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1. Einleitung 
 

Dentaladhäsive werden als Dentin- und Schmelzhaftvermittler verwendet, um einen chemischen 

Verbund zwischen dem Zahnsubstrat und dem Restaurationsmaterial (Kompositmaterialien) herzu-

stellen. Durch die Einführung der Säure-Ätz-Technik von Buonocore (1955) konnten erstmals äs-

thetisch akzeptable und dauerhaft haltbare Kompositfüllungen angeboten werden. 

Zur Verbesserung der Haftung zwischen Komposit und Dentin wurden auf dem Markt komplexe 

Dentinadhäsivsysteme eingeführt. Eine Weiterentwicklung hat bis heute zu einer großen und kon-

stanten Verbesserung der Dentinhaftung geführt. Angesichts der guten klinischen Resultate ist heu-

te eine Adhäsiv-Zahnheilkunde ohne den Einsatz von Dentinhaftvermittlern kaum noch denkbar. 

Eine dauerhafte und dichte Verbindung zwischen Restaurationsmaterialien und Zahnhartsubstanzen 

ist aus mechanischen, biologischen und ästhetischen Gründen wünschenswert (Perdigão 1994). 

Die Haftung an Dentin wird hauptsächlich durch mechanische Retention an Mikroporositäten und 

an rauen Oberflächen erreicht (Van Meerbeek 2003). 

Die grundlegenden Mechanismen der Dentinhaftung können dabei wie folgt zusammen gefasst 

werden:  

a)  durch die in die Dentintubuli eingedrungenen Monomergemische bilden sich nach der 

     Aushärtung Kunststoffzapfen (Lutz 1993; Eick 1997), die auch als „Tags“ bezeichnet werden, 

und  

b)  aus der Durchdringung der konditionierten Dentinoberfläche mit einem Adhäsiv 

     resultiert nach Lichthärtung eine so genannte „Hybridschicht“ (Nakabayashi 1992).  

Die Problematik bei der Erzeugung von Haftung an Zahnhartsubstanz wird durch den unterschiedli-

chen Aufbau von Schmelz und Dentin begründet (Gwinnett 1992). 

 In der vorliegenden Arbeit werden die Grundursachen der Dentinadhäsion genauer untersucht.   

Das Ziel der vorliegenden Arbeit ist, mit Hilfe der konfokalen Laser-Scanning-Mikroskopie  

(CLSM) eine Analyse des Infiltrationsverhaltens verschiedener Adhäsivsysteme durchzuführen. Das 

Infiltrationsverhalten wurde quantitativ analysiert und qualitativ charakterisiert. In der vorliegenden 

Arbeit wurde außerdem im Rahmen der quantitativen und der qualitativen Analyse untersucht, ob 

die Parameter (das Infiltrationsverhältnis und die Länge der Tags) und die Kriterien (Homogenität, 

Regularität und Kontinuität) sowie deren Kombinationen von der Anzahl der Arbeitsschritte der 

Adhäsive (3-Arbeitsschritte-Adhäsive oder 2-Arbeitsschritte-Adhäsive), von der Dentinposition 

(d.h. 0,5, 1,5 und 2,5 von der Schmelz-Dentin-Grenze - SDG), oder vom Adhäsivtyp (Total-Ätz-

Adhäsive und Selbst-Ätz-Adhäsive) beeinflusst sind. 
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2. Literaturübersicht 
 

 

 

2.1  Einführung in die historische Entwicklung der Adhäsive 

 

Die Entwicklung der Dentinadhäsive begann in den `50 er Jahren. 

Bereits 1955 stellte Buonocore  (Buonocore 1955; Kugel 2000; Söderholm 2007) die Annahme auf, 

dass die Ausbildung von Tags als der wesentliche Grund für die Adhäsion von Adhäsiv am ätzenden 

Zahnsubstrat anzusehen ist. Diese Adhäsion von Adhäsiven der ersten Generation war eine 

mikromechanische Bindung. Weil das Kollagen unfähig ist, Hydroxylapatit zu bilden, können 

lediglich die Dentinkanälchen mikromechanische Retention bieten. Somit ist die Anzahl der 

Kanälchen sehr wichtig für die Adhäsionsqualität. Seinerzeit war die Adhäsion sehr kompliziert zu 

erreichen wegen der Schmierschicht. Man glaubte, dass diese Schicht grundsätzlich immer die 

Penetration in die Kanälchen blockiert (Buonocore 1955; Kugel 2000; Hellwig 2007; Söderholm 

2007). 

Daher wurden Dentinhaftvermittler entwickelt, die eine chemische Bindung mit dem organischen 

und anorganischen  Anteil des Dentins eingehen sollten und aus diesem Grund eine funktionelle 

Gruppe zur Reaktion mit dem Dentin hatten. Die chemische Haftung am Dentin erwies sich jedoch 

als zu gering, so dass die Adhäsive der ersten Generation heute keine Bedeutung mehr haben (Kugel 

2000; Hellwig 2007; Söderholm 2007).  

Bei der zweiten Generation in den `60er und `70er Jahren wurde die Schmierschicht modifiziert, 

jedoch war die Haftung ebenfalls noch nicht ausreichend (Buonocore 1975; Buonocore 1981; Crim 

1984). Als Neuheit enthielten diese Adhäsive Bisphenolglycidylmethacrylat  (bis-GMA) und 

Hydroxyethylmethacrylat (HEMA) mit Halo-Phosphorester (Kugel 2000; Hellwig 2007). 

In der dritten Generation von Adhäsiven (Mitte und Ende der `80er Jahre) wurde die 

Schmierschicht modifiziert oder partiell entfernt. Die Haftvermittler der dritten Generation 

bestanden aus einem Konditionierer, einem Primer und einem Dentinadhäsiv. Zusätzlich wurde 

anschließend bei jedem Adhäsivsystem ein Schmelzadhäsiv aufgetragen.  Als Konditionierer 

verwendete man eine Säure (sehr oft Phosphorsäure) oder einen Komplexbildner, 

Ethylendiamintetraessigsäure  (EDTA). Der Primer enthielt immer ein hydrophiles Monomer, z.B. 

Hydroxyethylmethacrylat (HEMA), Hydroxypropylmethacrylat (HPMA), Biphenyldimethacrylat 
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(BPDM), Polyethylene glycoldimethacrylat (PEGDMA) in einem Lösungsmittel, z.B. Wasser, 

Aceton oder Alkohol. Das Dentinadhäsiv bestand aus Mono- und Dimethacrylaten wie 4-

Methacryloyloxyethyl-trimellitat-anhydrit (4-META), N-Phenyl-glycin-glycidyl-methacrylat 

(NPGGMA), usw (Krejci 1994; Kugel 2000; Hellwig 2007).   

Nach der Konditionierung sind die Dentinkanälchen geöffnet, das intertubuläre Dentin wird 

demineralisiert und das Kollagen frei gelegt. Manchmal wird dabei auch das peritubuläre Dentin 

demineralisiert. Der Primer wird eingetragen und nach der Einwirkzeit abgeblasen, um das 

Lösungsmittel zu entfernen. Anschließend wird das Dentinadhäsiv und das Schmelzadhäsiv 

aufgetragen und kurz ausgehärtet, um eine hohe Haftfestigkeit zu erreichen. Der Primer und Teile 

des Dentinadhäsivs penetrieren in die Dentinkanälchen und bilden hier nach dem Aushärten die 

Tags (Kugel 2000; Hellwig 2007; Söderholm 2007). 

Ein Vertreter der dritten Generation ist Syntac (Ivoclar Vivadent). Es kam 1990 als erstes derartiges 

System auf den Markt und stellt bis heute den „Goldstandard“ der Adhäsivtechnik dar. 

Die Anwendung dieser Adhäsiven war jedoch kompliziert, so dass ein Bedarf bestand, einfachere 

Verfahrensweisen zu entwickeln. 

Für die Adhäsive der vierten Generation (ab der ersten Hälfte der 90er Jahre) ist die Total-Ätz-

Technik charakteristisch. Das Ätzen erfolgt mit Phosporsäure (10-37 %) für Schmelz und Dentin 

und die optimale Ätzzeit am Zahnschmelz beträgt 30 bis 60 s. Anschließend wird das Adhäsiv auf 

das Dentin aufgetragen. Um eine Überätzung des Dentins zu vermeiden, sollte die Kontaktzeit der 

Phosphorsäure zum Dentin nicht mehr als 15 s betragen. Es findet also kein gemeinsames 

Konditionieren statt. Die Schmierschicht wird bei diesem Systems total entfernt, der 

Wirkungsprozess ist wie bei der dritten Generation, wo der selbstätzende Primer Dentin 

demineralisiert und das Kollagen frei gelegt wird. Damit dieses Kollagen nicht kollabiert, sollte das 

Dentin nicht übertrocknet werden. Wie nass oder trocken das Dentin allerdings tatsächlich sein 

sollte, konnte klinisch nicht befriedigend ermittelt werden (Kugel 2000; Hellwig 2007; Söderholm 

2007). 

Die Adhäsive der fünften Generation arbeiten wie die der vierten Generation mit der Total-Ätz-

Technik, nur dass der Primer und das Adhäsiv (getrennte Flaschen bei der vierten Generation) sich 

in der gleichen Flasche befinden (die Schmierschicht wird auch hier entfernt) (Kugel 2000; Hellwig 

2007; Söderholm 2007). Ein Beispiel aus dieser Klasse, welches auch in der vorliegenden Studie 

benutzt wurde, ist Prime Bond NT (Dentsply DeTrey). 

Zu der sechsten Generation von Adhäsiven zählen die sogenannten selbstkonditionierenden 

Materialen, die in zwei Arbeitsschritten - Primer und Adhäsiv - aufgetragen werden (die 

Schmierschicht wird modifiziert). Die meisten dieser Adhäsivsysteme enthalten Phosphorsäureester. 
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Die einzelnen Komponenten dieser Adhäsive können aufgrund der Instabilität der aktivierten sauren 

Phosphorsäureester jedoch nicht in einer Flasche aufbewahrt, sondern müssen  vor der Verwendung 

angemischt werden (Kugel 2000; Hellwig 2007; Söderholm 2007). Zu dieser Kategorie zählen 

Adper Scotchbond SE (3M ESPE), Xeno III (Dentsply DeTrey), Adper Prompt L-Pop (3M ESPE), 

Clearfil SE Bond (Kuraray), usw. 

Adhäsive der siebten Generation sind alle so genannte „Eine-Flasche-Adhäsive“, die nur einen 

einzigen Arbeitsschritt für Ätzen, Primen und Bonden verwenden (Söderholm 2007). Beispiele für 

diese auch in der  vorliegenden Arbeit untersuchten Adhäsive sind iBond (Heraeus Kulzer),  Adper 

Easy Bond (3M ESPE), usw. 

 

2.2  Dentinstruktur 

 

Das Dentin umgibt mit seiner Dreischichtung (Manteldentin, zirkumpulpales Dentin und Prädentin) 

die Pulpa des Zahnes. Es macht den größten Bestandteil des menschlichen Zahnes aus und ist aus 

organischen (20 %) und anorganischen (70 %) Anteilen sowie Wasser (10 %) aufgebaut (Schroeder 

1982; Hellwig 2007). Der organische Anteil besteht aus 91-92 % Kollagen und 8-9 % 

kollagenartigen Verbindungen (Smillie 1973; Hellwig 2007). Der anorganische Anteil des Dentins 

enthält hauptsächlich die Mineralien, Kalzium und Phosphat, welche zusammen das Hydroxylapatit 

bilden (Hellwig 2007). 

Das gesamte Dentin wird von den Dentinkanälchen (Dentintubuli) durchzogen. Die 

Dentinkanälchen sind mit peritubulärem Dentin ausgekleidet. Dieses ist homogener und bis zu 9 % 

stärker mineralisiert und weniger säureresistent als die Masse des intertubulären Dentins, welches 

zwischen den Kanälchen liegt (Hellwig 2007). Zwischen dem peritubulären Dentin und dem 

Odontoblastenfortsatz (die Dentinkanälchen enthalten die Fortsätze der Odontoblasten und 

marklose Fasernerven) befindet sich Dentinliquor. Dieser spielt für die Sensibilität des Dentins eine 

entscheidende Rolle (Coffey 1970). 

Der Durchmesser und das Volumen der Dentinkanälchen hängen vom Alter des untersuchten 

Zahnes ab und von der Dentinschicht (Hellwig 2007). Der Durchmesser der Tubuli variiert 

zwischen 4-5 μm vor dem Eintritt ins Prädentin über 1-3 μm im Prädentin und 1-2 μm im 

pulpennahen Bereich bis hin zu 0,5-1 μm im pulpenfernen Bereich (Garberoglio 1976). 

Der Verbund zum Dentin ist anders als der Verbund zum Schmelz, weil Dentin feuchter ist 

(Perdigão 2010). Die morphologischen und physikalischen Variationen des Dentins erschweren die 

Ausbildung von haltbaren Bindungen zwischen Adhäsiv und Dentin (Perdigão 2010).
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2.3  Adhäsive (Dentinhaftvermittler) 
 

Ein modernes Adhäsivsystem besteht aus einem Konditionierer (Säuren, Komplexbildner), einem 

Primer (hydrophiles Monomer in einem Lösungsmittel) und einem Adhäsiv (verschiedene 

Monomere) (Hellwig 2007). 

Für eine bessere Abbindewirksamkeit enthalten moderne Adhäsive außerdem Füllstoffe, um eine 

gewisse Schichtdicke nach dem Aushärten zu erreichen oder um das Material bei 

Röntgenaufnahmen besser sichtbar zu machen (Hellwig 2007). 

Der Hauptschwachpunkt von modernen Adhäsiven ist ihre begrenzte Haltbarkeit in vivo. Die 

häufigsten Gründe für den Ausfall der Restauration bei der Verwendung von Adhäsiven sind Verlust 

der Retention und Randanpassung (De Munck 2005; Peumans 2005). 

Die Restaurationen bei der Verwendung von Adhäsiven bleiben nur unter optimalen Bedingungen 

für 3 bis 5 Jahre bestehen (Hickel 2001; Peumans 2005). 

Die Adhäsive werden nach chronologischen Generationen (siehe Seiten 5 bis 7), nach 

Adhäsionsmechanismen und Arbeitsschritten (zu unterscheiden sind Total Ätz-Systeme mit Drei- 

und Zwei-Schritt -Applikation, sowie selbstkonditionierende Systeme mit Zwei- und Ein-Schritt-

Applikation, siehe Tabellen 1, 2 und 3), nach  klinischen Kriterien (siehe Seiten 13 und 14) oder 

nach in vitro Kriterien (nach Laborstudien, siehe Seiten 14 und 15) klassifiziert (De Munck 2005). 

Auf dem Dentalmarkt findet sich mittlerweile eine Vielzahl verschiedenartiger Adhäsivsysteme. 

Diese Systeme sind in Tabelle 1 aufgelistet und werden nachfolgend beschrieben. 

  

Tabelle 1: Einteilung der Dentinhaftvermittler 

 

Total Ätz-Adhäsive Selbstkonditionierende Adhäsive 

3 Schritte 2 Schritte 2 Schritte 1 Schritt 

Konditionierer Konditionierer Selbstkonditionierender 

Primer Selbstkonditionierendes 

Primer-Adhäsiv 
Primer 

Primer + Adhäsiv 
Adhäsiv Adhäsiv 
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2.4  Total-Ätz-Adhäsive (TÄ) 

2.4.a  Drei-Schritt-Adhäsive (TÄ-3) 
 

Bei den TÄ werden Schmelz und Dentin mit einer Säure geätzt, wobei meistens 30-37 %ige  

Phosphorsäure verwendet wird. Da die Phosphorsäure nicht gleichzeitig auf Zahnschmelz und 

Dentin aufgebracht wird, findet keine Überätzung statt. Zunächst wird der Schmelz geätzt 

(Einwirkzeit 30 s) und dann das Dentin (Einwirkzeit 15 s), anschließend werden beide simultan 

abgesprüht (Hellwig 2007).  

Die ideale Ätzeinwirkzeit im Dentin bei bleibenden Zähnen beträgt 15 s; längere Einwirkzeiten 

produzieren unnötig tiefe Entmineralisierungen und erfordern eine tiefere Harzimprägnierung und 

eine dickere Hybridschicht, die keine höhere Verbundfestigkeit (µTBS, micro tensile bond strength 

= Mikro-Zugfestigkeit) produzieren kann (Pioch 1998; Perdigão 2001).  

Bei den TÄ wird die Schmierschicht (“smear layer“) - eine mikroskopisch dünne und organische 

Schicht, die das Dentin nach der Zahnpräparation bedeckt -  partiell oder total entfernt. Je nach 

Konzentration der Säure kommt es dabei zu einer partiellen oder totalen Auflösung der 

Schmierschicht (Van Meerbeek 1994). 

Dieser Film hat eine Dicke von ca. 0,5 bis 15 μm und enthält zertrümmerte, zusammengepresste 

Dentinteilchen (Eick 1970; Pashley 1988), Speichel sowie gegebenenfalls Blutreste und Bakterien. 

Die Zusammensetzung der Schmierschicht ist abhängig von der Umdrehungszahl, der 

Diamantkörnung, der Wasserkühlung und dem Anpressdruck des verwendeten rotierenden 

Instrumentes (Brännström 1979; Gilboe 1980). Die Schmierschicht hat eine schützende Wirkung für 

die Pulpa, da sie zusammen mit dem intratubulären Pfropfen (“smear plug“) als Barriere dem 

Austritt von Flüssigkeit aus den Kanälchen (Tubuli) an die Oberfläche entgegenwirkt (Pashley 

1981); dieses führt zu einer Verminderung der Dentinpermeabilität (Dippel 1984). 

Bei den ersten Dentinhaftvermittlern wurde versucht, den Kunststoff auf dieser vorhandenen 

Schmierschicht zu befestigen. Die Haftung an der Dentinoberfläche ist aber nicht ausreichend. 

Aufgrund von Schrumpfungskräften bei der Polymerisation kommt es zu einem Abreißen der 

Füllung vom Zahn. Es entsteht ein mikroskopisch kleiner Spalt, in den Bakterien eindringen 

können. Daher hat man das Konzept der Dentinadhäsive geändert (Nakabayashi 1985; Van 

Meerbeek 1992). 

Die Entfernung der Schmierschicht hat den Vorteil, dass die applizierten hydrophilen Monomere 

nach der Konditionierung in die Dentinkanälchen eindringen und bei der Polymerisation „retentive 

tags“ bilden, die die oben genannten Kanälchen versiegeln. Somit entsteht eine Verbindung 
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zwischen  freigelegten Kollagennetzwerk und Adhäsiv (Van Meerbeek 1992; Hellwig 2007). 

Der Mechanismus eines modernen Adhäsivs basiert zur Zeit mehr auf mikromechanischem 

Ineinandergreifen (“interlocking“) als auf primärer chemischer Adhäsion (Nakabayashi 1982; Van 

Meerbeek 1992). 

Die Entfernung der Schmierschicht hat Nachteile, z.B. eine höhere Dentinpermeabilität, 

denaturierte Kollagenfasern durch die Entmineralisierung sowie eine tiefere Dekalzifizierung als die 

Penetration des Adhäsivs. 

Moderne Adhäsive verfügen über zwei Möglichkeiten für eine gute Bindung mit unterschiedlicher 

Behandlung der Schmierschicht (Pashley 1991; Van Meerbeek 1992):      

- partielle Entfernung der Schmierschicht und ihre Infiltration (Eindringen) mit Adhäsiv 

- totale Entfernung der Schmierschicht 

Nach Auftragen einer Säure ist das oberflächliche Dentin entmineralisiert und das Kollagen frei 

gelegt. Dieses Kollagen ist aufgerichtet, solange Feuchtigkeit vorhanden ist. Damit das frei gelegte 

Kollagen nicht kollabiert, sollte das Dentin nicht übertrocknet werden (Hellwig 2007). 

Nach der Säurekonditionierung wird ein Primer appliziert und nach der vorgegebenen Einwirkzeit 

getrocknet. Der Primer enthält Wasser, Ethanol oder Aceton in gelösten Monomeren oder 

Monomergemischen. Das Lösungsmittel (Wasser, Ethanol, Aceton oder Gemische) begünstigt 

aufgrund seiner wasserabstoßenden Eigenschaften und seiner Flüchtigkeit eine gute Ausbreitung 

der Monomere auf der feuchten Dentinoberfläche (Van Meerbeek 1994). 

Aceton ist als Lösungsmittel für Adhäsive sehr gut geeignet. Es verdunstet rasch auf der 

Dentinoberfläche. Dentinadhäsive mit Aceton erfordern ein feuchtes Dentin, um ein Übertrocknen 

zu vermeiden („wet-bonding“) (Haller 1999; Van Meerbeek 2003; Hellwig 2007). 

Der Nachteil acetonhaltiger Lösungsmittel ist die Flüchtigkeit des Lösungsmittels, weil es aus der 

geöffneten Flasche sehr schnell verdunsten und mit der Zeit die Wirksamkeit des Adhäsivs 

verringern kann. Wasser als Lösungsmittel für Adhäsive hat den Vorteil, dass es die kollabierten 

Netzwerke von Kollagen wieder erweichen und aufrichten werden kann (Hellwig 2007). Der 

Nachteil der wasserhaltigen Lösungsmittel ist ihre schlechte Verdunstungseigenschaft, aufgrund 

derer Lösungsmittel zurückbleiben und die Polymerisation negativ beeinflussen kann (Haller 1999). 

