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Zusammenfassung

Diese Dissertation befasst sich mit Aspekten von Inflation sowohl aus Sicht
von Feldtheorie als auch von Stringtheorie. Sie hat zum Ziel neue Ansätze zu
untersuchen um das Problem der Moduli-Destabilisierung und das η-Problem
anzugehen und um Inflation im Materiesektor zu realisieren.

Der erste Teil widmet sich der Untersuchung von Inflationsmodellen im
Rahmen von vierdimensionaler N = 1 Supergravitation. Wir beginnen damit
einen neuen Vorschlag zur Lösung des Problems der Moduli-Destabilisierung
zu untersuchen, dass uns dazu zu zwingen scheint zwischen Niederenergie-
Supersymmetrie und einer hohen Inflationsskala zu wählen. Dieser neue Ansatz
basiert auf einer bestimmten Art den Modulus an den F-Term zu koppeln der
Inflation antreibt. Wir benutzen chaotische Inflation mit einer Shiftsymmetrie
als Beispiel und zeigen, dass wir erfolgreich Niederenergie-Supersymmetrie mit
einer hohen Inflationsskala verbinden können.

Danach konstruieren wir eine Klasse von Inflationsmodellen in N = 1
Supergravitation bei denen Inflation in nicht-trivialen Darstellungen der Eich-
gruppe realisiert wird. Dabei handelt es sich um Erweiterungen einer speziellen
Klasse von Hybridinflationsmodellen, sogenannte Tribridinflation, bei denen
das η-problem durch eine Heisenbergsymmetrie gelöst werden kann. Verglichen
mit bisher untersuchten Modellen haben wir unsere Modelle mit etwas Inspira-
tion aus der Stringtheorie verallgemeinert. Wir untersuchen die Stabilisierung
der Moduli während Inflation und identifizieren Situationen in denen die Stei-
gung des Inflatonpotentials durch Strahlungskorrekturen dominiert wird. Wir
skizzieren unter welchen Bedingungen man diese Klasse von Materieinflation-
smodellen in heterotische Orbifoldkompaktifizierungen einbetten kann. Dabei
schlagen wir einen neuen Mechanismus vor mit dem man einige Kählermoduli
durch die F-Terme von Materiefeldern stabilisieren kann.

Im zweiten Teil betrachten wir Modelle von gewarpter D-Branen-Inflation
in einer Familie von zehndimensionalen Supergravitationshintergründen. Wir
betrachten Inflation entlang der radialen Richtung in der Nähe des Endes des
gewarpten Throats und zeigen, dass das Inflationspotential generisch einen
Wendepunkt enthält, der mit einem Wendepunkt im Dilatonprofil zusammen-
hängt. Wir nutzen ein universelles Skalierungsverhalten mit den Modellparam-
etern aus um Vorhersagen für Inflationsobservablen zu erhalten.





Abstract

This thesis is concerned with aspects of inflation both from a field theory and
a string theory perspective. It aims at exploring new approaches to address the
problem of moduli destabilization and the η-problem and to realize inflation in
the matter sector.

The first part is devoted to studying models of inflation in the framework
of four-dimensional N = 1 supergravity. We begin with investigating a new
proposal to solve the problem of moduli destabilization, which seems to force
us to choose between low-energy supersymmetry and high-scale inflation. This
new approach is based on a particular way to couple the modulus to the F-term
driving inflation. Using chaotic inflation with a shift symmetry as an example,
we show that we can successfully combine low-energy supersymmetry and high-
scale inflation.

We construct a class of inflation models in N = 1 supergravity where the
inflaton resides in gauge non-singlet matter fields. These are extensions of a
special class of hybrid inflation models, so-called tribrid inflation, where the
η-problem can be solved by a Heisenberg symmetry. Compared to previously
studied models, we have generalized our models with some inspiration from
string theory. We investigate moduli stabilization during inflation and identify
situations in which the inflaton slope is dominated by radiative corrections. We
outline under which conditions this class of matter inflation models could be
embedded into heterotic orbifold compactifications. In doing so, we suggest a
new mechanism to stabilize some Kähler moduli by F-terms for matter fields.

In the second part, we consider models of warped D-brane inflation on
a family of ten-dimensional supergravity backgrounds. We consider inflation
along the radial direction near the tip of the warped throat and show that
generically an inflection point arises for the inflaton potential, which is related
to an inflection point of the dilaton profile. A universal scaling behaviour with
the parameters of the model is exploited to extract the predictions for infla-
tionary observables.
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Chapter 1

Motivation

From the ongoing quest for a deeper fundamental understanding of our uni-
verse two standard pictures have emerged for the laws of physics at small and
large length scales. The physics at very small subatomic scales is the realm
of particle physics, which describes our world in terms of elementary particles
and their (non-gravitational) interactions. Zooming out to very large length
scales above the size of galaxies, we enter into the realm of cosmology, which
is based on the theory of general relativity to understand the evolution of our
universe from the geometry of space-time. These two seemingly unrelated pic-
tures are actually deeply connected. Going back in time, the energy density
of the universe increases more and more and thus the physics at smaller and
smaller length scales is probed. Therefore, to understand the early universe it is
inevitable to consider particle physics and cosmology in a common framework.

The Standard Model (SM) of particle physics encompasses all known ele-
mentary particles and their strong and electroweak (EW) interactions. It has
passed numerous high-precision tests up to the EW scale of O(100GeV) and
is currently tested to even higher energies with the ongoing experiments at
the Large Hadron Collider (LHC). Sooner or later the LHC will unveil the
mechanism underlying ElectroWeak Symmetry Breaking (EWSB).

The concordance model (or ΛCDM model) is the standard model of cos-
mology. With only a few parameters it describes the history of our universe
from the formation of light elements during Big Bang Nucleosynthesis (BBN)
until the present day phase of accelerated expansion – including the decoupling
of the Cosmic Microwave Background (CMB) radiation during recombination
and the formation of structure (stars, galaxies etc.) via gravitational collapse.

Notwithstanding their remarkable agreement with experiments, both of
these standard models suffer from deficiencies which demand for new physics.
For instance, we know from observations that the universe is homogeneous,
isotropic and spatially flat on very large scales. Using the time evolution of the
universe in the hot big bang scenario, both the homogeneity and the spatial
flatness would require a high degree of fine-tuning of the initial conditions.
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These two issues are referred to as the horizon problem and the flatness problem.
A way to dynamically resolve these fine-tuning problems is to introduce a
phase of very rapid accelerated expansion called inflation in the very early
universe [4–7]. The universe is then driven towards a homogeneous, isotropic
and spatially flat geometry. Furthermore, inflation naturally provides an initial
seed for structure formation [8–11] since due to quantum fluctuations inflation
ends at different places in the universe at different times.

Similarly, in the SM, if EWSB is described by the Higgs mechanism, per-
turbative unitarity of the scattering of the longitudinal modes of the W bosons
implies an upper bound on the Higgs mass of roughly mh . O(1TeV). How-
ever, the mass of an elementary scalar field is not protected from receiving
large quantum corrections of the order of the cutoff scale of the effective field
theory. Assuming the SM to be valid up to the Planck-scale, one would need
an incredible cancellation between a classical versus a quantum contribution
to a very high precision – this is often called the hierarchy problem.

Solving the hierarchy problem is (one of) the most important motivation(s)
for introducing new physics beyond the standard model. The most popular so-
lution is low-energy supersymmetry (SUSY). It protects the Higgs mass from
receiving large quantum corrections by a cancellation between loop contribu-
tions from bosons and fermions above a scale MSUSY ∼ O(TeV). Alternatively,
one can lower the cutoff of the effective field theory. This can be achieved,
for instance, by lowering the fundamental scale of gravity to O(TeV) assum-
ing extradimensions which are either large [12–14] or warped [15].1 Newton’s
constant GN which we measure in four dimensions is then only an effective
parameter and is weakened either due to a “dilution” by the large volume of
the extradimensions or due to a “redshift” in the warped space-time.

In the light of these considerations, it is important to incorporate both, a
way to realize inflation and a solution to the hierarchy problem into a com-
mon framework. A suitable framework is supergravity (SUGRA) which is ob-
tained by promoting supersymmetry to a local symmetry. Ultimately, these
ideas should be embedded into a more fundamental theory unifying gravity
and quantum field theory – a theory of everything. At present, string theory is
arguably the best candidate for such a theory. Moreover, at low energies where
the finite size of the string cannot be resolved, string theory can be described by
an effective supergravity theory. Thus, supergravity is a good interface between
effective field theory and string theory approaches.

The aim of this thesis is to consider inflation from both a field theory and a
string theory perspective, i. e. from a bottom-up and a top-down perspective.
We now motivate the ideas underlying the effective field theory models which
we will construct and why it is necessary to embed inflation into string theory.

1We do not consider alternative solutions such as walking [16–18] or extended technicolor
[19, 20]. Via gauge/gravity duality, they may admit an interpretation in terms of warped
extradimensions, see e. g. [21, 22].
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Why Inflation in the Matter Sector?

Even though the paradigm of cosmic inflation fits very nicely with the observed
CMB power spectrum [23], we have so far no idea about the “nature” of the
mechanism behind inflation. In the standard slow-roll inflation approach, in-
flation is driven by a scalar condensate with negative pressure [24–27]. This
is realized by a scalar field whose potential energy dominates over its kinetic
energy. This scalar field, the inflaton, effectively acts as a “clock” telling us
when inflation ends. Its quantum fluctuations are stretched out to macroscopic
scales and can directly be related to the temperature fluctuations of the CMB.

But which particle is the inflaton, i. e. what are its quantum numbers and
interactions? To get a handle on this problem, it is inevitable to consider infla-
tion in a particle physics framework. It is particularly appealing to embed the
inflaton into the matter sector. Then its interactions are not only constrained
by cosmology but also by particle physics and astroparticle physics.

For instance, it is tempting to identify the inflaton with the Higgs scalar re-
sponsible for electroweak symmetry breaking. To match the observed amplitude
of the CMB fluctuations we would need a quartic Higgs coupling λ ∼ 10−13 [28],
which implies mh ∼ 10−4 GeV. However, we have a lower bound from the Higgs
searches at LEP: mh > 114.4GeV (95%C.L.) [29].2 Obviously, the SM Higgs
boson is ruled out as the inflaton candidate and we need some new physics to
account for inflation.3

An interesting class of inflation models are models of hybrid inflation [34],
where inflation ends via a phase transition when the so-called waterfall fields
acquire expectation values. Typically, matching the observed CMB fluctuations
requires these expectation values to be rather close to the scale where the
SM gauge couplings seem to (almost) unify. Thus, it is tantalizing to relate
the phase transition at the end of hybrid inflation with the breaking of the
gauge group of a Grand Unified Theory (GUT) down to the SM gauge group.
In a similar spirit, one can relate the phase transition to the generation of
masses for right-handed neutrino masses, which explain the small masses of
the observed left-handed neutrinos in a seesaw scenario. This opens up the
intriguing possibility to relate hybrid inflation with leptogenesis to generate the
observed baryon asymmetry, which then puts constraints on the parameters in
the game, see e. g. [35, 36].

With this motivation in mind, we will construct models of inflation where
the inflaton resides in a gauge non-singlet matter field and we refer to this class
of models as matter inflation.

2The LHC has already increased this lower bound somewhat (and found a Higgs-like
boson with m ∼ 125GeV), but it is the order of magnitude which matters.

3It has been proposed recently that by assuming a non-minimal coupling to gravity the
Higgs boson can act as the inflaton [30]. However, some criticism about the naturalness of
this class of models has been raised in [31–33].
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Why Inflation in String Theory?

To sustain prolonged slow-roll inflation, we must have a “sufficiently flat” po-
tential, which is measured by the smallness of the slow-roll parameters. One
of them, the η-parameter, can be viewed as the “mass” of the inflaton mφ

measured in units of the expansion rate H of the universe. Slow-roll inflation
requires η ∼ m2

φ/H2 � 1. However, in the absence of any symmetry protecting
it, mφ is driven towards the cut-off of the Effective Field Theory (EFT). That
is, a small inflaton mass mφ � H is radiatively unstable and receives large
quantum corrections – this is often called the η-problem.

Here, the situation is very similar to the hierarchy problem for the Higgs
– both problems occur since the mass of an elementary scalar is sensitive to
the UV completion of the EFT – and one might hope that we can also solve
it by using supersymmetry. However, during inflation supersymmetry must
be broken. Generically, this induces masses for all the scalars of the order
m ∼ H, in particular, also for the inflaton, thereby posing a serious threat for
inflation commonly referred to as the supergravity η-problem [37–39]. Solutions
within effective field theory either require some tuning among various (model-
dependent) contributions or imposing a global symmetry.

In technical terms, the crucial point is that through the η-problem infla-
tion is sensitive to Planck-suppressed dimension-6 operators. This is remarkable
since such operators are typically irrelevant for most particle physics consid-
erations (one exception being gravity-mediated supersymmetry breaking). In
other words, inflation allows us to probe aspects of the UV completion which
unifies quantum field theory and gravity. String theory, being a candidate for
such a UV completion, is therefore a natural playground for building models of
inflation. In particular, one would like to check whether field theory solutions
for the η-problem can be realized or not.

In many attempts to realize inflation in string theory, one encounters a
version of the η-problem which is intrinsically related to the issue of moduli
stabilization. Moduli are light scalar fields controlling the expansion parame-
ters of the four-dimensional effective field theory. The physics responsible for
generating a potential for the moduli then induces potentially large corrections
to η (see for instance [40–42]). Moreover, the very presence of an inflation-
ary sector may even destabilize the moduli, i. e. destroy the minimum of the
effective moduli potential [43–45].

Despite (or because of) the above problems, inflation offers a rather unique
window to gain insights into string theory or more generally quantum gravity.
As advocated earlier, in this dissertation we will employ both bottom-up and
top-down approaches to address these issues. That is, we consider both string-
inspired effective field theory models and models obtained from genuine string
theory compactifications.



Chapter 2

Introduction

Keeping in mind the motivation discussed above, we now move on to explain
some of the underlying ideas and the broader context of the work presented in
this dissertation. In particular, we will try to put more meaning into some of
the key words which popped up in the previous chapter. In doing so, we intend
to be as less technical as possible.

We begin with a short introduction into the aspects of string theory rel-
evant for this thesis in Sec. 2.1. Namely, that the low-energy limit of string
theory is described by a supergravity theory in ten dimensions, the presence
of branes and fluxes and the AdS/CFT-correspondence. Moreover, the need
for compactification to four dimensions has profound implications for the four-
dimensional effective action, in particular, the presence of moduli which have
to be stabilized.

Next, we give try to motivate why a phase of inflation should be introduced
at all in Sec. 2.2. That is, we state what the horizon and flatness problems
are and explain how inflation solves them and how it provides a seed for the
formation of structure.

In Sec. 2.3, we begin by revisiting the η-problem in a bit more detail and
discuss its possible solutions in effective (supergravity) theories. The idea of
this approach is to view four-dimensional effective supergravity theories as an
interface to a more fundamental theory of quantum gravity which allows us to
parametrize the effects of Planck-scale physics. Then one searches for viable
and phenomenologically interesting models of inflation in supergravity setups
whose structure is inspired, for instance, by string theory.

Afterwards, we explain the motivations for considering inflation in string
theory in more detail and outline the major problems one faces in Sec. 2.4. We
will be particularly interested in models of warped brane inflation which are
among the best-understood examples of inflation in string theory.

Finally, in Sec. 2.5, we give an outline of the structure of this thesis.
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2.1 A Short Introduction to String Theory

String theory aims at being a fundamental theory of nature capable of unifying
quantum field theory and gravity into a single framework. We have argued
above why inflation probes aspects of the UV completion of the effective field
theory by a theory of quantum gravity. As a candidate for such a theory, we
choose string theory. Given the limited amount of space, we try to be as brief
as possible and refer to the given references for more detailed explanations
and, in particular, to the textbooks [46–52].1 For example, we will not discuss
the quantization of the string at all since we are interested in the effective
supergravity description.

2.1.1 Supergravity as the Low-Energy Limit of String
Theory

In field theory, the fundamental excitations are those of point-like objects (aka
particles) whose action is governed by the length of their world-lines. In string
theory, however, the fundamental object is a one-dimensional object – a string
– whose action is then governed by the volume of its world-sheet, i. e. by the
surface in space-time swept out by the moving string. The theory on the world-
sheet is a two-dimensional Conformal Field Theory (CFT) (cf. e. g. [62–65])
and the field content includes, in particular, the fields describing the embedding
of the string world-sheet into space-time.

Consistency of the theory, namely avoiding anomalies2 of the world-sheet
theory and the absence of tachyons in the spectrum, forces us to consider su-
persymmetric strings – superstrings – living in ten space-time dimensions (see
e. g. [46–52]). As it turns out, there are five distinct ways to formulate super-
string theory in ten dimensions involving closed and sometimes open strings.
The type II string theories involve closed strings and can have either a chiral
(type IIB) or non-chiral (type IIA) spectrum [67,68]. The type I string theory
is a theory of closed and open strings since their world-sheets are required to be
unoriented [69–71]. Finally, there are the two heterotic string theories. These
are theories of closed strings which can be charged under either an SO(32) or
E8 × E8 gauge group [72–74].

The only dimensionful parameter in string theory is the length of the strings
`s which, in particular, sets the scale for the massive string excitations that have
masses at least of the order of `−1

s . Experimentally, we have a lower bound on

1Unfortunately, we have to leave out many interesting research areas in string theory to
which we could not do justice here. This includes topics such as M-theory [53–56], F-theory
[57], understanding black hole entropy [58], the string landscape [59] or cosmic strings [60,61].

2The word “anomaly” refers to the fact that a symmetry of the classical theory need not
be a symmetry of the full quantum theory. If this happens to a local symmetry, the theory
is inconsistent (cf. e. g. [66]).
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the string scale `−1
s & 4.00TeV (95%C.L.) from searches at the LHC [75]. But

in principle, the string scale `−1
s can be anywhere from this bound up to the

Planck-scale ∼ 1019 GeV.

If we are looking for a low-energy description valid for energies E � `−1
s ,

i. e. at energies where we cannot resolve the finite size of the string anymore,
we have to keep only the massless modes. The standard logic of effective field
theory dictates that we should integrate out all fields which are heavier than
a specified mass scale (see e. g. [76–79]). The effective theory is then obtained
as a series in E`s � 1. But to get the lowest order terms in the effective field
theory for E � `−1

s , the following argument provides a shortcut. The low-
energy description of the five string theories must preserve the two conditions
required for consistency – ten space-time dimensions and supersymmetry –
and include the graviton in its spectrum. Thus, the low-energy limit of string
theory is ten-dimensional Supergravity (SUGRA) and there are exactly five
such supergravity theories, one for each formulation of string theory [80–86].
To get the higher order corrections one has to work much harder. For instance,
one strategy to obtain the low-energy effective action would be to reconstruct
it from the S-matrix of string scattering amplitudes expanded in E`s � 1 (see
e. g. [87, 88] for the heterotic case3).

Finally, two conceptually important comments are in order. First, since all
of the five string theories contain a closed string sector they also contain a
(massless) spin-2 state which acts as the graviton. This is why string theory is
considered as a candidate theory of quantum gravity [73,74,80,97,98].

Second, string theory is intrinsically defined as a perturbative expansion in
terms of the string coupling gs, which counts the number of “handles” of the
world-sheet (i. e. it is related to the topology of the world-sheet). The validity
of such an expansion requires gs to be small, but this is a non-trivial constraint
since the value of gs is dynamically determined by the theory (cf. e. g. [46–
52]). The low-energy supergravity limit is then actually a double perturbative
expansion in small gs and `s. The string length `s controls the loop expansion
of the fields living on the string world-sheets whose different topologies count
the powers of gs.

2.1.2 Branes, Fluxes and the AdS/CFT-Correspondence

Branes

In addition to the one-dimensional strings, string theory contains also higher-
dimensional objects, so-called Dp-branes, on which open strings end [99–101]
(see also [102–104]). The name stems from the fact that the strings ending
on such a surface obey Dirichlet boundary conditions, i. e. they are stuck to

3The same strategy can also be applied to four-dimensional string compactifications, see
for instance [89–96] for both, heterotic and type II string theory.
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this surface and may only move along it but not away from it. The number
p counts the number of spatial dimensions of these objects, i. e. a Dp-brane
is a (p + 1)-dimensional object. These objects are present for both type I and
type II theories. There are also similar objects, so-called NS5-branes, which are
present in all types of string theory and related to closed strings [105].

D-branes have become a basic ingredient of modern string theory compact-
ifications, in particular, because they introduce non-Abelian gauge symmetries
into the type II theories. That is, a D-brane has a non-Abelian gauge theory
living on its world-volume originating from the quantization of the open strings
which end on it. Typically, one obtains a U(N) gauge group for a stack of N
D-branes all on top of each other, see e. g. [102–104].

Fluxes

In addition to the graviton and the dilaton, the bosonic field content of all of
the ten-dimensional supergravity theories contains p-form field strengths with
(p − 1)-form potentials. All supergravity theories contain the Neveu-Schwarz
(NS) 2-form field B2 with field strength H3, but type IIA and IIB supergravity
contain also the Ramond-Ramond (RR) forms Cp−1 with field strengths Fp.
The type IIA theory contains all the even p’s while the type IIB theory con-
tains all the odd p’s. These p-form field strengths are generalizations of the
electromagnetic field strength F2 with a gauge field potential A1, just with
more indices to antisymmetrize.

We can switch on non-trivial background values for these field strengths,
so-called fluxes. Branes act as sources for fluxes, but fluxes can exist also in the
absence of any sources. Moreover, the fluxes turn out to be quantized [106–108],
i. e. the integral of Fp over a p-dimensional compact surface is quantized. Just
like D-branes, fluxes have become a standard ingredient of modern string theory
and we will explain soon why fluxes are particularly important for the issue of
moduli stabilization.

The AdS/CFT-Correspondence

D-branes are also the cornerstone of a recent important development in string
theory, the AdS/CFT-correspondence [109–112]. By looking at two different
ways to describe a stack of Nc D3-branes in ten-dimensional flat space one
arrives at a surprising statement. Namely that two seemingly unrelated theo-
ries, N = 4 SU(Nc) Super-Yang-Mills (SYM) theory in four dimensions and
type IIB string theory on AdS5×S5, are dual to each other, i. e. that they de-
scribe exactly the same physics. One can make this equivalence precise in the
sense that there exists a dictionary (a one-to-one map) between the correlation
functions computed in one theory and those computed in the other.
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The idea of the AdS/CFT-correspondence is believed to be valid in more
general examples. This goes under the name of gauge/gravity duality, cf. e. g. [113–
115] and D-branes are useful to construct explicit examples.

The AdS/CFT-correspondence has triggered an enormous amount of work
using it as a tool to understand gauge theory dynamics at strong coupling.
By “strong coupling” we actually mean the limit of large ’t Hooft coupling
λ ≡ g2Nc and large number of colors Nc [116]. On the gauge theory side, this
corresponds to a limit where only planar diagrams contribute, while in the dual
gravity theory this corresponds to a limit where only weakly-coupled classical
(super-)gravity is taken into account. The converse is also true – when the
gauge theory is weakly-coupled, the dual gravity theory is strongly-coupled.
This very remarkable fact lies at the heart of the success of the AdS/CFT-
correspondence.

Let us very briefly mention a few important results and applications and
refer to the given literature for details and a more extensive list of references.
Perhaps the most striking result obtained from gauge/gravity duality is that
the ratio of the shear viscosity to the entropy density of a fluid takes a universal
value 1/(4π) in the strong coupling limit [117–122]. One of the most important
applications of the AdS/CFT-correspondence is to QCD and the Quark Gluon
Plasma (see e. g. [123–126]). It has also helped to gain insight into scattering
amplitudes in N = 4 SYM (see e. g. [127–129]) and models of strongly-coupled
electroweak symmetry breaking (see e. g. [21,22]). Very recently gauge/gravity
duality was also applied to condensed matter systems [130–134].

In this thesis, we will make use of the AdS/CFT-correspondence in the
context of inflation. We consider inflation in scenarios which are a generaliza-
tion of the original AdS/CFT-correspondence. It involves backgrounds which
are confining in the IR, the Klebanov-Strassler solution [135]. This is a super-
gravity solution dual to an N = 1 SU(N +M)× SU(N) gauge theory in four
dimensions. We will be concerned with the supergravity solutions [136] dual
to a state where the gauge theory is on the baryonic branch, i. e. to a state
where baryonic operators acquire non-zero expectation values. More precisely,
we will consider deformations of these supergravity solutions which are dual to
a one parameter family of deformations of the baryonic branch [137]. We add
a probe D3-brane to these backgrounds and study the induced potential.

2.1.3 Compactification and Moduli Stabilization

String theory “likes” to live in ten space-time dimensions which in particular
implies that gravity should live in ten-dimensions. But experiments measuring
deviations of the gravitational force from Newton’s law tell us that we live in
four space-time dimensions and put an upper bound on the size of any other
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spatial dimensions of the order . O(40µm) [138, 139].4 In other words, we
need to find an explanation why gravity “looks” four-dimensional even though
it fundamentally is not. To achieve this, six out of the nine spatial dimensions
of string theory have to be coiled up into something small – this process is
called compactification.5

Let us denote the “typical” length scale of the compact extradimensions by
L. We can obtain an effective theory in four dimensions which is valid for ener-
gies E � L−1 by performing a “dimensional reduction” (or Kaluza-Klein (KK)
reduction [142,143]) from ten down to four dimensions. Dimensional reduction
is essentially a sort of a generalized Fourier expansion. Since the extradimen-
sions are compact, the momenta of particles along them are quantized. From
the four-dimensional point of view, this corresponds to an extra contribution
to the mass of the particle (as measured in four dimensions). For each field
one obtains a set of so-called KK modes which can be arranged into “tow-
ers” with increasing masses. The mass of the lightest KK mode is of the order
of L−1. This step is crucial to make contact with our four-dimensional world
and to understand the low-energy consequences of string theory. Note that
the resulting effective field theory in four dimensions is valid only for energies
E � L−1 � `−1

s . Nonetheless, the compactification is much easier described
in the effective ten-dimensional supergravity theory than in the world-sheet
theory.

There are many ways to compactify six dimensions and thus this is not an
unambiguous process. That is, the low-energy limit of string theory is not a
unique four-dimensional effective field theory. More importantly, the size and
shape of the compact space are a priori undetermined – they are controlled by
the expectation values of four-dimensional scalar fields, so-called moduli. The
overall volume of the compact space is always a modulus. For instance, in the
type IIB theory, the four-dimensional Planck-mass MP is determined by the
volume V6 of the compact space as6

M2
P ∼

V6

g2
s `

8
s

. (2.1)

The Planck-mass MP is fixed to be ≈ 2×1018 GeV since we have measured the
strength of four-dimensional gravity, but the quantities on the right-hand side
are practically unconstrained.

Similarly, the moduli control also the size of other couplings in the low-
energy effective action such as gauge or Yukawa couplings. Hence, it is of utmost

4There are also bounds on extradimensions from e. g. collider physics [139]. However,
only gravity must necessarily propagate in all space-time dimensions – particles may live on
lower-dimensional branes. This is precisely how the hierarchy problem is solved in [12–14]
with large extradimensions.

5For an alternative suggestion using strongly-warped extradimensions see [140], which
can be realized in string theory along the lines of [141].

6The (reduced) Planck-mass MP is related to the Newton constant as M2
P = (8πGN )−1.
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importance to understand the potential for the moduli and, in particular, find
minima within the domain of validity of the effective theory. That is, we have
to understand the “stabilization” of moduli.

Unfortunately, the potential for the moduli obtained from just invoking
compactification is typically flat, i. e. the expectation values of the moduli are
completely undetermined since it does not cost any energy to change their
field values. That is, the moduli correspond to massless scalar fields in four
dimensions. However, massless scalar fields would mediate so-called fifth forces
which are excluded by experiments [144].

On top of these problems, there is also the cosmological moduli problem
[145–151]. Light moduli can cause a couple of severe cosmological problems. For
instance, late decays of moduli can spoil the successful predictions of BBN for
the production of light elements or lead to an overproduction of gravitinos (the
superpartner of the graviton). In practice, this means that they typically have
to be heavier than about O(30TeV). Thus, the cosmological moduli problem
puts constraints on the minima of the moduli potential, but of course we need
to find some minima in the first place.

There has been tremendous progress to identify mechanisms for moduli sta-
bilization, for instance the presence of non-trivial fluxes [152–155], perturbative
corrections [156,157] and non-perturbative effects [158]. The two currently best-
understood scenarios are the “KKLT scenario” [40] and the “LARGE Volume
Scenario” (LVS) [159] in the context of “type IIB orientifold compactifications
with fluxes”.7

To put some more meaning into these catchphrases, let us try to understand
qualitatively what happens. What we need to do to stabilize the moduli is
“associate an energy cost to changing their field value”. In the case of fluxes
(of which one should think as “magnetic fields” along the internal (compact)
directions), the energy density stored in the flux depends on the values of the
moduli and thus deforming the compact space costs energy.8 Stabilization using
perturbative effects makes use of loop corrections involving massive particles
whose masses depend on the values of the moduli (e. g. KK modes with masses
depending on the geometry of the extradimensions), while non-perturbative
(instanton) corrections ∝ e−#/g2 use the dependence of the gauge couplings g
on the moduli. In all three cases one generates a non-trivial dependence of the
effective potential on the moduli.

Generically, the presence of fluxes strongly warps the compactification
manifold, which introduces a dependence of the four-dimensional metric on the

7For reviews and many more references see [96, 160–163] (see also Chap. 6) and for a
systematic study of examples cf. [164,165]. For recent attempts in heterotic compactifications
(without and with fluxes) see e. g. [166–170].

8One may think of a sphere whose radius R we interpret as a modulus and put a magnetic
field on the surface of the sphere. The energy density stored in the magnetic field depends
on R.



14 CHAPTER 2. INTRODUCTION

position in the extradimensions characterized by a warp factor, see e. g. [96,
160–163]. In type IIB, there are certain situations in which this backreaction
is rather “mild” in the sense that the metric of the compact directions changes
also only by introducing an overall warp factor.

To conclude this short introduction to string compactifications, we would
like to very briefly comment on the status of two important aspects of string
phenomenology which are also connected to the issue of moduli stabilization.
Namely, the construction of potentially realistic low-energy field theories and
the string theory version of solutions to the hierarchy problem. Both of which
are important to make contact with low-energy particle physics. The ambition
of string theory is to unify the concepts of gravity (in the form of general
relativity) with quantum field theory (in the form of the SM), i. e. to provide
a UV completion of the SM.

Constructing MSSM-like Models One of the major goals of string phe-
nomenology is to find compactifications whose low-energy spectrum is as close
as possible to the spectrum of the Minimally Supersymmetric Standard Model
(MSSM), see e. g. [171]. For instance, we would like to find the low-energy
gauge group of the SM, SU(3)C × SU(2)L × U(1)Y , or a gauge group such as
SU(5) or SO(10) which contains the SM gauge group if one pursues the idea of
grand unification. In addition, there should be matter fields in the appropriate
representations to accommodate quarks and leptons as well as the Higgs.

Even though one starts with supergravity in ten dimensions, requiring that
one preserves some amount of supersymmetry in four dimensions in the pro-
cess of compactifications places some constraints on the structure of the inter-
nal space, see e. g. [98,172–174]. A class of six-dimensional spaces which fulfills
these constraints are so-called Calabi-Yau (CY) 3-folds (see e. g. [175,176]) and
for this reason they have become a standard ingredient in string compactifica-
tions.

There has been a great amount of progress in finding potentially realistic
models, especially in the last decade. For our purposes, it is important that it is
quite plausible that something similar to the MSSM can arise from string theory
(recall that one of our motivations is to realize inflation in the matter sector).
For some examples in the heterotic case (with only the MSSM spectrum) see
[177–187] and for the case of type II theories cf. the reviews [95, 96, 188–190]
and the references therein.9

Solutions to the Hierarchy Problem Assume we find some realization of
the SM in string theory. Since string theory aims at being a theory of quantum
gravity, it should have some answer to the hierarchy problem.

9For an estimate of the probability to find MSSM-like models with intersecting D-branes
in toroidal orientifolds see [191] and for MSSM-like GUT models in the context of F-theory
see [190,192,193].
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As it turns out, the subject of moduli stabilization is intimately connected
to a string theory solution of the hierarchy problem. We can in principle find
string theory versions of all the aforementioned solutions.

• Low-Energy Supersymmetry: Supersymmetry solves the hierarchy
problem by cancellations between the loops involving fermions and bosons
if it is broken at low enough energies ∼ O(TeV). Moduli stabilization
generically requires spontaneous supersymmetry breaking and thus the
moduli comprise a hidden sector. How this breakdown of supersymmetry
is mediated to the visible sector depends on many details, but gravity
mediation often contributes significantly. For studies in the KKLT sce-
nario see e. g. [194–199] and for recent studies in the context of heterotic
orbifolds see e. g. [166,200].

• Large Extradimensions: In the ADD scenario of large extradimen-
sions [12–14] four-dimensional gravity appears weak compared to the
other forces but only because it is “diluted” in the large volume of the ex-
tradimensions. A very large volume of the extradimensions is what gives
the LARGE Volume Scenario [159] its name and by exploiting Eq. (2.1)
we can lower the string scale to `−1

s ∼ O(TeV). This would have fas-
cinating implications such as the possibility to discover strings at the
LHC [201–208].

• Warped Extradimensions: In the RS scenario [15], one solves the hi-
erarchy problem via “gravitational redshift” using a strongly warped ex-
tradimension. A string theory version of this scenario has emerged from
compactifications with fluxes [155] involving a warped throat [135]. Suffi-
ciently strong warping seems possible on statistical grounds [209].

Thus, string theory does in principle contain the ingredients necessary to
find the SM and to solve the hierarchy problem. Of course putting everything
together, i. e. combining a realization of the MSSM and a solution to the hier-
archy problem within a fully stabilized compactification is very challenging.10
So far, no fully realistic, explicit and compelling model with a realistic low-
energy spectrum, a viable phenomenology and cosmological evolution and so
on has been constructed. But one has found a variety of promising mechanisms
by which moduli can be stabilized and ways to realize the MSSM spectrum.
Hence, there is hope to find realistic compactifications.

2.2 Motivation for Inflation

Cosmic inflation [4–7] is a paradigm solving many problems related to the
standard hot big bang cosmology by assuming a phase of rapid accelerated ex-

10Also sometimes some tension may arise, for instance, between moduli stabilization and
chirality in the type IIB context [210] (but see [211]).
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pansion in the very early universe. Specifically, it addresses the horizon problem
and the flatness problem. In addition, it provides a seed for structure formation
via quantum fluctuations of the so-called inflaton field. Let us now review these
problems and their solution by inflation one by one.11

The Horizon Problem

On very large scales, the universe is well-approximated by a homogeneous and
isotropic space. Therefore, the space-time is characterized by a scale factor
a(t) which encodes the relative size of space-like slices at fixed times and thus
encodes the expansion of the universe. The characteristic scale of these space-
times is set by the expansion rate (or Hubble scale)

H ≡ ȧ

a
. (2.2)

The time-evolution of the expanding space-time is determined by the Einstein
equations from the energy density ρ(t) stored in all forms matter. In the hot big
bang scenario, at early times the universe is dominated by radiation (i. e. rela-
tivistic particles) and then undergoes a transition to a universe dominated by
non-relativistic matter.12 Without going into the technical details, this implies
a time-dependence a(t) ∼ tα for some α < 1 and therefore H(t) ∼ t−1 always
decreases with time.

In other words, for radiation and non-relativistic matter, gravity always
decelerates the expansion, ä < 0. Consequently, the size of the particle horizon
is determined by d(t) ∼ H−1 ∼ t which increases with time.

Today, at t0, a patch of the size d(t0) ∼ t0 must be homogeneous and
isotropic. Now going back in time we encounter a serious problem. Namely,
our entire observable universe today seems to originate from many causally
disconnected regions, the number of which keeps increasing the further we go
back in time. This is because in a decelerating universe the patch of size d(t0)
is scaled down while the maximal size of a causal region is at most `c ∼ t at
any given time since this is the maximal distance light can travel. Therefore,
the observed homogeneity and isotropy of our universe would require a huge
amount of fine-tuning of the initial conditions – this is the horizon problem.

Inflation being a phase of accelerated expansion, ä > 0, solves this problem
since the particle horizon is forced to shrink during this phase. As a conse-
quence, the universe could have been created out of a single causal patch if a
sufficiently long phase of inflation took place in the very early universe.

11For technical details and further explanations see Chap. 3 and [24–27].
12We have evidence [23, 212] that there has been yet another transition to a universe

dominated by “dark energy” or a “cosmological constant”. However, this phase is irrelevant
for the sake of the arguments in this section.
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Now what does “inflation lasted sufficiently long” mean? Quantitatively,
one expresses this in the number of e-folds Ne which is defined by

Ne(t) ≡ ln
aend
a(t)

=

tend∫

t

H(t) dt . (2.3)

“Sufficiently long inflation” typically means that inflation should have lasted
long enough to produce roughly Ne & 60. Hence, this corresponds to a relative
growth of the universe by at least a factor of e60 ∼ 1026!

The Flatness Problem

The second problem of the hot big bang cosmology is that the universe appears
to be spatially flat on large scales. This again translates into a large fine-tuning
of initial conditions. Let us try to understand why.

Defining a “critical” energy density13 ρcrit ≡ 3H2M2
P and the ratio of the

total energy density ρ(t) to the critical energy density ρcrit, Ω ≡ ρ/ρcrit, one
can show that the following equation must hold:

Ω(t)− 1 =
k

(aH)2 . (2.4)

Here, k is a measure of the spatial curvature of space-like slices.

In the hot big bang evolution one has (aH)−1 increasing with time. That
is, the quantity |Ω − 1| must diverge with time and thus Ω = 1 corresponds
to an unstable fixed point. That is, even if we start very close to Ω = 1 at
early times, the time evolution drives us away from this value at later times.
To have a nearly flat universe such as the one we observe today, i. e. a universe
which has Ω(t0) ∼ 1, would therefore require a huge amount of fine-tuning of
the initial condition for Ω at early times. This issue is commonly referred to as
the flatness problem.

Inflation solves this problem automatically since for an accelerated expan-
sion the quantity (aH)−1 shrinks with time. Hence, the system is dynamically
driven towards a spatially flat universe with Ω ≈ 1 at late times. This can be
understood also by considering the length scale at which spatial curvature be-
comes important, the physical curvature scale Rphys(t) = a(t)|k|−1/2. Increasing
the scale factor a(t) by a large amount during inflation also increases Rphys by
a large amount. Hence, the universe can become practically flat today.

13From Eq. (2.4) one can see that the critical energy density essentially measures the
energy density which corresponds to a spatially flat universe (k = 0) at a given time t.
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A Seed for Structure Formation

Gravitational collapse of small initial inhomogeneities is a nice explanation
how all the structure we observe in the universe, i. e. all the stars, galaxies
and galaxy clusters, could have formed. However, this explanation requires an
initial seed for structure formation. To account for the structure we observe
today, the initial inhomogeneities δρ of the energy density on galactic scales
must have had a density contrast δρ/ρ ∼ 10−5.

The horizon and flatness problems are solved by inflation automatically
by the accelerated expansion. Does inflation provide also an initial seed for
structure formation? As it turns out it does: inflation has a particularly ap-
pealing mechanism to address this issue by quantum fluctuations [8–11]. The
accelerated expansion then stretches these small-scale quantum fluctuations
to macroscopic scales. This picture lies at the heart of the success of cosmic
inflation. One can perform a detailed calculation and predict the statistical
properties of the initial perturbations which are in very nice agreement with
the data from observations of the CMB and of the large-scale structure of our
universe [23].

An interesting signature of inflation are gravitational waves. Similar to
the spin-0 inflaton fluctuations which translate into density perturbations, one
can produce spin-2 fluctuations which correspond to gravitational waves. The
PLANCK satellite is an experiment searching for a signature of gravitational
waves in the CMB.

2.3 Inflation in Supergravity

Inflation is a paradigm, not a concrete theory, and thus there are many different
models in which a phase of accelerated expansion can arise. The standard
approach to building a model of inflation is slow-roll inflation, where a scalar
field φ slowly rolls down its potential, i. e. the potential energy dominates
over the kinetic energy, V (φ) � φ̇2. Virtually any potential which fulfills the
conditions given below in Eq. (2.5) will do the job.

Roughly, we can classify slow-roll inflation models into small-field and
large-field models according to whether during inflation φ travels over a dis-
tance ∆φ�MP or ∆φ�MP in field space, respectively. This essentially is a
distinction by whether the model will produce observable gravitational waves
or not [213]. The prototypical examples for models of inflation are (large-field)
chaotic inflation [214] and (small-field) hybrid inflation [34].
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2.3.1 The Eta-Problem

Frustratingly, inflation is very effective in washing out signatures of high-energy
physics (e. g. relics from a GUT-scale phase transition). But the η-problem
does provide us with some (indirect) information about physics at very high
energies. Therefore, let us now discuss the η-problem in a bit more detail from
an effective field theory point of view.

To sustain inflation over a “sufficiently long” period of time, i. e. sufficient to
solve the horizon and flatness problems, the potential must be very flat. The
flatness is measured in terms of the slow-roll parameter ε and η, ε, |η| � 1,
which are obtained from the derivatives of V as

ε ≡ M2
P

2

(
V ′

V

)2

, η ≡M2
P

V ′′

V
≈

m2
φ

3H2
, (2.5)

where H2 ≈ V/(3M2
P ) is the expansion rate of the universe.
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Figure 2.1: Hierarchy of energy scales in the effective field theory of inflation.

Now suppose we have an effective field theory (EFT) for inflation with a
cut-off scale Λ determined by the mass of the lightest field which is not part of
the low-energy spectrum and has been integrated out (see Fig. 2.1). Such an
approach requires a hierarchy of energy scales mφ � H . Λ. However, in the
absence of any symmetry protecting it, the mass of any elementary scalar is
driven towards the cut-off. That is, a small inflaton massmφ � H is radiatively
unstable and quantum corrections generically yield a large correction. Thus,

∆η =
m2
φ

3H2
& 1 , (2.6)

because we need the cut-off to be at least Λ & H.
One example for degrees of freedom we have integrated out are those which

are relevant to render graviton-graviton scattering meaningful at very high
energies. From the point of view of the low-energy effective field theory, we
can parametrize their impact by adding higher-dimensional operators which
are suppressed by the Planck-scale MP . Now the flatness of the potential is
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particularly sensitive to Planck-suppressed dimension-6 operators of the form14

O6

M2
P

=
O4

M2
P

φ2 . (2.7)

If 〈O4〉 ∼ V , such terms yield dangerous contributions ∆η ∼ 1.

For the other slow-roll parameter, ε, the situation is less problematic. The
largest contributions would arise from dimension-5 operators of the form

O5

MP

=
O4

MP

φ , (2.8)

but such operators can be forbidden by a discrete Z2 symmetry which renders
it somewhat less problematic. This is not possible for the contributions of the
form in Eq. (2.7).

The phrasing of the η-problem with Planck-suppressed dimension-6 oper-
ators is precisely what happens in the context of supergravity models of in-
flation. During inflation supersymmetry must be broken, the amount of which
is determined by the vacuum energy driving inflation, 〈F 2

X〉 = 3M2
P H2 = V .

Generically (aka using gravity mediation), this induces masses for the scalars
of the order

m ∼ 〈FX〉
MP

∼ H . (2.9)

This is the essence of the supergravity η-problem [37–39] where a contribution
of this form induces also an inflaton mass mφ ∼ H, thereby posing a serious
threat to inflation.

2.3.2 Solutions to the Eta-Problem in Supergravity

Because of the η-problem described above, inflation in supergravity requires
either some tuning of the parameters, an accidental cancellation or an addi-
tional (approximate) global symmetry protecting the inflaton. Actually, this is
true for all models of inflation since the above reasoning applies to any model
of slow-roll inflation. But supersymmetric models of inflation do have some
advantages. For example, the required tuning tends to be somewhat less severe
than in a generic effective field theory since supersymmetry still takes care of
some part of the dangerous quantum corrections. Moreover, supersymmetry
often helps to ensure a “technically natural” [215] effective action for the infla-
ton (see e. g. [216, 217]). The discussion below is presented with supergravity
models in mind, but actually it essentially carries over straightforwardly to
non-supersymmetric models of inflation.

14This is in full analogy to the relation between Fermi’s theory of β-decay an the elec-
troweak theory with W-bosons. In the limit E � MW , we can integrate out the W-bosons
and obtain an effective theory with four fermion operators of the form ψ̄ψψ̄ψ/M2

W . To render
this theory meaningful at energies E ∼MW we have to introduce the W-bosons.
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Accidental Cancellations and Tuning of Parameters

In some circumstances, there can be accidental cancellations between model-
dependent terms in the supergravity potential. For instance, this is what hap-
pens in the standard realization of F-term hybrid inflation in supergravity
[218–220]. However, this cancellation only works if some assumptions about
higher order corrections of precisely the form in Eq. (2.7) are made. For mod-
els of inflation where the field values are always below MP , which is the case
in hybrid inflation, one can perform an expansion in φi/MP . In this way, one
can quantify the required tuning of the parameters, see for instance [221–224].

Approximate Global Symmetries

By far the most popular way to get rid of the η-problem in field theory is to
assume the existence of a global symmetry which protects the inflaton direction.
The most prominent example is a continuous global shift symmetry under which
the inflaton φ transforms as φ→ φ+α and which is only weakly broken by the
potential V (φ). This type of symmetry is powerful enough to forbid dangerous
terms of the form Eq. (2.7). Note that for models of chaotic inflation where
∆φ � MP a symmetry is the only option to render the inflaton potential
“technically natural” since a tuning of coefficients in an expansion is impossible.
There are many models of supergravity inflation with a shift symmetry on the
market belonging either to the chaotic or the hybrid case, for some examples
see e. g. [35, 216,225–232].

2.4 Inflation in String Theory

Unfortunately, the above solutions to the η-problem are not the end of the
story. The reason is that essentially both ways “solve” the problem somewhat by
assumption. In the case of the fine-tuning of parameters it is by no means clear
that the favorable choices of parameters are consistent with a UV completion
of the theory by quantum gravity.

In the case of symmetry solutions to the η-problem, the situation is a bit
more subtle. Proposing a shift symmetry for the inflaton is basically equivalent
to identifying the inflaton with the Pseudo-Nambu-Goldstone-Boson (PNGB)
of a spontaneously broken global U(1) symmetry. The conceptual problem
with this approach is that on fairly general grounds one can argue that a
“generic” theory of quantum gravity does not respect any continuous global
symmetries [233–238]. Thus, using a symmetry to forbid operators of the form
in Eq. (2.7) places strong constraints on a UV completion of such a model. For
instance, models with a controlled shift symmetry even for large field values
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have been found only recently in string theory [239–241].15

Since string theory is currently the best-developed candidate for a theory
of quantum gravity, it is of course interesting to look for models of inflation in
string theory. It is in principle possible to compute corrections to the inflaton
potential and hence one may test whether the assumptions made on the UV
completion in an effective field theory model can be fulfilled in string theory.

Conversely, inflation provides us with a window to probe some aspects of
string theory. For example, one may hope to be able to constrain the compact-
ification. Together with other constraints from e. g. finding a viable low-energy
phenomenology this could help to reduce the vast number of possible compact-
ifications. Thus, it is worthwhile to study inflation (and also more general ideas
in cosmology) from a string theory point of view.

Inflation is notoriously difficult to achieve in string theory mostly due to
the issue of moduli stabilization. Even though one often finds nice structures
for some fields which seem to solve the problem, as soon as moduli stabilization
is included one usually finds corrections which ruin slow-roll inflation. Nonethe-
less, there are sometimes favorable structures present in the beginning and one
can try to expand around these.

From the point of view of bottom-up model building in four-dimensional
supergravity, there are not many constraints on the form of the action. But the
structure of four-dimensional supergravity theories obtained from string theory
is much more restrictive. Therefore, we can use string theory as an inspiration
(or motivation) for deciding which terms to write down. In this way, we obtain
a string-inspired (or string-motivated) effective supergravity theory. This is the
spirit of the approach we pursue in Part III of this thesis.

2.4.1 Interplay between Inflation and Moduli
Stabilization

As we mentioned in our motivation, there is an important interplay between
inflation and moduli stabilization. We will now explain this interplay and its
implications in a bit more detail.

Moduli Stabilization and the Eta-Problem

For slow-roll inflation to occur, there should be in particular no runaway direc-
tion for any of the fields and thus the moduli must be fixed in some minimum.
Moreover, we will throughout this work require that all fields except the in-
flaton acquire masses of at least m & H. That is, we assume only a single
field φ is dynamically relevant during inflation, i. e. has a mass mφ � H. Note

15For interesting recent attempts of “low-energy solutions” of the η-problem see [242,243].
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that this is not required by any physical argument, but just serves to simplify
the effective field theory.16 Therefore, we have to adjust the parameters in the
effective potential for the moduli fields accordingly.17

Upon integrating out all the fields with masses m & H, in particular all the
moduli, we obtain the effective potential for our inflaton candidate φ. By the
same logic we used to arrive at Eq. (2.7), integrating out the moduli generically
induces corrections to the inflaton potential. These corrections are particularly
dangerous for moduli which are stabilized non-perturbatively via the superpo-
tential. Thus, a solution to the η-problem is always intimately connected to
the physics of moduli stabilization.

Moduli Destabilization by Inflation

When the issue of moduli stabilization is discussed in conjunction with infla-
tion, however, another severe problem emerges. Namely, the very presence of
an inflationary sector may destabilize the moduli [43–45], i. e. destroy their
minimum.18 To avoid this destabilization, one often finds an upper bound on
the Hubble scale during inflation in terms of the present-day gravitino mass,

Hinf ≤ mtoday
3/2 . (2.10)

But in order to solve the hierarchy problem with supersymmetry one typically
needs m3/2 ∼ O(TeV) and thus the scale of inflation is bound to be very small,
much below the scale required for many model building approaches (and also
very much below observational sensitivities for gravitational waves).

Basically, the above tension arises since there is effectively only one scale
in the problem, which sets both the gravitino mass today and the height of the
barrier towards decompactification [40,45]. Typically, inflation in such a setup
induces a runaway-type of potential, in particular, for the modulus controlling
the overall volume. Thus, if the contribution from inflation becomes too large,
the barrier and hence the minimum disappear. We will explain this in more
detail in Sec. 10.1 in a concrete setting.

2.4.2 A Brief Overview of Some Possibilities

Scalar fields are abundant in string theory compactifications. We have already
introduced the notion of geometric moduli controlling the size and shape of

16For observable effects of additional fields with m ∼ H (which is generic in supergravity)
see e. g. [244,245] and for an introduction into multi-field inflation see e. g. [246].

17Strictly speaking, all of these parameters should be computed from an explicit under-
lying string theory compactification. However, in practice, one typically treats them as free
parameters and varies them within a reasonable range. In this way, one places constraints
on possible compactifications.

18For earlier work discussing problems of moduli related to inflation, cf. e. g. [247–249].
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the compact space. In addition to these, there are also axions – pseudo-scalar
fields which receive a potential only via non-perturbative corrections. And as if
these were not enough there are also the (relative) positions of D-branes inside
the compactification which show up as scalar fields.

In the following, we give an incomplete and very brief overview of some
string theory approaches to inflation. For recent reviews on string theory models
of inflation cf. e. g. [250–252] and the textbook [253].

The existing proposals can be classified according to whether the inflaton
resides in the closed string or in the open string sector of the theory. The
discussion below is focused on type IIB models of inflation since in this situation
the problem of moduli stabilization is arguably best-understood at present.

With respect to solving the η-problem, the idea in the models below is to
either find an underlying mechanism to protect the inflaton from dangerous
corrections (which happens rarely) or to find a way to systematically write
down all the possible corrections, albeit with in general unknown coefficients.

Closed String Inflation

Inflation in the closed string sector means to either identify the inflaton with
a modulus or an axion. The models in this class are typically stringy versions
of the chaotic inflation scenario.

Kähler Moduli Inflation After invoking fluxes to stabilize many geometric
moduli and the dilaton with large masses, only a certain class of moduli, so-
called Kähler moduli survive as light fields. There is always at least one of them
which controls the overall volume V6.

The success of these models in solving the η-problem relies crucially on
the structure of the manifolds which allow for the LVS scheme of moduli sta-
bilization [159]. The large volume V6 of the compact space helps to suppress
potentially dangerous corrections, together with a cancellation. In this setup,
the inflaton potential can be systematically expanded in powers of 1/V6. The
precise structure of the terms often requires an educated guess [157, 254, 255]
and the coefficients of the terms are in general unknown. For examples of this
class see e. g. [256–259].

Axion Inflation Axions are a priori nice candidates to realize inflation since
at the perturbative level they enjoy a continuous shift symmetry φ → φ + α
which is broken to a discrete subgroup by non-perturbative effects. This is the
idea of natural inflation [260]. The flatness of the potential is then controlled by
the axion decay constant f . What one would like to have is f > MP , but this
does not seem to be possible for axions arising in string theory which have f �
MP [261,262]. Several solutions have been proposed to overcome this problem
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and still solve the η-problem. For instance, to invoke a second non-perturbative
correction and fine-tune the coefficients [263,264], to consider N-flation which
uses a large number of axions and considers the collective excitation of all
the axions as the inflaton [265–267] or to use a monodromy19 which enhances
the effective range of field values protected by the shift symmetry in a subtle
way [239–241].

Open String Inflation

Inflation in the open string sector amounts to identifying the inflaton with the
position of a D-brane in the compact internal space which corresponds either
to the distance between two D-branes or the distance between a D-brane and
an anti-D-brane.20 The models of this class are typically a stringy version of
hybrid inflation.

The models we briefly mention here use D3 and D7-branes both of which
always span all four external (non-compact ) directions and the D7-branes are
in addition extended along four other internal directions in the compact space.

D3-D7 Inflation As the name suggests, this model identifies the distance be-
tween a D3 and a D7-brane with the inflaton and the D3-brane is attracted
towards the D7-brane. These models feature a geometrically realized shift sym-
metry [268], i. e. its existence is tied to a special form of the compact space.
However, this shift symmetry is broken upon including string-loop corrections
and non-perturbative moduli stabilization and the model requires some fine-
tuning to work [42].21

Fluxbrane Inflation (or D7-D7 Inflation) This model is conceptually sim-
ilar to the D3-D7 setup, but uses two D7-branes which attract each other
in the transversal directions due to the presence of world-volume gauge flux
(i. e. “magnetic fields” along the internal directions of the D7-brane) [270]. An
advantage of this class of models compared to D3-D7 inflation is that it yields
a larger field range for the inflaton and that constraints from the formation
of cosmic strings22 seem easier to fulfill. Some tuning is required to make the
model work (related to a large volume) and the corrections from moduli stabi-
lization have not been systematically explored yet.

19The basic idea of a monodromy is that by going around in a loop in configuration space
we do not end up at the point we started. A useful simple example of this effect is a spiral
staircase on which we move around the center by 360◦ along the angular direction.

20Recall from Sec. 2.1.2 that D-branes source fluxes. Similar to the electromagnetic case,
there are “positively” and “negatively” charged objects, D-branes and anti-D-branes.

21Within a similar setup, it was proposed in [269] to identify the inflaton with a combina-
tion of an axion and the brane position.

22The formation of cosmic strings at the end of inflation is a generic problem in many
models of hybrid inflation [60,61] (see [271] for a recent review).
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Warped D-brane Inflation The original proposal for warped D-brane infla-
tion [272], or more precisely “D3-anti-D3-brane inflation23 in a warped throat”,
attempted to achieve a sufficiently flat potential by making use of a strongly
warped geometry. Unfortunately, as it turned out, this is not the leading con-
tribution to the inflaton potential [272] precisely because of moduli stabiliza-
tion. However, a lot of information is available in some cases which has trig-
gered a systematic study of various corrections in this class of models, see
e. g. [41, 279–296]. As a result, the structure of the corrections to the inflaton
potential and their impact on the η-parameter has been determined, albeit
with a priori unknown coefficients. Using this knowledge, one can study the
system quantitatively in a statistical approach [295, 296]. The generic picture
of a working inflationary model in this class is that there is an inflection point,
i. e. a point where V ′′ changes sign and V ′ is also small. This inflection point
arises by chance because of cancellations between various terms.

