
 

 

 Aus der Medizinischen Klinik und Poliklinik II  

der Ludwig-Maximilians-Universität München 

 

Direktor: Prof. Dr. med. B. Göke 

 

 

 

 

 

The mechanisms of improved glucose metabolism after weight 

reduction in morbidly obese patients with type 2 diabetes mellitus: 

effects of a diet simulating the situation after bariatric surgery 

 

  

 

 

 

 

 
Dissertation zum Erwerb des Doktorgrades der Medizin 

an der Medizinischen Fakultät der 

Ludwig-Maximilians-Universität zu München 

 

vorgelegt von 

To Viet Thuan 

 

aus 

Hue, Vietnam 

2013 

 



 

 

 
 

Mit Genehmigung der Medizinishen Fakultät  

der Universität München 

 

 

 

 

Berichterstatter:                             Prof. Dr. med. Dr. h.c.  Klaus G Parhofer 

 

Mitberichterstatter:                        Prof. Dr. Michael Vogeser 

                                                       Prof. Dr. Jochen Seißler 

 

 

 

Promovierter Mitbetreuer:             Dr.med. Benedikt Aulinger 

 

 

 

 

Dekan:                                            Prof. Dr. med. Dr. h.c. M. Reiser 

                                                        FACR, FRCR 

 

 

 

 

Tag der mündlichen Prüfung:         16.05.2013 

 



I 

 

 CONTENTS 

LIST OF ABBREVIATIONS………..……….……………………………………………….1 

1. INTRODUCTION………………………...………………………………………….…….2 

1.1. Obesity……………………………………………………………………………………2 

1.2. Type 2 diabetes mellitus...……….……………………………………………………..2 

1.3. Obesity and type 2 diabetes mellitus……...………………….………………………...4 

1.4. Caloric restriction, weight loss, and other factors mediating the  improvement in type 2 

diabetes mellitus after bariatric surgery…………….………………………………...……5 

1.4.1. Caloric restriction and weight loss……………………………………………………...5 

1.4.2. Additional factors………….……………………………………………………………6 

2. AIMS OF STUDY...………………………….….………………………………………..10 

3. SUBJECTS AND METHODS…………….…..…………………..………………………11 

3.1. Approval procedure and informed consent……………………………………………...11 

3.2. Subjects………………………………………………………………………………….11 

3.2.1. Inclusion criteria……………….…...….………………………………………………11 

3.2.2. Exclusion criteria……………….……...……………………………………………...11 

3.3. Study procedure and methods…………………………………………………………...12 

3.3.1. Screening………………………….…………………………………………………...12 

3.3.2. Visit 1……………………………….…………………………………………………13 

3.3.3. First phase of caloric restriction………………….……………………………………16 

3.3.4. Visit 2……………………………….…………………………………………………18 

3.3.5. Second phase of caloric restriction…….…..….………………………………………18 

3.3.6. Visit 3………………………………………….………………………………………18 

3.4. Sample preparation and laboratory analysis……………..….…………………………..18 

3.5. Calculation………………………………………………………………………………19 

3.6. Data analysis…………………………………………………………………………….20 

4. RESULTS…………….......…………………..…………………………………………...21 

4.1. Compliance of subjects with caloric restriction……………………........………………21 

4.2. Weight loss and clinical parameters……………………………………………………..22 

4.3. Improvement in glucose metabolism………….………...………………………………23 

4.4. Mechanisms of improved glucose metabolism………...…….………………………….25 

4.4.1. Incretin effect……………………...……………………..……………………………25 

4.4.2. Insulin sensitivity…………………...………….….…………………………………..31 



II 

 

4.4.3. ß-cell function………...…………….……….………………………………………...33 

4.5. Clinical improvement in diabetes and result of mechanistic studies (on individual basis)  

.......………….…….………………...………………………………………………………...36 

4.6. Lipid profile……………………………………………………………………………...37 

5. DISCUSSION…………...…...…………………………………………………………….39 

5.1. Caloric intake and weight loss………….…………...….………………………………..39 

5.2. Improvement in glucose metabolism……..….….…………….…………………………40 

5.3. Mechanisms of improved glucose metabolism……….……....………………………….41 

5.3.1. Incretin effect………………………..……...……….…………………………………41 

5.3.2. Insulin sensitivity…………..…...………………….…………………………………..42 

5.3.3. ß-cell function…………………….…...………..……………………………………...44 

5.4. Improvement in lipid metabolism………….…....……....……………………………….45 

6. LIMITATIONS………………...………...………………………………………………...47 

7. CONCLUSION……………………...………...…………………………………………...48 

8. SUMMARY…………………………...………...…………………………………………49 

ZUSAMMENFASSUNG…………...……..…………...……………………………………..52 

9. REFERENCES………………….………………………………………………………….56 

ACKNOWLEDGEMENT………….……………….…………...…………………………...62 

CURRICULUM VITAE……...……….……………………………………………………...63 

APPENDICES…………....……………………………………….………………………….65



1 

 

LIST OF ABBREVIATIONS 
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LSG Laparoscopic sleeve gastrectomy 

RYGB Roux en Y gastric bypass 

T2DM Type 2 diabetes mellitus 

TG Triglyceride 

VLDL Very low density lipoprotein 

WC Waist circumference 
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1. INTRODUCTION 

1.1. Obesity 

Obesity is characterized by an excessive fat accumulation that may harm health. It is defined 

by a body mass index (BMI) greater than or equal to 30 kg/m2. Prevalence of obesity is 

increasing quickly and becomes a major challenge in the world. WHO estimated about 10 % 

of men and 14 % of women having obesity (BMI ≥30 kg/m2) in 2008 [1]. Obesity is the major 

risk factor of many comorbidities such as type 2 diabetes mellitus (T2DM), dyslipidemia, 

hypertension, heart diseases, non-alcoholic fatty liver disease, cancers, sleep apnea, bone-joint 

diseases, dementia, psychosocial dysfunctions [2]. The classification of obesity in adults is 

determined by BMI that is calculated by weight in kilograms divided by height in meters 

squared [weight (kg) / height (m2)] (Table 1). 

Table 1: Classification of obesity in adults by BMI (2000, WHO, Geneva) 

Classification of obesity BMI Risk of comorbidities 

Underweight < 18.05 
Low (but risk of other 

clinical problems increased) 

Normal range 18.05-24.99 Average 

Overweight ≥ 25.00  

Overweight 25.00-29.99 Increased 

Obese class I 30.00-34.99 Moderate 

Obese class II 35.00-39.99 Severe 

Obese class III ≥ 40 Very severe 

  

1.2. Type 2 diabetes mellitus 

Diabetes mellitus is a metabolic disorder characterized by elevation of plasma glucose which 

may be the result of a variety of pathologies. The majority (> 90 %) of patients with diabetes 

suffer from diabetes type 2. In these patients, chronic hyperglycaemia often associated with 

disturbances of carbohydrate, fat and protein metabolism result from defects of insulin 

secretion, insulin action or both. It was accounted that more than 371 million people in the 
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world had diabetes in 2012 and half of this number was not diagnosed. It is estimated that the 

number of diabetic patients will be over 552 million by 2030 and will increase in every 

country in the world [3]. The increase in T2DM prevalence is closely related to an increase in 

obesity. The prevalence of T2DM in obese patients is much higher than that in normal weight 

patients. The physiological abnormalities of glucose metabolism in T2DM commonly include 

insulin resistance, β-cell defects and abnormalities of insulin secretion such as first-phase and 

second-phase secretion [4]. Insulin resistance can be defined as the inability of insulin to fully 

perform its normal biological functions at circulating concentrations that are well effective in 

healthy subjects. Obesity leads to insulin resistance that precedes and predicts T2DM. Insulin 

resistance manifests itself not only in impaired inhibition of hepatic glucose production but 

also in decreased peripheral uptake of glucose. In healthy subjects hepatic glucose production 

is suppressed almost completely after a meal by the increase in plasma insulin and glucose 

concentrations. This complete suppression of hepatic glucose production helps to keep 

postprandial glucose concentration in the normal range. The impaired suppression of hepatic 

glucose production resulting from insulin resistance is one factor leading to the increase of 

postprandial blood glucose in T2DM. Evidence from many studies indicate that in insulin 

resistance insulin also fails to inhibit very low density lipoprotein (VLDL) production in the 

liver which contributes to the increase in serum triglyceride (TG) levels [5]. After a meal, 

approximately one-third of glucose is taken up by skeletal muscle. The impaired effect of 

insulin on glucose uptake in skeletal muscle and adipose tissues in T2DM subjects has been 

established in many studies. This further contributes to postprandial hyperglycaemia [6]. 

There have been many indexes to assess the insulin resistance such as oral glucose tolerance, 

the homeostasis model assessment of insulin resistance (HOMA-IR), the insulin sensitivity 

index (ISI) calculated from the fasting plasma insulin and glucose. However, the index of 

metabolised glucose during an euglycemic clamp (EGC) is considered gold standard to 

quantify insulin resistance [7].  

In experiments using an acute square wave of hyperglycaemia such as in hyperglycaemic 

clamp (HGC) experiments but also in in-vitro experiments insulin response occurs in two 

phases. The acute phase of insulin response to hyperglycemia (AIRg) occurs immediately and 

lasts for approximately ten minutes. The second-phase is followed by the gradual increase of 

insulin secretion and continues as long as hyperglycemia persists (Figure 1). The AIRg relates 

to the exocytosis of insulin containing granules located next to the plasma membrane of β 

cells. The exocytosis is a very complex mechanism in which intracellular calcium 

concentration plays a major role. The second phase of insulin secretion relates to the synthesis 
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of new insulin molecules and the movement of insulin storage granules toward the plasma  

membrane [8]. For a long time, it was unclear whether ß-cell dysfunction is the underlying 

pathogenesis of T2DM. Recently, it is believed that impaired ß-cell function and insulin 

resistance occurs in parallel. As the development of T2DM is considered to pass through five 

stages, the decrease of ß-cell function can be founded at stage 2. The deterioration in ß-cell 

function happens further, and as a result, postprandial and fasting glucose concentrations 

reach levels for diabetic diagnosis at the stage 5. The HGC is considered to be the gold 

standard for assessing AIRg. 

 

 

 

 

Figure 1: Biphasic insulin secretion in vitro from high glucose perfused pancreas, 

reproduced from Jones PM et al. [9]. 

 

1.3. Obesity and type 2 diabetes mellitus with bariatric surgery 

Treatment of T2DM and obesity is challenging and often expensive. Although pharmaceutical 

treatment of T2DM can improve the prognosis of the affected patients, the long-term 

treatment of the underlying obesity is often problematic for both patients and care-takers. 

Over the last 10 years bariatric surgery has been used widely for the treatment of morbidly 

obese patients because long-term control of obesity is more substantial than with life-style 

interventions or drug therapy. Bariatric surgery can be classified into three main types, purely 

restrictive procedures including laparoscopic adjustable gastric banding (LAGB) and 

laparoscopic sleeve gastrectomy (LSG), malabsorptive techniques such as jejunoileal bypass, 

and the combined restrictive and malabsorptive techniques presented by Roux-en-Y gastric 

bypass (RYGB). Besides the effects on weight control that is the principle and classic target 

of bariatric surgery, most of recent studies have shown that bariatric surgery can induce a 
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substantial rate of T2DM remission or an improvement in impaired glucose tolerance, not 

specific for the types of intervention. In a systematic review and meta-analysis on 136 full 

studies, Buchwald H et al. described complete remission of T2DM in over 75 % of patients 

after bariatric surgery [10]. Although the remission rate of T2DM is impressive following 

bariatric surgery, it remains unclear whether this results from caloric restriction and weight 

loss or other additional factors. 

1.4. Caloric restriction, weight loss, and other factors mediating the improvement in 

type 2 diabetes mellitus after bariatric surgery. 

1.4.1. Caloric restriction and weight loss 

Caloric restriction starts immediately after surgery. Improvement in glucose metabolism can 

be detected soon after, well before weight reduction occurs. It is therefore plausible that 

caloric restriction and not weight loss alone mediates the antidiabetic effect. It is known for a 

long time that the modification of macro-nutrients and of energy amount can affect glucose 

metabolism [11]. The weight loss-independent effect of caloric restriction on metabolism was 

also described in the study of Kelley DE et al. when the author tested the role of caloric 

restriction in seven obese patients with T2DM [12]. Many study groups have highlighted the 

role of caloric restriction in the improvement in glucose metabolism after both restrictive and 

malabsorptive procedures [13, 14]. 

