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Abstract 
 

The two main subjects of this thesis are the realization of supramolecular self-assembled 

monolayers at surfaces and the formation of surface-supported two-dimensional covalent organic 

frameworks. Both topics, albeit different, yield long-range ordered open-pore networks with quite 

different stabilities, depending on the strength and type of bonds holding them together. The surface of 

choice is mainly graphite, which is considered an inert substrate. Graphite yields pristine clean, very 

large and flat surfaces when cleaved, facilitating the observation in real space of the molecular 

networks adsorbed on these surfaces by means of the Scanning Tunneling Microscope (STM). STM is 

the main experimental technique used here. It was used to image mostly at the liquid-solid interface 

under ambient conditions. 

Using a large tricarboxylic acid adsorbate, long-range order supramolecular self-assembled 

monolayers were obtained. These monolayers are formed via a delicate interaction balance between 

adsorbates, substrate, and solvent molecules. Weak van der Waal forces mediate the adsorbate-

substrate interaction; hydrogen bonds, the adsorbate-adsorbate interaction. Also, depending on the 

solvent used and the concentration of adsorbates dissolved in it, different polymorphs are found on the 

substrate. To understand the nucleation and growth mechanism that give rise to the different self-

assembled monolayers, thermodynamical considerations are used. Enthalpic and entropic 

contributions are evaluated for several of the polymorphs found, explaining their occurance on the 

basis of the Gibbs free energy per unit area. However, even if this work sheds some light on 

supramolecular self-assembly, adding also that much research has been done in this field, it is still 

very difficult to know a priori how adsorbates will behave on a substrate. Thus predictions of which 

patterns will ultimately arise are hampered. 

 To realize structures that are more stable than those formed via supramolecular self-assembly, 

several strategies have been proposed. Covalent bond formation is one of them, yielding strong and 

lightweight structures by using organic molecules composed primarily of light elements. The strength 

of covalent bonds ranges from strong to very strong, when compared to van der Waals and hydrogen 

bonds. This characteristic makes correction of possible structural errors difficult to almost impossible. 

However, when molecules with suitable functional groups are allowed to react under reversible 

conditions, error correction of covalent bonds becomes feasible, yielding regular structures with the 

energetically most favorable configurations. In this thesis, this is exemplified with the small 1,4-

benzenediboronic acid molecules, yielding monolayers composed of very regular, long-range ordered 

covalent organic frameworks on graphite. Thermal stability is probed by exposing the structures to 

relatively high temperatures for prolonged times under atmospheric conditions. Further experiments 

with larger para-diboronic acids, under similar reversible conditions, yield the expected isotopological 

regular frameworks with larger unit cell parameters. This demonstrates the proof of principle for the 

formation of two-dimensional covalent organic frameworks. 
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These two main topics, supramolecular self-assembly and covalent bond formation on 

surfaces, constitute the basis of this thesis. It is organized as follows: A first part deals with the 

theoretical background of the main analytical instruments used in this work. Then, the 

thermodynamics of supramolecular self-assembly is presented, along with the studies of the different 

polymorphs found using a large tricarboxylic acid as building block. The final part deals with the 

formation of two-dimensional, long-range ordered covalent organic frameworks, made from organic 

molecules composed only of light elements. This work show that these last mentioned networks 

exhibit higher thermal stabilities when compared to self-assembled monolayers held together mainly 

by strong hydrogen bonds. The viability of larger heteromeric isotopological networks is also 

explored. 



 

  
5 

Contents 

 
Abstract........................................................................................................................................3 

Abbreviations ..............................................................................................................................7 

 

   1.  Introduction ....................................................................................................................................8 

   2.  Experimental Methods and Materials ........................................................................................11 
2.1.  Experimental Methods............................................................................................................11 

   2.1.1.  Scanning Tunneling Microscope (STM) ..........................................................................11 

              2.1.1.1.  Theoretical Background .............................................................................................14 

      2.1.1.2.  Imaging with STM .....................................................................................................19 

   2.1.2.  Spectroscopy ....................................................................................................................20 

              2.1.2.1.  Ultraviolet and Visible (UV-Vis) Absorption Spectroscopy  .....................................20 

      2.1.2.2.  X-Ray Photoelectron Spectroscopy  ...........................................................................22 

      2.1.2.3.  Raman Spectroscopy  .................................................................................................23 

   2.1.3.  Powder X-Ray Diffraction (PXRD) .................................................................................25 

   2.1.4.  Thermogravimetric Analysis (TGA) ................................................................................26 

2.2.  Materials .................................................................................................................................27 

   2.2.1.  Choice of Substrate...........................................................................................................27 

   2.2.2.  Solvents ............................................................................................................................27 

   2.2.3.  Molecular Building Blocks ...............................................................................................28 

   3.  Supramolecular Self-Assembly on Surfaces ..............................................................................29 
3.1.  Thermodynamics ....................................................................................................................30 

3.2.  Parameters Affecting Supramolecular Self-Assembly on Surfaces .......................................33 

   3.2.1.  Molecular Structure ..........................................................................................................33 

   3.2.2.  Intermolecular Forces .......................................................................................................34 

   3.2.3.  Influence of the Solvent ....................................................................................................37 

   3.2.4.  Concentration Effects  ......................................................................................................40 

   3.2.5.  Guest Molecules  ..............................................................................................................46 

3.3.  Summary  ...............................................................................................................................47 

   4.  Covalent Bond Formation on Surfaces .......................................................................................49 

 4.1.  Synthesis of Surface Supported 2D COFs .............................................................................49 

 4.2.  Molecular Precursor ..............................................................................................................51 

 4.3.  Synthesis of Well-Ordered COF Monolayers from BDBA  ..................................................52 

    4.3.1.  Synthesis through Pre-Polymerization of Precursors  .....................................................53 

    4.3.2.  Synthesis via Direct On-Surface Polymerization ............................................................57 

 4.4.  Synthesis of Isoreticular 2D COFs ........................................................................................57 

 4.5.  Activation Temperature for Self-Condensation  ...................................................................59 

 4.6.  From Supramolecular Self-Assembly to 2D COF  ................................................................60 

 4.7.  Stability of the Boroxine Ring ...............................................................................................61 

 4.8.  Heteromeric 2D COF via Boronic Ester Formation  .............................................................62 

 4.9.  Summary  ..............................................................................................................................63 

5.  Conclusions ..................................................................................................................................65 

 Appendix 1: Preparation of Ultra Flat Gold (111) Surfaces by Physical Vapor Deposition 

(PVD) as Substrate for Supramolecular Self-Assembly ..................................68 

 

 Appendix 2: Stepwise Assembly Scheme and Evaluation of Formation Probabilities for 

Two Different Polymorphs from the Same Adsorbate ....................................75 

 



 

  
6 

Publications ...................................................................................................................................80 

References....................................................................................................................................158 

Acknowledgements .....................................................................................................................171 

Curriculum Vitae ........................................................................................................................172 

 

 

 

 



 

  
7 

Abbreviations 
 

 

2D  Two Dimensions / Two dimensional 

COF  Covalent Organic Framework 

DOS  Density of States 

HOMO  Highest Occupied Molecular Orbital 

HOPG  Highly Oriented Pyrolitic Graphite 

IR  Infra Red 
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1 

 

Introduction 

 

The advent of the Scanning Tunneling Microscope (STM)
1
 in 1982 gave scientists the 

opportunity to observe and manipulate matter at the atomic scale. Before the invention of the STM, 

matter could only be indirectly studied by means of other physical and chemical methods. In fact, 

there was no lack of these methods, for instance, spectroscopy, nuclear magnetic resonance, electron 

microscopy, X-ray diffraction, chromatography, electrophoresis, and mass spectrometry, to name a 

few. None of them permit the observation in real space of any molecule, not even to speak of single 

atoms. So it is understandable that in the very beginning of the STM, many scientists were skeptical 

about the possibilities STM opened, because it was not expected that atomic resolution could be 

achievable.
2
 In fact, the STM was the first of several instruments with resolution ranging from 100 µm 

down to 10 pm, nowadays cooperatively known as Scanning Probe Microscopy (SPM).
3
 This family 

of instruments now permits the customary and precise observation of atoms and molecules in different 

environments.  

Who could have predicted a scenario, where observing molecules down to almost atomic 

resolution was easily feasible almost at will? Futurologists of the 1960s and 70s were mostly only 

occupied predicting the big things to come in the XXI century; for instance, living on the moon or 

speaking through videophones;
4
 predictions that too many times failed to materialize. However, 

Richard Feynman, already in 1959, raised some issues about how it should be possible to manipulate 

and produce things that were many, many times smaller than the smallest miniaturization achievable at 

those days.
5
 Although certainly unbeknownst to him, he allegedly gave a date where it would become 

already possible to control matter at the atomic scale: the year 2000. He was right, beating out at least 

once those “think big” futurologists. There is no way he could have predicted the invention of the 

STM, and with it the emergence of a new field in material science: nanotechnology. 

This very word, “nanotechnology”, was coined for exactly this very fine and precise 

manipulation of materials. Interestingly, nanotechnological implications have nowadays been felt even 

for non-scientists: starting with product branding, the “iPod Nano” music player by Apple and the 

“Nano” car by Tata derive their name from this nowadays ever-present word in common life.
6
 

Although these two products not necessarily possess nanotechnology-derived parts, there are plenty of 

products in the market that do. These range from TiO2 nanoparticles in sunscreen, silver nanoparticles 

in washing machines to particles of trace metals in food supplements.
7
  

Nanotechnology is not free of risks. However so far, very few of them have been identified.
7,8

 

Animal research suggests that nanoparticles may have the capability to evade the body’s natural 
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defense system and be able to move across cell membranes, reaching the brain and lungs, where they 

can accumulate.
7
 However, identifying this last mentioned facts does not necessarily mean per se that 

nanotechnology involves risks. Most probably, nanotechnology will improve our daily life instead of 

threatening it. 

Since the STM was invented, the manipulation of molecules on surfaces has gone great 

lengths. It is nowadays possible to move single-molecule “cars” on a surface by means of propelling 

them with the STM tip, readily rolling it to its next position.
9,10

 Although these feats may call the 

attention even of non-scientist due to its large press coverage, nanotechnology never stops to be 

fascinating for scientists involved in the field of material science. For example, in the present work, 

the supramolecular self-assembly of molecules was studied, and the different geometrical structures 

found were explained by thermodynamic principles. 
Supramolecular self-assembly shows promising applications in the manufacturing of 

electronic devices,
11

 but these molecular aggregates lack the required stability for some applications 

that could be obtained with covalent bonds. Hence, this was the next step in the course of this work, 

the realization of regular molecular networks held together by relatively strong covalent bonds. 

Eventually, the formation of extended, two-dimensional (2D), surface-supported, covalent organic 

frameworks (COFs) has been realized here. In the future, maybe the production of 2D free-standing 

COFs, much resembling graphene, may also become feasible. 

In the present work, the subjects covered are mainly supramolecular self-assembly of 

hydrogen-bonded monolayers on surfaces, and the formation of surface-supported 2D COFs. Both of 

these subjects were performed basically on a graphite substrate. Graphite was chosen because it is a 

chemically inert substrate that can be easily prepared at every new experimental run. A simple cleave 

with adhesive tape yields pristine clean surfaces every time, ready to use without any further treatment 

other than depositing the molecules of interest. The main analytical tool used was the ambient STM; 

however, other analytical methods were also used to confirm and explain the results found with the 

STM.  

One of the motivations of this work was to study possible formation of ever larger regular 

supramolecular monolayers composed of tricarboxylic acids held together by strong hydrogen bonds. 

Previous studies showed that small
12

 to medium-sized
13,14

 tricarboxylic acids, possessing one or 

several phenyl groups in its backbone, yielded porous and planar networks on a graphite substrate. The 

final topology of these networks could be influenced by many factors, like choice of solvent and 

concentration. Hence, a large tricarboxylic acid was chosen for experiments, and its several 

polymorphs were studied and explained using thermodynamical considerations. 

Another important motivation was the formation of single-layer, extended and regular 2-

dimensional covalent organic frameworks (2D COFs). The synthetic route for realizing these 

frameworks is already known for bulk crystals
15

 or even substrate-supported thin films,
16

 but the 

formation of a single, regular, defect-free layer had been elusive. Since these frameworks are held 
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together exclusively by relative strong covalent bonds, its physical properties are expected to be 

superior than those of hydrogen bonded self-assembled networks. These properties were confirmed 

during the course of this work. After finding a reproducible method that yielded every time 2D COFs 

with the small 1,4-benzenediboronic acid precursor on a graphite substrate, larger, isoreticular 

networks were realized using larger para-diboronic acids. By selecting the length of the molecular 

precursor, the size of the 2D COF cavity could be tuned. In this way, a series of several regular 2D 

COFs was realized. 

To deal with the topics mentioned above, this work is outlined as follows: In chapter 2, a 

theoretical background explaining the working principles of the STM is presented. The theory behind 

other important analytical methods used during this work is also briefly explained. Chapter 3 deals 

with the supramolecular self-assembly. Using mainly a large tricarboxylic acid, different assemblies 

were encountered, depending on the solvent used and its concentration. Here, the thermodynamic 

principles governing the self-assembly of molecules on surfaces is presented and used to explain the 

stability of the different polymorphs encountered. Chapter 4 deals with the formation of regular and 

extended 2D COFs. After finding the conditions under which the molecular precursors yield the best 

results, isoreticular COFs with pore sizes up to 3.2 nm wide were prepared and studied. A conclusion 

is given in chapter 5, followed by the papers published during the course of this dissertation. 
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2 

 

Experimental Methods and Materials 
 

 

 In this work, the most important analytical tool for examining samples was the Scanning 

Tunneling Microscope (STM). To independently confirm results obtained with the STM, 

complementary analytical methods were used. These results were also theoretically supported by 

models of molecular structures simulated with molecular mechanics. The molecular building blocks 

used were all organic molecules with certain defined structures. Depending on the function they were 

required to perform, they were specifically functionalized with chemical groups. The most common 

substrate used was graphite, which is widely available and easy to cleave. It can produce a clean 

surface every time with almost no effort. Graphite is also inert, thus not requiring extremely clean 

environments to work with. In practice, this translates as permitting work under ambient conditions. 

 

2.1 Experimental Methods 

 

For this work, supramolecular self-assembly and synthesis of covalent organic frameworks 

were carried out on planar surfaces. To probe the resulting assemblies or structures formed on these 

surfaces, the Scanning Tunneling Microscope (STM) was used as the main analytical instrument. The 

STM proved to be an invaluable tool for imaging these structures down to the molecular level, readily 

assessing the different molecular configurations and even offering a possibility to differentiate 

between self-assembly and covalent bond formation. Another analytical method of surface science 

employed here is X-ray Photoelectrons Spectroscopy (XPS). These two surface analysis tools were 

further aided by bulk analytical methods. The most relevant of them are discussed in the following. 

 

2.1.1 Scanning Tunneling Microscope (STM) 

 

In the year 1982, G. Binnig and H. Rohrer
1
 demonstrated for the first time that an analytical 

instrument based on the quantum mechanical tunnel effect was feasible. This was the birth of the 

STM, an instrument nowadays used extensively to probe surfaces. Before the STM came into being, I. 

Giaever
17

 already proposed the possibility of gathering information about the electronic structure of 

surfaces by means of the quantum tunnel effect. The STM was preceded by the “topografiner”, an 

instrument developed in the year 1972 by R. Young.
18

 However, this last instrument never achieved 

the very high vertical and lateral resolution of the STM due to the very noisy nature of the field 

emission current
18,19

 and the lack of reliable feedback circuitry at those days.
20

 Consequently, it was 



Experimental Methods and Materials 
—————————————————————————————————————————————————————————————— 

 

  
12 

never commercially produced. Unlike the topografiner, STMs do not need special electron sources; 

instead they rely on the bound electrons sample and tip as the only source of radiation.
21

 

STM was not the first device to rely on the tunnel effect. There were already other practical 

uses of electron tunneling, such as the metal-insulator-metal (M-I-M) tunnel diode.
22

  

To operate an STM, a very sharp tip (ideally, atomically sharp) is brought very close to an 

electrically conducting substrate, until no more than a few atomic diameters separate both. The tip is 

the most critical part of the STM because it ultimately determines the image quality and resolution.
23

 

A small bias voltage of less than 1 V is applied between tip and surface, generating a tunneling current 

of electrons flowing from the tip to the substrate, or vice versa, depending on bias polarity. An 

electrically controlled piezoelectric crystal performs the lateral and vertical scanning movement of the 

tip. This movement creates spatial variations of the tunneling current that are used to produce contour 

maps or false-color images. Under normal working conditions, STMs achieve resolutions of less than 

1 nm laterally and 0.1 nm vertically,
24

 allowing the exact positioning of single atoms. Hence, imaging 

of organic molecules –composed of several atoms– adsorbed on conducting substrates becomes a 

relatively simple task. The vertical resolution is explained by the exponential variation of the tunneling 

current with the distance between tip and sample; the lateral resolution depends upon tip sharpness. 

Although good resolution sometimes may be obtained using a mechanically cut metallic wire made of 

Pt/Ir (90%/10%) alloy, more reproducible results are obtained with tips made by electrochemically 

etching tungsten (W) to a fine point. Tips made from Pt/Ir alloy have a very good resistance to 

atmospheric oxidation and therefore are preferred for ambient STM, whereas W tips are favored for 

STM uses under Ultra High Vacuum (UHV).
23

 Mechanically cut tips achieve atomic resolution due to 

the many asperities on the surface of the tip structure. Then, if one atom of these asperities is just some 

atomic radii closer to the sample than any other one, atomic resolution is realized by the nature of the 

tunneling signal.
24

 On the other hand, an advantage of electrochemically etching the tips is that this 

sharpening method can provide more reproducible tips. These tips normally lack the asperities of 

mechanically cut tips and therefore are better adapted for surfaces with a relative large degree of 

roughness.
24

 

The basic operation principles of the STM are shown in figure 2.1. The STM can be operated 

in two different modes, namely constant current or constant height. In the first mode, the tip scans a 

surface at constant tunneling current. This current is kept close to a preset value by continuously 

adjusting the tip height relative to the surface via a feedback loop. However, a low cut-off frequency 

of the feedback still allows spatial modulation of the tunneling current.
25

 In the second mode, the tip 

scans the surface at nearly constant height and constant voltage. Here, the tunneling current is 

monitored, and its variations are plotted forming an image. For this second scanning mode, the 

feedback network responds rapidly enough to keep the average current constant.
24

 Each scanning 

mode has its own advantages: Constant current mode can track surfaces that are not necessarily 

atomically flat. This mode yields more reliable information about topography height, derived from the 
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feedback signal. Here, the quality of the information acquired can be influenced by the sensivity of the 

piezoelectric crystal driving the tip. Constant height mode allows much faster scanning of atomically 

flat surfaces, because the feedback and the piezoelectric crystal do not need to respond to the features 

being scanned by the tip.  

 

 

Figure 2.1: Operation principle of a STM. Schematic vibrational isolation is also shown. 

 

The STM has proved to be a very reliable and adaptable instrument. It can work in very 

different environments, from Ultra High Vacuum (UHV), as initially intended,
1
 to standard ambient 

conditions, with scanning tips immersed in non-conducting liquids, and under the appropriate 

insulation, even in electrolytes, as in electrochemical cells.
26

 It can also work under very low or high 

temperatures. 

