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Zusammenfassung

Ein weitverbreiteter Ansatz zur Losung nichtparametrischer Regressionsprobleme
besteht darin, eine Gerade oder ein Polynom lokal - d.h. nur in einer bestimmten
Umgebung des jeweils interessierenden Punktes - an die Daten anzupassen. Diese
Arbeit widmet sich zunéchst der Frage, wie die bestehenden Konzepte verallge-
meinert, und damit, wenn moglich, auch verbessert werden kénnen. Der Schwer-
punkt liegt hierbei auf Generalisierungen in zwei Richtungen: Einerseits werden die
Polynome durch geeignete glatte allgemeine Basisfunktionen ersetzt, und anderer-
seits wird der Schatzmechanismus, der auf der Kleinste-Quadrate-Methode beruht,
geeignet modifiziert. Wie sich zeigt, ist ersteres Konzept vornehmlich zur Bias- Re-
duktion interessant, wohingegen letzteres vor allem unter dem Gesichtspunkt der
Ausreifler-Robustheit sinnvoll einsetzbar ist. Es ergeben sich hierbei interessante
Parallelverbindungen zu anderen Gebieten der Mathematik und Statistik, insbeson-

dere zu den bekannten Siatzen von Taylor und Horvitz-Thompson.

Im weiteren Verlauf der Arbeit werden lokale Ansitze fiir bestimmte Problemstel-
lungen herangezogen, fiir die sie bisher wenig beachtet wurden. Es stellt sich her-
aus, dass lokale Glattungsmethoden, geeignet kombiniert, sinnvoll fiir das Online-
Monitoring anwendbar sind, d.h. zur Echtzeitiiberwachung von Zeitreihen hin-
sichtlich plotzlicher Strukturbriiche. Zum Ende wird der bisherige Rahmen des
funktionalen Zusammenhangs zwischen abhingigen und unabhangigen Variablen
verlassen und ein lokaler Ansatz zur Berechnung glatter Kurven durch die “Mitte”

einer mehrdimensionalen, moglicherweise verzweigten, Datenwolke entwickelt.



Summary

Local smoothing methods are a widely used tool in the context of nonparametric
regression. The essential idea is to perform a linear or polynomial regression locally
in a neighborhood of the target point. This method is generalized in two ways.
Firstly, the polynomials are substituted by arbitrary smooth basis functions, and
secondly, the estimating methodology, which is based on the least squares method,
is modified in a suitable way. It appears that the first concept is useful for bias
reduction, while the second one is interesting for robustifcation against outliers in
the predictors. As by-products some interesting relations to other mathematical and
statistical topics are unveiled, concerning in particular the theorems from Taylor

and Horvitz-Thompson.

In the further course of the thesis the interest turns to some particular problems
which have not been a domain of local methods so far. It turns out that local
smoothing methods, suitably combined, are useful for the online monitoring of time
series in order to detect sudden breaks or jumps. Finally, the restriction of modelling
only functional data is abandoned and a new approach to calculate principal curves,
i.e. smooth curves which pass through the “middle” of a multidimensional, possibly

multiply branched, data cloud, is developed.
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Chapter 1

Introduction

1.1 Thoughts about local smoothing

The roots of local polynomial modelling reach far back into the nineteenth century.
The Italian meteorologist Schiaparelli (1866) and the American mathematician De
Forest (1873) were amongst the first to work on local polynomials. In these early
approaches the predictors were confined to be fixed integers, as e.g. in Spencer
(1904), who fitted mortality rates against age. The methods were based on gradua-
tion, i.e. a suitably weighted variant of moving averages. Henderson (1916) further
elaborated the concept, but then the topic was largely forgotten in statistics. The
ideas however survived in economic time series, starting with the book by Macaulay
(1931) and producing the program X-11 in 1954, developed by the U.S. Bureau of
Census, which provided the first computer implementation of smoothing methods.
Details about X-11 are found in Shiskin, Young & Musgrave (1967).

At that time, statisticians rediscovered the issue and began to develop local mod-
elling as it is understood today, weighting the (possibly random) independent vari-
ables locally by means of kernel functions. The first ones to treat this problem were
Nadaraya (1964) and Watson (1964), who confined to the case of local constant
smoothing. Stone (1977), Cleveland (1979), Katkovnik (1979) and Tsybakov (1986)
did groundbreaking work on extending this concept to local polynomials. We will
not provide a complete repetition of the theory and application of local polynomial
modelling in this introduction, since this will be done implicitely in the introduc-
tions of the following chapters. For now, we will briefly provide as much backgound
as necessary for this introduction. For bivariate data (X, Y;),i = 1,...,n, the

estimation of the regression function m(-) at a target point x is performed by min-

1



2 CHAPTER 1. INTRODUCTION

imizing
n p 2 X
Z{E—Zﬂxxi—x)ﬂ} K () (1)
=1 3=0

in terms of [y, ..., 8,, where K is a kernel function and h a bandwidth, yielding

an estimate m(z) = B, according to Taylor’s theorem. The bandwidth A may
either be constant, or depend on the predictors X; (global variable bandwidth)
or the target point (local variable bandwidth). The bandwidth can be selected
using classical methods such as cross-validation, the AIC criterion, etc., or plug-in-
methods, which perform a pilot estimate of the mean squared error, which is then
minimized in terms of the bandwidth.

However, the existence of this method did not guarantee its acception in the sta-
tistical community, and the path leading to the breakthrough was everything but
smooth. In the early eighties the scientific interest once again left the local polyno-
mials and attention turned to the development of modified kernel type methods, in
particular to improve the poor performance of the Nadaraya-Watson estimator at
the boundary (Gasser, Miiller & Mammitzsch, 1985, Miiller, 1991). In that period
it seemed to be more elegant to modify the kernel function of local constant esti-
mators than to work with polynomial degrees p > 0. Chu & Marron (1991) even
discarded local polynomial regression as an “obscure alternative method”. Fan &
Marron (1993) wondered “why it took so long for the smoothing community ... to
understand fully the benefits of local polynomials”. They speculate that the reasons
for this were the “equivalence results” (Miiller, 1987), “whose main intuitive mes-
sage was that for equally spaced x;, away from the boundary, there is essentially
no difference between local polynomial and traditional kernel estimators” for a suit-
ably chosen (or better: designed) kernel K. However, the effort to obtain those
kernels is extraordinarily high, and these methods are “not worth the space they
take up in the practicing statistician’s toolbor” (Hastie & Loader, 1993b), whereas
local polynomial smoothers adapt to boundary points or random design automati-
cally. It was mainly the merit of Fan (1992) and Hastie & Loader (1993a) to point
this out clearly and to renew the interest in local polynomial regression, setting
off a flood of publications in the middle of the last decade. As a landmark work
we mention Ruppert & Wand (1994), who developed asymptotics for multivariate
local polynomial regression. Indeed, it were the asymptotic results which enabled
in a better way to compare local smoothers and to perform inference for them,
leading to a deeper insight into the benefits of local polynomial smoothing. For
an overview of the state of the art we may refer to two excellent books written by
Fan & Gijbels (1996) and Loader (1999b), summing up concepts, theoretical results

and applications of local polynomial modelling. The divulgence of local polynomials
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was accelerated by the S-Plus implementation of Cleveland’s LOWESS method (for
a description see Cleveland & Grosse, 1991). A more capacious software package
named LOCFIT has meanwhile been developed by C. Loader and is described in
his above mentioned book.

Local polynomial regression is widely used today and has proven to have nice the-
oretical properties and to work fine in practice. Nevertheless, it suffers from a
somewhat bad reputation. Raymond Carroll (2003) stated on the occasion of a
talk at the Department of Statistics, University of Munich, that “the world is mov-
ing towards the splines”, and that the most noteworthy benefit of local polynomial
smoothing is that it is theoretically easy to analyze. A variety of other points are
still discussed within the local smoothing community or challenged from outside.

The remainder of this section is dedicated to the discussion of these issues.

The largest reproach to local smoothing methods is that they only work well for uni-
variate predictors, at the most for bivariate predictors, since for higher dimensions
the data get too sparse and the number of parameters rises too rapidly, commonly
called the “curse of dimensionality” (Bellmann, 1961). This problem is even ad-
mitted by the most convinced local smoothing propagators. However, even for high
dimensions local smoothing does not necessarily need to fail. Cleveland & Devlin
(1988) state that “some have mistakenly supposed that the curse makes multivari-
ate smoothing” - that is, smoothing with d > 1 independent variables, “a method
to avoid. What must be avoided is allowing the bandwidth to remain fized as d
increases...”.  They demonstrate that local smoothing with three independent
variables makes sense, and Fowlkes (1986) even successfully employs local smooth-
ing for more than three independent variables. Of course, the bandwidth cannot be
arbitrarily increased, since then the curvature of the underlying function cannot be
recovered properly. Hastie, Tibshirani & Friedman (2001) note that “the complexity
of functions of many variables can grow exponentially with the dimension, and if we
wish to be able to estimate such functions with the same accuracy as functions in
low dimensions, then we need the size of our training set to grow exponentially as
well.” However, citing again Cleveland & Devlin (1988), “this is not a defect of the
method but a statement that the more complicated the regression surface becomes,
the larger n must be to get good estimates of it. FExactly the same considerations

»

obtain whatever the method of estimation.” Thinking this point further, if local
methods fail for a certain multivariate data problem, this is due to a lack of rele-
vant information around the target point. This information is lacking regardless of
the smoothing method, and any smoothing method yielding a result for the same
data arouses the suspicion that it relies on data points that are not relevant for the

target point. It is a philosophical question whether a possibly unreliable estimation
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is preferred to none at all. We will not judge this here, but keep in mind that a
perpetuum mobile does not exist, neither in physics nor in statistics. As a solution
to those problems, one has to “attack the curse of dimensionality by implying some
structure in the predictor space” (Fahrmeir & Tutz, 2001) and therefore some kind
of foregoing dimension reduction or model simplifying is necessary. Fan & Gijbels
(1996, p. 264ff) and Loader (1999b, p. 53ff) describe a variety of such methods,
which still enable local smoothing for high dimensional data.

Another issue that has frequently been raised is that of computational speed. It
had been “general folklore in smoothing ... that smoothing splines are much faster
computationally” (Fan & Marron, 1993) than local polynomial methods. Using fast
implementations of kernel methods as binning (Hérdle & Scott, 1992), local poly-
nomial methods are, however, “at least competitive with smoothing splines” (Fan &
Marron, 1993). For univariate predictors there is not much difference in speed, since
O(n) implementations exist for either method (Hastie & Loader, 1993b, Fan & Mar-
ron, 1994, Fan & Gijbels, 1996). For multivariate predictors, the local polynomial
approach even seems to be superior. According to Cleveland & Devlin (1988), their
loess method achieves O(n) speed in multiple dimensions, while fitting thin plate
splines to two or more independent variables is an O(n?) computation (Wahba,
1984). However, this comparison, also given in Hastie & Loader (1993b), is not
quite fair: The O(n) complexity for local polynomial smoothing does not imply
bandwidth selection, but the O(n?) time for splines includes the selection of param-
eters. A recent work by Wood (2003) even shows that, using thin plate regression
splines, the complexity can be reduced to nearly O(n?). Including bandwidth se-
lection, local smoothers might achieve magnitudes about O(n?) as well, but will
hardly be faster.

Bandwidth selection has been one of the most discussed problems in the last years,
and the controversy is still ongoing with undiminshed eagerness. In the nineties, a
large number of authors, e.g. Park & Marron (1990), tried to show that the clas-
sical methods are inferior to plug-in-methods. Ruppert, Sheather & Wand (1995)
conclude that “one of the main findings of this research is that traditional smooth-
ing methods, such as those based on cross-validation, exhibit very inferior asymp-
totic and practical performance”. This, however, is questionable, as Loader (1999a)
demonstrates in a startling work. He argues that “plug-in methods are heavily depen-
dent on arbitrary specification of pilot bandwidths and fail when this specification is
wrong. The often-quoted variablility and undersmoothing of cross-validation simply
reflects the uncertainty of bandwidth selection” and is not attributable to deficien-
cies of classical methods. Asymptotically, plug-in based estimates are even beaten

by their own pilot estimates, and the allegedly better asymptototic performance in



1.1. THOUGHTS ABOUT LOCAL SMOOTHING 5

comparison to classical methods is due to the fact that some extra assumptions are
made, which the classical methods do not need. Local methods have been criticized
that bandwidth selection is practically cumbersome, since for a flexible modelling
of the regression function a variable bandwidth has to be applied. Using plug-in
methods, variable bandwidth selection is admittedly awkward and compuationally
demanding. However, variable bandwidth selection is possible straightforwardly
within classical methods. For example, cross-validation may easily be extended to
local cross-validation (Loader, 1999b, p. 198). This thesis addresses bandwidth
selection for special local smoothing settings in Sections 2.1.6, 3.3.5, 4.3.2 and 5.7.

Local polynomial methods have proven to have excellent asymptotic properties. In
particular, Fan (1993) showed that the local linear smoother achieves 100% min-
imax efficiency (which means that the local linear smoother minimizes the mean
squared error over all linear smoothers, i.e. smoothers of the form Y w;Y;, simul-
tanously for all smooth regression functions m). It is often questioned whether
these theoretical results have significance in reality, since for real data the condi-
tion n — oo is never fulfilled, and the condition h — 0 in practice implies that
no data are situated in the support of the kernel. Matt Wand (2001), who surely
cannot be charged with being reluctant to develop asymptotics, finished his talk at
the Euroworkshop of Statistical Modelling in Hohenried, Germany with the words:
“Don’t dwell in asymptotics”. Asymptotics do not provide any reliable rule of how
real data behave or how their properties are. Asymptotics are a helpful tool to
compare smoothing procedures by means of the mean squared error or minimax
properties (whereby local polynomial smoothers are competitive or superior com-
pared to any other smoothing method), and they provide some hints on how to
choose tuning parameters which are otherwise possibly hard to find. This thesis
contains a big part of asymptotics, with five theorems included in Sections 2.1.3,
2.2.2, 2.2.3 and 3.6. The latter one however typifies the discrepance which might
occur between theory and practice: The asymptotical result is even contrary to our

practical recommendation given in Section 3.3.

Smoothing methods in general are weak in applications as structure or pattern
recognition, in particular edge detection and the like, since they smooth about
edges and thus destroy the structure which was to be detected. However, this is
fortunately not a particular problem of [ocal smoothing methods. Localization even
enables a more flexible handling of sudden changes of the data structure than other
concepts. Chu, Glad, Godtliebsen & Marron (1998) describe two variants of the
Nadaraya-Watson estimator which are feasible for edge detection and applications
such as image processing. Kauermann (2001) recently provided a related concept

based on local mixture modelling. In this thesis, two chapters deal explicitely with
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problems related to pattern recognition. In Chapter 4 we provide an algorithm for
the detection of breakpoints of online monitored time series, and in Chapter 5 we

use local methods to introduce a new method to find principal curves.

Reflecting all these points, there seems to be no reason to discriminate local polyno-
mial regression in comparison to other smoothing techniques. Theo Gasser, quoted
by Fan & Marron (1993), even states that “we have not found any disadvantages
of the local polynomial method as yet. It should become a golden standard non-
parametric technique”. The path to acceptance as a golden technique will continue
to be laborious. In this thesis, we will try to sweep some obstructions away by
applying local (polynomial) methods on topics which are not yet known to be a do-
main of local smoothing (online breakpoint detection, outlying predictors, principal
curves), and partly construct new obstacles by developing improved local smoothing
methods which show that the local polynomial approach is not always the optimal

solution.

1.2 Guideline through the thesis

This thesis is divided into four substantial chapters, which address various issues
concerning data analysis with local smoothing methods. Chapters 2 and 3 treat
extensions of local polynomial modelling. In particular, in Chapter 2 the linear basis
X;—x in (1.1) is substituted by general basis functions ¢(X;) — ¢(x) and it is shown
that this leads to an improvement of the performance of the estimates in certain
situations. In Chapter 3 an additional weight function «(-) is employed in the
minimizing problem (1.1) with the objective of achieving robustness against outlying
predictors. Chapter 4 describes an application of local smoothing techniques. In
Chapter 5 we abandon the restriction of fitting functions, i.e. we fit spirals and
other complex patterns, via a new approach for finding principal curves.

Local Fitting with General Basis Functions
In this chapter the method local poynomial fitting, which can be seen as a
local fit of the data against the basis functions 1,x, ..., 2P, is extended to a
more general class of basis functions. In the univariate case we focus on the
power basis, i.e. a basis which consists of the powers of an arbitrary smooth
function, and derive an extension of Taylor’s theorem for this basis. Using
this theorem, some asymptotic properties of the new estimator are derived.
It is shown by means of simulated examples and theoretical considerations
that significant bias reduction is possible if the basis carries some informa-

tion about the underlying function. Finally, some remarks about bandwidth
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selection are given and the method is applied to real data. Similar work is
done in the multivariate setting. The asymptotic variance is calculated for
arbitrary smooth multivariate basis function. Computation of the asymptotic
bias, however, again requires to generalize Taylor’s theorem, which is only
possible by a confinement to basis functions without interactions. We provide
an algorithm to construct a data-adaptive basis and demonstrate (more im-
pressively than in the univariate setting) that local fitting with general basis
functions makes sense and may lead to significant improvements of the results.
The content of Section 2.2 has been published in “Computational Statistics”
(Einbeck, 2003). In addition, some remarks concerning the generalized Taylor

theorems are given in Section 2.3.

Local Smoothing with Robustness against Outlying Predictors
Outlying pollutant concentration data are frequently observed in time series
studies conducted to investigate the effects of atmospheric pollution and mor-
tality /morbidity. These outliers may severely affect the estimation procedures
and even generate unexpected results like a protective effect of pollution. Al-
though robust methods have been proposed to downweight the effect of outliers
in the response variable distribution, little has been done to handle outlying
explanatory variable values. We consider a robust local polynomial smooth-
ing technique, based on downweighting points with a small design density by
plugging the estimated density into the minimizing problem (1.1), which may
be useful for such purposes. Using data from a study conducted in Sao Paulo,
Brazil, it is shown how an unexpected form of the relative risk curve of mor-
tality attributable to pollution by SO5 obtained via nonrobust methods may
be completely reversed when the proposed technique is employed. We focus
on univariate local linear smoothing, though the method is not restricted to
this case, since the weights may be plugged into any loss or likelihood function
which is to be minimized or maximized, respectively. The last two sections
are dedicated to providing some deeper insight into the theoretical properties
of the new estimator, unveiling a surprising analogy to the Horvitz-Thompson

estimator.

Online Monitoring with Local Smoothing Methods and Adaptive Ridging
In this chapter an application of standard local smoothing procedures is pro-
vided. The objective is to detect jumps or breaks of trends in time series
which are recorded online, as met e.g. in clinical information systems. “On-
line” thereby implies that at each time point the future (i.e. all data points to
the right) is unknown and one has to make a decision based on observations

from the past. At a time point ¢, we therefore consider a long term estimate
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and a short term estimate (where the long term estimate uses information over
a larger time span than the short term estimate) at the value ¢. The essential
idea is that these estimates yield similar results when no break point has oc-
cured in the early past, but will differ when there has been a break of trend or
jump shortly before. The long term estimate is calculated by combining local
constant and local linear smoothing in a ridge estimate. The methodology
is demonstrated by various examples. The paper is to appear in “Journal of
Statistical Computation and Simulation” (Einbeck & Kauermann, 2003).

Local Principal Curves
Principal Curves are a relatively new topic, firstly introduced by Hastie &
Stuetzle (1989) as a generalization of principal components, allowing for gen-
eral smooth curves which pass through the “middle” of a multidimensional
data cloud. Since principal curves are not restricted to fit functions, concepts
which are based on minimizing a vertical residual criterion as in (1.1) are not
applicable, and consequently completely new strategies are necessary. Today,
a variety of definitions of principal curves exist and accordingly a variety of
algorithms to estimate them. However, the large majority of them are global
methods, i.e. all data points are used to estimate the principal curve at any
location. Apart from some technical problems, global approaches lead to ex-
ploding computational costs for highdimensional data. A new tool to estimate
local principal curves is provided, which is based on localized principal com-
ponents. Tuning parameters can easily be selected regarding the coverage, i.e.
the proportion of the data “covered” by the principal curve. The method is
applied on simulated and real data. In particular, we show that the concept

is useful to reconstruct geographical structures as river outlines.



Chapter 2

Local Fitting with General Basis

Functions

2.1 Univariate predictors

2.1.1 Introduction

In the last years a huge amount of literature about local polynomial modelling has
been published. An overview of the current state of the art was given in Fan &
Gijbels (1996). Various extensions followed, in particular about ridging (Seifert &
Gasser, 2000), bias reduction (Choi & Hall, 1998), the treatment of measurement
errors (Carroll, Maca & Ruppert, 1999 and Lin & Carroll, 2000) and improvements
concerning the shape of the smoothing matrix (Zhao, 1999) of the local linear

smoother.

Local polynomial modelling is proposed for fitting data which cannot be modelled
satisfactory by global polynomials, as for example the famous motorcycle data (see
Section 2.1.7). In the following a short review of this method is given. Consider
bivariate data (X1,Y}),. .., (X,, Y,), which form an i.i.d. sample from a population
(X,Y). We assume the data to be generated from a model

Y = m(X) + o(X)e, (2.1)

where E(¢) = 0,Var(e) =1, and X and € are independent. Of interest is to estimate
the regression function m(z) = E(Y|X = z) and its derivatives m'(x), m"(z), ...,

m®) (z). A Taylor expansions yields

Bi(x)(z — z)’, (2.2)

) (x .
m(z)%z '( )(Z—$)]E

P
=0 I

.
M-
(=]
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given that the (p+ l)th derivative of m(-) in a neighborhood of z exists. We define
Ku(-) = +K(3), where K is a kernel function which is usually taken to be a non-
negative density symmetric about zero. h denotes the bandwidth which determines
the size of the neighborhood of which the covariate values which shall influence the
fit are chosen. The task of finding the appropriate bandwidth is the crucial point of
local polynomial fitting. See Section 2.1.6 for an overview on literature concerning

bandwidth selection. Minimizing

n

Z{n = B, —x)j} Ki(X: )

i=1

leads to the locally weighted least squares regression estimator B(w) =

(Bo(), ..., By(x))T and the corresponding estimation functions
m9 (z) = j16;(x) (2.3)
for m(x),j = 0,...,p. Alternative approaches focussed on robust nonparametric

regression (Fan, Hu & Truong, 1994) or on estimating the conditional median or
quantiles instead of the mean function (Honda, 2000 and Yu & Jones, 1998).

According to equation (2.2), we model data pairs (X, Y") locally around z by
Y =fo(x) + fi(2)(X —2) + ... 4 Bp(a)(X —z)" + o(X)e.
By transforming parameters, this can be written as
Y =ap(z) + oq(z)X + ...+ ap(2) XP + 0(X)e.

Thus, local polynomial modelling can be interpreted as fitting the data locally
against the basis functions 1, X, X2, ..., X?. An obviously arising question is now:
Why should just these basis functions be the best possible ones? In the sequel we
will extend the theory of local polynomial fitting, which is restricted to polynomial
basis functions, to a wide range of other basis functions, and give an idea of the
advantages and problems coming up by using arbitrary basis functions. A possible

choice of basis functions are e.g. Gaussian kernels or the trigonometric functions.

In a general framework one may use the basis functions ¢o(X), ¢1(X), ..., ¢p(X),
which are arbitrary differentiable functions ¢; : R +— R,7z = 0,...,p. This can lead
to very good - and tremendously bad - results, as is shown in Section 2.1.8. However,
theoretical results for the local estimator are only available under some restrictions
on the basis functions. Regarding (2.2) and (2.3), it is seen that estimation is
based on Taylor’s expansion. Taylor’s theorem is also necessary for the derivation

of important asymptotic results as the asymptotic bias of the local polynomial
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estimator. Asymptotics are a useful tool to find bandwidth selection rules etc., so

that they play an important role for the use of the estimator in practice.

Thus, if we want some theoretical background, we need to develop a new Taylor
expansion for every basis we want to use. Of course this will not be possible for
all choices of basis functions. In the following section we focus on a special case,
namely the power basis, where this is in fact possible and describe the estimation
methodology. In Section 2.1.3 we provide some asymptotics for estimating the
conditional bias and variance of this estimator. In Section 2.1.4 we apply this
method to a simulated data set and compare the results for various basis functions.
We improve these results significantly in Section 2.1.5 by using data-adaptive basis
functions. In Section 2.1.6 we give some remarks on bandwidth selection. We apply
the method on a real data set in Section 2.1.7, and in Section 2.1.8 we show some

results obtained when using the most general model.

