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Chapter 1  

I n t r o d u c t i o n  a n d  o b j e c t i v e s  o f  

t h e  t h e s i s  

1 Introduction 

1.1 Challenges of protein drug formulation 

The chemical and physical properties of protein drugs result in unique challenges in the 

separation, purification, formulation, storage and delivery of these macromolecules, deviating 

from the difficulties typically occurring during the development of small organic molecule 

therapeutics [1, 2]. Based on the underlying mechanism, protein degradation can be separated 

into two pathways, namely chemical and physical instability [1-3]. Chemical instability describes 

any process that comprises covalent protein modification via bond formation or cleavage 

generating a new chemical entity [1, 2]. In contrast, physical instability involves changes in the 

secondary, tertiary or quaternary protein structure in the absence of covalent modifications [1, 

2]. These include denaturation, aggregation, precipitation and adsorption to surfaces, whereas 

processes such as deamidation, racemization, hydrolysis, oxidation, disulfide exchange and β-

elimination are examples of chemical instability [1-3]. Protein stabilization against both 

chemical and physical degradation can be addressed by various formulation strategies, 

including e.g. chemical modification of the protein and choice of appropriate additives, 

excipients and formulation pH [1-6]. Specifically the formulation development of high 

concentration protein injectables is frequently associated with enhanced protein aggregation 

due to increased molecular interaction and specific hurdles such as high viscosity [7, 8]. 

The susceptibility of proteins to degradation is generally lower in the dried state than in 

aqueous solution [2, 9]. The protein´s mobility is reduced, impeding protein-protein 

interactions that are especially prerequisite for aggregation [10, 11]. Besides the conventional 

application by injection after reconstitution, the development of solid protein formulations 

allows for additional routes of administration, such as inhalation, modification of the release 

profile due to embedding in matrices as well as incorporation of proteins into tissue 
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engineering scaffolds and medical devices [12]. Lyophilization represents the process of choice 

for the preparation of dry protein powders [5, 6, 13]. However, the interest towards the 

development of alternative drying methods has steadily increased in recent years because 

freeze-drying, although successful for many proteins, has certain disadvantages, such as long 

processing times, batch operation and high capital equipment costs [14-16]. Other drying 

techniques for proteins, currently being evaluated, comprise spray-drying [17, 18], spray-freeze 

drying [17], supercritical fluid drying [19-23] and vacuum drying [14, 24, 25]. Furthermore, 

particle generating techniques, such as crystallization [8, 26-28] and precipitation [29], in 

combination with subsequent drying are suitable for manufacturing of dry protein powder. 

The protein-coated microcrystals (PCMC) technology represents an alternative technique to 

stabilize the protein in the solid state and also allows for the development of nonstandard 

dosage forms, for example protein suspensions for subcutaneous application. This therapeutic 

dosage form could for instance be beneficial when high concentration protein solutions are not 

feasible due to reduced protein solubility, poor stability or high viscosity. Moreover, PCMC 

powder may be used for the development of drug delivery systems e.g. in the case of sustained 

release matrix material employed as co-precipitating excipients. 

1.2 The protein-coated microcrystals technology 

1.2.1 Definition of protein-coated microcrystals 

The protein-coated microcrystals technology represents an alternative method of protein 

stabilization in the solid state. It is based on the coprecipitation of an aqueous solution of 

protein and carrier material induced by a rapid addition of a surplus of organic water-miscible 

solvent in which the PCMC components are not or hardly soluble, e.g. isopropanol or 

isobutanol. The immediate dehydration of the protein and the carrier components, comprising 

physiological acceptable substances such as buffer species, amino acids, sugars and inorganic 

salts, results in the formation of a suspension that is concentrated and subsequently dried via 

supercritical fluid extraction with carbon dioxide. The powder harvested consists of water-

soluble particles in the lower micrometer range, typically less than 50 µm. 
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1.2.2 Development and application of the PCMC technology 

The PCMC technology, mainly as a batch process, was foremost described in the patent 

‘WO 00/69887 – Rapid dehydration of proteins’ by Moore et al. [30]. Herein, the authors 

pointed out that biomolecules keep a native-like conformation after particle formation due to 

the rapid dehydration step. The term ‘biomolecule’ comprised not only proteins, peptides or 

polypeptides, but nucleic acids such as DNA and RNA as well. Figures attached to the patent 

application demonstrate the formation of crystals with planar surfaces covered by amorphous 

protein, a structure that was confirmed in several subsequent studies [31, 32]. The process 

leading to this type of particles was termed crystal lattice mediated self-assembly (CLAMS) by a 

group of chemists from the University of Strathclyde [33]. Additionally, it was shown that 

precipitated PCMCs can be stored in the organic solvent and that the protein retains its activity 

and stability throughout the process [30]. The patent described that applications of this 

technology include preparation of enzymes for biocatalysis, formulation of pharmaceutical drug 

products and purification processes. 

Early applications of this technology mainly focused on enzyme PCMC suspensions for 

biocatalysis in organic solvents. Kreiner et al. were the first to prove that the preparation of 

subtilisin Carlsberg protease PCMCs and several lipase PCMCs with potassium sulfate as co-

precipitant results in particles with higher catalytic activities than lyophilized enzyme products 

[31]. They further showed that storage of the PCMC suspension in propan-1-ol for up to 

14 months leads to only negligible loss in activity [34]. The superiority of lipase K2SO4 PCMCs 

over the free enzyme concerning bioactivity rates in non-aqueous media is acknowledged by 

several authors [32, 35, 36]. Raita et al. investigated the applicability and operational stability of 

lipase PCMCs during biodiesel production [37]. Kreiner et al. extended the idea of PCMCs as 

biocatalysts to oxidoreductases [38]. 

However, not only enzymes for biocatalysis can be addressed with the PCMC technology. Vos 

successfully co-precipitated proteins like trypsin, pepsin, adenosine deaminase and myoglobin 

with several carrier materials during his studies on the formation mechanism of PCMCs [39]. 

The PCMC technology also allows for co-immobilization of two proteins onto the same carrier 

crystals [40]. 
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Khosravani et al. used the PCMC technology for the formulation of adenylate cyclase toxin 

(CyaA) of Bordetella pertussis, a potential candidate for vaccination against pertussis [41], 

which is usually stored in highly concentrated urea solutions for stability reasons. The authors 

showed that urea could be removed during the PCMC co-precipitation process with DL-valine as 

carrier due to its high solubility in the precipitating solvent ethanol. Furthermore, CyaA PCMCs 

that included calmodulin alone or in combination with bovine serum albumin (BSA) elicited full 

adenylate cyclase and cell invasive activities when reconstituted in aqueous buffer. Murdan et 

al. found that PCMCs of diphtheria toxoid stabilized the vaccine even at elevated temperatures 

[42]. Partridge et al. as well as König extended the PCMC technology to antibody (IgG) coated 

microcrystals [43, 44]. The pharmaceutical PCMC powders may be applied to the patient 

parenterally after reconstitution in aqueous media or as a suspension. Furthermore, as the 

resulting powders are usually very fine and free-flowing due to the supercritical fluid drying 

process, they can be used for pulmonary drug delivery if their particle size is between 0.5 and 

5 µm. 

For the production of PCMCs, essentially, only one carrier component and a biomolecule are 

required, as shown in early studies [31, 35, 36, 38, 45]. According to WO 2004/062560, carriers 

can be nearly any compound that crystallizes rapidly and that can be used as a saturated 

solution. Most commonly an inorganic salt, an amino acid or a sugar was employed [46]. 

Potassium sulfate was the carrier of choice. Amongst the amino acids, especially DL-valine [41, 

47], glycine [44] and L-glutamine [39, 48] proved to be suitable carrier components. Mannitol 

has been utilized as carrier by Vos [39]. Kreiner et al. extended the choice of immobilization 

matrix to both inorganic and zwitterionic compounds acting as solid-state buffers [45]. These 

substances, e.g. Na-AMPSO (3-((1,1-dimethyl-2-hydroxyethyl)amino)-2-hydroxypropanesulfonic 

acid), Na2CO3 and NaHCO3, can provide in situ ionization-state control which has been shown to 

be beneficial for the catalytic activities of two serine proteases [28]. It was pointed out by 

Moore et al. that certain biomolecules, like antibodies, need further stabilization during the 

PCMC production since exposure to polar solvent and immobilization on a surface means 

serious stress to the protein [49]. The authors recommended using a neutral co-precipitant, e.g. 

glycine, in combination with a basic and/or an acidic additive, especially the amino acids 

L-arginine and L-glutamic acid, and optionally further excipients like a neutral non-polymeric 
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additive, for instance sugars like trehalose, polysorbates and inorganic salts, such as NaCl. 

These precipitation-protective additives were suggested to form associates with the protein on 

the surface of the crystalline PCMC core [29]. The necessity of a rather complex carrier 

composition for sufficient stabilization was recently acknowledged during PCMC formulation 

development of an IgG at Boehringer Ingelheim [48]. 

These exemplary PCMC applications especially in the pharmaceutical field indicate that the 

PCMC technology represents a promising new method of stabilization of therapeutic 

biomolecules as dry powders. Therefore, this technology was introduced and further 

investigated at Boehringer Ingelheim in Biberach/Riss (D), initially in cooperation with XStalBio 

Limited (Glasgow, UK). 

1.2.3 PCMC production at Boehringer Ingelheim 

The first PCMC-related patent WO 00/69887 and most of the published work described the 

production of PCMCs in a batch mode where an aqueous solution of the protein and the carrier 

(protein-carrier solution) was added dropwise to the anti-solvent under stirring [30]. In 

‘WO 2004/062560 - Pharmaceutical composition’, however, the idea of producing PCMCs with 

a two-line continuous process for large-scale batches was introduced [46]. The authors stated 

that the use of a flow-co-precipitator could not only lead to PCMCs with higher uniformity, but 

also with increased bioactivity and stability compared to samples prepared by the batch 

process. These advantages were ascribed to the reduction of stress induced by the air-solvent 

interface or shear forces during mixing. Considering these aspects, a continuous PCMC 

production process was implemented at Boehringer Ingelheim [48].  

In general, after preparation of the aqueous protein-carrier solution, the PCMC production at 

Boehringer Ingelheim encompasses the following three steps which are visualized in Figure 1-1: 

 A. Mixing / PCMC precipitation 

A pre-blended aqueous solution of protein and carrier material (protein-carrier solution) is 

rapidly mixed with an excess of a water-miscible organic solvent saturated with all carrier 

excipients. Hence, the PCMCs co-precipitate immediately. The modular mixing platform 

(Figure 1-1A), established by König, comprised a static double or quadruple jet impingement 
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mixing module as well as pressure sensors, temperature sensors and mass flow meters to 

monitor and control the precipitation step [48]. In the double jet impingement mixer, usually 

chosen for the manufacturing of PCMCs, two independent anti-solvent streams delivered by 

micro gear pumps are merged with the protein-carrier solution. According to fluid dynamic 

computations [44], the design of the mixer as well as an appropriate pumping speed ensures 

homogenous mixing of the different phases. The resulting PCMC suspension is collected in an 

external vessel. 

 B. Concentration of the PCMC suspension / solvent exchange 

The concentration step of the PCMC suspension is necessary in order to avoid excessive drying 

times and costs. For this purpose, a modified pressure filtration unit has been developed [44]. 

In the context of this thesis, the products were concentrated simply by sedimentation and 

subsequent decantation of the supernatant to avoid shear stress inevitable during pressure 

filtration. In order to reduce the water content, the sediment was resuspended in fresh, 

saturated solvent and allowed to settle again (Figure 1-1B). 

 C. Drying of the concentrated PCMC suspension 

Supercritical fluid (SCF) drying with carbon dioxide (CO2) was chosen as a very effective and 

gentle way of removing the anti-solvent from PCMC suspensions [19]. CO2 exists as a SCF above 

its critical point at 31.0 °C and 73.8 bar [50]. SCFs have diffusive and viscosity properties similar 

to gases and can dissolve other compounds due to liquid-like densities [51]. The nonpolar 

supercritical CO2 is conducted through the PCMC suspension and dissolves the anti-solvent 

which is then carried out of the drying chamber and collected in a separator (Figure 1-1C). Polar 

water molecules show insufficient solubility in supercritical CO2 and are not removed 

effectively. Consequently, the initial water content of the suspension has to be minimal to 

obtain powders of acceptable residual moisture. The PCMCs are left behind as a powder with 

low bulk density, low residual solvent content and increased fine particle fraction [46]. To 

further decrease the residual water content, a vacuum drying step follows SCF drying. 
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Figure 1-1: Visualization of the PCMC production process at Boehringer Ingelheim; 

(A): precipitation step; (1) three micro gear pumps for the delivery of solvent and protein-

carrier solution, (2) mass flow meters, (3) Ehrfeld platform equipped with the double jet 

impingement mixer, pressure and temperature sensors, (4) glass bottles for harvesting of the 

PCMC suspension; (B) concentrating and solvent exchange step; left: freshly precipitated 

PCMC suspension, right: PCMC suspension 18 h after precipitation with (5) supernatant and 

(6) sediment; (C) supercritical drying with CO2 which dissolves and removes the anti-solvent 

leaving behind the dry PCMC powder; (7) gas bottles with CO2, (8) pump for CO2 delivery, 

(9) stainless steel basket filled with PCMC suspension and powder, respectively. 
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Production parameters like mixing speed and water-to-solvent ratio are known to significantly 

influence PCMC properties. Therefore, optimized values for these parameters were kept 

constant for reasons of comparability. A mixing speed of 1000 mL/min for pure isobutanol and 

1:1 (v/v) isopropanol/2-methyl-2,4-pentanediol mixtures ensured turbulent (Reynolds number 

≥ 2300) and efficient mixing. According to König et al., the mixing intensity not only affects the 

PCMC particle size and its distribution, but also the binding strength of the protein on the 

carrier material [44, 48]. 

In agreement with previous studies, the water-to-solvent ratio was set to 5:95 (v/v) [44]. On the 

one hand, an excess of solvent is crucial for rapid precipitation of PCMCs, on the other hand, a 

certain water content seems to be important for protein stability. Studying trypsin PCMCs, Vos 

found that the bioactivity of the enzyme decreased with declining water content [39], being 

consistent with the observations made on subtilisin Carlsberg by Partridge et al. [52]. The 

authors stated that water was essential for maintaining the enzymatic activity of trypsin as all 

proteins typically need key structural water molecules for stability [39]. 

2 Objectives of the thesis 

This thesis aimed to evaluate pharmaceutical applications of the protein-coated microcrystals 

technology. Besides formulation considerations, the focus was on the development of a 

potential final dosage form for PCMC powder as high concentration suspension allowing for 

subcutaneous administration as well as on mechanistic questions. 

The first objective of the thesis was to apply the PCMC technology that has successfully been 

used for the formulation of various protein drugs, including mAbs [43, 44], adenylate cyclase 

toxin of Bordetella pertussis [41] and diphtheria toxin [42],  to a non-glycosylated cytokine. This 

hydrophobic protein is commercially formulated as lyophilisate with a large amount of human 

serum albumin (HSA), but the PCMC formulation may allow for stabilizing the cytokine in the 

absence of this excipient. Therefore, a formulation screening had to be conducted, aiming at 

developing an optimal carrier composition that provided high process stability to the cytokine. 

The most promising formulation should subsequently be studied during a long-term stability 

study over 52 weeks and analyzed in detailed for biological activity. 
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In the following study, a previously developed mAb PCMC formulation was intended to be 

applied to another IgG (mAb2). Furthermore, the formulation screening aimed to reduce the 

number of carrier components and thus the overall complexity of the protein-coated 

microcrystals. Thus, the influence of each carrier component on the PCMC powder properties 

had to be investigated. The optimized formulation should further be studied during an 

accelerated short-term stability study to identify the maximal protein load enabling high 

antibody storage stability, additionally in comparison to a corresponding liquid formulation. 

Apart from formulation development, the second major objective of this thesis was to develop 

PCMC suspensions for subcutaneous administration as alternative dosage form to protein 

solutions because specifically for mAbs high concentration s.c. formulations are of high 

practical relevance. This requires physiologically acceptable solvents as dispersing agent which 

are compatible with both the protein itself and the protein carrier powder particles. Organic 

water-miscible solvents selected for the according study comprised glycerol, 

N-methylpyrrolidone (NMP), propylene glycol and PEG 400, whereas sesame oil, benzyl 

benzoate and medium-chain triglycerides (MCT) were chosen as oily resuspension media. As 

opposed to the organic water-miscible vehicles, the evaluation of the oils additionally had to 

include detailed investigations of the release process of the protein from the oily PCMC 

suspensions. Furthermore, injectability of the formulations was to be demonstrated. 

Despite widespread studies on the PCMC technology, the mechanism underlying the particles` 

formation and the protein stabilization are still not fully understood. Therefore, mechanistic 

questions, such as the characterization of the crystallinity/amorphicity and the morphology of 

the particles in dependence of the formulation composition, should finally be addressed to gain 

insights in the assembly of protein-coated microcrystals taking place during the rapid 

dehydration. Moreover, precipitation of protein on separately prepared carrier crystals was 

planned to advance the understanding of the PCMC formation process. 
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Chapter 2  

H S A - f r e e  f o r m u l a t i o n  o f  a  

h y d r o p h o b i c  c y t o k i n e  a s  p r o t e i n -

c o a t e d  m i c r o c r y s t a l s  

This chapter is intended for publication: 

K. Berkenhoff, K. Bechtold-Peters, V. Christ, S. Bassarab, W. Friess, HSA-free formulation of a 

hydrophobic cytokine as protein-coated microcrystals; in preparation. 

Abstract 

The development of liquid injectables for hydrophobic cytokines bears particular challenges 

because the proteins’ hydrophobicity may result in low solubility, a high aggregation tendency 

and marked adsorption phenomena. Therefore, various formulations contain HSA as stabilizing 

agent. Our study aimed to develop a stable HSA-free formulation of a hydrophobic cytokine as 

protein-coated microcrystals (PCMCs). Based on coprecipitation, the PCMC technology offers 

the possibility to stabilize protein in the solid state. For the optimization of the PCMC 

composition with respect to amino acid, sugar and salt, we performed a formulation screening 

that focused on protein process stability as well as on PCMC formation and particle structure. 

The investigation revealed only minor differences in protein process stability between the 

excipient combinations selected. One promising formulation based on valine and sucrose was 

chosen for further detailed investigation of protein bioactivity and long-term stability over one 

year at 5 ± 3 °C and 22 ± 3 °C. Bioactivity was completely preserved during the PCMC 

production process. Moreover, the level of aggregation detected via HP-SEC and SDS-PAGE as 

well as the amount of oxidized species increased only slightly over storage time depending on 

the storage temperature. Storage at 5 ± 3 °C provided good stability of the cytokine coated 

microcrystals over one year. Compared to long-term stability studies with commercialized 

lyophilized cytokine formulations, the overall stability as PCMCs turned out to be improved. 
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Therefore, the PCMCs represent a very encouraging technology for the formulation of the 

hydrophobic cytokine as well as potentially various other protein drugs. 

1 Introduction 

Research is progressing fast in the area of cytokines that are widely used in the treatment of 

cancer, autoimmune disorders and related diseases [1]. In the formulation development of a 

number of cytokines, some specific challenges have to be overcome, originating from the 

hydrophobicity of these proteins [2]. Cytokines frequently are of a limited solubility [3, 4] and 

can show pronounced aggregation and adsorption tendencies [5, 6]. Therefore, in various cases 

human serum albumin (HSA) is added, e.g. to beta-interferons, because it provides stabilizing 

effects, increases solubility and reduces the unspecific adsorption to surfaces [7]. Extavia®, 

Betaferon®/Betaseron®, and Avonex® (lyophilisate) represent some marketed products that 

contain a large surplus of HSA (e.g. for Betaferon® 50-fold by weight) [8]. Nevertheless, the use 

of HSA in the formulation development of proteins gives rise to various concerns. First, HSA 

used in these formulations is generally obtained from human plasma and thus is tainted with 

the peril of blood derived pathogens. This problem would be cured by the use of recombinant 

HSA which has become available at larger quantities [9]. Furthermore, it can be speculated 

about the potential risk of mixed HSA/cytokine aggregates which may lead to severe immune 

responses [10]. Finally, the presence of the large HSA excess precludes or at least complicates 

the various analytics which would allow to demonstrate the cytokine´s integrity in the 

formulation [2]. In consequence of these disadvantages, significant efforts are made to avoid 

the use of HSA in the development of cytokines as exemplarily realized in Avonex® (liquid) and 

Rebif® [8] or studied by Hawe and Friess [5]. These HSA-free formulations are classical liquid or 

lyophilized dosage forms. 

The protein-coated microcrystals technology represents an alternative method of protein 

stabilization in the solid state. It is based on the coprecipitation of an aqueous solution of 

protein and carrier material which is induced by a rapid addition of a surplus of organic 

water-miscible solvent, e.g. isopropanol or isobutanol [11]. The immediate dehydration of the 

protein and the carrier components, comprising physiological acceptable substances such as 

buffer species, amino acids, sugars and inorganic salts [12], results in the formation of a 
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suspension that is concentrated and subsequently dried via supercritical fluid extraction with 

carbon dioxide. The powder harvested consists of water-soluble particles in the lower 

micrometer range. The idea of the PCMC technology goes back to a patent of Moore et al. [11]. 

The applications described by various researchers include not only proteins, peptides and 

polypeptides, such as e.g. subtilisin Carlsberg protease [13], lipase [14, 15], trypsin [16, 17], BSA 

[16, 18], IgGs [16, 19], but also DNA and RNA [20]. König established a pilot-scale production 

process for PCMCs that enables a continuous production of up to 120 L suspension per hour 

[16]. Thus, this technology has become an attractive method in protein formulation e.g. as 

highly concentrated suspension for subcutaneous injection or powder for pulmonary delivery. 

The objective of our study was to develop a HSA-free formulation of a hydrophobic cytokine as 

PCMCs. Therefore, a formulation screening had to be conducted to optimize the carrier 

composition. The focus of the protein analytics was on monomer content, turbidity, protein 

recovery and bioactivity upon reconstitution of the powder. Subsequently, one promising 

formulation was to be chosen to investigate the bioactivity in comparison to a marketed 

lyophilized product of the cytokine. Moreover, a long-term stability study over 52 weeks was 

carried out considering the integrity (HP-SEC, RP-HPLC, SDS-PAGE) and the structure 

(2nd-derivative UV, intrinsic fluorescence, FT-IR spectroscopy) of the cytokine as well as the 

PCMC morphology (x-ray diffractometry, SEM). 

2 Materials and methods 

2.1 Materials 

L-Phenylalanine, L-aspartic acid, DL-dithiothreitol, acetonitrile, Water CHROMASOLV® for HPLC 

and trifluoracetic acid were purchased from Sigma-Aldrich, Steinheim, D, L-2-methyl-

2,4-pentanediol and disodium EDTA dihydrate from Merck, Darmstadt, D. Sodium dodecyl 

sulfate was procured from Serva, Heidelberg, D, L-glutamic acid and D/L-valine were from 

Fluka, Buchs, CH. L-Arginine and glycine were obtained from Ajinomoto Omnichem, Louvain-la-

Neuve, B, trisodium citrate dihydrate and citric acid monohydrate from Jungbunzlauer, 

Ladenburg, D. Sodium dihydrogen phosphate dihydrate was delivered by Dr. Paul Lohmann, 

Hungen, D, sodium chloride by Akzo Nobel, Hengelo, NL, and trehalose dihydrate by Ferro 
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Pfanstiehl, Waukegan, IL, USA. MOPS (3-(N-Morpholino)-1-propanesulfonic acid sodium salt) 

was acquired from Carl Roth, Karlsruhe, D, sucrose from Südzucker, Mannheim, D. 

SilverXpress® Silver Staining Kit originated from Invitrogen, Darmstadt, D, and isopropanol from 

Hedinger, Stuttgart, D. All chemicals were utilized without further purification. 

The protein bulk drug substance provided by Boehringer Ingelheim was composed of 

1.5 mg/mL hydrophobic cytokine, 50 mM sodium acetate trihydrate, 1 mM disodium EDTA 

dihydrate and 0.1 % sodium dodecyl sulfate (SDS). The buffer of the bulk drug substance was 

exchanged via ultra- and diafiltration resulting in a protein solution that consisted of 11-

21 mg/mL protein, 22 mM citrate and 0 or 52 mM NaCl (crossflow buffer exchange and 

concentration unit, Boehringer Ingelheim, Biberach/Riss, D; membrane cassette Sartocon Slice, 

Hydrosart, 5 kd, Sartorius, Göttingen, D; Quattroflow 150 S membrane pump, Quattroflow Fluid 

Systems, Hardegsen, D). Furthermore SDS was present in the protein solution because it cannot 

be removed via ultra- and diafiltration, as similarly reported by Mahler at al. for polysorbate 20 

[21]. 

2.2 Methods 

2.2.1 PCMC production process 

The PCMC production process is divided into four main steps: preparation of protein-carrier 

solution, precipitation, concentration/solvent exchange, and drying. For the preparation of the 

protein-carrier solution the carrier material was dissolved in water and the solution pH value 

was adjusted to 5.5 (3.0 for formulation Asp3.0) prior to the addition of the protein solution. 

The composition of the protein-carrier solutions is presented in Table 2-1. Their solid content 

amounted to 45 mg/mL except for formulations Asp5.5 and Asp3.0 which had a solid content of 

7 mg/mL due to the low solubility of aspartic acid of 4 g/L [22]. 
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Table 2-1: Composition of protein-carrier solutions [% w/w]. 

Formulation 
Val 

+NaCl 

ValSuc

+NaCl 

ValSuc

-NaCl 

GlyPhe

Tre 

GlyGlu

Arg 
ValArg Asp5.5 Asp3.0 

Trisodium citrate 
dihydrate 

8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 

Citric acid 
monohydrate 

1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 

Sodium chloride 5.1 5.1 -- 5.1 5.1 5.1 5.1 5.1 
Cytokine 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 
Glycine -- -- -- 40.0 46.2 -- -- -- 
L-Glutamic acid -- -- -- -- 4.6 -- -- -- 
L-Arginine -- -- -- -- 6.3 37.6 -- -- 
DL-Valine 75.1 74.1 79.2 -- -- 37.6 -- -- 
Sucrose -- 1.0 1.0 -- -- -- -- -- 
L-Phenylalanine -- -- -- 5.7 -- -- -- -- 
L-Aspartic acid -- -- -- -- -- -- 57.1 57.1 
MOPS -- -- -- 11.4 -- -- -- -- 
Trehalose 
dihydrate 

-- -- -- 18.0 18.0 -- 18.0 18.0 

Final pH  5.6 5.6 5.7 5.6 5.5 5.4 5.6 3.1 
Solid content 
[mg/mL] 

45 45 45 45 45 45 7 7 

 

The precipitation was carried out as described in detail by König [23]. Briefly, two equal streams 

of precipitating agent were mixed with one stream of protein-carrier solution in a small double 

jet impingement mixer of an inner diameter of 1.5 mm (Boehringer Ingelheim Pharma GmbH 

Co. KG, Biberach/Riss, D). The precipitating agent was a 1:1 mixture of isopropanol and 

2-methyl-2,4-pentanediol based on volume saturated with all carrier components. The mixing 

ratio of the precipitating agent and the protein-carrier solution was set to 95 : 5 (v/v). The 

modular mixing platform from Ehrfeld (Bayer Technology, Wendelsheim, D) encompassed three 

micro gear pumps (HNP pumps mzr 11507 and 7255, Hydraulik Nord Fluidtechnik, Parchim, D), 

pressure sensors and temperature sensors to monitor the precipitation step. The total flow rate 

of 1000 mL/min was controlled by the software LabView (National Instruments, Munich, D) and 

Coriflow mass flow meters (Bronkhorst, Kamen, D). The final suspension volume after 

precipitation was 1 L for the formulation screening (2 L for the formulations based on aspartic 

acid) and 5 L for the subsequent bioactivity and long-term stability study. Based on macroscopic 
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evaluation the precipitation behavior was ranked into three groups: (1) significantly 

decelerated, (2) slightly decelerated, (3) rapid. 

For the formulation screening the PCMCs were gained by vacuum filtration of the suspension 

through a 0.45 µm membrane filter (Durapore Membrane Filter 0.45 µm HV 47 mm, Millipore, 

Schwalbach, D) and drying in the glove box flushed with dry air. For the bioactivity and long-

term stability study this simplified procedure was replaced by the detailed PCMC production 

process as described by König et al. [23]. For concentration of the PCMC suspension the 

supernatant was decanted 18 h after the precipitating step and the concentrated suspension 

was filtered through a 0.45 µm membrane filter (Stericup 47 mm, Sartorius, Göttingen, D). After 

two washing steps with isopropanol saturated with the excipients the filter cake was 

resuspended in this solvent. For the final supercritical drying process (Thar SFE-500, Thar 

Technologies, Pittsburgh, PA, USA) carbon dioxide at 100 bar and a flow rate of 25 g/min was 

utilized at 45 °C, after drying for 130 min the pressure was decreased by 3 bar/min. 

2.2.2 Storage stability study 

For the stability study 10, 50 (analysis of protein structure), or 100 mg (x-ray diffractometry) of 

the PCMC powder based on formulation ValSuc-NaCl was filled into 2 R glass vials (Fiolax®, 

Schott, Mühlheim, D). Half of the vials was stoppered (Gusto C 1503 6720 GC grau 6 TP, Stelmi, 

Roissy Charles De Gaulle Cedex, F) under lab atmosphere in the glove box, the other half in a 

freeze-dryer flooded with nitrogen (Epsilon 2-12 D, Martin Christ, Osterode, D) at 20 °C, 

760 mbar. Samples were stored at 5 ± 3 °C or 22 ± 3 °C. Analysis of the PCMC powder was 

performed directly after PCMC production (t0), after two (t2wk), four (t4wk), eight (t8wk) and 

52 weeks (t52wk) of storage. Investigations by x-ray diffractometry, scanning electron 

microscopy, SDS-PAGE as well as spectroscopic methods were limited to t0, t8wk and t52wk. 

2.2.3 Analysis of PCMCs 

2.2.3.1 Reconstitution of PCMC powder 

During the formulation screening 22 mM citrate buffer with 52 mM sodium chloride pH 2.0 was 

used to dissolve the powder. For formulation ValSuc-NaCl this buffer was prepared without 

sodium chloride. For the stability study samples were reconstituted with 11.5 mM NaCl, pH 2.0. 
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2.2.3.2 Turbidity 

Turbidity was measured at a protein concentration of 1 mg/mL except for the formulations 

Asp5.5 and Asp3.0 which required double the volume of reconstitution medium due to low 

solubility of aspartic acid and which were thus analyzed at 0.5 mg/mL. During the formulation 

screening, turbidity was investigated by 90 ° light scattering at λ = 400-600 nm (Turbidimeter 

2100 AN, Hach Lange, Düsseldorf, D) expressed in formazine nephelometric units (FNU) 30 min 

after reconstitution (n=3). For the stability study, turbidity was determined by 90 ° light 

scattering at λ = 633 nm 90 min after the addition of the reconstitution medium.  

The turbidity values were compared to the reference solutions I-IV of the Ph. Eur. (method 

2.2.1 clarity and degree of opalescence of liquids) [24], as shown in Table 2-2. According to the 

Ph.Eur., FNUs are equivalent to NTUs (Nephelometric Turbidity Unit) in regions up to 40 NTUs. 

Table 2-2: Turbidity of the opalescence reference solutions according to Ph. Eur.. 

Reference solution Turbidity [NTU] Degree of opalescence 

I 3 Clear (≤ Ref. I) 
II 6 Slightly opalescent (≤ Ref. II) 
III 18 Opalescent (≤ Ref. III) 
IV 30 Very opalescent (≤ Ref. IV) 

 

2.2.3.3 Theoretical protein recovery 

For the evaluation of protein recovery 30 mg of PCMC powder were dissolved and filtered 

through a 0.45 µm syringe filter (Rotilabo-Spritzenfilter steril 0.45 µm PVDF, Carl Roth, 

Karlsruhe, D) 30 min after reconstitution. UV measurement (UV/VIS Spectrometer Lambda 20, 

PerkinElmer, Rodgau-Jügesheim, D) in Halfmicro Plastibrand® cuvettes (Brand, Wertheim, D) 

was carried out at 280 nm, corrected against buffer, based on an extinction coefficient of 1.70 

(n=3) [5, 25]. Theoretical protein recovery was calculated as the quotient of the cytokine 

fraction in the PCMCS to the cytokine fraction in the total solid mass of the protein-carrier 

solution. 
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2.2.3.4 Protein integrity 

2.2.3.4.1 HP-SEC 

For HP-SEC method A a TSKgel G3000SW column (7.8 mm ID x 60.0 cm L) and a TSKgel SWXL 

Guardcol precolumn (Tosoh Bioscience, Stuttgart, D) were used on an Äkta micro (GE 

Healthcare, Uppsala, Sweden) with 200 mM sodium dihydrogen phosphate and 0.1 % SDS. 25 µl 

samples of 0.6 mg/mL protein were injected in duplicate and protein elution was monitored via 

UV-detection at 210 nm. Aggregation in percent was calculated based on the ratio of the area 

under the curve (AUC) of soluble aggregates to the total AUC of aggregates and monomer 

(n=2). Method A was used in the formulation screening as well as in the stability study, 

representing the standard HP-SEC method for the cytokine [5]. 

Additionally, method B, as developed by BI, was used as orthogonal method in the stability 

study to assess cytokine aggregation. It was performed on a TSKgel G3000SWXL column 

(7.8 mm ID x 30.0 cm L) and a TSKgel SWXL Guardcol precolumn (Tosoh Bioscience, Stuttgart, 

D). The mobile phase was composed of 60 % acetonitrile, 40 % water and 0.1 % TFA. Peaks 

were detected via UV at 214 nm. 

2.2.3.4.2 SDS-PAGE 

SDS-PAGE was conducted at 200 V with Power Ease 500 and XCell Sure Lock in combination 

with 12 % Bis-Tris gels (NuPAGE®, 1 mm, 10 wells, Invitrogen, Darmstadt, D) and NuPAGE® 

MOPS SDS running buffer. Samples were mixed 8:2 with NuPAGE® LDS sample buffer, and 7:2:1 

with NuPAGE® LDS sample buffer and 0.5 M dithiothreitol for the reducing SDS-PAGE. After 

heating up to 95 °C for 5 min, 5 µl of the samples and the marker (Precision Plus Protein 

Standard), representing 1 µg protein, were loaded to each well. Furthermore, 2 ng BSA were 

loaded to one well for the purpose of sensitivity control. The gels were stained with 

SilverXpress® Silver Staining Kit. 

2.2.3.5 Particle size 

The particle size was determined in suspension by laser diffractometry (OASIS equipped with 

HELOS/BF, CUVETTE CUV-50ML/US, SUCELL/M, SVA, Sympatec, Clausthal-Zellerfeld, D). 

Suspension was added until an optical concentration of about 5 % was reached in the cuvette 

that contained 50 mL of the precipitating solvent at a stirring speed of 500 rpm. Based on 
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Fraunhofer model the particle size distribution was calculated and expressed as volume 

distribution (Q3). The mean value and the span 90 as (x90-x10)/x50 were used for powder 

characterization (n=3). 

2.2.3.6 Particle morphology 

Particle morphology of PCMC suspensions was analyzed by the use of a light optical microscope 

(Olympus BX50 F4, Olympus, Tokyo, Japan) equipped with a digital camera (HVC 20, Hitachi, 

Maidenhead, GB). Additionally, for scanning electron microscopy (Zeiss SUPRA 55 VP, Zeiss, 

Oberkochen, D), powder samples on an aluminum stub and coated with gold/palladium 

(SCD 500, BAL-TEC, Witten, D) were prepared.  

2.2.3.7 Bioactivity 

The bioassay was based on lung cancer indicator cells A549 [26]. Briefly, preincubated with 

different concentrations of the cytokine, the cells were infected with encephalomyocarditis 

virus and thus a cytopathic effect was evoked leading to cell lysis. The number of viable cells 

was analyzed by an MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. 

The concentration of the cytokine that led to the lysis of 50 % of the cells (ED50) was referred to 

cytokine standard. The biological activity of the samples was determined based on three 

independent batches of each sample. Each batch consisted of two plates with the sample in 

triplicates. 

2.2.3.8 Oxidized species 

The amount of oxidized cytokine was analyzed by RP-HPLC (Alliance 2695, Waters, Milford, MA, 

USA) with a Zorbax 300SB-CN column (4.6 x 150 mm, Agilent, Böblingen, D) as stationary phase. 

The mobile phase was composed of phase A (100 % water with 0.1 % trifluoroacetic acid (TFA)) 

and phase B (84 % acetonitrile, 16 % water, 0.084 % TFA). The volume fraction of phase B was 

increased from 40 % to 55 % (9 min), 60 % (15 min) and 80 % (20 min) and finally reduced back 

to 40 % (21 min). A duplicate of 50 µl samples with 0.25 mg/mL protein was injected at a flow 

rate of 0.7 mL/min and detected at 214 nm (UV). The fraction of oxidized protein was 

calculated as percentage of the AUC of the peak caused by oxidized cytokine to the total AUC 

(n=2). 
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2.2.3.9 Protein structure 

Conformational changes of the protein were analyzed via intrinsic fluorescence spectroscopy, 

UV spectroscopy and Fourier transform infrared spectroscopy. As valine which was used as 

main carrier component interferes with the FT-IR analysis, a special form of sample preparation 

was required prior to measurement [27, 28]. For the separation of protein from the carrier 

components in the PCMC powder, differences in solubility of the constituents were utilized. 

50 mg of PCMC powder was suspended in 10 mL Water For Injection (WFI), stirred for 10 min 

and centrifuged at 3000 g for 10 min. The supernatant containing the water soluble 

components, including valine, was removed and fresh WFI was added. After four repetitions 

the lasting sediment that only consisted of protein was finally dissolved in 1.5 mL 0.25 % SDS 

solution and the solution was filtered through a 0.45 µm syringe filter for further analysis. The 

absence of valine in the solution was controlled via thin layer chromatography based on 

ninhydrine detection. 

2.2.3.9.1 Intrinsic fluorescence spectroscopy 

Samples of 0.1 mg/mL protein in SUPRASIL® 114-QS precision cuvettes (10 mm, Hellma, 

Mühlheim, D) were excited at 295 nm and 25 °C and the emission was scanned from 305 nm 

to 400 nm with a step size of 1 nm and 1 s integration time (Fluorimeter QM-4-CW, PTI, 

Birmingham, NJ, USA). The evaluation was based on normalized spectra. 

2.2.3.9.2 UV spectroscopy 

Samples of 0.3 mg/mL protein were scanned from 240 to 350 nm (UV/VIS Spectrometer 

Lambda 20, PerkinElmer, Rodgau-Jügesheim, D). The second derivative of the absorption was 

used. 

2.2.3.9.3 Fourier transform infrared spectroscopy 

FT-IR spectroscopy was performed using a Tensor 37 and a Confocheck measuring cell (Bruker, 

Ettlingen, D). Spectra were recorded from 4000 to 900 cm-1 with 120 scans and a resolution of 

2 cm-1 at 25° C. Atmospheric compensation was done and buffer spectrum served as reference. 

Spectra were processed by vector normalization prior to calculating the average spectrum 

based on three measurements. Second derivative was built applying 17 smoothing points 
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(Savitzky-Golay algorithm). The protein concentration of the samples ranged from 

3 to 8 mg/mL. 

2.2.3.10 X-ray powder diffraction 

The crystallinity of cytokine PCMCs was analyzed with XRD in transmission mode from 

3 °- 40 ° 2 Θ, 0.5 ° steps and 20 s/step based on 1.5406 Å CuKα-radiation at 40 kV and 

40 mA (Stoe, Darmstadt, D). Samples were fixed in the sample holder between two Ultraphan 

foils (cellulose diacetate) with a thickness of 0.014 mm (Stoe, Darmstadt, D). 

3 Results 

3.1 Formulation screening 

3.1.1 Particle formation and characterization 

Based on their precipitation behavior, the formulations were divided into three groups 

(Table 2-3). The formulations GlyPheTre, GlyGluArg and ValArg precipitated rapidly. The 

product that left the mixing unit already represented a white suspension. All formulations that 

contained valine as main carrier component (Val+NaCl, ValSuc+NaCl, ValSuc-NaCl) as well as the 

sample Asp5.5 showed a slightly decelerated precipitation behavior and the product was not 

yet turbid at the outlet of the mixer, but turbidity immediately built up in the container used for 

harvesting. In contrast, formulation Asp3.0 became turbid after 1 h. 