Ethanol als Lösungsmittel erfordert ebenfalls feuchtes Dentin, da Alkohol die Eigenschaft besitzt, 

Wasser zu entziehen (Van Meerbeek 1994). 

Im Anschluss an die Primer-Behandlung wird ein niedrigviskoses hydrophobes Adhäsiv 

aufgetragen. Durch Penetration in das vorbehandelte Dentin und anschließende Polymerisation 

verbindet sich das Adhäsiv über intratubuläre Zapfenbildung („tags“) und die Bildung einer 

Hybridschicht („hybrid layer“) fest mit dem Dentin (Lutz 1993; Eick 1997).  
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Die Eigenschaften der Hybridschicht (die Dicke, die Form und die Zusammensetzung) sind 

abhängig von der Adhäsivtechnik. Bei TÄ beträgt die Dicke der Hybridschicht ca. 3 µm ohne  

Hydroxyapatit-Kristalle (Nakabayashi 1985; Ding 2009; Albaladejo 2010; Ding 2010; Van Dijken 

2010); bei SÄ-Adhäsiven ist sie deutlich dünner (0,5 bis 1 µm) und enthält noch Hydroxyapatit-

Kristalle (Nakabayashi 1985; Van Landuyt 2006; Ding 2009; Albaladejo 2010; Ding 2010; Van 

Dijken 2010).  

Die beiden Strukturen - Hybridschicht und Zapfenbildung - sorgen vermutlich  für den Verbund von 

Kunststoff und Dentin. Bei der Anwendung von adhäsiven Techniken ist ein dichter Verschluss der 

Dentinoberfläche wichtig, um Spaltbildungen und daraus Pulpenirritationen zu verhindern (Pashley 

1991; Pashley 1991).  

Die Applikation des Adhäsives induziert eine strukturelle Veränderung in Dentin, wobei ein 

Austauschbereich („interdiffusion zone“) zwischen tiefem und nicht befallenem Dentin und dem 

Komposit entsteht. Dieser Bereich weist Bindestellen („bonding sites“) für Kopolymerisation mit 

dem Komposit auf und wirkt als Schutz für die Pulpa (Van Meerbeek 1992). 

Bei nicht ausreichender Penetration des Adhäsivsystems kommt es zur Ausbildung nicht-infiltrierter 

Bereiche des Kollagengeflechts, so genannter „Nanoleakages“, die seit 1995 bekannt sind (Sano 

1995). Der Begriff der "Nanoleakages" wurde eingeführt, um eine bestimmte Form von 

"Undichtigkeiten" am dentinbegrenzten Restaurationsrand zu kennzeichnen. 

Nanoleakage ist abhängig vom Lösungsmittel (Reinhardt 1997; Dörfer 2000) - so könnte ein 

Lösungsmittel mit guten Benetzungseigenschaften hier tatsächlich Vorteile in der Vermeidung der 

beschriebenen Porösitäten haben; vorteilhaft könnte hier wiederum Aceton sein (Ding 2009) - und 

entscheidend für die Qualität der Dentinhaftung.  

Die Größe dieser ungefüllten Porosität ist ungefähr 10 bis 20 nm, mit einem Maximum von 50 nm.  

„Nanoleakages“ kontrastieren mit „Microleakages“ (Mikrospalten); die wegen zu großer Abstände 

zwischen Zahnstruktur und Restaurierungs-Material (20 bis 40 µm) entstehen (Ding 2009). 

"Microleakages" sind feine Undichtigkeiten (Mikrospalten), zwischen Füllungsmaterial und 

natürlichem Zahn, durch die Bakterien unter die Füllung bzw. in den Wurzelkanal einwandern 

können. Dies kann sowohl zu einer Sekundärkariesbildung sowie zu einer bakteriellen Penetration 

in die Pulpa mit den daraus resultierenden entzündlichen Abwehrprozessen führen, als auch zu 

hydrodynamischen Phänomenen, deren Ursache in einer Flüssigkeitsbewegung in den Dentintubuli 

liegt. Bei diesen „Microleakages“ ist der adhäsive Verbund vollständig aufgehoben und keine 

Haftfestigkeit in diesem Bereich mehr vorhanden (Ding 2009). 
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 2.4.b  Zwei-Schritt-Adhäsive (TÄ-2) 
 

Bei den Zwei-Schritt-Systemen wird ähnlich wie bei den Drei-Schritt-Systemen zunächst eine 

Konditionierung von Schmelz und Dentin mit Phosphorsäure durchgeführt. Anschließend wird ein 

so genanntes Primer-Adhäsiv aufgetragen. Die Funktion von Primer und Adhäsiv ist hier 

zusammengefasst und wird daher auch als Eine-Flasche („One-bottle“)-Adhäsiv bezeichnet. 

Im Allgemeinen sind die Zwei-Schritt-Total-Ätz-Adhäsive in der klinischen Anwendung weniger 

vorteilhaft als die Drei-Schritt-Total-Ätz-Adhäsive. In-vitro Studien zeigten, dass die Bindung der 

Zwei-Schritt-Adhäsive weniger effektiv und dauerhaft ist wegen ihres verringerten Infiltrations-

Hybridationspotentials (De Munck 2003). Diese Adhäsive haben mehr Schwierigkeiten, in das 

entmineralisierte Kollagennetzwerk einzusickern und alles Restlösungsmittel zu entfernen 

(Peumans 2005).  

 

2.5  Selbstätzende Adhäsive (SÄ) 

2.5.a  Zwei-Schritt-Adhäsive (SÄ-2) 
 

Bei diesen Adhäsiven wird zunächst ein selbstkonditionierender Primer (enthaltend organische 

Säuren oder saure Monomere) aufgetragen, der die Funktion von Säure und Primer übernimmt. 

Anschließend wird ein Adhäsiv appliziert.  

Durch die Applikation des selbstkonditionierenden Primers wird das intertubuläre Dentin ebenfalls 

entmineralisiert. Dabei kommt es zu einer teilweisen oder totalen Auflösung der Schmierschicht 

und dadurch zu einer Erhöhung der Permeabilität (Van Meerbeek 1992). Gleichzeitig dringen die 

Monomere in das Kollagenfasergeflecht ein. Deswegen besteht zu keiner Zeit ein ungeschütztes 

Kollagenfasergeflecht wie bei den TÄ. Bei Anwendung dieser Adhäsive fällt nicht nur ein 

Arbeitsschritt weg, sondern es wird auch die Technik vereinfacht. Nach der Vorbehandlung mit dem 

selbstkonditionierenden Primer wird bei den SÄ-2 ein Adhäsiv aufgetragen und lichtgehärtet. Das 

Adhäsiv bewirkt den Verbund zwischen dem vorbehandelten Dentin und dem Komposit. 
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2.5.b Ein-Schritt-Adhäsive (SÄ-1)  
 

Die Ein-Schritt-Adhäsiven (SÄ-1) erfordern nur noch einen Verarbeitungsschritt. Die ursprünglich 

getrennte Anwendung von Ätzmittel, Primer und Adhäsiv wird bei diesen Adhäsiven in einer 

Flüssigkeit vereint. In dieser Klasse gibt es: 

- Adhäsive in zwei Flaschen, die vor der Verwendung gemischt werden müssen, z.B.  

Xeno III wird als „Adhäsiv A“ und „Adhäsiv B“ geliefert und erlaubt somit die Aufteilung 

von Lösungsmitteln (Wasser und Ethanol als Co-Lösungsmittel) und säurehaltigen 

Monomeren auf verschiedene Flaschen (Faria-e-Silva 2009). 

- Adhäsive mit nur einer Flasche, die deswegen auf dem Dentalmarkt „Eine-Flasche-Adhäsive“ 

genannt werden, z.B. iBond wird in einer Flasche geliefert, in der die Lösungsmittel (Wasser und 

Aceton als Co-Lösungsmittel) und säurehaltige Monomere bereits vom Hersteller gemischt sind 

(Faria-e-Silva 2009). 

SÄ (SÄ-2 und SÄ-1) unterscheiden sich durch ihre Aggressivität und werden in drei Klassen 

eingeteilt: mild, mittelmäßig und sehr aggressiv (Van Meerbeek 2003). 

Das Ätzpotential von SÄ-Adhäsiven ist abhängig von ihrem pH (Santini 2008). 

Adper Prompt L-Pop wird als stark agressiv (pH = 0,9 - 1,0) angesehen im Vergleich zu anderen 

Eine-Flasche Adhäsive, z.B.  iBond (pH = 1,6) und Clearfil SE Bond (pH  = 1,9) (Van Meerbeek 

2003). Silorane System (pH = 2,7) (Santini 2008) und Bond Force (pH = 2,3) sind mild 

(Margvelashvili 2010) .  

 

 

2.6  Klinische Kriterien für die Untersuchung von Adhäsiven 

 

Bei der Untersuchung der klinischen Wirksamkeit von Adhäsiven wird empfohlen, Studien mit 

nicht-kariösen Klasse-V-Kavitäten zu betrachten, wofür es folgende Gründe gibt (Van Meerbeek 

1998; Peumans 2005): 

- zervikale Läsionen liefern keine makromechanische Retention, 

- sie erfordern mindestens 50 % Bindung ans Dentin, 

- wenn sie restauriert werden, ergeben sie sowohl Schmelz als auch Dentinseitenrand, 

- sie sind weit verbreitet erhältlich, 

- sie werden normalerweise bei Vorderzähnen oder bei Prämolaren mit gutem Zugang gefunden, 

- die Vorbereitung und Restauration der Klasse-V-Läsionen ist minimal und verhältnismäßig 
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einfach, was die Abhängigkeit vom Anwender verringert, 

-  trotz der unterschiedlichen Kavitätskonfigurationsfaktoren der Klasse-V-Läsionen und der daraus 

resultierenden Grenzflächenspannung sind die mechanischen Eigenschaften des verwendeten 

Komposits weniger wichtig, und 

-  unwirksame Haftung führt in der Regel zu Restaurationsverlust. 

 

2.7  In vitro Kriterien für die Untersuchung von Adhäsiven 

 

Labortests erlauben eine Vorausschätzung der klinischen Leistung der Adhäsive und/oder der 

Arbeitstechnik (Heinze 2009). 

Die Verbundfestigkeitsmessung (µTBS-Methode) ist ein sehr häufig benutzter Test zum Auswählen 

von Adhäsiven (De Munck 2005). Sie wurde 1994 von Sano et al. entwickelt (Van Meerbeek 2010) 

und ist heute die mit Abstand am häufigsten verwendete Methode zur Messung der 

Verbundfestigkeit (Van Meerbeek 2010). Weitere, weniger häufig verwendete Methoden  sind 

Mikro-Scherfestigkeit („micro shear“), Makro-Scherfestigkeit („macro shear“), Makro-

Zugfestigkeit („macro tensile“), Mikro-Schubfestigkeit („micro push-out“), Makro-Schubfestigkeit 

(„macro push-out“ ) (Van Meerbeek 2010). Die Unterscheidung zwischen Mikro- und Makro-Tests 

ist dabei jeweils durch die Größe der untersuchten Verbundfläche definiert, mit einer maximalen 

Fläche von 1 mm²  bei Mikro-Tests und einer Fläche von mindestens  3 mm²  bei Makro-Tests (De 

Munck 2005; Van Meerbeek 2010).  

Die Verbundfestigkeit ist stark abhängig von der Hybridschicht, von den in den Dentinkanälchen 

ausgebildeten Tags und von der chemischen Bindung  (Nakabayashi 1985; Ding 2009; Ding 2010). 

Die Schmierschicht hat keinen Einfluss auf die Verbundfestigkeit (Kenshima 2005). 

Während Nanoleakages keinen statistisch bedeutenden Einfluss auf die Verbundfestigkeit 

aufweisen, zeigen die Hybridschicht und die Tags einen positive Einfluss (Ding 2009).  

Die vorherige Studien von Ding (Ding 2009; Ding 2010) zeigen, dass eine Fluoreszenzfärbung mit 

Rhodamin-B-isothiocyanat, hingegen keinerlei Einfluss auf die Verbundfestigkeit hat. 

Für die Schmelzverbindung ergab die Verbundfestigkeitsmethode Werte von 39 MPa für TÄ-3 und 

30 MPa für TÄ-2. Im Allgemeinen sind nach der Verbundfestigkeitsmethode also die TÄ-3 etwas 

besser als die TÄ-2. Der Unterschied ist allerdings nicht besonders groß, so dass der Primer keinen 

negativen Einfluss auf die Verbindung hat (De Munck 2005).  

Bei der Dentinverbindung war der Unterschied zwischen den oben genannten Adhäsiven bei der 

Verbundfestigkeitsmethode hingegen signifikant größer (De Munck 2005). 
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Das Lösungsmittel des Adhäsives beeinflusst die Verbundfestigkeit: wenn als Lösungsmittel  

Wasser mit Alkohol verwendet wird (sehr oft Wasser-Ethanol Gemisch), ist die Verbundfestigkeit 

höher als bei Adhäsiven mit Aceton als Lösungsmittel, weil Wasser dem kollabierten Netzwerk von 

Kollagen erlaubt, sich wieder zu erweichen und aufzurichten (Van Meerbeek 1998; Manso 2008). 

Weitere die Haltbarkeit von Adhäsiven bestimmende Faktoren sind der künstliche Alterungsprozess, 

die Risszähigkeit und die Ermüdungsresistenz (De Munck 2005). Der künstliche Alterungsprozess 

wird durch Thermocycling, durch Wasserlagerung (im Wasser bei 37°C für einige Monate bis 4-5 

Jahre) oder durch Okklusalbelastung durchgeführt (De Munck 2005). Die Risszähigkeit 

(Bruchzähigkeit) kann als Maß für die Resistenz gegen Bruchausbreitung definiert werden und ist 

eine Materialeigenschaft (De Munck 2005). 

Nach Studien  in vitro sind Nanoleakage und Microleakage (siehe Seite 11) ebenfalls Kriterien zum 

Auswählen von Adhäsiven (De Munck 2005).  

 

2.8  Bedeutung des Verbundmechanismus am Zahnsubstrat 
 

Während die Adhäsion am Schmelz sich als einfach und dauerhaft erwiesen hat (Van Meerbeek 

2011), stellt die Adhäsion am Dentin wegen dessen großer morphologischer und physikalischer 

Variation (variable röhrenförmige Struktur, hoher organischer Anteil, und Flüssigkeitsströme) eine 

weitaus größere Herausforderung dar (Levinkind 1992; Perdigão 2010). 

Die Adhäsion am Zahnsubstrat beinhaltet einen Austausch von anorganischem Zahnsubstrat mit 

Kunststoffen (Van Meerbeek 2001; Van Meerbeek 2003; Peumans 2005) und besteht aus zwei 

Phasen: 

 1. In der ersten Phase werden Kalziumphosphate entfernt, wodurch Mikroporositäten an den 

Schmelz- und an den Dentinoberflächen freigelegt werden. 

 2. In der zweiten Phase erfolgt dann die Infiltration und nachfolgend die In-situ-Polymerisation des 

Kunstharzes innerhalb der an den Oberflächen erzeugten Mikroporositäten. Dieses resultiert in 

einem mechanisches Ineinandergreifen, welches primär auf Diffusionsmechanismen basiert. Das 

mechanische Ineinandergreifen wird als eine Voraussetzung für eine gute Verbindung unter 

klinischen Umständen angesehen (Van Meerbeek 2003). 

Die Penetration von Adhäsiv in das entmineralisierte Dentin bildet eine Hybridschicht mit 

intrabulären Zapfen („tags“), wodurch die mikromechanische Retention von Harz an 

vorbehandeltem Zahnsubstrat unterstützt wird (Van Meerbeek 1992; Albaladejo 2010). 

Diese mikromechanische Retention ist wichtig für die Klebefähigkeit am Dentin (Van Meerbeek 
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1992; Albaladejo 2010).  

Der Verbundmechanismus ist abhängig von der Penetration von Primer und Adhäsiv in die 

vorbehandelte Dentinfläche, um ein mikromechanisches Ineinandergreifen mit den Kollagenfasern 

zu erzeugen (Perdigão 2010). Dabei spielen sowohl mikromechanische als auch chemische 

Verbundmechanismen eine wichtige Rolle (Van Meerbeek 2003). 

Der Beitrag der Tags zur gesamten Verbundfestigkeit hängt von den getesteten Materialien, von der 

Orientierung der Dentinkanälchen (parallel oder schräg zur vorbereiteten Dentinfläche) und von der 

Dentintiefe (wo die Messungen gemacht sind: oberflächig, mittel oder tief) (Albaladejo 2010). 

Während der Beitrag der Penetration von Adhäsiv in die Dentinkanälchen zur gesamten 

Verbundfestigkeit als gering angesehen wird, spielt die Anpassung der Adhäsivtags an die inneren 

Dentinkanälchenwände wahrscheinlich eine signifikant größere Rolle (Van Meerbeek 1992; Pashley 

1993; Tam 1994; Albaladejo 2010). 

Die Rolle der Penetration von Adhäsiven in vorbehandelte Dentinkanälchen ist jedoch noch 

ungeklärt. Die Bedeutung, die der Infiltration und dem Fluss des Adhäsivs innerhalb der 

säurebehandelten Dentinkanälchen gegeben wird, wird kontrovers diskutiert (Giachetti 2004). 

Die aktuelle Literatur enthält mehrere widersprüchliche Interpretationen bezüglich der Rolle der 

Tags: während die Tags nach (Gwinett 1993) ungefähr 30 % zur gesamten Verbundfestigkeit 

beitragen können, besagen andere Studien, dass keine Wechselwirkung zwischen der 

Verbundfestigkeit und der Bildung der Tags existiert (Tao 1988) oder dass die Penetration von 

Adhäsiv ins Dentin der Haupteinflussfaktor für die Verbundfestigkeit ist (Van Meerbeek 1992; 

Albaladejo 2010).   

Aufgrund der Bedeutung der Tags als wichtiger Faktor für die Verbundeffektivität werden die  

Morphologie, die Länge und die Dichte der Tags in einigen Studien zur qualitativen oder 

semiquantitativen Untersuchung der Wirksamkeit von Adhäsivsystemen verwendet (Dagostin 2001; 

Giachetti 2004).    

Ein zweifacher Verbundmechanismus (mikromechanische und chemische Verbindung) wird als 

vorteilhaft im Hinblick auf die Dauerhaftigkeit der Restauration angesehen. Dieser Mechanismus 

hat eine mikromechanische Komponente, die insbesondere Widerstand gegen plötzlich auftretende 

Ablösespannungen bieten kann. Die chemische Interaktion hingegen kann zu Bindungen führen, die 

widerstandsfähiger gegen hydrolytische Zusammenbrüche sind und somit die Restaurationskanten 

für längere Zeiten versiegeln (De Munck 2005).
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2.9  Methoden für die Visualisierung der Penetration von Adhäsiven 

 

Die Visualisierung der Penetration von Adhäsiven in die Dentinkanälchen ist möglich mit mehreren 

Methoden, z.B. Transmissionselektronenmikroskopie (TEM), Rasterelektronenmikroskopie (SEM) 

und konfokaler Laser-Scanning-Mikroskopie (CLSM). 

In Vergleich zu anderen Methoden zur Visualisierung von Verbindungsstrukturen wie TEM und 

SEM bietet CLSM die Möglichkeit, die Komponenten von Adhäsiven zu unterscheiden (Bitter 

2009) und stellt eine wertvolle Technik für das Visualisieren der Abbindestrukturen wie 

Hybridschicht und Dentintags dar. Außerdem hat CLSM die Vorteile einer nichtzerstörenden 

Methode und kann Schichten bis zu 100 µm unter der Oberfläche sichtbar machen (Pioch 1997). 

CLSM-Untersuchungen bieten also die Gelegenheit zur Feststellung, welche von den Bestandteilen 

des Adhäsivs für die Bildung der hybriden Schicht hauptsächlich verantwortlich sind (Pioch 1997). 

Im 1987 wurde das CLSM zum ersten Mal von Watson und Boyde zur Darstellung von 

Adhäsivstrukturen auf der Dentinoberfläche verwendet (Watson 1987). Das Einfärben von 

Adhäsivkomponenten mit einem Fluoreszenzfarbstoff wurde bereits 1991 beschrieben (Watson 

1989; Watson 1991)  und danach von anderen Autoren in Studien benutzt (Watson 1992).  

Der Fluoreszenzfarbstoff absorbiert Licht in einem bestimmten Wellenlängenbereich (Erregung) 

und emittiert es in einem anderem, langwelligeren Wellenlängenbereich mit niedrigerer Energie 

(Emission) (D’Alpino 2006). 

Die am häufigsten verwendeten Fluoreszenzfarbstoffe sind Rhodamin B und Fluorescein sowie 

Thiocyanate. Die Erregungs- und Emissionwellenlängen für Fluorescein sind kürzer und es gibt 

eine Deckung mit denen von Rhodamin B (D’Alpino 2006). 

Rhodamin B ist sehr löslich in organischer Lösung wie Dentinprimer  (Pioch 1997) und stabil unter 

verschiedene pH (Sidhu 1998). 