2.1.2 The power basis

Definition 2.1.
Let ¢ : R — R z — ¢(z2) be a differentiable function. Then the functions

Lo(2),...,0°(2)

are called a power basis of degree p.

Taylor’s theorem, as found for example in Lay, 1990 (p. 211), can be extended as
follows:

Theorem 2.1 (Taylor expansion for a power basis).
Let I be a non-trivial interval, m,¢ : I — R p + 1 times differentiable in I, ¢
invertible in I, and x € I. Then for all z € I with z # x a value ( € (x,z) resp.

(z,z) exists so that

- . P (2) j Yp+1)(€) p+1
mle) = Y HE ) - o)y + IR 60 — Pt (2)
with o 0)
oy — TV D = mf- )
() = "0 o () = ), (2.5)
holds.

The proof of this theorem is found in the appendix. Let ¢, m as in Theorem 2.1
and g(-) = (mo ¢~1)(-). Applying Taylor’s theorem on m = g o ¢ and comparing
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the result with (2.4) yields

P (1) = (mo ¢ H)D(e()). (2.6)

Assuming the underlying model (2.1), Theorem 2.1 suggests to model the data in
a neighborhood of z by

Y =0(x) + 7 (2)(@(X) = 6(2) + ... + p(2)(¢(X) — ¢(x))" +0(X)e  (2.7)

where

b ()
() = =

One might find the constants ¢(x) disturbing. However, (2.7) can easily be trans-

formed to the model

Y = 60(x) + 61(2)$(X) + . .. + 5, ()" (X) + o(X)e (2.8)
by setting
5 = w=ra( 7)o@ +pea(’] )@ Tt
i (7)o a)

(where for ease of notation v, = v;(x),d; = 6;(x) ). Thus model (2.7) and (2.8)
yield the same computational results when used for fitting the function m. The
advantage of working with model (2.7) is that its theoretical properties are easier
to derive, since the theorem given above can be applied. Moreover, computation is
faster and more stable, because very large values are avoided by subtracting ¢(z)

under the powers.

Since the parameters «y; are constructed more complex than the parameters §; =
B;(z) for local polynomial fitting, the simple relationship m¥(z) = j!3; cannot be
retained. However, by using the simple recursive formula
1
r)/j(x) ]¢I( )’Yj 1( )a ’YO(CU) = m(a:),
the parameters 7; can be calculated and thus the following relations between pa-

rameters and the underlying function and their derivatives are derived for the power

basis:
m(z) = 0y (2.9)
m'(z) = 1¢'(x)n (2.10)
m"(z) = 2A[¢' @) 7+ ¢"(@)n (2.11)
m" (z) (@) 73 + 319" (2)¢' () 72 + ¢" () m (2.12)

= 3
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This indicates that for estimating the jth derivative of m, the basis function ¢ has
to be 7 times differentiable in an environment of z. In the following we will shortly
describe the estimation procedure. In order to estimate ¥(z) = (Jo,...,7p)", a
locally weighted least squares regression has to be run, i.e.
n p 2
3 {Yi — 3 (60X - aﬁ(x))j} wy (2.13)
§=0

=1

(with w; = Kj(X; — z)) has to be minimized in terms of (7o, ..., 7). The design

matrix and the necessary vectors are given by

L ¢(X1) —d(z) -+ (o(X1) — ¢(x))?

XJ; = ’
Y Yo wy o(X1)e
Y= ,’)’(IE): yWe = S =
Y, Yo Wy, o(Xp)e

With this notation the local fit of (2.7) corresponds to the fit of y = X,v(z) + s

and the minimization problem (2.13) has the form

m’iny(m) (y - Xx7($))TWw(y - ery(x))a

yielding 4(z) = (XIW,X,) ' XIW,y, just as in the case of local polynomial fitting.
Then m(z) = el'4(z), where e, = (1,0,...,0)T, is an estimator for the underlying
function m(-) at point z. Using (2.10) to (2.12), estimators for the derivatives can

be obtained in a similar way. Then
Bias(3(z)[X) = (XIW,X,) ' XIW,rs, (2.14)

holds, where 7, = (m(X1),...,m(X,))T — X,v(z) is the vector of the residuals of
the local fit and X denotes the vector (Xi,...,X,). The conditional covariance

matrix is given by
Var(¥(z)|X) = (XITW, X,) " M(XT2, X)) (XITW, X,) ™, (2.15)

where ¥, = diag(w?o?(X;)).
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2.1.3 Asymptotics

Usually formulas (2.14) and (2.15) cannot be used in practice, since they depend
on the unknown quantities r, and ¥,. Consequently an asymptotic derivation is

required. We will use the notations

Wi = / WK(u)du and v = / w! K?(u) du
for the jth moments of the kernels K and K?2. Note that o = 1 and (for symmetric
kernels, which we apply here) pogi1 = vorr1 = 0 for all k € Ny . Further we define

the kernel moment matrices

S = (1j+1)o<ji<p ¢p = (Mpt1, - - 'au2p+1)T

S = (j4111)0<ii<p Ep = (Mpr2s---s Mapra)”

S = (G +Dpjrrr)o<ii<e & = ((P+ Ditpra, -+, (20 + 1) popy2)”
S* = (Vj)o<jizp -

Finally we introduce the denotation ¢(z) = ¢'(z) and the matrices H = diag(h?)o<j<p
and P, = diag(¢?(z))o<j<p and recall that e; 11 = (0,...,0,1,0,...,0)" with 1 at
(4 + 1)th position. op(1l) denotes a sequence of random variables which tends to

zero in probability.

Theorem 2.2.
Assume that f(x) > 0, o%(z) > 0, p(z) # 0 and that f(-), mPtV(), ¢+ (.) and
o2(-) are continuous in a neighborhood of x. Further assume that h — 0 and

nh — o0o. Then the asymptotic conditional covariance matriz of ¥(x) is given by

o*(z)

nhf(x)

The asymptotic conditional bias is given by

Var(¥(z)|X) = P 'HT'ST'S*ST'H' P (1 + 0p(1)). (2.16)

Bias(3(2)|X) = " (@) P7 H™ (387, + b)), (217)

where b, = op(1). If in addition f'(-), mP*2(.) and ¢+ (.) are continuous in a

neighborhood of x and nh® — oo, the sequence b, can be written as

bn = h Kml% + 7p+290(w)> S7e+ (2.18)
ypﬂ%s*@ — Ay 87! (’;((;”)) S - ;0;((3; )) S) S7le, + op(1)} .

Based on Theorem 2.2 and formulas (2.9) to (2.12) asymptotic expressions for bias

and variance of the mean function and its derivatives can be derived. In particular
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we obtain for the variance

Var(m(z)|X) = Var(el5(x)X)
o?(x)

nhf(x)e?S_lS*S_lel(l +op(1))

and

Var(im'(2)[X) = Var(e(z)e;5(2)[X)
o’(z)
= —— e SIS S ey(1 1)).
nhgf(x)eQ 62( +0P( ))
Thus for j = 0,1 the asymptotic variance of M) (z) does not depend on the basis

function! Now we take a look at the bias. Using (2.17) and (2.9) we arrive at

Bias(m(z)|X) = bias(e] ¥(z)|X)

= Rt (z)el (%1)1(;)5—1% + bn> (2.19)

and

Bias(in' (2)|X) = bias(p(z)e; ¥(x)[X)
— PP (r)el Ms—l b, | .
@p (.’L’)€2 (p + 1)' CP +
It is important to know that the product e; 115 ¢, is zero for p — j even. Thus in
the case p — j odd, it is sufficient to work with b, = op(1). However, if p — j takes

an even value, the refined formula (2.18) for b, has to be chosen.
Remark: Local polynomial fitting

Since local fitting based on a power basis is a generalization of local polynomial
fitting, setting ¢(x) = x should correspond to the formulas given by Fan & Gijbels
(1996), Theorem 3.1. Using that for local polynomial fitting P, = I, ¢ = 1 and
v; = B; holds, we actually find with equation (2.3)

() Clgra— (4!)%0*(x)
VarliO@)[%) = e85 ey 0 20
1
tor \ i
and
Bias(mY(z)|X) = €l,,5 ', 2 m® ) (g)ppHid

(p+1)!
+Op(hp+1_j).
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However, in the case p — j even, when the deeper derivation is required, we obtain
via (2.17) and (2.18)

Bias(m(j)(xﬂX) = j!hp“_je;ﬂl [S‘lép (ﬁpﬂ% + ﬁp+2)
- ‘jc((b:)) 5p+151§510p] +op(hP*27),

which is not the same as formula (3.9) given in Fan & Gijbels (1996). This difference
arises because there on page 103 it is claimed that the (j +1)th element of S~155 ¢,
is zero for p — j even, which seems to be true for j = 0, but not in general (consider
for e.g. p =1 and j = 1, then e;11S7'SS~"c, = py). The correct formula for
general values of p — j was provided in Fan, Gijbels, Hu & Huang (1996).

2.1.4 A simulated example

Here and in the following sections, we use the relative squared error as a measure

for the error when estimating the target function:

RSE(m) = 2.20
) = S mXp 220
As an example, we consider the underlying function
m(ac) =+ 1 e—(z—0.2)2/0.02 _ 1 e—(z—0.7)2/0.0018 (2_21)
1.2y/27 0.9v2r ’

which we contaminate with Gaussian noise with ¢ = 0.05. The 41 data points and

the function are shown in Figure 2.1.

The following table shows the “best” values of the relative errors for various basis

functions ¢(-) and degrees p. “Best” means that we choose the bandwidth A, by
hemp = min, RSE(m)
and calculate the relative error for the corresponding value. In order to avoid

boundary effects, we omitted the first and last value in the calculation of the relative

error.
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Figure 2.1: Function (2.21) (solid line), contaminated data and estimated curve with
¢(xz) = z (dotted line) and ¢(x) = m(z), (dashed line, see Section 2.1.5).

¢ p=1 p=2 p=3 p=328
x 0.04878 0.04597 0.04636 0.05116
sin x 0.04862 = | 0.04649 0.04563 * | 0.05253
arctanz | 0.04861 x*x | 0.04656 0.04560 *x* | 0.05229
arcsinh z | 0.04870 = | 0.04625 0.04599 =% |0.05038 =
x? 0.04996 0.04572 % 0.04920 0.04898 x
coS T 0.04991 0.04581 0.04903 0.04836 *
cosh z 0.05000 0.04564 0.04935 0.04933 =*
dnorm z | 0.04982 0.04601 0.04869 0.04716
exp 0.04903 0.04545 * % x | 0.04710 0.05014 %
log (z +1) | 0.04863 = | 0.04631 0.04600 * |0.05170
Nz 0.04870 = | 0.04599 0.04772 0.05011 =

Table 2.1: Relative squared errors for various basis functions and degrees.

In Table 2.1 dnorm(z) denotes the density of the standard normal distribution.
We have inserted one star (*) behind the RSE if the value is better than that for

local polynomial fitting, two stars for the winner of the column, and three stars for
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the over-all-winner. The first four basis functions (included the linear function) are
odd functions, followed by four even functions and three more functions without
any symmetric properties. The table is easy to read - it shows that, at least in
this example, odd basis functions perform better for odd values of p and even
functions perform better for even values of p. The non-symmetric functions show
inhomogeneous behaviour: The exponentional function seems to behave like an even
function and provides the over-all-winner, while the logarithmic basis performs like
an odd basis. Except for large degrees of p, the Gaussian kernels turn out to be not

a very good basis.

We did a variety of simulations with other underlying functions. The pattern could
always be repeated for odd p, while for even values of p the results differ from case
to case. In all simulated examples we obtained this block pattern, i.e. for a given
p, the group of odd basis functions generally behaves differently than the group
of even basis functions. It is already well known that odd order local fits should
be preferred to even order local fits (Fan & Gijbels, 1996, page 79). We add the
observation that, if an odd value of p is used, an odd basis should be preferred to
an even basis. For even values of p the results were too inhomogeneous to give a

general statement.

Regarding special basis functions, in almost all simulations the best choice for odd
values of p was the arctan function. In addition, the computation was mostly faster
and more stable than for a polynomial basis. The reason for this phenomenon
is probably that the design matrix is less asymmetric for the arctan than for the
linear basis. The good performance of the exp function falls outside of the tendency

observed here, but can be explained by the results of the following section.

2.1.5 Bias reduction with data-adaptive basis functions

The results in the previous section only give a very weak inducement to change
from the polynomial to another basis function. Thus, further work is required to

find the optimal basis function, which will be done in this section.

Regarding formula (2.19) in the special case p = 1 leads to

h2 !
Bias(im(z)X) = 12 (m"(m) AC) m’(m)) +op(h?), (2.22)
2 p(z)
which reduces to the well-known formula
h2
Bias((z)|X) = 2“2 m" (z) + op(h?),
in the special case of local linear fitting. Thus the subtraction of ‘f:((;)) m/'(x) in (2.22)

provides the chance to bias reduction (given that ¢(z) # 0). Note that expression
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(2.22) is independent of the design density f, and thus design-adaptivity, which
is one of the major advantages of local linear smoothers, is retained when using
a general basis. In the optimal case, the content of the bracket in (2.22) is zero.

Hence the the differential equation
m”(z)p(z) —m/(z)¢'(z) = 0
has to be solved, leading to the solutions
p(z) = am'(z) (a €R)

and hence

é(z) = eom(x) +c2 (c1,c2 € R).

In particular, for ¢, = 1,¢2 = 0 we get @ope(x) = m(zx), and thus the underlying
function m(-) is the optimal basis function. Although the function m(-) is always
unknown, there are several ways to use this result. For example, one can calculate
a pilot estimate 71(-) by performing a local linear fit (or any other smooth estimate,
e.g. with splines), and then use the estimated function as an improved basis. Or
perhaps, in another situation, one may have a notion of the underlying function
or know it only partly. For example, let us assume somebody gave us (wrong)

information about the underlying function (2.21), namely

~ 1 —(2-0.2)2/0.02 _ 1 —(2-0.7)2/0.0018

m(x) =x — e ——e ,
( ) 1.24/27 0.9V 27

i.e. the first hump points down instead of up. Then one can try to use this function

as basis function. Applying these approaches to the data set of the previous section
leads to the following table. We tried two different bandwidths for the pilot esti-
mate 1m(z), once using the best bandwidth hen,, = 0.020, leading to the estimated
function mg(z), and once for a higher bandwidth A = 0.038, resulting in the fit
ag(x). For comparison, we added the results for the linear basis ¢(z) = x and the

optimal basis ¢(z) = m(z).

0 p=1 p=2 p=3 p=28

T 0.04878 0.04597 0.04636 0.05116
oo () | 0.04407 0.04310 = | 0.04499 =« | 0.05237
igs(2) | 0.03811 % | 0.03656 x| 0.03730 *x | 0.05202
m(z) [0.03380 *xx|0.03998 * |0.04628 x |0.05593
m(z) |0.00856 0.02587 0.02600 0.03719

Table 2.2: Relative squared errors for improved basis functions.
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For illustration, we did 50 simulations of the contaminated function (2.21) and
calculated the best relative errors for the linear, the arctan and the cosh basis
as well as for m(z) and m(z) for p = 1. In contrast to the original example in
Section 2.1.4, where the design was fixed, we now worked with random design,
which was simulated anew each time. The corresponding relative errors, plotted in
boxplots, are shown in Figure 2.2. The boxplots show that the linear basis yields
results similar to the arctan basis, since both are odd basis functions, whereas the
even cosh basis shows a lesser performance. The performance of the estimation
can be improved significantly by using either a data-adaptive basis m(z) (taking
an optimized pilot bandwidth in each run), or the “guessed” basis m(z). The
application of the (in practice unavailable) optimal basis m(z) for p =1 leads to a
nearly perfect fit. For higher degrees, results get worse as the basis was optimized

for p =1.

boxplots of relative errors for 50 fits with p=1
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Figure 2.2: Boxplots of the relative errors using the basis functions ¢(z) =

x, cosh(zx), arctan(x), m(z), m(x), m(z) (from left to right) with p = 1.
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What does a basis function actually effect? For a given basis, the smoothing step
in fact balances between the information given by the basis and the data. A similar
concept is well-known from Bayesian statistics. Though the Bayesian prior does
not contain a basis function but an assumption about the distribution of unknown
parameters, the principle, boldly compared, is the same, since the “posterior [distri-
bution] is a trade-off between information in the data and prior knowledge” (Rafler,
2003). Thus, in a way, one might name our basis function a “prior” basis for a

“posterior” estimate of the regression function.

2.1.6 Notes about bandwidth selection

For bandwidth selection, one has the general choice between classical methods and
plug-in methods. For an overview of bandwidth selection routines, we refer to Fan &
Gijbels (1996), p. 110 ff. Classical methods as cross-validation or the AIC criterion
can be applied directly to fitting with general basis functions. Promising extensions
of CV and AIC have been given by Hart & Yi (1998) and Hurvich, Simonoff & Tsai
(1998), respectively. Classical approaches compete with plug-in methods, as treated
by Fan & Gijbels (1995), Ruppert, Sheather & Wand (1995) and Doksum, Petersen
& Samarov (2000), to name a few. For a comparison of classical and plug-in methods
see Hardle, Hall & Marron (1988) and Loader (1999a). Plug-in estimators perform
a pilot estimate in order to estimate the asymptototic mean squared error, which
is then minimized in terms of the bandwidth. Each plug-in-estimator is designed
exclusively for a special smoothing method, so that application of these estimators

for general basis functions requires some extra work.

Using Theorem 2.2, plug-in formulas for bandwidth selection can be straightfor-
wardly derived by extending the corresponding methods for local polynomial fit-
ting. We will not provide a complete examination of this topic now, but only give
some impressions of the results. Let us therefore consider the case that one is in-
terested in deriving the asymptotically optimal variable bandwidth h,p(x), which
varies with the target value x. Minimizing the asymptotic mean squared error
MSE(m(z)X) = Bias?(m(z)|X) + Var(m(z)|X), whereby (2.17) and (2.16) are
respectively employed for the bias and variance, we arrive at an asymptotically
optimal bandwidth

o?(x) s

0 @) (@) (@)

1
.m 2
n 2+3,

h¥)(x) = Cop(K)

where the constant Cj,, which depends only on p and the kernel K, is the same as
in Fan & Gijbels (1996), page 67. Setting this result for p = 1 in relation to the
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h,LL

opt () for a local linear fit, we obtain

optimal bandwidth

hop(@) _ [ @@) m'(@)]
ey @) ()

Note that this expression tends to infinity if ¢(x) approximates m(z). This conforms

to the observations that can be drawn from Figure 2.3.

Bandwidth selection is especially difficult for data-adaptive basis functions as pre-
sented in the previous section: In this case one needs two bandwidths, one for the
first and one for the second fit. This problem is so far not entirely solved. However,
we can give some general statements concerning this. If the optimal bandwidth is
used for the first fit, then bandwidth selection is not very crucial in the second fit,
since this fit is more a correction of the first fit than a localization. In this case the
optimal (second) bandwidths are very high (in our example hepp, = 0.190 for p = 1)
and the minimas are very flat. Hence every large bandwidth will do a good job.
This is illustrated in Figure 2.3. However, it is not necessary to find the optimal
bandwidth in the first fit. Our simulations showed that the results can even be im-
proved when the optimal bandwidth is not met, i.e. somewhat higher bandwidths
are used. This is seen in Table 2.2 and Figure 2.3. From our experience, working
with about the double optimal bandwidth (of a local linear fit) for both fits leads

to satisfactory results.

=
S
=

RSE

005
\

Figure 2.3: Relative squared errors as functions of the bandwidth for the linear basis (solid
line), the data-adaptive basis g (z) (dashed-dotted line) and m3g(x) (dashed line), and
for the guessed basis m(z) (dotted line).
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2.1.7 A real data example

In this section we consider the motorcycle data, firstly provided by Schmidt, Mat-
tern & Schiiler (1981), which has been widely used in the smoothing literature to
demonstrate the performance of nonparametric smoothing methods, as e.g. in Fan
& Gijbels (1996), page 2. The data was collected by performing crash tests with
dummies sitting on motorcycles. The head acceleration of the dummies (in g) was
recorded at a certain time (measured in milliseconds) after they had hit a wall.
Figure 2.4 shows the motorcycle data with a local linear fit (solid line), identical
to the fitted curve shown in Fan & Gijbels (1996), page 5. The bandwidth value
h = 1.48 is obtained by cross-validation. There might be something wrong about

the value h = 3.3 given by Fan & Gijbels - maybe it is measured on another scale.

Strictly considered, the observations are not independent, since several measure-
ments were taken from every dummy at different time points, so that a mixed
model (Wand, 2003) might be more appropriate. Though Opsomer, Wang & Yang
(2001) show that correlation may seriously affect bandwidth selection, this problem
is mostly ignored for the motorcycle data. Probably the correlation is negligible in
this case, since the dummies are identical and do not characteristically behave as

different persons.

For calculation of the pre-fit, the bandwidth A = 2.7 was applied (dotted line in
Fig. 2.4). The long-dashed line is the local fit obtained using the pre-fit as basis
function, applying the same bandwidth h = 2.7. For comparison, we provide also
the result of a fit with smoothing splines. With real data it is hard to judge which
fit might be the best one - but at least we can say that the fit applying a local
pre-fit basis represents the first hump better and is smoother in the outer right area

than a local linear fit. The performance now seems comparable to a spline fit.

2.1.8 Outlook

In Section 2.1.1 we already mentioned that the most general model for fitting with

an arbitrary basis is
Y = ap(2) o (X) + aq(2)d1(X) + ... + op(2)dp(X) + 0(X)e. (2.23)

However, theoretical properties of this fit can only be analyzed insufficiently. Nev-
ertheless, as will be shown in this section, it is worth investigating this approach,
because the results are somewhat impressive. We analyze the same data set as in
Sections 2.1.4 and 2.1.5. We choose p = 2 and use ¢o(z) = 1 and two Gaussian

kernels as basis functions ¢, o(x). There are two parameters to be adjusted: The
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Figure 2.4: Motorcycle data with a local linear fit, a local pre-fit, a local fit using the

latter fit as basis function, and a spline fit.

distance d between the centers of the kernels and their width, i.e. the standard
deviation o. Simply taking the arbitrary values ¢ = 0.4 and d = 0.35 yields the
relative error 0.04598 for the minimizing bandwidth A, = 0.033, similar to the
result for the polynomials. However, the variation of d and o leads to significant
variations of the relative error, as shown in Figure 2.6 for the bandwidth h = 0.033

suggested above.

There is an absolute minimum at o = 0.04 and d = 0.39, yielding a relative error
of 0.03132. Using the best bandwidth for this basis function, henm,y = 0.032 leads
to a relative error of 0.03128. Again, it is obvious that general basis functions
can yield much better results than the polynomial basis. For comparison, see the
two pictures in top of Figure 2.5. The fit with the Gaussian basis is smoother
and closer to the underlying function, especially in the area of the cusps. The
optimal basis functions, namely ¢1(2) = ;5,75 exp(—(z — 0.305)%/(2 - 0.04?)) and
Bo(x) = mexp(—(x —0.695)%/(2 - 0.04?)) are shown in the right bottom. An

interesting observation is that the centers of the Gaussian kernels are situated near

the humps of m(-), which is simply explicable because we showed in the previous
section that the better the basis functions model the underlying function, the better

are the results.
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Figure 2.5: Top: Data, underlying function (dashed lines) and estimated functions (solid
lines) for a polynomial (left) and a Gaussian basis (right); bottom: Basis functions ¢1 2(z)

used for the corresponding fit.
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(2.21) with h = 0.033); bottom: The interesting part in the area of the crater is shown in

more detail.
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Unfortunately, the minimum of the relative squared error in Figure 2.6 is impos-
sible to find without knowledge of the underlying function. Nevertheless, it is an
interesting observation that the structure of the mountain landscape is more or
less similar for all underlying functions m(-). There always appears a large plain,
yielding relative errors similar to those obtained by local polynomial fitting. In
addition to the ridge at o = 0, there often appears a diagonal ridge along the line
d = 20,d> 0.4, resulting from a singularity of the matrix X! W,X,, and mostly
some craters are situated along the line d = 20,d <0.4. A large number of further
craters often appear anywhere in or between the mountain ridges. Their locations
result from a subtle interplay between the data set, the basis functions and the
underlying function. It may be doubted that an analytical solution to this problem

exists.

2.1.9 Appendix

Proof of Theorem 2.1

Define

where M € R is chosen so that g(z) = 0 is fulfilled.