For this thesis, two home-built ambient STM were used. They are shown in figure 2.2. Both 

STM heads are mounted on a vibration isolating pyramid made of differently sized copper plates, 

separated by rubber stands.
27-29

 The function of this pyramid, together with the optical table, is to damp 

vibrations from the floor that are more pronounced in the frequency range 0.1 to 50 Hz. The vibrations 

in this frequency range may impair the ability of the STM to acquire high resolution data. 

The main differences between these two STMs units are: First, the manual coarse approach 

mechanism of the first STM shown in figure 2.2a against the automatic coarse approach for the STM 

shown in figure 2.2b. Second, that the scanning piezo head of the first STM is fixed on the pyramid, 

whereas for the second STM shown (figure 2.2b), the head is removable. This last feature of the 

second STM unit allows easier and faster positioning of the scanning tip on the area of interest of a 

sample as compared to the first fixed configuration shown. 
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Figure 2.2: Two home-built STMs used during the course of this work. a) STM with a manual course 

approach; b) STM with automatic piezo-driven approach. Both are operated on an optical table to 

damp vibrations that may be transferred from the floor (not shown). Both STMs sit atop a pyramid 

made of copper plates to further minimize vibrations. The STM at b), including the pyramid 

constructed from circular plates, was designed by Stephan Kloft. 

 

2.1.1.1 Theoretical Background  

 

The simplest theoretical model to explain STM operation is based on one-dimensional 

tunneling theory.
30

 The tunneling effect can be understood by wavelike properties of particles, as 

described in quantum mechanics. If E , the kinetic energy of a particle, is lower than U , the potential 

energy of a barrier, there is a non-zero probability for transmission through the classically forbidden 

region and reappearance on the other side of the barrier. This probability P  of a particle to traverse 

the above mentioned barrier, moving in the z direction, can be estimated by:
30

 

zeP 2 ,     (2.1) 

where z  is the thickness of the barrier and   is a decay constant given by: 

/)(2 EUm  ,    (2.2) 

where m  is the mass of the particle, and 2h . ( h  is Planck’s constant.) In the case of STM, the 

thickness of the barrier is the gap separating tip and sample, known also as the tunneling junction. The 

particle of interest, m , is an electron of energy E ; and   is the wavefunction of the electron (when it 

is located in the sample). Thus, equations 2.1 and 2.2 can be rewritten as: 

   zEm
ez




0(2222
)0()(  ,   (2.3) 
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where 0  is the sample work function (a potential energy barrier), and )0( is the value of   at the 

sample surface. A graphical explanation of the tunneling effect is presented in figure 2.3. 

 

 

Figure 2.3: Energy diagram for the tunnel effect. The sample-tip tunneling junction is a barrier of 

width z. When a bias voltage is applied, electrons can tunnel from the occupied states of the sample to 

the unoccupied states of the tip, or vice versa, depending on the bias direction. Tunneling is only 

possible in the energy interval eV , between the sample and tip Fermi levels, 
FE .   is the 

wavefunction of the electron in the sample. 

 

This elementary model explains some basic characteristics of metal-vacuum-metal tunneling. 

The work function 0 of a metal surface is defined as the minimum energy required to remove an 

electron from the bulk to the vacuum level.
31

 0  depends on the material and on its crystallographic 

orientation. Neglecting thermal excitation, and setting the vacuum level as the reference point of 

energy (EF = - 0 ) the Fermi level becomes the upper limit of the occupied states in a metal. 

For simplicity, it is assumed that tip and sample are metallic and their respective work 

functions are equal. Then, when the tip is brought close enough to the sample, electrons can tunnel 

from the tip into the sample, or vice versa; however, for a net tunneling current to occur, a bias voltage 

must be applied. Taking this into account, for small bias voltages ( 0eV ), the tunneling 

probability of an electron of energy E  located between ],[ FF EeVE   simplifies equation 2.3 to: 

  zm
ez




02222
)0()(  .   (2.4) 

Then, because the current I  is proportional to the sum over all states located between 

],[ FF EeVE  , I  can be written as: 
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F

F

E

eVEE

zI
2

)( .    (2.5) 

In an STM experiment, the tip scans over the sample surface. To simplify the quantum 

mechanical treatment, the tip condition is regarded not to vary during these scans. Furthermore, 

electrons tunneling from the surface to the tip or vice versa are assumed to have constant velocity. The 

tunneling current is directly proportional to the number of states in the sample surface within the 

energy interval eV , which are available for the tunneling current. This number depends on the local 

density of states (LDOS) of the sample surface. The LDOS is the number of electrons per volume per 

unit energy at a given point in space at a given energy.
31

 For metals, it is very high, for insulators and 

semiconductors it is very small, and for semimetals, it lies between both.
31

 If a small bias voltage V is 

applied between tip and sample, the density of states (DOS) of the sample is considered to have only 

very small variations in the range ],[ FF EeVE  . Then expression 2.5 can be written in terms of the 

LDOS of the sample at the Fermi level, )( Fs E , with the tip at a distance z  from the sample, as:
25,31

 





F

F

E

eVEE

Fs z
eV

E
2

)(
1

)( .    (2.6) 

Substituting 2.6 into 2.5 gives:
25,31

 

 zm

Fs eEVI



022

)( .   (2.7) 

Proportion 2.7 indicates that a constant-current STM image is a line-contour representation of 

the LDOS of the sample at the Fermi energy. The typical value of the work function is 50  eV,
2
 

giving a value of the decay constant 1.0 nm
-1

. 

 

Perturbation Theory 

The large body of concepts developed studying the M-I-M tunneling junctions are 

fundamental for understanding the tunneling effect in STM.
31 The most used theory for explaining the 

M-I-M tunneling is the time-dependant perturbation approach developed in 1960 by Bardeen.
32

 

For this purpose, Bardeen considered first two separate subsystems. Their electronic states are 

obtained by solving their stationary Schrödinger equations. The transfer rate of an electron from one 

electrode to the other is evaluated using time-dependant perturbation theory. In this way, Bardeen 

showed that the amplitude of the electron transfer, or the tunneling matrix element M , can be 

determined by the overlap of the surface wavefunctions of the two subsystems at a more or less 

arbitrary separation surface. This means that M  is determined by a surface integral on a separation 

surface 0S  between the two electrodes as follows:
31
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 dS
m

M
S

 

0

**

2



,    (2.8) 

where   and   are the wavefunctions of the two electrodes. Equation 2.8 shows that M  depends 

exclusively on the wavefunctions   and   in the barrier. Applying these principles to the STM 

sample-tip junction, it can be conveniently considered that   is the wavefunction of the sample, and 

  that of the tip. Then, the probability w  of an electron in the sample at energy level E  tunneling 

to a state   of the tip of energy level E is given by Fermi’s golden rule:
31

 

 


EEMw 
22


,    (2.9) 

which considers only elastic tunneling, i.e. only tunneling between states of similar energy E  and 

E . When a bias voltage is applied, the tunneling current is then given by:
25

 

 




 dEMEeVEEfeVEf
e

I tsF

2
)()()()(

2





,  (2.10) 

which integrates over all possible combinations of sample and tip states. The Fermi distribution, 

)(Ef , is given by: 

1

1)(

































Tk

EE

B

F

eEf ,    (2.11) 

where E  is the potential energy of the electron, FE  is the Fermi level, and T  is the absolute 

temperature. s  and t  are the densities of states of the sample and tip, respectively. Considering 

only cases with small bias voltage and at relatively low temperatures, which covers in practice the 

usual experimental conditions under which STM is performed, allows equation 2.10 to be simplified to 

the following: 

 dEMEeVE
e

I
eVE

E
ts

F

F





2

)()(
2





.   (2.12) 

At elevated temperatures, there is a corresponding term for reverse tunneling. Equation 2.12 is valid if 

M is considered almost invariable in the energy interval eV . If the DOS of the tip, t , is considered 

constant in the energy range of interest, then the tunneling current is evaluated solely by the sample by 

the following equation: 

)( eVEVI Fs   .    (2.13) 

This last proportion states that the current is essentially determined by the LDOS of the sample at the 

Fermi energy.
2
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s-Wave Tip Model 

Tersoff and Hamann
33,34

 showed for the first time that proportion 2.7 was also valid in three 

dimensions.
2
 For this purpose they used a simplified model of the tip, approximating the apex to a 

spherical s-wave function. They also evaluated the sample LDOS at the Fermi edge )( Fs E  at a 

distance Rzr 0 , where z is the distance between the apex of the tip and the sample surface; and R 

is the radius of curvature of the tip (see figure 2.4). In this way the solution for M , the tunneling 

matrix in equation 2.8, is given by:
25

 

)( 0reRM R    ,    (2.14) 

where )( 0r  is the sample wavefunction evaluated at 0r , and with /2 0 m . Then, at small 

bias voltages, I  is proportional to:
25

 

)(),()( 00

342 rrEEVeRI FsFt

r    
.   (2.15) 

This last equation shows that I  is proportional to the sample LDOS at the Fermi level evaluated at 0r . 

This model explains the high resolution on metals such as Au(110); however, does not explain large 

corrugation heights quantitatively.
2
 This model also becomes less accurate for large values of R . An 

exact treatment of the tip would probably be far less useful since it would require more specific 

information about the tip wave functions, and would not reduce to an explicit equation. 

 

 

 

 

Figure 2.4: Graphical explanation of the Tersoff-Hamann tip model. The apex of the 

tip is modeled as an s-wave. The tunneling current is proportional to the LDOS of the 

sample at the Fermi level at a distance R + z from the center of curvature, r0, of the tip. 
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2.1.1.2 Imaging with STM 

 

The first STM studies were of pristine surfaces free from any adsorbed molecules. These 

studies facilitated the real space determination of their atomic structure. Among these surfaces were 

metals,
35

 like Al(111) and Pt(100), and semiconductors,
36

 like Si(111) and graphite.
37

 In subsequent 

experiments, atoms and molecules were adsorbed on these surfaces, allowing the analysis of the 

interaction of adsorbates with substrates, and among adsorbates. The main processes studied with 

adsorbed molecules were nucleation, growth, electronic coupling to the substrate and chemical 

activity.
38

 

In the early days of the STM, it was assumed that most organic molecules were not visible by 

this technique, since they possess a large energy gap between HOMO and LUMO. Hence the first 

adsorbates studied with the STM were comparatively small inorganic molecules, 39,40
 like CO on 

Pt(100) and Pd(110), or simply atoms,
41,42

 as S on Mo(100) or O on Ni(100). Later on, the size of 

adsorbates was increased to include molecules of medium complexity.
43

 

When molecules adsorb on surfaces, interpretation of the resulting STM images can become 

intricate. The STM ability to resolve molecular adsorbates depends on the probability that the 

adsorbate’s electronic states contribute to the tunneling current.
44

 The apparent height of atoms in 

STM images of atomically flat surfaces is not necessarily related to their physical height over the 

surface.
41

 For example, S atoms appear mostly as protrusions above the substrate; however, O atoms 

commonly appear as depressions.
42

 These results were explained by Lang
45,46

 using Bardeen’s 

approximation
32

 to calculate the tunneling current between two atoms on very close electronic gas 

surfaces (so-called “Jellium”). The electronic states of the adsorbed atoms can enhance or reduce the 

tunneling current through their influence on the density of states at the Fermi level.
41

 S increases the 

LDOS, while O decreases it. Using the Tersoff and Hamann theory,
33,34

 the spatial contrast can also be 

explained. Based on Lang’s theory, Eigler showed quantitatively that a non-conducting atom, like Xe 

on Ni(110), can be visible with the STM.
47

 

Molecular Orbital (MO) Theory has been used to identify molecules by their observed STM 

images. Early examples include copper phtalocyanine
48

 adsorbed on Cu(100) or alkyl-cyanobiphenyl 

on graphite.
49

 These two results demonstrate that STM reveals the electronic structure of the 

adsorbates, rather than their real topography.
50

 However, the electronic states calculated using MO for 

isolated molecules does not take into account the influence of the substrate. For this purpose, a 

modified computational methodology was proposed by Hallmark and Chian
50

 in 1995 using Extended 

Hückel Theory to calculate extended Hückel orbitals for the combined system molecule + substrate. 

This then yields contour maps of occupied or unoccupied LDOS that can be compared with actual 

STM images. Recently, Density Functional Theory (DFT) calculations were performed to explain the 

electronic effects observed in alkanes adsorbed on graphite with the STM.
51

 Another popular method 

is the Electron Scattering Quantum Chemistry (ESQC) developed by Sautet and Joachim.52
 Here the 
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tunneling process is treated as a scattering process, and the surface-adsorbate-tip system, as a defect in 

a periodic bulk.
41,53

 ESQC was successful in explaining the different contrast features obtained with 

benzene on Pt(111), attributing them to different adsorption sites.
54

 Here, when adsorbed atoms are not 

well enough separated, the mechanism behind contrast formation becomes more complicated to 

explain.
41

 Also, the apparent shape of atoms recorded with the STM can be influenced by the 

proximity of adsorbates. This is a result of the interference between tunneling paths through 

neighboring adsorbates when the tip is located between the adsorbates.
55

 These interferences can 

complicate the structure determination of adsorbates via contrast features in the resulting STM 

images.
41

 

A review of various theoretical methods to simulate and explain the observed STM images of 

adsorbates on surfaces is given by Sautet.
53

 

 

2.1.2 Spectroscopy 

 

Spectroscopy is the study of emission and/or absorption of electromagnetic radiation by 

matter. It as applicable throughout the entire electromagnetic spectrum and allows to gain knowledge 

of the elementary excitations in matter, and hence about the structure of matter. If the spectrum is 

recorded directly from an emission source, it is named emission spectroscopy; if recorded from an 

absorbing sample interposed between an emission source and a detector, it is called absorption 

spectroscopy. For the latter case, ultraviolet and visible (UV-Vis) spectroscopy is a typical example, 

and was also used in this work. When the incident radiation is reflected or scattered, it is named elastic 

or inelastic scattering, depending whether the incident radiation exchanges energy with the analyzed 

sample. Raman spectroscopy is an example of inelastic scattering. In the following, the most relevant 

spectroscopic analytic procedures performed during the course of this work are discussed. 

 

2.1.2.1 Ultraviolet and Visible (UV-Vis) Absorption 

Spectroscopy 
 

In the course of this thesis, UV-Vis absorption spectroscopy was used as a method to measure 

the concentration of molecules in solution. Typically, the solvents used were fatty acids, and the peak 

absorption wavelength of the solute molecules was found in the UV region. The measurements served 

as an independent confirmation for the very low to almost complete insolubility of some solutes in 

selected solvents. For instance, UV-Vis spectroscopy helped to establish with certainty why some 

building blocks failed to self-assemble on a substrate, when it was found that the solubility of these 

molecules was extremely low.  
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The spectrometer used had a collimated beam of light, transmitted through an optical fiber, 

and the detector was sensitive for wavelengths from ~180 nm through 890 nm; this range spans from 

middle ultraviolet up to near infrared radiation. 

To measure the concentration c  of solutes in solution, the following linear relationship known 

as the Beer-Lambert-Bouguer law is applied: 

cla
II

II
A

DT

D 



 0log ,    (2.16) 

where A  is the absorption or transmission, 0I  the intensity of the light transmitted by the cell 

containing only the solvent, DI  the background noise (dark current) measured by the detector, TI the 

intensity of the light transmitted by the cell containing the sample (composed of solvent + solute), a  

the absorption coefficient, and l  the distance the radiation travels through the solution of interest, i.e. 

the optical path length. Thus, if l  and a are known, and A  is measured, c  can be deduced. 

Under certain conditions the Beer-Lambert law fails, because a linear relationship does not 

hold true. This is the case for BTB (figure 3.1) dissolved in heptanoic acid above 50% saturation 

concentration. For TCBPB (figure 3.1) dissolved in several carboxylic acids, no deviations to this law 

were encountered for concentrations up to 100% saturation, because of the very low solubility of this 

solute in these solvents. 

Figure 2.5a shows typical UV-Vis absorption spectra at different concentrations. In this 

example, the molecule studied is TCBPB dissolved in heptanoic acid. The chemical structure of 

TCBPB is shown in chapter 3 (figure 3.1). Figure 2.5b shows the regression line obtained from the 

absorption peak maxima, at 308.3 nm, for different concentrations. Its correlation of 99.3% proves a 

very good linear relationship along the measured concentrations, complying very well with Beer-

Lambert’s law. 

Figure 2.5: a) Absorption spectra of TCBPB dissolved in heptanoic acid at different concentrations 

for the wavelength region between 250 nm and 360 nm. The absorption peak maximum is located at 

308.3 nm. The bottom (black) line presents the absorption spectrum of pure heptanoic acid, whereas 

the other lines present increasing concentrations from 5% to 100% saturation (100% saturation curve 

drawn in red). b) The graph shows the very good linear relationship found for concentration versus 

absorption. The absorption values are taken from the absorption maxima in a). The color code of each 

spectrum in a) is again represented in the color of each data point in b). 
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2.1.2.2 X-Ray Photoelectron Spectroscopy (XPS) 

 

XPS can be a complementary analytical method to STM, providing additional chemical 

information of a sample’s surface.
56

 By measuring core level binding energies of the top 1 to 10 nm of 

a solid substrate, elemental composition can be identified.
57

 XPS signals arise from a surface area that 

encompasses at least several molecules, hence no lateral resolved information can be obtained.
56

 

Assuming that the elements to be detected have a concentration greater than 0.05 atomic %, XPS can 

identify and quantify the elemental composition of a sample, except for H and He. It can also reveal 

the chemical environment of a specific element, i.e. to which other elements it is bound, and the type 

of bond, by small shifts in binding energy. 

XPS is based on the photoelectric effect discovered in 1887 by Hertz
58

 and explained in 1905 

by Einstein
59

. Briefly explained, this effect arises from the transfer of energy from impinging photons 

to the electrons bound to atoms on a surface, provided that the energy of the photons is greater than the 

binding energy of electrons. The electron’s kinetic energy kE emitted from the sample surface is given 

then by the following energy conservation equation: 

0 bk EhvE ,     (2.17) 

where hv  is the energy of the incident photon, bE the binding energy of the electron relative to the 

Fermi level and 0  the work function of the sample.
56,59

 

In XPS, spectra are gathered inside a UHV chamber by irradiating a sample with 

monochromatic X-rays of 1000 to 1500 eV emitted from Al K or Mg K radiation. At the same time, 

the amount of core-level electrons being emitted from the sample is measured, as well as their 

respective kinetic energy. When a substrate with adsorbed molecules is analyzed, each element, except 

H and He, emits a high intensity spectrum at a specific kinetic energy. The amount of detected 

electrons at the corresponding energy can be related to the amount of that element present in the 

sample. The electronic structure of the elements present on the surface is also obtained in the process. 