Obesity is a major risk factor of insulin resistance and T2DM. Risk of T2DM is strongly 

associated with the duration and the degree of obesity. A large body of evidence shows that 

there is the strong correlation between obesity and T2DM, and any form of weight loss results 

in the improvement in glucose metabolism [15, 16]. In an evidence report of NIH conducted 

in 1998, weight loss was recommended to lower high blood glucose levels in overweight and 

obese patients with T2DM. A modest weight loss, even as low as 10 % of body weight, could 

lead to a significant improvement in insulin resistance and T2DM [17, 18]. Even little weight 

gain, on the other hand, can cause hyperinsulinemia and insulin resistance [19]. LAGB and 

LSG, the purely restrictive procedures, are thought to improve glucose homeostasis mostly by 

weight loss and restricted food intake. In a study including 143 obese patients undergoing 

LAGB, Pontiroli AE et al. showed that there was a significant improvement in glucose 

metabolism and this improvement was proportional to the degree of weight loss [20]. Hady 

HR et al. studied the outcomes after LSG on 100 obese patients and described that weight loss 

after LSG is the main mediator of improved glucose metabolism [21]. Many authors also 

highlight the correlation between weight loss and the T2DM remission after bariatric surgery 
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with malabsorptive techniques. The significant correlation between the T2DM remission and 

excess weight loss was documented in the investigation of Sugerman HJ et al. on a cohort of 

1025 obese patients (15 % had T2DM) at 1, 5 and 7 years after gastric bypass [22]. Although 

weight loss without doubt has an important role in the improvement in T2DM after bariatric 

surgery, a number of studies indicated that there may be other additional factors. 

1.4.2. Additional factors 

Many current studies show that the antidiabetic effect is present very early after bariatric 

surgery before any significant weight loss occurs and that it is not specific for any type of 

intervention. A strong and significant improvement in glucose metabolism just 3 days after 

LSG was described by Rizzello et al. in a study of 17 T2DM patients with obesity [23]. In the 

study of Schauer PR et al. on 240 T2DM patients who underwent RYGB and were treated 

with medications and/or insulin before surgery, 30 % of patients could stop diabetic treatment 

immediately after discharge from the hospital before any significant weight loss [24]. In a 

study by Umeda LM et al. conducted in 10 obese T2DM patients it was shown that there was 

a significant improvement in HOMA-IR index 7 days after RYGB without significant weight 

loss [25]. Many trials document that the rate of diabetic remission after bariatric surgery in 

less obese patients (BMI < 35 kg/m2) is similar to that in morbidly obese patients [26] and 

therefore  the term “bariatric surgery” is currently being replaced by the term “metabolic 

surgery” when this form of therapy is used to treat diabetes in non-morbidly obese patients. 

The non-significant association between the rate of T2DM remission and degree of weight 

loss after bariatric surgery was also described in many studies [23, 27]. The stronger 

improvement in glucose metabolism after bariatric surgery than after the marked weight loss 

from other non-surgical interventions indicated weight loss-independent antidiabetic effects of 

bariatric surgery. Laferrère B et al. designed a study to compare the effects of weight loss by 

RYGB versus calorie-restricted diet on glucose metabolism in T2DM patients. This study 

showed that although weight loss was equivalent in both groups, the improvement on 

postprandial blood glucose was markedly stronger in the RYGB group [28]. All this indicates 

that diabetic remission after bariatric surgery may be mediated by additional factors and 

independent to weight loss.  

Many studies indicate that hormonal factors, such as ghrelin and incretin hormones, play an 

important role in mediating this effect.  

Ghrelin:  Ghrelin is a gastro-intestinal hormone secreted mainly from gastric fundus. While 

Ghrelin is secreted in the fasting state and suppressed after a meal, it stimulates appetite and 
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food intake, inhibits pancreatic insulin secretion, increases hepatic glucogenesis, and leads to 

hyperglycemia [29]. Nearly total resection of the gastric fundus in LSG leads to low serum 

ghrelin levels which mediate anorexic and antidiabetic effects. However, the effect of RYGB 

on ghrelin concentration is heterogeneous, which may relate to the manipulation of the vagal 

nerve during the operation [30]. Obesity and insulin resistance are usually accompanied by 

low ghrelin levels, which indicates that a lower ghrelin concentration is not enough to resolve 

obesity and diabetes [31]. Although low levels of ghrelin may contribute to diabetes remission 

after bariatric surgery, it is not the main component. 

Incretins: In 1964, two independent research groups (Mclntyre N and Elrick H) 

simultaneously showed that the insulin response of pancreatic ß-cells to oral glucose 

administration was markedly stronger than that to intravenous glucose administration. This 

great difference of insulin response was called ‘‘incretin effect’’ [32, 33] (Figure 2).   

 

 

Figure 2: Insulin response to oral and intravenous administration of glucose [32] 

 

Incretin hormones, such as glucagon-like peptide-1 (GLP-1) and glucose-dependent 

insulinotropic polypeptide (GIP), are gut peptides that induce a series of physiological 

responses, especially in glucose metabolism, after a meal. GLP-1, being produced mainly in L 

cells at the distal small gut and colon, plays the major role in the incretin effect. GLP-1 is 

formed from proglucagon via processing that requires prohormone convertase-1. Inactive 

GLP-1(1-37) is processed to bioactive GLP-1(7-36) that is quickly degraded by dipeptidyl 

peptidase – 4 to GLP-1(9-36) after secreting from the L cells [34]. GLP-1 stimulates the 

glucose-dependent insulin release via GLP-1 receptor binding, improves both fasting and 

postprandial blood glucose, retards gastric emptying, inhibits glucagon secretion of α cells, 
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and induces anorectic effects. GLP-1 also affects the proliferation and the apoptosis of islet ß 

cells. GIP is released essentially from duodenal K cells, regulates predominately postprandial 

blood glucose, and has only slight influence on gastric emptying and little anorectic effect 

(Figure 3). Like GLP-1, bioactive GIP(1-42) is converted to inactive GIP(3-42) by dipeptidyl 

peptidase - 4 just minutes following the secretion from K cells [35]. Analogues of GLP-1 and 

GIP as well as dipeptidyl peptidase - 4 inhibitors are used today as a new generation of 

antidiabetic medications. Under the effect of the incretin hormones that are secreted after the 

meal, the insulin response after an oral glucose load is greater than that after an isoglycemic 

intravenous glucose infusion [34]. 

 

                                                                        

                                                 

                                                    

 

                                                                                   

 

 

 

 

 

                                                                                                                                                                                                    

 

 

Figure 3: Main effects of incretin hormones on glucose metabolism 

 

In non-diabetic subjects postprandial glucose concentrations are kept at a normal level   

independent of the amount of glucose in the meal. This is largely related to the incretin effect 

[36]. Although T2DM patients are characterized by a decreased incretin effect, the degree of 

GLP-1 

GIP 

Insulin secretion 

Glucose clearance 
Glucagon secretion 
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impairment is not constant in various studies, and may relate to duration and severity of 

diabetes [37]. In individuals with T2DM, postprandial GLP-1 concentrations seem to be 

decreased, but the effect of exogenous GLP-1 on insulin response persists. Contrary to GLP-

1, GIP levels seem to be normal but the effect of GIP on insulin response decreases [38, 39]. 

An improved IE may play a major role in mediating the antidiabetic effect of bariatric 

surgery. LSG delays the delivery of ingested foods to the distal portions of the gut and this 

may lead to an increased stimulation of L-cells and K-cells to release incretin hormones. Two 

study groups, Valderas et al. and Romero et al., described that postprandial GLP-1 and GIP 

levels increase significantly after LSG in obese patients [40, 41]. In contrast to LSG, RYGB 

leads to a status where food bypasses the duodenum. This could theoretically lead to low 

levels of incretin hormones after surgery. However, the level of incretin hormones and the 

incretin effect improve significantly after RYGB in many studies. Näslund E et al. studied the 

response of incretin hormones to the meal in obese patients after jejunoileal bypass. The 

authors documented that the GLP-1 and GIP response was normalized 9 months after 

operation. The authors concluded that the improvement in glucose metabolism might result 

from the increase of incretin hormones [42]. In a study of Laferrère B et al., the authors 

showed that the greater secretion of incretin hormones and the improved incretin effect early 

after GBP may be responsible for antidiabetic effects after surgery [28]. 

The improvement in glucose metabolism after bariatric surgery has obtained a growing 

attention in the clinical and scientific community. The underlying mediated mechanisms, 

however, are still unclear. The role of caloric restriction and weight loss in antidiabetic effects 

after bariatric surgery is still controversial. 
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2. AIMS OF STUDY 

- To evaluate the effect of caloric restriction and weight loss on glucose metabolism and 

other clinical outcomes. 

- To determine the mechanisms underlying the improved glucose metabolism following 

caloric restriction and weight loss, focussing on: 

+ Incretin effect. 

+ Intravenous-glucose stimulated insulin response 

+ Insulin resistance. 

The results of this study will help to explain the role of caloric restriction and weight loss in 

the observed improvement of glucose metabolism after bariatric surgery. 
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3. SUBJECTS AND METHODS 

3.1. Approval procedure and informed consent 

The study is part of a larger project evaluating “Glucose metabolism after sleeve gastrectomy 

in obese type 2 diabetic patients”. This study was approved by the Ethics Committee of the 

Medical Faculty of the Ludwig-Maximilians University, Munich, Germany under project 

number 120-09. The study was funded by German Research Foundation (DFG) under 

approved number DFG GZ: BR 151/5-1. Our study is a randomized, single centre, un-

controlled, prospective trial. All subjects gave written consent after they had received the 

information about the study and had carefully read the subjects information. 

3.2. Subjects 

Twelve obese patients with T2DM participated in a calorie-restricted intervention of 3 months 

that is equivalent to the diet of patients during the first 3 months after laparoscopic sleeve 

gastrectomy. Glucose metabolism, potential mechanisms mediating the of improved glucose 

metabolism, lipid metabolism, and other clinical outcomes are assessed before and after 

caloric restriction. 

3.2.1. Inclusion criteria  

- Type 2-diabetes mellitus 

- Obesity ≥ grade II (BMI ≥ 35 kg/m²) 

- Age 18-65 years 

- Signed informed consent 

3.2.2. Exclusion criteria 

- Type 2-diabetes duration of more than 10 years 

- Uncontrolled type 2-diabetes: Fasting glucose > 200 mg/dl, or HbA1c > 10 % 

- Patients with intensive insulin therapy  

- Therapy with thiazolidindions within the last 3 months 

- Type 1-diabetes mellitus 

- Alcohol abuse (woman > 70 g/week, man > 140 g/week), nicotine abuse or drug abuse 

- Hepatic diseases (except non-alcoholic fatty liver disease) 

- Renal insufficiency (glomerular filtration rate < 50 ml/min/1.73) 
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- Cardiac failure > NYHA I 

- Uncontrolled thyroid diseases or other endocrinological diseases 

- Pregnancy 

- Acute or chronic inflammation 

- Malignant diseases 

- Anemia (Hemoglobin < 12 mg/dl for woman, < 14 mg/dl for man) 

- Using anticoagulation medication under bioactive period, except Aspirin 100mg 

3.3. Study procedure and methods 

The whole study included a screening visit, 3 visits (visit 1, visit 2, and visit 3), and a calorie-

restricted intervention (Figure 4). The oral anti-diabetic medications had to be withdrawn 7 

days before every visit. GLP-1 analogues and DPP-IV inhibitor were withdrawn at least 4 

weeks before visit 1 and were not taken again during the study. The therapy with long-acting 

insulin analogues was withdrawn the latest one day before every visit. We regularly contacted 

the subjects after withdrawing of any anti-diabetic medications to make sure that blood 

glucose was not over 200 mg/dl. 

3.3.1. Screening 

Potential candidates were recruited from a number of different sources: announcements in 

public media, flyers and posters, word of mouth. We also recruited potential candidates from 

the outpatient metabolic clinic of Medical Department 2, Großhadern. First, we talked with 

potential candidates by telephone to explain the study, to know the disease history, and to 

check the inclusion and exclusion criteria. Next, potential candidates came for the official 

screening visit at the Clinical Research Unit in our hospital, where we described again the 

study in more detail, handed the ‘‘patients information documents’’ over to the subjects, 

asked about the disease history, and examined the patient clinically after she or he had signed 

the informed consent form. Blood and urine samples were taken for some parameters. If all 

inclusion criteria were fulfilled and no exclusion criteria present the subject was included in 

the study. At the screening visit, the subject also participated in a dietary consultation to 

ensure full compliance with the calorie-restricted intervention during the study. Plan for visit 

1 would be done.  
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The following criteria were used to diagnose T2DM:  

- Fasting plasma glucose ≥ 7.0 mmol/l (126 mg/dl), or 

- 2-h plasma glucose ≥ 11.1 mmol/l (200 mg/dl), or 

- HbA1c ≥ 6.5 %, or 

- Treatment with any anti-diabetic medication 

 

 

 

 

 

 

 

 

                       

 

 

 

 

 

 

 

 

 

Figure 4: Timeline of study 

 

3.3.2. Visit 1 

Visit 1 was scheduled approximately 2 weeks after the screening visit and before caloric 

restriction started. During the week before visit 1, the subject had to comply with a diet 

consisting of 18 “Broteinheiten” (corresponding to 216 gr of carbohydrates/day) with 

approximately 15 % protein, 30 % fat, and 55 % carbohydrates (dietary protocol I) (Figure 7). 