Using g(z) = g(z) = 0 Rolle’s theorem (see Lay (1990), p. 196) yields that there
exists a ¢ € (z,z) resp. (z,z) with ¢’(¢{) = 0. Since

(6(z) = o))" = 1 (@(2) - ¢(y))"(=¢'(v))

it follows that

0= =4 (¢) + M¢'(C)
and thus M = v,41)(¢). The theorem is obtained by setting y = « in (2.24).
Proof of Theorem 2.2

1. Asymptotic conditional variance

Recall that Op(1) denotes a sequence of random variables which is bounded in prob-
ability. Whenever there appears an integral, the borders —oo and oo are omitted.
We denote further Sy, ; = Y7 w;(¢(X;)—¢(2))? and S ; = 377 wio(X;)(o(Xs)—
¢(2))’. Then Sy, := (Sn,j+1)o<iicp = Xy WXy and S;; := (Sy 1 Jo<ji<p = Xg e X
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hold, and the conditional variance (2.15) can be written as
Var(%(z)|X) = S, 'S:s;! (2.25)

and thus approximation of the matrizes S,, and S;; is required. Using that
/K(u)ujg(ac + hu) du = pjgy + o(1) (2.26)
for any function ¢ : R — R which is continuous in z, we obtain
ES,;, = n / K()(6(x + hu) — ¢(2)) f(z + hu) du =
= nhﬂ/K W o’ (C) f (2 + hu) du
nh? (f(2)¢’ ( )uy +o(1)) (2.27)

where (, € (z,z + hu) exists according to Taylor’s theorem. Similar we derive

VarS,; = nEwi(¢(X1) — 6(x))” — nE*(wi(8(X1) — ¢(z))’)

= nh¥? 1 (f(2)p* (z)ve; + o(1))
_ 20 <n1h> (2.28)
— o(n’h%). (2.29)

Since for every sequence (Y,)nen of random variables

Y, = EY, + Op (\/VarYn) (2.30)

holds (what can be proven with Chebychev’s inequality), we can proceed with

calculating

Sug = BSns+0p (VVarSu,

= nh! f(2)¢’ (2)p;(1 + 0p(1)), (2.31)

which leads to
Sp =nf(x)PbHSHP,(1+ op(1)). (2.32)

In the same manner, we find that

Sy = ESi;+0p (y/Varsy,)
= nhi (@ (@)0% (@) f(@)v; + o(1)) + Op (Vo(n?h577))
= 0l (2)0? (1) f () (1 + 0p(1)

and thus
S* = % F(2)0*(x) P, HS* HP, (1 + 0p(1)) (2.33)
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and finally assertion (2.16) by plugging (2.32) and (2.33) into (2.25).
1I. Asymptotic conditional bias

Finding an asymptotic expression for

Bias(¥|X) = S, ' XIW,r, (2.34)

n

still requires to approximate r; = (r;)1<i<n. For all data points within the kernel

support we obtain

ri = m(X;) —ZVj(fﬁ(Xi) — ¢(z))’
(o(

Yo (&)
(p+1)!
= Y1 (2)(0(Xi) — ¢(2))P™ + 0p(1) (0(X;) — o(x))?

(p+1)!

where (; € (X;,z) resp. (z,X;) exists according to Theorem 2.1. Note that the
invertibility demanded for ¢(-) in Theorem 2.1 is already guaranteed locally around
x by the condition ¢(x) # 0. Finally we calculate

Bias(3(z)[X) = S, 'X"W, [(¢(Xi) — ¢(2))" (vp+1 + 0p(1))] 1<i<n
= S,;lcn(’)/p—kl +op(1))
X o(nh?t1)
nf—x Yp+1Cn + 3 (1+0p(1))
(@) o(nh?*1)

= P, IH ST OP T (@) 4101 + 0p(1)),

— Pw—lﬂ—ls—lH—IPw—I

by substituting the asymptotic expressions for S, ; (2.31) in ¢, := (Sppi1s- - > Sn2pt1)’ s

and thus (2.17) is proven.

Now we proceed to the derivation of b, which requires to take along some extra terms
resulting from higher order expansions. With (a + hb)? = o’/ + h(ja’~1b+ o(1)) we
find that

By = i [ K (1) + 216 ) ) + s
= ! [ [+ (L0 g (G) + o) )| (7o) + (e
=t | 1@ s+ 1 (£ @) + L 06 @)) s+ ol0)]
(2.35)
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with (, and &, according to Taylor’s theorem. Plugging (2.35) and (2.28) into (2.30)
yields

S0y =1t @) |1+ (£@)+ TP ED N wpsva] . 230)

where o, = op(h) + Op (#>, and further

vnh
Spn =nP,H (f(x)S + hf'(x)S + h@%S + on) HP,. (2.37)
The next task is to derive a higher order expansion for r,. With Theorem 2.1 we
obtain
¢(p+1)($) Vipr2) (G)
i = ——(0(Xi) — ptl L TPTY DY (4(X;) — p+2
r (p+ 1) (6(Xi) — o(2))"" + 0+ 2) (6(X3) — ¢())

= Ypr1(B(Xs) — 0(@))P" + Ypr2(d(Xi) — B())PH* +

+(¢(P+2)(€i) _ w(p+2) ($)) (Qb(Xz()p_—i_(Z(a':))P

= (6(Xi) = D))" i1 + (A(X3) — $())P (42 + 0p(1))
with {; € (X, z) resp. (z, X;). Plugging this and (2.37) into (2.34) and denoting

Tn:= f(z)S +h (f’(a:)S* + @Z((;) S) + on
leads to
Bias(¥(z)|X) = [nP.HT,HP;| " [cnYpr1 + En(Yps2 + 0p(1))]
= PRHTTIR ) [ (@t
+h(Vp1f' (@) + Wpr20(2) f(7))6p +

+hpif (@) ;((Z)) & + on] , (2.38)

where the asymptotic expressions (2.36) are substituted in ¢, and

en = (Snpi2s--->Snops2)’ - The matrix T;, still has to be inverted. Applying the

formula
(A+hB)™'= A" —hAT'BA™' + O(R?)
yields
-1 _ LS—I _ hLS—l (fl(x)g _ ¢'(z) —) -1
20 Mt e T ew®) S T B8

and we finally obtain

Bas@0) = W@ r T s

" [(7”“% " 7””("”)) 576 + %H%Slaﬁ
# s (85— 205 57| 4o, |
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2.2 Multivariate predictors

2.2.1 Introduction

In the last decades nonparametric smoothing has been one of the most attended and
challenging fields in statistics. A widely used concept is that of localizing, where
only observations in a neighborhood of the target value are used for the estimation

of the regression function.

Nadaraya (1964) and Watson (1964) developed one of the earliest local estimators
by simply fitting locally a constant mean value to the data. Stone (1977) was
among the first to replace the constant by a line, which reduced the bias of the
fit significantly, as Fan (1992) shows. Cleveland (1979) did the next extension and
fitted polynomials of arbitrary degree instead of a line. Surprisingly the next step,
replacing the polynomial basis 1, z, ..., z? by an arbitrary basis ¢o(z), ..., (), as
suggested briefly in Ramsay & Silverman (1997), has never been further pursued.

Since local fitting is so far only performed with the polynomial basis, the question
of what is special about this particular basis arises. The answer is simple. For
this basis Taylor’s theorem is available which enables us to interpret the estimated
parameters and to calculate the error of the approximation. According to this
theorem, whose univariate version was firstly discovered by Brook Taylor (1685-
1731) and published 1715 in his book Methodus incrementorum directa et inversa,
a function m at point z can be approximated by a linear combination of polynomials

in a neighborhood of .

Local fitting with general basis functions will require to find a new Taylor theorem
for every basis one wants to use, if some theoretical background is desired. Though
this is certainly not possible for every basis, extensions for special cases exist. In
Section 2.1.2 we provided a Taylor theorem covering the case where polynomials are
replaced by the powers ¢(z), ¢*(x), ..., ¢?(z) of an invertible function ¢. The prop-
erties of local modelling with such a power basis were examined, and it was shown
that by a suitable basis the results of local polynomial fitting can be significantly

improved.

Recently, the general research interest has turned from univariate to multivariate
smoothing. Cleveland & Devlin (1988) gave an introduction to multivariate locally
weighted regression and showed that the concept is useful in practice. Further
impacts on multivariate local modelling were made by Staniswalis, Messer & Fin-
ston (1993), treating kernel estimators for multivariate regression, Wand & Jones

(1993), describing bivariate kernel density estimation, and Wand (1992), calculating
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asymptotic mean square errors for multivariate kernel estimators. Ruppert & Wand
(1994) derived asymptotic expressions for bias and variance of the multivariate local

linear and quadratic fit.

In Section 2.2.2 we introduce the concept of multivariate local fitting with general
basis functions. However, a fully theoretical handling of this estimator is not pos-
sible since a Taylor theorem for general basis functions does not exist. In Section
2.2.3 we focus on basis functions without interactions. We derive a new Taylor
theorem which covers this case and provide asymptotic expressions for bias and
variance of the corresponding local estimator. We give an example for fitting with
general basis functions by means of a simulated data set in Section 2.2.4 and pro-
vide a data-driven tool to obtain a suitable basis in Section 2.2.5. We finish with

the discussion in Section 2.2.6.

2.2.2 Multivariate locally weighted regression using a general basis

Let (X1,Y1),...,(Xn, Yy,) be a set of i.i.d. random variables sampled from a popu-
lation (X,Y) € R, Y is a scalar response variable and X a R%-valued predictor
variable with density f having support supp(f) € R¢. We want to estimate the
regression function

m(z) = E(Y|X =x) (2.40)

at a vector z € supp(f) nonparametrically, i.e. without assuming m to belong to a

parametric family of functions. A model fulfilling (2.40) is

where 0?(x) = Var(Y|X = z) is finite, E(¢) = 0, Var(e) = I and € indepen-
dent of all X;,i = 1,...,n. Let {¢; : R? — R,j = 1,...,q} a set of multi-
variate continuously differentiable basis functions, ®(z) = (¢1(z),. .., ¢,(x))T and

a1g(2) == (a (), ..., q4x))".

The amount of smoothing is determined by a symmetric positive definite bandwidth
matrix H € R%?. (Often instead of H a nonsingular matrix B € R%¢ is called
bandwidth matrix, where H and B have the relationship H = BBT). Let K :
R? > R be a multivariate kernel function and Ky (u) = |H|"Y2K(H~'/?u). For
a detailed description of multivariate kernels and bandwidth matrices see Wand
& Jones (1993). The estimator of the function m(-) at point z is &y(z), where

a(z) = (do(x), & (x))T is the minimizer of

Z (Vi — ag(x) — ol (2)(®(X,) — ®(2))} Ku (X, — z). (2.42)
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The constant ®(z), which only transforms the parameters, is useful because it
makes the computation faster and the asymptotic calculations more convenient.

This approach covers a wide range of well-known estimators. If, for example, ¢ = d,

then with ¢;(21,...,24) = %j,J = 1,...,d we get the multivariate local linear

estimator.

With
L o1(X1) = 61(2) - ¢g(X1) = ¢4(2)
X, =1 : : : ,

1 ¢1(Xn) = d1(z) ... ¢g(Xn) — dg(2)
W, = diag(Ky (X1 — 2),...,Ky(X, —z)) and y = (Y1,...,Y,)T the least squares

problem (2.42) can be written as
MM () (y — Xzo‘(x))TWz(y - X))

and has the solution
a(z) = (X, WoXa) ™' X, Way, (2.43)

provided that the matrix X wT W, X, is nonsingular. Thus we obtain
m(z) = do(z) = ef (X WaXa) " Xy Way,
where eI = (1,0...,0) € R*!. Furthermore,
E(m(@)[X) = e (XTW, X,) " X Wym, (2.44)

where m = (m(X1),...,m(X,))T and X = (X1,...,X,). Finally the conditional

covariance matrix is given by
Var(m(z)|X) = e] (X W, X,) N XIS Xo) (X W, X,) e, (2.45)

where %, = diag(K%(X; — z)0?(X;)).

In the following we will provide an asymptotic expression for the variance of the
estimator m(z). We will treat interior as well as boundary points. Thereby we call
a point z € supp(f) an interior point if {z : H~'/%(z — 2) € supp(K)} C supp(f);
otherwise, x will be called a boundary point. Let

Dy = {u: (z + H'?u) € supp(f)} Nsupp(K).

Then D,y = supp(K) if and only if z is an interior point. Note that we consider
x as a fixed point in the case of an interior point, but as a sequence x,, converging

sufficiently rapidly to the boundary in the case of a boundary point, ensuring that
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x is a boundary point for all n (see (A4)). Also let

(
M, = /D (i)(l uT>K(u)du,
-

D N
1
Ap, = .

T
V denotes the gradient function (81,...,0;)" = (;,,;) . Let vy =
X1 Ld

J K*(u) du. op(1) denotes a sequence of random variables which tends to zero
in probability. The asymptotic variance of the estimator 7 (z) is provided by the

following theorem:

Theorem 2.3.

Let z be a fized element in the interior of supp(f). Then under regularity conditions

(A1) to (A8) and (A5)

o*(z)
nf(z)

holds. Let further  be a boundary point, i.e. © = z, +H?c, where x is a point on

Var(m(z)|X) = |H| 051 + 0p(1)) (2.46)

the boundary of supp(f) and c is a fized element of supp(K). Then under conditions
(A2) to (A5)

Var(m(z)|X) =

2
N HI™ el (45, My A, ) A, NoAp, (4D, MeAp, ) er -

(1 + 0p(1)). (2.47)

Surprisingly, the asymptotical conditional variance of 7 (z) for interior points doesn’t
depend on the basis function (compare Ruppert & Wand (1994), Theorem 2.1).
Thus, with a suitable basis, one could reduce the bias without a rise of the vari-
ance. However: For general basis functions we can’t compute the asymptotical bias,
since a general Taylor theorem is missing. In the next section we will focus on a

case where a Taylor theorem is available.

2.2.3 Asymptotics for basis functions without interactions

Multivariate locally weighted polynomial regression, described in Ruppert & Wand

(1994), is based on the multivariate Taylor theorem, which we will extend in the
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following. Let d > 0,p > 0, U C R? open and U; the projection of U on the jth
coordinate. We impose an invertible basis function ¢; € CP*(U;) separately on
every single coordinate, i.e.

(ﬁjZUj—)R,Z]’,H (ZSj(Zj),j:l,...,d.

For convenience of notation we give the same names to the functions ¢; : U —
R, (#1,-..,24) — ¢;(2;) picking the ]th coordinate. Taking the notation from the
previous section, it is ®(21, ..., 24) = (#1(21), - - ., dq(24))T, and the inverse function
@1 : ®(U) — U is given by @ (z1,...,24) = (¢1 ' (21),---, b5 (24))". The matrix

D, reduces to P, = diag(¢}(z;))1<j<a- The following theorem holds.

Theorem 2.4 (Generalized multivariate Taylor expansion).

Assume U C RY open, p > 0, m € CPTY(U), ® : U — R¢ like above, further
assume the points x, z and their connection curve Cs(z,2), given by the function
ys(t) = 71D (z) + t(P(2) — D(2))], t € [0,1], to be in U. Then there exists a point
¢ € Cs(x, z) with

)+ 30 [0 0D Faym] () Syuls). @49

where Veom(x) = P, 'Vm(z), and
1
(p+1)!

Spr1(2) = [((2(2) — @(2)) - V)" m] ().

For a better understanding and application of this theorem, we set
Ny (z) = Hp () — PP diag(Vm(z)), (2.49)

where H,,(z) is the Hessian matrix of m and P, = diag(¢](z;))1<j<q4 the derivative
of P,. Thus N, (x) equals the Hessian matrix at all entries out of the diagonal,
while the diagonal values are modified proportionally to the gradient function of m.

Now we can write the generalized Taylor expansion in the form

m(z) = m(x) + (1<I>(z) — ®(z))" P, 'Vm(z) + (2.50)
+ 5(®(2) = &(x))" Py Nin(2) P (8(2) — @(2)) + S3(2,2),

which reduces to the usual Taylor theorem by setting ® = id.

We denote z = (z1,...,24) and X; = (X;1,..., Xiq) and work from now on with

the design matrix
L ¢i(Xu) = di(z1) .. ¢a(Xia) — da(za)
1 ¢1(Xn1) — d1(z1) ... da(Xna) — da(xq)
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where the ¢; are continuously differentiable, but not necessarily invertible. All
formulas given from (2.42) to (2.45) remain thereby unchanged. Next, we derive
asymptotic expressions for bias and variance of 7(z) at interior as well as boundary

points. Let po as in (A1) and vy = [ K?(u) du. We have the following theorem:
Theorem 2.5.

Let x be a fized point in the interior of supp(f). Then under reqularity conditions
(A1) to (A8) and (A5)

Bias(i(z)|X) = %ugtr(HNm(x)) + op(tr(H)) (2.51)
and 2
Var(i(2)|X) = %\H\1/2y0(1 +op(1) (2.52)
hold.

Note that the formula for the conditional bias only differs from the corresponding
formular for ®(z) = z by using N,,,(x) instead of H,,(x) (compare Ruppert & Wand
(1994), Theorem 2.1). In the univariate case (2.51) reduces to

Bias(m(z)|X) = §u2h2 (m”(x) — (Z'((j)) m'(x)) + op(h?). (2.53)

This result gives a hint of how to profit by general basis functions: (2.53) is mini-
mized for ¢(x) = m(zx), thus the bias is reduced if the basis function is as near as
possible to the underlying function m. In Sections 2.2.4 and 2.2.5 we will demon-

strate how we can take advantage out of this result.

Now we continue with the treatment of boundary points. The following theorem
can be seen as an extension of Theorem 2.5 which covers the case that the odd-order

moments of K (see condition (A1)) do not vanish.

Theorem 2.6.
Let xy be a point at the boundary of supp(f), © = xy + H'%c, where ¢ is a firved
element of supp(K). Then under conditions (A2) to (A5)

Bias(m(z)|X (2.54)

= 5 / ( ) (u) {u" H'* Nw(2) H*u} du + op (tr(H))

and

Var(m(z)|X) = nf(( ))|H| V2 (el My N, M 'e; + op(1)). (2.55)

Again the asymptotic bias only differs from the corresponding formula for local

linear fitting by the modified Hessian matrix N,,(z). The asymptotic conditional
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variance at the boundary turns out to be independent of the basis function and
is identical to the corresponding formula for a linear basis (see Ruppert & Wand
(1994), Theorem 2.2). Note that this result is not self-evident, since we showed in
(2.47) that for arbitrary basis functions the asymptotic variance at the boundary is
not independent of the basis.

Finally recall that in the beginning of the section we defined the function ®(-) to
be invertible on U. Here U is a neighborhood of x which becomes arbitrarily small
for large n, see condition (A3). Thus it is sufficient if the basis functions are locally

invertible around the target value x, what is already guaranteed by (A5).

2.2.4 Example

In this example we contaminate the underlying function m : [0,1]* — R,
m(21,72) = (1 — z1) sin (1223) + 7 cos (16z;) (2.56)

with Gaussian noise (¢ = 0.25). The n = 961 design points are uniformly dis-
tributed on [0, 1]2. The function without and with contamination is shown in Fig.

2.7. For assessing the quality of the fit we use the relative squared error

RSB < I =l _ VT e — (X7
el z (X

(2.57)

0 2 (
- 'II //II p - e
g NI i "\/
S \\\\“\\‘““‘ 1;//111 ; S A\‘ )
2 I ;,ré“‘ R : I 4”'“ *\
4 \\\‘m \\\\“\ ‘\n S Y \" :
o \\ ol w\‘« i
% A ’ ; *
Q i
i 2
oo O oo °

Figure 2.7: Function (2.56) without (left) and with contamination (right).

In Table 2.3 we compare the results of the local fit with various basis functions. For
reasons of comparability we restrict on the case of two basis functions. From the
first to the last line we will increase the amount of information which we install in
the basis. Note that all basis functions fall in the general framework of Section 2.2.2,
whereas only a) to e) fit the setting of Section 2.2.3. We provide the bandwidths A4

and hy which minimize the RSE, and the value of RSE obtained at this minimizing
bandwidth.

In g), we denote g1(-) = ¢o.33,0152(") and ga(-) = @o.67,0152("), where @, ,2(-) is the
density of a normal distribution with mean p and variance o2. The bandwidth was
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restricted to a maximum value of 1. For a), d), f) and g) the results are illustrated
in Fig. 2.8, where the plots of the basis functions and the corresponding fits are

shown.

é1(x) P2 () hi | hy | RSE
a) | 2o 0.03]0.04|0.162
b) | cos 16z, To 0.1410.03 | 0.132
c) | 2 cos 16z, Ty 0.11{0.03 | 0.108
d) | 74 sin 1224 0.03 | 1.00 | 0.080
e) | cos 16z, sin 12z 0.04 | 1.00 | 0.059
f) | 22 cos 16z, (1 — 1) sin 12z, | 1.00 | 1.00 | 0.011
9) | 91(z1) - ga(x2) | g2(x1) - g1(z2) | 0.04 | 0.03 | 0.164

Table 2.3: Relative squared errors for various basis functions.

The observations obtained from the table and the figures are the following:

e The more information the basis carries about the underlying function, the
better the local fit and the higher the optimal bandwidths, see b) to f).

e If by accident a basis is used which doesn’t contain any information about
the underlying function, as in g), the results fortunately stay similar like for
the linear basis. This result is simply explicable: The linear basis is a wrong
basis. Mostly it does not contain any information about the true function.
Thus replacing a wrong basis with another wrong basis will not make much

difference.

Now we have the chance to use given information in an effective way. If one has
any notion about the true function one can use this information in the basis. If the

basis was more or less correct the fit can be improved tremendously.

2.2.5 Finding a data-driven basis function

A logical objection to this methodology will be that usually no information about
the true function is available. The question is then whether a data-driven method

to obtain a suitable basis exists?

We said that the fit will improve if one uses a basis which is similar to the true
function. There is a well-known way to obtain a function which is similar to the

true function: Smoothing. This gives us the following idea: We perform a simple
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Figure 2.8: From top to bottom: Basis functions a), d), f) and g) and corresponding fits.
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local linear fit and use the result as a basis function.

Returning to the previous example this means that we use the function in the top
right of Fig. 2.8 as our basis function. Fitting only to this basis we obtain an RSE
value of 0.143 (at optimal bandwidths h; = 0.29, hy = 0.20), which is already a good
part better than the relative error in a). However, the resulting fit in Fig. 2.9 (top
right) seems to be identical to the basis we used. What is happening? The second
step - smoothing with the data-driven basis - does not change the local properties
of the basis. If there is a wiggly structure in the basis, this wiggly structure will be
retained after the second fit. Nevertheless the fit is improved, because the global
properties of the basis are modified. The range of the basis obtained from the fit
in a) is (—1.28,0.93). If we smooth the data with this basis, the range blows up to

(—1.36,1.06), i.e. this smoothing step is in fact a kind of backwards-smoothing of
the basis, which corrects the fit where the basis was oversmoothed.
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Figure 2.9: Top left: Local linear pre-fit (identical to the top right picture in Fig. 2.8);

bottom left: Local linear pre-fit using the double bandwidth. On the right side is each
found the fit obtained using the basis to the left.

This observation motivates us not to use the optimal bandwidths in the first fit, but
somewhat higher bandwidths, in order to avoid a wiggly basis. Of course the result
will be oversmoothed, but this will be corrected in the second fit. In our example
calculating a local linear fit with Ay = 0.06 and hy = 0.08 leads to RSE(m) =
0.318, which is certainly not a very good fit, as shown in Fig. 2.9 (bottom left).
However, if we use this fit as a basis for the second fit the RSE can be optimized

down to 0.122, what is an impressive improvement. The resulting smooth curve is
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shown in Fig. 2.9 (bottom right).

Summarizing the findings, we suggest the following algorithm (for d > 1 dimen-

sions).

1. Calculate a d-dimensional local linear fit, using the double size of the opti-
mal bandwidths. The optimal bandwidth matrix H'/? = diag(h;)i<i<a can
be obtained by applying usual multivariate local linear bandwidth selection

routines, see e.g. Yang & Tschering (1999).

2. Use the result as a d-dimensional basis for the second fit. As a rule of thumb,

use of the same bandwidths as in the first fit leads to satisfactory results.

For the verification of this algorithm we did 200 simulations of the contaminated
function (2.56), and plotted the corresponding RSE for the local linear fit (using the
optimal bandwidth) and the fit according to the algorithm in boxplots. Since our
intention was to explore the benefit of the use of a pre-fit basis and not the perfor-
mance of local polynomial bandwidth selection procedures, we used the bandwidth
minimizing (2.57) as optimal bandwidth - keeping in mind that this is certainly not
possible for a real data set. The boxplots are shown in Fig. 2.10. The result is

obvious and confirms the algorithm.

0.20

0.18
|

|

0.14
|

0.12
|

Figure 2.10: Boxplots of the RSE values of 200 simulations of function (2.56); left: with
local linear basis using the optimal bandwidths; right: with pre-fit basis using the double
bandwidths.

