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1   Einleitung und Fragestellung 

Es wird geschätzt, dass weltweit circa 10,9 Millionen Menschen pro Jahr an Krebs erkranken 

und 6,7 Millionen pro Jahr daran versterben. Die häufigsten Entitäten sind dabei in 

absteigender Reihenfolge das Bronchial-, Mamma- und Kolorektalkarzinom, wobei auf 

Grund einer relativ günstigen Prognose das Mammakarzinom die höchste Prävalenz aufweist 

[Parkin 2005]. Vor allem seit Einführung von Vorsorgeprogrammen werden die Malignome 

häufiger im lokalisierten Stadium diagnostiziert und können dann kurativ therapiert werden. 

Werden jedoch bei der Primärdiagnose oder auch im weiteren Krankheitsverlauf 

Lebermetastasen diagnostiziert, ist von einem fortgeschrittenen Krankheitsgeschehen 

auszugehen, das mit Ausnahme von einigen speziellen Konstellationen beim metastasierten 

kolorektalen Karzinom nicht kurativ behandelt werden kann. Unter diesen Voraussetzungen 

wurden mehrere regionale Therapieverfahren entwickelt – u.a. die Selektive Interne 

Radio(embolisations)-Therapie (SIRT), die Trans-Arterielle Chemo-Embolisation (TACE) 

und die Radio-Frequenz-Ablation (RFA) –, die als Alternative oder in Kombination mit 

systemischen Chemotherapeutika verabreicht werden.  

 

Bei der Selektiven Internen Radio(embolisations)-Therapie wird durch Applikation von 

radioaktiven Mikrosphären in die Arteria hepatica gezielt das Tumorgewebe geschädigt, 

während  gesundes Lebergewebe geschont wird. Dies ist dadurch möglich, dass Neoplasien 

überwiegend von der Arteria hepatica versorgt werden, gesundes Lebergewebe jedoch 

hauptsächlich von der Vena portae. Obwohl erste Erfahrungen mit der SIRT bereits in den 

1960er Jahren gemacht wurden [Ariel 1964] bedurfte es noch zahlreicher technischer 

Weiterentwicklungen bis die Therapie seit 2002 in der EU zur Behandlung von nicht 

resezierbaren Lebermetastasen zugelassen wurde [Cianni 2009]. 

 

Bis vor kurzem wurde die selektive interne Radiotherapie (SIRT) als letzte Therapieoption 

betrachtet, die nur eingesetzt wurde, wenn alle anderen Behandlungsmaßnahmen 

ausgeschöpft waren. Aber in den letzten Jahren wurden auch Studien veröffentlicht, die 

vielversprechende Ergebnisse bei einer Kombination von SIRT mit Chemotherapie zeigen 

[Van Hazel 2004] [Gray 2001]. 2006 wurde eine weltweite Multicenterstudie begonnen, die 

bei Patienten mit nicht resezierbaren Lebermetastasen eines kolorektalen Karzinoms die 

alleinige FOLFOX-Standardchemotherapie mit der Kombination von FOLFOX mit SIRT als 

Firstline-Therapie vergleicht [Cade 2010]. 
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Somit hat man mit der Radioembolisation eine neue effektive Therapie bei Lebermetastasen, 

die zukünftig tendenziell zu einem sehr frühen Zeitpunkt im Krankheitsverlauf eingesetzt 

wird. Vergleicht man jedoch den Therapieerfolg verschiedener Studien unter ähnlichen 

Voraussetzungen, erkennt man, dass nicht alle Patienten gleich von dieser Therapie 

profitieren [Cianni 2009]. Deshalb wäre es optimal, schon vor Therapiebeginn prognostische 

klinische und biochemische Marker für eine effiziente Patientenstratifikation zu haben, um 

gezielt Patienten zu identifizieren, die in besonderem Maß von einer SIRT profitieren. 

 

Das Ansprechen des Tumors auf die Therapie wird im Moment mit bildgebenden Verfahren 

wie PET-CT und MRT nachgewiesen. Diese aufwändigen diagnostischen Mittel lassen 

allerdings erst nach Wochen oder Monaten eine aussagekräftige Beurteilung des 

Therapieerfolgs zu [Riaz 2009]. Ziel für ein individuelles Patientenmanagement muss es 

jedoch sein, mittels sensitiver Indikatoren bereits innerhalb der ersten Tage und Wochen nach 

der SIRT-Applikation zuverlässige Hinweise auf das Therapieansprechen zu erhalten, um den 

Therapieplan je nach Behandlungserfolg gegebenenfalls modifizieren zu können. Dies kann 

vor allem durch biochemische Marker erzielt werden, die die Veränderung der Biologie und 

Aktivität des Tumors, die Schädigung durch die Therapie oder die körpereigene 

Immunantwort auf die Tumorerkrankung widerspiegeln. 

  

Hierzu bieten sich insbesondere zirkulierende biochemische Marker im Blut an. Die 

Messmethoden sind relativ kostengünstig, robust und zuverlässig und ermöglichen eine 

schnelle, sensitive und qualitätskontrollierte Quantifizierung der Biomarkerkonzentration. 

Durch wenig invasive periphere Blutentnahmen ist das Untersuchungsmaterial leicht zu 

gewinnen, was letztendlich serielle Messungen und ein aufschlussreiches und lückenloses 

Therapiemonitoring erlaubt. Da einzelne biochemische Marker verschiedene 

pathophysiologische Veränderungen widerspiegeln, empfiehlt es sich, ein Panel verschiedener 

Parameter zur prätherapeutischen Prognoseeinschätzung und zur frühzeitigen Beurteilung des 

Therapieerfolgs einzusetzen. Für beide Fragestellungen liegen bei Patienten mit SIR-Therapie 

allerdings nur wenige aussagekräftigen Biomarker-Daten vor.  

 

Deshalb war es Ziel dieser Arbeit, systematisch und umfassend die Rolle von im Blut 

zirkulierenden Biomarkern sowohl für die Prädiktion und Prognosebeurteilung wie auch für 

das Therapiemonitoring zu untersuchen. Die Auswahl der Marker erstreckte sich sowohl auf 

tumorassoziierte Antigene, wie auch auf Parameter, die die Prozesse des physiologischen und 

therapieinduzierten Zelltodgeschehens, der Inflammation, der direkten Leberschädigung und 
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von metabolischen Veränderungen abbilden. Hierbei wurden sowohl etablierte, als auch neue, 

noch nicht in der Routinediagnostik verfügbare Biomarker berücksichtigt. 

  

Ein besonderer Schwerpunkt wurde dabei auf Zelltod-Biomarker wie zirkulierende 

Nukleosomen und Zytokeratinfragmente gelegt. Denn einserseits ist bei malignen Tumoren 

neben einer verstärkten Zellproliferation häufig ein entsprechend erhöhtes Zelltodvorkommen 

festzustellen. Andererseits ist während einer zelltoxischen Therapie mit zusätzlich 

vermehrtem Zelluntergang zu rechnen. So hat sich bei verschiedenen soliden 

Tumorerkrankungen der Verlauf der Serumkonzentration von Nukleosomen und 

Zytokeratinfragmenten – bereits in den ersten Tagen während einer Chemo- oder 

Radiotherapie – als aussagekräftig für das Ansprechen dieser Therapie oder für die Prognose 

der Patienten erwiesen. [Holdenrieder 2001 A] [Holdenrieder 2004 A] [Kuroi 2001] [Kremer 

2006] 

 

In der vorliegenden Arbeit wurde deshalb ein definiertes Studiensetting gewählt, welches bei 

allen Patienten eine sehr engmaschige Messung der verschiedenen Blutparameter vorsah. Am 

Behandlungstag selbst wurden drei Blutentnahmen vorgenommen: vor, sowie drei und sechs 

Stunden nach SIRT, gefolgt von weiteren täglichen Abnahmen während der nächsten drei 

Tage. Hierdurch sollte der unmittelbare Therapieeffekt auf die Biomarker-Veränderungen 

abgebildet und für die Interpretation nutzbar gemacht werden. Dabei galt es zu klären, ob die 

Freisetzung der Zelltodprodukte in Kombination mit anderen Laborparametern eine 

zuverlässige prätherapeutische Patientenstratifikation, sowie eine frühzeitige Beurteilung des 

Therapieansprechens oder der individuellen Prognose zulassen.  

 

Dazu wurden 113 Patienten, die im Zeitraum von Mai 2006 bis Mai 2009 im Klinikum der 

Universität München-Großhadern eine SIR-Therapie erhielten, in eine unizentrische 

prospektive Beobachtungsstudie aufgenommen, die sich durch das genannte definierte 

klinische Setting, ein standardisiertes Vorgehen in der präanalytischen und analytischen 

Behandlung der Proben, die studienkonforme Bewertung des radiologischen 

Therapieansprechens und die von der Datenerhebung unabhängige statistische Auswertung 

auszeichnet. An der Arbeit waren die Kliniken für Nuklearmedizin, das Institut für Klinische 

Radiologie sowie das Institut für Klinische Chemie beteiligt.  
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Im Einzelnen wurden folgende Fragen untersucht: 

 

1. Werden Nukleosomen und weitere Zelltodparameter sowie onkologische und 

organbezogene Labormarker im Verlauf nach SIRT nach einem typischen Muster 

freigesetzt? 

2. Unterscheiden sich die Wertlagen und die Kinetik der einzelnen Laborparameter bei 

verschiedenen Tumorentitäten? 

3. Korrelieren die Nukleosomenwerte im Verlauf der Therapie mit anderen Biomarkern? 

4. Korrelieren die verschiedenen Laborparameter mit dem Therapieansprechen in den 

bildgebenden Verfahren? 

5. Haben die Nukleosomenkonzentrationen und die weiteren Laborparameter eine 

prognostische Bedeutung für das Überleben der Patienten? 

6. Welches sind prätherapeutisch die aussagekräftigsten prognostischen Parameter in 

univariaten und multivariaten Analysen für eine mögliche Patientenstratifikation?  

7. Verbessern posttherapeutisch gemessene Laborparameter die Aussagekraft des 

prätherapeutischen Panels? 
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2   Hintergrund 

Zum besseren Verständnis dieser Arbeit geht dieses Kapitel einerseits auf die Tumorentitäten 

der untersuchten Patienten sowie andererseits auf die Therapieoptionen bei Lebermetastasen, 

insbesondere auf das hier untersuchte Verfahren der Selektiven Internen Radio-Therapie ein. 

Des weiteren werden die in dieser Arbeit untersuchten Biomarker – mit Schwerpunkt auf die 

bislang noch nicht in der Routinediagnostik verfügbaren Nukleosomen als Zelltodparameter – 

in den folgenden Kapiteln vorgestellt.  

 

2.1 Tumorerkrankungen mit Lebermetastasen 

Die aktuelle Schätzung des Robert Koch-Instituts weist für das Jahr 2004 insgesamt 436.500 

Krebsneuerkrankungen in Deutschland aus (Männer 230.500, Frauen 206.000). Im selben 

Jahr verursachten Krebskrankheiten 208.824 Todesfälle (Männer 110.745, Frauen 98.079). 

Mit circa 73.000 Neuerkrankungen pro Jahr stellt das kolorektale Karzinom die häufigste 

Entität dar, singulär bei den Frauen ist die häufigste maligne Neoplasie das Mammakarzinom 

mit 57.300 Neuerkrankungen pro Jahr. Es ist gleichzeitig führend in der Mortalitätsstatistik 

der Frauen und ist für knapp 18% der Krebssterbefälle verantwortlich. [Robert Koch 2008]  

Lebermetastasen treten bei einer Vielzahl solider Tumoren, wie den schon genannten 

Kolorektal- und Mammakarzinomen, aber auch bei Pankreas- und Ovarialneoplasien sowie 

bei malignem Melanom und Carcinoiden auf. Sie stehen immer für einen fortgeschrittenen 

Krankheitsverlauf und können mit Ausnahme von bestimmten Konstellationen bei 

metastasierten kolorektalen Karzinomen nicht kurativ behandelt werden. [Schlag 2002]  

 

2.1.1 Lebermetastasen bei kolorektalem Karzinom 

Bei Erstdiagnose des kolorektalen Karzinoms haben bereits 15-20% der Patienten 

Lebermetastasen. Weitere 20% werden sie im weiteren Krankheitsverlauf entwickeln 

[Scheele 1990]. Bei über 50% der Patienten, die am kolorektalen Karzinom versterben, 

werden bei der Autopsie Lebermetastasen gefunden [Foster 1984]. Bei 20% dieser Patienten 

sind sie die einzige Tumormanifestation zum Zeitpunkt ihres Todes [Weiss 1986] und damit 

ursächlich verantwortlich für den Tod dieser Patienten. Obwohl zunehmend neue Therapien 

für metastasierte kolorektale Karzinome entwickelt werden, sinkt die Fünf-

Jahresüberlebensrate von 90% im lokalisierten Stadium auf 11% im metastasierten Stadium 

[American cancer Society 2009].  
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Im Gegensatz zu den meisten anderen malignen Neoplasien der Leber kann bei kolorektalem 

Ursprung der Metastasen in einigen Fällen kurativ vorgegangen werden und bei Resektabilität 

eine Fünfjahresüberlebensraten von bis zu 40% erreicht werden, sofern mikroskopisch freie 

Resektionsränder vorliegen und alle Läsionen entfernt werden konnten. Bei etwa 80% der 

Patienten werden nach Resektion allerdings wieder Metastasen auftreten [Choti 2002], wobei 

die Hälfte dieser Patienten wiederum Lebermetastasen entwickeln [Ruers 2002].  

Bei der Erstdiagnose von Lebermetastasen kommen nur 10-15% der Patienten für eine 

Resektion in Frage, da bei allen anderen Patienten die Metastasen entweder in einem zu 

disseminiert Stadium vorliegen oder zu wenig gesundes Restlebervolumen vorhanden ist 

[Ruers 2002]. Alternativ zur systemischen Chemotherapie werden auch lokal-ablative 

Verfahren wie die Radiofrequenzablation (RFA) oder Kryotherapie angewendet. Für beide 

Verfahren werden Rezidivraten zwischen 5 und 30% beobachtet [Ruers 2002], mit 

steigendem Risiko für Läsionen mit größerem Tumordurchmesser [Bilchik 2000].  

Auch diese Therapien können jedoch nicht bei disseminiertem Befall angewandt werden. 

Dann kommen häufig systemische Chemotherapeutika wie Capecitabin oder Flourouracil 

zum Einsatz. Eine neuere Option ist Cetuximab, ein Antikörper gegen den Epidermal-

Growth-Factor-Receptor (EGFR), der allerdings nur wirksam ist, wenn keine Mutation des 

KRAS- oder BRAF-Gens im Tumorgewebe vorliegt, was allerdings nur auf etwa 50% der 

Patienten zutrifft [Wong 2008]. Unabhängig von Mutationsanalysen hingegen wirkt 

Bevacizumab, ein gegen den Vascular-Endothelial-Growth-Factor (VEGF) gerichteter 

Antikörper [Markowitz 2009]. 

Versagt jedoch die systemische Therapie oder der Patient leidet unter nicht tolerablen 

Nebenwirkungen, ist in der EU seit 2002 bei nicht resezierbaren Metastasen, entweder 

parallel zur Chemotherapie oder alternativ auch als Monotherapie, eine Radioembolisation 

zugelassen.  

 

2.1.2 Lebermetastasen bei Mammakarzinom 

Bei der Behandlung des Mammakarzinoms konnte auf Grund von aufwändiger Forschung in 

den letzten Jahren und ein dadurch besseres Krankheitsverständnis viel erreicht werden. Die 

allgemeine Fünf-Jahresüberlebensrate ist von 63% in den frühen 1960er Jahren auf aktuell 

89% angestiegen [American Cancer Society 2008]. Dabei sinkt allerdings das Fünf-

Jahresüberleben von 98% bei lokalisiertem Befall auf 26,7% bei Vorliegen von 

Fernmetastasen [American Cancer Society 2008], wobei die Lokalisation der Metastasen eine 

entscheidende prognostische Rolle spielt. Bei isolierten Weichteil- und Knochenmetastasen 
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ist ein mittleres Überleben von 50 [Tampellini 1997] beziehungsweise 32 Monaten zu 

erwarten [Yavas 2007]. Bei Lebermetastasen, die bei 6- 25% der Patientinnen auftreten 

[Tampellini 1997], ist die Prognose schlechter; das mittlere Überleben beträgt dann zwischen 

einem und 14 Monaten [Wyld 2003]. Nur Gehirnmetastasen sind mit einem mittleren 

Überleben von drei bis sechs Monaten mit einer noch schlechteren Prognose assoziiert. 

[Mahmoud-Ahmed 2002].  

Bei Rezidiven ist die Leber mit 15% das am häufigsten betroffene Organ [Pivot 2000]. Bei 

55-75% der Patientinnen, die an Brustkrebs versterben, werden bei der Autopsie 

Lebermetastasen gefunden [Hoe 1991]. Nur 5% dieser Lebermetastasen treten allerdings 

isoliert auf [Pivot 2000], und die meisten Patientinnen werden deshalb mit systemischen 

Therapien behandelt. Sie umfassen ein weites Spektrum und reichen von typischen 

Zytostatika bis zur Hormontherapie und Trastuzumab, einem Antikörper gegen den 

epidermalen Wachstumsfaktorrezeptor HER2/neu, der angewandt werden kann, wenn eine 

Überexpression dieses Rezeptors im Tumorgewebe nachgewiesen wurde.  

 

Die chirurgische Resektion ist, verglichen mit den Daten beim kolorektalen Karzinom, bei 

dieser Tumorentität weniger wirksam. Publikationen zeigen Fünf-Jahresüberlebensraten nach 

Leberteilresektion zwischen 22 und 33% [Selzner 2000] [Caralt 2008], abhängig vom 

initialen Tumorstadium und dem Zeitpunkt des Auftretens der Lebermetastasen im 

Krankheitsverlauf [Pocard 2000]. Immerhin weisen diese Ergebnisse darauf hin, dass – 

obwohl Brustkrebs eine systemische Erkrankung ist – mit lokaler Tumorkontrolle eine 

beachtliche Überlebensverlängerung erreicht werden kann. Deshalb stellt die 

Radioembolisation bei disseminiertem Leberbefall ohne extrahepatische Metastasen eine 

sinnvolle Therapieoption beim Mammakarzinom dar.  

 

2.1.3 Primäre Lebertumore 

Eine gewisse Sonderstellung unter den Leberneoplasien nehmen das hepatozelluläre (HCC) 

und cholangiozelluläre (CCC) Karzinom ein, da es sich hierbei um primäre Lebertumore 

handelt. Das HCC ist dabei die häufigere Form und geht von Leberepithelzellen aus. Beim 

cholangiozellulären Karzinom entartet das Epithel der Gallengänge und man unterscheidet 

zwischen intra- und extrahepatischen Tumoren. Beide Neoplasien werden meist wegen 

weniger und unspezifischer Symptome wie Oberbauchschmerz, Leistungsknick und eventuell 

eines Ikterus erst im fortgeschrittenen Stadium diagnostiziert, so dass beim CCC nur circa 

50%, beim HCC etwa 15% der Patienten für eine kurative Leberteilresektion oder 
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Lebertransplantation in Frage kommen. Ist der Tumor nicht resektabel, beträgt das mittlere 

Überleben sechs bis 12 Monate.  

Beim HCC kann eine lokale Tumorkontrolle bei Herden, die kleiner als 4 cm sind, mittels 

Radiofrequenzablation (RFA) erreicht werden; bei disseminiertem Befall kommen jedoch nur 

die transarterielle Chemoembolisation und die systemische Therapie mit Sorafenib in 

Betracht. Auch beim cholangiozellulären Karzinom kann bei den häufig nicht resektablen 

Befunden durch RFA eine lokale Tumorkontrolle erfolgen, bei disseminiertem Befall sind 

aber bisher keine wirksamen Chemotherapie-Regime bekannt, so dass SIRT wegen guter 

Ansprechraten in manchen Zentren schon in die Standardtherapie dieser Tumorentität 

aufgenommen wurde. [Aljiffry 2009] [Jinsil 2009] [Hawkins 2006] 
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2.2 Therapieoptionen bei Lebermetastasen 

2.2.1 Chirurgische Interventionen 

Der Goldstandard in der kurativen Therapie von Lebermetastasen, gleich welchen Ursprungs, 

ist derzeit die operative Resektion. Dabei können atypische Resektionen vorgenommen 

werden, wenn die Läsionen sehr früh entdeckt werden, noch klein sind und peripher liegen. 

Anatomiegerechte Resektionen entlang der Segmentränder sind schonender, da die 

Durchblutung und der Galleabfluss der verbleibenden Leber nicht beeinträchtigt werden und 

der Blutverlust dementsprechend gering gehalten werden kann. Da eine gesunde Leber sehr 

regenerationsfähig ist, kann eine Resektion von bis zu 80% des Gewebes toleriert werden. Ist 

die Leber allerdings schon vorgeschädigt, ist die Entwicklung einer Leberinsuffizienz mit 

Ikterus, Abfall der Gerinnungsfaktoren und schlimmstenfalls der Entwicklung einer 

hepatischen Enzephalopathie möglich.  

So kommt die primäre chirurgische Resektion, obwohl sie den Goldstandard in der 

Behandlung von Lebermetastasen darstellt, nur für einen kleinen Teil der betroffenen 

Patienten in Betracht. In vielen Fällen sind die Patienten aufgrund von Komorbiditäten oder 

einer eingeschränkten Leberfunktion nicht für eine Operation geeignet. Noch häufiger 

allerdings sind die Metastasen zu groß, liegen anatomisch ungünstig, multinodulär oder gar 

diffus vor. Dann sind sie einer chirurgischen Therapie nicht zugänglich sind oder es müsste zu 

viel gesundes Leberparenchym reseziert werden, wodurch der Patient postoperativ Gefahr 

liefe, eine Leberinsuffizienz zu entwickeln. [Keller, 2007] 

 

2.2.2 Systemische Therapien 

Ist eine Resektion nicht möglich, wird meist eine systemische Therapie durchgeführt. Die 

systemische Verabreichung birgt den Vorteil, dass auch eventuell vorhandene  

(Mikro-)Metastasen in anderen Organen miterfasst werden. Ist die systemische Therapie 

erfolgreich, kann damit eventuell auch eine spätere Resektabliltät der Lebermetastasen 

erreicht werden und somit aus einer palliativen Situation ein kurativer Ansatz entstehen. 

