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Abstract

In this thesis we report on two matters, (i) time-resolved single particle bio-sensing
using a cavity enhanced refractive index sensor with unmatched sensitivity, and (ii)
the theoretical analysis of parametric normal mode splitting in cavity optomechanics,
as well as the quantum limit of a displacement transducer that relies on multiple
cavity modes. It is the unifying element of these studies that they rely on a high-
Q optical cavity transducer and amount to a precision measurement of an optical
frequency.

In the first part, we describe an experiment where a high-Q toroidal microcavity is
used as a refractive index sensor for single particle studies. The resonator supports
whispering gallery modes (WGM) that feature an evanescent fraction, probing the
environment close to the toroid’s surface. When a particle with a refractive index,
different from its environment, enters the evanescent field of the WGM, the resonance
frequency shifts.

Here, we monitor the shift with a frequency resolution of ∆ν/ν = 7.7 · 10−11 at
a time resolution of 100µs, which constitutes a ×10 improvement of the sensitiv-
ity and a ×100 improvement in time resolution, compared to the state of the art.
This unprecedented sensitivity is the key to real-time resolution of single lipid vesi-
cles with 25 nm radius adsorbing onto the surface. Moreover – for the first time
within one distinct measurement – a record number of up to 200 identifiable events
was recorded, which provides the foundation for a meaningful statistical analysis.
Strikingly, the large number of recorded events and the high precision revealed a
disagreement with the theoretical model for the single particle frequency shift. A
correction factor that fully accounts for the polarizability of the particle, and thus
corrects the deviation, was introduced and establishes a quantitative understanding
of the binding events.

Directed towards biological application, we introduce an elegant method to cover the
resonator surface with a single lipid bilayer, which creates a universal, biomimetic
interface for specific functionalization with lipid bound receptors or membrane pro-
teins. Quantitative binding of streptavidin to biotinylated lipids is demonstrated.

Moving beyond the detection limit, we provide evidence that the presence of single
IgG proteins (that cannot be resolved individually) manifests in the frequency noise
spectrum. The theoretical analysis of the thermo-refractive noise floor yields a
fundamental limit of the sensors resolution.
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The second part of the thesis deals with the theoretical analysis of the coupling
between an optical cavity mode and a mechanical mode of much lower frequency. De-
spite the vastly different resonance frequencies, a regime of strong coupling between
the mechanics and the light field can be achieved, which manifests as a hybridization
of the modes and as a mode splitting in the spectrum of the quadrature fluctuations.
The regime is a precondition for coherent energy exchange between the mechani-
cal oscillator and the light field. Experimental observation of optomechanical mode
splitting was reported shortly after publication of our results.1

Dynamical backaction cooling of the mechanical mode can be achieved, when the
optical mode is driven red-detuned from resonance. We use a perturbation and
a covariance approach to calculate both, the power dependence of the mechanical
occupation number and the influence of excess noise in the optical drive that is used
for cooling. The result was one to one applied for data analysis in a seminal article
on ground state cooling of a mechanical oscillator.2

In addition we investigate a setting, where multiple optical cavity modes are coupled
to a single mechanical degree of freedom. Resonant build-up of the motional side-
bands amplifies the mechanical displacement signal, such that the standard quantum
limit for linear position detection can be reached at significantly lower input power.

1Gröblacher et al., Nature 460, 724–727.
2Teufel et al., Nature 475, 359–363.



Zusammenfassung

In dieser Dissertation werden zwei Themen behandelt. Im ersten Teil widmen wir uns
experimentell der zeitaufgelösten Messung von Liposomen mit Hilfe eines Nahfeld-
Brechungsindex-Sensors. Der zweite Teil handelt von der theoretischen Beschreibung
des Regimes der starken Kopplung zwischen einem mechanischen Oszillator und dem
Feld eines optischen Resonators. Des Weiteren erörtern wir ein Messschema, das es
erlaubt eine mechanische Bewegung, mit Hilfe von mehreren optischen Resonator-
moden genauer auszulesen. Die Gemeinsamkeit beider Arbeiten besteht darin, dass
es sich jeweils um eine Präzisionsmessung einer optischen Frequenz handelt.

Im experimentellen Teil benutzen wir Toroid-Mikroresonatoren mit extrem hoher
optischer Güte als Biosensoren. Dabei handelt es sich um eine ringförmige Glas-
struktur, entlang welcher Licht im Kreis geleitet wird. Dazu muss eine Resonanz-
bedingung erfüllt sein, die besagt, dass der (effektive) Umfang des Rings einem
ganzzahligen Vielfachen der optischen Wellenlänge entspricht. Ein Teil des zirkulie-
renden Lichts ist als evaneszente Welle empfänglich für Brechungsindexänderungen
nahe der Oberfläche des Resonators. Ein Partikel, dessen Brechungsindex sich von
dem der Umgebung unterscheidet, induziert beim Eintritt in das evaneszente Feld
eine Frequenzverschiebung der optischen Resonanz.

Im Rahmen dieser Arbeit lösen wir relative Frequenzverschiebungen mit einer Ge-
nauigkeit von ∆ν/ν = 7.7 · 10−11 und einer Zeitkonstante von 100µs auf. Dies
stellt eine Verbesserung des derzeitigen Stands der Technik um einen Faktor ×10
in der Frequenz und einen Faktor ×100 in der Zeit dar. Diese bisher unerreichte
Empfindlichkeit der Messmethode ist der Schlüssel zur Echtzeitdetektion einzelner
Lipidvesikel mit einem Radius von 25 nm. Zudem gelingt es uns innerhalb einer
Messung, bis zu 200 Einzelteilchenereignisse aufzunehmen, welche die Basis für ei-
ne aussagekräftige Statistik liefern. Bemerkenswerterweise konnten wir Dank der
außerordentlichen Präzision und der Vielzahl der Ereignisse eine Abweichung zur
bis dato akzeptierten und angewandten Theorie feststellen. Wir ergänzen das Mo-
del um einen Korrekturfaktor, der die Polarisierbarkeit des Teilchens vollständig
berücksichtigt und erlangen dadurch ein umfassendes und quantitatives Verständnis
der Messergebnisse.

Im Hinblick auf biologisch relevante Fragestellungen zeigen wir eine elegante Metho-
de auf, die es erlaubt, den Resonator mit einer einzelnen Lipidmembran zu beschich-
ten. Wir kreieren somit eine biomimetische Schnittstelle, welche das Grundgerüst
für eine spezifische Funktionalisierung mit lipidgebundenen Rezeptoren, Antikörpern
oder Membranproteinen darstellt.
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Des Weiteren zeigen wir, dass der Empfindlichkeit eine fundamentale Grenze durch
thermische Brechungsindexfluktuationen gesetzt ist. Hierzu wird ein theoretisches
Modell speziell für den relevanten niederfrequenten Bereich errechnet.

Im zweiten Teil der Arbeit beschäftigen wir uns mit der theoretischen Beschrei-
bung eines optischen Resonators, dessen Lichtfeld an eine mechanische Schwingung
gekoppelt ist. Obwohl sich die Resonanzfrequenzen der Optik und der Mechanik ty-
pischerweise um mehrere Größenordnungen unterscheiden, existiert ein Regime der
starken Kopplung, in dem die Fluktuationen des Lichts und die mechanischen Vibra-
tionen hybridisieren. Dies offenbart sich zum Beispiel im Phasenspektrum, wo sich
das ursprüngliche Maximum der Resonanz in zwei Maxima aufspaltet. Die starke
Kopplung stellt die Grundlage für kohärenten Energie- und Informationsaustausch
zwischen Licht und Mechanik dar und ist daher von besonderem technischen und
wissenschaftlichen Interesse. Es ist anzumerken, dass die starke Kopplung und die
einhergehende Aufspaltung der Resonanz bereits kurz nach Veröffentlichung unserer
theoretischen Beschreibung im Experiment beobachtet wurde.3

Wenn der optische Resonator (zur längeren Wellenlänge hin) verstimmt von der Re-
sonanz angeregt wird, kann über dynamische Rückkopplung eine effektive Kühlung
der mechanischen Schwingung erreicht werden. Wir berechnen die thermische Be-
setzungszahl der mechanischen Mode (und somit die Temperatur) mit Hilfe eines
störungstheoretischen und eines Kovarianzansatzes. Dabei berücksichtigen wir so-
wohl ein klassisches Rauschen des optischen Feldes als auch den Einfluss der opto-
mechanischen Kopplung auf die Grenztemperatur. Der hergeleitete Ausdruck für die
finale Besetzungszahl wurde eins zu eins für die Datenanalyse in dem wegweisenden
Artikel über das Kühlen eines mechanischen Oszillators in den Quantengrundzu-
stand verwendet.4

Abschließend betrachten wir ein Schema, bei dem die Lichtfelder mehrerer opti-
scher Resonanzen an eine mechanischen Schwingung gekoppelt sind. Die resonante
Verstärkung der Information über die mechanische Bewegung in den optischen Sei-
tenbändern ermöglicht es, eine durch das Standard Quantenlimit begrenzte Emp-
findlichkeit bei signifikant niedriger Eingangsleistung zu erreichen.

3Gröblacher et al., Nature 460, 724–727.
4Teufel et al., Nature 475, 359–363.
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Part I.

Bio-sensing using toroidal
microresonators



1. Cavity enhanced bio-sensing

General introduction

The ultimate goal of biomedical imaging is single molecule and single particle res-
olution.1 Resolving the biomechanical functioning, association and dissociation ki-
netics, as well as interaction between molecules and individual nanoscale particles,
reveals valuable information on biological processes that cannot be obtained from
ensemble averages. Prominent examples of such measurements are the movement of
a kinesin motor walking along a microtubule, the functioning of myosin [7], the gat-
ing behavior of individual ion channels in a plasma membrane [8], and very recently,
single lysozyme dynamics [9]. Single molecule and even single atom sensitivity was
first achieved in vacuum. Experiments with trapped ions and molecules revealed
remarkable results on the quantum nature of bound electrons [10, 11].
In the liquid phase, single fluorescent molecules, that passed through the focal spot
of a laser beam, were identified as flashes of fluorescent photons [12, 13, 14]. How-
ever, resolving single molecules in a solid, immobilized on a substrate, or even under
physiological conditions turned out to be much more difficult to achieve. Stray signal
from the background and poor contrast were the main challenges.

Consequently, early experiments that strived for single molecule sensitivity followed
two different roads. On the one hand, the contrast was maximized such that the
background signal could be efficiently suppressed. This lead to the first single
molecule traces in solid, recorded by Moerner and Kador in 1989, using an absorp-
tion modulation spectroscopy technique on pentacene in a p-terphenyl host crystal
[15]. One year later, Orrit and Bernard were able to observe single molecule fluores-
cence in the same system [16]. These first results were, however, obtained at liquid
helium temperature. In 1993 finally, Betzig and Chichester were able to collect flu-
orescent light from a single dye molecule on a surface at room temperature [17].
The second approach to achieve single molecule detection involved the reduction
of the detection volume of the sensor to a point, where the background could be
neglected. An impressive demonstration of such a method was given by Eigler and
Schweizer in 1990, who used an atomic force microscope (AFM) to detect and manip-
ulate individual Xenon atoms on a Nickel surface [18] (cf. Figure 1.1 (c) ). Already
in the early 1980s, a scanning tunnel microscope (STM) was used by Binning and
Rohrer to image single molecules on metal surfaces [19]. The practical use for bio-
physical application remained, however, limited, as both STM and AFM require
prepared surfaces in a highly specific environment.2

1By particle we shall here refer to (solid) nanoparticles with a diameter inferior to 20 nm, which are
difficult to observe by light absorption and scattering. The absorption strength scales with the
particle volume and the scattering cross section with the volume squared (unless interferometric
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Figure 1.1.: Historical data of single molecule measurements. (a) Frequency
modulation spectroscopy (FMS) data, adapted from Moerner and Kador [15], recorded
from a single pentacene molecule. The upper curve (1) shows the signal far off the
absorption line. Curve (2) shows eight FMS traces originating from a single molecule
and curve (3) shows the average of the traces in (2) together with the simulated line
shape. (b) Fluorescence data collected from a single pentacene molecule by Orrit
and Bernard [16]. Curve (1) shows the fluorescent light with a line width of 12 MHz.
The traces in (2) and (3) provide evidence that the light stems indeed from a single
molecule (i.e., they show bleaching and a dark state). (c) Individual Xenon atoms are
observed and manipulated on a Nickel surface, using an atomic force microscope [18].

It is the goal of this rather long introduction to give an overview of the broad
and diverse field of sensing, different sensor types, and typical applications. The
references within provide a library of influential and instructive papers that may
serve as guidance for someone who is new to the field.

Applications of label-free sensing techniques

Ever since these ground breaking first measurements, experimental techniques were
subsequently refined, leading to a variety of single molecule techniques that use fluo-
rescent molecules as high contrast markers [21, 22]. In this context, super-resolution
techniques, such as Stimulated Emission Depletion Microscopy (STED), Stochas-
tic Optical Reconstruction Microscopy (STORM), or Photo-activated Localization
Microscopy (PALM), have contributed pioneering work to a field that continues to
expand [23]. Despite these remarkable results, there are some drawbacks associated
with fluorescent methods. Just like other methods that depend on markers, label-
ing of the analyte prior to the measurement is required. In clinical applications

techniques are applied) [6].
2AFM tips are used in biophysical experiments for single molecule force measurements, e.g., when

unfolding proteins or extracting proteins from lipid membranes. In the context of tip enhanced
Raman scattering (TERS), STMs are used to measure vibrational spectra of single molecules
[20].
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that aim at the detection of low concentrations of a target molecule, the labeling of
the sample is simply not practical. In scientific research, where interactions are
studied on the single molecule level, an attached marker can disturb the interaction
due to steric hindrance. Moreover, it is challenging to obtain quantitative results,
because of the difficulty to accurately determine the binding rate of the marker to
the target [24]. These considerations already indicate that there exists a broad and
diverse range of application for bio-sensors, which impose particular requirements
on the devices. Naturally, sensors are specifically designed for a certain task, and
they can roughly be divided into two categories.

On the one hand, there are chemical sensors that aim at the mere detection
of low quantities or concentrations of a certain target molecule, and which are
employed in environmental sensing (e.g. entox, tracers), food industry (e.g. quality
management), homeland security (e.g. post and airport security, sensing of explo-
sives and drugs), military (e.g. biological and toxic weapons), epidemiology (e.g.
disease surveillance, detection of bacteria and viruses), and medical diagnosis. The
last field is of special interest here, as the sensor presented in this thesis has potential
application in clinical research, and as there exists a large overlap between clinical
and scientific research. Clinical sensors are used to detect bio-molecules in, e.g.,
blood samples, urine, or serous fluid, and they typically target neurotransmitters,
proteins (e.g. insulin), bio-molecules (e.g. cholesterol, glucose), pathogenic bacteria,
and cancer biomarkers [25]. Ideally, such sensors combine a high sensitivity, which
is typically measured as the smallest detectable target mass or the lowest detectable
concentration,3 a high selectivity with respect to the target, and a short integration
time (, i.e. a fast response). Moreover, a particular requirement for clinical pur-
poses includes the possibility of multiplexing and screening for different targets in
parallel [25]. For some field applications, a small packaging, robustness (also against
improper use), and portability are desirable. If the development of the sensor aims
at mass production and wide spread use, a low cost per unit is required [26].

On the other hand, specialized bio-sensors are used in scientific research
to examine physiological processes on their fundamental level. Among many other
applications, this involves the general functioning of the cell metabolism (e.g., detec-
tion of semiochemicals), interactions between bio-molecules (e.g. on and off binding
rates), gating of single ion channels, movement and functioning of molecular motors
or enzymes, and lipid membrane bound interaction. In particular the last point –
membrane interactions – comprises a variety of processes that are of scientific, as well
as therapeutic relevance, considering that 30% of the human genes code for mem-
branes proteins, and about half of the approved pharmaceutics target membrane
proteins [27]. Moreover, a large part of a cell‘s communication is membrane bound
and involves, e.g., the interaction of lipid vesicle containers with the membrane (cf.
section 3.2).

Therefore, compared to the previously described chemical detectors, scientific bio-
sensors aim at much smaller quantities of a target molecule, with the ultimate
goal of single molecule sensitivity. In particular, one is not only interested in the

3The two sensitivity figures are connected via the throughput, selectivity, and integration time.
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mere presence of the target, but rather in the interaction, which requires a
much higher time resolution. While a typical bio-detector is considered

”
fast“

when the the sample is analyzed within a few seconds, the step movement of a
molecular motor occurs every few ms and protein binding events take place in
the µs regime. The ideal sensor for scientific applications therefore features single
molecule sensitivity and µs time resolution, as well as the possibility of efficient
functionalization to observe specific interactions. Moreover, it is important that the
sensor has a negligible influence on the target, which means that there should be no
steric hindrance by markers, low sample heating (e.g., from absorption), and little
exerted force (e.g., optical trapping).

These requirements motivate the development of fast, label-free sensors for scientific
research at the single molecule level. The following section will give an overview of
different concepts of label-free sensors that are currently under development. This
is followed by a discussion of the most promising systems regarding their potential
of single molecule sensitivity.

1.1. Label-free sensing techniques

In default of a marker, label-free sensing techniques are sensitive to particle prop-
erties, such as (i) the refractive index, where the real part causes a electromagnetic
phase shift and the imaginary part manifests as absorption, (ii) the electronic prop-
erties of the molecule, which includes light scattering, and fluorescence, (iii) the
vibrational spectrum (e.g. Raman scattering), and (iv) the particle mass. Other
measurable properties, that are less often exploited, include, e.g., the magnetic mo-
ment (if present).
In early single molecule experiments, these properties were directly probed on the
individual particle level, for example in direct absorption measurements or the direct
observation of fluorescence. To this end, high contrast was required to distinguish
the signal from the background, and consequently the first experiments were con-
ducted at cryogenic temperatures.

To circumvent the background problem, sensors were developed that follow to a
varying degree the principle of an intermediary transducer element: generi-
cally speaking, the transducer is a device with an attribute – such as a well defined
optical or electronic resonance – that can be detected with high contrast before the
noisy background [28]. When a particle interacts with the transducer, this property
changes and signals the interaction. Employing such scheme, one primarily detects
the attribute of the transducer, instead of the target (displaying low contrast) itself,
and the difficulty of deleterious background signals is largely eliminated. In this
section we are presenting a diverse selection of sensors that follows the transducer
principle.

The resolution of such sensors depends on two important parameters: (i) the re-
sponse of the transducer to the target, which is usually proportional to the relative
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Figure 1.2.: Different label-free sensing techniques are compared with respect
to their single particle sensitivity, which is plotted here as the product of the Q-
factor of the resonant lever and the relative overlap of the sensor with the target. We
considered sensors that operate at physiological condition (as opposed to vacuum and
cryogenic temperature). The overlap on the x-axis is normalized to the volume (or
mass) of a single IgG protein (∼ 180 nm3) and is compared the mode volume of the
sensing mode. For cantilevers, the protein mass is compared to the effective mass of
the sensing mode; for the absorption measurement the cross section is compared to
the focal spot and the Q corresponds to the relative intensity noise. Adding a third
axis for time resolution would put the measurements presented in this thesis in front.

overlap of the target with the sensing volume, and (ii) the fidelity of the (resonant)
property, i.e. the smallest relative change that can be detected. Regarding the first
parameter, a large overlap is in general achieved when the design is miniaturized,
and the transducer size approaches the size of the target.
For example, if a particle attaches to a vibrating mechanical cantilever, whose res-
onance frequency is monitored, the resonance shifts proportional to the relative
increase of the effective mass. In this case it is advantageous to reduce the dimen-
sions and thus the mass of the cantilever. A different example, a particle with a
refractive index different from the environment enters the light field of an optical
cavity. Then the optical resonance frequency will shift, according to the relative
overlap of the particle with the optical mode. Again a smaller design and higher
mode confinement will increase the relative frequency shift. These two examples re-
flect a general rule: the signal strength scales with the overlap of the target particle
with the transducer, i.e. its active sensing volume. On the other hand, the fidelity of
the sensors is best represented by the Q factor that described how well a resonance
can be resolved.

Q =
resonance frequency

full width half maximum
=

ν0

∆ν

Apparently the smallest detectable (relative) frequency shift is proportional to Q−1.



1.1 Label-free sensing techniques 7

In Figure 1.2 we characterize different label-free sensor concepts with respect to their
relative overlap (e.g., particle volume compared to mode volume or particle mass
compared to effective mass), together with the quality factor Q .4 We emphasize that
the position on the diagram does not reflect the

”
usefulness“ of the design, because

some of the presented schemes do not aim a single molecule sensitivity. However,
the plot can give some general impression in which direction existing systems would
need to evolve (i.e., to improve) to attain single molecule sensitivity.

In most cases, further reduction of the transducer size is the road to follow, as
miniaturization of the design increases the response to the target. In this context,
the last decade has witnessed a stunning advance in micro-fabrication that has
catalyzed sensor development. New fabrication techniques have paved the way for
novel designs at the mesoscale and beyond (e.g., carbon nanotube based sensors),
existing techniques were integrated [30] and commercialized (e.g., Toyobo, Lenterra,
Imec+Genalyte), multiplexing was achieved (e.g., DNA micro arrays), and novel
classes of sensors have emerged from the adaptation of metamaterials (e.g., photonic
crystal cavities) [31].

1.1.1. Toroidal microresonators

For the experiments presented in this thesis, we use toroidal microcavities that were
developed in the group of Kerry Vahala at the California Institute of Technology
[32]. The structure consists of a silica ring, which is supported by a silicon pillar on
a silicon chip (cf. Figure 1.3 (a) ). The ring constitutes an optical resonator and
supports whispering gallery modes (WGM), named after the legendary whispering
gallery under the dome of St. Paul‘s cathedral, London. A whisper at one point
of the gallery is reflected by the circular wall of the dome and can be heard at the
opposite position. Similarly, light is guided inside the transparent, circular structure
of the toroidal cavity, and a resonance condition is imposed by the requirement that
an integer multiple of the wavelength fits into the optical path of one round trip.

As a result of the high transparency of silica in the visible and the smooth surface
of the toroid, the optical loss is low, which results in ultra-high optical Q factors
exceeding 108, with a finesse > 105. In Figure 1.3 (c)-(e) we plot the intensity
distribution of different optical WGMs in a toroid, which will be discussed in detail
in section 1.2 and appendix A.1. Notably, the modes exhibit an evanescent fraction
that propagates outside the ring and are therefore susceptible to the environment.
A refractive index change inside the evanescent volume will cause a shift of the
resonance frequency. It is this feature that constitutes the foundation for the use of
WGM resonators as refractive index sensors.

The microtoroid as a refractive index sensor combines several intriguing features.
Due to the high Q-factor, small relative changes of the resonance frequency, down
to ∆ν/ν = 10−10, can be recorded and – in conjunction with a small mode volume

4A similar analysis, mostly for modeled data, is presented in reference [29].
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Figure 1.3.: Toroidal microresonator as a biosensor. (a) An electron micro-
scope image of a toroidal microresonator, as it was used here for sensing. (b) The
toroid is coated with a single lipid bilayer, which constitutes a universal interface
for bio-sensing. Specific functionalization is achieved, when lipid-bound receptors or
membrane proteins are introduced in the membrane. (c)-(e) Simulated intensity pro-
files for different WGMs (i.e., TM00, TM30, and TM01). The evanescent fraction is
sensitive to refractive index changes and thus represents the active sensing volume.

– single molecule sensitivity is within reach (cf. Figure 1.2). Importantly the sensi-
tivity close to the surface is the highest and the exponential decay of the evanescent
field links the frequency shift to the particle’s distance from the surface. As such,
the sensor is ideally suited to measure interactions and motion in proximity of the
surface. The possibility and importance of specific surface functionalization will be
elucidated in section 1.1.3.
Compared to other sensor designs, the microtoroid profits in particular from its high
optical Q, convenient handling (cf. section 2.1.3), the possibility of high fidelity
readout, and a relatively large active surface area. In the following section these
properties are contrasted with the most important contemporary sensor designs; an
extra section – 1.1.4 – is devoted to the comparison with plasmonic antennas, which
represent the fiercest competition today.

1.1.2. Other sensing schemes

There is a number of research groups that use WGM resonance based sensors
for bio-sensing, and a variety of different structures is explored. In particular silica
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microspheres have been successfully employed for sensing by the groups of F. Vollmer
and S. Arnold [33, 34, 35, 36, 37, 38, 39, 40] (cf. Figure 1.4 (h) ). Microspheres
offer exceptional Q factors, en par with the ones of toroids, but suffer from a slightly
larger mode volume, more difficult handling, and the fact that only one sphere can
be integrated and tested at a time.
The groups of K. Vahala and L. Yang use toroidal microresonators for sensing and
it was the former who claimed the achievement of label-free detection of single
interleukin-2 proteins (and a variety of other proteins), presumably via a thermo-
optic effect [41]. The results where never reproduced, and also in the context of
this thesis we never observed such effects. Quite the contrary, in response to a
detailed calculation of the thermo-optic effect by Stephen Arnold [42] (who came
to the conclusion that the effect must be at least 400 times smaller than originally
claimed), reference [41] was amended by an erratum, stating that the thermo-optic
effect cannot be responsible for the discrete frequency steps observed by the authors.
The paper was eventually followed up by a work, demonstrating sensitivity to single
Influenza A viruses5 via the conventional dispersive effect [43].

In contrast, L. Yang exploits the effect of mode splitting in high-Q WGM resonators
and has demonstrated remarkable results on particle sizing [44, 45, 46, 47]. The mode
splitting effect is presented and discussed in section 3.4. Besides the approaches
relying on high-Q resonators, a number of experiments aims at the integration of
WGM resonators in on-chip devices that are fabricated by lithographic means only
[48] and can be combined with microfluidic systems [49, 50]. The compact design
comes however at the cost of a lower optical Q, that typically lies in the range of 104

to 105, and which does not allow to attain single particle sensitivity. Nevertheless,
different designs include slot waveguides and resonators (cf. Figure 1.4 (g) ) [51, 52,
53], polymer ring resonators fabricated by imprinting [54], multiplexing of several
resonators [55], and parallel screening for different species of biomarkers [56, 57].
Another noteworthy sensing scheme, that integrates the fluidic system, are liquid
core ring resonators (LCORR), where a WGM is excited in the waist of a micro
capillary and reacts to the refractive index of the fluid inside [58, 59].

The technique known as Surface enhanced Raman scattering (SERS) relies on
the remarkable increase of Raman scattering cross section of certain molecules (cf.
Figure 1.4 (d) ) when they are adsorbed on metallic nanoparticles (usually silver or
gold) [60, 61, 62]. The nature of the coupling is not fully understood, but it is widely
agreed upon that it is dominated by electromagnetic interaction with localized sur-
face plasmon resonances, and its strength critically depends on the position and
the orientation of the molecule. To observe SERS, the surface plasmon is excited,
which drives the vibrational modes of the molecule. The heating of the Raman
modes manifests in the anti-Stokes to Stokes signal ratio.6 The SERS technique
only works, when the particle attaches to a so called SERS active site, which are
however rare and poorly controlled.7 Moreover, during SERS, the enhanced Raman

5An influenza A virus is ∼ 20, 000 times heavier than an interleukin-2 protein.
6As pointed out by T.J. Kippenberg, the process is reminiscent to parametric amplification of a

mechanical mode in an optomechanical setting.
7In Tip-enhanced SERS the metallic NP is replaced by a nano-tip which gives somewhat better
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modes are vibrationally driven [63], and the molecule is thus strongly affected by
the measurement [64]. Evidence for a single molecule in the scattering volume is
obtained, when the photon distribution changes from Gaussian to Poissonian [60].

Figure 1.4.: Examples of different bio-sensors. (a) A micro-cantilever with
single virus attached [65]. (b) An array of carbon nanotube (CNT) FETs. [66]. (d)
The surface enhanced Raman signal from a single R6G molecule (bright spot) in direct
comparison to the much weaker fluorescent signals (pale spots) [61]. (c) The principle
of tip enhanced Raman scattering; the color scheme represents the enhancement factor
experienced by molecules on the surface with a peak at 1011 [64]. (e) The principle of
a surface plasmon sensor in the Kretschmann configuration, where the SPR is excited
using a prism [67]. (f) Schematics of a plasmonic nano-antenna: The shaded volume
around the indicated gold nanoparticle represents the sensing volume [68]. (g) A
silicon slot-waveguide ring resonator, including the coupling waveguide fabricated on
a chip [51]. (h) The WGM of a microsphere resonator is excited via a tapered optical
fiber [34]. (j) An electron micrograph of a photonic crystal cavity used for sensing.
The density plot above shows the intensity distribution [69].

control over the active site (cf. Figure 1.4 (c) ).
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Absorption from single molecules on a surface was among the first experiments
that demonstrated single molecule sensitivity [15]. Recently several groups have
succeeded in directly recording modulation free signatures of single molecules [70,
71]. In Figure 1.2 the fidelity reflects the intensity noise in the recorded signal and
the overlap compares the absorption cross section to the illuminated area.

Cantilever sensors: Another class of sensors is based on micro-cantilevers [72].
These devises are usually suspended on one side only, and their dimensions range
from ∼ 5µm length up to a few mm. Cantilevers as bio-sensors are usually used
in three ways: (i) a dynamic sensing method is used, where the added mass of an
adsorbing particle changes the mechanical resonance frequency of the cantilever [73].
The relative frequency shift is roughly proportional to the ratio between added mass
and effective mass of the cantilever. However, it depends strongly on the position
where the particle attaches. Monitoring the resonance frequency of a higher order
mechanical mode or a lateral vibrational mode, one can infer the absolute added
mass. The resonance frequency of the beam can be accurately tracked when driving
the cantilever with a piezo electric device. In Figure 1.2 the overlap parameter of
a micro-cantilever was estimated using the ratio between the mass of a 150 kDa
protein and the effective mass of the cantilever. In general the cantilevers suffer
from a low mechanical Q in aqueous environment. However in vacuum sensitivity to
single gold atoms [74] and the sizing of protein clusters [75] were demonstrated (cf.
Figure 1.4 (a) ). Secondly, (ii) the cantilever can be used as a static stress sensor.
If one side of the cantilever is covalently functionalized, the incorporation of the
target molecule or particle causes stress on the surface, which leads to a curvature
of the beam. The static deflection is commonly measured via a reflected laser beam
or via electro-capacitive methods. Lastly (iii), bimetallic cantilevers have been used
for calorimetric measurements. Reaction heat or thermal energy uptake leads to a
temperature change of the cantilever, which manifests as a deflection [65].

Sensors based on nanowires measure the conductance change of the wire that is
associated with the adsorption of single molecules (cf. Figure 1.4 (b) ) [76]. Very
recently Choi and colleagues gave an impressive demonstration of the sensitivity
that can be reached [9]. The authors attached a lysozyme enzyme to a carbon
nanotube, which is actually much smaller in diameter than the target, and showed
that the conductivity of the tube changes with the conformation of the enzyme.
Strikingly they were able to observe the metabolic functioning and cutting action
of the enzyme in real time.
However remarkable these findings are, the setting is specifically tailored to the
task and involves the non-trivial attachment of the target molecule to the wire; it
therefore falls into a different category of sensors. The goal of resolving bio-dynamics
on a single particle level is however very similar.

Photonic crystals (PhC) for sensing purposes are mainly employed in two dif-
ferent ways. (i) Using the colorimetric technique, a PhC slab or membrane is il-
luminated along the surface normal with a white light source or a tunable narrow
band source. The reflected and transmitted spectrum depends strongly on the hole
diameter of the PhC [77, 78]. In a sensor configuration, the analyte enters the holes
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of the PhC, such that the effective diameter is reduced and the reflected as well
as the transmitted spectra change. Specificity is achieved, when the interior of the
holes is prepared with antibodies or receptors. The second manner in which PhC
are used for sensing, is in a (ii) photonic crystal cavity configuration (cf. Figure 1.4
(j) ) [79, 80]. The overlap of the optical mode with the environment is maximized
for PhC slot cavities [81]. The latter hold the advantage, that light can be confined
to mode volumes much smaller than with conventional optical resonators. On the
other hand, they suffer from low optical Q which is around 104 − 105 in air and de-
grades ∼ 103 in water. As PhC cavities are usually fabricated from silicon or silicon
nitride, the transparency window of the material requires operation in the infra-
red, typically around λ = 1.5µm, which is strongly adsorbed by water. Recently,
however, a PhC cavity design from low index contrast polymer has demonstrated
promising results in sensing [69].

Surface plasmon resonances (SPRs) are collective charge displacement oscilla-
tions at the interface of a dielectric and a metal. Propagating, non-dissipative SPR
waves were first reported by Otto [82], but it took more than a decade until SPRs
were first employed for sensing by Liedberg et al. [83]. After this successful demon-
stration, the potential was recognized and SPR sensors were soon commercially
developed by the company Biacore. Today SPR based methods are widely used for
refractive index sensing applications in academia and industry. In the Kretschmann
configuration the gold coated surface of a prism constitutes the active sensor surface
in an aqueous environment (cf. Figure 1.4 (e) ). A light beam, that is reflected
inside the prism by total internal reflection, excites SPR waves at the interface that
extend into the exterior. The dispersion relation and thus the excitation angle de-
pends linearly on the refractive index of the environment, and typically the angle
of excitation is the recorded parameter. The ease of use, robustness, and easy inte-
gration in microfluidic systems are the most prominent advantages of SPR sensors.
Moreover, the technology is suited for multiplexing and arrays of sensitive spots
have been developed. On the other hand, the sensitivity remains limited by the fast
dephasing of the SPR (optical Q ∼ 10 ) [6] and the relatively large excitation area.
The sensitivity and range of SPR sensors is increased when long range SPRs are
used that result from the constructive interference of two SPRs propagating along
two metallic films, separated by a thin dielectric layer. Moreover, different SPR
sensor configuration have been developed that involve gold coated tapered fibers
and gratings.

Recently, sensors based on plasmon resonances localized in metallic nano-
particles (NPs) have been demonstrated, which constitute highly promising systems
for single molecule sensitivity. Instead of a traveling surface wave, the plasmon is
confined inside a nanometer scale gold or silver particle, where the excitability of the
plasmon depends on the actual shape of the NP. In general cylindrical or L-shaped
antennas provide the best optical properties. Typical dimensions of such plasmonic
antennas are 30 nm × (10 nm)2, which is of the order of 50 mid-size proteins (cf.
Figure 1.4 (f) ). Therefore a molecule that attaches to the NP strongly influences
its electronic properties. Recently, significant progress has been made using localized
SPR with photothermal microscopy, where sensitivity sufficient to observe binding of
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single mid-size proteins (streptavidin) was demonstrated [84]. A second experiment
reports binding of single protein fibronectin (450 kDa) to larger gold particles (∼
104 nm3) by direct observation of the scattered light [68]. These techniques currently
provide the highest sensitivity of all label-free single particle sensors, but suffer from
other drawbacks, such as an intrinsically low quality factor (< 50 ) of the plasmon
resonance [6]. Moreover, coupling to the plasmon is inefficient and requires high
power levels of incident light to determine the resonance wavelength.

1.1.3. Biosensor functionalization

So far we have focused our discussion on the transducer elements of different sensor
types. Equally important, however, is the sensor interface for target immobilization
[85, 86]. Again, there are different concepts, depending on the field of application.
For specific detection of target molecules, the sensor surface is usually prepared with
an antibody or receptor layer [87, 88, 89]. Other methods involve unspecific particle
trapping. Special attention needs to be paid to the adsorption cross section and the
transport of the target. In particular mesoscale sensors, that are designed for single
particle sensitivity, often display an active surface region and a depletion length
that is extremely small compared to the sampled volume. This raises the important
question, of how the target is transported to the sensor. If transport depends on
diffusion only, it can take unrealistically long time for the target to arrive at the
sensor [85]. This diffusion bottleneck is illustrated by the example of a protein, with
a diffusion constant of 10µm2/ s, that takes almost an hour to cover a distance of
one centimeter. On the other hand, if the sensor is integrated into a fluidic system,
only a tiny fraction of the flow is sampled by the sensor.
Sensors that are designed to detect low target concentration therefore posses effi-
cient immobilization and capture schemes that serve target accumulation, while the
analyte is sampled several times. In the case of DNA microarrays, the functionalized
surface even constitutes the sensor itself [24, 31]. Here, we take a surface functional-
ization approach that goes beyond simple target immobilization. Instead the surface
provides a biomimetic environment that allow us to observe the interaction of a par-
ticle or molecule with its natural counterpart. To this end, we cover the sensor
surface with a lipid bilayer and hence mimic the membrane of a cell [90]. Specific
functionalization is achieved by the insertion of membrane proteins or specifically
labeled lipids. In a sense we reduce the natural system to its (presumably) essen-
tial constituents and build a model membrane system directly on the active sensor
region [91]. The method is exemplified in Figure 1.3 (b) and presented in detail in
section 4.1.

1.1.4. Advantages of high-Q cavity based sensors over
plasmonic nanoparticles

We believe that the most promising sensor systems today are high-Q optical res-
onators, plasmonic nanoparticle antennas, and (carbon nanotube) nanowires. If
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photonic crystal cavities can come up with higher optical quality in water, they
could close the gap to the before mentioned systems. Figure 1.2 exemplifies that
plasmonic antennas and nanowires follow an approach, where the sensor dimensions
are of the order of the particle size and while sacrificing the Q-factor. As a matter of
fact, the nanowire does not even rely on a resonant enhancement, but profits from
a significant leverage effect of the electronic coupling. With high-Q cavity based
sensors, we take the opposite approach and work with a larger mode volume, while
gaining in sensitivity through the exceptionally high optical quality. Even though
these approaches come from entirely different directions, a comparable sensitivity
can be attained.

Despite the current success of nano-sensors, the small dimensions of the devices
entail a number of difficulties and drawbacks. As discussed in the previous section,
the extremely small active surface area – in the range of 10−3 µm2 – makes target
delivery a demanding task. Moreover, a deterministic surface preparation, which is
essential for biologically relevant applications, is difficult to achieve, if not impossible
for carbon nanotubes. In direct contrast, the surface area of our toroidal sensor
amounts to ∼ 200µm2, which is more that > 105 times larger. This does not only
simplify target delivery, but it enables us to observe hundreds of events in a single
measurement, which is required for statistical analysis and cannot be achieved with
nano-sensors. In addition, we demonstrate an elegant way to create a universal
bio-interface on the sensor.

Another questionable point arises from the strong (electronic) interaction of a nano-
sensor with the target particle, which lays in fact the foundation for the high sen-
sitivity. The interaction always goes two-way, and the measurement will exert a
considerable influence on the molecule. It remains to be investigated, by how much
this disturbs the biological functioning, i.e., of an enzyme in reference [9]. Moreover,
plasmonic nanoparticles face the challenge of addressing the plasmon resonance, and
typically high optical power is involved. Along this line, long integration times of
several ms limit the time resolution of the measurement. Here, using the toroidal
cavity, we couple light to the resonator via a tapered optical fiber, and only a few
tens of nanowatts optical power enter the resonator. The measurement therefore
has practically no influence on the target. A temporal resolution down to 1µs can
be achieved.

In a recent measurement, the target delivery and readout problem was addressed by
an experiment where a plasmonic antenna is combined with an optical microsphere
resonator [92, 93]. The particle, i.e., a virus, was optically trapped by the WGM
and carried along to the nanoparticle for detection, such that the measurement itself
exerts strong forces on the particle and disturbs the interaction.

Lastly, we do not want to conceal that high-Q cavity based sensors also come with
drawbacks; most prominently the high Q makes them susceptible to different kinds
of noise sources, i.e., thermal noise (cf. section 5.3). Therefore efficient thermal
shielding is required.
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1.2. WGM sensing theory

In this section we establish the theoretical background for the analysis of the exper-
imental results. As discussed in the previous section, the frequency shift induced by
a particle, and thus the sensitivity of the device, depends crucially on the geometry
of the optical mode, i.e., the mode volume and the evanescent fraction. In order
to compare the experimentally found results to theory, it is therefore necessary to
know the exact profile of the optical mode used for sensing, which is given by the
solutions to the wave equation.

∇×∇× E(r)− k2ε(r) E(r) = 0 (1.1)

Here, the shape of the resonator is contained in the spatial dependence of the electric
permittivity, ε(r) and the resonance frequency is represented by the wave number
k = 2πν/c. A silica microsphere with radius Rmajor is defined by

ε(r) =

{
εsilica , for |r| ≤ Rmajor

εex , for |r| > Rmajor

and, owing to the symmetry of the problem, an analytical, closed-form solutions to
Equation 1.1 exists. The derivation of the microsphere solutions has been published
several time before and can be found for example in references [94, 95, 96, 97].
The solutions for a toroidal geometry, which is defined by a major radius Rmajor

and additionally by a minor radius Rminor, resemble the ones of a microsphere with
some additional compression in the direction of the spatial confinement. However,
a closed-form expression of the WGMs does not exist.8 Therefore we discuss the
basic properties of the modes using the solution of a microsphere, and when the exact
mode profiles (within the experimental error of< 10%) are required for data analysis,
we rely on simulations using Comsol Multiphysics and the code developed by Mark
Oxborrow [99]. In appendix A.1 the WGMs of a microsphere are presented in detail,
and in appendix A.2 the analytical solutions are compared to simulation results. To
provide some additional benefit to the reader, the expressions are supplemented by
Mathematica code that enables the reader to plot and recalculate the modes as well
as parameters that are important for sensing evaluation (e.g., mode volume, effective
sensing volume, mode energy, resonant frequency). The code can directly be pasted
to a Mathematica notebook.

The optical modes of a microsphere can be divided into waves of the electric type
(TM polarization, electric field parallel to the excitation plane) and magnetic type
(TE polarization, electric field perpendicular to the excitation plane), and they are
characterized by three mode numbers {l,m, q} that denote the polar, azimuthal,
radial mode numbers, respectively. Here, m corresponds to the integer number of
wavelengths fitting into the effective optical path of one round trip, and |m− l| and q

8An analytical expression for an oblate ellipsoid that approximates the toroidal shape is given in
reference[98].
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are the numbers of intensity nodes in latitudinal direction and radial direction. The
WGM are typically represented by the electric field vector in spherical coordinates.

ETM
lmq(r, ϑ, ϕ) and ETE

lmq(r, ϑ, ϕ)

Here, we normally use a the fundamental TM mode for sensing that is characterized
by q = 0 and l = m, and that we denote TM00 accordingly.

1.2.1. Perturbation approach to the single particle frequency
shift

The sensing principle of cavity based RI sensors relies on the effect that a refractive
index change of the environment, changes the optical path length of the mode, such
that the resonance frequency is shifted. In this section we follow a perturbation
approach to calculate the frequency response δν to a small variation of the electric
permittivity δε. We emphasize that the approach does not make any assumptions,
whether the perturbation is local (i.e., a particle) or a homogeneous change of the
RI. Effects that are related to the particle geometry, such as polarizability, will be
included later in in section 1.3. We start with the time dependent wave equation
for a field Ψ.

[
∇2 − ε(r)

c2

∂2

∂t2

]
Ψ(r, t) = 0 (1.2)

For a monochromatic wave Ψ the time dependence can be dropped, and we assume a
set of orthogonal solutions {En(r)} to Equation 1.2 that shall represent the electric
field here. Explicit expression for the electric field of a microsphere are given in
appendix A.1.

[
∇2 + ε(r)k2

]
En(r) = 0, ∀n (1.3)

Next, we introduce a perturbation of the permittivity ε(r) = ε0(r) + ε1(r). In the
following the dependence on the spatial coordinate r is implicitly assumed and shall
be dropped for better readability. Taking the nth mode for sensing, the perturbed
mode can be written as a superposition of the unperturbed solutions.

E0
n + E1

n = E0
n+

∑
j

c1
jE

0
j (1.4)

Finally, we introduce the variation of the wave number kn → k0
n + k1

n and insert
the expansion 1.4 into Equation 1.3. In the next step only first order terms of the
development are kept and higher order are discarded.



1.2 WGM sensing theory 17

[
∇2 +

(
ε0 + ε1

) [(
k0
n + k1

n

)2
]] (

E0
n + E1

n

)
= 0, ∀n (1.5)[

∇2 + ε0
(
k0
n

)2
+ ε1

(
k0
n

)2
+ 2ε0k0
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1
n

] (
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n

)
≈ 0 (1.6)(

ε1
(
k0
n

)2
+ 2ε0k0

nk
1
n

)
E0
n +

[
∇2 + ε0

(
k0
n

)2
]
E1
n ≈ 0 (1.7)

Now, we introduce the expansion of the field perturbation (cf. Equation 1.4) into
the first order equation

(
ε1
(
k0
n

)2
+ 2ε0k0

nk
1
n

)
E0
n + ε0

∑
j 6=n

c1
j

[(
k0
n

)2 −
(
k0
j

)2
]
E0
j ≈ 0 (1.8)

Multiplication with (E0
n)
∗

and integration over the entire volume, eliminates all
solutions E0

j 6=n , due to the orthogonality of the modes, and yields the expression:

ˆ
dr3ε1

(
k0
n

)2 ∣∣E0
n

∣∣2 ≈ −
ˆ
dr32ε0k0

nk
1
n

∣∣E0
n

∣∣2 (1.9)

k1
n

k0
n

≈ −
´
dr3ε1 |E0

n|
2

2
´
dr3ε0 |E0

n|
2 (1.10)

The integral in the denominator is equal to the electro-magnetic mode energy Umode.
Moreover, we rewrite the electric permittivity in terms of the electric field constant
and the relative permittivity, and reintroducing the spatial dependence, i.e. ε0 →
ε0 · ε(r), we write the expression for the relative frequency shift.

∆ν

ν
≈ −ε0

2Umode

ˆ
Vp

d3r δε(r)
∣∣∣ ~E(r)

∣∣∣2 . (1.11)

Here the mode energy Umode =
´
d3r ε0εr(r) |E(r)|2 already contains the magnetic

field contribution. Equation 1.10 represents the most general expression for the first
order frequency shift. If the perturbation is non-local, i.e., ε1 = const , we find that
the optical mode remains unchanged, i.e. c1

j = δnj and k1
n = −(ε1/2ε0) k0

n. However,
this is a highly artificial case, because it requires that the refractive indices of the
silica and the exterior change in the same way. More interesting is the case of a
localized perturbation ε1(r) = ε1

cVp · δ(r − rp), with rp being the position of the
perturbation and Vp the volume of the particle. Then we obtain an expression for
the single particle frequency shift.

∆ν

ν
≈
−ε0δε

∣∣∣ ~E(rp)
∣∣∣2 Vp

2Umode

(1.12)
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1.3. Modification to first order perturbation theory
due to particle polarization

In the previous section we have derived the single particle frequency shift, namely
the frequency variation resulting from a local perturbation of the electric permit-
tivity (i.e., the refractive index). However the calculation does not take the actual
geometry of the perturbation into account. That shape matters, is nicely illustrated
by an example that Richard Feynman brings up in his famous lectures. He imagines
a dielectric in an external electric field and removes a thin slab from the inside.
With E0 being the electric field outside the medium, then, for a slot cut parallel to
the electric field, the field inside the cavity is still equal to E0. On the other hand,
if the slot is cut perpendicular to the electric field, the field inside the slot is given
by E0 + P/ε0, where P is the polarization of the dielectric. This is readily under-
stood, because in the latter case the long face of the slot carries charges due to the
polarization of the surface atoms (cf. Chapter 11 and 32 of [100]). Such geometric
effects are not included in simple perturbation theory and need to be introduced
separately.

Here we calculate the electric field inside a dielectric sphere, placed in an external
dielectric medium, which resembles the case of a particle, i.e., in an aqueous medium.
Again E0 denotes the external field (in the dielectric) and we solve the Laplace
equation for the electric field Ep inside the sphere [101]:

Ep =
3εex

2εex + εp
E0

εex and εp are the electric permittivities of the environment and of the particle
respectively. The above factor was first introduced as a correction factor for the
frequency shift by Teraoka and Arnold [102] and accounts for the energy of an
equivalent dipole.(

δν

ν

)
Teraoka

=
ε0

2

3εex
2εex + εp

(εp − εex)Vp|E0|2/Umode. (1.13)

The correction is typically small, in the range of a few percent. Anyhow, Equa-
tion 1.13 failed to reproduce our measured results. Oftentimes, theory predicts a
frequency shift that is about three times larger than the experimentally found val-
ues. We carefully estimated the errors deriving from frequency calibration, particle
size distribution, uncertainty of the refractive index, and different mode families.
The calculations were verified in the analytically accessible limit of a microsphere
and backed up by simulations. Neither of these issues could explain the observed
deviations.

We therefore reassess the theoretical description of the single particle shift, namely
how the particle polarizability enters the equation. In contrast to Teraoka, we inte-
grate over the full dipole field of the polarized particle – including the environment
– and calculate the energy difference between the electric field with particle and the
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electric field in absence of the particle. We argue that the frequency shift is propor-
tional to the electrostatic energy shift, which was suggested before in reference [39].
Compared to the results of Teraoka and Arnold (cf. Equation 1.13) , the expected
frequency shift is exactly a factor 1/3 smaller; a significant deviation that we became
aware of by the precision of our own experimental results. In appendix B we show
that the results published by other groups are also in agreement with the modified
theoretical description.

1.3.1. Calculation of the electrostatic energy shift

In this paragraph, an alternative way to include the particle polarizability into
the expression for the single particle shift is presented. A particle that enters the
evanescent field of the mode leads to a perturbation of the static electric permittivity
ε → ε + δε. According to the structure of the wave equation this corresponds to
a variation of the electric potential and ergo the frequency shift (without taking
particle polarization into account) is proportional to the variation of electrical energy
∆U/ε0 = 1/2εpVp |E0|2 − 1/2εexVp |E0|2. The relative frequency shift is then given
by the relative energy change δν/ν = −∆U/Umode. When a dielectric particle
is exposed to an electric field, it becomes polarized, such that the electrostatic
boundary conditions are fulfilled. Effectively, the particle acts as an electric dipole.
Integrating over the whole dipole field and over the electric field within the particle,
and subtracting the field energy in absence of the particle yields the desired energy
shift.

Dielectric sphere

Here, we imagine a dielectric sphere of radius R and relative permittivity εp in a

static electric field along the z-axis ~E(r) = ~ez · E0 in a dielectric environment with
relative permittivity εex. For simplicity a dielectric surface close to the particle, as
it would be the case for an adsorbed polystyrene bead or vesicle, is not taken into
account. We calculate the electric potential inside (I) and outside (II) the sphere in
spherical coordinates.

ΦI(r) = −E0
3εex

2εex + εp
r cosϑ for |r| ≤ R (1.14)

ΦII(r) = −E0 r cosϑ+ E0
εp − εex
2εex + εp

R3

r2
cosϑ for |r| > R (1.15)

Then the electric field inside the sphere is

~EI(r) = −~∇ΦI(r) = ~ez · E0
3εex

2εex + εp
. (1.16)

The expression 3εex/(2εex+εp) was used by Teraoka [102] to include the polarizability
effect. Following the energy perturbation approach, we calculate now the energy
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balance, when the dielectric sphere enters the electric field.