In this thesis, we will focus on models of inflation in the open string sector
and more specifically on the warped D-brane inflation scenario. The motivation
for this is twofold. First, by having inflation in the open string sector, one may
expect more flexibility in the sense that the tunings required for stabilizing the
geometric moduli and those required to yield succesful inflation are separated.
Second, we choose the warped D-brane inflation scenario since it has been
more widely studied and seems to be applicable in more general situations. In
Part IV of this thesis, we will consider a version of warped D-brane inflation
in a particular class of ten-dimensional warped backgrounds.

2.5 Outline

In this thesis, we explore new approaches to the problem of moduli destabi-
lization and the η-problem, and to realize inflation in the matter sector. The
remaining parts of this thesis are organized as follows.

In Part II, we review the basics of some assorted topics at a technical level
and collect some facts and results which might be useful for understanding the
main part of this thesis. We begin with slow-roll inflation (Chap. 3), writing
down 4d supergravity actions (Chap. 4) and their application to some simple
models of inflation in supergravity (Chap. 5). Then we introduce the basics of
moduli stabilization (Chap. 6) and of warped geometries (Chap. 7) as well as
their application to warped D-brane inflation (Chap. 8). Finally, we turn to
the 4d effective supergravity action of heterotic orbifolds (Chap. 9).

The main body of this thesis is split into two parts. In the first part,
Part. III, we pursue a bottom-up approach and consider some interesting su-
pergravity models whose structure is motivated/inspired by string theory.

23For earlier work on brane anti-brane inflation see [273–278].
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In Chap. 10, we discuss a new solution to evade the aforementioned bound
on the Hubble scale during inflation, Eq. (2.10), which allows us to success-
fully combine high-scale inflation and low-energy supersymmetry breaking. It
is based on using two different mechanism for moduli stabilization during and
after inflation. We demonstrate this new solution first in an explicit example
using a shift symmetric model of chaotic inflation and a KKLT mechanism for
moduli stabilization and then in a less explicit example where we replace the
KKLT setup by a more general one.

In Chap. 11, we perform a generalization of the inflation models of [297],
which use gauge non-singlet matter fields, to a much broader class of genuine
models of matter inflation in supergravity. These models belong to a particular
class of hybrid inflation models dubbed “tribrid inflation”. This class of mod-
els is well-suited for solving the η-problem by some symmetry property [38].
We discuss moduli stabilization and the possible sources of corrections to the
inflaton potential from an effective supergravity point of view.

We outline how to embed this class of matter inflation models into the
framework of heterotic orbifold compactifications in 12. This particular class
of compactifications is chosen because of a certain structure (a “Heisenberg
symmetry”) which helps to solve the η-problem and is present in the tree-level
Kähler potential. We propose a new way to stabilize some of the moduli during
inflation using supersymmetry breaking contributions to the inflaton potential
driven by matter fields. We again discuss moduli stabilization and some sources
for an inflaton slope in this setup.

In the second part, Part IV, we make use of some very recently obtained
warped throat geometries. We first review these backgrounds in Chap. 13, in
particular, how they are obtained using a solution generating technique and a
master equation. We then discuss their application in the context of warped
D-brane inflation in Chap. 14. This is a top-down approach to inflation and,
as we will explain, an inflection point arises very generically in these models.
Using some approximate scaling behaviour, we show that realistic values for
the inflationary observables can be obtained.

Finally, we give our conclusions in Part V and present an outlook of further
directions of research. The appendix, Part VI, contains some information about
notations and conventions used in this thesis and some useful formulas.
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Part II

Theoretical Basics





Chapter 3

Slow-Roll Inflation

The first concept we need to introduce is slow-roll inflation. This term refers
to a phase of accelerated expansion which is controlled by a scalar field slowly
rolling down its potential, the “inflaton”. During the accelerated expansion, the
energy density of the universe is then dominated by the potential energy of the
scalar field(s).

This phase ends when the inflaton picks up speed and subsequently starts
to oscillate around a potential minimum. Subsequently, the inflaton decays
and there is a transition to a radiation dominated universe which is commonly
called reheating.

We begin by deriving the Friedmann equations which describe the evolution
of a homogeneous and isotropic universe in Sec. 3.1. In Sec. 3.2, we summarize
some observational evidence in favor of the concordance or ΛCDM model (with
wΛ fixed from the data). We review slow-roll inflation in Sec. 3.3. In particular,
we define the slow-roll parameters ε, η in terms of the slope and the curvature
of the potential. Next, in Sec. 3.4, we review a few results on the perturbations
generated by inflation, which leads to predictions for the observed CMB spec-
trum. Finally, we illustrate the setup in a simple but very explicit example of
chaotic inflation in Sec. 3.5.

The discussion presented in this chapter follows [27]. For textbook treat-
ments of inflation see for example [24–26].

3.1 Friedmann-Robertson-Walker Universe

We are interested in the cosmological evolution of the universe on very large
scales, where we can assume homogeneity and isotropy. A space is homogeneous
if it is translationally invariant, i. e. the same at every point, while a space is
isotropic if it is rotationally invariant, i. e. the same in every direction. Any
space which is everywhere isotropic is necessarily also homogeneous. However,
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the converse is not true. Consider e. g. a space filled with a uniform electric field
which is translationally invariant but breaks invariance under rotations. It can
be shown that such spaces are described by the Friedmann-Robertson-Walker
(FRW) metric

ds2 = −dt2 + a(t)2

(
dr2

1− k r2
+ r2

(
dθ2 + sin2θ dφ2

))
. (3.1)

Here, the scale factor a(t) encodes the relative size of spacelike hypersurfaces at
different points in time. The parameter k is related to the (sign of the) spatial
curvature of these hypersurfaces. Expansion of the universe corresponds to a
growth of the scale factor a(t).

An important quantity characterizing the FRW spacetimes is the expansion
rate or Hubble paramater,

H ≡ ȧ

a
. (3.2)

H sets the fundamental scale of the FRW universe. For example, the charac-
teristic time and length-scales are given by t ∼ H−1 and d ∼ H−1 (in units
where c = 1).

The dynamics of the FRW universe is governed by the Einstein equations,

Gµν ≡ Rµν −
1

2
gµνR = M2

P Tµν , (3.3)

where gµν denotes the spacetime metric while Rµν and R denote the Ricci tensor
and Ricci scalar, respectively, which describe the curvature of space time, and
M2

P ≡ 8πGN is the Planck mass. The right hand side is the energy-momentum
tensor associated with all forms of “matter” in the universe. Here, we assume
Tµν to be a homogeneous and isotropic fluid and thus in a frame comoving with
the fluid we may choose uµ = (1, 0, 0, 0) such that

T µν =




ρ 0 0 0
0 −p 0 0
0 0 −p 0
0 0 0 −p


 , (3.4)

where ρ and p denote the energy density and the pressure in the rest frame
of the fluid, respectively. The Einstein equations then take the form of two
coupled, non-linear but ordinary differential equations often referred to as the
Friedmann Equations :

H2 =

(
ȧ

a

)2

=
ρ

3
− k

a2
, (3.5)

and
Ḣ +H2 =

ä

a
= −1

6
(ρ+ 3p) , (3.6)

with dots denoting derivatives with respect to t. Note that these Eqs. already
tell us something very interesting: In an expanding universe (ȧ > 0) filled with
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ordinary matter – satisfying the strong energy condition ρ+ 3p ≥ 0 – Eq. (3.6)
implies that ä < 0, i.e. the expansion decelerates. Most importantly, this indi-
cates the existence of a singularity in the finite past, i. e. a(t ≡ 0) = 0. However,
such a conclusion requires General Relativity and the Friedmann Equations to
be valid all the way down to arbitrarily small length scales (or correspondingly
arbitrarily high energies). Thus, it is more likely that the singularity signals
the break down of General Relativity and the necessity to develop a quantum
theory of gravity.

By assuming an equation of state of the form

p ≡ w ρ , (3.7)

and assuming a flat universe (k = 0), we can solve the equations for the time
evolution of the scale factor:

a(t) ∝
{
t2/3(1+w) for w 6= −1 ,

eHt for w = −1 .
(3.8)

w ρ(a) a(t)

MD 0 a−3 t2/3

RD 1
3

a−4 t1/2

Λ −1 a0 eHt

Table 3.1: FRW solutions for a spatially flat universe (k = 0) and dominated either
by non-relativistic matter (MD), radiation (RD) or a cosmological constant (Λ).

To describe more realistic systems, such as our current universe, it is nec-
essary to allow more than one species of matter to contribute significantly to
the energy density and pressure. In this case, ρ and p refer to the sum of all
components, i. e.

ρ =
∑

i

ρi , p =
∑

i

pi . (3.9)

It is convenient to define the quantities Ωi at the present time t0 as the ratio of
the current energy density ρi(t0) to the critical energy density ρcrit ≡ 3H2

0M
2
P ,

i. e.

Ωi ≡
ρi(t0)

ρcrit
, (3.10)

with the scale factor normalized such that a0 ≡ a(t0) ≡ 1. The critical energy
density is the energy density required to have a spatially flat universe. Each of
the species has an equation of state of the form

pi = wi ρi , (3.11)
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and thus we can write the Friedmann Equation, Eq. (3.5), as
( H
H0

)2

=
∑

i

Ωia
−3(1+wi) + Ωka

−2 , (3.12)

where Ωk ≡ −k/a2
0H2

0. Evaluating this equation at t0 implies the consistency
relation ∑

i

Ωi + Ωk = 1 , (3.13)

while evaluating Eq. (3.6) yields

1

a2
0H2

0

d2a0

dt2
= −1

2

∑

i

Ωi(1 + 3wi) . (3.14)

Before we discuss how to realize a phase of inflation dynamically in Sec. 3.3,
we briefly review a few observational results on the parameters Ωi and Ωk for
a particular cosmological model in the next section.

3.2 The Concordance Model

Here and in the following the subscript ‘0’ denotes evaluation of a quantity at the present time t0.
We normalize the scale factor such that a0 = a(t0) ≡ 1. This allows us to write the Friedmann
Equation (21) as (

H

H0

)2

=
∑

i

Ωia
−3(1+wi) + Ωka

−2, (31)

with Ωk ≡ −k/a2
0H

2
0 parameterizing curvature. Evaluating Eqn. (31) today implies the consistency

relation ∑

i

Ωi + Ωk = 1 . (32)

The second Friedmann Equation (22) evaluated at t = t0 becomes

1
a0H2

0

d2a0

dt2
= −1

2

∑

i

Ωi(1 + 3wi). (33)

This defines the condition for accelerated expansion today.

3.4 The Concordance Model

Figure 4: A combination CMB and LSS observations indicate that the spatial geometry of the
universe is flat [11]. Note that the evidence for flatness cannot be obtained from CMB
observations alone.

Observations of the cosmic microwave background and the large-scale structure find that the
universe is flat (see Fig. 4)

Ωk ∼ 0 , (34)

and composed of 4% atoms (or baryons, ‘b’), 23% (cold) dark matter (‘dm’) and 73% dark energy
(Λ) (see Fig. 5):

Ωb = 0.04 , Ωdm = 0.23 , ΩΛ = 0.72 , (35)

with wΛ ≈ −1 (see Fig. 6).
It is also found that the universe has tiny ripples of adiabatic, scale-invariant, Gaussian density

fluctuations. In the bulk of this lecture series I will describe how quantum fluctuations during
inflation can explain the observed cosmological perturbations.
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lium abundances measured from stars (e.g., Sun; see
Asplund et al. 2009, for a recent review) and HII regions
are, in general, larger than the primordial abundance.
On the other hand, as we have just shown, the CMB
data provide a lower limit on Yp. Even with a very con-
servative hard prior, Yp < 0.3, we find 0.23 < Yp <
0.3 (68% CL)31. Therefore, a combination of the CMB
and the solar constraints on Yp offers a new way for test-
ing the predictions of theory of the big bang nucleosyn-
thesis (BBN). For example, the BBN predicts that the
helium abundance is related to the baryon-to-photon ra-
tio, η, and the number of additional neutrino species (or
any other additional relativistic degrees of freedom) dur-
ing the BBN epoch, ∆Nν ≡ Nν−3, as (see equation (11)
of Steigman 2008)

Yp = 0.2485 + 0.0016[(η10 − 6) + 100(S − 1)], (55)

where S ≡
√

1 + (7/43)∆Nν # 1 + 0.081∆Nν and
η10 ≡ 1010η = 273.9(Ωbh

2) = 6.19 ± 0.15 (68% CL;
WMAP+BAO+H0). (See Simha & Steigman 2008, for
more discussion on this method.) For ∆Nν = 1, the he-
lium abundance changes by ∆Yp = 0.013, which is much
smaller than our error bar, but is comparable to the ex-
pected error bar from Planck (Ichikawa et al. 2008).

There have been several attempts to measure Yp

from the CMB data (Trotta & Hansen 2004; Huey et al.
2004; Ichikawa & Takahashi 2006; Ichikawa et al. 2008;
Dunkley et al. 2009). The previous best-limit is Yp =
0.25+0.10(+0.15)

−0.07(−0.17) at 68% CL (95% CL), which was ob-
tained by Ichikawa et al. (2008) from the WMAP 5-year
data combined with ACBAR (Reichardt et al. 2009),
BOOMERanG (Jones et al. 2006; Piacentini et al. 2006;
Montroy et al. 2006), and Cosmic Background Imager
(CBI; Sievers et al. 2007). Note that the likelihood func-
tion of Yp is non-Gaussian, with a tail extending to
Yp = 0; thus, the level of significance of detection was
less than 3σ.

5. CONSTRAINTS ON PROPERTIES OF DARK ENERGY

In this section, we provide limits on the properties of
dark energy, characterized by the equation of state pa-
rameter, w. We first focus on constant (time indepen-
dent) equation of state in a flat universe (Section 5.1)
and a curved universe (Section 5.2). We then constrain a
time-dependent w given by w(a) = w0+wa(1−a), where
a = 1/(1 + z) is the scale factor, in Section 5.3. Next,
we provide the 7-year “WMAP normalization prior” in
Section 5.4, which is useful for constraining w (as well as
the mass of neutrinos) from the growth of cosmic den-
sity fluctuations. (See, e.g., Vikhlinin et al. 2009b, for
an application of the 5-year normalization prior to the
X-ray cluster abundance data.) In Section 5.5, we pro-
vide the 7-year “WMAP distance prior,” which is useful
for constraining a variety of time-dependent w models
for which the Markov Chain Monte Carlo exploration of
the parameter space may not be available. (See, e.g.,

31 The upper limit is set by the hard prior. The 68% lower limit,
Yp,min = 0.23, is found such that the integral of the posterior
likelihood of Yp in Yp,min ≤ Yp < 0.3 is 68% of the integral in
0 ≤ Yp < 0.3. Similarly, the 95% CL lower limit is Yp > 0.14 and
the 99% CL lower limit is Yp > 0.065.

Fig. 12.— Joint two-dimensional marginalized constraint on the
time-independent (constant) dark energy equation of state, w, and
the curvature parameter, Ωk. The contours show the 68% and
95% CL from WMAP+BAO+H0 (red), WMAP+BAO+H0+D∆t
(black), and WMAP+BAO+SN (purple).

Li et al. 2008; Wang 2008, 2009; Vikhlinin et al. 2009b,
for applications of the 5-year distance prior.)

We give a summary of our limits on dark energy pa-
rameters in Table 4.

5.1. Constant Equation of State: Flat Universe
In a flat universe, Ωk = 0, an accurate determina-

tion of H0 helps improve a limit on a constant equa-
tion of state, w (Spergel et al. 2003; Hu 2005). Using
WMAP+BAO+H0, we find

w = −1.10± 0.14 (68% CL),

which improves to w = −1.08 ± 0.13 (68% CL) if
we add the time-delay distance out to the lens system
B1608+656 (Suyu et al. 2010, see Section 3.2.5). These
limits are independent of high-z Type Ia supernova data.

The high-z supernova data provide the most strin-
gent limit on w. Using WMAP+BAO+SN, we find
w = −0.980±0.053 (68% CL). The error does not include
systematic errors in supernovae, which are comparable
to the statistical error (Kessler et al. 2009; Hicken et al.
2009b); thus, the error in w from WMAP+BAO+SN
is about a half of that from WMAP+BAO+H0 or
WMAP+BAO+H0+D∆t.

The cluster abundance data are sensitive to w via the
comoving volume element, angular diameter distance,
and growth of matter density fluctuations (Haiman et al.
2001). By combining the cluster abundance data and
the 5-year WMAP data, Vikhlinin et al. (2009b) found
w = −1.08 ± 0.15 (stat) ± 0.025 (syst) (68% CL) for a
flat universe. By adding BAO of Eisenstein et al. (2005)
and the supernova data of Davis et al. (2007), they found
w = −0.991 ± 0.045 (stat) ± 0.039 (syst) (68% CL).
These results using the cluster abundance data (also see
Mantz et al. 2010c) agree well with our corresponding
WMAP+BAO+H0 and WMAP+BAO+SN limits.

5.2. Constant Equation of State: Curved Universe

Figure 3.1: Constraints on the vacuum energy density ΩΛ and spatial curvature
parameter Ωk from a combination of CMB and LSS observations (left three figures
taken from [298]) . This provides evidence for a spatially flat geometry of our universe.
However, note that the constraint depends on assumptions about the dark energy
equation of state parameter wΛ (rightmost figure taken from [23]).

Observations of the Cosmic Microwave Background (CMB) are well-described
by the so-called “concordance model” (or ΛCDM model). It contains four com-
ponents of “matter”: radiation (rad), atoms (or “baryons”, b), (cold) dark matter
(dm) and vacuum energy (or dark energy, Λ) with wΛ ≈ 1. Combining probes
of the CMB such as the WMAP experiment with Large-Scale Structure (LSS)
observations, one can fit the parameters of the model to the data, which yields
the following values for the Ωi [23]:

Ωrad ≈ 3.4× 10−5 , Ωb ≈ 0.04 , Ωdm ≈ 0.23 , ΩΛ ≈ 0.73 , (3.15)
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Fig. 11.— Constraint on the time-independent (constant) dark energy equation of state, w, and the present-day dark energy density, ΩΛ,
assuming a flat universe, Ωk = 0 (§ 5.2). Note that we have imposed a prior on w, w > −2.5. (Left) Joint two-dimensional marginalized
distribution of w and Ωk. The contours show the 68% and 95% CL. The WMAP-only constraint (light blue) is compared with WMAP+HST
(gray), WMAP+BAO (red), WMAP+SN (dark blue), and WMAP+BAO+SN (purple). This figure shows how powerful a combination
of the WMAP data and the current SN data is for constraining w. (Middle) One-dimensional marginalized constraint on w for a flat
universe from WMAP+HST (gray), WMAP+BAO (red), and WMAP+SN (dark blue). The WMAP+BAO+SN result (not shown) is
essentially the same as WMAP+SN. (Right) One-dimensional marginalized constraints on ΩΛ for a flat universe from WMAP+HST (gray),
WMAP+BAO (red), and WMAP+SN (dark blue). The WMAP+BAO+SN result (not shown) is essentially the same as WMAP+SN.
See Fig. 12 for the constraints on w for non-flat universes. Note that neither BAO nor SN alone is able to constrain w: they need the
WMAP data for lifting the degeneracy. Note also that BAO+SN is unable to lift the degeneracy either, as BAO needs the sound horizon
size measured by the WMAP data.

Fig. 12.— Joint two-dimensional marginalized constraint on the time-independent (constant) dark energy equation of state, w, and the
curvature parameter, Ωk (§ 5.3). Note that we have imposed a prior on w, w > −2.5. The contours show the 68% and 95% CL. (Left)
The WMAP-only constraint (light blue; 95% CL) compared with WMAP+BAO+SN (purple; 68% and 95% CL). This figure shows how
powerful the extra distance information from BAO and SN is for constraining Ωk and w simultaneously. (Middle) A blow-up of the left
panel, showing WMAP+HST (gray), WMAP+BAO (red), WMAP+SN (dark blue), and WMAP+BAO+SN (purple). This figure shows
that we need both BAO and SN to constrain Ωk and w simultaneously: WMAP+BAO fixes Ωk, and WMAP+SN fixes w. (Right) The
same as the middle panel, but with the BAO prior re-weighted by a weaker BAO prior from the SDSS LRG sample (Eisenstein et al.
2005). The BAO data used in the other panels combine the SDSS main and LRG, as well as the 2dFGRS data (Percival et al. 2007). The
constraints from these are similar, and thus our results are not sensitive to the exact form of the BAO data sets. Note that neither BAO
nor SN alone is able to constrain w or Ωk: they need the WMAP data for lifting the degeneracy. Note also that BAO+SN is unable to lift
the degeneracy either, as BAO needs the sound horizon size measured by the WMAP data.

that is tilted with respect to the WMAP+BAO line.
The WMAP+BAO and WMAP+SN lines intersect
at Ωk ∼ 0 and w ∼ −1, and the combined con-
straints are −0.0179 < Ωk < 0.0081 (95% CL) and
−0.14 < 1 + w < 0.12 (95% CL).46 It is remarkable
that the limit on Ωk is as good as that for a vacuum
energy model, −0.0178 < Ωk < 0.0066 (95% CL). This
is because the BAO and SN yield constraints on Ωk and
w that are complementary to each other, breaking the
degeneracy effectively.

46 The 68% limits are Ωk = −0.0049+0.0066
−0.0064 and w =

−1.006+0.067
−0.068 (WMAP+BAO+SN).

These limits give the lower bounds to the curvature
radii of the observable universe as Rcurv > 33 h−1Gpc
and Rcurv > 22 h−1Gpc for negatively and positively
curved universes, respectively.

Is the apparent “tension” between the WMAP+BAO
limit and the WMAP+SN limit in Fig. 12 the signa-
ture of new physics? We have checked this by the BAO
distance scale out to z = 0.35 from the SDSS LRG sam-
ple, obtained by Eisenstein et al. (2005), instead of the
z = 0.2 and z = 0.35 constraints based on the combi-
nation of SDSS LRGs with the SDSS main sample and
2dFGRS (Percival et al. 2007). While is it not an inde-
pendent check, it does provide some measurement of the

Figure 3.2: Constraints on the dark energy ratio ΩΛ and equation of state parameter
wΛ from combined observations of the CMB and LSS. Figures taken from [298].

Figure 3.3: WMAP 7yr foreground-reduced Full Sky Map. Figure taken from [299].

with wΛ ≈ −1. The spatial curvature is constraint to be Ωk ≈ 0.0023+0.0054
−0.0056 [23]

for wΛ = −1. However, the constraint depends on the particular dark energy
model considered (cf. Fig. 3.2).

Moreover, one observes tiny ripples in the temperature fluctuations at the
level of δT/T ∼ 10−5 around the average CMB temperature of T ≈ 2.7K
(cf. Fig. 3.3). These fluctuations are adiabatic, (nearly) scale-invariant and
Gaussian. It is these observed, tiny structures which can be interpreted as the
as quantum fluctuations of the inflaton field.

3.3 Slow-Roll Inflation

Inflation corresponds to an accelerated expansion, ä > 0. From Eq. (3.6), we see
that this requires p < −3ρ. We will be moreover interested in slow-roll inflation
where the space-time is approximately de Sitter. That is, we are interested in
solutions of the form a ∼ eHt with H ≈ const. As we can see from Tab. 3.1, to
realize an exponential expansion of the universe, we must have an equation of
state parameter w ≈ −1. This can be achieved by considering a scalar field φ
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which is slowly rolling down its potential, i. e. when the potential energy, V (φ),
dominates over the kinetic energy, 1

2
φ̇2.

Consider a scalar field φ minimally coupled to gravity. The dynamics are
described by the sum of the Einstein-Hilbert action SEH and the action Sφ with
the canonical kinetic term and the potential V (φ),

S = SEH + Sφ =

∫
d4x
√−g

(
M2

P

2
R +

1

2
gµν∇µφ∇νφ− V (φ)

)
. (3.16)

The self-interactions of φ are encoded in V (φ). The energy-momentum tensor
associated with this scalar is

Tµν ≡ −
2√−g

δSφ
δgµν

= ∂µφ∂νφ− gµν
(

1

2
∂σφ∂σφ+ V (φ)

)
. (3.17)

Restricting to the case of a homogeneous scalar field φ(~x, t) ≡ φ(t) and to the
FRW metric for gµν , the energy-momentum tensor takes the form of a perfect
fluid, Eq. (3.4), with

ρφ =
1

2
φ̇2 + V (φ) , (3.18)

pφ =
1

2
φ̇2 − V (φ) . (3.19)

The equation of state parameter wφ becomes

wφ ≡
pφ
ρφ

=
1
2
φ̇2 − V (φ)

1
2
φ̇2 + V (φ)

. (3.20)

Thus, if the potential energy V (φ) dominates over the kinetic energy 1
2
φ̇2,

a scalar field can cause accelerated expansion of the universe. The system
consisting of the homogeneous scalar field and the FRW spacetime is described
by

φ̈+ 3Hφ̇+
∂V

∂φ
= 0 , (3.21)

and
H2 =

1

3M2
P

(
1

2
φ̇2 + V (φ)

)
. (3.22)

Note that the second term in Eq. (3.21) causes significant Hubble friction due
to the expanding universe if the value of the H is large enough.

3.3.1 Slow-Roll Parameters

The equation for the acceleration can be written as

ä

a
= −1

6
(ρφ + 3pφ) ≡ H2(1− εH) , (3.23)



3.3. SLOW-ROLL INFLATION 37

with

εH ≡
3

2
(wφ + 1) =

1

2

φ̇2

H2
. (3.24)

This slow-roll parameter εH is related to the evolution of the Hubble parameter
H as

εH = − ḢH2
. (3.25)

Accelerated expansions occurs as long as εH < 1. This phase of accelerated
expansion will last long if

|φ̈| � |3Hφ̇| ,
∣∣∣∣
∂V

∂φ

∣∣∣∣ , (3.26)

which is ensured if also the second slow-roll parameter ηH is sufficiently small,

ηH ≡ −
φ̈

Hφ̇
< 1 . (3.27)

The slow-roll conditions εH, |ηH| < 1 can also be expressed in terms of the
potential:

ε(φ) ≡ M2
P

2

(
V ′

V

)2

, (3.28)

and
η(φ) ≡M2

P

V ′′

V
, (3.29)

where the primes denote derivatives of V with respect to φ. Note that ε char-
acterizes the slope of the potential while η characterizes the curvature of the
potential. Slow-roll inflation requires both ε and |η| to be � 1.

The equations of motion in the slow-roll regime, ε, |η| � 1, are given by

H2 ≈ V (φ)

3M2
P

≈ const. , (3.30)

and
φ̇ ≈ − V

′

3H , (3.31)

such that the scale factor is
a(t) ∼ eHt . (3.32)

Note that using the slow-roll equation of motion,H2 ∼ V/M2
P and the definition

of the mass of a scalar as m2
φ = V ′′, we can see that the slow-roll parameter η

is essentially the ratio of the inflaton mass to the Hubble scale,

η ∼
m2
φ

H2
. (3.33)
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reality, inflation ends at some finite time, and the approximation (60) although valid at early times,
breaks down near the end of inflation. So the surface τ = 0 is not the Big Bang, but the end of
inflation. The initial singularity has been pushed back arbitrarily far in conformal time τ ! 0, and
light cones can extend through the apparent Big Bang so that apparently disconnected points are
in causal contact. In other words, because of inflation, ‘there was more (conformal) time before
recombination than we thought’. This is summarized in the conformal diagram in Figure 9.

6 The Physics of Inflation

Inflation is a very unfamiliar physical phenomenon: within a fraction a second the universe grew
exponential at an accelerating rate. In Einstein gravity this requires a negative pressure source or
equivalently a nearly constant energy density. In this section we describe the physical conditions
under which this can arise.

6.1 Scalar Field Dynamics

reheating

Figure 10: Example of an inflaton potential. Acceleration occurs when the potential energy of
the field, V (φ), dominates over its kinetic energy, 1

2 φ̇
2. Inflation ends at φend when the

kinetic energy has grown to become comparable to the potential energy, 1
2 φ̇

2 ≈ V . CMB
fluctuations are created by quantum fluctuations δφ about 60 e-folds before the end of
inflation. At reheating, the energy density of the inflaton is converted into radiation.

The simplest models of inflation involve a single scalar field φ, the inflaton. Here, we don’t
specify the physical nature of the field φ, but simply use it as an order parameter (or clock) to
parameterize the time-evolution of the inflationary energy density. The dynamics of a scalar field
(minimally) coupled to gravity is governed by the action

S =
∫

d4x
√−g

[
1
2
R +

1
2
gµν∂µφ∂νφ− V (φ)

]
= SEH + Sφ . (61)

The action (61) is the sum of the gravitational Einstein-Hilbert action, SEH, and the action of a
scalar field with canonical kinetic term, Sφ. The potential V (φ) describes the self-interactions of the

31

Figure 3.4: Prototype potential for canonical, single-field, slow-roll inflation. Figure
taken from [27].

In the slow-roll regime, the two sets of slow-roll parameters εH, ηH and ε, η
are related by

εH ≈ ε , ηH ≈ η − ε ; (3.34)

A prototypical example for a potential suitable for single-field inflation is shown
in Fig. 3.4.

Inflation ends at a value φend satisfying

εH(φend) ≡ 1 , ε(φend) ≈ 1 . (3.35)

Another important quantity which we have to define is the number of e-folds
before the end of inflation Ne,

Ne(φ) ≡ ln
aend
a

=

tend∫

t

H dt . (3.36)

Ne measures by how much the scale factor increases in powers of e, e. g. Ne = 60
means that a(t) grows by a factor of e60 ∼ 1026.

Using the slow-roll equations Eqs. (3.30) and (3.31), this can be written as
an integral over dφ,

Ne(φ) =

φend∫

φ

H
φ̇
dφ ≈

φ∫

φend

V

V ′
dφ , (3.37)

or in terms of the slow-roll parameters

Ne(φ) =

φ∫

φend

dφ√
2εH
≈

φ∫

φend

dφ√
2ε
. (3.38)
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To solve the horizon and flatness problems puts a lower bound on the total
number of e-folds during inflation,

Ntot ≡ ln
aend
astart

& 60 . (3.39)

The observed CMB fluctuations are created at roughly NCMB ≈ 40−60 e-folds
before the end of inflation. The precise values for Ntot and NCMB depend on
both the energy scale of inflation and the details of reheating.

3.3.2 Classes of Inflationary Models

Inflationary models can be classified according to the number of active fields
involved and the distance of field space traversed during inflation. The former
classifies the models into (effectively) single-field and multi-field models, while
the latter can be classified as small-field or large-field models.

Single-Field Models of Inflation

Any inflationary model is specified by the inflaton kinetic term and potential
and by its coupling to gravity. Up to now, we have restricted ourselves to single-
field slow-roll inflation models with actions of the form Eq. (3.16). There is a
useful criterion to classify models of this type by checking whether the potential
V (φ) allows the inflaton φ to travel a large or small distance ∆φ (in Planck
units) between the creation of CMB fluctuations and the end of inflation.

Small-Field Inflation All small-field models of inflation have ∆φ < MP and
therefore predict a very small amplitude for the production of gravitational
waves, as we will see in Sec. 3.4.4. This class of models is typically obtained
from the spontaneous breaking of some symmetry and inflation takes place
in an unstable vacuum displaced from a stable minimum of the potential. A
simple example is a Higgs-type potential

V (φ) = V0

[
1−

(
φ

µ

)2
]2

. (3.40)

Phenomenological models are often based on the Coleman-Weinberg potential
of the form

V (φ) = V0

[(
φ

µ

)4(
ln

(
φ

µ

)
− 1

4

)
+

1

4

]
, (3.41)

which arises for the radiative breaking of a symmetry, e. g. in electroweak or
grand unified theories and remains popular for inflationary model-building (cf.
e. g. [300]). We will see a supersymmetric version of this potential later on,
when we discuss hybrid models of inflation in supergravity in Secs. 5.2.1 and
5.2.2.
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V (φ). The different possibilities for V (φ) can be classified in a useful way by determining whether
they allow the inflaton field to move over a large or small distance ∆φ ≡ φcmb − φend, as measured
in Planck units.

Figure 11: Large-field inflation. In an important class of inflationary models the inflationary dy-
namics is driven by a single monomial term in the potential, V (φ) ∝ φp. In these models
the inflaton field evolves over a super-Planckian range during inflation, ∆φ >M pl, and a
large amplitude of gravitational waves is produced by quantum mechanical fluctuations
(see Lecture 2).

1. Small-Field Inflation

In small-field models the field moves over a small (sub-Planckian) distance: ∆φ < Mpl. This
is relevant for future observations because small-field models predict that the amplitude of the
gravitational waves produced during inflation is too small to be detected (see Lecture 2). The
potentials that give rise to such small-field evolution often arise in mechanisms of spontaneous
symmetry breaking, where the field rolls off an unstable equilibrium toward a displaced vacuum
(see Fig. 10). A simple example is the Higgs-like potential

V (φ) = V0

[
1−

(
φ

µ

)2
]2

. (94)

More generally, small-field models can be locally approximated by the following expansion

V (φ) = V0

[
1−

(
φ

µ

)p]
+ · · · , (95)

where the dots represent higher-order terms that become important near the end of inflation
and during reheating.

Historically, a famous inflationary potential is the Coleman-Weinberg potential [2, 3]

V (φ) = V0

[(
φ

µ

)4(
ln
(
φ

µ

)
− 1

4

)
+

1
4

]
, (96)

which arises as the potential for radiatively-induced symmetry breaking in electroweak and
grand unified theories. Although the original values of the parameters V0 and µ based on
the SU(5) theory are incompatible with the small amplitude of inflationary fluctuations, the
Coleman-Weinberg potential remains a popular phenomenological model (see e.g. [17]).
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Figure 3.5: Typical potential for large-field chaotic inflation. Figure taken from [27].

Large-Field Inflation Large-field models are interesting since ∆φ > MP

can produce amounts of gravitational waves observable in the near future.
The prototype examples are chaotic inflation models based on a potential
dominated by a single monomial

V (φ) = λφp . (3.42)

A typical potential of this type is shown in Fig. 3.5.

An important feature of chaotic inflation is that the slow-roll conditions
are independent of the coupling constant λ and are only satisfied for φ �
MP . However, to produce the observed amount of density fluctuations requires
λ� 1, thereby guaranteeing V � M4

P such that quantum gravity corrections
are not necessarily important. We will discuss the simplest of these models,
V (φ) ∼ m2φ2, in Sec. 3.5.

2. Large-Field Inflation

In large-field models the inflaton field starts a large field values and then evolves to a minimum
at the origin φ = 0. If the field evolution is super-Planckian, ∆φ >M pl, the gravitational
waves produced by inflation should be observed in the near future.

The prototypical large-field model is chaotic inflation where a single monomial term dominates
the potential (see Fig. 11)

V (φ) = λpφ
p . (97)

For such a potential the slow-roll parameters are small for super-Planckian field values,
φ ! Mpl (notice that the slow-roll conditions are independent of the coupling constant λp).
However, to arrange for a small amplitude of density fluctuations (see Lecture 2) the inflaton
self-coupling has to be very small, λp " 1. This condition automatically guarantees that the
potential energy (density) is sub-Planckian, V " M4

pl, and quantum gravity effects are not
necessarily important (but see §28 in Lecture 5).

One of the most elegant inflationary models is natural inflation where the potential takes the
following form (see Fig. 12)

V (φ) = V0

[
cos
(
φ

f

)
+ 1
]

. (98)

This potential often arises if the inflaton field is taken to be an axion. Depending on the
parameter f the model can be of the small-field or large-field type. However, it is particularly
attractive to consider natural inflation for large-field variations, 2πf > Mpl, since for axions
a shift symmetry can be employed to protect the potential from correction terms even over
large field ranges (see §28).

2πf0

Figure 12: Natural Inflation. If the periodicity 2πf is super-Planckian the model can natu-
rally support a large gravitational wave amplitude.

6.5.2 Beyond Single-Field Slow-Roll

The possibilities for getting inflationary expansion are (maybe frustratingly) varied. Inflation is a
paradigm, a framework for a theory of the early universe, but it is not a unique theory. A large
number of phenomenological models has been proposed with different theoretical motivations and
observational predictions. For the majority of these lectures we will focus on the simplest single-
field slow-roll models that we just described. However, in this short section we want to relieve

37

Figure 3.6: Typical potential for natural inflation. Figure taken from [27].
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Natural Inflation A very elegant inflationary model, natural inflation [260],
relies on potentials of the form

V (φ) = V0

[
cos

(
φ

f

)
+ 1

]
, (3.43)

which arise if the inflaton is identified with an axion. Whether this leads to
small-field or large-field inflation depends of course on the value of f . Even
though it is perhaps more appealing to have natural inflation with 2πf > MP ,
in particular, because for axions a shift symmetry can protect the above form
of the potential over a large range of field values.

Beyond Single-Field Models

All of the model types presented so far are based on a few common assumptions.

1. Only a single field φ has important dynamics during inflation,

2. the kinetic terms for φ are canonical,

3. φ is minimally-coupled to gravity,

4. and gravity is described by the Einstein-Hilbert action.

In this thesis, we will focus on models which satisfy these assumptions at
least approximately. Nevertheless, we now briefly comment on some ways to
go beyond those assumptions to some extent. For a thorough discussion of
inflationary model building cf. e. g. [217].

Multi-Field Models of Inflation First, we could consider models where
more than one field contributes significantly to the dynamics during inflation.
However, this leads to many possible inflationary trajectories through field
space and different ways to produce fluctuations. Thereby, the theory loses a
lot of predictive power. For some examples see e. g. [246].

From a string theory perspective, models with multiple dynamical fields are
not uncommon. For example, in the closed string sector one often has multiple
axions or Kähler moduli which may contribute or in the open string sector the
positions of moving D-branes may also be relevant (e. g. a D3-brane moving
in a six-dimensional compact space gives rise to six scalar fields parametrizing
its position inside the compact space). However, depending on the details of
(bulk) moduli stabilization one may assume that all but one of the many scalar
fields are effectively fixed to some value during inflation. This is the viewpoint
we will take throughout this thesis: Even though there are multiple scalar fields
around inflation proceeds along a single direction in field space.
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Non-Canonical Kinetic Terms One can generalize the kinetic term of the
scalar field φ such that the Lagrangian takes the form

Lφ = F (φ,X)− V (φ) , (3.44)

for some function F (φ,X) with

X ≡ 1

2
gµν∂µφ∂νφ . (3.45)

This can lead to the very interesting possibility that inflation is actually driven
by the kinetic term and occurs even for potentials which are too steep for slow-
roll inflation. A particular example coming from string theory is so-called DBI
inflation [301,302], where the form of the function F (φ,X) is determined from
the DBI action of a D3-brane moving in a warped throat background. It has
a very distinct phenomenology since it leads to rather large non-gaussianities
(compared to single-field slow-roll inflation).

Non-Minimal Couplings to Gravity or Modified Gravity Other options
to modify the models include to either introduce non-minimal couplings of φ
to gravity or modify the gravity action itself. The first option, introducing non-
minimal couplings to gravity, is in principle a possibility, but in practice one can
employ a field redefinition to get back a minimally-coupled scalar. The same
is true for the simplest example of a UV modification of gravity, the so-called
f(R) theories: They can also be transformed into a theory with a minimally-
coupled scalar φ and some potential V (φ). Thus, these two possibilities are
essentially useful to obtain a potential suitable for slow-roll inflation after a
field redefinition. This is the central idea behind the recently proposed new
models of Higgs inflation, cf. e. g. [30, 303–310].1

3.4 Inflationary Perturbations

One part of the big success of the inflationary paradigm hinges crucially on the
prediction of the primordial spectrum of density fluctuations [8–11], which can
be compared with the temperature fluctuations we observe in the CMB today.
The details of this important calculation are reviewed e. g. in [24–27]. Here, we
only outline the basic steps to setup the notation. What we will be interested
in are the predictions for models of slow-roll inflation (cf. Sec. 3.4.2). Moreover,
we discuss the so-called Lyth bound and its implications in Sec. 3.4.4.

The basic idea behind cosmological perturbation theory is to split all fields
X(t, ~x) into a homogeneous background part X̄(t) depending only on cosmic
time and a perturbation δX(t, ~x) ≡ X(t, ~x)− X̄(t) depending also on ~x. Here

1However, see [31–33] for some critical remarks on the naturalness of these models of
Higgs inflation and the validity of the effective field theory approach.



3.4. INFLATIONARY PERTURBATIONS 43

X(t, ~x) represents any of the fields, i. e. the metric gµν or matter fields (Tµν
can be written in terms of φ, ρ, p etc.). Such a perturbative treatment is justi-
fied since at the time of decoupling the universe was very homogeneous with
inhomogeneities at the order of δρ/ρ ∼ 10−5. For small perturbations, one can
use linear perturbation theory by expanding the Einstein equations to linear
order in the perturbations δX,

δGµν = M2
P δTµν . (3.46)

However, this procedure suffers from an important complication since the split
into background value and perturbation depends on the particular choice of
coordinates, i. e. on a choice of gauge. One can trade metric fluctuations for
density fluctuations and vice versa via gauge transformations. Thus, one has
to be very careful in order to obtain meaningful, physical results. In particular,
it is useful to consider gauge-invariant combinations of perturbations.

3.4.1 Scalar-Vector-Tensor Decomposition

A universe which is spatially flat and in addition homogeneous and isotropic has
a lot of symmetries. As a consequence, we can decompose the perturbations
of the metric gµν and stress-energy tensor Tµν into representations of these
symmetries. More precisely, we can decompose them into scalar (S), vector (V)
and tensor (T) representations under rotations. Additionally, it is convenient
to go into Fourier space, i. e.

δX~k =

∫
d3~xX(t, ~x) ei

~k·~x , (3.47)

for all perturbations, because the translation invariance of the equations of
motion implies that the different Fourier modes decouple. Thus, we can treat
each Fourier mode independently and, in particular, consider rotations around
a single wavevector ~k. For modes with well-defined helicity m, rotating around
~k by an angle ψ leads to a multiplication by a factor of eimψ, i. e.

δX~k → eimψ δX~k . (3.48)

The helicities for scalars, vectors and tensors are 0, ±1 and ±2, respectively.

The upshot of the SVT decomposition of the Fourier modes is that each set
of perturbations evolves independently at the linear level. This is an important
simplification since we can treat them separately. We will now introduce the
notations for the decompositions of metric and density perturbations.

Metric Perturbations

During inflation we have perturbations around the homogeneous background
values of the inflaton φ̄(t) and metric ḡµν(t),

φ(t, ~x) = φ̄(t) + δφ(t, ~x) , gµν(t, ~x) = ḡµν(t) + δgµν(t, ~x) . (3.49)
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We parametrize the metric as follows

ds2 = gµνdx
µdxν

= −(1 + 2Φ)dt2 + 2aBidx
idt+ a2 [(1− 2Ψ)δij + Eij] dx

idxj .
(3.50)

In position space, the SVT decomposition is given by

Bi ≡ ∂iB − Si , (3.51)

where ∂iSi = 0 (i. e. transversal vector), and by

Eij ≡ 2∂i∂jE + 2 (∂iFj + ∂jFi) + hij , (3.52)

with ∂iFi and hii = ∂ihij = 0 (i. e. traceless, transversal symmetric tensor).

Inflation does not produce vector perturbations Si, Fi and they both de-
cay with the expansion of the universe. Thus, in the following, we concentrate
on scalar and tensor perturbations, which lead to observable density fluctua-
tions and gravitational waves. The scalar fluctuations are not gauge invariant
(as opposed to the tensor perturbations). In a similar fashion, we can obtain
perturbations of the stress-energy tensor in such a decomposition.

Gauge-Invariant Combinations

To avoid problems with gauge-dependencies, it is very useful to introduce
gauge-invariant combinations formed out of the metric and matter perturba-
tions [311]. There are two such combinations which are commonly used. The
first one is [312]

− ζ ≡ Ψ +
H
˙̄ρ
δρ , (3.53)

which can be interpreted geometrically as measuring the spatial curvature of
hypersurfaces with constant density ρ. ζ has the nice property that it remains
constant outside the horizon for adiabatic matter perturbations, i. e. perturba-
tions satisfying

δpen ≡ δp−
˙̄p
˙̄ρ
δρ = 0 . (3.54)

This condition is always satisfied for single-field models of slow-roll inflation
and thus the modes ζ~k do not evolve outside the horizon, i. e. for k � aH.
Note that during slow-roll inflation one has

− ζ ≈ Ψ +
H
˙̄φ
δφ . (3.55)

By choosing a gauge with spatially flat hypersurfaces, the perturbation ζ is
the dimensionless density perturbation ∼ δρ/(ρ̄+ p̄). Thus, ζ is the fluctuation
one can relate to observations of the CMB and LSS (which is however quite a
non-trivial task and beyond the scope of the discussion presented here).
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The second gauge-invariant combination often used is

R ≡ Ψ− H
ρ̄+ p̄

δq , (3.56)

where δq is the scalar part of T 0
i , i. e. T 0

i = ∂iδq. During inflation, one has
T 0
i = − ˙̄φ∂iδφ such that

R = Ψ +
H
˙̄φ
δφ . (3.57)

R can also be interpreted geometrically as measuring the spatial curvature of
comoving hypersurfaces, i. e. hypersurfaces with constant φ.

One can show via the linearized Einstein equations that (cf. e. g. Appendix
A of [27])

− ζ = R+
k2

(aH)2

2ρ̄

3(ρ̄+ p̄)
ΨB , (3.58)

where ΨB is one of the Bardeen potentials [311]. Now ζ and R are equal both
on superhorizon scales k � aH and during slow-roll inflation (cf. Eqs. (3.55)
and (3.57)). Hence, the correlation functions of ζ and R are equal at horizon
crossing and, more importantly, they do not evolve on superhorizon scales. This
latter point is important since it allows one to make predictions without having
to go into the details of the reheating phase.

3.4.2 Predictions from Slow-Roll Inflation

Definitions: Scalar and Tensor Power Spectrum

We are interested in the statistical properties of the fluctuations of R or ζ. The
(scalar) power spectrum is defined as

〈
R~kR~k′

〉
≡ (2π)3δ(~k − ~k′)PR(k) , (3.59)

and

∆2
s ≡ ∆2

R =
k3

2π2
PR(k) , (3.60)

where 〈. . . 〉 is the ensemble average of the fluctuations. The scale-dependence
of the power spectrum is expressed in terms of the scalar spectral index

ns − 1 ≡ d ln ∆2
s

d ln k
. (3.61)

Scale invariance corresponds to ns = 1. Similarly, one can define the running
of the spectral index

αs =
dns
d ln k

. (3.62)
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Typically, a power law form of the primordial power spectrum is assumed, i. e.

∆2
s(k) = As(k?)

(
k

k?

)ns(k?)−1+ 1
2
αs(k?) ln(k/k?)

, (3.63)

with k? denoting some arbitrary reference scale.

For Gaussian fluctuations, the power spectrum encodes the entire infor-
mation. Non-Gaussianity shows up only in higher-order correlation functions
and no large non-Gaussianties are expected for single-field models of slow-roll
inflation [313, 314]. Therefore, we do not consider non-Gaussianities in this
thesis.

The power spectrum of the tensor fluctuations is defined in a similar way,
but with taking into account the two independent polarizations of hij. Thus,
for h ≡ h+, h×, we define their power spectrum as

〈
h~kh~k′

〉
= (2π)3δ(~k + ~k′)Ph(k) , and∆2

h =
k3

2π2
Ph(k) . (3.64)

The tensor power spectrum is now obtained as

∆2
t ≡ 2∆2

h , (3.65)

and the tensor spectral index is defined analogously to the scalar spectral index
by

nt ≡
d ln ∆2

t

d ln k
. (3.66)

Slow-Roll Predictions

After a very lengthy calculation one arrives at the following expressions for the
scalar and tensor power spectra in single-field models of slow-roll inflation in
terms of V (φ) and the two slow-roll parameters ε and η

The scalar and tensor power spectrum are fully specified in terms of V (φ)
and ε as

∆2
s(k) ≈ 1

24π2

V

M4
P

1

ε

∣∣∣
k=aH

, (3.67)

and
∆2
t (k) ≈ 2

3π2

V

M4
P

∣∣∣
k=aH

. (3.68)

The spectral indices ns and nt at leading order in the slow-roll parameters are
given by

ns − 1 ≈ 2 η? − 6 ε? , (3.69)

and
nt ≈ −2 ε? , (3.70)
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respectively. The running αs of the scalar spectral index ns starts at second
order in the slow-roll parameters,

αs = −16 ε?η? + 24 ε2? + 2 ξ? , (3.71)

where ξ is another slow-roll parameter defined as

ξ ≡M4
P

V ′V ′′′

V 2
, (3.72)

with the primes denoting again derivatives of V with respect to φ.

The tensor-to-scalar ratio is given by

r ≡ ∆2
t

∆2
s

= 16 ε? . (3.73)

The (. . . )? indicates that the quantity has to be evaluated at horizon crossing,
i. e. when k = (aH)?. Notice that Eqs. (3.70) and (3.73) imply a consistency
relation,

r = −8nt , (3.74)

for all models of slow-roll inflation with a single active field.

To summarize the above, single-field slow-roll inflation with ε, |η| � 1
generically predicts

• a nearly scale-invariant spectral index ns ≈ 1 +O(ε, η),

• a small tensor-to-scalar ratio r ≈ O(10 ε)� 1,

• a very small running αs ≈ O(10 ε η, 10 ε2, ξ2)� 1.

3.4.3 Current Observational Evidence for Inflation

We summarize the current constraints on inflationary models from a combina-
tion of CMB and LSS data [23] in Tab. 3.2.

A very important lesson from the observational data is that the CMB
fluctuations are scale-invariant, Gaussian and adiabatic.

Scale-Invariance As we can see from the current constraints of ns obtained
from the CMB and LSS data, cf. Tab. 3.2, the spectrum is nearly scale-invariant
ns ≈ 1, consistent with the expectation from slow-roll inflation. Moreover, the
data now excludes a perfectly scale-invariant spectrum by more than 2σ and
seems to prefer a spectral index ns < 1 (i. e. slightly tilted red). Actually, if
inflation ends at some point, H is time-dependent which affects the time at
which each Fourier mode exits the horizon. Therefore, a phase of inflation in
the early universe predicts a deviation from perfect scale-invariance.
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Parameter WMAP 7-year Mean WMAP+BAO+H0 Mean
amplitude of scalar power spectrum

∆2
R(k0) (2.43± 0.11)× 10−9 (2.430± 0.091)× 10−9

no running, αs = 0
ns 0.967± 0.014 0.968± 0.012
r < 0.36 (95%CL) < 0.24 (95%CL)

tensors & running, r 6= 0 & αs 6= 0
ns 1.076± 0.065 1.070± 0.060
r < 0.49 (95%CL) < 0.49 (95%CL)
αs −0.048± 0.029 −0.042± 0.024

non-Gaussianities fNL
Local −10 < f localNL < 74 (95%CL) −

Equilateral −214 < f equilNL < 266 (95%CL) −
Orthogonal −410 < f orthNL < 6 (95%CL) −

Table 3.2: Constraints on inflationary models from a combination of CMB and LSS
data [23]. The reference scale is k0 = 0.002 Mpc−1 and the errors indicate the 68%
confidence levels (CL).
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(We found a = 0.67±0.09 and 0.43±0.12 for rout = 6r500.
See Table 13.) These results are somewhat puzzling -
the X-ray observations directly measure gas out to r500,
and thus we would expect to find a ≈ 1 at least out to
r500. This result may suggest that, as we have shown in
Section 7.3, the problem is not with the outskirts of the
cluster, but with the inner parts where the cooling flow
has the largest effect.

The relative amplitudes between high and low LX clus-
ters suggest that a significant amount of pressure is miss-
ing in low mass (M500 ! 4×1014 h−1 M") clusters, even
if we scale all the results such that high-mass clusters
are forced to have a = 1. A similar trend is also seen
in Figure 3 of Melin et al. (2010). This interpretation is
consistent with the SZ power spectrum being lower than
theoretically expected. The SPT measures the SZ power
spectrum at l " 3000. At such high multipoles, the con-
tributions to the SZ power spectrum are dominated by
relatively low-mass clusters, M500 ! 4 × 1014 h−1 M"
(see Figure 6 of Komatsu & Seljak 2002). Therefore,
a plausible explanation for the lower-than-expected SZ
power spectrum is a missing pressure (relative to theory)
in lower mass clusters.

Scaling relations, gas pressure, and entropy of low-
mass clusters and groups have been studied in the
literature.41 Leauthaud et al. (2010) obtained a rela-
tion between LX of 206 X-ray-selected galaxy groups
and the mass (M200) derived from the stacking anal-
ysis of weak lensing measurements. Converting their
best-fitting relation to r200–LX relation, we find r200 =
1.26 h−1 Mpc

E0.89(z) [LX/(1044 h−2 erg s−1)]0.22. (Note that
the pivot luminosity of the original scaling relation is
2.6 × 1042 h−2 erg s−1.) As r500 ≈ 0.65r200, their rela-
tion is ≈ 1σ higher than the fiducial scaling relation that
we adopted (equation (81)). Had we used their scaling
relation, we would find even lower normalizations.

The next generation of simulations or analytical cal-
culations of the SZ effect should be focused more on un-
derstanding the gas pressure profiles, both the amplitude
and the shape, especially in low-mass clusters. New mea-
surements of the SZ effect toward many individual clus-
ters with unprecedented sensitivity are now becoming
available (Staniszewski et al. 2009; Hincks et al. 2009;
Plagge et al. 2010). These new measurements would be
important for understanding the gas pressure in low-mass
clusters.

8. CONCLUSION

With the WMAP 7-year temperature and polariza-
tion data, new measurements of H0 (Riess et al. 2009),
and improved large-scale structure data (Percival et al.
2009), we have been able to rigorously test the stan-
dard cosmological model. The model continues to be
an exquisite fit to the existing data. Depending on
the parameters, we also use the other data sets such
as the small-scale CMB temperature power spectra
(Brown et al. 2009; Reichardt et al. 2009, for the primor-
dial helium abundance), the power spectrum of LRGs
derived from SDSS (Reid et al. 2010a, for neutrino prop-
erties), the Type Ia supernova data (Hicken et al. 2009b,

41 A systematic study of the thermodynamic properties of low-
mass clusters and groups is given in Finoguenov et al. (2007) (also
see Finoguenov et al. 2005a,b).

Fig. 20.— Two-dimensional joint marginalized constraint (68%
and 95% CL) on the primordial tilt, ns, and the tensor-to-scalar
ratio, r, derived from the data combination of WMAP+BAO+H0.
The symbols show the predictions from “chaotic” inflation mod-
els whose potential is given by V (φ) ∝ φα (Linde 1983), with
α = 4 (solid) and α = 2 (dashed) for single-field models, and
α = 2 for multi-axion field models with β = 1/2 (dotted;
Easther & McAllister 2006).

for dark energy), and the time-delay distance to the
lens system B1608+656 (Suyu et al. 2010, for dark en-
ergy and spatial curvature). The combined data sets
enable improved constraints over the WMAP-only con-
straints on the cosmological parameters presented in
Larson et al. (2010) on physically-motivated extensions
of the standard model.

We summarize the most significant findings from our
analysis (also see Table 2, 3, and 4):

1. Gravitational waves and primordial power
spectrum. Our best estimate of the spectral index
of a power-law primordial power spectrum of curva-
ture perturbations is ns = 0.968±0.012 (68% CL).
We find no evidence for tensor modes: the 95% CL
limit is r < 0.24.42 There is no evidence for
the running spectral index, dns/d ln k = −0.022±
0.020 (68% CL). Given that the improvements
on ns, r, and dns/d lnk from the 5-year results
are modest, their implications for models of infla-
tion are similar to those discussed in Section 3.3
of Komatsu et al. (2009a). Also see Kinney et al.
(2008), Peiris & Easther (2008) and Finelli et al.
(2010) for more recent surveys of implications for
inflation. In Figure 20, we compare the 7-year
WMAP+BAO+H0 limits on ns and r to the pre-
dictions from inflation models with monomial po-
tential, V (φ) ∝ φα.

