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1. EINLEITUNG 

 

1.1 Epidemiologie und Definition der Atherosklerose 

Bereits seit Jahren wird die Todesursachenstatistik - laut statistischem Bundesamt – von 

Herz-Kreislauferkrankungen angeführt. Im Jahr 2010 starb in der Bundesrepublik 

Deutschland von allen Gestorbenen fast jeder zweite (41,1%) an den Folgen einer Herz-

Kreislauferkrankung. In den entwickelten Ländern sind sie für mehr als 40% der Mortalität 

und für einen Großteil der Morbidität jenseits des 50. Lebensjahres verantwortlich 

(www.americanheart.org). Im Vergleich dazu wurde nur bei jedem viertem Sterbefall 

(25,3%) eine bösartige Neubildung als Todesursache ausgemacht (Bundesamt 2010).  

Diese Zahlen machen schnell klar, wie wichtig das Verständnis dieser häufigen 

Erkrankung ist, wobei der Komplex der Herz-Kreislauferkrankungen als eine 

Folgeerscheinung bzw. Komplikation der Atherosklerose begriffen werden muss. 

Der Begriff der Atherosklerose wurde erstmals von Jean Lobstein, einem deutsch-

französischen Chirurgen im Jahre 1829 verwendet (Lobstein 1833) und später von 

Marchand  (Marchand 1904) wieder aufgegriffen. Ursprünglich stammt das Wort aus dem 

Griechischen („athära“ = Grütze, „skleros“ = hart).  

Die Atherosklerose ist eine chronisch progrediente, fokale oder diffuse Veränderung der 

Arterienwand, die von der Gefäßintima ausgeht.  

Häufig wird der Begriff der Atherosklerose als Synonym für die Arteriosklerose benutzt. 

Letztere ist aber weniger spezifisch und beschreibt ganz allgemein die Verhärtung von 

Arterienwänden wie z.B. auch die kalzifizierende Mediasklerose oder die proliferative und 

hyaline Verhärtung der Wände kleiner Arterien und Arteriolen. Die fortgeschrittene 

Atherosklerose ist durch typische atheromatöse Läsionen gekennzeichnet, die auch als 

Atherom oder atherosklerotischer Plaque bezeichnet werden. Diese manifestieren sich 

besonders an Prädilektionsstellen mit hämodynamischer Belastung (Millonig, Niederegger 

et al. 2001).  
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1.2 Aufbau der Arterienwand 

Um die Pathogenese der Atherosklerose zu verstehen, muss man sich zunächst den Aufbau 

einer Arterienwand verdeutlichen. Diese besteht aus drei konzentrischen Schichten, die je 

nach Arterientyp unterschiedlich ausgeprägt sind:  

- Tunica intima, kurz Intima  

- Tunica media, kurz Media  

- Tunica adventitia, kurz Adventitia  

Die Atherosklerose ist vor allem eine Erkrankung der Intima, welche das Arterienlumen 

auskleidet und aus Gefäßendothel, einer dünnen Membran aus Kollagen und feinen, 

netzförmigen elastischen Fasern besteht.  

Die Media hingegen besteht aus langen ringförmig verlaufenden glatten 

Gefäßmuskelzellen und elastischen Faserlamellen. Je nach Arterientyp sind Muskelzellen 

und Faserlamellen unterschiedlich stark ausgeprägt. Die sich nach außen anschließende 

Adventitia setzt sich aus einem kollagenen und elastischen Netz zusammen, deren 

Bindegewebe nahtlos in das Bindegewebe der Umgebung übergeht.   
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1.3 Die Atherogenese 

Es gibt eine Vielzahl an Hypothesen zur Atherogenese, die sich nur schwer zu einer 

widerspruchsfreien Gesamthypothese zusammen fassen lassen. Dies zeigt, dass sich die 

Atherogenese wohl kaum durch einen einzigen pathogenetischen Prozeß erklären lässt. 

Carl von Rokitansky fand 1827 in der Gefäßwand von Arterien abgelagerte Cholesterin-

Granula und postulierte, dass die so gebildeten weichen Plaques rupturieren können und zu 

weiteren Fibrinauflagerungen führen. Die so entstandene Entzündungsreaktion war für ihn 

dabei von sekundärer Bedeutung. Für seinen Zeitgenossen und größten Kritiker Rudolf 

Virchow war hingegen die Entzündungsreaktion die primäre Ursache für die Entstehung 

der Atherosklerose. Eine entzündliche Verletzung der Arterienwand induziert laut Virchow 

eine zelluläre Proliferation, wobei Plaques entstehen, die anschließend von Plasmalipiden 

durchtränkt werden (Mayerl, Lukasser et al. 2006). Ein modernes Model der Atherogenese 

ist die Response to injury Hypothese. Eine Endothelschädigung führt zur Ablagerung von 

Thrombozyten, die PDGF (Platelet Derived Growth Factor) sezernieren, was wiederum zur 

Proliferation der Gefäßmuskelzellen in der Intima führt. Dabei entsteht eine Kollagen-

Proteoglykan-Matrix, die eine Einlagerung von LDL Makrophagen begünstigt. Es kommt 

zur Bildung von Schaumzellen und somit zur Progression der Atherosklerose.  

 

Abb. 1: nach Wick et al., American Heart Journal, 1999 (Wick, Perschinka et al. 1999) 
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Ein möglicher Auslöser für eine Endothelschädigung kann eine virale oder bakterielle 

Infektion sein und somit zur Atherosklerose führen. Bereits mehrfach ist postuliert worden, 

dass bei der Entstehung der Atherosklerose Autoimmunprozesse eine wichtige Rolle 

spielen (Ross 1993; Wick, Perschinka et al. 1999). Die Grafik von Wick et al. (Abbildung 

1) verdeutlicht wie verschiedene Antigene bzw. Stressoren wie z.B. oxidiertes LDL 

(oxLDL) zu einer Immunantwort führen, Autoantikörper gegen Hitzeschock-Proteine 

(HSP) gebildet werden und es so zu einer Endothelzell-Schädigung kommt. Auch Weis et 

al. konnte nachweisen, dass oxLDL, HSP und Hypoxie zu einer Veränderung der 

Endothelfunktion führen (Weis, Schlichting et al. 2002).  
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1.4 Risikofaktoren der Atherosklerose 

Schon lange ist bekannt, dass die klassischen Risikofaktoren die Entstehung der 

Atherosklerose begünstigen, wobei das Risiko einer beschleunigten Atherogenese bei 

mehreren gleichzeitig vorliegenden Risikofaktoren steigt. Das gemeinsame Auftreten 

bestimmter Risikofaktoren wurde als metabolisches Syndrom beschrieben (Vaidya, Szklo 

et al. 2007). Hierzu gehören: Hypertonie, Adipositas, Lipidstoffwechselstörungen und 

Insulinresistenz/Diabetes mellitus Typ II. Tiefenbacher und Kreuzer haben diese vier 

Risikofaktoren als „tödliches Quartett“ beschrieben, um ihre Bedeutung hervorzuheben 

(Tiefenbacher and Kreuzer 2003).  Allerdings werden diese klassischen Risikofaktoren 

ergänzt durch einen bestimmten klinischen Phänotyp, verschiedene biochemische Marker 

und genetische Polymorphismen. Sowohl die klassischen, als auch die neuen 

Risikofaktoren führen zu einer endothelialen Dysfunktion.  

 

1.4.1 ADMA – ein Marker der endothelialen Dysfunktion 

Es konnte gezeigt werden, dass der oben genannte Mechanismus durch den endogenen 

Inhibitor der Stickstoffmonoxid (NO) – Synthetase (NOS), dem asymmetrischen 

Dimethylarginin (ADMA) vermittelt wird.  

Die NOS ist ein Enzym, das die Oxidation von L-Arginin in Citrullin und NO katalysiert. 

NO ist der potenteste bekannte endogene Vasodilatator, inhibiert die Thrombozyten-

Aggregation, reduziert das Anhaften der Leukozyten am Endothel und supprimiert die 

Prolifertation vaskulärer glatter Gefäßmuskelzellen (Cooke and Dzau 1997). In 

Tiermodellen konnte gezeigt werden, dass Änderungen der vaskulären NO-Synthese die 

Progression der Atherosklerose und die Restenose-Rate deutlich beeinflussen (Cooke, 

Singer et al. 1992; Candipan, Wang et al. 1996). Diese experimentellen Beobachtungen 

weisen darauf hin, dass die NOS eine wichtige Rolle in der Atherogenese spielt.  

Die Bedeutung des Inhibitors dieses Enzyms – ADMA – wurde erstmals von Vallance 

(Vallance, Leone et al. 1992) bei Patienten mit chronischem Nierenversagen untersucht. In 

weiteren Studien konnte gezeigt werden, dass das Vorhandensein der  bereits genannten 

Risikofaktoren, wie z.B. Hypertonus, Alter, Diabetes mellitus und Hypercholesterinämie 

mit erhöhten ADMA-Spiegeln positiv korreliert (Miyazaki, Matsuoka et al. 1999). Durch 
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eine Akkumulation von ADMA wird die vasodilatatorische Funktion des Endothels 

gehemmt (Cooke 2004).  

 

1.4.2 oxLDL in der Atherosklerose  

In vitro Experimente konnten zeigen, dass die Transmigration und Adhäsion deutlich 

gesteigert ist, nachdem Endothelzellen (EZ) Hypoxie, oxLDL (oxidiertes low density 

lipoproteine) und TNF-α (tumor necrosis factor α) ausgesetzt waren (Weis, Schlichting et 

al. 2002).  

OxLDL hat aber nicht nur einen Einfluss auf die Endothelfunktion. Es ist nachgewiesen, 

dass oxLDL die Atherogenese auch beschleunigt, indem es als Auto-Antigen zu einer 

verstärkten Ausreifung von DZ führt und die Akkumulation von Schaumzellen fördert 

(Alderman, Bunyard et al. 2002; Weis, Schlichting et al. 2002; Nickel, Schmauss et al. 

2009).  

Zu einer Anhäufung von oxLDL kommt es, wenn LDL-Cholesterin im subendothelialen 

Raum akkumuliert, mit Proteoglykanen der Intima interagiert, von ansässigen 

Immunzellen über Scavenger-Rezeptoren aufgenommen wird und von der 15-

Lipoxigenase zu oxLDL oxidiert wird. Die im oxLDL vorhandene Arachnidonsäure 

katalysiert die Bildung von Radikalen und führt so zu einer direkten Zellschädigung 

(Alderman, Bunyard et al. 2002; Nickel, Schmauss et al. 2009).  

In Patienten mit akutem Koronarsyndrom (ACS) konnten im atherosklerotischen Plaque 

und im Serum erhöhte oxLDL-Spiegel gemessen (Ehara, Ueda et al. 2001) und oxLDL-

spezifische T-Zellen und Autoantikörper nachgewiesen werden (Hansson 2005). Somit 

konnte gezeigt werden, dass es auch zu einer systemischen Veränderung des oxLDL-

Gehaltes bei Patienten mit Atherosklerose kommt.  

Somit führen also verschiedene Faktoren zu einem gemeinsamen Endpunkt: der 

Plaqueformation und –progression, der Atherogenese.  
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1.5 Dendritische Zellen 

Dendritische Zellen (DZ) bilden eine sehr heterogene Gruppe von Zellen, die sich in vielen 

Punkten unterscheiden, wie z.B. in ihren Oberflächenmolekülen, der anatomischen 

Lokalisation, dem Reifestadium und schließlich auch in ihrer Funktion. Wie alle Zellen des 

Knochenmarks stammen DZ von CD34
+ 

- Stammzellen ab, wandern über den Blutstrom in 

das Gewebe ein und haben dabei eine Art Sentinel-Funktion (engl.: sentinel = Wächter) 

inne (McColl 2002). In diesem zunächst unreifen Stadium können sie Antigene 

phagozytieren, diese innerhalb endozytischer Vesikel prozessieren und über MHC-II-

Moleküle präsentieren. Währenddessen reifen DZ aus und verändern sich dabei auch in 

ihrer Morphologie. So verlieren sie einerseits ihre Phagozytose-Rezeptoren, andererseits 

werden verschiedene Co-Faktoren wie CD40, CD58, CD80 und CD83 hochreguliert 

(Banchereau and Steinman 1998; Banchereau, Briere et al. 2000). Letzterer gilt als 

charakteristischstes Merkmal maturer DZ (Prechtel and Steinkasserer 2007) und hat 

sowohl immunstimulierende als auch immuninhibierende Fähigkeiten.  

Als mature DZ wandern sie zu drainierenden Lymphknoten und präsentieren hier die 

Antigene den CD4
+
-T-Zellen. Nur DZ sind in der Lage T-Zellen zu primen und eine 

spezifische Immunantwort zu induzieren. Somit sind DZ die potentesten Antigen-

präsentierenden-Zellen (APZ) (Banchereau, Briere et al. 2000). Die Interaktion zwischen 

DZ und T-Zellen wird durch T-Zell-Rezeptoren vermittelt. Die Effizienz dieser 

„immunologischen Synapse“ ist allerdings unter anderem von membrangebunden 

Liganden – wie z.B. CD83 – abhängig (Prechtel and Steinkasserer 2007).  

Auch wenn DZ viele Gemeinsamkeiten haben, unterscheidet man verschiedene Subtypen 

in Abhängigkeit von ihren immunologischen Aufgaben, ihrer Lokalisation und ihrem 

Ursprung (Li, McNamara et al. 1996; Naik, Sathe et al. 2007; Shortman and Naik 2007). 

Alle DZ haben ihren Ursprung im Knochenmark als hämatopoetische Stammzelle, weshalb 

man lange dachte, dass alle DZ myeloiden Ursprungs sind. Inzwischen konnten aber einige 

Studien zeigen, dass residente DZ im lymphatischen Gewebe verschiedene Marker 

exprimieren, die nur mit lymphatischen Zellen assoziiert werden, wie z.B. CD8α, CD4, 

CD2 und CD25 (Vremec, Zorbas et al. 1992), aber keine typisch myeloiden Marker 

exprimieren. Mittels Transkriptionsfaktoren und Zytokinen können sich DZ in zwei 

verschiedene Populationen differenzieren: myeloide DZ (mDZ) und lymphoide DZ, die 

wegen ihres Aussehens auch plasmazytoide DZ (pDZ) genannt werden. In einer Arbeit von 

Dzionek et al. (Dzionek, Fuchs et al. 2000) konnte gezeigt werden, dass der Oberflächen-
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Marker BDCA-1 (blood dendritic cell antigen 1) nur auf mDZ und BDCA-2 (blood 

dendritic cell antigen 2) exklusiv auf pDZ exprimiert wird.  

Allerdings gibt es noch eine Vielzahl an weiteren membranständigen Rezeptoren, die je 

nach Aktivierungszustand der Zelle exprimiert werden und so die Zelle zu verschiedenen 

Stellen im Körper leiten können. Als Ligand für diese membranständigen Rezeptoren 

dienen eine Reihe von Proteinen, die sogenannten Chemokine, die die Grundlage für die 

Migration DZ sind.  
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1.6 Chemokine 

Chemokine sind kleine, chemotaktische Proteine mit einem Molekulargewicht von bis zu 

14 Kilodalton (kDa), einer Peptidlänge von 70 bis 130 Aminosäuren und interagieren über 

einen G-Protein gekoppelten Transmembranrezeptor. (Greaves and Schall 2000; Rossi and 

Zlotnik 2000; Zernecke, Shagdarsuren et al. 2008) 

Gemein ist allen Chemokinen, dass sie zirkulierende Leukozyten zu den verschiedenen 

Inflammationsherden im Körper rekrutieren können (Charo and Ransohoff 2006) und 

somit unter anderem zur Wundheilung, der TH1-/TH2-Entwicklung, der Entwicklung 

lymphoider Organe, der Angiogenese und schließlich auch zur Atherogenese beitragen 

können (Abbildung 2) (Zlotnik, Morales et al. 1999; Greaves and Schall 2000; Rossi and 

Zlotnik 2000; Szekanecz and Koch 2001; Charo and Ransohoff 2006).  