Note that for d > 1 the multivariate pre-fit basis does not fit in the framework of
Section 2.2.3. Thus the provided example shows that the idea motivated in Section
2.2.3 - to use a basis similar to the underlying function - is useful not only if the

basis is free of interactions.
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2.2.6 Discussion

We finish with some considerations about the properties that basis functions should
fulfill in theory and practice. Regarding condition (A5), the theory demands the
basis functions to be once or twice differentiable and to have non-vanishing gradients
at the target point z. Differentiablility, i.e. smoothness, is also important in practice
and is fulfilled by all basis functions given in this paper. In particular, the pre-fit
basis in Section 2.2.5 will be sufficiently smooth for a large initial bandwidth, as

proposed in the algorithm.

The condition of non-vanishing gradients, which is usually not met for the whole
basis, is purely technical and of little practical relevance. The fit at points with
vanishing gradients will not have apparent drawbacks compared to a fit where (A5)
is fulfilled. However, only in the latter case the asymptotic bias and variance can
be calculated. Taking any smooth basis, the corresponding theorems hold for all
points with non-vanishing gradients of the basis functions. This will usually be

fulfilled for all points except a set of measure zero.

In this paper we showed that the concepts of localization and fitting with basis
functions can be combined successfully. However we stress that there exists no
optimal basis function which could replace the usual polynomial basis in general.
The benefit of the application of alternative basis functions depends on the amount
of information which is available about the underlying function. If no information
is available, we fortunately still can profit by applying the algorithm introduced in
Section 2.2.5.

There is still plenty of room for further research. For example, it would be desirable
to calculate more accurate estimators for the bandwidths which are used in the
algorithm. In particular the factor 2, which we use to derive the initial bandwidth
from the optimal bandwidth, probably can be further improved. However, a fully
theoretical treatment of the pre-fit algorithm will be extremely difficult, since the

basis function in the second fit is now a random variable itself.

2.2.7 Appendix

2.2.7.1. Regularity conditions

(A1) The kernel K is bounded with compact support, [uu”K(u)du = psl,, where
io is a scalar and I; the d x d identity matrix. In addition, all odd-order
moments of K vanish, i.e. [l ---u¥K(u)du = 0 for all nonnegative integers

l1,...,lg with an odd sum.
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(A2) The point z is € supp(f). At z, o? is continuous, f is continuously differen-
tiable and all second-order derivatives of m are continuous. Further f(z) > 0,
o?(z) > 0.

(A3) The sequence of bandwidth matrices H'/? is such that n~!|H| /2 and each

entry of H tends to zero as n — oo .

(A4) For a boundary point z, there exists a value x, on the boundary of supp(f)
with = = x, + H'/?c, where c is a fixed element of supp(K), and a convex set

C with nonnull interior containing z; such that infycc f(z) > 0.

(A5) At z, all basis functions are continuously differentiable (for variance expres-
sions in Theorem 2.3, 2.5, 2.6) resp. twice continuously differentiable (for bias
expressions in Theorem 2.5, 2.6). In either case, the point z is non-singular
for all basis functions, i.e. V¢;(z) #0for j=1,...,q

For explanations and interpretations of conditions (Al) to (A4) see Ruppert &
Wand (1994).

2.2.7.2. Proofs
Proof of Theorem 2.3

Let 1 be a matrix of appropriate dimension having only entries equal to 1, further

let
1 0 d+1,d+1 (10 d+1,g+1
AH:(O 1/2> eR , and A; = 01 € RetLatl

Note that for any u € R¢
®(z + HY?u) — ®(z) = D, H?u+ o(HY?1)

holds. Let Cp = {t : H"Y2(t — z) € D, i}. For interior and boundary points we

derive

XIW, X, =
) 1 (B(X:) — @(2))"
ZKH ( O(X;) — 0(z) (B(X;) — (2))(R(X;) — ®(x))" )

1 o(t)—d(z))T
_ / KH t—x (®(t)—2(z)) f(t)dt
Con B(t)—0(z) (B(t)-2(z))(2(t)—2(2))T

+TLOP A AH1AHA1)

1 THI/QDE
B / H Kl DTHY2y DTHY2yyTHY2D, du (2.58)

+n0p(A1 AH].AHAl)
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and analogously
XTIy, X, =n|H| Yf(z)o?(z) (A5, AuN,AgAp, + op(AT AylAxAy)).  (2.60)

Substituting (2.59) and (2.60) into (2.45) leads to (2.47). In the special case of an

1 0
interior point we have M, = ( 0wl ) Thus (2.47) reduces to
Hald
. o’(x) —1/2,T
Var(m(z)|X) = W|H| e; Nzer(1+op(1)) = (2.61)
o?(z) .. _
= nf((x))|H| Y2u0(1 + 0p(1)). (2.62)

Proof of Theorem 2.4

We introduce the function M : [0,1] — R,
M(t) = m(ya(t)) = m(27'[@(x) ++(®(2) — 2(2))))-

Then we have M(0) = m(z) and M (1) = m(z). We apply the univariate Taylor
theorem on the function M € C?P*1([0,1]) and obtain

M(1) = M(0) + M'(0) + %M"(O) +.+ %M(”) (0) + 7p11, (2.63)

where
. 1

P )

Using the inverse function theorem we obtain

MP () (1 €0,1]).

(1) ! J(6:(20) = 61(2)

~ 4 (v

(1<i<n)

Repeated application of the chain rule on M = m o y¢ leads to

M'(t) = Vmye(t) - ys(t) = [((2(2) — @(2)) - Va)m](ye (1))
M'(t) = [(2(2) — @(2)) - Va)'m](ya())

M®™ (1) = [((2(z) — ®(z)) - Vo) m](ye(t))

Applying the latter formulas in (2.63) and substituting ( = yg(7) proves the alle-

gation.
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Proof of Theorem 2.5

The proof is kept shortly since it follows mainly the ideas of the corresponding proof
for multivariate local linear fitting, see Ruppert & Wand (1994).

Asymptotic bias
First note that, applying (2.50), we have

_ m(z) 1
m= X, ( PV (z) ) + EQm(a:) + Sim(2) (2.64)
with

Qm(z) = [(2(Xi) — ®(2))" Py Nun(2) P, (B(X3) — @(2))] ;.

and Sy, (z) = o(Qm(x)). Plugging (2.64) into (2.44) shows that
Bias(1(x)[X) = Lol (XIW,X,) " X W,Qu(a) (1 + (1)) (2:69)

Let w; = Ky (X; — x). Using matrix algebra (see e.g. Fahrmeir & Hamerle (1984))

we derive

(Xa:crwaw)_l =

( > w > wi(B(X;) — 0 (x)) )
S wi(@(X) — 0(z) Y wi(@(X,) — B())(B(X;) — D(x))

- 1 f(z) 4+ op(1) op(1THY?) -1
op(HY?1)  puyP,HP,f(x)+ op(H)

L +or) op(1TH1/2) .00
- n\ op(H?1) P H P+ op(HTY) '
and
T _ [ ref(@)tr{HNnm(2)} + op(tr(H))
XI"W,oQum(z) = n 00 (H21) ) , (2.67)

so that substituting (2.66) and (2.67) into (2.65) proves (2.51).
Asymptotic variance

Similar like above we obtain
X'y, X, =

= w?o?(X; ! ( ( ) (I)(x))
= Z i (XZ)<((I)(XZ)—(I)(ZL')) (cI)( ) ( CI))(Z ) )

(
) H|-1/2 voo?(z) f(z) +op(1) 1THY?(1 + 0p(1) )
H'”1(1+0p(1)) Gz, H)+op(H
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where

G(z,H) = (/ KQ(u)uquu) P,HP,0%(z)f(z).
Plugging this result and (2.66) into (2.45) leads to (2.52).

Proof of Theorem 2.6

Let
1 0 1 0
AH:(OH1/2>a APW:(OPQC).

Asymptotic bias

Note that
XI'wW,X, =
1 ()T
- n / Ku(t— 1) (@(0-2() F(t)dt
Ca,n (®(t)—2(z)) (2(t)—2(x))(®(t)—2(x))"
+TL0P(AH1AH)

where C, i was defined in the proof of Theorem 2.3. Using the first step in (2.67),

Xy WoQm(z) =
fDm,H K(u)u"HY2N,,(2) H*?u du
nf(37) Ple/Z wa ; UK(U){UTHI/QNm(x)Hl/Qu} du

ntr(H)
oo ( nH21tr(H) ) (269)

holds. Assuming (A4), M, is nonsingular and we have

[ ke o
M~ = 21,22 |7
Ky My
where 3! = (tiz11 — Hai2fiy sobte21) ™" py> = —(fw2/ pa1) s’ and 42 = (piz20 —
P21 Mz 12/ iz 1) " . Then substituting (2.68) and (2.69) into (2.65) and noticing
that
AR A M A A = (il 2P )

yields formula (2.54).

Asymptotic variance

Similar considerations like in (2.68) lead to

XT'W2X, = nf(z)|H|"Y*(Ap,AuN, Ay Ap, + op(Ag1Ag)). (2.70)
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With (2.45), (2.68) and (2.70) we get

Var(m/(z)|X) =
= e (Xg WoXo)H(Xg Wi X,) (X WeX,) e (0(2) + op(1))

o?(x)
= —L[H|7V? (el M N, M 1
nf(x)| | (61 T T €1+0P( ))7

what had to be proven.

2.3 Remarks on the generalized Taylor expansion

In Theorems 2.1 and 2.4 we provided simple extensions of Taylor’s theorem. In the
univariate case, we showed that it is possible to replace the polynomials by powers
of an arbitary smooth function. In the multivariate case we provided a theorem
which covers the case that each coordinate is modeled separately by an individual

basis function.

There are some topics concerning the generalized versions of Taylor’s theorem which
deserve to be treated in more depth than it has been done yet. In Section 2.3.1 we
repeat some properties of the univariate Taylor expansion along with some historic
notes. Further we analyze how Theorem 2.1 is related to Taylor’s theorem and
other well-known theorems. The content of Section 2.3.2 is more technical than
theoretical. Some notations and properties concerning Theorem 2.4 are explained

that have been treated only rudimentarily in the previous section.

2.3.1 Univariate generalized Tayor expansion

One of the most widely applied mathematical theorems is that of Taylor (1715),
which allows to approximate a function by a linear combination of polynomials.
Taylor did not specify the remainder term, the first representation of which is due
to Lagrange (1797). Today the theorem is mostly found in the following form (see
e.g. Lay, 1990, page 211):

Taylor’s theorem with Lagrange’s form of the remainder.

Let m : [v,w] — R be p times continuously differentiable and p+ 1 times differen-
tiable in (v,w), and let x € [v,w]. Then for each z € [v,w] with z # x there ezists

a point ¢ € (x, z) respectively (z,x) such that

) (1 |
m(z) = Z '( )(z —z) +rp1(2), (2.71)

p
=0
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with
m®t(¢)

W(Z — x)(f’“)

Tpr1(2) =
holds.

Already before Gregory, Newton, Leibniz, J. Bernoulli and de Moivre had discovered
variants of Taylor’s theorem by providing expansions for special functions. It was
Taylor’s achievement to join the results in a general theorem. The importance of
Taylor’s theorem remained unrecognized until 1772 when Lagrange proclaimed it
the basic principle of differential calculus. In general, “Taylor was a mathematician
of far greater depth than many have given him credit for” (O’Connor & Robertsen,
2000), as explained by Jones (1951): “A study of Brook Taylor’s life and work
reveals that his contribution to the development of mathematics was substantially
greater than the attachment of his name to one theorem would suggest.” Some of the
topics where he did innovative contributions are the law of magnetic attraction, the
center of oscillation, and perspective problems as the treatment of vanishing points.
Finally he found the inverse function theorem, a way of relating the derivative of a

function to the derivative of the inverse function.

There exists also the following formulation of Taylor’s theorem, found by Cauchy
(1821):

Taylor’s theorem with exact integral representation of the remainder.

Let I be a non-trivial interval, m : I — R be p+1 times continuously differentiable
in I andx € I. Then for all z € 1

P (4)
mY)(z ,
m(z) = jl( )(Z — ) + rpia(2), (2.72)
Jj=0 '
where
(@) = o [ = tpmP O at, (2.73)
holds.

Beside the different, form of the remainder, there is a small difference in the assump-
tions: The second approach using the integral form requires m to be p + 1 times
continuously differentiable. This is due to the partial integration which is done in
the proof. The Lagrange approach uses Rolle’s theorem, and this only requires that
m(®)(-) is differentiable. The Lagrange form can easily be derived from the integral
form by using the mean value theorem for integrals. However, if this way is chosen,
one requires again m to be p + 1 times continuously differentiable. For a deeper

comparison between these two remainder representations see Firey (1960), and for
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an overview of other remainder forms we refer to Blumenthal (1926). Using obser-
vation (2.6), or directly via partial integration similar to the corresponding proof of
Taylor’s theorem (see e.g. Forster, 1999, page 226), the remainder term in Theorem

2.1 can be written in integral form:

Theorem 2.7 (Generalized Taylor expansion - integral form).
Let I be a non-trivial interval, m,¢ : I — R be p + 1 times continuously differen-
tiable in I, ¢'(-) #0 in I and x € I. Then for all z € T

m(z) = 3 P2 (6(2) = 6(2)) + 3112, .14
where 1
spale) = / (6(2) — (1) ipsn (D) (8)
holds.

Taylor did not investigate convergency of the Taylor series, an expression which
seems to has been used for the first time by Lhuilier (1786). The Taylor series for

the function m at the point z is given by

L)

m
>
= 7

Under certain conditions, which are, however, hard to specify in general (Bern-
stein, 1914), this infinite sum equals m(z). Vice versa, every power series m(z) =
> 20 aj(z — x)? can be written as m(z) = Y 22, m(;)!(m) - (z — )’ within the radius
of convergence (see Forster, 1999, page 230). The last property is crucial for the

applicability of Taylor’s theorem, because it ensures the uniqueness of parameters.
Also for the generalized Taylor series the parameters are unique, as the following

lemma shows:

Lemma 2.1 (Uniqueness in the univariate case).
Let m(z) = 3222, bi(¢(2) — 6(x)) < oo. Then

P ()
4!

bl

b =
with ¢ and vy as in Theorem 2.1.

The condition < oo is important and reflects that this lemma only holds within
the convergence region of the series. From (2.6) we may also conclude that the
generalized Taylor series » 27, w(%,(z)(qﬁ(z) — ¢(z))? is convergent on the interval
(¢~ d(x) — 1), 07 (p(x) + 7)), where r is the convergence radius of the Taylor

series of m o ¢! centered at ¢(z).
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Proof of Lemma 2.1

It is
Yoy (2) = m(z) =3 _bi(9(2) - 6(x))’
_m’(z)_oo. ) — b))
¢(1)(Z) = (b'(Z) _j;]b](d)( ) ¢( ))
m*(2) & : k
Yy (2) = 50 Z](J —1)... (I —k+1)bi(o(2) — d(z)) ",
and thus

|

One verifies easily that Theorem 2.1 reduces for p = 0 to the well-known generalized
mean value theorem (Cauchy, 1821, see Forster, 1999, page 163), however with the
small constraint that one of the two involved functions has to be invertible in the
considered interval. Theorem 2.7 reduces for p = 0 to the fundamental theorem
of integral calculus. Summarizing, we see that the generalized Taylor theorem in

Lagrange form fits in the known framework as follows:

o =1id Taylor’s Theorem

Theorem 2.1 - (Taylor 1715,
Lagrange 1797)

Generalized Mean Value ¢ =id Mean Value Theorem

Theorem (Cauchy 1821) (Lagrange 1797)
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We notice that Theorem 2.1 fits quite naturally in the existing framework. Con-
sidering the age of the theorems surrounding it, it seems to be unimaginable that
it has not been introduced before. What is known about extensions of Taylor’s
theorem? Research in this direction started late, what gave Widder (1928) reason
to state that “in view of the great importance of Taylor’s series in analysis, it may
be regarded as extremely surprising that so few attempts at generalization have been
made”. However, meanwhile there exist a large variety of extensions, which are
nearly uniformly named “Generalized Taylor formula” (theorem, series, expansion,
...), complicating literature scanning in that aera. This covers e.g. extensions for
functions of complex variables (Walsh, 1929, Widder, 1929), generalizations based
on the Kronecker formula (Hummel & Seebeck, 1949, Boas, 1970), generalizations
for non-integer valued exponents (Trujillo, Rivero & Bonilla, 1999), generaliza-
tions for fractional derivatives (Raina & Koul, 1979) and incomplete differentials
(Grabert, 1982), probabilistic (Massay & Whitt, 1993) and random Taylor series
(Ding, 1998). Nevertheless, to our knowledge a Taylor expansion for power basis
functions has not been considered yet (or, maybe, has never been regarded as suf-
ficiently useful to be published). The generalization that is the most connected to
our one is that of Widder (1928). To understand Widder’s theorem, we need firstly
to introduce the following definition:

Definition 2.2.
The function

ap(z) = Z cj9i(z) (2.75)

is a function of approrimation for function m(z) of order p for the point z = x
if the functions ¢;(z) are of class C? (i.e. possess p continuous derivatives) in a
neighborhood of z = x, and if a,(2) has contact of order p at least with m(z) at

z=u, t.e if

It was precisely this approach which led Maclaurin (1742) to rediscover Taylor’s

theorem, certainly involving polynomials instead of arbitrary smooth functions.

Recall now that for basis functions ¢y(2), ..., ¢,(2) € CP Wronski’s determinant is
defined by

do(2)  ¢1(2) ¢p(2)

$o(z)  #1(2) ¢y (2)

W (2) = Wigo(2), $1(2), -+ , p(2)] =
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Now we are able to formulate
Widder’s generalization of Taylor’s formula.

If the functions m(z), ¢o(2), ¢1(2), ..., ¢p(2) are of class CP in a neighborhood of

z =, and if Wy(x) # 0, then there exists a unique function of approzimation

0 $o(z)  d1(2) - (%)
: L e s s o
@) =3 066 = ()| W@ G@ G@ - g0 e

W(z)

m®(z) ¢ (z) ¢ () ... oF(2)

of order p for z = .

Taylor’s expansion is quite easily derived from Widder’s formula. Setting ¢;(z) =

27,5=0,...,p, one obtains
Wy(z) = pl(p — 1)!--- 2111,

and the determinant in formula (2.76) can be written as

which leads immediately to Taylor’s formula. Obviously Widder’s generalization
covers Theorem 2.1 widely. However, the fact that it theoretically covers Theorem
2.1, does not necessarily mean that the latter one might be directly derived from it.
Indeed, when setting ¢;(z) = ¢/(2),j = 0,...,p, with ¢ € CP, one notices rapidly
that the complexity of the Wronskian as well as the determinant in (2.76) makes
Widder’s formula hard to apply. The problem is thereby that with each iterative
differentation (from one line of the Wronskian to the deeper one) the number of
terms rises exponentially, leading to intractable expressions already after some few
steps. Widder also provides some other representations of the presented theorem,
however the problem is inherent to all of them. Nevertheless, for very small degrees
p the equivalence of Widder’s formula and Theorem 2.1 can be shown. Let e.g.
p =1, then
Wi(z) = ¢'(z)

and the determinant in (2.76) turns out to be equal to
—m(z)¢'(z) —m/(z)((2) — 8(x)),

yielding

ai(z) = m(z) +
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in conformity to Theorem 2.1. Note further that the demanded invertibilty of ¢
corresponds to the condition of a non-vanishing Wronskian.

For a given series of basis functions ¢;(z),j = 0,1,2,..., the parameters c; of the
approximation (2.76) will normally not be interpretable, the series (2.76) will not
converge, and the remainder term cannot be specified. Thus, it would be desirable

to rewrite the series in the manner

ag(2) + [a1(2) = ao(2)] + [a2(2) —ar(2)] + ...

with differences a;(z) — aj_1(2) — 0 as j — oo. Widder (1928, p. 138, Theo-
rems II and III) shows that this is indeed possible. Under some conditions on the
Wronskians W;(z),7 =0,1,2,..., the series

do(2)g0(2, %) + d1(2)g1 (2, 7) + da(2)g2(2,2) + .. .,

where
do(x)  du(2) ¢;()
gf(z’@:(wjl(x)) ¢() ¢() () |
of V(z) oY V@) - ¢V V()
$(2)  di(z) o ()
and

d,(z) = W1%ol2); ¢1(Zv)v’j'_'{(;§b“(z)’m(z)]’

converges absolutely to m(z) in a symmetric interval around z. Using this repre-

sentation, the remainder term of a p—th order approximation can be written as

/ (2 )y (1) dt.

The functions g;(z, x) are linear combinations of the functions ¢¢(2), ..., ¢;(2). As

an example consider Taylor’s formula: Applying the basis ¢;(z) =27, j =0,1,2, ...,

gi(z,z) = (z — x)’ Z( ) )

m(J)(
J!

one obtains

and interpretable parameters d;(x) = . The remainder term reduces to (2.73).
As further example, Widder (1928) considers a Fourier basis 1,sin jz, cosjz,j =
1,...,00, and shows with substantial effort that the generalized Taylor expansion
around z = 0 is given by

o0

m(z) =Y @%(1 ~cos 2 4 By (1~ cos2)’ sinz) |

= 7)! 125+ 1)



54 CHAPTER 2. LOCAL FITTING WITH A GENERAL BASIS

where
Aj = DHD? + )(D? + 22) -+ (D* + (j = 1))m(0)

and
B; = D(D* +1%)(D* + 2%) - - - (D* + 5°)m(0),

with D = % being a differential operator. We observe that the series does not
use the original Fourier basis, but a somehow more complicated basis. Calculating
the bias of a local approximation using a Fourier basis would, however, require
to have an expansion with respect to the Fourier basis itself. Considering the
case that one really plans to perform local fitting against the basis functions (1 —
cos z)? and (1 — cosz)’sin z, this series, however, might be suitable: For j = 0
one has 4g = m(0) and By = m/(0) and thus the underlying function and its
derivative can be reconstructed, at least at z = 0. Summarizing, though Widder’s
expansion allows to employ an arbitary smooth basis, these basis functions yield
generalized Taylor series of functions which are probably not of interest in a real
application. The deciding question for applicability of Widder’s expansion on topics
as treated in Section 2.1 and 2.2 is the following: Which basis ¢;(z),7 = 0,1,2, ...,
has to be chosen to receive a particular generalized Taylor series » | 439, (z, ), which
enables us to calculate the bias of a local fit against a prescribed basis g;(z,z),j =
0,1,2,...7 This question, which is not a problem of statistics but rather a problem
of mathematics, is not yet answered. Thus, for the time being we have to be content
with constraining on the analysis of local fitting against very special basis functions,

as the power basis in Section 2.1.

2.3.2 Multivariate generalized Taylor expansion

The multivariate version of Taylor’s theorem, as found e.g. in Kénigsberger (2000),
page 65, can be written as follows:

Multivariate Taylor expansion.

Assume U C R? open, m € CPTL(U) , p > 0, further z, z and their connecting line
Cr(z,z) in U. Then there exists a point ( € Cg(z, z) with

m(e) = m(a) + 3 5 [(: = 2) - V)'m] (&) + By ), (2.77)

where
1

(p+1)!

Rpia(2) = [((z —7)- V)pHm] (€)-
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It was shown in Theorem 2.6 (Section 2.2.3) how this multivariate version of Taylor’s
theorem can be extended to a wider class of basis functions. The notation of
Theorem 2.6 has to be handled carefully. For example, in the case d = 2 with

z = (21,290) and z = (1, x9) it is

D (). 21 (1) — $1(21) — d1(21) o %>>2m
[(9(2) ~ (@) - Va)’m] (2) ((@w—@(w)) (¢—<>

= (i) = o) 0 (5 @)+

50)

+ 2n(e) — dn(o)ba(er) — dnlen)) 00 (S75) @)+
9 1 (92m

b (0ulen) ot (2 (o),

We see that this notation, though easily written down in the theorem, turns out to
be cumbersome in practice. We therefore set

nonte) = e (5 ) @

Then it can be easily shown that

nigm(x) = nm(z) (i # j) (2.78)
and . o(2)
nim(x) = ((bg(m))Qaim(:E) — (ngl(x))ga,-m(:c) (2.79)

holds, so that the matrix Ny, (z) := Py(n;jm(x))1<ij<aPx has the property (2.49)
Nip(z) = Hp () — P Pydiag(Vm(z)),

where H,,(z) is the Hessian matrix of m. Using this notation, the formula (2.48)

can be written as (2.50).

Uniqueness of parameters in the multivariate case can be shown similarly as for the
univariate case, using the the idea of the corresponding proof for a polynomial basis,
see e.g. Konigsberger (2000), page 67. To illustrate the multivariate generalized

Taylor expansion, we provide a simple
Example.