This structure gives information about the electronic states of those elements and the type of bonds 

formed between them. Hence, it can be deduced whether the adsorbates have formed new bonds 

between themselves, or between adsorbates and substrate. In the case of an organic sample, the 

amount of H may be estimated by the electronic state of the other elements.
60

 In this work, XPS served 

as an independent method for confirmation of covalent bond formation between adsorbates. This was 

achieved by comparatively analyzing adsorbed 1,4-benzenediboronic acid on graphite, before and after 

a thermal treatment.  
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2.1.2.3 Raman Spectroscopy 

 

Raman Spectroscopy studies the vibrational and rotational modes in molecules.
61

 It is based on 

Raman scattering, which is the inelastic scattering of monochromatic radiation. Approximately 1 in 

10
7
 scattered photons has a different energy than the incoming photons, meaning that the photons lose 

or gain energy during the scattering process. Scattering of radiation occurs because the oscillating 

electric field of a radiation source interacts with the electrons of the sample, thereby inducing 

oscillations in the molecules. This causes a change in the polarisability of the molecule. These 

oscillations are then re-emitted as radiation that can be read in a detector.  

Elastic collisions with photons of incident energy ihv , where h  is Planck’s constant and iv  

the frequency of the incident radiation, result in scattering of photons of the same energy. This is the 

most likely scattering process and is termed Rayleigh scattering. However, if incident photons gain or 

lose energy by the interaction with electrons of the sample, the scattered photons will have energies 

given by: 

0hvhvhv if  ,     (2.18) 

where 0hv  is the energy gained or lost by the incident photon. Assuming the energies of molecule and 

photon do not change during the scattering process, then: 

10 EhvhvE fi  ,     (2.19) 

where 0E  represents the total vibrational energy of the molecule before the collision, and 1E  after the 

collision. The Raman shift is then expressed as: 

h

EE
vv fi

01  .     (2.20) 

When the collision is elastic ( 01 EE  ) Rayleigh scattering occurs. If fi vv   Stokes scattering takes 

place, if fi vv  , anti-Stokes scattering will occur (figure 2.6). In principle, the frequency of the 

incident radiation is not critical, since only shifts in frequency are measured.
62

  

For anti-Stokes scattering to occur, the molecule needs to be in a vibrationally excited state, 

whereas for Stokes scattering, the molecule can be at the ground state. Therefore Stokes lines are 

much more intense than anti-Stokes lines, as governed by the Boltzmann distribution of the vibrational 

state population.
62
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Figure 2.6: Energy transitions taking place in Raman spectroscopy. In anti-Stokes scattering the 

photon has gained energy from the molecule, leaving the molecule in a different vibrational state. In 

Rayleigh scattering the molecules is in the same state when the photon leaves. In Stokes scattering, the 

photon loses energy to the molecule, again changing the vibrational state of the molecule. 

 

 

 In practice, Raman spectroscopy uses a collimated laser beam as radiation source, because 

laser light is monochromatic. Lasers also permit measurements of relatively small Raman shifts, with 

high signal-to-noise ratios. Selection of the radiation source wavelength depends on several factors: 

The Raman differential scattering cross-section, the magnitude of the Raman shift in wavelength, and 

the potential for fluorescence.
63

 

 The Raman differential scattering cross-section  , which is the probability of an absorption 

process to occur, or in other words the probability of a particle-particle interaction, is given by: 

 4

0 vib  ,     (2.21) 

where 0  is the wavenumber of the incident radiation, and vib  is the wavenumber of a vibrational 

mode of the molecule of interest. The consequence of equation 2.21 is that for a given vibrational 

mode with a specific wavenumber, a radiation source with shorter wavelength increases the Raman 

scattering cross-section with respect to a source of longer wavelength.  

The Raman shift is constant with respect to vibrational energy, thus it is constant in 

wavenumber, but not in wavelength. A large Raman shift greatly facilitates the separation of Rayleigh 

and Raman scattered light, possibly yielding better signal-to-noise ratios with the ability to measure 

smaller Raman shifts. 

Fluorescence can arise when the selected radiation source approaches shorter wavelengths. 

Fluorescence is a different inelastic scattering process which can become so pronounced that it can 

interfere with weak Raman signals. This problem was encountered in this work: The analysis of 

dehydrated samples of 1,4-benzenediboronic acid was greatly impaired by fluorescence when a Nd
3+

 

green (532 nm) laser was used as radiation source. To circumvent this obstacle, a near-infrared 
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Nd
3+

:YAG (1064 nm) laser was used instead, which effectively doubles the radiation wavelength of 

the first laser source. Similar problems have also been reported in the analysis of wood constituents.
64

 

Raman spectroscopy is usually considered a complementary analytical method to Infrared (IR) 

spectroscopy, because of the existence of complementary selection rules. For a vibrational mode to be 

active in Raman, the polarisability of the molecule has to change during the vibration, as explained 

before, whereas to be IR active, the dipole moment has to change during the vibration. One example is 

the totally symmetric vibrations found in homonuclear diatomic molecules, which are Raman active, 

but IR inactive. The Raman spectral energy range spans from 200 cm
-1

 to 4000 cm
-1

, allowing its use 

for organic as well as inorganic species. Because minimal or no sample preparation is required, this 

analytical technique efficiently produces reliable results. Also, since the vibrational information is 

specific to the chemical bonds, Raman spectroscopy is often used as fingerprint technique for chemical 

identification of molecules. 

 

2.1.3 Powder X-Ray Diffraction (PXRD) 

 

Powder X-ray Diffraction is based on the interaction of X-rays with the atom’s inner electron 

cloud. Incident X-rays interact with these electrons, re-radiating secondary, or diffracted X-rays, due 

to Rayleigh scattering (see figure 2.6, Rayleigh). Coherent diffraction of X-rays is related to the 

interplanar spacing of lattice planes in the crystalline structure, according to the following equation: 

 sin2  dn ,     (2.22) 

where n  is an integer,  is the wavelength of the incident X-rays, d  is the interplanar spacing in the 

atomic lattice, and   is the diffraction angle between the incident beam and the scattering planes. This 

equation is called “Bragg’s Law”, and was derived in the year 1912 by W. L. Bragg and H. Bragg. 

PXRD is widely applied for the characterization of crystalline materials. It provides less 

information than single-crystal X-ray diffraction; however, it is much simpler and faster. PXRD does 

not require single crystal samples; also, these crystals do not need to be large. PXRD is useful for 

identifying a solid material, as well as determining crystallinity and phase purity. 

 Ideally, the sample should be a statistically infinite amount of randomly oriented powder 

crystallites of less than 10 µm in size. In this way, all possible crystalline orientations are exposed to 

the X-ray beam. In practical terms, most instruments use a limited analytical volume to preserve good 

resolution, so a relatively small sample is enough to yield very good results when analyzed.
65

 

 For PXRD, the better the monochromaticity of the X-ray radiation, the better the experimental 

results. The radiation emitted from an X-ray tube consists mainly of Kα1, Kα2 and Kβ. For this work, 

Mo-Kα1 was the only radiation used. Kβ radiation is normally removed by a filter or a 

monochromator. Kα2 can also be removed by a filter, although not easily; therefore it is usually 

removed electronically during data processing.
65
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2.1.4 Thermogravimetric Analysis (TGA) 

 

Thermogravimetric Analysis (TGA) is a technique in which the mass (weight) of the sample is 

monitored as it is subjected to a controlled temperature program. This is usually performed under a 

controlled inert-gas atmosphere. The variations in mass are plotted as a function of temperature or 

time.
66

 With TGA, the temperature at which reactions occur can be determined. Typical examples are 

dehydration reactions, polymerization, desorption, and decomposition. With the recorded variations in 

weight, and with some prior knowledge about the sample’s chemical nature, the reactions that take 

place in sample can be interpreted. In this work, TGA was used to determine the onset temperature of 

the dehydration reaction of 1,4-benzenediboronic acid. 
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2.2 Materials 

 

Both readily commercially available and specifically prepared or synthesized materials were 

used in the course of this work. Highly Oriented Pyrolitic Graphite (HOPG), some molecular building 

blocks, and all solvents used fit in the first classification; while mica-supported gold(111) and most of 

the molecules studied belong to the second classification. Due to the small scale at which experiments 

were performed, only small amounts of material were necessary, almost resembling microscale 

chemistry. 

 

2.2.1 Choice of Substrate 

 

Suitable supporting substrates for STM analysis of deposited molecules should be ultra flat, 

i.e. they should possess large, very flat regions spanning an area of many thousands of square 

nanometers, preferably at least 50  50 nm
2
. Some natural minerals meet this requirement when 

cleaved, for example, naturally occurring graphite, molybdenite (MoS2) and mica. However, these 

materials must also be electrically conductive, which expels mica out of this group. Usually, substrates 

used for STM analyses are prepared by other methods, like finely polishing a single crystal, as in the 

case of metals, by synthetic production, as with HOPG, or by Physical Vapor Deposition (PVD) on a 

very flat surface. This last approach is usually the preferred method to prepare Au(111) surfaces for 

STM analyses due to the small amount of expensive materials necessary. These surfaces are usually 

supported by a clean glass substrate or by natural mica mineral. More information about this procedure 

can be found in appendix 1. 

In this work, the most used supporting substrate for studying molecules was graphite. It was 

freshly prepared by cleaving a HOPG crystal with adhesive tape. In the early days of  STM, graphite 

was regarded an inappropriate substrate for molecular deposition due to multiple observed artifacts 

mimicking adsorbed organic molecules.
67,68

 However, after substantial experimentation, most of these 

artifacts have been hitherto recognized as inherent features of graphite and successfully explained.
69-72

 

Consequently, graphite has become very popular as a supporting substrate for liquid-solid STM 

experiments. 

 

2.2.2 Solvents 

 

In order to image molecules on substrates under the STM, it is first needed to deposit these 

molecules. Langmuir-Blodgett film deposition was among the first techniques used.
68

 However, this 

method has come into disuse, being superseded by molecular vapor deposition in UHV or by 

dissolving the molecule of interest in a solvent and then applying the solution onto a substrate. In this 
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last case, the solute molecules eventually adsorb on the substrate, rendering them observable with the 

ambient STM at the liquid-solid interface. 

The solvents used in this work are almost non-volatile and have virtually zero electric 

conductivity. The first characteristic assures, in practical terms, a stable concentration during the time 

laps of the STM analysis. The second characteristic produces an insulating environment for the 

scanning tip, avoiding problems with leakage currents. Hence, the tunneling electrons flow only 

between tip and sample, exclusively imaging the surface or the molecules adsorbed on it. It also 

renders any insulation of the scanning tip unnecessary,
73

 further simplifying the experimental 

procedure. 

The old rule in chemistry, “like dissolves like”,
74

 aids in selecting the solvents that dissolve the 

molecules used in this work. The organic molecules used (see section 2.5.3) dissolve best in organic 

solvents that possess similar functional groups. Therefore for tricarboxylic and diboronic acids solutes, 

fatty acids or alkanoic alcohols solvents readily dissolved these molecules. As a counterexample, 

dodecane, an alkane, did not dissolve TCBPB, a large tricarboxylic acid. 

 

2.2.3 Molecular Building Blocks 

 

 In this work, the molecules studied were all organic. They are composed mainly by one or 

several phenyl rings, σ-bonded or fused. The molecules are functionalized by carboxylic acids, 

boronic acids or alcohols. Carboxylic acids were used to study supramolecular self-assembly, while 

boronic acids were mainly required to react and form new, larger compounds and networks 

interconnected by covalent bonds. Alcohols were used either for self-assembly or for bond formation 

with boronic acids. Relevant details of each molecule used, and the reactions and processes they 

undergo, are presented in the following chapters. 

 Molecular precursors were obtained from several sources. Some are commercially available, 

like 1,4-benzenediboronic acid; others were synthesized by collaborating research groups. One of 

these groups is headed by Prof. Michael Schmittel, located at the University of Siegen. This group 

synthesized the large tricarboxylic acids. The other group is headed by Prof. Thomas Bein, in 

collaboration with Prof. Paul Knochel, at the Chemistry Department of the LMU in Großhadern. This 

last group supplied the para-diboronic acids, except for 1,4-benzenediboronic acid. 
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3 

 

Supramolecular Self-Assembly on Surfaces 

 

In self-assembly, disorganized objects autonomously and spontaneously form specific 

organized structures. These objects can mostly interact only with their closest neighbors. The process 

may use an extremely large number of individual components, building networks that can span lengths 

that are thousand times the size of any individual component. The structures are in dynamic 

equilibrium with additional building blocks in the surroundings. This implies that self-assembly is a 

completely reversible process. It allows the individual constituents to move and reach the energetically 

most stable configuration, and has the potential for self-repair or self-heal. Self-assembly has been 

widely studied in non-living systems and was proposed to play an important role even in living 

organisms.
75

 Self-assembly has been observed in 3-dimensional systems, for instance, in 

crystallization or in atmospheric weather systems;
75

 in 2-dimensional ones, like the formation of 

surface-supported self-assembled monolayers; down to 1-dimension, for example, building 

nanowires.
76

 Lessons learnt from natural self-assembled systems have been applied to artificial 

systems. For instance, mathematical algorithms were used to control the physical interactions between 

modules in robots.
77,78

  

The field of surface-supported self-assembly begun in 1946 when Zisman et al. demonstrated 

the adsorption of a monolayer of surfactant molecules onto a metal surface.
79

 It received greater 

attention when Nuzzo and Allara showed in 1983 the solution-based self-assembly of thiols on a gold 

surface, via disulfide adsorption of di-n-alkyl.
80

 Since then, further research has yielded self-

assemblies that consist of a variety of organic
12,81,82

 and inorganic building blocks,
83

 on many different 

substrates from metallic,
84-87

 to chalcogenides,
81

 to graphite
88-92

 (non-metallic). For the direct in-situ 

observation of these assemblies down to the molecular level, the Scanning Tunneling Microscope 

(STM) has proved to be an utmost important tool. 

Potential applications of molecular self-assembly have already been identified and some 

practical uses are emerging. A promising example is the removal of oil droplets on water by coating a 

cylindrical gold rod with a hydrophobic self-assembled monolayer that consists of long alkanethiol 

chains.
93

 

In the following, the molecules directly involved in the self-assembly process, i.e. the 

molecular building blocks, are denoted “adsorbates” or “solutes”. Both terms refer to the same 

building blocks, but distinguish whether they are still dissolved in solution or bound to a surface. 
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3.1 Thermodynamics 

 

Like any other spontaneous process in nature, the formation of a self-assembled monolayer 

can only occur if the associated change in the Gibbs free energy G  is negative at constant 

temperature and pressure. G  is expressed by equation 3.1 as follows: 

STHG  .      (3.1) 

Here, H  is the change in enthalpy, S  the change in entropy, and T  the temperature of the system.  

 Self-assemblies usually emerge from an initially disorganized state and converge towards a 

more ordered state, yielding a negative net change in the entropy of the system. Although this may 

seem counterintuitive for a spontaneous process, it is explained by the overall change in entropy of the 

universe univS , given by: 

TGSuniv / .     (3.2) 

ΔSuniv is positive for all spontaneous processes and ultimately drives all reactions. Hence, self-

assembly can only take place if the associated negative value of the change in enthalpy ( H ) in 

equation 3.1 is smaller than the positive term ST . 

Nucleation, diffusion, adsorption, desorption, and ripening processes control the growth of 

surface-supported self-assemblies. As the assemblies increase in size, the Gibbs free energy of the 

system progressively decreases. This continues until a dynamic equilibrium is reached, reflected in a 

minimum of the Gibbs free energy. Thus, the assemblies become thermodynamically stable. 

Under ideal circumstances, self-assemblies achieve their final configuration by arranging and 

rearranging the building blocks relative to each other, in order to find patterns with the lowest possible 

Gibbs free energy under the given conditions. These conditions are imposed by external and internal 

factors, like temperature, choice of solvent, solute concentration, and choice of substrate.
94

 If the 

system is at room temperature, the participating forces should be in the range of kBT, where kB is the 

Boltzmann constant. Weak intermolecular interactions fulfill this energy requirement. Those include, 

for example, hydrogen bonds, van der Waals, π-π interactions, weak polar forces, etc.
94,95

 The 

interactions most relevant for this thesis will be discussed in section 3.2.2. Because these interactions 

are reversible in nature, and the equilibrium achieved is dynamic, the system has the ability to correct 

structural errors; that is, to self-heal. Thus, regular and extended, almost error-free, supramolecular 

networks, can be realized. 

If perturbations to the ideal conditions occur during self-assembly, the resulting final state can 

be different to those attained under ideal conditions. Upon removal of these perturbations, the system 

may be in a meta-stable state of equilibrium. Transformations to the most stable states can take place 

slow enough to allow for their experimental observation. Factors altering ideal conditions need only be 

mild, for example, small local changes in temperature, presence of step edges on the substrate, solvent 

evaporation in the time lapse of the experiment, and hence increase in the concentration (in liquid-
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solid self-assembly). Observation of the existence of different assemblies and structures under similar 

experimental conditions is a proof of the co-existence of structures with very similar G . 

To assess the thermodynamic contributions that play a role in self-assembly as given in 

equation 3.1, namely the change in enthalpy ( H ) and the change in entropy ( S ), a separate 

analysis of both contributing factors is presented in the following. 

The enthalpy change due to self-assembly, H , comprises mainly the adsorbate-substrate and 

adsorbate-adsorbate interaction energies. These are the most important interactions when the process 

takes place in vacuum. This picture becomes more complicated when self-assembly takes place at the 

solid-liquid interface. Here, other contributions to H  have to be taken into account, like solvation 

enthalpy and co-adsorption of solvent molecules on the substrate. The first two interactions, adsorbate-

adsorbate and adsorbate-substrate, can be estimated via quantum chemical calculations or Molecular 

Mechanics (MM). Solvation enthalpies can be experimentally measured in a calorimeter. However, 

due to the sparing solubilities of the solutes in the organic solvents used,
12,96,97

 the very small enthalpy 

changes (in the order of ~3 kJ/mol)
98-100

 are of minor importance when compared to adsorbate-

substrate and adsorbate-adsorbate interactions (see table 3.1). Hence, this issue will not be addressed 

further. Co-adsorption of solvent molecules is difficult to quantify, and therefore its total influence is 

complicated to calculate. However, its estimated contribution has to be included in the entropy and 

enthalpy evaluations. 

In order to estimate the total entropy change, totalS , a model proposed by Whitesides
101

 and 

co-workers is applied. This model was developed to explain entropic changes occurring in the self-

assembly of particles in solution. Here, the model is applied to 2-dimensional substrate-based solution 

self-assembly, on the basis that the proposed relations are applicable for both cases. The total entropy 

change can be partitioned as follows: 

vibrottransconftotal SSSSS  ,   (3.3) 

where the terms on the right hand side of equation 3.3 are: conformational, translational, rotational, 

and vibrational entropy, respectively. 

 Conformational entropy, confS , is of great importance in systems where their individual 

components can experience large changes in their conformation, as is the case when polymers and 

proteins fold. When small and relatively rigid molecules self-assemble, as those used here, 

conformational changes upon assembling are minimal. Thus, confS  is considered to be almost zero 

for all practical purposes, and can therefore be safely neglected. 