The formulations clearly differed in their particle size that was analyzed via laser diffractometry 

(Table 2-3). ValArg, GlyGluArg and Asp5.5 formed rather small particles with x50 values ranging 

from 4 µm to 16 µm. Precipitation of the formulations Asp3.0, ValSuc-NaCl and Val+NaCl 

resulted in considerably larger particles in suspension with x50 values of 35, 37 and 58 µm, 

respectively. GlyPheTre and ValSuc+NaCl particles were of medium size (x50 values of 22 and 

27 µm). As the algorithm is based on spherical shaped particles, the x50 values do not represent 

an absolute particle size, but can serve for comparison. As exemplarily presented in Figure 2-1, 

the particle morphology was not spherical for any formulation. The formulations which were 

based on valine as only main carrier component (Val+NaCl, ValSuc+NaCl, ValSuc-NaCl) were 

characterized by a platelet-like shape (Figure 2-1a). A similar shape was found for the 
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formulation Asp5.5. The presence of arginine as additional carrier component apart from valine 

resulted in a fine and less defined particle morphology (Figure 2-1e). Needle-shaped PCMCs 

were found in the formulations that were based on glycine (Figure 2-1b, d) as well as for the 

sample Asp3.0 (Figure 2-1c). Additionally, as it can be seen in Figure 2-1a, b, d, smaller and 

more transparent particles were present besides the crystalline structures. This observation is 

underlined by the particle size distributions that were found to be bimodal (Table 2-3) except 

for the formulations GlyGluArg, Asp5.5 and Asp3.0, whose distributions were left-skewed 

monomodal. In the majority of cases, the bimodality of the particle size distributions was 

reflected by a higher span 90 value. 

a  b  

c  d  

e  

Figure 2-1: Particle morphology of cytokine PCMCs in suspension (light microscopy): 

a: ValSuc+NaCl, b: GlyGluArg, c: Asp3.0 d: GlyPheTre, e: ValArg. 
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3.1.2 Protein process stability 

After dissolution of the PCMCs the turbidity of most of the samples did not significantly differ 

(Table 2-3), except for the formulations GlyPheTre and ValArg which showed higher turbidity 

values than reference sample II of the Ph. Eur. (6 NTU) [24]. For formulation GlyPheTre a 

slightly increased turbidity of 7.9 FNU was detected, whereas the sample ValArg could not be 

successfully dissolved and consequently was not analyzed further. 

With respect to theoretical protein recovery calculated as the quotient of the cytokine fraction 

in the PCMCS to the cytokine fraction in the total solid mass of the starting solution, the 

samples differed significantly and could be classified into three groups. In the samples 

ValSuc-NaCl and GlyGluArg a 100 % protein recovery was found (Table 2-3). The formulations 

ValSuc+NaCl, GlyPheTre and Asp3.0 showed a protein recovery of about 130 %, whereas for 

Val+NaCl, ValArg and Asp5.5 recovery was considerably decreased to approx. 70-90 %. 

The analysis of soluble aggregates via HP-SEC method A revealed some minor differences 

between the samples. The formulations ValSuc+NaCl, ValSuc-NaCl, GlyPheTre and GlyGluArg 

contained approx. 4 % of soluble aggregates (Table 2-3). The aggregate content of the 

formulations Val+NaCl, ValArg, Asp5.5 and Asp3.0 was 5-6 %. Only marginal amounts (< 0.3 %) 

of soluble fragments were found in some samples. 

In the bioactivity test, the sample ValSuc-NaCl achieved the highest relative activity and was set 

as 1.00 for comparison and ranking of the formulations. The typically used bioactivity reference 

sample was not taken into consideration due to impact of the complex dissolution and sampling 

procedure at this stage. ValArg and Asp 5.5 revealed a bioactivity of > 0.90, whereas all other 

formulations exhibited significantly reduced values between 0.45 and 0.70. 
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Table 2-3: Results of the formulation screening; precipitation behavior: (1) significantly 

decelerated, (2) slightly decelerated, (3) rapid; turbidity: n.m. = not measurable; theoretical 

protein recovery; HP-SEC: bulk drug substance: 2.0 % ± < 0.1 aggregates, 97.9 % ± < 0.1 

monomers, 0.1 % ± < 0.02 fragments; particle-size distribution (PSD): location of maxima, 

main peak printed in bold [µm]; bioactivity: related to bioactivity of sample ValSuc-NaCl  = 1. 
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3.2 Long-term stability study 

Based on the results of the formulation screening, the formulation ValSuc-NaCl was selected for 

a storage stability study. Its bioactivity was 103 % referred to the standard lyophilized 

formulation of the hydrophobic cytokine. The biological activity did not significantly differ 

among the intermediate products of the PCMC process (powder harvested from the suspension 

after precipitation, powder harvested from the suspension after solvent exchange and 

concentration, powder harvested after supercritical drying). Samples were stored up to 

52 weeks at 5 ± 3 °C and 22 ± 3 °C with air or nitrogen headspace. 

Turbidity values for all samples investigated were in general low, between 0.2 and 1.7 FNU 

(Figure 2-2). Thus, turbidity was significantly lower than that of reference suspension I of the 

European Pharmacopoeia which exhibits a value of 3 NTU [24]. No significant increase or trend 

with storage could be detected for any storage conditions. 

 

Figure 2-2: Turbidity of ValSuc-NaCl PCMCs in long-term stability study. 

HP-SEC analysis via method A did not reveal significant changes in the amount of soluble 

aggregates within eight weeks and the monomer content of all samples was the same as for the 

initial material (Figure 2-3) (p > 0.05). After 52 weeks the monomer content was reduced by 

approx. 1 % for the samples stored at 22 ± 3 °C. A slight but significant decrease of monomer 

was also detected upon 52 week storage in the refrigerator (p < 0.05), with air in the headspace 

as opposed to nitrogen. The HP-SEC results obtained by method A were confirmed by the 

2 wk. 4 wk. 8 wk. 52 wk.
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
u
rb

id
it
y
 a

t 
6
3

3
 n

m
 [

F
N

U
]

 Air, 22 ± 3 °C

 Air, 5 ± 3 °C

 N
2
, 22 ± 3 °C

 N
2
, 5 ± 3 °C

 Initial value

 Ref.I Ph.Eur.



HSA-free formulation of a hydrophobic cytokine as protein-coated microcrystals 

30 

orthogonal method B which essentially rendered the same monomer content for all samples 

(± 0.2 %). 

 

Figure 2-3: Monomer content (HP-SEC, method A) of ValSuc-NaCl PCMCs in long-term stability 

study. 

In SDS-PAGE the main bands occurred in the range between 17 and 19 (monomer), and 30 and 

36 kDa (dimer), respectively. Furthermore, minimal bands were seen at about the BSA band for 

the non-reduced gel and around 70 kDa and 15 kDa for the reduced gel. Evaluating the band 

patterns of all samples, SDS-PAGE gels both reduced and non-reduced showed slightly more 

intense covalent dimer bands for the samples stored at room temperature for 52 weeks in 

comparison to the initial material and PCMCs stored in the refrigerator (Figure 2-4). This minor 

increase in soluble aggregates was in line with the results obtained by HP-SEC analysis. Due to 

silver stain no quantification was feasible, but the SDS-PAGE indicated the covalent nature of 

some of the dimers. At least some of the covalent dimers were likely not linked via disulfide 

bridge because the corresponding band persisted under reducing conditions. 

In RP-HPLC analysis no significant increase (p > 0.05) in the amount of oxidized cytokine was 

observed for the samples stored under different conditions for 2 and 4 weeks (Figure 2-5). A 
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increase in oxidation level by 2.1 % (air) and 1.6 % (N2), whereas the amount of oxidized 

cytokine increased by 0.9 % (air) and 0.8 % (N2) in the refrigerator. 

(a) 

 

(b) 

 

Figure 2-4: SDS-PAGE of ValSuc-NaCl PCMCs in long-term stability study: (a) non-reduced 

samples; (b) reduced samples; lane assignment: I: BSA control; II: Precision Plus Protein 

Standard [kDa]; III: t0 sample; IV: 52 wk. air, 22 ± 3 °C; V: 52 wk. air, 5 ± 3 °C; VI: 52 wk. N2, 

22 ± 3 °C; VII: 52 wk. N2, 5 ± 3 °C; VIII: Precision Plus Protein Standard. 

Analysis of cytokine’s secondary structure via FT-IR measurement did not reveal any significant 

differences between the initial PCMCs at t0 and the samples stored under various conditions for 

52 weeks (Figure 2-6). The spectra showed a distinctive band at approx. 1650 cm-1 indicating 

the dominance of an α-helical structure for the cytokine. No signs occurred at approx. 
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1620 cm-1 or 1685 cm-1, typical of intermolecular β-sheet often appearing in aggregated 

material due to unfolding [29]. Hence, protein secondary structure did not change over storage 

time independent of the headspace and the temperature. This outcome was underlined by 

intrinsic fluorescence spectroscopy and 2nd-derivative UV spectroscopy of PCMCs stored for 

52 weeks (Figure 2-9 and Figure 2-10 supplementary material). All samples rendered identical 

spectra independent of storage. 

 

Figure 2-5: Oxidized cytokine of ValSuc-NaCl PCMCs analyzed by RP-HPLC in long-term 

stability study. 

 

Figure 2-6: FT-IR spectra of ValSuc-NaCl PCMCs after separation from carrier components in 

long-term stability study. 
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The pattern recorded by x-ray diffractometry demonstrated that cytokine coated microcrystals 

were of crystalline character (Figure 2-7). A comparison to the spectra of the raw materials 

indicated that the ValSuc-NaCl PCMC spectrum was dominated by the signals originating from 

the main carrier valine. Important peaks of the other carrier components, sodium citrate, citric 

acid and sucrose, were not detected in the PCMC spectrum. The absence of those signal 

patterns was most evident at 2 theta of 8-17 ° because the PCMC spectrum did not show any 

significant signal in this range. Moreover, no spectral differences of the cytokine PCMCs were 

detected independent of the storage conditions as well as of the duration of the stability study. 

 

Figure 2-7: X-ray analysis of ValSuc-NaCl PCMCs in long-term stability study; spectrum 

assignment: I: 52 wk. air, 22 ±3 °C; II: PCMCs t0; III: D/L-valine; IV: trisodium citrate dihydrate; 

V: citric acid monohydrate; VI: sucrose; arbitrary offset for better comparison. 

In SEM, most PCMCs showed a more or less spherical shape with a crystalline core coated with 

crumbly material (Figure 2-8a, b) and particles of the small, crumbly, less compact coating were 

found separated from the large spherical particles. Placebo particles without protein were 

rosette shaped and of crystalline appearance (Figure 2-8c). In contrast to the cytokine PCMCs, 

this powder lacked of the less compact, smaller particles. No changes in particle morphology 

were seen in stored samples at all storage temperatures, storage time points and independent 

of the headspace (Figure 8d). 
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a  b  

c  d  

Figure 2-8: SEM of ValSuc-NaCl PCMCs: a, b, c: cytokine coated ValSuc-NaCl PCMCs at t0 (a 

and b) and stored for 52 weeks at 22 ± 3 °C with ambient air headspace (c); d: placebo 

ValSuc-NaCl PCMCs (i.e. precipitated from an aqueous carrier solution without cytokine). 

4 Discussion 

The idea of the PCMC technology is to stabilize protein in the solid state. The particle formation 

is based on a coprecipitation of protein and water-soluble carrier components which is realized 

by the addition of an excess of organic water-miscible solvent. The focus of the paper was on 

the applicability of the PCMC technology to formulate a hydrophobic cytokine with respect to 

process and storage stability of the protein. In the formulation screening, different carrier 

components were combined including amino acids (arginine, aspartic acid, glycine, glutamic 

acid, phenylalanine, valine), sugars (sucrose, trehalose) and the inorganic salt NaCl. Particle 

formation and morphology were investigated as well as protein stability in terms of turbidity, 

protein recovery, monomer content and bioactivity. The most promising formulation 

ValSuc-NaCl was subsequently chosen for a long-term stability study over 52 weeks. Protein 

activity, integrity (HP-SEC, RP-HPLC, SDS-PAGE) and structure (2nd-derivative UV, intrinsic 
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fluorescence, FT-IR spectroscopy) as well as PCMC morphology (x-ray diffractometry, SEM) 

were analyzed in detail. 

4.1 Particle formation and characterization 

According to their precipitation behavior, being rapid, slightly or significantly decelerated, the 

PCMC formulations of the screening were classified into three groups. The precipitation of the 

formulations that contained valine as main carrier component, Val+NaCl, ValSuc+NaCl, 

ValSuc-NaCl, was slightly decelerated. The presence or absence of NaCl and sucrose did not 

influence the precipitation rate. Replacing 50 % of valine by arginine, however, significantly 

accelerated the precipitation process. As arginine is considerably more hydrophilic than valine 

at the precipitation pH of 5.5, it is assumed to exhibit a reduced solubility in the hydrophobic 

solvent leading to the formation of crystallization nuclei that trigger the PCMC precipitation. 

The formulations with glycine as main carrier, GlyPheTre and GlyGluArg, precipitated rapidly. 

The dominance of highly water soluble components, such as glycine and trehalose, acting as 

nucleation starter in a rather hydrophobic surrounding probably enhanced the precipitation 

tendency. For two formulations which only differed in the exchange of glycine against valine, 

fast crystallization of glycine PCMCs compared to slow precipitation of valine containing carriers 

was observed [23]. With respect to the formulations Asp5.5 and Asp 3.0 that were based on 

aspartic acid, the precipitation behavior was slightly and significantly decelerated, respectively. 

This could be attributed to the reduced solid content of 7 mg/mL in the protein-carrier 

solutions as opposed to 45 mg/mL for all other formulations. 

Furthermore, the particle morphology in the suspensions harvested after the precipitation step 

depended on the carrier composition of the formulations. The particles of glycine containing 

formulations (GlyPheTre and GlyGluArg) were needle-shaped, as previously described [16]. The 

use of valine as main carrier component resulted in platelet-like shaped particles as detected 

for Val+NaCl, ValSuc+NaCl and ValSuc-NaCl PCMCs via light microscopy. Platelet-like PCMCs 

were also found by Kreiner et al. who investigated DNA-coated microcrystals made of valine as 

well as by König for valine PCMCs coated with trypsin or trypsinogen [16, 20]. Moreover, Lahav 

and Leiserowitz reported on a plate-like shape of valine grown from aqueous solution [30]. 

They further argue that the platelet-like shape is caused by the hydrophobic side chains 
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providing increased layer energy and reduced water binding concentration at the sides of the 

bilayers, compared to α-glycine. The formulation ValArg that contained valine and arginine in 

equal parts resulted in fine and less defined particles. In dependence of the precipitation pH, 

aspartic acid PCMCs were needle-shaped (pH 3) and platelet-shaped (pH 5.5).  

Apart from larger crystalline structures, smaller and more transparent particles were found in 

the suspensions. This observation was in line with the bimodal particle size distributions and 

the consequently higher span 90 values that were detected for most of the formulations. SEM 

analysis of ValSuc-NaCl PCMCs confirmed the coexistence of two different particle fractions, 

namely larger crystalline particles and smaller, less compact material, in the powder. Parts of 

the less compact material were coated onto the larger crystals and a second fraction did exist 

separately. In contrast, ValSuc-NaCl placebo PCMCs were of a rosette-like crystalline structure 

composed of numerous platelets, but the smaller, crumbly particles, which were found in the 

cytokine PCMCs, were missing. Consequently, the crystalline core of the spherical particles can 

be assumed to consist of carrier components, primarily of valine. The less compact structure 

was likely made of protein and amorphous carrier of unknown ratio. The x-ray diffractogram of 

ValSuc-NaCl PCMCs showed the main signals of crystalline valine which corresponds to König 

who proposed a crystalline state for PCMCs with a protein load of ≤ 10 % [23]. However, typical 

peaks of trisodium citrate, sucrose and citric acid did not appear in the PCMC diffractogram. 

This finding could be ascribed to the low amount of sucrose and citric acid (1.0 and 1.2 % w/w) 

present in the PCMCs, being below the detection limit of the method, or to an amorphous state 

as found for sodium citrate (8.6 % w/w). Assuming a fully crystalline state of valine and an 

amorphous state of sodium citrate/citric acid and sucrose, the latter two can stabilize the 

protein via formation of a glassy amorphous matrix as described in the literature. Izutsu et al. 

found that sodium citrate formed a glassy state after lyophilization, which prevented BSA and 

bovine IgG from alterations in secondary structure induced by freeze-drying [31]. The 

stabilization of proteins by sucrose, via amorphous matrix and/or hydrogen bonding, is 

frequently described for the manufacturing of solid protein formulations, such as lyophilization 

[32], spray drying [33, 34] and supercritical fluid drying [35].  
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With respect to the composition of the precipitated particles, the theoretical protein recovery 

reflects the ratio of protein to carrier. A value of 100 % indicated that the ratio of protein to 

carrier in the PCMC powder, initially originating from the composition of the protein-carrier 

solutions, did not change during the manufacturing process. A value of more than 100 % as 

detected for the formulations ValSuc+NaCl (135 %), GlyPheTre (128 %) and Asp3.0 (127 %) 

represented an augmented loss of carrier material. With respect to Asp3.0, the incomplete 

crystallization of aspartic acid was linked to a significantly reduced precipitation behavior. For 

ValSuc+NaCl and GlyPheTre, however, the high values must be attributed to incomplete 

precipitation of main carrier components, namely valine and glycine and/or trehalose, but 

could not further be explained. On the contrary, the samples ValArg and Asp5.5 contained less 

protein than theoretically expected (69 %). For ValArg PCMCs, the presence of the basic amino 

acid arginine resulted in an increased pH of the reconstituted PCMC powder. As the solubility of 

the cytokine is known to be reduced with increasing pH, the theoretical recovery does not 

reflect a protein loss during the manufacturing process, but the protein was not completely 

dissolved as indicated by a sediment formed in the sample [5]. In contrast, the reduced amount 

of protein in Asp5.5 PCMCs, which completely dissolved upon reconstitution, can be referred to 

an incomplete coprecipitation of the cytokine with the carrier component at pH 5.5. 

4.2 Influence of carrier combination on protein process stability 

The influence of the carrier combination on protein process stability was studied via turbidity 

measurement, bioassay and HP-SEC. Quantitatively, amino acids are the most important 

excipient for the formulation of proteins as PCMCs. The present study included formulations 

that were based on a single amino acid, such as valine or glycine, as well as formulations made 

up of up to three amino acids (GlyGluArg). Glycine and valine were the main amino acids in the 

formulations because they had successfully been used for the PCMC stabilization of various 

molecules, such as albumin, lysozyme and trypsin, as well as during the development of the 

continuous PCMC manufacturing process [14, 17, 23, 36]. Amongst other things, the influence 

of NaCl and sucrose on the protein process stability of valine PCMCs was investigated. With 

respect to NaCl, a striking difference in turbidity was seen between the formulations 

ValSuc+NaCl and ValSuc-NaCl. NaCl did not influence the aggregation tendency of the cytokine 

formulated as PCMCs as the aggregation level in HP-SEC was 3.7 % (ValSuc+NaCl) and 3.9 % 
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(ValSuc-NaCl), but the absence of NaCl reduced the turbidity upon reconstitution of the PCMCs 

by about 50 % (3.5 FNU  1.7 FNU). According to Hawe and Friess an increasing NaCl 

concentration and consequently growing ionic strength was found to result in a turbidity 

increase of the cytokine, independent of the pH value [5]. This finding was explained by a poor 

and strongly pH and ionic strength depended solubility of the cytokine. NaCl was subsequently 

assumed not to be a suitable excipient for isotonicity adjustment. The negative effect of NaCl 

on the solubility of the cytokine formulation was also seen in the bioactivity assay. ValSuc-NaCl 

PCMCs provided the highest cytokine activity, whereas ValSuc+NaCl showed significantly 

reduced bioactivity (0.47). In contrast, NaCl had previously been considered as indispensable 

for the precipitation of PCMCs [16]. Consequently, the stabilizing or destabilizing impact of NaCl 

depends on the protein formulation and cannot be generalized. Hawe and Friess, for example, 

described that, in contrast to the HSA-free cytokine formulation, the presence of HSA required 

the addition of NaCl to create a stable protein solution [5, 62]. This might by the reason, 

besides isotonicity adjustment, why some marketed HSA containing lyophilisates of the 

cytokine are reconstituted with NaCl solution, such as Betaferon® and Extavia® [8]. Also 

according to Zhang et al. NaCl decreased the aggregation rate of recombinant keratinocyte 

growth factor upon reconstitution of the lyophilisate [37].  

Moreover, the formulations Val+NaCl and ValSuc+NaCl were selected to investigate the impact 

of sucrose on cytokine process stability. In comparison to Val+NaCl, the addition of sucrose 

slightly reduced the aggregate level in HP-SEC (4.5  3.7 %), whereas turbidity marginally 

increased (2.8  3.5 FNU). A stabilizing effect of sucrose against aggregation was also reported 

by Hawe and Friess for a liquid cytokine formulation [5]. Several patents claim sucrose as 

stabilizer in aqueous interferon formulations as well as diluent for the reconstitution of 

corresponding lyophilisates [38-41]. The stabilization of proteins by sucrose in solid protein 

formulations, as discussed above, is ascribed to the formation of a glassy state, hydrogen bonds 

or a combination thereof.  

In formulation ValArg 50 % of valine was replaced by arginine whose properties to suppress 

protein unfolding and aggregation are particularly discussed in literature [27, 42-45]. The 

presence of arginine in the PCMC formulation of the cytokine resulted in an increase of 
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aggregates detected via HP-SEC (4.5  5.3 %). The turbidity of the formulation could not be 

measured due to incomplete dissolution and consequently sedimentation of the PCMC powder. 

Thus, the effect of arginine did not correspond with the solubility and stability enhancing effect 

as described by Shirley et al. as well as by Samaritani and Del Rio for liquid interferon 

formulations [46, 47]. However, the authors neither specified the concentration of arginine nor 

the pH value of the formulations and did not postulate any stabilizing mechanism that is 

apparently not yet sufficiently understood [42]. In the case of cytokine PCMCs, incomplete 

dissolution behavior was associated with reduced cytokine solubility in the presence of the 

basic amino acid arginine shifting the pH to a higher value. 

Apart from valine, two formulations (GlyPheTre, GlyGluArg) were based on glycine as main 

carrier component. The bioactivity of the glycine based PCMCs was clearly reduced (0.47 and 

0.53). Despite the typically high standard deviations and wide acceptance levels of cell-based 

bioactivity assays, this result at least reflects a clear trend. The turbidity values of the 

formulation GlyPheTre (7.8 FNU) were slightly higher compared to the values of the other 

samples (1.6-3.8 FNU), but the aggregate level was low (3.7 %). Thus, this carrier combination 

provided good cytokine process stability with respect to aggregate formation, but the overall 

cytokine solubility was decreased. Compared to GlyPheTre, phenylalanine and MOPS were 

replaced by glutamic acid and arginine in the formulation GlyGluArg. Turbidity (3.8 FNU) as well 

aggregate level (4.1 %) was in an acceptable range. Thus, although widely applied as stabilizer 

in cytokine formulations, glycine was less effective in stabilizing the cytokine formulated as 

PCMCs compared to valine. Hawe and Friess developed stable liquid and lyophilized 

formulations for a hydrophobic cytokine that were based on a 20 mM glycine buffer [5]. 

Various patents claim glycine as stabilizing agent in liquid as well as in lyophilized interferon 

formulations [38-41, 46, 48-50]. However, a long-term stability study of IgG coated 

microcrystals showed that glycine may even result in destabilization depending on the storage 

conditions due to a change in glycine modification [23]. 

In comparison to glycine, the protein stabilizing effect of phenylalanine and glutamic acid has 

rarely been investigated [51-53]. Though, some patents include the stabilizing ability of 

glutamic as well as aspartic acid in interferon formulations [39, 46, 47]. The latter was used as 
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carrier component in two formulations precipitated at pH 5.5 (Asp5.5) and 3.0 (Asp 3.0). As 

turbidity generally depends on the protein concentration and the low solubility of aspartic acid 

required a reduction in protein concentration to 0.5 mg/mL instead of 1.0 mg/mL, the turbidity 

values could not be compared to the other formulations [54]. The monomer level of the two 

formulations was lower and the aggregate level higher (5.7 and 5.2 % aggregates) than 

detected for the majority of the other samples, whereas the biological activity was rather high 

(0.94 and 0.70). Thus, the presence of an increased amount of soluble aggregates was not 

reflected in the bioactivity of the formulations. The lower pH of 3.0 prior to precipitation 

reduced the amount of aggregates in HP-SEC, but resulted in an increased turbidity. 

Consequently, a decreased precipitation pH value did not improve the overall PCMC process 

stability of the cytokine and the preference of an acidic over a neutral pH value, as reported by 

Hawe and Friess for a hydrophobic cytokine as well as claimed in several patents on interferon 

formulations, could not be transferred to the manufacturing of cytokine PCMCs [5, 38, 40, 46-

48]. 

Overall, PCMCs represent a complex mixture of various carrier components and protein. 

Therefore, stabilizing or destabilizing effects observed in the current study could not easily be 

attributed to single excipients. As the PCMC formation mechanism is not understood in detail 

yet, explanations derived from other protein technologies, such as lyophilization, are not 

readily transferrable to the challenging PCMC manufacturing process. Altogether, all cytokine 

formulations provided rather good protein process stability considering the formation of 

soluble and insoluble aggregates as well as the preservation of the biological activity. In 

comparison to the other samples, the formulation ValSuc-NaCl provided slightly superior 

stability. Besides, the bioactivity of ValSuc-NaCl PCMCs was equivalent to the standard 

lyophilized product of the cytokine and was not affected by the manufacturing process which 

includes three potentially rather stressful steps, namely precipitation, concentration and 

supercritical drying. This formulation was thus chosen for a long-term stability study. 
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4.3 Long-term storage stability 

4.3.1 Protein stability 

The formulation ValSuc-NaCl, selected for the storage stability study, was tested for both 

protein and carrier stability. As reported by Mahler et al. as well as by Bondos and Bicknell, 

turbidimetry represents an appropriate tool for the detection of insoluble protein aggregates 

[55, 56]. The turbidity values of the samples ranged between 0.2 and 1.7 FNU and, 

consequently, were very moderate and significantly lower than the value of the reference 

suspension I of the Ph.Eur.. Thus, supported by the absence of large particles visible by the 

naked eye, the formulations were considered as clear for all analytical time points, essentially 

free from large aggregates and unchanged over 52 weeks.  

The minimal increase of aggregates (dimers to oligomers) by 0.4 % within 52 weeks at 5 ± 3 °C, 

as detected by HP-SEC, additionally proved the high stability of the PCMC formulation. As 

typically seen for protein formulations, less aggregates were detected in the samples stored at 

5 ± 3 °C, 1.5 % for both air and N2 in the headspace, compared to PCMCs stored at 22 ± 3 °C 

with 2.6 % (air) and 2.2 % (N2) aggregates, respectively. It has to be taken into consideration 

that SDS was present in the exclusively aqueous mobile phase of HP-SEC method A, which is the 

standard SEC method for the hydrophobic cytokine [5]. As the adsorption tendency of 

hydrophobic proteins is well known [5], the addition of SDS aims to reduce the adsorption of 

the protein to the column matrix. However, SDS denatures proteins depending on the 

concentration used and is discussed to dissociate non-covalently linked protein aggregates [57, 

58]. Therefore, a second HP-SEC method based on a SDS-free, but acetonitrile containing 

eluent, method B, was developed and applied. Both methods gave the same results. 

Nevertheless, one has to bear in mind that acetonitrile is reported to dissociate insulin 

hexamers and hence may have similar dissociation properties on cytokine aggregates as SDS 

[59]. 

The evaluation of protein aggregation within a particular formulation requires the application 

of orthogonal methods because of the great variability of the nature of aggregates [57, 60]. 

Mahler et al. listed sedimentation velocity analytical ultracentrifugation (SV-AUC), flow field 

flow fractionation (FFFF) as well as light scattering (e.g. dynamic light scattering (DLS)) as 
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possible additional methods to accurately and reproducibly quantify the level of aggregates 

[54]. Hawe and Friess used DLS in addition to HP-SEC for the characterization of the aggregate 

level in formulations of a hydrophobic cytokine. The intensity of a second peak in the DLS-size 

distribution with a maximum of 13.5 nm was assigned to aggregated protein. An intensity of 

about 1 % was correlated to 2.5 % aggregates detected via HP-SEC. As the aggregation level 

revealed during our stability study was significantly lower than 2.5 %, with exception to the 

samples stored at room temperature for 52 weeks, DLS did not represent an appropriate 

orthogonal method in this case.  

SDS-PAGE was additionally applied for the detection of soluble covalently linked aggregates. 

The bands between 30 and 36 kDa, which were present in the initial PCMC powder as well as in 

the samples stored for 52 weeks, originated from dimer formation. These aggregate bands 

were slightly more pronounced in samples stored at room temperature, compared to the initial 

value and to the samples stored at 5 ± 3 °C, indicating a marginal formation of covalently linked 

aggregates. One of the dimer bands persisted under reducing conditions and thus indicated 

that some of these aggregates were caused by non-disulfide bridging. The evaluation of the gels 

was based on silver staining and hence only the detection of supplementary bands can be 

evaluated as significant differences between the samples [54]. Nevertheless, SDS-PAGE 

underlined the result of the HP-SEC that only slight dimer formation took place at 22 ± 3 °C. It 

further specified that at least some of the soluble dimeric species were covalently linked, not 

exclusively via intermolecular disulfide bridging. 

Related to their positioning within the native conformation of the cytokine, three out of four 

methionine residues are sensitive towards oxidation, as detected in previous studies 

(unpublished data) and described by Orru et al. [61]. Within 52 weeks, the amount of oxidized 

cytokine detected via RP-HPLC increased by 2.1 % (air) and 1.6 % (N2) for the samples stored at 

22 ± 3 °C. Upon storage at 5 ± 3 °C the level of oxidized protein augmented by 0.9 % for the 

samples with air headspace and by 0.8 % for those with N2. Thus, the use of nitrogen in the 

headspace decreased the oxidation rate of the cytokine at room temperature, but did not 

affect the more slowly progressing oxidation at 5 ± 3 °C.  
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The secondary and tertiary structure of the reconstituted cytokine was analyzed by several 

spectroscopic methods, including FT-IR, intrinsic protein fluorescence and 2nd-derivative UV 

spectroscopy, as recommended by Baudys and Kim [62]. Besides the wide application of FT-IR 

techniques to protein solutions, e.g. high-concentration liquid formulations [63], the method is 

used to investigate changes in the native secondary structure during various manufacturing 

processes of solid protein formulations, such as lyophilization [29], spray drying [64] or 

incorporation in particulate delivery systems [65], as reviewed by van de Weert and Joergesen 

[66]. Intrinsic fluorescence spectroscopy and 2nd-derivative UV spectroscopy enables the 

monitoring of conformational changes in the tertiary protein structure. None of these 

spectroscopic techniques revealed changes in secondary or tertiary structure of the 

reconstituted cytokine in our long-term stability study. Hence, independent of the conditions, 

storage over 52 weeks did not impact the conformational structure of the cytokine formulated 

as PCMCs. Moreover, the spectroscopic methods were not sensitive enough to be affected by 

the low cytokine aggregation level of 0.8-2.5 % identified via HP-SEC. In contrast, a 

dimer/oligomer content of 19-76 % resulted in conformational changes of recombinant human 

interferon beta recorded via 2nd-derivative UV spectroscopy [67]. 

In summary, the cytokine PCMCs provided high physicochemical protein stability over 

52 weeks. Storage at 5 ± 3 °C as opposed to 22 ± 3 °C reduced the aggregation and oxidation 

rate of the cytokine, but both conditions appear suitable from commercial product perspective. 

The use of nitrogen headspace, compared to ambient air, is not required for room temperature 

storage. 

4.3.2 Carrier and morphology stability 

Besides protein stability, the carrier and morphology stability of PCMC formulations need to be 

addressed during long-term storage studies because they are often associated with each other. 

For example, a polymorphic transformation of glycine incorporated in mAb PCMCs at 

25 °C/60 % RH which was detected via XRD and by structural changes in SEM, resulted in 

increased mAb aggregation [23]. Referring to the cytokine coated microcrystals, x-ray spectra of 

all samples recorded after 52 weeks of storage did not differ from the initial pattern. This 

indicated the absence of recrystallization processes of sucrose and citrate that were considered 

to be at least partially amorphous after the precipitation step. SEM pictures did not provide any 
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indication of excipient recrystallization or collapse either, proving high excipient and 

morphology stability of the PCMCs. However, it has to be taken into consideration that the 

cytokine PCMCs were not exposed to high moisture levels during storage. 

4.3.3 Comparison to lyophilized cytokine formulations 

The objective evaluation of the PCMC results requires stability data of other solid cytokine 

formulations for comparison. However, many formulations contain a multiple surplus of HSA 

that impedes the determination of the aggregation and oxidation level of the cytokine. 

Moreover, there are often differences in the design of the stability studies, e.g. storage time 

and conditions or analytical techniques applied, which make a direct comparison difficult. 

The stability study conducted by Hawe and Friess on a hydrophobic cytokine included at least in 

parts comparable storage conditions and analytical methods [5]. Based on a low pH glycine 

buffer, they stored five liquid and five lyophilized HSA-free cytokine formulations. Within 

6 months of storage the level of dimers and trimers in the lyophilisates, analyzed via HP-SEC, 

increased by about 0.3-0.7 % at 2-8 °C and up to 6.5 % at 25 °C/60 % RH, respectively, 

depending on the formulation. Formulated as PCMCs, the aggregation level of the cytokine 

augmented by 1.1-1.4 % at 22 ± 3 °C and by only about 0.4 % at 5 ± 3 °C within 52 weeks. 

According to Hawe and Friess, Met-oxidized cytokine formed as a function of storage 

temperature and time. In lyophilized samples stored at 2-8 °C the amount of oxidized protein, 

detected in RP-HPLC, enlarged by 1.4-2.4 %. Storage at 25 °C/60 % RH increased the oxidation 

level by 2.0-4.5 %. Consequently, storage at 2-8 °C was recommended. The cytokine coated 

microcrystals showed the same oxidation tendency as the lyophilisates studied by Hawe and 

Friess, but the increase in met-oxidized cytokine, 1.6-2.1 % at 22 ± 3 °C and 0.8-0.9 % at 

5 ± 3 °C, was clearly lower for the PCMCs than for the lyophilized formulations, despite a 

twofold longer storage period. Thus, the PCMCs represent a good alternative towards those 

lyophilized cytokine formulations, with an improved long-term stability and the potential for 

storage at room temperature. 

Several patents that claim cytokine lyophilisates also provide information on the stability of the 

formulations [38, 40, 41, 46, 49, 50]. In most cases a comparison between the stability of the 

PCMCs and the stability of the lyophilisates could not easily be drawn. WO 2012/071366 claims 



Chapter 2 

45 

that less than 10 % of the interferon-beta formulation is aggregated, fragmented or oxidized 

over an extended period of time, such as 12, 24 or 36 months or longer [38]. Furthermore, the 

biological activity is postulated to be within 10 % of the bioactivity exhibited at the time of 

preparation. The cytokine PCMC formulation met the first requirement, as only 4.9-7.4 % of the 

cytokine was aggregated, oxidized or fragmented after 52 weeks. The bioactivity of the cytokine 

PCMCs was not monitored over the storage time because, according to Geigert et al., it does 

not enable to accurately assess subtle changes of the protein as opposed to physicochemical 

analytical methods [68]. 

5 Conclusion 

The basic mechanism of protein stabilization via PCMC technology is still unknown. Based on 

the high complexity of PCMC formulations in combination with the sophisticated manufacturing 

process, which can be divided into the three steps precipitation, concentration and supercritical 

drying, stabilizing effects can hardly be correlated to the presence of single carrier components. 

Nevertheless, the PCMC process was found to be very robust because all formulations showed 

good overall cytokine stability. Apart from the precipitation behavior and the morphology of 

the precipitates, only minor differences in protein process stability resulted between the eight 

cytokine PCMC formulations tested. Compared to glycine, the use of valine as main carrier 

component provided higher cytokine process stability. As the absence of NaCl in valine PCMCs 

increased the solubility of the cytokine, it further resulted in a decreased turbidity and an 

increased bioactivity of the formulation. Sucrose was found to reduce the aggregation level of 

cytokine valine PCMCs. The carrier combination of valine and sucrose in absence of NaCl 

(ValSuc-NaCl) also showed high bioactivity, equivalent to the biological activity of the standard 

lyophilized formulation. Thus, ValSuc-NaCl PCMCs were selected to investigate the storage 

stability over 52 weeks. The long-term stability study revealed a small increase in dimers 

(approx. 0.4 % at 5 ± 3 °C and 1 % at 22 ± 3 °C) as well as a slightly augmented level of oxidized 

species (approx. 1 % at 5 ± 3 °C and 2 % at 22 ± 3 °C). Irrespective of the storage conditions, the 

secondary and tertiary structure of the cytokine as well as the particle morphology was not 

altered. SEM analysis revealed the presence of larger rosette-shaped crystals beside smaller 

less compact material, assumed to be composed of protein and amorphous sucrose and citrate. 
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Compared to lyophilized formulations of the cytokine, the PCMC technology provided overall 

very good protein stabilization and therefore represents a promising alternative to 

lyophilization for the manufacturing of stable HSA-free formulations of the hydrophobic 

cytokine. 
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7 Appendix: supplementary material 

 

Figure 2-9: 2
nd

-Derivative UV spectra of ValSuc-NaCl PCMCs after separation from carrier 

components in long-term stability study; arbitrary offset for better comparison. 

 

Figure 2-10: Intrinsic fluorescence spectra of ValSuc-NaCl PCMCs after separation from carrier 

components in long-term stability study. 
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Chapter 3  

F o r m u l a t i o n  o f  a  t h e r a p e u t i c  

m o n o c l o n a l  a n t i b o d y  v i a  P C M C  

t e c h n o l o g y  

This chapter is intended for publication: 

K. Berkenhoff, V. Saller, V. Christ, S. Bassarab, K. Bechtold-Peters, W. Friess, Formulation of a 

therapeutic monoclonal antibody via PCMC technology; in preparation. 

Abstract 

Protein-coated microcrystals (PCMCs) are formed upon rapid co-precipitation of a protein with 

carrier components after addition of an excess of organic anti-solvent. After concentration and 

supercritical drying of the resulting suspension the PCMCs provide protein stabilization in the 

solid state. In the current study, we applied the PCMC technology to a therapeutic monoclonal 

antibody (mAb2) and investigated the influence of each formulation component, including 

sodium chloride, glycine, histidine, phenylalanine and trehalose, on PCMC powder properties. 

Sodium chloride had positive effects on the manufacturability of PCMCs and prevented the 

antibody from the formation of insoluble protein particles. Glycine, histidine and trehalose 

elicited positive effects on the monomer content. Trehalose was further necessary to inhibit 

glycine crystallization and thus to achieve a homogenous and amorphous product. As no 

further benefits regarding PCMC product quality could be ascribed to the excipient 

phenylalanine, this component was excluded in the lead formulation to reduce the complexity 

of the system. The optimum protein loading of the lead formulation of around 50-62.5 % was 

derived from an accelerated short-term stability study conducted at 40 °C over 4-8 weeks. 

Higher protein load resulted in increased amounts of soluble aggregates detected via HP-SEC 

and SDS-PAGE. Alterations of the tertiary protein structure were not observed in 2nd-derivative 

UV and intrinsic fluorescence spectra. Overall, the mAb2 formulated as PCMCs provided good 

storage stability especially in comparison to corresponding liquid formulations. Besides 
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aggregation phenomena, these antibody solutions were prone to fragmentation that was 

successfully inhibited in PCMCs representing an effective way of protein stabilization in the 

solid state. 

1 Introduction 

The increasing importance of biopharmaceuticals on the pharmaceutical market is evident. 

According to VFA (Verband Forschender Arzneimittelhersteller e.V.) data, sales volume of 

biopharmaceuticals on the German market reached nearly 5.4 billion Euros in 2011 [1]. Nearly 

every fourth new licensed drug is currently a therapeutic protein [2]. Especially the class of 

monoclonal antibodies (mAbs) as therapeutics is of high interest because they are considered 

to be safe drugs due to their specific interactions with the body’s own toolkit of proteins [3]. 

The major aspect addressed during formulation development of a new biological entity is the 

stabilization of the protein’s structure and its monomeric state during storage to ensure drug 

efficacy and safety. It is known that proteins are more stable in the solid state than in aqueous 

solution [4]. The overall idea is that in the solid state the protein molecules’ mobility is reduced 

[5, 6] and through the addition of excipients physical dilution and separation of protein 

molecules is achieved [7]. Thus, protein-protein interactions which are a prerequisite especially 

for aggregation are reduced. Nevertheless, chemical and physical instabilities can occur in the 

solid state as well [5, 8] and need to be studied during formulation development. To date, the 

most widely used technique to obtain solid-state biopharmaceuticals is freeze-drying [8]. 

Lyophilization results in elegant cakes that are reconstituted with aqueous media prior to 

parenteral application. With biopharmaceutical powders alternative delivery routes, e.g. 

pulmonary or intradermal delivery, can be addressed. Such powders can be obtained by 

methods like spray-drying, spray freeze-drying, pulverization, supercritical fluid drying or 

precipitation [4].  

Benefits of the most commonly used techniques like freeze-drying and spray-drying are 

compromised by e.g. high acquisition costs and long process times. Therefore new methods for 

obtaining solid dosage forms of proteins are of interest. In this study, the innovative PCMC 

technology was employed to achieve pharmaceutically relevant powders. These so-called 
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protein-coated microcrystals are formed upon mixing an aqueous solution of protein and 

carrier with organic solvent in which the protein and carrier components co-precipitate due to 

low solubility [9]. An initial PCMC formulation development study for another monoclonal 

antibody (mAb1) resulted in a rather complex formulation containing several amino acids, a 

sugar and an inorganic salt component for mAb stabilization [10]. For future mAb product 

development, especially at early stages of development, a simplified platform technology 

would be of great benefit. 

Therefore, in our study we transferred this initial PCMC formulation to another mAb (mAb2) 

and aimed at reducing the complexity of the system. By subsequent elimination of single 

excipients the influence of each formulation component on mAb2 process stability was to be 

elucidated. Protein content, aggregation (turbidity, HP-SEC) and potential changes in tertiary 

protein structure (2nd-derivative UV and intrinsic fluorescence spectroscopy) were monitored. 