The physical activity was also kept stable to keep body weight stable (± 2 kg). Visit 1 lasted 3 

days (day 1, day 2 and day 3) and supplied the basal data (before caloric restriction). 

 

Visit 2 Visit 3 Visit 1 

Screening 
 

Calorie-restricted intervention 

In hospital 

0-700 kcal 1400 kcal 

At home 

-4 weeks 

-2 weeks 

Day 0 

Day 10 12 weeks 
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Day 1: hyperglycemic clamp with test meal 

In the HGC with test meal, we raised the plasma glucose concentration to 100mg/dl over the 

fasting concentration and maintained it stable for 6 hours. The glucose supply came from an 

intravenous glucose infusion for the first 120 minutes and from intravenous glucose infusion 

plus the oral meal for the last 240 minutes (Figure 5). The subjects were admitted to the 

clinical research unit in our hospital, between 7:30 and 8:00a.m after an 8 hour fast. Body 

weight, height, waist circumstance, blood pressure, and pulse were measured. An intravenous 

catheter was placed in each forearm, one for blood withdrawal and another for glucose 

infusion. The forearm used for blood-withdrawal was warmed continuously during the clamp 

with a heating lamp to arterialize the venous blood. One blood sample for lipid profile and 

four blood samples for the fasting parameters of blood glucose, insulin, and C-peptide at 4 

separated time-points were withdrawn after the subject had rested in bed for one hour. 

Following this (considered as time-point 0 minute), a 20 % glucose bolus (dose see below) 

was given within 1 minute and followed by a continuous infusion of 20 % glucose solution to 

raise and maintain the blood glucose concentration 100 mg/dl over fasting blood glucose.  

Glucose bolus dose (mg) = Body weight (kg) x 100(mg/dl) x 1,5 

At 120 minutes, the subject received a 324 kcal-semisolid meal containing 20 % protein, 40 % 

lipid and 40 % carbohydrate plus 100mg 13C-Sodium Acetate within 5 minutes. To maintain a 

stable blood glucose at 100 mg/dl over fasting blood glucose during the clamp, the infusion 

rate of 20 % glucose solution was modified every 5 minutes based on results of arterialized 

blood glucose. Blood samples for insulin and C-peptide parameters were withdrawn at time-

points of 2, 4, 6, 8, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 125, 130, 135, 140, 145, 

150, 160, 170, 180, 195, 210, 225, 240, 255, 270, 285, 300, 315, 330, 345, 360 minutes. The 

assessment for full consciousness, hunger, nausea, and satiety was done by the visual 

analogue scales (VAS) at the time-points of 0, 105, 120, 135, 150, 165, 180, 210, 240, 300, 

and 360 minutes. The estimation of gastric emptying time was performed at the time-points of 

120 (before the meal test), 135, 150, 165, 180, 195, 210, 225, 240, 270, 300, 330, and 360 

minutes by 13 inflated breathing bags. The measurement of 13C enrichment in breath CO2 was 

done by Isotope Ratio Mass Spectrometry (IRMS). The hyperglycaemic clamp can 

conceptually be divided into 2 stages. The first stage during which glucose supply comes only 

from the intravenous glucose infusion lasted from 0 to 120 minutes. The main purpose of this 

first stage was to assess the ß cell response including first-phase and second-phase response to 

an intravenous glucose infusion [7]. The second phase lasted from 120 to 360 minutes and 
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started with the test meal. The glucose supply for the body during the second stage comes 

from intravenous glucose infusion plus the oral meal. The goal of this second phase is to 

assess the incretin effect. During and at the end of the clamp, urine was collected to determine 

the urine glucose excretion. 
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Blood samples for: Blood glucose, insulin, and C-peptide 

VAS and Gastric emptying time test 

Figure 5: Process of hyperglycaemic clamp with the test meal 

 

 

Day 2: Euglycemic clamp     

The EGC was started after an 8 hour fast and lasted for 3.5 hours. One intravenous catheter 

was again placed in each forearm, one for blood drawing and one for infusing both insulin and 

20 % glucose solution. Again the forearm used for blood sampling was warmed as described 

above to arterialize the blood. After resting in the bed for one hour, the patient received an 

intravenous insulin infusion with the fixed infusion rate of 1,5 IU/kg/min. The goal of the 
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insulin infusion was to lower the blood glucose to 90 mg/dl. Insulin infusion with the fixed 

rate was kept until the end of the clamp. Blood glucose was tested every 5 minutes, and 20 % 

glucose infusion rate was modified to maintain blood glucose at 90 mg/dl during clamp. 

Blood samples for insulin and C-peptide assays were regularly withdrawn at time-points of -

30, 0, 20, 40, 60, 80, 100, 120, 130, 140, 150, 160, 170, 180 minutes (Figure 6).  

             

 

 

 

                                                                       

 

 

 

 

 

 

 

 

 

 

Blood samples for: Blood glucose, insulin, and C-peptide 

Figure 6: Process of euglycemic clamp 

 

 

Day 3: Hyperglycemic clamp without the test meal 

The HGC without the test meal was performed in the similar manner as HGC with test meal 

except that the meal was not ingested at 120 minutes. The goal of the HGC without the test 

meal on the third day of visit 1 was to assess the ß-cell response to the HGC without the meal 

test and to compare the results with that of the HGC with the test meal. 

3.3.3. First phase of caloric restriction 

As mentioned above, the caloric restriction started 2 weeks after visit 1 and lasted for 3 

months (Figure 4). During the 2 weeks before the caloric restriction, the subject had to fully 

comply with dietary and activity recommendations to keep a stable weight (± 2kg). The 
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caloric restriction was divided into 2 phases. The first phase covered the first 10 days, during 

which the subjects had to stay in the hospital to ensure full compliance with protocol. The 

subjects performed the same calorie-restricted protocol as that of postoperative patients. The 

subjects were completely fasting during the first 3 days and were recommended to drink water 

or unsweetened tea of at least 2.5 liter/day. From day 4 to day 6, the calorie intake was 

increased slowly like in postoperative patients, using a commercially available product 

(BCM-basic; www.bcm.de). From day 6 to day 10, the intake was further increased (using the 

same commercially available formula diet) providing on average 700 kcal/day. The subjects 

were instructed to continue normal daily activity. Blood glucose, vital parameters, body 

weight, waist circumference, and VAS were measured every day. 
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P-Protein; C-Lipid; C-Carbohydrate; DP-Dietary protocol; E-Energy; BCM-basic (formula 
diet). 

 

Figure 7: Dietary intervention of study 

 

 

Proportion:  
15% P 
30% L 
55% C 
Stable weight: ± 2kg 
 

Day 1-3: 0 kcal 
Day 4-6: increased slowly 
Day 6-10:Formula (BCM), 
700kcal/day 
P:L:C= 30:30:40 
 

1400 kcal/day 
Proportion: 
20% P 
30% L 
50% C  
 

P: 15E% ± 3: 12-18E% 
L: 30E% ± 6: 24-36% 
C: 55E% ± 11: 44-66E% 
 

700 kcal ± 140: 560-840 kcal 
P: 30E% ± 6: 24-36E% 
L: 30E% ± 6: 24-36% 
C: 40E% ± 8: 32-48E% 
 

1400 kcal ±280:1120-1680 kcal 
P:20E% ± 4: 16-24E% 
L:30E% ± 6: 24-36% 
C:50E% ± 10: 40-60E% 
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3.3.4. Visit 2 

Visit 2 occurred during the last 2 days of the first phase of caloric restriction (Figure 4). Visit 

2 included a short HGC without test meal at the first day and an EGC at the second day. The 

short HGC without test meal lasted for 120 minutes and was performed identical to the first 

120 minutes of HGC without test meal at the visit 1. The EGC at the second day was also 

performed in the same way as that at the visit 1. The goal of visit 2 was to assess the 

improvement of ß-cell response (first and second phase) to intravenous glucose infusion and 

the improvement of peripheral insulin sensitivity to exogenous insulin after the first phase of 

caloric restriction. Lipid profile, the clinical parameters such as body weight, WC, blood 

pressure, and pulse were also measured at the first day. 

3.3.5. Second phase of caloric restriction 

After the visit 2, the subject was discharged and started the second phase of caloric restriction. 

The second phase of the caloric restriction lasted until the end of study (Figure 4). Subjects 

were allowed to consume 1400 kcal/day and the proportions of protein, lipid, and 

carbohydrate were 20 %, 30 %, and 50 %, respectively. We regularly instructed them to 

continue the dietary intervention. Dietary compliance during the second phase was assessed 

by 2 dietary protocols (dietary protocol IV and dietary protocol V) (Figure 7). Dietary 

protocol IV estimated the food consumption for the first 30 days, and dietary protocol V 

estimated the food consumption for the last 50 days. Every dietary protocol included 3 

weekdays and 1 weekend-day. Based on these protocols, we calculated the amount of energy 

consumed and the proportion of the food components. The mean values of these two protocols 

were used to determine the compliance with dietary intervention (Figure 7). 

3.3.6. Visit 3 

Visit 3 occurred 3 months after starting caloric restriction. It included 2 days. The study 

procedures of these 2 days included the HGC with the meal on the first day and the EGC on 

the second day was performed identical to the first 2 days of visit 1. The lipid profile and 

other clinical parameters such as body weight, WC, blood pressure, and WC were measured 

on the first day. 

3.4. Sample preparation and laboratory analysis 

During the clamp, blood glucose was measured by the glucose oxidase method using 2 

standardized Bayer´s Contour® blood glucose analysers. The blood glucose was measured two 

times, and the mean value of these 2 separated values was used. 
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The blood samples for insulin and C-peptide were collected in Monovette EDTA blood 

collection tubes (Sarstedt). After collecting, the blood was centrifuged immediately, and 

serum samples were stored at -25oC. Insulin and C-peptide were measured by specific and 

sensitive sandwich immune-luminescence assay (ILMA). 

3.5. Calculation 

- Acute insulin response to intravenous-glucose induced hyperglycemia (AIRg) was 

estimated to be the mean increment of insulin during the first 10 minutes of HGC with 

the test meal [7]. 

- The basal insulin concentration was obtained as the mean of the four samples drawn at 

-20, -10, -5, and 0 minute.  

- The plasma insulin concentrations of the first 10 minutes and from 60 to 120 minutes 

were obtained as the mean of all samples in each time period. 

- First-phase insulin response:  (µU/ml) = MIC0-10 min – MICbasal 

- The incretin effect (%) was calculated as  

           MIC(125-360 min) – MIC(90-120 min) 

- Incretin effect (%) =                                                                 x 100       [33] 

          MIC(125-360 min) 

- Where MIC(90-120 min) and MIC(125-360 min) are the means of insulin concentration from 

90 to 120 min and from 125 to 360 min for HGC with test meal, respectively. 

- Glucose infusion rate (GIR) was calculated after at last 60 minutes of HEC and was 

expressed as mg/kg/min. 

- The insulin sensitivity index (ISI = GIR/insulin concentration) was expressed as 

mg.kg-1.min-1/µU.ml-1. 

- The insulin sensitivity to exogenous insulin was estimated by GIR and ISI. 

- The deposition index (DI=AIRg X ISI) was used to estimate the appropriateness of 

acute ß-cell response relative to prevailing insulin sensitivity [43]. 

- Insulin resistance index (HOMA-IR) was calculated as:  

- fasting plasma insulin (µU/mL) x fasting plasma glucose (mg/dl)  

405 



20 

 

3.6. Data analysis 

Statistical analysis is conducted using IBM SPSS statistics 20 and GraphPad Prism 5. Data 

are presented as the mean ± SEM. Paired t-tests are used to compare data between visit 1 and 

visit 2, visit 1 and visit 3.  Spearman´s correlation was used to estimate the correlation 

between degree of body weight loss and degree of improved glucose metabolism. Statistical 

significance was set at a p-value less than 0.05. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



21 

 

4. RESULTS 

Twelve obese and diabetic subjects (4 men and 8 women, mean age 50.2 ± 2.2 years) were 

evaluated in the study. All subjects completed all phases of the study and participated in all 

visits. Serious adverse events did not happen during the study.  

4.1. Compliance of subjects with caloric restricted intervention 

Caloric intake and macronutritient intake is shown in Table 2 and Figure 8. The average 

energy intake during the first and the second phase of caloric restriction was 678.8 ± 47.8 and 

1407.3 ± 52.7 kcal/day, respectively. Both values are within the range of the protocol (560-

840kcal/day during the first phase and 1120-1680 kcal/day during the second phase).  

