive Konformation der „Venus-Fliegenfalle“, die durch die Bindung 
von Glutamat entsteht, stabilisieren und somit als positiver allosterischer Modulator 
wirken (Abbildung 1.9 [B]) [Zhang et al., 2008]. Ein solcher allosterischer 

Mechanismus wird auch für den Süßrezeptor [Servant et al., 2010] und andere Klasse C 
GPCRs diskutiert: So kann z. B. die Affinität des GABAB Rezeptors für GABA durch 
Ca2+ erhöht werden [Galvez et al., 2000; Jensen et al., 2001] und die Sensitivität des 

Calcium-sensing Rezeptors (CaSR) gegenüber seinem Liganden Ca2+ wird durch 
aromatische Aminosäuren potenziert [Conigrave et al., 2000].  
Beobachtungen, dass die Erkennung von Glutamat in Tas1r3-defizienten Mäusen nicht 

vollständig unterbleibt [Damak et al., 2003], führten zu der Hypothese, dass neben dem 
Tas1r1/Tas1r3 Dimer noch weitere Rezeptorproteine an der Wahrnehmung von Umami-
Stimuli beteiligt sind [Maruyama et al., 2006; Yasumatsu et al., 2009]. Dabei könnte es 

sich um, möglicherweise geschmacksspezifische, metabotrope Glutamatrezeptoren 
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handeln (mGluRs) [Lin und Kinnamon, 1999; Chaudhari et al., 2000; Toyono et al., 
2002; San Gabriel et al., 2009]. 
 

Im Gegensatz zu Tas1-Rezeptoren weisen Tas2-Rezeptoren, die die Erkennungs-
moleküle für bittere Geschmacksstoffe [Adler et al., 2000; Chandrashekar et al., 2000; 
Matsunami et al., 2000; Bufe et al., 2002; Shi et al., 2003; Meyerhof, 2005] 

repräsentieren, nur eine kurze N-terminale Domäne auf (Abbildung 1.9 [C]), so dass die 
Ligandenbindung wahrscheinlich durch Wechselwirkungen mit den Transmembran-
domänen erfolgt (Abbildung 1.9 [C]) [Mombaerts, 1999; Floriano et al., 2006; Biarnes 

et al., 2010; Brockhoff et al., 2010; Slack et al., 2010]. 
Für die meisten der 25 funktionellen humanen Tas2-Rezeptoren [Wu et al., 2005] 
konnte bereits mindestens ein aktivierender Ligand identifiziert werden. Bei diesen 

Untersuchungen zur Deorphanisierung wurde deutlich, dass einige der humanen Tas2-
Rezeptoren nur durch sehr wenige Bitterstoffe (2 - 4) aktiviert werden, während andere 
Tas2-Rezeptoren ein sehr viel breiteres Ligandenspektrum aufweisen [Meyerhof et al., 

2010]. Gleichzeitig konnte gezeigt werden, dass ein Bitterstoff auch mehrere Tas2-
Rezeptoren aktivieren kann. Die Co-Expression von 4 - 11 verschiedenen Rezeptoren in 
einer Zelle [Adler et al., 2000; Matsunami et al., 2000; Behrens et al., 2007] und die 

teils größeren Ligandenspektren der Rezeptoren ermöglichen demnach die Detektion 
einer enormen Vielfalt potentiell toxischer Substanzen [Drayna, 2005; Chaudhari und 
Roper, 2010]. Zusätzliche Variabilität in der Erkennung von Bittersubstanzen ergibt 

sich durch, bei Tas2-Rezeptoren häufig vorkommende, Polymorphismen [Drayna, 
2005], die sich beim Menschen z. B. in der sehr unterschiedlichen Empfindlichkeit 
gegenüber dem Bitterstoff Phenylthiocarbamid (PTC) wiederspiegeln [Kim et al., 

2003b; Bufe et al., 2005].  

1.2.4.4 Signaltransduktion von Tas1- und Tas2-Rezeptoren 
Obwohl die Rezeptoren der unterschiedlichen Geschmacksqualitäten in voneinander 
distinkten Zellpopulationen exprimiert werden [Nelson et al., 2001], weist die Signal-

transduktion der Tas1- und Tas2- Rezeptoren große Ähnlichkeit auf [Zhang et al., 
2003]. Die GPCRs aktivieren ein spezifisches trimeres G-Protein, das sich aus einer 
α-Untereinheit, zumeist α-Gustducin [McLaughlin et al., 1992; Wong et al., 1996], und 

den Untereinheiten β3 und γ13 bzw.  β1 und γ13 [Rossler et al., 2000; Huang et al., 2003] 
zusammensetzt. An der Signaltransduktion können aber auch andere α-Untereinheiten, 
wie α-Transducin [Ruiz-Avila et al., 1995; He et al., 2004], Gα14 [Tizzano et al., 2008] 

und andere Vertreter der Gαi/o Proteinfamilie beteiligt sein [Kusakabe et al., 1998; 
Caicedo et al., 2003; Kim et al., 2003a; Sainz et al., 2007; Stone et al., 2007; Tizzano et 
al., 2008]. 

In der konservierten Signaltransduktionskaskade (Abbildung 1.10) kommt es nach 
Bindung eines Liganden an die Geschmacksrezeptoren zu einem Austausch von GDP 
zu GTP an der α-Untereinheit und damit zu deren Aktivierung und Dissoziation vom 

βγ-Komplex. Dieser βγ-Komplex aktiviert eine Phospholipase Cβ2 (PLC) [Rossler et 
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al., 1998], die Phosphatidylinositol-4,5-bisphosphat (PIP2) zu Inositoltrisphosphat (IP3) 
und Diacylglycerol (DAG) spaltet und über eine Aktivierung des IP3-Rezeptors zu einer 
Freisetzung von Ca2+ aus dem endoplasmatischen Retikulum (ER) ins Cytosol führt 

[Clapp et al., 2001; Miyoshi et al., 2001; Hisatsune et al., 2007; Roper, 2007]. Diese 
Erhöhung der intrazellulären Ca2+-Konzentration resultiert in einer Aktivierung des 
TRPM5 (transient receptor potential, melastatin family member 5)-Kanals, der einen 

Einstrom von Kationen und damit die Depolarisation der Zelle vermittelt [Perez et al., 
2002; Hofmann et al., 2003; Liu und Liman, 2003; Prawitt et al., 2003; Zhang et al., 
2003; Zhang et al., 2007b]. In Folge des Anstiegs der intrazellulären Ca2+-

Konzentration und der Zelldepolarisation wird Adenosin-5´-triphosphat (ATP), das 
vermutlich als Transmitter wirkt, durch Pannexin-Hemikanäle freigesetzt [Huang et al., 
2007; Romanov et al., 2007; Huang und Roper, 2010; Murata et al., 2010]. 

Die dissoziierte α-Untereinheit Gustducin kann parallel dazu eine Phosphodiesterase 
(PDE) aktivieren und so den Abbau von zyklischen Nucleotiden induzieren (Abbildung 
1.10) [Clapp et al., 2001; Clapp et al., 2008]. Zusätzlich wird auch eine Beteiligung von 

Gαi Proteinen an einer solchen Verminderung des intrazellulären cAMP-Gehaltes in 
Geschmackssinneszellen diskutiert [Abaffy et al., 2003; Ozeck et al., 2004; Trubey et 
al., 2006; Kinnamon und Vandenbeuch, 2009].  

Da cAMP über eine Aktivierung von PKA zur Phosphorylierung und damit Inhibierung 
der PLCβ2 [Liu und Simon, 1996] und des IP3-Rezeptor [Giovannucci et al., 2000] 
führen kann, wird spekuliert, dass eine solche Reduzierung der intrazellulären cAMP-

Konzentration durch α-Gustducin daran beteiligt sein könnte, ein optimales Ca2+-Signal 
beim Erkennen eines Liganden durch die Zelle zu gewährleisten bzw. die Signaltrans-
duktion nach einer solchen Erkennung schnell wieder abzuschalten [Clapp et al., 2008; 

Kinnamon und Vandenbeuch, 2009].  

 

Abbildung 1.10:  Modell der Signaltransduktion von Tas1- und Tas2-Rezeptoren in Zungengewebe. 
Die Bindung eines Liganden an einen Geschmacksrezeptor [Tas1r bzw. Tas2r] resultiert in einer 
Aktivierung des heterotrimeren G Proteins, woraufhin α-Gustducin [α-Gus] vom βγ-Komplex dissoziiert und 
zur Stimulation einer Phosphodiesterase [PDE] führt, die cAMP zu AMP hydrolisiert. Der gleichzeitig frei-
gesetzte βγ-Komplex aktiviert eine Phospholipase C [PLC], die PIP2 spaltet, so dass die beiden second 
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messenger IP3 [IP3] und DAG [DAG] entstehen. IP3 bewirkt eine Aktivierung des IP3-Rezeptors in der 
Membran des endoplasmatischen Retikulums [ER], wodurch es zu einem Einstrom von Calcium-Ionen 
[Ca2+] ins Cytoplasma kommt. Durch eine anschließende Ca2+-vermittelte Aktivierung des TRPM5-Ionen-
kanals [TRPM5] kommt es im Folgenden zum Einstrom von Natrium-Ionen und so zur Depolarisation der 
Zelle. Modifiziert nach [Clapp et al., 2001]. 

1.2.4.5 Extra-orale Expression von Geschmacksrezeptoren und assoziierten Signal-
transduktionskomponenten 

Umfangreiche Untersuchungen der letzten Jahre haben gezeigt, dass sich G Protein-
gekoppelte Geschmacksrezeptoren und ihre Signaltransduktionsmoleküle nicht nur 

durch eine Expression in Geschmackssinneszellen der Zunge und der Mundhöhle, in 
denen sie ursprünglich entdeckt wurden, auszeichnen, sondern auch in chemo-
sensorischen Zellen anderer Organe zu finden sind.  

Eine solche extra-orale Expression von Geschmacksrezeptoren wurde im Gastro-
intestinaltrakt sowohl für Mitglieder der Tas1r- als auch der Tas2r-Familie nach-
gewiesen [Rozengurt, 2006]. So werden Tas1-Rezeptoren beispielsweise in chemo-

sensorischen Zellen der Schleimhaut des Dünndarms [Dyer et al., 2005; Rozengurt et 
al., 2006; Jang et al., 2007; Mace et al., 2007; Margolskee et al., 2007], aber auch im 
Magen und Dickdarm [Bezencon et al., 2007] exprimiert; für Tas2-Rezeptoren wurde 

bisher lediglich eine Expression im Darm beobachtet [Wu et al., 2002; Rozengurt et al., 
2006; Jeon et al., 2008; Janssen et al., 2011].  
Auch Geschmacksrezeptor-assoziierte Signaltransduktionsmoleküle konnten in 

sensorischen Zellen des Magens und des Dünndarms nachgewiesen werden, wie z. B. 
α-Gustducin [Wattel und Geuze, 1978; Trier et al., 1987; Hofer und Drenckhahn, 1992; 
Hofer et al., 1996; Hass et al., 2007; Sutherland et al., 2007; Hass et al., 2010], aber 

auch PLCβ2 und der TRPM5 Ionenkanal [Bezencon et al., 2007; Kaske et al., 2007; 
Widmayer et al., 2011]. 
Die funktionelle Rolle dieser Vielzahl „gustatorischer“ Markerproteine im Gastro-

intestinaltrakt wird jedoch erst langsam verstanden. So wird diskutiert, dass Tas1-
Rezeptoren in enteroendokrinen Zellen des Verdauungssystems als Glucose-Sensoren 
fungieren, die nach einer Aktivierung über assoziierte gustatorische Signaltrans-

duktionsmoleküle die Freisetzung von Hormonen wie GLP-1 (glucagon-like peptide) 
und GIP (glucose-dependent insulinotropic peptide) regulieren könnten [Jang et al., 
2007; Margolskee et al., 2007; Kokrashvili et al., 2009b]. Außerdem wird spekuliert, 

dass diese Geschmacksrezeptoren nach Bindung von Glucose auch direkt die apikale 
Glucose-Absorption von Zellen stimulieren könnten [Mace et al., 2007; Mace et al., 
2009].  

Die extra-orale Expression von Geschmacksrezeptoren ist allerdings nicht auf den 
Gastrointestinaltrakt beschränkt. So konnten Mitglieder der Tas1 und Tas2-Rezeptor-
familien und ihrer Signaltransduktionskomponenten auch in chemosensorischen Zellen 

der Atemwege und der Lunge nachgewiesen werden [Finger et al., 2003; Sbarbati et al., 
2004; Gulbransen und Finger, 2005; Kaske et al., 2007; Lin et al., 2008; Ohmoto et al., 
2008; Tizzano et al., 2011]. In glatten Muskelzellen der Atemwege, die Tas2-
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Rezeptoren exprimieren, konnte zudem kürzlich gezeigt werden, dass eine Stimulation 
mit Bitterrezeptoragonisten wie Chinin, Denatoniumbenzoat und Chloroquin zu einer 
Bronchodilatation führt [Deshpande et al., 2010]. Eine Expression von Tas1- und Tas2-

Rezeptoren kommt zudem auch im Gehirn vor [Ren et al., 2009; Singh et al., 2011]. 
Dabei wurden Tas1-Rezeptoren u. a. auch im Hypothalamus nachgewiesen [Ren et al., 
2009], einem Teil des Gehirns, der nicht nur an der Kontrolle des Glucose-Haushalts 

beteiligt ist, sondern dem auch eine zentrale Rolle bei der hormonellen Kontrolle der 
Spermiogenese im Hoden zukommt [Krsmanovic et al., 2009]. 
 

Interessanterweise konnten kürzlich auch Hinweise auf eine Expression von 
Geschmacksrezeptoren in männlichen Keimzellen gesammelt werden. So wurden 
mRNA-Transkripte des Tas1r3 in Hodengewebe nachgewiesen [Max et al., 2001; 

Kiuchi et al., 2006]; und auch für den Tas1r2 konnten durch LacZ-Färbungen an 
Hodengewebe einer transgenen Tas1r2 LacZ-Mauslinie Belege für eine Expression in 
Spermatogonien bzw. primären Spermatocyten gesammelt werden [Iwatsuki et al., 

2010]. Ebenfalls mit Hilfe transgener Mauslinien konnte die Expression des Bitter-
rezeptors Tas2r105 im murinen Hoden gezeigt werden. Zusätzlich zu diesen 
Nachweisen von RNA-Transkripten oder der Promotoraktivität von Geschmacks-

rezeptorgenen im Hoden durch andere Arbeitsgruppen, konnte ich im Rahmen meiner 
Diplomarbeit mit Hilfe verschiedener Antikörper gegen unterschiedliche Geschmacks-
rezeptoren zudem erste experimentelle Hinweise dafür sammeln, dass das Tas1r3 

Rezeptorprotein auch in reifen murinen und humanen Spermien exprimiert wird 
(Diplomarbeit Dorke Meyer, 2006, Philipps-Universität Marburg). Diese Befunde 
deuten insgesamt darauf hin, dass Geschmacksrezeptoren auch in Spermien, ähnlich wie 

in anderen extra-oralen Geweben, funktionell an der Detektion chemosensorischer 
Stimuli beteiligt sein könnten. 
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1.3 Zielsetzung 

Für die Aktivierung von Spermien und die Regulation der verschiedenen Aufgaben, die 
männliche Keimzellen bis zur eigentlichen Verschmelzung mit der Eizelle bewältigen 

müssen, ist das luminale Milieu des weiblichen Genitaltrakts, welches sich durch eine 
Vielzahl chemisch sehr diverser Liganden auszeichnet, essentiell. Doch trotz der 
elementaren Bedeutung der Wahrnehmung dieser extrazellulären Umgebung in den ver-

schiedenen Abschnitten des weiblichen Genitaltrakts sind die beteiligten Erkennungs-
moleküle auf der Spermienoberfläche und assoziierte Signaltransduktionskomponenten, 
die diese chemosensorischen Leistungen in eine distinkte zelluläre Antwort übersetzen, 

bislang nur wenig verstanden. 
Interessanterweise werden chemosensorische Rezeptormoleküle des Geschmackssytems 
nicht nur in Sinneszellen der Zunge, sondern in einer Vielzahl sensorischer Zellen in 

ganz unterschiedlichen extra-oralen Geweben exprimiert, wo sie bislang zumeist nicht 
näher geklärte chemosensorische Aufgaben erfüllen. Aufgrund ihres breiten Liganden-
spektrums, das nicht nur die Perzeption chemisch sehr diverser Stoffe ermöglicht, 

sondern sich auch partiell mit den von Spermien wahrzunehmen Liganden deckt, wie 
z. B. Zuckern, Aminosäuren, Proteinen und Änderungen im pH-Wert, kommen diese 
Rezeptoren als vielversprechende Kandidaten für die Detektion von Liganden im 

wässrigen Milieu des weiblichen Genitaltrakts in Betracht. Diese These scheint auch 
deshalb ein interessanter Ansatz zu sein, da die Aktivierung dieser Rezeptoren in 
Geschmackszellen zur Generierung von intrazellulären Botenstoffen wie cAMP und 

Ca2+ führt, zwei essentiellen Regulatoren der sekundären Reifung, Hyperaktivierung, 
Wegfindung und Akrosomreaktion von Spermien. 
 

Im Rahmen der vorliegenden Arbeit sollte deshalb mit Hilfe verschiedener molekular-
biologischer, biochemischer und zellbiologischer Methoden geprüft werden, ob 
Rezeptormoleküle des Geschmackssystems, wie GPCRs der Tas1- und Tas2-Familie, 

assoziierte Signaltransduktionsmoleküle wie α-Gustducin, sowie potentielle Protonen-
detektoren der Zunge (PKD2L1/PKD1L3) in männlichem murinem Keimdrüsengewebe 
und in reifen Spermien der Maus und des Menschen exprimiert werden. 

Um Hinweise auf die Funktion dieser Geschmacksrezeptoren in männlichen Keimzellen 
zu erhalten, sollten Stimulierungsexperimente an isolierten Mausspermien durchgeführt 
werden. Dabei sollte u. a. geprüft werden, ob eine Stimulation mit Geschmacksstoffen 

zu einer Veränderung der intrazellulären Konzentrationen von cAMP und Ca2+ führen 
kann, um so eine funktionelle Rolle z. B. bei der Wegfindung oder der Akrosom-
reaktion aufzudecken. Eine Beteiligung der Rezeptoren am Prozess der akrosomalen 

Exocytose sollte in experimentellen Ansätzen überprüft werden, in denen die Aus-
wirkungen einer Inkubation mit bekannten Geschmacksstoffen auf die Effizienz der 
Akrosomreaktion erfasst werden sollte. 
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Parallel zu diesen funktionellen Nachweisen der Geschmacksrezeptor-Expression in 
Spermien sollten Mausmodelle analysiert werden, die Gen-defizient für den umami-
Rezeptor (Tas1r1) bzw. einen Bitterrezeptor (Tas2r131) sind. Da in diesen Maus-

modellen eine Promotoraktivität der jeweiligen Geschmacksrezeptorgene die 
Expression fluoreszierender Proteine wie mCherry bzw. GFP induziert, sollten diese 
Tiere zunächst genutzt werden, um die Expression dieser beiden Geschmacksrezeptoren 

im männlichen Reproduktionsgewebe zu bestätigen. Um einen Einblick in die physio-
logische Funktion dieser ausgewählten Rezeptoren in Spermien zu erhalten, sollten die 
Knockin-Mäuse anschließend bezüglich ihres Reproduktionserfolges, aber auch in 

Hinblick auf distinkte Spermienfunktionen wie Motilität, Kapazitierung und Akrosom-
reaktion analysiert werden. 
 



 

2 Material 

2.1 Chemikalien 

Substanz  Hersteller 

Acesulfam K  Sigma-Aldrich, Deisenhofen 

Agar-Agar  Becton Dickinson (BD), Heidelberg 

Adenosin-5´-triphosphat (ATP)  Calbiochem, über Merck, Darmstadt 

Agarose   Carl Roth, Karlsruhe 

ε-Aminocapronsäure  Sigma-Aldrich, Deisenhofen 

Ampicillin-Natrium-Salz  Applichem, Darmstadt 

Ammoniumperoxidisulfat (APS)  Sigma-Aldrich, Deisenhofen 

Aprotinin  Sigma-Aldrich, Deisenhofen 

Bouin-Lösung  Carl Roth, Karlsruhe 

Bovines Serumalbumin (BSA)  Carl Roth, Karlsruhe 

5-Brom-4-chlor-3-indolyl-β-D-
galactopyranosid (X-Gal) 

 Fermentas, St. Leon-Rot 

Calcium-Ionophor A23187  Sigma-Aldrich, Deisenhofen 

Coomassieblau G250  Serva, Heidelberg 

Denatoniumbenzoat  Sigma-Aldrich, Deisenhofen 

desoxy-Nukleotid-5´-triphosphat (dNTPs)  Fermentas, St. Leon-Rot 

4´,6´-Diamidin-2´-phenylindol-
dihydrochlorid (DAPI) 

 Sigma-Aldrich, Deisenhofen 

Diethylpyrocarbonat (DEPC)  Sigma-Aldrich, Deisenhofen 

Dimethylsulfoxid (DMSO)  Sigma-Aldrich, Deisenhofen 

Dokumol Entwickler  Tetenal, Norderstedt 

Ethylendiamintetraessigsäure (EDTA)  Sigma-Aldrich, Deisenhofen 

Ethylendioxy-bis-(ethylennitrilo)-
tetraessigsäure (EGTA) 

 Carl Roth, Karlsruhe 

Einbettmedium für Gefrierschnitte  Leica, Nussloch 

Eindeckmedium (Dako Cytomation 
Fluorescent Mounting Medium) 

 Dako Cytomation, Hamburg 

Eosin Y-Lösung  Carl Roth, Karlsruhe 

Eukitt Eindeckmedium  Sigma-Aldrich, Deisenhofen 



28 Material 

Substanz  Hersteller 

Euparal  Carl Roth, Karlsruhe 

Ethidiumbromid  Sigma-Aldrich, Deisenhofen 

Fötales Kälberserum (FCS)  PAA, Pasching (Österreich) 

Formalin   Carl Roth, Karlsruhe 

Fura-2-AM  Sigma-Aldrich, Deisenhofen 

Hämalaun-Lösung  Carl Roth, Karlsruhe 

Hefeextrakt  DIFCO, Heidelberg 

Immersionsöl  Zeiss, Jena 

Inosin 5′-monophosphat (IMP)  Sigma-Aldrich, Deisenhofen 

Ionomycin  Sigma-Aldrich, Deisenhofen 

3-Isobutyl-1-methylxanthin (IBMX)  Sigma-Aldrich, Deisenhofen 

Isopropyl-thio-galactosid (IPTG)  Fermentas, St. Leon-Rot 

Kaisers Glyceringelatine  Merck, Darmstadt 

Lactat  Sigma-Aldrich, Deisenhofen 

Laminin  Sigma-Aldrich, Deisenhofen 

Luminol (3-Aminophtalhydrazid)  Sigma-Aldrich, Deisenhofen 

Mononatriumglutamat  Sigma-Aldrich, Deisenhofen 

Natriumdesoxycholat  Sigma-Aldrich, Deisenhofen 

Natriumhydrogencarbonat  Merck, Darmstadt 

normales Ziegenserum (NGS)  Invitrogen, Karlsruhe 

Sigma-Aldrich, Deisenhofen 

Para-Coumarinsäure   Sigma-Aldrich, Deisenhofen 

Paraformaldehydlösung, 16 %  Science Services, München 

Paraplast Plus  Carl Roth, Karlsruhe 

Perchlorsäure (PCA)  Sigma-Aldrich, Deisenhofen 

Percoll  Sigma-Aldrich, Deisenhofen 

Phenylmethylsulfonylfluorid (PMSF)  Sigma-Aldrich, Deisenhofen 

Pluronic F-127 (10 % in H2O)  Molecular Probes, Eugene (USA) 

Peanut agglutinin (PNA), Fluoreszein-
isothiocyanat (FITC)-gekoppelt 

 Sigma-Aldrich, Deisenhofen 

Peanut agglutinin (PNA), Tetramethyl-
rhodamin-isothiocyanat (TRITC)-
gekoppelt 

 Sigma-Aldrich, Deisenhofen 

Poly-L-Ornithin  Sigma-Aldrich, Deisenhofen 

Ponceau S-Lösung mit 3 % Trichlorsäure  Sigma-Aldrich, Deisenhofen 
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Substanz  Hersteller 

Propidiumiodid  Sigma-Aldrich, Deisenhofen 

Protease Inhibitor Cocktail Set III  Calbiochem, Bad Soden 

Protease Inhibitor Complete  Roche, Mannheim 

Proteinase K (recombinant, PCR Grade)  Roche, Mannheim 

Pyruvat  Sigma-Aldrich, Deisenhofen 

RNAse A (Typ II-A; R-5000)  Sigma-Aldrich, Deisenhofen 

Roti Blue-Färbelösung  Carl Roth, Karlsruhe 

Saccharin  Sigma-Aldrich, Deisenhofen 

SDS (Natriumdodecylsulfat)   Sigma-Aldrich, Deisenhofen 

Sigmacote  Sigma-Aldrich, Deisenhofen 

TAPS (C7H17NO6S)  Riedel-de Haen, Seelze 

TEMED (N,N,N´,N´-
Tetramethylethylendiamin) 

 Carl Roth, Karlsruhe 

Thaumatin  E. Tareilus, Unilever, Rotterdam, 
(Niederlande) 

TO-PRO-3  Invitrogen, Karlsruhe 

Triethanolamin  Sigma-Aldrich, Deisenhofen 

TriFast  Peqlab, Erlangen 

Trioctylamin  VWR, Ismaning 

Triton X-100  Sigma-Aldrich, Deisenhofen 

Trypton  Becton Dickinson (BD), Heidelberg 

Tween 20  Sigma-Aldrich, Deisenhofen 

Standardchemikalien wurden, sofern nicht anders angegeben, von Carl Roth, Karlsruhe, 
und Sigma-Aldrich, Deisenhofen, bezogen. 

2.2 Enzyme, Kits und Größenstandards 

Artikel  Hersteller 

Amplex Red Cholesterol Kit  Invitrogen, Karlsruhe 

cAMP EIA Kit (RPN2251)  GE Healthcare, München 

DNA-Größenstandard (100 bp und 1 kbp)  Fermentas, St. Leon-Rot 

DNase A  Fermentas, St. Leon-Rot 

DNase I  Sigma-Aldrich, Deisenhofen 

Dream Taq DNA Polymerase  Fermentas, St. Leon-Rot 

Klonierungskit (pGEM-T)  Promega, Mannheim 
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Artikel  Hersteller 

Nucleobond AX-100  Macherey Nagel, Düren 

NucleoSpin DNA-Säulen  Macherey Nagel, Düren 

NucleoSpin RNA II  Macherey Nagel, Düren 

Proteingrößenstandard  Fermentas, St. Leon-Rot 

Restriktionsenzyme  Fermentas, St. Leon-Rot 

RNAse Inhibitor  Invitrogen, Karlsruhe 

SuperScript III First-Strand Synthesis Kit  Invitrogen, Karlsruhe 

Testosteron EIA Kit (582701)  Cayman Chemicals, Ann Arbor 
(USA) 

Titanium Taq PCR Kit  Clontech, Mountain View (USA) 

Tunel Assay Kit (In Situ Cell Death Detection 
Kit, Fluorescein) 

 Roche, Mannheim 

2.3 Primer 

2.3.1 Primer für die RT-PCR 

Gen Accession 
Nummer 

Ann. 
Temp 

Produkt
-größe 

Sequenz 

 

β-Aktin  NM007393 60 °C 425 bp 5´ GGCTACAGCTTCACCACCAC 3´ 

5´ GAGTACTTGGCGTCAGGAGG 3´ 

L8 mouse NM 012053 60 °C 406 bp 
cDNA; 
631 bp 
genom. 

5´ CCTACGTGCTGTGGACTTCGC 3´ 

5´ TCTGTTGGCAGAGGAAATGACC 3´ 

Tas1r1 AY032623 61 °C 468 bp 5´ ACGGCCATGGCTATCACCTCTTCC 3´ 

5´ CGCCCAGCTGCCCGTAGTCA 3´ 

Tas1r2 A AY032622 61 °C 403 bp 5´ CTTTCGGGGGAGCGTGTGGTCTAC 3´ 

5´ ACGGGTGGAGGCCTATGGGTTTTT 3´ 

Tas1r2 B  AY032622 60 °C 851 bp 5´ CCTAACGAGACCAGCCTGAG 3´ 

5´ CGGCAGAAACAGGAGAAGAC 3´ 

Tas1r2 C  AY032622 60 °C 581 bp 5´ CCCCCAACAACACGGTCCCCA 3´ 

5´ GGGCCCGTGGTAACGCATCC 3´ 

Tas1r3 NM0311872 60 °C 510 bp 5´ TGAGCTGGGCAAACTGGCTA 3´ 

5´ TCTTGGCATTCCTTCCCAGG 3´ 

Tas2r102 NM_199153 50 °C 802 bp 5´ CATAGTGTTGTCAAACTTCTTGG 3´ 

5´ CAGCATACAAAGAGAAGTCTGC 3´ 
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Gen Accession 
Nummer 

Ann. 
Temp 

Produkt
-größe 

Sequenz 

 

Tas2r103 NM_ 
053211.1 

55 °C 281 bp 5´ ACACTCACCCCATTCGCTGTGTCT 3´ 

5´ CAGGAGTGGCCTGTGGGAAAAGC 3´ 

Tas2r104 NM_207011 55 °C 847 bp 5´ GCCACTAGTGAACTGGG 3´ 

5´ GCAGTGCCCTCATAGTGGCTTGC 3´ 

Tas2r105 NM_020501 55 °C 869 bp 5´ GCTGAGTGCGGCAGAAGGCATCC 3´ 

5´ CAAAGGCTTGCTTTAGCTGGCTG 3´ 

Tas2r106 BC107180 55 °C 921 bp 5´ GCTGACTGTAGCAGAAGGAATCC 3´ 

5´ CATGTCACTCTGACGTCCTTGTC 3´ 

Tas2r107 NM_199154 50 °C 839 bp 5´ AGGGGACACATATATTGCAC 3´ 

5´ TTGTCTCACAGCATTTTAG 3´ 

Tas2r108 NM_020502 55 °C 728 bp 5´ GACTTGGGTCAACAGTCGCAGA 3´ 

5´ CAGAATGTCCTGGAGGGTAAGC 3´ 

Tas2r109 NM_207017 55 °C 809 bp 5´ GGATTCACAGCCTTGGTGCACTG 3´ 

5´ GAGGCGTGTCTCAGCTTCCTGTC 3´ 

Tas2r110 NM_199155 55 °C 888 bp 5´ CTCACAGATAATAAGCACCAGTG 3´ 

5´ CATGGTGTCCATATCTTTGGATC 3´ 

Tas2r113 NM_207018 55 °C 818 bp 5´ GGTGGCAGTTCTACAGAGCACAC 3´ 

5´ CAGCATTTCCCAGAGCCCAGAC 3´ 

Tas2r114 NM_207019 50 °C 851 bp 5´ GGCATTGTAGGGAACACATTC 3´ 

5´ CCATTCTCACAGCACTTTAATAG 3´ 

Tas2r115 NM_207020 50 °C 909 bp 5´ GTGCTGTTCTACGTAGCATACTG 3´ 

5´ CACGCTTGCACCAATACTGTAGC 3´ 

Tas2r116a NM_053212 50 °C 846 bp 5´ GCAATGGATTCATAGCGGTGGTG 3´ 

5´ CTTTGTGCCTGCACCTCAGCCAC 3´ 

Tas2r116b NM_053212 50 °C 251 bp 5´ GAGATGCCAGCACTAAGGCCCAC 3´ 

5´ CAGGAGTGGCCTGTGGGAAAAGC 3´ 

Tas2r117 NM_207021 55 °C 802 bp 5´ GTCCTGGTCCACTGTATGGACTG 3´ 

5´ GCAGGCAGGCCTGTCTCAGCTTC 3´ 

Tas2r118 NM_207022 55 °C 886 bp 5´ GTGCCAACGCAAGTCACCATCTTC 3´ 

5´ CTGGGCTCCAGAACTGCAGCTTC 3´ 

Tas2r119 NM_020503 50 °C 957 bp 5´ GTCGTGGTAGTGCAGTTTTTAAC 3´ 

5´ GGCTTCTGAGCAGGATGTCTTG 3´ 

Tas2r120 NM_207023 55 °C 714 bp 5´ CACATGGTCATCATGACAGCAGAG3´ 

5´ CCTTCTGTAGACAGATCATTCTCC 3´ 

Tas2r121 BC104411 50 °C 842 bp 5´ TGGATTCATATGGTCGATAAAC 3´ 

5´ GCTTTTGCCCACATTTAAGATATG 3´ 
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Gen Accession 
Nummer 

Ann. 
Temp 

Produkt
-größe 

Sequenz 

 

Tas2r122 NM_0010391
28.1 

55 °C 631 bp 5´ AGCCTGTACAACGTGCATCAGTGT 3´ 

5´ ACCTCCACAATGACACACCAGC3´ 

Tas2r123 NM_207025 50 °C 917 bp 5´ CGGGAATCTTAGGACATGGATTC 3´ 

5´ GTCCATATCTTTGGACTGGCAC 3´ 

Tas2r124 NM_207026 55 °C 631 bp 5´ CTAGCCACTTCAGTCTCTGGCTTG 3´ 

5´ CTACATCCCAGCTGCCTCATTACC 3´ 

Tas2r125 NM_207027 50 °C 822 bp 5´ GGAATATTGCAAATGGATTCATAG 3´ 

5´ CATCCGTACATCTTTGGACTTGC 3´ 

Tas2r126 NM_207028 50 °C 842 bp 5´ GGATCCTGGCCAACGGCTTCATTG 3´ 

5´ CAGGAGTAGCTGCCTGAAGGTGC 3´ 

Tas2r129 NM_207029 55 °C 840 bp 5´ GGATTCATAGCTCTGGTGAACTGC 3´ 

5´ CCTCTGCTTCAGCCACGATAGCAC 3´ 

Tas2r130 NM_199156 50 °C 721 bp 5´ GGCTGGATGAAGAATAGGAAG 3´ 

5´ CTATCAGCTCACCCCATATTAC 3´ 

Tas2r131 NM_207030 55 °C 552 bp 5´ CATTTCCCATCCCCTTTTC 3´ 

5´ GCAGGATCCTCATTGCTCTC 3´ 

Tas2r134 NM_199158 50 °C 853 bp 5´ GTATGCAGTCTCTAGCTGCTTTG 3´ 

5´ GATCTGGGAATACAAAGGTCTGG 3´ 

Tas2r135 NM_199159 50 °C 899 bp 5´ GGGACCCATCATGTCCACAGGAG 3´ 

5´ GTATCACTGTGCACAGATGAATC 3´ 

Tas2r136 NM_181276 50 °C 959 bp 5´ CACAGCCAGTGACACAACAGCTCA3´ 

5´ CAGCCAGAACCTTGCTCTCACCTG 3´ 

Tas2r137 NM_0010253
85 

50 °C 984 bp 5´ CAGAACAAGCAAGGATCAGGGTG 3´ 

5´ GAAGCAGAGGGTCCCTTAGATCC 3´ 

Tas2r138 NM_0010014
51 

50 °C 993 bp 5´ GCTGAGTCTGACTCCTGTCTTAAC 3´ 

5´ CAGAGTGTCCTGGGAGGAACCTTG 3´ 

Tas2r139 NM_181275 55 °C 863 bp 5´ CACTTGTGGCCACTGAGTGCACC 3´ 

5´ CTGAAGATGCTTCCATGTTCTTC 3´ 

Tas2r140 NM_021562 55 °C 873 bp 5´ GGAAATGGATTCATAGCTGTGGTG 3´ 

5´ CTAAGGACCTGGGAGTTCTGCAGC 3´ 

Tas2r143 NM_0010014
52 

55 °C 822 bp 5´ GCCTCTATGTTGCAGAATGGCTTC 3´ 

5´ CCTCATCTTCAGGGCCTTTCTCAG 3´ 

Tas2r144 NM_0010014
53 

55 °C 855 bp 5´ CGTCATTTGTTGGCATCATTGGC 3´ 

5´ GGTGCTGAAACCGCCTCCAGGCTC 3´ 

Bei den Rezeptoren der Tas2-Familie stellt die angegebene Temperatur die niedrigste 
Annealing-Temperatur der durchgeführten Touchdown-PCR (siehe Abschnitt 3.1.3.2) 

dar.  
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2.3.2 Genotypisierungsprimer 

Allel Produkt-
größe 

Sequenz 

Gustducin   

Gus WT 589 bp 5´ GAGCAAATCAACTGCCCAGC 3´ 

  5´ CCAACTCTGCCAGCTTGTTCC 3´ 

Gus KO (Neo) ca. 500 bp 5´ CGGGAGCGGCGATACCGTAAAGC 3´ 

  5´ GAAGCGGGAAGGGACTGGCTGCTA 3´ 

Tas1r1 mCherry   

Tas1r1 WT 711 bp 5´ GAATCCACCTGGTTTCCATCCACGTC 3´ 

  5´ CTCTCAGGGTGACTTCAGTCTTTAGAGATGG 3´ 

mCherry Ki 462 bp 5´ GAATCCACCTGGTTTCCATCCACGTC 3´ 

  5´ GTTGTTGGGGCACTCCATGTTGCT 3´ 

Tas2r131 GFP   

Tas2r131 WT 455 bp 5´ GCACACAAGTGATGATGTGGGCATAGAG 3´ 

  5´ GTTCTTGACCCAGTCAGAGCAGTTTGC 3´ 

GFP Ki 368 bp 5´ AAGTACCCCGAGGACATCAGCGACTTCTTC 3´ 

  5´ ATGAAGTGGTACTCGGGGAAGTCCTTCACC 3´ 

Die verwendeten Primer wurden von den Firmen Metabion (Planegg-Martinsried) und 
Thermo Electron (Karlsruhe) synthetisiert. Primer gegen Bitterrezeptoren wurden 
freundlicherweise von Dr. Karin Schwarzenbacher und Dr. Nicole Hass (AG Prof. H. 

Breer, Universität Stuttgart Hohenheim) zur Verfügung gestellt. 

2.4 Antikörper 

2.4.1 Primärantikörper 

Antigen 

(AK-Name) 

Donor-
spezies 

Verdünnung Herkunft  

IHC/ICC WB 

DsRed Kaninchen 1 : 200 1 : 2000 Invitrogen, Karlsruhe 

Flag-Tag Maus  1 : 2000 Sigma-Aldrich, Deisenhofen 

Gustducin  
(Gustducin H) 

Kaninchen 1 : 500 1 : 2000 AG Prof. H. Breer, 
Universität Hohenheim 

Gustducin 
(Gustducin S) 

Kaninchen 1 : 500 1 : 2000 Santa Cruz, Heidelberg 

HSV-Tag  Maus 1 : 2000 1 : 10000 Novagen, Wisconsin (USA) 
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Antigen 

(AK-Name) 

Donor-
spezies 

Verdünnung Herkunft  

IHC/ICC WB 

PKD2L1 
(PKD2L1 M) 

Kaninchen 1 : 100 - 1 : 500 1 : 2000 Prof. H. Matsunami, Duke 
University, Durham (USA) 

PKD2L1 
(PKD2L1 Z) 

Kaninchen 1 : 50 - 1 : 200 1 : 2000 Prof. C. Zuker, Columbia 
University, New York (USA)  

Phosphotyrosin Maus - 1 : 1500 Millipore, Schwalbach/Ts. 

Tas1r1, human 
(Tas1r1 A) 

Kaninchen 1 : 50 - 1 : 200 1 : 1000 Acris, Hiddenhausen 

Tas1r1, human Kaninchen 1 : 100 - Genetex, Irvine (USA) 

Tas1r2, human Kaninchen 1 : 50 - 1 : 200 1 : 1000 Acris, Hiddenhausen 

Tas1r2, human Kaninchen 1 : 100 - Genetex, Irvine (USA) 

Tas1r3, human 
(Tas1r3 hA) 

Kaninchen 1 : 50 - 1 : 200 1 : 1000 Acris, Hiddenhausen 

Tas1r3, human 
(Tas1r3 hM) 

Kaninchen 1 : 100 1 : 500 Prof. R. Margolskee, 
Monell Chemical Senses 
Center, Philadelphia (USA) 

Tas1r3, human Kaninchen 1 : 100 - Genetex, Irvine (USA) 

Tas1r1, murin 
(Tas1r1 SC) 

Ziege 1 : 100 - 1 : 200  - Santa Cruz, Heidelberg 

Tas1r2, murin 
Tas1r2 (SC) 

Ziege 1 : 100 - 1 : 200  - Santa Cruz, Heidelberg 

Tas1r3, murin 
(Tas1r3 SC) 

Ziege 1 : 100 - 1 : 200  - Santa Cruz, Heidelberg 

Tas1r3, murin 
(Tas1r3 A) 

Kaninchen 1 : 200 - 1 : 500  1 : 1000 Abcam, Cambridge 
(Großbritannien) 

Tas1r3, murin 
(Tas1r3 M) 

Kaninchen 1 : 200 - 1 : 500 1 : 1000 Prof. R. Margolskee,  
Monell Chemical Senses 
Center, Philadelphia (USA) 

Tas1r3, Ratte 

(Tas1r3 R) 

Kaninchen 1 : 200 - 1 : 500 - Prof. D. Reed und J. Egan,  
Monell Chemical Senses 
Center, Philadelphia (USA) 

TR11 Kaninchen 1 : 100 -  Biotrend, Köln 

TR21 Kaninchen 1 : 100 -  Biotrend, Köln 

Tas2r138 Kaninchen 1 : 50 - 1 : 200 1 : 2000 Santa Cruz, Heidelberg 
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2.4.2 Sekundärantikörper 

Antikörper Donor-
spezies 

Verdünnung Hersteller 

IHC/ICC WB 

anti-Kaninchen IgG, 
Peroxidase-gekoppelt 

Ziege  1 : 7500  Bio-Rad, München  

anti-Kaninchen IgG, 
FITC-gekoppelt 

Ziege 1 : 750  Sigma-Aldrich, Deisenhofen 

anti-Kaninchen IgG, 
Alexa Fluor 546-
gekoppelt 

Esel 1 : 500  Invitrogen, Karlsruhe 

anti-Maus IgG, FITC-
gekoppelt 

Ziege 1 : 750  Sigma-Aldrich, Deisenhofen 

anti-Maus IgG, 
Peroxidase-gekoppelt 

Schaf  1 : 3000 Amersham Biosciences 
Europe, Freiburg 

anti-Ziege IgG, 
Peroxidase-gekoppelt 

Esel  1 : 3000 Santa Cruz, Heidelberg 

anti-Ziege IgG, FITC-
gekoppelt 

Kaninchen 1 : 500  Acris, Hiddenhausen 

2.5 Bakterienstämme, Plasmide, Zelllinien 

Artikel  Herkunft 

Bakterienstämme   

E. coli XL1-blue  AG Prof. Dr. Röhm, 
Institut für Physiologische Chemie, 
Philipps-Universität Marburg 

Plasmide   

Plasmid (pGEM-T)  Promega, Mannheim 

pcDNA5-hTAS1R1 FRT TO PM  AG Prof. Dr. W. Meyerhof,  
Deutsches Institut für Ernährungs-
forschung (DIfE), Potsdam 

pcDNA5-hTAS1R2 FRT TO PM  AG Prof. Dr. W. Meyerhof, (DIfE) 

pcDNA5-hTAS1R1 FRT TO PM  AG Prof. Dr. W. Meyerhof, (DIfE) 

pcDNA5-rT1R2-HSV FRT TO PM  AG Prof. Dr. W. Meyerhof, (DIfE) 

pcDNA5-rT1R3-HSV FRT TO PM  AG Prof. Dr. W. Meyerhof, (DIfE) 

pcDNA3-rTRX-HSV  AG Prof. Dr. H. Schmale, Universitäts-
klinikum Hamburg-Eppendorf, Hamburg 
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Artikel  Herkunft 

Zellen   

Hek293 Flip in TRex  AG Prof. Dr. W. Meyerhof, (DIfE) 

HEK293 Flip in TRex mit 
pcDNA5 G15Gi3 FRT TO PM 
pcDNA3 rT1R3-HSV 

 AG Prof. Dr. W. Meyerhof, (DIfE) 

HEK293 Flip in TRex mit  
pcDNA3 hTAS1R1 FRT TO HSV 

 AG Prof. Dr. W. Meyerhof, (DIfE) 

HEK293 Flip in TRex mit  
pcDNA3 hTAS1R3 FRT TO HSV 

 AG Prof. Dr. W. Meyerhof, (DIfE) 

2.6 Zellkultur 

Artikel  Hersteller 

Metafectene  Biontex, München 

Medien, FCS, PBS, Trypsin  PAA Laboratories, Pasching (Österreich) 

Penicillin/Streptomycin  PAA Laboratories, Pasching (Österreich) 

Pipetten  Sarstedt, Nümbrecht  

Zellkulturflaschen  Sarstedt, Nümbrecht 

2.7 Puffer 

Standardpuffer  Standardpuffer 

LB Medium (1 l) 

10 g Trypton 

5 g Hefeextrakt 

10 g NaCl 

pH 7,0 

 

LB/Ampicillin Agar (1 l) 

10 g Trypton 

5 g Hefeextrakt 

10 g NaCl 

20 g Agar 

nach dem Abkühlen auf 55 °C wurden  
100 µg/ml Ampicillin hinzugeben 

 

 TAE 

40 mM Tris 

20 mM Essigsäure 

2 mM EDTA 

pH  8,3 

 

TBST 

10 mM Tris 

150 mM NaCl 

0,05 % Tween 20 (v/v) 

pH 7,4 
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Standardpuffer  Standardpuffer 

PBS 

150 mM NaCl 

1,4 mM K2HPO4 

8 mM Na2HPO4 pH 7,4 

 Probenpuffer für Agarosegel (6 x) 

0,25 % Bromphenolblau 

40 % Glycerin, in 1 x TAE-Puffer 

 

 

Puffer für die Proteinbiochemie   

Anodenpuffer I  

300 mM Tris 

20 % Methanol (v/v) 

 

Anodenpuffer II  
25 mM Tris 
20 % Methanol (v/v)  

 

Bradford-Stammlösung 

0,1 % Coomassieblau G250 (w/v) 

in Ethanol 

 

Bradford-Reagenz 

5 % Bradford Stammlösung (v/v) 

8,5 % Phosphorsäure (v/v) 

 

Citratpuffer 

100 mM Natriumcitrat 

100 mM Zitronensäure 

 

ECL-Reagenz 

ECL Lösung 1 : ECL Lösung 2 (1:1) 

 

ECL-Lösung 1 

1 % Luminol-Stocklösung 

0,44 % Stabilisator Stocklösung  

100 mM Tris/HCl 

pH 8,5 

 

ECL-Lösung 2  

0,018 % H2O2 

100 mM Tris/HCl 

pH 8,5 

 

 Homogenisierungspuffer 

10 mM Tris 

3 mM MgCl2  

2 mM EGTA 

pH 7,4 

 

Kathodenpuffer 

40 mM ε-Aminocapronsäure 

20 % Methanol (v/v) 

 

Natriumphosphatpuffer 

100 mM Na2HPO/NaH2PO4 

pH 7,4 

 

Probenpuffer für SDS-PAGE (4 x) 

250 mM Tris/HCl, pH 6,8 

0,08 % Bromphenolblau 

8 % SDS 

20 % Glycerin 

10 % β-Mercaptoethanol 

 

Sammelgelpuffer (4 x) 

500 mM Tris/HCl 

0,4 % SDS 

pH 6,8 

 

SDS-Laufpuffer 

25 mM Tris  

0,1 % SDS  

190 mM Glycin 

 

Trenngelpuffer (4 x) 

1,5 M Tris/HCl 

0,4 % SDS, pH 8,8 
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Puffer für die Proteinbiochemie   

 

Luminol-Stocklösung 

444 mg Luminol in 10 ml DMSO 

 

Stabilisator-Lösung 

0,15 g ε-Aminocapronsäure  
in 10 ml DMSO 

 

Puffer für reproduktionsbiologische Techniken   

HS Stammlösung 

270 mM NaCl 

10 mM KCl 

2 mM MgSO4  

4 mM CaCl2 

 

HS Puffer 

135 mM NaCl (HS Stammlösung 1:2) 

5 mM KCl (HS Stammlösung 1:2) 

1 mM MgSO4 (HS Stammlösung 1:2) 

2 mM CaCl2 (HS Stammlösung 1:2) 

5 mM Glukose 

30 mM HEPES (1 M Stock, pH 7,4) 

10 mM Lactat (60 % w/w Sirup) 

1 mM Pyruvat 

pH 7,4  

 

HS+ (HS/NaHCO3) 

HS Puffer 

+ 15 mM NaHCO3 (Bicarbonat) 

 

Kapazitierungspuffer (HS/NaHCO3/BSA) 

HS Puffer 

+ 15 mM NaHCO3 (Bicarbonat) 

+ 0,5 % BSA 

 

HB Medium  

150 mM NaCl 

25 mM Triethanolamin 

1 mM MgCl2 

1 mM CaCl2 

pH 8,5 

 HTF Puffer 

100 mM NaCl 

5 mM KCl 

0,2 mM MgSO4 

5 mM CaCl2 (HS Stammlösung 1:2) 

3 mM Glukose 

18 mM Lactat (60 % w/w Sirup) 

0,34 mM Pyruvat 

0,2 mM Peniccilin G 

70 µM Streptomycin 

25 mM NaHCO3 

0,4 % BSA 

0,0002 % Phenolrot 

 

Coomassieblau-Färbelösung 

0,04 % Coomassieblau G250 

50 % Methanol 

10 % Essigsäure 

40 % H2O 

 

Fixierungspuffer Coomassiefärbung 

20 mM Na2HPO4 

150 mM NaCl 

7,5 % Formaldehyd 

 

Waschpuffer Coomassiefärbung 

100 mM Ammoniumacetat 

pH 9,0 
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2.8 Gebrauchswaren 

Artikel  Hersteller 

Färbeeinsatz  Hartenstein, Würzburg 

Fettstift (DakoCytomation Pen)  Dako Cytomation, Hamburg 

Elektroden Papier Novablot  GE Healthcare, München 

Folie für Western Blot Analysen, (PE-
Schlauchfolie, 0,2 mm dick) 

 Rische + Herfurth, Hamburg 

Glasdeckgläser  Menzel, Braunschweig 

Glasfärbekasten  Carl Roth, Karlsruhe 

Homogenisator  Kontes, New Jersey (USA) 

Metallfärbekasten  VWR, Darmstadt 

Nitrocellulose-Membran (Hybond extra)  GE Healthcare, München 

Objektträger für CASA (2x-CEL)  Hamilton Thorne Biosciences 
Beverly (USA) 

Objektträger (Super Frost Plus)  Menzel, Braunschweig 

Objektträger (Mattrand)  Menzel, Braunschweig 

Parafilm  Pechiney Plastic Packaging, 
Chicago (USA) 

Petrischalen  Sarstedt, Nümbrecht 

Pipettenspitzen (10 µl, 200 µl und 1000 µl)  Sarstedt, Nümbrecht 

Reaktionsgefäße (0,5 ml, 1,5 ml, 2 ml, 14 ml, 
15 ml und 50 ml) 

 Sarstedt, Nümbrecht 

UV-Filme (X-OMAT)  Kodak, Stuttgart  

2.9 Geräte 

Gerät  Hersteller 

Agarose-Gelelektrophorese-System  Peqlab, Erlangen 

Bakterien-Inkubator  Heraeus, Hanau 

Bakterien-Schüttler Orbital Shaker  Thermo Fisher Scientific, 
Dreieich 

Binokular  Olympus, Hamburg 

Calcium (Ca2+) Imaging System   

- Mikroskop IX70  Olympus, Hamburg 

- TILL Photometry System (Polychrome V)  T.I.L.L. Photonics, Martinsried 

- CCD Kamera (Ixon +)  Andor, Belfast (Nordirland) 
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Gerät  Hersteller 

Chemilumineszenz-System (Chemi-Smart)  Peqlab, Erlangen 

Cryostat (Leica CM 3050 S)  Leica Microsystems, Wetzlar 

Fluoreszenzmikroskop Axiovert 200M  Zeiss, Jena 

FLUOstar Omega  BMG LABTECH, Offenburg 

Gewebeeinbettautomat (VIP Vakuum 
Infiltrations Processor, Tissue-Tek) 

 Vogel, Gießen 

Gewebeeinbettsystem (EG 1150)  Leica Microsystems, Wetzlar 

Gewebeinfiltrationsautomat (TP1020)  Leica Microsystems, Wetzlar 

IVOS Sperm Analyzer   Hamilton Thorne Research, 
Beverly (USA) 

Kaltlichtquelle (KL 1500 compact)  Olympus, Hamburg 

Kamera, Axiocam MRC  Zeiss, Jena 

Kühlplatte für die Histologie  Leica Microsystems, Wetzlar 

Kühlzentrifuge mit Ausschwingrotor (5804R)  Eppendorf, Hamburg 

Lichtmikroskop  Olympus, Hamburg 

Magnetrührer (Barnstead Thermolyne)  Thermo Fisher Scientific, 
Dreieich 

Messkammer für Einzelzell-Calcium-
Messungen 

 Feinmechanikwerkstatt FB20 der 
Philipps-Universität Marburg 

Mikroskop, konfokal (LSM 510 Meta, Laser 
Scanning Microscope) 

 Zeiss, Jena 

Mikrowelle  Severin, Sundern 

pH Meter  Mettler-Toledo, Gießen 

Photometer (Biophotometer)  Eppendorf, Hamburg 

PCR-Maschine (96 Universal Gradient)  Peqlab, Erlangen 

PCR-Maschine (GeneAmp PCR System 2400)  Perkin Elmer, Wellesley (USA) 

Pipetten (10 µl, 20 µl, 200 µl, 1000 µl)  Gilson Middelton (USA); 
Peqlab, Erlangen 

Pipettierhilfen  Hirschmann Laborgeräte, 
Herrenberg 

Protein-Gelelektrophorese-System  Bio-Rad, München  

Rotationsmikrotom (Accu-Cut SRM 200)  Leica Microsystems, Wetzlar 

Schüttelheizblock (HTMR 131)  Peqlab, Erlangen 

Schüttelwasserbad (WBU 45)  Memmert, Schwabach 

Spannungsquelle (Power Pack 35/60 und 
EV231) 

 Peqlab, Erlangen 

Sterilbänke  Heraeus, Hanau 
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Gerät  Hersteller 

Taumler (Polymax)  Heidolph, Schwabach 

Tiefkühlschrank -80°C  New Brunswick Scientific 
(Eppendorf), Hamburg 

Ultraschallbad (Sonorex RK255)  Bandelin, Berlin 

Ultra-turrax  Ika, Staufen 

UV-Geldokumentations-System   Peqlab, Erlangen 

Vakuumzentrifuge (Speedvac)  Bachofer, Reutlingen 

Vortexer (MS2 Minishaker)  Ika, Staufen 

Waage  Kern, Balingen 

Wasserbad für die Histologie  Leica Microsystems, Wetzlar 

Western Blot Apparatur, Semi-Dry  Feinmechanikwerkstatt FB20 der 
Philipps-Universität Marburg 

Wippe (Duomax)  Heidolph, Schwabach 

Zellkultur-Inkubator  Thermo Fisher Scientific, 
Dreieich 

Zentrifugen (Biofuge Stratos, Biofuge Pico 17  
und Biofuge Fresco 21) 

 Heraeus, Hanau 
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2.10 Versuchstiere 

Spezies, Stamm  Herkunft 

Mäuse, C57BL/6, 129SV und Balb/C  Charles River Wiga Deutschland, 
Sulzfeld 

Janvier, St. Berthevin, Frankreich 

Tierzuchtanlage des  

Walther-Straub-Instituts, LMU 
München 

Ratten, Wistar  Fachbereich Medizin, Philipps-
Universität Marburg 

Gen-defiziente und genetisch modifizierte 
Mauslinien 

  

α-Gustducin Knockout   Prof. R. Margolskee, 
Monell Chemical Senses Center, 
Philadelphia (USA) 

Tas1r1BL-IRES-mCherry 

und Tas2r131BL-IRES-hrGFP 

 Dr. Anja Voigt 

AG Prof. Dr. W. Meyerhof,  
(DIFE), Potsdam 

 

AG Dr. Ulrich Boehm,  
Zentrum für Molekulare 
Neurobiologie [ZMNH], 
Hamburg 



 

3 Methoden 

3.1 Molekularbiologische Methoden 

3.1.1 Isolierung von RNA aus Geweben 

Zur Präparation von Gesamt-RNA wurden Mäusen nach zervikaler Dislokation die 
gewünschten Organe rasch entnommen und unverzüglich in flüssigem Stickstoff ein-
gefroren. Bis zur Isolierung der RNA wurden die Gewebe bei -70 °C gelagert. Die 

Isolierung von RNA erfolgte unter Verwendung von RNA-bindenden Säulen des 
NucleoSpin Systems (Macherey-Nagel). Dazu wurde das Gewebe zunächst in einen mit 
flüssigem Stickstoff vorgekühlten Mörser überführt und mit einem Pistill fein 

zermahlen. Um ein Erwärmen des Gewebes zu verhindern, wurde dieses dabei mit 
flüssigem Stickstoff gekühlt. Das zerkleinerte Gewebe wurde dann in den mit beta-
Mercaptoethanol versetzten Lysepuffer überführt und gründlich gemischt. Um Gewebs-

verluste beim Mörsern zu vermeiden wurden zur Gewinnung von RNA aus 
Geschmacksgewebe einzelne Wallpapillen (CV, Papilla circumvallate) mit einer 
Kapillare aus der Zunge ausgestanzt und direkt in den Lysepuffer überführt. Das 

Gewebe wurde dann im Puffer mit einem Reaktionsgefäß-Pistill homogenisiert und 
intensiv gemischt. Das jeweilige Homogenisat wurde anschließend durch eine Säule 
filtriert und zur Bindung auf die RNA-Säule gegeben. Nach einem Entsalzungsschritt, 

dem Verdau von genomischer DNA und mehreren Waschschritten (s. Protokoll des 
Herstellers) wurde die RNA mit 60 µl H2O eluiert und bis zur weiteren Verwendung bei 
-80 °C gelagert.  

3.1.2 Synthese von cDNA (complementary DNA)  

Die Methode der Reversen Transkriptase Polymerasekettenreaktion (RT-PCR) beruht 
auf der Generierung von cDNA durch Umschreiben aus mRNA mittels einer viralen 

reversen Transkriptase und einer anschließenden PCR [Buell et al., 1978]. Mit Hilfe der 
RT-PCR können sehr kleine Transkriptmengen einer bestimmten mRNA in 
verschiedenen Geweben nachgewiesen werden.  

Zur Generierung von cDNA wurde das SuperScript III First-Strand Synthesis System 
(Invitrogen) verwendet. Als Primer wurde ein Oligo(dT) Primer gewählt, der spezifisch 
an die Poly-A-Enden der mRNA bindet; als Template diente die Gesamt-RNA, die nach 

dem Protokoll in Abschnitt 3.1.1 isoliert wurde. Zunächst wurden 16 µl RNA mit 2 µl 
dNTP-Mix (10 mM) und 2 µl Oligo(dT) Primer (50 µM) gemischt und zur 
Denaturierung der RNA und des Primers fünf Minuten bei 65 °C inkubiert. Nach dem 
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Abkühlen der Proben auf 4 °C wurden diese mit 4 µl 10x RT-Puffer, 8 µl MgCl2 
(25 mM), 4 µl DTT (100 mM), 2 µl RNAse Inhibitor (RNAseOUT, 40 U/µl) und 2 µl 
reverser Transkriptase (SuperScript, 200 U/µl) versetzt. Die reverse Transkription 

erfolgte bei 50 °C für 50 Minuten und wurde durch eine fünfminütige Inkubation bei 
85 °C beendet, bevor die Proben auf 4 °C abgekühlt wurden. Die cDNA wurde 
anschließend bei -20 °C gelagert. In Kontrollansätzen (-RT) wurde statt des Trans-

kriptionsenzyms H2O eingesetzt. Um die Qualität der gewonnenen cDNA zu über-
prüfen, wurde eine Standard-PCR (siehe Abschnitt 3.1.3.1) mit Primern für das β-Aktin 
Gen oder das mitochondriale L8 Gen durchgeführt. 

3.1.3 Methoden der Polymerasekettenreaktion 

Die Polymerasekettenreaktion (PCR) dient der Amplifikation von spezifischen DNA-
Fragmenten [Saiki et al., 1985]. Ausgehend von einer Vorlagen-DNA (template) und 

unter Verwendung von sense und antisense Primern und dNTPs als Substrat, werden 
durch eine thermostabile Polymerase spezifische DNA-Fragmente amplifiziert.  

3.1.3.1 Standard-PCR an cDNA 
Aus der durch reverse Transkription gewonnenen cDNA wurden mittels PCR 

spezifische Bereiche amplifiziert, um das Vorkommen der entsprechenden mRNAs und 
damit der Genexpression in den Testgeweben nachzuweisen. Die Sequenzen aller 
verwendeten Primer sind in Abschnitt 2.3.1 aufgeführt. Für die PCR Reaktion wurden 

Primer, Puffer und Polymerase in folgenden Volumina eingesetzt: 2,5 µl zehnfach PCR-
Puffer, 0,5 µl dNTP Mix (10 mM), 0,3 µl Taq Polymerase (Dream Taq), 1 µl sense 

Primer (10 µM) und 1 µl antisense Primer (10 µM). Dem Reaktionsansatz wurde 1 µl 

cDNA als template bzw. 1 µl H2O als Kontrolle hinzugefügt und mit H2O auf 25 µl 
Gesamtvolumen aufgefüllt. Alternativ wurde das Titanium Taq PCR Kit (Clontech, 
Mountain View [USA]) nach Herstellerangaben verwendet. 

Die PCR Reaktion wurde unter folgenden Bedingungen durchgeführt: Initiale 
Denaturierung für 5 Minuten bei 94 °C; 35 Amplifikationszyklen: Denaturierung 
1 Minute bei 94 °C, Anlagerung der Primer (Annealing) für 1 Minute bei einer Primer-

abhängigen Temperatur (siehe Abschnitt 2.3.1), Elongation für 1 Minute bei 72 °C. 
Nach den Zyklen folgte eine finale Elongationsperiode bei 72 °C für 7 Minuten. Der 
Ansatz wurde anschließend auf 4 °C abgekühlt. Zur Analyse der PCR Produkte wurden 

die Amplifikationsprodukte in einem Agarosegel aufgetrennt (siehe Abschnitt 3.1.5). 

3.1.3.2 Touchdown PCR 
Zur Analyse der Expression von Bitterrezeptoren wurden „Touchdown PCRs“ 
durchgeführt. Dabei wurde zur Anlagerung der Primer zunächst eine höhere Temperatur 

gewählt, als für die spezifische Bindung des Primers an das DNA-Template notwendig 
ist. Durch ein schrittweises Herabsetzen der Annealing-Temperatur in den folgenden 
Zyklen (-1 °C pro Zyklus) wurde eine Anlagerung des Primers ermöglicht. So fand 



Methoden 45 

 

zunächst eine hochspezifische Amplifikation des Zielproduktes statt und Primerdimere 
und Artefakte wurden vermieden. Nachdem so in den ersten zehn Zyklen nur wenige, 
aber sehr spezifische Amplifikate synthetisiert wurden, schließt sich dann eine Standard 

PCR (siehe Abschnitt 3.1.3.1) mit der zuletzt erreichten niedrigsten Annealing-

Temperatur an. So werden vor allem die bereits vorhandenen hochspezifischen 
Produkte weiter amplifiziert, während unspezifische Produkte deutlich weniger stark 

amplifiziert werden. Durch Verwendung der Touchdown PCR ließen sich so auch 
geringe Mengen cDNA-Transkripts spezifisch amplifizieren, auch ohne dass die 
Annealing-Temperatur für jeden Primer einzeln optimiert werden muss [Don et al., 

1991]. 

3.1.4 Sequenzanalyse von Tas2-Rezeptoren 

Zur Darstellung des Verwandtschaftsgrades der murinen Tas2-Rezeptoren wurden die 

Sequenzen der Bitterrezeptoren (für Accession Nummern siehe 2.3.1) mit Hilfe des 
Computerprogramms ClustalW miteinander verglichen [Thompson et al., 1994; Larkin 
et al., 2007]. Aus dem so erhaltenen Alignment der 35 Tas2-Rezeptoren wurde im 

Programm Treeview (Roderic D. M. Page, Division of Environ-mental and Evolutionary 
Biology, Glasgow, [Schottland]) ein Dendrogramm erstellt, um die Verwandtschaft der 
Bitterrezeptoren graphisch darzustellen.  

3.1.5 Agarose-Gelelektrophorese  

Nukleinsäuremoleküle sind aufgrund ihrer negativ geladenen Phosphatgruppen Poly-
anionen, die im elektrischen Feld zur Anode wandern. Bei der Gelelektrophorese 
werden DNA-Moleküle in einer Agarose-Gelmatrix in einem elektrischen Feld der 

Größe nach aufgetrennt [Sharp et al., 1973]. Die Matrix bietet den kleineren Molekülen 
einen geringeren Widerstand als den größeren, so dass kleinere Moleküle schneller 
durch das Gel wandern als größere. 

Zur Auftrennung von DNA wurden Gele mit Agarosekonzentrationen von 1 - 1,5 % 
verwendet. Die Agarose wurde durch Aufkochen in TAE-Puffer gelöst, nach leichtem 
Abkühlen mit dem DNA-interkalierenden Farbstoff Ethidiumbromid (Endkonzentration 

0,25 µg/ml) versetzt und in einen mit Kämmen bestückten Gelschlitten gegossen. Nach 
dem Abkühlen und Erstarren des Gels wurde es in eine mit TAE-Puffer gefüllte 
Elektrophoresekammer eingehängt und mit den mit Ladepuffer versetzten Proben 

beladen. Die Auftrennung der DNA erfolgte bei einer Spannung von 80 V. Zur Größen-
bestimmung wurde ein 100 bp DNA-Marker auf eine separate Gelspur aufgetragen. 
Durch die Anregung mit UV-Licht (UV-Geldokumentationssystem, Peqlab, Erlangen) 

konnte anschließend die DNA im Gel visualisiert werden.  
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3.1.6 Aufreinigen von DNA aus einem Agarosegel  

Unter niederenergetischem UV-Licht wurden die DNA-Banden mit einem Skalpell aus 
dem Agarosegel ausgeschnitten. In die Spitze eines 1,5 ml Reaktionsgefäßes wurde mit 

einer Kanüle ein Loch gestoßen und das Gefäß in ein zweites Reaktionsgefäß gesetzt. In 
dieses einfache „Sieb“ wurde das Gelstück gelegt und die DNA durch fünfminütige 
Zentrifugation bei 3000 rcf in das untere Eppendorfgefäß eluiert. 

3.1.7 Ligation eines DNA-Fragments in einen Klonierungsvektor 

Zur Klonierung von aufgereinigten PCR-Fragmenten wurde das pGEM-T Kit 
(Promega) verwendet. Der im Kit enthaltene Vektor pGEM-T ist linear und hat an 
seinen Enden Thymidin-Überhänge. Die für die PCR verwendete Taq-Polymerase 

besitzt eine terminale Transferaseaktivität und erzeugt somit Adenosin-Überhänge an 
den 3´-Enden eines PCR-Produkts. Im Ligationsansatz kommt es zur unmittelbaren 
Nähe zwischen dem PCR-Produkt und dem Plasmidvektor, deren Überhänge sich 

mittels Wasserstoffbrücken komplementär paaren können. Die zugefügte T4 DNA-
Ligase verknüpft dann den Vektor und das PCR-Produkt kovalent.  
Für die Ligation wurde ein Gesamtansatz von 10 µl mit 1 µl pGEM-T Vector, 3 µl 

eluierter DNA, 5 µl zweifach Ligationspuffer und 1 µl T4 DNA-Ligase (Promega, 
Mannheim) hergestellt, der zur Ligation über Nacht bei 4 °C inkubiert wurde. 

3.1.8 Vermehrung und Aufreinigung von Plasmiden 

3.1.8.1 Herstellung chemisch kompetenter E. coli Bakterien 
Unter dem Einfluss niedriger Wachstumstemperatur und einer Behandlung mit MnCl2 
und CaCl2 wird bei E. coli Bakterien eine fehlerhafte Zellwand erzeugt. Dadurch 
werden die Bakterien in die Lage versetzt, freie DNA aus dem Medium aufzunehmen 

[Mandel und Higa, 1970]. 
Eine Kolonie des E. coli Stammes XL1-blue wurde von einer LB-Agar-Platte in 250 ml 
SOB Medium (2 % Trypton, 0,5 % Hefeextrakt, 10 mM NaCl, 2,5 mM KCl, 10 mM 

MgCl2, 10 mM MgSO4, pH 7,0) gegeben und bei 18 °C bis zu einer optischen Dichte 
von 0,6 bei 600 nm (OD600) vermehrt (logarithmische Wachstumsphase). Danach 
wurden die Bakterien für 10 Minuten auf Eis gekühlt, bevor sie 10 Minuten lang bei 

2500 rcf bei 4 °C sedimentiert wurden. Das Pellet wurde im Anschluss in 80 ml 
eiskaltem Transformationspuffer (10 mM Hepes, 15 mM CaCl2, 250 mM KCl, 55 mM 
MnCl2, pH 6,7) resuspendiert und 10 Minuten bei 4 °C inkubiert. Nach einer wieder-

holten Zentrifugation wurden die Bakterien in 20 ml mit 7 % DMSO versetztem Trans-
formationspuffer aufgenommen, in 200 µl Aliquots in flüssigem Stickstoff schock-
gefroren und anschließend bei -80 °C gelagert. 
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3.1.8.2 Transformation chemisch kompetenter E. coli Bakterien 
Um eine größere Menge eines rekombinanten Plasmids zu erhalten, wurde das Plasmid 
in kompetente Bakterien eingebracht und dort vermehrt. Hierfür wurde die Hitzeschock-
Methode [Inoue et al., 1990] verwendet: Durch das Erhitzen der Bakterien wird deren 

Membran fluider, und die DNA kann vom Bakterium aufgenommen werden. Die 
anschließende Selektion der transformierten Bakterien erfolgt mittels eines auf dem 
Plasmidvektor enthaltenen Antibiotika-Resistenz-Gens; bei pGEM-T handelt es sich um 

ein Ampicillin-Resistenz-Gen. Von den auf Ampicillin-haltigem LB-Agar aus-
gestrichenen Bakterien konnten somit nur die Bakterien wachsen, die den Vektor 
erfolgreich aufgenommen hatten.  

Das Wachstum allein gibt aber keine Auskunft darüber, ob das gewünschte PCR-
Produkt auch korrekt im Vektor eingefügt ist oder ob es bei der Ligation zum Schließen 
des Vektors ohne inseriertes DNA-Fragment (Insert) gekommen ist. Die Auswahl von 

Bakterien, die den Vektor mit Insert enthalten, erfolgt mit Hilfe eines lacZ Gens, 
welches in der Multiple-Cloning-Site des Vektors lokalisiert ist. Kommt es nicht zum 
Einbau des Inserts, ist das lacZ Gen intakt, und die Bakterien bilden das Enzym 

β-Galactosidase, sofern ihr lac-Operon durch einen Induktor, wie IPTG (Isopropyl-thio-
galactosid) angeschaltet worden ist. Sie sind dann in der Lage, das Substrat X-Gal (5-
bromo-4-chloro-3-indolyl-β-D-galactopyranosid) mit Hilfe der β-Galactosidase zu 

einem blau gefärbten Produkt umzuwandeln. Dieses Prinzip der Blau-Weiß-Selektion 
[Messing, 1983] erlaubt es somit, Bakterienkolonien, die nur den religierten Vektor 
enthalten, zu detektieren und auszuschließen.  

Vor der Transformation wurden LB/Ampicillin-Agarplatten mit jeweils 75 µl 2 %iger 
IPTG- und 2 %iger X-Gal-Lösung bestrichen. 200 µl kompetente XL1-blue E. coli 
wurden auf Eis aufgetaut, mit dem kompletten Ligationsansatz versetzt und für 

30 Minuten auf Eis inkubiert. Der Hitzeschock erfolgte bei 42 °C für 45 Sekunden. 
Nach einer Inkubation für 2 Minuten auf Eis wurden die Bakterien dann auf die 
vorbereiteten und getrockneten Agarplatten ausgestrichen. Nach einer Wachstums-

periode über Nacht bei 37 °C im Brutschrank konnten Bakterienkolonien detektiert und 
einzelne weiße Kolonien zur weiteren Verwendung ausgewählt werden. 

3.1.8.3 Präparation von Plasmid DNA aus E. coli mittels alkalischer Lyse 
Einzelne Bakterienkolonien einer LB/Ampicillin-Platte wurden isoliert und in 2,5 ml 

ampicillinhaltiges LB Medium überführt. Nach einer Übernachtinkubation bei 37 °C 
wurden 2 ml der Bakteriensuspension für 30 Sekunden bei 6000 rcf zentrifugiert. Die 
pelletierten Bakterien wurden in 200 µl S1-Lösung (50 mM Tris/HCl, 10 mM EDTA, 

100 µg/ml RNAse A, pH 8,8) durch Vortexen resuspendiert. Die Proben wurden auf Eis 
gekühlt und anschließend 400 µl S2-Lösung (200 mM NaOH, 1 % SDS) hinzugegeben. 
Nach weiteren 5 Minuten auf Eis wurden 300 µl einer 3 M Natriumacetat Lösung 

(pH 5,5) hinzugefügt. Die Lösungen wurden bei 13000 rcf 15 Minuten zentrifugiert und 
der Überstand in frische 1,5 ml Reaktionsgefäße überführt. Durch Zugabe von 
0,6 Volumenteilen Isopropanol und 30 Minuten Inkubation bei -20 °C wurde die 
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Plasmid-DNA anschließend gefällt. Erneut wurde für 10 Minuten bei 13000 rcf 
zentrifugiert und das Pellet mit 0,5 ml 70 %igem Ethanol gewaschen. Die DNA wurde 
getrocknet und in 50 µl H2O gelöst. Vor der weiteren Verwendung wurden noch 

vorhandene Proteine durch fünfminütige Zentrifugation bei 13000 rcf aus der Lösung 
entfernt. 

3.1.8.4 Isolierung großer Mengen von Plasmid DNA aus E. coli  
Um größere DNA-Präparationen durchzuführen, wurden 250 ml ampicillinhaltiges LB 

Medium aus einer Übernachtkultur angeimpft. Nach einer Wachstumsphase bei 37 °C 
über Nacht im Bakterienschüttler erfolgte die DNA-Aufreinigung mit dem Nucleobond 

AX 100 Kit entsprechend der Herstellerangaben. Die Konzentration der gewonnenen 

DNA wurde photometrisch anhand ihrer Absorption bei 260 nm bestimmt und die DNA 
bei -20 °C gelagert. 

3.1.9 Sequenzierungen 

Die Sequenzierung klonierter DNA-Fragmente wurde von der Firma MWG Biotech 
(Ebersberg) durchgeführt und erfolgte in Anlehnung an die von Sanger entwickelte 
Nukleotid-Abbruch-Methode [Sanger et al., 1977]. Zur Vorbereitung der Sequenzier-

reaktionen wurde die DNA zunächst gefällt, indem 1 µg Plasmid-DNA in 10 µl H2O 
mit 1 µl 3 M Natriumacetat-Lösung (pH 4,8) und 32 µl Ethanol versetzt und bei 4 °C 
für 30 Minuten inkubiert wurde. Bei der anschließenden Zentrifugation bei 13000 rcf 

und 4 °C für 20 Minuten bildete sich ein Pellet, das mit 70 %igem Ethanol gewaschen 
und nach nochmaliger Zentrifugation (10 Minuten, 13000 rcf, 4 °C) vollständig an der 
Luft getrocknet wurde. 

Für Sequenzvergleiche wurde die BLAST search Funktion des NCBI (National Center 

for Biotechnology Information) genutzt. Für die Bearbeitung und Auswertung von 
Sequenzen wurden das Programm DNASTAR (DNASTAR, Madison, USA) sowie das 

Programm Genamics Expression (Genamics, Hamilton, Neuseeland) verwendet.  

3.2 Proteinbiochemische Methoden 

3.2.1 Aufbereitung der Gewebeproben 

3.2.1.1 Herstellung von Membranfraktionen isolierter Organe und Zellen 
Grobe Membranfraktionen für die durchgeführten Western Blot Analysen wurden durch 

fraktionelle Zentrifugation gewonnen. Dazu wurden die frisch entnommenen oder nach 
der Entnahme bei -80 °C gelagerten Organe bzw. Zellen mit 1 - 3 ml Homo-
genisierungspuffer mit 0,1 mM PMSF, 0,25 % NP-40 und 1 : 100 verdünntem Protease-

Inhibitor-Cocktail in einen auf Eis vorgekühlten Glashomogenisator gegeben. Der 
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Aufschluss der Organe bzw. Zellen erfolgte unter ständiger Kühlung auf Eis durch 
Homogenisation im Potter, wobei Schaumbildung vermieden wurde. Im Anschluss 
wurden die Suspensionen in 2 ml Reaktionsgefäße überführt und zweimal 20 Sekunden 

im Ultraschallbad in Eiswasser behandelt. Durch eine zehnminütige Zentrifugation bei 
1500 rcf und 4 °C wurden Zellkerne und nicht-homogenisierte Gewebereste entfernt. 
Die anschließende Sedimentierung der Membranen erfolgte durch Ultrazentrifugation 

des Überstandes bei 50000 rcf für 30 Minuten bei 4 °C. Das dabei entstandene Pellet 
enthielt die grobe Membranfraktion und wurde in Homogenisierungspuffer mit anti-
Protease-Cocktail, aber ohne Detergenz resuspendiert. Nach einer Proteinkonzen-

trationsbestimmung nach Bradford (siehe 3.2.1.3) wurde die Konzentration mit Homo-
genisierungspuffer auf 2 mg/ml eingestellt und die Membranproben in 100 µl Aliquots 
bei -80 °C gelagert. 

3.2.1.2 Herstellung eines Spermienhomogenisats 
Zur Gewinnung von Mausspermien für Western Blot Analysen wurden die unmittelbar 
nach zervikaler Dislokation entnommenen Nebenhoden vom umgebenden Fett befreit 
und einmal mit HS Puffer gespült. Im Anschluss wurden jeweils zwei Nebenhoden in 

einer 3,5 cm großen Petrischale mit 2 ml auf 37 °C vorgewärmtem Kapazitierungspuffer 
(HS/15 mM Natriumhydrogencarbonat/0,5 % BSA) überführt. Die Nebenhoden wurden 
mit einer Schere fünf- bis zehnmal eingeschnitten und dann für 15 Minuten bei 37 °C 

und 5 % CO2 inkubiert. Durch die Zusammensetzung der die Nebenhoden umgebende 
Lösung konnten die Spermien aktiv aus dem Nebenhoden heraus schwimmen. Die 
Spermiensuspension wurde im Folgenden bei 8000 rcf bei 4 °C zentrifugiert und der 

Überstand verworfen. Das Pellet wurde in Homogenisierungspuffer mit Protease-
Inhibitor-Cocktail und Detergenz (siehe 3.2.1.1) aufgenommen und in einem Potter auf 
Eis homogenisiert. Im Anschluss wurde die Spermiensuspension zweimal 20 Sekunden 

in Eiswasser im Ultraschallbad behandelt. Nach einer Proteinkonzentrationsbestimmung 
(siehe 3.2.1.3) und der Einstellung der Proteinkonzentration auf 2 mg/ml wurden 100 µl 
Aliquots bei -80 °C eingefroren. 