Bei den Zytostatika-Therapien sind neben den langen Therapiezyklen mit damit verbundenem 

hohem Stressfaktor für die Patienten auch die vielfältigen und zum Teil erheblichen 

Nebenwirkungen zu berücksichtigen. Auch die ablative Hormontherapie, die oft jahrelang vor 

allem beim Mammakarzinom zum Einsatz kommt, ist nicht ohne Nebenwirkungen. Die 

Hormonentzugserscheinungen reichen von einfachen menopausalen Beschwerden bis zur 

manifesten Osteoporose.  



2   Hintergrund  Therapieoptionen 

- 10 - 

Als neueste Entwicklung gelten in der systemischen Tumortherapie die sogenannten 

biologischen Therapien. Darunter fallen vor allem monoklonale Antikörper, die meist gegen 

Wachstums-Rezeptoren gerichtet sind, die in den Tumorzellen überexprimiert sind. Doch 

auch diese Therapieform ist mit Nebenwirkungen verbunden, so dass andere nebenwirkungs-

ärmere Alternativen bei isolierten Lebermetasten in Betracht gezogen werden sollten.  

2.2.3 Lokoregionäre Verfahren 

Im Vergleich zu einer Operation können lokoregionäre Verfahren meist während eines relativ 

kurzen Krankenhausaufenthalte oder sogar ambulant durchgeführt werden [Sato 2008]. Den 

lokalen Therapien gemeinsam ist eine geringere Morbidität und Mortalität in Relation zur 

Leberteilresektion [Vogl 2007]. Im Moment gibt es allerdings noch keine prospektiven 

randomisierten Studien, die lokoregionäre Therapien und chirurgische Resektion bezüglich 

rezidivfreiem Intervall und Gesamtüberlebenszeit vergleichen [Al-Asfoor 2008]. Hauptgrund 

hierfür ist, dass bisher die meisten lokalen Verfahren eher komplementär und nicht 

komparativ zur Chirurgie eingesetzt werden [Vogl 2007], da es bisher als ethisch nicht 

vertretbar galt, Patienten mit potentiell resektablen Metastasen mit keiner oder nur einer der 

lokalen Therapien zu behandeln [Al-Asfoor 2008]. 

Der Vorteil gegenüber der systemischen Chemotherapie liegt in der höheren Lebensqualität, 

da das Nebenwirkungsprofil der lokalen Verfahren im Allgemeinen wesentlich geringer ist. 

Aber auch in diesem Bereich ist es so, dass sich die verschiedenen Verfahren ergänzen und 

nicht unbedingt ausschließen.  

 

Einen ersten Überblick über die verfügbaren lokalen Therapieoptionen gibt Tabelle 1.  



2   Hintergrund  Therapieoptionen 

- 11 - 

 

lokale Therapie Abkürzung 
behandelbare 

Organe 
Indikationen Anmerkung 

Laserinduzierte 

Thermotherapie 
LITT Leber 

Metastasen und 

primäre Tumore 

Thermische 

Koagulationsnekrose 

Radio-Frequenz 

Ablation 
RFA 

Gehirn, Leber, 

Lunge, Niere, 

Knochen 

Metastasen, benigne 

Veränderungen 

Thermische 

Koagulationsnekrose 

Kryoablation  Leber  
Intraoperative 

Anwendung 

High Intensitiy 

Focused Ultrasound 
HIFU Leber, Prostata 

Metastasen und 

primäre Tumore 
lange Therapiedauer 

Tiefen- 

hyperthermie 
  

Metastasen und 

primäre Tumore 

Meist adjuvant zu 

Radio- oder 

Chemotherapie 

zur Schmerzreduktion 

Hepatic Artery 

Chemotherapy 
HAC 

Hepatic Artery 

Infusion 
HAI 

Leber 
Metastasen und 

primäre Tumore 

identische 

Verfahren 

Trans-Arterielle 

Chemo-

Embolisation 

TACE Leber 

Vor allem primäre 

Lebertumore, 

Metastasen auch 

möglich 

 

Selective Internal 

Radiation Therapy 
SIRT Leber 

Metastasen und 

primäre Tumore 
 

Trans-Arterielle 

Embolisation 
TAE Leber 

Metastasen und 

primäre Tumore 
 

Tabelle 1: Lokale Therapieoptionen bei Lebermetastasen 

 

Thermische Ablationsverfahren 

Laserinduzierte Thermotherapie (LITT) und Radiofrequenzablation (RFA) erreichen eine 

lokale Tumordestruktion durch thermische Koagulation des Zielgewebes und können bei 

Lebermetastasen unabhängig vom Primarius eingesetzt werden. Die Sonden werden entweder 

perkutan unter Ultraschall-, CT- oder MRT-Kontrolle oder intraoperativ direkt in die Leber 

eingebracht. Bei RFA wird dort Energie in Form von Wechselstrom im Frequenzbereich 

zwischen 300 - 500kHz abgegeben. Bei LITT wird Energie durch Strahlen im Infrarotbereich 
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zwischen 800 - 950nm bei Halbleiter- und 1064nm bei ND:YAG-Laserverwendung 

appliziert. Beide Verfahren stellen bei solitären Lebermetastasen potenziell kurative 

Verfahren dar. [Vogel 2001] Die lokalen Drei- und Sechs-Monatsrezidivraten entsprechen bei 

LITT den chirurgischen Standardwerten nach Resektion [Vogel 2001]; bei RFA werden bei 

Lebermetastasen ausgehend von einem kolorektalen Karzinom Ein- und Zwei-

Jahresüberlebensraten von 81% beziehungsweise 67% berichtet [de Baere 2000] [Solbiati 

2001]. Voraussetzungen für eine erfolgreiche Anwendung sind dabei ein Tumordurchmesser 

von unter 5 cm und Ausschluss von größeren Gefäße in Tumornähe, da anderenfalls die 

applizierte Energie abfließt und die gewünschte Temperatur von über 95°C nicht erreicht wird 

[Vogel 2001].  

 

Die Kryoablation wird bisher hauptsächlich intraoperativ im Rahmen von 

Leberteilresektionen angewandt. Sie ist somit sehr gut steuerbar und eine Tumordestruktion 

kann bis zu einem Durchmesser von 9 cm erreicht werden [Seifert 1991]. Ist die Sonde im 

Zielgebiet platziert, wird sie von flüssigem Stickstoff durchflossen. Die Tumordestruktion 

beruht auf Schockgefrierung mit Membrandestruktion, Bildung von intrazellulären 

Eiskristallen und Entstehung von Mikrothrombosen [Ruers 2002]. Verglichen mit RFA, die 

eine Nebenwirkungsrate von unter 10% aufweist [Wood 2000], treten bei Kryoablation bei 

bis zu 20% der Patienten Komplikationen, hauptsächlich Blutungen, auf [Seifert 1998]. 

 

Die HIFU ist ein relativ neues Therapieverfahren für Lebertumore, da sie primär für die lokale 

Behandlung von Prostatakarzinomen entwickelt wurde. Bei diesem extrakorporalen 

Verfahren werden unter sonographischer Kontrolle Ultraschallwellen von 0,5 - 10 MHz in 

einem Brennpunkt gebündelt und so das Gewebe koaguliert. Nachteilig bei dieser 

nichtinvasiven Behandlung ist die lange Therapiedauer von mehreren Stunden, die daraus 

resultiert, dass jeder Zielpunkt einzeln anvisiert und abladiert werden muss. [Peters 2007] 

Studien zu klinischer Anwendung, rezidivfreien Intervallen und Überleben sind bisher aber 

noch nicht veröffentlicht [Dubinsky 2008].  

 

Die aus der Naturheilkunde stammende lokale Tiefenhyperthermie wird meist unterstützend 

zu anderen Behandlungen eingesetzt. Die mit dieser Behandlung erreichten Temperaturen 

liegen mit 43°C weit unter denen, wie sie bei RFA und LITT erreicht werden. Die zugrunde 

liegende Theorie ist, dass sich über kapazitive Kopplung die durch Radiowellen von 13,56 

MHz applizierte Energie durch unterschiedliches Impedanzverhalten von Tumor und 

gesundem Lebergewebe vor allem im Tumor sammelt. Dort führt sie einerseits zu einer 
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extrazellulären Temperaturerhöhung, die Stress auf die Membran ausübt und diese 

destabilisiert. Andererseits führt die Energie auch zum Umbau von chemischen Bindungen, so 

dass Proteine denaturiert und Radikale gebildet werden können. [Szasz 2007] Obwohl ein 

besseres Therapieansprechen bei adjuvanter Anwendung der Hyperthermie bei verschiedenen 

Tumorarten gezeigt werden konnte, existieren im Moment keine Studien, die einen 

Überlebensvorteil bei der Behandlung von Patienten mit Lebermetastasen mit 

Tiefenhypertheramie belegen [van der Zee 2008]. 

 

Chemische lokoregionäre Verfahren  

HAC (hepatic artery chemotherapy) und HAI (hepatic arterial infusion) sind Synonyme für 

ein Verfahren, bei dem vor allem bei kolorektalen Lebermetastasen über permanente oder 

kurzzeitig implantierte Kathetersysteme in die Arteria hepatica ähnliche Zytostatika wie bei 

systemischer Chemotherapie appliziert werden. Die bis zu 16-fach höhere 

Wirkstoffkonzentration in der Leber bei HAI könnte erklären, warum dieses Verfahren im 

Vergleich zur systemischen Therapie bessere Ansprechraten aufweist und mit weniger 

Nebenwirkungen verbunden ist. [Vogl 2007] 

 

TACE steht für transarterielle Chemoembolisation und wurde traditionell bei primären 

Leberkarzinomen wie dem hepatozellulären Karzinom angewandt; allerdings geht man in 

letzter Zeit dazu über, auch sekundäre Lebertumore damit zu behandeln. Ähnlich wie bei der 

HAC wird das Therapeutikum, in der Regel bestehend aus einem Zytostatikum gemischt mit 

einem Embolisat, in die Arteria hepatica eingebracht. Der therapeutische Effekt beruht 

einerseits auf der sofort einsetzenden Embolisation, andererseits auf der Langzeitwirkung des 

Chemotherapeutikums, dessen lokale Konzentration im Gegensatz zur HAC auf Grund der 

Blutstase wesentlich höher ist. Als Embolisate kommen entweder resorbierbare Schäume, wie 

beispielsweise Gelfoam, oder auch nicht abbaubare Stoffe wie Lipiodol zum Einsatz, das 

zusätzlich noch eine hohe Affinität zu hepatischen Tumorzellen aufweist und zudem elegant 

zur Therapieüberwachung genutzt werden kann, da es auch als Kontrastmittel fungiert.  

 

Bei der SIRT (selective internal radiation therapy) wird nach einem ähnlichen Prinzip wie bei 

TACE vorgegangen. Im Unterschied zur TACE wurden von Anfang an alle Tumorentitäten 

behandelt, und es wird kein Chemotherapeutikum, sondern radioaktives embolisierendes 

Material in die Arteria hepatica eingebracht. Auf die SIR-Therapie wird in den folgenden 

Kapiteln noch genauer eingegangen. 
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2.3 SIRT 

2.3.1 Anatomische, physikalische und radiobiologische Grundlagen 

Anatomische Voraussetzungen 

Wie in Abbildung 1 zu sehen, besitzt die Leber das Privileg einer doppelten Blutversorgung, 

welche die Grundlage für die lokoregionären Therapien SIRT, TACE und HAI ist. Das 

gesunde Lebergewebe wird zu über 80% aus dem portalen Gefäßsystem versorgt, die Arteria 

hepatica trägt nur einen kleinen Teil dazu bei [Breedis 1954]. Bei Tumorwachstum dreht sich 

das Verhältnis um: 80 bis 100% der Versorgung stammen dabei aus der Arteria hepatica und 

nur wenige Gefäße aus dem portalen System erreichen die Neoplasie. Auffällig ist außerdem, 

dass das Tumorzentrum nur spärlich versorgt wird und die Gefäße sich vor allem in der 

Tumorperipherie befinden. Dort ist die Gefäßversorgung drei bis 20 mal so groß, wie im 

gesunden Leberparenchym. [Lien 19780]  

 

 
Abbildung 1: Gefäßanatomie der Leber [Putz 2000] 
Doppelversorgung der Leber durch Vena portae und Arteria. hepatica 

 

Ein Grund für diese Gefäßverteilung liegt in der Tumor-induzierten Neoangiogenese: Die 

Sauerstoff-Unterversorgung in dem schnell wachsenden Tumor ist über den Hypoxie-

induzierten Transkriptionsfaktor 1α und 2α ein starker Stimulus für die Ausschüttung des 

Gefäßwachstumsfaktors VEGF [Semenza 2003]. Über parakrine Wirkmechanismen auf die 

VEGF-Rezeptoren, die vor allem in Endothelzellen des arteriellen Gefäßsystems exprimiert 

werden, kommt es in der Folge zur Neubildung von Gefäßen [Kerbel 2008]. 
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Physikalische und radiobiologische Grundlagen 

Grundsätzlich gibt es drei verschiedene Hauptstrahlungsarten: α-, β- und γ-Strahlung. 

Beim α-Zerfall werden zweifach positive Heliumkerne frei, die im Gewebe eine relativ kurze 

Reichweite von 1 mm haben, dafür in dieser Strecke aber viel Energie abgeben. Zu 

therapeutischen Zwecken werden sie kaum genutzt. 

Auch beim β-Kernzerfall werden Teilchen frei: bei Elementen mit Neutronenüberschuss 

negativ geladene Elektronen, auch β--Strahlung genannt, bei Protonenüberschuss  

positiv geladene Positronen, β+-Strahlung, und bei beiden Prozessen jeweils ein Neutrino.  

β-Strahlung hat im Gewebe eine Reichweite von ca. 3 mm und wird häufig in der klinischen 

Routine verwendet. So ist das Fluorid18 der Positronen-Emissions-Topographie ein β
+-

Strahler oder das SIRT-Radiopharmakon Yttrium90 ein β--Strahler. 

Bei γ-Strahlung werden Photonen freigesetzt, die keine elementare Strahlung darstellen, 

sondern nur aus Energie bestehen. Sie entsteht häufig als Nebenprodukt bei den anderen 

beiden Zerfallsarten. Die Reichweite der Photonen im Gewebe ist sehr viel größer als bei der 

korpuskularen α- und β-Strahlung. Zudem können die Photonen durch ihr hohes 

Energieniveau relativ leicht chemische Bindungen zerstören. 

 

Die biologische Wirkung von Strahlung beruht vor allem auf Zerstörung des Erbguts. 75% 

des Schadens wird indirekt durch den hohen Wasseranteil in der Zelle vermittelt: Wenn ein 

Photon ein Wassermolekül streift, gibt es seine Energie an ein Elektron aus der äußeren Hülle 

ab. Dieses sekundäre Elektron verläßt sein Orbital, wodurch das Wassermolekül zu den freien 

Radikalen O- und OH- wird. Befinden sich diese Radikale in einem Radius von 4 nm um die 

DNS, greifen sie dort die intermolekularen Bindungen an, und es kann zu Strangbrüchen und 

Basenveränderungen kommen. Der seltenere direkte Schaden kommt durch die direkte 

Interaktion zwischen Sekundärelektronen und DNS-Strang zustande. 

 

Allerdings sind Zellen nicht in allen Zellzyklusphasen gleich vulnerabel: In der Mitose- und  

G2-Phase sind sie am empfindlichsten, die S-Phase am resistentesten. Dies ist darauf 

zurückzuführen, dass beispielsweise die Exzisionsreparatur nur stattfinden kann, wenn die 

Replikation noch nicht begonnen hat und die Schadensdichte am Matrizenstrang, der als 

Vorlage für die Reparatur dient, nicht zu hoch ist. Neben der Möglichkeit zur Reparatur gibt 

es noch weitere Faktoren, die Einfluss auf das endgültige Schadensausmaß der Strahlung 

haben.  

Die Redistribution betrifft vor allem schnell proliferierende Zellen und beschreibt eine 

Verschiebung innerhalb des Zellzyklus hin zu den vulnerablen M- oder G2-Phasen. Dies ist 
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ein Effekt, den man sich vor allem bei fraktionierter Bestrahlung zunutze macht. Auch die 

Repopulation, also das Verlassen der Ruhephase von neuen Zellen und damit ein Eintreten in 

den Zellzyklus, nützt man bei der fraktionierten Bestrahlung aus. Der wichtigste 

Strahlungseffekt ist die Reoxygenierung: Durch die Anwesenheit von Sauerstoff werden 

gesetzte DNS-Schäden unter Bildung von Peroxidverbindungen stabilisiert und so die 

biologische Strahlenwirkung verdoppelt oder gar verdreifacht. In der Tumortherapie kann das 

bedeuten, dass das oft hypoxische Tumorzentrum nicht genügend geschädigt wird und vor 

allem gesunde Zellen in der Tumorumgebung absterben. [Kauffmann 2006] 

 

Radiobiologie der Leber 

Lange Zeit galt Radiatio zur kurativen Behandlung von Lebertumoren als so gut wie 

unmöglich. Bei der externen Bestrahlung kann auch mit modernen Techniken das umliegende 

gesunde, aber sehr strahlensensible Lebergewebe nicht ganz geschont werden. Die Akut- und 

Langzeitnebenwirkungen sind schon lange bekannt [Ingold 1965] und erstrecken sich von 

transienten Anstiegen der Leberenzyme und Koagulopathien bis hin zu Entwicklung einer 

Fibrose und Leberversagen. Die am meisten gefürchtete Nebenwirkung ist die 

Strahlenhepatitis (radiation induced liver disease = RILD), die unter Umständen mit einer 

fatalen Venenverschlusskrankheit (veno-occlusive disease = VOD) einhergehen kann. Diese 

Komplikationen treten bis zu drei Monate nach fraktionierter Bestrahlung von über 30 bis 35 

Gy mit klinischen Symptomen eines Leberversagens wie Hepatomegalie, Aszites und Ikterus 

auf. [Lawrence 1995] Klinisch ähnelt es dem Budd-Chiari-Syndrom, doch histologisch 

unterscheiden sich die beiden Krankheitsbilder: RILD führt vor allem in den kleinen 

sublobularen Lebervenen zu Verschlüssen, während das Budd-Chiari-Syndrom definiert ist 

als eine Okklusion in den Venae hepaticae [Lawrence 1995]. Viele der Patienten erholen sich 

nach diesem Ereignis; jedoch sind auch schon Todesfälle, die nicht auf einen Tumorprogress 

zurückzuführen waren, aufgetreten [Bilbao 2008 S. 4].  

 

Im Gegensatz zur gesunden Leber sind maligne Tumoren relativ strahlenresistent, und um 

eine ausreichende Tumordestruktion zu erreichen, sind Dosen von mindestens 120 Gy nötig 

[Ho 1997]. Diesen großen Dosisunterschied - resultierend aus der niedrigen Strahlentoleranz 

der gesunden Leber und Strahlenresistenz des Tumors - hat die Radiotherapie bei malignen 

Leberneoplasien lange auf die im unteren Dosisbereich liegende palliative Behandlung 

beschränkt [Campbell 2000]. Mit SIRT ist es nun möglich hohe Dosen in Tumornähe zu 

applizieren unter relativer Schonung des gesunden Leberparenchyms [Campbell 2000]. 
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Verteilung und Wirkung der Mikrosphären 

Die SIR-Therapie nimmt in der Gruppe der internen Strahlenbehandlungen eine 

Sonderstellung ein: Sie ist eine Mischung aus interstitieller Brachy- und flüssigkeitsgelöster 

radioaktiver Therapie [Bilbao 2008 S. 51]. Im Gegensatz zur Brachytherapie kann jedoch bei 

SIRT auf die Verteilung der Mikrosphären kein Einfluss genommen werden; auch kann man 

die Sphären in einer posttherapeutischen Bildgebung nicht direkt detektieren. Eine ungefähre 

Vorstellung der Mikrosphärenverteilung im Lebergewebe vermitteln mehrere zu diesem 

Zweck durchgeführte Studien.  

Aus Untersuchungen an gesunden Schweinen, die Mikroshpären ohne Radioaktivität in die 

Leberarterie injiziert bekamen, weiß man, dass die Sphären sich in kleineren Gefäßen 

homogen verteilen und in großlumigeren Gefäßen Cluster bilden. Die Cluster induzieren eine 

moderate perivaskuläre Entzündung, im Gegensatz zu den solitären Sphären, die fast keine 

Reaktion hervorrufen. Zwei Monate nach der Applikation waren die Sphären in die 

Gefäßwand integriert und die Gefäße waren revaskularisiert. [Bilbao 2009] 

An einem resezierten Leberlappen eines Patienten mit metastasiertem kolorektalem 

Karzinom, der zuvor mit 3 GBq Kunstharzmikrosphären behandelt wurde, zeigte sich, dass 

sich die Mikrosphären inhomogen in Clustern an einer 6 mm dicken Tumor-Leber-Grenze 

sammelten. Mit Hilfe von Isodosenkurven wurden die zu erwartetenden Strahlendosen 

bestimmt. Dabei wurde errechnet, dass das Tumorzentrum und das umgebende gesunde 

Leberparenchym mit ungefähr gleich viel Strahlung belastet wurden, und nur 1% des 

gesunden Gewebes mehr als 30 Gy ausgesetzt war. In der Tumorperipherie hingegen wurden 

50- bis 70- fache Konzentrationen mit Spitzenwerten um 600 Gy errechnet. Da bei dieser 

Studie nur ein einzelner großvolumiger Knoten mit 8 cm Durchmesser untersucht wurde, 

bleibt jedoch ungeklärt, ob und inwieweit sich die Parzellierung des Tumors auf die 

Verteilung der Mikrosphären auswirkt. [Campbell 2000] 

Kennedy et al. untersuchte vier Leberexplantate, die zuvor mit Mikrosphären behandelt 

wurden. Zwei Organe wurden Patienten mit primären Lebertumoren explantiert, die mit 

Glasmikrosphären therapiert wurden. Die zwei anderen Leberpräparate stammten von 

Kolorektalkarzinom-Patienten, die mit Kunstharzmikrosphären behandelt wurden. Ebenso 

wie Campbell kam er zu dem Schluss, dass die Mikrosphären sich vor allem in den 

Randzonen zwischen Tumor und Leber ablagern. Eine an einem Tumorknoten exemplarisch 

durchgeführte Aufarbeitung zeigte, dass der Tumor Dosen von 300 Gy ausgesetzt war und 

dass es innerhalb von 4 mm zu einem raschen Dosisabfall auf 100 Gy kam. Ein weiteres 

Ergebnis war, dass es bezüglich der Verteilung keine signifikanten Unterschiede zwischen 

Glas- und Kunstharz-Mikrosphären gibt. [Kennedy 2004] 
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2.3.2 Indikationen, Voruntersuchungen und Prognosefaktoren 

Indikationen 

Grundsätzlich können mit SIRT alle primären und sekundären Lebertumoren behandelt 

werden. Erfahrungswerte bestehen beim hepatozellulären und choangiozellulären Karzinom 

[Ibrahim 2008] [Jakobs 2007 A], bei Lebermetastasen von Tumoren unbekannten Ursprungs 

(CUP) [Jakobs 2007 A], von kolorektalen Karzinomen [Nicolay 2009], von 

Mammakarzinomen [Jakobs 2008 A] und von malignen Melanomen [Jakobs 2007 A], sowie 

bei Carcinoiden [Kennedy 2008]. Damit stellt die SIRT bei vielen Tumorentitäten eine 

Behandlungsoption dar, wenn eine Resektion oder andere lokalablative Verfahren wie RFA 

und LITT wegen eines zu ausgedehnten Befundes nicht mehr indiziert sind und gleichzeitig 

eine Chemotherapie wegen nicht-tolerierbaren Nebenwirkungen oder Progress unter Therapie 

nicht mehr sinnvoll erscheint.  