Translational entropy, transS , can be calculated by the following equation: 
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where R is the gas constant, m the mass of the solute, kB Boltzmann’s constant, T the absolute 

temperature, e Euler’s number, h Plank’s constant, and c the solute concentration. Equation 3.4 is a 

form of the Sackur-Tetrode equation. It was first deduced by means of statistical mechanics to 

estimate the absolute entropy of an ideal single-atomic gas, which only consists of translational 

entropy. However, when applied to molecules in solution, equation 3.4 significantly overestimates the 

translational entropy. In order to avoid this overestimation, the concentration c can be referred to the 

free volume of the solvent as obtained by the hard cube approximation.
101

 

The rigid body rotational entropy, rotS , can also be estimated from statistical mechanics by 

the equation: 

 























 
 3212

2 2

3

8
ln III

h

eTk
RS B

rot






 ,                (3.5) 

where γ is related to the symmetry of the solute molecule, and I1, I2, and I3 are its principal moments of 

inertia. Equation 3.5 gives the rotational entropy of a molecule in the gas phase,
101,102 and can be 

directly used to calculate the rotational entropy of molecules in solution with ~2% uncertainty.
101

 

Vibrational entropy can be estimated using the following equations that are also derived from 

statistical mechanics:
103,104
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,   (3.6) 

and 

Bii kvh / .     (3.7) 

Here εi is the vibrational temperature, n is the index of all normal modes, and vi is the vibrational 

frequency of the i
th
 normal mode. The total vibrational entropy is the sum over all vibrational modes. 

For almost all vibrational modes at 25°C, vibST  values are very small, especially in relation to 

typical values of trasS  and rotS . Hence it is assumed that vibS  is negligible and can be discarded 

in the calculation of the total entropy change.  

 Taking all of the considerations above into account, the total entropy change can be greatly 

simplified when the two main contributors are the only ones considered, as expressed in equation 3.8: 

rottranstotal SSS  .     (3.8) 



Molecular Self-Assembly on Surfaces 
—————————————————————————————————————————————————————————————— 

  
33 

Using equation 3.8, the total entropy loss when molecules form surface-supported self-

assembled monolayers from solution can be calculated easily. 

 

3.2 Parameters Affecting Supramolecular Self-Assembly on Surfaces 

 

The final self-assembled structures obtained with the molecular building blocks are directed 

by many factors. The most important ones will be analyzed and discussed here. 

 

3.2.1 Molecular Structure 

 

Normally, the molecules (adsorbates) that build the self-assemblies possess purposely 

designed geometries, functional groups, and positioning of these groups relative to one another. Thus, 

the building blocks encipher basic information about the final self-assembly structure. In this thesis, 

the aim is to synthesize regular and extended open-pore networks. To this end, three-fold symmetric 

molecules, possessing a carboxylic acid functional group at each lobe, were used.
12-14,97,105

 Figure 3.1 

shows some of these molecules, along with their isotopological smaller variant, trimesic acid (TMA). 

All these molecules are equipped with a rigid backbone comprised of one or several phenyl rings. 

These rings promote the planar adsorbtion of the molecules on graphite, allowing the formation of 

hydrogen bonds between them via their carboxylic acid groups. 

 

 

Figure 3.1: Isotopological tricarboxylic molecules that possess three carboxylic acid groups oriented 

at 120° with respect to each other. a) Trimesic acid, TMA (benzene-1,3,5-tricarboxylic acid); b)  BTB 

(1,3,5-benzenetribenzoic acid); c)  MeCEPBA (4-{2-{3,5-bis[2-(4-carboxyphenyl)-1-ethynyl]-2,4,6-

trimethyl-phenyl}-1-ethynyl); d) TCBPB (1,3,5-tris[4’-carboxy(1,1’-biphenyl-4-yl)]benzene). Image 

adapted from reference 96. 

 

Although the desired self-assembly structure, a regular open-pore network of hexagonal 

cavities is encoded in each molecule’s design, self-assembly of other polymorphs cannot be excluded. 

This is because other competing interactions can dominate the self-assembly process. These can arise 

between adsorbates or between adsorbate and solvent molecules. This issue will be addressed in more 

detail in the next sections. 
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3.2.2 Intermolecular Forces 

 

Because self-assembly is a process where additional building blocks are in dynamic 

equilibrium with the final structures, the interactions holding them together need to be reversible. This 

discards the formation of irreversible bonds, like covalent or ionic, and favors utilization of 

comparatively weak bonds, as explained in the following. 

Adsorbates arriving at a surface interact with it via chemisorption or physisorption, thereby 

lowering the free energy of the system. For chemisorption, strong interactions between adsorbate and 

substrate are mediated through charge transfer or charge sharing. Typical examples thereof are thiols 

on gold substrates. For physisorption, interaction energies are smaller than for chemisorption, leaving 

the electronic structure of the molecules and substrate involved unperturbed. Weak van der Waals 

forces are typical interactions that mediate physisorption and are always present between interacting 

molecules.
97,106 The lack of possible stronger interactions between the adsorbates used here and 

graphite substrate, i.e. covalent or electrostatic bonds, leave van der Waals forces as the dominating 

adsorbate-substrate interactions. Although these interactions amount to less than 5 kJ/mol,
106

 taken 

collectively they become a very strong force for the stabilization of physisorbed assemblies.  

π-π interactions can arise among aromatic molecules
14

 or between adsorbates and a substrate. 

Although this type of interaction may be neglected in molecules of less than 10 carbon atoms, it 

becomes important as the adsorbates increase in size.
107

 Overall, π-π interactions can be regarded as a 

weak force and are already taken into account within the aforementioned van der Waals interactions. 

However, in particular cases, this specific type of interaction has been suggested to favor the formation 

of self-assemblies where π-π stacked molecules adsorb upright on graphite, instead of yielding the 

expected network of flat-laying adsorbates.
14

 

The adsorbates presented in figure 3.1 are built from phenyl rings and therefore intended to 

self-assemble flat on a substrate. When the substrate is graphite, the interaction of flat-laying benzene 

with this substrate becomes additionally promoted when benzene is substituted with carboxylic acid 

(COOH) groups. This is explained by the presence of the carbonyl group (C=O), which possess 

electron-withdrawing properties, and hence decreases the π-electron density of benzene. Thus 

diminishing the π-π repulsion that arises between the delocalized π-electrons of benzene and 

graphite.
108

 This fact may also be applied to molecules composed of several σ-bonded benzene rings, 

as are the adsorbates used here. 

The larger the molecular surface exposed towards an adsorbing substrate, the greater the 

magnitude of the adsorbate-substrate interaction. Hence, the more restricted the lateral mobility of 

individual adsorbates along the surface (2D diffusion) upon adsorption. To quantify these interactions 

on a graphite substrate, Molecular Mechanics (MM) simulations, based on the Dreiding force field, 

were used. The results for the tricarboxylic acids shown in figure 3.1 are presented in the following 

table. 
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Table 3.1: Adsorbate-graphite interaction energies for flat-laying molecules calculated using 

MM, based on the Dreiding force field. The larger the molecular surface towards the substrate, 

the greater the interaction energy.  

 

 

While the interactions presented above mainly mediate the adsorption of molecules on a 

substrate, hydrogen bonds (H-bonds), on the other hand, account mainly for intermolecular 

interactions among accordingly functionalized adsorbates. H-bonds are considered strong 

intermolecular interactions that play a very important role in designing and directing the assembly’s 

final structure. A main reason for this can be found in the  inherent directionality of hydrogen bonds, 

where linear geometries that follow the free electron lone pair direction are favored over bent 

geometries.
109

 However, this directionality is considered soft, and significant deviations from linearity 

are tolerated.
109,110

 

Hydrogen bonds can be classified, in decreasing energetic order, as strong (F−H∙∙∙F < O−H∙∙∙O 

< N−H∙∙∙O < N−H∙∙∙N) and weak (C−H∙∙∙O < C−H∙∙∙N < O−H∙∙∙π < N−H∙∙∙π < C−H∙∙∙π).
110

 Although 

the strong H-bonds are expected to direct crystallizations patterns in bulk structures, weak C−H∙∙∙O 

bonds are also known to play an important role, mainly when carbonyl groups are present as hydrogen 

bond acceptors.
110

 In 2D self-assemblies, one of the preferred functional groups used is the carboxylic 

acid group, which is expected to yield a strong (60 kJ/mol),
111-113

 cyclic two-fold H-bond as detailed in 

figure 3.2. In this arrangement, two carboxylic groups interact “head-to-head” forming a stable dimer. 

The motif depicted in figure 3.2 was observed in the self assembly of small molecules as 

TMA
12,82

 and medium-sized BTB
13

, and others carboxylic acids.
106,114

 Deviations from the cyclic 

dimer were observed in the TMA flower
12,82

 and super flower structure
115

, however interestingly, 

strong O−H∙∙∙O hydrogen bonds were still formed. The geometrical design of large molecules as 

MeCPEBA and TCBPB, retaining the same three-fold symmetry and positioning of the carboxylic 

acid functional groups at 120° relative to each other as TMA and BTB, was expected to likewise lead 

to self-assemblies via the exclusive formation of strong O−H∙∙∙O H-bonds. Although O−H∙∙∙O H-

bonds were indeed observed, the single (4–8 kJ/mol)
116,117

 and two-fold weak C−H∙∙∙O H-bonds were 

quite commonly encountered in the self-assemblies of these large adsorbates.
96,118

 The two-fold 

“displaced” C−H∙∙∙O H-bond motif is depicted in figure 3.3. 

 

Adsorbant 

Projected van der Waals surface area 

(planar to the substrate) 

[nm
2
] 

Adsorbate-substrate 

(graphite) interaction energy 

[kJ/mol] 

TMA 0.65 115.6 

BTB 1.22 256.6 

MeCPEBA 1.86 354.1 

TCBPB 2.09 392.3 
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Figure 3.2: The red circle highlights the “head-to-head” cyclic interaction motif of a 

strong two-fold O−H∙∙∙O H-bond between two carboxylic acid groups of TCBPB. 

 

 

 

 

 

 

Figure 3.3: “Displaced” H-bond motif of a weak two-fold C−H∙∙∙O H-bond observed 

in the self-assembly of large tricarboxylic acid molecules of MeCPEBA and TCBPB. 

 

 

Cyclic H-bonds, as those depicted in figures 3.2 and 3.3, increase their bonding strength by the 

so-called Resonance Assisted Hydrogen Bond (RAHB).
110

 Here, the hydrogen bond donor and 

acceptor atoms are connected via π-conjugated double bonds. This implies the presence of a covalent 

character in the hydrogen bond, which is consistent with its known bond directionality.
119

 This 

principle can be applied to intra- and intermolecular hydrogen bonds, and is also conceivable for a 

cyclic two-fold C−H∙∙∙O H-bond,
120,121

 hinting towards a cooperative enhancement also for this type of 

H-bonds. 

The formation of the “displaced” dimer motif shown in figure 3.3 has three direct 

consequences:  
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 Functionalization of the cavities formed in an open-pore self-assembly,  

 formation of chiral assemblies, and 

 formation of self-assemblies with higher packing densities 

 

In the first case, the functionalization arises via the possible formation of strong O−H∙∙∙O 

hydrogen bonds with the adsorbate’s carboxylic acid groups that point into the pores. In the second 

case, the displaced motif possess an inherent chiral structure that will form organizational chiral 

assemblies.
122

  Steric constraints or intermolecular directional forces are responsible for the formation 

of displaced dimers.
122

 However, it must not be overseen that the adsorbates giving rise to these chiral 

dimers are intrinsically achiral. Since energetically equivalent enantiomers are always formed in equal 

proportions, the global chiral symmetry of the self-assembly is maintained.
122

 The third case is 

explained by the closer proximity of the building blocks, as compared to polymorphs composed by the 

head-to-head dimer motif. 

 The synthesis of self-assemblies may be complemented with other reversible, weak bonds 

known from other systems: Among these are the halogen-halogen interactions,
123,124

 and directional 

interactions formed by halogens and O or N atoms induced by polarization. An example of the latter 

case is the iodo∙∙∙nitro synthon (-I + -NO2).
125

  

 

 3.2.3 Influence of the Solvent  

 

In liquid-solid self-assembly, the solvent plays an important role as the adsorbate’s transport 

medium to the substrate via diffusion.
126

 Another, hitherto not fully understood factor, is its role in 

determining the final self-assembly structure.
127

 Some explanations for the solvent influence have been 

proposed: The dielectric constant of the solvents can affect the stability of H-bond motifs,
13,128

 or if co-

adsorpion of fatty acid solvent molecules occurs, depends on the relative H-bond densities of the self-

assemblies.
129

  

As mentioned in section 3.2.1, in liquid-solid self-assembly, TMA
12

 and BTB
13

 almost always 

formed structures by means of a cyclic two-fold O−H∙∙∙O hydrogen bonded dimer motif as their basic 

H-bond moiety (figure 3.2). Exceptions are the flower, superflower and other minor structures found 

for TMA.
12,115

 However, these structure were still held together by strong O−H∙∙∙O H-bonds, although 

some of them totally or partially in different hydrogen bonding schemes as that shown in figure 3.2.
12

 

Larger molecules, like MeCPEBA
14,118

 and TCBPB,
96

 showed both the possibility to assemble via the 

two-fold O−H∙∙∙O hydrogen bonded dimer motif or via the displaced two-fold C−H∙∙∙O H-bonded 

dimer motif (figure 3.3). For these two large molecules, the final structure was experimentally found 

to depend on the solvent. A possible explanation will be proposed in the following. 

Carboxylic acids have the capability to form strong two-folded intermolecular H-bonds, as 

explained before. TCBPB and the other solutes mentioned possess three carboxylic acid groups each. 
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When dissolved in fatty acids, each one of these carboxylic acid groups of TCBPB can form a two-

fold O−H∙∙∙O H-bond with one solvent molecule. This bond is reinforced by RAHB. In principle, it is 

also possible to have solute-solute O−H∙∙∙O hydrogen bonds, but given their sparing solubilities in the 

fatty acids (49.3 µM of TCBPB in heptanoic acid), the ratio of solvent to solute molecules is very high 

(saturated TCBPB in heptanoic acid: ~143000:1) rendering solute-solute interaction very improbable.  

When a drop of this solution is applied onto a graphite substrate, TCBPB molecules reach the 

substrate still solvated, i.e. H-bonded to three solvent (fatty acid) molecules. Due to the large 

adsorbate-substrate interaction (see table 3.1), TCBPB molecules have a long enough interaction time 

on the surface that allows them to eventually diffuse laterally and approach each other. When the 

TCBPB adsorbates approach each other, the fatty acid molecules that are still attached to the 

carboxylic acid groups of TCBPB can hamper the formation of cyclic and strong two-fold O−H∙∙∙O 

hydrogen bonds between adsorbates. Instead, C−H∙∙∙O H-bonds form between adsorbates, because the 

sites available to form them are not obstructed. If in this situation more TCBPB molecules assemble to 

this first two molecules in the same way, a nucleus is created, and the characteristics of a displaced 

motif is replicated as the self-assembly grows larger.  

It was observed experimentally that TCBPB dissolved in heptanoic acid forms self-assemblies 

built almost exclusively from displaced dimers, whereas if dissolved in octanoic or nonanoic acid, the 

proportion of O−H∙∙∙O H-bonds between TCBPB increases, accompanied by a decrease in displaced 

dimer formation. Figure 3.4 illustrates this behavior, which appears to be independent of 

concentration. 

 

 

Figure 3.4: STM images at the solid-liquid interface of TCBPB dissolved in different fatty acids at 

ambient conditions. a) Solvent: heptanoic acid. The displaced dimer motif is almost always present in 

detriment of the head-to-head one. An exception is marked by the arrow. The inset highlights the two 

different dimer motifs (not to the same scale as the image). b) Solvent: octanoic acid. The presence of 

the head-to-head dimer becomes more prominent. c), Solvent: nonanoic acid. The head-to-head dimer 

motif is more or less represented in equal amounts as the displaced one. 

 

The solvent dependency that yields “displaced” or “head-to-head” cyclic H-bond motifs with 

TCBPB has similarly been observed with MeCPEBA dissolved in fatty acids: In octanoic acid, only 

the displaced motif was found, whereas in nonanoic acid, both motifs were observed.
118
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On the other hand, BTB, a smaller tricarboxylic acid with the same three-fold geometry, 

yielded only the “head-to-head” O−H∙∙∙O motif in comparable self-assembly studies.
13,97

 This can be 

rationalized by its higher solubilities than TCBPB in the same fatty acid solvents. In these solvents, the 

possibility BTB has to form O−H∙∙∙O H-bonded cyclic dimers made via its carboxylic acid groups with 

other BTB molecules while still in solution is higher due to these higher solubilities. For instance, 

BTB in heptanoic acid at saturation concentration is 770 µM,
97

 whereas TCBPB at saturation 

concentration in the same fatty acid, 49.3 µM:
96

 a ~15 factor difference. Hence, it could be possible 

that two-fold O−H∙∙∙O H-bonded cyclic BTB dimers adsorb directly from solution onto the substrate. 

If more BTB dimers assemble to this arrangement, a nucleus forms.
13

 

Coming back to the case of TCBPB, when an alcohol is used as solvent, the displaced dimer 

motif has never been observed, but only the head-to-head, as depicted in figure 3.5. Again, it can be 

rationalized by the ability of the solvent to form O−H∙∙∙O H-bonds with the adsorbate. Whereas it was 

explained that fatty acids can form strong two-fold O−H∙∙∙O H-bonds with the solute, alcohols, on the 

other hand, can only form one O−H∙∙∙O H-bond per molecule with the adsorbate. They are less strong 

than those formed between fatty acids and TCBPB, and are also not reinforced by RAHB. So when 

adsorbates reach the substrate, they are much less restricted to form two-fold O−H∙∙∙O H-bonds 

between them. STM images of the corresponding structures are shown in figure 3.5 for 1-nonanol and 

1-undecanol. This behavior was found to be independent of concentration.  

Overall, this attempt to explain the formation of either displaced or head-to-head dimers does 

not clarify completely the emergence of different polymorphs encountered here. The concentration is 

also an important factor that can also define the most stable assembly. The next section deals with this 

issue. 

 

 

 

 

Figure 3.5. STM images of self-assembled TCBPB monolayers obtained at the solid-liquid interface 

with different alcohols as solvents. a) In 1-nonanol at 50% saturation concentration and b) in 1-

undecanol at 100% saturation concentration. In both cases the head-to-head dimer motif is present, but 

not the displaced dimer. The top left part in b) shows a structure with higher packing density that does 

not possess any of the two H-bonded dimers described in figure 3.2 and 3.3.  
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3.2.4 Concentration Effects  

 

In the previous section it has been shown that the solvent has a direct influence on the self-

assembly. To complete the picture, the concentration of the solutes in solution has also been studied in 

detail. The concentration has a pronounced effect on the 2D self-assembly.
96,97,130  

In several different systems it has been observed that at the higher the concentration, the more 

densely packed the self-assembled monolayer.
130,131

 Self-assemblies of BTB
97

 and TCBPB
96

 in 

heptanoic acid are along the lines of these observations. BTB exclusively assembles in the densely 

packed row structure from a solution at 100% saturation concentration down to some point above 50% 

saturation concentration. At 50% saturation, domains of this structure co-exist with domains of the less 

dense chickenwire structure. The latter becomes the dominant structure when the solution becomes 

more diluted. A similar behavior is observed with TCBPB in heptanoic acid. The concentration 

dependence is summarized in figure 3.6 for the three polymorphs found. The corresponding STM 

images are shown in figure 3.7. Models for each structure are given in figure 3.8. 