 

 

Abb.2: nach Rossi et al., Annu. Rev. Immunol., 2000 (Rossi and Zlotnik 2000) 

 

Allerdings erfolgt eine Einteilung der Chemokine nicht nach den oben genannten Kriterien, 

sondern nach ihrer chemischen Struktur. So leitet sich die systematische Nomenklatur aus 

der Anzahl und Position der Cysteinreste am Amino-Terminus ab, wodurch sich vier 

Untergruppen unterscheiden lassen (Mantovani 1999; Zlotnik, Morales et al. 1999; Koenen 

and Weber 2011).  

Die α- oder CXC-Chemokine haben zwischen ihren Cystein-Bausteinen eine Aminosäure, 

wohingegen die CC-Chemokine (oder β-Chemokine) keine Aminosäure zwischen sich 

binden und über eine Disulfidbrücke miteinander verbunden sind.  

Die Nomenklatur der Chemokin-Rezeptoren, die sich auf einer Vielzahl von Zellen 

wiederfinden lassen, richtet sich nach den Chemokinen. Das L für Ligand wird durch ein R 
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für Rezeptor ersetzt und die Nummerierung ist auch hier wieder fortlaufend, allerdings 

nicht simultan zu den Chemokinen.  

Chemokine binden an einen Sieben-Transmembran-G-Protein gekoppelten Rezeptor. An 

einen Rezeptor können mehrere Chemokine mit unterschiedlicher Affinität als Liganden 

binden oder ein Ligand an mehrere unterschiedliche Rezeptoren. Das Mantovani-Model 

besagt, dass bei Vorhandensein mehrerer Chemokine ein additiver Effekt entsteht und eine 

exponierte Zelle somit auf einen Reiz differenzierter reagiert (Mantovani 1999; Greaves 

and Schall 2000). So bindet z.B. der Rezeptor CCR1, der auf T-Zellen, Monozyten, 

Eosinophilen und Basophilen zu finden ist, gleich elf verschiedene Chemokine. Umgekehrt 

kann das Chemokin CCL6 an die Rezeptoren CCR1, CCR3 und CCR5 binden und ist 

somit ein Ligand für viele Zellen des Immunsystems.  
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1.7 Interaktion zwischen Chemokinen und Dendritischen Zellen 

Aus funktioneller Sicht muss man zwischen homöostatischen und inflammatorischen 

Chemokinen unterscheiden. Letztere werden akut bei Krankheit oder Verletzung im 

betroffenen Gewebe synthetisiert, um so z.B. eine zielgerichtete Bewegung von 

Neutrophilen, Monozyten und unreifen DZ an den Ort der Verletzung zu dirigieren. Es 

konnte gezeigt werden, dass bei Anwesenheit des bakteriellen Endotoxins 

Lipopolysaccharid (LPS) bestimmte Chemokine von den Endothelzellen (EZ) am Ort der 

Verletzung sofort stark hochreguliert werden und somit Neutrophile und Monozyten 

angelockt werden (Greaves and Schall 2000).  

Doch nicht nur das Endothel ist ein Syntheseort für Chemokine. Angelockte oder bereits 

vor Ort befindliche Makrophagen produzieren ihrerseits Chemokine bzw. Interleukine 

(Steinman, Witmer-Pack et al. 1993). 

Über CCR6 und weitere Rezeptoren können zirkulierende unreife DZ die Liganden binden, 

an die Entzündungsstelle wandern und dort die Antigene aufnehmen (Vecchi, 

Massimiliano et al. 1999; Vanbervliet, Homey et al. 2002). Unreife DZ phagozytieren die 

Antigene und präsentieren sie anschließend über MHC-II-Moleküle an ihrer Oberfläche. 

Dabei maturieren DZ und verändern ihr Oberflächenprofil, indem die Expression der 

inflammatorischen Chemokin-Rezeptoren vermindert wird.  

Allerdings können DZ nicht nur – je nach Reifestadium - auf unterschiedliche Chemokine 

reagieren, sondern selbst auch Chemokine produzieren. So gibt es einerseits Chemokine 

die von DZ konstitutiv exprimiert werden. Andererseits werden die inflammatorischen 

Chemokine, z.B. CCL19/MIP-3β, CCL21/SLC hingegen erst nach Zugabe von LPS, TNFα 

oder einem Pathogen synthetisiert. Diese Chemokine wirken nun ihrerseits wieder auf 

weitere Zellen des Immunsystems, wie z.B. B- und T-Lymphozyten (Allavena, Sica et al. 

2000). 

Loetscher et al. haben bereits 1994 festgestellt, dass die meisten Gene für 

Chemokinrezeptoren konstitutiv exprimiert werden und immer auf der Zelloberfläche 

gefunden werden können. Eine verstärkte oder verminderte Expression erfolgt je nach 

Reifung der DZ (Loetscher, Geiser et al. 1994).  

Homöostatische Chemokine, oder auch lymphatische Chemokine genannt, werden 

überwiegend in lymphatischen Organen exprimiert und spielen hier eine wichtige Rolle bei 

der Aufrechterhaltung lymphoider Organstrukturen, der Migration von Lymphozyten 

innerhalb des Thymus und auch der Migration DZ in sekundäre lymphatische Organe, wie 
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z.B. den Lymphknoten (Saeki, Moore et al. 1999; Ansel and Cyster 2001; Romani, 

Ratzinger et al. 2001).  

Bei der Reifung DZ kommt es zu einer Herunterregulation der inflammatorischen 

Chemokinrezeptoren und einer gleichzeitig verstärkten Oberflächenexpression des 

homöostatischen Chemokinrezeptors CCR7 (McColl 2002). Somit erlangt die DZ die 

Fähigkeit auf die Liganden CCL19/MIP-3β/ELC (ELC = EBI1 ligand chemokine) und 

CCL21/SLC (SLC = secondary lymphoid tissue chemokine, 6Ckine), die konstitutiv in den 

T-Zell-Zonen des sekundären lymphatischen Gewebes, im lymphatischen Endothel 

verschiedener Gewebe und in HEV (HEV = high endothelial venules) exprimiert werden, 

chemotaktisch zu antworten (Gunn, Tangemann et al. 1998; McColl 2002).  

Somit scheint also das Zusammenspiel zwischen der Herunterregulation inflammatorischer 

Chemokinrezeptoren einerseits und die verstärkte Expression homöostatischer Rezeptoren 

andererseits, notwendig für die Migration DZ zu drainierenden Lymphknoten.  

Diese These konnte auch durch in vivo Experimente verdeutlicht werden. So konnten 

Förster et al. bei CCR7-defizienten Mäusen keine Wanderung reifer DZ zum Lymphknoten 

feststellen. Wurden diese Mäuse mit anti-CCL21 Antikörpern behandelt, konnte keine 

Migration der Antigen-beladenen DZ zum Lymphknoten beobachtet werden (Forster, 

Schubel et al. 1999). Versuche mit plt-Mäusen (paucitiy of lymph node T cells), bei denen 

kein CCL19 und CCL21 nachweisbar sind, zeigten im Gegensatz zum Wildtyp eine um 

75% verringerte Migrationsrate von DZ zum Lymphknoten und innerhalb des 

Lymphknotens eine um bis zu 60% verringerte Anzahl an DZ (Mori, Nakano et al. 2001). 

Auch Studien mit ApoE
-
-defizienten Mäusen zeigten eine verringerte Expression von 

CCR7 als der Wildtyp. Gleichzeitig konnten sie eine verstärkte Atherogenese in den ApoE
-

-Mäusen nachweisen, die regredient war, wenn die Atherosklerose-Plaques in Wildtyp-

Mäuse transplantiert wurden (Trogan, Feig et al. 2006).  

Zusammenfassend wird deutlich, dass die CCR7/CCL21-Achse eine wesentliche Rolle im 

Migrationsverhalten der DZ - insbesondere auch im atheosklerostischen Plaque - spielt.  
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1.8 Die Rolle der DZ und ihrer Chemokine in der Atherosklerose 

Bobryshev identifizierte 1995 DZ in der Arterienwand, die vorwiegend entlang des 

Endothels in einer subendothelialen Schicht der Intima lokalisiert und auch in gesunden 

Arterien zu finden sind (Bobryshev and Lord 1995; Waltner-Romen, Falkensammer et al. 

1998; Bobryshev 2005). Da sich in der Intima das VALT (vascular-associated lymphoid 

tissue) befindet, welches als Analogon zum MALT (mucosa-associated lymphoid tissue) 

fungiert und DZ die Peripherie als Sentinels auf der Suche nach Antigenen durchwandern, 

ist es durchaus physiologisch T-Zellen, residente Makrophagen und DZ vorzufinden. 

Unreife DZ reagieren chemotaktisch auf Chemokine, welche vom Endothel synthetisiert 

werden und wandern in die Intima ein (McColl 2002).  

In der Intima einer gesunden Aorta finden sich in Regionen, die einem hohen 

hämodynamischen Stress ausgesetzt sind, mehr vaskuläre DZ, wobei sie sich als Cluster in 

der subendothelialen Schicht formieren (Lord and Bobryshev 1999). Bei einer verstärkten 

Scherspannung, welche in Regionen mit erhöhter Flussgeschwindigkeit zu messen ist 

(Hagihara, Higuchi et al. 2004), können Thrombozyten eine DZ-Maturation induzieren, 

indem sie Chemokine produzieren. Somit tragen auch Thrombozyten zur vaskulären 

Dysfunktion mit neointimaler Hyperplasie und Atherosklerose bei (Koenen and Weber 

2010).  

Bereits bei gesunden Kindern kommt es zu einer vermehrten Anzahl DZ in der Intima in 

Regionen mit erhöhter Flussgeschwindigkeit (Millonig, Niederegger et al. 2001). In einer 

normalen, atherosklerosefreien Intima finden sich in der Nähe des Endothels 

niedrigdifferenzierte vaskuläre DZ. Bereits in frühen Stadien der Atherosklerose ist eine 

verstärkte Aktivierung der DZ zu beobachten. Bei einer fortgeschrittenen 

atherosklerotischen Läsion wandern in den Plaque zusätzlich zu den bereits vorhandenen 

vaskulären DZ, zirkulierende DZ ein (Bobryshev and Lord 1998; Bobryshev 2000). Die 

Adhäsion von DZ und ihre Migration werden moduliert durch Veränderungen der 

Endothelfunktion. Desweiteren konnte bereits gezeigt werden, dass in einer stabilen 

Plaqueregion weniger DZ zu finden sind, als in instabilen Regionen (Yilmaz, Lochno et al. 

2004) 

 



Dendritische Zellen in der Atherosklerose  18 

1.9 Fragestellung und Ziel der Arbeit 

Ziel dieser Arbeit war es die Maturierung von Dendritischen Zellen (CD83), die 

Expression und Modulation des Homing-Rezeptors CCR7 (auf Dendritischen Zellen) und 

dessen Liganden CCL21 und CCL19 (exprimiert von Endothelzellen) im 

atherosklerotischen Plaque zu charakterisieren und die Relevanz proatherogener Faktoren 

zu bestimmen.  

Hierzu untersuchten wir zunächst in vivo die genannten Parameter in insgesamt 47 

humanen atherosklerotischen Plaques sowie im Serum dieser Patienten und korrelierten 

diese Daten mit 14 humanen atherosklerosefreien aortalen Gefäßabschnitten und dem 

Serum von 10 gesunden Probanden.  

Im zweiten Teil der Arbeit untersuchten wir in vitro den Einfluss der Stressfaktoren 

oxLDL und ADMA auf das Expressionsmuster von Dendritischen Zellen und humanen 

mikrovaskulären Endothelzellen.  

Folgende Fragestellungen wurden dabei konkret untersucht:  

 

- Haben klassische Risikofaktoren einen Einfluss auf das Homing der DZ bzw. deren 

relevantes Chemokin-Profil (CCR7, CCL19/21) im athersklerotischen Plaque?  

 

- Gibt es Hinweise auf eine Veränderung von CCR7 und dessen korrespondierenden 

Liganden CCL21 im athersklerotischen Plaque verglichen mit gesundem Gewebe? 

 

- Lassen sich anhand der Serumkonzentrationen von oxLDL, ADMA und löslichem 

CCL21 Rückschlüsse auf die Expression von CCR7 und CCL21 im Plaque 

schließen?  

 

- Können oxLDL und ADMA die Expression von CCR7 bzw. CCL21/19 auf DZ 

bzw. EZ beeinflussen? 
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2. MATERIAL 

 

2.1 Geräte 

Durchflußzytometer (FACScan):        BD Biosciences Pharmingen, Deutschland 

Zentrifugen:  

Centrifuge 5804    Eppendorf , Deutschland     

Rotina 46 R     Hettich Zentrifugen, Deutschland  

Mikro 22 R     Hettich Zentrifugen, Deutschland  

Chemilumineszenz Detektor   Tecan Genios Multireader, Tecan, Österreich 

PD10 Säule     Pharmacia, Österreich  

Floureszenzmikroskop   Zeiss, Deutschland 

Konfokales Mikroskop   Zeiss LSM 5, Deutschland   

Ultraschallgerät    Bandelin SonoPlus, Berlin, Deutschland 

Spektralphotometer    Eppendorf BioPhotometer 

ABI PRISMTM 7700 System  Applied Biosystems, Deutschland 

 

2.2 Chemikalien 

2.2.1 Substanzen für Zellkulturmedien und Immunfluoreszenz 

MCDB 131 Medium    c.c.pro GmbH, Neustadt, Deutschland 

Fetales Kalbserum (FCS)   Biochrom AG, Berlin, Deutschland 

L-Glutamin     Biochrom AG, Berlin, Deutschland 

Penicillin/Streptomycin   Biochrom AG, Berlin, Deutschland 

VLE RPMI-1640    Biochrom AG, Berlin, Deutschland 

Ham´s F-10 Medium    Biochrom AG, Berlin, Deutschland 

Hydrokortison     Sigma GmbH, Taufkirchen, Deutschland 

epidermaler Wachstumsfaktor  Sigma GmbH, Taufkirchen, Deutschland 

Mowiol Einbettmedium   Calbiochem, San Diego, USA 

4′,6-Diamidino-2-phenylindol (DAPI) Vector Laboratories, Kalifornien, USA 
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2.2.2 Antikörper  

CD1c (BDCA1)    Miltenyi Biotech, Deutschland 

CD83 FITC      Becton Dickinson, Heidelberg, Deutschland  

CD 303 (BDCA2)     Miltenyi Biotech, Deutschland 

Anti-goat IgG      R&D Systems, Minneapolis, USA  

CCL19     R&D Systems, Minneapolis, USA 

CCL21     R&D Systems, Minneapolis, USA 

von Willebrandt Faktor (Clone F8/86) Dako Cytomation, Hamburg, Germany 

Anti-Mouse PE    BD Biosciences Pharmingen, Deutschland  

α-PECAM-Cy3    BD Biosciences Pharmingen, Deutschland 

 

2.2.3 Zytokine 

Granulocyte-Macrophage-Colony-  Pepro Tech Inc., Tebu Bio, USA 

Stimulating-Factor (GM-CSF) 

IL-4, rekombinant    Pepro Tech Inc., Tebu Bio, USA 

 

2.2.4 Lösungen 

FACS Puffer     eigene Herstellung,  

NaN3                                                    Sigma-Aldrich Chemie GmbH, Deutschland 

Bovines Serum Albumin (BSA)  Sigma-Aldrich Chemie GmbH, Deutschland                                   

Rabbit-Serum     eigene Herstellung 

 