Table 2: Energy intake and proportion of food components (N=12) 

Parameters Before study 1st phase of CR 2nd phase of CR 

Energy intake (kcal/day) 2630 ± 141.9 678.8 ± 47.8*** 1407.3 ± 52.7*** 

Protein (%) 19.4 ± 0.7 30.4 ± 1.5*** 21.9 ± 0.6** 

Lipid (%) 36.7 ± 1.6 31.9 ± 1.1 29.8 ± 1.3** 

Carbohydrate (%) 43.3 ± 1.4 37.9 ± 1.0* 48.1 ± 1.8* 
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Figure 8: Compliance of subjects with caloric restricted intervention described  

by energy intake (A) and proportion of food components (B) 
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During the first phase, three subjects did not fully comply with caloric restriction. Of these 

three subjects, one consumed 164 kcal/day more than the accepted upper limit and two 

consumed less than the accepted lower limit, (one 144 kcal/day and one 191 kcal/day less 

than the lower limit value). During the second phase, eleven subjects complied fully with 

caloric restriction with one subject consumed 91.5 kcal/day less than the accepted lower limit. 

4.2. Weight loss and clinical parameters 

Changes in body weight and clinical parameters are shown in Table 3 and Figure 9. Before 

the caloric restriction, mean BMI was 46.0 ± 2.1 kg/m2. Nine subjects had grade III obesity 

(BMI ≥ 40kg/m2), and three subjects had grade II obesity (35 kg/m2 ≤ BMI < 40 kg/m2). All 

subjects had central obesity (evaluated by waist circumference ≥ 94cm for men and ≥ 80cm 

for women).  

Table 3: Effect of caloric restriction on body weight and clinical parameters (N=12) 

Parameters Visit 1 Visit 2 Visit 3 

Weight (kg) 133.5 ± 6.6 127.0 ± 6.3(***) 120.5 ± 5.7*** 

BMI (kg/m 2) 46.0 ± 2.1 43.8 ± 2.0(***) 41.7 ± 2.1*** 

Excess weight loss (%)  11.4 ± 1.0 22.3 ± 3.8 

Waist circumference (cm) 136.7 ± 5.3 131.5 ± 5.3 126.2 ± 4.6*** 

Sys-Blood pressure (mmHg) 132.9 ± 4.1 129.7 ± 3.5 126.9 ± 2.7 

Dia-Blood pressure (mmHg) 75.2 ± 2.4 69.2 ± 3.0 69.8 ± 2.9 

 

Weight loss was observed in all subjects after the first phase and the second phase of caloric 

restriction. Mean body weight decreased from the initial value of 133.5 ± 6.6 kg to 127.0  ± 

6.3 kg (P < .001) at visit 2 and to 120.5 ± 5.7 kg (P < .001) at visit 3. The mean percentage of 

excess weight loss was 11.4 ± 1.0 % at visit 2 and 22.3 ± 3.8 % at visit 3. The number of 

subjects who lost > 5 % of their initial body weight was seven and nine at visit 2 and visit 3, 

respectively. This decrease in weight was associated with a decrease in central obesity 

(estimated by waist circumference) from 136.7 ± 5.3 cm at visit 1 to 131.5 ± 5.3 cm (P < 

.001) at visit 2 and to 126.9 ± 2.7 cm (P < .001) at visit 3. There was an improvement in blood 

pressure at visit 2 and visit 3, although these changes were not significant. 
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Figure 9: Change of body weight after caloric restriction shown  

by weight loss (A) and excess weight loss % (B) 

 

 

4.3.Improvement in glucose metabolism 

Before the caloric restriction, the subjects had a mean duration of diabetes of 5.2 ± 0.7 years 

(from 1.4 to 10 years). Most of them (9 subjects) had good glycemic control with HbA1c ≤ 7 

%. Eight subjects took oral antidiabetic medications, two subjects received both oral 

medications and insulin, and two subjects performed life style modification. There was a 

significant improvement in main parameters of glucose metabolism after the caloric 

restriction. The decrease of fasting blood glucose was found in 11/12 subjects at visit 2 and in 

all subjects at visit 3. The mean of fasting blood glucose dropped by 18.4 ± 8.8 mg/dl (P < 

.01) at visit 2 and 23.1 ± 3.5 mg/dl (P < .001) at visit 3. The decrease of HbA1c was observed 

in 9/12 subjects, and the mean of HbA1c fell from the basal value of 6.7 ± 0.3 % to 6.2 ± 0.1 

% (P = .06) at visit 3 (Table 4 and Figure 10).  
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Table 4: Effect of caloric restriction on diabetic improvement (N=12) 

Parameters Visit 1 Visit 2 Visit 3 

Fasting glucose (mg/dl) 133.1 ± 6.4 114.6 ± 6.7(**) 110 ± 4.7*** 

HbA1c (%) 6.7 ± 0.3  6.2 ± 0.1 

Diabetic medication 

 Decrease 

 Withdrawing 

 Keeping same dose 

10  

 

10 

5/10 

0/10 

5/10 
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Figure 10: The improvement in fasting blood glucose (A) and HbA1c (B)  

after caloric restriction (N=12) 

The improvement in diabetes (simultaneous decrease of HbA1c and fasting blood glucose 

without the increase of diabetic medications) was observed in nine subjects. Among these 
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nine subjects, five decreased diabetic medications, four kept the same doses. Among the three 

remaining subjects, one improved in fasting glucose but without change of HbA1c and 

medication dose, while two had an improvement in fasting glucose and an increase in HbA1c. 

Of these latter two subjects, one had a duration of diabetes of 10 years, and one had very good 

glycemic control before the study (HbA1c = 5.6 % and fasting glucose = 104 mg/dl). Both 

had a rise of HbA1c (5.8 % at visit 1 compared to 6.0 % at visit 3, 5.6 % at visit 1 compared 

to 6.0 % at visit 3) and a decrease of fasting blood glucose (120 mg/dl at visit 1 compared to 

109 mg/dl at visit 3, 104 mg/dl at visit 1 compared to 97 mg/dl at visit 3). 

4.4. Mechanisms of improved glucose metabolism 

The mean values of glucose concentrations during the hyperglycemic and euglycemic clamps 

are shown in Figure 11. Clamped levels of blood glucose showed a very small fluctuation 

(during the clamp). The mean increments above fasting blood glucose of clamped blood 

glucose during hyperglycemic lamps were 99.5 ± 0.7 mg/dl at visit 1 and 99.3 ± 0.4 mg/dl at 

visit 3 (Figure 11A). The means of clamped blood glucose (120-180 min) during EGC at visit 

1, visit 2, and visit 3 were 89.8 ± 0.5, 89.2 ± 1.6, and 90.9 ± 0.9 mg/dl, respectively (Figure 

11B). 

4.4.1. Incretin effect 

Incretin effect was observed after the test meal during the HGC, and it was not present during 

the HGC without the test meal at day 3 of visit 1. The incretin effect, which was estimated by 

the increment of values (glucose infusion rate, insulin concentration, and C-peptide 

concentration) between 90 – 120 min and 125 – 360 min, was larger at visit 3 in comparison 

with that at visit 1 (Figure 12A, 12B, 12C). A two-fold increase of insulin concentration after 

the test meal compared to that before the test meal was found at visit 1. Meanwhile, a four-

fold increase was observed at visit 3. This difference was also present for the glucose infusion 

rate and C-peptide concentration (Figure 13, Table 5). Percent incretin effect for insulin 

increased from the initial value of 51.2 ± 5.0 % to 70.6 ± 4.7 % (P < .05) at visit 3. The 

improvement in the percent incretin effect was also observed when it was estimated by 

glucose infusion rate and C-peptide concentration (Figure 14). 
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Figure 11: Blood glucose during hyperglycemic clamp (A) and euglycemic clamp (B) 
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Figure 12A: Changes in the incretin effect described by glucose infusion rate  

during the HGC with the test meal. For comparisondata from  

visit 1 day 3 (HGC without the test meal) are also shown (N=12). 

(B)

-30 0 30 60 90 120 150 180 210 240 270 300 330 360
0

100

200

300

400

Visit 1-Day 1

Visit 3

                                                                                                                      IE – Visit 1            IE – Visit 3 

Visit 1-Day 3

Time (min)

P
la

sm
a 

In
su

li
n 

C
o

nc
e

nt
ra

ti
o

n 
(µ

U
/m

l)

 

Figure 12B: Changes in the incretin effect described by plasma insulin concentration 

during the HGC with the test meal. For comparisondata from  

visit 1 day 3 (HGC without the test meal) are also shown (N=10). 
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Figure 12C: Changes in the incretin effect described by plasma C-peptide concentration 

during the HGC with the test meal. For comparisondata fromvisit 1 day 3  

(HGC without the test meal) are also shown (N=10). 

 

 

Table 5: Effect of caloric restricted intervention on the incretin effect (N=10) 

 

 

 

Parameters Visit 1 Visit 3 

Increase after test meal (fold) 

GIR 

Insulin 

C-pepetide 

 

2.2 ± 0.3 

2.2 ± 0.2 

2.0 ± 0.2 

 

3.5 ± 0.5 

4.4 ± 0.9 

3.1 ± 0.5 

Incretin effect (%) 

GIR 

Insulin 

C-peptide 

 

44.4 ± 6.8 

51.2 ± 5,0 

47.5 ± 4.1 

 

67.0 ± 3.7** 

70.6 ± 4.7(*) 

63.1 ± 4.2(*) 
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Figure 13: The difference of glucose infusion rate (A, N=12), insulin concentration (B, 
N=10), and C-peptide concentration (C, N=10) before and after the test meal at visit 1 and 
visit 3. The glucose infusion rate between 90-120min and 125-360min increased 2.2-fold at 
visit 1, while it increased 3.5-fold at visit 3 (A). A similar effect was seen when insulin (B) 

and C-peptide (C) data were analyzed. 
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Figure 14: The increase in the incretin effect before and after caloric restriction estimated  

by glucose infusion rate (A, N=12), insulin concentration (B, N=10), 

and C-peptide concentration (C, N=10) 
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4.4.2. Insulin sensitivity 

Insulin sensitivity was estimated by several variables. As assessed by the EGC, insulin 

sensitivity improved significantly at visit 3. An increased  glucose infusion rate during the last 

60 min of EGC was present in 11/12 subjects at visit 3, and the mean of glucose infusion rate 

increased from 3.7 ± 0.5 at visit 1 to 5.5 ± 0.6 mg/kg/min  at visit 3 (P < .01). Similarly, an 

increase of the insulin sensitivity index (ISI) was observed in all subjects, and the mean of 

insulin sensitivity index increased from 22.9 ± 3.8 at visit 1 to 45.5 ± 9.8  at visit 3 (P < 0.05) 

(Table 6, Figure 15). As estimated by HOMA-IR, insulin sensitivity also improved 

significantly at visit 3 (6.7 ± 0.9 at visit 1 and 2.7 ± 0.8 at visit 3, P < .001), and HOMA-IR 

decreased in all subjects at visit 3. On the other hand, fasting concentration of insulin 

decreased significantly at visit 3 (compared to visit 1). Although caloric restriction during the 

first phase (between visit 1 and 2) resulted in a small improvement in GIR, ISI, HOMA-IR, 

and fasting insulin concentration, these changes were not significant.  

 

Table 6: The effect of caloric restriction on insulin sensitivity (N=12) 

Parameters Visit 1 Visit 2 Visit 3 

Fasting insulin (µU/ml) 20.0 ± 2.5 15.9 ± 2.7 9.3 ± 2.5* 

Fasting C-peptide (ng/ml) 12.4 ± 3.4 12.2 ± 3.0 7.4 ± 1.5 

GIR (mg/kg/min) 3.7 ± 0.5 3.9 ± 0.3 5.5 ± 0.6** 

ISI 22.9 ± 3.8 27.4 ± 5.0 45.5 ± 9.8(*) 

HOMA-IR 6.7 ± 0.9 4.6 ± 1.0 2.7 ± 0.8*** 
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Figure 15: The improvement in insulin sensitivity after caloric restriction shown  

by GIR (A,B, N=12) and ISI (C, N=10) during the last 60 minutes of EGC. 
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4.4.3. ß-cell function 

ß-cell function was determined by acute insulin response to hyperglycemia (AIRg) and 

deposition index (DI). AIRg was observed for both insulin and C-peptide concentrations 

during the first 10 min of the HGC (Figure 16A and 16B). Caloric restriction induced an 

increase of AIRg for insulin and C-peptide at visit 2 and visit 3. However, the increase 

reached statistical significance only for insulin at visit 2 (Table 7, Figure 16C and 16D). 