Humane Spermien wurden nach Aufklärung und einer Einverständniserklärung von 
jungen gesunden Spendern zur Verfügung gestellt und durch zweimaliges Waschen mit 
PBS aus dem frischen Ejakulat aufgereinigt. Dafür wurde das verflüssigte Ejakulat mit 

dem neunfachen Volumen an PBS gemischt und mit 500 rcf bei Raumtemperatur 
zentrifugiert. Anschließend wurde das erhaltene Spermienpellet in flüssigem Stickstoff 
eingefroren und bei -80 °C gelagert. Grobe Membranfraktionen humaner Spermien 

wurden anschließend wie unter 3.2.1.1 für isolierte Organe beschrieben hergestellt.  

3.2.1.3 Proteinkonzentrationsbestimmung nach Bradford 
Der blaue Säurefarbstoff Coomassieblau G250 bindet kationische und unpolare, 
hydrophobe Seitenketten von Proteinen. Bei der Bildung des Farbstoff-Protein-

komplexes wird vor allem die anionische Form des Farbstoffes stabilisiert, was eine 
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Absorptionsmessung bei 595 nm in Anwesenheit des freien Farbstoffs ermöglicht 
[Bradford, 1976].  
Für die Bestimmung der Proteinkonzentration einer aufgearbeiteten Gewebeprobe 

wurden 2 µl der Proben und ein BSA-Standard (2 mg/ml) mit 98 µl H2O verdünnt und 
mit 1,5 ml des Bradford-Reagenzes in einem 2 ml Reaktionsgefäß gemischt. Nach 
5 Minuten Inkubation bei Raumtemperatur wurde die Reaktionslösung in eine Halb-

mikroküvette überführt und die Absorption bei 595 nm im Photometer bestimmt. 

3.2.2 Diskontinuierliche SDS-Polyacrylamid-Gelelektrophorese (SDS-
PAGE) 

Mit einer SDS-PAGE (sodium dodecyl sulfate poly-acrylamid gel-electrophoresis) 

können Proteine unter denaturierenden Bedingungen aufgrund ihres Molekulargewichts 
während ihrer Wanderung durch eine Gelmatrix aufgetrennt werden. Die Proteine 
werden bei der Probenvorbereitung in SDS-Probenpuffer Hitze-denaturiert. Dabei 

erhalten alle Proteine durch den Zusatz des stark anionischen Detergenzes SDS eine 
negative Ladung, so dass SDS-Protein-Komplexe entstehen, die proportional zu ihrem 
Molekulargewicht geladen sind. SDS eliminiert außerdem nicht-kovalente Wechsel-

wirkungen im nativen Protein. Niedermolekulare Thiole wie β-Mercaptoethanol im 
Probenpuffer bewirken zusätzlich eine Reduzierung von Disulfidbrücken in den Poly-
peptidketten. Demzufolge verlieren die für ein bestimmtes Protein charakteristischen 

Ladungen und Tertiärstrukturen bei der gelelektrophoretischen Auftrennung ihren 
Einfluss auf das Laufverhalten des Moleküls, so dass die Proteine ausschließlich 
entsprechend ihres Molekulargewichts aufgetrennt werden.  

Die Auftrennung der Proteine erfolgte in Polyacrylamid-Gelen mit 7 - 10 % Acrylamid 
(Acrylamid / Bisacrylamid-Verhältnis 37,5 : 1) nach Laemmli [Laemmli, 1970]. Bei der 
SDS-PAGE Methode nach Laemmli wird ein diskontinuierliches Puffersystem 

verwendet, in dem der Puffer im Sammelgel einen saureren pH-Wert (6,8) und eine 
andere Ionenstärke (0,5 M Tris/HCl) aufweist als der Puffer, der zur Herstellung des 
Trenngels verwendet wird (pH 8,8, 1,5 M Tris/HCl). Nachdem die Proben durch das 

poröse Sammelgel gelaufen sind, sammeln sie sich in einer schmalen Zone am Über-
gang zum Trenngel. Durch das diskontinuierliche Puffersystem konzentrieren sich alle 
Komplexe der Probe in einem sehr schmalen Band direkt vor Beginn des Trenngels, 

wodurch sich die Auflösung des SDS-Polyacrylamidgels erhöht.  
Für die Darstellung von Proteinen im Bereich bis 70 kDa wurden Trenngele mit 10 % 
Acrylamid-Anteil verwendet. Für Proteine mit einem Molekulargewicht über 100 kDa 

wurden 7 %ige Gele eingesetzt. In allen Fällen enthielt das Sammelgel 5 % Acrylamid. 
Durch Zugabe von 0,06 % TEMED und 30 µg/ml APS wurde die Polymerisation der 
Gele eingeleitet. Für die gelelektrophoretischen Untersuchungen wurden die auf-

zutrennenden Proteingemische mit vierfach konzentriertem SDS-Probenpuffer (s. 
Abschnitt 2.7) versetzt und 5 Minuten bei 95 °C im Heizblock denaturiert. Es wurden 
pro Spur etwa 30 µg Protein in einem Volumen von 20 µl aufgetragen. Neben den 
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Proben wurde ein Größenmarker (Fermentas), der aus Proteinen definierter 
Molekulargewichte besteht, mitgeführt. Die Gelelektrophorese erfolgte im Sammelgel 
bei 80 V zur Fokussierung der Proben; die Auftrennung im Trenngel erfolgte bei 120 V. 

3.2.3 Immunoblotting 

Mit Hilfe des Immunoblotting Verfahrens ist es möglich, Proteine nach Auftrennung im 
SDS-Gel auf eine Membran zu übertragen und anschließend durch den Einsatz von 

spezifischen Antikörpern nachzuweisen. Diese Technik ermöglicht es damit, das hohe 
Auflösungsvermögen der Gelelektrophorese mit der Selektivität einer Antigen/ 
Antikörper-Reaktion zu kombinieren.  

Dazu ist es zunächst notwendig, die durch SDS-PAGE aufgetrennten Proteine aus dem 
Polyacrylamid-Gel vollständig auf eine Nitrocellulose-Membran zu übertragen [Towbin 
et al., 1979], so dass ein genaues Abbild des Bandenmusters entsteht. Die fest an die 

Membrantextur gebundenen Moleküle sind für den dann folgenden immunologischen 
Nachweis gut zugänglich.  
Für die Immunoblots in der vorliegenden Arbeit wurde das Semi-Dry Blotting 

Verfahren mit diskontinuierlichem Transferpuffersystem verwendet [Towbin et al., 
1979; Dalton et al., 1988]. Dafür wurde das Gel aus der Elektrophoresekammer in 
Anodenpuffer II überführt und anschließend auf die ebenfalls mit Anodenpuffer II 

getränkte Nitrocellulose-Membran aufgelegt. Das Gel war mit der Kathode durch neun 
mit Kathodenpuffer getränkte Filterpapiere leitend verbunden; die Nitrocellulose-
Membran wiederum war von drei Filterpapieren mit Anodenpuffer II überschichtet; 

sechs mit Anodenpuffer I getränkte Filterpapiere stellten die leitende Verbindung zur 
Anode her (Abbildung 3.1). 

 

Abbildung 3.1:  Schematische Übersicht der Komponenten des Semi-dry Blotting Transfer-
systems.  

 

Auf diese Weise wanderten die denaturierten und aufgetrennten Proteine entsprechend 
ihrer negativen Ladung in Richtung des elektrischen Feldes aus dem Gel in die Nitro-

cellulose. Für den Übertragungsvorgang wurde für zwei Stunden eine Spannung von 
0,8 mA/cm2 Nitrocellulose angelegt. Nach dem Elektrotransfer wurden die Proteine zur 
Kontrolle der Proteinübertragung mit einer Ponceau S Lösung angefärbt, die Größen-
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marker des Standards mit einem Bleistift eingezeichnet, und die Nitrocellulose-
Membran anschließend durch zweimaliges Waschen mit TBST wieder entfärbt. 
Nach dem Proteintransfer wurde die Membran zur Absättigung unspezifischer 

Bindungsstellen mit 5 % Milchpulver in TBST für 30 Minuten bei Raumtemperatur auf 
einem Taumler inkubiert. Im Anschluss wurde die Nitrocellulose-Membran über Nacht 
bei 4 °C mit einem Protein-spezifischen Primärantikörper, der in 3 % Milchpulver in 

TBST verdünnt wurde, inkubiert. Die Verdünnung der einzelnen Antikörper ist in 
Abschnitt 2.4.1  aufgeführt. Ungebundene Antikörper wurden am nächsten Tag durch 
dreimaliges Waschen der Membran für je zehn Minuten mit TBST entfernt. 

Anschließend wurde die Membran eine Stunde bei Raumtemperatur mit einem 
Meerrettichperoxidase-gekoppelten Sekundärantikörper (1 : 7500 in 3 % Milchpulver in 
TBST), der gegen den Fc-Teil des ersten Antikörpers gerichtet ist, auf einem Taumler 

inkubiert. Danach wurde die Membran erneut dreimal je zehn Minuten mit TBST 
gewaschen. Die Detektion des Meerrettichperoxidase-gekoppelten Sekundärantikörpers 
erfolgte mit Hilfe eines Chemilumineszenz-Nachweises. Je 3 ml ECL-Lösung 1 und 2 

(s. Abschnitt 2.7) wurden in einer Schale gemischt, und die Nitrocellulose-Membran 
damit benetzt. Nach einminütiger Inkubation wurde die Membran luftblasenfrei mit 
einer Folie umhüllt (und auf einem Film (Kodak, Stuttgart) exponiert. Nach 

Entwicklung des Films mit Dokumol (Tetenal, Norderstedt) wurde der Film 
anschließend mit einer Lösung aus 1,26 M Na2S2O3 x 5 H2O und 0,11 M Kalium-
disulfid fixiert, ausgiebig in Wasser gespült und für die Auswertung getrocknet. 

Alternativ wurde die Chemilumineszenz des umgesetzten ECL-Reagenzes auf der 
Membran direkt in einem Chemilumineszenz-System (Peqlab) detektiert. 

3.2.4 Immuncytochemische Untersuchungen an Spermien 

Zum Nachweis der untersuchten Proteine und der Bestimmung ihrer subzellulären 
Lokalisation wurden immuncytochemische Färbungen durchgeführt. Mit Hilfe eines 
Zwei-Antikörper-Systems, bestehend aus einem Primärantikörper, der das gesuchte 

Protein erkennt, und einem Fluorochrom-gekoppelten Sekundärantikörper, der den 
Primärantikörper detektiert, können dabei Zellpräparate angefärbt und anschließend am 
Mikroskop ausgewertet werden. 

3.2.4.1 Herstellung von Spermienpräparaten für die Mikroskopie 
Für die Herstellung von Spermienpräparationen für die Immuncytochemie wurden die 
Nebenhoden der Nager, wie in Abschnitt 3.2.1.2 beschrieben, präpariert, und eine 
Spermiensuspension durch „Herausschwimmen“ gewonnen. Durch schonende 

Zentrifugation bei 300 rcf und 25 °C wurden die Spermien auf dem Boden des 
Reaktionsgefäßes pelletiert und zweimal mit PBS gewaschen. Um die Spermien so 
unversehrt wie möglich zu belassen, wurde besonders darauf geachtet, die Zellen 

möglichst geringen Scherkräften (zum Beispiel durch Pipettieren) auszusetzen. Dies 
wurde z. B. durch das vorherige Abschneiden der verwendeten Pipettenspitzen sowie 
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das Vermeiden von Erschütterungen des Reaktionsgefäßes erreicht. Die gewaschene 
Spermienpopulation wurde in PBS aufgenommen (etwa 250 µl/Nebenhoden) und je 
nach Dichte der Spermien wurden 10-15 µl Zellsuspension pro Präparat auf einen Glas-

objektträger ausgestrichen, an der Luft getrocknet und bis zur weiteren Verwendung bei 
4 °C aufbewahrt. Um zu gewährleisten, dass bei der Färbung aufgetropfte Flüssigkeit in 
den mit Spermien versehenen Bereichen des Objektträgers verblieb, wurden die 

einzelnen Areale auf dem Objektträger vor der immuncytochemischen Färbung mit 
einem Fettstift umrundet. 
Humane Spermien für immuncytochemische Untersuchungen wurden aus Sperma 

gewonnen, das von jungen gesunden Spendern nach Aufklärung und Einverständnis-
erklärung gespendet wurde. Das Ejakulat wurde nach einer Verflüssigungszeit von 30 
Minuten mit PBS überschichtet und für 30 Minuten bei Raumtemperatur inkubiert. 

Innerhalb dieser Zeit schwammen die vitalen Spermien aktiv in die obere PBS-Schicht. 
Die motilen Spermien wurden anschließend fünf Minuten bei 400 rcf zentrifugiert, in 
PBS resuspendiert und dann auf Objektträger aufgetropft und getrocknet; dabei wurde 

wie oben für Mausspermien beschrieben, verfahren.  
Ejakulierte bovine Spermien wurden vom Fachbereich Veterinärmedizin der Universität 
Gießen zur Verfügung gestellt und wie oben für humane Spermien beschrieben 

aufgearbeitet. Zur Isolation von epidymalen bovinen Spermien wurden Nebenhoden 
von frisch geschlachteten Rindern vom Schlachthof in Marburg zur Verfügung gestellt. 
Stücke des Nebenhodens wurden in HS Puffer gespült, anschließend in Kapazitierungs-

puffer überführt und mehrfach eingeschnitten. Nach einer Inkubation für 15 Minuten 
bei 37 °C und 5 % CO2 wurde die Spermiensuspension, wie vorangehend für Nager-
spermien beschrieben, gewaschen und auf Objektträger ausgestrichen. 

3.2.4.2 Immuncytochemische Färbungen 
Für immuncytochemische Färbungen wurden die auf einem Glasobjektträger 
befindlichen Spermien zunächst 5 Minuten in PBS rehydriert. Die Fixierung und 
Permeabilisierung der Spermien erfolgte durch eine zweiminütige Inkubation mit 

-20 °C kaltem Methanol oder durch eine zehnminütige Fixierung mit Aceton bzw. mit 
Aceton/Methanol (1 : 1) bei -20 °C. Nach einem Waschschritt in PBS wurden 
unspezifische Bindestellen auf dem Zellpräparat blockiert, indem es für 30 Minuten bei 

Raumtemperatur mit 10 % FCS in PBS inkubiert wurde. Durch diesen Schritt wurde die 
unspezifische Hintergrundfluoreszenz deutlich reduziert. Die Primärantikörper-
verdünnungen (siehe Abschnitt 2.4.1) wurden in 10 % FCS in PBS angesetzt und auf 

die einzelnen Präparate aufgetropft. Die anschließende Inkubation erfolgte stets über 
Nacht bei 4 °C in einer feuchten Kammer. Nicht gebundene Primärantikörper wurden 
durch drei Waschschritte mit PBS für je zehn Minuten entfernt, bevor der Fluorochrom-

gekoppelte Sekundärantikörper in 10 % FCS in PBS angesetzt und auf die Objektträger 
aufgebracht wurde. Als Sekundärantikörper wurde ein FITC-gekoppelter Sekundär-
antikörper verwendet. Die Inkubation mit diesem Sekundärantikörper erfolgte für eine 

Stunde bei Raumtemperatur in einer feuchten Kammer im Dunkeln. Durch dreimaliges 
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Waschen mit PBS wurde überschüssiger Antikörper entfernt. Um die Morphologie der 
Spermien besser darstellen zu können, wurde im Anschluss eine Zellkernfärbung 
durchgeführt. Dazu wurde der DNA-interkalierende und rot fluoreszierende Farbstoff 

Propidiumiodid in einer Konzentration von 5 µg/ml in H2O angesetzt [Heydecke et al., 
2006]. Spermienpräparate der Maus und Ratte wurden zur Kernfärbung für 15 Minuten 
in Propidiumiodid inkubiert; humane Spermienpräparate wurden für 15 Sekunden mit 

10 µg/µl Propidiumiodid behandelt. Anschließend wurden drei zehnminütige Wasch-
schritte in PBS durchgeführt, bevor die Objektträger dann mit Deckgläschen und 
Fluoreszenz-Eindeckmedium konserviert wurden. Die Analyse der Färbungen erfolgte 

am Laser Scanning Mikroskop (LSM 510 Meta, Zeiss). 

3.2.4.3 Peptidblockierung immuncytochemischer Färbungen 
Um die Spezifität der Epitopbindung eines Peptidantikörpers zu überprüfen, wurden 
Peptidblockierungsanalysen durchgeführt. Bei diesen Blockierungen wurde der Primär-

antikörper vor dem Auftragen auf das Präparat mit dem Peptid inkubiert, gegen das er 
generiert wurde. Das Peptid wurde dabei im zehnfachen Überschuss eingesetzt und für 
30 Minuten bei 4 °C rotierend mit dem Antikörper in PBS inkubiert. Erst im Anschluss 

an diese Inkubation wurde FCS (10 %) zur Lösung gegeben. Anschließend wurde die 
Immuncytochemie wie vorangehend beschrieben durchgeführt. 

3.2.4.4 Co-Färbungen mit dem Akrosomenmarker Peanut agglutinin 

Zur Darstellung des Akrosoms von Spermien wurden Fluoreszenz-gekoppelte Lectine, 

wie das Peanut agglutinin (PNA) verwendet [Aviles et al., 1997]. PNA bindet 
spezifisch an das intakte Akrosom von Nagerspermien; durch die Koppelung an FITC 
oder TRITC kann diese Bindung auch in Kombination mit anderen Färbungen 

visualisiert werden. Für Co-Färbungen des Akrosoms wurden Spermien zunächst, wie 
in Abschnitt 3.2.4.2 beschrieben, behandelt. Nach Inkubation mit dem Sekundär-
antikörper und den darauf folgenden Waschschritten wurden die Präparate für 

30 Minuten mit dem Fluoreszenz-gekoppeltem PNA (1 : 500 in 10 % FCS in PBS 
verdünnt) bei Raumtemperatur inkubiert. Anschließend wurden die Spermien dreimal 
für je zehn Minuten mit PBS gewaschen und wie oben beschrieben für die Fluoreszenz-

mikroskopie eingedeckelt. Erfolgte die Färbung des Akrosoms ohne parallele immun-
cytochemische Untersuchung, wurden die Spermien direkt nach der Fixierung und 
Blockierung mit der PNA-Lösung inkubiert und nach dreimaligem Waschen in PBS 

eingedeckelt. 

3.2.5 Immunhistochemische Untersuchungen an Formalin-fixierten 
Geweben 

Beim immunhistochemischen Nachweis von Proteinen wurde, ähnlich wie bei der 

Immuncytochemie (Abschnitt 3.2.4), ein Zwei-Antikörper-Detektionssystem mit einem 
an den Sekundärantikörper-gekoppelten Fluorochrom eingesetzt. Anders als bei der 
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Immuncytochemie stand bei der Immunhistochemie die Untersuchung der Lokalisation 
eines Antigens in einem Gewebeschnitt im Mittelpunkt. 

3.2.5.1 Entnahme, Fixierung und Einbetten der Gewebe 
Die zu untersuchenden Gewebeproben wurden Mäusen und Ratten vorsichtig 

entnommen, um eine Beeinträchtigung der Gewebestruktur durch mechanische 
Einwirkungen zu minimieren. Zur Fixierung wurden die Präparate dann unmittelbar in 
eine 10 %ige Formalin-Lösung (3,7 % Formaldehyd in PBS) gegeben, in der sie etwa 

24 - 48 Stunden gelagert wurden. Die Organe wurden anschließend für die weitere 
Bearbeitung in die Pathologische Abteilung des Universitätsklinikums Marburg bzw. 
das Rechtsmedizinische Institut der LMU München gebracht, wo sie mit Hilfe eines 

Gewebeeinbettautomaten bzw. eines Gewebeinfiltrationsautomaten über eine 
aufsteigende Alkoholreihe entwässert und anschließend paraffiniert wurden. Die 
Präparate wurden dann in Paraffin (Paraplast Plus) eingebettet und bis zur Anfertigung 

der Schnitte bei 4 °C aufbewahrt. 

3.2.5.2 Anfertigen von Paraffinschnitten 
Von den gekühlten eingebetteten Präparaten wurden mit einem Mikrotom 3 µm dicke 
Paraffinschnitte hergestellt und mit Hilfe eines Objektträgers in ein 45 °C warmes 

Wasserbad überführt. Im warmen Wasser konnte sich das Paraffin ausdehnen, so dass 
die Schnitte vorsichtig geglättet wurden. Nach dem Aufziehen der Schnitte auf speziell 
beschichtete Objektträger (Super Frost Plus) wurden die Paraffinschnitte zum 

Schmelzen des Paraffins und zum Anheften der Präparate an die Objektträger für 
2 Stunden bei 60 °C inkubiert. Die Lagerung der Schnitte erfolgte anschließend bei 
4 °C. 

3.2.5.3 Immunhistochemische Färbungen 
Um den wasserlöslichen Antikörpern Zugang zu den in Paraffin eingebetteten Geweben 
zu gewähren, mussten die Gewebeschnitte zunächst rehydriert werden. Dazu wurden 
die Objektträger zum Lösen des Paraffins zweimal für zehn Minuten in Xylol-Ersatz 

(Rotihistol) inkubiert. Die Schnitte wurden anschließend zum Entfernen des Xylols 
zweimal für fünf Minuten in Ethanol überführt. Die eigentliche Rehydrierung der 
Schnitte erfolgte durch eine absteigende Ethanolreihe, in der die Schnitte für jeweils 

fünf Minuten in 80 %igen, bzw. 70 %igen Ethanol und schließlich in H2O inkubiert 
wurden. Da durch die Formalinfixierung Proteine kovalent miteinander vernetzt 
werden, sind viele Epitope für Antikörper nicht mehr zugänglich. Zur Demaskierung 

der Antigene wurden die gewässerten Schnitte für zehn Minuten bei ca. 95 °C in Citrat-
puffer gekocht, und anschließend wurde die Lösung mit den sich darin befindenden 
Schnitten innerhalb von 30 Minuten auf Raumtemperatur abgekühlt. Um unspezifische 

Bindungsstellen zu blockieren wurden die Schnitte zuerst mit einer Lösung aus 10 % 
NGS in PBS mit 0,5 % Tween 20 für mindestens zwei Stunden bei Raumtemperatur 
inkubiert. Dabei diente das Ziegenserum der Blockierung, während das beigegebene 
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Detergenz Tween 20 dafür sorgte, dass die Oberflächenspannung des Flüssigkeitsfilms 
reduziert wurde, und das Präparat trotz kleiner Volumina gleichmäßig benetzt wurde.  
Die Verdünnung des Primärantikörpers (siehe Abschnitt 2.4.1) wurde in PBS mit 0,5 % 

Tween 20 und 5 % NGS angesetzt, und die Schnitte über Nacht bei 4 °C in einer 
feuchten Kammer inkubiert. Durch dreimaliges Waschen mit PBS mit 0,5 % Tween 20 
für zehn Minuten wurde nicht gebundener Antikörper entfernt. Anschließend wurden 

die Präparate zum Nachweis des Primärantikörpers eine Stunde bei Raumtemperatur 
mit der in PBS mit 0,5 % Tween 20 und 5 % NGS angesetzten Verdünnung des Fluoro-
chrom-gekoppelten Sekundärantikörpers (FITC-gekoppelter Ziege-anti-Kaninchen 

Antikörper) in einer feuchten Kammer im Dunkeln inkubiert. Bei Bedarf wurde der 
Kernfarbstoff TO-PRO-3 der Sekundärantikörperlösung zugefügt (1 : 500 konzentriert), 
um die Zellkerne im Gewebe darzustellen [Ploeger et al., 2008]. Die Gewebeschnitte 

wurden anschließend dreimal zehn Minuten mit PBS mit 0,5 % Tween 20 gewaschen 
und mit Deckgläschen und Fluoreszenz-Eindeckmedium konserviert. Die Auswertung 
der immunhistochemischen Markierung erfolgte am Laser Scanning Mikroskop. 

3.2.6 Immunhistochemische Untersuchungen an cryokonservierten 
Geweben 

3.2.6.1 Anfertigen von Gefrierschnitten 
Zur Gewinnung von Präparaten für die Herstellung von Gefrierschnitten wurden Mäuse 
durch zervikale Dislokation getötet. Die Organe wurden vorsichtig und zügig ent-

nommen, um eine Degradation von Proteinen zu vermeiden und das Gewebe möglichst 
intakt zu lassen. Das Gewebe wurde mit 4 % PFA in Natriumphosphatpuffer für zwei 
Stunden bei 4 °C fixiert und anschließend über Nacht in 25 % Sucrose in PBS bei 4 °C 

inkubiert. Nach einem kurzen Waschschritt mit PBS wurden die Organe dann in 
Einbettmedium überführt, auf Trockeneis gekühlt, dadurch gehärtet und nach dem 
kompletten Durchfrieren bei -80 °C gelagert. 

Zum Anfertigen von Gefrierschnitten wurde der gefrorene Block in ein Gefrier-
mikrotom (Leica Microsystems) eingespannt. Bei einer Innentemperatur von -18 °C 
wurden 6 µm dicke Schnitte hergestellt und auf Superfrost Plus Objektträger 

übertragen. Diese Schnitte wurden direkt weiterverwendet oder bei -80 °C gelagert. 

3.2.6.2 Immunhistochemische Färbungen an Gefrierschnitten 
Die Gefrierschnitte wurden zunächst aufgetaut und bei Raumtemperatur 30 Minuten 
luftgetrocknet. Nach einem Waschschritt mit PBS wurden unspezifische Bindungs-

stellen durch eine 30minütige Blockierung und Permeabilisierung in 1 % NGS und 
0,1 % Triton X-100 in PBS bei Raumtemperatur in der feuchten Kammer blockiert. Die 
Inkubation mit dem Primärantikörper erfolgte bei 4 °C über Nacht in der feuchten 

Kammer; der Primärantikörper wurde dafür in PBS mit 1 % NGS und 0,1 % Triton 
X-100 verdünnt (für Verdünnungen siehe Abschnitt 2.4.1). Nichtgebundener Antikörper 
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wurde durch dreimaliges Waschen für je zehn Minuten mit PBS entfernt. Der Nachweis 
des Erstantikörpers erfolgte Spezies-spezifisch mithilfe eines Fluoreszenz-gekoppelten 
Sekundärantikörpers. Dieser Zweitantikörper wurde zwei Stunden bei Raumtemperatur 

in einer feuchten Kammer mit dem Schnitt inkubiert. Eine Darstellung der Zellkerne 
erfolgte durch eine parallele Inkubation der Schnitte mit einer 1 : 500 Verdünnung des 
DNA-interkalierenden Kernfarbstoffs TO-PRO-3 (Invitrogen) [Ploeger et al., 2008]. 

Ungebundene Antikörper und Kernfarbstoff wurden durch Waschen mit PBS entfernt 
und die Schnitte mit Fluoreszenz-Eindeckmedium und einem Deckglas konserviert. Die 
immunhistochemischen Markierungen wurden am konfokalen Mikroskop ausgewertet. 

Um die Spezifität einer Antikörperbindung zu überprüfen, wurden Peptidblockierungs-
analysen, analog zur Peptidblockierung der beschriebenen immuncytochemischen 
Färbungen (Abschnitt 3.2.4.3), durchgeführt. 

3.2.7 Nachweis von Fluoreszenzproteinen im Mausgewebe  

Zum Nachweis der Reporterfluoreszenzproteine mCherry (monomeric Cherry Protein) 
und GFP (green fluorescent protein) im Gewebe von genetisch modifizierten Mäusen 

wurden Gefrier- und Paraffinschnitte verwendet, die, wie in den Abschnitten 3.2.6.1 
bzw. 3.2.5.1 und 3.2.5.2 beschrieben, hergestellt wurden. Co-Immunfärbungen des 
Gewebes mit Antiköpern und Zellkernfärbungen wurden analog zu denen in Abschnitt 

3.2.6.2 und 3.2.5.3 beschriebenen Vorgehen durchgeführt. Um ein Ausbleichen der 
exprimierten Fluoreszenzproteine zu vermeiden, wurden die Schnitte bei allen Wasch- 
und Inkubationsschritten lichtgeschützt aufbewahrt.  

3.3 Zellkultur 

3.3.1 Kultivierung von HEK293-Zellen 

HEK293-Zellen sind immortalisierte humane embryonale Nierenzellen (Human 

Embryonic Kidney; HEK), die durch Transfektion mit Adenovirus (Typ 5)-DNA 

entstanden sind und 1977 erstmals beschrieben wurden [Graham et al., 1977]. In der 
vorliegenden Arbeit wurden HEK293-Zellen des flip in T-Rex Systems (Invitrogen) 
verwendet sowie stabil transfizierte HEK293-flip-in-Zellen, die von Prof. Meyerhof 

vom Deutschen Institut für Ernährungsforschung (DIFE, Potsdam) zur Verfügung 
gestellt wurden. 
Die Zellen wurden in DMEM (Dulbecco’s modified Eagle’s medium) mit 0,45 % 

Glucose, 10 % FCS und 1 % Penicillin/Streptomycin unter Standardbedingungen 
(37 °C, 5 % CO2) kultiviert. Zum Passagieren der Zellen wurde das Kulturmedium 
abgenommen, die Zellen mit 37 °C warmen PBS gewaschen und mit einer 

Trypsin/EDTA Lösung (1 x Viralex Trypsin/EDTA: 0,5 g/l Trypsin, 1,2 g/l EDTA in 
PBS) vom Flaschenboden abgelöst. Durch Zugabe von frischem Medium wurde das 
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Trypsin inaktiviert bzw. das EDTA komplexiert, so dass die Zellen in gewünschter 
Dichte neu ausgesät werden konnten. Die Zellzahl wurde mit Hilfe einer Neubauer-
Zählkammer (Braun, Melsungen) bestimmt. Die Expression der stabil transfizierten 

humanen Geschmacksrezeptoren wurde durch eine 24 - 48stündige Inkubation mit 0,5 
µg/ml Tetracyclin induziert. 

3.3.2 Cryokonservierung von HEK293-Zellen 

Zur Cryokonservierung der Zellen wurde das Medium aus den Zellkulturflaschen 
abgesaugt, und der Zellrasen in der Flasche mit 10 ml PBS gewaschen. Durch Zugabe 
von Trypsin/EDTA wurden die Zellen vom Boden gelöst und in DMEM resuspendiert. 

Die Suspension wurde in 50 ml Röhrchen überführt und bei 1000 rcf für fünf Minuten 
zentrifugiert. Der Überstand wurde abgesaugt, und das Zellpellet in DMEM mit 10 % 
DMSO und 5 % FCS resuspendiert und in Einfrierröhrchen langsam (circa 1 °C pro 

Stunde) auf -80 °C abgekühlt.  

3.3.3 Transfektion mit Hilfe von Metafectene  

Die Transfektion erfolgte mit Hilfe des polykationischen Transfektionsreagenzes 
Metafectene der Firma Biontex. Hierzu wurden in eine 6-Lochplatte 200.000 Zellen pro 

Loch (bei späterer immuncytochemischer Untersuchung auf ein steriles Deckgläschen) 
in 2 ml Kulturmedium ausgesät. Nach 24 Stunden erfolgte die Transfektion der Zellen, 
die in der Regel zu 60 - 80 % konfluent waren. 

Für eine Transfektion wurde die gewünschte Menge Plasmid-DNA (0,5 - 3 µg DNA) in 
50 µl serumfreiem DMEM in einem Reaktionsgefäß vorgelegt. Pro Ansatz wurde 
serumfreies Medium in ein zweites Reaktionsgefäß vorgelegt und das Transfektions-

reagenz ohne Berührung der Gefäßwand zugegeben (Gesamtvolumen 50 µl). Das 
Verhältnis von Metafectene (in µl) zu DNA (in µg) betrug 1 : 2 bis 1 : 3. Nach kurzem 
Mischen wurden die Ansätze vereinigt und zur Bildung von DNA/Metafectene-

Komplexen für 30 Minuten bei Raumtemperatur inkubiert. Anschließend wurde der 
Ansatz vorsichtig auf die Zellen getropft. 
Zur Überprüfung der Transfektionseffizienz wurde ein Kontrollansatz mit einer für das 

grün-fluoreszierende Protein kodierenden DNA durchgeführt. Zu diesem Zwecke wurde 
ein pcDNA3-eGFP-Vector (enhanced GFP) transfiziert. Die transfizierten Zellen 
wurden nach 24 und 48 Stunden unter dem Fluoreszenzmikroskop auf ihre Trans-

fektionsrate hin analysiert (Anregungswellenlänge 470 nm; Filterwellenlänge 
505 - 530 nm). Dazu wurde der Anteil fluoreszierender Zellen an der Gesamtzellzahl 
bestimmt. 



Methoden 59 

 

3.3.4 Ernten transfizierter Zellen 

3.3.4.1 Probengewinnung für Western Blot Untersuchungen 
Um Proben für Immunoblotting-Versuche zu gewinnen, wurden die in 6-Lochplatten 
ausgesäten Zellen 48 Stunden nach der Transfektion geerntet. Stabil transfizierte Zellen 

wurden ebenfalls in 6-Lochplatten ausgesät und 24 - 48 Stunden nach Induktion der 
Tetrazyklin abhängigen Proteinexpression verwendet. Zur Probengewinnung wurden 
die Zellen zunächst mit PBS gewaschen, in 800 µl SDS-Probenpuffer aufgenommen 

und bis zur weiteren Verwendung bei -20 °C gelagert. 

3.3.4.2 Immuncytochemische Untersuchungen von Zellkulturzellen  
Für immuncytochemische Untersuchungen wurden die auf Deckgläschen ausgesäten 
Zellen 48 Stunden nach der Transfektion einmal mit PBS gewaschen und anschließend 

für 2 Minuten mit -20 °C kaltem Methanol fixiert und gleichzeitig permeabilisiert. Nach 
einmaligem Waschen für fünf Minuten mit PBS wurden unspezifische Bindungsstellen 
für 30 Minuten bei Raumtemperatur in der feuchten Kammer mit 10 % FCS in PBS 

blockiert. Die Inkubation mit dem ersten Antikörper, der in 5 % FCS in PBS verdünnt 
wurde, erfolgte für eine Stunde bei Raumtemperatur oder über Nacht bei 4 °C in einer 
feuchten Kammer. Nichtgebundener Antikörper wurde durch dreimaliges Waschen mit 

PBS entfernt, bevor die Zellen mit einem Fluorochrom-gekoppelten Zweitantikörper (in 
5 % FCS in PBS; Verdünnung siehe 2.4.1) für zwei Stunden bei Raumtemperatur 
inkubiert wurden. Zur Färbung des Zellkerns wurde die Zweitantikörperverdünnung mit 

0,5 µg/ml DAPI versetzt. Nach dreimaligem Waschen mit PBS wurden die Präparate 
mit Fluoreszenz Eindeckmedium auf Objektträgern konserviert. Die Auswertung der 
immunhistochemischen Markierung erfolgte am Fluoreszenzmikroskop (Axiovert 

200M). 

3.4 ReproduktionsbiologischeTechniken 

3.4.1 Morphometrische Analyse der männlichen Reproduktionsorgane 
der Maus 

3.4.1.1 Bestimmung des Hodengewichts und der Spermienzahl 
Um die Reproduktionsorgane von Wildtypmäusen und Gen-defizienten Tieren zu 
analysieren, wurden 12 - 26 Wochen alte Tiere durch zervikale Dislokation getötet und 
zunächst das Körpergewicht bestimmt. Anschließend wurden die Hoden entnommen 

und gewogen. Nach zwei Tagen Trocknung bei 37 °C wurde das testikuläre Trocken-
gewicht ermittelt. Aus den bestimmten Massen wurde zusätzlich das Verhältnis von 
Hodengewicht zum Körpergewicht berechnet. 
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Zur Untersuchung der Zahl reifer Spermien wurde der caudale Teil des Nebenhodens 
entnommen und in 2 ml HS Puffer überführt. Unter optischer Kontrolle wurde das 
Organ mehrmals eingeschnitten und die Spermien vollständig herausgedrückt. Nach 

einer fünfminütigen Inkubation bei 37 °C wurde die Spermiensuspension in ein 2 ml 
Reaktionsgefäß überführt und 20 µl dieser Zell-Suspension wurden 1 : 40 mit H2O 
verdünnt, und die Spermienzahl in einer Neubauer-Zählkammer bestimmt. 

Die beschriebenen Untersuchungen zur Größe der Reproduktionsorgane wurden mit 
genetisch modifizierten und Wildtyp-Tieren mit identischem Stammhintergrund 
(Generation N2-N6, siehe Abschnitt 3.6.2) und gleichem Alter durchgeführt. 

3.4.1.2 Untersuchung der Spermienmorphologie 
Zur Analyse der Spermienmorphologie wurden Spermien, wie in Abschnitt 3.2.1.2 
beschrieben, isoliert, 90 Minuten in vitro kapazitiert, fixiert und zur Darstellung des 
Akrosoms mit einer Coomassieblau-Färbelösung (s. Abschnitt) gefärbt. Anschließend 

wurde die Morphologie der Zellen lichtmikroskopisch begutachtet. Zur Ermittlung von 
kleinen Unterschieden in der Form des Spermienkopfes wurden Bilder der Zellen auf-
genommen, die anschließend mithilfe des Cell A Programms (Olympus, Hamburg) 

vermessen wurden. Dabei wurde die Länge des Spermienkopfes (Abbildung 3.2, [I]), 
die Länge der geraden Verbindung zwischen Beginn und Ende des sichelförmigen 
Akrosoms ([II]) sowie Umfang ([III]) und Fläche ([IV]) des Kopfes bestimmt (zur 

Übersicht über die einzelnen Parameter, siehe Abbildung 3.2). Es wurden 5 Tiere pro 
Genotyp analysiert,  dabei wurden jeweils 8 - 15 Zellen ausgewertet und der Mittelwert 
mit Standardfehler berechnet. 

 

Abbildung 3.2:  Morphometrische Untersuchung des Spermienkopfes. 
Dargestellt ist eine Übersicht über einen mit Coomassieblau-Färbelösung gefärbten Spermienkopf mit den 
jeweils bestimmten Größen-Parametern. Es wurden die Länge des Spermienkopfes ([I]), der Abstand 
zwischen proximalem und distalem Ende des Akrosoms ([II]) sowie der Umfang ([III]) und die Fläche des 
Spermienkopfes ([IV]) ermittelt. 

3.4.1.3 Analyse der Hodenmorphologie  
Zur Darstellung der Hodenmorphologie wurden die Organe zunächst für 24 Stunden in 
Bouin-Lösung fixiert, anschließend für mehrere Tage mit 70 %igem Ethanol gewaschen 

und dann wie unter Abschnitt 3.2.5.1 beschrieben in Paraffin eingebettet und 
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geschnitten (Abschnitt 3.2.5.2). Nach der Rehydrierung der Schnitte in einer 
absteigenden Xylol-Alkohol-Reihe (Abschnitt 3.2.5.3) wurden diese einer Hämatoxilin-
Eosin-Färbung unterzogen [Lillie et al., 1976], um einzelne Gewebsstrukturen wie Zell-

kerne und Cytoplasma sichtbar zu machen und einen Überblick über die Gewebs-
morphologie zu erhalten. Dabei färbt Hämalaun die basophilen, sauren Zellkerne blau, 
während überwiegend eosinophile Proteine des Cytoplasmas rötlich markiert werden. 

Zur Färbung wurden die rehydrierten Schnitte zunächst bei Raumtemperatur für zwölf 
Minuten in Mayer´s Hämalaun-Lösung inkubiert und anschließend zum Bläuen zehn 
Minuten in H2O gewaschen. Nach der Färbung mit 0,5 % wässriger Eosin Y-Lösung für 

zehn Minuten wurden die Schnitte erneut gewaschen und durch eine aufsteigende 
Alkoholreihe (70 %, 80 %, 2 x 100 % Ethanol) und einem Bad in Xylol-Ersatz 
dehydriert und anschließend mit Eukitt eingedeckelt. Die Gewebsmorphologie wurde 

mit Hilfe eines Olympus CX41 Mikroskops begutachtet und dokumentiert. 
Zur Darstellung der Morphologie des Nebenhodens wurden Formalin-fixierte und in 
Paraffin-eingebettete Organe (Abschnitte 3.2.5.1 und 3.2.5.2) verwendet. Die HE-

Färbung wurde wie für den Hoden beschrieben durchgeführt. 

3.4.1.4 Nachweis von apoptischen Zellen im männlichen Keimdrüsengewebe der 
Maus 

Um das Ausmaß apoptotischer Prozesse während der Keimzellentwicklung im Hoden 
von Gen-defizienten und Wildtyp-Tieren zu vergleichen, wurde die Zahl apoptotischer 

Zellen im Hoden mit Hilfe des TUNEL- (TdT-mediated dUTP nick end labeling)-
Verfahrens bestimmt [Gavrieli et al., 1992]. Dabei wurde die fragmentierte DNA 
apoptotischer Zellen enzymatisch mit einem Fluoreszenz-gekoppelten desoxy-Uridin-

Triphosphat (dUTP) versehen und damit direkt im Gewebe fluoreszenzmikroskopisch 
sichtbar gemacht.  
Zur Quantifizierung apoptotischer Zellen im Hodengewebe wurden Schnitte von Bouin-

fixierten und in Paraffin-eingebetteten Organen verwendet (siehe Abschnitte 3.2.5.1, 
3.2.5.2 und 3.4.1.2). Die rehydrierten Schnitte (siehe Abschnitt 3.2.5.3) wurden 
zunächst mit Proteinase K (20 µg/ml in 10 mM Tris, pH 7,4) bei 37 °C für 30 Minuten 

verdaut, um das Gewebe für die weitere Behandlung zugänglich zu machen. Nach zwei 
Waschschritten mit PBS (je fünf Minuten) wurden 50 µl labeling-Lösung des Cell death 

detection kits (Roche) auf die Schnitte gegeben, mit einer Laborfolie abgedeckt und eine 

Stunde bei 37 °C inkubiert [Ramos und Wetzels, 2001]. Anschließend wurden die 
Schnitte dreimal gewaschen, zur Darstellung der Zellkerne mit 0,1 µg/µl DAPI für 
30 Minuten bei Raumtemperatur inkubiert und nach zwei weiteren Waschschritten mit 

PBS mit einem Fluoreszenz-geeigneten Eindeckmedium und einem Deckglas 
konserviert.  
Zur Quantifizierung der TUNEL-positiven Zellen wurden die Schnitte fluoreszenz-

mikroskopisch betrachtet (Zeiss LSM 510 Meta) und die apoptotischen Zellen aus-
gezählt. Mithilfe der DAPI-Kernfärbung wurde dabei zunächst die Zahl der Hoden-
tubuli pro Blickfeld bestimmt. Anschließend wurden die TUNEL-positiven Zellen im 
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Blickfeld gezählt, und ihre jeweilige Anzahl pro Tubulus und pro Blickfeld berechnet. 
Pro Hodenschnitt wurden 3-4 Blickfelder, die ca. 75 % der Gesamtfläche ausmachten, 
ausgezählt. Für jedes untersuchte Tier wurden 2 Objektträger mit 3 - 4 Hodenschnitten 

in zwei unabhängigen Ansätzen analysiert. Für den Vergleich der Apoptoserate im 
Keimdrüsengewebe wurden Wurfgeschwister der drei verschiedenen Genotypen 
verwendet (mindestens 5 Tiere pro Genotyp). 

3.4.2 Motilitätsanalysen an isolierten Spermien (computer assisted 

semen analysis [CASA])  

Die Spermienmotilitätsanalysen erfolgten in Zusammenarbeit mit Dr. Susan Marschall 
am Helmholtz Zentrum München. Zur Gewinnung der Spermien wurde nach zervikaler 

Dislokation der Tiere der caudale Teil des Nebenhodens entnommen, in 0,9 % NaCl in 
H2O gewaschen und von Fett und Bindegewebe befreit. Das Gewebe wurde in 500 µl 
vorgewärmten HTF Puffer überführt (siehe Abschnitt 2.7) und eingeschnitten, um ein 

Ausschwimmen der enthaltenen Spermien zu ermöglichen. Nach fünf Minuten wurden 
10 µl der Spermiensuspension in 500 µl HTF Puffer gegeben, der mit Mineralöl 
überschichtet war, und die Keimzellen darin für 10 Minuten bei 37 °C inkubiert. Die 

Computer-assistierte Spermienanalyse erfolgte mithilfe eines IVOS Sperm Analyzer 
(Hamilton Thorne Research) [Schneider et al., 2009]. Dazu wurden je 10 µl der 
Spermiensuspension in die beiden Messbereiche eines 2x-CEL Objektträgers (80µm 

Tiefe; Hamilton Thorne Biosciences) gegeben und je fünf Messfelder ausgewählt, die 
bei optischer Kontrolle keine Luftblasen oder Gewebsstücke aufwiesen. Die 
anschließende Analyse jedes Messfeldes erfolgte vollautomatisch mit 60 Hz für jeweils 

0,5 Sekunden.  
Folgende Parameter wurden erfasst [die jeweilige Einheit ist in eckigen Klammern 
angegeben]: Anteil der motilen Zellen (MOT) [%], Anteil progressiv motiler Zellen 

(PROG) [%], Pfadgeschwindigkeit (VAP, average path velocity) [µm/sec], Progressiv-
geschwindigkeit (VSL, straight line velocity) [µm/sec], Spurgeschwindigkeit (VCL, 

curvilinear velocity) [µm/sec], seitliche Kopfauslenkung (ALH, amplitude of lateral 

head displacement) [µm], Schlagfrequenz (BCF, beat cross frequency) [Hz], 
Linearitätsindex (STR, straightness, Quotient aus VSL und VAP) [%] und die Linearität 
(LIN, linearity, Quotient aus VSL und VCL) [%] (siehe Abbildung 3.3). Für jedes Tier 

wurden drei Objektträger mit jeweils zwei Messbereichen analysiert (mind. 2000 
Zellen/Tier) und anschließend der Mittelwert für jeden Parameter errechnet.  
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Abbildung 3.3:  Motilitätsparameter der CASA-Messung. 
Gezeigt ist eine schematische Übersicht über die Schwimmspur eines Spermiums (schwarz) und die 
daraus ermittelten Motilitätsparameter; zur Erklärung der Abkürzungen siehe oben stehenden Text. 

Es wurden jeweils Geschwisterpaare der drei Genotypen (Wildtyp, heterozygot und 
homozygot) untersucht. Zur Auswertung wurde für jeden Parameter der Mittelwert 

± Standardfehler von drei Tieren ermittelt, die in unabhängigen Messungen analysiert 
wurden. Um die Spermienmotilität zwischen den jeweiligen Geschwistertieren besser 
vergleichen zu können, wurde zusätzlich eine Normierung vorgenommen. Dazu wurden 

die Werte eines Wildtyp-Tieres als 100 % festgelegt, und die Daten der Wurf-
geschwister darauf bezogen. Zur statistischen Analyse wurde ein zweiseitiger gepaarter 
studentischer t-Test im Vergleich zum Wildtyp durchgeführt.  

3.4.3 Bestimmung des Serum-Testosteronspiegels 

Zur Gewinnung von Serum wurden Mäuse durch zervikale Dislokation getötet und 
anschließend sofort dekapitiert. Das austretende Blut wurde in einer Petrischale 
gesammelt, in ein Reaktionsgefäß überführt und 20 - 30 Minuten bei Raumtemperatur 

belassen, um eine vollständige Gerinnung sicherzustellen. Durch eine Zentrifugation 
des Blutes bei 4500 rcf für zehn Minuten bei Raumtemperatur wurden zelluläre Blut-
bestandteile sedimentiert. Anschließend wurde der Serumüberstand in ein neues 

Reaktionsgefäß überführt und bis zur weiteren Verwendung bei – 20°C gelagert. 
Die Bestimmung des Testosteronspiegels im Serum erfolgte mithilfe eines Testosteron 

EIA kits der Firma Cayman Chemicals. Da Antikörper und andere Proteinbestandteile 

der Probe diese Bestimmung stören könnten, erfolgte zunächst eine Extraktion des 
Testosterons aus dem Serum nach Anleitung des Herstellers. Dazu wurden 50 µl der 
aufgetauten Serumproben mit 250 µl Diethylether versetzt, kräftig gemischt, und 

anschließend wurde die organische Phase in ein neues Reaktionsgefäß überführt. Die 
Extraktion des Serums wurde zweimal wiederholt und die organischen Überstände 
vereinigt. Das organische Lösungsmittel wurde anschließend in einer Vakuumzentrifuge 

(Speedvac, Bachofer) bei Raumtemperatur verdampft, und die Pellets im Reaktions-
puffer resuspendiert. Die Bestimmung der Testosteronmenge erfolgte anschließend nach 
dem Protokoll des Herstellers. Die Messung der Absorption des Ellmanns Reagenzes 

wurde in einem Fluoreszenzspektrometer (FLUOstar Omega, BMG Labtech) durch-
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geführt. Serumproben wurden in Triplikaten analysiert, und die Testosteronmenge in 
der jeweiligen Probe wurde durch Vergleich mit einer Standardkurve ermittelt. Unter-
sucht wurden mindestens drei Geschwistertiere pro Genotyp. 

3.4.4 Untersuchung der Spermienkapazitierung durch 
Quantifizierung der Cholesterolauslagerung 

Eine der grundlegenden Veränderungen, die eine Spermienzelle während des 
sekundären Reifungsvorgangs der Kapazitierung erfährt, besteht in der Auslagerung 

von Cholesterol aus der Plasmamembran. Diese Verminderung der Cholesterolmenge in 
der Membran ist eine der Voraussetzungen für eine erfolgreiche Kapazitierung in vitro 
und in vivo [Witte und Schafer-Somi, 2007; Gadella et al., 2008; Abou-Haila und 

Tulsiani, 2009; Sheriff und Ali, 2010].  
Aufgrund ihrer essentiellen Bedeutung für die Kapazitierung wurde die Auslagerung 
von Cholesterol aus der Spermienmembran als Parameter gewählt, um den Verlauf und 

das Ausmaß der Kapazitierung von Wildtyp- und Gen-defizienten Spermien zu unter-
suchen. Dafür wurden Spermien wie unter Abschnitt 3.2.1.2 beschrieben in 
Kapazitierungspuffer isoliert, die Zellzahl bestimmt, die Zellen auf einzelne Reaktions-

gefäße verteilt und bei 37 °C inkubiert. Nach 0, 30, 60, 90 und 120 Minuten wurde je 
ein Reaktionsgefäß entnommen, bei 400 rcf für fünf Minuten zentrifugiert, und der 
Überstand in ein neues Reaktionsgefäß überführt. Dieser Überstand wurde bis zur 

Bestimmung des Cholesterolgehaltes bei -20 °C gelagert. Parallel zur Inkubation wurde 
die Spermienkonzentration in der Probe mithilfe einer Neubauer-Zählkammer bestimmt.  
Die Bestimmung der Cholesterolmenge im Kapazitierungsüberstand [Butler et al., 

2002] erfolgte unter Verwendung des Amplex Red Cholesterol Systems von Invitrogen 
nach Herstellerangaben. Dazu wurden in einer 96-Lochplatte 50 µl aufgetaute Probe mit 
der gleichen Menge Amplex Red Lösung gemischt, für 15 Minuten bei 37 °C inkubiert, 

und anschließend wurde die Fluoreszenz der Probe bei einer Anregungswellenlänge von 
530 nm und einer Emissionswellenlänge von 590 nm in einem Fluoreszenzspektrometer 
gemessen. Die Ermittlung des Cholesterolgehaltes der Proben erfolgte durch Vergleich 

mit einer Cholesterolstandardkurve. Die Cholesterolmenge beim Start der Inkubation 
(Zeitpunkt t = 0) wurde als Basalwert angesehen und von allen Proben abgezogen. 
Angegeben ist die Menge an ausgelagertem Cholesterol pro Spermium. Die gezeigten 

Daten sind Mittelwerte und Standardfehler von mindestens fünf Tieren pro Genotyp. 
Als Wildtyp-Tiere wurden C57BL/6 Tiere verwendet, die Tas1r1-defizienten Mäuse 
waren in erster Generation auf den C57BL/6-Hintergrund zurückgekreuzt (N1; siehe 

Abschnitt 3.6.1). 
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3.4.5 Funktionelle Untersuchung der Akrosomreaktion 

3.4.5.1 Auslösen der Akrosomreaktion 
Nach zervikaler Dislokation wurde Mäusen unverzüglich der caudale Teil des Neben-
hodens entnommen, in HS Puffer gewaschen und in 2 ml auf 37 °C vorgewärmten 

Kapazitierungspuffer überführt und mehrfach eingeschnitten. Die Spermien wurden 
vorsichtig mit zwei Pinzetten aus dem Nebenhoden herausgedrückt und für 60 bis 90 
Minuten bei 37 °C im CO2-Schrank kapazitiert. Anschließend wurden die Spermien mit 

2 - 4 ml Kapazitierungpuffer verdünnt und 50 - 200 µl der kapazitierten Spermien 
wurden in ein neues Reaktionsgefäß überführt, in dem die gewünschten Stimulations-
substanzen (zehnfach konzentriert) vorgelegt waren. Nach weiteren 30 Minuten 

Inkubation im CO2-Schrank wurden die Proben fixiert und der akrosomale Status 
bestimmt. 
Um die spontane Rate der akrosomalen Exocytose ohne Stimulus zu überprüfen, 

wurden jeweils 50 µl Spermiensuspension zum Zeitpunkt der Spermienisolierung (t = 0) 
und während der Kapazitierung (t = 30, 60, 90, 120 Minuten) entnommen und fixiert. 
Als Positivkontrolle zur Bestimmung der maximal möglichen Akrosomreaktion wurde 

jeweils ein Ansatz mit dem Calcium-Ionophor A23187 (10 µM) behandelt, Kontroll-
ansätze wurden mit 0,1 % DMSO, in dem auch das A23187 gelöst war, inkubiert. 
Um den Einfluss von Geschmacksstoffen auf die Akrosomreaktion zu testen, wurden 

kapazitierte Zellen, wie oben beschrieben, mit verschiedenen Süßsubstanzen (Glucose 
[10 mM, 100 mM], Saccharin [1 mM], Acesulfam K [1 mM, 10 mM, 100 mM], 
Thaumatin [1 µM, 10 µM, 100 µM]) bzw. mit den Umami-Stimuli Mononatrium-

glutamat [1 mM und 10 mM] und Inosin 5′-monophosphat (IMP, [1 mM, 5 mM]) 
inkubiert. Zur Kontrolle von Effekten des Natriums in den verwendeten Salzen wurden 
Kontrollansätze mit der gleichen Konzentration NaCl behandelt. Der Effekt von bitteren 

Substanzen auf die Akrosomreaktion wurde geprüft, indem Zellen mit 1 mM, 5 mM und 
10 mM Denatoniumbenzoat stimuliert wurden. 
Die Fähigkeit von Spermien auf den physiologischen Auslöser der Akrosomreaktion, 

die Zona pellucida, zu reagieren, wurde untersucht, indem 50 µl kapazitierter Spermien 
mit 350 - 500 solubilisierten Zonae pellucidae (7-10/µl) (siehe Abschnitt 3.4.6) für 
30 Minuten inkubiert wurden. Anschließend wurden die Zellen fixiert, gefärbt und der 

akrosomale Status bestimmt [Butscheid et al., 2006]. 

3.4.5.2 Bestimmung des akrosomalen Status durch Coomassie-Färbung 
Die Bestimmung des akrosomalen Status erfolgte durch eine Coomassie-Färbung 
[Jungnickel et al., 2001]. Zur Fixierung der Spermien wurden diese mit dem zehnfachen 

Volumen Fixierungspuffer gemischt und bei Raumtemperatur für 30 Minuten inkubiert. 
Durch Zentrifugation (16000 rcf, 1 Minute, Raumtemperatur) wurden die fixierten 
Spermien sedimentiert, in 200 µl Waschpuffer resuspendiert, erneut zentrifugiert und in 

20 µl des Überstandes resuspendiert. Diese Spermiensuspension wurde auf Objektträger 
pipettiert und bei Raumtemperatur getrocknet. Anschließend wurden die Spermien für 
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sechs Minuten in einer Coomassie-Färbelösung (s. Abschnitt 2.7) inkubiert, die das 
intakte Akrosom eines Spermiums aufgrund dessen hoher Proteindichte tiefblau anfärbt 
[Lu et al., 2002]. Die Objektträger wurden einmal in H2O gewaschen und dann mit 

angewärmter Glyceringelatine unter einem Deckglas konserviert. 
Zur Quantifizierung der Akrosomreaktion wurde der akrosomale Status von mindestens 
200 Spermien pro Objektträger lichtmikroskopisch evaluiert. Das Bild einer Spermien-

Coomassie-Färbung und eine Beurteilung des akrosomalen Status ist in Abbildung 3.4 
beispielhaft gezeigt. Um eine objektive Quantifizierung zu gewährleisten wurde die 
Beschriftung aller Objektträger verdeckt und die Präparate „blind“ ausgezählt. Die 

Auswertung der Daten zur Ermittlung des prozentualen Anteils Akrosom-reagierter 
Spermien erfolgte mit Hilfe von Microsoft Excel (Redmont, USA). 

 

Abbildung 3.4:  Coomassie-Färbung von Mausspermien. 
Spermien der Maus wurden frisch isoliert, kapazitiert und dann mit A23187 (10 µM) stimuliert, um die 
Akrosomreaktion auszulösen. Nach der Fixierung wurden die Spermien mit einer Coomassie-Färbelösung 
gefärbt. Das intakte, proteinreiche Akrosom ist als dunkelblaue Sichel am Spermienkopf erkennbar ( ). 
Bei Akrosom-reagierten Spermien ist diese dunkelblaue Färbung nicht mehr zu detektieren (▼). 

3.4.6 Zona pellucida Präparation 

Da die Zona pellucida aufgrund ihres Glykoproteinreichtums die Tendenz hat, an 
negativ-geladenen Plastikoberflächen zu haften, wurden für alle Aufreinigungs- und 

Versuchsansätze mit Zona pellucida ausschließlich mit Sigmacote (Sigma-Aldrich) 
beschichtete Pipettenspitzen und Reaktionsgefäße verwendet. 

3.4.6.1 Präparation von Zona pellucida 
Zur Präparation von Zona pellucida wurden 20 adulten weiblichen Balb/C-Mäusen nach 

zervikaler Dislokation die Ovarien ohne Fett und Eileiter entnommen und in 2 ml 4 °C 
kalten HB+ Puffer (50 ml HB + Aprotinin [0,2 mg/ml], + DNase [0,2 mg/ml], + eine 
Tablette Mini Complete Protease Inhibitor) überführt. In einem Homogenisator (Kontes) 

wurde das Gewebe zunächst grob aufgeschlossen und nach Zugabe von 200 µl NP-40 
(10 % in H2O) und 200 µl Natriumdesoxycholat (10 % in H2O) homogenisiert, bis keine 
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sichtbaren Gewebeteilchen mehr vorhanden waren. Das so gewonnene Homogenisat 
wurde auf einen diskontinuierlichen Percollgradienten in einem 15 ml Reaktionsgefäß 
geschichtet, der sich aus einer 22 %igen-Schicht (3 ml), einer 10 %igen-Schicht (2 ml) 

und einer 2 %igen-Schicht (2 ml) von Percoll in HB+ Puffer zusammensetzte. Das 
Homogenisat wurde dann durch zweistündige Zentrifugation mit 200 rcf bei 4 °C im 
Gradienten aufgetrennt. Nach dieser Zentrifugation befanden sich die Zonae in der 

10 %-Percoll-Fraktion des Gradienten. Diese Fraktion wurde vorsichtig entnommen, 
mit HB+ Puffer auf 10 ml aufgefüllt und dann auf 1,5 ml Reaktionsgefäße aufgeteilt. 
Durch Zentrifugation bei 4 °C für 10 Minuten bei 16000 rcf wurden die Zonae 

sedimentiert, und der Überstand bis auf jeweils 500 µl abgenommen. Die Zonae wurden 
im restlichen Überstand resuspendiert, in Reaktionsgefäßen vereinigt und erneut bei 
4 °C für 10 Minuten mit 16000 rcf zentrifugiert. Der Überstand wurde anschließend bis 

auf 500 µl abgenommen, und die Zonae durch drei- bis viermaliges Wiederholen dieses 
Vorgangs in einem Reaktionsgefäß vereinigt und durch Zentrifugation (4 °C, 16000 rcf, 
10 Minuten) pelletiert. Die Zonae wurden dann in 100 µl des Überstandes 

aufgenommen.  
Zur Quantifizierung der präparierten Zona pellucida wurden je drei Tropfen (je 1 µl) 
dieser Suspension auf einen Objektträger aufgetragen und im Lichtmikroskop die 

Gesamtzahl der Zonae pellucidae bestimmt. Diese wurden anschließend in 1 ml PBS 
verdünnt und dreimal mit PBS gewaschen (Pelletierung: 16000 rcf, 10 Minuten, 4 °C), 
um mögliche Percoll-Reste zu entfernen. Bis zur weiteren Verwendung wurden die 

Zonae pellucidae für maximal zwei Tage bei 4 °C in PBS gelagert. 

3.4.6.2 Solubilisierung von Zona pellucida 
Um die Glykoproteine ZP1, ZP2 und ZP3 der Zona pellucida zu solubilisieren, wurde 
die Zona-Suspension einer starken Erniedrigung des pH-Wertes auf 2,5 und einem 

Erwärmungsschritt auf 60 °C unterzogen. Dazu wurden die in PBS aufbewahrten Zonae 

pellucidae zunächst durch Zentrifugation bei 4 °C für zehn Minuten mit 16000 rcf 
pelletiert, der Überstand wurde abgenommen, und das Pellet wurde in 1 ml 2,5 M 

NaH2PO4 (pH 7,0) resuspendiert. Nach einer Zentrifugation bei 4 °C für 10 Minuten mit 
16000 rcf wurde der Überstand bis auf 50 µl abgenommen, und die Zonae in 500 µl 
2,5 M NaH2PO4 (pH 7,0) resupendiert. Dieser Waschschritt wurde ein weiteres Mal 

wiederholt, und der Überstand bis auf 10 µl abgenommen. Durch die Zugabe von 20 µl 
5 M NaH2PO4 (pH 2,5) wurde das Pellet resuspendiert, und die Zonae durch Erhitzen 
auf 60 °C für 20 Minuten solubilisiert. Eine Zentrifugation mit 16000 rcf für zwei 

Minuten bei Raumtemperatur trennte die solubilisierten, im Überstand befindlichen 
Proteine von Zelltrümmern und nicht-solubilisierter Zona pellucida. Der Überstand 
dieser Zentrifugation wurde in ein neues Reaktionsgefäß überführt, und das Pellet 

nochmals in 20 µl 5 M NaH2PO4 (pH 2,5) resuspendiert und für 20 Minuten auf 60 °C 
erhitzt, um die Ausbeute an solubilisierten Zona pellucida Proteinen zu maximieren. 
Nach einer erneuten Zentrifugation wurden die Überstände der beiden Solubilisierungs-
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schritte vereinigt, mit 55 µl zweifachem HS Puffer mit BSA und NaHCO3 (pH 7,6) 
versetzt und bis zur weiteren Verwendung auf Eis gelagert. 

3.5 Funktionelle Untersuchungen 

3.5.1 Messung von intrazellulären Ca2+-Konzentrationen in Spermien 
mit dem Ca2+-Chelator Fura-2 

Zur Bestimmung der intrazellulären Ca2+-Konzentration wurde der fluoreszierende 
Ca2+-Chelator Fura-2 eingesetzt [Grynkiewicz et al., 1985]. Zur Beladung von Zellen 

mit Fura-2 wurde der Acetoxymethylester des Farbstoffs gewählt (Fura-2-Acetoxy-
methylester [Fura-2-AM]), da dieser durch seine Lipophilie leicht durch die Zell-
membran hindurchtritt. Im Cytoplasma wird diese membranpermeable Form dann von 

ubiquitär exprimierten Esterasen zum freien Fura-2 gespalten, das aufgrund seiner 
hydrophilen Struktur die Zelle nicht mehr verlassen kann, so dass eine Rückdiffusion in 
den extrazellulären Raum verhindert wird (zur Übersicht siehe [Takahashi et al., 1999]). 

Nach Bindung von Ca2+an Fura-2 verschiebt sich die Wellenlänge des Exitations-
maximums des Farbstoffs von 380 nm nach 340 nm, wobei die Emissionswellenlänge 
von 510 nm nahezu unverändert bleibt. Am isosbestischen Punkt, bei einer Anregungs-

wellenlänge von 360 nm ist die Fura-2 Fluoreszenz hingegen unabhängig von der 
Menge der gebundenen Calcium-Ionen. Damit bietet sich zum einen die Möglichkeit, 
die Beladung einer Zelle mit dem Fluoreszenzfarbstoff unabhängig von der Ca2+-

Konzentration in der Zelle zu überprüfen. Zum anderen kann die Relation der 
Fluoreszenzsignale bei 340 nm (F340) und 380 nm (F380) genutzt werden, um 
Änderungen der intrazellulären Ca2+-Konzentration zu quantifizieren. Dieser Quotient 

aus F340 und F380 wird im Weiteren als Fura-2-Ratio bezeichnet (siehe Abbildung 
3.5). Durch diese ratiometrische Auswertung wird die Bestimmung der Ca2+-
Konzentration unabhängig von Änderungen der absoluten Fura-2 Fluoreszenz, wie sie 

z. B. durch Ausbleichen, Leck oder unterschiedlich starke Beladung der Zellen 
entstehen können.  
Somit kann die Fura-2-Ratio genutzt werden, um die intrazelluläre freie Ca2+-Konzen-

tration unabhängig von der absoluten Fura-2 Fluoreszenz zu berechnen. Die Um-
rechnung erfolgt mithilfe folgender Formel [Grynkiewicz et al., 1985]:  
[Ca2+]i = K * (R-Rmin)/(Rmax-R) * F380min/F380max. 

Dabei steht R (Fura-2-Ratio) für das Verhältnis der Fluoreszenzen F340/F380. Rmin und 
Rmax bezeichnen die Fura-2-Ratio unter Ca2+-freien Bedingungen (Rmin) bzw. bei Ca2+-
Sättigung (Rmax); F380min und F380max stehen für die absoluten Fluoreszenzintensitäten 

bei 380 nm unter den genannten Extrembedingungen; K bezeichnet die Dissoziations-
konstante von Fura-2 für Ca2+ und beträgt bei Raumtemperatur (22 °C) 264 nM.  
Rmin, Rmax, sowie F380min und F380max sind stark vom verwendeten technischen System 

(Objektive, Deckgläser etc.) sowie dem analysierten Zelltyp abhängig und müssen 
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daher für jede Anwendung gesondert ermittelt werden. Zur Bestimmung der ent-
sprechenden Parameter in Spermien wurden die Keimzellen zunächst für fünf Minuten 
in Ca2+-freiem HS Puffer mit 15 mM NaHCO3, 5 µM Ionomycin und 10 mM EGTA 

inkubiert. Anschließend wurden die Fura-2-Ratio (Rmin) sowie die Fluoreszenzintensität 
bei 380 nm (F380min) bestimmt (siehe Abschnitt 3.5.1.2). Durch Zugabe von CaCl2 
(60 mM Endkonzentration) wurde anschließend eine Ca2+-Sättigung des Farbstoffs 

hervorgerufen, und der Rmax und F380max Wert bestimmt. Die Ergebnisse dieser 
Kalibrierung, unter Verwendung eines 60er Öl-Objektivs (Olympus) sind: 
[Ca2+]i = 264 nM * (R-0,203)/(1,133-R) * 4,108 

3.5.1.1 Vorbereiten und Beladen von Spermien zur Messung der intrazellulären 
Ca2+-Konzentration mit Fura-2 

Um die intrazelluläre Ca2+-Konzentration von Spermienzellen zu untersuchen, wurden 
Spermien zunächst aus dem caudalen Teil des Nebenhodens isoliert und entweder für 
15 Minuten in HS Puffer inkubiert (unkapazitiert) oder zunächst für 60 Minuten 

kapazitiert (siehe Abschnitt 3.4.5). Als Waschpuffer wurde im Folgenden bei 
unkapazitierten Spermien HS ohne Zusätze verwendet, bei kapazitierten Spermien HS 
mit 15 mM NaHCO3 (HS+). Nach der Inkubation wurden die Zellen mit jeweils 1 ml 

Puffer gewaschen (Zentrifugation bei 400 rcf, 5 Minuten, Raumtemperatur) und dann in 
1 ml Puffer mit 3 µl Pluronic F-127 (10 %) und 25 µM Fura-2-AM resuspendiert. Zur 
Beladung wurden die Zellen dann 30 Minuten bei Raumtemperatur im Dunkeln 

inkubiert. Anschließend wurde nicht aufgenommenes Fura-2 durch dreimaliges 
Waschen mit Puffer (HS bzw. HS+) und Zentrifugationen bei 400 rcf für 5 Minuten 
entfernt, und die Spermien wiederum in ca. 500 µl Puffer resuspendiert. Um eine voll-

ständige Verseifung des Fura-2 Esters zu gewährleisten, wurden die Zellen nochmals 
für 30 Minuten bei Raumtemperatur im Dunkeln inkubiert, bevor mit der Messung 
begonnen wurde. 

3.5.1.2 Einzelzellmessung der intrazellulären Ca2+-Konzentration an Spermien 
Die Bestimmung der Ca2+-Konzentration einzelner Spermien erfolgte mithilfe eines 
Mikroskop-basierten Imaging Systems (Till Photonics). Dabei wurde eine Mikroskop-
Plattform von Olympus (IX70) und ein 60er Öl-Objektiv (Olympus, Hamburg) 

verwendet. Als Lichtquelle wurde ein Monochromator eingesetzt (Polychrom V, Till 
Photonics), der einen extrem schnellen Wechsel zwischen den verschiedenen 
Anregungswellenlängen ermöglicht. Die emittierte Fluoreszenz wurde mit einer CCD 

Kamera (Andor, Belfast [Großbritannien]) detektiert.  
Da Spermien nur über eine schwache Fura-2 Fluoreszenz verfügen, wurde mit einem 
vierfachen binning gearbeitet, bei dem jeweils vier Pixel des Kamerachips gemeinsam 

ausgelesen werden, um die Quantenausbeute und damit den Signal-Rauschabstand zu 
erhöhen und gleichzeitig Phototoxizität durch lange Belichtungszeiten zu vermeiden.  
Um die Spermien für die Messung an Glasdeckgläser anheften zu können, wurden diese 

zunächst für eine Stunde mit 50 µg/ml Laminin (in PBS) beschichtet, dann mit H2O 



70 Methoden 

gewaschen und anschließend mit Poly-L-Ornithin (0,01 % in H2O) bedeckt. Nach circa 
einstündiger Inkubation wurde das Poly-L-Ornithin abgesaugt und die Deckgläser 
zweimal mit H2O gewaschen, getrocknet und bis zur weiteren Verwendung kühl 

gelagert.  
Um die Spermien für die Messung an Glasdeckgläser anzuheften, wurden die Ober-
fläche dieser Deckgläser zunächst für eine Stunde mit 50 µg/ml Laminin (in PBS) 

beschichtet, dann mit H2O gewaschen und anschließend mit Poly-L-Ornithin (0,01% in 
H2O) bedeckt. Nach circa einstündiger Inkubation wurde das Poly-L-Ornithin abgesaugt 
und die Deckgläser zweimal mit H2O gewaschen, trocknen gelassen und bis zur 

weiteren Verwendung kühl gelagert.  
Zur Messung wurde ein Deckglas in die Messkammer eingespannt und 10 - 15 µl 
Spermiensuspension aufgetropft. Dabei wurde bei kapazitierten Spermien besonders 

darauf geachtet, die Spermien aus dem oberen Teil des aufrecht stehenden Reaktions-
gefäßes zu verwenden, um die Menge an immotilen, toten Zellen zu minimieren. Nach 
einer Anheftungszeit von einer Minute wurde das Deckglas zweimal mit HS 

(unkapazitierte Zellen) bzw. HS+ (kapazitierte Zellen) gewaschen, und die Zellen mit 
400 µl des Puffers bedeckt. Zur Stimulation der Zellen wurden während der Messung 
200 µl der jeweiligen Stimulationssubstanz mithilfe einer Mikroliterpipette per Hand 

zugegeben.  
Zur Überprüfung, ob die Zellen vital waren, wurden diese gegen Ende der Messung mit 
1 - 5 µM Ionomycin, einem Calcium-Ionophor, das einen Einstrom von Ca2+ vermittelt 

[Liu und Hermann, 1978], stimuliert, um die Höhe des maximal möglichen Ca2+-Signals 
zu testen. 
Die Spermien wurden zunächst bei einer Anregungswellenlänge von 360 nm betrachtet, 

um die Anheftung und die Fura-2 Beladung zu kontrollieren. Die Schwanzbewegung 
der angehefteten Spermien erlaubte darüber hinaus eine Einschätzung der Vitalität der 
verwendeten Zellen. Eine Aufnahme der Fluoreszenzintensität bei 360 nm wurde 

benutzt, um die regions of interest (ROI), also die Bereiche, aus denen die Fura-2-
Ratios für jede einzelne Zelle extrahiert wurden, zu markieren. Dabei wurden nur 
morphologisch intakte und gleichmäßig beladene Zellen berücksichtigt, die mit dem 

Kopf am Deckglas angeheftet waren.  
Zur Bestimmung der basalen Ca2+-Konzentration und deren Veränderung nach 
Stimulation mit verschiedenen Substanzen wurden die Zellen alternierend mit 340 nm 

und 380 nm angeregt und jeweils die Fluoreszenz bei 510 nm registriert. Bei Spermien 
wurde eine Belichtungszeit von 10 ms und eine Zyklusdauer von einer Sekunde 
gewählt. Die Bestimmung der Fluoreszenzintensitäten und der Fura-2-Ratios in den 

markierten Bereichen (ROIs) erfolgte mithilfe des Programms Tillvision (Tillphotonics). 
Für die Analyse der basalen Ca2+-Konzentration wurde die ROI sehr eng um den 
Spermienkopf gezogen, um möglichst wenig Hintergrund mit einzubeziehen. Wurde der 

Effekt eines Stimulus auf die intrazelluläre Ca2+-Konzentration bestimmt, wurde der 
Bereich, aus dem die Fluoreszenzintensitäten extrahiert wurden, großflächiger angelegt, 
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um auch Spermienköpfe, die sich leicht oszillierend bewegten, über den gesamten 
Messzeitraum erfassen zu können. 
Für die Analyse der Ca2+-Konzentration in Spermien wurden Gen-defiziente und 

Wildtyp-Spermien aus einem Wurf bzw. gleichaltrige Tiere mit identischem Stamm-
hintergrund (N2 und N3) verwendet.  

3.5.1.3 Bestimmung der intrazellulären Ca2+-Konzentration in Zellpopulationen 
Um Änderungen der intrazellulären Ca2+-Konzentration in ganzen Zellpopulationen und 

nicht nur im Kopfbereich einzelner Spermien zu messen, wurde ein Fluoreszenzspektro-
meter mit einem Excitationsfilter von 340 ± 15 nm und 380 ± 15 nm und einem 
Emissionsfilter von 520 ± 20 nm eingesetzt. Die Beladung der Zellen mit Fura-2 

erfolgte analog zu Abschnitt 3.5.1.1. Um immotile und tote Zellen auszuschließen 
wurden nach der Esterspaltung nur die oberen 700 - 800 µl der Spermiensuspension im 
Reaktionsgefäß zur Messung verwendet. Dazu wurde zunächst die Zellzahl bestimmt 

und auf 5 bzw. 10 Mio/ml eingestellt. 90 µl dieser Spermiensupension wurden dann in 
ein Loch einer für Fluoreszenzmessungen geeigneten 96-Lochplatte gefüllt. Um 
Stimulationseffekte mit hoher Sensitivität innerhalb des linearen Messbereichs des 

Gerätes untersuchen zu können, wurden die Signalstärken für die beiden Fluoreszenz-
anregungswellenlängen optimiert. Dazu wurde die Intensität des Gerätes (gain) so 
eingestellt, dass die basale Fluoreszenzemission 65 % der maximal messbaren 

Fluoreszenz (260000 Fluoreszenzeinheiten) betrug.  
Nach dem Start der Messung wurden zu einem festgelegten Zeitpunkt 10 µl bzw. 20 µl 
der jeweiligen Testsubstanz durch das integrierte Pumpensystem automatisiert 

zugegeben. Während der Messung wurde die Fluoreszenz nach Anregung mit 340 nm 
(F340) bzw. 380 nm (F380) in Intervallen von 1,16 Sekunden bestimmt. Aus den so 
gewonnenen Emissionswerten wurde dann die Fura-2-Ratio berechnet und gegen die 

Zeit aufgetragen. Ein beispielhafter Verlauf von F340, F380 und der Fura-2-Ratio nach 
Injektion von 1 µM Ionomycin ist in Abbildung 3.5 dargestellt.  
Die Untersuchung der intrazellulären Ca2+-Konzentration von Spermienpopulationen 

wurde an Gen-defizienten (Stammhintergrund N1, N2 und N3) und Wildtyp-Tieren 
(identischer Stammhintergrund und C57BL/6 Mäuse) durchgeführt.  
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Abbildung 3.5:  Exemplarische Fura-2 Messung einer Spermien-Zell-Population. 
Dargestellt ist ein typischer Verlauf der Fura-2 Fluoreszenzemissionen von Spermien nach Injektion von 
1 µM Ionomycin ([Stimulus]), Pfeil). Durch das Ionophor strömt Ca2+in die Zelle ein, was zu einer Zunahme 
der Anregungseffizienz bei 340 nm ([A], grüne Kurve) und zu einer Abnahme der Fluoreszenz bei 
Excitation mit 380 nm führt ([A], blaue Kurve). [B] zeigt einen deutlichen Anstieg der Fura-2-Ratio 
(F340/F380) nach der Stimulation mit dem Calcium-Ionophor. Gezeigt sind Mittelwerte [A] bzw. Mittelwerte 
± Standardfehler [B] von drei Messungen einer Spermienpopulation. AE: arbiträre Einheiten 

3.5.2 Bestimmung der intrazellulären cAMP-Konzentration von 
Spermien 

3.5.2.1 Stimulation der Spermien 
Für die Analyse der intrazellulären cAMP-Konzentration wurden sowohl unkapazitierte 
als auch kapazitierte Spermien verwendet. Dazu wurde einer Maus der caudale Teil des 

Nebenhodens entnommen, in HS Puffer gewaschen und dann entweder in HS 
(unkapazitiert) oder in Kapazitierungspuffer (kapazitiert) überführt und mehrfach ein-
geschnitten, um ein Ausschwimmen der Spermien zu ermöglichen (vergleiche auch 

Abschnitt 3.2.1.2). Unkapazitierten Spermien wurden für 15 Minuten bei 37 °C 
inkubiert; kapazitierte Spermien wurden für eine Stunde bei 37 °C in Kapazitierungs-
puffer inkubiert. 