Furthermore, the protein load of the optimal formulation was to be maximized in an 

accelerated short-term storage stability study because often high doses (several mg/kg) in low 

volumes are required in the treatment with antibody therapeutics [11]. High concentration 

liquid protein formulations are associated with challenges such as pronounced aggregation 

tendencies, high viscosity and poor overall stability [11]. The comparison between the 

optimized mAb2 PCMC formulation and liquid formulations of the antibody should reveal 

possible stability advantages and disadvantages of the PCMC technology. 

2 Materials and methods 

2.1 Materials 

Chemicals employed during this study included glycine, L-histidine hydrochloride monohydrate, 

L-histidine, L-arginine (Ajinomoto OmniChem, Louvain-la-Neuve, B), disodium EDTA dihydrate, 

acetic acid 100 % (Merck, Darmstadt, D), trehalose dihydrate (Ferro Pfanstiehl, Waukegan, IL, 

USA), sodium chloride (Akzo Nobel, Hengelo, NL), polysorbate 20 (Croda, Nettetal, D), 

ammonium sulfate, sodium hydroxide, L-phenylalanine from non-animal source, isopropyl 

alcohol Chromasolv® for HPLC (Sigma-Aldrich, Steinheim, D), sodium dodecyl sulfate (Serva, 

Heidelberg, D), methanol (Avantor, Deventer, NL), dithiothreitol (Biomol, Hamburg, D) and 
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MOPS (3-(N-morpholino)-1-propanesulfonic acid) (Carl Roth, Karlsruhe, D). For pH adjustments, 

Titrisol® Hydrochloric acid 0.1 M (Merck, Darmstadt, D) and 85 % ortho phosphoric acid (Fluka, 

Buchs, CH) were used. The anti-solvent isobutanol (Emplura® quality) was purchased from 

Merck (Darmstadt, D). Carbon dioxide was procured from Sauerstoffwerk Friedrichshafen 

(Friedrichshafen, D). All chemicals were utilized without further purification. 

The protein bulk drug substance composed of 10.1 mg/mL mAb2 in 25 mM citrate buffer pH 6.0 

containing 115 mM sodium chloride and 0.2 mg/mL polysorbate 20 was provided by Boehringer 

Ingelheim. 

2.2 Methods 

2.2.1 Preparation of protein solutions 

For the manufacturing of PCMCs, the buffer of the bulk drug substance was exchanged during 

ultra- and diafiltration resulting in a solution of 30-40 mg/mL mAb2, 40 mM histidine 

(formulation D no histidine), 20 mM trehalose dihydrate (formulation C no trehalose), 

0.2 mg/mL Di-Na-EDTA dihydrate and approx. 0.7 mg/ml polysorbate 20 (crossflow buffer 

exchange and concentration unit, Boehringer Ingelheim, Biberach/Riss, D; membrane cassette 

PESU Sartocon Slice, 30 kd, 0.1 m², Sartorius, Göttingen, D; Quattroflow 150 S membrane 

pump, Quattroflow Fluid Systems, Hardegsen, D). 

The preparation of liquid antibody formulations included 300fold buffer exchange 

(Slide-A-Lyzer® 20 K Dialysis Cassettes, Thermo Scientific, Rockford, IL, USA) of the protein bulk 

drug substance against 40 mM histidine buffer pH 5.5 containing 20 mM trehalose dihydrate 

and 0.2 mg/mL Di-Na-EDTA dihydrate at 22 ± 3 °C within 18 h, followed by concentration via 

centrifugation (Heraeus® Biofuge® primo, Carl Roth, Karlsruhe, D) in filtration units (Amicon® 

Ultra-15 Ultracel-30k, Millipore, Schwalbach, D) to 10, 50, 75 and 100 mg/mL protein. Samples 

were filtered through a 0.22 µm filter (73 mm, PES membrane, Millipore, Billerica, MA, USA). 

2.2.2 PCMC production process 

The PCMC production process is divided into four main steps: preparation of protein-carrier 

solution, precipitation, concentration/solvent exchange, and drying. For the preparation of the 

protein-carrier solution, the carrier material was dissolved in water and the solution pH value 
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was adjusted to 5.5 prior to the addition of the protein solution. The composition of the 

protein-carrier solutions for the formulation screening with a consistent protein content of 

43.6 % and approx. 0.2 mg/mL polysorbate 20 is presented in Table 3-1. Elimination of one or 

several components led to an increase of the relative amount of the remaining carrier 

components (glycine, phenylalanine, sodium chloride, trehalose dihydrate) to ensure a constant 

solid content of the protein-carrier solutions of 25.7 mg/mL. For the accelerated short-term 

stability study, the protein content of the formulations with a solid content of 51.4 mg/mL was 

in the range from 25 to 75 % resulting in varying amounts of carrier components and 

polysorbate 20 concentration of approx. 0.3-0.8 mg/mL (Table 3-2). 

Table 3-1: Composition of protein-carrier solutions in the formulation screening [% w/w]. 

Excipient 
Initial 

formulation 

A 

(no 

phe) 

B 

(no 

NaCl) 

C 

(no 

tre) 

D 

(no 

his) 

E 

(no 

gly) 

F 

(no gly/ 

phe/NaCl) 

G 

(no 

gly/phe) 

mAb2 43.6 43.6 43.6 43.6 43.6 43.6 43.6 43.6 
L-Histidine HCl 
monohydrate 

2.6 2.6 2.6 2.6 -- 2.6 2.6 2.6 

L-Histidine 0.5 0.5 0.5 0.5 -- 0.5 0.5 0.5 
NaCl 5.2 5.4 -- 12.2 5.5 7.4 -- 7.8 
Glycine 15.8 16.3 17.5 36.9 16.7 -- -- -- 
L-Phenylalanine 1.7 -- 1.9 4.1 1.9 2.5 -- -- 
Trehalose 
dihydrate 

30.5 31.5 33.8 -- 32.3 43.3 53.2 45.4 

Di-Na-EDTA 
dihydrate 

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

 

Table 3-2: Composition of protein-carrier solutions in the accelerated short-term storage 

stability study for optimization of protein load (PL) [% w/w]. 

Excipient 25 % PL 37.5 % PL 50 % PL 62.5 % PL 75 % PL 

mAb2 25.0 37.5 50.0 62.5 75.0 
L-Histidine HCl monohydrate 2.6 2.6 2.6 2.6 2.6 
L-Histidine 0.5 0.5 0.5 0.5 0.5 
NaCl 7.3 6.0 4.8 3.5 2.2 
Glycine 22.0 18.2 14.3 10.5 6.7 
Trehalose dihydrate 42.5 35.1 27.7 20.3 12.9 
Di-Na-EDTA dihydrate 0.1 0.1 0.1 0.1 0.1 
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The precipitation was carried out as described in detail by König [12]. Briefly, two equal streams 

of precipitating agent were mixed with one stream of protein-carrier solution in a small double 

jet impingement mixer of an inner diameter of 1.5 mm (Boehringer Ingelheim, Biberach/Riss, 

D). The mixing ratio of the precipitating agent, isobutanol saturated with all carrier 

components, and the protein-carrier solution was set to 95 : 5 (v/v). The modular mixing 

platform from Ehrfeld (Bayer Technology, Wendelsheim, D) encompassed three micro gear 

pumps (HNP pumps mzr 11507 and 7255, Hydraulik Nord Fluidtechnik, Parchim, D), pressure 

sensors and temperature sensors to monitor the precipitation step. The total flow rate of 

1000 mL/min was controlled by the software LabView (National Instruments, Munich, D) and 

Coriflow mass flow meters (Bronkhorst, Kamen, D). The final suspension volume after 

precipitation was 2 L for the formulation screening and 4 L for the accelerated short-term 

storage stability study. 

Solvent exchange was achieved by decanting the supernatant of the PCMC suspension 18 h 

after the precipitating step. The supernatant was replaced with fresh saturated isobutanol.  

After 24 h of sedimentation the sediment, i.e. the concentrated suspension, was used for the 

supercritical drying process (Thar SFE-500, Thar Technologies, Pittsburgh, PA, USA) with carbon 

dioxide at 100 bar and a flow rate of 25 g/min. After drying of 240 mL concentrated suspension 

within 90 min at 45 °C the pressure was decreased by 3 bar/min. Subsequently, vacuum drying 

of the PCMC powder was performed at 30 mbar and 40 °C for 2 h (APT.line™ VDL, Binder, 

Tuttlingen, D; diaphragm membrane pump MZ 2C, Vacuubrand, Wertheim, D). 

2.2.3 Accelerated short-term storage stability study of PCMC powder 

Vials were filled with 120 mg PCMC powder with protein loading rates of 25 %, 37.5 %, 50 %, 

62.5 % and 75 %, stoppered under lab atmosphere in the glove box, crimped and subsequently 

stored at 40 °C for eight (25 %, 50 % and 75 %) or four (37.5 % and 62.5 %) weeks (2 R Fiolax® 

vials, Schott, Mühlheim, D; Gusto C 1503 6720 GC grey 6 TP, Stelmi, Roissy Charles De Gaulle 

Cedex, France). PCMCs were analyzed for protein content, turbidity and monomer content 

directly after PCMC production (t0), after 7 (t7d), 14 (t14d), 28 (t28d) and 56 days (t56d). For 

formulations with loading rates of 25 %, 50 % and 75 % protein structure integrity was 

additionally monitored via 2nd-derivative UV scans, intrinsic fluorescence spectroscopy and SDS-

PAGE analysis at t0 and after 28 and 56 days.  
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2.2.4 Accelerated short-term storage stability study of liquid mAb2 formulations 

Under a laminar flow cabinet 2.0 mL of filtered mAb2 solutions with protein concentrations of 

10, 50, 75 and 100 mg/mL were filled into autoclaved 2R vials which were subsequently closed 

with 13 mm stoppers and crimped for storage at 40 °C (2 R Fiolax® vials, Schott, Mühlheim, D; 

Gusto C 1503 6720 GC grey 6 TP, Stelmi, Roissy Charles De Gaulle Cedex, France). Analysis of 

protein concentration, turbidity and monomer content was performed at t0, t7d, t14d, and t28d. 

2nd-derivative UV scans, intrinsic fluorescence spectroscopy and SDS-PAGE analysis were carried 

out at t0 and after 28 days.  

2.2.5 Analysis of PCMCs 

2.2.5.1 Turbidimetry 

60 min after dissolution of PCMC powder with deionized water, turbidity was measured at a 

protein concentration of 1 mg/mL by 90 ° light scattering at λ = 633 nm (UH turbidimeter, 

Boehringer Ingelheim, self-construction) and expressed in formazine nephelometric units 

(FNU). For turbidity measurement of liquid antibody formulations, undiluted protein solutions 

were employed. Mean values and standard deviations from three duplicates per formulation 

were calculated. 

2.2.5.2 Protein concentration and protein recovery via UV measurement 

PCMC powder was dissolved in deionized water to give a concentration of approx. 0.4 mg/mL 

to ensure absorption within the linear range of the spectrometer (0.3 to 0.8 AU). 60 min after 

reconstitution, the solution was filtered through a 0.45 µm syringe filter (Rotilabo-Spritzenfilter 

steril 0.45 µm PVDF, Carl Roth, Karlsruhe, D) to provide a particle-free sample. Liquid mAb2 

formulations were diluted in deionized water resulting in a protein concentration of approx. 

0.4 mg/mL. Absorption in Halfmicro Plastibrand® cuvettes (Brand, Wertheim, D) was measured 

at 279 nm based on an extinction coefficient of 1.72 with a Lambda 20 spectrometer 

(PerkinElmer, Rodgau-Jügesheim, D) and deionized water serving as blank. Protein recovery 

was calculated as the quotient of the antibody concentration in the sample to the theoretical 

protein concentration based on the antibody fraction in the total solid mass of the protein-

carrier solution. Mean values and standard deviations from three triplicates per formulation 

were calculated. 
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2.2.5.3 Protein aggregation and fragmentation via high performance size exclusion 

chromatography (HP-SEC) 

60 min after reconstitution of PCMC powder in deionized water, the solution was filtered 

through a 0.45 µm syringe filter (Rotilabo-Spritzenfilter steril 0.45 µm PVDF, Carl Roth, 

Karlsruhe, D) and 50 µl samples of 2.0 mg/mL protein were injected in duplicate. Liquid mAb2 

formulations were diluted with histidine buffer to give a final protein concentration of 

10 mg/mL, filtered (0.45 µm) and injected (10 µl) in duplicate. Soluble protein aggregates, 

monomers and fragments were separated on an Äkta micro (GE Healthcare, Uppsala, S) with a 

TSKGel G3000 SWXL column (7.8 mm ID x 30.0 cm L, Tosoh, Stuttgart, D), equipped with a 40 x 

6.0 mm TSKgel SWXL Guardcol precolumn. Filtered (0.22 µm) and degassed mobile phase with 

a pH of 7.3 consisted of 200 mM L-arginine, 120 mM ammonium sulfate and 10 % isopropanol 

in deionized water. At a flow rate of 0.5 mL/min UV detection was performed at 280 nm. 

Aggregation and fragmentation in percent was calculated based on the ratio of the area under 

the curve (AUC) of soluble aggregates and fragments to the total AUC of aggregates, monomer 

and fragments (n=2). Relative monomer content in % was defined in reference to the monomer 

content of the protein-carrier solution prior to precipitation which was set to 100 %. 

2.2.5.4 Protein aggregation and fragmentation via SDS-PAGE 

SDS-PAGE was conducted at 200 V with Power Ease 500 and XCell Sure Lock in combination 

with 12 % Bis-Tris gels (NuPAGE®, 1 mm, 10 wells, Invitrogen, Darmstadt, D) and NuPAGE® 

MOPS SDS running buffer. Samples were mixed 8:2 with NuPAGE® LDS sample buffer, and 7:2:1 

with NuPAGE® LDS sample buffer and 0.5 M dithiothreitol for the reducing SDS-PAGE. After 

heating up to 95 °C for 5 min, 5 µl of the samples and the marker (Precision Plus Protein 

Standard, Bio-Rad, Hercules, CA, USA), representing 1 µg protein, were loaded to each well. 

Furthermore, 2 ng BSA were loaded to one well for the purpose of sensitivity control. The gels 

were stained with SilverXpress® Silver Staining Kit. All equipment was from Invitrogen 

(Darmstadt, D). 

2.2.5.5 Protein structure via intrinsic fluorescence spectroscopy 

Samples of 0.1 mg/mL protein in SUPRASIL® 114-QS precision cuvettes (10 mm, Hellma, 

Mühlheim, D) were excited at 295 nm and 25 °C and the emission was scanned from 305 nm 
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to 400 nm with a step size of 1 nm and 1 s integration time (Fluorimeter QM-4-CW, PTI, 

Birmingham, NJ, USA). The evaluation was based on normalized spectra (n=3). 

2.2.5.6 Protein structure via 2nd-derivative UV spectroscopy 

Samples, diluted to 0.3 mg/mL protein with deionized water, were scanned from 240 to 350 nm 

against deionized water as blank (UV/VIS Spectrometer Lambda 20, PerkinElmer, Rodgau-

Jügesheim, D). The second derivative of the absorption was used (n=3). 

2.2.5.7 Quantification of trehalose by high performance liquid chromatography 

(HPLC) 

Lower molecular weight substances, such as trehalose and the amino acids, were separated 

from protein via centrifugation (Heraeus® Biofuge® primo, Carl Roth, Karlsruhe, D). The 

filtration units (Amicon® Ultra-0.5 Ultracel-10k, Millipore, Schwalbach, D) were rinsed with 

0.5 mL 0.1 N NaOH and subsequently equilibrated with dissolved PCMCs containing 2 mg/mL 

mAb2 in deionized water at 12000 g for 10 min. 0.5 mL samples of dissolved PCMCs with 

2 mg/mL protein were subsequently separated at 12000 g for 10 min. The filtrate was checked 

for protein residues via UV absorption and analyzed (2 x 40 µl) by HPLC using a Rezex RCM 

Monosaccharide Ca2+ 300 x 7.80 mm column with guard column (SecurityGuard Cartridges 

Carbo-Ca 4 x 3.0 mm, Phenomenex, Torrance, CA, USA) at 85 °C. Filtered HPLC-water 

(Chromasolv® plus, Sigma-Aldrich, Steinheim, D) was used for elution at a flow rate of 

0.6 mL/min. Detection was performed via changes in refractive index (RI). The trehalose RI 

signal between 5.5 and 6.9 mL was integrated and the trehalose content was calculated using 

the linear calibration curve for concentrations up to 4 mg/mL (n=3). 

2.2.5.8 Particle size via laser diffractometry (LD) 

The particle size was determined in suspension by laser diffractometry (OASIS equipped with 

HELOS/BF, CUVETTE CUV-50ML/US, SUCELL/M, SVA, Sympatec, Clausthal-Zellerfeld, D). PCMC 

powder or suspension was added until an optical concentration of about 5 % was reached in 

the cuvette that contained 50 mL of saturated isobutanol at a stirring intensity of 60 %. Based 

on Fraunhofer model the particle size distribution was calculated and expressed as volume 

distribution (Q3). The mean value was ciphered (n=3). 



Formulation of a therapeutic monoclonal antibody via PCMC technology 

62 

2.2.5.9 Particle morphology via scanning electron microscopy (SEM) 

Particle morphology of PCMC powder was analyzed by the use of a scanning electron 

microscope (Model Tescan Vega II SBH, Tescan, Brno, CZ). Samples were prepared on an 

aluminum stub and coated with gold/palladium (Model Cressington 108auto/SE Cool Sputter 

Coater, Cressington, Watford, GB). 

2.2.5.10 Crystallinity via x-ray powder diffraction (XRD) 

The crystallinity of mAb2 PCMCs was analyzed with XRD in transmission mode from 

3 °- 40 ° 2 Θ, 0.5 ° steps and 20 s/step based on 1.5406 Å CuKα-radiation at 40 kV and 

40 mA (Stoe, Darmstadt, D). Samples were fixed in the sample holder between two Ultraphan 

foils (cellulose diacetate) with a thickness of 0.014 mm (Stoe, Darmstadt, D). 

2.2.5.11 Zeta potential measurement 

ζ-potentials of protein-carrier solutions of the initial formulation and formulation B (no NaCl) 

were measured with a Malvern Zetasizer nano ZS (Malvern Instruments, Malvern, UK). 

Measurements in folded capillary cell DTS 1060 cuvettes were performed in triplicates with a 

total of 100 single measurements per run at 20 °C. 

3 Results and discussion 

3.1 Formulation screening 

Based on the initial formulation, the influence of each excipient on PCMC powder properties 

and mAb2 process stability was tested by elimination of single components as well as carrier 

combinations. The aim was to minimize the number of carrier components in order to reduce 

the complexity of the system while obtaining PCMC powders of high quality at the same time. 

PCMC powder was analyzed for particle size and morphology. Quality features with respect to 

protein process stability encompassed low turbidity values, high monomer contents, limited 

aggregate formation and preservation of tertiary mAb2 structure. 

3.1.1 Characterization of PCMC powder 

Based on their macroscopic appearance, mAb2 PCMC powders were subdivided into three 

groups (Table 3-3). Formulations that included both sodium chloride and trehalose (group 1) 
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resulted in smooth and voluminous, but agglomerated powders of poor flowability. As 

described by Chew and Chan, agglomerates are formed due to inherently strong cohesive 

forces between micro- or nanometer-sized particles [13]. Variations concerning the other 

components resulted in only minor changes concerning powder performance. Formulation 

D (no his) appeared slightly more compact and clumpy, whereas formulations E (no gly) and 

G (no gly/phe) revealed extremely poor flowability due to electrostatic particle interactions and 

adhesion to vial walls. Formulations B (no NaCl), F (no gly/phe/NaCl) and C (no tre), without 

sodium chloride or trehalose, differed from these PCMC powders. MAb2 PCMC powders lacking 

sodium chloride (group 2) were of granulous character with enhanced flowability. Formulation 

C (no tre) formed smooth, shiny needle-like crystals of poor flowability. 

Table 3-3: Macroscopic appearance of mAb2 PCMC powder in the formulation screening. 

Group 1 2 3 

Formulations 

Initial formulation, 
A (no phe), D (no his), 
E (no gly), G (no 
gly/phe) 

B (no NaCl), 
F (no gly/phe/NaCl) 

C (no tre) 

Macroscopic 

appearance 

Description 

smooth, voluminous, 
poor flowability, forms 
agglomerates 

granulous, enhanced 
flowability 

smooth, shiny, needle-
like crystals, poor 
flowability 

 

Visually detected differences between these three groups were also observed microscopically. 

Figure 3-1a shows a SEM image of formulation A representing all other formulations of group 1 

which contained trehalose and sodium chloride. Spherical particles with an appearance similar 

to spray-dried products [4, 14, 15] were found. The surface of mAb2 PCMCs without sodium 

chloride appeared less crisp and rather molten (Figure 3-1b). The SEM image of the formulation 

without trehalose clearly showed large and crystalline saw-like structures (> 100 µm) next to 

smaller spherical particles (Figure 3-1c). 



Formulation of a therapeutic monoclonal antibody via PCMC technology 

64 

a  b  

c  

Figure 3-1: SEM images of mAb2 PCMC powders of (a) formulation A (representing powders 

of group 1), (b) formulation B (representing powders of group 2) and (c) formulation C 

(group 3) in the formulation screening. 

The particle size of mAb2 PCMC powders containing trehalose and sodium chloride (group 1), 

determined via laser diffractometry, was smaller than that of group 2 and 3 (Figure 3-2). 

Moreover, x50 values gained from suspensions and PCMC powders of group 1 did not correlate 

because the particle size in suspension was bigger (3.7-5.8 µm) than in the final powder (1.9-

2.0 µm). This effect was associated with the presence of particle agglomerates in the 

suspensions that were dispersed during the supercritical drying process. 

Elimination of sodium chloride resulted in very small suspension particles of about 1 µm for 

formulation B (no NaCl) and F (no gly/phe/NaCl). These particles showed very poor 

sedimentation/concentrating behavior and, consequently, solvent exchange could not be 

performed before drying. The higher x50 values for the corresponding PCMC powders 

(B: 7.0 µm, F: 30.0 µm) were consistent with the granulous macroscopic appearance and were 

caused by compaction of the small suspended particles during the drying process. The 

assumption that sodium chloride may lead to an increase in particle size in suspension due to 
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shielding of repulsive electrostatic charges [16] could not be confirmed. Protein-carrier 

solutions of both the initial formulation and formulation B without sodium chloride had similar 

ζ-potentials of 7 to 8 mV. Therefore, it is more likely that sodium chloride somehow acted as a 

nucleation enhancer during the PCMC formation process. Nucleation and growth as well as 

spinodal decomposition are possible particle formation mechanisms [16]. In short, the favored 

spinodal decomposition mechanism can be understood as a phase separation and partitioning 

process which is followed by crystallization. Vos also stated that salts enhanced binding of 

protein to PCMCs and should be of great benefit for the formulation of proteins with this 

technology [16]. 

 

Figure 3-2: Particle sizes of mAb2 PCMCs in suspension and powder as determined by LD 

measurements: A (no phe), B (no NaCl), C (no tre), D (no his), E (no gly), F (no gly/phe/NaCl), 

G (no gly/phe); particle size of PCMC suspensions was determined before solvent exchange. 

In accordance with macroscopic and microscopic observations, LD data confirmed the presence 

of large particles in formulation C that was prepared without trehalose. The continuous 

increase in particle size from approx. 71 µm in suspension before the concentration/solvent 

exchange step to 103 µm after concentration/solvent exchange and to 137 µm after drying 

pointed to secondary particle growth during PCMC manufacturing (Figure 3-2). X-ray 

diffractometry of the PCMC powder revealed that the large crystals were made of α-glycine 

(Figure 3-3). Glycine is a rapidly crystallizing amino acid [12] and poor glass former [6], but its 

crystallization could be inhibited by the addition of trehalose. Glycine usually precipitates as the 

kinetically controlled β-polymorph during the PCMC production process, but transition into α-
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glycine and finally the most stable γ-form occurs upon exposition to moisture [10]. With respect 

to mAb PCMCs, König reported that this transformation was accompanied by a loss of protein 

integrity [12]. Inhibition of glycine crystallization during lyophilization in the presence of 

trehalose was also reported by Chatterjee et al. [17]. In that case, the prevention of glycine 

crystallization required a weight ratio of glycine to trehalose dihydrate ratio of > 1. For mAb2 

PCMCs, however, a weight ratio of glycine to trehalose dihydrate of 0.5 was sufficient to inhibit 

crystallization of the disaccharide. 

 

Figure 3-3: XRD spectra of mAb2 PCMCs; spectrum assignment: I: α-glycine; 

II: formulation C (no tre); III: initial formulation; arbitrary offset for better comparison. 

Rapid precipitation by anti-solvent addition is discussed as familiar route towards the 

amorphous state [6]. Although no traces of crystallinity were detected for the initial 

formulation in XRD analysis (Figure 3-3) and SEM images were similar to those of amorphous 

spray-dried products, not only an amorphous but also a microcrystalline state could be 

hypothesized for these PCMC powders. Attempts to determine glass transition temperatures 

with DSC and thus to confirm the amorphous state [18] for the initial formulation as well as 

formulations A (no phe), B (no NaCl) and F (no gly/phe/NaCl) failed. On the other hand, strong 

glass formers like proteins often show only very small changes in heat capacity at Tg and 

complex mixtures can lead to a broadening of the glass transition event due to nonidealities, so 

that detecting Tg can be difficult [19]. In any case, truly crystalline protein-coated microcrystals 
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as defined by the inventors of this technology [9] were not achieved with the present mAb2 

formulation. 

3.1.2 Protein process stability 

Surfactants, such as polysorbate 20 and 80, frequently used in antibody formulation, are known 

to influence protein stability [20, 21]. With respect to mAb2 PCMCs, it has to be considered that 

these surfactants were assumed to be removed by the PCMC precipitation step due to their 

solubility in aliphatic alcohols [22], such as isopropanol, and that they were most likely not 

included in the final mAb2 powders. 

The observation that PCMCs lacking trehalose or sodium chloride (formulations C, B, F) differed 

from all other formulations was confirmed by protein recovery, aggregation data and turbidity 

(Table 3-4). For formulation C (no tre), only 71.1 % of the theoretical mAb2 content based on 

complete precipitation was recovered in the PCMC powder, indicating incomplete precipitation 

of the antibody in the absence of trehalose. In HP-SEC, an increase of higher molecular weight 

species by 1.2 % to 1.6 % and of dimers by 2.6 % to 3.9 %, compared to the initial formulation 

of the antibody, was found when trehalose was omitted from the formulation. Moreover, the 

stabilizing effect of trehalose against protein aggregation was not limited to soluble protein 

species, as detected via turbidity measurement, which is frequently applied in formulation 

development and purification of therapeutic proteins to detect insoluble protein aggregates 

[23, 24]. A high turbidity value of 48.8 FNU was revealed in the absence of trehalose, opposed 

to 5.6 FNU for the initial formulation containing the disaccharide. Hence, trehalose prevented 

the antibody from the formation of insoluble protein particles during the PCMC manufacturing 

process. The augmented level of insoluble protein particles could also explain, at least partially, 

the reduced protein recovery because this protein fraction was assumed to be removed via 

filtration during sample preparation for UV measurement. Sugars in general, commonly used as 

stabilizers during lyophilization, are expected to physically stabilize the protein in the solid state 

either thermodynamically via formation of hydrogen bonds with the protein (water substitution 

hypothesis) or by a kinetic mechanism based on immobilization (glass dynamics hypothesis) [5]. 

Trehalose has successfully been introduced as stabilizing agent in a number of solid antibody 

dosage forms including lyophilisates [25, 26], spray-dried formulations [27, 28], spray freeze-

dried particles [29] and protein powder generated via spray-drying in supercritical CO2 [30]. 



Formulation of a therapeutic monoclonal antibody via PCMC technology 

68 

Nevertheless, its superiority especially over sucrose is unproven, although addition of trehalose 

usually leads to higher Tg values which are considered to be beneficial for storage stability [6]. 

In the case of mAb2 PCMCs, the stabilizing effect of trehalose, representing an indispensable 

formulation component, was attributed to the formation of a glassy matrix discussed in 

section 3.1.1. 

Table 3-4: Protein recovery, monomers, dimers, higher molecular weight aggregates and 

turbidity of mAb2 PCMCs; * PCMC powder B (no NaCl) and F (no gly/phe/NaCl) did not 

completely dissolve in deionized water, therefore turbidity could not be measured (n.m.) and 

the values of monomers, dimers and higher molecular weight aggregates refer to the soluble 

protein fraction. 

 

Protein 

recovery 

[%] 

Monomers 

[%] 

Dimers 

[%] 

Higher 

molecular 

weight 

aggregates 

[%] 

Turbidity 

[FNU] 

Initial formulation 129.2 ± 3.3 98.4 ± 0.1 1.3 ± < 0.1 0.4 ± < 0.1 5.6 ± 0.6 
A (no Phe) 128.3 ± 3.4 99.0 ± < 0.1 1.0 ± < 0.1 < 0.1 13.5 ± 2.1 
B (no NaCl)* 83.8 ± 2.6 98.8 ± 0.1 1.2 ± 0.1 < 0.1 n.m. 
C (no tre) 71.1 ± 4.4 94.5 ± < 0.1 3.9 ± < 0.1 1.6 ± < 0.1 48.8 ± 2.5 
D (no his) 132.9 ± 2.1 96.9 ± 0.1 2.2 ± 0.1 0.9 ± < 0.1 10.6 ± 2.0 
E (no gly) 125.1 ± 3.0 97.3 ± 0.1 1.8 ± 0.1 0.9 ± < 0.1 5.5 ± 1.0 
F (no gly/phe/NaCl)* 95.1 ± 3.0 98.7 ± 0.4 1.3 ± 0.4 < 0.1 n.m. 
G (no gly/phe) 135.0 ±1.0 96.3 ± < 0.1 2.1 ± < 0.1 1.6 ± < 0.1 4.5 ± 0.5 

 

The absence of NaCl did not only affect the particle size and morphology of PCMCs, as 

discussed in section 3.1.1, but also mAb2 process stability (Table 3-4). The reduced protein 

recovery of 83.8 % (formulation B: no NaCl) and 95.1 % (formulation F: no gly/phe/NaCl) was 

caused by incomplete dissolution behavior of the powder in deionized water indicating the 

formation of insoluble protein particles. These particles were eliminated via filtration during 

sample preparation for UV measurement. Due to sedimentation of the particles, the aqueous 

suspension was not stable and thus turbidity could not be measured reliably. The level of 

soluble protein particles assessed via HP-SEC, however, was not influenced by the elimination 

of NaCl as the aggregate levels of both formulation B (no NaCl) and F (no gly/phe/NaCl) were 

not increased compared to the initial formulation. The AUC normalized to the protein 

concentration of the samples did not differ from the data of the initial formulation either. 
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Hence, NaCl was suggested to play a key role in the formulation of PCMCs because it prevented 

the antibody from forming substantial amounts of insoluble aggregates. Thus, NaCl could not 

be eliminated from the mAb2 formulation. Due to multiple mechanisms of interacting with 

protein molecules and of affecting protein-protein interactions, including preferential binding 

and charge-shielding effects, the use of salts can result in both stabilization and destabilization 

of protein formulations [31-33]. NaCl is included in many marketed antibody formulations 

representing either liquid or lyophilized dosage forms, as listed by Wang et al. and Daugherty 

and Mrsny [21, 34]. 

Amino acids are the excipients with the highest weight fraction in PCMCs. All formulations that 

lacked one (A, D, E) or two amino acids (G) showed a protein recovery ranging from 125.1 % to 

135.0 % (Table 3-4), comparable to the initial formulation (129.2 %). These high values above 

100 % indicated that the loss of carrier material during the PCMC production process was 

relatively more pronounced than a potential protein loss. HPLC analysis of the carrier fraction 

revealed that the high protein recovery was associated with significantly reduced trehalose 

contents. Exemplarily, trehalose recoveries were 87.4 and 84.5 %, respectively, for the initial 

formulation and formulation A (no phe). Incomplete precipitation was attributed to the 

trehalose concentration (8.1-13.7 mg/mL) in the protein-carrier solutions that was far below 

the solubility limit (50 g/L) of the disaccharide due to low total solid content of the solutions 

[35]. The level of both higher molecular weight aggregated species and dimers increased by 0.5-

1.2 % and 0.5-0.9 % at the expense of monomers, when histidine, glycine or the combination of 

phenylalanine and glycine were omitted from the formulation. On the contrary, the elimination 

of only phenylalanine slightly reduced both the higher molecular weight aggregated species and 

the dimer amount. The turbidity of the formulations A (no phe) and D (no his), was slightly 

higher, with values of 13.5 FNU and 10.6 FNU, whereas for the formulations E (no gly) and 

G (no phe/gly) turbidity values (5.5 FNU and 4.5 FNU) similar to the initial carrier formulation 

were detected. Furthermore, the absence of histidine, acting as buffering agent, significantly 

increased the pH of reconstituted mAb2 PCMCs. Dissolving formulation D PCMCs (no his) in 

deionized water resulted in a pH value of 7.4, as opposed to pH 6.4-6.6 detected for all other 

completely soluble formulations (initial formulation, A, C, E, G). Thus, the pH of histidine-free 

formulations was governed by the pI of the antibody, being 7.8-8.4. Therefore, histidine buffer 
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was considered to be essential in the formulation of mAb2 PCMCs. This amino acid is reported 

to protect antibodies against aggregation and structural perturbation during lyophilization [36, 

37]. Amongst the amino acid formulations investigated in their FTIR studies of a lyophilized 

monoclonal antibody, Tian et al. found histidine to be an effective amino acid in inhibiting 

changes in protein secondary structure [38]. Arakawa et al. speculated that the stabilizing effect 

of histidine during protein lyophilization is attributed to its tendency to become amorphous in 

combination with the ability of protein binding [39]. With respect to mAb PCMCs, histidine was 

also assumed to be amorphous after precipitation and subsequent supercritical drying because 

crystals were not seen in SEM nor did XRD analysis show any peaks. 

Glycine is routinely used as co-freeze-drying excipient in protein formulations due to its ability 

to form a strong, porous and elegant cake structure in the final lyophilized product [25, 40]. As 

discussed in section 3.1.1, it exists in several polymorphous forms. During lyophilization, glycine 

had protective effects on antibody stability only if retained amorphous [37]. In the case of 

mAb2 PCMCs, glycine crystallized in the absence of trehalose resulting in significantly reduced 

monomer level, whereas amorphous glycine prevented the protein from aggregation and thus 

represented an obligatory component of the formulation. 

Regarding the specific role of phenylalanine in protein formulations, Mattern et al. reported 

that arginine/phenylalanine glasses enhanced process and storage stability of vacuum-dried 

LDH and rhG-CSF and suggested that sugar-free amino acid formulations were potential 

stabilizers for proteins [41]. In the formulation development of mAb2 PCMCs, the elimination of 

phenylalanine resulted in a slightly higher absolute monomer content than in the initial 

formulation, but also in an increase in turbidity. For this reason, both formulations were further 

investigated in the course of an accelerated short-term stability study. The exclusion of 

phenylalanine would at least partially reduce the complexity of the mAb2 PCMCs. All other 

carrier components were needed to provide maximal protein process stability. Sodium chloride 

was necessary in terms of manufacturability and aggregation. The addition of trehalose as well 

as glycine and histidine were pivotal for protein stabilization towards aggregation, too. 
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3.1.3 Selection of the lead formulation via accelerated short-term storage stability 

study 

A short-term stability study was conducted over eight weeks at 40 °C to identify potential 

differences between the initial formulation and formulation A (no phe) with a protein load of 

50 % and a solid content of 51.4 mg/mL. Analysis of protein content, turbidity and monomer 

content was performed at t0, t7d, t14d, t28d and t56d. Moreover, tertiary protein structure was 

studied via 2nd-derivative UV and intrinsic fluorescence spectroscopy at t0 and after 28 and 

56 days. 

 (a) (b) 

  

Figure 3-4: (a) Protein recovery, turbidity and (b) monomer content of the initial formulation 

and formulation A (no phe) stored at 40 °C for 8 weeks. 

Protein content, turbidity values and monomer contents for both powders were comparable 

and constant during the course of the study (Figure 3-4). No differences in tertiary structure 

were detected at any time point. Thus, the elimination of phenylalanine did not have any 

detrimental effects on mAb2 PCMC powder storage stability, additionally to powder properties 

and protein process stability discussed in detail in sections 3.1.1 and 3.1.2. Based on these 

results, formulation A was subsequently chosen as lead formulation for further studies due to 

its reduced complexity. 
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3.2 Optimization of protein load via accelerated short-term storage stability 

study 

Short-term stability studies are most commonly conducted at elevated temperatures as 

degradation rates usually increase with increasing temperature. The idea is that data analysis 

based on an Arrhenius’ plot allows estimation of stability at ambient temperature [42]. Wang 

pointed out that such an extrapolation is generally problematic with antibodies due to the 

presence of complex and multiple degradation pathways which may have different degrees of 

temperature dependency [21]. Moreover, stability studies with amorphous solids should 

usually be carried out below the glass transition temperature of the formulation as degradation 

kinetics above Tg are not comparable to those below Tg [5, 43]. Based on standards defined by 

the World Health Organization (WHO), the aggregate level in commercial intravenous 

immunoglobulin products should not exceed 5 % upon administration [21]. This aggregate 

content must further be ensured over a shelf life of 18 months which is usually the minimum 

requirement for protein pharmaceutical products [7]. 

Accelerated short-term storage stability studies performed for mAb2 PCMCs were not intended 

to draw conclusions about room temperature stabilities, but aimed to identify the most stable 

PCMC composition more rapidly and clearly. To determine the optimal protein load, mAb2 

PCMCs based on the lead formulation (section 3.1.3) with protein loadings of 25, 37.5, 50, 62.5 

and 75 % were stored at 40 °C for either eight (25, 50 and 75 % protein load) or 4 weeks (37.5 

and 62.5 %). PCMCs were analyzed for protein content, turbidity and monomer content at t0, 

t7d, t14d, t28d and t56d. For formulations with loading rates of 25, 50 and 75 %, protein structure 

and integrity were additionally monitored via 2nd-derivative UV scans, intrinsic fluorescence 

spectroscopy and SDS-PAGE analysis after 0, 28 and 56 days of storage. PCMC particle size and 

morphology were characterized directly after manufacturing. SEM pictures were additionally 

taken at t0 and after 4 weeks of storage to assess potential carrier and morphology instability. 

3.2.1 Characterization of powder properties and morphology stability 

Macroscopic evaluation of PCMC powders revealed that powders with low protein loadings (25 

and 37.5 %) were very smooth and voluminous with relatively good flowability. With increasing 

protein content the powders were grainier and elicited worse flowability characteristics. At the 
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same time, in accordance with literature, laser diffractometry revealed decreasing particle size 

with increasing protein load (Figure 3-5a) [10, 16]. Furthermore, the bulk density of the 

powders increased as well (Figure 3-5b). This was consistent with the rather compact 

macroscopic appearance of the powder with a protein loading of 75 %. Usually, flowability 

correlates with particle size because with decreasing particle size interparticular attraction 

forces increase, causing agglomerate formation and reducing flowability [13]. 

 (a) (b) 

  

Figure 3-5: MAb2 PCMCs (lead formulation) with varying protein load; (a) particle size via LD 

measurements; particle size of PCMC suspensions was determined after solvent exchange; 

(b) vials filled with 120 mg PCMC powder; from left to right: protein loading of 25 %, 37.5 %, 

50 %, 62.5 % and 75 %. 

PCMCs with protein loadings of 25 %, 50 % and 75 % were further evaluated using scanning 

electron microscopy (Figure 3-6a-c). The samples with a protein loading of 25 % showed rather 

molten textures in comparison to the more crisp appearance of the samples with 50 % protein 

loading. As expected, the morphology of this latter sample was similar to the powders of 

group 1 during formulation screening (see section 3.1.1) because the lead formulation selected 

was allocated to this group and had a comparable protein load. Moreover, donut-shaped 

particles, also described for spray-dried antibody formulations [4, 15], were found within all 

samples, most pronounced in the powder with 75 % protein load (Figure 3-6c). 
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a  b  

c  d  

Figure 3-6: SEM images of mAb2 PCMC powders (lead formulation) at (a-c) t0 with a protein 

loading of (a) 25 %, (b) 50 %, (c) 75 % and at (d) t28d with a protein loading of 50 %. 

Besides protein stability, the carrier and morphology stability of PCMC formulations need to be 

addressed during accelerated short-term storage studies because they often correlate (see 

chapter 2 section 4.3.2). Referring to mAb2 coated microcrystals, SEM pictures taken after 

4 week storage did not provide any indication of excipient recrystallization or collapse either, as 

exemplarily shown for the powder with 50 % protein load (Figure 3-6d). 

3.2.2  Protein storage stability 

As mentioned above, the most critical parameter that defines product shelf life of protein 

therapeutics is aggregation. Aggregation should be kept to a minimum as especially large, 

insoluble and irreversible aggregates are considered of being immunogenic [44, 45]. Turbidity 

measurements and visual inspection are the analytical methods of choice to detect large and 

insoluble particles, although they are not specific for protein aggregates [46]. The presence of 

detectable smaller and soluble aggregates in a formulation has to be seen as a warning for 

potential immunogenicity issues, too. Richard described such multimers as “the signature of 

aggregation-competent species” [45]. 