Deposition index (a useful measure of ß-cell compensation) increased from 244.2 ± 131.1 at 

visit 1 to 516.0 ± 237.5 (P > 0.05) at visit 2 and to 542.1 ± 201.0 (P < .05) at visit 3. The 

increase of deposition index (estimated as AIRg X ISI) resulted from the combined increase 

of acute insulin response and insulin sensitivity index. Acute insulin response increased from 

8.4 ± 3.5 µU/ml at visit 1 to 14.5 ± 5.1 µU/ml at visit 2 and to 12.3 ± 2.8 µU/ml at visit 3 

(Table 7). Meanwhile, insulin sensitivity index also increased from 22.9 ± 3.8 at visit 1 to 

27.4 ± 5.0 at visit 2 and to 45.5 ± 9.8 at visit 3 (Table 6). 
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Figure 16A: The changes of acute response of ß cells described  

by insulin concentration (N=10). 
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Figure 16B: The changes of acute response of ß cells described  

by C-peptide concentration (N=10). 
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Figure 16C: Insulin concentration during AIRg increases 

at visit 2 and visit 3 in comparison with that at visit 1 (N=10) 
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Figure 16D: C-peptide concentration during AIRg increases 

at visit 2 and visit 3 in comparison with that at visit 1 (N=10) 

 

 

Table 7: Effect of caloric restriction on ß cell function (N=10) 

Parameters Visit 1 Visit 2 Visit 3 

AIRg 

Insulin (µU/ml) 

C-peptide (ng/ml) 

 

8.4 ± 3.5 

0.4 ± 0.9 

 

14.5 ± 5.1(*) 

3.1 ± 1.7 

 

12.3 ± 2.8 

2.5 ± 1.1 

Disposition index 244.2 ± 131.1 516.0 ± 237.5 542.1 ± 201.0(*) 
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4.5. Clinical improvement in diabetes and result of mechanistic studies (on individual 

basis) 

Although the clinical improvement in diabetes was less pronounced in 2/12 subjects (subject 

one and subject two in Table 8), mechanistic studies (incretin effect, insulin sensitivity, and ß-

cell function) show an improvement in both subjects. Among the remaining ten subjects 

having clear clinical improvement, six had an improvement in most mechanisms, four had the 

improvement in the incretin effect and the insulin sensitivity (Table 7). 

 

Table 8: Clinical improvement and improved mechanisms at visit 3: GIR – Glucose infusion 

rate; ISI – Insulin sensitivity index; AIR-Insulin – Acute insulin response estimated for 

insulin; AIR-C-peptide – Acute insulin response estimated for C-peptide; DI – Disposition 

index (subjects 10-12 not all data available). (+): improvement; (-): no improvement; (+/-): 

decreased fasting blood glucose and increased HbA1c. 

  Improved mechanisms 

Incretin effect (%) Insulin sensitivity ß-cell function 

GIR Insulin C-
peptide GIR ISI HOMA AIR-

Insulin 
AIR-C-
peptide DI 

1 -/+ + + + + + + + + + 

2 -/+ + + + + + + - + - 

3 + + + + + + + + + + 

4 + + + + - + + - - - 

5 + - - + + + + + + + 

6 + + + + + + + + + + 

7 + + + + + + + - + + 

8 + - + - + + + + + + 

9 + + - + + + + + + + 

10 + +   +      

11 + +   +      

12 + +   +      
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4.6. Lipid profile  

Changes of lipid parameters are shown in Table 9 and Figure 17. Caloric restriction induced 

significant decreases in total-cholesterol and Lp(a) at visit 2 and visit 3. Although 

triglycerides and VLDL-cholesterol tended to decrease at visit 2 and visit 3, the changes in 

these parameters were not significant. LDL-cholesterol decreased significantly only at visit 3, 

while, VLDL-triglycerides decreased significantly only at visit 2. Interestingly, HDL-

cholesterol decreased significantly at visit 2. 
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Figure 17: The effect of caloric restriction on lipid parameters; Chol – total cholesterol; TG – 

triglycerides; HDL – HDL-cholesterol; LDL – LDL-cholesterol; VLDL-C – VLDL-

cholesterol; VLDL-T – VLDL-triglyceride; Lp(a) – Lipoprotein (a) 

 

 



38 

 

Table 9: Effect of caloric restricted intervention on lipid metabolism (N=12) 

Lipid parameters Visit 1 Visit 2 Visit 3 

Cholesterol (mg/dl) 182.8 ± 11.9 166.4 ± 12.1(**) 163.8 ± 11.3** 

Triglycerides (mg/dl) 127.1 ± 21.5 95.3 ± 9.5 105.2 ± 12.6 

HDL-chol (mg/dl) 47.0 ± 3.0 38.8 ± 2.5(***) 42.6 ± 2.2 

LDL-chol (mg/dl) 114.2 ± 9.2 113.2 ± 11.4 103.4 ± 9.0** 

VLDL-cholesterol (mg/dl) 21.7 ± 4.8 14.3 ± 2.0 17.6 ± 2.6 

VLDL-triglyceride (mg/dl) 105.5 ± 21.7 70.3 ± 11.6(*) 90.3 ± 13.4 

Lp(a) (mg/dl) 27.7 ± 7.6 37.4 ± 6.7(*) 37.2 ± 7.5* 
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5. DISCUSSION 

5.1. Caloric intake and weight loss 

The protocol of our study was such that we tried to imitate nutritional intake following 

bariatric surgery. During the first phase of the study (day 0 until day 10 of caloric restriction) 

average caloric intake was 678.8 ± 47.8 kcal/day and while it was 1400.8 ± 52.0 kcal/day 

during the second phase of caloric restriction (day 11 until 3 months). The recommended 

caloric intake following bariatric surgery is about 500 kcal/day for the first 2 weeks after 

surgery [44].  Golpaie A et al. evaluated caloric intake in 30 severely obese subjects treated 

with laparoscopic restrictive bariatric surgery and reported a mean caloric intake of 621.7 ± 

301.0 kcal/day during the first 6 weeks following surgery [45]. Similarly, Trostler N et al. 

reported a caloric intake of 694 ± 105 kcal/day in men and 579 ± 111 kcal/day in women 

during the first 30 days after gastric bypass Roux-en-Y for morbidly obese patients [46]. 

Thus, the caloric intake immediately after bariatric surgery is very homogenous in previously 

published studies and is very similar to the one observed during the the first phase of caloric 

restriction in our study. This also indicates that our subjects were very compliant with the 

protocol during this study period. The fact that subjects were admitted to the hospital was an 

important factor in achieving this compliance. While caloric intake shows little variation 

immediately after surgery, it is more variable 3 months later. The caloric intake 3 months after 

bariatric surgery was 535 ± 158 kcal/day and 529.4 ± 300.2 kcal/day in studies of Trotsler N 

et al. and Dias MC et al., respectively [46, 47]. Bobbioni-Harsch E et al. showed a caloric 

intake of 966 ± 42 kcal/day at 3 months after gastric bypass in a cohort of fifty obese women 

[48]. Another study reported a caloric intake of 899 ± 41 kcal/day and 871 ± 47 kcal/day at 4 

months after gastric bypass and sleeve gastrectomy, respectively [49]. Although caloric intake 

during the second phase of caloric restriction in our study is higher than in the above 

mentioned studies, it is still significantly lower compared to the period before the study.  

The weight loss observed in our study is due to caloric restriction. There is abundant evidence 

that bariatric surgery induces weight loss short term after surgery. A decrease in BMI at visit 

2 in our study is line with that in postoperative patients in some previously published studies. 

Rizeello M et al. described a decrease from the initial value of 44.76 ± 7.2 kg/m2 to 43.3 ± 7.7 

kg/m2 at 15 days after sleeve gastrectomy [23]. Umeda LM et al. studied 10 obese patients 

with type 2 diabetes treated with gastric bypass and showed a decrease from 39.7 ± 1.9 kg/m2 

before surgery to 37.0 ± 2.1 kg/m2 at 7 days after surgery [25]. The effect on BMI 3 months 

after surgery is much more variable ranging from 4 to 10 kg/m2 [25, 46-48, 50-53]. The BMI 
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in our study dropped by 5.7 kg/m2 at visit 3 (3 months). This decrease is less than the one 

described in some but not all previously published studies. While Trostsler N et al. and 

Harsch E et al. [46, 48] describe a decrease of more than 8 kg/m², Ballantyne GH et al. and 

Dias MC et al. [47, 50] describe a decrease similar to the one observed in our study. These 

differences may be the consequence of different caloric intakes in the different studies. 

5.2. Improvement in glucose metabolism  

Bariatric surgery leads not only to weight loss but also to an improvement in glucose 

metabolism [50, 52, 54]. The role of caloric restriction and weight loss in improved glucose 

metabolism after bariatric surgery is still controversial. Although the role of caloric restriction 

in the improvement in glucose metabolism is established in the literature, many studies show 

that the improvement in glucose metabolism occurs after bariatric surgery before any 

significant weight loss is observed. The data from these studies support a weight-loss 

independent mechanism of improved glucose metabolism after bariatric surgery [23-25, 27, 

28, 55]. Our study shows that the improvement in glucose metabolism was present in most of 

the subjects despite the fact that the weight loss was less or equivalent to that observed after 

bariatric surgery. The improvement in glucose metabolism at visit 2 in our study was assessed 

by the significant decrease of fasting blood glucose. Because visit 2 occurred on the 10th day 

of first phase of caloric restriction, changes in HbA1c and diabetic medications were not 

expected. The diabetic improvement at visit 3 was evident by a decrease in fasting glucose, 

medication doses, and HbA1c. Two subjects had an increase in HbA1c (despite a decrease in 

fasting blood glucose) at visit 3. One subject had aduration of diabetes of 10 years. It has been 

described extensively in the past that duration of diabetes and glycemic response to treatment 

is correlated to each other. Increasing duration of diabetes is associated with decreasing ß-cell 

function [56, 57] and insulin resistance may increase with duration of diabetes [58]. Duration 

of diabetes is also a major predictor of whether or not diabetes remission will occur after 

bariatric surgery in patients with type 2 diabetes, and it seems that ten-year duration is a cut 

point in this respect [54, 59, 60].  The other subject with an increase in HbA1c had a baseline 

value of 5.6 % at visit 1 which increased to 6.0 % at visit 3. However, fasting blood glucose 

dropped by 7 mg/dl, and the dose of metformin decreased from 1.5 g/day at visit 1 to 1 g/day 

at visit 3. In our study, the improvement in glucose metabolism occurred in the context of a 

significant weight loss. However, the degree of improvement of fasting glucose and of HbA1c 

was not associated with the degree of weight loss. This dissociation could be explained by a 

small variation in weight loss and by the small study group. Some studies report a weight loss 
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independent effect of caloric restriction on the improvement in glucose metabolism [12]. Our 

study design does not allow to seperate effect of caloric restriction from the effect of weight 

loss in the improvement in glucose metabolism. After bariatric surgery, weight loss 

commonly occurs in the context of caloric restriction. The results in our study confirm the 

role of caloric restriction and weight loss in the improvement in glucose metabolism, although 

there may be additional factors mediating the improved glucose metabolism after bariatric 

surgery. 

5.3. Mechanisms of the improved glucose metabolism 

5.3.1. Incretin effect 

An improved incretin effect (increase in incretin levels and effect) is considered to be an 

important mediator for the improved glucose metabolim following bariatric surgery [41, 61]. 

Because caloric restriction and weight loss occur very early after bariatric surgery, it is still 

controversial whether the improved incretin effect results from caloric restriction and weight 

loss or from other additional factors [62, 63].  

Our study assessed the effect of caloric restriction and weight loss on the incretin effect. The 

results from our study highlight two important aspects of the incretin effect.  

The first is that the incretin effect is retained in morbidly obese patients with type 2 diabetes. 

This is evident by comparing the results of the HGC with test meal at day 1 of visit 1 with 

those of the HGC without test meal at day 3 of visit 1. The significant increase of plasma 

insulin concentration, C-peptide concentration, and glucose infusion rate after the test meal 

indicates an increase in glucose-stimulated insulin secretion after the test meal. Although 

GLP-1 and GIP were not quantified in our study, the increase in glucose-stimulated insulin 

secretion after the test meal most likely corresponds to the effect of incretin hormones on beta 

cells. Thus the incretin effect is retained in the subjects in our study. Many studies show that 

the incretin effect in individuals with T2DM is impaired compared to controls [64]. However, 

there is evidence that in individuals with well-controlled diabetes, the effects of endogenous 

GLP-1 on insulin secretion is comparable to that in nondiabetic individuals [65]. Most of the 

patients included in the current study had well-controlled diabetes with an HbA1c < 7 %. 