Anschließend wurden die Spermien bei 400 rcf für fünf Minuten bei Raumtemperatur 
zentrifugiert und in HS (unkapazitiert) bzw. HS+ (kapazitiert) resuspendiert. Die 
kapazitierten Spermien wurden anschießend nochmals mit 2 ml HS+ gewaschen, um 

BSA-Reste aus dem Puffer zu entfernen. Anschließend wurde die Zellzahl auf circa 
10 Mio/ml eingestellt, und je 100 µl Spermiensuspension wurden zu 100 µl auf 37 °C 
vorgewärmter Stimulationssubstanz gegeben, durch sanftes Pipettieren gemischt und für 

fünf Minuten bei 37 °C inkubiert. Die Reaktion wurde dann durch Schockfrieren in 
flüssigem Stickstoff gestoppt, und die Proben bis zur Bestimmung des cAMP-Gehaltes 
bei -80 °C gelagert. Die jeweiligen Stimulationssubstanzen wurden in dem Puffer 

gelöst, in dem sich auch die Spermien befanden, also in HS-Puffer (unkapazitierte 
Spermien) bzw. in HS+ (kapazitierte Spermien). Als Stimuli wurde Puffer (Basalwert), 
500 µM IBMX, 50 mM NaHCO3, 10 mM Mononatriumglutamat, 1 mM IMP oder eine 
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Kombination der verschiedenen Substanzen verwendet; angegeben sind jeweils End-
konzentrationen in der Spermiensuspension. 

3.5.2.2 cAMP Extraktion 
Zur Extraktion des cAMP aus den Spermienproben wurden diese nach Zugabe von 

100 µl 10%iger Perchlorsäure unter ständigem Schütteln bei 37 °C aufgetaut. Die 
ausgefallenen Proteine wurden dann durch 15minütige Zentrifugation mit 3000 rcf bei 
4 °C pelletiert. 250 µl des Überstandes wurden für die anschließende Neutralisation in 

ein neues 1,5 ml Reaktionsgefäß auf Eis überführt. Der Überstand wurde zunächst mit 
62,5 µl 10 mM EDTA (pH 7,0) und 340 µl einer 1 : 1 Mischung aus Chloroform und 
Tri-n-octylamin versetzt und anschließend je dreimal zehn Sekunden lang gevortext. 

Eine Phasentrennung wurde durch fünfminütige Zentrifugation mit 1500 rcf bei Raum-
temperatur erreicht. Der wässrige Überstand, in dem sich das cAMP befand, wurde in 
ein neues Reaktionsgefäß überführt und anschließend für die cAMP-Bestimmung 

eingesetzt. 

3.5.2.3 cAMP-Bestimmung 
Die quantitative Bestimmung der cAMP-Konzentration in den extrahierten Proben 
erfolgte unter Verwendung des cAMP Biotrak Enzymeimmunoassay (EIA) Systems. 

Dieses Kit besteht aus einer 96-Lochplatte, die mit einem Esel-anti-Kaninchen-Anti-
körper beschichtet ist, der wiederum einen Kaninchen-anti-cAMP-Antikörper bindet. 
Das Prinzip des Assays beruht auf der Kompetition zwischen dem cAMP in der Probe 

und einer definierten Menge an exogen zugegebenem Peroxidase-gekoppeltem cAMP 
um die Bindung an die anti-cAMP IgG. Je mehr cAMP in der Probe vorliegt, umso 
weniger cAMP-Peroxidase wird gebunden. Der Nachweis der cAMP-Peroxidase 

Bindung erfolgt dann mithilfe des Substrats TMB (Tetramethylbenzidin), das durch die 
Peroxidase zu einem blauen Farbstoff umgesetzt wird, der bei 630 nm absorbiert. Durch 
Zugabe von Schwefelsäure wird dieser Farbstoff gelb, absorbiert bei 450 nm und bleibt 

bis zu 60 Minuten stabil.  
Zur Quantifizierung der cAMP-Konzentration in den Spermien wurden je 100 µl der 
extrahierten Probe pro Loch eingesetzt und mit 100 µl anti-cAMP Antiserum versetzt. 

Für die Standardkurve wurden entsprechend 100 µl einer definierten cAMP-
Konzentration und 100 µl Antiserum eingesetzt. Die Platte wurde dann für zwei 
Stunden auf Eis stehend auf einem Taumler inkubiert. Anschließend wurden 50 µl 

cAMP-Peroxidase zugegeben und erneut für eine Stunde taumelnd auf Eis inkubiert. 
Nachdem die Löcher der 96-Lochplatte viermal mit 400 µl Waschpuffer gewaschen 
wurden, wurde die Platte durch leichtes Aufschlagen auf ein saugfähiges Papier 

getrocknet, mit 150 µl des auf Raumtemperatur vorgewärmten TMB Substrats versetzt 
und eine Stunde bei Raumtemperatur sanft taumelnd inkubiert. Im Anschluss wurde die 
enzymatische Reaktion durch Zugabe von 100 µl 1 M Schwefelsäure gestoppt, und die 

Absorption bei 450 nm gemessen. Zur Auswertung wurde parallel eine Standardkurve 
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mit definierten Mengen an cAMP erstellt. Alle extrahierten Proben und die Standard-
kurve wurden in Doppelansätzen bestimmt. 
Zum Vergleich der basalen und induzierten cAMP-Konzentrationen in Mausspermien 

von genetisch-veränderten und Wildtyp-Tieren wurden Geschwistertiere und gleich-
altrige Tiere mit identischem Stammhintergrund (N2 und N3) verwendet. 

3.6 Arbeiten mit Tieren 

3.6.1 Zucht der Mausstämme 

Die in dieser Arbeit verwendeten verschiedenen Wildtyp-Inzuchtmausstämme 
(C57BL/6, 129SV und Balb/C) sowie die Geschmacksrezeptor-defizienten Reporter-

mauslinien (Tas1r1BL-IRES-mCherry und Tas2r131BL-IRES-hrGFP, siehe Abschnitt 0) und Gen-
defizienten Tiere (Gustducin Knockout, siehe Abschnitt 0) wurden in der Tierzucht-
anlage des Walther-Straub-Instituts für Pharmakologie und Toxikologie der LMU 

München oder in der zentralen Tierzuchteinrichtung des Fachbereichs Medizin der 
Philipps-Universität Marburg gezüchtet und gehalten. Die Tiere waren in isolierten, 
einzeln belüfteten Käfigen (IVC: isolated ventilated cages) der Firma Techniplast 

(Hohenpeißenberg) bei 22 °C Raumtemperatur und circa 50 % Luftfeuchtigkeit mit 
freiem Zugang zu Wasser und Futter (Nagerfutter, SNIFF Spezialdiät GmbH, Soest) 
und einem Hell/Dunkel-Rhythmus von jeweils zwölf Stunden untergebracht. Pro Käfig 

wurden maximal sechs Tiere gehalten und das staubarme Einstreu-Material (Lignocel 
select, Rettermaier und Söhne, Rosenberg) wurde ein- bis zweimal pro Woche 
gewechselt. Zur Zucht der Tiere wurden die Tiere in einem kontinuierlichen, 

monogamen Zuchtsystem gehalten; in einzelnen Zuchtansätzen wurden zwei Weibchen 
mit einem Männchen verpaart. Zuchtpaare erhielten spezielles Zuchtfutter (SNIFF 
Spezialdiäten, Soest) und Nestbaumaterialen (Nestlets, Plexx, PW Elst [Niederlande]). 

Jungtiere wurden 21 Tage nach der Geburt abgesetzt und nach Geschlecht getrennt. Bei 
Tieren der genetisch veränderten Mauslinien erfolgte zu diesem Zeitpunkt die 
Markierung der Mäuse durch Lochen der Ohren und das Schneiden der Schwanzspitzen 

(siehe Abschnitt 3.6.3.1). 

3.6.2 Geschmacksrezeptor-defiziente Reportermauslinien 

Die Tas1r1BL-IRES-mCherry und Tas2r131BL-IRES-hrGFP Mauslinien wurden freundlicherweise 
von Dr. Anja Voigt (AG Prof. Dr. W. Meyerhof, [DIFE], Potsdam und AG Prof. Ulrich 

Boehm, Institut für neurale Signaltransduktion, Zentrum für Molekulare Neurobiologie 
[ZMNH] in Hamburg) zur Verfügung gestellt.  
Die Tas1r1BL-IRES-mCherry Linie wurde durch eine Gene-Targeting-Strategie generiert, bei 

der die gesamte kodierende Tas1r1 Gensequenz durch ein Targeting-Konstrukt ersetzt 
wurde (Abbildung 3.6). Die Knockin-Kassette besteht aus der Sequenz des trans-
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synaptischen Markerproteins Gerstenlektin (barley lectin [BL]), einer internal ribosome 

entry site (IRES) und des mCherry Proteins. In den Reportermäusen  (Abbildung 3.6 
[Mutanten Allel II]) enthält das Allel somit statt der Tas1r1-kodierenden Sequenz die 

BL-IRES-mCherry Knockin-Kassette. Durch diese Mutation werden anstelle des Tas1r1 
Rezeptors das monomere Cherry (mCherry) Protein, das sich durch eine rote 
Fluoreszenz auszeichnet, und das transsynaptische Markerprotein Gerstenlektin (barley 

lectin [BL]) unter Kontrolle des Tas1r1 Promotors exprimiert. Da die Expression des 
Gerstenlektins in der vorliegenden Arbeit nicht näher untersucht wurde, werden die 
homozygoten Tas1r1BL-IRES-mCherry Tiere, die Tas1r1-defizient sind und sich durch einen 

Knockin des Reporterkonstruktes auszeichnen, in der vorliegenden Arbeit vereinfacht 
auch als Tas1r1-Reportermäuse, Tas1r1 mCherry Ki bzw. Tas1r1-defiziente Mäuse 
bezeichnet. 

 

Abbildung 3.6:  Schematische Darstellung der Targeting-Strategie zur Expression von „BL-IRES 
mCherry“ unter Kontrolle des Tas1r1-Promotors. 

Gezeigt sind der Targeting-Vektor, das Tas1r1 Wildtyp-Allel, sowie das modifizierte Tas1r1-Allel vor (neo+) 
und nach (neo−) dem Entfernen der Neomycin-Selektionskassette ACN (tACE-Cre/Neo). Die Restriktions-
stellen EcoRI und die Bereiche, an denen die Sonde für die Genotypisierung (I) und die Sonde zur 
Kontrolle des Ausschneidens der ACN-Kassette (II) binden, sind entsprechend markiert; die schwarzen 
Felder markieren die Exons. Die eingesetzte Kassette besteht aus der kodierenden Region für das 
transsynaptische Markerprotein barley lectin [BL], einem IRES-Element und dem stationären Marker-
protein monomeric Cherry [mCherry]. Das resultierende Allel (Mutanten-Allel II) (neo−) trägt nach dem 
Ausschneiden der Selektionskassette die kodierende Sequenz für BL, IRES, mCherry, sowie eine LoxP-
Erkennungsstelle.  
(mit freundlicher Genehmigung übernommen aus: Dissertation Anja Voigt, „Erzeugung und 
Charakterisierung von Mausmodellen zur Aufklärung der peripheren und zentralen gustatorischen 
Kommunikationsbahnen“, 2011). 

Die Tas2r131BL-IRES-hrGFP Mauslinie wurde analog zur Tas1r1BL-IRES-mCherry Mauslinie 
durch Ersetzen der Gensequenz des Tas2r131 Rezeptors durch eine BL-IRES-hrGFP 
Knockin-Kassette erzeugt (Abbildung 3.7). Diese Kassette setzt sich aus der 

kodierenden Sequenz des Gerstenlektins [BL], einer IRES-Sequenz und der Sequenz 
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des humanized renilla green fluorescent protein (hrGFP) sowie einer Lox P 
Erkennungsstelle zusammen. Durch diese genetische Manipulation wird das stationäre 
grün fluoreszierende Protein GFP anstelle des Tas2r131 unter Kontrolle des Tas2r131-

Promotors exprimiert (Abbildung 3.7). 
Diese Mäuse werden im Folgenden zur Vereinfachung auch als Tas2r131 GFP-Mäuse, 
Tas2r131 GFP Ki Mäuse bzw. Tas2r131-defiziente Mäuse bezeichnet. 

 

Abbildung 3.7:  Schematische Darstellung der Targeting-Strategie zur Expression von „BL-IRES-
hrGFP“ unter Kontrolle des Tas2r131-Promotors.  

Gezeigt sind der Targeting-Vektor, das Tas2r131 Wildtyp-Allel, sowie das modifizierte Tas2r131-Allel vor 
(neo+) und nach (neo-) dem Entfernen der Neomycin-Selektionskassette ACN (tACE-Cre/Neo). Die 
Restriktionsstellen EcoRI und die Bereiche, an der die Sonde für die Genotypisierung (I) und die Sonde 
zur Kontrolle des Ausschneidens der ACN Kassette (II) binden, sind entsprechend markiert. Das schwarze 
Kästchen markiert das Exon. Die eingesetzte Kassette besteht aus der kodierenden Region für das 
transsynaptische Markerprotein barley lectin [BL], einem IRES-Element und dem stationären Marker-
protein humanized renilla green fluorescent protein [hrGFP]. Das resultierende Mutanten-Allel II (neo-) 
trägt nach dem Ausschneiden der Selektionskassette die kodierende Sequenz für BL, IRES, hrGFP, sowie 
eine LoxP-Erkennungsstelle.  
(mit freundlicher Genehmigung übernommen aus: Dissertation Anja Voigt, „Erzeugung und 
Charakterisierung von Mausmodellen zur Aufklärung der peripheren und zentralen gustatorischen 
Kommunikationsbahnen“, 2011). 

Für funktionelle Versuche mit genetisch modifizierten Tieren wurden Mäuse mit 

gemischtem genetischem Hintergrund (129SV and C57BL/6) verwendet, die in erster 
(N1, 50 % C57BL/6), zweiter (N2, 75 % C57BL/6), dritter (N3, 88 % C57BL/6) usw. 
bis sechster Generation (N6, 98 % C57BL/6) auf den C57BL/6 Mausstamm zurück-

gekreuzt waren. Als Kontrollmäuse wurden Wurfgeschwister, Tiere mit identischem 
genetischen Hintergrund oder C57BL/6 Wildtyp-Mäuse verwendet. Der Stammhinter-
grund der verwendeten Mäuse ist für die jeweiligen Versuche angegeben.  
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3.6.3 Genotypisierung  

3.6.3.1 Isolierung genomischer DNA aus Mausschwanzbiopsien 
Um genomische DNA für die Genotypisierung genetisch modifizierter Tiere zu 
erhalten, wurden Schwanzspitzenbiopsien verwendet. Dafür wurde den Mäusen im 

Alter von drei Wochen ein circa 3 mm großes Stück der Schwanzspitze mit einer Schere 
abgeschnitten und in ein Reaktionsgefäß überführt. Anschließend wurde das Gewebe 
bis zur Isolierung der genomischen DNA bei 4 °C gelagert. 

Zum Verdau des Gewebes wurden die Schwanzspitzen zunächst mit 1 mg/ml 
Proteinase K in 330 µl Verdaupuffer (25 mM EDTA, 75 mM NaCl, 1 % SDS, pH 8,0) 
bei 55 °C über Nacht im Schüttelwasserbad inkubiert. Anschließend wurden 1,5 µl 

RNAse A (10 mg/ml in H2O) zugegeben und 30 Minuten bei 37 °C schüttelnd inkubiert. 
Nach Zugabe von 100 µl gesättigter NaCl-Lösung (35 % w/v in H2O) wurden die 
Proben 15 Minuten bei Raumtemperatur geschüttelt und anschließend bei 17000 rcf für 

30 Minuten zentrifugiert. Der Überstand wurde in ein neues Reaktionsgefäß überführt, 
zur Fällung der DNA mit 860 µl Ethanol versetzt, kurz gemischt und dann bei 17000 rcf 
15 Minuten lang zentrifugiert, um die gefällte DNA zu präzipitieren. Nach der 

Zentrifugation wurde der Überstand verworfen und das DNA-Pellet wurde mit 500 µl 
70 %igen Ethanol gewaschen und erneut bei 17000 rcf für 5 Minuten zentrifugiert. 
Anschließend wurde der Waschüberstand abgenommen und die DNA bei Raum-

temperatur luftgetrocknet. Nach vollständiger Trocknung des Pellets wurde dieses in 
100 µl H2O gelöst und als Matrize in einer PCR verwendet (siehe Abschnitt 3.6.3.2). 

3.6.3.2 PCR zur Feststellung des Genotyps 
Zur Feststellung des Genotyps wurde eine PCR mit den in Abschnitt 2.3.2 angegebenen 

Primern unter Verwendung des DreamTaq Systems (Fermentas) durchgeführt. Der 
PCR-Ansatz von 25 µl enthielt 1 µl genomische DNA, je 4 pmol der entsprechenden 
Primer, 2,5 µl PCR-Puffer, 0,8 mM dNTPs, 0,125 µl Taq Polymerase. Die gewählten 

Temperaturbedingungen für die PCR-Reaktion sind in Tabelle 3.1 bzw. Tabelle 3.2 
gezeigt. Anschließend wurden die Amplifikationsprodukte mit 5 µl sechsfachem 
Probenpuffer versetzt, auf ein 1 %iges Agarosegel aufgetragen und gelelektrophoretisch 

getrennt (siehe Abschnitt 3.1.5). Anhand des Bandenmusters, das unter UV-Licht 
visualisiert wurde, konnte dann der Genotyp der Tiere bestimmt werden. 
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Tabelle 3.1:  Temperaturprogramm der Genotypisierungs-PCR der Tas1r1 mCherry und der 
Tas2r131 GFP Mauslinien 

Temperatur [°C] Zeit [Min] Zyklen 

94 5  

94 1  

65 1 5x 

72 1  

94 1  

63 1 5x 

72 1  

94 1  

61 1 35x 

72 1  

72 1  

4 ∞  

Tabelle 3.2:  Temperaturprogramm zur Genotypisierung der Gustducin-defizienten Mauslinie 

Temperatur [°C] Zeit [Min] Zyklen 

94 3  

94 0,5  

60 0,5 35x 

72 0,5  

72 1  

4 ∞  

3.6.4 Analyse des Reproduktionsverhaltens Gen-defizienter Tiere 

3.6.4.1 Analyse des Zuchterfolgs 
Um zu prüfen, inwieweit sich die Gendefizienz der Geschmacksrezeptor-Reportermaus-
linien auf deren Fortpflanzung auswirkt, wurde der Zuchterfolg Gen-defizienter Tiere 

(N1 - N6) mit dem von Wildtyp (C57BL/6) Zuchtpaaren verglichen. Dazu wurden 
8 - 12 Wochen alte Tiere in einer monogamen, kontinuierlichen Zucht verpaart, und die 
Zeit bis zum ersten Wurf, die Zeit zwischen den Würfen und die Anzahl der Nach-

kommen pro Wurf protokolliert. Als weiterer Parameter wurde das Verhältnis der 
Anzahl weiblicher und männlicher Nachkommen sowie die Überlebensrate der Nach-
kommen aus den verschiedenen Verpaarungen bestimmt. 
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3.6.4.2 Genotyp-Verteilung der Nachkommen 
Der Genotyp von Nachkommen heterozygoter Zuchtpaare wurde nach dem Absetzen 
durch eine Genotypisierungs-PCR (siehe Abschnitt 3.6.3) festgestellt. Anschließend 
wurde das Verhältnis zwischen homozygoten (-/-), heterozygoten (+/-) und Wildtyp-

Tieren (+/+) ermittelt und mittels Chi2-Test mit der erwarteten Mendelschen Verteilung 
(25 % [+/+]; 50 % [+/-]; 25 % [-/-]) verglichen. Ein p-Wert kleiner als 0,05 wurde dabei 
als statistisch signifikant angesehen. Analog erfolgte die Auswertung von Zuchtpaaren, 

bei denen ein homozygotes Tier mit einem Wildtyp-Tier verpaart wurde (erwartete 
Mendelsche Verteilung: 50 % [+/+]; 50 % [+/-]). 

3.7 Statistische Methoden 

Daten sind, soweit nicht anders vermerkt, als Mittelwert (MW) ± Standardfehler des 
Mittelwertes (SEM) angegeben. Die Auswertung der Daten erfolgte mit den 
Programmen Excel 2007 (Microsoft) und Prism 5.0 (GraphPad). Zur Überprüfung einer 

statistischen Signifikanz wurde ein zweiseitiger studentischer t-Test angewendet. p-
Werte < 0,05 wurden als signifikant angesehen.  
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4 Ergebnisse 

4.1 Analyse der Expression des potentiellen Sauerdetektors 
PKD2L1 im Reproduktionssystem der männlichen Maus 

Um der Frage nachzugehen, ob der potentielle Sauerrezeptor der Zunge, ein aus den 
Untereinheiten PKD1L3 und PKD2L1 zusammengesetztes Heterodimer, im Keim-

drüsengewebe männlicher Nager exprimiert wird, sollten immunhistochemische 
Analysen mit Hodengewebe durchgeführt werden. Da zum Zeitpunkt der Unter-
suchungen kein PKD1L3-spezifischer Antikörper erhältlich war, waren die Analysen 

auf einen Proteinnachweis des PKD2L1 beschränkt. Zur Detektion des PKD2L1 wurden 
zwei verschiedene Kaninchen-Antiseren verwendet, die beide gegen die gleiche Amino-
säuresequenz einer C-terminal gelegenen Region (AS 731-749) des Mausproteins 

generiert worden waren (Abschnitt 2.4.1) und die uns freundlicherweise von Prof. C. 
Zuker (Howard Hughes Medical School, USA; Bezeichnung des Antiserums in dieser 
Arbeit: PKD2L1 Z, [Huang et al., 2006]) bzw. Prof. H. Matsunami (Duke University, 

USA; Bezeichnung: PKD2L1 M, [Ishimaru et al., 2006]) zur Verfügung gestellt 
wurden.  
Um zunächst die Spezifität der PKD2L1 Antikörper zu verifizieren, wurden in 

Einstiegsexperimenten Gefrierschnitte der Wallpapille (Papilla circumvallata, [CV]) 
der Zunge mit den Antiseren inkubiert und die Bindung des Primärantikörpers 
anschließend mit Hilfe von FITC-gekoppelten anti-Kaninchen IgG visualisiert. Zur 

Prüfung der Antikörperspezifität wurde der Erstantikörper in Parallelansätzen durch 
eine Vorbehandlung des Serums mit einem Überschuss des immunogenen Peptids 
neutralisiert, das als Antigen für die Immunisierung des Kaninchens eingesetzt worden 

war. Erkennen die verschiedenen Antikörper eines polyklonalen Serums spezifisch die 
Aminosäuresequenz oder eine spezielle räumliche Struktur des immunogenen Peptids, 
so lassen sich diese Immunglobuline durch das Peptid selektiv absättigen. Dies hat zur 

Folge, dass die Reaktivität des Antikörpers gegen das Antigen im Gewebeschnitt stark 
reduziert oder ganz eliminiert wird. Ist die Immunmarkierung jedoch nicht auf eine 
spezifische Bindung des immunogenen Peptids zurückzuführen, sondern erkennen die 

Antikörper des Serums unspezifisch andere Epitope, so bleibt die Reaktivität des Anti-
serums nach Vorinkubation mit dem Peptid unverändert.  
Um auszuschließen, dass die Inkubation mit dem Fluorochrom-gekoppelten Sekundär-

antikörper zu unspezifischen Bindungen und damit zu nicht-spezifischen Fluoreszenz-
signalen führt, wurden Kontrollgewebeschnitte nur mit dem Sekundärantikörper 
inkubiert.  
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Abbildung 4.1 [A] zeigt eine schematische Übersicht über den Aufbau einer Wall-
papille, in der sich einzelne zwiebelförmige Geschmacksknospen befinden; eine 
einzelne Geschmacksknospe ist in der unteren grauen Box vergrößert dargestellt. Eine 

solche Knospe setzt sich typischerweise aus in Stützzellen (grau) eingebetteten spindel-
förmigen Sinneszellen (rosa) zusammen, die mit ihren apikalen Mikrovilli-besetzten 
Fortsätzen bis in die Geschmackspore reichen. 

 

Abbildung 4.1:  Nachweis der PKD2L1 Antikörperspezifität in der Wallpapille der Maus. 
[A] Schematische Übersicht über den Aufbau einer Wallpapille und einer Geschmacksknospe. 
Die obere schematische Darstellung zeigt einen Querschnitt durch eine Wallpapille. In das Epithel der 
Papille (rosa) sind die Geschmacksknospen (rot) eingebettet. Eine einzelne Geschmacksknospe (graue 
Box) ist unten vergrößert dargestellt. Modifiziert nach http://www.uni-duesseldorf.de/MedFak/ 
mai/teaching/content/neuroanatomie, Universität Düsseldorf, Med. Fakultät, Neuroanatomie. 
[B - I] Immunhistochemische Analyse der PKD2L1 Antikörperreaktivität in einer murinen Wallpapille. 
Gefrierschnitte der Wallpapille einer adulten Maus wurden mit einem der zwei PKD2L1 Antiseren (1:200) 
bzw. mit dem PKD2L1 M Antiserum und dem immunogenen Peptid (fünffach konzentriert) inkubiert. Die 
Visualisierung der gebundenen Primärantikörper erfolgte mit Hilfe FITC-gekoppelter anti-Kaninchen IgG 
(1:750 verdünnt, grün).  
Das PKD2L1 M Antiserum zeigt eine deutliche Immunreaktivität in den Geschmacksknospen der Wall-
papille [PKD2L1 M], deren Umrisse zur Verdeutlichung umrandet sind [B]. Die Immunmarkierung ist auf 
einzelne Sinneszellen (Pfeilspitze) innerhalb der zwiebelförmigen Geschmacksknospe beschränkt [F]. 
Nach Vorinkubation des Antiserums mit seinem immunogenen Peptid [PKD2L1 M + BP] ist, wie auch in 
den Kontrollansätzen, die ohne Primärantikörper inkubiert wurden [E, I], keine Immunreaktivität zu 
registrieren [C, G]. Mit dem PKD2L1 Z Antiserum ist ebenfalls eine Markierung in einzelnen 
Geschmackssinneszellen zu detektieren [D, H; Pfeilspitze]; zusätzlich tritt auch eine Färbung des 
Wallgrabens [H, Pfeil] durch das Antiserum auf. 
Zur besseren Übersicht wurden in [B - E] die Umrisse der Wallpapille eingezeichnet (dünne gepunktete 
Linie) und in [F - I] einzelne Geschmacksknospen umrandet (dicke gestrichelte Linie). Gezeigt sind Über-
lagerungen der Phasenkontrast- und Fluoreszenzaufnahmen. Die Boxen in den oberen Bildern [B - E] 
markieren den Ausschnitt, der im jeweiligen unteren Bild vergrößert dargestellt ist [F - I].  

Die Analyse der durch die anti-PKD2L1 Antiseren erzeugten Fluoreszenzsignale im 
Gewebeschnitt der Wallpapille machte deutlich, dass die Immunreaktivität des 

PKD2L1 M Antiserums auf die Geschmacksknospen im Zungenepithel beschränkt war 
(Abbildung 1.1 [B] und [F]), während im nicht-sensorischen Gewebe sowie im 
umliegenden Muskelgewebe keine Markierung auszumachen war. Bei stärkerer Ver-

größerung waren innerhalb einer Knospe einzelne immunpositive Zellen auszumachen, 
die die typische längliche Gestalt einer Geschmackssinneszelle aufwiesen (Abbildung 
1.1 [F], Pfeilspitze). Die Spezifität der Immunreaktion des Antiserums konnte durch 
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eine erfolgreiche Neutralisation des Antikörpers mit seinem immunogenen Peptid 
verifiziert werden: Abbildung 1.1 [C] und [G] macht deutlich, dass die Vorinkubation 
des PKD2L1 M Antiserums mit seinem korrespondierenden Peptid [PKD2L1 M + BP] 

zu einer vollständigen Aufhebung der Immunreaktivität führte. In einem Kontrollansatz, 
bei dem Gewebsschnitte lediglich mit dem Fluorochrom-gekoppelten Sekundär-
antikörper inkubiert wurden, konnte ebenfalls keine Immunmarkierung detektieren 

werden (Abbildung 1.1 [E] und [I], [Kontrolle]).  
Gefrierschnitte der Wallpapille, die mit dem zweiten anti-PKD2L1 Antikörper 
(PKD2L1 Z) inkubiert wurden, zeigten ein sehr ähnliches Markierungsmuster: Nach 

Inkubation mit diesem Antiserum wurde ebenfalls eine Immunfärbung einzelner 
spindelförmiger Zellen innerhalb der Geschmacksknospen registriert (Abbildung 1.1 
[D] und [H], Pfeilspitze); zusätzlich dazu waren aber auch Fluoreszenzsignale im Wall-

graben der Papille auszumachen (Abbildung 1.1 [H], Pfeil). Die Immunreaktivität des 
PKD2L1 Z Antiserums war demnach nicht ausschließlich auf potentielle Geschmacks-
sinneszellen beschränkt, so dass sich die nachfolgend zusammengefassten Unter-

suchungen am Reproduktionsgewebe männlicher Mäuse vor allem auf das PKD2L1 M 
Antiserum konzentrierten. 

4.1.1 Immunhistochemischer Nachweis des PKD2L1 Proteins im 
männlichen Keimdrüsengewebe der Maus 

Die validierten Antiseren wurden anschließend in immunhistochemischen Unter-
suchungen an männlichen Reproduktionsorganen eingesetzt, um zu klären, ob die 
kürzlich im Hoden nachgewiesenen mRNA Transkripte des PKD2L1 [Ishimaru et al., 

2006] auch tatsächlich translatiert werden; dabei sollte gleichzeitig untersucht werden, 
ob die Expression auf bestimmte Stadien der Keimzellreifung (Abbildung 4.2 [A]) 
beschränkt ist. Zu diesem Zweck wurden Gefrierschnitte des Hodens mit dem 

PKD2L1 M Antiserum inkubiert und die Immunreaktivität, wie oben beschrieben, 
durch einen FITC-gekoppelten Sekundärantikörper nachgewiesen.  
Der Hoden ist aus einzelnen stark gewundenen Samenkanälchen (Tubuli seminiferi) 

aufgebaut, die von interstitiellem Gewebe umgeben sind, das reich an Nerven und Blut-
gefäßen ist und peritubuläre Zellen und androgenbildende Leydigsche Zwischenzellen 
enthält. Die Tubuli seminiferi, in denen die Spermatogenese stattfindet, werden von 

Keimepithel ausgekleidet, das sich aus Keimzellen verschiedener Entwicklungsstadien 
und Sertoli-Zellen zusammensetzt. In Abbildung 4.2 [A] ist ein schematischer Quer-
schnitt durch ein solches Samenkanälchen gezeigt. Die Spermatogenese beginnt auf der 

Stufe der spermatogonialen Stammzellen, die der Basalmembran der Samenkanälchen 
anliegen. Durch mitotische Teilungen entstehen zunächst Spermatogonien (mittelbau) 
des Typs A und anschließend des Typs B, die zu Spermatocyten vom Typ I (hellblau) 

differenzieren. Durch die erste meiotische Teilung werden daraus Typ II-Spermatocyten 
(hellblau), aus denen nach der zweiten meiotischen Teilung Spermatiden (dunkelblau) 
entstehen. Während der sich anschließenden Spermiogenese differenzieren diese 



84 Ergebnisse 

Spermatiden durch Ausbildung des Akrosoms, Kernkondensation und Entstehung des 
Spermienschwanzes zu Spermatozoen, die schließlich ins Lumen der Hodenkanälchen 
abgegeben werden (Spermiation). Im Verlauf dieser Reifung wandern die Zellen im 

Keimepithel langsam von basal nach luminal. Dabei bleiben die Keimzellklone über 
Cytoplasmabrücken verbunden, so dass ihre Entwicklungsschritte innerhalb eines 
bestimmten Tubulusbereichs synchronisiert ablaufen (siehe auch Abbildung 4.27 [A]) 

[Handel, 1987; Hendriksen, 1999]. Somit ist in einem bestimmten Tubulusabschnitt 
immer eine spezifische Kombination von Keimzellen verschiedener Stadien der 
Spermatogenese zu finden [Bergmann, 2005; Cheng und Mruk, 2010].  

 

Abbildung 4.2:  Immunhistochemische Analyse der PKD2L1 Expression im Hoden. 
[A] Schematische Darstellung eines Querschnitts durch ein Hodenkanälchen. 
[B - E] Immunhistochemischer Nachweis des PKD2L1 Proteins im Maushoden. 
Gefrierschnitte, die Tubuli des Hodens einer adulten Maus im Querschnitt zeigen, wurden mit dem anti-
PKD2L1 M Antiserum (1:200) bzw. mit dem Antikörper und seinem immunogenen Peptid (fünffach 
konzentriert) inkubiert. Der Nachweis der Antikörperbindung erfolgte mittels eines FITC-markierten 
Sekundärantikörpers.  
In den Präparaten, die mit dem PKD2L1 M Antikörper behandelt wurden [PKD2L1 M], zeigt sich eine 
grüne Immunreaktivität in den luminalen Bereichen der angeschnittenen Hodenkanälchen [B]. Die 
Vergrößerung in [D] zeigt, dass die Immunfärbung in den Zellschichten der Spermatiden stark ausgeprägt 
ist, während frühe Keimzellstadien keine Färbung aufweisen [D, PKD2L1 M]. In Ansätzen, in denen das 
Antiserum durch eine Vorinkubation mit dem korrespondierenden Peptid neutralisiert wurde [PKD2L1 M + 
BP], ist keine Immunmarkierung mehr zu erkennen [C, E]. 
Die Abbildungen [B - E] zeigen eine Überlagerung der Phasenkontrast- und der Fluoreszenzaufnahme. In 
[B, C] sind die Umrisse der einzelnen Tubuli eingezeichnet (weiße Linie). Die dick gestrichelt umrandeten 
Tubuli sind in [D bzw. E] vergrößert dargestellt. 

In immunhistochemischen Ansätzen, in denen das PKD2L1 M Antiserum eingesetzt 
wurde, war in allen angeschnittenen Hodentubuli, die durch eine schematische Um-

randung hervorgehoben wurden, ein deutliches Fluoreszenzsignal sichtbar (Abbildung 
4.2 [B]). Diese Immunmarkierung konzentrierte sich auf die luminal lokalisierten 
Spermatiden, während die weiter basal gelegenen frühen Entwicklungsstadien der 

Keimzellen kaum Immunreaktivität erkennen ließen (Abbildung 4.2 [D]). In Kontroll-
experimenten, in denen das PKD2L1 M Antiserum mit seinem immunogenen Peptid 



Ergebnisse 85 

 

vorinkubiert wurde, konnte hingegen keine Immunreaktivität detektiert werden 
(Abbildung 4.2 [C] und [E], [PKD2L1 M + BP]), was die Spezifität des Expressions-
nachweises des PKD2L1 im Hoden der Maus unterstrich. 

Nach Abschluss der Spermiogenese lösen sich die ausdifferenzierten Spermien vom 
Keimepithel der Tubuli seminiferi und werden ins Lumen der Samenkanälchen 
abgegeben. Über die ableitenden Hodenkanälchen (Ductuli efferentes testis) werden die 

Zellen dann in den Nebenhoden transportiert (Abbildung 4.3 [A]). Während ihrer 
Passage durch die verschiedenen Abschnitte des Nebenhodens, den Nebenhodenkopf 
(Caput epididymidis), Nebenhodenkörper (Corpus epididymidis) und den 

Nebenhodenschwanz (Cauda epididymidis) (Abbildung 4.3 [A], [caput, corpus und 

cauda]) finden weitere Reifungsschritte und Modifizierungen der Zellen statt, welche 
schließlich im distalen Teil der Cauda bis zur Ejakulation gespeichert werden [Yeung et 

al., 1993; Robaire et al., 2002; Cornwall, 2009]. 

 

Abbildung 4.3:  Immunhistochemischer Nachweis der PKD2L1 Expression im Nebenhoden. 
[A] Übersicht über den Aufbau des Nebenhodens. 
Vom Hoden gelangen die Spermien zunächst in den Nebenhodenkopf [caput]. Sie werden dann durch den 
Corpus [corpus] bis in den caudalen Teil des Nebenhodens [cauda] transportiert und schließlich in den 
Samenleiter [Vas deferens] abgegeben. 
[B - E] Analyse der PKD2L1 Expression im Nebenhodenschwanz. 
An Gefrierschnitten des caudalen Teils eines murinen Nebenhodens wurden immunhistochemische Unter-
suchungen mit dem anti-PKD2L1 M Antiserum (1:200) bzw. mit dem Antiserum und seinem 
korrespondierenden Peptid durchgeführt.  
Im Lumen der angeschnittenen Nebenhodengänge, die dicht mit Spermien gefüllt sind, ist ein schwaches 
Fluoreszenzsignal zu detektieren [B, D]. Außerdem zeigt das Antiserum eine schwache Immunreaktivität 
im zylindrischen Gangepithel. Nach Prä-Inkubation des Antiserums mit dem immunogenen Peptid 
[PKD2L1 M + BP] ist keine Immunmarkierung mehr zu erkennen [C, E]. 
Gezeigt sind Überlagerungen der Phasenkontrast- und der Fluoreszenzaufnahme. Die Boxen in den 
oberen Bildern [A, B] markieren die Ausschnitte, die im jeweiligen unteren Bild vergrößert dargestellt sind 
[C, D].  

Um die Expression des PKD2L1 im weiteren Verlauf der Spermienreifung zu unter-
suchen und erste Hinweise darüber zu erhalten, ob das Protein auch in reifen Spermien 

vorhanden ist, wurden immunhistochemische Analysen an Gefrierschnitten des 
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caudalen Teils des Nebenhodens, in dem reife Spermienpopulationen gespeichert 
werden, durchgeführt. Abbildung 4.3 macht deutlich, dass nach der Inkubation von 
Schnitten des Nebenhodenschwanzes mit dem PKD2L1 M Antiserum eine schwache 

Immunreaktivität im Epithel des Nebenhodenganges ([B] und [D]) detektiert werden 
konnte. Die reifen Spermien, die im Lumen des Nebenhodenganges gespeichert wurden, 
zeigten ebenfalls eine Immunmarkierung (Abbildung 4.3 [B] und [D]). Diese konnte 

aufgrund der hohen Spermiendichte jedoch auch bei stärkerer Vergrößerung (Abbildung 
4.3 [D]) keinem subzellulären Kompartiment der Spermien zugeordnet werden. Die 
Spezifität der Immunreaktivität im Nebenhoden konnte durch Blockierungsansätze, in 

denen das Antiserum mit seinem immunogenen Peptid vorinkubiert wurde und in denen 
keine Immunreaktivität mehr auszumachen ist (Abbildung 4.3 [C] und [E]), bestätigt 
werden. 

4.1.2 Western Blot Analyse des Sauerdetektors PKD2L1 im 
Keimdrüsengewebe der Maus 

Das Verfahren des Western Blottings erlaubt es, ein Protein durch die Bestimmung 
seiner molekularen Größe zu identifizieren und Hinweise auf eventuell vorhandene 

Splicevarianten zu sammeln. Um die bereits erbrachten Indizien für die Expression des 
PKD2L1 Proteins im männlichen Keimdrüsengewebe zu untermauern, wurde daher 
zusätzlich diese Technik eingesetzt.  

Aufgrund von Sequenzanalysen und der Verwandtschaft zu TRP-Kanälen wird für das 
PKD2L1 Protein mit seinen sechs Transmembrandomänen eine membranständige 
Lokalisation prognostiziert [Delmas et al., 2004; Murakami et al., 2005]. Membran-

proteine können durch fraktionelle Zentrifugation homogenisierter Organe in einer 
bestimmten Fraktion angereichert werden. In einer Membranfraktion liegt dann, 
bezogen auf die Proteingesamtmenge, anteilig eine größere Menge von Membran-

proteinen vor, die im Western Blot konzentriert eingesetzt werden können. Für die 
Immunoblot Analysen wurden deshalb Membranpräparationen aus Hoden- und 
Nebenhodengewebe verwendet; als Positivkontrolle wurden isolierte Wallpapillen der 

Zunge aufgearbeitet. Die Auftrennung der Proben nach ihrer molekularen Größe 
erfolgte durch SDS-PAGE, anschließend wurden die Proteine mittels des Semi-Dry 
Blotting Verfahrens auf eine Nitrocellulose-Membran übertragen (Abschnitt 3.2.3). 

Diese Membran wurde anschließend mit dem PKD2L1 M Antiserum bzw. mit dem 
Antiserum in Kombination mit seinem immunogenen Peptid inkubiert und die Bindung 
des Primärantikörpers mit Hilfe eines Peroxidase-gekoppelten Sekundärantikörpers und 

des ECL-Verfahrens nachgewiesen.  
Bei dieser Analyse wurde in der Probe der Wallpapille neben einigen schwachen 
Banden verschiedener Proteingrößen eine stark immunreaktive Bande mit einer mole-

kularen Größe von ca. 90 kDa detektiert (Abbildung 4.4 [A]; [CV], Pfeil). Diese Größe 
entsprach dem berechneten Molekulargewicht des PKD2L1 Proteins von 87 kDa 
(Accession Nummer NP_852087). In den Membranpräparationen des Hodens und des 
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Nebenhodens wurde ebenfalls jeweils eine prominente immunopositive Bande 
detektiert, deren molekulare Größe jedoch ca. 130 kDa betrug (Abbildung 4.4 [A]; 
[Ho], [Nh], Pfeilspitze). Darüber hinaus traten auch im Keimdrüsengewebe einzelne 

schwächere Banden auf, die zumeist kleiner als 130 kDa waren; darunter war auch eine 
leicht immunreaktive Bande mit einer Größe von ca. 90 kDa, die der molekularen 
Masse der publizierten Aminosäuresequenz des PKD2L1 Proteins entsprach [Murakami 

et al., 2005].  

 

Abbildung 4.4:  Western Blot Nachweis der PKD2L1 Expression in männlichem Keimdrüsen-
gewebe. 

Proteine von Membranpräparationen (P2-Fraktionen) aus Wallpapillen [CV], Hoden- [Ho] und Neben-
hodengewebe [Nh] wurden mittels SDS-Gelelektrophorese aufgetrennt und durch Elektro-Transfer auf 
Nitrocellulose übertragen. Anschließend wurde die Transfermembran mit dem anti-PKD2L1 M Antiserum 
(1:4000) [A, PKD2L1] bzw. mit dem Antikörper und dem korrespondieren Blockierungspeptid (fünffach 
konzentriert) [B, PKD2L1 + BP] über Nacht inkubiert und die Antikörperbindung durch einen Peroxidase-
gekoppelten Sekundärantikörper mit Hilfe des ECL-Systems sichtbar gemacht. 
[A] Der eingesetzte Antikörper markiert in der Wallpapille [CV] eine Bande mit einer molekularen Masse 
von ca. 90 kDa (Pfeil) sowie mehrere schwächere Banden unterschiedlicher Größe. Im Hoden [Ho] und 
Nebenhoden [Nh] zeigt sich eine stark immunreaktive Bande mit einer Masse von ca. 130 kDa (Pfeilspitze) 
sowie einige weitere, deutlich schwächere Banden kleinerer Masse.  
[B] Durch Vorinkubation des Antikörpers mit seinem immunogenen Peptid [PKD2L1 + BP] bleibt die 
Immunreaktivität fast vollständig aus: Es bleibt lediglich eine Bande von ca. 130 kDa in der Nebenhoden-
präparation [Nh] erhalten (Pfeilspitze), die jedoch deutlich weniger intensiv ausgeprägt ist als ohne Peptid-
blockierung [A].  

Nach einer Präinkubation des PKD2L1 M Antiserums mit seinem immunogenen Peptid 
war eine fast vollständige Elimination der immunreaktiven Banden sowohl im 

Geschmacks- als auch im Reproduktionsgewebe auszumachen. Lediglich im Neben-
hoden konnte die Antikörperbindung nicht vollständig durch das Peptid blockiert 
werden, so dass noch eine schwache Immunmarkierung bei 130 kDa zu registrieren war 

(Abbildung 4.4 [B], Pfeil). Diese schwache Markierung könnte darin begründet liegen, 
dass ein Antikörper nur Antigen reversibel bindet. Wenn eine große Menge des 
antigenen Proteins auf der Nitrocellulose-Membran vorliegt, kann es deshalb 

vorkommen, dass der Antikörper auch das auf die Nitrocellulose-Membran 
transferierten Antigens detektiert, so dass die Reaktivität bei einer großen Menge 
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antigenen Proteins im Vergleich zum nicht-neutralisierten Antikörper nur stark 
vermindert ist, aber nicht vollständig ausbleibt.  
Der Umstand, dass die detektierten PKD2L1 Banden mit dem neutralisierten Antikörper 

in ihrer Intensität deutlich reduziert waren und die Immunreaktivität zudem auf eine 
stark ausgeprägte Bande konzentriert war, deutete somit auf eine spezifische Erkennung 
des PKD2L1 Proteins im Western Blot durch den eingesetzten Antikörper hin. Ob das 

Molekulargewicht der dominanten immunreaktiven Bande im Keimdrüsengewebe, das 
mit 130 kDa deutlich höher war als die berechnete molekulare Masse von 87 kDa, auf 
bislang unbekannte Splicevarianten oder auf eine sehr stabile Bindung des PKD2L1 an 

einen noch nicht identifizierten Interaktionspartner im Reproduktionsgewebe zurück-
zuführen war und ob die deutlich schwächere Bande mit der molekularen Masse von 
90 kDa nicht-assoziiertes PKD2L1 repräsentieren könnte, konnte durch diese Analysen 

nicht abschließend geklärt werden.  

4.1.3 Subzelluläre Lokalisation des PKD2L1 in Mausspermien 

Nachdem der potentielle Sauerdetektor PKD2L1 im Hoden und Nebenhoden der Maus 

nachgewiesen wurde, stellte sich die Frage, ob das Protein auch in reifen Spermien 
vorhanden ist und welche physiologische Rolle ihm in diesen Zellen zukommen könnte. 
Aufgrund der starken funktionellen Kompartimentierung (Abbildung 4.5 [A]) von 

Spermienzellen [Zitranski et al., 2010] (siehe auch Abschnitt 1.1.1) können Kenntnisse 
hinsichtlich der subzellulären Lokalisation eines Proteins erste Hinweise auf seine 
möglichen Funktion in Spermien ergeben.  

Zum Nachweis des PKD2L1 Proteins und zur Untersuchung seiner subzellulären 
Verteilung wurden deshalb immuncytochemische Analysen an isolierten Spermien 
durchgeführt. Die Visualisierung gebundener Primärantikörper erfolgte in diesen 

Ansätzen mit Hilfe eines FITC-gekoppelten Sekundärantiköpers; darüber hinaus wurde 
der Zellkern durch eine Inkubation der Präparate mit Propidiumiodid [Heydecke et al., 
2006] sichtbar gemacht. Um Verwechslungen mit anderen roten Fluoreszenz-Co-

Färbungen (z. B. TRITC, Alexa546) zu vermeiden, wird diese Kernmarkierung, wie 
auch alternativ durchgeführte Kernfärbungen mit TO-PRO3 [Ploeger et al., 2008], im 
Folgenden in blau dargestellt.  

Abbildung 4.5 zeigt eine starke Immunmarkierung des Spermienschwanzes durch das 
PKD2L1 M Antiserum. Im Kopfbereich konnte hingegen keine Immunreaktivität 
detektiert werden (Abbildung 4.5 [B]). Eine vergrößerte Aufnahme des Flagellums 

macht deutlich, dass die Immunfärbung im Hauptstück konzentriert war (Abbildung 4.5 
[D]). Das PKD2L1, für das eine membranständige Lokalisation zu erwarten war (siehe 
4.1.2), schien dabei in der Zellmembran angereichert zu sein (Abbildung 4.5 [E]). In 

Kontrollpräparaten, die mit dem Antiserum und dem immunogenen Peptid zusammen 
inkubiert wurden, war hingegen keine Reaktivität zu detektieren (Abbildung 4.5 [C] und 
[E]).  
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Abbildung 4.5:  Analyse der subzellulären Lokalisation des PKD2L1 in murinen Spermien. 
[A] Schematische Übersicht über den Aufbau eines Mausspermiums. 
[B - F] Immuncytochemische Analyse der subzellulären Lokalisation des PKD2L1 in Mausspermien. 
Methanol-fixierte Spermienpräparate der Maus wurden mit einem PKD2L1 spezifischen Antiserum (1:200 
verdünnt) [PKD2L1 M] bzw. mit dem Antikörper und dem entsprechenden Blockierungspeptid [PKD2L1 M 
+ BP] inkubiert. Die Immunreaktivität wurde durch FITC-gekoppelte anti-Kaninchen IgG (1:750 verdünnt) 
nachgewiesen. Zur Visualisierung des Zellkerns wurden die Präparate 15 Minuten mit Propidiumiodid ([PI]; 
blau dargestellt) gefärbt.  
Die Inkubation mit dem PKD2L1 M Antiserum [PKD2L1 M] resultiert in einer starken Markierung im 
Hauptstück des Flagellums [B und D], die eine deutliche Konzentrierung entlang der Membran zeigt [F]. 
Nach einer Vorinkubation des Antiserums mit dem korrespondierenden Peptid [PKD2L1 M + BP] ist keine 
Immunmarkierung mehr zu registrieren [C, E]. 
Dargestellt sind Überlagerungen der Phasenkontrastaufnahme und der Fluoreszenzkanäle (grün: FITC; 
blau: Propidiumiodid). Die in [D, E] vergrößert dargestellten Bereiche sind in den oberen Bildern [B, C] 
durch weiße Kästchen gekennzeichnet.  

Mit dem PKD2L1 Z Antikörper konnte in isolierten Mausspermien eine ähnliche 
Immunfärbung beobachtet werden: Auch dieses Antiserum markierte im Flagellum aus-

schließlich das Hauptstück (Abbildung 4.6 [A] und [C]). Es führte jedoch zusätzlich 
auch zu einer sichelförmigen Immunfärbung im Spermienkopf (Abbildung 4.6 [C]). Um 
zu prüfen, ob diese Markierung im Akrosom des Spermiums lokalisiert war, wurden 

Co-Färbungen mit dem Lektin PNA (Peanut Agglutinin), das spezifisch an glykosylierte 
Proteine des Akrosoms bindet [Aviles et al., 1997], durchgeführt. Abbildung 4.6 [E] 
zeigte, dass nach der Inkubation mit einem TRITC-gekoppelten PNA ein halbmond-

förmiges rotes Fluoreszenzsignal im Spermienkopf zu detektieren war, das dem 
Akrosom entsprach. In Abbildung 4.6 [H] ist die Überlagerung dieser PNA-Färbung [E] 
mit der PKD2L1 Z Markierung [F] dargestellt. Die gelbe Farbe, die bei einer Über-

einstimmung der beiden Fluoreszenzsignale entstand, machte deutlich, dass die 
PKD2L1 Z Immunreaktivität des Spermienkopfes tatsächlich auf das Akrosom 
konzentriert war (Abbildung 4.6 [H], gelbes Signal).  
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Interessanterweise stimmt diese PKD2L1 Z Immunreaktivität im Akrosom (Abbildung 
4.6 [C] und [H]) mit der Verteilung eines weiteren Mitglieds der PKD-Familie überein: 
Das PKDREJ-Protein, das bereits zuvor in murinen Säugerspermien nachgewiesen 

wurde, zeigt eine vergleichbare akrosomale Lokalisierung [Butscheid et al., 2006].  
Die Immunreaktivität des PKD2L1 Z Antikörpers ließ sich durch das immunogene 
Peptid des PKD2L1 M Antikörpers, der gegen die gleiche Sequenz gerichtet ist, jedoch 

nicht blockieren (Daten nicht gezeigt). Somit konnte die Spezifität des PKD2L1 Z 
Antiserums und damit der akrosomalen Markierung, die nur mit diesem Antiserum zu 
detektieren war, nicht durch eine Peptidblockierung validiert werden. 

 

Abbildung 4.6:  Immunreaktivität des PKD2L1 Z Antiserums in Mausspermien. 
Zur Bestimmung der subzellulären Lokalisation der PKD2L1 Immunmarkierung in Spermien der Maus 
wurden immuncytochemische Färbungen mit dem PKD2L1 Z Antiserum (1 : 50) durchgeführt. In ([A - D] 
wurde der Zellkern zusätzlich mit Propidiumiodid [PI] angefärbt (blau dargestellt). Die Co-Färbung mit 
einem TRITC-gekoppelten PNA ([PNA], rot) ist in [E - H] gezeigt. 
Das PKD2L1 Z Antiserum [PKD2L1 Z] zeigt eine starke Immunreaktivität im Hauptstück des Flagellums 
und in der akrosomalen Sichel des Spermienkopfes [A, C]. In Kontrollansätzen ohne Primärantikörper 
[Kontrolle] ist hingegen keine Immunmarkierung zu detektieren [B, D].  
Durch das Lektin PNA wird das sichelförmige Akrosom des Mausspermiums gefärbt [E, PNA], das auch 
immunopositiv für das PKD2L1 Z Antiserum ist [F, PKD2L1 Z]. Die Überlagerung der beiden Fluoreszenz-
signale zeigt eine deutliche Co-Lokalisation (gelbe Färbung) [H]. 
[A - D] zeigen Überlagerungen der Phasenkontrastaufnahme und der Fluoreszenzkanäle (grün: FITC; 
blau: Propidiumiodid). In [E - H] sind die Fluoreszenzkanäle separat [E, F] und als Überlagerung [H] mit 
dem Phasenkontrastbild [G] gezeigt. Die in [C, D] vergrößert dargestellten Bereiche sind in den oberen 
Bildern [A, B] durch weiße Boxen gekennzeichnet.  



Ergebnisse 91 

 

4.2 Funktionelle Charakterisierung der G Protein 
α-Untereinheit Gustducin im Reproduktionssystem 
männlicher Mäuse 

Auf ihrem Weg durch den weiblichen Genitaltrakt kommen Spermien neben 
verschiedenen Protonenkonzentrationen, die die männlichen Keimzellen möglicher-
weise mit Hilfe des potentiellen Sauerdetektors PKD2L1 registrieren können, auch mit 

einer Vielzahl anderer chemischer Liganden wie verschiedenen Aminosäuren, Zuckern 
und Hormonen (z. B. Progesteron) in Kontakt. Die Beobachtung, dass im Geschmacks-
system der Zunge chemisch so diverse Substanzen wie Zucker, Aminosäuren, Proteine 

und aromatische Bitterstoffe durch die GPCRs der Tas1r- und Tas2r-Familie detektiert 
werden, führte zu der Frage, ob Mitglieder dieser Proteinfamilien ebenfalls in Spermien 
exprimiert werden und an der Detektion von potentiellen Liganden im weiblichen 

Genitaltrakt beteiligt sein könnten. 
Um erste Hinweise auf eine Expression dieser sensorischen Proteine sammeln zu 
können, konzentrierten sich die Untersuchungen zunächst auf die G Protein Unter-

einheit α-Gustducin [McLaughlin et al., 1992], da diese in Geschmackszellen der Zunge 
an der Signaltransduktion beider GPCR-Familien beteiligt ist [Wong et al., 1996; Ruiz-
Avila et al., 2001; He et al., 2004]. Im Rahmen dieser bereits veröffentlichten Analysen 

[Fehr, Meyer et al., 2007] konnte gezeigt werden, dass Spermien verschiedener 
Säugerspezies tatsächlich eine α-Gustducin Immunreaktivität aufweisen: Abbildung 4.7 
fasst die Ergebnisse der immuncytochemischen Untersuchungen an Spermien der Maus, 

der Ratte, des Rindes und des Menschen zusammen [Fehr, Meyer et al., 2007]. Zur 
Übersicht ist die Morphologie der Spermien der untersuchten Säugerspezies im oberen 
Teil der Abbildung 1.7 schematisch gezeigt. Da sich diese Spermatozoen vor allem in 

ihrer Kopfform unterscheiden, ist der Aufbau des Kopfes jeweils vergrößert dargestellt. 
Während sich Maus- und Rattenspermien durch eine für Nagetiere typische 
hakenförmige Gestalt des Kopfes und des aufliegenden akrosomalen Vesikels aus-

zeichnen (Abbildung 4.7 [A] und [B]), weisen bovine und humane Spermien eine ovale 
Kopfform auf (Abbildung 4.7 [C] und [D]). Bei Spermien dieser beiden Säugerarten 
liegt das Akrosom dem Nukleus eher kappenartig auf (Abbildung 4.7 [C] und [D]) und 

schließt mit dem Äquatorialsegment ab (Abbildung 4.7 [D], Pfeil). 
In den immuncytochemischen Ansätzen mit Mausspermien konnte unter Verwendung 
eines anti-α-Gustducin Antikörpers (Gustducin S) eine Markierung des Flagellums 

detektiert werden, die im Hauptstück besonders stark ausgeprägt war (Abbildung 4.7 
[A] und [E]) und die durch das korrespondierende immunogene Peptid neutralisiert 
wurde ([Fehr, Meyer et al., 2007], Daten nicht gezeigt). Eine vergleichbare α-Gustducin 

Immunreaktivität wurde auch im Spermienschwanz der Ratte, des Rindes und des 
Menschen beobachtet (Abbildung 4.7 [F], [G] und [H]; Pfeilspitze). In Ratten- und 
Rinderspermien konnte darüber hinaus auch eine Immunfärbung des Akrosoms nach-
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gewiesen werden (Abbildung 4.7 [B] und [C]). Keine Markierung war hingegen in 
Kontrollansätzen zu detektieren, in denen lediglich der Fluorchrom-konjugierte 
Sekundärantikörper eingesetzt wurde. Die spezifische Immunreaktivität des Gustducin 

Antikörpers konnte zudem durch eine Neutralisation mit dem immunogenen Peptid in 
Parallelansätzen für alle Spezies verifiziert werden [Fehr, Meyer et al., 2007] (Daten 
nicht gezeigt). 

 

Abbildung 4.7:  Immuncytochemische Analyse der subzellulären Lokalisation von α-Gustducin in 
Säugerspermien. 

[A - D] zeigen schematische Zeichnungen der Spermien der angegebenen Säugerspezies, dabei ist die 
Morphologie des Spermienkopfes jeweils vergrößert dargestellt. In [D] ist die Lage des Äquatorial-
segments durch einen Pfeil verdeutlicht. Die Größenverhältnisse der Spermien der verschiedenen Spezies 
sind nicht proportional zueinander dargestellt. 
In [E - L] sind immuncytochemische Färbungen von isolierten Spermien verschiedener Spezies mit einem 
α-Gustducin Antiserum [Gustducin S] gezeigt, dessen Bindung durch FITC-gekoppeltes anti-Kaninchen 
IgG nachgewiesen wurde. Die Markierung der Zellkerne erfolgte durch eine Inkubation mit dem Farbstoff 
Propidiumiodid ([PI], rot). 
In Mausspermien [E] ist die Gustducin-Immunreaktivität auf das Flagellum beschränkt; innerhalb des 
Schwanzes ist das Fluoreszenzsignal im Hauptstück am stärksten ausgeprägt [I; Pfeilspitze]. Ratten-
spermien zeigen neben der Markierung des Flagellums ([F, J]; Pfeilspitze) auch eine Färbung des 
Akrosoms [F]. In Rinderspermien [G, K] ist neben der Immunreaktivität im Spermienschwanz [K; 
Pfeilspitze] ebenfalls eine Markierung des kappenförmigen Akrosoms zu detektieren. In humanen 
Spermien ist die Gustducin-Immunfärbung auf das Mittelstück des Flagellums konzentriert [H, L; 
Pfeilspitze].  
Die markierten Bereiche in [E - H] sind in [I - L] vergrößert gezeigt. Die jeweilige Spezies der analysierten 
Spermien ist oberhalb der Bilder angegeben. 

Weiterführende elektronenmikroskopische Untersuchungen ergaben darüber hinaus, 
dass α-Gustducin im Flagellum offenbar mit Cytoskelett-Elementen und Mitochondrien 
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assoziiert ist [Fehr, Meyer et al., 2007]. Damit käme Gustducin in Spermien z. B. als 
Kandidat für die Vermittlung chemotaktischer Reize, die im Flagellum durch GPCRs 
detektiert werden, in Betracht.  

4.2.1 Reproduktionsbiologische Analyse einer Gustducin-defizienten 
Mauslinie 

Durch die Entwicklung von Gen-defizienten und transgenen Tieren haben sich in den 
vergangenen Jahren neue, vielversprechende Möglichkeiten zur Untersuchung der 

physiologischen Rolle einzelner Proteine ergeben. So erlauben es Knockout- (KO) 
Mäuse, bei denen durch gezielte genetische Manipulation ein bestimmtes Gen eliminiert 
oder inaktiviert wurde, die Auswirkungen des Fehlens eines Proteins zu analysieren, um 

so Rückschlüsse auf die biologische Funktion des Proteins ziehen zu können.  
Auch für die gustatorische G Protein α-Untereinheit Gustducin konnte bereits eine Gen-
defiziente Mauslinie generiert werden [Wong et al., 1996]. Im Genom dieser Mäuse 

wurde das erste Exon der Gustducin-Sequenz, das neben den ersten 18 Aminosäuren 
des Proteins auch die Transkriptionsinitiationssequenz kodiert, durch eine Neomycin-
Resistenz-Gen-Kassette ersetzt [Wong et al., 1996]. Die erfolgreiche Deletion von 

α-Gustducin wurde in der Zunge u. a. durch in situ Hybridisierungsstudien gezeigt, in 
denen keine Gustducin-mRNA in den Gen-defizienten Mäusen mehr nachzuweisen war 
[Wong et al., 1996]. Zusätzlich konnte das Fehlen des Gustducin-Proteins durch 

immunhistochemische Untersuchungen an Wallpapillen von Gustducin-KO Mäusen 
bestätigt werden [Ruiz-Avila et al., 2001]. 
Diese Gustducin-defizienten Mäuse wurden uns freundlicherweise von Prof. R. 

Margolskee (Monell Chemical Senses Center, Philadelphia [USA]) zur Verfügung 
gestellt, so dass die Auswirkungen einer α-Gustducin-Defizienz auf die Fertilität im 
Mausmodell untersuchen werden konnten. Außerdem bietet diese Mauslinie eine sehr 

gute Möglichkeit, die Spezifität der Immunreaktivität der verwendeten Antikörper zu 
testen, da die Tiere kein Gustducin-Protein mehr exprimieren. Bei einer spezifischen 
Bindung der Antikörper an Gustducin sollte demnach im Gewebe der Gen-defizienten 

Tiere keine Immunmarkierung mehr zu detektieren sein.  
 

4.2.1.1 Überprüfung der Gustducin-Antikörper-Immunreaktivität an 
Zungengewebe von Wildtyp- und Gustducin-KO Mäusen 

Um zunächst die Spezifität der im Wildtyp-Gewebe beobachteten Gustducin-Immun-

reaktivität zu überprüfen, wurden deshalb immunhistochemische Untersuchungen an 
Zungengewebe von Gustducin-KO und Wildtyp-Tieren durchgeführt. Für diese 
Analysen wurden zwei α-Gustducin-spezifische Antiseren verwendet: Zum einen der 

bereits oben erwähnte α-Gustducin Antikörper der Firma Santa Cruz (Bezeichnung in 
dieser Arbeit: Gustducin S), der gegen die Aminosäuren 93 - 113 des Mausproteins 
gerichtet ist [Clapp et al., 2001], sowie ein Serum, das durch die Arbeitsgruppe von 
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Prof. Breer (Universität Stuttgart-Hohenheim) zur Verfügung gestellt wurde. Für dieses 
Antiserum wurde eine um eine Aminosäure kürzere Variante des gleichen Peptids (AS 
94 – 113) zur Immunisierung eingesetzt (Bezeichnung: Gustducin H). Für das 

Gustducin H Antiserum war kein eigenes Blockierungspeptid vorhanden; aufgrund der 
fast völligen Übereinstimmung der beiden antigenen Peptide konnte das immunogene 
Peptid des Gustducin S Antiserums jedoch auch erfolgreich zur Neutralisation des 

Gustducin H Antiserums eingesetzt werden. 
In Gewebsschnitten der Wallpapille von Wildtyp-Tieren (Abbildung 4.8, obere Bild-
serie) ließ sich mit beiden anti-α-Gustducin Antiseren eine Immunmarkierung aus-

machen (Abbildung 4.8, [A] und [B]), die auf einzelne spindelförmige Sinneszellen 
innerhalb der Geschmacksknospen beschränkt war (Abbildung 4.8 [D] und [E]). In 
Kontrollpräparaten, die nur mit dem FITC-gekoppelten Sekundärantikörper inkubiert 

wurden, zeigte sich keinerlei Fluoreszenzsignal durch den Sekundärantikörper 
(Abbildung 4.8 [C] und [F]).  
In der Zunge der Gustducin-KO Maus (Abbildung 4.8, untere Bildserie) war hingegen 

keine Immunreaktivität in den Geschmacksknospen der Wallpapille zu beobachten 
(Abbildung 4.8 [G, H, J, K]): Weder mit dem Gustducin S noch mit dem Gustducin H 
Antiserum war eine Immunmarkierung von Geschmackssinneszellen zu detektieren 

(Abbildung 4.8 [J, K]). Durch diese vollständige Abwesenheit einer Immunreaktivität 
im Gewebe von KO-Tieren, in dem kein Gustducin mehr exprimiert wird, konnte die 
Spezifität der verwendeten α-Gustducin Antiseren erfolgreich bestätigt werden.  
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Abbildung 4.8:  Immunhistochemischer Nachweis von α-Gustducin in Wallpapillen von Wildtyp- 
und Gustducin-defizienten Mäusen. 

Zum Nachweis der Expression von Gustducin in Paraffinschnitten der CV wurden Immunfärbungen mit 
den zwei Gustducin-spezifischen Antiseren [Gustducin S, Gustducin H] durchgeführt, deren Bindung durch 
FITC-konjugierte anti-Kaninchen IgG visualisiert wurde.  
Im Wildtyp-Gewebe ([A - F]; Wildtyp [+/+]) führt die Inkubation mit beiden Gustducin-Antiseren zu einer 
Immunmarkierung einzelner Sinneszellen innerhalb der Geschmacksknospen [A, D; B, E]. In der 
Wallpapille der Gustducin-defizienten Maus ([G - L], Gustducin [-/-]) ist hingegen sowohl mit dem 
[Gustducin S] als auch mit dem [Gustducin H] Antiserum keine Immunreaktivität erkennbar. Kontroll-
präparate, die nur mit dem Sekundärantikörper [Kontrolle] inkubiert wurden, zeigen bei beiden Genotypen 
kein Fluoreszenzsignal [C, F; I, L]. 
Gezeigt sind Überlagerungen der Phasenkontrast- und der Fluoreszenzaufnahme. Die Boxen in [A - C] 
und [G - I] repräsentieren die Bereiche, die in [D - F] bzw. [J - L] vergrößert dargestellt sind. Die 
verwendeten Primärantikörper sind im Bild angegeben. 

4.2.1.2 Zuchterfolg von α-Gustducin-defizienten Mäusen 
Da in Mausspermien eine Immunreaktivität für α-Gustducin beobachtet wurde, sollte im 
nächsten Schritt geprüft werden, ob die Deletion des α-Gustducins, die in der Zunge für 
eine deutliche Einschränkung der Geschmackswahrnehmung für süße und bittere 

Geschmacksstoffe verantwortlich ist [Wong et al., 1996], auch zu einer Beein-
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trächtigung der Spermienfunktion führt, was sich in einer Veränderung des Repro-
duktionserfolgs der Gustducin-defizienten Tiere widerspiegeln könnte.  
Um diese Frage zu klären, wurde der Zuchterfolg von Gustducin-defizienten Zucht-

paaren (Zuchtweibchen (f) x Zuchtmännchen (m): [-/-] x [-/-]) und reinen Wildtyp-
Paaren (f x m: [+/+] x [+/+]) in einem kontinuierlichen monogamen Zuchtansatz mit-
einander verglichen. Um eine mögliche Fertilitätseinschränkung aufgrund eines Defekts 

der Spermienfunktion von KO-Männchen von einer etwaigen verminderten Frucht-
barkeit Gustducin-defizienter Weibchen unterscheiden zu können, wurde in Parallel-
ansätzen außerdem der Zuchterfolg von Mauspaaren untersucht, bei denen jeweils ent-

weder das Weibchen oder aber das Männchen Gen-defizient für Gustducin war, 
während der entsprechende Paarungspartner ein Wildtyp-Tier war (f x m: [-/-] x [+/+]) 
und (f x m: [+/+] x [-/-]). Der Reproduktionserfolg wurde für alle Verpaarungen anhand 

der Zahl der Nachkommen und der Zeitspanne zwischen den Würfen bestimmt.  
Tabelle 4.1 macht deutlich, dass in den durchgeführten Zuchtexperimenten kein Repro-
duktionsdefizit der Gustducin-KO Tiere zu verzeichnen war: So war weder die Zahl der 

Nachkommen pro Wurf signifikant verändert, noch brauchten die Gustducin-defizienten 
Tiere längere Zeit bis sie sich erfolgreich fortpflanzten. 

Tabelle 4.1:  Analyse der Fertilität von α-Gustducin-defizienten Mäusen 

In einem kontinuierlichen monogamen Zuchtsystem wurden Wildtyp-C57BL/6 [+/+] und Gustducin-KO [-/-] 
Tiere in den jeweils aufgeführten Kombinationen verpaart, und die links aufgeführten Fertilitätsparameter 
bestimmt (je drei Zuchtpaare pro Genotyp-Kombination). Die Anzahl der analysierten Würfe ist in 
Klammern (n = x) angegeben. Es wurden keine signifikanten Unterschiede im Reproduktionserfolg der 
verschiedenen Genotypen detektiert. Angegeben sind Mittelwerte ± Standardfehler. 

 F x M: [Genotyp] x [Genotyp] 

Fertilitätsparameter [+/+] x [+/+] [+/+] x [-/-] [-/-] x [+/+] [-/-] x [-/-] 

Zeit zwischen den 
Würfen [d] 

29,3 ± 4,5 

(n = 9) 

27,6 ± 4,4 

(n = 11) 

25,6 ± 1,6 

(n = 10) 

30,0 ± 6,1 

(n = 9) 

Anzahl 
Nachkommen/Wurf 

6,0 ± 0,8 

(n = 5) 

4,9 ± 0,6 

(n = 8) 

7,6 ± 0,9 

(n = 8) 

4,4 ± 0,8 

(n = 8) 

 
Dieses Fehlen eines Reproduktionsphänotyps könnte darin begründet liegen, dass 

Gustducin keine essentielle physiologische Funktion in Spermien hat, oder aber, dass 
der Mangel an funktionellem Protein durch die Expression eines anderen G Proteins 
kompensiert werden kann. Ein solcher Effekt, konnte bei einer anderen G Protein 

Untereinheit bereits beobachtet werden. So kommt es z. B. in Mäusen, die Gen-
defizient für Gi2 sind, zu einer kompensatorischen Expression von Gi3 [Gohla et al., 
2007; Young et al., 2011].  

4.2.1.3 Gustducin-Immunreaktivität im Keimdrüsengewebe der Gustducin-
defizienten Mauslinie 

Die unbeeinträchtigte Fertilität der Gustducin-defizienten Mäuse könnte aber auch 
dadurch bedingt sein, dass im Hoden eine trunkierte Variante des α-Gustducins 
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vorkommt, die auch nach der Deletion des ersten Exons noch exprimiert wird. Eine 
solche, möglicherweise durch Hoden-spezifische Transkriptionsfaktoren regulierte 
Form [Howard et al., 1990], könnte, falls sie funktionell aktiv ist, ebenfalls für das 

fehlende Fertilitätsdefizit im KO-Tier verantwortlich sein. Um dieser Überlegung nach-
zugehen, wurde immunhistochemisch untersucht, ob analog zum Zungengewebe auch 
in männlichen Keimzellen der Gustducin-defizienten Mäuse kein Gustducin-Protein 

mehr nachweisbar ist und die Immunreaktivität ausbleibt.  
Für diese Analysen wurden die bereits an Gefrierschnitten der Zunge validierten Anti-
körper eingesetzt (Abbildung 4.8). Diese sind gegen eine Peptidsequenz gerichtet, die 

von den Exons 3 und 4 der Gustducin-Sequenz kodiert wird (Abbildung 4.9) und die 
damit geeignet sein sollten, auch eine um Exon 1 trunkierte Proteinvariante des 
Gustducins zu detektieren.  

 

Abbildung 4.9:  Schematischer Überblick über die Exon-Struktur des α-Gustducins. 
Dargestellt ist eine Übersicht der Verteilung der kodierenden Gustducin-Sequenz auf die 8 Exons des 
Gustducin-Gens. In Gustducin-KO Mäusen ist Exon 1 deletiert (rotes Kreuz). Das immunogene Peptid, 
das zur Generierung der α-Gustducin Antiseren eingesetzt wurde, wird von Exon 3 und Exon 4 kodiert 
(grün dargestellt). 

Abbildung 4.10 macht deutlich, dass die Immunreaktivität der α-Gustducin Antikörper 
im Keimdrüsengewebe, im Gegensatz zur Wallpapille, keinen Unterschied zwischen 

Wildtyp- und KO-Gewebe zeigte: In Hodenschnitten eines Wildtyp-Männchens war mit 
beiden α-Gustducin Antiseren eine Immunmarkierung in den Samenkanälchen zu 
registrieren (Abbildung 4.10 [A] und [C]), die vergleichbar zur Immunreaktivität in 

früheren Analysen war [Fehr et al., 2007]. Diese Immunfärbung war in Spermatiden 
besonders intensiv, während in den basalen Zellschichten nur ein schwaches 
Fluoreszenzsignal zu detektieren war (Abbildung 4.10 [E] und [G]). Nach 

Neutralisation des Gustducin S Antikörpers mit dem immunogenen Peptid (Abbildung 
4.10 [B] und [F]) war ebenso wie in Kontrollansätzen, die ohne Primärantikörper 
inkubiert wurden (Abbildung 4.10 [D] und [H]), keine Immunmarkierung des Keimzell-

epithels mehr zu beobachten; es blieb lediglich eine schwache unspezifische Färbung 
der Leydigschen Zwischenzellen erkennbar (Abbildung 4.10 [D] und [H], Pfeilspitze).  



98 Ergebnisse 

 

Abbildung 4.10:  α-Gustducin Immunreaktivität im Hoden von Wildtyp- und Gustducin-defizienten 
Mäusen. 

Hodenparaffinschnitte einer Wildtyp-Maus [A - H, Wildtyp [+/+]] bzw. einer Gustducin-defizienten Maus [I -
 P, Gustducin [-/-]] wurden mit Gustducin-spezifischen Antikörpern [Gustducin S, Gustducin H] inkubiert, 
und die Antikörperbindung anschließend durch einen FITC-gekoppelten Sekundärantikörper (1:750; grün 
dargestellt) visualisiert. 
Beide Gustducin-spezifischen Antikörper resultieren im Hoden der Wildtyp-Maus (obere Bildserie) in einer 
deutlichen Immunreaktivität luminal gelegenen reiferen Keimzellen der angeschnittenen Tubuli [A, E; C, 
G]. Durch Vorinkubation des Gustducin S Antiserums mit dem korrespondierenden Peptid lässt sich die 
Immunfärbung stark reduzieren und es bleibt nur eine leichte Markierung der Leydigschen Zwischenzellen 
zurück [B, F, Pfeilspitze], die in Kontrollschnitten, die ohne Primärantikörper inkubiert wurden, ebenfalls zu 
beobachten ist [D, H, Pfeilspitze]. 
Im Hoden der Gustducin-defizienten Maus (untere Bildserie, [Gustducin [-/-]]) lässt sich ebenfalls eine 
deutliche Immunreaktivität beider anti-Gustducin-Antikörper detektieren [I, K, M, O], die auch hier in den 
Spermatiden am stärksten ausgeprägt ist [M, O]. Die Immunmarkierung des Gustducin S Antiserums 
innerhalb der Tubuli lässt sich wie im Wildtyp-Gewebe durch das immunogene Peptid blockieren [J, N]; 
auch die Markierung der Leydigschen Zwischenzellen [N; Pfeilspitze] ist mit der Färbung der 
Kontrollpräparate vergleichbar [L, P; Pfeilspitze]. 
Gezeigt sind Überlagerungen der Phasenkontrast- und der Fluoreszenzaufnahme. Die Boxen in [A - D] 
und [I - L] sind in [E - H] bzw. [M - P] vergrößert dargestellt. Die jeweils verwendeten Primärantikörper sind 
im Bild oben rechts angegeben. 
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Ein dem Wildtyp-Gewebe vergleichbares Fluoreszenzmuster wurde auch im Hoden-
gewebe von Gustducin-KO Männchen beobachtet (Abbildung 4.10, untere Bildserie). 
Es war eine deutliche Immunmarkierung aller angeschnittenen Hodentubuli aus-

zumachen (Abbildung 4.10 [I] und [K]), die analog zum Wildtyp in den luminalen Zell-
schichten am stärksten ausgeprägt war (Abbildung 4.10 [M] und [O]) und sich durch 
Vorinkubation des Antikörpers mit seinem korrespondierenden Peptid blockieren ließ 

(Abbildung 4.10 [J] und [N], [Gustducin S + BP]). 
Dieser zunächst unerwartete Befund, dass die α-Gustducin-Immunreaktivität in männ-
lichen Keimzellen unabhängig vom Genotyp war, konnte in reifen Spermien bestätigt 

werden, die aus dem Nebenhoden von Gustducin-Wildtyp und Gustducin-defizienten 
Tieren isoliert wurden: Die Spermien von Gustducin-KO Mäusen zeigten mit beiden 
Antiseren die gleiche Markierung des Mittelstücks, die auch in Wildtyp-Spermien 

beobachtet wurde (Abbildung 4.11 [A, B, E, F] und [I, J, M, N]).  

 

Abbildung 4.11:  Analyse der Gustducin-Immunreaktivität in Gustducin-KO und Wildtyp-Spermien. 
Die Immunreaktivität der beiden α-Gustducin Antiseren in isolierten Gustducin-defizienten [I - P, Gustducin 
[-/-]] und Wildtyp-Spermien [A - H, Wildtyp [+/+]] wurde mit FITC-gekoppelten anti-Kaninchen IgG (1:750, 
grün) visualisiert. Anschließend wurde der Zellkern durch eine Inkubation mit Propidiumiodid [PI] (blau 
dargestellt) gegengefärbt.  
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In beiden Genotypen zeigt sich mit den verwendeten Antiseren eine deutliche Gustducin-Immunreaktivität 
im Mittelstück des Flagellums [Gustducin S, Gustducin H]. Das Gustducin H Antiserum markiert außerdem 
das Verbindungsstück am Übergang vom Kopf zum Spermienschwanz ([F; N], Pfeilspitze). Die Immun-
reaktivität des Flagellums ist sowohl in Wildtyp- als auch in Gustducin-KO Spermien durch Inkubation mit 
dem korrespondierenden Peptid blockierbar [C, G; K, O]; lediglich das Fluoreszenzsignal im Verbindungs-
stück bleibt auch in den Peptid-blockierten Ansätzen bestehen ([O], Pfeilspitze). In Kontrollpräparaten [D, 
H; L, P], die nicht mit den Antiseren inkubiert wurden, ist keine Immunfärbung detektierbar. 

Darüber hinaus ließ sich in beiden Genotypen mit dem Gustducin H Antiserum zusätz-

lich ein Fluoreszenzsignal im Verbindungsstück des Spermiums detektieren (Abbildung 
4.11 [F] und [N]). Diese Färbung des Verbindungsstücks im Halsbereich war jedoch im 
Gegensatz zur Markierung des Mittelstücks durch Vorinkubation des Antiserums mit 

seinem immunogenen Peptid nicht vollständig blockierbar (Abbildung 4.11 [O], Pfeil) 
und ist deshalb vermutlich auf eine unspezifische Bindung des Antikörpers an dieses 
vesikuläre Organell zurückzuführen. 