Da im Moment meistens ein palliatives Therapieziel im Vordergrund steht, ist es von Vorteil, 

dass die Lebensqualität der Patienten nur für kurze Zeit und im Normalfall in geringem 

Ausmaß beeinträchtigt wird und dass es nach SIRT häufig zu einer Therapiepause kommt 

[Jakobs 2007 A]. Beschränkt man sich nicht auf die Palliation, kann SIRT auch in 

Kombination mit anderen Therapien zum Einsatz kommen, die sich dann möglichst bald 

anschließen sollten. Eine zuvor nicht wirksame Zytostatikatherapie kann nach der 

Radioembolisation wieder positive Effekte haben, da die Chemosensibilität der Tumorzellen 

nach Bestrahlung wieder zunehmen kann [Jakobs 2007 B]. Postinterventionell kann es dann 

zu einem sogenannten „Downstaging“ des Befunds kommen, so dass eine Therapie durch 

Resektion oder mit RFA und LITT wieder indiziert erscheint [Nicolay 2009].  

 

Einschluss- und Ausschlusskriterien 

Nicht für jeden Patienten mit Lebermetastasen ist SIRT eine sinnvolle Behandlungsoption. Es 

gibt eine Reihe von Kriterien, die erfüllt sein sollten, damit sich die Therapie möglichst 

positiv auf den Krankheitsprozess auswirkt.  

Im Moment gilt die Radioembolisation noch als rein palliatives Verfahren, das heißt alle 

anderen schon etablierten Therapieoptionen, vor allem die als kurativ eingestufte Resektion, 

müssen bereits ausgeschöpft sein, bevor eine SIRT in Betracht kommt. Diese Entscheidung 

kann am besten in einem multidisziplinären Tumorboard mit Onkologen, Viszeralchirugen, 

Radiologen und Nuklearmedizinern getroffen werden, damit jedem Patienten eine an seine 

individuellen Voraussetzungen adaptierte Therapie zuteil wird [Bilbao 2008 S. 13].  

Eine systemische Chemotherapie sollte mindestens drei bis vier Wochen vor SIRT beendet 

werden, bei Capecitabine ist sogar ein Intervall bis zu zwei Monate ratsam [Jakobs 2007 A]. 
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Einerseits ist dies zum jetzigen Zeitpunkt noch wichtig, um das Therapieansprechen von 

SIRT ohne die Einflüsse anderer Therapien gut beurteilen zu können. Viel entscheidender ist 

jedoch, dass manche Chemotherapeutika wie zum Beispiel Capecitabine und Gemcitabine 

eine radiosensibilisierende Wirkung haben und damit das Risiko für strahleninduzierte 

Nebenwirkungen wie beispielsweise Strahlenhepatitis steigt [Murthy 2005]. Das Risiko für 

eine Strahlenhepatitis steigt desweiteren bei schlechtem Allgemeinzustand und bei einer nicht 

ausreichender Leberreserve [Lewandowski 2005]. Diese wird vor allem über die 

Transaminasen, die Leber-abhängigen Gerinnungsparameter – hier durch die globalen 

Funktionsteste der partielen Thrombinzeit (PTT und INR) – Albumin und Bilirubin 

abgeschätzt. Dies gilt vor allem bei der Behandlung der primären Leberkarzinome, da sich bei 

diesen gezeigt hat, dass ein erhöhter Bilirubinwert einen signifikanten Einfluss auf die Drei-

Monatsmortalität hat [Goin 2005 A]. 

Da bei der Radioembolisation das Pharmakon direkt in die tumorversorgenden Gefäße 

appliziert wird und auch dort verbleibt, ist diese Therapie folglich nur in der Leber wirksam. 

Extrahepatische Metastasen und Lokalrezidive werden damit nicht beeinflusst. Sind diese 

vorhanden, ist eine systemische Therapie zu bevorzugen. Ausgenommen davon sind 

stationäre ossäre Metastasen beim Mammakarzinom, da diese normalerweise nur einen 

langsamen Progress aufweisen und im Gegensatz zu den Lebermetastasen nicht als 

lebensbegrenzend eingestuft werden. [Bilbao 2008 S. 13]  

 

Neben diesen Einschlusskriterien gibt es noch drei Ausschlusskriterien: Das Vorliegen einer 

Portalvenenthrombose gilt bei TACE als relative Kontraindikation und auch die beiden 

Mikrosphärenhersteller SIRTEX-Medical und Theraspheres listen diese als Kontraindikation 

für die SIRT. Befürchtet wird eine Stase, beziehungsweise ein Reflux mit Verteilung der 

Mikrosphären in der gesunden Leber [Bilbao 2008 S. 54]. Allerdings gibt es Studien zu HCC-

Patienten mit Portalvenenthrombose, die ein gutes Ansprechen bei einer geringen 

Nebenwirkungsrate gezeigt haben, so dass die Portalvenenthrombose für diese 

Patientengruppe nur eine relative Kontraindikation darstellen sollte [Sangro 2006] [Salem 

2004]. 

Absolute Ausschlusskriterien sind hingegen ein Leber-Lungen-Shunt von über 13% [Leung 

1995] und eine vorangegangene externe Strahlenbehandlung der Leber [Jakobs 2007 A], da 

dies ein hohes Risiko für die Entwicklung einer Strahlenpneumonitis beziehungsweise einer 

Strahlenhepatitis darstellt. 
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Tabelle 2 gibt eine Übersicht über die Voraussetzungen, unter denen SIRT als Therapie in 

Frage kommt.  

 
Voraussetzung Bemerkung Beispiele 

Guter Allgemeinzustand 
ECOC < 2 

Karnofsky > 60%  

Bilirubin < 2 mg/dl  

GOT und GPT < 5x Norm  

normale Gerinnungsparameter  

Erhaltene Leberfunktion 

Albumin > 3 mg/dl  

Größe 

anatomische Lage Resektion 

inoperabler Patient 

Thermische lokalablative 

Verfahren 

RFA 

LITT 

Standardchemotherapie wirkungslos 

andere Therapieoptionen 

ausgeschlossen 

 
nicht tolerable 

Nebenwirkungen 

keine extrahepatischen 

aktiven Metastasen 

Ausnahme: stationäre 

Knochenmetastasen bei 

Mammakarzinom  

             Tabelle 2: Allgemeine Voraussetzung für SIRT [Modifiziert nach Bilbao 2008 S. 13] 

 

Voruntersuchungen 

Um eine fundierte Therapieentscheidung zu treffen, muss neben einer ausführlichen 

Anamnese bezüglich der bisherigen Befunde, Behandlungen und Operationen sowie einer 

körperlichen Untersuchung auch apparative Diagnostik eingesetzt werden, die in Tabelle 3 

zusammengefasst sind.  

Wie oben beschrieben ist die Einschätzung der Leberfunktion von herausragender Bedeutung, 

weshalb alle laborchemisch verfügbaren Leberparameter bestimmt werden müssen. Daneben 

muss mit den bildgebenden Verfahren einerseits das Vorliegen von extrahepatischen 

Metastasen ausgeschlossen, andererseits das Tumor- und Lebervolumen abgeschätzt werden. 

Diesen Aufgaben versucht man sowohl morphologisch mit Hilfe von CT und MRT, aber auch 

funktionell über 18F-FDG-PET gerecht zu werden. Zusammen mit dem Ausmaß des Leber-

Lungen-Shunts und der „tumor-to-normal-uptake-ratio“ (T/N) sind sie maßgeblich für die 
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Dosiskalkulation. Der Leber-Lungen-Shunts und die T/N werden mit Hilfe einer 

Szintigraphie gemessen, die nach Applikation von makroaggregiertem Albumin in die Arteria 

hepatica, das in etwa die gleiche Partikelgröße aufweist wie die therapeutischen 

Mikrosphären, durchgeführt wird [Pöpperl 2005]. Dieses Albumin simuliert die spätere 

Verteilung der Mikrosphären und ist mit dem metastabilen Tracer 99Technetium 

gekennzeichnet. Bei dessen Zerfall entstehende Photonen werden in einer single photon 

emission computer tomograpy (SPECT) detektiert und können somit einerseits den schon 

angesprochenen Leber-Lungen-Shunt und Abflüsse in andere Organe, andererseits die 

Aufnahme im Leber- und Tumorgewebe (tumor-to-normal-uptake-ratio; T/N) abbilden. Diese 

Simulation der geplanten Therapie liefert wichtige Zusatzinformationen zur einfachen 

Angiographie. Durch die 99Tcm-MAA-SPECT-Schnittbilder können zentrale avaskuläre 

Strukturen diagnostiziert werden, die in dem summierten Aufbild der digitalen 

Subtraktionsangiographie verborgen geblieben wären. [Ho 1997] Allerdings ist es noch 

umstritten, ob die 99Tcm-MAA-SPECT wirklich auch geeignet ist, um die Verteilung der 

Mikrosphären vorherzusagen [Bilbao 2008 S. 82]. 

 

Bei einer Angiographie in digitaler Subtraktionstechnik (DSA) werden vergleichbare Bilder 

mit und ohne Kontrastmittel digital voneinander abgezogen, so dass nur die kontrastierten 

Gefäße zur Darstellung kommen [Roche 2003]. Die DSA gibt Auskunft über technische 

Durchführbarkeit der geplanten Therapie, Vaskularisation der Tumorherde und aberrante 

Gefäße. Die Darstellung dieser Gefäße ist von besonderer Bedeutung, da durch ihren 

(künstlichen) Verschluss viele unerwünschte Nebenwirkungen wie Magen- und 

Duodenalulzera, sowie Pankreatitis und Cholezystitis aufgrund von fehlplatzierten 

Mikrosphären verhindert werden können. [Bilbao 2008 S. 62] 
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Untersuchung Begründung 

Labor   

Gerinnungsparameter 

Bilirubin 

Albumin 

Leberfunktion 

 

GOT und GPT Leberschädigung 

Blutbild (Thrombozytenanzahl) Gefahr der Hämatombildung an der Punktionsstelle 

Kreatinin und TSH Kontrastmittelbelastung 

Bildgebung   

18F-FDG-PET-CT 
Ausschluss extrahepatischer Metastasen, 

Abschätzung des vitalen Tumoranteils 

MRT 
Volumenbestimmung von Leber und Filiae 

Detektion von evtl. vorliegenden Gehirnmetastasen 

99Tcm-MAA-SPECT 
Bestimmung des Leber-Lungen-Shunts  

Tumor-Leber-Verhältnis (T/N) 

Angiographie 
Überprüfung auf technische Durchführbarkeit, 

Vaskularisation des Tumors 

            Tabelle 3: Erforderliche Voruntersuchungen vor SIRT 

 

Prognosefaktoren 

Ob SIRT eine lebensverlängernde Therapie ist, ist schwierig zu evaluieren. Zwar konnte an 

HCC-Patienten gezeigt werden, dass Patienten, die eine Radioembolisation als Primärtherapie 

erhielten, signifikant länger lebten, als Patienten, die mit herkömmlichen Therapien behandelt 

wurden [D’Avola 2009]; andererseits ist auch bekannt, dass nicht alle Patienten gleich stark 

von SIRT profitieren [Cianni 2009]. 

In mehreren Studien wurde deshalb eine Vielzahl von Faktoren auf prognostische 

Aussagekraft bezüglich des Überlebens beziehungsweise des Therapieansprechens untersucht.  

 

Bei Patienten mit primärem Leberzellkarzinom konnte zum Beispiel festgestellt werden, dass 

ein schlechter Perfomancestatus (klassifiziert nach der Eastern Conference of Oncology 

Group; ECOG), weibliches Geschlecht, junges Alter unter 65 Jahren, portale Hypertension 

und multifokale Tumorausbreitung mit einem kürzeren Überleben assoziiert waren. Positiv 

hingegen wirkte sich ein hoher prätherapeutischer Albumin- beziehungsweise niedrige 

Bilirubin- und AFP-Werte sowie ein gutes Therapieansprechen in der morphologischen 

Bildgebung sechs Wochen nach SIRT aus. Keine Auswirkungen auf das Überleben hatten in 
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dieser Studie das Vorliegen einer Portalvenenthrombose oder extrahepatischer Metastasen 

sowie der Tumordurchmesser [Salem 2010]. Ähnliche Befunde wurden in einer anderen 

Studie erhoben, wo ebenfalls Faktoren, die auf einen aggressiven hepatozellulären Tumor 

hinweisen, wie beispielweise ein hoher prätherapeutischer AFP-Spiegel, sowie viele 

Tumorherde und das Vorhandensein von Mikrometastasen, signifikant mit dem Überleben 

korrelierten [Iñarrairaegui 2010].  

 

Auch bei Lebermetastasen unterschiedlichen Ursprungs konnten einige signifikante Faktoren 

für das Überleben identifiziert werden. So sind das Ansprechen in der Bildgebung (WHO-

Kriterien) einen Monat nach SIRT, sowie ein posttherapeutischer Abfall der zirkulierenden 

Lymphozyten mit einem längeren Überleben assoziiert. Negative Faktoren waren hingegen 

wie bei den HCC-Patienten ein schlechter Allgemeinzustand (ECOG > 0) und ein erhöhter 

prätherapeutischer Bilirubinspiegel. Des weiteren korrelierten eine Tumorlast von über 50% 

sowie ein Mammakarzinom als Primärtumor negativ mit der Überlebenszeit. Im Gegensatz zu 

den primären Lebertumoren wies in dieser Studie auch das Vorhandensein von 

extrahepatischen Metastasen zumindest in univariaten Analysen auf eine verkürzte 

Überlebenszeit hin. [Dunfee 2010] 

 

Ein viel diskutierter Faktor für das Therapieansprechen ist die Vaskularität des Tumors. 

Hypothetisch müssten hypovaskularisierte Neoplasien mit weniger Mikrosphären und 

dementsprechend mit weniger Strahlung bei SIRT belastet werden. Dennoch konnte in einer 

Studie bei verschiedenen Tumorentitäten gezeigt werden, dass das Überleben des Patienten 

nach SIRT unabhängig von der Durchblutung der Neoplasie ist. [Sato 2009] 

 

In einer weiteren Studie wurde bei metastasierten Kolorektalpatienten untersucht, ob die 

prätherapeutisch theoretisch errechnete Dosis im Zielgewebe mit dem Ansprechen nach SIR-

Therapie korreliert. Dazu wurde die in den Voruntersuchungen durchgeführte Tc99
m-MAA-

SPECT als Grundlage für die Berechnung der Dosis im Gewebe genommen und das 

Therapieansprechen sechs Wochen nach SIRT mit der funktionellen Bildgebung PET-CT 

evaluiert. Mit einer Sensitivität von 89% und einer Spezifität von 65% konnte damit das 

Therapieansprechen der einzelnen Tumorläsionen prognostiziert werden. [Flamen 2008] 
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2.3.2 Praktische Durchführung 

Dosiskalkulation 

Jedes Therapeutikum muss in der Dosis individuell an den Patienten und seine speziellen 

Voraussetzungen angepasst werden. Je gravierender die Nebenwirkungen sind, umso fataler 

ist eine ungenaue Berechnung der Dosis. Im speziellen Fall von SIRT ist dies jedoch äußerst 

schwierig, da es bis zum heutigen Zeitpunkt weder prä- noch posttherapeutisch möglich ist, 

die Dosis, die vom Zielgewebe absorbiert wird, zu bestimmen [Bilbao 2008 S. 51]. 

Bei Brachytherapien kann ein postinterventionelles CT die mehrere Millimeter großen Seeds 

detektieren. Aus dieser Lokalisationsangabe kann zusammen mit Informationen über die 

Aktivität des einzelnen Partikels und seiner Reichweite im Gewebe mit Hilfe von 

computergestützten Verfahren die absorbierte Dosis berechnet werden [Bilbao 2008 S. 51]. 

Bei SIRT hingegen ist es unmöglich, den Implantationsort des einzelnen 

Radiopharmakonträgers zu bestimmen, da die Mikrosphären weit unter der Auflösungsgrenze 

der heutigen bildgebenden Verfahren liegen. Die posttherapeutisch durchgeführte 

Bremsstrahlen-SPECT ist für eine Dosisabsorptionsberechnung ebenfalls ungeeignet, da die 

vom β--Strahler Yttrium90 sekundär produzierten Photonen je nach Bildungsort einer 

unbekannten Abschwächung durch das umliegende Gewebe unterliegen. [Bilbao 2008 S. 82] 

Da nicht eruiert werden kann, welche Dosis im Gewebe letztlich ankommt, ist die sonst in der 

Strahlentherapie übliche Angabe von Gray als Einheit für absorbierte Strahlung nicht 

zweckmäßig. Als sinnvoller hat sich die Angabe der verabreichten Aktivität in Bequerel 

herausgestellt. [Bilbao 2008 S. 51]  

Bisher sind zwei Radiopharmaka für die medizinische Anwendung beim Menschen 

zugelassen.  

 

Zugelassene Radiopharmaka 

Die beiden zugelassenen Radiopharmaka für die SIR- Therapie unterscheiden sich in vielen 

Aspekten, die charakteristischen Merkmale sind in Tabelle 4 zusammengefasst. Gemeinsam 

ist ihnen, dass als radioaktives Material das künstlich hergestellte Yttrium90 verwendet wird. 

In der Natur kommt es vor allem als Yttrium89 im Verbund mit anderen Erdmineralien vor 

und wird meist mit Hilfe von Calcium in einer Reduktionsreaktion aus Yttriumfluorid gelöst. 

Unter Neutronenbeschuss wird Yttrium89 zu dem gewünschten Yttrium90, das ein reiner β--

Strahler mit einer Halbwertszeit von 64,1 Stunden ist. Beim Zerfall zum stabilen Zirkonium90 

wird eine durchschnittliche Energie von 0,9337 MeV emittiert. Im Gewebe variiert die 

Reichweite zwischen 2,5 mm und 1,1 cm und eine Aktivität von 1 GBq resultiert bei 

homogener Verteilung in einer Dosis von 50 Gy/kg Gewebe. [Bilbao 2008 S. 54] 
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Obwohl die beiden Radiopharmaka Yttrium90 enthalten, unterscheidet sich die Herstellung 

von Glas- und Kunstharzmikrosphären grundlegend: Während Glasmikrosphären schon ein 

Yttrium-Oxid enthalten, das durch Neutronenbeschuss zu Yttrium90 umgewandelt wird, 

binden die fertigen Kunstharzmikrosphären mit Hilfe einer chemischen Reaktion das Yttrium 

auf ihrer Oberfläche. Beide Verbindungen sind so stark, dass ein Ablösen des Yttriums von 

seiner Matrix, gleich ob Kunstharz oder Glas, nicht zu erwarten ist. [Gulec 2007] 

Obwohl die Mikrosphären aus Kunstharz im Gegensatz zu den Glasmikrosphären etwas 

größer sind und weniger Aktivität aufweisen, sind sie, soweit man das bisher beurteilen kann, 

bei den meisten Tumorentitäten gleich effektiv [Bilbao 2008 S. 6]. 

 

Parameter Kunstharz Glas 

Handelsname SIR-Spheres Thera-Spheres 

Hersteller Sirtex Medical, Lane Cove, Australia MDS Nordion, Kanada, Canada 

Durchmesser 20- 60 µm 20- 30 µm 

Spezifische Dichte 1,6 g/dl 3,6 g/dl 

Aktivität pro Partikel 50 Bq 2500 Bq 

Material Yttrium an Kunstharz gebunden Glas mit Yttrium in der Matrix 

 Tabelle 4: Eigenschaften der beiden für SIRT zugelassenen Radiopharmaka [modifiziert nach Bilbao 2008 S. 7] 
 

Dosiskalkulation für Glasmikrosphären 

Allgemeine Formel zur Berechnung der zu applizierenden Aktivität: 

 

A [GBq] = Zieldosis [Gy] х Leberzielmasse [kg] / 50 x (1-F) 
 

Grundlage für diese Formel ist die MIRD (Medical Internal Radiation Dose) -Konvention, die 

von einer gleichmäßigen Verteilung der Mikrosphären über das gesamte zu therapierende 

Volumen ausgeht. In diesem Fall beträgt die empfohlene Zieldosis 100-150 Gy für die 

gesamte Leber. Je nach Ausmaß des Leber-Lungen-Shunts muss die Dosis nach unten 

korrigiert werden. In oben genannter Formel wird der Aktivitätsanteil, der bei der 99Tcm-

MAA-SPECT in die Lunge gelangte, durch F repräsentiert und sollte nicht größer als 0,61 

GBq sein, da bei höherer Dosis die Gefahr einer Lungenschädigung besteht.  

Therapievolumen und -masse werden über MRT- oder CT-Bilder berechnet, wobei ein 

Umrechnungsfaktor zwischen den beiden Werten von 1,03 g/cm3 gilt. 

Obwohl diese Formel von einer homogenen Verteilung der Sphären ausgeht und es nach den 

histologischen Studien tatsächlich eher zur Clusterbildung um den Tumor kommt [Campbell 
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2000] [Kennedy 2004], gibt sie einen Anhalt für den Aktivitätsbereich. Nach einer 

individuellen Anpassung wurde sie schon bei mehreren Tausend Patienten erfolgreich 

angewendet [Bilbao 2008 S. 54]. 