Let d=2,p=1 and
m(z1, z9) = log(z1) sin(29). (2.80)
A first order Taylor approximation of m around z = (4,7) approximates m by the

tangential plane
m(z1, 22) & —7.08 + 0.162; + 1.0525.
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Taking the basis functions

#1(z1) =log(z1) and  ¢o(z2) = sin(zg),

the multivariate generalized Taylor theorem substitutes this tangential plane by a

2-dimensional tangential curve, i.e.

01m(zxq, x9)

1 (1)

Oom(zq,x2)

+ (¢2(22) - ¢2(x2)) ) ¢/2($2)
=—0.49 + 0.64logz; + 1.39sin z,.

m(z1,22) ® m(z1,22) + (P1(21) — d1(z1)) -

The function (2.80) is shown in Figure 2.11 (top). The tangential plane spanned
by a usual first order Taylor approximation is shown in Figure 2.11 (middle). The
approximation via the generalized Taylor expansion is depicted in Figure 2.11 (bot-
tom). Certainly Theorem 2.4 justifies the latter expansion only in a region around z
where ¢, and ¢y are invertible. This region is roughly the mountain side where the
point x is situated, i.e. the area between the middle crest and the first valley. But,
as seen in Figure 2.11, the expansion might yield reasonable results even beyond

this region.

Final remarks

The content of Section 2.2 has been published in Computational Statistics (Einbeck,
2003). The copyright is hold by Physica-Verlag, ¢/o Springer-Verlag. The article is
reprinted with the kind permission of the publisher. The author is grateful to Daniel
Rost and Hubert Kalf (Math. Inst., University of Munich) for helpful suggestions

concerning the extendibility of Taylor’s theorem.
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(4,7) is symbolized by “o”.

Figure 2.11: Top: function (2.80); middle: tangential plane via expansion (2.77); bottom:

tangential curve via expansion (2.48). The point x
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Chapter 3

Local Smoothing with Robustness

against Outlying Predictors

3.1 Introduction

Smoothing methods are widely used to eliminate random noise in regression prob-
lems involving time series of explanatory and response variables. Typical examples
are studies of the association between daily measures of pollutant concentrations
in the atmosphere and mortality as considered in Schwartz (1994), Braga et al.
(2001) and Singer et al. (2002), among others. In such ecological studies, the
frequent presence of outlying observations requires robust smoothing techniques
and for such purposes, the LOWESS (LOcally WEighted Scatter plot Smoothing)
technique has been successfully employed to downweight the effect of outliers in
the response variable (Cleveland, 1979). The idea of the LOWESS technique is
to carry out a series of iteratively reweighted local polynomial fits, where, in each
step, the points with the largest residuals in the previous step are downweighted.
Alternatively, one of the several recently published robust nonparametric methods
may also be considered. For example, a common approach to robustification is to
replace the quadratic loss function [(z) = 22 by functions which are less sensitive
to outliers, e.g. the L; norm [(z) = |z| as proposed by Wang & Scott (1994).

More specifically, in the context of local constant fitting, the estimate of a function

m(-) at point z, given the data (X;,Y;),i=1,...,n, is
m(zr) = argminz w;(2)1(Y; — a)
@ i=1

with weights w;(z) = K[(X; — z)/h], where K is a kernel function and h is the
bandwidth. These local M-estimators are discussed in Hérdle & Gasser (1984),

59
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Truong (1989) and Hall & Jones (1990). An improvement on such estimators involve
a local linear instead of constant fit, as discussed in Tsybakov (1986), Fan, Hu
& Truong (1994) and Yu & Jones (1998). Honda (2000) enriched the concept
by accounting for correlated errors. These papers, however, deal with robustness
against outlying responses. The task of how to treat outliers in the predictors

remains unexamined, a fact which was already noted by Hastie & Tibshirani (1990).
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Figure 3.1: Respiratory deaths versus SO, concentration, local linear fit (dotted) and fit

with robustness to horizontal outliers (solid).

To illustrate the importance of the development of such techniques we consider the
data set analyzed by Conceicao et al. (2001) and Singer et al. (2002) to evaluate
the association between mortality attributed to respiratory causes of children under
five and the concentration of PMiy, SOy, O3 and CO in the city of Sao Paulo,
Brazil, from 1994 to 1997 (the data is available in www.ime.usp.br/~jmsinger).
The number of daily respiratory deaths as a function of the SOy concentration is
depicted in Figure 3.1. Days with high pollutant concentrations (as compared to
the majority of the data) are clearly identified. The effect of such observations is
to ”pull” the fitted curve downward (dotted line), suggesting that the effect of the
pollutant on children mortality decreases for concentrations beyond 50 (ug/m?), a
fact that has no biological plausibility. To better understand the effect, observe
the two data points at the lower right side of the picture. Although they do not

seem to correspond to vertical outliers, they definitely disturb the local linear fit. A
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possible reason for this is that high concentrations of the pollutant are not coupled
with a large number of deaths, contrary to what is expected; this is probably due to
the sparse design for large concentrations. It seems clear that some robust method
must be employed to bypass this inconsistency. In the light of this example, we
consider a robust local polynomial smoothing technique which downweights the
effect of outliers both in the response and in the explanatory variables (application
of this method on the given data yields the solid line in Figure 1). It may also be

used as a diagnostic tool to identify outliers in the explanatory variables.

In Section 3.2 we give a short review over some existing related concepts. In Section
3.3 we introduce the new outlier robust smoother and in Section 3.4 we return to

the example addressed above. We finish with a discussion in Section 3.5.

3.2 An overview of related concepts

3.2.1 Ridging

Seifert & Gassser (1996, 2000) show that the conditional variance of a local linear
fit can be unbounded in situations where the design is clustered or sparse. In many
cases, the presence of sparse data is a problem highly related to outlying predictors.
As a solution, they propose to use data adaptive ridging, i.e. they replace the local
linear fit by a weighted sum of a local linear and a local constant fit. An appropriate
choice of a data adaptive selected ridge parameter achieves a balance between these
two estimators and is successful in robustifying the procedure against unbounded
variance. However, this form of robustification is not exactly what we desire here.
Note that outlying predictors correspond to regions with sparse design and in those
situations the ridge estimator performs a local constant fit. Thus, the estimator will
more or less reproduce the response value associated to the outlying observations,

which is the opposite of what we expect of an outlier robust method.

3.2.2 Variable bandwidth

Fan & Gijbels (1992) discuss a local linear estimator based on a global variable
bandwidth, i.e., a bandwidth which depends on the predictors. In particular, let
(X1,Y1),...,(X,,Y,) be a random sample from a population (X,Y). Assume that
m(z) = E(Y|X = z) is the mean regression function of ¥ given X and let f(-)
denote the (design) density of X. Then

Y (Yi—a(2) = b(z) (@ - X))’ a(X)K

i=1

a(X,-)] (3.1)
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is minimized in terms of a(z) and b(z), applying a variable bandwidth h(X;) =
hn/a(X;), where a(-) is some nonnegative function. This leads to the local estima-
tor m(x) = a(z). Fan & Gijbels (1992) show that the optimal variable bandwidth,
i.e., the bandwidth minimizing the asymptotic MSE, is achieved by setting «(z)
proportional to (f(z)[m" (x)]2/02(a:))1/ ° where m" denotes the second derivative
of m and o%(z) denotes the conditional variance of Y. For a(z) = f(z), the esti-
mator 7 (z) obtained by minimizing (3.1) corresponds approximately to a nearest-

neighbour estimator.

Although not explicitly stated by the authors, this kind of estimator may be con-
sidered as a first step towards robustification against outlying predictors. Let us
assume that «(-) is any monotone increasing function of f(-). Then the factor a(X;)
in the minimization problem (3.1) downweights all points with a small design den-
sity, which is what we expect for the outlying covariates. There is, however, a
serious drawback with this approach to robustification. The function «(-) appears
again in the argument of the kernel K and covariates lying in sparse regions (e.g.
outliers) become associated to huge bandwidths, h(X;); thus they will have a large
influence on the estimation at remote (i.e., all other!) data points. This effect is
also contrary to the desired one. To overcome this problem, one could either replace
the function a(-) in K by a more suitable function 3(-) or simply leave it out. For

simplicity and transparency of the concept we will focus on the last alternative.

3.3 Robustness against outlying predictors

3.3.1 Soft robustification

In the light of the above discussion, we consider the estimator
m(z,a) = a(x), (3.2)

obtained by minimizing

n

Z (Y; — a(z) — b(z)(z — X;))* (X)) K (9” ;f) (3.3)

where «(-) is any monotone increasing function of f(-). In order to avoid singular-
ities due to sparse designs, we propose to use kernels with unbounded support in
the presence of outlying predictors. In this paper we use Gaussian kernels in all

examples.

Note that asymptotically, i.e., for h, — 0 and nh, — oo, the estimator (3.3)

is equivalent to a local linear estimator. In fact, the factor a(-) vanishes in the
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leading terms of asymptotic bias as well as asymptotic variance expressions as may
be deducted from the results presented in Fan & Gijbels (1996). This however
is not surprising, since design-adaptivity is one of the major advantages of local
linear fitting. The weight function «f(-) essentially modifies the influence of the
design density, regardless if a(-) depends on f(-) or not. However, asymptotics for
horizontal outliers seem not to make much sense, since for n — oo the data will
be arbitrarily dense at any location z for which f(z) > 0. Consequently we will not

focus on asymptotic considerations in the following.

Normally the function «(-) is unknown and we obtain the estimator 7 (z, &) by
minimizing (3.3) with «(-) replaced by a consistent estimator, &(-). A near-at-hand

idea is to use a(-) = f(-). We estimate the density by
~ 1 - Xz — X
T) = K .
fe) = Z:j ( . )

To select the bandwidth ¢,, we choose the modified normal reference bandwidth

selector proposed by Silverman (1986), namely
gn = 0940713,

where

A = min(standard deviation, interquartile range/1.34). (3.4)
We defer the task of how to select the bandwidth A, to Section 3.5.

As a further improvement, one could imagine to use not the density f(-), but a
power f¥(-) with k£ > 1 as the weight function a(-). As we shall see, the larger the
exponent, the better is the robustification. However, the exponent cannot increase

arbitrarily, since then estimation becomes unstable.

In the sequel we will refer to the method introduced above as soft robustification.
Under this method, outliers are downweighted but not eliminated. When one is
convinced that the outliers do not contain useful information, it might be desir-
able to eliminate them from the estimation procedure. This approach, called hard

robustification, will be introduced in the following subsection.

3.3.2 Hard robustification

Under soft robustification procedures, outliers still influence estimated values asso-
ciated to predictors lying in their neighbourhood. To avoid this, one could consider
automatically cutting off points associated to estimated density values which fall

beyond a certain threshold. This threshold can be calculated data-adaptively by
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applying an idea similar to that of the normal reference bandwidth selector. In a

(very) rough approximation, one can assume
J() = duax (),

where ¢, 42 denotes the density function of a normal distribution with p =
median(Xy,...,X,) and A as in (3.4). Let p denote the proportion of expected
outliers (typically, p = 0.05 or p = 0.01). Then the required threshold is given by
1
0= ¢,u,A2 (xp/Q) = ¢,u,A2 (M +A- Zp/?) = Zd)(zp/?)a
where z,,/ and z,/, are the p/2 quantiles of the distribution of X and of the N(0,1)

distribution, respectively. The estimator 7 (x) is now obtained by minimizing

> (i) — o) — X)) oK pxma K (T0). (39)

i=1
Surely the question arises whether one can rely on estimation results in areas where
the data were downweighted or even cut off. This, however, is a question inherent
to any robust method. In particular, when applying soft robustification techniques,
we must face the question of whether it is correct to downweight the data on the
one hand, i.e., to pretend not to trust the data, but to believe in the estimation
results in the same region, on the other hand. Some decision has to be made and
we suggest to base it on areas of confidence, which can be selected by means of
density estimation. Within the areas of confidence, i.c., for all z with f(z) > 6,
the estimation is considered to be reliable. Outside these areas, the reliability of
the estimation procedures is questionable and interpretation of the estimated curve

must be taken cautiously.

3.3.3 Example

We now apply the proposed methods to a simulated data set, generated by contam-
inating the underlying function m(z) = (z — 3)? with Gaussian noise (¢ = 0.75).

The predictor values are assumed to be uniformly distributed in the interval [0,6].

In Figure 3.2 we illustrate how the soft robust fit is affected by successively adding
outlying predictors. We start without outliers and finish with a cluster of seven
outliers. In each case we take the estimated density and the third power of the

estimated density as weights.

A similar investigation was carried out under the hard robustification method; the
results are depicted in Figure 3.3. The development of the kernel density and the
cut off threshold are shown in Figure 3.4. An analysis of these figures leads us to

conclude that
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Figure 3.2: Data (+), local linear fit (solid line) and soft robustification by weighting with
the density (dashed line) and third power of the density (dotted line) for varying numbers

of outliers. Vertical lines indicate the end of the confidence area.
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Figure 3.3: Data (+), local linear fit (solid line) and hard robustification by weighting
with the density (dashed line) and third power of the density (dotted line) for varying

numbers of outliers. Vertical lines indicate the end of the confidence area.
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Figure 3.4: Density estimations and cut off thresholds of the data set used in Example
3.3.3.
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e The proposed soft robustified fit is obviously more robust to outlying predic-
tors than a local linear fit. The performance of the robustication procedure is

thereby better inside the area of confidence than outside.

o Weighting with the third power of the density yields a better robustification
effect than weighting with the density itself.

e When only one or two outliers are present, the hard robustification method
produces a fit which is completely unaffected by the outliers (see top of Figure

3.3). Like desired, only the outliers are removed from the data set.

e For bigger clusters of outliers soft and hard robustification methods yield the
same results since in this case the density does not get cut off. Note that
the cut off threshold is decreasing with an increasing number of outliers (see
Figure 3.4).

e The bigger the cluster, the smaller is the effect of robustifictaion as expected,
since a big cluster is probably not just a group of outliers but rather contains

genuine information.

e From Figure 3.4 we may observe that values at the boundary are downweighted
in general, even if they are not outlying, due to the smoothing effect of the
kernel density estimator. This is a desirable property, when the boundary
points are likely to provide spurious information. From a theoretical point of

view, one might have a different opinion - see Section 3.6 for a discussion.

In all estimations in this example we used the same global bandwidth hy = 0.6,
motivated by the result of one-sided cross-validation (OSCV) discussed in Section
3.3.5.

Note that the outliers considered in this example could be regarded as outlying
predictors as well as outlying responses. Thus methods which robustify against
outlying responses should work here as well. In fact, when one outlier is present,
the S-Plus function loess yields the same effect of a hard robustifiction procedure
after two iterations. We chose this example only to demonstrate the effect with a
particularly difficult kind of horizontal outliers. In Section 3.3.4 and Section 3.4 we

will provide examples where vertical robustification methods fail.

3.3.4 Simultaneous robustness for predictor and response variables

Now we show that robust methods for outlying predictors and responses can be
combined successfully. We choose the robust LOWESS method of Cleveland (1979),
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which is one of the most widely used robustification methods. It is implemented in
S-Plus.

The data shown in Figure 3.5 were generated by contaminating the underlying func-
tion m(z) = 64/ with Gaussian noise (o = 3) and the predictors are uniformly
distributed in the interval [0, 6]. One vertical outlier at point (2;25) and two hori-
zontal outliers at (7.5;11) and (8;10.5) were intentionally added by hand, yielding
a total of n = 51 data points. Note that the observations with outlying predictors
cannot be regarded as outlying responses, since, when compared to the other data

points, they are not located at a considerable distance from the function m.

Figure 3.5 (top) shows the result of a simple local linear fit and a LOWESS fit after
four iterations. The LOWESS fit succeeds to eliminate the influence of the vertical
outlier, but fails to handle the horizontal outliers. An illustration that the local
linear as well as the LOWESS fit can be robustified against outlying predictors via
the soft robustification method (with the estimated density as weight function) is
given in the bottom part of Figure 3.5. All the estimation procedures were carried
out by means of the S-Plus function loess with smoothing parameter equal to 0.45.
This smoothing parameter corresponds to the fraction of neighboring data points

used in each local fit, since loess utilizes by default a nearest-neighbor-bandwidth.

In Section 3.4 we will give another example for simultaneous robust smoothing
against horizontal and vertical outliers, in the context of robust M-procedures for

generalized additive models.

3.3.5 Some notes about bandwidth selection

In principle, any arbitrary local linear (constant or variable) bandwidth selection
routine can be applied to select the bandwidth h,. Possible methods to select
constant bandwidths are, among others, cross-validation (CV), one-sided cross-
validation (OSCV, Hart & Yi, 1998), plug-in methods (Ruppert, Sheather & Wand,
1995), methods based on the AIC (Hurvich, Simonoff & Tsai, 1998) or the RSC
criteria (Fan & Gijbels, 1995). For local variable bandwiths, i.e., bandwidths of the
form h(z), we may also refer to Fan & Gijbels (1995), and further to Fan, Gijbels,
Hu & Huang (1996) or Doksum, Petersen & Samarov (2000).

However, we should point out that the results of bandwidth selection routines can
be seriously affected by horizontal outliers. As an example, we demonstrate the
effect of outliers on cross-validation and one-sided cross-validation techniques for
the simulated data examined in Section 3.3.3. The results of the selection of a

bandwidth for a local linear estimator under increasing numbers of outliers is shown
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Figure 3.5: Top: Simulated data, underlying function (solid line), local linear (dotted
line) and LOWESS fit (dashed line); bottom: Soft robustified local linear (short-dashed)
and LOWESS fit (long-dashed).
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in Figure 3.6 for each method (CV or OSCV). As may be deducted from the plot,
both bandwidths obtained under CV and OSCV are considerably affected by a

single outlier.

0.8

0.6

h_opt

0.4

0.2

T T T T
[0} 2 4 6

number of outliers

Figure 3.6: Bandwidth selected by CV (solid) and OSCV (dotted) for increasing numbers

of outliers in Example 3.3.3.

The corresponding bandwidths are bigger under OSCV than under CV as the num-
ber of outliers increases. A similar analysis was conducted for the example of
Section 3.3.4; the selected bandwidths under CV and OSCV for none, one and two

horizontal outliers are summarized in the following table.

Selection | Horizontal outliers
method 0 1 2
cv 1.60 1.97 1.36
oscv 1.25 1.28 1.08

Table 3.1: Bandwidths selected by CV and OSCV for Example 3.3.4.

One observes that OSCV yields more stable bandwidth values than CV. The seem-
ingly better robustness of OSCV to outlying predictors is in conformity to other
robustness properties of this methodology (Hart & Lee, 2002).

We finally remark that the above results do not change significantly when using a
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soft robustified estimator instead of a local linear estimator under the CV (OSCV)
routines. The problem seems to be intrinsic to the bandwidth selector and not to
the smoothing method.

3.4 Relative risk curves for respiratory deaths

We now return to the example addressed in the introduction. Following a standard
analysis strategy for this type of data as in Schwartz (1994), a generalized additive
”core” model including terms to control for trend, days of the week, seasonality,

temperature, humidity and non-respiratory deaths was initially fitted.

A scatter plot of the deviance residuals from this ”core” model versus the SO,
concentrations is presented in Figure 3.7 (top) along with a LOWESS smoother
(dotted line). The resulting curve falls for high concentrations, whereas the soft
robustified fit slightly rises.

Regarding the plot, this effect does not seem to be so serious - however the mislead-
ing effect of the horizontal outliers becomes much more dramatic when regarding
relative risk curves similar to those presented in Singer et al. (2002). The gen-
eralized additive model considered there is typical for count data like the ones
investigated here. For our purposes it suffices to know that the model may be
generally expressed as

p—1

In[E (respiratory death)] = o + Z fe(Xk) + fF(SO,)

k=1
where Xy, k = 1,...,p — 1 denote variables like temperature, humidity, etc. The
relative risk of death at a concentration SO4(i) of the pollutant SO, relative to the

risk of death at the minimum concentration SOy(min) is given by

E(respiratory death|SO,(i))

RR(7) =
Q E(respiratory death|SOq(min))

= exp[f(SO2(i)) — £(SOz(min))].

In the center portion of Figure 3.7 we show the relative risk curve (-) and its soft ro-
bustified counterpart (+). The plot shows a tremendous influence of the horizontal
outliers. The unrobustified relative risk curve decreases with increasing pollutant
concentration, which is obviously unacceptable. The soft robustified relative risk
curve (weighted with the density) behaves as desired. The function f(SO,) has
to be calculated inside the generalized additive model. To account simultaneously
for outlying predictors and responses, we apply in both cases robust M procedures
for generalized additive models (Hastie & Tibshirani, 1990). The soft robustified
smoother is thereby easily plugged into the generalized additive model by using
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Figure 3.7: Top: Deviance residuals versus SOy concentration with a LOWESS fit (dot-
ted line) and a soft robustified fit (solid line); middle: Relative risk curves versus SO,
concentration resulting from a local linear (-) and a soft robustified fit (+), each evaluated
at all measured values of SOy concentration; bottom: Kernel density estimation of the

SO, concentration. Vertical lines indicate the end of the area of confidence.
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the S-Plus function gam applying the interfaces 1o (LOWESS) or 1f (LOCFIT).
However, it seems that somehow soft robustification and backfitting disturb each
other. This problem can be avoided by plugging the density directly into the gam
instead into 1o or 1f. Figure 3.7 (middle) was obtained in this manner.

The form of the kernel density estimation for these data is presented in the bottom
portion of Figure 3.7 and suggests that there is no need for a hard robustified version

of the local linear fit in this case.

3.5 Discussion and Outlook

We showed that local linear and LOWESS smoothers can be robustified against
outlying predictors. The main idea is to plug the estimated density into the min-
imization problem. Such an idea is not restricted to these estimators and can
certainly be applied to local estimators in general and the corresponding derivative
estimators. We did some further simulations with smoothing splines and this also
led to the desired results. In fact, we believe that it is not an exaggeration to claim
that any smoothing method which is based on minimization (maximization) of any
loss (likelihood) function can be robustified against outlying predictors by applying
the concept introduced here. It should also work for multivariate predictors, though
more care will be necessary due to the curse of dimensionality when the data gets
too sparse, as the estimates otherwise do not exist or are useless. Here the “area of

confidence” plays a much more important role.

We feel that there is still necessity for further research in this area. Beyond the
topics mentioned above, a challenging task seems to be the problem of bandwidth
selection; in particular, we mention the problem of robustness of common bandwidth
selection routines to horizontal outliers. Up to now, this task is only rudimentarily
treated, even for vertical outliers. In the context of local L; regression, Wang &

Scott (1994) introduced a version of CV with robustness against outlying responses.

3.6 Additional asymptotics

In this section we will analyze some theoretical properties of estimator (3.2). Though
the application of asymptotic results on data with horizontal outliers might be lim-
ited, as already mentioned in Section 3.3.1, we will see that the results are somewhat

interesting from a more general point of view. We will derive some asymptotic prop-



3.6. ADDITIONAL ASYMPTOTICS 75

erties of a generalized version of (3.2), namely of the estimators

9 (z, ) = j1B;(x) (0<j<p), (3.7)

obtained by minimizing

n

> (Yi - Z Bi(z)(X; — »’U)]) a(X;) Kn(X; — 2) (3.8)

=1

in terms of B(z) = (Bo(z), ..., Bp(z))T, where p is any non-negative integer and ()

is continuous at point . We use the matrices
1 X1 — T - (X1 —37)11 Ol(Xl)
1 X,—z -+ (X, —2)P a(X,)

and W, y as in Section 2.1.2. Then the minimization problem (3.8) has the form

minﬂ(m) (y - Xxﬂ(-T))TAWw(y - Xwﬂ(x))a

yielding
B(z) = (XFAW,X,) ' XT AW, y.

Then ) (z) = e]THﬂA(:c), where €11 = (0,...,0,1,0,...,0)", with 1 at (j + 1)th
position, is an estimator for m()(-) at point . The conditional bias can be written
as

Bias(6(z)|X) = (XTAW,X,) ' XL AW, r,, (3.9)

where r, = (m(X1),...,m(X,))" — X, 0(z) is the vector of the residuals of the local
approximation and X denotes the vector of covariates (X1, ..., X},). The conditional

variance is given by
Var(B(z)|X) = (XJ AW, X,) ™ (XT A*S, X,) (X7 AW, X,) 7 (3.10)

with ¥, = diag(KZ(X; — 2)0?(X;)). Recall the notations given in Section 2.1.3,

and denote further S* = (Vj1141)0<ji<p- We work with the following

Assumptions:

(i
(ii

)
)
(i)
)
)

The kernel K is a continuous density function.
f(z) >0, f(-) is continuously differentiable in a neighborhood of z;

() # 0, «(+) is continuously differentiable in a neighborhood of z;

L

(iv) o?(z) > 0, o(-) is continuously differentiable in a neighborhood of z;

(v) m(-) is p+ 2 times continuously differentiable in a neighborhood of z;
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(vi) The kernel K is symmetric.

