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Abstrakt-Zusammenfassung 

 

Die Krebsstammzellen-Hypothese impliziert, dass eine Tumorzellpopulation sowohl mit 

relativ gut differenzierten Zellen wie auch mit schlecht differenzierten Zellen ist. Nur eine 

kleine Population von schlecht differenzierten tumorigen Cancer Stem Cells kann die 

normalen Grenzen der Selbst-Erneuerungen überschreiten, hat die Fähigkeit zur Vermehrung 

und hält das bösartige Wachstum des Tumors aufrecht. 

Die Fähigheit con Stammzellen, durch eine Überexpression von ATP-binding casette-

Transporteren auf  der Zellmembran Farbstoff wie Hoechst 33342 zu eliminieren, erlaubt 

deren Identifizierung. Dies macht die Erkennung der Stammzellen möglich. Nach der Hoechst 

33342 Färbung scheiden die Stammzellen den Farbstoff aus und zeigen ein typisches Profil 

von niedrigen Floreszenzen in Hoechst Rot und Hoechst Blau Dot-Plots. Diese mit Hoechst 

33342 schwach gefärbten Zellen werden als Side Population (SP)-Zellen bezeichnet. Diese 

Eigenschaft ermöglicht eine Reinigung und Charakterisierung wenn diese allein oder in 

Kombination mit Stammzellen Oberflächenmarker durchgeführt wird. Die CSC-Hypothese  

könnte einen wesentlichen Einfluss auf die Krebstherapie haben. CSCs haben im Gegensatz 

zu differenzierten Krebszellen eine erhebliche Resistenz gegen herkömmliche 

Chemotherapeutika gezeigt. Es ist wichtig, zunächst eine komplette Therapie-Strategie zu 

entwerfen.  Die proliferierende Zellmasse sollte reduziert oder minimiert, um dann CSCs 

differenzieren oder eliminieren. So zu können ergabe sich eine Möglichheit, die Schübe der 

metastierenden Krebserkrankungen zu verhindern. 

Diese Arbeit untersucht die Fragenstellung ob der Hedgehog-Signal-Pathway-Inhibitor GDC-

0449 in den Lungenkrebs-Zelllinien HCC (Adeno-Karzinom) und H1339 (Kleinzelliges 

Bronchialkarzinom) und in Cisplatin resistenten Lungenkrebszellen wirksam ist und ob 

mögliche Auswirkungen der GDC-0449 über SP übermittelt werden. Ferner wurde die 

Wirkung von GDC-0449 auf die Calcium-Homöostase untersucht. 

GDC-0449 zeigte eine dosisabhängige hemmende Wirkung auf das Zellwachstum in HCC 

und H1339 Zellen. Die Kombination von GDC-0449 und Cisplatin erzielte eine zusätzliche 

hemmende Wirkung. GDC-0449 konnte auch das Zellwachstum in Cisplatin-resistenten HCC 

und H1339 Zellen hemmen. SP-Zellen als Krebsstammzell-ähnliche Zellen konnten in HCC 

und H1339 Zellen gefunden werden. Lediglid SP-Zellen zeigten eine Repopulationsfähigkeit, 

nicht aber Non-SP-Zellen. GDC-0449 konnte die SP-Zellfraktion in HCC und H1339 Zellen 

hemmen. Die Wirkung von GDC-0449 auf das Zellwachstum kann somit durch SP vermittelt 

werden.  
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GDC-0449 beeinflusste die Expression der Hh-Pathway-Komponenten in HCC und H1339 

Zellen. In HCC Zellen hemmte GDC-0449 die Aktivität des Hh-Pathways, somit konnte die 

De-Regulation von Hh-Pathway-Komponenten Shh, Patched und Gli-1 gezeigt werden. In 

H1339 Zellen konnte GDC-0449 auch die Pathway Aktivität hemmen und die Expression von 

Gli-1 in einem autokrinen Muster durch Shh Überexpression verringern. Die Hemmung der 

Hh-Pathways erhöhte die Expression von Bmi-1, um den Verlust der Hh-Pathway -Funktion 

zu kompensieren. Die Hh-Pathway-Aktivität konnte nur in SP-Zellen von HCC und H1339 

Zellen identifiziert werden. 

Die Anwendung des GDC-0449 auf HCC und H1399 naiven und Cisplatin-resistenten Zellen 

erhöhte Zytoplasma Calcium Konzentration durch eine Verringerung von ER Calcium 

Konzentration. GDC-0449 induzierte eine Calcium Freisetzung aus ER ins Zytoplasma in 

HCC und H1339 naiven und Cisplatin-resistenten Zellen. Die Calcium Überlastung konnte 

zur Apoptose führen, welche im Zusammenhang mit der das Zellwachstum hemmenden 

Wirkung von GDC-0449 bei Lungenkrebs-Zellen steht. Die Expression von SERCA und 

IP3R war nicht nachweislich durch GDC-0449 beeinflusst. Die Wirkung des GDC-0449 auf 

die Lungenkrebszellen Calcium-Regulationsvorgänge wurde nicht mittels Wechsel der 

Expression von ER Ca2+ regulierenden Kanälen erzielt. 
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Abstract- Summary 
 

The cancer stem cell hypothesis implicates that tumor cell population is heterogeneous with 

relatively well-differentiated cells and poorly-differentiated cells. Only the small population 

of tumourigenic poorly-differentiated CSCs can escape the normal limits of self-renewal and 

has the ability to proliferate and maintain the malignant growth of the tumor. 

One characteristic of stem cell is that the ability to exclude DNA dyes, such as Hoechst 33342 

via the over-expression of ATP-binding cassette transporters (ABC transporters) on the cell 

membrane. It makes the detecting of the stem cell possible. After the Hoechst 33342 staining, 

stem cells extrude this dye and show a typical profile of low fluorescence in Hoechst red 

versus Hoechst blue bivariate dot plots. These low Hoechst 33342 stained cells are named as 

side population (SP) cells. This characteristic has enabled purification and characterization of 

CSCs when carried out alone or in combination with stem cell surface markers.      

The CSC hypothesis could have a fundamental influence on cancer therapy. CSCs have 

shown significant substantial resistance to conventional chemotherapy in contrast to the 

differentiated cancer cells. It is essential to design a complete therapy strategy first to reduce 

or minimize proliferating cell mass and then to differentiate or eliminate CSCs, so that the 

relapses of metastatic cancers could be prevented. 

This work aimed at investigating if Hedgehog pathway inhibitor GDC-0449 is effective in the 

lung cancer cell lines HCC (adeno-carcinoma) and H1339 (small cell lung carcinoma) and 

also the cisplatin resistant lung cancer cells, and if possible effects of GDC-0449 are mediated 

via SPs. Furthermore, the effect of GDC-0449 on the calcium homeostasis was also 

investigated. 

GDC-0449 showed dose-dependent inhibitory effects on cell growth in both HCC and H1339 

cells. The combination of GDC-0449 and cisplatin gave an additional inhibitory effect. GDC-

0449 could also inhibit the cell growth in cisplatin resistant HCC and H1339 cells. 

SP cells as cancer stem-cell-like cells could be found in HCC and H1339 cells. Only the SP 

cells showed the repopulation ability but not the non-SP cells. GDC-0449 could inhibit the SP 

cell fraction in both HCC and H1339 cells. So the inhibitory effect of GDC-0449 on cell 

growth may be mediated via SP. 

GDC-0449 affected the expression of the Hh pathway components in both HCC and H1339 

cells. In HCC cells, GDC-0449 inhibited the activity of the Hh pathway and the down-

regulation of Shh, Patched and Gli-1 could be shown. In H1339 cells, GDC-0449 could also 

inhibit the pathway activity and decrease the expression of Gli-1 in an autocrine pattern due 
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the over-expression of Shh. The inhibition of Hh pathway increased the expression of Bmi-1 

to compensate the loss of Hh pathway function. The Hh pathway activity could be detected 

only in SP cells from HCC and H1339 cells.  

The application of GDC-0449 on HCC and H1339 naïve and cisplatin resistant cells increased 

[Ca2+]c by decreasing [Ca2+]ER. GDC-0449 induced Ca2+ release from ER into cytoplasm in 

HCC and H1339 naïve and cisplatin resistant cells. The Ca2+ overload could lead to apoptosis, 

which was related to the cell growth inhibitory effect of GDC-0449 in lung cancer cells. The 

expression of SERCA and IP3R was not detectably influenced by GDC-0449. The effect of 

GDC-0449 on lung cancer cell Ca2+ -regulating machinery was not via the alternation of the 

expression of ER Ca2+ regulating channels. 
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LIST OF ABBREVIATIONS: 

 

NEB: neuroepithelial body 

BADJ: bronchoalveolar duct junction 

CSC: cancer stem cell 

AML: acute myelogenous leukaeia 

BASC: bronchioalveolar stem cell 

SP: side population 

ATRA: all-trans retinoic acid 

HSC: hematopoietic stem cell 

ABC transporter: ATP-binding cassette transporter 

MDR1: multidrug resistance 1 

Bcrp1: breast cancer resistance protein 1 

TMD: transmembrane domain 

NBD: nucleotide-binding domain 

MDR: multidrug resistance 

DISC: death inducing signal complex 

Hh: hedgehog 

SMO: Smoothened 

Gli-1: GLI family zinc finger 1 

Shh: Sonic hedgehog 

Dhh: Desert hedgehog 

Ihh: Indian hedgehog 

SEPE: Shh floor plate enhancers 

SBE: Shh brain enhancers 

SHH-C: C-terminal catalytic domain 

SHH-N: N-terminal signaling domain 

CHOL: cholesterol 

PAL: palmitoylation 

CTD: C-terminal domain 

SSD: sterol sensing domain 

Fz: frizzled 

CRD: cysteine-rich domains 

GPCR: G-protein-coupled receptor 
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Bmi-1: B-cell-specific Moloney murine leukemia virus integration site 1 

NSCLC: non-small cell lung cancer 

SCLC: small cell lung cancer 

BCC: basic cell carcinoma 

IGF 2: insulin growth factor 2 

VEGF: vascular endothelial growth factor 

CML: chronic myeloid leukemia 

MM: multiple myeloma 

siRNA: small interfering RNA 

shRNA: small hairpin RNA 

PD: pharmacodynamic 

PK: pharmacokinetic 

PM: plasma membrane 

ER: endoplasmic reticulum 

SR: sarcoplasmic reticulum 

[Ca2+]c: cytoplasm free Ca2+
 

[Ca2+]ER: endoplasmic reticulum Ca2+
 

SOCC: store-operated Ca2+ channel 

VOCC: voltage-operated Ca2+ channel 

ROCC: receptor-operated Ca2+ channel 

IP3: inositol 1, 4, 5-trisphosphate 

IP3R: inositol 1, 4, 5-trisphosphate receptor 

RyR: ryanodine receptor 

SERCA: sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 

PARP1: poly ADP-ribose polymerase-1 

ROI: regions of interest 

CPA: cyclopiazonic acid 

Kd: dissociation constant 

HCC-Res: HCC cisplatin resistant cell 

H1339-Res: H1339 cisplatin resistant cell 

ROI: region of interest 

BEC: human bronchial epithelium cell 
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1 INTRODUCTION 
 

1.1 Cancer stem cells  
 

Stem cells are characterized as cells that have the self-renewal ability to undergo cycles of 

mitotic cell division while maintaining the undifferentiated state and at the same time have the 

potency to differentiate into specialized cell types. Concisely the key features of normal stem 

cells are quiescent, asymmetrical and multipotent. In adult tissues, stem cells and progenitor 

cells have been identified to contribute to tissue maintenance and repair. Stem cells in adult 

tissues are mainly quiescent and can self-renew and also differentiate into all types of tissue 

cells. According to the adult stem cell asymmetrical division hypothesis, one stem cell divides 

into one daughter cell that remains quiescent as a stem cell and at concurrently the other one 

commences determination and generates proliferating progenitor cells, which have merely 

limited cell divisions. The fate of these could be either to differentiate or die. The adult stem 

cells have been frequently detected in special niches due to a local anatomical and chemical 

microenvironment. In an adult lung, stem cell population has been demonstrated to restrict 

themselves to the tracheal submucosal gland ducts, neuroepithelial bodies (NEBs) of the 

bronchi and bronchioles, and bronchoalveolar duct junction (BADJ) of the terminal 

bronchioles [1-5].  

Similarities have been observed between the self-renewal mechanism of normal tissue stem 

cells and the continuous proliferation of cancer. Certain connections between stem cells and 

tumor cells have been shown; therefore the concept of cancer stem cells (CSCs) has arisen. 

The cancer stem cell hypothesis implicates that tumor cell population is heterogeneous with 

relatively well-differentiated cells and poorly-differentiated cells. Only the small population 

of tumourigenic poorly-differentiated CSCs can escape the normal limits of self-renewal and 

has the ability to proliferate and maintain the malignant growth of the tumor. The concept of 

CSC gains its ground mostly in a haematopoietic system when it just emerged and research 

has been extended to solid tumors subsequently. The CSC phenomenon was first documented 

in acute myelogenous leukaeia (AML) by John Dick et al. in 1997 [6]. In 2003, M Al-Hajj et 

al. have described the isolation from human breast cancer tissues of a unique subset of cancer 

cells that was capable of repopulating the tumor, whereas most of the breast cancer cells were 

not capable of perpetuating the tumor [7], which has taken the cancer research field by storm 

and afterward cancer stem cells have been identified also in other cancers, including lung 

cancer.  
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How to identify normal adult stem cells and cancer stem cells depends on the tissue 

specialties as well as the functional definition. Conservative stem cell surface markers have 

been used to isolate cancer stem cells, e.g. CD24, CD31, CD34, CD44, CD45, CD117, CD33 

etc.. M Al-Hajj et al. announced that CSC in breast cancer showed CD44+CD24- phenotype 

and can induce tumor formation after being isolated and then transplanted into immune-

deficient NOD/SCID mice, whereas other cell types from the entire tumor cell population 

failed to demonstrate the same capability [7]. Bronchioalveolar stem cells (BASCs), which 

exhibited stem cell self-renewal and potency features and which were able to give rise to 

adenocarcinoma as a response to oncogenic stimulation (K-ras) both in vitro and in vivo, had 

a surface stem cell marker phenotype as Sca-1+CD45-CD34+CD31- [5]. But a grave drawback 

of this method is that no marker or a pattern of markers has been known to prospectively 

identify CSCs in many tumor types. Owning to the sophisticated anatomical structure and 

variety of cell populations in the lung, the detection, identification and isolation of the lung 

CSCs remained to be an almost unmanageable task.   

One characteristic of stem cell is that the ability to exclude DNA dyes, such as Hoechst 33342 

via the over-expression of ATP-binding cassette transporters (ABC transporters) on the cell 

membrane. It makes the detecting of the stem cell possible. After the Hoechst 33342 staining, 

stem cells extrude this dye and show a typical profile of low fluorescence in Hoechst red 

versus Hoechst blue bivariate dot plots. These low Hoechst 33342 stained cells are named as 

side population (SP) cells. This characteristic has enabled purification and characterization of 

CSCs when carried out alone or in combination with stem cell surface markers.      

The CSC hypothesis could have a fundamental influence on cancer therapy. CSCs have 

shown significant substantial resistance to conventional chemotherapy in contrast to the 

differentiated cancer cells. It is essential to design a complete therapy strategy first to reduce 

or minimize proliferating cell mass and then to differentiate or eliminate CSCs, so that the 

relapses of metastatic cancers could be prevented. Retinoic acid has been proved efficient to 

induce differentiation and has been used in all-trans retinoic acid (ATRA)-based induction 

therapy followed by chemotherapy for acute promyleocytic leukaemia. The therapy resulted 

in 90% remission and in an over 70% cure rate [8]. To apply elimination therapy, further 

research needs to be done in several directions, such as targeted therapies against self-renewal 

signaling pathways or other specific characteristics of CSCs.   
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1.2 Side population phenotype 
 

The SP phenotype was first discovered in murine hematopoietic stem cells (HSCs) via the dye 

efflux test, which this fraction was found to be significantly enriched for long-term 

repopulating hematopoietic stem cells [9]. After Hoechst 33342 and Rhodamine 123 staining, 

a definite property of HSCs has shown relatively lower Hoechst red and Hoechst blue 

fluorescence, which makes the cells appear aside of the bulk of positively stained cells and 

gives the name of Side Population.  