2. Neutrino properties. Better determinations of
the amplitude of the third acoustic peak of the
temperature power spectrum and H0 have led to
improved limits on the total mass of neutrinos,∑

mν < 0.58 eV (95% CL), and the effective num-
ber of neutrino species, Neff = 4.34+0.86

−0.88 (68% CL),
both of which are derived from WMAP+BAO+H0

without any information on the growth of struc-
ture. When BAO is replaced by the LRG power

42 This is the 7-year WMAP+BAO+H0 limit. The 5-year
WMAP+BAO+SN limit was r < 0.22 (95% CL). For comparison,
the 7-year WMAP+BAO+SN limit is r < 0.20 (95% CL). These
limits do not include systematic errors in the supernova data.

Figure 3.7: Contour plot with 68% and 95% confidence level constraints in the ns-r-
plane. The symbols and lines indicate the predictions from two models of single-field
chaotic inflation (solid and dashed lines) and a model of multi-axion inflation (dotted
line). Figure taken from [23].

Gaussianity To get a feeling for the constraints on possible non-Gaussianities,
let us consider the following parametrization which is local in position space
[315]

R(~x) = Rg(~x) +
3

5
f localNL Rg(~x)2 , (3.75)

where Rg is a Gaussian fluctuation. Now for Rg ∼ 10−5 even a value as large
as f localNL ∼ 100 would only lead to a deviation from a Gaussian spectrum of
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Fig. 7.— The WMAP 7-year temperature power spectrum (Larson et al. 2010), along with the temperature power spectra from the
ACBAR (Reichardt et al. 2009) and QUaD (Brown et al. 2009) experiments. We show the ACBAR and QUaD data only at l ≥ 690, where
the errors in the WMAP power spectrum are dominated by noise. We do not use the power spectrum at l > 2000 because of a potential
contribution from the SZ effect and point sources. The solid line shows the best-fitting 6-parameter flat ΛCDM model to the WMAP data
alone (see the 3rd column of Table 1 for the maximum likelihood parameters).

also found that the parameters of the minimal 6-
parameter ΛCDM model derived from two compilations
of Kessler et al. (2009) are different: one compilation
uses the light curve fitter called SALT-II (Guy et al. 2007)
while the other uses the light curve fitter called MLCS2K2
(Jha et al. 2007). For example, ΩΛ derived from
WMAP+BAO+SALT-II and WMAP+BAO+MLCS2K2
are different by nearly 2σ, despite being derived from the
same data sets (but processed with two different light
curve fitters). If we allow the dark energy equation of
state parameter, w, to vary, we find that w derived from
WMAP+BAO+SALT-II and WMAP+BAO+MLCS2K2
are different by ∼ 2.5σ.

At the moment it is not obvious how to estimate sys-
tematic errors and properly incorporate them in the like-
lihood analysis, in order to reconcile different methods
and data sets.

In this paper, we shall use one compilation of
the supernova data called the “Constitution” samples
(Hicken et al. 2009b). The reason for this choice over
the others, such as the compilation by Kessler et al.
(2009) that includes the latest data from the SDSS-II
supernova survey, is that the Constitution samples are
an extension of the “Union” samples (Kowalski et al.
2008) that we used for the 5-year analysis (see Sec-
tion 2.3 of Komatsu et al. 2009a). More specifically,
the Constitution samples are the Union samples plus
the latest samples of nearby Type Ia supernovae opti-
cal photometry from the Center for Astrophysics (CfA)
supernova group (CfA3 sample; Hicken et al. 2009a).

Therefore, the parameter constraints from a combina-
tion of the WMAP 7-year data, the latest BAO data
described above (Percival et al. 2009), and the Consti-
tution supernova data may be directly compared to the
“WMAP+BAO+SN” parameters given in Table 1 and
2 of Komatsu et al. (2009a). This is a useful compari-
son, as it shows how much the limits on parameters have
improved by adding two more years of data.

However, given the scatter of results among different
compilations of the supernova data, we have decided to
choose the “WMAP+BAO+H0” (see Section 3.2.2) as
our best data combination to constrain the cosmologi-
cal parameters, except for dark energy parameters. For
dark energy parameters, we compare the results from
WMAP+BAO+H0 and WMAP+BAO+SN in Section 5.
Note that we always marginalize over the absolute mag-
nitudes of Type Ia supernovae with a uniform prior.

3.2.5. Time-delay Distance

Can we measure angular diameter distances out to
higher redshifts? Measurements of gravitational lensing
time delays offer a way to determine absolute distance
scales (Refsdal 1964). When a foreground galaxy lenses a
background variable source (e.g., quasars) and produces
multiple images of the source, changes of the source lu-
minosity due to variability appear on multiple images at
different times.

The time delay at a given image position θ for a given
source position β, t(θ, β), depends on the angular diam-
eter distances as (see, e.g., Schneider et al. 2006, for a

Figure 3.8: Temperature power spectrum expanded in multipole moments. Figure
taken from [23].

∼ 0.1%. We quoted the current constraint on f localNL (and on two other possible
forms of non-Gaussianities) in Tab. 3.2, which show that the CMB spectrum
is indeed Gaussian to a very high degree. This fits nicely with the way infla-
tion produces density fluctuations via quantum fluctuations of the inflaton.2
Moreover, non-Gaussianities essentially measure how strongly the inflaton field
interacts. Slow-roll inflation, however, requires the self-interactions of the in-
flaton (encoded in its potential) to be very small and thus predicts only a very
small non-Gaussianity fNL ∼ O(ε, η)� 1 [314].

Adiabaticity Single-field inflation generically leads to primordial density per-
turbations which are adiabatic: All density perturbations of “matter” (including
photons, neutrinos, baryons and dark matter) originated from the same cur-
vature perturbation R and thus there is no relative difference in the density
for different “matter” components, only a variation in the total density. Adia-
baticity is sometimes expressed as δ(nnon-rel/nrel) = 0 or

δρnon-rel
ρnon-rel

=
3

4

δρrel
ρrel

, (3.76)

with the indices “non-rel” and “rel” collectively denoting all non-relativistic
(e. g. cold dark matter) and relativistic species (e. g. photons), respectively. The
current CMB data shows no violation of this condition [23], but the search for
a violation is interesting since it would signal multiple fields were dynamically
relevant during inflation [316].

2This is true in a specific gauge, the spatially flat gauge, where Ψ = 0 and R is entirely
determined by the fluctuations δφ.



50 CHAPTER 3. SLOW-ROLL INFLATION

3.4.4 Lyth Bound and Energy Scale of Inflation

There is a huge number of inflationary models consistent with current data
on the CMB fluctuations. An important quantity for discriminating between
different models is the tensor-to-scalar ratio r, because the Lyth bound [213]
implies that r is related to the distance ∆φ traversed in field space during
inflation as

∆φ

MP

= O(1)×
( r

0.01

)1/2

, (3.77)

Thus, large values of r > 0.01 at the sensitivity of current CMB experiments
such as Planck require ∆φ > MP , i. e. are only possible for large-field models
of slow-roll inflation.

In addition, ∆2
s ∼ 10−9 is fixed by observation and ∆2

t ∝ H2 ∼ V . Thus,
an observation of gravitational waves would allow us to constrain the energy
scale of inflation:

V 1/4 ∼
( r

0.01

)1/2

1016 GeV . (3.78)

Hence, if we would observe gravitational waves in the near future (e. g. in the
Planck experiment), inflation would have occurred at energy scales around the
GUT scale.

If only a single field has relevant dynamics during inflation, the scalar
spectral index and the tensor-to-scalar ratio provide direct information about
the inflaton potential V (φ) driving inflation. One may try to use CMB data to
determine the coefficients of a series expansion of V (φ) around φ ≈ φCMB, which
denotes the value of φ when the fluctuations in the CMB became superhorizon.3

3.5 Simple Example: m2 φ2 Chaotic Inflation

To conclude this chapter, we compute the predictions for the simplest model
of single-field slow-roll inflation: Chaotic inflation with potential [214]

V (φ) =
m2

2
φ2 . (3.79)

We can now straightforwardly apply the formulas reviewed in Sec. 3.3 and 3.4.

The slow-roll parameters then become

ε(φ) = η(φ) = 2

(
MP

φ

)2

, (3.80)

which both are small only for values of φ well above the Planck scale,

φ >
√

2MP ≡ φend . (3.81)
3Classically, the inflaton monotonically evolves in time and thus one may use φ and cosmic

time t interchangeably.
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The number of e-folds as a function of φ turns out to be given by

Ne(φ) =
φ2

4M2
P

− 1

2
. (3.82)

Thus, since we must have around ∼ 60 e-folds of inflation after the CMB
fluctuations were created, inflation must have occurred at field values �MP ,

φCMB = 2
√
Ne,CMBMP ∼ 15MP �MP . (3.83)

It is at this value that the slow-roll parameters ε and η need, i. e.

ε? = η? = 2

(
MP

φCMB

)2

=
1

2Ne,CMB
. (3.84)

Note that both are independent of the mass parameter m. Actually, this is
true for all of the simplest models of chaotic inflation based on monomial
potentials V = λp φ

p have this property. The value of m (or λp for the other
models) is fixed by matching the prediction for the amplitude of the scalar
power spectrum,

∆2
s =

m2

M2
P

N2
e,CMB

3
. (3.85)

To get ∆2
s ∼ 10−9 requires m ∼ 10−6MP for Ne,CMB ∼ 60. After m is fixed, the

model predicts

ns = 1 + 2 η? − 6 ε? = 1− 2

Ne,CMB
≈ 0.96 , (3.86)

and
r = 16 ε? =

8

Ne,CMB
≈ 0.1 . (3.87)

Comparing these predictions to observations (cf. Tab. 3.2 and Fig. 3.7), we
see that the scalar spectral index ns fits quite well with observations and the
tensor-to-scalar ratio r ∼ 0.1 is in a range in which it could be excluded by the
Planck satellite.
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Chapter 4

Basics of 4d N = 1 Supergravity

The next concept we introduce is supersymmetry, an extension of the Poincaré
symmetry group of spacetime relating bosonic and fermionic degrees of free-
dom. In particular, if supersymmetry would be unbroken, we would have to
observe for example a scalar version of the electron, the selectron, with exactly
the same quantum numbers except for the spin, i. e. the same mass and the
same electric charge. This clearly contradicts what we observe. Therefore, if
supersymmetry is realized in nature, it must be broken. As we will see later
on, we also need to break supersymmetry to realize a phase of inflation driven
by a positive vacuum energy in the very early universe. Moreover, recall from
Sec. 2.3 that we will focus on supersymmetric models of inflation, because they
offer a better control over quantum corrections to the scalar potential. The aim
of this chapter is to briefly introduce the ideas and notions we need to describe
a huge class of supersymmetric models of inflation.

First, we introduce the algebra of global supersymmetry in Sec. 4.1.1. Next,
in Sec. 4.1.2, we introduce first the concept of superspace and afterwards discuss
the chiral superfield and real superfield representations of the supersymmetry
algebra. The focus will be on writing down supersymmetric actions. After-
wards, we briefly outline the changes required to include gravity by moving
on to locally supersymmetric theories in Sec. 4.2. Finally, in Sec. 4.3, we show
how spontaneous supersymmetry breaking is encoded and give a few simple
examples.

The discussion presented in this chapter mostly follows [317]. We do not
intend to give a complete and comprehensive review of supersymmetric theories
and for more details we refer to the excellent textbooks, lecture notes and
review articles available, for example cf. [171, 317–320]. For instance, we do
not discuss how to embed the standard model into a supersymmetric theory
(a nice review of the minimally supersymmetric standard model can be found
in [171]).
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4.1 Basics of 4d N = 1 Global Supersymmetry

4.1.1 Supersymmetry Algebra

Supersymmetry is an extension of the Poincaré algebra of space-time transfor-
mations. Due to the Coleman-Mandula theorem [321], such an extension of the
space-time symmetry group is only possible via fermionic generators.

The combined algebra of Poincaré and supersymmetry transformations is

{QA
α , Q̄β̇,B} = 2 (σm)αβ̇ Pm δ

A
B ,

{QA
α , Q

B
β } = εαβZ

AB ,[
Pm, Q

A
α

]
= 0 ,

[Pm, Pn] = 0 ,

(4.1)

and similarly for the ones with Q̄ not written down explicitly. Here, Pm de-
notes the generators of space-time translations, while QA

α and Q̄β̇,B denote the
extra fermionic generators. As usual, [a, b] and {a, b} denote commutator and
anti-commutators, respectively. The Greek indices (α, β, . . . , α̇, β̇, . . . ) run from
one to two and transform as two-component Weyl spinors under the Poincaré
algebra. The Latin indices (m,n, . . . ) running from one to four transform as
Lorentz four-vectors. The capital indices (A,B, . . . ) label possible sets of Q, Q̄’s
and take values form 1 to some number N ≥ 1. Algebras with N > 1 are called
extended supersymmetry algebras (and for these the ZAB play a role). In this
thesis, however, we will be mostly concerned with N = 1 supersymmetry since
only N = 1 supersymmetry has chiral representations, which are required to
describe e. g. electroweak interactions.

4.1.2 Superspace & Superfields

The smallest irreducible representations of the N = 1 supersymmetry algebra
Eq. (4.1) are the following multiplets.

• Chiral Supermultiplet (φ, ψα): it consists of a complex scalar φ and a
two-component Weyl spinor ψα.

• Real Supermultiplet (λα, Am): it consists of a gauge field Am and a
spin-1/2 spinor λα; in general both fields transform in the adjoint repre-
sentation of the gauge group.

• Gravity Supermultiplet (ψm,α, gmn): it consists of a spin-2 symmetric
tensor gmn, the graviton, and a spin-3/2 spinor ψm,α, the gravitino.

For us, the chiral multiplets will be particularly important since they contain
scalar fields, i. e. candidates for the inflaton field. The other multiplets are
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used to supersymmetrize gauge interactions and gravity. We now briefly re-
view how to write down supersymmetric actions for chiral superfields in global
supersymmetry and supergravity.

Superspace

A very elegant concept is the superspace (see e. g. [318]) which greatly simplifies
writing down supersymmetric actions. It allows us to organize the multiplets
of supersymmetry into so-called superfields.

The starting point is to add to the coordinates xµ, µ = 0, . . . 3, a set of
“fermionic coordinates” θα, α = 1, 2, transforming as Weyl spinors as well as
a set θ̄α̇ = (θα)∗. These coordinates are anti-commuting Grassmann numbers,
i. e. they satisfy {

θα, θβ
}

=
{
θα, θ̄α̇

}
=
{
θ̄α̇, θ̄β̇

}
= 0 . (4.2)

Note that this implies, in particular, (θ1)2 = (θ2)2 = 0, and analogously for θ̄α̇.

The basic idea is to realize the supersymmetry algebra as differential op-
erators on superspace, completely analogous to what is done for the Poincaré
Algebra, e. g. Pm = −i∂m. One can now define Q, Q̄ as

Qα = ∂α − i (σm)αα̇ θ̄
α̇∂m , (4.3)

Q̄α̇ = −∂̄α̇ + iθα (σm)αα̇ ∂m . (4.4)

With this definition the anti-commutation relations of Q, Q̄ are given by
{
Qα, Q̄α̇

}
= 2i (σm)αα̇ ∂m , (4.5)

{Qα, Qβ} =
{
Q̄α̇, Q̄β̇

}
= 0 . (4.6)

The most general representation one may consider is a generic field in su-
perspace, A = A(x, θ, θ̄), which can be Taylor-expanded in the θ’s since the
expansion ends because of anticommuation:

A(x, θ, θ̄) = f(x) + θφ(x) + θ̄χ̄(x) + θ2m(x) + θ̄2n(x)

+ θσmθ̄vm(x) + θ2θ̄λ̄(x) + θ̄2θψ(x) + θ2θ̄2d(x) .
(4.7)

The supersymmetry transformations of the components f(x), φ(x), . . . are com-
puted by applying δε ≡ (εQ + ε̄Q̄) to each term in A and then organizing the
result into an expansion in θ, θ̄, which is then interpreted as

δεA = (δεf)(x) + θ(δεφ)(x) + . . . . (4.8)

However, this representation is pretty complicated and, moreover, reducible.
To reduce the general superfield above, we introduce another set of differential
operators Dα, D̄α̇ defined as

Dα = ∂α + i (σm)αα̇ θ̄
α̇∂m , (4.9)

D̄α̇ = −∂̄α̇ − iθα (σm)αα̇ ∂m . (4.10)
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They satisfy the anti-commutation relations
{
Dα, D̄α̇

}
= −2i (σm)αα̇ ∂m , (4.11)

{Dα, Dβ} =
{
D̄α̇, D̄β̇

}
= 0 . (4.12)

In addition, all D’s anti-commute with all Q’s, i. e.
{
Dα, Q̄α̇

}
= 0 . (4.13)

These additional operators are useful because if A(x, θ, θ̄) obeys D̄A = 0 so
does δεA. Thus, the differential operators D, D̄ provide a way to project out
or relate components of the general superfield.

Chiral Superfields

We now first consider chiral superfields (or scalar superfields), which are general
superfields Φ satisfying D̄Φ = 0. One may check that this implies that Φ̄ is an
anti-chiral superfield satisfying DΦ̄ = 0.

Let us define the quantity

ym = xm + iθσmθ̄ , (4.14)

which fulfills D̄y = 0. Then any function Φ = Φ(y, θ) automatically satisfies
D̄Φ = 0.1 We can expand Φ into components which yields

Φ = φ(y) +
√

2θψ(y) + θ2F (y) . (4.15)

The component fields have the following supersymmetry transformations:

δεφ =
√

2εψ , (4.16)

δεψ = i
√

2σmε̄∂mφ+
√

2εF , (4.17)

δεF = i
√

2ε̄σ̄m(∂mψ) . (4.18)

To write down an action for chiral superfields, first note that if Φ is a
chiral superfield, any analytic function W (Φ) is also a chiral superfield. From
the supersymmetry transformations of chiral superfields, one can check that
δεF is a total derivative (ε̄ and σ are constant). Hence, defining the projection
onto the θ2 component of W (Φ) as W (Φ)|θ2 , any term of the form

∫
d4xW (Φ)

∣∣∣
θ2
, (4.19)

is invariant under supersymmetry transformations.2 If we define the integration
over a Grassmann number θ as∫

dθ 1 = 0 ,

∫
dθ θ = 1 , (4.20)

1By abuse of notation, the same symbol is used for both Φ(x, θ, θ̄) and Φ(y, θ).
2Assuming that space-time has no boundaries.
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the projection on the θ2 component can actually be written as

W (Φ)
∣∣∣
θ2

=

∫
dθ2W (Φ) . (4.21)

In addition to the analytic function W (Φ), we can also consider a function
K(Φ, Φ̄) which, however, is not chiral. But one can show that the highest com-
ponent θ2θ̄2d(x) of such a general superfield transforms into a total derivative.3
Therefore, also any term of the form

∫
d4xK(Φ, Φ̄)

∣∣∣
θ2θ̄2

=

∫
d4xd2θd2θ̄ K(Φ, Φ̄) , (4.22)

is invariant under the supersymmetry transformations. The full general La-
grangian for a single chiral superfield Φ is then given by

L = K(Φ, Φ̄)
∣∣∣
θ2θ̄2

+
(
W (Φ)

∣∣∣
θ2

+ h.c.
)
, (4.23)

with K(Φ, Φ̄) some real function of Φ and Φ̄, the so-called Kähler potential
and W (Φ) some holomorphic function of Φ, the so-called superpotential.

Let us consider the simplest example, the Wess-Zumino model [322]

K = ΦΦ̄ , W =
m

2
Φ2 +

λ

3
Φ3 . (4.24)

The Lagrangian in component form becomes4

L = −∂mφ∂mφ̄− iψ̄σ̄m∂mψ + |F |2

+m(φF − 1

2
ψ2) + h.c.

+ λ(φ2F + ψ2φ) + h.c. .

(4.25)

The crucial point to notice now is that no derivatives of F are involved, i. e. it
is not propagating and just an auxiliary field, which we can integrate out by
solving its equations of motion. This yields

L = −|∂φ|2 − iψ̄σ̄m∂mψ −
m

2
ψ2 + λψ2φ− V (φ, φ̄) , (4.26)

where
V (φ, φ̄) = |F |2 , and F = −mφ̄− λφ̄2 . (4.27)

V (φ, φ̄) is the scalar potential and it is determined by the F -component of the
chiral superfield Φ.

3This can be understood, for instance, by counting the mass dimensions. In units where
~ = c = 1 we have [∂m] = 1. Now Q, Q̄ ∼ ∂α, ∂̄α̇ + . . . satisfy {Q, Q̄} ∼ ∂m and hence
[∂α] = 1

2 such that [θα] = − 1
2 . A canonical scalar field has mass dimension [φ] = 1, and

thus for a chiral superfield Φ ∼ φ + θψ + θ2F we must have [ψ] = 3
2 and [F ] = 2. Now

QF ∼ ∂
∂θF has mass dimension 5

2 and therefore must involve a derivative ∂m. The same line
of arguments now also applies to the highest component θ2θ̄2d(x) of a general superfield.

4The kinetic term for φ comes from K = ΦΦ̄. To understand this, recall that Φ = Φ(y, θ)
with ym = xm + iθσmθ̄. Taylor expanding the lowest component φ(y) then yields the kinetic
term.
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Non-Renormalization Theorem

The superpotential W enjoys a non-renormalization theorem, i. e. it does not
receive perturbative loop corrections [323] (see also [324] for a simple argu-
ment). Though, in general, there can be non-perturbative corrections to the
superpotential and those will become important later on for the subject of
moduli stabilization in Sec. 6.2. The Kähler potential K, however, does not en-
joy such a non-renormalization theorem and this for example has consequences
for inflationary model building in supegravity, cf. Sec. 5.3.

Real Superfields

The second type of superfields we consider here are real superfields (or vector
superfields), which are general superfields V (x, θ, θ̄) satisfying the constraint
V = V̄ .5 This is again compatible with the supersymmetry transformations.
Expanding V yields

V (x, θ, θ̄) = c(x) + θχ(x) + θ̄χ̄(x) + θ2M(x) + θ2M̄(x) (4.28)

− θσmθ̄Am(x) + iθ2θ̄λ̄(x)− iθ̄2θλ(x) +
1

2
θ2θ̄2D(x) . (4.29)

where c, D, and Am are real. To build consistent models involving vector field
Am it is usually necessary to require an action invariant under a gauge trans-
formation of the form

Am → Am + ∂mλ . (4.30)

To find the supersymmetric version of this, we first replace λ by a chiral su-
perfield Λ with components

Λ(x, θ, θ̄) = ω(y) +
√

2θψ(y) + θ2F (y) , (4.31)

which at the component level reproduces Eq. (4.30). However, V +Λ is not real.
Therefore, the gauge transformation of a real superfield V is instead defined as

2V → 2V + Λ + Λ̄ , (4.32)

with Λ a chiral superfield. It is convenient to partially fix the gauge such that
the three lowest components of 2V + Λ + Λ̄ vanish. This is the Wess-Zumino
gauge which breaks supersymmetry, but leaves us with the gauge transforma-
tion in Eq. (4.30) instead of the full one in Eq. (4.32). In this gauge, the real
superfield is determined by the component fields Am, λ and D as

V = −θσmθ̄Am(x) + iθ2θ̄λ̄(x)− iθ̄2θλ(x) +
1

2
θ2θ̄2D(x) . (4.33)

5Note that often a † is used to indicate complex conjugation, i. e. the real superfield is
then defined by V = V †.
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To build an action for a gauge field, one usually constructs the field strength
Fmn out of derivatives of Am. The supersymmetric analogue of Fmn is obtained
using D, D̄ to define the supersymmetric field strength as

Wα = −1

4
D̄2DαV . (4.34)

One can show that Wα is chiral and gauge-invariant. In components, W is
given by

W = −iλ(y) + (D(y)− iσmnFmn(y)) · θ + θ2σm∂mλ̄(y) , (4.35)

where as usual Fmn = ∂mAn−∂nAm and σmn = 1
4

(σmσ̄n − σnσ̄m). The lowest-
order gauge-invariant and Lorentz-invariant Lagrangian built out ofWα is given
by

L =
1

2g2

(
WαWα

∣∣∣
θ2

+ h.c.
)
, (4.36)

which in terms of component fields becomes6

L = − 1

4g2
FmnF

mn − iλ̄σ̄m∂mλ+
1

2g2
|D|2 . (4.37)

D is again an auxiliary field like the F for the chiral superfield, Am describes
a massless gauge field and λ is a Weyl spinor, the gaugino.

Coupling to Matter Matter is usually described by chiral superfields. The
gauge transformation for a complex scalar ϕ(x) under a U(1) is

ϕ(x)→ e−iqλ(x)ϕ(x) , (4.38)

together with Am(x) → Am(x) + ∂mλ(x). Then the “minmally coupled” La-
grangian involves (Dmϕ)∗(Dmϕ) with Dm = ∂m + iAm. The supersymmetric
analogue for a chiral superfield Φ is

Φ→ e−ΛΦ . (4.39)

However, now the kinetic term ΦΦ̄|θ2θ̄2 is no longer gauge-invariant. To fix this,
it is replaced by

Φ̄e2V Φ
∣∣∣
θ2θ̄2

. (4.40)

The simplest Lagrangian then consists of

L = Φ̄e2V Φ
∣∣∣
θ2θ̄2

+
1

2g2

(
WαWα

∣∣∣
θ2

+ h.c.
)
. (4.41)

6In general, there is also a term FmnF̃
mn ≡ εmnpqFmnFpq. However, we ignore this

possibility for now and give the more general expression later in Sec 4.2.
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In components, this Lagrangian reads

L = − 1

4g2
FmnF

mn − iλ̄σ̄mDmλ+
1

2g2
|D|2

− |Dmφ|2 − iψ̄σ̄mDmψ + |F |2

+ i
√

2
(
φ†λψ − ψ†λ̄φ

)
+ φ†Dφ .

(4.42)

After integrating out the auxiliary fields F and D, there are contributions to
the scalar potential for φ from both the F - and theD-component, V = VF +VD.
VF and VD are called the F-term and D-term potential, respectively. They are
given by

VF = |F |2 , and VD =
1

2g2
|D|2 , (4.43)

with

F =
∂W

∂Φ̄
, and D = g2φ†φ . (4.44)

This concludes our overview of N = 1 global supersymmetry. We will give the
general expressions involving multiple chiral superfields Φi and for non-Abelian
gauge symmetries below only for the case of local supersymmetry.

4.2 Basics of 4d N = 1 Supergravity

Our aim is to embed the concept of inflation into a supersymmetric theory.
Therefore, we need to couple a supersymmetric theory to gravity. This amounts,
in particular, to promoting supersymmetry to a local symmetry and the result-
ing theories are so-called supergravity theories. We do not go into the details
of how this procedure is done exactly, but merely quote the results which are
important for this thesis.

Namely, similar to globally supersymmetric theories, the terms in the effec-
tive action obtained from a set of chiral superfields Φi, which include up to two
derivatives or four fermions, are fully determined by the following functions of
the chiral superfields.

• The Kähler potential, a real function K(Φ, Φ̄).

• The superpotential, a holomorphic function W (Φi).

• The gauge-kinetic functions, a set of holomorphic functions fab(Φi), one
for each gauge group factor Ga.

What we are interested in is mainly the form of the Lagrangian for the scalar
components of the chiral superfields in terms of these functions.
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In a frame in which the Einstein-Hilbert term takes the canonical form,
i. e.

Lgrav =
M2

P

2

√−g R , (4.45)

the Lagrangian for the scalar fields is given by

1√−gLscalar = −Kī ∂mφ
i∂mφ̄̄ − VF − VD + terms with fermions , (4.46)

where VF and VD are the supergravity F-term and D-term potentials, respec-
tively. Here, the index i denotes a derivative with respect to φi, while the index
̄ denotes a derivative with respect to φ̄̄.

The F-term scalar potential for a set of chiral superfields {Φi} is given by
the following expression:

VF = eK/M
2
P

(
(Kī)

−1DiWD̄W −
3

M2
P

|W |2
)
, (4.47)

where
DiW ≡ Wi +

1

M2
P

KiW . (4.48)

The kinetic terms for the scalar components φi of the Φi are determined by
Kī. This quantity is the so-called Kähler metric. It is the metric of the space
in which the φi take their values. For N = 1 supergravity theories, this space
must be a Kähler manifold [325, 326], for which the metric is obtained from a
real function K as

gī = ∂i∂̄̄K . (4.49)

This is precisely why Kī and K are called the Kähler metric and the Kähler
potential, respectively.

The simplest choice for the Kähler potential is the one for which the kinetic
terms are canonical, i. e.

K =
∑

i

|Φi|2 . (4.50)

But in principle any real function is allowed.

An important consequence of the Kähler geometry is an invariance of the
action under Kähler transformations, that is transformations of the form

K(Φ, Φ̄)→ K(Φ, Φ̄) + f(Φ) + f̄(Φ̄) ,

W (Φ)→ e−f(Φ)W (Φ) .
(4.51)

Defining the quantity G, which is invariant under Kähler transformations, as
(setting MP ≡ 1)

G ≡ K + lnW + lnW , (4.52)

the F-term potential can be written as

VF = eG
(
GīGiḠ − 3

)
. (4.53)
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Note that since W is independent of Φ̄ we have Gī = Kī ≡ (Kī)
−1.

If some Φi are charged under some gauge group Ga, the partial derivatives
∂m in the kinetic term in Eq. (4.46) have to be replaced by covariant derivatives
Dm. The kinetic terms for the gauge fields are given by

1√−gLgauge = −1

4
Re (fab)F

(a)
mnF

mn(b) − 1

8
Im (fab) ε

mnpqF (a)
mnF

(b)
pq . (4.54)

Thus, the gauge-kinetic functions fa encode the gauge couplings ga as Re fa ∼
g−2
a and Im fa ∼ θa encodes the possible θ-terms or axions. To get the standard
kinetic terms for the gauge fields, one may choose fab = g−2

a δab.

In addition to the F-term contribution, there is now also a contribution to
the scalar potential from the D-terms which is given by

VD =
∑

a

1

2
(Re fab)

−1DaDb , (4.55)

with
Da = Ki (Ta)

ij Φj , (4.56)

where Ta is a generator in the appropriate representation.

The above is all we need to know for the purposes of this thesis. From
the point of view of supergravity, any choice of functions G, which is typically
specified in terms of K and W , and fab is allowed. However, as we will see
later on, string theory imposes some restrictions on the form and functional
dependence of these functions.

4.3 Spontaneous Breaking of Supersymmetry

If supersymmetry is unbroken, the vacuum energy in a globally (locally) su-
persymmetric theory is vanishing (negative) and thus one obtains a Minkowski
(Anti-de-Sitter) spacetime.7 Inflation requires a large positive vacuum energy
and thus we have to break supersymmetry. However, we do not like to break
it explicitly but spontaneously, i. e. we like to have a supersymmetric theory
with non-supersymmetric ground state(s).8

But let us first understand the statements about the supersymmetric ground
states of supersymmetric theories. We begin by noting that in a globally su-
persymmetric theory the Hamiltonian H = P0 can be written as

H =
1

4

(
Q̄1Q1 +Q1Q̄1 + Q̄2Q2 +Q2Q̄2

)
, (4.57)

7The value of the scalar potential at the minimum acts like a cosmological constant and
spaces with negative cosmological constant are Anti-de-Sitter.

8In general, there can be multiple ground states which are either supersymmetric or not.
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as a result of the supersymmetry algebra. Unbroken supersymmetry corre-
sponds to Q|0〉 = 0, Q̄|0〉 = 0 which is the case if and only if 〈0|H|0〉 = 0. Now
recall that the scalar potential is given by

V ≡ VF + VD =
∑

i

|Fi|2 +
∑

a

1

2g2
|Da|2 , (4.58)

where i runs over the set of chiral superfields Φi and a runs over the differ-
ent gauge groups Ga. This is a positive definite quantity and thus a vanishing
ground state energy corresponds to vanishing expectation values for all Fi and
Da. In other words, 〈Fi〉 and 〈Da〉 are the order parameters of spontaneous su-
persymmetry breaking. This statement remains true also in supergravity, but
with a few important changes: The supergravity generalization of the Fi’s are
the DiW ’s and more importantly VF contains a negative term ∼ −|W |2 (cf.
Eq. (4.47)). This is important since it allows us to fine-tune the cosmological
constant Λ to a small value. Constructing a model of spontaneous supersym-
metry breaking therefore amounts to finding a model with a minimum for the
scalars φi such that not all Fi and Da vanish simultaneously.

The spontaneous breaking of a continuous global symmetry gives rise to a
Goldstone boson, a massless boson. Similarly, spontaneous breaking of global
supersymmetry gives rise to the goldstino, a massless fermion, since the su-
persymmetry variations δε are fermionic. In locally supersymmetric theories,
i. e. supergravities, the goldstino is eaten by the gravitino to provide the degrees
of freedom required for a massive spin-3/2 particle. This is in full analogy to
the Higgs mechanism for (electroweak) symmetry breaking, where the would-be
Goldstone modes become the longitudinal degrees of freedom of the W± and
Z spin-1 gauge fields, and hence it is often called the super-Higgs mechanism.
Specifically, for the case of F-term supersymmetry breaking, we have

δεψ ∼ F 6= 0 . (4.59)

Note that we do not want do break supersymmetry by VEVs for other fields,
e. g. for ψ, since this would break Lorentz invariance.

A particular consequence of supersymmetry breaking are mass splittings
among the different components of a supermultiplet.

We conclude this section by briefly introducing a few simple models of
F-term and D-term supersymmetry breaking.

4.3.1 F-term Supersymmetry Breaking

In the following we briefly discuss three simple models for F-term supersym-
metry breaking. The first two are models of the spontaneous breaking of global
supersymmetry, while the third one is a model of spontaneous supersymmetry
breakdown in supergravity.
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O’Raifeartaigh Model The O’Raifeartaigh model [327] has three chiral su-
perfields Φi with the following choice of K and W :

K =
3∑

i=1

Φi Φ̄i , (4.60)

W = Φ1

(
m2 +

λ

2
Φ2

2

)
+ µΦ2Φ3 . (4.61)

The scalar potential is then given by

V = VF = |m2 +
λ

2
φ2

2|2 + |µφ3 + λφ1φ2|2 + |µφ2|2 , (4.62)

which is extremized by φ2 = φ3 = 0 and any value of φ1. This is a minimum if
µ is sufficiently large, as can easily be seen by expanding the scalar potential
to quadratic order around the extremum. At the minimum, supersymmetry is
broken since

F1 =
∂W

∂Φ1

= m2 =
√
Vmin 6= 0 . (4.63)

A Non-Renormalizable Model If we would like to have a model with only
one chiral superfield, the simplest globally supersymmetric model is probably
obtained from

K = ΦΦ̄−
(
ΦΦ̄
)2

Λ2
, W = m2Φ , (4.64)

where Λ is some cutoff scale. Assuming m to be real, this yields

F = − m2

1− 4 |φ|
2

Λ2

⇒ VF =
m4

(
1− 4 |φ|

2

Λ2

)2 . (4.65)

The minimum is at φ = 0 and breaks supersymmetry. Note that this model
can be viewed as an effective description of the O’Raifeartaigh model after
integrating out Φ2,3 assuming they are heavy enough (i. e. µ2 � λm2) [328]

Polonyi Model The simplest model for supersymmetry breaking in supegrav-
ity is the Polonyi model [329]. It assumes the following Kähler and superpo-
tential:

K = |Z|2 , (4.66)
W = m2(Z + β) . (4.67)

Due to the non-renormalizable gravitational couplings, the resulting potential
has a minimum at

Z =
(√

3− 1
)
MP . (4.68)
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If we now fine-tune the coefficient

β =
(

2 +
√

3
)
MP , (4.69)

this minimum has a vanishing cosmological constant, 〈V 〉 = 0, due to the
−|W |2 piece in the supergravity F-term potential, cf. Eq. (4.47).

The idea of gravity mediated supersymmetry breaking is to basically exploit
the fact that all other fields present will couple to the F-term of Z via the eK
prefactor. Thus, by expanding this prefactor one finds terms which are of the
form ∫

d4θ
Z̄Z Q̄Q

M2
P

, (4.70)

where Q denotes for instance some quark superfields. Such a term induces in
particular a mass for the squarks of the form

mq̃ ∼
FZ
MP

. (4.71)

For details about supersymmetry breaking mediation see e. g. the lecture notes
[320].

4.3.2 D-term Supersymmetry Breaking

We may also break supersymmetry spontaneously via non-vanishing D-terms.
The following model works both in globally and locally supersymmetric models.

Fayet-Iliopoulos Model If we have a U(1) supersymmetric gauge theory
with the real superfield denoted by V , we usually have D = 0 in the vacuum.
However, we may add a Fayet-Iliopoulos (FI) term [330],

LFI =

∫
d2θd2θ̄2 ξ V = ξ D . (4.72)

This only works for Abelian gauge symmetries since the gauge-invariant gen-
eralization to the non-Abelian case vanishes due to the tracelessness of the
non-Abelian generators. If we add the piece LFI to the standard Lagrangian
obtained from

L =

∫
d2θ

1

2g2
W2 + h.c. , (4.73)

one can see that the system is extremized for D = −g2ξ 6= 0 and thus su-
persymmetry is broken. D-term supersymmetry breaking directly affects the
chiral superfields charged under the U(1). Adding two chiral superfields Φ±
with charges ±1, the fermion masses are unchanged and the charged scalars
acquire a mass splitting,

m2
± = m2 ± g2ξ , (4.74)

where m is a supersymmetric mass from a superpotential term W = mΦ+Φ−
to stabilize the chiral fields at Φ± = 0.



66 CHAPTER 4. BASICS OF 4D N = 1 SUPERGRAVITY



Chapter 5

Inflation in 4d N = 1 Supergravity

After having reviewed both slow-roll inflation and supergravity, it is time to
bring these two concepts together. As we outlined in Sec. 4.2, specifying a
supergravity model with chiral superfields amounts to specifying the Kähler
potential K(Φ, Φ̄) and the superpotential W (Φ) (and also the gauge kinetic
function fab(Φ) if gauge interactions are important).

As we have seen in Sec. 4.3, spontaneous breaking of supersymmetry is
either due to a non-zero F-term or a non-vanishing D-term (or both). From
the point of view of inflation model building, this corresponds to two different
ways of generating the vacuum energy driving inflation.

In this chapter, we first discuss a few simple but explicit models. In Sec. 5.1,
we outline how to construct a supergravity version of them2φ2 chaotic inflation
model introduced in Sec. 3.5. Next, we introduce two ways of getting another
interesting class of inflationary models, so-called hybrid inflation models, from
D-term and F-term breaking of supersymmetry models in Secs. 5.2.1 and 5.2.2,
respectively. All these three models merely serve as toy models or illustrative
examples of inflationary model building in supergravity. We conclude this chap-
ter by a discussion of the supergravity η-problem, how it is evaded in the simple
toy models of Secs. 5.1 to 5.2.2 and some features of more general models of
F-term inflation related to solutions of the η-problem.

The aim of this chapter is only to provide an illustration of how to build
models of inflation in supergravity and the problems one faces while doing so.
For a recent review and many details on supergravity models of inflation and
their predictions, cf. [232] and references therein (see also [217]). Note that we
will work in units where MP ≡ 1 unless stated otherwise.
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5.1 F-Term Chaotic Inflation

The first model we would like to consider is the supergravity version of chaotic
inflation with V (φ) = m2φ2 (cf. Sec. 3.5). The inflaton φ is considered to be the
lowest component of a chiral superfield Φ, which is also assumed to be a singlet
under gauge interactions. Thus, φ receives its entire potential via F-terms.

Recall that the main feature of these chaotic inflation models is that infla-
tion occurs for field values φ � MP . However, the F-term potential in super-
gravity, cf. Eq. (4.47), has an overall prefactor eK/M2

P . For a canonical choice
of the Kähler potential, K = Φ̄Φ, this prefactor tends to prevent fields from
having field values�MP . In [225], Kawasaki, Yamaguchi and Yanagida intro-
duced a continuous global shift symmetry for the Kähler potential K to resolve
this issue.1 Under this symmetry, the chiral superfield Φ transforms as

Φ→ Φ + iα . (5.1)

This symmetry restricts K to be a function of Φ + Φ̄ only and the imaginary
part of Φ can take values � MP and thus act as the inflaton. In other words,
the inflaton is like a (pseudo) Nambu-Goldstone boson from the spontaneous
breaking of a continuous global symmetry. However, if the symmetry remains
intact, the potential for the inflaton would be exactly flat. Therefore, we intro-
duce a small breaking of the shift symmetry. The simplest option is to introduce
a small mass term in the superpotential,

W = mΦ2 . (5.2)

Unfortunately, this leads to a potential which is unbounded from below as
φ→∞ [225].2 This can be overcome if a second field X is involved [225]:3

W = mXΦ . (5.3)

This model is “natural” in the sense of ’t Hooft since the shift symmetry is
restored in the limit m→ 0. The Kähler potential is assumed to be of the form

K(Φ, Φ̄, X, X̄) = K(Φ + Φ̄, XX̄) , (5.4)

which is invariant under the shift symmetry as well as under a U(1)R × Z2

symmetry.4 Actually, one usually considers a more specific choice of Kähler
potential, namely [225]

K =
1

2

(
Φ + Φ̄

)2
+XX̄ − γ

(
XX̄

)2
+ . . . , (5.5)

1As we will explain in Sec. 5.3, this shift symmetry also protects the model from the
supergravity η-problem.

2It is easy to see this problem if one considers the simplest possibilty, K = 1
2

(
Φ + Φ̄

)2,
because then V ∝ −φ4 → −∞ as φ ≡ ImΦ→∞ with ReΦ = 0.

3Note that this superpotential has a U(1)R symmetry under which X is charged and a
Z2 symmetry under which X and Φ simultaneously change signs.

4This is valid as long as the corrections induced by the small breaking term Eq. (5.3) are
negligible, cf. footnote 1 in [225].
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where the dots represent possible higher order terms. As we will see soon, the
third term is required to keep X fixed at zero during inflation.

While the D-term potential is assumed to vanish, the F-term potential is
determined from inserting the expressions Eqs. (5.3) and (5.5) into Eq. (4.47),
which yields

VF = eKm2

[
|X
(
1 + (Φ + Φ̄)Φ

)
|2 +

Φ (1 + |X|2 − 2γ|X|4)

1− 4γ|X|2 − 3|XΦ|2
]

' m2e|X|
2−γ|X|4+ 1

2(Φ+Φ̄)
2[
|Φ2|

(
1 + (1 + 4γ + 16γ2)|X|4

)

+ |X|2
(

1 + (1 + 4γ)|Φ|2 +
(
Φ2 + Φ̄2

)
+
(
Φ + Φ̄

)2 |Φ|2
) ]

,

(5.6)

where in the second line we expanded the F-term potential for |X| � 1.

We parametrize the real and imaginary parts of the scalar component of Φ
as

Φ ≡ φR + i φI√
2

, (5.7)

where φI acts as the inflaton. During inflation, we will have φI � 1 while
φR, |X| � 1 and thus we can expand the potential, Eq. (5.6), which yields

V (φR, φI , X) ' 1

2
m2φ2

I +
1

2
m2φ2

R

(
1 + φ2

I

)
+m2|X|2

(
1 + 2γφ2

I

)
. (5.8)

The first term is precisely the potential for the chaotic m2φ2 inflation model
we were looking for. From the second term we see that during inflation φR
receives a large mass of the order of the Hubble scale H ∼ m2φ2

I and thus
it quickly settles to its minimum at φR = 0 and stays fixed during inflation.
Considering the last term, we see that if γ & O(1) the same is true for X.5
Hence, even though we started out with four real scalar fields (recall that a
chiral superfield has a complex scalar as its lowest component), in the end we
have a model which effectively describes single-field chaotic inflation. Similarly,
the models we consider in Sec. 5.2 (and actually all models considered in this
thesis) effectively reduce to a single-field model of inflation, even though they
are formulated using multiple fields.

5.2 D-Term and F-Term Hybrid Inflation

The next models we want to consider are models of hybrid inflation [34] in
supergravity, where inflation ends via a phase transition: Once the inflaton
reaches a certain critical value, some direction in field space (the waterfall
field) becomes tachyonic, thereby ending inflation. Such models are popular

5This requirement can be understood nicely from a geometric point of view in terms of
the sectional curvature along the Goldstino direction, cf. [331–336].
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since they allow inflation to occur while all field values are � MP and since
their potentials are nicely related to the ones used for the spontaneous breaking
of symmetries.

Basic Idea of Hybrid Inflation

The way a typical model of hybrid inflation [34,337] works is that a second field,
say h, has a mass which depends on the inflaton φ in such a way that m2

h(φ)
changes sign at some value φ ≡ φcrit. This turns a formerly stable minimum
with h = 0 into an unstable one and the inflationary vacuum energy vanishes
since h develops an expectation value.

0.0

0.5

1.0

1.5

2.0

Φ

-1

0

1

h

0.0

0.1

0.2

0.3

V

Figure 5.1: Schematic plot of the potential in Eq. (5.9) with m = 0 and all other
parameters set equal to 1.

The prototype model of hybrid inflation is based on the potential [34]

V (φ, h) =
m2

2
φ2 +

κ2

4

(
h2 −M2

)2
+
λ2

2
φ2h2 . (5.9)

The mass of h depends on φ, namely m2
h(φ) = −κ2M2 + λ2φ2. Thus, for

φ > φcrit ≡ κM/λ, the waterfall field is fixed at h = 0 and inflation can proceed
along the φ direction. During inflation, the vacuum energy is V0 ≈ κ2M4 if
m2φ2 � κM4. Once φ reaches φcrit, h becomes tachyonic and then the system
rolls quickly to its true minimum at h = M,φ = 0, thereby ending inflation. A
schematic plot of the potential in Eq. (5.9) can be found in Fig. 5.1.

The m2φ2 term in Eq. (5.9) induces a tree-level slope for the inflaton.
However, hybrid inflation models are often designed to have φ as a classically
(almost) flat direction, i. e. terms such as m2φ2 are negligible. Then the domi-
nant contribution to the slope V ′ arises from quantum corrections which makes



5.2. D-TERM AND F-TERM HYBRID INFLATION 71

it naturally small. This also explains why many models of this class predict a
spectral index ns ≈ 1 (typical values are ns ≈ 0.98) and a very small tensor-
to-scalar ratio r � 0.1 (since the field variation during inflation is small).

5.2.1 D-Term Hybrid Inflation

We now review a supergravity realization of hybrid inflation using D-term
supersymmetry breaking [338, 339]. The model contains three chiral super-
fields Φ, H+, H− which are charged under a U(1) gauge symmetry with charges
0,+1,−1, respectively. The superpotential is assumed to be

W = κΦH+H− , (5.10)

while the Kähler potential is taken to be canonical, i. e.

K = |Φ|2 + |H+|2 + |H−|2 . (5.11)

The U(1) symmetry is assumed to have a constant FI-term ξ > 0 6 and a gauge
coupling g.

Unlike in the F-term chaotic inflation model discussed previously in Sec. 5.1,
we now have a contribution to the scalar potential from the D-term,

VD =
g2

2

(
|H+|2 − |H−|2 + ξ

)2
. (5.12)

The F-term contribution VF is as usual determined by inserting the expressions
for K and W in Eqs. (5.10) and (5.11) into Eq. (4.47), which yields

VF = κ2e|Φ|
2+|H+|2+|H−|2

(
|H+H−|2 + |H+Φ|2 + |H−Φ|2

+
(
3 + |Φ|2 + |H+|2 + |H−|2

)
|ΦH+H−|2

)
.

(5.13)

The combined scalar potential V = VF + VD has a unique global minimum at
V = 0 for

Φ = H+ = 0 , H− =
√
ξ . (5.14)

More interestingly for us, if Φ is large, we can have a local minimum with
V > 0 and

H+ = H− = 0 . (5.15)

In this case, VF = 0 and V = VD ∼ g2ξ2 > 0. Above a certain critical value
Φcrit the two fields H± are fixed at zero and the potential V > 0 drives the infla-
tionary expansion. Once Φ = Φcrit, H− develops a tachyonic mass, i. e. H± = 0

6As was shown in [340, 341], a constant FI-term is actually inconsistent with a coupling
to supergravity. However, this is not the case if ξ is actually field-dependent. This is precisely
the case for the FI-terms that arise in string theory, which depend on the moduli. Thus, one
should think of the D-term inflation model presented here only as an effective description
after fixing the moduli.
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is no longer a minimum and H− starts to develop an expectation value while
moving to the true minimum at

√
ξ. To determine the critical value Φcrit, we

have to look at the mass matrix of H±. It turns out that they have masses
given by

m2
H± = κ2|Φ|2e|Φ|2 ± g2ξ2 . (5.16)

The first term is a supersymmetric mass term coming from the superpotential,
Eq. (5.10), and the second term is the mass splitting induced by the super-
symmetry breaking D-term contribution ±g2ξ2. Since inflation occurs only as
long as Φ > Φcrit and we would like to consider inflation with all field values
Φ . 1, we may approximate Φcrit ≈ g

√
ξ/κ. The potential along Φ turns out to

be classically flat for H± = 0. However, the mass splitting for H± induced by
the D-term generates a Coleman-Weinberg-type potential [342] via quantum
corrections at the 1-loop level. For Φcrit � Φ . 1, the effective potential during
inflation is approximately given by

Veff(Φ) = V0 + V1-loop '
g2ξ2

2
+
g4ξ2

16π2
ln

(
κ2|Φ|2
Q2

)
, (5.17)

where Q is some renormalization scale. This is independent of the phase of Φ
and therefore we may identify the real part of Φ as the inflaton.

The predictions for the CMB observables, however, are much more compli-
cated in this model since the breaking of the U(1) gauge symmetry at the end of
inflation leads to the formation of cosmic strings. These also contribute to the
CMB fluctuations, but their contribution is severely constrained. The energy
scale for ξ is set by matching to the observed amplitude of scalar fluctuations,
∆2
s ∼ 2 × 10−9, and the required number of e-folds, Ne ∼ 60, which typically

leads to
√
ξ a bit lower than the GUT scale. However, this depends also on g

and κ which cannot be too large, e. g. in [343,344] the following bounds on the
parameters ξ, g and κ are computed7

√
ξ . 2× 1015 GeV , g . 2× 10−2 , κ . 3× 10−5 . (5.18)

Basically, the constraints come from reducing the tension of the cosmic strings
to levels consistent with observations.

5.2.2 F-Term Hybrid Inflation

Hybrid inflation can also be obtained when supersymmetry is broken by an
F-term during inflation. The simplest model of this sort is very similar to
the D-term model just discussed. However, the D-term now vanishes and the
vacuum energy is due a non-zero F-term.

The model has the same field content and Kähler potential as before in
Sec. 5.2.1, i. e. the chiral superfields Φ, H+, H− which are charged under a U(1)

7For ways to relax these constraints somewhat see e. g. [345–347].
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gauge symmetry with charges 0,+1,−1, respectively, and a canonical Kähler
potential,

K = |Φ|2 + |H+|2 + |H−|2 . (5.19)

But now the superpotential is given by [218–220]

W = κΦ
(
H+H− −M2

)
, (5.20)

and there is no FI-term for the U(1), ξ = 0.

Using again the standard formula, Eq. (4.47), to compute the F-term po-
tential, we find

VF = κ2e|Φ|
2+|H+|2+|H−|2

[ (
1− |Φ|2 + |Φ|4

)
|H+H− −M2|2

+ |Φ|2
(
|(1 + |H+|2)H− −M2H̄+|2 + |(1 + |H−|2)H+ −M2H̄−|2

) ]
.

(5.21)

The D-term contribution VD vanishes along the D-flat direction H+ = H̄−
(to which the system is actually forced by the D-term potential). Neglecting
MP -suppressed corrections and expanding for Φ� 1, the two mass eigenvalues
are

M2
1,2 ' κ2|Φ|2 ± κ2M2 . (5.22)

Thus, now Φcrit ≈M and we again have a mass splitting due to supersymmetry
breaking, which will again induce a 1-loop correction of the Coleman-Weinberg-
type. Unlike in the D-term hybrid inflation model discussed, though, there
is now also a classical contribution. During inflation, when H± = 0, we can
expand the F-term potential for Φ� 1 and find

VF ≈ κ2M4 +
κ2M4|Φ|4

2M4
P

, (5.23)

where we have reinserted the powers of MP . However, this contribution could
be subleading with respect to the Coleman-Weinberg (CW) potential induced
via quantum corrections since Φ� 1. For Φ� Φcrit, we can approximate the
CW potential as

V1-loop '
κ4M4

8π2
ln

(
φ

φcrit

)
, (5.24)

where we have switched to Φ = φ√
2
without loss of generality since the phase of

Φ does not enter into the potential. Now the effective scalar potential during
inflation is approximately given by

Veff ' κ2M4

(
1 +

κ2

8π2
ln

(
φ

φcrit

)
+

φ4

8M4
P

)
. (5.25)

Which of the two terms dominates the slope of the potential depends on the
value of κ.
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An advantage of F-term hybrid inflation over D-term hybrid inflation is that
one has more possibilities for the two fields H±. Here, they are charged under a
U(1) symmetry, but in general they just have to be in conjugate representations
of some gauge group G, e. g. fundamental and anti-fundamental representations.
Thus, from a phenomenological point of view, this combines nicely with the
breaking of e. g. a GUT gauge group in the early universe. However, one again
has constraints from formation of topological defects and/or cosmic strings.
Values up to κ . 10−2 seem to be consistent according to [348–350].

5.3 Supergravity η-problem and General
F-Term Inflation Models

Now that we have presented three rather simple supergravity models of infla-
tion, it is time to understand in more detail why these models actually work
and what the problems are one faces when going beyond these examples.

The Supergravity η-problem

The main obstacle for building a working model of slow-roll inflation is the
so-called supergravity η-problem [37–39]. It is a fundamental obstacle in the
sense that it is not about agreeing with observations, but really about slow-roll
inflation occurring at all.

To understand the problem and its origin, let us recall the general structure
of the supergravity F-term potential, Eqs. (4.47) and (4.48), which is

VF = eK/M
2
P

(
(Kī)

−1DiWD̄W̄ −
3

M2
P

|W |2
)
, (5.26)

where the supergravity F-terms DiW are given by

DiW = Wi +
1

M2
P

KiW , (5.27)

Now let us assume that the vacuum energy during inflation is provided by
the F-term of a chiral superfield, say X, which may or may not be the one
which contains the inflaton. To keep things general, the superfield containing
the inflaton is denoted by Φ. Moreover, we assume the Kähler potential for Φ
and X starts with the canonical terms, i. e.

K = |Φ|2 + |X|2 + . . . . (5.28)

Then, since during inflation only DXW 6= 0, we can expand the F-term poten-
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tial as

VF = eK/M
2
P

(
(KXX̄)−1 |DXW |2 −

3

M2
P

|W |2
)

≈ eK/M
2
PV0 + . . . ,

=

(
1 +
|Φ|2
M2

P

+ . . .

)
V0 + . . . ,

(5.29)

with V0 ≡ |DXW |2. Now we immediately face a problem: The slow-roll param-
eter η (cf. Eq. (3.29)) obtained from this potential is given by

η ≡M2
P

V ′′

V
≈ 1 + . . . , (5.30)

where the prime denotes again a derivative with respect to the inflaton con-
tained in Φ and the 1 comes precisely from the |Φ|2V0/M

2
P term in the last

line of Eq. (5.29). Thus, the eK prefactor generically gives rise to masses for
the scalar fields which are ∼ H2. To prevent these generic terms from spoiling
slow-roll inflation, there are basically two options at the level of effective field
theories:

1. Fine-tune the additional corrections denoted by the ellipsis in the last
line of Eq. (5.29) to (almost) cancel the 1.

2. Forbid the mass term arising from the eK prefactor, e. g. by imposing an
(approximate) symmetry.

We have already seen three simple models for slow-roll inflation in supergravity,
so let us now examine why they actually worked in the first place.