 

Dosiskalkulation bei Kunstharzmikrosphären 

Da eine einzelne SIRSphere mit 50 Bq sehr viel weniger Aktivität als eine TheraSphere (2500 

Bq) hat, ist für die gleiche Dosis eine viel größere Anzahl an Sphären nötig. Bei einer 

typischen Therapie mit 2 GBq werden vier bis sechs Millionen Partikel appliziert, die 

aufgrund der hohen Anzahl leichter als bei Verwendung von Glasmikrosphären zu 

Gefäßokklusionen führen. Daher berichten manche Patienten über Übelkeit, Schmerzen und 

subfebrile Temperaturen; Symptome des Postemboliesyndroms, das man in ausgeprägterer 

Form von der TACE-Therapie kennt. [Bilbao 2008 S. 54] 

Auch die Berechnung der Aktivität bei Verwendung von SIRSpheres bezieht sich auf die 

MIRD-Konvention. In dieser wurde die Konstante 4,9 (49670) festgelegt, die die Energie 

beschreibt, die durchschnittlich beim Zerfallsprozess von einem Kilogramm (Gramm) 

Yttrium90 frei wird.  

Im Gegensatz zur Verwendung von Glasmikrosphären gibt es bei SIRSpheres drei 

verschiedene Berechnungsformeln, die sich jeweils auf verschiedene Größen beziehen und bei 

unterschiedlichen Indikationen angewandt werden.  

 

Verteilungsberechnung -  „Equation 3“ 
 

A [GBq] = absorbierende Dosis [Gy] x Lebermasse [g] / 49670 
 

Diese Formel hat ihr Anwendungsgebiet vor allem bei klar abgegrenzten einzelnen 

Tumorknoten. Würde sie bei diffuser Metastasierung zur Dosiskalkulation herangezogen 

werden, würden potentiel letal hohe Dosen verabreicht. [Kennedy 2006] 

 

Empirische Methode 

Bei dieser Methode wird die Tumorlast anhand von CT-Bildern geschätzt und je nach 

Tumoranteil, wie in Tabelle 5 gezeigt, eine bestimmte Dosis verabreicht:  

 

Tumoranteil empfohlene Dosis 
< 25% 2 GBq 
25-50% 2,5 GBq 

> 50% 3 GBq 
   Tabelle 5: Dosisempfehlung nach Tumoranteil  
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Grundlage für diese erste Entwicklung einer Methode waren intraoperative 

Aktivitätsberechnungen [Burton 1989 A] [Burton 1989 B]. Allerdings gibt es bedeutende 

Unterschiede zwischen dem damaligen Studienprotokoll von dem heutigen Standardprotokoll: 

Einerseits waren die Studienpatienten im Gegensatz zu dem heutigen Patientenkollektiv nicht 

mit Chemotherapeutika vorbehandelt, andererseits wurde zeitgleich mit den Mikrosphären 

Angiotensin II verabreicht, das eine Konstriktion der gesunden Lebergefäße bewirkt. Obwohl 

diese Maßnahme durchaus sinnvoll erscheint, wird sie in der heutigen Therapie nicht mehr 

angewandt, da dieses Medikament nur unter besonderen Umständen in Japan verfügbar ist. 

[Bilbao 2008 S. 56] 

Bei empirischer Kalkulation der zu verabreichende Aktivität kommt es bei nach heutigen 

Standards durchgeführter SIRT in über 50% der Fälle während der Therapie zur Stase, so dass 

diese vorzeitig abgebrochen werden muss [Kennedy 2006] [Gulec 2006]. Daraus kann man 

schließen, dass diese Methode vor allem die maximale sichere Dosisobergrenze aufzeigt. Des 

weiteren weisen die meisten Patienten einen Tumoranteil von 5-23% auf und alle würden 

nach der empirischer Methode mit 2 GBq behandelt werden [Bilbao 2008 S. 56]. 

Offensichtlich muss in diesem weiten Feld eine individuellere Anpassung der Dosis 

vorgenommen werden. Ebenso wird es schwierig, im Falle einer singulären 

Leberlappenbehandlung mit der empirischen Methode zu arbeiten. Für diese Fälle wurde die 

genauere Formel, die BSA-Berechnung, entwickelt. 

 

Body-Surface-Area (BSA) -Berechnungsformel 

In diese Formel geht neben dem betroffenen Leberanteil auch über die Körperoberfläche die 

Körpergröße beziehungsweise das -gewicht mit ein. Mit dieser Formel werden im Vergleich 

zur empirischen Methode viel niedrigere Aktivitäten bei kleinen Patienten mit kleiner Leber 

und moderat höhere Aktivitäten bei kleinen Patienten mit großer Leber errechnet. [Bilbao 

2008 S. 56] 
 

A [GBq] = (BSA – 0,2) + VTumor / VTumor + VLeber 
 

BSA   Körperoberfläche errechnet aus Körpergröße und -gewicht 
 

Zusammenfassend kann man sagen, dass sowohl mit der BSA- als auch mit der empirischen 

Methode höhere Aktivitäten berechnen werden als die, die einem Patienten tatsächlich in der 

Praxis gegeben werden können [Kennedy 2006]. Deshalb wurde auch im Konsensusreport des 

Brachytherapieonkologiekonsortiums festgehalten, dass eine 20-25%ige Dosisreduktion für 

SIRSpheres im Gegensatz zu TheraSpheres nötig ist [Kennedy 2007]. 
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Therapieverfahren 

Nach Evaluierung der Ergebnisse der Voruntersuchungen und Ausschluss von 

Kontraindikationen durch ein interdisziplinäres Tumorboard kann der Patient zur Behandlung 

aufgenommen werden. In anderen Ländern, wie zum Beispiel den USA, kann die Therapie 

ambulant in einer Tagesklinik durchgeführt werden [Sato 2008], wenn sichergestellt ist, dass 

dem Patienten Nahestehende nicht mehr als 5mSV Strahlenbelastung ausgesetzt werden 

[Gulec 2007]. 

In Deutschland herrschen dagegen strengere Strahlenschutzrichtlinien, die unabhängig vom 

posttherapeutischen Verlauf einen Aufenthalt von 3 bis 4 Tagen auf einer geschlossenen 

nuklearmedizinischen Station vorschreiben. Nach Aufklärung über Therapiekomplikationen 

und Einwilligung des Patienten wird die rechte anteriore Oberschenkelseite desinfiziert und 

unter sterilen Bedingungen die Arteria femoralis ertastet. Nach subkutaner Gabe eines 

Lokalanästhetikums wird die Arterie vom behandelnden interventionellen Radiologen 

punktiert und in Seldinger-Technik ein Katheter eingebracht. Mittels Kontrastmittelgabe und 

gleichzeitiger Durchleuchtung in DSA-Technik wird dieser über Nachverfolgung der Arteria 

iliaca in die Aorta abdominalis und in den Truncus coeliacus vorgeschoben. Von dort werden 

die Arteria hepatica communis in ihren Aufteilungen dargestellt und eventuell die 

Behandlung gefährdende Gefäße wie die rechte Arteria gastrica, die Arteria gastroduodenalis 

oder abberante Abgänge in Richtung Duodenum, Magen und Pankreas mittels Coils 

verschlossen. Die Anatomie dieser Gefäße ist äußerst variabel und die komplikationslose 

Therapie hängt somit unter anderem maßgeblich von der präzisen Arbeit eines erfahrenen 

interventionellen Radiologen ab [Bilbao 2008 S. 49].  

In Abbildung 2 wird das Therapieprinzip veranschaulicht, in Abbildung 3 ist eine praktische 

Durchführung zu sehen.  

 

  
Abbildung 2: Prinzip der Radioembolisation [SIRTEX 2011] 
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    Abbildung 3: Praktische Durchführung einer SIRT mit SIR-Shperes 

 

Ist die Katheterspitze in derselben Position wie bei Durchführung der 99Tcm-MAA, das heißt 

im Regelfall hinter dem Abgang der Arteria cystica, können die Mikrosphären verabreicht 

werden. Nach Feststellung der Gesamtaktivität des gelieferten Radiopharmakons wird die 

berechnete Menge über einen Zeitraum von 35-40 Minuten gegeben. In dieser Zeitspanne 

wird der Katheter – bei Behandlung der gesamten Leber – einmal umpositioniert, da beide 

Leberlappen getrennt voneinander embolisiert werden. Somit ist eine Anpassung der Dosis an 

den Befall pro Leberlappen möglich. Bei gleichmäßiger diffuser Metastasierung wird die 

Aktivität in einem Verhältnis von 2:1 zugunsten des größeren rechten Leberlappens aufgeteilt. 

Zwischen den einzelnen Gaben erfolgen immer wieder Spülungen mit Kontrastmittel oder 

Kochsalzlösung, um eine Stase oder gar einen Reflux rechtzeitig zu erkennen. [Pöpperl 2005] 

Beim Auftreten einer Stase muss die Therapie abgebrochen werden, auch wenn noch nicht die 

gesamte kalkulierte Dosis gegeben wurde. Würde man in einer solchen Situation die Therapie 

fortführen, würde der Vorteil von SIRT, die selektive Behandlung des Tumors bei 

gleichzeitiger Schonung des gesunden Gewebes, verloren gehen und alle Teile der Leber 

wären homogen der gleichen Strahlung ausgesetzt. [Bilbao 2008 S. 54] 

 

Da eine direkte Nachverfolgung der Mikrosphären während der Gabe nicht möglich ist, sollte 

im Anschluss an die Therapie eine SPECT oder eine planare Ganzkörperszintigraphie 

durchgeführt werden, um eventuell fehlplatzierte Mikrosphären zu entdecken und schnell eine 

Gegentherapie einleiten zu können [Bilbao 2008 S. 78]. Zur quantitativen Auswertung eignen 

sich diese Bilder allerdings nicht, da die in der SPECT gemessenen Photonen von dem reinen 

ß--Strahler 90Yttrium nur indirekt als Bremsstrahlung erzeugt werden. So werden zentralere 
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Gebiete durch Abschwächung im umliegenden Gewebe weniger stark abgebildet, als 

diejenigen, die direkt unter der Haut liegen, wodurch die exakte Quantifizierung erschwert 

wird. [Bilbao 2008 S. 78]. Dies könnte einer der Gründe sein, warum es scheinbar nur 

teilweise eine Übereinstimmung in der Mikrosphärenverteilung in der postinterventionell 

durchgeführten SPECT im Vergleich mit der prätherapeutischen 99Tcm-MAA-Szintigraphie 

gibt [Bilbao 2008 S. 82]. 

Eine adjuvante Medikation mit Protonenpumpenhemmern, Cortison, Analgetika, Antiemetika 

und einem Breitbandantibiotikum zur Verhinderung von Superinfektionen führt zu einer 

besseren Therapietoleranz und vermindert das Risiko für Komplikationen [Jakobs 2007 A]. 

2.3.3 Unerwünschte Nebenwirkungen 

Obwohl bei SIRT als lokoregionärem Therapieverfahren mit sehr viel weniger 

Nebenwirkungen zu rechnen ist als bei systemischen onkologischen Behandlungen, gibt es 

doch typische Komplikationen. Allerdings können mit wachsender Erfahrung und Wissen 

über die Hintergründe sowie mit neuen technischen Möglichkeiten die Nebenwirkungen 

sowohl in ihrer Häufigkeit als auch in ihrer Ausprägung reduziert werden.  

Die intrahepatischen Nebenwirkungen resultieren meist aus einer zu hohen Strahlendosis für 

das strahlensensible gesunde Leberparenchym, oder der Embolie von Gefäßen mit 

konsekutiver Ischämie der Leber. Diese macht sich bei den Patienten im Rahmen eines 

Postemboliesyndroms mit Oberbauchschmerzen, Fieber und Übelkeit bemerkbar [Jakobs 

2007 A]. Das Postemboliesyndrom bei SIRT ist jedoch meist milder ausgeprägt als bei TACE 

[Bilbao 2008 S. 54], kann aber durchaus in seltenen Fällen bis zu sechs Wochen nach 

Therapie anhalten [Jakobs 2007 A].  

Extrahepatische Komplikationen im Gastrointestinaltrakt oder in der Lunge werden von 

fehlplatzierte Mikrosphären verursacht. Diese führen neben den unerwünschten Effekten wie 

Ulzeration und Inflammation auch zu einer Verminderung der tumortoxischen Wirkung 

aufgrund einer geringeren Dosis im Zielgebiet. [Bilbao 2008 S. 62] 

 

Extrahepatische Komplikationen 

Strahlenpneumonitis 

Die meisten Erfahrungen mit der Reaktion der Lunge auf Radioaktivität hat man im Rahmen 

von externen Bestrahlungen gesammelt. Bei einer Gesamtdosis von 20 Gy entsteht selten, ab 

60 Gy jedoch mit hoher Wahrscheinlichkeit eine Strahlenpneumonitis [Jennings 1962]. 

Radiologische Kennzeichen für das Vorliegen einer solchen Komplikation sind unscharfe 

Begrenzungen der Pulmonalarterien und streifige Verdichtungen im betroffenen Gebiet. 
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Mikroskopisch liegt eine interstitielle Pneumonie mit Ödem, Atelektasen und alveolären 

Fibrinexsudaten vor, die sich später zur Lungenfibrose entwickeln kann. [Bate 1957] 

Im Rahmen von SIRT sind fehlplazierte Mikrosphären, die über arteriovenöse Shunts des 

Tumors in die Lunge gelangen und sich dort vor allem in den distalen Abschnitten der 

Lungenarterien verteilen für die Schäden verantwortlich. Durch diese inhomogene Verteilung 

stimmt auch hier, ähnlich den Verhältnissen in der Leber, die theoretisch errechnete 

Gewebedosis nicht mit der tatsächlichen Belastung überein. Eine Studie von Leung et al. hat 

gezeigt, dass ab einem Leber-Lungen-Shunt von 13% das Risiko für das Auftreten einer 

Strahlenpneumonitis exponentiell steigt und deshalb in einem solchen Falle eine andere 

Therapieoption gewählt werden sollte, da es bisher kein Verfahren gibt, welche das 

Shuntausmaß verringern könnte. Sollte es trotz Beachtung dieser Erkenntnisse ein bis sechs 

Monate nach einer SIRT zu trockenem Husten, Dyspnoe und einer restriktiv bedingten 

Hypoxie kommen, wird nach Ausschluss einer infektiösen Ursache eine Therapie mit 

Kortikosteroiden empfohlen, obwohl diese nur bei einem geringen Teil der Patienten zu einer 

Symptomerleichterung führt [Leung 1995]. 

 

Komplikationen des Gastrointestinaltrakts und des Pankreas 

Die menschliche Gefäßanatomie im Bauchraum ist sehr variabel. Zum Ausdruck kommt dies 

in Michels Einteilung von 1966, die die zehn häufigsten Gefäßvariationen der Arteria 

hepatica klassifiziert. Bei Krebspatienten kommen zusätzlich zu dieser Vielfalt jene 

neugebildeten Gefäße, die den Tumor versorgen. So ist eine der größten Herausforderungen 

bei der Durchführung der Radioembolisation die korrekte Darstellung der Arteria hepatica 

und ihrer eventuell vorhandenen Kollateralarterien, da diese häufig eine Kommunikation mit 

extrahepatischen Organen aufweisen [Bilbao 2008 S. 140]. Diese Verbindungen müssen 

sondiert und artifiziell verschlossen werden, da sonst die Gefahr besteht, dass sich 

Mikrosphären in die Wand von Magen, Duodenum oder in den Pankreaskopf absetzen. Folge 

davon sind Pankreatitis, Strahlenulkus und als schlimmstes Szenario eine Perforation von 

Magen oder Duodenum mit möglicherweise fatalen Folgen [Yip 2004] [Roswith 1972]. In 

Studien an Hunden konnte gezeigt werden, dass vor allem die Radioaktivität für die Toxizität 

verantwortlich zu sein scheint, da Mikrosphären ohne Yttrium wesentlich weniger Schaden 

verursachten [Wollner 1987]. Doch auch der artifizielle Verschluss mittels Coils kann 

symptomatische Defekte an den Organen hervorrufen, ohne dass sich im Biopsat 

Mikrosphären nachweisen lassen [Andrews 1994]. 

Um dystope Abströme schon vor der Therapie darstellen zu können, eignet sich besonders die 
99Tcm-MAA-SPECT. Werden allerdings planare Aufnahmen verwendet, kann es zu einer 
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Überlagerung von nahe benachbarten Organen wie beispielsweise Magen und Leber kommen, 

so dass die fehlplatzierten Mikrosphären nicht zu detektieren sind. In Schichtaufnahmen, die 

im günstigsten Fall noch mit einer morphologischen Bildgebung fusioniert werden können, 

sind solche Feinheiten besser zu erkennen. [Bilbao 2008 S. 62] 

 

Intrahepatische Komplikationen 

Strahlenhepatitis oder RILD 

Wie bei der Strahlenpneumonitis stammt auch bei der Strahlenhepatitis das Wissen um diese 

Art von Komplikation aus der externen Strahlentherapie. Ab einer Gesamtdosis von circa  

30 Gy muss bis zu drei Monate nach der perkutanen Strahlenexposition mit dem Auftreten 

dieser Nebenwirkung gerechnet werden. An sich ist die Bezeichnung Strahlenhepatitis 

irreführend, da sich eine klassische Entzündung im eigentlichen Sinne mit 

Leukozytenmigration und Exsudation nicht beobachten lässt [Lawrence 1995]. Vielmehr 

kommt es durch die ionisierende Strahlung zur Schädigung des Endothels der Zentralvenen 

mit konsekutiver Phlebitis. Durch Fibrinablagerungen, die letztendlich in Kollagennetzwerke 

umgewandelt werden, führt dies zur progressiven Obliteration der Zentralvenen 

[Fajardo1980]. Eine bessere und aktuellere Bezeichnung für diese histopathologischen 

Veränderungen ist dementsprechend strahleninduzierte Leberkrankheit (radiation induced 

liver disease = RILD), wobei einige Autoren bezweifeln, dass es dabei noch einen 

Unterschied zu der Venenverschlusskrankheit ((fatal) veno-occlusive disease = VOD) gibt, 

die nicht nur nach Strahlenexposition, sondern auch bei chemischer Leberschädigung 

auftreten kann. [Lawrence 1995] [Fajardo1980] 

Die klinischen Symptome einer strahleninduzierten Leberkrankheit ähneln denen des  

Budd-Chiari-Syndroms: rasche Gewichtszunahme und Vergrößerung des Bauchumfangs 

durch Aszites und Hepatomegalie sowie Ikterus [Lawrence 1995]. Laborchemische Hinweise 

sind erhöhte Leberenzyme und steigendes CA-125, sowie eine transiente Thrombozytopenie. 

Der sensitivste Marker scheint die Dynamik der alkalischen Phosphatase zu sein, die 

allerdings nicht sehr spezifisch ist, da sie auch bei posttherapeutischen Gallengangs-

komplikationen erhöht sein kann [Ingold 1965]. Da die Laborveränderungen im Vergleich zur 

klinischen Symptomatik geringfügig sind [Murthy 2005], muss die Diagnose immer durch 

eine Stanzbiopsie endgültig gesichert werden. Bis dato gibt es keine effektive Therapie, da, 

ähnlich wie bei der Strahlenpneumonitis, die traditionell verabreichten Glukokortikoide nur 

wenig wirksam sind [Bilbao 2008 S. 141]. Auch ein transhepatischer portalvenöser Shunt 

(TIPS) zur Entlastung der portalen Hypertension kann den meist progressiven und fatalen 

Verlauf nicht verhindern [Fried 1996]. 
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Wegen des dramatischen Verlaufs ohne wirksame therapeutische Option ist es von 

entscheidender Bedeutung, RILD überhaupt nicht entstehen zu lassen. In Studien konnte 

gezeigt werden, dass eine direkte Korrelation zwischen prätherapeutischen 

Gesamtbilirubinspiegel und dem Risiko für die Bildung einer strahleninduzierten 

Leberkrankheit besteht [Goin 2005 B]. Als ein weiterer prädispositionierender Faktor hat sich 

eine Gesamtstrahlendosis von über 150 Gy (in einer Einzelverabreichung) herausgestellt, 

wobei auch die Art der Gabe entscheidend zu sein scheint: bei subsegmentaler Applikation 

wird das gesunde Lebergewebe eher geschont, während es bei einer Gesamtlebertherapie zu 

einer höheren Exposition und Schädigung kommt [Goin 2005 B]. Auch eine begleitende 

strahlensensibilisierende Chemotherapie könnte die Entwicklung von RILD begünstigen 

[Jakobs 2007]. 

 

Strahlencholezystitis 

Ähnlich den extrahepatischen Komplikationen ist die Strahlencholezystitis auf fehlplatzierte 

Mikrosphären zurückzuführen. Im Gegensatz zu Magen und Pankreas ist die Versorgung der 

Gallenblase etwas komplizierter: Die Arteria cystica kann variabel aus der rechten oder linken 

Arteria hepatica, der Arteria gastroduodenalis oder aus akzessorischen rechten Leberarterien 

entspringen [Covey 2002]. Zusätzlich kann die Gallenblase aus Gefäßen direkt aus dem 

Leberparenchym versorgt werden [Liu 2005], und umgekehrt kann die Arteria cystica Gefäße 

an das Tumorgewebe abgeben [Kim 2005]. 

 

Dementsprechend muss bei der Therapieplanung zwischen drei Optionen abgewogen werden:  

Einerseits kann die Applikation der Mikrosphären proximal des Abgangs der Arteria cystica 

vorgenommen werden. Ohne prophylaktischem Verschluss des Gefäßes steigt allerdings das 

Risiko für eine Strahlencholezystitis; mit Coiling hingegen ist die Möglichkeit für eine 

ischämische Cholezystitis gegeben. Andererseits kann die Gabe der Mikrosphären auch distal 

des Abgangs der Arteria cystica erfolgen, was allerdings wiederum die Wahrscheinlichkeit 

einer suboptimalen Mikrosphärenverteilung erhöht. [Bilbao S. 142] 

Die Diagnose einer Strahlencholezystitis lässt sich relativ unkompliziert stellen, da klinische 

Symptome, die Befunde in der körperlichen Untersuchung und die Laborparameter-

konstellation einer gewöhnlichen Gallenblasenentzündung entsprechen. 