Hoechst 33342 is a cell permeable nucleic acid stain, which stoichometrically binds to AT-

rich regions of the minor groove of dsDNA (2-fold greater fluorescence than GC-rich region), 

and its fluorescence intensity indexes DNA content and DNA damage, conformation and 

discrimination of cell cycle stages, and chromatin state in cells by monitoring the emission 

spectral shifts of the dye [10]. What enables the Hoechst 33342 to detect SP cells is that the 

dye is effluxed by membrane efflux pumps of ABC transporter superfamily, including 

multidrug resistance 1 (MDR1) and breast cancer resistance protein 1 (Bcrp1)/ABCG 1 [11, 

12]. Over-expression of these ABC transporters is one characteristic of stem cells and thus the 

cells, which are detected with lower fluorescence via pumping out the dyes during staining, 

are isolated out as stem-cell-like cells. This phenomenon can be blocked by verapamil and the 

SP fraction evaporates with the presence of verapamil in the Hoechst incubation. Since its 

original discovery, SP cells have been identified in many other tissues, including skin, lung, 

liver, heart, brain, kidney, testis, retina, mammary gland and skeletal muscle [13]. In 

functional tests, these SP cells were identified to hold stem cell abilities and Hoechst 33342 

staining has proved to be a valuable technique for the isolation of both hematopoietic and 

organ-specific stem cells, especially in the absence of definitive cell-surface markers. 

Transplantation activity enrichment of mouse bone marrow derived SP cells isolated by 

Hoechst staining is similar with that of HSC cells purified by combination of cell-surface 

stem cell markers, which vary from 1,000 to 3,000 fold [14].   

Because of the connection and similarity between the normal tissue stem cell and cancer cell, 

SP phenotype was detected in kinds of tumors as a sequence. SP cells have been identified in 

a large variety of cancer cell lines, ranging from 0%-20% [13]. However up to date no data 

has shown that the percentage of SP cells is an indication of tumorigenicity and 

aggressiveness. Not surprisingly SP cells have been detected not only in cancer cell lines but 

also in tumor tissues, such as primary neuroblastomas [15], the ascites of ovarian cancer [16], 

and in mesenchymal neoplasms [17]. By immunodeficient mice xenografting experiments, SP 

cells isolated from a wide variety of cancer cell lines and primary tumor tissues have a higher 
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enhanced capacity to initiate tumor formation compared to non-SP cells and the whole tumor 

cell population, for instance SP cells from hepatocellular [18], lung [19], gastric [20] and 

nasopharyngeal [21] cancer cell lines and also from primary mesenchymal tomurs [17]. These 

findings suggest that non-SP cells are transiently amplifying bulk with rapid proliferation 

ability but not with self-renew ability, which would enable them to sustain tumor initiation 

during transplantation, whereas SP cells are the only ones who are able to self-renew and 

differentiate.  

Why SP cells hold the self-renewal and differentiating ability has been explained with the 

phenomenon that they have increased expression of genes which are involved in the 

regulation of stem cell function, such as genes from WNT/ß-catenin signaling pathway [20], 

genes associated to cell cycling regulation (EXT1, INHBA, CCNT2, et al.) [22, 23], and 

genes belonging to PI3K/AKT pathway [24]. But the expression of genes from Hh pathway 

has not yet been investigated in SP cells, although the Hh pathway is believed to contribute to 

stem cell maintenance and regulate stem cell differentiation.             

  

1.3 Human ATP-binding cassette transporter superfamily 
 

The ABC transporter superfamily is composed of membrane transport proteins that 

translocate a diverse assortment of substrates, including ions, lipids, sterols, metabolic 

products and drugs. They convert the energy from ATP hydrolysis into trans-phospholipid-

bilayer cellular activities to either import or export substrates unidirectionally. The ATP-

binding domains of specific structure, which conservatively present in their genes, have 

characterized about 300 proteins in ABC transporter superfamily [25]. The importer-type 

ABC transporters have been found in prokaryotes, whereas the exporters are ubiquitously 

expressed in both prokaryotes and eukaryotes. In eukaryotes particular family members are 

located in the plasma membranes, endoplasmic reticulum and other intracellular membranes. 

Human ABC transporters are divided into seven distinct subfamilies according to domain 

organization, named by the numbers and combination of transmembrane domain (TMD) and 

ATP-binding domains (also called nucleotide-binding domain, NBD), which are the 

conserved domains of this protein family with 30-40% homology [26]. The NBDs contains 

two sub-domains, RecA-like domain and helical domain. In all the sequence motifs of NBDs, 

P-loops in RecA-like domain and LSGGQ motif in helical domain show the most importance. 

The architecture of full transporters includes two TMDs and two NBDs and the two NBDs 

assemble in head-to-tail arrangement with the P-loops and LSGGQ motif exposing at a 
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common interface [27]. So according to this structure, two ATP binding and hydrolysis sites 

are generated. So in each transport cycle, two molecules of ATP are consumed. During 

binding of ATP, the gap between the NBDs is pulled together by the coupling helices. As a 

consequence there is a cycle of conformational changes of the TMDs, which alternate 

exposure of these binding sites to both sides of the membrane and open a gate to allow 

substrates to travel into the cytoplasm or to escape out to the periplasm [28].  

Some ABC-transporters affect the drug penetration process through the membrane and the 

accumulation of intracellular drug effective concentration, which causes the multidrug 

resistance (MDR) during tumor therapy. MDR is defined as a protection of the cells against 

numerous drugs, with different chemical structures and by different intracellular functional 

mechanisms, like Anthracyclines (doxorubicin, daunorubicin, et al.), Epipodophyllotoxins 

(etoposide, teniposide, et al.), Vinca alkaloids (vincristine, vinblastine, et al.), Taxanes 

(paclitaxel, docetaxel, et al.), Kinase inhibitors (imatinib, flavopyridol, et al.) and other 

preparation classes. MDR turns into an extraordinary limitation to cancer chemotherapy. The 

ABC transporters ABCB1, ABCC1, ABCC2, ABCC3, ABCC4, ABCC5 and ABCG2 have 

been discovered to be implicated in MDR. So far ABCB1 (also known as Pgp) has been found 

to transport the largest number of drugs. The same drug can be a substrate of different ABC 

transporters and while ABC transporters have distinct substrate specificities [29, 30]. Using 

microchips to scan in order to compare transcription of the ABC transporter related genes in 

antitumor drug sensitive cell lines with those in resistant cell lines, 28 ABC transporters were 

defined to have a protection function against some drugs or whole antitumor preparation class 

[30], but actually not all of them were declared as MDR related transporters. These 

discoveries indicate that in ABC transporters there is a switch to function activity from their 

conventional physiological routine to protective function against the damage from antitumor 

drugs.    

Stem cells and cancer stem cells have been ascertained to hyperexpress several ABC-

transporters. Cancer stem cells in many different tumors, both leukemic and solid, have 

shown the SP phenomenon and the fluorescent dyes (Hoechst 33342 and Rhodamine 123) are 

transported by ABC-transporters, which can be efficiently inhibited by verapamil [31]. 

Verapamil is a L-type calcium channel inhibitor, which is often found to antagonize ABC 

transporter mediated MDR, and is widely used as an ABC transporter inhibitor, however the 

relationship between intracellular calcium homeostasis and ABC transporters still remains 

unknown [32]. The functions of ABC-transporters in both normal and cancer stem cells 

remain poorly defined. It is postulated that ABC transporters protect stem cells from 
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damaging substances and regulate the stem cell self-renewal and differentiation. For instance, 

the bone marrow cells of ABCG2 gene knockout mice, which obtained increased sensitivity 

to toxic agents [12] and the ABC transporter Rh T from Dictyostelium can efflux 

differentiation factors from the cells to regulate cell fate determination [33]. In addition to the 

protective function, ABC transporters have been implicated in resistance to apoptosis, which 

might contribute to maintaining the stem cells and in a cancer case to cause therapy failure 

and higher recrudescence possibility. Pgp can specifically inhibit Fas-induced caspase-3 

activation and apoptosis via inhibiting caspase-8 activation at the death inducing signal 

complex (DISC) following FAS ligation [34]. 

 

1.4 Hedgehog pathway and Hedgehog pathway inhibitors 
 

The Hedgehog (Hh) pathway is an embryonic signaling cascade conserved from fly to human. 

The pathway was named after its ligand Hedgehog, an intercellular signaling molecule, which 

was first discovered and identified by screening genetic mutation occurring in Drosophila 

larva [35]. In 1970s, Christiane Nüsslein-Volhard and Eric F. Wiechaus attempted to isolate 

gene mutations which direct the segmented anterior-posterior body axis of the fly [36]. They 

developed the Saturation mutagenesis technique, which is an in vitro mutagenesis strategy 

wherein one tries to generate all (or most) possible mutations within a narrow region of a gene. 

It enabled them to discovery a group of genes involved in the development of body 

segmentation. Thanks to this work, in 1995 the Nobel Prize in Physiology or Medicine was 

awarded jointly to Edward B. Lewis, Christiane Nüsslein-Volhard and Eric F. Wieschaus "for 

their discoveries concerning the genetic control of early embryonic development". The 

Drosophila Hh gene was identified then as a gene contributing to anterior and posterior body 

patterning of individual body segments. The mutations of the Hh segment polarity gene 

resulted in a loss of anterior-posterior polarity in the larval cuticle, disrupting the cuticular 

denticle pattern as well as adult appendages as leg and antennae [36]. The mutant larva 

exhibits a continuous solid denticle lawn instead of denticle belts normally seen in larval 

parasegment. Some Hh mutants incur peculiarly shaped embryos, which are unusually short 

and stubby compared with the wild type. The stubby and hirsute appearance of the larva 

resembled a hedgehog and inspired the scientists with the name ‘Hedgehog’.  

In the absence of Hh ligand, Patched acts constitutively upon Smoothened (SMO) to inhibit 

its activity. It is resultant that unrestrained processing of GLI family zinc finger 1 (Gli-1) 

transcription factors by the Cos2/Sufu/Fu complex, which results in formation of truncated, 
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transcriptionally repressive Gli proteins and silence Hh signaling. The presence of Hh ligand 

actuates the pathway via inhibiting Patched by ligand binding, resulting in the activation of 

SMO. Activated SMO inhibits the processing complex and sequentially it stabilizes the full-

length Gli proteins, which act as transcriptional activators. Active Gli proteins induce the 

expression of target genes, comprising Gli-1 and Patched.  

 

1.4.1 Structure	  and	  function	  of	  the	  Hh	  pathway	  components	  
 

Shh, Dhh, Ihh 

 

Three mammalian orthologues, Sonic (Shh), Desert (Dhh) and Indian (Ihh) Hhs, are identified 

as Hh genes, in which Shh is the best examined. Dhh is most closely related to Drosophila Hh. 

Ihh and Shh have more in common with each other and represent a more recent gene 

duplication [37]. The three mammalian Hhs mostly act as morphogen in a concentration 

dependent manner activating distinct cell fates within a target tissue, or as inducing factors 

controlling the form of a developing organ. Nevertheless they specialize in different functions. 

Shh is universally expressed in many mammalian tissues. Shh transcripts have been found in 

the notochord, ventral neural plate, the zone of polarizing activity of the limb buds, the distal 

elements of the limbs, pituitary gland, many gut-derived organs, the heart, the lungs, the 

prostate gland and so on. Starting from the early embryogenesis, Shh controls the left-right 

and dorsoventral axes patterning in the embryo, and later the development of the many organs, 

the formation of olfactory pathway, and the smooth muscle regulation Dhh expression is 

mainly restricted to the gonads, including Sertoli cells in the testes and granula cells in the 

ovaries, and Dhh functions also in the formation of neural sheaths. Ihh expression was 

detected in the primitive endoderm and prehypertrophic chondrocytes in the growth plates 

during endochondral bone formation [35, 37]. Studies have shown that the transcription of 

Shh in different tissues is independently controlled by the action of multiple enhancer 

elements, including Shh floor plate enhancers (SEPE 1, 2), and Shh brain enhancers (SBE 1-

4), although very little is known about the specific transcription factors that control their 

activity [35].   

The Hh ligands are diffusible morphogens synthesized as 45-kDa precursor proteins and 

undergo autocatalytic cleavage to yield a 25-kDa C-terminal catalytic domain (SHH-C) and a 

19-kDa N-terminal signaling domain (SHH-N), which heralds the activation of Hh pathway. 

During the cleavage process, an esther-linked cholesterol moiety (CHOL) molecule is added 
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to the carboxyl end of SHH-N and the catalytic portion then diffuses away. Following the 

CHOL adduct, palmitoylation (PAL) of the SHH-N cystein results in the final processed 

molecular, which functions in trafficking, secretion and receptor interaction of the ligand [38, 

39]. Shh can signal in an autocrine pattern, affecting the cells in which it is produced and 

activating Hh pathway [36]. Paracrine pattern of Hh activation is mediated by Dispatched 

where the participation of Dispatched protein is required in secretion and consequent 

paracrine Hh signaling [40]. The ligands are processed to become bilipidated and then 

multimerize, which allows them to leave the signaling cell via Dispatched 1 and being 

transported via glypicans and megalin to the responding cells. In the responding cells, the 

bilipidated Shh (PAL-SHH-CHOL) becomes the ligand of Patched [41].   

 

Patched 

 

Three Patched homologs are found in human, Ptch 1, Ptch2 and Dispatched. Ptch 1 is the 

major Hh receptor in embryonic developments [42]. The human PTCH 1 gene is recognized 

as a tumor suppressor gene, stopping cell division in the absence of SHH ligand and 

permitting cell division when binding occurs, and it maps to 9q22.3 encoding a 1,500 amino 

acid glycoprotein, which has two large extracellular loops, amino- and carboxyl-terminal 

intracellular regions, and 12-pass transmembrane domains. Chen et al. have discovered that 

Ptch 1 has dual roles in sequestering and transducing Hh [43]. The extracellular loops are Hh 

ligands binding sites. When the second loop, especially essential for ligand binding, is deleted 

in a PTCH 1 mutation, Hh binding can not take place [44], while the repression of SMO is 

unaltered, which is the function of the C-terminal [45]. The human PTCH 2 gene maps to 

1p32–p34 and encodes a 1,204 amino acid protein. PTCH 2 has a 54% overall identity to 

PTCH1, which gives the PTCH 2 protein the structure of 12 transmembrane domains and two 

large extracellular loops as well. However, there are dissimilar amino- and carboxyl-termini, 

compared with those of PTCH 1, including an absence of 150 amino acid residues in the C-

terminal domain (CTD) [46]. All three Hh ligands bind to Ptch 1 and Ptch 2 with similar 

affinity and the receptors cannot distinguish the ligands, however Ptch 1 and Ptch 2 differ in 

the expression pattern. For instance Ptch 2 is expressed at a significant higher level in tests, 

which is the reason for the deserting of the Hh signaling [47]. The human DISPATCHED1 

gene maps to 1q42 and encodes a 1,401 amino acid protein, which shares structure similarity 

with Ptch 1 and Ptch 2 [46]. In the ligand binding process, Dispatched is not required for lipid 

attachment to Hh, but releases Cholesterol-modified Hh from its tether to the plasma 
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membrane of the signaling cell and permits transport to the responding cell [48], and 

palmitoylation is required for the production of the soluble multimeric Hh protein complex 

and long range signaling [49]. In Ptch 1, Ptch 2 and Dispatched, 5 of the 12-pass 

transmembrane domains are named as sterol sensing domain (SSD), consisting of 

approximately 180 amino acids. SSD has the properties, such as rapid trafficking between 

organelles, cargo transport, and modification of their activity by sterol and/or lipoprotein 

concentrations [50]. SSD is essential for suppression of SMO activity, since Patched regulates 

SMO by removing oxysterols, which is created by 7-dehydrocholesterol reductase, from SMO 

as a sterol pump and mutations in SSD can turn off the pump and allow the accumulation of 

oxysterols around SMO [51].  