Obesity also induces a decreased GLP-1 secretion which is related to the impaired incretin 

effect [66] 

The second observation is the significant improvement in the incretin effect after caloric 

restriction and weight loss. The data from our study support a significant improvement in 
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glucose-stimulated insulin secretion after the test meal at visit 3. This improvement may result 

from an improved secretion of endogenous incretin hormones or/and an improvement in the 

sensitivity of insulin secretion to endogenous incretin hormones. Because incretin hormones 

were not quantified, these two features cannot be separated in our study. The effects of 

incretin hormones on glucose metabolism have been shown by the administration of GLP-1 

receptor agonists and DPP-4 inhibitors both also used for treatment of diabetes. Studies 

evaluating the effect of dietary interventions on the incretin effect in individuals with type 2 

diabetes are scarce. Laferrere B et al. showed an unchanged GLP-1 and GIP secretion after an 

hypocaloric diet, while there was an increased GLP-1 and GIP secretion after gastric bypass 

surgery in patients with type 2 diabetes despite similar weight loss [28]. Similar results were 

also described by Valderas JP et al. in obese patients without diabetes treated with sleeve 

gastrectomy or with medication for obesity. Although patients achieved similar weight loss 2 

months after the treatment for obesity, an increase in GLP-1 secretion was present only after 

sleeve gastrectomy, not after medical treatment [40]. The differences between our study and 

the above two studies may be due to the absence of diabetes (in study of Valderas JP et al.), a 

smaller weight loss (9.8 kg in study of Laferrere B et al), and shorter duration dietary 

intervention (two months in study of Valderas and one month in study of Laferrere).  

Thus, our study confirms that caloric restriction and weight loss leads to a significant 

improvement in the incretin effect that may be one of the major mediators of the improved 

glucose metabolism. 

5.3.2. Insulin sensitivity 

Bariatric surgery induces an improvement in insulin sensitivity that contributes to the 

improved glucose metabolism after surgery. Interestingly, many previous studies show that 

the improvement in insulin sensitivity occurs very early after both malabsorptive and 

restrictive procedures before any significant weight loss occurs. In the studies of Rizzello M 

et al., Peterli R et al., and Wickremesekera K et al., insulin sensitivity (estimated by HOMA-

IR and EGC) improved already one week after sleeve gastrectomy and gastric bypass before 

weight had significantly dropped. The authors of these studies concluded that a hormonal 

mechanism may be involved in these changes [23, 63, 67]. Hady HR et al. studied the 

improvement in insulin sensitivity on day 7 after restrictive bariatric surgery and showed that 

the insulin sensitivity improved significantly before significant weight loss occurred. Our 

study shows a significant improvement in insulin sensitivity in the context of a significant 

weight loss following caloric restriction. The improvement in insulin sensitivity was 
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estimated by changes in fasting insulin concentration, HOMA-IR, glucose infusion rate, and 

insulin sensitivity index during the EGC performed before and after caloric restriction. These 

variables tended to change (decrease in fasting insulin concentration and HOMA-IR, increase 

in glucose infusion rate and insulin sensitivity index during the EGC) at visit 2 and improved 

significantly at visit 3. The correlation between weight loss and insulin sensitivity has been 

established in the literature [68-70]. Many possible mechanisms for the improvement in 

insulin sensitivity after weight loss have been discussed in previous studies. Schenk S et al. 

showed that weight loss leads to decreased systemic fatty acid mobilization and uptake 

resulting in improvement in insulin sensitivity [71]. The improvement in hepatic insulin 

sensitivity after weight loss is related to a decrease in liver fat [72, 73]. Weight loss may also 

decrease subclinical inflammation which plays an important role in inducing and maintaining 

insulin resistance [74]. 

The degree of the improvement in insulin sensitivity seems to be related to the degree of 

weight loss. Borges RL et al. studied female patients with abdominal obesity and showed that 

a weight loss of more than 5 % was associated with improved insulin sensitivity [75]. The 

result in the study by Borges would fit to the observations from our study, where no 

significant improvement in insulin sensitivity was observed at visit 2 with a weight loss of 4.9 

± 0.3 %, while there was a significant improvement at visit 3 with a weight loss of 9.5 ± 1.3 

%. Interestingly, although the decrease in body weight between visit 1 and visit 2 (6.5 kg, 

after 10 days of caloric restriction) was similar to that between visit 2 and visit 3 (also 6.5 kg, 

after 10 weeks), the difference in insulin sensitivity was significant only between visit 1 and 

visit 2, but not between visit 2 and visit 3. This implicates that acute or chronic weight loss 

may be related to the improvement in the insulin sensitivity. Very few studies have addressed 

this issue previously. Kirk E et al. studied the effect of acute caloric restriction on the insulin 

sensitivity and described that glucose infusion rate during EGC changed at 11 weeks with 

weight loss of 7.5 ± 0.4 %, but not at 48h with weight loss of 2.0 ± 0.2 % [73]. However, this 

difference may result from the differences in lost weight rather than differences in time. The 

role of weight loss on the improvement in the insulin sensitivity early after bariatric surgery 

has not been evaluated, while a number of studies have evaluated the longer term effect of 

weight loss following bariatric surgery on this parameter. In the studies of Valdera JP et al. 

and Nosso G et al, the improved insulin sensitivity was observed when significant weight loss 

had occurred 2 months and 3 months after sleeve gastrectomy, respectively. These authors 

also mention the role of weight loss in the improved insulin sensitivity [40, 52]. In the study 

by Hady et al. HOMA-IR had improved on the 7th day after surgery before any significant 
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weight loss had occurred, but both improvement in insulin sensitivity and weight loss 

continued at 1 and 3 months after surgery [21].  

The results from our study confirm that caloric restriction and weight loss lead to an 

improvement in insulin sensitivity. The degree of improvement may be related to the degree 

of weight loss but also to the duration of weight loss. 

5.3.3. ß-cell function 

An absence or decrease in the acute phase (first phase) of insulin secretion is commonly 

observed in patients with type 2 diabetes mellitus. In our study, the AIRg was 8.4 ± 3.5 µU/ml 

for insulin and 0.4 ± 0.9 ng/ml for C-peptide at visit 1. AIRg in our study was blunter than 

that in some previous studies which investigated the AIRg by HGC in normal individuals. 

Caumo A et al. used HGC to investigate the AIRg in 7 normal subjects and reported that 

AIRg was approximately 200 pmol/l (28.8 µU/ml) for insulin and 0.5 mmol/l (1.5 ng/ml) for 

C-peptide [76]. Many studies show that bariatric surgery leads to an improvement in the acute 

phase insulin secretion which may mediate the improvement in glucose metabolism after 

surgery. However, the role of caloric restriction and weight loss for the improvement in AIRg 

after bariatric surgery is still unclear. AIRg restoration was present one month after BPD in 

type 2 diabetic patients and was associated with normalized fasting blood glucose in the study 

of Briatore L e al. [77]. Salinari S et al investigated the acute insulin secretion one month after 

malabsorptive surgery in nine morbidly obese patients with type 2 diabetes and reported that 

the full normalization of the acute insulin secretion may be related to changes in intestinal 

factors [78]. The results from our study show an improvement in the acute insulin secretion at 

visit 2 and visit 3, although a significant improvement was observed only at visit 2. We 

understand that there are some limitations of using peripheral insulin and C-peptide 

concentrations to estimate the acute insulin secretion, which include the primary hepatic 

degradation of insulin and the peripheral clearance of insulin and C-peptide. When only 

peripheral insulin and C-peptide are used, the first phase insulin secretion may be delayed and 

blunted [76]. However, the above limitations may be negligible since the acute insulin 

secretion was estimated before and after caloric restriction (the same limitations are present at 

both time points). Because the improvement in insulin sensitivity was not significant and the 

incretin effect was not measured  at visit 2, the improvement in the acute insulin secretion was 

the only mechanism contributing to the improved glucose metabolism at that time point. 

Insulin is an essential hormone in glucose metabolism. It stimulates glucose uptake and 

inhibits endogenous glucose production. Thus, the improvement in first phase insulin 

secretion may lead to an improvement in all insulin-related processes, particularly in 
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postprandial glucose homeostasis [79]. Mitrakou A al. studied the relation between 30 min 

insulin levels and 2-hour blood glucose levels after an oral glucose test and showed that the 

improved acute insulin secretion seems to ensure a better postprandial blood glucose [80]. 

The correlation between the impairment of the acute insulin secretion and the impaired fasting 

glucose was also described in previous studies. Kanat M et al. studied ß-cell function in 

patients with impaired fasting glucose and describes an impaired first phase secretion of 

insulin [81]. Ozaki K et al. studied 8923 subjects and shows that there is a decrease in the 

acute insulin secretion in patients with fasting plasma glucose > 110 mg/dl [82].  

In type 2 diabetes mellitus, it is likely that insulin resistance precedes the impaired ß-cell 

function. Insulin resistance modifies ß-cell function in order to maintain a normal glucose 

homeostasis [83]. The relationship between the insulin sensitivity and ß-cell function is that as 

insulin sensitivity decreases, insulin secretion This relationship can be described and 

estimated by calculating the product of the acute insulin secretion  and insulin sensitivity 

index (deposition index: ID=AIRg X ISI). This product should be constant as long as the ß-

cell has enough capacity to compensate for an increase in insulin resistance. A decrease in this 

product indicates that ß cells are unable to fully compensate for insulin resistance. A decrease 

in this deposition index is commonly present in patients with impaired glucose tolerance, 

impaired fasting blood glucose, and type 2 diabetes [84]. The marked improvement (a two-

fold increase at visit 2 and visit 3) in the deposition index, which results from the combined 

improvement in AIRg and ISI, confirms the effect of caloric restriction and weight loss on ß-

cell function. 

5.4. Improvement in lipid metabolism 

Dyslipidemia is associated with an increased risk for cardiovascular disease. Although 

dyslipidemia was not pronounced before caloric restriction in our subjects, others report a 

common dyslipidemia in patients with T2DM and/or obesity [85, 86]. Despite the fact that 

dyslipidemia was only mild in our subjects triglycerides and non-HDL cholesterol decreased 

after caloric restriction in our study. The role of caloric restriction and weight loss on lipid 

metabolism has been described in previous studies. Bouwman FG et al. studied the effect of a 

very low caloric diet on lipid metabolism in overweight/obese subjects and reported a 

significant decrease in total cholesterol and LDL-cholesterol [87]. A significant decrease in 

triglycerides and total cholesterol was also observed after a weight loss of 11kg in a study of 

Jourdan M et al. [88]. Similarly, a decrease in triglycerides and non-HDL cholesterol was also 

observed after bariatric surgery. Hady et al. described a significant decrease in total 

cholesterol, triglycerides, and LDL-cholesterol in 100 obese patients 3 months after sleeve 
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gastrectomy [89]. In general, weight loss results in a decrease in triglycerides, VLDL-

triglyceride, and non-HDL cholesterol [90]. The decrease in triglycerides after weight loss 

may result from a decrease in the hepatic VLDL secretion, which may be the consequence of 

a decreased substrate flux (fatty acids) for VLDL production [91]. Non-HDL-cholesterol is a 

calculated parameter which encompasses LDL-cholesterol and remnant-cholesterol [92]. An 

improvement in this parameter reflects either an increase in HDL-cholesterol or a decrease in 

LDL and/or remnant cholesterol. In our study the improvement was mostly related to a 

decrease in remnant cholesterol. With respect to lipid metabolism, two unexpected changes 

were observed in our study: a decrease in HDL-cholesterol and an increase in Lp(a) were 

observed after caloric restriction and weight loss. Although most of the previous studies 

reported an increase in HDL-cholesterol after weight loss, a decrease was also observed in 

study of Thompson PD et al. [93]. The mechanism behind this observation is unclear but 

factors such as a dramatically decreased cholesterol intake during caloric restriction may be 

involved. Although elevated concentrations of Lp(a) are an established risk factor for 

cardiovascular diseases, very little is known about the metabolism of these particles. In 

contrast to other lipid parameters, Lp(a) levels change very little with lipid lowering agents. 

The effect of weight loss after bariatric surgery or other medical interventions on Lp(a) levels 

was variable in previous studies. Some studies show a significant decrease [94, 95], while 

others describe a significant increase or no change [96, 97]. The importance of this finding is 

currently unclear. 
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6. LIMITATIONS OF STUDY 

The current study has several limitations, some of which will be overcome by future analyses. 

We did not measure the incretin effect at visit 2 and therefore cannot say whether the incretin 

effect has improved already at visit 2 (like beta-cell function) or only at visit 3 (like insulin 

sensitivity). Furthermore, we so far have not measured incretin levels, which would be 

important to decide which of the involved hormones is primarily affected. Finally, we have 

not yet compared the results of the dietary intervention directly to the results of the surgical 

procedure. Measuring of incretin levels and direct comparison will be performed once the 

whole project is finished. 



48 

 

7. CONCLUSION 

In this study we used euglycemic and hyperglycemic clamps to evaluate the mechanisms of 

improved glucose metabolism in obese type 2 diabetic patients after caloric restriction and 

weight loss. The results of the current study show that: 

- Caloric restriction and weight loss lead to an improvement in glucose and lipid 

metabolism. 