Auch ist meistens eine konservative Therapie erfolgreich, und nur selten im Falle einer 

Perforation ist ein chirurgisches Eingreifen im Sinne einer Cholezystektomie erforderlich.  
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2.3.4 Beurteilung des Therapieansprechens 

Biochemische Parameter 

Unter den biochemischen Parametern werden beim onkologischen Staging vor allem Tumor-

assoziierte Antigene, häufig als „Tumormarker“ bezeichnet, herangezogen. Tumormarker sind 

Moleküle, die im Gewebe, im Blut, im Urin oder in anderen Körperflüssigkeiten bei 

Tumorpatienten in höheren Konzentrationen als bei der Normalbevölkerung vorkommen. Die 

wenigsten Tumormarker sind 100%ig spezifisch oder sensitiv für eine Tumorentität. Aber 

dadurch, dass sie im Blut messbar sind, sind sie leicht zugänglich und können in seriellen 

Messungen über einen längeren Zeitverlauf bestimmt werden. Durch die Beobachtung der 

Konzentrationsdynamik kann häufig schon ein Progress oder ein Rezidiv diagnostiziert 

werden, bevor dies in der Bildgebung erkennbar ist. [Sturgeon 2009] 

So wurde in einer Studie der Verlauf der Tumormarker CEA und CA 19-9 mit den 

Ergebnissen in der Bildgebung bei Patienten mit Lebermetastasen kolorektalen Ursprungs 

untersucht, die sich einer Resektion mit adjuvanter Chemotherapie unterzogen. Dabei zeigte 

sich, dass bei Patienten, die präoperativ erhöhte Werte für die Tumormarker aufwiesen, mit 

dem Verlauf von CEA und CA 19-9 das Therapieansprechen genauso gut beurteilt werden 

konnte wie mittels Computertomographie. [de Haas 2010] 

 

Bei SIRT handelt es sich um eine lokoregionäre Therapie, deren Wirkung auf die Leber 

beschränkt ist. Tumormarker spiegeln jedoch als systemische Parameter die allgemeine 

Krebsaktivität im Organismus wider. So kann bei einem Anstieg der Marker nicht nur ein 

Progress des Krankheitsprozesses in der Leber sondern auch beispielsweise neue 

extrahepatische Metastasen dafür verantwortlich sein. Aus diesem Grund gibt es nur wenige 

Daten, die den Therapieerfolg der Radioembolisation in der Bildgebung mit dem Ansprechen 

der Tumormarker vergleichen. Die meisten Studien zeigen jedoch eine Korrelation der 

Tumormarker mit dem Überleben: Bei Patienten mit kolorektalem Karzinom konnte 

beispielsweise gezeigt werden, dass eine postinterventionelle CEA-Reduktion um mehr als 

30% mit einer höheren Überlebensrate verknüpft ist [Stubbs 2006]. In Übereinstimmung dazu 

wurde von Jakobs et al. ein längeres medianes Überleben (19,1 vs. 12,3 Monate) bei Patienten 

mit postinterventionellen CEA-Abfall berichtet [Jakobs 2008 B].  

 

Bildgebende Verfahren 

MRT und vor allem CT sind der aktuelle Standard für das Staging von Tumorpatienten. Für 

beide Schichtbildverfahren wurden mit WHO (World Health Organisation)- und RECIST 

(Response Evaluation Criteria In Solid Tumors)-Klassifikation Verfahren entwickelt, die es 
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erlauben, Bildbeobachtungen in ein quantifizierbares und der Statistik zugängliches System 

zu überführen. In die WHO-Klassifikation gehen die zwei größten Tumordurchmesser in zwei 

Ebenen in die Berechnung ein während bei den weiter entwickelten RECIST-Kriterien die 

Summe der größten Durchmesser beurteilt wird. [Therasse 2000] Eine Übersicht über die 

RECIST- Kritierien gibt Tabelle 6.Diese leicht anzuwendenden und pragmatischen Methoden 

sind jedoch bei lokoregionären Therapieverfahren mit Vorsicht einzusetzen, da 

Heterogenitäten wie beispielsweise eine zentrale Tumornekrose nicht mit berücksichtigt 

werden. Auch ein disseminierter Befall ist mit Hilfe dieser beiden Methoden schwer zu 

quantifizieren, da nur die größten Läsionen in die Berechnung mit eingehen, jedoch eine 

Zunahme der kleineren Knoten außen vor bleibt.  

 

Therapieansprechen Tumorgröße im Vergleich zur vorherigen Bildgebung 

Complete Response (CR) Kein Tumor mehr in der Bildgebung 

Partial Response (PR) Abfall der Größe ≥ 30% 

Stable Disease (SD) Kleine Veränderungen, die nicht unter PR und PD fallen 

Progressive Disease (PD) Anstieg der Größe um ≥ 20% oder neue Tumorläsionen 
 

Tabelle 6: RECIST-Kriterien für solide Tumoren [Therasse 2000] 
 

Aufgrund dieser Nachteile sollte auch eine Positronen-Emissions-Tomographie (PET) zur 

Therapieevaluation herangezogen werden. In dieser funktionellen Bildgebung wird dem 

nüchternen Patienten mit 18Fluorid markierte D-Glukose gespritzt. Das Glukosederivat wird 

vor allem von metabolisch aktiven Zellen aufgenommen und phosphoryliert. Dadurch wird es 

in der Zelle fixiert und die vom 18Fluorid emittierte Positronen können extrakorporal 

detektiert werden. Allerdings ist die Auflösung dieser Bildgebung sehr niedrig, so dass PET-

positive Bereiche oft nicht richtig lokalisiert werden können und eine genaue Quantifizierung 

der Größe nicht möglich ist [Bilbao 2008 S. 97]. Zusätzlich existiert für das PET auch noch 

kein anerkanntes Klassifikationssystem wie mit RECIST für CT und MRT; jedoch ist es für 

die Evaluation von lokoregionären Therapien trotzdem geeignet [Wong 2004, Wong 2005]. 

Eine Kombination der funktionellen und der morphologischen Schichtbildgebung bietet das 

PET-CT. Dabei werden die Ergebnisse beider Techniken in einem Bild fusioniert, so dass 

eine hochauflösende Bildgebung mit integrierten Informationen über die Aktivität der 

abgebildeten Region entsteht. Diese Modalität wird den Anforderungen der Evaluation des 

Ansprechens auf lokoregionäre Therapieverfahren gerecht, die Überlegenheit des PET-CTs 

gegenüber CT oder PET als solitären Evaluationsverfahren konnte in mehreren Studien 

gezeigt werden [Lardinois 2003] [Pelosi 2004]. 
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2.4 Zelltodformen und Nukleosomen als zirkulierende Zelltodprodukte 

2.4.1 Zelltodformen 

Zelltod ist ein essentieller biologischer Prozess in mehrzelligen Organismen, sowohl während 

der Embryogenese, als auch später bei der Zelldifferenzierung und bei der Aufrechterhaltung 

der Zellhomöostase. Nach einer Klassifikation von Galluzzi et al. werden anhand von 

morphologischen Kriterien vier verschiedene Zelltodarten unterschieden: Apoptose, 

Autophagie, Nekrose und die mitotische Katastrophe [Galluzzi 2007]. Eine Übersicht über die 

verschiedenen Zelltodarten ist Abbildung 4 zu entnehmen. 

 

Interessanterweise führt sowohl vermehrter Zelltod, wie zum Beispiel bei Lepra, aber auch 

die Dysregulation im Sinne eines verhinderten Zelltods zu Krankheiten. So ist die Fähigkeit 

von Zellen sich der Apoptose zu entziehen ein anerkanntes Kennzeichen für die Malignität 

eines Tumorgewebes [Hanahan 2000].  

Abbildung 4: Morpholgische Kennzeichen der vier verschiedenen Zelltodarten 
Apoptose, Nekrose, Autophagie und mitotische Katastrophe [Bild nach de Bruin 2008] 

 

Nicht apoptotischer Zelltod 

Die bekannteste nicht apoptotische Zelltodform ist die Nekrose. Wie in Abbildung 4 zu 

erkennen, ist die Nekrose morphologisch gekennzeichnet durch Zellschwellung mit 

Vakuolenbildung des Zytoplasmas und Verlust der Membranintegrität. Nekrose tritt vor allem 

bei Infektionen und Ischämie auf und führt über Zytokine zu einer Stimulation des 

Immunsystems mit Inflammation. Aufgrund der Tatsache, dass Nekrose bei 

Noxeneinwirkung auftritt, wurde sie lange als unkontrollierter, das heißt nicht programmierter 

Zelltod bezeichnet, um sie von der streng regulierten Apoptose, die vom Organismus 
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induziert wird, abzugrenzen. [de Bruin 2008] Allerdings wurde festgestellt, dass Nekrose über 

den Tumornekrosefaktor α oder FAS-Ligandrezeptoren ebenfalls stimuliert werden kann 

[Vercammen 1998 A] [Vercammen 1998 B], so dass eine strenge Kategorisierung in 

„progremmierten“ und „unprogrammierten“ Zelltod schwierig erscheint.  

Für die mitotische Katastrophe gibt es keine einheitliche Definition: Morphologische 

mikroskopische Kennzeichen sind vergrößerte, multinukleare Zellen sowie Zeichen für einen 

mitotischen Defekt, wie inkomplette Zellkernkondensation und nicht korrekt 

zusammengelagerte Chromosomenpaare [de Bruin 2008]. Lange war man der Auffassung, 

dass dieser Zelltod eintritt, wenn eine Zelle verfrüht oder in einem instabilen Zustand in die 

Mitose eintritt, und dass er vor allem durch radioaktive Strahlung ausgelöst wird. Heute 

existieren mehrere Standpunkte zur Eingruppierung der mitotischen Katastrophe: als die 

schon beschriebene eigenständige Form des Zelltods, als spezielle Form der Apoptose, oder 

aber als Vorstufe von Nekrose und Apoptose. [Vakifahmetoglu 2008 ] 

Die Autophagie, also die Selbstverdauung von Zellen, ist definiert als ein Prozess, in dem 

Zellorganellen von lysosomalen Proteasen abgebaut werden. Morphologisches Kennzeichen 

dieses Prozesses ist das Vorkommen von doppelmembranigen Vesikeln, die Zellorganelle 

enthalten. [de Bruin 2008] Diese Form des Zelltods wird beim Menschen vor allem bei 

Tumorbehandlungen beobachtet. Da die Autophagie jedoch nicht immer zum Absterben der 

Zelle führt, ist es im Moment noch unklar, ob es sich dabei um einen Weg der Tumorzellen 

handelt, sich der Apoptose zu entziehen, oder um einen therapeutischen Effekt der 

Tumortherapie, der tatsächlich letztendlich zum Zelltod führt [Kondo 2006]. 

 

Apoptose 

Die Apoptose wurde im Lauf der letzten 150 Jahre mehr als fünfmal unabhängig voneinander 

von verschiedenen Forschern beschrieben [Cotter 2009]. Der Erste war 1842 Carl Vogt, der 

diesen programmierten Zelltod bei der Embryonalentwicklung von Kröten beobachtete  

[Vogt 1842], eine erstaunliche Leistung, nachdem die Zelltheorie erst drei Jahre zuvor von 

Schleiden und Schwann aufgestellt wurde. Der Begriff Apoptose wurde allerdings erst 1972 

von Kerr, Wyllie und Currie geprägt, nachdem sie Versuche an toxinbehandelten Leberzellen 

durchgeführt hatten [Kerr 1972]. Das Wort stammt aus dem Griechischen und beschreibt das 

Herabfallen von Blüten- oder Laubblättern und steht damit sinnbildlich für den 

programmierten Tod von Teilen eines Organismus, ohne den der Gesamtorganismus nicht 

überleben kann. So ist der streng regulierte Prozess der Apoptose nicht nur während der 

Embryonalentwicklung von entscheidender Bedeutung, sondern findet zu jedem Zeitpunkt 

auch im bereits vollentwickelten Organismus statt, um die Zellhomöostase aufrechtzuerhalten 
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und um nicht mehr funktionsfähige Zellen zu eliminieren. Jede kernhaltige Zelle enthält in 

ihren Genen die Information für die Proteine, die für die Apoptose nötig sind, welche auch 

beständig exprimiert werden [Weil 1996].  

Es sind viele Auslöser für die Apoptose bekannt: Irreparable Gendefekte, die Behandlung mit 

Zytostatika und Radiatio, oder die Bindung von bestimmten Molekülen an 

Oberflächenrezeptoren, die zur Übergruppe der Tumor-Nekrose-Faktor-Rezeptoren gehören. 

Über diese sogenannten „Todesrezeptoren“ wird der extrinsische Aktivierungsweg in Gang 

gesetzt, der sich vom intrinsischen Aktivierungsweg dadurch abgrenzt, dass hierbei durch 

intrazelluläre Signale eine Ruptur der inneren Membran der Mitochondrien zur Endstrecke 

des Apoptosesignalwegs führt. Beide Aktivierungswege enden immer in der gleichen 

Kaskade, die die typischen stereotypen morphologischen Kennzeichen der Apoptose, wie 

Chromatinkondensation, Zellschrumpfung und Budding, also das Ablösen von kleinen 

Zellkörperchen, hervorruft und verschiedene Caspasen involviert. [de Bruin 2008] Vor allem 

die Effektor-Caspase-3 spielt dabei eine Schlüsselrolle, da diese spezifisch die Endonuklease 

CAD aktiviert, die normalerweise durch eine Bindung an das Protein ICAD inhibiert wird. 

Nach Abspaltung von ICAD kann CAD in den Zellkern eindringen und dort das Chromatin in 

nukleosomale Fragmente abbauen [Sakahira 1998]. Caspase-3 initiiert weiterhin die 

Reorganisation des Zytoskeletts, was zur Zellschrumpfung führt, die Desintegration von 

Zellen sowie die Abschnürung von Apoptosekörperchen. Diese werden durch Makrophagen 

abgebaut, allerdings ohne Zeichen der Inflammation, was ein Hauptunterscheidungsmerkmal 

zur oben angesprochenen Nekrose darstellt [de Bruin 2008]. 

 

2.4.2 Struktur und Physiologie der Nukleosomen 

Struktur 

Da die DNS der menschlichen Zelle als lineares Makromolekül eine Länge von ungefähr  

180 cm hat, ist sie aus Platzgründen in einem mehrstufigen Ordnungsprinzip organisiert – im 

Gegensatz zu der kleineren DNS der Prokaryonten und Mitochondrien, die in einer 

ungebundenen ringförmigen Struktur vorliegt. Die meiste Zeit ist die menschliche DNS 

maximal komprimiert und bildet das sogenannte Heterochromatin. Nur kleine Teile, die 

gerade Transkriptions-, Replikations- oder Reparaturprozessen unterliegen, sind in einem 

dekondensierten Zustand. [Kronberg 1999]  
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                         Abbildung 5: Aufbau des Chromatins [modifiziert nach Plattner 1997] 
 

Wie in Abbildung 5 zu sehen, ist die kleinste Struktur im Organisationsprinzip das 

Nukleosom. Es besteht aus verschiedenen basischen Proteinen, sogenannten Histonen, und 

der DNS. Der Histonkern im Zentrum des Nukleosoms besitzt eine oktamere Struktur, die 

sich aus je zwei Histonen H2A, H2B, H3 und H4 zusammensetzt. Um die flache Außenseite 

des Histonproteinkomplexes winden sich 147 Basenpaare der DNS in 1,65 Umwindungen. 

Zwischen den einzelnen Nukleosomenkernen liegt eine 20-80 Basenpaare lange Linker-DNS, 

die von Histonen der Gruppe H1 stabilisiert wird. [Luger 1997] 

 

Physiologie 

Funktion  

Nukleosomen haben mehrere Funktionen. Neben der Stabilisierung der DNS durch die dichte 

Kondensation sind sie an der Regulierung der Transkription beteiligt. Im kondensierten 

Stadium ist die DNS zwar gut vor Noxen geschützt, ist aber weder für Enzyme noch für 

Hormone oder Transkriptionsfaktoren zugänglich [Kronberg 1999] [Khorasanizadeh 2004]. 

Diese komplexe Funktion der Transkriptionsregulation wird vor allem von den Histonen im 

Nukleosomenkern gewährleistet, die wiederum durch Modifikationen an ihren Seitenketten 

beeinflusst werden. Diese Modifikationen umfassen Acetyl-, Methyl-, Phosphor-, Ubiquitin- 

und ADP-Ribosegruppen. [Kronberg 1999] [Strahl 2000] [Grunstein 1997] So werden 

beispielsweise durch Übertragung von Acetylgruppen die Bindungen sowohl zwischen den 

Histonen als auch zwischen den Histonen und der DNS gelockert. Da die Nukleosomen keine 

starren Verbindungen darstellen, kann sich durch diese Dekondensation des Chromatins das 
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Histonoktamer entlang der DNS-Doppelhelix verschieben, und ein DNS-Abschnitt wird für 

die Transkriptionsfaktoren zugänglich. Werden Histone hingegen deacetyliert, verdichtet sich 

die Kondensation wieder, und die Genabschnitte können nicht weiter abgelesen werden. 

[Kronberg 1999] [Strahl 2000] [Khorasanizadeh 2004]. 

 

Freisetzung, Metabolismus und Elimination der Nukleosomen 

Im Zuge der Apoptose werden, wie im Kapitel Zelltodformen beschrieben, durch die 

Caspasen unter anderem DNAsen proteolytisch aktiviert, wodurch nukleosomalen DNS-

Fragmente entstehen [Lichtenstein 2001] [Enari 1998] [Kanduc 2002]. Der überwiegende Teil 

dieser DNS-Fragmente wird wie die übrigen Zellabbauprodukte in apoptotischeKörperchen 

verpackt und von Nachbarzellen und Makrophagen phagozytiert. [Lichtenstein 2001] 

[Hengartner 2001]. Ein kleiner Teil der Nukleosomen wird nach der Desintegration der 

Zellmembran allerdings in den extrazellulären Raum und schließlich in die Blutbahn 

abgegeben, so dass ab etwa 12 Stunden nach dem morphologischen Nachweis von Apoptose 

ein Anstieg der frei zirkulierenden Nukleosomen nachgewiesen werden kann  

[van Nieuwenhuijze 2003]. 

 

Die Halbwertszeit der zirkulierenden Nukleosomen beträgt in in vivo Versuchen vier Minuten 

[Rumore 1992], verlängert sich jedoch nach Erreichen eines bestimmten Schwellenwertes 

[Gauthier 1996], was auf ein sättigbares Abbausystem hinweist. Die Eliminations-

geschwindigkeit scheint aber nicht nur von der anfallenden Menge, sondern auch von der 

Zusammensetzung der DNS abzuhängen: Einzelstrang-DNS wird schneller abgebaut als 

Doppelstrang-DNS, vor allem, wenn diese noch mit Proteinen, wie beispielsweise den 

Histonen, assoziiert ist [Emlen 1984]. Des weiteren scheint der Nukleosomenabbau einer 

bestimmten Kinetik zu folgen: In einer ersten, schnellen Phase werden in etwa 90% der 

Nukleosomen abgebaut. Diese wird von einer zweiten, langsameren Phase gefolgt.  

[Burlingame 1996] 

 

Die frei zirkulierende DNS wird auf verschiedenen Wegen eliminiert. Entweder wird die 

DNS durch Endonukleasen in der Blutbahn degradiert [Emlen 1988], oder sie wird von 

Makrophagen und anderen Mitgliedern des Retikuloendothelialensystems phagozitiert [Odaka 

1999]. Ist der Abbau der DNS verzögert, kann sowohl die DNS an sich als auch der 

Nukleosomenkomplex antigenen Charakter annehmen und den Körper zur 

Antikörperproduktion anregen, was zu autoimmunen Erkrankungen wie Lupus erythematodes 

führt [Macanovic 1997] [Burlingame 1994] [Amoura 2000]. Über 70% der bereits abgebauten 
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nukleosomalen DNS wird in der Leber weiter prozessiert [Gauthier 1996]. Ein weitaus 

kleinerer Teil der zirkulierenden nukleosomalen DNS wird als Apoptosekörperchen in 

liposomaler Form über die Niere eliminiert [Lichtenstein 2001]. 

 

2.4.3 Zirkulierende Nukleosomen in der Onkologie 

Im gesunden menschlichen Körper werden täglich etwa 1011 bis 1012 Zellen neu gebildet. Zur 

Erhaltung der Zellhomöostase muss dementsprechend eine ähnlich große Anzahl an Zellen 

abgebaut werden. Die Apoptose ist dabei der Haupteliminierungsmechanismus. Dadurch wird 

der größte Teil der beim gesunden Menschen messbaren zirkulierenden Nukleosomen 

produziert. [Lichtenstein 2001] Weitere Nukleosomenquellen sind Lymphozyten, die aktiv 

Nukleosomen sezernieren können, sowie die Freisetzung aus bestimmten Zelltypen nach 

deren Differenzierung, wie zum Beispiel den Erythroblasten, die im Laufe ihrer Entwicklung 

ihren Zellkern verlieren [Lichtenstein 2001] [Stroun 2000].  

Diese Zellhomöostase ist bei verschiedenen Erkrankungen gestört. Bei degenerativen 

Erkrankungen kommt es beispielsweise zu überschüssigem Zellabbau und bei 

Tumorerkrankungen zu überschießendem Zellwachstum [Lichtenstein 2001] [Fadeel 1999] 

[Holdenrieder 2004 B]. Des weiteren ist bekannt, dass auch bei autoimmunen und 

inflammatorischen, sowie bei ischämischen Erkrankungen die Apoptose dereguliert ist 

[Lichtenstein 2001] [Fadeel 1999] [Holdenrieder 2004 B]. Deshalb wurde in den letzten 

Jahren von mehreren Forschungsgruppen untersucht, ob Nukleosomen in der klinischen 

Labordiagnostik zum Screening, zum Staging, zur Prognoseabschätzung und zur frühen 

Prädiktion eines Therapieansprechens bei benignen und malignen Erkrankungen eingesetzt 

werden können.  

 

Obwohl Patienten mit soliden Tumoren höhere Nukleosomenwerte im Serum aufweisen als 

Gesunde oder Patienten mit Autoimmunerkrankungen [Holdenrieder 2001 B], lassen sich 

damit keine Screeninguntersuchungen durchführen. Hauptgrund dafür ist, dass die 

Nukleosomenkonzentrationen starken interindividuellen Unterschieden unterliegen. So 

werden zum Teil zwar signifikante Unterschiede zwischen Tumor- und Nicht-

Tumorpatientengruppen gefunden. Durch die starke Überlappung der Wertlagen ist aber eine 

Zuordnung der Patienten im Einzelfall nicht möglich.[Holdenrieder 2001 C]. Die im 

Vergleich zum gesunden Kollektiv erhöhten Nukleosomenkonzentrationen konnten bei 

geringer Sensitivität auch in einer Reihe von Studien an spezifischen Tumorentitäten wie 

Prostatakarzinom [Ellinger 2008 A], Lungenkarzinom [Sozzi 2001] [Herrera 2005], 
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invasivem Harnblasenkarzinom [Ellinger 2008 B], Hodenkarzinom [Ellinger 2009] und 

Mammakarzinom [Kuroi 1999] bestätigt werden. In einer prospektiven Studie konnte sogar 

nachgewiesen werden, dass schwere Raucher mit erhöhten Nukleosomenwerten ein größeres 

Risiko für die Entstehung eins Lungenkarzinoms haben [Sozzi 2009]. Allerdings gab es auch 

bei diesen Studien zum Teil deutliche Überlappungen der Wertelagen in den untersuchten 

Gruppen, was den Einsatz von zirkulierenden Nukleosomen für diagnostische oder gar 

Screeninguntersuchungen von Tumorerkrankungen sehr limitiert. 