F-Term Chaotic Inflation This is an example of the second way of solving
the η-problem, namely by imposing a continuous global shift symmetry to make
eK actually independent of the inflaton. If we would have added a correction
term to K of the form |Φ|4/M2

P to Eq. (5.5) with an O(1) coefficient, we would
have spoiled slow-roll inflation even though this corresponds to adding a MP -
suppressed dimension-six operator to the Lagrangian!

D-Term Hybrid Inflation Here, the vacuum energy was due to the D-term,
which has no eK prefactor and therefore does not suffer from the above version
of the η-problem. However, these models inevitably lead to the formation of
cosmic strings whose contribution to the CMB fluctuations is strongly con-
strained by observations. Moreover, the η-problem may reappear via threshold
corrections of the gauge-kinetic function, see e. g. the nice explanation in [41]
in the context of string theory models of inflation.
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F-Term Hybrid Inflation This is an example of the first way of solving the
η-problem. Since the superpotential, Eq. (5.20), is linear in Φ and the Kähler
potential, Eq. (5.19), is assumed to be canonical, the potentially dangerous
term discussed above cancels miraculously against the contributions coming
from the dots, leaving only a term VF ⊃ V0|Φ|4/M4

P , which is much less dan-
gerous for Φ � MP . However, if we would have added a term |Φ|4/M2

P with
O(1) coefficient to the Kähler potential in Eq. (5.19), we would again have
spoiled this cancellation and reintroduced the η-problem.

The upshot of this section is that the supergravity η-problem is deeply
related to corrections to the Kähler potential. Unlike the superpotential, K is
not protected by a non-renormalization theorem and therefore it can receive
all kinds of possible corrections. To have slow-roll inflation occur at all, one
must assume either some special structure of the terms in K or fine-tune the
coefficients. For small-field models of inflation, the most relevant corrections to
K are the dimension-six operators induced by terms of the form

∫
d4θ

c

M2
P

X̄XΦ̄Φ , (5.31)

where d4θ ≡ d2θd2θ̄ and X and Φ are some chiral superfields.

A Guideline for F-Term Model Building

For more general models, if we intend to solve the η-problem via some special
structures (aka symmetries) in the Kähler potential, it has been shown that
the following conditions are preferable [38, 225,227–230,351,352]

DXW 6= 0 , DΦW ≈ 0 , W ≈ 0 , (5.32)

whereX 6= Φ does not contain the inflaton field φ. That is, we should not break
supersymmetry along the inflaton direction. This is precisely what has been
used in the F-Term Chaotic Inflation model of [225] presented above, which
introduced the extra field X to break supersymmetry along another direction.
This idea has been used recently in [229,230] to construct more general models
of F-Term chaotic inflation based on superpotentials of the form

W = Xf(Φ) , (5.33)

with f(Φ) some general function. This can be supplemented, for example, by
the Kähler potential in Eq. (5.5), or by a more general choice for the Kähler
potential of Φ. The important constraint on the Kähler potential for these
models is to ensure X ≈ 0 during inflation such that W ≈ DΦW ≈ 0.

We will discuss hybrid inflation models in supergravity based on these
guidelines later on in this thesis, cf. Chap. 11.



Chapter 6

Basics of Moduli Stabilization

In this chapter, we briefly introduce a few basic aspects of moduli stabilization
in string theory. For definiteness, we focus on flux compactifications of type
IIB string theory from ten to four dimensions. But the schemes for moduli
stabilization in type IIA or heterotic string theory are based on the same basic
ingredients, namely fluxes and non-perturbative effects.

Fluxes have become a basic ingredient of modern string compactifications
since they are important for moduli stabilization and can lead to warped ge-
ometries.

The term “moduli” originally referred to strictly massless scalar fields which
correspond to a motion in the vacuum manifold of the theory, i. e. by chang-
ing the expectation value of a modulus field we can move “for free” to a new
ground state of the theory. However, we have not observed any massless scalar
fields in nature and there are strong constraints on light and weakly interact-
ing scalar fields. In this sense, “moduli stabilization” corresponds to finding a
mechanism (i. e. a non-trivial potential) which freezes the modulus such that
we can describe the low-energy theory in a fixed vacuum.

In string theory compactifications, there is always the dilaton which sets the
string coupling gs and in addition there are geometric moduli which parametrize
the “size and shape” of the compactification manifold. For Calabi-Yau 3-folds,
the geometric moduli can be divided into two classes, complex structure and
Kähler moduli. The complex structure moduli control the sizes of 3-cycles while
the Kähler moduli control the sizes of 2- and 4-cycles (due to Poincaré duality).1
For a Calabi-Yau 3-foldM, the number of inequivalent 3-cycles (i. e. complex
structure moduli) and 2-cycles (i. e. Kähler moduli) is encoded in two num-
bers, the two dimensions of the (co-)homology groups denoted h(2,1)(M) and
h(1,1)(M), respectively, which are determined by the topology ofM. For a CY
3-fold these are the only two numbers which can vary.

1Roughly speaking, a p-cycle of a compactification manifoldM is a (sub-)manifold Σp ⊆
M with no boundary and which is not the boundary of some (p+ 1)-dimensional manifold.
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By “warped geometries” we mean compactifications to four dimensions for
which the metric in the four external directions depends quite strongly on
the internal directions, which are interesting for various reasons. For example,
warped compactifications provide an alternative solution to the hierarchy prob-
lem [15]. Moreover, they typically also play an important role in gauge-gravity
dualities (see Sec. 7).

For textbook treatments of string theory see e. g. [46–52]. Here, we will
not provide an introduction into string theory and only work in the low-energy
supergravity limit.

For comprehensive reviews on flux compactifications and their application
to moduli stabilization (especially in type II supergravity) cf. e. g. [96,160–163].
Here, we will mostly follow the original papers, but see the reviews for many
details and a more extensive list of references. The following sections are mainly
to setup the notation and state the important results.

6.1 Moduli Stabilization via Fluxes

The ten-dimensional supergravity descriptions of both type II and heterotic
string theory contain the 2-form2 B2. Its field strength is denoted by H3,
i. e. H3 ≡ dB2. In addition to B2, the type II supergravity theories also contain
other p-forms Cp with field strengths Fp+1 ≡ dCp. Which values of p are allowed
depends on whether type IIA or type IIB is considered. The term “fluxes” refers
to non-trivial background configurations of these (anti-symmetric) tensor field
strengths. Of course, when compactifying to four dimensions, we would like to
preserve 4d Poincaré invariance3 and thus these field strengths must either be
only along the internal directions or along all four external directions.

The field strengths Fp+1 fulfill the corresponding Bianchi identity, dFp+1 =
0. One can show that similar to Dirac’s famous charge quantization [353] also
the fluxes are quantized [106–108]. Namely, if we integrate Fp+1 over a (p +
1)-dimensional manifold Σp+1 without a boundary, the “charge” must be an
integer, i. e.

1

`ps

∫

Σp+1

Fp+1 ∈ Z . (6.1)

Since Σp+1 has no boundary and due to the Bianchi identity, only the coho-
mology class of Fp+1 is relevant.

2The appearance of a 2-form B2 is actually very generic since a string world-sheet may
always source a two-form field. This is in complete analogy to the worldline of a charged
point particle sourcing a 1-form (or gauge field) A1 ≡ Aµdxµ.

3More generally, we are interested in compactifications to 4d maximally symmetric spaces,
i. e. to Minkowski, Anti-de-Sitter or de-Sitter spacetimes, and demand that all of their re-
spective symmetries are preserved.
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A Quick Note on (Co-)Homology We do not discuss the interesting beau-
tiful mathematical theory behind (co-)homology classes of manifolds here, but
merely state the results important for us. In the language of differential forms,
the Bianchy identity dFp+1 = 0 means that Fp+1 is a closed form. If Fp+1 is
an exact form, i. e. is obtained as Fp+1 = dCp globally, the Bianchi identity is
trivially fulfilled. However, the more interesting possibilities are the non-trivial
ones which depend on the topology of the manifoldM. These non-trivial pos-
sibilities are counted by the (dimension of) the cohomology groups ofM. Im-
portant for our purposes is that one can specify a basis for the p-forms on
p-cycles in terms of harmonic p-forms ωp. The ωp also specify a basis of the
p-cycles. It should be noted that (co-)homology defines equivalence classes and
we are actually talking about representatives of these equivalence classes.

As a simple example, consider the two-dimensional torus T 2. It has a 0-cycle
(the equivalence class of all point p in T 2), a 2-cycle (T 2 itself) and two 1-cycles
a (red) and b (blue) corresponding losely speaking to the two inequivalent ways
of drawing a circle on the torus, cf. Fig. 6.1.

For the CY 3-fold, there are two types of geometric moduli [354]. Kähler
moduli which control the sizes of 2-cycles and complex structure moduli which
control the sizes of 3-cycles. They are usually defined as parametrizations of
the Kähler (1, 1)-form J and the holomorphic (3, 0)-form Ω, respectively. A
CY 3-fold is a six-dimensional manifold but it is also a manifold with three
complex dimensions. That is, out of the six coordinate we can form 3 complex
coordinates and 3 complex conjugate coordinates. This “splitting” is encoded
in Ω. The quantities of the form (p, q) refer to forms which are comprised out
of p holomorphic and q anti-holomorphic coordinates.

For an introduction into (co-)homology and complex geometry for physi-
cists, see e. g. [175,176,355].

compactify on torus T 2

R1

R2

θ

T ∼ R1R2 sin θ + iB12 & U ∼ R2

R1
sin θ + i

R2

R1
cos θ

1. What are moduli?

Next simplest example: compactify on 2 circles

Size & shape is difference between

How to quantify these differences? Consider 2 “base” circles

Define 2 complex moduli fields:

Size Shape

Figure 6.1: Simplified illustration of the concept of “cycles” using a torus.

Basic Idea of Moduli Stabilization via Fluxes Roughly speaking, the
basic idea underlying moduli stabilization by fluxes is the following. Without
fluxes, the moduli corresponding to the volumes of some cycles have either a
runaway potential (either to 0 or ∞) due to a curvature contribution which is
minimized when the volume of the cycle shrinks to zero or blows up (depending
on the sign of the curvature contribution). When fluxes are switched on, the
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energy density stored in the fluxes depends on the volumes of the cycles. Thus,
by adding appropriate contributions from fluxes, we may fix the volumes of
the cycles supporting the fluxes at some finite values. This fixing of the cycle
volumes is the stabilization of geometric moduli.

Flux Compactifications of Type IIB Supergravity

From now on, we assume the six-dimensional compactification manifoldM6 to
be a (conformal) Calabi-Yau manifold. Moreover, we consider only flux com-
pactifications of type IIB supergravity with background 3-form flux since this
is the setup which is reasonably well-understood and under control. In partic-
ular, because under certain assumptions the backreaction of the fluxes on the
internal space only leads to a non-trivial warp factor and the internal space is
a conformally-Calabi-Yau manifold. That is, it is still a CY up to a common
overall warp factor.

In this subsection, we closely follow [155] (for earlier work on moduli sta-
bilization via fluxes see [153,154]).

The starting point is the low-energy limit of type IIB string theory which
is type IIB supergravity with the ten-dimensional action (in Einstein frame)

S =
M8

10

2

∫
d10x
√−g

(
R10 −

|∂τ |2
2 (Im τ)2 −

|G3|2
12Im τ

− F̃ 2
5

4 · 5!

)

+
M8

10

8i

∫
C4 ∧G3 ∧ Ḡ3

Im τ
+ Slocal + terms involving fermions ,

(6.2)

where M10 is the (reduced) Planck mass in 10d and g is the 10d Einstein
frame metric and R10 is the 10d Ricci scalar. The axio-dilaton S is a particular
combination of the dilaton φ and the Ramond-Ramond (RR) axion C0,

S ≡ e−φ + iC0 . (6.3)

C4 denotes the RR 4-form potential which gives rise to a field strength F5. The
field strengths G3 and F̃5 appearing in the action are constructed out of F5 as
well as the RR 2-form C2 and the Neveu-Schwarz (NS) 2-form B2 and their
respective field strengths F3 and H3. They are defined as follows:

F̃5 ≡ F5 −
1

2
C2 ∧H3 +

1

2
B2 ∧ F3 , (6.4)

G3 ≡ F3 − iSH3 . (6.5)

Moreover, F̃5 is required to be self-dual and this has to be imposed as an
additional constraint at the level of the equations of motion. Finally, Slocal
contains contributions from various types of localized sources such as D-brane
and orientifold planes. In particular, these localized contributions may source
the metric and p-form fields.
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Let us consider ten-dimensional spacetimes which are a warped product
of a maximally symmetric four-dimensional spacetimeM4 (for definiteness we
take 4d Minkowski space with metric ηµν) and a six-dimensional manifoldM6,
i. e. a metric of the form

ds2 = e2A(y)ηµνdx
µdxν + e−2A(y)g̃mndy

mdyn . (6.6)

Here, A(y) is the warp factor and g̃mn is the metric on the internal space with
coordinates ym. To preserve 4d Poincaré invariance, the background values
of the fields must fulfill certain conditions. As mentioned already above, the
fluxes must either extend only along the six internal directions or span all four
external dimensions. For the concrete case of type IIB supergravity this means
that G3 is only extended in the internal directions and the self-dual F̃5 must
be of the form

F̃5 = (1 + ?10) dα(y) ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3 , (6.7)

where ?10 denotes the 10d Hodge star operator. Moreover, the axio-dilaton can
only be a function of the internal directions, i. e. S = S(y). By taking the trace
of the Einstein equations, one can show that in the absence of localized sources
the fluxes must vanish and the warp factor is constant [356, 357]. However,
this no-go theorem can be evaded if sources with negative tension are included
[155]. These objects are indeed present in string theory, for example orientifold
planes or anti-branes, but they are subject to certain consistency conditions, in
particular the tadpoles of the D-brane charges must vanish. Also note that both
anti-branes and orientifold planes break supersymmetry. Type IIB on a Calabi-
Yau manifold preserves N = 2 supersymmetry in 4d, but orientifold branes
break it down to N = 1 while anti-branes completely break supersymmetry.

We may also add D3-branes, which either fill all four external dimension or
wrap a 4-cycle (so-called Euclidean D3-branes), or D7-branes filling all four ex-
ternal dimensions. In [155], it was shown that any type of localized sources sat-
isfying a certain BPS-like condition on their energy-momentum tensor (which
all sources mentioned so far do satisfy) lead to solutions with

?6G3 = iG3 , (6.8)

e4A(y) = α(y) , (6.9)

with ?6 denoting the Hodge star operator in the internal dimensions. The first
line states that the flux G3 is imaginary self-dual (ISD), while the second line
relates the 5-form flux and the warp factor. In addition, F3 and H3 must satisfy
their Bianchi identities

dF3 = 0 , dH3 = 0 . (6.10)

Moreover, if we would like to preserve 4d N = 1 supersymmetry, the flux G3

should be a (2, 1)-form [358,359].
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From the point of view of the 4d effective N = 1 supergravity theory, the
flux G3 gives rise to a superpotential of the Gukov-Vafa-Witten form [152],

Wflux =

∫

M6

Ω ∧G3 , (6.11)

where Ω is the holomorphic (3, 0)-form. This superpotential depends on the
complex structure moduli Uα via Ω and on the dilaton S via G3. In the 4d
effective supergravity theory, the axio-dilaton S is the lowest component of a
chiral multiplet S (by the “standard” abuse of notation we denote the superfield
and its lowest component with the same symbol).

The tree-level Kähler potentials for the complex structure moduli and the
dilaton are given by [354]

Kcs = − ln


−i

∫

M

Ω ∧ Ω̄


 , (6.12)

and
KS = − ln(S + S̄) , (6.13)

respectively. For simplicity, we will focus on the case of a single Kähler modulus
here, i. e. h(1,1) = 1. Its tree-level Kähler potential is given by

K = −3 ln(T + T̄ ) , (6.14)

where ReT ∝ V2/3. Note that this Kähler potential for the Ti satisfies the
no-scale property

KīKiK̄ = 3 , (6.15)

which is trivially fulfilled for a single T , but its holds generically at tree-level
also for h(1,1) > 1. Due to this no-scale property, the F-term potential simplifies
significantly and becomes a sum over contributions from only the F-terms of
the dilaton S and the complex structure moduli Uα. Through fluxes, we may
then stabilize both Uα and S in a supersymmetric way, i. e. such that

DUαW = DSW = 0 . (6.16)

For an explicit example, namely the complex structure modulus of a conifold,
see Sec. 7.3.

Henceforth, we assume throughout this work that the dilaton and the com-
plex structure moduli are stabilized with sufficiently large masses by an appro-
priate choice of fluxes. However, note that the above superpotential does not
depend on the Kähler moduli Ti. Their stabilization requires additional ingre-
dients described in the next section.
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6.2 Moduli Stabilization via Non-Perturbative
Effects

The scenario proposed by Kachru, Kallosh, Linde and Trivedi (KKLT) in [40]
uses additional non-perturbative corrections to the superpotential to stabilize
the Kähler moduli in a type IIB flux compactification. This leads to a 4d
supersymmetric AdS minimum and they proposed to slightly overcompensate
the negative cosmological constant of the AdS vacuum by adding anti-D3-
branes. In the following, we briefly review the KKLT setup for the case of a
single Kähler modulus T (essentially following [40]).

The starting point is a flux compactification where all complex structure
moduli Uα and the dilaton S have acquired masses around the string scale4
Mst. After integrating them out, the flux-induced superpotential Wflux (cf.
Eq. (6.11)) reduces to a constant contribution

W0 ≡ 〈Wflux(S, Uα)〉 . (6.17)

Assuming a single Kähler modulus T , it has a no-scale Kähler potential (at
leading order in the α′-expansion),

K = −3 ln(T + T ) . (6.18)

We may now add a stack ofND7 D7-branes which extend along the four external
directions and wrap the 4-cycle whose size is controlled by T . On the world-
volume of this stack of D7-branes one has a SU(ND7) Super-Yang-Mills (SYM)
gauge theory. The 4d gauge coupling of the wrapped branes is set by T as

8π2

g2
YM

= 2πReT . (6.19)

In the absence of light charged matter, this SYM theory undergoes gaugino
condensation, i. e. it develops an expectation value of the form

〈λλ〉 ∼ Λ3 , (6.20)

which gives rise to a non-perturbative contribution to the superpotential [158,
360–362]

Wgc = Λ3
ND7

= Ae−
2π
b
T , (6.21)

where b ≡ b0/3 and b0 = 3ND7 is the coefficient of the 1-loop β-function. A
similar contribution to the superpotential can also arise from Euclidean D3-
brane instantons which then has b = 1.

4If the overall volume of the compactification manifold is V ∼ R6, the complex structure
moduli and the dilaton acquire masses of the order m ∼ α′/R3 [40], where α′ = `2s.
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In summary, due to the non-perturbative correction from either a gaugino
condensation on a stack of D7-branes or from Euclidean D3-brane instantons,
we end up with a superpotential of the form

WKKLT = W0 + Ae−aT , (6.22)

where a = 2π
b
. The F-term scalar potential following from the above K and W

reads

VF =
a2A2e−a(T+T)

3
(
T + T

) +
aAW0e

−aT + h.c.
(
T + T

)2 +
2aA2e−a(T+T)
(
T + T

)2 . (6.23)

Without loss of generality, we now take W0, A and a to be real, and A >
0,W0 < 0. Then there exists a supersymmetric minimum determined by

DTW = 0 ⇒ W0 = −Ae−aT
(

1 +
a

3

(
T + T

))
. (6.24)

Denoting the real and imaginary parts of T as T ≡ σ + iα, one can see that
for our choice of phases we have α = 0 and σ0 determined by solving

W0 = −Ae−aσ0

(
1 +

2aσ0

3

)
. (6.25)

At the minimum, the potential energy is negative,

VAdS = −3eK |W |2
∣∣∣
σ=σ0

= −a
2A2e−2 a σ0

6σ0

, (6.26)

i. e. we have a supersymmetric AdS-minimum. To have a controlled supergrav-
ity approximation and to justify keeping only the single instanton contribution
in the superpotential, we require σ � 1 and aσ > 1, respectively. In terms
of the parameters of WKKLT, this means |W0| � 1 and a < 1. Note that the
assumption of W0 � 1 can be relaxed in the LARGE Volume Scenario [159],
which adds the leading order α′-correction to the potential [156] and involves at
least two Kähler moduli and a particular structure in the Kähler potential. But
here we confine ourselves to the case of a single Kähler modulus for simplicity.

Including the contributions from fluxes and non-perturbative effects, we
end up with an AdS-minimum which needs to be uplifted to a Minkowski or
dS-minimum. In the KKLT construction this uplifting is achieved by a stack of
anti-D3-branes at the tip of a warped throat5 such as the Klebanov-Strassler
solution (cf. Sec. 7.2). The supergravity solution corresponding to anti-D3-
branes at the tip of Klebanov-Strassler is a metastable state which breaks
supersymmetry [363] and the backreacted solution has been found only re-
cently [364–368] (for earlier work see [369–373]). In the literature, also other
possibilities for uplifting exits, see e. g. [199, 328, 374–378]. For instance, [374]
makes use of D-terms induced by world-volume flux on D7-branes.

5The anti-D3-brane in a warped throat of a flux compactification with only ISD flux
experiences a force which drives it to the tip.
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Figure 6.2: Plot of the KKLT modulus potential as a function of σ = ReT . The
solid black line is the F-term contribution VF , the dotted blue line is the uplifting
contribution Vup and the solid red line is the sum of the two contributions. The
parameters haven been chosen as follows: W0 = −10−4, A = 1, a = 2π

100 and Cup =
6.68×10−11. All three contributions have been rescaled by an overall factor 5×1015.
The positions of the minima with and without uplifting are σup ≈ 182.1 and σ0 ≈
180.8, respectively. We have also indicated the depth VAdS of the potential prior to
uplifting and the barrier VB towards decompactification.

It gives rise to an extra contribution to the scalar potential of the form [272]

Vup =
Cup(

T + T
)2 , (6.27)

where Cup is a constant which depends both on the number of anti-D3-branes
and on the warp factor at the tip of the throat. By adjusting these two parame-
ters, one can (almost) cancel the negative contribution VAdS to obtain a vacuum
with (almost) vanishing vacuum energy, i. e. obtain a Minkowski vacuum or a
dS-vacuum with a small cosmological constant. Including the uplifting term,
the full scalar potential is

V ≡ VF + Vup . (6.28)

The position of the minimum receives only a small correction due to the up-
lifting term, i. e.

σup ≈ σ0 . (6.29)

See Fig. 6.2 for a plot of the resulting potential V and its individual contribu-
tions VF and Vup. The resulting vacuum is only metastable since the vacuum
energy vanishes completely as σ →∞ and as a consequence the uplifted mini-
mum is not a global minimum. Thus, the vacuum can decay quantum mechan-
ically via tunneling. To estimate the decay rate (or lifetime) of a metastable
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vacuum, one usually considers the Coleman-de Luccia instanton [379]. In [40],
the lifetime of the uplifted vacuum was estimated in this way and it exceeds
the age of our universe by many orders of magnitude for realistic parameter
choices.

The above construction can be applied also to the case with more than one
Kähler modulus by adding appropriate terms to the superpotential. However,
note that the presence of such non-perturbative effects is related to certain
properties of the 4-cycles associated to the corresponding (combination of)
Kähler moduli, see e. g. [158]. In particular, it was shown in [210] that there
is generically some tension between having non-perturbative corrections and
having a chiral MSSM-like sector.6 We will revisit the KKLT scenario when
combined with inflation later on in Chap. 10.

6In [211], a possible way out was suggested which uses instantons carrying flux and 2-forms
with negative parity under the orientifold involution.



Chapter 7

Basics of Warped Conifold Throats

An important consequence of flux compactifications are warped throats, i. e. re-
gions of the compact manifold which are strongly warped. Such strongly warped
regions have been argued to be a generic feature of type IIB flux compactifi-
cations [209, 380–384]. This chapter is devoted to reviewing some basic facts
about a special class of warped throats based on conifold singularities and their
resolutions.

We begin by briefly recalling some basic facts about the AdS/CFT- or
gauge/gravity correspondence [109–112] in Sec. 7.1. Next, we review the Klebanov-
Strassler (KS) solution [135] in Sec. 7.2. Finally, in Sec. 7.3, we review how the
KS throat is embedded into type IIB flux compactifications [155].

This chapter is essentially following the lecture notes [113] as well as the
review [385] and we refer to these for many details and an extensive list of
references. In the following, we will introduce the very basics of the AdS/CFT-
correspondence albeit in a brief way. For a more thorough introduction see for
instance [114,115,386,387].

7.1 Basics of the AdS/CFT-Correspondence

Putting a stack of N D3-branes on top of each other in flat space, one obtains
an N = 4 Super-Yang-Mills (SYM) theory with U(N) gauge group on the
world-volume of the D3-branes. This theory describes a conformal field theory
in four-dimensions.

As an alternative point of view, we can “integrate out” the D3-branes by
computing their backreaction on the space-time geometry. The result is a strong
deformation of space-time which in the “near-horizon limit” described below is
AdS5 × S5 with type IIB closed superstrings propagating in it. AdS is the
abbreviation for Anti-de-Sitter space and refers to a space of constant negative
curvature. AdS-spaces are highly symmetric spaces. For instance, the isometries
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of AdS5 are equivalent to the superconformal group in four dimensions. This
fact is one of the important tests of the AdS-CFT correspondence.

Putting the N D3-branes into 10d flat space, their backreaction induces a
metric of the form

ds2 = h(r)−1/2ηµνdx
µdxν + h(r)1/2ds2

6 , (7.1)

h(r) = 1 +
4πgsNα

′2

r4
. (7.2)

The decoupling limit or near-horizon limit corresponds to α′ → 0 while N , gs
and r/α′ are kept fixed. This limit essentially amounts to dropping the 1 in the
expression in Eq. (7.2), i. e. approximating h as

h(r) = 1 +
4πgsNα

′2

r4
≈ 4πgsNα

′2

r4
. (7.3)

The resulting geometry of this space is AdS5 × S5. Defining u ≡ r/α′, the
metric becomes

ds2 = R2du
2

u2
+
α′2u2

R2
ηµνdx

µdxν +R2dΩ2
5 , (7.4)

with R4 ≡ 4πgsNα
′2 setting both the curvature scale of the AdS factor and the

radius of the S5. The trace left of the N D3-branes are N units of F5 flux on
the S5 which simultaneously determines the scale of the curvature of the AdS5

and the radius of the S5.

The matching between the parameters on the gravity (or string theory)
side and in the dual gauge theory is as follows

4πgs = g2
YM =

λ

N
,

R4

α′2
= g2

YMN = λ ,

(7.5)

where the ’t Hooft coupling [116] is defined as λ ≡ g2
YMN . The perturbative

string theory expansion in powers of gs (i. e. string loops) and α′ (i. e. higher
derivative corrections) is related to the 1/N and 1/λ expansions for fixed N of
the gauge theory, respectively. For large-N and λ � 1, the string theory side
is weakly coupled while the gauge theory side is strongly coupled. This is why
the AdS/CFT-correspondence has become useful for studying aspects of the
dynamics of strongly coupled gauge theories. There is a (one-to-one) mapping
between bulk fields in AdS and operators in the dual CFT, albeit it is in general
not known explicitly. That is, unless one constructs the backgrounds explicitly,
e. g. using D-branes.

Let us write the metric of AdS5 in conformally flat coordinates

ds2 =
R2

z2

(
ηµνdx

µdxν + dz2
)
, (7.6)
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and perform a KK reduction on the S5. This yields, in particular, a bunch of
scalars φ with 5d masses m. The solutions to the equations of motion for z → 0
take the form

φ(z) ∼ z4−∆φ0 + z∆〈O〉 , (7.7)

where m2 = ∆(∆ − 4). The coefficients φ0 and 〈O〉 correspond to the source
and the expectation value of the CFT operator O which is dual to the bulk
field φ.

One can then state the AdS/CFT-correspondence in the following way:

〈
e

R
d4xφ0(x)O(x)

〉
CFT

= ZSUGRA

∣∣∣∣∣
φ(0,x)=φ0(x)

, (7.8)

which is valid in the limit of large-N and large-λ.

An important point to notice is that the radial direction of AdS5 can be
related to the renormalization scale or energy scale in the dual gauge theory.
Thus, one can interpret the equations for the radial dependence of the bulk
fields as the renormalization group equations in the dual field theory.

To reduce the amount of supersymmetry, one way is to place the D3-branes
at conical singularities, i. e. spaces C6 with a metric of the form

ds2
6 = dr2 + r2ds2

X5
. (7.9)

If the spaceX5 is a five-dimensional Sasaki-Einstein manifold1, the space C6 is a
Ricci-flat Calabi-Yau manifold [394–398]. The AdS/CFT correspondence then
uses AdS5×X5 instead of AdS5×S5. The resulting theory is less supersymmetric
than the S5 case and the amount of supersymmetry preserved depends on X5.
However, there is no general way known so far to derive the world volume theory
(i. e. the dual gauge theory) from the geometry ofX5. The cases where the world
volume theory is known explicitly are constructed by placing stacks of D-branes
at the singularities and considering the decoupling (or near horizon) limit. In
general, the (effective) number of D-branes shows up as fluxes threading the
various cycles of X5 and it is roughly related to the rank of the gauge groups
involved.2

The two systems introduced so far have an AdS-factor which implies that
both dual gauge theories are conformal. This can be understood by noting that
the isometries of AdS5 coincide with the superconformal symmetry group in

1The simplest examples known are S5 and T 1,1 = SU(2)×SU(2)/U(1), but see e. g. [388–
393] for more general examples.

2For example, in the Klebanov-Witten solution [394] which has X5 = T 1,1 and N D3-
branes at the conifold singularity, the dual gauge theory is an SU(N)×SU(N) gauge theory.
In the Klebanov-Tseytlin solution [399] there are in addition M D5-branes which act as
fractional D3-branes such that the dual gauge theory is SU(N+M)×SU(N). The Klebanov-
Strassler solution (cf. Sec. 7.2) is essentially a deformation of the Klebanov-Tseytlin solution
which is regular everywhere.
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4d. In the next section, we discuss an example of a non-conformal gravity back-
ground. The breaking of conformal invariance manifests itself as a deviation
from AdS5 in “the IR” (i. e. “small” r) while in “the UV” (i. e. “large” r) the
space is approximately AdS5.

7.2 Klebanov-Strassler Solution

The Klebanov-Strassler (KS) solution [135] is based on the warped deformed
conifold. The conifold (see e. g. [400]) is a cone over the manifold T 1,1 =
(SU(2)×SU(2))/U(1), which we can write as the set of points w ∈ C4 satisfying

4∑

a=1

w2
a = 0 . (7.10)

T 1,1 has a SO(4)×U(1)R ' SU(2)×SU(2)×U(1)R isometry and an Einstein
metric on it is given by

ds2
T 1,1 =

1

9

(
dψ +

2∑

i=1

cos θi dφi

)2

+
1

6

2∑

i=1

(
dθ2

i + sin2 θi dφ
2
i

)
, (7.11)

with ψ ∈ [0, 4π) and (θi, φi) each parametrizing an S2. Concerning the isome-
tries, each SU(2) acts on one of the S2’s while the U(1)R corresponds to shifts
in ψ. From the metric Eq. (7.11), one can see that T 1,1 is an S1 bundle over
S2 × S2. Moreover, it can also be written as an S3 bundle over S2 which is
topologically trivial (see e. g. [394]) such that T 1,1 is essentially S3 × S2. That
is, T 1,1 has a non-trivial 2-cycle and a non-trivial 3-cycle on which we can wrap
branes. At the tip of the cone, both the S3 and the S2 shrink to zero size.

Placing N D3-branes in the conifold yields the Klebanov-Witten solution
[394], an SU(N)× SU(N) gauge theory3 with two sets of chiral superfields Ai
and Bj which transform in the (N, N̄) and (N̄ ,N) representations, respectively
and a superpotential

W = h εijεpq Tr (AiBpAjBq) . (7.12)

The dual gravity theory is type IIB supergravity on the background AdS5×T 1,1.
The complete KK spectrum of type IIB supergravity compactified on T 1,1 is
known [401, 402] and it agrees with the spectrum of operators in the CFT.
To turn this into a non-conformal background, one way is to add fractional
D3-branes which are D5-branes wrapped around the vanishing S2 (i. e. the 2-
cycle of T 1,1). These fractional branes are stuck at the singularity and make

3Actually, one find a U(N)×U(N) gauge theory, but in general any U(1) factors are not
captured by the dual gravity solution in the AdS/CFT-correspondence [112] and hence we
ignore them here.
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the theory non-conformal. The resulting gauge theory for N D3-branes and M
fractional branes at the conifold singularity is SU(N+M)×SU(N) with again
two sets of chiral superfields Ai and Bj transforming in the (N + M,N) and
(N +M,N) representations, respectively, and with i, j denoting SU(2)×SU(2)
indices.

The gauge couplings of the two factors of the gauge group are determined
by the dilaton φ and the NS 2-form B2 as4

1

g2
1

+
1

g2
2

∼ e−φ , (7.13)

1

g2
1

− 1

g2
2

∼ e−φ





∫

S2

B2


− 1

2


 . (7.14)

In the corresponding supegravity solution, also known as the Klebanov-
Tseytlin (KT) solution [399], the fractional branes source M units of F3 flux
through the S3 (i. e. the 3-cycle of T 1,1) and via the equations of motions then
B2 becomes a non-trivial function of the radial direction. The latter can be
understood as a running of the two gauge couplings in the dual field theory. As
a consequence of the 3-form flux, the warp factor has an additional logarithmic
factor such that the metric becomes [399]

ds2 = h(r)−1/2dx2
4 + h(r)1/2

(
dr2 + r2ds2

T 1,1

)
,

h(r) =
81

8
(gsα

′M)
2 ln(r/rs)

r4
,

(7.15)

which is valid for the region above the tip, i. e. for r & rs. Due to the extra
logarithmic factor, the metric in the UV is only approximately AdS5 which
signals the breaking of conformal invariance.

The KT solution, however, has a naked singularity at the tip of the cone.
The Klebanov-Strassler (KS) solution [135] resolves this singularity by moving
to the deformed conifold which is obtained from

4∑

a=1

w2
a = ε2 . (7.16)

This way of resolving the singularity is called the deformation and blows up
the S3 to a finite size at the tip [400]. The alternative way of resolving the
singularity by making the size of the S2 finite is called the (small) resolution.
However, since we have 3-form flux on the S3, we opt for the deformation.

The metric of the deformed conifold can be written as

ds2
6 =

ε4/3

2
K(τ)

(
dτ 2 + (ε̃3)

3K(τ)3
+

cosh τ

2

(
e2

1 + e2
2 + ε2

1 + ε2
2

)
+

1

2
(e1ε1 + e2ε2)

)
,

(7.17)
4These relations hold with and without fractional D-branes.
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where
K(τ) =

(
21/3 sinh τ

)−1
(sinh(2τ)− 2τ)1/3 (7.18)

and the ei, εi are defined as follows: e1,2 are given by

e1 = dθ1 , e2 = − sin θ1 dφ1 , (7.19)

while εi, ε̃3 are given by

ε1 = sinψ sin θ2 dφ2 + cosψ dθ2 , (7.20)
ε2 = cosψ sin θ2 dφ2 − sinψ dθ2 , (7.21)
ε3 = −dψ + cos θ2 dφ2 , (7.22)
ε̃3 = ε3 + cos θ1 dφ1 , (7.23)

as well as dεi = −1
2
εijkεj ∧ εk.

The regular supergravity solution obtained from the deformed conifold is
the KS solution [135], which has a metric of the form

ds2
10 = h(τ)−1/2dx2

4 + h(τ)1/2ds2
6 , (7.24)

where ds2
6 is given by Eq. (7.17) and

h(τ) = (gsMα′)
2

22/3ε−8/3

∞∫

τ

dx
x cothx− 1

sinh2 x
(sinh(2x)− 2x)1/3 . (7.25)

The axio-dilaton S ≡ const and the antisymmetric p-form background fields
are given by

B2 =
gsMα′

4

[
(f + k) (e2 ∧ e1 + ε2 ∧ ε1) + (k − f) (e2 ∧ ε1 − e1 ∧ ε2)

]
,

F3 =
Mα′

4

[
ε̃3 ∧ (e2 ∧ e1 + ε2 ∧ ε1) + (1− 2F ) ε̃3 ∧ (e2 ∧ ε1 − e1 ∧ ε2)

+ F ′dτ ∧
(
e2

1 + e2
2 + ε2

1 + ε2
2

) ]
,

F5 = (1 + ?)F5 ,

F5 = B2 ∧ F3 =
gsM

2α′2

16

(
f (1− F ) + kF

)
e1 ∧ e2 ∧ ε1 ∧ ε2 ∧ ε3 .

(7.26)

The functions f(τ), k(τ) and F (τ) are given by

F (τ) =
sinh τ − τ

2 sinh τ
,

f(τ) =
τ coth τ − 1

2 sinh τ
(cosh τ − 1) ,

k(τ) =
τ coth τ − 1

2 sinh τ
(cosh τ + 1) .

(7.27)
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The radial coordinate r used previously is related to the radial coordinate τ
used here. For large τ , one has r ∼ eτ/3.

The KS solution is dual to an SU(N + M) × SU(N) gauge theory and
it exhibits a cascade of Seiberg dualities [403] (see also [404] and references
therein) and in the deep IR one eventually ends up with a pure SU(M) gauge
theory. The reduction of the effective number of D3-branes can be seen from
the RR 5-form field strength which in the UV limit is given by

F5 ∼ Neff(r) vol
(
T 1,1

)
, Neff(r) = N +

3gsM
2

2π
ln (r/r0) , (7.28)

with the reference scale r0 chosen such that Neff(r0) = N . Neff decreases while
moving towards the IR and this is interpreted as a lowering of the rank of the
dual gauge group via a cascade of Seiberg dualities [399].5

An important property of the KS solution is that it is the supergravity dual
of a confining gauge theory, which is signaled by the warp factor approaching a
finite, non-zero value at the tip (τ = 0).6 One can then show that the deforma-
tion parameter ε sets the (IR) scale of the confining gauge theory. In addition
to confinement, the KS solution also shows chiral symmetry breaking. Namely,
the U(1)R symmetry is first broken to Z2M by non-perturbative effects and this
Z2M symmetry is then broken spontaneously to Z2.

7.3 Klebanov-Strassler in Type IIB Flux
Compactifications

The KS solution belongs to the class of type IIB flux compactifications de-
scribed in Sec. 6.1 since the dilaton S is constant and one may show that the
combination G3 = F3 − iSH3 satisfies the ISD condition

?6 G3 = iG3 . (7.29)

We now review how to embed the non-compact KS solution into a type IIB
flux compactification as shown in [155].

A Calabi-Yau manifold may develop singularities at special points in its
moduli space. The most common type of singularity is the conifold [400]. Let
us denote the S3-cycle of the conifold cycle A and its Poincaré-dual cycle B. In
the conifold, the cycle B is non-compact (it is essentially the S2 times the radial

5Actually, the last step in the cascade is presumably on the so-called baryonic branch
[135,405]. We will give more details on the baryonic branch of KS later on in Chap. 13.

6Confinement is usually investigated by considering Wilson loops (see e. g. [112]) and if
the warp factor h−1/2 of the 4d part of the 10d metric approaches a finite, non-zero value one
has fundamental strings with a finite tension. These strings will be localized in the region
where the warp factor has its minimum, i. e. at the tip.
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direction), but it becomes a compact cycle in the full flux compactification. We
then place F3 and H3 integer fluxes on the cycles A and B, respectively, i. e.

1

(2π)2α′

∫

A

F3 = M ,
1

(2π)2α′

∫

B

H3 = −K . (7.30)

As in [155], we describe the deformed conifold by the equation

4∑

a=1

w2
a = z . (7.31)

Note that z is related to the parameter ε introduced earlier by z = ε2.

The flux-induced superpotential Eq. (6.11) is given by

Wflux = (2π)2α′


M

∫

B

Ω−KiS
∫

A

Ω


 . (7.32)

The two integrals here are called periods and define the complex structure of
the conifold. For the collapsing cycle A one defines the coordinate z as

z =

∫

A

Ω . (7.33)

Then one can show that the integral over the Poincaré-dual cycle B yields
∫

B

Ω ≡ G(z) =
z

2πi
ln z + holomorphic . (7.34)

With these two results, the superpotential Eq. (7.32) becomes

Wflux = (2π)2α′ (MG(z)−KiSz) . (7.35)

Assuming K/Mgs � 1, the minimization condition DzW = 0 is essentially
given by

0 ≈ M

2πi
ln z − iK

gs
, (7.36)

which then stabilizes z at an exponentially small value

z ∼ e−2πK/Mgs . (7.37)

This exponentially small value implies a large hierarchy between “the UV”,
where the KS throat is glued into the compact manifold, and “the IR” described
by the tip region of the KS solution. The KS solution is actually the prime
example of a warped throat geometry in type IIB flux compactifications.

We will revisit the KS solution (or more specifically its baryonic branch)
later on in Chap. 13.



Chapter 8

Basics of Warped Brane Inflation

Warped throat geometries such as the Klebanov-Strassler solution discussed in
the previous chapter have many applications in particle physics and cosmology.
In this chapter, we briefly introduce the application of warped throat geometries
to realize a particular string theory scenario for inflation often referred to as
warped brane inflation [272] (for further developments see e. g. [41,279–296] or
the reviews [27,250,251] as well as references therein).1 We have illustrated the
basic idea in Fig. 8.1.

4. Inflation in String Theory

Examples & geometric interpretation:

b) volume modulus inflation:

inflation = branes moving 

around in compact space

a) warped brane inflation:

end of inflation = branes 

annihilating each other

inflaton disappears

inflation = overall size of 

compact space changing

[Kachru, Kallosh, Linde, Maldacena, McAllister, 
Trivedi !03]

11

Figure 8.1: Illustration of warped D-brane inflation. There is an anti-D3-brane
sitting at the tip of a warped throat region inside of a compact space and the D3-
brane falls towards the anti-D3-brane.

The discussion presented here essentially follows [27, 251] and is mainly
meant to introduce the concept of identifying the inflaton field with the position
of a Dp-brane in a warped throat geometry.

1For earlier work on brane anti-brane inflation see [273–278].
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8.1 Basic Idea of Warped Brane Inflation

We will be concerned with probe D3-branes which fill out all four external
space-time dimensions and move along the radial direction r of a warped throat
background in a type IIB flux compactification. These backgrounds have a
metric of the form

ds2
st = e2A(y)gµνdx

µdxν + e−2A(y)g̃mndy
mdyn , (8.1)

where g̃mn is a Calabi-Yau metric. We assume that in some region g̃mn can be
approximated as a cone over some Einstein manifold X5, i. e.

g̃mndy
mdyn ≈ dr2 + r2ds2

X5
. (8.2)

The prime example for such a warped throat geometry is the KS solution with
X5 = T 1,1 (cf. Sec. 7.2) since such throats are indeed present and actually quite
common in type IIB flux compactifications (cf. Sec. 7.3). The radial coordinate
r ranges from the tip at rIR to some value rUV where the throat is glued into a
compact space. In the regime rIR � r < rUV, the warp factor for a KS warped
throat is approximately given by [399]

e−4A(r) ≈ R4

r4
ln

(
r

rIR

)
, R4 ≡ 81

8
(gsMα′)

2
, (8.3)

and rUV and rIR are related by

ln

(
rUV
rIR

)
≈ 2πK

3gsM
. (8.4)

There is also a 5-form background, i. e. a non-trivial C4 background, to which
the probe D3-brane couples. The self-dual 5-form background is assumed to be
of the form

F̃5 = (1 + ?10) dα(y) ∧√−g4 dx
0 ∧ dx1 ∧ dx2 ∧ dx3 . (8.5)

The Einstein frame action for a probe D3-brane in such backgrounds is then
given by2

SD3 = −T3

∫
d4x
√−g4 e

4A
√

1− e−4Ag̃mnẏmẏn + T3

∫
C4 , (8.6)

where the dots represent derivatives with respect to time t. Expanding this
action to quadratic order in the time-derivatives, one can see that the potential
for the D3 is determined by

VD3 = T3

(
e4A − α

)
≡ T3Φ− . (8.7)

2Here we assume a “static gauge” for the worldvolume coordinates ξa.
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Note that in a background with only ISD fluxes (cf. Sec. 6.1) the quantity Φ−
vanishes such that a probe D3-brane in those backgrounds experiences no force
(at leading order in gs and α′).

In the warped brane inflation scenario of [272], there is an anti-D3-brane
at the tip of a KS throat which leads to a Coulomb-type contribution to the
potential for the D3-brane. The leading terms in a multipole expansion are
given by [272]

Vc = D0

(
1− 27

32π2T3

h−1
0

r4

)
, (8.8)

where D0 ≡ 2T3h
−1
0 with h−1

0 denoting the warp factor at the tip (notice that
h(y)−1 ≡ e4A(y)). Due to the suppression by the warp factor this potential is
sufficiently flat. Inflation ends once the distance between the D3-brane and the
anti-D3-brane drops below a critical value a tachyonic mode develops and the
brane and anti-brane annihilate each other and subsequently the universe is
reheated [406–412].

Unfortunately, the Coulomb potential is not the full story and inflation is
actually generically spoiled by an important contribution coming from stabiliz-
ing the overall volume as in the KKLT scenario [272]. In theN = 1 supergravity
language, this can be understood as follows. The overall volume V is no longer
given by the real part of the Kähler modulus T , but instead depends also on the
position y of the D3-brane such that the Kähler potential is of the form [413]

K = −3 ln
(
T + T − k(y, ȳ)

)
. (8.9)

Stabilizing T via contributions to the superpotential W (T ) ∼ e−aT , gives rise
to a mass term for the inflaton H2ϕ2 (ϕ is the canonically normalized inflaton).
Alternatively, this contribution can be understood as arising from the coupling
1
12
ϕ2R4 — ϕ is a conformally coupled scalar. During inflation R4 ≈ 12H2 and

thus this coupling precisely leads to a term H2ϕ2 in the scalar potential [272].
However, there are also additional contributions, e. g. from various other kinds
of bulk effects. Thus, the full potential and the corresponding contributions to
the slow-roll parameter η may be written as

V (ϕ) = Vc(ϕ) + H2ϕ2 + ∆V (ϕ) (8.10)

η = ηc +
2

3
+ ∆η . (8.11)

The contribution ηc from the Coulomb potential Vc is typically very small,
|ηc| � 1. Therefore, η ∼ O(1) unless the extra corrections ∆η from e. g. bulk
effects conspire to cancel the generic 2

3
contribution. This is essentially a string

theory version of the supergravity η-problem introduced in Sec. 5.3.
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8.2 Capturing Effects from Bulk Physics

In the this section, we briefly outline how to capture the corrections to the D3-
brane potential from bulk effects along the lines of [282–284] (see also [279–
281,287,288,291,294–296]).

The supergravity equation for determining Φ− is of the form

∇2Φ− ∼ |G−|2 +R4 , (8.12)

where G− ≡ (?6 − i)G3 is the imaginary anti-self-dual (IASD) component of
the 3-form flux G3 and R4 is the 4d curvature. This equation is then solved as
a perturbative expansion around the KS solution3 by expanding all fields into
the harmonic functions on the base T 1,1 of the conifold. For example,

Φ−(ϕ,Ψ) =
∑

L,M

ΦLM

(
ϕ

ϕUV

)∆(L)

YLM(Ψ) + c.c. . (8.13)

Here, Ψ collectively denotes the angular coordinates of T 1,1 and most impor-
tantly the ϕ-dependence by the eigenvalues ∆(L) of the Laplace operator in
the angular directions. The possible values of ∆(L) are known from the KK-
reduction of type IIB supergravity on T 1,1 [401,402]. Thus, the structure of the
D3-brane potential are of the form

VD3 = T3Φ− =
∑

∆

ϕ∆f∆(Ψ) . (8.14)

The perturbations of Φ− are either normalizable or non-normalizable4 modes.
It is also interesting to note that the corrections to the inflaton potential can
also be computed on the gauge theory side via the AdS/CFT-correspondence
[282–284]. The normalizable modes are deformations of the state of the gauge
theory while the non-normalizable modes correspond to deformations of the
gauge theory Lagrangian by adding sources for operators. The eigenvalues ∆
are then related to the dimensions of the operators in the dual gauge theory.

Considering only the non-normalizable modes (which are sourced by gluing
the throat into a compact space), the possible values for ∆ are [282–284]

∆ = 1,
3

2
, 2, . . . . (8.15)

The ∆ = 1 term does not contribute to η. Situations where either the ∆ = 3
2

or the ∆ = 2 case dominate have been investigated in the literature. If the
3In practice, one expands around AdS5 × T 1,1 which is approximately the same as the

UV of KS up to a logarithmic correction.
4Actually, these modes are also normalizable but only once the throat is glued into a com-

pact space. The difference between normalizable and non-normalizable modes is essentially
the difference between IR and UV localized modes.
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first contribution with ∆ = 3
2
dominate, inflation occurs around an inflection

point [280–282,291,294]. Or if the ∆ = 3
2
mode can be projected out (see [282])

and the dominant contribution is from ∆ = 2. This essentially leads to a
scenario with a tuneable mass term [272,287,288].

Recently, in [295,296] a more sophisticated approach was employed. Namely,
by not taking limits where only a few terms dominate the potential, but actu-
ally using all terms up to a certain order and drawing their coefficients from a
random distribution. Then if inflation works it is typically an inflection point
scenario where the inflection point arises since many terms in the potential
conspire to yield a flat enough potential in a certain region.

We will consider a version of warped brane inflation later in this thesis in
Chap. 14, which uses the baryonic branch of the Klebanov-Strassler solution.
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Chapter 9

4d Effective Supergravity for Heterotic
Orbifold Compactifications

Both the type II A/B string theory and the heterotic string theory are theories
of closed strings. The excitations of the string can be decomposed into left-
moving and right-moving excitations. In the type II case, both the left-moving
and the right-moving sector are supersymmetric, while in the heterotic case
only one (say the left-moving sector) is supersymmetric (see e. g. [46–52]). As
a consequence, the heterotic string contains non-Abelian gauge fields in 10d.
That is, unlike for type II string theory, there is no need to introduce open
strings (i. e. stacks of D-branes) to introduce a non-Abelian gauge group.

The low-energy limit of heterotic string theory is heterotic supergravity.
The bosonic field content is given by the 10d metric GMN , the NS 2-form
BMN , the dilaton φ and a gauge field AM with either E8×E8 or SO(32) gauge
group. At leading order in α′, the effective action in ten dimensions is the sum
of a N = 1 supergravity action and a N = 1 Super-Yang-Mills action (see
e. g. [414] or the textbooks [46–52]).

Orbifold compactifications of heterotic string theory are among the simplest
possible compactifications, but they already lead to models with MSSM-like
spectra, e. g. the “heterotic mini-landscape” models [177, 178, 415–417]. Also
these models already contain a surprisingly rich phenomenology, see e. g. [182,
200, 418–421]. In some sense, they can be viewed as “toy models” for more
complicated Calabi-Yau compactifications via resolution of the orbifold singu-
larities, cf. e. g. [180,422–429].1

The aim of this chapter is to review some facts about the 4dN = 1 effective
supergravity description of such models which we will need later on in Chap. 12.
For an excellent and comprehensive review of orbifold compactifications see
[432].

1For some MSSM-like models obtained from Calabi-Yau compactifications see e. g. [183–
187,430,431].
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The structure of this chapter is as follows. In Sec. 9.1, we give a brief intro-
duction into heterotic orbifold compactifications. Next, in Sec. 9.2, we review
the N = 1 supergravity action, in particular, the constraints on the low-energy
effective action. Afterwards, we briefly comment on non-perturbative correc-
tions and on how to generate expectation values in Sec. 9.3. Finally, Sec. 9.4
contains a qualitative discussion on how moduli stabilization is achieved in
heterotic orbifold compactifications.

9.1 Heterotic Orbifold Compactifications

In orbifold compactifications of the heterotic string, the six internal directions
are compactified on a torus T 6 modulo a discrete symmetry group, e. g. a ZN
group. The compact dimensions can be organized into three complex coordi-
nates:

Z1 ≡ X4 + iX5 , Z2 ≡ X6 + iX7 , Z3 ≡ X8 + iX9 . (9.1)

Each can be viewed as parametrizing a torus T 2, which is obtained from the
complex plane parametrized by Zi upon imposing the identifications Zi ∼ Zi+1
and Zi ∼ Zi + τ for some τ ∈ C.

The orbifold is characterized by a three dimensional ‘twist’ vector v, which
encodes the twist acting on the coordinates Zi as Zi → e2πiviZi for i = 1, 2, 3.
For example, the heterotic ‘mini-landscape’ models [177,178,415–417] based on
Z6−II have the twist vector v = 1

6
(1, 2,−3), i. e. a rotation by (60◦, 120◦, 180◦)

of the first, second and third torus, respectively. The vector v defines the first
twisted sector of the theory, and the k-th twisted sector is defined by the twist
vector

ηi(k) ≡ k vi mod 1 , (9.2)

where 0 ≤ ηi(k) < 1 and k = 1, . . . , N − 1 for ZN orbifolds and one requires in
addition ∑

i

ηi(k) ≡ 1 . (9.3)

Field Content

The field content of heterotic orbifolds is therefore devided roughly into two
classes: untwisted and twisted sector fields. Roughly speaking, untwisted states
come from strings which are both closed on the orbifold and on the original
toroidal compactifications while twisted states come from strings which are
closed only on the orbifold, i. e. which are closed up to a twist in the torus.

Geometrically, this classification distinguishes fields propagating in all 10
dimensions (untwisted) from those propagating only in 6 or 4 dimensions
(twisted). The latter are the two types of twisted fields which can arise: they
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can be either confined to a fixed plane2 or to a fixed point. This depends on
the particular twisted sector, i. e. on whether the twist leaves one torus unro-
tated or rotates all three of them. Note that these sectors also have a different
amount of supersymmetry: the untwisted sector has N = 4 supersymmetry,
while the two types of twisted sectors have N = 2 and N = 1 supersymmetry,
respectively.

Dilaton and Geometric Moduli

Orbifold models have various moduli, in particular, there are always the dilaton
S, which controls the strength of the string coupling gs, and three untwisted
Kähler moduli Ti associated to the volumes of the three orbifold planes. In
principle, there can be also complex structure moduli Uα for the three planes, if
they are not fixed by the orbifold projection. For example, the “mini-landscape”
models have three Kähler moduli, i. e. h(1,1) = 3, and one complex structure
modulus U3, for the third complex plane, i. e. h(2,1) = 1.

Denoting the metric on a T 2 by Gij, the geometric moduli T and U asso-
ciated to this torus are given by (see e. g. [433])

T =
1

2

(√
G+ iB12

)
, U =

1

G11

(√
G+ iG12

)
. (9.4)

Bij denotes the components of the 2-form inside the torus. If one introduces
an explicit parametrization of the metric Gij on this torus as follows

Gij =

(
R2

1 R1R2 cos θ12

R1R2 cos θ12 R2
2

)
, (9.5)

with Ri measured in string units, then the moduli T and U are given by

T =
1

2
(R1R2 sin θ12 + iB12) , U =

R2

R1

sin θ12 + i
R2

R1

cos θ12 . (9.6)

Note that U depends only on the ratio of the radii and thus determines the
shape of the torus, while T determines the overall size of the torus.

In general, there are also twisted moduli corresponding e. g. to blow-up
modes of the orbifold singularities (cf. e. g. [180, 422–429]), but we neglect
them here for simplicity.