Die Verwendung von mehreren Fluoreszenzfarbstoffen und mehreren Fluoreszenzmoden ist 

empfehlenswert, um die Verteilung von Primer und Adhäsiv innerhalb der Hybridschicht und der 

Dentinkanälchen  (Dentintubuli)  zu untersuchen (Watson 1989; Griffiths 1995). 

Die Beimischung von Fluoreszenzfarbstoffen in einer Komponente des Adhäsives (Primer oder 

Adhäsiv) basiert auf einer einfachen Mischung, weshalb das Risiko einer inhomogen Distribution 

von Fluoreszenzfarbstoffen nicht auszuschließen ist (Watson 1997; D’Alpino 2006; Bitter 2009). 
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3. Ziel der Dissertation  
 

Aufgabe der vorliegenden Arbeit ist es, das Infiltrationsverhalten von vier unterschiedlichen 

Klassen von Adhäsivsystemen und insgesamt 20 Adhäsiven in Dentin mittels konfokaler Laser-

Scanning-Mikroskopie (CLSM) zu untersuchen und zu vergleichen. 

Das Infiltrationsverhalten soll dabei qualitativ und quantitativ analysiert werden. 

  

Mit Hilfe dieser Studie sollen folgende Fragen geklärt werden: 

 

1.  Sind die Parameter der quantitativen Analyse (d.h. das Infiltrationsverhältnis und die Länge der 

Tags) abhängig von Adhäsivtyp, Lösungsmittel des Adhäsivs, Dentinposition (0,5, 1,5 und 2,5 mm 

Entfernung von SDG) sowie deren Kombinationen ? 

2. Sind die Parameter der quantitativen Analyse (d.h. das  Infiltrationsverhältnis und die Länge der 

Tags) abhängig von der Adhäsivklasse ? 

3. Beeinflusst die Dentinposition die Parameter der quantitative Analyse (d.h. das  

Infiltrationsverhältnis und die Länge der Tags) ? 

4. Beeinflussen der Adhäsivtyp, das Lösungsmittel des Adhäsivs und die Dentinposition sowie ihre 

Kombinationen die Parameter der qualitativen Analyse (d.h. Homogenität, Regularität und 

Kontinuität) ? 
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4. Material und Methode 
 

4.1  Charakterisierung der Materialien 

 

Für die vorliegende Studie wurden 20 Adhäsive zur Untersuchung ausgewählt, die sich durch ihre 

Ätztechniken (Total-Ätz-Technik und Selbstätz-Technik), ihre Lösungsmittel (Wasser, Aceton, 

Alkohol), die Anzahl der Arbeitsschritte sowie durch klinische Kriterien voneinander unterscheiden. 

Die Adhäsive sind in vier Klassen aufgeteilt, wobei für jede Klasse mindestens zwei Adhäsive 

ausgewählt wurden, die miteinander verglichen werden können (Tabellen 2 und 3).  

Im folgenden werden die Gründe für die Auswahl der einzelnen Adhäsive insbesondere im Hinblick 

auf die Verbundeffektivität als Verbundfestigkeit (µTBS) unter verschiedenen Umstände näher 

erläutert: 

 

Für die Klasse der TÄ-3-Adhäsive wurden Syntac (Ivoclar Vivadent) und Solobond Plus (Voco) 

ausgewählt. 

1. Syntac  ist eines der Adhäsive mit der längsten klinischen Erfahrung (es wird seit mehr als 15 

Jahren klinisch verwendet). Bei Syntac wird die Schmierschicht partiell oder total entfernt. Die 

Dicke der Hybridschicht ist abhängig von der Ätzeinwirkungszeit, so wird z.B. nach 30 s eine 

Dicke von 4,7 ± 0,7 µm und nach 15 s eine Dicke von 1,9 ± 0,8 µm gemessen (Pioch 1997). 

2. Solobond Plus ist ein Haftvermittlersystem mit Aceton als Lösungsmittel. Es kann unter 

Modifizierung der Schmierschicht sowohl als selbstkonditionierender Primer eingesetzt werden als 

auch in der Total-Ätz-Technik mit der Konditionierung über konzentrierte Phosphorsäure (34,5%). 

Durch sehr flexible Monomere, die im Primer und im Adhäsiv enthalten sind, werden die 

elastischen Eigenschaften der Hybridschicht erhöht. Die komplette Komposit-Füllung gibt dadurch 

bei Stressbelastung ohne zu reißen in die Richtung der Kraft nach und baut somit Spannungsspitzen 

ab. Dies führt neben der hohen Dentinhaftung zu langlebigen, dauerhaften Befestigungen. Die 

Wichtigkeit der elastischen Eigenschaften im Vergleich zur reinen Dentinhaftung ist in einer Studie 

(Van Meerbeek 1992) in Zusammenhang mit dem "elastic cavity wall concept" ausführlich erörtert 

worden. 
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Aus der Klasse der TÄ-2-Adhäsive wurden vier verschiedene Materialien ausgewählt: 

XP Bond (Dentsply), Excite (IvoclarVivadent), Prime&Bond NT (Dentsply DeTrey) und Solobond M 

(Voco). 

3. XP Bond  erzielt gemäß einer Studie (Rosales-Leal 2007) eine sehr hermetische Verschließung 

der  Dentinkanälchen, wenn die Endungen der Läsionen sowohl in Schmelz und auch in Dentin 

sind. XP Bond wurde für die vorliegende Studie insbesondere wegen seiner hervorragenden 

Microleakage-Eigenschaften ausgewählt, welche in der Praxis für beide Zahnkomponenten (d.h.  

Schmelz und Dentin) die gleiche Qualität wie bei TÄ-3 (z.B.Syntac) liefern (Manhart 2007). 

Desweiteren zeigt XP Bond im REM eine komplette Infiltration in das demineralisierte Dentin und 

eine sehr gute chemische Interaktion mit den Dentinkomponenten (Lattaa 2007). 

Außerdem zeigt XP Bond in einer Studie (Lattaa 2007) eine signifikant hohe Verbundfestigkeit an 

Dentin von ca. 25,8 ± 2,6 MPa im Vergleich mit einem TÄ-3, nämlich Syntac mit einer 

Verbundfestigkeit von ca. 13,2 ± 3,7 MPa.  

4. Excite zeigt eine gute Infiltrationskapazität, es penetriert fast den gesamten Läsionskörper, so 

dass nur sehr wenige poröse Räume an der Läsionsfrontseite übrig bleiben. Der Durchgriff von 

Excite wird offenbar durch den lösenden Ethanol erhöht, welcher einerseits die Viskosität des 

Adhäsivs senkt und zweitens den Wiedereinbau des eventuell verbleibenden restlichen Wassers an 

der Unterseite der Läsion ermöglicht (Meyer-Lueckel 2006).   

5. Solobond M  hat den höchsten Penetrationskoeffizienten aller geprüften Handelsprodukte, dringt 

aber kaum in künstliche Schmelzkaries (Meyer-Lueckel 2006) ein und ist nicht in der Lage, die 

weitere Entmineralisierung zu hemmen (Paris 2006). Es wird angenommen, dass die Verdampfung 

des Lösungsmittels die Penetration hemmt (Paris 2006). 

6. Prime & Bond NT entwickelt eine niedrigere Verbundfestigkeit als andere Adhäsive mit Aceton, 

was sich durch seine hohe Acetonkonzentration erklären lässt (Manso 2008). 

Bei der Benutzung von Prime & Bond NT und Syntac zeigt sich eine positive Permeabilität von 

Dentin (Rosales-Leal 2007).  

 

Aus der Klasse der SÄ-2-Adhäsive wurden 6 Materialien ausgewählt:  

Silorane System (3M ESPE), Clearfil SE (Kuraray), Adper™ Scotchbond™ SE  (3M ESPE), 

Futurabond NR (Voco), Xeno III (Dentsply DeTrey) und  AdheSE (Ivoclar Vivadent). 

7. Silorane System  hat als Besonderheit die Polymerisierung des Primers nach dem Auftragen. Weil 
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der Silorane-Primer saure Monomere enthält und vor der Anwendung des Silorane-Adhäsivs 

polymerisiert wird, ist er vergleichbar mit Eine-Flasche-Adhäsiven. So zeigt eine neuere Studie, 

dass die Dicke der Hybridschicht von Silorane, beobachtet durch REM, erheblich dünner als die 

Hybridschicht von TÄ ist, jedoch fast gleich dünn wie bei Eine-Flasche-Adhäsiven (Santini 2008). 

8. Clearfil SE Bond ist ein mildes SÄ-2 mit Wasser als Lösungsmittel, welches das Dentin teilweise 

entmineralisiert und zu einer flachen, aber konstanten Hybridschicht führt (Fukegawa 2006). 

Innerhalb dieser flachen Hybridschicht wirkt der Hydroxy-Apatit um die herausgestellten 

Kollagenfäserchen chemisch auf ein Funktionsmonomer, d.h. 10-Methacryloyloxydecyl-

dihydrogenphosphat (10-MDP) intensiv und beständig ein. Dieser Effekt ist für die sehr gute 

Abbindewirksamkeit dieses Adhäsivs zum Dentin verantwortlich (Fukegawa 2006). Clearfil SE 

Bond wird in dieser Adhäsivklasse wegen seiner sehr guten Verbundfestigkeit (Manso 2008) 

empfohlen;  gemäß einer Studie (Proença 2007) ist seine Verbundfestigkeit vergleichbar mit der von 

dem TÄ-Adhäsiv Prime & Bond NT. 

9. AdheSE  wird als mittelstarkes SÄ-Adhäsiv betrachtet, mit einem pH-Wert des Primers von 1,5. 

Die mittelstarken SÄ liegen zwischen den starken SÄ mit pH-Werten kleiner gleich 1 und den 

milden SÄ mit einem pH-Wert rund um 2. Bei den mittelstarken SÄ ist der Übergang von der 

Hybridschicht zum darunter liegenden unbeeinflussten Dentin mehr graduell. In der vorliegenden 

Studie werden außerdem auch Xeno III (pH-Wert des Primers = 1,4) und iBond (pH-Wert des 

Primers  = 1,6) als mittelstarke SÄ angesehen (Van Meerbeek 2003). In einer Studie (Bradna 2008) 

zeigt AdheSE eine Verbundfestigkeit, die vergleichbar ist mit der von Clearfil SE Bond und Excite, 

aber höher als die von iBond und Xeno III. 

 

10. Adper™ Scotchbond™ SE  hat eine höhere Verbundfestigkeit im Vergleich mit einem auch in 

dieser Studie verwendeten SÄ-1 gezeigt (Adper Easy Bond), aber eine niedrigere im Vergleich mit 

einem SÄ-2-Adhäsiv (Clearfil SE Bond) (Mine 2009). 

Adper™ Scotchbond™ SE hat keine Anzeichen von Nanoleakages im Vergleich mit anderen 

Adhäsiven (Adper Prompt L-Pop,  Clearfil  SE Bond, Clearfil S3 Bond, Adper Single Bond Plus, 

G-Bond) gezeigt (Perdigão 2006).  

 

11. Xeno III erzielt eine höhere Dentinversiegelung als die TÄ, weil die TÄ-Primer das freigelegte 

Kollagen infiltrieren, das Wasser ersetzen und die Dentinkanälchen versiegeln müssen und die 

Dichtung daher schwieriger zu erreichen ist (Rosales-Leal 2007).  

Xeno III und Adper Prompt L-Pop haben das beste Ätzpotential von mehreren selbstätzenden 
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Adhäsiven, weil die Monomere Phosphatderivate enthalten (Grégoire 2007).  Das Ätzpotential ist 

daher vergleichbar mit dem von Adhäsiven, welche mit Phosphorsäure arbeiten (Grégoire 2007). 

 

12. Futurabond NR enthält Nanofüller, die eine stärkere Adhäsivschicht und flexiblere Schnittstelle 

ermöglichen und Ormoceren (organisch modifiziertes Keramikmaterial), dem eine 

kalziumerschwerende Funktion zugeschrieben wird, welche die Verbundfestigkeit zur Zahnstruktur 

erhöht (Abdalla 2007). 

 

Aus der Klasse der Ein-Schritt-Adhäsive wurden insgesamt acht Adhäsivsysteme ausgewählt:  

AQ Bond (Sun Medical Co.), Xeno V (Dentsply De Trey), Adper Easy Bond (3M ESPE), iBond 

(Heraeus Kulzer), Bond Force (Tokuyama), Hybrid Bond (Sun Medical Co.), Futurabond DC 

(Voco) und Adper Prompt L-Pop (3M ESPE). 

 

13. Für AQ Bond und andere selbstätzende Adhäsive, die einen pH > 1 und Ethanol als 

Lösungsmittel verwenden, hat sich gezeigt, dass diese auch nach einem Jahr Wasserlagerung trotz 

gesunkener Verbundfestigkeit sehr gut erhalten sind (Osorio 2008). 

 

14.  Xeno V und Bond Force haben eine Verbundfestigkeit vergleichbar mit der des TÄ-2 XP Bond 

(Margvelashvili 2010). 

 

15. Adper Easy Bond enthält Phosphorester, die unter wässrigen Bedingungen die Oberflächen von 

Dentin und von Schmelz ätzen, um die mikromechanische Bindung eines Restaurierungs-Materials 

zuzulassen. Adper Easy Bond (pH = 2,4) hat eine Verbundfestigkeit vergleichbar mit der von sehr 

milden selbstätzenden Adhäsiven (Adhäsive mit pH > 2) (Mine 2009) 

 

16. iBond erzielt eine Verbundfestigkeit, welche auch nach 12 Monaten Wasserlagerung konstant 

bleibt und vergleichbar ist mit der Verbundfestigkeit von Adper Prompt L-Pop und Clearfil SE 

Bond (Reis 2009). 

 

17. Bond Force zeigt einen sehr guten Wert für die Verbundfestigkeit nach zwei Jahren 

Wasserlagerung, vergleichbar mit den Werten von Clearfil SE Bond (Walter 2012). 

 

18. Hybrid Bond zeigt in einer Studie (El Zohairy 2010) über die Verbundfestigkeit von Adhäsiven 

an Schmelz niedrige Werte im Vergleich mit anderen auch in der vorliegenden Arbeit verwendeten 
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Materialien (z.B. Clearfil SE Bond und Adper Prompt L-Pop). Dieses Adhäsiv erzielt jedoch gute 

Ergebnisse für die Verbundfestigkeit vergleichbar mit denen von AQ Bond in einer Studie (Ori 

2004), welche die Verbundfestigkeit von gesunden und kariösen Zähne untersucht, wobei der 

genannte Befund für gesunde und kariöse Molaren gleichermaßen gilt. 

 

19. Futurabond DC ist ein mit Nano-Füllern verstärktes Adhäsiv der siebten Generation. Mit seiner 

Toleranz gegenüber Restfeuchtigkeit sorgt es für sichere Haftung und dauerhafte Randdichtigkeit 

und hilft so, postoperative Sensibilitäten zu vermeiden. In einer Studie (Abdalla 2010) über die 

Verbundfestigkeit von Adhäsiven an Schmelz zeigt Futurabond DC sehr gute Ergebnisse 

vergleichbar mit denen von Clearfil SE Bond und Admira Bond (ein andere TÄ von Voco) und 

höhere Verbundfestigkeitswerte als Hybrid Bond. 

  

20. Adper Prompt L-Pop enthält Methacrylat-Phosphorsäure-Mono- und Di-Ester, welche eine 

kontinuierliche Entmineralisierung in den an die Dentinkanälchen angrenzenden Strukturen 

verursachen und somit das Kollagen destabilisieren können, weshalb diesem Material im Vergleich 

zu anderen Adhäsiven der gleichen Klassen eine geringere Verbundfestigkeit zugeschrieben wird 

(Proença 2007). In einer Studie (Van Meerbeek 2003) zeigt dieses Adhäsiv wegen seines 

Säuregrades einen Verbundfestigkeitswert vergleichbar mit dem von SÄ-2.   

 

Tabelle 2 fasst die untersuchten TÄ-Adhäsive mit Verfallsdatum, LOT, Zusammensetzung und 

Applikation zusammen.  

 

Tabelle 2: Total-Ätz-Adhäsive 

     

 

 

 

 

 

     3 

Arbeits-

schritte 

 

Adhäsiv, LOT Nr. Zusammensetzung Applikation 

Syntac (Ivoclar Viva-

dent) 

Ätzgel, K14609 

 

 

Primer, Ko8247 

 

 

 

Adhäsiv, K02656 

 

 

Heliobond, K01560 

 

 

 

37% Phosphorsäure        Ätzgel auf Dentin auftragen und 15 s 

einwirken lassen, Ätzgel gründlich 

für 5 s mit kräftigem Wasserstrahl 

abspülen, vorsichtig mit leichtem 

Luftstrom verblasen   

Tetraethylen-GDMA 25 % 

Maleinsäure 4%, Aceton, 

Wasser 

Primer mit Pinsel für ca. 15 s einmas-

sieren, Überschuss von Syntac-Pri-

mer verblasen, gründlich trocknen 

Glutaraldehyd, Maleinsäure, 

PEGDMA, Wasser 

Adhäsiv auftragen, 10 s einwirken 

lassen, mit Luftbläser gründlich 

trocknen 

Bis-GMA, Dimethacrylat, 

Initiatoren und Stabilisatoren 

Heliobond applizieren, dünn ausbla-

sen und lichthärten für 20 s            
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Solobond Plus 

(Voco) 

Vococid-Ätzgel, 

791595 

 

Primer, 0803003 

 

 

 

Adhäsiv, 0803002 

34,5% Phosphorsäure Ätzgel auf Dentin auftragen und 15 s 

einwirken lassen, Ätzgel gründlich 

für 5 s mit kräftigem Wasserstrahl 

abspülen, vorsichtig mit leichtem 

Luftstrom verblasen      

Maleinsäure, Wasser, Aceton, 

Natriumfluorid 

Primer auf Dentin 30 s einarbeiten, 

Primer-Überschüsse entfernen, 

mit Luft gründlich trocknen     

Methacryl-Carbonsäureester, 

HEMA, BisGMA, 

Kampferchinon, 

Butylhydroxytoluol, Aceton 

Adhäsiv  für 15 s einarbeiten,                            

anschließend Adhäsiv mit einem 

schwachen Luftstrom fein verteilen     

und 20 s lichthärten 

  

 

 

 

 

 

    2 

Arbeit- 

schritte 

 

 

Solobond M (Voco) 

 

Vococid-Ätzgel, 

791595 

 

 

Adhäsiv, 792382 

 

34,5% Phosphorsäure Ätzgel auf Dentin auftragen und 15 s 

einwirken lassen, Ätzgel absaugen, 

ca. 20 s mit Wasser abspülen,                

überschüssige Feuchtigkeit mit Luft-

bläser entfernen 

Methacryl-Phosphorsäureester, 

HEMA, Bis-GMA, 

Natriumfluorid, 

Kampferchinon, 

Butylhydroxytoluol, Aceton 

Solobond M mit Einwegpinsel auf-

tragen und 20 s einwirken lassen, 

anschließend mit einem schwachen 

Luftstrom verblasen und 20 s poly-

merisieren 

Excite (Ivoclar Viva-

dent) 

Ätzgel, K14609 

 

Adhäsiv, K01754 

37% Phosphorsäure        Ätzgel auf Dentin auftragen und 15 s 

einwirken lassen, Ätzgel mit Wasser 

ca. 5 s abspülen und leicht trocknen 

Phosphorsäureacrylat, HEMA, 

Bis-GMA, weitere Dimetha-

crylate, hochdisperses Silizi-

umdioxid (0,5%), Ethanol 

Adhäsiv dick auftragen, 10 s einmas-

sieren, leicht verblasen, damit eine 

gleichmäßige Schicht entsteht und 20 

s lichthärten 

XP Bond (Dentsply) 

Ätzgel (De Trey 

Conditioner ) 

0609001329 

 

Adhäsiv,  

0609001329 

 

36% Phosphorsäure Ätzgel auf Dentin auftragen und 15 s 

einwirken lassen, Ätzgel absaugen 

und mit Wasser 15 s abspülen,  

überschüssiges Wasser mit einem 

sanften Luftstoß entfernen 

PENTA, TCB resin, UDMA, 

TEGDMA, HEMA, Lichtini-

tiatoren (Kampferchinon, 

DMABE), Stabilisatoren 

(Butylatbenzenediol), Tertiäres 

Butanol, Nanofüller (formloses 

Silica) 

Adhäsiv auftragen und 20 s einwir-

ken lassen, 

mit Luftbläser 5 s sanft verblasen und 

20 s lichthärten 

 

Prime & Bond NT 

(Dentsply DeTrey) 

Ätzgel (DeTrey 

Conditioner ) 

0609001329 

Adhäsiv, 

0705002648 

36% Phosphorsäure Ätzgel auf Dentin auftragen und 15 s 

einwirken lassen, das Gel absaugen 

und mit Wasser  10 s abspülen, 

mit Luft leicht trocknen 

Di- und Trimethacrylat-Harze, 

funktionalisiertes amorphes 

Siliziumdioxid, PENTA 

(Dipentaerytritolpentacrylat-

Phosphorsäure-Monomer), 

Lichtinitiatoren, Stabilisatoren, 

Cetylaminhydrofluorid,Aceton  

Adhäsiv auftragen und 20 s einwir- 

ken lassen, 

mit Luftbläser 5 s leicht verblasen 

und dann 20 s lichthärten 
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Tabelle 3 fasst die untersuchten SA-Adhäsive mit Verfallsdatum, LOT, Zusammensetzung und 

Applikation nach Hersteller zusammen.  