2.3 Sonstige Substanzen und Kits 

Alkalinphosphatase      DAKO Cytomation, Hamburg, Germany 

Ficoll Paque Plus    GE Healthcare Bio-Sciences AB, Schweden  

-Globuline     Octapharma Deutschland GMBH 

PBS Dulbecco     Biochrom AG, Berlin, Deutschland 

Cholesterin Assay    Boehringer Mannheim, Deutschland 

Limulus amoebocyte lysate Assay  Labortechnik Peter Schultz, Deutschland 

Kinetic-QCL-Test    BioWhittaker, Deutschland 
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RNAeasy RNA Isolierungskit  Qiagen, Hilden, Deutschland 

On-Column DNase Digestion  Qiagen, Hilden, Deutschland 

Omniscript     Qiagen, Hilden, Deutschland 

Omniscript Reverse Transcription  Qiagen, Hilden, Deutschland 

SYBER green primers   Qiagen, Hilden, Deutschland 

ELISA-Kit     Immundiagnostik, Hamburg, Deutschland 

Methanol     Merck, Darmstadt, Deutschland 

Ethanol     Merck, Darmstadt, Deutschland  

Aceton      Merck, Darmstadt, Deutschland 

Peroxid     Merck, Darmstadt, Deutschland 

Chloroform     Merck, Darmstadt, Deutschland  

DAKO pen     Dako, Kalifornien, USA 
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3. Methoden 

 

3.1 In vivo 

3.1.1 Studiendesign 

3.1.1.1 Ethikantrag 

Zu Beginn wurde den Mitgliedern der Ethikkommission (EK) der Medizinischen Fakultät 

der Ludwig-Maximilians-Universität die Studie (Projekt-Nr.: 342-06) zur Prüfung 

vorgelegt und die ethisch-rechtliche Unbedenklichkeit zuerkannt. Die schriftliche 

Aufklärung bestand aus Patienteninformation und Einverständniserklärung, die jeweils den 

Kopfbogen der Klinik, Name und Telefonnummer des verantwortlichen Arztes und den 

vollständigen Titel der Studie tragen. Die Studie ist auf einer DIN A4 Seite unter 

Vermeidung von Fachausdrücken erklärt, wobei explizit darauf hingewiesen wird, dass 

dem Patienten kein zusätzliches Material entnommen wird, sondern nur das Gewebe 

Verwendung findet, welches nicht zur weiteren Diagnostik notwendig ist und deshalb 

verworfen werden würde. Der datenschutzrechtliche Passus entspricht den Richtlinien der 

EK und die Patienten wurden darauf hingewiesen, dass sie jederzeit ohne Angabe von 

Gründen von der Studienteilnahme zurücktreten können. Am Ende der 

Einverständniserklärung ist eine Unterschriftenzeile sowohl für den Patienten als auch für 

den aufklärenden Arzt vorgesehen. Ein Anamnesebogen wurde erstellt, um eine 

ausführliche Medikamentenliste zu erstellen und die Risikofaktoren zu erfassen 

(Anamnesebogen, Patienteninformation und Einverständniserklärung siehe Anhang, Punkt 

9).  

 

3.1.1.2  Patientenrekrutierung 

Im September 2006 wurde mit der Rekrutierung der Patienten begonnen und wurde ein 

Jahr später im Mai 2008 abgeschlossen. Insgesamt wurden 47 Patienten in die Studie 

eingeschlossen, die sich in der chirurgischen Klinik des Universitätsklinikums München-

Großhadern zur elektiven Thrombendarteriektomie (TEA) bei hochgradiger 

atherosklerotischer Stenose der Arteria carotis interna (ACI) vorstellten. Die Indikation zur 
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TEA wurde bei zerebral symptomatischen Patienten bei einer Stenose der ACI von 70% 

und bei asymptomatischen Patienten bei einer Stenose von 85% sonographisch gestellt. Als 

Ausschlusskriterium galt eine floride, maligne Erkrankung oder Autoimmunerkrankung. 

 

3.1.2 Isolierung und Präzipitation von RNS  

3.1.2.1 Isolierung und Präzipitation von RNS aus Gewebe 

Die RNS aus dem Plaquegewebe wurde mittels „RNAeasy RNA Isolierungskit“ (Qiagen, 

Hilden) gemäß den Angaben des Herstellers isoliert und präzipitiert. Es ist darauf zu 

achten, nicht mehr als 100 mg Gewebe zu verwenden, um keine verfälschten Ergebnisse zu 

erhalten. Nach dem Schneiden in möglichst kleine Teile wurde 1 ml QIAzol Lysis Reagenz 

hinzugegeben, anschließend in einem Rotor (Rotina 46 R, Hettich Zentrifugen, 

Deutschland) homogenisiert und für fünf Minuten bei Raumtemperatur stehen gelassen. 

Um die anschließende Phasentrennung zu ermöglichen, wurden 200 µl Chloroform 

hinzugegeben, für einige Sekunden stark geschüttelt und schließlich wieder für zwei bis 

drei Minuten bei Raumtemperatur stehen gelassen. Anschließend wurde das Homogenisat 

bei 12000 x g für 15 Minuten bei 4°C zentrifugiert, wobei sich drei Phasen ergaben: Eine 

obere, farblose, wässrige Phase, die RNS enthält, eine milchige Zwischenphase, bestehend 

aus DNS und schließlich eine untere, organische Phase. Die wässrige Phase (ca. 600µl) 

wurde in ein neues Eppendorfgefäß überführt und mit dem gleichen Volumen Ethanol 

(70%) versetzt, um die RNS auszufällen. Der Probe wurde 700µl entnommen, in die 

„RNeasy Mini Spin Column“ gegeben und bei Raumtemperatur für 15 Sekunden bei 8000 

x g zentrifugiert. Nach Zugabe von 700 µl Kit-Puffer wurde der Zentrifugierungsschritt 

wiederholt. Zwar filtern die „Mini Spin Column“ die RNS bereits gut heraus, doch um den 

Reinheitsgrad noch zu erhöhen wurde DNase nach Angaben des Herstellers hinzugegeben 

(„On-Column DNase Digestion with RNase-free DNase“-Set von Qiagen, Kat. #: 79254). 

Die Probe wurde in ein neues 2 ml Gefäß überführt. Auf die Säule wurden 500 µl Kit-

Puffer pipettiert und wieder für 15 Sekunden bei 8000 x g zentrifugiert. Um die RNS stabil 

zu lagern wurde sie bis zur Weiterverarbeitung bei -20°C unter Ethanol aufbewahrt. Die 

Ausbeute an Gesamt-RNS lag pro 10
6
 Lymphozyten bei durchschnittlich 1 µg RNS.  
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3.1.2.2 Isolierung und Präzipitation von RNS aus peripherem Blut 

Zunächst wurden aus den 50ml Blutproben der Patienten die mononukleären Zellen durch 

einen Ficoll Dichtegradienten nach dem Protokoll von Boyum et al. (Boyum 1983) wie 

bereits beschrieben isoliert. Um anschließend aus den PBMZ die RNS zu isolieren, wurde 

das „RNAeasy Mini Kit“ (Kat. #: 74104) von Qiagen (Hilden, Deutschland) nach den 

Angaben des Herstellers verwendet.  

 

3.1.3 Bestimmung von Reinheit und Konzentration der RNS 

Die Ausbeute und Reinheit der RNA Präparationen wurde durch Messungen ihrer 

optischen Dichte (OD) bei 260nm in einem Spektralphotometer (Eppendorf 

BioPhotometer) bestimmt. Der Quotient der bei 260nm und 280nm (OD260/280) 

gemessenen Absorptionskoeffizienten der Nukleinsäurelösungen gibt Aufschluss über die 

Reinheit der Präparation. Bei sehr reinen RNS-Lösungen liegt der Quotient zwischen 1,9 

und 2,0. Eine OD260 entspricht 37 µg/ml RNS oder 20 µg/ml kurzkettiger Oligonukleotide 

(Sambrook and Gething 1989).  

Für die Sequenzierungen wurde die RNS-Konzentration der Proben durch Vergleich mit 

einer Referenz-RNS bekannter Länge und Konzentration (z.B.: 1 kb-Ladder, RNA-Mass 

Ladder) nach dem Elektrophoreselauf optisch abgeschätzt.  

 

3.1.4 Herstellung von cDNS aus RNS durch reverse Transkription 

Das Enzym Reverse Transkriptase kann RNS in DNS umschreiben. Für die reverse 

Transkription wurde die gesamte RNS eingesetzt. Als Primer für die Erststrangsynthese 

wurde Omniscript Reverse Transcription (Kat. #: 205113) von Qiagen (Hilden, 

Deutschland) verwendet, mittels dessen die gesamte prozessierte mRNS in cDNS 

umgeschrieben werden konnte. Als Template wurde 1µg RNS verwendet. Folgendes 

wurde dabei jedem Ansatz zugesetzt:  
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Master mix Volume/reaction Final concentration 

10x Buffer RT 2µl 1x 

dNTP Mix 2µl 0,5mM pro dNTP 

Oligo dT primer (µM) 2µl 1µM 

RNase Inhibitor (10 U/µl) 1µl 10U 

Omniscript RT 1µl 4U 

Tabelle 1: Übersicht der verwendeten Substanzen für die Herstellung von cDNS 

 

Der gesamte Ansatz wurde für eine Stunde bei 37°C inkubiert. Anschließend wurde die 

reverse Transkriptase bei 70°C für 15 Minuten inaktiviert. Die cDNS wurde mit 80 µl H2O 

bidest auf 100 µl verdünnt und bis zur PCR bei -20°C gefroren. Für die anschließende 

PCR-Reaktion wurde 1 µl cDNS eingesetzt.  

 

3.1.5 Polymerase-Kettenreaktion (PCR) 

Die PCR wird eingesetzt, um einen kurzen, genau definierten Teil eines DNS-Stranges zu 

vervielfältigen. Dabei kann es sich um ein Gen oder auch nur um einen Teil eines Gens 

handeln oder auch um nicht kodierende DNS-Sequenzen. Es binden jeweils zwei 

Oligonukleotidstartermoleküle (Primer) in vitro an die komplementären DNS Stränge und 

flankieren so die zu amplifizierende Region in der Ziel DNS. Die vielfache Wiederholung 

des gleichen Reaktionszyklus von Denaturierungs-, Primeranlagerungs- und 

Polymerisationsschritten führt zu einer spezifischen, theoretisch exponentiellen 

Vermehrung des gewünschten DNS Fragments. Im Gegensatz zur DNS-PCR wird bei der 

RT-PCR (Reverse-Transkriptase-PCR) cDNS als Template verwendet. Dadurch konnte in 

dieser Arbeit die mRNS bestimmter Chemokine in Blut auf PBMZ und im Carotisplaque 

nachgewiesen werden. Um die cDNS zu amplifizieren wurde Omniscript (Kat. #: 205113) 

von Qiagen (Hildesheim, Deutschland) nach den Angaben des Herstellers verwendet. Als 

Primer wurden in der quantitativen RT-PCR die SYBER Green primers von Qiagen 

(Kat.#: 204143) hergenommen und im ABI PRISMTM 7700 System (Applied Biosystems, 

Deutschland) durchgeführt.  
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Master mix Volumen/Reaktion  

SYBER Green (Qiagen)              12,5µl 

Primer (Fow/rev)  1µl 

Rnase freies Wasser  10,5µl 

cDNA (~ 50 pg) 1µl 

Tabelle 2: Übersicht der verwendeten Substanzen für PCR 

 

Die initiale Denaturierung bei 95°C dauerte 15 Minuten. Der anschließende 

Reaktionszyklus lief wie folgt ab: 

 Zeit:  Temperatur: Anmerkung: 

Denaturierung: 15 Sek.   95°  

Annealing:  30 Sek.    60°     40 Zyklen 

Extension:       30 Sek.    72°  

Final extension:   10 Min.    72°   

Tabelle 3: Ablauf Reaktionszyklus 

Folgende Primersequenzen wurden analysiert:  

GAPDH 5´- CGG AGT CAA CGG ATT TGG TCG TAT-3´ 

5´- AGC CTT CTC CAT GGT GGT GAA GAC-3´ 

CCL19 5´- CTG TGA CCC AGA AAC CCA TC-3´ 

5´- GCT TCA TCT TGG CTG AGG TC-3´ 

CCL21 5´- CCC AGC TAT CCT GTT CTT GC-3´ 

5´- TCA GTC CTC TTG CAG CCT TT-3´ 

CCR7  5´- TGG AGG CCT TTA TCA CCA TC-3` 

5´- TGT AGG GCA GCT GGA AGA CT -3´ 

CD83 5´- CGG TCT CCT GGG TCA AGT TA-3´  

5´- AGA ACC ATT TTG CCC CTT CT-3´ 

BDCA1 5´- AGG AGC AAC TGG GCA CTA AA-3´ 

5´- GAT GAT GTC CTG GCC TCC TA -3´ 

BDCA2 5´- ACT GGG ATG CAA TCT TGG AC-3´ 

5´- GAT CTG ACA GCC CAG AAA A-3´ 

Tabelle 4: Übersicht Primersequenzen 
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Die Datenanalyse erfolgte mittels der Delta-Delta-ct-Methode (Livak and Schmittgen 

2001), wobei als Referenzgen hGAPDH (Invitrogen, Karlsruhe, Deutschland) verwendet 

wurde. Der ct-Wert eines Gens ist die n-fache Expression in der rt-PCR. Zunächst ermittelt 

man den Δct-Wert, indem man die Differenz von Ziel- und Referenzgen bildet. 

Anschließend wird von diesem Δct-Wert der Δct-Wert der Kontrolle (gesunde Spender) 

substrahiert und erhält so den ΔΔct-Wert. Das Verhältnis zwischen Patienten und gesunder 

Kontrolle erhält man mittels folgender Formel: Ratio = 2
-
 
ΔΔct

  

Bei der graphischen Darstellung der Daten beschreibt die y-Achse (Ordinatenachse) die 

logarithmischen Werte der n-fachen Expression eines ct-Wertes eines Gens. Die x-Achse 

(Abszissenachse) schneidet die Ordinate bei 1 (= Kontrolle), um eine Zu- bzw. Abnahme 

des untersuchten ct-Wertes eines Gens darzustellen.  

3.1.6 Immunfluoreszenz: Gefäßabschnitte der Aorta ascendens und ACI 

Die Schnitte (Aorta ascendens: n = 6; ACI: n = 15), die bei -80° Celsius trocken 

eingefroren waren, wurden zunächst bei Raumtemperatur aufgetaut und trockneten für 20 

Minuten. Anschließend wurden sie mit einem Aceton - Methanol - Gemisch (1:1), welches 

bei -20°C gelagert wurde, für 90 Sekunden gewaschen. Das Aceton – Methanol – Gemisch 

wurde abgeschüttet und die Präparate mit PBS dreimal je drei Minuten gewaschen.  

Um eine unspezifische Bindung zu verhindern, wurde für eine Stunde eine 2%-ige 

BSA/0,2% Tween20 Lösung aufgetragen und anschließend erneut dreimal mit PBS 

gewaschen. Die Schnitte wurden mit einem Cy3-gelabelten anti-Pecam Antikörper 

(5µg/ml Abd Serotec) inkubiert, um die Vasa vasorum sichtbar zu machen.  