Motivated by the two most common polymorphs found for the system TCBPB dissolved in 

heptanoic acid, namely oblique-I and displaced chickenwire, a step-by-step growth model of 

ensembles that lead to the formation of either of both self-assembled monolayers is presented in 

appendix 2. An ensemble is defined here as an aggregation of molecules with specific positioning 

relative to each other, stabilized via the displaced H-bond motif (figure 3.3). An ensemble may grow 

towards the formation of a stable nucleus. However, it is not yet defined as a stable nucleus. 

This growth model allows a probabilistic interpretation at any formation step, of the relative 

chances that any of the two polymorphs have to eventually yield a stable self-assembled monolayer. 

The probabilistic relationships for ensembles made up of two up to five molecules (self-assembly 

formation steps 1
st
 to 4

th
), are shown in table 3.2. In the first formation step (1 TCBPB + 1 TCBPB  

1 displaced dimer), the displaced dimer may be a starting point for any of the two polymorphs with a 

1:1 chance (that is, with the same probability). This is because the displaced dimer is a common motif 

of both polymorphs. The second formation step adds one TCBPB molecule to the dimer formed in the 

first step. Taking this second step as a new starting point, the formation probabilities of both 

polymorphs with respect to the previous step change. This idea can be extended by adding more 

TCBPB molecules to the previous step, and evaluating the respective new formation probabilities. It 

must be noted that this is a very simplistic interpretation of the events that lead to the formation of the 

self-assemblies; however, it allows to pinpoint that, as more molecules attach to an existing ensemble, 

oblique-I becomes the most probable polymorph to eventually self-assemble. 
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Figure 3.6: Occurance of the various self-assembled monolayer phases of TCBPB in heptanoic acid 

with respect to the saturation concentration. The darker the color, the larger the surface portion 

covered by the respective phase. Image adapted from reference 96. 

 

 
  

 

Figure 3.7: STM images at the solid-liquid interface of all three TCBPB monolayer polymorphs 

found in heptanoic acid: a) oblique-I, b) displaced chickenwire (drift corrected), and c) oblique-II 

intergrown with a single row of displaced chickenwire. Images taken from reference 96. 

 

 
 

 

 

 

 

 

 

 

 

Figure 3.8: Proposed models of the three polymorphs with unit cells indicated. The dotted rectangle 

highlights the displaced TCBPB dimer motif. Dashed purple lines with arrows indicate the row 

direction and the definition of the dimer axis, respectively. a) Top two rows: Oblique-I (α ≈ 90°); 

lower row: Oblique structure formed by two TCBPB molecules “head-to-head” O−H∙∙∙O H-bonded, as 

shown in figures 3.4 and 3.5. b) Oblique-II (left hand side, α ≈ 81°), and displaced chickenwire (right 

hand side). Figure adapted from reference 96. 
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Table 3.2: Relationships found among TCBPB ensembles at the 1
st
, 2

nd
, 3

rd
, and 4

th
 

step of their formation. Only ensembles leading to the formation of oblique-I, 

displaced chickenwire, or none of both were considered. See appendix 2. 

 

 

 

 

 

 

 

 

   

 

By inspecting the ratio  

echickenwir displaced  toleading ensembles

oblique  toleading ensembles
 

 

from table 3.2 at every formation step, it is observed that for n  molecules self-assembling in a 

stepwise fashion (i.e. one-by-one) this ratio can be expressed by the following rule: 

 

    1:11
echickenwirdisp.toleadingensemble

obliquetoleadingensembles
stepformationensemble  nn

th
.          (3.8) 

 

It is valid for 1n , and confirmed for integer values up to 5n  (4
th
 formation step). This 

confirmation does not imply that this rule ceases to successful predict the relationship at steps higher 

or lower than those shown. 

 The preeminence observed in the growth model for ensembles leading to oblique-I at every 

successive formation step can be interpreted at the molecular level. This dominance of oblique-I can 

be understood by the flexibility of the configurations of its ensembles. These configurations can be 

compressed, achieving more densely packed structures, as compared to displaced chickenwire. They 

will be eventually stabilized by a higher number of H-bonds with higher energy than those in 

displaced chickenwire. By the same thinking, if ensembles leading to oblique-I cannot be compressed 

and stabilized, only the remaining ensembles, those leading to the less dense displaced chickenwire, 

are able to eventually nucleate. 

The probabilistic interpretation above would indicate that oblique-I would be the overall 

dominant structure. In fact, it is the structure assembling in the widest concentration ranges in 

heptanoic acid, from 100% saturation concentration down to even 3% saturation (figure 3.6). 

However, when thermodynamics is taken into account, it is possible to explain why not only oblique-I, 

but other structures can emerge. 

 

Ensemble 

formation 

step 

Number 

of 

molecules 

involved 

Probabilistic relationships 

Ensembles 

leading to 

oblique-I 

Ensembles leading 

to displaced 

chickenwire 

Ensembles 

unable to lead to 

any of both 

1
st
 2 1 1 0 

2
nd

 3 2 1 0 

3
rd

 4 3 1 0.4 

4
th

 5 4 1 2.3 
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The experimental evidence shows the predominance of self-assembly phases with higher 

packing densities at higher solute concentrations. This can be explained by thermodynamics, which 

suggests that the free energy difference between self-assembled structures determines the prevalence 

of any one polymorph at a given concentration.
118,130

 However, a kinetic process may be in control of 

the self-assembly. A model for a possible kinetic influence on structure selection will be explained in 

the following. 

When a solution is applied on a substrate, a flux F of adsorbates impinges on the surface. This 

flux is controlled by the gradient of the concentration perpendicular to the substrate. It is directly 

proportional to the concentration gradient zc   of the adsorbates in the solution,
97

 as shown in 

equation 3.8:  

z

c
dF



 ,      (3.9) 

where c  is the concentration of adsorbate molecules in solution, d  is the bulk diffusivity in solution 

and z  the spatial coordinate perpendicular to the substrate. zc   becomes zero when the 

thermodynamical equilibrium is reached, i.e. when the monolayer growth is completed. Not all 

molecules colliding with the substrate readily adsorb on it, and those who readily adsorb increase the 

concentration of adsorbates on the substrate. Hence, the flux F  must be proportionally scaled down 

by a numerical factor 1K  to obtain the actual adsorbtion rate. This rate, again, builds up the 

concentration   of adsorbates on the substrate.   can be calculated at any given moment by the 

following equation: 

z

c
dK




 .      (3.10) 

 The value of   increases over time as more molecules from solution adsorb on the substrate 

building the self-assembled monolayer. Thus   is a function dependent on time t . An average value 

of   can be calculated for the time interval of the self-assembly formation. The following equation 

gives this average value, )(t : 


















f

o

t

tof

dtt
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t )(
1

)( 
,    (3.11) 

where ot  
can be defined as the time when adsorbates start to impinge at the surface, ft

 
may be taken 

as the time when the self-assembly formation ends, i.e. when a stable monolayer has been formed 

)( of tt  . In this way, an average value of the concentration of the adsorbates on the substrate during 

the time span of monolayer self-assembly can be calculated. )(t can be evaluated for different values 
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of c ; however, for different systems, physical comparable results can be obtained provided the 

considered ot  and ft  are the same. 

)(t is a helpful value to calculate the mean distance that an adsorbate can travel on the 

substrate, until a stable structure is formed. To this end, the mean free path formula for molecules in 

an ideal gas is adapted for this 2D situation as follows:  

 
)(4

1
)(

tr
t




   

,    (3.12) 

where )(t  can be defined as the 2D mean free path on a substrate. As it can be observed, the 

concentration )(t  has an inverse proportional effect on )(t . Hence, lower initial concentrations in 

solution facilitate longer 2D mean free paths for the adsorbates on the substrate than at higher 

concentrations.  

 Two extreme cases can be analyzed: At high initial c  (short )(t ), the initial arrangements of 

adsorbates will promptly be stabilized due to fast adsorption and consequent reduction of the available 

space. These arrangements will likely tend to pack even tighter, forming a nucleus that will favor the 

growth of thermodynamically metastable polymorphs with higher packing densities. On the other 

hand, at low initial c  (long )(t ), the arrangements of adsorbates that first form have enough time and 

space to rearrange and explore other possible and more stable molecular configurations before a 

nucleus is created. This will promote the growth of polymorphs with lower packing densities and 

possibly higher stabilities. Thus, the higher the solution concentration, the higher the chances that a 

structure with high packing density forms, and vice versa. 

 The importance of the available free space for the adsorbates to arrange, rearrange and 

nucleate, is well represented in the value of )(t , the 2D mean free path on a substrate. However, not 

only kinetics, but thermodynamics play a role in determining which polymorph will self-assemble on a 

substrate. Ultimately, no self-assembled polymorph can form if it is not thermodynamically stable 

under the respective conditions. 

 

 

 

For the case of TCBPB self-assembling on HOPG, a structure with a low packing density is 

enthalpically favored over an assembly with a high packing density from the point of view of a single 

molecule.
130

 H  values for four different conceivable assemblies of TCBPB were calculated by 

taking into account the adsorbate-substrate and the adsorbate-adsorbate interactions of single TCBPB. 

These values are listed in table 3.3. Details of these calculations can be found in reference 96. It can be 

seen that ideal chickenwire possess the most favorable H . However, taking into account the unit 

cell area (Δh = ΔH/ (unit area)), oblique-I becomes the most favored assembly. In the same way, the 
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entropic contributions at different concentrations have been evaluated using equation 3.8 for each 

polymorph and normalized by their respective unit area (Δs = ΔS/(unit area)). When these values are 

multiplied by the actual temperature (300 K), the -TΔs value for each polymorph gives a very good 

idea of the entropic penalty that each structure has to overcome to self-assemble from solution. It is 

high at higher concentrations, and vice versa; hence it is the highest for oblique-I, and the lowest for 

ideal chickenwire, from the point of view of the packing densities. Δh and Δs add up to give the total 

Gibbs free energy gain per unit area. These values show that an assembly with a high packing density 

is favored over one with low packing density. This is presented again in table 3.3 for two different 

concentrations. 

The co-existence of more than one polymorph indicates that the Gibbs free energies of those 

structures are of comparable magnitude. The coexistence of two polymorphs is observed in the system 

TCBPB in heptanoic acid at concentrations below 7.5% saturation (figure 3.6), and at 100% saturation 

when TCBPB is dissolved in 1-undecanol (figure 3.5b). The values presented in table 3.3 for Δg at 4% 

saturation for the four polymorphs show a relatively small difference between displaced chickenwire 

and oblique-I, thereby justifying this statement. 

 

Table 3.3: Comparison of several calculated values of the three experimentally observed polymorphs 

of TCBPB in heptanoic acid and of one hypothetical polymorph at two different concentrations. Bold 

numbers highlight the energetically most favorable values; italics, the least favorable ones. 

Δh = ΔH/ (unit area); Δs = ΔS/(unit area); Δg = Δh – TΔs. 

  

 

Structure 

Oblique-I Oblique-II 
Displaced 

chickenwire 

Ideal 

chickenwire 

Total ΔH per molecule [kJ mol
-1

] -418.4 -415 -410 -482 

Packing density [10
14

 cm
-2

] 0.22 0.22 0.15 0.10 

Δh [µJ cm
-2

] -15.28 -15.16 -10.21 -8.00 

-TΔs [µJ cm
-2

], saturated +4.22 +4.22 +2.88 +1.92 

-TΔs [µJ cm
-2

], @4% saturation +4.52 +4.52 +3.08 +2.05 

Δg [µJ cm
-2

], saturated -11.06 -10.94 -7.33 -6.08 

Δg [µJ cm
-2

], @4% saturation -10.77 -10.64 -7.13 -5.95 

 

 

Experimentally, oblique-II is found only in conjunction with the displaced chickenwire 

assembly, hinting towards a complete dependence of the former on the previous formation of the 

latter. This means that displaced chickenwire serves as a nucleating agent for oblique-II. This could be 

explained in the following way: Once displaced chickenwire has nucleated, the higher Δg of oblique-

II, as compared to that of displaced chickenwire (see table 3.3) dominates and hence this polymorph is 

formed, thereby hampering the formation of more displaced chickenwire. This suggests oblique-II is 



Molecular Self-Assembly on Surfaces 
—————————————————————————————————————————————————————————————— 

  
46 

meta-stable at concentrations higher than 7.5% saturation. The experimental evidence also reveals the 

growth direction of oblique-II, which is almost perpendicular (  = 81°) to a straight row of displaced 

chickenwire. This is highlighted by the arrow in figure 3.8b. No parallel row of oblique-II was ever 

observed without the presence of displaced chickenwire at one of its ends. So oblique-II relies on 

displaced chickenwire for both nucleation and as growth template. 

 

 

 

The displaced chickenwire assembly is exclusively found with TCBPB dissolved in heptanoic 

acid at concentrations of 7.5% saturation or below, and has never been found in octanoic or nonanoic 

acid, or in alcohols like 1-nonanol and 1-undecanol. Further conclusions based on this result imply 

that upon dilution, a different structure is not necessarily formed. For instance, TCBPB dissolved in 

nonanoic acid always yields the same mixture of rows that consist of head-to-head or displaced H-

bonded dimers regardless of the concentration, down to 10% saturation; below this concentration no 

stable monolayer could be found anymore. The same is true in 1-undecanol, where three different 

polymorphs were observed: a disordered one,
96

 and the two structures shown in figure 3.5b. In this 

case, no clear concentration dependency down to 35% saturation was found. Below this threshold 

concentration, again, no stable monolayer could be found anymore on the substrate. 

These experimental findings demonstrate the solvents’ ability to stabilize different self-

assembly phases. It also asserts the fact that the parameters affecting supramolecular self-assembly 

cannot be regarded as working independently. Only heptanoic acid can yield the two less dense 

assemblies (oblique-II and displaced chickenwire) at low concentrations, whereas only 1-undecanol 

can form the densest assembly found so far for TCBPB (figure 3.5b). These findings, or in this case, 

lack thereof, confirm again the dependency of oblique-II on the previous nucleation of displaced 

chickenwire. 

 

3.2.5 Guest Molecules 

 

2D open-pore networks are excellently suited to host guest molecules in their pores.
82,132

 

However, if an adsorbate does not yield a porous, but a densely packed network, the presence of 

potential would-be guests can induce structural changes in the self-assembly. Thereby, pores can be 

created, acting as suitable hosts where the guests are then allocated.
133,134

 

For instance, a transformation of a self-assembled monolayer from a densely packed (figure 

3.9a) into a porous, occupied network has been observed (figure 3.9b), when a drop of coronene 

dissolved in heptanoic acid was added to a structure previously self-assembled from saturated BTB 

solution in heptanoic acid. The concentration of the solution containing coronene can range from 

100% saturation down to 10% saturation. The densely packed row structure found before the coronene 
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guests were added is transformed into an open-pore chickenwire assembly, where the pores are filled 

by the guests. The exact number of coronene molecules inside the pores cannot be deduced from the 

STM images. Geometrically, it is possible to accommodate up to four planarly adsorbed coronene 

molecules per pore, as shown in figure 3.9c. Later molecular dynamics studies showed the ejection of 

one of these four BTB molecules from the pore. This result was then rationalized with 

thermodynamics. Having three coronene molecules per pore increases the adsorbate-substrate 

interaction per coronene molecule, as compared to having four molecules per pore. Entropically, three 

coronene molecules inside a pore increase the degrees of freedom of each one, as compared with 

four.
135

 

 

 

Figure 3.9: STM images of BTB dissolved in heptanoic acid obtained at the solid-liquid interface at 

ambient conditions. a) At 100% saturation concentration; b) after adding a drop of a solution of 

coronene in heptanoic acid at 100% saturation concentration. A transformation of the densely packed 

polymorph is observed, yielding an open-pore network, whose pores can be occupied by up to 4 

coronene molecules, as schematized in c). 

 

3.3 Summary 

 

Liquid-solid supramolecular self-assembly is a process in which the adsorbates are in dynamic 

equilibrium with the molecules in the supernatant solution. This equilibrium is facilitated by reversible 

intermolecular bonds, like hydrogen bonds, permitting structural error correction. The ability to heal 

structural errors readily yields assemblies that are almost defect-free. In this way, surface patterning 

and functionalization can be easily achieved. However, these same bonds that hold these networks of 

adsorbates together are not strong enough for some applications. Hence, such networks cannot resist 

harsh environments, for instance, long thermal exposures. This problem, namely the formation of 

regular networks interconnected with strong bonds, will be tackled in the next chapter. 

Judicious knowledge of the factors that control and influence self-assembly makes it possible 

to steer the process of polymorph selection. Internal factors, like molecular geometry and functional 

groups already encode some information regarding the possible self-assembly final structures. 

Although important, those aforementioned factors can be influenced externally by the type of solvent 

used to dissolve the molecules and their concentrations in these solvents, which were the main topics 
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discussed during this chapter. There are other factors as well, like temperature
97

 and type of substrate 

that also compete and drive the molecular building blocks to self-assemble into a given final 

polymorph. 

The main goal of the above mentioned factors is the understanding and realization of 

supramolecular self-assembled monolayers with final structures designed in advance, without the need 

of extensive experimentation, or even without any experimental procedure at all. In particular, this 

knowledge will facilitate the formation of long-range ordered open-pore networks. These could be 

used as hosts for guest molecules,
132,136

 as chemical nanoflasks for chemical reactions,
11

 or for organic 

electronics. Along these lines, TCBPB is a molecule with a suitable geometry to assemble into open-

pore polymorphs, as are the structurally similar tricarboxylic acids, MeCPEBA, BTB and TMA, that 

were designed to form chickenwire networks with tunable pore size. 
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4 

 

Covalent Bond Formation on Surfaces 
 

 

Covalent Organic Frameworks (COF) are a class of crystalline materials built from light 

elements (H, B, C, N, O), and interlinked by strong intermolecular bonds. These materials possess 

long-range order, as well as a strong and rigid structure. For their synthesis, a balance of kinetic and 

thermodynamic factors is needed, promoting reversible bond formation.
137

 

Bulk COFs were synthesized for the first time by Yaghi and co-workers
15

 in the year 2005. In 

a one-step reaction, layered crystals composed of planar and porous covalent sheets were produced 

(graphite-like structure). Covalent bonds within the sheets strongly interconnect individual atoms, 

while long-range order is maintained; however, only weak forces, like van der Waals interactions, hold 

the sheets together. Some years later, again Yaghi and co-workers succeeded in producing a crystal 

composed entirely of covalent bonds.
138

  

The layered morphology of the first COFs, along with its regular arrangement of cavities, 

inspired a research interest to synthesize single 2D layers comprised only of covalently linked atoms. 