δUI =
ε0

2

ˆ
sphere

d3r

[
εp

∣∣∣~∇ΦI(r)
∣∣∣2 − εex |E0|2

]
(1.17)

=
ε0|E0|2

2

4

3
πR3

[
εp

(
3εex

2εex + εp

)2

− εex

]
(1.18)

δUII =
ε0

2

ˆ
exterior

d3r εex

∣∣∣~∇ΦII(r)
∣∣∣2 − εex |E0|2 (1.19)

=
ε0|E0|2

2
εex

4

3
πR3

(
εp − εex
2εex + εp

)2

(1.20)

⇒ δUI + δUII =
ε0|E0|2

2
(εp − εex)

εex
2εex + εp

4πR3

3
(1.21)

Replacing E0 with the electric field at the position of the particle, the relative
frequency shift is expressed as

δν

ν
=

δU

Umode

=
−εex (εp − εex)

2εex + εp

ε0

∣∣∣ ~E(rp)
∣∣∣2 Vp

2Umode

. (1.22)

Interestingly, the result is exactly a factor ÷3 smaller than in Equation 1.13. We
note that previously published results, i.e. by Vollmer et al. [37] and Lu et al. [43],
are in agreement with the frequency shift predicted by Equation 1.22. Furthermore,
we used Comsol to simulate the energy shift associated with a dielectric sphere
that enters the homogeneous field of a plate capacitor, and the simulation results in
Figure 1.5 exemplify that the numerical result agrees very well with Equation 1.21.

Dielectric vesicle

Next we model a lipid vesicle, considering a particle that consists of a dielectric,
spherical shell with inner radius Ri and outer radius Ra. The Laplace equation is
solved on three regions: (I) inside the particle, with ε = εex for |r| < Ri, (II) the shell
of the particle, with ε = εp for Ri < |r| < Ra , and (III) the exterior of the particle,
with ε = εex for |r| > Ra. Further we define the ratio between the particle volume
and the entrapped volume δ = (Ri/Ra)

3, such that the volume of the material that
contributes to the refractive index contrast is given by Vp = (4π/3)R3

a(1−δ). Lastly,
for simplicity, we define the abbreviation ε̃2 = 2(1 − δ)

(
ε2
ex + ε2

p

)
+ (5 + 4δ)εexεp.

Then we can write the solutions for the electrostatic potential:

ΦI(r) = −9E0

(
εexεp/ε̃

2
)
r cosϑ (1.23)

ΦII(r) = −3E0

(
εex (εex + 2εp) /ε̃

2
)
r cosϑ (1.24)

−3E0R
3
aδ
(
εex (εp − εex) /ε̃2

) cosϑ

r2
(1.25)

ΦIII(r) = −E0 r cosϑ (1.26)

+E0R
3
a (1− δ)

(
(εex + 2εp) (εp − εex) /ε̃2

) cosϑ

r2
(1.27)
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Again, we integrate over the difference of the electric field energy density and find
the total energy shift when the three contributions are added.

δU =
ε0|E0|2

2

4πR3
a

3
(1− δ) εex (εp − εex) (εex + 2εp)

ε̃2
(1.28)

Notably, if we consider the limit δ → 0, such that the entrapped volume goes to
zero, the result for the solid sphere is recovered. In the other extreme, 1 − δ � 1,
we obtain the excess polarizability for a thin-walled particle.

δU

ε0|E0|2Vp
≈ 1/2 (εp − εex)

2εp + εex
(5 + 4δ) εp

. (1.29)

We will show later – in chapter 3 – that the above correction factor (instead of the
equation published by Teraoka et al.) and taking the overlap of the particle with the
evanescent field into account, the distribution of recorded frequency shifts is very
well reproduced .
We emphasize, that the above formulas are obtained for a homogeneous, static
electric field and an isotropic environment. In a realistic scenario however, the
particle is close to a dielectric surface and the electric field exhibits an exponential
decay. We simulated both cases, and found that the dielectric surface leads to an
increase of the energy shift of ∼ 20%, while the field decay causes a decrease of the
energy shift of ∼ 20%. As these two major corrections are of the same order of
magnitude, but go into different directions, we did not find it necessary to include
higher order terms in Equation 1.28. The error of ∼ 10% can be neglected compared
to other influences such as the deformation of the lipid vesicle.

1.3.2. Discussion of particle polarizability

The considerations made in the previous sections trigger important consequences
and call for a second mean of verification. We therefore use Comsol to simulate the
change of the electric energy density in a scenario where a dielectric particle enters a
static electric field. For numerical simplification, we chose a spherical particle, placed
between the homogeneously charged electrodes of a plate-type capacitor in Comsol’s
2d axial symmetric mode. The resulting energy density distribution is shown in
Figure 1.5 (a), where the axis of rotational symmetry cuts vertically through the
sphere. Next we numerically integrate the energy density in a box around the
particle, including the particle itself and calculate the energy difference compared
to the setting in absence of a particle. The box size correspond approximately to
the frames in panels (a)-(c). The resulting energy difference for a varying refractive
index of the sphere is plotted in panel (d) and compared to the analytical result of
Equation 1.21. The deviations are in the range of a few percent and thus well below
the experimental error.

A full description also involves the influence of the influence of the silica surface when
the sphere attaches to the resonator and a non-homogeneous, decaying electric field.
Because of the involved symmetry breaking this is difficult to achieve analytically,
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such that we need to rely on numerical simulations. Figures 1.5 (b) and (c) show
simulations of such settings, and panel (e) of the same figure shows the corresponding
(relative) energy shifts. Interestingly both effects lead to deviations of ∼ 20% that
go, however, in opposite directions and thus cancel. We therefore conclude that
Equation 1.21 provides an accurate description of the frequency shift induced by a
polarized, spherical particle. All deviations between the analytical calculation and
simulations are much smaller than a factor 1/3.
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Figure 1.5.: The polarizability of a dielectric particle. The electric energy
density in and around a dielectric, spherical particle in an external electric field was
simulated using Comsol in its 2d axial symmetry setting. The rotation axis cuts
vertically through the center of the spheroid. The color scale is arbitrary and reflects
only the qualitative behavior. (a) A sphere in a homogeneous electric field. (b) A
sphere on a dielectric surface in a homogeneous field. (c) A dielectric sphere in an
electric field that decays with r−2. (d) The change of electrostatic energy is plotted
as a function of the particle’s refractive index and the simulation result is compared
with the theoretical value obtained from equation 1.21. Excellent agreement is found
for both, vacuum and water as the surrounding medium. (e) The energy shifts for a
particle in proximity of a dielectric surface and inside a decaying field are simulated.
The theoretical curve is calculated for a homogeneous field (as before), with an electric
field strength corresponding to the mean electric field inside the particle. Deviations
of ±20% are observed, that go in opposite direction and largely cancel each other.



2. The experimental setup

The development of the experimental setup constitutes an essential part of experi-
ment as it provides the stability and low noise properties that lay the foundation for
the high sensitivity measurements presented in this thesis. To achieve this stability
a number of particular requirements had to be met. First of all, the tracking of
the resonance frequency takes place on a frequency band that ranges from DC to
a few ten kHz and potentially up to a few MHz. Notably this includes building
vibrations at a few Hz, the acoustic band, and prominent electronic noise sources at
multiples of 50 Hz. Therefore efficient vibration isolation and filtering of electronic
noise are necessary. This is in stark contrast to optomechanical experiments, where
the displacement of a mechanical is monitored at a few ten MHz and the motion is
restricted to a narrow bandwidth. A second distinctive feature of the setup is that
the coupling to the resonator takes place in an aqueous environment. This imposes
in addition requires an efficient delivery of the analyte, the ability to rinse the sys-
tem, and a sample handling procedure that avoids contamination and preserves the
high optical quality of the resonator in water. In the following sections we describe
the setup and how the requirements stated above have been realized.

2.1. Coupling setup

The coupling setup is at the very heart of the experiment, as it is the place where the
resonator, the fluidics and the optical part meet. It consist of the flow cell device
(FCD), which is described in detail in the following paragraph and a positioning
system to translate the sample with respect to the coupling fiber. Notably the tech-
nical advances and developments described in this chapter laid the foundation for
the intriguing results presented in the chapters that follow. To preserve the extraor-
dinary optical properties of the toroidal microresonator in aqueous environment it
is absolutely necessary that the sample is not contaminated during the preparation
steps as well as handling and installation. To this end a number of techniques were
developed or refined. The descriptions in this chapter will often be technical and
very detailed to facilitate reproduction of the results and to provide a recipe to
anyone who wants to relaunch the experiment.

2.1.1. The Flow Cell Device (FCD)

The central part of the coupling and measurement setup is the flow cell device
(FCD), where the coupling to the resonator takes place. The FCD is machined from
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Figure 2.1.: The flow cell device. (a) Drawing of the FCD. The fiber crosses the
coupling chamber at an angle of 25◦ through slits that are sealed with latex adhesive.
The angle is a compromise between a narrow flow channel and a sufficient length of
the tapered fiber. The chip that carries the resonators is glued to a mount with UV
adhesive. (b) Photograph of the FCD and a sample. The sample mount is attached to
a 3-axis nano-positioning system via magnets. The fluid arrives from the left through
a PTFE tube and is withdrawn on the right. The fiber entry slits in the coupling
chamber are sealed with latex adhesive (black material in the center). (c) A view
through the bottom window shows the sample inside the coupling chamber together
with the tapered fiber. Here we send ∼ 5 mW of power though the tapered fiber for
better visibility. In a measurement around 10µW are used. The exact coupling point
on the tapered fiber (and thus the thickness) can be adjusted within the limits of
lateral displacement of the chip. (d) The fluid channel and the coupling chamber are
highlighted using a colorant.

acrylic glass and the sample is inserted through the open ceiling of the coupling
chamber, while the coupling is monitored through a window in the bottom part of
the FCD (cf. Figure 2.1 (a) ). To couple to the resonator, we use a tapered optical
fiber [103, 104, 105], which is firmly mounted in the FCD at an angle of 25◦ with
respect to the coupling chamber, as shown in Figure 2.1 (c). Such design allows us
to maintain a minimum length of 20 mm for the tapered region of the fiber, while at
the same time minimizing the width of the coupling chamber.1 The former avoids
transmission loss at the points of entry and exit and the latter is important for
efficient flushing of the coupling chamber. The fiber enters the FCD through 1 mm
slits, which are sealed using a fast curing and easily removable adhesive (Microset
101RF; cf. Figure 2.1 (b) ).

1The angle of 25◦ is set by the diameter and distance of the resonators on the chip, such that the
fiber can pass between two neighboring cavities.
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To establish a constant water or buffer flow in the FCD, we use two syringe pumps
equipped with 50ml BD Plastipak syringes for fluid insertion and extraction (both
Chemyx Fusion). Two supplementary pumps (New Era NE-1000) on the insertion
side are used to add the analyte (cf. Figure 2.5 for a schematic layout). All pumps
are computer interfaced and can be used to run synchronized insertion/flushing
protocols. For valves, connectors and tubing we mostly rely on sterile medical
supplies (e.g. B. Braun Discofix-3 and extensions) that are regularly exchanged.
It is important to note that the flow needs to be controlled precisely to maintain
a constant fluid level in the coupling chamber. Therefore, all measurements were
conducted with the syringe plunger position between 15− 45 ml, where the plunger
movement is smooth and flow is constant. Additionally, a camera was installed to
monitor the fluid level in the coupling chamber. In the experiment a constant flow is
important, because distortions lead to a drift of the resonance frequency, probably
due to local heating.

On the mechanical side, we use a motorized xyz-translation stage (Newport Gothic-
Arch 65-mm Platform) for coarse positioning of the sample. Fine alignment is
achieved with an attached, inverted piezo nano-positioning system (PI, nanocube).
For fast characterization of a sample, the motorized actuators are synchronized to
achieve a linear movement of the chip in the coupling chamber. A translation script
allows us to hop from one resonator to the next and to store absolute positions of
resonators. This maximizes throughput and helps to minimized the air exposure
time when the sample is mounted, as it can directly be moved to a predefined
position. The whole coupling setup is installed on an optical table in a climate
controlled laboratory and which is surrounded by an enclosure with sliding windows.
A flow box establishes a constant air flow that prevents heat convection and ensures
a constant temperature above the optical table. The syringe pumps are placed on a
rack next to the optical table to grant accessibility and to decouple the vibrations
from the syringe pump motors. However there is typically a temperature difference
between the inside and the outside of the table enclosure, such that the fluid needs
to thermalize with the environment of the coupling setup before entering the FCD.
To this end we installed a thin PTFE tube (inner diameter of 0.8 mm) of ∼ 2 m
length, which leads to the FCD (cf. Figure 2.1 (b) ) and which is taped to the
surface of the optical table that serves in this case as a heat sink.

In general the inverted setup holds several advantages compared to an upright ar-
rangement where the samples on the chip point upwards and the fiber taper is
approached from the top. i) The tapered fiber does not need to be removed to
exchange the sample. In practice it takes several tries to produce a fiber taper that
meets the requirements for coupling in aqueous environment. Moreover an average
number of 20− 40 resonators needs to be tested and characterized to find a high-Q
optical resonance that lies within the thermal tuning range of the Nd:YAG laser.
The inverted design thus allows for high sample throughput that results eventually
in higher sample quality. ii) The fixed mounting of the tapered fiber leads to an
increase of coupling stability. iii) The complete coupling setup is designed in a way
that it fits on commercial inverted microscopes (e.g. Leica DMI3000, Nikon Eclipse
MA100, Olympus GX51, Zeiss Axio Vert). (iv) Gas bubbles that could rupture
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the fiber can easily escape. (v) Lastly, the sample mount itself facilitates sample
handling, which will be reported on in section 2.1.3.

2.1.2. Fabrication of tapered fibers

It was already mention in the previous section that we use tapered optical fibers
to achieve efficient coupling to the resonator. In this paragraph we describe the
fabrication of the fiber, the transfer to the FCD and its immersion in water.
Obviously a fragile tapered fiber does not seem to be the first choice in a “difficult”
environment – such as water – where surface tension might lead to rupture and
impurities can deteriorate the transmission. Different coupling methods that have
been reported in literature rely, e.g., on an angle cleaved fiber, prisms, or even free
space coupling (to a limited degree).2 However once the technique is mastered, the
tapered fiber provides a stable way of coupling with unmatched efficiency, and it
can be preserved and used for up to two weeks.

We produce a tapered fiber by pulling optical fiber (Thorlabs, 630HP) in a hydrogen
torch, while monitoring the transmission at 633 nm. The position of the flame is
adjusted in a way that the tapered region is shorter than 20mm. This avoids optical
loss when the FCD is sealed. We estimate the thickness of the taper by manually
sweeping a droplet of isopropanol over the fiber and monitoring the transmitted
intensity. When the transmission drops between 50%−70%, the coupling properties
have shown to be best at a wavelength of 532 nm. A total transmission loss of < 1%
is frequently achieved, fibers with more than 10% transmission loss are not used.

For coupling with a thicker fiber, i.e. with a transmission drop less than 50%, it is
necessary to move the fiber closer to the resonator to achieve sufficient overlap with
the evanescent field. The fiber – being a dielectric itself – then induces a frequency
detuning of the optical resonance and more importantly fiber vibration, e.g., due to
acoustics and convection, become the dominant noise source that limits the device’s
sensitivity.
On the other hand, when the fiber is too thin such that the loss in the isopropanol
test exceeds 70%, a broad band loss is induced when coupling to the resonator. This
manifest on the one hand as a general drop of the transmission (depending on the
distance to the resonator) and one the other hand by the occurrence of Fano reso-
nances when the loss channel interferes with an optical resonance [106]. Depending
on the polarization of the incident light, the typical transmission dip shape can be
completely inverted. Interestingly the frequency detuning of such Fano resonance
is a very sensitively with respect to the coupling gap. When approaching the res-
onator with the fiber, the resonance shifts by as much as 5 GHz. Interestingly one
can adjust the polarization in a way, that the Fano resonance directly yields an error
signal with a zero crossing at the center of the resonance (including a transmission

2 The coupling efficiency can be enhanced, when a grating is engraved on the surface of the
resonator.
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Figure 2.2: The transmission of the
coupling fiber is monitored, while the
FCD is filled with water. In general
the transmission of the tapered fiber is
not compromised. However, a water-air
interface, gas bubbles, and strain due
to surface tension temporarily affect the
transmission properties. (a) When the
water begins to wet the fiber starting
from one side, typical oscillations appear,
while the transmission decreases. The
flow chamber is constructed such that
the space beneath the fiber slowly fills
up without exerting too much tension.
(b) Gas bubbles arriving from the flow
channel lead to a temporary loss trans-
mission. Due to the open design of the
chamber, the bubbles can escape without
breaking the fiber.
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offset). However due to the before mentioned delicate position dependence, faint
fiber movements and vibrations directly translate into a frequency detuning.

Once a suited fiber taper has been fabricated we move to a test setup and touch
the rim of a toroidal microresonator with the fiber such that it sticks to the surface.
Then the fiber is pulled back until it snaps loose from the toroid. When the snap-
back distance is larger than ∼ 5µm, the fiber is tensioned and the test is repeated.
Next the fiber is transferred to the FCD, which is a delicate process. We place the
support with the tapered fiber on a z-translation stage and align the FCD such that
the fiber is directly above the entrance slits. The fiber holder is tilted until the fiber
is parallel to the FCD and finally the fiber is lowered until is touches the bottom of
the grove. Here we pinpoint the fiber with two droplets of UV adhesive (NOA81,
as it can be removed from the acrylic glass support) and remove the fiber from the
support. Finally we seal the entrance slits with latex glue from the exterior.

Several strategies can be followed to fill the flow cell with water and in principle
most of them work as the process is less critical than one would think. It is however
absolutely crucial that all water that comes into contact with the taper or the sample
is de-gassed before use. To this end we take fresh water from a water purification
system (Millipore Milli-Q Integral) and place it into a desiccator for a few hours.
Otherwise outgassing of the water will degrade the fiber transmission to ∼ 50% in
approximately 10 min. The optical Q of a resonator is affected as well. If the fiber
transmission is accidentally destroyed by outgassing it can partially be restored by
flushing with de-gassed water.

When filling the FCD surface tension of the water can break the tapered fiber.
To avoid this, one can use a 20% ethanol solution to carefully fill up the coupling
chamber with a syringe. The ethanol is then replaced by water from the infusion



2.1 Coupling setup 29

pump. The method is very robust and the fiber is wetted immediately as surface
tension is reduced by the alcohol. However when replacing the liquid, the fiber
transmission frequently drops by ∼ 10%. This is not the case when the FCD is
directly filled with water, as it is shown in Figure 2.2. To this end we insert water,
using the infusion pump, and the space underneath the fiber slowly fills with water,
while the fiber itself “pushes” into the surface without being wetted. It gives the
impression as if the fiber would lie on a “cushion” of water. When the coupling
chamber is filled such that water is extracted at the other end, we take a syringe
and put a single droplet of water directly on the fiber such that it is immediately
immersed and the transmission jumps back to 100%.

2.1.3. Sample fabrication and mounting

In this paragraph the fabrication of the toroidal microresonators is outlined and
our method of sample handling and cleaning is introduced. The microfabrication
process has been described before elsewhere [107, 108] , but nevertheless we will
highlight some particular aspects here. To fabricate high-Q toroidal microresonator,
we start out with commercial silicon wafers with a 2µm oxide layer (Silicon Valley
Microelectronics).3 Briefly, we use optical lithography to define disks of varying
diameters (80− 120µm) and HF etching to remove excess silicon oxide (cf. Figure
2.3 (a)-(c) ). In the next step the glass disks are undercut using sulfur hexafluoride.
In a process developed by Emanuel Gavartin, we then use a dicing saw to cut groves
that define the chips with the samples on the wafer (cf. the rectangular pattern in
Figure 2.3). This way the wafer is still suited to undergo a final automated cleaning
step in hot sulfuric acid in the cleanroom.

Each predefined chip has a size of 4 mm×12 mm and carries 20 disks. To separate a
single chips from the wafer it is sufficient to scribe along the grove with a razor blade
or scalpel and then carefully cleave the wafer using a pair of wafer tweezers that are
placed next to each other on each side of the grove. Compared to the conventional
cleaving method involving a diamond scribe, the dicing method allows us the obtain
well defined cleaves and samples of uniform size. The latter is particularly important,
as the coupling chamber of the FCD and the sample transfer stage are laid out for
a specific sample size. Moreover the method increases overall cleanliness, because of
the additional cleaning step on wafer scale and because residues from scribing and
cleaving remain inside the grove.

The toroidal resonator shape is obtained from the microdisk in a final laser reflow
step. To this end, a CO2 laser (Synrad 48-series, 10 W), which is strongly absorbed
by silica, is focused on the disk to melt the glass. The silicon pillar provides a heat
sink, such that the temperature is highest at the rim of the disk, where the liquid
SiO2 forms a ring due to surface tension. The ring shrinks towards the center, while
gaining in thickness, until the cold from the pillar terminates the process and sets

3Oxide layers of 1µm thickness have been tested , but the optical quality and reproducibility
have shown best when using a 2µmsilicon oxide layer.
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(a) (b) (c)

2 μm silica layer 
on silicon wafer

Silica pads on silicon wafer 
after lithography, HF-etching

Free standing silica discs after 
XeF2 dry etching

Figure 2.3.: The sample preparation at a glance. (a) Starting point of the
process is a commercial 4” silicon wafer with a 2µm oxide layer (e.g., from Silicon
Valley Microelectronics). (b) The positive structures are defined using standard pho-
tolithographic methods; the excess SiO2 is removed with a hydrofluoric acid wet etch.
Typically disks with diameters from 80µm to 120µm are defined. (c) Next the silicon
is selectively etched using either xenon difluoride of SF6. The undercut is adjusted
via the gas pressure and the number of etching cycles. The pictures at the bottom of
the figure show the final wafer. The samples have been pre-diced, such that the wafer
can still undergo a final cleaning step. The insets shows a magnified view of a single
chip, carrying 20 microdisks and an identification/alignment structure.

the major toroid radius. There is controversy, whether a fast reflow, using a short
(10 − 100 ms) laser pulse, or a slow reflow, by gradually increasing the laser power
over a few seconds, lead to better results. Here, we found that the second method
provides better control over the optical quality. However it is highly recommended
that the laser power remains constant at 60% − 70%, to avoid power fluctuations.
To this end we work at a constant pulse width modulation and use an adjustable
attenuator (ULO optics, CO2mpact attenuator with enhanced Brewster windows)
to control the power.4

For the use with the inverted coupling setup, we designed a support that consists of
a steel rod (∅ = 2 mm) attached to a PMMA block (20 mm× 8 mm× 2 mm), which
is glued to a nickel plate (cf. Figure 2.4). The support is mounted in the coupling
setup via magnets and can easily be handled with grooved tweezers. Figures 2.4

4The power level of the 10W Synrad CO2 laser that we used for reflow is regulated via pulse with
modulation (PWM). Here we set the PWM rate to the highest level (20 kHz). It is possible
to control the power output fully via the PWM; however at the low power level required for
laser reflow, which is typically around 10 − 15% of the maximum power, we observed that
the intensity fluctuates and the focal spot drifts. In particular the latter issue affects the
repeatability. Moreover we found that the attenuator, which is based on a rotatable pair of
Brewster plates, does not cause any visual displacement of the focal spot.
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Figure 2.4.: Sample handling. The chip with the micro-resonators is glued to a
support with a nickel base plate that can be attached to a magnetic holder. Nickel
was chosen because of its insensitivity against a humid environment. Using grooved
tweezers, the sample can be manipulated safely. A schematic view of the mount with
a chip is shown in panel (c). The photograph (b) shows how the chip is aligned on
a glass stage while the support is positioned using a translation stage (not in the
picture) and while the glue is still wet. A groove prevents the microresonators from
being damaged. (a) The adhesive is cured using a UV lamp. (d) Two samples are
attached to a glass slide with matgnets and plunged in a beaker with cleaning solution.
(e) A close up view shows that the sample is only wetted from the side that carries
the resonators. Hence the potentially aggressive agent does not attack the glue.

(a) and (b) show how the chip is glued to the support with UV adhesive (Thorlabs,
NOA-81) and how the chip is aligned on a stage assembled from microscopy slides.
For sample handling and wet chemical processing, the support is attached to a glass
slide with magnets (cf. Figure 2.4 (c) ). This way the sample can be transferred
between different cleaning and rinsing solutions without risking contamination, e.g.,
from tweezers.

Between two measurements the FCD is rinsed with DI water. Flushing with 4 ml of
DI water has shown to be sufficient to visually remove any trace of a colorant (before
a white background, cf. Figure 2.1 (d) ); we flush with 30 ml to remove any residue
of an analyte in between measurements. A sample that was used for a measurement
can be recycled without significant degradation of its optical quality. To this end,
the sample is first placed in a 65 : 25 : 1 solution of chloroform, methanol, and DI
water for 20 minutes and afterward rinsed with DI water. In a second step we use
SC-1 solution (5 : 1 : 1 solution of DI water, 30% hydrogen peroxide, and ammonium
hydroxide at 70◦C) for 10 to 20 minutes and rinse again with DI water. During the
cleaning and preparation procedure the sample holder is attached to a microscope
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slide, which we put on top of the beaker that contains the solution. It is an advantage
of our sample mount, that the fluid level of the cleaning solution can be adjusted to
a level such that the chip with the samples is only wetted from the side carrying the
resonators. This avoids contamination and prevents that the UV adhesive (which
is used to mount the chip) is attacked by the agent. Moreover the samples can be
quickly transferred between two solutions. Following this procedure we were able to
re-use a sample up to ten times. After an initial linewidth degradation from 5 MHz
to 8 MHz no further loss of quality was observed. However, each recycling cycle shifts
the resonance towards higher frequency by a few GHz. We believe that the SC-1
cleaning step takes off some SiO2 material. Indeed a radius reduction corresponding
to one Si−O bond length shifts the frequency by roughly 3 GHz. The effect limits
the total lifetime of a sample, because the resonance eventually shifts out of the
laser tuning range.

2.2. The optical setup

The optical setup serves the purpose of tracking the resonance frequency of the cav-
ity with high frequency and time resolution. To achieve this we employ two lasers,
a New Focus Velocity diode laser that can be tuned over a wavelength range from
632.4 nmto 637.2 nm, and an Innolight Prometheus Nd:YAG solid state laser, oper-
ating at a wavelength of 532 nm. Figure 2.5 shows how both lasers are superposed
on a dichroic mirror and can be coupled to the resonator simultaneously.
The use of two laser sources is motivated by their properties that are favorable for
different applications. The diode laser has the advantage of a large tuning range
that covers more than three free spectral ranges of a typical toroid resonator and
a piezo sweep range of ∼ 40 GHz. However it suffers from a relatively broad laser
linewidth of ∼ 300 kHz and prominent low frequency noise in the acoustic band.
Dominant lines are found at multiples of 50 Hz, which give the impression of a shak-
ing resonance when scanning the laser. We use the diode laser to record large (few
GHz) frequency shifts, e.g. for ensemble measurements of streptavidin binding in
section 4.2, and for the characterization of the samples. Typically a laser frequency
sweep includes at least one WGM resonance that we use to align the tapered fiber
with the resonator and to find a good coupling position. As we are lacking a side
view on the resonator and the fiber, which can be realized for coupling setups in air
or vacuum that provide better accessibility, we have to rely on the top view on the
cavity for alignment.

The Nd:YAG laser on the other hand has a narrow linewidth of ∼ 1 kHz and features
intrinsically low laser noise, which has its origin in the monolithic design of the laser
cavity.5 Here the piezo tuning range is limited to ∼ 800 MHz (at 532 nm) and the

5Indeed the laser crystal is the laser cavity. A ground facet with a dielectric coating serves as
input/output coupler, while the laser beam is reflected on a closed path inside the Nd:YAG
crystal via total internal reflection[109]. The crystal is clamped to a piezo for fast frequency
actuation. Due to the high Young modulus of the crystal, there is little actual compression and



2.2 The optical setup 33

overall thermal tunability spans ∼ 60 GHz, such that it is oftentimes not possible
to find a suited (e.g., TM00) mode within the thermal tuning range.
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Figure 2.5.: A schematic view of the setup. The fluidic setup (indicated on the
upper left side) and the optical setup come together in the FCD. On the optical side,
we superpose a diode laser at 635 nm wavelength and a frequency doubled solid state
Nd:YAG laser at 532 nm on a dichroic mirror (DM). Both lasers can be frequency
locked to the resonator using the PDH scheme. To this end the light is phase mod-
ulated at 180 MHz using an electro optic modulator (EOM). The transmitted light
is detected with a fast photodiode (PD) and demodulated with a frequency mixer
to yield an error signal (cf. section 2.2.1). Using a fast PI regulator, the correction
voltage is derived that is fed back to the laser piezo and that is recorded as the signal,
prior to amplification.
Two schemes are implemented to calibration the correction voltage and to convert
it into a frequency detuning. The diode laser is scanned over a Fabry-Pérot cavity
with a free spectral range of 1.3 GHz and the minima of the reflected intensity provide
frequency markers to calibrate the applied piezo voltage. For the Nd:YAG laser, we
overlap a secondary Nd:YAG reference laser (Innolight Diablo) that is locked to an
ultra-stable, isolated reference cavity (lower left) with the Nd:YAG laser that is locked
to the sensing resonator on a beam splitter (BS). The beat frequency is recorded with
a frequency counter and represents the frequency detuning between the reference cav-
ity and the sensing resonator. As the first is much more stable than the latter (also
due to their dimensions), the beat signal effectively represents the relative resonance
frequency of the sensor.

displacement involved, which allows for fast actuation of up to 100 kHz (due to small charge
displacement and small currents this can be handled by commercial high voltage amplifiers) at
the cost of a limited frequency sweep range of ∼ 400 MHz. Moreover the crystal is temperature
controlled with an accuracy of 100µK. The laser light at the fundamental wavelength of
1064 nm is focused on a non-linear crystal for frequency doubling in a single pass configuration.
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Moreover it is time consuming to scan over the whole thermal range of the laser and
in practice we only search for resonances with the YAG laser after pre-characterization
and alignment with the diode laser. The advantage of the Nd:YAG laser lies in its
low frequency noise properties: With the diode laser the frequency resolution in
a measurement is limited by laser noise, while for the Nd:YAG laser the intrinsic
frequency jitter of the resonator becomes the limiting factor (on timescales faster
than ∼ 1 s).
The noise properties the resonator are discussed in chapter 5. Here we use the solid
state laser for measurements that require highest sensitivity, such as the recordings
of single lipid vesicles.

In the experiment we employ two different methods to track the resonance frequency
of the cavity. Using the laser scanning technique, a saw tooth voltage is applied
to the laser piezo and the wavelength is (linearly) scanned over the resonance. The
transmitted intensity is recorded in parallel with the sweep voltage and the voltage
corresponding to the transmission minimum is recorded. Typical scan frequencies
are in the range of 10 Hz to 100 Hz. The scanning technique is used by all com-
petitors in the field of cavity based sensing and details of our implementation are
presented in section 2.2.2.
In addition we use a laser locking method, that relies on the Pound-Drever-
Hall (PDH) technique to regulate the laser frequency to the cavity resonance. To
this end a correction voltage is generated and applied to the laser piezo, such that
the difference between the laser frequency and the resonator frequency is compen-
sated. Notably frequency shifts from particle adsorption and in response to other RI
changes are settled, such that the correction voltage embodies the the measurement
signal (within the locking bandwidth). In the following section we introduce the
PDH technique and outline the advantages of the locking method in the context of
cavity enhanced sensing.

2.2.1. Pound-Drever-Hall (PDH) locking technique

The Pound-Drever-Hall technique was introduced in 1983 as a scheme to stabilize a
laser to an optical resonator, such as a Fabry-Pérot interferometer, and to meet the
increasing demand for ultra stable laser sources in spectroscopy and gravitational
wave antennas [110, 111, 112]. The technique resembles a lock-in scheme, where the
phase of the incident light is modulated and the reflected beam is detected with a
fast photodiode. After demodulation with an electronic mixer or phase detector,
the signal undergoes low pass filtering to obtain an error signal. A typical PDH
error signal and the corresponding transmitted intensity are depicted in Figure 2.6.
Within the half width of the resonance center, the error signal is proportional to
the detuning between the laser and the resonator and can be used to regulate the
laser frequency to match the resonance. Here we use a fast PI-regulator (Precision
Photonics LB1005) to lock the laser to the resonance. Low frequency contributions,
with an amplitude potentially exceeding the resonance width, are integrated (I) and
fed back on the laser to correct for frequency drift; faster frequency jitter (with
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Figure 2.6.: Transmitted intensity and error signal. (a) A typical transmission
signal (blue) and the generated error signal (green). Owing to the weak modulation,
the sidebands are not directly visible in the transmission signal. In the error signal,
however, they are well resolved and can be used for locking. Here the sidebands are
detuned by ±180 MHz. The red circle indicates a locking point on the high frequency
side band. The sidebands can only be observed in the error signal and are not visible in
the direct transmission, due to weak modulation and undercoupling. (b) A Lorentzian
fitted to the resonance. The resonance width of 8 MHz corresponds to an optical
quality of Q = 6 · 107.

mean zero) is proportionally (P) amplified (or attenuated) and added to the low
frequency correction. The sum of these contributions is the correction signal, which
is fed back on the laser. In its original sense, the scheme is used to lock a noisy
laser to a stable reference. Here we take an intrinsically stable laser source to record
the frequency drift and fluctuations of the resonator. It is important to note, that
the locking bandwidth is not limited by the cavity bandwidth, i.e. the cavity build
up time [111]. Consequently the time resolution bandwidth can exceed the typical
resonance width of 5 MHz.

In our experimental setup we use a resonant phase modulator at a frequency of
180 MHz(Newport, 4001NF) that is suited for both wavelengths and which is aligned
with respect to an optimized error signal (maximum amplitude and minimum un-
dulations), which does not necessarily correspond to the alignment that maximizes
the transmission. The transmitted intensity is detected with a New Focus 1801-
FC-AC photoreceiver with a bandwidth of 125 MHz. Even though the modulation
frequency exceeds this bandwidth, we found that the performance with respect to
the amplitude and noise of the error signal is superior to the 1 GHz model and the
DC coupled model of the same series of photoreceivers.

The PDH technique combines several advantages: First is ideally suited for fast
sampling of the resonance frequency. Within the locking bandwidth the signal is
directly obtained from the correction signal. In our current experimental setting,
the locking bandwidth is limited to 100 kHz by the response time of the piezo of the
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Figure 2.7: Correlation
between laser intensity
and correction signal.
When the laser is locked
to the resonance, tempera-
ture variations induced by
intensity fluctuations of the
laser cause a frequency drift.
Here the laser intensity be-
fore coupling to the fiber
is monitored simultaneously
with the correction signal. A
clear correlation is found.

Nd:YAG. Faster components – up to a few MHz – are contained in the error signal
and can be recorded separately when the amplitude of the fast fluctuations stays
within the FWHM of the resonance and thus in the linear regime of the error signal.
We measure the frequency detuning of the laser as a function of the piezo voltage and
use the relation to convert the correction voltage to a frequency detuning. To this
end the generated sidebands provide frequency markers at a fixed detuning and give
direct access to the frequency-voltage dependence. More accurate ways of calibration
that we use here, are discussed in detail in section 2.2.3. Fast frequency fluctuations
obtained from the error signal can be converted either by spectral overlap with the
correction signal or starting from the slope of the error signal at the locking point (cf.
Figure 2.6). The latter method potentially causes problems when the linewidth of
the resonance and thus the slope of the error signal change during the measurement.

Another advantage of the PDH technique is the signal encoding at radio frequency
(here at 180 MHz). In sensing experiments we are typically interested in a recording
bandwidth from DC to a few MHz, which is susceptible to low frequency acoustic
and electronic noise. Such noise is regularly picked up in the optical fiber from
vibration induced stress or in cables via cross talk. Here we can efficiently block
such deleterious components using high pass filters after photodetection, such that
the system is only sensitive to low frequency noise after demodulation. A complete
layout of the electronic components is presented in appendix C.

Lastly, it is of practical importance that the laser can be locked to a sideband,
detuned from the resonance. In Figure 2.6 (a) an incident power of ∼ 12µW is
launched into the coupling fiber, which is positioned in a way that the coupling rate is
much smaller than the internal loss rate (undercoupled regime[113]). On resonance,
∼ 1µW optical power enters the cavity. In Figure 2.7 we monitor the intensity of the
incident light together with the resonance frequency of the resonator (represented by
the correction voltage). A clear correlation between the two recording is observed,
which stems from the thermo-refractive effect that relates temperature fluctuation
to a variation of the refractive index. Fluctuations of the dissipated power inside
the cavity cause heat fluctuations, which translate into fluctuations of the resonance
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Figure 2.8: Diode laser calibra-
tion. The reflected signal (green
curve, left scale) when sweeping the
laser over the resonator. Two res-
onances are spaced by 1.3 GHz and
thus provide frequency markers. We
fit a polynomial to the positions of
the minima and obtain a calibration
curve to calibrate the piezo voltage
frequency dependence of the diode
laser.

frequency. This is circumvent, when the laser is locked to a frequency sideband (as
indicated by the circle in Figure 2.6 (a) ), such that the power entering the cavity is
reduced by a factor > 20 to a few 10 nW, which practically eliminates the thermo-
refractive frequency response to laser intensity fluctuations. The sideband lock is
one of the main reasons why we were able to improve the sensitivity between the
measurements of polystyrene beads in section 3.5 and the recordings of single lipid
vesicles in section 3.3. A second reason is the optimization of the electronic setup,
matching of power levels, and the strict use of low noise amplifiers.

2.2.2. Diode laser frequency calibration

We stated earlier that we use the diode laser to obtain a first impression of a res-
onator’s optical quality and for measurements with GHz frequency shifts, which
exceed the tuning range of the Nd:YAG laser. In the first case the generated side-
band suffice as coarse frequency markers, when we judge the width of an optical
resonance.
When it comes to a measurement, however, better means of calibration are neces-
sary, because the dependence of the laser frequency on the piezo voltage is normally
not linear and displays a slight curvature. In the experiment we scan the diode
laser over the resonance and record the transmission as well as the sweep voltage
in parallel. For each trace the transmission minimum is fitted with a 3rd degree
polynomial to find the position of the minimum. In this way 10 samples per second
are acquired. We note that the stroboscopic sampling of the resonance suppresses
frequency fluctuations at multiples of 10 Hz, i.e. narrow lines at 50 Hz and 100 Hz.
For frequency shifts of several 100 MHz, laser noise can usually be neglected and the
binding takes place on a time scale of tens of seconds, such that the 10 Hz sampling
rate is not a limitation.

In addition, the scanning method allows us to monitor and to correct the coupling
during the measurement, which might change during a long measurement of up to
an hour, and is thus intrinsically more stable than the frequency locking methods.
Using the PDH technique, we can only rely on the stray light intensity caught by the
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microscope, to estimate the coupling strength, because the transmitted intensity is
not a meaningful criterion when locking to a sideband. To calibrate the dependence
of the frequency on the piezo voltage, we scan the laser over a Fabry-Pérot (FP)
interferometer and, as shown in Figure 2.8, the reflected intensity from the FP
cavity then provides a frequency ruler. We fit a polynomial to the minima of the
reflected signal and obtain a conversion rule. Even when the deviation from the
linear rule is weak, such calibration remains important. In particular for ensemble
binding measurements (e.g. streptavidin-biotin in section 4.2), where a saturation
curve is recorded, it is rather the shape of the binding curve that gives insight on
the interaction (e.g., two binding time scales) than the absolute frequency shift.

2.2.3. Ultra-stable optical reference cavity

In the experiment we derive the measured signal νmeas(t) from the correction voltage,
which compensates for both, frequency drift and fluctuations of the laser δνlaser[t]
as well as changes of the cavity’s resonance frequency. Here we separate the fre-
quency detuning of the cavity into a contribution νsignal(t) that represents the in-
tended frequency response to refractive index changes from the analyte (e.g., single
molecules), and a noise contribution δνcavity[t], which is due to involuntary thermal
drift of the resonance or thermo-refractive frequency noise. Consequently we can
write the recorded signal as the sum of these contributions.

νmeas(t) = νsignal(t) + δνcavity[t] + δνlaser[t]

In this relation δνcavity[t] and δνlaser[t] set the noise background of the measurement
that determines the smallest resolvable frequency shift and thus the sensitivity of
the device. The cavity noise contribution will be discussed in the course of general
sensitivity considerations in chapter 5. In general δνlaser dominates over δνcavity for
the diode laser.

Here, we address the issue of laser noise δνlaser[t], which can be eliminated from
the recorded signal, by means of a stable frequency reference. To this end, we set
up an ultra stable reference cavity, which is based on a Fabry-Pérot (FP) cavity
machined from Zerodur ultra low expansion (ULE) glass. Figure 2.9 (a) shows a
photograph of the FP spacer with highly reflective, low loss, mirrors attached to the
end facets. The mirrors are designed for the Nd:YAG’s fundamental wavelength at
1064 nm and they are clamped to the spacer with leaf springs. The assembly forms
a plano-concave FP cavity and the spacer length of 115 mm corresponds to a free
spectral range of 1.3 GHz. A second high finesse FP cavity at 635 nm wavelength
was likewise assembled and used for the calibration of the diode laser (cf. Figure
2.5).

To achieve maximum stability against temperature changes, the cavity is placed in-
side a temperature controlled housing at high vacuum (2 · 10−7mbar). Photographs
of the vacuum chamber and a copper cylinder with resistive wire for temperature
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Figure 2.9.: Photographs of the ultra-stable reference cavity assembly. (a)
The Fabry-Pérot cavity consists of a ultra low expansion (ULE) glass spacer and two
high reflectivity low loss mirrors that are mounted with three leaf springs. (b) The
cavity is placed in a temperature controlled copper cylinder, which is surrounded by
two additional aluminum shieldings (not shown in the picture). (c) The full assem-
bly with the Fabry-Pérot cavity inside the vacuum housing. A connected ion pump
(Gamma Vacuum TiTan 10S) maintains a high vacuum of ∼ 2 · 10−7 mbar. (d) The
reflected intensity from the cavity (lower graph) and the PDH error signal that is
used to stabilize the reference laser to the cavity (upper curve). The line width cor-
responds to a finesse of > 10, 000 and is currently limited by the integration time of
the photodiode.

actuation are shown in Figure 2.9 (b) and (c). Such isolated optical cavity expe-
riences little exposure to temperature fluctuations of the environment provides a
frequency reference which is at least two orders of magnitude more stable than the
free running Nd:YAG and the microtoroid.
A second Nd:YAG laser at 1064 nm wavelength is aligned on the cavity (cf. Figure
2.5), such that intensity dip in the reflected signal is minimized for the TEM00 res-
onance. Figure 2.9 (d) shows the sharp reflection minimum (linewidth in the order
of 100 kHz) that is observed when the laser is scanned over the resonance.

Next, we use a PDH scheme to lock the second Nd:YAG laser to the stabilized cav-
ity, while the frequency doubled Nd:YAG laser at 532 nm wavelength is locked to a
WGM of the toroid resonator. The measurement laser also features a port for the
fundamental wavelength at 1064 nm, which is perfectly correlated with the measure-
ment frequency. We overlap the two laser beams on a fast (1.8 GHz) photodiode
and record the beat note. In the case, where the first Nd:YAG laser is locked to the
WGM cavity, in the absence of an analyte (i.e. νsignal = 0), the noise characteristics
of the beat note reflect purely the noise of the WGM cavity δνcavity[t]. In section
5.1 we will show that the cavity noise is best characterized by the Allan deviation
(or variance) as a measure of frequency stability.
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Figure 2.10.: Comparing the correction voltage to the absolute laser de-
tuning. We measure the frequency detuning using two different schemes. The blue
curve shows the calibrated signal obtained from the correction signal that is fed back
on the laser piezo (before ×20 amplification). The orange curve shows the beat note
between the laser locked to the resonator and the reference laser, which is stabilized
to an ultra-stable Fabry-Pérot cavity. The beat signal does not require any calibra-
tion, as the counter directly issues a frequency. Moreover the beat signal does not
contain laser noise, within the locking bandwidth of 30 kHz. This is well illustrated in
the lower panel, where an external frequency detuning of amplitude ‘A’ is applied to
the laser (change of crystal temperature), which triggers a compensation via the laser
piezo (blue curve), but does not show in the absolute frequency (orange curve).

Indeed, it turns out, that cavity noise δνcavity is the limiting factor for the sensitivity
on short time scale below 1 s, where it dominates over the laser noise of the Nd:YAG.
On longer time scales laser drift slightly dominates over the WGM resonator drift.
This is, however, only true if no analyte is added. Under realistic measurement con-
ditions, additional temperature variations lead to an increased drift of the WGM
resonator. In any case Nd:YAG laser noise does not impose a limit on the sensitivity
for fast measurements, e.g. of SUV.

Recording the beat note not only permit us to measure the toroid-resonator noise,
but it also provides a mean of calibration. To test the signal scaling deriving from the
frequency dependence on the piezo voltage, we record the beat note in parallel to the
correction signal in an SUV measurement. Counting the beat note directly provides
a frequency and does not need additional calibration and scaling (besides a factor
×2 to account for frequency doubling). In Figure 2.10 we overlap the converted
correction signal with the absolute beat note signal and confirm that the correction
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signal indeed reflects the frequency detuning of the laser. For practical reasons it
is required that the correction voltage does not exceed a certain limit. Therefore
we implemented an additional slow feedback loop that acts on the laser crystal
temperature and induces an opposite frequency drift when the piezo voltage becomes
too large. Such a temperature correction and its effect on the laser frequency shows
in the correction signal in Figure 2.10 (lower panel). The beat note is not affected by
the temperature correction, as it reflects the detuning between the reference cavity
and the resonator and does not contain any laser frequency drift.



3. Measuring the adsorption of
single lipid vesicles

In this chapter we report on one of the main results of this thesis, the time-resolved
detection of single lipid vesicles. The observation breaks ground in a double per-
spective. On the one hand, a sensitivity level is reached, where biologically relevant
processes (cf. section 3.2) can be observed with great detail. Secondly the actual
spreading of single lipid vesicles could be observed, which adds a new dimension to
WGM based single particle sensing. Previously the adsorption of a single particle
constituted a binary event; a sudden shift of the resonant wavelength would signal
the presence of a particle. Considering that the magnitude of the shift depends on
the local field intensity, a single event only has a qualitative nature and the infor-
mation is thus binary. When a larger number of events is recorded, the frequency
shift statistic provides a handle for calibration and turns the binary signal into a
one-dimensional information. Only when the interaction can be resolved in time, a
multidimensional picture is obtained, which was achieved for the first time in this
thesis. Moreover we are the first to provide a meaningful frequency jump statistic
that includes almost 200 events per measurement.
The chapter is organized as follows: First, the single particle sensitivity and impor-
tant figures of merit are quickly reviewed. This is followed by an introduction to
lipids, lipid bilayers, and lipid vesicles and their physiological as well as technical im-
portance. Finally the experimental findings are presented, covering the adsorption
of single lipid vesicles, as well as data for polystyrene beads. The effect of vesicle
adsorption on optical frequency splitting is measured and critically reviewed.

3.1. Single particle sensitivity

The sensitivity to a localized change of the refractive index, as it is the case for a
single particle, depends on slightly different criteria than the sensitivity to a bulk
change of the refractive index of the environment. In the latter case the evanescent
fraction, i.e. the totality of the evanescent field (which is typically around 3%, c.f.
section 4.3), provides a meaningful figure of merit. Single particles, however, only
occupy a small fraction of the evanescent field and the signal strongly depends on
the local field intensity. In practice one records only a few events with maximum
amplitude that correspond to an interaction at the point of highest evanescent in-
tensity (for a TE/M00 mode this is at the equator of the toroid). It is these events
that reveal the largest amount of detail and that provide the benchmark for the
sensitivity. Supposed cherry-picking is not only justified, it is absolutely correct, as
long as the events are not selected with respect to some exceptional “quality” of the
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interaction, but only with respect to the amplitude of the signal. As the local field
intensity does not influence the interaction (cf. section 2.2.1), the subgroup of large
amplitude events includes all potential interactions.

Therefore we define the single particle sensitivity with respect to the maximum of

the evanescent fields
∣∣∣ ~E(revan)

∣∣∣
max

and introduce the effective sensing mode volume

Vs as a figure of merit for single particle sensing in reminiscence to the mode volume
(,which was discussed earlier in section 1.1). Here we define

Vs = Umode/ε0 |E(revan)|2max , (3.1)

such that Equation 1.11 turns into an expression for the maximum frequency shift
that is potentially induced by a particle.

∆νmax/ν0 ≈ −
α

2

(
n2
p − n2

ex

)
Vp/Vs. (3.2)

Obviously the signal, and thus the single particle sensitivity, is proportional to
the inverse of the sensing mode volume Vs and typical values are in the order of
V −1
s ∼ 10−4 µm−3. (It is noteworthy that a similar figure of merit was introduced

in the supplementary information of reference [47], where the authors refer to the
“maximum of the field distribution on the resonator surface”.) The optical resonance
that was used for the single lipid vesicle measurements presented in section 3.3, has
a sensitivity of V −1

s ≈ 6.42 · 10−4 µm−3, which is obtained from simulations using
Comsol Multiphysics (cf. appendix A).

The effective sensing volume depends on the geometry of the resonator, represented
by the minor and major toroid radii (Rminor, Rmajor), the polarization of the mode,
i.e. TE and TM, and the resonant wavelength λ. We simulate Vs for different
parameter sets and plot the results in Figure 3.1. Fitting the simulated values,
we obtain a proportionality Vs ∝ R2.288

majorλ
0.51; numbers that have previously been

reported by Vollmer et al. for microsphere WGM resonators [37]. The dependence on
the minor toroid radius and on the polarization are more complex, but at the same
time less pronounced. An analytical approximation of the influence of the minor
toroid radius can be extracted from reference [98], where the toroidal geometry of
the resonator is modeled by an oblate ellipsoid.
Indeed the sensitivity is dominated by the major toroid radius and it is strongly
advantageous to chose a resonator as small as possible. However, a lower limit
on the toroid radius is set by the radiation loss cutoff, which defines an optimum
radius for a given wavelength. Further increase of sensitivity can only be achieved
by moving to shorter wavelength.