 

Smoothened 

 

SMO is consisted of a long N-terminal extracellular amino-terminal region, 7 hydrophobic 

transmembrane α helices domains and an intracellular carboxyl-terminal region. In SHH-

secreting cells, newly made SHH protein undergoes auto-processing and lipid modification, 

which result in the secretion of a fully active SHH-N of 19 kDa modified by a palmitoyl 

group and a cholesterol in its N- and C-terminal extremities, respectively. Hence SMO 

transduces the signal from Hh ligand in a concentration-dependent pattern. Its function and 

regulation is complex. Although as a central factor in Hh signaling pathway, many questions 

are still pertaining to the regulation, and the function, while the exact downstream signal 

transduction remain unclear as well. SMO is most closely related to the Frizzled (Fz) family 

of GPCRs for Wnt signaling, since high homology is found within the extracellular N-

terminal cysteine-rich domains (CRD), although the clear function of CRD has not been 

found yet [52]. Recent finding have provided evidence that SMO acts as a G-protein-coupled 

receptor (GPCR) according to the similarities in domain organization, regulation mechanism 

by small molecules, and phosphorylation via activation Phosphorylation of SMO, like many 

other GPCRs, controls the switch between on/off signaling status. In this process, GPCR 

kinase GRK2 plays a positive role and blocking its function with small-molecule inhibitors 

blocks Shh-induced SMO activation of Hh target genes [53].  

Since Hh signaling activates when Patched is repressed by Hh ligands, freeing SMO for 

downstream signaling, Patched and SMO have no physical interaction in transducing Hh 

signals [54]. The mechanism of how Patched inhibits SMO has not yet been clearly explained, 

however it has been speculated that Patched may inhibit SMO via intermediate small 
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molecule, for instance several synthetic molecules as cyclopamine, a Hh antagonist [55], and 

purmophamine, a Hh agonist [56] can modulate the activity of SMO. Patched controls the 

level of 3β-hydroxysteroids, one form of pro-vitamin D3, so when Patched induces the 

secretion of Vitamin D3, it represses SMO activity [57]. Several oxysterols, downstream of 

Vitamin D3 in the cholesterol biosynthetic pathway, including 25-hydroxycholesterols, can 

act as potent activators of Shh signaling by activating SMO [51]. So with no sterols, SMO is 

inactive, whereas with sterols, SMO is active. When sterols combine with Hh antagonist 

cyclopamine or GDC-0449, which inhibits SMO with more potency and better 

pharmaceutical properties [58], instead of Hh, SMO is inactive.  

 

GLI family zinc fingers 

 

Three GLI genes encode Gli transcription factors, and they share five highly conserved 

tandem C2H2 zinc fingers and a conservative histidine-cysteine linker sequence between zinc 

fingers [59]. In the three GLI genes identified, GLI 1 has two isoforms and encodes a 1,106 

amino acid protein (maps to 12q13); GLI 2 has three different spliced exons and encodes 810, 

829, 1,241, and 1,258 amino acid proteins (maps to 2q14); GLI 3, which is the longest GLI 

gene and followed by GLI 2 and GLI 1, has one isoform and encodes 1,595 amino acid 

protein (maps to 7q13) [60]. Gli 1 and Gli 2 have only activator form, whereas Gli 3 has both 

activator and repressor forms. The balance between the activator and repressor forms of the 

Glis results in the expression of target genes [61].  

According to the cilium-based Hh signaling mechanisms [62], hypothesized that the 

subcellular localization of the Hh pathway components is the major regulator of its activity, in 

the presence of Hh binding to Patched, Gli proteins in activator form are switched from the 

anterograde cilium tip to the retrograde side and activate the downstream genes. Since Gli 3 

has both activator and repressor forms, in the absence of Hh binding, Gli 3 locating on the 

anterograde tip of the cilium is cleaved into transcriptional repressor form by limited 

proteasome-mediated degradation and loses the downstream target genes transmission ability 

[63]. The target genes are widely ranged since Hh signaling affects the whole process of 

vertebrate development, including BMP 4, FGF 4, VEGF, Myf5, Ptch 1, Ptch 2, Nkx 2.2, Nkx 

2.1, Rab 34, Pax 6, Pax 7, Pax 9, Jagged 1, genes involved in cell growth and division as N-

Myc and many other transcription factors [64].  
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Bmi-1 

 

The B-cell-specific Moloney murine leukemia virus integration site 1 (Bmi-1) gene localizes 

on human chromosome 10p11.23 and encodes a 36.9-kDa nuclear protein consisting of 326 

amino acids. The Bmi-1 protein contains a conserved RING finger domain in its N-terminal 

end, which is essential for its ability to modulate cell proliferation, and a central helix-turn-

helix-turn-helix-turn motif (H-T-H-T), which is required for inducing telomerase activity and 

immortalization of human epithelial cells [65-67]. Bmi-1 is one of the core members of the 

polycomb group proteins, which act as epigenetic gene silencers with essential roles 

associated with organism development through the formation of a minimum of two 

multimeric complexes. As a key component of PRC1 complex, it is an epigenetic chromatin 

modifier and was initially identified as an oncogene that cooperates with c-Myc in retrovirus 

induced lymphomagenesis in mice [68, 69]. The oncogenic potential of Bmi-1 is because of 

the negative regulation of the Ink4a/Arf site that encodes p16INK4a and p19ARF, whose function 

is to suppress proliferation and promote apoptosis [70, 71].  

Since Ink4a/Arf locus is a frequent target for mutations, deletions, and epigenetic silencing in 

a wide spectrum of human tumors, the amplification of Bmi-1 has been shown in some 

hematological disorders, such as mantle cell and non-Hodgkin lymphomas, and notably Bmi-

1 is also overexpressed in solid tumors such as non-small cell lung cancer (NSCLC) and 

medulloblastoma [72-76]. Bmi-1 is implicated in the control of tissue stem cells and the 

tumors to which they may give rise. Bmi-1-deficient animal model reveals the presence of 

defects in hematopoiesis and the central and peripheral nervous systems, which shows that 

Bmi-1 is required for self-renewal of hematopoietic and neural stem cells [77, 78]. It has been 

shown also that K-ras-induced lung tumorigenesis is impaired in Bmi-1-null animals and 

Bmi-1 is necessary for BASC proliferation and self-renewal in vivo and in vitro [79]. Bmi-1 

has also been found to mediate the Hh pathway regulation of the self-renewal of normal and 

malignant human mammary stem cells [80].            

 

1.4.2 Hedghog	  pathway	  and	  cancer	  
 

During the mammalian development, the Hh pathway is highly active and regulates the 

proliferation, migration and differentiation of target cells in a spatial, temporal, and 

concentration dependent manner, especially within the neural tube and skeleton. But 

subsequently the Hh pathway is silenced in most adult tissues. During tissue homeostasis and 
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repair following an injury in some postnatal tissues, like the lung and central nervous system, 

continued Hh signaling is still detectable [81-83].  

The identification of PTCH 1 mutations in patients with basal cell nevus syndrome and Gorlin 

syndrome at first implicated a role of Hh signaling pathway in cancer, since these patients 

have significantly higher basic cell carcinoma (BCC), medulloblastoma and 

rhabdomyosarcoma predisposition [45, 84]. Genetically altered expression of other pathway 

components were also detected, such as SUFU mutations in medulloblastoma, GLI 1 over 

expression in glioblastoma, GLI 1 and GLI 3 mutations in pancreatic adenocarcinoma [62, 85, 

86]. That aberrant Hh signaling can induce cancers has been proofed by transgenic mouse 

studies, which definitively showed that conditional loss of function of PATCHED or gain 

function of SMO or GLIs can recapitulate medulloblastoma and BCC [87]. At the same time, 

some tumors display aberrant Hh pathway activity as a response to over signal from the Hh 

pathway ligand, including multiple myeloma, pancreatic carcinoma, glioma, prostate 

carcinoma, and lymphoma. Due to these ligand-dependent carcinomas, several hypothesis of 

the pathway activation mode have been made. In many tumors, like small cell lung (SCLC), 

pancreatic, colon, metastatic prostate cancers, glioblastoma and melanomas, pathogenic Hh 

activity has been described in an autocrine and/or juxacrine mode, in which tumor cells both 

produce and react to Hh ligands [83, 88-90]. 

Pathologic Hh signaling may affect also tumor microenvironment in a paracrine pattern, 

similar with Hh signaling in embryonic development. It has been reported during pancreatic 

carcinogenesis Hh signaling is restricted to the stromal compartment [40]. Recently it has 

been found that in B-cell lymphomas and multiple myeloma, Hh ligands are mainly produced 

by stroma cells derived from bone marrow, lymphnode, or spleen, but not by tumor cells [91]. 

An alternative mode of paracrine has been described as that tumor cells produce Hh ligands 

activating the Hh signaling in the nonmalignant stromal and endothelial cells, and as a 

sequence these cells produce some factors within the microenvironment to support tumor cell 

growth ultimately and survival as well as angiogenesis [92]. Yauch RL et al. reported in a 

study examining human pancreatic and colon primary tumors and cell lines grown as 

xenograft in mice. The expression of Hh ligand was associated with canonical pathway 

activity in tumor infiltrating stromal cells from the murine host, which indicated that tumor 

derived Hh ligand first induced pathway activity in stromal cells and in return the stromal 

cells influenced the tumor growth [93]. However the exact factors generated by stromal cells 

remain unknown, Hh pathway activation in the stromal cells may induce the secretion of 

soluble factors such as insulin growth factor 2 (IGF 2) and vascular endothelial growth factor 
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(VEGF), including VEGF-A, VEGF-B, VEGF-C and Ang2, which affect tumor cell 

proliferation as well as survival, and promote coronary angiogenesis [94-96]. Different 

signaling mode in specific tumors might be also distinct clinical and biological factors such as 

cancer stage or genetic lesions were suggested, due to the conflicting data from different 

experimental systems. So disease specific information will be necessary to optimize the 

clinical use of Hh pathway inhibitors. Hh pathway was discovered to be a potent regulator of 

angiogenesis in SCLC in a ligand dependent pattern in mouse model and cancer cell lines but 

whether autocrine or paracrine activities exist is not yet reported.  

Emerged data from many human tumors suggested that Hh signaling regulates CSCs, which 

have been functionally defined by self-renewal capacity and the ability to proliferate and 

maintain the malignant growth of the tumor. An alteration in the Hh pathway, either by mis-

expression of the pathway components or by changes in the expression of other cellular 

components that interfere with the Hh signalling system, may trigger the development of 

several types of cancer via generation of CSCs.  

During tumor formation, Hh signaling has been found active in CSCs in many tumors, 

including multiple myeloma, glioblastoma, breast cancer, pancreatic adenocarcinoma, and 

chronic myeloid leukemia (CML) [97, 98], and affects CSC self-renewal, expansion, 

tumorigenic potential, and differentiation. In multiple myeloma (MM), a malignancy with a 

well-defined stem cell compartment, the subset of MM cells that manifests Hh pathway 

activity is markedly concentrated within CSCs. The Hh ligand promotes expansion of MM 

stem cells without differentiation, whereas the Hh pathway blockade, via cyclopamine or the 

ligand-neutralizing antibody 5E1, markedly inhibits clonal expansion accompanied by 

terminal differentiation of purified MM stem cells [99]. In breast cancer, both in vitro 

cultivation and a xenograft mouse in vivo model were used to examine the role of Hh 

signaling and Bmi-1, which is a central regulator of self-renewal in normal stem cells, in 

regulating self-renewal of normal and malignant human mammary stem cells [80]. PTCH 1, 

GLI 1, and GLI 2 are highly expressed in human breast CSCs characterized as CD44+CD24-

/lowLin- and with cyclopamine or small interfering RNA (siRNA) against GLI 1, and GLI 2 

changed the expression of BMI-1. 

Further more, during tumor progression and metastasis, Hh may also play a critical role. In 

colon cancer derived from primary clinical specimens, CSCs exhibit active Hh signaling. 

Further Hh signaling over activity was also detected in metastatic cells, along with the 

evidence of relatively higher expression of GLI 1, GLI 2, and PTCH 1 [100]. Inhibition of Hh 

pathway activity with cyclopamine or siRNA against SMO, GLI 1 and GLI 2, or over-
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expression of the repressor form of GLI 3 reduced tumor cell proliferation and induced 

apoptosis. Moreover, cyclopamine reduced tumor regrowth in vivo and small hairpin RNA 

(shRNA) directed against SMO eliminated the formation of metastatic disease. In pancreatic 

cancer cell lines, Hh inhibition with cyloplamine resulted in down-regulation of SNAIL and 

up-regulation of E-cadherin, consistent with inhibition of epithelial-to-mesenchymal 

transition. Cylopamine has been found to inhibit metastatic spread in an orthotopic xenograft 

model [101].   

 

1.4.3 Targeting	  Hedgehog	  signaling	  in	  cancer	  therapy	  
 

Since many human cancers have been shown to require the activity of Hh pathway and the 

regulation of CSC, which presents high resistance to classical treatments, is also Hh pathway 

dependent, the proteins of the Hh pathway are very promising targets for antitumor therapy. 

In mammals, the Hh pathway is not completely understood and all the components of this 

pathway have not been identified yet. The membrane receptors of the pathway, Patched and 

SMO are mutated and/or deregulated in cancer cells, resulting in the abnormal activation of 

the pathway and development of cancers. This has prompted a general interest in targeting Hh 

pathway for cancer therapy and many Hh pathway small molecule modulators have been 

developed as anti-tumor compounds. There are two major divisions in these compounds as the 

SMO inhibitors and the Gli antagonists. Both natural compounds and synthetic molecules that 

target SMO and Gli are investigated and utilized in cancer therapy. 

Several Hh inhibitors were developed to block Hh pathway activity on the level of the 

activating receptor SMO. Cyclopamine (11-deoxojervine) is one of steroidal jerveratrum 

alkaloids isolated from the corn lily Veratrum californicum, which was discovered over 30 

years ago as a natural Hh pathway inhibitor [102, 103]. It was identified to be responsible for 

cyclopia, anophtalmia and abnormalities of midline development observed in the livestock 

that ate corn lily Veratrum californicum by suppressing the Hh genes. Cyclopamine inhibits 

the Hh pathway by influencing the balance between the active and inactive forms of SMO. 

And recent evidence suggests that cyclopamine disturbs SMO trafficking and promotes its 

accumulation in the primary cilium [104, 105]. It has been evaluated in vivo to inhibit tumor 

growth in human cancers of orthotopic glioma [89], melanoma [106], and colon [100], 

xenograft models of pancreas [101] and prostate [90]. But since the IP issues of cyclopamine 

are largely mute, it is not embarked on clinical tests although several derivatives have been 

made.  
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GDC-0449 is the first systemic SMO-inhibitor entering clinical trials. It was discovered by 

highthroughput screening of a library of small-molecule compounds and subsequent 

optimization through medicinal chemistry from HhAntag691 with improved solubility and 

absorption properties [107]. GDC-0449 is a selective Hh pathway inhibitor with greater 

potency and more favourable pharmaceutical properties than cyclopamine. It has antitumor 

activity in medulloblastoma mouse model and in xenograft models of primary human tumor 

cells [108]. It was successfully tested in a phase-I clinical trial demonstrating good 

pharmacodynamic (PD) and pharmacokinetic (PK) properties and showing objective response 

and clinical benefit in the patients with basal cell carcinoma, although not all the patients 

responded. Clinical trials have been carried out by different institutes and companies (Phase-I: 

NCT00822458; Phase-II: NCT00636610, NCT00739661, NCT00833417, NCT00887159) 

[109]. In 2008 LoRusso and coworkers presented the phase-I results of 19 patients with solid 

tumors. The patients were enrolled at 3 different dose levels of GDC-0449, 150, 270, 540 mg, 

with a dose schedule as day 1 followed by a 2nd dose at day 8. The same maximal drug 

concentration after a single dose has been found in the 270 and 540 mg cohorts. The half-life 

of GDC-0449 was between 10-14 days. Gli1 was down modulated >2-fold in skin biopsies 

from 11 of 14 patients analyzed [110]. And in 2010 the safety, preliminary efficacy, and PK 

of GDC-0449 were assessed in a phase I trial for patients with locally advanced or metastatic 

BCC by Genentech and Genomics Research Institute and Scottsdale Healthcare. 33 patients 

with locally advanced or metastatic BCC received GDC-0449 orally at one of 150, 270, 540 

mg for a median duration of 9.8 months. Of those treated as best response, 2 patients had a 

complete response, 16 patients had a partial response, 11 patients had stable disease, and 4 

patients had progress diseases. GDC-0449 was generally well tolerated, with 8 reversible 

grade III events (4 fatigue, 2 hyponatremia, 1 muscle spasm, 1 atrial fibrillation) and no grade 

IV events assessed to be related to study drug. Because of the encouraging tolerability and 

efficacy data observed in the phase I study, a phase II, open-label, single-arm global trial of 

GDC-0449 in advanced BCC is currently enrolling patients [111, 112].  