 

Tabelle 3: Selbstätz-Adhäsive 

 

    

 

    

 

 

 

     2  

Arbeit –

schritte 

Adhäsiv, LOT Nr. Zusammensetzung Applikation 

Silorane System 

(3M ESPE) 

Primer, 292319 

 

 

 

Adhäsiv, 292274 

phosphorylierte Methacrylate, 

Vitrebond™ Copolymer, HEMA, 

BisGMA, Wasser, Ethanol,  

mit Silica-Füller behandelte Sila-

ne, Initiatoren und Stabilisatoren 

Silorane Primer auftragen und 15 s 

einmassieren, 

mit Luftbläser leicht trocken und   

10 s polymerisieren 

 hydrophobes Dimethacrylat, 

phosphorylierte Methacrylate, 

TEGDMA, mit Silica-Füller (6%) 

behandelte Silane, Initiatoren und 

Stabilisatoren 

Silorane Adhäsiv auftragen,  

mit Luft sanft verblasen für einen 

gleichmäßigen Film und 20 s 

lichthärten 

Clearfil SE Bond 

(Kuraray) 

Primer, 41586 

 

Adhäsiv, 41586 

 

MDP, HEMA, Hydrophiles 

DMA,Wasser, Kampferchinon, 

N, N-Diethanol-p-toluidin 

Primer auftragen und 20 s einwir-

ken lassen, mit leichtem Luftstrom 

Lösungsmittel verdampfen 

Bis-GMA, HEMA, MDP,  

Hydrophobes DMA, 

Kampferchinon, N,N-Diethanol-

p-toluidin, Mikrofüller 

Adhäsiv auftragen, mit leichtem 

Luftstrom zu einem gleichmäßigen 

Film verblasen und 20 s lichthärten 

Adper™ Scotch-

bond™ SE   

(3M ESPE) 

Liquid A, 7AH 

 

 

Liquid B, 7AG 

2-HEMA,Rose Bengal 

Farbstoffe,Wasser 

Liquid A auftragen                     

Diurethandimethacrylat, 

 D,L-Kampherchinon, Triethylen-

glycoldimethacrylat, Dimethyl-

aminoethylbenzoat, Mono-HEMA 

-Phosphat, Di-HEMA-Phosphat, 

Tri-HEMA-Phosphat, Hexandiol-

dimethacrylat, Phosphorsäure-

methacryloxyhexylester, 

Propylidintrimethyltrimethacrylat, 

Pyrophosphatmethacrylat, 

Zirkonoxid-Nanofüller (15-25%) 

Liquid B auftragen und 20 s ein-

massieren, mit Luft 10 s trocken 

blasen, damit das Wasser 

verdunstet, nochmal mit dem 

Liquid B eine zweite Schicht 

auftragen, 

mit leichtem Luftstrom zu einem 

gleichmäßig dünnen Film verbla-

sen und 20 s lichthärten 

 

Adhe SE (Ivoclar 

Vivadent ) 

Primer, JO6075 

 

 

Adhäsiv, K03345 

Phosphonsäureacrylat, 

Bis-Acrylsäureamid,Wasser, 

Initiatoren und Stabilisatoren 

Primer 15 s ins Dentin einmas-

sieren und 15 s einwirken lassen,                                                   

Überschuss mit starkem Luftstrom 

verblasen, bis kein beweglicher                                                          

Flüssigkeitsfilm mehr sichtbar ist  

Dimethacrylate-HEMA, 

hochdisperses Siliziumdioxid, 

Initiatoren und Stabilisatoren 

Adhäsiv auf Dentin auftragen, 

mit leichtem Luftstrom verblasen 

und 20 s lichthärten                                                                                                                                                                                     

 

 

 

 

 

 

 

Futurabond NR 

(Voco) 

Liquid A, 761101 

 

Liquid B, 761102 

2-HEMA, Wasser, Ethanol, 

Butylhydroxytoluol (BHT), 

hochdisperses Siliziumdioxid   

20 s einen Tropfen Liquid A und 

einen Tropfen Liquid B auf einer 

Mischplatte ca. 5 s mischen, Adhä-

siv in nicht zu dünner Schicht auf 

Dentin auftragen und 20 s einmas-

sieren, Adhäsivschicht mit Luftblä-

ser 5 s trocknen und 20 s polymeri-

Ethanol, Wasser, Fluorid, 

hydrophile Adhäsiv-Monomere 
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1 

Arbeits-

schritt 

 

 

 

 

 

 

 

 

 

sieren 

 

XenoIII (Dentsply) 

Adhäsiv A, 

0608002341 

Adhäsiv B, 

0608002669 

 

HEMA, Wasser, Ethanol, BHT, 

hochdisperses Siliziumdioxid 

gleiche Menge von Flüssigkeit A 

und B 5 s durchmischen, ange-

mischtes Adhäsiv auf Dentin auf-

tragen und 20 s einwirken lassen, 

mit leichtem Luftstrom verblasen 

und 20 s lichthärten 

Pyro-EMA, PEM-F, UDMA, 

BHT, Kampferchinone, EPD 

XenoV (Dentsply) 

Adhäsiv, 

0704000721 

 

Bifunktionale Acrylate, Saure 

Acrylate, Acrylsäure, Phosphor-

säureester, Tertiäres Butanol,  

Initiator (Kampferchinon), 

Stabilisator (Butyliertes Benzen-

diol), Wasser 

Adhäsiv auftragen und 20 s  

einmassieren, 

mit Luftstrom mindestens 5 s ver-

blasen und 20 s polymerisieren 

Adper Prompt  L-

Pop  (3M ESPE) 

Adhäsiv, 2554565 

Wasser, 10% HEMA, Bis-GMA, 

methacrylierte Phosphorsäure- 

ester,  Initiatoren basierend auf 

Kampferchinon, Stabilisatoren 

Adhäsiv auftragen und 15 s unter 

Druck einmassieren, 

mit Luft verblasen und 20 s licht-

härten 

iBond   

(Heraeus Kulzer) 

Adhäsiv, 010043 

UDMA, 4-META,  

Glutardialdehyd, Aceton, Wasser, 

Photoinitiatoren, Stabilisatoren 

Adhäsiv auftragen und 20 s ein-

massieren,  

mit Luft verblasen und 20 s licht-

härten 

Hybrid Bond   

(Sun Medical Co.) 

Adhäsiv, LF 2 

UDMA, MMA, 4-META, 

Polymerisationsinitiatoren, 

Aceton, Wasser 

Adhäsiv auftragen und 20 s ein-

massieren,  

mit Luft verblassen und 20 s licht-

härten       

Futurabond DC 

(Voco) 

Liquid 1, 791595 

 

 

Liquid 2, 792382 

Methacryl-Phosphorsäureester, 

HEMA, Bis-GMA, 

Natriumfluorid, Kampferchinon 

Butylhydroxytoluol, Aceton 

1 Tropfen Liquid 1 und 1 Tropfen 

Liquid 2 auf einer Mischplatte  

mischen,   

Adhäsiv in nicht zu dünner Schicht 

auf Dentin auftragen und 20 s ein-

massieren,                                 

Adhäsivschicht  mit Luftbläser 5 s 

trocknen und 20 s polymerisieren 

organische Säuren, Bis-GMA, 

HEMA, TMPTMA, Kampferchi-

non, Amine (DABE), BHT, Kata-

lysatoren, Nanofüller, Fluoride 

und Ethanol 

Bond Force 

(Tokuyama) 

Adhäsiv, YT 20177 

Alkohol, C2-4 alkyl, Methacryl-

oyloxyalkylsäurephosphat (Phos-

phorsäure-Monomer), 2-HEMA, 

Bis-GMA, Kampferchinon, 

Triethylenglykoldimethcrylat,  

gereinigtes Wasser 

Adhäsiv auftragen und für 20 s 

einmassieren, 

mit starkem Luftstrom mindestens   

5 s abblasen und 20 s lichthärten 

AQ Bond  

(Sun Medical Co.) 

Adhäsiv, SE 2 

UDMA, MMA, 4-META, 

HEMA, 

Polymerisationsinitiator, Aceton, 

Wasser 

1 Tropfen AQ Bond auf Mischplat-

te, die schon einen AQ Bond-

Schwamm enthält,  

Adhäsiv mit dem Schwamm 20 s 

auftragen,  mit Luft ca. 5 s verbla-

sen und 20 s lichthärten 

Adper™Easy Bond   

(3M ESPE) 

Adhäsiv, 302051 

HEMA, BIS-GMA, 

Methacrylated Phosphorester, 

Hexandiol-1.6-Dimethacrylat, 

Vitrebond™ Copolymer, 

zerstreute fein verbundene 

Silikonfüller (7 nm), Ethanol, 

Wasser, Initiatoren basierend auf 

Kampferchinon 

Adhäsiv auftragen und 20 s ein-

massieren, 

mit Luft 5 s verblasen und 20 s 

lichthärten 

 

 



4. Materialien und Methode 

27 

 

Tabelle 4 zeigt die anderen in dieser Studie verwendeten Materialien mit Verfallsdatum, LOT, 

Zusammensetzung und Applikation nach Hersteller.  

 

Tabelle 4:  Andere in der vorliegenden Studie verwendete Materialien außer Adhäsive 

Material Hersteller Lot  Nr. 

Komposit Saremco Dental B2 7107 

Fluoreszenzfärbung 

Rhodamin B-

Isothiocyanat 

Polysciences  Inc. 

Warrington USA 
560587 

Fluoreszenzfärbung 

Nilblauchlorid 
Fluka, USA 1281992 
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4.2  Präparation der Proben 
 

 

Abb. 1:  schematische Zeichnung der Molaren Präparation  

 

Es wurden durch visuelle Inspektion 70 extrahierte menschliche Molaren ausgewählt, die zuvor in 

Natriumazid gelagert wurden und keine Karies, Füllungen oder Verfärbungen aufwiesen. Zur 

Vorbereitung wurden die Molaren für eine Minute in Natriumhypochlorit  zur  Desinfektion  

gelagert. Anschließend wurde die Position der Molaren im Mund bestimmt und mit einem Marker  

die Zahnseite (vestibulär, lingual oder buccal), die mezio-distale Linie und das obere koronare 

Drittel markiert. 

Die markierten Molaren wurden mit heißem Wachs (Kerr GmbH, Ratstatt, Deutschland) auf die für 

die Präzisions-Trennschneider Niedertourensäge (Isomet, Buehler GmbH, Düsseldorf, Deutschland) 

gehörigen Objekthalter geklebt. Das obere koronare  Drittel von jedem Molar wurde mit dieser 

Präzisions-Trennschneider-Niedertourensäge mit einem diamantierten Sägeblatt mit niedriger 

Geschwindigkeit abgeschnitten. Zudem wurde auf eine ausreichende Kühlung mit destilliertem 

Wasser geachtet.  Die Molaren ohne das erste koronare Drittel wurden mit dem gleichen Gerät auf 

der mezio-distalen Linie halbiert. 

Jede Hälfte wurde mit Schleifpapier (LECO Corporation, Körnung 220) (Olalekan 2005) ca. 2 min  

nass geschliffen (Nassschleif und Poliersystem Leco VP 100, Leco Instrumente GmbH, 

Mönchengladbach, Deutschland), um eine Oberfläche zu bekommen, die mit der Schmierschicht 

vergleichbar ist, die in der Praxis durch die Behandlung mit dem Rosenbohrer entsteht (Van 

Landuyt 2005).  

Jede dieser Oberflächen wurde mit den ausgewählten Adhäsiven behandelt, wobei die Adhäsive 

entsprechend den Herstellerangaben aufgetragen wurden und dann 20 s mit einem LED-
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Polymerisationsgerät (Elipar Freelight 2, 3M ESPE, Seefeld, Deutschland) polymerisiert wurden. 

Bei den Adhäsiven mit zwei oder drei Arbeitsschritten wurde das Adhäsiv mit 0,1 % 

Fluoreszenzfärbung Rhodamin B-Isothiocyanat (Tabelle 4) gemischt, während der Primer mit 0.1 % 

Fluoreszenzfärbung Nilblauchlorid (Tabelle 4) gemischt wurde. Die Quantität der 

Fluoreszenzfarben wurde mit eine Mikro-Präzisionswaage (Sartorius Type: R 200 D Serie Nr: 

21102353, Mettler-Toledo GmbH, Ockerweg 3, Gießen, Deutschland) bestimmt. 

Beim  Filtek  Silorane System Adhäsiv (3M ESPE) wurde aus chemischen Gründen umgekehrt 

vorgegangen: der Primer wurde mit 0,1 % Rhodamin B-Isothiocyanat  gemischt, während das 

Adhäsiv mit 0,1 % Nilblauchlorid gemischt wurde.  

Am Ende der Präparation wurde das Restaurationsmaterial, ein Komposit (Saremco Dental B2, 

Tabelle 4) mit einer Dicke von 1,5 mm aufgetragen und dann 20 s mit einer LED-Lampe (Elipar 

Freelight 2) polymerisiert.  Die präparierten Hälften wurden 24 Stunden in destilliertem Wasser bei 

37°C im Ofen (Memmert GmbH, Model 400, Schwabach, Deutschland) gelagert. 

Jede Hälfte wurde mit Sekundenkleber (UHU GmbH & Co. KG, Bühl, Deutschland) auf die zur  

Innenlochsäge (Leica SP 1600, Leica Mikrosystems Vertrieb GmbH, Bensheim, Deutschland) 

gehörigen Objekthalter geklebt und mit dieser Innenlochsäge und einem diamantierten Sägeblatt der 

Dicke 300 µm bei einer Drehzahl von 600 U/min zerteilt. 

Zudem wurde auf eine ausreichende Wasserkühlung und minimalen Druck geachtet und die 

Molaren wurden in zwei Scheiben geschnitten. Jeweils die beiden zur mezio-distalen Linie 

benachbarten Scheiben wurden zur Untersuchung mit dem CLSM (Confocal Laser Scanning 

Microscope LSM 510, Zeiss, Jena, Deutschland) bereitgestellt. Die Proben wurden endgültig mit 

gewässertem Schleifpapier aufsteigender Körnung (Schleifpapier Körnung 1200, 2500, LECO 

Corporation) parallelisiert und poliert (Nassschleif und Poliersystem Leco VP 100, Leco 

Instrumente GmbH, Mönchengladbach, Deutschland). Die Dicke der Proben wurde mit einem 

digitalen Mikrometer überprüft (Bügelmessschraube Digimatic; Fa. Mitutoyo, Kawasaki, Japan). 

Die beiden Scheiben, die gemessen werden sollten, wurden unter destilliertem Wasser ausgespült, 

um jeden möglichen Rest zu entfernen, und dann auf die CLSM-Kunststoffplatte gebracht. Die 

Messungen wurden in destillierter Wasserimmersion gemacht, weil die Proben immer feucht 

bleiben müssen, da jede Gelegenheit zur Trocknung die Qualität der Proben und der Messungen 

beeinflussen kann. 

Jede dieser beiden Scheiben wurde dann mit dem CLSM jeweils an drei Stellen in Abständen von  

0,5 mm (d1), 1,5 mm (d2) und 2,5 mm (d3) von der SDG untersucht. Die jeweils observierte 

Schicht befand sich 10,2 μm unter der polierten Probenoberfläche. 
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4.3  Messungen mit CLSM 
 

4.3.1 Grundlagen der konfokalen Laser-Scanning-Mikroskopie 
 

 

Die Abb. 2 zeigt den prinzipiellen Aufbau eines konfokalen Laser-Scanning-Mikroskops (CLSM).  

Im Unterschied zur konventionellen Lichtmikroskopie, bei der jeweils ein einziger flächiger 

Probenbereich vergrößert abgebildet wird, erfolgt beim CLSM eine sequentielle punktförmige 

Abtastung des Probe mit einem fokussierten Laserstrahl, wobei das von der Probe abgestrahlte 

Licht Punkt für Punkt auf einen Detektor abgebildet wird (Wilhelm 2003). Aus den nacheinander 

gewonnenen Bildpunkten wird dann im Computer ein vergrößertes zweidimensionales Bild des 

gesamten sequentiell abgetasteten Probenbereiches zusammengesetzt. Die konfokale Laser-

Scanning-Mikroskopie gehört somit zu den Rastermikroskopieverfahren. 

Die punktförmige Abbildung wird mittels einer in der Zwischenbildebene des CLSM-Mikroskops 

angeordneten konfokalen Apertur erzeugt, welche mit dem englischsprachigen Fachbegriff 

„Pinhole” bezeichnet wird (Wilhelm 2003). Dabei handelt es sich um eine Lochblende mit 

variablem Durchmesser.  Im Idealfall wäre der Pinhole-Durchmesser unendlich klein, so dass eine 

punktförmige Abbildung entsteht. In der Praxis ist der Durchmesser des Pinholes und damit die 

Auflösung des konfokalen Abbildungssystems nach unten begrenzt durch die 

wellenlängenabhängige Beugung des Lichtes sowie durch die begrenzte Intensität des von der 

Probe abgestrahlten Lichtes (Wilhelm 2003), worauf im folgenden Absatz 4.3.2 genauer 

eingegangen wird.  
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Da das Pinhole und die Probe in konjugierten Ebenen des optischen System liegen, wird – bei 

hinreichend kleinem Pinhole-Durchmesser – jeweils nur Licht aus der Fokusebene der Probe auf 

den Detektor abgebildet. Somit werden Streulicht und Licht aus tiefer liegenden Probenbereichen 

weitgehend ausgeblendet, was einen – im Vergleich zur konventionellen Lichtmikroskopie – 

höheren Bildkontrast ermöglicht (Wilhelm 2003). Außerdem erlaubt die konfokale Laser-Scanning-

Mikroskopie auf diese Weise eine tiefenabhängige Untersuchung von dreidimensionalen Proben. 

Durch Variation der Fokusebene oder durch Verschiebung der Probe entlang der optischen Achse 

können übereinanderliegende, bis zu weniger als 500 nm dünne Probenschichten abgebildet werden 

(Wilhelm 2003). Daher eignet sich das CLSM besonders für die zerstörungsfreie Untersuchung von 

biologischem Gewebe, welches – meistens in Kombination mit Fluoreszenz – in Tiefen von bis zu 

100 µm unter der Oberfläche untersucht werden kann (Pioch 1997).  

Hintergrund Fokusebene 

Emissionfilter 

Mikroskopobjektiv 

Detektor 

Dichroitischer Spiegel 

Laser 

Pinhole 

Detektionsbereich 

Abb. 2:  Prinzipieller Aufbau eines konfokalen Laser-Scanning-Mikroskops  (Wilhelm 2003) 
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Andererseits kann das CLSM durch Vergrößerung des Pinholes auf maximalen Durchmesser als 

nichtkonfokales konventionelles Lichtmikroskop oder Fluoreszenzmikroskop betrieben werden, 

wodurch Vergleichsmessungen zwischen konventioneller Mikroskopie und konfokaler 

Rastermikroskopie ermöglicht werden.     

 

4.3.2 Auflösungsgrenzen und Fehlerquellen des CLSM 

 
 

Als laterale Auflösung des CLSM wird die Länge der kleinstmöglichen auflösbaren, senkrecht zur 

optischen Achse in der Fokusebene angeordneten Struktur verstanden. Wegen der Möglichkeit zur 

tiefenabhängigen dreidimensionalen Probenuntersuchung ist beim CLSM außerdem auch die axiale 

Auflösung als kleinstmögliche auflösbare Länge in Richtung der optischen Achse zu 

berücksichtigen (Wilhelm 2003).  

Die axiale und laterale optische Auflösung des CSLM ist durch die wellenlängenabhängige 

Beugung des Lichtes begrenzt. Unter Beugung wird in der Optik allgemein die Ablenkung des 

Lichtes durch Objekte verstanden, deren Abmessungen in der Größenordnung der Lichtwellenlänge 

liegen. In diesem Fall verlieren die für größere Längenskalen geltenden Gesetze der geometrischen 

Optik ihre Gültigkeit, da sich die Wellennatur des Lichtes unmittelbar bemerkbar macht (Hecht 

1989). Gemäß der Beugungstheorie wird die Ausbreitung des Lichtes als Überlagerung von 

Elementarwellen erklärt, die sich von jedem Punkt des vom Licht durchflossenen Raumes 

gleichmäßig in alle Richtungen ausbreiten (Kugelwellen). Durch die Überlagerung vieler 

benachbarter Elementarwellen entstehen in homogenen Medien aufgrund von Interferenzen 

resultierende Lichtwellen, die für große Längenskalen als sich geradlinig ausbreitende Lichtstrahlen 

darstellt werden können (Hecht 1989).   

Hingegen kommt es an Hindernissen kleiner oder gleich der Größenordnung der Wellenlänge 

wegen des Fehlens von destruktiven Interferenzen zu einer teilweisen Ausbreitung des Lichtes in 

den Schattenraum; d.h. es wird Licht auch in solche Bereiche abgelenkt, die nach den Gesetzen der 

geometrischen Optik (Strahlenoptik) abgeschattet sein müssten (Hecht 1989).  