Chapter 3 

75 

Apart from a slightly decreased protein recovery after seven days for protein loadings of 25 %, 

50 % and 75 %, protein recovery was found to be consistent, irrespective of the protein content 

(Figure 3-7).  A decrease in protein recovery might point to protein loss due to removal of large 

soluble and insoluble protein aggregates by sample filtration (0.45 µm) prior to UV 

measurements. However, aside from single fibers probably introduced during supercritical 

drying, the colorless samples were free from visible insoluble particles, as confirmed by 

turbidity measurement, and the AUC in HP-SEC was not impacted either (see below). 

 

Figure 3-7: Protein recovery of mAb2 PCMCs (lead formulation) with varying protein load 

stored at 40 °C. 

No significant increase in turbidity was detected after four and eight weeks of storage, 

respectively. Turbidity values for all samples were low, between 0.4 and 2.4 FNU (Figure 3-8). 

Thus, turbidity was significantly lower than that of reference suspension I of the European 

Pharmacopoeia which exhibits a value of 3 NTU and which indicates a clear solution [47]. 

Hence, independent of the protein load, all PCMC samples were free of larger amounts of 

insoluble protein aggregates. 
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Figure 3-8: Turbidity of mAb2 PCMCs (lead formulation) with varying protein load stored at 

40 °C. 

Monomer content analysis via HP-SEC revealed significant differences in storage stability with 

respect to aggregation in dependence of protein loadings (Figure 3-9). Monomer degradation 

of samples with protein loadings of up to 62.5 % was minimal or not existent. Over 4 or 8 weeks 

storage, the monomer contents of these formulations varied only by maximal 1.3 %. Monomer 

loss was clearly more pronounced for PCMCs with a protein content of 75 %. A decrease by 

3.7 % was detected within eight weeks. Thus, this formulation did not provide sufficient 

stability of the antibody with respect to the formation of soluble aggregates [48]. According to 

the HP-SEC results of the formulation screening (section 3.1.2), the decrease of the monomer 

content was associated with an increase in both higher molecular weight species and dimers for 

all samples investigated. Fragmentation of the antibody was not observed. The AUC normalized 

to the protein concentration of the samples was not affected, irrespective of protein load and 

storage time. Hence, all PCMC samples were free of significant amounts of larger soluble 

protein aggregates that are typically prone to be removed via filtration during sample 

preparation or to accumulate at the column top or precolumn [48]. 

Protein stability of other solid dosage forms, such as lyophilized products, was found to depend 

on the ratio between stabilizing excipient and protein [25, 26, 49]. For example, a specific molar 

ratio of sugar to protein of 360:1 was required to adequately stabilize rhuMab HER2 during 

lyophilization and storage against aggregation and deamidation [25]. Andya et al. reported that 
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the use of sucrose or trehalose prevented an IgG1 against aggregation during storage at 30 °C 

to a maximum degree when the ratio between sugar and protein was ≥ 500. This number was 

approximately equivalent to the number of water-bindings sites on the protein surface [26]. 

Based on the storage of an lyophilized IgG1 at 40 °C, Chang et al. even recommended a molar 

ratio of sucrose to protein of ≥ 800:1 to achieve a maximum of protection against chemical 

degradation and aggregation [49]. Relating to mAb2 PCMCs, the molar ratio between the main 

carrier component trehalose and protein varied from approx. 670:1 to 70:1. For a protein load 

of ≥ 50 %, it was thus significantly smaller (≤ 220) than the overall recommended ratio of ≥ 360. 

However, reduced PCMC protein storage stability based on the formation of soluble aggregates 

was only revealed in the case of 75 % antibody load. This overall high protein stability against 

aggregation provided by the PCMC technology was attributed to the presence of additional 

carrier components acting as supplementary protein stabilizers, as discussed in section 3.1. 

 

Figure 3-9: Monomer content via HP-SEC of mAb2 PCMCs (lead formulation) with varying 

protein load stored at 40 °C. 

SDS-PAGE, representing an orthogonal method for the analysis of soluble protein aggregates 

[50], confirmed the HP-SEC results with a slight increase in aggregates for 75 % mAb2 loaded 

PCMCs (Figure 3-10). The aggregate band above 250 kDa under non-reducing conditions (gel a) 

in lanes VIII and XI was more pronounced than in all other lanes. Likewise, the band at about 

100 kDa and 75 kDa under reducing conditions (gel b) was slightly darker in lanes VIII and XI. 

However, as silver stained bands cannot be quantified reliably, interpretation should mainly be 
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restricted to qualitative evaluation [50]. Extra bands indicating mAb2 degradation with 

prolonged storage time or increased protein loading were not detected. The band between 50 

and 75 kDa in lane VI in gel (b) was attributed to some external contamination as it was not 

present in the eight-week sample or on the non-reduced gel and was not detected in SDS-PAGE 

analysis after four weeks either. No further differences between the samples with varying 

protein load were observed over 8 weeks storage. Under non-reducing conditions not only the 

intact antibody with a molecular weight of 150 kDa was detected, but aggregates (> 150 kDa) 

and fragments (< 150 kDa) were present as well. Fragments were not detected during HP-SEC 

analysis and therefore fragment levels were assumed to be very low. A closer look revealed 

that there was in fact more than one band at around 150 kDa. Similar observations have been 

ascribed to the heterogeneity of a purified antibody resulting from differences in glycosylation 

patterns, instability during production and terminal processing [21]. Bands in both gels with 

molecular weights of 100 kDa, 75 kDa, 50 kDa and 25 kDa were attributed to varying 

combinations of light and heavy chains. Light chains of IgGs have a molecular weight of 25 kDa 

and heavy chains are around 50 kDa [21]. The 25 kDa and 50 kDa bands were very strong under 

reducing conditions. Non-reducible aggregates were not detected because no aggregate band 

persisted under reducing conditions. Overall, all mAb2 PCMC samples were free of considerable 

amounts of soluble protein aggregates. 

In 2nd-derivative UV spectroscopy the broad peak at λ = 240-300 nm is composed of multiple 

overlapping spectra, including phenylalanine, tyrosine and tryptophan [51]. The calculation of a 

second derivative spectrum from UV scans is beneficial as it preserves and even highlights fine 

spectral differences initiated by vibrational transitions of the aromatic amino acid chains, but 

on the other side eliminates possible interferences related to the measuring system, the sample 

itself or external factors. Distinct spectral changes can be interpreted as conformational 

alterations of protein structure [52]. Similarly, in intrinsic fluorescence studies with an 

excitation wavelength of 295 nm tryptophan fluorescence emission, being very sensitive to 

conformational changes of a protein, can be selectively studied [53, 54]. Especially upon 

thermal denaturation the intensity of the fluorescence signal is evaluated [55]. 
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(a) 

 

(b) 

 

Figure 3-10: SDS-PAGE of mAb2 PCMCs (lead formulation) with varying protein load stored at 

40 °C for 28 and 56 days; (a) non-reducing and (b) reducing conditions; lane assignment: 

I: BSA control; II: Precision Plus Protein Standard; III-XI: reconstituted mAb2 PCMC samples 

with protein loading of 25 %, 50 % and 75 % ; XII: Precision Plus Protein Standard. 

For mAb2 PCMCs, no spectral differences in dependence of the protein load were found, as 

presented in Figure 3-11a and Figure 3-12a for t0. Furthermore, 2nd-derivative UV scans and 

intrinsic fluorescence spectra did not reveal any conformational changes over time for any 

formulation (exemplarily shown for the lead formulation with a protein loading of 50 % in 

Figure 3-11b and Figure 3-12b). In general, it is believed that the formation of aggregates is 

accompanied by an alteration of protein structure due to unfolding. For mAb2 PCMCs with a 
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protein loading of 75 %, the small amount of soluble aggregates (3.7 %) determined via HP-SEC 

did not result in detectable changes of the tertiary protein structure probably because of 

limited sensitivity of the spectroscopic methods. The formation of non-denatured aggregate 

species has also been reported [56] as well as the formation of aggregates from protein 

molecules which only exhibited marginal local unfolding [7]. 

 (a) (b) 

  

Figure 3-11: 2
nd

-derivative UV analysis of mAb2 PCMCs (lead formulation) with (a) different 

protein loadings at t0 and (b) a protein loading of 50 % stored at 40 °C for 28 and 56 days; 

arbitrary offset for better comparison. 

 (a) (b) 

  

Figure 3-12: Intrinsic fluorescence spectroscopic analysis of mAb PCMCs (lead formulation) 

with (a) different protein loadings at t0 and (b) a protein loading of 50 % stored at 40 °C for 28 

and 56 days; arbitrary offset for better comparison. 
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In summary, mAb2 PCMCs provided high physicochemical protein stability over 8 weeks at 

40 °C. Apart from slightly increasing soluble aggregate levels at the highest protein loading, 

antibody degradation was not observed. No changes in protein tertiary structure or in powder 

morphology were detected. The augmented monomer loss for the formulation with a protein 

loading of 75 % indicated that a certain minimum proportion of excipients was necessary for 

effective stabilization of the protein during storage. Thus, the maximal protein load of this 

antibody formulation should not exceed 62.5 %, confirmed by considerations on protein 

process stability presented in section 3.2.3. 

3.2.3 Considerations on protein process stability 

Besides information on protein storage stability, some information on protein process stability 

could be derived from the data collected during the accelerated short-term storage stability 

study. Protein quantification revealed that protein recovery approached 100 % with increasing 

protein load (Figure 3-7). Relative loss of carrier decreased with increasing protein fraction 

although the amount of total carrier declined at the same time. Carrier solubility in the PCMC 

suspension medium was potentially reduced at higher protein concentrations and thus resulted 

in a more quantitative recovery of carrier components in the final PCMC powder. Furthermore, 

comparison of the initial relative monomer content related to the monomer content of the 

corresponding protein-carrier solution implied that the optimum process stability might be 

around 37.5-50 % protein load (Figure 3-13). 

 

Figure 3-13: Relative monomer content of mAb2 PCMCs (lead formulation) with varying 

protein loading at t0. 
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3.3 Comparison to liquid mAb2 formulations 

An accelerated short-term storage stability study conducted at 40 °C over 4 weeks with four 

mAb2 solutions aimed to compare liquid formulation stability with the stability provided by the 

PCMC technology. The liquid formulations contained 10 mg/mL, 50 mg/mL, 75 mg/mL and 

100 mg/mL protein in 40 mM histidine buffer pH 5.5 with 20 mM trehalose dihydrate and 

0.2 mg/mL Di-Na-EDTA dihydrate. Analysis of protein concentration, turbidity and monomer 

content was performed at t0, t7d, t14d and t28d. Second derivative UV scans, intrinsic fluorescence 

spectroscopy and SDS-PAGE analysis were carried out at t0 and after 28 days. 

Protein concentration of the different formulations was constant over time (Figure 3-14a). The 

slight turbidity increase by 6.2-10.1 FNU clearly indicated an increase in insoluble aggregates 

over time for protein solutions of 50 mg/mL, 75 mg/mL and 100 mg/mL (Figure 3-14b). This was 

in accordance to visual examinations. At t0 all formulations were clear and colorless. After 

28 days at 40 °C all solutions stayed macroscopically clear, but only the formulation with 

10 mg/mL remained colorless. The higher concentrated solutions had turned yellowish. This 

discoloration of liquid mAb formulations was confirmed by Stroop et al. who investigated 

fluorescent light photodegradation of a monoclonal antibody formulated in histidine buffer 

[57]. The exposure to yellowish photosensitizers extracted from photo-aged histidine buffer 

was further found to promote oxidation, fragmentation and aggregation of the antibody. 

 (a) (b) 

  

Figure 3-14: Protein concentration (a) and turbidity (b) of liquid mAb2 formulations with 10, 

50, 75 and 100 mg/mL protein stored at 40 °C for 4 weeks. 
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Monomer loss depended on the protein concentration and was more pronounced for 

formulations with higher protein concentrations (Figure 3-15a). The monomer content of the 

formulation with 10 mg/mL protein decreased by less than 1 % from 98.7 % to 97.9 % within 

four weeks at 40 °C. The monomer content of the 100 mg/mL formulation was slightly lower at 

the beginning of the stability study and also decreased by 2.6 % from 98.5 % to 95.9 % over 

storage time. The monomer loss was mainly attributed to the formation of soluble protein 

dimers, as opposed to mAb2 PCMCs that additionally contained higher molecular weight 

aggregated species (Figure 3-16). Moreover, independent of the protein concentration, 

fragments were detected in the chromatograms of all liquid formulations after 7-28 days of 

storage (Figure 3-15b). The formation of fragments observed in liquid formulations was 

successfully inhibited by the stabilization of the antibody in the solid state. 

 (a) (b) 

 

Figure 3-15: Monomer content (a) and fragment content (b) detected via HP-SEC of liquid 

mAb2 formulations with 10, 50, 75 and 100 mg/mL protein stored at 40 °C for 4 weeks. 
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 (a) (b) 

 

Figure 3-16: (a) Overlay of chromatograms of the liquid formulation with 100 mg/mL protein 

after 0 (blue) and 28 (red) days at 40 °C; (b) comparison of chromatograms obtained from 

mAb2 PCMCs with 75 % protein load (red) and the liquid formulation with 100 mg/mL protein 

(blue) after 28 days at 40 °C; x-axis: elution volume [mL], y-axis: UV signal at 280 nm [mAU]; 

signals between 12 and 14 mL were caused by the elution of buffer components. 

SDS-PAGE analysis under non-reducing conditions revealed an additional band at below 50 kDa 

for all protein solutions that were stored at 40 °C for four weeks (Figure 3-17a). Moreover, a 

faint extra band at 15 kDa was identified and attributed to fragmentation within these samples. 

These observations were consistent with the fragments detected in HP-SEC. Furthermore, the 

aggregate band above the 250 kDa marker band was darker for formulations of 50 mg/mL, 

75 mg/mL and 100 mg/mL protein after thermal stress, being in accordance with HP-SEC and 

turbidity data. Under reducing conditions (Figure 3-17b) no extra bands where detected, but 

faint bands for t0 samples at 37 kDa, around 30 kDa and 15 kDa were more pronounced after 

28 days at 40 °C. Bands at 15 kDa indicating fragmentation as well as bands between 25 and 

37 kDa under reducing conditions were not detected in SDS-PAGE analysis of reconstituted 

mAb2 PCMCs. 
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(a) 

 

(b) 

 

Figure 3-17: SDS-PAGE of liquid mAb2 formulations stored at 40 °C for 28 days; (a) non-

reducing and (b) reducing conditions; lane assignment: I: BSA control; II: Precision Plus 

Protein Standard; III-X: liquid mAb2 formulations with 10, 50, 75 and 100 mg/mL protein ; 

XI: Precision Plus Protein Standard. 

Analysis of tertiary structure did not reveal any conformational perturbations, irrespective of 

the initial protein concentration and storage time (Figure 3-18). 
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 (a) (b) 

  

Figure 3-18: Tertiary protein structure of liquid mAb2 formulations with 10, 50, 75 and 

100 mg/mL protein stored at 40 °C for 4 weeks and investigated via (a) intrinsic fluorescence 

spectroscopy and (b) 2
nd

-derivative UV spectroscopy. 

Summing up, the data indicated that the mAb2 under investigation could be effectively 

stabilized as PCMC powder at certain protein loading rates, whereas aqueous formulations 

especially of higher concentrations were significantly impacted by the formation of aggregates 

and fragments over storage time. The aggregates were both of soluble and insoluble nature as 

detected via HP-SEC, SDS-PAGE analysis and turbidity measurement. The tendency of partially 

hydrophobic proteins, such as mAb2, towards aggregation is well known [7]. Comprising 

histidine buffer, trehalose and EDTA, the composition of the formulation, apart from optionally 

lacking salt additives, was comparable to commercially available therapeutic mAb formulations. 

The buffering agent histidine and the disaccharide trehalose are not only effective in stabilizing 

proteins in the solid state as described above, but are also frequently used in liquid antibody 

formulations [21]. The chelating agent EDTA reduces oxidation stress due to the complexation 

of metal ions [58]. 

4 Conclusion 

The current study revealed the effects of single carrier components on the overall process 

stability of mAb2 formulated as PCMCs. Sodium chloride influenced the manufacturability of 

PCMCs because its absence resulted in slow sedimentation and consequently concentration of 

the precipitated suspension. Furthermore, without sodium chloride the PCMC powder did not 
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completely dissolve in water indicating the formation of insoluble protein particles. The amino 

acids glycine and histidine had positive effects on protein monomer recovery as detected via 

HP-SEC. Trehalose was not only most effective in the protection against aggregation, but had a 

significant impact on the overall appearance of the PCMC particles because it inhibited glycine 

crystallization. The resulting amorphous state of the formulation provided high protein process 

stability. However, literally, the term ‘protein-coated microcrystals’ did not apply for these 

PCMCs. Detrimental effects upon elimination of phenylalanine were not observed, even after 

storage at 40 °C for eight weeks. 

Based on a lead formulation containing sodium chloride, glycine, histidine and trehalose, the 

influence of the protein load on storage stability of mAb2 PCMCs was assessed at 40 °C for 4-

8 weeks. Overall, the storage stability of the mAb2 PCMCs was very good. Conformational 

changes in tertiary protein structure were not observed for any formulation. A maximal 

increase in soluble aggregates of 3.7 % was detected for a protein load of 75 % after 8 week 

storage at 40 °C. 50 % to 62.5 % protein load was optimal for retaining high monomer content. 

In accordance with reports on the stabilization of lyophilized protein formulations, a specific 

protein to excipient ratio was necessary to successfully stabilize the protein as PCMC powder. 

The storage stability of the PCMC powder was superior to liquid mAb2 formulations with 

10 mg/mL, 50 mg/mL, 75 mg/mL and 100 mg/mL protein. Although alterations of protein 

conformation in the liquid formulations were not detected, increased aggregation rates and 

fragmentation were observed via HP-SEC and SDS-PAGE analysis. Therefore, the PCMC 

technology provided an efficient and beneficial way of formulating this mAb as an example of 

therapeutic proteins of which high doses are required. 

The basic mechanism of protein stabilization via PCMC technology is still unclear because this 

technology combines a challenging manufacturing process, based on precipitation, 

concentration and supercritical drying, with complex formulations. Therefore, questions 

concerning the stabilization mechanism need to be addressed in subsequent studies to 

contribute to a better understanding of essential formulation and production parameters. 

Especially solid state analytics of protein structure should be performed because analysis of 

reconstituted PCMCs does not reflect the actual situation in the dry powder. 
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Chapter 4  

E v a l u a t i o n  o f  o r g a n i c  w a t e r -

m i s c i b l e  s o l v e n t s  a s  s u s p e n s i o n  

m e d i a  f o r  P C M C s  

Abstract 

For the development of PCMC suspensions for subcutaneous administration physiologically 

acceptable solvents are required that show good protein compatibility and that do not, at least 

substantially, dissolve the PCMC powder prior to application. This study aimed to screen 

glycerol, NMP, propylene glycol and PEG 400, pure as well as mixed with 10 to 90 % water (v/v), 

as potential organic water-miscible solvents for the resuspension of mAb1 PCMC powder. The 

focus was on macroscopic appearance of the suspensions as well as on protein aggregation 

(turbidimetry, HP-SEC) and protein structure (FT-IR, intrinsic fluorescence and 2nd-derivative UV 

spectroscopy). Glycerol and PEG 400 were found to be overall compatible with mAb1 PCMCs. 

Irrespective of the solvent content, the protein integrity was not affected, including the specific 

antigen binding capacity of the antibody. Furthermore, suspensions were formed in the 

presence of ≥ 50 % solvent. With respect to propylene glycol, at least 90 % solvent was 

necessary for the formation of a suspension. However, these high propylene glycol 

concentrations resulted in considerable levels of insoluble and soluble aggregates and 

perturbation of secondary and tertiary protein structure. For NMP, a PCMC suspension was 

formed in the presence of the pure solvent, but the antibody was found to be aggregated to a 

significant extend. Reduction of the solvent concentration either resulted in complete 

dissolution of the PCMC powder (90 and 70 % NMP) or protein instability in terms of aggregate 

formation or/and conformational changes (≤ 50 % NMP). Consequently, the use of glycerol and 

PEG 400 is recommended for further development of non-aqueous PCMC suspensions in water-

miscible organic solvents for subcutaneous delivery. 
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1 Introduction 

The formulation development of subcutaneous high concentration protein injectables bears 

particular challenges. The most significant restrictions for subcutaneous formulations are the 

low injection volume of 0.5-2 mL administered via 0.5-1 inch 23-gauge (or smaller) needle, a 

need for isotonicity and low viscosity and a pH range of 2.7-9.0 [1-4]. High concentration 

protein, specifically mAb, solutions are frequently associated with problems including high 

viscosity, protein aggregation, and poor overall stability [5, 6]. Thus, high concentration 

suspensions, e.g. formulated as PCMCs, represent a promising alternative. The development of 

PCMC suspensions for subcutaneous delivery requires the evaluation of appropriate suspension 

media that do not dissolve the PCMC powder and that are physiologically acceptable and 

compatible with the protein. Moreover, the ideal non-aqueous suspension medium should be 

miscible with water and body fluids, remain stable under normal conditions of pharmaceutical 

use, have a high boiling point for potential heat sterilization and a viscosity allowing for easy 

injection [7, 8]. Constant purity and degree of flammability are additional considerations. 

Obviously, the ideal solvent does not exist yet [7, 8]. Commonly used organic water-miscible 

cosolvents for parenteral administration that are numerously reviewed include ethanol, 

glycerol, polyethylene glycol (PEG) 300 and 400, N-methyl-pyrrolidone (NMP), propylene glycol, 

dimethylacetamide, dimethyl sulfoxide etc. [2-4, 7-16]. However, only a few of them are 

administered subcutaneously and their amount is limited to e.g. 6 % ethanol, 32 % glycerol and 

10 % propylene glycol [2, 9]. 

The aim of this study was to evaluate organic water-miscible solvents, namely glycerol, NMP, 

propylene glycol and PEG 400, as resuspension media for mAb1 PCMC powder. Pure solvents as 

well as mixtures with water (90:10, 70:30, 50:50, 30:70 and 10:90 (v/v)) were screened. The 

study focused on the macroscopic appearance of the suspensions as well as on protein stability 

after dissolution of the PCMC powder with regard to aggregation (turbidimetry, HP-SEC) and 

changes in the structure of the monoclonal antibody (FT-IR, intrinsic fluorescence and 

2nd-derivative UV spectroscopy). For glycerol and PEG 400, the binding activity of the antibody 

after solvent incubation and dissolution of residual PCMC powder was additionally analyzed. 
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2 Materials and methods 

2.1 Materials 

L-Phenylalanine and sodium hydroxide were purchased from Sigma-Aldrich, Steinheim, D, 

disodium EDTA dihydrate, hydrochloric acid (1 mol/L), water free glycerin (Emprove®) and 

isobutanol (Emplura®) from Merck, Darmstadt, D. Glycine, L-histidine and L-histidine 

hydrochloride monohydrate were procured from Ajinomoto Omnichem, Louvain-la-Neuve, B. 

Sodium dihydrogen phosphate dihydrate was delivered by Dr. Paul Lohmann, Hungen, D, 

sodium chloride by Akzo Nobel, Hengelo, NL, and trehalose dihydrate by Ferro Pfanstiehl, 

Waukegan, IL, USA. N-Methyl-pyrrolidone (Pharmasolve®) was obtained from ISP (Köln, D). 

Highly purified polyethylene glycol 400 (Super Refined PEG 400-LQ-/MH) was acquired from 

Croda (Nettetal, D), propylene glycol (1,2-propanediol Ph.Eur.) from Fluka, Buchs, CH.  

The protein bulk drug substance provided by Boehringer Ingelheim was composed of 20 mg/mL 

mAb1, representing a human IgG2 monoclonal antibody, 0.68 mg/mL L-histidine, 3.27 mg/mL 

L-histidine hydrochloride monohydrate, 0.1 mg/mL disodium EDTA dihydrate, 84.0 mg/mL 

trehalose dihydrate and 0.02 % polysorbate 80. The buffer of the bulk drug substance was 

exchanged via ultra- and diafiltration resulting in a protein solution that consisted of 

105.6 mg/mL protein, 0.68 mg/mL L-histidine, 3.27 mg/mL L-histidine hydrochloride 

monohydrate, 0.1 mg/mL disodium EDTA dihydrate and 56.0 mg/mL trehalose dihydrate 

(crossflow buffer exchange and concentration unit, Boehringer Ingelheim, Biberach/Riss, D; 

membrane cassette Sartocon Slice, Hydrosart, 30 kd, Sartorius, Göttingen, D; Quattroflow 150 S 

membrane pump, Quattroflow Fluid Systems, Hardegsen, D). Furthermore, polysorbate 80 was 

present in the protein solution because it cannot be removed via ultra-/diafiltration, as 

reported by Mahler at al. for polysorbate 20 [17]. 

2.2 Methods 

2.2.1 PCMC production process 

The PCMC production process is divided into four main steps: preparation of protein-carrier 

solution, precipitation, concentration/solvent exchange, and drying. For the preparation of the 

protein-carrier solution (Table 4-1) the carrier material was dissolved in deionized water and 



Evaluation of organic water-miscible solvents as suspension media for PCMCs 

96 

the solution pH value was adjusted to 5.5 prior to the addition of the protein solution. The final 

solution was filtered through a 0.22 µm membrane filter (Stericup-GV, 47mm, PVDF, Sartorius, 

Göttingen, D). 

Table 4-1: Composition of protein-carrier solution. 

Substance Mass [mg] in 200.0 ml Percent by weight [%] 

mAb1 2239.8 43.6 
L-Histidine 27.8 0.5 
L-Histidine HCl monohydrate 133.7 2.6 
Disodium EDTA dihydrate 4.1 0.1 
Glycine 811.1 15.8 
L-Phenylalanine 89.5 1.7 
Sodium chloride 269.0 5.2 
Trehalose dihydrate 1568.1 30.5 
Sum 5143.1 100.0 

 

The precipitation was carried out as described in detail by König [18]. Briefly, two equal streams 

of precipitating agent were mixed with one stream of protein-carrier solution in a small double 

jet impingement mixer of an inner diameter of 1.5 mm (Boehringer Ingelheim, Biberach/Riss, 

D). The precipitating agent was isobutanol saturated with all carrier components. The mixing 

ratio of the precipitating agent and the protein-carrier solution was set to 95 : 5 (v/v). The 

modular mixing platform from Ehrfeld (Bayer Technology, Wendelsheim, D) emcopassed three 

micro gear pumps (HNP pumps mzr 11507 and 7255, Hydraulik Nord Fluidtechnik, Parchim, D), 

pressure sensors and temperature sensors to monitor the precipitation step. The total flow rate 

of 1000 mL/min was controlled by the software LabView (National Instruments, Munich, D) and 

Coriflow mass flow meters (Bronkhorst, Kamen, D). The final suspension volume after 

precipitation was 4 L. Solvent exchange was achieved by decanting the supernatant of the 

PCMC suspension 18 h after the precipitating step. The supernatant was replaced with fresh 

saturated isobutanol. After further 24 h of sedimentation the sediment, i.e. the concentrated 

suspension, was used for the supercritical drying process (Thar SFE-500, Thar Technologies, 

Pittsburgh, PA, USA) with carbon dioxide at 100 bar and a flow rate of 25 g/min. After drying of 

240 mL concentrated suspension within 130 min at 45 °C the pressure was decreased by 

3 bar/min. 
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2.2.2 Incubation of PCMC powder with organic water-miscible solvents 

NMP, PEG 400, glycerol and propylene glycol served as organic water-miscible solvents selected 

for the incubation of the PCMC powder. Apart from the pure solvents, mixtures with deionized 

water were prepared in ratios of 90:10, 70:30, 50:50, 30:70 and 10:90 (v/v). PCMC powder 

incubated with pure water was used as reference sample. 68.9 mg powder was incubated with 

3.0 mL of the solvent or solvent water mixture in 20 R vials (CRP-NBB-20ml, type FC, Schott, 

Mühlheim, D) for 5 min on a horizontal shaker (Kombischüttler KL 2, Edmund Bühler, 

Hechingen, D) at a shaking speed of 250 rpm. 

2.2.3 Macroscopic appearance after solvent incubation 

The macroscopic appearance of the suspensions after solvent incubation was evaluated with 

respect to agglomeration tendency, turbidity and coloration. 

2.2.4 Analysis of protein integrity 

After solvent incubation 12.0 mL deionized water was added to achieve complete dissolution of 

the PCMC powder required for protein analysis. In that case, the final protein concentration in 

the solutions was 2 mg/mL and the solvent content ranged from 2 to 18 % (v/v). 

2.2.4.1 Dissolution behavior 

The dissolution behavior (agglomeration tendency, turbidity and coloration) of the suspensions 

was macroscopically investigated after the addition of water (see section 2.2.4). 

2.2.4.2 Turbidimetry 

Turbidity was measured at a protein concentration of 2 mg/mL by 90 ° light scattering at 

λ = 633 nm (UH turbidimeter, Boehringer Ingelheim, self-construction) and expressed in 

formazine nephelometric units (FNU) (n=3).  

2.2.4.3 High pressure size exclusion chromatography (HP-SEC) 

HP-SEC was performed on an Äkta micro (GE Healthcare, Uppsala, Sweden) with a TSKgel 

G3000SWXl column (7.8 mm ID x 30.0 cm L) and a 40 x 6.0 mm TSKgel SWXL Guardcol 

precolumn (Tosoh Bioscience, Stuttgart, D) at a flow rate of 1 mL/min. The mobile phase was 

composed of 60 mM sodium chloride and 5 mM sodium dihydrogen phosphate with a pH 

adjusted to 7.0. After filtration through a 0.45 µm membrane filter (Millex® HV, Cork, IRL), 25 µl 
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samples of 2.0 mg/mL protein were injected in duplicate and protein elution was monitored via 

UV-detection at 280 nm. Aggregation in percent was calculated based on the ratio of the area 

under the curve (AUC) of soluble aggregates to the total AUC of aggregates and monomer 

(n=2). Furthermore, changes in the AUC were considered. 

2.2.4.4 Analysis of protein structure 

Conformational changes of the protein were analyzed via Fourier transform infrared 

spectroscopy (FT-IR), intrinsic fluorescence spectroscopy and 2nd-derivative UV spectroscopy. A 

special form of sample preparation was required prior to measurement, because amino acids 

that were used as carrier components may interfere with spectroscopic methods, such as FT-IR 

analysis [19, 20]. Therefore, diafiltration of 5.0 mL samples was performed against 500 mL 

water for injection (WFI) with stirring at room temperature (Spectra/Por® 7 Dialysis Membrane 

MWCO 25,000, Carl Roth, Karlsruhe, D). WFI was exchanged twice within 18 h of diafiltration.  

2.2.4.4.1 Fourier transform infrared spectroscopy 

As the precision of FT-IR depends on the protein concentration, dialyzed samples were 

concentrated in the centrifuge (Heraeus® Biofuge® primo, Carl Roth, Karlsruhe, D). The 

filtration units (Amicon® Ultra-4 Ultracel-30k, Millipore, Schwalbach, D) were rinsed with 4.0 mL 

0.1 N NaOH and subsequently equilibrated with water at 7500 g for 10 min. Concentration of 

4.0 mL samples at 7500 g for 10-20 min resulted in a final protein concentration of 5-20 mg/mL. 

Samples were filtered through a 0.2 µm syringe filter (Acrodisc® Syringe Filters with Supor® 

Membrane, Pall, Dreieich, D). 

FT-IR spectroscopy was performed using a Tensor 37 and a Confocheck measuring cell (Bruker, 

Ettlingen, D). Spectra were recorded from 4000 to 900 cm-1 with 120 scans and a resolution of 

2 cm-1 at 25° C. Atmospheric compensation was done and WFI served as reference. Spectra 

were processed by vector normalization prior to calculating the average spectrum based on 

three measurements. Second derivative was built applying 17 smoothing points (Savitzky-Golay 

algorithm).  

2.2.4.4.2 Intrinsic fluorescence spectroscopy 

Samples of 0.1 mg/mL protein in SUPRASIL® 114-QS precision cuvettes (10 mm, Hellma, 

Mühlheim, D) were excited at 295 nm and 25 °C. The emission was scanned from 305 nm 
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to 400 nm with a step size of 1 nm and 1 s integration time (Fluorimeter QM-4-CW, PTI, 

Birmingham, NJ, USA). The evaluation was based on normalized spectra (n=3). 

2.2.4.4.3 2nd-derivative UV spectroscopy 

Samples of 0.3 mg/mL protein were scanned in Halfmicro Plastibrand® cuvettes (Brand, 

Wertheim, D) from 240 to 350 nm (UV/VIS Spectrometer Lambda 20, PerkinElmer, Rodgau-

Jügesheim, D). The second derivative of the absorption was used (n=3). 

2.2.4.5 Binding assay 

MAb1 prevents the target antigen from binding to a specific cell surface protein (CSP). 

Consequently, binding activity of the antibody to the target antigen was analyzed according to 

BI internal method using a competitive ELISA following typical protocols [21]. Briefly, mAb1 and 

the target antigen were added to CSP immobilized on a microtiter plate. Decreasing 

concentration of mAb1 resulted in decreasing inhibition of binding of target antigen to CSP. 

After the addition of goat anti-mouse-IgG horseradish peroxidase that bound to CSP and of 

tetramethylbenzidine dye, the amount of colored product, being inversely proportional to the 

binding activity of the antibody, was measured based on the absorption at 450 nm (n=2). 

3 Results and discussion 

Solvent incubation, carried out with glycerol, NMP, propylene glycol and PEG 400 on a 

horizontal shaker, was limited to 5 min because the PCMC powder and the suspension medium 

are intended to be marketed in a dual chamber syringe system. Thus, the suspension, 

representing the final dosage form, would be prepared immediately before subcutaneous 

injection. After solvent incubation the macroscopic appearance of the suspension was 

analyzed. Subsequent dissolution of residual PCMC powder allowed for analysis of protein 

integrity, including aggregation level and structural changes. 

3.1 Macroscopic appearance after solvent incubation 

The incubation of mAb1 PCMC powder with pure glycerol resulted in a big powder nest located 

in the middle of the vial (Figure 4-1). Pure glycerol was too viscous to disperse the powder 

under the shaking conditions selected [22]. Down to a mixing ratio of glycerol to water of 50:50 

suspensions with many powder particles were formed during shaking. Apart from the particles 
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detected by the naked eye, the suspensions were macroscopically turbid. In the samples 

incubated with smaller amounts of glycerol (30 % and 10 %) only few powder agglomerates 

were visible. Thus, 70 % of water was sufficient for the dissolution of mAb1 PCMC powder in 

the presence of glycerol. The sample that was incubated with pure water and hence served as 

reference sample was a clear solution. The good water solubility found in this study is typical of 

most of the PCMC powders [18, 23]. 

 

Figure 4-1: Incubation of PCMC powder with glycerol and corresponding water mixtures; 

glycerol to water ratio (v/v): (1) 100:0, (2) 90:10, (3) 70:30, (4) 50:50, (5) 30:70, (6) 10:90, 

(7) 0:100 = pure water. 

The appearance of the samples incubated with NMP and NMP water mixtures strongly 

depended on the mixing ratio (Figure 4-2). Sample (8) with pure NMP represented a turbid 

suspension, whereas clear solutions were detected when 90 or 70 % NMP was used. In the 

presence of an increasing amount of water, namely 50 and 70 %, the PCMC powder was not 

completely dissolved. Powder agglomerates were detected in these samples. The sample that 

contained 10 % NMP and 90 % water represented a turbid suspension without any big 

agglomerate.  
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Figure 4-2: Incubation of PCMC powder with NMP and corresponding water mixtures; NMP to 

water ratio (v/v): (8) 100:0, (9) 90:10, (10) 70:30, (11) 50:50, (12) 30:70, (13) 10:90, 

(14) 0:100 = pure water. 

In contrast to NMP, the solubility of PCMC powder in the presence of propylene glycol clearly 

increased with increasing amount of water. A turbid suspension with many powder 

agglomerates was formed after the incubation with pure propylene glycol (Figure 4-3). Still 

there were some powder agglomerates visible in the samples containing 90, 70 and 50 % 

propylene glycol, but the number decreased with rising water content. Clear solutions were 

detected when the amount of propylene glycol was reduced to 30 % or less. 

 

Figure 4-3: Incubation of PCMC powder with propylene glycol and corresponding water 

mixtures; propylene glycol to water ratio (v/v): (15) 100:0, (16) 90:10, (17) 70:30, (18) 50:50, 

(19) 30:70, (20) 10:90, (21) 0:100 = pure water. 

PCMC powder incubated with PEG 400 and PEG 400 water mixtures showed the same solubility 

tendency. The amount of powder agglomerates and the turbidity of the samples increased 

when the volume fraction of PEG 400 was augmented (Figure 4-4). In the presence of only 10 % 

PEG 400 the powder completely dissolved and no agglomerates were macroscopically visible. 
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Figure 4-4: Incubation of PCMC powder with PEG 400 and corresponding water mixtures; 

PEG 400 to water ratio (v/v): (22) 100:0, (23) 90:10, (24) 70:30, (25) 50:50, (26) 30:70, 

(27) 10:90, (28) 0:100 = pure water. 

Overall, the solubility of mAb1 PCMCs in the presence of glycerol, propylene glycol and PEG 400 

improved with increasing amount of water. In the case of NMP, a stronger turbidity in 

NMP/water mixtures was seen with higher water content. At least 50 % glycerol or PEG 400 and 

90 % propylene glycol were required to form a suspension. Suspensions were also detected for 

30:70 and 10:90 NMP water mixtures as well as for pure NMP. 

3.2 Protein integrity after solvent incubation 

After solvent incubation protein analysis, focusing on aggregation and structural alterations, 

required the addition of 12.0 mL water to achieve complete dissolution of residual PCMC 

powder. Consequently, the solvent content ranged from 2 to 18 % (v/v). The dissolution 

behavior may also provide information on the compatibility between the solvent and the 

monoclonal antibody. For example, high turbidity of protein solutions typically indicates the 

presence of insoluble aggregates [24]. 

In the samples incubated with glycerol or glycerol water mixtures the residual powder could be 

easily dissolved. Clear solutions were obtained independent of the initial glycerol content 

(Figure 4-5). Turbidity measurement underlined the macroscopic appearance of the samples 

with turbidity values ranging from 4.4 to 11.1 FNU (Figure 4-9). Thus, all samples were free of 

larger amounts of insoluble protein aggregates. Samples with an initial glycerol content of 

≥ 70 % showed turbidity values of 4-5 FNU as opposed to 10-11 FNU detected for PCMC powder 

incubated with a lower amount of glycerol. The turbidity of those samples was even lower than 
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the one detected for PCMC powder reconstituted with pure water in the absence of glycerol 

(10.8 FNU). As reported by Chen et al., the refractive index of glycerol water mixtures 

augmented linearly with increasing volume percentage of glycerol [25]. Various studies in the 

field of micro-flow imaging and light obscuration on suspensions, either glass bead suspensions 

or high concentration protein solutions contaminated with insoluble proteinaceous particles, 

showed that increasing refractive indexes of the surrounding medium decreased the difference 

in refractive index between the particles and the medium resulting in reduced contrast and 

thus significant underestimation of particle number or undersizing [26, 27]. Pan et al. found 

that the turbidity of highly charged fluorinated monodisperse spherical particles suspended in 

ethylene glycol water mixtures decreased with increasing refractive index within a certain range 

[28]. Hence, the observation of reduced turbidity for PCMCs dissolved in glycerol water 

mixtures in the presence of increasing glycerol concentrations was attributed to a shift of the 

refractive index of the solvent. 

 

Figure 4-5: Dissolution behavior of PCMC suspensions, made of 68.9 mg mAb1 PCMC powder 

and 3.0 mL solvent, after addition of 12.0 mL water; initial glycerol to water ratio (v/v): 

(1) 100:0, (2) 90:10, (3) 70:30, (4) 50:50, (5) 30:70, (6) 10:90, (7) 0:100 = pure water. 

The samples initially incubated with 90 and 70 % NMP were macroscopically clear after the 

addition of water and showed low turbidity values of 7-8 FNU (Figure 4-6 and Figure 4-9). 

Turbidity measurement of the sample originally incubated with pure NMP also revealed a value 

of 7 FNU despite a few individual large flakes in the vial visible by the naked eye. Flake-shaped 

particles were also found after incubation with 50 and 30 % NMP. The turbidity of these 

samples was 20 and 24 FNU. Turbidity was particularly pronounced after the addition of water 

to the powder dispensed with 10 % NMP, reaching a value of 130 FNU. Hence, apart from the 
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samples initially containing 90 and 70% NMP, larger amounts of insoluble protein aggregates 

were apparently present in all formulations. 

 

Figure 4-6: Dissolution behavior of PCMC suspensions, made of 68.9 mg mAb1 PCMC powder 

and 3.0 mL solvent, after addition of 12.0 mL water; initial NMP to water ratio (v/v): 

(8) 100:0, (9) 90:10, (10) 70:30, (11) 50:50, (12) 30:70, (13) 10:90, (14) 0:100 = pure water. 

 

Figure 4-7: Dissolution behavior of PCMC suspensions, made of 68.9 mg mAb1 PCMC powder 

and 3.0 mL solvent, after addition of 12.0 mL water; initial propylene glycol to water 

ratio (v/v): (15) 100:0, (16) 90:10, (17) 70:30, (18) 50:50, (19) 30:70, (20) 10:90, 

(21) 0:100 = pure water. 