Die Immunreaktivität der α-Gustducin-Antiseren zeigte demnach im Hoden und in 
Spermien der Gustducin-defizienten Mauslinie keinerlei Abschwächung im Vergleich 
zu Wildtyp-Tieren. Dieser Befund warf die Frage auf, ob tatsächlich residuales 

Gustducin im Hoden der Gustducin-defizienten Tiere vorhanden war, oder ob die 
Immunmarkierung auf eine unspezifische Kreuzreaktivität des Antikörpers mit einem 
anderen Protein zurückzuführen sein könnte. 

Da sich die Immunfärbung des Hodens und der Spermien beider Genotypen durch eine 
Prä-Inkubation des Antikörpers mit dem Peptid unterbinden ließ, war davon 
auszugehen, dass die erkannten Gewebsepitope große Ähnlichkeit zu den antigenen 

Epitopen des immunogenen Peptids aufweisen bzw. mit diesen übereinstimmen. In 
einer Sequenzanalyse der gängigen Datenbanken (Blast, NCBI; Bethesda [USA]) des 
zur Immunisierung eingesetzten Gustducin-Peptids (AS 94-113, Abbildung 4.9) konnte 

jedoch keine auffällige Homologie mit anderen Proteinen gefunden werden (Tabelle 
4.2).  
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Tabelle 4.2:  Übersicht über Proteine mit Homologie zum immunogenen Peptid der 
verwendeten Gustducin-Antiseren. 

Zusammengefasst ist eine Übersicht über die Proteine, die in einer Datenbankanalyse die stärkste 
Homologie zur Peptidsequenz des Gustducins (DYVNPRSREDQEQLHSMANT) aufweisen, gegen die die 
verwendeten Antiseren generiert wurden. Diese Proteine wurden nach dem Blast Score, der das Ausmaß 
der Homologie zwischen den beiden Sequenzen repräsentiert, absteigend geordnet. Neben dem Namen 
des homologen Proteins [Name] sind dessen Accession Nummer [Accession Nummer], der 
entsprechende Blast Score [Blast Score], die Sequenz-Identität (nur identische Aminosäuren werden 
berücksichtigt) [Iden.] und Sequenz-Ähnlichkeit (identische Aminosäuren und Aminosäuren mit gleicher 
Ladung sind relevant) [Ähnl.] sowie die erwartete molekulare Masse des Proteins [Proteingröße] 
angegeben. 

Name 
Accession 
Nummer 

Blast 
Score 
[bits] 

Iden. 

x/x 

[%] 

Ähnl. 

x/x 

[%] 
Größe 
[kDa] 

Alpha-Gustducin (guanine nucleotide-
binding protein G(t) subunit alpha-3) 

NP_0010
74612  

69,8 20/20 

(100) 

20/20 

(100) 

40 

Akap9 

(A kinase (PRKA) anchor protein 
(yotiao) 9) 

NP_9194
44  

 

28,2 8/10 

(80) 

9/10 

(90) 

434 

ectopic P granules protein 5 homolog NP_0011
82562.1 

26,1 9/14 

(64) 

9/14 

(64) 

291 

5-azacytidine-induced protein 1  
(pre-acrosome localization protein 1) 

NP_0338
64 

25,7 8/12 

(67) 

9/12 

(75) 

120 

Ggnbp1 (gametogenetin binding protein 
1) isoform b 

NP_0012
38810.1 

25,2 9/13 

(69) 

9/13 

(69) 

30 

Lsp1  
(lymphocyte specific 1) isoform 1 

NP_0011
29543.1   

24,4 7/13 

(54) 

11/13 

(85) 

37 

Gbf1  
(golgi-specific brefeldin A-resistance 
factor 1) 

NP_8492
61 

 

24,0 6/6 

(100) 

6/6 

(100) 

207 

Nbea  
(neurobeachin) 

NP_0850
98.1 

24,0 

 

und 

14,6 

6/10 

(60) 

 

4/5 

(80) 

8/10  

(80)  

 

4/5 

(80) 

327 

 

Der Überblick über die Proteine mit der größten Übereinstimmung zum immunogenen 
Peptid in Tabelle 4.2 zeigt deutlich, dass die maximale zusammenhängende Überein-
stimmung mit anderen Proteinen, wie z. B. AKAP 9 oder gametogenetin binding 

protein 1, bei nur 8 bzw. 9 der insgesamt 20 Aminosäuren des immunogenen Peptids 
lag. Durch diesen methodischen Ansatz konnte also kein eindeutiger Hinweis auf ein 
Protein gefunden werden, welches möglicherweise zusätzlich zum Gustducin bzw. 

anstelle dieser G Protein α-Untereinheit erkannt wurde. Die durch die α-Gustducin-
Antikörper gebundene Struktur könnte aber auch in der räumlichen Anordnung der 
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Aminosäurekette eines Proteins (Sekundär- und Tertiärstruktur) begründet liegen, ohne 
dass eine Sequenzhomologie der Primärstruktur zwischen dem Protein und Gustducin 
festzustellen ist. 

Um zu klären, ob eines der Proteine, die Homologien zum Gustducin-Peptid zeigen 
(siehe Tabelle 4.2), für die Immunreaktivität des Gustducin Antiserums verantwortlich 
sein könnte, oder ob möglicherweise eine verkürzte Gustducin-Variante durch die 

Antikörper erkannt wird, wurde die molekulare Masse des durch die α-Gustducin 
Antiseren detektierten Proteins in Western Blot Analysen mit Keimdrüsengewebe von 
Wildtyp- und Gustducin-defizienten Tieren ermittelt. 

Abbildung 4.12 [A] zeigt, dass im Hoden von Wildtyp-Tieren nach Inkubation mit dem 
Gustducin S Antiserum zwei stark ausgeprägte immunpositive Banden auszumachen 
waren. Diese entsprachen mit einem Molekulargewicht von ca. 55 und ca. 45 kDa der 

Größe der bereits in vorangegangenen Analysen detektierten Banden [von Buchholtz et 
al., 2004; Fehr et al., 2007]. Für diese immunreaktiven Banden wird diskutiert, dass es 
sich bei der größeren um einen ungelösten Komplex aus Gustducin und einem anderen 

bisher nicht identifizierten Protein handeln könnte [von Buchholtz et al., 2004], 
während die untere Bande nicht komplexiertes α-Gustducin (berechnete Masse: ca. 
40 kDa) repräsentiert. Im Wildtyp-Nebenhoden traten diese beiden Banden ebenfalls 

auf, waren jedoch deutlich weniger intensiv als im Hoden (Abbildung 4.12, [A], linker 
Blot, [Nh]). Analog zu den immunhistochemischen und immuncytochemischen Studien 
ließ sich die Immunmarkierung der Proben beider Gewebe durch eine Vorinkubation 

des Antiserums mit seinem immunogenen Peptid eliminieren (Abbildung 4.12 [B], 
linker Blot). 

 

Abbildung 4.12:  Western Blot Analyse der α-Gustducin Immunreaktivität im Keimdrüsengewebe 
von Wildtyp- und Gustducin-defizienten Mäusen. 

Es wurden jeweils gleiche Proteinmengen (40 µg) einer S1-Proteinfraktion von Hoden- [Ho] und Neben-
hodengewebe [Nh] einer Wildtyp-Maus [WT] bzw. einer Gustducin-defizienten Maus [KO] mittels SDS-
PAGE aufgetrennt, auf eine Nitrocellulose-Membran übertragen und anschließend mit dem Gustducin S 
Antiserum [Gustducin S] inkubiert (1:1000 verdünnt) [A]. In einem parallelen Ansatz [B] wurde der 
Antikörper vor der Inkubation der Membranen mit seinem korrespondierenden Peptid neutralisiert 
[Gustducin S + BP]. 
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[A] Ohne eine Vorinkubation mit dem immunogen Peptid detektiert der Antikörper im Hoden des Wildtyp-
Tieres zwei stark immunopositive Banden mit einem Molekulargewicht von ca. 55 kDa und ca. 45 kDa 
([WT], Pfeile), die im Nebenhodengewebe auch auftreten, dort aber schwächer ausgeprägt sind ([Nh], 
Pfeile). Im Gewebe der Gustducin-defizienten Maus [KO] werden durch das Antiserum zwei Banden 
derselben Größe markiert, die eine vergleichbare Intensität wie die im Wildtyp-Gewebe aufweisen.  
[B] Durch eine Vorinkubation des Antiserums mit dem korrespondierenden Blockierungspeptid wird die 
Reaktivität des Antikörpers im Gewebe beider Genotypen vollständig aufgehoben.  
Das Molekulargewicht [MW] des mitgeführten Proteingrößenstandards ist jeweils links angegeben.  

Die Analyse entsprechender Proben des Reproduktionsgewebes Gustducin-defizienter 
Tiere zeigte interessanterweise ein Bandenmuster, das dem von Gewebe männlicher 
Wildtyp-Mäuse entsprach (Abbildung 4.12 [A], rechter Blot-Streifen) und das nach 

einer Peptidneutralisation des Primärantikörpers ebenfalls ausblieb (Abbildung 4.12 
[B], rechter Blot-Streifen). Im Hoden waren zwei prominente Banden mit einem 
Molekulargewicht von ca. 45 und 55 kDa auszumachen (Abbildung 4.12 [A], rechter 

Blot, [Ho], Pfeile), deren Intensität mit den Banden des Immunoblots von Wildtyp-
Tieren vergleichbar war. Diese Banden konnten ebenfalls in Gewebeproben des Neben-
hodens registrieren werden und zeigten auch hier eine sehr viel schwächere Intensität 

als die Proben des Hodengewebes (Abbildung 4.12, [A], rechter Blot, [Nh]). In Proben 
beider Genotypen waren darüber hinaus auch einzelne, deutlich schwächere immun-
reaktive Banden einer molekularen Größe von ca. 40 kDa auszumachen (Abbildung 4.1 

[A]). 
 
Da die berechneten Massen der Proteine, die die stärksten Homologien zum 

immunogenen Peptid der Gustducin-Antiseren aufwiesen (siehe Tabelle 4.2), jeweils 
deutlich größer (120 - 434 kDa) bzw. kleiner (30 - 37 kDa) als die im Western Blot 
beobachteten Banden der Masse von ca. 45 und 55 kDa waren, kommen diese Proteine 

wahrscheinlich nicht als Kandidaten für eine mögliche Kreuzreaktivität der Gustducin-
Antiseren in Frage. Allerdings machen diese Befunde auch deutlich, dass in Gustducin-
defizienten Tieren offenbar keine spezielle verkürzte Form des Gustducins exprimiert 

wurde, die im Wildtyp-Gewebe nicht vorhanden war. Es wäre demnach möglich, dass 
im Hoden eine spezielle Gustducin-Isoform vorkommt, die auch im Wildtyp 
unabhängig vom deletierten Exon 1 (Abbildung 4.9) exprimiert wird. Eine solche 

Hoden-spezifische Isoform könnte eventuell für eine oder beide der detektierten 
immunreaktiven Banden verantwortlich sein. 
Da die Reaktivität der verwendeten Gustducin-Antikörper anhand der bisher 

durchgeführten Analysen nicht abschließend geklärt werden konnte, war kein ein-
deutiger Proteinnachweis dieser G Protein α-Untereinheit möglich; eine Expression im 
männlichen Keimdrüsengewebe konnte allerdings ebenfalls nicht ausgeschlossen 

werden. Da die verwendeten Gustducin-defizienten Mäuse aufgrund ihres Hygiene-
Status beim Umzug unserer Arbeitsgruppe nicht nach München transferiert werden 
konnten, musste ihre Zucht eingestellt werden. Deshalb waren weitere Analysen am 

KO-Gewebe, wie beispielsweise der Nachweis von Gustducin-Isoformen Varianten mit 
Hilfe des Northern-Blot Verfahrens, in situ Hybridisierungen, MALDI-TOF (Matrix 

Assisted Laser Desorption/Ionisation-Time of Flight)-Analysen zur Aufklärung der 
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Identität des im Gewebe von KO-Tieren durch die Antikörper detektierten Proteins oder 
auch experimentelle Ansätze mit isolierten Spermien Gustducin-defizienter Tiere, nicht 
möglich.  

Zur Klärung der Frage, ob ein Spermium die Wahrnehmung chemischer Substanzen im 
weiblichen Genitaltrakt mit Hilfe von gustatorischen GPCRs und assoziierten Signal-
transduktionskaskaden realisiert, konzentrierten sich die weiteren Untersuchungen 

deshalb auf experimentelle Ansätze zur Expression und Funktion von Geschmacks-
rezeptoren der Tas1- und Tas2-Familie im männlichen Reproduktionssystem. Da die 
Signaltransduktion dieser beiden Rezeptorfamilien im Geschmackssystem überwiegend, 

aber nicht ausschließlich über α-Gustducin verläuft [He et al., 2004; Ozeck et al., 2004; 
Sainz et al., 2007; Tizzano et al., 2008], könnten diese Rezeptoren im Reproduktions-
system auch ganz unabhängig von α-Gustducin für die Erkennung chemosensorischer 

Liganden verantwortlich sein. 
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4.3 Bitterrezeptoren im Keimdrüsengewebe der männlichen 
Maus 

4.3.1 RT-PCR Untersuchung zum Expressionsnachweis von 
Tas2-Rezeptoren im Hoden der Maus 

Um der Frage nachzugehen, ob Mitglieder der umfangreichen Tas2r-Familie von Bitter-
rezeptoren als Kandidaten für Sensorproteine des Spermiums zur Wahrnehmung von 
Liganden in dessen Umgebung in Frage kommen könnten, wurde zunächst geprüft, ob 

mRNA Transkripte von Vertretern dieser GPCR-Familie im männlichen Keimdrüsen-
gewebe nachzuweisen sind. Dazu wurden Reverse Transkriptase PCRs (RT-PCR) mit 
spezifischen Primerpaaren für die 35 Mitglieder der Bitterrezeptorfamilie der Maus 

durchgeführt (Abschnitt 2.3.1). Die Qualität der eingesetzten cDNAs wurde durch PCRs 
mit einem β-Aktin-spezifischen Primerpaar sichergestellt (siehe Abschnitt 4.4.1 und 
Abbildung 4.32 [B]). Um zu gewährleisten, dass die gewählten PCR-Bedingungen und 

Primerpaare geeignet waren, um Subtyp-spezifische Tas2r-Transkripte zu amplifizieren, 
wurde cDNA der Wallpapille als Positivkontrolle eingesetzt. Um nicht für jedes der 35 
Primerpaare die optimale Annealing-Temperatur separat ermitteln zu müssen, wurde 

dabei die Technik der Touchdown PCR angewandt, die ein breites Spektrum an 
Annealing-Temperaturen abdeckt und trotzdem eine spezifische Amplifikation 
ermöglicht (Abschnitt 3.1.3.2). Die exemplarisch dargestellten Befunde der RT-PCRs in 

Abbildung 4.13, Abbildung 4.15 und Abbildung 4.16 machen deutlich, dass mit der 
verwendeten Wallpapillen-cDNA die Touchdown-PCRs so optimiert werden konnten, 
dass PCR-Produkte der berechneten Größe generiert wurden. Eine Ausnahme machte 

dabei nur der Tas2r116 (Abbildung 4.14), dessen Transkript nicht aus cDNA der 
Wallpapille amplifiziert werden konnte, obwohl zwei unterschiedliche Primerpaare und 
eine Vielzahl verschiedener Amplifikationsbedingungen getestet wurden (Abbildung 

4.14, [Tas2r116a] und [Tas2r116b]).  
Die erfolgreich validierten Primerpaare wurden anschließend in RT-PCR Analysen mit 
cDNA des Hodens eingesetzt. Um eine zu falsch positiven Resultaten führende DNA-

Kontamination der PCR-Reagenzien auszuschließen, wurden in jeder Versuchsreihe 
Kontrollansätze mitgeführt, in denen H2O statt cDNA verwendet wurde. Außerdem 
wurden für jeden Versuchsansatz ebenfalls RT-PCR Proben mit cDNA der CV als 

Template eingesetzt; so konnte für jeden einzelnen Ansatz sichergestellt werden, dass 
die Versuchsbedingungen der PCR-Reaktion auch tatsächlich zur Amplifikation von 
Rezeptortranskripten geeignet waren. 

 
In diesen RT-PCR Analysen konnten unter den gewählten Bedingungen für sechs der 
35 Bitterrezeptoren zwar reproduzierbar Amplifikate der erwarteten Größe aus cDNA 



106 Ergebnisse 

der CV generiert werden (Abbildung 4.13, [CV]); mit cDNA aus Hodengewebe konnten 
hingegen in keinem der durchgeführten Ansätze PCR-Banden für diese Rezeptoren, den 
Tas2r102, Tas2r104, Tas2r118, Tas2r120, Tas2r121 und den Tas2r124, generiert 

werden (Abbildung 4.13, [Ho]), so dass eine Expression dieser sechs Rezeptoren im 
Hoden weitestgehend ausgeschlossen werden konnte. 

 

Abbildung 4.13:  Übersicht über nicht im Hoden exprimierte Bitterrezeptoren. 
Zum Nachweis von Bitterrezeptor-Transkripten im männlichen Reproduktionsgewebe wurden RT-PCRs 
mit Tas2r-spezifischen Primerpaaren und cDNA aus Hoden [Ho] und der Wallpapille [CV] der Maus 
durchgeführt. Die Amplifikationsprodukte wurden anschließend in einem Agarosegel elektrophoretisch 
aufgetrennt und mittels UV-Licht visualisiert. Zur Größenorientierung ist der 500 bp-Marker gezeigt; die 
Lage des jeweils erwarteten Amplifikationsprodukts ist durch eine Pfeilspitze markiert.  
Während für alle dargestellten Rezeptoren eine Bande mit der erwarteten Größe (Pfeilspitze) aus cDNA 
der CV [CV] amplifiziert werden konnte, wurden mit Hoden cDNA [Ho] keine Amplifikationsprodukte 
detektiert. Eine Kontamination der PCR-Reaktion konnte durch die H2O-Kontrollproben [H20], in denen 
keine Banden auftraten, ausgeschlossen werden. Gezeigt sind repräsentative Ergebnisse von 3 - 5 
unabhängigen PCRs pro Tas2-Rezeptor-Subtyp. 

Auch mit den Tas2r116-spezifischen Primerpaaren ließ sich bei Verwendung der 
Hoden-cDNA kein Amplifikationsprodukt generieren (Abbildung 4.14, [Ho]). Da für 

diesen Rezeptor jedoch mit der cDNA der CV ebenfalls kein PCR-Produkt nach-
zuweisen war (Abbildung 4.14, [CV]), scheinen die gewählten Primer und PCR-
Bedingungen nicht geeignet, um Tas2r116-Transkripte zu amplifizieren, so dass eine 

Expression dieses Rezeptors im Hoden nicht geklärt werden konnte. 
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Abbildung 4.14:  Ergebnisse der RT-PCR Analysen mit Tas2r116-spezifischen Primerpaaren. 
Gezeigt sind ausgewählte Resultate einer RT-PCR mit muriner cDNA der Wallpapille [CV] und des 
Hodens [Ho] unter Verwendung zweier unterschiedlicher Primer-Paare [Tas2r116 a, Tas2r116 b] gegen 
den Tas2r116 Rezeptor. In keiner der durchgeführten PCRs konnte ein Tas1r116-Transkript aus der cDNA 
der CV [CV] oder des Hodens [Ho] amplifiziert werden. Die jeweilige Größe der erwarteten PCR-Produkte 
mit den beiden eingesetzten Primer-Paaren ist durch eine Pfeilspitze angezeigt. 

Interessanterweise konnten jedoch, im Gegensatz zu den vorangehend beschriebenen 

sieben Bitterrezeptoren (s. Abbildung 4.13 und Abbildung 4.14), für alle anderen 28 
Mitglieder der Tas2r-Familie mRNA-Transkripte im Hoden der Maus nachgewiesen 
werden. Wie Tabelle 4.3 deutlich macht, zeigt der Anteil der positiven PCR-Resultate 

mit testikulärer cDNA an der Gesamtzahl der durchgeführten PCRs deutliche 
Unterschiede zwischen den einzelnen Rezeptor-Subtypen: So waren einzelne 
Rezeptoren (z. B. Tas2r131, Tas2r143, Tas2r144) in jeder der PCRs nachzuweisen, 

während Transkripte anderer Rezeptoren (z. B. Tas2r115, Tas2r130) nur in einzelnen 
Ansätzen registriert werden konnten. Auch die Intensität der detektierten PCR-Banden 
variierte stark zwischen den einzelnen Subtypen. Zur Quantifizierung der Bandenstärke 

wurde deshalb die absolute Intensität des PCR-Produktes mit cDNA der CV und des 
Hodens qualitativ als „stark“, „mittel“ oder „schwach“ eingeschätzt und daraus die 
mittlere Bandenintensität der Amplifikationsprodukte für jeden Rezeptor ermittelt 

(siehe Tabelle 4.3). 
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Tabelle 4.3:  Übersicht über die Amplifikation von Bitterrezeptor-Transkripten aus murinem 
Hodengewebe mittels RT-PCR. 

Gezeigt ist eine Zusammenfassung der Ergebnisse von jeweils 3 - 6 RT-PCR Ansätzen mit unabhängigen 
cDNA Präparationen; dabei ist der Anteil der PCRs mit einem Amplifikationsprodukt aus Hoden cDNA an 
allen positiven PCR Ansätzen, die ein Amplifikat aus gustatorischer cDNA zeigten, angegeben. Darüber 
hinaus ist die mittlere Intensität der jeweiligen PCR-Banden gezeigt, die aus den einzelnen Ansätzen 
qualitativ ermittelt wurde. Intensität: (+) schwach; + mittel; ++ stark; - kein Amplifikat; (*) kein positiver CV 
Befund. 

Tas2r 

Anzahl der positiven 
Nachweise im Hoden / 

Gesamtzahl der pos. PCRs 

Mittlere Banden- 
Intensität der PCR 
mit Hoden cDNA 

Mittlere Banden-
Intensität der PCR 
mit cDNA der CV 

102 0 / 3 - + 

103 3 / 3 + ++ 

104 0 / 4 - ++ 

105 3 / 5 (+) + 

106 2 / 4 + ++ 

107 2 / 4 (+) + 

108 4 / 5 + ++ 

109 4 / 5 + + 

110 4 / 5 + ++ 

113 3 / 6 (+) ++ 

114 4 / 5 (+) + 

115 2 / 5 (+) ++ 

116    0 / (9*) - - 

117 4 / 5 + + 

118 0 / 3 - ++ 

119 2 / 3 + ++ 

120 0 / 3 - + 

121 0 / 4 - + 

122 2 / 3 (+) (+) 

123 4 / 6 + + 

124 0 / 3 - + 

125 2 / 3 + + 

126 2 / 3 (+) (+) 

129 2 / 4 + ++ 

130 1 / 4 (+) (+) 

131 3 / 3 ++ ++ 

134 3 / 3 + + 

135 4 / 4 + + 

136 2 / 3 (+) (+) 

137 3 / 4 + + 

138 2 / 6 (+) ++ 

139 3 / 5 + + 

140 3 / 4 (+) (+) 

143 4 / 4 ++ ++ 

144 5 / 5 ++ ++ 
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Für einen Großteil dieser Bitterrezeptoren konnte in mindestens der Hälfte der PCR-
Ansätze eine eindeutige Bande der erwarteten Größe mit mittlerer bis starker Intensität 
in den Hodenproben detektiert werden (siehe Tabelle 4.3, [+] und [++]).  

 

Abbildung 4.15:  Nachweis von Bitterrezeptor-Transkripten mit mittlerer bis starker Banden-
intensität in RT-PCRs mit cDNA des Maushodens.  

Gezeigt sind die PCR-Ansätze der 17 spezifischen Tas2-Primerpaare, die zu einem Amplifikationsprodukt 
mit mittlerer und starker Intensität im Hodengewebe führten. Für alle eingesetzten Tas2r Primer konnte ein 
Amplifikationsprodukt mit der erwarteten Größe (Pfeilspitze) sowohl im Geschmacksgewebe [CV] als auch 
im Hoden [Ho] nachgewiesen werden.  
Gezeigt sind repräsentative Ergebnisse von 3 - 6 unabhängigen PCRs pro Primerpaar. 
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Abbildung 4.15 zeigt die Ergebnisse von repräsentativen RT-PCR-Experimenten dieser 
17 Tas2-Rezeptoren, des Tas2r103, Tas2r106, Tas2r108, Tas2r109, Tas2r110, 
Tas2r117, Tas2r119, Tas2r123, Tas2r125, Tas2r129, Tas2r131, Tas2r134, Tas2r135, 

Tas2r137, Tas2r139, Tas2r143 und des Tas2r144. In PCR-Analysen für den Tas2r139 
war neben dem erwarteten Amplifikationsprodukt mit einer Größe von 863 bp noch ein 
zusätzliches Transkript von ca. 1100 bp zu registrieren, das in den Geschmackspapillen-

Proben nicht auszumachen war (Abbildung 4.15 [Tas2r139]). Auch mit dem Tas2r135-
spezifischen Primerpaar trat eine zusätzliche PCR-Bande auf; dieses PCR-Produkt 
zeigte allerdings eine geringere Größe (ca. 700 bp) als erwartet (900 bp) und trat nur in 

der cDNA Probe der Wallpapille auf (Abbildung 4.15 [Tas2r135]).  
Die noch verbleibenden elf Bitterrezeptoren der Tas2r-Familie zeigten hingegen 
entweder nur eine sehr schwache Intensität des Amplifikationsproduktes der erwarteten 

Größe in cDNA des Hodens oder waren in den verschiedenen unabhängigen cDNA-
Präparationen nur in Einzelfällen zu registrieren (s. Tabelle 4.3). In diese Bitterrezeptor-
Gruppe fallen der Tas2r105, Tas2r107, Tas2r113, Tas2r114, Tas2r115, Tas2r122, 

Tas2r126, Tas2r130, Tas2r136, Tas2r138 und Tas2r140 (Abbildung 4.16). Bei den 
Tas2r136 und Tas2r138 Rezeptoren waren zusätzlich potentiell unspezifische 
Amplifikate nachzuweisen, die eine geringere als die berechnete Größe des PCR-

Produkts aufwiesen (Abbildung 4.16, [Tas2r136], [Tas2r138]).  
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Abbildung 4.16:  Exemplarische Dokumentation der RT-PCR-Befunde der Bitterrezeptor Subtypen 
mit schwacher Amplifikationsintensität aus cDNA des Hodens.  

Die gezeigten exemplarischen PCR-Befunde umfassen die Bitterrezeptoren, die in RT-PCR Analysen mit 
Hoden cDNA nur zu einer Amplifikationsbande mit sehr geringer Intensität führten und die sich teilweise 
nur in einzelnen PCR-Ansätzen (Tas2r115, Tas2r130, Tas2r138) amplifizieren ließen. Neben den 
Amplifikationsprodukten der erwarteten Größe waren mit dem Tas2r136-spezifischen Primerpaar weitere 
kleinere, vermutlich unspezifische Banden zu detektieren. Im Geschmacksgewebe amplifizierten die 
Primer für die Tas2r140 Sequenz eine sehr schwache Bande [CV].  

Die Beobachtung, dass Transkripte vieler Bitterrezeptor-Subtypen im Hoden detektiert 
werden können, während es für andere keinerlei Hinweise auf eine Expression in 

testikulärem Gewebe ergab (Abbildung 4.13), führte zu der Frage, ob die exprimierten 
bzw. nicht-exprimierten Rezeptoren sich durch weitere Gemeinsamkeiten auszeichnen, 
beispielsweise bezüglich ihres Ligandenspektrums oder ihrer Proteinsequenz. Da bisher 

nur für sehr wenige murine Bitterrezeptor-Subtypen aktivierende Liganden identifiziert 
werden konnten [Chandrashekar et al., 2000; Meyerhof et al., 2010], wurde die 
Sequenzhomologie der Rezeptoren untersucht, um so Hinweise auf mögliche Unter-
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schiede bzw. Gemeinsamkeiten zwischen den Gruppen amplifizierbarer und nicht-
amplifizierbarer Rezeptoren zu sammeln. Dazu wurde die Homologie der 35 Bitter-
rezeptorsubtypen der Maus in vergleichenden Aminosäuresequenzanalysen mit Hilfe 

des ClustalW Computerprogramms bestimmt und anschließend in einem Stammbaum-
Dendrogram dargestellt. Diese Form der Darstellung erlaubt eine visuelle Abschätzung, 
ob Rezeptorsubtypen, deren Transkripte im Hoden nicht (blau eingefärbt), nur in sehr 

geringer Menge (rosa) oder eindeutig (rot) nachgewiesen wurden (Abbildung 4.13), sich 
durch eine Sequenzhomologie auszeichnen. Ebenfalls in das Dendrogramm 
eingezeichnet wurde die Lage der jeweiligen Tas2r-Gene der Maus, die bis auf den 

Tas2r119 (Chromosom 15) und den Tas2r134 Rezeptor (Chromosom 2) von zwei 
Clustern auf Chromosom 6 kodiert werden [Conte et al., 2003], wobei Cluster 2 sich in 
zwei Subcluster (Subcluster 1 und 2) unterteilen lässt (Abbildung 4.17). In dieser Dar-

stellung fällt auf, dass nah verwandte Tas2-Rezeptoren meist auch chromosomal dicht 
nebeneinander lokalisiert sind und im gleichen Cluster bzw. Subcluster vorliegen 
(Abbildung 4.17).  

Im Dendrogramm der Bitterrezeptoren ist zu erkennen, dass die Intensität der RT-PCR-
Amplifikationsprodukte der Tas2-Rezeptoren innerhalb eines Clusters deutlich variieren 
kann (Abbildung 4.17). Da keiner der Cluster ausschließlich Rezeptoren enthält, die im 

Hoden exprimiert bzw. nicht exprimiert werden oder die eine starke Übereinstimmung 
in ihrer Bandenintensität zeigen, ist kein auffälliger Zusammenhang zwischen der 
Rezeptorhomologie, der Lokalisation auf dem Chromosom und der Expression der 

jeweiligen Rezeptoren zu erkennen.  
Die Verwandtschaft der Hoden-positiven und Hoden-negativen Rezeptoren scheint 
jedoch auch nicht gänzlich zufällig verteilt zu sein. So weisen beispielsweise drei der 

sechs im Hoden nicht nachweisbaren Rezeptorsubtypen eine starke Homologie 
zueinander (ca. 70 %) und damit einen relativ „nahen“ Verwandtschaftsgrad auf 
(Tas2r102, Tas2r124, Tas2r121, obere Äste des Dendrogramms), während die anderen 

drei nicht in cDNA des Keimdrüsengewebes nachgewiesenen Rezeptoren (Tas2r104, 
Tas2r118, Tas2r120) weder zu dieser Klein-Gruppe noch untereinander ausgeprägte 
Homologien zeigen. Auffällig ist auch, dass der Subcluster 1 von Cluster 2 überwiegend 

Rezeptoren mit sehr schwacher (Tas2r105, Tas2r107, Tas2r114, Tas2r130) oder ohne 
Hoden-Expression (Tas2r104) beinhaltet; der Tas2r106 zeigt als einziger Vertreter 
dieses Clusters ein eindeutig nachweisbares Transkript im Hoden auf.  
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Abbildung 4.17:  Graphische Darstellung der Sequenzähnlichkeit und Intensität der RT-PCR-
Produkte von Tas2-Rezeptoren im Hoden der Maus. 

Mit Hilfe des Computerprogramms ClustalW wurde ein Alignment der Aminosäuresequenzen der 35 
murinen Tas2rs erstellt und ihre Sequenz-Verwandtschaft in Treeview in einem Dendrogramm dargestellt. 
Die chromosomale Lokalisation der Rezeptorsequenzen in Clustern ist rechts angegeben. Die Cluster 1 
und 2 liegen beide auf Chromosom 6 und beinhalten alle Bitterrezeptoren außer dem Tas2r119 ([*], 
Chromosom 15) und dem Tas2r134 ([*], Chromosom 2). Zur Übersicht über die Expression der Bitter-
rezeptor-Transkripte im Maushoden ist die mittlere Intensität des jeweiligen PCR-Produkts aus testikulärer 
cDNA farblich kodiert angegeben (rot: mittlere bis hohe Intensität, hellrosa: schwache oder nur vereinzelte 
PCR-Banden; blau: nicht im Hoden amplifizierbar; grau: unklar). Die Länge und Entfernung der Äste 
repräsentieren das Ausmaß der Sequenzunterschiede der einzelnen Rezeptoren.  
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Die 17 Rezeptoren, für die ein RT-PCR-Produkt mittlerer bis starker Intensität 
registriert werden konnte, sind auf alle Cluster bzw. Subcluster verteilt und umfassen 
auch die beiden Rezeptoren, die nicht durch Chromosom 6 kodiert werden. Auch bei 

diesen Rezeptoren ist eine häufige Übereinstimmung in der Bandenintensität bei starker 
Verwandtschaft, wie zwischen dem Tas2r109, Tas2r117 und Tas2r129, dem Tas2r108, 
Tas2r139 und Tas2r144, sowie dem Tas2r125 und Tas2r103 zu beobachten. Eine 

ähnliche Amplifikationsmenge ist auch beim Tas2r143 und Tas2r134 zu detektieren 
(Abbildung 4.17, unterster Ast), die zwar nicht im selben Cluster liegen, aber trotzdem 
einen hohen Grad an Homologie aufweisen. Interessant erscheint in diesem Zusammen-

hang auch der Tas2r131, dessen spezifische Primer unter Verwendung von Hoden 
cDNA zu einer RT-PCR-Bande mit starker Intensität führt, der jedoch nur wenig 
Ähnlichkeit zu den weiteren Rezeptoren mit vergleichbarer Transkript-Stärke aufweist 

(Abbildung 4.17, ganz oben).  
 
Da für die durchgeführten RT-PCR-Analysen cDNA aus dem gesamten Hoden 

verwendet wurde, könnten die nachgewiesenen Rezeptor-Transkripte nicht nur aus 
Keimzellen aller Reifungsstadien, sondern auch aus Sertoli-Zellen und interstitiellen 
Hodengewebe stammen. Angesichts der Vielzahl an verschiedenen Bitterrezeptoren, 

deren Transkripte in unterschiedlicher Menge im Hoden nachgewiesen werden konnten 
(s. Tabelle 4.3), sollte deshalb im nächsten Schritt untersucht werden, welche dieser 
Bitterrezeptoren im Hoden tatsächlich in ein funktionelles Rezeptorprotein translatiert 

werden und somit an der Detektion von chemosensorischen Liganden durch Keimzellen 
beteiligt sein könnten.  

4.3.2 Immunhistochemischer Spezifitätstest eines Tas2r138 
Antikörpers 

Um die Frage zu klären, welche der Tas2r-Rezeptortranskripte translatiert werden und 
um gleichzeitig prüfen zu können, in welchen Zelltypen und Stadien der Keimzell-
reifung (s. Abbildung 4.2 [A]) die Bitterrezeptoren im Hoden exprimiert werden, sollte 

die Existenz der Tas2-Rezeptoren auf Proteinebene untersucht werden.  
Bisher sind jedoch nur sehr wenige Antikörper kommerziell erhältlich, die gegen 
murine Bitterrezeptoren generiert wurden. Deswegen beschränkte sich der Protein-

nachweis der murinen Bitterrezeptoren auf den Tas2r138 Rezeptor, der im Hoden der 
Maus schwach exprimiert wird (s. Abbildung 4.16) und für den ein Antiserum der 
Firma Santa Cruz zur Verfügung stand.  

Die Spezifität dieses Antikörpers wurde zunächst an Gewebe der Zunge und des Gastro-
intestinaltrakts geprüft, für das bereits eine Expression von Bitterrezeptoren beschrieben 
wurde [Rozengurt, 2006; Meyerhof et al., 2010; Janssen et al., 2011]. Dazu wurden 

Gefrierschnitte der Wallpapille und des Duodenums mit dem Antikörper inkubiert und 
die Bindung des Primärantikörpers durch FITC-gekoppelte anti-Kaninchen IgG 
visualisiert.  
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Abbildung 4.18 zeigt die Resultate dieser immunhistochemischen Ansätze: Weder in 
der Wallpapille [CV] noch im Duodenum war eine zelluläre Markierung durch den 
Antikörper zu detektieren. In der Wallpapille war zwar eine sehr schwache, diffuse 

Immunreaktivität im Epithel zu beobachten (Abbildung 4.18 [A] und [E]); die 
Sinneszellen der Knospe zeigten hingegen keine Fluoreszenzsignale (Abbildung 4.18 
[A] und [E], weiße Umrandung). Auch im Dünndarm, für den in RT-PCR-Studien die 

Expression von Bitterrezeptoren mehrfach gezeigt werden konnte [Wu et al., 2002; 
Rozengurt und Sternini, 2007; Behrens und Meyerhof, 2011], war keine Immunfärbung 
einzelner Zellen, wie sie für Tas2r-assoziierte Signalmoleküle wie PLC β2 und 

α-Gustducin beschrieben wurde [Hofer et al., 1996; Behrens und Meyerhof, 2011; 
Janssen et al., 2011], zu detektieren. Es waren lediglich einzelne stark fluoreszierende 
Partikel zu beobachten, die beim Mikroskopieren als dem Gewebe aufgelagert 

erschienen (Abbildung 4.18 [B-C] und [F-G], Pfeil).  

 

Abbildung 4.18:  Immunhistochemische Analyse mit einem anti-Tas2r138 Antikörper. 
Gefrierschnitte der Wallpapille [CV] [A, E] und des Dünndarms [Duodenum] [B - D, F - H] einer Maus 
wurden mit einem anti-Tas2r138 Antiserum inkubiert; anschließend wurde die Bindung des Primär-
antikörpers mit Hilfe FITC-gekoppelter anti-Kaninchen IgG (1:750 verdünnt, grün) visualisiert. Kontroll-
schnitte [Kontrolle] wurden nur mit dem Sekundärantikörper inkubiert. 
Das Antiserum zeigt eine sehr schwache, diffuse Immunreaktivität im Zungengewebe, jedoch keine 
Markierung der Sinneszellen innerhalb der Geschmacksknospen, die zur Übersicht umrandet wurden [A, 
E]. Auch im Duodenum ist keine spezifische Immunmarkierung zu detektieren [B, F]. Es sind einzelne, 
dem Gewebe aufgelagerte stark fluoreszierende Partikel (Pfeil) zu erkennen [C, G], die wahrscheinlich 
unspezifische Ablagerungen des Primärantikörpers repräsentieren. In Kontrollansätzen ist keine Immun-
reaktivität auszumachen [D, H]. 
Dargestellt ist eine Aufnahme der FITC-Fluoreszenz [A - D, obere Bildreihe, grün] sowie eine Über-
lagerung des FITC-Signals mit der dazugehörigen Phasenkontrastaufnahme [E - H, untere Bildreihe]. [C] 
bzw. [G] stellen vergrößerte Ausschnitte des markierten Bereiches in [B] bzw. [F] dar. 

Auch in parallel durchgeführten Western Blot Analysen mit Gewebeaufarbeitungen aus 
dem Duodenum der Maus (Daten nicht gezeigt) war mit dem Antikörper keine immun-
reaktive Bande mit der erwarteten molekularen Größe von 37 kDa zu detektieren.  
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Diese negativen Befunde machen deutlich, dass das Antiserum keine spezifische 
Immunreaktivität im Gewebe der Wallpapille und des Duodenums, die als Positiv-
kontrollen verwendet wurden, aufwies und somit auch für eine Detektion des Tas2r138-

Rezeptorproteins im Reproduktionsgewebe ungeeignet war.  
 

4.3.3 Reproduktionsbiologische Charakterisierung einer Tas2r131 
GFP Mauslinie 

Da keine weiteren funktionstüchtigen Antikörper gegen murine Bitterrezeptoren zur 
Verfügung standen, war ein direkter immunologischer Proteinnachweis von Tas2-
Rezeptoren in Mausgewebe nicht möglich. Durch eine Kooperation mit der Arbeits-

gruppe von Prof. Wolfgang Meyerhof (Deutsches Institut für Ernährungsforschung 
[DIfE], Potsdam) ergab sich jedoch die Möglichkeit, die Expression und Funktion des 
Tas2r131 Rezeptors, für den im Hoden eine RT-PCR-Bande mit starker Intensität 

detektiert wurde (siehe Tabelle 4.3 und Abbildung 4.15), mit Hilfe eines genetisch 
veränderten Mausmodells zu charakterisieren.  
Diese Mauslinie, die im Weiteren als Tas2r131 GFP bezeichnet wird, wurde generiert, 

indem die Tas2r131-kodierende Sequenz durch eine für das GFP-Protein (green 

fluorescent protein) kodierende Kassette ersetzt wurde (Abschnitt 3.6.2). Durch diese 
genetische Veränderung sind die Mäuse zum einen Tas2r131-defizient, zum anderen 

exprimieren die Tiere das Fluoreszenzprotein GFP unter der Kontrolle des Tas2r131-
Promotors. Dies bedeutet, dass das leicht zu visualisierende grün fluoreszierende 
Protein in all jenen Zellen vorkommt, in denen der Tas2r131-Promotor aktiv ist. Die 

Tas2r131 GFP Mauslinie erlaubt es somit, sowohl die funktionellen Auswirkungen 
einer Rezeptor-Deletion im Tiermodell zu untersuchen als auch die Expression des 
Tas2r131 in extra-oralen Geweben [Behrens und Meyerhof, 2010] anhand der 

induzierten GFP-Fluoreszenz zu charakterisieren.  
Bei der Analyse der subzellulären Lokalisation des Fluoreszenzproteins ist allerdings zu 
berücksichtigen, dass im Gewebe das cytosolische Protein GFP anstatt des Rezeptors 

und nicht ein Tas2r131-GFP-Fusionsprotein exprimiert wird. Die subzelluläre 
Verteilung des GFPs ist somit von der physiologischen Lokalisation des ersetzten 
Rezeptors unabhängig und überwiegend auf das Cytoplasma konzentriert [Tsien, 1998; 

Tanudji et al., 2002]. Eine vergleichbare cytosolische Lokalisierung von ungekoppelten 
Fluoreszenzreporterproteinen wurde ebenfalls in analog generierten anderen 
Mausmodellen beobachtet, wie einer Tas1r3 GFP- und der TRPM5 GFP-Mauslinie, in 

denen ein Membranprotein durch GFP ersetzt wurde [Clapp et al., 2006].  

4.3.3.1 Analyse der GFP Expression in Wallpapillen der Tas2r131 GFP Maus 
Um zu prüfen, ob in den Tieren der Tas2r131 GFP-Mauslinie ausreichend GFP 
translatiert wird, um dieses nach Anregung mit Laserlicht (488 nm Wellenlänge) im 

Gewebe detektieren zu können, wurden zunächst histologische Untersuchungen an 



Ergebnisse 117 

 

Wallpapillen von homozygoten Tas2r131 GFP Ki (Knockin) Mäusen durchgeführt. Im 
Rahmen dieser Untersuchungen sollte zudem sichergestellt werden, dass die genetische 
Modifikation bei der Herstellung der Tas2r131 GFP Mauslinie nicht zu unvorher-

gesehenen Veränderungen in der Expression von Geschmacks-spezifischen Signal-
molekülen führt und dass das Fluoreszenzprotein das typische zelluläre Expressions-
muster eines Bitterrezeptors zeigt. 

Dazu wurden Gefrierschnitte der CV von Tieren der Tas2r131 GFP Mauslinie, deren 
Zellkerne zur besseren Orientierung mit dem Kernfarbstoff TO-PRO3 gefärbt wurden, 
auf ihre GFP-Fluoreszenz hin untersucht. Abbildung 4.19 macht deutlich, dass in den 

Geschmacksknospen einer Tas2r131 GFP Maus tatsächlich ein deutliches grünes 
Fluoreszenzsignal auszumachen war. Diese GFP-Fluoreszenz war in einzelnen Zellen 
innerhalb der Knospe zu registrieren, die die typische längliche Morphologie von 

Geschmackssinneszellen aufwiesen (Abbildung 4.19 E] und [F]) (s. auch Abbildung 4.1 
[A]). Im Bindegewebe, das die Geschmacksknospen umgibt, und im nicht-sensorischen 
Epithel der Wallpapille war hingegen kein Fluoreszenzsignal zu detektieren. Bei 

detaillierter Betrachtung des GFP-Signals konnte zudem bestätigt werden, dass das 
Fluoreszenzprotein überwiegend cytosolisch lokalisiert war (Abbildung 4.19 [E] und 
[F]). 

 

Abbildung 4.19:  Analyse des Tas2r131 Expressionsmarkers GFP in Wallpapillen. 
CV-Gefrierschnitte einer homozygoten Tas2r131 GFP Reportermaus wurden mit dem Kernmarker 
TO-PRO3 ([TOPRO], blau dargestellt) bzw. mit einem anti-α-Gustducin Antiserum (Gustducin H 1:500) 
inkubiert, der durch Alexa-526-gekoppeltes anti-Kaninchen IgG (1:500 verdünnt, rot) nachgewiesen wurde.  
Nach spezifischer Laseranregung (488 nm) ist eine deutliche grüne Fluoreszenz des Tas2r131 
Reporterproteins GFP in einzelnen Sinneszellen der Wallpapille zu detektieren [A, E]. Das GFP-Signal 
zeigt eine klare zelluläre Co-Lokalisation [D, H; gelb, Pfeilspitzen] mit α-Gustducin. Es sind allerdings auch 
einzelne Gustducin-positive Zellen zu erkennen, die keine GFP-Fluoreszenz aufweisen [B - D, F - H; 
Pfeile]. 
Gezeigt sind Überlagerungen der Fluoreszenzkanäle [A, E: TOPRO: blau; D, H: Alexa-546, rot] mit den 
Phasenkontrastaufnahmen bzw. nur die Fluoreszenzaufnahmen [B, C, F, G]. Die Boxen in [A - D] sind in 
den unteren Bildern [E - H] vergrößert dargestellt. Zur Orientierung wurden die Umrisse der Wallpapille 
[A - D] mit einer gepunkteten Linie umrandet und einzelne Geschmacksknospen [E - H] mit einer 
gestrichelten Linie hervorgehoben. 
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Um weiterhin zu prüfen, ob die GFP-positiven Zellen sich wie erwartet durch eine 
Expression der G Protein α-Untereinheit Gustducin auszeichnen, die an der Signal-
transduktion von Tas2-Rezeptoren beteiligt ist [Wong et al., 1996; Ruiz-Avila et al., 

2001], wurden CV-Gewebsschnitte von Tas2r131 GFP Tieren Co-Färbungen mit einem 
anti-α-Gustducin Antiserum (Gustducin H) unterzogen. Die Bindung des Antiserums 
wurde in diesen Ansätzen mit Hilfe eines Fluorochrom-gekoppelten Sekundär-

antikörpers (Alexa Fluor 546, rot) visualisiert. Abbildung 4.19 [C] und [G] macht 
deutlich, dass diese Inkubation mit einem anti-Gustducin Antiserum zu einer roten 
Immunfärbung in einzelnen Geschmackssinneszellen führte, die vergleichbar zur 

Gustducin-Immunreaktivität in Wildtyp-Papillen war (s. Abbildung 4.8). Im Vergleich 
mit dem GFP-Fluoreszenzsignal (Abbildung 4.19 [B] und [F]) fiel auf, dass deutlich 
mehr Zellen immunopositiv für Gustducin waren als grün fluoreszierende Zellen 

registriert wurden. In Überlagerungen der beiden Einzel-Fluoreszenzkanäle (GFP [grün] 
und Gustducin [rot]) war in einzelnen Zellen der Geschmacksknospe eine Co-
Lokalisation [gelb] dieser Markierungen auszumachen. Dabei war in allen Zellen mit 

GFP-Fluoreszenz auch eine α-Gustducin Immunfärbung zu detektieren (Abbildung 4.19 
[F-H], Pfeilspitze). Der Umkehrschluss galt jedoch nicht: Nicht alle Gustducin-
positiven Zellen zeigten auch eine GFP-Fluoreszenz (Abbildung 4.19 [F-H], Pfeile). Da 

Gustducin an der Signaltransduktion von Tas1- und Tas2-Rezeptoren des Geschmacks-
systems beteiligt ist und Tas1r-positive Geschmackssinneszellen keine Bitterrezeptoren 
exprimieren [Adler et al., 2000; Chandrashekar et al., 2006], repräsentieren die 

Gustducin-positiven Zellen ohne GFP-Fluoreszenz wahrscheinlich Tas1r-exprimierende 
Sinneszellen (Abbildung 4.19 [F-H], Pfeile).  
Da die beobachtete Verteilung des GFP-Signals in einzelnen spindelförmigen Sinnes-

zellen, die Gustducin-positiv waren, dem typischen Expressionsmuster eines 
Bitterrezeptors entsprachen [Adler et al., 2000; Chandrashekar et al., 2006; Tizzano et 
al., 2008], kann von einer spezifischen GFP-Expression durch eine Aktivierung des 

Tas2r131 Promotor ausgegangen werden. Die zum Wildtyp-Gewebe vergleichbare 
Gustducin-Immunreaktivität der in ihrer Gestalt normal erscheinenden Wallpapille der 
Tas2r131-GFP Mauslinie belegt außerdem, dass kein offensichtlicher negativer Einfluss 

der genetischen Manipulation auf die Proteinausstattung und auf die Morphologie der 
Sinneszellen vorliegt. Nach dieser Analyse der Expression von GFP in Geschmacks-
knospen der Tas2r131 GFP Tiere scheint die verwendete Mauslinie folglich sehr gut 

geeignet zu sein, um Tas2r131-exprimierende Zellen im Gewebe anhand ihrer grünen 
Fluoreszenz zu identifizieren. 

4.3.3.2 Nachweis des Tas2r131 Expressionsmarkers GFP im männlichen 
Reproduktionssystem  

Vorangegangene Experimente haben gezeigt, dass der Tas2r131 Rezeptor u. a. aufgrund 

der starken Intensität seines RT-PCR-Produktes (Abbildung 4.15) als interessanter 
Kandidat für einen funktionell aktiven Bitterrezeptor in männlichen Keimzellen in 
Frage kommen könnte (siehe Abschnitt 4.3.1). Im nächsten Schritt sollte deshalb 



Ergebnisse 119 

 

geprüft werden, ob die Expression dieses Bitterrezeptors in Keimzellen mit Hilfe der 
Tas2r131 GFP Mauslinie bestätigt werden kann, und in welchen Stadien der Keimzell-
reifung (s. Abbildung 4.2 [A]) der Tas2r131 exprimiert wird. 

Abbildung 4.20 zeigt die GFP-Fluoreszenz in Hoden-Gefrierschnitten einer adulten 
homozygoten Tas2r131 GFP Maus. Diese Schnitte wurden zur Visualisierung der Zell-
kerne mit dem DNA-Marker TO-PRO3 (blau dargestellt) gefärbt. Die mikroskopische 

Analyse dieser Gewebsschnitte machte deutlich, dass tatsächlich in allen 
angeschnittenen Hodentubuli ein GFP-Fluoreszenzsignal zu detektieren war (Abbildung 
4.20 [A-D]). Betrachtete man die Verteilung des Fluoreszenzproteins innerhalb eines 

Samenkanälchens bei stärkerer Vergrößerung, so fiel auf, dass die Intensität des 
Fluoreszenzsignals im Verlauf der Keimzellreifung zunahm: Während in den basal 
gelegenen Zellschichten kein GFP vorhanden war (Abbildung 4.20 [E]), zeigten späte 

Spermatocyten und Spermatiden eine deutliche grüne Färbung, die in den luminalen 
Zellschichten der elongierten Spermatiden am stärksten ausgeprägt war (Abbildung 
4.20 [I]).  

 

Abbildung 4.20:  Lokalisation des Tas2r131 Expressionsmarkers GFP im Maushoden. 
Gefrierschnitte des Hodens einer Tas2r131 GFP Maus wurden mit TO-PRO-3 ([TOPRO], blau dargestellt) 
inkubiert, um die Zellkerne sichtbar zu machen, und anschließend auf das Fluoreszenzmuster des 
Tas2r131 Reporterproteins GFP [GFP] hin untersucht. 
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In allen angeschnittenen Hodenkanälchen ist eine deutliche GFP-Fluoreszenz nach spezifischer Anregung 
mit einem Laser (488 nm) zu erkennen [A, D]. In den basal gelegenen Keimzellschichten ist kein GFP 
sichtbar; die Expression des Fluoreszenzproteins beginnt erst in späten Spermatocyten/frühen 
Spermatiden und ist in den reifen, elongierten Spermatiden des Tubuluslumens am stärksten ausgeprägt 
[I, J]. 
Dargestellt sind konfokale Aufnahmen der GFP-Fluoreszenz [A, E, I; grün], der TO-PRO-3 Fluoreszenz [B, 
F; blau], eine Phasenkontrastaufnahme [Ph] [C, G] sowie eine Überlagerung dieser Aufnahmen [D, H, J]. 
Der exemplarisch umrandete Tubulus seminiferus aus [A - D] ist in [E - J] vergrößert gezeigt. 

Diese GFP-Fluoreszenz deutete auf eine hohe Aktivität des Tas2r131-Promotors im 
Hoden hin und lieferte damit weitere Hinweise für die Expression dieses Bitterrezeptors 
im Keimdrüsengewebe. Die Zunahme des GFP-Signals während der Spermatogenese ist 

zudem ein Indiz dafür, dass der Rezeptor in den späten Keimzellstadien besonders stark 
exprimiert wird. Diese späte Expression ist besonders interessant, weil in reifen 
Spermien Transkription und Translation fast vollständig zum Erliegen kommen [Vogt, 

2004], so dass praktisch die gesamte Proteinbiosynthese einer Spermienzelle bereits 
während der Keimzellreifung erfolgt. Die Konzentrierung der Tas2r131-Expression in 
späten Stadien der Keimzellentwicklung könnte deshalb darauf hindeuten, dass der 

Rezeptor auch in reifen Spermien als funktionelles Protein vorliegt. 
 
Nach Abschluss der Spermiogenese gelangen die ausdifferenzierten Spermien in den 

Nebenhoden, in welchem wichtige Reifungsschritte der Zellen erfolgen [Yeung et al., 
1993; Robaire et al., 2002; Cornwall, 2009]. Um die Fluoreszenz des Tas2r131-
Expressionsmarkers GFP im Verlauf der weiteren Spermienreifung zu verfolgen, 

wurden deshalb Schnitte des Nebenhodens auf ihre GFP-Fluoreszenz hin untersucht. 
Die Ergebnisse dieser Analyse, die in Abbildung 4.21 zusammengefasst sind, machen 
deutlich, dass sowohl im Nebenhodenkopf ([Caput] [A] und [B]), der unreife Spermien-

populationen enthält als auch im caudalen Teil [C] und [D], in dem die reifen Spermien 
gespeichert werden (s. Abbildung 4.3), GFP-Signale auszumachen waren. Das 
Fluoreszenzprotein war in beiden untersuchten Abschnitten des Nebenhodens auf das 

Tubuluslumen, in dem die Spermien gespeichert werden, beschränkt (Abbildung 4.21 
[E] und [G]). Interessanterweise war das Fluoreszenzprotein nicht gleichmäßig in den 
Spermien verteilt, sondern in kugelförmigen Ansammlungen konzentriert, die eine 

ähnliche Größe wie die Spermiennuklei aufwiesen, jedoch nicht mit der Zellkern-
markierung überlappten (Abbildung 4.21 [J] und [K], Pfeilspitzen). Diese Anhäufung 
von GFP in speziellen Strukturen zeigte deutliche Unterschiede zu der bei einem 

cytosolischen Protein zu erwartenden gleichmäßigen Verteilung innerhalb der Zellen 
(siehe auch Abbildung 4.19).  
Da das GFP, welches unter Kontrolle des Tas2r131-Promotors artifiziell exprimiert 

wird, unter normalen Bedingungen nicht im Spermium vorkommen würde, hat es 
höchstwahrscheinlich keinerlei physiologische Funktion in der Spermienzelle. Proteine, 
die vom Spermium nicht mehr benötigt werden oder die nicht funktionell sind, werden 

während der Spermienreifung in Form von Residualkörpern beim Ablösen vom Keim-
epithel [Breucker et al., 1985] und als Cytoplasmic Droplets während der Passage durch 
den Nebenhoden [Cooper, 2011] aus den Zellen entfernt. Die Anreicherung des GFPs in 
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rundlichen Strukturen könnte demnach ein Hinweis auf eine Auslagerung des nicht-
funktionellen, „überflüssigen“ Fluoreszenzproteins aus den Spermien sein. 

 

Abbildung 4.21:  Analyse der GFP-Lokalisation in verschiedenen Abschnitten des Nebenhodens 
einer Tas2r131 GFP Reportermaus. 

Gefrierschnitte des Caputs [Caput] und der Cauda [Cauda] des Nebenhodens einer Tas2r131 GFP Ki 
Maus wurden mit TO-PRO-3 ([TOPRO], blau) inkubiert, um die Zellkerne sichtbar zu machen. 
Die Fluoreszenz des Tas2r131 Expressionsmarkers GFP ist sowohl im Caput als auch in der Cauda im 
Lumen der Nebenhodengänge, in denen sich die reifenden Spermien befinden, zu detektieren [A, B; C, D; 
grüne Färbung]. Die GFP-Fluoreszenz [GFP] ist überwiegend in rundlichen, vesikulären Strukturen 
lokalisiert, die nicht mit den Zellkernen [TOPRO] co-lokalisiert sind [I - L, Pfeilspitzen]. Neben dieser, 
wahrscheinlich in cytoplasmic droplets konzentrierten GFP-Markierung, ist auch eine sehr schwache, 
diffuse GFP-Fluoreszenz im gesamten Lumen zu erkennen [I, K]. 
Gezeigt sind Einzelaufnahmen [A, C, E, G, I, K] des grünen Fluoreszenzkanals [GFP] sowie eine 
Überlagerung [GFP + TOPRO] der Fluoreszenzkanäle mit der jeweiligen Phasenkontrastaufnahme [Ph] 
[B, D, F, H, J, L].  

Um zu prüfen, ob in reifen Spermien noch residuales GFP nachzuweisen ist, wurden in 
weiteren experimentellen Ansätzen isolierte Spermien von Tas2r131 GFP Wildtyp-, 
heterozygoten und homozygoten Mäusen fluoreszenzmikroskopisch untersucht. In den 

Spermien von Wildtyp-Mäusen (Tas2r131 [+/+]) der Tas2r131 GFP Mauslinie war 
erwartungsgemäß keine GFP-Fluoreszenz auszumachen (Abbildung 4.22 [A] und [D]). 
Beim Vergleich der Morphologie der heterozygoten (Tas2r131 [+/-]) und homozygoten 

(Tas2r131 [-/-]) mit Wildtyp-Spermien wurde deutlich, dass sowohl das Flagellum als 
auch der Spermienkopf der Tas2r131-defizienten Spermien normal geformt waren 
(Abbildung 4.22 [B] und [C]) und keine offensichtlichen morphologischen Defekte zu 

detektieren waren. Dieser Eindruck konnte durch parallel durchgeführte Färbungen mit 
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dem Akrosommarker PNA (siehe auch Abschnitt 4.1.3, Abbildung 4.6) bestätigt 
werden, in denen für alle drei Genotypen eine vergleichbare sichelförmige Morphologie 
des Akrosoms beobachtet wurde (Abbildung 4.22 [G-I]). 

 

Abbildung 4.22:  Nachweis von GFP in isolierten Spermien von Wildtyp, heterozygoten und 
homozygoten Tas2r131 GFP Reportermäusen. 

Aus dem Nebenhoden von Tas2r131 Wildtyp-, heterozygoten und homozygoten adulten Mäusen (Stamm-
hintergrund N2) wurden Spermien isoliert, mit Methanol/Aceton fixiert und anschließend mit TO-PRO3 
([TOPRO], blau) oder mit TRITC-gekoppeltem PNA ([PNA], rot) inkubiert. 
Während in Tas2r131 Wildtyp-Spermien [Tas2r131 [+/+]] keine GFP-Fluoreszenz zu erkennen ist [A, D, 
G], zeigen heterozygote Spermien [Tas2r131 [+/-]] ein schwaches GFP-Signal [B, E], das bei Spermien 
homozygoter Tas2r131 GFP Tiere [Tas2r131 [-/-]] deutlich stärker ausgeprägt ist [C, F]. Die Fluoreszenz 
ist dabei über den ganzen Schwanz verteilt und zeigt eine leichte Anreicherung in den Cytoplasmic 
Droplets [C, F]. In der Morphologie der Spermien, der Form des Spermienkopfes [TOPRO] und in der 
sichelförmigen Färbung des Akrosoms durch PNA [PNA] ist kein Unterschied zwischen den Spermien der 
drei Genotypen zu erkennen. 
Gezeigt ist eine Überlagerung der Fluoreszenzkanäle (grün: GFP; [A - F] blau: TOPRO], [G - I] rot: PNA) 
mit der Phasenkontrastaufnahme. Die in [A - C] markierten Bereiche sind in [D - F] vergrößert dargestellt. 
Die Co-Färbungen sind jeweils im Bild oben rechts angegeben.  

Bei der Analyse der GFP-Fluoreszenz, die durch Anregung mit einem 488 nm Laser 

enstand, wurde ebenfalls deutlich, dass Tas2r131 GFP heterozygote und homozygote 
Tas2r131 GFP Spermien im Gegensatz zu Wildtyp-Zellen eine grüne Fluoreszenz-
markierung aufwiesen: Während das GFP-Signal in den Spermatozoen von hetero-

zygoten Tieren nur sehr schwach ausgeprägt war (Abbildung 4.22 [B] und [E]), zeigten 
die Spermien von Tas2r131 GFP Ki Mäusen eine etwas stärkere GFP-Fluoreszenz, die 
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überwiegend diffus über im gesamten Flagellum verteilt war (Abbildung 4.22 [C] und 
[F]); in einzelnen Spermien konnte auch eine leichte Anreicherung im Bereich des 
Cytoplasmic Droplet beobachtet werden (Abbildung 4.22 [C]).  

Da das GFP jedoch unabhängig von der physiologischen Rezeptorverteilung über-
wiegend cytosolisch vorliegt, konnte dieses Fluoreszenzmuster keine Hinweise auf die 
subzelluläre Lokalisation des Bitterrezeptors geben.  

4.3.4 Funktionelle Analyse des reproduktionsbiologischen Phänotyps 
männlicher Tas2r131 GFP Mäuse 

Nachdem die histologischen Untersuchungen des männlichen Keimdrüsengewebes der 
Tas2r131 GFP Mauslinie die Vermutung bestätigen konnten, dass dieser Rezeptor in 

Keimzellen exprimiert wird, stellte sich im Folgenden die Frage, welche physiologische 
Funktion das Rezeptorprotein im Hoden und in reifen Spermien erfüllen könnte. 
Da es sich bei den Tas2r131 GFP Mäusen nicht um eine reine Reportermauslinie 

handelt, sondern das Fluoreszenzprotein GFP anstatt des Tas2r131 exprimiert wird, 
wurde diese Mauslinie genutzt, um funktionelle Effekte der Gen- und damit Protein-
Defizienz dieses Bitterrezeptors in vivo zu analysieren. Um die physiologische Rolle 

des Tas2r131 Proteins in männlichen Keimzellen besser verstehen zu können, wurde 
experimentell geprüft, welche Auswirkungen das Fehlen des Tas2r131 auf die Fertilität 
männlicher Mäuse und auf die Funktion männlicher Keimzellen hatte. Im Rahmen 

dieser phänotypischen Studien wurden Wildtyp- (Tas2r131 [+/+]), heterozygote 
(Tas2r131 [+/-]) und homozygote (Tas2r131 [-/-]) Tiere der Tas2r131 GFP Mauslinie 
verwendet; die Tas2r131-defizienten Mäuse werden aufgrund der anstelle des Tas2r131 

ins Genom eingebrachten GFP-Sequenz im Folgenden auch als Knockin (Ki)-Mäuse 
bezeichnet. 

4.3.4.1 Histologische Analyse der männlichen Reproduktionsorgane Tas2r131-
defizienter Mäuse 

Die allgemeine Analyse des Tas2r131 GFP Ki Phänotyps zeigte zunächst keine 

gravierenden Unterschiede zu Wildtyp-Tieren der Mauslinie: Die Tas2r131 Gen-
defizienten Tiere waren lebensfähig, erschienen gesund, waren in der Lage Nach-
kommen zu zeugen und zeigten keine offensichtlichen anatomische Fehlbildungen oder 

Verhaltensauffälligkeiten. Bei der Präparation männlicher Geschlechtsorgane der 
Tas2r131-defizienten Mäuse waren zudem keine makroskopischen Unterschiede in der 
Form und Lage von Hoden, Nebenhoden und akzessorischen Geschlechtsdrüsen im 

Vergleich zum Wildtyp zu detektieren.  
Um zu prüfen, ob sich das Fehlen des Tas2r131 Rezeptors auf die zelluläre 
Organisation und Struktur der männlichen Reproduktionsorgane auswirkt und 

möglicherweise die Spermatogenese beeinträchtigen könnte, wurden Hoden und Neben-
hoden von Tas2r131-defizienten Tieren histologisch untersucht. Zur Darstellung der 
Hodenmorphologie wurden die Organe von 12 - 24 Wochen alten Tieren mit einer 
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Bouin-Lösung fixiert, um die Integrität des Gewebes möglichst vollständig zu erhalten 
und Fixierungsartefakte zu vermeiden, und in Paraffin eingebettet (siehe Abschnitt 
3.4.1.3). Das eingebettete Gewebe wurde anschließend 3 µm dick geschnitten und nach 

einer Rehydrierung der Schnitte mit Hämatoxylin und Eosin gefärbt. Diese HE-Färbung 
(Hämatoxilin/Eosin) repräsentiert eine klassische histologische Färbemethode, um 
morphologische Mängel erkennen und analysieren zu können [Lillie et al., 1976]. Dabei 

färbt Hämatoxylin saure Strukturen, wie die DNA-reichen Zellkerne blau, und Eosin 
das überwiegend basische Cytoplasma rötlich, so dass diese mikroskopisch gut zu 
unterscheiden sind und die Gewebsstruktur beurteilt werden kann [Lillie et al., 1976].  

In Abbildung 4.23 [A] ist eine solche HE-Färbung eines Hodenschnitts eines Wildtyp-
Tieres exemplarisch gezeigt. Im Querschnitt sind die einzelnen Samenkanälchen, aus 
denen der Hoden zusammengesetzt ist (siehe auch Abbildung 4.2), angeschnitten. Die 

Tubuli seminiferi liegen dicht nebeneinander, im Bindegewebe zwischen ihnen sind 
Leydig Zellen vorhanden (Abbildung 4.23 [A]). Das Keimepithel in den Tubuli ist 
durch kompakte Keimzellschichten mit unterschiedlichen Entwicklungsstadien 

aufgebaut. Entsprechend der von basal nach luminal hierarchisch verlaufenden Keim-
zellreifung sind in der Mitte der Tubuli elongierte Spermatiden zu finden, während 
Spermatocyten und Spermatogonien weiter basal lokalisiert sind (Abbildung 4.23 [A]). 

Diese konzentrische Organisation des Keimepithels war auch im Hoden von Tas2r131-
defizienten Tieren zu beobachten. Im Querschnitt des HE-gefärbten Hodenpräparats des 
Tas2r131 GFP Ki Tieres sind Tubuli mit einem kompakten Keimepithel, das alle 

Stadien der Spermatogenese aufweist, zu erkennen (Abbildung 4.23 [B]). Die 
Verteilung der verschiedenen Keimzellen innerhalb der quer angeschnittenen Samen-
kanälchen entspricht ganz überwiegend der typischen hierarchischen Organisation der 

verschiedenen Reifungsstadien. Nur in einem der gezeigten Tubuli waren einzelne der 
ansonsten auf basale Schichten beschränkte Spermatocyten zu detektieren, die im 
Lumen eines Samenkanälchens vorlagen (Abbildung 4.23 [B], Pfeilspitze). Bis auf 

diese vereinzelt auftretenden miss-lokalisierten Zellen konnten jedoch keine morpho-
logischen Defekte beobachtet werden, was auf einen ungestörten Verlauf der Spermato-
genese und damit eine normale Spermatozoenbildung in den Tas2r131-defizienten 

Tieren hindeutet. 
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Abbildung 4.23: Morphologie des Hodens von Tas2r131-defizienten Mäusen. 
Bouin-fixierte Hodenschnitte von Wildtyp [Tas2r131 [+/+]] und Tas2r131-defizienten [Tas2r131 [-/-]] 
Geschwistertieren (N2) wurden einer HE-Färbung unterzogen, um die Hodenmorphologie darzustellen. 
Die Hodenarchitektur von Tas2r131-defizienten Tieren [B] zeigt keine gravierenden Unterschiede zu 
Wildtyp-Tieren [A]. Sehr vereinzelt kommt es zu miss-lokalisierten Zellen im Tubuluslumen der Tas2r131-
defizienten Tiere [B, Pfeilspitze].  

Nach Abschluss der Spermiogenese und der Freisetzung ins Lumen der Tubuli 

seminiferi gelangen Spermien in den Nebenhoden, bei einer normalen Spermatogenese 

der Tas2r131 GFP Ki Mäuse sollte deshalb in diesem Reifungsorgan eine Vielzahl von 
Spermien zu finden sein, die vom Caput über den Corpus zur Cauda transportiert 
werden.  

Um sicherzustellen, dass die Tas2r131-defizienten Mäuse ausreichend Spermien 
produzieren und um zu prüfen, ob der Tas2r131-Mangel zu pathologischen Ver-
änderungen des Nebenhodens führen könnte, wurden histologische Untersuchungen an 

Paraffinschnitten verschiedener Abschnitte des Nebenhodens von C57BL/6-Wildtyp- 
und Tas2r131 GFP Ki Mäusen durchgeführt. Dazu wurde die Gewebsmorphologie des 
Nebenhodenkopfes [Caput] und des Nebenhodenschwanzes [Cauda] mit Hilfe einer 

HE-Färbung dargestellt (Abbildung 4.24). Die Analyse des Nebenhodens der Wildtyp-
Maus zeigte rundliche Querschnitte der Nebenhodengänge, die von lockerem Binde-
gewebe umgeben waren (Abbildung 4.24 [A] und [E]). Die Tubuli, in deren Lumen die 

Spermien modifiziert und transportiert werden, waren mit einschichtigem Epithel 
ausgekleidet (Abbildung 4.24 [C] und [G]). Während der Durchmesser des Neben-
hodengangs im Caput noch relativ klein war und im Lumen einzelne Spermien zu 

erkennen waren (Abbildung 4.24 [C]), wurde er im Verlauf der Nebenhodenpassage 
deutlich größer und die Spermien wurden zur Speicherung immer enger konzentriert 
(Abbildung 4.24 [G], [Cauda]).  

In den histologischen Schnitten des Nebenhodens der Tas2r131 GFP Ki Tiere war kein 
gravierender morphologischer Unterschied zum Wildtyp-Gewebe erkennbar. Der Quer-
schnitt durch den Nebenhodenkopf zeigt eine Vielzahl einzelner Tubuli; insgesamt 

erschien das Gewebe in diesem Schnitt etwas weniger kompakt, was jedoch 
wahrscheinlich durch eine leicht veränderte Schnittebene und milde Fixierungsartefakte 
zu erklären ist. Im Lumen der Tubuli waren, vergleichbar zum Wildtyp, auch bei den 
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Tas2r131-defizienten Männchen viele Spermien auszumachen, die in den distalen 
Abschnitten des Nebenhodens immer dichter gedrängt erschienen (Abbildung 4.24 [F], 
[H]). 

 

Abbildung 4.24:  HE-Färbung des Nebenhodens von Wildtyp-Mäusen und Tas2r131 GFP Reporter-
mäusen. 

Paraffin-Schnitte des Nebenhodens von C57BL/6 Wildtyp- [Tas2r131 [+/+]] und homozygoten Tas2r131 
GFP Mäusen (N1) [Tas2r131 [-/-]] wurden mit Hämatoxilin und Eosin gefärbt und die Gewebsarchitektur 
lichtmikroskopisch untersucht. 
Der strukturelle Aufbau des Nebenhodens von Wildtyp- und Tas2r131-defizienten Mäusen weist weder im 
Caput [Caput] noch in der Cauda [Cauda] offensichtliche Unterschiede auf. In beiden Genotypen ist das 
Nebenhodenepithel normal aufgebaut und die im Lumen des Nebenhodenganges gelegenen Spermien 
zeigen keine morphologischen Auffälligkeiten. 
Die Boxen in [A, B] und [E, F] sind in [C, D] bzw. [G, H] vergrößert dargestellt. 

Durch die bisherigen Befunde konnte sichergestellt werden, dass die männlichen Repro-
duktionsorgane Tas2r131-defizienter Tiere morphologisch unauffällig sind und dass 

Tas2r131 GFP Ki Männchen erfolgreich Spermien bilden können. Da die starke GFP-
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Markierung in den späten Stadien der Spermatogenese der Tas2r131 GFP Tiere darauf 
hindeutet, dass das Bitterrezeptor-Protein auch in reifen Spermien präsent sein könnte, 
wurde im Weiteren untersucht, ob und inwieweit sich die Tas2r131 Gen-Defizienz auf 

die Funktion der gebildeten Keimzellen auswirkt.  
Dazu wurde zunächst die Morphologie der Spermatozoen näher begutachtet, um 
mögliche Funktionsbeeinträchtigungen durch Entwicklungsdefekte oder Mal-

formationen aufzudecken. Zu diesem Zweck wurden Spermien aus dem caudalen Teil 
des Nebenhodens von adulten Männchen isoliert, fixiert und mit einer Coomassie-
Färbelösung inkubiert. Durch das Coomassie G250 in der Färbelösung werden die 

Proteine des Spermiums blau angefärbt. So wird zum einen die Silhouette der Zellen 
lichtmikroskopisch gut sichtbar gemacht, zum anderen kann das sehr proteindichte 
Akrosom durch seine tiefblaue Färbung identifiziert werden. Abbildung 4.25 [A - D] 

zeigt exemplarisch die Ergebnisse einer solchen Coomassie-Färbung an Tas2r131 [+/+] 
und [-/-] Spermien. Bei beiden Genotypen war eine klare Kompartimentierung der 
Zellen in Kopf und Schwanz zu erkennen (Abbildung 4.25 [A - B]). Beide Spermien-

populationen zeigten die für Mausspermien typische gebogene Kopfform (siehe auch 
Abbildung 4.5) und ein normal ausgebildetes Flagellum. Auch in der dunkelblauen 
Färbung des sichelförmigen Akrosoms (Abbildung 4.25 [C und D] war kein 

Unterschied zwischen beiden Genotypen zu detektieren, ein Befund, der die Resultate 
der zuvor gezeigten PNA-Färbung (Abbildung 4.22) bestätigte. 
Um auch eventuell geringe Unterschiede in der Kopfform der Spermien registrieren zu 

können, wurden morphometrische Analysen am Kopf der gefärbten Zellen durch-
geführt. Dafür wurden in den lichtmikroskopischen Aufnahmen der Spermien zwei 
Längenparameter, sowie Umfang und Fläche des Spermienkopfes (zur Übersicht siehe 

Abbildung 4.25 [F]) bei Tas2r131 GFP Ki Tieren bestimmt und mit den morpho-
metrischen Parametern der Spermien von Wildtyp-Tieren verglichen. Wie Abbildung 
4.25 [E] verdeutlicht, war in diesen Analysen an 5 Tieren pro Genotyp weder ein 

signifikanter Unterschied in der Länge des Spermienkopfes ([I]), im Abstand zwischen 
Beginn und Ende des sichelförmigen Akrosoms ([II]), noch im Umfang ([III]) oder der 
Fläche ([IV]) des Kopfes zu detektieren.  
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Abbildung 4.25:  Analyse der Morphologie der Spermien von Wildtyp- und Tas2r131-defizienten 
Tieren.  

[A - D] Exemplarische Coomassie-Färbung von Wildtyp- und Tas2r131 [-/-] Spermien. 
Isolierte caudale Spermien von C57BL/6 Wildtyp-Tieren [Tas2r131 [+/+]] und homozygoten Tas2r131 GFP 
Tieren (N1) [Tas2r131 [-/-]] wurden fixiert und mit Coomassie gefärbt. Die Morphologie von Tas2r131-
defizienten Spermien [B, D] weist keine Unterschiede zu Wildtyp-Spermien [A, C] auf; Flagellum, Kopf und 
das sichelförmige Akrosom [C, D] sind normal ausgebildet.  
[E - F] Morphometrische Analyse des Kopfes von Tas2r131-defizienten Spermien.  
In [E] dargestellt sind Mittelwerte ± Standardfehler der bestimmten morphometrischen Längen-, Umfangs- 
und Flächenparameter [I-IV] von jeweils 5 Tieren pro Genotyp (WT: C57BL/6, Tas2r131 [-/-]: N1); 
insgesamt wurden 60 - 64 Zellen vermessen. [F] zeigt eine Übersicht über die ermittelten Parameter 
(siehe auch Abschnitt 3.4.2).  

Zur weiteren Charakterisierung des Phänotyps der männlichen Reproduktionsorgane der 
Tas2r131 GFP Mauslinie wurde das Hodengewicht sowie die Anzahl reifer Spermien 
im caudalen Teil des Nebenhodens von adulten Tas2r131 Wildtyp-, heterozygoten und 

homozygoten Mäusen mit gleichem Stammhintergrund (75-98 % C57BL/6) bestimmt. 
Dazu wurde nach zervikaler Dislokation der Tiere zunächst das Körpergewicht ermittelt 
und die Hoden frei präpariert und gewogen. Anschließend wurde der caudale Teil des 

Nebenhodens entnommen, in HS Puffer überführt und mehrfach eingeschnitten um ein 
Ausschwimmen der Spermien aus dem Nebenhodengang zu ermöglichen. Um zu 
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gewährleisten, dass möglichst wenige Keimzellen im Gewebe zurück blieben, wurden 
die Spermien zusätzlich aus dem eingeschnittenen Nebenhoden herausgedrückt; der 
Erfolg dieser Prozedur wurde unter einem Binokular optisch kontrolliert. Die isolierten 

Spermien wurden dann mit Wasser verdünnt und ihre Gesamtzahl bestimmt.  
Abbildung 4.26 zeigt die Befunde der Gewichtsbestimmung und Spermienzählung von 
mindestens 16 Tieren pro Genotyp. Im Körpergewicht, das durchschnittlich bei 

32 - 34 g (Abbildung 4.26 [A]) lag, und auch beim Hodengewicht, das im Mittel 
179 - 197 mg betrug, war kein signifikanter Unterschied zwischen Männchen der drei 
Genotypen auszumachen. In der Anzahl reifer Spermien zeigen sich hingegen deutliche 

Unterschiede zwischen den Männchen der drei Tas2r131 GFP Genotypen. So wiesen 
Tas2r131 GFP Ki Mäuse eine signifikant (p < 0,001) höhere Zahl caudaler Spermien 
auf als vergleichbare Wildtyp-Tiere oder als entsprechende heterozygote Tiere. Die 

durchschnittliche Spermienzahl der Gen-defizienten Tiere war mit 42 ± 3 Mio Zellen 
um ca. 50 % höher als bei Wildtyp-Tieren (30 ± 3 Mio) (Abbildung 4.26 [C]). 
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Abbildung 4.26:  Auswirkungen der Tas2r131-Defizienz auf das Körpergewicht und die 
Reproduktionsorgane männlicher Mäuse. 