9.2 Effective 4d N = 1 Supergravity

In this section, we review some facts about the “generic” structure of the 4d
N = 1 supergravity action for heterotic orbifold models. We begin with the

2This fixed plane can be either a torus or an orbifold.
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structure of the (tree-level) Kähler potential K in Sec. 9.2.1. Afterwards, we in-
troduce target space modular invariance and see how it constraints the moduli
dependence of terms in the superpotential W in Sec. 9.2.2. Then in Sec. 9.2.3
the gauge kinetic function fa and the Green-Schwarz counterterm are intro-
duced. For this section, we are following the review of the general structure of
heterotic orbifolds presented in Sec. 2 of [166] to a large extent (see also [432]).

9.2.1 Tree-level Kähler Potential and Heisenberg
Symmetry

The matter fields in 4d arise from components of the gauge fields Am in the
compact internal dimensions while the moduli fields arise from the internal
components of the metric Gmn and 2-form Bmn as well as from the dilaton S.
Both sets of fields can be described by chiral superfields.

If we ignore the matter fields, the Kähler potential for the geometric moduli
is given by [434–437]

K = −
h(1,1)∑

i=1

log(Ti + T i)−
h(2,1)∑

α=1

log(Uα + Uα) , (9.7)

where h(1,1) and h(2,1) count the number of untwisted Kähler moduli Ti and
complex structure moduli Uα, respectively. There are at least three Kähler
moduli, i. e. h(1,1) ≥ 3 corresponding to the volumes of the three orbifold planes.
The number of untwisted complex structure moduli, h(2,1), is model-dependent
since some or all of them might already be fixed by the orbifold projection.
Note that we do not consider any twisted moduli and focus on the three Kähler
moduli, which parametrize the volumes of the three orbifold planes.

An important property of the tree-level Kähler potential for the untwisted
matter fields Φa,i is that it enjoys a so-called “Heisenberg symmetry” [438] once
the complex structure of the i-th torus is fixed such that the tree-level Kähler
potential depends only on the combination [434–437]

ρi = Ti + T i −
∑

a

|Φa,i|2 . (9.8)

Note that this is only a symmetry of the Kähler potential and is not preserved
by the superpotential. The ρi are related to the radii Ri of the i-th torus in
the presence of a non-trivial background for the Φa,i, i. e. ρi ∼ R2

i , because the
moduli Ti have to be redefined (see e. g. [433]). The Heisenberg symmetry acts
on Ti and the Φa,i simultaneously as [438]:

T → T + iα , α ∈ R , (9.9)

and

T → T + β̄Φ +
1

2
β̄β ,

Φ→ Φ + β , β ∈ C .
(9.10)



9.2. EFFECTIVE 4D N = 1 SUPERGRAVITY 105

In [439], the 10d origin of the Heisenberg symmetry was discussed. The sym-
metry appears in the limit of vanishing superpotential and gauge coupling and
can be traced back to a shift of the 10d gauge fields AαM by a harmonic form
λαM ,

AαM → AαM + λαM , (9.11)

and a corresponding shift of the 2-form BMN by

BMN → BMN −
√

1

2
Aα[M λαN ] . (9.12)

Upon compactification on an orbifold these transformations induce the Heisen-
berg symmetry transformations on the fields Ti and Φa,i.

For fixed complex structure moduli Uα, the tree-level Kähler potential in-
cluding the Kähler moduli Ti and both untwisted matter fields Φa,i and twisted
matter fields Ψa is of the following form

K0 = −
∑

i

log ρi +
∑

a

(∏

i

ρ
−qai
i

)
|Ψa|2 , (9.13)

where the exponents qa,i are determined by the corresponding twist vector (cf.
Eq. (9.22)). In general, these are rational numbers and there can be two cases:
either all three qi’s are non-zero or exactly one of them vanishes [91]. If one
expands the Kähler potential for the untwisted matter fields Φa,i to quadratic
order, the tree-level contribution has the same form as for the twisted matter
fields with qa,j = δij. Note that the Kähler potential in Eq. (9.13) is valid
in the limit where ReTi is much larger than the matter fields Φa,i and Ψa,
i. e. 〈ReTi〉 � 〈|Φa,i|〉, 〈|Ψa|〉.

There are two different formalisms to describe the dilaton which are closely
related: the string spectrum contains the antisymmetric tensor field Bµν . We
can combine this field with the dilaton φ in a linear multiplet L. Alternatively,
we can perform a duality transformation to implement this tensor field as
an axion and describe it together with the dilaton as a chiral multiplet S.
Both formalisms are believed to be equivalent even at the non-perturbative
level [440]. In the chiral multiplet formalism, the tree-level Kähler potential for
the dilaton is given by

Kch = − log(S + S) , (9.14)

while in the linear multiplet formalism it is instead given by

Klin = logL . (9.15)

At tree level, the two formalisms are related by

` =
1

s+ s̄
, (9.16)
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where ` and s denote the lowest components of the linear multiplet and chiral
multiplet, respectively. Thus, the weak-coupling limit, gs → 0, corresponds to
`→ 0 or s→∞. However, Eq. (9.16) is subject to both perturbative and non-
perturbative corrections and we will see the required modifications of Eq. (9.16)
in Sec. 9.3.1.

9.2.2 Target Space Modular Invariance

The low-energy effective supergravity action for heterotic orbifolds is subject
to strong constraints from target space modular invariance, which is preserved
to all orders in perturbation theory. We will now discuss these transformations
and the restrictions they impose, in particular, on the superpotential.

The modular transformations of the Kähler moduli Ti and complex struc-
ture moduli Uα are often elements of SL(2,Z) [434–437,441,442]. There is one
such SL(2,Z) group for each modulus M ∈ {Ti, Uα} which acts on M as

M → aM − ib
icM + d

, ad− bc = 1 , a, b, c, d ∈ Z . (9.17)

Hence, the log(M + M) terms appearing in the Kähler potential are not in-
variant but instead transform as

log(M +M)→ log

(
M +M

(icM + d)(−icM + d)

)
. (9.18)

Therefore, the modular group induces a transformation of the Kähler potential:

K → K +

h(1,1)∑

i=1

log|iciTi + di|2 +

h(2,1)∑

α=1

log|icαUα + dα|2 . (9.19)

Since the F-term scalar potential is necessarily invariant and depends only on
the combination G = K + log|W |2 (cf. Sec. 4.2), the superpotential must also
transform under modular transformations. The transformaton Eq. (9.19) has
the form of a Kähler transformation and thus W transforms as

W →
h(1,1)∏

i=1

h(2,1)∏

α=1

(iciTi + di)
−1(icαUα + dα)−1W . (9.20)

Moreover, in addition to the moduli, also the matter fields Φa ≡ {Φa,i,Ψa}
transform under the modular group as

Φa →
h(1,1)∏

i=1

h(2,1)∏

α=1

(iciTi + di)
−qa,i(icαUα + dα)−pa,α Φa . (9.21)
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The exponents qa,i, pa,α in Eq. (9.13) and (9.21) are called modular weights
[91, 92]. They are determined by the orbifold twist vector of the given sector
ηi(k), cf. Eq. (9.2), as follows

qa,i ≡ (1− ηi(k)) +Ni − N̄i for ηi(k) 6= 0 , (9.22a)
qa,i ≡ Ni − N̄i for ηi(k) = 0 , (9.22b)

where the Ni and N̄i are integer oscillator numbers of left-moving oscillators
α̃i and ¯̃αi, respectively. Similarly, the pa,j are given by

pa,α ≡ (1− ηα(k))−Nα + N̄α for ηα(k) 6= 0 , (9.23a)
pa,α ≡ −Nα + N̄α for ηα(k) = 0 . (9.23b)

For a given polynomial in the matter fields to be used in the superpotential,
the correct transformation of W can be ensured by appropriate powers of the
Dedekind η-function multiplying this polynomial. Under modular transforma-
tions, the η-function transforms (up to a phase) as

η(M)→ (icM + d)1/2 η(M) , (9.24)

with η(M) defined as

η(M) = e−πM/12

∞∏

n=1

(
1− e−2πnM

)
. (9.25)

Thus, a generic term in the superpotential has the following structure

W ⊃
h(1,1)∏

i=1

η(Ti)
2σi

h(2,1)∏

α=1

η(Uα)2eσα ∏
a

Φna
a , (9.26)

where Φa denotes both untwisted and twisted matter fields and the exponents
of the η-functions are given by σi = −1 +

∑
a naqa,i and σ̃α = −1 +

∑
a napa,α.

For ReTi & 1, we can approximate η(Ti) by exp(−π Ti
12

) and hence if a term
in the superpotential depends on Ti it is generically of the form ∼ e−c Ti at large
radius (i. e. for large ReTi) with some constant c. The interpretation of this
e−T dependence is that the corresponding interaction in the superpotential is
generated by a non-perturbative effect: The strings have to stretch over the i-th
torus to reach each other which then leads to a suppression of this interaction
by the volume of the torus. In general, there are also term in W which do not
depend on the moduli3. For instance, the coupling of three untwisted fields
associated to three different planes or of three twisted fields living at the same
fixed point will not have any moduli dependence.

The superpotential for the matter fields starts at cubic order in the fields
(see e. g. [434]). Thus, for instance any mass term has to be generated by some
other fields acquiring non-zero expectation values.

3Up to modular invariant functions which we do not consider here.
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9.2.3 Gauge Kinetic Function and Green-Schwarz
Counterterm

So far, we have reviewed the structure of the Kähler potential K and the
superpotential W . The last function required to specify the action of the
chiral superfields is the gauge kinetic function fa. At string one-loop level,
the modular transformations are anomalous and this anomaly is cancelled by
the Green-Schwarz mechanism and threshold corrections from massive string
modes, which in turn modifies the effective action. In particular, in the chiral
multiplet formalism the dilaton S will generically mix with the Kähler moduli
Ti and the complex structure moduli Uα.

The gauge couplings are determined by the gauge kinetic function fa as
g−2
a = Re fa with a labeling the different gauge groups Ga. At tre-level, one has
universally fa = kaS, but at string one-loop level fa is given by [443–447]

fa = kaS +

h(1,1)∑

i=1

(
αia − kaδiGS

)
log(η(Ti))

2 +

h(2,1)∑

α=1

(ααa − kaδαGS) log(η(Uα))2 ,

(9.27)
where ka is the Kac-Moody level of the group (typically ka = 1), and the
model-dependent constants αia are defined as

αia ≡ `(adj)−
∑

repA

`a(repA)(1 + 2qA,i) . (9.28)

Here, `(adj) and `a(repA) are the Dynkin indices of the adjoint and matter field
representations of the corresponding gauge group factor Ga, respectively.4 The
Green-Schwarz coefficients δiGS are given by [446]

αia − kaδiGS =
bN=2
a,i

|D|/|Di|
, (9.29)

where bN=2
a,i is a beta function coefficient of the gauge group Ga for the i-th

torus. These coefficients are non-zero only if there is some twisted sector with
N = 2 supersymmetry and if this twisted sector does not rotate the i-th torus.
The factors |D| and |Di| are the degree of the twist group D and the little
group Di, which leaves the i-th unrotated, respectively. For example, the mini-
landscape models have D = Z6−II and then |D| = 6, |D2| = 2 and |D3| = 3
since the little groups under which the second and third torus are fixed are Z2

and Z3, respectively. The first torus is rotated in all twisted sectors.

The δiGS terms are introduced to cancel a sigma-model and Kähler anomaly
of the modular group. This anomaly induces a non-trivial modular transfor-

4The Dynkin indices are determined from the normalization condition Tr(TiTj) =
`a(rep)δij of the generators Ti in the given representation.
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mation of the dilaton in the chiral formalism:

S → S +

h(1,1)∑

i=1

δiGS log(iciTi + di) +

h(2,1)∑

α=1

δαGS log(icαUα + dα) . (9.30)

The anomaly is cancelled (partially) by the so-called Green-Schwarz countert-
erm, which modifies the Kähler potential at string one-loop level. Neglecting
the matter fields, the modified Kähler potential is given by

K = − log Y −
h(1,1)∑

i=1

log(Ti + T i)−
h(2,1)∑

j=1

log(Uα + Uα) , (9.31)

where

Y = S + S −
h(1,1)∑

i=1

δiGS log(Ti + T i)−
h(2,1)∑

α=1

δαGS log(Uα + Uα) . (9.32)

In general, the Green-Schwarz mechanism will not cancel the complete modular
anomaly completely. The remaining part of the anomaly is cancelled by thresh-
old corrections from massive string modes [446]. These threshold corrections
are moduli-dependent since the masses of e. g. the Kaluza-Klein and winding
states depend on the radii.

9.3 Non-Perturbative Corrections and
Expectation Values

9.3.1 Non-Perturbative Corrections

So far, we have described the structure of the effective supergravity theory at
tree-level and introduced perturbative corrections. Now we will introduce also
non-perturbative corrections. These are an important ingredient for success-
ful moduli stabilization in string theory and in heterotic models they are in
particular crucial for stabilizing the dilaton S (cf. Sec. 9.4).

Non-perturbative corrections can be either of a field-theoretic [448] or a
stringy origin [449] (see also [450–452]). Field-theory instantons (such as gaug-
ino condensates) scale like e−1/g2 , while string theory instanton effects scale
like e−1/g, where g is the coupling constant. Corrections to the Kähler poten-
tial are much harder to compute than corrections to the superpotential. But
we may parametrize the non-perturbative corrections and treat the coefficients
as essentially free parameters.

In the following, we first briefly comment on non-perturbative effects in
the chiral multiplet formalism and then we turn to their description in terms
of the linear multiplet. The discussion here follows [453–456].
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The Chiral Multiplet Formalism

In the chiral multiplet formalism, one has non-perturbative corrections to both
the Kähler and the superpotential,

K = Ktree +Kpert +Knp ,

W = Wtree +Wnp .
(9.33)

The non-perturbative superpotential is due to the presence of a gaugino con-
densate and thus one has [447,457–459]

Wnp = Ae−bS
3∏

i=1

η(Ti)
−2 , (9.34)

where b is related to the beta-function coefficient of the condensing gauge group
and the η-functions are introduced to ensure covariance of the superpotential
under modular transformations. The non-perturbative corrections to the Käh-
ler potential are typically parametrized in terms of ReS, cf. e. g. [460,461] for
some examples.

The kinetic mixing between the dilaton and the Kähler moduli, cf. Eq. (9.31),
however makes finding flat directions more complicated in the chiral multiplet
formalism. Thus, we will consider the linear multiplet formalism and since the
two formalisms are believed to be equivalent there should be no physical dif-
ference.

The Linear Multiplet Formalism

In the linear multiplet formalism, the dilaton is invariant under modular trans-
formations.5 The Green-Schwarz counterterm is then implemented somewhat
differently [443, 462, 463]. Neglecting the complex structure moduli, it is given
by

VGS = −
∑

i

δiGS log(Ti + T i) . (9.35)

In this thesis, we will assume that VGS preserves the Heisenberg symmetry,
i. e. that it is actually given by the tree-level Kähler potential [464]:

VGS = −
∑

i

δiGS log ρi +
∑

a

pa|Ψa|2
(∏

i

ρ
−qai
i

)
, (9.36)

with the unknown contribution of the twisted matter fields Ψa to the Green-
Schwarz term parametrized by the coefficients pa. Upon including this term,
the effective Kähler metric for the fields is modified to

K eff
ab̄ = Kab̄ + `V GS

ab̄ . (9.37)
5One can make a field redefinition of the dilaton in the chiral formalism in order to make

it invariant under modular transformations, cf. e. g. [443].
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In the linear multiplet formalism, the superpotential is independent of the
dilaton since it is not a chiral superfield. The non-perturbative corrections to
the Kähler potential may be parametrized by a function g(L) as

K = logL+ g(L) + . . . , (9.38)

where the dots denote the terms involving the other moduli and matter fields.
The gauge coupling constant (at the string scale) also receives non-perturbative
corrections which we parametrize by another function f(`):

g2 =
2`

1 + f(`)
. (9.39)

The relation between the linear and the chiral multiplet formalism gets modified
by both perturbative and non-perturbative effects:

`

1 + f(`)
=

1

s+ s̄+ VGS
, (9.40)

where VGS is given by Eq. (9.36).

The two functions g(`) and f(`) in Eqs. (9.38) and (9.39) are related by

`
dg

d`
= f − `df

d`
, f(` = 0) = g(` = 0) = 0 . (9.41)

The differential equation and the boundary conditions ensure a canonical nor-
malization of the Einstein-Hilbert term and the correct behaviour in the weak-
coupling limit `→ 0, respectively.

Following [453–456], we parametrize f(`) as

f(`) = B

(
1 + A

1√
a`

)
e−1/

√
a` . (9.42)

The function g(`) is then determined by solving Eq. (9.41).

During inflation, the gaugino condensate is expected to be negligible and
hence the effective scalar potential for vanishing D-terms is given by [464]

V = eK

((
`
dg

d`
+ 1

)
|W |2 − 3|W |2 +

∑

ab̄

(
Keff
ab̄

)−1
FaF̄b̄

)
, (9.43)

where the indices a, b run over the scalar components of the Kähler moduli
Ti, the untwisted matter fields Φa,i and the twisted matter fields Ψa. The
supergravity F-terms Fm are given by

Fa = Wa +KaW . (9.44)

The effective Kähler metric in the last term of Eq. (9.43) is given by

Keff
ab̄ = Ktree

ab̄ + `K1-loop
ab̄

, (9.45)
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while the K to be used in Eqs. (9.43) and (9.44) is given by

K = log(`) + g(`)−
∑

i

log ρi +
∑

a

(∏

i

ρ
−qai
i

)
|ψa|2 , (9.46)

which is obtained by replacing all superfields with their scalar components
(denoted by lower case letters) and dropping the perturbative corrections. Note
also that in Eq. (9.46) we use ρi = ti + t̄i −

∑
a|φia|2.

9.3.2 Anomalous U(1)A and Generating Expectation
Values

In this section, we review how to generate expectation values for matter fields
via D-terms of an anomalous U(1)A and subsequently through F-terms. For
more details and examples in the present context of inflationary model building,
see e. g. [464,465], which we will closely follow here.

D-term Expectation Values

In many orbifold models there exists an anomalous U(1)A. The anomaly is can-
celled via a Green-Schwarz counterterm, which gives rise to a Fayet-Iliopoulos
contribution to the D-term DA. Thus, we have a contribution to the scalar
potential from the D-term,

VD =
g2

2

(∑

a

qA,aKaφa + ξA

)2

, (9.47)

where the index a runs over both twisted and untwisted matter fields, qA,a
denotes the charge under the anomalous U(1)A (not to be confused with the
modular weights qa,i), the gauge coupling g2 is given in Eq. (9.39), φa denotes
the scalar component of the Φa = {Φa,i,Ψa} and the Fayet-Iliopoulos D-term
ξA (in the linear multiplet formalism) is given by

ξA =
2`TrQA

192π2
, (9.48)

with QA the generator of the anomalous U(1)A. Using the Kähler potential of
Eq. (9.13), the D-term potential in Eq. (9.47) becomes

VD =
1

2
g2

[∑

a

(∏

i

ρ
−qa,i
i

)
qA,a|φa|2 + ξA

]2

. (9.49)

Cancellation of the D-term requires some matter fields to pick up non-zero
expectation values of the form

|〈φa〉|2
qA,a

= const · ` ·
(∏

i

ρ
qa,i
i

)
. (9.50)
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These expectation values driven by the cancellation of the D-term of an anoma-
lous U(1)A are important also for the phenomenology of heterotic orbifold
models. For example, they are required to get rid of extra exotic states in the
mini-landscape models [177,178,415–417].

F-term Expectation Values

Via the superpotential, D-term expectation values can induce other non-zero
expectation values. To illustrate this, let us review the example of [464, 465].
Consider the following modular-invariant expression of the three fields χ, φ, φ′:

Γ = χφφ′
∏

i

η(Ti)
2σi , (9.51)

where σi =
∑

a qa,i, a = χ, φ, φ′. Assume also that φ and φ′ acquire non-zero ex-
pectation values, e. g. through the cancellation of a D-term as described above.
Using this expression, we may build a possible superpotential contribution of
the form

W (Γ) =

(
ψφφ′

∏

i

η(Ti)
2σ′i

)
(c0 + c1Γ) , (9.52)

with some constants c0,1 6= 0 and σ′i = −1 +
∑

b qb,i, b = ψ, φ, φ′. Such a term is
allowed if the products ψφφ′ and χφφ′ are gauge invariant. We can find a critical
point6 with a non-zero F-term for ψ if 〈ψ〉 = 0 and Γ = −c1/c0 = const. Hence,
the non-zero D-term expectation values for φ, φ′ induce a non-zero expectation
value for χ

|〈χ〉|2 = const ·
∣∣∣∣∣

〈
φφ′
∏

i

η(Ti)
2

P
a qa,i

〉∣∣∣∣∣

−2

, (9.53)

with a = χ, φ, φ′. Note that if 〈φ〉 and 〈φ′〉 are induced by the D-term cancella-
tion as above, we see from Eqs. (9.53) and (9.50) that |〈χ〉|2 ∝ `−2. Also note
that in principle 〈χ〉 can involve η(Ti) to some power.

The important lesson from the above considerations is that in general the
VEVs induced by either D-terms or F-terms carry some dependence on the
geometric moduli Ti, Uα and the dilaton `.

9.4 Moduli Stabilization in Heterotic Orbifolds

Moduli stabilization in heterotic orbifold compactifications works somewhat
different than in the type IIB picture presented in Chap. 6. This is due to
the absence of fluxes which in the heterotic case would strongly deform the

6Whether this critical point is actually a minimum depends also on the other matter fields
present [465].
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compact manifold and are therefore not switched on in this class of models.
Hence, for heterotic orbifold models, the moduli have to be stabilized entirely
by invoking non-perturbative effects. The discussion here will use the chiral
multiplet formalism for the dilaton to make the similarities to the type IIB
case clearer.

As reviewed in Sec. 9.1, the moduli of a heterotic orbifold compactification
are the dilaton S as well as h(1,1) Kähler moduli Ti and h(2,1) complex structure
moduli Uα. In the simplest orbifold models, their tree-level Kähler potential is

K = − ln
(
S + S

)
−

h(1,1)∑

i=1

ln
(
Ti + T i

)
−

h(2,1)∑

α=1

ln
(
Uα + Uα

)
. (9.54)

In general, there are corrections to both the superpotential and the Kähler
potential. While the former receives only non-perturbative corrections, the lat-
ter receives both perturbative and non-perturbative corrections. In the phe-
nomenologically interesting regime, the dilaton is most likely stabilized in a
regime where both kinds of corrections are important [448]. Indeed, stabilizing
the dilaton crucially relies upon non-perturbative corrections to either W or
K or both. For two recent approaches on moduli stabilization in heterotic orb-
ifold models see [166,167]. Here, we only want to briefly outline the qualitative
picture.

Non-Perturbative Superpotential Terms The geometric moduli Ti, Uα
enter the superpotential via worldsheet instantons which induce certain cou-
plings between matter fields. The dependence of the superpotential terms on
these geometric moduli is constrained by target space modular invariance, cf.
Sec. 9.2.2.

The dilaton does not enter the superpotential at any order in perturbation
theory, but may enter at the non-perturbative level through gaugino conden-
sates. The gaugino condensate depends on the dilaton S since the dilaton
sets all tree-level gauge couplings [360, 361, 466, 467] and it in general also
carries a dependence on the geometric moduli Ti, Uα due to threshold correc-
tions [91, 445, 446]. Thus, a typical contribution from a gaugino condensate is
of the form

Wgc = Ae−bS−aiTi , (9.55)

where b is determined by the β-function coefficient of the condensing gauge
group and ai, cj are determined by modular invariance.7

In [419], it was noted that the superpotentials of the heterotic “mini-
landscape” models [177,178,415–417] have an approximate R-symmetry which
is only broken at high orders in the matter fields. Based on this observation,

7There is a sublety here which has to do with redefinitions of the chiral superfield S
containing the dilaton beyond tree-level. If we define a modular-invariant dilaton S′, all the
ai = −2 [447].
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one may construct KKLT-like setups for moduli stabilization for the dilaton of
the form [166,419]

W ⊃ w0e
−aT + e−bS−cT . (9.56)

But note that the stabilization of T is of a racetrack form. The e−T -dependence
is required again by modular invariance and w0 = w0 (〈Φa〉) arises due to a set
of matter fields acquiring VEVs.

Non-Perturbative Kähler Potential Terms In addition to the inevitable
loop corrections, the Kähler potential may also receive non-perturbative cor-
rections. These can be of a similar for as the gaugino condensates, i. e. depend
on the dilaton as ∼ e−bS, but there can be also stringy non-perturbative effects
of the form ∼ e−b

√
S+S [43, 448,449,453–456,460, 461]. And this latter type of

correction is typically the more important one of the two.

Qualitative Picture

Depending on which terms are considered, we may roughly distinguish two
classes of models: Racetrack-like and KKLT-like models or “Kähler Stabiliza-
tion” models. In both classes, the superpotentialW must depend on the moduli
and then the parameters controlling the moduli dependence of W and/or K
are adjusted such that a stable minimum is obtained.

Racetrack-like and KKLT-like models Neglecting the non-perturbative
corrections to the Kähler potential, there are two options for stabilizing the
moduli. The resulting potential for the dilaton can be of a racetrack form,
where two gaugino condensates contribute [458,459,468,469],

W ∼ Ae−b1S +Be−b2S , (9.57)

or of a KKLT-like form with only a single condensate [166,419],

W ∼ w0 + Ae−bS . (9.58)

In both cases, the dilaton can be stabilized for suitable parameter choices. As
noted above, the gaugino condensates carry also some dependence on (some
of) the geometric moduli Ti, Uα. This dependence may already be sufficient to
stabilize them [457,459,469–471] and the remaining ones may then be fixed by
worldsheet instantons involved in twisted field Yukawa couplings [447]. Alter-
natively, the Ti, Uα are also fixed by a racetrack-like structure, see e. g. [166].

Kähler Stabilization Including the non-perturbative corrections Knp leads
to the scheme of Kähler stabilization [43,448,453–456,460,461], which requires
the presence of only a single gaugino condensate. WithoutKnp, a single gaugino
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condensate is not sufficient to stabilize the dilaton, but we may include non-
perturbative corrections to K parametrized for example as

eK = eK0 + eKnp , (9.59)

eKnp = c
(
S + S

)p/2
e−q
√
S+S . (9.60)

The parameters in Knp are chosen such that p, q > 0 and K ′′ > 0 (the prime
denotes a derivative with respect to ReS). Suitable parameter choices allow
for stabilization of the dilaton [453–455, 460, 461]. Stabilization of the Kähler
moduli Ti and complex structure moduli Uα works as in the models with only
non-perturbative contributions to the superpotential. We will employ a version
of this stabilization scheme later on in this thesis in Chap. 12.

The authors of [166] considered a model where the set of bulk moduli S, T
were stabilized with non-zero F-terms and in addition there is an uplifting con-
tribution from a non-zero F-term for a matter field driven by the cancellation
of the D-term of an anomalous U(1)A. They then argued that within such a
framework generically all flat directions of heterotic orbifold models, including
those corresponding to twisted (matter) fields, should be stabilized.

In [167], the authors tried to take into account all bulk moduli and the
dilaton for a few examples from the heterotic mini-landscape models [177,178,
415–417] and searched for stable de Sitter vacua. So far, they did not succeed
in finding any explicit examples of a stable dS vacuum but only unstable ones.
However, their analysis did not include non-perturbative corrections to K and
some other kinds of moduli-dependent corrections. Thus, at present, the pos-
sible existence of metastable dS vacua for the mini-landscape models remains
an open question.
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Chapter 10

Combining Low-Energy Supersymmetry
and High-Scale Inflation

After having reviewed the required basic material, we now move on to the actual
work done in the course of this thesis. First, we discuss results for models of
inflation in effective supergravity theories in this part. Later on, in Part IV, we
discuss a new model of D-brane inflation.

This chapter is based on Ref. [2], where my collaborators and I proposed
a new solution to simultaneously combining low-energy supersymmetry and
high-scale inflation. These two seemingly uncorrelated subjects actually turn
out to be deeply connected via moduli stabilization, especially in the context
of string theory compactifications.1

Apart from other implications of moduli stabilization for supersymmetry
breaking and single-field slow-roll inflation, there is a very profound one during
inflation. Namely, the very presence of an inflationary sector may destabilize
the moduli, as was pointed out by Buchmüller, Hamaguchi, Lebedev and Ratz
and by Kallosh and Linde [43–45].2 In this chapter, we are concerned with a
particular version of this problem sometimes called the Kallosh-Linde (KL)
problem [45]. That is, to avoid destabilization of the volume modulus during
inflation one often has an upper bound on the Hubble scale during inflation
determined by todays gravitino mass,

Hinf ≤ mtoday
3/2 . (10.1)

Thus, a gravitino mass m3/2 ∼ O(TeV) would allow only for a very small Hub-
ble scale during inflation, which is much below the values needed for many
inflationary models and in addition also much below the sensitivity of experi-
ments searching for primordial gravitational waves.

Basically, the problem appears since there is effectively only one scale in-
volved, which sets both the gravitino mass today and the height of the bar-

1See Chap. 6 and references therein for a review on moduli stabilization.
2For earlier work discussing problems of moduli related to inflation cf. e. g. [247–249].
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rier towards decompactification. Invoking only fluxes and non-perturbative ef-
fects, one ends up with an AdS-minimum which is then turned into a (nearly)
Minkowski minimum via a supersymmetry breaking uplift. Thereby, a bar-
rier towards decompactification is created and its height is related to todays
gravitino mass. Inflation in such a setup can often be viewed as an additional
uplifting which induces a runaway potential for the modulus. If the contribu-
tion of the inflationary sector becomes too large, the barrier and hence the
minimum disappear. We will review the problem in more detail in Sec. 10.1.

In Ref. [2], my collaborators and I proposed a new resolution of the problem
which uses two different mechanisms to stabilize the moduli during and after
inflation. During inflation, the modulus receives a large mass proportional to
the inflationary vacuum energy. This is achieved, for example, by a suitable
moduli-dependence of the Kähler metric of the field driving supersymmetry
breaking during inflation.3 At the end of inflation, the vacuum energy goes
to zero and we invoke a KKLT-like stabilization mechanism relying on non-
perturbative terms in the superpotential. The general idea is illustrated in a
simple example: chaotic inflation protected by a shift symmetry combined with
a KKLT-type superpotential. However, let me stress that the framework can
also be applied to more general setups.

This chapter is organized as follows. We review the KL problem in more
detail in Sec. 10.1. Afterwards, we outline our general framework for solving
the KL problem in Sec. 10.2. This general framework is then illustrated in an
explicit example in Sec. 10.3 and in a less explicit example in Sec. 10.4. Finally,
we summarize the results and discuss the relation to other works in Sec. 10.5.

10.1 Review of the Kallosh-Linde Problem

The Kallosh-Linde (KL) problem was discussed in [45] in the context of moduli
stabilization in type IIB string theory within the KKLT scenario [40]. Below
the scale where the complex structure moduli and the dilaton are stabilized via
fluxes as in [153–155], the Kähler potential K and the superpotential W for
the volume modulus T ≡ σ+ i α, which controls the overall size of the compact
space, are given by [40]

K = −3 ln(T + T ) and W = w0 + Ae−aT , (10.2)

respectively. Note that throughout this part of the thesis we work in units
where MP ≡ 1. In the following, we consistently set the imaginary part α = 0,
which corresponds to a particular choice of phases for w0 and A, and consider
only the potential for the real part σ. The resulting F-term potential has a
supersymmetric Anti de Sitter (AdS) minimum and consequently the depth of

3Such couplings have been first used to stabilize moduli during inflation in [351].
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this minimum is given by

VAdS = −3 e〈K〉σAdS |〈W 〉σAdS |2 , (10.3)

where σAdS is the position of the AdS minimum. To turn this into a Minkowski
or de Sitter (dS) minimum, one has to add an uplifting term to the potential,
which is typically of the form ∆V ∼ Cup

σ2 .4 The value of Cup is fine-tuned such
that the value of the potential at the new minimum is equal to the present value
of the cosmological constant. The uplifting usually induces only a small shift
in the position of the minimum which is negligible, i. e. one has σ0 ≈ σAdS. The
uplifting procedure also creates a barrier that prevents the field from running
away to the Minkowski vacuum at σ → ∞, i. e. towards decompactification.
The height VB of this barrier turns out to be VB ' O(1)|VAdS|.

The gravitino mass in the uplifted minimum is given by

m2
3/2(σ0) = e〈K〉σ0 |〈W 〉σ0| ≈ e〈K〉σAdS |〈W 〉σAdS | =

1

3
|VAdS| . (10.4)

Thus, the height of the barrier is related to the gravitino mass in the present
vacuum,

VB ∼ |VAdS| ∼ m2
3/2 . (10.5)

The gravitino mass m3/2 is directly related to the scale of supersymmetry
breaking since the almost vanishing of the cosmological constant,

Vmod = VF + VD = |F |2 − 3m2
3/2 +

1

2
D2 ≈ 0 , (10.6)

automatically implies

3m2
3/2 ≈ |F |2 +

1

2
D2 . (10.7)

When an inflationary sector is added to the moduli stabilizing sector, the
generic form of the potential becomes5

Vtot = Vmod(σ) +
Vinf(φ)

σ3
. (10.8)

Even for a perfectly suitable inflationary potential Vinf(φ), once the value of
Vinf(φ) becomes large enough, the second term in Eq. (10.8) dominates and σ

4This choice for Vup is motivated by introducing D3-branes at the tip of a warped throat.
The constant Cup is tuneable by adjusting the strength of the warping at the tip.

5If we add an F-term driving inflation, the scalar potential during inflation is

V = eK
(
KXX̄ |DXW |2 +KTT |DTW |2 − 3|W |2

)
+
Cup

σ2
.

For all known candidate inflation models, the inflationary potential Vinf ∼ eK KXX̄ |DXW |2
vanishes as some inverse power of σ for σ → ∞. Typically, this power is σ−3 from the eK
prefactor. Thus, adding inflation to Vmod can be viewed as an additional uplifting.
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Figure 10.1: Schematic picture of the destabilization of the uplifted minimum due
to adding an inflationary sector. The moduli potential after inflation is given by
the solid black line. The dashed red line corresponds to the contribution from only
Vinf(φ)/σ3, while the solid red line corresponds to Vmod(σ) + σ−3 Vinf(φ). The other
solid colored lines correspond to different increasing values of Vinf(φ). The dashed
grey line indicates the height of the barrier VB. The scale on the vertical axis is
arbitrary.

becomes a run-away direction. This is actually independent of the particular
form of the moduli stabilizing sector (for now, it is KKLT), i. e. there is al-
ways an upper bound for the inflationary energy scale. Empirically, it has been
argued that to avoid decompactification for the KKLT moduli stabilization
scheme, we have to require [45]

Vtot . O(1)VB . (10.9)

We illustrate the destabilization of the uplifted minimum for the modulus
due to inflation in Fig. 10.1. Obviously, by increasing Vinf(φ), at a certain critical
value of Vinf(φ) the minimum disappears and the modulus runs away to infinity.

For the KKLT scenario, however, the height of the barrier is related to the
gravitino mass in the present vacuum, cf. Eq. (10.5), and thus with H2

inf ∼ Vtot
the upper bound becomes

Hinf . mtoday
3/2 . (10.10)

This is at odds with having a high scale of inflation and low-energy supersym-
metry, which requires Hinf � mtoday

3/2 .6

The solution suggested by KL [45] is to add a second non-perturbative
contribution to the superpotential. Then the value of the gravitino mass in the

6In the context of the LARGE Volume Scenario [159], the upper bound becomes even

more severe, namely Hinf .
(
mtoday

3/2

)3/2

in Planck units [259].
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present vacuum can be disentangled from the height of the barrier. To achieve
this decoupling, the terms in the superpotential must be fine-tuned.

The crucial issue of the KL problem arises from the notion of having a
single, common scale to the moduli stabilization mechanism during and after
inflation. In this thesis, we propose a scenario where two different mechanisms
stabilize the modulus during and after inflation. In particular, we consider mod-
els where a certain term in the Kähler potential is responsible for stabilizing
the volume modulus during inflation, whereas a standard KKLT-type super-
potential stabilizes the modulus after inflation, and thereby sets the gravitino
mass in the present vacuum. In the next section, we will outline the general
setup of our scenario, followed by an explicit example.

10.2 Resolution: A General Framework

We consider generic superpotentials of the following form

W = Winf(X,Φ, . . . ) +Wmod(T ) , (10.11)

with X denoting the field whose F-term drives the inflationary vacuum energy
and Φ containing the inflaton. The dots in the argument of Winf represent
possible other fields, e. g. some waterfall fields to realize hybrid inflation. The
F-term potential during inflation takes the form

VF = eK KXX̄ |DXWinf |2 + Vmod(σ) + Vmix , (10.12)

where Vmod(σ) originates solely from the modulus sector Wmod(T ) and is re-
sponsible for moduli stabilization only after inflation when the F-term of X
(the vacuum energy) - the first term in Eq. (10.12) - has vanished. Since the
Hubble scale at the end of inflation is much smaller than the Hubble scale dur-
ing inflation, Wmod(T ) need not be necessarily large in contrast to the usual
setup where Wmod(T ) is responsible for moduli stabilization both during and
after inflation. Vmix denotes possible additional mixing terms, in particular,
the contributions due to KTX̄ 6= 0. In principle, there can be also other mix-
ing terms, e. g. due to KΦT 6= 0, but we assume those to be negligible in the
following.

During inflation, moduli stabilization is achieved by a suitable moduli-
dependence of the first term. Moreover, since we focus on setups where Winf

satisfies [38, 225,227–230,351,352] (see Sec. 5.3)

Winf ≈ 0 , Winf, X 6= 0 and Winf, i 6=X ≈ 0 , (10.13)

the minimum for T during inflation has to be generated by the prefactor of
the first term, eK KXX̄ . Below we give a simple example (on which we will be
more explicit later in section 10.3), where we keep a no-scale Kähler potential
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for T and modify the Kähler metric for X in an appropriate way to stabilize
the modulus during inflation. But keep in mind that our framework allows
for more general possibilities, e. g. if one breaks the no-scale structure in the
Kähler potential by including α′-corrections [156].

Wmod(T ) is responsible for stabilizing the modulus at the end of infla-
tion. Upon including the necessary uplifting term, SUSY is broken in the
present vacuum. As long as the Hubble scale after inflation is smaller than
the TeV-scale, the modulus will always remain stable since TeV-scale SUSY
breaking generically induces moduli masses which are of the same order or
heavier. Therefore, we can decouple low-energy SUSY breaking from the in-
flationary scale, thereby evading the KL problem, that is we can generically
assume |Wmod|, |DTWmod| � |Winf,X |.

From now on, we restrict ourselves to a particular form of the Kähler po-
tential, which contains the aforementioned coupling between T and X, namely

K = −3 ln(T + T ) + |X|2
(
1− β(T + T )− γ|X|2

)
+ . . . . (10.14)

It has been argued in [1] that couplings (qualitatively) similar to the second
term in the brackets in Eq. (10.14) can arise as moduli-dependent string-loop
corrections in heterotic orbifold compactifications (see also Sec. 12.2). For sim-
plicity, we have dropped a possible overall factor of (T + T )−p (with p some
rational number) for the terms in the brackets in Eq. (10.14), which does not
change the results qualitatively. A discussion of the origin of such terms in type
IIB string theory is beyond the scope of the present work and we defer it to
the future.

Due to the −γ|X|4 term, X generically acquires a large mass during infla-
tion [225] for γ & O(1)7 and remains near zero.8 Schematically, for |X| � 1,
VF is given by

VF ∼
|WX |2

σ3 (1− 2 β σ)
+ Vmod(σ) +O(X) . (10.15)

In the limit Wmod → 0, we have X = 0 and the potential during inflation
is entirely given by the first term. Thus, let us concentrate on the first term
for a moment: If β > 0, this term stabilizes σ at σinf ∼ β−1 with a large
mass proportional to H2

inf ∼ |WX |2/σ3
inf. More precisely, taking into account

the non-canonical kinetic term for T , we find m2
T ' O(10)H2

inf. At the end
of inflation, the vaccum energy goes away and the modulus would become
unstable. However, in this phase, Vmod(σ) begins to dominate and stabilizes
the modulus. The novel feature of this setup is that the mechanisms for moduli
stabilization during and after inflation are a priori unrelated. Therefore, the

7There exists a nice geometric interpretation for this requirement in terms of the sectional
curvature along the Goldstino direction, cf. [331–336].

8Note that X is not stabilized exactly at zero since the non-vanishing gravitino mass
m2

3/2 ∝ |Wmod|2 induces a shift away from zero. However, this shift is parametrically small
for small |Wmod|, cf. Eq. (10.34).
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gravitino mass in the present vacuum is independent of the inflationary scale,
which evades the KL problem.

The presence of the moduli sector induces potentially dangerous correc-
tions to the inflationary trajectory. However, for low-energy SUSY breaking
(in particular for TeV-scale SUSY breaking) and high-scale inflation, these cor-
rections are parametrically small, as we show in section 10.3.3 for a KKLT-type
superpotential and in appendix 10.4.2 for a generic choice of Wmod(T ).

The price we have to pay is that the minima during and after inflation
do not have to be the same. Since there seems to be no dynamical mechanism
involved, we choose them to (almost) coincide by tuning the parameters appro-
priately. This imposes a relation between the parameter β and the parameters
controllingWmod, but does not affect the possiblity of having low-energy SUSY
breaking and high-scale inflation at the same time.

10.3 Resolution: An Explicit Example
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Figure 10.2: Schematic plot of the two moduli stabilizing potentials during inflation
(red) and after inflation (black). The grey dashed lines indicate the displacement ∆σ
of the two minima and the height of the barrier of the minimum after inflation. The
grey region in the right part marks the regime where our effective field theory at
second order in the derivatives ceases to be valid. The scale on the vertical axis is
arbitrary.

In this section, we illustrate our general idea in a simple toy model: shift
symmetric chaotic inflation combined with a KKLT-type superpotential. Re-
sults for hybrid (or tribrid) models and inflationary scenarios based on a Heisen-
berg symmetry will appear elsewhere [472].
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For simplicity, we consider a chaotic inflation model [225] based on the
superpotential

Winf(Φ, X) = mX Φ , (10.16)

where Φ contains the inflaton and X is the field whose F-term drives the
inflationary vacuum energy. For the modulus sector, we consider a KKLT-type
superpotential [40],

Wmod(T ) = w0 + Ae−aT . (10.17)

We consider a no-scale Kähler potential for T and the coupling between T and
X introduced in Eq. (10.14). To solve the supergravity η-problem, we assume
a shift symmetry for the inflaton direction.9 That is, we consider a Kähler
potential

K = −3 ln
(
T + T

)
+

1

2

(
Φ + Φ̄

)2
+ |X|2 − β

(
T + T

)
|X|2 − γ|X|4 . (10.18)

The first term is invariant under a shift symmetry for the imaginary part of
Φ, which protects this direction from the supergravity η-problem. Recall that
the last term ensures that X is stabilized near X = 0 with mX & Hinf during
inflation if γ & O(1). The coupling between T and X in Eq. (10.18) stabilizes T
during inflation, while the superpotentialWmod fixes T after inflation. As noted
in section 10.1, since the minimum generated by Wmod is a supersymmetric
AdS minimum, we need to uplift it to a dS minimum with a tiny cosmological
constant. To achieve this, an uplifting contribution is added to the potential,

Vup =
Cup(

T + T
)2 , (10.19)

which is motivated by introducing anti-D3-branes at the tip of a warped throat
in a string theory realization of such a setup. Here, however, we do not refer
to a particular string theory embedding of our scenario and simply view the
above setup as an effective parametrization for the potential of the modulus T
and the inflationary sector with X and Φ.

Note that we assume the absence of any mixing between T and Φ and only
a mixing between T and X given by the second term in the Kähler potential
in Eq. (10.18). We comment on possible effects of such a mixing later on.

We denote the real and imaginary parts of the scalar components of the
chiral superfields as follows

T ≡ σ + i α , Φ ≡ φR + i φI , X ≡ xR + i xI . (10.20)

The vacuum expectation values of σ during and after inflation are denoted by
σinf and σ0, respectively. In addition, we choose the phases of the parameters in

9We do not discuss the naturalness of the shift symmetry with respect to quantum (grav-
ity) corrections here. For our purposes, we assume a solution to the η-problem and effectively
parametrize the resulting inflaton potential by Winf in Eq. (10.16) and a negligible breaking
of the shift symmetry in the Kähler potential Eq. (10.18).
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Wmod such that the minimum is at α = 0. More precisely, for the superpotential
in Eq. (10.17), we choose w0 to be real and negative and A to be real and
positive.

A schematic plot of the two moduli stabilizing potentials generated by
the F-term of X (cf. the first term in Eq. (10.15)) and the one induced by the
KKLT-type superpotential and the uplifting term (cf. Eqs. (10.17) and (10.19))
can be found in Fig. 10.2.

To analyze the effects of the presence of a general Wmod during inflation,
the basic idea is to perform a perturbative expanson in Wmod, DTWmod, W ′′

mod
etc., with dimensionless expansion parameters given by Wmod/WX etc. (up to
appropriate powers ofMP ). They parametrize the impact of the modulus sector
on the inflationary trajectory and for low-energy SUSY breaking and high-scale
inflation these expansion parameters are parametrically small, thereby making
our treatment self-consistent. For the KKLT-type superpotential in Eq. (10.17),
this procedure is essentially equivalent to an expansion in small |w0| � 1 and
large a σ � 1. Results for a general Wmod(T ) are presented in Sec. 10.4.

10.3.1 Stability of the Vacuum after Inflation

We now discuss two possible problems which lead to constraints on the param-
eter space. First, since the two minima during and after inflation generically do
not coincide, we may not end up in the true minimum. In particular, we may
overshoot the minimum and roll away to infinity. Second, without Wmod and
Vup, the vacuum after inflation is Φ = X = 0 and there are two flat directions
corresponding to the real and imaginary parts of T . If we add Vmod, these two
flat directions are stabilized. However, we may induce some instabilities for
Φ and X. The implications of these two issues for the model parameters are
discussed below.

Overshoot Problem

To avoid overshooting of the modulus after inflation (as long as there is no
dynamical mechanism ensuring a smooth transition between the two minima),
we will require that the positions of the minima are sufficiently close to each
other, i. e. σ0 ≈ σinf (c.f. Fig. 10.2). This relates the parameters controlling
Wmod to the parameter β in the Kähler potential. For the specific case of the
KKLT superpotential, Eq. (10.17), if we ignore the shift due to the uplifting
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potential Eq. (10.19), we can estimate σ0 as10

σ0 ' −O(1)
1

a
ln
∣∣∣w0

A

∣∣∣ . (10.21)

During inflation, Vmod induces only a tiny shift which we can neglect and the
position of the minimum is approximately given by

σ ' σinf ≡
3

8β
. (10.22)

For the KKLT superpotential, one typically uses A ' 1 and a ' 2π
N

for some
integer11 N such that effectively w0 determines the value of σ0 and thus also
the size of the gravitino mass after inflation.

For the two minima to be roughly at the same position, σ0 ≈ σinf, we have
to tune the parameters such that

1

β
' −O(1)

1

a
ln
∣∣∣w0

A

∣∣∣ . (10.23)

We will assume this condition to be satisfied to a good approximation.

Stability Bound on w0

There is yet another condition leading to a bound on w0, as we now discuss.
Let us start by noting that, due to the absence of any mixings, the masses for
φR and φI are simply given by

∂2V

∂φ 2
R

=
m2

8σ 3
0 (1− 2 β σ0)

− |Wmod(σ0)|2
4σ 3

0

, (10.24)

and
∂2V

∂φ 2
I

=
m2

8σ3
0 (1− 2 β σ0)

, (10.25)

respectively. To avoid a tachyonic mass for φI , we have to require that σ0

satisfies
σ0 <

1

2β
. (10.26)

10Actually, there is a slighlty better approximation for the position of the AdS-minimum,
namely

σ0 ' −
1
a

ln
∣∣∣∣
w0

A

1
1− 2

3 ln|w0
A |

∣∣∣∣ .

However, for our purposes here, the approximation in Eq. (10.21) is sufficient since we neglect
the uplifting and only need a rough estimate for σ0.

11For the effective field theory to be valid, we must have N � 1 such that σ � 1.
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Note that this condition is also necessary to avoid a wrong sign for the kinetic
term of X,12 independently of the stability condition for φI . From also avoid-
ing an instability for φR, we get an upper bound on the size of Wmod at the
minimum in terms of m:

|Wmod(σ0)|2 . m2

2 (1− 2 β σ0)
≈ 2m2 , (10.27)

where the last step assumes σ0 ≈ σinf ≡ 3
8β
. There is no further constraint

from the stability of xR,I . Using the superpotential in Eq. (10.17), the bound
in Eq. (10.27) becomes a bound on w0 in terms of m:

w 2
0 . (3 + 2 a σ0)2

8 a2 σ 2
0 (1− 2 β σ0)

m2 ≈ 2m2 +O
(
m2

a σ0

)
, (10.28)

where in the last step we again assumed σ0 ≈ σinf and expanded for a σ0 � 1.
Note that this bound will not be affected by adding the uplifting sector as
long as the uplifting term Vup, Eq. (10.19), does not depend on Φ. Moreover,
if any mixing between T and Φ would be present, the bound is not directly on
Wmod, but on a particular combination ofWmod and DTWmod depending on the
mixing terms. For the KKLT superpotential and the no-scale Kähler potential,
one typically has |DTWmod(σ0)| ∼ |Wmod(σ0)| at the uplifted minimum and
thus the bound would be essentially again on the size of |Wmod(σ0)|.

The important lesson here is that vacuum stability puts some constraint on
the size of supersymmetry breaking after inflation, but for high-scale inflation
it still allows for a large range of possible values of w0, in particular those
leading to low-energy SUSY breaking.

10.3.2 Comment on the Cosmological Moduli Problem

Since the moduli stabilization mechanisms during and after inflation are of
completely different origin, the minima for the modulus field during and af-
ter inflation generically do not exactly coincide. This means the modulus field
will oscillate and eventually dominate the universe. If it decays too late in the
history of the universe, in particular if it decays after Big Bang Nucleosynthe-
sis (BBN), it causes the well-known cosmological moduli problem [145–151].
However, since for the KKLT case there is a little hierarchy of scales [194–199],

mT ∼ 16π2m3/2 ∼ (16π2)2msoft , (10.29)

we can assume that the modulus (and also the gravitino) is heavier than about
30 TeV such that it will decay before BBN and thus the cosmological mod-
uli problem is avoided. We leave a more detailed investigation of both the
non-thermal history and the issue of relaxing the tuning σ0 ≈ σinf, e. g. by
implementing a dynamical mechanism, for the future.

12For values too close to the upper bound, i. e. σ0 ≈ 1
2β , it is no longer justified to work

only at second order in the derivatives and our effective field theory ceases to be valid.
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10.3.3 Corrections to the Inflationary Trajectory

The inflationary trajectory is shifted due to the presence of the modulus sector.
If we neglect Wmod and Vup, the trajectory is given by σ = σinf ≡ 3

8β
, α = 0, 13

X = 0, φR = 0 and φI 6= 0. Except for the derivative with respect to φI , the
only other non-vanishing derivatives along this trajectory are

∂V

∂σ
= −A

2 a e−2 a σ (6 + 7 a σ + 2 a2 σ2)

6σ3
−w0Ac e

−a σ (2 + a σ)

2σ3
− 3 a2 σ0w

2
0

σ3 (3 + 2 a σ0)2 ,

(10.30)
and

∂V

∂xI
=
mφI
4σ3

(
w0 + Ae−a σ

)
. (10.31)

To (slighlty over-) compensate the negative cosmological constant in the would-
be AdS-vacuum, we tune the uplifting potential Vup by choosing (recall that
σ0 ≈ σAdS)

Cup '
3|Wmod(σ0)|2

2σ0

=
6 a2 σ0w

2
0

(3 + 2 a σ0)2
. (10.32)

Hence, we see that the last term in Eq. (10.30) is precisely the contribution
from Vup.

As mentioned above, we compute the shifts in a perturbative expansion for
|w0| � 1 and a σ � 1. At leading order, the shifts in σ and xI during inflation
are given by

δσ ' σinfw
2
0

2m2 (1 + 32 γ φ2
I)

+
A2 e−2 a σinf(3φ2

I + a σinf (2 + (3 + 64γ)φ2
I))

6m2 φ2
I (1 + 32 γ φ2

I)

+
Ae−a σinf σinfw0 (6φ2

I + a σinf (2 + (3 + 64γ)φ2
I))

6m2 φ2
I (1 + 32 γ φ2

I)
,

(10.33)

and

δxI ' −
φI
(
Wmod +Wmod

)

m (1 + 32 γ φ2
I)

' −2φI (w0 + Ae−a σinf)

m (1 + 32 γ φ2
I)

. (10.34)

Note that the shift δxI vanishes as φI → 0 such that Φ = X = 0 at the end of
inflation. More interestingly, this shift is entirely controlled by the value of the
gravitino mass during inflation — for φI � 1:

δxI ' −
φI (Wmod +Wmod)

m (1 + 32 γ φ2
I)
∼ −m3/2 σ

3/2
inf

mφI
, (10.35)

13 Without Wmod, α is not fixed at zero, but effectively frozen since it becomes massless
in the limit Wmod → 0. As noted above, we choose the phases in Wmod such that it has
a minimum at α = 0. Thus, once we include Wmod, the minimum both during and after
inflation is at α = 0.
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with m3/2 given by the usual expression

m2
3/2 = e〈K〉 |〈W 〉|2 . (10.36)

Due to the suppression by the large inflationary F-term WX ' mφI , δxI is
parametrically small for small values of the gravitino mass.

Including these shifts, the potential along the inflationary trajectory is
given by

Vinf '
m2 φ2

I

4σ 3
inf

+ Vmod(σinf) +
φ2
I (w0 + Ae−a σinf)2

4σ 3
inf (1 + 32 γ φ2

I))
, (10.37)

where the first term is the standard contribution (up to the factor of σ3
inf) and

the last term corresponds to the contribution from ∼ m2 x2
I since now xI 6= 0.

The other terms combine to the moduli potential Vmod, which is induced by
Wmod and Vup, evaluated at σinf. Recall that to ensure mX & H during inflation
we require γ & O(1). Thus, the inflaton-dependence of the potential at large
values of φI is not significantly affected by the addition of the last term in
Eq. (10.37). Together with the bound from Eq. (10.28), w 2

0 . 2m2, and the
assumption σ0 ≈ σinf, we can already anticipate at this stage that no large
corrections are expected.

The next step is to compute the corrections to the inflationary observables.
Note that the parameter m has to be redefined, both due to the factor of σ3

inf in
the first term of Eq. (10.37) and due to the other additional terms. As usual, it
is fixed by matching the amplitude of the scalar perturbations to the observed
value.

Assuming inflation ends at φI ≈ 0, we can compute the number of e-
folds Ne in terms of φI . The two slow-roll parameters which determine the
inflationary predictions are

ε =
1

2
M2

P

(
V ′

V

)2

and η = M2
P

V ′′

V
. (10.38)

The amplitude of the scalar power spectrum is given by

P1/2
R =

1

2
√

3π

V 3/2

|V ′| (10.39)

As usual, the parameter m is fixed by matching the observed value for the
amplitude of the scalar power spectrum to the predicted one. To leading order,
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the amplitude of the scalar power spectrum P1/2
R is given by

P1/2
R ' mNe

2
√

3π σ
3/2
inf

(
1 +

w2
0

m2Ne

(
σinf
σ0

(
9

16
− 3

8
ln(4Ne)

)
+

2 ln(128 γ Ne)− 3

256 γ

)

+
w0Ae

−a σinf

m2Ne

(
−a σinf

4
(2 ln(4Ne)− 3) +

2 ln(128 γ Ne)− 3

128 γ

)

+
A2e−2 a σinf

m2Ne

(
− a2 σ2

inf

12
(2 ln(4Ne)− 3)− a σinf

4
(2 ln(4Ne)− 3)

+
2 ln(128 γ Ne)− 3

256 γ

))
.

(10.40)

Obviously, compared to the inflationary scenario without the modulus sector,
we only need to redefine m to account for the prefactor σ3/2

inf . The extra terms
are all negligible and only would give rise to higher order corrections in the
expressions for ε and η so we can ignore those.