 

Auch für Beurteilung der Tumorausbreitung eignen sich Nukleosomen nur bedingt. Es fanden 

sich zwar signifikant höhere Nukleosomenwerte in einigen Studien bei Patienten mit 

fortgeschritteneren Tumoren [Leon 1977] [Maebo 1990] [Fournie 1995] [Holdenrieder 2001 

B] [Holdenrieder 2005], die jedoch in andere Studien wiederum nicht bestätigt werden 

konnten; bei einzelnen Tumorentitäten waren bereits in frühen Stadien deutlich erhöhte 

Nukleosomenwerte zu messen [Kuroi 2001] [Holdenrieder 2001 A, B] [Sozzi 2001]. 

 

Auch bei der Frage nach der prognostischen Aussagekraft von Nukleosomen bei 

Tumorpatienten ist die Studienlage derzeit uneinheitlich: So wurden sowohl bei Patienten mit 

kolorektalem [Schwarzenbach 2008] und Mammakarzinom [Silva 2002] [Gal 2004] als auch 

bei Patienten mit hepatozellulärem Karzinom [Ren 2006] ein Zusammenhang von erhöhten 

Nukleosomenwerte mit einer schlechteren Prognose gefunden. Andere Studien beim 

Mammakarzinom [Kuroi 1999] und Lungenkarzinom [Sozzi 2001] hingegen fanden keine 

Assoziation mit der Prognose. 

 

Die aussagekräftigsten Ergebnisse für zirkulierende Nukleosomen liegen derzeit für die 

frühzeitige Prädiktion eines Therapieansprechens bei Tumorpatienten vor. Diese ist von 

wesentlicher klinischer Bedeutung, da die Therapiekontrolle bei vielen systemischen und 

lokalen Therapien bisher erst mehrere Wochen nach Therapiebeginn durch bildgebende 

Verfahren erfolgen kann. Sollte die Therapie nicht ausreichend wirksam sein, verliert der 

Patient wichtige Lebenszeit und ist aufgrund der hohen Toxizität vieler Therapien häufig 

erheblichen Nebenwirkungen ausgesetzt. Könnte man das Therapieansprechen schon 

innerhalb der ersten Tage nach Behandlungsbeginn voraussagen, wäre es möglich dem 

Patienten früher wirksamere Therapiealternativen anzubieten. Neben den evidenten Vorteilen 

für den Patienten selbst, können durch eine frühere Umstellung auf eine effiziente Therapie 

auch insgesamt Kosten im Gesundheitswesen eingespart werden. 
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Eine Reihe von Studien mit verschiedenen Karzinomen und Therapieverfahren zeigte in 

ähnlicher Weise das Potential von zirkulierenden Nukleosomen für die frühzeitige 

Beurteilung des Therapieansprechens:  

Generell fand sich bei unterschiedlichen Tumorarten ein Anstieg der Nukleosomen-

konzentration bereits innerhalb der ersten drei Tage nach Beginn einer Chemo- und 

Radiotherapie. Ein anschließender Abfall unter die Hälfte des prätherapeutischen Wertes war 

dabei häufig bei Patienten mit einer Regression des Tumors zu sehen, wohingegen bei 

Patienten mit Progression häufig eine Zunahme um mehr als 50% zu beobachten war 

[Holdenrieder 2001 A]. Bei Patienten mit fortgeschrittenem Lungenkarzinom konnte 

ebenfalls anhand der Kinetik der gemessenen Nukleosomenkonzentrationen bereits während 

der ersten Therapiewoche das Nicht-Ansprechen der Behandlung sensitiv und spezifisch 

beurteilt werden. Wiederum kam es bei den meisten Patienten zu einem schnellen Anstieg der 

Nukleosomenwerte, gefolgt von einem raschen Abfall über die erste Woche nach Applikation 

der Therapie. Bei einem Therapieansprechen war im Gegensatz zur Tumorprogression ein 

weniger starker Anstieg und im Verlauf ein stärkerer Abfall der Nukleosomen zu sehen 

[Holdenrieder 2004 C]. Bestätigt werden konnten diese Ergebnisse in einer weiteren Studie, 

die eine frühzeitige Aussage über das Therapieansprechen anhand von Nukleosomen und 

Cytokeratin-19 Fragmenten (CYFRA 21-1) bei Patienten mit nicht-kleinzelligem 

Bronchialkarzinom im Stadium III und IV unter Chemotherapie ermöglichte [Holdenrieder 

2004 A]. Auch bei Rezidivpatienten mit nicht-kleinzelligem Bronchialkarzinom konnte mit 

Hilfe von Nukleosomen und CYFRA 21-1 noch vor Beginn des zweiten Therapiezyklus eine 

Aussage zum Therapieerfolg gemacht werden [Holdenrieder 2009].  

Auch bei Patienten mit einem Pankreas- oder einem kolorektalen Karzinom, die sich einer 

Radiochemotherapie unterzogen, konnte anhand des Nukleosomenverlaufs eine zuverlässige 

Aussage über den Therapieerfolg gemacht werden. Hierbei wiesen Patienten mit einer 

besseren Ansprechen bzw einer besseren Prognose eine kleinere Fläche unter der Kurve der 

Nukleosomenwerte innerhalb der ersten drei Therapietage auf [Kremer 2005] [Kremer 2006]. 

In einer weiteren Studie bei Patienten mit akuter myeloischer Leukämie war der Erfolg der 

zytostatischen Therapie mit Hilfe der Nukleosomen innerhalb der ersten beiden Wochen 

frühzeitig zu prognostizieren. Dabei waren höhere Nukleosomenwerte im Verlauf der ersten 

beiden Wochen mit einem besseren Ansprechen assoziiert und wiesen auf eine anschließende 

komplette Remission hin [Mueller 2006]. 
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2.5 Therapiemonitoring durch zirkulierende Biomarker 

Neben den bereits im vorangegangenen Kapitel besprochenen Nukleosomen wurden 

innerhalb dieser Studie weitere Parameter als prädiktive und prognostische Biomarker im 

Rahmen einer Radioembolisation evaluiert, die in diesem Kapitel kurz erläutert werden. 

 

Carcinogenes Embryonales Antigen (CEA) 

CEA ist ein polyglykolysiertes einkettiges Peptid, welches 1965 im Adenokarzinom des 

Kolons entdeckt wurde [Gold 1965]. Es ist allerdings kein spezifischer Tumormarker, da sich 

mäßig erhöhte Werte auch bei Hepatitis, Leberzirrhose, Pankreatitis, Gastritis und bei 

Rauchern finden. Wie bei fast allen anderen Tumormarkern eignet es sich daher nicht als 

Screeningparameter, sondern dient nach chirurgischer Resektion als Verlaufsparameter. 

[Pandha 1995], insbesondere beim kolorektalen Karzinom, bei dem – stadienabhängig – 

prätherapeutisch bis zu 90% der Patienten erhöhte Werte zeigen [Goldstein 2005]. Sowohl die 

amerikanischen als auch die europäischen Leitlinien sehen in ihm einen prognostischen 

Marker vor chirurgischer Primärtherapie und einen guten Verlaufsparameter nach Resektion 

zur Rezidivdiagnostik und unter Chemotherapie in fortgeschrittenen Krankheitsstadien zur 

Evaluation der Therapieeffektivität [Duffy 2007] [Sturgeon 2008]. Präoperativ erhöhte Werte, 

sowohl in der Primärtherapie als auch bei Metastasenresektion, sind mit einer schlechteren 

Prognose assoziiert. Steigende CEA-Konzentrationen nach Primärtherapie zeigen ein Rezidiv 

an, wobei die höchsten Werte beim Auftreten von Lebermetastasen gemessen werden. 

[Goldstein 2005]  

Für das Mammakarzinom sind die Empfehlungen nicht eindeutig: Während die europäischen 

Leitlinien CEA als Verlaufsparameter für die Frühdiagnose von Rezidiven ausdrücklich 

empfehlen [Molina 2005], sind die amerikanischen ASCO-Guidelines von 2007 

zurückhaltender [Harris 2007].  

 

Carbohydrate Antigen CA 19-9 

CA 19-9 entspricht dem sialysierten Lewis-Blutgruppenantigen [Pandha 1995]. Es ist der 

sensitivste Biomarker beim Pankreaskarzinom und kommt insbesondere für das Follow-up 

während und nach einer Therapie zur Anwendung [Boeck 2006] [Locker 2006].  

Auch beim kolorektalen wird CA 19-9 als flankierender Marker zusätzlich zum CEA 

gemessen. Mehrere Studien bestätigten den hohen prognostischen Aussagewert von CA 19-9 

bei Patienten mit Kolonkarzinom [Reiter 2000] [de Haas 2010]. Allerdings wird ein 
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allgemeiner Einsatz beim kolorektalen Karzinom derzeit nicht durch die aktuellen 

europäischen Leitlinien gestützt [Duffy 2007]. 

 

Carbohydrate Antigen CA 15-3 

Ähnlich wie CA 19-9 ist das Mucin CA 15-3 ein transmembranöses Glykoprotein, das in fast 

allen menschlichen Zellen produziert wird. Physiologisch dient es der Zelladhäsion. Bei 

Tumorerkrankungen wird es überexprimiert und verändert glykolysiert, so dass es einerseits 

einen Teil seiner Funktion verliert und andererseits höhere Serumspiegel, vor allem bei 

metastasierten Krankheitsgeschehen, gemessen werden. So weisen etwa 20% der Patientinnen 

mit lokalem Mammakarzinom und 80% mit einem metastasiertem Mammakarzinom erhöhte 

CA 15-3 Werte auf. [Duffy 2000] Obwohl sich die Bestimmung von CA 15-3-

Konzentrationen im klinischen Alltag in Europa beim Mammakarzinom zur präklinischen 

Rezidivdiagnostik und zum Therapiemonitoring durchgesetzt hat [Molina 2005], wird sie von 

den amerikanischen Leitlinien nur sehr zurückhaltend zum Therapiemonitoring bei 

fortgeschrittenen Tumorleiden zusätzlich zur Bildgebung empfohlen [Harris 2007]. Auch CA 

15-3 eignet sich nicht zum Screening, da er gerade in frühen Tumorstadien zu wenig sensitiv 

und spezifisch ist. So werden auch bei anderen malignen Erkrankungen, wie Bronchial- und 

Uteruskarzinom, erhöhte CA 15-3 Werte gemessen [Pandha 1995], und bei weitem nicht alle 

Mammakarzinompatientinnen weisen erhöhte Werte auf [Molina 2005]. 

 

Alpha-Fetoprotein (AFP) 

Physiologisch wird AFP von der fetalen Leber, dem Dottersack und dem Gastrointestinaltrakt 

produziert. So haben Schwangere vor allem im zweiten und dritten Trimenon stark erhöhte 

Werte, die dann innerhalb weniger Tage nach der Geburt abfallen. Werden beim 

erwachsenen, nicht schwangeren Patientinnen oder Patienten stark erhöhte AFP-

Konzentrationen gemessen, weist dies auf ein malignes Geschehen z.B. auf einen 

Keimzelltumor oder ein hepatozelluläres Karzinom hin. [Pandha 1995] Die höchsten Werte 

werden beim primären Leberkarzinom gemessen, und ab einem Wert von 200 ng/ml kann von 

einem HCC ausgegangen werden, jedoch erreichen diese Größenordnung nur ungefähr ein 

Drittel der erkrankten Patienten [Verslype 2009]. Auch wurde festgestellt, dass HCC-

Patienten mit Werten über 400 ng/ml ein niedrigeres medianes Überleben haben. Bei diesen 

hohen AFP-Werten sind die Tumorknoten größer, häufiger dissmeniniert in beiden 

Leberlappen und wachsen in die Portalvene ein [Grizzi 2007]. Allerdings können mäßig 

erhöhte Werte auch bei verschiedenen benignen Erkrankungen wie einer virale Hepatitis, 
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Leberzirrhose oder chronisch entzündliche Darmerkrankung sowie bei anderen Tumoren oder 

Lebermetastasen gefunden werden [Stieber 2008].  

 

Neuronenspezifische Enolase (NSE) 

NSE ist eines von drei Isoenzymen des Dimers Enolase, das vor allem in neuronalen 

Geweben produziert wird und eine wichtige Rolle im Zuckerstoffwechsel spielt. Erhöhte 

Werte finden sich beim Neuroblastom, bei neuroendokrinen Tumoren, wie 

Medullarzellkarzinom der Schilddrüse, Phäochromozytom und Karzinoiden, sowie beim 

kleinzelligen und auch z.T. beim nichtkleinzelligen Lungenkarzinom [Pandha 1995]. Als 

diagnostischer Tumormarker hat sich die NSE vor allem bei Karzinoiden und dem 

kleinzelligen Lungenkarzinom etabliert. [Oremek 2007] [de Herder 2007] [Stieber 2008] 

 

Cytokeratin-19 Fragmente (CYFRA 21-1) 

Die Cytokeratin-19 Fragmente sind Bruchstücke des Zytoskeletts mit einem 

Molekulargewicht von 40 kDa. Sie werden im Zytoplasma mehrerer epithelialer Tumore 

überexprimiert und dann bei apoptotischem und nekrotischem Zelltod in die Blutzirkulation 

freigesetzt. Mittels verschiedener immunologischer Methoden können diese Cytokeratin-

Fragmente dann detektiert werden. [Buccheri 2001] Erhöhte Werte können nicht nur bei 

malignen Erkrankungen wie Mamma- und Lungenkarzinom gefunden werden, sondern auch 

bei Leberzirrhose und Nierenversagen. Allerdings sind die Werte bei den Tumorerkrankungen 

wesentlich höher, vor allem, wenn es sich um ein metastasiertes Geschehen handelt.  

[Molina 1994] So findet CYFRA 21-1 nicht nur als Zelltodparameter Anwendung, sondern 

hat sich als Tumormarker, vor allem beim Lungenkarzinom, etablieren können  

[Buccheri 2001][Stieber 2008].  

 

Laktatdehydrogenase (LDH) 

Die Laktatdehydrogenase ist ein Enzym, das physiologisch gelöst im Zytoplasma in praktisch 

allen Zellen des menschlichen Körpers vorkommt und die Oxidation von Laktat zu Pyruvat 

mit der gleichzeitigen Reduktion von NAD+ zu NADH/H+ bzw. dessen Rückreaktion 

katalysiert. Da es ein streng intrazellulär vorkommendes Enzym ist, ist die Detektion von 

LDH im Blut über dem Normbereich immer auf Zellschädigung zurückzuführen. Es 

existieren fünf Isoenzyme, die jeweils in unterschiedlichen Organen vorkommen, weshalb die 

in der Routinediagnostik durchgeführte allgemeine Bestimmung ohne Aufschlüsselung der 

Isoenzyme relativ unspezifisch ist. Die LDH steht also als intrazelluläres Enzym, ähnlich wie 

die Nukleosomen, die physiologisch auch nur innerhalb von Zellen vorkommen, unspezifisch 
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für erhöhten Zelluntergang. [Renz-Polster 2004] Neuere Untersuchunge konnten zudem 

zeigen, dass Tumorzellen eine Überexpression von LDH aufweisen, so dass dies auch eine 

Erklärung für erhöhte LDH- Serumwerte in Patienten mit malignen Erkrankungen sein könnte 

[Feron 2009].  

 

C-reaktives Protein (CRP)  

Das CRP gehört zur Familie der Pentraxine, ist also ein zyklisches Pentamer mit 

kalziumabhängiger Ligandenbindung. Es ist ein typischer Vertreter der Akutphase-Proteine, 

welches während der akuten Phase der Inflammation um mehr als 25% des Ausgangswerts 

ansteigt. Nach Stimulation durch Zytokine, insbesondere IL-6, wird es innerhalb von Stunden 

in der Leber synthetisiert. CRP steigt vor allem bei Erkrankungen entzündlicher Genese an, 

wobei eine bakterielle Infektion den stärksten Stimulus darstellt. Da aber auch rheumatische 

Erkrankungen und maligne Neoplasien mit Entzündung einhergehen, wird CRP auch dort als 

Verlaufsparameter verwendet. Doch auch prognostischer Wert konnte in letzter Zeit für CRP 

für viele Erkrankungssituationen nachgewiesen werden: Leicht erhöhte CRP-Level sind mit 

einem erhöhten Risiko für die Entwicklung von kardiovaskulären Erkrankungen, 

metabolischem Syndrom und Tumoren assoziiert. Die quantitative Bestimmung erfolgt 

mittels Nephelometrie, wobei sich der Referenzbereich bis 0,5 mg/dl erstreckt. [Wang 2009] 

 

Glutamatoxalacetat-Transaminase (GOT) bzw Aspartat-Aminotransferase (AST) und 

Glutamatpyruvattransaminase (GPT) bzw. Alanin-Aminotransferase (ALT) 

Die GOT (bzw. AST) und GPT (bzw. ALT) gehören zur Gruppe der Transaminasen, welche 

durch Desaminierung für den Ab- und Umbau von Aminosäuren verantwortlich sind. Die 

beiden Enzyme kommen nur in geringer Konzentration in extrahepatischen Organen vor, so 

dass sie vor allem in der Leberdiagnostik eingesetzt werden. Transaminasenanstiege finden 

sich vor allem bei Leberschädigung, wie sie bei akuter und chronischer Hepatitis, Alkohol- 

und Medikamentenabusus, sowie bei Infiltration der Leber durch Tumorzellen vorkommt. Zur 

Diagnostik von Lebermetastasen sind die beiden Enzyme jedoch nicht spezifisch genug und 

daher nicht dafür geeignet. 

Da die GPT (ALT) vor allem im Zytoplasma zu finden ist, steigt sie bei akuter 

Leberschädigung schneller an als die GOT (AST), die auch in den Mitochondrien lokalisiert 

ist und vor allem bei schwererer Zellschädigung freigesetzt wird. Tritt hingegen ein isolierter 

GOT (AST)-Anstieg auf, ist dies eher auf eine Herz- oder Skelettmuskulaturschädigung 

hinweisend, so dass die GOT (AST) vor Einführung des herzspezifischen Markers Troponin 

u.a. auch zur Diagnostik des Myokardinfarkts eingesetzt wurde. [Renz-Polster 2004] 
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Gammaglutamyltranspeptidase (GGT) 

Auch die GGT kommt in mehreren Organen vor, hauptsächlich in Leber, Niere und Pankreas. 

Die GGT ist durch ihre Reaktion am Aminosäuretransport in die Zelle hinein beteiligt. Das 

Enzym gehört zu den sogennanten Ektoenzymen, es wird in der Leber gebildet und mit der 

Galle ausgeschieden. Die GGT ist an den Strukturen der Zellmembran angelagert und kann 

davon relativ leicht abgeschilfert werden. Schon bei leichter Störung der Zellintegrität steigt 

die GGT an. Indiziert ist dieser Laborparameter bei Leber- und Gallenwegserkrankungen, da 

hier durch die Cholestase die GGT von der Zelloberfläche abgelöst und nicht mehr 

ausgeschieden wird, so dass es zu einer Erhöhung der Enzymaktivität im Blut kommt. Auch 

bei chronischem Abusus von Alkohol und Medikamenten ist durch eine Induktion der 

Enzymsysteme eine erhöhte Aktivität im Serum nachweisbar. [Renz-Polster 2004] 

 

Alkalische Phosphatase (AP) 

Die AP ist ein Enzym, das Phosphorsäureester hydrolysiert und bei einer Vielzahl von 

Molekülen, wie Proteinen und Nukleotiden, die Phosphatgruppe entfernt. Es existieren 

verschiedene Isoenzyme, die in Darm, Knochen, Plazenta, Leber und Gallenwegen 

vorkommen. In der Leber gehört sie, genauso wie die GGT, zu den Ektoenzymen und steigt 

vor allem bei Cholestase an, aber auch bei Lebermetastasen und schwach bei Hepatitiden. Da 

in der Routine keine Differenzierung der Isoenzyme erfolgt, kann eine AP-Erhöhung auch auf 

Knochenerkrankungen hinweisen. Sehr hohe Werte treten vor allem bei malignen 

Knochentumoren wie beispielweise dem Osteosarkom, Knochenmetastasen oder Morbus 

Paget auf. [Renz-Polster 200] 

 

Bilirubin 

Bilirubin ist ein Abbauprodukt vor allem des Hämoglobins, aber auch des Myoglobins. Es 

entsteht zu 80% in der Milz und ist primär nicht hydrophil. Deshalb wird es an Albumin 

gebunden zur Leber transportiert, wo es dann glucuronidiert wird. Über die Gallenwege 

gelangt das jetzt wasserlösliche Bilirubin in den Darm, wo es im terminalen Ileum weiter zu 

Urobilirubin abgebaut wird. Nach weiteren Umbauprozessen wird der größte Teil über den 

Stuhl ausgeschieden. Kleinere Teile sowohl von Bilirubin als auch von Urobilirubin werden 

über den enterohepatischen Kreislauf rückresorbiert und entweder erneut über die Galle 

ausgeschieden oder erscheinen erst in der Blutbahn, um dann über die Niere eliminiert zu 

werden. Beim Gesunden liegt deshalb das Gesamtbilirubin im Serum unter 1,2 mg/dl. Bei 

einer Hyperbilirubinämie kommt es zu einem Ikterus, wobei sich zunächst die Skleren und bei 

höheren Werten die Haut gelb verfärben. Beim Ikterus wird unterschieden zwischen dem 
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prähepatischem Ikterus, bei zu hohem Anfall von Bilirubin, dem intrahepatischen Ikterus, bei 

dem die Glucuronidierung gestört ist, und dem posthepatischen Ikterus, der bei einer 

extrahepatischen Cholestase entsteht. Zur weiteren Differenzierung der Hyperbilirubinämie 

wird zusätzlich zum Gesamtbilirubin das sogenannte direkte Bilirubin, das dem 

glucuronidierten hydrophilen Bilirubin entspricht, gemessen. [Renz-Polster 2004] 

 

Cholinesterase (CHE) 

Die CHE ist ein in der Leber synthetisiertes Enzym, dessen Funktion im Plasma unbekannt 

ist. Verminderte CHE-Werte im Serum oder Plasma sprechen für eine gestörte 

Proteinsynthese der Leber, wobei die Wertelage mit der Schwere der hepatischen Erkrankung 

korreliert. Allerdings liegen bei akuten Einschränkungen der Leberfunktion die CHE-Werte 

häufig im Referenzbereich, da die Cholinesterase eine relativ lange Halbwertszeit von zehn 

Tagen hat. Bedeutung gewinnt die CHE-Messung vor allem im Verlauf von chronischen 

Erkrankungen, wie Hepatitiden, Leberzirrhose und auch Lebermetastasen. Erniedrigte CHE-

Werte können desweiteren bei Zytostatikatherapien und Einnahme von Kontrazeptiva 

auftreten. [Renz-Polster 2004] 

 

Amylase und Lipase 

Amylase und Lipase sind Enzyme des Pankreas, wobei die Amylase als zweites Isoenzym 

auch in den Speicheldrüsen zu finden ist und die Lipase als pankreasspezifisch gilt. Ihre 

Aufgaben bestehen in der Spaltung von Fetten beziehungsweise von Kohlehydraten. Bei einer 

akuten Pankreatitis oder einem akuten Schub einer chronischen Pankreatitis findet sich 

innerhalb von fünf bis sechs Stunden nach Erkrankungsbeginn eine fünf- bis zwanzigfache 

Erhöhung dieser Blutparameter. Allerdings kann die Amylase innerhalb von zwei Tagen 

wieder in den Referenzbereich abfallen, wohingegen die Lipase bis zu Wochen erhöht bleiben 

kann. [Renz-Polster 2004] 
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3   Patienten und Methoden  

3.1 Patienten  

Den Antrag zu dieser prospektiven Studie hat die Ethik-Kommission der  

Ludwig-Maximilians-Universität bewertet und genehmigt (siehe Anlage 9.2). Ausschließlich 

erwachsene Personen mit vollständiger Aufklärungs- und Zustimmungsfähigkeit wurden in 

diese Studie aufgenommen und vor Abnahme der ersten Blutproben von mir persönlich über 

Ablauf, Theorie und Nutzen umfassend informiert und aufgeklärt; eine unterzeichnete 

schriftliche Einverständniserklärung liegt für alle eingeschlossenen Patienten vor. Sämtliche 

Blutentnahmen zu den in der Studie definierten Zeitpunkten über einen Zeitraum von drei 

Jahren wurden nur durch mich persönlich durchgeführt. 