Bei adulten männlichen Mäusen (N2, N3, N5) mit unterschiedlichem Tas2r131 Genotyp wurde das Körper-
gewicht [A] und das Gewicht beider Hoden [B, Hodengewicht] sowie die Zahl der Spermien im caudalen 
Teil des Nebenhodens [C] ermittelt.  
Das Körpergewicht der Tiere [A] ist wie das Hodengewicht [B] nicht durch den Genotyp beeinflusst. Die 
Zahl reifer Spermien im Nebenhoden ist in Tas2r131-defizienten ([-/-], dunkelgrün) Tieren im Vergleich zu 
heterozygoten ([+/-], grün gestreift) und Wildtyp-Mäusen ([+/+], grau) signifikant erhöht [C, **]. 
Dargestellt sind Mittelwerte ± Standardfehler der Messwerte von mindestens 16 Tieren pro Genotyp mit 
gleichem Stammhintergrund. Die statistische Auswertung erfolgte durch einen studentischen t-Test 
(**: p < 0,01). 

4.3.4.2 Untersuchung der Fertiliät von Tieren der Tas2r131 GFP Mauslinie 
Die beobachtete stark erhöhte Spermienzahl der Tas2r131 GFP Ki Tiere im Tierstall des 
Walther-Straub-Instituts in München warf die Frage auf, ob sich diese Veränderung 
auch auf den reproduktiven Erfolg der Tas2r131 GFP Ki Männchen auswirkt, so dass 

diese möglicherweise effektiver Nachkommen zeugen könnten. Falls der Tas2r131 
hingegen eine essentielle physiologische Rolle in Spermien erfüllt, könnte sich die 
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Tas2r131-Defizienz auch negativ auf die Fruchtbarkeit der Knockin-Männchen 
auswirken. 
Zur Klärung der Fertilität Tas2r131-defizienter Tiere wurde deshalb der Zuchterfolg 

von Tas2r131 [-/-] Tieren mit dem von heterozygoten und Wildtyp-Zuchtpaaren in 
einem kontinuierlichen monogamen Verpaarungsansatz anhand der durchschnittlichen 
Wurfgröße und der Zeit, die zur erfolgreichen Reproduktion nötig war, verglichen 

(siehe auch 4.2.1.2). Die in Tabelle 4.4 dargestellten Ergebnisse dieser Zuchtanalyse 
zeigen, dass Tas2r131 [+/+], [+/-] und [-/-] Zuchtpaare keine signifikanten Unterschiede 
in der Zeit zwischen den Würfen, der benötigten Zeit bis zum ersten Wurf oder in der 

mittleren Zahl von Nachkommen pro Wurf aufwiesen. Auch in der Geschlechtsver-
teilung der geborenen Jungtiere war keine Veränderung bei Tas2r131-defizienten Tiere 
zu erkennen, so dass unter diesen Zuchtbedingungen kein Einfluss des Genotyps auf die 

Fertilität festzustellen war. 

Tabelle 4.4:  Fertilität von Tas2r131-defizienten Mäusen 

Zur Analyse des Reproduktionserfolgs von Tas2r131-defizienten Mäusen wurden C57BL/6, Tas2r131 
heterozygote (Stammhintergrund N2 und N3; 75 - 87,5 % C57BL/6) und Tas2r131 homozygote (Stamm-
hintergrund N1; 50 % C57BL/6) Zuchtpaare in einem monogamen, kontinuierlichen Zuchtsystem gehalten 
und die unten aufgeführten Fertilitätsparameter für jedes Zuchtpaar bestimmt. Die Anzahl der jeweils 
analysierten Zuchtpaare ist in Klammern (n = x) angegeben. Es wurden keine statistisch signifikanten 
Unterschiede festgestellt. 

 Tas2r131 Genotyp 

Fertilitätsparameter [+/+] x [+/+] [+/-] x [+/-] [-/-] x [-/-] 

Zeit zwischen den Würfen [d] 31,5 ± 1,7 

(n = 49) 

33,1 ± 1,7 

(n = 57) 

33,6 ± 3,3 

(n = 25) 

Zeit bis zum ersten Wurf [d] 26,1 ± 2,1 

(n = 16) 

22,5 ± 1,7 

(n = 12) 

30,8 ± 7,5 

(n = 8) 

Anzahl Nachkommen / Wurf 6,2 ± 0,5 

(n = 52) 

6,8 ± 0,5 

(n = 57) 

6,3 ± 0,6 

(n = 26) 

Geschlecht m / f [%] 53 / 47 51 / 49 56 / 44 

 
Die durchgeführten Verpaarungsansätze zeigen, dass Tas2r131 GFP Ki Mäuse genauso 

erfolgreich Nachkommen produzieren wie Wildtyp-Tiere. Dieser Befund belegt, dass 
Spermien auch ohne den deletierten Bitterrezeptor grundsätzlich in der Lage sind, 
Eizellen zu befruchten. Aufgrund der vergleichbaren Wurfgröße konnte außerdem ein 

fataler Entwicklungsdefekt von Tas2r131 [-/-] Embryonen ausgeschlossen werden. 
Gleichzeitig wurde auch deutlich, dass die größere Anzahl von Spermatozoen im 
caudalen Teil des Nebenhodens der Ki-Tiere nicht zu einer größeren Zahl von Nach-

kommen führt. Dieser Effekt könnte auf eine Limitierung der Wurfgröße durch den 
weiblichen Zuchtpartner zurückzuführen sein, da pro Zyklus nur eine begrenzte Zahl 
von befruchtungsfähigen Eizellen zur Verfügung steht und vom Weibchen ausgetragen 

werden kann [Rolland et al., 2003; Firman und Simmons, 2008].  
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Da keine Veränderung der Fertilität von Tas2r131 GFP Tieren zu beobachten war, 
ließen sich durch die oben beschriebenen Verpaarungsexperimente zwar keine direkten 
Hinweise auf die funktionelle Rolle des Tas2r131 Rezeptors für die Reproduktion 

gewinnen. Das Ausbleiben eines Effektes auf die Reproduktion muss aber nicht 
zwangsläufig bedeuten, dass der Bitterrezeptor keine physiologische Funktion in 
Spermien hat, sondern könnte durch eine kompensatorische Expression verwandter 

Proteine, wie sie u. a. schon für GPCRs [Karasinska et al., 2003; Parnot und Kobilka, 
2004], aber auch TRP-Kanäle [Dietrich et al., 2005] und G Proteine (siehe auch 4.2.1.2) 
[Gohla et al., 2007; Young et al., 2011] beschrieben wurde, bedingt sein. Außerdem 

könnten dezente Funktionseinschränkungen der Gen-defizienten Spermien durch die 
optimierten Haltungsbedingungen einer modernen Tierzuchtanlage, die z. B. eine 
Konkurrenz zwischen Spermien verschiedener Männchen ausschließt, ausgeglichen 

werden [Gingrich und Hen, 2000; Sutton et al., 2008].  
Um Hinweise auf mögliche Unterschiede in der Funktion und Befruchtungskompetenz 
von Tas2r131-defizienten Spermien sammeln zu können, sollte deshalb der Repro-

duktionserfolg heterozygoter Tas2r131 GFP Männchen untersucht werden, in deren 
Ejakulat genetisch Tas2r131-positive [+] mit genetisch Tas2r131-negativen [-] 
Spermien konkurrieren. Zum Verständnis dieses experimentellen Ansatzes muss jedoch 

berücksichtigt werden, dass haploide Tas2r131-Gen-defiziente und Tas2r131-positive 
Keimzellen, die aus einer gemeinsamen diploiden Tas2r131 GFP [+/-] Keimzelle 
hervorgehen, während ihrer gesamten Entwicklung durch cytoplasmatische Brücken 

verbunden bleiben (Abbildung 4.27 [A], rote Pfeilspitzen) [Handel, 1987; Hendriksen, 
1999]. Innerhalb dieses Keimzell-Synzytiums ist ein Austausch von RNA-Transkripten 
und/oder Proteinen zwischen genetisch unterschiedlichen postmeiotischen Spermatiden 

möglich, so dass sich diese genetisch nicht-identischen Zellen (Abbildung 4.27 [B]) 
synchron zu biochemisch und funktionell äquivalenten Spermien differenzieren können 
[Handel, 1987; Hendriksen, 1999]. Ein solche Bildung phänotypisch identischer 

Spermienpopulationen wurde u. a. bei verschiedenen X-chromosomal kodierten 
Proteinen [Moss et al., 1997] und Protamin [Caldwell und Handel, 1991] beobachtet 
(siehe Abbildung 4.27 [C], i). Es konnten jedoch auch experimentelle Hinweise dafür 

gefunden werden, dass nicht alle Transkripte bzw. Proteine gleichermaßen über die 
Cytoplasmabrücken ausgetauscht werden, so dass  auch phänotypisch unterschiedliche 
Spermienpopulationen gebildet werden können (siehe Abbildung 4.27 [C], ii). Sind die 

Spermien des einen Genotyps erfolgreicher im Zeugen von Nachkommen, so kann bei 
den Jungtieren eine Verschiebung der Genotyp-Verteilung zugunsten dieses genetischen 
Merkmals beobachtet werden. Eine solche, seltene Abweichung von der statistisch 

erwarteten Mendel-Verteilung wird als transmission ratio distortion bezeichnet und 
taucht unter anderem beim t-Haplotyp [Olds-Clarke, 1988; Veron et al., 2009] oder dem 
SPAM1 (Sperm Adhesion Molecule 1) [Martin-DeLeon et al., 2005] auf. 
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Abbildung 4.27:  Übersicht über die Keimzellbildung im Hoden heterozygoter Tiere. 
Dargestellt ist eine schematische Übersicht über die Bildung von Spermien aus heterozygoten Keimzellen.  
In [A] ist eine Übersicht über die Keimzellreifung dargestellt. Die cytoplasmatischen Brücken, die einzelne 
Keimzellklone während des gesamten Reifungsprozesses miteinander verbinden, sind zur Verdeutlichung 
markiert (rote Pfeilspitzen). Der DNA-Gehalt der jeweiligen Keimzellen ([I]: Spermatogonien; [II]: 
Spermatocyten; [III]: runde Spermatiden; [IV]: elongierte Spermatiden) ist links neben dem Schema 
aufgeführt (modifiziert nach [Hendriksen, 1999]). 
[B] zeigt beispielhaft den Genotyp [Genotyp] von Spermien, die aus einer Stammzelle hervorgehen. Bei 
der Meiose entstehen aus einer Keimzelle, die zwei verschiedene Allele eines Gens trägt [a/b] (grün-blau 
gestreift) zwei genetisch unterschiedliche Spermien, von denen jeweils eins das [a] Allel trägt (blau) und 
das andere das [b] Allel (grün).  
[C] stellt eine Übersicht über die möglichen biochemischen Phänotypen der gebildeten Spermien dar. Es 
können Spermatozoen entstehen, in denen, wie in der Ursprungszelle ([a/b], grün-blau gestreift) Proteine, 
die durch beide Allele ([a] (blau) und [b] (grün)) kodiert werden, vorhanden sind (grün-blau gestreift). Diese 
Spermien zeigen eine gleichmäßige Proteinverteilung und sind biochemisch identisch ([i], beide Zellen mit 
beiden Proteinen, grün-blau gestreift). Oder es werden zwei Zellen gebildet, die nur das Protein 
beinhalten, das durch das jeweilige Allel kodiert wird [ii] (blau: genetisches [+] Spermium mit dem „blauen“ 
Protein; grün: genetisches [-] Spermium, das Proteinvariante b exprimiert). 

Ob das Tas2r131 Protein in Spermien heterozygoter Männchen der Tas2r131 GFP 
Mauslinie gleichmäßig verteilt ist oder ob sich diese Spermien in ihrer Rezeptor-
ausstattung unterscheiden, konnte aufgrund des Fehlens eines spezifischen Antikörpers 

zum Nachweis des Rezeptorproteins nicht geprüft werden. Ein Rückschluss von der 
Verteilung des Reporterproteins GFP auf die Rezeptormenge in den unterschiedlichen 
Spermienpopulationen war ebenfalls nicht möglich, da das GFP im Gegensatz zum 

membranständigen Bitterrezeptor überwiegend cytosolisch lokalisiert ist und keine 
Funktionen erfüllt. Sollte in Verpaarungsexperimenten mit heterozygoten Tas2r131 
GFP eine Genotyp-Verschiebung detektierbar sein, könnte dieser Befund deshalb nicht 

nur Hinweise auf eine funktionelle Rolle des Proteins in Spermien liefern, sondern 
könnte auch auf eine eingeschränkte Verteilung des Bitterrezeptors bzw. seiner 
Transkripte über die cytoplasmatischen Verbindungen der sich entwickelnden Keim-

zellklone hindeuten. 
Um festzustellen, ob es beim Tas2r131 zu einer männlich bedingten transmission 

distortion kommt, sollte deshalb mit Hilfe von Zuchtexperimenten geklärt werden, ob 

Tas2r131 Gen-defiziente Spermien möglicherweise eine höhere oder niedrigere 
Befruchtungskompetenz als genetische Wildtyp-Spermien aufweisen und dem-
entsprechend ihre Tas2r131 Gen-Defizienz vermehrt oder vermindert an Nachkommen 

weitergeben können. 
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Wie aus Abbildung 4.28 [A] deutlich wird, konnte bei Verpaarungen von heterozygoten 
Tas2r131 GFP Männchen mit heterozygoten Weibchen keine Abweichung in der 
Genotypverteilung der Nachkommen festgestellt werden: Der Anteil von wildtypischen, 

heterozygoten und homozygoten Jungtieren war mit 27 %, 46 % bzw. 27 % Nach-
kommen vergleichbar zur statistisch zu erwartenden Mendelschen Verteilung von 25 % 
WT, 50 % HT und 25 % Ki-Tieren.  
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Abbildung 4.28:  Genotyp-Verteilung von Nachkommen Tas2r131-heterozygoter Zuchtpaare. 
Der Genotyp der Nachkommen aus Verpaarungen mit mindestens einem Tas2r131 heterozygoten Eltern-
teil wurde durch Genotypisierung ermittelt und der Anteil des jeweiligen Genotyps an der Gesamt-
nachkommenzahl bestimmt. Dargestellt sind die ermittelten Prozent-Anteile der Genotypen der 
Nachkommen [Genotyp]. Die roten gestrichelten Linien repräsentieren die nach Mendel zu erwartende 
Genotyp-Verteilung. Der Genotyp der Zuchtpartner ist jeweils oben angegeben. 
Bei Zuchtpaaren mit zwei heterozygoten Partnern entspricht die beobachtete Verteilung des Genotyps der 
Nachkommen der erwarteten Mendel-Verteilung [A]. Ist nur das männliche Zuchttier heterozygot, so 
verschiebt sich die Genotyp-Verteilung der Nachkommen signifikant zugunsten heterozygoter Jungtiere 
[B]. In Zuchtpaaren, in denen nur das Muttertier heterozygot ist [C], ist eine solche Abweichung von der 
erwarteten Verteilung nicht zu beobachten. 
Ausgewertet wurden 633 Nachkommen aus 99 Würfen [A], 174 Nachkommen aus 29 Würfen [B] bzw. 137 
Jungtiere aus 18 Würfen [C] (Stammhintergrund N2 - N6). Zur statistischen Auswertung wurde der Chi2-
Test angewandt (***: p < 0,001). 

Bei Verpaarungen von heterozygoten Tas2r131 GFP Männchen mit Wildtyp-Weibchen 
war im Gegensatz dazu überraschenderweise eine signifikante Verschiebung (Chi2-Test, 

p < 0,001) im Genotyp der Jungtiere zugunsten heterozygoter Nachkommen zu 
detektieren (Abbildung 4.28 [B]): Während nach Mendel jeweils 50 % der Jungtiere als 
wildtypisch und 50 % als heterozygot zu erwarten waren, traten bei diesen Zuchten 

63 % Nachkommen mit heterozygoten Genotyp und nur 37 % Wildtyp-Tiere auf. Um 
zu prüfen, ob diese Verschiebung auf eine vermehrte Zeugung von heterozygoten 
Tieren zurückzuführen oder eine erhöhte Überlebensrate der Embryonen ursächlich sein 

könnte, wurden in parallelen Zuchtansätzen heterozygote Tas2r131 GFP Weibchen mit 
Wildtyp-Männchen verpaart. Wie in Abbildung 4.28 [C] dargestellt, konnte in diesen 
Zuchtpaaren interessanterweise beobachtet werden, dass das [-] Allel der Mutter nicht 

vermehrt an die geborenen Nachkommen (50 % WT, 50 % HT) weitergegeben wurde. 
Der erhöhte Anteil heterozygoter Nachkommen bei heterozygoten Vätern, der bei den 
korrespondierenden Verpaarungen beobachtet wurde (Abbildung 4.28 [B]) könnte also 

durchaus auf eine Beeinflussung der Spermienfunktion durch den Tas2r131 Genotyp 
hindeuten, die eine vermehrten Weitergabe des [-] Allels durch den Vater verursacht. 
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Da andere Einflüsse wie embryonale Entwicklungsdefekte, kompensatorische 
Expression anderer Proteine oder auch eine veränderte Anzahl von [+] und [-] Spermien 
nicht ausgeschlossen werden können, können diese Zuchtansätze zunächst nur Anhalts-

punkte für eine Veränderung der Befruchtungskompetenz von Tas2r131-defizienten 
Spermien liefern. Um weitere Hinweise auf die physiologische Rolle des Tas2r131 in 
Spermien zu sammeln, wurde deshalb die Funktionsfähigkeit von isolierten Tas2r131-

defizienten Spermien mit der von Wildtyp-Spermien verglichen.  

4.3.4.3 Funktionelle Charakterisierung von Spermien Tas2r131-defizienter Mäuse  
Bis zur erfolgreichen Befruchtung einer Eizelle müssen Spermien eine Reihe ganz 
unterschiedlicher Aufgaben bewältigen (siehe Einleitung, Abschnitt 1.1.2), die u. a. die 

Wegfindung zur Oocyte und auch die direkte Interaktion mit der weiblichen Keimzelle 
umfassen. Um der Frage nachzugehen, bei welcher dieser physiologischen Funktionen 
möglicherweise eine Veränderung in Bitterrezeptor-defizienten Keimzellen auftreten 

könnte, wurden deshalb die Motilität und akrosomale Exocytose von Spermien der 
Tas2r131 GFP Mauslinie näher untersucht. 
Zum Vergleich der Spermienmotilität von Wildtyp-, heterozygoten und homozygoten 

Tas2r131 GFP Mäusen wurde eine Computer-assistierte Spermienanalyse (computer 

assisted semen analysis [CASA]) durchgeführt. Bei diesem automatisierten Standard-
verfahren werden Spermien in eine Messkammer mit definierter Tiefe überführt und 

ihre Bewegung über eine am Mikroskop angebrachte Kamera in kurzen Video-
sequenzen mit hoher Bildrate aufgenommen; die so entstehenden Bildsequenzen werden 
dann durch eine spezielle Software ausgewertet. Dabei erfolgt eine automatisierte 

Erkennung der einzelnen Spermien, so dass für jedes Spermium die während der 
Aufnahme zurückgelegte Wegstrecke von der Software ermittelt wird. Da bei einer 
Messung innerhalb weniger Sekunden mehrere hundert Zellen gleichzeitig analysiert 

werden können, erlaubt dieses computergestützte Verfahren eine objektive Beurteilung 
der Motilität und des Bewegungsmusters einer großen Spermienpopulation [Lenzi, 
1997; Waberski et al., 1999].  

Die CASA-Messungen erfolgten in Zusammenarbeit mit Dr. Susan Marschall vom 
Institut für experimentelle Genetik am Helmholtz Zentrum München mit Hilfe eines 
IVOS Sperm Analyzer (Hamilton Thorne Research) [Schneider et al., 2009]. Dabei 

wurden neben dem Anteil motiler und progressiv motiler Spermien verschiedene 
kinetische Parameter wie unterschiedliche Richtungs-Geschwindigkeiten, die Linearität 
der Bewegung sowie die seitliche Kopfauslenkung bestimmt (zur detaillierten Übersicht 

siehe Abschnitt 3.4.2). In Abbildung 4.29 sind die Befunde von drei unabhängigen 
Motilitätsmessungen an Spermien von Tas2r131 GFP [+/+], [+/-] und [-/-] Wurf-
geschwistern gezeigt. Dabei stellt Abbildung 4.29 [A] die Daten als Absolutwerte dar, 

in [B] wurden diese auf die Werte des jeweiligen Wildtyp-Tieres normiert. Der 
Überblick über die gemessenen Parameter macht deutlich, dass keine gravierenden 
Motilitätsunterschiede zwischen Spermien der drei Genotypen zu detektieren waren. 

Der Anteil motiler Zellen war bei Tas2r131 GFP Ki Mäusen mit 72 % vergleichbar zum 
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Wildtyp (69 %) und zu heterozygoten Tieren (75 %). Gleiches gilt für den Prozentsatz 
der progressiv motilen Zellen, der keinen signifikanten Unterschied zwischen den 
Genotypen aufwies (WT: 38 %; Ki: 39 %). Auch in den meisten kinetischen Parametern 

wie der Pfadgeschwindigkeit [VAP] oder der Spurgeschwindigkeit [VCL] waren keine 
Veränderungen bei den Tas2r131-defizienten Spermien zu registrieren. Im Vergleich 
zum Wildtyp war eine signifikante Änderung lediglich im Linearitätsindex [STR] der 

Tas2r131 GFP Ki Tiere (p < 0,01) sowohl in den absoluten als auch in den normierten 
Werten zu detektieren (Abbildung 4.29 [A] und [B]). Bei heterozygoten Spermien 
waren signifikante Unterschiede hingegen nur in den Absolutwerten der Progressiv-

geschwindigkeit [VSL] auszumachen (Abbildung 4.29 [A]). In beiden Fällen waren die 
Abweichungen von den gemessenen Werten der Wildtyp-Geschwistertiere allerdings 
sehr gering, so dass nur minimale Änderungen des Bewegungsmusters vorlagen, die 

keinen Rückschluss auf eine veränderte Fertilität ermöglichten. 
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Abbildung 4.29:  Vergleich der Spermienmotilität von Tieren mit unterschiedlichem Tas2r131 
Genotyp. 

Die Motilität der Spermien von Wildtyp ([+/+], grau), heterozygoten ([+/-], grün gestreift) und Tas2r131 
homozygoten ([-/-], grün) Geschwistertieren (N2, N5, N6) wurde mit Hilfe eines CASA-Systems bestimmt 
[A]. Ermittelt wurden folgende Motilitätsparameter: Anteil der motilen Zellen [MOT] (%), Anteil progressiv 
motiler Zellen [PROG] (%), Pfadgeschwindigkeit [VAP] (µm/sec), Progressivgeschwindigkeit [VSL] 
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(µm/sec), Spurgeschwindigkeit [VCL] (µm/sec), seitliche Kopfauslenkung [ALH] (µm), Schlagfrequenz 
[BCF] (Hz), Linearitätsindex [STR] (%) und die Linearität [LIN] (%). In [B] wurden die einzelnen Motilitäts-
parameter auf den Wert des jeweiligen Wildtyptieres [100 %] normiert.  
Der Vergleich der einzelnen Parameter zeigt, dass nur geringfügige Unterschiede in der Motilität zwischen 
Spermien der verschiedenen Genotypen vorliegen. Tas2r131 [-/-] Spermien zeigen im Linearitätsindex 
(straightness [STR]) einen signifikant niedrigeren Wert [**] als Wildtyp-Spermien in beiden Auswertungen 
(absolute und normierte Werte). Heterozygote Spermien weisen nur in den nicht-normierten Analysen eine 
signifikant erhöhte Progressivgeschwindigkeit auf ([VSL], straight line velocity) 
Dargestellt ist der Mittelwert ± Standardabweichung von drei unabhängigen Messungen (gepaarter 
studentischer t-Test; *:p ≤ 0,05; **:p ≤ 0,01). 

Nach der erfolgreichen Navigation des Spermiums zur Eizelle durchläuft die männliche 

Keimzelle mit der Akrosomreaktion einen weiteren elementaren Prozess, der zur 
erfolgreichen Befruchtung einer Oocyte nötig ist [Yanagimachi, 1994]. Die akrosomale 
Exocytose wird beim Kontakt mit der Kohlenhydrat-reichen Schutzhülle der Eizelle, der 

Zona pellucida, ausgelöst [Brewis und Wong, 1999; Breitbart, 2003]. Dabei kommt es 
zur Freisetzung hydrolytischer Enzyme aus der vesikulären Kappe des Spermiums 
[Adham et al., 1997; Breitbart und Spungin, 1997; Tranter et al., 2000], so dass eine 

Fusion des Spermiums mit der Oocyte ermöglicht wird [Yanagimachi, 1994]. Die 
akrosomale Exocytose wird, wie in Nervenzellen auch [Jahn et al., 2003], von einem 
starken Anstieg der intrazellulären Ca2+-Konzentration ausgelöst [Mayorga et al., 2007; 

Florman et al., 2008] und durch cAMP reguliert, u. a. über PKA [Evans und Morgan, 
2003] und das cAMP-aktivierte Protein EPAC [Branham et al., 2006].  
Da die zwei essentiellen sekundären Botenstoffe zur Kontrolle der Akrosomreaktion, 

Ca2+ und cAMP, auch maßgeblich an der Signaltransduktion von Geschmacks-
rezeptoren der Tas1r- und Tas2r-Familie involviert sind, stellte sich die Frage, ob diese 
Rezeptoren den Prozess der akrosomalen Exocytose regulieren könnten. Dies erscheint 

insbesondere interessant, da die Erkennungsmoleküle der Zona pellucida auf der 
Spermienoberfläche trotz ihrer essentiellen Bedeutung für eine erfolgreiche 
Reproduktion bislang ebensowenig eindeutig identifiziert werden konnten wie regula-

torische Proteine, die den Ablauf der Akrosomreaktion koordinieren und beispielsweise 
eine spontane akrosomale Exocytose verhindern [Nixon et al., 2001; Evans und 
Florman, 2002; Rankin et al., 2003; Dean, 2004; Nixon et al., 2007; Ackermann et al., 

2009]. 
Um der Frage nach einer physiologischen Rolle von Bitterrezeptoren bei der Akrosom-
reaktion nachzugehen, wurde deshalb die akrosomale Exocytose von Tas2r131-

defizienten Spermien charakterisiert. Dazu wurde zunächst geprüft, ob die Exocytose-
maschinerie des Akrosoms von Tas2r131-defizienten Spermien intakt ist. Die maximale 
Effizienz der Akrosomreaktion wurde dabei durch eine Inkubation mit dem Calcium-

Ionophor A23187 ermittelt. A23187, ein bakterielles Antibiotikum, bindet selektiv 
divalente Kationen wie Calcium und transportiert diese effektiv über Membranen, was 
zu einem starken Anstieg der intrazellulären Ca2+-Konzentration führt [Malaisse, 1988]. 

Diese künstlich hervorgerufene starke Erhöhung der cytosolischen Ca2+-Konzentration 
kann dann, unabhängig von einer Bindung an die Zona pellucida und der Aktivierung 
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assoziierter Signaltransduktionsprozessen, die Exocytose des akrosomalen Vesikels 
induzieren [Aitken et al., 1993; Liu und Baker, 1996; Kirkman-Brown et al., 2002].  
Zur Untersuchung des Einflusses eines solchen starken Anstiegs der intrazellulären 

Ca2+-Konzentration wurden isolierte caudale Spermien von Tas2r131 GFP Wildtyp-, 
heterozygoten und homozygoten Tieren zunächst für 90 Minuten in einem 
Kapazitierungspuffer (HS Puffer mit Bicarbonat und BSA) inkubiert, um sie vollständig 

zu kapazitieren. Durch diesen sekundären Reifungsprozess, den Spermien in vivo im 
weiblichen Genitaltrakt durchlaufen, erlangen Spermien erst ihre vollständige Fähigkeit 
zur Akrosomreaktion [Austin, 1952; Witte und Schafer-Somi, 2007; Florman et al., 

2008]. Nach dieser in vitro Kapazitierungsphase erfolgte eine 30minütige Stimulation 
mit 10 µM A23187 (in 0,1 % DMSO verdünnt) bzw. eine Kontrollinkubation mit dem 
Lösungsmittel DMSO (0,1 %). Anschließend wurden die Spermien fixiert und der 

Anteil Akrosom-reagierter Spermien durch eine Färbung mit dem Farbstoff Coomassie 
G250 bestimmt, der intakte akrosomale Vesikel aufgrund ihrer hohen Proteindichte 
tiefblau markiert [Jungnickel et al., 2001; Lu et al., 2002], und so eine licht-

mikroskopische Quantifizierung des akrosomalen Status ermöglicht. 
Abbildung 4.30 zeigt die Auswertung dieser Stimulationen mit dem Calcium-Ionophor 
A23187 an 14 - 17 Tieren pro Genotyp. Bei der Stimulation mit dem Ionophor 

[A23187] war für Spermien aller drei Genotypen eine hoch signifikante Erhöhung 
(p < 0,001) der Akrosomreaktionsrate im Vergleich zum DMSO-Kontrollpuffer 
[Kontrolle] feststellbar. Zwischen den verschiedenen Genotypen war jedoch kein Unter-

schied in der durch A23187 erreichten absoluten akrosomalen Exocytoserate zu 
detektieren; diese lag unabhängig vom Genotyp bei ca. 45 %. Diese vergleichbare 
Effizienz der Ionophor-vermittelten Akrosomreaktion von Spermien der drei Tas2r131 

GFP Genotypen konnte belegen, dass die Exocytosemaschinerie der Zellen nicht durch 
die Gen-Defizienz beeinträchtigt war. Interessanterweise waren jedoch bei Betrachtung 
der Kontrollansätze, die nur mit DMSO inkubiert wurden, deutliche Unterschiede in der 

Akrosomreaktionsrate der verschiedenen Spermienpopulationen auszumachen. In 
diesen Versuchen zeigten Tas2r131 GFP Ki Tiere eine signifikant niedrigere Rate 
Akrosom-reagierter Spermien (17 ± 0,9 %) als Wildtyp-Tiere (22,3 ± 1,3 %) oder 

heterozygote Mäuse (24,5 ± 1,8 %) (Abbildung 4.30 [Kontrolle]). Da das Lösungsmittel 
DMSO bei einer Konzentration von 0,1 % in anderen experimentellen Ansätzen keinen 
Einfluss auf die Akrosomreaktion hatte und keine Induktion der akrosomalen Exocytose 

bewirkte, spiegeln diese Kontrollansätze sehr wahrscheinlich die Rate der spontan 
erfolgten akrosomalen Exocytose wider [DasGupta et al., 1994; Yanagimachi, 1994]. 
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Abbildung 4.30:  Calcium-Ionophor induzierte Akrosomreaktion in Wildtyp- und Tas2r131-
defizienten Spermien. 

Spermien der drei Tas2r131 Genotypen wurden aus dem caudalen Teil des Nebenhodens isoliert, 
kapazitiert und anschließend mit dem Calcium-Ionophor A23187 [A23187] bzw. mit 0,1 % DMSO 
[Kontrolle] stimuliert. Im Anschluss an die Fixierung wurde der akrosomale Status durch eine Coomassie-
Färbung bestimmt.  
Nach der Stimulation mit A23187 zeigen Wildtyp- ([+/+], grau), heterozygote ([+/-], grün gestreift) und 
Tas2r131-defiziente Spermien ([-/-], dunkelgrün) einen signifikanten Anstieg der akrosomalen Exocytose 
[A23187] im Vergleich zur Pufferkontrolle [Kontrolle]. Während in der absoluten Akrosomreaktionsrate 
nach Zugabe des Calcium-Ionophors kein Unterschied zwischen den Genotypen feststellbar ist, zeigt sich 
in den Tas2r131-defizienten Tieren eine signifikant erniedrigte akrosomale Exocytose in den DMSO-
Kontrollansätzen [Kontrolle]. 
Dargestellt sind Mittelwerte ± Standardfehler von 14 - 17 unabhängigen Experimenten mit Geschwister-
tieren und Tieren mit identischem Stammhintergrund (N2, N3). Der statistische Vergleich der Tas2r131-
defizienten Tiere mit dem Wildtyp-Tieren erfolgte mit Hilfe eines ungepaarten studentischen t-Tests 
(**:p ≤ 0,01). 

Um dem Verdacht einer verminderten spontanen Akrosomreaktionsrate in Tas2r131-

defizienten Spermien nachzugehen, wurde im Folgenden der Umfang der Spontanrate 
unstimulierter Zellen näher charakterisiert. Dazu wurden Spermien aus dem caudalen 
Teil des Nebenhodens isoliert und 120 Minuten lang in Kapazitierungspuffer inkubiert. 

Zu Beginn und während der Inkubation wurden im Abstand von 30 Minuten Spermien 
aus der Suspension entnommen und unmittelbar fixiert, um den Anteil Akrosom-
reagierter Spermien zum jeweiligen Zeitpunkt zu ermitteln. Die Quantifizierung der 

Akrosomreaktionsrate erfolgte mittels der oben beschriebenen Coomassie-Färbung. 
Abbildung 4.31, in der die Ergebnisse dieser Untersuchungen an 14 - 17 Tieren pro 
Genotyp (Tas2r131 [+/+], [+/-] und [-/-]) zusammengefasst sind, macht deutlich, dass 

die Rate an spontaner Akrosomreaktion im Verlauf der Kapazitierung bei allen drei 
Genotypen kontinuierlich anstieg. Da der sekundäre Reifungsprozess der Kapazitierung 
essentiell für die Ausbildung der Fähigkeit zur Akrosomreaktion ist, war eine solche 

Zunahme der akrosomalen Exocytose aufgrund der ansteigenden Zahl Fusions-
kompetenter Zellen zu erwarten.  
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Abbildung 4.31:  Spontane Exocytoserate in Mausspermien verschiedener Tas2r131 Genotypen. 
Zur Analyse der spontanen akrosomalen Exocytose in Spermien von Tas2r131-Wildtyp, heterozygoten 
und homozygoten Mäusen wurden isolierte caudale Spermien in Kapazitierungsmedium inkubiert. Im 
Abstand von 30 Minuten wurden Proben entnommen, fixiert und der Anteil Akrosom-reagierter Spermien 
durch eine Coomassie-Färbung ermittelt. Die spontane Akrosomreaktionsrate der drei Genotypen wurde in 
Abhängigkeit der Zeit aufgetragen.  
Die Spontanrate von Tas2r131 Knockin-Spermien ist zu jedem beobachteten Zeitpunkt niedriger als die 
spontane Exocytoserate von Wildtyp- oder Tas2r131 heterozygoten Tieren, diese Unterschiede sind 
jedoch zu keinem Zeitpunkt statistisch signifikant (p ≤ 0,05, Studentischer t-Test). 
Dargestellt sind Mittelwerte ± Standardfehler von unabhängigen Experimenten mit 14-17 Tieren pro 
Genotyp. Es wurden Tiere mit gleichem genetischen Hintergrund (N2-N3) verwendet.  

Beim Vergleich der akrosomalen Sekretionsraten der Spermien der verschiedenen 

Tas2r131 GFP Genotypen fiel auf, dass die Spontanrate der Tas2r131 GFP-defizienten 
Spermien (dunkelgrün) zu jedem untersuchten Zeitpunkt niedriger war als die von 
Zellen vergleichbarer Wildtyp- (grau) oder heterozygoter (hellgrün) Tiere (Abbildung 

4.31). Dieser Unterschied war zwar nicht signifikant – vermutlich bedingt durch starke 
Schwankungen in den spontanen Akrosomreaktionsraten einzelner Versuchstiere der 
jeweiligen Genotypen – es war jedoch während des gesamten Verlaufs der 

Kapazitierung ein Trend zu einer verminderten spontanen akrosomalen Exocytose bei 
den Spermien der Tas2r131 GFP Ki Tiere zu beobachten (Abbildung 4.31). 
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4.4 Geschmacksrezeptoren der Tas1r-Familie im männlichen 
Reproduktionssystem 

Neben den Bitterrezeptoren stellt die Familie der Tas1-Rezeptoren eine weitere Gruppe 

von G Protein-gekoppelten Geschmacksrezeptoren dar. Auf der Zunge sind die drei 
Mitglieder dieser Rezeptor-Familie an der Detektion hydrophiler Liganden wie Kohlen-
hydraten, Proteinen und Aminosäuren beteiligt und damit für die Wahrnehmung der 

Geschmacksqualitäten „süß“ und „umami“ verantwortlich. Diese Tas1-Rezeptoren, für 
die bereits eine Expression in diversen extra-oralen Geweben gezeigt werden konnte 
(siehe Abschnitt 1.2.4.5), könnten somit potentielle Detektionsmoleküle für die 

Erkennung wasserlöslicher Lockstoffe der Eizelle bzw. des weiblichen Genitaltraktes 
darstellen oder in die Erkennung von Kohlenhydratresten der Glykoprotein-reichen 
Zona pellucida involviert sein. 

4.4.1 Nachweis von Tas1-Rezeptor-Transkripten in 
Reproduktionsorganen der männlichen Maus 

Um zu prüfen, ob die drei Tas1-Rezeptoren als chemosensorische Erkennungsmoleküle 
männlicher Keimzellen in Betracht kommen könnten, wurde zunächst geprüft, ob 

Tas1r-mRNA-Transkripte im Hoden nachzuweisen sind.  
Zu diesem Zweck wurden RT-PCRs mit Subtyp-spezifischen Primerpaaren und cDNA 
aus dem Hoden und der Wallpapille der Maus durchgeführt. Die Qualität der ver-

wendeten cDNAs wurde durch RT-PCR-Ansätze mit Primerpaaren überprüft, die gegen 
das house-keeping Gen β-Aktin [Ziegler et al., 1992] bzw. das mitochondriale Protein 
L8 (Daten nicht gezeigt) gerichtet waren. Abbildung 4.32 [B] zeigt exemplarisch die 

Ergebnisse einer solchen PCR mit einem Exon-überspannenden, β-Aktin spezifischen 
Primerpaar [β-Aktin]. In diesen Ansätzen war unter Verwendung der cDNA der 
Wallpapille [CV] und des Hodens [Ho] jeweils ein einzelnes Amplifikationsprodukt der 

erwarteten Größe (425 bp) zu registrieren, wodurch sichergestellt werden konnte, dass 
erfolgreich mRNA isoliert und in cDNA transkribiert wurde. Aus der validierten 
gustatorischen cDNA konnte in den anschließenden RT-PCR Ansätzen mit allen drei 

Tas1r-spezifischen Primerpaaren ein einzelnes PCR-Produkt der erwarteten Größe 
(Tas1r1: 468 bp; Tas1r2: 403 bp; Tas1r3: 510 bp) amplifiziert werden (Abbildung 4.32 
[A], [CV]). Durch diese Kontroll-PCRs mit cDNA aus Geschmacksgewebe konnte 

sichergestellt werden, dass die gewählten PCR-Bedingungen und Primerkombinationen 
geeignet waren um Tas1r-Transkripte nachzuweisen. 
Unter Verwendung der Tas1r1- und Tas1r3-spezifischen Primerpaare konnten auch aus 

der cDNA des Hodens Amplifikationsprodukte der erwarteten Größe von 468 bp bzw. 
510 bp generiert werden (Abbildung 4.32 [A], [Ho]). Um zu prüfen, ob die 
beobachteten PCR-Banden auf eine spezifische Amplifikation von Tas1r-Transkripten 
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zurückzuführen waren, wurden die PCR-Fragmente anschließend aus dem Agarosegel 
ausgeschnitten, aufgereinigt und in einen pGEMT-Vektor ligiert. Nach Transformation 
und Vermehrung des Plasmids in E. coli. wurde die DNA aus den Bakterien auf-

gereinigt, das Amplifikationsfragment sequenziert und mit den bekannten Sequenzen 
des Tas1r1 und des Tas1r3 verglichen. Diese Datenbankanalyse ergab eine vollständige 
Übereinstimmung der kurzen PCR-Fragmente mit den Tas1r-Sequenzen aus 

Geschmackszellen der Maus, was die Spezifität der Transkript-Amplifikation des 
Tas1r1 und Tas1r3 unterstreicht.  
Im Gegensatz zu den beiden Mitgliedern des Umami-Rezeptors, der sich aus dem 

Tas1r1 und Tas1r3 zusammensetzt, konnten mit den Subtyp-spezifischen Primerpaaren, 
die gegen den Tas1r2 gerichtet waren, keine Amplifikationsprodukte aus testikulärer 
cDNA generiert werden (Abbildung 4.32 [A], [Tas1r2]). Auch unter Verwendung zwei 

weiterer alternativer Tas1r2-spezifischer Primerpaare (Tas1r2 B und C, siehe Abschnitt 
2.3.1), die erfolgreich zu Amplifikaten aus gustatorischer cDNA führten, konnte kein 
PCR-Produkt in Hoden-cDNA nachgewiesen werden (Daten nicht gezeigt), obwohl 

eine Expression dieses Rezeptors im Hoden kürzlich in einer Tas1r2-LacZ Reporter-
maus beschrieben wurde [Iwatsuki et al., 2010].  

 

Abbildung 4.32:  RT-PCR Analyse zum Nachweis der Expression von Tas1r-Transkripten im Hoden 
der Maus. 

Mit spezifischen Primerpaaren gegen die drei Mitglieder der Tas1r Geschmacksrezeptorfamilie [A] bzw. 
gegen β-Aktin [B] wurde eine RT-PCR mit muriner cDNA aus Hoden [Ho] und der Wallpapille ([CV]) 
durchgeführt. In Kontrollansätzen wurde Wasser [H2O] als Template verwendet.  
[A] Aus der cDNA der Wallpapille konnte für alle drei Primerpaare ein einzelnes Amplifikationsprodukt der 
erwarteten Größe nachgewiesen werden (Tas1r1: 468 bp; Tas1r2: 403 bp; Tas1r3: 510 bp). Unter 
Verwendung der Hoden cDNA konnte nur mit den Tas1r1- und mit den Tas1r3-spezifischen Primerpaaren 
eine Bande der berechneten Größe detektiert werden. Transkripte des Tas1r2 Rezeptors konnten nicht 
aus cDNA des Hodens amplifiziert werden. 
[B] In Kontrollansätzen mit einem β-Aktin spezifischen Primerpaar wurde für beide verwendete cDNAs 
jeweils nur ein einzelnes Amplifikationsprodukt der erwarteten Größe von 425 bp nachgewiesen. 

4.4.2 Immunhistochemische Analyse von Tas1-Rezeptorproteinen im 
Keimdrüsengewebe der männlichen Maus 

Nachdem die Befunde der vorangehend beschriebenen RT-PCRs erste Hinweise auf 
eine Genexpression des Tas1r1 und Tas1r3 im Hoden ergaben, während eine 

Expression des Tas1r2 aufgrund fehlender Amplifikationsprodukte ungewiss erscheint, 
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stellte sich die Frage, welcher der Tas1-Rezeptoren translatiert wird und auch auf 
Proteinebene im Keimdrüsengewebe vorhanden ist. Um dieser Frage nachzugehen, 
wurde die Proteinexpression der Tas1-Rezeptoren im murinen Hoden immun-

histochemisch untersucht.  
Ähnlich wie bei den Bitterrezeptoren der Tas2r-Familie (siehe Abschnitt 4.3.2) war 
dieser experimentelle Ansatz jedoch aufgrund der begrenzten Verfügbarkeit funk-

tioneller Subtyp-spezifischer Antikörper stark eingeschränkt. Zur Detektion des Tas1r1 
und Tas1r2 in Nagergewebe wurden im Rahmen der vorliegenden Arbeit verschiedene 
Antiseren der Firmen Santa Cruz und Biotrend getestet (siehe Material und Methoden, 

Abschnitt 2.4.1). Keines der anti-Tas1r1- oder anti-Tas1r2 Antiseren führte zu einer 
Immunmarkierung in Wallpapillen der Maus oder der Ratte, die als Positivkontrolle 
verwendet wurden (Daten nicht gezeigt), so dass diese Antikörper nicht geeignet waren, 

die Rezeptorproteine im Nagerhoden nachzuweisen. 
Um die Funktionalität von Nager-spezifischen Antikörpern, die gegen den gusta-
torischen Dimerisierungspartner der anderen beiden Tas1r-Subtypen, den Tas1r3, 

gerichtet waren, zu prüfen, wurden ebenfalls umfangreiche Untersuchungen mit ver-
schiedenen Antikörpern an Zungengewebe der Maus und Ratte durchgeführt. In diesen 
experimentellen Ansätzen konnten insgesamt drei Antiseren identifiziert werden, die 

eine spezifische Immunfärbung einzelner Geschmackssinneszellen in Wallpapillen der 
untersuchten Nager bewirkten: Ein kommerziell erhältliches Antiserum der Firma 
Abcam, das nur zum Nachweis des murinen Tas1r3 eingesetzt wurde (Tas1r3 A), sowie 

zwei weitere polyklonale Antiseren, die uns freundlicherweise von Robert F. 
Margolskee (Monell Chemical Senses Center, Philadelphia, USA) bzw. Danielle Reed 
und Josephine Egan (Monell Chemical Senses Center, Philadelphia, USA) zur 

Verfügung gestellt wurden. Das Tas1r3-spezifische Antiserum aus der Gruppe von Prof. 
Margolskee wurde gegen ein immunogenes Peptid generiert, das den Aminosäuren 239 
bis 255 des Tas1r3 Proteins von Maus und Ratte entspricht [Damak et al., 2003]. Dieses 

als „Tas1r3 M“ bezeichnete Antiserum wurde deshalb zum Nachweis des Rezeptors in 
beiden Spezies verwendet. Das dritte validierte Antiserum (Tas1r3 R), das gegen die 
Aminosäuren 45 – 62 des Rattenrezeptors gerichtet war, war hingegen nur zur 

Detektion des Tas1r3-Rezeptors in Geweben der Ratte geeignet [Lu et al., 2005]. 
Die Resultate der experimentellen Ansätze zur Antikörper-Validierung an Gefrier-
schnitten von murinem Zungengewebe sind in Abbildung 4.33 exemplarisch dargestellt.  

Durch den Einsatz des Tas1r3 M Antiserums ließen sich in coronalen Schnitten der 
Wallpapille eine distinkte Zellpopulation innerhalb der zwiebelförmigen Geschmacks-
knospe, die zur besseren Übersicht schematisch umrandet wurde, anfärben (Abbildung 

4.33 [A und E]): Einzelne Zellen innerhalb der Wand der Papille, die die typische 
Morphologie von Geschmackssinneszellen aufwiesen (siehe auch Abbildung 4.1 [A]), 
zeigten ein grünes Fluoreszenzsignal (Abbildung 4.33, [E], Pfeilspitze). Nach einer Prä-

Inkubation des Tas1r3 M Antiserums mit seinem immunogenen Peptid war die Immun-
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färbung sehr stark reduziert (Abbildung 4.33 [B und F]), was auf eine spezifische 
Erkennung des Tas1r3 Rezeptorproteins durch dieses Antiserum hindeutet.  
Die Inkubation der histologischen Zungenschnitte mit dem Tas1r3 A Antiserum 

resultiert in einer Immunreaktivität, die der des Tas1r3 M Serums sehr ähnlich war: Es 
war eine Markierung in der Wallpapille zu detektieren (Abbildung 4.33 [C]), die über-
wiegend in einzelnen spindelförmigen Sinneszellen konzentriert war (Abbildung 4.33 

[G], Pfeilspitze). Allerdings ist bei Verwendung des Tas1r3 A Antiserums auch eine 
Immunfärbung außerhalb des sensorischen Gewebes zu beobachten: Es ist ein 
intensives Fluoreszenzsignal im Spalt zwischen dem Papillenepithel zu registrieren 

(Abbildung 4.33 [G], Pfeil). Aufgrund des Fehlens eines Blockierungspeptids für diesen 
Antikörper konnte die Spezifität dieser Antikörperreaktion nicht geprüft werden. Eine 
unspezifische Bindung des Sekundärantikörpers konnte aber durch Kontrollansätze, in 

denen kein Primärantikörper eingesetzt wurde und die keine Immunreaktivität zeigten, 
ausgeschlossen werden (Abbildung 4.33 [D und H]). 

 

Abbildung 4.33:  Immunhistochemischer Nachweis des Tas1r3 Proteins in der Wallpapille der Maus. 
Gefrierschnitte der CV einer adulten Maus wurden mit dem anti-Tas1r3 M bzw. mit dem anti-Tas1r3 A IgG 
(1:200) immunhistochemisch untersucht. In den Präparaten, die mit den Tas1r3-spezifischen Antiseren 
inkubiert wurden [Tas1r3 M; Tas1r3 A], ist eine deutliche Immunreaktivität (grün) in einzelnen 
Geschmackssinneszellen zu registrieren ([A, C, E, F]; Pfeilspitzen). Diese Reaktivität lässt sich durch Vor-
inkubation des Antikörpers mit seinem Blockierungspeptid [Tas1r3 M + BP] vollständig aufheben [B und 
F]. Das Tas1r3 A IgG zeigt zusätzlich eine unspezifische Markierung im Spalt zwischen dem Epithel ([G], 
Pfeil). In Kontrollansätzen ohne Primärantikörper [D, H; Kontrolle] ist keine Immunreaktivität detektierbar. 
Zur besseren Übersicht wurden in [A - D] die Umrisse der Wallpapille eingezeichnet und in [E - H] einzelne 
Geschmacksknospen umrandet. Gezeigt sind Überlagerungen der Phasenkontrast- und der Fluoreszenz-
aufnahme. Der jeweils verwendete Primärantikörper ist im Bild angegeben. 

Anschließend wurden die validierten Antiseren in immunhistochemischen Analysen mit 
histologischen Schnitten des Hodens eingesetzt, um zu klären, ob der Tas1r3 auch im 
männlichen Keimdrüsengewebe als Rezeptorprotein nachzuweisen ist. Nach der 

Inkubation mit dem Tas1r3 M Antiserum war eine deutliche Immunfärbung einzelner 
Zellen in den quer angeschnittenen Hodentubuli auszumachen (Abbildung 4.34 [A und 
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D]). In Abbildung 4.34 [D] ist ein einzelner Tubulus mit starker Immunreaktivität 
vergrößert gezeigt. Anhand der angeschnittenen Hodenkanälchen wird deutlich, dass 
das Fluoreszenzsignal hauptsächlich in den luminalen Zellschichten, die späte 

Entwicklungsstadien der Keimzellreifung umfassen, zu detektieren war. In diesen 
Zellen war die Immunfärbung in sichelförmigen Strukturen konzentriert, die wahr-
scheinlich Akrosomen der sich entwickelnden Keimzellen darstellen (Abbildung 4.34 

[D]. In experimentellen Ansätzen, in denen das Antiserum gemeinsam mit seinem 
immunogenen Peptid eingesetzt wurde, war eine Reduktion aber keine vollständige 
Blockierung der Immunreaktivität zu beobachten (Abbildung 4.34 [B und E]). In 

Kontrollschnitten, die lediglich mit dem Sekundärantikörper inkubiert wurden, war 
hingegen keinerlei Färbung des Gewebes feststellbar (Abbildung 4.34 [C und F]).  

 

Abbildung 4.34:  Immunhistochemische Analyse der Tas1r3 Expression im murinen Hoden. 
Gefrierschnitte des Hodens der Maus wurden nach dem Schneiden fixiert und anschließend mit einer 
1 : 200 Verdünnung des Tas1r3 M Antikörpers inkubiert. Die Bindung des Primärantikörpers wurde mit 
FITC-gekoppelten anti-Kaninchen IgG (1:750 verdünnt, grün) sichtbar gemacht. Die Inkubation mit dem 
Tas1r3 M IgG resultiert in einer deutlichen Immunreaktivität in einzelnen Hodentubuli [A]. Die Immun-
markierung ist in den reifen Keimzellen im luminalen Bereich der Tubuli besonders intensiv; die eine 
sichelförmige grüne Färbung zeigen [D]. Eine Vorbehandlung des Antikörpers mit dem 
korrespondierenden immunogenen Peptid [Tas1r3 M + BP] führt zu einer Verminderung, jedoch nicht zu 
einem vollständigen Ausbleiben der Markierung [B, E]. Im Kontrollansatz [C, F] ist keine Immunreaktivität 
erkennbar.  

Da die Expression des Tas1r3 in späten Stadien der Spermatogenese darauf hindeutet, 
dass das Rezeptorprotein auch in den dort entstehenden Spermien präsent sein könnte, 
wurde anschließend untersucht, ob der Rezeptor auch im weiteren Verlauf der 

Spermienreifung im Nebenhoden nachzuweisen ist. Dazu wurden immunhisto-
chemische Analysen an Gefrierschnitten verschiedener Abschnitte des Nebenhodens 
(Caput und Cauda) durchgeführt.  

Bei der Inkubation von Nebenhodenschnitten mit dem Tas1r3 M Antiserum konnte 
wieder eine deutlich positive Reaktion sowohl im Nebenhodenkopf als auch im 
Nebenhodenschwanz registriert werden (Abbildung 4.35). Dabei waren die 
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Fluoreszenzsignale hauptsächlich im Lumen der angeschnittenen Tubuli beider Neben-
hodenabschnitte sichtbar (Abbildung 4.35 [A] und [C]). Zusätzlich war auch eine 
schwache Immunmarkierung im Tubulusepithel des caudalen Teils auszumachen 

(Abbildung 4.35 [C]). Im Tubuluslumen, in dem die Spermien gespeichert werden, war 
die Immunreaktivität auf sichelförmige Strukturen konzentriert (Abbildung 4.35, [E] 
und [G]), was auf eine akrosomale Markierung der Zellen hindeuten könnte. Eine un-

spezifische Bindung des Zweitantiköpers konnte durch Kontrollansätze, die keine 
Fluoreszenzsignale aufwiesen, ausgeschlossen werden (Abbildung 4.35 [B und F] und 
[D und H]). 

 

Abbildung 4.35:  Immunhistochemische Analyse der Tas1r3 Expression im Nebenhoden der Maus. 
Gefrierschnitte des Nebenhodens einer adulten Maus wurden mit dem anti-Tas1r3 M Serum inkubiert und 
der Primärantikörper wurde mit Hilfe von FITC-gekoppelten anti-Kaninchen IgG (grün) visualisiert. 
Die Abbildungen [A] und [E] zeigen eine deutliche Markierung im Lumen der Nebenhodengänge des 
Caputs. Im vergrößerten Ausschnitt [E] ist eine sichelförmige Immunreaktivität sichtbar, die wahrscheinlich 
die Akrosomen der luminal befindlichen Spermien repräsentiert [Tas1r3 M]. Im caudalen Teil des Neben-
hodens ist neben einer diffusen Färbung des Epithels ebenfalls eine akrosomale Markierung der Spermien 
im Tubuluslumen zu erkennen [C, G; Tas1r3 M]. Kontrollansätze [Kontrolle], in denen kein Primär-
antikörper eingesetzt wurde, zeigen weder im Caput [B, F] noch in der Cauda [D, H] eine Immunreaktivität. 
Gezeigt sind Überlagerungen der Phasenkontrast und der Fluoreszenzaufnahme. Die Boxen in den 
oberen Bildern [A - D] markieren den Ausschnitt, der im jeweiligen unteren Bild vergrößert dargestellt ist 
[E - H].  

Um zu untersuchen, ob das Tas1r3 Rezeptorprotein auch in reifen Spermien vorhanden 
ist und um über seine subzelluläre Lokalisation erste Hinweise auf eine mögliche 

physiologische Funktion zu erhalten, wurden immuncytochemische Analysen an reifen 
Spermien durchgeführt. Dazu wurden Spermien aus dem caudalen Teil des Neben-
hodens isoliert, fixiert und mit den validierten Tas1r3 Antiseren inkubiert. Die Bindung 

des Primärantikörpers wurde mit Hilfe eines FITC-gekoppelten Sekundärantikörpers 
(grün) nachgewiesen. Zur Orientierung wurde daran anschließend der Zellkern der 
Spermien mit dem DNA-Marker Propidiumiodid (in blau dargestellt) gegengefärbt. 
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Bei den Analysen mit dem Tas1r3 M und dem Tas1r3 A Antiserum wurde eine 
deutliche Markierung in den Spermienzellen registriert (Abbildung 4.36, [A und E bzw. 
D und G]). Diese Immunreaktivität war im Kopfbereich auf die akrosomale Sichel 

konzentriert (Abbildung 4.36 [E] und [G], Pfeilspitze). Darüber hinaus war eine 
Markierung im Hauptstück des Flagellums auszumachen (Abbildung 4.36 [E] und [G], 
Pfeil). In Blockierungsexperimenten, in denen das Tas1r3 M Antiserum mit einem 

Überschuss seines immunogenen Peptids vorinkubiert wurde, ließ sich die Immun-
reaktivität des Tas1r3 M Antiserums im Spermium vollständig blockieren: Wie 
Abbildung 4.36 [B und F] zeigt, war die grüne Färbung sowohl im Kopfbereich des 

Spermiums als auch im Flagellum vollständig verschwunden. Das im Spermium 
erkannte Antigen scheint demnach dem immunogenen Tas1r3 Peptid zu entsprechen. 

 

Abbildung 4.36:  Immuncytochemischer Nachweis des Tas1r3 Proteins in Mausspermien.  
Methanol-fixierte Spermienpräparate der Maus wurden mit einem der beiden Tas1r3 spezifischen 
Antiseren [Tas1r3 M; Tas1r3 A] (1:200 verdünnt) bzw. mit einem Antikörper und dem entsprechenden 
Blockierungspeptid [Tas1r3 M + BP] inkubiert. Zur Visualisierung des Zellkerns wurde dieser 15 Minuten 
mit Propidiumiodid ([PI], blau dargestellt) gefärbt.  
Die Inkubation mit beiden Tas1r3-spezifischen Antiseren resultierte in einer vergleichbaren Immunfärbung 
der akrosomalen Sichel [A, E und C, G; Pfeilspitze] sowie einer Markierung des Flagellums, die auf das 
Hauptstück konzentriert war [A, E und C, G; Pfeil]. Nach einer Vorinkubation des Antikörpers mit dem 
korrespondierenden Blockierungspeptid [Tas1r3 M + BP] ist keine Immunfärbung mehr auszumachen. 
Kontrollansätze, die nur mit dem Zweitantikörper inkubiert wurden [D, H, Kontrolle], weisen keine Immun-
reaktivität auf. 
Dargestellt sind Überlagerungen der Phasenkontrastaufnahme und der Fluoreszenzkanäle (grün: FITC; 
blau: Propidiumiodid). Der jeweils verwendete Primärantikörper ist im Bild angegeben. 

Um zu prüfen, ob die beobachtete sichelförmige Immunreaktivität der Tas1r3 Antiseren 

im Spermienkopf mit dem akrosomalen Vesikel übereinstimmt, wurden Co-Färbungen 
mit einem Fluorochrom-gekoppelten PNA (TRITC-PNA), einem Lektin, das spezifisch 
an Glykoproteine des Akrosoms bindet (siehe auch Abschnitt 4.1.3 ), durchgeführt. In 

Abbildung 4.37 [B und E] wird deutlich, dass nach der Inkubation der Zellen mit dem 
TRITC-gekoppelten PNA ein sichelförmiges rotes Fluoreszenzsignal im Akrosom des 
Spermienkopfes zu registrieren war. Der Vergleich dieser Markierung mit der Immun-
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reaktivität der Tas1r3 Antiseren (Abbildung 4.37 [A und D]) zeigte eine klare Über-
einstimmung der beiden Markierungen: In der Überlagerung der einzelnen Fluoreszenz-
kanäle entstand ein halbmondförmiges gelbes Fluoreszenzsignal (Abbildung 4.37 [C 

und F]), das belegt, dass die Tas1r3 Immunreaktivität der Tas1r3 Antiseren im 
Spermienkopf tatsächlich auf das Akrosom konzentriert ist. 

 

Abbildung 4.37:  Analyse der subzellulären Lokalisation des Tas1r3 Rezeptors in Spermien der 
Maus. 

Isolierte caudale Spermien der Maus wurden mit Methanol bzw. Aceton fixiert, mit einem der beiden 
Tas1r3-Antikörper inkubiert und der Primärantikörper dann mit Hilfe FITC-gekoppelter anti-Kaninchen IgG 
(grün) sichtbar gemacht. Zur Visualisierung des Akrosoms wurden die Spermien anschließend mit einem 
TRITC-gekoppelten Peanut agglutinin ([PNA], rot) inkubiert. 
Die Tas1r3 Immunreaktivität [A, D; grün] zeigt für beide Antiseren eine deutliche Übereinstimmung [C, F; 
Tas1r3 M/A + PNA; gelb] mit der sichelförmigen PNA-Markierung [B, E; rot]; darüber hinaus ist keine 
weitere Immunfärbung des Spermienkopfes zu detektieren. 
Dargestellt sind jeweils der grüne Fluoreszenzkanal [Tas1r3; links], das rote Fluoreszenzsignal [PNA; 
Mitte] sowie eine Überlagerung der beiden Fluoreszenzkanäle mit der Phasenkontrastaufnahme 
[Tas1r3 M/A + PNA, rechts]. Überlappende Co-Färbungen werden durch ein gelbes Fluoreszenzsignal 
repräsentiert. Die verwendeten Primärantikörper bzw. das Lektin sind jeweils im Bild angegeben. 
[A-C] Tas1r3 M; [D-F] Tas1r3 A. 

Durch die bisher erfolgten immunhistochemischen und immuncytochemischen 
Analysen kann somit von einer Expression des Geschmacksrezeptors Tas1r3 in Keim-
drüsengewebe und sowie im Akrosom und Flagellum reifer Spermien der Maus aus-

gegangen werden. 

4.4.3 Expression des Tas1r3 Rezeptors im Keimdrüsengewebe der 
Ratte 

Um zu klären, ob die Expression des Tas1r3 auf Mausspermien beschränkt ist oder auch 
in anderen Nagerspezies zu beobachten ist, wurden im Anschluss immunhistochemische 

und immuncytochemische Untersuchungen an männlichen Keimzellen der Ratte durch-
geführt.  



148 Ergebnisse 

Abbildung 4.38 fasst die Resultate der zunächst durchgeführten Spezifitätstests des 
Tas1r3 M und des Tas1r3 R Antiserums (siehe auch Abschnitt 4.4.2) an Gefrier-
schnitten der Wallpapille der Ratte zusammen. Mit beiden Antiseren war eine Immun-

reaktivität in einzelnen Sinneszellen der Wallpapille, die zur Übersicht jeweils umrandet 
wurde, zu detektieren (Abbildung 4.38 [A und E] und [C und G]). Eine Vorinkubation 
des Tas1r3 M Antiserums mit dem korrespondierenden Peptid resultierte in der 

Wallpapille nur in einer leichten Verminderung aber keiner vollständigen Blockierung 
der Immunreaktivität (Abbildung 4.38 [B und F]).  

 

Abbildung 4.38:  Immunhistochemische Analyse der Tas1r3 Expression im Geschmacksgewebe der 
Ratte. 

Gefrierschnitte der Wallpapille einer Ratte wurden mit zwei verschiedenen anti-Tas1r3 Antiseren 
[Tas1r3 M, Tas1r3 R] inkubiert und die Antikörperbindung dann durch ein FITC-gekoppeltes anti-
Kaninchen IgG (1:750; grün) nachgewiesen. 
Beide Tas1r3-spezifischen Antiseren führen zu einer Immunmarkierung der Geschmacksknospen der 
Wallpapille [A, C]. In den vergrößerten Ausschnitten [E, G] wird deutlich, dass diese Immunreaktivität auf 
einzelne Geschmackssinneszellen konzentriert ist. Eine Vorinkubation des Tas1r3 M IgG mit dem 
immunogenen Peptid führt zu einer verminderten Immunmarkierung [B, F; Tas1r3 M + BP]. Kontroll-
ansätze, in denen kein Primärantikörper eingesetzt wurde, zeigen keine Reaktivität mit dem Sekundär-
antikörper [D, H; Kontrolle]. 
Gezeigt sind Überlagerungen der Phasenkontrast- und der Fluoreszenzaufnahme. Die verwendeten 
Erstantikörper sind im Bild oben rechts angegeben. 

Um die Expression des Tas1r3 im Keimdrüsengewebe der Ratte zu prüfen, wurden die 
beiden Antiseren anschließend in immunhistochemischen Analysen an Gefrierschnitten 

des Rattenhodens eingesetzt. In diesen Ansätzen war sowohl unter Verwendung des 
Tas1r3 M als auch des Tas1r3 R Antiserums eine vergleichbare Immunfärbung zu 
registrieren (Abbildung 4.39): Die Inkubation mit den Antiseren resultierte in einer 

starken grünen Markierung der angeschnittenen Tubuli ([A] und [C]). Die Immun-
reaktivität war dabei nicht diffus im Gewebe verteilt, sondern in länglichen, sichel-
förmigen Strukturen der späten Keimzellschichten konzentriert, die wahrscheinlich 

Akrosomen von elongierten Spermatiden darstellten (Abbildung 4.39 [E] und [G]). Eine 
Blockierung der Antigen-Bindestellen des Tas1r3 M Antiserums mit dem Peptid, gegen 
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das es generiert wurde, führte zu einer deutlichen Reduktion der Immunreaktivität 
(Abbildung 4.39 [B und F]). Diese Verminderung der Immunfärbung war ähnlich stark 
ausgeprägt wie in der Wallpapille, in der ebenfalls keine komplette Blockierung des 

Signals registriert wurde.  

 

Abbildung 4.39:  Immunhistochemischer Nachweis des Tas1r3 Proteins im Rattenhoden. 
Vorfixierte Gefrierschnitte des Rattenhodens wurden mit zwei unterschiedlichen Tas1r3 Antiseren 
[Tas1r3 M, Tas1r3 R] bzw. mit dem Primärantikörper und dem entsprechenden Blockierungspeptid 
[Tas1r3 M+BP] immunhistochemisch analysiert. 
Nach Inkubation mit den Tas1r3-spezifischen IgG zeigen die Hodenschnitte eine deutliche grüne 
Markierung der Hodentubuli [A, C]. Die Immunreaktivität des Tas1r3 M Antiserums ist in büschelartigen 
Strukturen konzentriert [E, Tas1r3 M]. Der Tas1r3 R Antikörper zeigt außerdem eine sichelförmige 
Markierung innerhalb der Tubuli [G, Tas1r3 R]. In Blockierungsexperimenten kann die Immunreaktivität 
des Tas1r3 M Antiserums leicht, aber nicht vollständig vermindert werden [B, F; Tas1r3 M+BP]. Kontroll-
präparate [Kontrolle] zeigen keine Immunmarkierung durch den Sekundärantikörper 
Gezeigt sind Überlagerungen der Phasenkontrast- und der Fluoreszenzaufnahme. Die Boxen in den 
oberen Bildern [A-D] markieren den Ausschnitt, der im jeweiligen unteren Bild vergrößert dargestellt ist [E-
H]. In Kontrollansätzen wurde kein Primärantikörper eingesetzt [B, F, und D, H; Kontrolle].  

Im Folgenden sollten Hinweise auf eine Expression und Lokalisation des Tas1r3 in 
reifen Rattenspermien gesammelt werden. Wie Abbildung 4.40 verdeutlicht, führte die 

Inkubation von isolierten Spermien der Ratte mit den zuvor beschriebenen Antiseren zu 
einer Immunfärbung ([E] und [G], Pfeilspitze) des hakenförmigen Spermienkopfes (zur 
Übersicht über die Spermienmorphologie der Ratte siehe Abbildung 4.7 [B]). Mit dem 

Tas1r3 M Antiserum war zudem eine schwache Färbung des Flagellums zu detektieren 
([A], Pfeile). Durch eine Co-Färbung mit einem TRITC-gekoppelten PNA ([PNA], rot) 
konnte anhand des gelben Überlagerungssignals ([K]) bestätigt werden, dass die 

schmale Immunmarkierung des Spermienkopfes ([E]) mit dem Akrosom ([J]) über-
einstimmte. In Kontrollansätzen, die nur mit dem Sekundärantikörper inkubiert wurden, 
konnte neben der Kernmarkierung durch Propidiumiodid ([PI]) bzw. der PNA-Färbung 

des Akrosoms [L] keine Immunreaktivität registriert werden (Abbildung 4.32). Die 
Inkubation reifer Spermien mit dem Tas1r3 M Antiserum und seinem immunogenen 
Peptid führte, wie auch in den immunhistochemischen Analysen der CV und des 
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Hodens, nur zu einer leichten Verminderung der grünen Immunfärbung (Abbildung 
4.40 [B und F]). 

 

Abbildung 4.40:  Analyse der Tas1r3 Expression und Lokalisation in Spermien der Ratte. 
Methanol-fixierte Rattenspermien wurden mit einem der Tas1r3 spezifischen Antiseren inkubiert 
[Tas1r3 M; Tas1r3 R] (1:500 verdünnt) bzw. mit einem Antikörper und dem entsprechenden 
Blockierungspeptid [Tas1r3 M + BP] inkubiert. Der Nachweis der Immunreaktivität erfolgte durch einen 
FITC-gekoppelten Sekundärantikörper (grün), Kontrollansätze wurden nur mit dem Sekundärantikörper 
inkubiert. Zur Visualisierung des Zellkerns wurde dieser 15 Minuten mit Propidiumiodid ([PI], blau 
dargestellt) gefärbt [A - H]. Bei Co-Färbungen mit PNA erfolgte nach der Antikörperinkubation eine 
Behandlung der Präparate mit dem TRITC-gekoppeltem Lektin (rot dargestellt) [I - L]. 
Die Inkubation mit beiden Tas1r3-spezifischen Antikörpern resultiert in einer Immunfärbung der 
akrosomalen Sichel [A, E und C, G; Pfeilspitze]. Mit dem Tas1r3 M IgG ist außerdem eine Immun-
reaktivität im Flagellum des Rattenspermiums feststellbar [A, Tas1r3 M; Pfeil]. Durch eine Vorinkubation 
des Antikörpers mit seinem Blockierungspeptid [Tas1r3 M + BP] ist die Immunfärbung reduziert, es bleibt 
jedoch eine schwache Markierung des Flagellums [B; Pfeil] sowie des Akrosoms [B, F; Pfeilspitze] 
erhalten. Die sichelförmige Markierung des Spermienkopfes durch das Tas1r3 M IgG ([I], grün) zeigt eine 
starke Co-Lokalisation ([K], gelb-orange Farbe) mit dem Akrosomenmarker PNA ([J] rot). In den Kontroll-
ansätzen [D, H, L, Kontrolle] ist keine Immunreaktivität feststellbar. 
Dargestellt sind Überlagerungen der Phasenkontrastaufnahme und der Fluoreszenzkanäle ([A - H], grün: 
FITC; blau: Propidiumiodid) bzw. ([I-L] grün: FITC, rot: PNA) und Einzelfluoreszenzaufnahmen [I, J]. 
Die in den mittleren Bildern [D - F] vergrößert dargestellten Bereiche sind in den oberen Bildern [A - D] 
durch weiße Boxen gekennzeichnet. Der jeweils verwendete Primärantikörper und die entsprechende Co-
Färbung (PI: Zellkern; PNA: Akrosom) sind im Bild angegeben. 
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4.4.4 Analyse der Expression von Geschmacksrezeptoren der Tas1r-
Familie in humanen Spermien 

Um der Frage nachzugehen, ob die in Nagerspermien identifizierten Geschmacks-
rezeptoren der Tas1-Familie auch in Keimzellen des Menschen exprimiert werden und 

dort möglicherweise eine physiologische Funktion für eine erfolgreiche Reproduktion 
erfüllen könnten, wurde immuncytochemisch analysiert, ob auch in humanen Spermien 
Tas1-Rezeptoren nachzuweisen sind.  

Im Gegensatz zu der stark eingeschränkten Verfügbarkeit von funktionellen Antiseren 
zur Erkennung der Tas1-Rezeptoren von Nagern, stand für diese Analysen eine größere 
Auswahl verschiedener Subtyp-spezifischer Antiseren zur Detektion der Tas1r-Proteine 

des Menschen zur Verfügung. Um festzustellen, welche der vorliegenden Antiseren tat-
sächlich geeignet waren, humane Geschmacksrezeptoren spezifisch zu binden und 
nachzuweisen, wurden zunächst experimentelle Ansätze zur Validierung dieser Anti-

körper durchgeführt. Da für diese Untersuchungen kein humanes Geschmacksgewebe 
zur Verfügung stand, wurde die Antikörperqualität an heterolog exprimierten humanen 
Tas1-Rezeptorproteinen geprüft. Zur Gewinnung dieser Proteine wurden HEK293-

Zellen mit Tas1r-Konstrukten transfiziert, die zum besseren immunologischen Nach-
weis an eine kurze Peptidsequenz (tag) gekoppelt waren. Die stabil transfizierten Zellen 
und Plasmide der Tas1-Rezeptoren wurden von der Arbeitsgruppe von Prof. Dr. 

Wolfgang Meyerhof (DIfE, Potsdam) zur Verfügung gestellt. Zur heterologen 
Expression des Tas1r2 wurde ein Flag-gekoppeltes Tas1r2-Rezeptorkonstrukt 
verwendet, das transient in HEK293-Zellen transfiziert wurde und mit Hilfe eines anti-

Flag-Antikörpers nachgewiesen werden konnte. Die humanen Tas1r1 und Tas1r3-
Rezeptoren, die jeweils an eine Herpes-simplex-Virus-Peptidsequenz (HSV-tag) 
fusioniert waren, waren stabil in HEK293-Zellen transfiziert. Die Expression dieser 

HSV-gekoppelten Rezeptoren wurde durch Zugabe von Tetrazyklin ins Zellkultur-
medium induziert (siehe Abschnitt 3.3.1). 
In Einstiegsexperimenten wurde zunächst die heterologe Expression der Rezeptoren in 

immuncytochemischen (Daten nicht gezeigt) und Western Blot Analysen der Zelllinien 
verifiziert. Dazu wurden Proben nativer und transient transfizierter Zellen (Tas1r2) bzw. 
nicht-induzierter und Tetrazyklin-induzierter Zellen (Tas1r1, Tas1r3) mittels SDS-

PAGE aufgetrennt und auf eine Nitrocellulose-Membran übertragen. Der Nachweis der 
erfolgreichen Proteinexpression erfolgte anschließend mit spezifischen Antikörpern, die 
gegen das jeweilige Protein-tag gerichtet waren (Tas1r2: anti-Flag; Tas1r1, Tas1r3: 

anti-HSV); die Bindung der Primärantikörper wurde mit Hilfe des ECL-Verfahrens 
visualisiert. Um festzustellen, ob die Subtyp-spezifischen Tas1r-Antiseren die 
exprimierten Rezeptorproteine erkennen, wurde parallel geprüft, ob eine Inkubation mit 

den anti-Tas1r Antiseren im gleichen Bandenmuster resultierte, das auch mit den tag-
Antikörpern registriert wurde.  
In Abbildung 4.41 sind die Befunde dieser Untersuchungen zur Antikörper-Validierung 

exemplarisch zusammengefasst. Bei den Analysen konnte in den Zellen, in denen die 
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Tas1r1 Expression durch Tetrazyklin induziert ([+]) worden war, eine einzelne starke 
Bande mit einer Größe von ca. 90 kDa detektiert werden (Abbildung 4.41 [A], linker 
Blot [HSV]). Da das HSV-tag aufgrund seiner geringen Masse von ca. 1,3 kDa nur 

einen geringen Anteil an der Gesamtgröße des Fusionsproteins hat, stimmte diese 
beobachtete molekulare Masse sehr gut mit der berechneten Proteingröße des Tas1r1 
(93 kDa) überein. In HEK293-Zellen ohne Induktion der Rezeptorexpression ([-]) war 

keinerlei Reaktivität erkennbar (Abbildung 4.41 [A], linker Blot [HSV]), was auf eine 
hochspezifische Erkennung des Tas1r1-HSV Proteins durch den anti-HSV-Antikörper 
hindeutet.  

Erfreulicherweise ergab sich bei Verwendung eines Antiserums der Firma Acris, das 
gegen eine Peptidsequenz des humanen Tas1r1 gerichtet war und im Folgenden als 
Tas1r1 hA (human Acris) bezeichnet wird, ein fast identisches Bandenmuster: Während 

in den Zellen ohne Rezeptorexpression ([-]) keine Banden zu registrieren waren, war in 
den induzierten Tas1r1-exprimierenden Zellen ([+]) eine einzelne immunreaktive Bande 
mit der erwarteten Größe von ca. 90 kDa zu detektieren (Abbildung 4.41 [A], rechter 

Blot [Tas1r1]). Diese Übereinstimmung im Bandenmuster zwischen dem Antikörper 
gegen das Protein-tag (anti-HSV) und dem Subtyp-spezifischen Antiserum (Tas1r1 hA) 
zeigte eine sehr spezifische Bindung des Geschmacksrezeptors durch das Tas1r1 

Antiserum an.  
In den Zellen, die transient mit einem Tas1r2-Flag-Konstrukt transfiziert wurden, wurde 
die Effizienz der heterologen Rezeptorexpression mit Hilfe eines anti-Flag Antikörpers 

untersucht (Abbildung 4.41 [B], linker Blot [Flag]). Die Immunoblot-Ansätze der trans-
fizierten Zellen ([+]) zeigten zwei deutliche Proteinbanden mit einer Größe von ca. 
60 kDa und 90 kDa sowie einige weitere schwache Banden. In den nativen Zellen ([-]) 

war dagegen nur eine schwach immunreaktive Bande von ca. 60 kDa Größe zu 
registrieren (Abbildung 4.41 [B], linker Blot [Flag]), so dass von einer erfolgreichen 
Expression des Tas1r2-Flag Proteins in den transfizierten HEK293-Zellen ausgegangen 

wurde. Das exprimierte Rezeptorprotein wurde auch durch das Tas1r2 Antiserum 
(Tas1r2 hA, Acris) markiert (Abbildung 4.41 [B], rechter Blot [Tas1r2 hA]). Allerdings 
war mit diesem Antiserum auch eine intensive Bande einer Größe von ca. 130 kDa zu 

detektieren, die nicht nur in den transfizierten Zellen sondern auch in nativen HEK293-
Zellen zu beobachten war, so dass neben dem Tas1r2-Rezeptor möglicherweise auch 
noch andere Proteine durch das Tas1r2 hA Antiserum erkannt wurden. 

Vergleichbar zum Tas1r1 wurde auch beim HSV-gekoppelten Tas1r3 Rezeptor eine 
starke induzierte Proteinexpression beobachtet (Abbildung 4.41 [C und D], linke Blots 
[HSV]): In den Tetrazyklin-behandelten Zell-Proben ([+]) konnte nach Inkubation mit 

dem anti-HSV Antikörper eine einzelne intensive Bande von ca. 100 kDa registriert 
werden, während in den nicht-induzierten Zellen ([-]) keine immunreaktiven Banden zu 
detektieren waren.  