Aus diesem Grunde kann ein Objekt in der Größenordnung kleiner oder gleich der Wellenlänge 

nicht entsprechend den Abbildungsgesetzen der geometrischen Optik scharf abgebildet werden, 

sondern erscheint durch Beugung „verschmiert“, da die in einem einzelnen Punkt enthaltene 

Information nicht jeweils wieder auf einen Punkt abgebildet werden kann, sondern auf ein 

ausgedehntes Beugungsmuster verteilt wird (Wilhelm 2003).     
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Daher gilt generell, dass die optische Auflösungsgrenze nicht wesentlich niedriger als die jeweilige 

Lichtwellenlänge sein kann.  

 

Bei einer Lochblende wie dem beim CLSM verwendeten Pinhole breiten sich kugelförmige Wellen 

von der Blendenöffnung in den Schattenraum aus und es ergibt sich hinter der Blende ein 

charakteristisches Beugungsbild, welches aus einer inneren hellen Kreisscheibe und einer Abfolge 

von diese Scheibe umschließenden konzentrischen Kreisringen mit abnehmender Intensität besteht. 

Die zentrale innere Scheibe wird als Beugungscheibchen oder Airy-Scheibe bezeichnet (Hecht 

1989).  

Beim CLSM wird zur Abschätzung des Einflusses der Beugung und zur vereinfachten 

Parameterdarstellung unter anderem die Pinholegröße als Vielfaches der optischen Koordinate AU 

(„Airy unit“) angegeben, wobei  

    (4.1)            NAAU ex /22.11    

mit ex  als Wellenlänge des anregenden Lichtes und NA als die numerische Apertur des 

Mikroskopobjektivs (Wilhelm 2003).  

1 AU entspricht dabei jeweils dem Durchmesser der Airy-Scheibe, die durch Beugung am ebenfalls 

als Blende wirkenden Mikroskopobjektiv entsteht.  

Für kleine Pinholedurchmesser größer oder gleich 1 AU ergibt sich laut (Wilhelm 2003) bei 

homogener Ausleuchtung  

   (4.2)     laterale Auflösung =  0.51 * ex /NA  

und  

    (4.3)    axiale Auflösung = 
22
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 wobei ex  die Wellenlänge des auf die Probe eingestrahlten Laserlichtes und n der Brechungsindex 

der Immersionsflüssigkeit ist.  

Die Dicke d der mit dem CLSM abbildbaren optischen Schichten ergibt sich gemäß (Wilhelm 2003) 

für Pinholedurchmesser PH größer als 1 AU zu  

  (4.4)      d = 

22

22

288.0












 




















NA

PHn

NAnn

em
 

Gemäß (Carl Zeiss Jena GmbH 2003) wird eine Pinhole-Größe  von 1 AU empfohlen als bester 

Kompromiss zwischen einer möglichst geringen optischen Schichtdicke einerseits und einer 

möglichst hohen Messgenauigkeit andererseits.  
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Die Bildqualität des CLSM hängt jedoch nicht nur von der Auflösung des optischen Systems ab, 

sondern auch von der Art der Digitalisierung sowie von der Pixelgröße (Wilhelm 2003). Als 

optimale Pixelgröße gilt nach dem Nyquist-Theorem die Hälfte der lateralen Auflösungsgrenze, d.h. 

exakt zwei Pixel pro auflösbarer Struktur, da eine geringere Pixelzahl zu Informationsverlusten 

führt, während eine höhere Pixelzahl in einer höheren Datenmenge ohne relevanten 

Informationsgewinn resultiert (oversampling).  

Bei der Digitalisierung wird grundsätzlich zwischen zwei Typen unterschieden, die durch das 

Verhältnis von Signaldetektionszeit (Messzeit) und Pixelzeit bestimmt sind: 

a)  Sampling: Die Signaldetektionszeit (Messzeit) ist klein gegenüber der Pixelzeit, und  

b)  Integration: Signaldetektionszeit und Pixelzeit liegen in der gleichen Größenordnung.  

Die Pixelzeit kann durch Variation der Scangeschwindigkeit eingestellt werden.  

Während Punkt-Sampling in einer höheren zeitlichen Dichte von Messpunkten und daher allgemein 

zu einer höheren Genauigkeit führt, kann die Integration über größere Messzeiträume zur 

Reduzierung von statistischen Fehlerquellen (Rauschen) des CLSM verwendet werden (Wilhelm 

2003). 

Die wichtigsten statistischen Fehlerquellen bei der Bilderzeugung im CLSM sind Detektorrauschen, 

Laserrauschen sowie das Quantenrauschen des Lichtes, wobei letzteres bei Fluoreszenzmessungen 

in der Regel den größten Beitrag zum Gesamtrauschen liefert (Wilhelm 2003). Der Einfluss des 

Rauschens auf das Meßergebnis nimmt dabei jeweils mit sinkender Intensität des Lichtsignales zu. 

Somit führt eine Verkleinerung des Pinholes einerseits zu einer höheren Bildauflösung in axialer 

und lateraler Probenrichtung, andererseits jedoch auch zu einem höheren Signal-Rausch-Verhältnis. 

Zur Verbesserung des Signal-Rausch-Verhältnisses wird daher üblicherweise eine genügend hohe 

Pixelzeit sowie eine Mittelung über eine Mehrzahl von Scans verwendet (Wilhelm 2003).  

Diese Mittelwertbildungen sind jedoch wiederum durch die Abklingzeiten der Fluoreszenzanregung 

begrenzt, da nicht sinnvoll über Zeiten gemittelt werden kann, die größer als die mittlere 

Abklingzeit der Fluoreszenzanregung sind. 

 

4.3.3 Ausstattung und Einstellungen des CLSM 
 

 

Für die Untersuchungen der vorliegende Studie wurde ein konfokales Laser-Scanning-Mikroskop 

vom Typ LSM 510, Zeiss (Jena) mit einem Wasser-Immersions-Objektiv „Achroplan 63x/0,95 W“ - 

d.h. ein Objektiv mit 63facher Vergrößerung und einer numerischen Apertur von 0.95 - verwendet.  
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Das LSM 510 verfügt über ein aus mehreren Lasern bestehendes Lasermodul, welches einen Argon-

Laser (30 mW) mit den Wellenlängen 458 nm, 477 nm, 488 nm und 514 nm  sowie drei 

verschiedene Helium-Neon-Laser mit Wellenlängen von 543 nm (1 mW), 594 nm (2 mW) und 633 

nm (5 mW) aufweist (Carl Zeiss Jena GmbH 2003). 

Bei den im Rahmen der vorliegenden Studie durchgeführten Messungen wurde die Proben jeweils 

ausschließlich mit dem blauen Licht der Wellenlänge 488 nm des Argon-Lasers sowie der roten 

Helium-Neon-Laserwellenlänge 633 nm beleuchtet. Mit dem blauen Laserlicht wurden die 

Fluoreszenz-Moleküle des Farbstoffes in den Proben angeregt. Das von den Fluoreszenzmolekülen 

abgestrahlte Licht weist eine höhere Wellenlänge und somit eine andere Farbe als das anregende 

Laserlicht auf und kann daher eindeutig von diesem unterschieden werden. Durch Einschaltung 

geeigneter Farbfilter zwischen Pinhole und Detektor wird weiterhin sicher gestellt, dass nur das von 

der jeweiligen Probenschicht  in der Fokusebene abgestrahlte Fluoreszenzlicht und nicht das an der 

Probe reflektierte blaue Laserlicht den Detektor erreicht. Bei dem in dieser Studie verwendeten 

Farbstoff Rhodamin-B-Isothiocyanat liegen die Emissionswellenlängen im gelben bis roten Bereich 

des optischen Spektrums.   

Zur Kontrastverbesserung wurden für die Untersuchungen insgesamt vier verschiedene zur 

Verfügung stehende Farbkanäle des CLSM verwendet. Dabei wird für jeden der Kanäle 1 bis 3 eine 

bestimmte Lichtwellenlänge und eine bestimmte Farbfilterkonfiguration eingestellt. Dazu passende 

Strahlteileranordnungen und Pinholegrößen können dann durch die CLSM-Software automatisch 

(„optimale Konfiguration“) oder benutzerdefiniert ausgewählt werden. Bei den unten ausgewerteten 

Messungen betrugen die Filterwellenlängen jeweils 650 nm (Kanal 1), 530 bis 600 nm (Kanal 2), 

420 nm (Kanal 3). Das im Kanal 4 detektierte Signal stellt eine Überlagerung der in den Kanälen 1 

bis 3 detektierten Signale dar. 

Dabei dient der Kanal 1 zur Visualisierung der mit Rhodamin-B-Isothiocyanat markierten Adhäsive, 

während der Kanal 2 zur Identifizierung der nicht mit Adhäsiv infiltrierten Dentinkanälchen dient.  

Die Pinholegröße muss für jeden Kanal so eingestellt werden, dass die optische Schichtdicke 

(„optical slice thickness“) für jeden Kanal gleich ist. Diese Einstellung wird vom Steuerprogramm 

vorgenommen, so dass für die gewählten Filterwellenlängen der einzelnen Kanäle automatisch die 

zugehörige Pinholegröße berechnet und eingestellt wird.  

Das punktweise Abtasten der Proben erfolgt durch ein computergesteuertes Scanmodul, welches 

zwei unabhängig voneinander ansteuerbare Scanspiegel aufweist, mit denen der Laserstrahl in zwei 

zu einander senkrechten Richtungen abgelenkt wird. Die Scanauflösung kann kontinuierlich 

zwischen 4x1 und 2048 x 2048 Pixeln eingestellt werden. Für die Scangeschwindigkeit kann eine 

von insgesamt 13x2 verschiedene Geschwindigkeitsstufen ausgewählt werden.  
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In der vorliegenden Studie wurden jeweils folgende Einstellungen gewählt:  

-  Scanauflösung:  512 x 512 Pixel als vom Steuerprogramm gewählte „optimale Konfiguration“  

bei einer Laserwellenlänge von 488 nm und einer numerischen Apertur von 0,95, und 

-  Scangeschwindigkeit:  Stufe 8 als vom Hersteller empfohlene Standardeinstellung (Carl Zeiss 

Jena GmbH 2003). 

Das von den Proben ausgesendete Licht wird mittels des Immersionsobjektivs in die 

Zwischenbildebene abgebildet, in welcher das Pinhole angeordnet ist. In dem für die Messungen 

verwendeten Fluoreszenz-Modus wurde der Pinholedurchmesser jeweils auf 1 AU (Standard-

Einstellung) gesetzt, wodurch sich in der Probenebene jeweils gemäß Gleichung (4.2) eine laterale 

Auflösung von 0,26 µm ergibt. Weiterhin ergibt sich für diese Pinholegröße gemäß Gleichung (4.3) 

mit NA = 0,95 und nwasser = 1,33 eine axiale Auflösung von 1 µm, so dass die gewählte Dicke der 

untersuchten optischen Schichten gemäß Gleichung (4.4)  d = 1,242 µm betrug.    

Entsprechend dem Nyquist-Theorem wird beim schichtweisen Abtasten der Probe die Schrittweite 

in Tiefenrichtung (Z-Richtung) als die halbe optische Schichtdicke gewählt, so dass die 

aufeinanderfolgenden untersuchten optischen Schichten sich jeweils mit der Hälfte ihrer 

Schichtdicke überlappen.  

Die Pixelgröße wurde jeweils entsprechend der lateralen Auflösungsgrenze auf 0,26 µm x 0,26 µm 

gesetzt. 

Zur Erzeugung und Analyse der CLSM-Bilder wurde der LSM Image Browser 4.6 von Carl Zeiss 

verwendet. Bei der Auswertung der Fotos wurde die Penetrationstiefe des Materials als Abstand von 

der Probenoberfläche bis zum Ende der Schicht, in der nicht fluoreszierende Bereiche (schwarz) zu 

erkennen sind, definiert. Diese wurde anhand von Bildern des Kontrollbereichs ermittelt. 
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5. Ergebnisse 
 

5.1  Die  CLSM-Bilder und die qualitative  Auswertung 
 

Von jeder untersuchten Stelle wurde eine Aufnahme mit einem Objektiv Achroplan 63x/0,95W 

gewonnen.  Die CLSM-Bilder zeigen (Abb. 3): 

- die infiltrierten Tags mit Adhäsiven als rot fluoreszierenden Bereich der Probe 

- die infiltrierten Tags mit Primer als blau fluoreszierenden Bereich der Probe 

- die infiltrierten Tags mit Primer + Adhäsiv als rosa Bereich der Probe 

- die gesamten Dentintubuli sind weiß. 

Die Aufnahmen wurden innerhalb einer Bildfläche von 100 µm x 100 µm untersucht. 

 

Die quantitative Auswertung der Tags ist durch zwei Parameter bestimmt:  

1. Die Länge der Tags: 

Die Länge der Tags wurde als Entfernung ihrer Enden von der Zahn-Adhäsiv-Oberfläche in   

Mikrometern gemessen. 

2. Das Infiltrationsverhältnis: 

Das Infiltrationsverhältnis ist definiert als der prozentuale Anteil der gefüllten Tubuli (gefärbte 

Tags) an der Gesamtzahl der Dentintubuli (weiß). 

 

Die qualitative Auswertung der Tags ist durch drei Kriterien bestimmt. Die Kriterien sind: 

1. Homogenität:  Beschreibt den Unterschied in der Länge der Tags 

      - sehr homogen:  100 % der Tags sind gleich lang = 0 

      - homogen:  mehr als die Hälfte der Tags sind gleich lang = 1 

      - wenig homogen:  weniger als die Hälfte der Tags sind gleich lang = 2 

      - inhomogen:  keine Tags sind gleich lang = 3 

     2.  Regularität:  Beschreibt die Gleichmäßigkeit der Tags 

           - sehr regulär:  100 % von 100 µm hat Tags = 0 

           - regulär:  mehr als die Hälfte von 100 µm hat Tags = 1 

           - wenig regulär:  weniger als die Hälfte von 100 µm hat Tags = 2 
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           - irregulär:  die 100 µm haben keine Tags = 3 

     3. Kontinuität:  Beschreibt ob die Tags ununterbrochen gefüllt sind oder nicht  

      - sehr kontinuierlich:  100 % von Tags sind ununterbrochen gefüllt = 0 

      - kontinuierlich:   mehr als Hälfte der Tags sind ununterbrochen gefüllt = 1 

       - wenig kontinuierlich:  weniger als die Hälfte der Tags sind ununterbrochen gefüllt = 2 

      - diskontinuierlich:  alle Tags sind unterbrochen = 3 

 

Alle Werte der qualitativen und quantitativen Auswertung wurden in das 

Tabellenkalkulationsprogramm Excel 2007 (Microsoft Office Home and Student 2007, Microsoft 

Corporation One, Microsoft Way Redmond, WA  98052 USA ) übernommen. 
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Die Abbildungen 3 bis 11 zeigen Beispiele von den CLSM-Untersuchungen der Tags für  

verschiedene Adhäsive der vorliegenden Studie. 

 

  

Abb. 3: CLSM-Bild von Syntac (TÄ-3-Adhäsiv) 

- die erste Scheibe nach mezio-distalen Abschnitt 

- Position d3 = 2,5 mm Abstand von Schmelz-Dentin Grenze 

 Bei der qualitativen Auswertung:    Homogenität: 1,  Regularität: 0,  Kontinuität: 1 

 1. Fluoreszenz-Modus: die infiltrierten Tags mit Primer als blau fluoreszierender Bereich der Probe 

 2. Fluoreszenz-Modus: die infiltrierten Tags mit Adhäsiv als rot fluoreszierender Bereich der Probe 

 3. die gesamten Dentintubuli  

 4. Fluoreszenz-Modus: die infiltrierten Tags mit Primer + Adhäsiv als rosa Bereich der Probe und 

die gesamten Dentintubuli 

 

 

1. 2. 

3.

2 

4. 
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Abb. 4: CLSM-Bild von AdheSE, SÄ-2-Adhäsiv (1, 2, 3) 

- die erste Scheibe nach mezio-distalen Abschnitt 

 1. Position d1 - 0,5 mm Abstand von Schmelz-Dentin Grenze 

 Bei der qualitativen Auswertung:   Homogenität: 1, Regularität: 0, Kontinuität: 1  

 Fluoreszenz-Modus:  die infiltrierten Tags mit Primer als blauer Bereich, Tags mit Adhäsiv als rote      

 Bereiche, die infiltrierten Tags mit Primer + Adhäsiv als rosa Bereich der Probe 

 2. Position d2 - 1,5 mm Abstand von Schmelz-Dentin Grenze 

 Bei der qualitativen Auswertung:   Homogenität: 0, Regularität: 0, Kontinuität: 1 

 3. Position d3 - 2,5 mm Abstand von Schmelz-Dentin Grenze 

 Bei der qualitativen Auswertung:   Homogenität: 1, Regularität: 0, Kontinuität: 1 

Bei der quantitativen Auswertung zeigt AdheSE das höchste Infiltrationsverhältnis (91,8 %) von 

allen 20 Adhäsive, hat aber einen Mittelwert für die Länge der Tags von lediglich 9,0 µm, während  

Syntac mit 20,8 µm die längsten Tags von allen 20 Adhäsiven aufweist. 

In Abb. 3 und Abb. 4 lässt sich der Unterschied in der Länge der Tags zwischen AdheSE (SÄ-2) und 

Syntac (TÄ-3) deutlich erkennen. 
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 Abb. 5: CLSM-Bild von XP Bond, TÄ-2-Adhäsiv (1, 2, 3) 

- die erste Scheibe nach mezio-distalen Abschnitt 

 1. Position d1 - 0,5 mm Abstand von Schmelz-Dentin Grenze 

 Bei der qualitativen Auswertung:    Homogenität: 1, Regularität: 0, Kontinuität: 1 

 2. Position d2 - 1,5 mm Abstand von Schmelz-Dentin Grenze 

 Bei der qualitativen Auswertung:    Homogenität: 1, Regularität: 0, Kontinuität: 1 

 3. Position d3 - 2,5 mm Abstand von Schmelz-Dentin Grenze 

 Bei der qualitativen Auswertung:    Homogenität: 1, Regularität: 0, Kontinuität: 1 

Bei der quantitativen Auswertung hat XP Bond ein sehr hohes Infiltrationsverhältnis (90,6 %), aber 

auch eine sehr große Länge der Tags (20,3 µm). 

In Abb. 3 und Abb. 5 sieht man, dass die Längen der Tags von Syntac und XP Bond vergleichbar 

sind, die Unterschiede sind nicht statistisch signifikant, beide gehören zu den Total-Ätz-Adhäsiven. 
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Abb. 6: CLSM-Bild von Silorane Systeme, SÄ-2-Adhäsiv (1, 2, 3) 

- die zweite Scheibe nach mezio-distalen Abschnitt,  

  Position d3 - 2,5 mm Abstand von Schmelz-Dentin Grenze 

Bei der qualitativen Auswertung:   Homogenität: 1, Regularität: 0, Kontinuität: 1 

Beim Silorane System -Adhäsiv ist aus chemischen Gründen der Primer rot und das Adhäsiv blau 

gefärbt.  

1. Fluoreszenz-Modus: die infiltrierten Tags mit Adhäsiv als blauer Bereich der Probe 

2. Fluoreszenz-Modus: die infiltrierten Tags mit Primer + Adhäsiv als rosa Bereich der Probe 

3. Fluoreszenz-Modus:  die infiltrierten Tags mit Primer + Adhäsiv als rosa Bereich der Probe und 

die gesamten Dentintubuli (weiß) 

Silorane hat beim Infiltrationsverhältnis mit 59,8 % den letzten Platz von allen 20 Adhäsiven der 

vorliegenden Studie, dieser Wert ist zudem signifikant niedriger im Vergleich zum nächstfolgenden 

Adhäsiv. Bei der Länge der Tags ist der Mittelwert von 9,2 µm vergleichbar mit AdheSE (siehe 

Abb. 4) und AQ Bond. 

Silorane und AdheSE gehören zu den 2-Schritt-Selbstätz-Adhäsiven, aber bei Silorane ist die 

Penetration des Adhäsivs wegen des polymerisierten Primers geringer. 
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  Abb. 7: CLSM-Bild von Bond Force, SÄ-1-Adhäsiv, Eine Flasche (1, 2, 3) 

- die erste Scheibe nach mezio-distalen Abschnitt 

- die Position d1 - 0,5 mm Abstand von Schmelz-Dentin Grenze 

Bei der qualitativen Auswertung:    Homogenität: 1, Regularität: 1, Kontinuität: 0 

1. Die gesamten Dentintubuli 

2. Fluoreszenz-Modus: das Adhäsiv mit Rhodamin B-Isothiocyanat bildet Tags in Dentintubuli 

3. Fluoreszenz-Modus: das Adhäsiv mit Rhodamin B-Isothiocyanat bildet Tags in Dentintubuli 

 

 

 

Abb. 8: CLSM-Bild von Bond Force, SÄ-1-Adhäsiv, Eine Flasche  (1, 2, 3) 

- die erste Scheibe nach mezio-distalen Abschnitt 

- die Position d2 - 1,5 mm Abstand von Schmelz-Dentin Grenze 

Bei der qualitativen Auswertung:    Homogenität: 1, Regularität: 2, Kontinuität:2  

1. Die gesamten Dentintubuli 

2. Fluoreszenz-Modus: das Adhäsiv mit Rhodamin B-Isothiocyanat bildet Tags in Dentintubuli 

3. Fluoreszenz-Modus: das Adhäsiv mit Rhodamin B-Isothiocyanat bildet Tags in Dentintubuli 
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Abb. 9: CLSM-Bild von Bond Force, SÄ-1-Adhäsiv, Eine Flasche (1, 2, 3) 

- die erste Scheibe nach mezio-distalen Abschnitt 

- die Position d3 - 2,5 mm Abstand von Schmelz-Dentin Grenze 

Bei der qualitativen Auswertung:   Homogenität: 1, Regularität: 2, Kontinuität: 0 

Bei der quantitativen Auswertung hat Bond Force für die Länge der Tags (7,3 µm) die niedrigsten 

Werte von allen Materialien in der vorliegenden Studie; diese sind aber nahezu vergleichbar mit 

denen von Silorane (Abb. 6), AdheSE (Abb. 4) und AQ Bond.  