With respect to propylene glycol, all samples initially incubated with ≤ 70 % solvent were 

macroscopically clear. Their turbidity ranged from 3-12 FNU with lower values (3 and 5 FNU) for 

the samples incubated with 70 % and 50 % propylene glycol (Figure 4-9), as detected for 

glycerol water mixtures, too. Similarly, this observation was associated with an increasing 

refractive index of the solvent system with augmenting propylene glycol concentration, as 

likewise reported by Fogg et al. for ethylene glycol [29]. However, incubation with higher 

amounts of propylene glycol, namely 90 % and 100 %, resulted in turbidity values of 16 and 
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42 FNUs indicating an increased amount of insoluble protein particles. Moreover, flakes were 

macroscopically detected in these samples. 

 

Figure 4-8: Dissolution behavior of PCMC suspensions, made of 68.9 mg mAb1 PCMC powder 

and 3.0 mL solvent, after addition of 12.0 mL water; initial PEG 400 to water ratio (v/v): 

(22) 100:0, (23) 90:10, (24) 70:30, (25) 50:50, (26) 30:70, (27) 10:90, (28) 0:100 = pure water. 

 (a) (b) 

  

Figure 4-9: Turbidity after incubation with 3.0 mL glycerol, NMP, propylene glycol and 

PEG 400 as well as solvent water mixtures (v/v) and subsequent dissolution of residual PCMC 

powder with 12.0 mL water (a); (b) zoomed in between 0 and 20 FNU. 

At first sight, all samples incubated with PEG 400 or mixtures made of PEG 400 and water 

appeared clear (Figure 4-8). The turbidity was low with values between 4-12 FNU (Figure 4-9), 

although single flake-shaped particles were detected in the formulations with 50 and 30 % 

PEG 400. Similar to glycerol and propylene glycol incubation, the turbidity values were lower for 

the samples containing a higher amount of PEG 400, very likely due to changes of the refractive 
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index (see above). An increase of the refractive index of mixtures made of PEG 300 and water 

with augmenting mole ratio of PEG 300 was detected by Rajulu and Sab [30]. 

Size exclusion chromatography is one of the most commonly used techniques for the analysis 

and quantification of soluble protein aggregates, oligomers, monomers and fragments [24, 31]. 

The presence of larger soluble aggregates and protein particles that accumulate in the 

precolumn or at the top of the column or that are removed via filtration during sample 

preparation can be assessed by a decrease in the AUC [32].  

The monomer content in the samples incubated with glycerol and corresponding mixtures with 

water ranged from 98-100 % (Figure 4-10a). Compared to the reference sample incubated with 

pure water, the AUC of those samples was not decreased either. Thus, the incubation with 

glycerol and glycerol water mixtures did not induce considerable aggregation levels of the mAb 

formulated as PCMCs. The use of glycerol as stabilizer in protein formulations is widely 

described [33-36]. According to Gekko and Timasheff, glycerol is preferentially excluded from 

the protein surface in aqueous solution and hence favors the folded native state of the protein 

[37]. Vagenende et al. further specified that glycerol additionally tends to interact with 

hydrophobic surface regions of the protein, usually responsible for protein aggregation. The 

amphiphilic interface orientation of glycerol hence prevents the protein from aggregation 

processes [38].  

Significant differences in the aggregation level were found after the incubation with NMP 

(Figure 4-10a). Samples initially incubated with 90 and 70 % NMP were free of soluble 

aggregates in HP-SEC. Incubation with pure NMP resulted in 6 % soluble protein aggregates. 

Significant larger amounts of aggregated species were detected in the samples with 50 and 

30 % NMP, with residual monomer contents of 68 and 65 %. The soluble aggregate level 

resulting from incubation with 10 % NMP could not be assessed because the chromatogram did 

not show any protein peak indicating that the mAb was completely aggregated forming 

insoluble large particles. The AUC was also reduced for the samples incubated with pure NMP 

and 30 % NMP, by approx. 35 and 95 %, respectively (Figure 4-10b). NMP is used as solvent in 

the in situ hardening parenteral drug delivery formulation of leuprolide actetate, marketed as 

Eligard® [39]. The formulation is based on the Atrigel® technology, combining a biodegradable 
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polymer of D,L-lactide-co-glycolic acid (PLGA) and a biocompatible solvent, developed by Dunn 

et al. [40]. Protein aggregation after release from NMP containing drug delivery systems was 

reported by Tae et al. and Dong et al. [41, 42]. Figueiredo et al. further found that myoglobin 

was severely deteriorated, indicated by a color change and an increase in temperature, when it 

was dissolved in NMP [43]. In addition, rhGDF-5 underwent substantial oxidation upon 

incubation in NMP, which was induced by oxidizing species existing in the solvent [44]. 

 (a) (b) 

  

Figure 4-10: Monomer content (a) and peak area (b) in HP-SEC after incubation with 3.0 mL 

glycerol, NMP, propylene glycol and PEG 400 as well as solvent water mixtures (v/v) and 

subsequent dissolution of residual PCMC powder with 12.0 mL water. 

Dispersing mAb1 PCMC powder in 90 and 100 % propylene glycol led to the formation of high 

amounts of soluble aggregates (Figure 4-10a). In these samples, 44 and 41 % aggregated 

species were found. Furthermore, the AUC was significantly decreased by approx. 33 and 44 %, 

respectively, indicating the formation of larger oligomers that could not be analyzed via HP-SEC 

(Figure 4-10b). This finding was in line with the macroscopic appearance after the addition of 

water because flake-shaped particles were present in both samples. For all the other samples, 

neither the monomer content nor the AUC was affected. Liu et al. who investigated the effects 

of polyols on the stability of whey proteins detected an increase in protein aggregation to 

almost 100 % at the three levels tested, including 33, 50 and 67 wt% propylene glycol [45].  

Incubation with PEG 400 did not influence the monomer content in the samples, irrespective of 

the solvent concentration (Figure 4-10a). Changes in the AUC were not detected either. Not 

many data on protein aggregation caused by PEG 400 are available in literature. Knepp et al. 
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found that lyophilized plasma derived factor IX significantly aggregated within 1.5 week storage 

at 37 °C when it was suspended in PEG 400. They argued that protein instability might in part 

be caused by an oxidative attack arising from peroxides formed upon oxidation of the ether 

moieties [46]. The formation of peroxides in PEG upon light exposure and aging as well as 

subsequent protein degradation is well-known [47-49]. The absence of such degradation 

reactions in the recent study on mAb1 PCMCs might be attributed to the high quality of 

PEG 400 used for incubation in combination with the short incubation time. 

As recommended by Baudys and Kim, several spectroscopic methods, namely FT-IR, intrinsic 

fluorescence and 2nd-derivative UV spectroscopy, were used to analyze potential 

conformational alterations of the secondary and tertiary structure of the reconstituted mAb 

[50] (see chapter 2 section 4.3.1). Independent of the solvent concentration, the incubation 

with glycerol did not change the secondary or tertiary conformational structure of the mAb as 

all spectra were identical to the one recorded after reconstitution of PCMCs with pure water 

(Figure 4-11a-Figure 4-13a). By comparison to previously published IgG FT-IR spectra, the bands 

can be assigned to protein structural elements [51, 52]. For example, typical intramolecular 

β-sheet bands occurred at 1692 and 1638 cm-1 showing the predominance of β-sheets in IgGs. 

Well-resolved bands at frequencies of 1678 and 1662 cm-1 represented turn structure and 

peaks at 1616 cm-1 could be attributed either to more β-sheet structure or to side-chain effects. 

Monitoring of changes in protein tertiary structure via intrinsic fluorescence spectroscopy can 

for example be applied in forced degradation studies or to probe thermal stability of proteins in 

preformulation development [53, 54]. After incubation with glycerol or glycerol water mixtures 

the emission maximum was located at a wavelength of λ = 299 nm for all samples 

(Figure 4-12a). In 2nd-derivative UV spectroscopy the broad peak at λ = 240-300 nm is 

composed of multiple overlapping absorbance spectra, including phenylalanine, tyrosine and 

tryptophan [55]. Peaks between 245 nm and 270 nm are affected by phenylalanine, while peaks 

in the wavelength of 265-285 nm can be attributed mainly to tyrosine. Absorbance between 

265 and 295 nm primarily arises from tryptophan. The 2nd-derivative UV spectrum of 

reconstituted PCMCs after incubation with glycerol and corresponding water mixtures was 

characterized by peak minima occurring at 277, 284 and 292 nm, while peak maxima were 

found at 265, 279, 288 and 297 nm (Figure 4-13a). Corresponding to the results for mAb1 
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PCMCs, Wakankar et al. found that the tertiary structure of a recombinant humanized 

monoclonal antibody was not affected by the addition of glycerol in a concentration of up to 

80 % (v/v), analyzed via intrinsic fluorescence spectroscopy [56]. The structural protein stability 

in differential scanning calorimetry was even increased with increasing glycerol concentration. 

However, Figueiredo et al. reported that the secondary structure of myoglobin was retained in 

aqueous solution containing 50 % (v/v) glycerol, while the use of 96 % (v/v) glycerol caused 

turbidity of the system. 

 (a) (b) 

  

 (c) (d) 

 

Figure 4-11: FT-IR spectra after incubation with 3.0 mL (a) glycerol (G), (b) NMP (N), 

(c) propylene glycol (P) and (d) PEG 400 as well as solvent water (W) mixtures (v/v) and 

subsequent dissolution of residual PCMC powder with 12.0 mL water. 

Again for NMP, differences between the samples were seen in the overlay of the spectra. With 

respect to FT-IR spectroscopy, incubation of PCMC powder with 30 and 10 % NMP induced a 
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signal at 1618-1624 cm-1 and a weak intensity peak at 1698 cm-1 at the expense of signal 

intensity at 1692 and 1638 cm-1 (Figure 4-11b). Equivalent changes in FT-IR spectra reported by 

Matheus et al. for high-concentration IgG formulations upon heating were associated with 

intermolecular hydrogen-bonded antiparallel β-sheet structure typical of aggregated protein 

[57, 58]. Referring to HP-SEC, the samples incubated with 30 and 10 % NMP revealed the 

highest loss of AUC indicating the presence of considerable amounts of either insoluble or 

larger soluble aggregates that cannot be assessed chromatographically (see above). The use of 

50 % NMP, however, resulted in the formation of 32 % soluble aggregates in HP-SEC, but did 

neither affect the AUC nor the FT-IR spectrum. Thus, soluble aggregates detectable via HP-SEC 

had no impact on the FT-IR spectrum.  

The spectra recorded via intrinsic fluorescence spectroscopy supported the structural changes 

detected in FT-IR spectroscopy after incubation with 30 and 10 % NMP. The maximum of both 

spectra was shifted from λ = 299 nm to λ = 335 nm and λ = 337 nm, respectively, and both 

spectra contained a second maximum with a lower fluorescence intensity at λ = 383 nm and 

λ = 381 nm (Figure 4-12). Furthermore, the shape of the spectra was broader in both cases, as 

compared to the other samples. The shift of λmax to a higher wavelength, referred to as red 

shift, generally indicates changes in the hydration of tryptophan residues and subsequently in 

protein structure [53]. Hence, structural changes of the monoclonal antibody after the 

incubation with NMP in concentrations of 30 and 10 % did not only involve the secondary but 

also the tertiary protein structure, as also reflected in 2nd-derivative UV spectroscopy 

(Figure 4-13b). The shape of the UV spectra was the same for all samples, but the amplitude 

was significantly decreased in all regions in the case of 30 and 10 % NMP. Van Beers et al. also 

observed reduced intensities of the positive and negative peaks in the 2nd-derivative UV spectra 

of metal-catalyzed oxidized interferon beta, demonstrating changes in the tertiary protein 

structure [59]. Apart from Figueiredo et al. who studied the structural stability of myoglobin in 

organic media via circular dichroism, including NMP, and who detected deterioration of the 

native protein folding, investigations of protein conformation in presence of NMP have not 

been reported in literature [43]. 
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 (a) (b) 

  

 (c) (d) 

  

Figure 4-12: Intrinsic fluorescence spectra after incubation with 3.0 mL (a) glycerol (G), 

(b) NMP (N), (c) propylene glycol (P) and (d) PEG 400 as well as solvent water (W) 

mixtures (v/v) and subsequent dissolution of residual PCMC powder with 12.0 mL water; 

normalized intensity for better comparison. 

Incubation with 100 and 90 % propylene glycol resulted in alterations of the secondary protein 

structure as analyzed by FT-IR. Peak intensities at λ = 1638 cm-1 and λ = 1692 cm-1 decreased, 

while bands at λ = 1624 cm-1 and λ = 1698 cm-1 increased (Figure 4-11c). However, these 

spectroscopic changes representing the formation of intermolecular at the expense of 

intramolecular β-sheets were significantly less pronounced than for the samples incubated with 

30 and 10 % NMP. In accordance with those NMP samples, the level of soluble aggregates and 

the reduction of the AUC in HP-SEC were considerable for the PCMC powder incubated with 

100 and 90 % propylene glycol. The amount of soluble aggregates was higher for the propylene 

glycol samples (41 and 44 %) than for the NMP samples (35 % and not measurable). The loss in 
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AUC amounted to 33 and 44 % for the incubation with propylene glycol, while a reduction by 95 

and 100 % was detected in the case of NMP. This observation supported the hypothesis that 

mainly the presence of larger soluble aggregated species was related to alterations of the 

secondary structure of the monoclonal antibody. Initial propylene glycol concentrations of 

≤ 70 % did not affect the secondary protein structure. In intrinsic fluorescence spectroscopy, 

the spectra recorded after incubation with 100 and 90 % propylene glycol also showed minor 

differences in comparison to the other samples. The emission maximum was not shifted to a 

higher wavelength, but the spectra were broader (Figure 4-12c). Changes were not visible in 

2nd-derivative UV spectroscopy (Figure 4-13c), independent of the propylene glycol 

concentration, due to lower sensitivity of the latter method [55]. Thus, the clear changes in the 

secondary structure did come along with only marginal effects on the tertiary level of the mAb. 

Based on densitometric and CD investigations Gekko and Koga found that propylene glycol 

could induce weakening of the tertiary structure of bovine serum albumin via hydrophobic 

bonding and hence promotion of α-helix formation [60]. The effect depended on the solvent 

concentration and the pH value, being more pronounced in the acidic range as opposed to 

neutral pH. Changes of secondary protein structure, namely a decrease of β-sheets and an 

increase of α-helices, in the presence of at least 40 % propylene glycol were also described by 

Chobert et al. for β-lactoglobulin [61]. The promotion of α-helical secondary structure in FT-IR 

by propylene glycol was confirmed by Liu et al. who studied the effects of polyols on the 

stability of whey proteins [45]. Furthermore, aggregation phenomena were explained by the 

induction of intermolecular β-sheets detected in FT-IR. DSC studies further revealed a loss of 

most of the tertiary structures in the presence of 50 wt% propylene glycol. Minor changes in 

the secondary and tertiary structure of the mAb formulated as PCMCs were also detected via 

FT-IR and intrinsic fluorescence spectroscopy after incubation with 100 and 90 % propylene 

glycol. Intramolecular β-sheets were replaced by intermolecular ones, but promotion of α-helix 

was not observed. However, in the case of mAb1 PCMCs incubation with the initial solvent 

concentration was carried out for only 5 min at room temperature, as opposed to 7 days at 

45 °C for whey proteins. 

With respect to PEG 400, none of the three spectroscopic methods revealed any structural 

changes of mAb1 after incubation (Figure 4-11d-Figure 4-13d). The secondary and tertiary 
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protein structure was completely preserved independent of the solvent concentration. In 

contrast, Ahmad et al. reported that PEG 400 was capable of inducing a molten globule like 

state from acid-denatured stem bromelain and that small amounts of nonnative tertiary 

contacts were formed in the presence of 70 % (w/v) PEG 400 [62]. Moreover, far UV-CD 

spectroscopy conducted by Kumar et al. revealed a slight loss of secondary structural elements 

of bovine serum albumin in the presence of 10 % (w/v) PEG 400 [63]. 

 (a) (b) 

  

 (c) (d) 

  

Figure 4-13: 2
nd

-derivative UV spectra after incubation with 3.0 mL (a) glycerol (G), 

(b) NMP (N), (c) propylene glycol (P) and (d) PEG 400 as well as solvent water (W) 

mixtures (v/v) and subsequent dissolution of residual PCMC powder with 12.0 mL water. 

Additionally, a binding assay was conducted for the samples incubated with glycerol and 

PEG 400 to verify whether suspending mAb1 PCMCs in these solvents affected the specific 

antigen binding of the antibody. This investigation was limited to glycerol and PEG 400 because 
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these samples showed neither aggregation phenomena nor changes of the secondary or 

tertiary protein structure. Figure 4-14 visualizes that the binding activity of the antibody was 

completely retained for all glycerol and PEG 400 concentrations investigated as the values were 

within the specification limits of 65-130 % of the standard reference sample. 

 

Figure 4-14: Binding activity referred to standard reference sample after incubation with 

3.0 mL glycerol or PEG 400 as well as solvent water mixtures (v/v) and subsequent dissolution 

of residual PCMC powder with 12.0 mL water; dotted lines indicate specification limits. 

4 Conclusion 

The screening of glycerol, NMP, propylene glycol and PEG 400 as organic water-miscible 

resuspension media for mAb1 PCMCs focused on the macroscopic appearance after solvent 

incubation and on protein stability, including aggregation tendency and secondary and tertiary 

protein structure. An overview of the results is presented in the summary tables of Table 4-2. 

At first sight, the tables for glycerol and PEG 400 show a good compatibility of these solvents 

with mAb1 PCMCS. In glycerol, attractive suspensions were formed in the presence of ≤ 50 % 

water. Moreover, protein integrity, specific antigen binding and conformational structure were 

not disrupted in the presence of glycerol. Similar outcomes were found for the incubation with 

PEG 400. At least 50 % PEG 400 was required to form a PCMC suspension. Apart from single 

flake-shaped particles detected in 50:50 and 30:70 mixtures of PEG 400 and water, clear 

solutions were achieved by the addition of water. The protein stability, including the binding 

capacity of the antibody, was not affected by the solvent. With respect to NMP, appropriate 
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suspension quality was only found when pure NMP was used for dispensing the PCMC powder. 

However, incomplete dissolution behavior and the presence of soluble aggregates were 

observed after the addition of water. Protein stability was high when 90 and 70 % NMP was 

used, but these mixtures were capable of completely dissolving the PCMC powder. At higher 

amounts of water (≥ 50 %) protein stability was severely reduced with substantial aggregation 

and a loss in protein structure. Similar to NMP, good suspending properties were provided by 

pure and 90 % propylene glycol, but the antibody was found to be aggregated to a significant 

extent and slight changes in the secondary and tertiary protein structure were revealed. At 

least 30 % water was required to prevent the monoclonal antibody from aggregation and 

structural alterations, but also resulted in complete dissolution of the PCMC powder. Hence, 

neither NMP nor propylene glycol was appropriate for PCMC resuspension, but glycerol and 

PEG 400 represented promising media for the manufacturing of subcutaneous PCMC 

suspensions. 
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Table 4-2: Summary tables of PCMC stability results after incubation with 3.0 mL (a) glycerol, 

(b) NMP, (c) propylene glycol and (d) PEG 400 as well as solvent water mixtures (v/v); color 

assignment: suspension: green indicates the formation of a suspension, yellow the presence 

of single powder agglomerates, red complete dissolution of the PCMC powder after solvent 

incubation; dissolution: green designates the formation of a clear solution, yellow the 

presence of single powder agglomerates, red the presence of considerable amounts of 

insoluble material after dissolution of residual PCMC powder with 12.0 mL water; turbidity: 

green indicates turbidity values comparable to those of PCMC powder incubated with pure 

water of ≤ 10-12 FNU, yellow slightly increased turbidity values of approx. 19-24 FNU, red 

significantly higher turbidity values of ≥ 42 FNU or the presence of many particle flakes; HP-

SEC: green designates monomer levels comparable to those of PCMC powder incubated with 

pure water of ≥ 98 %, yellow a slightly reduced monomer level of approx. 94 %, red 

considerable decreased monomer contents of 56-68 % or the absence of any evaluable peak; 

FT-IR, IF and UV spectroscopy: green indicates spectra overlapping with those of PCMC 

powder incubated with pure water, red deviating curve shapes. 
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subcutaneous administration; in preparation. 

Abstract 

The protein-coated microcrystals (PCMC) technology that is based on coprecipitation offers the 

possibility to stabilize protein in the solid state. As PCMCs can be administered as subcutaneous 

suspension by injection appropriate suspensions media are required that are physiologically 

acceptable and compatible with the protein. The study aimed to develop biocompatible and 

injectable oily mAb1 PCMC suspensions based on sesame oil, benzyl benzoate and medium-

chain triglycerides (MCT) and comprised the development of an appropriate in vitro release 

model, the investigation of protein integrity after release from oily suspensions, the 

compatibility between the oily solvents and primary packaging material as well as the 

characterization of rheology and injectability of the suspensions. 100 % recovery of the 

monoclonal antibody mAb1 was found after 24 h incubation at 40 °C in water with integrated 

short-term stirring and final centrifugation at 100 g for 30 min. After release from oily PCMC 

suspensions, the integrity of mAb1 was completely retained with respect to aggregation, 

secondary and tertiary protein structure and specific antigen binding affinity, irrespective of the 

choice of oily solvent. The injectability of the oily solvents depended on the siliconization 

process of the glass syringes and was not affected during 6 months storage at 22 ± 3 °C 

indicating compatibility with the primary packaging material. Only swelling of the tip caps 

occurred due to oil uptake. Oily suspensions based on MCT and 70:30 and 30:70 (v/v) mixtures 

of sesame oil and benzyl benzoate were prepared up to a solid content of 316 mg/mL, 
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corresponding to 138 mg/mL protein. The viscosity of the suspensions that depended on the 

viscosity of the oily solvent augmented with increasing solid content and was characterized by 

shear thinning. A linear relationship between the viscosity and the injectability of the 

suspensions was revealed. Maximal injection forces were approx. 40 N for a 30:70 (v/v) sesame 

oil benzyl benzoate suspension with a solid content of 316 mg/mL, opposed to 50 N for the 

inverse mixture and MCT. Although it was not beneficial with respect to viscosity and 

injectability compared to a corresponding mAb1 solution, formulating mAb1 as oily PCMC 

suspension was feasible, including compatibility with the protein and injectability, and thus 

represents an alternative to high concentration liquid formulations typically associated with 

challenges such as low solubility, aggregation phenomena and poor overall stability. 

1 Introduction 

Apart from organic water-miscible solvents, analyzed in detail in chapter 4, oily liquids 

represent potential media for the development of subcutaneous mAb1 PCMC suspensions. 

Advantages of oily vehicles over organic water-miscible solvents generally include high chemical 

stability and low toxicity [1, 2]. However, vegetable oils containing large amounts of 

polyunsaturated fatty acids are prone to the formation of hydroperoxides that might lead to 

protein instability and increasing overall toxicity [3-6]. The use of highly purified oils that are 

mostly free of hydroperoxides and other impurities further improves their bioacompatibility. As 

these solvents are not water-miscible, their application is discussed to provide a sustained 

release effect [1, 3, 7]. Consequently, the frequency of administration can be reduced resulting 

in higher patient convenience and compliance [3, 7]. Therefore, oily solvents, such as sesame 

oil or cottonseed oil, are often applied to lipophilic steroid hormones or psychotropic drugs for 

intramuscular administration providing a depot for sustained drug delivery over several weeks 

[8, 9]. Though, the general high viscosity of oily solvents is suspected of requiring high injection 

forces for parenteral administration [10]. The investigation of injectability and syringeability is 

thus indispensable in the development of oily parenteral formulations [11]. Injectability 

describes the performance of the formulation during injection, including force or pressure 

required for injection, evenness of flow and freedom from clogging, whereas syringeability is 
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defined as ability of an injectable therapeutic to pass easily through a hypodermic needle on 

transfer from a vial prior to an injection [11-14]. 

The purpose of the study was to evaluate the three oily solvents sesame oil (S), benzyl 

benzoate (B) and MCT (M) as resuspension media for mAb1 PCMC powder. Benzyl benzoate 

was screened as additive to reduce the viscosity of sesame oil based preparations allowing for 

easier injection because sesame oil has a significantly higher viscosity than MCT. The 

investigation of the compatibility between the oleaginous vehicles and mAb1 formulated as 

PCMCs required the development of a suitable in vitro release model ensuring 100 % protein 

recovery. Subsequently, the integrity (HP-SEC, binding assay) and structure (FT-IR, intrinsic 

fluorescence, 2nd-derivative UV spectroscopy) of the monoclonal antibody was analyzed after 

release from oily PCMC suspensions. To avoid administration problems arising from the high 

viscosity of the solvents, the pure oils were tested for injectability. A 6 months storage study of 

oily vehicles in glass syringes was additionally included to detect potential incompatibility with 

the primary packaging material suspected of complicating the injection due to swelling 

phenomena. Finally, the rheology and injectability of oily mAb1 PCMC suspensions was 

investigated and compared to a high concentration liquid formulation of the protein. 

2 Materials and methods 

2.1 Materials 

L-Phenylalanine, sodium hydroxide, benzyl benzoate and phosphate buffered saline pH 7.4 

were purchased from Sigma-Aldrich, Steinheim, D, disodium EDTA dihydrate, hydrochloric acid 

(1 mol/L), isobutanol (Emplura®) from Merck, Darmstadt, D. Glycine, L-histidine and L-histidine 

hydrochloride monohydrate were procured from Ajinomoto Omnichem, Louvain-la-Neuve, B. 

Sodium dihydrogen phosphate dihydrate was delivered by Dr. Paul Lohmann, Hungen, D, 

sodium chloride by Akzo Nobel, Hengelo, NL, and trehalose dihydrate by Ferro Pfanstiehl, 

Waukegan, IL, USA. Highly purified sesame oil (Super Refined Sesame NF-LQ-(MH)) was 

acquired from Croda (Nettetal, D), MCT (Miglyol® 812 N) from Sasol, Witten, D. All chemicals 

were utilized without further purification. 
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The protein bulk drug substance provided by Boehringer Ingelheim was composed of 20 mg/mL 

mAb1, representing a human IgG2 monoclonal antibody, 0.68 mg/mL L-histidine, 3.27 mg/mL 

L-histidine hydrochloride monohydrate, 0.1 mg/mL disodium EDTA dihydrate, 84.0 mg/mL 

trehalose dihydrate and 0.02 % polysorbate 80. 

The buffer of the bulk drug substance was exchanged via ultra- and diafiltration resulting in a 

protein solution that consisted of 105.6 mg/mL protein, 0.68 mg/mL L-histidine, 3.27 mg/mL 

L-histidine hydrochloride monohydrate, 0.1 mg/mL disodium EDTA dihydrate and 56.0 mg/mL 

trehalose dihydrate (crossflow buffer exchange and concentration unit, Boehringer Ingelheim, 

Biberach/Riss, D; membrane cassette Sartocon Slice, Hydrosart, 30 kd, Sartorius, Göttingen, D; 

Quattroflow 150 S membrane pump, Quattroflow Fluid Systems, Hardegsen, D). Furthermore, 

polysorbate 80 was present in the protein solution because it cannot be removed via ultra-

/diafiltration, as reported by Mahler at al. for polysorbate 20 [15]. 

2.2 Methods 

2.2.1 PCMC production process 

The PCMC production process is divided into four main steps: preparation of protein-carrier 

solution, precipitation, concentration/solvent exchange, and drying. For the preparation of the 

protein-carrier solution (Table 4-1) the carrier material was dissolved in deionized water and 

the solution pH value was adjusted to 5.5 prior to the addition of the protein solution. The final 

solution was filtered through a 0.22 µm membrane filter (Stericup-GV, 47mm, PVDF, Sartorius, 

Göttingen, D). 

Table 5-1: Composition of protein-carrier solution. 

Substance Mass [mg] in 200.0 ml Percent by weight [%] 

mAb1 2239.8 43.6 
L-Histidine 27.8 0.5 
L-Histidine HCl monohydrate 133.7 2.6 
Disodium EDTA dihydrate 4.1 0.1 
Glycine 811.1 15.8 
L-Phenylalanine 89.5 1.7 
Sodium chloride 269.0 5.2 
Trehalose dihydrate 1568.1 30.5 
Sum 5143.1 100.0 
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The precipitation was carried out as described in detail by König [16]. Briefly, two equal streams 

of precipitating agent were mixed with one stream of protein-carrier solution in a small double 

jet impingement mixer of an inner diameter of 1.5 mm (Boehringer Ingelheim, Biberach/Riss, 

D). The mixing ratio of the precipitating agent, isobutanol saturated with all carrier 

components, and the protein-carrier solution was set to 95 : 5 (v/v). The modular mixing 

platform from Ehrfeld (Bayer Technology, Wendelsheim, D) emcopassed three micro gear 

pumps (HNP pumps mzr 11507 and 7255, Hydraulik Nord Fluidtechnik, Parchim, D), pressure 

sensors and temperature sensors to monitor the precipitation step. The total flow rate of 

1000 mL/min was controlled by the software LabView (National Instruments, Munich, D) and 

Coriflow mass flow meters (Bronkhorst, Kamen, D). The final suspension volume after 

precipitation was 4 L. 

Solvent exchange was achieved by decanting the supernatant of the PCMC suspension 18 h 

after the precipitating step. The supernatant was replaced with fresh saturated isobutanol. 

After 24 h of sedimentation the sediment, i.e. the concentrated suspension, was used for the 

supercritical drying process (Thar SFE-500, Thar Technologies, Pittsburgh, PA, USA) with carbon 

dioxide at 100 bar and a flow rate of 25 g/min. After drying of 240 mL concentrated suspension 

within 90 min at 45 °C the pressure was decreased by 3 bar/min. Subsequently, vacuum drying 

of the PCMC powder was performed at 125 mbar and 40 °C for 2 h (APT.line™ VDL, Binder, 

Tuttlingen, D; diaphragm membrane pump MZ 2C, Vacuubrand, Wertheim, D). 

2.2.2 Development of an in vitro release model for oily PCMC suspensions 

The development of an in vitro release model was based on a mAb1 PCMC sesame oil 

suspension, prepared by dispersing 305 mg mAb1 PCMC powder in 14.0 mL sesame oil on a 

magnetic stirrer. 25.0 mL of the aqueous phase, either water for injection (WFI) or 10 mM 

phosphate buffered saline pH 7.4 (PBS), and 1.25 or 2.5 mL oily suspension were incubated in 

plastic syringes (Omnifix® 30 mL Luer lock, Braun, Melsungen, D) equipped with a magnetic 

stirring bar and a tip cap (7025/65 grey, West, Eschweiler, D) (Figure 5-1). The influence of 

incubation time (24 or 96 h), temperature (22 ± 3, 37.5 or 40 °C), agitation (2 min stirring or 

24 h shaking) and centrifugation (10 min, 300 g; Heraeus® Biofuge® primo, Carl Roth, Karlsruhe, 

D) on protein recovery was analyzed via UV spectroscopy. Stirring in horizontally lying syringes 

was carried out via magnetic stirrer at 300 rpm (Modell RT 10 power IKAMAG®, IKA, Staufen, 
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D), while horizontal shaking was performed in a shaking water bath with a frequency of 

130 min-1 (Modell 1086, GFL, Burgwedel, D). After incubation the aqueous phase was harvested 

through the tip of the syringe and UV measurement (UV/VIS Spectrometer Lambda 20, 

PerkinElmer, Rodgau-Jügesheim, D) was performed in Halfmicro Plastibrand® cuvettes (Brand, 

Wertheim, D) at 280 nm, corrected against WFI or PBS, based on an extinction coefficient of 

1.43 (n=3). Protein recovery was calculated as the quotient of the antibody concentration in the 

aqueous phase to the theoretical protein concentration of 0.5 or 1.0 mg/mL, based on the 

antibody fraction in the total solid mass of the protein-carrier solution. If necessary, samples 

were filtered through a 0.45 µm syringe filter (Rotilabo® Spritzenfilter steril, 33 mm, PVDF, Carl 

Roth, Karlsruhe, D) prior to UV measurement. In this case, light microscopy (Axio Imager Z2m, 

Zeiss, Jena, D) was additionally performed to analyze the origin of turbidity. 

 

Figure 5-1: In vitro release model for oily PCMC suspensions. 

2.2.3 Compatibility between mAb1 PCMCs and oily solvents 

2.2.3.1 MAb1 release from oily PCMC suspensions 

For the release of mAb1 from oily PCMC suspensions, 25.0 mL WFI and 1.25 mL oily suspension, 

composed of 27.2 mg mAb1 PCMC powder dispersed into sesame oil, benzyl benzoate or MCT, 

were incubated in 30 mL plastic syringes for 24 h at 40 °C with integrated 2 min horizontal 

stirring and final centrifugation for 30 min at 100 g (section 3.1). MAb1 PCMC powder dissolved 

into WFI, incubated in the same way as the oily suspensions, served as reference. After 

incubation the aqueous phase was harvested and analyzed for protein integrity. 

Plunger 
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2.2.3.2 Turbidimetry 

Turbidity of the native aqueous phase and after 0.45 µm filtration (Rotilabo® Spritzenfilter, 

33 mm, PVDF, Carl Roth, Karlsruhe, D) was measured at a protein concentration of 0.5 mg/mL 

by 90 ° light scattering at λ = 633 nm (UH turbidimeter, Boehringer Ingelheim, self-construction) 

and expressed in formazine nephelometric units (FNU) (n=3).  

2.2.3.3 Microflow-imaging (MFI) 

Microflow imaging analysis of the native aqueous acceptor was performed with a Brightwell 

DPA 4200 instrument equipped with a 470 nm LED laser and a 100 µm flow cell (Brightwell, 

Ottawa, Canada) (n=2). Samples were drawn with a peristaltic pump (Masterflex® Plus P/S, 

Thermo Fisher, Waltham, MA, USA). Before each 0.5 mL sample run within 5 min, 0.22 µm 

filtered (Steritop, 0.22 µm, PVDF, Millipore, Schwalbach, D) deionized water was flushed 

through the system to optimize illumination and to achieve a clean baseline. Sesame oil and 

MCT samples with particle counts above the manufacturer´s recommended limit were diluted 

in 0.22 µm filtered deionized water 5-fold prior to analysis and results were multiplied by 5 to 

report final particle counts [17, 18]. 

2.2.3.4 Light microscopy 

An optical light microscope was used to characterize the native aqueous phase (Axio 

Imager Z2m, Zeiss, Jena, D). 

2.2.3.5 Protein recovery 

UV measurements were conducted as described in section 2.2.2. 

2.2.3.6 High pressure size exclusion chromatography (HP-SEC) 

The aqueous acceptors were concentrated in the centrifuge prior to analysis (Heraeus® 

Biofuge® primo, Carl Roth, Karlsruhe, D). The filtration units (Amicon® Ultra-15 Ultracel-30k, 

Millipore, Schwalbach, D) were rinsed with 10.0 mL 0.1 N NaOH and subsequently equilibrated 

with water at 3500 g for 10 min. Samples were filtered through a 0.45 µm filter (Rotilabo® 

Spritzenfilter steril, 33 mm, PVDF, Carl Roth, Karlsruhe, D). Concentration of 6.0 mL samples at 

3500 g for 5-10 min resulted in a final protein concentration of approx. 2 mg/mL. 



Development of oily mAb1 PCMC suspensions for subcutaneous administration 

130 

HP-SEC was performed on an Äkta micro (GE Healthcare, Uppsala, Sweden) with a TSKgel 

G3000SWXL column (7.8 mm ID x 30.0 cm L, Tosoh, Stuttgart, D) and a 40 x 6.0 mm TSKgel 

SWXL Guardcol precolumn (Tosoh Bioscience, Stuttgart, D) at a flow rate of 1 mL/min. The 

mobile phase was composed of 60 mM sodium chloride and 5 mM sodium dihydrogen 

phosphate with a pH adjusted to 7.0. Samples were injected in duplicate (2 x 40 µl) and protein 

elution was monitored via UV-detection at 280 nm. Aggregation in percent was calculated 

based on the ratio of the area under the curve (AUC) of soluble aggregates to the total AUC of 

aggregates and monomer (n=3). Furthermore, changes in AUC were considered. 

2.2.3.7 Fourier transform infrared spectroscopy 

Sample concentration for FT-IR measurement was conducted in the centrifuge, described in 

detail in section 2.2.3.6. Concentrated samples were filtered through a 0.45 µm syringe filter 

(Rotilabo® Spritzenfilter steril, 33 mm, PVDF, Carl Roth, Karlsruhe, D). As amino acids that were 

used as carrier components of mAb1 PCMCs may interfere with FT-IR analysis [19, 20], 

diafiltration of 0.75 mL concentrated and filtered samples was performed against 500 mL WFI 

with stirring at room temperature (Slide-A-Lyzer® Dialysis Cassette G2 MWCO 20,000, Thermo 

Scientific, Rockford, IL, USA). WFI was exchanged twice within 18 h of diafiltration.  

FT-IR spectroscopy was performed using a Tensor 37 and a Confocheck measuring cell (Bruker, 

Ettlingen, D). Spectra were recorded from 4000 to 900 cm-1 with 120 scans and a resolution of 

2 cm-1 at 25° C (n=3). Atmospheric compensation was done and WFI served as reference. 

Spectra were processed by vector normalization prior to calculating the average spectrum 

based on three measurements. Second derivative was built applying 17 smoothing points 

(Savitzky-Golay algorithm). 

2.2.3.8 Intrinsic fluorescence spectroscopy 

Samples of 0.1 mg/mL protein in SUPRASIL® 114-QS precision cuvettes (10 mm, Hellma, 

Mühlheim, D) were excited at 295 nm and 25 °C. The emission was scanned from 

305 to 400 nm with a step size of 1 nm and 1 s integration time (Fluorimeter QM-4-CW, PTI, 

Birmingham, NJ, USA). The evaluation was based on normalized spectra (n=3). 
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2.2.3.9 2nd-derivative UV spectroscopy 

Samples of 0.3 mg/mL protein were scanned from 240 to 350 nm (UV/VIS Spectrometer 

Lambda 20, PerkinElmer, Rodgau-Jügesheim, D). The second derivative of the absorption was 

used (n=3). 

2.2.3.10 Binding assay 

MAb1 prevents the target antigen from binding to a specific cell surface protein (CSP). 

Consequently, binding activity of the antibody to the target antigen was analyzed according to 

BI internal method using a competitive ELISA following typical protocols [21]. Briefly, mAb1 and 

the target antigen were added to CSP immobilized on a microtiter plate. Decreasing 

concentration of mAb1 resulted in decreasing inhibition of binding of target antigen to CSP. 

After the addition of goat anti-mouse-IgG horseradish peroxidase that bound to CSP and of 

tetramethylbenzidine dye, the amount of colored product, being inversely proportional to the 

binding activity of the antibody, was measured based on the absorption at 450 nm (n=2). 

2.2.4 Characterization of oleaginous solvents and oily suspensions 

2.2.4.1 Viscosity 

Viscosity was determined by a cone-plate rheometer (Haake RheoStress 600, Thermo Electron, 

Karlsruhe, D) equipped with a 35 mm 1° angle cone (C35/1, Thermo Electron, Karlsruhe, D). 

Recorded in the range of �� = 10-2000/s at 20 °C, viscosity was determined at �� = 1000/s (n=3). 

2.2.4.2 Preparation of oily mAb1 suspensions 

Mixing of mAb1 PCMC powder and oily solvents was performed in 10 R or 20 R vials (Fiolax® 

clear, Schott, Mühlheim, D) via vortexer (MS2 Minishaker, IKA, Wilmington, NC, USA) at 

1500 min-1 until a visually even dispersion was observed. The solid content of the oily 

suspensions finally ranged from 133 to 316 mg/mL, corresponding to 58-138 mg/mL protein. 

2.2.4.3 Syringe filling 

With respect to the oily solvents, baked-on siliconized and spray siliconized 1 mL long syringes 

(RTF-syringe with luer cone, Gerresheimer, Düsseldorf, D) with tip caps (7025/65 grey, West, 

Eschweiler, D) were manually filled with 1 mL oil (sesame oil, benzyl benzoate or MCT) and 

closed with rubber stoppers. Manual closing was performed by the use of a 1 inch 18 G needle 
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(Becton Dickinson, Heidelberg, D), resulting in a headspace of approx. 2 mm. The rubber 

stoppers were either coated with a fluorocarbon film (FluroTec PH4023/50, grey, West, 

Eschweiler, D) or a fluorinated polymer (Omniflex FM257/2, Hoelvet, Karlsbad, D). 

For injectability testing of the oily mAb1 suspensions, spray siliconized 1 mL long syringes (RTF-

syringe with luer cone, Gerresheimer, Düsseldorf, D) equipped with tip caps (7025/65 grey, 

West, Eschweiler, D) and rubber stoppers (FluroTec PH4023/50, grey, West, Eschweiler, D) 

were manually filled with 1 mL suspension. 

2.2.4.4 Injectability 

Injectability testing was performed with a tensile compression testing machine (Zwicki-TN1S, 

Zwick, Ulm, D) at a crosshead speed of 100 mm/min and 22 ± 3 °C (n=6). The syringes were 

vertically inserted with the tip downwards and injection of pure oils and oily PCMC suspensions 

was carried out into air. Force-displacement curves were recorded to calculate the mean force 

required to expel the oils from the syringe, in the range from 8 to 29 mm. For injectability 

testing of the oily solvents, 23 G 1 inch needles (BD Microlance TM 33 Nr. 16, Becton Dickinson, 

Heidelberg, D) were used. Thin wall 23 G 1 inch needles (Terumo Neolus, Leuven, B) served for 

the investigation of the injectability of oily PCMC suspensions. Furthermore, thin wall 20 G 

1 inch and 25 G 1 inch needles (Terumo Neolus, Leuven, B) were utilized to analyze the 

influence of the inner needle diameter on injectability. 