Nach einem erneuten Waschschritt wurden die Schnitte mit einem Atto594-gelabelten anti-

human CCL21/6Ckine Antikörper (5µg/ml, R&D Systems Inc.) inkubiert. Die Spezifität 

der CCL21/6Ckine Färbung wurde mittels eines Kontroll Antikörpers sichergestellt, der 

mit demselben Fluorophor gelabelt war. Die Analyse der Schnitte erfolgte mit Hilfe eines 

konfokalen Laser-Scanning Mikroskops (LSM 510 META, Zeiss, Plan-Neofluar 40x/1.30 

Öl beschichtetes Objektiv). Die CCL21-gelabelten Plaqueabschnitte wurden mit einem 

Konfokalmikroskop (Zeiss LDM 5, Deutschland) untersucht und mit einem LSM 510 

Image Browser 4.2 (Zeiss, Deutschland) quantifiziert. Die Auszählung erfolgte als Anzahl 

eines Fluoreszenzsignals/mm². Die Ergebnisse wurden zur anschaulicheren Darstellung in 

Prozentränge umgerechnet, wobei der Mittelwert der untersuchten histologischen Präparate 

der humanen Aorta ascendens = 100% gesetzt wurde.  
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3.1.7 ELISA 

Ein ELISA (enzyme-linked immunosorbent assay) ist ein verbreitetes Verfahren, um 

bestimmte Proteine mittels Antigen-Antikörper-Reaktion nachweisen zu können. In dieser 

Arbeit wurden die oxLDL-, ADMA- und CCL21-Level der entnommenen Blutproben 

durch dieses klassische „Sandwich“-Immunoassay ermittelt. Hierfür wurden die 

entnommenen Blutproben zentrifugiert und das so gewonnene Plasma bzw. Serum bei -80° 

Celsius eingefroren.  

Um die oxLDL-Werte aus dem Plasma zu ermitteln, wurde ein Zytokin-spezifisches 

ELISA Kit (ImmunDiagnostik, Bensheim, Deutschland) nach Angaben des Herstellers 

verwendet. Die Proben wurden mit einem Puffer mehrmals gewaschen, um alle 

ungebundenen Substanzen zu entfernen. Nach Zugabe der im Kit vorhandenen Substanzen 

wurden die Proben für vier Stunden bei Raumtemperatur im Horizontalmixer inkubiert. 

Dabei wird das Chemokin von immobilisierten polyklonalen Antikörpern gebunden. Beim 

zweiten Inkubationsschritt wird ein Konjugat zugegeben und erneut für eine Stunde 

inkubiert. Nach Zugabe des Peroxidasesubstrats Tetramethylbenzidin (TMB) wurde die 

Probe für 25 Minuten bei Dunkelheit inkubiert. Die Enzymreaktion wird durch Zugabe von 

Säure abgestoppt. Dadurch erfolgt ein Farbumschlag von blau nach gelb. Die entstandene 

chromogene Verbindung wird photometrisch bei 450 nm gemessen. Die Intensität der 

Farbe ist dabei direkt proportional zur Konzentration des gemessenen Analyten. 

Anschließend wird eine Standardkurve erstellt, aus der die Konzentrationen der einzelnen 

Proben ermittelt werden können. 

Um die ADMA-Spiegel im Plasma zu messen, wurde das Protokoll von Schulze et al. 

(Schulze, Wesemann et al. 2004) verwendet. Die Sensitivität des ELISA liegt bei 0,05 – 

5,0 μM ADMA (DLD Diagnostika, Hamburg, Deutschland).  

Die CCL21-Spiegel wurden im Serum bestimmt, nachdem die Proben wie bereits 

beschrieben aufbereitet worden sind. Der Immunoassay wurde nach Angaben des 

Herstellers (R&D Systems, USA) durchgeführt.  
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3.2 In vitro 

3.2.1 Kultivierung Monozyten generierter Dendritischer Zellen (MGDZ) 

Mononukleäre Zellen wurden durch einen Ficoll Dichtegradienten nach dem Protokoll von 

Boyum et al. (Boyum 1983) aus dem Blut von männlichen gesunden Spendern isoliert. 

Dafür wurde den Spendern 100 ml peripheres Blut entnommen und zu 100 ml RPMI 

Medium (Biochrom AG) hinzugefügt. Je 33 ml dieser Mischung wurden in einem 50 ml 

Falcon vorsichtig auf 15 ml Ficoll Lösung geschichtet.   

Die 50 ml Falcons wurden bei 20°C 25 Minuten lang bei 2500 x g zentrifugiert 

(Bodenzentrifuge). 

Es bildete sich eine Interphase aus, welche die mononukleären Zellen enthielt. Diese wurde 

abgeerntet und in 4 x 50 ml Falcons überführt. Anschließend wurde diese Lösung 1:1 mit 

RPMI Medium (Firma?) verdünnt, daraufhin ein Mal bei 1500 x g  für 10 Minuten und 

zwei Mal bei 1500 x g für fünf Minuten gewaschen. Daraufhin wurden die Zellen in 24 ml 

RPMI-Medium, das Penicillin/Streptomycin, 4 ml Glutamin (200mmol/L) und 50 ml FCS 

(Biochrom AG) (Kulturmedium) enthielt, aufgenommen. 12 Petrischalen wurden mit je 1,5 

ml eines 1:3 Gemisches aus Gamma-Globulin und PBS (Biochrom AG) beschichtet. Nach 

30 Minuten wurde der Überstand entfernt und die Zellen wurden auf die Petrischalen 

ausgesät (2 ml pro Petrischale). Nach einer zweistündigen Inkubation bei 37°C wurden die 

Platten mit dem RPMI-Kulturmedium abgewaschen. Nur die adhärenten Zellen, respektive 

die Monozyten, blieben auf den Platten zurück. So wurde sichergestellt, dass die 

Monozytenkultur eine Reinheit von bis zu 97 % aufwies.  

Die Kultivierung der DZ erfolgte nach dem Protokoll von Romani et al. (Romani, 

Ratzinger et al. 2001). So wurden 3 ml RPMI-Kulturmedium, das zusätzlich 3 µl GM-CSF 

(20 µl/ml) (Peprotech, Inc.) und 3 µl IL 4 (20 µg/ml) (Peprotech, Inc.) enthielt, zu den 

Zellen jeder Platte dazugegeben. Jeweils 1 ml des Mediums wurde alle 3 Tage durch 

frisches Medium ersetzt.   

Für die Versuche wurden die Zellen am gewünschten Kulturtag folgendermaßen geerntet: 

Jede Fläche jeder Platte wurde mit einem Zellschaber zuerst horizontal, dann vertikal 

abgeschabt. Danach wurde die Zellsuspension (ca. 3 ml pro Platte) von der Platte 

abpipettiert und in ein 15- oder 50 ml-Falcon (je nach Anzahl der Platten) überführt. So 

wurde mit allen Platten verfahren und die Suspensionen von Platten gleicher Art (z.B. 

Negativkontrolle) gesammelt. Daraufhin wurden die Falcons fünf Minuten bei 1500 
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Umdrehungen gewaschen, der Überstand wurde, falls er für Experimente (z.B. ELISA) 

benötigt wurde, abgenommen, andernfalls wurde er verworfen. Die Zellen wurden ein Mal 

in PBS gewaschen (1500 x g für 5 Minuten), in 1 ml PBS resuspendiert, anschließend 

wurden davon 10μl in eine Neubauer Zählkammer überführt und die lebenden Zellen unter 

dem Mikroskop ausgezählt. 

Nach dem Auszählen von 4x16 Kleinquadraten wurden die Zellzahl/ml nach folgender 

Formel berechnet: 

Zellzahl/ml = Anzahl der ausgezählten Zellen x Verdünnung x 10
4
/ Volumen 

 

3.2.2 Kultivierung humaner mikrovaskulärer Endothelzellen 

Die Experimente wurden mit humanen mikrovaskulären Endothelzellen (hmEZ) 

durchgeführt, die uns von dem „Center for Disease Control and Prevention and the 

National Center for Infectious Disease“ (Atlanta, USA) freundlicherweise zur Verfügung 

gestellt wurden. Die Zellen wurden in MCDB 131 (ohne Phenol rot; cc pro, Neustadt, 

Germany) kultiviert und mit 10%-igem fetalem Kalbserum (FCS, PAA, Pasching, 

Österreich), 2 mM L-Glutamin (Biochrom AG, Berlin, Deutschland), 1µg/ml 

Hydrokortison (Sigma GmbH, Taufkirchen, Deutschland) und 10 ng/ml epidermalen 

Wachstumsfaktor (Sigma GmbH, Taufkirchen, Deutschland) supplementiert. Die Zellen 

wurden nur bis zu zehn Tage nach dem Auftauen und für maximal 20 Durchläufe 

verwendet.  

 

3.2.3 LDL-Oxidation 

Das LDL (Dichte=1,019 bis 1,063 g/ml) wurde durch sequentielle Ultrazentrifugation aus 

dem Plasma normolipämischer, gesunder, freiwilliger Probanden isoliert, und in PBS, das 

2 mmol/L EDTA enthielt, gelagert (Brand, Banka et al. 1994). Unmittelbar vor der 

Oxidierung wurde das EDTA aus LDL isoliert, indem es über eine PD-10 Säule 

(Pharmacia, Austria) gegeben wurde. Das LDL wurde in Ham´s F-10 Medium (Biochrom 

AG, Berlin, Deutschland) durch die Zugabe von 5 µmol/L CuSO4 bei 37°C oxidiert 

(Brand, Banka et al. 1994). Für die beschriebenen Experimente wurde das Präparat 

dialysiert bevor es zu den kultivierten Zellen gegeben wurde. Die Proteinkonzentration 

wurde durch die Lowry-Methode und der Cholesteringehalt durch den Cholesterinassay 

von Boehringer Mannheim (Deutschland) bestimmt. Thiobarbituratsäure-reaktive 
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Substanzen (TBARS) wurden wie beschrieben gemessen; der initiale TBARS-Wert lag 

unter 0,1 nmol Malondialdehyd-Equivalente/mg Protein. 

Alle verwendeten Reagenzien, Wasser und auch das Kulturgeschirr waren pyrogenfrei und 

steril, um eine Kontamination mit Endotoxinen während der Lipoproteinisolation und –

oxidation zu vermeiden. Mittels limulus amoebocyte lysate Assay (Labortechnik Peter 

Schultz, Deutschland) umd dem Kinetic-QCL-Test (BioWhittaker, Deutschland) wurden 

Endotoxinkontaminationen entdeckt und nur Lipoprotein-Präparate mit einem Endotoxin-

Gehalt < 10 pg/ml wurden für die Experimente verwendet.  Eine solche Konzentration 

ähnelt den oxLDL-Konzentrationen im Plaque und wurde in vorausgegangen Studien 

ebenfalls angenommen (Nishi, Itabe et al. 2002; Weis, Schlichting et al. 2002; Coutant, 

Agaugue et al. 2004).   

 

3.2.4 Isolierung der RNS aus MGDZ und hmEZ und rt-PCR 

Um die mRNS von hmEZ und MGDZ zu isolieren, wurde das „RNAeasy RNA 

Isolierungskit“ von Qiagen (Hilden, Deutschland, Kat. # 74104) gemäß den Angaben des 

Herstellers verwendet. Die Herstellung von cDNS aus RNS durch reverse Transkription 

wurde ausgeführt, wie bereits unter 4.1.4 erwähnt. Auch die quantitative rt-PCR wurde 

nach Angaben des Herstellers wie oben (4.1.5) beschrieben durchgeführt.  

 

3.2.5 Durchflußzytometrie (FACS-Analyse) 

Für alle FACS Versuche wurden pro Ansatz 1 x 10
5
 lebende Zellen verwendet. Um dies zu 

erreichen wurden die Falcons ein weiteres Mal fünf Minuten lang bei 1500 g zentrifugiert, 

und das entstandene Zellpellet wurde in einer so großen Menge FACS-Puffer (ca. 4°C) 

aufgenommen, dass sich 1 x 10
5 

Zellen in 100 µl FACS-Puffer befanden. Aus der 

entstandenen Suspension wurden jeweils 100 µl bzw. 1 x 10
5 

Zellen entnommen und in ein 

FACS-Röhrchen überführt.  

Als nächster Schritt erfolgte die Inkubation der DZ mit dem bzw. den jeweiligen FACS- 

Antikörper(n). Hierbei ist darauf zu achten, dass die Zellen keiner unnötigen Erwärmung 

oder Lichteinstrahlung ausgesetzt werden. So wurden die FACS-Röhrchen auf Eis gestellt 

und die FACS-Antikörper möglichst rasch zu den schon vorgelegten Zellen pipettiert. Um 

die Inkubation so effektiv wie möglich zu gestalten, war es wichtig, die Röhrchen gut zu 

vortexen, bevor sie für die Zeit der Inkubation in den Kühlschrank (ca. 4°C) gestellt 
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wurden. Abbildung 5 zeigt die verwendeten Mengen an Antikörper und die benötigte 

Inkubationszeit: 

 

Antikörper Konzentration Inkubationszeit 

ISO-FITC Mouse IgG1 1 : 100 30 min 

CD 83 FITC 1 : 100 30 min 

BDCA-1 FITC 1 : 100 30 min 

BDCA-2 FITC 1 : 100 30 min 

Tabelle 5: Übersicht über verwendete Antikörper 

 

Die DZ eines Ansatzes wurden entweder mit nur einem Antikörper (FITC- oder PE-

gelabelt; Einfachfärbung), oder mit zwei Antikörpern inkubiert, wobei der eine FITC-

gelabelt war und der andere PE-gelabelt (Doppelfärbung). Einige der Antikörper sind 

weder FITC- noch PE-gelabelt und benötigten deshalb einen sogenannten 

Sekundärantikörper, der nach der Inkubation der Zellen mit dem Primärantikörper an 

diesen bindet. 

Nach der Inkubation musste der nicht-gebundene Antikörper aus der Lösung 

ausgewaschen werden. Dazu wurden 500 µl FACS-Puffer in jedes Röhrchen gegeben und 

diese fünf Minuten bei 1500 g zentrifugiert. Der Überstand wurde verworfen und falls 

erforderlich wurde ein zweiter Antikörper oder ein Sekundärantikörper in das betreffende 

Röhrchen pipettiert. Nach der letzten Inkubation wurden 300 µl PBS nach dem 

Waschvorgang in jedes Röhrchen gegeben; somit waren die Proben analysebereit.  

 

3.2.6 Immunfluoreszenz: CCL21 auf hmEZ 

Die Kultivierung der hmEZ erfolgte wie bereits oben beschrieben auf gekammerten 

Objektträgern. Die Kulturen wurden für jeweils 48 Stunden mit 10 μg/ml oxLDL bzw. 

ADMA stimuliert.  

Die monoklonalen Antikörper für CCL21/6Ckine (R&D Systems, USA) wurden mit Hilfe 

des „Alexa Fluor 488 Protein Labeling Kit“ (Invitrogen, USA) nach Angaben des 

Herstellers aufbereitet. Mit einer Konzentration von 1:20 wurden die Zellkulturen für 30 

Minuten mit den gelabelten Antikörpern inkubiert. Um die Plasmamembran zu markieren 

wurde anschließend Vybrant DiD (Invitrogen, USA) verwendet.  
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Sowohl die unstimulierten Kontrollen, als auch die mit oxLDL bzw.  ADMA behandelten 

Kulturen wurden mit einem Konfokalmikroskop (Zeiss LDM 510 Meta, Plan-Apochromat 

63x/1,40 Ölobjektiv) untersucht. Die mit CCL21-gelabelten hmEZ konnten mit Hilfe eines 

LSM 510 Image Browser 4.2 (Zeiss, Deutschland) quantifiziert werden. Die Auszählung 

erfolgte als Anzahl eines Fluoreszenzsignals/mm². Die Ergebnisse wurden zur 

anschaulicheren Darstellung in Prozentränge umgerechnet, wobei der Mittelwert der 

jeweiligen unstimulierten Kontrollgruppe = 100% gesetzt wurde. 