 

 

 

Abb. 10: CLSM-Bild von Solobond Plus, TÄ-3-Adhäsiv (1, 2, 3) 

- die erste Scheibe nach mezio-distalen Abschnitt 

 1. die Position d1 - 1,5 mm Abstand von Schmelz-Dentin Grenze 

   Bei der qualitativen Auswertung:    Homogenität: 1, Regularität: 0, Kontinuität: 2 

 2. die Position d2 - 2,5 mm Abstand von Schmelz-Dentin Grenze 

   Bei der qualitativen Auswertung:    Homogenität: 1, Regularität: 0, Kontinuität: 1 

 3. die Position d3 - 3,5 mm Abstand von Schmelz-Dentin Grenze 

   Bei der qualitativen Auswertung:   Homogenität: 1, Regularität: 0,  Kontinuität: 1 
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Abb. 11: CLSM-Bild von Prime&Bond NT, TÄ-2-Adhäsiv (1, 2, 3) 

- die zweite Scheibe nach mezio-distalen Abschnitt 

1. die Position d1 - 1,5 mm Abstand von Schmelz-Dentin Grenze 

  Bei der qualitativen Auswertung:     Homogenität: 0, Regularität: 0, Kontinuität: 1 

2. die Position d2 - 2,5 mm Abstand von Schmelz-Dentin Grenze 

  Bei der qualitativen Auswertung:     Homogenität: 0, Regularität: 0, Kontinuität: 3 

3. die Position d3 - 3,5 mm Abstand von Schmelz-Dentin Grenze 

  Bei der qualitativen Auswertung:     Homogenität: 0, Regularität: 0, Kontinuität: 3 

 

Alle Bilder 1 bis 3 der Abb. 11 sind im Fluoreszenz-Modus aufgenommen und zeigen, wie das 

Adhäsiv mit Rhodamin B-Isothiocyanat in den Dentintubuli die Tags ausbildet. 

In den Abbildungen 7 bis 10 erkennt man den Fluoreszenzfärbungsdurchgriff vom Adhäsiv in das 

Komposit. Die Applikation des farbfreien Komposits führt zu einer gemischten Oberflächenzone, in 

der das Komposit mit einer restlichen Schicht von Adhäsivbestandteilen verbunden ist (Pioch 

1997). 

 

Insgesamt lässt sich beim Vergleich der Abbildungen 3 bis 11 deutlich erkennen, dass die Tags 

hinsichtlich ihrer Form, Länge und Größe sehr verschieden sind.  

Bei Syntac (Abb. 3) und XP Bond (Abb. 5) haben die Tags reduzierte Durchmesser und eine 

verengte Silhouette, was typisch ist für die Adhäsive, bei denen die Schmierschicht partial oder total 

entfernt wurde (Van Meerbeek 1992). 

Bei AdheSE (Abb. 4) wurde die Schmierschicht weitgehend aufgelöst und die Eingänge der Tubuli 

sind sichtbar. Auch hier finden sich in der Tiefe noch Reste der Schmierpfropfen. Peritubuläres und 

intertubuläres Dentin wurden deutlich geringer demineralisiert als in Abb. 3 und Abb. 5. 
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Mehrere unterbrochene Tags zeigen die Adhäsivsysteme, die mit vorherigem Ätzen zu verwenden 

sind:  

 -  Syntac und Solobond Plus (TÄ-3) in Abb. 3 und 10 mit Kontinuität 1 und 2, 

 -  Prime&BondNT (TÄ-2) in Abb. 11 mit Kontinuität 3, wie selbstätzende Adhäsive (SÄ-2 und 

SÄ-1) (Bitter 2009; Albaladejo 2010). 

Bei den Abbildungen von TÄ-Adhäsiven (Abb. 3, 5, 10 und 11) haben die Tags eine konische Basis, 

die dicker ist als bei SÄ-Adhäsiven. 

Die Tags von SÄ-Adhäsiven (Abb. 4 und 7 bis 9) sind bei der qualitativen Analyse wenig regulärer 

als die Tags von TÄ-Ädhäsiven (Abb. 3, 5, 10, 11). 

Hinsichtlich der Homogenität und der Kontinuität verhalten sich die Tags unterschiedlich, wobei 

beide Adhäsivsysteme (TÄ- und SÄ-Adhäsive) gute Werte haben können. 

Die Fluoreszenz auf den CLSM-Bildern war uniform, was eine homogene Verteilung von 

Rhodamin-B vermuten lässt (siehe CLSM – Bilder, Abb. 3 bis 11). 

 

 

5.2  Statistische Auswertung 
 

Die statistische Auswertung der Daten erfolgte mit SPSS (IBM SPSS Statistics, USA). 

Abweichungen zwischen den Gruppen von Adhäsiven wurden mit Hilfe der einfaktoriellen 

Varianzanalyse (ANOVA, p < 0,05) mit nachgeschaltetem Tukey-posthoc-Test (α = 0,05) sowie mit 

einer multifaktoriellen Varianzanalyse (allgemeines lineares Modell, η²-Statistik, p = 0,05) auf 

Signifikanz getestet. Mit Hilfe der statistischen Korrelationsbestimmung nach Pearson wurde die 

Korrelation zwischen Länge der Tags und Infiltrationsverhältnis ermittelt. 

 

5.2.a  Statistische Auswertung der quantitativen Analyse 
 

Die Tabellen 6 bis 11 bieten einen Überblick über die Werte der quantitativen Analyse (Länge der 

Tags und das Infiltrationsverhältnis) und den Einfluss des Adhäsivsystems, des Lösungsmittels, der 

Dentinposition sowie der Kombinationen von diesen Einflussfaktoren. Die Standardabweichung 

(SA) ist neben den Mittelwerten in Klammern gesetzt, die hochgestellten Buchstaben und Ziffern 

klassifizieren die homogenen Untergruppen, die durch eine einfaktorielle Varianzanalyse zur 

Überprüfung der Unterschiede zwischen den getesteten Materialien mit Hilfe des Tukey-posthoc-
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Testes untersucht wurden. 

 

Tabelle 6: Berechnete Werte für die Länge der Tags und das Infiltrationsverhältnis (Mittelwert und 

Standardabweichung in Klammern). 

Einfluss des Adhäsivsystems auf die Länge der Tags und auf das Infiltrationsverhältnis. 

Material Adhäsivtyp Lösungsmittel Infiltrationsverhältnis  

                [%]                    

Länge der Tags 

         [µm]  

AdheSE SÄ-2 Wasser 91,8 
K  

(8,9) 9,0 
1 2

 (6,2) 

Solobond Plus TÄ-3 Wasser 91,7 
K 

(8,8) 19,5 
9 
(11,5) 

XP Bond   TÄ-2 tert-Butanol 90,6 
J K

 (8,4) 20,3 
9
 (12,0) 

Prime&Bond NT TÄ-2 Aceton 90,5 
J K 

(10,7) 14,5
 7 8

 (10,2) 

Solobond M TÄ-2 Aceton 90,2 
J K 

(10,4) 12,8 
5 6 7 

(10,5) 

Excite  TÄ-2 Ethanol 87,9
 I J

 (9,9) 10,5 
2 3 4

 (6,39) 

Clearfil SE Bond SÄ-2 Wasser 86,9 
I
 (12,4) 13,2 

6 7 8
 (7,8) 

AQ Bond SÄ-1 Aceton 86,6 
I J 

(11,4) 9,2 
1 2 3 

(9,6) 

Adper Prompt L-Pop SÄ-1 Wasser 86,5 
I 
(13,3) 12,3 

4 5 6
 (12,7) 

Futurabond NR SÄ-1 Wasser 80,4
 H 

(17,7) 10,0
 2 3

 (8,3) 

Syntac  TÄ-3 Wasser 78,5 
G H 

 (16,4)                                    20,8
 9
 (15,6) 

Futurabond DC SÄ-1 Aceton 78,5 
G H 

 (11,5) 14,9 
8
 (14,1) 

Adper Easy Bond SÄ-1 Wasser 78,1 
F G H

 (21,8) 11,0 
2 3 4 5

 (7,5) 

Hybrid Bond SÄ-1 Aceton 77,1 
F G

 (15,8) 10,4 
2 3 4

 (6,9) 

Adper Scotchbond SE SÄ-2 Ethanol 75,5 
E F

 (17,5) 14,4 
7 8

 (11,6) 

Bond Force SÄ-1 Ethanol 73,9 
D E 

(14,0) 7,3 
l
 (5,0) 

iBond  SÄ-1 Aceton 71,3 
C D

 (19,8) 12,6
 5 6 7

 (8,2) 

Xeno V SÄ-1 tert-Butanol 69,6 
B C 

(20,1) 11,1 
3 4 5 

(10,18) 

Xeno III SÄ-1 Ethanol 67,6 
B
 (18,9) 14,6 

7 8
 (15,6) 

Silorane System SÄ-2 Wasser 59,8 
A
 (15,9) 9,1 

1 2 3
 (6,1) 

 

 

Bezüglich des Infiltrationsverhältnisses: 

Von allen 20 Adhäsiven dieser Studie haben die folgenden das höchste Infiltrationsverhältnis: 

AdheSE (91,8 %, SÄ-2), Solobond Plus (91,7 %, TÄ-3), XP Bond (90,6 %, TÄ-2), Prime&Bond 

NT (90,5 %, TÄ-2) und Solobond M (90,2 %, TÄ-2). In Kontrast zu diesen Ergebnissen steht der 

niedrige Wert von Silorane System  (SÄ-2) mit 59,8 %. 

Bezüglich der Länge der Tags: 
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Von allen 20 verwendeten Adhäsiven haben die folgenden die höchste Länge der Tags: 

Futurabond DC (14,9 µm, SÄ-1), Xeno III (14,6 µm, SÄ-1), Prime&Bond NT (14,5 µm, TÄ-2), 

Adper Scotchbond SE (14,4 µm, SÄ-2), Clearfil SE Bond (13,2 µm, SÄ-2). 

Die niedrigsten Werte für diesen Parameter zeigen die folgende Materialien:  

Bond Force (7,1 µm, SÄ-1), AdheSE (9,0 µm, SÄ-2), Silorane System (9,1 µm, SÄ-2), AQ Bond 

(9,2 µm, SÄ-1). 

 

 

Tabelle 7 zeigt die Werte für die Länge der Tags und das Infiltrationsverhältnis für jedes der 20 

untersuchten Adhäsive an drei unterschiedlichen Dentinpositionen, d.h. im Abstand von 0,5 mm, 

1,5 mm und 2,5 mm von SDG. 

 

Tabelle 7:  Berechnete Werte für die Länge der Tags und das Infiltrationsverhältnis von jedem Adhäsiv und  

für jede Dentinposition (Mittelwert und Standardabweichung in Klammern). 

Einfluss der Dentinposition auf die Länge der Tags und auf das Infiltrationsverhältnis. Gleiche hochgestellte 

Buchstaben in einer Zeile klassifizieren die homogenen Untergruppen für das betreffende Adhäsiv. 

Material Länge der Tags [µm] Infiltrationsverhältnis [%] 

0,5 mm 1,5 mm 2,5 mm 0,5 mm 1,5 mm 2.5 mm 

Syntac  18,3 
A 

(11,7) 22,1 
A B 

(19,4) 21,1 
A 

(14,0) 85,6 
a 
(16,9) 80,2 

b 
(15,0) 69,5 

c 
(12,8) 

Adper Prompt L-Pop 12,1 
a 
(14,4)

 
 12,8 

a 
(13,3) 11,9 

a 
(10,1) 89,4 

A 
(10,1) 88,9 

A 
(11,3) 81,3 

B 
(15,9) 

Xeno III 17,6 
A 

(20,2)
 
 15,0 

A 
(16,2) 12,0 

A  B 
(9,3) 67,9 

a 
(21,7) 68,2 

a 
(21,5) 68,2 

a 
(21,5) 

Xeno V 13,6 
a 
(12,8) 9,9 

b 
(7,9) 10,6 

b 
(9,6) 60,3 

A 
(15,6) 75,8 

B 
(17,5) 70,1 

C 
(22,7) 

Futurabond NR 10,8 
A 

(9,1)
 
 9,9 

A 
(7,7) 9,2 

A 
(7,9) 85,4 

a 
(14,3) 78,2 

b 
(16,7) 77,4 

b 
(20,3) 

Silorane System 8,3 
a 
(6,4) 10,8 

b 
(6,9) 8,3 

a 
(4,8) 62,8 

A 
(14,8) 55,9 

B 
(14,8) 60,6 

A 
(8,3) 

iBond 12,2 
A 

(6,6)
 
 13,5 

A 
(10,1) 11,9 

A 
(6,9) 75,4 

a 
(21,4) 76,5 

a 
(19,5) 61,0 

b 
(13,0) 

Hybrid Bond 9,8 
a 
(6,7) 9,7 

a 
(5,5) 11,6 

b 
(8,0) 75,3 

A 
(17,7) 78,6 

A 
(14,2) 77,2 

A 
(15,6) 

Excite 11,3 
A 

(7,2) 9,7 
A 

(6,0) 10,5 
B 

(5,7) 88,1 
a 
(10,0) 88,0 

a 
(11,1) 87,7 

a 
(8,7) 

Solobond Plus 19,9
 a 

(10,6) 21,5 
a 
(12,6) 17,3 

b 
(10,7) 94,3 

A 
(7,0) 92,5 

A 
(9,5) 88,5 

B 
(8,7) 

Solobond M 14,0 
A 

(10,9)
 
 13,8 

A 
(12,7) 10,8 

B 
(6,7) 85,5 

a 
(11,6) 93,0 

b 
(8,9) 91,0 

b 
(9,8) 

Futurabond DC 17,9 
a 
(16,9) 13,3 

b  
(11,8) 14,0 

b 
(13,3) 80,8 

A 
(13,6) 78,9 

A 
(10,2) 76,1 

B 
(10,2) 

Prime&Bond NT 12,9 
A 

(7,3)
 
 15,4 

A  
(11,5) 14,7 

A 
(10,5) 90,2 

a 
(13,8) 93,6 

b 
(10,6) 88,0 

c 
(8,0) 

Clearfil SE Bond 13,2 
a 
(7,3) 12,6 

a 
(7,7) 13,7 

b 
(8,2) 94,7 

A 
(9,9) 86,9 

B 
(11,4) 80,5 

C 
(11,6) 

XP Bond 21,5
 A 

(6,7) 16,4 
B 

(11,1) 23,1 
A 

(19,6) 95,6 
a 
(4,9) 91,7 

b 
(6,6) 85,4 

c 
(9,3) 

AQ Bond 8,3 
a 
(8,7) 8,2 

a 
(6,6) 10,9 

b 
(12,2) 85,5 

A 
(8,7) 92,9

 B 
(10,9) 86,8 

A 
(7,9) 

Scotchbond SE  12,7 
A 

(12,3) 16,5
 B 

(12,5) 13,9
 A 

(9,8) 81,7 
a 
(12,7) 74,6 

b 
(15,6) 71,0

 b 
(15,6) 

Adhe SE 7,8 
a 
(5,1)

 
 9,3 

b 
(5,6) 9,6 

b 
(7,1) 95,2 

A 
(6,7) 89,4 

B 
(10,6) 91,4 

C 
(8,0) 

Bond Force 7,6 
A 

(4,9)
 
 7,4

 A 
(5,0) 6,8 

A 
(4,9) 74,9 

a 
(14,8) 72,7 

a 
(13,2) 74,2 

a 
(13,9) 

Adper Easy Bond  11,2
 a 

(7,4)
 
 11,5 

b 
(7,8) 10,2 

b 
(7,1) 76,5 

A 
(14,8) 80,1

B 
(20,1) 77,4

 B 
(24,5) 
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Tabelle 8 zeigt den Einfluss des Lösungsmittels des Adhäsivs, des Adhäsivtyps, der Dentinposition 

sowie ihrer Kombinationen auf die Länge der Tags und auf das Infiltrationsverhältnis. Der Vergleich 

erfolgt mit Hilfe des allgemeinen linearen Modells  (η² Statistik, p = 0,05). 

 

Tabelle 8: Einfluss des Lösungsmittels, des Adhäsivtyps, der Dentinposition und ihrer Kombinationen auf 

die Länge der Tags und auf das Infiltrationsverhältnis.  

Die η²-Werte zeigen, wie hoch der Einfluss des Lösungsmittels, des Adhäsivtyps, der Dentinposition und 

ihrer Kombinationen auf die Länge der Tags und auf das Infiltrationsverhältnis sind.  

Einflussfaktor Länge der Tags Infiltrationsverhältnis 

Lösungsmittel 0,004 0,027 

Adhäsivtyp  0,060 0,196 

Dentinposition 0,001 0,053 

Lösungsmittel + Adhäsivtyp 0,005 0,009 

Lösungsmittel + Dentinposition 0,001 0,006 

Adhäsivtyp + Dentinposition 0,004 0,010 

 

Das Lösungsmittel hat einen signifikanten statistischen Einfluss auf beide Parameter der 

quantitativen Analyse (p < 0,001), wobei der Einfluss des Lösungsmittels auf die Länge der Tags (η² 

= 0,004) niedriger ist als der Einfluss auf das Infiltrationsverhältnis (η² = 0,027). 

Der Adhäsivtyp hat ebenfalls einen signifikanten statistischen Einfluss auf die Parameter der 

quantitativen Analyse (p < 0,001); auch hier ist der Einfluss auf die Länge der Tags (η² = 0,060) 

niedriger als der Einfluss auf das Infiltrationsverhältnis (η² = 0,196). 

Die Dentinposition beeinflusst statistisch signifikant beide Parameter der quantitativen Analyse (p < 

0,001). Der Einfluss auf die Länge der Tags (η² = 0,001) ist hier ebenfalls niedriger als der Einfluss 

auf das Infiltrationsverhältnis (η² = 0,010).  

Die Kombinationen „Lösungsmittel + Adhäsivtyp“, „Lösungsmittel + Dentinposition“, „Adhäsivtyp 

+ Dentinposition“ beeinflussen statistisch signifikant beide Parameter der quantitativen Analyse (p 

< 0,001). Die Einflüsse der Kombinationen sind wie folgt: „Lösungsmittel + Adhäsivtyp“ (η² = 

0,005 für die Länge der Tags und η²  = 0,009 für das Infiltrationsverhältnis), „Lösungsmittel + 

Dentinposition“ (η² = 0,001 für die Länge der Tags und η² = 0,006 für das Infiltrationsverhältnis) 

und „Adhäsivtyp + Dentinposition“ (η² = 0,004 für die Länge der Tags und η² = 0,010 für das 

Infiltrationsverhältnis). 

Insgesamt ist in der Tabelle 8 für alle Faktoren der Einfluss auf das Infiltrationsverhältnis jeweils 

größer als der Einfluss auf die Länge der Tags.  
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Tabelle 9 zeigt den Einfluss des Materials, des Zahntyps, der Scheibennummer (erste und zweite 

mittig nach seitlich geschnittene Zahnscheibe, siehe Seite 29) und der Dentinposition sowie ihrer 

Kombinationen auf die Gesamtzahl der gefüllten Dentintubuli. Der Vergleich erfolgt mit Hilfe des 

allgemeinen linearen Modells (η² Statistik, p = 0,05). 

 

Tabelle 9: Einfluss von Adhäsivtyp, Zahntyp, Scheibennummer und Dentinposition sowie ihrer 

Kombinationen auf die Gesamtzahl der gefüllten Dentitubuli. In der Tabelle verwendete Abkürzungen für die 

Einflussfaktoren: a: Adhäsivtyp, b: Zahntyp, c: Scheibennummer, d: Dentinposition, e: Adhäsivtyp + 

Zahntyp, f: Adhäsivtyp + Scheibennummer,  g: Adhäsivtyp + Dentinposition, h: Zahntyp + Scheibennummer, 

i: Zahntyp + Dentinposition, j: Scheibennummer + Dentinposition, k: Adhäsivtyp + Zahntyp + 

Scheibennummer, l: Adhäsivtyp + Zahntyp + Dentinposition, m: Adhäsivtyp + Scheibennummer + 

Dentinposition, n: Zahntyp + Scheibennummer + Dentinposition, o: Adhäsivtyp + Zahntyp + 

Scheibennummer + Dentinposition. 