We have the following theorem:

Theorem 3.1.
Under assumptions (i) to (v) we get for h — 0

Bias(8(2)|X) = RPT H ™ [8,415 ¢, + hbY (z) + 04 (3.11)
and
A 0%(T) ottt ar ot * -1
Var(B(x)|X) = f(a:)nh,H [S71S*S™h + hVi(z) + 0] H (3.12)

where H = diag(1,h,...,h?), 0o, = op(h) + Op (ﬁ),

b () = (% + %) Bpsa (@) (5716, = S718576,) + Bpra(#)S "5 (3.13)

and
Va(z) = (20I(x) IPLAC/N fl(gc)) SIS ST —

1
a(z)f(z)

The equations given in this theorem reduce to the expressions provided in Fan,
Gijbels, Hu & Huang (1996) in the special case «(-) = 1. Note that the leading

bias and variance terms are independent of «(-)!

In the following we additionally suppose that assumption (vi) holds. Firstly we take
a look at the variance (3.12). Note that, independent of p and j, the expression
el,1S715*S e 41 is never trivially zero, while the expressions e?, ; S~1SS715*S te; .1,
eJTHS’lS*S’lS'S’lejH and eﬁlS’lg*S’leHl are always trivially zero for a sym-

metric kernel. Assuming that nh — oo, it is 0, = 0p(1), and one gets

i P jlo*(z) !
Var(m"(z)|X) = ef,,57'5"S 1ej+1f(x)nh1+2j +op | —i5 |

which is identical to the formula for local polynomial fitting provided in Fan &
Gijbels (1996), Theorem 3.1.

Secondly, we consider the bias. For p — j odd, the expressions €], ;S™'¢, and
el, ;57155 !¢, are zero, and we get from (3.11) for nh — oo

Bias(m¥ (z)[X) =

\ | |
= ¢uS e (pi i @R+ op(RPT), (3.14)
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which is again the same as in Fan & Gijbels (1996), Theorem 3.1, for standard local
polynomial fitting. Let additionally nh® — oo and thus o, = op(h). For p —j

even we have e],,S "¢, = 0, and we arrive at

Bias(mY(z)|X) =
_ e (O"(‘”) + 1 '(””)) (571, - 57155 16, m*)(x) +

e+ [\ale)  f(x)
451, m(P+2) (x)] p2-i
p+
+ op(hPT277) (3.15)

This expression is somewhat interesting, because it reveals that with a suitable
setting of a(z) the asymptotic bias may be reduced. Note that the augend in the
squared bracket in (3.15) vanishes for

/@) @)

= 0’
az)  f(z)
and this differential equation is solved for
(x) ! (3.16)
Qopt(T) = c——, )
" f(@)

with ¢ € R\ {0}. This is a quite surprising result, because we proposed just the
opposite in the previous sections, namely to set a(z) = f(z) in order to weight
down outlying predictors. The explanation for this apparent contradiction might
be that outlying predictors are a finite sample problem, where the results of asymp-
totic calculations don’t apply. However, it might be a bit too easy to make the
asymptotics responsible for this. From a theoretical point of view, a horizontal
outlier is nothing that should be discarded. In contrary, when fitting at an end-
point, the boundary point is even “the most informative observation” (Hastie &
Loader, 1993b) for reducing the bias at the boundary. This, however, implies that
the boundary point undoubtedly traces from the assumed underlying model, i.e.
one assumes that the information at the boundary is as reliable as in the interior.
This condition might be injured in some cases, especially when the boundary point
is far away from the interior, and for these cases the methodology introduced in the
previous sections was designed. Thus, we do not believe that the asymptotic result

is in fact a contradiction; it only reflects another point of view of the problem.
Proof of Theorem 3.1

This proof is kept shortly since it mainly follows the lines of the corresponding proof

for local polynomial fitting, see Fan, Gijbels, Hu & Huang (1996), or the proof of
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Theorem 2.2. Let w; = K;(X; — z) and

n

=Y a(Xp)wi(X; — l')j§ Ry, = (Tnjt1)o<ji<p;

=1

Tnj = Z:IO‘Q(Xi)UQ(Xi)wi(Xz’ —z)’; Ry = (Tnj+1)o<ji<p-

Tn.j

Then R, = XTAW,X, and R} = XTI A?%, X,.
Bias:
The use of standard asymptotics reveals that
Tng = 1 (fa(@) s + hfo (@) i + on), (3.17)

where f,(z) = a(z)f(z) and o, = op(h) + Op (ﬁ), and thus

R, = nH[fo(2)S + hf' (2)S + 0,]H (3.18)
holds. Then, using Taylor’s expansion and equation (3.9), we get

Bias(B(@)|X) = Ry |Bys1(2)do + Byral2)dn + 0p(dn) | (3.19)

where d, = (Fnps1s- - Tnope1)” and dp = (Fppizs - Tnopr2)”- We use the fact
that (B + hC)™' = B! = hB7'CB~! + O(h?) to calculate

=l [ L g1 _pfal®) | on] H. (3.20)
n

Jfa(z) fa(x)
Plugging (3.20) into (3.19), and substituting (3.17) into the vectors d,, and d,,, yields
(3.11) via some simple matrix algebra, taking into account that

folz) _ (@)  [f(2)

fu@) " alz)  f(@)

Variance:

Similar to (3.18) we find that
R = %H[sa(x)S* + hs',(2)S" + 0n]H, (3.21)
where s,(z) = 0?(z)a?(z) f(x). By substituting (3.21) and (3.20) in
Var(3(2)X) = R, B, Ry

we derive (3.12) by applying matrix algebra.
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3.7 Relation to the Horvitz-Thompson estimator

In the previous section we showed that the bias is reduced asymptotically if the
observations are downweighted with their reciprocal density, at least for odd values
of p—j. This implies that outliers and sparse data regions are upweighted, whereas
the data in dense regions is downweighted. The concept of weighting up unlikely
data is not new. Indeed, the phenomenon observed in the previous section seems

to have a counterpart in sampling theory.

Assume a population U consisting of N units uq, ..., uy. A sample of size n is
to be drawn without replacement using arbitrary probabilites of selection for each
draw. Suppose that a characteristic X for the n units is to be measured. We denote
by X;(j =1,...,N) the value of X belonging to u;, and by z; (i = 1,...,n) the
value of the i—th selected unit. The objective is to estimate the population total of
X, ie.

T:ZXj.

N
7j=1

Let us consider the class of estimators T = Yoy Bijxi, where G (j = 1,...,N)

is a constant to be used as a weight for the j—th unit whenever it is selected for

the sample (f;; does not depend on 7 itself, the subscript ¢ only indicates that

it is related to the i—th draw). Let us assume that units wuq,...,u, (suitably

renamed) are selected. Horvitz & Thompson (1952) show that the only unbiased

linear estimator in that class is given by
T = Tt
2 Pl

where P(u;) is the probability that unit u; is selected in any of the n draws. Thus,
in other words, the estimation is best when the observations are weighted with the

inverse selection probability. Furthermore, they state that if

the estimator T has zero variance and the sampling will be optimal.

In the regression setting, an underlying density of the independent variable may
be considered as the selection probability distribution. We realized in (3.16) that
the estimation is best when the observations are weighted with the inverse density.

This is now a message quite similar to that of Horvitz and Thompson.

Also for Horvitz-Thompson’s estimator a paradox between theory and its practical

application has been observed, firstly by Basu (1971) in his famous elephant fable:
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A circus owner plans to ship 50 adult elephants and therefore needs a rough estimate
of their total weight. As weighing elephants is not so easy, the owner intuitively
plans to weigh only one elephant and to multiply the result with 50. However,
to decide which elephant should be weighed, he (unfortunately) consults the circus
statistician, who assigns a selection probability of 99/100 to a previously determined
elephant (“Samba”) which presumably has about the average weight of the herd.
All other elephants obtain the weight 1/4900, including the elephant “Jumbo” who
is biggest of all. If Samba was now selected, its weight would have to be multiplied
with 100/99 according to Horvitz-Thompson, and if Jumbo was selected, his large
weight would even have to be multiplied with 4900 to get the “best linear unbiased
estimator” of the total weight. Certainly, after having given this advice, the circus

statistician is sacked.

In a recent book by Brewer (2002), subtitled “Weighing Basu’s elephants”, this
problem is examined in more detail. We will not pursue this topic further at this
place, but finish with the statement that in sampling theory and local smoothing
similar theoretical results lead to similar phenomena. We note furthermore that in
Basu’s fable the property (3.22) was completely ignored. These observations sug-
gests that generally care has to be taken when applying a theoretical bias-minimizing

criterion, as given by (3.16) or Horvitz and Thompson.

Final remarks

Sections 3.1 to 3.5 of this chapter are joint work with Carmen D. S. de André
and Julio M. Singer (Universidade de Sao Paulo). That part of this chapter is

conditionally accepted in Environmetrics.



Chapter 4

Online Monitoring with Local
Smoothing Methods and Adaptive
Ridging

4.1 Introduction

A considerable number of papers in the last years focussed on modelling and test-
ing of edges and jumps in smooth functions, see e.g. McDonald & Owen (1986),
Hall & Titterington (1992), Chu, Glad, Godtliebsen & Marron (1998), Miiller &
Stadtmiiller (1999). These methods are however preferably or exclusively designed
for data which are analyzed “offline”. This means the entire data set is available
for the analysis. In contrast, “online” monitoring is required if observations arrive
successively in time. Then at each time point a decision is required whether a jump
or edge has occurred. In this paper we will extend some of the “offline” tools above

for monitoring data online. We develop an online test checking for breakpoints.

The analysis of data occurring online is an important issue in various fields of
science and industry. This includes quality control management, time series in
finance or online monitoring of clinical information systems. A general overview of
existing procedures for online monitoring is found in Basseville & Nikiforov (1993).
The use of online methods in clinical information systems has been focussed e.g.
by Daumer & Falk (1998), who make use of a Kalman filter to detect jumps and
thresholds in the (online) ECG profile of a patient after surgery. Imhoff & Bauer
(1996) and Bauer, Gather & Imhoff (1999) make use of a time series approach
for online monitoring while Daumer (1997) uses an adaptive control chart based on

moving averages. In all these papers the general focus is to detect sudden structural

81
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changes in order to give alarm.

The general problem for online monitoring we are considering here can be described
as follows. Assume that at time-point ¢ the measurement y; is observed. It is

assumed that y; follows the stochastic model

yr = pu(t) + & (4.1)

where p(t) is the mean function in time, which possibly also depends on other
covariates, and ¢; is a random noise, which is allowed to be correlated with previous
observations. Both, y; and hence ¢; are allowed to be multivariate, but we restrict
to the univariate case here. Based on the information available at time-point ¢, i.e.
based on ¥, ...,y it is to decide whether p(t¢) has a breakpoint at time-point ¢. A
breakpoint here means that u(t) is discontinuous, i.e. there is a jump at ¢, or p(t)
has a discontinuous first derivative, i.e. there is an edge or sharp bend at ¢. Online

monitoring of the data should give alarm if a breakpoint occurs at time-point .

A convenient approach is to compare the observed value y; with a predictor g;.
Alarm is given if y; differs from the predictor by more than the threshold A;, say,

ie. if
lye — O¢| > Ay (4.2)

The threshold A; is thereby chosen such that sensitivity of the alarm rule is achieved
while the probability of false alarms is small. The prediction ¢, is calculated from
previous values y;_p, ... y;_1, with h as time lag. Daumer (1999) suggests to calcu-
late ¢; by a running mean calculated from 1; ,...y; 4, where d is a second time
lag with 1 < d < h. Hence observations in the near past are left unconsidered.
The time lag d serves as delay for the running mean and Daumer shows that for
d > 1 the alarm rule (4.2) improves its performance compared to taking d = 1. In
this paper we apply more sophisticated smoothing techniques instead of a simple
running mean. We make use of local polynomial fitting (see e.g. Fan & Gijbels,
1996) which reacts better on structural changes and moreover can cope for smooth

shifts, unlike the running mean.

Considering (4.2) it becomes obvious, that the alarm rule basically depends on the
value of y;. This in turn implies a high variance of the procedure. We therefore
replace y; in (4.2) by a smooth estimate of u(¢). In the same way we replace the

predictor by a second smooth estimate. This means we consider the alarm rule
() — f2(t)] > A (4.3)

where [i1(t) and fio(t) are two estimates of p(t). The first estimate fi1(¢) is thereby

calculated as long term estimate from y; p,,...,y; while fis(¢) is a short term
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smoother obtained from y; j,,...,y:, where hy < h;. The major difference of
(4.3) compared to (4.2) is, that we do not compare the current observation with
its predictor, but we compare two estimates of the mean function. The basic idea
behind this is that if () has a jump or a sharp bend at ¢, the long term estimate
f1(t) and the short term estimate fio(t) will essentially differ. If in contrast p(t) is
smooth, both smooth estimates will basically be the same. Hence the alarm rule
(4.3) can be seen as smooth test statistic, where large values indicate a violation in
the smoothness of y(t).

The bandwidth hy which is chosen for the short term estimate mainly determines
the speed of reaction of the alarm. Taking a large value for h,, the reaction time
and the specitivity of the alarm rule increases while the variance of the alarm rule
decreases so that false alarms are less probable. Using a small bandwidth A on the
other hand improves the reaction time and the sensitivity of the alarm rule (4.3) but
the variability increases. The second tuning parameter h; decides in which depth
the method is searching for breakpoints. For small values of hA; mainly short term
changes will be detected, while with a large value of h; the focus is on detecting
long term breaks of the structure of the time series. Beside the choice of the two
bandwidths h; and hy the fixing of the threshold A; is required which however

results from simple variance calculations.

The choice of the applied smoothing method is thereby essential. Generally speak-
ing, smoothing methods are weak in detecting jumps since they smooth over edges
or jumps. Once a jump occurs and is detected, it is therefore necessary that the
smooth estimates adjust quickly for the new level or shift. It is well known that
local linear smoothing and local constant smoothing, which is a simple running
mean, react quite differently at the boundary of the support points. Note that by
definition, the online estimates are calculated at the boundary. We will combine
both estimates using a ridge regression, as suggested in Seifert & Gasser (2000) for
“offline” analysis. The ridge regressor thereby results as weighted mean of the local

linear and the local constant estimate.

4.2 Local linear smoothing and breakpoint detection

We calculate the long term estimate by fitting a local linear model to the data
pairs (t —4,y;;) for i = 0,1,..., h;. Let therefore K;(-) denote a kernel function
with support [0, ~;]. An example is found by taking K;(-) as the truncated normal
density with mean h;/2 and variance (h,/4)?. The estimate ji;(¢) is then obtained
by fitting a weighted linear model using the kernel K(-) as weight function. It is
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not difficult to show that the resulting estimate is the weighted mean
h1
Z Wi Yi—i (4.4)
i=0

with weights

wiy = (1,0)K,(3) (ZKl ( ) 1,—j))1(1i) (4.5)

( )(Shl 2+ ZShl;l)
Sh1,09m,2 — Sh1

where S, ; = .M K;(i)(—i)/ for j = 0,1,2. It is important to note that the
weights do not change in ¢ and hence they can be calculated once and no updating

is required.

In the same fashion one obtains the short term estimate fis(t) as local linear fit to
the data (t — i,y:—;), i = 0,...,hy. Let therefore Ks(-) be a kernel density with
support [0, hol, e.g. a half sided normal distribution.

Our experience is that the particular choice of the kernel functions K; and K, is
not very crucial as long as they follow the setting shown in Figure 4.1 and are not
truncated too roughly on the left hand side. For example, setting Ki(-) as the
uniform kernel with K;(z) = 1/hy for z € [0, h;] might cause an artificial alarm
signal when the left border of the support of K; is passing a jump or bend which
should already have been detected the time span h; before.

002 003

001
A
R

0.

50 100 150 200
Figure 4.1: Kernel positions for an estimate at t=170.

Fori=0,...,hy we set

_ Ky(i)(Shy2 + iShy 1)
Wi2 =
7 Shz OShz, Sh2 1

with S, ; = S22 Ko(i)(—i)? for j = 0,1,2, while w; 5 = 0 for i > hy. The short
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term estimate is then available through

h1 ha
fia(t) = Zwi,2yt—i = Z Wi 2Yt—i- (4.6)
i=0 i=0

The weights are for convenience constructed such that the vectors w; =
(wo,1, .- why 1)T and we = (wog,- .., ws, 2)" have equal length. We now com-
bine the two estimates in the alarm rule (4.3). If u(t) is smooth in [t — hq,t] the
bias of [i1(t) — fi2(t) can be approximated by

h1

E{in(t) = ia(®)} = p"(t)/2Y(win — wi2)(=i)* + ...

=0
S? ) — Sn1Sns  S2 . — Sh,1Sh,

= ()2 | D2 TS Cha2  TRelTReS ) L AT)
Shl,OShl,Z - Shl,l ShZaOShQ;Z - ShQ,l

The approximation is based on a simple Taylor series and is heuristic in nature.
Rigorous quantification of the bias would require a number of assumptions to hold,
most of which are not met in practice. For instance in standard smoothing literature
theoretical developments are based on the assumption that values ¢ are getting
infinitely dense. In our online scenario however we assume that time ¢ is realised on
an equidistant grid. For this reason we do not investigate the bias from a theoretical
point of view. However, considering (4.7) shows that the bias gets large if p(¢) is
large, which is the case if u(-) rapidly changes its direction at ¢. As extreme case
this results in a jump or sharp bend. The quantity fi;(¢) — fi2(¢) in the alarm rule
(4.3) can therefore be seen as an empirical estimate for the second order derivative
of u(-). If the resulting value is large in absolute terms the resulting function is

likely to be rough or unsmooth in .

The choice of the threshold A; in (4.3) requires the estimation of the variability of
fir () — fi2(t). We rewrite fi1(t) — fi2(t) as

) = jnlt) = S i (48)

where w; = w;1 — w; 2. Assuming local stationarity, simple calculation leads to

var{jn(t) — fi(t)} = wav(o) +2 Z sz‘wﬂ(i —7)

where v(d) = cov(yi—q, yi) is the covariance function and y(0) = var(y,) with | =
t—hy,... .t
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Estimation of (4.9) can then be done by the simple moment based estimate (see
Brockwell & Davis, 1987)

Y(d) = h+1 pi Z {yi — () HYiva — fr2(i + d) }. (4.9)

where h > h; is some timelag expressing the local stationarity of the process. In
the following we provide some heuristics to find a suitable value of ¢;. Assuming

Y, L =1,2,... to be independent one finds for d = 0 in (4.9) by taking expectation

Z {yi — ] = 7(0)(h +1) (1 — 2w, + 22: wj2',2> .

i=t—h

Skipping the assumption of independence, one gets for 0 < d < ho

t—d
> {yi — (i) Hira — f2(i + d)}
i=t—h
h2
= (h+ 1-— d) [’y(d) (1 — 211]0,2 -+ Z%U?g) —+ ...
=0
with ... standing for a collection of terms build from (i), i # d. Detailed con-

sideration shows that the terms not explicitly listed are of order 1/hy and for
simplicity of calculations they are neglected subsequently. This suggests to set
ca =1/(1 —2wpzo + Z;.Lio w3,) for all d = 0,. .., hy, to achieve a bias reduced vari-
ance estimate. Usually the constant c; obtained in this manner is slightly bigger
than 1. For d > hy, we suggest to set ¢4 = 0 and thus y(d) = 0.

The computation of (4.9) in every timepoint can be accelerated by making use of the

following iterative update scheme. Let d;j, = {y; — f1o(t), ys—1 — f2(t — 1), . . ., Yt —

fio(t — h)}T and
d 0, T Oh1
Dt,h, = ( hi’]’: dt,h—l . dt,h*hl )

R T h—hitl

where 0,4 are column vectors of zeros with length d. The covariance vector at time
point ¢ can then be estimated by ~, = dtht,hC, where 4, = {%(0),...,%(h1)},
C = diag(ci)o<i<n, and the subscript ¢ indicates that information available at time-
point ¢ is used. Simple matrix algebra (see appendix) provides the approximative

recursive formula

. 1 N h
Vir1 R h—H(yt+1 — fia(t +1))d}y1 5, C + Wt G (4.10)
Defining the covariance matrix I' = [T'];; = [y(|¢ — j|)];; for 4,5 = 0,..., hy one gets

the variance estimate

var(iu (t) — fio(t)) = wlw” (4.11)
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where w = (wy, ... wp,) and Iisa plug in estimate of I'. This suggests the alarm
threshold

Ay = ay/var(iu(t) — fiz(1)) (4.12)

where @ is chosen such that the alarm rule is sensitive and false alarms are less
probable. This provides a simple test on presence of a breakpoint: We reject the

hypothesis “No breakpoint at time t” if

e (4.13)

2

uwt‘ _ ﬂl(t) - /lZ(t)
Vvt (iu (1) — (D)
where « is the error probability and u;_e is the 1 — a/2 quantile of the N(0,1)-

distribution.

4.3 Practical adjustments

4.3.1 Ridging

In Section 4.2 we suggested to use local linear fitting to calculate the long and
short term estimates. All estimates are calculated at the boundary, where local
polynomial smoothers are known to be more variable than local constant smoothers.

In terms of variability one therefore has to consider the Nadaraya-Watson estimate

hi
fanw(t) = Zwi,l,NWytfi (4.14)
i=0

with w; 1 yw = K1(2)/Sh, 0 @s a competitor to /i (t).

Figure 4.2 shows the behavior of the local estimates when used with the alarm rule
(4.3) for independent Gaussian errors. Both estimates detect the jump at 200 and
the bend at 400, but the bend at 600 is only found by the local linear fit, since
this adopts the inclination. Hence, one should use a local linear fit when there is a
slope in the data while local constant appears more appropriate if the data are flat.
Considering the local linear fit in more depth uncovers a further drawback. The
local linear fit adjusts for the model violation shortly after the jump, while the local
constant fit reacts delayed. Thereafter however the local linear fit over-steers the
shift and the local constant gets superior. Figure 4.3 gives a tutorial to demonstrate
this point. In order to balance local linear and local constant fitting we propose
to use ridging as suggested in Seifert & Gasser (2000). This means we replace the
long term estimate by

fi1,ridge(t) = Mo, vw (1) + (1 = M) fin (2) (4.15)
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Simulated data set

short term estimate

long term estimate (local constant)
long term estimate (local linear)
long term estimate (ridged)

Alarm detection:

local constant

Figure 4.2: Simulated data set with local constant, local linear and ridged long term

estimate using the alarm detection rule (4.3).

600

800
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where \; € [0,1] is the ridge parameter. The ridge estimate again results as a
weighted sum of the observations y; so that variance calculations for the ridge

estimate are straight forward.

—— local linear
,,,,,,,,, - local constant
,,,,, ridge estimate

02 00 02 04 06

5 10 15 20

Figure 4.3: Tutorial on different behavior of local constant, local linear and ridge estimate

after a jump.

The ridge parameter \; in (4.15) is allowed to depend on time ¢. Seifert & Gasser
(2000) suggest a rule of thumb to use design adaptive ridging. This is of little use
for our scenario since the design is fixed and regular and observations are recorded
at equidistant time intervals. For online monitoring it is more reasonable to use
data adaptive ridging by considering the shape of the mean function u(t). The
general idea is to work with local constant smoothers if the mean is constant while
local linear smoothing should be used if there is a drift. We incorporate this by

estimating the slope of p(t) via the local linear estimate

h1
B(t) = Zviytfi
i=0

with v; = K3 (i)(Sh, 1 + ©Sh1,0)/(Sk, 1 — Shi,05h,2)- The principle is now that small
squared slope estimates B(t) should lead to local constant fitting, i.e. large values

of \;. We achieve this by setting
A\ = —cB(t)  (c>0) (4.16)

Setting the parameter ¢ equal to zero leads to local constant fitting while ¢ — oo
gives local linear smoothing. In Figure 4.2 we use ¢ = 50. It becomes obvious that
the ridge estimate combines the advantages of local linear and local constant fitting.
Figure 4.4 shows the value of )\; over time in this example. We pick up the task of

how to select the constant ¢ at the end of example 4.4.2.
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10

00

Tt
Figure 4.4: Development of the ridge parameter A; over time for the simulated data set

analyzed in Figure 4.2.

Criterion (4.16) is a suggestion but in no way unique. Other choices for choosing M,
can easily be constructed. We experimented with the Seifert & Gasser suggestion of
design adaptive ridging. Not surprisingly this did not convince since it led to con-
stant ridging, i.e. non adaptive and independent of ¢. To let the ridging parameter
depend on the slope any monotonically decreasing function in |3(¢)| would work.
The chosen form (4.16) however proved to work satisfactory in practice, in particu-
lar by applying the squared slope a clear distinction between the states \; = 0 and

A+ = 1 can be made.