 

3.2.7 Inkubation von hmEZ mit einer Plaque- und Aortensuspension 

Um zu bestimmen, inwiefern die Umgebung der Endothelzellen die Expression von 

Chemokinen beeinflusst, wurden zwei Versuchsansätze entwickelt: 

Zunächst wurde eine Suspension aus Plaquematerial hergestellt, wobei das Gewebe eines 

Patienten mit einer hochgradigen Carotisstenose ohne höhergradige Verkalkungen 

ausgewählt wurde. Es wurden 0,9 g Plaquematerial in 8 ml Phosphate Buffered Saline 

(PBS) mittels Ultraschall (Bandelin Sonoplus, Deutschland) homogenisiert. Anschließend 

wurden 600 µl dieser Suspension in 2400 µl PBS verdünnt. Ebenso wurde mit dem 

atherosklerosefreien Aortenmaterial verfahren.  

Je 3 ml Suspension wurden vorsichtig in eine 12,5 mm
2 

Flasche mit hmEZ gegeben und für 

48 Stunden inkubiert. Die mRNA der hmEZ wurde wie bereits beschrieben isoliert und 

eine rt-PCR konnte durchgeführt werden.  

 

3.3 Statistische Analyse 

Alle Ergebnisse sind im laufenden Text als Mittelwert mit  ± Standardabweichung 

(standard deviation of the mean) angegeben. Mittels Kolmogorov-Smirnov-Test wurde 

untersucht, ob die Daten normalverteilt waren. In diesem Fall wurde der ungepaarte T-Test 

verwendet, um zwei Gruppen vergleichen können. Daten, die nicht normalverteilt waren, 

wurden mittels Wilcoxon-Signed-Rank- oder Mann-Whithney-U- Test ausgewertet.  

Für die graphische Darstellung der Graphen wurden teilweise Boxplots verwendet. Hier 

sind Median, unteres bzw. oberes Quartil sowie die jeweiligen Extremwerte dargestellt. 

Sind die Werte nicht symmetrisch verteil entsteht eine Diskrepanz zwischen den im 

laufenden Text erwähnten Mittelwerten und den im Boxplot dargestelltem Median. 

Trotzdem habe ich mich – auch in Rücksprache mit Frau Dr. biol. hum. Dipl.-Math. Eva 
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Hoster (Institut für medizinische Informationsverarbeitung, Biometrie und Epidemiologie, 

LMU München) – teilweise für die Darstellung mittels Boxplot entschieden, da hierdurch 

im Gegensatz zum Balkendiagramm nicht der Eindruck entstehen kann, dass Werte über 

den gesamten Bereichs eines Balkens verteilt sind.  

Bei p < 0,05 (graphisch mit einem „*“ gekennzeichnet) wurde ein signifikanter und bei p < 

0,01 (graphisch mit „**“ gekennzeichnet) ein hochsignifikanter Unterschied angenommen.  

Alle in vitro Experimente wurden mindestens vier Mal, jeweils mit neuen Zellkulturen und 

Lösungen durchgeführt. Für die statistische Berechnung der Daten wurde SPSS (Version 

11, Leibniz Rechenzentrum München) verwendet.  

 

 

 



Dendritische Zellen in der Atherosklerose  35 

4. ERGEBNISSE 

 

4.1 In vivo 

4.1.1 Allgemeine Patienten-Daten 

Im Zeitraum von September 2006 bis Mai 2008 sind insgesamt 47 Patienten rekrutiert 

worden, die sich im Rahmen einer Thrombendarteriektomie aufgrund einer hochgradigen 

Stenose der Arteria carotis interna (ACI) in der chirurgischen Klinik Großhadern 

vorgestellt haben. Als Kontrolle der Serum-Daten konnten Blutproben von zehn 

altersentsprechenden Probanden verwendet werden, bei denen mittels Ultraschall-

Diagnostik eine hämodynamisch relevante Stenose ausgeschlossen werden konnte und des 

Weiteren klinisch kein Anhalt auf eine relevante Atherosklerose bestand. Das Material von 

14 mikroskopisch gesunden Aorten von Patienten, die sich einem operativen 

Klappenersatz unterzogen, wurde freundlicherweise von der chirurgischen Klinik 

Großhadern zur Verfügung gestellt und diente somit als Vergleichsmaterial der Carotis-

Plaques.  

 

Klinische Daten:  

   Carotis-Gruppe Kontrolle-PBL  Kontrolle-Plaque 

    (n = 47)  (n = 10)   (n = 14) 

Alter   70 ± 8   68 ± 4    54 ± 5 

Männer % (n)  77 (36)   30 (3)    71 (10) 

TIA / CI % (n)   32 (15)   0 (0)    14 (2) 

Diabetiker % (n)  26 (12)   20 (2)    28 (4) 

Hypertension % (n) 92 (43)   80 (8)    85 (12) 

Hyperlipidämie % (n) 85 (40)   80 (8)    78 (11) 

Nikotinabusus % (n) 38 (18)   10 (1)    35 (5)   

ASS / Clopidogrel % (n) 92 (43)   10 (1)    43 (6) 

β-Blocker % (n)  60 (28)   60 (6)    43 (6) 

Statine % (n)  79 (37)   80 (8)    78 (11) 

Tabelle 6: Übersicht klinische Daten 
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4.1.2 Klinische Parameter der Atherosklerose-Patienten 

Die 47 rekrutierten Patienten waren im Durchschnitt 70 ± 8 Jahre alt mit einem Anteil von 

77% Männern (Tabelle 6). Präoperativ erhielten alle Patienten eine Sonographie der ACI 

mit Bestimmung der Durchflußgeschwindigkeit und Abschätzung des Stenosegrades. Die 

Indikation zur TEA wurde bei zerebral symptomatischen Patienten bei einer Stenose der 

ACI von 70% und bei asymptomatischen Patienten bei einer Stenose von 85% gestellt.  

 

 

Abb3: klinische Parameter in Abhängigkeit vom Geschlecht 

 

Abbildung 3 gibt einen Überblick der Risikofaktoren in Abhängigkeit vom Geschlecht. 

32% der Studienpatienten hatten vor der Operation eine TIA (= transitorische ischämische 

Attacke) oder einen Apoplex (CI = cerebrale Ischämie). Im Folgenden werden diese 

Patienten „Symptomatisch“ genannt im Gegensatz zu den präoperativ zerebral 

unauffälligen „asymptomatischen“ Patienten (Abbildung 4). Anamnestisch war bei 

ebenfalls 32% der Patienten eine KHK (= koronare Herzkrankheit) bekannt, allerdings 

ergab sich bei der Analyse der Daten keine positive Korrelation zwischen präoperativer 

zerebraler Auffälligkeit und dem Bestehen einer KHK (Pearson´s Korrelationskoeffizient r 

= -0,285 bei p = 0,06).  

 

0

10

20

30

40

50

60

70

80

90

100

A
n
g
ab

en
 i

n
 P

ro
ze

n
t 

%
 

klinische Parameter - Geschlechteranalyse 

insgesamt

Männer

Frauen



Dendritische Zellen in der Atherosklerose  37 

 

Abb.4: Übersicht zerebrale Auffälligkeit (symptomatisch TIA, symptomatisch CI, asymptomatisch, jeweils 

prä-operativ 

 

Die an Diabetes mellitus (DM) erkrankten Patienten litten alle an DM Typ II, wobei im 

DM-Kollektiv nicht zwischen Insulinabhängigen- und Nicht-Insulinabhängigen-Diabetes-

mellitus unterschieden wurde. Für Deutschland liegt eine Gesamtprävalenz für DM von 

6% vor, allerdings steigt die Prävalenz mit dem Alter an und liegt bei über 60-jährigen bei 

knapp 30%. Im vorliegenden Patientenkollektiv befanden sich 25,5% Diabetiker. Somit 

entspricht diese Verteilung ungefähr dem bundesweiten Durchschnitt (Bundesamt 2005).  

Als „Nichtraucher“ wurden nur Patienten gewertet, die noch nie oder seit mindestens zehn 

Jahren nicht mehr geraucht hatten. In dieser Arbeit waren 38% der Patienten Raucher, 

allerdings ist der Anteil der Raucher unter den rekrutierten Patienten prozentual unter den 

Frauen (45,5%) höher als unter den Männern (36%). Dies wiederum entspricht nicht der 

Verteilung in Deutschland, bei der die Frauen in jeder Altersstufe weniger rauchen als die 

Männer (Bundesamt 2005).  

Um das Gewicht der Patienten zu beurteilen wurde bei der Anamnese der Body Mass 

Index (= BMI) erhoben. Die Weltgesundheitsorganisation (WHO) stuft einen BMI > 25 

kg/m² als übergewichtig und einen BMI > 30 kg/m² als adipös ein. Laut diesen Angaben 

erfolgte die Bezeichnung der rekrutierten Patienten in normalgewichtig, übergewichtig und 

adipös. Insgesamt waren 46% der Patienten als normalgewichtig (BMI < 25 kg/m²), 49% 

als übergewichtig und 5% als adipös einzuordnen.  
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übergew ichtig 22%

normalgew ichtig 78%

  

adipös 7%

übergew ichtig 57%

normalgew ichtig 36%

 

Abb.5a: BMI Gruppe: Frauen    Abb.5b:BMI Gruppe: Männer 

 

Wie aus den Tortendiagrammen zu erkennen ist, sind mehr als zwei Drittel (78%) der 

Frauen normalgewichtig und keine der Patientinnen adipös. Im Gegensatz dazu sind mehr 

als die Hälfte (57%) aller Männer übergewichtig und 7% fettleibig (Abbildung 5a und 5b). 

Bei der Anamnese der Patienten wurde auch die aktuelle Medikation erhoben. Mehr als 

90% der Patienten nahmen seit mindestens zwei Jahren Thrombozyten- 

aggregationshemmer, wie Acetylsalicylsäure (= ASS) oder Clopidogrel. Statine und β-

Blocker waren bei mehr als der Hälfte fester Medikationsbestandteil. Allerdings nahmen 

nur die Hälfte der Patienten den CSE-Hemmer länger als zwei Jahre (Abbildung 6). 

 

 

Abb.6: regelmäßige Medikation der Carotis-Patienten in % 
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4.1.3 Analyse der Laborwerte 

Präoperativ wurde den Patienten Blut entnommen und bestimmte Laborparameter wie 

Cholesterin, HDL/LDL, TSH, Kreatinin, HbA1c bei den Diabetikern, Leukozyten und 

CRP bestimmt.  

Bei einer Analyse der Laborwerte konnte kein signifikanter Unterschied zwischen dem 

Kollektiv „Symptomatische“ (n = 15)/„Asymptomatische“ (n = 32) einerseits und dem 

Kollektiv „Diabetiker“ (n = 12)/„Nicht-Diabetiker“ (n = 35) festgestellt werden.  

Unterschiede fanden sich aber im Geschlechtervergleich. Wie zu erwarten hatten Männer 

(Mittelwert 1,06 mg/dl ± 0,25 mg/dl, p = 0,035) signifikant höhere Kreatinin-Werte als 

Frauen (0,91 mg/dl ± 0,24 mg/dl). Dieses Ergebnis spiegelt die stärkere Muskelmasse der 

Männer wieder.  

Zum anderen fällt bei Betrachtung des Laborparameters HDL-Cholesterin (High-Density-

Lipoprotein-Cholesterin) auf, dass Frauen signifikant (Mittelwert 54,6mg/dl ± 16,1mg/dl 

vs. 68,4mg/dl ± 16,7mg/dl, p = 0,024) höhere Werte als Männer haben.  

Die Diabetiker aus dem rekrutiertem Kollektiv mit einem HbA1c ≤ 7,0% und somit als 

„gut eingestellt“  (n=5) zu werten sind, haben einen signifikant höheren (Mittelwert 

64,6mg/dl ± 10,9mg/dl vs. 42,0mg/dl ± 8,8mg/dl, p<0,01) HDL-Wert, als „schlecht 

eingestellte“ Diabetiker (n=7, Abbildung 7).  
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Abb.7: Einfluss der Güte der Diabetes-Einstellung (schlecht eingestellt n=7 vs. gut eingestellt n=5) auf 

HDL-Werte (Darstellung mittels Boxplot als Median, **=p<0,01) 

 

4.1.4 PCR von Plaque und PBL  

Mittels rt-PCR konnte die mRNA aus Plaque und PBL bestimmt werden. Als Vergleich für 

die erhobenen Daten diente gesundes Aortenmaterial (n = 14) und das Blut von 

altersgematchten Probanden (n = 10). Die ΔΔct-Methode ermöglicht einen direkten 

Vergleich zwischen den rekrutierten Patienten und dem Kontroll-Material, wobei die 

Kontrolle jeweils als eins angegeben wird.  

 

4.1.4.1 Analyse der mRNA von CCL19/21 und CCR7/CD83 im 

atherosklerotischen Plaque 

Folgende Ergebnisse fanden sich zusammenfassend im athersklerotischen Plaque: 

- CD83, als Marker für reife DZ ist im Plaque erhöht 

- CCR7, als Homing-Rezeptor und dessen Liganden sind weniger häufig im Plaque 

zu finden 
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Im Vergleich zu der Kontrollgruppe war bei den Patienten mit hämodynamisch relevanter 

Carotisstenose der Oberflächenmarker CD83, der bei reifen DZ vermehrt exprimiert wird 

(Yilmaz, Lochno et al. 2004; Erbel, Sato et al. 2007; Yilmaz, Lipfert et al. 2007), im 

Plaque (1,95 ± 1,53 ΔΔct) signifikant hochreguliert (p < 0,01, Abbildung 8). Bei einer 

Subgruppenanalyse konnte gezeigt werden, dass sich bei Männern signifikant mehr 

mRNA-Kopien von CD83 finden lassen, als bei Frauen (2,23 ± 1,59 ΔΔct vs. 1,02 ± 0,85 

ΔΔct, p < 0,05).  

 

 

 

Abb.8: mRNA-Kopien im atherosklerotischen Plaque im Vergleich zum Kontroll-Kollektiv (dargestellt als 

Mittelwerte mittels Balkendiagramm der ∆∆ct-Werte, Signifikanzen (** = p<0,01)  bezogen auf das Kontroll-

Kollektiv 

 

Der Chemokinrezeptor CCR7, der ebenfalls bei reifen DZ verstärkt exprimiert wird und 

wichtig für das Homing der DZ zu lymphatischem Gewebe ist, war im Plaque um 81% 

weniger häufig zu finden als im Kontrollkollektiv (0,19 ΔΔct, p < 0,01). Allerdings konnte 

kein geschlechterspezifischer Unterschied nachgewiesen werden.  

Mehr als die Hälfte der für die Studie rekrutierten Patienten nahmen regelmäßig einen ß-

Blocker. Bei diesen Patienten ist CCR7 im Plaque zwar nicht so häufig nachzuweisen wie 

im Kontroll-Kollektiv, allerdings signifikant häufiger (0,22 ± 0,17 ΔΔct) als bei Patienten 

ohne Medikation mit einem ß-Blocker (0,14 ±0,18 ΔΔct; p < 0,05). 
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Es konnte gezeigt werden, dass CCL19 (0,01 ΔΔct, p < 0,01) als auch CCL21 (0,1 ΔΔct, p 

< 0,1) im Plaque von Patienten mit hämodynamisch relevanter Carotis-Stenose um den 

Faktor 10⁻⁴ verringert vom Endothel synthetisiert werden. Im Plaque findet sich in der 

Risikogruppe der präoperativ cerebral symptomatischen Patienten weniger als die Hälfte 

(0,05 ± 0,02 ΔΔct) der mRNA des Liganden CCL21 als in der Gruppe der zerebral 

unauffälligen Patienten (0,12 ± 0,1 ΔΔct; p < 0,05, Abbildung 9).  
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Abb.9: mRNA-Kopien im atherosklerotischen Plaque von CCL21, sympt. (n=15) vs. asympt. Patienten 

(n=32), dargestellt als Median mittels Boxplot der ∆∆ct-Werte, *= p<0,05 

 

 

4.1.4.2 Analyse der mRNA von CCL19/21 und CCR7/CD83 von PBMZ 

Kurz gefasst fand sich im peripheren Blut folgendes Chemokin-Profil: 

- Patienten mit Atherosklerose exprimieren peripher vermehrt reife DZ (CD83) 

- CCR7 ist erniedrigt, wohingegen dessen Liganden erhöht sind 
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Ebenso wie im Plaque, so fand sich auch im Serum auf isolierten PBMZ, als Hinweis auf 

das Vorhandensein von reifen DZ, die mRNA von CD83 circa vier Mal häufiger (4,07 ± 

5,9 ΔΔct, p < 0,01, Abb.10) im Gegensatz zum Serum, dass von gesunden Spendern 

stammte.  