Die η²-Werte zeigen, wie hoch der Einfluss der Einflussfaktoren (a-o) auf die Gesamtzahl der gefüllten 

Dentintubuli ist.  

Einflussfaktor a b c d e f g h i j k l m n o 

η² 

(Gesamtzahl 

der gefüllten 

Dentintubuli) 

0,701 0,131 0,022 0,542 0,590 0,132 0,345 0,077 0,066 0,007 0,461 0,333 0,097 0,088 0,311 

 

Alle Einflussfaktoren in Tabelle 9 (a-o) haben einen signifikanten statistischen Einfluss auf die 

Gesamtzahl der gefüllten Dentintubuli (p < 0,001). 

Bezüglich der Höhe des Einflusses auf die Gesamtzahl der gefüllten Dentintubuli sortieren sich die 

Einflussfaktoren wie folgt:  das Adhäsiv (η² = 0,701), die Dentinposition (η² = 0,542), der Zahntyp 

(η² = 0,131) und die Scheibennummer (η² = 0,022). Der Einfluss des Adhäsivs ist hier wiederum der 

höchste von allen Einflussfaktoren, während die Scheibennummer den niedrigsten Wert aufweist 

(Tabelle 9). 

Die folgenden Kombinationen von Einflussfaktoren haben einen signifikanten statistischen Einfluss 

auf die Gesamtzahl der gefüllten Dentintubuli (p < 0,001). Die Einflusswerte sind: 

- „Adhäsivtyp + Zahntyp“ (η² = 0,590)  

- „Adhäsivtyp + Scheibennummer“ (η² = 0,077) 

- „Adhäsivtyp + Dentinposition“ (η² = 0,345) 

- „Zahntyp + Scheibennummer“ (η² = 0,077) 

- „Zahntyp + Dentinposition“ (η² = 0,066) 

- „Scheibennummer + Dentinposition“ (η² = 0,007) 

- „Adhäsiv + Zahntyp + Scheibennummer“ (η² = 0,461) 
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- „Adhäsiv + Zahntyp + Dentinposition“ (η² = 0,333) 

- „Adhäsiv + Scheibennummer + Dentinposition“ (η² = 0,097) 

- „Zahntyp + Scheibennummer + Dentinposition“ (η² = 0,088) 

- „Adhäsiv + Zahntyp + Scheibennummer + Dentinposition“ (η² = 0,311) 

In der Tabelle 9 hat somit das Adhäsiv (η² = 0,701) die höchsten Werte für den Einfluss auf die 

Gesamtzahl der gefüllten Dentintubuli, wohingegen die Kombination „Scheibennummer  + 

Dentinposition“ (η² = 0,007) den niedrigsten Wert für den Einfluss auf die Gesamtzahl der gefüllten 

Dentintubuli von allen Einflussfaktoren aufweist. 

 

Tabelle 10 zeigt den Einfluss der vier untersuchten Adhäsivklassen auf die beiden Parameter der 

quantitativen Analyse (d.h. das Infiltrationsverhältnis und die Länge der Tags). 

Tabelle 10:  Berechnete Werte für das Infiltrationsverhältnis und die Länge der Tags für jede Adhäsivklasse 

(Mittelwert und Standardabweichung in Klammern). 

Adhäsivklasse      Infiltrationsverhältnis 

                      [%]   

         Länge der Tags 

                    [µm] 

TÄ-2 89,9
 4 

(9,9) 14,8
 c 

(12,4) 

TÄ-3 85,7 
3
 (9,3) 20,1 

b 
(13,5) 

SÄ-2 81,0 
2 
(17,7) 11,6 

a 
(8,6)

 

SÄ-1 78,1 
1 
(17,7) 11,2 

a 
(10,4)

 

 

Von allen vier Klassen von Adhäsivsystemen haben die TÄ-2 mit 89,9 % das beste  Infiltrations-

verhältnis, gefolgt von den TÄ-3 (85,7 %) und SÄ-2 (81,0 %) sowie den SÄ-1 (78,1 %). 

Hingegen haben die TÄ-3 mit durchschnittlich 20,1 µm die längsten Tags, gefolgt von den TÄ-2 

(14,8 µm) und den SÄ, bei denen die Zahl der Arbeitsschritte keinen statistischen Einfluss hat (die 

Länge der Tags ist für SÄ-2 mit 11,6 µm und für SÄ-1 mit 11,2 µm nahezu identisch). 

 Die Tabelle 11 zeigt den Einfluss der drei untersuchten Dentinpositionen (0,5, 1,5 und  2,5 mm von 

SDG) auf die Parameter der quantitativen Analyse (das Infiltrationsverhältnis und die Länge der 

Tags ) für jede Adhäsivklasse: TÄ mit TÄ-1 und TÄ-2 und SÄ mit SÄ-2 und SÄ-1. Diese Tabelle 

11 zeigt auch die berechnete Länge der Tags und das Infiltrationsverhältnis für jede Dentinposition. 

 

Tabelle 11: Einfluss der Dentinposition auf die Länge der Tags und auf das Infiltrationsverhältnis für jede 

Adhäsivklasse (Mittelwert und Standardabweichung in Klammern). Einfluss der Dentinposition auf die 

Länge der Tags und auf das Infiltrationsverhältnis. Gleiche hochgestellte Buchstaben in einer Zeile 

klassifizieren die homogenen Untergruppen für die betreffende Adhäsivklasse. 
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Adhäsivklasse Länge der Tag  (SA) [µm] Infiltrationsverhältnis (SA) [%] 

0,5 mm 1,5 mm 2,5 mm 0,5 mm 1,5 mm 2,5 mm 

TÄ-3 19,2 
A 

(11,2) 22,1 
B 

(16,1) 18,9 
B 

(12,3) 90,2 
a 
(13,3) 86,9 

a 
(13,8) 80,3 

a 
(14,2) 

TÄ-2 15,1 
a 
(12,7) 14,1 

b 
(11,0) 15,8 

a 
(13,2) 90,2 

A 
(10,9) 91,8 

b 
(9,6)

 
87,9 

c 
(9,1) 

SÄ-2 10,7 
A 

(8,6) 12,3 
A 

(8.9) 11,6 
A 

(8,2) 85,9 
a 
(18,0) 79,6 

b 
(17,5) 78,4 

c 
(16,8) 

SÄ-1 11.8 
a 
(11.8) 10.9 

b 
(9.8) 10.8 

b 
(9.5) 78.6 

A 
(18.1) 79.9 

B 
(16.5)

 
76.0 

B 
(18.3) 

 

Bei den TÄ-3-Adhäsiven: 

- die Tags an der ersten Dentinposition (0,5 mm von SDG) sind kürzer als die Tags an der zweiten 

(1,5 mm von SDG) und dritten (2,5 mm von SDG) Dentinposition, zwischen denen es keinen 

statistisch signifikanten Unterschied gibt. 

- die Dentinposition hat keinen statistisch signifikanten Einfluss auf das Infiltrationsverhältnis. 

 

Bei den TÄ-2-Adhäsiven: 

- zwischen den Tags an der ersten und dritten Dentinposition gibt es keine statistisch signifikanten 

Unterschiede, sie sind lediglich etwas länger als die Tags an der zweiten Dentinposition. 

- das Infiltrationsverhältnis steigt von der ersten zur zweiten Dentinposition hin leicht an, sinkt aber 

an der dritten Dentinposition auf den kleinsten Wert von allen ab.  

 

Bei den SÄ-2-Adhäsiven: 

- die Dentinposition hat keinen statistisch signifikanten Einfluss auf die Länge der Tags 

- die Infiltrationsverhältnis sinkt von der ersten bis zur dritten Dentinposition.  

 

Bei den SÄ-Adhäsiven: 

- die Tags sind an der ersten Dentinposition länger als an der zweiten und dritten Dentinposition, 

zwischen denen es keine statistisch signifikanten Unterschiede gibt. 

- die Infiltrationsverhältnis steigt von der ersten bis zur zweiten Dentinposition, sinkt aber an der 

dritten Dentinposition auf den kleinsten Wert von allen ab. 
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 5.2.b  Statistische Auswertung der qualitativen Analyse 
 
Tabelle 12: Die Auswertung der qualitativen Analyse für jede Adhäsivklasse mit den drei oben 

beschriebenen Kriterien Homogenität, Regularität und Kontinuität. 

Adhäsivklasse 

Homogenität Regularität Kontinuität 

Auswertung [%] Auswertung [%] Auswertung [%] 

0 1 2 3 0 1 2 3 0 1 2 3 

SÄ-2 19,0 79,1 1,9 0 68,2 25,0 6,8 0 37,2 35,0 25,2 2,6 

TÄ-2 31,4 64,4 4,2 0 91,7 8,2 0,1 0 46,6 31,9 17,7 3,8 

TÄ-3 31,3 65,2 3,5 0 84,8 14,7 0,5 0 38,9 27,6 21,1 12,4 

SÄ-1 37,2 57,9 4,9 0 62,5 31,1 6,3 0 33,4 31,6 17,9 17,1 

 

 

In der vorliegenden Studie sind die Adhäsive mit großer Anzahl von Score 0 mehr   

homogen/regulär/kontinuierlich als die Adhäsive mit der größten Anzahl von Score 1, 2 oder 3. 

Betreffend Homogenität sind somit die SÄ-1-Adhäsive mit 37,2 %  Score 0 die besten. Die TÄ-2 

und die TÄ-3-Adhäsive folgen mit 31,4 % und 31,3 % Score 0. Auffallend ist, dass der Unterschied 

zwischen den beiden Varianten von TÄ-Adhäsiven hier sehr klein ist. Die SÄ-2 Adhäsive sind mit 

19,0 % Score 0 am wenigsten homogen.  

Betreffend Regularität sind hingegen die TÄ-2-Adhäsive mit  91,7 % Score 0 am besten. Die TÄ-3-

Adhäsive folgen mit 84,8 % Score 0. Auf dem dritten und vierten Platz liegen hier die SÄ-2 und 

SÄ-1-Adhäsive mit 68,2 % und 62,5 % Score 0, wobei der Unterschied zwischen den TÄ-

Adhäsiven und den SÄ-Adhäsiven auffallend groß ist. 

Betreffend Kontinuität sind die TÄ-2-Adhäsive mit 46,6 % Score 0 die besten. Die TÄ-3- und die 

SÄ-2-Adhäsive folgen mit 38,9 % und 37,2 % Score 0, wobei der Unterschied zwischen den 

vorgenannten Adhäsiven sehr klein ist. Auf dem letzten Platz sind hier die SÄ-1-Adhäsive mit 33,4 

% Score 0. 

 

Tabelle 13 zeigt den Einfluss des Lösungsmittels des Adhäsivs, des Adhäsivtyps und der 

Dentinposition auf die drei Kriterien der qualitativen Analyse der Tags (Homogenität, Regularität, 

Kontinuität) sowie auf ihre Kombinationen (Homogenität + Regularität, Homogenität + 

Kontinuität, Regularität + Kontinuität, Homogenität + Regularität + Kontinuität). Der Vergleich 

erfolgte mit Hilfe des allgemeinen linearen Modells (η² Statistik, p = 0,05). 
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Tabelle 13: Einfluss des Lösungsmittels des Adhäsivs, des Adhäsivtyps und der Dentinposition auf die 

Kriterien der qualitativen Analyse der Tags. In der Tabelle verwendete Abkürzungen für Einflussfaktoren:   

A: Homogenität, B: Regularität, C: Kontinuität, D: Homogenität + Regularität, E: Homogenität + 

Kontinuität,  F:   Regularität + Kontinuität,  G:  Homogenität + Regularität + Kontinuität. 

NS = nicht signifikant 

  

Einflussfaktoren A B C D E F G 

Adhäsivtyp 0,006 0,007 0,005 0,002 0,003 0,008 0,006 

Lösungsmittel NS 0,001 0,013 NS 0,006 0,007 0,007 

Dentinposition 0,003 NS 0,004 NS 0,004 0,010 0,007 

 

Der Adhäsivtyp hat einen signifikanten statistischen Einfluss auf alle drei Kriterien (p < 0,001) und 

auf alle ihre Kombinationen (p < 0,001). Die Einflusswerte sind: η² = 0,006 für Homogenität, η² = 

0,007 für Regularität und η² = 0,005 für Kontinuität), η² = 0,002 für „Homogenität + Regularität“, η² 

= 0,003 für „Homogenität + Kontinuität“, η² = 0,008 für „Regularität + Kontinuität“ und η² = 0,006 

für „Homogenität + Regularität + Kontinuität“.  

 Der Adhäsivtyp hat auf die Kombination „Regularität + Kontinuität“ insgesamt den höchsten 

Einfluss (η² = 0,008) und zeigt für die Kombination „Homogenität + Regularität“ (η² = 0,002) den 

niedrigste Einflusswert. 

 Das Lösungsmittel hat einen signifikanten statistischen Einfluss nur auf die Kriterien Regularität (p 

< 0,001) und Kontinuität (p < 0,001) sowie auf die drei Kombinationen dieser Kriterien (p < 0,001). 

Die Einflusswerte sind: η² = 0,001 für Regularität, η² = 0,013 für Kontinuität, η² = 0,006 für 

„Homogenität + Kontinuität“, η² = 0,007 für „Regularität + Kontinuität“ und η² = 0,007 für „Homo-

genität + Regularität + Kontinuität“.  

Das Lösungsmittel hat insgesamt den höchsten Einfluss auf das Kriterium Kontinuität (η² = 0,013) 

und den niedrigsten Einfluss auf das Kriterium Regularität (η² = 0,001). 

Die Dentinposition hat einen signifikanten statistischen Einfluss nur auf die Kriterien Homogenität 

und Kontinuität (p < 0,001) und auf die Kombinationen „Homogenität + Kontinuität“, „Regularität 

+   Kontinuität“  und „Homogenität + Regularität + Kontinuität“ (p < 0,001). Die Einflusswerte 

sind: η² = 0,003 für Homogenität, η² = 0,004 für Kontinuität, η² = 0,004  für „Homogenität + 

Kontinuität“, η² = 0,010 für „Regularität + Kontinuität“ und p = 0,007 für „Homogenität + 

Regularität + Kontinuität“. Die Dentinposition zeigt ihren höchsten Einflusswert für die 

Kombination „Regularität + Kontinuität“ (η² = 0,010), während der Einfluss auf das Kriterium 

Homogenität (η² = 0,003) am niedrigsten ist. 

Der Höchstwert in dieser Statistik von Tabelle 13 ergibt sich für den Einfluss des Lösungsmittels 
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auf das Kriterium Kontinuität (η² = 0,013), während der Einfluss des Lösungsmittels auf das 

Kriterium Regularität (η² = 0,001) den insgesamt niedrigsten Wert aufweist.  

 

 

Die Ergebnisse der statistischen Auswertung der quantitativen  und qualitativen Analyse sind in den 

Abbildungen 12 bis 16 grafisch dargestellt.  

 

 

 

 
Abb. 12:  Die Länge der Tags in Abhängigkeit vom Adhäsiv. Die unterschiedlichen Farben zeigen 

die Zugehörigkeit zu den in Tabelle 10 genannten Adhäsivklassen TÄ-3 (rot), TÄ-2 (grün), SÄ-2 

(gelb), SÄ-1 (blau)  

 

      



5. Ergebnisse 

56 

  
Abb. 13:  Das Infiltrationsverhältnis in Abhängigkeit vom Adhäsiv. Die unterschiedlichen Farben 

zeigen die Zugehörigkeit zu den in Tabelle 10 genannten Adhäsivklassen  TÄ-3 (rot), TÄ-2 (grün), 

SÄ-2 (gelb), SÄ-1 (blau) 

 

 

 

 
 

Abb. 14:  Die Länge der Tags in Abhängigkeit vom Adhäsivtyp. Die unterschiedlichen Farben 

zeigen die Zugehörigkeit zu den in Tabelle 10 genannten Adhäsivklassen  TÄ-3 (rot), TÄ-2 (grün), 

SÄ-2 (gelb), SÄ-1 (blau) 
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Abb. 15:  Das Infiltrationsverhältnis in Abhängigkeit vom Adhäsivtyp. Die unterschiedlichen 

Farben zeigen die Zugehörigkeit zu den in Tabelle 10 genannten Adhäsivklassen  TÄ-3 (rot), TÄ-2 

(grün), SÄ-2 (gelb), SÄ-1 (blau)  

 

 

 

 

   

 
 

Abb. 16:  Die Kriterien der qualitativen Analyse. Die unterschiedlichen Farben zeigen die 

Zugehörigkeit zu den definierten Scores: 0 (blau), 1 (rot), 2 (grün) und 3 (lila)   
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6. Diskussion 
 

Das Prinzip von Zahnadhäsiven ist die Bildung einer Hybridschicht (Nakabayashi 1991) sowie die 

Dentininfiltration und die Ausformung der Zapfen („Tags“) in den Dentinkanälchen (Ferrari 1996).  

Im Rahmen der vorliegenden Studie wurden mehrere interessante Informationen über die Adhäsiv-

Dentin-Grenzfläche von 20 verschiedene Adhäsiven gewonnen.  

Im ersten Teil der Arbeit wurde im Rahmen einer quantitativen Analyse die Länge der Tags und das 

Infiltrationsverhältnis (Prozentzahl der gefüllten Tags) gemessen und in einer qualitativen Analyse 

die Homogenität, Regularität und Kontinuität der Tags bestimmt. 

Im zweiten Teil der Arbeit wurde der Einfluss des Adhäsivsystems, des Lösungsmittels des 

Adhäsives, des Adhäsivtyps, der Dentinposition, Scheibennummer und Zahntyp und ihrer Kombi-

nationen auf die quantitative und qualitative Dentininfiltrationsfähigkeit untersucht. 

In der vorliegende Arbeit wurde das Adhäsiv mit idealer Penetration bestimmt als das Adhäsiv mit 

den höchsten Werten von allen für beide Parameter der quantitativen Analyse, d.h. die Länge der 

Tags und das Infiltrationsverhältnis.  

Das Infiltrationsverhältnis hat für AdheSE (SÄ-2, 91,8 %), Solobond Plus (TÄ-3, 91,7 %), XP Bond 

(TÄ-2, 90,6 %), Prime&Bond NT (TÄ-2, 90,5 %) und Solobond M (TÄ-2, 90,2 %) keine 

statistische Signifikanz und ist für betreffenden Adhäsive annähernd gleich hoch (siehe Tabelle 6). 

Die Länge der Tags hat für Solobond Plus (19,5 µm), XP Bond (20,3 µm) und Syntac (TÄ-3, 20,8 

µm) keine statistische Signifikanz und die höchsten Werte von allen getesteten Adhäsiven (siehe 

Tabelle 6). In Kontrast dazu zeigt AdheSE das höchste Infiltrationsverhältnis, aber eine relativ 

kleine Länge der Tags (9,0 µm). Für Solobond Plus ergibt sich somit insgesamt eine gute Infiltration 

für beide Parameter. 

Einige frühere Studien (De Munck 2005; De Munck 2005; Van Landuyt 2006; Bitter 2009; Mine 

2009; Perdigão 2010; Pashley 2011) zeigten, dass die TÄ ein besseres Verbundsfestigkeit zeigen als 

SÄ. Generell liefern in der gleichen Adhäsivklasse die 3-Arbeitsschritte-TÄ bessere Ergebnisse als 

die 2-Arbeitsschritte-TÄ  (De Munck 2005; Pashley 2011), und die 2-Arbeitsschritte-SÄ sind besser 

als die 1-Arbeitsschritte-SÄ (De Munck 2005; De Munck 2005; Van Landuyt 2006). 

Die bessere Verbundfestigkeit von TÄ ist daher in Abhängigkeit von ihren Ätzschritten zu 

betrachten (Margvelashvili 2010). In der vorliegenden Studie wurden verschiedene Adhäsivsysteme 

mit unterschiedlichen Konzepten der Schmierschichtbehandlung untersucht. 

Bei den TÄ-3 und TÄ-2 erfolgt eine teilweise oder totale Auflösung der Schmierschicht, was zu 

einer erhöhten Infiltration führt, deswegen sind die Penetrationswerte hier höher im Vergleich zu 
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denen der SÄ-Adhäsive (Van Meerbeek 1992; Margvelashvili 2010; Perdigão 2010). Aus dem 

gleichen Grund sind die Tags von TÄ-Adhäsiven länger, schmaler und mehr distinkt (unter-

schiedlich geformt) wie die Tags von SÄ-Adhäsiven (Abb. 3, 5, 10 und 11).  

 Bei den Adhäsivsystemen, die in Verbindung mit der Totalätztechnik angewendet werden (TÄ-2, 

TÄ-3) bewirkt die Säureapplikation auf Dentin neben der Entfernung der Schmierschicht und 

Schmierpfropfen („smear plugs“) auch eine Demineralisation des Dentins. Es werden Hydroxyl-

apatitkristalle aus dem Kollagennetzwerk des intertubulären und peritubulären Dentin herausgelöst. 

Das so freigelegte Kollagenfasernetzwerk kann dann von den nachfolgend aufgetragenen Primern 

bzw.  den darin enthaltenen hydrophilen Monomeren sehr schnell und sehr gut infiltriert werden 

(Perdigão 2010). Diese Dentinpermeabilität resultiert in Dentinoberflächenfeuchtigkeit, die die 

Qualität des Verbunds beeinflusst. TÄ weisen daher eine im Vergleich zu SÄ höhere 

Mikropermeabilität auf (Rosales-Leal 2007). Somit könnte auch erklärt werden, warum die TÄ-3 

und TÄ-2 Adhäsiven bessere Werte bei der quantitative Analyse zeigen (Tabelle 10).  