3.1.1. Geometric correction factors

To estimate the maximum frequency shift from a single particle, it is convenient to
integrate the polarizability and the overlap of the particle with the evanescent field
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Figure 3.1.: The single particle sensitivity as a function of the major cavity
radius and the wavelength. We use Comsol to simulate the peak intensity of
the evanescent field and the mode energy, to compute the sensing mode volume Vs
(cf. Equation 3.1) for different toroid geometries and wavelengths. In panel (a) the
inverse of the sensing mode volume, V −1

s , serves as a measure for the single particle
sensitivity, and it is plotted here as a function of the major toroid radius for different
mode families, minor radii, and polarizations. All curves can be fitted with a rational
decay function ∝ R−2.288

major . (b) The inverse sensing mode volume V −1
s is plotted as a

function of the wavelength. The fitted curve is proportional to ∝ λ−0.51.
For many of the data that are presented in this thesis, a resonator with a major radius
of ∼ 32.7µm and a minor radius of ∼ 3.85µm at a wavelength of 532 nm was used,
which will frequently be referred to as a point of reference. The corresponding inverse
sensing mode volume of the resonator is V −1

s ≈ 6.42·10−4 µm−3 and, for comparison, a
microsphere with the same major radius exhibits a sensitivity of V −1

s ≈ 3.6·10−4 µm−3.

in a single parameter ξ. Hitherto, we normalize the overlap integral to the particle
volume and define the geometric factor

ξ =

ˆ
Vp

d3r/Vp α0(r)
∣∣Ē(r)

∣∣2 , (3.3)

where Ē(r) is the evanescent field, normalized to its maximum value, and α0 is
the zeroth order correction factor due to particle polarizability that was derived
in section 1.3. Here, we assume that the refractive index does not vary within
the particle volume, i.e., we consider some effective “dry” volume, as it is usually
done for simplification, when dealing with complex geometries such as proteins. To
obtain an analytical solution for ξ, we use the parametrized form of the evanescent

field of a TE/M00 mode, i.e.,
∣∣Ē(r)

∣∣2 = exp(−z/λr) · exp(−4 log (2)x2/σ2
FWHM), to

approximate the overlap integral. When the particle diameter is much smaller than
the latitudinal width σFWHM of the mode (i.e. R < 500 nm) one can omit the x-
dependence and obtains a simple expressions for ξ. For a vesicle with outer radius
Ra and an inner radius Ri we express the volume ration by δ = (Ri/Ra)

3 and obtain
the relation:

ξvesicle ≈
εex + 2εp

(5 + 4δ) εp

(
λr
Ra

)
e−Ra/λr sinh

(
Ra

λr

)
. (3.4)
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Concomitantly the overlap of a solid sphere with radius Ra is given by:

ξsphere ≈
εex

2εex + εp

3

2

(
λr
Ra

)2 (
1− λr/Ra + e−

2Ra
λr (1 + λr/Ra)

)
. (3.5)

Notably, the quantity Vp ξsphere grows with R3
a for Ra � λr and is proportional to

Ra for Ra � λr. This is in contradicts the relation published in reference [37],
where the overlap is found to be proportional to Ra exp(−2Ra/λr).

1 Moreover, it
is interesting to note that the curvature (e.g. described by the dependency on Ra)
was not taken into account by the authors of reference [43], which is reflected by
the straight trend line in Figure B.2 (cf. appendix B), i.e., when going to smaller
particle radii.

Using this geometric factor, the maximum frequency shift for a particle is easily
estimated using the relation

∆νmax = 1/2 ξ δε (Vp/Vs) ν0. (3.6)

Most of the data that are presented in this thesis were taken with a resonator with
major radius Rmajor = 32.72µm and minor radius Rminor = 3.85µm. We obtain the
mode intensity distribution from Comsol simulations and find that the evanescent
intensity distribution of the TM00 mode can be parametrized by a Gaussian with
full width half maximum of σFWHM = 1.44µm in latitudinal direction and by an
exponential decay ∼ exp (·/λr) with λr = 84 nm in radial direction. Then typical
values of ξ for a solid spheres in water with radii of Ra = 25 nm and Ra = 50 nm and
a refractive index of nSOPC = 1.46 are ξsphere = 0.24 and ξsphere = 0.18, respectively.
For a vesicle with the same properties and a wall thickness of 4 nm values of ξvesicle =
0.30 and ξvesicle = 0.21 are found. We note that the evanescent field of a frequency
split mode exhibits an intensity modulation along the azimuthal direction which is

modeled by the factor
∣∣Ē(r)

∣∣2
split
∝ 2 cos2 (y ·Mmode/Ra)×

∣∣Ē(r)
∣∣2
non−split

. The factor

×2 accounts for a peak evanescent intensity that is twice as large compared to the
one of the non-split mode. Likewise the maximum signal and thus the sensitivity of a
split mode is two times larger. However differences in the frequency shift distribution
arise from a changed intensity profile, which will be discussed in section 3.3.

3.2. Properties of lipid bilayers and lipid vesicles

In this section, a short overview on the properties of lipid bilayers and lipid vesicles
is given, to motivate both, the lipid membrane functionalization method and the use
of small unilamellar lipid vesicles as test bodies for the sensor. We provide examples
of biological processes and applications that disclose the abundance of things going
on on the length and time scale that is now accessible with our sensor.

The term lipid describes a vast class of biomolecules that is best characterized by
a symptomatic insolubility in water. At the root of this macroscopic behavior lies

1The authors introduce the decay length L which is approximately equal to λr/2.
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a common hydrocarbon chain that repels polar solvents. A particular important
category of lipids are phospholipids that consist of a polar head group, such as
choline, and two fatty acid tails.

Phospholipids are ubiquitous in nature and represent an integral component of
biomembranes. When suspended in water, due to their amphiphilic nature, they
spontaneously arrange in stable bilayer sheaths, with the polar heads pointing to-
wards the outside [114]. These lipid bilayers can form spheroidal superstructures
that were first reported by Alec Bangham in 1964 [115] and that were later termed
liposomes by Gerald Weissman [116], which are – by definition – artificially created
vesicles that consist of one or more lipid bilayers [117]. The more general expres-
sion “lipid vesicle” therefore includes liposomes and both term are used equivalently
here. Liposomes exist in different forms and sizes and they are accordingly referred
to as, e.g., small unilamellar vesicles (SUV) with a size inferior to 1µm and a shell
consisting of a single lipid bilayer. Other frequently used terms comprise large mul-
tilamellar vesicles (LMV) on the lower µm scale and giant uni- or multilamellar
vesicles (GUV and GMV) with diameters up to 200µm.

Lipid bilayers form the plasma membrane of a cell, together with embed-
ded membrane proteins and glycolipids. The cell membrane constitutes the barrier
that separates the cell from its environment and it is supported by the cytosceleton.
As such it is responsible for the regulation of cell transport, which can roughly be
divided into three pathways. (i) Small molecules, i.e. gas molecules in solution,
can diffuse through the cell wall. (ii) Secondly, membrane channels actively con-
trols the passage of specific ions and small molecules. The state of the channel
(open or closed) can hereby depend on a variety of parameters, i.e. the transmem-
brane electric potential or the presence of messenger molecules. (iii) Lastly, proteins,
hormones, and other mid-size molecules are transported via vesicle exo- and endocy-
tosis. Both are complex processes that involve a considerable number of membrane
proteins and that are of particular interest here, because they fall well within the
sensitivity range of our sensor.
Exocytosis describes a secretion process where molecules, such as neurotransmitters
(that are engulfed in innercellular liposomes) are released from the cell to the ex-
tra cellular environment. Briefly the vesicle is transported to its engagement site
(trafficking), e.g. along the axon towards the synaptic gap. There it loosely binds
(tethering) until a messenger initiates the docking process, followed by vesicle fusion
with the cell membrane, where the cargo is released [118]. The process involves a
variety of membrane proteins and is subject to ongoing research [119]. For example
different pathways of vesicle fusion have been observed [120], including a process
where the liposome fully merges with the membrane to be recycled elsewhere [121],
as opposed to an incomplete release, where a fusion pore opens and closes again
after partial release of the cargo (kiss-and-run). The reverse process, endocyto-
sis, involves the formation of a vesicle from the cell membrane, the uptake of the
target, and finally a cleaving process that detaches the newly created transporter
from its host. As an example, the former can be initiated by the polymerization
of clathrin, which attaches to and curves the membrane to form a negative of the
vesicle [122, 123]. However other mechanism of vesicle formation and retrieval have
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been reported and many details of the processes remain to be solved [120].

Next to their physiological role, the potential of liposomes as model membrane
systems was recognized right from their discovery [117, 114]. In many cases bi-
ological systems are enormously complex, and researchers turn towards artificial,
reduced systems with a limited number of constituents [124]. For example GUVs
can be aspired with a micropipette [125], a technique that allows to control and
measure membrane tension at the same time and, e.g., study phase transitions of
a lipid bilayer. Furthermore, starting from a single GUV, the interaction and func-
tioning of isolated molecules can be observed without interfering signals from other
physiological processes that one would encounter in vivo. Such a biomimetic system
was, for example, established by A. Roux et al. to study the polymerization and
hydration dynamics of dynamin and its role in vesicle fission [126, 127]. Small unil-
amellar vesicles were recently used to study the interaction of a single virus with a
lipid membrane [128].

In therapeutic applications liposomes are used as carrier vessels for drug delivery.
Hereby the pharmaceutic agent is enclosed in a unilamellar or multilamellar vesicle
before application [129]. Liposomal drug delivery holds several advantages compared
to the direct injection of the free drug [130]. First of all the agent is protected against
degradation and a circulation time of up to two days has been reported, holding the
potential of gradual drug release and avoiding high initial concentrations. Moreover,
the lipid material of the vesicle is a priori bio-compatible and does not run the
risk of triggering an immunoreaction. Lipoplexes and liposomes for non-viral gene
delivery have been extensively studied [131]. Finally, when specific targeting can be
achieved [132] using specially designed receptors, the total amount of the drug can
be drastically reduced, avoiding side effects and leading to a diminishment of the
overall stress on the immunosystem.

For the totality of these reasons, there is plentiful scientific and medical interest in
lipid vesicle as drug carriers. In the following we will show that we are able to observe
single lipid vesicles with a time resolution in the µs-regime, which is sufficient to
resolve the adsorption and spreading dynamics of distinct vesicles. Such sensitivity
opens up a broad range of applications and experiments that belong to the class of
processes described above.

3.2.1. Preparation of lipid vesicles

A variety of different methods to prepare lipid vesicles has been reported, for exam-
ple fast immersion of lipid emulsion in ethanol or sonication of large multilamellar
vesicles that are formed by simple hydration of a lipid film. Giant unilamellar vesi-
cles with diameters exceeding 100µm are efficiently prepared using electroformation
on platinum electrodes [133, 134] or on ITO (indium tin oxide) coated coverslips
[91]. Here we focus on the extrusion method, where the lipid is hydrated, and the
emulsion is forced through a polycarbonate membrane, whose pore diameter deter-
mines the final size of the vesicles. In particular we use the Avanti Mini-Extruder,
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Figure 3.2.: Extrusion of lipid vesicles using the Avanti Mini-Extruder. (a)
A lipid emulsion is forced through a polycarbonate membrane with pore size ∼ 100 nm.
The picture on the left shows a teflon support with an O-ring. The polycarbonate
membrane is placed on the O-ring (right picture) and clamped with a second teflon
support. The membrane is wetted during installation, and care is taken to avoid air
bubbles. (b) The assembly is mounted and strained in a stainless steel housing. Two
gastight syringes (1 ml, Hamilton) are inserted to the channels on either side. The
emulsion is then inserted on one side and pushed through the membrane into the
second syringe. For a 100 nm pore size and a 1 mg/ml SOPC emulsion, an initial
force of ∼ 50N is required to sustain a flow of ∼ 10µl/s. (c) With each extruding
cycle, the originally dull emulsion clears up. In the photo series, the imprint on the
backside of the syringe becomes more and more visible. Typically 11 − 15 cycles are
performed. (d) A cryo electron micrograph of extruded lipid vesicles from reference
[137]. The bilayer structure of the lipid membrane manifests in the contrast of the
vesicle walls.

shown in Figure 3.2 (b), which allows us to produce lipid vesicles of determinis-
tic size, with a relatively narrow size size distribution [114, 135, 136]. Moreover,
the process does not require expensive equipment and can readily be adopted in a
physics laboratory. In the following paragraph we will give a detailed description
of the vesicle preparation process that addresses anyone who aims at repeating the
process.

Protocol: Lipid vesicle preparation

The phospholipid 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholinein (SOPC, Avanti
Polar Lipids) is dissolved in chloroform to yield a concentration of 20 mg/ml and
is stored at −20◦C. Glass vials with a volume of four milliliter and matching lids
with PTFE fittings are cleaned using a mixture of 65 parts of chloroform, 25 parts
of methanol, and 1 part water. The ingredients of the cleaning solution are mixed
and filled into the vials and lids. After ∼ 4 min the solution is disposed and the
cleaning cycle is repeated one or two more times. Stirring, shaking, or wiping is not
necessary.
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Portions of 100µl (or 2 mg) of the lipid solution are allotted to the vials. Then the
chloroform is carefully evaporated in a weak nitrogen flow. To this end, we hold the
vial in an almost horizontal position and gently blow nitrogen gas in the opening (at
an angle) using an air gun, while slowly turning the vial. Ideally, after drying, the
walls of the vial are covered to a great extend with lipid. It is noteworthy that the
air gun is connected to an expansion bottle that prevents sharp blows of nitrogen gas
and helps filtering particles that might arrive from the gas bottle. Finally, the vials
with the dried lipid and the lids are placed in a desiccator over night at ∼ 1 mbar.
Afterward, the vials are tightly closed and sealed with Parafilm. They are stored at
−20◦C.

To prepare the lipids for extrusion, they are thawed and hydrated with de-gassed,
high grade water to a concentration of 1 mg/ml (cf. section 2.1.2). The emulsion
is then mixed using a vortex shaker. For the the preparation of SUVs with a size
smaller than 100 nm, several freeze-thaw cycles are applied before extrusion. Prior
to their use, all extruder parts and syringes are disassembled and cleaned in a 20%
ethanol solution, then rinsed in pure water and finally dried. We assemble the Avanti
Mini-Extruder according to the manual and install a polycarbonate membrane with
a pore size of either 200 nm, 100 nm, or 50 nm. Figure 3.2 (a) shows how the poly-
carbonate membrane is installed on the teflon spacer of the extruder. We remove
any air bubbles from the extruder by pushing pure water back and forth through
the membrane, before loading one syringe with the lipid solution. The emulsion is
passed through the membrane at least eleven times. Figure 3.2 (c) shows how the
originally diffuse color of the lipid emulsion clears up when the vesicles approach a
mono-disperse size distribution. In subfigure (d) a micrograph of extruded vesicles is
shown. For the preparation of 50 nm vesicles we apply three freeze and thaw cycles
to the lipid emulsion and extrude the mixture using a 200 nm pore size, before mov-
ing to the 50 nm polycarbonate membrane. In addition, we gently heat the metal
block of the extruder to ∼ 40◦C to ensure that the lipid is in its liquid phase.2

3.3. Single lipid vesicle measurements

We prepare small unilamellar vesicles (SUVs), according to the protocol described
in the previous section.3 Here, we use polycarbonate membranes with pore size
radii of 50 nm and 25 nm. After extrusion, we take the 1 ml Hamilton syringe (the
one that contains the vesicles) from the extruder and exchange the short needle
that connects to the teflon fittings against a long (∼ 100 mm ) one. Approximately
100µl of the solution are disposed, such that the needle is filled with vesicle solution,
and the syringe is introduced into the injection site of the fluidic system, such that
the needle is co-linear with the PTFE tubing leading to the FCD. The syringe is

2An excellent review dealing with the different phases of lipid bilayers in found in reference [138].
3To promote vesicle adsorption, the resonator surface is rendered hydrophilic using an SC− 1

cleaning solution (1 : 1 : 5 mixture of ammonia, 30% H2O2, and DI water at 70◦C during 10
minutes).



50 3. Measuring the adsorption of single lipid vesicles

placed on the optical table and left for thermalization for a couple of minutes, while
a steady water flow of 8 ml/ h is maintained. We observed that a constant water or
buffer flow is crucial for temperature, and thus frequency stability. In the absence
of flow, the resonance frequency displays fluctuations, which are most likely due to
temperature drift and convection resulting from local heating. These fluctuations are
even more pronounced, when the analyte is directly injected in the coupling chamber
and concentration gradients lead to additional convection. Therefore, measurements
with highest precision require a constant flow and mixing prior to the measurement
site.

On the other hand, there exists a tradeoff; when the flow in the FCD is too ele-
vated, which is in our case > 20 ml/ h, adsorption events seem to be perturbed and
occur less frequent, or are completely suppressed. Such behavior can be explained
when the drift velocity of the particle is too high and short range adhesion forces
cannot capture the particle anymore (i.e., the depletion length becomes shorter).
For comparison, a total flow of 10 ml/ h corresponds to an average flow velocity
of ∼ 150µm/ s inside the coupling chamber, such that the vesicle passes through
the evanescent field within a few ms. An exact calculation of local flow and forces
would require a complex simulation of the coupling chamber with the sample and the
toroids inside. A simple dimensional analysis suggests, however, that the Reynolds
number is of the order unity, and assuming a laminar flow close to the chip sur-
face (,which is not disturbed by the microtoroids), we estimate a flow velocity of
∼ 20µm/ s in the region of the resonator.

When the syringe has thermalized, we (manually) inject ∼ 30µl of vesicle solution
with ∼ 10µl/ s and immediately start recording. During injection the resonance
frequency reversibly shifts by a few 10 MHz, due to increased flow, but equilibrium
is reestablished a few 10 s later. The vesicles now pass through the PTFE tubing,
whose length and diameter have been chosen to ensure complete mixing of the
analyte with the water carrier, merely by diffusion. Around 700 s after injection, we
observe events as discontinuous jumps of the signal (cf. Figure 3.3 (b) ).

A short video clip [139] shows the PDH error signal, while the laser is scanning
over the WGM resonance (i.e. the blue detuned sideband). Discrete steps signal
adsorption events of single particles. The footage was taken in the course of an
aborted 50 nm vesicle measurement, where the analyte was contaminated, probably
due to a failed extrusion process. Occasional frequency jumps of a few 10 MHz would
throw the laser out of lock, but besides these unwanted signals, a number of smaller
events can be observed in the video that fall into the frequency range expected for
50 nm vesicles.

A typical trace with raw data is shown in Figure 3.3 (b). The delay between injection
and the appearance of the first event is reproducibly found in all measurements
and constitutes a good indicator that the signals indeed stem from the analyte.
Recording is stopped, when the event occurrence rate fades. To analyze the data,
we scan manually through the raw recordings and identify discontinuities in the
frequency trace. With the limited number of events a visual judgment is more
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Figure 3.3.: Spreading of lipid vesicles: a schematic view. (c) An SEM image
of the microresonator, covered with an image overlay that represents the evanescent
intensity on the sensor surface and in radial direction. Notably, the intensity distribu-
tion corresponds to a split mode (cf. section 3.4), which manifests as intensity nodes.
The magnification illustrates, at scale, how a 50 nm vesicle approaches the surface.
The coloring represents the the field intensity on the particle surface. (a) A schematic
view of a lipid vesicle adsorbing and spreading on a surface. The spreading itself
depends strongly on the surface adhesion forces and on interaction with other vesicles
(e.g. crowding). (b) A typical trace of raw data, as it appears on the oscilloscope,
when single particles attach to the toroid surface.

efficient than automatic treatment of the data. Each of the events is fitted with
a Sigmoid function plus a linear background to extract the exact event time and
the step height. The fit parameters are plotted in Figure 3.4 (a) and (b) for the
50 nm and 25 nm vesicles. In the two measurements 172 and 165 distinct events were
identified, respectively. The time intervals between the events are on the order of a
few seconds and depend on the local vesicle concentration, the particle size, and the
flow velocity in a complex fashion. Indeed, the initial vesicle concentration and the
amount of analyte that are necessary to observe a decent number of events, that are
yet well separated in time, were determined experimentally.

Number of recorded events

From the total number of events we can estimate the detection efficiency of the sen-
sor. Starting from the Stokes-Einstein equation, we calculate a diffusion coefficient
of D ≈ 4µm2/ s for a 50 nm vesicle. The circumference of the toroid is ∼ 200µm,
such that we can estimate an interaction length of ∼ 100µm for a split mode, which
corresponds – using the previously calculated average flow velocity – to an average
interaction time of tint = 5 s. Following the line of reasoning in reference [85], we
obtain a depletion depth of

√
D · tint ≈ 5µm. Together with the latitudinal width of

the mode profile, we obtain a capture cross section of ∼ 10µm2 and, in combination
with the reduced flow at the resonator, the capture probability of a 50 nm vesicle
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passing through the coupling chamber is ∼ 9 · 10−8.
On the other hand we can estimate the total number of vesicles that were injected,
starting from the initial lipid concentration of 1 mg/ml and the vesicle volume, which
yields some 2 · 1011 particles. Together with the capture probability this results in
an expected number of 27, 000 events; nearly 200× more than we actually observed.
This deviation can be explained, if we assume that the majority of the vesicles is
already lost on their way to the resonator and that the vesicle concentration at the
detection site is much smaller than the initial vesicle concentration. Especially on
their way through the PTFE tubing, the vesicles experience a large surface area,
compared to the actual volume of the tube. Again, we can estimate this influence.
The average flow inside the tube is 4.4 mm/ s, and the depletion length over the
course of one mm is approximately 1µm. Making the rough assumption that all
vesicles that come into contact with the wall will stick, and using the tube radius of
400µm, we find that only 0.7% of the SUV pass the tubing, and that ∼ 190 events
should be observed at the sensor.

This number comes of course with a large error, and the resemblance with the actu-
ally measured event numbers is mere coincidence. So far we have not considered that
some lipid material will already be lost in the extrusion process (which decreases the
initial concentration), and neither we have taken into account that the interaction
with the side wall does not always lead to a particle adsorption and material loss.
However, the correct order of magnitude suggests, that the dominant processes of
the vesicle interaction have been identified and that the estimate of the depletion
length and interaction time probably falls into the correct order of magnitude.
It is important to note that no adsorption events are observed for the same initial
concentration when a silicone tube is installed before the FCD instead of a PTFE
tube. It is possible that the adhesion between the siloxane groups and the lipid is
stronger than for PTFE, such that the vesicle concentration at the flow cell drops
below any detectable level. The detection probability for a single particle can be
increased by reducing the dimension (i.e. the cross section) of the coupling chamber
and by reducing the flow velocity.

Statistical analysis

It is important to emphasize that – for the first time using a cavity enhanced RI
sensor – a few hundred events per distinct measurement run were recorded.4 Such
large number of individual adsorption events enables us to extract meaningful sta-
tistical information from the data. To this end, we plot the jump size histograms for
the 50 nm and 25 nm vesicles in Figure 3.4 (c) and (d) and compare the measured
distribution to a theoretical model.

4In reference [43], for example, less than one event per measurement was recorded for the smallest
particle. For larger particles 2−3 “identifiable binding events were observed” per measurement
run. The data in reference [37] suggests that up to 35 events in a single measurement were
recorded for polystyrene beads with a radius of 250 nm, which is however much larger (both in
contrast and size) than the lipid vesicle observed here.



3.3 Single lipid vesicle measurements 53

SOPC vesicles 1  (172 events)

0

10

20

30

40

ev
en

ts
 / 

15
0k

H
z

-2 -1 0
frequency [MHz]

data

0

5

10

15

20

25

30 detach eventsdata

SOPC vesicles 2   (165 events)

-1 0
frequency [MHz]

ev
en

ts
 / 

50
kH

z
2 events
(-1.4MHz
-1.6MHz)

0.2 0.4 0.6-0.8 -0.2-0.4-0.6-1.2

c d

a b

600 800 1000 1200 1400 1600 1800
time after injection [s]time after injection [s]

0.5
0.0

-0.5
-1.0

1.0

-1.5
-2.0
-2.5

0.5
0.0

-0.5
-1.0
-1.5
-2.0

600 800 1000 1200 1400 1600fr
eq

ue
nc

y 
[M

H
z]

fr
eq

ue
nc

y 
[M

H
z]

simulation:
R=50±10 nm 

simulation:
R=25±7 nm 

detection 
probability

detection 
probability

100% 100%

Figure 3.4.: Lipid vesicle statistics. (a,b) Frequency steps from vesicle adsorption
events are plotted as a function of the measurement time. Here t = 0 corresponds to
the time when the vesicle solution was injected into the teflon tube leading to the FCD.
For measurement 1 (a), vesicles were prepared by extrusion, using a membrane with
100 nm pore size. In the second measurement (b) a pore size of 50 nm was used. (c,d)
The size distribution of the events depicted in (a,b). The solid curves represent the
theoretical distribution of frequency shifts for sticking, spherical vesicles that follow
a log-normal size distribution. The diameter of the vesicles is centered on the pore
size of the extrusion membrane and the standard deviation is chosen to fit the data.
Here the detection limit is reflected by a cutoff function, which is centered around
∼ 380 kHz and ∼ 190 kHz, respectively. Besides the standard deviation of the radius
and the cutoff function no free parameters appear.

For point-like, monodisperse particles that randomly sample the evanescent field
(i.e., the binding is not influenced by the local electric field), the jump size histogram
reflects the intensity profile of the evanescent field. In a realistic scenario, the lipid
vesicles are not monodisperse and exhibit a size distribution, which can, for example,
be measured by light scattering. In literature the “mean radius” distribution of
extruded vesicles is found to follow a log-normal function, centered on the pore size
of the polycarbonate membrane used in the extrusion process [136, 135]. Referring to
the “mean radius” is owed to the situation that lipid vesicles are not always spherical
and they have been reported to take on a prolate or oblate shape in isotonic media
[136]. In our experiment, we work in a hypotonic environment and the vesicles are
therefore expected to swell to a spherical shape.

The recorded histograms in Figure 3.4 (c) and (d) represent the convolution of the
vesicle size distribution with the mode intensity profile, and additionally, involve
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the overlap integral between the evanescent field and the particle geometry. The
numerical access to the analytical description of this problem is not straight forward,
such that we chose to simulate the expected jump size distribution for different sets of
parameters. To this end, we start from the parametrized expression of the evanescent
field (cf. Equation A.14) and numerically calculate the overlap with the particle. We
differentiate between a split mode, i.e., with intensity maxima along the equator, and
a non-split mode. Moreover, we investigate two modes of interaction: (i) a spherical
vesicle sticking to the surface, and (ii) a spread out vesicle, forming a unilamellar,
circular “pancake” with twice the radius of the original vesicle (i.e., having the same
volume). We do not model any deformation of the vesicle when it attaches to the
surface of the toroid, as we already discussed their expected rigidity, and considering
that the presumably subtle effect would be difficult to resolve anyway.

On the other hand, the difference between a split and a non-split mode can be re-
solved with great detail. Not only is the maximum evanescent intensity of a split
mode two times large (cf. section 3.1), but also the changed geometry – namely
the modulation of the intensity along the equator – has a strong influence on the
expected jump size distribution. The flat top of a Gaussian profile (, which domi-
nates the geometry of a non-split mode) leads to a local maximum in the histogram
around the position of the maximum signal. In contrast, the profile of a split mode
is governed by field gradients of both, the Gaussian in latitudinal direction and the
cos2 modulation in equatorial direction, and the expected jump size distribution is
therefore marked by an exponential drop (with a step-like cutoff corresponding to the
maximum signal). In our case the measured distributions in Figure 3.4 can clearly
be attributed to a split mode that is “smeared out” by the finite size distribution of
the vesicles.5

We use the computer algebra program Mathematica to simulate ≥ 100, 000 events
for each parameter set, consisting of the mode profile (split or non-split), the kind
of interaction (spreading or sticking), and a variance of the vesicle radius. Justified
by the good initial fit, we leave the mean of the radius distribution locked to the
radius of the pore of the extrusion membrane (i.e., 50 nm and 25 nm). For each
simulated event, we generate a random radius and a random position and integrate
(numerically) the overlap with the evanescent field. Finally, we apply a low frequency
cutoff to the data set that reflects the detection probability due to noise, and that
we approximate by an error function to suppress event below a certain size.
In Figure 3.4 (c) and (d) we plot only the simulated curves that represent the best fits
to the data, and we find size distributions characterized by log-normal functions with
50±10 nm and 25±7 nm for the 50 nm and 25 nm vesicles, respectively. Notably the
relative deviation of the radius is larger for the 25 nm vesicles, which is reflected by
the rather concave shape of the distribution when dropping towards higher frequency.

The cutoff function, which is indicated by the dashed curve in Figure 3.4, was indi-
vidually adjusted for the two measurements and represents the average sensitivity

5Indeed, a split mode was used for the measurement, such that the finding rather confirms the
model instead of providing new insight.
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during the measurement. For the 50 nm vesicle measurement, the cutoff is cen-
tered at 380 kHz, while for the 25 nm vesicle measurement the frequency resolution
is 190 kHz. In both cases the standard deviation of the corresponding Gaussian
is ∼ 100 kHz, which reflects varying background noise. The different center posi-
tion (and thus different sensitivity) derives from the fact that, in the first case, we
recorded the beat with the stabilized reference laser in parallel, which increased the
overall difficulty of the experiment, and therefore some frequency resolution was
sacrificed at the benefit of an increased overall stability.

In principle the cutoff function also reflects the judgment of the author, who identi-
fied the binding events in a rather conservative manner. Typically a signal to noise
ratio of 3 − 5 was required for an event to pass the visual threshold and enter the
statistics. Defining a mathematical criterion for an event is very difficult, because the
signal fluctuations and noise before and after the event need to enter, which results
in a considerable number of parameters for time intervals and weights. Eventually
such model would amount to the attempt to cast the visual judgment into some
formula, and we belief that the reverse way, to simply measure the judgment with
a cutoff function, is less obscure.

Time-resolved single lipid vesicles

In this paragraph we focus on distinct vesicle adsorption events, and we show that
additional knowledge about the interaction (, which cannot be accessed by ensemble
measurements) is gained from the analysis on a single particle level. In fact the
statistical analysis of the frequency steps yields only a one-dimensional information
on the average of the interacting vesicles, and there exist arguably better methods
to measure the radius distribution of extruded vesicles. The power and the richness
of our sensor is revealed, when we analyze time-resolved features of the interaction.
Here – for the first time – we extract information from a single particle adsorption
event that goes beyond the mere frequency step.

In Figures 3.5 and 3.6 we highlight a number of frequency jumps at a time resolution
of 100µs to give an impression of the fidelity of the measurement. We emphasize that
all data shown here are raw data that did not undergo filtering. This is all the more
important, as filters, in the best case, sacrifice time resolution at the benefit of an
improved signal to noise ratio (SNR) and, in other cases, especially when non-linear
filters such as median or percentile filters are used, even pronounce step-like features
in the signal, which can lead to misinterpretation of the data. Moreover, we choose
to plot a larger number of single particle frequency steps (instead of selecting and
showing only a few) to demonstrate that we do not need to rely on cherry-picking.

Figure 3.5 (c) shows the smallest identifiable events for 25 nm vesicles, with an
amplitude of ∼ 200 kHz, which represents, to the best of our knowledge, record
sensitivity and record time resolution in dispersive particle sensing. For a 25 nm
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Figure 3.5.: Typical lipid vesicle adsorption events. (a) Frequency steps re-
sulting from the adsorption of single 50 nm vesicle were recorded with high frequency
resolution. Hereby, a step is associated with a vesicle that enters the evanescent field of
the optical mode and is then immobilized on the surface, due to short range adhesion
forces. (b) Frequently, the jump of the resonance frequency is preceded by a dip, as if
the particle were to probe the field without adhering. Considering that a split mode
was used for sensing, one can hypothesize that the trajectory of the particle crosses
an intensity maximum before attaching in the neighboring one. These dips were also
observed by other groups, who referred to them as “probing events”. However they
were never resolved at a ms time scale. (c) In this panel we show the smallest events
that we could unambiguously resolve and which result from 25 nm vesicle adsorption
events (note that the scale is stretched by a factor ×2). Interestingly we observe de-
tach events – where the frequency step goes towards larger frequency – for some of
the small vesicles. This might be owed to the higher rigidity and reduced contact area
of smaller vesicles.

vesicle that attaches at the equator, we calculate a signal to noise ratio (SNR) of 8
on a 1 ms time frame. Furthermore, these events give an impression of the authors
visual judgment criteria that were subject to the concluding remarks of the previous
subsection. We could certainly find smaller frequency steps in the trace, but this
would at the same time raise the false-positive error rate, which we tried to minimize
here. Also the net gain of information from an event with a SNR ∼ 2 is limited to
the expansion of the step size histogram to smaller frequency. On the other hand,
an event with a SNR of 10 provides information that go beyond the mere frequency
shift, because we are able to resolve sub-features and details.

Indeed, the high time resolution permits us to identify the fast dynamics of the
events. Figure 3.5 (b) shows a selection of frequency jumps that are preceded by
a dip-like feature up to 20 ms before adsorption. We have seen before in Figure
3.4 that the average time delay between distinct events is on the order of seconds,
and we can therefore conclude that the dip, and the adsorption shortly after, stem
from the same particle. In fact, such dips have been observed by other groups,
who referred to them as probing events, which appeals to the notion that the par-
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Figure 3.6.: Lipid vesicles manifesting a characteristic double step. For
∼ 15% of the 50 nm vesicles we observe characteristic double steps as they are show in
the panels (a) and (b). Typically, the average time between two adsorption events in
on the order of a few seconds, such that we can assign the double step event to a single
particle. We believe that > 30% of the vesicles show this behavior, taking the smaller
steps into account, where the second jump could not be observed, if it were there.
One plausible explanation for the double stepping is the spreading of lipid vesicles,
where the adsorbed vesicle bursts open and forms a lipid patch on the surface. As
the overlap with the evanescent field increases during spreading, a frequency jump is
expected. Vesicle spreading is regularly observed on silica surfaces and is even used
to form supported bilayers.

ticle probes the evanescent field and leaves again before it finally attaches. Unlike
the short frequency dips observed here, these probing events occurred on a longer
timescale and manifested as frequency fluctuations rather than a dip.
In section 3.5 we discuss data from polystyrene beads, where we also observed fluc-
tuations that take place also during one second before final adsorption. Moreover,
we can find evidence that the frequency fluctuation derive from the movement of an
optically trapped bead in the evanescent field.

Here, the situation is less clear, because we observe only a single dip on a ms time
scale, and the optical force is orders of magnitude too weak to lead to optical trapping
(i.e., locking to a sideband). Frequency dips that do not lead to adsorption are also
observed, but significantly less often, which brings up the question, why a probing
event with high probability leads to absorption. Here, we come up with a hand
waving geometric reasoning and imagine that the particle is caught in a laminar
flow, diffusing around its trajectory. The toroid will most likely be approached from
the front, and a particle that has gotten close enough to probe the evanescent field
is very likely to be pushed against the surface and escape seems unlikely.

A second class of events, shown in Figure 3.6 is characterized by a distinctive double-
step, where the adsorption is followed by a second (usually) smaller event up to
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Figure 3.7.: Double step statistics. (a) For 31 of 172 adsorption events we could
observe a double step feature and record the delay between the first and second step.
The delay distribution shows an exponential-like drop with a decay time of ∼ 2 ms.
The effect could be attributed to thermally activated spreading. However, a number
of vesicles manifests a longer life time of up to 15 ms, with some bunching around
7 − 8 ms. This finding suggests that there exists either a precondition of the vesicle
or a certain way of adsorption that renders the adsorbed vesicle more stable. (b) We
calculate the ratio between the first step and the second step in the idealized situation
that the adsorbed vesicle describes first a perfect sphere and then spreads out at the
same position to form a circular patch of uniform thickness. Sampling the toroid
surface, and thus the field distribution, yields a region of possible and thus permitted
ratios, which are plotted here as a function of the height of the first step. In reality
the borders of this region are very likely blurred out. Still the calculation shows that
the observed ratios are of the order that the calculation predicts and, moreover, we
learn that events where the second step is larger than the first one are allowed. An
example for such an event is shown in figure 3.6 (a).

20 ms later. This behavior can be interpreted as a vesicle attaching to the surface,
followed by rupture and spreading shortly after [140, 141, 142], which is schematically
depicted in Figure 3.3 (a). Lipid vesicle spreading on hydrophilic surfaces is in fact a
commonly observed effect, which is taken advantage of for the formation of artificial
supported lipid bilayers. Indeed, the fusion process does not depend on activation by
protein, but the basic mechanism is mediated by lipid-lipid interaction [143]. When
liposomes attach to a surface, the adhesion force depends mainly on the charge of
the surface and the lipid head groups. In literature different mechanisms of vesicle
fusion on a silica surface are discussed [144]. If the surface adhesion force and the
corresponding deformation of the vesicle induce sufficient stress on the vesicle, it
can rupture by itself (or rather by thermal activation). On the other hand, if the
initial stress is insufficient, additional forces that are exerted by neighboring attached
vesicles (i.e., vesicle crowding) can initiate spreading. Once an incomplete lipid film
has formed on the surface, the membrane edges (, which are unfavorable from an
energetic point of view) can fuse with sticking vesicles and thus cause rupture.

We plot the distribution of the time delay between double-step in Figure 3.7 (a),
and find indications for two pathways of vesicle spreading. On the one hand there
is a fraction of vesicles that displays fast spreading, with a life time that decays
exponentially over 2 ms. On the other hand, there appears to be a fraction of long
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Figure 3.8.: The average of selected frequency step events. The left panel
shows the overlay of 22 adsorption events, with the average curve shown in the fore-
ground. The right hand side of the graphic magnifies a 10 ms frame around the actual
step. The noise level is dramatically reduced to ∼ 10 kHz, resulting in a signal to noise
ratio of 100. Here averaging is possible, because the step events are well defined in
time and they can be phase locked to half of their step height. However, other details
of the interaction, such as the double steps are lost, because of their non-coherent
nature. For better comparison with literature, we added a wavelength scale bar.

lived vesicles. Following our hypothesis of spreading vesicles, it seems likely that
first group displays thermally activated spreading, while vesicles of the latter group
spread after interaction with already deposited lipid material. The notion of sticking,
long-lived SUV is also supported by the observation of detaching events shown in
Figures 3.4 and 3.5 (c).

We challenge our hypothesis and calculate the range of permitted step size ratios. To
this end, the frequency shift for a 50 nm spherical vesicle sticking to the surface, and
for a circular “pancake” at the same position, are computed numerically (cf. also
appendix A.2) and their ratio is calculated. Using this position dependent relation
we map the surface of the toroid onto a region of permitted frequency steps in Figure
3.7 (b). We find that the predicted ratios agree well with the plotted events in Figure
3.6. Interestingly, we also confirm that (for a split mode) there exist positions on the
toroid surface where the first step resulting from the attaching particle is expected
to be smaller than the second step from the spreading. In reality the borders the
plot in Figure 3.7 (b) will not be sharp, but rather blurry, because our idealized
and simplified model takes neither a radius size distribution of the vesicles, nor a
non-circular lipid patch after spreading into account.

Out of curiosity we superpose 22 events with respect to the “center” of the frequency
jump and plot the average curve together the original traces in Figure 3.8. The
background noise is drastically reduced, which goes, however, along with the loss
of any additional information and feature. Such averaging could only be used to
improve the SNR of events that are reproducible.

With the demonstration of high temporal resolution, we have opened a promising
road to pursuit in cavity enhanced RI sensing. Already in this section on single par-
ticle data analysis, the temporal resolution of the events adds a couple of pages to
the discussion, and new questions are raised that cannot be addressed with conven-
tional ensemble measurement techniques. We believe that high time resolution, in
combination with high sensitivity on the low-contrast nm scale, is likely to become
a unique feature of high-Q cavity based sensors.
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Figure 3.9.: Change of the frequency splitting in response to lipid vesicle
adsorption. (a) The frequency splitting, i.e., the frequency spacing between a pair
of split resonances, was monitored after Rmajor = 50 nm vesicles were added (at t =
−100 s). When the vesicles arrive at the sensor, the splitting starts to fluctuate and
decreases. Eventually the resonances merge, and when the splitting reaches the width
of the resonances (here ∼ 5 MHz), tracking is not possible anymore. Importantly,
we did not observe any degradation of the optical Q and broadening of the linewidth
while the splitting changed, which is in stark contrast to the observations by Zhu et al.
. (b) A magnified view of a portion of the trace in panel (a) shows the frequency shift
contributions from the high and low frequency resonances, as well as the difference
signal. Frequency step events are observed in either trace. Interestingly the signal
to noise ration is similar for all curves, and the effect of common noise cancellation,
which is expected for the difference (split) signal, does not appears.

3.4. Frequency splitting

Frequency splitting in WGM resonators appears when frequency degenerate clock-
wise and counterclockwise modes strongly couple, and normal mode splitting occurs
[145]. The coupling is induced by surface backscattering, which is frequently en-
countered with high-Q resonators in water. A pair of split resonances is shown in
Figure 2.6. The normal modes form a standing wave inside the resonator (cf. Figure
3.3 (c) ), and it has been suggested that monitoring the mode splitting instead of the
resonance position, leads to an improvement of the signal to noise ratio. Moreover,
Zhu et al. recorded the splitting and the linewidth broadening of the resonance in
response to the adsorption of single polystyrene beads [44]. As both properties, the
frequency splitting and the line width, depend differently on the scattering strength,
their combination yields information on the particle size, independent of its position
on the resonator and the local field strength.

The technique keeps the intriguing promise that the clockwise and anticlockwise
modes experience common resonator noise and common frequency drift. Such com-
mon noise is canceled when the frequencies of the modes are recorded relative to
each other. Only fast, thermal RI fluctuations, usually faster than 1 MHz, on a
length scale of the wavelength and shorter, will affect the normal modes differently.
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In our experiment we implement the split resonance scheme, to compare its perfor-
mance with the results obtained via the PDH method. To this end, we continuously
scan the diode laser over a pair of split resonances and fit the minima with 3rd order
polynomials to calculate the position of the minimum. We chose a laser scanning
frequency of 10 Hz to take advantage of the stroboscopic effect that eliminates promi-
nent laser noise peaks at multiples of 50 Hz. Figure 3.9 (a) shows the evolution of
the frequency splitting over the course of an SUV measurement. Before the arrival
of the analyte, the frequency splitting remains relatively constant at 40 ± 1 MHz
during 8 min, and the drift of the laser and the resonator is effectively eliminated.
When the vesicles arrive at the sensor, the frequency splitting displays strong fluc-
tuations over a gradual decrease and finally disappears. In contrast to the results
reported by Zhu and co-workers, the linewidth of the resonances did not change in
our case [44]. When the splitting approached 5 MHz, approximately matching the
resonance linewidth, the frequency difference could not be resolved any longer, and
we switched to the PDH technique. Then, single adsorption events could be clearly
resolved.

In Figure 3.9 (b) we highlight a characteristic portion of the trace and plot the
contributions from the two resonances individually. We notice that events (steps)
are contained in both, the high and low frequency signal. Moreover, the difference
signal (splitting) does not lead to any improvement of the signal to noise ratio. This
is rather surprising and might be owed to the scanning speed and laser frequency
noise.

We summarize this section with a critical review of the advantages and disadvan-
tages of the method. In our experiments, we could not observe an improvement of
the signal to noise ratio in the split signal. An improved optical setup that allows
locking of two lasers or locking of a sideband could solve this issue.
On the other hand, we experienced an important drawback. When the frequency
splitting is recorded the effect that leads to the reduction of the splitting interferes
with the dispersive frequency shift and renders the method non-quantitative. More-
over the disappearance of the splitting can limit the total number of observable
events in a measurement. Indeed, we were still able to record events in the PDH
correction signal after the splitting had vanished.
We hypothesize that the fluctuations in the splitting are due to the varying scatter-
ing properties of the deposited material. It is likely that adsorbed vesicles will drift
over the surface and that lipid patches resulting from spread vesicles will flow and
reorganize. The splitting eventually decreases and disappears when surface impu-
rities are covered with lipid and the RI contrast is washed out, or when too many
randomly distributed scattering centers interfere.

3.5. Polystyrene beads

Among the first single particle measurements that we performed using the reactive
sensor, were the recordings of single polystyrene beads with a radius of 50 nm. The
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refractive index of polystyrene at 532 nm is nps = 1.5986 , which gives a contrast
that is more that twice as high compared to lipids. The frequency resolution of
these early measurements was nearly a factor ten lower than the resolution that
we achieved for the later measurements, because the laser was locked to the main
resonance instead of the sideband, such that amplitude fluctuations translated into
frequency noise via the thermo-refractive coupling mechanism. In addition the fine
tuning of the electronic setup and the introduction of our Falco Systems low noise
amplifier lead to considerable noise reduction (cf. appendix C). Nevertheless the
results obtained with the PS beads exhibit some interesting features.

Figure 3.10 shows two events where a single polystyrene bead interacts with the field
of the cavity and finally adsorbs. Interestingly we do not observe a singular step of
the resonance frequency, as it is the case for the lipid vesicles that are immediately
immobilized on the surface. Instead the interaction displays fast jitter that can be
interpreted as an on-off switching behavior and that prevails for approximately one
second until the frequency is “caught” in the down-state. A similar behavior can be
seen in the traces of references [37] and [43] who detected polystyrene beads as well.
We will later identify this behavior as optical trapping of the particles in the evanes-
cent field of the resonator. Before, we show that the measured absolute frequency
shift is congruent with our modified theory.

We work with a toroid that has a major diameter of about 90µm, which corresponds
to a sensitivity figure of V −1

s ≈ 3.2 · 10−4 µm−3. From the size of the bead and its
refractive index, we calculate a geometric factor (cf. Section 3.1) of ξ = 0.166. The
maximum expected frequency shift is then given as

∆νmax = 0.166 ·
n2
ps − n2

water

2

4π

3

(50 nm)3

Vs
ν0 ≈ 5.7 MHz.

The maximum theoretical shift is consistent with the experimental findings an thus
confirms the polarization correction factor that was introduced in section 1.3. In
a second measurement we reduce the input power by a factor ÷4 and the nature
of the interaction changes. A typical event is depicted in the lower panel of Figure
3.11. Again the presence of the particle is signaled by frequency fluctuations, which
terminate however in the off state, indicating the absence of the particle. We at-
tribute these events to particles that pass through the evanescent field, but do not
adsorb on the surface.

The power dependence of the behavior supports the notion that the particles are
optically trapped [39]. For further verification we calculate the trapping potential,
starting from the expression that relates the relative frequency shift to the relative
change of electrostatic energy. Then we replace the mode energy by the circulating
power multiplied with the cavity photon lifetime.

δU =
δν

ν
Umode =

δν

ν0

Pin

2πνFWHM

(3.7)

We note that the trapping potential depends on the input power, unlike the fre-
quency shift induced by a particle. Thus the frequency shift of the passing bead
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Figure 3.10.: Optical trapping of polystyrene (PS) beads. Both panels: a
PS bead enters the evanescent field of the resonator, which leads to a characteristic
step in the frequency detuning. We evaluate the depth of the optical potential for an
optical mode with Q ≈ 4 · 107 and for an input power of ∼ 20µW and compare it to
the thermal energy. Here the dispersive optical force is sufficient to trap the particle.
This is best illustrated when the thermal energy kBT is expressed as a frequency (cf.
Equation 3.7). Figure 3.11 shows the interaction of a PS bead with the evanescent
field at reduced input power such that the particle is not trapped.

is of the same order as in the previous measurement, whereas the optical potential
is lowered by a factor four. For better comparison we introduce a scale bar corre-
sponding to the thermal energy kBT/2, which now corresponds to ∼ 16 MHz. The
thermal energy exceeds the depth of the optical potential and the particle is lost. A
congruent observation was made by Arnold et al. [39].

To learn more about the interaction of the pass-by events, we take advantage of
the high time resolution and perform a spectral analysis of the frequency jitter.
To this end we calculate the Fourier transform on a sliding 250 ms window. The
upper panel of Figure 3.11 shows the frequency components of the signal that were
normalized to the background spectrum. Clearly a tenfold enhancement of frequency
components around ∼ 30 Hz is observed. Starting from this dominant frequency,
we can speculate about the nature of the interaction. On the one hand it seems
possible that the particle is temporally trapped inside an intensity maximum of
the split WGM, whose dimensions are defined by a polar width of ∼ 100 nm and a
latitudinal width of ∼ 1500 nm. From the curvature at the point of peak intensity we
calculate the force gradient and finally the characteristic trap frequencies, which lie
in the kHzregime. Even if we assume an overdamped, thermally driven motion, that
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Figure 3.11.: The interaction of a passing PS bead with the evanescent
field. (Lower Panel) Temporary fluctuations of the resonance detuning towards
smaller frequency indicate a particle that interacts with the evanescent field but does
not adsorb. Compared to the adsorption events in Figure 3.10, the input power was
reduced by a factor ÷4 to ∼ 5µW. In this case the depth of the dispersive optical po-
tential is much smaller than the thermal energy such that the PS bead is not trapped.
The upper panel shows a plot of the Fourier frequency on a 250 ms sliding window,
which has been normalized to the background fluctuations (i.e. t ∈ [98 s, 100 s]). The
interaction is dominated by frequencies below 100 Hz

shifts the resonance peak towards lower frequency, this hypothesis does not explain
our finding. The time scale set by the 30 − 40 Hz maximum in Figure 3.11 rather
suggests, that the particle moves through the intensity maxima of the split WGM.
Two adjacent maxima are spaced by 200 nm, which results in a particle velocity of
6−8µm/ s and which is in the order of the estimated average flow derived in section
3.3.

When the particle is located exactly between two intensity maxima, there is still
an overlap with the electric field and we compute the ratio between minimum shift
and maximum shift to be around 1 : 7. Indeed the frequency jitter in Figure 3.11
does not completely go back to the background level (i.e., off state) and the offset of
∼ 1 MHz fits the model of a particle moving along and probing the intensity maxima
of a split WGM. The analysis exemplifies that even in a simple, non-specific case of
a PS bead, the high time resolution yields a more detailed insight into the nature
of the interaction.

Optical trapping of polystyrene beads was reported before in reference [39], where
the authors observed a trapped particle traveling around the equator of a micro-
sphere and which they termed WGM carousel. In a follow-up work the microsphere
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sensor was combined with a plasmonic antenna that locally enhances the sensitiv-
ity [92]. To overcome the bottleneck of the strongly reduced sensing surface, the
carousel effect was proposed as a mechanism to collect the target and to deliver it
to the nanoparticle sensor for detection.