Gleichsinnige Ergebnisse in Bezug auf Serum bzw. Plaque fanden sich auch bei dem 

Homingrezeptor CCR7: die mRNA dieses Rezeptors war im Serum der Patienten mit 

hochgradiger Carotisstenose um 64% reduziert nachweisbar (0,36 ± 0,43 ΔΔct, p < 0,01).  

Dagegen zeigte sich, dass die mRNA der Liganden dieses Homingrezeptor – CCL19 und 

CCL21 – im Serum der rekrutierten Patienten vermehrt nachgewiesen werden konnte. 

Allerdings ließ sich ein signifikanter Unterschied nur für den Liganden CCL21 (7,49 ± 

19,14 ΔΔct) dokumentieren, dessen mRNA im Durchschnitt mehr als siebenmal so häufig 

belegt werden konnte (p < 0,01, Abbildung 10).  

 

 

Abb.10: mRNA-Kopien von PBMZ der Carotis-Patienten im Vergleich zum Kontroll-Kollektiv (dargestellt 

als Mittelwerte mittels Balkendiagramm der ∆∆ct-Werte, Signifikanzen (** = p<0,01)  bezogen auf das 

Kontroll-Kollektiv 
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Die beiden Liganden von CCR7 korrelieren untereinander mit einer Signifikanz von p < 

0,01. Der positive Korrelationskoeffizient nach Pearson von r = 0,6 zeigt, dass je mehr 

mRNA des einen Liganden zu finden ist, desto mehr mRNA des Anderen lässt sich im 

Serum nachweisen.  

 

4.1.5 Immunfluoreszenz: Analyse der CCL21-Expression im 

atherosklerotischen Plaque und im Aortengewebe 

Um die Ergebnisse der PCR-Analyse auf Proteinebene zu bestätigen, führten wir eine 

Immunfluoreszenz mit histologischen Schnitten von ausgewählten Präparaten humaner 

Aorta ascendens und den gesammelten atherosklerotischen Gefäßabschnitten der ACI 

durch.  

Die Auszählung erfolgte als Anzahl eines Fluoreszenzsignals/mm². Die Ergebnisse wurden 

zur anschaulicheren Darstellung in Prozentränge umgerechnet, wobei der Mittelwert der 

untersuchten histologischen Präparate der humanen Aorta ascendens = 100% gesetzt 

wurde.  

In jeder der insgesamt sechs ausgewählten Aortenstücke ließ sich mittels eines erhöhten 

Fluoreszenzsignals des gebundenen Antikörpers eine höhere CCL21-Expression (als 100% 

gesetzt) nachweisen, als in dem atherosklerotischen Gewebe des Plaquematerials der 

Arteria carotis interna (n=15, Mittelwert 64%, p<0,01, repräsentative Bilder siehe 

Abbildung 11, Graphik Abbildung 12).  

In einem zweiten Versuchsansatz färbten wir die EZ der Aorten-Schnitte, indem wir 

zusätzlich einen PECAM-Antikörper (α-PECAM-Cy3), einem Antikörper der gegen ein 

Adhäsionsmolekül auf EZ gerichtet ist, verwendeten. Dadurch konnte gezeigt werden, dass 

sich die Expression von CCL21 hauptsächlich in der Gefäßwand der vasa vasorum 

befindet (Abbildung 13).  
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humane Aorta ascendens        humaner Plaque der Arteria carotis interna 

α-CCL21/6Ckine-Atto594   α-CCL21/6Ckine-Atto594 

 

Abb.11: CCL21-Expression mittels Immunfluoreszenz, humaner Carotis-Plaque und  humanes Aortengewebe 

Diese repräsentativen Bilder zeigen die unterschiedliche Expression von CCL21 (rot, α-CCL21/6Ckine-

Atto594) in humaner Aorta ascendens und dem Plaquematerial der Arteria carotis interna. Die CCL21-

Expression ist im Gewebe der humanen Aorta ascendens verstärkt zu finden. Maßstab 50 μm. 

 

 

Abb.12: Intensität des Fluoreszenzsignals/mm² in %, humane Aorta ascendens (n=6) im Vergleich zum 

atherosklerotischen Plaque der Arteria carotis interna, n=15, ** = p<0,01  
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humane Aorta ascendens 

 

  Dapi      α-CCL21/6Ckine-Alexa 488 Überlagerung 

 

 

 α-Pecam-Cy3      α-CCL21/6Ckine-Atto594  Überlagerung  

 

 

Abb.13: Analyse der CCL21-Expression, humanes Aortengewebe.  

 

Obere Reihe: Die blaue Färbung zeigt die Zellkerne (DAPI), die rote Färbung zeigt CCL21-positive 

Strukturen (α-CCL21/6Ckine-Alexa488). Maßstab 10 µm.  

Untere Reihe: Um die Gefäßwand der vasa vasorum als CCL21 exprimierende Struktur im humanen 

Aortengewebe zu identifizieren, verwendeten wir einen PECAM-Antikörper (grün, α-PECAM-Cy). Die rote 

Färbung zeigt CCL21-positive Strukturen (α-CCL21/6Ckine-Atto594). Die Überlagerung der beiden Bilder 

zeigt eine Co-Lokalisation von CCL21 und PECAM-Antikörpern in der Gefäßwand von humanem 

Aortengewebe. Maßstab 50 µm. 
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4.1.6 ELISA: oxLDL, ADMA und CCL21 im peripheren Blut 

Ein ELISA (enzyme-linked immunosorbent assay) ist ein verbreitetes Verfahren, um 

bestimmte Proteine mittels Antigen-Antikörper-Reaktion nachweisen zu können. In dieser 

Arbeit wurden die oxLDL-, ADMA- und CCL21-Serumspiegel der entnommenen 

Blutproben durch dieses klassische „Sandwich“-Immunoassay ermittelt. 

 

Im Serum des Kontroll-Kollektivs fand sich im Durchschnitt ein oxLDL-Spiegel von 99,4 

± 20,3 ng/ml (n=27). Im Gegensatz dazu fanden sich bei den Patienten aus der Carotis-

Gruppe signifikant höhere oxLDL-Werte (207,3 ± 240,2ng/ml, n=10, p < 0,05).  

 

Für ADMA fand sich im Blut der Patienten mit Carotis-Stenose eine Konzentration von 

1,24 ± 0,97 ng/ml und war somit leicht erhöht im Vergleich zum Kontroll-Kollektiv (0,97 

± 0,3 ng/ml, p < 0,05).  

Im Serum des Kontroll-Kollektivs fanden sich signifikant geringere CCL21-Spiegel als bei 

den Carotis-Patienten (1335,1 ± 771,5 pg/ml vs. 961,2 ± 210,9 pg/ml, p < 0,05).  

Sowohl für ADMA, als auch für CCL21 konnte keine Korrelation zwischen dem 

gemessenen Spiegel und der Medikation der Patienten festgestellt werden. Weitere 

Analysen in Bezug auf Geschlecht, Anamnese und Laborwerte ergaben ebenso keine 

signifikanten Unterschiede oder Korrelationen. 

Eine Übersicht über die gemessenen Spiegel im Serum der Carotis-Patienten und dem 

Kontroll-Kollektiv gibt Tabelle 7.  

 

 Carotis-Patienten Kontroll-Kollektiv 

oxLDL 207,3 ± 240,2ng/ml 99,4 ± 20,3ng/ml 

ADMA 1,24 ± 0,97ng/ml 0,97 ± 0,3ng/ml 

CCL21 1335,1 ± 771,5 pg/ml 961,2 ± 210,9 pg/ml 

 

Tabelle 7: Konzentration von oxLDL, ADMA und CCL21 im peripheren Blut 
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4.2  in vitro Experimente 

4.2.1 Stimulation von Zellkulturen mit oxLDL und ADMA 

4.2.1.1 Stimulation von humanen mikrovaskulären Endothelzellen 

Humane mikrovaskuläre Endothelzellen (hmEZ) wurden mit 10 µg/ml oxLDL und 1 

µg/ml ADMA für 48 Stunden stimuliert. Anschließend wurde mittels rt-PCR die 

Genexpression und mittels Immunfluoreszenz die Proteinexpression von CCL19 und 

CCL21 untersucht.  

 

oxLDL: 

Unter dem Einfluss von 10µg/ml oxLDL war bei hmEZ eine signifikant (-50%; 0,05 ΔΔct, 

p<0,05, Abbildung 13) verringerte Genexpression von CCL21 nachweisbar.  

 

 

 

Abb.14: mRNA-Expression von CCL19 und CCL21 nach Stimulation von hmEZ mit oxLDL, dargestellt als 

Mittelwerte mittels Balkendiagramm der ∆∆ct-Werte, Signifikanzen (* = p<0,05)  bezogen auf die 

unstimulierten Kontrollen 

 

Auf Proteinebene fand sich für CCL21 mittels Immunfluoreszenz eine Herunterregulation 

des Liganden um 23,66% (n = 8, 34,00 ± 8,53 Intensität/mm² bzw. 76,34% vs. 44,54 ± 
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6,23 Intensität/mm² bzw. 100%, p < 0,05, Abbildung 14 und Abbildung 15).  Für CCL19 

ergab sich zwar die gleiche Tendenz, aber keine Signifikanz.  

 

α-CCL21/6Ckine-Alexa 488  Vybrant DiD   Überlagerung 

 

 

Abb.15: Expression von CCL21 auf hmEZ mittels Immunfluoreszenz 

Korrespondierend: Repräsentative Protein Expression von CCL21 auf EZ mittels Immunfluoreszenz.  

Die CCL21-positiven Strukturen sind grün gefärbt (α-CCL21/6Ckine-Alexa488), die 

Plasmamembran mittels „Vybrant® DiD cell-labeling solution“ ist rot gefärbt. Obere Reihe: 

Kontrolle, untere Reihe: nach Stimulation mit 10 µg/ml, n=8, Maßstab 10 μm. 
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Abb.16: Intensität des Immnfluoreszenz-Signals in % der CCL21-Expression nach Stimulation von hmEZ mit 

oxLDL im Vergleich zur unstimulierten Kontrolle, n=9, * = p<0,05 
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ADMA:  

Die Zugabe von 1µg/ml ADMA hatte weder einen Einfluss auf die gemessene mRNA-

Menge von CCL19 noch von CCL21 (Abbildung 17). Ebenso konnte durch die Zugabe 

von 1µg/ml ADMA keine Veränderung der CCL21-Expression mittels Immunfluoreszenz 

nachgewiesen werden.  

 

 

 

Abb.17: mRNA-Expression von CCL19 und CCL21 nach Stimulation von hmEZ mit ADMA, dargestellt als 

Mittelwerte mittels Balkendiagramm der ∆∆ct-Werte, keine Signifikanz mittels Wilcoxon-signed-Ranks Test 

nachweisbar. 
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4.2.1.2 Stimulation von MGDZ 

Die bereits o.g. Substanzen (oxLDL und ADMA) gaben wir in gleicher Konzentration auf 

eine Kultur mit humanen Monozyten generierten DZ (MGDZ) und verwendeten nach 48 

Stunden einen Teil der Kultur für die rt-PCR, um die Genexpression von CCR7 zu 

bestimmen. Den anderen Teil verwendeten wir für die Durchflußzytometrie und 

ermittelten hier die Oberflächenexpression des Homingrezeptors CCR7 und des 

Oberflächenmarkers CD83.  

 

Der für das Homing wichtige Rezeptor CCR7 war unter oxLDL-Einfluss mittels rt-PCR 

signifikant weniger häufiger nachweisbar (-30%, n=8, 0,7 ± 0,2 ΔΔct, p < 0,05, Graphik 

nicht dargestellt).  

 

Auch mittels Durchflußzytometrie fand sich auf DZ signifkant weniger häufig der 

Rezeptor CCR7 (um 46% verringert, wenn Kontrolle als 100% angenommen wird;  25,7 ± 

1,06% vs. Kontrolle 47,6 ± 19,3% positive Zellen, n=8, p < 0,05, Abbildung 18).  

 

Im Gegensatz dazu ermittelten wir mittels der Durchflußzytometrie für CD83 eine 

signifikant hochregulierte Proteinexpression unter oxLDL-Einfluss (+60%, 46,9 ± 11,3% 

vs. Kontrolle 29,3 ± 17,7% positive Zellen, p < 0,05, Abbildung 18).  

 

Unter dem Einfluss der weiteren Streßsubstanz ADMA kam es zu keinem signifikanten 

Unterschied im Vergleich zum Kontrollversuch.  
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Abb.18: Proteinexpression von CCR7 und CD83 nach Stimulation mit oxLDL 

 

Nach Stimulation der DZ mit 10 µg/ml oxLDL konnten CD83-positive Zellen häufiger nachgewiesen 

werden, der Rezeptor CCR7 dagegen weniger häufig. Jeweils in Bezug auf die unstimulierten 

Kontrollen. Die positiven Zellen wurden mittels Durchflußzytometrie gemessen. Die Angabe bezieht 

sich auf den Unterschied der positiven Zellen in %, wobei die unstimulierten Kontrollen als 100% 

angenommen werden, n=8, * = p<0,05.  
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4.2.2 Inkubation mit Plaque- und Aortensuspension 

Des Weiteren wurden hmEZ mit Plaquematerial bzw. mit nicht atherosklerotisch 

verändertem Aortengewebe für 48 Stunden stimuliert, um festzustellen welche Umgebung 

für die Produktion von Chemokinen notwendig ist. Die Genexpression der Chemokine  

CCL19 und CCL21 wurden im Anschluss mittels rt-PCR bestimmt.  

Mittels der ΔΔ-ct-Methode, lässt sich errechnen, dass in der relativ atherosklerosefreien 

Aortensuspension 465-mal so viele mRNA-Kopien von CCL21 gefunden wurden als in der 

unstimulierten Kontrolle. Unter dem Einfluss des Plaquematerials kam es nur zu einem 

fünffachen Anstieg der CCL21-mRNA. Daraus lässt sich schließen, dass es bei einer 

relativ atherosklerosfreien Umgebung, zu einer ca. 85-fachen vermehrten Genexpression 

von CCL21 kommt (Abbildung 19). Sowohl im Vergleich zur instimulierten Kontrolle, als 

auch zwischen Plaque- und Aortensuspension findet sich ein signifikanter Unterschied bei 

der Genexpression von CCL21.  

Die Inkubation von hmEZ mit Plaque- und Aortensuspension zeigte keinen signifikanten 

Einfluss auf die Genexpression von CCL19.  

 

 

Abb.19: Genexpression von CCL21 auf hmEZ nach Inkubation mit Plaque- bzw. Aortensuspension, 

dargestellt als Mittelwerte mittels Balkendiagramm der ∆∆ct-Werte, Signifikanzen (** = p<0,01)  bezogen 

auf das unstimulierte Kontroll-Kollektiv als auch als signifikanter Unterschied zwischen Plaque- und 

Aortensuspension 
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5. DISKUSSION 

 

Die traditionellen Risikofaktoren wie Rauchen, Hypertonus, Diabetes mellitus, 

Hypercholesterinämie und Adipositas sind zur Einschätzung des atherogenen Risikos 

wichtig und aus Populationsstudien nicht wegzudenken, trotzdem ist es für ein besseres 

Verständnis der Atherogenese wichtig, das morphologische Korrelat dazu – den 

atherosklerotischen Plaque und dessen Zusammensetzung – zu begreifen.  