 

Im Zeitraum von Mai 2006 bis Mai 2008 wurden insgesamt 113 Patienten, die alle auf Station 

K0 der Klinik für Nuklearmedizin des Klinikums der Universität München-Großhadern eine 

SIRT erhielten, in die Studie aufgenommen. Mit Ausnahme von zwei Patienten erhielten alle 

nur eine Therapie, die jeweils beide Leberlappen umfasste. Ein Patient mit Metastasen eines 

kolorektalen Karzinoms erhielt ein zweizeitiges Therapieverfahren selektiv in jeden 

Leberlappen. Bei diesem Patienten wurden bei beiden SIR-Therapien nach Protokoll Blut 

abgenommen und die Daten ausgewertet. Der zweite Patient litt an einem Carcinoid und 

erhielt ebenfalls zeitlich versetzt getrennte Therapien für die beiden Leberlappen. Bei diesem 

wurde jedoch nur die zweite Behandlung für die Auswertung erfasst.  

 

Da es sich bei dieser Studiengruppe um ein Mischkollektiv gehandelt hat, wurden die 

Patienten nach Tumorentität gruppiert. Die größte Diagnosegruppe des Kollektivs waren das 

kolorektale Karzinom mit 49 Patienten, gefolgt vom Mammakarzinom mit 22 Patienten. Die 

weiteren Gruppen absteigend nach Größe waren Cholangiozelluläres- und Pankreaskarzinom, 

Carcinoide, HCC und eine Mischgruppe, die sich aus verschiedenen Karzinomen und einem 

Tumor unbekannten Ursprungs zusammengesetzt hat.  

 

Eine Auflistung der Patienten nach Diagnosegruppe zeigt Tabelle 7. 
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Diagnosegruppe Anzahl Diagnose Anzahl 
Kolorektale Karzinome 49Kolonkarzinom 11
   Sigmakarzinom 22
    Rektumkarzinom 16

Mammakarzinom 22    

Cholangiozelluläres- und Pankreaskarzinom 15Cholangiozelluläres Karzinom 12
    Pankreaskarzinom 3

Carcinoid 7    

Hepatozelluläres Karzinom 6    

Sonstige 14Malignes Melanom 4
   Ovarialkarzinom 3
   Magenkarzinom 2
   Leiomyosarkom 1
   Angiosarkom 1
   Urothelkarzinom 1
   Nebennierenkarzinom 1
    CUP 1
Tabelle 7: Aufschlüsselung des Gesamtkollektivs nach Diagnosegruppen bezogen auf den Primärtumor  

 

Von den 113 in der Studie untersuchten Patienten waren 54 Patienten weiblich und 59 

Patienten männlich, das Alter der Patienten erstreckte sich von 35 bis 80 Jahre. Bei allen 

Gruppen waren zum Teil schon bei Primärdiagnose Fernmetastasen vorhanden, jedoch wurde 

SIRT nur bei Patienten mit Pankreas-, Gallengangs- und hepatozelluläres Karzinom als 

Primärtherapie eingesetzt. Die längste Zeit von Erstdiagnose bis zur SIRT war bei den 

Patientinnen mit Mammakarzinom zu beobachten; das heisst, dass insbesondere beim 

Mammakarziom die SIRT nur als ultima ratio und sehr spät im Krankheitsverlauf eingesetzt 

wurde. Einen Überlick darüber gibt Tabelle 8. 

 

Diagnose- Anzahl Alter [Jahre] 
ED bis M1 
[Monate] 

ED bis SIRT 
[Monate] 

gruppe alle Frauen Männer Median Range Median Range Median Range 
CRC 49 16 33 62,6 35,3-77,9 0 0-127 25,1 6-140 
Pankreas/CCC 15 5 10 67,8 54,9-76,5 3,9 0-145 12 0-153 
Mamma CA 22 22 0 63,9 43,1-72,7 43,5 0-294 103,1 11-336 
Carcinoid 7 3 4 58,6 43,5-70,8 0 0-75 23,9 10-163 
HCC 6 1 5 69,7 60,0-77,9 22,3 0-34 26,3 0-52 
Sonstige 14 7 7 55,4 35,9-80,1 13,6 0-54 41,4 11-175 
Tabelle 8: Patientenübersicht aufgeschlüsselt nach Diagnosegruppen der verschiedenen Tumorentitäten  
(Abkürzungen: ED = Erstdiagnose, M1 = Lebermetastasen, CA = Karzinom) 
 
Die Patientencharakteristika und der weitere Krankheitsverlauf für die beiden größten 

Kollektive, die Kolorektal- und Mammakarzinome, werden aufgrund ihrere gesonderten 

Auwertung in den Tabellen 9 und 10 extra dargestellt. Der weitere Krankheitsverlauf aller 

Patienten wurden über ein Jahr nach SIRT nachverfolgt, nur im Kollektiv der 

Kolorektalkarzinome konnten die Daten eines Patienten nicht erhoben werden.  
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 Kolorektalkarzinomkollektiv Anzahl Prozent (%) 
Patienten 49 100 
Geschlecht   

Weiblich 16 32.7 
Männlich 33 67.3 

Lokalisation des Primärtumors   
Kolon 11 22.5 
Sigma 22 44.0 
Rektum 16 32.5 

Chemotherapien vor SIRT   
FOLFOX 42 85.7 
FOLFIRI 47 95.9 

SIR-Therapien 50  

Therapieansprechen   
REM 9 18 
SD 5 10 
PD 36 72 

Progression aufgrund von   
Lebermetastasen 20 55.6 
Extrahepatische Manifestation 6 16.6 
Verstorben 10 27.8 

Einjahresüberleben   
ja 22 45.8 
nein 26 54.2 

Tabelle 9: Patientencharakteristika im Kollektiv der Kolorektalkarzinome 

 Mammakarzinomkollektiv Anzahl Prozent (%) 
Patienten und SIR-Therapien 22 100 

Therapieansprechen   
REM 3 13,3 
SD 2 9,1 
PD 16 72,7 
Kein Staging 1 4,5 

Progression aufgrund von   
Lebermetastasen 6 37,5 
Extrahepatische Manifestation 6 37,5 
Verstorben 4 25 

Einjahresüberleben   
ja 6 27,3 
nein 16 72,7 

Tabelle 10: Patientencharakteristika im Kollektiv der Mammakarzinome 

SIRT kam nur zum Einsatz, wenn alle anderen möglichen Therapieoptionen ausgeschöpft 

oder wirkungslos waren. Weitere Ausschlusskriterien waren ein schlechter Allgemeinzustand 

(ECOG > 1), vorangegangene externe Strahlenbehandlung der Leber, unzureichende 

Leberfunktion (Bilirubin > 2 mg/dl, GOT/ GPT > 150 U/l, Albumin < 3 mg/dl) und Hinweise 

auf Tumoraktivität außerhalb der Leber mit Ausnahmen von stabile Knochenmetastasen bei 

Mammakarzinompatientinnen. Als Kontraindikationen wurden ein Leber-Lungen-Shunt von 

über 20%, eine Lebervenenthrombose und eine Thrombozytenzahl unter 50.000/µl angesehen. 
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3.2 Studiendesign und Probengewinnung 

Studiendesign 

Die Ziele dieser Arbeit lassen sich durch zwei Fragen definieren, die noch einmal in 

Abbildung 6 optisch dargestellt sind: 

 

1. Können Biomarker bereits prätherapeutisch Hinweise auf das Therapieansprechen und 

Überleben eines Patienten geben und so eine Patientenstratifikation ermöglichen? 

2. Lassen Laborparameter innerhalb der ersten zwei Tage nach SIRT frühzeitig 

Rückschlüsse auf das Therapieansprechen bzw. auf das Überleben der Patienten zu? 

 

 
 
 

Abbildung 6: Studiendesign 

 

Um diese Ziele zu erreichen wurde im Vorfeld ein standardisiertes Vorgehen definiert. Alle in 

diese prospektive Studie aufgenommenen Patienten wurden engmaschig und lückenlos durch 

Blutabnahmen vor der Therapie sowie drei, sechs, 24 und 48 Stunden nach Therapie 

gemonitort. Die Zeitpunkte der Blutabnahmen wurden so gewählt, dass einerseits auch die 

Dynamik der Parameter mit kurzer Halbwertszeit erfasst wurde, und dass sie sich andererseits 

gut in den klinischen Ablauf integrieren ließen und möglichst oft mit Routineabnahmen 

zusammen fielen. 
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Das Panel der gemessenen Laborparameter wurde nach folgenden Kriterien 

zusammengestellt: Um die Tumoraktivität zu beurteilen wurden für jede Entität die jeweils 

anerkannten Tumormarker bestimmt. Da bei SIRT sowohl mit der Strahlung als auch mit der 

Embolisation zytotoxische Noxen gesetzt werden, die Nekrose und Apoptose induzieren, 

wurden die Zelltodparameter Nukleosomen, LDH und CYFRA 21-1 zusätzlich gemessen. Die 

Leberenzyme GOT (AST) und GPT (ALT), sowie die weiteren Leberparameter GGT, AP und 

Bilirubin wurden bestimmt, um den durch die Therapie induzierten Leberschaden zu 

überwachen. Wegen der in Studien beschriebenen Inflammation nach SIRT [Bilbao 2009] 

wurde CRP gemonitort. Die Pankreasenzyme Amylase und Lipase wurden zur Objektivierung 

der beschriebenen milden Pankreatitiden als Nebenwirkung der Radioembolisation [Pöpperl 

2005] bestimmt.  

 

Probengewinnung und Vorbehandlung 

Vor jeder ersten Blutentnahme lag das Einverständnis des Patienten zur Teilnahme an dieser 

Studie vor. Das Blut wurde, wenn möglich, am Tag vor der Therapie oder am Morgen des 

Therapietages sowie drei und sechs Stunden nach Therapiebeginn eigenhändig von mir 

abgenommen. Die Abnahmen für den 24- und 48-Stundenwert wurden in der Regel von den 

ärztlichen Kollegen auf den Stationen zusammen mit den Routinekontrollen abgenommen.  

 

Das möglichst hämolysefreie Blut wurde in 9ml-Serum- und 4,7ml-Kalium-EDTA-

Plasmaröhrchen der Firma Sarstedt (S-Monovette®) abgenommen und umgehend ins Institut 

für Klinische Chemie gebracht. Nach der von Holdenrieder et al. [Holdenrieder 2001] 

vorgeschlagenen Behandlung wurde das Blut spätestens eine, in Einzelfällen bis zwei Stunden 

nach Abnahme bei 3000 Umdrehungen/min für zehn Minuten zentrifugiert und vom 

Blutkuchen abgesert. 1000 µl des Serums wurden mit 100µl 100mM-EDTA-Lösung 

(Ethylendiamin-Tetraacetat) versetzt. Jeweils zwei Aliquots dieser Mischung, des nativen 

Serums und des abpipettierten Plasmas wurden in ca. 500µl-Portionen in 2ml-Röhrchen der 

Firma Greiner mit Schraubverschluss abgefüllt und bei -80 °C gelagert, um später gesammelt 

der Messungen zugeführt zu werden. Das restliche Serum und Plasma wurden in jeweils 3 

weitere Aliquots abgefüllt und ohne weitere Vorbehandlung bei -80 °C tiefgefroren. 
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3.3 Quantifizierung der biochemischen Parameter 

Alle Proben eines Patienten wurden in den Immunoassays immer im gleichen Testlauf 

bestimmt, um den Einfluss von methodischen Unterschieden zwischen verschiedenen 

Testläufen zu minimieren. Die Testläufe fanden alle in einem engen Zeitraum nach 

Beendigung der Probensammlung mit derselben Assay-Charge statt. Des weiteren wurden am 

Ende der Messungen Crosscheck-Tests durchgeführt, bei denen auf einer ELISA-Platte 

Proben aus allen vorhergehenden Platten nochmals gemessen wurden, um die methodischen 

Variationen zu kontrollieren und die Vergleichbarkeit der verschiedenen Testläufe 

sicherzustellen. 

 

Innerhalb eines Jahres nach Abnahme wurde jeweils ein Aliquot mit EDTA-stabilisiertem 

Serum zur Messung der Konzentrationen der Nukleosomen aufgetaut. Diese Messungen 

wurden durch mich persönlich vorgenommen. Für die Bestimmung der Tumormarker wurde 

natives Serum verwendet. Die Nukleosomenbestimmung im Impact erfolgte aus 

unbehandeltem Serum und Plasma. Sowohl die Impactmessungen als auch die 

Tumormakerbestimmungen wurden von Mitarbeiterinnen des Kompetenzzentrums 

„Onkologische Labordiagnostik“ des Instituts für Klinische Chemie unter Leitung von Fr. Dr. 

Stieber durchgeführt. Alle anderen in dieser Studie ausgewerteten Parameter stammen aus 

Routineuntersuchungen im Rahmen der Krankenversorgung, die ebenfalls im Institut für 

Klinische Chemie des Krankenhauses München Großhaderns vorgenommen wurden. 

 

Quantifizierung der Nukleosomenkonzentration im ELISA 

Die Messungen der Nukleosomenkonzentration wurden mit dem Cell Death Detection-

ELISAplus (CDDE-Test) von Roche Diagnostics, Mannheim (Katalog-Nummer 1774425) 

durchgeführt. Es handelt sich dabei um einen nicht-kompetitiven Enzym-Linked- Immuno-

Sorbent-Assay (ELISA), in dem die Nukleosomen spezifisch von zwei monoklonalen Maus-

Antikörpern nach dem Sandwichprinzip gebunden werden: Die Festphasen-Antikörper 

besitzen eine spezifische Affinität für die Histone H2a, H2b, H3 und H4 und stammen aus 

dem Mausklon H-11-4. Der zweite Antikörper ist gegen die DNS (Einzel- und Doppelstrang) 

gerichtet und mit einer Peroxidase markiert, die das Substrat ABTS (2,2’-azino-di(3-

ethylbenzthiazolin-sulfonat)) umsetzt, was dazu führt, dass es bei einer Bindung von beiden 

Nukleosomenkomponenten, also Histonen und DNS, zu einer Farbentwicklung kommt, die 

photometrisch gemessen werden kann. Diese ist proportional zur Nukleosomenanzahl und 

ermöglicht anhand einer Kalibrationskurve eine absolute Quantifizierung der Nukleosomen.  
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Die Kalibrationskurve wurde zusätzlich bei jeder Messung aus nukleosomenreichem 

Referenzmaterial hergestellt, um eine direkte Quantifizierung der Nukleosomen mit hoher 

Vergleichbarkeit zwischen verschiedenen Testläufen zu ermöglichen. Das Referenzmaterial 

wurde mit Inkubationspuffer verdünnt, so dass nach einer definierten Farbentwicklungszeit 

die niedrigste Verdünnungsstufe Extinktionswerte von etwa 2500 milli-Units (mU) optischer 

Dichte erreichte, die dem oberen Messbereich des Photometers entsprich. Diese Verdünnung 

(1:24) wurde weiter fortgesetzt (1:32, 1:48, 1:64, 1:96), so dass eine lineare Standardkurve 

entstand, die durch den Ursprung des Koordinatensystems läuft. Gemessen werden am 

Photometer Arbitrary Units (AU), die eine an der Standardkurve orientierte, relative 

Konzentrationsangabe der Nukleosomen ermöglichen. Durch die Bestimmung des DNS-

Gehalts in einem definierten Standard konnte eine Umrechnung von Arbitrary Units auf 

Nanogramm pro Milliliter erfolgen. 1000 AU entsprechen dabei 572 ng/ml. 

 

Nukleosomen im Impact 

Beim Impact-Nukleosomen-Test handelt es sich um einen noch in der Entwicklung 

befindlichen automatisierten Multiparameter-Biochip der Firma Roche Diagnostics, 

Penzberg. Dieser ist prinzipiell mit den gleichen Antikörpern beladen wie der ELISA-Test, 

arbeitet jedoch mit anderen Puffern und Detektionsprinzipien. Auf methodische Einzelheiten 

kann aus patentrechtlichen Gründen nicht eingegangen werden.  

 

Quantifizierung der weiteren Blutparameter 

Die Quantifizierung der jeweiligen Tumormarker und von CYFRA 21-1 wurde an einem 

automatisierten, immunologischen Hochdurchsatzgerät, dem Elecsys 2010 der Firma Roche 

Diagnostics, durchgeführt.  

Die Testverfahren zur Tumormarkerquantifizierung funktionieren ebenfalls nach dem 

Sandwichprinzip. Zur Bestimmung wurden die von mir persönlich eingefrorenen und nicht 

stabilisierten Serumproben der Patienten zu allen fünf Zeitpunkten verwendet. Nachdem das 

Serum eine Temperatur von circa 20 °C erreichte, wird es mit einem biotinylierten 

monoklonalen Antikörper und einem mit Ruthenium-Komplex markierten monoklonalen 

Antikörper inkubiert. Dieser Sandwich-Komplex wird durch Zugabe von Streptavidin 

beschichteten Mikropartikeln über Biotin-Streptavidin-Wechselwirkung an die Festphase 

gebunden. In einer Messzelle werden die Mikropartikel durch magnetische Wirkung 

wiederum auf die Oberfläche einer Elektrode fixiert und ungebundene Substanzen werden mit 

Hilfe eines ProCell-Puffers entfernt. Durch Anlegen einer Spannung wird eine 

Chemilumineszenzemission induziert und mit einem Photomultiplier gemessen. Die 
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Ergebnisse werden dann anhand einer Kalibrationskurve ermittelt. Diese wird durch eine 2-

Punkt-Kalibration und eine über den Reagenzbarcode mitgelieferte Masterkurve 

gerätespezifisch generiert.  

 

Im klinisch-chemischen Hauptlabor des Instituts für Klinische Chemie wurde die 

Quantifizierung der weiteren Blutparameter am High-End Analyser AU 2700 des Herstellers 

Olympus im Rahmen der Routine-Patientendiagnostik durchgeführt. Der AU 2700 ist ein 

vollautomatisches System für klinisch-chemische und immunologische Parameter sowie für 

Medikamentenspiegel.  

Dieses Analysegerät vereint zwei Messprinzipien: einerseits die Elektrolytmessung mit Hilfe 

einer ionenselektiven Elektrode (ISE), die ein bestimmtes Ion selektiv erkennt und mit einer 

Referenzelektrode (REF) vergleicht, und andererseits die Photometrie, mit der anhand der 

Extinktion eines Reaktionsgemisches die Konzentration im Blut bestimmt wird. Für die 

Messungen wurden die Originalblutproben gleich nach Entnahme verwendet. 

Bestimmungszeitpunkte waren vor der Therapie sowie 24 und 48 Stunden nach SIRT.  

 

Tabelle 11 gibt eine Übersicht über die Messmethoden der verschiedenen Laborparameter.  
 

Parameter Material Bestimmungsmethode Gerät/Test Referenzbereich 
Nukleosomen 
Handtest Serum+ EDTA ELISA CDDE-Test, Roche < 56 ng/ml 
Nukleosomen 
Impact Serum   Impact   
Nukleosomen 
Impact Plasma   Impact    

CYFRA 21-1 Serum ECLIA Elecsys 2010, Roche < 2,2 ng/ml 

CEA Serum ECLIA Elecsys 2010, Roche < 3,4 ng/ml 

CA 19-9 Serum ECLIA Elecsys 2010, Roche < 37 U/l 

CA 15-3 Serum ECLIA Elecsys 2010, Roche < 28 U/l 

AFP Serum ECLIA Elecsys 2010, Roche < 15 ng/ml 

NSE Serum ECLIA Elecsys 2010, Roche < 16,5 ng/ml 

LDH Serum Enzym, Photometer AU 2700, Olympus < 250 U/l 

CRP Serum  Immunturbidimetrie AU 2700, Olympus < 0,5 mg/dl 

GOT Serum  Enzym, Photometer AU 2700, Olympus < 33 U/l 

GPT Serum  Enzym, Photometer AU 2700, Olympus < 35 U/l 

GGT Serum  Enzym, Photometer AU 2700, Olympus < 38 U/l 

AP Serum  Enzym, Photometer AU 2700, Olympus < 135 U/L 

CHE Serum  Enzym, Photometer AU 2700, Olympus 5-13,3 kU/l 

Amylase Serum  Enzym, Photometer AU 2700, Olympus < 100 U/l 

Lipase Serum  Enzym, Photometer AU 2700, Olympus < 60 U/l 
 

Tabelle 11: Übersicht über Laborparameter mit Bestimmungsmethode und Referenzbereich 
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3.4 Voruntersuchungen und SIR-Therapie 

Voruntersuchungen 

Die Entscheidung, ob ein Patient für SIRT geeignet ist, wurde jeweils nach Komplettierung 

der Voruntersuchungen von einem interdisziplinären Tumorboard getroffen. Nach der 

Anamneseerhebung über vorangegangene Therapien und Krankheitsverlauf sowie einer 

körperlichen Untersuchg zählten zu diesen Voruntersuchungen neben den bildgebenden 

Verfahren PET-CT (Philips Gemini, Philips Medical Systems, Ohio, USA) und MRT  

(1,5 Tesla-Magnetom Avanto; Siemens Medical Solutions, Erlangen, Deutschland) eine 

Blutabnahme und eine Angiographie des Truncus-coeliacus-Versorgungsgebietes.  