4.3.2 Choice of h, h; and hs.

In this section we will give some guidelines concerning the choice of the window sizes
h, hi and hy. The major importance of them has hq, since this constant defines if
breaks of short- or long term trends shall be detected. Thus what will be chosen

firstly is hy, and the other constants will be selected according to this choice.

For the selection of h; we provide the following rule of thumb: If the main focus is
to detect breaks of trends with length down to a value D, one has to choose h; ~ D.
We illustrate this point in an example: We simulated a time series of length 500
from the AR(2) process Y; = 0.55Y;_; + 0.45Y;_5 + ¢;, where ¢, ~ N(0,0.3%). In
Figure 4.5 (top) we perform alarm detection with h; = 120, hy = 25, h = 200.
Apart from some alarm signals in the warming-up-period in the beginning, only
breaks of long term trends at ¢ = 160,237,339 and 386 (there a long term falling
trend starting at about ¢ = 205 is broken) are detected.

However, setting h; = 60, hy = 15 and h = 100 yields a very different picture: Now
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Figure 4.5: Alarm detection for simulated AR(2) process using h; = 120 (top) resp.

hi = 60 (bottom). fi1 and fio are represented by the solid line resp. the dashed line.

Vertical lines indicate the detection of breakpoints.
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a large amount of breaks of short term trends are detected, like demonstrated in
Figure 4.5 (bottom). Thus, the suitable value of h; depends less on the data than

on the intentions of the data analyst.

What concerns the choice of hs, we already mentioned that this value influences the
speed of the detection, in the sense that small values of hy lead to a short reaction
time, but to a high variance of the procedure. From our experience, we suggest to
set ho & hy/5, but not smaller than 15.

We already stated that the window size h, responsible for the amount of data used
to estimate the autocorrelation function, is reflecting the local stationarity of the
process, i.e. by imposing a certain value of h we assume that the process is more
or less stationary over a distance h. Therefore A may not be too big, to retain
sufficient flexibility of the variance estimation, but should be bigger than h; to get
reliable results. We suggest to set h <2 - h;.

4.3.3 Missing values and outliers

In practical applications one is often faced with outliers or missing data which
disturb the performance of the alarm rule. We suggest the following adjustments.
If observation y; is missing or outlying we impute a predicted value ¢; calculated
from the previous observations. A simple setting is to use §; = fio(t — 1). This
setting works fine to overcome both the missing values in Example 4.4.1 as well as

the artificial outlier in Example 4.4.2.

In the presence of sloping data the method can be more sophisticated to cover
possible shifts. We therefore predict y; by using a linear extrapolation from the
previous short term estimates via §; = Zfﬁl vifiz(t — i). The weights v; for this
extrapolation can be calculated like w; » in Section 4.2, but applying values Sy, ;(j =
0,1,2) constructed by sums starting at ¢ = 1 instead of i = 0. These weights have
to be calculated only once, so that extrapolation is numerically simple.

It remains the question of how to detect outliers. An outlier is classified as a single
or small group of observations which do not follow the model. A detection rule for

outliers is for instance

Yo — G| > k/A-1(0) (4.17)

where ¢, is a predictor for y; calculated as above and k is some positive constant.
In the data examples we collected good experiences with the setting £ = 10, even
though different values can be more suitable in other data scenarios. If y; is classified
as outlier, its value is substituted by its predictor. Moreover, if (4.17) holds for a

number of consecutive time-points alarm should be given.
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4.3.4 Variance calculation

The moment based variance estimator described in the previous section can be inef-
ficient if the data are uncorrelated or the errors trace from a model with parametric
dependence pattern, e.g. an AR(1) process. In the first case one can set (i) = 0 for
1 > 0. In the latter case one could use the assumed dependence process to improve
the variance estimation. For the AR(1) process for instance one fits locally the

regression model
Et = PE¢—1 ez (418)

to the residuals ;, where 1, are uncorrelated white noise errors. This yields the
covariance function y(d) = o%p? for d = 0,..., h. In practice (4.18) is fitted to the
fitted residual &; = y; — fi2(t) and one obtains

h h
N ~ ~ ~2
p = E 5t—i£t—i+1/§ Ep_j-
i=1 =1

The coefficient p can thereby again be updated recursively from previous values as

shown in the appendix.

Variance calculation suffers from jumps and edges since both estimates, the short
term and the long term estimate are biased at the jumps and residuals are overfitted.
It is therefore advisable to pause online updating of the variance once a jump or
outlier has been detected. This means in this case one sets 4; = #4;_; until the alarm

is stopped.

4.4 Examples

4.4.1 Cardio beats

In a hospital the cardio beats per minute of the mother before the confinement
are monitored. It is of interest to detect sudden changes in the recorded data.
Figure 4.6 shows the data and the resulting short and long term estimates. We use
bandwidths h; = 160, hy = 30, h = 300 and a ridging constant ¢ = 80.

A special property of this data set is the large amount of missing values, displayed
as data points with Y = 0. However, the algorithm manages to outnumber these
values and hence the estimated curves are not affected as seen in the first period of
missing values from ¢ = 176 to t = 196. The bottom graph in Figure 4.6 shows the
standardized test statistic 7; and bands given by the 99.5%- quantile of the standard

normal distribution. It is seen that all jumps are detected quickly and significantly.
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Cardio Beats
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Figure 4.6: Cardio data with long and short term estimates. In the bottom the test statis-

tic T} is compared with the quantile ug 995 = 2.58. Vertical lines indicate the detection of

breakpoints.
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At points 199 and 240 a shift in the level is found while at 340 the cardio beats
decrease abruptly with level changes detected at 399 and 421. Afterwards the cardio
beat frequency increases slowly until it reaches the plateau. The end of the increase
is detected at 604.

4.4.2 ECG measurements

In the second example we apply the method to data which have been previously used
in Daumer & Falk (1998) for the demonstration of their online monitoring algorithm.
The data are ECG measurements taken every five seconds from a patient undergoing
a skin transplantation. At ¢ = 219 an artificial outlier is added. Figure 4.7(a) and
4.7(b) show the long term estimates and test statistics for different settings of the
ridging parameter c in (4.16). For all settings the breakpoints at timepoint 120 and
285 are detected. Afterwards however the estimates behave differently. For ¢ = 0
one obtains a local constant estimate. This is unable to adjust for the slope and
does not find the end of the slope area at 378. Afterwards the local constant detects
small level changes at 454, 497, 515 and 739. On the contrary the local linear fit,
obtained for ¢ = 0o, gives the end of the slope area but oversteers afterwards so that
some small level changes are not uncovered, but some spurious alarm signals are
given. In contrast, setting the ridging parameter ¢ = 120 compensates the problem
of oversteering and detects both, the end of the slope area as well as the small
level changes afterwards. We return to this data example in the next section and

compare our method with the procedure suggested in Daumer & Falk (1998).

Speaking more generally, we conclude that if the data describes more or less a step
function and the intention is mainly to detect jumps, we recommend ¢ = 0, which
corresponds to a local constant long term estimator. If however mainly breaks of
trends shall be detected, one should set ¢ = oo and thus use a local linear long
term estimator. Varying c between 0 and oo means balancing between these two
goals, and the appropriate value of ¢ depends on the kind of breakpoints which
shall be detected. A general guideline or rule of thumb on how to choose ¢ is
therefore difficult. Nevertheless, due to (4.16) it is observed that if the process Y} is
multiplied by a constant d, say, coefficient ¢ should be updated to ¢/6% to have the
same amount of ridging. Hence, the choice of ¢ depends on the overall variability
of the process, which includes areas of shifts as well. We experimented a little
and found that ¢ = 10*/var(Y’) is a reasonable starting point for fine tuning of c.
Apparently the variance of Y is normally unknown, since we record data online.
Usually, however, one should have a notion about this value which allows to set

c at the starting value for further tuning. Again, the right choice of ¢ depends in
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ECG measurements
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Figure 4.7: (a) ECG data with long term estimates for different degrees of ridging, using h; =
150, he = 25,h = 200. The lines in the bottom indicate the alarm periods for ¢ = 0 (top),
¢ = 30,c = 120, ¢ = oo (bottom). Alarm signals for ¢ < 100 are ignored, since the algorithm
needs sufficient data points to work. (b) Test statistic T3 for ¢ = 0,...,¢ = oo, degrees of ridging
symbolized like in (a). Alarm thresholds (horizontal lines) at +2.58.
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particular on the substance matter of the online monitoring, i.e. whether one is

interested in detecting jumps or breaks in trends.

4.5 Comparison to other methods

4.5.1 Autoregressive models

In Gather, Bauer, Imhoff & Ldhlein (1998) it is assumed that the data follow an
autoregressive model. We illustrate their method at the cardio data from above. Be-
fore applying the method, we substitute the missing values by short-term-predictors.
Then the data set is divided in an estimation period and a prediction period. Since
the data have to be more or less stationary during the estimation period, we choose
the estimation period ¢ = 1,...,180. In order to obtain a nearly balanced propor-
tion between the amount of data in the two periods we reduce the data set to the
first 380 data points.

Cardio Beats
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Figure 4.8: Cardio data with predicted values (solid line), 95% confidence bands (dashed
lines) and alarm detection at t=201 (dotted line).

During the estimation period the parameters for the AR-process are estimated (the
AIC criterion suggested an AR(1) model). In the prediction period it is observed

whether the data points are inside or outside a confidence band surrounding the
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predicted values. The result is shown in Figure 4.8 for a 95% confidence interval. If
less than five consecutive observations are outside of the confidence interval, then
they are classified as outliers, whereas a level change is detected for more than
five points out of the confidence interval. Thus, the jump detected at ¢ = 197 is
classified as a level change at t = 201, compared to a detection at ¢ = 199 with our

adaptive ridging method.

We conclude that the AR method by Gather et al. is a fast and reliable method,
but is probably not suitable for every kind of data, especially data with quickly
changing rising or falling trends, whereas the local estimation method we proposed

in this paper adapts to a wide range of data situations.

4.5.2 Phase space models

Another idea of Gather, Bauer, Imhoff & Lohlein (1998) is to plot every data point
against its previous data point in a phase space. We tried this method for the first
380 cardio data points (see Figure 4.9). Gather et. al. move a time window of length
60 through the data and alarm is given if the next five consecutive observations are
in a different region than the previous 60 ones. In the plot, the way of the data in
the phase space can be followed. Starting somewhere in the left down area of the
big cluster, the line climbs up to the right top edge, then falls down and turns left
to the small cluster (representing the data points ¢t = 197,...,¢ = 232) and finally
climbs up again to the big cluster. Every change of the cluster represents a jump
in the data. This means that alarm is given at the timepoints ¢ = 201 and 236,
compared to alarm signals at ¢ = 199 and 240 with the adaptive ridging method.

Though this method is very useful for visualizing the structure of the data, we
think it might be difficult to use it online for reliable alarm detection, especially for

sloping data, where the dividing lines between single clusters become foggy.

4.5.3 State space models

Daumer & Falk (1998) and Fahrmeir & Kiinstler (1999) use state space models for
filtering time series. A linear state space model is given by a linear observation

equation

ytzz,ﬁﬂt+st (t:1,2,...)
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Figure 4.9: Cardio data from example 4.1. (for ¢ = 1,...,380) plotted in a phase space.

for the observations ¥, ys, . . . given the states (31, (o, . .., which is supplemented by

a linear transition equation

B = Fifi1+u (t=1,2,...)

Bo = ap+vo
with Gaussian errors ¢; and vy, nonrandom vectors z1, 2o, . .. and transition matrices
Fy, F,,.... This model can be solved with Kalman filters. Daumer & Falk (1998)

define such a state space model for each possible location of a jump. The resulting
family of models, called a multi-process model, is examined with Bayesian methods
and jumps are detected by choosing the most likely model. For detecting outliers, a
second multi-process model has to be introduced. Daumer & Falk (1998) apply their
method to the data shown in Figure 6(a) and find changepoints at ¢ = 120, 285,
506, 752 and 821. In contrast, the local ridging method with ¢ = 120 uncovers the
changepoints 120, 285, 378, 432, 512, 739 and 788. It appears that both methods
uncover abrupt changes from a long term level but the local adaptive ridging method
appears more flexible and gives alarm also at short term changes. Moreover both

methods are equal in the speed of detection.
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4.6 Conclusion

We showed that local smoothing methods can be used effectively for detecting jumps
and bends in online monitoring. The algorithm combines the advantages of many
other breakpoint detection methods: It can be used online, since only the data
given until the examined time point are necessary for the estimations. Furthermore
it is able to detect jumps or bends of flat and sloping trends. The method adapts
to the variability of the data, which means that it will not give alarm for a small
jump within highly fluctuating data, but will give alarm for the same jump for less
variable data. Finally it is worth mentioning that only few computational effort is
required, because the weights needed for the estimates have only to be calculated

once and the variance calculations follow a simple update rule.

The only technical problem, namely the over-steering, can be solved quite satisfac-
tory by adaptive ridging. However, we shouldn’t suppress that it can’t be avoided
completely (see Figure 4.2 and 4.6). If one wants to exclude it totally, one has
either to use only the data after a jump for the estimations of fi;(¢) and fio(t) ,
which requires recalculating all weights after every jump, or to use methods like
edge-preserving smoothing (see Chu, Glad, Godtliebsen & Marron, 1998). How-
ever, both ways require additional computational effort, so that it is questionable

whether they convince in practice.

4.7 Appendix

Technical Details
Derivation of (4.10)
Note that

T
dt+1,th+1,h

Y1 —fo(t+1)
vt —fa(t41) 0, e Ohl( |
_ ~ T ye41—f2(t+1) Yer1—f2(t+1
= (yt+1 - Mz(t + 1)7 dt,h—l) d;; . h Tt h—hi+1
h+1 dt,h—2 e dt,h—hlfl
h h—h1+1

{ye41 — fo(t + 1)} n d;[,hth,hfl
h+1 h+1 777

{141 — fio(t + D) Hye—ni1 — fio(t — ha + 1)} n di_pyhny—1Beh—hi -1
’ h—h +1 h—hy+1 '
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Making use of d{ 4, 4 1din-ag-1/(h—d+1) ~ d} 4, 4din—a/(h—d+2) provides
(4.10) for h sufficiently large.

Update of p; in model (4.18)

Note that
h—1 -1 h -1
(z) _ (—+z)
) =1
h -1 h -2
=1

=1

so that the inverse can approximated by recursive updating. Setting Ry} = (3.1, &2 )~
_ _ 2,0 A ho A o4
one gets Ry ;. ~ Ry — Ry} (€] — €7 ;). The numerator Ry; =Y ;' &€, 41 can

be updated by Ri 11 = Ris + €641 — Et—ni—nt1-
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Chapter 5

Local Principal Curves

5.1 Introduction

The classical problem of how to find the best curve passing through some data
points (z;,v;),7 = 1,...,n can be handled in two fundamentally different ways. Let
us regard the data points as realizations of i.i.d. random variables (X;,Y;) drawn
from a population (X,Y). A common approach is to regard X as an explanatory
variable for the dependent variable Y. This concept is used in all methods where
the focus is on regression or smoothing and is especially useful when the objective
is prediction of the dependent variable from the observations x;. Thereby X and
Y have an asymmetric relationship and cannot be interchanged without changes of

the results.

In contrast, X and Y may be regarded as symmetric, thus we do not assume that
one variable can be made reponsible for the value of the other one. Rather they
are generated simultaneously from a common underlying distribution. These ap-
proaches are useful when the focus is on dimension reduction or simply description
of the data. Representants here are methods like the ACE algorithm, canonical cor-
relation or principal component analysis. Linear Principal components, introduced
by Pearson (1901), are a common tool in multivariate analysis, applied for example
in feature extraction or dimension reduction. Jolliffe (2002) gave an overview on
properties and applications of principal components. Nonlinear principal compo-
nents have been developed by Schélkopf & Smola (1998) and successfully employed
for pattern recognition.

A natural extension of principal components are principal curves, which are descrip-
tively defined as one-dimensional smooth curves that pass through the “middle” of

a p—dimensional data set. Though this concept is intuitively clear, there is much
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flexibility in how to define the “middle” of a distribution or data cloud. Hastie
& Stuetzle (1989) (hereafter HS), who did the groundbreaking work on principal
curves, use the concept of self-consistency (Tharpey & Flury, 1996), meaning that
each point of the principal curve is the average of all points that project there.
A variety of other definitions of principal curves have been given subsequently by
Tibshirani (1992), Kégl, Krzyzak, Linder & Zeger (2000) (hereafter KKLZ), and
more recently Delicado (2001), which differ essentially in how the “middle” of the

distribution is found.

Apart from Delicado (2001), all concepts mentioned above work more or less as
follows: They start with a straight line, which is mostly the first principal com-
ponent of the data set, and try to dwell out this line or concatenate other lines
to the initial line until the resulting curve passes satisfactorily through the middle
of the data. This methodology leads to some technical problems. HS generally
exclude intersecting curves from the definition of principal curves and are not able
to handle closed curves. Banfield & Raftery (1992) (hereafter BR) provide a bias
corrected version of the HS algorithm which solves the latter problem, but yields
more wiggly results than HS. Chang & Ghosh (1998) combine the algorithms of HS
and BR and show that this yields a smooth and unbiased principal curve, at least
for simple data situations. Tibshirani’s theoretically attractive approach seems to
have the same problems as HS, though not explicitely stated, and further seems
to have a lack of flexibility for strongly skewed data. These difficulties have been
solved by Verbeek, Vlassis & Krose (2001), but at the expense of an apparently
wiggly principal curve, since polygonal lines are connected in a somehow unsmooth
manner. KKLZ work also with polygonal lines and obtain with high computational
effort a smooth and flexible principal curve, which only fails for very complicated
data structures. None of these algorithms seems to be able to handle curves which
consist of some multiple or disconnected parts. Recently, Kégl & Krzyzak (2002)
provided a promising algorithm to obtain principal graphs, i.e. multiple connected

piecewise linear curves, in the context of skeletonization of hand-written characters.

All these methods have to be regarded as global, since in every step of their algo-
rithms, or at least in the initial step, all available data points are used. As alterna-
tive to the global methods, which lead to exploding computational costs for large
data sets or high-dimensional data, it would be desirable to have a local method at
hand, which only considers data which are close to the target point. Lately, Delicado
(2001) proposed the first principal curve approach which can be called local. As-
sume a d-dimensional random vector X and n random samples X; € R*. i =1,...,n
from X, where X; = (Xj1, ..., X,q). For each point z, Delicado considers the hyper-

plane H(z,b) which contains x and is orthogonal to a vector b. The set of vectors



5.1. INTRODUCTION 105

b*(z) minimizing the total variance ¢(z,b) = TV (X |X € H(z,b)) defines a function
p*(z) = E(X|X € H(x,b*(x))). Principal oriented points (POPs) are introduced as
fix points of the function p*(-). For a suitable interval I € R, « is called a principal
curve of oriented points (PCOP) if {«(s)|s € I} is a subset of the fix point set of
w*. Delicado shows that POPs exist, and that in case b*(x) is unique (this implies
that the principal curve is a function), to each POP exists a PCOP passing through
it. Since the hyperplanes H are sets of measure zero, it is necessary to employ a
kind of smoothing for calculating the conditional expectation on the hyperplane.
This is achieved by projecting all data points on H (x,b), obtaining points X, and
assigning weights

w; = w(|(X; — 2)"d]), (5.1)

where w is a decreasing positive function, e.g. w(d) = K(d/h), with a kernel
function K. Let fi(z,b) denote the weighted expectation of the X with weights
w;. Now p*(z) is approximated by ji*(z) = ji(x, b*(z)), where b*(z) (and hence H)
is constructed such that the variance of the projected sample, weighted with ws;,
is minimized. Localization enters here twofold. Firstly, by applying (5.1), points
near to the hyperplane are upweighted. Secondly, a cluster analysis is performed
on the hyperplane, and only data in the local cluster are considered for averaging.
How is the principal curve found in practice? The algorithm searches the fix point
set of i*(xz) as follows. Repeatedly, choose a point randomly from the sample
Xi,...,X, and call it z(g). Then iterate x( = fi*(x(—1)) until convergence. In this
manner a finite set of POPs is obtained. However, no fix point theorem guarantees
convergence of this algorithm, although Delicado reports quick convergence for some
real data sets. In order to obtain a PCOP from a set of POPs, Delicado proposes
an idea which we will further exploit. Assume an POP z; calculated as explained.
From the set of principal directions b* (x1), choose one vector b;. Now walk a step

of length 0 from z; in direction of by, i.e.
.’Eg =T + 81)1, (52)

where 0 is previously fixed. The point z9 serves as a new starting point for a
new iterating process, leading to a new point zo of the principal curve. This is
repeated k times until no points X; can be considered to be near the hyperplane
H(zY,b;). Then return to (z1,b;) and complete the principal curve in direction of
—b;. Afterwards move on to another of the previously chosen POPs and continue

analogously.

Delicado’s concept is mathematically elegant and theoretically well elaborated. It
works fine even for some complicated data structures as spirals etc. (Delicado &
Huerta, 2003), but fails for branched data (Evers, 2003). One might consider it as a
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drawback that the concept is mathematically and computationally demanding and
not intuitively clear. Parameter selection is accordingly cumbersome (Delicado &
Huerta, 2003).

In this chapter, we introduce a concept similar to that of Delicado. However, we
replace the fix points of fi* by local centers of mass, and replace the principal direc-
tion b; by a local principal component. We call the resulting curve, which consists
of a series of local centers of mass, local principal curve. We introduce the notion of
coverage, which evaluates the performance of the principal curve approximation and
is a helpful tool to compare the performance of different principal curve algorithms.
We show that, using this concept of coverage, the parameters which are necessary
for our algorithm can easily be selected in a data-adaptive way. The price paid for
the easiness of the concept is that in contrast to Delicado’s approach there is no
statistical model and consequently it is hard to derive theoretical results. However,
in Section 5.5 we give a theoretical justification for our method. The algorithm will

be presented in the following section.

5.2 The algorithm

Assume a d-dimensional data cloud X; € R?,i = 1,...,n, where X; = (X;1, ..., Xiq).
We try to find a smooth curve which passes through the “middle” of the data cloud.
The curve will be calculated by means of a series of local centers of mass of the

data, according to the following strategy:
1. Choose a suitable starting point z(g). Set x = z().
2. Calculate the local center of mass y® around z.
3. Perform a principal component analysis locally at x.

4. Find the new value x by following the first local principal component * start-

ing at p”.
5. Repeat steps 2 to 4 until x* remains (approximately) constant.

The series of the u* make up the desired curve. In the sequel we will explain these

steps in detail:
1. Selection of the starting point

In principle, every point z( € R¢ which is in or close to the data cloud can be

chosen as starting point. There are two ideas which suggest themselves:
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e Based on a density estimate the point with the highest density z() = mazcr f (x)

is chosen.
e A point zy = X, is chosen at random from the set of observations.

The advantage of the density method is that one can be quite sure not to start
in a blind alley, whereas a randomly chosen point could be an outlier far from the
data cloud which stops the algorithm already in the first loop. However, this is not
very likely, and the computational costs of the second approach are much lower.
Moreover, for handling crossings a randomly chosen starting point is even superior
to a high density point.

2. Calculating the local center of mass

Let H be a bandwidth matrix and Ky(-) a d— dimensional kernel function. Given
that all components of X are measured on the same scale, we set H = {h?-I : h > 0},
with I standing for the d-dimensional identity matrix. For a detailed description
of multivariate kernels and bandwidth matrices see Wand & Jones (1995). For

selection of h, see Section 5.7. The local center of mass around z is given by

_ i Ku(Xi —2)X;
p(z) = S X 1)

(5.3)

This estimator and its relation to the Nadaraya-Watson estimator have been an-
alyzed in Comaniciu & Meer (2002). For ease of notation, we will abbreviate

p® = p(x) in the following. We denote by 7 the j-th component of ji(x).

3. Calculating the local principal component
Let X% = (0%;) denote the local covariance matrix of x, whoose (j,k)-th entry
(1 <4,k <d) is given by

oh = ki(Xij — p8) Xk — puf) (54)
=1

with weights k; = Ku(X; —2)/> 1 Ku(X; — z), and H as in 2. Let 4* be the
first eigenvector of X*. Then +” is the first column of the loadings matrix I'* from

the principal components decomposition (I'*)TE*T* = A®, where A” = (X}, ..., A7)

is a diagonal matrix containing the ordered eigenvalues of X7, with AT > ... > A7

Note that the denotation “local principal components” is not new, but has been
previously used for linear principal components localized in clusters (Skarbek, 1996;
Kambhatla & Leen, 1997) or based on contiguity relations (Aluja-Banet & Nonell-
Torrent, 1991) rather than by kernel functions.
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4. Obtaining an updated value

The local principal component line v* can now be parameterized as
vi(t) = u" + 7" (t €R), (5.5)
and we obtain an updated value of z by setting
x = u® + tyy”, (5.6)

in analogy to step (5.2) of Delicado’s algorithm. A suitable value of ¢y thereby has
to be chosen beforehand. We defer the task of how to select ¢y to Section 5.7.