4. Lipid membrane functionalization

In the previous chapter, we presented single nanoparticle measurements that under-
lined the exceptional qualities of the WGM based sensor on the transducer side. In
this chapter, we will demonstrate how this intriguing progress is complemented by
an elegant, yet effective way of surface functionalization, which turns the transducer
into a veritable biosensor [87]. The importance of such interface was outlined in
section 1.1.3.
Surface functionalization in principle aims at general immobilization of the target
and further at the observation of specific interaction. The former was achieved in
the lipid vesicle measurements by rendering the surface hydrophilic and thus cre-
ating an adhesion force. Here we move beyond plain physisorption and coat the
microtoroid with a lipid bilayer to create a biological interface that is suited to host
complex, lipid bound receptors. In particular, we demonstrate the versatility of the
functionalization technique by measuring specific interaction of streptavidin with
membrane bound biotin. Streptavidin is a mid-size protein, consisting of four 15 kD
sub-units, which possesses four binding sites that connect to biotin1 with exception-
ally high affinity [146]. With a dissociation constant of 10−15− 10−14 the link (even
though of non-covalent nature and mediated by hydrogen bonds and van-der-Waals
forces only) is practically irreversible and the compound is therefore widely used in
diagnostic assays.

4.1. Lipid membrane functionalization

Techniques for surface functionalization range from simple physisorption of an an-
tibody onto a surface, to sophisticated methods of covalent binding of receptor
molecules. The former method is straight forward to apply, suffers, however, from
poor quantitative control of the bound antibody and is in general prone to unspe-
cific binding. Covalent surface preparation methods are wide spread, and a large
number of protocols exists, i.e., for frequently used sensor materials such as silica,
silicon or gold [88, 147]. Typically the methods involve an initial hydroxilation (i.e.,
silica), followed by amination with a suited linker molecule [148, 87]. In a final step,
specific receptor molecules are bound to the functional amino groups of the newly
formed organic layer. Idle groups can be passivated to prevent unspecific interaction.
Despite the remarkable success and diversity of covalent sensor surface functionaliza-
tion and the advantages that go along with a mature technology, there is one major
drawback to the method when applied to high-Q resonators. The large number of

1biotin structure (source Wikimedia Commons):
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wet chemical steps, together with cleaning, baking, and general handling, puts the
supreme optical properties at stake and risks the degradation of the resonator’s Q
factor [149].2

Here, we utilize a method where the the surface is covered with a single lipid bi-
layer that creates a universal interface for labeling with various kinds of receptor
or antibodies. The method falls into the category of self assembled (mono)layer
functionalization that includes a number of self organizing molecules. Here the lipid
membrane coating method appeals for at least two reasons. First, it can easily be
applied in a physics laboratory, without the need for expensive and bulky equip-
ment. Additionally, one needs to master only one coating step as the specificity
derives from lipid bound receptors that can be either bought or are supplied from
elsewhere. Secondly, we create a biomimetic interface that resembles the natural
environment of many proteins, i.e. membrane proteins. In particular when we are
interested in the dynamics of a target’s interaction, the coating method provides a
model membrane system where membrane processes can be studied in vitro with a
limited number of constituent and thus with reduced physiological background noise
[124].

In fact the method is an established technique and is widely used as supported lipid
bilayer (SLB) interface [150]. SLBs that are assembled directly on a glass slide, are
easily accessible by microscopy, while granting accessibility (from the other side) at
the same time. There exist different ways to attach a lipid layer on a surface [151];
in the simplest case, the surface adhesion force is sufficient, such that the bilayer
will directly adsorb and stick. Otherwise, i.e., for a metallic surface, an intermediary
(organic) sandwich layer or lipid anchors need to be bound to the surface first. For
silica this is however not the case and SLBs are known to auto-assemble directly
on the substrate. Even for strongly curved silica nanoparticles with a diameter
as small as 100 nm a uniform coverage has been achieved (cf. reference [152] for
impressive cryo-TEM images). To form the bilayer, different ways of lipid delivery
are employed. Among the most widely utilized methods is lipid vesicle spreading,
where liposomes crowd on the surface, spread and re-arrange to a single, supported
layer [144, 141, 153]. Here, we use a faster methods that involves the spin coating
of the structure, followed by hydration of the lipid [154].

To promote adhesion, we render the surface of the toroid resonator hydrophilic,
using SC-1 cleaning solution (1 : 1 : 5 mixture of ammonia, 30% H2O2, and DI
water at 70◦C during 20 minutes) 3 before the lipid bilayer is applied. Again we
will narrate the steps of the process in greater detail, for possible reproduction of
the results. After the SC-1 step the sample is rinsed and stored in a Millipore water
bath, while the lipids are prepared for spin coating. We thaw a vial with 2 mg of
the frozen, dehydrated lipid (cf. section 3.2.1) and add 2 ml of isopropanol to obtain

2Apart from the reported deterioration of the optical Q during functionalization, the results
reported in reference [149] are incorrect. We will therefore not consider the article as a reference
for the biotin-streptavidin measurements.

3In practice it is recommendable to heat the water to 100◦C before adding the ammonia and the
hydrogen peroxide at ambient temperature.
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lipid in isopropanol air: multilayers water: single layera

c d e
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Figure 4.1.: The process of lipid membrane coating. (a) A schematic illustra-
tion of the process: First the sample is covered with the lipid solved in isopropanol,
which forms, after evaporation and spinning, a diffuse multilayer film. The sample is
then immersed in water, where the single lipid bilayer forms with the rearrangement of
the lipid over the course of several hours. Excess lipid material is removed by rinsing.
(b) A fluorescent micrograph of a toroid that has been coated with a lipid bilayer,
doped with the fluorescent marker Alexa 488. A uniform intensity distribution signals
an even coverage of the toroid. (c)-(e) The sample is mounted inside the spin coater
and covered with the lipid. After spin coating the isopropanol has evaporated.

a concentration of 1 mg/ml. The solution is mixed using a vortex shaker. Next
we carefully blow dry the sample using a nitrogen gun. Here it is advantageous to
leave the sample attached to its microscope slide support and to gently blow the
water along the chip such that the majority of the liquid falls of in a droplet. Then
we take the support and install it on a spin coater, as shown in Figure 4.1 (c)-(e).
We use an Eppendorf pipette to fully cover the chip with 50 − 70µl lipid solution
and immediately start the spinning process before the solvent evaporates. The spin-
coating normally lasts 2 minutes at 3000 rpm. Then the sample is rinsed again under
the directed water jet from a wash bottle and placed in a water or buffer reservoir
where the membrane is allowed to settle for at least 10 hours. After settling the
chip is rinsed one more time using a wash bottle.

The optical Q of a membrane coated toroid typically degrades by a factor ÷2 com-
pared to the uncoated resonator in water, and values of Q = 2−3 ·107 are frequently
achieved. Values of up to 5 · 107 were observed. It is important, however, to verify
that the toroid is indeed covered with a single membrane layer. To obtain a visual
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Figure 4.2.: The resonance shift after membrane coating. The resonance
wavelength of the TM00 as a function of the azimuthal quantum number m. The
modes are spaced by one free spectral range (∼ 1.34 nm). Once the resonator is coated
with the lipid layer, the resonances shift towards longer wavelength. The difference
between the data points is plotted below and the dashed line indicates the average
frequency shift.

feedback we stain the lipid with 0.5 mol% of the lipid bound colorant Texas Red (TR-
DPPE, Molecular Probes) and take fluorescence micrographs. Figure 4.1 (b) shows
uniform fluorescent intensity that confirms uniform coverage with the lipid. The
undercut region between the pillar and the ring appears brighter compared to the
area above the pillar and the intensity ratio suggests that the undercut silica disk is
coated from two sides, with additionally light shining through from the silicon chip.
A quantitative analysis is difficult, because the errors of the absorption/reflection of
the glass an the fluorophore are largely unknown.

Next, we determine the mobility of the lipid via continuous bleaching and fluores-
cence recovery measurements [155]. To this end a geometrically well defined portion
of the fluoropohore is bleached by illumination with a strong laser, and the recovery
of the fluorescent intensity due to diffusion is monitored . Comparison with ana-
lytical models [156, 4] yields diffusion coefficients ranging from 1− 4µm2/ s, which
are in close agreement with values obtained for supported phospholipidic bilayers
[157, 158, 159]. Furthermore we can confirm a mobile fraction of lipids of > 90%.

Finally, we confirm that the amount of lipid material deposited on the resonator
corresponds indeed to a single lipid bilayer. To this end, the frequency shift induced
by the added material is measured, and the thickness of the lipid layer is inferred
from the effective increase of the radius. We couple to a resonator with 66.4µm
diameter and scan the diode laser wavelength over a few nanometer. Then we record
the resonant wavelength of a well identifiable mode family, using a wave-meter with
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an instrumental resolution of 0.1 pm.4 As the tuning range of the laser covers several
free spectral ranges of the microresonator, we can measure the resonant wavelength
for different azimuthal mode numbers (cf. Figure 4.2). Next we remove the resonator
from the setup and coat the chip with SOPC lipid, following the previously described
procedure. Reassessing the optical mode spectrum we find that the resonances
have shifted towards longer wavelength with an average of 84 ± 5 pm. The error is
estimated from the temperature inconsistency between the two measurements and
correspond to ±1 ◦C. Given that the refractive index of lipid nearly matches the RI
of silica at 635 nm wavelength (n = 1.457), we can directly access the increase of the
cavity radius from the relation ∆R/R = ∆λ/λ and find a mean increase of radius
∆R = 4.4± 0.26 nm. The value is in good agreement with the thickness of a single
SOPC bilayer on a silica support, which has been reported to be 4.8± 0.1 nm [160].
There again we can use the recorded wavelength shift to calculate the effective RI
of a 4.8 nm layer, which yields n = 1.446± 0.007, a value that is much closer to the
one of the hydrocarbon backbone of the lipids (n = 1.444) [161].5

From the totality of the above findings, the evenness of the fluorescence, the fluidity
of the lipids, and eventually the layer thickness, we conclude the the toroid is indeed
covered with a functional lipid bilayer.

4.2. Biotin-streptavidin measurements

To observe specific interaction with a functionalized microresonator, we coat the
sensor with a mixture of SOPC lipid (Avanti Polar Lipids) and varying content
of biotinylated DOPC (DOPC-X-biotin, Invitrogen) [162]. In particular, we chose
biotin concentrations of 1 mol %, 0.5 mol %, 0.1 mol %, and a blind sample with
0 mol % biotin. Once installed in the FCD, the sample is kept under a constant flow
of phosphate buffered saline (PBS) with 10 mM HEPES. As we expect frequency
shifts of the order of GHz on a slow timescale (� s), we use the diode laser to
track the frequency. To this end we scan the laser at a rate of 10 Hz and record
the transmission as well as the sweep voltage. The transmission minimum is fitted
on the fly with a 3rd order polynomial, and the sweep voltage corresponding to the
minimum is stored.

It is important to note that we chose the coupling point (i.e., we adjust the fiber
position) such that a small displacement of the fiber does not change the resonance
frequency more than the noise level. When the fiber is produced according to section
2.1.2, this is normally achieved when under coupling and setting the transmission
on resonance to 50%− 90%. During a measurement of one hour the coupling might
slightly change, which is then signaled by the transmission without influencing the
frequency signal, and we are able to correct the coupling point while the experiment
is running.

4The experiment was performed by Bastian Schröter during his Diploma thesis.
5Eventually it does not make big of a difference whether we use a lower RI and an increased

membrane thickness for our analysis.
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During the first 5 to 10 minutes after sample installation, the resonance frequency
regularly displays a drift over a few GHz. Once the signal has stabilized, we start
injecting streptavidin solution (10 mg/ml in PBS + 10 mM HEPES, Sigma Aldrich)
at a rate of 2 ml/ h, which mixes with the buffer (6 ml/ h) at the injection site to
yield an overall concentration of ∼ 40 nM at the resonator. Figure 4.3 shows how
the resonance frequency shifts when the streptavidin binds to the biotin. Around
700 s after injection the analyte arrives at the sensor, and the frequency starts to
shift. During ∼ 50 s the shift accelerates until the streptavidin concentration has
arrived at its full extend and the dilution effect has paled out (cf. also section 4.3).
Then the frequency shift follows an exponential saturation curve until a plateau is
reached. An exponential background (cf. section 4.3) that is fitted to the “flat” parts
of the curve before and after the binding, was subtracted. While the total frequency
shift is proportional to the biotin concentration in the membrane, the time scale
on which the binding occurs does not change significantly. Flushing the FCD with
buffer solution shows that the frequency shift is irreversible and confirms permanent
binding. (Figure 4.3 (a) also shows a curve that is labeled with “unknown biotin
content” and displays a total frequency shift of ∼ 12.2 GHz. Originally the lipid was
prepared with 1% biotinylated DOPC in SOPC, but there are indications that the
calculations where done for a total amount of 2 ml lipid solution, while we ended up
with one milliliter. The resulting biotin concentration should therefore be around
2%, but eventually we cannot be certain about it.)

To analyze the data, we calculate the sum of single streptavidin frequency shifts
and commence by estimating the effective volume of streptavidin, starting from
a typical density of protein of 0.73 ml/ gr and a refractive index of nprotein = 1.5
[163]. For a 60 kDa molecule this yields a volume of 73 nm3 and with an effective
sensing volume of 4.42 · 10−4 µm−3 we expect a maximum single particle shift of
1.15 kHz.6 With an area per lipid (in a monolayer) of 0.666 nm2 [136, 164] and an
effective sensing surface area of 397µm2 (70µm resonator, σFWHM = 1.61µm) we
obtain 5.96 · 106 (binding sites/mol %). When every site connects to exactly one
streptavidin, we expect a total shift of 6.85 GHz/mol %. Considering that the value
sets an upper boundary, that neglects binding of two biotin to one streptavidin, we
obtain excellent agreement with the measured 6 GHz/mol %. Moreover we reject
the hypothesis that biotinylated lipids, pointing towards the silica surface of the
toroid, might swap and contribute to the streptavidin binding.

In Figure 4.4 (a) we compare the total frequency shift per mol % biotin to the the-
oretical shift and find that the fractional coverage decreases with increasing biotin
concentration. The percentage number can be viewed as the average number of
streptavidin molecules per biotin in the outer membrane layer. Notably, a strep-
tavidin molecule possesses four active sites that can connect to biotin, and with
increasing biotin concentration in the membrane the probability of double bind-
ings increases. For the lowest biotin concentration we find that every streptavidin
molecule binds on average to one biotin in the membrane. At a biotin concentration

6Here again we take explicitly the polarizability of a solid, spherical particle into account.
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Figure 4.3.: Specific binding of streptavidin. (a) Binding of streptavidin to res-
onators, that were functionalized with different concentrations of biotinylated lipid,
is observed. The total frequency shift is proportional to the biotin content in the
membrane. For an unlabeled SOPC membrane no significant frequency shift in the
presence of streptavidin is observed. Flushing with buffer solution confirms that the
binding is essentially non-reversible. The curve 1 mol % displays a kink that origi-
nates from a stuck plunger of the insertion syringe and exemplifies how sensitive the
resonance frequency reacts to variations of the flow in the FCD.

of 1 mol %, the value increases to an average of 1.17 links. Contrariwise, it is possible
that some biotin molecules are blocked by bound streptavidin and further binding is
sterically hindered. In this case we estimate that it takes only a few µs of diffusion
time until the biotin connects to the blocking streptavidin molecule. We expect a
fully covered surface and occupation of all binding sites only at much higher biotin
concentration > 5 mol %.

A similar behavior was reported in reference [165], where the binding of FITC-avidin
(66 kDa) to a lipid monolayer containing different amounts of biotin-X-DPPE was
investigated. Likewise the number of adsorbed avidins per biotin decreased with
increasing biotin concentration.7 Moreover, the authors also worked with a avidin
concentration of 10µg/ml and observed 1/e-binding times ranging from 90 s to 200 s,
which is of the same order of binding times that we observe here. Much faster binding
times on the order of a few seconds or faster were observed in experiments where
the biotin is covalently bound to the surface of a resonator [33] or cantilever [76],
which might derive from a much higher biotin density. Nevertheless these findings
illustrate that there exists a considerable difference in biological accessibility and
interaction between a highly artificial system and a biomimetic interface.

7The results are not directly comparable, because, due to a lack of flow, the measurement in
reference [165] suffers from unspecific adsorption, which is expressed, e.g., by 0.3 biotin per
adsorbed avidin at a biotin concentration of 0.17 mol%.
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Figure 4.4.: Streptavidin surface density. (a) The frequency shift per mol %
biotin in the membrane is in very good agreement with the theoretical value when
each biotin binds exactly one target molecule. When the biotin concentration in-
creases the average number of streptavidin molecules per biotin slightly decreases,
which is attributed to streptavidin molecules that bind two biotin molecules. The
error bars correspond to the estimated frequency fluctuations after the binding had
completed. (b) A schematic view of a streptavidin molecule bound to a biotin, which
is approximately at scale for a biotin concentration of 1%.

We therefore conclude that our functionalization method indeed enables us to ob-
serve specific, membrane bound interaction and is moreover suited for quantitative
analysis. This is all the more remarkable, as many functionalization methods suffer
from incomplete or partially dysfunctional binding of the receptor [24, 166].

4.3. Ethanol calibration measurement

In this section we describe a supplementary experiment where the resonance is
tracked, while the refractive index of the exterior is changed by means of a varying
ethanol concentration. The well defined boundary conditions of the measurement
allow us to accurately determine the evanescent fraction of the WGM and to com-
pare to the theoretical values. Moreover, we receive an impression of the time scales
and the mixing in the fluidic system.

We prepare a solution containing 2.5% ethanol, and we track the resonance fre-
quency of the toroid in a constant water flow at 10 ml/ h. The ethanol solution is
loaded to a second syringe pump, which is connected to the insertion site. Then the
flow ratio between the pumps is stepwise changed by 10%, such that the ethanol
concentration is increased by 0.25% with each step, while the overall flow remains
constant. Again the higher initial concentration of the ethanol solution and the
mixing serve temperature stability. When the ethanol arrives at the detector, the
resonance frequency shifts. Instead of a frequency jump, we observe a convoluted
step, which accounts for the diffusion of the solution inside the tubing. We note that
our open design enables us to prepare a sharp transition between different analytes
when we inject a tiny air bubble between two species. The air bubble escapes when it
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Figure 4.5.: The reactive frequency shift in response to ethanol. (a) The
resonance frequency is recorded, while ethanol solution is injected. The ethanol con-
centration is step-wise increased by 0.25%. To minimize the impact temperature, we
start from a 2.5% solution and mixing takes place inside the tubing leading to the
FCD. The raw data shown in the gray curve are on top of a background drift. We
fit an exponential to the portions of the curve, before and after the presence of the
ethanol, and subtract the background. We then convert the step heights to a fre-
quency and plot the shift as a function of the refractive index. The slope compares
favorably to the theoretical result obtained from simulations.

enters the coupling chamber, where the mixing takes place in this case. Even though
such separation is possible, it has not proven practical, as mixing always involves
strong fluctuations of the refractive index and convection, which finally manifests
as low frequency noise or “shaking” of the resonance.

After five augmentations of the ethanol concentration, we inject pure water (without
changing the overall flow) and the resonance frequency shifts back to its original
level. Here we continue recording to obtain sufficient background. Figure 4.5 (a)
shows a trace of the recorded raw data, where the signal from the ethanol solution
sits on top of an exponential frequency decay. We fit an exponential function to
this background, which is subsequently subtracted from the data. The background
presumably derives from temperature drift, probably due to evaporative cooling,
and its amplitude over one hour typically correspond to a temperature change of
less than 1◦C.8

Next, we extract the step heights from the background corrected data and convert
the piezo voltage shift to a frequency (cf. section 2.2.2). Figure 4.5 (b) shows the
relative wavelength shift as a function of the RI change. We simulate the wavelength
shift for different modes and polarizations and find excellent agreement with the
measured data. The mismatch can be accounted for by an uncertainty in the ethanol
concentration of the initial solution and an error of the measured cavity radius. The
slope of the curve is closely related to the evanescent intensity fraction, even though
it is not fully equivalent.

8The thermal temperature drift in water at a wavelength of 635 nm is 3.1 GHz/K.
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In the two previous chapters, we discussed clearly resolvable frequency shifts, result-
ing from both, single particles and ensembles of molecules. Here we move beyond
the resolution limit, set by the frequency fluctuations, and focus on the properties
of the frequency noise instead. Even when the frequency shift from a single particle
cannot be directly resolved, the noise spectrum potentially reveals information on
single particle properties, such as on and off binding rates, or dwell times.
In this chapter, we start out with a characterization of the toroid’s frequency noise
and we introduce the Allan deviation as a sensitivity measure that takes the time
scale on which a binding event occurs into account. Then we present a measurement
of IgG protein, where the presence of the molecule manifests in the noise spectrum.
The autocorrelation function and the Allan deviation are discussed regarding their
application for frequency noise analysis, in particular in the presence of frequency
drift. Finally, we identify thermo-refractive noise as a factor that limits the fre-
quency resolution and thus the sensitivity of the device at short time scale (below
1 ms).

The chapter can partially be viewed as an outlook on promising measurements and
possible experiments. In particular the noise spectroscopy will directly profit from
even higher time resolution, which requires less effort than an improvement of the
frequency resolution and therefore constitutes a canonical direction of future sensor
development. The chapter concludes with a detailed outlook and a summary of
what has been achieved so far.

5.1. The Allan deviation as a sensitivity measure

Sensitivity measures for refractive index sensors are frequently stated in terms of
refractive index units (RIU, meaning the smallest resolvable RI variation), the min-
imum detectable concentration of a target molecule in the environment, or an accu-
mulated mass of the target on the sensor [167]. For single particles the sensitivity
is often referred to by the smallest individual particle that can be resolved before
the noise background. However, these measures fail to reflect the time dependence
of the event, i.e., the time scale on which the RI change occurs or the target binds.
A fast event, such as an adsorbing vesicle, experiences a different detection limit
than an ensemble measurement taking place during several minutes, which com-
petes with frequency drift. To overcome this drawback, we introduce the Allan
deviation σν(τ) as a measure for the frequency resolution on different time scales.
The Allan deviation and its square, the Allan variance, are established quantities to
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Figure 5.1.: Frequency noise during a measurement. (a) Raw data from a
measurement of IgG protein. The arrival of the molecules (1) is signaled by a frequency
drift, most likely due to a temperature difference of the target solution. Here 1 V
corresponds to a temperature difference of ∼ 20 mK. When the piezo voltage (before
×20 amplification) exceeds ±2 V, the wavelength is adjusted via the laser crystal
temperature. (b) The data point distribution on a 1 s time frame is always given by
a Gaussian within the standard error. We plot the width of the Gaussian during the
measurement. Its value before the arrival of the protein corresponds to a standard
deviation of 42 kHz a record frequency resolution of ∆ν/ν = 7.7 ·10−11. (c) The Allan
deviation is plotted as a function of the gate time τ and the insets illustrate that the
AD is a suited measure to describe the sensitivity towards a frequency shift taking
place during a time τ .

express frequency stability of an oscillator in frequency metrology [112].

σν =

√
1

2

〈
(ν̄n+1 − ν̄n)2〉

n
(5.1)

In the above definition of the AD, one data point ν̄n corresponds to the frequency
signal, averaged during the gate time τ . The AD is thus a time scale dependent
quantity. In the context of sensing, a frequency shift that occurs during a time τ
can be distinguished from the background noise when it is larger than σν(τ). In
the absence of frequency drift, one can in principle recover the frequency shift by
sufficient averaging and filtering of high frequencies, which comes however at the
cost of reduced time resolution. Then the achievable time resolution corresponds
approximately to the time where the AD equals the signal amplitude. The link
between the Allan deviation and the smallest resolvable signal is illustrated in Figure
5.1 (c), where the AD is plotted next to noise traces on different time frames.

To record the Allan deviation and to characterize the frequency noise of the resonator
only, it is important to eliminate laser phase and frequency noise. To this end we
utilize an optical heterodyne scheme and compare the frequency of the Nd:YAG
laser, locked to the resonator, to a second Nd:YAG laser, which is stabilized to an
ultra-stable reference cavity (cf. section 2.2.3). In this case the signal reflects purely
the resonator noise, contrary to the correction signal that also contains laser noise.
Figure 5.1 (a) shows a trace that was recorded during a measurement of IgG protein
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and which will be analyzed in detail in the following section. Here we focus on the
part of the curve before the target arrives, i.e. on the portion inside the rectangle
tagged with the asterisk. In panel (c) of the same figure a magnified view of the
sub-trace is shown and with further zooming in on ever shorter pieces of the curve,
one obtains an impression of how the frequency resolution increases with decreasing
time scale. Furthermore we show a plot of the Allan deviation that was partially
recorded from the beat note and recorded with a frequency counter. Other values
were inferred from the correction signal and again the overlapping of the traces
(not shown here) confirms the correct frequency calibration. It becomes apparent
that a frequency shift σν(τ) during a time τ is related to the minimum resolvable
signal. In our case the resolution is limited by phase and frequency noise at short
time (< 10 ms), whilst on a longer time scale (> 100 ms) frequency drift - which is
identified by its characteristic linear dependence on τ - becomes the limiting factor.
For frequencies above 1 kHz, thermo-refractive noise of silica, which is discussed in
detail in section 5.3, sets the fundamental detection limit.

5.2. Refractive index correlation spectroscopy

In this chapter, we go beyond the measurement of clearly resolvable frequency shifts,
as they have been discussed in the two previous chapters. When the shift from a
single particle is “smaller” than the noise background, it cannot be resolved anymore,
which is also confirmed by statistical tests with simulated data. The reason for this
derives from the fact that a frequency step displays a broad, flat frequency spectrum
and additionally the events occur at random time. Therefore we cannot gain any
insight from linear filtering or averaging. The presence of single particle is however
contained in the noise itself, and one can access single particle properties, such as
dwell times and binding rates, from a statistical noise analysis.

5.2.1. Fluorescence correlation spectroscopy (FCS)

With increasing availability of high resolution confocal microscopes and sensitive
photo detectors, fluorescence correlation spectroscopy (FCS) has become a powerful
technique for measurements of concentration, diffusion and molecular interaction
[168]. The technique is considered as one of the milestones of light microscopy by
Nature magazine [169]. For FCS the analyte is labeled with a fluorescent marker
and fluorescent light is collected within the confocal excitation and detection volume.
The fluorescent intensity is typically sampled around 100 kHz to 1 MHz. From the
autocorrelation of the fluorescent intensity F (t) one can obtain information about
the number of molecules, diffusion time and binding constants.
In our system we perform a refractive index correlation spectroscopy (RICS) anal-
ysis. Here the refractive index contrast plays the role of the fluorescence intensity
and the integration volume is given by the evanescent field instead of the confocal
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point spread function. In this case the autocorrelation function G(∆t) is computed
from the resonance frequency fluctuations δν(t) instead of the intensity signal.

G(∆t) =
〈δν(t)δν(t+ ∆t)〉

〈δν(t)2〉
It is an advantage of RICS, that no tedious labeling of the analyte is necessary. The
key requirements for RICS are a small detection volume and fast frequency sampling.
Both are realized in our system. Here, we consider only the frequency signal within
the locking bandwidth. Frequencies that exceed this bandwidth are obtained from
the error signal, after passing an additional high pass filter. If the amplitude of
the high frequency fluctuations is smaller than the resonance width, such that the
signal stays within the linear part of the error signal close to the locking point
(cf. Figure 2.6), the signal is directly proportional to the frequency fluctuations.
Additional calibration and conversion to frequency detuning is not required, because
the autocorrelation function is normalized. The resolution bandwidth is in principle
limited by the phase modulation frequency, and a time resolution below one 1µs
can be achieved.

We note that such measurement was already performed using polystyrene beads and
a microsphere resonator [36]. The author tuned the laser to the side of a resonance
fringe and analyzed the intensity fluctuation of the transmitted light.

5.2.2. Drift and background subtraction

In contrast to a typical FCS measurement, we encounter signal drift, which requires
background subtraction, such that the fluctuation signal is given by

δν(t) = ν(t)− 〈ν(t)〉T . (5.2)

This can be achieved, by averaging the signal over a time interval T to obtain the
drift contribution

〈ν(t)〉T =
1

T

ˆ T/2

−T/2
ν(t+ t′)dt′. (5.3)

To separate the drift from the fluctuations, the time interval T is typically chosen
in the order of the time scale where frequency drift starts to dominate over other
noise terms, which occurs, in our experiment, between 1− 10 ms. (cf. Figure 5.1 (c)
). However, such simple background subtraction artificially introduces a correlation
in the smoothed signal 〈ν(t)〉T and thus in δν(t). Calculating the auto-correlation
function for smoothed and previously uncorrelated white noise, we find that an
artificial linear offset proportional to 1 − ∆t/T + 2 · Θ(T/2 − ∆t) is produced for
a delay ∆t < T (here Θ(t) denotes the Heaviside step function). For a fluctuating
signal that is already self-correlated, the offset shows a non-trivial dependency on
the correlation time and cannot be corrected simply by subtraction. To cope with
this problem, we chose a percentile filter to determine the drift background and
calculate the median frequency on a time window around each data point.

〈ν(t)〉T = median {ν(t′) |t′ ∈ [t− T/2, t+ T/2]} (5.4)
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We still observe a linear offset, which is however much weaker than for linear filtering.
In the analysis of the recorded data, we circumvent the difficulty by calculating
the difference between the autocorrelation of the background (in absence of the
target) and the frequency noise in presence of the target. A third possibility of
background removal that we utilized in the noise analysis is piecewise fitting of a
linear background, typically on time frames of 10 ms.

5.2.3. Experimental result: IgG measurement

We chose the protein immunoglobulin G (IgG) as a test body to explore the capa-
bilities of single molecule RICS using high-Q toroidal microresonators. A single IgG
molecule weights ∼ 150 kDa and is expected to yield a maximum frequency shift of
∼ 5.3 kHz, which is about eight times smaller than the standard deviation of the
frequency noise at 1 ms. A single adsorption event can therefore not be observed
directly. We prepare an aqueous solution of the protein with a concentration of
50µg/ml and render the surface of the toroid hydrophilic using the SC-1 cleaning
procedure. It has been observed by Vörös that IgG physisorbes on hydrophilic sur-
faces without the need of specific functionalization [170]. The protein solution is
extruded with a 50 nm pore size membrane to filter clusters and aggregates of pro-
teins. A previous measurements without extrusion showed large frequency jumps
up to a few MHz.

In the experiment we inject ∼ 40µl of the protein solution and we observe that
the arrival of the protein is accompanied by a strong drift and broadening of the
noise by ∼ 40% (cf. Figure 5.1a/b). Such effect could be attributed to a decrease
of the optical quality (i.e., line width broadening) and an increase of uncertainty of
the laser lock. To exclude this effect, we scale the autocorrelation function to its
variance. Next we calculate the auto-correlation function G(t,∆t) on time intervals
of 1 s and plot its value for fixed delays as a function of the measurement time t.
Figure 5.2 (a) demonstrates how the arrival of the analyte coincides with an increase
of self-similarity. When the flushing of the FCD continues during the measurement,
the auto-correlation decreases and approaches its original level. At this point one
can ask a couple of questions, some of which will remain unanswered. One can
hypothesize whether the correlation of the background originates from thermal noise
or whether it is an artifact coming from some low pass filter. Moreover, we observe
an increase of the auto-correlation which is doubtlessly due to the protein and display
a peak around 700 s. After reaching its maximum, the curve decreases during ∼ 30 s
and reaches a plateau with a much slower decay constant that we estimate around
200− 300 s. From the ethanol and streptavidin it is know that an initially singular
portion of the target is broadened due to diffusion and passes the sensors during
∼ 50 s, a time scale that matches the width of the peak. The remaining increase of
signal correlation – namely the plateau around 800 s in Figure 5.2 (a) – could then
be attributed to some noise increase due to adsorbed protein and the slow decrease
could be the result of detaching molecules on a longer time scale. This is however
highly speculative and calls for experimental verification.
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Figure 5.2.: The auto correlation function for noise analysis. (a) The auto-
correlation function, normalized to the noise variance, is calculated on consecutive 1 s
time frames and its values for fixed delays is plotted. The background was removed
using a thirty point median filter. (b) The difference between the autocorrelation
function in presence of the protein and the background correlation, i.e. t < 500 s, is
plotted as a function of the delay time. The graph can be viewed as the peak height
at 700 s with respect to the background around 400 s.

To gain quantitative insight we average the auto-correlation function during its
peak at t ∈ [650s, 700s] and subtract the correlation background averaged during
the time interval t ∈ [400s, 500s] before the protein arrives. The difference, i.e.,
the background corrected IgG auto-correlation, is depicted in Figure 5.2 (b). The
curve shows a characteristic drop towards longer delays and decays proportional to
∝ exp (−τ/115µs). On this time scale, diffusion dominates and the particle travels
around ∼ 60 nm, a length that is in the range of the azimuthal extension of an
optical node (∼ 100 nm) as well as the decay constant of the evanescent intensity
(∼ 84 nm).

We do not want put too much interpretation into the result, but it can clearly be
seen, that the arrival of the IgG alters the noise properties of the signal, and that
the correlation is a function of the delay time τ . Moreover, the correlation signal
approaches its original level, when the IgG concentration decreases with continued
flushing.

Switching between different filters and smoothing methods for the removal of the
frequency drift, as well as simulations, shows that the filtering method strongly
influences the shape of the auto-correlation trace. The difficulty derives from the fact
that one cannot easily distinguish between different noise sources in time domain.
We therefore resort to the Allan deviation as a noise analysis tool that does not
rely on post processing of the data. Here we compute the AD on 25 s time frames
and evaluate its dependence on that gate time. At short time scale, in the TRN
regime, we observe a slope change that coincides with the arrival of the IgG protein
at the sensor. When the agent is removed, i.e., its concentration is reduced by
flushing the FCD with buffer solution, the slope approaches its original level. In
contrast to the correlation spectra, the curve is obtained without any filtering, i.e.,
background and drift removal, on the data. The drift term remains unaffected
during the measurement (cf. Figure 5.1 (a) ), but in the noise minimum (around
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Figure 5.3.: The Allan deviation for noise analysis. (a) We calculate the Allan
deviation (σAD) on consecutive 25 s time frames and plot the power dependency on
the gate time (i.e.

(
σAD(τ) ∝ τβ

)
:→ β for different gate times. The frequency drift

remains unaffected during the measurement. (The expected slope of 1 is slightly
altered because a straight line between the first and last data point of each portion
of the trace was subtracted.) (b) The difference between the autocorrelation function
in presence of the protein and the background correlation, i.e. t < 500 s, is plotted
as a function of the delay time. The graph can be viewed as the bump height when
the IgG arrives in Figure 5.2 (a). Panel (b) shows the Allan deviation, recorded trom
a toroid coated with an (SOPC) lipd membrane at ambient temperature. Between
the different curves, the input power and the gain settings of the frequency lock were
changed. Most strikingly, the curve reveals that the membrane coating only leads to
a minot deterioration of the frequency resolution (cf. Figure 5.1 (c) ). Moreover, we
observe added noise around 500 Hz, which could result from membrane undulation,
and which is a promising starting point for future experiments.

1−10 ms) a novel noise term ∝ τ 1/2 appears. The exponent suggests a random walk
noise contribution, which is expected for particles entering and leaving the field at
random time.

Finally we record the noise spectrum of a lipid bilayer coated toroid and calculated
the Allan deviation from the frequency noise trace. Figure 5.3 (b) shows four differ-
ent traces that were taken at different input power and different gain settings of the
PDH lock. Primarily, the data confirm that the lipid membrane coating technique
does not compromise the frequency resolution of the sensor. This is in stark con-
trast to most functionalization techniques, where surface functionalization degrades
the optical quality, often by more than one order of magnitude. In our case the
preservation of the Q is most likely a consequence of the matching refractive indices
of the lipid and the glass substrate. Impurities, scattering centers, and other surface
defaults that lead to optical loss are engulfed by the lipid and abrupt changes of
refractive index are faded out.
Moreover, the measurement shows that frequency drift is stronger for higher input
power, as one would expect due to increased temperature. On the other hand, higher
input power results in lower noise at short time scale < 1 ms, which is a result of a
stronger PDH error signal and a steeper slope on resonance. Lastly, there seems to
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be a resonant peak centered around 500 Hz, whose varying intensity correlates nei-
ther with the drift nor with the high frequency noise. One can hypothesize whether
such feature could result from membrane undulations [171], and the effect certainly
deserves future attention and verification, all the more as it is a straight forward
measurement.

We conclude the IgG and noise spectroscopy measurements by summarizing the
results that are certain, and with an outlook on promising experiments. We have
clearly shown that the presence of molecules with a single particle shift ÷8 smaller
than the standard deviation of the frequency noise can be detected in the altered
noise properties. Moreover, we have demonstrated that an additional membrane
layer for surface functionalization does not lead to a significant deterioration of the
frequency resolution. On the other hand, the quantitative results are limited so far.
For a more profound, deterministic analysis one requires a higher temporal resolution
and possibly an active temperature control of the FCD and the inserted fluid, to
minimize frequency drift. As described earlier in section 2.2.1, both measures are
straight forward to implement, and future experiments could, e.g., set out to measure
the plateau of the auto-correlation function at short time scale ∝ 1µs or the noise
associated with a phase transition of a lipid bilayer when scanning the temperature
[138]. These experiments do not even require sophisticated locking technology and
further noise reduction in the electronic setup, because it is usually sufficient to
manually tune tze laser to a resonance and to record a one second trace with high
time resolution.

5.3. Thermo-refractive noise (TRN)

In this section, we derive the thermo-refractive noise (TRN) spectrum for a toroidal
microresonator and discuss its implications on the frequency resolution and sensi-
tivity of the sensor. Thermal noise is ubiquitous in physics and its origin lies in
the energy distribution among the degrees of freedom of an statistical ensemble at
thermal equilibrium. For a canonical ensemble, the energy variance is expressed as
〈(∆E)2〉 = kBT

2 ·∂T 〈E〉 , where kB is the Boltzmann constant, T the mean temper-
ature of the environment, and 〈E〉 the expected energy of the ensemble. Dividing
by the heat capacity squared (∂T 〈E〉)2, yields the expression for the fluctuations of
the mean temperature.

〈
(∆T )2

〉
=
kBT

2

ρcpV
(5.5)

Here, the heat capacity of the ensemble was replaced by the product of ρ the den-
sity of the material, cp the specific heat capacity, and V the volume occupied by
the ensemble. The deviation from the mean temperature is linked to fluctuations of
the refractive index via the coefficient of thermal refraction dn/dT (cf. Table 5.1)
and the thermal fluctuation thus translate into frequency noise of the resonator. For
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fused silica water

density ρ 2200 kg/m3 998 kg/m3

specific heat capacity cp 740 J/kg K 1480 J/kg K

coeff. of thermal refraction dn/dT 1.3− 1.45 · 10−5 K−1 −9 · 10−5 K−1

thermal diffusivity D 0.75− 0.85− 0.95 mm2/s 0.143 mm2/s

thermal conductivity k 1.38− 1.4 W/K m 0.6 W/K m

Table 5.1.: Important material constants for silica and water at room temper-
ature. Sources: Wikipedia, http://accuratus.com, and http://www.valleydesign.com.
Multiple values or parameter ranges reflect the discrepancy between different sources.

microsphere resonators TRN was calculated and measured by Gorodetsky and Gru-
dinin who reported a characteristic frequency dependence ∝ ω−1/2 and the existence
of a corner frequency beyond which thermal fluctuations are suppressed with ω−2.
However, the equations published by the authors do not fully apply to WGM in
toroidal resonators, and they poorly reflect the TRN at low frequency. Here, we will
show that the TRN in this regime is governed by a term ∝ log[1/ω], which implies
that the thermal noise is less intense than suggested by the ∝ ω−1/2. Importantly
the log[1/ω] dependence enables us to integrate and normalize the spectrum, and
comparison with Equation 5.5 enables us to calibrate the spectrum.

In the following sections, we first consider the one-dimensional problem, where the
temperature fluctuations are averaged over different envelop-functions, and we will
learn how the actual shape influences the spectrum or the TRN. With some insight
gained, we move on to the three-dimensional case and derive the TRN for a geometry
that resembles the fundamental WGM of a toroidal resonator. Finally, we discuss
how thermal noise limits the frequency resolution of a WGM sensor, and how the
TRN limit can be avoided.

5.3.1. TRN in one dimension

The physics behind TRN is simple, once the underlying mechanism is identified.
This fundamental work is well described in a manuscript by Voss and Clarke that
deals with fundamental voltage fluctuations of thermo-resistive origin in a thin metal
slab [172]. The authors nicely demonstrate that temperature diffusion is the predom-
inant thermal transport mechanism, and they rule out other possible mechanisms,
such as temperature conductance. We express a local deviation from the mean
temperature by the function u(x, t) and write the diffusion equation.

∂tu(x, t) = D∂2
xu(x, t) + ∂xF [x, t] (5.6)



84 5. Refractive index spectroscopy

A driving noise term F [x, t] establishes the equilibrium properties. It is important
to note that the temporal change of temperature is driven by the local gradient of
the heat fluctuations. In the Markovian limit, the drive F [x, t] is δ-correlated white
noise with

〈F [t, x]F [t′, x′]〉 ≡ F 2
0 · δ(t− t′)δ(x− x′) = 4kBT

2/cpρ · δ(t− t′)δ(x− x′) (5.7)

We solve the diffusion equation according to the books and introduce the definition
of the Fourier transform.

u(x, t) =

ˆ
dω

2π

ˆ
dq

2π
u(q, ω)e−iωte−iqx (5.8)

Next we multiply Equation 5.6 with exp[iωt + iqx], integrate, and solve for the
Fourier transform of the temperature fluctuations u(q, ω).

−iωu(q, ω) = −Dq2u(q, ω)− iqF [q, ω]
u(q, ω) = −iq

Dq2−iωF [q, ω]
(5.9)

Then the spectral density of the thermal fluctuations is given by a Lorentzian

Su(q, ω) =

ˆ
dq′

2π

ˆ
dω′

2π
〈u(q, ω)u(−q′,−ω′)〉 =

q2

D2q4 + ω2
F 2

0 (5.10)

(For a detailed definition of noise operators in Fourier space and the 2π-balance
refer to section 7.2.1.) The thermal fluctuations have a maximum at ω = D/q2,
which can be interpreted as a dispersion relation of thermal waves in the medium.
In the next step, we take the finite measurement volume into account, which is in
our case, defined by the spatial profile of the WGM, and we average the thermal
spectrum within this volume. In the one dimensional case the volume is replaced
by a “window” or spatial gate function w(x) and we will now assume three different
geometries to explore the effect of the window shape on the TRN spectrum. In
particular, we consider (i) a Gaussian profile, as it is typically found with WGMs,
(ii) a rectangular profile, and (iii) and an exponential decay that is cut off at one
side to resemble an evanescent field. In all cases, the characteristic length will be
σ, and it shall already be mentioned that the characteristic length leads to a corner
frequency ∼ D/σ2 in the TRN spectrum. A thermal fluctuation with a wavelength
shorter than the geometric width of the window averages to zero, and the associated
frequency is suppressed.

For better intuition we start out with a real space and time definition of the average
temperature within the detection (normalized) window ū(t) =

´
w(x) · u(x, t) dx.

Explicitly we write for the three geometries:

ū(t) =


1√
2πσ

´
dx exp[−x2/2σ2] · u(x, t)

1
2σ

´
dx 1[−σ,σ] · u(x, t)

1
σ

´
dx1[0,∞[ exp[−x/σ] · u(x, t)

(5.11)
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We replace u(x) by its Fourier transform and we switch the order of the x− and
the q−integral. Then the real space integral can be evaluated and yields the Fourier
transform of the window function.

ū(ω) =

ˆ
dxw(x) · u(x, ω)

=

ˆ
dq

2π

ˆ
dxw(x) · e−iqx · u(q, ω)

=

ˆ
dq

2π
wσ(−q) · u(q, ω)

As a reminder we put the window width σ as an index of its Fourier transform.
Explicitly we find:

wσ(q) =


exp[−q2/2]

sin[q]
q

1/(1 + iq)

(5.12)

Finally we calculate the temperature spectral density from the autocorrelation. Note
that the δ-functions consume (2π)−1 each.

Sū(ω) =

ˆ
dω′

2π
〈ū(ω) · ū(−ω′)〉

=

ˆ
dω′

2π

ˆ
dq

2π

ˆ
dq′

2π
wσ(−q) · wσ(q) 〈u(q, ω) · u(−q′,−ω′)〉

=
F 2

0

2π

ˆ
dq |w1(σq)|2 q2

D2q4 + ω2

=
σF 2

0

D

ˆ
dq

2π
|w1(q)|2 q2

q4 + (ω/ωx)2
(5.13)

Here we defined the corner frequency ωx = D/σ2. The integral is now dimensionless
and the spatial gate function behaves as a cut off at |q| ≈ 1. The integral over the
fluctuations yields

ˆ
dω

2π
Sū(ω) =

σωcF
2
0

4πD

ˆ
dq |w(q)|2 = kBT

2/ρcpV. (5.14)

We define the thermal volume V −1
th ≡

´
dq/2π |wσ(q)|2 and such that the integral

over all positive frequencies ω reproduces the temperature variance expected for a
volume Vth (when F 2

0 = 4kBT
2/cpρ).

Figure 5.4 (a) shows that the thermo-refractive noise spectral densities for differ-
ent averaging windows w(x) display different behavior at high frequency beyond
the cutoff. While the Gaussian window drops proportional to ω−2, as reported by
Gorodetsky and Grudinin, the slope of the one sided exponential and the square
window show a slope ∝ ω−3/2, as it was observed by Voss and Clarke. The be-
havior is directly understood from the shape of the gate function in Fourier space
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Figure 5.4.: The TRN spectral density for different geometries. (a) The TRN
spectrum for frequencies ω < ωx is proportional to 1/

√
ω, independent of the shape of

the averaging volume. For high frequencies, exceeding the cut off, the TRN within a
Gaussian window is proportional to 1/ω2, while the average over a rectangular window
and the one-sided exponential display an asymptotic behavior ∝ ω−3/2. (b) This
characteristic difference is understood from the suppression of high spatial frequencies
in Fourier space. Here the Gaussian provides a much sharper cutoff than the sinc-
function (not shown) and the Lorentzian that approach q−2 and thus include higher
frequency components. In the following section we make use of this intuition and
approximate the cutoff by a Gaussian with a Heaviside step function, cutting spatial
frequencies at

√
πσ−1.

|w(q)|2; the Gaussian case shows a sharp drop at σ−1 and higher spatial frequencies
are rigorously suppressed. On the other hand, the Lorentzian and the sinc-function
have an asymptotic tail ∝ q−2 to include higher frequencies of the discontinuity (in
real space). Consequently higher spatial frequencies give rise to the appearance of
higher temporal frequencies in the spectrum. Such sharp transitions at an interface
are naturally much better realized in a metal film. It remains an unanswered ques-
tion, whether sharp transitions and discontinuities in an optical resonator systems,
e.g. originating from largely different thermal diffusivity of water and silica or from
a lipid membrane layer, give rise to an ω−3/2 TRN spectrum.

5.3.2. TRN in three dimensions

Following up on the discussion of the general properties of thermo-refractive noise,
we move to three dimensions and average the temperature fluctuations u(r, t) over
the mode profile of a fundamental WGM. In the last section it was shown that
spatial constraints lead to corner frequencies that are – in the case of a Gaussian
window function – approximated by the expression

νcut off ≈
log 2

2
D · σ−2

FWHM. (5.15)

For a microtoroid we encounter the situation, where the mode width in the radial and
the polar direction ore similar and the associated corner frequencies are therefore
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closely spaced. The table below lists typical dimensions of a fundamental WGM
(the value in parentheses represents is the decay length of the evanescent field) and
shows the corresponding cut off frequencies in silica and water.

direction length (FWHM) νcut off , silica νcut off , water

x: radial 650 nm(84 nm) 700 kHz 7 MHz
y: polar 1435 nm 140 kHz 24 kHz

z: azimuthal ∼ 200µm 7 Hz 1 Hz

By convention, we name the directions {x, y, z} in ascending order from short to
long and denote the characteristic lengths with {σx, σy, σz} (, which are not neces-
sarily the full width half maxima). In our calculation we will show that the TRN
spectrum shows a different ω-dependence within each interval defined by the corner
frequencies. Indeed it was shown by Gorodetsky and Grudinin that the TRN at
frequencies exceeding the νxcutoff is proportional to ω−2 [173]. Below, they found
a ω−1/2 dependence and it is interesting to note that the result display pathologi-
cal behavior when σy → σx, which could be realized in a microtoroid or a wedge
resonator.1

In our analysis, we extend the approach and explicitly take the frequency corner set
by νy into account. We find that the TRN spectrum in the frequency range [νy, νx]
is described by a term ∝ ω−1/2. For lower frequency, in the interval [νz, νy] the noise
“flattens” and is given by a log [1/ω] that approaches a constant DC value. The
finding suggests that thermal noise at low frequency is less intense than predicted
by the ω−1/2 law, which is all the more important for sensing purposes as the relevant
time regime is slower that ν−1

y in silica.

As starting point we chose Equation (9) from reference [173].

Sū(ω) =
4kBT

2D

ρcp

ˆ
d3q

(2π)3

q2 |G(q)|2

D2q4 + ω2
(5.16)

Here G(q) is the Fourier transform of the normalized mode intensity profile.

G(q) =

ˆ
d3r |E(r)|2 exp[iq · r] (5.17)

Integration over all positive frequencies has to go conform with with the temperature
variance inside the averaging volume, given by Equation 5.5.

ˆ ∞
0

dω

2π
Sū(ω) =

kBT
2

ρcp

ˆ
d3q

(2π)3 |G(q)|2 (5.18)

Hence the effective thermal volume is defined by

V −1
th =

ˆ
d3q

(2π)3 |G(q)|2 =

ˆ
d3r |E(r)|4 /

(ˆ
d3r |E(r)|2

)2

. (5.19)
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Figure 5.5.: Dimensional analysis of TRN. (a) The solution to the diffusion
equation is integrated over the reciprocal mode volume (squared). (b) The mode
volume in Fourier space can typically be represented by a flat ellipsoid, when one
direction of the mode volume is much larger than the other two, i.e. σz � σx, σy.
As the frequency dependence of the solution to the integral depends critically on
the symmetry of the integration volume, we split the ellipsoid into three part, i) a
sphere with radius σ−1

z , ii) a disk in 2d with radius σ−1
y and thickness ∝ σ−1

z , and
iii) a 1d cigar with length σ−1

x . (a) The solutions display a different dependency on
ω according to the dimension of the integral, which becomes important for sensing
with microtoroids as the 1d ↔ 2d transition falls right into the kHz regime. Indeed
the flattening of the log-function towards lower frequency, eventually leads to a lower
thermo-refractive noise floor on the time scale of interest.