Having fixed the parameter m, we can calculate the predictions for the
observables. For example, the scalar spectral index ns = 1 − 6 ε + 2 η is given
by

ns − 1 ' − 2

Ne

+
w0

m2N2
e

(
−3σinf (2 ln(4Ne)− 5)

8σ0

+
2 ln(128 γ Ne)

128 γ

)

+
w0Ae

−a σinf

m2N2
e

(
−a σinf

2
(2 ln(4Ne)− 5) +

2 ln(128 γ Ne)

64 γ

)

A2e−2 a σinf

m2N2
e

(
a2 σ2

inf

6
(2 ln(4Ne)− 5)− a σinf

2
(2 ln(4Ne)− 5)

+
2 ln(128 γ Ne)

128 γ

)
,

(10.41)

and the tensor-to-scalar ratio r = 16 ε is given by

r ' 8

Ne

+
w2

0

m2N2
e

(
3σinf(ln(4Ne)− 2)

σ0

− ln(128 γ Ne)− 2

16 γ

)

+
w0Ae

−a σinf

m2N2
e

(
4 a σinf(ln(4Ne)− 2)− ln(128 γ Ne)− 2

8 γ

)

+
A2e−2a σinf

m2N2
e

(
4 a2 σ2

inf

3
(ln(4Ne)− 2) + 4 a σinf(ln(4Ne)− 2)

− ln(128 γ Ne)− 2

16 γ

)
.

(10.42)

Note that all the correction terms start at order N−2
e (up to some logarithms).

Thus, they are suppressed with respect to the leading contribution ∼ N−1
e ,

as expected since we perform a perturbative expansion in Wmod/WX etc. and
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W 2
X = m2 φ2

I ∼ m2Ne. This suppression is sufficient to keep the corrections in-
duced by the modulus sector small even if we saturate the bound in Eq. (10.28).
Most importantly, for high-scale inflation and low-energy supersymmetry, the
inflationary predictions are not significantly affected: the corrections are sup-
pressed by m2

3/2/F
2
X and F 2

T/F
2
X .

10.4 Resolution: A Less Explicit Example

In this section, we present some results for a generic choice of Wmod(T ). The
moduli superpotentials we have in mind are of the form

Wmod(T ) = w0 +
∑

n

An e
−anT , (10.43)

but their precise form is irrelevant for our discussion. We still restrict ourselves
to the chaotic inflation model from section 10.3, i. e. we consider

W = mX Φ +Wmod(T ) , (10.44)

and

K = −3 ln
(
T + T

)
+

1

2

(
Φ + Φ̄

)2
+ |X|2 − β

(
T + T

)
|X|2 − γ|X|4 . (10.45)

If necessary, we allow for the possibility of adding an uplifting term of the form

Vup =
Cup(

T + T
)2 , (10.46)

where the constant Cup is tuned to have an (almost) vanishing cosmological
constant. Here, we do not consider other possibilites for uplifting such as those
discussed e. g. in [199, 328, 374–378]. As before, we choose the phases of the
parameters in Wmod such that the minimum for the imaginary part of T is at
α = 0.

The general strategy is to perform a perturbative expansion in Wmod,
DTWmod, W ′′

mod and higher derivatives to determine the effect of the modu-
lus sector during inflation. Recall that this is an expansion with dimensionless
expansion parameters given by Wmod/WX etc. (up to appropriate powers of
MP ), which parametrize the impact on the inflationary trajectory by adding
the modulus sector. Note that this expansion breaks down towards the end of
inflation since WX vanishes as Φ → 0. For simplicity, we assume the absence
of any mixing between T and Φ and only a mixing betweeen T and X given
by the second term in Eq. (10.45).

In many schemes for moduli stabilization, at the minimum σ0 one has an
upper bound |DTWmod(σ0)| . |Wmod(σ0)|, e. g. for the KKLT mechanism one
has |DTWmod(σ0)| ∼ |Wmod(σ0)|, while for the KL scenario one has |DTWmod(σ0)| �
|Wmod(σ0)|. We restrict our discussion to moduli stabilization scenarios which
obey such an upper bound.
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10.4.1 Stability of the Vacuum after Inflation

If Wmod and Vup are not present, the vacuum after inflation is given by Φ =
X = 0 and both the real and the imaginary part of T remain as flat directions.
These two flat directions are stabilized upon adding Wmod. However, we may
induce some instabilities for Φ and X.

Since there are no mixings, the masses for φR and φI are simply given by

∂2V

∂φ 2
R

' m2

8σ 3
0 (1− 2 β σ0)

− |Wmod(σ0)|2
4σ 3

0

, (10.47)

and
∂2V

∂φ 2
I

' m2

8σ3
0 (1− 2 β σ0)

, (10.48)

respectively. As in the explicit example we discussed in section 10.3.1, σ0 has
to satisfy the upper bound

σ0 <
1

2β
, (10.49)

which is necessary to avoid both a tachyonic mass for φI and a wrong sign for
the kinetic term of X. From the stability condition for φR, we get an upper
bound on the size of Wmod at the minimum in terms of m:

|Wmod(σ0)|2 . m2

2 (1− 2 β σ0)
≈ 2m2 , (10.50)

where the last step assumes σ0 ≈ σinf ≡ 3
8β
. There is again no further constraint

from the stability of xR,I . Note that this constraint will not be affected by
adding the uplifting sector as long as the uplifting term Vup, Eq. (10.46), does
not depend on Φ. Furthermore, if any mixings between T and Φ would be
present, the bound is not directly on Wmod, but on a particular combination of
Wmod and DTWmod depending on the mixing terms. However, since we consider
only setups where |DTWmod(σ0)| . |Wmod(σ0)|, the upper bound does not
change qualitatively.

10.4.2 Corrections to the Inflationary Trajectory

The presence of the moduli stabilizing sector shifts the inflationary trajectory.
Without Vmod, it is given by σ = σinf ≡ 3

8β
, α = 0,14 X = 0, φR = 0 and φI 6= 0.

Upon adding Vmod, only σ and xI receive shifts since except for the derivative
with respect to φI the only non-vanishing first derivatives along the would-be
inflationary trajectory are

∂V

∂σ
=

(
DTWmodWmod

2σ 3
+
DTWmodW

′′
mod

6σ
+ c.c.

)
−2|DTWmod|2

3σ 2
−3|Wmod(σ0)|2

4σ 3 σ0

,

(10.51)
14See foonote 13.
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and
∂V

∂xI
=
mφI
8σ 3

(
Wmod +Wmod

)
. (10.52)

Note that we have tuned the constant Cup in Vup such that it (slighlty over-)
compensates the negative cosmological constant assuming one obtains a super-
symmetric AdS vacuum without Vup, which yields

Cup '
3|Wmod(σ0)|2

2σ0

. (10.53)

Thus, the last term in Eq. (10.51) is precisely the contribution from Vup. If
no uplifting is necessary, the corresponding terms in Eq. (10.51) and in all of
the following equations simply have to be dropped. If the minimum is a non-
supersymmetric AdS or Minkowski minimum, Cup is fixed in terms ofWmod(σ0)
and DTWmod(σ0) instead of just Wmod(σ0) and it is straightforward to change
to the correct approximate expression for Cup in all the equations.

In the following, we present the results of a perturbative expansion inWmod,
DTWmod and W ′′

mod. Note that unless stated otherwise it is implicit that these
functions are evaluated at σ = σinf ≡ 3

8β
. To leading order in the expansion,

the shifts δxI and δσ are given by

δxI ' −
φI
(
Wmod +Wmod

)

m(1 + 32γφ2
I)

∼ σ
3/2
inf m3/2

mφI
, (10.54)

and

δσ ' σ2
inf|Wmod(σ0)|2

4m2σ0φ2
I

− σinf
(
Wmod +Wmod

)2

16m2 (1 + 32γφ2
I)

2 +
2σ3

inf |DTWmod|2
9m2φ2

I

−
(
σ4
infDTWmodW

′′
mod

18m2φ2
I

+ c.c.

)
+

(
− σ2

infDTWmod

8m2(1 + 32γφ2
I)
Wmod + c.c.

)

+

((
4

φ2
I

− 3

1 + 32γφ2
I

)
σ2
infDTWmod

24m2
Wmod + c.c.

)
.

(10.55)

The first term in δσ is induced by the uplifting potential Vup. Note that the shift
δxI is entirely controlled by Wmod, i. e. by the gravitino mass during inflation.
These shifts induce some changes to the potential along the φI-direction, in
particular, the shift of xI away from zero is potentially dangerous. To leading
order, the inflaton potential including the shifts is now given by

Vinf '
m2φ 2

I

4σ 3
inf

+ Vmod(σinf)−
φ2
I

(
Wmod +Wmod

)2

16σ 3
inf (1 + 32 γ φ 2

I )
, (10.56)

where the second term is the pure moduli potential evaluated at σ = σinf, i. e.

Vmod(σinf) =
|DTWmod|2

6σinf
− 3|Wmod|2

8σ 3
inf

+
3|Wmod(σ0)|2

8σ 2
infσ0

, (10.57)



136 CHAPTER 10. LOW-ENERGY SUSY AND INFLATION

with the last term in Eq. (10.57) coming from the uplifting potential Vup,
Eq. (10.46), with Cup tuned as in Eq. (10.53). The first term in Eq. (10.56) is
the standard chaotic inflation potential, which is simply rescaled by a factor
σ−3
inf from the eK prefactor in VF and the last term is simply ∼ m2 δx2

I .

Since we must have γ & O(1) to ensure that X has a mass mX & H during
inflation, the φI-dependence of the potential at large values of φI is not signif-
icantly affected. Moreover, recall that from the stability of the vacuum after
inflation and with σinf ≈ σ0, we must obey the upper bound |Wmod| .

√
2m,

cf. Eq. (10.50). Thus, already at this stage, we see that no large corrections
should be expected in the regime where our treatment is valid.

In the next step, we have to compute the impact of the extra terms on the
inflationary predictions. Since we perform a perturbative expansion, we do not
expect to get very large effects, but the bound on Wmod might change. Note
that the parameter m has to be redefined from its “standard” value, both due
to the σ−3

inf factor in the first term of Eq. (10.56) and due to the extra terms.
However, as we will see below, the latter turns out to be irrelevant.

Assuming inflation ends at φI ≈ 0, the number of e-folds Ne in terms of
the initial value of φI at leading order in our perturbative expansion is given
by

Ne '
φ2
I

4
+
σ2
inf|DTWmod|2 lnφI

3m2
+

3σinf|Wmod(σ0)|2 lnφI
4m2σ0

−
(

1 + (1 + 32 γ φ2
I) ln(1 + 32 γ φ2

I)

512 γ(1 + 32 γ φ2
I)

)
W 2

mod +W
2

mod

m2

+

(
− 1

γ(1 + 32 γ φ2
I)
− 192 ln(φI)−

ln(1 + 32 γ φ2
I)

γ

) |Wmod|2
256m2

.

(10.58)

There is some additional φI-dependence, but it is rather weak at large values of
φI . Thus, we again perform a perturbative analysis to determine the required
initial value φI as a function of Ne, which yields for Ne � 1

φI(Ne) ' 2
√
Ne −

3σinf |Wmod(σ0)|2 ln(4Ne)

8m2
√
Neσ0

− σ2
inf|DTWmod|2 ln(4Ne)

6m2
√
Ne

+

(
W 2

mod +W
2

mod

)
ln(128 γ Ne)

512m2
√
Ne

+
(96 γ ln(4Ne) + ln(128 γ Ne)) |Wmod|2

256 γ m2
√
Ne

.

(10.59)
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Plugging this into the definitions for ε and η yields at leading order

ε ' 1

2Ne

+
σ2
inf |DTWmod|2(ln(4Ne)− 2)

12m2N2
e

+
3σinf|Wmod(σ0)|2(ln(4Ne)− 2)

16σ0m2N2
e

− −2 + 96 γ(ln(4Ne)− 2) + ln(128 γ Ne)|Wmod|2
512 γ m2N2

e

−
(ln(128 γ Ne)− 2)

(
W 2

mod +W
2

mod

)

1024 γ m2N2
e

,

(10.60)

and

η ' 1

2Ne

+
σ2
inf |DTWmod|2(ln(4Ne)− 1)

12m2N2
e

+
σinf|Wmod(σ0)|2(ln(4Ne)− 1)

16σ0m2N2
e

− −1 + 96 γ(ln(4Ne)− 2) + ln(128 γ Ne)|Wmod|2
512 γ m2N2

e

−
(ln(128 γ Ne)− 1)

(
W 2

mod +W
2

mod

)

1024 γ m2N2
e

,

(10.61)

respectively. Note that all the corrections start at order N−2
e (up to some

logarithms): They are suppressed with respect to the leading contribution by
W 2

mod/W
2
X etc. since m2Ne ∼ m2φ2

I = W 2
X .

Before we continue, we have to fix the parameter m by matching the pre-
diction to the observed amplitude of the scalar power spectrum P1/2

R . We find

P1/2
R ' mNe

2
√

3πσ
3/2
inf

(
1− σ2

inf|DTWmod|2(2 ln(4Ne)− 3)

12m2Ne

− 3σinf|Wmod(σ0)|2(2 ln(4Ne)− 3)

16m2Neσ0

+
(2 ln(128 γ Ne)− 3)

(
W 2

mod +W
2

mod

)

1024 γ m2Ne

+
(−3 + 96 γ (2 ln(4Ne)− 3) + 2 ln(128 γ Ne)) |Wmod|2

512 γ m2Ne

)
.

(10.62)

Thus, except for the factor σ3/2
inf , the mass parameter m needs to be redefined

only at second order inWmod andDTWmod. Consequently, this affects the above
expressions for ε and η only at higher orders and we drop these corrections in
the following. What matters, however, is the rescaling of the mass parameter
m by σ3/2

inf compared to the standard chaotic inflation scenario.

Now we can calculate the scalar spectral index ns = 1 − 6 ε + 2 η and the
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tensor-to-scalar ratio r = 16 ε, for which we find

ns − 1 ' − 2

Ne

− σ2
inf|DTWmod|2(2 ln(4Ne)− 5)

6m2N2
e

− 3σinf|Wmod(σ0)|2(2 ln(4Ne)− 5)

8m2N2
e σ0

+
(−5 + 96 γ(2 ln(4Ne)− 5) + 2 ln(128 γ Ne)) |Wmod|2

256 γ m2N2
e

+
(2 ln(128 γ Ne)− 5)

(
W 2

mod +W
2

mod

)

512 γ m2N2
e

,

(10.63)

and

r ' 8

Ne

+
4σ2

inf |DTWmod|2(ln(4Ne)− 2)

3m2N2
e

+
3σinf|Wmod(σ0)|2(ln(4Ne)− 2)

σ0m2N2
e

− −2 + 96 γ(ln(4Ne)− 2) + ln(128 γ Ne)|Wmod|2
32 γ m2N2

e

−
(ln(128 γ Ne)− 2)

(
W 2

mod +W
2

mod

)

64 γ m2N2
e

,

(10.64)

respectively. Obviously, the corrections with respect to the leading term are
small. They also appear at a higher order in the large Ne expansion since the
corrections are suppressed by W 2

X = m2Φ2 ∼ m2Ne with respect to the leading
contribution. Low-energy supersymmetry and high-scale inflation correspond
to DTWmod and Wmod being parametrically small compared to the F-term
DXW . Consequently, all the corrections are parametrically small as well since
we have to require σ0 ≈ σinf to avoid the cosmological moduli problem and we
assume that DTWmod and Wmod do not vary too strongly between σ0 and σinf.

In summary, the upshot of the somewhat lengthy calculation above is that
the predictions for ns−1 and r are essentially unaffected from what one would
obtain from standard chaotic inflation. In short, the general analysis above tells
us that the corrections due to the presence of a sector responsible for moduli
stabilization and low-energy supersymmetry breaking (encoded in Wmod(T ))
are completely negligible. The reason is that the scalar spectral index ns and
the tensor-to-scalar ratio r receive only corrections of the form

ns − 1 = − 2

Ne

(
1 +O

((
FT
FX

)2

,

(
m3/2

FX

)2
))

, (10.65)

r =
8

Ne

(
1 +O

((
FT
FX

)2

,

(
m3/2

FX

)2
))

, (10.66)

with the terms in brackets being parametrically smaller than 1 precisely when
we have high-scale inflation and low-energy supersymmetry breaking.
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10.5 Summary and Discussion

We have proposed a general scenario for moduli stabilization where low-energy
supersymmetry breaking can be accommodated together with a high scale of
inflation. In our proposal, the KL problem is resolved because the stabilization
of the modulus field during and after inflation is not associated with a single,
common scale, but instead relies on two different mechanism to stabilize the
modulus during and after inflation.

More explicitly (c.f. Sec. 10.2), we suggest to consider a Kähler potential
which features a coupling between the modulus field and the field whose F-term
drives inflation in such a way that the term Vinf ∼ eK KXX̄ |DXW |2 creates a
minimum for the modulus which stablizes it with a large mass during inflation.
After inflation, when DXW vanishes, a “standard” mechanism involving non-
perturbative terms in the superpotential can take over to stabilize the modulus
as usual. The way we avoid the KL problem in this setup works essentially as
follows: The gravitino mass mtoday

3/2 now only sets the scale for moduli stabiliza-
tion after inflation and therefore remains small all the time. During inflation,
the scale for moduli stabilization is set by the inflationary energy scale Hinf

itself and no longer also by mtoday
3/2 . This allows us to consistently combine low

scale SUSY and high scale inflation.

There is of course a price to pay: Since the two minima for the modulus
during and after inflation generically do not coincide, we have to make sure
that there is no overshoot problem after inflation. This requires, for instance,
that the two minima for the modulus are not too far apart (c.f. Sec. 10.3.1).
Without a dynamical mechanism to guarantee a smooth transition between
the two minima, achieving σ0 ≈ σinf may require some amount of tuning of the
model parameters. However, notice that also the KL solution requires some
tuning to disentangle the height of the barrier from the gravitino mass today.
Also note that, for a KKLT-type stabilization mechanism after inflation, the
mass of the modulus is mT ∼ 16π2m3/2, which means it can be heavy enough
to decay before BBN, avoiding the standard cosmological moduli problem.

We have illustrated our general strategy in a simple model of chaotic in-
flation with a shift symmetry supplemented by a KKLT-type superpotential
and an uplifting term (c.f. Sec. 10.3). Moduli stabilization during inflation is
achieved considering a certain type of couplings in the Kähler potential be-
tween the field X which drives the inflationary vacuum energy by its F-term
and the modulus T . We also showed that in the limit of high-scale inflation and
low-energy supersymmetry breaking, i. e. for W,DTW � DXW , the correc-
tions to the inflationary observables from the modulus sector become negligible.
We also presented the results for a general moduli stabilizing superpotential
Wmod(T ) combined with the simple chaotic inflation model (cf. Sec. 10.4) which
also lead to the same conclusion that one can successfully combine high-scale
inflation and low-energy supersymmetry breaking.
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Even though many ingredients of our scenario are motivated from a string
theory perspective, we did not consider a particular embedding in a string the-
ory compactification here and defer this discussion to the future. It is plausible
that something at least qualitatively similar to our proposal could be realized.

We emphasize that our general strategy may work for more general sce-
narios. Results for hybrid (or tribrid) inflation models and models based on a
Heisenberg symmetry instead of a shift symmetry will appear elsewhere [472].

To conclude this summary, we comment on the relation of our proposal to
previous works on solutions to the KL problem.

As a solution to the problem, KL [45] suggested to add a second non-
perturbative contribution to the potential. This allows one to disentangle the
gravitino mass in the present vacuum from the height of the barrier. That is,
choosing the gravitino mass at the TeV-scale one can always independently
increase the height of the barrier such that high-scale inflation models do not
destabilize the modulus. This is done by a fine-tuning of the terms in the
superpotential.

Following the approach of KL, in the context of volume modulus inflation
in a racetrack setup, the problem has been addressed when one of the exponents
of the non-perturbative terms is positive and/or introducing extra terms in W
and/or K [198, 473–476]. However, this can be done only at the expense of
introducing more parameters in the theory.

In the large volume scenario, attempts have been made to accommodate
a small gravitino mass with a high scale of inflation, when inflation happens
exponentially far away from the present Minkowski vacua. Other than some
inevitable fine-tuning, the working models have several phenomenological dif-
ficulties [259]. Dynamical avenues for the case of chaotic inflation [477] and
hybrid inflation [478] have also been explored, where the gravitino mass be-
comes inflaton-dependent in a suitable way.

Difficulties related to the realizations of high-scale inflation together with
low-energy SUSY breaking have been discussed in [479, 480] and some reso-
lutions have been proposed in [479, 481]. However, this has been successfully
achieved only for the superpotential of [45]. Combining chaotic inflation and
supersymmetry breaking within the KL scheme has recently been discussed
in [482] for the general chaotic inflation models of [229–231]. For other ap-
proaches to the KL problem see e. g. [483].

In summary, all solutions known so far require some amount of fine-tuning
to solve the problem or introduce extra terms beyond the minimal KKLT setup.
The same is true for our solution, but one may imagine to find a dynamical
mechanism to smoothly transfer the modulus from the minimum during in-
flation to the post-inflationary minimum, thereby relaxing the required fine-
tuning for our model.



Chapter 11

Matter Inflation in Supergravity

We now come to the results from Ref. [1], in which my collaborators and I
studied models of matter inflation. First, we consider matter inflation from an
effective supergravity point of view in this chapter. The subject of Chap. 12
is to discuss the conditions under which such models can be embedded into
heterotic orbifold compactifications.

This phenomenologically motivated idea for inflationary model building
has been applied also to other situations. For instance, the particular models
studied in [297] used a superpotential that is well-suited for sneutrino hybrid
inflation [221]. Their model has two phenomenologically interesting properties
associated to the waterfall phase transition at the end of inflation. Namely, a
dynamical breaking of some larger gauge group GGUT to GSM and a dynamical
generation of the masses for the right-handed neutrinos.1 Phenomenologically
it is particularly appealing to identify the phase transition at the end of hybrid
inflation with the breaking of some GUT group or flavor group, see e. g. [217,
218,232].

Here, we consider a generalization of the models of [297] in various as-
pects. First, the form of the superpotential couplings is extended to include a
more general tribrid structure. Second, the constant couplings are replaced by
moduli-dependent functions. Finally, the energy scale for inflation is assumed
to be set dynamically, e. g. driven by the cancellation of the D-term of an
anomalous U(1)A gauge symmetry.

The outline of this chapter is as follows. We begin by explaining/reviewing
the basic ideas underlying our supergravity models in Sec. 11.1, in particular,
the ingredients required to realize inflation in the matter sector. Afterwards,
in Sec. 11.2, we present our generalization of the models of Ref. [297]. Moduli
stabilization during inflation for our setup is discussed in Sec. 11.3 and we
discuss sources for a slope of the inflaton in Sec. 11.4. Finally, we summarize
the findings of this chapter in Sec. 11.5.

1For other models of sneutrino inflation see e. g. [484,485].
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11.1 Basic Ideas for Matter Inflation

11.1.1 Tribrid Inflation

In Sec. 5.3, we have given an important guideline for F-term inflation model
building in supergravity. Namely, that the following conditions should hold
during inflation:

DXW 6= 0 , DΦW ≈ 0 , W ≈ 0 , (11.1)

where X 6= Φ is some direction other than the inflaton. Then the supergravity
η-problem can be solved by assuming some form of the Kähler potential [38].

An interesting class of supergravity hybrid inflation models2, dubbed “trib-
rid” inflation, is based on superpotentials of the following form [228,351]3

W = κX(H2 −M2) + g(Φ)H2 , (11.2)

where the three fields X ,H and Φ play different roles:

• The driving field X provides the large vacuum energy driving inflation.

• The waterfall field H allows inflation to end via a phase transition.

• The inflaton Φ provides the “clock” determining when inflation ends.

This class of models fulfills the conditions in Eq. (11.1) since inflation takes
place while X = H = 0 and Φ is above its critical value. The scale M sets
both the expectation value of H at the end of inflation and the size of the F-
term of X during inflation (i. e. the vacuum energy). The g(Φ)H2 term in the
superpotential provides a positive Φ-dependent mass squared for the waterfall
field H. Possible choices for g(Φ) include, for example, g(Φ) = λΦn/Λn−1 for
any n ≥ 1 and some cutoff scale Λ. The two most common choices in the
literature use either the renormalizable choice g(Φ) = λΦ (see e. g. [216]) or
the choice g(Φ) = λΦ2/Λ (see e. g. [35, 221, 227, 228, 351]). Note that both of
these choices provide a mass term for Φ after inflation.

11.1.2 Heisenberg Symmetry

The tribrid superpotential can be supplemented by a Kähler potential with a
shift symmetry for Φ [35,216,227,228] or a “Heisenberg symmetry” [351]. Here,

2For a review of hybrid inflation in supergravity see Sec. 5.2 and references therein.
3Note that in “conventional” hybrid inflation models H2 is often replaced by H+H− such

that a U(1) symmetry is spontaneously broken at the end of inflation when one of the fields
acquires an expectation value. More generally, instead of H+H− one may use any pair of
fields HHc in conjugate representations of some gauge group G. But to understand the basic
physical picture, it is best to set this slight complication aside for a moment
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we opt for the Heisenberg symmetry for reasons which will become clear soon.
That is, we consider Kähler potentials of the form

K = k(ρ) + |X|2 + |H|2 + d(ρ)|X|2 + . . . , (11.3)

where the dots represent all kinds of higher order terms such as |X|4 or |X|2|H|2
and ρ contains the inflaton Φ and a modulus T in a combination invariant under
the Heisenberg symmetry:

ρ ≡ T + T − |Φ|2 . (11.4)

Some working examples for the functions d(ρ) and k(ρ) can be found below in
Sec. 11.3 and in [351]. The Heisenberg symmetry acting on T and Φ consists
of the following two transformations [438]:

T → T + iα , α ∈ R , (11.5)

and

T → T + β̄Φ +
1

2
β̄β ,

Φ→ Φ + β , β ∈ C .
(11.6)

The Kähler potential in Eq. (11.3) is a general expansion in H and X and
is assumed to preserve the Heisenberg symmetry. The field X provides the
vacuum energy by its F-term and the function k(ρ), in combination with a
suitable choice of d(ρ), can stabilize ρ during inflation (see Sec. 11.3).

Since these models fulfill W = WΦ = WH = 0, WX 6= 0 during inflation
when X = H = 0 and since K preserves the Heisenberg symmetry, the inflaton
direction is protected from the supergravity η-problem [38, 351]. A slope is
induced via quantum corrections to the tree-level flat potential due to the
symmetry breaking term g(Φ)H2 in the superpotential [351].

11.1.3 Inflation from the Matter Sector

An interesting aspect of the Heisenberg symmetry is that unlike a shift symme-
try it allows the inflaton Φ to be a gauge non-singlet matter field. We allow for
this possibility following [297], where an explicit example of matter inflation in
the context of supersymmetric Grand Unified Theories was constructed. This
requires a modification of Eqs. (11.2) and (11.3). In particular, one has to in-
troduce multiple matter fields Φa in order to satisfy the constraints required to
impose D-flatness (i. e. vanishing D-terms). Note also that now the parameter
β in the symmetry transformation in Eq. (11.6) has to be replaced by a set of
parameters βa.

We replace the field H by by two matter fields H,Hc in conjugate rep-
resentations of some gauge group G. The Φa are also matter fields charged



144 CHAPTER 11. MATTER INFLATION IN SUPERGRAVITY

under some gauge group G.4 Then the term g(Φa)HH
c in the superpotential

Eq. (11.2) must be gauge-invariant and this restricts the possible forms of
g(Φa). For instance, the choice made in [297] is g(Φa) = λΦΦc/Λ with Φ,Φc

in conjugate representations of the gauge group G. The simplest possibility
would be Φ± and H± for a U(1) gauge group. Note that since the Φa are gauge
non-singlets, g(Φa) is a least quadratic in the Φa.

Note that in general there can be more possibilities for gauge-invariant
terms which lead to inflaton-dependent mass terms for H,Hc. To illustrate this
and the constraints imposed by D-flatness, let us consider the superpotential
used in [297] to embed inflation into a SUSY model with a Pati-Salam (PS) or
an SO(10) GUT gauge group:

W = κX
(
HHc −M2

)
+
λij
Λ
FiFjH

cHc +
ζi
Λ
FiF

cHHc +
γ

Λ
F cF cHH + . . . ,

(11.7)
where Fi, H and F c, Hc are in conjugate representations of the same gauge
group G. For instance, in the 16 and 16 of GGUT = SO(10) or in the (4,1,2)
and (4,1,2) (or vice versa) of GPS = SU(4)C×SU(2)L×SU(2)R, respectively.

The Kähler potential is assumed to be of the form

K = k(ρ) +
(
1 + d(ρ)− κX |X|2

)
|X|2 + |H|2 + |Hc|2 + . . . , (11.8)

with ρ ≡ T +T −∑i|Fi|2−|F c|2 and k(ρ), d(ρ) some functions of ρ only, which
are suitable for stabilizing ρ.

Assuming a constant diagonal gauge kinetic function fab = g−2
a δab, the

D-term potential during inflation when H = Hc = 0 is of the form

VD =
g2

2
k′(ρ)

∑

a

(
F̄iT aFi − F̄ cT a∗F c

)
, (11.9)

where Ta denotes the generators of the gauge group G in the appropriate repre-
sentation. Inflation is supposed to proceed along a D-flat direction, i. e. along
a direction where VD = 0.

The explicit examples considered in [297] have only F ≡ F1, F
c 6= 0 and

Fi 6=1 = 0. In addition, the authors consider inflation along the (right-handed)
sneutrino direction, i. e. F, F c = 0 except along νF , νF c and then D-flatness
imposes a relation between νF and νF c . Finding the unstable direction of the
waterfall field in such models is more involved than in the simplest hybrid
inflation models due to the extra terms in Eq. (11.7), but it is straightforward.
For generic choices of the parameters, the unstable direction is (a combination
of) the sneutrino directions of H,Hc [297].

4A priori, H,Hc and Φa could be charged only under orthogonal subgroups of the full
gauge symmetry. However, this might lead to problems with the generation of topological
defects.
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The Heisenberg symmetry is an approximate symmetry in the limit of
vanishing superpotential and gauge couplings. We will discuss corrections to
the inflaton potential later in Sec. 11.4. The predictions in [297] were obtained
assuming the slope of the inflaton potential to be dominated by the Coleman-
Weinberg 1-loop corrections.

Summary: Basic Requirements for Matter Inflation

To summarize this section, the important points that lead to a working model
are the following requirements.

• A D-flat and F-flat direction of matter fields acting as the inflaton.

• An approximate symmetry protecting the inflaton from the η-problem.

• During inflation, DΦW ≈ 0 and W ≈ 0.

The aim of the next section is to generalize the above ideas in various respects.

11.2 A More General Class of Models

We now turn to generalizing the class of matter inflation models described
above. The generalization is done keeping in mind what might be viable in
heterotic orbifold compactifications, but the models described below are them-
selves genuine supergravity models of inflation.

The superpotentials and Kähler potentials we consider from now on are a
further generalization of the “tribrid” structure introduced in the last section:

W = a(Ti)X
(
b(Ti)HH

c − 〈Σ〉2
)

+ c(Ti) g(Φa,3)HHc (11.10)
+Wmod(Ti) + . . . ,

K = −
3∑

i=1

log ρi +

(
2∏

i=1

ρ
−qX,i
i

)
|X|2

(
1 + d(ρ3)− κX |X|2

)
(11.11)

+

(
3∏

i=1

ρ
−qH,i
i

)
|H|2 +

(
3∏

i=1

ρ
−qHc,i
i

)
|Hc|2 + . . . .

where the ρi are given by

ρi ≡ Ti + T i −
∑

a

|Φa,i|2 . (11.12)



146 CHAPTER 11. MATTER INFLATION IN SUPERGRAVITY

Structure of the Kähler Potential

The first term in the Kähler potential Eq. (11.11) is the analog of k(ρ) used
in the previous section. Notice that we have introduced three combinations ρi
instead of the single one used previously. The Ti, i = 1, 2, 3 are moduli fields
and their Kähler potential satisfies the no-scale property, i. e.

KīKiK̄ = 3 , i, j = T1, T2, T3 , (11.13)

and in principle each of them comes with a set of associated matter fields Φa,i.
With out loss of generality we associate the inflaton with ρ3, i. e. the inflaton
is a D-flat combination of the Φa,3, and from now on we set Φa,i = 0 for i = 1, 2
and Φa ≡ Φa,3.

The terms in the second line of Eq. (11.11) are non-canonical terms for
the waterfall fields H,Hc with qH,i, qHc,i some rational numbers — typically
positive and O(1). The remaining part of the first line is the Kähler potential
for the driving field X which is of a somewhat different non-canonical form and,
in particular, the couplings ∼ d(ρ3)|X|2 and ∼ −κX |X|4 will be important for
stabilizing both ρ3 and X during inflation (see Sec. 11.3). The dots denote
further terms denote possible higher order terms and other fields which can be
present (but not relevant for the inflationary dynamics).

Structure of the Superpotential

Concerning the superpotential, Eq. (11.10), first notice that we have replaced
all constant couplings in the superpotential by functions depending on the Ti
(compare to Eq. (11.2) or (11.7)). Additionally, the scale M has been replaced
by the expectation value of a (collection of) field(s) 〈Σ〉. This expectation value
is assumed to be driven for example by the cancellation of the D-term of an
anomalous U(1)A or induced through other terms in the superpotential.

The function a(Ti) must depend only on T1,2 in order not to spoil the
flatness of the potential at tree-level. But the functions b(Ti) and c(Ti) may de-
pend on all three moduli since H,Hc = 0 during inflation. We have added also
a piece Wmod(Ti) to the superpotential which is responsible for moduli stabi-
lization after inflation (and may lead to low-energy supersymmetry breaking).

The waterfall fields H,Hc are matter fields in conjugate representations of
some gauge group G. The Φa are gauge non-singlet matter fields and g(Φa) is
supposed to be a gauge-invariant product of the Φa such that a D-flat combi-
nation of these fields can act as the inflaton. That is, the inflaton is a certain
combination of the Φa specified by the requirement of vanishing D-terms. As
noted above, the simplest choice would be g(Φa) = λΦ+Φ−/Λ, but we allow
for more general possibilities.5 The cutoff scale Λ required in g(Φa) is a priori

5For example, the product of N and N of SU(N) as well as the product of three 27’s of
E6 form a gauge-invariant combination.
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undetermined, but in a heterotic orbifold model it would be given by the string
scale, i. e. Λ ∼ Ms. Note that F-flatness is ensured by construction since for
sufficiently large values of the Φa we have H = Hc = 0 during inflation.

11.2.1 Effective F-Term Potential During Inflation

The field X receives a large F-term during inflation when H = Hc = 0, thereby
driving the inflationary vacuum energy, and it is fixed at X = 0. This is
enforced by the term κX |X|4 with κX & O(1) [225] (see also Secs. 5.1 and 10.2
as well as references therein). Inflation ends as usual in hybrid inflation once
a combination of H,Hc becomes tachyonic and develops an expectation value.
The first term in the superpotential Eq. (11.10) then provides a mass for X
such that it is at X = 0 also after inflation.6

Throughout the remainder of this chapter, we assume that the parameters
in the superpotential are adjusted such that during inflation

DXW 6= 0 , DαW ≈ 0 , W ≈ 0 , (11.14)

where the index α runs over all fields other than X. In particular, there should
be no large F-terms for Φa and T3. Therefore, in this limit, the F-term potential
during inflation is given by

VF ≈ eK
(
K−1
XX̄
|WX |2

)

=

(
2∏

i=1

(
Ti + T i

)pi
)
|a(T1, T2)|2
1 + d(ρ3)

|〈Σ〉|4
ρ3

,
(11.15)

where pi ≡ −1 + qX,i and the overall scale of the potential is set by 〈Σ〉.

11.3 Moduli Stabilization during Inflation

The moduli fields Ti have to be stabilized during inflation. Since none of them
is the inflaton, we would like to stabilize them with a high mass at least of the
order of the Hubble scale Hinf. For T1 and T2, stabilization is achieved by a
suitable form of the function a(T1, T2) in Eq. (11.10), which enters the F-term
of X. Moreover, the modulus T3, or rather the combination ρ3 in Eq. (11.12), is
fixed by an appropriate moduli dependence of the Kähler metric ofX, i. e. by an
appropriate choice of d(ρ3). We now discuss how both stabilization mechanisms
work in a simple toy model. Note that due to the product structure of the
moduli dependence in Eq. (11.15) we can discuss the stabilization of T1, T2 and
ρ3 separately.

6Note that X = 0 actually means X ≈ 0 since the sector responsible for moduli stabiliza-
tion after inflation generically induces a small shift of X away from zero, cf. e. g. Sec. 10.34.
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Figure 11.1: Form of the potential following from Eq. (11.16) for the example values
p = −1

2 , γ = 0.01 and β = −0.05, which has a minimum at 〈ρ3〉 ≈ 6.73. The pole is
at ρ3 ≈ 20.2. The overall scale of the potential has to be set by 〈Σ〉.

11.3.1 Stabilization of ρ3

We stabilize ρ3 during inflation with the F-term of X combined with a suitable
kinetic term for X in order to give it a mass m & Hinf. The moduli dependence
of the F-term potential Eq. (11.15) not only depends on KXX̄ and a(Ti) but
also on 〈Σ〉. Due to the moduli-dependent non-canonical Kähler potentials (and
superpotential) terms, the expectation value 〈Σ〉 typically inherits some moduli
dependence (cf. Sec. 9.3.2). For example, assuming that the ρ3 dependence is
inherited from the Kähler potential, we have 〈Σ〉 ∝ ρq3 for some rational number
q ≥ 0.

The function d(ρ3) is assumed to preserve the Heisenberg symmetry to a
sufficient amount and must be of a suitable form to stabilize ρ3. That is, we
assume that d(ρ3) is such that we can stabilize ρ3 without inducing a large
mass for the inflaton.7 To illustrate what “suitable form” means, consider the
ρ3-dependence of the F-term potential, which is of the form8

V ∝ ρp3
1 + d(ρ3)

, (11.16)

with some rational number p ≥ −1. In order to get a minimum suitable for
inflation, let us make the simple ansatz d(ρ3) = γ + βρ3. If p < 0, β < 0 and
γ > −1, this yields a minimum at

〈ρ3〉 = −p (1 + γ)

(p− 1) β
> 0 . (11.17)

7We will comment on relaxing this assumption somewhat later on in Sec. 11.4.
8If 〈Σ〉 is independent of ρ3, we have p = −1. Otherwise it is some rational number ≥ −1.
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For this choice of d(ρ3), the potential has a pole at ρ3 = −(1 + γ)/β, which
provides the barrier towards ρ3 → ∞. For p < 0, the ρp3 factor prevents the
field from rolling to ρ3 → 0. Therefore, the parameter p is constrained to be
−1 ≤ p < 0. Fig. 11.1 shows a schematic plot of the ρ3-dependence of the
potential (in arbitrary units) for an illustrative choice of parameters.

We expect the pole in the potential to be an artefact of our approximation:
we work at second order in the derivatives and the pole appears whenKXX̄ → 0
(recall that VF ∝ (KXX̄)−1). Therefore, this approximation breaks down close
to the pole and higher derivative corrections become important. In particular, if
one would like to address issues such as stability of the minimum with respect
to tunneling, higher derivative terms have to be included. Note that in the
region to the right of the pole, KXX̄ < 0 and thus X has a kinetic term with
the wrong sign. For our present purpose we only need that the potential given
by Eq. (11.16) is a good approximation if we are not too close to the pole and
we will assume that we are confined within this region.

To determine the physical mass of ρ3 around its minimum in units of the
Hubble scale Hinf during inflation, we have to take into account that the Käh-
ler potential Eq. (11.11) leads to a non-canonical kinetic term for ρ3, namely
ρ−2

3 (∂µρ3)2. Hence, the physical mass is given by

m2
ρ3

= 2p(p− 1)V0 , (11.18)

where V0 denotes the value of the potential at the minimum — recall that we
have set MP = 1 and thus H2

inf ∼ V0. For p . −0.15, we have mρ3 & Hinf,
which should be heavy enough such that ρ3 settles to its minimum sufficiently
fast.

11.3.2 Stabilization of T1,2

As noted above, stabilization of T1 and T2 requires a “suitably chosen” function
a(T1, T2). Assuming again that a possible moduli-dependence of 〈Σ〉 is only due
to the non-canonical Kähler metric, the dependence of the scalar potential on
T1 and T2 takes the form9

V ∝
(
T1 + T 1

)p1
(
T2 + T 2

)p2 |a(T1, T2)|2 , (11.19)

with p1 and p2 rational numbers ≥ −1. A simple choice for a(T1, T2) which does
the job is a(T1, T2) = ea1T1+a2T2 . If ai > 0 and pi < 0, this will yield a minimum
for ReT1 and ReT2: The exponentials diverge as ReTi →∞ and similarly the
power law factors diverge as ReTi → 0. The minima are at

〈ReTi〉 = − pi√
2ai

> 0 , (11.20)

9If 〈Σ〉 is independent of Ti, we have pi = −1+qX,i and otherwise it is some other rational
number.
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Figure 11.2: Form of the potential following from Eq. (11.19) with respect to Ti
for the example values pi = −1

2 and ai = π
12 ≈ 0.26, which has a minimum at

〈Re Ti〉 ≈ 0.96. The overall scale of the potential has to be set by 〈Σ〉.

which is typically O(1). Again, taking into account canonical normalization,
also T1 and T2 are stabilized with massesm ∼ Hinf. A plot of the Ti-dependence
of the potential (in arbitrary units) for a sample choice of parameters is shown
in Fig. 11.2.

Some Remarks

Note that in both situations, Eq. (11.16) and Eq. (11.19), for our choices of
d(ρ3) and a(T1, T2) the axions associated to ImTi only receive a potential from
the terms contained in Wmod(Ti). However, this is not a problem for the infla-
tionary scenario discussed here: The axions are effectively frozen during infla-
tion due to the strong Hubble damping [351].

Once the moduli have settled to their minima, the functions a(Ti), b(Ti)
and c(Ti) can be effectively treated as constants. Similarly, the non-canonical
kinetic terms only amount to a rescaling of the fields by a constant.

We will later interpret ReT1,2 and ρ3 to parametrize the volume of some
compact extradimensions, see Eq. (9.6), as follows (in units of the fundamental
scale)

V = (T1 + T 1)(T2 + T 2) ρ3 . (11.21)

The illustrative choice of parameters used for Figs. 11.1 and 11.2 yields 〈ReT1,2〉 ≈
0.96 and 〈ρ3〉 ≈ 6.73 and thus 〈V〉 ≈ 24.81.

Actually, the choices for a(T1, T2) and d(ρ3) in this section are not made
purely for illustrative purposes, but are motivated from what we expect to find
in heterotic orbifold compactifications, cf. Chap. 12.
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Note that after inflation a different mechanism for moduli stabilization is
required which gives rise toWmod(Ti). We have seen in Chap. 10 how this can be
achieved for a model of chaotic inflation using essentially the same mechanism
to stabilize the modulus ρ3 during inflation. But we do not discuss this here in
detail and leave this issue for future work along the lines of Chap. 10.

11.4 Hybrid Mechanism and a Slope for the
Inflaton

So far, we have generated a large vacuum energy and stabilized all the mod-
uli during inflation. But if the Heisenberg symmetry was exactly preserved,
there would be no slope for the inflaton and hence no way to end inflation. In
this section, we briefly discuss how we expect inflation to end via the hybrid
mechanism and what sources could generate a slope within our setup.

11.4.1 Hybrid Mechanism

Once the inflaton φ reaches a critical value φcrit, one of the waterfall fields
H,Hc becomes tachyonic and triggers the waterfall phase transition, thereby
ending inflation. This assumes that the inflaton slope drives φ towards φcrit.10

During the phase transition, topological defects such as cosmic strings could
be formed if the waterfall fields are charged under a gauge symmetry e. g. a U(1)
(if they are charged under a larger gauge group also other kinds of topological
defects could form). Without a specific model it is difficult to decide whether
these are problematic or not. First, if the symmetry is broken also during
inflation, i. e. if the inflaton is also charged under this gauge symmetry, we
expect that as in [297] topological defects could be avoided due to corrections
to the inflaton potential, which lift the degeneracy. Second, the analysis of
[348–350], who considered the somewhat similar scenario of standard F-term
hybrid inflation, finds that the consistency of cosmic strings with WMAP data
depends not only on the value of the gauge coupling but also of a parameter κ.
This parameter is related to the inflationary superpotential used in standard
F-term hybrid inflation W = κΦ (HHc −M2), where Φ is the gauge singlet
inflaton field. Values up to κ . 10−2 seem to be consistent with the bounds. In
any case, the issue of topological defects should only be addressed in a more
specific model and therefore is beyond our present scope.

10If this is not the case, we will at some point leave the regime of validity of our effective
field theory when ρ3 becomes too small.
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11.4.2 A Slope for the Inflaton

A slope for φ can be induced by various types of sources, for example

• by 1-loop CW corrections induced by g(Φa)HH
c,

• through loops involving gauge fields,

• through a violation of W ≈ 0, Wα ≈ 0 (∀α 6= X) e. g. induced by Wmod,

• or via Heisenberg symmetry breaking terms in K.

For the latter two cases, achieving a sufficiently small slope and, in particular, a
sufficiently small |η| � 1 can arise essentially in two ways. First, the corrections
induced by these terms are parametrically small compared to the contribution
controlled by the F-term of X (see Sec. 10.4), which generically requires some
tuning of parameters. Second, there can be accidental cancellations with many
terms conspiring to give a small value |η| � 1. If this is the dominant source
for the slope, one would expect a scenario somewhat similar to inflection point
inflation. A detailed investigation of this scenario is left for the future.

If instead the Coleman-Weinberg corrections dominate, we expect simi-
lar inflationary dynamics as those discussed in [297] (with parameters appro-
priately rescaled). This is probably also the most predictive scenario since it
involves the fewest parameters.

Finally, we now comment on the corrections to the inflaton potential from
taking into account loops involving gauge bosons and gauginos following the
discussion [297], where the one-loop and two-loop corrections to the inflaton
mass have been computed in a specific model.

The one-loop Coleman-Weinberg potential is given by the expression

V1-loop =
1

64π2
STr

[
M4(Φa)

(
log

(M2(Φa)

Q2

)
− 3

2

)]
, (11.22)

where Q is a renormalization scale and STr denotes the supertrace, which
is taken over all bosonic and fermionic degrees of freedom with alternating
signs. We are interested in the Φa dependence of all the masses since this
dependence can induce a slope for the inflaton. However, only sectors with a
mass splitting between the bosonic and fermionic degrees of freedom contribute
to the supertrace in Eq. (11.22). The waterfall sector has such a mass splitting
induced by the non-zero F-term for X (the g(Φa)HH

c term is effectively a
supersymmetric mass term for the waterfall fields).

In addition to the waterfall sector, the gauge sector may contribute to the
one-loop effective potential since the inflaton is a associated with a gauge non-
singlet matter field. Its expectation value induces masses for some of the gauge
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fields. However, unlike the waterfall sector, the gauge sector has no mass split-
tings unless direct supergravity gaugino masses are present. The supergravity
gaugino masses are given by

Lgaugino ∼
〈
eG/2Gi

(
G−1

)ī ∂f̄ab
∂φ̄̄

〉
+ h.c. , (11.23)

where G = K + log|W |2, fab denotes the gauge kinetic function and a, b label
different gauge groups while i, j label different scalar fields. In our case, during
inflation we have X ≈ 0, W ≈ 0 and only WX 6= 0. Thus, the gravitino mass
m3/2 ∼ e〈G〉/2 ∼ e〈K〉/2〈|W |〉 ≈ 0, which already suppresses most contributions
to the gaugino masses in Eq. (11.23). Namely, since X ≈ 0 and only WX 6= 0,
the only contribution which survives in the limit W → 0 (i. e. which is not
suppressed due to the small gravitino mass) vanishes if we assume

〈
∂f̄ab
∂X̄

〉
= 0 . (11.24)

More precisely, we actually only have to require that this expectation value
does not depend on the inflaton, i. e. there should be no terms such as Xg̃(Φa)
contained in fab. Note that we also have to forbid this kind of terms in the su-
perpotential. This can be achieved for example by discrete symmetries which
either forbid Xg̃(Φa) at all or force it to appear only together with some addi-
tional field(s) whose expectation value(s) vanish. Thus, the corrections from the
gauge sector at one-loop are expected to be under control (they are essentially
controlled by the small value of the gravitino mass m3/2 ∝ |〈W 〉|).

There are also potentially dangerous corrections from the gauge sector at
the two-loop level [486]. In [297], it was shown that in the large gauge boson
mass limit the various two-loop corrections to the inflaton mass are suppressed
by a universal factor δm2/H2 ∝ κ2/(4π)4, where in our case κ ≡ a(〈Ti〉) b(〈Ti〉).
For κ� 1 we the two-loop contributions are negligible. This suppression is also
related to the fact that the non-zero inflaton VEV 〈φ〉 already breaks the gauge
symmetry during inflation to some subgroup G ′ ⊂ G (i. e. some of the gauge
bosons acquire masses MA ∼ g〈φ〉). But the inflaton is a gauge singlet under
the unbroken gauge symmetry G ′.

11.5 Summary and Discussion

Let us summarize what we have obtained so far. We have explained the basic
ideas for constructing models of matter inflation in Sec. 11.1. The important
ingredients are a D-flat and F-flat direction of matter fields Φa which is pro-
tected from the η-problem by some approximate symmetry and during inflation
DΦaW ≈ 0, W ≈ 0.

Based on these ingredients, we have constructed a class of supergravity
models of matter inflation, i. e. models of inflation where the inflaton resides
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in the matter sector of the theory, which are a generalization of the models
presented in [297] in various points (cf. Sec. 11.1):

1. We allow for a more general form of the tribrid structure in the superpo-
tential, i. e. a more general choice of g(Φa) than ΦΦc.

2. The couplings in the superpotential are determined by the expectation
values of a set of moduli fields Ti.

3. The scale of the F-term driving the inflationary vacuum energy is gener-
ated dynamically.

We have discussed in detail under which conditions the moduli Ti are suc-
cessfully stabilized during inflation in Sec. 11.3. To stabilize the two moduli
T1,2 not associated with the inflaton, we introduced a suitable dependence of
the F-term of X on them, namely WX ∝ ea1T1+a2T2 (cf. Sec. 11.3.2). The mod-
ulus ρ3 associated to the inflaton is stabilized differently via a suitable moduli
dependence of the Kähler metric KXX̄ (cf. Sec. 11.3.1).11 Therefore, T1,2 and
ρ3 (as well as X) are stabilized with masses m & Hinf during inflation.

We briefly commented on the hybrid mechanism and the potentially dan-
gerous production of topological defects in the phase transition (cf. Sec. 11.4.1).
Whether these are problematic or not requires a more specific model and is be-
yond our present scope.

The models presented here are (by assumption) essentially flat at tree-
level. We discussed sources for generating a slope at tree-level and loop-level in
Sec. 11.4.2. In corners of the parameter space where the slope of the inflaton is
dominated by the Coleman-Weinberg one-loop potential, the inflatonary phe-
nomenology is expected to be similar to [297]. The corrections induced form the
gauge sector are shown to be generically small if a certain condition is fulfilled
(cf. Eq. 11.24 and the discussion below). The slope could also be dominated by
a breaking of the Heisenberg symmetry in both K and W . We leave a detailed
investigation of this corner of the parameter space for the future.

In the next section, we discuss under which circumstances matter inflation
can be successfully embedded into heterotic orbifold compactifications. This
was in fact the main motivation for the work published in Ref. [1].

11This is a version of the mechanism we proposed in Chap. 10 to solve the KL problem.



Chapter 12

Towards Matter Inflation in Heterotic
Orbifolds

The aim of this chapter is to determine the conditions which allow the matter
inflation models of the previous chapter to be realized in orbifold compact-
ifications of the heterotic string. For example, since these models feature a
Heisenberg symmetry protecting (to some extent) the inflaton direction, it is
important to check whether such symmetries indeed arise in a string theory
compactification. We have reviewed the structure of the effective supergravity
theory of heterotic orbifolds in Chap. 9 and indeed a Heisenberg symmetry
arises at tree-level for the untwisted matter fields [438,439].

We will identify the moduli Ti with Kähler moduli of the orbifold compact-
ification. The form of the superpotential in heterotic orbifolds is constrained
by target space modular invariance, in particular, its dependence on the mod-
uli Ti (cf. Sec. 9.2.2). However, in addition to the Ti, there is at least one
extra modulus, the dilaton which determines the size of the string coupling
and therefore also of the 4d gauge couplings. Its stabilization is quite diffi-
cult and here we employ a moduli stabilization scheme called Kähler stabi-
lization [43, 448, 453–456, 460, 461] which allows to stabilize the dilaton during
inflation [464, 487]. What is different in our models is the stabilization of the
modulus T3 (or ρ3) associated to the inflaton. We argue that moduli-dependent
loop corrections to the Kähler metric of the driving field X may lead to a mech-
anism for moduli stabilization similar to the one presented in Sec. 11.3.1.

This chapter is organized as follows. We begin by describing how to embed
the field content and the constraints on the superpotential in Sec. 12.1. Next,
we suggest a form of the loop corrections to the Kähler metric of the driving
field in Sec. 12.2 and in Sec. 12.3 we will use these loop corrections to stabilize
ρ3 together with the dilaton, which is stabilized by non-perturbative corrections
to the Kähler potential. After discussing some sources for the inflaton slope in
Sec. 12.4, we summarize the results of this chapter in Sec. 12.5.
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12.1 Field Content and Superpotential

We now begin to identify the field content of our general class of models of
matter inflation within heterotic orbifold compactifications. We also discuss the
constraints imposed on the superpotential by target space modular invariance.

Field Content

The identification of the field content of Sec. 11.2 is straightforward: The moduli
Ti are identified with the three untwisted Kähler moduli present in any heterotic
orbifold, which determine the radii of the three tori. g(Φa) is a product of
untwisted matter fields Φa, associated without loss of generality with the third
torus with modulus T3. We neglect the complex structure moduli Uj here,
assuming that they are either fixed by the orbifold projection or in a similar
way to the Ti. We also neglect any twisted moduli or additional “off-diagonal”
Kähler moduli.

We take X to be a twisted matter field in a twisted sector with N = 2
supersymmetry. This is necessary to have a non-trivial moduli dependence in
its Kähler metric, which is parametrized by d(ρ3) in Eq. (11.11) (cf. Sec. 12.2).
We expect this moduli dependence to arise from string threshold corrections,
cf. Sec. 12.2, and we assume here that it preserves the Heisenberg symmetry
up to terms which are exponentially small in the large radius limit. In order to
receive moduli-dependent corrections to its Kähler metric, X must be charged
under (part of) the gauge group of the N = 2 subsector. We will for simplicity
assume that the inflaton (and the waterfall) fields are neutral with respect to
this gauge group factor. Recall also that the inflationary setup of Sec. 11.2
requires a negative quartic |X|4 term in the Kähler potential and we assume
that this term exists. However, the Kähler potential of twisted matter fields is
only known to quadratic order so far and our two assumptions on the Kähler
potential terms involving X need to be checked in the future.

Constraints on the Superpotential

The superpotential starts at cubic order in the matter fields and thus the F-
term of X has to arise from non-vanishing expectation values for some other
fields, which were collectively denoted by Σ in Eq. (11.10). As reviewed in
Sec. 9.3.2, such expectation values are generically moduli-dependent and there-
fore modify the moduli dependence of the effective scalar potential. In order to
generate expectation values, such as 〈Σ〉, we require the presence of an anoma-
lous U(1)A. Moreover, we assume that g(Φa) carries a zero net charge under
U(1)A. Note that such a U(1)A is essential to the phenomenological success of
the mini-landscape models [177,178,415–417] since it allows to give masses to
unwanted exotic states via expectation values for SM singlet fields.
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An important property of the setup presented in Sec. 11.2 is that during
inflation only WX 6= 0 while in particular WΦ ≈ 0, W ≈ 0. This property is
well-suited for realizations of inflation in heterotic orbifolds [38, 464]. We now
require that a superpotential of the form in Eq. (11.10) is present. It remains
a task for the future to find explicit compactifications where this structure is
realized and in particular whether this is possible in phenomenologically inter-
esting setups such as the mini-landscape models [177, 178, 415–417]. However,
this seems plausible since we can e. g. allow for terms of the form ΦaΨΨ′ in W
if Ψ,Ψ′ ≈ 0 during inflation.