5. Stop when p® remains constant

When the end of the data cloud is reached, the algorithm will naturally get stuck
and produce approximately constant values of ;*. One might stop before this state
occures, e.g. when the difference between previous and current center of mass falls

below a certain threshold.

The mechanism is demonstrated in Figure 5.1. The starting point z( is denoted
by 0. The radius of the circle is equal to the bandwidth A = 0.2. Calculating the
local center of mass around 0 yields the nearby point m. Moving along the first
principal component with ¢y = 0.2 leads to the new point x denoted by “1”, and so
on. The series of m’s is the local principal curve. Note that the algorithm is based
on finding an equilibration between opposing tendencies: On the one hand, the local
principal components are oversteering, i.e. tending “outside” to the concave side
of the curvature of the data cloud. On the other hand, the calculation of the local
center of mass is smoothing the data towards the interior and thus in the opposite
direction. These two effects together ensure that the estimated principal curve is

not systematically biased.

5.3 Technical details

In practice, some modifications of the above algorithm are useful, which we describe

in the following.

5.3.1 Maintainig the direction

A principal component line always has two directions, thus the corresponding eigen-
vector v* could be replaced by its negative value —v*. Depending on the orientation
of the eigenvector, the constructed curve moves in opposite directions. If this di-

rection changes from one step to another, the algorithm dangles between these two
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Figure 5.1: Demonstration of the local principal curve algorithm.
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points and will never escape. Therefore one should check in every step that the
local eigenvector has the same direction as in the previous step. This can be done
by calculating the angle oy between the eigenvectors Vi1 and V) belonging to

the (¢ — 1)-th resp. i-th step , which is given by

cos(a) = V1) © oy
where o denotes the scalar product. If cos(az”i)) < 0, set v == —(;), and continue
the algorithm as usual. This “signum flipping” has been applied in the step from
“2” to “3” in Figure 5.1.

5.3.2 Running backwards from zg

When one starts at a point x() and moves by means of local principal components
to one “end “ of the cloud, one has omitted to consider the part between the starting
point and the other end of the cloud, except if the data describe a closed curve,
e.g. a circle or an ellipse. Therefore it is advisable to run from the starting point
in both directions of the first principal component, what in practice means adding
a 6th step to the algorithm:

6. For the starting direction —~v7,, := —~v*©, perform steps 4 and 5.
(0) v

5.3.3 Angle penalization

If the data cloud locally forms crossings, at each crossing the local principal curve
has three possibilities where to move on. Often one desires that the curve goes
straight on at each crossing, and does not turn arbitrarily to the left or right. In
order to achieve this effect, we recommend to perform an angle penalization in
addition to the signum flipping in each step of the algorithm. This might be done
as follows:

Let k£ be a positive number. For the angle afi), set

agy = |cos(ozmz-))\k

and correct the eigenvectors according to
Y = aGy e + (L= agy) Gy

Thus, the higher the value of k£, the more the curve is forced to move straight on.
We recommend to set set £ = 1 or 2. For higher values of k£ the local principal

curve looses too much flexibility.
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5.3.4 Multiple initializations

Assume that the data cloud consists of several branches, which might or might not
be connected. Then one single local principal curve will fail to describe the whole
data set, but will only find one branch. This is a problem inherent to all global
principal curve algorithms. In our approach this problem can be solved by doing
multiple initializations, i.e. we choose subsequently a series of starting points, so
that finally at least one starting point is situated on each branch, and perform the
algorithm for each starting point. In this manner the whole data cloud will be
covered by the local principal curve. The starting points can be imposed by hand
on each of the branches, or, if this is not possible or too cumbersome, they might
be chosen randomly. If one has for example two disconnected branches of the data
cloud, which contain more or less the same amount of data, then the application of
four randomly chosen starting points already effects that with 93.75% probability
at least one starting point is on each cloud. For an arbitrary number of branches,
Borel-Cantelli’s Lemma tells us that with the number of starting points increasing
to infinity, each branch is visited with probability 1. In practice this technique
proves to work satisfactory, even for a high number of branches. To conclude, for a

set of starting points Sy, we add a 7th step to the algorithm:

7. If Sy # 0, choose (without replacement) a new starting point z() € Sy and

start again with step 1.

It should be noted that our algorithm is deterministic given the starting points,
but yields different principal curves for different starting points. However, since in
each case the local centers of mass of the same data are calculated, differences of
principal curves on the same branch are usually neglectable. In contrary, KKLZ’s
implementation of their algorithm is strongly indeterministic, and that even for

equal starting conditions.

5.4 Examples

5.4.1 2-dimensional data

Firstly, we compare the results of our algorithm with some standard examples which
were also examined by KKLZ (In this and the following examples, the curves from
KKLZ and BR are obtained via the Principal Curves Java program from Baldzs
Kégl, available at http://www.iro.umontreal.ca/~kegl/research/pcurves/. The
HS curves were obtained by Hastie’s S-Plus function http://1lib.stat.cmu.edu

/S/principal.curve). We start with a circle with radius » = 1, which is con-
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taminated with bivariate uncorrelated Gaussian noise with variance 0.04 in each

component. The result is demonstrated in Figure 5.2.

1.0
\
\

X_2
0.5 0.0 0.5

-1.0

1.0 05 0.0 0.5 1.0
X 1

Figure 5.2: Local principal curve for an underlying circle in comparison to other principal

curve algorithms.

We notice that only the BR and the proposed local principal curve (hereafter: LPC)
algorithm produce a closed curve, whereas HS and KKLZ lead to an open curve.
The LPC curve seems to be a bit wiggly in comparison to the other curves, but it
should be noted that the LPC approach is fully nonparametric and is only steered
by the data, but not by an initial line like the other approaches. This leads to more
flexibility (looking at the data, the bump in the left top is not unlikely to be a real

feature of the distribution) at the price of a higher variance.

Secondly, we examine the spiral data from KKLZ, Figure 10, b) and c) (where the
contaminated big spiral is newly simulated). The standard deviation of the noise
is equal to 0.01 for both spirals, and in in each experiment 1000 data points were
generated. The small spiral, see Figure 5.3, is found nearly perfectly by KKLZ
and LPC, however the HS algorithm shows a fairly bad performance here. The big
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spiral is only found by LPC. KKLZ’s polygonal line algorithm fails here and yields
erratic results, which differ in each run of the algorithm. The result of HS is even
worse (compare KKLZ, page 21, Figure 11.).

Finally, we consider real data recorded by the Office of Remote Sensing for Earth
Resources, Pennsylvania State University, which show the location of floodplains
in Beaver County, PA, USA, 1996 (Figure 5.4). For analyzing the data, we digi-
talized the map to a grid of 106 x 70 = 7420 digits. Figure 5.5 shows the result
of a run of the LPC algorithm using the digitalized floodplain data. We used 50
initializations and a bandwidth A = 1.5 (The automatic selection routine from Sec-
tion 5.7 suggests 2.5, but a smaller bandwidth seemed more appropriate in this
case.). The principal curve uncovers nicely the principal courses of the floodplains.
Taking a look at maps from Beaver county, we see that our principal curve re-
constructs the underlying rivers resp. valleys in this district (The data as well
as corresponding maps are available at PASDA - Pennsylvania Spatial Data Ac-
cess, www.pasda.psu.edu. The best form to regard those maps is to open the
ArcExplorerWeb at http://www.esri.com/software/arcexplorer and search in
the opening menue for Pennsylvania Spatial Data Access, “PA Streams” or “PA
Floodplains”). Note that a quite big cluster in the central bottom is not covered -
this simply occurs because none of the randomly chosen starting points is situated
there, and this isolated cluster cannot be reached by an external principal curve.

More initializations would be necessary to solve this.

5.4.2 3-dimensional data

We now consider a data set included in the Splus software package, namely the
“radial velocity of galaxy NGC7531”. This data frame, recorded by Buta (1987),
contains the radial velocity of 323 points of that spiral galaxy covering about 200
arc seconds in north-south and 135 arc seconds in east-west direction in the celes-
tial sphere. All the measurements lie within seven slots crossing the origin. The
x- and y-coordinate describe the east-west resp. north-south coordinate, and the
z-coordinate is the radial velocity measured in km/sec. For simplicity, we only con-
sider the first 61 data points of the data set (this corresponds to two slots crossing
the origin).

Since the data are now situated on two (connected) branches, we need to inititialize
more than once. We choose to initialize 4 starting points. We apply an angle
penalization using k = 2, which serves to keep the curve on the correct slot at the

crossing. The result is shown in Figure 5.6.



114 CHAPTER 5. LOCAL PRINCIPAL CURVES

05 00 05

Figure 5.3: Local principal curve for underlying small and big spirals in comparison to

other principal curve algorithms.



5.4. EXAMPLES

a0 60 80 100

20

T H
AL A T

HINT g byt
ot e LT AT
o iyl "

ot [ of
LN fy o 1,
o s . "
o . ! |
. by,
et e e P .
] ey
: LR
. " i .
o i K

. e ) ' . L " ' ' i ' o
S ! T ’I. )
L i [ BRI
gl T l
N, h, .fﬂ‘ e
{ . .,mlv W
i w, ' "
' L A,
L J
Wl
o'l
0 20 40 60

Figure 5.4: Floodplains in Beaver County, PA. (left: original, right

100

80

60

40

20

&
i
+
+
-'E- ‘+*=*
T T T T T T T
10 20 30 40 50 60 70

: digitalized).

Figure 5.5: Floodplain data (.) with principal curves (+).

115



116 CHAPTER 5. LOCAL PRINCIPAL CURVES

A
1500 1600 1700 1800

1400

Figure 5.6: Galaxy data (o) with principal curves (+).
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Figure 5.7: Kernel density estimation of simulated circle data.

5.5 Theoretical justification

This approach seems to be heuristic to some extent, since we have provided neither
a model for the data nor a mathematical precise definition of a local principal curve.
In this section we will give some idea which curve we are actually estimating via the
LPC algorithm. When we started to work on principal curves, we were not primarily
influenced by Delicado’s work, but were guided by a simple and appealing idea. It
is instructive to take a look at the circle data in Section 4.1. A kernel density

estimation yields Figure 5.7.

Looking at this figure, the course of the principal curve is easy to imagine - one
simply has to walk along the crest of the mountain. Unfortunately this crest line,
which everybody is able to draw rapidly with a pencil, is mathematically intractable.
To our knowledge, there exists no mathematical definition of a crest point. However,
we will argue in the following that the principal curve we are estimating by means

of our algorithm is approximating this crest line.

Comaniciu, Ramesh & Meer (2001) and Comaniciu & Meer (2002), among others,
study the properties of the so-called mean shift vector

M(z) = p(z) — =, (5.7)

with u(x) being the local center of mass (5.3). They provide two results which are

of interest for us:
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For a Gaussian kernel K and a bandwidth matrix H = {h?- I : h > 0},

(A) the mean shift vector (5.7) is proportional to the estimated gradient function

\Y fr(z), where the estimated gradient is the gradient of the kernel density

Fre(a) = #X:;K (Xh_ “””) , (5.8)

estimator

(B) the sequence

m® = gz

mE+)  — M(m(k))

converges to a nearby point where the estimator (5.8) has zero gradient, i.e.

to a mode candidate of the kernel density.

For other kernels these statements continue to hold under certain conditions, if in
(5.8) K is substituted by its shadow, see Comaniciu & Meer (2002).

Let us return to our algorithm now. For any point x, we can calulate a local center
of mass p(z) via function (5.3). It is easy to imagine, that the closer z is to the
middle of the distribution of the data, the smaller is the mean shift. According to
(5.7) this mean shift is zero for the fix point set of function (5.3), i.e. the set

{z|u(z) = =}

(what shows another analogy of our concept to that of Delicado). Considering (A)
we realize that these are the points where the estimated gradient function of the
density is minimized, which is the case for modes of the estimated density. By
applying (B), we thus have a tool for estimating the modes of the density of the
data. This is however not our intention: An algorithm like this would get stuck
at the modes and be unable to connect the modes in a proper way. Therefore, in
each step of the algorithm, we employ only the first loop of the iterative process
(B), which brings us near the crests, but not nesessarily in a mode point. Then,
for not getting stuck in a mode, we move along a little step in direction of the local
principal component (what means in practice: along a crest). If thereby, after one
or more steps, a point x() is approached which is near to a new mode, then the
local center of mass yi(z()) will tend to this mode, as the following (quite trivial)
lemma shows. If no further modes exists, the algorithm will stop itself when the

end of the data cloud is reached.

Lemma 5.1. Let X; € R4 = 1,...,n be a data cloud and H be a bandwidth
matriz. Let pg a fix point of (5.3) resp. H and v — py. Then, applying the same

bandwidth matriz H, we have convergence pu(x) — pyo.
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Proof
@) — o] = | e KK =) Xe L KX = po) X
S Kn(Xi—2) XL Ku(Xi = o)

for continuous non-zero kernel-functions.

5.6 Coverage

There is need for some criterion to evaluate the performance of a principal curve.
This is usually done by means of a quantitative measure as the expected squared
distance

A(m) = E (113f||X - m(t)||2> (5.9)

between data X and the curve m. Principal curves according to HS are critical
points of (5.9), whereas principal curves by KKLZ are minimizing (5.9) over a class
of curves with bounded length. Another quantitative measure is the generalized
total variance (Delicado, 2001). However, definitions of this type are connected to
an underlying stochastic model for the data, which is not used in our case. Therefore
we propose a model-independent criterion to assess the quality of a principal curve.
We define the coverage of a principal curve m by the fraction of all data points
which are situated in a certain neighborhood of the principal curve. More precisely,
let a principal curve algorithm select a principal curve m consisting of a set P, of
points. Then

Co(7) = #{z € X|Tp € P, with||z — p|| < 7}/n

is the coverage of curve m with parameter 7. Obviously the coverage is a monotone
increasing function of 7 and will reach the value 1 for 7 tending to infinity. Note
that the coverage can be interpreted as the empirical distribution function of the
“residuals”, i.e. the shortest distance between data and principal curve. For evalu-
ating the quality of a principal curve fit it is necessary to take a look at the whole
coverage curve Cy,(7). In Figure 5.8 we provide the coverage plots for the spiral
data (Figure 4), each for the HS, KKLZ and LPC algorithms and for principal com-
ponent, analysis. For the small spiral, the coverage of the LPC and the polygonal
line algorithm from KKILZ are comparable, whereas HS is falling back significantly
and is performing only slightly better than the principal component approach. For
the big spiral, the LPC algorithm clearly outperforms all other algorithms.

Certainly a concave coverage curve is desirable, i.e. it is “best” when rising rapidly
for small 7. The better the principal curve, the smaller is the area in the left

top above the coverage curve, i.e. the area between C,,(7), the line 7 = 0 and
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Figure 5.8: Coverage for small (top) and big (bottom) spiral data.
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the constant function ¢(7) = 1. This area corresponds to the mean length of the
observed residuals. To obtain a quantitative measure for the performance of a
principal curve, we set this area in relation to the corresponding area obtained by
standard principal component analysis. The smaller this quotient, the smaller is the
relative mean length of the observed residuals and the better is the principal curve
compared to principal components. The following table provides this quotient Ac
for HS, KKLZ and LPC, where the latter one is calculated applying the optimal
bandwidths according to Section 5.7.

small spiral | big spiral
algorithm Ac Ac
HS 0.79 0.92
KKLZ 0.03 0.66
LPC 0.06 0.08

Table 5.1: Area-quotient A¢ for some principal curve algorithms.

For the HS algorithm, the quotient A¢ takes values near 1, which means a quite
bad performance. KKLZ yields an excellent value for the small spiral and a rather

unsatisfactory value for the big spiral. LPC performs fine in both cases.

5.7 Selection of parameters

The algorithm is based on two parameters which have to be selected beforehand:
The bandwidth A for the radius of the local center of mass and the value ¢, which
determines the step length. Assume a center of mass 11y at step i, using the data
within a radius h around a nearby value z(;. Starting from ,u(xz.), it seems sensible
to walk along the first principal component fy(wi) until the border of the circle around
7(;) is reached, what leads roughly to the update rule

T(ir1) = ,U;(Ui) + hVECi)-

This means that we employ
to = h.

This rule works fine in practice and was applied in all examples in this paper. It
now remains to select the value h, which plays the role of a classical smoothing
parameter, thus the smaller the value of A, the more details are unveiled by the
local principal curve and the more wiggly it is. To select h, we make use of the
concept of coverage introduced in the previous section. The idea is the following:
If a certain bandwidth h is supposed to serve satisactory for calculating the local

center of mass around z, we assume implicitely that this value h covers more or
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less the width of the data cloud around z. Thus, as a criterion for the adequacy
of a principal curve m(h) calculated with a certain bandwidth A we can apply
its proper coverage Cp,p)(h). We will will refer to this coverage as self-coverage
hereafter. This curve has a typical behaviour: It starts with small values, then
increases rapidly until a local maximum is reached, where the best fit is achieved.
Afterwards the self-coverage curve is falling again or shows erratic behaviour, but
finally rises up to 1 since for large bandwidths the coverage naturally takes the
value 1. Note that the fact that Cp)(h) is falling is not in contradiction with
the property of monotoneness mentioned in the previous section: In contrast to
Cmny(h), the coverage Cy,(7) is calculated for the same principal curve m for all 7!

Our parameter selection rule is the following:
Choose the lowest parameter h for which
e the function Cp,p(h) achieves its first local maximum,
e or, if no local maximum exists, the function Cp,)(h) achieves the value 1.

We want to illustrate this methodology by means of the spiral data shown in Figure
5.3. For the small and the big spiral, we calculate the self-coverage over a grid from
h = 0.01 up to h = 1.0 in steps of 0.01. The results are presented in Figure 5.9.
Since the maxima are partially very flat, we provide in addition the numeric values

(for the crucial range of h) in Table 5.2.

small spiral | big spiral

h|  Cow(h) | Crnwy(h)
0.01 0.013 0.177
0.02 0.961 0.589
0.03 0.996 0.990
0.04 0.999 0.997
0.05 1.00 0.998
0.06 1.00 1.00
0.07 1.00 1.00
0.08 1.00 1.00
0.09 1.00 1.00
0.1 1.00 0.998

Table 5.2: Self-coverage for spiral data.

For the small spiral, the first local maximum is achieved at value h = 0.05 with
Cm(0.05)(0.05) = 1. Thus we choose h = 0.05. For the whole span from A = 0.05 to
h = 0.16 we would however obtain an ideal principal curve (see the flat maximum).

Afterwards the self-coverage is unstable and partially deteriorating. For large values



5.7. SELECTION OF PARAMETERS

C_{m(h)}

C_{m(h)}

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

small spiral
T T T T T |
0.0 0.2 0.4 0.6 0.8 1.0
h
big spiral
| T T T T |
0.0 0.2 0.4 0.6 0.8 1.0
h

Figure 5.9: Self-coverage for spiral data.
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of h the self-coverage tends to 1. The big spiral data lead to a first local maximum
starting at h = 0.06. Afterwards the curve shows erratic behaviour and approaches
slowly to the constant value 1, which is reached at A = 0.88. In these calculations, we
worked with one fixed starting point (more starting points should not be necessary,

since the data cloud is connected and consists of only one branch).

5.8 Discussion

We demonstrated that the concept of applying local principal components in con-
nection with the mean shift is a simple and useful tool for calculating principal
curves, which shows mostly superior performance in simulated data sets compared
to other principal curve algorithms. We showed that the algorithm works in simu-
lated and real data sets even for highly complicated data structures. This includes
data situations which yet could only be handled unsatisfactorily, as data with mul-
tiple or disconnected branches. Especially for noisy spatial data as the floodplain
data the approach has a high potential to detect the underlying structure. We
further provided a tool to select the necessary parameters in a data-adaptive way.

There is still need for further research concerning the theoretical background of
the method. Though working fine, we still don’t have a theoretical justification
why we use local principal components to connect the modes of the density. This
choice is sensible but in no way unique, and there seem to be many alternatives,
such as the extrapolation of the already estimated part of the curve. Due to the
nice properties of the mean shift, it might even work to use a line in an arbitrary
direction, as long it is not orthogonal to the principal curve in the observed point.
Important is simply that a movement is made - the mean shift will afterwards
adjust the principal curve in direction of the “middle” of the data cloud. However,
by applying local principal components the algorithm is fastest, most stable, and the
results are as intuitively expected. We consider the first local principal component
to be a (biased) approximation of the tangent to the crest line: One can easily
derive from its definition that the first local principal component around z is the
line through p* which minimizes the weighted distance between the X; and the line,
using the weights k; as in (5.4). The first local principal component is therefore that
line that locally gives the best fit. For a more extensive treatment of this problem
see Evers (2003).

Furthermore, it will be interesting to investigate if the proposed algorithm can
be extended to obtain local prinicpal surfaces or even local principal manifolds of

higher dimensions. This might be a quite difficult job, since yet easy techniques as
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the signum flipping or the mean shift will probably not be transferable to higher

dimensional curves without cumbersome extra work.

Final remarks

The content of this chapter is joint work with Gerhard Tutz and Ludger Evers from
the University of Munich, Germany.
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Chapter 6
Perspectives

In this chapter the most interesting open questions arising from this thesis are
recalled, with the intention of providing a brief overview of possible starting points

for further research.
In Chapter 2 remain the following open questions:

e Is it possible to derive an (asymptotic) solution for the optimal bandwidths
used in the pre-fit algorithm, which takes into account that the basis in the

second fit is itself a random variable?

e Do other basis functions exist, which allow the derivation of another extension
of Taylor’s formula (in other words: another special case of Widder’s expan-
sion), and thus enable interpretation of the parameters and computation of

the bias of the local approximation?

e Moreover, another point of view might be interesting: We started with local
polynomials and tried to improve the fit by replacing the basis. The other side
of the coin is to start with a commonly used basis, e.g. B-Splines, and inves-

tigate the effect of localization. Finally one should obtain the same results.
Concerning Chapter 3, we are interested in

e how different bandwidth selection routines are influenced by horizontal out-

liers?

e how (local) smoothers with weights « = f,a = 1, = 1/f behave for rising
sample sizes n 7 For small n, o = f should be preferred, while for n — o0

the setting o = 1/ f should be superior.

Both these points are cases for simulation studies and thus suitable topics for

diploma theses. Moreover, there remain some conceptual (if not: philosophical)
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questions:

e To what extent does “robustification” mean “manipulation”? Is the proposed

method possibly a useful tool for hiding any undesired effects?

e Does the found analogy between local smoothing and sample theory reflect a
general statistical principle? Does the theory favor the “weaker”, “less prob-
able”, or “needy” data, while practice shows that it is better to rely on the

majority, which provides the less risky information?

Although Chapter 4 does not pose any mentionable questions, there are interesting

extensions that are worth consideration:

e In principle, the technique is easily extended to the multivariate case. For a
large number of simultaneously observed time series, how can regard be paid
to the dependence structure without high computational costs? Is it possible
to perform an online dimension reduction? First approaches to answer these

questions are given by Gather, Fried & Lanius (2003).

The most perspectives for further research undoubtedly stem from Chapter 5. Re-

garding the concept presented there, we left unanswered

e how our empirical principal curve could be embedded into a suitable statistical

model,

e and how can be better reasoned why we use local principal components to

walk along the crest of the density mountain?
For further conceptual research, the following is of particular interest:

e How can the principal curve be used in practice, e.g. can it be employed to
reduce the dimension in the predictor space of a high dimensional regression
problem?

e How might the second, third, ... local principal component be exploited? It is

an obvious idea to use this information to detect the bifurcation points.
e How can the method be extended to find principal surfaces, etc. ?

A variety of ideas and approaches to the above mentioned topics are presented in

Evers (2003). There remains one final point to mention:

e Is the proposed concept a useful starting point to construct a framework for
non-functional regression, i.e. regression for situations where for a given value
of x more than one value of y exists? This is an upcoming, intriguing area of

research, and should receive rising attention in the future.
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Regarding this list, one might have the impression that this thesis ended up with
more open problems than answered questions. This is true to some extent, and
is probably true for any scientific work. We can be quite happy about that, since
otherwise Schiaparelli (1866) would already have made everything that happened
in the last 137 years and 129 pages of this thesis superfluous...
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