 

5.1 Die wichtigsten Ergebnisse zusammengefasst  

In dieser Arbeit konnte nicht nachgewiesen werden, dass die klassischen Risikofaktoren 

wie Hypercholesterinämie und Adipositas einen Einfluss auf CCR7 und CCL21/19 haben.  

Es konnte gezeigt werden, dass sowohl der Chemokin-Rezeptor CCR7 als auch dessen 

Liganden CCL21/CCL19 im atherosklerotischen Plaque herunter reguliert sind und es 

gleichzeitig zu einer Akkumulation maturer DZ (Hochregulation von CD83) im 

atherosklerotischen Plaque kommt.  

Außerdem fanden sich im Serum der Patienten mit Carotis-Stenose eine Hochregulation 

von CCL21 und gleichzeitig eine verringerte Expression des Homingrezeptor CCR7.  

Des Weiteren ist oxLDL im Serum von Patienten mit Carotis-Stenose vermehrt 

nachweisbar und führt zu einer verminderten Expression von CCL21 auf Endothelzellen.  
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5.2 CD83 als Marker für reife DZ 

Eine Expression von CD83 ist bislang nur auf ausgereiften DZ nachzuweisen (Zhou and 

Tedder 1996) und somit sehr spezifisch.  

Bei Patienten mit einer Carotis-Stenose war die Anzahl maturer DZ sowohl im Serum, als 

auch im atherosklerotischen Plaque vermehrt nachzuweisen. Auch Erbel et al. (Erbel, Sato 

et al. 2007) und Yilmaz et al. (Yilmaz, Lipfert et al. 2007) konnten im Plaque der A. 

carotis eine vermehrte Anzahl DZ nachweisen. In jeweils beiden Arbeiten wurden die 

meisten maturen DZ bei Patienten entdeckt, bei denen präoperativ eine cerebrale Ischämie 

anamnestiziert werden konnte. Wie bereits erwähnt, finden sich in Gefäßabschnitten, die 

einer vermehrten Scherspannung und somit einem hohen dynamischen Stress ausgesetzt 

sind, vermehrt reife DZ. Yilmaz, dessen Arbeitsgruppe die Plaques mittels IHC 

untersuchte, unterteilte das Untersuchungsmaterial in zwei verschiedene Regionen, 

abhängig von der Flussrichtung. Im „upstream“-Bereich der Plaques – ein Bereich der 

besonders hohen Scherspannungen ausgesetzt ist - konnten deutlich mehr mature DZ 

detektiert werden.  

In der hier vorliegenden Studie konnte bei der geschlechtsspezifischen Analyse bei 

Männern im Plaque mehr als doppelt so viel mRNA von CD83 gemessen werden als bei 

Frauen. Klinisch waren mehr als zwei Drittel der Männer vor der Operation zerebral 

auffällig, wohingegen nur 18,2% der Frauen präoperativ symptomatisch waren bei 

insgesamt vergleichbarem Risikoprofil. Die Framingham Heart Studie  prognostiziert 

Männern bei gleichem Risikoprofil ein höheres kardiovaskuläres Risiko (Govindaraju, 

Cupples et al. 2008), welches durch den mangelnden Östrogen-Schutz und einer insgesamt 

proatherogenen Lebensweise zu erklären ist. 

Des Weiteren konnte gezeigt werden, dass bei Patienten mit einer signifikanten 

Atherosklerose höhere oxLDL-Werte im peripheren Blut messbar sind. Bereits in 

vorangegangen Studien konnte unsere Arbeitsgruppe zeigen, dass oxLDL eine DZ-

Maturierung bewirkt, die teilweise über eine Aktivierung der NF-κB-Signalübertragung 

erfolgt (Nickel, Schmauss et al. 2009). DZ phagozytieren im subendothelialen Raum 

Antigene, wie z.B. oxLDL. Während der Maturierung kommt es zu einer Hochregulation 

von CD83. Die in dieser Arbeit gemessenen erhöhten Werte für CD83 bei Patienten mit 

Atherosklerose, als Ausdruck einer verstärkten Maturierung, können somit auch die 
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erhöhten oxLDL-Werte wiederspiegeln. Reife DZ sind wiederum in der Lage T-Zellen zu 

aktivieren, hierbei spielt CCR7 eine wichtige Rolle.  
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5.3 CCR7 – der Homingrezeptor 

Wie bereits erwähnt sind DZ die potentesten Antigen präsentierenden Zellen (APZ) der 

Immunabwehr und sind als einzige Zellen in der Lage T-Zellen zu primen und zu 

aktivieren (Banchereau and Steinman 1998; Banchereau, Briere et al. 2000). Hierbei spielt 

der CC-Chemokin-Rezeptor 7 (CCR7) eine wichtige Rolle, da dieser Rezeptor als Antwort 

auf verschiedene Stimuli/Antigene bei der Maturierung hochreguliert wird (Sallusto, 

Schaerli et al. 1998; Sozzani, Allavena et al. 1998) und reifen DZ eine Emigration zu 

Lymphknotenstationen ermöglicht (Forster, Schubel et al. 1999; Forster, Davalos-Misslitz 

et al. 2008).  

Zum einen konnten wir bereits zeigen, dass es bei Patienten mit signifikanter 

Atherosklerose zu einer verstärkten Aktvierung bzw. Maturierung der DZ kommt. Somit 

hätten wir zunächst eine verstärkte Expression des Homing-Rezeptors erwartet. Es zeigte 

sich allerdings, dass im Vergleich zum Kontroll-Kollektiv die mRNA des Homing-

Rezeptors CCR7 im Serum als auch im Plaque weniger häufig nachgewiesen werden 

konnte. Eine Erklärung hierfür könnte der Funktionsverlust der DZ nach Aufnahme von 

oxLDL sein. Es kommt zwar zunächst zu einer Maturierung, dann aber zum 

Funktionsverlust. Die DZ exprimiert CCR7 nur noch ungenügend auf ihrer Oberfläche, 

kann somit nicht mehr aus dem Plaque auswandern und akkumuliert im subendothelialen 

Raum. Gestützt wird diese These, dass bereits gezeigt werden konnte, dass nach einer 

verstärkten oxLDL-vermittelten Endozytose-Fähigkeit es zu einer Herunterregulation der 

Endozytose-Rezeptoren und der Aquaporin-Kanäle (wichtig für die Makropinozytose) 

kommt (de Baey and Lanzavecchia 2000; Perrin-Cocon, Coutant et al. 2001). Wir konnten 

zeigen, dass der Homing-Rezeptor CCR7 im Plaque nur noch vermindert exprimiert wird. 

Der Verlust der Endozytose-Fähigkeit und die ungenügende Exprimierung von CCR7 kann 

der Grund für die Akkumulation von Zelldetruitus und Lipidbelastung im 

atherosklerotischen Plaque sein. Die Unfähigkeit zum Homing der maturierten DZ führt 

zur Akkumulation.  

Die Reaktion auf eine akute Inflammation erfolgt schnell und die Homöostase ist bereits 

nach einigen Tagen bis wenigen Wochen wieder erreicht (DiPietro, Polverini et al. 1995). 

Dabei konnte in mehreren Studien beobachtet werden, dass das Ende der Inflammation 

gekennzeichnet ist durch ein Abwandern von monocyte-derived cells zu Lymphknoten und 

dort akkumulieren (Bellingan, Caldwell et al. 1996). Bei den hier akkumulierenden Zellen, 
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handelt es sich zum größten Teil um DZ (Randolph, Angeli et al. 2005). Eine Regression 

der Inflammation steht also in direktem Zusammenhang mit der Emigration von DZ. Bei 

einer chronisch inflammatorischen Erkrankung wie der Atherosklerose ist das Homing DZ 

während der Progression gestört (Llodra, Angeli et al. 2004; Randolph 2008). Dieses lässt 

sich aber nicht nur durch die ungewöhnliche Anatomie der Intima erklären, die teilweise 

nicht in Verbindung zu afferenten Lymphgefäßen steht und somit eine Barriere für die 

Migration sein kann (Dal Canto, Swanson et al. 2001).  

Trogan et al. konnte in einem Tier-Modell mit ApoE
–
Mäusen zeigen, dass es bei 

Normolipidämie zu einem Anstieg des mRNA- und Proteinlevels im Serum von CCR7 und 

gleichzeitig zu einer Regression der Atherosklerose kommt. Bei Hyperlipidämie konnten 

dagegen nur sehr niedrige CCR7-Werte gemessen werden. Wurden Gefäßabschnitte der 

ApoE⁻-Mäuse in die Wildtyp-Mäuse transplantiert, kam es zu einem Anstieg von CCR7 im 

Plaque und zu einer Regression der Atherosklerose insgesamt (Trogan, Feig et al. 2006).  

Im Durchschnitt hatten die rekrutierten Patienten dieser Studie ein Gesamt-Cholesterin von 

186,37 mg/dl und liegen somit im – von der AHA (American Heart Association) 

geforderten – Normbereich. Allerdings nehmen fast 80% der Patienten täglich Statine, 

weshalb davon auszugehen ist, dass vor Beginn der medikamentösen Therapie längerfristig 

eine Hypercholesterinämie bestand. Außerdem erfolgte die Statin-Therapie bei mehr als 

der Hälfte der Patienten erst seit weniger als zwei Jahren. Ein normwertiger 

Cholesterinspiegel besteht bei den Meisten somit erst seit kurzem. Laut einer Studie von 

Damas et al. (Damas, Smith et al. 2007) kommt es nach einer hochdosierten Statin-

Therapie (80mg Atorvastatin/Tag) nach sechs Monaten zu einem signifikanten Anstieg des 

mRNA-Levels von CCR7. Ein ähnlicher Effekt bei einer niedrigdosierten Therapie (20mg 

Simvastatin/Tag) blieb aus.  

Der Anstieg von CCR7 unter Statin-Therapie war gekennzeichnet durch ein Absinken der 

Plasma-Spiegel der mRNA der korrespondierenden Liganden CCL19 und CCL21. In der 

vorliegenden Arbeit untersuchten wir die zirkulierende mRNA der Liganden auf PBMZ 

und konnten zeigen, dass CCL21 im gesunden, längerfristig normolipämischen 

Kontrollkollektiv weniger häufig nachzuweisen war, als bei Patienten mit hochgradiger 

Atherosklerose der Carotiden. Diese Ergebnisse stimmen auch mit weiteren Studien 

überein, was nicht zuletzt an dem ähnlich gewählten Kontroll-Kollektiv liegen könnte 

(PBMZ von 10 altersentsprechenden Männern, bei denen eine signifikante Atherosklerose 

ausgeschlossen wurde).  
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Die beschriebene Datenlage und die Tatsache, dass die Patienten in dieser Studie zum 

größten Teil (84% der Statin-therapierten Patienten) 20 bzw. 40 mg Simvastatin/Tag erst 

über einen relativ kurzen Zeitraum genommen haben und im Serum der mRNA-Spiegel 

von CCR7 nur 36% des gesunden Kontroll-Kollektivs entspricht, lässt darauf schließen, 

dass die Medikation zwar erfolgreich in Hinsicht auf einen normwertig eingestellten 

Cholesterinspiegel war. Doch ist der Erfolg einer Statin-Therapie auch von der Dauer der 

Medikation abhängig. Die Dauer bei der eine niedrigdosierte Statin-Therapie zu einem 

Anstieg von CCR7 und einem Sinken der mRNA von dessen Liganden auf PBMZ führt, 

bleibt zu untersuchen.  

 

5.4 CCR7 im Zusammenspiel mit seinen Liganden CCL21/CCL19 

J. Damas veröffentlichte eine Studie mit ApoE
–
Mäusen (Damas, Smith et al. 2007). Mittels 

Immunhistochemie untersuchte er die murinen atherosklerotischen Plaques und stellte fest, 

dass die Immunfärbung von CCR7 und dessen Liganden (CCL19 und CCL21) positiv mit 

der Plaquegröße korreliert. Außerdem färbte er immunhistochemisch vier humane Carotis-

Plaques, verglich diese mit vier humanen, nicht-atherosklerotischen Nierenarterien und 

zeigte, dass der Homing-Rezeptor und seine Liganden in den Carotis-Plaques stärker 

angefärbt werden konnte. Diese Ergebnisse sind nicht vereinbar mit den Ergebnissen der 

vorliegenden Arbeit.  

Bei den 47 untersuchten Carotis-Plaques konnte nur knapp 20% der mRNA-Menge von 

CCR7 gemessen werden. Gleichzeitig war die mRNA der Liganden signifikant weniger 

häufig im Plaque zu finden. Hervorzuheben ist hierbei das valide Kontrollkollektiv, 

bestehend aus 14 nicht-atherosklerotischen, thorakalen Aortenstücken. Aorta und Arteria 

carotis interna sind herznahe Gefäße und ähneln sich in ihrem Wandaufbau. Ob ein 

Vergleich mit einem Widerstandsgefäß, wie der Arteria renalis möglich ist, ist fraglich. 

Eine Studie der Universität Heidelberg (Erbel, Sato et al. 2007) kam zu dem Ergebnis, dass 

CCL19/CCL21 vermehrt in Plaqueregionen vorzufinden ist, verglich ihre Ergebnisse aber 

mit sieben Koronararterien aus Sektiongsgut. Auch hier ist die Validität, in diesem Fall 

aufgrund der Autolyse der Kontrollen, anzuzweifeln.  

Insbesondere ist hier wieder auf das Tier-Model von Trogan (Trogan, Feig et al. 2006) zu 

verweisen, der zeigen konnte, dass zum einen normolipämische Mäuse höhere CCR7-

Spiegel aufwiesen, zum anderen stellte er dar, dass ein Anstieg von CCR7 im Plaque zu 
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einer Regression der Atherosklerose führt. Diese Ergebnisse stehen im Einklang mit den 

Ergebnissen der vorliegenden Arbeit. G. Randolph fasst in ihrer Übersichtsarbeit 

zusammen, dass CCR7 benötigt wird, um zum afferenten Lymphknoten zu wandern. 

Aufgrund der mangelhaften Expression im Plaque kommt es zum sogenannten „Trapping“ 

der DZ im atherosklerotischen Plaque (Randolph 2008). Die DZ sind nicht mehr in der 

Lage zum Lymphknoten zu wandern. Die im Serum gemessenen erhöhten CCL19/21-

Werte können eine vermehrte Expression der Endothelzellen im lymphatischen System 

wiederspiegeln, die dadurch chemotaktisch DZ anlocken wollen, um ein T-Zell-Priming zu 

induzieren.  

 

5.5 Der Einfluss von oxLDL 

DZ exprimieren den Homingrezeptor CCR7, der es ihnen ermöglicht aus dem 

inflammatorischen Gewebe zu emigrieren. Unter oxLDL-Einfluss wird CCR7 von DZ um 

46% weniger exprimiert als in der unstimulierten Kontrolle. Dieses Ergebnis stützt die in 

vivo gewonnen Daten und zeigt, dass eine Hochregulation von CCR7 unter pathologischen 

Bedingungen nicht bzw. nur noch eingeschränkt möglich ist.  

Der Ligand CCL21 und in geringerem Umfang auch CCL19 (Forster, Davalos-Misslitz et 

al. 2008) werden hauptsächlich von EZ exprimiert, werden aber bei Patienten mit 

hochgradiger Carotisstenose im Plaque vermindert exprimiert. Da – wie bereits geschildert 

– bei den Patienten in der Vorgeschichte eine Dysregulation des Lipid-Haushalts 

anzunehmen ist, untersuchten wir in vitro den Einfluss von 10 µg/ml oxLDL auf EZ. 