In the following, we try to find an approximation to the integral in Equation 5.16,
as it is too complex for direct evaluation. To facilitate Fourier transformation and
following our physical intuition, we approximate |E(r)|2 with an ellipsoid. It was
shown above that the actual shape of the averaging volume plays a minor role if we
consider only a time scale slower than the high frequency cutoff. We therefore write
the normalized mode profile

|E(r)|2 = (2π)−3/2 σ−1
x σ−1

y σ−1
z exp [−x2/2σ2

x − y2/2σ2
y − z2/2σ2

z] (5.20)

without any further specification. Then the Fourier transform stays a Gaussian with

|G(q)|2 = exp
[
−
(
q2
xσ

2
x + q2

yσ
2
y + q2

zσ
2
z

)]
(5.21)

⇒
ˆ
d3q |G(q)|2 =

π3/2

σxσyσz
(5.22)

We now approximate |G(q)|2 with a Heaviside step function, which is justified by
the a similar cutoff behavior as it can be seen in Figure 5.4b.

|G(q)|2 ≈ 3
√
π

4
1{q2xσ2

x+q2yσ
2
y+q2zσ

2
z≤1} (5.23)

1The experimental results shown in reference [173] use WGM with |m − l| ≥ 3 in microsphere
resonators, such that σy (polar extension) is significantly greater than σx (radial extension).
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Strictly speaking a Gaussian∝ exp (−x2/2σ2) is best approximated by a Θ (
√
πσ − x),

such that it would be more accurate to replace the length parameter by σi →√
π/2σi. In fact it is this relation, that we used for the approximation of the cut off

frequencies in Equation 5.15. Here we keep the calculation simple and therefore do
the replacement at the very end of the analysis. Yet we chose a prefactor 3

√
π/4 to

preserve the thermal mode volume Vth.
The integral over the blurry Gaussian ellipsoid has now been transformed to an
integral of u(q, ω) on a “solid” ellipsoid. The analytical solution is however still
ridiculously complex and requires further simplification. We will see however that
the frequency behavior of the integral depends critically on the dimension of the
integration volume and it already was already pointed out by Voss and Clarke that
the voltage noise in thin metal films on a glass substrate (2d) differs strongly from
the one found in bulk material (3d) [172].

Figure 5.5 (b) schematically shows the elliptic integration volume, which is usually
flat for a toroid as σz � σx, σy. To catch the entire behavior of the solution we
calculate the integral in Equation 5.16 as the sum of the 3d integral, the 2d integral,
and the 1d integral. To this end we divide the (inverse) integration volume into parts
displaying 3d and 2d symmetry and the rest (˜1d) respectively. We start out with
the approximation and extract the largest volume with three dimensional symmetry
from the ellipsoid and integrate thus over a sphere with radius ∼ σ−1

z .

I3 = 4π

ˆ σ−1
z

0

q4

q4 + ω2/D2
dq (5.24)

≈ 4πσ−1
z (1 + 7/3ω/ωz)

−2 (5.25)

For the first part of the solution we obtain the TRN spectrum of a bulk volume
(with blurry edges) that consists of a plateau and a frequency cutoff ∝ ω−2. In the
next step we integrate over a two dimensional isotropic volume, which consists in our
case of the largest disk (with thickness σ−1

z ) that fits inside the elliptical integration
volume, excluding the interior. Consequently the integral covers radii from σ−1

z to
σ−1
y .

I2 = 2πσ−1
z

ˆ σ−1
y

σ−1
z

q3

q4 + ω2/D2
dq (5.26)

= π/2σ−1
z log

[
ω2
y + ω2

ω2
z + ω2

]
(5.27)

Finally it remains the one dimensional part, where the TRN spectrum is integrated
between [−σ−1

x ,−σ−1
y ] and [σ−1

y , σ−1
x ]

I1 = 2σ−1
z σ−1

y

ˆ σ−1
x

σ−1
y

q2

q4 + ω2/D2
dq (5.28)

≈ 2σ−1
z

(
1− σx

σy

)
(1 + α1ω/ωy)

−1/2 (1 + α2ω/ωx)
−3/2 (5.29)
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The approximation of the last integral is optimized when the two tuning parame-

ters are chosen α1 = 8/π2 and α2 =
(
3πσ−2

x (σ−1
x − σ−1

y )/(σ−3
x − σ−3

y )/
√

8
)3/2

. For
simplicity we consider α1 = α2 = 1 here and the replacement is only done when
computing absolute values of TRN. Notably the asymptotic behavior of the solu-
tion is ∝ ω−2 resulting from the similar cutoff properties of the Gaussian and the
Heaviside function.
In Figure 5.5 (a) the contributions of all three part-integrals are plotted – the full
TRN spectrum would be given by their sum – and it becomes apparent that the
2d integral I2 dominates for small frequency ω < ωx, while the 1d integral I1 de-
termines the behavior at larger frequency and the contribution from the 3d integral
can usually be neglected. Therefore we consider only I1 and I2 in the approximated
temperature spectrum.

Sū(ω) =
kBT

2

ρcpD

3
√
π

8π3
[I2 + I1] (σx, σy, σz, ω) (5.30)

In the above approximation a number of crude approximations on the integration
volume were made. For example the 1d integral was simply multiplied by σ−1

y to
account for the y-extension of the volume, even though the effective width of the
ellipse is π/4σ−1

y . On the other hand the overlaying volume from the sphere with
qy < σ−1

y was not included in the integral at all. We can estimate the total error of
the approximation when calculating the effective thermal volume and comparing to´
d3q/(2π)3 |G(q)|2, which results in the evaluation of the expression.

ζTRN =
3
√
π
´∞

0
dω/2π [I2 + I1] (σx, σy, σz, ω)

D
´
d3q |G(q)|2

(5.31)

In contrast to the TRN spectrum in reference [173] the integral over [I2 + I1] (σx, σy, σz, ω)
converges and obtain a handle to calibrate the spectrum, which results in more ac-
curate absolute values of TRN. To this end we use expression 5.31 as a correction
or scaling factor in Equation 5.30 for more accurate calculations as it is required
to preserve the total temperature fluctuations. Then, e.g. for comparison with a
toroidal microresonator, the inverse mode profile has to be recalculated as the Gaus-
sian approximation in z-direction is not ideal. In particular for a toroid we calculate´
d3q |G(q)|2 = π/Rtoroidσyσx, with the σs defined according to expression 5.20.

5.3.3. Detection limits for cavity based RI sensors

In this section we discuss the practical implications of thermo-refractive noise on
the sensitivity of the sensor. To this end we convert the noise spectral density to an
Allan variance using a relation from reference [174], which corresponds to an average
of the frequency signal within a rectangular gate function.

σ2
t (τ) = π−1

ˆ ∞
0

Stt(ω)
sin4(ωτ/2)

(ωτ/2)2
dω (5.32)
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Then the TRN takes a form that can directly be related to a frequency resolution
of the sensor. For a better physical understanding, we convert the TRN spectral
density piecewise for each frequency interval. Here we start with

Sū,2(ω) =
kBT

2

ρcpD

3
√
π

8π3

π

2σz
ζ−1

TRN log

[
ω2
y + ω2

ω2
z + ω2

]
(5.33)

≈ kBT
2

ρcpD

3
√
π

8π2σz
ζ−1

TRN log
[ωy
ω

]
(5.34)

From the noise spectrum, we obtain the Allan variance by integral transformation
with a rectangular gate function of temporal width τ , according to Equation 5.32.

⇒ σ2
ū,2(τ) =

kBT
2

ρcpD

3
√
π

8π2σz
ζ−1

TRN

π

2

log (πτνy) + γe − 1

τ
(5.35)

Here γe is the Euler constant with the approximate value γe ≈ 0.577. From the
Allan variance of the temperature with in the mode volume we calculate the Allan
deviation of the resonance frequency according to the expression

σδν = n−1 dn

dT

√
σ2
ū ν0 (5.36)

Following the same steps as before we obtain the expression for the TRN at frequen-
cies exceeding νy.

Sū,1(ω) =
kBT

2

ρcpD

3
√
π

8π3

2

σz
ζ−1

TRN

(
1− σx

σy

)
(1 + ω/ωy)

−1/2 (5.37)

≈ kBT
2

ρcpD

3
√
Dπ

4π3σyσz
ζ−1

TRN

(
1− σx

σy

)
1√
ω

(5.38)

And again we transform to the Allan variance.

⇒ σ2
ū,1(τ) =

kBT
2

ρcpD

3
√
Dπ

4π3σyσz
ζ−1

TRN

(
1− σx

σy

)
4
√
π
(√

2− 1
)

3

1√
τ

(5.39)

=
kBT

2

ρcp
√
D

(√
2− 1

)
π2σzσy

ζ−1
TRN

(
1− σx

σy

)
1√
τ

(5.40)

To compare the theoretical results to the noise levels that we recorded with the
microresonator, we numerically evaluate the scaling factor defined in Equation 5.31.

ζTRN = 5 MHz · σ−1
z Rtoroidσyσx/Dπ

Inserting the values for the toroid dimensions and the corner frequencies that were
defined earlier, we find excellent agreement with the recorded noise curves and a
smooth transition between the 2d and 1d TRN contributions.2 In Figure 5.6 we
plot the TRN contributions next to the measured Allan deviation. At the relevant

2The σy coming from the original integration is replaced by
√
D/2πνy, the more accurate corner

frequency.
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time scale for lipid vesicle adsorption (∼ 1 ms) we find a noise floor of 20 kHz, which
decreases to 7.7 kHz at 10 ms. This noise floor constitutes a fundamental limit in
a best case scenario and corresponds to a protein weight of ∼ 220 kDa. Single
molecule detection is therefore only possible at a time scale > 10 ms, where the
TRN contribution drops below 10 kHz.

We note that theory suggests that the thermal noise floor is lowered for WGM with
σx ≈ σy by nearly a factor 2. Higher mode confinement, i.e., shorter σx, σy, does
not influence the noise floor in the log[1/ω] regime.

A question that remains unanswered so far – and that we are not going to answer
here – concerns the correlation between the temperature in the resonator, e.g. in sil-
ica, and the temperature fluctuations inside the volume occupied by the evanescent
field. The physical experience of a cold window suggests that the thermal contact
resistance of a silica water interface is rather low and that there should be con-
siderable correlations. As the coefficient of thermal refraction in water is negative
such correlation could even lead to an overall reduction of TRN. On the other hand
heat convection and water flow could destroy the correlation. The problem becomes
all the more important as the thermal fluctuations in water are considerable. The
calculation would however go far beyond the scope of this thesis and we leave it as
a starting point for future considerations on the sensitivity limits of cavity based RI
sensors.

Noise cancellation scheme

As it was just mentioned, single molecule sensitivity requires a scheme that detects
and eliminates TRN. To achieve this one could implement a scheme based on a dif-
ferential measurement between a sensing mode with a significant evanescent fraction
and a blind mode that is located deeper inside the toroid. Recording the frequency
difference between the two modes will cancel the common noise. The cancellation
can be achieved, because kHz frequency fluctuation in silica typically extend over
the geometric width of the optical mode and one therefore expects significant noise
correlations, even if the modes do not fully overlap. In the hypothetical case that
the thermal RI fluctuation in silica could be completely canceled by a differential
measurement, the TR noise in water would still impose a limit on the sensitivity.
We use the relation (δν/ν) = 3% · (δn/n), where the 3% reflect the responsivity to
a bulk refractive index, to estimate the influence of thermo-refractive fluctuations
in water. For τ = 1 ms we find a noise floor of 3.2 kHz which corresponds to the
maximum shift of a protein with mass ∼ 90 kDa. This is a conservative estimate,
however. Under realistic conditions, one would account for a factor ×1.5− 2 that is
found with small resonators and one would require a signal to noise ratio of at least
3 to identify a single particle event.
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Figure 5.6.: The resolution limit set by thermo-refractive noise. We analyze
the high and low frequency components of the cavity noise. On long time scale,
the noise is dominated by linear drift. Below 1 ms, the noise rises again, which is
an indication for thermo-refractive noise (green curve), proportional to the newly
calculated expression 5.35. The dashed line indicates the ω−1/2 law (Equation 5.40),
which is however not valid at this time scale and starts to dominate at frequencies
exceeding 100 kHz. The blue curve represents data that were taken with the sample
used for the IgG measurements. For a different sample we recorded the Allan variance
down to a gate time of 10µs, which illustrates the proportionality to the thermo-
refractive noise. The drift contribution (red curve) was manually fitted to the data
and does not constitute a fundamental limit. It can be reduced by improved thermal
insulation and active temperature control, such that it might be possible to attain
single molecule sensitivity at a time resolution of 10 ms. The term proportional to
τ1/8 corresponds to the difference between TRN and drift and has yet to be identified.
We note that the TRN contribution is normalized to the total temperature fluctuations
and that the absolute values should be rather exact.
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5.4. Outlook and Summary on Bio-sensing

In summary, we have presented a considerable number of exciting new measurements
in cavity based bio-sensing, with unprecedented precision, and which are comple-
mented by the development of a refined theoretical framework that matches the
accuracy of the data.
The successful experiments are rooted in a careful development of the experimental
setup that was designed from scratch. Milestones of the technical advance include
the design of the inverted flow cell device, the transfer of the tapered fiber to the
FCD, and the convenient technique of sample handling. Further, a fluidic system,
consisting of four interfaced and automated syringe pumps, was installed for deter-
ministic target delivery to the coupling chamber. On the optical side, we set up
a reference laser system to eliminate laser noise from the signal, enabeling mea-
surements with highest precision. Efficient vibrational shielding and decoupling, as
well as the use of low noise electronics, culminate in a record-shattering resonant
wavelength resolution of ∆λ/λ = 7.7 · 10−11 in the acoustic band for a toroidal
microcavity in water.

With such fine-tuned experimental setup at hand, we were able to observe, for the
first time, the temporally resolved absorption and spreading of 25 nm lipid vesicles
on a silica surface. The measurement constitutes ×10 improvement in frequency res-
olution and ×100 improvement in temporal resolution, compared to the state of the
art. Moreover, we were able to observe hundreds of events during one measurement,
which laid the foundation for a meaningful statistical analysis.

To gain a quantitative understanding of the measured frequency shift, and to bring
our data into agreement with the theoretical model, we found it necessary to in-
troduce a correction factor of 1/3 into the existing single particle theory. So far all
the experimental results presented in this thesis are in excellent agreement with the
correction, and moreover, the model withstands re-evaluation of data published by
other groups (cf. appendix B). The theoretical model is universal in a sense that
it applies to other sensor types that rely on the reactive mechanism, and as such it
potentially has a profound impact on the field of sensing.

In another experimental effort, we turned the sensor surface into a bio-compatible
interface by coating it with a single lipid bilayer. Strikingly, we could show that
such functionalization only leads to a minor deterioration of the resonators optical
quality, which is in stark contrast to conventional methods. The applicability and
potential of the technique was demonstrated in a measurement where streptavidin
molecules selectively bind to biotinylated lipids in the membrane, and a quantitative
understanding is gained from comparison of the ensemble frequency shift with the
theoretical model.

Eventually we show that the presence and possibly the dynamics of single molecules,
that are too small to be resolved individually, alters the properties of the frequency
noise during the measurement. In the experiment we observe an increase in the
noise correlation when IgG protein interacts with the evanescent field of the sensor.
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Moreover we show that the frequency resolution of the sensor at different time scales
is reflected by the Allan deviation of the frequency noise in absence of an analyte.

Our understanding of the resonator’s noise properties is corroborated by an in-
depth analysis of the thermo-refractive noise for a toroidal resonator geometry at
low frequency and we found that a previously neglected term dominates TRN in
this regime. Furthermore we confirm that the sensitivity of the device is currently
limited by TRN and frequency drift and we are able to give a well-founded estimate
on the absolute resolution limit.

Taking a step back and viewing our results in the larger field of label-free sin-
gle molecule sensing methods, we notice that recently some research groups have
turned towards ever smaller transducers – such as metallic nanoparticles or car-
bon nanotube wires – and demonstrated impressive experimental evidence of single
molecule resolution. In fact the size of the transducer approaches the size of the
target, and the high sensitivity is founded on an ever smaller mode volume, which
comes, however, at the cost of low optical (or electronic) quality.
Here, we took the opposite approach of a larger mode volume and a high-Q reso-
nance, and we gave a clear demonstration that such sensors likewise hold the po-
tential of single molecule resolution, assuming a precisely controlled experimental
setup and diligent working habits. The results might encourage others to direct
their research in this direction.

Indeed, we believe that our approach will outplay the nano-transducer method on
the long run, as it features a number of critical advantages compared to, e.g., plas-
monic antennas. Importantly, our sensor features a more than 105 times larger
active surface area, which abates the difficulty of target delivery. The surface can be
functionalized without compromising the optical quality, and a biomimetic interface
is established, when the resonator is covered with a single lipid bilayer. In addition,
it is important that our method involves only nanowatts of dissipated power and
therefore exerts little perturbation, which stands in flagrant contrast to plasmonic
and photothermal detection methods, where milliwatts of incident power are in-
volved. Finally, we are able to realize a temporal resolution in the µs-regime, which
has not been demonstrated for nanoparticle transducers.3

As a matter of fact, we have shown that high time resolution – without the need of
several ms to s integration time – turns the one-dimensional information of a single
frequency step into a multi-dimensional picture of the particles movement inside the
detection volume. It is the authors opinion that this is the path to follow, leading
away from proof-of-principle measurements, towards the generation of knowledge in
real-world biological applications.

Already today, a large number of biologically relevant questions can be tackled, uti-
lizing our high-Q resonator, even without single molecule resolution. One has to

3We explicitly exclude highly specific experiments of the type demonstrated in reference [9],
describing the dynamics of a single enzyme attached to a carbon nanotube, which constitute
in fact a class of sensors of their own.
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bear in mind that an improvement of several orders of magnitude compared to the
state of the art, is an immense step forward and does not only allow for more precise
measurements, but it makes a whole new range of experiments accessible. Possible
measurements include binding and spreading of lipid vesicles onto a supported lipid
bilayer, or resolving the interaction of a single virus with a membrane bound recep-
tor. A signal to noise ratio in excess of 100 for an Influenza A virus could reveal
previously invisible details of the binding dynamics.
In addition, the frequency noise spectroscopy technique provides a tool for inves-
tigation of noise in biological systems. A straight forward to realize measurement
could aim at the observation of membrane undulations, possibly as a function of its
phase or in the presence of a second constituent.

At the same time, further improvement of the frequency resolution is possible, all
the more as we have disclosed that thermo-refractive noise at a time resolution of
10 ms does not impose a limit on single molecule sensitivity. It is the authors opinion
that a resolution < 10 kHz (=̂ 300 kDa) can be achieved in the next few years.
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Theoretical cavity optomechanics



6. Cavity opto-mechanics

With this chapter we herald the second part of the thesis. While the first part dealt
with a high finesse optical cavity for the detection of biological targets, we now
study the coupling of an optical cavity mode to a mechanical degree of freedom. A
straight forward implementation of such scheme consists of a Fabry-Pérot cavity with
a movable, harmonically suspended back-mirror. Obviously the length of the cavity
and thus its resonance frequency depends on the position of the mirror. Reminiscent
to the sensing work, the mirror’s motion/displacement is monitored via tracking of
the resonance frequency, however here at much higher frequency. Typically we
deal with mechanical frequencies of a few 100 kHz to some 10 MHz and even up
to the low GHz regime [175]. Compared to a bio-sensing experiment, where the
interaction is monitored over a relatively broad frequency band ranging from DC to
a few 10 kHz (with a few MHz being envisaged), the significantly lower noise level
at high frequency changes the nature of the measurement profoundly.

Secondly we consider the effect of backaction. Not only does the resonance frequency
of the cavity depend on the mirror position, but the reflected light exerts a force on
the mirror. In a photon picture this force can be viewed as a momentum exchange
of 2~k, each time a photon is reflected. Together with the circulating power P	 and
the angular frequency of the light ωp, we calculate the radiation pressure force F rp.

F rp = 2~k
P	
~ωp

= 2P	/c

Here, c is the speed of light, and we further note that the Planck constant ~ cancels,
suggesting that the effect has a classical origin. This is indeed true and there exist
a number of different ways to view radiation pressure, e.g., as the change of stored
electromagnetic energy in response to a small mirror movement or as the Lorentz
force acting on electrons on the mirror surface. Now we can write down the classical
interaction Hamiltonian of the optomechanical system that essentially describes the
energy change associated with a mirror displacement x.

Hint = x · F rp =
~ωp
L

x · n̄	

We replaced P	 with the stored energy inside the resonator divided by the round
trip time in a cavity with length L. The stored energy is expressed in terms of the
average number of circulating photons n̄	, which illustrates that the coupling has a
non-linear character.
In this chapter, we explore the nature of this parametric coupling Hamiltonian, and
we will show that it entails a variety of effects, such as the manipulation of the
mechanical motion via the light field (namely cooling and heating of the mode).
Moreover, a regime of strong coupling exists, where the mechanical mode and the
optical cavity field hybridize, despite their vastly different frequencies.
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Figure 6.1.: Generic opto- and electro-mechanical schemes. (a) A typical
optomechanical scheme consists of an optical cavity with an harmonically suspended
back mirror. For small mirror displacements, the resonance frequency depends lin-
early on the position of the mirror. On the other hand, radiation pressure exerts a
force on the mirror that is proportional to the circulating power. (b) An equivalent
scheme in the electromechanical domain is given by a capacitor with a movable plate..
Inserted in an LC-circuit, the resonance frequency of the device depends on the dis-
tance between the plates. Here backaction results from the attractive force between
oppositely charged plates.

6.1. The optomechanical scheme

During the last couple of years, cavity optomechanical systems that parametrically
couple a driven high-frequency mode to a high-Q, low-frequency mechanical mode
have been subject to increasing investigation [176, 177]. They have been imple-
mented in multiple ways (cf. Figure 6.1). Optomechanical systems have been
demonstrated or proposed that couple the mechanical motion to an optical field
directly via radiation pressure build up in a cavity [178, 179, 180, 181, 182], or
indirectly via quantum dots [183] or ions [184]. On the other hand, in the elec-
tromechanical domain, this has been realized or proposed using devices such as
(superconducting) single electron transistors [185, 186], LC circuits [187], a sapphire
parametric transducer [188], Cooper pair boxes [189, 190], or a stripline microwave
resonator [191].

Importantly, the parametric coupling can not only be used for highly sensitive read-
out of mechanical motion [178] but also by virtue of dynamical backaction be used
to cool the mechanical oscillator. The effect was predicted decades ago by Vladimir
Braginsky [178, 192] and cooling is achieved when the cavity is driven red-detuned
from the resonance, i.e., ∆ = ωp−ω0 < 0. In the so called Doppler regime, where the
electric field inside the cavity decays faster that one mechanical oscillation period,
such detuning leads to a phase lag between the mechanical motion and the radia-
tion pressure force, in a way that F rp counteracts the movement of the oscillator
and effectively leads to damping. Notably the phase lag can be turned around when
pumping blue detuned from the resonance (i.e., ∆ > 0), which results in parametric
amplification [179].
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However this simple picture cannot be sustained for high-Q optical cavities that
feature photon life times in excess of 100 ns, such that a photon inside the cavities
experiences on average several cycles of the mirror motion. Then the notion that the
resonance frequency follows the mirror displacement does not apply anymore and
one needs to switch to a picture where the oscillating mirror modulates the phase of
the reflected photon and creates frequency sidebands, displaced by the mechanical
resonance frequency ±Ωm. Correspondingly this regime where the photon lifetime is
longer than the mechanical oscillation period, is referred to as the resolved sideband
(RSB) regime [193, 176]. Here cooling is achieved when the cavity is driven on the
red-detuned sideband, i.e., ∆ = −Ωm [194, 195]. As the frequency detuning matches
the mechanical resonance frequency, the anti-Stokes process, where a pump photon
consumes a phonon and becomes a resonant photon, is greatly enhanced over the
reverse process.

~ωp + ~Ωm
anti−Stokes

=⇒ ~ω0

~ωp
Stokes→ ~ (ω0 − 2Ωm) + ~Ωm

The imbalance between the Stokes and anti-Stokes scattering rates results in net
cooling of the mechanical mode [181, 180, 182]. The ultimate goal – cooling a me-
chanical oscillator to its motional ground state – has recently been achieved by Teufel
et al. and Chan et al. [196, 197]. For both electro- and optomechanical systems, it
has been shown that ground state cooling is only possible in the resolved sideband
regime (RSB) where the mechanical resonance frequency exceeds the bandwidth of
the driving resonator [198, 199]. This result is analogous to the laser cooling of ions
in the “strong binding” regime [200].

Here we show that the cooling of mechanical oscillators in the RSB regime at high
driving power can entail the appearance of normal-mode splitting (NMS). NMS
— the coupling of two degenerate modes with energy exchange taking place on a
timescale faster than the decoherence of each mode — is a phenomenon ubiquitous
in both quantum and classical physics. A prominent realization occurs when atoms
are coupled to a cavity field, which leads to the splitting of the cavity transmission
into a doublet [201]. In addition to atom-photon interactions, NMS also arises in
exciton-photon and phonon-photon interactions [202]. NMS has also been observed
with “artificial atoms” in circuit QED [203] and single quantum dot cavity QED
[204] settings. In these examples the NMS corresponds to a splitting in the energy
spectrum of the coupled two-mode system which may be accessed via linear response.

In contrast, the optomechanical NMS studied here involves driving two parametri-
cally coupled modes of vastly different frequencies. Hence, as will be discussed fur-
ther below, only in a “shifted” [198] rotating-frame representation does the Hamil-
tonian become analogous to the one characterizing the aforementioned examples.
Concomitantly, the splitting, rather than appearing directly in the cavity transmis-
sion, manifests itself in the fluctuation spectra. This scenario is reminiscent of the
single trapped ion realization of the Jaynes-Cummings model [205] with the role of
the pseudo-spin now played by the optical (or electrical) mode. Since this type of
normal-mode splitting occurs during RSB cooling, we analyze how the onset of NMS
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affects and limits cooling in the RSB regime.
Importantly, NMS coincides with the strong coupling regime, where the energy
transfer rate between the optical field and the mechanical oscillator exceeds the de-
coherence rate. As such the regime is prerequisite for studies of non-classical states
of motion or entanglement in mechanical objects [184, 206, 207, 208, 209].

The strong coupling regime and observation of NMS was recently achieved by sev-
eral research teams [210, 211, 212, 213]. Some of these experimental results are
highlighted in section 6.2.1.

6.1.1. Theoretical model

We start our analysis from the rotating-frame Hamiltonian

Ĥ ′ = −~∆′â†pâp + ~Ωmâ
†
mâm + ~x0Gâ

†
pâp(âm + â†m) + ~(s+âp + s∗+â

†
p)

which provides a unified treatment of both a coherently driven optical and electrical
resonator (frequency ω0) coupled to a mechanical oscillator (frequency Ωm � ωp).
Here x0 =

√
~/2meffΩm is the zero point motion of the mechanical mode, meff its

effective mass, ∆′ the detuning of the drive from ω0, and âm (âp) is the annihilation
operator for the mechanical (optical or electrical) mode. The dependence of the
resonant frequency ω0 on the mechanical oscillator’s deflection x determines the
strength of the coupling via G = dω0

dx
|x=0 . The driving rate is given by |s+| =√

P/~ωpτin, where P denotes the launched input power and τ−1
in is the input coupling

rate.

We derive the Heisenberg equations of motion for the canonical variables and in-
troduce noise operators ξ̂m(t) and ξ̂p(t) weighted with the rates Γm and κ that
characterize, respectively, the dissipation of the mechanical and optical (or elec-
trical) degree of freedom. Subsequently, we shift the canonical variables to their
steady-state values (i.e. âp → α+ âp and âm → β + âm) and linearize to obtain the
following Heisenberg-Langevin equations[199, 207, 214] :

˙̂ap =
(
i∆− κ

2

)
âp − i

gm
2

(
âm + â†m

)
+
√
κξ̂p(t) , (6.1)

˙̂am =

(
−iΩm −

Γm
2

)
âm − i

gm
2

(
âp + â†p

)
+
√

Γmξ̂m(t).

Here, ∆ is the detuning with respect to the renormalized resonance and ∆ < 0 leads
to cooling [198]. The optomechanical coupling rate is given by

gm = 2αx0G ,

which is positive by an appropriate choice for the phase of s+, and |α|2 gives the
mean resonator occupation number. A detailed derivation of the coupled quantum
Langevin equations is given in section 7.3.
In the case of the mechanical degree of freedom, the rotating wave approximation in
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Figure 6.2.: The real and imaginary parts of the eigenvalues are plotted
as a function of the optomechanical coupling rate gm (cf. Equation 6.4 and 6.5).
Here the effective detuning and the energy decay rate are ∆ = −Ωm and κ/Ωm =
0.2. At the bifurcation, i.e. gm = κ/2, the real part of the eigenvalues split into
two branches, signaling the appearance of a double peak spectrum. In contrast, the
imaginary part takes a constant value of Im[ω±] ≈ κ/4, which goes along with a
saturation of the cooling rate. The inset magnifies the resonance shift before the
mode splitting. The background corresponds to the normalized classical displacement
spectrum (contribution ∝ nm, cf. Equation 6.2) and the broadening of the “shadow”
indicates the increased damping of the mechanical mode. Again the saturation of the
cooling in the NMS regime can be observed. The colored dots indicate the coupling
rates where the spectra in Figure 6.3 were taken.

the coupling to its environment implied by Equations 6.1 is only warranted for high
Q values (and small gm/Ωm)[207] — conditions that are satisfied in the parameter
regime of interest for ground state cooling. The latter also requires Γm � κ, which
we will assume throughout our treatment. Equations (6.1) and their Hermitian
conjugates constitute a system of four first-order coupled operator equations, for
which the Routh-Hurwitz criterion implies that the system is only stable for gm <√

(∆2 + κ2/4) Ωm/|∆| ≈ Ωm (if Ωm � κ and |∆| ≈ Ωm).

Here, we follow a semi-classical theory by considering noncommuting noise operators
for the input field, i.e., 〈ξp(t)〉 = 0,

〈ξ̂†p(t′)ξ̂p(t)〉 = n̄pδ(t
′ − t), 〈ξ̂p(t′)ξ̂†p(t)〉 = (n̄p + 1) δ(t′ − t) ,

and a classical thermal noise input for the mechanical oscillator, i.e. 〈ξ̂m(t)〉 = 0,
〈ξ̂†m(t′)ξ̂m(t)〉 = 〈ξ̂m(t′)ξ̂†m(t)〉 = n̄mδ(t

′ − t), in equation 6.1. The quantities n̄m
and n̄p are the equilibrium occupation numbers for the mechanical and optical (or
electrical) oscillators, respectively. We transform to the quadratures (i.e., x̂/x0 =
âm + â†m) and solve the Langevin equations in Fourier space [199]. Thus we recover
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a steady-state displacement spectrum [214] given (for n̄p = 0) by

Sxx(Ω) =
x2

0

2π
Ω2
m|χeff (Ω)|2

[
Γmn̄m −

∆2 + Ω2 + κ2/4

2∆Ωm

Γs(Ω)

]
with the effective susceptibility

χ−1
eff (Ω) = Ω2

m + 2ΩmΩs(Ω)− Ω2 − iΩ [Γm + Γs(Ω)] (6.2)

Ωs(Ω) =
g2
m

4

[
Ω + ∆

(Ω + ∆)2 + κ2/4
− Ω−∆

(Ω−∆)2 + κ2/4

]
Γs(Ω) =

g2
m

4Ω

[
Ωmκ

(Ω + ∆)2 + κ2/4
− Ωmκ

(Ω−∆)2 + κ2/4

]
. (6.3)

This spectrum is characterized by a mechanical susceptibility χeff (Ω) that is driven
by thermal noise (∝ n̄m) and by the quantum fluctuations of the radiation pressure
(quantum backaction). The latter will be discussed in detail in chapter 7. In linear
cooling theory the susceptibility is approximated by evaluating the terms Γs(Ω) and
Ωs(Ω) at the (bare) mechanical frequency [180, 182, 215]. Then Γs(Ωm) coincides
with the cooling rate and is linear in the input power (g2

m ∝ P ). In Equation 6.3 the
cooling rate is written in a way that highlights its origin as the difference between
the Stokes and anti-Stokes scattering rate.

6.2. Parametric normal mode splitting

The above approximation is only adequate for weak driving such that gm � κ [198,
199]. To obtain an understanding of the mechanical susceptibility beyond this linear
regime, we return to the linearized quantum Langevin equations (cf. Equations 6.1)
and calculate the corresponding eigenfrequencies that determine the dynamics of
the system. Though there exists an analytical solution, it is rather opaque and does
not provide physical insight, so that we will use instead an approximation scheme
appropriate for the parameter regime relevant for the observation of NMS and to
attain ground state cooling. Along these lines, we focus in the following on: (i)
the RSB regime (κ . Ωm/2) necessary for ground state cooling [198, 199, 194],
(ii) optomechanical coupling gm . Ωm/2, and (iii) δ2 � Ω2

m (δ ≡ −∆ − Ωm, the
frequency detuning from the lower sideband). For experiments operating in the
deeply resolved sideband regime these constraints are typically met.

In the shifted representation – corresponding to Equation 6.1 – the relevant part of
the parametric interaction in Hamiltonian H ′ is described by an effective dipole-like
interaction term, i.e.

~x0Gâ
†
pâp(âm + â†m)→ ~gm

2
(âp + â†p)(âm + â†m)



104 6. Cavity opto-mechanics

b

0.0

0.5

1.0a

S
pe

ct
ra

l D
en

si
ty

 (a
.u

.)

0.4

0.2

0.0

-0.2

-0.4
0.5 0.75 1.0 1.25 1.5 0.6 0.8 1.0 1.2 1.4 1.6

N
or

m
al

iz
ed

 D
et

un
in

g

Normalized Frequency Normalized Frequency
0

0

Sφφ(Ω)

Sxx(Ω)

Ω/ΩmΩ/Ωm

δ/
Ω

m

Figure 6.3.: Parametric normal mode splitting. (a) Normalized logarithm
of the classical displacement spectrum (contribution ∝ n̄m in Equation 6.2) as a
function of the normalized detuning from the lower sideband, plotted for coupling
rate gm/Ωm = 0.4 that exceeds the energy decay rate κ/Ωm = 0.2 by a factor two.
Scanning the drive laser over the red sideband gives rise to an avoided crossing when
the condition for resonant sideband cooling is met (i.e. δ = 0). (b) The lower panel
shows a series of mechanical displacement spectra for the coupling rates that are given
by the dots in Figure 6.2 (i.e. gm/κ = {0.6, 0.7, 0.8, 1.5, 2}). The curves in the upper
panel correspond to the phase spectral density Sφφ(Ω) that is recorded from the output
fluctuations in a homodyne detection setting.

after neglecting the nonlinear term. This interaction term is analogous to the Jaynes-
Cummings setting (with âp → σ̂−) and naturally leads to resonance splitting when
the modes have matching frequencies. When we neglect the off-resonant counter-
rotating terms (CRT) ∝ â†pâ

†
m, âpâm, we obtain a simplified interaction

~gm
2

(âp + â†p)(âm + â†m)→ ~gm
2

(
â†mâp + â†pâm

)
and the eigenvalues of the corresponding system of equations are readily calcu-
lated analytically (i.e., ω

(0)
± in Equation 6.4). The counter rotating terms that were

neglected here are however known to induce a small frequency shift analogous to
the Bloch-Siegert shift in atomic physics [216]. These CRT, which are responsi-
ble for the mixing between the creation and annihilation operators in the quantum
Langevin equations 6.1, can be treated in perturbation theory within the parameter
range defined by (i)-(iii). The first non-vanishing order in this perturbative expan-
sion is quadratic in the CRT and yields a correction to the decoupled eigenvalues
ω± ≈ ω

(0)
± + ω

(2)
± (note that we take Γm = 0 in ω

(2)
± ):

ω
(0)
± = Ωm +

δ

2
− iκ+ Γm

4

± 1

2

√
g2
m − (κ/2− Γm/2 + iδ)2 , (6.4)

ω
(2)
± ≈−

g2
m/4

2Ωm + δ ±
√
g2
m − (κ/2 + iδ)2)

. (6.5)
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Naturally, there is another pair of eigenfrequencies given by −ω∗±. In Figure 6.2,
the real and imaginary parts of the eigenvalues are plotted. The inset shows the
frequency shift (ω

(2)
± ) due to the CRT. If we choose the value δ = 0 (i.e., ∆ = −Ωm)

relevant for κ� Ωm (see below) and neglect Γm, the square root term of ω
(0)
± leads

to two regimes. While for gm < κ/2 the term is fully imaginary and modifies the
decay rate of the modes, for gm > κ/2 it becomes real instead and the real parts
of the eigenfrequencies exhibit the splitting that signals NMS (cf. Figure 6.3). The
latter is associated to a mixing between the mechanical mode and the fluctuation
around the steady-state of the resonator field. Classically, this fluctuation can be
understood as a beat of the pump photons with the photons scattered on resonance,
which leads to oscillations with frequency |∆| in the intensity time-averaged over
2π/ωp.

For κ2/4 � g2
m the splitting (≈ gm) is proportional to the square root of the mean

cavity photon number (α2). This is analogous to NMS in atomic physics where the
splitting of the cavity resonance is proportional to the square root of the number of
atoms coupled to the cavity mode [201]. When detecting the phase fluctuations in
the transmitted light with a homodyne detection scheme, the signal at Ωm splits (cf.
Figure 6.3b), but the (suppressed) scattered light at the carrier frequency exhibits
no splitting. It is important to note that the splitting in the displacement spectrum
is not observed unless gm > κ/

√
2 , owed to the finite width of the peaks.

Due to the requirements on the cavity bandwidth and the detuning, the parameter
regime in which NMS may appear implies cooling. In turn, for a positive detuning
(which entails amplification) the observation of NMS is prevented by the onset of the
parametric instability [179]. Therefore, a discussion of NMS cannot be decoupled
from an analysis of the associated cooling. We also show below that the CRT in the
interaction lead to the quantum limit of backaction cooling [199, 198].

6.2.1. Experimental observation of parametric normal mode
splitting

Shortly after the publication of the results presented in the previous section (cf.
reference [2]), parametric NMS was observed by Gröblacher and co-workers [210].
The authors grew a reflective mirror pad on a doubly clamp beam with a vibrational
frequency of Ωm = 2π× 947 kHz. The oscillating mirror formed one end of a 25 mm
Fabry-Pérot cavity with a finesse of 14, 000 corresponding to an energy decay rate
of 215 kHz and thus being well within the RSB parameter regime. Using a strong
driving laser beam of ∼ 10 mW, the authors could achieve optomechanical coupling
rates up to gm ≈ 2π × 460 kHz and observe optomechanical normal mode splitting.

Likewise Teufel and co-workers achieved strong coupling with an electromechanical
device [211, 212]. The authors used a drum-like, deformable capacitor, coupled to
a microwave resonator with resonance frequencies of Ωm = 2π × 10.69 MHz and
ω0 = 2π× 7.5 GHz respectively. The microwave resonator feature a total decay rate
of κ = 2π × 170 kHz, which corresponds to a sideband resolution of Ωm/κ ≈ 63.
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As a result of the low loss rate, compared to the mechanical resonance frequency,
normal mode splitting can be very well resolved in the system.
On the other hand we will show in the following section that the very same feature
limits the cooling performance of the device.

6.3. Dynamical backaction cooling

In this section we use the approximate eigenfrequencies to perform contour inte-
gration on the normal ordered mechanical spectrum in order to obtain the final
occupancy of the mechanical oscillator

nf = 〈â†m(τ)âm(0)〉
∣∣
τ=0

. (6.6)

In this treatment we take both the thermal and the vacuum noise of the driving
resonator into account. A finite value for n̄p may be relevant for electromechanical
systems, considering that 1 GHz=̂50 mK [187, 191].
Within our approximation scheme we can introduce a formal parameter that tags
the CRT and expand nf in its powers. To zeroth order the poles are determined

by the approximate eigenfrequencies ω
(0)
± ,−ω(0)∗

± given in Equation 6.4, and it is

straightforward to evaluate n
(0)
f (including Γm). To second order we use instead

the poles ω
(0)
± + ω

(2)
± ,−ω(0)∗

± − ω
(2)∗
± . Subsequently, n

(2)
f is expanded in the small

parameters gm/Ωm, κ/Ωm, and |δ|/Ωm up to second order with Γm → 0. Both n
(0)
f

and n
(2)
f do not contain terms linear in δ, allowing one to directly minimize the result

with respect to δ by setting δ → 0. This yields

n
(0)
f = n̄m

Γm
κ

g2
m + κ2

g2
m + Γmκ

+
g2
m

g2
m + Γmκ

n̄p , (6.7)

n
(2)
f = n̄m

Γm
κ

g2
m

4Ω2
m

+

(
n̄p +

1

2

)
κ2 + 2g2

m

8Ω2
m

. (6.8)

The final occupancy nf = n
(0)
f + n

(2)
f consists of three contributions. One is pro-

portional to the occupancy of the thermal bath n̄m and displays linear cooling for
Γm � gm � κ, i.e., nf ≈ Γm

g2m/κ
n̄m. When gm approaches κ, deviations from the lin-

ear cooling regime become apparent. Indeed, the final occupancy is always limited
by nf & n̄m

Γm
κ

, which implies that the largest temperature reduction is bound by
the cavity decay rate κ 1. This is equivalent to the condition

Qm > n̄m
Ωm

κ

for ground state cooling. It is noted that operation in the deeply RSB regime is
advantageous to avoid photon-induced heating [194], entailing that the condition on
the mechanical Qm is therefore more stringent.

1Note that n
(0)
f follows from the classical rate equations for two resonant oscillators (frequency

Ωm) connected, respectively, to two reservoirs at temperatures Tm and Teff = TmΩm/ωp via
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Figure 6.4.: Dynamical backaction cooling of a mechanical mode. The final
occupancy of a dynamically cooled mechanical mode is plotted for different parameter
settings. On the left hand side the initial thermal occupancy of nm = 100 is in principle
sufficient to cool the mechanics below one phonon to its quantum ground state. Here
a finite “temperature” of the drive limits nf . For a quantum limited drive, i.e., np = 0,
the minimum is defined by the so called quantum limit κ2/16Ω2

m. On the right hand
side a higher initial temperature of the mechanics shows a different behavior. Here
it is the cavity decay rate κ that sets the cooling limit via nf ≥ nmΓm/κ. This
is exemplified by the rise of nf towards smaller values of κ/Ωm, i.e., deeper in the
RSB regime. It is interesting to note, that it any case there exists an optimal cavity
bandwidth κ that allows for maximum cooling.

A second contribution is proportional to the finite occupancy of the driving circuit
(n̄p) and corresponds to heating from thermal noise in its input. It implies that it is
impossible to cool below the equilibrium occupation of the resonator. If we assume
that the mechanical and electromagnetic baths are at the same temperature Tm, it
entails nf ≥ n̄m

Ωm
ωp

. Last, there is a term in n
(2)
f that is temperature-independent

and corresponds to heating from quantum backaction noise. This term determines
the quantum limit to the final occupancy and agrees with references [199, 198].
Interestingly, in the present analysis the quantum limit arises from the CRT. We note
that the trade-off between the quantum limit and the cavity bandwidth limitation
leads to an optimal value for κ. Consistent results are obtained with a covariance
matrix approach [1].

Finally, we consider appreciable cooling (nf � n̄m so that we can take Γm → 0 in

the denominator of Equation 6.8) and optimize n
(0)
f +n

(2)
f with respect to gm, which

yields

nopt ≈ n̄m
Γm
κ

+ n̄p +
κ2

16Ω2
m

+

√
n̄mΓmκ(n̄p + 1/2)

Ω2
m

(6.9)

at the coupling rate

gopt = 4

√
4n̄mΓmκΩ2

m/[n̄p + 1/2 + n̄mΓm/κ]).

rates Γm and κ (Γm � κ), and coupled via heat diffusion with a rate g2
m/κ. In this picture, the

deviation from linear cooling corresponds to heat diffusion from the cavity to the mechanical
oscillator.
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In the ground state cooling regime, the first three terms of Equation 6.9 always
give the correct order of magnitude. Thus, a comparison of gopt with the condition
gm > κ/2 implies that optimal ground state cooling leads to NMS only when the
thermal noise (cf. first term in Equation 6.9) is at least comparable to the quantum
backaction noise (cf. third term in Equation 6.9).
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In the last chapter, we discussed the coupling between a mechanical oscillator and
an optical cavity mode and showed how the motion of the mechanics can be ma-
nipulated via the light field. Here we extend these considerations to the question
how the motion of the mechanical oscillator can actually be measured and how its
spectrum is contained in the output fluctuations (e.g. phase and amplitude fluctua-
tions) of the cavity. Indeed the photon shot noise of the light entering (and leaving)
the cavity imposes a measurement imprecision, which can be expressed as an equiv-
alent displacement spectral density Simp

xx (Ω). As a function of the input power, the
measurement imprecision manifests a minimum – the so called standard quantum
limit (SQL) – where the highest possible readout sensitivity is achieved. Beyond
the SQL, the driving of the mechanics from shot noise dominates over the the noise
background that is likewise set by photon shot noise.

In this chapter we present a quantum Langevin (QL) approach that describes mul-
tiple cavity modes and that allows us to separate the measurement imprecision by
its different contributions. We apply the approach to a three resonance transducer
(3RT) that relies on three optical resonances coupled to a single mechanical oscil-
lator and where a resonant setting is established, when the spacing of the modes
matches the resonance frequency of the mechanics. It is shown that the input power
required to reach the SQL (or to reach a given sensitivity before the SQL) can be
drastically reduced compared to a single resonance transducer (1RT). Cooling in a
two mode scheme is also considered.

Finally we reassess the case of optomechanical cooling and show how the mechan-
ical signal is transduced when the drive is detuned from resonance. In a compact
presentation we summarize the most important result, namely that (i) the detuned
readout of the motion does not constitute an ideal quantum measurement (accord-
ing to Caves) such that the imprecision at the SQL is higher than for a resonant
readout and (ii) that the ground state displacement uncertainty of the mechanics is
established by the quantum properties of the light field.

The chapter starts with a presentation of the major results, reciting reference [3],
which is followed by a derivation of the multi-mode quantum Langevin equations
and the Gardiner-Collet input-output formalism extended to multiple modes. Next
the Heisenberg-Langevin equations (HLE) are solved following a general treatment,
which is complemented by its direct implementation in Mathematica code in Ap-
pendix E. Evaluation of the code enables the reader to recalculate the results of
this chapter (as well as of reference [3] ) and to explore the settings beyond their
presentation here.
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7.1. Theoretical analysis of mechanical displacement
measurement using a multiple cavity mode
transducer

High frequency nano- and micro-mechanical oscillators have received a high degree
of attention recently. They have been used as sensitive detectors, e.g. for spin [217]
or particle mass [218], but also carry an intrinsic interest in the study of small scale
dissipation of mechanical systems [219], quantum limited motion detection [220],
and backaction cooling of vibrational modes [176, 197, 196]. These studies have in
common that a sensitive motion transduction is required, which can be implemented
by parametric coupling to an optical, electrical, or microwave resonator. The ideal
transducer should (i) have a high sensitivity and possibly operate at the standard
quantum limit , and (ii) should operate at low power. The latter is experimen-
tally advantageous, as high power may cause excess heating due to intrinsic losses.
The former pertains to the minimum uncertainty in motion detection and arises
from the trade off between measurement imprecision, inherent to the meter (i.e.,
detector shot noise), and (for linear continuous measurements) inevitable quantum
backaction (QBA) [221, 222]. These processes are characterized by the displace-
ment spectral density S̄xx(Ω) and the QBA force spectral density S̄FF (Ω).1 For a
parametric motion transducer, where a single cavity mode (with frequency ωp and
energy decay rate κ) is parametrically coupled to a mechanical oscillator [178], the
spectral densities are given by

S̄xx(Ω) =
κ2~ω0

64G2P

(
1 +

4Ω2

κ2

)
(7.1)

S̄FF (Ω) =
16~G2P

κ2ω0

(
1 +

4Ω2

κ2

)−1

.

Here P is the input power and the optomechanical coupling strength is determined
by the cavity frequency shift due to mechanical displacement: G = dω0

dx
. Equations

7.1 satisfy
√
Simpxx (Ω)SqbaFF (Ω) ≥ ~/2, which is a consequence of the Heisenberg un-

certainty principle [223]. The canonical way to lower the power to reach the SQL
is to increase the cavity finesse, i.e., decreasing κ. However, Equation 7.1 reveals a
fundamental deficiency: decreasing κ for fixed P only improves readout sensitivity
as long as the mechanical signal (frequency Ωm) lies within the cavity bandwidth,
i.e., Ωm < κ, while for Ωm > κ the displacement sensitivity experiences saturation.
Physically this phenomenon is readily understood; the mechanical motion modu-
lates the cavity field and creates motional sidebands at ω0 ± Ωm, which constitute
the readout signal. For κ � Ωm, i.e., in the resolved sideband regime (RSB), the
sidebands (and therefore the signal) are suppressed. This regime has recently been
subject to experimental investigation [194, 220]. Here we present a readout scheme
where this fundamental limitation is overcome, by placing two auxiliary cavity res-
onances at ω0 ± Ωm around the central, driven resonance (cf. Fig. 7.1). This

1The bar denotes a symmetrized spectral density: S̄(Ω) = 1/2 (S(Ω) + S(−Ω)).
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Figure 7.1.: Illustration of the triple mode transducer scheme. The motion
of a mechanical mode that is linearly coupled to an optical cavity mode is translated
into phase fluctuations at ωp±Ωm when the cavity mode is driven on resonance. The
effect can be viewed as Stokes and anti-Stokes scattering of pump photons. However,
when the mechanical resonance frequency Ωm exceeds the cavity linewidth κ, the
scattering is strongly suppressed by the cavity cutoff. Introducing additional optical
resonances at ωp ± Ωm can overcome this deficiency and permits resonant motional
side band build-up. In the figure the red curve represents the optical spectrum with
the narrow drive on resonance with the central mode and the sidebands reflecting the
motion spectrum of the mechanical oscillator.

enables resonant side band build-up and causes a substantial decrease in the power
required to reach the SQL. Moreover, we show that this scheme, when applied to
the case of two resonances, can lead to quantum backaction interference, without
the requirement of having a dissipative parametric coupling [224].

We start our analysis with a presentation of the theoretical framework, to describe
multiple cavity modes parametrically coupled to a mechanical degree of freedom,
which is characterized by its frequency Ωm and effective mass meff . This model cov-
ers a wide range of experimental implementations on both nano- and microscale, as
well as in the optical and electrical domain. The cavity features several equidistant
modes at frequencies ωk = ω0 +k ·Ω̄ (k ∈ Z), described by the annihilation(creation)
operators âk (â†k), where Ω̄ denotes the spacing between adjacent modes. A driv-
ing field at frequency ωp (input power P ) is coupled to the central cavity mode.
Furthermore the optical modes are parametrically coupled to the mechanical degree
of freedom, âm (â†m) and zero point motion x0 =

√
~/2meffΩm, via the interaction

Hamiltonian [225]

Ĥint = ~x0

∑
k,l

Gâ†kâl(âm + â†m). (7.2)

The geometric factor, coming from the mode overlap integral, is assumed (for sim-
plicity) to be unity. Cavity damping is modeled by coupling the cavity modes to a
harmonic oscillator bath via the damping Hamiltonian

Ĥdamp = i~
∑
k

ˆ +∞

−∞
dω
[
g∗k(ω)b̂ωâ

†
k − gk(ω)âkb̂

†
ω

]
. (7.3)
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The bath operators obey the commutation relations [b̂ω, b̂
†
ω′ ] = δ(ω − ω′). In the

following we will consider a classical harmonic oscillator characterized by the position
q̂ = x0(âm + â†m) and damping rate Γm. This treatment is justified, as we are solely
interested in the transduction properties of the cavity, and the quantum backaction
coming from the quantized nature of the field.