Despite the encouraging and promising results of the SMO antagonists, some alternative 

means to inhibit Hh pathway activity has been also developed. For instance, the downstream 

of SMO genetic activities can be detected in several human cancers, such as mutations of the 

negative pathway regulating genes SUFU or the amplifications in GLIs [113]. And further 

more, Gli-1 can be activated in a SMO-independent manner by transforming events, such as 

mutant KRAS in pancreatic cancer and EWS-FLI in Ewing sarcoma [114].  
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1.5 Calcium signaling 

 

1.5.1 Calcium	  channels	  and	  pumps	  
 

The calcium ion (Ca2+) is a ubiquitous cellular signal, which regulates various cellular 

processes by activating or inhibiting cellular signalling pathways and Ca2+-regulated proteins, 

such as gene transcription, muscle contraction, synaptic transmission, cell proliferation and 

apoptosis [115]. Cells have to shape Ca2+ signals in the dimensions of space, time and 

amplitude in order to carry out the Ca2+ controlled cell biology activities. Ca2+ channels, 

pumps and exchangers control the complex and tight regulation of Ca2+ homeostasis, which 

differ in their cellular distribution and their mechanism of transport. The Ca2+ ‘on’ 

mechanisms include the plasma membrane (PM) channels, which regulate the Ca2+ supply 

from extracellular space, the endoplasmic reticulum (ER) and sarcoplasmic reticulum (SR) 

channels [116]. An equally set of ‘off’ to remove Ca2+ from the cytoplasm includes Ca2+ 

ATPases on the PM and ER/SR, and additionally to exchangers that utilize gradients of ions 

to provide the energy to transport Ca2+ out of the cell, such as Na+/Ca2+ exchange. 

Mitochondria also play an important role in the regulation of cytoplasm Ca2+. These Ca2+ 

stores have a low affinity but high-capacity rapid Ca2+ uniporter that can significantly reduce 

cytoplasmic Ca2+ transients and diminish cellular responses. A strict equilibrium between the 

‘on’ and ‘off’ mechanisms in the cells keeps Ca2+ under regulation within cellular 

compartments to achieve the sensitive control of cell signaling pathways that can precisely 

respond to many stimuli. Resting cytoplasm free Ca2+ ([Ca2+]c) is maintained at a low level 

(∼100nM), with a much higher extracellular Ca2+ concentration of ∼1.2 mM [117]. There are 

mainly three types of Ca2+ entry channels: (1) store-operated Ca2+ channels (SOCCs), which 

are activated in response to depletion of the intracellular Ca2+ stores, either by physiological 

Ca2+ -mobilising messengers or pharmacological agents. SOCCs are the most ubiquitous PM 

Ca2+ channels. The mechanisms of how the SOCCs sense the status of the intracellular pool 

are unknown. (2) voltage-operated Ca2+ channels (VOCCs), which are largely employed by 

excitable cell types such as muscle and neuronal cells, where they are activated by 

depolarisation of the PM. (3) receptor-operated Ca2+ channels (ROCCs), which comprise a 

range of structurally and functionally diverse channels. They are particularly prevalent on 

secretory cells and at nerve terminals. ROCCs are activated by the binding of an agonist to the 

extracellular domain of the channel [118].  
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Within the cell itself there is a Ca2+ concentration gradient between the cytoplasm and the 

Ca2+ stores. The Ca2+ stores are enriched with Ca2+ binding proteins, such as calsequestrin and 

calreticulin. Ca2+ can be released from the stores by the generation of inositol 1, 4, 5-

trisphosphate (IP3) [119]. IP3 is highly mobile in the cytoplasm and diffuses into the cell 

interior where it encounters specific IP3 receptors (IP3Rs) on ER/SR. The binding of IP3 

changes the conformation of IP3Rs so that an integral channel is opened, thus allowing the 

Ca2+ in the ER/SR to enter the cytoplasm. IP3Rs are composed of four subunits (∼1200 kDa), 

encoded by three different genes [120]. The opening of IP3Rs is enhanced by the modest 

increase of Ca2+ concentration (0.5-1 µM) whereas higher Ca2+ concentration (> 1 µM) 

inhibits the opening. Ryanodine receptors (RyRs) are structurally and functionally analogous 

to IP3Rs, with an approximately twice the conductance and molecular mass of IP3R [121]. 

RyRs are generally actived by the increase of Ca2+ of 1-10 µM and inhibited by higher Ca2+ 

concentration of > 10 µM. They are largely present in excitable cell types [122]. The opening 

of these channels has been shown to modulated by numerous factors, including 

phosphorylation, adenine nucleotides, thiol reactive compounds, pH level and the Ca2+ load of 

ER/SR [116]. Other than the Ca2+ channels on ER/SR, there are also Ca2+ ATPase pumps 

actively transport Ca2+ against a concentration gradient, such as the sarcoplasmic/endoplasmic 

reticulum Ca2+ ATPases (SERCAs) pumping Ca2+ into the ER.  

 

1.5.2 Calcium	  and	  cancer	  
 

Since Ca2+ signalling can affect pathways regulating proliferation and apoptosis, alterations in 

Ca2+ channels and pumps could have a causal and promoting role in cancer. The location, 

degree and temporal aspects of changes in [Ca2+]c regulate the pathways relating to 

tumorigenesis.  

Ca2+ is implicated in cellular motility including neurite outgrowth and contraction [115, 123]. 

Ca2+ is also a key regulator of signalling pathway important in angiogenesis, since some 

angiogenic stimuli, such as vascular endothelial growth factor, can increase [Ca2+]c by 

mobilizing Ca2+ release from the internal Ca2+ stores [124].  Ca2+ can influence genomic 

stability and cell survival, for example Ca2+ is a modulator of poly (ADP-ribose) polymerase-

1 (PARP1) activity, which alters cellular metabolism and DNA repair [125]. Ca2+ is a key 

regulator of the cell cycle, and hence proliferation, through various different pathways 

including Ras signalling [126]. Ca2+ signalling is implicated in the cancer cell differentiation 

process either through the extracellular Ca2+-sensing receptor and/or through changes in 
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intracellular Ca2+ [127]. Ca2+ can modulate cell-cycle regulators directly, for example by 

activating the transcription of the genes crucial in the G0-G1 transition [128] and for the 

phosphorylation of retinoblastoma protein in late G1 phase [129]. Ca2+ can also indirectly 

regulate the subcellular localization of the key tumorigenic proteins. Minaguchi et al. found 

out that the nuclear localization of PTEN is regulated by Ca2+ through a tyrosil 

phosphorylation-independent conformational modification in major vault protein [128]. The 

accumulation of excessive Ca2+ has often been found to link to apoptosis and necrosis by the 

activation of ER/SR and mitochondrial membrane permeabilization [130]. A reduction of ER 

Ca2+ content is associated with resistance to apoptosis [120].  

Alternations in Ca2+ channels and pumps are detected in many cancers. SOCCs as IP3R2 and 

IP3R3 were found over expressed in non-small cell lung cancer and gastric cancer 

respectively [131, 132]. RyR1 was down regulated in thyoma [133]. VOCCs as T-typeα10, T-

typeα11 and CACNA2D2, which is a regulatory subunit of VOCC, were down regulated in 

colorectal cancer [134], colon carcinoma and adenomas [135], and lung cancers [136]. Ca2+ 

pumps SERCA has also been found to change expression or activity in different cancers. 

Down-regulation of SERCA 2 was discovered in oral cancer [137], colon cancer [138], 

thyroid cancer [139] and lung cancer [138] but up-regulation in colorectal cancer [140]. 

SERCA 3 was found down regulated in colon cancer [141]. Changes in the expression or 

activity of PMCA pumps and transient receptor potential channels, such as TRPM8, TRPM1, 

TRPV1, TRP6, and TRPC6, were also found in several of cancers [119].                 

 

1.5.3 Target	  calcium	  in	  cancer	  	  	  
 

Ca2+ channels and pumps with altered expression in cancer might represent potential 

biomarkers of disease. When cancer cells undergo differentiation in tumorigenic process, 

changes in the expression of Ca2+ pumps can be detected in many cancer cell lines. Changes 

in the ER Ca2+ pump SERCA3 protein expression is either reduced or lost in colon 

carcinomas compared with normal tissue, consistent with a loss of differentiation in cancer 

cells [142]. The increased apoptotic resistance of the malignant neuroendocrine differentiated 

prostate cells is due to a general alteration in Ca2+ homeostasis in which the reduction in 

SERCA2b has an important role. The reduced ER Ca2+ content partially because of the 

decrease of SERCA2b expression is a probable mechanism for apoptotic resistance [143]. 

These Ca2+ channels and pumps can be used as prognostic indicators or can guide treatment 

by the means of techniques such as microarrays in cancers. 
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 Ca2+ channels and pumps with altered expression offer the potential not only as biomarker for 

cancer diagnosis but also anticancer therapeutic targets. First, the significance of increased 

expression of Ca2+ channels and pumps in cancer is directly related to the Ca2+ regulated 

tumorigenic pathways. Secondly, many of the Ca2+ channels and pumps with altered 

expression in cancer have a highly restricted tissue distribution, unlike many of the ubiquitous 

potential anticancer drug targets such as cell cycle regulator. Therapies based on a target with 

a limited tissue distribution are less associated with generalized toxicity, which is a factor 

limiting clinical use for agents that have widespread expression. For instance, PMCA2 is 

upregulated in human breast cancer cell lines, whereas its expression is restricted normally to 

the central nervous system [144]. Thirdly, the availability of pharmacological Ca2+ channels 

and pumps inhibitors or activators makes it as an outstanding feature of Ca2+ channels or 

pumps as cancer targets. For instance heparin, dantrolene and CPA are inhibitors for IP3R, 

RyR and SERCA, while adenophostin A and suramin are activators for IP3R and RyR 

(SERCA activator has not been discovered) [145-147]. So modulating the activity of Ca2+ 

channels and pumps that are aberrantly expressed in cancer cells and cancer stem cells 

efficiently might sufficiently interrupt Ca2+ homeostasis to target cancer cells with restricted 

tissue distribution.  Chemogenomic approached will drive the development of the Ca2+ 

homeostasis regulating pharmacopoeias for the known cancer related Ca2+ channels and 

pumps, at the same time the research should continue for the identification of other Ca2+ 

channels, pumps or exchangers that may serve as anticancer targets as well as specific 

biomarkers for cancer prognosis and treatment.  
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2 METHODS AND MATERIALS  
 

2.1 Biological material  
 

Tumor cell lines 

• HCC-78: DSMZ no. ACC 563, human non-small cell lung carcinoma. According to 

the histological classification of the original tumor, HCC is defined as 

adenocarcinoma (Virmani et. al., 1998).  

• H-1339: DSMZ no. ACC 506, human small cell lung carcinoma (Phelps et. al., 1996).  

 

2.2 Lab material and equipment 
 

2.2.1 Laboratory	  consumables	  
 

• Culture flasks: 25 cm2, 2 µm vent cap, Cat. 430639, Corning Incorporated, NY, US; 

75 cm2 and 175 cm2, 2 µm vent cap, Cat. 658175 and 660175, Greiner Bio-One GmbH, 

Frickenhausen, Germany.   

• Multi-well dishes: 96-well, 24-well and 6-well, Cat. 353072, 353935 and 351146, 

Falcon, BD Biosciences Labware, NJ, US. 

• Cell culture dishes: 35 × 10 mm and 100 × 20 mm, Cat. 353001 and 353003, Falcon, 

BD Biosciences Labware, NJ, US. 

• Centrifuge tubes: 15 ml and 50 ml, Cat. 62 554 502 and 227 261, Sarstedt AG & Co., 

Nümbrecht, Germany. 

• Cryotubes: Cryo Vials, Cat. 121 277, Greiner Bio-One GmbH, Frickenhausen, 

Germany.   

• Filter system: 500 ml, 0.22 µm filter, Cat. 430758, Corning Incorporated, NY, US  

• Slides: 25 × 1.0 × 75 mm, superfrost, Cat. J1800AMNZ, Menzel-Gläser, Mezel GmbH 

& Co KG, Braunschweig, Germany. 

• Cover slides: 24 × 32 mm and 18 × 18 mm, Menzel-Gläser, Mezel GmbH & Co KG, 

Braunschweig, Germany.   

• Counting chamber: 0.1 × 0.0025 mm2, Cat. 63510-10, Neubauer, Brand, Germany.  

• Pipettes: 10 ml, Cat. 47110, Sterilin Ltd. Caerphilly, UK; 25 ml, Cat. 4251, Corning 

Incorporated, US. 
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• Tips: 10 µl, 200 µl, 1000 µl, Cat. 70 1115, 70 760 002 and 70 762, Sarstedt AG & Co., 

Nümbrecht, Germany. 

 

2.2.2 Lab	  equipment	  
 

• Water bath: Techne TE-10D, Tempunit Gesellschaft für Laborgeräte mbH, Wertheim, 

Germany. 

• Thermomixer: 5436, Eppendorf-Netheler-Hinz GmbH, Hamburg, Germany. 

• Magnetic stirrer: IkaMag RH, Janke & Kunkel IKA-Labortechnik, Staufen, Germany.  

• Centrifuge: Hettich EBA 12R and Universal 16A, Minnesota, US.   

• Eppendorf pipettes: 0.5-10 µl, 10-100 µl, 20-200 µl, 100-1000 µl, Eppendorf-

Netheler-Hinz GmbH, Hamburg, Germany. 

• Electronic pipette controller: Gilson, Middleton, US.   

 

2.3 Cell culture 
 

2.3.1 Cell	  culture	  medium	  and	  supplement	  
 

• RPMI 1640: Cat. F1415, Biochrom AG, Berlin, Germany. 

• Fungizone: amphothericin B, 250 µg/ml, Cat. P11-001, PAA Laboratories GmbH, 

Pasching, Austria. 

• Penstrep: penicillin (10,000 IU/ml) and streptomycin (10,000 IU/ml), Cat. P11-010, 

PAA Laboratories GmbH, Pasching, Austria. 

• L-glutamine: 200 mM, Cat. M11-004, PAA Laboratories GmbH, Pasching, Austria. 

• Trypsin-EDTA: 0.05%/0.02% in D-PBS, Cat. L11-004, PAA Laboratories GmbH, 

Pasching, Austria. 

• FBS: REF. 16170-078, Gibco, Darmstadt, Germany. 

• NCS: REF. 26010-074, Gibco, Darmstadt, Germany.     

• PBS: Phosphate Buffered Saline, without Ca2+ and Mg2+, Cat. H15-002, PAA 

Laboratories GmbH, Pasching, Austria. 

• Ethanol: pure, Pharmacy, Klinikum Grosshadern, Munich, Germany.  

• DMSO:  dimethyl sulfoxide, 5 ×10 ml. Cat. D2650, Sigma-Aldrich, St. Louis, US.  

• Trypan blue: 0.4%, Cat. T8154, Sigma-Aldrich, St. Louis, US.  
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• StemPro hESC SFM: human embryonic stem cell culture kit, Cat. A10007-01, Gibco, 

Darmstadt, Germany. 

• FGF-2: recombinant human fibroblast growth factor- basic, 50 µg, Cat. PHG0026, 

Gibco, Darmstadt, Germany. 

• GDC-0449: 50 mg, Cat. S1082, Selleck Chemicals Co., Ltd, Houston, US. 

• Cyclopamine hydrate: 1mg, Cat. C4116, Sigma-Aldrich, St. Louis, US.    

• Cisplatin: 1mg, Pharmacy, Klinikum Grosshadern, Munich, Germany.  

 

2.3.2 Cell	  culture	  equipment	  
 

• Laminar airflow: Heraeus, Munich, Germany. 

• Incubator: Heraeus, Munich, Germany. 

 

2.3.3 Cell	  culture	  medium	  recipe	  
 

• HCC medium 

Final Conc. 

90%                  RPMI 1640 

10%                  FBS heat inactivated 

200 mM            L-glutamine 

10,000 IU/ml    Penstrep 

2.5 µg/ml          Fungizone 

 

• H1339 medium 

Final Conc. 