- Improved glucose metabolism after caloric restriction and weight loss may be 

mediated by an improvement in the incretin effects, insulin sensitivity, and ß-cell 

function. 

- Improvement in glucose metabolism after bariatric surgery may be at least partly 

explained by caloric restriction and weight loss, not specific for the type of 

intervention. 

- Properly controlled studies with larger cohorts are necessary to elucidate the beneficial 

effects of bariatric surgery. 
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8. SUMMARY 

Objective 

The prevalence of obesity and type 2 diabetes mellitus is increasing quickly and is a major 

challenge to health care systems in the world. Bariatric surgery, which has been used widely 

for the treatment of morbidly obese patients, results not only in weight loss but also in a 

dramatic improvement in glucose metabolism. It is however unclear whether caloric 

restriction, weight loss or other surgery related factors mediate the improved glucose 

metabolism after bariatric surgery. Caloric restriction and weight loss occurs after bariatric 

surgery. However, there is evidence that the improvement in glucose metabolism is present 

immediately after surgery before any significant weight loss occurs. This evidence, therefore, 

supports the role of other weight loss-independent mechanisms in mediating the antidiabetic 

effect of bariatric surgery.  

To better understand the beneficial effects of bariatric surgery we designed a study in which 

morbidly obese subjects with type 2 diabetes follow a dietary protocol identical to one that 

patients receiving bariatric surgery have to follow. Our aim was to evaluate the role of caloric 

restriction and weight loss on glucose and lipid metabolism and analyse the mechanisms 

behind the improved glucose metabolism. 

Subjects and methods 

Morbidly obese subjects with type 2 diabetes followed the same dietary protocol as patients 

receiving bariatric surgery. The dietary protocol includes two phases. The first phase lasts 10 

days and subjects have to stay in hospital to comply fully with the protocol. The second phase 

lasts about 10 weeks and subjects are seen on an out-patient basis. Glucose and lipid 

metabolism was assessed before beginning caloric restriction (visit 1), and again after 2 weeks 

(visit 2, immediately after the first phase of caloric restriction) and 12 weeks (visit 3, 

immediately after the second phase of caloric restriction). The improvement in glucose 

metabolism was evaluated by changes in fasting blood glucose, HbA1c, and dose of 

antidiabetic medications. The improvement in lipid metabolism was evaluated by changes in 

lipid parameters. Potential mechanisms mediating the improved glucose metabolism, which 

were evaluated in the current study, include changes of the incretin effect, of insulin 

sensitivity and of ß-cell function. Incretin effect was estimated by the increment of values 

(glucose infusion rate, insulin concentration, and C-peptide concentration) between 90 – 120 

min (before test meal) and 125 – 360 min (after test meal) during the 6-hour hyperglycemic 

clamp with a test meal. Changes in insulin sensitivity were evaluated by changes in fasting 

plasma insulin, fasting plasma C-peptide, HOMA-IR, glucose infusion rate during last 60 
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minutes of a 3-hour euglycemic clamp, and the insulin sensitivity index. The changes in acute 

insulin secretion to hyperglycemia (AIRg) and disposition index were used to evaluate 

changes in ß-cell function. 

Results 

Twelve subjects were included in the study (8 women, 4 men; mean age 50.2 ± 2.2 years; 

mean duration of diabetes 5.2 ± 0.7 years). Most of the subjects had good glycemic control 

with mean HbA1c of 6.7 ± 0.3 % before beginning of caloric restriction. The average energy 

intake during the first phase and the second phase of caloric restriction was 678.8 ± 47.8 

kcal/day and 1407.3 ± 52.7 kcal/day, respectively. BMI decreased significantly from 46.0 ± 

2.1 kg/m2 to 43.8 ± 2.0 kg/m2 and 41.7 ± 2.1 kg/m2 at visit 2 and visit 3, p < .001 for both. 

There was a significant improvement in glucose metabolism after the first phase and the 

second phase of caloric restriction. This improved glucose metabolism is evident from a 

significant decrease in fasting blood glucose at visit 2 (decreased from 133.1 ± 6.4 mg/dl to 

114.6 ± 6.7 mg/dl, p < .01), and from the combined decrease in fasting blood glucose, HbA1c, 

and dose of antidiabetic medications at visit 3 (fasting blood glucose deceased from 133.1 ± 

6.4 mg/dl to 110 ± 4.7 mg/dl, p < .001; HbA1c decreased from 6.7 ± 0.3 % to 6.2 ± 0.1 %, p = 

0.06; dose of antidiabetic medications decreased in 5/10 subjects). A significant improvement 

in lipid metabolism was also present at visit 2 and visit 3 (total cholesterol decreased 

significantly from 182.8 ± 11.9 mg/dl to 166.4 ± 12.1 mg/dl and 163.8 ± 11.3 mg/dl; 

triglyceride decreased from 127.1 ± 21.5 mg/dl to 95.3 ± 9.5 mg/dl and 105.2 ± 12.6 mg/dl; 

LDL-cholesterol decreased significantly from 114.2 ± 9.2mg/dl to 113.2 ± 11.4 mg/dl and 

103.4 ± 9.0 mg/dl; VLDL-cholesterol decreased from 21.7 ± 4.8 mg/dl to 14.3 ± 2.0 mg/dl 

and 17.6 ± 2.6 mg/dl; VLDL-triglyceride decreased from 105.5 ± 21.7 mg/dl to 70.3 ± 11.6 

mg/dl and 90.3 ± 13.4 mg/dl). 

The improvement in glucose metabolism after caloric restriction in our study is accompanied 

by an improved incretin effect, enhanced insulin sensitivity, and better ß-cell function. Percent 

incretin effect increased significantly from visit 1 to visit 3 (not evaluated at visit 2) (from 

51.2 ± 5.0 % to 70.6 ± 4.7 %, P < .05, estimated by insulin; from 47.5 ± 4.1 % to 63.1 ± 4.2 

%, P < .05, estimated by C-peptide; from 44.4 ± 6.8 % to 67.0 ± 3.7 %, P <.01, estimated by 

glucose infusion rate). Enhanced insulin sensitivity was present only at visit 3, but not at visit 

2, and evident from the significant improvement in fasting plasma insulin (decreased from 

20.0 ± 2.5 µU/ml to 9.3 ± 2.5 µU/ml, p < .05), HOMA-IR (decreased from 6.7 ± 0.9 to 2.7 ± 

0.8, p < .001), glucose infusion rate during last 60 min of 3-hour euglycemic clamp (increased 

from 3.7 ± 0.5 mg/kg/min to 5.5 ± 0.6 mg/kg/min, p < 0.01), and insulin sensitivity index 
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(increased from 22.9 ± 3.8 to 45.5 ± 9.8, p < .05). Better ß-cell function was evident from a 

significant improvement in acute insulin secretion to hyperglycemia of ß cells at visit 2 (mean 

increment of insulin concentration between the fasting and the first ten minutes after glucose 

bolus during hyperglycemic clamp increased from 8.4 ± 3.5 µU/ml at visit 1 to 14.5 ± 5.1 

µU/ml at visit 2, p < .05) and a significant increase in disposition index at visit 3 (increased 

from 244.2 ± 131.1 at visit 1 to 542.1 ± 201.0 at visit 3, p < .05). The improvement in acute 

insulin secretion of ß cells was also present at visit 3 and the increase in disposition index was 

also present at visit 2. However, these changes were not significant. 

Conclusion 

This is a study evaluating the role of caloric restriction and weight loss on glucose and lipid 

metabolism and determining potential mechanisms mediating the improved glucose 

metabolism in obese type 2 diabetic patients. The results from our study show that caloric 

restriction and weight loss lead to a significant improvement in glucose and lipid metabolism. 

This improved glucose metabolism is mediated by an improved incretin effect, enhanced 

insulin sensitivity, and better ß-cell function. However, these improvements occur at different 

time points. While better beta-cell function is detectable very early after initiation of caloric 

restriction, insulin sensitivity only improves after several weeks and months. Due to a dietary 

protocol which is comparable to that of patients undergoing bariatric surgery, our subjects had 

the same average energy intake and weight loss after the first phase and second phase of 

caloric restriction. Thus, our study supports the concept that the improvement in glucose 

metabolism after bariatric surgery is at least partially (if not fully) explained by the caloric 

restriction and weight loss. Further studies directly comparing patients undergoing bariatric 

surgery with those undergoing a dietary intervention are necessary to further understand the 

beneficial effects of caloric restriction and weight reduction. 
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ZUSAMENFASSUNG 

Zielsetzung 

Die Prävalenz von Adipositas und Typ-2 Diabetes mellitus nimmt rasant zu und stellt eine 

große Herausforderung für Gesundheitssysteme weltweit dar. Bariatrische Chirurgie, die in 

großem Umfang zur Behandlung von krankhaft adipösen Patienten verwendet wird, führt 

nicht nur zu Gewichtsverlust, sondern auch zu einer dramatischen Verbesserung des 

Glukosemetabolismus. Trotzdem ist unklar, ob die kalorische Restriktion, der 

Gewichtsverlust oder andere, mit der Operation einhergehende Faktoren einen verbesserten 

Glukosestoffwechsel nach bariatrischer Chirurgie bedingen. Sowohl kalorische Restriktion als 

auch Gewichtsverlust treten nach einer bariatrischen Operation auf. Es gibt jedoch Belege 

dafür, dass eine Verbesserung des Glukosemetabolismus unmittelbar nach der chirurgischen 

Intervention und noch vor einem signifikanten Gewichtsverlust eintritt. Diese Erkenntnis 

unterstützt ihrerseits die Bedeutung von anderen, vom Gewichtsverlust unabhängig 

vermittelten Mechanismen, die für den antidiabetischen Effekt nach bariatrischen Operationen 

verantwortlich sein könnten.  

Um die positiven Auswirkungen der bariatrischen Chirurgie auf den Stoffwechsel besser 

verstehen zu können,  führten wir eine Studie durch, in der stark adipöse Typ-2-Diabetiker ein 

Ernährungsverhalten annehmen, das dem von bariatrisch operierten Patienten entspricht. Dies 

erlaubte uns die Rolle von kalorischer Restriktion und Gewichtsverlust bezüglich der 

Verbesserung des Glukose- und Lipidmetabolismus und die dahinter steckenden 

Mechanismen zu beurteilen. 

Probandenkollektiv und Methodik 

Stark adipöse Typ-2 Diabetiker ernährten sich analog zu Patienten, die sich einer bariatrischen 

Operation unterzogen. Der Ernährungsplan umfasste zwei Phasen. Die erste, zehntägige Phase 

mussten die Probanden in der Klinik verbringen um eine gute Compliance bezüglich der 

Ernährungsvorgaben zu erreichen. Die zweite Phase dauerte zehn Wochen und  fand bei den 

Probanden zu Hause statt. Daten zu Glukose- und Fettstoffwechsel wurden vor dem Beginn 

der kalorischen Restriktion (Visit 1), nach zwei Wochen (Visit 2, unmittelbar nach der ersten 

Phase der kalorischen Restriktion) und zwölf Wochen (Visit 3, unmittelbar nach der zweiten 

Phase der kalorischen Restriktion) erhoben. Die Verbesserung des Glukosemetabolismus 

wurde in Form von einer veränderten Nüchternblutglukose, des HbA1c-Werts  und der Dosis 

der antidiabetischen Medikamente erfasst.  Die Verbesserung des Fettstoffwechsels wurde als 

Änderung der Lipidparameter erfasst. Die in unserer Studie untersuchten Mechanismen, die 

zu einer Verbesserung des  Glukosestoffwechsels geführt haben, umfassen den Inkretineffekt, 
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die Insulinsensitivität und die ß-Zellfunktion. Der Inkretineffekt wurde als Verbesserung von 

Messwerten (Glukoseinfusionsrate, Insulinkonzentration, C-Peptid-Konzentration) zwischen 

90-120 Minuten (vor der Testmahlzeit) und 125-360 Minuten (nach der Testmahlzeit) 

während des sechsstündigen hyperglykämischen Clamp mit Testmahlzeit festgelegt. Die 

Verbesserung der Insulinsensitivität wurde in Form von Veränderungen des 

Nüchternplasmainsulins, des Nüchternplasma-C-Peptids, des HOMA-IR, der 

Glukoseinfusionsrate während der letzten 60 Minuten des dreistündigen euglykämischen 

Clamps und des Insulinsensitvitätsindex erfasst. Die Veränderungen bezüglich der akute 

Insulin response auf Hyperglykämie (AIRg) und der Disposition Index wurden zur 

Beurteilung der ß-Zell-Funktion herangezogen. 