We eliminate the bath in the Markovian limit [226] setting gk(ω) =
√
κ. Surprisingly

the damping Hamiltonian does not only couple the cavity modes to the dissipative
bath, but also couples the modes among each other via the reservoir dynamics (cf.
Equation 7.4). This off-resonant interaction is well known in laser theory (where it
is responsible for Petermann excess noise [227]), but has (to the authors knowledge)
never been applied to the context of opto- or electromechanics.
In the next step, we derive the Heisenberg-Langevin equations (HLE) for the optical
modes, where the classical drive is eliminated by moving to a rotating frame at the
drive frequency and subsequently transforming to the general quadrature fluctua-
tions X̂k,θ ≡ e−iθ(âk−〈âk〉)+eiθ(â†k−〈â

†
k〉). We emphasize, that choosing one global

rotating frame for all modes is essential, as it enables us to treat off-resonant inter-
action terms (to first order). These are known to account for quantum limits [2].
Explicitly the linearized HLE for the canonical quadrature fluctuations X̂k = X̂k,θ=0

and Ŷk = X̂k,θ=π/2 are

d

dt
X̂k = −k · Ω̄Ŷk −

κ

2

∑
l

X̂l +
√
κδX̂ in[t]

d

dt
Ŷk = k · Ω̄X̂k −

κ

2

∑
l

Ŷl + gmq̂[t]/x0 +
√
κδŶ in[t]

d2

dt2
q̂ = −Γm

d

dt
q̂ − Ω2

mq̂ + x0gm
∑
l

X̂l. (7.4)

Solving for the canonical quadratures allows us to transform to the θ-dependent
general quadrature. The global phase of the input field is chosen in the way that
ᾱ = Σ〈âj〉 and the optomechanical coupling rate gm = 2Gx0ᾱ are real.2 The noise

operators in the HLE are δ-correlated: 〈δX̂ in[t]δX̂ in[t′]〉 = 〈δŶ in[t]δŶ in[t′]〉 = δ(t−t′),
〈δX̂ in[t]δŶ in[t′]〉 = 〈δŶ in[t]δX̂ in[t′]〉∗ = ıδ(t− t′). We can account for intrinsic cavity
loss by introducing a second loss channel in Equations 7.4, characterized by the
internal loss rate κ0. It will appear in the results as the degree of overcoupling
ηc = κ0/κtot, with κtot being the total cavity decay rate.3 For multiple cavity
modes, the output quadrature fluctuations are given by a generalized input-output
relation [228]

X̂out
θ + X̂ in

θ =
√
κ
∑
k

X̂k,θ (7.5)

2This is always possible for a non-squeezed input field.
3In the limit of overcoupling, ηc → 1.
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Figure 7.2.: The measurement displacement imprecision spectrum. The
vertical plane shows the measurement imprecision Simp

xx,θ=π/2(Ωm) (normalized to its

value at the SQL Simp
xx

∣∣∣
SQL

(Ωm) = ~|χ0(Ωm)|). With increasing input power the

shot noise background decreases until – beyond the SQL – quantum backaction starts
to dominate and leads to an increase of measurement imprecision. In the resolved
sideband regime (here κ = Ωm/10) the SQL is reached at lower input power when
triple cavity mode transducer (3RT) is used instead of a single mode transducer (1RT).
In the horizontal plane the power at the SQL is plotted as a function of the “sideband
resolution” (∝ κ/Ωm). In the Doppler limit, where the three resonances of the 3RT
overlap, the power to reach the SQL is the same in both cases, however at an overall
higher level. We note that the dissipative coupling terms in Equation 7.4, which are
treated in detail in section 7.2.2, ensure the correct description of overlapping cavity
modes.

Triple mode transducer

Having introduced the theoretical model, we calculate the output spectrum of a
cavity with three optical modes, spaced by the mechanical resonance frequency, i.e.
Ω̄ = Ωm. When the central resonance is driven, side bands at ω0±Ωm, that encode
for the mechanical motion, build up efficiently (cf. Figure 7.1) and signal to noise
is enhanced.

From Eqs. 7.4 we calculate the quadrature fluctuations in Fourier space. Using
the multi-mode input-output relation (Equation 7.5), the spectrum of the output
fluctuations is derived. Importantly the off-resonant reservoir coupling terms (∝ κ/2
in Equations 7.4) preserve a flat shot noise spectrum for the decoupled (gm = 0)
cavity. The measurement noise spectrum Simp

xx,θ(Ω) = Sxx,θ(Ω) + |χ0(Ω)|2 SFF (Ω)
is obtained by scaling the output fluctuations to the mechanical signal [229]. The
classical motion of the mechanical oscillator, characterized by its bare susceptibility
χ0(Ω), is not affected by the coupling, as dynamical backaction effects are absent
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[230]. The shot noise background is given by

Striple
xx,θ (Ω) =

1

sin2 θ

x2
0κ

ηcg2
m

(
1 +

4Ω2 (Ω2
m − Ω2)

2

κ2 (Ω2
m − 3Ω2)2

)
. (7.6)

The sensitivity is maximized for θ = π/2, implying that the information on the me-
chanical signal is encoded in the phase quadrature. Comparing Striple

xx,θ (Ω) to the single
resonance transducer, we note that the transduction properties of a low frequency
signal remain unchanged, i.e., Ssingle

xx,θ (0)/Striple
xx,θ (0) = 1. However the sensitivity at

the mechanical resonance frequency is dramatically increased

Ssingle
xx,θ (Ωm)/Striple

xx,θ (Ωm) = 1 +
4Ωm

κ2
. (7.7)

For systems that operate well into the RSB regime, such as toroidal microresonators
[194] or superconducting microwave resonators [220], this factor is more than ×100
and thus represents a major reduction. Based on the Heisenberg uncertainty princi-
ple for continuous position measurements, one expects that the enhanced sensitivity
also implies an increased quantum backaction force spectral density. Physically
these can be viewed as the beat of the carrier (at ω0) with vacuum fluctuations at
ω0 + Ωm, which resonantly heat the mechanical oscillator. The radiation pressure
force fluctuations are given by

δF̂ rp[Ω] =
~gm
2x0

∑
k

X̂k[Ω]. (7.8)

Indeed, in the same way, that the shot noise is reduced, the backaction force spec-
tral density Striple

FF (Ω) is increased, and the Heisenberg limit of the single resonance
transducer is recovered. √

S̄triple
xx,θ=π/2(Ω) · S̄triple

FF (Ω) =
~

2
√
ηc

. (7.9)

We emphasize that the recovery of the Heisenberg limit is a consequence of the
off-resonant coupling. Moreover, the triple transducer has the significant advantage
over a single cavity mode transducer that the SQL is reached at substantially lower
power: P single

SQL /P triple
SQL ≈ 4Ω2

m/κ
2 .4 Moreover, the enhanced QBA itself can be a

valuable resource. Indeed, many quantum optomechanical experiments rely on QBA
to be the dominant force noise, such as in experiments relating to ponderomotive
squeezing [231] or two beam entanglement [206].

Dual mode scheme

Within the framework of the multi-mode transducer theory, we can also consider
the situation of two resonances, spaced by the mechanical resonance frequency [232,

4We note, that the mixing term Striple
xF,θ (Ω) is odd in Ω for θ = π/2 and therefore disappears in

the symmetrized spectrum.
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Figure 7.3.: The normalized quantum backaction force spectral density
Sdual
FF (Ω)/Sdual

FF (+Ωm) (thick solid line) is plotted together with the result from a clas-
sical model (thick dashed line). The thin dashed lines correspond to the contributions
from the single (uncorrelated) modes. The reservoir interaction between the modes
leads to complete noise cancellation at Ω = Ωm/2. Here pumping at Ω = 0 (in a
rotating frame at ωp) leads to dynamic backaction cooling of the mechanical mode.
The quantum limit is a result of the quantum backaction force spectral density and
can be expressed as Sdual

FF (−Ωm)/Sdual
FF (+Ωm). In the case of a single resonance this

leads to the previously calculated κ2/16Ω2
m. In the case of two resonance Sdual

FF (−Ωm)
is ×9 larger than for the single mode and the quantum limit is thus 9κ2/16Ω2

m.
Interestingly the exists a complete extinction of quantum noise at a frequency exactly
between the two optical resonances. We construct a case where Sdual

FF (−Ω̃m) is eval-
uated at this root and imagine a mechanical oscillator with Ω̃m = Ωm. Driving the
system nominally at 0.25 (indicated by the circle) creates exactly the situation where
the quantum limit amounts to zero. A finite linewidth of the mechanical mode and
the resulting overlap, lead however to a non-zero, i.e. power depended, limit.

233]. The situation differs from the triple mode scheme, as only the anti-Stokes
process is resonantly enhanced by pumping the lower frequency mode. This results
in net cooling of the mechanical degree of freedom, because every scattering process
annihilates one phonon.5 Then the response to an external force, e.g. a thermal
Langevin force, a signal force, or quantum Langevin forces, is suppressed as a result
of the damped mechanical motion. Consequently the transduction properties are
not ideal.
Next, we calculate the QBA spectral density from Equation 7.8.

Sdual
FF (Ω) =

~2

x2
0

g2
mκ(Ωm − 2Ω)2

4(Ωm − Ω)2Ω2 + κ2(Ωm − 2Ω)2
(7.10)

Then an estimate for the final occupancy of the mechanical mode nf =
〈
â†mâm

〉
is

given by the quantum noise approach [222]. Unexpectedly, compared to the single
resonance dynamical backaction cooling [199, 198], the quantum limit increases by

5On the other hand, pumping the higher frequency mode results in amplification.
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a factor of ×9.

nf
nf + 1

=
Sdual
FF (−Ωm)

Sdual
FF (+Ωm)

,⇒ nf ≈ 9
κ2

16Ω2
m

(7.11)

This is understood from the constructive quantum noise interference at Ω = −Ωm

(cf. Figure 7.3, (
√

1 +
√

4)2 = 9). However, the QBA spectrum in Figure 7.3 reveals
an additional, striking feature. At Ω = Ωm/2 the quantum noise exactly cancels.
This is a direct consequence of the reservoir coupling terms in Eqs. 7.4. Omitting
these terms yields a classical interference pattern, shown by the thick dashed curve
in Figure 7.3. The shape of the QBA spectrum suggests to tune the mode spacing to
Ω̄ = 4Ωm and drive the cavity on the red wing of the upper resonance (cf. Figure 7.3,
black circle). Then the heating term vanishes, i.e., Sdual

FF (−Ωm) = 0 (in the rotating
frame). However, an exact analysis, using a covariance approach [1], reveals that
finite line width effects lead to a power dependent quantum limit, i.e. nf ≈ 2g2

m/Ω
2
m.

As the cooling rate saturates, when gm approaches κ/2, one can find an upper limit
for nf by assuming gm < κ/2 [2]. The same analysis for the canonical two mode
cooling yields nf ≈ (9κ2 + 14g2

m)/16Ω2
m.

With respect to the transduction properties of the dual scheme we note, that in
cooling experiments the QBA is not viewed as additional measurement noise (as for
the 3RT), but contributes the signal itself. This is corroborated in the case of ground
state cooling, where the field fluctuations conserve the zero point fluctuations of the
mechanical oscillator, independently of its quantum nature.

Experimental implementation

The experimental challenge in the design of a multi-mode transducer lies in matching
the cavity mode spacing with the resonance frequency of the mechanical oscillator
without adding additional damping. The canonical setup is a Fabry-Pérot cavity
where the free spectral range matches the resonance frequency of the harmonically
suspended back mirror. However difficulties might arise from differing mode overlap
integrals. These challenges can be circumvented in a more general way, adaptable
to optical, electrical, and microwave domain.

As illustrated in Figure 7.4, three degenerate cavity modes {â, b̂, ĉ} are coupled

in series via the linear interaction ~gc
[
b̂(â† + ĉ†) + b̂†(â+ ĉ)

]
. In the microwave

domain, this interaction can be realized by coupling of three superconducting quarter
or half wave resonators (via inductive or capacitive coupling as shown in Figure 7.4).
In the optical domain, it can be achieved by coupling of degenerate cavity modes
via partially transparent mirrors or evanescent field. In addition, only one mode (ĉ)
is coupled to the mechanics by Ĥsingle

int = ~x0G ĉ
†ĉ(âm + â†m). In the regime of strong

mode coupling, when gc > κ , the originally degenerate cavity modes exhibit normal
mode splitting. The new cavity eigenmodes can then be represented in a basis of
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Figure 7.4.: Experimental schemes for the realization of three mode op-
tomechanics. a) Three degenerate optical modes are coupled via semi-transparent
mirrors. b) Three LC-oscillators (possibly microwave resonators) are capacitively cou-
pled “in series”. While mode â is connected to an external drive, i.e., a transmission
line, mode ĉ is parametrically coupled to a mechanical oscillator. When the coupling
rate gc > κ exceeds the individual decay rate, the spectrum exhibits normal mode
splitting.

dressed states {â0, â+, â−} with eigenfrequencies
{
ω0, ω0 ±

√
2gc
}

. â0

â−
â+

 ∝

 0 −1 1
−1/

√
2 1/2 1/2

1/
√

2 1/2 1/2

 ·
 â

b̂
ĉ

 (7.12)

⇒

 â

b̂
ĉ

 ∝

 0 −
√

2
√

2
−1 1 1
1 1 1

 ·
 â0

â−
â+

 (7.13)

The splitting
√

2gc can be matched to the mechanical resonance frequency by ap-
propriately tuning the coupling rate. Transforming to the dressed state basis, one
finds that the operator (ĉ ∝ â0 + â−+ â+) is proportional to the sum of the dressed
state operators (cf. inverse of matrix in Equation 7.12). Replacing ĉ in the para-
metric interaction Ĥsingle

int results in a multi-mode interaction as given by Equation
7.2. Indeed, a dual mode coupling of this kind has recently been demonstrated
using toroidal microcavities [234] in this proposed way. Moreover, tunable mode
splitting between counter propagating modes has also been achieved [235], making
the experimental realization of this new class of high frequency transducers realistic.

7.2. General multi-mode formalism

In the last section we have given a comprehensive overview of properties of multi-
mode cavity optomechanical system. The derivation is however more complex than
suggested by the mere results, and we will therefore supply the full formalism here.
First we devote a paragraph to operator definitions and relations, in order to define a
convention for signs and factors of 2π. This is followed by the derivation of the multi-
mode quantum Langevin equations and the multi-mode input-output formalism.
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7.2.1. Definition of operator relations

We start with the definition of the Fourier transform, where the factor (2π)−1 is
included in the back transform.

f(Ω) =

ˆ
R
dt eiΩtf(t)

f(t) =

ˆ
R

dΩ

2π
e−iΩtf(Ω)

Following this definition the Fourier transform of the derivative of a function f(t),
that vanishes in its limits (i.e. limt→±∞ f(t) = 0), is given by:ˆ

R
dt eiΩt

(
d

dt
f(t)

)
= −iΩ · f(Ω).

The definition is important to avoid sign error when eliminating time derivative by
means of a Fourier transform.
Next we derive a couple of operator relations, namely for QL noise operators δâ† and
δâ, which stem from the coupling to a dissipative bath and preserve the commutation
relations of the corresponding operator over time. Here the δ in front of the operator
signal a noise operator with mean zero (〈δâ(t)〉 = 0). Rules that are also valid for
general operators – such as transformation rules – will omit the δ. For all noise
operators in this chapter we assume a delta correlation in time. Then the covariances
given by 〈

δâ†(t)δâ(t′)
〉

= n̄ · δ(t− t′)〈
δâ(t)δâ†(t′)

〉
= (n̄+ 1) · δ(t− t′)

Here the occupation number n̄ of the heat bath can be viewed as a classical tem-
perature. When the influence of quantum noise only is investigated, n̄ is set to zero
n̄→ 0. Next we define the Fourier transform of the ladder operators and write the
conjugation rules.

â(Ω) =

ˆ
dt eiΩtâ(t)

â†(Ω) =

ˆ
dt eiΩtâ†(t)

⇒ [â(Ω)]† = â†(−Ω)[
â†(Ω)

]†
= â(−Ω)

Then the expectation values in Fourier space are given by the expressions:〈
δâ†(Ω)δâ(Ω′)

〉
=

ˆ
dt

ˆ
dt′ eiΩteiΩ

′t′
〈
δâ†(t)δâ(t′)

〉
= n̄

ˆ
dt ei(Ω+Ω′)t

= 2πn̄ · δ (Ω + Ω′)〈
δâ(Ω)δâ†(Ω′)

〉
= 2π(n̄+ 1) · δ (Ω + Ω′)
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Next we define the canonical amplitude and phase quadratures X̂(Ω) and Ŷ (Ω). It
is important to note that we did not include a prefactor 1/

√
2, which is typically

found in literature and which is certainly correct. Here the factor is omitted to
facilitate the calculations. It is re-introduced as a fact 1/2 when calculating noise
spectra.

X̂(Ω) = â(Ω) + â†(Ω)

Ŷ (Ω) = −i
(
â(Ω)− â†(Ω)

)
⇒
[
X̂(Ω)

]†
= X̂(−Ω)[

Ŷ (Ω)
]†

= Ŷ (−Ω)

The same definitions apply to the quadrature fluctuations in time domain.

δX̂(t) = δâ(t) + δâ†(t)

δŶ (t) = −i
(
δâ(t)− δâ†(t)

)
⇒ 1/2

〈
δX̂(t)δX̂(t′)

〉
= 1/2

〈(
δâ(t) + δâ†(t)

) (
δâ(t′) + δâ†(t′)

)〉
= 1/2

〈
δâ(t)δâ†(t′)

〉
+ 1/2

〈
δâ†(t)δâ(t′)

〉
= (n̄+ 1/2) · δ(t− t′)

1/2

〈
δŶ (t)δŶ (t′)

〉
= (n̄+ 1/2) · δ(t− t′)

It is important to note that there exists a correlation between phase and frequency
noise operators that is actually independent of the noise temperature.〈

δX̂(t)δŶ (t′)
〉

= −i/2
〈(
δâ(t) + δâ†(t)

) (
δâ(t′)− δâ†(t′)

)〉
= i/2

〈
δâ(t)δâ†(t′)

〉
− i/2

〈
δâ†(t)δâ(t′)

〉
= i/2 · δ(t− t′)〈

δŶ (t)δX̂(t′)
〉

= −i/2 · δ(t− t′)

Before elaborating on this property, we follow the scheme above and calculate the
correlations between phase and amplitude noise operators in Fourier space.

1/2

〈
δX̂(Ω)δX̂(−Ω′)

〉
= 2π (n̄+ 1/2) · δ(Ω− Ω′)

1/2

〈
δŶ (Ω)δŶ (−Ω′)

〉
= 2π (n̄+ 1/2) · δ(Ω− Ω′)

1/2

〈
δX̂(Ω)δŶ (−Ω′)

〉
= iπ · δ(Ω− Ω′)

1/2

〈
δŶ (Ω)δX̂(−Ω′)

〉
= −iπ · δ(Ω− Ω′)

It is important to note, that the correlations between phase fluctuations δŶ (Ω) and
amplitude fluctuation δX̂(Ω) are always odd in frequency and they are lost in the
symmetrized spectrum. In our Mathematica algorithm in appendix E these terms
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are marked with a parameter K that can be set to either zero or one, where zero
corresponds to a symmetric spectrum. On the other hand it is exactly these “odd”
frequency terms that signal quantum mechanical behavior such as sideband asym-
metry [222]. For example, it is the spectral asymmetry of the quantum backaction
force that gives rise to QBA heating. More over the non-zero QBA force density at
a spectral frequency Ω = −Ωm is the cause for a non-zero quantum limit as it was
derived in chapter 6.

7.2.2. Gardiner and Collet formalism for multiple cavity modes

In this section we extend the Gardiner-Collet input-output formalism to multiple
cavity modes [226]. The derivation follows the canonical scheme, where dissipation
is modeled by coupling to a heat bath of harmonic oscillators. Here we assume a
frequency independent coupling constant between each cavity mode and the bath,
which is equivalent to the Markov approximation. We will see, that the multi-mode
io-formalism correctly deals with overlapping modes. It is noteworthy that the
equations were derived before in the framework of lasers featuring non-orthogonal
resonator modes, which leads to excess noise and linewidth broadening [236, 237].
Here we start with the Hamiltonian that is written as the sum of the system Hamilto-
nian, the thermal bath, and a damping Hamiltonian, which describes the interaction
of the system with the bath.

H = Hsys +Hbath +Hdamp (7.14)

Explicitly we consider a system consisting of a number of non-interacting, orthogonal
modes

{
a†n, an

}
with frequency ωn. The heat bath is modeled by a continuum of

harmonic oscillators.

Hsys =
N∑
n=1

~ωnâ†nân (7.15)

Hbath =

ˆ +∞

−∞
dω ~ωb†(ω)b(ω) (7.16)

The very general interaction Hamiltonian describes the coupling of each cavity mode
to the bath operators.

Hdamp = i~
ˆ +∞

−∞
dω

N∑
k=1

[
g∗k(ω)b(ω)â†k − gk(ω)âkb

†(ω)
]

(7.17)

Then the equation of motion for the bath operators is defined as

ḃ(ω) = −iωb(ω) +
N∑
k=1

gk(ω)âk. (7.18)
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We nominally solve the differential equation for t > t0 and t < t0.

b(ω) = e−iω(t−t0)b0(ω) +

ˆ t

t0

e−iω(t−t′)
N∑
k=1

gk(ω)âk(t
′) dt′ (7.19)

b(ω) = e−iω(t−t1)b1(ω)−
ˆ t1

t

e−iω(t−t′)
N∑
k=1

gk(ω)âk(t
′) dt′ (7.20)

Then we derive the equation of motion for the system operator an and replace b(ω)
in the contribution from the bath interaction.

˙̂an = − i
~

[ân,Hsys]−
ˆ +∞

−∞
dω g∗n(ω)b(ω)

= − i
~

[ân,Hsys]−
ˆ +∞

−∞
dω g∗n(ω)e−iω(t−t0)b0(ω) (7.21)

−
ˆ +∞

−∞
dω g∗n(ω)

ˆ t

t0

dt′ e−iω(t−t′)
N∑
k=1

gk(ω)âk(t
′) (7.22)

Now we assume that gn(ω) ≡
√
κn/2π is frequency independent. Further the input

noise operator âin(t) is defined.

âin(t) =
−1√
2π

ˆ +∞

−∞
dω e−iω(t−t0)b0(ω) (7.23)

Then the equation of motion for an(t) becomes:

˙̂an = − i
~

[ân,Hsys] +
√
κnâin(t)−

N∑
k=1

√
κnκk

ˆ t

t0

dt′
ˆ +∞

−∞

dω

2π
e−iω(t−t′)âk(t

′)

= − i
~

[ân,Hsys] +
√
κnâin(t)−

N∑
k=1

√
κnκk

ˆ t

t0

dt′ δ(t− t′)âk(t′)

= − i
~

[ân,Hsys]−
N∑
k=1

√
κnκk
2

âk(t) +
√
κnâin(t) (7.24)

In the last line we have derived the Heisenberg-Langevin equations for multiple cav-
ity modes, which was derived before in studies on excess noise [238, 228]. Strikingly,
the modes are coupled to each other via the bath. What might seem completely
unintuitive at first sight will become clear in an example in the following section.
Here we continue with the derivation of the cavity output fluctuations, using the
expression for the bath operator at t > t0 and obtain in the same manner as before:

˙̂an = − i
~

[ân,Hsys] +
N∑
k=1

√
κnκk
2

âk(t)−
√
κnâout(t) (7.25)

Combining the input and output relations yields the Gardiner-Collet input-output
formalism for multiple cavity modes.

âin(t) + âout(t) =
N∑
k=1

√
κkâk(t) (7.26)
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Again we see that the cavity modes are combined in a single relation via the dissi-
pative coupling.

7.2.3. Example: two orthogonal cavity modes

In the previous section we have derived the Heisenberg-Langevin equations for mul-
tiple, decoupled modes that are however connected to the same loss channel. The
result implies that there exists a coupling via the dissipative bath, an intriguing fact,
that we will elaborate on here. To this end we imagine an optical cavity with two
modes that experience loss only through the output coupler described by the energy
decay rate κ. Then we write the multi-mode HLE according to Equation 7.24.

d

dt
â1(t) =

(
−iω1 −

κ

2

)
â1(t)− κ

2
â2(t) +

√
κâin(t)

d

dt
â2(t) =

(
−iω2 −

κ

2

)
â2(t)− κ

2
â1(t) +

√
κâin(t)

The modes are apparently coupled and their dynamics is described by the matrix
S.

S =

(
−iω1 − κ

2
−κ

2

−κ
2

−iω2 − κ
2

)
(7.27)

We solve for the mode operators in Fourier space and find

(
â1

â2

)
(Ω) = − [S + iΩ1]−1√κ

(
âin

âin

)
[Ω]

As both modes are subject to the same noise, the equation is straight for to solve.
In resemblance to the input-output formalism in Equation 7.26 for multiple mode
we calculate already the sum of the two modes.

√
κ (â1 + â1) (Ω) = −

(∑
all

[S + iΩ1]−1

)
κâin[Ω]

Here the sum
∑

all denotes the sum of all elements of the matrix. Finally we find
the output fluctuations

âout[Ω] = −

{
κ

(∑
all

[S + iΩ1]−1

)
+ 1

}
âin[Ω] ≡ f2(Ω) · âin[Ω]
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Using the rules defined in section 7.2.1 we find that

â†out[Ω] = f ∗2 (−Ω) · â†in[Ω]

Then the output signal is given as

〈
âout[Ω]â†out[Ω

′]
〉

= f2(Ω)f ∗2 (−Ω′) · δ(Ω + Ω′)2π(n+ 1)

and integration over
´
R dΩ′/2π yields |f2(Ω)|2 = 1. The spectrum of the output

fluctuations therefore equals the spectrum of the input fluctuations. Of course this
makes physical sense and one would not expect anything different, but we remind
ourselves that the starting point of the calculation included the non-resonant cou-
pling via the bath.

To gain some insight, we switch off the coupling terms in expression 7.27 and eval-
uate the problem again. This time we find |f2(Ω)|2 6= 1. Instead it yields 1 plus
some complex term that is related to the cavity transmission spectrum. In fact the
coupling terms describe the overlapping between two resonances and the coupling
derives from the fact, that noise or fluctuations can enter both resonances at the
same time. Indeed when the modes are well separated in frequency such that they
are off resonance, the coupling terms only play a minor role. However, when there
is a significant overlap or even congruence, the dissipative coupling terms maintain
the balance.

It is interesting to consider a different possibility of describing multiple cavity modes.
A straight forward method involves the complete decoupling of the modes by elim-
inating the corresponding terms and by using different, uncorrelated input noise
operators. This might be justified as the input noise is also delta correlated in
frequency space, but as soon as the resonances overlap, one runs into trouble. In
particular the total noise level is not preserved.
The author has thought about the problem at length and came to the conclusion that
such treatment is simply incorrect, even more when there is an elegant alternative
at hand.

Next, we consider the case of a lossy cavity with an additional dissipative bath
attached. We will show that the formalism can deal with a supplementary noise
operator, which is uncorrelated with the input noise. To this end we introduce the
parameter ηc, the degree of over coupling, which is defined as the ratio between the
loss through the input coupler κin and the total energy loss rate.

ηc =
κin

κ

Correspondingly, the loss through the vacuum channel is described by the rate κvac =
(1− ηc)κ and κin + κvac = κ.
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d

dt
â1(t) =

(
−iω1 −

κ

2

)
â1(t)− κ

2
â2(t) +

√
ηcκâin(t) +

√
(1− ηc)κâvac(t)

d

dt
â2(t) =

(
−iω2 −

κ

2

)
â2(t)− κ

2
â1(t) +

√
ηcκâin(t) +

√
(1− ηc)κâvac(t)

In brief, going through the exact same analysis as before, we find following expression
for the output fluctuations

âout[Ω] = −

{
κηc

(∑
all

[S + iΩ1]−1

)
+ 1

}
âin[Ω]

−κ
√
ηc(1− ηc)

(∑
all

[S + iΩ1]−1

)
âvac[Ω]

= {ηc (f2(Ω) + 1)− 1} · âin[Ω] +
{√

ηc(1− ηc) (f2(Ω) + 1)
}
· âvac[Ω]

We will not do the calculation here, but rather refer to the appendix E, where we
introduce a powerful algorithm to calculate quadrature output fluctuations. The
result however is not changed by the additional noise source and we find again´
dΩ′/2π ·

〈
âout[Ω]â†out[Ω

′]
〉

= 1.

7.3. Multi-mode cavity optomechanics

In this section we present a short, commented derivation of the quantum Langevin
equations (QLE), for several optical modes interacting with a single mechanical
oscillator. In particular we consider the case of three equidistant resonances, which
was presented in section 7.1. Starting point of the analysis are the Hamiltonians
Ĥ0 for the unperturbed fields and the free mechanical oscillator, and Ĥdrive that
describes the driving of the optical modes by an external, classical field at frequency
ωp with input power Pin = ~ωp|s+|2. Finally, the interaction with the mechanics is

given by the well known parametric interaction Hamiltonian Ĥint .

Ĥ0 =
∑
j

~ωj â†j âj + ~Ωmâ
†
mâm (7.28)

Ĥdrive = ~
√
κin(s+e

iωpt+iφâj + s∗+e
−iωpt−iφâ†j) (7.29)

Ĥint =
∑
j,k

~Gx0ζjkâ
†
j âk(âm + â†m) (7.30)

The strength of the optomechanical coupling is defined by the coupling parame-
ter G = dω0

dx
, describing the linear change of the optical resonance frequency ω0(x)
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s+

q̂

ââin

aoutˆ

âvac

loss
drive

F̂ rp F̂ the

Figure 7.5.: Different noise sources and forces acting on the cavity field and
the mechanical oscillator. On the left hand side of the cavity, the coupling mirror acts
as a port for the classical (noise-free) driving field s+ and as a dissipative channel for
input noise âin. Moreover the output fluctuations âout carry the information on the
motion of the mechanics. The mirror on the right hand side represents a secondary
dissipative channel that models cavity loss via coupling to vacuum fluctuations âvac .
The output fluctuations that exit to the continuum do not appear in the calculations,
and they represent a net loss of information. Finally the right hand side mirror is
harmonically suspended and represents the mechanical oscillator, which is subject to
a radiation pressure force F̂ rp and to external forces F̂ the, which can be both, coherent
or noisy, and shall not be specified further. It is however important to note that F̂ the

is not correlated with any of the noises acting on the optical modes.

in response to a small mechanical displacement. Again, x0 denotes the zero point
fluctuations of the mechanical oscillator. A new parameter, exclusive to multi-mode
interaction, is the geometric tensor ζjk, which accounts for the mode overlap between
the optical modes, when interacting with the mechanics. In a first order picture one
could view the tensor elements ζjk as overlap integrals, e.g., of the optical modes
on a mirror surface. On second thought, it is probable that the actual shape of the
mechanical displacement also needs to be taken into account and when we consider
a finite speed of sound in the mirror material, the situation can become quite com-
plex.
Here, for simplicity, we assume here that ζjk = 1∀j, k and it was shown in Figure 7.4
how such situation can be tailored from hybridization of several modes. Moreover,
it seems plausible that there normally exists some sort of overlap between multiple
optical cavity modes and the mechanics ,i.e. ζjk > 0 ∀j, k. Therefore, setting all
overlap parameters to one will grasp more of the physics of the system than set-
ting some parameters to zero or introducing a questionable relation between them.
Finally, the approximation is justified, because it is reversible and once the “sim-
ple” solution of the multi-mode optomechanical system is understood, we can easily
change some parameters in the underlying interaction matrix and see what happens.

Dissipation in the coupled system is introduced via coupling to two dissipative baths,
as it was presented in section 7.2.2. As it is illustrated in Figure 7.5, we assume two



126 7. Multi cavity mode transducers

loss channels that couple (i) to input noise âin through the coupling port at the rate
κin, and (ii) to vacuum fluctuations âvac at the rate κvac, which models the intrinsic
cavity loss. For these boundary conditions, we write the Langevin equations for the
fields and the mechanical oscillator.

d

dt
âj = −iωj âj −

κ

2

∑
k

âk − iGx0(âm + â†m)

(∑
l

âl

)
(7.31)

−i
√
κins

∗
+e
−iωpt−iφ +

√
κvacâ

vac +
√
κinâ

in (7.32)

d

dt
âm = −iΩmâm −

Γm
2
âm − iGx0

(∑
l

â†l

)(∑
j

âj

)
+
√

Γmâ
the

Next, we move to a rotating frame with âj → âje
−iωpt and âin/vac → âin/vace−iωpt.

We emphasize, that we chose the same rotating frame for all optical modes. Alter-
natively one could move to a rotating frame for each mode, as it is done for example
in reference [233]. Unless one further simplifies the equations, such treatment ren-
ders the evaluation of the output spectrum more difficult, as the contribution of
each mode needs to be queried at a different frequency. Equally important, such
a method attributes an explicit time dependence to terms that we refer to as off-
resonant terms (obviously with the intention to neglect them). Therefore, we chose
one rotating frame for all modes and keep the off-resonant terms, because they can
have important implications (cf. quantum limit of ground state cooling in chapter
6 as a result of the CRT). Here we denote the detuning of the optical modes by
∆j = ωj − ωp.

d

dt
âj = −i∆j âj −

κ

2

∑
k

âk − iGx0(âm + â†m)

(∑
l

âl

)
(7.33)

−i
√
κins

∗
+e
−iφ +

√
κvacâ

vac +
√
κinâ

in (7.34)

d

dt
âm = −iΩmâm −

Γm
2
âm − iGx0

(∑
l

â†l

)(∑
j

âj

)
+
√

Γmâ
the

In the next step, we derive the steady states with 〈âj〉 = αj and 〈âm〉 = β and
α ≡

∑
j αj . The static displacement of the mirror β + β∗, due to the radiation

pressure of the pump field, is proportional to the intracavity power.

β =
−iGx0|α|2

iΩm + Γm/2
⇒ β + β∗ ≈ −2

Gx0

Ωm

|α|2 (7.35)

The global phase φ can be adjusted in a way that α is real. Then we shift the
quantum Langevin equations (which is a unitary transformation [198]) and replace
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âj → αj + âj and âm → β + âm.

d

dt
âj = −i∆j âj −

κ

2

∑
k

âk − iGx0(âm + â†m)

(∑
l

âl

)
(7.36)

+2i
G2x2

0α
2

Ωm

(∑
l

âl

)
− iGx0ᾱ(âm + â†m) +

√
κvacâ

vac +
√
κinâ

in

d

dt
âm = −iΩmâm −

Γm
2
âm − iGx0

(∑
l

â†l

)(∑
j

âj

)

−iGx0ᾱ

(∑
j

âj + â†j

)
+
√

Γmâ
the

Calculating with the fluctuations only, allows linearization of the system and is
sufficient for calculating the measurement imprecision as well as the fluctuations
caused by the mechanical displacement. It is worthwhile however to discuss the
global phase of the input light that we have used here to obtain a real steady state
and which will eventually help us to get rid of the complex dimension. Indeed the
phase adjustment is mathematically correct and it is also justified to lump a phase
into the noise operators, which only corresponds to an adjustment of an arbitrary
time in their definition (cf. Equation 7.23) and which will disappears anyways when
the noise is evaluated. On the other hand the phase does play a role, when the

spectrum of the output fluctuations is not observed directly, e.g.,
〈

(âout)
†
âout
〉

but

rather its beat with a strong local oscillator. This correspond to an expression of the
kind

〈
e−iφs̃∗+â

out
〉
, where the phase between the input and output fluctuation indeed

is important from a theoretical point of view. In the experiment, however, this phase
is typically adjustable via some delay and the problem is thus of pathological nature.
We now define the optomechanical coupling rate gm.

gm = 2Gx0ᾱ. (7.37)

In literature one often encounters an alternative definition of the optomechanical
coupling, namely g = gm/2. For consistency with references [2] and [3] we stay
with the gm notation. We then write the final quantum Langevin equations for a
multi-mode optomechanical setting.

d

dt
âj = −i∆j âj −

κ

2

∑
k

âk + i
g2
m

2Ωm

(∑
l

âl

)
(7.38)

−igm
2

(âm + â†m) +
√
κvacâ

vac +
√
κinâ

in

d

dt
âm = −iΩmâm −

Γm
2
âm

−igm
2

(∑
l

âl + â†l

)
+
√

Γmâ
the
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In the next step we transform the QLE the canonical quadrature fluctuations.
Explicitly we define the amplitude and phase fluctuations as X̂j = âj + â†j and

Ŷj = −i
(
âj − â†j

)
. In contrast to most textbooks, we omitted a factor 1/

√
2, which

is done for convenience. When the spectral densities are evaluated later, the pref-
actor is re-inserted. Moreover we define the position and momentum quadratures
of the mechanical oscillator quadratures by q̂ = −

(
âm + â†m

)
and p̂ = i

(
âm − â†m

)
(the changed sign compared to the definition of the field quadratures assigns a di-
rection). The amplitude and phase noise operators are transformed according to the
same rules. Here the abbreviations δX̂ and δŶ and they comprise input as well as
vacuum noise and the prefactors

√
κin/vac (which changes the unit).

d

dt
X̂j = ∆jŶj −

κ

2
X̂j −

g2
m

2Ωm

(∑
l

Ŷl − δjlŶj

)
+ δX̂[t] (7.39)

d

dt
Ŷj = −∆jX̂j −

κ

2
Ŷj +

g2
m

2Ωm

(∑
l

X̂l − δjlX̂j

)
+ gmq̂ + δŶ [t]

d

dt
q̂ = Ωmp̂−

Γm
2
q̂ + δq̂[t]

d

dt
p̂ = −Ωmq̂ −

Γm
2
p̂+ gm

(∑
l

X̂l

)
+ δp̂[t]

We note that we were inconsistent in the derivation of the QLE with respect to the
treatment of second order contributions. In the Equations 7.38 and 7.39 we kept
terms that are ∝ g2

m and should have been discarded due to their small influence
but more importantly for consistency. They originate from the static mirror dis-

placement and lead – in the resonant case – to a frequency offset − g2m
2Ωm

, which was

already included in the definition of the now effective detuning.6 The other g2
m-terms

lead to a coupling between the modes and the are will be neglected throughout the
analysis in this chapter. For an analysis of strong coupling and high intracavity
power effects in multi-mode optomechanical setting it can be interesting to include
these term and to estimate their influence. For example in the 3RT case they can
contribute to a parametric instability due to asymmetric shifting of the resonance
frequencies.

7.3.1. Optomechanical multi-mode equations of motion

In this section we derive the output quadrature fluctuations of a cavity coupled
to a mechanical oscillator, which amounts in principle to solving Equation 7.26
(multi-mode IO-formalism) with the HL equations defined in 7.39. However to gain
physical insight in the problem, we separate the output spectrum into contributions
stemming from photon shot noise, quantum backaction, and an external (thermal)

6This can be done (and should be done), as the driving laser is per se locked to the resonance
center.
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force acting on the mechanics. Moreover we solve the equations in a very general
way for an arbitrary number of optical modes, including an additional loss channel
besides the output coupler. The final result is presented in a way that can directly
be solved using the computer algebra program Mathematica. The corresponding
code is supplied in Appendix E and we recommend switching between this chapter
and the appendix or reading them in parallel.

We start the analysis with the definition of the the arbitrary field quadrature X̂j,θ,
where the index j corresponds to the “number” of the mode (i.e. j ∈ {1, . . . , N} for
N optical modes) and θ is the quadrature angle.

X̂j,θ = e−iθâj + eiθâ†j = cos(θ)X̂j + sin(θ)Ŷj (7.40)

According to the definition in the previous section, the phase quadrature is obtained
when θ = π/2 and the amplitude quadrature is recovered at θ = 0. Adjusting the
angle θ allows us to study any “mix” of the phase and amplitude quadrature. Again,
in contrast to the textbook definition of the quadratures we have omitted a factor
1/
√

2, which will be reinserted once the spectral densities are calculated.
With the above definition of the general quadrature, it is sufficient to solve the
equations of motion for the canonical quadratures X̂j and Ŷj. For an arbitrary

number of modes it is convenient to introduce the quadrature vector ~X.

~X =
(
X̂0, Ŷ0, . . . , X̂j, Ŷj, . . .

)ᵀ
It is important to note that the vector ~X only describes the optical modes. The
mechanical degree of freedom will be considered separately at a later point. Next
we define the noise acting on the optical modes. It was one of the major findings
of section 7.2.2 that all optical modes are subject to the same noise sources and we
therefore assign only one pair of input noise operators (i.e. X̂ in and Ŷ in) as drive
terms to the modes (compared to numbering them with some index j). To include
cavity loss, we introduce a second pair of vacuum noise operator, X̂vac and Ŷ vac,
that are not correlated with the input noise. One could argue whether the vacuum
noise operators acting on different modes are also identical or whether one should
assign different, uncorrelated operators to each mode. Such consideration could be
motivated by a different spatial mode profile and loss through different scattering
centers and they are certainly justified and make physical sense. Here however we
will keep the calculation free from too much detail; once the formalism is established
it will be relatively straight forward to introduce additional noise sources and loss
channels.

The input noise and vacuum noise are coupled via the loss rates κin and κvac, re-
spectively, such that the total energy decay rate is given as κ = κin + κvac. Then
we write the total noise acting, e.g., on the amplitude quadratures as δX̂noise =√
κinX̂

in +
√
κvacX̂

vac. Noise acting on the phase quadratures is defined in the same
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way. In order to write compact equations and having regard to an efficient imple-
mentation later on, we introduce the auxiliary vector ~Tθ.

~Tθ = {cos(θ), sin(θ), . . . , cos(θ), sin(θ)}ᵀ

⇒ ~T0 = {1, 0, . . . , 1, 0}ᵀ (7.41)

⇒ ~Tπ/2 = {0, 1, . . . , 0, 1}ᵀ

The evaluation at 0 and π/2 is a trick that will be used to address amplitude and
phase fluctuations in odd and even rows respectively. We can then define a noise
vector δ ~X that acts a inhomogeneity on the equations of motion of the canonical
quadratures.

δ ~Xnoise = ~T0 ·
(√

ηcκ X̂
in +

√
(1− ηc)κ X̂vac

)
(7.42)

+~Tπ/2 ·
(√

ηcκ Ŷ
in +

√
(1− ηc)κ Ŷ vac

)

Moreover we use the vector ~Tθ to express the sum of the quadratures – as it appears
in the IO-formalism 7.26 – in a compact way (cf. Equation 7.40).

∑
j

X̂j,θ[Ω] =
∑
j

cos(θ)X̂j + sin(θ)Ŷj = ~T ᵀθ · ~X

The output fluctuations of the cavity of the cavity are give via the previously derived
input-output formalism for multiple-cavity modes.

X̂out
θ =

(∑
j

√
κin X̂j,θ

)
− X̂ in

θ

=
√
ηcκ ~T

ᵀ
θ · ~X − X̂

in
θ (7.43)

≡ X̂x,θ + X̂F,θ + X̂m,θ

In the last line, the output fluctuations are written as the sum of three contribu-
tions. X̂x,θ are the fluctuations that are exclusively associated with the unperturbed
cavity field. They reflect the measurement uncertainty due to photon shot noise
and remain unchanged when the mechanical oscillator is decoupled from the cavity.
X̂F,θ are the fluctuations arriving from quantum backaction in the measurement of
the mechanical oscillators displacement. They amount to the (real) motion of the
mechanical oscillator in response to optical noise. Finally X̂m,θ contains any me-
chanical motion that is not correlated with the field noise and which is here modeled
by the thermal force F̂ the . This might be an external signal, such as a cavity length
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fluctuation due to gravitational waves, thermal noise, or quantum fluctuation of the
mechanical oscillator. We keep it in the calculation to scale the output fluctuations
to displacement fluctuations and to derive the transduction function.

Eventually it is our goal to calculate the output fluctuations of the cavity and to
identify the contribution contributions that were just discussed.

Sout
θθ (Ω) =

ˆ
R

dΩ′

2π
〈X̂out

θ [Ω] X̂out
θ [−Ω′]〉 (7.44)

When the contribution of the mechanical signal is identified, e.g. Sout
θθ (Ω) = . . . +

λθ(Ω) · ”real mechanical motion”, we will scale the output fluctuations to obtain a
displacement spectral density Sout

xx,θ(Ω) = Sout
θ (Ω)/λθ(Ω).

To achieve this, we have to know the vector ~X containing the quadrature fluctua-
tions, which will be calculated in the following paragraphs.

Full system including the mechanical oscillator

In this section, we set out to solve the quantum Langevin Equations 7.39. This can
be done in two ways. In the a straight forward way, and in contrast to the previous

definition, we can write the variables as a vector ~XM =
(
X̂0, Ŷ0, . . . , X̂j, Ŷj, . . . , q̂, p̂

)ᵀ
of 2N +2 elements, which now also includes the mechanical degrees of freedom. Ac-
cordingly the noise vector δ ~Xnoise

M is defined.
As mentioned before, we rewrite the Langevin Equations 7.39 in matrix form and
thereby defining the matrix M. Then the QLE are rewritten and solved in a compact
form.

d

dt
~XM = M · ~XM + δ ~Xnoise

M (7.45)

⇒ ~XM [Ω] = − [M + iΩ1]−1 · δ ~Xnoise
M [Ω] (7.46)

≡ M̃[Ω] · δ ~Xnoise
M [Ω] (7.47)

Now it is sufficient to take the first 2N elements of the vector ~XM [Ω] and to insert
them into Equation 7.43 to obtain the desired output fluctuations X̂out

θ [Ω] in a brute
force manner. There is however a major drawback that comes with the result: (i) it
is unnecessarily complex and difficult to simplify, as it includes the parameters from
the mechanical oscillator and the optical fields, and (ii) moreover it lacks physical
insight as it is not possible to separate, e.g. the photon shot noise from the radiation
pressure contribution.

Reduced system with separate description of the mechanics

To overcome these difficulties we chose a more elegant approach and include the
mechanical displacement q̂[t] as a parameter (without any further specification) in
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the equations that describe only the optical modes. The motion of the mechanics
includes however radiation pressure effects as well as any response to an external
force.

d

dt
~X = S · ~X + gmq̂[t] · ~Tπ/2 + δ ~Xnoise

⇒ ~X[Ω] = − [S− iΩ1]−1 ·
(
gmq̂[Ω] · ~Tπ/2 + δ ~Xnoise[Ω]

)
≡ S̃[Ω]

(
gmq̂[Ω] · ~Tπ/2 + δ ~Xnoise[Ω]

)
Again we solved the system of equations in Fourier space via matrix inversion, but
this time with two inhomogeneities. Already it is apparent which contributions of
the output signal can be attributed to the mechanics and which are solely due to
optical noise.

7.3.2. The photon shot noise spectral density

We go back to the input-output relation 7.43 and insert the solution vector for the
field quadratures.

X̂out
θ [Ω] =

(∑
j

√
ηcκ X̂j,θ[Ω]

)
− X̂ in

θ [Ω]

=
√
ηcκ ~T

ᵀ
θ · ~X[Ω]− X̂ in

θ [Ω] (7.48)

=
√
ηcκ ~T

ᵀ
θ · S̃[Ω]

(
gm · q̂[Ω] · ~Tπ/2 + δ ~Xnoise[Ω]

)
− X̂ in

θ [Ω] (7.49)

=
{√

ηcκ ~T
ᵀ
θ · S̃[Ω] · δ ~Xnoise[Ω]− X̂ in

θ [Ω]
}

(7.50)

+
√
ηcκ~T

ᵀ
θ · S̃[Ω] · gmq̂[Ω] · ~Tπ/2 (7.51)

≡ X̂x,θ[Ω] + λθ(Ω)q̂[Ω]

In line 7.50 we have separated the terms adding to X̂out
θ [Ω] into a part the is pro-

portional to the mechanical motion q̂[Ω] and a second part that is depends only on
noise operators directly acting on the cavity field and that we denote with X̂out

θ [Ω]
and which constitutes the first part of the sought solution.

Moreover we have defined the transduction function λθ(Ω) that relates the motion
of the oscillator the the output fluctuations X̂out

θ [Ω]. The θ-dependence indicates,
that the mechanical signal is transduced differently to each quadrature. Indeed we
will show that an optimal readout “angle” exists. The actual form of λθ(Ω) can be
written in a compact way

λθ(Ω) =
gm
x0

√
ηcκ ~T

ᵀ
θ · S̃[Ω] · ~Tπ/2 (7.52)

The transduction function provides the previously introduced scaling that is required
to transform the output fluctuation spectrum to an equivalent displacement spec-
trum of the mechanics. To this end we introduced the zero point fluctuations x0 in
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the definition of λθ(Ω), which corresponds effectively to a rescaling of the mechanical
degrees of freedoms. In Appendix E the Mathematica code for the calculation of
the transduction function is supplied.

Moreover we publish code to directly calculate the photon shot noise spectrum from
the autocorrelation of X̂x,θ[Ω] in Equation 7.50. In the following calculation we
simplify the expression for the photon shot noise and rewrite it as a function of the
noise operators, such that it resembles the Mathematica code in the appendix and
elucidates its functioning.

X̂x,θ[Ω] =
√
ηcκ ~T

ᵀ
θ · S̃[Ω] · δ ~Xnoise[Ω]− X̂ in

θ [Ω]

=
√
ηcκ ~T

ᵀ
θ · S̃[Ω] · δ ~Xnoise[Ω]− cos(θ) · X̂ in[Ω]− sin(θ) · Ŷ in[Ω]

Next we insert the definition of the noise vector δ ~Xnoise[Ω] (which was defined in
expression 7.42) and sort the equation by the different noise contributions.

X̂x,θ[Ω] =
√
ηcκ ~T

ᵀ
θ · S̃[Ω] · ~T0

(√
ηcκX̂

in[Ω]
)
− cos(θ) · X̂ in[Ω]

+
√
ηcκ ~T

ᵀ
θ · S̃[Ω] · ~Tπ/2

(√
ηcκŶ

in[Ω]
)
− sin(θ) · Ŷ in[Ω]

+
√
ηcκ ~T

ᵀ
θ · S̃[Ω] · ~T0 ·

(√
(1− ηc)κX̂vac[Ω]

)
+
√
ηcκ ~T

ᵀ
θ · S̃[Ω] · ~Tπ/2 ·

(√
(1− ηc)κŶ vac[Ω]

)
Finally we regroup the expression such that it can directly be solved using the
Mathematica implementation in appendix E.