These monolayers are in a sense similar to porous self-assemblies (chapter 3), while the covalent 

interlinks add interesting properties like high temperature resistance and rigidity. The first surface-

supported systems resulted in short-range order monolayers or small domains.
139,140

 Later, these 

systems were successfully extended to almost completely cover their supporting substrate;
141

 and 

recently, they were grown as thin films of several monolayers height.
16

 

 

4.1 Synthesis of Surface-Supported 2D COFs 

 

Reticular chemistry, the strategy used to purposely form 3D COFs, can also successfully be 

applied to the synthesis of surface-supported 2D COFs. Extended and regular networks can be formed 

with starting materials that are rigid, thus maintaining their structural integrity throughout the reaction 

process. These starting materials are functionalized with specifically selected chemical groups, which 

can form extended structures held together by strong covalent bonds.
142

 Long-range ordered structures 

can be achieved if the bond formation is reversible in nature, maintaining desired attributes of self-

assembly, like the ability to dynamically self-repair. For this purpose, the reaction conditions are 

controlled to promote the formation of reversible bonds. In this way, the formation of 

thermodynamically favored arrangements is promoted.
143

 

The synthesis of surface-supported 2D COFs can be classified as a polymerization process. 

The monomers, or in this case “adsorbates”, react to form one-dimensional chains or two-dimensional 

networks. If the chains or networks contain more than 1000 monomers, they can be designated as 
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“polymers”. Typically, the 2D polymerization is initiated by heat, UV radiation, starter molecules or 

an electric pulse. The reaction terminates when no free monomers exist anymore.  

Among the principles described before, the first method that yielded covalently interlinked 

surface-supported structures was the application of electric pulses on a STM tip, promoting the local 

polymerization of previously self-assembled monolayers.
144-147

 Although very regular domains were 

formed by this method, it is not suitable for large-scale applications. Other methods applied heat to the 

self-assembled structure or irradiated it with UV light, readily yielding covalent interlinked building 

blocks. The main limitations of these last two methods were the degradation of the adsorbates, the 

difficulty in limiting defect formation caused by very fast radical reactions, and last but not least, the 

irreversibility of some processes imposed by Ultra High Vacuum (UHV) conditions, due to complete 

desorption of molecules from the substrate.
141,148

 Here, only relatively small, and sometimes isolated, 

domains of no more than a few nanometers length of the desired polymers were 

synthesized.
139,140,149,150

 

These limitations can be overcome by selecting molecules with functional groups that show 

the required attributes, and by inducing their reaction under reversible conditions, as stated before. 

Boronic acid and diols are prototypical functional groups that possess the aforementioned attributes. 

When three boronic acid molecules react with themselves, they yield a planar boroxine ring, releasing 

water in the process. When one diboronic acid reacts with a diol, it forms a planar boronate ester 

linkage, with water as a by-product. To illustrate these reactions, the self-condensation of 1,4-

benzenediboronic acid (BDBA), and the formation of the ester bond with 2, 3, 6, 7, 10, 11-

hexahydroxytriphenylene (HHTP), are shown in figure 4.1. The geometrical representations of the 

reaction products in figure 4.1 show the thermodynamically most favorable configuration.
141,143

 

Because no steric hindrance arises between the boroxine ring or the ester linkage and the molecular 

backbones, the resulting condensed and larger molecule are essentially planar. Supplying di- or 

multitopic molecules, possessing two or more of the previously mentioned functional groups in 

adequate arrangements, will enable the reaction to continue practically indefinitely, thereby forming 

chains and eventually planar sheets, as illustrated in figure 4.2 for BDBA. 

“Condensation polymerization” is the term that best describes the above mentioned reactions. 

In this type of polymerization, a condensation product is released, typically a small molecule as water, 

as is the case here. This model is also valid for other molecules that are functionalized with the 

aforementioned functional groups, and specifically, for the work carried out in this thesis. 

Other functional groups yielding reversible bonds that could be employed successfully to 

synthesize COFs in reversible reactions are aldehyde (−CHO) and amine (−NH2). Molecules that 

incorporate these groups could eventually condense to form an imine bond (−CH=N−), whereby one 

water molecule is released.
151

 

BDBA and HHTP were the first monomers ever used to produce bulk COFs.
15,152

 However, 

the catalog of COFs has been steadily expanded by altering the topology and backbones of the 



Covalent Bond Formation on Surfaces 
—————————————————————————————————————————————————————————————— 

 

  
51 

monomers. In this way, many different layered bulk COFs were synthesized, mainly using boronic 

acid functional groups,
153-157

 and seldomly using others, like nitrile
158

 or terephthalohydrazide + 

triformyl monomers.
159

 Because the chemical reactions detailed in figure 4.1 can only yield 2D planar 

sheets, as represented in figure 4.2 for BDBA, realization of single surface-supported monolayers must 

be thermodynamically feasible. Therefore, these same functional groups and monomers are used here 

to achieve this goal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Condensation reaction schemes. a) Formation of a boroxine ring (highlighted in green), 

starting with three BDBA. In the process three water molecules are released, highlighted in light-blue. 

b) Formation of a boronate ester (highlighted in red) between one BDBA and one diol (HHTP), 

releasing two water molecules. Under reversible conditions, the geometric configurations adopted are 

the energetically preferred. They are shown here for both final products. 

 

 

4.2 Molecular Precursors 

 

Linear ditopic diboronic acid precursors with D2h symmetry and one three-fold symmetric 

diol, as depicted in figure 4.3, were used for the synthesis of fully reticulated surface-supported 2D 

COFs. All precursors possess a rigid and stable aromatic backbone, preventing the degradation of the 

molecules under the reaction conditions. A prototypical rigid and very stable molecule is benzene.
160

 

Hence, structural backbones are preferably made of one or more phenyl rings, σ-bonded or fused. All 

linear diboronic acids were polymerized by self-condensation, while HHTP (VI) was reacted only 

with BDBA (I). The cavity sizes of the 2D COFs depended directly on the molecular precursors used. 

3 

Heat 

Heat 

+ 

b) 

a) 

-3 H2O 

-2 H2O 
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Figure 4.2: Stepwise reactions of BDBA to grow extended planar COF sheets. Reaction intermediates 

consist of linear chains or small domains. However, those eventually condense and yield planar layers. 

These reaction steps are also valid for other molecules functionalized with boronic acid and alcohol 

groups, as long as the reaction proceeds under reversible conditions. 

Color code: C = grey; H = white; O = red, B = pink. 

 

 

 

Figure 4.3: Molecular building blocks used to synthesize 2D COFs. I): 1,4- benzenediboronic acid 

(BDBA); II): biphenyldiboronic acid; III): terphenyldiboronic acid; IV): quaterphenyldiboronic acid; 

V): 2,7- pyrenediboronic acid; VI): 2, 3, 6, 7, 10, 11-hexahydroxytriphenylene (HHTP). 

 

4.3 Synthesis of Well-Ordered COF Monolayers from BDBA 

 

To synthesize 2D COF monolayers from BDBA (I) monomers, two different approaches were 

followed: In the first one, COF precursors were prepolymerized into bulk nanocrystals, which were 

then post-processed on a HOPG surface. In the second approach, on-surface polymerization of BDBA 

on HOPG was directly achieved, resulting in a straightforward method for routine 2D COF 

preparation. Both methods are briefly explained in the following. More detailed information can be 

found in reference 161. 

 

 

 



Covalent Bond Formation on Surfaces 
—————————————————————————————————————————————————————————————— 

 

  
53 

4.3.1 Synthesis Through Pre-Polymerization of Precursors 

 

The synthesis of crystalline precursors, or “precursor-COFs”, enables the in-depth 

understanding of the polymerization process. For this aim, pre-polymerization of BDBA was achieved 

in an oven at 250°C for 2 h under the presence of water to assure reversible conditions. This treatment 

readily yields nanocrystalline precursors-COFs.
161

 The precipitate was dispersed in fatty acids and 

deposited via drop-casting onto HOPG, readily adsorbing on the substrate. Stabilization on the 

substrate of the precursor-COFs was enhanced by their increased surface areas, as compared to single 

BDBA molecules. The ambient STM shows small domains of ~10 nm in length adsorbed on the 

HOPG substrate, as depicted in figure 4.4. The 2D FFT shown in the inset in figure 4.4b demonstrates 

the hexagonal symmetry of the nanocrystals, proving the formation of small single sheets of COF-1. 

Lattice parameters are given in table 4.1. 

 

 

Figure 4.4: STM images of precursor-COFs on HOPG prepared by drop-casting. a) Chains that 

represent fragments of the COF-1 in-plane structure (a representative example is highlighted by the 

ellipse), as proposed in figure 4.2. b) 2D domains, with lateral extensions of typically < 10 nm and 

internal hexagonal structure. The inset depicts the 2D FFT of the STM image. Both samples were 

prepared using heptanoic acid. The STM images were acquired at the liquid-solid interface with the tip 

immersed into the liquid. Most domains have similar azimuthal orientations, an example for an 

occasionally observed exception is marked by dashed lines. Images taken from reference 161.  

 

Further proof of the formation of precursors-COF nanocrystals is independently provided by 

powder X-ray diffraction (PXRD), and infra red (IR) and Raman spectroscopy.  

The PXRD diffractogram (Mo-) gives broad peaks that originate from the finite precursor-

COF nanocrystal sizes. I ≠ 0 reflections indicate stacking in the [001] direction, with a layer separation 

of 0.335 nm. Using the Rietveld refinement via the line-broadening model based on the Scherrer 

equation, the average crystal size was estimated to amount to ~8 nm in lateral direction, and 1.0 nm 

along the [001] axis (~3 layers’ thickness).
161

 The lateral direction estimated with the Rietveld 
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refinement is in good agreement with the lateral extension of the 2D COF domains imaged with the 

ambient STM using precursor-COFs dispersed in fatty acids. 

IR and Raman also proved the expected reversibility of the boroxine ring formation reaction 

by comparing the spectra of the precursor-COFs, unreacted BDBA molecules, and precursor-COFs 

slowly rehydrolized in water, respectively. Only the spectra of precursor-COFs show the characteristic 

signature of boroxine rings, accompanied by the almost complete vanishing of the characteristic peaks 

belonging to boronic acid. This last described situation was effectively reversed when the precursor-

COFs were rehydrolized, reproducing again the spectra of unreacted BDBA.
161

 

The powder X-ray diffractogram can be found in figure 4.5, and the IR and Raman spectra, in 

figure 4.6. 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: a) Powder X-ray diffractogram (Mo-K1) of thermally treated BDBA, i.e. pre-

polymerization into precursor-COFs (blue curve) b) Simulated curve of a) based on the previously 

published COF-1 crystal structure (black curve)
15

. The Rietveld refinement allows to estimate a 

precursor-COF crystal size of 7.8 nm in lateral direction and 1.0 nm along the [001] axis (Chi
2
 = 

3.145).
162,163

 c) Difference curve between measured and simulated curve, i.e. (a) – (b). Image taken 

from reference 161.  

 

The drop-cast precursor-COFs on HOPG were post-processed to induce ripening and increase 

the domain size. First, precursor-COFs were drop-cast using polar (heptanoic acid, nonanoic acid and 

1-undecanol) and non-polar (dodecane) solvents. Then, the crystals were positioned inside a partially 

open reactor containing 50 to 100 µL of water. It was then put inside a pre-heated oven at 120°C for 1 

hour. The reactor valves were left deliberately slightly open to allow water vapor to leave, ensuring an 

almost constant atmospheric pressure during the process. After this procedure, the reactor was allowed 

to cool down for 30 minutes, and the solvent-free HOPG substrates were imaged again with the 

ambient STM. The images shown in figure 4.7 confirm the ripening of precursor-COFs into larger 2D 

COF domains. Although the images presented were obtained using nonanoic acid as a solvent (or 
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dispersion agent), similar data was obtained alternatively using the aforementioned solvents. The line 

profile in Figures 4.7 proves the formation of one single monolayer of COF-1.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: For both images: a) Untreated BDBA starting material (red curve); b) after thermal 

treatment, i.e. pre-polymerized into precursor-COFs (blue curve); c) after re-hydrolysis and re-

crystallisation of b) from H2O (green curve). LEFT: Infrared spectra. The absorption maxima in the 

IR spectra of thermally treated samples b) at 701 cm
-1

 and 1605 cm
-1

 were also found for 

solvothermally synthesized COF-1, and indicate the presence of boroxine rings.
15

 RIGHT: Raman 

spectra. The modes at ~1097 cm
-1

 and at ~1378 cm
-1 

are only observed for untreated a) and re-

hydrolyzed c) BDBA and can be attributed to a B-O-H rocking mode and B-O stretching vibrations of 

the free boronic acid groups, respectively.
164

 Images taken from reference 161.  

 

 

 

Figure 4.7: a) STM image of an extended 2D COF-1 monolayer acquired under dry conditions. The 

sample was prepared by deposition of precursor-COFs from nonanoic acid and post-processed inside a 

reactor. The inset depicts the corresponding 2D FFT of the image. The domain size is greatly 

increased as compared to the precursor-COF monolayer, and all domains in this image have similar 

azimuthal orientation. Point defects, like missing monomers can be discerned with low density. The 

STM contrast also exhibits a non-periodic height modulation. b) High resolution STM image of a 2D 

COF-1 monolayer on HOPG prepared similar as the sample in a) but using heptanoic acid. Again, 

point defects like missing monomers can be discerned, a prominent example is marked by the dashed 

circle. c) Line-profile along the blue line indicated in b). The apparent height of the COF monolayer 

with respect to the uncovered substrate of ~ 0.30 nm indicates monolayer thickness and the lattice 

parameter corresponds to 1.4 ± 0.1 nm. Images taken from reference 161.  
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The thermal stability of the surface-supported post-processed 2D COF-1 was probed by 

exposing them for 14 hours at 200°C under ambient conditions. STM analysis of these samples 

showed only some degradation of the monolayers. This proves that the 2D COF monolayers stay 

largely intact. If these monolayers were stabilized only by H-bonds and van der Waals interactions, as 

typical for self-assembled monolayers (chapter 3), this thermal exposure would have lead to their 

disintegration. To confirm this hypothesis, a self-assembled monolayer, a known system consisting of 

TMA dissolved in nonanoic acid was tested on HOPG.
12

 Exposure of this system to the same 

temperature (200°C) but only for 1 hour, resulted in the complete desorption of the monolayer. 

Additional evidence for the formation of 2D COF-1 is provided by comparing x-ray 

photoelectron spectra (XPS). These were acquired from a thick film of unreacted BDBA (>100nm) 

deposited on HOPG by vacuum sublimation and from a post-processed 2D COF-1 monolayer. Spectra 

are shown in figure 4.8. Comparison of the core level binding energy for O1s, B1s and C1s shows a 

shift in this energy of O1s from 533.5 eV for unreacted BDBA to 533.0 eV for the COF-1 monolayer. 

This slight shift towards lower binding energy for COF-1 reveals the change in the oxygen chemical 

environment when a boroxine ring is formed. This is because in the boronic acid group, O is attached 

to one H and one B, and in the boroxine ring, O is attached to two B. The electronegativity difference 

of H and B (H = 2.20, B = 2.04 on the Pauling scale) results in more negative charge in the O atoms in 

boroxine rings than in boronic acids. Consequently this shows that covalent bonds and hence the 2D 

COF-1 are formed. No significant change in the B1s and C1s energies are observed, because their 

direct binding environments do not change in the polymerization reaction. Further information can be 

found in reference 161. 

 

 

  

 
 

Figure 4.8: XPS measurements of the B1s, C1s, and O1s core level binding energies in a thick BDBA 

film on HOPG (red) and a 2D COF-1 monolayer on HOPG (blue). O1s spectra of the polymerized 2D 

COF-1 monolayer exhibit a slight shift to lower binding energy as compared to the film of unreacted 

BDBA molecules. This can be explained by the change of the oxygen chemical environment from B-

O-H in the boronic acid group to B-O-B in the boroxine ring upon condensation. Both the B1s and 

C1s spectra do not exhibit any significant shifts, because their direct chemical environments are 

unaffected by the condensation reaction. The high intensity of C1s in the COF-1 monolayer sample 

originates from the HOPG substrate. Image taken from reference 161.  
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4.3.2 Synthesis via Direct On-Surface Polymerization 

 

Although the realization of 2D COF-1 monolayers via precursor-COFs is possible and gives 

valuable information regarding the independent proof of the boroxine ring formation or the 

reversibility of the process, a more direct and simple synthesis is desirable. To this end, supersaturated 

solutions containing the precursor BDBA molecules were prepared. Solvents used were the same polar 

and non-polar ones described above. The supersaturated solutions were deposited directly on the 

HOPG surface and thermally treated in an oven inside the reactor with the same parameters used to 

post-process precursor-COFs. STM images obtained from the resulting monolayers were 

indistinguishable from those prepared through precursor-COFs. Here, a delicate solution concentration 

balance is essential: On the one side, an excessive supersaturated solution results in a thin insulating 

film preventing tunneling electrons to flow and hence hampering STM image acquisition. On the other 

hand, a too diluted solution fails to yield stable monolayers, because these solvents are not able to 

dissolve enough molecular precursors in order to prevent their complete desorption during 

polymerization. The choice of solvent does not notably influence the final lateral extension or amount 

of defects in the 2D COF domains, hinting to a minor solvent influence in this more direct synthetic 

route. 

 

4.4 Synthesis of Isoreticular 2D COFs 

 

The more direct synthetic route explained in section 4.3.2 allows a simple and fast preparation 

of 2D COFs. This straightforward method was used to form isoreticular 2D COFs with molecular 

precursors II – IV. Their organic backbones consist of σ-bonded phenyl rings that retain the D2h 

symmetry, as BDBA, yielding regular 2D COFs with increasing hexagonal cavity sizes. Both the 

lattice parameter and cavity size increased, depending on the precursor used (figure 4.3).
165

 V was 

selected to demonstrate that modifying the type and character of the molecular backbone also yields a 

2D COF with similar regular hexagonal cavities.
165

  This is because the backbone of V consists of a 

pyrene chemical group composed of fused phenyl rings, as compared to the σ-bonded phenyl rings of 

II – IV. Calculated (using MM) and experimental lattice parameters are listed in Table 4.1. STM 

images of the networks attained using molecules II – V are depicted in Figure 4.9. 

Molecules II, III and V yielded regular 2D COF domains of at least 100  100 nm
2
 area, 

achieving almost complete surface coverage. However, 2D COFs of IV only partially covered the 

substrate. In the areas that are not covered by this COF, disordered arrangements of adsorbed IV 

molecules were usually found. This observation can be explained in terms of monomer size: IV has 

the largest size of all diboronic acids presented. Thus, it can be inferred that its lateral mobility along 

the surface is hampered by a large adsorption energy and by a large influence exerted by the 

corrugation of the surface potential.
123,166-168  Hence, this prevents a portion of the already adsorbed 
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molecules to approach close enough to each other to react. This experimental observation made for IV 

suggests that large diboronic acid molecules must adsorb first on the substrate, and self-condense on it 

at a later stage. This condensation reaction on the substrate may be initiated by a rise in the 

temperature. (See section 4.5.) 

In some areas, molecule V yielded bilayers of the COF, as shown in figure 4.9g. These layers 

are stacked in an eclipsed fashion, as already observed in COF bulk crystal synthesized from the same 

monomer.
153

 This behavior can be rationalized by means of a high π-π interaction arising between 

pyrene backbones via its delocalized π-electrons. These enhanced interlayer bonds stabilize such an 

arrangement. 

 

 
 

Figure 4.9: Ambient STM images of surface-supported 2D COFs obtained from self-condensation of: 

a, b) II; c, d) III; e, f) IV; g, h) V. The respective monomers are shown in the insets. Image adapted 

from reference 165. 