The functions a(Ti), b(Ti) and c(Ti) in the superpotential, Eq. (11.10), are
constrained by modular invariance: They are given by appropriate powers of
the η-function η(Ti), cf. Eq. (9.26). For example, we must have (for ReT3 & 1)

c(Ti) ∝ η(T3)c3 ∼ e−
π
12
c3T3 , (12.1)

since g(Φa) involves at least two untwisted fields from the same sector. Note
that in general it will also depend on T1 and T2 in a similar way. During
inflation, the waterfall fields vanish, H,Hc = 0, and therefore the moduli de-
pendence of b(Ti) and c(Ti) enters the effective scalar potential only through
loops involving the waterfall fields.

There is a complication compared to the scenario of Sec. 11.2, namely that
the functions a(Ti), b(Ti) and c(Ti) in principle may involve the expectation
values 〈Ψ〉 of some matter fields, which can alter their moduli dependence. In
particular, 〈Σ〉 directly affects the moduli dependence of the scalar potential
and thus the stabilization of the moduli because it can depend on the moduli,
as explained in Sec. 9.3.2. Therefore, achieving successful moduli stabilization
imposes some constraints on the functional form of |a(Ti)|2|〈Σ〉|4 (which en-
codes the moduli dependence of the F-term of X). As we will see below in
Secs. 12.3 and 12.4, we require it to dependend on T3 only via ρ3, i. e. to be
independent of η(T3), and to depend only on inverse powers of η(T1,2).

12.2 Loop Corrections to the Kähler Potential

We have seen in Sec. 11.3 that ρ3 is stabilized during inflation for a suitable
form of the function d(ρ3). In this section, we propose a functional form of d(ρ3)
which we expect to arise in heterotic orbifolds. First, we consider known results
for the string one-loop corrections to the Kähler metric of untwisted matter
fields. Based on these results, we suggest a generalization in the presence of
background values for matter fields. It will be of a form similar to the simple
example discussed in Sec. 11.3, but in addition to a part linear in ρ3 there is
also a logarithmic contribution. Moreover, the corrections are proportional to
the dilaton ` which controls the string-loop expansion. We also argue why the
Heisenberg symmetry might be broken only by exponentially suppressed terms
in the large radius limit.
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The result of [488] for the string one-loop corrections to the Kähler metric
of untwisted matter fields in N = 2 orbifolds has the following form:

Keff
aā = Ktree

aā + `K1-loop
aā , (12.2)

with
K1-loop
aā = Ktree

aā

(
γ + β Y (T, T )

)
, (12.3)

where
Y (T, T ) = log

[
|η(T )|4(T + T )

]
, (12.4)

and ` is the loop counting parameter, the lowest component of L ∼ (S +S)−1.
β is related to the N = 2 beta function coefficient of the torus associated
with T and the gauge group which acts non-trivially on the matter field under
consideration. The moduli-independent constant γ is the effect of the N = 1
subsectors. The moduli-dependence of Y (T, T ) in Eq. (12.3) originates from
loops involving massive string states, namely Kaluza-Klein and winding modes,
whose masses depend on the moduli, especially on the radius. Note that the
moduli-dependent correction Y (T, T ) arises only from N = 2 sectors, which
leave the plane associated to the matter field unrotated and therefore only
depends on the moduli of that plane.

For ReT & 1, we can approximate Y (T, T ), Eq. (12.4), by

Y (T, T ) ≈ log(T + T )− π

6
(T + T ) +O(e−2πT ) + c.c. , (12.5)

as can be easily seen from Eq. (9.25). The dependence on ImT is only through
the additional terms ∼ e−2πT , which are exponentially suppressed for large
ReT , i. e. for a large compactification radius. In other words, the continuous
shift symmetry T → T + iα (which is broken to a discrete one by worldsheet
instantons [489,490]) survives as an approximate symmetry in the large radius
limit ReT →∞.

Based on these results, we propose a generalization involving background
values for untwisted matter fields as described below. It remains a task for the
future to check our proposal by calculating the relevant string amplitudes.

As a working hypothesis, we consider the case where we simply replace
T +T in the large radius limit of Y (T, T ), Eq. (12.5), by ρ ≡ T +T −∑a|Φa|2,
i. e. we assume

Y (T, T ,Φa, Φ̄a) ≈ log ρ− π

6
ρ+ λ

∑

a

|Φa|2 +O(e−πρ) , (12.6)

where we have parameterized a breaking of the Heisenberg symmetry by the
term λ

∑
a|Φa|2. The coefficient λ would have to be computed directly from

string amplitudes and in general may depend on T .

If the Heisenberg symmetry is badly broken by such corrections, one would
expect λ ∼ O(1). But in the large radius limit the continuous shift symmetry
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T → T+iα, which is part of the Heisenberg symmetry group, cf. Eqs. (11.5) and
(11.6), is broken only by exponentially small terms. Thus, we might assume that
the same happens for the Heisenberg symmetry, i. e. λ ∼ e−πρ is exponentially
small for large radius (i. e. large ρ). We will discuss the implications of these
two different possibilities for the size of λ in more detail later on in Sec. 12.4.

In the following, we apply this working hypothesis to the setup considered
in Sec. 11.2, i. e. we consider

KXX̄ =

(
2∏

j=1

(Tj + T j)
−qj

)[
1 + `γ + `β3

(
log ρ3 −

π

6
ρ3 + λ

∑

a

|Φa|2
)]

,

(12.7)
which has the same form as the Kähler metric for X considered previously, cf.
Eq. (11.11), with d(ρ3) = Y (T3, T 3,Φa, Φ̄a) given by Eq. (12.6).

12.3 Stabilization of the Dilaton and the Kähler
Moduli

We again have to stabilize all the moduli during inflation, preferably with
masses m & Hinf, since none of them is considered as the inflaton. The sta-
bilization of T1,2 and ρ3 works essentially the same way as in the more phe-
nomenological approach in Sec. 11.3, even though the dilaton complicates the
situation significantly. We will now discuss the moduli dependence of the scalar
potential and argue that all moduli can be stabilized. In particular, we show
that one can stabilize ρ3, as defined in Eq. (11.12), at a rather large value.
Note that the moduli dependence we expect for the potential during inflation
is again of a seperable form such that we can discuss the stabilization of ρ3

and ` and the stabilization of T1,2 independent of each other in Secs. 12.3.1 and
12.3.2, respectively.

12.3.1 Stabilization of the Dilaton and ρ3

The typical scale of the gaugino condensate is around ∼ 1011 GeV and thus
it is negligible during inflation [464] (it is however crucial for stabilizing the
dilaton and the pattern of supersymmetry breaking after inflation). Since our
setup has the propertiesW ≈ 0 andWα ≈ 0 for all fields Φα except X, we need
to stabilize the dilaton solely by the contribution from the F-term of X. This is
done by invoking also non-perturbative corrections to the Kähler potential in a
moduli stabilization scheme called Kähler stabilization similar to what is done
in [464,487], see also cf. Sec. 9.4. Therefore, we expect that the dependence of
the scalar potential on the dilaton ` and ρ3 (as defined in Eq. (11.12)) can be



160 CHAPTER 12. MATTER INFLATION AND ORBIFOLDS

0 1 2 3 4

0

0.05

0.1

0.15

0.2

V

!
0 4 8 12 16

!0.06

!0.03

0

0.03

0.06

V

ρ3

Figure 12.1: Dependence of the potential Eq. (12.8) on ` with ρ3 at its minimum, and
vice versa. For the example values n = 1, q = −1

2 , γ = 10
8π2 ≈ 0.13, β3 = 30

8π2 ≈ 0.38,
A = −0.7, B = 20 and a = 1, there is a minimum at 〈`〉 ≈ 1.13 with g2 ≈ 0.62 and
〈ρ3〉 ≈ 3.83. There is a pole at ` ≈ 8.03 for 〈ρ3〉 ≈ 3.83, outside of the region shown
in the figure left figure, and at ρ3 ≈ 9.37 for 〈`〉 ≈ 1.13 in the right figure. The overall
scale of the potential has to be set by 〈Σ〉.

parametrized as follows

V ∝ ρq3 `
n eg(`)

1 + `γ + `β3(log ρ3 − π
6
ρ3 + λ

∑
a|Φa|2)

. (12.8)

Recall that the F-term of X has a moduli dependence encoded in |a(Ti)|2|〈Σ〉|4
and also KXX̄ depends on the moduli, cf. Eq. (11.15). If for example 〈Σ〉 is
independent of `, we have n = 1, while otherwise n can be either enhanced or
reduced, but it is always an integer number (see also Sec. 9.3.2). Similarly, q
is some model-dependent rational number typically ≥ −1. Whether ` and ρ3

are stabilized or not depends on the interplay of various parameters. We have
depicted the potential (in arbitrary units) as a function of ` and ρ3 in Figs. 12.1
and 12.2 for an illustrative choice of parameters, which demonstrates that one
can indeed stabilize ` and ρ3.

Similar to [464,487], if n ≤ 1 the dilaton can be stabilized during inflation
at 〈`〉 ∼ O(1) and with reasonable values for the gauge coupling g.1 By analogy
to the discussion in Sec. 11.3, we expect a minimum for ρ3 if q < 0 and β3 > 0,
which indeed occurs. Interestingly, assuming γ to be negligible, the values of `
and ρ3 at their minima appear to be parametrically related by 〈ρ3〉 ∼ (β3〈`〉)−1,
up to a numerical factor which is roughly O(1). Hence, a minimum at rather
large values of ρ3 requires β3〈`〉 < 1 and since β3 is related to the beta function
coefficient of an N = 2 theory by β3 = bN=2/8π2, this can indeed be fulfilled if
〈`〉 ∼ O(1). This requirement is important, because we expect the Heisenberg
symmetry to be preserved only in the large radius limit. Both ` and ρ3 can be

1Note that as in [464, 487] at least one field contained in Σ, which collectively denotes a
product of fields, has to receive an expectation value through an F-term such that the net
dilaton dependence in the scalar potential satisfies n ≤ 1.
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Figure 12.2: Dependence of the potential Eq. (12.8) on ` and ρ3. For the example
values n = 1, q = −1

2 , γ = 10
8π2 ≈ 0.13, β3 = 30

8π2 ≈ 0.38, A = −0.7, B = 20 and
a = 1, there is a minimum at 〈`〉 ≈ 1.13 with g2 ≈ 0.62 and 〈ρ3〉 ≈ 3.83. The overall
scale of the potential has to be set by 〈Σ〉.

stabilized at masses ∼ Hinf. Note that analogous to the situation in Sec. 11.3,
the potential has poles along a line in the ` and ρ3 plane.

Concerning the pole in Fig. 12.1, the same discussion as under Fig. 11.1 in
Sec. 11.3 applies.

12.3.2 Stabilization of T1,2

So far, the dilaton ` and ρ3 can be stabilized during inflation, but we still need
to show that the remaining Kähler moduli T1 and T2 can also be fixed during
inflation. They are defined as in Eq. (9.4) since we assume Φa,1 = Φa,2 = 0.
The dependence of the scalar potential on T1 and T2 is then typically of the
form [37]

V ∝
[
(Ti + T i) |η(Ti)|4

]−pi
, (12.9)

for some (in general rational) model-dependent numbers pi. For this form of
the potential, if pi > 0, the Ti get stabilized at the self-dual value Ti = eiπ/6

with masses ∼ Hinf. Note that the η-function also provides a potential for ImTi
(via the terms ∼ e−2πT ).

The stabilization of ReTi can be also understood from the simple example
of Sec. 11.3: for ReTi & 1, we can approximate η(Ti) ∼ exp(− π

12
Ti). Thus,

we expect that even if Ti + T i and |η(Ti)|4 do not enter with the same power
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Figure 12.3: Form of the potential Eq. (12.9) for the example values Ti for pi = −1,
which yields a minimum at Ti = eiπ/6, i. e. ReTi ≈ 0.87 and ImTi = 0.5. The overall
scale of the potential has to be set by 〈Σ〉.

into the scalar potential, we get a minimum at ReTi ∼ O(1) as long as both
powers are negative. Note that if the two factors do not appear with the same
power, Ti does not get stabilized exactly at the self-dual point. Fig. 12.3 shows
a plot of the Ti dependence of the potential Eq. (12.9) for a sample choice of
parameters (in arbitrary units).

In the light of the considerations above, we may now assume that all moduli
are stabilized with masses ∼ Hinf and regard them as effectively constant in
the following discussion of the inflaton slope.

A Remark on α′-corrections

Due to the O(1) values for the Kähler moduli, one might worry about higher
string-loop and α′-corrections which are controlled by them. The issue of α′-
corrections is a difficult question in the context of orbifolds. They may or may
not respect the Heisenberg symmetry to a sufficient amount (similar to the
string-loop corrections to KXX̄ in Sec. 12.2), but in any case their precise form
may affect the stabilization of the moduli.

At the orbifold point, i. e. at a point where the expectation values of all
matter fields (in particular those of the twisted fields) vanish, one has a de-
scription in terms of an exact CFT. In the presence of an anomalous U(1)A,
however, some fields must acquire expectation values to cancel the FI-term,
as is the case in all phenomenologically interesting orbifold models found so
far. If twisted fields acquire expectation values, some (or all) of the orbifold
singularities get resolved or “blown-up”. Further investigations of this issue are
required, e. g. along the lines of [428, 429, 491] by using gauged linear sigma
models, but are beyond our present scope.
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12.4 Contributions to the Inflaton Slope

So far, we have explained how to stabilize the moduli T1,2, ρ3 and `. Now we
discuss a few sources for a slope for the inflaton direction, which according to
the classification given in Sec. 11.4.2 are either violations of the Heisenberg
symmetry in the Kähler potential or the conditions W ≈ 0, Wα ≈ 0 for all
Φα 6= X.

We have already introduced a possible violation of the Heisenberg sym-
metry in the potential Eq. (12.8), namely the λ|Φa|2 piece, which we use to
parametrize the amount of breaking of the Heisenberg symmetry by string-loop
corrections. With the moduli at their minimum (and before considering further
corrections), the inflaton potential has the form

V ' V0

1 + 〈`〉γ + 〈`〉β3

(
log〈ρ3〉 − π

6
〈ρ3〉+ λ

∑
a|φa|2

) , (12.10)

where V0 depends on the expectation values of 〈T1,2〉, 〈ρ3〉 and 〈`〉 as well as
〈Σ〉 and we have replaced each Φa with its lowest component φa.

The kinetic terms of the φa are ∼ ρ−1
3 |∂mφa|2. Due to the constraints from

D-flatness, the inflaton φ is a certain combination of the φa and to trigger the
waterfall phase transition, the inflaton has to roll towards φ = 0. If the λ-term
dominates the slope, this requires λ < 0 since β3 > 0 is necessary to ensure
stabilization of ρ3 (cf. Sec. 12.3.1). Expanding around φa ≈ 0 and canonically
normalizing, we can estimate the corresponding contribution to the slow-roll
parameter2 η as

|η| ∼ |λ| , (12.11)

where we used 〈ρ3〉 ∼ (β3〈`〉)−1 and β3〈`〉 . 1. Since slow roll inflation occurs
only if |η| � 1, we would then have to require that |λ| � 1. If the Heisenberg
symmetry is broken only by non-perturbative effects such that λ ∼ e−πρ3 (see
Sec. 12.2), this condition can be fulfilled with 〈ρ3〉 somewhat larger than 1.
The discussion of moduli stabilization in Sec. 12.3.1 implies that this indeed
could be achieved. This would then result in a weak violation of the Heisenberg
symmetry in the Kähler potential according to our classification in Sec. 11.4.2.

If λ is indeed exponentially small, however, the slope might actually turn
out to be dominated by other sources. One example would be the slope induced
by the one-loop corrections involving the waterfall fields. Another important
source is related to the necessity to stabilize the moduli also after inflation.
That is, there are additional terms present in the superpotential, denoted by
Wmod in Eq. (11.10). Recently, a moduli stabilization scheme for heterotic orb-
ifolds was proposed in [166], which includes a gaugino condensate and a su-
perpotential term of the form w0e

−aT for some constant w0. The latter term is
2The slow-roll parameter η should not be confused with the Dedekind η-function η(T )

introduced above.
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motivated from the breaking of an approxiamte R-symmetry at a high order
in the superpotential [419], which leads to 〈W 〉 6= 0 but parametrically small.
Such terms would induce a small slope for the inflaton due to a parametrically
small violation of W ≈ 0 (the gaugino condensate may also induce non-zero
F-terms for WS,WTi).

Note that α′-corrections might give rise to a violation of the Heisenberg
symmetry in the Kähler potential. Note also that if a(Ti) (or more precisely
|a(Ti)|2|〈Σ〉|4) would depend on T3 not only through the combination ρ3, e. g. if
a term a(Ti) ∝ e−aT3 , this would generically lead to a large mass ∼ Hinf of
the inflaton which would spoil slow-roll inflation unless it is cancelled by some
other contribution. We therefore assumed the absence of such a term here since
studying potential cancellations between various terms in detail is beyond our
present scope and left for the future. Other possible sources for a slope could
be violations of Da = 0 or X ≈ 0 and the stabilization of the complex structure
moduli.

To summarize, it appears in principle possible to find situations with the
slope dominated by a single source if the Heisenberg symmetry is not too
strongly broken and the conditions W ≈ 0, Wα ≈ 0 (Φα 6= X) are not too
strongly violated. In general, one may also imagine situations where various
sources contribute significantly to the slope for the inflaton and slow-roll in-
flation arises due to (accidental) cancellations between them. A detailed inves-
tigation of the phenomenologically interesting parameter space region of the
models presented here is left for the future.

12.5 Summary and Discussion

In this chapter, we have presented the requirements for embedding the matter
inflation models of Sec. 11.3 into heterotic orbifold compactifications. The un-
twisted matter fields in heterotic orbifolds enjoy a Heisenberg symmetry and
thus they are a good starting point for a string theory embedding. Also there
has been a lot of progress constructing MSSM-like models from heterotic orb-
ifolds, see e. g. [177, 178,181,415–417]. Additionally, the condition that during
inflation W ≈ 0, Wα ≈ 0 for all Φα 6= X is well-suited for heterotic orbifold
models since the superpotential starts at cubic order in the matter fields.

Let us summarize the requirements necessary to successfully embed our
model into a heterotic orbifold.

We require that a tribrid-like structure in the superpotential of the mat-
ter fields emerges which may involve other fields taking expectation values (cf.
Sec 12.1). Also the existence of a D-flat and F-flat direction of untwisted mat-
ter fields in a torus with fixed complex structure modulus has to be verified.
However, it seems plausible that these conditions can be fulfilled. It is then
also particularly interesting if there is an overlap with models where spectra
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close to the MSSM can be achieved.

Constraints from target space modular invariance determine the Ti-dependence
of the terms in the superpotential, which turns out to be of the form ∼ e±aiTi

for ReTi & 1. The coefficients ai are further constraint by allowing for suc-
cessful moduli stabilization and avoiding large contributions to the inflaton
slope. Actually, these constrains are most important for the function a(Ti) in
Eq. (11.10) (cf. Secs. 12.3.2 and 12.4).

Compared to previous studies of embedding inflation into heterotic orb-
ifolds (see e. g. [37, 38, 464, 487, 492]), we proposed a new way to stabilize the
Kähler modulus associated to the inflaton. This way is based on an ansatz
for the string-loop corrections to the Kähler metric of the field X, which we
assumed to live in a twisted sector, more precisely an N = 2 twisted sec-
tor. In the presence of sectors with N = 2 supersymmetry, there are known
moduli-dependent threshold corrections to the matter Kähler metrics of un-
twisted matter fields [488]. As a working hypothesis, we assumed that these
corrections have the same form for the twisted matter field Kähler metrics and
parametrized a possible breaking of the Heisenberg symmetry (cf. Secs. 12.2
and 12.3.1). It allows us to stabilize the radius of the corresponding torus at
rather large values and if the Heisenberg symmetry is only broken by non-
perturbative effects ∼ e−aρ3 the induced correction to the inflaton slope is
small. Moreover, in our scenario we provide an explicit way to end inflation via
a phase transition.

We have arrived at the following conditions necessary for realizing matter
inflation in heterotic orbifolds.

• There exists a (tree-level) D-flat and F-flat direction of untwisted matter
fields in a torus with fixed complex structure modulus.

• The relevant part of the superpotential has a tribrid-like structure as
defined in Eq. (11.10).

• There are suitable expectation values for the fields collectively denoted
by 〈Σ〉, cf. Eq. (11.15).

• The Kähler potential of X has a moduli-dependence which leads to the
stabilization of ρ3 and X ≈ 0.

• The dilaton ` can be stabilized e. g. by non-perturbative corrections to
the Kähler potential.

It seems plausible that the above scenario can occur in heterotic orbifold com-
pactifications, even though it remains to be checked whether our requirements
and assumptions are fulfilled in an explicit and phenomenologically interesting
model.
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We discussed sources for an inflaton slope in Sec. 12.4. In particular, we
argued that some of these sources can in principle lead to a parametrically
small inflaton slope as is required for slow-roll inflation. For instance, if the
string-loop corrections to KXX̄ preserve the Heisenberg symmetry up to terms
which are exponentially small in the large radius limit. Unfortunately, the Käh-
ler potential for twisted matter fields is typically only known at tree-level and
to quadratic order in the fields. We have proposed a form which is interesting
from the point of view of inflation and seems reasonable. However, it remains to
be seen whether our hypothesis can be fulfilled in an explicit and phenomeno-
logically interesting model.

Note that even if various contributions give large corrections, a sufficiently
small inflaton slope may still arise due to (accidental) cancellations. We leave
a detailed investigation of all kinds of corrections to the inflaton slope for the
future since such questions should be addressed in a more concrete model.

In summary, we have proposed a framework for realising inflation in the
matter sector of heterotic orbifold compactifications. Scenarios with a matter
field as the inflaton are phenomenologically attractive since they relate models
of inflation and particle physics. Our present work should be viewed as a first
step towards this goal and we have discussed the conditions which have to be
fulfilled in an explicit heterotic orbifold model.
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Brane Inflation on the Baryonic
Branch





Chapter 13

The Baryonic Branch, a Master
Equation and a Rotation

In the preceding part, we have considered inflation in effective 4d N = 1
supergravity theories from a mostly bottom-up perspective. In this part, we
turn things around and consider a top-down approach. That is, we consider
inflationary potentials which are obtained from probe D3-branes moving in 10d
supergravity background solutions. More precisely, we will consider models of
inflation where the inflaton is associated with the (radial) position of a probe
D3-brane in a warped throat geometry. We have provided a brief introduction
into this idea in Chap. 8 and we have reviewed warped throat geometries, in
particular, the Klebanov-Strassler (KS) solution in Chap. 7.

The work presented here is based on [3], where my collaborators and I
consider a certain class of supergravity backgrounds which are deformations of
the KS throat. In this chapter, we provide some general remarks about these
supergravity backgrounds and describe how to systematically construct those
we are interested in. The inflationary phenomenology is discussed in Chap. 14.

Before we discuss the brane inflation models obtained from certain defor-
mations of the KS solution in the next chapter, we first review the material re-
quired to construct the supergravity backgrounds later on. All the backgrounds
we consider there belong to the baryonic branch of Klebanov-Strassler. That is,
the dual gauge theory is in a state where non-zero VEVs for baryonic operators
are switched on. We review some facts about this branch of the moduli space
of the dual gauge theory in Sec. 13.1.

There is a fairly general procedure to obtain solutions to the type IIB equa-
tions of motion, including those belonging to the baryonic branch of KS. The
starting point is amaster equation derived from a system of wrapped D5-branes
(cf. Sec. 13.2). That is, solving the equations of motion for this system boils
down to solving a single second order equation for one function. Afterwards, a
solution generating technique referred to as rotation is employed to generate
a whole family of supergravity solutions starting with a given solution to the
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master equation (cf. Sec. 13.3). Finally, we briefly introduce the the type of
deformation of the baryonic branch of KS we will be interested in later on (cf.
Sec. 13.4). Namely, we modify the IR part of the geometry completely.

13.1 The Baryonic Branch of
Klebanov-Strassler

The Klebanov-Strassler solution, which we reviewed in Chap. 7, is dual to an
SU(N + M)× SU(N) gauge theory where N = MK with M and K specify-
ing the F3 and H3 fluxes threading the pair of Poincaré-dual cycles A and B,
respectively. This theory has a global SU(2)×SU(2)×U(1)R symmetry inher-
ited from the isometries of T 1,1. In addition, there is also a U(1)B symmetry
obtained from the RR 4-form C4 by dimensional reduction using the harmonic
form ω3 associated to the S3 in T 1,1 as C4 ∼ A1 ∧ ω3 [401, 402]. This U(1)B
is interpreted as baryon number symmetry. In the non-compact infinite throat
limit the U(1)B is a global symmetry, but it is expected to become gauged
upon gluing the throat into a compact space [493].

Flowing from the UV to the IR, this theory exhibits a cascade of Seiberg
dualities reducing the rank of the gauge groups by M units in each step. The
last step in the duality cascade, when the gauge group is SU(2M) × SU(M),
is believed to be on the so-called baryonic branch [135,405] with the SU(2M)
factor becoming strongly coupled. On this branch of the moduli space, the
U(1)B global symmetry, which in the dual field theory acts on the superfields
Ai, Bj as Ai → eiαAi, Bj → e−iαBj, is broken by VEVs for baryonic operators
B, B̄. We will now review some facts about the moduli space of the SU(2M)×
SU(M) moduli space, in particular, about its baryonic branch, following the
discussion in section 4.5 of [113].

As mentioned in Sec. 7.2, the dual gauge theory has a set of chiral matter
fields, the SU(2)× SU(2) doublets Ai and Bj (each SU(2) acts only on one of
them) transforming in the (2M,M) and (2M,M) representations, respectively.
They interact via a superpotential of the form (cf. Eq. (7.12))

W = h εijεpq Tr (AiBpAjBq) . (13.1)

The baryonic operators B, B̄ are formed out of the Ai, Bj as

B = εα1...α2M
(A1)α1

1 (A1)α2

2 . . . (A1)αMM (A2)αM+1

1 (A2)αM+2

2 . . . (A2)α2M

M , (13.2)

B̄ = εα1...α2M (B1)1
α1

(B1)2
α2
. . . (B1)MαM (B2)1

αM+1
(B2)M+2

α2
. . . (B2)Mα2M

. (13.3)

These are invariant under the SU(2)× SU(2) global symmetry and under the
SU(M) flavor. Analogously, there are also mesonic operators M which we can
form out of the Ai, Bj as

(Mij)
β
α = AiαB

β
j , (13.4)



13.1. THE BARYONIC BRANCH OF KLEBANOV-STRASSLER 171

which transform under SU(2) × SU(2) and SU(M). The expectation values
ofM,B, B̄ parametrize the moduli space of the theory. At the classical level,
they are subject to the constraint detM−BB̄ = 0, but at the quantum level
this constraint receives (non-perturbative) corrections and reads [404,494] (see
also [495]).

detM−BB̄ − Λ4M = 0 , (13.5)

with Λ denoting the UV scale of the SU(2M) gauge group factor. Expressing
the superpotential, Eq. (7.12), in terms ofM,B, B̄ leads to

h εipεjqTr (MijMpq) + λ
(
detM−BB̄ − Λ4M

)
, (13.6)

with λ a Lagrange multiplier enforcing the constraint. From this superpotential
one sees that the moduli space has two distinct branches.

• A mesonic branch characterized by B = B̄ = 0 and detM = Λ4M with
complex dimension M .

• A baryonic branch characterized by M = λ = 0 and BB̄ = −Λ4M with
complex dimension one.

On the mesonic branch, the SU(2) × SU(2) symmetry is generically broken
which implies that the Klebanov-Strassler solution corresponds to a point on
the baryonic branch. A parametrization of the baryonic branch is given by

B = iζΛ2M , B̄ =
i

ζ
Λ2M , (13.7)

and the U(1)B corresponds to changing ζ by a phase. Along the baryonic
branch, the U(1)B is spontaneously broken and the associated Goldstone boson
has been identified in the dual supergravity solution as a massless pseudo-scalar
state [493,496]. Due toN = 1 supersymmetry, the Goldstone mode is in a chiral
multiplet with a massless scalar which corresponds to changing the magnitude
of ζ. This scalar is a modulus of the theory and corresponds to moving along
the baryonic branch. Consequently, there should exist a one-parameter family
of dual supergravity solutions and indeed a linearized deformation around KS
was found in [493, 496] and the full family in [136]. It interpolates between
the Klebanov-Strassler [135] and Maldacena-Nuñez solutions [497]. In the field
theory, the dual operator is (see e. g. [495])

U = Tr

(∑

i

AiA
†
i −
∑

j

B†jBj

)
. (13.8)

In the dual supergravity backgrounds, it controls the resolution of the conifold
singularity [498], i. e. the size of the S2 at the tip, and hence, these supergravity
backgrounds have been termed warped resolved deformed conifolds in [493,496].
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The KS solution corresponds to a special point on the baryonic branch where
U = 0 or B = B̄ = iΛ2M .

In the next two sections, we review a technique which is useful to obtain
(among many other solutions) the dual supergravity solution for the baryonic
branch of Klebanov-Strassler.

13.2 The Master Equation

To describe solutions on the baryonic branch of Klebanov-Strassler and some
further deformations (as well as a much broader class of solutions), it has proven
to be useful to introduce a formalism based on amaster equation combined with
a solution generating technique. We will now review this procedure following
[137] (cf. section 2).

13.2.1 Wrapped D5-branes and Master Equation

The idea is to start with a stack of Nc D5-branes and use those to construct a
background dual to an N = 1 SYM theory. The stack of D5-branes is wrapped
on a 2-cycle in a very specific way such that precisely four supercharges are
preserved. Details on this interesting procedure can be found e. g. in [385,499–
503], but for our purposes it is sufficient to know the form of the backgrounds
arising from such wrapped D5-brane stacks for CY-cones with topology R ×
S2×S3. These solutions include a warped metric, RR 3-form flux F3 and a non-
constant dilaton Φ and can be parametrized by the following ansatz, where all
functions are assumed to depend only on the radial coordinate ρ and the ranges
of the angular coordinates are 0 ≤ θ, θ̃ < π, 0 ≤ ϕ, ϕ̃ < 2π and 0 ≤ ψ < 4π.

ds2
E = (α′gsNc) e

Φ/2
(

(α′gsNc)
−1
ds2

1,3 + ds2
6

)
, (13.9)

ds2
6 = e2kdρ2 + e2q

(
dθ2 + sin2 θ dϕ2

)
(13.10)

+
e2g

4

(
(ω̃1 + a dθ)2 + (ω̃2 − a sin θ dϕ)2)+

e2k

4
(ω̃3 + cos θ dϕ)2 ,

F3 =
α′gsNc

4

[
− (ω̃1 + b dθ) ∧ (ω̃2 − b sin θdϕ) ∧ (ω̃3 + cos θ dϕ) (13.11)

+ ∂ρb dρ ∧ (−dθ ∧ ω̃1 + sin θ dϕ ∧ ω̃2) +
(
1− b2

)
sin θ dθ ∧ dϕ ∧ ω̃3

]
,

the ω̃i’s are defined as

ω̃1 = cosψ dθ̃ + sinψ sin θ̃ dϕ̃ ,

ω̃2 = − sinψ dθ̃ + cosψ sin θ̃ dϕ̃ ,

ω̃3 = dψ + cos θ̃ dϕ̃ .

(13.12)
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The set of functions {a, b,Φ, k, g, q} is then determined by solving the equations
of motion.

The F3 flux is quantized and satisfies

1

2κ2
10

∫

S3

F3 = NcT5 , (13.13)

with the S3 parametrized by θ̃, ϕ̃, ψ.

Note that henceforth we will work in units where α′gs = 1 unless stated
explicitly otherwise.

Requiring that the above ansatz preserves four supercharges leads to a set
of BPS equations, which are a set of coupled non-linear first order equations
for the functions {a, b,Φ, k, g, q} (see e. g. appendix B of [504]). Now one can
introduce another set of functions {P,Q, τ,Φ, Y, σ} to rewrite the BPS equa-
tions into a set of (partially) decoupled non-linear first order equations [505].
The two sets of functions are related as follows:

4e2q =
P 2 −Q2

P cosh τ −Q ,

e2g = P cosh τ −Q ,
e2k = 4Y ,

a =
P sinh τ

P cosh τ −Q ,

b =
σ

Nc

.

(13.14)

The BPS equations can now be rearranged in such a way that only a second
order equation for P needs to be solved, while all other functions are determined
in terms of P :

Q = (Q0 +Nc) cosh τ +Nc (2ρ cosh τ − 1) ,

sinh τ =
1

sinh(2ρ− 2ρ0)
,

cosh τ = coth(2ρ− 2ρ0) ,

Y =
P ′

8
,

σ = tanh τ(Q+Nc) =
(2Ncρ+Q0 +Nc)

sinh(2ρ− 2ρ0)
,

e4Φ = e4Φ0
cosh2(2ρ0)

(P 2 −Q2)Y sinh2 τ
,

(13.15)

where Q0, ρ0,Φ0 are integration constants and the primes denote derivatives
with respect to the radial coordinate ρ. The function P satisfies a second order
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non-linear differential equation,

P ′′ + P ′
(
P ′ +Q′

P −Q +
P ′ −Q′
P +Q

− 4 coth(2ρ− 2ρ0)

)
= 0 , (13.16)

which acts as a master equation. That is, by solving this equation we can gen-
erate a broad class of solutions belonging to the more general Papadopoulos-
Tseytlin ansatz [506] (see also [507]). The entire remaining background func-
tions are then obtained algebraically from Eqs. (13.14) and (13.15).

To avoid a bad singularity1 in the IR, we will always set Q0 = −Nc. More-
over, we will also set ρ0 = 0 such that the dynamical scale is equal to 1.

13.2.2 Some Solutions of the Master Equation

There are many solutions to the master equation, Eq. (13.16), in particular,
there are solutions which can be related to the baryonic branch of the Klebanov-
Strassler solution (and deformations of it). In the next section, we introduce
a solution generating technique which allows us to make this relation precise.
But before let us briefly mention some solutions of the master equation (cf. the
given references given for more details).

An Exact Solution A simple and exact solution to the master equation is

P (ρ) = 2Ncρ , (13.17)

which after inserting into Eqs. (13.14) and (13.15) yields the background al-
ready found in [497,508].

IR and UV Expansions One can consider functions with an IR expansion
(ρ→ 0) of the form [504]

P (ρ) =h1ρ+
4h1

15

(
1− 4N2

c

h2
1

)
ρ3

+
16h1

525

(
1− 4N2

c

3h2
1

− 32N4
c

3h4
1

)
ρ5 +O(ρ7) ,

(13.18)

where h1 > 2Nc (choosing h1 = 2Nc we obtain Eq. (13.17)). By numerically
solving the master equation, one can show that such solutions are smoothly
connected to solutions which have a totally different behaviour in the far UV
(ρ→∞), namely

P (ρ) ∼ c e4ρ/3 +
e−4ρ/3

64c

(
256ρ2 + 256Q0ρ+ 144N2

c + 64Q2
0

)

− 8

3
c e−8ρ/3 +O

(
e−8ρ/3

)
.

(13.19)

1This singularity is “bad” in terms of the criteria given in [357].
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Recursive Solutions Instead of an IR or UV expansion of P , one can recur-
sively construct solutions to the master equation as described in [509]. This
relies on first rewriting the master equation, Eq. (13.16), as

∂ρ
(
s(P 2 −Q2)P ′

)
+ 4sP ′QQ′ = 0 , s(ρ) = sinh2 τ =

1

sinh2(2ρ)
, (13.20)

and then integrating it two times to obtain

P 3 − 3Q2P + 6

ρ∫

ρ2

dρ′QQ′P + 12

ρ∫

ρ2

dρ′s−1

ρ∫

ρ1

dρ′′sP ′QQ′ = c3R(ρ)3 , (13.21)

with
R(ρ) =

(
cos3 α + sin3 α (sinh(4ρ)− 4ρ)

)1/3
, (13.22)

and c, α denoting the two integration constants of the master equation. The
function P is then expressed as a formal expansion in 1/c [505],

P (ρ) =
∞∑

n=0

c1−nP1−n , (13.23)

and the Pi are then determined by inserting this expansion into Eq. (13.21),
from which one finds e. g. P1 = R and P0 = 0.

Backgrounds of the above form have interesting applications. For instance,
solutions of the above form can describe the gravity duals of “walking” gauge
theories [137,509–512] or the cascades of quivers on the baryonic branch [513,
514]. Later, in Chap. 14, we will discuss applications of such backgrounds in
the context of warped brane inflation. But first let us finish the discussion of
how we actually generate warped throat backgrounds such as those dual to the
baryonic branch of KS.

13.3 The Rotation - Generating Solutions

where In [513], a solution generating technique was proposed which is based
on using a U-duality to map a background of the form in Eqs. (13.9) to (13.11)
(which as we have seen previously is equivalent to a solution of the master equa-
tion Eq. (13.16)) into a new background where additional fluxes are present
(namely F5 and H3 flux). The proposed U-duality can be regarded as a partic-
ular rescaling of the Kähler form J and complex structure form Ω describing
the background geometry (see [514–517] for details). This technique has been
termed rotation in [137] and we will follow the notation used in [137,514].
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Let us define a basis of 1-forms as

exm = h−
1
4 e

Φ
4 dxm , eρ = h

1
4 e

Φ
4

+kdρ ,

eθ = h
1
4 e

Φ
4

+qdθ , eϕ = h
1
4 e

Φ
4

+q sin θ dϕ ,

e1 = h
1
4
e

Φ
4

+g

2
(ω̃1 + adθ) , e2 = h

1
4
e

Φ
4

+g

2
(ω̃2 − a sin θ dϕ) ,

e3 = h
1
4
e

Φ
4

+k

2
(ω̃3 + cos θdϕ) ,

(13.24)

where the ω̃i are given by Eq. (13.12) and the function h is defined as

h ≡ κ−2
1 ĥ , ĥ ≡ 1− κ2

2 e
2Φ . (13.25)

The rotated solution has a metric (in Einstein frame) and flux background
which in the above basis is parametrized as follows.

ds2
E = ds2

4 + κ1ds
2
6 , ds2

4 =
3∑

m=0

(exm)2 , ds2
6 =

∑

i=ρ,Ψ

(
ei
)2
,

F3 =
e−

3Φ
4

h
3
4

[
f1e

123 + f2e
θϕ3 − f3

(
eϕ13 + eθ23

)
+ f4

(
eρ1θ + eρϕ2

) ]
,

B2 = κ2
e

3Φ
2

h
1
2

[
eρ3 + cosµ

(
eθϕ + e12

)
+ sinµ

(
eϕ1 + eθ2

) ]
,

H3 = −κ2
e

5Φ
4

h
3
4

[
− f1e

θϕρ − f2e
12ρ + f3

(
eθ2ρ + eϕ1ρ

)
− f4

(
eθ13 − eϕ23

) ]
,

F5 = κ2
d

dρ

(
e2Φ

h

)
h

3
4 e−k−

5Φ
4

[
− ex0x1x2x3ρ + eθϕ123

]
,

(13.26)

where
cosµ = −P −Q coth(2ρ)

P coth(2ρ)−Q , (13.27)

and the functions fi specifying the fluxes are given by

f1 = −2Nce
−k−2g , f2 =

Nc

2

(
a2 − 2ab+ 1

)
e−k−2q ,

f3 = Nc(b− a)e−k−q−g , f4 =
Nc

2
b′e−k−q−g .

(13.28)

We have introduced Ψ ≡ {ψ, θ, ϕ, θ̃, ϕ̃} to collectively denote all angular direc-
tions and the shorthand notation

eij...l ≡ ei ∧ ej ∧ · · · ∧ el . (13.29)

The parameter κ1 is an integration constant which is essentially the deforma-
tion parameter ε of the conifold we used to describe the KS solution in Chap. 7.
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The parameter κ2 characterizes the effect of the rotation and the back-
grounds obtained from the wrapped D5-brane system correspond to κ2 = 0.
The rotation procedure requires that the dilaton eΦ is bounded from above and
monotonically increasing, i. e. the dilaton profile eΦ grows towards ρ→∞ and
its maximum value is eΦ(∞). Note that the dilaton Φ and the F3 flux are not
affected by the rotation, but we generate extra warping in the metric as well
as switching on additional H3 and F5 flux (see e. g. appendix A of [137]).

Finally, a conceptually very important comment is in order. Namely that in
particular the dilaton Φ and the function P (ρ) are not affected by the rotation
at all.

In principle, any value of κ2 in the range 0 ≤ κ2 ≤ e−Φ(∞) corresponds to
a valid background solution.2 In this thesis, however, we will focus on back-
grounds with κ2 ≡ e−Φ(∞) since these are the ones which for ρ→∞ asymptote
(at least at leading order) to the Klebanov-Strassler solution, or more precisely
its baryonic branch. For reasons explained in [137], the tuning κ2 ≡ e−Φ(∞)

is equivalent to adiabatically switching off a dimension-8 operator. Effectively,
this amounts to keeping only the subleading term in the UV expansion of h and
dropping a possible constant part. Note that this is very similar to the near-
horizon limit of the D3-branes considered in the AdS/CFT-correspondence (cf.
Sec. 7.1), where one has a warp factor of the form

h(r) = 1 +
R4

r4
, (13.30)

and drops the 1 in the near-horizon limit.

13.4 Baryonic Branch and Deformations

All the explicit case studies of solutions to the master equation we consider
in the next chapter have a common leading behaviour in the UV (ρ → ∞),
namely

P ∼ c+e
4ρ/3 +O(e−4ρ/3) . (13.31)

This choice of UV behaviour together with the tuning of κ2 = e−Φ(∞) yields
supergravity backgrounds which are on the baryonic branch of KS. The expec-
tation value of the dimension-2 operator U is controlled by the parameter c+.
More precisely, the expectation value is 〈U〉 ∼ Nc/c+.

We will not consider the pure baryonic branch solution but focus on an
interesting type of deformation.

2The upper bound arises because the warp factor ĥ should be positive. Note also that the
bound is actually on the magnitude of κ2, not its sign.
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Modifying the IR Geometry

We strongly modify the IR geometry while keeping the UV geometry of KS
to leading order, i. e. we consider a solution P (ρ) which is essentially given
by Eq. (13.31) in the UV but in the IR deviates from the one leading to
the baryonic branch of KS. These backgrounds have been constructed recently
in [137] and the modification can be understood as switching on an expectation
value for a dimension-6 operator, in addition to the expectation value for U .

The gauge theories dual to these supergravity backgrounds display a walk-
ing behaviour, i. e. there exists a region of energy scales over which the gauge
coupling almost does not run. The function P characterizing these backgrounds
has an expansion in the IR (ρ→ 0) of the form

P ∼ c0 + c0k3ρ
3 +O(ρ5) . (13.32)

The original baryonic branch of the Klebanov-Strassler solution would instead
be obtained from a solution which in the IR behaves as

P ∼ h1ρ+
4h1

15

(
1− 4N2

c

h2
1

)
ρ3 + . . . . (13.33)



Chapter 14

Slow-Walking Inflation

The idea of this chapter is to realize inflation in string theory in terms of
the (radial) motion of a probe D3-brane moving in the class of supergravity
backgrounds we introduced previously, which are deformations of the baryonic
branch of the Klebanov-Strassler throat.

Brane inflation on the baryonic branch of KS [136] was first discussed
in [495], but the authors focused on the UV region. Here instead, we intend to
focus on the IR regime where, as we will see, an inflection point arises quite
generically due to the non-trivial dilaton profile along the radial direction.

We first derive the expressions for the potential along the radial direc-
tion and the relation between the radial coordinate ρ we use to describe the
backgrounds and the canonically normalized field φ in Sec. 14.1.

To construct the supergravity backgrounds dual to the baryonic branch
[136] and (IR) deformations of it, we use the method with the master equation
and the rotation described in the previous chapter. We consider as an explicit
case study in Sec. 14.2 the background obtained recently in [137].

In Sec. 14.2, we first use three different analytic approximations which
are valid in the far UV (Sec. 14.2.2), the deep IR (Sec. 14.2.3) and for large
values of c+ (Sec. 14.2.4), respectively. We use these to extract a universal
scaling behaviour in the limit of large c+ for all the quantities of interest for
inflation. Afterwards, we solve the master equation numerically in Sec. 14.2.5.
In particular, we will show the existence of an inflection point at a geometrically
defined location.

In Sec. 14.3, we discuss the qualitative picture which emerges from the
combined analytical and numerical results. We also show that one can find
potentially realistic values for the inflationary observables. Some comments
about the dual field theory interpretation of the backgrounds can be found in
Sec. 14.4. Finally, we summarize our findings in Sec. 14.5.
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14.1 Probe D3-branes & Inflaton Potential

We are interested in the dynamics of a probe D3-brane which extends along
all four non-compact directions and is moving along the radial direction in a
warped throat geometry.

Suppose that we start with a metric which in string frame reads

ds2
st = H1(ρ)dx2

1,3 +H2(ρ)dρ2 + . . . , (14.1)

where ρ is the radial coordinate introduced in the previous chapter and the dots
indicate the angular directions which we will ignore throughout this chapter.
The metric in Einstein frame is then given by a rescaling by e−Φ/2 with the
dilaton Φ, i. e.

ds2
E = H1e

−Φ/2dx2
1,3 +H2e

−Φ/2dρ2 + . . . . (14.2)

Suppose also that there is a RR 5-form flux whose 4-form potential is

C4 = C(ρ)dt ∧ dx1 ∧ dx2 ∧ dx3 . (14.3)

Now consider a probe D3-brane emedding of the form

Σ4 = (t, x1, x2, x3) , ρ = ρ(t) . (14.4)

Then the induced metric on such a brane reads

ds2
ind = e−Φ/2H1

(
dx2

1 + dx2
2 + dx2

3

)
− e−Φ/2H1

(
1− H2

H1

ρ̇2

)
e−Φ/2dt2 . (14.5)

The action for such probe branes is given by

SD3 = −T3

∫
d4x

(√−gind − C
)

= −T3

∫
d4x

(
e−ΦH2

1

√
1− H2

H1

ρ̇2 − C
)
,

(14.6)

with T3 ≡ (2π)−3(α′)−2. Expanding this to second order in ρ̇2, we find

SD3 = T3

∫
d4x

(
H1H2e

−Φ

2
ρ̇2 −

(
1 +

eΦC
H2

1

)
e−ΦH2

1

)
, (14.7)

and thus the potential for the probe D3-brane is given by

VD3 ≡ T3 e
−ΦH2

1

(
1 +

eΦC
H2

1

)
. (14.8)

Introducing a “canonical” radial variable r in which the metric takes the form

ds2 = f(r)−1/2dx2
1,3 + f(r)1/2dr2 + . . . , (14.9)
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the relation between r and ρ turns out to be

dr = e−Φ/2
√
H1H2 dρ , (14.10)

and the canonically normalized inflaton is given by

φ =
√
T3 r . (14.11)

Note that we setα′gs = 1 unless stated explicitly otherwise.

For the backgrounds of the previous chapter, we have

H1 = h−1/2eΦ , H2 = κ1h
1/2e2k+Φ , C = −κ2

e2Φ

h
, (14.12)

where h = κ−2
1 (1 − κ2

2e
2Φ). Inserting these expressions into Eqs. (14.8) and

(14.10) yields
dr =

√
κ1e

k+Φ/2dρ , (14.13)
and

VD3 =
T3 κ

2
1

e−Φ + κ2

, (14.14)

respectively. The slow-roll parameters are defined in terms of φ but we construct
our backgroudns in terms of ρ. Using Eqs. (14.13) and (14.14) as well as (14.11),
we can express the slow-roll parameters ε, η, cf. Eqs. (3.28) and (3.29),

ε ≡M2
P

1

2V 2

(
dV

dφ

)2

, η ≡M2
P

1

V

d2V

dφ2
, (14.15)

in terms of derivatives with respect to ρ as follows

ε = M2
P

(
T3κ1e

2k+Φ
)−1 1

2V 2

(
dV

dρ

)2

, (14.16)

η = M2
P

(
T3κ1e

2k+Φ
)−1 1

V

(
d2V

dρ2
−
(
dk

dρ
+

1

2

dΦ

dρ

)
dV

dρ

)
. (14.17)

The number of e-folds Ne and the amplitude of the curvature perturbations Pζ
are obtained as (cf. Eq. (3.38))

Ne ' −
1

MP

φe∫

φi

dφ√
2ε

= − 1√
2MP

ρe∫

ρi

dρ

√
κ1T3e

k+Φ/2

ε(ρ)
, (14.18)

and
Pζ =

V

24π2M4
P ε

, (14.19)

respectively

The integration constant κ1 is fixed below by demanding that the warp
factor f(r(ρ)) = 1 at some arbitrarily chosen UV cutoff ρUV � 1 where we
assume our warped throat to be glued into a compact space.1

1The constant κ1 is essentially related to the deformation parameter ε of the conifold
introduced in Sec. 7.2.
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Why choosing κ2 = e−Φ(∞)? At this point, a technical comment is in order.
Namely, why did we choose κ2 = e−Φ(∞) if we intend to re-introduce gravity via
an explicit UV cutoff? The reasoning behind this choice is as follows. If we make
this choice for κ2, the throat is strongly warped in its UV. Upon introducing a
finite UV cutoff and gluing the throat into a compact space, the graviton zero
mode will have most of its support in the essentially unwarped compact space
since it is exponentially suppressed in strongly warped regions (see e. g. the
discussion around Eq. (C.10) of [272]). That is, we can approximate the (four-
dimensional Planck-mass) MP as

M2
P ≈

2V6

(2π)7 α′4 g2
s

, (14.20)

where V6 is the volume of the compact space. Using this formula, we can express
the brane tension T3 as2

T3

M4
P

≈ (2π)11 g4
sα
′6

4V2
6

. (14.21)

The numbers on the right-hand side depend somewhat on the details of moduli
stabilization, but reasonable values are for example gs ∼ 0.1 and V1/6

6 ∼ 5
√
α′

which yield T3/M
4
P ∼ 10−4 [272].

The important point to takeaway from this section is that there is a non-
zero potential for the radial position of a probe D3-brane since the dilaton
Φ(ρ) has a non-trivial profile along the radial direction. We now move on to
discuss the potentials obtained for some explicit background solutions of the
form discussed in Chap. 13.

14.2 Case Study – Multi-Scale Solutions

As a case study, we consider the supergravity background obtained in [137]. In
these backgrounds, the function Q(ρ) is given by

Q(ρ) = Nc(2ρ coth(2ρ)− 1) . (14.22)

The class of backgrounds we consider now is obtained from a “seed solution”.
Namely, by observing that if P � Q, the master equation is approximately
solved by

P0(ρ) = c
(
cos3 α + sin3 α (sinh(4ρ)− 4ρ)

)1/3
, (14.23)

with two integration constansts (c, α). The full solution for P is then con-
structed by expanding in powers of Nc/c as

P (ρ) =
∞∑

n=0

(
Nc

c

)2n

Pn(ρ) , (14.24)

2Note that unlike [272] we do not include a factor of g−1
s in the brane tension.
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and then iteratively solving for each Pn as a function of (c, α). This procedure
yields a smooth solution for P provided that P > Q for all ρ > 0. This yields
a constraint

cotα ∼ exp

(
24/3 c

3Nc

)
. (14.25)

Now if α is small, the solution for P is approximately constant for ρ < ρ∗
while for ρ > ρ∗ one has P ∝ e4ρ/3. Approximately, one finds that α and ρ∗ are
related by

4ρ∗ ≈ log(2 cot3 α) . (14.26)

We can derive analytic expressions in the far UV and deep IR regions as asymp-
totic solutions to the master equation, Eq. (13.16). We find that the asymptotic
expansions for large and small ρ are given by

P = 3 c+ e
4ρ/3 +

4N2
c

3c+

(
ρ2 − ρ+

13

16

)
e−4ρ/3

+

(
−8 c+ρ−

c−
192 c2

+

)
e−8ρ/3 +O(e−4ρ) ,

(14.27)

and

P = c0 + c0 k3 ρ
3 +

4

5
c0 k3 ρ

5 − c0 k
2
3 ρ

6

+

(
32 c0 k3

105
− 16 k3N

2
c

21 c0

)
ρ7 − 8

5
c0 k

2
3 ρ

8 +O(ρ9) ,
(14.28)

respectively. They are characterized by the two sets of integration constants
(c+, c−) and (c0, k3), which are of course related to the integration constants
(c, α) of the seed solution. The relations between these pairs of integration
constants is not known in analytical form, but it can be determined numer-
ically. However, in [137] some approximate relations among them have been
determined by looking at the IR and UV expansions of the seed solution,
Eq. (14.23), which yields

c0 ' c cosα , k3 '
26

32

1

(2 cot3 α)

(
1 +

N2
c log2(2 cot3 α)

2c2
0

)
,

c+ '
c sinα

21/3 3
, c− ' −192c3

+2 cot3 α .

(14.29)

Moreover, for ρ∗ � 1, one has log(2 cot3 α) ∼ 4ρ∗ and we can express c0, k3

and c− in terms of c+ and ρ∗ as follows

c0 ∼ 3 c+ e
4ρ∗/3 , k3 ∼

64

9
e−4ρ∗ +

512N2
c e
−20ρ∗/3ρ2

∗
81 c2

+

,

c− ∼ −192 c3
+ e

4ρ∗ .

(14.30)

These relations should be a good approximation if

Nc

c+

<
3 e4ρ∗/3

22/3 ρ∗
, (14.31)
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and we will use them frequently below to derive some analytic results.

Recall from Chap. 13 that we only need to obtain the function P (ρ) for
given Q(ρ) (in the absence of flavor branes). The rest is just a straightforward
application of the formalism.

The information on the geometry relevant for the probe D3-brane moving
along the radial direction ρ is encoded in the two functions e4Φ and e2k. They
are determined by the functions P (ρ) and Q(ρ) as3

e4Φ−4Φ0 =
2 sinh2(2ρ)

(P 2 −Q2)P ′
and e2k =

P ′

2
, (14.32)

respectively.

14.2.1 Fixing Integration Constants

Before we can proceed, we need to fix a couple of integration constants related
to the dilaton and the warp factor, namely Φ0 and κ1,2 (recall that we have
already fixed Q0 ≡ −Nc and ρ0 ≡ 0).

Fixing Φ0 and κ2

As mentioned already in Chap. 13, we will always demand κ2 ≡ e−Φ(∞) and
we fix Φ0 by demanding that Φ(∞) ≡ 0. Thus, we have κ2 ≡ 1 and Φ0 is
determined in terms of c+ as

Φ0 =
1

4
ln(72 c3

+) ⇔ e4Φ0 = 72 c3
+ . (14.33)

This can be seen by expanding Φ for ρ→∞ which yields

Φ(ρ) ' 4Φ0 − ln
(
72 c3

+

)
− N2

c

12 c2
+

(8ρ− 1) e−8ρ/3 + . . . . (14.34)

These two choices, κ2 = 1 and Φ(∞) = 0, were also made in [495] and yield a
solution which in the UV asymptotes to the KS solution.

Fixing κ1

As anticipated above, the integration constant κ1 is fixed by demanding that
at some arbitrary UV cutoff ρUV � 1 the warp factor of the 4d part is ∼ 1.

3Note that there is a factor of 4 difference to the expression for e4Φ provided previously,
which just amounts to a redefinition of Φ0.
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Using the UV asymptotic expansion, we can determine κ1 in terms of c+ and
ρUV as

κ1 '
Nc e

−4ρUV/3
√

8ρUV − 1

2
√

6c+

∼ Nc e
−4ρUV/3

c+

, (14.35)

where in the last step we have dropped the √ρUV piece and kept only the most
important scaling with Nc/c+ and e−4ρUV/3. Note that this normalization κ1 of
the warp factor enters into the potential and the relation between ρ and the
canonical field only as an overall factor, but does not affect the functional form.