X̂x,θ[Ω] =
(
ηcκ ~T

ᵀ
θ · S̃[Ω] · ~T0 − cos(θ)

)
· X̂ in[Ω] + (7.53)(

ηcκ ~T
ᵀ
θ · S̃[Ω] · ~Tπ/2 − sin(θ)

)
· Ŷ in[Ω] +(

κ
√
ηc(1− ηc) ~T ᵀθ · S̃[Ω] · ~T0

)
· X̂vac[Ω] +(

κ
√
ηc(1− ηc) ~T ᵀθ · S̃[Ω] · ~Tπ/2

)
· Ŷ vac[Ω]

We point to the appendix E where the code for the actual calculation is presented.
In particular we give an example for the 1RT including vacuum noise (i.e., intrinsic
cavity loss) and for the 3RT without vacuum noise. Simple exchange of the matrices
that define the system shows however that in any case the output fluctuations are
flat and represent the spectrum of the input noise.

Sxx,θ(Ω) =
1

2

ˆ
R

dΩ′

2π
〈X̂x,θ[Ω] X̂x,θ[−Ω′]〉 = n̄in +

1

2

This true as long as the temperature of the two dissipative heat baths (represented
by their thermal occupation n̄in and n̄vac) is equal, i.e. n̄in = n̄vac. Otherwise
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the output spectrum reflects noise filtering through the cavity. In reality the most
common case (in optics) will be a quantum limited laser source at the input with
n̄in = 0 = n̄vac. This is typically different for electromechanics systems that rely
on microwave resonators at GHz frequencies (1 GHz=̂50 mK). Here our approach
supplies the flexibility to quickly address these kinds of parameter regimes.

Moreover expression 7.53 clarifies how additional noise sources can be introduced.
For example one can imagine some loss mechanism that acts exclusively on the first
optical mode and is not correlated with other noises the system. Then one would
introduce two more terms that are in principle the same as for the vacuum noise and
label the noise operator, e.g., by X̂scat1 and Ŷ scat1, and introduce the corresponding
coupling rates. The first mode in our example is addressed by replacing the vectors
~T0 and ~Tπ/2 by vectors that only show a one in the corresponding field. It is the
advantage of the approach that the equations are written in a concise and clean way
that changes can readily be made and more complex systems can be explored.

7.3.3. The radiation pressure force spectrum

In this section we calculate the radiation pressure contribution q̂rp contained in the
mechanical signal q̂. Naturally one obtains the mechanical signal from the matrix
M̃[Ω], where q̂[Ω] is described in the (2N + 1)th row. (We remind ourselves that
M̃[Ω] is the extended description of the optomechanical system, which includes the
cavity modes as well as the mechanical oscillator.) Without further specifying M̃[Ω]
we can write

q̂[Ω] = M̃2N+1 · δ ~XM [Ω] ≡ q̂rp[Ω] + χeff (Ω)F̂ the[Ω]. (7.54)

Here the radiation pressure part contains all the parts that are proportional to noise
operators acting on the optical field quadratures and the rest describes the response
to external forces. We point out that the effective susceptibility χeff , which is
also defined by M̃[Ω], includes damping or heating effects that are also a response
to the optical field. Yet its influence on the mechanical motion is not considered a
radiation pressure signal here and it is thus not contained in q̂rp, because it originates
from the classical and noise-free portion of the radiation pressure and is as such a
deterministic (i.e., time reversible) contribution.

Here the effective susceptibility play a minor role and its knowledge is not required
for most of the calculations. It is sufficient to know that χeff (Ω)F̂ the is describes
the displacement of the mechanics. In a simplifying way one could say that the
last chapter was about χeff (Ω) and its integral, here we are interested in the light
fluctuations that limit the resolution of the mechanical signal.

More importantly one could get the impression that in any case the full optomechan-
ical system needs to be solved to obtain the expression for M̃2N+1 that describes the
mechanical response to the radiation pressure. In this case we would have wasted
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our time with the initial calculations that involve only the (much simpler) matrix
S̃[Ω] for the cavity modes. However strikingly we find that the first 2N entries of
M̃2N+1 – exactly the ones that describe the radiation pressure contribution – can
be expressed by the matrix S̃[Ω] and the effective susceptibility χeff (Ω) only.

(
M̃2N+1,1, . . . , M̃2N+1,2N

)
= χeff (Ω)

N∑
j=1

gmS̃2j−1 = gmχeff (Ω)~T ᵀ0 · S̃[Ω] (7.55)

From Equation 7.55 we obtain an expression for the cavity length fluctuations due
to radiation pressure and, as the effective susceptibility appears, we can directly
infer the expression for the radiation pressure force fluctuations.

q̂rp[Ω] = gmχeff (Ω)~T ᵀ0 · S̃[Ω] · δ ~X[Ω]

⇒ δF̂ rp[Ω] =
~gm
x0

~T ᵀ0 · S̃[Ω] · δ ~X[Ω] (7.56)

=
~gm
x0

~T ᵀ0 · S̃[Ω] ·
(√

κ ~T0δ ~X
sum[Ω] +

√
κ ~Tπ/2δ~Y

sum[Ω]
)

(7.57)

Notably the expression ~T ᵀ0 · S̃[Ω] · δ ~X is the sum over the amplitude fluctuations, a
result, which one could have guessed as well. Moreover, in the last line, we do not
differentiate between input noise and vacuum fluctuations,7 which is reasonable when
the dissipative heat baths have the same temperature. Again the expression is suited
for direct evaluation with the Mathematica code in appendix E, where we provide
examples for the three resonance transducer and the single mode optomechanical
scheme with arbitrary detuning ∆.
Now we have obtained all the terms that contribute to the output fluctuations and
we summarize the results the results.

X̂out
θ [Ω] = X̂x,θ[Ω] + X̂F,θ[Ω] + X̂m,θ[Ω] (7.58)

X̂x,θ[Ω] =
√
ηcκ ~T

ᵀ
Θ · S̃[Ω] · δ ~X[Ω]− X̂ in

θ [Ω] (7.59)

X̂F,θ[Ω] = λθ(Ω)χeff (Ω)F̂ rp[Ω] (7.60)

X̂m,θ[Ω] = λθ(Ω)χeff (Ω)F̂ the[Ω] (7.61)

In the following we will use these results to calculate the output spectrum, as well
as the scaled imprecision spectrum that reflects the readout limitations of the trans-
ducer.

7The mechanical oscillator does not differentiate either.
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Calculating the imprecision spectrum

In this paragraph we introduce the imprecision spectral density Simpθ (Ω), which has
the unit of a displacement sensitivity and is a function of the noise acting on the
optical modes. The displacement imprecision is related to the output fluctuations
via the absolute value square of the transduction function.

Soutθθ (Ω) = |λθ(Ω)|2 Simpθ (Ω) + |λθ(Ω)|2 |χeff (Ω)|2 StheFF (Ω) (7.62)

Then we can calculate Simpxx,θ(Ω) from the scaled optical contributions of the output
fluctuation spectrum.

δ(Ω + Ω′)

2π
Simpθ (Ω) =

〈(
X̂x,θ[Ω] + X̂F,θ[Ω]

)(
X̂x,θ[−Ω′] + X̂F,θ[−Ω′]

)〉
|λθ(Ω)|2

. (7.63)

Computing the expectation values, one obtains three terms, associated with different
combinations of Îx,Θ[Ω] and ÎF,Θ[Ω].

Simpxx,θ(Ω) = Sxx,θ(Ω) + |χeff (Ω)|2 SFF (Ω) (7.64)

+
{
χeff (Ω)SxF,θ(Ω) + χ∗eff (Ω)SFx,θ(Ω)

}
(7.65)

Here the photo shot noise spectral density Sxx,θ(Ω) is the inverse of the susceptibility
|λΘ(Ω)|2 and SFF (Ω) is the quantum backaction force spectral density.

Sxx,θ(Ω) =
1

2
|λθ(Ω)|−2 (7.66)

In the the analysis of experimental data the equivalent shot noise spectral density
is typically evaluated at Ω = Ωm to scale the whole (flat) noise background. Plot-
ting Sxx,θ(Ω) as a function of Ω also reflects the cavity transmission and gives the
impression of a result that is not measured in the experiment. Moreover, when a
calibration signal detuned from the mechanical resonance is applied, one needs ver-
ify whether is experiences a different sensitivity.
The quantum backaction contribution, which is more precisely a radiation pressure
noise backaction, is explicitly given by the expression

SFF (Ω) =
1

2

ˆ
R

dΩ′

2π

〈
F̂ rp[Ω]F̂ rp[−Ω]′

〉
. (7.67)

In contrast to the photon shot noise the imprecision coming from radiation pressure
is restricted to the bandwidth defined by the mechanical oscillation. In fact it leads
to a real world mechanical displacement and it is this false signal that limits the
sensitivity. However there is a number of experiments that aim at the observation of
radiation pressure and up to now it is typically the thermal noise of the mechanics
that overwhelms the radiation pressure effect [239, 177, 240]. To this end we have
proposed the triple mode transducer scheme in section 7.1, where the radiation
pressure effect can be largely enhanced.
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Finally there remains a mixing term that covers correlation between the photon shot
noise and the radiation pressure. It does however not reflect a mechanical motion,
but can rather be viewed as an interference effect. Moreover it is small and does not
directly depend on the the coupling rate gm as both SxF and λθ are linear in gm.
Yet the mixing term can change with the coupling when the effective susceptibility
features a coupling dependence, as it is the case for dynamic backaction cooling.
The mixing term can also become negative, and we will show for the single mode
transducer that it can manifest itself in the form of ponderomotive squeezing.

7.4. Detailed results for single mode transducer

In this section we apply the relations that were defined in the previous section to
the case of the general single mode transducer. Here a single optical mode is cou-
pled to a mechanical degree of freedom and the term general refers to an arbitrary
detuning of the drive. The setting of a cavity with a movable mirror was subject to
investigation before, also employing a QL approach and the input-output formalism
[241, 242].
In contrast to these early results, we study the transduction properties of the sin-
gle mode transducer when it is driven detuned from the resonance, in particular
when the detuning matches the mechanical resonance and the mechanical mode is
dynamically cooled. In this setting we notice one fundamental difference compared
to the readout of the mechanical motion on resonance. While for a resonant drive
the mechanical motion is exclusively encoded in a phase fluctuation, we find that in
the detuned case the mechanical displacement is transduced equally to both quadra-
tures. We will demonstrate that this has important implications on the sensitivity
that can be reached.

Moreover we close the circle to the cooling studies of chapter 6 and calculate the
energy spectrum of the mechanical oscillator. We will see that the ground state
energy of the mechanics can be fully attributed to radiation pressure fluctuations of
the optical field.
We start our beginning with the Heisenberg-Langevin equations as they are defined
in Equations 7.39.

d

dt
X̂ = −∆Ŷ − κ

2
X̂ + δX̂[t] (7.68)

d

dt
Ŷ = ∆X̂ − κ

2
Ŷ + gmq̂ + δŶ [t]

d

dt
q̂ = Ωmp̂−

γ

2
q̂ + δq̂[t]

d

dt
p̂ = −Ωmq̂ −

γ

2
p̂+ gmX̂ + δp̂[t].

Accordingly the full system is described by the matrix M1 and the quadrature vector
~XM =

(
X̂, Ŷ , q̂, p̂

)ᵀ
, while the reduced system (which covers only the optical mode)
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is represented by the matrix S1 and the corresponding vector ~X =
(
X̂, Ŷ

)ᵀ
.

M1 =


−κ

2
−∆ 0 0

∆ −κ
2

gm 0
0 0 −Γm

2
Ωm

gm 0 −Ωm −Γm
2

 S1 =

(
−κ

2
−∆

∆ −κ
2

)
. (7.69)

Then the inverted matrix S̃[Ω] , which describes the quadrature fluctuations in
Fourier space, is written as

S̃[Ω]

χcav(Ω)
=

(
1
2
(κ− 2iΩ) −∆

∆ 1
2
(κ− 2iΩ)

)
. (7.70)

Moreover we find the effective mechanical susceptibility and the cavity susceptibility
(which is in fact the cavity transmission). In frequency units they are written as

χeff (Ω) =
(∆2 + (κ/2− iΩ)2) Ωm

∆g2
mΩm + (∆2 + (κ/2− iΩ)2) ((Γm/2− iΩ)2 + Ω2

m)

χcav(Ω) =
1

∆2 + (κ/2− iΩ)2
.

Depending on the detuning ∆, the effective susceptibility describes amplification of
damping of the mechanical motion, as well as a shift of the resonance frequency and
it is essentially the same expression as in Equation 6.2.
Together with the vector ~T ᵀθ = {cos(θ), sin(θ)}, which we add for completeness, the
quantities that were defined above are sufficient to calculate all of the important
transduction properties. In the following we will not limit ourselves to the resolved
sideband regime, except for the analysis of ground state cooling where Ωm � κ is
required.

Energy of the 1RT

Here, we calculate the energy of the mechanical oscillator in response to fundamental
quantum backaction noise of the radiation pressure fluctuations. To this end we
define an energy spectrum starting from the position and momentum fluctuations
of the mechanical oscillator.

1

4

(〈
q2
〉

+
〈
p2
〉)

=
1

2

(〈
a†mam

〉
+
〈
ama

†
m

〉)
(7.71)

=
〈
a†mam

〉
+

1

2

[
a†m, am

]
Then the energy spectrum should represent the occupation number of the mechan-
ical oscillator nf plus half of the commutator. Especially the latter contribution
is interesting, because it is a part that one would naturally associate with quan-
tum properties of the mechanical oscillator. Here however we do not consider any
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quantum Langevin noise operators that act on the mechanics to establish this com-
mutator. We exclusively calculate the response to quantum backaction originating
from quantum fluctuations of the light field.

q̂rp[Ω] = gmχeff (Ω)~T ᵀ0 · S̃[Ω] · δ ~X[Ω]

p̂rp[Ω] = gm
Γm/2− iΩ

Ωm

χeff (Ω)~T ᵀ0 · S̃[Ω] · δ ~X[Ω]

Then the energy spectral density is defined, according to the outline in Equation
7.71, which is simplified when we replace the variances with the radiation pressure
force spectral density.

S̄energy
FF (Ω) =

~Ωm

2

ˆ
R

dΩ′

2π

[
1

2
〈q̂rp[Ω] q̂rp[−Ω′]〉+

1

2
〈q̂rp[Ω] q̂rp[−Ω′]〉

]
=

Ωmx
2
0

~

(
1 +

Γ2
m/4 + Ω2

Ω2
m

)
|χeff (Ω)|2 · S̄single

FF (Ω) (7.72)

In contrast to the previous chapter, we do not bother with an analytical solution,
but instead perform a numerical integration of the spectrum and plot the solution for
varying gm in Figure 7.6. In panel (a) of the figure we can see that the half quantum
of mechanical energy that is associated with the ground state is added by radiation
pressure fluctuation already at a moderate coupling rate of gm ≈ κ/20. At the same
time any quantum fluctuations originating from mechanical noise “hide” behind the
effective susceptibility and are correspondingly suppressed. Consequently dynamic
backaction cooling is most likely not suited to reveal the quantum nature of the
mechanical oscillator. In panel (b) of Figure 7.6 we show a magnification of the area
above one half quanta of the occupancy curve. Indeed there is a small difference
that is exactly reproduced by the coupling dependent quantum limit (cf. Equation
6.8). Only towards ever stronger coupling one can sense a tiny deviation due to
higher order terms.

In a way the result solves the problem, how to interpret the occupation number
of a hybridized mode, namely whether the remaining energy quanta should be at-
tributed to the mechanics or the optics. Here it becomes clear that the ground state
fluctuations are purely a consequence of the quantum nature of the light field.

We can continue our analysis and take a look at the symmetry of the spectrum, in
particular the asymmetric height of the mechanical sideband at ±Ωm. Exchanging
the symmetrized QBA spectrum against the full S̄single

FF → Ssingle
FF version (K→ 1

in the algorithm), we find that even the sideband asymmetry that is expected to
be found with a mechanical oscillator in the ground state is a result of quantum
backaction.

In the end, when it comes down to possible practical applications, such as quantum
computing or storage and manipulation of quantum states, the question whether
the mechanical oscillator behaves as a quantum mechanical object or not, is little
important. From a technical point of view the coherence time is more interesting,
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Figure 7.6.: The quantum backaction contribution to the ground state
energy of the mechanical oscillator. The cavity energy decay rate is κ = Ωm/10.
(a) The energy of the mechanical oscillator, driven only by quantum backaction of
the cavity field, is plotted as a function of the coupling rate gm and in terms of the
phonon number. The curve is obtained from numerical integration of Equation 7.72,
divided by the energy quantum ~Ωm. The arrow at gm = κ/2 indicates the onset of
normal mode splitting. Keeping in mind that the mechanics is represented by a purely
classical susceptibility, it becomes apparent that the ground state uncertainty of the
mechanical oscillator is indeed a consequence of the quantum nature of the light field.
(b) The plot shows a magnified view of the left hand panel and highlights the offset
between nf = 1/2 and the actual occupancy. The shaded area correspond to the power
dependent quantum limit derived in Equation 6.8 of the previous chapter, and thus
draws the connection between the two approaches. Interestingly, the light pressure
force already accounts for the quantum limit at a coupling rate of ∼ gm = κ/8, long
before the optical and the mechanical mode hybridize.

in particular with regard to the question whether one can imprint a quantum state
from the light field onto a mechanical object and then transfer this state to, e.g.
a superconducting microwave cavity [213]. We will abort the discussion on the
quantum mechanical properties of a macroscopic object here and maybe continue in
the outlook section.

Transduction of the 1RT

We continue our analysis of the single mode transducer with the transduction func-
tion λsingleθ (Ω). In order to obtain a real quantity, we compute its absolute value
square, which is in principle the inverse of the photon shot noise imprecision Sxx,θ(Ω)
(except for a factor 1/2, due to out definition of the quadratures).∣∣∣λsingleθ (Ω)

∣∣∣2 =
g2
mηc
x2

0

2κ (4∆2 + κ2 + 4Ω2)

16∆4 + 8∆2 (κ2 − 4Ω2) + (κ2 + 4Ω2)2 (7.73)

×

(
1 + Cos[2θ − 2θopt] ·

√
1− 4∆2Ω2(

∆2 + κ2

4
+ Ω2

)2

)
.

In the second line the transduction function was rewritten in a way that exposes
its angle dependence. To this end we introduced an “optimal” readout angle θopt,
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Figure 7.7.: The relative intensity of the mechanical signal in different
quadratures. The figure shows the normalized sensitivity (∝ 1/Sxx,θ(Ω)) of the
1RT as a function of the measured quadrature, i.e., the angle θ. Readout at the
mechanical resonance frequency Ω = Ωm and κ = Ωm/4. Curves for two values
of the detuning ∆ are plotted: (i) driving at resonance (∆ = 0) and (ii) detuned
from resonance for ∆ = −0.95 · Ωm. When the detuning approaches −Ωm, and κ
becomes � Ωm. The optimal readout angle θopt moves towards 3π/4. In this case,
the modulation amplitude becomes zero and the signal is correspondingly transduced
into both quadratures.

where the transduction of the mechanical signal to a light fluctuation is maximized.
The angle is of course a function of parameters such as the detuning and the exact
dependence can be explored using the code example in appendix E. Here we focus
on the general behavior.
When the cavity is driven on resonance (i.e., ∆ = 0), the optimal angle θopt = π/2
corresponds to the phase quadrature and the square root term in Equation 7.73 is
equal to one. On the other hand, in a detuned readout for ∆2 ≈ Ω2 � κ2, which
is the case in resolved sideband cooling, the square root term becomes zero and the
angle dependence vanishes. This is also the reason, why the actual expression for θopt
only plays a minor role. In Figure 7.7 we plot the dependence of the transduction
function on the readout angle. For resonant readout the transduction vanishes for
θ = 0, meaning that the mechanical motion does not induce amplitude fluctuation
and the full signal is imprinted on the phase. When the laser is detuned from
resonance the situation changes and the signature of the mechanical motion is found
in both quadratures. At the same time the optimal angle shifts from π/2 → 3π/2,
which has however little impact as the amplitude of the modulation becomes small.

Physically, this finding suggests that independent of the recorded quadrature, one
will only measure “half of the signal”. On the other hand, we have only considered
the influence of the angle dependent part of expression 7.73 and ignored the prefactor
so far. In the following paragraph we study the overall measurement imprecision
to gain an impression how the distribution of the mechanical information in both
quadratures affects the uncertainty product.
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Uncertainty product of the 1RT

In this paragraph we calculate the uncertainty product between the equivalent shot
noise imprecision and the backaction force spectral density. We evaluate the code
in appendix E and obtain an expression that resembles the angle dependent part of
the transduction function 7.73.

Ssinglexx (Ω) · SsingleFF (Ω) =
~2

4ηc
2

[
1 + Cos[2θ − 2θopt] ·

√
1− 4∆2Ω2(

∆2 + κ2

4
+ Ω2

)2

]−1

≥ ~2

4ηc

2

1 +

√
1− 4∆2Ω2/

(
∆2 + κ2

4
+ Ω2

)2

In the second line we have chosen θ = θopt, such that the uncertainty product
becomes minimal and sets a lower limit.For simplification we evaluate the statement
for the phase quadrature at θ = π/2 and obtain a less complex expression.

Ssinglexx (Ω) · SsingleFF (Ω)
∣∣∣
θ→π

2

=
~2

4ηc

(
1 +

∆2

κ2/4 + Ω2

)
It becomes apparent that a resonant readout (i.e., ∆ = 0) can be considered as an
ideal quantum measurement in the sense of Caves [243] as it is ideally limited by
~/2. However in the case that κ � ∆ ≈ Ω , which is encountered for dynamical
backaction cooling in the RSB regime, an additional factor ×2 appears and the SQL
is given by √

Ssinglexx [Ω] · SsingleFF [Ω] ≥ ~
2
·
√

2

ηc

The detuned readout of a mechanical oscillator therefore does not constitute an ideal
quantum measurement, where the imprecision limit is set by ~/2. As the informa-
tion about the oscillators motion is equally contained in the phase and amplitude
quadrature, one necessarily loses half of the information during the readout, which
is echoed by the additional factor

√
2 in the uncertainty product. Along the same

line the factor ηc reflects the information that is lost through the vacuum channel.
In particular this finding can become important, when the sensitivity of a measure-
ment is expressed in terms of the Heisenberg uncertainty limit[244, 196].
Regarding the experimental readout technique the limitation can be overcome, when
the motion of the mechanical oscillator is recorded with an auxiliary laser beam on
the resonance center, while cooling is achieved with a strong detuned source.

The influence of the mixing term

Finally, we investigate the mixing term between photon shot noise and quantum
backaction. As both contributions to the measurement imprecision originate from
the same noise operators, one expects naturally a correlation. In contrast to the
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Figure 7.8.: Ponderomotive squeezing is a consequence of the mixing between
the photon shotnoise and the backaction force SxF,θ(Ω). Here we plot the output
phase fluctuations for the detuned single mode transducer, with an initial thermal
occupation of n̄m = 50 phonons. One observes noise squashing below the photon shot
noise level, slightly detuned from the mechanical resonance. Again the effect is linked
to the quantum nature of the light and does not correspond to an actual squeezing of
the mechanical motion. Ponderomotiv squeezing was recently observed by Brooks and
co-workers [245]. We note that the imprecision spectrum of the amplitude fluctuations
is “mirrored” around the mechanical resonance, and elevated noise is found in the
frequency range where phase squashing takes place.

quantum backaction and imprecision spectra, the mixing terms are a priori inde-
pendent of the the coupling rate gm.

We remind ourselves that the mixing part SxF,θ of the measurement imprecision is
given by the expression

2π δ(Ω + Ω′)SxF,θ(Ω) =

〈
X̂x,θ[Ω]X̂F,θ[−Ω′]

〉
λ∗θ(Ω)

And it contributes to the measurement imprecision in the following way.

χeff (Ω)SxF,θ(Ω) + χ∗eff (Ω)SFx,θ(Ω) = 2 · < [χeff (Ω)SxF,θ(Ω)]

The latter is true, because switching the order of the quadrature fluctuation corre-
sponds to changing the sign of their frequency arguments, such that SFx,θ = S∗xF,θ.
The full analytical expression of the mixing term is usually quite long, as it includes
the effective mechanical susceptibility, and does not provide much physical insight.
To get an impression of the influence of the mixing term, the plotted the full phase
fluctuation spectrum in Figure 7.8.

Stripped of the effective susceptibility χeff (Ω), we find the the following expression
for the general single mode transducer

SsinglexF,θ (Ω) =
e−iθ(−2i∆− κ+ 2iΩ)~

4∆ cos(θ)− 2(κ− 2iΩ) sin(θ)
. (7.74)
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When the detuning ∆ is set to zero, we obtain identical expressions for the 3RT and
the 1RT.

StriplexF,θ (Ω) = SsinglexF,θ (Ω)
∣∣∣
∆=0

=
~
2

(Cot[θ]− i). (7.75)

Here, the highest sensitivity is achieved at θ = π/2, where measurement uncertainty
due to the mixing term is uneven in frequency χ0(Ω)StriplexF,θ (Ω) + χ∗0(Ω)StripleFx,θ (Ω) =
~γΩ|χ0(Ω)|2. Therefore the term disappears in the symmetrized spectrum. This is,
however, not the case for the detuned 1RT.

7.5. Outlook and Summary

In the last two chapters8 we have, in detail, investigated one or more optical cavity
modes coupled to a mechanical degree of freedom and we have presented an in depth
analysis of dynamical backaction cooling of the mechanical oscillator – including the
regime of strong coupling – as well as the transduction of the mechanical signal to
the output fluctuations of the cavity.

In particular we found that for coupling rates gm > κ/2, the optical and the mechan-
ical mode hybridize which manifests as normal mode splitting (NMS) in the reflected
signal. Intriguingly, this parameter regime was reached shortly after publication of
the work and mode splitting was observed. Today NMS in optomechanical settings
is regularly observed and it is at the basis of novel technical applications that re-
quire coherent energy (and information) exchange between the mechanics and the
light field. With respect to dynamical backaction cooling we found that the strong
coupling regime and in particular NMS, coincide with a saturation of the cooling
rate.

Indeed, we could show that the final phonon occupation number of the mechanical
oscillator can be separated in three terms of different physical origin: (i) the quantum
limit, (ii) a limitation through a noisy drive that does not allow cooling below the
thermal occupation of the drive source, and finally, (iii) the limitation through NMS,
where the finite cavity decay rate prevents further reduction of thermal phonons.
The final occupancy of the mechanics was presented up to second order – also taking
a finite coupling rate into account – and the result was one-to-one utilized for the
data analysis of the seminal ground state cooling work by Teufel and co-workers
[196].

Moreover we investigated the transduction properties of cavity optomechanical set-
tings that rely on multiple cavity modes, spaced by the mechanical resonance fre-
quency. We found that the quantum backaction in a three mode scheme, with the
central mode being driven, is greatly enhanced in the resolved sideband regime, and
the SQL is reached at lower input power. Likewise, more efficient cooling can be

8Here we summarize the part on the theoretical work on cavity optomechanics, which covers
chapters 6 and 7. For a detailed outlook and summary on the experimental part, we refer the
reader to section 5.4.
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achieved in a two mode scheme, where the lower frequency resonance is optically
pumped.

Here, we followed two different formalisms to obtain our results, a covariance ap-
proach and a quantum Langevin approach, to calculate noise and imprecision spec-
tra. As a treat for the reader and anyone who would like to follow up on the work,
we expose our methods and publish not only the complete algorithm that was used
to obtain the results of this work, but also its implementation. We emphasize that
this is a rarely chosen strategy and reflects the confidence that we keep in our re-
sults. Moreover, we discuss the limitations and difficulties that arise, namely with
the covariance approach.

Finally, we presented the essential results for the generic optomechanical system,
consisting of a single optical field and a mechanical mode. The system has attracted
an extraordinary amount of research during recent years, especially with respect to
ground state cooling of the mechanics. In our analysis it becomes clear that the
uncertainty associated with the motional ground state of the mechanical oscillator
indeed reflects the quantum nature of the light that transduces the motion.
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A. WGM theory and Simulation of
optical modes

A.1. Analytical WGM theory

In this paragraph we follow the instructional presentation of Teraoka et al. [96,
102], to introduce the analytical solutions of the wave equation for a microsphere
geometry. The derivation of the equations has been published several times before
and can be found, for example, in references [94, 95, 96, 97]. In order to provide a
benefit to the reader, the equations for the mode intensity distribution, the resonance
frequency, the mode volume, and other useful expression will be supplied directly
in Mathematica notation. The code can be pasted to a Mathematica notebook to
reproduce the figures and to recalculate the results.
The solutions to Equation 1.1 can be divided into waves of the electric type (TM
polarization) and magnetic type (TE polarization), and by separation of variables,
the explicit expressions for the electric field in spherical coordinates may be written
as

ETE
lmq(r, ϑ, ϕ) =

exp(imϕ)

kr
Slq(r)Xlm(ϑ) (A.1)

ETM
lmq(r, ϑ, ϕ) =

exp(imϕ)

k2ε(r)

[
∂

r∂r
Tlq(r)Ylm(ϑ) +

1

r2
Tlq(r)Zlm(ϑ)

]
(A.2)

≈ exp(imϕ)

k2r2ε(r)
Tlq(r)Zlm(ϑ). (A.3)

Here, the mode numbers {l,m, q} denote the polar, azimuthal, radial mode numbers,
respectively, where m corresponds to the integer number of wavelengths fitting into
the effective optical path of one round trip. At the same time |m− l| and q are the
number of intensity nodes in latitudinal and radial direction, respectively. In Figure
A.2a the radial intensity distribution for modes with q = 0 and q = 1 is shown. In
equations (A.1–A.3) the functions that depend on the polar angle ϑ are given by

Xlm(ϑ) =
im

sinϑ
Plm(cosϑ) êϑ −

∂

∂ϑ
Plm(cosϑ) êϕ (A.4)

Ylm(ϑ) = êr ×Xlm(ϑ) (A.5)

Zlm(ϑ) = l(l + 1)Plm(cosϑ) êr. (A.6)

Here, Plm(cosϑ) represent Legendre polynomials and {êr, êϑ, êϕ} are the unity vec-
tors in spherical coordinates. We note that the non-radial component of the TM
wave in equation (A.2) is typically much smaller than the radial component and can
be neglected when the mode energy and the electric field intensity are calculated.
We repeat that the spherical geometry of the resonator is established by the function
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ε(r), with

ε(r) =

{
n2

1 for |r| ≤ Rsphere

n2
2 for |r| > Rsphere

Here n1 and n2 are the refractive indices of silica and of the exterior, respectively.

Calculation of the radial part

While the analytical solutions to the angular parts are readily found after separation
of variables, the radial part is defined through a more complex differential equation.
In literature one finds different definitions that are eventually all equivalent, and
it does not really matter, whether the solutions are Hankel functions or spherical
Bessel functions. Here, we chose a compact representation that has the advantage
that the eigenvalues/indices are whole numbers. With z = n(r) kr the radial parts
Slq(r) and Tlq(r) of the solution (TE and TM) satisfy the differential equation[

∂2

∂z2
− l(l + 1)

z2
+ 1

]{
Sl(z)

Tl(z)

= 0

= 0
(A.7)

The equation is solved by the functions {z · jl(z), z · yl(z)}, where jl and ylare spher-
ical Bessel functions.
While equation A.7 represents the most compact description of the WGM radial
part, it can also be rewritten in terms of an eigenvalue problem with an effective
potential Ueff(r), which provides additional insight on the physics of the problem
[246].

∇× (∇×Ψ(r, t)) +
ε(r)

c2

∂2

∂t2
Ψ(r, t) = 0

∂2

∂r2
Ψ(r, t) +

ε(r)

c2

∂2

∂t2
Ψ(r, t) + Ueff(r)Ψ(r, t) = 0

With Ψ(r, t) = Ψ(r) exp(−iωt) we find

∂2

∂r2
Ψlq−

[
l (l + 1)

r2
− k2

lq (ε(r) + 1)

]
︸ ︷︷ ︸Ψlq = ε(r)k2

lqΨlq (A.8)

Ueff(r)

The effective potential thus consists of a radially decaying part∝ r−2 and a step func-
tion ∝ 1/ε(r) at the interface. Together, the two contributions form an energy well
that supports bound states. The finite height of the potential barrier k2(εsilica−εex)
limits the number of bound states. Consequently, only a finite number whispering
gallery modes is supported. Moreover, tunneling through the potential barrier leads
to whispering gallery loss that limits the optical Q factor. A detailed discussion is
presented, e.g., in the thesis of T.J. Kippenberg [247].
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Sticking to the compact form of the differential equation, the solutions inside and
outside the sphere are given by linear superpositions of r · jl and r · yl, but due to
the requirements of normalization, a zero value at r = 0, and physical sense, only
the combination below are valid.1

Slq(r) =

{
(n1klqr) · jl(n1klqr)

ATE
l (n2klqr) · yl(n2klqr)

, for r < a

, for r ≥ a
(A.9)

Tlq(r) =

{
(n1klqr) · jl(n1klqr)

ATM
l (n2klqr) · yl(n2klqr)

, for r < a

, for r ≥ a
(A.10)

ATE
lq = ATM

lq =
(n1klqa) · jl(n1klqa)

(n2klqa) · yl(n2klqa)
(A.11)

Here, the constants ATE
lq and ATM

lq are chosen, such that the continuity of the normal
components of the electric field (for the TE wave) and of the electric displacement
(for the TM wave) are ensured. Notably the term ε−1(r) appears in Equation
A.2, such that the discontinuity of the normal component of the electric field at
the interface is established by the above definition. However one will quickly notice,
that the expressions of the radial parts for the TE and the TM waves are equivalent.
The differences arise from the proper choice of the wavenumber k, which is defined
via the continuity condition of the first derivative.

Calculation of the resonance frequency

The wavenumbers klq have to meet the requirement, that the first derivative is
continuous at the interface. This yields two different conditions for the TE and TM
mode (again because ε(r) appears in Equation A.2). For the TE mode the relation

n1
∂z(z · jl(z))

z · jl(z)

∣∣∣∣
z→n1ka

= n2
∂z(z · yl(z))

z · yl(z)

∣∣∣∣
z→n2ka

(A.12)

needs to be fulfilled, whilst for the TM mode the condition takes the following form:

1

n1

∂z(z · jl(z))

z · jl(z)

∣∣∣∣
z→n1ka

=
1

n2

∂z(z · yl(z))

z · yl(z)

∣∣∣∣
z→n2ka

(A.13)

The roots of these relations are plotted in Figure A.1, which illustrates that discrete
values for the solution exist. A closed form analytical form of the discrete solutions
does not exist, but an approximation is given by the Schiller expansion in reference
[97]. An implementation of the series is given in the following section. Here, we
will first demonstrate how to find the fundamental solutions numerically. We repeat
that the following code can be pasted into a Mathematica notebook.

1In principle the continuity and normalization conditions can be fulfilled if jl(r) is chosen on the
domain outside the sphere. The requirement of physical sense is however violated.
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At the beginning of the calculation, we define the sphere radius a in µm, the (az-
imuthal) mode number Mmode, the refractive indices in silica (n1) and water (n2),
and finally some initial values for the numerical root search algorithm that yields
the resonance frequency (that correspond approximately to the zero crossings in Fig-
ure A.1). The notation here is chosen such that the numbers, i.e. z number TE,
corresponds to the number of radial intensity nodes.

a=32.72;

Mmode=551;

n1=1.46071;

n2=1.33372;

\[Epsilon][r_]:=If[r<a,n1^2,n2^2];

z0TE=386; z0TM=386.5; z1TM=394.3;

Here, the mode number (as well as the initial values) appears from nowhere. In
the following section we will present a way how to derive them in a deterministic
fashion using the Schiller expansion. Next, we define some auxiliary functions that
correspond to the left and right hand side of Equations A.12 and A.13.

Psi[l_,z_]:=(z*SphericalBesselJ[l,z]);

Chi[l_,z_]:=(z*SphericalBesselY[l,z]);

FracJ[l_,z_]:=(D[x*SphericalBesselJ[l,x],x]/.x->z)/(z*SphericalBesselJ[l,z]);

FracY[l_,z_]:=(D[x*SphericalBesselY[l,x],x]/.x->z)/(z*SphericalBesselY[l,z]);

We use these functions to calculate the resonant wave numbers of the TE00, TM00,
and TM10 modes.

k0TE=(z/a)/.FindRoot[n1*FracJ[551,n1*z]-n2*FracY[551,n2*z],{z,z0TE}];

k0TM=(z/a)/.FindRoot[(1/n1)*FracJ[551,n1*z]-(1/n2)*FracY[551,n2*z],{z,z0TM}];

k1TM=(z/a)/.FindRoot[(1/n1)*FracJ[551,n1*z]-(1/n2)*FracY[551,n2*z],{z,z1TM}];

The equation possesses different solutions klq, corresponding to values of q = 0, 1, 2, 3, . . .
and thus to different numbers of intensity nodes. To find the resonant wavenumbers
corresponding to one or two intensity maxima, as they are frequently encountered
in the experiment, one needs to supply “good” initial values for the numerical root
search algorithm. Even small deviations can lead to unwanted radial mode num-
bers, because singularities and steep gradients may lead to overshoots in the search
algorithm (cf. Figure A.1). We note that modes with the same lq mode numbers
but different (m− l) are frequency degenerate. Practically this degeneracy is lifted
due to subtle eccentricity or non-spheriodicity, which can, e.g., be tuned by strain
[248].
Here the units of the wavenumbers are µm−1 and multiplication with 3 · 1014/2π
yields the resonance frequency. We note that the code above is easily modified to
calculate the shift of the resonance frequency in response to a change of the refractive
index of the exterior.
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Figure A.1.: The resonance condition for TE and TM modes plotted as
a function of ka (wave number times resonator radius). The curves represent the
roots of the resonance condition A.12 and A.13 (left hand side minus right hand side).
Every zero crossing corresponds to a mode with a different radial mode number q,
which represents the number of radial field nodes. The resonance wavenumber and
frequency of a specific mode is numerically found when choosing a starting value for
ka close to the desired root.

Next we proceed with plotting the mode intensity distribution and start out with
the calculation of the normalization constants ATE

lq and ATM
lq that ensure that the

normal component of the dielectric displacement, i.e., ∝ Tlq(r)/r
2 for the TM wave,

and the tangential component of the electric field, i.e., ∝ Slq(r)/r for the TE wave,
are continuous.

A0TE=Psi[Mmode,n1*k0TE*a]/Chi[Mmode,n2*k0TE*a];

A0TM=Psi[Mmode,n1*k0TM*a]/Chi[Mmode,n2*k0TM*a];

A1TM=Psi[Mmode,n1*k1TM*a]/Chi[Mmode,n2*k1TM*a];

Now we can define the radial parts of the electric field according to the nomenclature
of Equations A.1 and A.2. Here we also defined the derivative of the function Tlq(r)
that appears in expression A.2 and that can usually be neglected. With the code
below, the reader is able to verify this claim.

S0[r_]:=If[r<a,Psi[Mmode,n1*k0TE*r],A0TE*Chi[Mmode,n2*k0TE*r]];

T0[r_]:=If[r<a,Psi[Mmode,n1*k0TM*r],A0TM*Chi[Mmode,n2*k0TM*r]];

T0p[r_]:=If[r<a,(D[x*SphericalBesselJ[Mmode,x],x]/.x->n2*k0TM*r),

A0TM*(D[x*SphericalBesselY[Mmode,x],x]/.x->n2*k0TM*r)];

T1[r_]:=If[r<a,Psi[Mmode,n1*k1TM*r],A1TM*Chi[Mmode,n2*k1TM*r]];

T1p[r_]:=If[r<a,(D[x*SphericalBesselJ[Mmode,x],x]/.x->n2*k1TM*r),

A1TM*(D[x*SphericalBesselY[Mmode,x],x]/.x->n2*k1TM*r)];
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When calculating the electric field intensity, the absolute value square of the angular
functions Xlm and Zlm appear, which can become very large for higher values of l
and m. It is convenient to express the integral over the 4π solid angle in a separate
parameter Wlm that will be used for scaling.

Wlm =

ˆ π

0

sinϑdϑ

ˆ 2π

0

dϕ |Xlm(ϑ)|2 =
4π(l +m)!l(l + 1)

(l −m)!(2l + 1)

More over ˆ π

0

sinϑdϑ

ˆ 2π

0

dϕ |Zlm(ϑ)|2 = l(l + 1)Wlm

The following code defines the value of the integral, as well as |Xlm(ϑ)|2 and |Zlm(ϑ)|2.

Xsqrd[l_,m_,th_]:=m^2/Sin[th]^2*LegendreP[l,m,Cos[th]]^2+

D[LegendreP[l,m,Cos[x]],x]^2/.x->th;

Zsqrd[l_,m_,th_]:=(l*(l+1))^2*LegendreP[l,m,Cos[th]]^2;

W[l_,m_]:=4*Pi*(l+m)!*l*(l+1)/(l-m)!/(2*l+1);

Finally we can plot the radial parts of the electric field intensity for the TE00 and
TM00 mode. The TM01 mode is plotted when exchanging 0→ 1 in the line coding
for the TM00 mode.

Plot[{k0TE^2*(S0[r]/r)^2*Xsqrd[Mmode,Mmode,Pi/2]/W[Mmode,Mmode],

(T0[r]/r^2)^2*Zsqrd[Mmode, Mmode,Pi/2]/

W[Mmode,Mmode]/\[Epsilon][r]^2}, {r,a-4,a+2},PlotRange->All]

Normalization of the plots can be achieved, e.g., by scaling with the mode energy
that is calculated in the next section. Then the curves resemble the ones in Figure
A.2. Magnifying the intensity at the interface displays the previously discussed dis-
continuity. Notably the higher order TM mode (q = 1) features a larger evanescent
fraction than the fundamental modes.

A.2. Simulations

In this section, we present the Mathematica code that was used for the calculation
of the analytical single particle frequency shift for microspheres. In the first place,
we define the refractive indices of the environment n1, the microsphere n2, and the
particle np and name the sphere radius a in [µm]. Refractive indices for fused silica
and water at the different wavelengths that we consider here, are listed in the table
below.
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Figure A.2.: The field intensity distribution for different WGMs. (a) The
normalized radial intensity distribution is plotted for the TE00, TM00, and TM01
mode. The right panel zooms in on the interface and highlights the discontinuity of
the TM polarized modes.

λ [ nm] a [µm] Mmode zTE
0 zTM

0 zTM
1

1311 30 200 143.8 144 149.5
1311 44 294 210.3 210.5 216.7
1311 51.6 347 247.4 246.6 254.2
1311 83.8 567 401.1 401.3 409.3
763 30 346 246 246.3 253
763 39 453 320.8 321 328.4
688 35 452 320 320.4 327.7
688 40 517 365.5 365.5 373.3
532 32.72 551 386 386.5 394

Table A.1.: Mode numbers and starting values for microsphere geometries used
by Vollmer et al. in reference [37].

λ [ nm] n1 n2

1311 1.4468 1.3234
763 1.45 1.33
688 1.45 1.33
532 1.46071 1.33372

The website http://refractiveindex.info gives access to a large database of re-
fractive indices for different materials and wavelengths. Importantly the underlying
sources for the data are properly cited. In the following we calculate mode geome-
tries and resonance frequencies for microspheres of different radius and for different
wavelength.
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Derivation of the mode number using the Schiller expansion

As shown in the previous section, the resonance frequency can be found, following
the illustrative way of guessing the mode number Mmode, plotting the resonance
condition as in Figure A.1 and extracting starting values for the numerical root
search. Here we present a different approach that is much faster and directly yields
the correct mode number Mmode and the zTEM

n starting values. To this we use the
Schiller expansion [97] to calculate an approximate wavelength for a given mode
number and polarization. We found that the best results are obtained when only
the first three terms of the development are considered.

SchillerExpansion = nu/m - (p/Sqrt[m^2-1]) +

AiryAiZero[l]/(30*2^(2/3)*m*nu^(2/3))*(10*2^(1/3)*

((m^3*p*(3-2*p^2))/(m^2-1)^(3/2)-3*nu)+9*nu^(1/3)*AiryAiZero[l]);

Then, we can launch a root search for the desired wavelength (here in nm) and
resonator dimension (again a is the radius in µm). The polarization in the example
below has been set to TM by choice of the parameter p = n2

2/n
2
1. For a TE mode

the parameter p has to be replaced by p = 1. Then we compute the mode number
Mmode.

wavelength = 532;

Mmode=Round[(nu/.FindRoot[(1000*2*Pi*n2*a/SchillerExpansion

/.{m->(n1/n2),p->(n2/n1)^2,l->1})==wavelength,{nu,300}])-0.5]

Higher order modes are calculated by setting the parameter l to the desired number
of radial maxima. To find the starting values for the numerical search of the res-
onance frequency we rely again on the Schiller expansion and calculate the initial
values

{
zTE

0 , zTM
0 , zTM

1

}
for the wavenumber (in units of the inverse cavity radius

k · a) using the lines of code below.

z0TE=N[SchillerExpansion/n2/.{m->(n1/n2),p->1,nu->(Mmode+0.5),l->1}];

z0TM=N[SchillerExpansion/n2/.{m->(n1/n2),p->(n2/n1)^2,nu->(Mmode+0.5),l->1}];

z1TM=N[SchillerExpansion/n2/.{m->(n1/n2),p->(n2/n1)^2,nu->(Mmode+0.5),l->2}];

Then the resonant wavenumbers and frequencies are calculated using the following
code.

k0TE=(z/a)/.FindRoot[n1*FracJ[Mmode,n1*z]-n2*FracY[Mmode,n2*z],{z,z0TE}];

k0TM=(z/a)/.FindRoot[(1/n1)*FracJ[Mmode,n1*z]-(1/n2)*FracY[Mmode,n2*z],{z,z0TM}];

k1TM=(z/a)/.FindRoot[(1/n1)*FracJ[Mmode,n1*z]-(1/n2)*FracY[Mmode,n2*z],{z,z1TM}];
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λ [ nm] a [µm] σlat [µm] λr [ nm] Vs [µm3] Vmode [µm3]

1311 30 2.131 311 3248 1815
1311 44 2.574 253 8619 3520
1311 51.6 2.777 238.5 12920 4653
1311 83.8 3.525 216 44398 11193
763 30 1.617 143 2481 924.3
763 39 1.836 134 4829 1476

Table A.2.: Evanescent field dimensions for different microsphere geometries
used by Vollmer et al. in reference [37]. The values were used to obtain the frequency
shifts in appendix B.

Calculating mode geometries

In this paragraph, we list the mode geometries for different toroid and microsphere
geometries that were used by ourselves or competing groups. Moreover, we compare
the analytical values to numbers that were obtained from simulations using finite
element simulations with Comsol Multiphysics, which gives a good impression of the
simulation error. The latter is important for toroidal geometries, as exact analytic
solutions do not exist, and we have to rely on simulations.

We start by calculating the mode profiles of the microspheres used by Vollmer et al.
in reference [37], which are discussed in detail in appendix B. The results are listed
in Table A.2, and comparison with simulated values shows that the parameters,
describing the geometry of the evanescent field, are reproduced with an error of
. 1%. The latitudinal extension σlat is well approximated by σlat ≈ Rmajor/

√
Mmode

for mode numbers Mmode > 100.

For selected toroid geometries and wavelengths, the mode profile and the sensing
mode volume were analytically calculated and simulated for a microsphere with a
radius that matches the major radius of the toroid. We find that the The simulation
overestimates the mode volume by ∼ 1.5%, the sensing mode volume however is
underestimated by ∼ 9%. This is most likely due to the discontinuity of the electric
field (for a TM mode) at the silica-water interface.

Using the values in the above tables, the electric field intensity of the evanescent
field is easily written in its parametrized form.

|E(x, y, z)|2 = V −1
s exp

[
−x2/σ2

lat

]
exp [−z/λr] (A.14)

In the case of a split mode, the intensity modulation along the y-direction is readily
inserted by correction factor cos2 [Mmode · (y/a)]. In the chapter 3 such representa-
tion of the evanescent field was used to calculate to overlap of a lipid vesicle or a
lipid pancake at random position with the evanescent field.
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λ [ nm] a [µm] σlat [ nm] λr [ nm]

688 35 1650 (1647) 1009 120 (121.4) 118.0
688 40 1762 (1759) 1049 117 (118.4) 115.1
532 32.72 1396 (1393) 861.8 86 (86.0) 84.6

Vs [µm3] Vmode [µm3]
688 35 3494 (3212) 1950.4 1069 (1086) 614.4
688 40 4905 (4486) 2647.0 1364 (1383) 755.3
532 32.72 2774 (2515) 1542.7 701.7 (711.8) 410.5

Table A.3.: Geometric parameters for the fundamental modes of selected res-
onators, characterized by their major radius a and the wavelength λ. The table lists
the latitudinal width and the exponential decay constant λr of the evanescent field.
Moreover the mode volume Vmode and the sensing mode volume Vs are calculated.
Here the bold values are obtained from a simulation of the toroidal geometry with
a minor radius of 3.85µm. The standard font values in the left column are obtained
from the analytical calculation of the microsphere mode and the values in parentheses
are simulated values for a microsphere. Apart from the sensing mode volume there is
very good agreement between the analytical parameters and the simulated data.

Calculation of the single particle shift

Finally we use the knowledge of the mode profiles to calculate the maximum shift
induced by a single particle. To this end we require the mode energy and thus the
integral of the electric intensity over the entire volume, and the maximum value of
the electric intensity outside the sphere. For the mode energy we re-assess reference
[102] (and pay attention not to copy the minor mistake in equation (20) ). Moreover
we divide the integral by Wlm/k

4
0, as this is typically a very large value. In order

to accelerate the numerical integration, we drop the derivative (as in equation A.3),
which is typically a very minor approximation. Then we calculate the mode energy

Umode0TE=NIntegrate[k0TE^2*S0[r]^2*\[Epsilon][r],{r,a-6,a+2}];

Umode0TM=NIntegrate[Mmode*(Mmode+1)/r^2*T0[r]^2/\[Epsilon][r],{r,a-6,a+2}];

Umode1TM=NIntegrate[Mmode*(Mmode+1)/r^2*T1[r]^2/\[Epsilon][r],{r,a-6,a+2}];

at r = a + 0.0001. We add 0.1 nm to assure that we evaluate the function at the
correct side of the discontinuity, even though this is normally not necessary.