 

Table 4.1: Summarized experimental and MM (Dreiding) derived lattice parameters for all 

2D COFs. I + VI is listed here for the sake of completeness. 
 

building 

blocks 

experimental lattice parameters Forcefield derived lattice parameters 

a (nm) b (nm) γ (°) a (nm) b (nm) γ (°) 
pore size 

(nm) 

I 1.4 ± 0.1 1.4 ± 0.1 60.0 ± 3 1.5 1.5 60 1.0 

II 2.1 ± 0.3 2.1 ± 0.2 58.9 ± 4 2.3 2.3 60 1.6 

III 2.9 ± 0.2 2.9 ± 0.2 57.5 ± 3 3.0 3.0 60 2.4 

IV 3.5 ± 0.3 3.6 ± 0.3 62.0 ± 5 3.8 3.8 60 3.2 

V 2.1 ± 0.1 2.1 ± 0.1 58.9 ± 2 2.3 2.3 60 1.4 

I + VI 2.7 ± 0.3 2.7 ± 0.3 57.1 ± 4 3.0 3.0 60 2.4 



Covalent Bond Formation on Surfaces 
—————————————————————————————————————————————————————————————— 

 

  
59 

4.5 Activation Temperature for Self-Condensation  

 

Although the molecules I – V posses the same boronic acid functional groups in the same 

para-orientation, the activation temperature for the formation of the respective 2D COF monolayers 

via self-condensation is not necessarily the same. To determine their respective activation 

temperatures, the molecules were dissolved/suspended in heptanoic acid and drop-cast on HOPG, as 

explained in section 4.3.2. Then, these systems were thermally treated inside a pre-heated oven for 30 

minutes. The temperature of the oven was varied in successive experimental trials. Because not all 

possible temperatures can be probed, the exact activation temperatures lie in the ranges listed in table 

4.2.  

 

 

Table 4.2: On-surface activation temperature ranges of molecules I – V to form 2D COFs. If no 

activation was found at or below 70°C, the activation temperature lies between this number and 

107°C, the highest temperature measured inside the reactor. The lowest temperature given is 25°C, 

the usual ambient temperature in the laboratory. 

 

Building 

block 
I II III IV V 

Activation 

Temperature 

range [°C] 

25 > T  50 33 > T  50 50 > T  70 70 > T  107 70 > T  107 

 

 

The activation temperature found for the monolayer formation of BDBA differs from that 

observed using Thermal Gravimetric Analysis (TGA) of bulk BDBA: Here the condensation starts at 

~150°C, at least ~100°C above the experimentally temperature found for the initiation of on-surface 

condensation.
141,161

 This difference can be explained in part by the known spontaneous dehydration of 

boronic acids that can occur already at room temperature.
169

 At temperatures that are somewhat higher 

than ambient temperatures (50 – 70°C), this spontaneous reaction becomes vastly accelerated. The 

substrate may also play a role in promoting the condensation reaction by lowering the activation 

energy barrier.
148

 Hence, temperatures inside the reactor of ~110°C during thermal treatments are 

more than sufficient for I – V to yield COF monolayers.  

An important result also found during these experiments is that at or below 70°C, molecules I 

– III already form small to medium-sized 2D COF domains, whereas IV and V never formed any 

observable 2D COF at these temperatures. However, extended monolayers for I – III were never 

observed under these reaction conditions outside the reactor. Hence, extended monolayers can only be 

formed at higher temperatures (above 100°C) and in the presence of a humid atmosphere assuring 

reaction reversibility.
165
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4.6 From Supramolecular Self-Assembly to 2D COF 

 

Boronic acids are known to form hydrogen-bonded self-assembled structures.
170

 One example 

thereof is self-assembly of BDBA on KCl(001).
171

 Similarly, in the bulk, the crystalline structure of 

BDBA is known to form H-bonds between individual molecules.
172

  

It has already been experimentally observed, that a previous step in the realization of 

covalently-interlinked monolayers is non-covalent self assembly of its molecular building 

blocks,
123,139,146,148,173,174

 or the formation of protopolymers on a substrate.
140,175

 Pre-arrangements of 

precursor structures via the two ways mentioned before could facilitate covalent bond formation 

between them in a following reaction step. This is because the molecules lie in close proximity to each 

other, and because their functional groups attain the required steric orientation. 

Studies of the formation of 2D COFs on HOPG using I – V presented also several well-suited 

opportunities to investigate the supramolecular self-assembly of these same molecular precursor. It 

was found that in the cases of I and II dissolved in fatty acids, no supramolecular self-assembly was 

ever imaged at the solid-liquid interface by means of ambient STM. Either their small adsorption 

energies, as a consequence of their small size, prevent altogether the stable adsorption on HOPG, or 

this preceding step is very short-lived, leading rapidly to the formation of more stable 2D COFs at 

higher temperatures. However, with III and IV, self-assembled structures were easily observed at 

temperatures lower than those needed for the polymerization into 2D COFs. A case in point is 

molecule III, for which supramolecular self-assemblies and 2D COF domains coexist very close to 

each other after a 30 minutes treatment at 70°C, or after a thermal treatment inside the reactor at 

120°C using dodecane as solvent.
165

 According to the experimental STM observations, the proposed 

self-assembly configuration of III brings the boronic acid moieties very close together to one another, 

as depicted in figure 4.10. Then, upon heating up gently the entire system, the condensation, i.e. 

boroxine formation is activated, yielding 2D COFs. Here, desorption of some III molecules from the 

substrate is necessary to provide enough space for the less dense open-pore network of the COF. In the 

case of V, a well ordered self-assembly of these molecules dissolved in heptanoic acid was never 

found; instead, only short-range ordered arrangements of adsorbed molecules could be imaged. These 

arrangement were never experimentally observed to reorganize into a long-range ordered self-

assembly, even when heating at 70°C for 1 h.
165

 

The observations mentioned above, and especially the evidence found for III (figure 4.10c) 

and IV (figure 5a in reference 165), point to a conceivable 2D COF reaction mechanism for boronic 

acids with large enough surface area. In this mechanism, the molecular precursors may form a 2D 

COF on HOPG, preceded by a supramolecular self-assembly step. 

In the future, in-situ temperature-controlled STM studies of these surface-supported 

polymerization processes may shed light on the mechanism of the synthesis of these 2D materials. 

During these studies, other reaction parameters will also be better understood. 
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Figure 4.10: a) STM image of a self-assembled monolayer of III acquired at the liquid-solid interface 

with heptanoic acid. Overlaid molecules are drawn to scale. b) Tentative model as derived from the 

STM data. Unit cell and hydrogen bonds are indicated by dashed blue and green lines respectively. c) 

Side view of the monolayer illustrating a conceivable tilt of the molecular plane with respect to the 

substrate. d) STM image of a thermally treated sample (70°C, 30 minutes) showing the coexistence of 

unreacted self-assembled domains (lower left part) and first 2D COFs (upper right part). Image taken 

from reference 165. 

 

4.7 Stability of the Boroxine Ring  

 

COFs composed of boroxine rings have already shown a high thermal stability when heated in 

a dry atmosphere,
137,141,143,176

 but show minor stability against water: They undergo relatively fast 

decomposition back to its original building blocks when exposed to atmospheric humidity.
177,178

 For 

instance, 2D COFs made from II to IV, are readily decomposed when left overnight under normal 

ambient conditions, but survive almost intact when left inside a desiccators for the same time period. 

This decomposition is driven by the susceptibility to nucleophilic attack by water (a mild nucleophile) 

at electron-deficient boron sites.
177,179

 

The making and breaking of boroxine rings can be directly observed in successive STM 

images taken when precursor-COFs were applied onto HOPG. For these observations, heptanoic acid 

was used as a dispersion medium and the experiments were carried out at a laboratory temperature of 

33°C. The observed domains of nanocrystalline precursor-COFs undergo repeated assembly and 

disassembly, as depicted in the sequence in figure 4.11. The assembly/disassembly behavior is most 

probably induced by the scanning tip. This finding can be explained by the interplay of several 

aspects: The interaction of the scanning tip with the adsorbants,
144-147,180

 the nucleophilicity of the 

boroxine ring explained above, the presence of small quantities of water in heptanoic acid that help the 

reaction to go forward or backward, and the relatively small enthalpy change associated with the 

boroxine formation. This formation enthalpy, from free boronic acid to yield boroxine rings, has been 

calculated to be between 28 and 51 kcal/mol,
181

 pointing to only a moderate strength of the B−O 

covalent bonds within boroxine rings. Even though these estimated values were not calculated for any 

of the molecules presented here, it explains then why these bonds are susceptible to interact with the 

scanning tip.  
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It is important to highlight the ability of heptanoic acid to dissolve some water, albeit in very 

limited quantities.
182

 Water can originate from the condensation reaction or from atmospheric 

humidity, being apparently enough to guaranty the reversible reaction conditions. 

 

 

 

 

 

 

 

Figure 4.11: STM images depicting the successive making and breaking of boroxine rings. The blue 

ellipse highlights the growth of a small 2D COF-1 domain. Starting with a linear array of hexagonal 

cavities (a and b, arrow), the domain reacts with nearby molecules, growing laterally (b to e) towards 

a triangular shape. This domain later disappears by partially coalescing with a neighboring domain (f). 

All images were scanned at a room temperature of 33°C. Time span between successive images: ~1.5 

minutes. All images: 23  23 nm
2
. 

 

The STM images in figure 4.11 also reveal the presence of small tripodal units, constituting 

the smallest polymerized aggregates that are regularly observable. These aggregates are constructed by 

3 BDBA molecules condensed into one boroxine ring, as depicted in figure 4.1a. Smaller units were 

seldomly, if at all, experimentally observed, hinting towards a minimum size required by the building 

blocks to adsorb flat on the substrate for a long enough residence time to be observed. This is not 

achieved with just a single BDBA (I) or II molecule.  

 

4.8 Heteromeric 2D COF via Boronic Ester Formation 

 

So far, realization of single-component 2D COFs interconnected by boroxine ring moieties 

(figure 4.1a) has been demonstrated under ambient
161,165,183

 and UHV
141

 conditions. Greater long-rage 

order was achieved under ambient conditions than under UHV, because the UHV environment does 

not promote reversible reaction conditions. Attempts to synthesize a two-component 2D COF under 

UHV conditions with BDBA (I) + HHTP (VI), interconnected by boronic ester moieties (figure 4.1b), 

resulted in short-range ordered networks only.
141,173

  

The synthesis of 2D COFs with the same two constituents mentioned above has been 

attempted but under ambient conditions. Its bulk equivalent is the COF-5, synthesized by Yagui and 

co-workers
15

 in the year 2005. For this purpose, stoichiometric amounts of the components (2 HHTP : 

3 BDBA) were weighed, dissolved in warm water, slowly recrystallized, and grounded to attain 

homogeneity. The mixture was then treated in an oven for 2 hours at 200°C to yield precursor-COFs. 

Again, during this procedure a humid environment was maintained. In a last step, this precursor-COFs 

were dispersed in heptanoic acid, applied onto a freshly cleaved HOPG substrate, and thermally 
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treated inside the reactor for 1 hour at 120°C. Once again, under the same humid condition as 

explained before for single-component 2D COFs.  

A representative STM image of the successful trials is shown in figure 4.12, along with a line 

profile. This profile proves the formation of two monolayers stacked in an eclipsed fashion via the 

periodic repetition of peaks and troughs at basically two different heights. This evidence is in good 

agreement with the stacking fashion found for the bulk COF formed from these same components.
15

 

Table 4.1 shows the experimental and MM derived unit cell parameters for this 2D COF. They agree 

very well with the experimental unit cell lattice parameters of 3.0 nm found for the bulk COF-5.
15

 

Although in principle it is demonstrated here that it is possible to realize this class of two-

component 2D COF with long-range order domains, it was not possible to reliably reproduce these 

results. Also, slight changes in preparation parameters, for instance, using a longer thermal treatment, 

or applying more water inside the reactor, resulted in no observable improvement. Only shifting the 

stoichiometric BDBA:HHTP ratio towards more HHTP and less BDBA, slightly improved the success 

rate. 

 

 

Figure 4.12: a) Representative ambient STM image of a two-component 2D COF realized with 

BDBA (I) and HHTP (VI), by forming boronic ester linkages. b) Molecular representation of 4 rings 

of this COF. The unit cell parameters are a = b = 3.0 nm; γ = 60°. c) Line profile along the light-blue 

line indicated in a). The apparent step height from one monolayer to two monolayers with respect to 

the uncovered substrate indicates one or two monolayer thickness. 

  

4.9 Summary 

 

In this chapter, it has been shown that covalent bond formation under reversible conditions 

yields long-range ordered networks held together by these strong bonds. The ideal reaction conditions 

will certainly depend on the system of interest, i.e. the parameters should not be considered universal. 

For instance, the conditions attained inside the reactor are very well suited for the formation of 

extended 2D COFs of I – III and V, but are not good enough for long-range ordered COFs made from 

IV or I + VI. 
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The reversibility of the boroxine formation reaction, by condensation and rehydrolysation 

from boronic acid, was demonstrated here with complementary analytical methods, like IR, Raman 

and PXRD. This characteristic also allows boronic acids to self-repair during the formation of COFs, 

yielding a very regular structure, provided they are prompted to make and break covalent bonds during 

the formation process. 

It has also been shown here, that the unit cell parameter, and hence the respective cavity size, 

can be tuned by selecting the appropriate para-diboronic acid precursors. The unit cell parameters 

spanned from 1.5 nm using I up to 3.8 nm using IV. This last size should not be taken as an upper 

limit to the upwards scalability of the unit cell parameters. However, it seems that with larger 

molecules, a consequently larger adsorption enthalpy hinders molecular mobility on the substrate. This 

suggests a change in the reaction conditions if 2D COFs with larger cavities are going to be prepared. 

Altogether the feasibility of formation of isoreticular 2D COF has been demonstrated. 

The supramolecular self-assembly of some diboronic acids was also tested here. Results 

showed that under the applied experimental conditions, small monomers as I and II do not self-

assemble on the graphite substrate, III and IV do self-assemble, whereas V forms a disordered 

structure. This may imply that self-assembly, at least for III and IV, is a preceding step in the process 

of 2D COF formation. Currently this an open research question, suggesting the possibility of a in-situ 

study of this process in the future. 

The viability of heteromeric 2D COFs has also been proved here. However, reaction 

parameters must be improved to obtain regular and extended 2D COFs from molecular precursors I + 

VI. 
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5 

 

Conclusions 
 

 

In this work, the realization of surface supported monolayers of supramolecular self-

assemblies and two-dimensional covalent organic frameworks has been presented. Suitable organic 

linkers, mostly dissolved in organic solvents, were the starting materials for both syntheses. STM was 

the main analytical tool used to investigate the structures on the surfaces. STM provided very precise, 

and highly resolved detailed images, from which structural parameter were derived and used for 

modeling.  

The first subject presented here, the self-assembly of tricarboxylic acids, is a spontaneous 

process occurring under ambient conditions mediated by reversible hydrogen bonds. Although the 

formation of these ordered structures reduces the entropy of the system, they can only form if the 

overall entropy of the universe increases. When formed, these structures are in thermodynamic 

equilibrium with further molecules in the supernatant solution. This equilibrium enables the formation 

of very regular and extended molecular networks by allowing error correction and filling of voids. 

Thermodynamical parameters have been estimated by considering the enthalpic and entropic 

contributions for self-assembly. Enthalpic contributions were deduced from molecular mechanics, 

whereas entropic changes were estimated using adapted models for rotational and vibration 

contributions. The values obtained from these two factors were combined to obtain the change in 

Gibbs free energy upon self-assembly for several different polymorphs found. This free energy 

analysis explained why the self-assembly was a thermodynamically favored process, and thus 

spontaneous. Other parameters influencing self-assembly were also presented in this thesis. These are 

molecular structure, like shape, size, and functional groups of the adsorbates; intermolecular forces, 

mainly hydrogen bonds of different strengths; interaction of the adsorbates with the substrate, via van 

der Waals forces; solvent; concentration; and possible structural changes induced by potential 

molecular guests.  

Depending on the solvent used and the solute concentration, one large tricarboxylic acid 

yielded at least four different polymorphs. However, none of them was the expected open-pore 

network stabilized solely by cyclic two-fold strong intermolecular hydrogen bonds. This implies that 

knowledge of the above mentioned factors, gathered taking into account the information presented 

here and in many other studies, is not yet enough to predict in advance the final supramolecular self-

assembly. This means experimentation is still an indispensable requirement. 

The second main topic presented here is the formation of extended, regular, surface-supported 

two-dimensional covalent organic frameworks (2D COFs). For this aim, boronic acid-functionalized 
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molecules were employed. When boronic acids react via a condensation reaction, they form boroxine 

rings (B3O3), held together by covalent bonds. In this reaction, water is released as a by-product. 

To realize 2D COFs, two methods were used. In a first method, 1,4-benzenediboronic acid 

was pre-polymerized in an oven under a humid atmosphere. This process yielded bulk precursor-COF 

nanocrystals. When dispersed in organic solvents and drop-cast on graphite, these nanocrystals readily 

adsorbed on the graphite substrate. In a second step, these samples were post-processed by a thermal 

treatment under reversible conditions inside a reactor with a small amount of water added. If enough 

water is supplied during the reaction, the making and breaking of covalent bonds is promoted. Thus, 

structural errors that may arise during the polymerization are efficiently corrected, yielding 2D COF 

networks with the energetically most favorable configuration, and exhibiting relatively large domains. 

In a second method, the same thermal treatment inside a reactor as explained above was 

undertaken with graphite substrates containing, instead of precursor-COFs, dispersed 1,4-

benzenediboronic acid molecules in organic solvents. That is, the pre-polymerization step was 

completely skipped. The 2D COFs yielded by this one-step procedure were very similar in regularity 

and lateral extension to those realized with precursor-COFs. 

These two procedures, using the comparatively small monomer 1,4-benzenediboronic acid, 

provided the proof of principle. The second and simpler process was later extended to yield 

isotopological frameworks with larger unit cell parameters, tuned in size by a previous selection of the 

appropriate molecular precursor. For this purpose, para-diboronic acids with molecular backbones 

consisting of phenyl rings –σ-bonded or fused– were always used. For all monomers, isotopological 

networks with a regular and extended covalent structure were obtained.  

Thermal stability of the 2D COFs was tested by heating for a long period of time under 

atmospheric conditions, and subsequent examination with the ambient STM. After this rather harsh 

treatment, 2D COF were still present on the substrate. Also, the reversibility of the boroxine ring 

formation reaction to the boronic acid precursor was proven by means of rehydrolysation of precursor-

COFs. This demonstrated the error correction properties required for the formation of regular 2D COF 

networks. 

The viability of the formation of a heteromeric 2D COF was also demonstrated. By boronic 

ester formation, again a covalently bound structural unit formed by means of  the condensation 

reaction of a boronic acid and a diol. This was realized under the same reversible reaction conditions 

inside the reactor as already employed for boroxine ring formation. 