Eine Erkennung des Tas1r3-Rezeptors durch einen Subtyp-spezifischen humanen 
Tas1r3 Antikörper konnte in Immunoblots mit einem anti-Tas1r3 Antiserum der Firma 
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Acris (Tas1r3 hA) belegt werden (Abbildung 4.41 [C], rechter Blot [Tas1r3 hA]): Die 
Immunreaktivität des Tas1r3 hA Antiserums zeigte eine starke Übereinstimmung mit 
dem Markierungsmuster des HSV-Antikörpers, der zum Nachweis des Tas1r3-HSV 

Proteins eingesetzt wurde.  
Neben dem kommerziell erhältlichen Tas1r3 hA Antikörper wurde ein weiteres Tas1r3 
Antiserum erfolgreich zum Nachweis des Tas1r3 Proteins eingesetzt. Dieses Antiserum 

(Tas1r3 hM), das gegen die Aminosäuren 829 – 843 des humanen Rezeptors gerichtet 
war [Max et al., 2001], wurde freundlicherweise von R. Margolskee (Monell Chemical 
Senses Center, Philadelphia, USA) zur Verfügung gestellt. Die Anwendung dieses Anti-

serums im Immunoblot-Verfahren resultierte ebenfalls in einer intensiven Bande von ca. 
100 kDa (Abbildung 4.41 [D], rechter Blot [Tas1r3 hM]), die der Größe des 
exprimierten Tas1r3-HVS Proteins ([+]) entsprach. Allerdings waren zusätzlich zu 

dieser stark immunreaktiven Bande auch weitere, deutlich schwächere Banden 
auszumachen, die auch in den Zellen ohne Expression des Tas1r3-Rezeptors ([-]) 
detektiert werden konnten (Abbildung 4.41 [D], rechter Blot [Tas1r3 hM]), so dass 

neben der spezifischen Erkennung des Tas1r3 auch eine schwache Kreuzreaktivität 
dieses Antiserums mit anderen Proteinen vorlag.  
In weiteren Western Blot Analysen mit Antiseren der Firmen Genetex und Abnova 

(siehe Abschnitt 2.4.1), die ebenfalls gegen humane Tas1-Rezeptoren gerichtet waren, 
konnte im Gegensatz zu den zuvor beschriebenen Antiseren keine Bindung an die 
heterolog exprimierten Tas1-Rezeptoren detektiert werden (Daten nicht gezeigt). 

Demzufolge konnten diese Antiseren nicht für den Nachweis von Tas1-Rezeptoren in 
humanen Spermien verwendet werden.  
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Abbildung 4.41:  Kontrolle der Spezifität von humanen Tas1r Antikörpern im Western Blot. 
In stabil transfizierten HEK293-Zellen wurde durch Behandlung mit Tetrazyklin die Expression von HSV-
tag gekoppelten Tas1r1 bzw. Tas1r3 Proteinen induziert. Zur Validierung des Tas1r2 Antikörpers wurden 
native HEK293-Zellen [-] transient mit einem Flag-markierten Tas1r2 Konstrukt transfiziert [+]. Die Zellen 
wurden in 2 x Probenpuffer lysiert und anschließend auf einem 7%igen SDS-Polyacrylamidgel aufgetrennt, 
auf Nitrocellulose übertragen und mit den angegebenen Antikörpern inkubiert.  
[A] Nicht-induzierte Zellen [-] zeigen keine Immunreaktivität gegen das anti-HSV IgG [HSV] oder das 
Tas1r1 hA IgG [Tas1r1 hA]. Nach der Induktion der Rezeptorexpression [+] zeigt sich mit dem HSV-
Antikörper eine einzelne Bande der erwarteten Größe von ca. 90 kDa. Diese einzelne immunreaktive 
Bande ist auch mit dem Tas1r1 hA IgG zu detektieren. 
[B] In den nativen HEK293-Zellen [-] ist keine Immunreaktivität gegen das anti-Flag IgG zu erkennen 
[Flag]. Nach Transfektion mit dem Tas1r2 Konstrukt [+] treten immunreaktive Banden mit einer Größe von 
ca. 90 kDa und 60 kDa auf. Der anti-Tas1r2 hA Antikörper markiert in den nativen HEK293-Zellen eine 
Bande von ca. 130 kDa. In den transfizierten Zellen sind zusätzlich zu dieser immunreaktiven Bande noch 
weitere bei ca. 100 kDa, 70 kDa und 60 kDa Größe zu erkennen [Tas1r2 hA].  
[C] Die nicht-exprimierenden HEK293-Zellen [-] zeigen keine Immunmarkierung mit dem anti-HSV- und 
dem Tas1r3 hA Antikörpern [HSV; Tas1r3 hA]. In induzierten Zellen [+], die das Tas1r3-HSV Protein 
exprimieren, ist mit beiden Antikörpern eine einzelne immunreaktive Bande von ca. 100 kDa 
nachzuweisen. 
[D] Während der HSV-Antikörper nur in den Tas1r3-exprimierenden Zellen [+] eine einzelne Bande mit 
einer Masse von ca. 100 kDa detektiert [HSV], zeigt das anti-Tas1r3 hM IgG in beiden Proben ein 
schwaches, leiterartiges Bandenmuster [Tas1r3 hM]. Zusätzlich erscheint bei den induzierten Zellen [+] 
eine deutliche immunreaktive Bande, die im gleichen Größenbereich wie die HSV-positive Bande liegt. 

Um zu klären, welche der Tas1-Rezeptoren in männlichen Keimzellen des Menschen 
exprimiert werden, wurden die validierten Antiseren anschließend in immuncyto-

chemischen und Western Blot Analysen an humanen Spermien eingesetzt. Dazu wurden 
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Spermien durch ein „Swim-up“ Verfahren (Abschnitt 3.2.4.1) aus menschlichem 
Ejakulat gewonnen, auf Objektträger ausgestrichen, mit einer eiskalten Methanol/ 
Aceton-Mischung (1 : 1) fixiert und anschließend mit dem Tas1r1 hA Antiserum 

inkubiert. Die Antikörperbindung wurde mit einem FITC-gekoppelten Sekundär-
antikörper (grün) nachgewiesen und die Zellkerne durch eine Färbung mit Propidium-
iodid visualisiert (in blau dargestellt).  

Interessanterweise resultierte die Inkubation mit dem Tas1r1 Antiserum in den 
isolierten humanen Spermien sowohl in einer Markierung des Flagellums als auch des 
Spermienkopfes (Abbildung 4.42 [A-B]). In Abbildung 4.42 sind zwei exemplarische 

Beispiele dieser Tas1r1-Immunfärbung dokumentiert: Während der distale Teil des 
Spermienschwanzes nur eine schwache Färbung zeigte, war im Mittelstück und der 
Halsregion eine starke Markierung des Flagellums auszumachen (Abbildung 4.42 [A 

und B], Pfeil). Die intensive Immunreaktivität des Flagellums im Halsbereich ging im 
Spermienkopf in die postakrosomalen Region über und reichte bis an das Äquatorial-
segment heran (Abbildung 4.42 [F], Pfeil). In Blockierungsexperimenten, in denen das 

Antiserum mit seinem immunogenen Peptid zusammen inkubiert wurde, war keine 
Immunreaktivität mehr nachweisbar (Abbildung 4.42 [C und G]), wodurch die 
Spezifität der Erkennung des Tas1r1 in humanen Spermien belegt werden konnte.  

 

Abbildung 4.42:  Immuncytochemische Untersuchung der subzellulären Lokalisation des Tas1r1 
Rezeptors in humanen Spermien. 

Fixierte humane Spermien wurden mit dem Tas1r1 hA Antiserum (1:100) [Tas1r1 hA] bzw. mit dem 
Antiserum und dem entsprechenden Blockierungspeptid (fünffach konzentriert) [Tas1r3 hA + BP] inkubiert. 
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Die Bindung des Primärantikörpers wurde durch FITC-gekoppelte anti-Kaninchen IgG (1 : 750, grün) 
nachgewiesen. Im Anschluss wurde der Zellkern durch eine kurze Inkubation (15 sec) mit Propidiumiodid 
([PI], blau) gefärbt. Bei Inkubation mit dem anti-Tas1r1 Antiserum zeigt sich eine deutliche Markierung des 
Flagellums, die im Hals- und Mittelstück am stärksten ausgeprägt ist [A, B, E, F; Pfeil]. Im Bereich des 
Spermienkopfes ist die Tas1r1 Immunreaktivität im Äquatorialsegment und im postakrosomalen Bereich 
lokalisiert [F, Pfeilspitze]. Durch Vorinkubation des Antikörpers mit seinem immunogen Peptid 
[Tas1r1 hA + BP] lässt sich die Immunreaktivität komplett aufheben [C, G]. Im Kontrollansatz [Kontrolle], 
der nur mit dem Sekundärantikörper inkubiert wurde, ist keine Immunreaktivität erkennbar. 
Dargestellt sind Überlagerungen der Fluoreszenzkanäle (grün: FITC; blau: PI) mit einer Phasenkontrast-
aufnahme [A - H], sowie eine einzelne Aufnahme des grünen Fluoreszenzsignals [I - L]. Der markierte 
Bereich der oberen Bilderreihe ist in den unteren zwei Reihen vergrößert gezeigt. 

Da das Verfahren des Western Blottings es erlaubt, durch die Bestimmung der 

molekularen Größe eines Proteins Rückschlüsse auf dessen Identität zu ziehen, wurde 
diese Technik eingesetzt, um den immuncytochemischen Nachweis des Tas1r1 Proteins 
in humanen Spermien zu verifizieren.  

Um eine ausreichende Menge des Geschmackrezeptorproteins einzusetzen, wurden für 
diese Untersuchungen grobe Membranfraktionen (P2-Fraktionen) aus homogenisierten 
Spermien verwendet (Abbildung 4.43 [A]), die sich durch eine Anreicherung von 

membranständigen Proteinen auszeichnen. In Parallelansätzen wurde zudem das 
heterolog exprimierte Tas1r1-HSV Protein aufgetrennt und analysiert, um die Spezifität 
der Antikörperreaktion sicherzustellen (Abbildung 4.43 [B]).  

In den Immunoblots mit Proteinpräparationen der humanen Spermien [Sp] war, wie 
auch in den Ansätzen mit Tas1r1-exprimierenden Zellen [HEK R1], eine einzelne 
immunreaktive Bande zu detektieren (Abbildung 4.43). Beim Vergleich der 

molekularen Größe der detektierten Proteine fiel jedoch ein deutlicher Unterschied 
zwischen den Spermienpräparationen und den heterolog exprimierenden Zellen auf: 
Während in den Tas1r1-positiven Zellen eine Bande mit der für den Tas1r1 erwarteten 

Größe von 90 kDa markiert wurde (Abbildung 4.43 [B], [AK]), war das in den 
Spermienproben detektierte Protein mit ca. 55 kDa deutlich kleiner (Abbildung 4.43 
[A], [AK]). In experimentellen Ansätzen, in denen das Antiserum mit seinem 

korrespondierenden Peptid vorinkubiert wurde, konnte die Immunreaktivität in beiden 
Zell-Präparationen allerdings vollständig blockiert werden [AK + BP], was auf eine 
spezifische Erkennung des Antigens in beiden Proben hindeutet (Abbildung 4.43).  

Interessanterweise finden sich in der NCBI-Datenbank neben der „klassischen“ langen 
Tas1r1-Sequenz (ca. 90 kDa) auch kürzere Tas1r1-Isoformen: So konnte bereits eine 
Isoform bestätigt werden, die nur 65 kDa groß ist (Isoform c, Accession Nummer 

NP_803884.1). Eine weitere Isoform mit einer Größe von 52 kDa wurde ebenfalls 
zwischenzeitlich beschrieben (NM_177539.1), diese konnte jedoch bislang nicht 
bestätigt werden. Bei dem deutlich kleineren Protein in den Spermienpräparationen 

könnte es sich demnach um eine verkürzte, eventuell Keimzell-spezifische Isoform des 
Tas1r1 handeln. 
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Abbildung 4.43:  Western Blot Analyse der Tas1r1 Expression in humanen Spermien und 
transfizierten HEK293-Zellen. 

Es wurden Membranpräparationen (P2-Fraktionen) von humanen Spermien [Sp] und Totalfraktionen von 
stabil transfizierten HEK293 Zellen [HEK R1] mittels SDS-Gelelektrophorese aufgetrennt, auf eine 
Nitrocellulose-Membran übertragen, welche anschließend mit dem anti-Tas1r1 hA Antikörper [AK] bzw. mit 
dem Antikörper und dem korrespondieren Blockierungspeptid [AK + BP] inkubiert wurde.  
[A] Das Tas1r1 Antiserum markiert in der Spermienpräparation [Sp] eine deutliche Bande von ca. 55 kDa 
Größe; zudem wird eine sehr schwache Bande bei ca. 70 kDa detektiert [AK]. Die Immunreaktivität wird 
durch Prä-Inkubation des Antiserums mit dem immunogenen Peptid komplett blockiert [AK+BP]. 
[B] In Proben von Tas1r1-exprimierenden Zellen [HEK R1] wird durch das anti-Tas1r1 A Antiserum 
ebenfalls eine einzelne Bande erkannt, deren Größe bei ca. 90 kDa liegt [AK]. Durch Vorinkubation des 
Antikörpers mit seinem immunogenen Peptid wird die Immunmarkierung vollständig unterdrückt [AK + BP]. 

In immuncytochemischen Analysen mit dem Tas1r2 hA Antiserum an humanen 

Spermien konnte im Gegensatz zu den Befunden mit dem Tas1r1-spezifischen 
Antikörper keine Immunreaktivität detektiert werden. Humane Spermien, die mit dem 
Tas1r2 Antiserum inkubiert wurden (Abbildung 4.44 [A und D]), zeigten, wie auch die 

parallel durchgeführten Blockierungsansätze ([B und E]) und Kontrollpräparate ohne 
Primärantikörper [C und F] keinerlei grüne Immunfluoreszenz. In den Ansätzen war 
lediglich die DNA-Färbung des Kerns durch Propidiumiodid ([PI], blau dargestellt) zu 

registrieren (Abbildung 4.44 [A und D]), so dass eine Expression dieses Rezeptors in 
menschlichen Spermien unwahrscheinlich erscheint. 
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Abbildung 4.44:  Expressionsanalyse des Tas1r2 in humanen Spermien. 
Methanol/Aceton-fixierte humane Spermien wurden mit einem Tas1r2 Antiserum (1:100) [Tas1r2 hA] 
inkubiert und die Antikörperbindung mit Hilfe eines FITC-gekoppelten Sekundärantikörper (1 : 750, grün) 
visualisiert. Im Anschluss wurde der Zellkern mit Propidiumiodid (10 µg/ml; 15 sec) ([PI], blau) gefärbt. Der 
Tas1r2 Antikörper zeigt keine Immunreaktivität in humanen Spermien, es ist nur die blaue Färbung des 
Zellkerns zu erkennen [A, D; Tas1r2 hA]. Auch bei Vorinkubation des Antikörpers mit dem 
korrespondierenden Peptid [B, E; Tas1r2 hA + BP] und im Kontrollansatz ohne Primärantikörper [C, F; 
Kontrolle] ist keine Immunmarkierung zu erkennen.  
Dargestellt sind Überlagerungen der Fluoreszenzkanäle (grün: FITC; blau: PI) mit einer Phasenkontrast-
aufnahme. Der markierte Bereich der oberen Bilderreihe ist in den unteren zwei Reihen vergrößert 
gezeigt. 

Im Anschluss wurde die Proteinexpression des Tas1r3, der in Geschmackssinneszellen 

als essentieller Dimerisierungspartner der beiden zuvor beschriebenen Rezeptoren an 
der Detektion von Geschmacksstoffen beteiligt ist, in humanen Spermien untersucht. 
Abbildung 4.45 fasst die Befunde dieser immuncytochemischen Analysen mit den 

validierten Tas1r3 hA und dem Tas1r3 hM Antiseren zusammen. Nach Inkubation 
isolierter humaner Spermien mit dem Tas1r3 hA Antiserum war in einigen Zellen eine 
Immunreaktivität des Äquatorialsegments zu registrieren (Abbildung 4.45 [E], 

Pfeilspitze). Es waren aber einzelne Zellen vorhanden, die keine Immunmarkierung 
aufwiesen (Abbildung 4.45 [A], Pfeil). Nach einer Prä-Inkubation des Antiserums mit 
seinem antigenen Peptid war die Immunreaktivität im Äquatorialsegment zwar nicht 

gänzlich verschwunden, aber deutlich gemindert (Abbildung 4.45 [F], Pfeilspitze).  
Unter Verwendung des Tas1r3 hM Antiserums ist eine etwas stärker ausgeprägte 
Immunreaktivität in den Keimzellen zu detektieren: Die Antikörper-Inkubation 

resultierte in einer Immunfärbung der akrosomalen Kappe der Spermien (Abbildung 
4.45 [C, G, K], Pfeilspitze). Außerdem war eine Markierung des Übergangsstücks am 
Ansatz des Flagellums sowie des gesamten Spermienschwanzes zu registrieren 

(Abbildung 4.45 [C und D], Pfeile). Die Immunreaktivität des Tas1r3 hM Antiserums 
ließ sich durch Vorinkubation mit dem korrespondierenden Peptid ebenfalls reduzieren, 
jedoch nicht vollständig blockieren (Abbildung 4.45 [D, H, L]): Vor allem die Immun-

färbung im Akrosom war in den Blockierungsexperimenten deutlich vermindert, 
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während das Flagellum nur eine leichte Abschwächung seines Immunsignals zeigte 
(Abbildung 4.45 [D], Pfeil). 

 

Abbildung 4.45:  Immuncytochemische Analyse der Tas1r3 Expression in humanen Spermien. 
Humane Spermien wurden mit zwei verschiedenen Tas1r3-spezifischen Antiseren ([Tas1r3 hA] und 
[Tas1r3 hM]) immunhistochemisch untersucht. Zur Überprüfung der Spezifität wurde der Tas1r3 hA 
Antikörper in Blockierungsexperimenten mit seinem korrespondierenden Peptid vorinkubiert. Der Kontroll-
ansatz [Kontrolle] wurde nur mit dem Sekundärantikörper behandelt.  
Bei Inkubation mit dem anti-Tas1r3 hA IgG [Tas1r3 hA] war eine grüne Markierung des Äquatorial-
segments im Kopf auszumachen [A, E, I; Pfeil]. Einzelne Spermien wiesen hingegen keine Immun-
reaktivität auf [A, Pfeil]. Die Immunmarkierung des Tas1r3 hA lässt sich durch eine Peptid-Präinkubation 
blockieren [B, F, J; Tas1r3 hA + BP; Pfeil]. Das Tas1r3 hM Antiserum [Tas1r3 hM] zeigt eine etwas 
stärkere Immunreaktivität und färbt das gesamte Akrosom [A, G, K; Pfeilspitze], das Übergangsstück 
sowie das Flagellum [A, G, K; Pfeil]. Die Immunreaktivität im Kopfbereich lässt sich durch Vorinkubation 
des Antikörpers mit dem immunogenen Peptid [Tas1r3 hM + BP] blockieren [H, L], während die 
Immunmarkierung des Flagellums nur leicht reduziert wird [D; Pfeil]. 
Dargestellt sind Überlagerungen der Fluoreszenzkanäle (grün: FITC; blau: PI) mit einer Phasenkontrast-
aufnahme [A - H] sowie eine einzelne Aufnahme des grünen Fluoreszenzsignals [I - L]. Die verwendeten 
Antikörper sind in jedem Bild angegeben. 

Um die Größe des immunreaktiven Proteins zu bestimmen, das durch das Tas1r3 hA 
Antiserum erkannt wird, wurden anschließend Immunoblot-Analysen mit P2-Protein-
fraktionen humaner Spermien durchgeführt. In diesen experimentellen Ansätzen war in 

den Spermien-Präparationen eine einzelne Bande mit einer Größe von ca. 140 kDa zu 
registrieren (Abbildung 4.46 [A], [AK]), die nach einer Co-Inkubation mit dem 
antigenen Peptid vollständig verschwunden war (Abbildung 4.46 [A], [AK+ BP]). Im 

Vergleich mit dem heterolog exprimierten Tas1r3-HSV Protein (Abbildung 4.46 [B], 



160 Ergebnisse 

[AK]), welches eine molekulare Masse von ca. 110 kDA aufwies, wird jedoch auch in 
diesen Western Blot Analysen eine Abweichung der Masse des Rezeptorproteins in 
Keimzellen zur erwarteten Größe offensichtlich. Da die Peptidblockierbarkeit beider 

Western Blot Banden auf eine spezifische Erkennung des antigenen Peptids hindeutet 
und keine Hinweise für eine unspezifische Kreuzreaktivität vorlagen, könnte diese 
größere Proteinmasse möglicherweise durch alternatives Splicing des Tas1r3 [Max et 

al., 2001; Kiuchi et al., 2006], posttranslationale Modifikationen oder auch einen 
unlöslichen Komplex mit einem anderen Protein bedingt sein.  

 

Abbildung 4.46:  Nachweis des Tas1r3 Proteins in Membranpräparationen humaner Spermien.  
Es wurden Membranpräparationen (P2-Fraktionen) von humanen Spermien [Sp] und Totalfraktionen von 
stabil transfizierten HEK293-Zellen [HEK R3] mittels SDS-Gelelektrophorese aufgetrennt, auf 
Nitrocellulose übertragen und anschließend mit dem anti-Tas1r3 hA Antikörper [AK] bzw. mit dem 
Antikörper und dem korrespondieren Blockierungspeptid [AK + BP] inkubiert.  
[A] Das Tas1r3 hA Antiserum detektiert in der Spermienprobe [Sp] eine einzelne Bande von ca. 140 kDa 
Größe [AK]. Die Immunreaktivität wird durch Vorinkubation mit dem korrespondierenden Peptid komplett 
unterbunden [AK + BP]. 
[B] In Präparationen von HEK293-Zellen, die das Tas1r3 Protein exprimieren [HEK R3], wird durch das 
anti-Tas1r3 hA Antiserum eine einzelne Bande der erwarteten Größe von ca. 110 kDa erkannt. Durch 
Vorinkubation des Antikörpers mit seinem immunogenen Peptid wird diese Immunmarkierung ebenfalls 
vollständig eliminiert [AK + BP]. 

Durch die Befunde der vorangehend beschriebenen experimentellen Ansätze konnte 

gezeigt werden, dass Mitglieder der Tas1-Familie von Geschmacksrezeptoren im männ-
lichen Keimdrüsengewebe und in isolierten Spermien von Nagern und des Menschen 
exprimiert werden. Während der Tas1r2 Rezeptor, der auf der Zunge zusammen mit 

dem Tas1r3 an der Detektion süßer Geschmacksstoffe beteiligt ist, in diesen Analysen 
weder auf RNA-Ebene noch als Protein im männlichen Reproduktionsgewebe nach-
weisbar war, konnte eine Expression der beiden Rezeptoren, die auf der Zunge den 

Umami-Rezeptor formen, im Hoden der Maus sowie in murinen und humanen 
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Spermien belegt werden. Die subzelluläre Lokalisation des Tas1r1 und des Tas1r3 im 
Akrosom und Äquatorialsegment des Spermienkopfes könnte auf eine Beteiligung am 
Prozess der akrosomalen Exocytose oder der Fusion mit der Eizelle hindeuten. 

Gleichzeitig waren die Rezeptoren aber auch im Spermienflagellum lokalisiert, so dass 
sie möglicherweise auch in die erfolgreiche Wegfindung des Spermiums zur Eizelle 
involviert sein könnten. Im weiteren Verlauf der Untersuchungen sollte deshalb geklärt 

werden, welche physiologische Funktion Tas1-Rezeptoren in Spermien erfüllen. 

4.5 Reproduktionsbiologische Charakterisierung eines 
Tas1r1-defizienten Mausmodells 

Um der Frage nachzugehen, an welchen physiologischen Prozessen die in Spermien 
identifizierten Mitglieder des Umami-Rezeptors, Tas1r1 und Tas1r3, beteiligt sein 
könnten, wurden die Auswirkungen eines Fehlens des Tas1r1 Rezeptors auf das männ-

liche Reproduktionssystem anhand eines genetisch modifizierten Mausmodells in vivo 
untersucht. Dabei wurde eine Tas1r1 mCherry Reportermauslinie verwendet, die analog 
zur vorangehend beschriebenen Tas2r131 GFP Mauslinie (Abschnitt 4.3.3) durch die 

Arbeitsgruppe von Prof. Wolfgang Meyerhof ([DIfE], Potsdam) generiert wurde. Die 
genetische Veränderung dieser Mauslinie resultiert im Verlust des Tas1r1 Proteins; 
stattdessen wird das rote Fluoreszenzprotein mCherry unter Kontrolle des Tas1r1-

Promotors exprimiert (siehe Abschnitt 3.6.2). Damit ergibt sich, wie in der Tas2r131 
GFP Mauslinie, zum einen die Möglichkeit, die Expression des Tas1r1 Rezeptors 
unabhängig von der Verfügbarkeit funktioneller Antikörper zu analysieren. Zum 

anderen kann in diesem Modell der Effekt der Rezeptordefizienz direkt untersucht 
werden, um Rückschlüsse auf die physiologische Rezeptorfunktion in Spermien ziehen 
zu können. 

4.5.1 Analyse der Tas1r1 Expression unter Verwendung einer Tas1r1 
mCherry Reportermaus 

Da aufgrund des Fehlens eines spezifischen Antikörpers die Expression des Tas1r1 
Rezeptors in murinem Gewebe zuvor nur in RT-PCR Analysen mit cDNA aus Hoden-

gewebe nachgewiesen werden konnte, sollte die Tas1r1 mCherry Mauslinie vor Beginn 
der funktionellen Analysen zunächst genutzt werden, um die Befunde der PCR-
Analysen zu verifizieren und gleichzeitig die Lokalisation der Tas1r1-Expression im 

Hoden festzustellen.  
Um sicherzustellen, dass genug Fluoreszenzprotein translatiert wird, um dieses bei einer 
spezifischen Anregung mit einem Laser (543 nm) detektieren zu können, wurden in 

Einstiegsexperimenten zunächst Geschmackspapillen homozygoter Tas1r1 mCherry 
Mäuse (Tas1r1 mCherry Ki) auf ein rotes Fluoreszenzsignal hin untersucht. Abbildung 
4.47 zeigt exemplarisch die Befunde dieser Analysen an Gefrierschnitten einer Pilz-
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papille. In zwei Zellen der dargestellten Geschmacksknospe war nach Laseranregung 
eine spindelförmige rote Fluoreszenzmarkierung zu registrieren (Abbildung 4.47 [A und 
E], Pfeil); das umgebende Bindegewebe zeigte hingegen kein mCherry-Signal 

(Abbildung 4.47 [A]). Um zu prüfen, ob es sich bei den mCherry-positiven Zellen 
tatsächlich um Geschmackssinneszellen handelte, wurden Co-Färbungen mit Antiseren 
durchgeführt, die gegen das gustatorische G Protein α-Gustducin bzw. den Tas1r3 

Rezeptor gerichtet waren, der zusammen mit dem Tas1r1 den Umami-Rezeptor formt. 
Die Inkubation mit dem anti-Tas1r3 Antiserum resultierte in einer Färbung einzelner 
Sinneszellen der angeschnittenen Papille (Abbildung 4.47 [B und F], Pfeilspitze). Eine 

Überlagerung der mCherry- und FITC-Fluoreszenzaufnahmen mit der entsprechenden 
Phasenkontrastaufnahme (Abbildung 4.47 [C und und G]) machte deutlich, dass die 
registrierten roten und grünen Fluoreszenzsignale denselben Zellen zuzuordnen waren. 

Diese Co-Expression des mCherry Proteins mit dem Tas1r1-Dimerisierungspartner 
Tas1r3 belegt, dass das Reporterprotein spezifisch in den Zellen nachzuweisen ist, in 
denen im Wildtyp der Umami-Rezeptor exprimiert wird. Beim Vergleich der 

subzellulären Verteilung der Fluoreszenzsignale war aber auch erkennbar, dass die 
Fluoreszenz des überwiegend cytosolischen mCherry Proteins nicht mit der membran-
ständigen Immunreaktivität des Tas1r3 übereinstimmte, sondern von dieser 

umschlossen wurde (Abbildung 4.47 [G]). Aufgrund der Diskrepanz zwischen der 
subzellulären Verteilung des Reporterproteins (mCherry) und der physiologischen 
Lokalisation des ersetzten Geschmacksrezeptors (Tas1r1), die auch in der Tas2r131 

GFP Mauslinie beobachtet wurde, konnte deshalb in der verwendeten Reporter-
mauslinie nur das zelluläre Expressionsmuster des Tas1r1 im Gewebe, nicht aber die 
subzelluläre Verteilung des Rezeptors untersucht werden. 

Durch immunhistochemische Co-Färbungen der Pilzpapille einer Tas1r1 mCherry Ki 
Maus mit einem anti-Gustducin Antiserum konnte zudem gezeigt werden, dass Zellen, 
die sich durch eine mCherry-Fluoreszenz auszeichneten, wie erwartet auch eine 

Gustducin-Immunmarkierung aufwiesen (Abbildung 4.47 (D und H], gelbes Über-
lagerungssignal). Somit konnte bestätigt werden, dass das Tas1r1-Reporterprotein 
mCherry tatsächlich spezifisch in Geschmackssinneszellen exprimiert wurde und in 

Gewebeschnitten erfolgreich fluoreszenzmikroskopisch detektiert werden konnte. 
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Abbildung 4.47:  Nachweis des Tas1r1 Reporterproteins mCherry und des Tas1r3 Rezeptorproteins 
in Pilzpapillen. 

Gefrierschnitte von fungiformen Papillen einer Tas1r1 mCherry Knockin-Maus wurden mit einem anti-
Tas1r3 A IgG (1 : 200) bzw. einem anti-Gustducin Antiserum (1 : 500) inkubiert und anschließend wurde 
die Antikörperbindung mit Hilfe FITC-gekoppelter anti-Kaninchen IgG (1 : 750, grün) nachgewiesen. Das 
mCherry Protein wurde durch Anregung mit einem Laser (543 nm) visualisiert. 
In einzelnen Sinneszellen der Geschmacksknospe ist eine mCherry-Fluoreszenz ([mCherry], rot) zu 
detektieren [A, E]. Dieselben Zellen zeigen auch eine Immunreaktivität gegen das Tas1r3 Antiserum [B, F; 
Tas1r3]. Die Immunmarkierung des Tas1r3 Membranproteins umschließt die eher zentral gelegene 
mCherry-Fluoreszenz, so dass kaum eine direkte Co-Lokalisation (gelb) zu erkennen ist [C, G; mCherry + 
Tas1r3]. Die Co-Färbung mit α-Gustducin zeigt eine starke Übereinstimmung mit der mCherry-
Fluoreszenz ([D, mCherry + Gustducin], gelb, Pfeil). Es sind auch einzelne Gustducin-positive Zellen zu 
erkennen, die kein mCherry exprimieren ([H], grün, Pfeilspitze). Dargestellt sind einzelne Fluoreszenz-
signale (mCherrry: [A, E], FITC: [B, F]) bzw. Überlagerungen der Fluoreszenz- mit den jeweiligen 
Phasenkontrastaufnahmen [C, D, G, H]. Die Boxen in [A - D] sind in [E - H] vergrößert gezeigt. 

Um die Befunde einer testikulären Tas1r1 Expression (siehe Abbildung 4.32) zu 
verifizieren und gleichzeitig zu prüfen, in welchen Zellstadien der Rezeptor im Keim-

drüsengewebe exprimiert wird, wurde anschließend die mCherry-Fluoreszenz in 
Gefrierschnitten des Hodens einer homozygoten Tas1r1 mCherry Maus untersucht.  
In den Hodenschnitten der Tas1r1 mCherry Ki Maus war nach Anregung der mCherry-

Fluoreszenz in allen angeschnittenen Tubuli ein rotes Fluoreszenzsignal zu registrieren 
(Abbildung 4.48 [A-C]). Bei Betrachtung des in [D - F] vergrößert dargestellten Hoden-
kanälchens wurde deutlich, dass das mCherry Signal nicht gleichmäßig im Keimepithel 

verteilt war, sondern dass das Protein erst im Verlauf der Keimzellreifung exprimiert 
wurde. Während in den basalen spermatogonialen Zellschichten keine rote Fluoreszenz 
auszumachen war, zeigten Spermatocyten ein schwaches Fluoreszenzsignal. In den 

späten Stadien der Spermatogenese wurde dann eine intensive rote Fluoreszenz des 
mCherry Proteins in Spermatiden sichtbar (Abbildung 4.48 [E-G]), was auf eine starke 
Aktivität des Tas1r1 Promotors und damit eine Expression des Rezeptors im Hoden von 

Wildtyp-Tieren hindeutet.  
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Abbildung 4.48:  Analyse der mCherry-Fluoreszenz im Hoden der Tas1r1 mCherry Maus. 
Hodengewebe einer Tas1r1 mCherry [-/-] Maus wurde zunächst fixiert, anschließend wurden Gefrier-
schnitte hergestellt, die mikroskopisch auf ihre mCherry-Fluoreszenz (rot) untersucht wurden. 
In allen Tubuli der untersuchten Hoden ist eine rote mCherry-Fluoreszenz, die eine Tas1r1 Promotor-
aktivität nachweist, zu registrieren [A, E; mCherry]. Das mCherry Protein tritt in den basalen Keimzell-
schichten kaum auf; die Expression beginnt erst in den Tubuli-Bereichen, in denen späte Spermatocyten 
reifen, und ist in den luminal gelegenen Spermatiden [C, G; mCherry + Ph] am intensivsten ausgeprägt. 
Gezeigt sind jeweils eine Aufnahme der mCherry-Fluoreszenz [A, E, mCherry], eine Phasenkontrast-
aufnahme [B, F; Ph] und eine Überlagerung der beiden Aufnahmen [C, G; mCherry + Ph]. Der 
exemplarisch umrandete Tubulus in [A - C] ist in [E - G] vergrößert dargestellt.  

Diese starke Expression in späten Keimzellschichten ist besonders interessant, da 
Spermien transkriptionell und translational kaum aktiv sind [Vogt, 2004]. Das bedeutet, 

dass funktionell aktive Proteine – im Gegensatz zu anderen Geweben – nicht 
kontinuierlich von Spermienzellen synthetisiert werden, sondern schon im Verlauf der 
Spermatogenese gebildet werden. Somit ist selbst bei Proteinen, die eine essentielle 

Funktion in Spermien erfüllen, keine Promotoraktivität in reifen Spermien zu erwarten, 
da die Proteinbiosynthese bereits während der Keimzellreifung stattgefunden hat. Das 
verwendete Tas1r1 mCherry Mausmodell, das auf dem Nachweis genau dieser 

Promotoraktivität beruht, ist demnach nicht geeignet, um direkt zu untersuchen, ob das 
Rezeptorprotein auch in reifen Spermien exprimiert wird. Da es sich beim mCherry 
Protein und dem Geschmacksrezeptor außerdem um zwei völlig unabhängige Proteine 

handelt, die sich in ihrer Lokalisation, Größe und Funktion gänzlich unterscheiden, 
kann die mCherry-Fluoreszenz in Spermien ebenfalls keine Auskunft darüber geben, ob 
und wo das Tas1r1 Rezeptorprotein in den reifen Keimzellen vorkommt. Die intensive 

Fluoreszenz des mCherry Proteins in den späten Stadien der Spermatogenese, während 
der die Proteinausstattung der reifen Spermien festgelegt wird, belegt jedoch, dass der 
Tas1r1 in diesen Phasen stark exprimiert wird, was auf ein Vorhandensein des 

Rezeptors auch in reifen Spermien hindeutet. 
Da der Tas1r1 Rezeptor im Geschmackssystem als Dimer mit dem Tas1r3 funktionell 
aktiv ist, wurde in weiteren experimentellen Ansätzen geprüft, ob die beiden Proteine 
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des Glutamat-Rezeptors der Zunge auch im Keimdrüsengewebe gemeinsam exprimiert 
werden. Um das Expressionsmuster beider Rezeptoren im Hoden vergleichen zu 
können, wurden testikuläre Gefrierschnitte einer Tas1r1 mCherry Ki Maus mit einem 

Tas1r3 Antiserum inkubiert. Die Bindung des Primärantikörpers erfolgte anschließend 
durch FITC-gekoppelte anti-Kaninchen IgG, das mCherry Protein wurde durch Laser-
Anregung mit einer Wellenlänge von 543 nm visualisiert. 

In Kontrollansätzen, die ohne Primärantikörper inkubiert wurden, war nur eine rote 
mCherry-Fluoreszenz in den Tubuli zu registrieren (Abbildung 4.49 [B]). Die 
Behandlung mit dem Tas1r3 M Antiserum resultierte, vergleichbar zu Abbildung 4.34, 

in einer grünen Immunfärbung des Keimepithels der angeschnittenen Tubuli seminiferi 
(Abbildung 4.49 [A]). Beim Vergleich der roten und grünen Fluoreszenzsignale in den 
vergrößert gezeigten Tubuli wurde deutlich, dass das Tasr1r3 Protein in den Keimzell-

stadien zu finden war, die auch eine mCherry-Fluoreszenz aufwiesen (Abbildung 4.49 
[C-E]). Wie bereits im Zungengewebe beschrieben (Abbildung 4.49 [C]), fiel aber auch 
in diesen Analysen auf, dass die zwei unterschiedlichen Fluoreszenzsignale zwar in den 

gleichen Zellen zu registrieren waren, aber keine subzelluläre Überlappung zeigten: 
Während die Tas1r3 Immunreaktivität überwiegend membranständig bzw. in den sich 
entwickelnden sichelförmigen Akrosomen (Pfeilspitzen) konzentriert war, war das 

mCherry Protein relativ gleichmäßig im Cytoplasma der Keimzellen verteilt (Abbildung 
4.49 [C-E]). 

 

Abbildung 4.49:  Co-Färbung von Tas1r3 und mCherry im Hoden Tas1r1-defizienter Tiere. 
Gefrierschnitte des Hodens einer Tas1r1 mCherry Reportermaus wurden mit dem Tas1r3 M Antiserum 
[Tas1r3] inkubiert und anschließend wurde der Primärantikörper durch ein FITC-gekoppeltes anti-
Kaninchen IgG (rot) visualisiert. 
Die rote Fluoreszenz des mCherry Proteins ist in allen angeschnittenen Tubuli auszumachen und in den 
luminalen, reifen Spermienvorläuferzellen (Spermatiden) stark angereichert, während in den basalen 
Keimzellschichten keine Fluoreszenz zu detektieren ist. Die Tas1r3 Immunreaktivität ist ebenfalls in allen 
Tubuli nachzuweisen und in den gleichen Entwicklungsstadien lokalisiert, wie das Tas1r1 Reporterprotein 
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mCherry [mCherry + Tas1r3]. Die Tas1r3 Immunmarkierung umschließt die mCherry-Fluoreszenz [C - E] 
und ist in einzelnen Tubuli in sichelförmigen Strukturen konzentriert [C, E; Pfeilspitzen]. In Kontroll-
ansätzen, in denen kein Primärantikörper eingesetzt wurde [B], ist keine Tas1r3 Immunreaktivität 
detektierbar. 
Die gezeigten Bilder wurden durch Überlagerung der beiden Fluoreszenzkanäle (rot: mCherry; grün: 
Tas1r3 Immunreaktivität) mit einer Phasenkontrastaufnahme erzeugt. Die in [A] umrandeten Tubuli sind in 
[C - E] von links nach rechts vergrößert dargestellt. 

Da für die Tas2r131 GFP Mauslinie bereits beobachtet wurde, dass das funktionslose 

cytoplasmatische Reporterprotein GFP während der Passage durch den Nebenhoden aus 
den Spermien ausgeschleust wurde, wurde im Folgenden untersucht, ob eine solche 
Auslagerung des unphysiologischen Markerproteins auch in Spermien der Tas1r1 

mCherry Reportermauslinie stattfindet. Abbildung 4.50 zeigt Gefrierschnitte des Caputs 
und des caudalen Teils des Nebenhodens einer homozygoten Tas1r1 mCherry Maus, die 
zur Visualisierung der Zellkerne mit dem DNA-Marker TO-PRO-3 gegengefärbt 

wurden. Um die Sensitivität der mCherry Detektion zusätzlich zu erhöhen, wurde das 
Protein durch einen DsRed-Antikörper markiert und mit einem Fluoreszenz-
gekoppelten Sekundärantikörper nachgewiesen.  

Im Lumen der gezeigten Nebenhodenabschnitte waren dichtgedrängte Spermien zu 
erkennen. In den Gewebsschnitten war das rote mCherry Signal überwiegend auf dieses 
Tubuluslumen beschränkt; im Gangepithel war keine rote Fluoreszenz zu detektieren 

(Abbildung 4.50 [A] und [E]). Die mCherry Immunreaktivität im Lumen war 
interessanterweise nicht gleichmäßig in den Spermien verteilt. Es fielen vielmehr, wie 
auch in den Nebenhodenschnitten homozygoter Tas2r131 GFP Mäuse (siehe auch 

Abbildung 4.21), große Agglomerate des Reporterproteins auf (Abbildung 4.50 [D und 
H]). Die Ansammlungen des Fluoreszenzproteins könnten Cytoplasmic Droplets, in 
denen Cytoplasma und nicht-benötigte cytoplasmatische Proteine aus den reifenden 

Spermien ausgeschleust werden [Cooper, 2005], repräsentieren.  
Diese Akkumulation und Auslagerung des mCherry Proteins aus den Spermien führte 
zu der Frage, ob das Markerprotein vollständig aus den Zellen entfernt wird, oder ob 

Reste des Fluoreszenzproteins in Spermien zurückbleiben. Um zu prüfen, ob in reifen 
männlichen Keimzellen der Reportermauslinie noch mCherry Protein zu registrieren ist, 
wurde deshalb die rote Fluoreszenz von Spermien homozygoter Tas1r1 mCherry Männ-

chen nach Anregung mit einem Laser (543 nm) mit der von Wildtyp-Tieren verglichen. 
Um gleichzeitig die Morphologie der isolierten Spermien vergleichen zu können, wurde 
eine Co-Färbung der Zellen mit dem Akrosomenmarker PNA durchgeführt. 
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Abbildung 4.50:  Analyse der mCherry Lokalisation während der Spermienreifung im Nebenhoden. 
Gefrierschnitte des Nebenhodens einer adulten Tas1r1 mCherry Reportermaus wurden mit einem anti-
mCherry Antiserum (DsRed) [α-mCherry] inkubiert und die Antikörperbindung anschließend mit einem 
Fluorophor-gekoppelten Sekundärantikörper (1 : 750, rot) nachgewiesen. Der DNA-interkalierende 
Farbstoff TO-PRO-3 [TOPRO, blau] wurde zur Visualisierung des Kerns eingesetzt. 
Die mCherry Immunreaktivität ist im Caput [A - D] und in der Cauda [E - H] des Nebenhodens auf das 
Lumen der angeschnittenen Gänge beschränkt [A, E; α-mCherry]. Die Fluoreszenz ist innerhalb des 
Ganges auf einzelne, vesikuläre Strukturen konzentriert, die nicht mit dem Zellkern [B, F; TOPRO] co-
lokalisiert sind [C, D, G, H; α-mCherry + TOPRO]. 
Dargestellt ist eine Fluoreszenzaufnahme der mCherry Immunreaktivität [A, E; α-mCherry, rot], eine 
Aufnahme der Zellkernfärbung [B, F; TOPRO, blau] sowie eine Überlagerung der beiden 
Fluoreszenzkanäle mit der jeweiligen Phasenkontrastaufnahme [C, D, G, H; α-mCherry + TOPRO]. Die 
markierten Bereiche in [A - C] und [E - G] sind in [D] bzw. [H] vergrößert dargestellt.  

Wie Abbildung 4.51 deutlich macht, wiesen Tas1r1-defiziente Spermien (Tas1r1 [-/-]) 
keine offensichtlichen morphologischen Auffälligkeiten im Vergleich zu Wildtyp-
Spermien (Tas1r1 [+/+]) auf. Die Inkubation mit dem FITC-gekoppelten Lektin 

resultierte in einer sichelförmigen grünen Markierung des akrosomalen Vesikels, die 
keine Unterschiede zur PNA-Färbung parallel untersuchter Wildtyp-Spermien erkennen 
ließ (Abbildung 4.51 [A und B], [PNA]). Bei Anregung des mCherry Proteins war 

jedoch keine rote Fluoreszenz in den Spermien Tas1r1 homozygoter Tiere zu 
registrieren (Abbildung 4.51 [B und D]). Auch mit einem anti-mCherry Antikörper, der 
zur Erhöhung der Nachweisempfindlichkeit eingesetzt wurde, konnte keine mCherry 

Immunreaktivität detektiert werden (Daten nicht gezeigt).  
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Abbildung 4.51:  Fluoreszenzmikroskopische Analyse von Spermien der Tas1r1 mCherry Reporter-
mauslinie. 

Aus dem caudalen Teil des Nebenhodens von Wildtyp- [Tas1r1 [+/+]] und Tas1r1 mCherry Knockin-
[Tas1r1 [-/-]] Mäusen wurden Spermien isoliert, mit Methanol fixiert und anschließend mit einem FITC-
gekoppelten PNA ([PNA], grün) inkubiert. 
In Tas1r1-defizienten Spermien ist nach Laser-Anregung (545 nm) ebenso wie in Wildtyp-Spermien keine 
rote mCherry-Fluoreszenz [C, D; mCherry] zu detektieren. Die Inkubation mit dem FITC-gekoppelten 
Lektin führt in beiden Genotypen zu einer vergleichbaren sichelförmigen Markierung des Akrosoms [A, B, 
E, F; mCherry + PNA]. 
Gezeigt sind Aufnahmen der mCherry-Fluoreszenz [C, D, rot] und Überlagerungen der zwei Fluoreszenz-
kanäle (rot: mCherry; grün: FITC-PNA) mit der jeweiligen Phasenkontrastaufnahme. Die Boxen in [A, C] 
und [B, D] sind in [E] bzw. [F] vergrößert dargestellt. 

Wie bereits zuvor beschrieben, kann das mCherry Protein in Spermien keine 
Informationen über das Vorhandensein des Tas1r1 liefern, da in den Zellen keine Neu-
synthese stattfindet und damit auch keine Promotoraktivität zu erwarten ist. Ferner sind 

die beiden Proteine Tas1r1 und mCherry nach Abschluss der Proteinbiosynthese 
innerhalb der Zelle völlig unabhängig voneinander, so dass die Auslagerung des 
Markerproteins keinerlei Hinweise auf das zelluläre „Schicksal“ des Geschmacks-

rezeptors liefert.  
Andererseits bedeutet das Ausbleiben einer mCherry-Fluoreszenz in Spermien, dass 
wahrscheinlich kaum noch Reste des artifiziell exprimierten Proteins in den reifen 

Keimzellen vorhanden sind. Physiologische Einschränkungen der Zellfunktion durch 
große Mengen des „überflüssigen“ Fluoreszenzproteins konnten demnach weitgehend 
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ausgeschlossen werden. Die Tas1r1 mCherry Mauslinie sollte also sehr gut geeignet 
sein, um die Auswirkungen einer Tas1r1-Defizienz auf die Spermienfunktion zu 
untersuchen, um so die physiologische Rolle des Rezeptors in Spermien besser 

verstehen zu können. 

4.5.2 Reproduktionsbiologische Charakterisierung der Tas1r1 
mCherry Mauslinie 

4.5.2.1 Analyse der Fertilität von Tas1r1-defizienten Mäusen 
Um die Auswirkungen einer Tas1r1-Defizienz auf die Fertilität in vivo zu untersuchen, 

wurde zunächst der Reproduktionserfolg von Tas1r1-defizienten Zuchtpaaren mit dem 
von heterozygoten und Wildtyp-Tieren anhand standardisierter Parameter (siehe auch 
Abschnitt 4.2.1.2 und Abschnitt 4.3.4.2) verglichen. In monogamen Verpaarungen war 

dabei weder in der Zeit bis zum ersten Wurf, der Zeit zwischen den Würfen noch 
zwischen der Wurfgröße ein signifikanter Unterschied zwischen Elterntieren der drei 
Tas1r1 Genotypen feststellbar (Tabelle 4.5). Auch die Geschlechterverteilung der Nach-

kommen von heterozygoten und homozygoten Tas1r1 mCherry Zuchttieren ([-/-] x [-/-] 
und [+/-] x [+/-]) zeigt keine Abweichungen im Vergleich zu den Wildtyp-Zuchtpaaren 
([+/+] x [+/+]) (Tabelle 4.5). 

Tabelle 4.5:  Analyse der Fertilität von Tas1r1-defizienten Mäusen 

In einem kontinuierlichen monogamen Zuchtsystem wurden C57BL/6, Tas1r1 heterozygote (Stamm-
hintergrund N2 und N3) und Tas1r1 homozygote (Stammhintergrund N1) Tiere verpaart und die unten 
aufgeführten Fertilitätsparameter bestimmt. Die Anzahl der jeweils analysierten Zuchtpaare bzw. der 
Nachkommen (bei der Geschlechtsverteilung) ist in Klammern (n = x) angegeben. 

 Tas1r1 Genotyp 

Fertilitätsparameter [+/+] x [+/+] [+/-] x [+/-] [-/-] x [-/-] 

Zeit zwischen den Würfen [d] 31,5 ± 1,7 

(n = 49) 

27,2 ± 1,1  

(n = 80) 

29,5 ± 1,8 

(n = 36) 

Zeit bis zum ersten Wurf [d] 26,1 ± 2,1 

(n = 16) 

26,2 ± 1,9 

(n = 21) 

32,9 ± 5,1 

(n = 9) 

Anzahl Nachkommen / Wurf 6,2 ± 0,5 

(n = 52) 

6,8 ± 0,3 

(n = 79) 

5,9 ± 0,4 

(n = 36) 

Geschlecht der Nachkommen m / f [%] 53 / 47 

(n = 334) 

50 / 50 

(n = 659) 

49 / 51 

(n = 266) 

 
Beim Vergleich des Genotyps der Jungtiere von heterozygoten Eltern konnte keine 
Verschiebung des Genotyps registriert werden (Tabelle 4.6). Der Anteil heterozygoter 

Nachkommen zeigte mit 47 % bzw. 52 % bei den Zuchtpaaren mit einem heterozygoten 
Elternteil unabhängig vom Geschlecht des heterozygoten Partners keine signifikanten 
Unterschiede zur Mendelschen Verteilung (50 %). Auch bei Zuchtpaaren, in denen 
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beide Elternteile heterozygot waren ([+/-] x [+/-]), war keine Abweichung von der 
erwarteten Verteilung ([+/+] : [+/-] : [-/-]; 1 : 2 : 1) auszumachen.  

Tabelle 4.6:  Genotyp-Verteilung der Nachkommen von Tas1r1-heterozygoten Zuchttieren 

Der Genotyp ([+/+], [+/-], [-/-]) der Nachkommen von Zuchtpaaren mit heterozygoten Eltern wurde mittels 
Genotypisierung bestimmt. Daraus wurde der Anteil des jeweiligen Genotyps an der Gesamtzahl der 
Nachkommen ermittelt [Ermittelt] und mit einer Verteilung nach Mendel [Erwartet] verglichen. Zur 
statistischen Analyse der erwarteten und registrierten Werte wurde der Chi2-Test angewendet; der 
ermittelte jeweilige p-Wert ist in der rechten Spalte aufgeführt. Angegeben ist jeweils die Anzahl der Nach-
kommen und der prozentuale Anteil (in Klammern) des jeweiligen Genotyps.  

F x M Verpaarung Anzahl der Nachkommen  

Genotyp der Nachkommen Ermittelt Erwartet Chi2-Test 

[+/-] x [+/-]    

[+/+] 139 (26,6 %) 131 (25 %)  

[+/-] 256 (48,9 %) 261 (50 %) p = 0,651 

[-/-] 137 (26,2 %) 131 (25 %)  

    

[+/+] x [+/-]    

[+/+] 46 (47 %) 49 (50 %) 
p = 0,544 

[+/-] 52 (53%) 49 (50 %) 

    

[+/-] x [+/+]    

[+/+] 82 (52 %) 78 (50 %) 
p = 0,576 

[+/-] 75 (48 %) 79 (50 %) 

 

Um zu klären, ob die Tas1r1-Defizienz möglicherweise Veränderungen der männlichen 
Geschlechtsorgane oder eine Einschränkung der Funktion reifer Spermien nach sich 
zieht, die durch die Verpaarungsexperimente nicht detektiert werden konnte, erfolgte im 

Folgenden eine morphologische und funktionelle Charakterisierung des Hodens und 
isolierter Spermien von homozygoten Tas1r1 mCherry Mäusen. 

4.5.2.2 Histologische Analyse des Hodens Tas1r1-defizienter Mäuse 
Um zu prüfen, ob die Keimzellbildung im Hoden durch die Rezeptordefizienz 

beeinflusst sein könnte, wurde in Einstiegsexperimenten zunächst die Hoden-
morphologie Tas1r1-defizienter Tiere untersucht. Dazu wurden Paraffinschnitte von 
Bouin-fixiertem Gewebe von Wildtyp- und homozygoten Tas1r1 mCherry Geschwister-

tieren angefertigt und einer HE-Färbungen unterzogen, um die Gewebsstruktur 
darzustellen. In den anschließenden lichtmikroskopischen Analysen wurde deutlich, 
dass der Aufbau des Hodens Tas1r1-defizienter Tiere aus einzelnen Tubuli mit Keim-

epithel keine gravierenden Unterschiede zum Gewebe von Wildtyp-Männchen aufwies 
(Abbildung 4.52).  
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Abbildung 4.52:  Histologische Analyse der Hodenmorphologie von Tas1r1-defizienten Mäusen. 
Paraffinschnitte von Bouin-fixierten Hoden von Wildtyp (Tas1r1 [+/+]) und homozygoten Tas1r1 mCherry 
(Tas1r1 [-/-]) Tieren wurden einer Hämatoxilin-Eosin-Färbung unterzogen und anschließend licht-
mikroskopisch untersucht.  
Der Aufbau des Hodens zeigt im Überblick keine gravierenden Unterschiede zwischen Tas1r1-defizienten 
Mäusen [B, D, F] und Tas1r1 Wildtyp-Tieren [A, C, D]. Bei Betrachtung der einzelnen Tubuli fallen jedoch 
bei Tas1r1 Knockin-Tieren vermehrt mislokalisierte Spermatocyten auf, die sich im luminalen Tubulus-
bereich befinden [B, D, F; vergrößerte Ausschnitte] und nur selten bei Wildtyp-Hoden auftreten [A]. 
Vereinzelt sind in den Tas1r1-defizienten Hoden auch multinukleäre Riesenzellen [F, Pfeil und 
vergrößerter Ausschnitt rechts] zu beobachten. 
Gezeigt sind Präparate von drei Geschwisterpaaren, links dargestellt ist jeweils das Gewebe des Wildtyp- 
und rechts des Tas1r1-defizienten Tieres.  

Bei genauer Betrachtung des Keimepithels innerhalb der Samenkanälchen waren bei 
den Rezeptor-defizienten Tieren jedoch leichte Störungen im Aufbau der einzelnen 
Keimzellschichten zu registrieren: So waren in den Hodenschnitten der homozygoten 

Tas1r1 mCherry Tiere vermehrt mislokalisierte Spermatocyten im Lumen der 
Samenkanälchen zu finden (Abbildung 4.52 [B, D, F], vergrößerte Ausschnitte), die 
eigentlich auf die basalen Zellschichten der Tubuli beschränkt sein sollten und im 

Hoden von Wildtyp-Tieren nur sehr vereinzelt luminal zu detektieren waren (Abbildung 
4.52 [A], vergrößerter Ausschnitt). Im Hoden einzelner Tas1r1-defizienter Tiere wurden 
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zudem einzelne multinukleäre Riesenzellen gefunden (Abbildung 4.52 [E], Pfeil), die 
wahrscheinlich auf unvollständige Zellteilungen während der Spermatogenese zurück-
zuführen sind [Holstein und Eckmann, 1986]. Da die Keimzellreifung innerhalb der 

Samenkanälchen streng hierarchisch organisiert ist, könnten diese leichten 
morphologischen Veränderungen des Hodens und die Fehllokalisation einzelner 
Keimzellstadien auf Störungen im Ablauf der Spermatogenese in den Tas1r1-

defizienten Tieren hindeuten. Während der Spermatogenese wird die erfolgreiche 
Bildung von Spermien in verschiedenen Reifungsstadien durch eine strenge Kontrolle 
der sequentiellen mitotischen und meiotischen Teilungen der Keimzellen reguliert. Um 

die Qualität der entstehenden Spermatozoen sicherzustellen, ist es dabei von essentieller 
Bedeutung, defekte und auch überzählige Keimzellen, die nicht optimal von den Sertoli-
Zellen versorgt werden können, aus dem Zellverband zu entfernen [Blanco-Rodriguez 

und Martinez-Garcia, 1996]. Diese Aussortierung genetisch defekter oder nicht-
funktioneller Keimzellen erfolgt im Hoden durch den Prozess des programmierten 
Zelltods [Kerr et al., 1972], der Apoptose. Während der Spermatogenese ergibt sich so 

eine dynamische Balance zwischen Zell-Proliferation und Apoptose [Williams et al., 
1992; Shaha, 2007; Shaha et al., 2011], durch die beim Menschen bis zu 75 % der 
produzierten Spermatogonien absterben [Dunkel et al., 1997].  

Um der Vermutung nachzugehen, dass die Spermatogenese von Tas1r1-defizienten 
Tieren gestört sein könnte, sollte deshalb das Ausmaß der Apoptose im Hoden dieser 
Tiere ermittelt und mit Wildtyp-Geschwistertieren verglichen werden. Dazu wurde die 

TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling)-
Methode eingesetzt [Darzynkiewicz et al., 2008], bei der während der Apoptose 
entstehende kurze DNA-Bruchstücke durch eine terminale Transferase mit Fluoro-

chrom-gekoppelten Nukleotiden markiert wurden (TRITC In situ Cell Death Detection 

Kit). Anschließend konnten die apoptotischen Zellen in allen Entwicklungsstadien der 
Keimzellreifung unter dem Fluoreszenzmikroskop anhand ihrer roten TRITC-

Fluoreszenz identifiziert und ausgezählt werden.  
Abbildung 4.53 zeigt beispielhaft die Resultate dieser Apoptosefärbungen an Bouin-
fixierten Hodenschnitten, die zur Visualisierung der Zellkerne mit DAPI (blau) gegen-

gefärbt wurden. Im Hodengewebe von Wildtyp-Tieren waren innerhalb der Tubuli 

seminiferi vereinzelte rot markierte apoptotische Keimzellen zu registrieren, die über-
wiegend in den basalen Zellschichten des Keimepithels zu finden waren (Abbildung 

4.53, [A und C], weiße Kästchen). Eine vergleichbare Markierung konnte auch im 
Keimdrüsengewebe homozygoter Tas1r1 mCherry Geschwistertiere detektiert werden; 
allerdings waren in diesen Schnitten insgesamt mehr apoptotische Zellen zu finden 

(Abbildung 4.53 [B und D]). 
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Abbildung 4.53:  Fluoreszenzmikroskopischer Nachweis apototischer Zellen im Maushoden mit 
Hilfe der TUNEL-Färbung. 

Aus Bouin-fixiertem Hodengewebe von Tieren mit verschiedenem Tas1r1 Genotyp wurden Paraffin-
schnitte angefertigt. Zur Visualisierung apoptotischer Zellen wurde eine Fluoreszenz-basierte TUNEL-
Färbung (rot) durchgeführt, Zellkerne wurden mit Hilfe von DAPI (blau) markiert. 
Die TUNEL-positiven Zellen (rot) sind sowohl in Wildtyp-Hoden [Tas1r1 [+/+]] als auch bei Tas1r1-
defizientem Gewebe [Tas1r1 [-/-]] vereinzelt in basalen Keimzellschichten zu finden und weisen eine 
ähnliche Morphologie auf [A, B]. In Tas1r1 Knockin-Tieren [D] treten etwas mehr apoptotische Zellen auf 
als bei Wildtyp-Tieren [C]. 
Dargestellt ist eine Überlagerung der beiden Fluoreszenzkanäle. TUNEL-positive Zellen sind durch ein 
gestricheltes Kästchen markiert und in [A und B] exemplarisch vergrößert. 

Um den Eindruck einer erhöhten Zahl apoptotischer Zellen zu verifizieren, erfolgte eine 

quantitative Auswertung der TUNEL-Färbungen der Hodenschnitte von Tas1r1-
defizienten und Wildtyp-Tieren. Zu diesem Zweck wurde die Zahl apoptotischer Zellen 
im mikroskopischen Blickfeld und die Zahl der Tubuli pro Feld (ca. 25 - 30 pro 

Blickfeld) ausgezählt und daraus die Anzahl apoptotischer Zellen pro Blickfeld bzw. 
pro Tubulus ermittelt. 
In der grafischen Auswertung dieser Quantifizierung wird deutlich, dass homozygote 

Tas1r1 mCherry Mäuse im Vergleich zu Wildtyp-Geschwistertieren tatsächlich eine 
signifikant höhere Apoptoserate aufwiesen (Abbildung 4.54): Während die durch-
schnittliche Zahl apoptotischer Zellen im Blickfeld bei Wildtyp-Tieren bei 8,7 ± 0,8 

Zellen lag, waren bei homozygoten Männchen 13,4 ± 1,7 apoptotische Zellen zu 
registrieren. Heterozygote Tiere zeigten mit durchschnittlich 9,9 ± 1,4 rot fluores-
zierenden Zellen pro Blickfeld eine mittlere Apoptoserate im Hoden, die signifikant 

niedriger war als bei den homozygoten Geschwistertieren. Auch bei der Berechnung der 
TUNEL-positiven Zellen pro Tubulus wiesen Tas1r1 mCherry [-/-] Mäuse mit 
0,45 ± 0,04 eine signifikant (p = 0,004) höhere testikuläre Apoptoserate als die 

jeweiligen Wildtyp-Männchen auf (0,33 ± 0,02 apoptotische Zellen pro Tubulus). 
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Abbildung 4.54:  Quantitativer Vergleich der Apoptose im Hoden von Mäusen mit unterschied-
lichem Tas1r1 Genotyp. 

Die Anzahl TUNEL-positiver Zellen wurde in Paraffinschnitten von Bouin-fixiertem Gewebe fluoreszenz-
mikroskopisch erfasst und als apoptotische Zellen pro analysiertem Blickfeld [A] und als durchschnittliche 
Anzahl der Apoptose-positiven Zellen pro Tubulus [B] ausgewertet. Tas1r1-defiziente Tiere [-/-] zeigen 
eine signifikant erhöhte Apoptoserate im Vergleich zum Wildtyp; diese steigt von 8,7 ± 0,8 Zellen/Blickfeld 
[+/+] auf 13,5 ± 1,7 [-/-] [A]. Die Apoptoserate pro Blickfeld liegt bei heterozygoten Tieren [+/-] zwischen 
den anderen Genotypen (9,8 ± 1,4) und ist signifikant niedriger als bei homozygoten Tieren. Ein 
vergleichbares Bild ergibt sich bei der Apoptoserate pro Tubulus [B]; auch in dieser Auswertung ist die 
Zahl apoptotischer Zellen bei Tas1r1-defizienten Tieren signifikant erhöht. 
Dargestellt sind Mittelwerte ± Standardfehler der Analyse von 5 Geschwistertieren pro Genotyp. Pro Tier 
wurden 3 - 4 Hodenschnitte untersucht, dabei wurden pro Schnitt 3 - 4 Blickfelder mit jeweils 25 - 30 
Tubuli ausgezählt. Die Untersuchung wurde in Duplikaten durchgeführt. Zur statistischen Analyse wurde 
ein gepaarter studentischer t-Test durchgeführt (*: p ≤ 0,05; **: p < 0,01). 

Die in Tas1r1-defizienten Tieren registrierte Erhöhung der Apoptoserate männlicher 

Keimzellen führte zu der Überlegung, ob der vermehrte programmierte Zelltod zu einer 
Verringerung der Keimzellzahl und damit einer Abnahme des Hodengewichts und 
eventuell einer geringeren Anzahl an Spermatozoen führen könnte. Um dieser Frage 

nachzugehen, wurde das Körpergewicht, Hodengewicht und die Zahl der Spermien im 
caudalen Teil des Nebenhodens von heterozygoten, homozygoten und Tas1r1 mCherry 
Wildtyp-Tieren mit gleichem Stammhintergund ermittelt.  

Die Befunde dieser Analysen, die in Tabelle 4.7 zusammengefasst sind, belegen, dass 
die Tas1r1-Defizienz weder Auswirkungen auf das Körpergewicht noch auf das 
absolute Hodengewicht hatte. Somit wies auch der Anteil des Hodengewichts am 

Gesamtkörpergewicht [relatives Hodengewicht] bei Tieren aller drei Tas1r1 Genotypen 
keine signifikanten Unterschiede auf. Die Zahl reifer Spermien in den Tas1r1-
defizienten Tieren war, trotz der erhöhten Zahl apoptotischer Zellen, ebenfalls 

unverändert im Vergleich zu Wildtyp-Männchen (Tabelle 4.7 [Spermienzahl]).  
Da die Bildung und Apoptose von Keimzellen während der Spermatogenese maß-
geblich durch das männliche Sexualhormon Testosteron reguliert werden [Troiano et 

al., 1994; Henriksen et al., 1995; Cheng und Mruk, 2010; Kicman, 2010; Walker, 2010], 
wurde zusätzlich die Konzentration dieses Hormons im Serum von Geschwistertieren 
der drei Tas1r1 Genotypen bestimmt. Der Vergleich der Serumkonzentrationen von 
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Testosteron in heterozygoten, homozygoten und Wildtyp Tas1r1 mCherry Tieren zeigte 
jedoch keine signifikanten Unterschiede (Tabelle 4.7), so dass die registrierte Erhöhung 
der testikulären Apoptoserate sehr wahrscheinlich nicht durch Veränderungen im 

Testosteron-Level bedingt war. 

Tabelle 4.7:  Effekt des Tas1r1 Genotyps auf die männlichen Reproduktionsorgane der Maus 

Nach zervikaler Disloskation wurden adulte männliche Mäuse der drei Tas1r1 Genotypen ([+/+], [+/-], [-/-]) 
gewogen, der Hoden entnommen und gewogen, das relative Hodengewicht als Quotient des Hoden-
gewichts zum Körpergewicht berechnet und die Spermienzahl im caudalen Teil des Nebenhodens 
bestimmt. Die Testosteron-Konzentration im Serum wurde mit Hilfe eines EIA kits ermittelt. Dargestellt sind 
Mittelwerte ± Standardfehler der Messergebnisse von mindestens 17 - 46 Tieren mit identischem Stamm-
hintergrund (N2 und N3) (Reproduktionsorgane) bzw. drei Geschwisterpaaren (Testosteron). Es wurden 
keine statistisch signifikanten Unterschiede (p ≤ 0,05) festgestellt.  

 Tas1r1 Genotyp 

Reproduktionsorgane [+/+] [+/-] [-/-] 

Körpergewicht [g] 28,0 ± 0,7 28,2 ± 0,4 27,2 ± 0,5 
Hodengewicht [mg] 210 ± 7 202 ± 5 198 ± 7 
Relatives Hodengewicht [%] 0,75 ± 0,03 0,72 ± 0,02 0,73 ± 0,03 
Spermienzahl [*106] 31,2 ± 2,3 32,7 ± 1,9 33,6 ± 2,2 

Serum-Testosteron [pg/ml] 645 ± 125 548 ± 50 584 ± 41 

 

Die Beobachtung, dass Tas1r1-defiziente Tiere leichte morphologische Veränderungen 
und eine erhöhte Apotoserate im Hoden aufweisen, die auf Störungen der Spermato-
genese hindeuten, warf die Frage auf, ob die Keimzell-Entwicklungsstörungen 

möglicherweise auch Auswirkungen auf die Morphologie und Funktion der 
entstehenden Spermien haben könnten.  
Um die Morphologie von Tas1r1-defizienten Spermien näher zu untersuchen, wurden 

deshalb isolierte caudale Spermien mit einer Coomassie-Färbelösung gefärbt und 
anschließend lichtmikroskopisch analysiert. Wie Abbildung 4.55 [A und B] 
verdeutlicht, waren beim Vergleich der Keimzellmorphologie von homozygoten Tas1r1 

mCherry Mäusen (Tas1r1 [-/-]) mit Spermien von Wildtyp-Tieren (Tas1r1 [+/+]) keine 
offensichtlichen Unterschiede im Zellaufbau zu registrieren: Sowohl das Spermien-
flagellum als auch der Kopf mit dem tiefblau gefärbten Akrosom waren normal 

geformt. Dieser Eindruck konnte in weiterführenden morphometrischen Analysen 
bestätigt werden, in denen die Kopfform näher untersucht wurde: In keinem der 
bestimmten Längen- und Flächenparametern (Abbildung 4.55 [D]) war eine signifikante 

Abweichung von den Werten der Wildtyp-Zellen zu registrieren (Abbildung 4.55 [D], 
[I - IV]). 
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Abbildung 4.55:  Morphometrischer Vergleich von Wildtyp- und Tas1r1-defizienten Spermien. 
Isolierte epidymale Spermien von Wildtyp- (C57BL/6) und Tas1r1 Knockin-Mäusen (N1) wurden fixiert und 
anschließend mit einer Coomassie-Färbelösung gefärbt, um die Spermienmorphologie und das Akrosom 
darzustellen. Im Anschluss wurde der Abstand von der Kopfspitze zum Flagellumansatz [I] und zum Ende 
des Akrosoms [II] sowie Umfang [III] und Fläche [IV] des Spermienkopfes von Zellen beider Genotypen 
bestimmt. Abbildung [D] gibt einen Überblick über diese Parameter. 
[A, B] Flagellum, Kopf und Akrosom Tas1r1-defizienter Spermien ([B], Tas1r1 [-/-]) sind normal 
ausgebildet. Die Zellen zeigen keine offensichtlichen morphologischen Unterschiede zu Wildtypspermien 
([A], Tas1r1 [+/+]). 
[C, D] Bei der morphometrischen Analyse der Spermienzellen ist kein Unterschied in der Größe oder Form 
des Kopfes feststellbar. Dargestellt sind Mittelwerte ± Standardfehler von fünf Tieren pro Genotyp bei 
denen jeweils 8 - 15 Spermien analysiert wurden. Es sind keine signifikanten Unterschiede (p ≤ 0,05) 
feststellbar. 

4.5.3 Analyse der Spermienfunktion von Tas1r1-defizienten Tieren 

Durch die bislang gesammelten Befunde konnte sichergestellt werden, dass Tas1r1-
defiziente Mäuse eine normale Anzahl von morphologisch intakten Spermien bilden. 
Die unbeeinträchtigte Fertilität der Tas1r1 mCherry Mäuse (siehe Tabelle 4.5) deutet 

zusätzlich darauf hin, dass der Umami-Rezeptor nicht essentiell für die erfolgreiche 
Befruchtung einer Eizelle ist; dennoch könnten leichte Funktionseinschränkungen, die 
in der freien Natur entscheidend für den reproduktiven Erfolg wären, durch optimale 

Zuchtbedingungen oder die Expression anderer Rezeptorproteine kompensiert werden.  
Um einen solchen, möglicherweise milden Phänotyp von Spermien Tas1r1-defizienter 
Männchen identifizieren zu können, wurde deshalb im Folgenden untersucht, ob sich 

Spermien Tas1r1-defizienter Tiere in einzelnen zellphysiologischen Funktionen, wie 
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ihrer Motilität, Kapazitierung oder Akrosomreaktion, von Wildtyp-Spermien 
unterscheiden. 

4.5.3.1 Vergleich der Motilität von Spermien mit unterschiedlichem Tas1r1 
Genotyp 

Da in immuncytochemischen Analysen an isolierten murinen und humanen Spermien 

sowohl der Tas1r1 als auch sein gustatorischer Dimerisierungspartner Tas1r3 im 
Flagellum nachgewiesen werden konnten (Abbildung 4.36 und Abbildung 4.42), stellte 
sich die Frage, ob diese Rezeptoren an der Regulation der Spermienmotilität und der 

Wegfindung zur Eizelle funktionell beteiligt sein könnten. Um Hinweise auf eine 
mögliche physiologische Rolle des Tas1r1 an der Bewegungssteuerung im Spermien-
schwanz zu sammeln, wurde deshalb zunächst untersucht, ob das Fehlen des 

Geschmacksrezeptors Auswirkungen auf die Motilität von Spermien hatte. Die 
Quantifizierung des Anteils motiler Zellen und die Erfassung ihres Bewegungsmusters 
erfolgte, wie zuvor beschrieben, mit Hilfe eines automatisierten CASA-Systems (siehe 

Abschnitte 4.3.4.3 und 3.4.2). Dabei wurden die Spermien von Wurfgeschwistertieren 
untersucht und miteinander verglichen. Eine Zusammenfassung der ermittelten 
Motilitätswerte von drei Tieren pro Genotyp ist in Tabelle 4.8 gezeigt.  

Tabelle 4.8:  CASA-Analyse der Motilität von Tas1r1-defizienten Spermien 

Zur Untersuchung des Effekts einer Tas1r1 Deletion auf die Spermienmotilität, wurden isolierte caudale 
Spermien von Wildtyp [+/+], heterozygoten [+/-] und homozygoten [-/-] Tas1r1-Geschwistertieren (Stamm-
hintergrund N2, N3) in einem CASA-System analysiert. Zur Erklärung der einzelnen Abkürzungen siehe 
Text. Dargestellt sind Mittelwerte ± Standardfehler [MW ± STAF] der Motilitätsbestimmung von drei 
Geschwisterpaaren; für jedes Tier wurden mindestens 2000 Zellen gemessen. Die statistische Auswertung 
erfolgte mit Hilfe eines gepaarten studentischen t-Tests im Vergleich zum Wildtyp-Tier; die dabei jeweils 
ermittelten p-Werte im Vergleich sind angegeben [p-Wert]. 

Motilitäts-
parameter 

[+/+] [+/-]  [-/-]  

MW ± STAF MW ± STAF p-Wert MW ± STAF p-Wert 

Mot [%] 75.6 ± 1.6 76.2 ± 3.9 0.82 74.3 ± 5.4 0.79 
Prog [%] 37.4 ± 11.0 37.8 ± 11.6 0.94 36.0 ± 11.3 0.63 
VAP [µm/sec] 137.5 ± 18.2 137.1 ± 14.4 0.96 135.3 ± 18.5 0.82 
VSL [µm/sec] 90.2 ± 17.1 89.2 ± 14.0 0.89 88.5 ± 16.1 0.82 
VCL [µm/sec] 286.7 ± 24.1 281.2 ± 22.6 0.64 276.3 ± 26.5 0.55 
ALH [µm] 14.4 ± 0.3 14.7 ± 0.1 0.56 14.6 ± 0.7 0.75 
BCF [Hz] 33.1 ± 4.1 33.7 ± 3.4 0.80 33.6 ± 3.7 0.56 
STR [%] 62.5 ± 4.4 62.0 ± 4.5 0.75 62.6 ± 3.9 0.83 
LIN [%] 31.8 ± 3.2 32.0 ± 2.6 0.85 32.6 ± 2.8 0.23 

 

In dieser Darstellung wird deutlich, dass in den Spermienpräparationen, unabhängig 
vom Genotyp, ca. ¾ aller Zellen motil waren (Tabelle 4.8 [Mot]). Der Anteil progressiv 
motiler Zellen (Tabelle 4.8 [Prog]) zeigte ebenfalls keine signifikanten Unterschiede 
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zwischen Tas1r1 mCherry Wildtyp-, heterozygoten und homozygoten Männchen. Eine 
Übereinstimmung zwischen den Genotypen war auch beim Vergleich des Bewegungs-
musters anhand verschiedener Geschwindigkeitsparameter wie der Pfadgeschwindigkeit 

[VAP], der Progressivgeschwindigkeit [VSL] und der Spurgeschwindigkeit [VCL] oder 
anderer Motilitätsparametern wie der seitlichen Kopfauslenkung [ALH], der Schlag-
frequenz [BCF] oder der Linearität ([LIN] und [STR]) zu beobachten. In diesen 

Analysen konnte somit keine Beeinträchtigung der Spermienmotilität als Folge der 
Tas1r1-Defizienz detektiert werden. 
 

Ein wichtiger Faktor zur erfolgreichen Befruchtung ist neben einer normalen Motilität 
der Spermien aber auch die Fähigkeit der zielgerichteten Bewegung zur Eizelle mittels 
Thermotaxis und Chemotaxis. Aufgrund des hydrophilen Ligandenspektrums und der 

Lokalisation im Flagellum könnte ein Dimer aus Tas1r3 und Tas1r1 auch einen 
interessanten Kandidaten für die Detektion potentieller wasserlöslicher Lockstoffe der 
Eizelle bzw. des weiblichen Genitaltraktes zur chemotaktischen Wegfindung 

repräsentieren.  
Solche chemotaktischen Prozesse sind experimentell relativ schwer von Vorgängen wie 
Chemokinese oder Sperm trapping zu unterscheiden [Eisenbach und Tur-Kaspa, 1999; 

Eisenbach und Giojalas, 2006], so dass sie einen großen technischen Aufwand und sehr 
viel Erfahrung erfordern. Im Gegensatz zur Chemotaxis selbst lässt sich jedoch einer 
der Schlüsselregulatoren dieser zielgerichteten Bewegung von Spermien [Spehr et al., 

2003; Publicover et al., 2008; Teves et al., 2009; Yoshida und Yoshida, 2011], die intra-
zelluläre Ca2+-Konzentration, mit Hilfe standardisierter Messverfahren zuverlässig 
quantifizieren und damit analysieren.  

Um erste Hinweise auf eine mögliche Beteiligung des Tas1r1 Proteins an der chemo-
taktischen Wegfindung oder anderen elementaren Ca2+-abhängigen Prozessen wie der 
Kapazitierung, Hyperaktivität und Akrosomreaktion [Arnoult et al., 1996b; Kirkman-

Brown et al., 2002; Carlson et al., 2003; Publicover et al., 2007; Costello et al., 2009; 
Veitinger et al., 2011] zu sammeln, wurde deshalb in experimentellen Ansätzen geprüft, 
ob eine Stimulation des Tas1r1 mit bekannten gustatorischen Liganden zu einem 

Anstieg der intrazellulären Ca2+-Konzentration in Spermien führt. Für diese Analysen 
wurden kapazitierte Mausspermien mit dem Ca2+-sensitiven Farbstoff Fura-2-AM 
beladen und anschließend mit Mononatriumglutamat stimuliert. Glutamat bewirkt in 

Geschmackszellen der Zunge eine Aktivierung des Tas1r1/Tas1r3 Dimers, welches 
dann in eine Erhöhung der intrazellulären Ca2+-Konzentration induziert [Hayashi et al., 
1996; Zhao et al., 2003]. Die Änderungen der Ca2+-Konzentration der Spermien wurden 

in einem 96-Loch Fluoreszenzspektrometer [Solinski et al., 2010] bzw. in einem 
Calcium-Imaging setup [Dietrich et al., 2007] anhand der Fura-2-Ratio ([F340 / F380]: 
Emission bei Anregung mit 340 nm / Emission bei Anregung mit 380 nm) bestimmt 

(siehe Abschnitt 3.5.1). 
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Abbildung 4.56 fasst die Befunde dieser Glutamat-Stimulationen an Spermien von 
Tas1r1 mCherry homozygoten und Wildtyp-Tieren in einem Fluoreszenzspektrometer 
exemplarisch zusammen. Da in der 96-Lochplatte des Spektrometers die Fura-2-Ratio 

einer Spermiensuspension (ca. 5-10 x 105 Zellen pro Loch) registriert wird, erlaubt 
dieses Verfahren, die Ca2+-Signale einer ganzen Spermienpopulation zu erfassen. Dabei 
können alle Veränderung der Ca2+-Konzentration detektiert werden, unabhängig davon, 

in welchem Zellkompartiment sie auftreten. In den dargestellten experimentellen 
Ansätzen wurden jeweils 90 µl Spermiensuspension vorgelegt. Nach zehn Sekunden 
erfolgte dann die automatisierte Injektion von 10 µl Stimulationssubstanz. Um die Höhe 

des maximal induzierbaren Ca2+-Signals festzustellen, wurde das Calcium-Ionophor 
Ionomycin (5 µM) als Positivkontrolle eingesetzt [Liu und Hermann, 1978]. Die 
Stimulation mit diesem Ionophor führte zu einem sehr starken Anstieg der Fura-2-Ratio 

[F340/F380] in Wildtyp-Spermien (Abbildung 4.56 [A], Ionomycin) und Tas1r1-
defizienten Spermien (Abbildung 4.56 [B], Ionomycin), so dass eine vergleichbare 
Beladung und Viabilität der Spermienpopulationen beider Genotypen sichergestellt 

werden konnte.  
Nach der Injektion von 1 mM, 10 mM bzw. 50 mM Mononatriumglutamat (angegeben 
ist jeweils die Endkonzentration in der Spermiensuspension) zeigten Spermien von 

Männchen beider Genotypen hingegen keinen Anstieg ihrer intrazellulären Ca2+-
Konzentration  (Abbildung 4.56, [A und B], [Glu]), obwohl die verwendeten Glutamat-
konzentrationen in Geschmackszellen der Zunge zu einer robusten Ca2+-Antwort führen 

[Hayashi et al., 1996; Zhao et al., 2003]. Selbst bei der Stimulation mit der sehr hohen 
Glutamatkonzentration von 50 mM war kein Unterschied im Verlauf der Fura-2-Ratio 
im Vergleich zu einer Kontrollstimulation mit Puffer [HS] zu registrieren. 