            80%                  RPMI 1640 

20%                  FBS heat inactivated 

200 mM            L-glutamine 

10,000 IU/ml    Penstrep 

2.5 µg/ml          Fungizone 

 

• Stem cell medium for SP  

Final Conc. 
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1 ×                    DMEM/F-12 + Glutamax medium  

50 ×                  StemPro hESC SFM Growth Supplement  

1.8%                 BSA 

8 ng/ml             FGF-basic 

0.1 mM            2-Mercaptoethanol  

 

2.3.4 Monolayer	  culture	  of	  lung	  cancer	  cell	  lines	  
 

HCC and H1339 cells were cultured in 175 cm2 culture flasks with 25 ml medium and 

cultured in the 37 °C cell incubator with 5% CO2. The culture medium was changed every 2-3 

days and when the cells were 60-70% confluent, they were split with Trypsin-EDTA solution 

and incubated in the cell incubator for 5 min. The cells were frozen in liquid nitrogen with 

10% DMSO culture medium for future use.  

 

2.3.5 Survival	  curve	  
 

HCC cells (1×105) and H1339 cells (1.5×105) were seeded in 25 cm2 cell culture flask and 

cultured for 24 h, and afterward treated with 10 µM cyclopamine or respective concentrations 

of GDC- 0449 (25 µM and 50 µM). For cisplatin (1 µM) treatment, the chemotherapy drug 

was added 3 h before GDC-0449. The cell viability was evaluated after the cells were exposed 

to the treatment for 24 h, 48 h, 72 h and 96 h by Trypan blue exclusion cell counting. The 

cells treated with DMSO were used as control, which is detergent for GDC-0449 and 

cyclopamine. This approach was chosen because after application of cisplatin to human, a 

relevant plasma concentration of unbound cisplatin (active form) persists for only 3 h [158]. 

 

2.4 Mini-organ culture system 

2.4.1 Culture	  material	  and	  equipments	  

 

• DMEM: high glucose (4.5 g/L), Cat. E15-883, PAA Laboratories GmbH, Pasching, 

Austria. 

• Agar noble: powder, 100 g, Cat. 214220, Becton, Dickinson and Company, Sparks, 

US.  



 36 

• MEM NEAA: MEM non-essential amino acid, 100 ×, 100 ml, Cat. M11-003, PAA 

Laboratories GmbH, Pasching, Austria. 

• Tissue slicer: OTS-4000 oscillating tissue slicer, FHC Inc, Bowdoinham, USA. 

• Super glue: Aron Alpha industrial krazy glue, high strength rapid bonding adhesive 

alpha cyanoacrylate, 2 g × 5 tubes, Elmer’s Products Inc, Columbus, USA.     

• Other medium and supplements needed were mentioned in 2.2.1. 

 

2.4.2 Culture	  medium	  and	  agar	  plate	  
 

• Culture medium 

Final Conc. 

90%                  RPMI 1640 

10%                  FBS heat inactivated 

200 mM            L-glutamine 

10,000 IU/ml    Penstrep 

2.5 µg/ml          Fungizone 

 

• Agar Plate 

30 ml                1.5% Agar  

30 ml                 2× DMEM 

6 ml                   NCS 

75 µl                  non-essential amino acids 

120 µl                Penstrep 

240 µl                Fungizone 

150 ml               ddH2O 

 

Agar powder was first dissolved in ddH2O on magnetic stirrer at 50 °C and afterward 

sterilized by autoclaving at 120 °C for 20 min. Before the agar was mixed with the medium 

and other components, it has been heated in the microwave oven into fluid form. The agar gel 

was equally distributed into a 24-well plate with 200 µl in each well. The ready agar plates 

were wrapped with cling film and stored at 4 °C.   
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2.4.3 Biopsy	  cultivation	  
 

Biopsies were removed from visually normal mucosa from the main bronchi via a 

bronchoscope. After the biopsies were transferred to the lab, they were first washed with PBS 

with penstrep and fungizone for 3 times in the cell culture dish to clear up the remaining 

mucus tissue and blood. Afterward they were cut into about 2 mm × 2 mm sized pieces and 

cultured in an agar plate with 400 µl co-culture medium added on top. The tissue cultures 

were maintained in the 37°C cell incubator with 5% CO2. The medium was changed every 

two days and each time the biopsy was observed under a light microscope to evaluate the 

epithelializing progress and the active cilia percentage. Every week the tissue cultures were 

transferred to a new plate to avoid contamination, and in case of contamination, the whole 

plate has been discarded. The biopsy was transferred to a 35 × 10 mm cell culture dish and 

until the epithelium cells would have expanded, the culture was applied for Ca2+ staining.   

   

2.5 Flow cytometry and cell sorting of SPs  

 

2.5.1 Material	  and	  equipment	  

 

• Hoechst 33342: trihydrochloride, trihydrate, FluoroPure grade, 100mg, Cat. H21492, 

Invitrogen, Darmstadt, Germany. 

• Verapamil: hydrochloride, 1g, Cat. V4629, Sigma-Aldrich, St. Louis, US.     

• Propidium iodide: 1 mg/ml, Cat. P4170, Sigma-Aldrich, St. Louis, US.     

• Anti-human CD133-PE: mouse anti human CD133 monoclonal antibody, PE 

conjugated, Cat. 130-080-801, Miltenyi Biotec GmbH, Bergisch Gladbach, Germany.. 

• Anti-human CD34-PE-Cy5.5: mouse anti human CD34 monoclonal antibody, PE-

Cy5.5 conjugated, Cat. CD34-581-18, Invitrogen, Darmstadt, Germany. 

• Anti-human CD117-APC: mouse anti human CD117 monoclonal antibody, APC 

conjugated, Cat. CD117-05, Invitrogen, Darmstadt, Germany. 
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• IgG1-FITC/IgG1-PE: mixture of FITC conjugated mouse IgG1 and mouse PE 

conjugated IgG1, isotype control, Cat. A07794, Beckman Coulter, Marseille Cedex, 

France. 

• IgG1-APC: APC conjugated mouse IgG1, isotype control, Cat. 400121, Biozol 

Diagnostica Vertrieb GmbH, Eching, Germany. 

• IgG1-PE-Cy5.5: PE-Cy5.5 conjugated mouse IgG1, isotype control, Cat. MG118, 

Invitrogen, Darmstadt, Germany. 

• FACSAria II flow cytometer: BD, New Jersey, USA.  

• MoFlo High Speed Sorter: DAKO-Cytomation, Glostrup, Denmark. 

 

2.5.2 FACS	  analysing	  and	  cell	  sorting	  for	  SPs	  
 

Single-cell suspensions of HCC and H1339 cells respectively, 1 × 106/ml in 2% FBS RPMI 

1640, were stained with 2.5 µg/ml Hoechst 33342 for 1.5 h in a 37°C water bath. During the 

loading, it was important that the cell suspension was gently vortexed every 15 min in order to 

avoid clumping while the staining temperature was kept constantly at 37°C. Propidium Iodide 

was added with a final concentration of 5µg/106 cells to discriminate viable and non-viable 

cells before measurements. Cells were analyzed with FACSAria II flow cytometer to identify 

the SP fraction and sorted with the MoFlo High Speed Sorter. The cells with low fluorescence 

at both 450~50 nm and 670~30 nm wavelengths were defined as SP cells. 50 µM verapamil 

was employed to block the ABC transporter as a control for staining and as a standard for 

gating. After sorting, the SP cells were cultured with the stem cell medium and non-SP cells 

with medium for HCC and H1339 cells.  
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2.5.3 Stem	  cell	  markers	  analysis	  
 

Cells were handled and loaded with Hoechst 33342 as described above and whereas stem cell 

surface markers were tested with the specific antibodies. 10 µl of the specific antibodies were 

added to the cells. After the cells were well mixed, they were kept in the dark in the 4°C 

refrigerator. The cells were washed with medium, centrifuged at 300 ×g for 10 min, then the 

cell pellet was resuspended in 200 µl medium for analysis by FACS.  

  

2.6 Western Blot 

 

2.6.1 Material	  and	  equipment	  

 

• TBS: 10 ×, Tris-buffered saline solution, 1L, Cat. 170-6435, Bio-Rad Laboratories, 

Munich, Germany. 

• NuPAGE MOPS SDS running buffer: 20 ×, 500 ml, Cat. NP0001, Invitrogen, 

Darmstadt, Germany. 

• NuPAGE transfer buffer: 20 ×, 1 L, Cat. NP0006-1, Invitrogen, Darmstadt, Germany. 

• Skim milk powder: 500 g, Cat. 70166, Sigma-Aldrich, St. Louis, US.    

• NuPAGE antioxidant: 15 ml, Cat. NP0005, Invitrogen, Darmstadt, Germany. 

• NuPAGE sample reducing agent: 10 ×, Cat. NP0004, Invitrogen, Darmstadt, Germany. 

• NuPAGE LDS sample buffer: 4 ×, Cat. NP0007, Invitrogen, Darmstadt, Germany. 

•  Tween 20: 100 ml, Cat. P7949, Sigma-Aldrich, St. Louis, US.      

• Complete lysis-M: protein extraction reagent set, Cat. 04 719 956 001, Roche, 

Mannheim, Germany. 



 40 

• BSA standard set: bovine serum albumin standard set for creating assay standard 

curve, BSA concentrations from 0.125 to 2 mg/ml, Cat. 500-0207, Bio-Rad 

Laboratories, Munich, Germany. 

• Non-interfering protein assay kit: Cat. 488250, Calbiochem, EMD Bioscience Inc., 

Darmstadt, Germany.  

• NuPAGE 4-12% Bis-tris gel: 1.5 mm × 10 well, Cat. NP0335BOX, Invitrogen,  

Darmstadt, Germany. 

• SeeBlue plus 2 pre-stained standard: 500 µl, Cat. LC 5925, Invitrogen, Darmstadt, 

Germany.  

• Criterion gel blotting sandwiches: immun-blot PVDF with filter papers, Cat. 162-0238, 

Bio-Rad Laboratories, Munich, Germany.  

• Hybond-P PVDF membrane: 20 × 20 cm, Cat. RPN2020F, Amersham Biosciences 

Europe GmbH, Freiburg, Germany.  

• Anti-human SMO: H-300, rabbit anti human SMO polyclonal antibody, Cat. sc-13943, 

Santa Cruz Biotechnology Inc., Heidelberg, Germany. 

• Anti-human Gli-1: N-16, goat anti human Gli-1 polyclonal antibody, Cat. sc-6153, 

Santa Cruz Biotechnology Inc., Heidelberg, Germany. 

• Anti-human Patched: G-19, goat anti human Patched polyclonal antibody, Cat. sc-

6149, Santa Cruz Biotechnology Inc., Heidelberg, Germany. 

• Anti-human Shh: N-19, goat anti human Shh polyclonal antibody, Cat. sc-1194, Santa 

Cruz Biotechnology Inc., Heidelberg, Germany. 

• Anti-human Bmi-1: mouse anti human Bmi-1 monoclonal antibody, Cat. 37-5400, 

Invitrogen, Darmstadt, Germany. 

• Anti-human SERCA 1/2/3: rabbit anti human SERCA 1/2/3 polyclonal antibody, Cat. 

sc-30110, Santa Cruz Biotechnology Inc., Heidelberg, Germany. 
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• Anti-human IP3R I/II/III: rabbit anti human IP3R I/II/III polyclonal antibody, Cat. sc-

28613, Santa Cruz Biotechnology Inc., Heidelberg, Germany. 

• Anti-human β-actin HRP: C4, HRP conjugated mouse anti human β-actin monoclonal 

antibody, Cat. sc-47778, Santa Cruz Biotechnology Inc., Heidelberg, Germany.  

• Donkey anti-goat IgG-HRP: HRP conjugated secondary antibody, Cat. sc-2020, Santa 

Cruz Biotechnology Inc., Heidelberg, Germany.  

• Goat anti-rabbit IgG-HRP: HRP conjugated secondary antibody, Cat. sc-2004, Santa 

Cruz Biotechnology Inc., Heidelberg, Germany.  

• Goat anti-mouse IgG-HRP: HRP conjugated secondary antibody, Cat. sc-2005, Santa 

Cruz Biotechnology Inc., Heidelberg, Germany. 

• Amersham ECL plus western blotting detection reagents: Cat. RPN2132, GE 

Healthcare UK Limited, Buckinghamshire, UK. 

• Power PAC 3000: power supply for electrophoresis applications, Bio-Rad 

Laboratories, Munich, Germany.  

• XCell II blot module: Cat. EI9051, Invitrogen, Darmstadt, Germany.  

 

2.6.2 Solution	  recipe	  
 

• TBS-T buffer 

            100 ml          10 × TBS buffer 

            1 ml               Tween 20 

             to 1 L             ddH2O 

 

• Blocking buffer 

            5 g                  Slim fat milk powder 

            100 ml            TBS-T 
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• Transfer buffer 

            50 ml              20 × NuPAGE transfer buffer 

            150 ml            Methanol 

            1 ml                Antioxidant 

            to 1 L              ddH2O 

 

• MOPS buffer 

            1 ml                Antioxidant 

            50 ml              20 × MOPS NuPAGE buffer 

            to 1 L             ddH2O 

 

• Mild stripping buffer 

15 g                  Glycine 

            1 g                     SDS 

            10 ml                Tween 20 

            Adjust pH to 2.2 

             to 1 L               ddH2O 

 

2.6.3 Western	  blot	  
 

HCC and H1339 cells were cultured in 175 cm2 cell culture flasks for 24 h, afterward treated 

with 10 µM cyclopamine or respective concentrations of GDC- 0449 (25 µM and 50 µM) for 

another 24h. Whole protein extraction was carried out according to the protocol from 

complete lysis-M protein extraction reagent set. 500 µl lysis buffer was used for 107 cells for 

high protein concentration and efficient protein extraction. Protein concentration was 



 43 

measured with a non-interfering protein assay kit and a standard curve from BSA standard 

samples. (Figure 1) 

 

 

 

 

 

 

 

 

 

 

Figure 1. Standard curve from BSA standard samples.  

 

50 µg protein from each sample was diluted with NuPAGE reducing buffer, sample buffer 

and ddH2O to 50 µl and was heated by the thermomixer at 70 °C for 10 min to denature. 

Electrophoresis voltage was set at constant 150 V and with the run time of 90 min. Western 

transfer was performed at constant 30 V for 60 min. The membranes were blocked in 

blocking buffer at room temperature for 3 h and afterward incubated with specific antibodies 

for 16 h at 4 °C. The primary antibodies anti-human SMO, Gli-1, Patched, Shh, SERCA, 

IP3R were diluted 1: 200 and anti-Bmi-1 was diluted 1:500 with blocking buffer for the 

loading. The membranes were incubated with diluted 1:2000 matched HRP conjugated 

secondary antibodies for 1h at room temperature on the next day. Then the western blotting 

detection reagents were applied at 0.1ml/cm2 to the membranes for 5 min at room temperature 

and films were developed in the dark room.  
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After the membranes for the target proteins were filmed, one membrane was chosen for β-

actin reprobing from each sample group. The membrane was washed with mild stripping 

buffer and then blocked for 3 h at room temperature. The anti-human β-actin HRP antibody 

was 1:2000 diluted with blocking buffer and applied on the membrane for 1 h incubation at 

room temperature. Procedures afterward were implemented as described above.  

The films were scanned with HP ScanJet into digital pictures, then analysed with the imaging 

processing program Image J. The regions of interest (ROIs) were defined according to the size 

of the protein and the average light intensity was measured. After the background intensity 

was corrected, each sample was standardized with β-actin via the light intensity of ROIs 

divided by the light intensity of β-actin.          

  

2.7 Immunofluorescence 
 

2.7.1 Immunofluorescence	  material	  
 

• Paraformaldehyde: powder form, 250 g, Cat. 0335.1, Carl Roth GmbH + Co. KG, 

Karlsruhe, Germany.  

• Sodium borohydride: powder form, 100 g, Cat. 45, 288-2, Sigma-Aldrich, St. Louis, 

US.    

• Triton X-100:  100 ml, Cat. T8787, Sigma-Aldrich, St. Louis, US.      

• BSA: powder form, 200 g, Cat. 8076.4, Carl Roth GmbH + Co. KG, Karlsruhe, 

Germany.  