14.2.2 Far UV Asymptotics

As a first cross check, we consider the far UV asymptotics. In this limit, since
our background approaches the baryonic branch of Klebanov-Strassler (the
effect of the dimension-6 VEV parametrized by c− enters only in the subleading
terms, cf. Eq. (14.27)), we should reproduce the results of [495].

In the far UV, i. e. for ρ → ∞, the functions P (ρ) and Q(ρ) have the
asymptotic expansions (cf. Eqs. (14.27) and (14.22))

P ' 3 c+ e
4ρ/3 +

4N2
c

3c+

(
ρ2 − ρ+

13

16

)
e−4ρ/3

+

(
−8 c+ρ−

c−
192 c2

+

)
e−8ρ/3 + . . . ,

Q(ρ) ' Nc(2ρ− 1) + 4Nc e
−4ρ + . . . .

(14.36)

Using these expressions, one can find the UV expansions of the relevant func-
tions are given by (recall that h = κ−2

1 ĥ)

e4Φ ' 1− N2
c (8ρ− 1)

12 c2
+

e−8ρ/3 + . . . , (14.37)

e2k ' 2 c+e
4ρ/3 − N2

c (4ρ− 5)2

18 c+

e−4ρ/3 + . . . , (14.38)

ĥ ' N2
c (8ρ− 1)

24 c2
+

e−8ρ/3 + . . . . (14.39)

Canonical Radial Coordinate and Warp Factor

The relation between the coordinate ρ and the canonical radial coordinate r is
given by

r ∼ 3
√
c+√
2
e2ρ/3 and ρ ∼ 3

2
ln

( √
2

3
√
c+

r

)
, (14.40)
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respectively. Including the fixed normalization, the warp factor is obtained to
leading order as

h(ρ) ' 8ρ− 1

8ρUV − 1
e−8(ρ−ρUV)/3 , (14.41)

or schematically in terms of the radial variable r

h(r) ' α + β ln(r)

r4
. (14.42)

Induced Potential & Slow-Roll Parameters

Putting everything together, we arrive at a potential for the D3-brane in the
UV which is of the form

VUV(ρ) ∼ T3N
2
c e
−8ρUV/3

c2
+

− T3N
4
c e
−8ρUV/3

c4
+

(8ρ− 1)e−8ρ . (14.43)

Schematically, the slow-roll parameters are of the form

εUV ∼
N3
c e

4ρUV/3

c4
+

e−20ρ/3(2ρ− 1)2 , (14.44)

and

ηUV ∼ −
Nc e

4ρUV/3

c2
+

e−4ρ(10ρ− 8) . (14.45)

Now let us compare this to what has been found in [495]. The authors
find that the potential experienced by a probe D3-brane due to the non-trivial
dilaton profile in the UV is given by (cf. their Eq. (15.9)):

VUV(t) ' T3U
2

2γ
− 3T3U

4

256γ
(4t− 1)e−4t/3 , (14.46)

where γ−1 ∼ e−4tUV /3. Using that the canonically normalized radial coordinate
in their notation is r ∼ ε2/3et/3 (see Eq. (15.6)), they calculate η as (cf. Eqs.
(15.10) and (15.12)):

ηUV(t) ∼ −U2ε−4/3(5t− 8)e−2t ∼ U2e2tUV /3e−2t , (14.47)

and note that ε ∝ U4 but do not give an explicit expression. To translate this
into our notation, we make use of the following dictionary between the radial
coordinates t and ρ and the parameters U and Nc/c+ (see footnote 7 of [514]).4

4In [514], the notation is slightly different from ours. To convert it to our notation we
have to make the replacements c → 3c+ and Ñc → Nc, as can be seen from comparing the
UV expansion of P (ρ) in Eq. (3.17) of [514] with our UV expansion in Eq. (14.27).
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We have the relations5

t = 2ρ , U =
2Nc

c+

, (14.48)

and thus comparing their results, Eqs. (14.46) and (14.47), to our results in
Eqs. (14.43) and (14.45), we see that we find the same parametric and func-
tional dependence.

Including numerical factors, our expression for VUV at leading order is

VUV ' κ2
1T3

(
1

2
− N2

c

192 c2
+

e−8ρ/3(8ρ− 1) + . . .

)
, (14.49)

and the slow-roll parameters ηUV and εUV are given by

ηUV ' −
M2

P

κ1T3α′gs

N2
c

27 c3
+

e−4ρ(10ρ− 8) , (14.50)

and

εUV '
M2

P

κ1T3α′gs

N4
c

324 c5
+

e−20ρ/3(2ρ− 1)2 , (14.51)

respectively.

14.2.3 Deep IR Asymptotics

Now that we passed this cross-check, we can look at the deep IR region, which
is quite different from that of the backgrounds considered in [495].

In the deep IR, i. e. for ρ→ 0, the asymptotic expansions of P (ρ) and Q(ρ)
are given by (cf. Eqs. (14.28) and (14.22))

P ' c0 + c0 k3 ρ
3 +

4

5
c0 k3 ρ

5 − c0 k
2
3 ρ

6

+

(
32 c0 k3

105
− 16 k3N

2
c

21 c0

)
ρ7 − 8

5
c0 k

2
3 ρ

8 + . . . ,

Q ' 4Nc

3
ρ2 − 16Nc

45
ρ4 +

128Nc

945
ρ6 − 256Nc

4725
ρ8 + . . . ,

(14.52)

respectively. Therefore, the IR asymptotic expansions of the relevant functions

5The full mapping between the functions H,x, v, g̃ used in [495] and ours is the following:

H = he−2Φ , 3
ex

v
= he2k+Φ ,

e2x = he2Φ+2q+2g , e2g̃ = 4e2q−2g .
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can be determined as (recall again that h = κ−2
1 ĥ)

e4Φ−4Φ0 ' 8

3c3
0k3

+
256N2

c

27c5
0k3

ρ4 − 2048N2
c

405c5
0k3

ρ6 − 2048N2
c

189c5
0

ρ7 + . . . , (14.53)

e2k ' 3

2
c0k3ρ

2 + 2c0k3ρ
4 − 3c0k

2
3ρ

5 +

(
16c0k3

15
− 8k3N

2
c

3c0

)
ρ6 + . . . ,

(14.54)

ĥ ' 1− 8
√

3 c
3/2
+

c
3/2
0 k3

− 128c
3/2
+ N2

c

3
√

3 c
7/2
0

√
k3

ρ4 +
1024c

3/2
+ N2

c

45
√

3 c
7/2
0

√
k3

ρ6 + . . . . (14.55)

Canonical Radial Variable and Warp Factor

The relation between the canonical radial variable r and the coordinate ρ is
for small r given by

r ' 35/8 c
1/8
0 (c+k3)3/8

23/4
ρ2 + . . . and ρ ' 23/8

35/16c
1/16
0 (c+k3)3/16

√
r + . . . .

(14.56)
The warp factor in the deep IR is schematically of the form

h(ρ) ' h0 + h4ρ
4 + . . . , (14.57)

or equivalently
h(r) ' α + βr2 + . . . . (14.58)

Induced Potential & Slow-Roll Parameters

The potential in the deep IR region is then given by

VIR ' κ2
1T3

(
12c

3/4
+(

12c
3/4
+ +

√
2 33/4 (c3

0k3)
1/4
)

+
64
√

3 c
3/4
+

(
c

3/4
0

√
k3 + 2

√
231/4

(
c3

+k3

)1/4
)

c
5/4
0

(
12c

3/4
+ +

√
2 33/4 (c3

0k3)
1/4
)3

(
ρ4 − 8

15
ρ6 + . . .

))
.

(14.59)

and the slow-roll parameters εIR and ηIR turn out to be

εIR '
M2

P

κ1T3α′gs
β(c+, c0, k3)

(
ρ4 − 44

15
ρ6

)
, (14.60)

and

ηIR '
M2

P

κ1T3α′gs
γ(c+, c0, k3)

(
1− 18

5
ρ2 − 3k3

2
ρ3 + . . .

)
, (14.61)
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respectively. Here, β and γ are some functions of the parameters c+, c0, k3 which
can be explicitly computed from the above but their precise form is not too
enlightening. Using the relations between the various expansions coefficients in
Eq. (14.30), we can perform the expansion in powers of 1/c+ to find

VIR ' κ2
1T3

((
1

2
− e−8ρ∗/3N2

c ρ
2
∗

18 c2
+

+ . . .

)

+

(
2e−8ρ∗/3N2

c

81 c2
+

+ . . .

)(
ρ4 − 8

15
ρ6 + . . .

))
.

(14.62)

as well as

εIR '
M2

P

κ1T3α′gs

4e−8ρ∗/3N4
c

6561 c5
+

(
ρ4 − 44

15
ρ6 + . . .

)
, (14.63)

and

ηIR '
M2

P

κ1T3α′gs

N2
c

81 c3
+

(
1− 18

5
ρ2 − 32e−4ρ∗

3
ρ3 +

1128

175
ρ4 + . . .

)
. (14.64)

The important observation is now to notice that for ρ → ∞ we have ηUV < 0
(cf. Eq. (14.50)) while for ρ → 0 we have ηIR > 0 (cf. Eq. (14.64)). That is, η
changes sign and thus there is at least one zero somewhere in between. since
e−Φ is a monotonic function of ρ there should be exactly one zero. Hence, this
setup automatically provides us with an inflection point (and as we will see
later at this point ε has its maximum value).

Another important thing to notice which we will heavily exploit later on
is that there is an approximate scaling behaviour in the limit of large c+. For
instance, comparing the expressions for η in the UV and IR, cf. Eqs. (14.50)
and (14.64), one see that for large values of c+

η(ρ) ' M2
P N

2
c

κ1 T3 c3
+

η̃(ρ) + · · · ∼ Nc e
4ρUV/3

c2
+

η̃(ρ) , (14.65)

where the dots denote higher order terms and η̃(ρ) is a function which does
not depend on c+ and in the last step we have used the expression for κ1 in
terms of ρUV, Eq. (14.35) and ignored the prefactor M2

P/T3. The relation for ε
is of a similar form,

ε(ρ) ' M2
P N

4
c

κ1 T3 c5
+

ε̃(ρ, ρ∗) + · · · ∼ N3
c e
−4ρUV/3

c4
+

ε̃(ρ, ρ∗) . (14.66)

Similar scaling relations will hold for all the other quantities of interest for
inflation, in particular, for the amplitude of scalar perturbations Pζ and for
the number of e-folds Ne. We will summarize them later in Sec. 14.3. But first
let us try to understand the origin of the scaling with c+ analytically.
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14.2.4 Analytic Derivation of c+ Scaling Behaviour

It will prove useful to use the recursive technique of finding analytic solutions
to the master equation in terms of an infinite series of non-explicit integrals.
To this extent, we rewrite the master equation as

∂r

(
(P 2 −Q2)

sinh2(2ρ)
P ′
)

+
4

sinh2(2ρ)
P ′QQ′ = 0 . (14.67)

Integrating this expression twice and taking into account the asymptotics de-
scribed above, we find

P 3 − 3PQ2 + 6

ρ∫

0

dρ̃ PQQ′ − 12

ρ∫

0

dρ̃ sinh2(2ρ̃)

∞∫

ρ̃

dρ̂
P ′QQ′

sinh2(2ρ̂)

= 16 c3
+R(ρ)




ρ∫

0

dρ̃ sinh2(2ρ̃)


 . (14.68)

Now make an ansatz for P (ρ) as an inverse series expansion in c+,

P = c+P1 + P0 +
P−1

c+

+
P−2

c2
+

+ . . . , (14.69)

where all the Pn are independent of c+. Inserting this ansatz into the integrated
equation and matching powers of c+ yields

P1 =


16

ρ∫

0

dρ̃ sinh2(2ρ̃)




1/3

,

P0 = P−2 = · · · = P−2k = 0 ,

P−1 = − 1

P 2
1

(
− P1Q

2 + 2

ρ∫

0

dρ̃ P1QQ
′

− 4

ρ∫

0

dρ̃ sinh2(2ρ̃)

∞∫

ρ̃

dρ̂
P ′1QQ

′

sinh2(2ρ̂)

)
.

(14.70)

A recurrence relation for P−(2k+1) can be found in Eq. (B.7) of [505]. This
series converges quite rapidly to the numerical solution and is a very good
approximation especially for large values of the radial coordinate.

We are interested in the expressions for the inflationary potential and the
slow-roll parameters at leading order in an expansion in (inverse) powers of c+.
Using the above series expansion, we can find an expression for the dilaton Φ
at leading order as

e4Φ =
144 sinh2(2ρ)

P ′1P
2
1

[
1− 1

c2
+

(
P−1

P1

− Q2

P 2
1

+
P ′−1

P ′1

)
+ . . .

]
, (14.71)
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where the dots indicate the higher order corrections. Now let us define

N2
cM(ρ) =

P−1

P1

− Q2

P 2
1

+
P ′−1

P ′1
, (14.72)

and introduce the equality
(

144 sinh2(2ρ)

P ′1P
2
1

)−1/4

= 3−3/4 . (14.73)

Using these two expressions, we can find the D3-brane potential at leading
orders to be

V =
N2
c T3 e

−8ρUV/3

c2
+ (1 + 3−3/4)

(
1 +

N2
c 3−3/4

4c2
+

M(ρ)

1 + 3−3/4

)
. (14.74)

Similarly, we obtain the relation between the canonical radial coordinate r and
the coordinate ρ which does not depend on c+ and reads

dr = 33/8
√
T3Nc P ′1 e

−2ρUV/3 dρ . (14.75)

Using these two expressions, it is straightforward to verify the above scaling
behaviour (keeping in mind that κ1 is given by Eq. (14.35)). For instance, we
can easily determine ε at leading order in 1/c+ to be

ε ' 3−3/4N3
c e

4ρUV/3

16(1 + 3−3/4)T3 c4
+

M′2

P ′1
. (14.76)

Similarly, we can obtain the scaling behaviour for all quantities of interest.
Therefore, the origin of the scaling behaviour is that for large c+ the solution
P (ρ) is determined essentially by P±1 only.

14.2.5 Numerical Solutions

To make the picture more precise we need to interpolate between the UV and IR
expansions by solving the master equation numerically. But before we present
the results, we briefly comment on the numerical method used to obtain them,
because obtaining accurate results turned out to be surprisingly difficult.

Comment on the Numerical Method

The first step is of course to solve the master equation numerically using the
built-in NDSolve routine of Mathematica to construct a numerical solution for
P (ρ) over a finite range of ρ values from say 10−3 to 15. This was particularly
challenging since in order to achieve decent results for ε and η one needs to de-
termine P ′′ and P ′′′ very precisely. To achieve this goal, we used the NDSolve-
Method Extrapolation for high-precision numerics. Choosing the following
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options for NDSolve produced sufficiently good results: AccuracyGoal = 40,
WorkingPrecision = 80 and MaxStepSize = 10−5. Afterwards, a second nu-
merical interpolation step is performed to reduce the memory consumption
by getting rid of unnecessary points. The outcome of this numerical method
is a set of interpolating functions for P and its first three derivatives. Accu-
rate input values at ρ = 10−3 are achieved by constructing the IR asymptotic
expansion to a sufficiently high order in ρ.

Using the leading term in the UV asymptotic expansion for P (ρ), we de-
termine the expansion coefficient c+ from the numerical value of P at some
point where the behaviour is very close to P ∼ c+e

4ρ/3. We fix κ2 = 1 by
hand and the remaining integration constants Φ0 and κ1 are then fixed using
their analytic expressions in terms of c+ and ρUV, cf. Eqs. (14.33) and (14.35).
We checked that this yields accurate results by comparing it to fixing these
integration constants directly from the numerical solution.

The rest is to simply use the explicit analytic expressions to determine all
the other functions and repeat the procedure for varying input parameters.

Background Solution
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Figure 14.1: Plots of numerical solutions P to the master equation and its first
derivative P ′ for different values of c0 and k3. The color coding is such that the red
and orange curves, the light blue and green curves and the dark blue and purple
curves have the same value of c0, respectively, but differ by their value of ρ∗.

We show the results for a set of numerical solutions P (ρ) obtained by the
procedure described above in Fig. 14.1 for different values of c+ and ρ∗. As
can be seen from these plots, the value of ρ∗ characterizes the point where the
solution changes from P ∼ const to P ∼ e4ρ/3.

In Fig. 14.2, we show plots of the relevant background functions, Φ and k
as well as their derivatives. We also show the warp factor f(ρ). The important
points to notice here are that k′ does not depend on c+ but only on ρ∗ and
that the value of the warp factor at the tip is determined entirely by ρUV and
ρ∗, where the later marks the point where the warp factor starts to become
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Figure 14.2: Plots of the relevant background functions obtained from numerical
solutions to the master equation. From upper left to lower right we plot e4Φ, e2k, Φ′,
k′, Φ (with an overall factor of N2

c /c
2
+ factored out) and the warp factor f for three

different values of c0 and two different values of k3. The color coding is such that
the red and orange curves, the light blue and green curves and the dark blue and
purple curves have the same value of c0, respectively, but differ by their value of ρ∗.
The warp factor f is shown for four different values of the UV cutoff ρUV at which
f(ρUV) = 1.

practically constant. Note also that once we factor out an overall prefactor of
N2
c /c

2
+, Φ depends only on ρ∗ (lower left plot in Fig. 14.2).

The divergence of k′ as ρ → 0 is related to a curvature singularity for
RµνρσR

µνρσ (with all other curvature invariants finite) in the deep IR [137].
The appearance of the singularity is connected to the fact that P ∼ const for
ρ → 0. However, this singularity does not show up in any of the quantities
we compute (or those computed in [137]) and is rather “mild”, which is why it
was suggested in [137] that this singularity might be resolvable.6 For this work,

6Moreover, in [518], we will consider backgrounds where we deform the baryonic branch
by adding flavor D5-branes, but keep the P ∼ h1ρ behaviour in the IR. With some well-
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we do not worry about this issue too much and assume that the singularity
is resolvable and that the resolution does not strongly affect the quantities we
are interested in.

Dilaton Induced D3-Potential
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Figure 14.3: Plots of the D3-brane potential induced by the dilaton profiles obtained
from the numerical solutions. Note that we have factored out a universal prefactor
κ2

1 T3. From upper left to lower right we plot V , V ′, |V ′′| and V for three different
values of c0 and two different values of k3. The color coding is such that the red and
orange curves, the light blue and green curves and the dark blue and purple curves
have the same value of c0, respectively, but differ by their value of ρ∗.

The resulting D3-brane potential induced by the dilaton is shown in Fig. 14.3.
We have factored out the overall prefactor κ2

1 T3. What is important to notice
from these plots are the following things. First, the potential is monotonically
increasing towards the UV and thus the force V ′ is always positive and be-
comes maximal at ρ ≈ ρ∗. Second, at the point where the force is maximal of
course V ′′ changes sign – it is positive in the IR and negative in the UV. This
is important since it will translate into η changing sign, albeit at a somewhat
shifted position because of the required canonical normalization.

motivated assumptions about the flavor profiles (see e. g. section 2 of [519]), this yields
perfectly regular backgrounds. We do not include the flavor branes here, but note that
we recover the baryonic branch for Nf = 0. From the point of view of the inflationary
phenomenology the pure baryonic branch behaves qualitatively similar to the case study we
present here, except that we have to drop the terms involving ρ∗ and change the actual
numbers somewhat.
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Slow-Roll Parameters
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Figure 14.4: Plots of the slow-roll parameters ε and η as well as the amplitude
of scalar perturbations Pζ obtained from the numerical solutions. Note that we have
factored out some universal prefactors of eitherM2

P /(κ1 T3) for ε and η orM4
P /(κ

3
1 T3)

for Pζ . From upper left to lower right we plot ε, Pζ , |η| and η with an additionalN3
c /c

3
+

factored out for three different values of c0 and two different values of k3. The color
coding is such that the red and orange curves, the light blue and green curves and
the dark blue and purple curves have the same value of c0, respectively, but differ by
their value of ρ∗.

The resulting the slow-roll parameters ε and η as well as the amplitude
of scalar perturbations Pζ are shown in Fig. 14.4. We have factored out some
universal prefactors of either M2

P/(κ1 T3) for ε and η or M4
P/(κ

3
1 T3) for Pζ .

Perhaps the most important of these plots is that of η(ρ) in the lower right. It
shows that η starts out negative in the UV and then becomes positive at some
value which depends on ρ∗. As anticipated, η does change sign when going from
the UV to the IR.

The position of the inflection point depends on ρ∗, but not on c+. The
role of c+ is to control the strength of the force. For the shown solutions, the
inflection points are located at ρ ≈ 0.844 and ρ ≈ 0.973 for ρ∗ ≈ 1 and ρ∗ ≈ 2,
respectively. Note also that the change of sign takes place in a rather small
region of ρ values – η is changing sign rather abruptly.

Correlation between maxima of Φ and V

We have found something very interesting. Namely, we have an inflection point
where η does change sign at a geometrically determined point. Let us now make
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more precise what we mean by “geometrically determined”.
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Figure 14.5: Plots of the derivatives of V and Φ with respect to the canonically nor-
malized field φ =

√
T3r. We have again factored out some universal overall prefactors

depending on κ1 and T3 as indicated. From upper left to lower right we plot dV
dr ,

d2V
dr2 ,

dΦ
dr and d2Φ

dr2 for three different values of c0 and two different values of k3. The color
coding is such that the red and orange curves, the light blue and green curves and
the dark blue and purple curves have (roughly) the same value of c+, respectively,
but differ by the value of ρ∗.

We have visualized in Fig. 14.5, the correlation of the maximum of dV
dr

with
the maximum of dΦ

dr
. As we will explain now, this is a consequence of the large

c+ limit. Note that we are taking derivatives with respect to r, not with respect
to ρ.

The D3-brane potential is proportional to

V ∝ 1

e−Φ + κ2

. (14.77)

If we are looking for an inflection point, one can show that the following equa-
tion must hold.

d2V

dr2
= 0 ⇒ d2Φ

dr2
=

(
dΦ

dr2

)2
κ2e

Φ − 1

κ2eΦ + 1
. (14.78)

Now, we know that for large-c+ we can expand Φ as

Φ = Φ0 +
1

c2
+

Φ̃(ρ) + . . . . (14.79)

Then one can check that the correlation is indeed enforced by making c+ large.
This is because for large-c+ the right-hand side is much stronger suppressed by
c+ than the left-hand side (recall that we have set κ2 = e−Φ(∞)).
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Finally, we can use the numerical solutions to confirm the approximate
scaling behaviour of all the quantities (see Sec. 14.3). We have verified the
scalings obtained from the asymptotic expansions and they provide a very
good approximation.

14.3 Qualitative Picture and Phenomenology

Let us briefly summarize the most important points we have learned in the
previous sections. First, we have used the IR and UV expansions of η and found
that it changes sign between the IR and the UV. This implies the existence of
an inflection point. Using numerical solutions we have confirmed this picture
and located the inflection point.

Second, from the IR and UV asymptotic expansions, we also managed to
extract some universal scaling behaviour of all the quantities of interest. We
have confirmed this scaling behaviour both by an analytical argument and by
comparing to the numerical solutions. We will make use of these scalings in a
moment.

Most importantly, we have shown both numerically and by an analytic
argument that the origin inflection point is directly related to the fact that the
profile of Φ has an inflection point, cf. the lower left plot in Fig. 14.2.

In the following, we will heavily exploit the scaling behaviour in a semi-
analytic way to obtain predictions.

Approximate Scaling Behaviour

We now summarize the scaling behaviour of the quantities relevant for the
inflation phenomenology:7

ε ' M2
P

T3

e4ρUV/3
N3
c

c4
+

×
{
ε̃UV(ρ) , ρ & ρ∗

e−8ρ∗/3 ε̃IR(ρ) , ρ . 1
(14.80)

η ' M2
P

T3

e4ρUV/3 ,
Nc

c2
+

η̃(ρ, ρ∗) , (14.81)

Pζ '
T 2

3

M6
P

e−4ρUV
c2

+

Nc

×
{
P̃ζ,UV(ρ) , ρ & ρ∗

e+8ρ∗/3 P̃ζ,IR(ρ) , ρ . 1
, (14.82)

Ne '
T3

M2
P

e−4ρUV/3
c2

+

Nc

Ñe (ρstart, ρend) . (14.83)

Note that ε and thus also Pζ have a scaling which depends on ρ∗ in the deep
IR but not in the UV. For η̃(ρ, ρ∗), we see from Fig. 14.4 (lower two figures)

7For the pure baryonic branch the scalings would look similar – one just has to drop the
ρ∗-dependence.
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that the main effect of ρ∗ is to shift around the precise location of the inflection
point a bit. The profiles for η̃ etc. are determined numerically (but see also the
analytic derivation of the c+ scaling in Sec. 14.2.4).

The number of e-folds Ne is given by the overall factor and a numerical
factor which depends on where inflation starts and ends, ρstart and ρend, but
the dependence is rather weak. We have checked numerically that if we fix
ρstart = 1 but vary ρend between 0.5 and 0.01, Ñe changes by only about a
factor of 4. Hence, where inflation ends will affect the actual number in the
end, but not strongly. Moreover, note that we will want to start somewhat
above the inflection point since close to the inflection point the spectral index
ns − 1 ≈ 0 and it is negative slightly above the inflection point. We also do
not want to start too far away from the inflection point since we do not expect
our potential to be the correct description in the UV due to corrections from
gluing the throat into a compact space.

With the above potential, inflation could proceed until ρ = 0. However,
there are two reasons why we expect inflation to end earlier. First, we have a
singularity at ρ = 0 and one may expect curvature corrections to the probe
brane action will end inflation. Second, in the deep IR also the backreaction of
the probe D3-brane becomes important which may also end inflation earlier.
In any case, because of the weak dependence of the number of e-folds on the
value of ρend this will affect the numerical values slightly, but not significantly
affect our conclusions.

One final comment: Since ε is suppressed by an additional factor of ε−8ρ∗/3

one might expect that Ne is enhanced by a factor of e4ρ∗/3. This is, unfortu-
nately, not the case since the dependence of 1/

√
ε on e4ρ∗/3 cancels against a

contribution from the canonical normalization involving ek+Φ/2.

Semi-Analytic Predictions

We will now exploit the above scalings to make some semi-analytic predictions.
By “semi-analytic” we mean that the scalings are known analytically, but we
have to extract the numbers from the universal part from a numerical solution.

It is useful to rewrite the above expressions in terms of the number of
e-folds Ne. This yields

ε ' 1

Ne

N2
c

c2
+

e−8ρ∗/3 Ñe ε̃IR (14.84)

η ' 1

Ne

Ñe η̃(ρ∗) (14.85)

Pζ '
T3

M4
P

Ne e
−8(ρUV−ρ∗)/3 P̃ζ,IR

Ñe

, (14.86)
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where Ne as above is given by

Ne '
T3

M2
P

α′gse
−4ρUV/3

c2
+

Nc

Ñe , (14.87)

but we have reinstated a factor of α′gs to get the units correct (recall that we
have set α′gs = 1).

To illustrate the procedure, assume that we start at ρstart = 1 and inflation
ends at ρend = 0.1. Using the numerical solutions and the (IR) scaling behaviour
of ε,Ne etc. we find the following universal values at ρ = 1.

ε̃(1) ∼ 2× 10−5 ,

η̃(1) ∼ −10−3 ,

P̃ζ,IR(1) ∼ 3× 102 ,

Ñe(1, 0.1) ∼ 103 .

(14.88)

For the following numerical estimates we will use Eqs. (14.20) and (14.21) with
gs ∼ 0.1 and V6 ∼

(
5
√
α′
)1/6

such that T3/M
4
P ∼ 6× 10−5.

First, we need to match the observed amplitude of the scalar perturbations,
Pζ ∼ 2 × 10−9 at Ne ≈ 60 e-folds before the end of inflation. Note that from
Eq. (14.86) we see that Pζ depends on c+ only via Ne and since we fixed T3/M

4
P

by hand, Pζ only depends on ∆ρ ≡ ρUV − ρ∗. Let us estimate which value we
would need to match observations. With T3/M

4
P ∼ 6× 10−5 and Ne = 60 and

the values in Eq. (14.88), requiring Pζ ∼ 2× 10−9 at ρ = 1 yields

∆ρ ≡ ρUV − ρ∗ ≈ 4.96 . (14.89)

Note that ∆ρ is the distance over which the warp factor changes significantly,
cf. Fig. 14.2 which has ρ∗ ≈ 1 and ρ∗ ≈ 2 and four different choices of ρUV.
This is also what is done in appendix C of [272] to match the observed amount
of density perturbations.

Let us now try to estimate which values for c+ and ρUV we need to choose
to get Ne ≈ 60. Using Eq. (14.87), for a given ρUV we can always adjust c+

to get Ne ∼ 60 by making c+ large enough. For instance, using ∆ρ ≈ 4.96
and ρ∗ ≈ 2 as in some of the numerical examples we constructed, we should
have ρUV ≈ 6.96.8 Putting everything together with Eq. (14.87), we find that
Ne ∼ 60 is achieved for c+ ∼ 3× 103.

This choice of parameters would imply that ε at ρ = 1 is roughly9

ε ∼ 10−13 , (14.90)

8Note that this is sufficient to have e−8ρUV/3 � 1 such that it is justified to estimate κ1

as in Eq. (14.35).
9Note that the maximum value of ε is reached precisely at the inflection point.
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and thus the tensor-to-scalar ratio r = 16 ε is

r ∼ 2× 10−12 . (14.91)

Hence, the production of gravitational waves is completely negligible. Note that
this is a generic feature of warped D-brane inflation models (see [295, 296] for
a recent systematic analysis). As an estimate for the energy scale of inflation
we find from the above values

V
1/4
inf ∼

(
1

2

T3

M4
P

N2
c

c2
+

e−8ρUV/3

)1/4

MP ∼ 10−5MP ∼ 2× 10−13 GeV . (14.92)

Which is considerably lower than the GUT-scale and again a quite generic
feature of warped D-brane inflation models

For η at ρ = 1 we find
η ∼ −0.02 , (14.93)

such that the scalar spectral index ns = 1 + 2η − 6ε is roughly

ns ∼ 1− 3× 10−2 ∼ 0.97 . (14.94)

The tensor-to-scalar ratio r is consistent with the non-observation of gravita-
tional waves in the CMB data by WMAP (cf. Tab. 3.2), but the model would
be ruled out if the ongoing PLANCK satellite detect gravitational waves. The
value of the spectral index ns we obtained is consistent with the WMAP data
(cf. again Tab. 3.2).

Note, however, that the above picture is too simplistic. We did not take
into account corrections to the potential sourced in the UV from gluing the
throat into a compact space. In particular, one expects a correction sourced
by the non-zero curvature in 4d dimensions which gives rise to a contribution
∆η = 2

3
[272]. Hence, to make reliable predictions a systematic study of various

corrections is necessary. This requires to extend the analysis performed for
the regime rIR � r < ρUV in [295] (see also [296] for a study of multi-field
effects) over the entire throat. And, in particular, include also the evolution of
the angular modes and the perturbations sourced by them. Nonetheless, the
inflection point appears so generically in the IR due to the dilaton profile and
η changes quite drastically around it. Hence, there is hope that the inflection
point may not be completely destroyed by corrections sourced in the UV. Note
that in the language of [284] (on which the construction of the potentials used
in [295, 296] rests) the UV corrections correspond to non-normalizable modes,
while our potential is sourced by a normalizable mode which is similar to the
anti-D3-brane at the tip in [272]. This is why [495] suggested to use the baryonic
branch instead of an anti-D3-brane at the tip. A detailed investigation of this
issue is beyond our present scope and we leave it for the future. Let us now
comment about the dual field theory interpretation of the backgrounds we
considered here.
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14.4 Dual Field Theory Interpretation

The dual field theory analysis for all the backgrounds is usually done using the
Klebanov-Witten solution [394], whose UV is AdS5×T 1,1, as an approximation
since the Klebanov-Strassler solutions all have a UV which is AdS5 × T 1,1 up
to a logarithmic factor. The KK-reduction of type IIB on AdS5×T 1,1 is known
explicitly [401, 402] and thus one knows the dimensions of the dual operators
(see also [385] for a summary).

A probe D3-brane moving in a warped throat background dual to the
baryonic branch of KS corresponds to a meson in the dual field theory [495]. In
a full-fledged flux compactification, which contains the baryonic branch of KS
as an approximate description of some region, the U(1)B symmetry is expected
to become gauged [493] and may acquire a non-zero Fayet-Iliopoulos (FI) term10

ξb 6= 0. This FI-term would then force the VEV of the dimension-2 operator
〈U〉 ∼ 1/c+ to a non-zero value and thus also c+ as in [495].

The backgrounds of [137] which we studied above have in addition to the
dimension-2 VEV also a VEV for a dimension-6 operator. For a thorough
discussion of the dual field theory interpretation we refer to [137], in particular
section 3 (see also [495, 513]). Here we will be rather brief and first start to
collect a few important points.

The ‘rotation’ with fine-tuned κ2 = e−Φ(∞) corresponds to switching off a
dimension-8 source (in a somewhat subtle way) and thereby yields a healthy
UV completion of the wrapped D5-brane system by turning it into a quiver
gauge theory as in KS with the correct field content to cancel the dimension-8
operator.

The dimension-6 VEV affects the IR but leaves the UV unaffected. From
the viewpoint of the geometry, it introduces a second scale ρ∗ – the dimension-
6 VEV is controlled by c−/c3

+ [137], which is ∝ e4ρ∗ , cf. Eq. (14.30). Since
the backgrounds are asymptotically KS, the dual gauge theory is a quiver
theory which undergoes a cascade of Seiberg dualities. However, the cascade
does not last until the end. At a scale determined by ρ∗, the cascade of Seiberg
dualities stops and the gauge group gets higgsed by a non-trivial VEV, SU(Nc+
M) × SU(Nc) → SU(Nc) with M = qNc. Below this scale, the effective field
theory with gauge group SU(Nc) is dual to the wrapped D5-brane system. The
higgsing replaces the last steps of the cascade, which is also indicated by the
fact that B2, H3 and F5 are strongly suppressed relative to F3 below ρ∗ in the
ten-dimensional background.11 Consequently, using the standard logic of the

10Recently, it has been shown that a constant FI cannot be consistently coupled to su-
pergravity. However, Fayet-Iliopoulos terms arising in string theory are typically moduli-
dependent, see for instance [210,520–523] for some discussions of D-terms from string theory
and their consequences e. g. for moduli stabilization.

11In this sense, these supergravity backgrounds may be interpreted as interpolating be-
tween the KS and the wrapped D5-brane system.
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gauge/gravity correspondence, the dual gauge theory is in a Higgsed phase and
the Higgs VEV is controlled by the dimension-6 operator.

Due to the dimension-6 operator, the dual gauge theory shows a ‘walking’
behaviour below the scale corresponding to ρ∗, i. e. there is a range of scales
where it almost does not run. One phenomenological application of these back-
grounds (besides that to inflation which we discuss here) would therefore be to
describe strongly-coupled versions of electroweak symmetry breaking such as
walking technicolor [16–18] or extended technicolor [19,20] (see e. g. [21, 22]).

Let us now try to see if we can understand/interpret the existence of the
inflection point from a field theory point of view. In the dual supergravity
background, it was related to the particular shape of the dilaton profile. The
dilaton Φ starts out constant in the IR, then grows but stabilizes again at a
scale ρ∗ and becomes practically constant in the UV.

Geometrically, this is related to the following. Let us consider the situation
before the rotation. The position of the inflection point is related to ρ∗. It
signals the region in which throat starts to unwarp and the space becomes
flat space. From the IR until ρ∗, the force on a moving D3 keeps increasing
since the cumulative effects of the F3 fluxes continue to warp the geometry
(recall that VD3 ∝ h−1 − C4). After ρ∗, however, the fluxes become too weak
to warp the geometry significantly and the magnitude of the force on the D3
starts decreasing. But note that the force is always positive, only its magnitude
starts to decrease. The inflection point around which we are doing inflation is
at ρ∗. In the dual field theory, this corresponds to the presence of the irrelevant
dimension-8 operator which starts to control the dynamics towards the UV.

The dimension-8 operator is the reason why the dilaton stabilizes in the
UV. Its effect is to “recouple” gravity to the system. Consider the warp factor
sourced by a stack of D3-brane,

h = 1 +
R4

r4
. (14.95)

For a solution which in the deep IR this solution is AdS5 × S5 and in the far
UV it is flat space, the “1” represents a dimension-8 operator in the Lagrangian
– namely F 4

ab. In the case of the D5’s it is also a dimension-8 operator which
brings the geometry back to flat space in the UV.

After the rotation, the interpretation remains more or less similar. What
is changing is that now the effect of the new F5 fluxes prevent the geometry
from unwarping completely (i. e. to open up into flat space in the UV). The
geometry starts to open up around ρ∗ where both the dilaton and the warp
factor (after the rotation with κ2 = e−Φ(∞)) change their profile. But at this
point the D3 Maxwell charge turning on rather abruptly at ρ∗ acts such that
it decouples gravity in the UV and warps back the throat. Nevertheless, the
inflection point for the dilaton remains and we can use it do to inflation.

Note that the origin of the inflection point is not related to the presence
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of the VEV for the dimension-6 operator and thus will be present in all back-
grounds belonging to the baryonic branch.

In the dual field theory, what happens is that the dimension-8 operator
which is starting to take over at the energy scale corresponding to ρ∗ is tamed by
the VEV of the dimension-2 operator. That is, its coupling is controlled by the
VEV of the dimension-2 operator. A very nice analogy of this effect to the UV
completion of the Fermi theory (or more precisely its generalization including
SU(3) × U(1) interactions), which has higher-order operators suppressed by
MW from integrating out the W -bosons, was given in [137]. In this situation,
the couplings of these higher-order operators, i. e. MW , are controlled by the
VEV of the Higgs.

In other words, to switch of the dimension-8 operator in the UV, we intro-
duce a large number of D3-branes. This can be seen from the Maxwell charge
growing like QD3 ∼ log ρ in the UV while QD5 = Nc. Hence, the system be-
comes dominated by D3-branes in the UV which implies a constant dilaton
and a space which is almost asymptotically AdS5.

14.5 Summary and Discussion

Let us summarize what we have found in this part. We have considered warped
D3-brane inflation in a class of recently constructed supergravity backgrounds
which are dual to a walking gauge theory [137]. These backgrounds are a mod-
ification of the baryonic branch whose application to inflation was first studied
in [495], but focused on the UV region. Here, we considered the IR regime. The
difference between the original Klebanov-Strassler solution [135] and its bary-
onic branch [136] is encoded in the VEV of a dimension-2 operator U which
controls the resolution of the conifold singularity. In our notation, the VEV is
controlled by a parameter c+ related to U as 〈U〉 ∼ 1/c+. Hence, for c+ →∞
one recovers the KS solution. However, for any finite value of c+, a D3-brane
in this background breaks supersymmetry (see Eq. (15.3) of [495] for a nice
check of this by computing the Killing spinors in 10d). A finite value for c+

is assumed to be due to the presence of a Fayet-Iliopoulos term for the U(1)B
symmetry, which is expected to become gauged once the throat is glued into
a compact space [493]. Our backgrounds are a deformation of both KS and its
baryonic branch in the IR due to the presence of the VEV of a dimension-6
operator. This operator generates us a new scale ρ∗.

To construct the supergravity backgrounds, we used a formalism using a
master equation and a solution generating technique called ‘rotation’, which
we reviewed in Secs. 13.2 and 13.3, respectively. This formalism describes a
much broader class of solutions which includes the one we discussed and the
baryonic branch of KS. We have picked the solution of [137] as a case study
to investigate inflation in the IR region in Sec. 14.2. Using a combination
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of analytic expansions and numerical solutions, we arrived at the following
qualitative picture (see Sec. 14.3).

The potential generically has an inflection point which is related to a par-
ticular feature of the dilaton potential. Namely, that it starts out constant,
then starts to grow until some value of the radial coordinate ρ ∼ ρ∗, where
it stabilizes again to a constant. We provided both numerical evidence and
an analytic argument why this statement is correct. This is interesting since
this inflection point does not arise by chance but is instead at a geometrically
defined position, cf. Sec. 14.2.5.

Interestingly, the quantities of interest for inflation obey a universal scaling
behaviour in the limit of large-c+, which we derived analytically in three differ-
ent limits in Secs. 14.2.2, 14.2.3 and 14.2.4 and verified numerically to be valid
on the entire throat (cf. Sec. 14.2.5). Geometrically, the limit of large-c+ corre-
sponds to pushing the background close to KS. We have exploited this scaling
behaviour in Sec. 14.3 to study the inflationary phenomenology implied by the
presence of the contribution to the potential we have studied. This serves as
an illustration how one can derive predictions for inflationary observables and
we found reasonable values.

In Sec. 14.4, we commented on the field theory interpretation of the quali-
tative picture. The dilaton profile relevant for the inflection point is before the
rotation related to the presence of a dimension-8 operator. After the rotation,
where the dimension-8 operator is adiabatically switched off, the picture nev-
ertheless stays the same since in this process we induce a large number of D3
charge which dominates the UV and ensures a healthy UV completion [137].

Note that despite the rather nice numbers we presented as an illustrative
example, the above should be viewed as a first step. To derive reliable pre-
dictions, especially for η, a more sophisticated analysis is necessary. This pre-
sumably requires to extend the analysis of the structure of the potential [284]
and its phenomenological consequences [295,296], which made use of the limit
ρIR � r < ρUV to describe inflation in this “near UV” regime and included the
evolution of the angular modes. In contrast, we are interested in inflation in
the IR of the baryonic branch (for previous work on brane inflation at the tip
of the KS solution see e. g. [292]). However, since η changes quite drastically
around the inflection point, we have hope that the inflection point will not be
completely destroyed by adding UV corrections. Thus, it can serve as a starting
point for trying to find viable models in an expansion around this inflection
point and we do not have to rely on an inflection point arising by chance.
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Chapter 15

Conclusions and Outlook

We have now reached the end of this thesis and it is time to wrap up. In the
following, we will briefly recall the important results obtained in Parts III and
IV and provide an outlook on further directions of research.

The aims of this dissertation were to explore new approaches to address the
problems discussed in Chap. 2 and to realize inflation in the matter sector. To
gain new insights, we employed both a bottom-up and a top-down approach.
Let us now go through the results of our different approaches one by one.
For more complete summaries and detailed discussions confer the individual
summary sections at the end of the appropriate chapters – for Part III see
Secs. 10.5, 11.5 and 12.5 and for Part IV see Sec. 14.5.

Combining Low-Energy SUSY and High-Scale Inflation

The first problem we have addressed was related to moduli destabilization in
a KKLT-type framework by the presence of an inflationary sector. Avoiding
moduli destabilization then puts an upper bound on the Hubble scale during
inflation in terms of todays gravitino mass, Hinf . mtoday

3/2 . We studied a 4d
effective supergravity model to cope with this problem in a novel way.

We have proposed a general scenario where low-energy supersymmetry and
high-scale inflation can be accommodated simultaneously in Chap. 10. The
idea is to stabilize the modulus during and after inflation by two different
mechanisms. In this way, we evade the upper bound on Hinf since the scale
for moduli stabilization is now set by Hinf itself and no longer by mtoday

3/2 . To
avoid an overshooting problem at the end of inflation, we have to tune some
coefficients to ensure that the minima during and after inflation are not too
far apart.

We have illustrated that our general idea works in two explicit examples.
In both cases, we modelled the inflationary sector by a simple toy model, shift
symmetric F-term chaotic inflation. After inflation, the modulus is stabilized
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by a superpotential contribution Wmod(T ), e. g. of the KKLT-type. But we
have shown that even for general Wmod(T ) the corrections to the inflationary
observables are small. Both the spectral index ns and the tensor-to-scalar ratio
r receive only corrections which are schematically of the form

ns − 1 = − 2

Ne

(
1 +O

((
FT
FX

)2

,

(
m3/2

FX

)2
))

,

r =
8

Ne

(
1 +O

((
FT
FX

)2

,

(
m3/2

FX

)2
))

.

(15.1)

These corrections are negligible when we have high-scale inflation and low-
energy supersymmetry breaking, i. e. when FT ,m3/2 � FX . Thus, we recover
the standard predictions of chaotic inflation: for Ne ≈ 60 one finds ns ≈ −0.97
and r ≈ 0.13, which are consistent with the constraint from the WMAP-7yr
data, cf. Tab. 3.2.

Outlook

Despite the nice phenomenological picture for inflation we have obtained, there
are some open questions left. Let us point out some interesting directions for
future research.

An interesting aspect which deserves further investigations is to quantify
the tuning required to avoid an overshooting of the modulus after inflation. One
may also imagine to modify our setup somewhat to embed a dynamical mech-
anism which smoothly transfers the modulus from its inflationary minimum to
its post-inflationary minimum.

It is also worthwhile to study the non-thermal history which emerges from
our scenario. Typically, the modulus T is the lightest field and oscillates the
longest. Thus, the reheating of the visible sector and the subsequent cosmo-
logical history are typically determined by the decays of the modulus and not
by decays of the inflaton. This should allow us to constrain some parameters
of the model e. g. by demanding successful BBN or generating enough baryon
asymmetry.

Since our model is strictly speaking string-inspired but not string-derived,
it is certainly interesting to find a string theory realization of our scenario.
This is particularly interesting for models of large-field inflation due to their
enhanced sensitivity to the physics of moduli stabilization.

It would also be nice to demonstrate explicitly that our approach works
for hybrid models of inflation as well. There are good indications that this is
possible. That is, the suppression of corrections to the inflationary observables
seems to rely only on the hierarchy FT ,m3/2 � FX and not on the fact that
we used a large-field chaotic inflation model.
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Matter Inflation in Supergravity

Let us now move on to one of the guiding themes of this thesis – the phenomeno-
logically motivated framework for supergravity models of inflation which we
have termed matter inflation.

We have constructed a fairly general class of supergravity models which
describe matter inflation in Chap. 11. Our starting point were the models
discussed in [297], which feature a tribrid structure in the superpotential [227,
228, 351]. Unlike the standard F-term hybrid inflation model [218–220], they
allow a solution to the η-problem with a specific form of the Kähler potential
enforced by a symmetry [38].

In matter inflation models, where the inflaton resides in gauge non-singlet
matter fields, one generates the inflaton-dependent mass term for the water fall
fields by non-renormalizable terms, as e. g. in sneutrino hybrid inflation [221].
A Heisenberg symmetry protects the inflaton since a shift symmetry cannot be
used for gauge non-singlets. We have generalized the models of [297] with some
inspiration from string theory. In particular, we replaced all constant couplings
in the superpotential by functions of a set of moduli Ti and generate the scale
of the F-term driving inflation dynamically. All fields except the inflaton can
be stabilized with masses of at least m & Hinf and one of the Ti is stabilized
by essentially the same mechanism we used in Chap. 10 to combine low-energy
SUSY and high-scale inflation.

We discussed the sources for generating a small slope both at tree-level and
loop-level. Assuming possible tree-level corrections to be parametrically small,
the loop corrections dominate the inflationary predictions. This is the case if
the sector responsible for moduli stabilization during inflation does not break
the Heisenberg symmetry strongly. Then generically the loop corrections from
the gauge fields are negligible and the loop corrections from the waterfall fields
dominate such that the inflationary phenomenology is expected to be similar to
[297]. If, however, there are large tree-level corrections, e. g. corrections induced
by moduli stabilization, one may still find viable inflationary models due to
cancellations between various terms. The phenomenology is then presumably
similar to inflection point inflation.

Towards Matter Inflation in Heterotic Orbifolds

One of the main motivations for the generalization of the models of [297] con-
sidered in Chap. 11 was to study the conditions under which models of matter
inflation can be embedded into heterotic orbifolds in Chap. 12. As we explained
in Sec. 2.4, this is important since quantum gravity corrections may spoil an
effective field theory solution to the η-problem.

Heterotic orbifolds constitute an interesting playground to search for mat-
ter inflation models. First, they feature a Heisenberg symmetry for a certain
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class of matter fields. Second, the structure of their matter superpotential
makes it plausible that a tribrid structure can arise, e. g. after other fields
acquire suitable VEVs. Third, MSSM-like models have been found [177–182,
415–417, 427, 524]. Moreover, the moduli potentials in heterotic orbifolds are
often too steep to allow for slow-roll inflation and thus looking for inflation in
the matter sector seems attractive.

We proposed a new way to stabilize the modulus associated to the inflaton,
which is a string-inspired version of the mechanism used in Chap. 10 (albeit
in a somewhat different context). We suggest an ansatz for the form of the
string-loop corrections to the Kähler metric of the driving field X living in an
N = 2 twisted sector in the background of non-trivial untwisted matter fields.
This ansatz allows us to parametrize a possible breaking of the Heisenberg
symmetry due to moduli stabilization. The dilaton is stabilized entirely by non-
perturbative corrections to the Kähler potential as in [464] since the gaugino
condensates are typically negligible during inflation.

We used our ansatz for the parametrization of the Heisenberg symmetry
breaking effects by moduli stabilization via the string-loop corrections. The
inflationary phenomenology depends on whether or not these loop corrections
respect the Heisenberg to a sufficient amount. In any case, our parametrization
of the breaking effects allows for a systematic investigation of the phenomenol-
ogy in 4d effective supergravity.

Outlook

Our present work is a first step towards realizing inflation in the matter sector
of heterotic orbifold compactifications. Hence, it is of course very interesting
to find explicit realization of the our scenario. Moreover, one can then check if
there is an overlap with models which yield a MSSM-like spectrum.

The new way to stabilize one of the Kähler moduli by the F-term of a matter
field and its Kähler metric might be relevant also for moduli stabilization in
heterotic orbifolds, independently of the issue of inflation. For instance, in [166]
a non-zero matter F-term provides an uplifting contribution.

From the phenomenological point of view, it is interesting to explore the
parameter space of our matter inflation models in more detail. Especially, by
systematically searching for regions where cancellations between various terms
yield a small inflaton slope. Moreover, we typically have a couple of fields
with masses around H so it would be nice to explore their phenomenological
implications along the lines of [245].
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Slow-Walking Inflation

In the second part of this thesis, we considered a genuine top-down approach
and considered warped D3-brane inflation in a class of supergravity back-
grounds dual to a walking gauge theory [137]. These backgrounds are inter-
esting for applications of gauge/gravity duality to beyond the standard model
physics (see e. g. [21, 22]).

The backgrounds we considered are deformations of the baryonic branch
[136] of the Klebanov-Strassler throat [135]. They feature a non-trivial dilaton
profile which induces a potential for a probe D3-brane. We studied the impli-
cations of this potential for brane inflation in the IR region, where the walking
backgrounds deviate from both KS and its baryonic branch.

We found that there is generically an inflection point whose position is
determined geometrically in terms of the dilaton profile. Around this inflec-
tion point, η changes sign and its magnitude varies quite strongly. Exploiting a
universal scaling behaviour of the quantities of interest, we explained a way to
make semi-analytical predictions. That is, we use the analytically derived scal-
ing behaviour and a numerical solution to extract the required information. We
demonstrated this procedure for an illustrative example for which we found rea-
sonable values for ns and r. The particular feature of the dilaton profile, which
causes the inflection point to appear so generically, can be understood also from
the point of view of the dual field theory using the AdS/CFT-correspondence.

A nice but crude physics analogy Finally, let us mention a physics analogy
for the D3-brane force. Moving from the IR to the UV, it grows, reaches a
maximum and then decreases. This behaviour is qualitatively similar to the
force exerted on a probe charge by a uniformly charged sphere. There the
force grows as r inside the charged sphere, but outside it drops as r−2. The
inflection point is then at the surface of the sphere where the solutions inside
and outside have to be matched. A smooth transition as in the probe D3 case
would correspond to a “fuzzy” spherical charge distribution.

Outlook

Even though we find that the potential induced by the non-trivial dilaton profile
yields a nice phenomenology, the study presented above is a first step. Namely,
one expects important corrections from bulk moduli stabilization which are
particularly important for the value of η and thus the spectral index ns. Hence,
it would be interesting to extend the analysis of the structure of the potential
for the regime rIR � r < ρUV which was completed in [284] to our case where
inflation takes place in the IR. The phenomenological consequences then should
be explored as in [295,296] by sampling over the a priori unknown coefficients
of the perturbations sourced in the UV. Since η changes quite strongly around
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the inflection point, we may expect that it will not be completely destroyed by
adding corrections in the UV. Thus, our geometrically defined inflection point
can serve as a starting point for a search for viable models in a systematic
expansion around our setup.

D-brane inflation may also take place at very high velocities for the inflation
due to the so-called DBI effect [301, 302], which is related to the particular
form of the kinetic term for the D-branes. It would certainly be interesting to
explore the possibilities for DBI inflation in our scenario. Moreover, including
the angular modes may also lead to interesting effects.

Another interesting research direction would be to explore reheating after
inflation in such a setup.

To conclude, we have explored some novel ideas to address inflation and its
related problems both from the point of view of effective supergravity theories
and from a string theory perspective. They are a step in the right direction
and deserve further investigations.



Part VI
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ChapterA

Notations & Conventions

Metric Conventions

Throughout this work, we will use the “mostly minus” convention for the metric,
i. e. the flat 4d Minkowski space metric is given by

ηµν =




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , (A.1)

and all other metrics gµν considered have the same signature.

Spinor Conventions

The matrices σm are defined as

σm = (1, ~σ) , (A.2)

with indices (σm)αα̇. The convention for the Pauli matrices are

σ0 =

(
−1 0
0 −1

)
, σ1 =

(
0 1
1 0

)

σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

(A.3)

The matrices σ̄m are related to the σm as

(σ̄m)α̇α =
(
σTm
)
α̇α

= (σm)αα̇ , (A.4)

such that
(σ̄m)α̇α = (1,−~σ)α̇α . (A.5)
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The matrices σm, σ̄n satisfy

Tr (σmσ̄n) = −2ηmn , (A.6)

and
σmαα̇σ̄

β̇β
m = −2δβαδ

β̇
α̇ . (A.7)

Unit Conventions

We work in natural units where

~ = 1 , and c = 1 . (A.8)

We use the reduced Planck-mass (in 4d)

M2
P =

1

8πGN

, (A.9)

where GN is the Newton constant and we conveniently set it equal to 1 unless
stated explicitly otherwise.



ChapterB

Actions for Dp-branes

The action of a probe Dp-brane is given by the sum of the Dirac-Born-Infeld
(DBI) and Wess-Zumino (WZ) (or Chern-Simons (CS)) actions. SDBI encodes
the couplings to the metric, the dilaton and the NS 2-form, while SWZ encodes
the couplings to the RR p-forms under which the branes are charged.

In string frame, the DBI and WZ actions of a Dp-brane are given by

SDBI = −Tp
∫

Wp+1

dp+1ξ e−φ
√
− det (Gab +Bab + 2πα′Fab) , (B.1)

and1

SWZ = µp
∑

q

∫

Wp+1

Cq ∧ e2πα′F+B (B.2)

respectively. Here, Gab and Bab denote the metric and 2-form induced on the
brane, respectively. φ is the dilaton and F is the field strength of the world-
volume gauge theory. Cq are the RR q-forms, while Tp and µp are the tension
and charge of the Dp-brane, respectively. They are given by

Tp ≡ |µp| ≡ (2π)−p α′−
p+1

2 . (B.3)

The sign of µp depends on whether we are considering a Dp- or an anti-Dp-
brane. In our conventions, the sign is positive for a Dp-brane.

Throughout this thesis, we will consider only vanishing background values
for the worldvolume field strength F . Then the action of a Dp-brane simplifies
somewhat to

SDp = −Tp
∫

Wp+1

dp+1ξe−φ
√
− det (Gab +Bab) + µp

∫

Wp+1

Cp+1 . (B.4)

1In general, there are also couplings to curvature, see e. g. [49,50,103,104], but we neglect
those here since they arise at higher orders in the α′-expansion.
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