Wildtyp [+/+]

0 25 50 75 100 125
75

100

125

150

175

200

HS
  1 mM Glu
10 mM Glu
50 mM Glu

Ionomycin

Zeit [s]

F
3

40
 /

 F
38

0 
[%

]

Tas1r1 [-/-]

0 25 50 75 100 125
75

100

125

150

175

200

HS
  1 mM Glu
10 mM Glu
50 mM Glu

Ionomycin

Zeit [s]

F
34

0 
/ 

F
38

0 
[%

]

A B

 

Abbildung 4.56:  Fluorimetrische Analyse der intrazellulären Ca2+-Konzentration von Spermien 
nach Stimulation mit Glutamat. 

Isolierte, kapazitierte Spermien von Wildtyp- [Wildtyp [+/+]) und Tas1r1-defizienten Mäusen [Tas1r1 [-/-]) 
wurden mit Fura-2/AM beladen und in einer 96-Lochplatte mit verschiedenen Glutamat-Konzentrationen 
[Glu] bzw. dem Calcium-Ionophor Ionomycin [Ionomycin] stimuliert. Zur Beobachtung der intrazellulären 
Ca2+-Konzentration wurde der Verlauf der Fura-2-Ratio [F340/F380] aufgezeichnet, auf den Basalwert 
(100 %) normiert und gegen die Zeit aufgetragen.  
Spermien von Wildtyp- [A] und von Tas1r1-defizienten Mäusen [B] zeigen weder nach Stimulation mit 
Puffer [HS] noch mit verschiedenen Glutamat-Konzentrationen (1 mM, 10 mM, 50 mM) eine Änderung der 
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Fura-2-Ratio. Nach Injektion von 5 µM Ionomycin [Ionomycin] ist hingegen ein deutlicher Anstieg des 
F340/F380 Quotienten auf ca. 180 % des Basalwertes zu detektieren.  
Repräsentativ dargestellt ist eine von drei unabhängigen Messungen pro Genotyp. Stimulationen wurden 
in Duplikaten durchgeführt; gezeigt ist der Mittelwert mit Standardfehler (graue Balken). Der Zeitpunkt der 
automatischen Stimulus-Injektion ist mit einem Pfeil markiert.  

Nachdem in Einstiegsexperimenten zunächst keine Aktivierbarkeit von Spermien durch 
den Tas1r1-Liganden Glutamat registriert werden konnte, wurden ergänzende Ca2+-

Messungen an einem Mikroskop-basierten Calcium Imaging System durchgeführt. Mit 
diesem System wurden mikroskopische Einzelzellmessungen durchgeführt, die eine 
sensitivere Detektion von Ca2+-Signalen ermöglichen. Dabei konnte für jede einzelne 

analysierte Zelle durch eine Kontrollstimulation mit Ionomycin gegen Ende der 
Messung festgestellt werden, ob die Zelle vital war, so dass nur lebende Spermien in der 
Auswertung berücksichtigt wurden. Ein Nachteil dieser Methode liegt jedoch darin, 

dass jeweils nur sehr wenige Zellen gleichzeitig untersucht werden können. Da die 
Spermien zur Messung auf einem Deckgläschen immobilisiert werden müssen, war 
zudem nur eine Analyse der Fura-2-Ratio im Spermienkopf, der ans Deckgläschen 

angeheftet war, möglich; die Ca2+-Konzentration im beweglichen Flagellum konnte 
hingegen nicht erfasst werden. Auch in diesen Einzelzellmessungen wurde, unabhängig 
vom Tas1r1 Genotyp der Spermien, keine Erhöhung der intrazellulären Ca2+-

Konzentration nach Zugabe von 10 mM Glutamat registriert (Abbildung 4.57, [Glu], 
dunkelblaue Kurve). Parallel zu diesen Messungen wurden auch Co-Stimulation der 
Zellen mit Glutamat und IMP, einem Verstärker des Umami-Geschmacks, 

durchgeführt. Dieser Umami Enhancer wirkt am Tas1r1/Tas1r3 Dimer der Zunge 
sowohl indem die Antwort auf Glutamat verstärkt wird, als auch indem die Detektions-
schwelle für Glutamat gesenkt wird; IMP allein hat bei den eingesetzten 

Konzentrationen hingegen keine Effekte auf Geschmacksrezeptoren der Zunge [Brand, 
2000; Yamaguchi und Ninomiya, 2000; Li et al., 2002; Nelson et al., 2002; Beauchamp, 
2009]. Interessanterweise wurde bei der Co-Stimulation von Wildtyp-Spermien mit 

10 mM Glutamat und 1 mM IMP tatsächlich eine starke, schnell einsetzende transiente 
Ca2+-Antwort registriert, die nach ca. 100 Sekunden wieder beendet war (Abbildung 
4.57 [A], [Glu/IMP], grüne Kurve). Allerdings trat diese Antwort in vergleichbarer 

Höhe auch in Spermien von Tas1r1-defizienten Tieren auf (Abbildung 4.57 [B], 
[Glu/IMP]), so dass sie nicht auf den Tas1r1 Rezeptor zurückgeführt werden konnte. 
Diese Vermutung konnte durch Kontrollexperimente bestätigt werden, in denen 

Spermien nur mit 1 mM IMP, ohne jegliche Zugabe von Glutamat, stimuliert wurden: 
Die Inkubation mit IMP allein resultierte in Spermien beider Genotypen zu einem 
transienten Ca2+-Signal ([IMP], hellblaue Kurve), das sogar noch höher ausfiel als bei 

der kombinierten Gabe von Glutamat und IMP (Abbildung 4.57, [Glu/IMP]).  
Die Erhöhung der intrazellulären Ca2+-Konzentration ging demnach nicht auf eine 
Wirkung von Glutamat zurück, sondern wurde durch IMP verursacht. Da die IMP-

induzierte Ca2+-Antwort von Spermien keine Unterschiede zwischen den Zellen von 
homozygoten Tas1r1 mCherry und Wildtyp- Mäusen zeigte, konnte eine Beteiligung 
des Geschmacksrezeptors an der Detektion von IMP weitestgehend ausgeschlossen 
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werden. Dieser überraschende Befund konnte demnach nicht direkt zum Verständnis 
der Tas1r1 Rezeptorfunktion in Spermien beitragen und sollte deshalb, unabhängig von 
der vorgestellten Arbeit, in weiterführenden Studien näher untersucht werden. 
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Abbildung 4.57:  Einzelzellmessung des Ca2+-Signals in Spermien nach einer Stimulation mit 
Glutamat und dem Umami Enhancer IMP. 

Mit Fura-2 beladene, kapazitierte Mausspermien wurden auf einem Deckglas immobilisiert. Anschließend 
wurde die Fura-2-Ratio [F340/F380] in den Spermienköpfen in einem Calcium Imaging Setup bestimmt 
und auf den Basalwert vor der Stimulation (100 %) normiert. Nach 30 Sekunden wurden die Zellen mit 
10 mM Glutamat, 1 mM IMP oder einer Kombination der beiden Stoffe stimuliert.  
Während die Zugabe von 10 mM Glutamat [Glu] keine Veränderung der Fura-2-Ratio von Wildtyp- [A] und 
Tas1r1-defizienten [B] Spermien bewirkt, steigt die intrazelluläre Ca2+-Konzentration nach Stimulation mit 
IMP [IMP] stark an und kehrt nach 60 - 90 Sekunden fast vollständig auf den Ausgangswert zurück. Ein 
ähnlicher transienter Anstieg der Fura-2-Ratio ist in beiden Genotypen auch nach Zugabe der Stimulus-
kombination Glutamat/IMP [Glu/IMP] zu beobachten; dieser ist jedoch weniger stark ausgeprägt als bei 
der alleinigen Gabe von IMP.  
Dargestellt sind Mittelwerte ± Standardfehler der durchschnittlichen Ca2+-Antwort der Spermien von 3 - 4 
Tieren pro Genotyp. Pro Tier wurden 18 - 47 Zellen analysiert. Der Zeitpunkt der manuellen Stimulusgabe 
ist durch einen Pfeil gekennzeichnet. 

Eine direkte Aktivierung von Spermien durch Glutamat war anhand der vorangehend 
beschriebenen Ca2+-Messungen zwar nicht feststellbar; dies muss jedoch nicht zwangs-
läufig bedeuten, dass der Tas1r1 Rezeptor keine funktionelle Rolle in Spermien haben 

kann, da bei einer Stimulation mit Glutamat auch sehr kleine, lokale Ca2+-Signale im 
Flagellum entstehen könnten, die mit den eingesetzten Techniken nicht registriert 
werden konnten.  

4.5.3.2 Analyse der Akrosomreaktion von Tas1r1-defizienten Tieren 
Die in murinen und humanen Spermien identifizierten Geschmacksrezeptoren der 
Tas1r-Familie konnten nicht nur im Flagellum, sondern auch im Spermienkopf 
nachgewiesen werden. Aufgrund der Lokalisation des Tas1r1 und Tas1r3 im Akrosom 

und dem Äquatorialsegment von Spermien erschien eine funktionelle Beteiligung dieser 
Rezeptoren an der Akrosomreaktion ebenfalls als eine interessante Möglichkeit. Um 
dieser Hypothese nachzugehen, konzentrierten sich die funktionellen Untersuchungen 

deshalb im Folgenden auf eine Charakterisierung der Akrosomreaktion von Spermien 
Tas1r1-defizienter Mäuse. Dabei sollte u. a. geprüft werden, ob die Tas1r1 Defizienz 
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Auswirkungen auf den elementaren Prozess der akrosomalen Exocytose hat, um damit 
klären zu können, ob der Tas1r1 Rezeptor eventuell als Kandidat für die Erkennung der 
Zona pellucida in Frage kommen oder in die präzise Regulation der Akrosomreaktion 

involviert sein könnte. 
Eine der Grundvoraussetzungen für eine erfolgreiche Exocytose des akrosomalen 
Vesikels von Spermien stellt die Kapazitierung dar. Erst durch diesen sekundären 

Reifungsprozess, den Spermien in vivo im weiblichen Genitaltrakt am Beginn des 
Eileiters durchlaufen, erlangen die Zellen die Fähigkeit, nach Bindung der Zona 

pellucida die Akrosomreaktion zu durchlaufen [Austin, 1952; Witte und Schafer-Somi, 

2007; Florman et al., 2008; Abou-Haila und Tulsiani, 2009]. Um sicherzustellen, dass 
mögliche Unterschiede in der akrosomalen Exocytose nicht auf eine Veränderung der 
Kapazitierung von Tas1r1-defizienten Spermien zurückzuführen sind, wurde deshalb 

zunächst geprüft, ob dieser sekundäre Reifungsprozess in Spermien von homozygoten 
Tas1r1 mCherry Tiere ungestört abläuft. 
Da die Auslagerung von Cholesterol aus der Spermienmembran eine essentielle 

Bedeutung für die Kapazitierung von Spermien hat [Witte und Schafer-Somi, 2007; 
Gadella et al., 2008; Abou-Haila und Tulsiani, 2009; Sheriff und Ali, 2010], wurde der 
Verlauf und Umfang der Kapazitierung von Wildtyp- und transgenen Spermien anhand 

der Auslagerung von Cholesterol aus der Plasmamembran verglichen. Dazu wurden 
Spemien aus dem caudalen Teil des Nebenhodens von Wildtyp- und Tas1r1-defizienten 
Tieren isoliert und in Kapazitierungspuffer bei 37 °C in vitro kapazitiert. Im Abstand 

von 30 Minuten wurden Proben entnommen und der Cholesterol-Gehalt im Überstand 
bestimmt, um so die Menge des aus der Spermienmembran ausgelagerten Cholesterols 
zu quantifizieren [Fukami et al., 2001; Butler et al., 2002].  

In Abbildung 4.32 sind die Ergebnisse dieser experimentellen Ansätze gezeigt. Zur 
Ermittlung der Cholesterol-Auslagerung wurde die Cholesterolmenge im Überstand zu 
Beginn der Inkubation (WT: t0 = 42,3 ± 3,4; Tas1r1 [-/-]: t0 = 36,6 ± 1,7 ng 

Cholesterol/106 Spermien) von allen anderen Werten subtrahiert. In der Abbildung wird 
deutlich, dass die Menge des ausgelagerten Cholesterols während der Inkubation in 
Kapazitierungsmedium bei Spermien beider Genotypen kontinuierlich anstieg. Weder 

im zeitlichen Verlauf noch in der Menge des ausgeschleusten Choleserols waren 
signifikante Unterschiede in der Cholesterolauslagerung zwischen Zellen von Tas1r1-
defizienten und Wildtyp-Tieren zu registrieren (Abbildung 4.58), so dass von einer ver-

gleichbaren Kapazitierung der Spermien beider Genotypen ausgegangen wurde. 
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Abbildung 4.58:  Verlauf der Cholesterol-Auslagerung während der Kapazitierung von Spermien mit 
unterschiedlichem Tas1r1 Genotyp. 

Isolierte epididymale Spermien wurden in Kapazitierungspuffer inkubiert und im Abstand von 30 Minuten 
wurde die Menge an Cholesterol im Überstand bestimmt und gegen die Zeit aufgetragen. Gezeigt ist die 
im Verlauf der Kapazitierung ausgelagerte Cholesterolmenge, abzüglich des Cholesterols zum 
Startzeitpunkt (t0 = 0 ng). 
Sowohl Wildtyp-Spermien (C57BL/6) [+/+, grau] als auch Tas1r1-defiziente Spermien (N1) [-/-, rot] zeigen 
eine kontinuierlich ansteigende Menge von Cholesterol im Überstand. Die Menge an ausgelagertem 
Cholesterol liegt bei den Wildtyp-Tieren [+/+] etwas, jedoch nicht signifikant höher als bei den Knockin-
Tieren [-/-]. 
Grafisch aufgetragen sind Mittelwerte ± Standardfehler von neun unabhängigen Spermienpräparationen 
gegen die Zeit in Minuten [Min]. 

Nachdem keine Unterschiede in der Kapazitierung von Tas1r1-defizienten Spermien 
festgestellt werden konnten, wurde die akrosomale Exocytose der kapazitierten Zellen 

näher untersucht.  
Um zunächst zu prüfen, ob die Fusionsmaschinerie des akrosomalen Vesikels durch das 
Fehlen des Tas1r1 Rezeptors beeinträchtigt sein könnte, wurde zunächst die maximal 

induzierbare Akrosomreaktionsrate nach einer direkten Erhöhung der intrazellulären 
Ca2+-Konzentration untersucht [Talbot et al., 1976; Kirkman-Brown et al., 2002]. Dazu 
wurden Spermien von Tas1r1-defizienten und Wildtyp-Mäusen für 90 Minuten 

kapazitiert und anschließend 30 Minuten lang mit dem Calcium-Ionophor A23187 
(10 µM) inkubiert, fixiert und zur Darstellung des Akrosoms mit einer Coomassie-
Lösung gefärbt. In parallel durchgeführten Kontrollansätzen, in denen die Zellen nur 

mit dem Puffer inkubiert wurden, in dem auch das A23187 gelöst war (0,1 % DMSO), 
wurde die Rate der Akrosomreaktionsrate bestimmt, die spontan während des Ver-
suches ohne eine künstliche Erhöhung der intrazellulären Ca2+-Konzentration erfolgte 

[DasGupta et al., 1994]. 
Die Ergebnisse dieser Untersuchungen an 15 Tieren pro Genotyp sind in Abbildung 
4.59 [A] dargestellt. In der Zusammenfassung der experimentellen Ansätze wird 

deutlich, dass die Inkubation mit dem Calcium-Ionophor [A23187] in den Spermien 
beider Genotypen zu einer signifikanten Erhöhung der Akrosomreaktionsrate im Ver-
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gleich zur DMSO-Kontrolle [DMSO] führte. Dabei waren keine Unterschiede im 
Umfang der durch A23187 absolut erreichten Akrosomreaktionsrate zwischen 
homozygoten Tas1r1 mCherry Mäusen (Tas1r1 [-/-], rote Säulen) und Wildtyp-Tieren 

(Tas1r1 [+/+], graue Säulen) feststellbar, so dass eine Störung der Exocytose-
maschinerie durch die Tas1r1-Defizienz ausgeschlossen werden konnte.  
Interessanterweise zeigte sich allerdings in Kontrollansätzen, die nur mit dem DMSO-

Puffer [DMSO] inkubiert wurden, ein signifikanter Unterschied zwischen den Spermien 
beider Genotypen (Abbildung 4.59 [A]): Während die spontane Akrosomreaktionsrate 
der Wildtyp-Zellen in diesen Ansätzen bei 28 ± 2 % lag, verloren ohne Ionophor-

Behandlung durchschnittlich 35 ± 3 % der Tas1r1-defizienten Spermien ihr Akrosom.  
Dieser Unterschied in der spontanen Exocytoserate war auch in weiteren experimen-
tellen Ansätzen zu registrieren, in denen Spermien mit dem physiologischen Auslöser 

der Akrosomreaktion, der Zona pellucida, inkubiert wurden. In diesen Versuchen sollte 
der Frage nachgegangen werden, ob der Tas1r1 möglicherweise an der Erkennung der 
Glykoprotein-reichen Eizellhülle beteiligt sein könnte und Tas1r1-defiziente Tiere 

somit Einschränkungen in der physiologisch-induzierten Akrosomreaktion zeigen. Die 
für diese Analysen benötigten Zonae pellucidae wurden durch eine Percoll-Gradienten-
Zentrifugation aus homogenisierten Ovarien von 6 - 10 Wochen alten Mäusen isoliert 

und dann solubilisiert (siehe Abschnitt 3.4.6). Mit dem erhaltenen Zona-Solubilisat 
wurden anschließend kapazitierte Spermien von Tas1r1-defizienten und Wildtyp-Tieren 
mit identischem Stammhintergrund für 30 Minuten stimuliert und der akrosomale Status 

der Zellen mikroskopisch ermittelt. Wie Abbildung 4.59 [B] verdeutlicht, konnte in 
diesen Stimulationen mit dem physiologischen Auslöser der Akrosomreaktion kein 
signifikanter Unterschied in den absoluten akrosomalen Exocytoseraten zwischen 

Spermien der beiden analysierten Genotypen registriert werden.  
Die Befunde der zuvor beschriebenen Analysen der Akrosomreaktion deuten darauf hin, 
dass die Detektion der Zona pellucida und die Aktivierung nachgeschalteter Signal-

transduktionskaskaden [Abou-Haila und Tulsiani, 2009] sowie die Exocytosereaktion 
des akrosomalen Vesikels nicht durch die Tas1r1-Defizienz beeinflusst wurden. Die 
vergleichbare Induzierbarkeit der Akrosomreaktion in beiden Genotypen belegt zudem, 

dass die Kapazitierung Tas1r1-defizienter Tiere vergleichbar war und untermauerte so 
die Befunde der experimentellen Ansätze zum Umfang der Cholesterolauslagerung 
(Abbildung 4.58). Allerdings deuten die erhöhten Akrosomreaktionsraten der Tas1r1-

defizienten Tiere in unstimulierten Proben (Abbildung 4.59 [A], [DMSO]) darauf hin, 
dass der Rezeptorverlust möglicherweise Auswirkungen auf die Verhinderung eines 
spontanen Verlusts des Akrosoms haben könnte. 
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Abbildung 4.59:  Analyse der Akrosomreaktion von Tas1r1-defizienten und Wildtyp-Tieren nach 
Stimulation mit A23187 und Zona pellucida. 

Spermien wurden aus dem caudalen Teil des Nebenhodens isoliert, kapazitiert und anschließend mit dem 
Calcium-Ionophor A23187 [A] bzw. mit solubilisierter Zona pellucida [B] stimuliert. Nach der Fixierung 
wurde der akrosomale Status mit Hilfe einer Coomassie-Färbung bestimmt.  
[A] Nach der Stimulation mit dem Calcium-Ionophor [A23187] zeigen Wildtyp- ([+/+], grau) und Tas1r1-
defiziente Spermien ([-/-], rot) einen signifikanten Anstieg der akrosomalen Exocytose im Vergleich zur 
Pufferkontrolle [DMSO]. Zwischen den beiden Genotypen besteht kein signifikanter Unterschied [n. s.] in 
den durch A23187 induzierten Akrosomreaktionsraten; allerdings ist der Wert der DMSO-Kontrolle bei 
Tas1r1-defizienten Tieren signifikant höher als bei Wildtyp-Männchen. [B] Nach Inkubation der Spermien 
mit Zona pellucida [ZP] ist ein signifikanter Anstieg der akrosomalen Sekretion zu registrieren, der jedoch 
keine signifikanten Unterschiede zwischen Wildtyp- und Tas1r1 Knockin-Spermien aufweist. 
Dargestellt sind Mittelwerte ± Standardfehler von 15 (A23187) bzw. sieben (ZP) unabhängigen 
Experimenten an Spermien von Tieren mit identischem Stammhintergrund (N2, N3). Zur statistischen 
Analyse wurde ein studentischer t-Test durchgeführt (*: p ≤ 0,05). 

Um zu prüfen, ob der Tas1r1 Rezeptor möglicherweise an Prozessen beteiligt sein 
könnte, die die Akrosomreaktion regulieren und einen vorzeitigen, abortiven Verlust 

des akrosomalen Vesikels verhindern, wurde die Spontanrate der Spermien von Tas1r1-
defizienten Tieren mit der von Wildtyp-Männchen verglichen [DasGupta et al., 1994; 
Yanagimachi, 1994]. Dazu wurden reife Spermien aus dem caudalen Teil des Neben-

hodens isoliert und entweder sofort fixiert, um die Akrosomreaktionsrate in 
unkapazitierten Zellen zu ermitteln, oder 90 Minuten lang in Kapazitierungsmedium 
inkubiert, bevor der akrosomale Status bestimmt wurde.  

Abbildung 4.60 zeigt die Ergebnisse dieser Quantifizierung der spontanen Akrosom-
reaktionsrate von Spermien Tas1r1-defizienter und von Wildtyp-Tieren. Bei Spermien 
der Mäuse beider Genotypen stieg die Spontanrate nach der Kapazitierung (rechtes 

Säulenpaar, [kapazitiert]) im Vergleich zu unkapazitierten Spermien (linkes Säulenpaar, 
[unkapazitiert]) deutlich an, was darauf zurückzuführen war, dass die Zellen erst 
während der Kapazitierung ihre vollständige Fähigkeit zur Akrosomreaktion 

ausbildeten und somit die Wahrscheinlichkeit eines spontanen Verlusts des Akrosoms 
im Verlauf der Kapazitierung anstieg. Vergleicht man jedoch die Akrosomreaktionsrate 
der beiden Genotypen, so fällt auf, dass die Exocytoserate der Tas1r1-defizienten 

Spermien (rote Säulen) unabhängig vom Kapazitierungszustand signifikant höher war 



186 Ergebnisse 

als bei Zellen von Wildtyp-Tieren (graue Säulen) mit gleichem Stammhintergrund 
(Abbildung 4.60). Diese Befunde stützen somit die Vermutung, dass der Tas1r1 
Rezeptor an der Kontrolle der akrosomalen Exocytose beteiligt sein könnte. 
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Abbildung 4.60:  Vergleich der spontanen Akrosomreaktionsrate in Spermien von Tas1r1-
defizienten und Wildtyp-Mäusen. 

Aus der Cauda des Nebenhodens von Wildtyp [+/+] und Tas1r1-defizienten [-/-] Tieren wurden Spermien 
isoliert und entweder direkt [unkapazitiert] oder nach 90minütiger Kapazitierung [kapazitiert] fixiert und 
gefärbt. Im Anschluss wurde der akrosomale Status lichtmikroskopisch bestimmt.  
Die Tas1r1 Knockin-Spermien ([-/-], rot) zeigen sowohl unkapazitiert als auch kapazitiert eine signifikant 
höhere Rate an spontaner Akrosomreaktion als Wildtyp-Spermien ([+/+], grau). Die Spontanrate ist bei 
kapazitierten Spermien [kapazitiert] in beiden Genotypen signifikant höher als in unkapazitierten Zellen 
[unkapazitiert]. 
Dargestellt sind Mittelwerte ± Standardfehler von 15 unabhängigen Experimenten an Tieren mit gleichem 
genetischen Hintergrund (N2, N3). Zur statistischen Analyse wurde ein studentischer t-Test durchgeführt 
(*: p ≤ 0,05). 

Um der Hypothese einer funktionellen Rolle des Umami-Rezeptors für die Regulation 

der Akrosomreaktion nachzugehen, sollte im Folgenden geklärt werden, ob eine 
Aktivierung des Rezeptors Auswirkungen auf die akrosomale Exocytose von Spermien 
hat. Dazu wurden Spermien von Tas1r1-defizienten und Wildtyp-Tieren mit Glutamat 

und dem Umami Enhancer IMP inkubiert und die akrosomale Sekretionsrate bestimmt, 
um so eine mögliche Induktion oder Inhibition der akrosomalen Sekretion durch die 
Rezeptorstimulation feststellen zu können.  

In diesen Ansätzen konnten in Wildtyp-Spermien keine signifikanten Effekte auf die 
Akrosomreaktionsrate durch Glutamat (10 mM), IMP (1 mM) oder eine Kombination 
der beiden Geschmacksstoffe im Vergleich zu einer Inkubation mit Puffer registriert 

werden (Abbildung 4.61, graue Säulen). Auch die Zugabe von 10 mM Natriumchlorid, 
das eingesetzt wurde, um eventuelle osmotische Einflüsse der Stimulationssubstanzen 
zu kontrollieren, hatte keinen signifikanten Einfluss auf die akrosomale Exocytose 

(Abbildung 4.61, [NaCl]). Vergleichbare Resultate wurden auch mit Tas1r1-defizienten 
Spermien erzielt: Bei keinem der verwendeten Geschmacksstoffe war eine signifikante 
Änderung des Anteils Akrosom-reagierter Zellen im Vergleich zur basalen Akrosom-

reaktionsrate zu registrieren (Abbildung 4.61, rote Säulen). Allerdings konnte auch in 
diesen Versuchen beobachtet werden, dass der Anteil der Tas1r1-defizienten Zellen 
ohne Akrosom bei jedem Stimulus höher war als bei Spermien von Wildtyp-Tieren 
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(Abbildung 4.61), was durch die höhere Rate an spontaner Akrosomreaktion von 
Tas1r1-defizienten Spermien (Abbildung 4.60) bedingt war.  
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Abbildung 4.61:  Untersuchung der Wirkung von Glutamat auf die Akrosomreaktion in Tas1r1-
defizienten und Wildtyp-Spermien. 

Kapazitierte Spermien von Tas1r1-defizienten [-/-] und Wildtyp-Tieren [+/+] wurden für 30 Minuten mit 
10 mM Natriumglutamat [Glu], 1 mM IMP [IMP], einer Kombination beider Substanzen [Glu/IMP], mit 
10 mM NaCl [NaCl] oder nur mit Puffer [basal] inkubiert, anschließend fixiert, gefärbt und auf ihren 
akrosomalen Status hin geprüft. 
Die Akrosomreaktion von Wildtyp- und Tas1r1 Knockin-Spermien lässt sich weder durch Glutamat allein 
noch durch Glutamat in Kombination mit IMP induzieren. Auch IMP oder NaCl haben keinen signifikanten 
Effekt auf die akrosomale Exocytose beider Genotypen. Unabhängig von der Stimulationssubstanz zeigen 
Tas1r1-defiziente Tiere in den Ansätzen eine leicht erhöhte Spontanrate.  
Gezeigt sind Mittelwerte ± Standardfehler von sieben unabhängigen Experimenten pro Genotyp; es 
wurden Geschwistertiere und Tiere mit gleichem genetischen Hintergrund (N2, N3) analysiert. 

Neben dem Tas1r1, für dessen funktionelle Beteiligung an der Akrosomreaktion bereits 
Hinweise durch die genetisch modifizierte Tas1r1 mCherry Reportermauslinie 
gesammelt werden konnten, wurde in immuncytochemischen Ansätzen auch das Tas1r3 

Protein im Akrosom von Spermien nachgewiesen. Dieser Rezeptor ist im Geschmacks-
system nicht nur für die Detektion von Umami-Stimuli verantwortlich (als Dimer mit 
dem Tas1r1), sondern bildet zusammen mit dem Tas1r2 auch das Rezeptordimer zur 

Erkennung süßer Geschmacksstoffe. Aufgrund dieses breiteren Ligandenspektrums des 
Tas1r3 stellte sich die Frage, ob der Rezeptor in Spermien möglicherweise auch 
unabhängig vom Tas1r1 durch süße Geschmacksstoffe aktiviert werden könnte. Um die 

Versuche zur Induzierbarkeit der Akrosomreaktion durch Liganden der Tas1r-Rezeptor-
familie zu komplettieren, wurde deshalb auch der Effekt von süß schmeckenden 
Substanzen auf die akrosomale Exocytose geprüft.  

Im Rahmen dieser Experimente wurden kapazitierte caudale Spermien von Wildtyp-
Tieren mit verschiedenen gustatorischen Liganden des Tas1r2/Tas1r3 Dimers stimuliert 
und dann der akrosomale Status bestimmt. Die Befunde dieses experimentellen 

Ansatzes, die in Abbildung 4.62 gezeigt sind, belegen, dass weder der verwendete 
Zucker [Glucose], noch die eingesetzten Süßstoffe ([Saccharin], [Acesulfam K]) noch 
das süße Protein Thaumatin in der Lage waren, den Anteil Akrosom-reagierter Zellen 

im Vergleich zum Basalwert zu erhöhen.  
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Abbildung 4.62:  Effekt von Süßsubstanzen auf die Akrosomreaktion. 
Spermien wurden aus dem caudalen Teil des Nebenhodens von Wildtyp-Mäusen (Balb/c) isoliert, 
60 Minuten kapazitiert und anschließend für 30 Minuten mit verschiedenen süßen Geschmacksstoffen 
inkubiert. Nach der Fixierung wurde der Anteil der Akrosom-reagierten Spermien mit Hilfe einer 
Coomassie-Färbung bestimmt.  
Die Inkubation mit 100 mM Glucose [Glucose], 1 mM Saccharin [Saccharin], 100 mM Acesulfam K 
[Acesulfam] bzw. mit 100 µM Thaumatin [Thaumatin] führt nicht zu einer Induktion der Akrosomreaktion. 
Dargestellt sind Mittelwerte ± Standardfehler von 3 - 7 unabhängigen Stimulationen. Es war kein statistisch 
signifikanter Unterschied zur Pufferkontrolle feststellbar (gepaarter t-Test, p ≤ 0,05). 

4.5.3.3 Quantifizierung der Konzentrationen der second messenger Ca2+ und cAMP 
in isolierten Spermien der Tas1r1 mCherry Reportermauslinie 

Die bislang gesammelten Befunde, die eine erhöhte Spontanrate von Tas1r1-defizienten 

Spermien belegen, legen eine funktionelle Beteiligung des Tas1r1 Rezeptors an der 
Akrosomreaktion nahe. Trotz des Phänotyps einer vermehrten spontanen akrosomalen 
Exocytose haben jedoch Stimulationen der Zellen mit Glutamat keine Auswirkungen 

auf die Akrosomreaktionsrate von Wildtyp- oder Tas1r1-defizienten Spermien erkennen 
lassen. Die erhöhte Akrosomreaktionsrate könnte somit möglicherweise auf eine Basal-
aktivität des Rezeptors zurückzuführen sein, die an der Kontrolle der Akrosomreaktion 

beteiligt ist. Dieses Modell erscheint besonders interessant, da eine solche konstitutive 
Aktivität mehrfach bei GPCRs beobachtet wurde [Seifert und Wenzel-Seifert, 2002] 
und auch für den Dimerisierungspartner des Tas1r1, den Tas1r3, bereits beschrieben 

wurde [Galindo-Cuspinera et al., 2006]. Außerdem erfolgt die Signaltransduktion von 
Tas1-Rezeptoren im Geschmackssystem über die beiden second messenger Ca2+ und 
cAMP [Kinnamon und Vandenbeuch, 2009], die beide elementare Regulatoren der 

Akrosomreaktion darstellen [Breitbart, 2002b; Mayorga et al., 2007; Abou-Haila und 
Tulsiani, 2009]. 
Um zu prüfen, ob der Tas1r1 Rezeptor tatsächlich an der Regulation der intrazellulären 

Ca2+- und cAMP-Level in Spermien beteiligt sein könnte, wurden Versuche durch-
geführt, in denen die basalen Konzentrationen dieser second messenger in Spermien 
von Tas1r1-defizienten und von Wildtyp-Tieren verglichen wurden. 

Zur Ermittlung der basalen intrazellulären Ca2+-Konzentration von Spermien wurde in 
Calcium Imaging Experimenten die Fluoreszenz des Ca2+-sensitiven Farbstoffs Fura-2 
im Spermienkopf bestimmt. Nach einer Kalibrierung des Messsystems mit Ca2+-freien 
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bzw. stark Ca2+-haltigen Puffern (Abschnitt 3.5.1), konnte die freie Ca2+-Konzentration 
nach der Formel von Grynkiewicz [Grynkiewicz et al., 1985] aus den gemessenen Fura-
2-Ratios berechnet werden. Um sicherzustellen, dass bei diesen Analysen nur lebende 

Zellen berücksichtigt wurden, wurden nur Zellen in die Auswertung aufgenommen, die 
nach einer Stimulation mit Ionomycin (5 µM) gegen Ende der Messung einen starken 
Anstieg ihrer Fura-2-Ratio zeigten.  

Abbildung 4.63 zeigt eine Übersicht der Resultate dieser experimentellen Unter-
suchungen an unkapazitierten Spermien von Tas1r1-defizienten und Wildtyp-Tieren mit 
gleichem Stammhintergrund (N2, N3). Im Scatter Plot in [A] sind die berechneten 

intrazellulären Ca2+-Konzentrationen der Spermien von jeweils 5 Tieren pro Genotyp 
dargestellt; dabei entspricht jedes Kästchen der intrazellulären Ca2+-Konzentration einer 
einzelnen Zelle. In dieser Darstellung wird deutlich, dass die intrazelluläre Ca2+-

Konzentration individueller Spermien eines Tieres stark schwankten. Die für die 
einzelnen Tiere aus diesen Werten berechneten mittleren Konzentrationen des Calcium-
Ions (blaue Striche) wiesen hingegen deutlich geringere Unterschiede auf und waren mit 

80 - 100 mM vergleichbar zu bereits publizierten intrazellulären Ca2+-Konzentration in 
Mausspermien [Wennemuth et al., 2003; Schuh et al., 2004]. Beim Vergleich der für 
jedes Tier bestimmten mittleren Fura-2-Ratio und der daraus berechneten intrazellulären 

Ca2+-Konzentration (Abbildung 4.63 [B]) fiel auf, dass unkapazitierte Spermien von 
Tas1r1-defizienten Tieren trotz der individuellen Schwankungen zwischen einzelnen 
Tieren (Abbildung 4.63 [A]) tatsächlich eine signifikant höhere basale Ca2+-

Konzentration aufwiesen als die Zellen von Wildtyp-Tieren. 
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Abbildung 4.63:  Vergleich der intrazellulären Ca2+-Konzentrationen in unkapazitierten Spermien 
von Wildtyp- und Tas1r1 Knockin-Tieren. 

Aus dem caudalen Teil des Nebenhodens von Wildtyp- und Tas1r1-defizienten Tieren wurden Spermien in 
HS Puffer isoliert und mit Fura-2-AM beladen. Anschließend wurde die Fura-2-Ratio in den unbehandelten 
Zellen gemessen und die freie intrazelluläre Ca2+-Konzentration wurde für jede einzelne Zelle nach 
[Grynkiewicz et al., 1985] berechnet. 
[A] Die Abbildung zeigt einen Scatter Plot der intrazellulären Ca2+-Konzentration (kleine Quadrate) der 
Spermien von fünf Wildtyp- (grau) und fünf Tas1r1-defizienten (rot) Tieren. Die mittlere intrazelluläre Ca2+-
Konzentration der Zellen einer Maus ist durch einen blauen Balken gekennzeichnet.  
[B] stellt einen Scatter Plot der durchschnittlichen Fura-2-Ratios von unkapazitierten Spermien Tas1r1-
defizienter und Wildtyp-Mäuse dar. Der Mittelwert der Fura-2-Ratios (schwarzer Balken) und die daraus 
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berechneten intrazellulären Ca2+-Konzentrationen liegen in Tas1r1-defizienten Spermien (99 ± 5 nM) ([-/-], 
rot) signifikant höher als in Wildtyp-Zellen (81 ± 5 nM) ([+/+], grau). 
Dargestellt sind die berechneten freien Ca2+-Konzentrationen [A] bzw. die Fura-2-Ratios [B] der Spermien 
von fünf Wildtyp- und Tas1r1-defizienten Tieren aus dem gleichen Wurf bzw. mit identischem Stamm-
hintergrund. Zur statistischen Analyse wurde ein gepaarter studentischer t-Test durchgeführt (**: p ≤ 0,01). 

Wie bereits in der Literatur beschrieben, war in Spermien beider Genotypen nach der 
Inkubation in einem Bicarbonat und BSA-haltigem Kapazitierungspuffer eine deutliche 

Erhöhung der intrazellulären Ca2+-Konzentration zu beobachten [Breitbart, 2002a; 
Wennemuth et al., 2003; Schuh et al., 2004]. Beim Vergleich der Ca2+-Konzentration 
kapazitierter Spermien von Tas1r1-defizienten Tieren mit den entsprechenden Wildtyp-

Männchen war, wie auch in unkapazitierten Zellen, eine Tendenz der Tas1r1-
defizienten Spermien zu einer erhöhten basalen intrazellulären Menge des Kations zu 
registrieren (Abbildung 4.64); allerdings war der Unterschied in den kapazitierten 

Spermien nicht signifikant (p = 0,2).  
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Abbildung 4.64:  Intrazelluläre Ca2+-Konzentrationen in Spermien von Wildtyp- und Tas1r1-
defizienten Tieren nach der Kapazitierung. 

Isolierte caudale Spermien von Tieren verschiedener Tas1r1 Genotypen wurden 60 Minuten lang 
kapazitiert und anschließend mit dem Ca2+-sensitiven Farbstoff Fura-2-AM beladen. Danach wurde die 
Fluoreszenz des Ca2+-Indikators im Kopf der Spermien in einem Calcium Imaging System bestimmt. 
Gezeigt ist ein Scatter Plot der durchschnittlichen Fura-2-Ratios (F340/F380) der Spermien von jeweils 
sechs Wildtyp- ([+/+], graue Quadrate) und Tas1r1-defizienten Tieren ([-/-], rote Dreiecke). Die Lage der 
durchschnittlichen Fura-2-Ratio ist für beide Genotypen in Form eines schwarzen Balkens eingezeichnet. 
Die mittlere freie Ca2+-Konzentration in den Zellen beider Genotypen, die aus den jeweiligen Fura-2-Ratios 
berechnet wurde, ist unten in der Grafik angegeben. Beim Vergleich der Fura-2-Ratios und der daraus 
berechneten Ca2+-Konzentrationen fällt auf, dass kapazitierte Tas1r1-defiziente Spermien eine leicht 
höhere, jedoch nicht signifikant veränderte intrazelluläre Ca2+-Konzentration aufweisen.  
Analysiert wurden Tierpaare mit identischem genetischen Hintergrund; pro Tier wurde die Fura-2-Ratio 
von mindestens 14 Spermien bestimmt. Zur statistischen Auswertung wurde ein gepaarter studentischer t-
Test angewandt. 

Eine Zusammenfassung der Befunde der Ca2+-Konzentrationsbestimmungen von 

unkapazitierten und kapazitierten Spermien verschiedener Tas1r1 Genotypen ist in 
Abbildung 4.65 gezeigt. In dieser Übersicht wird nochmals deutlich, dass Tas1r1-
defiziente Spermien, unabhängig vom analysierten Kapazitierungszustand, eine höhere 

basale Ca2+-Konzentration aufwiesen als entsprechende Zellen von Wildtyp-Tieren. Der 
Unterschied in der freien Ca2+-Konzentration war jedoch nur in den unkapazitierten 
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Zellen signifikant (Abbildung 4.65), möglicherweise bedingt durch starke 
Schwankungen der Ca2+-Konzentration, die bei kapazitierten Spermien zwischen 
einzelnen Tieren eines Genotyps registriert wurden (Abbildung 4.65 [-/-]).  
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Abbildung 4.65:  Übersicht über basale Ca2+-Konzentrationen in Spermien von Wildtyp- und Tas1r1-
defizienten Tieren. 

Dargestellt ist die durchschnittliche intrazelluläre Ca2+-Konzentration in unkapazitierten und kapazitierten 
Spermien von Wildtyp- und Tas1r1-defizienten Tieren. Unabhängig vom Kapazitierungszustand ist die 
mittlere Ca2+-Konzentration in unstimulierten Spermien bei Tas1r1-defizienten Tieren höher als bei 
Wildtyp-Tieren. Dieser Unterschied ist jedoch nur in unkapazitierten Zellen signifikant. 
Dargestellt sind die berechneten freien Ca2+-Konzentrationen der Spermien von fünf (unkapazitiert) bzw. 
sechs (kapazitiert) Wildtyp- und Tas1r1 [-/-] Tieren aus dem gleichen Wurf bzw. mit identischem Stamm-
hintergrund (N2, N3).  
Zur statistischen Analyse wurde ein gepaarter studentischer t-Test durchgeführt (**: p ≤ 0,01). 

Um zu prüfen, ob sich die Tas1r1-Defizienz nicht nur auf die basale Ca2+-Konzentration 

von Spermien auswirkt, sondern möglicherweise auch den cAMP-Gehalt der 
Keimzellen beeinflussen könnte, wurde die cAMP-Konzentration in Spermien von 
Tas1r1 [-/-] und Wildtyp-Tieren vor und nach der Kapazitierung bestimmt. Für diese 

cAMP-Messungen wurden Spermien aus dem caudalen Teil des Nebenhodens isoliert 
und entweder direkt verwendet (unkapazitiert) oder für 60 Minuten in Kapazitierungs-
puffer inkubiert (kapazitiert). Nach einem Waschschritt wurden die Zellen für fünf 

Minuten bei 37 °C mit Puffer allein (zur Bestimmung des Basalwertes) oder mit dem 
Phosphodiesterasehemmer IBMX inkubiert und anschließend in flüssigem Stickstoff 
Schock-gefroren. Zur Extraktion des cAMP wurden die Proben mit Perchlorsäure 

versetzt und mit einer Chloroform/Trioctylamin-Mischung neutralisiert (siehe Abschnitt 
3.5.2); im Anschluss daran wurde der cAMP-Gehalt der Proben mit Hilfe eines cAMP-
Enzym-Immunassays (GE Healthcare) quantifiziert.  

In Abbildung 4.66 sind die Ergebnisse der cAMP-Basalwertbestimmung der isolierten 
epididymalen Spermien von 11 - 15 Tieren pro Genotyp dargestellt. Im gezeigten 
Scatter Plot entspricht jedes Quadrat bzw. Dreieck dem Messwert eines einzelnen 

Tieres; die Werte von Geschwistertieren bzw. Tieren mit gleichem Stammhintergrund, 
die parallel präpariert und analysiert wurden, sind durch einen Strich verbunden. Beim 
Vergleich der basalen cAMP Konzentration in unkapazitierten Zellen fielen sowohl bei 
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Wildtyp- als auch bei Tas1r1-defizienten Tieren starke Schwankungen zwischen den 
einzelnen Tieren auf: So reichte die cAMP-Menge in einer Million unkapazitierten 
Wildtyp-Zellen von 49 - 519 fmol, in Tas1r1-defizienten Zellen von 74 - 628 fmol. 

Trotz dieser starken individuellen Schwankungen war beim Vergleich der cAMP-
Konzentration in Spermien von korrespondierenden Tas1r1-defizienten und Wildtyp-
Tieren, die parallel präpariert und analysiert wurden, jedoch ein eindeutiger Trend zu 

einem höherem cAMP-Gehalt in den Zellen Tas1r1-defizienter Tiere zu beobachten: In 
13 von 15 Tierpaaren war die cAMP-Konzentration der unkapazitierten Zellen beim 
Tas1r1-defizienten Tier höher als beim entsprechenden Wildtyp-Tier (Abbildung 4.66 

[A]). Nur in zwei Paaren wurde eine niedrigere cAMP-Menge in den Spermien des 
Tas1r1 [-/-] Männchens registriert (Abbildung 4.66 [A], Rauten).  
Nach der Kapazitierung waren die registrierten cAMP-Konzentrationen in Spermien 

beider Genotypen deutlich höher als in unkapazitierten Zellen (Abbildung 4.66 [B]). 
Dieser Anstieg der cAMP-Konzentration ist typisch für die Kapazitierung und durch die 
Stimulation der löslichen Adenylylcyclase u. a. durch Bicarbonat im Kapazitierungs-

puffer zu erwarten [Buck et al., 1999; Chen et al., 2000]. Im Gegensatz zu 
unkapazitierten Spermien war beim Vergleich des basalen cAMP-Gehaltes der 
kapazitierten Zellen hingegen keine Tendenz zu höheren cAMP-Konzentrationen in 

Tas1r1-defizienten Spermien mehr feststellbar. 
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Abbildung 4.66:  Basale cAMP-Konzentration in Wildtyp- und Tas1r1-defizienten Spermien in 
Abhängigkeit vom Kapazitierungszustand. 

Epididymale Spermien von Tas1r1-defizienten ([-/-], rot) und Wildtyp-Mäusen ([+/+], grau) wurden 
entweder unkapazitiert [unkapazitiert] [A] oder nach 60minütiger Inkubation [kapazitiert] [B] für fünf 
Minuten mit Puffer inkubiert, und anschließend wurde der cAMP Gehalt pro 1 Mio Zellen bestimmt. Der 
Scatter Plot zeigt die cAMP-Menge der Spermien jedes untersuchten Tieres in Abhängigkeit vom Genotyp. 
Die Werte für Tiere, die in einem parallelen Ansatz untersucht wurden, sind durch einen Strich verbunden. 
[A] Unkapazitierte Spermien von Tas1r1-defizienten Tieren (rote Dreiecke) weisen in fast allen 
untersuchten Paaren einen höheren Gehalt an cAMP auf als die Zellen der dazugehörigen Wildtyp-Tiere 
(graue Quadrate); nur in zwei der untersuchten 15 Tierpaare war in den Tas1r1-defizienten Spermien eine 
niedrigere cAMP-Konzentration zu registrieren (Rauten).  
[B] Beim Vergleich kapazitierter Zellen ist keine klare Tendenz in den cAMP-Konzentrationen der Zellen 
aus verschiedener Tas1r1 Genotypen zu beobachten. 
Dargestellt sind die in basalen cAMP-Konzentrationen isolierter Spermien von 11 - 15 Geschwistertieren 
bzw. Tieren mit identischem Stammhintergrund (N2, N3).  
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Diese Beobachtung konnte in der statistischen Analyse der basalen cAMP-Konzen-
trationen unkapazitierter und kapazitierter Spermien der beiden untersuchten Tas1r1 
Genotypen bestätigt werden: Die durchschnittliche cAMP-Konzentration in 

unkapazitierten Tas1r1-defizienten Spermien war signifikant höher als in Spermien ent-
sprechender Wildtyp-Tiere (Abbildung 4.66 [A], linkes Säulenpaar), während bei 
kapazitierten Spermien kein signifikanter Unterschied zwischen den Genotypen mehr 

festzustellen war (Abbildung 4.66 [A], rechtes Säulenpaar). Um die Basalwerte un-
abhängig von individuellen Schwankungen in der cAMP-Konzentration einzelner Tier-
paare vergleichen zu können, wurden die gemessenen cAMP-Konzentrationen auf den 

Basalwert der unkapazitierten Spermien des jeweiligen Wildtyp-Tieres normiert. In 
dieser Auswertung wurde deutlich, dass die basale cAMP-Konzentration von 
unkapazitierten Tas1r1-defizienten Tieren durchschnittlich 35 % höher war als bei 

Zellen der Wildtyp-Tiere (Abbildung 4.66 [B]). In kapazitierten Spermien, deren 
cAMP-Konzentration mit ca. 300 % des Basalwertes wie erwartet deutlich höher war, 
als die von unkapazitierten Zellen, war hingegen kein signifikanter Unterschied 

zwischen den verschiedenen Genotypen zu registrieren.  
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Abbildung 4.67:  Vergleich der basalen cAMP Konzentration in Spermien verschiedener Tas1r1 
Genotypen. 

Die cAMP-Konzentration von isolierten unkapazitierten und kapazitierten Spermien von Wildtyp- ([+/+], 
grau) und Tas1r1-defizienten ([-/-], rot) Tieren wurde bestimmt. In [A] sind die absolut gemessenen cAMP-
Konzentrationen dargestellt, in [B] wurden die Konzentrationen auf den Basalwert unkapazitierter 
Spermien des jeweiligen Wildtyp-Tieres normiert. 
[A] Der gemessene cAMP-Gehalt in unkapazitierten Spermien ist signifikant niedriger als in kapazitierten 
Spermien (linkes Säulenpaar). Nach der Kapazitierung zeigen beide Genotypen eine signifikant höhere 
cAMP-Konzentration; ein Unterschied zwischen den Genotypen ist jedoch nicht mehr feststellbar (rechtes 
Säulenpaar). [B] In der Zusammenfassung der normierten Daten wird deutlich, dass die cAMP-
Konzentration unkapazitierter Tas1r1-defizienter Zellen ca. 35 % höher ist als in den korrespondierenden 
Wildtyp-Zellen. Bei kapazitierten Zellen ist hingegen kein Unterschied zwischen den Spermien der beiden 
Genotypen zu registrieren.  
Grafisch dargestellt sind Mittelwerte ± Standardfehler von 11 - 13 unabhängigen Versuchen an Zellen von 
Tieren mit identischem genetischen Hintergrund (N2, N3). Die statistische Auswertung erfolgte mit Hilfe 
eines gepaarten t-Tests (*: p ≤ 0,05). 

Die Beobachtung einer erhöhten basalen cAMP-Konzentration in unkapazitierten 
Spermien von Tas1r1-defizienten Tiere führte zu der Frage, ob diese Erhöhung durch 
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eine vermehrte Bildung von cAMP oder durch einen verminderten Abbau des second 

messengers bedingt sein könnte. Diese Frage erscheint insbesondere interessant, da eine 
Stimulation von Geschmacksrezeptoren in Sinneszellen der Zunge über Gustducin zu 

einer Aktivierung von Phosphodiesterasen (PDE) führt und die Hydrolyse von 
zyklischen Nukleotiden fördert [Clapp et al., 2008]. 
Um zu untersuchen, ob eine verminderte cAMP-Hydrolyse der erhöhten basalen cAMP-

Konzentration in Spermien homozygoter Tas1r1 mCherry Tiere zu Grunde liegt, wurde 
der cAMP-Gehalt von Spermien bestimmt, die mit IBMX, einem unspezifischen 
Blocker der Phosphodiesterase-Aktivität [Corbin und Francis, 2002] behandelt wurden.  

Nach Inhibition des cAMP-Abbaus durch IBMX war in Spermien von Tas1r1-
defizienten und Wildtyp-Tieren eine deutliche Akkumulation von cAMP im Vergleich 
zu unstimulierten Proben zu registrieren (Abbildung 4.68). Dabei zeigten kapazitierte 

Spermien beider Genotypen aufgrund der verstärkten Bildung von cAMP durch 
Aktivierung der löslichen Adenylylcyclase eine signifikant höhere cAMP-
Konzentration als unkapazitierte Zellen. Interessanterweise wurde beim Vergleich der 

cAMP-Menge in unkapazitierten Spermien der beiden Genotypen deutlich, dass nach 
der Blockierung des cAMP-Abbaus durch IBMX keine Unterschiede mehr in der 
cAMP-Konzentration zwischen Spermien von Tas1r1-defizienten (513 ± 61 fmol/1 Mio 

Zellen) und Wildtyp-Tieren (495 ± 82 fmol/1 Mio Zellen) feststellbar waren (Abbildung 
4.68). Diese Angleichung in der cAMP-Konzentration nach Inhibition der PDE-
Aktivität deutet darauf hin, dass die Erhöhung der basalen cAMP-Menge in Tas1r1-

defizienten Tieren auf Unterschiede in der cAMP-Hydrolyse durch eine veränderte 
Phosphodiesteraseaktivität zurückzuführen sein könnte. 

unkapazitiert kapazitiert
0

500

1000

1500

2000

2500

[+/+]
[-/-]

**
**

cA
M

P
 /

 1
 M

io
 Z

el
le

n
 [

fm
o

l]

IBMX

 

Abbildung 4.68:  Vergleich der nach PDE-Inhibition durch IBMX akkumulierten cAMP-Menge in 
Spermien verschiedener Tas1r1 Genotypen. 

Isolierte Spermien von Tas1r1-defizienten ([-/-], rot) und Wildtyp-Mäusen ([+/+], grau) wurden entweder 
unkapazitiert [unkapazitiert] oder nach 60minütiger Inkubation [kapazitiert] fünf Minuten lang mit 0,5 mM 
IBMX stimuliert und anschließend wurde der cAMP Gehalt pro 1 Mio Zellen bestimmt.  
Im Verlauf der Kapazitierung nimmt der cAMP-Gehalt in beiden Genotypen signifikant zu ([kapazitiert], 
rechtes Säulenpaar). Zwischen den beiden Genotypen ist jedoch bei beiden Kapazitierungszuständen kein 
signifikanter Unterschied feststellbar. 
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Grafisch dargestellt sind Mittelwerte ± Standardfehler von 9 - 11 unabhängigen Versuchen an Zellen von 
Tieren mit identischem genetischen Hintergrund (N2, N3). Die statistische Auswertung erfolgte mit Hilfe 
eines gepaarten studentischen t-Tests (**: p < 0,01). 

Diese Befunde warfen im Folgenden die Frage auf, ob eine Stimulation von Spermien 

mit Glutamat, dem typischen gustatorischen Liganden des Tas1r1 Rezeptors, möglicher-
weise ebenfalls zu einer Tas1r1-vermittelten Phosphodiesterase-Aktivierung in Keim-
zellen führen könnte. Um dieser Hypothese nachzugehen, wurden Spermien wie oben 

beschrieben isoliert, mit 10 mM Mononatriumglutamat inkubiert, und anschließend 
wurde die cAMP-Konzentration in den Zellen bestimmt. Abbildung 4.69 gibt einen 
Überblick über die Resultate dieser Glutamat-Stimulationen. Wie bereits in den zuvor 

gezeigten experimentellen Ansätzen, wurde auch in diesen Versuchen wieder eine 
signifikant erhöhte basale cAMP-Konzentration in unkapazitierten Tas1r1-defizienten 
Spermien im Vergleich zu Wildtyp-Zellen detektiert.  
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Abbildung 4.69:  Effekt von Mononatriumglutamat auf die cAMP-Konzentration in Wildtyp- und 
Tas1r1-defizienten Spermien. 

Spermien wurden aus dem caudalen Teil des Nebenhodens isoliert und entweder direkt [unkapazitiert] 
oder nach 60minütiger Kapazitierung [kapazitiert] für 5 Minuten mit 10 mM Natriumglutamat [Glu] bzw. 
Puffer allein [basal] inkubiert.  
[A] zeigt die absolute cAMP-Menge, die in unkapazitierten und kapazitierten Spermien von Wildtyp ([+/+], 
grau) und Tas1r1 Knockin-Tieren ([-/-], rot) nach der Stimulation detektiert wurde. Der basale cAMP-
Gehalt von unkapazitierten Wildtyp-Spermien ist signifikant niedriger als bei Tas1r1-defizienten Spermien. 
Die cAMP-Menge in unkapazitierten Tas1r1 [-/-] Spermien bleibt bei einer Stimulation unverändert, 
während der cAMP-Gehalt in Wildtyp-Spermien signifikant ansteigt und dadurch das gleiche Niveau 
erreicht wie bei Tas1r1-defizienten Tieren. In kapazitierten Spermien wurden keine signifikanten Effekte 
des Glutamats registriert [A, kapazitiert]. 
In [B] ist die cAMP-Konzentration der stimulierten Proben auf den jeweiligen Basalwert (nur mit Puffer 
inkubiert) normiert gezeigt. In dieser Darstellung wird deutlich, dass Glutamat die cAMP-Konzentration in 
unkapazitierten Wildtyp-Spermien signifikant auf ca. 170 % des Basalwertes steigert, während es 
unabhängig vom Kapazitierungszustand keinen Effekt auf Tas1r1-defiziente Spermien hat. 
Es wurden Mittelwerte ± Standardfehler von neun unabhängigen Spermienpräparationen pro Genotyp 
ermittelt, verwendet wurden Tiere mit gleichem Stammhintergrund (N2, N3). Die statistische Auswertung 
erfolgte durch einen gepaarten studentischen t-Test, als statistisch signifikant wurde ein p-Wert ≤ 0,05 (*) 
angenommen. 
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Nach der Inkubation mit Glutamat war in unkapazitierten Wildtyp-Spermien über-
raschenderweise keine Abnahme sondern eine signifikante Zunahme der cAMP-
Konzentration zu registrieren (Abbildung 4.69 [A], unkapazitiert, graue Säulen). Im 

Vergleich zum Basalwert wurde die cAMP-Menge in den unkapazitierten Wildtyp-
Zellen durch die Glutamat-Inkubation um ca. 70 % erhöht (Abbildung 4.69 [B], linke 
Säulen). In unkapazitierten, Tas1r1-defizienten Spermien war indessen kein Effekt 

durch Glutamat zu beobachten; die stimulierten Proben zeigten keine Veränderungen im 
Vergleich zur Pufferkontrolle (Abbildung 4.69 [A], unkapazitiert, rote Säulen). Die 
Zunahme der cAMP-Menge in unkapazitierten Wildtyp-Spermien führte somit dazu, 

dass die cAMP-Konzentrationen der Glutamat-stimulierten Spermien beider Genotypen 
vergleichbar waren. Nach der Kapazitierung war kein Effekt durch Glutamat mehr zu 
detektieren, da weder in Wildtyp-Zellen noch in Tas1r1-defizienten Zellen eine 

signifikante Veränderung der cAMP-Konzentration im Vergleich zu den unstimulierten 
Proben feststellbar war (Abbildung 4.69 [A und B]). 



 

5 Diskussion 

5.1 Expression von gustatorischen Sensormolekülen im 
männlichen Reproduktionssystem 

Im Rahmen der vorliegenden Arbeit konnte gezeigt werden, dass männliche Keimzellen 
verschiedene Rezeptormoleküle exprimieren, die in Geschmackssinneszellen der Zunge 

für die Vermittlung ganz unterschiedlicher Geschmacksempfindungen verantwortlich 
sind (Abbildung 5.1). So erbrachten die durchgeführten Untersuchungen zum einen 
Hinweise darauf, dass das PKD2L1 Protein (Abbildung 5.1, [sauer]), ein potentielles 

Sensormolekül für Protonen (siehe Abschnitt 1.2.4.2), im Hoden und im Flagellum von 
reifen Spermien der Maus exprimiert wird (Abbildung 4.2, Abbildung 4.5). Zum 
anderen konnten durch den Einsatz verschiedener Nachweismethoden umfangreiche 

Belege für die Expression von GPCRs der Tas1-Familie (süß, umami) und Tas2-Familie 
(bitter) (Abbildung 5.1) sowie der mit ihnen assoziierten G Protein α-Untereinheit 
Gustducin in männlichen Reproduktionsorganen und reifen Spermien gesammelt 

werden. 

 

Abbildung 5.1:  Übersicht über den Expressionsnachweis verschiedener gustatorischer Rezeptor-
moleküle im männlichen Reproduktionssystem. 

Gezeigt ist eine topographische Darstellung von Sensormolekülen für sauer (PKD2L1), süß/umami 
(Tas1rs) und bitter (Tas2rs), die im männlichen Reproduktionsgewebe nachgewiesen wurden. Die 
identifizierten Subtypen sowie ihre Lokalisation im Hoden der Maus und in isolierten murinen und 
humanen Spermien sind jeweils im unteren Teil dargestellt (farbige Markierung). Die Expression von 
Bitterrezeptoren im Hoden ist exemplarisch für den Tas2r131 dargestellt. Da keine spezifischen Antikörper 
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gegen murine Tas2-Rezeptoren bzw. das humane PKD2L1 Protein zur Verfügung standen, konnte die 
subzelluläre Lokalisation dieser Rezeptorproteine bislang nicht geklärt werden (durch [?] gekennzeichnet). 

In RT-PCR Analysen mit cDNA aus Hodengewebe der Maus wurden dabei für die 

große Familie der Bitterrezeptoren erstmals Hinweise auf die Expression einer Mehr-
zahl der Tas2r-Subtypen gesammelt (Tabelle 4.3). Aus der Familie der Tas1-Rezeptoren 
konnte das Umami-Rezeptordimer (Tas1r1/Tas1r3) aus testikulärer cDNA amplifiziert 

werden (Abbildung 4.32), wodurch Beobachtungen anderer Arbeitsgruppen, die 
ebenfalls Tas1r3 Transkripte in Hodengewebe nachweisen konnten [Max et al., 2001; 
Kiuchi et al., 2006], bestätigt wurden. Im Gegensatz zu kürzlich publizierten Befunden 

[Iwatsuki et al., 2010] wurden hingegen keine Hinweise auf eine Expression der Süß-
Rezeptoruntereinheit Tas1r2 im Maushoden gefunden (Abbildung 4.32), was auf eine 
extrem geringe Expressionsrate dieses Rezeptors hindeuten könnte. Die Expression von 

Mitgliedern der Tas1r- und Tas2r-Familie in männlichen Keimzellen konnte zudem 
mithilfe zweier genetisch modifizierter Reportermauslinien, der Tas1r1BL-IRES-mCherry und 
Tas2r131BL-IRES-hrGFP Linie, bestätigt werden. Diese Mauslinien weisen eine intensive 

Fluoreszenzintensität im luminalen Bereich der Hodentubuli auf (Abbildung 5.1), was 
auf eine starke Expression des Tas1r1 und Tas2r131 in späten Keimzellstadien des 
Hodens hinweist und indirekt auch auf eine Rezeptorexpression in reifen Spermien 

hindeuten könnte (Abbildung 4.48 bzw. Abbildung 4.20). Eine solche Expression in 
isolierten Spermien konnte in Studien mit Subtyp-spezifischen Antikörpern gegen die 
Umami-Rezeptoruntereinheiten Tas1r1 und Tas1r3 bestätigt werden (Abbildung 5.1, 

[süß/umami]). Bei diesen Untersuchungen konnte außerdem gezeigt werden, dass diese 
Rezeptorproteine sowohl im Akrosom als auch im Flagellum von murinen und humanen 
Spermien lokalisiert sind (Abbildung 4.37, Abbildung 4.42, Abbildung 4.45).  

5.2 Physiologische Rolle von Rezeptormolekülen des 
Geschmackssystems in Spermien 

Dieser Nachweis von gustatorischen Sensormolekülen, die auf der Zunge durch ein 

breites Spektrum chemisch sehr diverser Liganden aktiviert werden können, führte zu 
der Frage, ob Spermien dieses Repertoire verschiedener Rezeptormoleküle nutzen, um 
unterschiedliche Liganden im Milieu des weiblichen Genitaltrakts zu detektieren und so 

die verschiedenen Aufgaben bis zur Verschmelzung mit der Eizelle erfolgreich 
bewältigen (Abschnitt 1.1.2).  
Da reife Spermien nahezu keine Proteinbiosynthese mehr betreiben [Vogt, 2004], sind 

sie genetischen Manipulationen, wie z. B. der siRNA-Technik [Fire et al., 1998; Shoji et 
al., 2005] oder Überexpressionsstudien zur Analyse einzelner Proteinfunktionen nicht 
zugänglich [Carreau et al., 2007; Publicover et al., 2007]. Zudem stehen kaum spezi-

fische Blocker, die eine direkte Inhibition bzw. Modulation der Rezeptorfunktion 
erlauben würden, für die identifizierten Sensormoleküle zur Verfügung. Die physio-
logische Funktion der in Spermien identifizierten Geschmacksrezeptoren wurde deshalb 



Diskussion 199 

 

vor allem mit Hilfe der bereits erwähnten Tas1r1 mCherry und Tas2r131 GFP Knockin-
Mauslinien exemplarisch für jeweils einen Vertreter der beiden gustatorischen GPCR-
Familien untersucht. Dabei wurden zum einen die Auswirkungen einer Tas1r1 bzw. 

Tas2r131 Gen-Defizienz auf die Fertilität der betroffenen Tiere analysiert, die anhand 
der Anzahl von Nachkommen pro Wurf und der zeitlichen Abstände zwischen zwei 
erfolgreichen Trächtigkeiten quantifiziert wurde. Zum anderen wurde geprüft, welchen 

Einfluss die Gen-Deletion auf die Spermatogenese und einzelne Funktionen von 
isolierten Spermien, wie z. B. die Akrosomreaktion und die Motilität, hat. Außerdem 
wurden, falls bekannt, spezifische Agonisten der identifizierten Rezeptoren in 

Stimulationsexperimenten eingesetzt, um zu prüfen, ob diese Agonisten auch 
aktivierende Liganden für Spermien repräsentieren und welche funktionellen Aus-
wirkungen eine solche Rezeptoraktivierung hat. Um Aufschluss über die in Spermien 

nachgeschalteten Signaltransduktionskaskaden der nachgewiesenen Rezeptorproteine zu 
erhalten, wurden zudem die cytosolischen Konzentrationen von sekundären Boten-
stoffen wie cAMP und Ca2+ vor und nach einer Stimulation mit Geschmacksstoffen 

untersucht.  
Die dabei gesammelten Befunde werden im Folgenden im Hinblick auf die sich daraus 
ergebende potentielle physiologische Rolle der identifizierten Geschmacksrezeptoren in 

männlichen Keimzellen aber auch hinsichtlich einer möglichen Funktion dieser 
Rezeptormoleküle und ihrer Signaltransduktionsmechanismen in anderen chemo-
sensorischen Zellen diskutiert.  

5.2.1 Physiologische Funktion von Tas1-Rezeptoren in Spermien 

5.2.1.1 Funktionelle Rolle des Tas1r1 für die Verhinderung einer spontanen 
Akrosomreaktion 

Bei der Untersuchung des Reproduktionsphänotyps Tas1r1-defizienter Mäuse, deren 
Ergebnisse in Abbildung 5.2 zusammengefasst dargestellt sind, konnten keine Ein-

schränkungen der Fertilität festgestellt werden (Tabelle 4.5). Bei der Analyse isolierter 
Tas1r1-defizienter Spermien wurden hingegen signifikante Veränderungen registriert, 
die Hinweise auf die funktionelle Rolle des Rezeptors in männlichen Keimzellen 

ergeben. So zeichnen sich Spermien von Tas1r1-defizienten Tieren im Vergleich zu 
Zellen von Wildtyp-Tieren sowohl vor als auch nach der Kapazitierung durch eine 
signifikant erhöhte Rate an spontaner Akrosomreaktion aus (Abbildung 4.60). Bei der 

Analyse der Zona pellucida- und der Ionophor-induzierten Akrosomreaktion war 
hingegen kein Effekt der Tas1r1-Deletion feststellbar (Abbildung 4.59), was darauf 
hindeutet, dass der Rezeptor nicht an der Erkennung der Zona pellucida beteiligt ist, 

sondern vielmehr eine physiologische Rolle bei der Verhinderung einer frühzeitigen 
akrosomalen Exocytose spielt.  
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Abbildung 5.2:  Übersicht über den Reproduktionsphänotyp Tas1r1-defizienter Mäuse. 
Dargestellt ist ein Überblick über die Befunde der reproduktionsbiologischen Charakterisierung Tas1r1-
defizienter Mäuse auf der Ebene des Gesamtorganismus [Organismus], der männlichen Reproduktions-
organe [Reproduktionsorgane], von isolierten epididymalen Spermien [zellulär] sowie auf der Ebene intra-
zellulärer Botenstoffe [intrazellulär]. Die untersuchten Parameter sind mit einem grünen Quadrat markiert, 
wenn kein signifikanter Unterschied zu Wildtyp-Tieren zu registrieren war. Eine rote Markierung 
kennzeichnet signifikante Veränderungen; dabei repräsentieren die roten Pfeile eine Erhöhung des 
analysierten Parameters in Tas1r1-defizienten Tieren. ZP: Zona pellucida. 

Die Vermeidung einer solchen spontanen Akrosomreaktion ist in vivo von großer 
Bedeutung für ein Spermium um seine Befruchtungskompetenz zu bewahren. Physio-

logisch findet die Exocytose des akrosomalen Vesikels beim Kontakt des Spermiums 
mit der Zona pellucida statt (Abschnitt 1.1.2.4). Dabei entstehen synchron Hunderte von 
Fusionsporen zwischen Plasmamembran und äußerer akrosomaler Membran [Barros et 

al., 1967; Michaut et al., 2000], durch die der gesamte akrosomale Inhalt ausgeschüttet 
und die Zona pellucida in der Folge verdaut wird [Wassarman und Litscher, 2008b]. 
Hat das Spermium sein Akrosom bereits vor dem Kontakt mit der Eizellhülle spontan 

verloren, kann keine erfolgreiche Befruchtung der Eizelle mehr erfolgen [Schill, 1974; 
Takahashi et al., 1992; Fraser, 2010].  
Diese Beobachtungen machen deutlich, dass die Akrosomreaktion einer sehr präzisen 

Kontrolle unterliegen muss, um eine hohe Effizienz der Vesikel-Exocytose zu gewähr-
leisten und gleichzeitig einen vorzeitigen, irreversiblen Verlust des Akrosoms 
zuverlässig zu verhindern. Wie eine solche Feinsteuerung der akrosomalen Exocytose 

auf molekularer Ebene erfolgt, ist bislang jedoch nur teilweise verstanden. So werden 
zum einen regulatorische Mechanismen diskutiert, bei denen u. a. das Scaffolding-
Protein MUPP1 und die Aktivität der Calcium-Calmodulin-Kinase II an einer zeitlichen 

und räumlichen Koordination der Fusionsporenbildung zwischen äußerer akrosomaler 
Membran und der Plasmamembran beteiligt sind [Ackermann et al., 2009]. Eine 
unbeabsichtigte akrosomale Exocytose wird zudem dadurch verhindert, dass der 
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SNARE-Komplex, der die Membranfusion vermittelt [Tomes et al., 2002], unter 
basalen Bedingungen durch Complexin arretiert wird [Zhao et al., 2007]. Erst wenn es 
durch die Bindung an die Zona pellucida zu einer starken Erhöhung der intrazellulären 

Ca2+-Konzentration kommt, wird das Complexin von der Fusionsmaschinerie verdrängt, 
so dass die Vesikelexocytose nur stattfindet, wenn es zu einem starken Einstrom von 
Ca2+ ins Cytoplasma kommt [Zhao et al., 2007; Zhao et al., 2008]. 

Da die Membranfusion durch Erhöhungen der cytosolischen Ca2+- und cAMP-Konzen-
trationen ausgelöst wird [Branham et al., 2006; Mayorga et al., 2007] sind aber auch 
Regulationsmechanismen denkbar, die eine zufällige Akrosomreaktion verhindern, 

indem sie die intrazellulären Konzentrationen dieser second messenger reduzieren. Da 
die Signaltransduktion des Tas1r1 im Geschmackssystem genau über diese beiden 
Botenstoffe verläuft (Abschnitt 1.2.4.4), könnte eine solche Kontrolle der cAMP- und 

Ca2+-Spiegel in Spermien eine Erklärung für die regulatorische Funktion des Tas1r1 bei 
der spontanen Akrosomreaktion liefern.  
Diese Hypothese konnte durch experimentelle Studien bestätigt werden, in denen 

gezeigt wurde, dass sich unkapazitierte Spermien von Tas1r1-defizienten Tieren 
tatsächlich durch signifikant erhöhte intrazelluläre cAMP- und Ca2+-Konzentrationen im 
Vergleich zu Zellen von Wildtyp-Tieren auszeichnen (Abbildung 4.67, Abbildung 

4.65). Diese Veränderungen waren bereits in unstimulierten Spermien, die ohne 
potentielle Liganden inkubiert wurden, zu registrieren, was darauf hindeutet, dass dieser 
Tas1r1-Effekt auf eine Basalaktivität des Rezeptors zurückgehen könnte.  

Ein ganz ähnlicher zellulärer Phänotyp wurde interessanterweise vor kurzem in 
Geschmackszellen von Gustducin-defizienten Mäusen beschrieben: So zeichnen sich 
die gustatorischen Sinneszellen von Gustducin-KO Mäusen ebenfalls durch eine 

deutlich erhöhte basale Konzentration von cAMP aus, die auf den Wegfall einer 
tonischen Gustducin-Aktivierung und damit eine verminderte Hydrolyse von cAMP 
durch PDE in Gustducin-defizienten Zellen zurückgeht [Clapp et al., 2008].  

Analog zum Geschmackssystem [Clapp et al., 2008], könnte eine tonische Aktivität des 
Tas1r1 demnach auch in Spermien zu einer konstitutiven Aktivierung von Gustducin 
führen. Gustducin würde dann PDEs aktivieren, von denen ein Großteil der bekannten 

elf Familien bereits in Säugerspermien nachgewiesen wurde [Harayama und Kato, 
2002; Baxendale und Fraser, 2005; Wayman et al., 2005], und so zu einer kontinuier-
lichen Hydrolyse von cAMP führen, die wiederum die Wahrscheinlichkeit einer 

spontanen akrosomalen Exocytose verringern würde. 
Nach der Kapazitierung scheint diese Tas1r1-Aktivität hingegen keine wichtige Rolle 
mehr zu spielen, da in kapazitierten Zellen kein Unterschied mehr in den cAMP- und 

Ca2+-Konzentrationen zwischen Tas1r1-defizienten und Wildtyp-Spermien zu 
detektieren ist (Abbildung 4.67, Abbildung 4.65). Diese Beobachtung könnte darauf 
hindeuten, dass der inhibitorische Effekt des Tas1r1 während der Kapazitierung durch 

die massive Produktion von cAMP durch Bicarbonat-aktivierte sAC [Chen et al., 2000] 
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verdeckt wird und so eine physiologische ZP-induzierte Akrosomreaktion im Anschluss 
an die Kapazitierung unbeeinträchtigt ablaufen kann.  

 

Abbildung 5.3:  Hypothetisches Modell der Signaltransduktion von Tas1-Rezeptoren in Spermien 
von Wildtyp- und Tas1r1-defizienten Tieren. 

[A] Putative Signaltransduktion des Tas1r1 in Wildtyp-Spermien. 
Durch eine (basale oder Liganden-abhängige) Aktivierung von Tas1-Rezeptordimeren [Tas1r1 und Rx], 
wird ein assoziiertes G Protein aktiviert, welches in seine α-Untereinheit und den βγ-Komplex dissoziiert. 
Die aktivierte α-Untereinheit [Gα], beispielsweise α-Gustducin, bewirkt dann eine Aktivierung von 
Phosphodiesterasen [PDE], die cAMP zu AMP hydrolysieren und somit die cytosolische cAMP-Konzen-
tration senken. Der βγ-Komplex könnte zeitlich parallel K+-Kanäle in der Plasmamembran modulieren (aus 
Gründen der Übersichtlichkeit nicht dargestellt) und/oder über die Aktivierung von PLC die Produktion von 
IP3 und DAG induzieren. Diese beiden Botenstoffe lösen dann durch Öffnung von IP3-Rezeptoren in der 
akrosomalen Membran bzw. von Ca2+-Kanälen in der Plasmamembran einen Anstieg der intrazellulären 
Ca2+-Konzentration aus. Beide Signalwege können sich über PKA-vermittelte Rückkopplungsmechanis-
men, wie eine Aktivierung des EPAC-Signalweges oder die Ca2+-abhängige Modulation der Aktivität der 
löslichen Adenylylcyclase [sAC] beeinflussen. 
[B] Hypothetisches Modell der zellulären Effekte der Deletion des Tas1r1 in Spermien. 
I) Durch den Wegfall der basalen Tas1r1-Aktivität entfällt die kontinuierliche PDE-Aktivierung, so dass die 
intrazelluläre cAMP-Konzentration ansteigt. Durch die in [A] dargestellten Rückkopplungsmechanismen 
könnte es dann sekundär zu einer Erhöhung der intrazellulären Ca2+-Konzentration kommen. II) Alternativ 
ist auch eine kompensatorische Überexpression [Ry] z. B. des Tas1r3 denkbar, die durch den βγ-Komplex 
vermittelt, PLC aktiviert und so eine Erhöhung der intrazellulären Ca2+-Konzentration bewirkt. In diesem 
Modell könnte die cAMP-Konzentration durch eine sAC-Aktivierung erhöht werden. Der Konzentrations-
anstieg der second messenger induziert in beiden Modellen eine Erhöhung der spontanen Akrosom-
reaktionsrate [spontane AR]. 

In diesem Modell würde der inhibitorische Effekt des Tas1r1 in unkapazitierten 
Spermien Gen-defizienter Tiere entfallen, so dass ihre basale cAMP-Konzentration 
anstiege und das Risiko einer spontanen Akrosomreaktion deutlich erhöht würde 

(Abbildung 5.3 [B], I). Diese Hypothese konnte in experimentellen Ansätzen 
untermauert werden, in denen Zellen mit dem PDE-Inhibitor IBMX inkubiert wurden 
und in denen keine Unterschiede mehr zwischen unkapazitierten Spermien 

verschiedener Tas1r1 Genotypen festzustellen waren (Abbildung 4.68). Die Erhöhung 
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der intrazellulären Ca2+-Konzentration in Tas1r1-defizienten Spermien könnte in diesem 
Modell durch eine cAMP-induzierte Aktivierung von PKA und des EPAC-Signalwegs 
(Abbildung 5.3 [A]) erklärt werden, die Ca2+-Kanäle in der akrosomalen und in der 

Plasmamembran beeinflussen können und so einen Einstrom von Ca2+ ins Cytoplasma 
bewirken [Wojcikiewicz und Luo, 1998; Giovannucci et al., 2000; Dyer et al., 2003; 
Tovey et al., 2010].  