• Mounting medium with DAPI: 1.5µg/ml DAPI, 10 ml, Cat. H-1200, Vector 

Laboratories, Inc., Burlingame, US.    

• Anti-human SMO: H-300, rabbit anti human SMO polyclonal antibody, Cat. sc-13943, 

Santa Cruz Biotechnology Inc., Heidelberg, Germany. 
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• Anti-human SERCA 1/2/3: H-300, rabbit anti human SERCA 1/2/3 polyclonal 

antibody, Cat. sc-30110, Santa Cruz Biotechnology Inc., Heidelberg, Germany. 

• Anti-human IP3R-I/II/III: H-300, rabbit anti human IP3R-I/II/III polyclonal antibody, 

Cat. sc-28613, Santa Cruz Biotechnology Inc., Heidelberg, Germany. 

• Goat anti-rabbit IgG-FITC: FITC conjugated secondary antibody, Cat. sc-2012, Santa 

Cruz Biotechnology Inc., Heidelberg, Germany.  

• Donkey anti-goat IgG-FITC: FITC conjugated secondary antibody, Cat. sc-2024, 

Santa Cruz Biotechnology Inc., Heidelberg, Germany.  

 

2.7.2 Immunofluorescence	  for	  SP	  and	  non-‐SP	  cells	  
 

After sorting, isolated SP cells from both HCC and H1339 cell lines were cultured in Stem 

Pro hESC Supplement with 10 µg/ml and non-SP cells were cultured in RPMI-1640 medium 

with 10% FBS for HCC cells and 20% FBS for H1339 cells. Cells were grown on a glass 

cover slip in a 6-well cell culture plate, fixed with 4% paraformaldehyde for 30 min at room 

temperature and permeabilized with 0.5% Triton X-100/PBS for 10 min at room temperature 

before incubation with the specific antibodies 4°C overnight. Primary antibodies were diluted 

1:50. After the cells stained with diluted 1:100 matched FITC combined secondary antibodies 

for 1 h at room temperature, the cells were visualized by fluorescence microscope with a 

digital CCD camera. 
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2.8 Calcium staining 
 

2.8.1 Calcium	  staining	  material	  
 

• Fura-2 calcium imaging calibration kit: 11 Ca2+ standard buffers premixed with 50µM 

fura-2, Cat. F-6774, Molecular Probes, Invitrogen, Eugene, US. 

• Fura-2 AM: 50 µg × 20 special packaging, Cat. F14185, Molecular Probes, Invitrogen, 

Eugene, US. 

• CPA: cyclopiazonic acid from penicillium cyclopium, Cat. C1530, Sigma-Aldrich, St. 

Louis, US.  

 

2.8.2 Composition	  of	  fluorescent	  microscope	  for	  calcium	  imaging	  	  
 

• Microscope: Axiovert 200M, SIP 79800, Carl Zeiss AG, Jena, Germany. 

• HBO lamp: 103W/2, short Arc mercury lamp, Osram GmbH, Augsburg, Germany. 

• Objective Fluar: 20 × 0.75, transmission wavelength from 340 nm, Zeiss AG, 

Oberkochen, Germany. 

• Filters: excitation wavelength 340 nm and 380 nm, emission wavelength 510 nm both, 

Cat. 340 AF 15 and 380 AF 15, Laser components GmbH, Olching, Germany. 

• CCD digital camera: AxioCam MRm, Carl Zeiss Vision, Munich, Germany. 

 

2.8.3 Fura-‐2	  calibration	  curve	  
 

A ratio metric measurement method was utilized to determine the dissociation constant (Kd) 

of Fura-2 AM at the staining condition, in order to reduce artifacts from the microscope 

application and to generate the absolute [Ca2+]c. With the Fura-2 calcium imaging calibration 

kit, images of different Ca2+ concentration standard solution with Fura-2 AM were acquired, 
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with excitation at 340 nm and 380 nm respectively, while the emission was measured at 510 

nm, according the protocol offered with the kit. With the online Kd calculator 

(www.probes.com), the Kd of Fura-2 AM was yielded as 269 nM. (Figure 2) 

 

 

Figure 2. Fura-2 calcium calibration curve: the Kd of Fura-2 AM was yielded as 269 nM. 

  

A ratio (R) of emission intensities was calculated as the emission intensity at 510 nm from 

340 nm excitation divided by the emission intensity at 510 nm from 380 nm excitation (R = 

F340/F380). According the equation below, the [Ca2+]c can be obtained from the fluorescence 

emission intensity ratio: 

 

2.8.4 Cytoplasm	  Ca2+	  concentration	  measurement	  	  
 

HCC, H1339 SP cells and non-SP cells were seeded in cell culture dishes with the same 

density. After the cells grew adherent, Fura-2 AM was applied for cytoplasm calcium staining 

with a final concentration of 10 µM in 37°C cell incubator for 90 min. After loading, the cells 

were incubated another 30 min in PBS (with Ca2+ and Mg2+) to allow complete dye 

[Ca2+]free = 
R-Rmin 

Rmax-R 
× × Kd 

F380
max 

F380
min 
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deesterification and they were examined with the fluorescent microscope. Images of the same 

field were taken at both exciting wavelength 340 nm and 380 nm with the image-processing 

program Axio Vision 4.1 (Carl Zeiss). For each image, ROIs were defined in cytoplasm of 

every single cell, and the average fluorescence of ROIs was measured with the image-

processing program Scion Image 4.0 (Scion). [Ca2+]c was calculated as described above.  

 

2.8.5 ER	  Ca2+	  concentration	  measurement	  
 

[Ca2+]ER was measured in an indirect approach. 1 µM CPA was applied during the Fura-2 

loading to inhibit SERCA, which pumps Ca2+ into the ER, and it leads to a net Ca2+- efflux 

out of the ER. The increase of [Ca2+]c was utilized as an estimate of [Ca2+]ER. In order to 

prevent Ca2+ - entry by store-operated channels, incubation solution was substituted by PBS 

without Ca2+ and Mg2+ immediately prior to the imaging.   
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3 RESULTS 
 

3.1 Inhibitory effect of GDC-0449 on cell growth 
 

HCC and H1339 cells were treated with 25 µM and 50 µM GDC-0449 respectively and the 

survival fraction was calculated every 24 hours for 4 days. In both cell lines, a significant 

concentration dependent cell growth inhibition could be shown and the effect was comparable 

to 10 µM Cyclopamine, which is a widely used Hh pathway inhibitor. In HCC cells, the cell 

number decreased after 24 h treatment, and the lowest survival fraction was observed at 48 h 

with 25 µM and 50 µM GDC-0449 as 62.5±3.9% and 38.5±4.5%. 96 h after the treatment, the 

survival fraction was 65.8±9.8% and 53.8±7.8% with 25 µM and 50 µM GDC-0449. In 

H1339 cells, the cell number decreased slightly after 24 h treatment, and the lowest survival 

fraction was observed at 96 h with 25 µM and 50 µM GDC-0449 as 62.9±6.6% and 

45.4±3.1%. (n = 3) (Figure 3 A, B) 

After the GDC-0449 treatment on HCC and H1339 cells, the same experiment was applied to 

HCC and H1339 cisplatin resistant cells (HCC-Res and H1339-Res). In HCC-Res cells, the 

cell number decreased after 24 h treatment, and the cell number kept decreasing until the 

lowest survival fraction was observed at 96 h with 25 µM and 50 µM GDC-0449 as 

42.4±6.9% and 24.9±3.6%. In H1339 cells, the cell number decreased also after 24 h 

treatment, and the lowest survival fraction was observed at 96 h with 25 µM and 50 µM 

GDC-0449 as 45.4±3.8% and 30.0±3.3%. (n = 3) (Figure 3 C, D) 
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Figure 3. GDC-0449 effect on the growth of lung cancer cells: HCC (A), H1339 (B), HCC-

Res (C) and H1339-Res (D) were treated with 10 µM cyclopamine, 25 µM GDC-0449, or 50 

µM GDC-0449 for 4 days. Cyclopamine is a frequently used SMO inhibitor and served as a 

standard to set the effects of GDC-0449 into perspective. Error bars are not shown for clarity.  

(n=3, * = P<0.05 versus other experimental groups) 

 

3.2 Inhibitory effect of GDC-0449 combined with cisplatin on cell growth 
 

HCC and H1339 cells were exposed to 1 µM cisplatin for 3 hours and combined with an 

exposure to 25 µM and 50 µM GDC-0449 respectively afterwards. The survival fraction was 

measured every 24 h for 4 days. In both HCC and H1339 cells, an additional inhibition effect 

can be shown. In HCC cells, the combination of 25 µM or 50 µM GDC-049 with 1 µM 

cisplatin resulted in 12.7±2.7% or 7.3±0.6% survival fraction at 96 h after treatment 

respectively, comparing with exposure alone (31.2±8.1% of 25 µM GDC-0449, 21.6±3.3% of 

50 µM GDC-0449 and 26.2±5.8% of 1 µM cicplatin). Meanwhile, in H1339 cells, the 

combination of 25 µM or 50 µM GDC-0449 with 1 µM cisplatin resulted in 8.2±2.5% or 

7.6±1.7% survival fraction at 96 h after treatment respectively, comparing with exposure 

alone (54.2±6.5% of 25 µM GDC-0449, 31.7±3.2% of 50 µM GDC-0449 and 20.8±2.8% of 1 

µM cicplatin). (n = 3) (Figure 4)  
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Figure 4. GDC-0449 effect on the growth of HCC and H1339 cells with or without 

cisplatin: HCC treated with 25 µM GDC-0449 (A), HCC treated with 50 µM GDC-0449 (B), 

H1339 treated with 25 µM GDC-0449 (C) and H1339 treated with 50 µM GDC-0449 (D) for 

4 days with or without 1 µM cisplatin. Combined treatment with cisplatin and GDC-0449 

resulted in a decreased survival fraction compared with either exposure alone. Error bars are 

not shown for clarity.  (n=3, * = P<0.05 versus other experimental groups) 

 

In the cisplatin resistant HCC and H1339 cells, an additional inhibition effect from the 

combination of GDC-0449 and cisplatin could be shown slightly but not significantly. In 

HCC-Res cells, the combination of 25 µM or 50 µM GDC-049 with 1 µM cisplatin resulted 

in 29.3±6.5% or 19.1±5.0% survival fraction at 96 h after treatment respectively, comparing 

with exposure alone (42.4±6.9% of 25 µM GDC-0449, 24.9±3.6% of 50 µM GDC-0449 and 

97.0±6.2% of 1 µM cicplatin). Meanwhile, in H1339 cells, the combination of 25 µM or 50 

µM GDC-0449 with 1 µM cisplatin resulted in 29.3±6.5% or 22.0±4.5% survival fraction at 

96 h after treatment respectively, comparing with exposure alone (42.2±6.9% of 25 µM GDC-

0449, 30.7±3.3% of 50 µM GDC-0449 and 100.1±3.2% of 1 µM cicplatin). (n = 3) (Figure 5)  
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Figure 5. GDC-0449 effect on HCC-Res and H1339-Res cells with or without cisplatin: 

HCC-Res treated with 25 µM GDC-0449 (A), HCC-Res treated with 50 µM GDC-0449 (B), 

H1339-Res treated with 25 µM GDC-0449 (C) and H1339-Res treated with 50 µM GDC-

0449 (D) for 4 days with or without 1 µM cisplatin. Combined treatment with cisplatin and 

GDC-0449 did not result in a significantly additional decreased survival fraction compared 

with exposure alone. Error bars are not shown for clarity.  (n=3, * = P<0.05 versus cisplatin 

treated group) 

    

3.3 Effect of GDC-0449 on the expression of Hh pathway components in HCC and 
H1339 cells 

 

In order to detect the effect of GDC-0449 on the Hh pathway components, Shh, Patched, 

SMO, Gli-1 and Bmi-1 were examined by Western blot. In both HCC and H1339 cell lines, 

the Hh pathway components showed substantial expression. In HCC cells, after the 

application of GDC-0449 50 µM, Gli-1, Patched and Shh expression decreased significantly 

compared with the control group by 43.9±11.2%, 55.9±10.0% and 65.2±7.8% respectively. (n 

= 3) (Figure 6)  
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Figure 6. GDC-0449 effect on the expression of Hh pathway components in HCC cells: 

HCC cells were treated with 10 µM cyclopamine, 25 µM GDC-0449, or 50 µM GDC-0449 

for 24h. The protein expression of Shh, Patched, SMO, Gli-1 and Bmi-1 were tested by 

western blot. (ROI: region of interest) (n=3, * = P<0.05 versus other experimental groups) 
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In H1339 cells, after the treatment, Gli-1 expression reduced significantly by 46.8±8.9% and 

Shh and Bmi-1 expression increased by 100.7±6.2% and 120.1±8.0% compared with the 

control group. (n = 3) (Figure 7)  
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Figure 7. GDC-0449 effect on the expression of Hh pathway components in H1339 cells: 

H1339 cells were treated with 10 µM cyclopamine, 25 µM GDC-0449, or 50 µM GDC-0449 

for 24h. The protein expression of Shh, Patched, SMO, Gli-1 and Bmi-1 were tested by 

western blot. (n=3, * = P<0.05 versus other experimental groups) 
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3.4 SP fraction in HCC and H1339 cells 
 

To demonstrate the SP phenomenon in lung cancer cell lines, HCC and H1339 cells were 

stained with 2.5 µM Hoechst 33342 and analysed with FACS. In both HCC and H1339 cells, 

the SP phenomenon could be exhibited. To examine the participation of ABC-transporters in 

the reduced dye uptake, 50 µM verapamil was employed to block the ABC-transporters. In 

HCC and H1339 cells, 0.57±0.10% and 0.46±0.10% SP cells were shown (n = 3). With the 

application of verapamil, HCC SP fraction was reduced and H1339 SP fraction was not 

perceptible due to the efficient inhibition of ABC-transporters. (Figure 8) 
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Figure 8. SP in HCC and H1339 cells: HCC and H1339 cells were stained with 2.5 µM 

Hoechst 33342 and analyzed by FACS. SP cells were shown in both HCC (A upper) and 

H1339 cells (A lower) SP fraction was measured after 3 times of independent experiments (C). 

Blocking ABC transporters with 50µM verapamil, the SP was substantially reduced in HCC 

(B upper) and was not detectable in H1339 (B lower) cells. (n=3) 

 

3.5 SP cells repopulation ability 
 

SP and non-SP cells from HCC and H1339 cells were isolated and cultured for 1 week and 

then SP fraction of cells derived from SP and non-SP cells were examined. Cells derived from 

SP showed repopulation of the original cell population with a SP of 9.3%, which was a 

significantly increased than the whole SP fraction from the whole HCC cell population. Cells 

derived from non-SP showed lower cell number with substantially lower SP of 0.5% and the 

decreased cell number indicated that the repopulation ability was absent. (n = 3) (Figure 9) 
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Figure 9. Repopulation ability of SP cells: HCC SP and non-SP cells were isolated and 

cultured separately for 1 week in RPMI medium. Cells derived from SP showed repopulation 

of the original cell population with a SP of 9.3%. Cells derived from non-SP showed lower 

cell number with substantially lower SP of 0.5%. Similar results were obtained in H1339 cells. 