2.2.4.5 Light microscopy 

Light microscopy was performed as presented in 2.2.3.4. 

2.2.4.6 X-ray powder diffraction 

The crystallinity of mAb1 PCMCs was analyzed with XRD in transmission mode from 

3 °- 40 ° 2 Θ, 0.5 ° steps and 20 s/step based on 1.5406 Å CuKα-radiation at 40 kV and 

40 mA (Stoe, Darmstadt, D). Samples were fixed in the sample holder between two Ultraphan 

foils (cellulose diacetate) with a thickness of 0.014 mm (Stoe, Darmstadt, D). 

2.2.4.7 Swelling of stoppers and tip caps 

The swelling of stoppers (FluroTec PH4023/50, grey, West, Eschweiler, D; Omniflex FM257/2, 

Hoelvet, Karlsbad, D) and tip caps (7025/65 grey, West, Eschweiler, D) was investigated after 
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incubation over 24, 48 and 98 h in a beaker with sesame oil, benzyl benzoate or MCT. The 

height of stoppers and the length of tip caps were measured with a caliper (n=3). 

2.2.4.8 Storage of prefilled syringes 

Storage of oily solvents was performed with baked-on siliconized and spray siliconized syringes 

(see section 2.2.4.3 for detailed preparation) equipped with West rubber stoppers (FluroTec 

PH4023/50, grey, West, Eschweiler, D) and tip caps (7025/65 grey, West, Eschweiler, D). The 

syringes were stored horizontally in the dark at 22 ± 3 °C for 3 and 6 months (n=6). 

2.2.4.9 Concentration of liquid mAb1 formulation 

Concentration of mAb1 bulk, containing 3.27 mg/mL L-histidine HCl monohydrate, 0.68 mg/mL 

L-histidine, 84.0 mg/mL trehalose dihydrate and 0.1 mg/mL disodium EDTA dihydrate, was 

conducted via centrifugation, described in detail in section 2.2.3.6. Buffer, equivalent to the 

composition of the protein bulk, was used for equilibration of the filtration units. Solutions with 

final protein concentrations of 63, 83, 120, 127, 151, 172 and 193 mg/mL, measured via UV 

spectroscopy (section 2.2.3.5), were analyzed for viscosity and injectability. 

3 Results and discussion 

3.1 Development of an in vitro release model for oily PCMC suspensions 

The aim of this investigation was to optimize the incubation conditions for mAb1 PCMC sesame 

oil suspensions to achieve 100 % protein recovery, prerequisite for assessing the entire mAb 

population in subsequent analysis of protein stability. The release process, performed in 30 mL 

plastic syringes, encompassed three steps, namely sedimentation of the PCMC powder towards 

the oil-water interface, dissolution of the PCMC powder and diffusion of the protein, and the 

carrier components, into the aqueous acceptor. The influence of the maximal protein 

concentration in the aqueous phase, the composition of the aqueous phase, variation of 

incubation time and temperature as well as agitation and final centrifugation on protein 

recovery and macroscopic appearance of the oily and the aqueous phase was investigated. 
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Table 5-2: Influence of incubation conditions on protein recovery: agitation: 
a
 integrated 

2 min stirring with a magnetic stirrer at 300 rpm; 
b 

continuous shaking with a frequency of 

130 min
-1

 for 24 h in a water bath; centrifugation: 30 min at 100 g 

 

Incubation conditions Protein 

recovery 

[%] 

cmAb 

[mg/mL] 

Incubation 

time [h] 
T [°C] Agitation 

Aqueous 

phase 

Centri-

fugation 

A 0.5 24 22 ± 3 - WFI - 42.5 ± 1.9 
B 1.0 24 22 ± 3 - WFI - 32.3 ± 1.8 
C 0.5 24 40 - WFI - 62.2 ± 2.3 
D 0.5 24 40 - PBS - 21.0 ± 0.8 
E 0.5 24 40 +a WFI + 99.9 ± 0.8 
F 0.5 24 40 - WFI + 98.9 ± 1.3 
G 0.5 96 40 - WFI - 95.2 ± 1.1 
H 0.5 96 40 - WFI + 103.4 ± 1.1 
I 0.5 24 37.5 +b WFI + 84.7 ± 3.2 

 

After incubation at 22 ± 3 °C or 40 °C for 24 h without agitation or centrifugation (A-D, 

Table 5-2), the aqueous acceptor medium and the upper part of the oily phase were clear. 

Many powder particles were detected by the naked eye in the oil close to the liquid-liquid 

interface. Their number was reduced in samples incubated at 40 °C for 96 h (G) or for 24 h and 

96 h in combination with final centrifugation (F, H), all showing clear aqueous phases. Hence, 

prolonged incubation time at an elevated temperature as well as centrifugation supported the 

sedimentation of PCMC powder in sesame oil allowing for faster dissolution of the particles. 

Applying 24 h incubation at 40 °C with 2 min of integrated horizontal stirring (E) resulted in the 

dispersion of the oil into numerous small droplets floating on the opalescent aqueous phase 

and not substantially coalescing during final centrifugation (Figure 5-2). Considering the 

surface-activity of proteins, the mAb fraction located at the oil-water interface was assumed to 

reduce the surface energy and thus to prevent the oil droplets from coalescence, as likewise 

described in the area of protein-silicone oil interactions [22-24]. Furthermore, proteins are 

widely applied for the stabilization of emulsions and foams, for example in food industry [25, 

26]. Similarly to stirring, continuous shaking (I) of oily PCMC suspensions resulted in a powder-

free oily phase composed of many non-coalesced droplets. As suggested by their macroscopic 

appearance (Figure 5-2), the microscopic analysis of the aqueous acceptors revealed the 
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presence of oil droplets after integrated short-term stirring, in contrast to supplementary 

protein particles in the case of continuous shaking (Figure 5-3). 

 

Figure 5-2: Macroscopic appearance of aqueous acceptor after incubation with sesame oil 

mAb1 PCMC suspension; incubation conditions: left: 0.5 mg/mL protein, 24 h at 40 °C, WFI, 

integrated 2 min stirring, centrifugation (E), middle: 0.5 mg/mL protein, 24 h at 40 °C, WFI, no 

agitation or centrifugation (A), right: 0.5 mg/mL protein, 24 h shaking at 37.5 °C, WFI, 

centrifugation (I). 

a  b  

Figure 5-3: Microscopic appearance of aqueous acceptor after incubation with sesame oil 

mAb1 PCMC suspension; a) oil droplets, incubation conditions: 0.5 mg/mL protein, 24 h at 

40 °C, WFI, 2 min stirring, centrifugation (E); b) oil droplets and protein particles, incubation 

conditions: 0.5 mg/mL protein, 24 h shaking at 37.5 °C, WFI, centrifugation (I). 

In accordance with literature, the oil droplets had a circular cross section with an annular 

appearance [17, 18, 27], whereas the protein particles were of heterogeneous shape [18, 28]. 

Thus, continuous shaking led to the formation of insoluble protein aggregates, but not 

integrated short-term stirring. The potential destabilizing effect of silicone oil on proteins is 
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ambiguously discussed. For example, Li et al. as well as Ludwig et al. found that different 

proteins did not undergo homogenous aggregation in the presence of silicone oil [23, 28], 

whereas Thirumangalathu et al. observed synergistic stimulation of aggregation by a 

combination of silicone oil and agitation [24]. Unlike static isothermal incubation, continuous 

shaking at 350 rpm for several days resulted in a substantial loss of mAb monomer at both 4 °C 

and 37 °C [24]. In contrast, slight short-term agitation, namely shaking for 5 min at 78 rpm, had 

no impact on the aggregation level of albinterferon alfa-2b [17]. 

Table 5-2 summarizes the influence of the incubation conditions on the protein recovery in the 

aqueous phase. Increasing the maximal protein concentration in the aqueous acceptor from 0.5 

to 1.0 mg/mL decreased the protein recovery by approx. 10 % (A: 43 %  B: 32 %). Probably, 

this was a simple effect of increased powder amount e.g. impeding the sedimentation and the 

surface contact of the individual particles. Moreover, the antibody release from the oily 

suspension was significantly augmented with increasing temperature (A: 43 %  B: 62 %), 

presumably in consequence of reduced viscosity facilitating the sedimentation of the PCMC 

powder towards the oil-water interface, and with prolonged incubation time 

(C: 62 %  G: 95 %). Centrifugation, which accelerates the transport of the powder particles to 

the liquid-liquid interface, further improved the protein recovery when incubation was 

performed for either 96 h (G: 95 %  H: 103 %) or 24 h (A: 43 %  F: 99 %). Combining final 

centrifugation and agitation increased the amount of protein released from the oily suspension 

by approx. 40 % (C: 62 %  E: 100 %) in the case of short-term stirring and by approx. 20 % 

when continuous shaking was performed in the water bath for 24 h (C: 62 %  I: 85 %). The 

incomplete protein recovery after shaking can be attributed to the formation of insoluble 

protein aggregates, as previously discussed. 

The use of 10 mM PBS pH 7.4 instead of WFI as acceptor medium considerably decreased the 

protein recovery (C: 62 %  D: 21 %). A clear solution formed when mAb1 PCMC powder was 

simply dissolved in 10 mM PBS pH 7.4 at 1 mg/mL protein, but increasing turbidity could be 

noticed within 24 h at 22 ± 3 °C. These observations pointed at reduced solubility of at least one 

mAb1 PCMC component in PBS buffer. 
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Overall, higher temperature, prolonged incubation time, the use of water as acceptor as well as 

short-term stirring and final centrifugation turned out to improve the release of the antibody. 

On the other hand, the use of PBS buffer resulted in reduced protein recovery and continuous 

shaking caused protein aggregation as indicated by an increase in turbidity. Consequently, 

incubation with WFI at 40 °C for 24 h with integrated short-term stirring and final 

centrifugation (E) was chosen as optimal incubation conditions for the subsequent investigation 

of the compatibility between mAb1 PCMCs and oily solvents. 

3.2 Compatibility between mAb1 PCMCs and oily solvents 

The compatibility study aimed to investigate whether the antibody could be released to 100 % 

from sesame oil, benzyl benzoate and MCT mAb1 PCMC suspensions without any deleterious 

effect, including aggregation, structural perturbation or decrease in specific binding activity. 

Only very few literature is available concerning the stability of protein released from oily 

suspensions [29], but protein instability resulting from exposure to oil-water interfaces is widely 

discussed in the area of protein-silicone oil interactions [17, 22-24, 27, 28, 30-33]. 

Table 5-3: Turbidity and subvisible particle count in the native aqueous phase after 

incubation with sesame oil, benzyl benzoate and MCT mAb1 PCMC suspension; reference 

sample: mAb1 PCMC powder in WFI. 

 
Turbidity 

[FNU] 

Particles 1-50 µm 

[10
3
ml

-1
] 

 Non-oily particles 5-50 µm 

[ml
-1

] 

Sesame oil 18.9 ± 2.2  3441 ± 342 9865 ± 7581 
Benzyl benzoate 5.8 ± 1.6 41 ± 13 5286 ± 1570 
MCT 17.5 ± 1.5 4876 ± 1278 2447± 823 
Reference 0.5 ± 0.1 29 ± 5 1498 ± 522 

 

Turbidity measurements are frequently performed to detect insoluble protein aggregates of 

medium size [34, 35], typically < 1 µm [36]. Compared to the reference (0.5 FNU), the turbidity 

of the aqueous acceptor media after incubation with the oily PCMC suspensions was 

significantly higher, ranging from 6 to 19 FNU (Table 5-3), and was noticeable by the naked eye. 

As the particles could be removed via 0.45 µm filtration, as indicated by turbidity values below 

the calibration limit of the turbidimeter (1.5 FNU) after filtration, they were assumed to be very 

large. Optical light microscopy revealed the presence of numerous oil droplets in all unfiltered 

aqueous phases (Figure 5-4). The absence of proteinaceous particles in light microscopy 
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indicated that the antibody formulated as PCMCs was released from the oily suspensions 

without forming significant amounts of insoluble aggregates, irrespective of the choice of oil. 

Additionally, microflow imaging was performed as orthogonal method because it may allow for 

differentiation between insoluble protein particles and dispersed oil droplets [18]. The total 

number of subvisible particles with a size of 1-50 µm correlated well with the turbidity values 

(Table 5-3). As the vast majority (86-98 %) of particles were smaller than 5 µm, an adequate 

aspect ratio could not be analyzed and, thus, the differentiation between these two types of 

particles was not feasible [18, 30]. The number of non-oily larger particles (5-50 µm) detected 

after incubation with oleaginous suspensions was not significantly higher than for the 

reference, except for sesame oil (Table 5-3).  

a  b  

c  

Figure 5-4: Microscopic appearance of native aqueous acceptor after mAb1 release from 

a) sesame oil, b) MCT and c) benzyl benzoate PCMC suspension. 

Irrespective of the type of oil, the antibody was completely recovered in the aqueous phase 

with a monomer level of approx. 99 % detected via HP-SEC. Hence, the incubation with oily 

suspensions did not induce the formation of soluble mAb1 aggregates, at least not to a 

significant extent. 
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Similarly to the investigations on organic water-miscible solvents (chapter 4), several 

spectroscopic methods, namely FT-IR, intrinsic fluorescence and 2nd-derivative UV spectroscopy 

were used to analyze the secondary and tertiary IgG structure after release [37]. Independent 

of the oily solvent, the release did not change the secondary or tertiary conformational 

structure of the monoclonal antibody because all spectra were identical to the one recorded 

after incubation of mAb1 PCMCs with pure water (Figure 5-5). In FT-IR, typical intramolecular 

β-sheet bands occurred at 1692 and 1637 cm-1 showing the predominance of β-sheets in IgGs 

[38, 39]. Well-resolved bands at frequencies of 1678 and 1662 cm-1 represented turn structure 

and peaks at 1616 cm-1 could be attributed either to more β-sheet structure or to side-chain 

effects [38, 39]. The emission maximum revealed via intrinsic fluorescence spectroscopy was 

located at a wavelength of λ = 327 nm for benzyl benzoate and the reference sample and at 

λ = 328 nm for sesame oil and MCT (Figure 5-5b). 2nd-derivative UV spectra of mAb1 released 

from oily suspensions as well as incubated with WFI (reference sample) were characterized by 

peak minima occurring at 271, 284 and 292 nm, while peak maxima were found at 262, 279, 

289 and 297 nm (Figure 5-5c). The application of these spectroscopic methods in the 

development of protein formulations is described in detail in section 3.2 of chapter 4. The 

effect of silicone oil on the secondary and tertiary protein structure has widely been addressed 

[17, 23, 24, 33]. Although the structure of the proteins investigated was not substantially 

affected by the presence of silicone oil, the authors agree that silicone oil might nevertheless 

impact a small population of the particular protein, the rest remaining unaltered, and that 

certain biophysical methods are not sensitive enough to detect these small amounts of silicone-

oil induced conformational changes. 
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 (a) (b) 

  

 (c) 

 

Figure 5-5: Protein structure of mAb1 in the native aqueous phase after release from sesame 

oil, benzyl benzoate and MCT PCMC suspension: (a) FT-IR spectroscopy, (b) intrinsic 

fluorescence spectroscopy, (c) 2
nd

-derivative UV spectroscopy; reference sample: mAb1 PCMC 

powder in WFI. 

An ELISA was conducted to verify that also the specific antigen binding affinity of the antibody 

released from the oily PCMC suspension was not affected. Figure 5-6 visualizes that, 

independent of the oily vehicle, the binding activity was completely retained after release from 

the oily PCMC suspensions, compared to the PCMC reference sample. All values were within 

the specification limits of 65-130 % of the standard reference sample. 
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Figure 5-6: Binding activity of mAb1 in the native and filtered aqueous phase after release 

from sesame oil (S), benzyl benzoate (B) and MCT (M) PCMC suspension; reference 

sample (R): mAb1 PCMC powder in WFI. 

Thus, neither significant protein loss nor any hint to conformational nor binding relevant 

changes due to protein adsorption at the oil-water interface was observed for mAb1 released 

from oily PCMC suspensions. 

3.3 Injectability of oily solvents and compatibility with primary packaging 

material 

Although the need for functionality test procedures of pre-filled syringes and auto-injector 

packaged parenteral formulations is addressed in EMA and FDA guidelines, there are only very 

little corresponding case studies during protein product development [40, 41]. For the 

evaluation of oily vehicles as suspension media for PCMCs, the viscosity and the injectability of 

sesame oil, benzyl benzoate, MCT and mixtures made of sesame oil and benzyl benzoate were 

analyzed. Moreover, pre-filled syringes were stored for 6 months at room temperature to test 

the compatibility between the oily solvents and the primary packaging material. Swelling of 

stoppers and tip caps after incubation in the oils was additionally investigated. 

3.3.1 Viscosity and injectability of oily solvents 

The viscosity of pure sesame oil was 71.8 mPas. The addition of increasing amounts of benzyl 

benzoate, having a viscosity of 10.3 mPas, successively decreased the viscosity of the mixtures 

(Table 5-4). A viscosity of 31.1 mPas was detected for pure MCT. 
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Table 5-4: Viscosity of sesame oil (S), benzyl benzoate (B), MCT and sesame oil benzyl 

benzoate mixtures (v/v) measured at �� = 1000 s
-1

. 

 Oily solvent  Viscosity [mPas] 

 Sesame oil  71.8 ± 0.9 
 S:B 90:10  56.7 ± 0.3 
 S:B 70:30  37.4 ± 0.5 
 S:B 50:50  25.1 ± 0.2 
 S:B 30:70  16.6 ± 0.1 
 S:B 10:90  12.1 ± 0.2 
 Benzyl benzoate  10.3 ± < 0.1 
 MCT  31.1 ± 0.3 
 

Injectability tests provided force-displacement plots, exemplarily shown in Figure 5-7 for baked-

on siliconized syringes. They were characterized by an initial maximum indicating the break-

loose force of the stopper [10], followed by a permanent, slight increase representing the 

forces required to inject the oil through the needle. Amongst others, it was influenced by 

kinetic energy that needs to be imparted to the fluid and by friction forces of the stopper in the 

syringe barrel [11]. The sharp decline at approx. 29 mm depicted the end of the injectability 

testing. 

  

Figure 5-7: Force-displacement curve of sesame oil (S), benzyl benzoate (B), MCT and sesame 

oil benzyl benzoate mixtures (v/v) expelled from baked-on siliconized syringes via 23 G 1 inch 

needle; vertical lines indicate the limits used for calculation of mean force. 
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Without needle the mean force recorded for the injection of sesame oil, benzyl benzoate and 

mixtures thereof in baked-on siliconized syringes ranged from 3.3 to 3.8 N, independent of the 

amount of benzyl benzoate. 4.3 N were required in the case of MCT, as opposed to 4.5 N 

detected for syringes filled with air instead of oil. Thus, the injection force of the syringes was 

reduced in the presence of sesame oil and/or benzyl benzoate, acting as lubricant, but not in 

the presence of MCT. 

 (a) (b) 

 

Figure 5-8: Force required to expel sesame oil (S), benzyl benzoate (B), MCT (M) and sesame 

oil benzyl benzoate mixtures (v/v) from syringes through a 23 G 1 inch needle; (b) in 

dependence of viscosity measured at ��  = 1000 s
-1

; linear regression y = 0.073x+3.44 R²=0.821 

(baked-on siliconized), y = 0.063x+1.71 R²=0.995 (spray siliconized). 

For syringes equipped with a 1 inch 23 G needle significantly higher injection forces were 

detected (Figure 5-8a). The injection of pure sesame oil from baked-on siliconized syringes 

resulted in a mean force of 8.5 N. With increasing amounts of benzyl benzoate the forces 

decreased steadily down to a mixing ratio of 50:50 (v/v) because the viscosity of the oily 

mixtures continuously diminished. Further addition of benzyl benzoate did not significantly 

reduce the injection force because, in this range, the impact of the viscosity was overlaid by 

other effects, such as the gliding force of the stopper. This could also be seen in Figure 5-8b 

showing an overall linear correlation between the injection force and the viscosity of the oily 

solvents. The linear correlation corresponds to the Hagen-Poiseuille equation that describes the 

pressure drop (p1) in a fluid flowing through a cylindrical line and that can thus be applied to 

the injection via syringe (Equation 5-1). In Equation 5-1, F1 is the injection force and t the 
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injection time, while V and η describe the volume and the viscosity of the fluid, A1 is the 

internal barrel area, r1 the inner barrel radius, r2 the inner needle radius and l2 the needle 

length. 

�� = �� ∗ �� =
	
�

����


�
��

= � ∗
��

�
 (5-1) 

Hence, based on viscosity data the injection force of oily vehicles could be predicted. MCT 

(6.6 N) deviated from the straight line which was attributed to a less pronounced lubricating 

effect. The deviating behavior of MCT was also reflected in a considerably steeper force-

displacement curve than for the other oils (Figure 5-7). 

Furthermore, compared to baked-on siliconized syringes, significantly lower injection forces 

were detected when spray siliconized syringes were used (Figure 5-8), because baked-on 

siliconized syringes contained approx. 0.05 mg as opposed to spray siliconized syringes with 

0.8 ± 0.2 mg silicone oil [42], confirming the results reported by Badkar at al. [31]. However, the 

use of spray siliconized syringes could substantially reduce the injection force. But it has to be 

considered that spray siliconization is associated with a higher risk of particle formation in the 

subvisible range originating from silicone oil droplets with or without precipitated protein [31]. 

3.3.2 Compatibility between oily solvents and primary packaging material 

Dexter and Shott observed diffusion of oil into the rubber matrix of syringe stoppers that 

caused the rubber to swell [10]. Swollen rubber could release higher amounts of 

leachables/extractables into the oily solvent which may affect protein stability, as e.g. reported 

by Badkar et al [31]. Therefore, the compatibility between the oils and the primary packaging 

material, namely stoppers and tip caps, was investigated. 

The incubation of stoppers with pure sesame oil, benzyl benzoate and MCT for 24-98 h at room 

temperature did not affect the stoppers´ height, as presented in Table 5-5. In contrast, 

incubated tip caps significantly increased in length which was also noticeable by the naked eye. 

Both components were made of bromobutyl rubber, but, as opposed to the tip caps, the 

stoppers were coated with a fluorocarbon film or a fluorinated polymer intended to reduce the 

interaction between rubber and drug product. This coating prevented the rubber from uptake 

of the oily vehicles. Consequently, in the development of the final application device for oily 
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PCMC suspensions, attention should be paid to inert coatings of rubber materials to ensure that 

the components in contact with the drug product do not have any detrimental effect [43]. 

Table 5-5: Stoppers` and tip caps` height [mm] after storage in sesame oil, benzyl benzoate 

and MCT for 24 h, 48 h and 98 h. 

Helvoet stoppers     

 Oily solvent  Initial value  24 h  48 h  98 h 

 Sesame oil  8.0 ± 0.1  8.0 ± < 0.1  8.0 ± 0.1  8.0 ± < 0.1 
 Benzyl benzoate  8.0 ± 0.1  8.0 ± 0.1  8.0 ± 0.1  8.0 ± < 0.1 
 MCT  8.0 ± 0.1  8.0 ± < 0.1  8.0 ± 0.1  8.0 ± < 0.1 

West stoppers     

 Sesame oil  8.2 ± 0.1  8.3 ± < 0.1  8.3 ± < 0.1  8.3 ± 0.1 
 Benzyl benzoate  8.2 ± 0.1  8.3 ± 0.1  8.3 ± 0.1  8.2 ± 0.1 
 MCT  8.2 ± 0.1  8.2 ± < 0.1  8.2 ± 0.1  8.2 ± < 0.1 

Tip caps     

 Sesame oil  16.3 ± 0.1  16.7 ± 0.1  16.8 ± 0.1  17.2 ± 0.1 
 Benzyl benzoate  16.3 ± 0.1  17.0 ± < 0.1  17.2 ± < 0.1  17.3 ± 0.1 
 MCT  16.3 ± 0.1  16.9 ± 0.1  17.3 ± 0.1  17.7 ± 0.1 
 

 (a) (b) 

  

Figure 5-9: Required force to expel sesame oil (S), benzyl benzoate (B), MCT (M) and sesame 

oil benzyl benzoate mixtures (v/v) from syringes after 3 and 6 months storage; (a) baked-on 

siliconized syringes; (b) spray siliconized syringes. 

Furthermore, incompatibility between the primary packaging material and the oily solvents 

could result in increasing injection forces. Therefore, injectability was tested after 3 and 

6 months storage of syringes at room-temperature. Independent of the composition of the oily 

vehicle, the injection forces did not significantly change over storage time for baked-on and 
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spray siliconized syringes (Figure 5-9). Thus, apart from the tip caps, the compatibility between 

the syringes and the oils was proven. 

3.4 Characterization of oily mAb1 PCMC suspensions 

For the investigation of rheology and injectability of oily mAb1 PCMC suspensions, mixtures of 

sesame oil and benzyl benzoate with mixing ratios of 30:70 and 70:30 (v/v) as well as pure MCT 

were chosen as solvents. MCT and the sesame oil benzyl benzoate mixture 70:30 (v/v) were 

selected because they had approximately the same viscosity, whereas the viscosity of the 

30:70 (v/v) mixture of sesame oil and benzyl benzoate was significantly lower (Table 5-4 in 

section 3.3.1). The influence of inner needle diameter on injectability was analyzed, too. 

Moreover, the sedimentation behavior of oily mAb1 PCMC suspensions was evaluated and 

injectability data was compared to the values of a corresponding liquid formulation. 

3.4.1 Appearance and rheology of oily mAb1 PCMC suspensions 

Macroscopically even oily mAb1 PCMC suspensions were prepared up to a solid content of 

316 mg/mL. Optical polarization microscopy revealed the presence of two particle fractions, 

birefringent needle-like crystals and fine anisotropic amorphous material (Figure 5-10). The 

crystals composed of α-glycine, as detected via XRD analysis (Figure 5-11), were already present 

in the initial PCMC powder and were not a consequence of potential recrystallization of carrier 

material in the oily suspensions. 

a  b  

Figure 5-10: Optical light microscopy of S:B 30:70 (v/v) PCMC suspension with a solid content 

of 224 mg/mL; (a) without and (b) with polarizing filters. 
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(a) 

 

(b) 

 

Figure 5-11: XRD analysis of mAb1 formulated as (a) PCMC powder and (b) S:B 30:70 (v/v) 

PCMC suspension with a solid content of 224 mg/mL. 

The viscosity of the oily mAb1 PCMC suspensions depended on the viscosity of the pure oily 

media. Suspensions made of sesame oil and benzyl benzoate with a mixing ratio of 30:70 (v/v) 

were significantly less viscous than those containing either a 70:30 (v/v) mixture or MCT. As 

exemplarily presented in Figure 5-12a, the rheograms recorded for the oily mAb1 PCMC 

suspensions all demonstrated shear thinning or pseudoplastic flow behavior [44]. This effect 

was more pronounced with increasing solid content and is typical of concentrated suspensions 

[45]. It is widely believed that shear thinning is caused by realignment of the particles reducing 

the energy dissipated under shear [46]. However, based on light-scattering experiments, 
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Ackerson associated shear thinning to a distortion of the liquid-like structure assumed to 

decrease the energy dissipation [47]. Moreover, shearing at 1000 and 2000 s-1 for several 

seconds resulted in continuously decreasing viscosity of the suspensions, referred to as 

thixotropy (Figure 5-12b). Microscopic inspection precluded at least substantial modification of 

suspended particles under extreme shear stress.  

 (a) (b) 

 

Figure 5-12: Rheology of S:B 30:70 (v/v) mAb1 PCMC suspension with a solid content of 

316 mg/mL; (a) viscosity in dependence of shear rate; (b) viscosity measured at ��  = 1000 s
-1

 

over time. 

According to the equation of Einstein (Equation 5-2), valid for diluted suspensions with 

spherical particles that do not influence each other and show Newtonian flow behavior, the 

viscosity of the suspension (η) depends on the viscosity of the suspension medium (η�) and on 

the volume fraction of suspended particles (φ�). 

η = η� + η� ∗ 2.5 ∗ φ� (5-2) 

In contrast, oily mAb1 PCMC suspensions showed a nonlinear increase in viscosity with 

increasing volume fraction (Figure 5-13), potentially attributed to interactions between 

suspended particles [48].  
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Figure 5-13: Viscosity of oily mAb1 PCMC suspensions in dependence of the volume fraction 

of powder. 

3.4.2 Injectability of oily mAb1 PCMC suspensions  

All oily mAb1 PCMC suspensions investigated were manually and mechanically injectable 

without any clogging phenomenon. Irrespective of the oily solvent, the injection force 

augmented nonlinearly with increasing solid content of the suspensions (Figure 5-14a). Due to 

the linear relationship between viscosity and injection force (Figure 5-14b), viscosity 

measurements are well suitable to predict the injectability of the oily formulations.  

 (a) (b) 

  

Figure 5-14: Injection force for oily mAb1 PCMC suspensions; (a) in dependence of solid 

content; (b) in dependence of the viscosity measured at ��  = 1000 s
-1

, linear regression: 

y = 0.05x+4.4 R
2
 = 0.997 (S:B 70:30 v/v), y = 0.06x+2.1 R

2
 = 0.982 (S:B 30:70 v/v), y = 0.06x+3.1 

R
2
 = 0.982 (MCT). 
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Moreover, the influence of the inner needle diameter on the injection force for S:B 30:70 (v/v) 

mAb1 PCMC suspensions with a solid content of 224 mg/mL was studied for 20 G (670 ± 8 µm), 

23 G (416 ± 3 µm) and 25 G (328 ± 5 µm) needles. The inner needle diameter was measured 

based on SEM pictures (supplementary material). A linear relationship between the injection 

force and the fourth power of the inner needle diameter was revealed (Figure 5-15), in 

accordance to the Hagen-Poiseuille law (Equation 5-1 in section 3.3.1). Hence, the injection 

force could easily be calculated for needles with different inner needle diameter. 

 

Figure 5-15: Injection force for S:B 30:70 (v/v) mAb1 PCMC suspensions with a solid content 

of 224 mg/mL in dependence of inner needle diameter; linear regression: y = 0.31x+4.6 

R²=0.999. 

Subcutaneous injectability can easily be modulated by the choice of needle and syringe, e.g. 

referring to inner needle diameter, needle length, plunger diameter and siliconization of the 

syringe. But these parameters also influence the convenience of injection for the patient. For 

example, the use of a needle with larger diameter is associated with increased injection pain. 

General recommendations of both appropriate testing procedure and maximal acceptable 

injection force are missing in the current Pharmacopoeias and various injectability values are 

reported in literature (Table 5-6). With respect to the oily PCMC suspensions, all formulations 

were physically injectable under the skin because the maximal injection force for the 

suspensions with a solid content of 316 mg/mL and a protein concentration of approx. 

140 mg/mL was 50 N for MCT and the sesame oil benzyl benzoate mixture with a mixing ratio 

of 70:30 (v/v), as opposed to 40 N for the 30:70 (v/v) sesame oil benzyl benzoate mixture. 
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Table 5-6: Injectability values reported in literature. 

Needle Force / pressure Description Reference 

20,22,26 G > 45-50 N Difficult to inject  [49] 
20, 23 G 50 N  [50] 

16 G 
621-800 kPa 

Typical adult male hand grip 
strength for single administration 

[51] 
344-482 kPa 

Typical adult male hand grip 
strength for multiple administration 

18 G 1193 kPa  [52] 

 112 N 
Maximum force of the thumb of 
male students generated within 
3-5 s 

[53] 

13, 15, 
17-27 G 

13 N 
Tolerable for an adult to maintain 
for 1 min 

[54] 

18, 20-25, 
27 G 

11-25 N Easy to inject 

[55] 
26-50 N Injectable 
51-100 N Injectable with some difficulty 
100-130 N Difficult to inject 

 20 N Easy to generate for a physician [56] 
 

3.4.3 Comparison of mAb1 formulated as oily PCMC suspension and liquid 

formulation 

The viscosity and injection force of oily mAb1 PCMC suspensions were compared to a liquid 

formulation of the monoclonal antibody, containing the same excipients as the PCMCs. The 

viscosity of the liquid formulation and consequently also the injection force were considerably 

smaller than the values for the oily suspensions with the same protein concentration 

(Figure 5-16). Hence, formulating mAb1 as oily PCMC suspension instead of high concentration 

liquid formulation was not beneficial with respect to injectability. In contrast, a significant 

decrease of viscosity was observed by Miller et al. for nonaqueous suspensions of lysozyme 

based on benzyl benzoate and safflower oil, compared to a high concentration liquid 

formulation of the enzyme [57]. A similar finding was described by Yang et al. for subcutaneous 

formulations of monoclonal antibodies [58]. A suspension of infliximab in 10 % ethanol and 

10 % PEG 3350 with 125 mg/mL protein had a viscosity of approx. 20 mPas, whereas the 

viscosity of a corresponding liquid formulation was significantly higher, with a value of approx. 

85 mPas [58]. Furthermore, it has to be considered that mAb1 used in the current study on oily 

PCMC suspensions showed very low viscosity values, even for high protein concentrations. For 
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example, the viscosity at a protein concentration of approx. 120 mg/mL was only about 7 mPas. 

Liu al. as well as Kanai et al. found considerable higher viscosity of approx. 50 mPas for a liquid 

120 mg/mL mAb1 formulation, which highly depended on pH and ionic strength of buffer and 

charged excipients [59, 60]. Nevertheless, the viscosity of this liquid mAb formulation was 

significantly lower than the values detected for oily mAb1 PCMC suspensions with comparable 

protein concentration. Thus, apart from limited solubility and aggregation phenomena often 

associated with high concentration protein solutions [61], formulating mAbs as oily PCMC 

suspensions could only be advantageous in the case of extremely high viscosity of the liquid 

injectable. 

 (a) (b) 

  

Figure 5-16: Comparison of mAb1 formulated as oily PCMC suspension and liquid formulation 

with respect to (a) viscosity and (b) injection force in dependence of protein concentration. 

3.4.4 Sedimentation behavior of oily mAb1 PCMC suspensions 

As part of the stability testing, the sedimentation behavior of oily mAb1 PCMC suspensions 

based on sesame oil and benzyl benzoate mixtures with mixing ratios of 70:30 and 30:70 (v/v) 

as well as on MCT was monitored in vertically stored spray siliconized glass syringes over 26 d 

(t26d) at 22 ± 3 °C. In all cases, hindered settling characterized by clear supernatants increasing 

with time occurred, exemplarily shown for MCT in Figure 5-17 (for S:B 70:30 and S:B 30:70 see 

supplementary material). With increasing solid content the volume of the clear supernatant 

decreased, independent of the choice of oily vehicle. Based on the height of supernatant the 
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compacted sediment formed during settling, the oily suspensions could be successfully 

resuspended. 

a  b  

Figure 5-17: Sedimentation behavior of MCT mAb1 PCMC suspensions at (a) t0 and (b) t26d; 

solid content from left to right: 133, 163, 194, 224, 255 and 285 mg/mL. 

4 Conclusion 

The development of oily mAb1 PCMC suspensions with sesame oil, benzyl benzoate and MCT as 

resuspension media required the design of an appropriate in vitro release model. Prolonged 

incubation time, higher temperature, the use of water as acceptor medium as well as short-

term stirring and final centrifugation ensured 100 % protein recovery after the release from oily 

mAb1 PCMC suspensions and enabled the analysis of protein integrity despite of considerable 

amounts of dispersed oil droplets in the aqueous acceptor. The analytical focus was on 

insoluble and soluble aggregates, protein secondary and tertiary structure as well as on binding 

activity of the antibody. Neither the formation of insoluble protein particles or soluble 

aggregates was detected nor did the spectroscopic methods indicate changes in the mAb´s 

secondary and tertiary structure. Specific antigen binding affinity of the antibody was 

completely retained. As the antibody could quantitatively transfer from the oily suspensions 

into the aqueous phase without measurable deleterious effect, these oleaginous media 

represent appropriate vehicles for the suspension of mAb1 coated microcrystals. 

MCT, sesame oil and benzyl benzoate as well as mixtures of the latter two could all be easily 

expelled from baked-on and spray siliconized glass syringes. The maximal mean injection force 

did not exceed 9 N. Spray siliconization of the syringes significantly reduced the injection forces 

because it resulted in a higher amount of the lubricant silicone oil present in the syringes. 

Injectability of baked-on siliconized syringes was not affected during 6 months storage at room 
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temperature. Coated stoppers were compatible with the oily solvents, as opposed to uncoated 

tip caps which swelled due to oil uptake. 

Based on MCT and mixtures of sesame oil and benzyl benzoate with a mixing ratio of 70:30 and 

30:70 (v/v), mAb1 PCMC suspensions were prepared up to a solid content of 316 mg/mL, 

corresponding to 138 mg/mL protein. The suspensions showed hindered settling, decreasing 

with increasing solid content, and could be resuspended without any residual compacted 

sediment. The rheology of the suspensions was characterized by shear thinning behavior and 

the viscosity increased nonlinearly with increasing solid content. Suspensions made of sesame 

oil and benzyl benzoate 30:70 (v/v) were significantly less viscous than MCT and S:B 30:70 (v/v) 

suspensions due to lower viscosity of the suspension medium. As a linear relationship between 

the viscosity and the injectability was revealed, the injection forces followed the same trend as 

the viscosity. All suspensions were injectable without any clogging phenomenon and the 

injection forces were in an acceptable range with a maximal mean injection force of approx. 

40 N for the 316 mg/mL mAb1 PCMC suspensions in sesame oil and benzyl benzoate 30:70 (v/v) 

and of 50 N for MCT and S:B 30:70 (v/v). Compared to the corresponding mAb1 solutions, 

formulating the antibody as oily PCMC suspension was not beneficial with respect to viscosity 

and ease of administration by injection. As the viscosity of the oily mAb1 PCMC suspensions 

was also significantly higher than viscosity values of liquid high concentration mAb formulations 

described in literature, this dosage form would only be advantageous in the case of extremely 

high viscosity of protein solutions, e.g. due to gelation. However, other challenges typically 

associated with the development of high concentration liquid formulations, including 

pronounced aggregation tendency, reduced solubility and poor overall stability, might be 

overcome by the choice of oily PCMC suspension as promising alternative dosage form for 

therapeutic proteins.  
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6 Appendix: supplementary material 

6.1 Determination of inner needle diameter via SEM 

The inner needle diameter of 20 G (670 ± 8 µm), 23 G (416 ± 3 µm) and 25 G (328 ± 5 µm) 

needles was determined via SEM, as exemplarily shown in Figure 5-18. 

 

Figure 5-18: Determination of inner diameter of a 23 G needle via SEM. 
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6.2 Sedimentation behavior of S:B 70:30 and S:B 30:70 (v/v) mAb1 PCMC 

suspensions 

a  b  

Figure 5-19: Sedimentation behavior of S:B 70:30 (v/v) mAb1 PCMC suspensions at (a) t0 and 

(b) t26d; solid content from left to right: 133, 163, 194, 224, 255 and 285 mg/mL. 

a  b  

Figure 5-20: Sedimentation behavior of S:B 30:70 (v/v) mAb1 PCMC suspensions at (a) t0 and 

(b) t26d; solid content from left to right: 133, 163, 194, 224, 255 and 285 mg/mL. 

 



Chapter 6 

161 

Chapter 6  

M e c h a n i s t i c  i n s i g h t s  i n t o  t h e  

P C M C  f o r m a t i o n  p r o c e s s  

Abstract 

Although the protein-coated microcrystals (PCMC) technology has been successfully applied to 

a wide variety of molecules, such as peptides, proteins and DNA/RNA and the development of 

high concentration PCMC suspensions as final dosage form has recently advanced, the 

mechanism of particle formation is still unclear. Based on various studies on cytokine and mAb1 

PCMCs with respect to morphology, composition and resulting stability, this chapter aimed to 

develop mechanistic insights in the PCMC formation process. The crystallinity/amorphicity of 

mAb1 PCMCs, containing trehalose, glycine, NaCl, histidine, phenylalanine and EDTA as carrier 

components, was investigated in dependence of protein load (PL) and trehalose (tre) content. A 

total amount of ≥ 85-90 % (m/m) protein and trehalose dihydrate, typically forming amorphous 

solids, was necessary to obtain a completely amorphous XRD pattern for the proteinaceous 

particles. The storage stability over 4 weeks at 40 °C/32 % RH of three amorphous powders 

with different protein loads and trehalose contents (60 % PL 30 % tre, 50 % PL 40 % tre, 

40 % PL 50 % tre) and one crystalline formulation (10 % PL 30 % tre), which comprised 

detectable amounts of crystalline α-glycine and NaCl at t0, was analyzed with respect to 

insoluble and soluble protein aggregates (protein recovery, turbidity, HP-SEC, SDS-PAGE) as well 

as morphological and carrier stability (SEM, XRD). Except for on-going NaCl crystallization 

detected for crystalline mAb1 PCMCs, only marginal differences were found between the 

formulations, all providing good overall storage stability of the antibody. Confocal laser 

scanning fluorescence microscopy clearly showed homogenous mAb1 distribution within the 

spherical particles for the amorphous mAb1 formulations. In contrast, the crystalline 

formulation was characterized by non-fluorescent rod-shaped glycine crystals with amorphous 

proteinaceous material being attached to the crystal surface. The presence of two 

corresponding particle fractions, namely carrier crystals forming the core of the particles and 

amorphous proteinaceous material on the surface, was further proven in case of cytokine 
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PCMCs by powder fractionation via Andersen cascade impactor. Thus, the supramolecular 

structure of these particles was consistent with the initial idea of PCMCs presented by Vos [1], 

in contrast to the amorphous mAb1 PCMCs which did not show these two distinct material 

fractions, but instead a homogenous particle composition which only differed in size. Cytokine 

PCMCs could further be manufactured via standard one-step precipitation as well as by two-

step precipitation in batch mode. Two-step precipitation comprised the separate production of 

carrier crystals on which the protein was precipitated in a second step. The manufacturing 

method did not affect the morphology or the protein process stability. Batch mode production 

of protein-free mAb1 PCMCs was only feasible with some limitations, but revealed the 

existence of an emulsion-like state, comprising dispersed droplets of an “excipient and protein 

rich/solvent poor” phase in a continuous “excipient and protein poor/solvent rich” phase, 

during the formation of these particles. Crystal growth at the liquid-liquid interface as well as 

inside the droplets was observed via polarization microscopy. Thus, the spinodal decomposition 

model was suggested to be appropriate to describe the formation process of these mAb1 

PCMCs. 