E2max0TE=(k0TE^2*(S0[a+0.0001]/a)^2*Xsqrd[Mmode,Mmode,Pi/2]/W[Mmode,Mmode]);

E2max0TM=((T0[a+0.0001]/a^2)^2*Zsqrd[Mmode,Mmode,Pi/2]/W[Mmode,Mmode]/n2^4);

E2max1TM=((T1[a+0.0001]/a^2)^2*Zsqrd[Mmode,Mmode,Pi/2]/W[Mmode,Mmode]/n2^4);

the maximum evanescent intensity E2max yields the sensing mode volume Vs.
Finally we compute the frequency shift induced by a 25 nm lipid vesicle with RI np.
First we calculate the particle volume Vp in µm3 for a membrane thickness of 4 nm;
the RI contrast and the polarizability factor are included in the factor ξ (Xi).
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np=1.46;

Vp=4*Pi/3*(25^3-21^3)*1*^-9;

Xi=(np^2-n2^2)*(2*np^2+n2^2)/np^2/(5+4*(21/25)^3);

Xi*Vp*E2max0TM/(2*Umode0TM)*5.6*^14

The resulting frequency shift is ∼ 365 kHz, which is roughly a factor two smaller
than one expects for a toroid. This is a direct consequence of the smaller mode
confinement and thus smaller sensing volume of the microsphere.
The theoretical curves in the manuscript use a more refined geometric factor that
includes the overlap integral between the particle and a parametrized version of the
evanescent field.



B. Evaluation of published data with
modified theory

In this appendix we survey the sensing results that were published by competing
research groups, who work with high-Q WGM based sensors, and we will show that
our modified theory – which was presented in section 1.3 – withstands their ex-
perimental findings. Here we concentrate on teams that have demonstrated single
particle sensitivity using dispersive WGM based sensing methods, which are in prin-
ciple the groups of Kerry Vahala at the California Institute of Technology, and Frank
Vollmer together with Stephen Arnold (formerly Harvard University). The results
of Lan Yang from Washington University, who records the frequency splitting in
response to the adsorption of a single particle, rely on the scattering properties of
the particle, rather than its dispersive properties and are not discussed here.

Results of Vollmer et al.

In this paragraph we discuss the results that were published by Vollmer et al. in
the Proceeding of the National Academy of Science 105(52):20701-20704,(2008)
(reference [37]). The authors use microsphere resonators with different radii to
detect single polystyrene beads with a radius of 250 nm and a refractive index of
np = 1.59. The main point of the paper is, however, the detection of single Influenza
A viruses. As the quality of the virus data is poor, it will not be discussed here, and
we concentrate on the quantitative results given for the polystyrene beads.

We adapt Figure B.1 from the manuscript, where the authors plot the maximum
frequency shifts that were obtained for resonators with different radii. The authors
relate the frequency shift to the microsphere radius and find a dependency ∆λmax ∝

Figure B.1: Figure adapted from F.
Vollmer et al. in PNAS 105(52):20701-
20704,(2008). The authors use silica micro-
spheres with different radii R to measure
the wavelength shift induced by polystyrene
beads with a radius of a = 250 nm. Here the
maximum wavelength shift is plotted against
the inverse of the microsphere radius. For
three measurements labeled 1→ 3, the wave-
length shifts and sphere radii of 44.0µm,
51.6µm, and 83.8µm were extracted from the
graph. The values are listed in table B.1 and
compared with theoretically expected num-
bers.

1

2

3

5.0 x10-7

2.5 x10-7

7.7 x10-8
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R−2.67
ms , similar to the relation that we obtained from simulations in section 3.1.1

Here, we extract the data from the figure, and the values for the largest shifts are
summarized in Table B.1. Then, we calculate the mode profiles for the corresponding
microsphere geometries, both analytically and and numerically (the results are listed
in appendix A.2) and compute the overlap with the 250 nm radius, solid polystyrene
sphere. Using the single particle shift relation from section 3.5, we calculate the
maximum expected frequency shift.

As an example, for a 44µm microsphere resonator Vollmer and co-workers find a
maximum relative wavelength shift of around ∆λ/λ ≈ 5 · 10−7. In their manuscript
the authors supply (and use) two relations for data analysis: Equation (3) that
yields the maximum wavelength shift as a function of the particle and the resonator
radius, and Equation (4) which supposedly gives the particle radius, starting from a
measured frequency shift.2 There is, however, strong disagreement between the two
relations, and the derivation of Equation (4) from Equation (3) is at least partially
erroneous. In the end, the authors infer a radius of 211 nm that is slightly smaller
than specified radius of 250 nm for the bead.3 In Table B.1 we use Equation (3) of
the manuscript to provide a theoretical value, as it seems to be more accurate.

MS radius ∆λ/λ-shift ∆λ/λ-shift: Eqn. (3) ∆λ/λ-shift: Dobrindt

1 44.0µm 5.0× 10−7 6.0× 10−7 (+20.0%) 4.54× 10−7 (−9.2%)
2 51.6µm 2.51× 10−7 4.0× 10−7 (+59.4%) 2.90× 10−7 (+15.9%)
3 83.8µm 7.65× 10−8 1.2× 10−7 (+56.9%) 8.08× 10−8 (+5.6%)

Table B.1.: Results of F. Vollmer et al. in PNAS, 105(52):20701-20704,(2008),
which were extracted from the graph in Figure B.1. On the left hand side of the table,
the experimental values are listed. On the right hand side the numbers are compared
to the expected wavelength shift obtained from equation (3) in Vollmer et al. [37] and
to the values resulting from the energy variation analysis. The numbers in parenthesis
represent the deviation from the experimental values.

Moreover, we calculate the maximum frequency shift for the 44µm resonator using
the Teraoka relation from perturbation theory (cf. Equation 1.13), and we obtain
an expected shift of ∆λ/λ = 1.8 · 10−6, which is a factor∼ 3.5 larger than the
experimentally found value. Strikingly, with our modified theory that takes the full
energy shift into account (cf. Equation 3.6), the expected shift is reduced by a factor
÷3, such that the final deviation is only −9.2%. We note that Equation (3) of the
Vollmer manuscript has the interesting feature that the frequency shift for particles
with a radius much larger than the evanescent decay length goes to zero.

1The different exponent, i.e., R−2.67
ms ↔ R−2.28

toroid, probably arises from the overlap of the bead with
the evanescent field. For a smaller resonator the evanescent decay length is larger, such that
the effect of the radius on the signal is larger compared to the situation in section 3.1, where
only the peak intensity of the evanescent field is considered.

2The frequency shift is proportional to the particle volume, such that the conversion to a radius
immediately divides the error by three.

3On the last page of their article, Vollmer et al. provide a table with measured wavelength shifts
for particles of different size and the derived radius. Unfortunately the table contains errors,
e.g. the radius in line two (which fits very well) is only obtained when a different wavelength
(i.e. 1311 nm line one instead of 763 nm) is used.
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Results of Lu et al.

In a second article on WGM based single particle sensing, Lu et al. use silica micro-
toroids to measure the frequency shift from single polystyrene beads with radii of
12.5 nm, 25 nm , and 50 nm [43]. Moreover, they report frequency shifts from single
influenza viruses.
The results are, however, more difficult to follow, as the dimensions of the res-
onators are not mentioned in the manuscript. We therefore recalculate the expected
frequency shifts for two resonators, with radii of R = 35µm and R = 40µm. In
both cases the minor radius is 3.85µm. At the wavelength of 688 nm, which was
used by the authors, smaller resonators (that would yield a larger signal) are un-
likely, as the radiation loss cutoff leads to a strong deterioration of the optical
quality. In appendix A.2 the mode geometries and the sensing volumes for the
chosen resonator sizes are listed. In particular we find inverse sensing mode vol-
umes of V −1

s = 5.13 × 10−4 µm−3 and V −1
s = 3.78 × 10−4 µm−3, which are slightly

smaller than the V −1
s = 6.42×10−4 µm−3 for the resonator used for our single vesicle

measurements.

Next, we adapt Figure B.2 (a) from the manuscript of Lu, where the authors show
the maximum frequency shifts obtained during several measurements of polystyrene
beads of different sizes. Moreover, a theoretical curve is plotted that agrees very
well with the largest events for each particle size.
However, there are two curiosities about the Figure: on the one hand, the distri-
bution of the data does not seem to follow the typical distribution, similar to what
is plotted in panel (b). This might be owed to the fact, that only maximum shifts
were recorded, such that large shifts are overrepresented in the figure. On the other
hand, the theoretical curve is proportional to ∝ R2.70, even though the authors state
in the text that they “found it necessary to account for the actual field variation
with the particle for the largest particle size”. Integrating over a spherical particle
in an exponentially decaying field yields however a law that is proportional to the
particle radius cubed when the particle is much smaller than the decay length and
grows only linear when the particle is much larger than the decay length. The effect
of the transition should be visible in the theoretical curve.

We add the theoretical curves calculated for the R = 35µm and R = 40µm toroids
to Figure B.2 (a) and find that the predicted frequency shifts ∼ 1.5 and ∼ 2 times
smaller than the expected values from the authors. On the other hand, the curve for
the 35µm resonator fits the measured shifts for the larger particles reasonably well;
the data points for the 12.5 nm particles are however clearly missed. This is also due
to the bending of the curve towards smaller particle radii. In our model the curve
is initially proportional to ∝ R2.93, decreasing towards ∝ R2.70 at a particle radius
of 55 nm. For a particle much smaller than the decay length of the evanescent field
(∼ 100 nm), one expects that the signal grows with the particle volume, i.e., ∝ R3.
The slope published by Lu et al. does not seem to consider this effect.

Moreover, it raises questions to obtain only 10 events from 51 distinct measurement
runs as it is the case for the R = 12.5 nm polystyrene beads (cf. Figure B.2). The
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Figure B.2.: Two Figures adapted from T. Lu et al., PNAS, 108(15):5976-5979,
(2011). (a) In the original paper the Figure is described with the wording: “Measured
wavelength-shift step sizes from many measurements using different microtoroids and
bead sizes are compiled in [here (a)]. The data presented were compiled from 51, 11,
and 15 distinct runs in which 10, 25, and 43 identifiable binding events were observed
using R = 12.5 nm (green cross), R = 25 nm (blue cross), and R = 50 nm (red cross)
beads, respectively.” The solid line represents the maximum step size for a particle
binding at the equator that was obtained by Lu et al. using finite element simulation.
Here we added dashed lines, that correspond to the maximum shift, using the model
that takes full particle polarization into account (cf. Equation 3.6) and assuming
toroids with a major diameters of 70µm and 80µm. For the larger particles, the
Ra = 35µm line represents a relatively good fit to the data. Moreover, we note
that the dashed lines display a slight curvature, which derives from the fact, that
the model takes the finite decay length of the evanescent field into account. The
curvature is not present in the theoretical curve of the original manuscript. (b) The
wavelength step size histogram found for a measurement of Influenza A virus by Lu
et al.. The measurement is not analyzed in the paper. Assuming a toroid with major
radius of 40µm, a radius of 50 nm for the virus, and a refractive index of 1.5 for the
virus, we obtain a maximum step size of 7.38 fm. Interestingly, for a non-split mode
and monodisperse particles, theory predicts a histogram that features a peak at the
position of the maximum step size, similar to what is observed in (b). This is due
to the relatively broad intensity peak of the Gaussian field distribution in latitudinal
direction, compared to the region of large field gradient, which makes a binding event
close to the peak intensity more likely than a binding at, e.g. half intensity.
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Figure B.3.: 10× improvement in frequency resolution. We extracted noise
data from Lu et al. that did not undergo filtering and scaled our own noise floor
(taken from Figure 5.1) to a femtometer scale. The time axis has also been correctly
adapted. Moreover, we calculated the standard deviations σ, such that we can directly
compare the performance. Indeed, we can show that the measurements presented in
this thesis constitute a ×10 improvement in frequency resolution. On the right hand
side of the figure, we plot a selection of single vesicle frequency steps, however at a
faster time scale. It becomes clear that the standard deviation σ or event σ/

√
2, as

it was suggested by Lu, do not provide suited sensitivity measures for frequency step
resolution.

authors claim a measurement uncertainty of
√

2σ = 0.2 fm at a sampling rate of
100 Hz (private communication). In 51 measurements, each lasting around 200 s
(which is a conservative estimate), one will statistically find around 11 frequency
steps that exceed 0.6 fm, such that the smallest events can well be attributed to
statistics. This estimate neglects the fact that a single exceptionally large value
does not make a step, but the analysis shows that such a few events from a large
number of measurements can well fall into the margin of error. Besides, the authors
used a 3 point median filter for step enhancement.

In panel (b) of Figure B.2, we show the data of the single influenza A viruses mea-
surement by Lu, which are not analyzed in the manuscript. Assuming a toroid radius
of R = 40µm and a refractive index of 1.5 for protein, we calculate a theoretical
maximum wavelength shift of 7.4 fm, which is in excellent agreement with the data
and supports our model. For the 35µm resonator a maximum shift of 10.0 fm is
expected.

Finally, we extract a trace of noisy background from the Lu manuscript and compare
it to the noise background, recorded during one of our measurement. In Figure B.3
we have scaled both curves to a femtometer scale, such that they can directly be
compared. Indeed the factor ×10 improvement in frequency resolution, which was,
e.g., claimed in the abstract, is not just a striking value, but it is firmly linked to
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experimental data.

In summary, we can state that the modified theoretical model, which takes the
full energy shift induced by the particle into account, performs very well when re-
evaluating published data.



C. Electronic setup

In this appendix we present a detailed layout of the electronic setup, which can
serve as a blueprint for re-installation of teh system. Although the Pound-Drever-
Hall lock itself is relatively simple, the devil is in the detail. Here we record the
correction signal within the locking bandwidth ranging from DC to ∼ 100 kHz,
which is sensitive to accoustic and electronic noise. In particular the prominent
50 Hz line and multiples are picked up easily from power supplies and via cross-
talk, e.g. when cables pass behind the voltage transformers of electronic devices.
To avoid low frequency noise, imortant coax cables are placed on the optical table,
away from transformers and highvoltage cables. Moreover we can filter low frequency
noise directly before demodulation, which is an additional advantage of the PDH
scheme.

G
180 MHz
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signal generator

Mini-Circuits
ZFSC-2-11-S+
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Figure C.1.: The layout of the electronic setup. The Novatech 2940A signal
generator supplies a 180 MHz sinusoidal voltage ( 0 dBm ) that is split and serves as
an oscillator for modulation and demodulion. We note that both, the detected signal
and the demodulation signal, undergo highpass filtering before demodulation at the
frequency mixer. In this way low frequency electronic noise is efficiently blocked. The
components were chosen with respect to matching entrance power levels and general
low noise properties. In particular the installation of the Falco WMA-280 power
amplifier for amplification of the correction signal acting on the laser piezo actuator
(P), lead to a substantial reduction of electronic noise in the signal. A slow and coarse
frequency correction is applied via the temperature of the laser crystal (T).

Noise is also easily picked up by the optical fibers, especially when 630 nm single
mode fibers are used at a wavelength of 532 nm. In this case the poalrization of the
light – and thus the coupling to the resonator and the slope of the error signal – is
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especially susceptible to fiber bending and vibrations. Here we put a dense foam
material inside a plastic channel for cable management and then use a sharp knife
to cut about two thirds through the foam along the channel. An optical fiber that
is placed in the slit is protected against vibration and bending. In fact we installed
such fiber channel on our optical table, leading from the fiber port to the flow cell
device.

Most components that we used in the electronic setup were bought from the company
Minicircuits and different types of mixers, power dividers, and amplifiers where
tested until an optimum configuration was found.1 It is however important to note
that the 30 kHzlow pass filter behind the electronic mixer is a simple home built
first order filter. The Minicircuits filter usually have a higher order and lead to a
phase delay long before the cutoff frquency. For example, the popular 1.9 MHz low
pass filter already shows a π/2 phase shift at ∼ 300 kHz. When such a filter is used
on the error signal in a PDH lock, it leads to a corrupted phase and thus to a poor
performance of the lock. On the other hand home built filters are problematic at
high frequencies and in critical applications it is advantageous to combine, e.g., a
30 kHz first order low pass with a 1.9 MHz higher order Minicircuits low pass filter.

1This does not mean that improvement is not possible.



D. Covariance matrix approach

This appendix we present an implementation of the Heisenberg-Langevin equations
to calculate and solve the covariance matrix [226, 249]. The implementation uses the
language of the computer algebra program Mathematica and the code is formatted
in a way that it can directly be copied and pasted to Mathematica notebooks.

The formalism is kept very general and does not differentiate between mechanical
and optical modes. To provide a tangible example we use the code to compute all
the relevant cooling limits for the single cavity mode case as they were described in
chapter 6.

We start with a matrix MN that describes the coupled mode equations of N modes.
The rows of MN contain the equations of motion of

~vN =
{
â1, â

†
1, â2, â

†
2, . . . , âN , â

†
N

}T

and the dimension of MN is accordingly 2N . Moreover the system is subject to
noise, which is represented by the inhomogeneity δ~vN [t] and that will be specified
later.

d

dt
~vN(t) = MN · ~vN(t) + δ~vN [t]

It is our goal to obtain a matrix CN that describes the equation of motion of the

expectation values of all possible operator combinations, e.g., 〈â1â2〉 (t) or
〈
â†1â1

〉
.

The dimension of CN is given by the total number of combinations.

dim {CN} = 2N2 +N

The problem here is mostly about operator ordering and in the first place we are
defining a rule that assigns a row in the matrix to each combination of operators.
We start with indexing the operators:

operator : â1 â†1 â2 â†2 . . . â†n
↓ ↓ ↓ ↓ ↓

index : 1 2 3 4 . . . 2n

Next we index the rows of Cn that shall be referred to by the index j. To cover
all possible operator combinations, we proceed modewise and cover the correla-
tion between the operators of one mode. Also we impose normal ordering on the
operator products, which will become important later, when commutator have to
be obeyed. The first three lines of CN are always reserved for the first mode:{〈

â†1â1

〉
, 〈â1â1〉 ,

〈
â†1â

†
1

〉}
. The next three lines describe the operator products of

the second mode, following the same ordering, such that the first 3N lines of CN are
reserved for products within one mode. The next block in CN describes the prod-

ucts between the first two modes:
{〈

â†1â2

〉
,
〈
â1â

†
2

〉
, 〈â1â2〉 ,

〈
â†1â

†
2

〉}
. It is a valid

question, whether operators such as â†1 and â2 still commute, when their equations
of motion are coupled. The dimension of the covariance matrix:
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DimCovar[m_]:=2*m^2+m;

Next we define a couple of routines that relate the index pairs of operators to a row
in CN that describes the motion of the corresponding covariance.

BlockIndex[n_,m_]:=IntegerPart[(n-3*m-1)/4+1];

qIndex[n_,m_]:=IntegerPart[3/2+Sqrt[2*BlockIndex[n,m]-7/4]];

IndexPair[n_,m_]:={BlockIndex[n,m]-(qIndex[n,m]-1)*(qIndex[n,m]-2)/2,qIndex[n,m]};

OpIndex[k_]:={IntegerPart[(k-1)/2]+1,Mod[k-1,2]};

SubIndexEven[s_,k_]:=If[(s==1 && k==0)||(s==0 && k==1),0,If[(s==0 && k==0),1,2]];

SubIndexOdd[s_,k_]:=If[(s==1 && k==0),0,If[(s==0 && k==1),1,If[(s==0 && k==0),2,3]]];

Block3Mat={{1,0},{0,0},{1,1}};

Block4Mat={{1,0},{0,1},{0,0},{1,1}};

And finally we build a couple of routines that relate the index pairs of operators to
a row in CN and vice versa.

OpPairToIndex[j_,m_]:={tj=OpIndex[j[[1]]];tk=OpIndex[j[[2]]];

If[tj[[1]]==tk[[1]],

3*(tj[[1]]-1)+SubIndexEven[tj[[2]],

tk[[2]]]+1,

3*m+4*((Max[tj[[1]],tk[[1]]]-1)*(Max[tj[[1]],tk[[1]]]-2)/2+Min[tj[[1]],tk[[1]]]-1)

+SubIndexOdd[tj[[2]],tk[[2]]]+1]}[[1]];

IndexToOpPair[n_,m_]:=If[n<=3*m,te=IntegerPart[(n-1)/3]+1;

2*{te,te}-{1,1}+Block3Mat[[n-3*(te-1)]],

2*IndexPair[n,m]-{1,1}+Block4Mat[[n-3*m-4*(BlockIndex[n,m]-1)]]];

Commutation[j_,m_]:={tj=OpIndex[j[[1]]];tk=OpIndex[j[[2]]];If[(tj[[1]]==tk[[1]])&&

(tj[[2]]==0)&&(tk[[2]]==1),1,0]}[[1]];

We show an example to demonstrate the functioning of the routines defined above.
As such we take the case of three bosonic fields, i.e., N = 3, which results in 6 opera-
tor equation of motion and the dimension of the covariance matrix is correspondingly
21.

DimCovar[3]

Out[...]= 21

The index j therefore runs from 1 → 21. We take a look at the operator product
described by the rows of CN , using the previously defined function IndexToOpPair:

Table[IndexToOpPair[n,3],{n,1,21}]

Out[...]= {{2,1},{1,1},{2,2},{4,3},{3,3},{4,4},{6,5},{5,5},{6,6},{2,3},{1,4},

{1,3},{2,4},{2,5},{1,6},{1,5},{2,6},{4,5},{3,6},{3,5},{4,6}}
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This illustrates the ordering rule defined above and allows us to find the operator
belonging to a certain line of the covariance matrix. In particular, if the first two
fields were to describe optical modes and the third one corresponded to a mechanical
mode, the mechanical occupation would be given by line 7 of the covariance matrix,

which describes
〈
â†3â3

〉
, combining the operators with indices 6 and 5.

Lastly we define a rule to create a transformation matrix that is used to rotate the
covariance matrix, such that it describes the quadratures of the complex operator
products. This eliminates the complex dimension from the equation and removes a
redundant multi-dimensionality. The matrix is block-diagonal and consists of sub-
matrices that rotate the blocks of the covariance matrix.

MakeTransformMatrix[m_]:={md={};ld={};ud={};

For[j=1,j<=m,j++,AppendTo[md,{1,1,-I}];AppendTo[ld,{0,I,0}];AppendTo[ud,{0,1,0}];];

For[j=1,j<=m*(m-1)/2,j++,AppendTo[md,{1,-I,1,-I}];

AppendTo[ld,{I,0,I,0}];AppendTo[ud,{1,0,1,0}];];

(DiagonalMatrix[Flatten[md]]+DiagonalMatrix[Delete[Flatten[ld],DimCovar[m]],-1]

+DiagonalMatrix[Delete[Flatten[ud],DimCovar[m]],1])}[[1]];

Practical example: 2 modes

In the last section we have defined all the routines that are required to build a
covariance matrix from a matrix that describes the (linear) equations of motion
of arbitrary quantum fields. Here we give an example for one optical mode (â)
that is coupled to a mechanical mode (b̂) via the coupling rate gm (i.e. coupling

~
(
â+ â†

) (
b̂+ b̂†

)
. Then the motion is described by the matrix M2.

M2:=

{{-\[Kappa]/2+I*\[CapitalDelta],0,-I*Subscript[g,m]/2,-I*Subscript[g,m]/2},

{0,-I*\[CapitalDelta]-\[Kappa]/2,I*Subscript[g,m]/2,I*Subscript[g,m]/2},

{-I*Subscript[g,m]/2,-I*Subscript[g,m]/2,

-Subscript[\[CapitalGamma],m]/2-I*Subscript[\[CapitalOmega],m],0},

{I*Subscript[g,m]/2,I*Subscript[g,m]/2,0,

-Subscript[\[CapitalGamma],m]/2+I*Subscript[\[CapitalOmega],m]}};

MatrixForm[M2]

Pasting the code to Mathematica and evaluating the input yields the matrix that
describes the equation of motion of the two fields.

M2 =


i∆− κ

2
0 − igm

2
− igm

2

0 −i∆− κ
2

igm
2

igm
2

− igm
2

− igm
2

−Γm
2
− iΩm 0

igm
2

igm
2

0 −Γm
2

+ iΩm

 (D.1)

As before, ∆ is the detuning of the drive from resonance, Ωm is the mechanical
resonance frequency, κ and Γm are the decay rates of the modes, and gm describes
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the optomechanical coupling. We use an outer For-loop to walk through the rows
of the covariance matrix CVM a subsequently fill up the entries. First we create the
vector oi that contains the operator pairs described by CVM.

SMat := M2;

fields = Dimensions[SMat][[1]]/2;

nV = Table[0, {n, 1, DimCovar[fields]}];

CVM = DiagonalMatrix[nV];

For[n = 1, n <= DimCovar[fields], n++, oi = IndexToOpPair[n, fields];

For[j = 1, j <= 2*fields, j++, oit = {j, oi[[2]]};

CVM[[n,OpPairToIndex[Sort[oit],fields]]]+=SMat[[oi[[1]],j]];

nV[[n]]+=Commutation[oit, fields]*SMat[[oi[[1]], j]];];

For[j = 1, j <= 2*fields, j++, oit = {oi[[1]], j};

CVM[[n,OpPairToIndex[Sort[oit],fields]]]+=SMat[[oi[[2]],j]];

nV[[n]] += Commutation[oit, fields]*SMat[[oi[[2]], j]];];];

transMat = MakeTransformMatrix[fields];

CVMq := FullSimplify[transMat.CVM.Inverse[transMat]];

nVq := FullSimplify[transMat.nV];

Evaluating the code above yields the covariance matrix of the quadratures.

CVMq =

−κ 0 0 0 0 0 0 − gm
2

0 gm
2

0 −κ 2∆ 0 0 0 0 gm 0 −gm
0 −2∆ −κ 0 0 0 gm 0 gm 0
0 0 0 −Γm 0 0 0 gm

2
0 gm

2
0 0 0 0 −Γm −2Ωm 0 −gm 0 −gm
0 0 0 0 2Ωm −Γm gm 0 gm 0
0 0 gm

2
0 0 gm

2
1
2

(−κ− Γm) −∆− Ωm 0 0

gm
gm
2

0 −gm − gm
2

0 ∆ + Ωm
1
2

(−κ− Γm) 0 0

0 0 − gm
2

0 0 − gm
2

0 0 1
2

(−κ− Γm) ∆− Ωm
gm

gm
2

0 gm
gm
2

0 0 0 −∆ + Ωm
1
2

(−κ− Γm)



Moreover the vector nVq contains all the constants that were obtain from operator
commutations and that represent the quantum nature of the fields. Interestingly
the

nVq = {0, 0, 0, 0, 0, 0, 0, 0, 0, gm} (D.2)

LinearSolve[ CVMq /. {Subscript[\[CapitalGamma], m] -> 0,

\[CapitalDelta] -> -Subscript[\[CapitalOmega], m]}, -nVq][[ 4]] // FullSimplify

Here we query the entry fourth entry of the solution vector, which corresponds to
the excess mechanical occupation due to quantum noise

〈
â†mâm

〉
κ4 − 2κ2g2

m + 4 (κ2 + 2g2
m) Ω2

m

16Ω2
m (κ2 − 4g2

m + 4Ω2
m)

gm = 0
−→

κ2

16Ω2
m

(D.3)
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As gm is limited by κ/2 in a physically meaningful situation, it can be neglected in
the above equation. The actual development of the expression in the small quantities
gmand κ

Series[%,{\[Kappa],0,2},{Subscript[g,m],0,2}]// FullSimplify

yields the power dependent quantum limit in Equation 6.8 and which is plotted in
Figure 7.6.

To obtain the cooling limit imposed by the cavity decay rate, we modify the noise
vector and include the classical noise contribution from the heat bath coupled to
the mechanics.

nVq = {0, 0, 0,Γmnm, 0, 0, 0, 0, 0, 0} (D.4)

nVq = {0, 0, 0, Subscript[\[CapitalGamma], m] nm, 0, 0, 0, 0, 0, 0};

LinearSolve[ CVMq /. {

\[CapitalDelta] -> -Subscript[\[CapitalOmega], m]}, -nVq][[ 4]] // FullSimplify

In the above derivation we explicitly kept the mechanical dissipation rate Γm, which
was set to zero in the previous example. The resulting expression is a rather lengthy
fraction that requires additional simplification. To this end we factorize the nomi-
nator end denominator separately and keep only terms proportional to Ω6

m. This is
justified because κ, gm � Ωm. Then we obtain the much simpler fraction

nf = Γmnm
g2
m + κ (κ+ Γm)

(κ+ Γm) (g2
m + κΓm)

≈ nm
Γm
κ

g2
m + κ2

g2
m + κΓm

This is exactly the result in reference [2], which was used for data analysis by Teufel
et al. [196].

Lastly we study the influence of a noisy driving field on the final occupancy of the
mechanical oscillator, which is achieved by setting the quadrature noise vector to

nVq = {κnp, 0, 0, 0, 0, 0, 0, 0, 0, 0} . (D.5)

This is because the first line of the covariance matrix CVM describes the occupancy of
the optical mode

〈
â†â
〉
. Here the mechanical decay rate is again set to zero, because

its influence at zero coupling, i.e. gm → 0, can always be neglected compared to κ.

nVq = {\[Kappa] np, 0, 0, 0, 0, 0, 0, 0, 0, 0};

LinearSolve[ CVMq /. {Subscript[\[CapitalGamma], m] -> 0,

\[CapitalDelta] -> -Subscript[\[CapitalOmega], m]}, -nVq][[ 4]] // FullSimplify
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We obtain a solution that can again be simplified by development up to second order
in κ and gm.

nf =
np (κ4 + 12κ2Ω2

m + 32Ω4
m − 2g2

m (κ2 + 12Ω2
m))

8Ω2
m (κ2 − 4g2

m + 4Ω2
m)

≈ np + np
κ2/2 + g2

m

4Ω2
m

This reproduces the result of reference [2] and shows that it is never possible to cool
the mechanical oscillator below the occupation of the optical drive.
To gain better understanding for the system it is a good exercise to solve for the
optical occupation number in line 1 of CVM and to watch how the noise in the optical
field increases with stronger cooling.

Important questions to be raised

Before creating any confusion, we emphasize that the above results are to the best
of our knowledge correct. They have been derived using different approaches (cf.
chapter 6) and they were experimentally confirmed by Teufel and co-workers [196,
212].
However there are two curiosities that we want to address, the first of which has
already been mentioned, i.e. the question whether the field operator continue to
commute even when they are not orthogonal anymore. The second question concerns
the quantum nature of the mechanical oscillator. In the final result of the chapter
6 calculation one obtains a noise term ∝ (np + 1/2), where the 1/2 leads to the so
called quantum limit of κ2/16Ω2

m. This gives the impression as if the quantum limit
were a consequence exclusively of the quantum nature of the photon field. Moreover
we have shown in chapter 7 that the quantum contribution of the vacuum noise
operators acting on the mechanics goes to zero in back-action cooling because of its
power independence. In the quantum Langevin approach the quantum nature of the
field operators is not a priori imposed via commutation relations that are carved
in stone, but the commutation rules are established via properly defined vacuum
noise operators. Therefore the origin of a particular effect is more apparent and the
quantum limit – even the ground state uncertainty of 1/2 – can be related solely to
radiation pressure fluctuations and thus to the quantum nature of the light. In this
case no judgment about the quantum nature of the mechanics is possible.

In contrast, for the covariance matrix approach that is presented here, it seems as
if the commutators of the mechanics and optics shared the responsibility for the
quantum limit and that each contributed gm/2 to the inhomogeneity in the vector
nVq. One could thus be tempted to switch of the commutator of the mechanical
mode here to simulate classical behavior and to see what happens. Indeed this
would violate the rules of the game. The commutation of the operators during
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the assembly of the covariance matrix, e.g., [â1(t), â2(t)]t→∞ = 0, only works when
the original commutation rules are the same for all players. Otherwise complicated
commutators have to be considered and even complex terms show up in the vector
nVq that are a consequence of broken symmetry.
In a similar fashion the photon shot noise in chapter 7, which nicely evaluates to
1/2 + n, independent of the number of contributing modes, will take a complex,
pathological form when the quantum nature of one optical field is switched off,
while being kept for the others.

In summary we conclude that the covariance approach provides a compact and fast
way to compute steady state covariances of complex systems. The physical meaning
that can be associated with the solution remains however limited. The physical
intuition will be satisfied in the following appendix where a different approach based
on the quantum Langevin equations is presented. In this case it is the vacuum noise
operators that introduce the quantum nature to the problem and that sustain the
commutation relations of the physical quantities. The approach is in a sense more
rigorous as it allows us to separate the contributions to the noise and imprecision.



E. Heisenberg-Langevin approach

In this appendix we present the algorithm that was used to calculate the caviy
output noise spectral densities from the quantum Langevin equations. It was already
mentioned a couple of times in chapter 7 that the power of the algorithm is based on
the ability to include a number of correlated and uncorrelated noise sources following
a deterministic scheme, which eventually helps to prevent mistakes. Therefore the
code can be used to efficiently calculate and simplify complicated spectra. As an
arbitrary example we take a look at the mixing term SxF,θ.

SxF,θ(Ω) ∼
ˆ
dΩ′

2π

〈
X̂x,θ[Ω]X̂F,θ[−Ω′]

〉

Both operators, X̂x,θ[Ω] and X̂F,θ[Ω], linearly depend on a number of different noise
operators and the “evaluation by hand” of the equation above becomes very time
consuming. Here we take Mathematica’s AngleBracket-operator 〈·, ·〉, which is a
bilinear function of two arguments, and define it in a way that it automatically
treats quadrature noise operators according to the rules defined in section 7.2.1. For
this to work, we introduce a unique representation for quadrature noise operators
that redefines Mathematica’s CircleTimes-operator (⊗) with a capital Xs or Ys
(neccesarily including a subscript) at its right hand side according to following rule.

(x)⊗ Xs → {x, s, 1, Random[Real]}
(x)⊗ Ys → {x, s,−1, Random[Real]}

The Mathematica operator expression is automatically converted to a list, where
the first element is the argument to the left hand side of the ⊗, the second element
contains the subscipt, which names the noise source (e.g. in for noise entering
through the input channel), the third element is either 1 or −1 to identify amplitude
and phase noise, and lastly there is a random number that makes the list unique.
The code that defines the ⊗ operator in Mathematica, as well as the AngleBracket-
operator, is listed below. It can directly be pasted into a Mathematica notebook. For
this tutorial to work, we found it neccesary to define the ⊗-operator twice for each
quadrature. The first two definitions cope with a subscript representation, which
prints as Xs and is entered by typing X, then Ctrl + m, then s in Mathematica.
When pasting the code from this pdf, however, the subscript is often represented
as Subscript[X, s], which is taken care of in the two additional defining lines of the
⊗-operator.

MakeExpression[RowBox[{x_,"\[CircleTimes]",SubscriptBox["Y",n_]}],

StandardForm]:=MakeExpression[RowBox[{"ToString[{",x,",",n,",",1,",
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Random[Real]},InputForm]"}],StandardForm];

MakeExpression[RowBox[{x_,"\[CircleTimes]",SubscriptBox["X",n_]}],

StandardForm]:=MakeExpression[RowBox[{"ToString[{",x,",",n,",",-1,",

Random[Real]},InputForm]"}],StandardForm];

MakeExpression[RowBox[{x_,"\[CircleTimes]",RowBox[{"Subscript","[",RowBox[

{"Y",",",n_}],"]"}]}],StandardForm]:=MakeExpression[RowBox[{"ToString[

{",x,",",n,",",1,",Random[Real]},InputForm]"}],StandardForm];

MakeExpression[RowBox[{x_,"\[CircleTimes]",RowBox[{"Subscript","[",RowBox[

{"X",",",n_}],"]"}]}],StandardForm]:=MakeExpression[RowBox[{"ToString[

{",x,",",n,",",-1,",Random[Real]},InputForm]"}],StandardForm];

\[Nu]Y[a_,b_,s_]:=If[a*b>0,1+2*Subscript[n,s],If[a>0&&b<0,

-I*Subscript[\[CapitalKappa],s],I*Subscript[\[CapitalKappa],s]]];

comm[a_,b_]:=If[x=ToExpression[a];y=ToExpression[b];x[[2]]===y[[2]],

\[Nu]Y[x[[3]],y[[3]],x[[2]]]*(y[[1]]/.\[CapitalOmega]->-\[CapitalOmega])*x[[1]],0];

AngleBracket[a_,b_]:=Distribute[f[a,b]]/.f->comm//Expand//FullSimplify;

Next we address the syntax and functioning of the AngleBracket-operator 〈·, ·〉.
When we enter a complex expression that depending on many noise operators, ac-
cording to the noise representation defined by the ⊗-operator, it is immediately
broken down to a sum of the lists that represent the noise and the argument. The
AngleBracket-operator now calls the Distribute-function, such that – according
to the bilinear nature of the operator – one ends up with a sum of AngleBrackets
with only one noise argument on each side.

These are then evaluated according to the rules in section 7.2.1, which are here imple-
mented in the comm-function. Importantly the frequency variable of the argument
must be denoted by capital omega Ω, such that the algorithm can automatically
switch signs when required by the rules. The index of the noise, the letter s in
the above example, “names” different operators and has to match for correspond-
ing phase and amplitude noise. Below we give some examples that show how the
operators work and that have NO PHYSICAL MEANING.

〈(1 + Ω)⊗Xs, (2Ω)⊗Xs〉 = −2Ω(1 + Ω)(1 + 2ns)

〈(1 + Ω)⊗ Ys, (2Ω)⊗ Ys〉 = −2Ω(1 + Ω)(1 + 2ns)

〈(1 + Ω)⊗Xs, (2Ω)⊗ Ys〉 = −2iΩ(1 + Ω)Ks

〈(1 + Ω)⊗Xs + (2Ω)⊗ Ys, (2Ω)⊗ Ys〉 = 4Ω2(1 + 2ns)− 2iΩ(1 + Ω)Ks

〈(1 + Ω)⊗Xs + (2Ω)⊗ Ys, (. . . )⊗ Yk〉 = 0

For the correlations between amplitude and phase noise, e.g. in line three and four,
a marker Ks appears, which should be set to either one or zero. (The letter is
\[CapitalKappa] and not K.) For Ks → 0 a physical spectrum is automatically
symmetrized (which is not true for the carelessly chosen example), while Ks → 1
results in the full “quantum” spectrum that cover effects like sideband assymmetry.
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The symmetry considerations are adressed on the first pages of reference [222].
In the last line the noise index on the right hand side was changed and – by definition
– noises with different indices are not correlated such that the whole statement gives
zero. After having evaluated the code that defines the operators, one can paste and
evaluate the code for the examples above.

\[LeftAngleBracket] (1+\[CapitalOmega])\[CircleTimes]Subscript[X,s],

(2\[CapitalOmega])\[CircleTimes]Subscript[X,s] \[RightAngleBracket]

\[LeftAngleBracket] (1+\[CapitalOmega])\[CircleTimes]Subscript[Y,s],

(2\[CapitalOmega])\[CircleTimes]Subscript[Y,s] \[RightAngleBracket]

\[LeftAngleBracket] (1+\[CapitalOmega])\[CircleTimes]Subscript[X,s],

(2\[CapitalOmega])\[CircleTimes]Subscript[Y,s] \[RightAngleBracket]

\[LeftAngleBracket] (1+\[CapitalOmega])\[CircleTimes]Subscript[X,s]+

(2\[CapitalOmega])\[CircleTimes]Subscript[Y,s],

(2\[CapitalOmega])\[CircleTimes]Subscript[Y,s] \[RightAngleBracket]

\[LeftAngleBracket] (1+\[CapitalOmega])\[CircleTimes]Subscript[X,s]+

(2\[CapitalOmega])\[CircleTimes]Subscript[Y,s],

(2\[CapitalOmega])\[CircleTimes]Subscript[Y,k] \[RightAngleBracket]

In the following we calculate the major results found for the triple mode transducer
and the general single mode transducer. The author encourages the reader to play
with the code and the parameters to see how the result changes.

E.1. Three mode transducer

Before starting with the calculations of this section, the code that defines the three
mode matrix S3 needs to be defined. It is found in a supplementary paragraph at
the very end of this appendix. Moreover we start with a calculation where cavity
loss is not present an noise enters only through the input coupler. An additional
vacuum loss channel is introduced in the next section that covers the single mode
transducer (1RT). For the calcluation of the triple mode transducer with a lossy
cavity it is sufficient to exchange the matrix and the T-vector in the code of the
1RT, namely Sw1→ Sw3 and T1→ T3.

Calculation of the photon shot noise

In this paragraph we demonstrate how to calculate the photon shot noise for the
three resonance transducer. Before pasting the code below, the matrix Sw3 and the
vector T3(θ) need to defined. Apart from that the code is identical to the definition
of the shot noise fluctuations in equation 7.53.

Xx3=(\[Kappa]*T3[\[Theta]].Sw3.T3[0]-

Cos[\[Theta]])\[CircleTimes]Subscript[X,in] +

(\[Kappa]*T3[\[Theta]].Sw3.T3[Pi/2]- Sin[\[Theta]])\[CircleTimes]Subscript[Y,in];

(1/2)*\[LeftAngleBracket] Xx3,Xx3 \[RightAngleBracket]/.{

Subscript[\[CapitalKappa],in]->\[CapitalKappa]}//FullSimplify
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Calculation of the backaction force spectral density

We use the previously defined matrices and vectors to directly implement equation
7.57. We exclude however the prefactor

√
κ~gm/x0, whose square will be mulit-

plied with the result. Stripped from this prefactor, the expression for the radiation
pressure force in our notation breaks down to

(T3(0) · Sw3 · T3(0))⊗X1 + (T3(0) · Sw3 · T3(π/2))⊗ Y1

In the code example below we calculate the radiation pressure force spectral density.

XF3=(T3[0].Sw3.T3[0])\[CircleTimes]Subscript[X,1]+

(T3[0].Sw3.T3[Pi/2])\[CircleTimes]Subscript[Y,1];

SFF3 = (1/2)*\[LeftAngleBracket] XF3,XF3

\[RightAngleBracket]/.Subscript[n,1]->0

SFF(Ω) =
κ~2g2

m

x2
0

2 (Ω2
m − 3Ω2)

2

κ2 (Ω2
m − 3Ω2)2 + 4Ω2 (Ω2

m − Ω2)2

The calculation for the one or two resonance case is the very same, only the vector
and the matrix need to be renamed. Here we do not differentiate between the
different loss channels, as the noise operators are uncoorrelated and enter the exactly
same way. If one were to include them separately, the loss rates would at up and
one obtains the same result as if one directly had used the total loss rate (as we did
here).

Calculation of the transduction function

In this paragraph we calculate the last missing piece, the transduction function λ(θ).

λθ(Ω) =
gm
x0

√
ηcκ ~T

ᵀ
θ · S̃[Ω] · ~Tπ/2

→ gm
x0

√
ηcκ [T3(θ) · Sw3 · T3(π/2)]

Then the implementation is straight forward.

lambda3=T3[\[Theta]].Sw3.T3[Pi/2] // FullSimplify

λ3(θ) =
gm
x0

√
ηcκ

2i (Ω2
m − 3Ω2) sin(θ)

2Ω (Ω2
m − Ω2) + κ (Ω2

m − 3Ω2)

We calculate the absolute value of the
Here it is convenient to replace Ω→ −Ω in λ3(θ) to obtain its complex conjugate.
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Sxx3=(1/2)/(lambda3*(lambda3/.\[CapitalOmega]->

-\[CapitalOmega]))//FullSimplify

Sxx3*SFF3

(given by the omitted prefactors) and minimized for θ = π/2. This finding confirms
that the mechanical signal is transduced to the phase quadrature.

E.2. The very general single mode case

Evaluating the code below, we define the matrices S1 (S1), S̃1[Ω] (Sw1), and the

vector ~Tθ (T1) for the general single mode transducer.

S1 := {{-\[Kappa]/2, \[CapitalDelta]}, {-\[CapitalDelta], -\[Kappa]/2}}

Sw1 := -Inverse[S1 + I*\[CapitalOmega]*IdentityMatrix[2]] //FullSimplify

T1[\[Theta]_] := {Cos[\[Theta]], Sin[\[Theta]]};

Next we define the photon shot noise X̂x,θ[Ω] and implement the exact analogon to
expression 7.53, which we denote xX here. In the second step we calculate the photon
shot noise spectrum 1/2 〈xX · xX〉, where the replacement rules set the symmetry tags
to an arbitrary value K. Likewise the thermal occupancy of both reservoirs is set to
the value n, i.e. nin → n and nvac → n. Differing occupancies will alter the result.

Xx1 =

(\[Kappa]*Subscript[\[Eta],c]*T1[\[Theta]].Sw1.T1[0]-

Cos[\[Theta]])\[CircleTimes]Subscript[X,in]+

(\[Kappa]*Subscript[\[Eta],c]*T1[\[Theta]].Sw1.T1[Pi/2]-

Sin[\[Theta]])\[CircleTimes]Subscript[Y,in]+

(\[Kappa]*Sqrt[Subscript[\[Eta],c]*(1-Subscript[\[Eta],c])]*

T1[\[Theta]].Sw1.T1[0])\[CircleTimes]Subscript[X,vac]+

(\[Kappa]*Sqrt[Subscript[\[Eta],c]*(1-Subscript[\[Eta],c])]*

T1[\[Theta]].Sw1.T1[Pi/2])\[CircleTimes]Subscript[Y, vac];

(1/2)*\[LeftAngleBracket] Xx1,Xx1 \[RightAngleBracket]/.{

Subscript[\[CapitalKappa],vac]->\[CapitalKappa],

Subscript[\[CapitalKappa],in]->\[CapitalKappa],

Subscript[n, vac] -> n, Subscript[n, in] -> n}//Expand //FullSimplify

The result yields flat photon shot noise as one would expect. It is interesting however
to play with the temperatures of the dissipative baths, which are represented by the
noise occupation numbers nin and nvac.
Next we calculate the transduction function, the equivalent shot noise, and
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lambda1 = T1[\[Theta]].Sw1.T1[Pi/2];

Sxx1 = (1/2)/(lambda1*(lambda1/.\[CapitalOmega]-> -\[CapitalOmega]));

XF1 = (T1[0].Sw1.T1[0])\[CircleTimes]Subscript[X,1]+

(T1[0].Sw1.T1[Pi/2])\[CircleTimes]Subscript[Y,1];

SFF1 = (1/2)*\[LeftAngleBracket] XF1,XF1 \[RightAngleBracket]

Sxx1*SFF1 /.{Subscript[n, 1]->0,Subscript[\[CapitalKappa],1]->0,

\[Theta]->Pi/2}//FullSimplify

The result for Sxx still needs to be multiplied with x2
0/g

2
mκηc, while SFF comes with

a prefactor κ~2g2
m/x

2
0, such that the result is again given in units of ~2/4.

The definition of the three mode matrix

In this paragraph the matrix that describes three cavity modes S3 is defined. In the
definion below, the “small” coupling term ∝ g2

m are included and tagged with an ε.
Before evaluation the parameter has to be set to either 0 or 1. Here we set ε → 0
when calculating the inverted matrix Sw3.

S3 :=

{{-\[Kappa]/2,Subscript[\[CapitalDelta],1],-\[Kappa]/2,-\[Epsilon]*Subscript[g,m]^2/2,

-\[Kappa]/2,-\[Epsilon]*Subscript[g,m]^2/2},{-Subscript[\[CapitalDelta],1],-\[Kappa]/2,

\[Epsilon]*Subscript[g,m]^2/2,-\[Kappa]/2,\[Epsilon]*Subscript[g,m]^2/2,-\[Kappa]/2},

{-\[Kappa]/2,-\[Epsilon]*Subscript[g,m]^2/2,-\[Kappa]/2,Subscript[\[CapitalDelta],2],

-\[Kappa]/2,-\[Epsilon]*Subscript[g,m]^2/2},{\[Epsilon]*Subscript[g, m]^2/2,-\[Kappa]/2,

-Subscript[\[CapitalDelta],2],-\[Kappa]/2,\[Epsilon]*Subscript[g,m]^2/2,-\[Kappa]/2},

{-\[Kappa]/2,-\[Epsilon]*Subscript[g,m]^2/2,-\[Kappa]/2,-\[Epsilon]*Subscript[g,m]^2/2,

-\[Kappa]/2,Subscript[\[CapitalDelta],3]},{\[Epsilon]*Subscript[g,m]^2/2,-\[Kappa]/2,

\[Epsilon]*Subscript[g,m]^2/2,-\[Kappa]/2,-Subscript[\[CapitalDelta],3],-\[Kappa]/2}};

Sw3 :=

-Inverse[(S3 /.{Subscript[\[CapitalDelta],1]->0,

Subscript[\[CapitalDelta],2]->-1,Subscript[\[CapitalDelta],3]->1,

\[Epsilon]->0})+I*\[CapitalOmega]*IdentityMatrix[6]]// FullSimplify

T3[\[Theta]_] :=

{Cos[\[Theta]],Sin[\[Theta]],Cos[\[Theta]],Sin[\[Theta]],Cos[\[Theta]],Sin[\[Theta]]};

The matrices can be inspected using the MatrixForm-command.
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PhD thesis, Kungliga Tekniska Högskolan (KTH) Stockholm, 2011. 82

[172] Richard F. Voss and John Clarke. Flicker (1/f) noise: Eqilibrium temperature
and resistance fluctuations. Physical Review B, 13:556–573, 1976. 83, 89

[173] Michael L. Gorodetsky and Ivan S. Grudinin. Fundamental thermal fluctua-
tions in microspheres. Journal of the Optical Society of America B, 21(4):697–
705, apr 2004. 87, 88, 90

[174] Ieee standard definitions of physical quantities for fundamental frequency and
time metrology – random instabilities. Technical Report IEEE Std 1139-1999,
IEEE Standards Coordinating Committee 27 on Time and Frequency, 1999.
90



Bibliography 193

[175] A. D. O’Connell, M. Hofheinz, M. Ansmann, Radoslaw C. Bialczak, M. Lenan-
der, Erik Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner,
John M. Martinis, and A. N. Cleland. Quantum ground state and single-
phonon control of a mechanical resonator. Nature, 464(7289):697–703, March
2010. 98

[176] T. J. Kippenberg and K. J. Vahala. Cavity optomechanics: Back-Action at
the mesoscale. Science, 321(5893):1172–1176, aug 2008. 99, 100, 110

[177] Menno Poot and Herre S.J. van der Zant. Mechanical systems in the quantum
regime. Physics Reports, 511(5):273–335, feb 2012. 99, 136

[178] V. B. Braginsky. Measurement of Weak Forces in Physics Experiments. Uni-
versity of Chicago Press, 1977. 99, 110

[179] T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala.
Analysis of Radiation-Pressure induced mechanical oscillation of an optical
microcavity. Physical Review Letters, 95(3):033901, jul 2005. 99, 105

[180] O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, and A. Heidmann.
Radiation-pressure cooling and optomechanical instability of a micromirror.
Nature, 444(7115):71–74, feb 2006. 99, 100, 103
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Hingabe und Motivation zu verfolgen und zum Erfolg zu führen.
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