(n=3) 

 

3.6 Expression of stem cell marker in lung cancer SP cells  
 

In order to show the stem cell marker expression in SP cells, three conventional stem cell 

markers, CD133, CD34, and CD117, were tested with specific antibodies via FACS. SP cells 

from HCC and H1339 cells were gated out after Hoechst 33342 staining and the expression of 

CD133, CD34, and CD117 was analyzed. In both HCC SP and H1339 SP cells, no stem cell 

marker expression was detectable. (Figure 10) 
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Figure 10. Stem cell marker expression of SP cells: HCC SP and H1339 SP cells were 

stained with specific antibodies for the stem cell markers at the mean time with Hoechst 

33342 staining, CD133, CD34, and CD117. No positive stem marker expression was 

detectable. (n=3) 

 

3.7 Inhibitory effect of GDC-0449 on SP cells 
 

50 µM GDC-0449 was applied on HCC and H1339 cells for 24 h and the SP fraction in the 

surviving cells was measured via FACS after 2.5 µM Hoechst 33342 staining. The application 

of GDC-0449 led to a reduction of SP percentage from 0.45±0.13% to 0.24±0.08% in HCC 

cells and from 0.75±0.08% to 0.18±0.03% in H1339 cells. (n = 3) (Figure 11)  
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Figure 11. GDC-0449 effect on SP fraction: HCC (A) and H1339 (B) cells were treated 

with 50 µM GDC-0449 and the percentage of SP in the surviving cells was measured. The 

application of GDC-0449 led to a reduction of SP fraction in HCC cells (C) and in H1339 

cells (D). (n=3, * = P<0.05 versus other experimental group) 

 

3.8 Hh pathway activity in SP cells and non-SP cells 
 

To investigate the Hh pathway activity in SP and non-SP cells of lung cancer cell lines, the 

Hh pathway receptor SMO was evaluated by a specific antibody via immuno-fluorescence. In 

HCC and H1339 SP cells but not in non-SP, SMO was detected. The control staining was 

performed at the same time and no unspecific staining was shown. (n = 3) (Figure 12)  

 

 

 

 

 

 

 

 

 

 



 69 

 

 

 

 
 

Figure 12. SMO expression in SP and non-SP cells: Immuno-fluorescence of 

HCC SP (A), HCC non-SP (B), H1339 SP (C) and H1339 non-SP (D) cells was performed 

with a specific antibody for SMO. Only HCC and H1339 SP cells showed specific SMO 

fluorescence (green, nucleus blue stained with DAPI), indicating the activation of the Hh 

pathway only in the stem cell-like population. Bar 10 µm. (n=3) 

 

3.9 Cytoplasm free Ca2+ concentration measurements   
 

[Ca2+]c of HCC and H1339 cells were 33.0±2.5 nM and 34.4±2.5 nM, which were 

significantly higher than that of human bronchial epithelium cells (BECs) (18.8±1.8 nM). (n = 

3) (Figure 13) 
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Figure 13. [Ca2+]c of lung caner cells and BEC: After Fura-2 staining, BEC cells showed a 

significantly lower [Ca2+]c than HCC and H1339 cells. (n=3, * = P<0.05 versus other 

experimental groups) 

 

3.10 Endoplasmic reticulum Ca2+ concentration measurements  
 

Direct measurement of [Ca2+]ER is not feasible due to the lack of a standard curve for Mag-

Fura 2. Therefore an indirect approach was used. The ER Ca2+ pumping receptor SERCA 

were inhibited using 1 µM CPA leading to a net Ca2+ -efflux out of the ER. The resulting 

increase in [Ca2+]c was an estimate of the [Ca2+]ER. The [Ca2+]ER of HCC and H1339 cells 

were 2854.7±279.8 nM and 2210.5±154.9 nM, while that of BEC was 1941.1±190.4 nM. (n = 

3) (Figure 14) 
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Figure 14. [Ca2+]ER of lung caner cells and BEC: After Fura-2 staining and the application 

of CPA, BEC cells showed a significantly lower [Ca2+]ER than HCC and H1339 cells. (n=3, * 

= P<0.05 versus other experimental groups) 

 

3.11 GDC-0449 effect on cytoplasm free Ca2+ concentration 
 

50 µM GDC-0449 has been applied on HCC, H1339, HCC-Res and H1339-Res cells with or 

without 1 µM cisplatin 3 h treatment. [Ca2+]c was measured after 24 h.  

In HCC cells, 50 µM GDC-0449, 1 µM cisplatin and 50 µM GDC-0449 combined with 1 µM 

cisplatin treated groups showed significantly increased [Ca2+]c, as 138.6±3.9 nM, 86.7±1.3nM 

and 157.5±3.0 nM respectively, compared with untreated control group as 56.1±3.9nM. In 

H1339 cells, after the treatment with 50 µM GDC-0449, 1 µM cisplatin and 50 µM GDC-

0449 with 1 µM cisplatin, significantly increased [Ca2+]c was shown as 133.6±5.0 nM, 

99.5±2.5 nM and 177.4±3.0 nm respectively, compared with the untreated control group as 

44.5±3.3 nM. (n=3) (Figure 15) 
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Figure 15. Effect of GDC-0449 on [Ca2+]c in HCC and H1339 cells: The 50 µM GDC-

0449, 1 µM cisplatin and 50 µM GDC-0449 combined with 1 µM cisplatin  treated groups 

showed significantly  increased [Ca2+]c in both HCC and H1339 cells. (n=3, * = P<0.05 

versus control group) 

 

In the cisplatin resistant cells, 1 µM cispatin failed to induce a [Ca2+]c increase. In HCC-Res 

cells, after the treatment of GDC-0449 with or without cisplatin, the [Ca2+]c was increased 
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from 43.8 ±1.0 nM of the control group to 140±3.5 nM and 163.3±6.5 nM. In H1339-Res 

cells, after the treatment of GDC-0449 with or without cisplatin, the [Ca2+]c was increased 

from 43.2 ±0.6 nM of the control group to 149.4±4.0 nM and 150.9±2.4 nM. (n = 3) (Figure 

16) 
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Figure 16. Effect of GDC-0449 on [Ca2+]c in HCC-Res and H1339-Res cells: 50 µM GDC-

0449 and 50 µM GDC-0449 combined with 1 µM cisplatin treated groups showed 

significantly increased [Ca2+]c in both HCC-Res and H1339-Res cells. (n=3, * = P<0.05 

versus control group) 

 

3.12 GDC-0449 effect on ER Ca2+ concentration 
 

50 µM GDC-0449 has been applied on HCC, H1339, HCC-Res and H1339-Res cells with or 

without 1 µM cisplatin 3 h treatment. [Ca2+]ER was measured after 24 h.  

In HCC cells, 50 µM GDC-0449, 1 µM cisplatin and 50 µM GDC-0449 combined with 1 µM 

cisplatin treated groups showed significantly decreased [Ca2+]ER, as 1168.6±140.2 nM, 

1586.3±170.8 nM and 1008.8±77.4 nM respectively, compared with the untreated control 

group as 2602.0±427.7 nM. In H1339 cells, [Ca2+]ER dropped from 3840.0±566.7 nM in the 

untreated control group to 1279.4±766.6 nM after 50 µM GDC-0449 treatment, 1408.6±88.5 

nM after 1 µM cisplatin treatment and 1059.8±79.4 nM after 50 µM GDC-0449 with 1 µM 

cisplatin treatment.  (n = 3) (Figure 17) 
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Figure 17. Effect of GDC-0449 on [Ca2+]ER in HCC and H1339 cells: 50 µM GDC-0449, 1 

µM cisplatin and 50 µM GDC-0449 combined with 1 µM cisplatin  treated groups showed 

significantly  decreased [Ca2+]ER in both HCC and H1339 cells. (n=3, * = P<0.05 versus 

control group) 

 

In the cisplatin resistant cells, 1 µM cispatin failed to cause [Ca2+]ER decrease. In HCC-Res 

cells, after the treatment of GDC-0449 with or without cisplatin, the [Ca2+]ER decreased from 

3323.3±166.1 nM of the control group to 1607.3±93.3 nM and 1550.0±47.1 nM. In H1339-

Res cells, after the treatment of GDC-0449 with or without cisplatin, the [Ca2+]ER decreased 

from 2871.2 ±181.2 nM of the control group to 1706.8±54.7 nM and 1928.5±100.5 nM. (n = 

3) (Figure 18)  
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Figure 18.  Effect of GDC-0449 on [Ca2+]ER in HCC-Res and H1339-Res cells: 50 µM 

GDC-0449 and 50 µM GDC-0449 combined with 1 µM cisplatin treated groups showed 

significantly decreased [Ca2+]ER in both HCC-Res and H1339-Res cells. (n=3, * = P<0.05 

versus control group) 

 

3.13 Effect of GDC-0449 on SERCA, IP3R expression in HCC-Res and H1339-Res cells 

 
In a previous study, an altered expression of SERCA and IP3R was detected in cisplatin 

resistant cells. In order to investigate whether the altered Ca2+ homeostasis trigged by GDC-
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0449 was caused by an increased expression of IP3R or decreased expression of SERCA in 

HCC-Res and H1339-Res cells, the expression of SERCA and IP3R were tested after the cells 

were treated with 50 µM GDC-0449 for 24h with or without 1 µM cisplatin treatment for 3h. 

SERCA and IP3R were stably expressed in HCC-Res and H1339-Res cells. Nevertheless, the 

expression of both proteins was not significantly changed after the exposure to GDC-0449 

with or without cisplatin. (n = 3) (Figure 19)  
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Figure 19.  Effect of GDC-0449 on the expression of SERCA and IP3R in HCC-Res and 

H1339-Res cells: A difference in the expression of SERCA and IP3R compared with control 

group was not observed in HCC-Res and H1339-Res cells after treatments. (n=3) 
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4 DISCUSSION 
 

4.1 Effect of Hedgehog pathway inhibitor on lung cancer cell lines 
 

Inhibitors of the Hh molecular signaling pathway have emerged in recent years as a promising 

new class of potential therapeutics for cancer treatment. Within the identified wide variety of 

small molecules that target different members of Hh pathway, GDC-0449 has been entered 

phase I and phase II clinical trials because of its effectiveness and excellent tolerance, but not 

in lung cancer yet. In this work, it was the first time to show that Hh pathway inhibitor GDC-

0449 inhibited cell growth in a NSCLC (lung adeno-carcinoma) cell line and a SCLC cell line. 

This effect was additional to the cytotoxic effects of the conventional chemotherapy 

medication cisplatin. Further more, GDC-0449 managed to inhibit the cell growth in cisplatin 

resistant lung cancer cells as well, to which cisplatin had no therapeutic effect. The 

combination of GDC-0449 and cisplatin did not show a significant additional inhibitory effect 

in the cisplatin resistant cells but the cell survival fraction was reduced slightly in the 

combined treatment groups. The cell growth inhibitory effect of GDC-0449 on lung cancer 

cell lines agrees the effect of another Hh pathway receptor SMO inhibitor cyclopamine on 

SCLC cell line NCI-H249 [82].  

The protein expression of Hh pathway components Shh, Patched, SMO, Gli-1 and Bmi-1, 

which has been found to mediate the Hh pathway regulation of the self-renewal of normal and 

malignant stem cells, was investigated in the study. In NSCLC cell line HCC and SCLC 

H1339, all the proteins were expressed substantially. It was reported by Watkins et al. that 

analysis of SCLC tissue showed five out of ten tumors expressed both Shh and Gli-1, and out 

of 40 NSCLC tumors, nine demonstrated Shh expression and four of these demonstrated co-

expression of Gli-1 [148].  

In HCC cell line, the expression of Shh, Patched, and Gli-1 was reduced by GDC-0449, but 

not SMO and Bmi-1. In H1339 cells, the expression of Shh and Bmi-1 were induced while the 

expression of Gli-1 was reduced. However, the expression of Patched and SMO was not 

affected.  

Thus in HCC cells, after the Hh pathway receptor SMO was inhibited by GDC-0449, the 

expression of the pathway ligand Shh was reduced because of a paracrine requirement for Hh 

signaling in NSCLC. Yauch et al. found in mouse stroma xenograft tumor model that Hh 

ligands produced by the implanted tumor cells activated the Hh pathway in the surrounding 

stroma [112]. The down-regulated Shh level by GDC-0449 in the microenvironment could 
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result in the further inhibition of the Hh pathway activity. But the expression of Shh was up 

regulated by GDC-0449 in SCLC H1339 cells, which indicated that in SCLC another 

regulation mechanism of Hh pathway might exist. Hibi et al. reported the functional autocrine 

loop, which was constituted by co-expression of the KIT receptor tyrosine kinase and its 

ligand stem cell factor, in SCLC tumors and cell lines in 1991 [149]. Shh can signal in an 

autocrine pattern, affecting the cells in which it is produced and activate Hh pathway [83, 88-

90]. Thus Shh might be one of the effectors involved in SCLC growth regulation. When the 

Hh pathway activity is inhibited by GDC-0449, the SCLC cells may compensate the lack of 

Hh pathway function by secreting more pathway ligand. 

Patched is one of the Hh genes whose expression is regulated by Hh signaling and it was 

found in SCLC NCI-H249 cells, Patched mRNA expression was reduced by cyclopamine 

[82]. In HCC cells, the expression of Patched was down regulated at the protein level, which 

might be due to the down regulation of Patched expression. Although in H1339 cells Patched 

protein was not significantly reduced, a decrease still might happen at mRNA level and 

another regulatory factors might affect the transcription process during the protein synthesis 

process.  

In both cell lines, the expression of SMO was not affected significantly by GDC-0449. These 

results suggest mechanism responsible to SMO inhibition resides with GDC-0449 binding 

rather than SMO protein expression. It was shown in the work from Liu’s group that the 

expression of SMO mRNA was decreased by cyclopamine [80]. However, the functional role 

of the phosphorylation of SMO in Hh pathway activity is required [150]. Although the 

expression of SMO might not be altered, GDC-0449 might still regulate the phosphorylation 

of SMO to reduce the activity of Hh signaling.  

Gli-1 has been used as an indicator of Hh signaling activity. The expression of Gli-1 at both 

mRNA level and protein level is widely used to judge the effectiveness of Hh pathway 

inhibitor. In HCC cells and H1339 cells, the expression of Gli-1 was reduced significantly by 

GDC-0449 treatment. This agrees with the work from Bhattacharya et al. in ovarian cancer 

that the Gli-1 mRNA expression was reduced by cyclopamine [151].  

Since Bmi-1 is critical for lung tumorigenesis and bronchioalveolar stem cell expansion [79] 

and the regulatory function of Hh signaling in self-renewal of normal and malignant human 

mammary stem cell is mediated by Bmi-1 as a downstream factor [80]. Due to the important 

roles Bmi-1 plays in cancer and cancer stem cell function, the expression of Bmi-1 was tested 

in order to investigate the connection between Bmi-1 and Hh signaling in lung cancer. The 

expression of Bmi-1 was detected in both NSCLC and SCLC cell lines and the application of 
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GDC-0449 increased the expression of Bmi-1 in H1339 cells. So in HCC cells, the Hh 

pathway activity did not affect Bmi-1 expression but in H1339 cells. A compensation 

mechanism might be employed in H1339 cells. As more Shh was secreted by H1339 in 

autocrine regulation, the over-expressed Shh may increase the expression of Bmi-1 in order to 

regulate proliferation of tumor cells and cancer stem cells, while Shh cannot activate Hh 

pathway due to the inhibition of SMO from GDC-0449. This agrees to the result that the 

activation of Hh pathway by Shh increased the mRNA expression of Bmi-1 and when Hh 

pathway inhibitor cyclopamine was presented, the effect was reversed [80].  

So these data show that GDC-0449 induces growth inhibition in NSCLC and SCLC cells 

expressing Hh pathway proteins by specific inhibition of the Hh pathway. The stable 

expression of the Hh pathway proteins provides evidence of persistent activation of Hh 

signaling in lung cancer. GDC-0449 inhibits the Hh pathway function effectively by affecting 

the protein expression of the pathway partners, but in the two different cell lines, various 

mechanism presents and especially in SCLC H1339 cells, a compensation regulation might 

take place by the autocrine Shh and the up regulation of the expression of cancer stem cell 

related Bmi-1. 

 

4.2 Cancer stem cell in lung cancer cell lines 
 

In HCC and H1339 cells, the SP cells were detected after Hoechst 33342 staining with the 

fraction less than 1%. This is in agreement with the research work from Salcido et al., who 

reported less than 1% SP cells in several SCLC cell lines [152]. In NSCLC cell lines, 1.5% to 

6.1% SP fraction has been reported [153]. However, the investigation with human tumor 

samples found the SP fraction less than 1% in most of the cases. Although different groups 

have reported various SP fractions from 0.1% to 24.0% in lung cancer cell lines, it could be 

explained by the mechanism of Hoechst staining [154]. Since its initial report approximately 

10 years ago, the SP phenotype, defined by the rates of the DNA dye Hoechst accumulation in 

a cell-type dependent manner, has provided a simple approach for the stem cell enrichment 

from a broad range of tissue types. This method is independent to of surface phenotype 

identification and different from specific combination, it is a kinetic process. Thus, the SP 

fraction may vary from experiments but as long as ABC-transporter inhibitor could inhibit the 

SP phenomenon and the low stained cell population could be refined afterwards, the SP cells 

as CSC-like cells can be detected in lung cancer cells. More essentially, despite differences in 

SP size, all studies showed CSC-like properties of SP cells, including chemoresistance, high 
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proliferative capacity, high tumorigenicity in vivo, high invasiveness, self-renew and 

repopulating ability [153].   