Bei den selbstkonditionierenden Adhäsivsystemen (SÄ-2, SÄ-1 oder Eine-Flasche-Adhäsive) mit 

getrennter Applikation von Primer und Adhäsiv enthält der Primer hydrolysestabile selbstkondi-

tionierende Monomere, und bei den selbstkonditionierenden Ein-Schritt-Adhäsiven enthält die 

applizierte Lösung eine Mischung von hydrophilen und hydrophoben Monomeren sowie Monomere 

mit Säureestern. Sie erfüllt so die Funktion des Adhäsives, des Primers und des Ätzmittels 

gleichzeitig. Die Schmierschichtpartikel der selbstkonditionierenden Monomere werden bei diesen 

Systemen in das Primer/Adhäsiv-Gemisch eingebettet und bilden die Pfropfen aus. (Pashley 1978; 

Perdigão 2010). Dadurch sinkt  die Dentinpermeabilität  auf 86 % und die infiltrierten Tags werden 

kürzer und dicker und zeigen bei der quantitative Analyse niedrige Werte (Tabelle 10). 

Die Tags können anzeigen, wie tief das Dentin geätzt wurde, werden aber nicht einheitlich als Para-

meter des klinischen Erfolgs angenommen (Giachetti 2004; Celiberti 2005). 

Bei den TÄ ist das Dentin tiefer geätzt als bei den SÄ, wodurch erklärt werden kann, warum die 

untersuchten TÄ-Materialien längere Tags aufweisen (Tabelle 6). 

Weil der Silorane Primer Ätzmonomere enthält und diese vor der Anwendung des Silorane 

Adhäsivs  polymerisiert werden, kann Silorane System zu den SÄ-1-Adhäsiven gezählt und mit 

diesen verglichen werden (Santini 2008). Daher hat Silorane System beim Infiltrationsverhältnis 

den kleinsten Wert von allen 20 Adhäsiven (59,6 %), vergleichbar mit anderen SÄ-1-Materialien: 

Xeno III (67,6 %), Xeno V (69,6 %) und i-Bond (71,3 %) (Tabelle 6). 

Bei den SÄ ist die Entfernung der Schmierschicht abhängig vom pH-Wert des Primers (De Munck 

2005; Banu Ermis 2008). Die getesteten SÄ-Adhäsive der vorliegenden Studie haben unter-

schiedliche  pH-Werte: Bond Force (SÄ-1) mit einem pH-Wert von 2,3 (Margvelashvili 2010) wird 
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als mildes SÄ-Adhäsiv betrachtet und demineralisiert den Dentin nur oberflächig, während der 

Primer von AdheSE (SÄ-2) mit einem pH-Wert von 1,5 (Van Meerbeek 2003) aggressiver ist und 

die Schmierschicht und die Schmierpfropfen total entfernt, unter Formation einer Hybridschicht mit 

fast gleicher Größe wie die Hybridschicht von TÄ und mit tiefer Infiltration in die Dentintubuli 

(Tay 2001; Margvelashvili 2010). Wegen des Säuregrades von Adhäsiven zeigt Bond Force ein 

niedriges Infiltrationsverhältnis und kürzere Tags (Abb. 7, 8, 9), während AdheSE ein höheres 

Infiltrationsverhältnis, aber kürzere Tags aufweist (Abb. 4). 

Die Höchstwerte für das Infiltrationsverhältnis in dieser Studie bei AdheSE können daher durch 

Wasser als Lösungsmittel erklärt werden. Dieses deutet darauf hin, dass das in den Adhäsiven 

vorhandene Wasser während der Infiltration der gelösten Comonomere gleichzeitig die 

Kollagenfasern ausdehnt und somit eine bessere Infiltration ermöglicht (Van Meerbeek 1998; 

Hashimoto 2002; Manso 2008). Wasser als Lösungsmittel erklärt zugleich auch die guten Werte für 

Solobond Plus und Syntac. 

Die guten Ergebnisse von XP Bond (Tabelle 6) können eine weitere Erklärung haben: das 

Lösungsmittel (tert-butanol) ist total mischbar mit Wasser und Adhäsiven, und der Phosphatester  

mit dem Mineral Apatit von Dentin (Lattaa 2007; Margvelashvili 2010). Dies begünstigt die  

Wechselwirkung des Adhäsivs mit einem feuchten Substrat und ermöglicht eine Erhöhung des 

Adhäsivgehalts in der Bondinglösung (Technical Bulletin, Dentsply De Trey Konstanz, 

Deutschland). 

Der relative Beitrag der Tags zur Bindungsstärke hängt davon ab, wo die Verbindung gebildet wird 

(oberflächlicher, mittlerer oder tiefer Dentin) und ob die Dentinkanälchen senkrecht oder  parallel 

zur vorbereiteten Dentinoberfläche orientiert sind (Duke 1991; Pashley 1991; Giachetti 2004; 

Perdigão 2010).  In der vorliegenden Studie sind die Dentinkanälchen bei der ersten Messung (0,5 

mm von SDG schräg zur vorbereiteten Dentinoberfläche und bei der dritten Messung (2,5 mm von 

SDG) dann senkrecht zur vorbereiteten Dentinoberfläche. Die Messungen sind im mittlere Dentin 

gebildet. Für TÄ ist die senkrechte Orientierung der Dentinkanälchen verbunden mit längeren Tags 

(Perdigão 2010). 

Für die Verbundfestigkeit wurde gezeigt, dass sie in den meisten Fällen abhängig von der während 

der Dentinpenetration entstehenden Hybridschicht ist.  

Bei den TÄ wurde im Allgemeinen eine höhere Verbundfestigkeit als bei den SÄ gemessen, 

während sie bei den TÄ-3 nicht signifikant höher ist als bei TÄ-2 (De Munck 2005). Dadurch 

könnte auch erklärt werden, warum die in der vorliegenden Studie verwendeten TÄ-Adhäsiven ein 

besseres Infiltrationsverhältnis als die SÄ-Adhäsive aufweisen. 

Bei speziellen SÄ-2-Materialien kann die Verbundfestigkeit im Einzelfall höher oder gleich hoch 
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wie bei TÄ-Materialien sein (Knobloch 2007; Margvelashvili 2010). Dieses steht im Einklang mit 

dem Befund  der vorliegenden Studie, dass Clearfil SE Bond (SÄ-2) ein besseres Infiltrations-

verhältnis (86,9 %) hat als Syntac (TÄ-3, 78,5 %), wodurch die bessere Verbundfestigkeit erklärt 

werden kann. Clearfil SE Bond ist ein mildes SÄ, das in mehreren Studie gute Werte von Verbund-

festigkeit erzielte und deshalb als „Goldstandard“ für SÄ-Adhäsive gilt (Mine 2009) 

Grundsätzlich haben Eine-Flasche-Adhäsive die niedrigste Verbundfestigkeit (De Munck 2005).  

Dementsprechend sind in der vorliegenden Studie mehrere Eine-Flasche-Materialien in der zweiten 

Tabellenhälfte plaziert, mit niedrigeren Werten im Vergleich zu TÄ oder SÄ-2 (siehe die Tabelle 7 

und Abb. 14 und 15). 

Die Rolle, welche die Anzahl der Tags und die Länge der Tags im Hinblick auf die 

Verbundfestigkeit  spielen, wird noch nicht völlig verstanden.  Frühere in vitro Studien zeigen keine 

Korrelation zwischen der Länge der Tags, der Verbundfestigkeit, optimalen Ätzbedingungen und 

microleakage (Shinchi 2000; Celiberti 2005). Bei Verwendung von SÄ ist der 

Demineralisationsgrad des Dentins und somit auch die Freilegung der Dentinkanälchen deutlich 

geringer. Schmierpfropfen, die die Dentinkanälchen besonders in tiefer liegenden Arealen 

verstopfen, halten einen Teil der HEMA-Moleküle zurück. 

Die Adhäsive, die HEMA und Triethylenglycol-dimethacrylat (TEG-DMA) als Monomere und 

Ethanol als Lösungsmittel enthalten, haben niedrigere Viskositäten und höhere Penetrations-

koeffizienten. Die kleinen hydrophilen Monomere wie HEMA können deshalb einfach das Dentin 

infiltrieren (Mine 2009). Die folgenden Adhäsive mit gutem Infiltrationsverhältnis (Solobond Plus, 

Solobond M, Excite, Clearfil Bond SE) enthalten HEMA, wodurch deren bessere Werte in der 

Tabelle 6 und den Abbildungen 12 und 13 erklärt werden können. 

Im Gegensatz dazu haben diejenigen Adhäsive, die Bis-GMA oder Urethandimethacrylat (UDMA) 

als Monomere enthalten, eine höhere Viskosität und einen niedrigen Penetrationskoeffizienten 

(Paris 2006; Paris 2007), mit welchem die Penetration von Adhäsiven abgeschätzt wird (Paris 

2007). Von den in der vorliegenden Studie untersuchten Adhäsiven enthalten Xeno III, iBond, 

Hybrid Bond, AQ Bond das Monomer  UDMA; für diese Materialien ergaben sich jeweils niedrige 

Werte bei der quantitativen Analyse (Tabelle 6, Abb. 12 und 13). 

Jedes individuelle Adhäsiv hat seine eigene spezielle Wechselwirkung mit Dentin. Die Verbund-

effizienz ist nicht nur abhängig vom Adhäsivtyp, sondern mit Sicherheit auch von der Zusammen-

setzung des Adhäsivs (Van Landuyt 2006).  Aus diesem Grund zeigen einige frühere Studien für 

manche SÄ bessere oder fast gleiche Resultate wie für TÄ (Knobloch 2007; Margvelashvili 2010). 

So zeigt zum Beispiel der Befund von Margvelashvili (Margvelashvili 2010), dass die 

Verbundfestigkeit von BondForce und Xeno III (beide sind SÄ-1) gleichwertig mit der 
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Verbundfestigkeit von TÄ ist. Weiterhin sind gemäß dem Befund von Knobloch (Knobloch 2007) 

die Verbundfestigkeit von den SÄ-Materialien, Clearfil SE Bond, Optibond Solo Plus, iBond und 

G-Bond nicht signifikant höher als die Verbundfestigkeit des TÄ-2-Adhäsivs Prime&BondNT.  

Entsprechend weisen auch in der vorliegenden Studie einige SÄ-Adhäsive bessere Ergebnisse auf 

als manche TÄ-Adhäsive (Tabelle 6 und Abb. 12 und 13). 

Die bessere Homogenität von TÄ-Adhäsiven (TÄ-2 = 64,4 %, TÄ-3 = 65,2 % ,Tabelle 12) kann 

erklärt werden durch die Ätz-Phase vor der Applikation des Adhäsivs: das Adhäsiv penetriert mehr 

und einfacher als bei den SÄ-Materialien. In der Ätz-Phase werden die Schmierschicht und die 

Schmierpfropfen entfernt und die restlichen kugelförmigen Teilchen von diesen beiden 

Strukturteilen verdecken die Dentinkanälchen; somit werden die Tags hier dicker als bei SÄ-

Adhäsiven (Pashley 1991; Kugel 2000). 

Unterbrochene Tags können auftreten als Resultat der extensiven Demineralisierung in der Ätz-

Phase, der Harzinfiltration in die Dentinkanälchen, sowie Polymerisations-Schrumpfspannung  

(Bitter 2009). 

Die Dentinposition kann die Homogenität beeinflussen (p < 0,001, η² = 0,006, Tabelle 13) wegen 

der Distribution der Dentinkanälchen: ihre Position verändert sich, bis sie senkrecht zu der 

getesteten Oberfläche orientiert sind; dadurch erhalten sie längere Tags. 

Der Grund für die bessere Regularität von TÄ (TÄ-2 = 91,7 % und TÄ-3 = 84,8 %, Tabelle 12) ist 

die Ätz-Phase, wodurch die Schmierschicht entfernt wird und die Monomere einen einfacheren 

Zugang zu den Dentinkanälchen erhalten. 

Hinsichtlich der klinischen Effektivität bezüglich der Beständigkeit der Dentin-Adhäsiv-

Grenzfläche im Vergleich zu Laborbedingungen sind funktionelle Laboruntersuchungen wie 

Verbundfestigkeitsmessungen und Microleakage-Messungen notwendig um das klinische Verhalten 

vorhersagen zu können (Van Meerbeek 1994). 

Klinisch wurde gezeigt, dass die TÄ-3 und TÄ-2 einen dauerhaften Verbund zum Dentin erzeugen, 

falls sich alle Kavitätskanten im Zahnschmelz befinden. Für Kavitäten mit im Dentin endenden 

Rändern werden die TÄ-3 bevorzugt (De Munck 2003). 

Einige Adhäsive haben eine sehr gute klinische Effektivität, während Laboruntersuchungen eher 

mittelmäßige Ergebnisse zeigen. Insbesondere kann ein Adhäsiv auch trotz geringer Ausbildung von 

Tags klinisch effektiv funktionieren  (Peumans 2010). Es wurde sogar gezeigt, dass - im Gegensatz 

zum Verhalten unter Laborbedingungen - SÄ-Adhäsive klinisch besser sein können als TÄ-

Adhäsive (Koshiro 2005). Ein Beispiel ist das SÄ-Adhäsiv Clearfil Bond SE, welches ein sehr 

gutes klinisches Verhalten zeigt (Peumans 2010), obwohl eine unzureichende Harzinfiltration im 

Vergleich zu TÄ-3 in Laboruntersuchungen gemessen wurde. Die Ursache für dieses Verhalten ist in 
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der speziellen Zusammensetzung des betreffenden Adhäsives zu suchen (Inoue 2005). Auf diese 

Weise scheinen die SÄ-2 mit der hydrolytischen Stabilität des funktionellen Monomers selbst und 

dessen Wechselwirkung mit Dentin zusammen zu hängen. 

Adhäsive, welche 10-MDP als funktionelles Monomer enthalten, das effektiv mit Hydroxylapatit 

innerhalb einer klinisch sinnvollen Zeit chemisch wechselwirkt, zeigen keine Anzeichen von Abbau 

der Verbundfestigkeit und der Grenzflächen-Ultrastruktur. Eine innige Monomer-Dentingewebe-

Wechselwirkung wird daher als förderlich für eine Verlängerung der Verbundlebensdauer angesehen 

(Inoue 2005). Das SÄ-2 Clearfil Bond SE, welches 10-MDP enthält, zeigt eine ausgezeichnete 

klinische Effektivität auch noch nach 8 Jahren klinischer Funktion (Peumans 2010). Gleichwohl 

muss die endgültige Effektivität von Adhäsiven erst noch in kontrollierten klinischen 

Langzeitexperimenten bestätigt werden (Van Meerbeek 1994).    

Die vorliegende Studie zeigt, dass nicht nur die Klasse des Adhäsivs ein wichtiger Faktor für gute 

Penetration ins Dentin ist, sondern auch die Zusammensetzung des Adhäsivs und die Position, an 

der die Messungen gemacht werden. Das Untersuchungsergebnis zeigt, dass die TÄ-2 ein besseres 

Infiltrationsverhältnis aufweisen, während die TÄ-3 die längsten Tags haben. 

Die klinische Rolle der qualitativen und quantitativen Analyse der Tags muss noch weiter 

untersucht werden. 
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7. Zusammenfassung 

 

In der vorliegenden Arbeit wurde das Infiltrationsverhalten von 20 verschiedenen kommerziellen 

Adhäsiven verglichen. Die Materialien wurden ausgewählt aufgrund ihres Typs, ihres Lösungs-

mittels sowie der Anzahl der Arbeitsschritte. 

Die analysierten Proben wurden von 70 menschlichen Molaren präpariert. Die Adhäsive wurden mit 

Fluoreszenzfarbstoff gemischt, nach Herstellerangaben appliziert und mit eine LED–Lampe jeweils 

20 s polymerisiert.  Von jedem Molar wurden zwei Proben abgeschnitten und jede dieser Scheiben  

mittels CLSM an drei Stellen in Abständen von 0,5 mm, 1,5 mm  und  2,5 mm von der SDG unter-

sucht. Die jeweils observierte Schicht befand sich 10,2 μm unter der polierten Probenoberfläche. 

Die CLSM-Abbildungen wurden innerhalb einer Bildfläche von 100 µm x 100 µm ausgewertet. 

Das Infiltrationsverhalten konnte durch die quantitative und qualitative Auswertung von Tags (die 

infiltrierten Bereiche der Dentintubuli) bestimmt werden. Die Länge der Tags (definiert als 

Entfernung ihrer Enden von der Zahn-Adhäsiv-Oberfläche) und das Infiltrationsverhältnis (definiert 

als der prozentuale Anteil der - in den Figuren gefärbt dargestellten - gefüllten Tags an der Gesamt-

zahl der Dentintubuli, welche in den Figuren weiß dargestellt sind) wurde aus den CLSM-Bildern 

quantitativ bestimmt und statistisch analysiert. 

Weiterhin wurden die Tags qualitativ charakterisiert durch die Kriterien Homogenität (beschreibt 

den Unterschied in der Länge der Tags), Regularität (beschreibt die Gleichmäßigkeit der Tags) und 

Kontinuität (beschreibt, ob die Tags unterbrochen gefüllt sind oder nicht).  

Auf diese Weise konnten wertvolle Informationen über das Infiltrationsverhalten der untersuchten 

Adhäsive gewonnen werden und systematische Unterschiede zwischen den einzelnen Materialien 

und zwischen vier verschiedenen Adhäsivklassen festgestellt werden.  

Die statistische Auswertung der quantitativen Analyse von Adhäsiven zeigt für AdheSE, Solobond 

Plus, XP Bond, Prime & Bond NT und Solobond M die besten Infiltrationsverhältniswerte, während 

Solobond Plus und XP Bond die längsten Tags haben. Die kürzesten Tags haben die folgenden 

Materialien: AdheSE, AQ Bond, Bond Force und Silorane System. Das Adhäsiv mit dem geringsten 

Infiltrationsverhältnis ist Silorane System. 

Bei der quantitativen Analyse bezüglich der vier Adhäsivklassen ergeben sich für die TÄ-3-Adhä-

sive die längsten Tags, gefolgt von den TÄ-2-Adhäsiven und SÄ-Adhäsiven, wobei die Anzahl der 

Arbeitsschritte bei den SÄ-Adhäsiven keinen Einfluss auf die Länge der Tags hat. 

Das beste Infiltrationsverhältnis zeigen die TÄ-2-Adhäsive, gefolgt von den TÄ-3-, SÄ-2- und SÄ-

1-Adhäsiven. 
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Bei der qualitativen Analyse weisen die TÄ-Adhäsive die größte Homogenität auf, wobei die TÄ-2 

zusätzlich auch die beste Regularität und Kontinuität zeigen. 

Das Lösungsmittel und die Dentinposition haben einen statistischen Einfluss auf die Parameter der 

quantitativen Analyse, während der Adhäsivtyp diese beeinflusst.  

Der Adhäsivtyp hat einen statistischen Einfluss auf alle Kriterien der qualitative Analyse, hingegen 

wirkt sich das Lösungsmittel nur auf die Homogenität aus, während die Dentinposition die 

Homogenität und die Kontinuität beeinflusst. 

Das unterschiedliche Infiltrationsverhalten der untersuchten Adhäsivsysteme an den untersuchten 

Proben lässt sich nicht allein durch die Adhäsivklasse plausibel erklären, sondern erfordert 

zusätzlich die Betrachtung der chemischen Eigenschaften und Zusammensetzungen der 

wesentlichen beteiligten Komponenten sowie der Dentinposition, an der die Messungen gemacht 

werden.   
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Abkürzungsverzeichnis 
 

 

Bis-GMA             Bisphenolglycidylmethacrylat  

BPDM                  Biphenyldimethacrylat 

CLSM                  konfokales Laser-Scanning-Mikroskop 

EDTA                   Ethylendiamintetraessigsäure 

HEMA                  Hydroxyethylmethacrylat 

HPMA                  Hydroxypropylmethacrylat 

NS                         nicht signifikant 

 4-META              4-Methacryloyloxyethyl -trimellitat-anhydrit 

NPGGMA            N-Phenyl-glycin-glycidyl-methacrylat 

PEGDMA             Poly(ethylene glycol)dimethacrylat                       

REM                     Mikro-Raman-Spektroskopie 

SA                         Standardabweichung  

SÄ-2                     Selbstätz-Zwei-Schritt-Adhäsive 

SÄ-1                     Selbstätz-Ein-Schritt-Adhäsive 

SDG                      Schmelz-Dentin-Grenze  

TÄ-3                     Total-Ätz-Drei-Schritt-Adhäsive   

TÄ-2                     Total-Ätz-Zwei-Schritt-Adhäsive 

µTBS                    micro tensile bond strength = Mikro-Zugfestigkeit  

TÄ-Adhäsive        Total-Ätz-Adhäsive 

TEG-DMA            Triethylenglycol-dimethacrylat 

SÄ-Adhäsive         Selbstätz-Adhäsive  

UDMA                  Urethandimethacrylat 

10-MDP                10-Methacryloyloxydecyldihydrogenphosphat 
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