Ergebnisse 

Zwölf Patienten wurden in die Studie eingeschlossen (8 Frauen, 4 Männer; mittleres Alter 

50,2 ± 2,2 Jahre; mittlere Diabetesdauer 5,2 ± 0,7 Jahre). Die meisten Probanden hatten einen 

gut eingestellten Blutzucker mit einem mittleren HbA1c von 6,7 ± 0,3 % vor dem Beginn der 

kalorischen Restriktion. Die mittlere Energieaufnahme während der ersten Phase und während 

der zweiten Phase der kalorischen Restriktion war 678,8 ± 47,8 kcal/Tag bzw. 1407,3 ± 52,7 

kcal/ Tag.  Der BMI nahm signifikant  von 46,0 ± 2,1 kg/m2 auf 43,8 ± 2.0 kg/m2 (Visit 2, p 

<,001) und 41,7 ± 2,1 kg/m2 (Visit 3, p <,001) ab.  

Eine signifikante Verbesserung des Glukosemetabolismus war sowohl nach der ersten Phase 

als auch nach der zweiten Phase der kalorischen Restriktion feststellbar. Dieser verbesserte 

Glukosestoffwechsel lässt sich  aus der signifikanten Senkung des Nüchternblutzuckers bei 

Visit 2 (Rückgang von 133,1 ± 6,4 mg/dl auf 114,6 ± 6,7 mg/dl, p <,01), und aus der 

kombinierten Senkung des Nüchternblutzuckers, des HbA1c-Werts, und der Dosis von 

antidiabetisch wirksamen Medikamenten bei Visite 3 (Rückgang des Nüchternblutzuckers 

von 133,1 ± 6,4 mg/dl auf 110 ± 4,7 mg/dl, p <,001; Senkung des HbA1c von 6,7 ± 0,3 % auf 

6,2 ± 0,1 %, p = 0,06; Dosisreduktion von Antidiabetika in 5/10 Probanden) ableiten. Auch 

eine signifikante Verbesserung des Fettstoffwechsels war bei Visit 2 und 3 evident 

(Gesamtcholesterin sank signifikant von 182,8 ± 11,9 mg/dl auf 166,4 ± 12,1 mg/dl bzw. 

163,8 ± 11,3 mg/dl , Triglyceride sanken von 127,1 ± 21,5 mg/dl auf 95,3 ± 9,5 mg/dl bzw. 

105,2 ± 12,6 mg/dl; LDL-Cholesterin sank signifikant von 114,2 ± 9,2 mg/dl auf 113,2 ± 11,4 

mg/dl bzw. 103,4 ± 9,0 mg/dl; VLDL-Cholesterin sank von 21,7 ± 4,8 mg/dl auf 14,3 ± 2,0 

mg/dl bzw. 17,6 ± 2,6 mg/dl; VLDL-Triglyceride sanken von 105,5 ± 21,7 mg/dl auf 70,3 ± 

11,6 mg/dl bzw. 90,3 ± 13,4 mg/dl). 
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Die Verbesserung des Glukosestoffwechsels nach kalorischer Restriktion wird in unserer 

Studie vom einem verbesserten Inkretineffekt, einer gesteigerten Insulinsensitivität und einer 

besseren ß-Zell-Funktion begleitet. Die prozentuale Verbesserung des Inkretineffekts von 

Visit 1 bis Visit 3 (nicht eruiert bei Visit 2) war im signifikanten Bereich (von 51,2 ± 5,0 % 

auf 70,6 ± 4,7 %, p <0,05, anhand von Insulindaten ermittelt; von 47,5 ± 4,1 % auf 63,1 ± 4,2 

%, P <0,05, anhand von C-Peptid-Daten ermittelt; von 44,4 ± 6,8 % auf 67,0 ± 3,7 %, p 

<0,01, anhand der Glukoseinfusionsrate ermittelt). Eine verbesserte Insulinsensitivität war nur 

bei Visit 3 feststellbar, nicht jedoch bei Visit 2, und aus der signifikanten Verbesserung des 

Nüchternplasmainsulin (Verringerung von 20,0 ± 2.5 µU/ml auf 9,3 ± 2.5 µU/ml, p <.05), des 

HOMA -IR (Verringerung von 6,7 ± 0,9 auf 2,7 ± 0,8, p <.001), der Glukoseinfusionsrate 

während der letzten 60 Minuten des dreistündigen euglykämischen Clamps (Anstieg von 3,7 

± 0.5 mg/kg/min auf 5,5 ± 0.6 mg/kg / min, p <0,01), und des Insulinsensitivitätsindex 

(Erhöhung von 22,9 ± 3,8 auf 45,5 ± 9,8, p <.05) ableitbar. Eine bessere ß-Zellfunktion war 

aus einer signifikanten Verbesserung der akute Insulin response auf Hyperglykämie bei Visit 

2 ersichtlich (Anstieg der mittleren Differenz der Insulinkonzentrationen im nüchternen 

Zustand und während der ersten zehn Minuten nach dem Glukosebolus während des 

hyperglykämischen Clamps  von 8,4 ± 3.5 µU / ml bei Visit 1 auf 14,5 ± 5.1 µU/ml bei Visit 

2, p <.05). In diesem Zusammenhang stieg auch der Disposition Index bei Visit 3 an (Anstieg 

von 244,2 ± 131,1 bei Visite 1 auf 542,1 ± 201,0 bei Visite 3, p <. 05). Die akute 

Insulinsekretion von ß-Zellen verbesserte sich auch bei Visit 3 und der Disposition Index 

erhöhte sich auch bei Visit 2. Allerdings waren diese Veränderungen nicht signifikant. 

Fazit 

Diese Studie beurteilte die Rolle der kalorischen Restriktion und des Gewichtsverlusts 

bezüglich des Glukose- und Lipidmetabolismus und ermittelte Mechanismen, die hinter einem 

verbesserten Glukosemetabolismus stehen. Die Ergebnisse unserer Studie zeigen, dass 

kalorische Restriktion und Gewichtsverlust zu einer signifikanten Verbesserung des Glukose- 

und Lipidmetabolismus führen. Dieser verbesserte Glukosemetabolismus wird durch einen 

verbesserten Inkretineffekt, eine gesteigerte Insulinsensitivität und eine bessere ß-Zell-

Funktion vermittelt. Allerdings treten diese Verbesserungen zu unterschiedlichen Zeitpunkten 

auf. Während sich die beta-Zellfunktion sehr schnell nach Beginn einer Kalorienrestriktion 

verbessert, kommt es erst im Verlauf von Wochen bis Monaten zu einer Verbesserung der 

Insulinempfindlichkeit. Aufgrund einer Ernährung, die der vergleichbar ist von Patienten, die 

sich einer bariatrischen Operation unterzogen, hatten unsere Probanden auch die gleiche 

durchschnittliche Energieaufnahme und einen ähnlichen Gewichtsverlust wie operierte 
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Patienten. Folglich unterstützen unsere Ergebnisse das Konzept, dass die Verbesserung des 

Glukosemetabolismus nach bariatrischen Operationen zumindest teilweise (wenn nicht ganz) 

durch kalorische Restriktion und Gewichtsreduktion erklärt werden kann. Weitere Studien, in 

welchen der Effekt einer bariatrischen Operation direkt mit diätetischen Maßnahmen 

verglichen wird, sind notwendig, um die positiven Effekte einer Kalorienrestriktion bzw. 

Gewichtsreduktion besser zu verstehen. 
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APPENDICES 

Protocol of hyperglycemic clamp with test meal (Day 1 of visit 1 and visit 3)  

 
actual 

time 

blood 

glucose 

blood 
sample 

Breath 
sample 

VAS 
Circulation notes 

Glucose 
infusion rate 

time  / in duplicate EDTA 13C  RR Puls  D 20% 

min (h:min) (mg/dl) (1,5 ml)   (mmHg) (/min)  (ml/h) 

   √√√√    √√√√    √√√√        

-60  /      blood glucose by finger 
stick 

-30  /      take blood for adipokines 

2x9ml EDTA+ 2x9 ml serum -20  / 1     

-15         

-10  / 2      

-5  / 3      

0  / 4  1     

2  / 5       

4  / 6       

6  / 7       

8  / 8       

10  / 9       

15  /        

20  / 10       

25  /        

30  / 11       

35  /        

40  / 12       

45  /        

50  / 13       

55  /        

60  / 14       

65  /        

70  / 15       

75  /        

80  / 16       

85  /        

90  / 17       

95  /        

100  / 18       

105  /   2     
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110  / 19       

115  / 20       

120  / 21 1 3     

125  / 22       

130  / 23       

135  / 24 2 4     

140  / 25       

145  / 26       

150  / 27 3 5     

155  /        

160  / 28       

165  /  4 6     

170  / 29       

175  /        

180  / 30 5 7     

185  /        

190  /        

195  / 31 6      

200  /        

205  /        

210  / 32 7 8     

215  /        

220  /        

225  / 33 8      

230  /        

235  /        

240  / 34 9 9     

245  /        

250  /        

255  / 35       

260  /        

265  /        

270  / 36 10      

275  /        

280  /        

285  / 37       

290  /        

295  /        
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300  / 38 11 10     

305  /        

310  /        

315  / 39       

320  /        

325  /        

330  / 40 12      

335  /        

340  /        

345  / 41       

350  /        

355  /        

360  / 42 13 11     

380         

400         

420         

 

 

Protocol of euglycemic clamp (day 2 of visit 1, visit 2, and visit 3) 

 
actual 

time 

blood 

glucose 

blood 
sample 

Glucose 
infusion rate Circulation notes 

time  / in duplicate EDTA D 20% RR Puls  

min (h:min) (mg/dl) (1,5 ml) (ml/h) (mmHg) (/min) . 

-60  /     blood glucose by finger stick 

Insertion i.v.-cannula or check if already inserted cannulas are patent 

-50       Take fat tissue biopsie: see page 
10 -40       

-30  / 1     

Start insulin infusion at 1,5 IU/kg BW, Bolus: 

-20  /  ml/h   Insulin Bolus:                                  
IU 

-15  /  ml/h   Insulin infusion rate:                       
ml/h 

-10  /  ml/h   
Start glucose (D20%) infusion 

when blood glucose is <100 mg/dl -5  /  ml/h   

0  / 2 ml/h   

5  /  ml/h    

10  /  ml/h    

15  /  ml/h    
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20  / 3 ml/h    

25  /  ml/h    

30  /  ml/h    

35  /  ml/h    

40  / 4 ml/h    

45  /  ml/h    

50  /  ml/h    

55  /  ml/h    

60  / 5 ml/h    

65  /  ml/h    

70  /  ml/h    

75  /  ml/h    

80  / 6 ml/h    

85  /  ml/h    

90  /  ml/h    

95  /  ml/h    

100  / 7 ml/h    

105  /  ml/h    

110  /  ml/h    

 

115  /  ml/h    

120  / 8 ml/h    

125  /  ml/h    

130  / 9 ml/h    

135  /  ml/h    

140  / 10 ml/h    

145  /  ml/h    

150  / 11 ml/h    

155  /  ml/h    

160  / 12 ml/h    

165  /  ml/h    

170  / 13 ml/h    

175  /  ml/h    

180  / 14 ml/h    

Stop insulin infusion, continue glucose infusion, diabetes lunch 

200        

220        

240        
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Protocol of hyperglycemic clamp without test meal (day 3 of visit 1) 

 
actual 

time 

blood 

glucose 

blood 
sample 

 
 Circulation notes 

Glucose 
infusion rate 

time  / in duplicate EDTA   RR Puls  D 20% 

min (h:min) (mg/dl) (1,5 ml)   (mmHg) (/min)  (ml/h) 

   √√√√                

-60  /      blood glucose by finger 
stick 

-30  /       

-20  / 1      

-15  /       

-10  / 2      

-5  / 3      

0  / 4       

2  / 5       

4  / 6       

6  / 7       

8  / 8       

10  / 9       

15  /        

20  / 10       

25  /        

30  / 11       

35  /        

40  / 12       

45  /        

50  / 13       

55  /        

60  / 14       

65  /        

70  / 15       

75  /        

80  / 16       

85  /        

90  / 17       

95  /        
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100  / 18       

105  /        

110  / 19       

115  /        

120  / 20       

125  /        

130  /        

135  /        

140  / 21       

145  /        

150  /        

155  /        

160  / 22       

165  /        

170  /        

175  /        

180  / 23       

185  /        

190  /        

195  /        

200  / 24       

205  /        

210  /        

215  /        

220  / 25       

225  /        

230  /        

235  /        

240  / 26       

245  /        

250  /        

255  /        

260  / 27       

265  /        

270  /        

275  /        

280  / 28       

285  /        
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290  /        

295  /        

300  / 29       

305  /        

310  /        

315  /        

320  / 30       

325  /        

330  /        

335  /        

340  / 31       

345  /        

350  /        

355  /        

360  / 32       

380         

400         

420         

 