1 Introduction 

The protein-coated microcrystals technology represents an alternative method of protein 

stabilization in the solid state via coprecipitation of an aqueous solution of protein and carrier 

material induced by rapid mixing with a surplus of organic water-miscible solvent. The idea that 

goes back to a patent of Moore [2] has not only successfully been applied to various proteins, 

peptides and polypeptides, such as such as e.g. subtilisin Carlsberg protease [3], lipase [4, 5], 

trypsin [1, 6], BSA [6, 7], IgGs [6, 8], but also DNA and RNA [9]. König established a pilot-scale 

production process for PCMCs that enables a continuous production of up to 120 L suspension 

per hour [10]. Based on this progress, the preceding chapters of this thesis dealt with the 

development of cytokine (chapter 2) and mAb2 (chapter 3) PCMCs providing high process and 

storage stability to the protein. Additionally, organic water-miscible and oily solvents were 

evaluated as resuspension media for PCMCs allowing for subcutaneous application as high 

concentration suspensions (chapters 4 and 5). Despite these achievements, the particular 

mechanism how PCMC particles form via rapid dehydration of protein and carrier material 
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during coprecipitation is still unclear. Vos who focused on the PCMC mechanism discussed the 

classical nucleation and growth model as well as the model of spinodal decomposition to 

explain the formation of protein-coated microcrystals [1]. According to the classical nucleation 

theory, the free energy of a multicomponent system initially existing as a single phase is 

changed by modification of pressure or temperature or by homogenous mixing with a 

supplementary component. Consequently, phase separation, being energetically more 

favorable, leads to the coalescence of particles and thus to the formation of nuclei which begin 

to grow [11]. Spinodal decomposition describes the spontaneous rapid separation of a 

supersaturated, initial one-phase solution brought inside the spinodal curve, tracing the 

stability limit, by changing its composition without actual nucleation [11, 12]. Vos suggested 

that the latter model was slightly more appropriate for the description of the PCMC formation 

process [1]. But, it has to be considered that in most real systems the transition between the 

two mechanisms is gradual, as reviewed by Horn and Rieger [11].  

The current chapter that comprises various studies on cytokine and mAb1 PCMCs touching 

their morphology, composition and resulting stability aimed to gain further mechanistic insights 

into the PCMC formation process. Therefore, the influence of protein load and trehalose 

content on the morphology and storage stability of mAb1 PCMCs was investigated. 

Fractionation of cytokine and mAb1 PCMC powder via Andersen cascade impactor intended to 

specify the chemical composition of different particle populations and ultimately the 

supramolecular structure of the particles. Finally, the manufacturing of cytokine and mAb1 

PCMCs via one- and two-step precipitation as well as of protein-free particles was studied. 

2 Materials and methods 

2.1 Materials 

L-Phenylalanine, sodium bicarbonate, dimethyl sulfoxide (DMSO), phosphate buffered saline 

pH 7.4 and sodium hydroxide were purchased from Sigma-Aldrich, Steinheim, D, disodium 

EDTA dihydrate, hydrochloric acid (1 mol/L), isobutanol (Emplura®), ethanol 95-97 % (v/v), 

Brij® 35, L-2-methyl-2,4-pentanediol and water free glycerin (Emprove®) from Merck, 

Darmstadt, D. Glycine, L-histidine and L-histidine hydrochloride monohydrate were procured 
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from Ajinomoto Omnichem, Louvain-la-Neuve, B. Sodium dihydrogen phosphate dihydrate was 

delivered by Dr. Paul Lohmann, Hungen, D, sodium chloride by Akzo Nobel, Hengelo, NL, and 

trehalose dihydrate by Ferro Pfanstiehl, Waukegan, IL, USA. D/L-Valine was purchased from 

Fluka (Buchs, CH) and trisodium citrate dihydrate and citric acid monohydrate from 

Jungbunzlauer (Ladenburg, D). Sucrose was obtained from Südzucker (Mannheim, D). Sodium 

dodecyl sulfate was from Serva, Heidelberg, D. All chemicals were utilized without further 

purification. The protein bulk drug substances were provided by Boehringer Ingelheim. 

2.2 Methods 

2.2.1 Preparation of protein solutions 

The mAb1 bulk drug substance was composed of 20 mg/mL human IgG2 monoclonal antibody, 

0.68 mg/mL L-histidine, 3.27 mg/mL L-histidine hydrochloride monohydrate, 0.1 mg/mL 

disodium EDTA dihydrate, 84.0 mg/mL trehalose dihydrate and 0.1 % polysorbate 80. The 

buffer of the bulk drug substance was exchanged via ultra- and diafiltration resulting in a 

protein solution that consisted of 75.1 mg/mL protein, 0.2 mg/mL L-histidine, 0.8 mg/mL 

L-histidine hydrochloride monohydrate, 0.03 mg/mL disodium EDTA dihydrate and approx. 

0.4 mg/ml polysorbate 80 (crossflow buffer exchange and concentration unit, Boehringer 

Ingelheim, Biberach/Riss, D; membrane cassette Sartocon Slice, Hydrosart, 30 kd, Sartorius, 

Göttingen, D; Quattroflow 150 S membrane pump, Quattroflow Fluid Systems, Hardegsen, D). 

The cytokine bulk drug substance contained 1.5 mg/mL hydrophobic cytokine, 50 mM sodium 

acetate trihydrate, 1 mM disodium EDTA dihydrate and 0.1 % sodium dodecyl sulfate (SDS). 

After ultra- and diafiltration (membrane cassette Sartocon Slice, Hydrosart, 5 kd, Sartorius, 

Göttingen, D) the protein solution comprised 18.0 mg/mL protein, 22 mM citrate and approx. 

1.2 % SDS. 

The surfactants polysorbate 80 or SDS were present in the final protein solutions because they 

cannot be removed via ultra-/diafiltration, as similarly reported by Mahler at al. for 

polysorbate 20 [13]. 
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2.2.2 PCMC production process 

The PCMC production process is divided into four main steps: preparation of protein-carrier 

solution, precipitation, concentration/solvent exchange, and drying. 

2.2.2.1 Preparation of protein-carrier solutions 

For the preparation of the protein-carrier solution, the carrier material was dissolved in water 

and the solution pH value was adjusted to 5.5 prior to the addition of the protein solution. 

The composition of the protein-carrier solutions for the study on mAb1 PCMCs with varying 

protein load (PL) and trehalose (tre) content are presented in Table 6-1 and Table 6-2. 

Furthermore, a formulation with 40 % protein and 50 % trehalose was produced (Table 6-3) and 

additionally used for the fractionation via cascade impactor. Variation of protein load or 

trehalose content led to different relative amounts of the remaining carrier components 

(glycine, phenylalanine, sodium chloride, histidine hydrochloride monohydrate, histidine, 

trehalose dihydrate and Di-Na-EDTA dihydrate) to ensure a constant solid content of the 

protein-carrier solutions of 100 mg/mL. Depending on the protein load, the 

polysorbate 80 concentration ranged from approx. 0.05 to approx. 0.3 mg/mL. 

Table 6-4 shows the composition of the protein-carrier solution for the production of cytokine 

PCMCs with a solid content of 45 mg/mL. 

Table 6-1: Composition of protein-carrier solutions with constant protein load (PL) of 50 % 

and varying trehalose (tre) content [% w/w]. 

Excipient 
50 % PL, 

no tre 

50 % PL, 

25 % tre 

50 % PL, 

30 % tre 

50 % PL, 

35 % tre 

50 % PL, 

40 % tre 

mAb1 50.0 50.0 50.0 50.0 50.0 
L-Histidine HCl monohydrate 5.0 2.5 2.0 1.5 1.0 
L-Histidine 1.0 0.5 0.4 0.3 0.2 
NaCl 10.0 5.0 3.9 3.0 2.0 
Glycine 30.4 15.2 11.9 9.1 6.05 
L-Phenylalanine 3.4 1.7 1.3 1.0 0.7 
Trehalose dihydrate -- 25.0 30.4 35.0 40.0 
Di-Na-EDTA dihydrate 0.2 0.1 0.1 0.1 0.05 
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Table 6-2: Composition of protein-carrier solutions with constant trehalose (tre) content of 

30 % and varying protein load (PL) [% w/w]. 

Excipient 
10 % PL 

30 % tre 

45 % PL 

30 % tre 

50 % PL, 

30 % tre 

55 % PL, 

30 % tre 

60 % PL, 

30 % tre 

mAb1 10.0 45.0 50.0 55.0 60.0 
L-Histidine HCl monohydrate 6.0 2.5 2.0 1.5 1.0 
L-Histidine 1.2 0.5 0.4 0.3 0.2 
NaCl 12.0 5.0 3.9 2.9 1.9 
Glycine 36.2 14.9 11.9 8.8 5.8 
L-Phenylalanine 4.0 1.6 1.3 1.0 0.6 
Trehalose dihydrate 30.4 30.4 30.4 30.4 30.4 
Di-Na-EDTA dihydrate 0.2 0.1 0.1 0.1 0.1 

 

Table 6-3: Composition of protein-carrier solution with protein load (PL) of 40 % and 50 % 

trehalose (tre) [% w/w]. 

Excipient 
40 % PL 

50 % tre 

mAb1 40.0 
L-Histidine HCl monohydrate 1.0 
L-Histidine 0.2 
NaCl 2.0 
Glycine 6.0 
L-Phenylalanine 0.7 
Trehalose dihydrate 50.0 
Di-Na-EDTA dihydrate 0.1 

 

Table 6-4: Composition of the protein-carrier solution of cytokine PCMCs [% w/w]. 

Excipient 
Cytokine 

PCMCs 

Trisodium citrate dihydrate 8.6 
Citric acid monohydrate 1.2 
Cytokine 10.0 
DL-Valine 79.2 
Sucrose 1.0 

 

2.2.2.2 Continuous precipitation of mAb1 and cytokine PCMCs 

The continuous precipitation was carried out as described in detail by König [10]. Briefly, two 

equal streams of precipitating agent were mixed with one stream of protein-carrier solution in 
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a small double jet impingement mixer of an inner diameter of 1.5 mm (Boehringer Ingelheim, 

Biberach/Riss, D). The mixing ratio of the precipitating agent saturated with all carrier 

components, isobutanol for mAb1 PCMCs and a 1:1 mixture of isopropanol and 

2-methyl-2,4-pentanediol based on volume for cytokine PCMCs, and the protein-carrier 

solution was set to 95 : 5 (v/v). The modular mixing platform from Ehrfeld (Bayer Technology, 

Wendelsheim, D) encompassed three micro gear pumps (HNP pumps mzr 11507 and 7255, 

Hydraulik Nord Fluidtechnik, Parchim, D), pressure sensors and temperature sensors to monitor 

the precipitation step. The total flow rate of 1000 mL/min was controlled by the software 

LabView (National Instruments, Munich, D) and Coriflow mass flow meters (Bronkhorst, Kamen, 

D). The final suspension volume after precipitation was 1 L for cytokine PCMCs, 2 L for mAb1 

PCMCs and 0.5 L for the suspensions containing Alexa® 488 labeled mAb1. 

2.2.2.3 Batch mode preparation of cytokine and mAb1 PCMCs via one-step and two-

step precipitation 

One-step precipitation of cytokine and mAb1 PCMCs in batch mode was performed, according 

to Khosravani et al. and Kreiner and Parker [4, 14]. Briefly, 25.0 mL of the protein-carrier 

solution were added dropwise within approx. 3 min into 475 mL precipitating agent under 

stirring at 500 rpm (Mini MR standard IKAMAG®, IKA, Staufen, D). The precipitating agent was a 

1:1 (v/v) mixture of isopropanol and 2-methyl-2,4-pentanediol saturated with all carrier 

components for cytokine PCMCs and pure saturated isobutanol for mAb1 PCMCs. 

The preparation of PCMCs via two-step precipitation included two separate batch mode 

precipitation processes. First, 50.0 mL carrier solution were precipitated into 950 mL 

precipitating agent, as described above. After 18 h of sedimentation the supernatant was 

decanted and replaced by fresh precipitating agent. This procedure was repeated after another 

12 h of sedimentation. Subsequently, 23.7 mL protein solution, comprising 101 mg cytokine or 

mAb1 in water, were added dropwise within approx. 3 min into 450 ml of the previously 

prepared carrier suspensions under stirring.  

2.2.2.4 Concentration/solvent exchange 

For concentration of mAb1 PCMC suspensions, the supernatant was decanted 18 h after the 

precipitating step. The supernatant was replaced with fresh saturated isobutanol. After 24 h of 
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sedimentation the sediment, i.e. the concentrated suspension, was used for the supercritical 

drying process. 

In the case of cytokine PCMCs, after 18 h of sedimentation, the suspension was filtered off at 

600 mbar (Durapore Membrane Filter 0.45 µm HV 47 mm, Millipore, Schwalbach, D), the filter 

cake was washed twice with 50 mL saturated isopropanol and finally resuspended in 50 mL 

saturated isopropanol. 

2.2.2.5 Supercritical drying 

Supercritical drying (Thar SFE-500, Thar Technologies, Pittsburgh, PA, USA) was performed with 

carbon dioxide at 100 bar, 45 °C and a flow rate of 25 g/min. Finally, the pressure was 

decreased by 3 bar/min. After drying of 240 mL concentrated mAb1 PCMC suspension within 

90 min, vacuum drying was conducted at 30 mbar and 40 °C for 2 h (APT.line™ VDL, Binder, 

Tuttlingen, D; diaphragm membrane pump MZ 2C, Vacuubrand, Wertheim, D). 

For cytokine PCMCs, the resuspended filter cake was dried via supercritical drying process for 

81 min. Subsequent vacuum drying was not carried out. 

2.2.3 Binding of Alexa® 488 dye to mAb1 

Protein bulk drug substance without polysorbate 80 was dialyzed into PBS pH 7.4 within 24 h at 

2-8 °C (Slide-A-Lyzer® Dialysis Cassette G2, 20,000 MWCO, 0.5 mL, Thermo Scientific, Rockford, 

IL, USA). After dialysis, the protein concentration was determined via UV spectroscopy, as 

described in detail in section 2.2.7. Alexa® 488 dye (Alexa® Fluor 488 Carboxylic Acid, 

Invitrogen, Darmstadt, D) was dissolved in DMSO to reach a concentration of 2 mg/mL. For 

coupling, 2 ml protein solution with 1 mg/mL protein was added to 200 µl 1 M sodium 

bicarbonate solution and 10 µl Alexa® 488 dye solution. After incubation for 1 h at 22 ± 3 °C on 

a horizontal shaker with 200 rpm, the sample was purified via PD-10 column (SephadexTM G-

25M, GE, Buckinghamshire, UK). Equilibration of the column and sample elution was performed 

with a histidine buffer containing 0.68 mg/mL L-histidine, 3.27 mg/mL L-histidine hydrochloride 

monohydrate, 0.1 mg/mL Di-Na-EDTA dihydrate and 56.0 mg/mL trehalose dihydrate. 

Fractions 4-8 out of 10-12 fractions of 500 µl were collected, combined and dialyzed into 

histidine buffer within 24 h at 2-8 °C protected from light (Slide-A-Lyzer® Dialysis Cassette G2, 
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20,000 MWCO, 0.5 mL, Thermo Scientific, Rockford, IL, USA). The degree of labeling after 

dialysis was determined via UV measurement at 280 and 495 nm (Equation 6-1 and 6-2) [15]. 
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For the preparation of the protein-carrier solutions the ratio of labeled to unlabeled mAb1 was 

1:500. 

2.2.4 Accelerated short-term storage stability study 

For the stability study, 100 mg of the PCMC powders (10 % PL 30 % tre, 60 % PL 30 % tre, 

50 % PL 40 % tre and 40 % PL 50 % tre) were filled into 2 R glass vials (Fiolax®, Schott, 

Mühlheim, D) and stored unstoppered at 40 °C for 4 weeks in a desiccator over saturated MgCl2 

solution providing relative humidity of approx. 32 % [16]. Analysis of the PCMC powder (protein 

content, turbidity, HP-SEC, SDS-PAGE) was performed after one and four weeks of storage. 

Investigations via x-ray diffractometry, scanning electron microscopy and Karl-Fischer titration 

were limited to t4wk. 

2.2.5 Powder fractionation via cascade impactor 

Fractionation of PCMC powders was performed via Andersen Cascade Impactor (eight stage 

non-viable sample series 20-800, Thermo Andersen, Smyrna, GA, USA) at a flow rate of 

39 L/min (corresponding to a pressure drop of 4 kPa with the HandiHaler®), as described in 

detail by Claus et al. [17]. Within 6.15 s a total air volume of 4 L passed through the device and 

the PCMC powder encapsulated into polyethylene capsules was inserted into the induction port 

of the cascade impactor. The baffle plates were uncoated to allow easy harvesting of the 

powder suitable for further analysis via HPLC. On the contrary, the fixation of SEM patches 

(Leitfähige Haftaufkleber Ø 12 mm, Plano, Wetzlar, D) for morphological analysis of the powder 

required the coating of the plates with a mixture made of 83 % glycerin, 14 % ethanol 

95-97 % (v/v) and 3 % Brij® 35. 
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2.2.6 X-ray powder diffraction (XRD) 

The crystallinity of mAb1 PCMCs was analyzed with XRD in transmission mode from 

3 °- 40 ° 2 Θ, 0.5 ° steps and 20 s/step based on 1.5406 Å CuKα-radiation at 40 kV and 

40 mA (Stoe, Darmstadt, D). Samples were fixed in the sample holder between two Ultraphan 

foils (cellulose diacetate) with a thickness of 0.014 mm (Stoe, Darmstadt, D). 

2.2.7 Protein content via UV measurement 

MAb1 PCMC powder was dissolved in deionized water to give a concentration of approx. 

0.4 mg/mL and ensure absorption within the linear range of the spectrometer (0.3 to 0.8 AU). 

30 min after reconstitution, absorption in Halfmicro Plastibrand® cuvettes (Brand, Wertheim, D) 

was measured at 279 nm based on an extinction coefficient of 1.43 with a Lambda 20 

spectrometer (PerkinElmer, Rodgau-Jügesheim, D) and deionized water serving as blank (n=3). 

30 mg of cytokine PCMC powder were dissolved in 11.5 mM NaCl pH 2 and filtered through a 

0.45 µm syringe filter (Rotilabo-Spritzenfilter steril 0.45 µm PVDF, Carl Roth, Karlsruhe, D) 

30 min after reconstitution. UV measurement was carried out at 280 nm, corrected against 

buffer, based on an extinction coefficient of 1.70 (n=3) [18, 19]. 

2.2.8 Turbidimetry 

After dissolution of mAb1 PCMC powder with deionized water, turbidity was measured at a 

protein concentration of 1 mg/mL by 90 ° light scattering at λ = 633 nm 30 min after 

reconstitution (UH turbidimeter, Boehringer Ingelheim, self-construction) and expressed in 

formazine nephelometric units (FNU) (n=3). 

2.2.9 High performance size exclusion chromatography (HP-SEC) 

30 min after reconstitution of mAb1 PCMC powder in deionized water, the solution was filtered 

through a 0.45 µm syringe filter (Rotilabo-Spritzenfilter steril 0.45 µm PVDF, Carl Roth, 

Karlsruhe, D) and 25 µl samples of 2.0 mg/mL protein were injected in duplicate. Soluble 

protein aggregates, monomers and fragments were separated on an Äkta micro (GE Healthcare, 

Uppsala, S) with a TSKGel G3000 SWXL column (7.8 mm ID x 30.0 cm L, Tosoh, Stuttgart, D), 

equipped with a 40 x 6.0 mm TSKgel SWXL Guardcol precolumn, using filtered (0.22 µm) and 

degassed mobile phase of 60 mM sodium chloride and 5 mM sodium dihydrogen phosphate 

pH 7.0 in deionized water at 1.0 mL/min flow rate and UV detection at 280 nm. Aggregation 
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and fragmentation in percent was calculated based on the ratio of the area under the curve 

(AUC) of soluble aggregates and fragments to the total AUC of aggregates, monomer and 

fragments (n=2). Furthermore, changes in the AUC were considered.  

According to Hawe and Friess, for HP-SEC analysis of cytokine PCMCs a TSKgel G3000SW 

column (7.8 mm ID x 60.0 cm L) and a TSKgel SWXL Guardcol precolumn (Tosoh Bioscience, 

Stuttgart, D) were used on an Äkta micro with 200 mM sodium dihydrogen phosphate and 

0.1 % SDS [18]. 25 µl samples of 0.6 mg/mL protein were injected in duplicate and protein 

elution was monitored via UV-detection at 210 nm (n=2). 

2.2.10 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

SDS-PAGE of mAb1 PCMC powders was conducted at 200 V with Power Ease 500 and XCell Sure 

Lock in combination with 12 % Bis-Tris gels (NuPAGE®, 1 mm, 15 wells, Invitrogen, Darmstadt, 

D) and NuPAGE® MOPS SDS running buffer. Samples were mixed 8:2 with NuPAGE® LDS sample 

buffer, and 7:2:1 with NuPAGE® LDS sample buffer and 0.5 M dithiothreitol for the reducing 

SDS-PAGE. After heating up to 95 °C for 5 min, 5 µl of the samples and the marker (Precision 

Plus Protein Standard, Bio-Rad, Hercules, CA, USA), representing 1 µg protein, were loaded to 

each well. Furthermore, 2 ng BSA were loaded to one well for the purpose of sensitivity control. 

The gels were stained with SilverXpress® Silver Staining Kit. All equipment was from Invitrogen 

(Darmstadt, D). 

2.2.11 Particle morphology via scanning electron microscopy (SEM) 

Particle morphology of PCMC powder was analyzed by the use of a scanning electron 

microscope (Model Tescan Vega II SBH, Tescan, Brno, CZ). Samples were prepared on an 

aluminum stub and coated with gold/palladium (Model Cressington 108auto/SE Cool Sputter 

Coater, Cressington, Watford, GB). 

2.2.12 Water content via Karl-Fischer titration 

For water content quantification, two aliquots of 100 mg mAb1 PCMC powder per sample were 

filled into 2R vials and flanged either immediately after the drying process or after storage for 

4 weeks at 40 °C/32 % RH. After dissolution in methanol (Mallinckrodt Baker, Phillipsburg, NY, 

USA), titration was performed using Hydranal® Coulomat-AG reagent (Fluka, Buchs, CH) and a 

756 KF-Coulometer (Methrom, Sofingen, CH) for endpoint detection (n=2). 
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2.2.13 Confocal laser scanning fluorescence microscopy (CLSFM) 

CLSFM of mAb1 PCMCs containing Alexa® 488 labeled protein was performed via inverted 

fluorescence microscope (Leica DM IRBE) equipped with a confocal scanner (Leica TCS SP2), a 

multiline argon laser with an excitation wavelength of 488 nm and oil immersion objectives 

(Leica HC PL APO 10x 0.4 IMM and HC PL APO 10x 0.7 IMM/CORR). Leica Confocal Software, 

version 2.61, was used for taking and evaluation of pictures. All equipment was from Leica 

(Heidelberg, D). 

2.2.14 Quantification of the cytokine by reverse-phase high performance liquid 

chromatography (RP-HPLC) 

The amount of cytokine after powder fractionation via cascade impactor was analyzed by RP-

HPLC (Alliance 2695, Waters, Milford, MA, USA) with a Zorbax 300SB-CN column (4.6 x 150 mm, 

Agilent, Böblingen, D) as stationary phase at 40 °C, as developed by BI. The mobile phase was 

composed of phase A (100 % water with 0.1 % trifluoroacetic acid (TFA)) and phase B (84 % 

acetonitrile, 16 % water, 0.084 % TFA). The volume fraction of phase B was increased from 40 % 

to 55 % (9 min), 60 % (15 min) and 80 % (20 min) and finally reduced back to 40 % (21 min). 

Cytokine PCMC powder was reconstituted in 11.5 mM NaCl pH 2 within 15 min. A duplicate of 

samples with 0.04-0.25 mg/mL protein was injected at a flow rate of 0.7 mL/min and detected 

at 214 nm (UV). Based on the AUC, the cytokine content was calculated using the linear 

calibration curve (n=2). 

2.2.15 Quantification of valine by gas chromatography (GC) 

For quantification of valine in cytokine PCMCs via BI internal method, the powder was dissolved 

in 1 mL NaCl/Na2CO3 buffer (62 mmol/L and 28 mmol/L, respectively) and valine was 

derivatized via EZ: faast ™ kit (GC-FID Physiological, Amino Acid Analysis Kit, Phenomenex, 

Torrance, CA, USA) (n=2). An Agilent 6890N Network GC equipped with a ZB-AAA column 

(10 m x 0.25 mm, 0.25 µm film thickness, Phenomenex, Torrance, CA, USA) and a flame-

ionization detector was used at a column flow of 1.5 mL He/min. The column oven temperature 

was raised by 38 °C/min from 110 to 320 °C and the FID detector temperature was 320 °C. A 

duplicate of 2 µl samples was injected at 250 °C and a split level of 1:15 (n=2). L-Norleucine 

(Sigma-Aldrich, Steinheim, D) was used as internal standard amino acid. 
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2.2.16 Quantification of trehalose by high performance liquid chromatography 

(HPLC) 

Lower molecular substances, such as trehalose and the amino acids, were separated from 

protein via centrifugation (Heraeus® Biofuge® primo, Carl Roth, Karlsruhe, D). The filtration 

units (Amicon® Ultra-0.5 Ultracel-10k, Millipore, Schwalbach, D) were rinsed with 0.5 mL 0.1 N 

NaOH and subsequently equilibrated with dissolved PCMCs containing 2 mg/mL mAb1 in 

deionized water at 12000 g for 10 min. 0.5 mL samples of dissolved PCMCs with 2 mg/mL 

protein were subsequently separated at 12000 g for 10 min. The filtrate was checked for 

protein residues via UV absorption and analyzed (2 x 40 µl) by HPLC using a Rezex RCM 

Monosaccharide Ca2+ 300 x 7.80 mm column with guard column (SecurityGuard Cartridges 

Carbo-Ca 4 x 3.0 mm, Phenomenex, Torrance, CA, USA) at 85 °C. Filtered HPLC-water 

(Chromasolv® plus, Sigma-Aldrich, Steinheim, D) was used for elution at a flow rate of 

0.6 mL/min. Detection was performed via changes in refractive index (RI). The trehalose RI 

signal between 5.5 and 6.9 mL was integrated and trehalose content was calculated using the 

linear calibration curve for concentrations from 0.25 to 0.8 mg/mL (n=3). 

2.2.17 Bioactivity assay 

The bioassay of cytokine PCMCs was based on lung cancer indicator cells A549 [20]. Briefly, 

preincubated with different concentrations of the cytokine, the cells were infected with 

encephalomyocarditis virus and thus a cytopathic effect was evoked leading to cell lysis. The 

number of viable cells was analyzed by an MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide) assay. The concentration of the cytokine that led to the lysis of 

50 % of the cells (ED50) was referred to cytokine standard. The biological activity of the samples 

was determined based on three independent batches of each sample. Each batch consisted of 

two plates with the sample in triplicates. 
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3 Results and discussion 

3.1 Investigation of mAb1 PCMCs with varying protein load and trehalose 

content 

To investigate the role of the crystallizing carrier components of mAb1 PCMCs as well as of the 

amorphous excipient fraction and to gain insight into the supramolecular structure of the 

particles, first, the crystallinity of mAb1 PCMCs was studied in dependence of protein load (10-

60 %) and trehalose level (0-40 %). Four formulations were subsequently chosen and stored at 

40 °C/32 % RH for 4 weeks to study the influence of the composition on protein storage 

stability with respect to aggregation (protein content, turbidity, HP-SEC and SDS-PAGE) and on 

carrier and morphology stability (XRD and SEM). Confocal laser scanning microscopy was 

performed to analyze the localization of the protein within the microcrystals. 

3.1.1 Crystallinity of mAb1 PCMCs in dependence of protein load and trehalose 

content 

For mAb1 PCMCs that contained 50 % protein and trehalose ranging from 0-40 %, the 

crystallinity/amorphicity of the microcrystals depended on the level of the disaccharide. In the 

absence of trehalose, mainly crystalline α-glycine and NaCl were detected via XRD (Figure 6-1a). 

Furthermore, peaks associated with β-glycine were identified in the spectrum. Increasing 

amounts of trehalose reduced the crystallization tendency of both NaCl and glycine. In the 

sample prepared with 50 % mAb1 and 25 % trehalose crystalline signals were limited to 

α-glycine and were clearly less pronounced than in the sample without trehalose. The degree of 

crystallinity of α-glycine further decreased in the presence of 30 % trehalose. Higher amounts 

of the disaccharide led to completely amorphous PCMCs. Hence, an increasing amount of 

trehalose prevented NaCl and glycine from crystallization during the manufacturing of the 

particles. As discussed in detail in chapter 3, trehalose played a key role in the stabilization of 

mAb2 formulated as PCMCs via formation of a glassy matrix. In accordance with the current 

findings on mAb1 PCMCs, the absence of trehalose resulted in the crystallization of α-glycine. 

These at least partially crystalline mAb2 PCMCs provided less stabilization against aggregation 

of the monoclonal antibody during production as well as storage, compared to completely 

amorphous formulations. As opposed to the corresponding mAb1 formulation, no crystalline 
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signal was observed in the XRD spectrum for mAb2 PCMCs with a protein load of 50 % and a 

trehalose level of 30 % (see chapter 3 section 3.1.1). This PCMC composition thus represented 

the borderline between partially crystalline and predominantly amorphous mAb microcrystals. 

Moreover, it has to be considered that the mAb1 and mAb2 bulk drug substances slightly 

differed in the EDTA concentration and the polysorbate amount and type. Inhibition of glycine 

crystallization in the presence of trehalose was also observed during lyophilization by 

Chatterjee et al. [21]. In that case, the prevention of glycine crystallization required a mass ratio 

of glycine to trehalose dihydrate below 1. For mAb1 PCMCs, the mass ratio of glycine to 

trehalose dihydrate was 1.2 for the formulation containing crystalline glycine and 0.12-0.19 for 

the amorphous ones, being in line with the results of Chatterjee et al. 

With respect to the mAb1 PCMC formulations with a constant trehalose content of 30 % and 

varying protein load in the range of 10-60 %, the degree of crystallinity decreased with 

increasing protein load (Figure 6-1b). The spectrum of the sample that comprised 10 % protein 

and 30 % trehalose showed peaks that were attributed to crystalline α-glycine and NaCl. The 

use of 45, 50 and 55 % mAb1 resulted in PCMC powder that only contained crystalline 

α-glycine, at decreasing levels, whereas all the other components were amorphous. MAb1 

PCMCs composed of 60 % protein and 30 % trehalose did not manifest any crystalline signal in 

the XRD spectrum and were thus assumed to be completely amorphous. Hence, increasing 

amounts of monoclonal antibody impeded crystallization of NaCl and glycine, which 

corresponds to literature [22-25]. However, it also has to be taken into consideration that, in 

parallel with the augmenting level of mAb1 in the formulations, the amount of the potentially 

crystallizing components NaCl and glycine decreased and gradually approached the detection 

limit of the analytical technique. The additional formulation containing 40 % mAb1 and 50 % 

trehalose was also amorphous in XRD. In summary, the sum of trehalose dihydrate and mAb1, 

typically forming amorphous solids, was essential for the overall physical state of the mAb1 

PCMC formulations. 
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 (a) 

 

 (b) 

 

Figure 6-1: XRD analysis of mAb1 PCMCs with (a) varying trehalose content and (b) varying 

protein load; spectrum assignment: (a) I: NaCl, II: α-glycine; III: β-glycine; IV: 50 % PL no tre; 

V: 50 % PL 25 % tre; VI: 50 % PL 30 % tre; VII: 50 % PL 35 % tre; VIII: 50 % PL 40 % tre; 

(b) I: NaCl, II: α-glycine; III: 10 % PL 30 % tre; IV: 45 % PL 30 % tre, V: 50 % PL 30 % tre; 

VI: 55 % PL 30 % tre; VII: 60 % PL 30 % tre; arbitrary offset for better comparison. 

3.1.2 Accelerated short-term stability study 

For 4 weeks storage at 40 °C/32 % RH, one crystalline (10 % PL 30 % tre) and three amorphous 

mAb1 PCMC formulations (60 % PL 30 % tre, 50 % PL 40 % tre, 40 % PL 50 % tre) were chosen. 

The study aimed to investigate whether a crystalline or a completely amorphous matrix could 

provide best storage stability of the monoclonal antibody. With respect to the overall 
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crystalline formulation, the question was if the amount of amorphous excipient fraction was 

sufficient for adequate protein stabilization. Referring to the amorphous formulations, the 

impact of trehalose content and protein load, and thus of the molar ratio of amorphous 

excipient to protein, was further investigated. 

Karl-Fischer titration revealed that the initial water content of the crystalline formulation 

(10 % PL 30 % tre) with a value of 1.7 % was significantly lower than for the amorphous 

formulations which ranged from 2.5 to 3.6 % (Table 6-5). After 4 weeks of storage, the water 

content of the amorphous formulations amounted to approx. 6 %, as opposed to 3.8 % 

detected for the crystalline formulation. Thus, the amorphous powders were more hygroscopic 

than the crystalline one, being consistent with literature [23, 26]. Ahlneck and Zografi found 

that in combinations of amorphous and crystalline material, absorption of water vapor 

preferentially occurred into the amorphous structure [27], thus rendering a higher water 

content and greater plasticizing effect in the amorphous fraction. Hygroscopicity of amorphous 

spray-dried and lyophilized powders bearing the risk of recrystallization and consequently 

instability during storage was also described for protein formulations, e.g. by Hawe and Friess 

[23] as well as by Hino et al. [28]. 

Table 6-5: Water content [% m/m] of mAb1 PCMCs with varying protein load and trehalose 

content stored at 40 °C/32 % RH for 4 weeks. 

Formulation t0 t4wk 

10 % PL 30 % tre 1.7 ± 0.08 3.8 ± 0.02 

60 % PL 30 % tre 3.6 ± 0.24 6.1 ± 0.04 

50 % PL 40 % tre 3.1 ± 0.19 6.0 ± < 0.01 

40 % PL 50 % tre 2.5 ± 0.04 6.0 ± 0.05 

 

Turbidity measurement is frequently applied in the formulation development and purification 

of therapeutic proteins to detect insoluble protein aggregates [29, 30]. Independent of protein 

load and trehalose content, it revealed very low and constant turbidity values ranging from 0.4 

to 1.7 FNU for the amorphous formulations (60 % PL 30 % tre, 50 % PL 40 % tre, 

40 % PL 50 % tre) (Figure 6-2a). In contrast, the turbidity of the crystalline mAb1 PCMC sample 

(10 % PL 30 % tre) was higher with 3.0-6.5 FNU and a slight, but statistically significant increase 

was found within 4 weeks of storage (p < 0.05). Hence, the protection against insoluble 
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proteinaceous particle formation throughout the PCMC production process as well as storage 

was better in an amorphous carrier matrix than in a crystalline one. This difference between 

the PCMC formulations selected for the accelerated short-term stability study was too low to 

be reflected in the protein content that did not change significantly within 4 weeks of storage, 

irrespective of the PCMC composition (Figure 6-2b).  

 (a) (b) 

  

Figure 6-2: Turbidity (a) and protein content (b) of mAb1 PCMCs with varying protein load 

and trehalose content stored at 40 °C/32 % RH for 4 weeks. 

Soluble protein particles are most commonly assessed via HP-SEC [31, 32]. After 4 weeks 

storage, all mAb1 PCMC formulations showed a faint decrease of the monomer content 

(Figure 6-3) and only minor differences were found between the formulations. The smallest 

decline, by only 0.5 %, was detected for the crystalline formulation (30 % PL 10 % tre), whereas 

this formulation displayed the smallest initial monomer level of all formulations analyzed. The 

amorphous formulations with a protein load of 60 and 50 % lost 2.3 and 2.4 % of the initial 

monomer level, respectively, whereas the monomer content of the amorphous formulation 

containing 40 % mAb1 was only reduced by 0.9 %. The latter formulation also had the highest 

initial monomer content, compared to the other mAb1 PCMC formulations. This outcome 

indicated that a protein load of 60 and 50 % was probably too high to be optimally stabilized via 

PCMC technology, which is consistent with the findings on mAb2 PCMCs discussed in chapter 3. 

Independent of the formulation, the decrease of the monomer content was ascribed to the 

formation of soluble protein aggregates because fragmentation of mAb1 formulated as PCMCs 

was not observed during the accelerated short-term stability study. Moreover, irrespective of 
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the formulation, the AUC in HP-SEC did not change significantly over time. Thus, all samples 

were free of considerable amounts of large protein particles typically prone to accumulate in 

the precolumn or at the column top [32]. 

 

Figure 6-3: Monomer content of mAb1 PCMCs with varying protein load and trehalose 

content stored at 40 °C/32 % RH for 4 weeks. 

SDS-PAGE, representing an orthogonal method for the analysis of soluble protein aggregates 

[31], confirmed the HP-SEC results with an obvious increase in aggregates for all mAb1 PCMC 

formulations investigated (Figure 6-4). The broad aggregate band above 250 kDa under non-

reducing conditions (gel a) was more pronounced in lanes V, VIII, XI and XIV compared to all 

other lanes. Likewise, the bands at about 100 kDa, 75 kDa and 37 kDa under reducing 

conditions (gel b) were slightly darker in those lanes. But generally, as silver stained bands 

cannot be quantified reliably, interpretation should mainly be restricted to qualitative 

evaluation [31]. A faint extra band above 250 kDa indicating mAb1 aggregation with prolonged 

storage time was detected for all amorphous formulations (lanes VIII, XI and XIV) at t4wk. For the 

crystalline formulation (10 % PL, 30 % tre), this band was already present at t0 and t1wk, in 

accordance with the higher initial aggregate level detected via HP-SEC. Additional faint bands 

found above 10 kDa in the lanes IV, V, VIII, XI and XIV under non-reducing as well as reducing 

conditions were attributed to mAb1 fragments formed during storage of the PCMC powders. 

Fragments were not detected during HP-SEC analysis and therefore fragment levels were 

assumed to be very low (< 0.1 %). No further differences between the samples with varying 
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protein load and trehalose content were observed within 4 weeks of storage. Non-reducible 

aggregates were not detected because no aggregate band persisted under reducing conditions. 

In summary, SDS-PAGE indicated only negligible formation of covalent soluble aggregates. 

(a) 

 

(b) 

 

Figure 6-4: SDS-PAGE of mAb1 PCMCs with varying protein load and trehalose content stored 

at 40 °C/32 % RH for 4 weeks; (a) non-reducing and (b) reducing conditions; lane assignment: 

I: BSA control; II: Precision Plus Protein Standard; III-V: reconstituted mAb1 PCMC samples 

with 10 % PL 30 % tre ; VI-VIII: reconstituted mAb1 PCMC samples with 60 % PL 30 % tre ; 

IX-XI: reconstituted mAb1 PCMC samples with 50 % PL 40 % tre ; XII-XIV: reconstituted mAb1 

PCMC samples with 40 % PL 50 % tre; XV: Precision Plus Protein Standard. 

Overall, only minor differences were revealed between the 4 formulations with respect to 

protein storage stability. The turbidity of the crystalline sample (10 % PL 30 % tre) was slightly 
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higher than of the amorphous ones (60 % PL 30 % tre, 50 % PL 40 % tre, 40 % PL 50 % tre) and 

increased with prolonged storage time. However, the formation of soluble protein particles 

analyzed via HP-SEC was slightly less pronounced in the presence of an at least partially 

crystalline carrier matrix, compared to completely amorphous particles. Thus, based on these 

results of the accelerated short-term stability study, the physical state of the mAb1 PCMCs had 

no tremendous effect on the degree of stabilization of the monoclonal antibody during storage 

and all formulations investigated provided good protein stability. The amorphous state in 

comparison to the crystalline state is defined by a lack of long-range order of molecular packing 

or well-defined molecular conformation if the constituent molecules are conformationally 

flexible as it is the case for proteins [33, 34]. In general, amorphous solids are supposed to be 

less stable physically and chemically [34]. Nevertheless, the effect of the physical state of the 

solid on the stabilization of proteins is ambiguously discussed in literature. Crystalline glucose 

oxidase and lipase [35] as well as lysozyme [36] and amylase [37] were reported to be more 

stable than their amorphous counterparts. However, Pikal and Rigsbee who studied the 

stability of pure insulin in crystalline and amorphous solids revealed a greater stability for the 

amorphous form, although the mechanism involved could not successfully be clarified [38, 39]. 