 

4.3 Effect of GDC-0449 on cancer stem cells  
 

First-line chemotherapy can lead to encouraging responses in lung cancer, but unfortunately 

during the process of treatment, resistance to chemotherapy frequently occurs as a major 

obstacle to successful cancer treatment and ultimately limits the life expectancy of the patient. 

The over-expression of cellular transport proteins of ABC transporters in CSCs is one 

explanation to this phenomenon. As CSCs are chemo-resistant, they survive chemotherapy, 

and because of their proliferation ability, they reestablish the tumor burden. The SP cells were 

discovered to have self-renewal and repopulating abilities, which are specialties of the cancer 

stem cells. The SP cells could be the cancer stem cells in lung cancer cell lines and 

responsible to the MDR of cancer cells. The Hh pathway receptor SMO was found only in SP 

cells, which indicates the over activity of Hh pathway. The activity of Hh pathway in SP cells 

would allow the SP cells to promote proliferation, inhibit differentiation and maintain the 

stem cell status. So the application of Hh pathway inhibitor can inhibit the Hh pathway 

activity in SP cells, since the SP fraction in lung cancer cells was reduced significantly by 

GDC-0449. This agrees with the result from Bar et al. that the cyclopamine-mediated Hh 

pathway inhibition depletes stem-like cancer cells in glioblastoma, in which was shown that 

cyclopamine decreased SP fraction in the glioblastoma multiforme neurospheres [88]. Zhang 

et al. stated that Hh pathway inhibitor HhAntag691 (GDC-0449) is a potent inhibitor of ABC 

transporters ABCG2/BCRP and is a mild inhibitor of ABCB1/Pgp [155]. It was found also in 

my work that GDC-0449 could inhibit the efflux of DNA dye via ABC transporters and the 

lower staining profile of the lung cancer cell lines was inhibited. The cell growth inhibiting 

effects of GDC-0449 is not only due to the inhibition of Hh pathway but also through 

inhibition of ABC transporters, so targeting Hh pathway might be one way to overcome MDR. 

The effectiveness of GDC-0449 in cisplatin resistant lung cancer cells, which was found in 

my study, strongly supports that contention. The cancer stem cell SP cells in cispatin resistant 

lung cancer cells were inhibited effectively by GDC-0449, which contributes to the GDC-

0449 effect to the cell growth in cisplatin resistant cells. GDC-0449 inhibits the ABC 

transporters, which might be over-expressed in cisplatin resistant cells, and the cells could not 

pump cispatin extracellularly. As a result, the resensitization in the chemo-therapy resistant 

cells could take place. The combination of GDC-0449 and cispatin seems particularly 
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reassuring, because cisplatin could effectively reduce the tumor mass while GDC-0449 could 

target the CSCs responsible for cancer relapse.  

GDC-0449 has progressed into human clinical trials, and positive results in patients with local 

or metastatic advanced basic cell carcinoma (BCC) were reported. In the study with the scale 

of 33 patients, 2 patients had a complete response, 16 had partial response, and 11 had stable 

disease. No dose-limiting toxic effects were observed during the study period of 9.8 months 

[58]. But relapse was also observed after GDC-0449 treatment in 1 patient with 

medulloblastoma. Following relapse, molecular profiling of a tumor sample from the 

medulloblastoma patient revealed that there was a single point mutation in SMO that 

prevented the binding of GDC-0449, thereby conferring resistance to treatment [114]. Focal 

amplifications of the Hh pathway transcription factor Gli 2 and the Hh target gene cyclin D1 

were observed in GDC-0449 resistant medulloblastoma models, indicating the resistance may 

occur downstream of SMO [156].  Thus, other Hh pathway inhibitors targeting Gli-1 could be 

combined with GDC-0449 to avoid the resistance.    

 

4.4 Ca2+ homeostasis in lung cancer cell lines and lung cancer stem cells 
 
The origin of the various lung carcinomas is in a controversial discussion. Squamous cell lung 

carcinomas origin from metaplastic bronchial epithelium and small cell lung carcinomas are 

believed to origin from neuro-epithelial bodies. But the origin of large cell carcinomas and 

adeno carcinomas is less clear [157]. In this work, normal human bronchial epithelial cells in 

primary culture taken by bronchoscope were chosen as a normal tissue to compare with the 

malignant cell lines for the calcium homeostasis investigation. It is different from the former 

research works, in which ‘normal’ human bronchial epithelial cell line (NHBE) was used as a 

reference. The bronchial cell line constituted compromise since the modified cell line can not 

fully represent in vivo situation and especially in the measurement of Ca2+ concentration 

because the Ca2+ homeostasis is different in vivo cells from in the cells after passages. In my 

work, HCC, H1339 cells and HCC, H1339 cisplatin resistant cells showed a higher [Ca2+]ER 

than the BEC cells. In the work of Bergner et al., NHBE was found to have a higher [Ca2+]ER 

than HCC and H1339 cells [158]. This difference may be explained by the usage of BEC 

instead of NHBE.  

It has been known for a long time that Ca2+ signals govern a host of vital cell functions and so 

are necessary for cell survival. More recently, it has become more clear that cellular Ca2+ 

overload or perturbation of intracellular Ca2+ compartmentalization can cause cytotoxicity and 
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trigger apoptosis or necrotic cell death [159]. Ca2+-dependent processes are involved with the 

caspases, the mainstream apoptosis executioners, and the interfering with the sequestration of 

Ca2+ into intracellular pools as ER can be sufficient to trigger apoptosis as part of a stress 

response [160]. The earliest link that was found between Ca2+ and apoptosis was that Ca2+ 

induced a typical apoptosic ladder-like DNA fragmentation pattern in isolated thymocytes 

nuclei through the activation of a Ca2+ -and Mg2+ -dependent endonuclease [161]. It has been 

discovered in mouse T-lymphocytes that high-dose pharmacologically raising cytoplasmic 

Ca2+ resulted in apoptosis but low-dose treatment gave a resistant capacity to apoptosis [162]. 

It is shown in my work that HCC, H1339 cells and HCC, H1339 cisplatin resistant cells 

showed a higher [Ca2+]c than the BEC cells. The higher [Ca2+]c base line in cancer cells can 

provide a protection from the raise of [Ca2+]c by the Ca2+ released from ER when the cells are 

under stress and damage. The HCC, H1339 cisplatin resistant cells showed an even higher 

[Ca2+]c than HCC and H1339 cells, which indicated that the resistant cells are less sensitive to 

chemotherapy medication due to the less sensitiveness to Ca2+ efflux in apoptosis resulted 

from a higher cytoplasmic Ca2+ concentration base line. 

SERCA is an ER transmembrane protein and serves to maintain the concentration gradient 

between the cytoplasm and the ER by pumping calcium into the ER. SERCA has been 

regarded as a potential mediator of alterations of the ER Ca2+ content. The altered expression 

of SERCA in SR leaded to increased Ca2+ content and it correlated to the hyperreactivity in an 

asthma model [163]. The downregulation of SERCA2 protein has been found in cancer 

tissues in several studies of oral cancer, colon cancer and thyroid cancer [137-139, 141], but 

in colorectal cancer, Chung et al. reported the increased SERCA2 mRNA in normal tissue 

[140]. Legrand et al. showed that in prostate cancer cells, proliferation was related with higher 

[Ca2+]ER  and increased SERCA 2 expression [164]. Apparently the relationship between 

SERCA expression, [Ca2+]ER, and tumorgenesis varies between studies, cell types and also 

differentiation status. Although the data of SERCA activity is still lacking in many cancers, an 

aberrant ER homeostasis is involved in malignant transformation and tumorgenesis. This 

agrees with the result of SERCA protein expression in HCC and H1339 SP. Although the 

variation of SERCA expression was exhibited in different lung cancer cells, the cancer stem 

cell shows a altered ER Ca2+ channel expression from the bulk cancer cells, while different 

ATPase activities may exist.  

The IP3R is a Ca2+ channel releasing Ca2+ from ER upon the binding of IP3 [165]. IP3R2 

mRNA was found amplified in NSCLC patient tissue samples compared with normal tissue 

[132]. An overexpression of IP3R3 mRNA was detected in gastric cancer patient tissue 
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samples but the expression of the Ca2+ channel was not detectable at protein level because of 

the weak expression, as well as in normal gastric epithelial cells. At the same time, in 

malignant ascites derived gastric cancer cell lines an overexpression of IP3R was shown at 

both mRNA and protein level [131]. Thus Sakakura et al. proposed a role for the IP3R in the 

transition to a metastatic phenotype. In my work, the higher expression of IP3R was found in 

HCC and H1339 SP cells, which suggests the function of the cancer stem cells in the 

metastatic process.  

 

4.5 Effect of Hedgehog pathway inhibitor on the Ca2+ homeostasis in lung cancer cell 
lines  

 

Research on the relationship between cancer stem cell and Ca2+ homeostasis has not yet been 

widely carried out. Sugimura et al. found that Wnt signalling, which is involved in stem cell 

maintenance, is mediated by intracellular calcium ion and JNK in T cells [167]. This also 

indicates the possible connection between Hh pathway and Ca2+ homeostasis. The growth 

inhibition effect of GDC-0449 is the specific inhibition of lung cancer cell proliferation and/or 

induction of apoptosis. It has been demonstrated that increased [Ca2+]c is involved in number 

of cellular event, including apoptotic pathways. The evaluation of [Ca2+]c might be result of 

Ca2+ enters from extracellular space or Ca2+ released from intracellular Ca2+ stores. In 

apoptosis, it results in an increase in the mitochondrial Ca2+ concentration, which opens the 

permeability transition pore followed by an efflux of cytochrome C. As a consequence, 

cytochrome C amplifies the Ca2+ release from the ER and activates the intrinsic apoptotic 

pathway via caspase 9 [168]. Zhao et al. discovered Asterosaponin 1 can induce ER stress-

associated apoptosis in A549 human lung cancer cells [169]. Cisplatin was found to increase 

apoptosis rate by the activation of IP3R motivated Ca2+ entry in Hela-S3 cells, but meanwhile 

the change of [Ca2+]ER was not measured [170]. In a previous study, the cisplatin resistance in 

lung cancer cells was mediated by a lower [Ca2+]ER caused by altered expression of IP3R and 

SERCA [158]. GDC-0449 was found effective to reduce the growth of cispatin resistant cells. 

After the application of GDC-0449, [Ca2+]c in both HCC, H1339 cells and HCC, H1339 

cisplatin resistant cells was evaluated and at the same time, a related reduction of [Ca2+]ER 

was also detected. GDC-0449 inhibits cell growth via the release of Ca2+ from ER and the 

increase of intracellular Ca2+ concentration, which may induce apoptosis of the lung cancer 

cell. The increase in [Ca2+]c triggered by GDC-0449 could have been mediated by an altered 

expression of IP3R and/or SERCA. Nevertheless, the expression of IP3R and SERCA in 
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cispatin resistant cells were found to be unchanged after the exposure to GDC-0449. This 

might be explained by the possibility of functional alteration of IP3R and/or SERCA without 

the change of expression. The phosphorylation of the Ca2+ regulating proteins might be 

affected in case the other apoptotic related factors, which interact with IP3R and/or SERCA. 

For instance, pro- and anti-apoptotic Bcl-2-family members specifically determine the 

phosphorylation status of IP3R1. Activation of Bcl-2 function may result in 

hyperphosphorylation of IP3R and an enhanced Ca2+ release [171].  

 

4.6 Outlook 
 

Worldwide, lung cancer is the most common cancer in terms of both incidence and mortality 

with the highest rates in Europe and North America. First-line chemotherapy often leads to 

encouraging responses in lung cancer, but during the treatment process, resistance to the 

chemotherapy frequently occurs and ultimately limits the life expectancy of the patient. The 

existence of CSC is an possible explanation for this phenomenon. Since CSCs are chemo-

resistant, they survive the chemotherapy and reestablish the tumor burden afterwards. A better 

understanding of the CSC mechanism is required, which includes the generation of CSC, the 

functional evidences of CSC to proliferate the cancer bulk and the escape mechanism of CSC 

from conventional cancer therapy. The cancer specific markers for CSCs need to be found and 

methods to detect CSCs in vivo need to be established, in order to use the CSC status in 

cancer as one indicate for the relapse possibility and one index for therapy effectiveness.  

Therefore, the incorporation of anti-CSC component into the therapeutic regiments casts light 

into the cancer therapy field. A new therapy strategy could be to combine the chemotherapy 

medication, which executes the tumor bulk, with the anti-CSC component as GDC-0449, 

which prevents CSCs from proliferating cancer cells after the withdrawing of chemotherapy. 

As GDC-0449 has not yet been evaluated in lung cancer, although it has entered clinical trials 

in several other cancers and showed promising effect, our findings support the further clinical 

usage of GDC-0449 in lung cancer and GDC-0449 used alone or combined with other 

conventional chemotherapy medications would be new lung cancer therapies. The other 

‘druggable’ Hh pathway inhibitors combined with SMO inhibitor would also provide new 

therapeutic options.  In case of the SMO mutations, the potential resistance to SMO inhibitors 

could be bypassed by the simultaneous use of both SMO inhibitors and Gli-1 inhibitors. The 

combination with anti-oncogenic molecules as anti-RAS, AKT, or MEK molecules, will be 

essential in those cases in which over-activation of Hh pathway occurs through oncogenic or 



 88 

loss of tumor suppressive inputs. A new class of therapeutic agents as combination partner 

could be investigated in the future. 

Moreover, the further research into Hh pathway activation mechanism in lung cancer still 

needs to be done, for instance the down stream factors of Hh pathway and the cross talk 

between Hh pathway and other oncogenic pathways. Since it has been found in our work that 

Hh pathway inhibitor influences the homeostasis of calcium, as the universe second 

messenger, the cross talk between Hh pathway and calcium signaling was shown. To build 

up a network to provide a distinct comprehension of calcium signaling and Hh pathway is 

necessary to understand tumorigenesis and furthermore to set up new cancer therapy method.  
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5 CONCLUSION 
 

In this study, the Hh pathway inhibitor GDC-0449 showed dose-dependent inhibitory effects 

on cell growth in both NSCLC (adeno-carcinoma) cell line HCC and SCLC cell line H1339. 

The combination of GDC-0449 and cisplatin gave an additional inhibitory effect. GDC-0449 

could also inhibit the cell growth in cisplatin resistant HCC and H1339 cells, although the 

combination of GDC-0449 and cisplatin could only give a slight but not significant additional 

effect.  

SP cells as cancer stem cells could be found in HCC and H1339 cells. Only the SP cells 

showed the repopulation ability but not the non-SP cells. The expression of conventional stem 

cell markers such as CD133, CD117 and CD34 were not detectable in HCC and H1339 SP 

cells.  

GDC-0449 could inhibit the SP cell fraction in both HCC and H1339 cells. So the inhibitory 

effect of GDC-0449 on cell growth may be mediated via SP. 

GDC-0449 affected the expression of the Hh pathway components in both HCC and H1339 

cells. In HCC cells, GDC-0449 inhibited the activity of the Hh pathway and the down-

regulation of Shh, Patched and Gli-1 could be shown. In H1339 cells, GDC-0449 could also 

inhibit the pathway activity and decrease the expression of Gli-1 in an autocrine pattern due 

the over-expression of Shh. The inhibition of Hh pathway increased the expression of Bmi-1 

to compensate the loss of Hh pathway function. The Hh pathway activity could be detected 

only in SP cells from HCC and H1339 cells.  

HCC and H1339 cells showed significantly higher [Ca2+]c and [Ca2+]ER than the human 

bronchial epithelium cells.  

The application of GDC-0449 on HCC and H1339 naïve and cisplatin resistant cells increased 

[Ca2+]c by decreasing [Ca2+]ER. GDC-0449 induced Ca2+ release from ER into cytoplasm in 

HCC and H1339 naïve and cisplatin resistant cells. The Ca2+ overload could lead to apoptosis, 

which was related to the cell growth inhibitory effect of GDC-0449 in lung cancer cells. The 

expression of SERCA and IP3R was not detectably influenced by GDC-0449. The effect of 

GDC-0449 on lung cancer cell Ca2+ -regulating machinery was not via the alternation of the 

expression of ER Ca2+ regulating channels. 
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