To summarize the present work, the possibility of controlled formation of nanoscale molecular 

patterns has been shown. However, at the present stage, not all parameters affecting molecular self-

assembly or 2D COF formation are fully understood, and probably other factors still lack a detailed 

study. Hence, it is still a long way before conclusive results are achieved, which will permit the large 

scale fabrication of molecular monolayers with very specific characteristics that were defined in 

advance. Also here, the realization of regular and extended 2D COFs has been demonstrated. This may 
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be a first step towards the understanding of the reaction conditions, among other factors, needed for 

large-scale production of free-standing 2D polymers, much resembling a single graphene sheet. Before 

2D polymers free of a supporting substrate are available, there are other possible applications and 

experiments that may be achievable using surface-supported 2D COFs. For example, the transfer of a 

2D COF layer from the original supporting graphite surface to another different substrate by bringing 

the two surfaces together may be possible. This would provide a method to functionalize a substrate 

where the 2D COF of interest cannot form under the known reaction conditions. Also, the cavities 

found in the 2D COFs may be used as a template to host and position guest molecules at specific 

locations. These guest molecules may possess chemical groups directed to react only with each other 

and yield a new and different 2D network. Afterwards, by dissolving the original 2D COF with a 

solvent that leaves intact the new network of guest molecules –probably just water–, a newly 

functionalized surface may be formed. All of these would certainly open a new world of possibilities 

in material science. 
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Appendix 1 

 

Preparation of Ultra Flat Gold (111) Surfaces by Physical Vapor Deposition 

(PVD) as Substrate for Supramolecular Self-Assembly 

 

Vacuum evaporation of metals onto different substrates is a popular method to produce 

inexpensive surfaces for STM experiments. Glass, silicon (Si) and calcium fluoride (CaF2) have been 

used as substrates with good results,
184

 but in particular, mica (muscovite, or common mica; chemical 

formula KAl2(AlSi3O10)(OH)2) has become one of the most common substrates used for the deposition 

of gold. This is because it is atomically flat, cheap, and easy to cleave with adhesive tape through the 

(001) plane of K atoms. Upon cleavage, these atoms are distributed equally between the two newly 

created surfaces, so each cleaved face would contain half a monolayer of K atoms.
185

 Figure A1.1 

shows a schematic representation of the mica structure. The gold deposited on mica via PVD is (111) 

terminated. There is a large collection of literature dealing with the different parameters for the 

deposition of gold on mica; a brief overview can be found in the publication of M. Levin et al.
186

 

In this work, freshly cleaved mica (with adhesive tape; reminiscent of the HOPG cleaving 

procedure) was used as a substrate without any further ex-situ treatment. It was outgassed in the 

vacuum chamber described in figure A1.2, at 350 - 400°C for ~12 hours. Only the best commercially 

available class of muscovite was used, the so-called V-1 type. 

 

 

 

 

 

 

 

 

 

                

Figure A1: Left: Schematic illustration of the mica structure. Cleavage occurs along the (001) plane, 

where monolayers of hexagonal arrayed potassium ions separate the sheets. A layer of hexagonally 

arrayed oxygen ions lies beneath this surface. Right: Surface structure of cleaved (001) mica.
185

 

Images reproduced with permission from IOPscience. 

 

 

 Gold films deposited via PVD onto mica yield a gold substrate (111) terminated. This surface 

termination suggests that the crystallographic order of the mica substrate influences significantly that 

of gold due to some matching degree between the two materials at the interface.
187

 In general, when a 

film is deposited on a substrate, the interfacial energy is minimized by maximizing the

Parallel sheets of silica tetrahedra 

perpendicular to the plane of the paper 

[001] 



Appendix 1 
—————————————————————————————————————————————————————————————— 

  
69 

density of appropriate bonds across the interface in an attempt to merge the symmetries of both. If it is 

energetically favorable for the film material to match the substrate’s crystallography, then it will grow 

epitaxially. The degree of matching between substrate and film can be defined by f , the fraction 

mismatch in the atomic periodicities of the two materials along the surface, given in the following 

equation:
187

 

s

se

se

se

a

aa

aa

aa
f









2/)(
,    (A1.1) 

where ea and sa are the lattice parameters along equivalent directions in the film and substrate 

surface, respectively. Generally, if 1.0f , epitaxy ensues, but if 1.0f  few of the interfacial bond 

are well aligned and therefore there is little reduction in the interfacial energy.
187

 The distance of the O 

atoms in mica’s SiO4 tetrahedra is 0.255 – 0.286 nm, whereas face-centered cubic (fcc) Gold 

crystallizes with 0.288 nm as the smallest distance between nearest neighbor Au atoms. These data 

would give f  values of ~0.1 at the most, thus ensuring epitaxial growth of Au(111) on mica.
188

 

 The high vacuum chamber shown in figure A1.2 was used to deposit gold. It was pumped by a 

turbomolecular pump with a rotary forepump, achieving a final pressure of 2.7  10
-8

 mbar. An oil trap 

was inserted between the two pumps to prevent oil backstreaming into the chamber. Customized 

components were added to the chamber: A substrate (mica) holder/heater made of ceramic, together 

with a W mask with nine windows to mount the mica; a water-cooled quartz crystal micro balance; a 

Ta shutter; and an integrated W-coil + alumina crucible gold evaporator with variable positioning. To 

minimize thermal losses, the ceramic heater and the crucible were doubly shielded with 0.2 mm thick 

Ta housings. Tests were carried out with the configuration shown in figure A1.2 to ensure the 

functionality of all parts. For deposition of gold films, the crucible was heated with a current of 22.5 A 

to a temperature of, ~ 900°C, high enough to evaporate the gold at the desired rate. The flux of Au 

atoms can be blocked by the shutter, thereby accurately controlling the deposition time. The pressure 

in the chamber during the evaporation was normally 2.7  10
-7

 mbar. Up to 9 samples per run could be 

prepared using the flexible W mask with nine windows. 

The deposition rate was tested in several experimental runs. A final applied current of 21 to 

22.5 A to the heater resulted in reasonable gold evaporation rates. These rates were found to be 

constant throughout the experiments, as long as the current was also kept constant. Readouts of the 

quartz crystal micro balance against time are depicted in figure A1.3 for several different currents 

applied to the W-coil + alumina crucible containing gold. 

In the first experiments, the W-coil + alumina crucible was incrementally heated for 9 

minutes, before the shutter was opened. Although this did not alter the final gold surface, it was found 

to be too harsh for the ceramic crucible, destroying it after several trials. A slower heating rate, taking 

18 minutes until the final required current was reached, preserved the crucible. After several tests, a 
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current of 22.5 A was selected for regular runs of gold deposition, producing films of ~300 nm 

thickness in 31 minutes.  

 

 
 

Figure A1.2: Components of the gold evaporator and mica mounting assembly: 1) Water-cooled 

quartz crystal micro balance; 2) balance holder and water cooling feedthrough; 3) ceramic heater; 4) 

sample holder with nine windows to mount the mica; 5) two-fold Ta thermal radiation shields; 6) 

position of the mica sandwiched between ceramic heater and evaporation mask; 7) shutter to block the 

gold beam; 8) flexible arrangement of copper conductors to position the crucible; 9) W-coil with an 

10) integrated alumina crucible for efficient heating of the evaporant; 11) pressure gauge. The right 

hand side of the picture shows the location of each component inside the high vacuum chamber. When 

assembled, the distance separating the gold evaporator and the sample holder is 8 cm. 

  

 

To measure the film thickness, a Nanosurf® easyScan Atomic Force Microscope (AFM) was 

used. An area at the gold film boundary was scanned where clean mica and gold-covered mica 

surfaces could be imaged at the same time. A representative example is depicted in figure A1.4. The 

analysis of the AFM image yields a thickness of 300 nm. With this information, and taking 31 minutes 

deposition time into account, it is possible to calculate the deposition rate of gold on mica for the 

chosen conditions as follows: 

 

snm
s

nm

timedeposition

thicknessfilmgold
depositiongoldofRate /16.0

1860

300
  

8 cm 
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Figure A1.3: Quartz crystal micro balance readout versus time. The deposition rate of the gold, as 

observed in the straight lines connecting the dots in the graph, is constant for constant heating current. 

The slight variations are caused by different positions of the evaporator relative to the quartz balance. 

 

 

 
Figure A1.4: a) 64  64 µm

2
 AFM (false color) image of the gold film boundary deposited on mica. 

b) Analysis of the green line-profile plotted on the AFM image in a). The dotted lines are drawn to 

compensate the slope and allow for a precise measurement of the gold film thickness. The steep slopes 

indicate the boundary between the Au film and mica in a), and vice versa; the plateaus are either on 

the gold film or mica substrate. The AFM image was analyzed with the WSxM Scanning Probe 

Microscopy Software.
189

 

 

 

The  gold surfaces were studied using the ambient STM with mechanically cut Pt/Ir (90/10) 

tips. Before flame annealing, the surfaces do not exhibit a recognizable (111) termination. This is 

shown in figure A1.5. After 3 flame annealing, the surfaces exhibit recognizable triangular shapes, 

with step edges intersecting under 60° or 120°, which is a clear indication of (111) termination. 
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Terraces are flat and large enough to be used in further STM experiments. This is depicted in figure 

A1.6. 

 

 

Figure A1.5: STM topography of the gold surfaces before flame annealing. They are rough and do not 

exhibit a recognizable (111) termination. a) 446  446 nm
2
; b) 279  279 nm

2
. 

 

 

 

Figure A1.6: STM topography of the gold surfaces after 3× flame annealing, exhibiting triangular 

shapes. These are step edges that intersect under 60°, which is a clear indication of (111) termination. 

Terraces are flat and large enough to be used in further STM experiments. a) 1160  1160 nm
2
; b) 640 

 640 nm
2
; c) 402  402 nm

2
. 

 

 Flame annealing is a required step to yield (111) terminated gold surfaces. Flame annealing 

affects the gold surface in several ways: by removing adsorbed molecules (contaminants),
186

 by 

dehydroxylating the mica substrate (evolution of water from the interior of the mica),
186

 and by 

causing the grain boundaries to diffuse across the individual grains, forming larger flat surfaces by 

coalescence.
190

 For flame annealing, a butane torch is used, heating slightly the gold films for 30 

seconds until a dark red color is observed. This is done preferably under subdued light or in complete 

darkness. After the elapsed time, the mica is left on a copper surface for another 30 seconds to cool 

down. For best results, this procedure is done right after the gold films are taken out of the vacuum 

chamber, and repeated three times. Figure A1.7 shows the difference in substrate finishing after 1 or 

3 repetitions of the annealing procedure, proving that 3 yield surfaces with larger flat terraces. 

Flame annealing can also remove some Au atoms from the surface.  
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Figure A1.7: a) STM topographs of the gold surfaces before flame annealing (446  446 nm
2
), b) 

after 1 flame annealing (581  581 nm
2
), and c) after 3 flame annealing (402  402 nm

2
). Annealing 

at least 3 times is necessary to yield flat and large Au(111) defect-free surfaces of at least 50  50 nm
2
. 

 

 

To independently confirm the emergence of ultraflat Au(111) surfaces after flame annealing, 

Low Electron Energy Diffraction (LEED) was used. Samples with and without annealing were 

compared. The LEED patterns (112 eV) presented in figure A1.8 reveal the (111) surface of the gold 

films in both samples; however, the presence of sharper defined diffraction spots in the annealed 

sample (figure A1.8b) proves larger (111) crystalline domains than in the untreated sample. 

 

 

Figure A1.8: LEED patterns revealing the (111) surface termination of the gold films (112 eV). a) 

Samples before and b) after flame annealing. The more clearly defined and sharper spots in b) indicate 

the presence of larger (111) crystalline domains. LEED Images obtained by Georg Eder and Hermann 

Walch. 

 

In order to investigate self-assembly of long chain alcohols into two-dimensional monolayers, 

a drop of 1-decanol was directly applied to freshly flame annealed gold surfaces. For STM 

experiments a mechanically cut Pt/Ir (90/10) tip was immersed into a liquid film on the surface. 
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Typically, 100 mV bias voltage and tunneling current setpoints around 70 pA were used for image 

acquisition. Examples of the self-assemblies observed are depicted in figure A1.9. 

 

 
 

Figure A1.9: STM topographs of 1-decanol self-assembly on flame annealed Au(111) substrates. The 

images above depict a boundary between two rotational domains (54.7°) of the 1-decanol monolayer. 

Some unidentified (dirt) particles are also present. Images below depict: left hand side: ordered alcohol 

molecules on terraces of the gold surface; center: details of ordered rows of molecules; right hand side: 

tentative model of the molecular assembly. Intermolecular hydrogen bonds are the main driving force 

for the self-assembly.
191
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Appendix 2 

 

Stepwise Assembly Scheme and Evaluation of Formation Probabilities for Two 

Different Polymorphs from TCBPB 

 

Figure A.1 presents a step by step (molecule by molecule) assembly scheme for the formation 

of ensembles leading to the formation of oblique-I (L), displaced chickenwire (D), or none of both 

(X). Every tripod represents a TCBPB molecule. Notice that an ensemble is not yet a stable nucleus, 

but an aggregate of molecules with pre-defined relative positions. An ensemble can be converted into 

a stable nucleus only if it becomes thermodynamically stable. The relationships between L, D and X 

are given in table 3.2 (chapter 3), reproduced here. 

 

 

 

 

Table 3.2: Relationships found among TCBPB ensembles at the 1
st
, 2

nd
, 3

rd
, and 4

th
 

step of their formation. Only ensembles leading to the formation of oblique-I, 

displaced chickenwire, or none of both were considered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ensemble 

formation 

step 

Number 

of 

molecules 

involved 

Probabilistic relationships 

Ensembles 

leading to 

oblique-I 

Ensembles leading 

to displaced 

chickenwire 

Ensembles 

unable to lead to 

any of both 

1
st
 2 1 1 0 

2
nd

 3 2 1 0 

3
rd

 4 3 1 0.4 

4
th

 5 4 1 2.3 
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Figure A2.1: Step by step assembly scheme for the formation of ensembles leading to the formation 

of oblique-I (L), displaced chickenwire (D), or none of both (X). 
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Calculation of the formation probabilities of the arrangements presented in table 3.2: 

 

Notation: 

      (A:B:C) 

 

 

 

 

 

Calculation procedure: 

 

1
st
 step: There are 6 possible ensemble configurations; 3 of them being geometrically equivalent. That 

reduces itself to 2 different dimeric configurations. The dimer is a common motif of both structures 

and does not preselect any polymorph. Hence, a dimer has the same chances to lead to both 

assemblies. So the chances are: 2  (1:1:0) = (2:2:0). It can be simplified to (1:1:0). 

 

2
nd

 step: Any of the two different dimers in the 1
st
 step yields the same number of possible ensembles 

in the second step, so only one half are calculated. The other half is made of mirror images. 

There are 8 possible ensembles originating from every dimeric configuration in the 1
st
 step: 4  a; 2  

b; and 2  c.  

a can yield both structures, hence it is labeled “D + L”; b and c can only yield oblique-I, thus they are 

labeled “L”. At this stage, there are no ensembles that lead to none of both (X). 

Therefore, the number of ensembles that can lead to L is 8, and those that can lead to D is 4. So, 

number of ensembles leading to L vs. number of ensemble leading to D = 2  (8:4:0) = (16:8:0). 

Simplifying: (2:1:0). 

 

3
rd

 step: Each of the 8 ensembles in the 2
nd

 step yields 10 ensembles in the 3
rd

. 

a yields 6 ensembles that can lead to L, 5 to D, and 1 to none (X). This relationship has to be 

multiplied by the number of possible a structures in the 2
nd

 step, which is 4, and the number of total 

structures in the first, which is 2. Hence for a: 4  2  (6:5:1) = (48:40:8).  

b yields only 10 ensembles that can lead to L, hence 2  2  (10:0:0) = (40:0:0).  

c forms 8 ensembles that can lead to L, and 2 that lead to none (X), hence 2  2  (8:0:2) = (32:0:8). 

Adding up all three ensembles gives: (48:40:8) + (40:0:0) + (32:0:8) = (120:40:16). 

 

This can be simplified to (15:5:2). For the ease of comparison with the previous relationships, it can be 

further simplified to (3:1:
5

2
), or (3:1:0.4). 

# ensembles 

leading to L. 

# ensembles 

leading to D. 

# ensembles leading 

to none of both (X). 
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4
th

 step: Every ensemble in the 3
rd

 step yields 12 ensembles in the 4
th
. For the evaluation of the 

probabilities in this step, those ensembles marked with X in the 3
rd

 step are not evaluated here. This is 

because they are supposed to already be ensembles unable to lead to L or D in the 4
th
 step. The fact 

that in hundreds of STM images of the self-assembly of TCBPB, not even one misplaced adsorbate 

was observed, as is depicted in the ensembles marked with X, can be understood on the basis of the 

reversibility of the self-assembly process: If an adsorbate is misplaced, it can be corrected by 

desorption and resorption of the same or other molecular adsorbates in the right position. This process 

implies going back one step, so the probabilities belong to the preceding step, and not to this step. 

However, taking or not into consideration the probabilities for further growth of X ensembles in the 4
th
 

step do not alter the final L:D ratio. The 4
th
 step is not graphically represented in figure A2.1. 

 

The majority of the 9 ensembles of the 3
rd

 step of a (not considering 1 X) yield 44 ensembles that can 

lead to L, 30 to D, and 38 to X. This relationship has to be multiplied by the number of possible a 

structures in the 2
nd

 step, and by the number of dimers in the first step. Thus for the 4
th
 step: 4  2  

(44:30:38) = (352:240:304).  

 

For the case of b, there are none X ensembles in the 3
rd

 step. There are 84 ensembles that can lead to 

L, and 36 to X. There are none that can lead to D. This relationship is multiplied by the number of 

possible b structures in the 2
nd

 step, which are 2, and by the number of dimers in the first step. Hence 

for this step: 2  2  (84:0:36) = (336:0:144). 

 

The 3
rd

 step of c has 2 ensembles marked as X, so they are not counted in the following evaluation. 

There are in total 68 ensembles that can lead to L, 28 to X, and none to D. Thus, multiplying by the 

number of possible c structures in the second step, and again by those in the first step, gives the 

following result: 2  2  (68:0:28) = (272:0:112). 

 

Adding up gives: (352:240:304) + (336:0:144) + (272:0:112) = (960:240:560). 

Simplifying: (4:1:
3

1
2 ). 

For the ease of comparison with the previous relationships: (4:1:2.3) 
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Table A2.1: Relationships found in table 3.2, given in %, and calculated 

only for ensembles leading to oblique-I and to displaced chickenwire. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A2.2: Graphical representation of the probabilities given in table A.1. 

Evaluated from n = 2 up to the 7
th
 formation step ( n = 8), calculated using equation 

3.8. Blue = oblique-I; red = displaced chickenwire. It can be observed that the 

probability of forming oblique-I approaches asymptotically the 100% value; whereas 

for displaced chickenwire, it approaches the zero line. 

  

 
 

 

 

Ensemble 

formation 

step 

Number 

of 

molecules 

involved 

Probabilistic relationships 

Ensembles 

leading to 

oblique-I 

Ensembles leading 

to displaced 

chickenwire 

1
st
 2 50 50 

2
nd

 3 66.7 33.3 

3
rd

 4 75 25 

4
th

 5 80 20 
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