Nevertheless, one aims to achieve a fully amorphous product during freeze-drying processes as 

successful interaction between excipient and protein is thought to be more likely if both 

interaction partners are within the same amorphous phase [40, 41]. Therefore, crystallization is 

inhibited by the addition of ‘impurities’ such as other excipients as well as by the protein it-self 

[34, 42]. 

Furthermore, the molar ratio of trehalose dihydrate to protein, being approx. 

200 (60 % PL 30 % tre), 320 (50 % PL 40 % tre) and 500 (40 % PL 50 % tre), influenced the 

storage stability of the amorphous mAb1 PCMC formulations. As the decrease of the monomer 

content was less pronounced for mAb1 PCMCs with 40 % PL and 50 % tre, the literature 

recommendation of a molar sugar to protein ratio of ≥ 360 for adequate protein stabilization in 

lyophilisates [43-45] could be successfully applied to these microcrystals. 

Apart from protein stability, the carrier and its morphology stability need to be investigated 

during PCMC storage studies because they are often associated with each other, as described in 
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chapter 2 section 4.3.2. Referring to the mAb1 microcrystals with varying protein load and 

trehalose content, carrier and morphology stability was assessed via XRD and SEM. X-ray 

spectra of all amorphous samples (60 % PL 30 % tre, 50 % PL 40 % tre, 40 % PL 50 % tre) 

recorded after 4 weeks of storage did not differ from the initial pattern (Figure 6-5a). This 

indicated the absence of recrystallization processes of the amorphous carrier components. For 

the crystalline sample containing 10 % mAb1 and 30 % trehalose, the signals at 27.2 ° and 31.6 ° 

2 theta that were attributed to NaCl increased within 4 weeks storage (Figure 6-5b). Thus, NaCl 

further crystallized under the storage conditions selected for the accelerated short-term 

stability study. Excipient crystallization during storage of solid protein formulations was 

reported to cause protein destabilization, e.g. by Kreilgaard et al. as well as by Izutsu et al. [46, 

47]. The authors speculated, amongst others, that the maintenance of an amorphous protein-

excipient phase allowing for extensive molecular interactions between these two formulation 

components was essential for long-term storage stability. However, sucrose crystallization 

taking place during storage of partially collapsed freeze-dried cakes of LDH did not significantly 

reduce the activity of the protein since a sucrose amount sufficient for LDH stabilization 

remained in the amorphous state [48]. This explanation could also be applied to the recent 

findings on mAb1 PCMCs. Despite continuing NaCl crystallization during the accelerated short-

term stability study, the integrity of the antibody was not affected. As NaCl represented only 

12 % of the total solid in the protein powder, the other components forming a glassy matrix, 

such as trehalose, were suggested to provide sufficient protein storage stability. 

Ongoing NaCl crystallization of mAb1 PCMCs with 10 % PL and 30 % trehalose was not 

noticeable in SEM (Figure 6-6a and b). The pictures taken at t4wk did not differ from those of the 

initial PCMC powder and showed rod-shaped crystals partially coated with a less compact 

crumbly material. In accordance with the observations made on cytokine-coated microcrystals, 

described in detail in chapter 2, the latter powder fraction was assumed to be made of 

amorphous carrier components, mainly trehalose and antibody. The stabilization mechanism of 

the disaccharide as well as its use in solid protein formulations is discussed in detail in 

section 3.1.1. The rod-shape of PCMCs that contained glycine as main carrier component was 

also reported by König [6] and is consistent with the description of glycine crystals by Lahav and 

Leiserowitz [49]. The amorphous mAb1 PCMC formulations (Figure 6-6c-h) were characterized 
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by spherical particles similar to those obtained after spray-drying [24, 50, 51]. Moreover, SEM 

pictures did not provide any indication of excipient recrystallization or collapse either, proving 

high excipient and morphology stability of the amorphous PCMCs. Though, it has to be taken 

into consideration that the mAb1 PCMCs were not exposed to high moisture levels during 

storage.  

 (a) 

 

 (b) 

 

Figure 6-5: XRD of mAb1 PCMCs with varying protein load and trehalose content stored at 

40 °C/32 % RH for 4 weeks; (a) spectrum assignment: I: 60 % PL 30 % tre; II: 50 % PL 40 % tre; 

II: 40 % PL 50 % tre; black: t0, grey: t4wk; (b) spectrum assignment: I: NaCl, II: α-glycine; 

III: 10 % PL 30 % tre t0;  10 % PL 30 % tre t4wk. 
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a  b  

c  d  

e  f  

g  h  

Figure 6-6: SEM pictures of mAb1 PCMCs with varying protein load and trehalose content at t0 

(left) and stored at 40 °C/32 % RH for 4 weeks (right); a)/b) 10 % PL 30 % tre; 

c)/d) 60 % PL 30 % tre; e)/f) 50 % PL 40 % tre; g)/h) 40 % PL 50 % tre. 



Chapter 6 

185 

3.1.3 Confocal laser scanning fluorescence microscopy of mAb1 PCMC powders 

Confocal laser scanning fluorescence microscopy of mAb1 PCMC formulations selected for the 

accelerated short-term stability study was applied to investigate the protein distribution within 

these particles. Scanning through different layers of the microcrystals, this technique allowed 

also assessing the interior structure of the particles, as opposed to SEM. Widely, CLSFM has 

successfully been used in numerous applications of cellular biology, as reviewed by Földes-Papp 

et al. as well as by Halbhuber and König [52, 53]. Furthermore, there is considerable interest in 

the use of this technique in pharmacologic and therapeutic areas. 

In accordance with the SEM analysis of the powders (section 3.1.2), the morphology of the 

crystalline microcrystals (10 % PL 30 % tre) detected via CLSFM differed from the microscopic 

appearance of the amorphous formulations (60 % PL 30 % tre, 50 % PL 40 % tre and 

40 % PL 50 % tre). In the crystalline mAb1 PCMC powder, the silhouettes of large rod-shaped 

crystals were clearly visible (Figure 6-7). These structures also observed in SEM and associated 

with glycine crystals were further characterized by low fluorescence intensity, indicating that 

they were essentially free of labeled protein. Besides these crystalline structures, material 

attached to the glycine crystal surface without distinct outlines exhibiting high fluorescence 

intensity was observed. The fluorescence intensity of this material increased when scanning 

from the outside to the inside of the particles. Thus, labeled protein was present throughout all 

layers of this material. 
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a  b  

c  d  

Figure 6-7: CLSFM of mAb1 PCMCs with 10 % protein load and 30 % trehalose; the lower and 

right sections represent the cross-sections of the particles; fluorescence intensity: blue < cyan 

< green < yellow < brown. 

These morphological observations were consistent with the general idea of the PCMC 

technology including a crystalline core of carrier and amorphous protein coated onto the 

surface of these crystals, as presented in Figure 6-8 modified from Vos [1]. The author´s theory 

was derived from several experiments on PCMCs, including atomic force microscopy (AFM), 

zeta potential measurements and dynamic light scattering (DLS) as analytical techniques. AFM 

analysis revealed the presence of protein clusters on the crystal surface, showing clear step-

contours, for valine subtilisin Carlsberg PCMCs. Zeta potential measurements of uncoated and 

coated microcrystal particles further revealed a shift of the particles´ surface charge when 

protein was coprecipitated with the carrier material. Moreover, Ostwald ripening was detected 

via DLS for uncoated microcrystals, as opposed to particles coated with protein. The complete 
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inhibition of this phenomenon in the presence of albumin was associated with the formation of 

a protein coating on the excipient surface. During the desorption experiment albumin valine 

PCMCs were resuspended in a saturated aqueous valine solution, impeding the dissolution of 

the microcrystals. The vast majority of the protein was afterwards recovered in the 

supernatant. With respect to the cytokine PCMCs, the amorphous fraction attached to the 

crystal surface was further assumed to be not only composed of pure protein, but additionally 

of carrier excipients tending towards the formation of an amorphous structure, such as 

trehalose (see section 3.1.1).  

 

Figure 6-8: Formation of PCMCs modified from Vos [1]; protein (yellow spheres) and excipient 

(blue cubes) are preblended/dissolved in water and coprecipitated into non-solvent, resulting 

in the self-assembly of PCMCs with protein located on the surface of the excipient crystals. 

Independent of the exact composition of the particles, the CLSFM appearance of all amorphous 

mAb1 PCMC formulations, exemplarily shown in Figure 6-9 for the sample containing 60 % 

protein and 30 % trehalose, was similar. Being in line with the XRD and SEM results 

(section 3.1.1 and 3.1.2), the amorphous powders were free of any crystalline structures and 

were composed of one homogenous particle fraction. Within these particles the labeled 

antibody was evenly distributed as indicated by the fluorescence intensity changing from 

blue/green over yellow and brown back to blue/green while scanning through the PCMCs. The 

cross-section further revealed a spherical shape of the single particles forming larger powder 

agglomerates, as also observed via SEM analysis. 
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a  b  

c  d  

e  f  

Figure 6-9: CLSFM of mAb1 PCMCs with 60 % protein load and 30 % trehalose; the lower and 

right sections represent the cross-sections of the particles; fluorescence intensity: blue < cyan 

< green < yellow < brown. 
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Hence, the structure of these particles did neither correspond to the conception of Vos 

presented in Figure 6-8 nor to the term “protein-coated microcrystals”, because carrier 

excipients and protein did not form two morphologically and chemically different fractions, but 

amorphous, uniform spherical particles. Therefore, the idea offered in Figure 6-10 seemed to 

be more suitable for the graphical description of these particles. 

 

Figure 6-10: Proposed formation process of mAb1 PCMCs; the coprecipitation of protein 

(yellow spheres) and excipient (blue cubes) results in the self-assembly of homogeneous, 

amorphous “PCMCs”. 

3.2 Fractionation of cytokine PCMCs and mAb1 PCMCs via cascade impactor 

SEM analysis of crystalline cytokine PCMCs with 10 % protein load (chapter 2 section 3.2), and 

amorphous mAb1 PCMCs with a protein level of 40-60 % and 50-30 % trehalose (section 3.1.2 

of the current chapter), suggested fundamentally different morphologies of these particles. The 

former, which contained valine as main carrier component as well as citrate/citric acid and 

sucrose, were composed of two particle fractions, a compact crystalline one forming rosettes 

and another less compact crumbly one (Figure 6-11a). Some of the less compact crumbly 

material was coated on the surface of the compact crystalline fraction, another part existed 

separate from the crystals. Amorphous mAb1 PCMCs, with trehalose, glycine, NaCl, histidine 

and phenylalanine as carrier excipients, however, were characterized by homogenous spherical 

material (Figure 6-11b). For more detailed characterization of the powders, an attempt was 

made to separate different size fractions of the powders via Andersen Cascade Impactor. 
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a  b  

c  d  

e  f  

g  h  

Figure 6-11 : Cytokine PCMCs (left) and mAb1 PCMs (40 % PL 50 % tre) (right) separated via 

Andersen Cascade Impactor; picture alignment: a)/b) initial PCMC powder, powder harvested 

from c)/d) stage 0, e)/f) stage 3, g)/h) stage 5. 
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The cytokine PCMC powder collected from plate 0 of the cascade impactor resembled the initial 

powder inserted into the device (Figure 6-11c). The powder harvested from plate 1, however, 

only contained few intact rosette-shaped crystals. Furthermore, platelets representing 

fragments of the rosettes were visible and considerably more crumbly material was present, 

compared to the initial powder. The number of rosettes further decreased from plate 1 to 

plate 2. Powder deposited on plate 3, 4 and 5 was free from larger crystals, whereas the 

amount of crumbly material increased (Figure 6-11e). Plates 6 and 7 only contained very little 

amounts of powder insufficient for SEM analysis. Thus, the cascade impactor successfully 

divided the cytokine PCMCs into these two particle fractions based on a smaller aerodynamic 

diameter of the crumbly material compared to the large valine crystals. 

In case of mAb1 PCMC powder with a protein load of 40 % and 50 % trehalose, the material 

deposited on plate 0 of the cascade impactor was composed of many spherical particles 

different in size (Figure 6-11d). It seemed as if the amount of larger particles was slightly 

increased at the expense of smaller ones, compared to the initial mAb1 PCMCs (Figure 6-11b 

and d). With increasing plate number the quantity of larger particles decreased and the average 

particle size decreased (Figure 6-11f and h). 

The composition of the powder fractions gained via cascade impactor was analyzed with 

respect to the protein content, i.e. cytokine and mAb1, and the content of valine and trehalose 

dihydrate representing the main carrier components of the PCMCs selected. For the cytokine 

PCMCs, the protein content increased with increasing plate number, whereas the amount of 

valine in the powder fractions decreased (Figure 6-12a). This increase of the cytokine content 

with increasing plate number corresponded to an augmented level of fluffy and crumbly 

material. Hence, the cytokine was primarily located in this particle fraction, as opposed to the 

crystalline material, being in line with the hypothesis presented in chapter 2 section 4.1. Since 

proteins and peptides in the solid state usually exist in the amorphous form [22], this particle 

fraction was further assumed to be amorphous, being consistent with its loose microscopic 

appearance. As sucrose and citrate, representing additional carrier components of the cytokine 

formulation besides valine, are prone to form amorphous solids [24, 54-57], the loose and 

crumbly material certainly does not only incorporate the hydrophobic cytokine, but at least 
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some parts of those carriers (see chapter 2 section 4.1). This could also explain the high process 

and storage stability of the cytokine PCMCs because interactions between excipients and 

proteins are supposed to be most successful if both partners exist in the same amorphous 

phase (see section 3.1.2). On the contrary, the crystalline rosette-shaped powder fraction 

essentially consisted of the main carrier component valine. Consequently, the morphology and 

composition of these cytokine PCMCs was well in accordance with the original idea of this 

technology [1, 2, 58]. 

 (a) (b) 

  

Figure 6-12: Composition of (a) cytokine PCMC and (b) mAb1 PCMC (40 % PL 50 % tre) 

fractions separated via Andersen Cascade Impactor with respect to protein content, valine 

content and trehalose dihydrate content in dependence of the plate (P) number; the amount 

of powder collected from plates 4-7 (cytokine PCMCs) and 6+7 (mAb1 PCMCs), respectively, 

was too small to be analyzed. 

The powder fractions of mAb1 PCMCs collected from plate 0 to plate 5 neither differed in the 

protein nor in the trehalose content (Figure 6-12b). Thus, in accordance with the SEM pictures, 

these PCMCs did not include one protein-rich fraction and one fraction that was dominated by 

the presence of carrier material, unlike cytokine PCMCs. Instead, mAb1 PCMCs were proposed 

to comprise a mixed phase homogenously unifying mAb1 and carrier excipients as spherical 

particles of different size. Hence, the powder did not correspond to the PCMCs` definition. 

Therefore, a new name seems to be required to adequately describe these particles originating 

from formulation variations of the initial PCMC technology. The term “coprecipitated 

amorphous protein particles” (CAPPs) would only be applicable to predominantly amorphous 

PCMC formulations, as opposed to “solvent precipitated protein powder” (SP3s) which does 
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not specify the overall physical state of the precipitated protein carrier particles. However, the 

latter is evocative of the well-known ethanol protein precipitation used for plasma 

fractionation for decades, which was first described in detail by Cohn et al [59]. Finally, as the 

morphology of the amorphous mAb1 formulations was similar to typical spray-dried protein 

formulations, as discussed in section 3.1.2, a new term is not mandatory. 

3.3 Preparation of cytokine and mAb1 PCMCs via one-step and two-step 

precipitation in batch mode 

In this study cytokine and mAb1 PCMCs, intended to be prepared via one-step and two-step 

precipitation, were compared with respect to particle morphology (SEM) and protein process 

stability (HP-SEC, bioassay). The one-step precipitation represented a simultaneous 

coprecipitation of carrier material and protein, usually applied for the manufacturing of PCMCs. 

On the contrary, the two-step precipitation process consisted of separate precipitation of pure 

crystalline excipients, followed by subsequent protein precipitation on these carrier particles. 

3.3.1 Precipitation of protein-free carrier solutions 

Precipitation of pure carrier material of the cytokine PCMC formulation resulted in the 

formation of rosette-shaped crystals (Figure 6-13), being consistent with the crystal shape 

observed in the corresponding cytokine formulation (chapter 2 section 4.1). Likewise, the 

precipitation was slightly decelerated and the product was not yet turbid at the outlet of the 

mixer, but turbidity immediately built up in the container used for harvesting. Thus, the 

presence of the protein was not prerequisite for the precipitation process. 

a  b  

Figure 6-13: SEM of separately precipitated carrier crystals of cytokine PCMCs. 
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a  b  

c  d  

Figure 6-14: Polarization microscopy of separately precipitated carrier material of 

corresponding mAb1 PCMCs; a) immediately, b) approx. 2 min, c) approx. 3 min and 

d) approx. 5 min after precipitation. 

As opposed to cytokine-free valine PCMCs, the precipitation of pure carrier material of the 

standard mAb1 formulation was not possible. The dropwise addition of the aqueous carrier 

solution to the precipitating agent immediately caused turbidity associated with particle 

formation, but the product could not be harvested. Macroscopically droplets deposited and 

finally stuck to the bottom of the device despite continuous stirring. Microscopic investigation 

of the supernatant revealed the presence of dispersed droplets in a continuous phase 

(Figure 6-14). The droplets contained birefringent crystals mainly aligned at the liquid-liquid 

interphase, but also inside. The crystalline structures significantly grew within a few minutes 

after precipitation. These observations were evocative of the ouzo effect derived from the 

alcoholic beverage and described in detail by Vitale and Katz who studied the formation of 

liquid droplet dispersions by homogenous liquid-liquid nucleation [12]. This physical effect that 

occurs in liquid systems comprising three or more components describes the formation of 

dispersed oil droplets in water in consequence of the rapid addition of water to a solution of oil 

dissolved in a solvent. As the oil supersaturates, it then nucleates into small relatively stable 
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droplets. In his review on recent developments and applications of the ouzo effect, Botet 

further specified that the ouzo region only represents a particular part of the area between the 

binodal and spinodal line (Figure 6-15) [60]. 

 

Figure 6-15: Ternary phase diagrams with ouzo region at constant temperature and pressure 

according to Botet [60]; the ouzo effect occurs when a three-component solution is rapidly 

brought into the ouzo region in the metastable area between the binodal (miscibility-limit 

curve) and spinodal (stability-limit curve) curves by the addition of solvent. 

However, as opposed to the PCMC precipitation, the ouzo effect occurs spontaneously without 

the use of mechanical agitation, surfactants or dispersing agents and corresponding emulsions 

appeared to be stable for months [12, 60]. Therefore, according to Vos [1], spinodal 

decomposition representing the rapid separation of an initial one-phase solution brought inside 

the spinodal curve by changing its compositions [12] seemed to be more suitable for 

characterizing the PCMC formation process. As the large surplus of organic solvent strips out 

the water molecules, protein and excipient partition into small, dense precursor droplets 

resembling oils or melts of excipient and protein. These droplets coalesce and the protein is 
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transported to the outer periphery of the droplet. As soon as the oily excipient core reaches 

saturation, nucleation and growth of the crystalline core is highly favorable and solid PCMCs 

form. In a secondary process, the excluded protein assembles at the surface of the excipient 

core to form a continuous network, being attached via hydrogen bonding and van der Waals 

interactions. Vos´ hypothesis was derived from DLS and simultaneous laser obscuration 

measurements of in-situ prepared PCMC samples [1]. The observation that the particle 

formation process was typically completed after approx. 100 s in combination with calculations 

on the time taken for dense pre-cursor particles to aggregate by shear forces as well as by 

Brownian motion was in line with the spinodal decomposition model. The particle formation 

process by nucleation and growth, however, was expected to take in the order of minutes, not 

seconds, and in that case particles were assumed to exhibit significantly more Ostwald ripening 

effects. Therefore, spinodal decomposition appeared to be more appropriate for the 

description of the PCMC formation process. 

The recent observation of dispersed droplets containing crystallizing excipients, mainly at the 

liquid-liquid interface, after the precipitation of a mAb1 carrier solution was well in line with 

the spinodal decomposition model. Therefore, the rapid introduction of excessive solvent was 

proposed to result in the formation of two phases, one “excipient and 

protein rich/solvent poor” phase and one “excipient and protein poor/solvent rich” phase, via 

spinodal decomposition (Figure 6-16). Diffusion of water molecules out of the inner “excipient 

and protein rich/solvent poor” phase in the continuous second phase and of solvent in the 

opposite direction was suggested to lead to supersaturation of excipients and protein finally 

resulting in precipitation. At this stage excipient crystallization could be avoided by the choice 

of formulation composition, as discussed in previous sections of this chapter (section 3.1.2) as 

well as in chapter 3 (sections 3.1.1 and 3.2.1). The amount of protein and excipients tending 

towards the formation of amorphous solids significantly influences the overall physical state of 

the particles formed via coprecipitation. At last, the continuous phase is removed via 

supercritical fluid extraction. The overall spherical particle form revealed for amorphous mAb1 

PCMC formulations via SEM (chapter 3 and 6) supported the hypothesis of spinodal 

decomposition. Based on confocal laser scanning fluorescence microscopy (section 3.1.3) 

proposing homogenous distribution of the protein within the amorphous mAb1 PCMCs, the 
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protein is not expected to be transported to the periphery of the droplets during the particle 

formation process, as opposed to the conception of Vos [1]. 

 

Figure 6-16: Particle formation process proposed for amorphous mAb PCMCs via spinodal 

decomposition model; color assignment: green: homogenous phase of aqueous protein-

carrier solution and solvent immediately after addition of the solvent; light green: “excipient 

and protein poor/solvent rich” phase; dark green: “excipient and protein rich/solvent poor” 

phase; yellow: precipitated protein; blue: precipitated carrier material. 

Probably, this proposed particle formation process was only applicable for amorphous mAb 

PCMC formulations and not for cytokine-coated microcrystals, as discussed in the following 

section, because an emulsion-like intermediate was not detected during the production of both 

proteinaceous and protein-free cytokine PCMC formulations. 

3.3.2 Precipitation of cytokine on separately prepared carrier crystals in 

comparison to standard one-step precipitation 

As protein-free particles corresponding to standard mAb1 formulation could not be produced, 

this study was limited to cytokine PCMCs. The cytokine PCMCs manufactured via two-step 

precipitation did not morphologically differ from those particles produced via coprecipitation of 

carrier material and protein (Figure 6-17). Moreover, no significant differences between the 

PCMCs produced via one-step and two-step precipitation were revealed with regard to protein 

content, monomer content, AUC in HP-SEC and biological activity (Table 6-6). The results were 

comparable to the values found for the bulk drug substance of the cytokine. Hence, irrespective 

of the type of preparation, the PCMC technology provided good overall process stability to the 

cytokine. 
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a  b  

c  d  

Figure 6-17: Cytokine PCMCs produced via a)/b) one-step and c)/d) two-step precipitation. 

These observations suggested that the so-called one-step precipitation might be subdivided 

into two separate processes, the parallel precipitation of crystalline “carrier rich/protein poor” 

material and amorphous “carrier poor/protein rich” solid subsequently attaching to the surface 

of the crystalline structures in a second step, thus leading to the formation of protein-coated 

microcrystals. If the cytokine was involved into the early precipitation step of the carrier 

material, one-step precipitation and two-step precipitation would probably affect the particle 

morphology as well as the protein process stability. A secondary protein coating step was also 

proposed by Vos based on his DLS and laser obscuration measurements [1]. The author 

hypothesized that the carrier crystals primarily formed via spinodal decomposition (see above). 

However, no observations supporting the latter hypothesis were made during the current study 

on cytokine PCMCs, as opposed to mAb1 PCMCs. Therefore, it is also possible that the 

formation of carrier crystals was based on the classical nucleation and growth model. However, 

in most real systems the transition of the two mechanisms is known to be gradual [11]. Thus, 

further detailed investigations on the PCMC formation process are indispensable to answer this 

question. According to Horn and Rieger, to understand the stages through which the formation 
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of colloidal particles pass it is necessary to experimentally record the particle formation process 

by time resolution from the timepoint when supersaturation is achieved [11]. As this procedure 

is not trivial at all, the description of the particle formation process is often still limited to a 

retrospective derivation from the particle structure formed. Correspondingly, there are no 

doubts that mechanistic differences exist in the formation of cytokine PCMCs, on the one hand, 

and mAb1 PCMCs, on the other hand, as also reflected by their supramolecular structure. 

Table 6-6: Protein process stability of cytokine PCMCs produced via one-step and two-step 

precipitation with respect to protein content, monomer content (HP-SEC), AUC in HP-SEC and 

biological activity; cytokine bulk drug substance contained 98.9 ± < 0.1 % monomer and 

resulted in an AUC of 315 ± 1 mAU*mL. 

 
One-step 

precipitation 

Two-step 

precipitation 

Protein content [%] 12.7 ± 0.1 11.7 ± < 0.1 

Monomer content [%] 98.8 ± 0.1 98.6 ± 0.1 

AUC in SEC [mAU*mL] 296 ± 16 293 ± 3 

Biological activity [IU/mg protein] (2.2 ± 0.4) x 107 (2.4 ± 0.3) x 107 

 

3.3.3 Precipitation of cytokine in the absence of carrier material 

This study aimed to investigate whether the cytokine could be successfully precipitated via 

standard PCMC process from a pure aqueous protein solution that did not contain any carrier 

material. When a mixture made of 2-methyl-2,4-pentanediol and isopropanol (1:1 v/v), 

saturated with all carrier components, was used as precipitating agent, the precipitation 

process resulted in the formation of a gel that could neither be further processed nor analyzed. 

Gel formation due to protein aggregation has been reported several times, as reviewed by 

Wang [61]. For example, Renard et al. studied the gelation and aggregation properties of 

β-lactoglobulin in ethanol/water solutions [62]. In the presence of pure saturated isopropanol, 

as opposed to unsaturated solvent, cytokine precipitation was detected, but the small amount 

of powder harvested did not allow for analysis of protein integrity. Thus, the saturation of 

isopropanol with all carrier excipients was prerequisite for the precipitation of the protein. 

After saturation of the solvent, residual carrier crystals were removed via filtration through a 

0.22 µm membrane filter (Stericup-GV, 47mm, PVDF, Sartorius, Göttingen, D). However, small 
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carrier particles passing the filter were assumed to act as heterogeneous nuclei indispensable 

for the precipitation of the cytokine. 

4 Conclusion 

Based on various studies on cytokine and mAb1 PCMCs focusing on the morphology, 

composition and stability of the particles, this chapter aimed to gain mechanistic insights into 

the PCMC formation process. The initial PCMC conception presented by Vos comprised a 

crystalline particle core made of carrier excipients that was coated by a protein layer. Confocal 

laser scanning fluorescence microscopy revealed such a supramolecular structure for crystalline 

mAb1 PCMCs containing 10 % antibody and 30 % trehalose. An equivalent assembly was also 

proposed for cytokine PCMCs with a protein load of 10 % that could successfully be separated 

into a crystalline rosette-shaped carrier fraction and a less dense amorphous fraction 

dominated by protein via Andersen Cascade Impactor in combination with SEM analysis. 

Furthermore, cytokine PCMCs could be manufactured via standard one-step precipitation, but 

also via two-step precipitation describing the protein precipitation on previously prepared 

carrier crystals. The precipitation type neither affected the morphology nor the protein process 

stability of the cytokine PCMCs. In contrast, two-step precipitation was not possible for 

amorphous mAb1 PCMCs because the carrier could not be processed in the absence of protein 

in batch mode. However, the presence of an emulsion-like state of the protein-free mAb1 

PCMC formulation was detected in this study via polarization microscopy. Transferred to 

proteinaceous mAb1 PCMCs, the inner dispersed phase was assumed to be made of much 

carrier material and protein but a small amount of solvent, as opposed to the outer continuous 

“excipient and protein poor/solvent rich” phase. Crystal growth was observed at the boundary 

and inside the dispersed droplets. Hence, the spinodal decomposition model seemed to be 

suitable to describe the mAb1 PCMC formation mechanism. After addition of a surplus of 

organic water-miscible solvent to the aqueous protein-carrier solution, phase separation of the 

homogenous phase was proposed to occur via spinodal decomposition resulting in one 

continuous “excipient and protein poor/solvent rich” and one dispersed “excipient and protein 

rich/solvent poor” phase. Diffusion of the solvent from the outer into the inner phase and from 

water in the opposite direction probably leads to supersaturation and finally precipitation of 
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protein and carriers in the inner phase. Spherical particles containing homogenously distributed 

protein and carrier material were suggested to form in this way, while the outer “excipient and 

protein poor/solvent rich” is removed via supercritical fluid extraction. This formation process 

was also in line with the particle morphology and supramolecular structure of mAb1 PCMCs 

representing uniform spherical particles of different size in which the protein was 

homogenously distributed instead of being bound to the surface. Thus, these particles could 

only be fractionated by size via Andersen Cascade Impactor. 

The question whether this particle formation process might also be applied to cytokine PCMCs 

and crystalline mAb1 formulations could not be answered yet because an emulsion-like state 

was not observed in these cases. Therefore, additional mechanistic investigations are necessary 

to clarify the PCMC formation mechanism. Depending on the sum of protein and trehalose 

dihydrate in the formulation, both typically forming amorphous solids, crystalline or amorphous 

particles were formed. A completely amorphous state of mAb1 PCMCs could be achieved in the 

case of ≥ 85-90 % (m/m) mAb1 and trehalose dihydrate. Despite the structural differences 

between crystalline and amorphous mAb1 PCMC formulations, only marginal differences with 

respect to protein storage stability, namely turbidity values and monomer content, were 

revealed after storage at 40 °C/32 % RH for 4 weeks. All formulations provided good overall 

stability to the antibody. Hence, in all cases, the amount of amorphous excipient fraction was 

sufficient for adequate protein stabilization. 
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Chapter 7  

F i n a l  s u m m a r y  

The focus of the thesis was on pharmaceutical applications of the protein-coated microcrystals 

(PCMC) technology. As described in detail in chapter 1, the PCMCs represent an alternative 

method for the stabilization of protein in the solid state via coprecipitation of protein and 

carrier material. Apart from mechanistic investigations, the thesis included formulation 

considerations of cytokine and mAb2 PCMCs as well as the evaluation of concentrated PCMC 

suspensions for s.c. administration as final dosage form. 

Chapter 2 aimed to develop a stable HSA-free formulation of a hydrophobic cytokine. A 

formulation screening that focused on protein process stability as well as on PCMC formation 

and particle structure was conducted to optimize the PCMC composition with respect to amino 

acid, sugar and salt. As only minor differences were revealed between the formulations during 

this study, a promising one comprising valine and sucrose as carriers was selected for detailed 

investigation of protein bioactivity and long-term stability over one year at 5 ± 3 °C and 

22 ± 3 °C. These cytokine PCMCs completely retained their bioactivity during the PCMC 

production process. The amount of aggregated species monitored via HP-SEC and SDS-PAGE as 

well as the oxidation level of the protein only augmented slightly over storage time in 

dependence of the temperature. Stored at 5 ± 3 °C, the PCMCs provided high overall stability to 

the cytokine over one year. In comparison to long-term stability studies of marketed lyophilized 

cytokine formulations, the stability as PCMCs was slightly superior. 

Similarly to the preceding section of the thesis, chapter 3 dealt with the formulation of a 

therapeutic monoclonal antibody (mAb2). The formulation screening aimed to reduce the 

number of carrier excipients and thus investigated the influence of each carrier component, 

namely sodium chloride, glycine, histidine, phenylalanine and trehalose, on the protein process 

stability. Apart from positive effects on the manufacturability of PCMCs, the use of sodium 

chloride inhibited the formation of considerable amounts of insoluble protein aggregates. 

Glycine, histidine and trehalose elicited positive effects on the monomer content. Trehalose 
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further prevented glycine from crystallization and thus ensured the formation of a homogenous 

amorphous product. Phenylalanine had no positive effects on the PCMC product quality and 

was thus eliminated in the lead formulation to reduce the complexity of the system. Based on 

an accelerated short-term stability study conducted at 40 °C over 4-8 weeks, an optimum 

protein loading of approx. 50-62.5 % was revealed for the lead formulation. Higher protein load 

led to increased amounts of soluble protein particles detected via HP-SEC and SDS-PAGE, but 

no alterations of tertiary protein structure were noticeable in 2nd-derivative UV and intrinsic 

fluorescence spectra. Thus, mAb2 formulated as PCMCs provided good overall storage stability, 

not only compared to corresponding liquid formulations that were prone to both aggregation 

and fragmentation phenomena. 

The development of PCMC suspensions for subcutaneous administration required 

physiologically acceptable solvents that show good protein compatibility and that do not, at 

least substantially, dissolve the PCMC powder prior to application. Besides organic water-

miscible solvents, namely glycerol, NMP, propylene glycol and PEG 400 (chapter 4), oily 

vehicles, sesame oil, benzyl benzoate and MCT (chapter 5), were studied for the resuspension 

of mAb1 PCMC powder. Among the organic water-miscible solvents, glycerol and PEG 400 were 

found to be overall compatible with mAb1 PCMCs with respect to protein aggregation 

(turbidimetry, HP-SEC), protein structure (FT-IR, intrinsic fluorescence and 2nd-derivative UV 

spectroscopy) and specific binding capacity of the antibody, irrespective of the solvent content 

ranging from 10 to 100 % (v/v). Macroscopically acceptable suspensions were formed in the 

presence of ≥ 50 % solvent. In the case of propylene glycol, at least 90 % solvent was necessary 

for the formation of a suspension. However, these high propylene glycol concentrations 

induced the formation of considerable amounts of insoluble and soluble protein aggregates and 

perturbation of secondary and tertiary protein structure. For NMP, a PCMC suspension was 

obtained in the presence of the pure solvent leading to a significant level of aggregated 

antibody. Reduction of the solvent concentration either led to complete dissolution of the 

PCMC powder (90 and 70 % NMP) or protein instability in terms of aggregate formation or/and 

conformational changes (≤ 50 % NMP). Consequently, glycerol and PEG 400 are suggested to be 

used for further development of PCMC suspensions in water-miscible organic solvents for 

subcutaneous delivery. 
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Besides the analysis of the compatibility between protein and solvent, the evaluation of the oily 

components as resuspension media included the development of an appropriate in vitro 

release model, the investigation of protein integrity after release from oily suspensions, the 

compatibility between the oily solvents and primary packaging material as well as the 

characterization of rheology and injectability of the suspensions. A 24 h incubation at 40 °C in 

water with integrated short-term stirring and final centrifugation at 100 g for 30 min ensured 

100 % recovery of mAb1. Irrespective of the choice of oily solvent, the integrity of mAb1 was 

completely retained with respect to aggregation, secondary and tertiary protein structure and 

specific antigen binding affinity after release from oily PCMC suspensions. The injection forces 

for the oily solvents that depended on the siliconization process of the glass syringes were not 

impacted by 6 months storage at 22 ± 3 °C proving compatibility with the primary packaging 

material. The maximal solid content achieved for oily suspensions based on MCT and 70:30 and 

30:70 (v/v) mixtures of sesame oil and benzyl benzoate was 316 mg/mL, corresponding to 

138 mg/mL protein. In dependence of the viscosity of the pure oils, the viscosity of the 

suspensions, showing shear thinning behavior, augmented with increasing solid content. The 

relationship between viscosity and injectability of the suspensions was found to be linear. 

Maximal injection forces were approx. 40 N for a 30:70 (v/v) sesame oil benzyl benzoate 

suspension with a solid content of 316 mg/mL, opposed to 50 N for the inverse mixture and 

MCT. Thus, the formulation of mAb1 as oily PCMC suspension was feasible, but it was not 

beneficial with respect to viscosity and injectability compared to a corresponding mAb1 

solution.  

Based on various studies on cytokine and mAb1 PCMCs with respect to morphology, 

composition and resulting stability, chapter 6 aimed to gain mechanistic insights in the PCMC 

formation process. The crystallinity/amorphicity of mAb1 PCMCs depended on the protein load 

(PL) and trehalose (tre) content of the formulation. A combination of either a protein load of 

50 % with a trehalose content of ≥ 35 % or a trehalose content of 30 % with a protein load of 

≥ 60 % were required to obtain completely amorphous mAb1 PCMCs according to the XRD 

spectra. The storage stability over 4 weeks at 40 °C/32 % RH of three amorphous formulations 

(60 % PL 30 % tre, 50 % PL 40 % tre, 40 % PL 50 % tre) and one crystalline powder 

(10 % PL 30 % tre) was analyzed with respect to insoluble and soluble protein aggregates 
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(protein recovery, turbidity, HP-SEC, SDS-PAGE) as well as morphological and carrier stability 

(SEM, XRD). Apart from ongoing NaCl crystallization detected for crystalline mAb1 PCMCs, no 

crucial differences were found between the formulations all providing good overall storage 

stability to the antibody. Homogenous mAb1 distribution within the spherical particles for the 

amorphous mAb1 formulations, as opposed to the crystalline one, was detected via confocal 

laser scanning fluorescence microscopy. The crystalline formulation was characterized by non-

fluorescent rod-shaped glycine crystals with amorphous proteinaceous material deposited on 

the crystal surface. Powder fractionation via Andersen cascade impactor confirmed the 

presence of corresponding particle fractions in cytokine PCMCs, namely crystalline carriers 

forming the core of the particles and amorphous proteinaceous material being attached on the 

surface. The overall structure of these particles was hence in line with the initial idea of PCMCs, 

unlike amorphous mAb1 PCMCs that could only be separated depending on the size of the 

spherical, homogenously composed particles. The manufacturing of cytokine PCMCs was 

further feasible via standard one-step precipitation as well as by two-step precipitation in batch 

mode. Two-step precipitation included the separate production of carrier crystals on which the 

protein was coated in a second step. The production method did not influence the morphology 

or the protein process stability. Batch mode production of protein-free mAb1 PCMCs was only 

feasible with some limitations. The existence of an emulsion-like state characterized by 

dispersed droplets of an “excipient and protein rich/solvent poor” phase in a continuous 

“excipient and protein poor/solvent rich” phase was observed during the formation of these 

particles. Crystal growth at the liquid-liquid interface as well as inside the droplets was 

detected via polarization microscopy. Hence, the spinodal decomposition model was suggested 

to be appropriate to describe the formation process of these mAb1 PCMCs. Overall, the 

physical state, morphology and supramolecular structure of the PCMCs that were found to 

strongly depend on the formulation composition including protein type (cytokine vs. mAb1) and 

load as well as choice and amount of carrier excipients, suggested that the formation 

mechanisms of these particles differed to some extent. 

Thus, although further investigations on the PCMC formation process are still necessary to 

explain the self-assembly of the particles in detail, the studies provided an extensive 

characterization of cytokine and mAb PCMCs, not only with respect to formulation 
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considerations but also regarding mechanistic questions. Organic water-miscible as well as oily 

solvents were shown to be compatible with mAb1 PCMCs allowing for subcutaneous 

administration as PCMC suspension. This final dosage form, especially in combination with a 

dual chamber device enabling resuspension immediately before administration, could be an 

alternative to liquid protein formulations in the case of reduced solubility or poor overall 

stability. 
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List of abbreviations 

AFM atomic force microscopy 

Arg arginine 

Asp aspartic acid 

AUC area under the curve 

BI Boehringer Ingelheim 

BSA bovine serum albumin 

CD circular dichroism 

CLSFM confocal laser scanning fluorescence microscopy 

CO2 carbon dioxide 

CSP cell surface protein 

DLS dynamic light scattering 

DMSO dimethyl sulfoxide 

DSC differential scanning calorimetry 

EDTA ethylenediaminetetraacetic acid 

ELISA enzyme-linked immunoassay 

EMA European Medicines Agency 

FDA US Food and Drug Administration 

FNU formazine nephelometric units 

FT-IR fourier transform infrared spectroscopy 

GC gas chromatography 

Glu glutamic acid 

Gly glycine 

HCl hydrochloride, hydrochloride acid 

His histidine 

HP-SEC high pressure size exclusion chromatography 

HSA human serum albumin 



Appendix 

ii 

ID inner diameter 

IFN interferon 

Ig immunoglobulin 

IgG immunoglobulin class G 

IgG1 immunoglobulin G subclass 1 

IgG2 immunoglobulin G subclass 2 

kDa kilodalton 

K2SO4 potassium sulfate 

L length 

mAb monoclonal antibody 

MCT medium-chain triglycerides 

MFI microflow-imaging 

MOPS 3-(N-morpholino)-1-propanesulfonic acid 

MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

Na2CO3 sodium carbonate 

NaCl sodium chloride 

NaHCO3 sodium bicarbonate 

NaOH sodium hydroxide 

NMP N-methyl-pyrrolidone 

NTU nephelometric turbidity unit 

PBS phosphate buffered saline 

PCMC protein-coated microcrystals 

PEG polyethylene glycol 

Ph.Eur. European Pharmacopoeia 

Phe phenylalanine 

pI isoelectric point 

PL protein load 

rpm rounds per minute 

RH relative humidity 

RI refractive index 



Appendix 

iii 

RP-HPLC reversed phase high pressure liquid chromatography 

s.c. subcutaneous 

SCF supercritical fluid 

SDS sodium dodecyl sulfate 

SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis 

SEM scanning electron microscopy 

Suc sucrose 

TFA trifluoroacetic acid 

Tg glass transition temperature 

Tre trehalose 

UV ultraviolet 

Val valine 

VIS visible 

WFI water for injection 

XRD x-ray powder diffraction 
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