Hierbei zeigte sich eine signifikant verringerte Gen- und Proteinexpression von CCL21. 

Der Ligand CCL19 war hingegen nicht signifikant weniger exprimiert im Vergleich zur 

unstimulierten Kontrolle. In einem zweiten Versuchsansatz stimulierten wir EZ zum einen 

mit einer Suspension aus atherosklerosefreien Aortenmaterial, zum anderen mit einer 

Plaquesuspension. Das Plaquematerial besteht zum größten Teil aus Zelldetruitus und mit 

oxLDL beladenen Makrophagen (Simionescu, Vasile et al. 1986; Stary, Chandler et al. 

1994). Diese Bestandteile hemmen signifikant die Produktion des Liganden CCL21. 

Allerdings kann durch diesen Versuch noch nicht geklärt werden, welcher explizite 

Bestandteil für die Down-Regulation des Liganden verantwortlich ist. Auffällig ist, dass es 

in beiden in vitro Versuchen zwar zu einer tendenziellen, aber keiner signifikanten 

Herunterregulation des Liganden CCL19 gekommen ist. Ein Grund könnte in der von 
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Förster und zuvor auch von Yoshida beschriebenen unterschiedlichen Struktur der beiden 

Liganden liegen. CCL21 hat im Gegensatz zu CCL19 ein C-terminales Ende, bestehend 

aus 32 Aminosäuren, das ihm eine starke Bindung an Glykosaminoglykane ermöglicht. 

Dies ist eine Voraussetzung für eine effiziente Präsentation von CCL21 an der Oberfläche 

von EZ (Yoshida, Nagira et al. 1998; Forster, Davalos-Misslitz et al. 2008).  

Gleichzeitig konnten wir in vitro zeigen, dass oxLDL als Streßsubstanz eine Ausreifung 

der DZ bewirkt. Bereits in vorherigen Arbeiten unserer Arbeitsgruppe konnten wir zeigen, 

dass oxLDL einen Einfluss auf die Maturierung hat (Nickel, Schmauss et al. 2009). So 

kommt es nicht nur zu einer Hochregulation von CD83 und CD11a als Marker für die 

Maturierung sondern auch zu einer vermehrten Expression von Scavenger-Rezeptoren, die 

die Aufnahme von Antigenen (z.B. oxLDL) vermitteln (Alderman, Bunyard et al. 2002; 

Weis, Schlichting et al. 2002; Nickel, Schmauss et al. 2009).  

Die Ergebnisse der vorliegenden Arbeit unterstützen bereits bestehende Theorien (Angeli, 

Llodra et al. 2004; Llodra, Angeli et al. 2004), dass es durch oxLDL zu einer Modulation 

des Chemokin-Rezeptor-Profils im Sinne einer verstärkten Maturierung kommt, die dazu 

führt, dass die DZ im atherosklerotischen Plaque akkumulieren und somit nicht mehr in der 

Lage sind, T-Zellen zu primen.  

Krupa et al. (Krupa, Dewan et al. 2002) stellte bei Patienten mit Arteriitis cranialis (Giant-

cell-arteritis, GCA) in der Arterienwand eine vermehrte Ausreifung von DZ fest. Sowohl 

CCR7 als auch  dessen Liganden CCL19 und CCL21 waren vermehrt nachweisbar. Hier 

entstand die These des sogenannten „Trapping“ von DZ: Laut W.M. Krupa sind DZ selbst 

in der Lage die Liganden zu exprimieren. Findet allerdings eine verstärkte Maturierung der 

DZ statt, werden auch verstärkt die Liganden exprimiert. Durch die lokale Anwesenheit 

der Liganden kommt es zu einer verstärkten Rezeptor-/Liganden-Bindung womit CCR7 

seine Homing-Fähigkeit verliert und DZ im Plaque „getrappt“ sind.  

Zum einen ist zu beachten, dass in der Literatur hauptsächlich EZ als die Liganden 

exprimierenden Zellen beschrieben werden (Forster, Davalos-Misslitz et al. 2008), zum 

anderen ist die GCA zwar eine inflammatorische Erkrankung, ist in ihrem Verlauf aber 

akut und somit abzugrenzen von der hier untersuchten chronischen Atherosklerose. In vivo 

konnten wir zeigen, dass diese Liganden nur noch vermindert exprimiert werden und 

konnten dies in vitro bestätigen. In der vorliegenden Studie fand sich keine Korrelation 

zwischen der Expression von CCR7, CCL21/CCL19 und dem oxLDL-Spiegel im Serum 

der Patienten, obwohl der Homing-Rezeptor und seine Liganden in vivo signifikant 

herunter reguliert waren im atherosklerotischen Plaque und wir auch in vitro einen Einfluss 
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von oxLDL auf die Expression von CCR7 belegen konnten. Dies könnte erklärt werden, 

durch die Tatsache, dass der oxLDL-Spiegel im Serum nicht stabil ist und einer großen 

Schwankungsbreite unterliegt. Im subinitmalen Raum kann oxLDL aber akkumulieren und 

somit viel höhere Konzentrationen als im Serum erreichen.  
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5.6 Der Einfluss von ADMA 

ADMA, als endogener Inhibitor der NO-Synthetase, senkt in vivo und in vitro den NO-

Spiegel und ist somit ein direkter Gegenspieler des stärksten endogenen Vasodilatators. 

Darüber hinaus spielt NO in der intrazellulären Signaltransduktion eine wichtige Rolle, 

induziert anti-inflammatorische, anti-thrombotische und anit-apoptotische Effekte 

(Antoniades, Antonopoulos et al. 2009).  

ADMA, als endogenes L-Arginin Analogon, ist assoziiert mit einer endothelialen 

Dysfunktion (Antoniades, Shirodaria et al. 2009) und klinische Studien konnten bereits 

mehrfach zeigen, dass ein erhöhter ADMA-Spiegel mit endothelialer Dysfunktion und 

somit mit einem erhöhten kardiovaskulärem Risiko einhergeht (Schulze, Lenzen et al. 

2006). Ebenso konnte gezeigt werden, dass die Höhe des ADMA-Spiegels mit dem 

Schweregrad der kardiovaskulären Erkrankung positiv korreliert (Wilson, Shin et al. 

2010). Darüber hinaus ist ADMA ein unabhängiger Prädiktor für das klinische Outcome 

und die Mortalität von Patienten mit signifikanter Atherosklerose.  

Ebenso scheint ein Zusammenhang zwischen der Höhe der ADMA-Spiegel und der 

Anzahl der kardiovaskulären Risikofaktoren zu bestehen (Juonala, Viikari et al. 2007).  

In der vorliegenden Arbeit konnte gezeigt werden, dass sich im Plasma der Patienten mit 

signifikanter Atherosklerose ca. um ein Viertel (27,8%) höhere ADMA-Spiegel finden im 

Vergleich zum Kontroll-Kollektiv. Allerdings konnte kein Zusammenhang zwischen der 

Höhe der ADMA-Konzentration und der Anzahl der Risikofaktoren gefunden werden. 

Limitierend ist in diesem Fall sicherlich die Fallzahl von 47 Patienten, verglichen mit 2096 

Probanden in der Studie von Juonala et al.  

 

Die Subfamilie der CC-Chemokine ist für die Rekrutierung von Monozyten in 

atherosklerotischen Läsionen wichtig (Spinetti, Wang et al. 2004). Nach unserer 

Literaturrecherche wurde bisher nicht der Einfluss von ADMA auf CD83, CCR7 und 

CCL21/CCL19 untersucht. Wir konnten bereits zeigen, dass der Stressfaktor oxLDL zu 

einer Reduktion von CCR7 auf Dendritischen Zellen und zu einer verminderten Expression 

von CCL21 von Endothelzellen führt.  

In einem zweiten Schritt untersuchten wir deshalb den Einfluss von ADMA auf die 

Chemokin-Expression von Dendritischen Zellen (CCR7 und CD83) bzw. von 

Endothelzellen (CCL19 und CCL21). Allerdings konnten wir hier – im Gegensatz zu 

oxLDL – keinen Effekt nachweisen.  
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Cheng, Li et al. (2007) konnten zeigen, dass ADMA die Adhäsion von Monozyten über 

eine Hochregulation von Chemokinen (CCR2 und CXCR2) steigert. Beides Chemokine, 

die auf zirkulierenden Monozyten exprimiert werden und bei Patienten mit 

Hypercholesterinämie und Hypertension verstärkt exprimiert werden (Bush, Maeda et al. 

2000).  

In der Arbeit von Cheng et al. wurden 30 µM ADMA zur Stimulation der Monozyten 

verwendet. In der vorliegenden Arbeit inkubierten wir sowohl Dendritische Zellen als auch 

Endothelzellen mit 1 µg/ml was ca. 5 µM ADMA entspricht.  

Inwiefern kein signifikanter Effekt von ADMA gesehen werden konnte, weil die 

Konzentration zu gering war oder ob ADMA tatsächlich keinen Einfluss auf CD83, CCR7 

und CCL21/CCL19 hat, wird Aufgabe weiterer Studien sein.  
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6. ZUSAMMENFASSUNG 

Hintergrund und Arbeitskonzept: 

Die Atherosklerose ist eine chronisch entzündliche Reaktion der Gefäßwand und 

wesentliche Ursache für die Progression kardiovaskulärer Erkrankungen. Um die 

Atherogenese zu verstehen, ist es neben der Risikofaktor-Darstellung entscheidend 

strukturelle und funktionelle (inflammatorische) Veränderungen im atherosklerotischen 

Plaque zu beurteilen.  

Dendritische Zellen spielen eine wichtige Rolle in der Regulation des Immunsystems und 

akkumulieren im atherosklerotischen Plaque.  

Ziel dieser Arbeit war es die Maturierung von Dendritischen Zellen (CD83), die 

Expression und Modulation des Homing-Rezeptors CCR7 (auf Dendritischen Zellen) und 

dessen Liganden CCL21 und CCL19 (exprimiert von Endothelzellen) im 

atherosklerotischen Plaque zu charakterisieren und die Relevanz proatherogener Faktoren 

zu bestimmen.  

 

Material und Methoden:  

Wir charakterisierten zunächst in vivo die o.g. genannten Immun-Parameter in 47 humanen 

atherosklerotischen Plaques sowie im Serum dieser Patienten. Als Vergleichskollektiv 

dienten 14 humane, atherosklerosefreie aortale Gefäßabschnitte sowie das Serum von 10 

gesunden Probanden.  

Im zweiten Teil der Arbeit untersuchten wir in vitro den Einfluss der Stressfaktoren 

oxLDL und des endogenen NO-Inhibitors ADMA auf das entsprechende Chemokin-

Expressionsmuster von Dendritischen Zellen und humanen mikrovaskulären 

Endothelzellen.  

Mittels rtPCR bestimmten wir die mRNA-Level von CD83, CCR7 und dessen Liganden 

CCL19 und CCL21 in den Gefäßabschnitten sowie im Serum der beiden Gruppen.  

Um unsere Ergebnisse auf Proteinebene zu bestätigen führten wir eine Immunfluoreszenz 

mit histologischen Schnitten der atherosklerotischen Plaques sowie der 

atherosklerosefreien Gefäßabschnitte durch. Mittels ELISA bestimmten wir die Serum-

Spiegel von oxLDL, ADMA und CCL21.  
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Nach Stimulation von Endothelzellen mit oxLDL und ADMA ermittelten wir mittels 

rtPCR und Immunfluoreszenz die Aktivierbarkeit von CCL19 und CCL21. In einem 

parallel konzipierten Ansatz stimulierten wir mit den genannten Streßsubstanzen 

Dendritische Zellen und bestimmten mittels rtPCR und Durchflußzytometrie die 

Expression von CD83 und CCR7.  

 

Ergebnisse:  

Es konnte gezeigt werden, dass sowohl der Chemokin-Rezeptor CCR7 als auch dessen 

Liganden CCL21/CCL19 im atherosklerotischen Plaque herunter reguliert sind und es 

gleichzeitig zu einer Akkumulation maturer Dendritischer Zellen (Hochregulation von 

CD83) im atherosklerotischen Plaque kommt.  

Im Serum der Patienten mit Carotis-Stenose fanden sich eine Hochregulation von CCL21 

und gleichzeitig eine verringerte Expression des Homingrezeptor CCR7.  

Des Weiteren ist oxLDL im Serum von Patienten mit Carotis-Stenose vermehrt 

nachweisbar und führt zu einer verminderten Expression von CCL21 auf Endothelzellen. 

Gleichzeitig stimuliert oxLDL die Ausreifung Dendritischer Zellen bei verminderter 

Expression von CCR7.  

Obwohl im Serum der Patienten mit Carotis-Stenose höhere ADMA-Konzentrationen 

gemessen werden konnten, konnten wir in vitro keinen Einfluss von ADMA auf die 

entsprechende Chemokinexpression auf Endothelzellen und Dendritische Zellen 

nachweisen.  

Es ergab sich keine Korrelation zwischen den klassischen Risikofaktoren wie 

Hypercholesterinämie, Diabetes mellitus und Adipositas mit der Expression von CD83, 

CCR7 und CCL21/19.  

 

Bedeutung und Ausblick:  

Die Resultate dieser Arbeit zeigen in vivo, dass es bei Patienten mit signifikanter 

Atherosklerose zu einer verstärkten Maturierung Dendritischer Zellen kommt. Gleichzeitig 

ist es ihnen – aufgrund ungenügender Expression von CCR7 – wahrscheinlich nicht mehr 

möglich zum Lymphknoten zu emigrieren. Man muss daher davon ausgehen, dass es zum 

„Trapping der Dendritischen Zellen“ kommt: zur konsekutiven Akkumulation der 

Dendritischen Zellen im Plaque. Als möglichen Stressfaktor, welcher zu einer CCR7-

Reduktion im Plaque (aber auch systemisch) führt, konnten wir das oxLDL identifizieren. 
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Ein therapeutischer Ansatzpunkt kann die Plaquestabilisierung und somit die Vermeidung 

einer Plaqueruptur sein, indem man die Maturierung Dendritischer Zellen im 

atherosklerotischen Plaque verhindert bzw. ein Auswandern ermöglicht.  

Inwiefern die Expression von Chemokinrezeptoren und –Liganden im Plaque 

medikamentös beeinflusst werden kann bzw. inwiefern ein Auswandern bereits maturierter 

DZ möglich ist, wird Aufgabe weiterer Studien sein.  
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7. ABKÜRZUNGSVERZEICHNIS 

 

APZ      Antigen präsentierende Zellen  

BSA      Bovines Serum Albumin  

CD      Cluster of Differentiation  

DZ      Dendritische Zellen  

EZ   Endothelzellen 

EDTA     Ethylen-Diamin-Tetraessigsäure  

FCS   fetal calf serum 

FITC      Fluorescein-isothiocyanat   

HEV   high endothelial venules 

IFN      Interferon  

Ig      Immunglobulin  

IL      Interleukin  

LPS      Lipopolysaccharid  

MALT   mucosa associated lymphoid tissue 

MGDZ     Monozyten generierte Dendritische Zellen  

MHC     Major Histocompatibility Complex  

mDZ   myeloide Dendritische Zellen 

mRNS     Messenger Ribonuklein Säure  

oxLDL   oxidiertes low density lipoproteine 

PBMZ     aus peripherem Blut entnommene Mononukleär 

PBS      Phosphate Buffered Saline  

PDGF   platelet derived growth factor 

pDZ   plasmazytoide Dendritische Zellen 

SCY   small secreted cytokines 

TNF-α   Tumornekrosefaktor α 

VALT   vascular-associated lymphoid tissue 
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