Alternativ zu diesem Modell könnte man allerdings auch spekulieren, dass der 
beobachtete Anstieg der cytoplasmatischen Ca2+-Konzentration zumindest teilweise 
durch die kompensatorische Expression eines anderen Rezeptorproteins verursacht 

wird. Als möglicher Kandidat für einen solchen Effekt kommt z. B. der gustatorische 
Dimerisierungspartner des Tas1r1, der Tas1r3, in Frage. Dieser im Akrosom von 
Spermien exprimierte Rezeptor zeichnet sich ebenfalls durch eine Basalaktivität aus, die 

bei einer Expression des Tas1r3 in heterologen Zellsystemen zu einer Erhöhung der 
basalen intrazellulären Ca2+-Konzentration führt [Galindo-Cuspinera et al., 2006]. Der 
Tas1r3 könnte dementsprechend auch in Spermien PLC-abhängige Prozesse aktivieren, 

die über die Generierung von IP3 und der Öffnung von IP3-Rezeptor-Ionenkanälen 
und/oder Ca2+-Kanälen in der Plasmamembran die intrazelluläre Ca2+-Konzentration 
erhöhen (Abbildung 5.3 [B], II). Eine solche Ca2+-Konzentrationserhöhung könnte in 

der Folge die lösliche Adenylylcylase [sAC] in Spermien aktivieren [Jaiswal und Conti, 
2003; Litvin et al., 2003], und so indirekt eine Erhöhung der cytosolischen cAMP-
Konzentration bewirken.  

 
Da die Entwicklung von männlichen Keimzellen u. a. durch cAMP-aktivierte PKA und 
cAMP-abhängige Transkriptionsfaktoren reguliert wird [Hogeveen und Sassone-Corsi, 

2006; Burton und McKnight, 2007], könnte eine Veränderung intrazellulärer cAMP-
Konzentrationen in männlichen Keimzellen auch die Ursache für die in Tas1r1-
defizienten Tieren registrierte Beeinträchtigung der Hodenmorphologie (Abbildung 

4.52) und die erhöhte Apoptoserate während der Spermatogenese (Abbildung 4.54) 
sein. Dabei könnte ein erhöhter cAMP-Spiegel die Zellhomöostase in Tas1r1-
defizienten Keimzellen so beeinträchtigen, dass es zu Störungen der Keimzellreifung 

kommt, was wiederum die beobachtete erhöhte Apoptoserate erklären würde [Shaha et 
al., 2011]. Um zu klären, ob die Änderungen des basalen cAMP-Spiegels tatsächlich für 
die beobachteten Störungen der Spermatogenese verantwortlich sind und diese nicht auf 

eine fehlende Detektion von Tas1r-Liganden im Hoden oder gar auf die Expression des 
für Keimzellen artifiziellen mCherry-Protein zurückgehen, sollte deshalb in weiter-
führenden Studien untersucht werden, ob sich Tas1r1-defiziente Keimzellen des Hodens 

ebenso wie isolierte Spermien durch einen erhöhten cAMP-Gehalt auszeichnen.  

5.2.1.2 Mögliche Liganden-Detektion durch Tas1-Rezeptoren in Spermien 
Angesichts der Vielfalt von hydrophilen Substanzen, wie Aminosäuren, Zuckern und 
Proteinen, die im Milieu des weiblichen Genitaltrakt vorkommen (Abbildung 1.4) und 

die im Geschmackssystem durch Tas1-Rezeptoren detektiert werden können 
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(Abbildung 1.6), stellte sich die Frage, ob die physiologische Funktion von Tas1-Rezep-
toren in Spermien nur auf eine basale Aktivität beschränkt ist oder ob die identifizierten 
Rezeptoren nicht auch durch Moleküle in der extrazellulären Umgebung des Spermiums 

aktiviert werden können, was eine gezielte Regulation einzelner Spermienfunktionen 
durch das jeweilige extrazelluläre Milieu in den verschiedenen Abschnitten des weib-
lichen Genitaltrakts erlauben würde.  

Diese Überlegung erscheint auch deshalb interessant, weil sich die Verteilung von 
Glutamat, dem einzigen Liganden des humanen Umami-Dimers [Li et al., 2002], im 
weiblichen Genitaltrakt deutlich von der Verteilung anderer Aminosäuren unter-

scheidet: So ist die Glutamat-Konzentration im Uterus am höchsten und nimmt im 
Eileiter bis hin zur befruchtungsfähigen Eizelle ab (Abbildung 5.5 [B], gelbe 
Markierung); die Konzentrationen anderer Aminosäuren wie z. B. Alanin, Lysin oder 

Tyrosin steigen dagegen im Eileiter im Vergleich zum Uterus deutlich an (Abbildung 
5.5 [B], violette Markierung) [Harris et al., 2005].  
 

Bei der reproduktionsbiologischen Charakterisierung Tas1r1-defizienter Mäuse konnten 
allerdings keine Einschränkungen bei Liganden-gesteuerten Prozessen wie der Zona 

pellucida-induzierten Akrosomreaktion oder der Motilität registriert werden. Angesichts 

der unbeeinträchtigten Fertilität der Gen-defizienten Männchen (Tabelle 4.5) scheint 
auch die Wegfindung Tas1r1-defizienter Spermien nicht gravierend gestört zu sein. 
Dieser unauffällige Phänotyp schließt aber nicht aus, dass der Tas1r1 eine wichtige 

Rolle für die Detektion von Liganden haben kann, da in anderen Knockout-Maus-
modellen gerade bei am Prozess der Reproduktion beteiligten Proteinen häufig 
kompensatorische Effekte auftreten [Muro und Okabe, 2011]. Solche 

kompensatorischen Mechanismen wurden bereits für verschiedene GPCRs beobachtet, 
wie z. B. dem β2-adrenergen Rezeptor [Chruscinski et al., 1999], Opioidrezeptoren 
[Mogil et al., 2000] und muscarinischen Acetylcholinrezeptoren [Zhang, 2006]. Dabei 

wird die Funktion eines deletierten Proteins häufig durch ein Protein kompensiert, das 
am gleichen physiologischen Prozess beteiligt ist (funktionelle Redundanz) und/oder 
dessen Expression durch das Fehlen des deletierten Proteins erst induziert wird 

(kompensatorische Expression) [Muller, 1999; Dietrich et al., 2005; Zhang, 2006]. Da 
der Ausfall eines Proteins häufig durch ein aus der gleichen Proteinfamilie stammendes 
Protein kompensiert wird [Muller, 1999], könnte die Funktion des Tas1r1 in Gen-

defizienten Mäusen beispielsweise durch seinen gustatorischen Dimerisierungspartner 
Tas1r3 oder andere in Spermien exprimierte Aminosäurerezeptoren der Klasse 
C GPCRs übernommen werden [Brauner-Osborne et al., 2007; Wellendorph und 

Brauner-Osborne, 2009] (siehe auch Abbildung 5.4 [B]), was den unauffälligen 
Reproduktionsphänotyp der Tas1r1-defizienten Mäuse erklären würde. 
Um eine funktionelle Rolle von Tas1-Proteinen bei der Erkennung von Liganden 

identifizieren zu können, wurde deshalb der Effekt einer Stimulation von Spermien mit 
dem Tas1r1/Tas1r3-Liganden Glutamat auf die Konzentration der intrazellulären 
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Botenstoffe Ca2+ und cAMP untersucht. In diesen Stimulierungsexperimenten war in 
Wildtyp-Zellen nach einer Glutamat-Stimulation ein signifikanter Anstieg der intra-
zellulären cAMP-Konzentration zu beobachten, der in Tas1r1-defizienten Spermien 

nicht zu detektieren war (Abbildung 4.69). Aufgrund der bereits basal erhöhten cAMP-
Konzentration in Tas1r1-defizienten Spermien, die einen Glutamat-Effekt möglicher-
weise überdecken könnte, kann jedoch nicht ausgeschlossen werden, dass der 

registrierte Anstieg der cAMP-Konzentration in Wildtyp-Spermien gar nicht Tas1r1-
spezifisch ist, sondern auf andere Glutamatrezeptoren [Hu et al., 2004] oder 
promiskuitive Aminosäurerezeptoren [Wellendorph et al., 2009] im Spermium 

zurückgeht. Diese Vermutung wird durch die Beobachtung unterstützt, dass bei den 
Stimulationsexperimenten von murinen Spermien mit Glutamat keine Veränderungen in 
der intrazellulären Ca2+-Konzentration zu registrieren waren (Abbildung 4.56), die in 

Geschmackssinneszellen bei einer Aktivierung des Tas1r-assoziierten βγ-Komplexes 
erfolgt. Außerdem zeigten Stimulationen mit Glutamat allein oder in Kombination mit 
IMP, dem allosterischen Modulator des Tas1r1/Tas1r3 Dimers auf der Zunge [Li et al., 

2002], keine Effekte auf die Akrosomreaktion (Abbildung 4.61), die angesichts der 
physiologischen Funktion des Tas1r1 bei der spontanen Akrosomreaktion bei einer 
Rezeptor-Aktivierung zu erwarten gewesen wären. 

Der Befund, dass eine Stimulation des Umami-Dimers in Spermien nicht zu einer 
Erhöhung der Ca2+-Konzentration führt, könnte deshalb auch darauf hindeuten, dass das 
Tas1r1/Tas1r3-Dimer in Spermien nicht durch Glutamat aktiviert wird, sondern sich 

durch ein Keimzell-spezifisches Ligandenspektrum auszeichnen könnte (Abbildung 5.5 
[D]). So ein Reproduktions-spezifisches Ligandenspektrum könnte auf der Rezeptor-
ebene z. B. durch spezielle Splice- oder Sequenzvarianten der Rezeptorproteine in 

männlichen Keimzellen entstehen. Solche Hoden-spezifischen Isoformen sind bei einer 
Vielzahl von Proteinen bekannt, die sowohl in somatischen als auch in Keimzellen 
exprimiert werden wie z. B. Lactatdehydrogenase [Goldberg, 1964] oder ACE 

(Angiotensin Converting Enzyme) [Howard et al., 1990].  
Auch für die Tas1-Rezeptoren fanden sich bereits in früheren Studien erste Hinweise 
auf Hoden-spezifische Splicevarianten [Max et al., 2001; Kiuchi et al., 2006], die im 

Rahmen der vorliegenden Arbeit in Western Blot Analysen mit humanen Spermien 
untermauert werden konnten: So wurde für den Tas1r3 eine größere und für den Tas1r1 
eine deutlich geringere molekulare Masse festgestellt (Abbildung 4.43, Abbildung 

4.46), als auf der Basis der aus dem Geschmackssystem bekannten Sequenzen zu 
erwarten gewesen wäre. Somit könnten sich Tas1-Rezeptoren in Spermien tatsächlich 
durch Sequenzunterschiede zu den gustatorischen Rezeptorproteinen auszeichnen, was 

sich dann möglicherweise in einem veränderten Ligandenspektrum widerspiegeln 
würde.  
Es wäre aber auch denkbar, dass der Tas1r1 und/oder der Tas1r3 in Spermien mit 

anderen heptahelikalen Rezeptoren dimerisieren als im Geschmackssystem. Die so 
gebildeten Heterodimere könnten andere pharmakologische Eigenschaften aufweisen 
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als das Umami-Dimer [Bai, 2004; Milligan, 2009; Kniazeff et al., 2011], so dass ganz 
neue, bislang unbekannte funktionelle Rezeptoreinheiten entstehen, die sich nicht nur 
durch ein spezielles Ligandenspektrum auszeichnen, sondern vielleicht auch durch 

spezifische allosterische Moleküle moduliert werden könnten [Bai, 2004; Haid et al., 
2011].  
Als Dimerisierungspartner könnten dabei z. B. strukturell verwandte Rezeptoren der 

Klasse C GPCRs in Betracht kommen [Pin et al., 2004; Gurevich und Gurevich, 2008] 
(Abbildung 5.4 [A]). Aufgrund ihrer besonders großen Homologie zu den Tas1-
Proteinen und ihrer analogen physiologischen Funktion als Aminosäurerezeptoren 

[Brauner-Osborne et al., 2007; Wellendorph und Brauner-Osborne, 2009], könnten 
dabei vor allem der CaSR (Calcium Sensing Receptor) [Bai et al., 1996] und der 
GPRC6A (G protein-coupled receptor family C, group 6, subtype A) [Kuang et al., 

2005] vielversprechende Kandidaten für solche Interaktionspartner repräsentieren 
(Abbildung 5.4 [B]).  

 

Abbildung 5.4:  Schematische Übersicht über promiskuitive Aminosäurerezeptoren der Klasse C 
GPCRs. 

[A] Gezeigt ist eine phylogenetische Analyse der bekannten Mitglieder der Klasse C GPCRs, die aus 
[Brauner-Osborne et al., 2007] entnommen wurde. Die Unterfamilie der promiskuitiven Aminosäure-
rezeptoren ist blau unterlegt. 
In [B] ist eine schematische Übersicht über Charakteristika der Unterfamilie promiskuitiver Aminosäure-
rezeptoren dargestellt. Es sind aktivierende Liganden, allosterische Modulatoren sowie bekannte physio-
logische Funktionen dieser Rezeptoren aufgeführt. Zur Vereinfachung wurde auf die Darstellung aller 
bekannten allosterischen Modulatoren und Rezeptorfunktionen verzichtet. 

Interessanterweise konnte der CaSR [Brown et al., 1993], der durch extrazelluläres Ca2+ 
aber auch durch aromatische, aliphatische und polare Aminosäuren aktiviert bzw. 
moduliert werden kann [Conigrave et al., 2000; Conigrave et al., 2007; Wellendorph 

und Brauner-Osborne, 2009], kürzlich auch in Spermien nachgewiesen werden 
[Mendoza et al., 2011]. Der vor allem durch basische L-Aminosäuren aber auch kleine 
und polare Aminosäuren aktivierte GPRC6A [Wellendorph et al., 2005; Christiansen et 

al., 2007] wird ebenfalls in Geschmackssinneszellen der Zunge [Wellendorph et al., 
2007] und in männlichen Keimzellen [Pi et al., 2008] exprimiert.  
Bislang konnte zwar nur eine Homodimerisierung des CaSR bzw. GPRC6A gezeigt 

werden; die Bildung von Heterodimeren wird aber z. B. im Magen zur Nährstoff-
detektion (GPRC6A/CaSR) [Haid et al., 2011] bzw. in Sinneszellen der Zunge zur 
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Wahrnehmung des Geschmacks von Ca2+ und Mg2+ (Tas1r3/CaSR) [Tordoff et al., 
2008] intensiv diskutiert.  
Auch wenn bislang nicht eindeutig geklärt ist, ob die im Milieu des weiblichen Genital-

trakts vorkommenden Aminosäuregradienten tatsächlich einzelne Spermienfunktionen 
steuern, erscheint es doch verlockend zu spekulieren, dass Spermien die zuvor 
beschriebenen Aminosäurerezeptoren zur „Kommunikation“ mit ihrer Umgebung 

nutzen. Die Co-Expression und Heterodimerisierung (Abbildung 5.5 [C]) dieser 
verschiedenen Rezeptorproteine könnte dabei die Wahrnehmung von Konzentrations-
gradienten ganz unterschiedlicher Aminosäuren [Harris et al., 2005] aber auch von 

Reproduktions-spezifischen Liganden, wie z. B. hydrophilen Lockstoffen oder auch 
Glykoproteinen der Zona pellucida erlauben (Abbildung 5.5 [B]). 
Interessant erscheint dieses Modell auch deshalb, weil die Liganden-abhängige 

Aktivierung dieser Rezeptoren durch ganz verschiedene allosterische Moleküle 
moduliert werden kann [Quinn et al., 1997; Quinn et al., 1998; Quinn et al., 2004; 
Zhang et al., 2008; Servant et al., 2010]. Folglich könnte die Funktion dieser 

Rezeptoren durch allosterische Modulatoren im weiblichen Genitaltrakt (Abbildung 5.5 
[E]) wie z. B. den pH-Wert, die extrazelluläre Ca2+-Konzentration, spezielle 
Reproduktions-spezifische Moleküle aber auch Bestandteile des Ejakulats wie z. B. 

Spermin, das bei der Ejakulation in den weiblichen Genitaltrakt gelangt, zusätzlich 
reguliert werden.  
Die Kombination der verschiedenen Rezeptoreinheiten könnte damit die Diversität des 

Ligandenspektrums, die durch allosterische Modulatoren zusätzlich potenziert wird, 
deutlich erhöhen und damit eine präzise Detektion der komplexen Substanzgemische in 
den verschiedenen Abschnitten des weiblichen Genitaltrakts erlauben. Damit könnte die 

Aktivität des Spermiums exakt an die jeweils erforderlichen Aufgaben angepasst 
werden, um so elementare Prozesse wie die Kapazitierung, Wegfindung und/oder die 
Interaktion mit der Zona pellucida optimal zu regulieren (Abbildung 5.5 [D]).  
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Abbildung 5.5:  Schematische Übersicht über potentielle Funktionen von Tas1-Rezeptoren in 
männlichen Keimzellen im weiblichen Genitaltrakt. 

In [A] ist der Weg dargestellt, den Spermien im weiblichen Genitaltrakt bis zur erfolgreichen Befruchtung 
einer Eizelle in der Ampulle des Eileiters zurücklegen (rote gestrichelte Linie). [B] Auf diesem Weg 
kommen die männlichen Keimzellen mit einer Vielzahl potentieller Liganden von Tas1-Rezeptoren in 
Kontakt. Die Konzentrationsgradienten von Glutamat (gelb) und anderen Aminosäuren ([andere AS], lila) 
im weiblichen Reproduktionssystem sind im Schema durch unterschiedliche Farbintensitäten dargestellt. 
Tas1-Rezeptoren könnten aber auch durch Reproduktions-spezifische Liganden aktiviert werden (türkis). 
In [C] sind exemplarisch einige putative Rezeptordimere gezeigt, welche durch Heterodimerisierung aus 
verschiedenen Aminosäurerezeptoren der Klasse C GPCRs entstehen und an der Detektion von Liganden 
beteiligt sein könnten. [D] zeigt die Lokalisation von Tas1-Rezeptoren im Spermium (rote Kästen) und gibt 
einen Überblick darüber, welche Spermienfunktionen durch eine Rezeptoraktivierung beeinflusst werden 
könnten (AR: Akrosomreaktion). [E] Die Aktivierbarkeit der promiskuitiven Aminosäurerezeptoren könnte 
zusätzlich durch allosterische Moleküle moduliert werden. Die Verteilung von potentiellen Reproduktions-
spezifischen Modulatoren sowie von Modulatoren des CaSR (pH, Spermin) im weiblichen Genitaltrakt ist 
exemplarisch dargestellt.  

Um die Frage zu klären, ob heterodimere Klasse C GPCRs tatsächlich an der Detektion 
von Aminosäuren oder auch anderen Liganden des weiblichen Genitaltrakts beteiligt 

sind, soll in weiterführenden Studien zum einen die Co-Expression der verschiedenen 
promiskuitiven Aminosäurerezeptoren der Klasse C und ihre mögliche Interaktion mit 
Tas1-Rezeptoren im männlichen Keimdrüsengewebe und in reifen Spermien untersucht 

werden. Dazu sollten zum einen immuncytochemische Verfahren und auch Co-Immun-
präzipitationstechniken eingesetzt werden, um eine Co-Lokalisation bzw. eine physi-
kalische Interaktion der Rezeptorproteine zu prüfen. Zum anderen könnte in heterologen 

Expressionssystemen geprüft werden, wie sich eine Co-Expression von Tas1-Rezeptor-
proteinen mit dem GPRC6A bzw. mit dem CaSR auf die Aktivierbarkeit der Rezeptoren 
durch ihre bekannten Liganden, aber auch durch Komponenten des weiblichen Genital-
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trakts wie follikulärer Flüssigkeit oder solubilisierter Zona pellucida, auswirkt. Um zu 
klären, ob sich die in männlichen Keimzellen exprimierten Tas1-Rezeptoren tatsächlich 
durch ein Isoform-spezifisches Ligandenspektrum auszeichnen, sollten diese 

Rezeptoren außerdem aus cDNA des Hodens kloniert und anschließend in einem 
heterologen Expressionssystem im Vergleich zum gustatorischen umami-Dimer 
funktionell untersucht werden.  

Mögliche kompensatorische Effekte durch andere Aminosäurerezeptoren in Tas1r1-
defizienten Tieren könnten zudem durch eine Bestimmung der Expression dieser 
Rezeptoren in Wildtyp- und Tas1r1-Knockout-Gewebe mittels quantitativer PCR und 

mit Hilfe immunologischer Nachweisverfahren identifiziert und in zukünftigen Studien 
durch die Verwendung entsprechender Doppel- oder Triple-Knockout-Mäuse aus-
geschlossen werden. 

Bei der Interpretation der physiologischen Bedeutung eines milden oder unauffälligen 
Reproduktionsphänotyps sollten dabei auch die „artifiziellen“ Lebens- und vor allem 
Zuchtbedingungen einer modernen Labortierhaltung berücksichtigt werden. So ist bei 

der promiskuitiven Spezies Maus [Barber und Dioguardi, 1972; Rolland et al., 2003] in 
freier Wildbahn zum einen eine Selektion des Paarungspartners durch das Weibchen 
möglich [Rolland et al., 2003]. Zum anderen konkurrieren nach multiplen Kopulationen 

eines Weibchens mit verschiedenen Männchen die Spermien dieser Tiere direkt um die 
erfolgreiche Befruchtung der vorhandenen Eizellen und damit um die Weitergabe ihres 
individuellen genetischen Materials [Dean et al., 2006; Firman und Simmons, 2008; 

Firman und Simmons, 2011]. Im Labor hingegen kann keine Auswahl des Paarungs-
partners erfolgen und eine Konkurrenz zwischen verschiedenen Spermienpopulationen 
ist in monogamen Verpaarungen ebenfalls ausgeschlossen. Diese gravierenden Unter-

schiede in den Reproduktionsbedingungen können zur Folge haben, dass die Deletion 
eines Proteins, das in der Natur eine bedeutende regulatorische Rolle spielt, unter 
optimierten Zuchtbedingungen eines Labortierstalls keine registrierbaren negativen 

Auswirkungen hat.  
Ein solcher Effekt wurde kürzlich in einer Mauslinie beschrieben, die Gen-defizient für 
PKDREJ (polycystic kidney disease receptor for egg jelly) ist. Die Fertilität dieser 

PKDREJ-defizienten Tiere zeigt in klassischen monogamen Verpaarungsansätzen 
keinen Unterschied zu Wildtyp-Tieren. Konkurrieren jedoch Spermien von PKDREJ-
defizienten Tieren mit den Spermatozoen von Wildtyp-Tieren um die Befruchtung von 

Eizellen, z. B. durch kontrollierte konsekutive Verpaarungen oder die artifizielle 
Inseminationen von gemischten Spermienpopulationen, so sind Wildtyp-Spermien deut-
lich erfolgreicher in der Zeugung von Nachkommen als PKDREJ-defiziente Spermien 

[Sutton et al., 2008]. Ein solcher Unterschied im Befruchtungserfolg bedeutet in der 
freien Wildbahn einen entscheidenden Selektionsnachteil, während er im 
standardisierten Laborumfeld keine Konsequenzen hat. 

Bei der Bewertung von experimentellen Befunden, die an isolierten Spermien 
gewonnen werden, sollte zudem berücksichtigt werden, dass sich auch die 
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Bedingungen, denen männliche Keimzellen in vitro und in vivo ausgesetzt sind, 
gravierend unterscheiden: So wurden die im Rahmen dieser Arbeit analysierten Maus-
spermien durch Ausschwimmen aus dem Nebenhoden und nicht durch Ejakulation 

gewonnen. Diese epididymalen Spermien wurden anschließend in vitro in einem 
standardisierten Kapazitierungspuffer (siehe Abschnitt 2.7) inkubiert und kamen 
demnach, im Gegensatz zur physiologischen Situation im weiblichen Genitaltrakt, 

weder mit Bestandteilen des Ejakulats noch mit den komplex zusammengesetzten 
luminalen Flüssigkeiten der verschiedenen Abschnitte des weiblichen Genitaltrakts in 
Kontakt [Harris et al., 2005; Hugentobler et al., 2008; Aviles et al., 2010]; auch eine 

Interaktion der Spermien mit dem Epithel des Oviductes [Suarez, 2008b; Talevi und 
Gualtieri, 2010], durch die eine Kapazitierung in vivo reguliert wird [Rodriguez-
Martinez, 2007], fand unter diesen experimentellen Bedingungen nicht statt. Zwar sind 

auch in vitro kapazitierte Spermien in der Lage, erfolgreich eine Eizelle zu befruchten; 
dennoch kann nicht ausgeschlossen werden, dass sich ihre Eigenschaften durch das 
Fehlen von spezifischen Liganden und/oder allosterischen Modulatoren aus dem 

Ejakulat oder dem Milieu des weiblichen Genitaltrakts deutlich von ihren Merkmalen in 

vivo unterscheiden könnten. Dies könnte beispielsweise dazu führen, dass physio-
logische Liganden bei einer Stimulation in vitro keine Effekte auf isolierte Spermien 

haben, obwohl sie in vivo sehr wohl einzelne Spermienfunktionen beeinflussen; eine 
Hypothese, durch die möglicherweise erklärt werden könnte, warum bei Stimulationen 
von isolierten epididymalen Mausspermien mit Glutamat keine Aktivierung des 

Umami-Dimers feststellbar war. 
Um diese Problematik zumindest teilweise zu umgehen und möglichst physiologische 
Bedingungen zu gewährleisten, sollten im Rahmen der durchgeführten Arbeit auch 

ejakulierte Mausspermien funktionell untersucht werden. Dazu wurde in Zusammen-
arbeit mit Dr. Thomas Hildebrandt am Leibniz-Institut für Zoo- und Wildtierforschung 
in Berlin versucht, murines Ejakulat mittels transrektaler Elektrostimulation zu 

gewinnen; eine Technik, die z. B. in der Reproduktionsmedizin bei Patienten mit Quer-
schnittslähmung zur Gewinnung von Ejakulaten durchgeführt wird [Kafetsoulis et al., 
2006], die aber auch schon bei verschiedenen anderen Säugetieren erfolgreich 

eingesetzt wurde [Hermes et al., 2001]. Es stellte sich während der initialen 
Experimente jedoch leider heraus, dass bei Mäusen aufgrund ihrer geringen Größe und 
Besonderheiten ihrer Anatomie, die bei der Elektrostimulation zu einer retrograden 

Ejakulation in die Harnblase führten, eine Gewinnung von ejakulierten Spermien kaum 
möglich ist. 
Da ejakulierte humane Spermien im Gegensatz zu Mausspermien relativ einfach und 

nicht invasiv gewonnen werden können, soll die Funktion von ejakulierten Spermien 
deshalb in weiterführenden Studien an menschlichen Spermien untersucht werden. 
Zwar gibt es bei humanen Spermien kaum die Möglichkeit, die Auswirkungen einer 

speziellen Gen-Deletion isoliert zu untersuchen oder die Zellen mit humaner Zona 

pellucida zu stimulieren; dafür steht mit Lactisol aber ein Inhibitor der humanen Tas1-
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Rezeptoren zur Verfügung [Xu et al., 2004], mit dem diese Rezeptorproteine bei 
Stimulierungsexperimenten mit Geschmacksstoffen blockiert und so die funktionelle 
Rolle dieser Proteine gezielt untersucht werden könnte.  

5.2.2 Potentielle Funktion von Bitterrezeptoren im männlichen 
Reproduktionssystem 

Bei der Analyse der Expression von Bitterrezeptoren in männlichem Keimdrüsen-
gewebe konnten in RT-PCR-Experimenten mit cDNA aus murinem Hoden Transkripte 

von 28 der 35 Mitglieder der Tas2-Rezeptorfamilie amplifiziert werden (Abbildung 5.6 
[A]) (Tabelle 4.3). Obwohl diese Analysen nicht direkt eine Schlussfolgerung auf die 
Expressionsrate der einzelnen Bitterrezeptoren zulassen, war auffällig, dass bei einem 

direkten qualitativen Vergleich der Intensität der Tas2r-Amplifikationsprodukte 
deutliche Unterschiede auszumachen waren (Abbildung 4.15, Abbildung 4.16), die 
unabhängig vom Verwandtschaftsgrad der Bitterrezeptoren auftraten (Abbildung 4.17).  

Dieser Nachweis einer Expression vieler, jedoch nicht aller, Bitterrezeptorsubtypen mit 
möglicherweise ganz unterschiedlichen Expressionsraten im Reproduktionsgewebe 
wirft zum einen die Überlegung auf, welche physiologische Funktion Tas2-Rezeptoren 

in männlichen Keimzellen generell erfüllen könnten. Es stellt sich aber auch die Frage, 
warum überhaupt so viele verschiedene Bitterrezeptoren, die sich im humanen System 
durch stark überlappende Ligandenspektren auszeichnen [Meyerhof et al., 2010], im 

Hoden exprimiert werden und warum trotz dieser Vielzahl von Bitterrezeptoren in 
Spermien mit potentiell redundanter Funktion [Meyerhof et al., 2010], die Deletion 
eines einzelnen Bitterrezeptors (Tas2r131) zu einem deutlich registrierbaren Repro-

duktionsphänotyp führt. 
Bevor diese Überlegungen im Weiteren diskutiert werden, soll jedoch darauf 
hingewiesen werden, dass auf Grund des Fehlens Subtyp-spezifischer Antikörper 

momentan nicht eindeutig geklärt werden kann, ob die verschiedenen testikulären Tas2-
Rezeptor-Transkripte alle in ein funktionelles Rezeptorprotein translatiert werden oder 
ob manche Rezeptor-Transkripte möglicherweise durch eine promiskuitive trans-

kriptionelle Aktivität im Keimepithel des Hodens entstehen [Schmidt, 1996]. 
 
Bezüglich der funktionellen Rolle der Tas2-Rezeptoren in männlichen Keimzellen 

erscheint die Frage, ob die vielen verschiedenen Bitterrezeptoren im Hoden alle 
gemeinsam in einer Keimzelle vorkommen (Abbildung 5.6 [B] und [C], rechte Seite), 
oder ob verschiedene Keimzellpopulationen existieren, die ein unterschiedliches Bitter-

rezeptor-Repertoire aufweisen, besonders interessant. Während sich bei einer gleich-
zeitigen Expression aller Rezeptoren pro Zelle eine einheitliche Spermienpopulation 
ergeben würde (Abbildung 5.6 [B] und [C], rechte Seite), könnte die Co-Expression 

ausgewählter Rezeptoren (Abbildung 5.6 [B], linke Seite) oder die Expression nur eines 
einzelnen Rezeptors in bestimmten Spermien ganz verschiedene Spermienpopulationen 
entstehen lassen (Abbildung 5.6 [C], linke Seite). Dabei könnten bei der Expression von 
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nur einem Rezeptorsubtyp pro Zelle rein rechnerisch 28 verschiedene Spermien-
gruppierungen entstehen; bei der Co-Expression zweier Rezeptoren würden sich 784 
(282) und bei der Co-Expression von drei Rezeptoren schon ca. 20000 (283) und bei vier 

Rezeptoren über 600000 (284) etc. verschiedene Kombinationsmöglichkeiten ergeben. 
Bei der Co-Expression weiterer Rezeptoren könnte sich so z. B. eine ähnlich große 
zelluläre Diversität ergeben wie in B- und T-Lymphozyten des adaptiven Immun-

systems, deren Immunglobuline ebenfalls eine enorme Variabilität aufweisen [Janeway 
et al., 2005]. Entsprechend ihrer unterschiedlichen Rezeptorausstattung könnten sich 
solche diversen Spermienpopulationen z. B. durch spezifische Ligandenspektren und 

damit einhergehend möglicherweise auch durch unterschiedliche Eigenschaften aus-
zeichnen.  
Da der Frage der Tas2r-Proteinexpression und einer möglichen Entstehung 

verschiedener Keimzellpopulationen hinsichtlich der physiologischen Funktion von 
Bitterrezeptoren in Spermien eine übergeordnete Bedeutung zukommt, ist es in 
zukünftigen Studien essentiell, mit Hilfe von Subtyp-spezifischen Antikörpern zum 

einen die tatsächliche Translation der nachgewiesenen Bitterrezeptor-Transkripte zu 
überprüfen. Zum anderen sollte dabei festgestellt werden, ob nur Spermien mit 
identischer Bitterrezeptorexpression existieren, oder ob eine selektive Co-Expression 

von Tas2-Rezeptoren festzustellen ist, die zur Bildung verschiedener Spermien-
gruppierungen führt (Abbildung 5.6 [C], linke Seite). 

 

Abbildung 5.6:  Hypothetisches Modell der Expression von Bitterrezeptoren in männlichen Keim-
zellen und daraus resultierende putative Spermienpopulationen. 

[A] Übersicht über die 28 Bitterrezeptoren, deren Transkripte in cDNA des Hodens nachgewiesen werden 
konnten. [B] Diese Rezeptoren könnten einzeln, in bestimmten Kombinationen oder alle gemeinsam in 
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männlichen Keimzellen exprimiert werden. [C] zeigt exemplarisch die möglichen Spermienpopulationen, 
die sich aus diesen verschiedenen Expressionsmustern ergeben würden.  

Der Einsatz Subtyp-spezifischer Antikörper könnte aber noch eine weitere wesentliche 

Bedeutung zur Klärung der funktionellen Rolle von Bitterrezeptoren in Spermien haben. 
Aufgrund der starken strukturellen und funktionellen subzellulären Kompartimentierung 
reifer Spermien [Zitranski et al., 2010] könnte die Analyse des subzellulären 

Expressionsmusters einzelner Bitterrezeptoren erste Anhaltspunkte für eine Funktion 
der Rezeptoren in Spermien, z. B. bezüglich von Wegfindungsprozessen (Flagellum) 
oder der Akrosomreaktion (Kopf) ergeben. Da gegenwärtig jedoch keine geeigneten 

Antikörper gegen murine Bitterrezeptor kommerziell zur Verfügung stehen (siehe 
Abbildung 4.18), sind diese experimentellen Ansätze zur Sammlung von Hinweisen 
bezüglich der physiologischen Funktion von Bitterrezeptoren in Spermien zurzeit nicht 

verfolgbar. Weiterhin erschwerend kommt in diesem Zusammenhang hinzu, dass 
bislang nur für zwei murine Tas2-Rezeptoren (Tas105, Tas2r108) spezifische 
aktivierende Liganden beschrieben wurden [Chandrashekar et al., 2000], so dass eine 

gezielte Stimulation einzelner oder auch mehrerer Rezeptoren gleichzeitig (bei über-
lappendem Ligandenspektrum) und eine nachfolgende Erfassung möglicher physio-
logischer Veränderungen in männlichen Keimzellen (z. B. Akrosomreaktionsrate, 

Motilität, intrazelluläre Botenstoff-Konzentrationen) gegenwärtig kaum möglich ist. 
Um die Expression und Funktion von Bitterrezeptoren in männlichen Keimzellen 
genauer analysieren zu können, wurde daher eine Tas2r131-defiziente Mauslinie 

analysiert, die GFP als Reporterprotein unter Kontrolle des Tas2r131 Promotors 
exprimiert. Anhand des Fluoreszenzmusters dieses Reporterproteins konnte gezeigt 
werden, dass der Tas2r131 in späten Keimzellstadien des Hodens exprimiert wird 

(Abbildung 4.20 [D]). Dabei war die GFP-Markierung, und damit die Tas2r131 
Expression, in allen Spermatiden erkennbar und nicht etwa auf einzelne Zellen 
beschränkt (Abbildung 4.20 [J]). Diese Befunde lassen eine „ein Rezeptor pro Zelle“ 

Expression (Abbildung 5.6 [B], links) unwahrscheinlich erscheinen. Allerdings können 
sie nicht klären, ob alle Spermien durch eine einheitliche Rezeptorexpression gekenn-
zeichnet sind, oder ob der Tas2r131 möglicherweise als Co-Expressionspartner 

verschiedener Rezeptoren fungiert und so durch die Kombination mit anderen 
Rezeptoren unterschiedliche Spermienpopulationen entstehen. 
Bei der reproduktionsbiologischen Charakterisierung der Tas2r131-defizienten Tiere 

fiel eine signifikant erhöhte Zahl epididymaler Spermien auf (Abbildung 4.26). Die 
spontane Akrosomreaktionsrate dieser Tas2r131-defizienten Spermien war leicht, aber 
nicht signifikant niedriger als die von Wildtyp-Spermien (Abbildung 4.31). Außerdem 

wurde in Verpaarungsexperimenten mit heterozygoten Tieren beobachtet, dass 
Tas2r131 heterozygote Männchen bei Verpaarungen mit Wildtyp-Weibchen ihr 
Tas2r131 [-] Allel signifikant häufiger an ihre Nachkommen weitergaben als ihr 

Tas2r131 [+] Allel (Abbildung 4.28 [B]), während bei den Nachkommen von hetero-
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zygoten Weibchen eine gleichmäßige Verteilung des Genotyps zu registrieren war 
(Abbildung 4.28 [C]). 
Diese Genotyp-Verschiebung könnte ursächlich auf eine erhöhte Zahl Tas2r131-

defizienter Spermien im Ejakulat Tas2r131 heterozygoter Tiere zurückgehen oder aber 
darauf hindeuten, dass Tas2r131-Gen-defiziente Spermien von heterozygoten 
Männchen sich trotz bestehender Cytoplasmabrücken zwischen postmeiotischen 

Keimzellen (Abbildung 4.27) phänotypisch von Tas2r131-positiven Spermien unter-
scheiden und eine höhere Befruchtungskompetenz aufweisen. Momentan kann jedoch 
auch nicht ausgeschlossen werden, dass die nur bei heterozygoten Zuchtmännchen 

registrierte Genotyp-Verschiebung ganz unabhängig von der Spermienfunktion ist und 
beispielsweise auf eine gestörte Embryonalentwicklung z. B. aufgrund von genomic 

imprinting zurückzuführen ist [Reik und Walter, 2001].  

 
Bei der Bewertung dieses auffälligen Phänotyps von Tas2r131 GFP Tieren sollte zudem 
berücksichtigt werden, dass die beschriebenen signifikanten Veränderungen bei 

Tas2r131-defizienten Tieren, die bereits in der zehnten Generation (N10) auf einen 
C57BL/6-Hintergrund zurückgekreuzt waren und in einem anderen Tierstall gezüchtet 
wurden (Tierzuchtanlage des DIfE) (Daten nicht gezeigt), die erst gegen Ende dieser 

Dissertation untersucht werden konnten, nicht zu detektieren waren. Die unter-
schiedliche Ausprägung des Phänotyps der Tas2r131 GFP Mauslinie, könnte z. B. in 
verschiedenen Haltungsbedingungen in den Tierstallanlagen an der LMU bzw. am DIfE 

begründet liegen. Sie könnte aber auch auf die unterschiedlichen Stammhintergründe 
beider Zuchten zurückgehen. So zeichneten sich die in dieser Arbeit untersuchten Tiere 
durch einen gemischten 129SV-C57BL/6-Hintergrund aus, dessen C57BL/6-Anteil 75 -

 98 % betrug (N2 - N6) (Abschnitt 3.6.2). Bei den Tieren des DIfE lag der C57BL/6-
Anteil dagegen bei 99 %. Solche unterschiedlichen genetischen Hintergründe könnten 
beispielsweise in einer unterschiedlichen funktionellen Kompensation des Tas2r131-

Verlustes resultieren, ein Phänomen, das aus Verhaltensexperimenten mit Gen-
defizienten Mäusen mit unterschiedlichen Stammhintergründen bekannt ist [Gingrich 
und Hen, 2000; Barbaric et al., 2007]. Es kann momentan aber auch nicht aus-

geschlossen werden, dass nicht die Tas2r131-Deletion an sich, sondern andere, 
Tas2r131-assoziierte, Stamm-spezifische Gene für den registrierten ungewöhnlichen 
Phänotyp verantwortlich sind [Gerlai, 1996]. Zwar ist der genetische Anteil des 129SV-

Stamms, aus dem die embryonalen Stammzellen zur Generierung der Tas2r131 GFP 
Mauslinie stammen, prozentual gering und durch homologe Rekombination zum 
Großteil relativ zufällig über das gesamte Genom verteilt. Allerdings werden Gene, die 

große chromosomale Nähe zum Tas2r131 aufweisen, mit großer Wahrscheinlichkeit 
zusammen mit dem Rezeptor bzw. der kodierenden GFP-Sequenz vererbt [Gerlai, 
2001]. So wird die Tas2r131-Sequenz in Wildtyp-Tieren vermehrt von C57BL/6-

spezifischen Genen umgeben, während die GFP-Sequenz von Genen flankiert wird, die 
aus den 129SV-Stammzellen stammen. Sollten also in der unmittelbaren Umgebung des 
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Tas2r131-Locus Proteine kodiert sein, die das männliche Reproduktionssystem 
beeinflussen und die Stamm-spezifische Unterschiede aufweisen, so könnten diese 
Proteine in Tieren, die nicht vollständig zurückgekreuzt sind, ebenfalls zum Phänotyp 

der Tas2r131-Deletion beitragen [Gerlai, 2001; Crusio, 2004; Eisener-Dorman et al., 
2009]. 
Die Frage, welche der registrierten Reproduktionsphänotypen tatsächlich durch die 

Tas2r131-Deletion ausgelöst wurden und welche möglicherweise auf den gemischten 
Stammhintergrund der Knockin-Mauslinie zurück zu führen sind, soll deshalb in 
zukünftigen vergleichenden Studien an Tieren mit gemischtem sowie einheitlichem 

C57BL/6 Hintergrund, die in beiden Tierställen parallel gehalten werden, weiter unter-
sucht werden.  
Davon ausgehend, dass der im Rahmen dieser Arbeit beobachtete Tas2r131-Phänotyp 

spezifisch ist, können daraus potentielle Funktionen des Bitterrezeptors auf unterschied-
lichen Ebenen der Reproduktion abgeleitet werden (Abbildung 5.7): So könnte der 
Tas2r131 im Gehirn, wo eine funktionelle Expression einzelner Bitterrezeptoren bereits 

nachgewiesen werden konnte [Singh et al., 2011], beispielsweise durch eine 
Beeinflussung der Hypothalamus-Hypophysen-Gonaden-Achse an der hormonellen 
Kontrolle der Keimzellbildung durch GnRH (Gonadotropin releasing hormone), FSH 

(Follikel-stimulierendes Hormon), LH (Luteinisierendes Hormon) und Testosteron 
[Shacham et al., 2001; Krsmanovic et al., 2009; Walker, 2010] involviert sein. Eine 
solche physiologische Funktion soll in weiterführenden Studien durch die Bestimmung 

der Serum-Konzentrationen der entsprechenden Hormone geprüft werden. 

 

Abbildung 5.7:  Mögliche physiologische Rolle von Bitterrezeptoren für die Bildung und Funktion 
männlicher Keimzellen. 

Dargestellt ist eine schematische Übersicht über die verschiedenen Organe, in denen Tas2-Rezeptoren 
eine physiologische Rolle für die Bildung, Reifung und Funktion von männlichen Keimzellen haben 
könnten. Die rote Linie zeichnet den Weg männlicher Keimzellen bis zur erfolgreichen Befruchtung einer 
Eizelle nach. In grün sind potentielle Funktionen des Tas2r131 angegeben, die dem Phänotyp Tas2r131-
defizienter Tiere zu Grunde liegen könnten. 

Die erhöhte Zahl reifer Spermien könnte aber auch auf eine physiologische Funktion 
des Tas2r131 im Hoden hindeuten, wo er in späten Stadien der Spermatogenese 
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exprimiert wird (Abbildung 4.20). Dabei könnte der Rezeptor, vergleichbar zum Tas1r1 
(siehe Abschnitt 5.2.1), durch eine basale Aktivität die intrazelluläre cAMP-
Konzentration regulieren und damit apoptotische Prozesse während der Spermatogenese 

beeinflussen. Denkbar wäre allerdings auch eine Liganden-abhängige Aktivierung des 
Tas2r131 im Keimepithel, ein Modell, das bereits für einen anderen testikulär-
exprimierten Bitterrezeptor, den Tas2r105, diskutiert wird [Li und Zhou, 2012]. Ob und 

welche der häufig toxischen Bitterstoffe im Keimepithel präsent sein könnten, ist 
bislang aber völlig unklar; insbesondere, da Spermienvorläuferzellen während der 
postmeiotischen Stadien, in denen der Tas2r131 exprimiert wird (Abbildung 4.20), 

durch die Blut-Hoden-Schranke sehr effektiv vor schädlichen Einflüssen abgeschirmt 
werden [Cheng et al., 2010; Cheng und Mruk, 2012].  
Interessanterweise wird für die den Bitterrezeptoren strukturell verwandten olfak-

torischen Rezeptoren neben einer klassischen Funktion als Detektionsmoleküle im 
Riechepithel auch eine funktionelle Rolle bei der Interaktion verschiedener olfak-
torischer Neurone bei der Axon-Wegfindung im Bulbus olfactorius vermutet 

[Mombaerts, 2006]. Dabei soll durch eine direkte Rezeptor-Rezeptor-Interaktion 
zwischen Axonen verschiedener Geruchsrezeptor-exprimierender Neurone eine 
Erkennung von Zellen, die den gleichen olfaktorischen Rezeptor exprimieren, im 

Gewebeverband realisiert werden, was eine gemeinsame Wegfindung dieser Axone in 
denselben Glomerulus ermöglicht [Feinstein et al., 2004; Feinstein und Mombaerts, 
2004]. Analog zu diesem Modell könnte man deshalb auch spekulieren, dass die im 

Hoden nachgewiesenen Bitterrezeptoren keine Liganden detektieren, sondern primär an 
der Interaktion von Keimzellen untereinander bzw. mit Sertoli-Zellen beteiligt sind und 
dadurch das Überleben bzw. die Apoptose verschiedener Zelltypen regulieren.  

Der Tas2r131 könnte aber auch an Selektionsprozessen zur Auswahl und 
„Aussortierung“ bestimmter Spermiengruppen eines Gesamtejakulates beteiligt sein, die 
seit längerem vermutet werden [Ziegler et al., 2005] und die sowohl die registrierte 

erhöhte Spermienzahl als auch die Genotyp-Verschiebung zugunsten des Tas2r131 [-] 
Allels erklären könnten. Derartige Auswahlprozesse, durch die z. B. sichergestellt 
werden soll, dass Nachkommen mit optimalen genetischen Eigenschaften und damit 

bestmöglichen Überlebenschancen geboren werden [Birkhead und Pizzari, 2002], 
werden in Zusammenhang mit der Expression anderer chemosensorischer Proteine wie 
den olfaktorischen Rezeptoren in Spermien bzw. Pheromonrezeptoren der V2r-Familie 

[Leinders-Zufall et al., 2004] diskutiert. Dabei sollen MHC-assoziierte Geruchs-
rezeptoren eine Erkennung von MHC-Haplotypen ermöglichen und die Zeugung von 
Nachkommen mit optimaler MHC-Diversität ermöglichen [Nowak et al., 1992; Ziegler 

et al., 2010].  
Entsprechende Selektionsprozesse können bereits im männlichen Reproduktionssystem 
stattfinden, wo Spermien mit bestimmten genetischen Merkmalen während der Keim-

zellreifung bzw. der Passage durch den Nebenhoden, z. B. durch Apoptose, aussortiert 
werden (Sperm Receptor Selection) [Ziegler et al., 2002; Ziegler et al., 2005].  
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Die Auswahl kann aber auch im weiblichen Genitaltrakt erfolgen (postcopulatory 

selection) [Birkhead und Pizzari, 2002], wo ganz verschiedene Selektionsmechanismen 
zum Tragen kommen könnten. Dabei könnten zum einen Spermienpopulationen mit 

einer distinkten Rezeptorausstattung z. B. durch eine verfrühte Tas2r-abhängige 
Akrosomreaktion, eliminiert werden (Abbildung 4.31). Zum anderen könnte ein 
spezielles Tas2-Rezeptorrepertoire die Befruchtungschancen einer Spermiengruppe 

auch erhöhen, indem z. B. das Auffinden der Eizelle im Eileiter begünstigt wird. Eine 
solche positive Beeinflussung könnte z. B. durch spezifische Lockstoffe, die nur von 
Spermien mit einer bestimmten Rezeptorkombination detektiert werden, realisiert 

werden. Bei verschiedenen Nagerspezies, u. a. der Hausmaus, wurde zudem beobachtet, 
dass ihre Spermien Aggregate bilden können [Immler et al., 2007], sogenannte sperm 

trains, die sich durch eine deutlich erhöhte Schwimmgeschwindigkeit auszeichnen als 

einzelne Spermien [Moore et al., 2002]. Da sich in Spermiengemischen bevorzugt die 
Spermien des gleichen Männchens in einzelnen dieser trains zusammenfinden [Fisher 
und Hoekstra, 2010], kann dabei offensichtlich sogar eine Erkennung genetisch 

verwandter Zellen erfolgen, deren Mechanismus bislang nicht geklärt ist. Man könnte 
deshalb spekulieren, dass Spermien mit gemeinsamen genetischen Eigenschaften sich 
möglicherweise anhand ihres Bitterrezeptor-Expressionsmusters zusammenfinden 

könnten, z. B. durch die zuvor diskutierte direkte Interaktion von Rezeptorproteinen 
(siehe oben), und ihr genetisches Material durch eine solche Kooperation mit größerem 
Erfolg weitergeben können [Moore et al., 2002; Fisher und Hoekstra, 2010].  

Welchen physiologischen Nutzen solche potentiellen, auf Tas2-Rezeptoren basierenden 
Selektionsmechanismen haben könnten und warum der Verlust eines speziellen 
Rezeptors einen Selektionsvorteil bedeutet, ist momentan allerdings unklar. 

 
Da der Tas2r131 einheitlich in allen Keimzellen eines Reifungsstadiums exprimiert 
wird (Abbildung 4.20), kann man auch spekulieren, dass Spermien über ein 

einheitliches Bitterrezeptor-Repertoire verfügen (Abbildung 5.7, rechte Seite), welches 
ganz unabhängig von Selektionsmechanismen an der Interaktion des Spermiums mit 
seiner extrazellulären Umgebung beteiligt sein könnte.  

Generell können Bitterrezeptoren durch eine Vielzahl chemisch sehr diverser Stoffe 
aktiviert werden, welche sich häufig durch eher lipophile Eigenschaften auszeichnen, 
(Abbildung 1.6). Bislang gibt es allerdings keine Berichte darüber, dass bekannte 

gustatorische Bitterstoffe im Milieu des weiblichen Genitaltrakts präsent sind. Deshalb 
könnten eventuell auch andere lipophile Moleküle im weiblichen Genitaltrakt, wie z. B. 
Progesteron oder Östradiol, oder auch bislang nicht identifizierte Lockstoffe der Eizelle 

[Sun et al., 2005] als potentielle Liganden des Tas2r131 in Betracht kommen, die 
chemotaktische Prozesse vermitteln oder auch die akrosomale Exocytose regulieren 
könnten. Die Beobachtung, dass der Verlust des Tas2r131 trotz der vielfältigen funk-

tionellen Redundanz dieser Rezeptoren, die im humanen System gezeigt werden konnte 
[Meyerhof et al., 2010], in Spermien nicht kompensiert werden kann, könnte dabei 



218 Diskussion 

möglicherweise einen Hinweis darauf geben, dass der Tas2r131 einen spezifischen 
Liganden erkennt, der keinen der anderen exprimierten Bitterrezeptoren aktiviert. 
Um solche potentiellen spezifischen Liganden zu identifizieren, sollte in zukünftigen 

Studien die Aktivierbarkeit heterolog exprimierter Tas2-Rezeptoren durch bekannte 
Bitterstoffe, aber auch durch verschiedene lipophile Liganden des weiblichen Genital-
trakts, wie beispielsweise weibliche Hormone, in funktionellen Stimulierungs-

experimenten untersucht werden. Da kürzlich gezeigt werden konnte, dass sowohl 
Progesteron als auch verschiedenste andere lipophile Moleküle zu einer Aktivierung des 
CatSper-Kanals im Spermienflagellum führen können [Brenker et al., 2012], sollten 

diese Versuche zudem durch Kontrollexperimente mit CatSper-Blockern wie z. B. NNC 
55-0396 und Mibefradil [Lishko et al., 2011; Strunker et al., 2011] ergänzt werden. 
Werden bei einem solchen Liganden-Screening spezifische Agonisten einzelner Tas2-

Rezeptoren und besonders des Tas2r131 gefunden, so könnten diese anschließend dazu 
genutzt werden, isolierte Spermien in funktionellen Analysen gezielt zu stimulieren und 
so die physiologische Rolle der aktivierten Bitterrezeptoren bei einzelnen Keimzell-

funktionen wie der Motilität, Wegfindung und Akrosomreaktion zu verstehen.  
Zusätzlich sollten weitere Bitterrezeptor-defiziente Tiere hinsichtlich ihres Repro-
duktionserfolgs und ihrer Spermienfunktion charakterisiert werden. Dabei könnte der 

Vergleich der Phänotypen verschiedener Tas2r-defizienter Mauslinien möglicherweise 
auch Aufschluss darüber geben, ob die identifizierten Bitterrezeptoren eine gemeinsame 
Aufgabe erfüllen, oder ob diese verschiedenen Rezeptoren unterschiedliche 

physiologische Funktionen erfüllen und z. B. durch die Detektion distinkter Signalstoffe 
für den Befruchtungserfolg einzelner Spermien entscheidend sind. 

5.2.3 Physiologische Funktion des potentiellen Sauerdetektors 
PKD2L1 in männlichen Keimzellen 

In der vorliegenden Arbeit konnte gezeigt werden, dass das PKD2L1 Protein, ein 
potentielles Sensormolekül für saure Geschmacksstoffe [Huang et al., 2006; Ishimaru et 
al., 2006], im Hauptstück des Flagellums von Mausspermien exprimiert wird 

(Abbildung 4.5). Welche physiologische Rolle dieses Protein in männlichen Keimzellen 
erfüllt, konnte bislang experimentell nicht aufgeklärt werden, da bei Veränderungen des 
pH-Wertes auch die Funktion anderer Spermienproteine wie z. B. des CatSper 

beeinflusst wird [Kirichok et al., 2006] und derzeit keine PKD2L1-spezifischen Blocker 
zur Unterscheidung von PKD2L1-abhängigen und PKD2L1-unabhängigen Effekten zur 
Verfügung stehen. Im Folgenden wird deshalb die potentielle physiologische Funktion 

dieses Proteins in Spermien anhand bekannter Eigenschaften des PKD2L1 und anderer 
PKD-Proteine im Hinblick auf die Vielfalt von pH-abhängigen Prozessen im Spermium 
und den verschiedenen extrazellulären pH-Werten im weiblichen Genitaltrakt diskutiert. 

In anderen Organen, wie z. B. der Niere, sind die Mitglieder der Familie der PKD-
Proteine funktionell als Heteromere aktiv [Delmas et al., 2004]. Dabei bilden die 
Ionenkanalproteine der PKD2- bzw. PKD2-like Subfamilie mit Vertretern der PKD1- 
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bzw. PKD1-like Proteine funktionelle Rezeptor-Kanal-Komplexe, die als zelluläre 
Sensoren, z. B. für mechanische Stimuli an Cilien oder auch osmotischen Stress 
fungieren und u. a. einen Einstrom von Calcium-Ionen in die Zelle vermitteln, aber auch 

heterotrimere G Proteine binden und aktivieren [Parnell et al., 1998; Delmas et al., 
2004; Delmas, 2005].  
Als möglicher Interaktionspartner des PKD2L1 Proteins zur Bildung eines solchen 

Rezeptor-Kanal-Komplexes in Spermien könnte das PKD1-like Protein PKD1L3 in 
Betracht kommen, für das in Geschmackssinneszellen und auch im heterologen 
Expressionssystem gezeigt werden konnte, dass es zusammen mit dem PKD2L1 

Heteromere bildet, die durch extrazelluläre Protonen aktiviert werden [Huang et al., 
2006; Ishimaru et al., 2006] und dessen mRNA-Transkripte bereits im Hoden der Maus 
nachgewiesen wurden [Ishimaru et al., 2006; LopezJimenez et al., 2006]. Wie in Co-

Immunpräzipitationsstudien mit heterolog exprimierten Proteinen gezeigt werden 
konnte, kann der PKD2L1 aber auch mit dem PKDREJ Protein heteromerisieren 
[Sutton et al., 2006], welches ebenfalls in Mausspermien exprimiert wird [Butscheid et 

al., 2006], wo es an der Regulation der Kapazitierung beteiligt ist [Sutton et al., 2008].  
Zusammen mit diesen zwei potentiellen Heteromerisierungspartnern, PKD1L3 und 
PKDREJ, könnte der PKD2L1 (Abbildung 5.8 [A]), für den eine Funktion als genereller 

Protonensensor in ganz verschiedenen Zellsystemen vermutet wird [Huang et al., 2006], 
somit auch in Spermien an der Detektion verschiedener pH-Werte funktionell beteiligt 
sein.  

 

Abbildung 5.8:  Hypothetisches Modell der PKD2L1-Funktion in Spermien. 
[A] Das PKD2L1 Protein könnte als Heteromer mit einem Vertreter der PKD1-Familie, z. B. dem PKD1L3 
oder dem PKDREJ, als zellulärer Protonensensor fungieren. Die Aktivierung des PKD2L1 könnte dann zu 
einem Einstrom von Ca2+ durch dieses Kanalprotein führen. Ebenfalls möglich wäre eine nachfolgende 
Aktivierung heterotrimerer G Proteine sowie eine Regulation des intrazellulären pH-Wertes. In [B] ist eine 
Übersicht über die verschiedenen extrazellulären pH-Werte gezeigt, denen ein Spermium im weiblichen 
Genitaltrakt ausgesetzt ist. Zusätzlich sind die subzelluläre Lokalisation des PKD2L1 in Mausspermien 
(blaue Rechtecke) sowie pH-abhängige Spermienfunktionen angegeben, die durch eine Aktivierung des 
PKD2L1 beeinflusst werden könnten. Die Intensität der grünen Farbe repräsentiert die Protonen-
konzentration.  

Dabei erscheint die Registrierung extrazellulärer Protonenkonzentrationen gerade im 

Hinblick auf die sich ständig ändernden pH-Werte im extrazellulären Milieu von 
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Spermien interessant [Maas et al., 1977; Qi et al., 2007] (Abbildung 5.8 [B]), durch die 
elementare Spermienfunktionen wie z. B. die Motilität und die Hyperaktivierung 
reguliert werden [Hamamah und Gatti, 1998]. Die Aktivierung eines PKD2L1/PKD1L3 

bzw. eines PKD2L1/PKDREJ Heteromers in den verschiedenen Abschnitten des 
weiblichen Genitaltrakts könnte dabei zu einem Einstrom von Ca2+ führen, aber 
möglicherweise auch G Protein-abhängige Signaltransduktionskaskaden aktivieren, die 

z. B. zur Generierung intrazellulärer Botenstoffe wie cAMP führen könnten (Abbildung 
5.8 [A]). Angesichts des Phänotyps PKDREJ-defizienter Spermien, die eine verzögerte 
Veränderung ihres intrazellulären pH-Wertes während der Kapazitierung zeigen (H. 

Florman, persönliche Kommunikation) könnte man zudem spekulieren, dass die PKD-
Proteine an der Regulation des intrazellulären pH-Wertes von Spermien beteiligt sind. 
Dabei könnte eine Detektion extra- oder intrazellulärer Protonenkonzentrationen durch 

die PKDs z. B. über cAMP-induzierte Phosphorylierungen [Decoursey, 2003; Musset et 
al., 2010] zu einer Beeinflussung Protonen-leitender Proteine wie dem Hv1-Kanal 
[Lishko et al., 2012] oder Na/H-Austauschern wie dem sNHE (sperm Na+/H+ 

exchanger) [Garcia und Meizel, 1999; Wang et al., 2003; Quill et al., 2006] führen und 
damit eine Regulation des intrazellulären pH-Wert von Spermien im Verlauf der 
Kapazitierung oder während der Akrosomreaktion ermöglichen [Carr und Acott, 1989; 

Parrish et al., 1989; Yanagimachi, 1994]. 
In weiterführenden Studien an PKD2L1-defizienten Tieren sollte deshalb untersucht 
werden, welche Effekte eine Deletion des PKD2L1 auf den intrazellulären pH-Wert von 

Spermien hat, z. B. während der Kapazitierung, beim Kontakt mit verschiedenen extra-
zellulären pH-Werten und bei der Bindung an die Zona pellucida. Um zu klären, ob 
dieses Kanalprotein in Spermien an der Regulation elementarer pH-abhängiger 

Funktionen beteiligt ist und damit eine Übersetzung der unterschiedlichen pH-Werte in 
den verschiedenen Abschnitten des weiblichen Genitaltrakts in eine Aktivitätsänderung 
des Spermiums ermöglichen könnte, sollte außerdem geprüft werden, ob PKD2L1-

defiziente Spermien sich durch Veränderungen in ihrer Motilität, Hyperaktivierung, 
Kapazitierung und Akrosomreaktion (zur Übersicht siehe [Florman et al., 2010]) von 
Wildtyp-Spermien unterscheiden. 

5.2.4 Die gustatorische G Protein Untereinheit α-Gustducin in 
Spermien 

Neben den verschiedenen Rezeptormolekülen für Geschmacksstoffe wurden in der 
vorliegenden Arbeit auch Hinweise auf die Expression der gustatorischen G Protein 

Untereinheit α-Gustducin in Spermien gefunden (Abbildung 4.7). Da im männlichen 
Reproduktionsgewebe von Gustducin-defizienten Mäusen jedoch die gleiche 
Gustducin-Immunreaktivität zu registrieren war wie in Wildtyp-Tieren (Abbildung 

4.10, Abbildung 4.11), konnte die Spezifität dieses Nachweises nicht geklärt werden. 
Daher ist auf dem gegenwärtigen Stand nicht auszuschließen, dass die detektierte 
Immunmarkierung auf eine unspezifische Kreuzreaktivität [Herkenham et al., 2011] der 
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beiden verwendeten Gustducin-Antiseren, die gegen das gleiche Epitop gerichtet waren, 
zurückgeht.  
Da im Hoden aber häufig Keimzell-spezifische Sequenzvarianten von Proteinen 

auftreten, die sich durch eine andere Intron-Exon-Struktur auszeichnen als in 
somatischen Zellen und die durch Hoden-spezifische Promotoren reguliert werden 
[Oppi et al., 1987; Howard et al., 1990], könnte die registrierte Immunreaktivität auch 

auf eine Hoden-spezifische Isoform des Gustducins zurückgehen. Eine testikuläre 
α-Gustducin-Isoform, die unabhängig vom ersten Exon exprimiert wird, wäre bei 
Gustducin-defizienten Tieren, bei denen genau dieses Exon deletiert wurde, nicht von 

der genetischen Manipulation betroffen. Eine solche Keimzell-spezifische Isoform ohne 
Exon 1 könnte somit die identische Immunreaktivität im Hoden von Wildtyp- und 
Gustducin-defizienten Tieren erklären und gleichzeitig auch die Ursache der 

abweichenden molekularen Masse von Gustducin im Keimdrüsengewebe im Vergleich 
zum gustatorischen Gustducin sein (Abbildung 4.12).  
Die Hypothese, dass Gustducin in Spermien funktionell exprimiert wird und die 

detektierte Immunreaktivität nicht auf eine unspezifische Antikörper-Reaktivität 
zurückzuführen ist, erscheint auch deshalb interessant, weil Gustducin in Sinneszellen 
der Zunge durch eine Aktivierung von PDE zu einer Reduzierung des intrazellulären 

cAMP-Spiegels führt [Clapp et al., 2008]. Diese G Protein Untereinheit könnte somit 
auch in Spermien einen idealen Kandidaten für die Umsetzung einer basalen 
Geschmacksrezeptoraktivität in eine verminderte basale cAMP-Konzentration, die in 

Tas1r1-defizienten Tieren beobachtet wurde (siehe Abschnitt 5.2.1.1), repräsentieren.  
Um zu klären, ob in männlichen Keimzellen eine Reproduktions-spezifische Gustducin-
Isoform exprimiert wird, sollte diese G Protein Untereinheit deshalb in weiterführenden 

Studien aus cDNA des Hodens kloniert und mit der gustatorischen Gustducin-Variante 
verglichen werden. Durch die Verwendung von Antikörpern, die gegen andere Epitope 
gerichtet sind als die in dieser Arbeit verwendeten Antiseren, könnte außerdem die 

Wahrscheinlichkeit einer unspezifischen Kreuzreaktivität reduziert werden. Ein 
indirekter Nachweis der Gustducin-Expression könnte zudem gelingen, wenn in 
Spermien von Gustducin-defizienten Mäusen, wie bei Tas1r1-defizienten Tieren, eine 

basale Erhöhung der cytosolischen cAMP-Konzentration zu detektieren sein sollte. 
Wird in Spermien allerdings, wie vermutet, eine Keimzell-spezifische Isoform 
exprimiert, die unabhängig von der Deletion des ersten Exons ist, so wäre ein solcher 

Unterschied zwischen den Spermien von Gustducin-Wildtyp und –Knockout-Tieren mit 
dieser Deletion nicht zu erwarten.  

5.3 Ausblick 

Die im Rahmen der vorliegenden Arbeit gesammelten Befunde machen deutlich, dass 
Sensormoleküle des Geschmackssystems am komplexen und hochgradig regulierten 
Prozess der Reproduktion beteiligt sind. Diese Erkenntnisse können zu einem besseren 
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Verständnis einzelner Spermienfunktionen und deren Regulation durch die Interaktion 
des Spermiums mit seiner extrazellulären Umgebung im weiblichen Genitaltrakt bei-
tragen, aber möglicherweise ebenfalls Hinweise auf die Funktion dieser Rezeptor-

proteine in anderen sensorischen Zellsystemen ergeben.  

5.3.1 Mögliche physiologische Funktionen von Geschmacksrezeptoren 
in Sinneszellen der Zunge und in extra-oralen Systemen  

Tas1- und Tas2-Rezeptoren wurden ursprünglich als Detektionsmoleküle des 

Geschmackssystems entdeckt [Hoon et al., 1999; Adler et al., 2000; Chandrashekar et 
al., 2000; Nelson et al., 2001; Nelson et al., 2002]. In den letzten Jahren konnte jedoch 
gezeigt werden, dass diese GPCRs vielfältige physiologische Funktionen bei der Wahr-

nehmung von Nahrungsbestandteilen erfüllen und z. B. auch an der Wahrnehmung von 
Nähr- und Bitterstoffen im Magen-Darm-Trakt beteiligt sind [Kokrashvili et al., 2009a; 
Kokrashvili et al., 2009b; Breer et al., 2012] und so die Ausschüttung von Verdauungs-

regulierenden Hormonen wie z. B. dem glucagon-like peptide-1 induzieren [Jang et al., 
2007; Kokrashvili et al., 2009b]. Zusammen mit den Resultaten anderer Arbeits-
gruppen, dass diese Rezeptoren z. B. auch durch Irritanzien in den Atemwegen aktiviert 

werden können [Tizzano et al., 2010], machen die in dieser Arbeit gesammelten 
Befunde einer funktionellen Rolle von Tas1- und Tas2-Rezeptoren in männlichen 
Keimzellen deutlich, dass diese „Geschmacksrezeptoren“ generelle chemosensorische 

Erkennungsmoleküle repräsentieren, die abhängig vom Zelltyp in dem sie exprimiert 
werden, ganz unterschiedliche physiologische Funktionen erfüllen können [Finger und 
Kinnamon, 2011].  

Interessanterweise konnten in der vorliegenden Arbeit zudem erstmals Hinweise darauf 
gesammelt werden, dass diese Rezeptoren neben ihrer Funktion als Detektionsmoleküle 
auch eine funktionelle Rolle bei der Kontrolle der basalen Konzentration sekundärer 

Botenstoffe, wie z. B. cAMP und Ca2+, spielen können und somit z. B. eine spontane 
Akrosomreaktion in Spermien verhindern.  
Da für die Tas1r- und Tas2r-assoziierte G Protein α-Untereinheit Gustducin in 

gustatorischem Gewebe eine vergleichbare Funktion bei der Kontrolle der basalen intra-
zellulären cAMP-Konzentration beschrieben wurde [Clapp et al., 2008], stellt sich 
angesichts der Ähnlichkeit des zellulären Phänotyps von Tas1r1-defizienten Spermien 

und von Gustducin-defizienten Geschmackszellen, die sich jeweils durch eine erhöhte 
basale intrazelluläre cAMP-Konzentration auszeichnen, die Frage, ob dieser Effekt 
möglicherweise auf ein generelles Funktionsprinzip dieser chemosensorischen Proteine 

hindeuten könnte. Dabei könnte eine kontinuierliche Reduzierung von cAMP in ganz 
verschiedenen chemosensorischen Zelltypen daran beteiligt sein, einer Inhibition von 
PLC und des IP3-Rezeptor durch cAMP-aktivierte PKA vorzubeugen, um so die 

Aktivierbarkeit dieser Zellen zu regulieren und z. B. ein optimales Ca2+-Signal bei einer 
Agonisten-Stimulation zu gewährleisten [Clapp et al., 2008].  
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Um zu prüfen, ob Geschmacksrezeptoren neben ihrer Funktion als Detektionsmoleküle 
auch eine physiologische Funktion bei der Regulation intrazellulärer Botenstoffe 
erfüllen, soll deshalb in weiterführenden Studien untersucht werden, ob sich auch 

Geschmackssinneszellen sowie isolierte chemosensorische Zellen des Darmes und der 
Atemwege von Tas1r1-defizienten Tieren durch einen erhöhten cAMP-Spiegel aus-
zeichnen. Außerdem sollte geprüft werden, ob die Veränderungen des basalen cAMP-

Gehaltes, die im Geschmacksgewebe von Gustducin-defizienten Tieren registriert 
wurden [Clapp et al., 2008], auch in Spermien sowie in anderen chemosensorischen 
Zellen von Gustducin-Knockout Tieren zu beobachten sind. 

5.3.2 Potentielle medizinische Relevanz von Geschmacksrezeptoren in 
Spermien 

Die Identifizierung von Geschmacksrezeptoren und assoziierter Signaltransduktions-
kaskaden in Spermien sowie die Aufklärung ihrer physiologischen Funktion in männ-

lichen Keimzellen sind aber auch aus reproduktionsmedizinischer Perspektive sehr 
interessant. Die Notwendigkeit eines besseren Verständnisses der Spermienphysiologie 
wird besonders deutlich, wenn man sich vor Augen führt, dass in Industrienationen ca. 

15 % aller Paare ungewollt kinderlos sind [Gnoth et al., 2005], aber bei etwa der Hälfte 
der von Fertilitätsproblemen betroffenen Männer keine organische Ursache für ihre ein-
geschränkte oder totale Infertilität gefunden werden kann (idiopathische Sterilität) 

[Santen und Swerdloff, 1986; Schlegel, 2009; McLachlan und O'Bryan, 2010; Krausz, 
2011]. Deshalb könnten neue Erkenntnisse über die Regulation elementarer Spermien-
funktionen dazu beitragen, Fehlfunktionen von Spermien besser zu verstehen und damit 

neuartige Diagnose- und Therapie-Ansätze bei männlicher Infertilität ermöglichen.  
Dabei könnten spezifische Liganden, die einzelne Spermienfunktionen beeinflussen, in 
funktionellen Stimulationsexperimenten, wie z. B. Akrosomreaktionstests oder 

Motilitätsanalysen, eingesetzt werden, um Dysfunktionen von Spermien subfertiler 
Patienten zu identifizieren. Zum anderen könnten diese Substanzen möglicherweise 
Ausgangssubstanzen für Wirkstoffe zur positiven Beeinflussung einzelner Spermien-

funktionen darstellen, um so z. B. die Erfolgschancen einer erfolgreichen Befruchtung 
bei assistierten Reproduktionsverfahren ([ART], assisted reproductive technology) zu 
erhöhen. Andererseits könnten spezifische Inhibitoren der identifizierten Rezeptor-

proteine, wie z. B. Lactisol [Xu et al., 2004] oder Bitterrezeptorantagonisten [Brockhoff 
et al., 2011], vielleicht verwendet werden, um einzelne oder mehrere Spermien-
funktionen gezielt zu blockieren und so langfristig Grundlagen für die Entwicklung 

neuartiger, nicht-hormoneller Verhütungsmittel für den Mann zu schaffen [Tulsiani und 
Abou-Haila, 2008]. 
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6 Zusammenfassung 

Ein bislang nur wenig verstandenes chemosensorisches Zellsystem stellen Spermien 

dar, die im weiblichen Genitaltrakt komplexe Gemische ganz verschiedener Liganden 
wahrnehmen müssen, um ihre für eine erfolgreiche Befruchtung essentiellen Aufgaben 
erfüllen zu können. Dazu gehören u. a. ein sekundärer Reifungsprozess (Kapazitierung), 

die Wegfindung zur Eizelle im Eileiter und die Akrosomreaktion zur enzymatischen 
Auflösung der Glykoproteinmatrix (Zona pellucida) der Oocyte. Die Sensormoleküle 
auf der Oberfläche des Spermiums, die eine Erkennung bestehender Konzentrations-

gradienten von Aminosäuren, Kohlenhydraten, Hormonen, von verschiedensten Ionen 
und Protonen im luminalen Milieu des weiblichen Genitaltrakts sowie der 
Kohlenhydrat-reichen Zona pellucida ermöglichen, sind jedoch trotz ihrer Bedeutung 

für eine erfolgreiche Fertilisation weitgehend unbekannt.  
Geschmacksrezeptoren repräsentieren spezialisierte Erkennungsmoleküle, die in Sinnes-
zellen der Zunge die präzise Detektion eines breiten Spektrums chemisch sehr diverser 

Geschmacksstoffe ermöglichen, welche auffällige Ähnlichkeiten mit den potentiellen 
Liganden in der wässrigen Umgebung von Spermien im weiblichen Genitaltrakt 
aufweisen. Interessanterweise werden diese Rezeptorproteine aber nicht nur in 

Geschmackssinneszellen, sondern auch in chemosensorischen Zellen einer Vielzahl 
extra-oraler Gewebe exprimiert.  
In der vorliegenden Arbeit wurde deshalb mit Hilfe biochemischer, molekular- und zell-

biologischer Techniken sowie mit reproduktionsbiologischen Methoden und unter 
Verwendung Geschmacksrezeptor-defizienter Mäuse der Frage nachgegangen, ob 
Rezeptormoleküle des Geschmackssystems als Kandidaten für chemische Sensor-

moleküle von Spermien in Betracht kommen.  
Dabei wurde ein Detektionsmolekül für saure Geschmacksstoffe, der PKD2L1, immun-
cytochemisch im Hoden der Maus und in reifen murinen Spermien nachgewiesen. 

Funktionell könnte dieser im Flagellum von Spermien exprimierte Ionenkanal an der 
Registrierung der verschiedenen Protonenkonzentrationen im Milieu des weiblichen 
Genitaltrakts beteiligt sein. 

Weiterhin konnte eine Expression von gustatorischen GPCRs der Tas1r-Familie 
(süß/umami) und Tas2r-Familie (bitter), in männlichen Reproduktionsorganen und in 
reifen Spermien gezeigt werden. Zudem wurden Hinweise auf die Expression der 

gustatorischen G Protein α-Untereinheit Gustducin, die in Geschmackssinneszellen an 
der Signaltransduktion dieser beiden Rezeptorfamilien beteiligt ist, im männlichen 
Reproduktionssystem erbracht.  

Im Einzelnen konnten mit der RT-PCR-Technik Transkripte von 28 der insgesamt 
35 Mitglieder der großen Familie der murinen Bitterrezeptoren (Tas2rs) aus Hoden-
gewebe amplifiziert werden. Die Bedeutung der Expression von Bitterrezeptoren für die 
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Reproduktion wurde exemplarisch anhand einer Gen-defizienten Maus für den 
Tas2r131 untersucht. Bei dieser Knockin-Mauslinie war die kodierende Rezeptor-
sequenz durch eine GFP-Expressionskassette ersetzt worden, so dass das Mausmodell 

gleichzeitig auch eine Bestätigung der Expression des Tas2r131 in späten Keimzell-
stadien der Spermatogenese ermöglichte. Bei der Fertilitätsanalyse Tas2r131-defizienter 
Tiere waren unter Labor-Zuchtbedingungen keine Veränderungen in der Anzahl der 

Nachkommen pro Wurf oder der Zeitspanne zwischen den Würfen feststellbar. 
Allerdings wiesen Tas2r131-defiziente Männchen signifikant mehr epididymale 
Spermien auf als Wildtyp-Tiere. Darüber hinaus war bei Verpaarungsstudien mit 

heterozygoten Männchen eine Genotyp-Verschiebung zugunsten des Tas2r131 [-] 
Allels zu registrieren. Dieser Phänotyp könnte darauf hindeuten, dass der Tas2r131 eine 
funktionelle Rolle bei Tas2r-abhängigen Auswahlprozessen verschiedener Spermien-

populationen spielt, bei denen sich z. B. durch eine Regulation der Apoptose im Verlauf 
der Keimzellbildung (Spermatogenese) oder auch durch eine Beeinflussung z. B. der 
Wegfindung im weiblichen Genitaltrakt ein Selektionsvorteil für Tas2r131-defiziente 

Spermien ergeben könnte. 
Aus der Familie der Tas1-Rezeptoren, deren drei Mitglieder als Heterodimere für die 
Erkennung von süßen Stimuli und dem Geschmack von Mononatriumglutamat 

(„umami“) verantwortlich sind, konnten in RT-PCR-Experimenten die beiden Unter-
einheiten des Umami-Rezeptors, der Tas1r1 und Tas1r3, aus Hodengewebe der Maus 
amplifiziert werden. Mit Hilfe Subtyp- und Spezies-spezifischer Antikörper konnte 

gezeigt werden, dass beide Rezeptorproteine im Akrosom und in distinkten Abschnitten 
des Flagellums von murinen und humanen Spermien exprimiert werden. Die 
funktionelle Rolle des Umami-Rezeptors wurde mit Hilfe einer Tas1r1-defizienten 

mCherry Reportermauslinie untersucht, die unter optimalen Zuchtbedingungen 
ebenfalls keine Fertilitätseinschränkungen erkennen ließ. Im Hoden dieser Tas1r1-
defizienten Tiere waren jedoch morphologische Veränderungen des Keimepithels und 

eine signifikant erhöhte Apoptoserate zu registrieren, die allerdings keine verminderte 
Anzahl reifer Spermien oder Störungen der Morphologie oder Motilität dieser Zellen 
zur Folge hatte. Stimulierungsexperimente mit isolierter Zona pellucida, dem 

physiologischen Auslöser der Akrosomreaktion, haben zudem gezeigt, dass keine Ein-
schränkungen bei Spermien Tas1r1-defizienter Tiere festzustellen waren. Allerdings 
wiesen Tas1r1-defiziente Spermien eine signifikant höhere Rate an spontaner Akrosom-

reaktion auf, die in unkapazitierten Zellen mit signifikant erhöhten basalen 
Konzentrationen der second messenger cAMP und Ca2+ einherging.  
Durch eine Reduzierung der intrazellulären Konzentrationen dieser Botenstoffe, die 

elementare Aufgaben des Spermiums im Verlauf des sequentiellen Prozesses der 
Fertilisation regulieren, könnten Tas1-Rezeptoren somit durch eine basale Rezeptor-
aktivität oder durch eine Liganden-induzierte Rezeptorstimulation sicherstellen, dass 

Spermien im weiblichen Genitaltrakt in einem Ruhezustand erhalten werden, bevor sie 
in Kontakt mit der Eizelle kommen können. 
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Insgesamt kann dieser Nachweis einer funktionellen Expression von Geschmacks-
rezeptoren in Spermien zu einem besseren Verständnis der Regulationsmechanismen 
zentraler Spermienfunktionen beitragen und langfristig möglicherweise auch repro-

duktionsmedizinische Perspektiven zur gezielten positiven bzw. negativen Manipulation 
von Spermien und damit zur Behandlung männlicher Infertilität bzw. zur Entwicklung 
nicht-hormoneller Verhütungsmittel für den Mann eröffnen. 
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