Dabei wurden die Gefäßversorgung des Tumors untersucht, eventuell vorhandene aberrante 

Gefäße zum Magen-Darm-Trakt identifiziert und zum Abschluss der Untersuchung 

makroaggregiertes Albumin mit metastabilem Technetium appliziert. In der folgenden 

Ganzkörperszintigraphie wurde dann nach fehlgeleiteter Aktivität in der Lunge und im 

Magen-Darm-Trakt gesucht.  

 

SIR-Therapie 

Die Angiographie, das Aufsuchen und Coiling aberrantenter Gefäße sowie die 

Katherterplatzierung wurden von Herrn PD Dr. med. Waggershauser oder einem seiner 

Kollegen im Institut für Klinische Radiologie des Klinikums der Universität München-

Großhadern (Multistar TOP and Axiom Artis dTA, Siemens, München, Deutschland) 

durchgeführt. Die Verabreichung der radioaktiven Substanz erfolgte durch Mitarbeiter der 

Klinik für Nuklearmedizin des Klinikums der Universität München-Großhadern. 

 

Der regelhafte Ablauf der SIR-Therapie war wie folgt:  

Nach sterilem Abwaschen und Abdecken der Leistenregion wurde unter Lokalanästhesie ein 

4-French-Katheter nach Seldinger-Technik in die Arteria femoralis eingebracht. Nach 

Sondierung des Truncus coaliacus und seiner Abgänge erfolgte ein prophylaktischer 

Verschluss der Gastroduodenalarterie und, falls nötig, auch der rechten Arteria gastrica und 

anderer kleiner Viszeralgefäße. Der Katheter wurde dann distal des Abgangs der Arteria 

cystica an der gleichen Stelle wie bei Applikation des makroaggregierten Albumins während 

der Voruntersuchung platziert.  

Mit Ausnahme von zwei Patienten, die zwei zeitlich voneinander getrennte Therapien der 

beiden Leberlappen erhielten, wurde bei allen Patienten in einer Sitzung die gesamte Leber 

behandelt. Alle Patienten wurden mit Kunstharzmikrosphären der Firma SIRTEX behandelt. 
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Die vorab nach der Körperoberflächenberechnung - wie im Kapitel 2.3.2 beschrieben - 

kalkulierte Dosis der SIR-Spheres wurde dann über einen Zeitraum von ca. 30-45 Minuten 

verabreicht. Bei gleichmäßigem Tumorbefall wurde dabei der größere rechte Leberlappen mit 

circa zwei Dritteln der Dosis behandelt. Um eine Stase oder gar einen retrograden Fluss mit 

konsekutiver ungezielter Embolisation zu verhindern, wurde alternierend mit sterilem Wasser 

oder Kontrastmittel gespült.  

Nach Entfernen des Katheters und der Schleuse und anschließendem manuellen Abdrücken 

der rechten Leiste für fünf bis zehn Minuten wurde ein Druckverband angelegt. Dieser wurde 

für ungefähr 24 Stunden belassen, wobei vier Stunden lang strenge Bettruhe empfohlen 

wurde. Im Anschluss an die Therapie wurde nochmals eine Ganzkörperszintigraphie 

durchgeführt, um einerseits die Verteilung der Radioaktivität in der Leber zu dokumentieren 

und andererseits einen eventuell vorhandenen dystopen Abstrom in die Lunge zu detektieren. 
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3.5 Klinische Bewertung der Therapieeffizienz 

Das Therapieansprechen nach SIRT wurde durch definierte Staginguntersuchungen, 

bestehend aus einem oder mehreren bildgebenden Verfahren, sowie der Bestimmung von 

Tumormarkern, nach etwa drei Monaten beurteilt. Im Rahmen dieser Studie fand dieses 

Staging im Median 94 Tage (Range 71-125 Tage) nach SIRT mittels PET-CT, MRT und 

Laborkontrollen statt.  

Da im Moment noch keine anerkannten Auswertungskriterien für PET-CT-Bilder existieren 

[Weber 2009], erfolgte die Auswertung der Bildgebung, wie im klinischen Alltag üblich, 

anhand des Vergleichs der prätherapeutischen Bilder mit den Bildern zum Stagingzeitpunkt. 

Als Progression wurde dabei ein Versterben innerhalb der ersten drei Monate nach SIRT und, 

in Anlehnung an die RECIST-Kriterien von 2005, entweder eine Aktivitätssteigerung im 

PET-CT, eine Zunahme des Tumordurchmessers von über 20% oder das Auftreten neuer 

Metastasen innerhalb der Leber oder in anderen Organen gewertet. Bei diskordanten 

Befunden im MRT und PET-CT wurde im Allgemeinen das Ergebnis des PET-CTs als 

höherwertig angesehen und ist als solches in die statistische Auswertung eingegangen. 

Patienten mit Teilremission (Rückgang der Tumorläsionen um >30%) oder stabilem 

Krankheitsverlauf (weder Progression noch Remission) wurden zur statistischen Bewertung 

in eine Gruppe zusammengefasst.  

Insgesamt wurden 114 SIR-Therapien bei 113 Patienten in dieser Studie evaluiert. Wie in 

Tabelle 12 zu sehen lagen bei 4 Patienten keine Stagingergebnisse vor, so dass 109 Therapien, 

von denen 22 eine Remission, 16 einen stabilen Befund und 71 Patienten eine Progression 

aufwiesen, in die Berechnungen eingingen.  

 

Tumor- Gesamtanzahl Therapieansprechen  1-Jahres- Überlebenszeit [Monate] 
entität (kein Staging) REM SD PD Überleben [%] Median 95% KI 
CRC 49 8 5 36 45,8 8,8 5,1-18,8 
Pan/CCC 15 5 3 7 53,3 16 6,4- 
Mamma CA 21               (1) 3 2 16 27,3 9,8 4,9-11,9 
Carcinoid 6                 (1) 1 2 3 80   2,8- 
HCC 6 2 3 1 83,3 26,9 10,9-26,5 
Sonstige 12               (2) 3 1 8 46,2 12 5,2-15,7 
Gesamt 109             (4) 22 16 71       

Tabelle 12: Therapieansprechen, Einjahresüberleben und Überlebenszeit bei den verschiedenen 
Tumorentitäte
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3.6 Statistische Auswertung 

Die absoluten Einzelwerte sowie die Kinetik der Werte wurden bei allen Parameter zu allen 

Zeitpunkten mit dem Therapieansprechen in der Bildgebung, dem Einjahresüberleben und 

dem Gesamtüberleben auf statistische Signifikanz überprüft. 

Die Ergebnisse dieser Dissertation werden deskriptiv anhand von Diagrammen und Tabellen 

dargestellt,die in Microsoft Excel und Power Point, Microsoft Office XP 2003 erstellt 

wurden. Die Tabellen stellen die Messwerte in Form von Medianen, Minimal- und 

Maximalwerten, also der Bandbreite, dar. Bei den Diagrammen werden Dotplot-Grafiken, die 

alle Einzelwerte veranschaulichen, und Boxplot-Grafiken, die den Median, die erste und dritte 

Quartile, die fünfte und 95. Perzentile, sowie die Extremwerte darstellen, verwendet.  

Differenzen der Wertelagen der Biomarker zwischen dem prätherapeutischen und späteren 

Zeitpunkten wurde mit dem Wilcoxon-Test für Paardifferenzen auf Signifikanz geprüft. Für 

die statistische Auswertung des Therapieansprechens (Responder versus Non-Responder) und 

des Einjahresüberlebens wurde der nicht parametrische Wilcoxon-Mann-Whitney-Test für 

unabhängige Stichproben verwendet.  

Zur Berechnung der Überlebenszeiten wurde die Kaplan-Meier-Methode angewandt. Die 

Werte vor und 24 Stunden nach Therapie wurden in Quartilen unterteilt, die als Cut-offs in 

den Berechnungen dienten. Mit dem Logrank Test wurden die Überlebenskurven auf 

signifikante Unterschiede geprüft. 

In der Gruppe der Patienten mit kolorektalem Karzinom wurden aufgrund der höheren 

Patientenzahl neben univariaten auch multivariate Analysen bezüglich des Überlebens 

durchgeführt; hierfür wurden die in den univariaten Analysen signifikanten Parameter 

berücksichtigt. Die Werte wurden für die Berechnungen logarithmiert, um vergleichbare 

Bedingungen herzustellen. Einzelne fehlende Werte wurden durch den Median des Kollektivs 

ersetzt. Daraufhin durchgeführte Analysen mit und ohne ersetzte Werte ergaben keine 

wesentlichen Unterschiede.  

Zunächst wurden alle Zweier- und Dreierkombinationen der relevanten prätherapeutischen 

Parameter (Modell 1) mit Hilfe des Cox-Regressionsmodels untersucht. Dann wurden im 

gleichen Setting auch die 24h-Werte miteinbezogen (Modell 2). Anschließend wurde die 

Stärke aller relevanten und signifikanten prognostischen Modelle mit Hilfe des Akaike 

Information Criterion (AIC) verglichen.  

Signifikanz wurde allgemein bei einer Wahrscheinlichkeit für den Fehler 1. Art unter 5% 

angenommen (p<0,05). Alle statistischen Kalkulationen wurden mit der Software SAS 

durchgeführt (Version 9.2, SAS Institute Inc., Cary, NC, USA). 
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4   Ergebnisse 

4.1 Übersicht über die Kinetik der Laborparameter im Gesamtkollektiv 

Insgesamt wurde bei 114 SIR-Therapien das Blut von 113 Patienten untersucht. Die 

Blutabnahmen erfolgten kurz vor der Therapie, drei und sechs Stunden nach der Therapie, 

sowie an den zwei folgenden Tagen nach SIRT. Zu allen Zeitpunkten wurden die 

Konzentrationen der Nukleosomen - einmal im Handtest und im Impact - sowie des CYFRA 

21-1 gemessen. Die Konzentrationen von CRP, LDH, GOT und GPT, GGT, CHE, AP,des 

Bilirubins sowie der Pankreasenzyme Lipase und Amylase wurden nur als Ausgangswert vor 

SIRT und an den zwei folgenden Tagen bestimmt.  

 

Die Nukleosomen im Handtest zeigen prätherapeutisch im Vergleich zu gesunden Kontrollen 

erhöhte Wertlagen, die bereits 24 Stunden nach SIR-Therapie weiter stark und signifikant 

ansteigen. (Abbildung 7, und 8, Tabelle 14). 
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Abbildung 7: Kinetik der Nukleosomen (Handtest) im Gesamtkollektiv 
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Auch ein Großteil der anderen untersuchten Parameter steigt im Verlauf nach SIRT an; die 

stärksten Zunahmen sind vor allem nach 24 und 48 Stunden zu erkennen (Tabelle 13). Eine 

Ausnahme bilden die Pankreasenzyme Amylase und Lipase, der Lebersyntheseparameter 

CHE und die AP, die abfallende Werte zeigen (Abbildungen 16, 18, 20, 21), sowie GGT, die 

über den beobachteten Zeitraum stabil bleibt (Abbildung 17). Die Nukleosomen im Impact 

Serum fallen von sehr hohen Ausgangswerten direkt nach Therapie zunächst signifikant ab, 

um dann in den folgenden Tagen wieder anzusteigen (Abbildung 9). Die Nukleosomen im 

Impact Plasma hingegen bleiben wie CYFRA 21-1 am ersten Tag relativ stabil und steigen 

erst nach 24 Stunden signifikant an (Abbildung 10, 11). Ebenfalls signifikant zunehmende 

Werte zeigen die Leberenzyme GOT und GPT, Bilirubin und LDH (Abbidlungen 13, 14, 15, 

19). Der Entzündungsparameter CRP steigt zwar ebenfalls an (Abbildung 12), wird aber erst 

nach 48 Stunden signifikant (Tabelle 14). 

 

 

 

 
Abbildung 8: Kinetik der Nukleosomen 
(Handtest) im Gesamtkollektiv 

 Abbildung 9: Kinetik der Nukleosomen  
(Impact Serum) im Gesamtkollektiv 

 
 
 

 

 

 
Abbildung 10: Kinetik der Nukleosomen 
(Impact Plasma) im Gesamtkollektiv. 

 Abbildung 11: Kinetik von CYFRA 21-1 im 
Gesamtkollektiv.  
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Abbildung 12: Kinetik der CRP-
Konzentrationen im Gesamtkollektiv 

 Abbildung 13: Kinetik der LDH-
Konzentrationen im Gesamtkollektiv 

 
 
 

 

 

 
Abbildung 14: Kinetik der GOT- 
Konzentrationen im Gesamtkollektiv 

 Abbildung 15: Kinetik der GPT-
Konzentrationen im Gesamtkollektiv 

 
 
 

 

 

 
Abbildung 16: Kinetik der CHE- 
Konzentrationen im Gesamtkollektiv 

 Abbildung 17: Kinetik der GGT-
Konzentrationen im Gesamtkollektiv 
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Abbildung 18: Kinetik der AP-Konzentrationen 
im Gesamtkollektiv. 

 Abbildung 19: Kinetik der Bilirubin-
Konzentrationen im Gesamtkollektiv.  

 
 
 

 

 

 

Abbildung 20: Kinetik der Amylase- 
Konzentrationen im Gesamtkollektiv.  

 Abbildung 21: Kinetik der Lipase-
Konzentrationen im Gesamtkollektiv. 
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Gesamtkollektiv Referenz 0h 3h 6h 24h 48h 
171,9 178,5 193,9 610,0 541,7 Nukleosomen-HS 

[ng/ml] 
< 56 

5,0 - 2308 17 - 2502 24 - 2671 22 - 4335 45 - 5973 
 676,5 223,0 165,0 874,0 654,0 Nukleosomen-IS 

[ng/ml]  4,5 - 10718 1,6 - 7076 7,5 - 4466 7,0 - 4515 31,5 - 5372 
 36,2 33,8 31,8 75,9 145,0 Nukleosomen-IP 

[ng/ml]  0,2 - 1086 0,0 - 1027 0,9 - 1047 0,0 - 796 0,6 - 1442 
5,6 5,7 5,6 16,1 19,4 CYFRA 21-1 

[ng/ml] 
< 2,2 

0,5 - 246 0,5 - 240 0,5 - 230 0,8 - 4100 0,7 - 6499 
306,0     371,5 416,5 LDH 

[U/l] 
< 250 

119 - 3068     69 - 2923 111 - 3585 
0,7     1,0 3,2 CRP 

[mg/dl] 
< 0,5 

0,1 - 21     0,1 - 22 0,1 - 22 
43,0     63,0 66,0 GOT 

[U/l] 
< 33 

19 - 190     15 - 774 19 - 687 
31,0     43,0 47,0 GPT 

[U/l] 
< 35 

11 - 268     11 - 338 12 - 287 
7,1     6,2 5,8 CHE 

[kU/l] 
5,0-13,3 

2,8 - 11     2,8 - 11 2,3 - 10,5 
164,0     151,0 148,0 GGT 

[U/l] 
< 38 

15 - 1671     17 - 1852 25 - 1758 
135,5     120,0 117,5 AP 

[U/l] 
< 135 

52 - 742     41 - 747 47 - 647 
0,6     0,9 1,1 Bilirubin 

[mg/dl] 
< 1,0 

0,2 - 1,9     0,3 - 2,5 0,4 - 2,9 
61,0     45,0 44,5 Amylase 

[U/l] 
< 100 

20 - 278     20 - 478 19 - 519 
27,0     20,0 21,5 Lipase 

[U/l] 
< 60 

3,0 - 365     3,0 - 813 3,0 - 495 
Tabelle 13: Übersicht über alle Laborparameter im Gesamtkollektiv 
Mediane und Schwankungsbereiche prätherapeutisch, 3, 6, 24 und 48 Stunden nach SIRT (HS=Handtest Serum, 
IS=Impact Serum, IP=Impact Plasma) 
 

Variable Zeit p-Wert  Variable Zeit p-Wert  Variable Zeit p-Wert  
Nukleosomen HS 3h-0 0,6555 CYFRA 21-1 3h-0 0,1598 CHE 24h-0 < 0,0001 

Nukleosomen HS 6h-0 0,1145 CYFRA 21-1 6h-0 0,7059 CHE 48h-0 < 0,0001 

Nukleosomen HS 24h-0 < 0,0001 CYFRA 21-1 24h-0 < 0,0001 GGT 24h-0 < 0,0001 

Nukleosomen HS 48h-0 < 0,0001 CYFRA 21-1 48h-0 < 0,0001 GGT 48h-0 0,0013 

Nukleosomen IS 3h-0 < 0,0001 LDH 24h-0 0,0021 AP 24h-0 < 0,0001 

Nukleosomen IS 6h-0 < 0,0001 LDH 48h-0 < 0,0001 AP 48h-0 < 0,0001 

Nukleosomen IS 24h-0 0,6171 CRP 24h-0 0,4259 Bilirubin 24h-0 < 0,0001 

Nukleosomen IS 48h-0 0,6347 CRP 48h-0 < 0,0001 Bilirubin 48h-0 < 0,0001 

Nukleosomen IP 3h-0 0,0053 GOT 24h-0 < 0,0001 Amylase 24h-0 < 0,0001 

Nukleosomen IP 6h-0 0,0023 GOT 48h-0 < 0,0001 Amylase 48h-0 < 0,0001 

Nukleosomen IP 24h-0 < 0,0001 GPT 24h-0 0,0001 Lipase 24h-0 0,0208 

Nukleosomen IP 48h-0 < 0,0001 GPT 48h-0 < 0,0001 Lipase 48h-0 0,0002 

Tabelle 14: Signifikanzen der Kinetik im Bezug zum prätherapeutischen Wert im Gesamtkollektiv  
(p-Werte < 0,05 sind grau hinterlegt; HS=Handtest Serum, IS=Impact Serum, IP=Impact Plasma) 
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Die Einzelverläufe aller in der Studie untersuchten Patienten sind zusätzlich im Anhang zu 

dieser Arbeit dargestellt. Darin wird jeder gemessene Laborwert zu den verschiedenen 

Zeitpunkten (Basiswert vor SIRT, drei, sechs, 24 und 48 Stunden nach Therapie) für jeden 

Patienten auf einer Seite dargestellt. In der ersten Grafik oben links auf der Seite befinden 

sich jeweils die absoluten Wertelagen, oben rechts die relativen Wertelagen der drei 

verschiedenen Nukleosomenmessungen. Alle anderen folgenden Laborparameter wurden 

wegen der unterschiedlichen Größenordnungen in relativen Werten angegeben. Die 

Referenzwerte sind in jeder Grafik in der Legende integriert und beziehen sich auf den 

prätherapeutischen Wert, der jeweils als eins gesetzt wird. 

Die linke, mittlere Grafik zeigt den Verlauf der jeweils tumorspezifischen Tumormarker, 

CEA, CYFRA 21-1 und CRP, die rechte, mittlere Grafik stellt den Verlauf der Parameter 

Bilirubin, GGT und AP dar. In der Grafik links unten werden die Leberwerte GOT, GPT 

sowie LDH und in der Grafik rechts unten die Parameter Amylase, Lipase und CHE gezeigt. 

Zusätzlich werden am Ende jeder Seite die Patienten mit Alter, Geschlecht, Diagnose, 

Therapieansprechen nach drei Monaten und Überlebenszeit charakterisiert.  

 

4.1.1 Korrelation der Laborparameter im Zeitverlauf 

Im Folgenden werden die Werte aller Laborparameter des Gesamtkollektivs auf ihre 

Korrelation untereinander untersucht. Dazu werden die R-Werte (Spearman-Korrelations-

Koeffizient) für die Zeitpunkte vor Therapiebeginn sowie einen und zwei Tage nach SIRT 

miteinander verglichen. Auf die Zeitpunkte drei und sechs Stunden nach Therapie wird in 

dieser Auswertung verzichtet.  

Die Nukleosomen im Handtest zeigen nur eine Korrelation mit CRP beim Ausgangswert vor 

Therapie und einen Tag nach SIRT sowie zu allen drei Zeitpunkten mit den Nukleosomen im 

Impact Serum. Diese hingegen korrelieren zusätzlich zu den Nukleosomen im Handtest noch 

mit den Ausgangswerten von LDH und CRP. Die Nukleosomen im Impact Plasma zeigen 

eine gute Korrelation mit den Leberwerten GOT und GPT sowie mit LDH und CYFRA 21-1 

zu allen Zeitpunkten, zu den anderen Nukleosomenmessverfahren besteht allerdings kein 

Zusammenhang.  

CRP, LDH und CYFRA 21-1 korrelieren untereinander und mit fast allen anderen 

gemessenen Parametern gut. Ausnahmen hierbei sind Bilirubin, Lipase und Amylase sowie 

CHE solitär bei LDH. Gute Korrelationen zu allen Zeitpunkten bestehen weiterhin zwischen 

den beiden Pankreasenzymen, den Leberwerten GOT und GPT sowie bei den 

Cholestaseparametern alkalische Phosphatase und GGT (Tabelle 15). 
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Gesamt-
kollektiv N-HS N-IS N-IP CYFRA CRP LDH AMY LIP CHE GOT GPT GGT Bilirubin  AP 

AP 0,104 0,050 0,166 0,530 0,679 0,463 -0,355 -0,072 -0,386 0,537 0,281 0,778 0,204 1,00

 0,149 0,070 0,189 0,350 0,565 0,471 -0,336 -0,202 -0,316 0,382 0,261 0,718 0,078 1,00

 0,089 0,165 0,246 0,366 0,480 0,499 -0,233 -0,089 -0,213 0,450 0,274 0,723 0,029 1,00

Bilirubin 0,070 0,124 0,199 0,196 0,101 0,183 -0,002 -0,014 -0,112 0,265 0,165 0,250 1,00 

 0,000 0,061 0,099 0,048 -0,083 0,116 0,170 0,213 0,029 0,221 0,281 0,119 1,00 

 0,056 0,007 0,043 0,156 0,189 0,128 0,196 0,174 0,085 0,324 0,326 -0,001 1,00 

GGT 0,100 0,087 0,199 0,483 0,574 0,413 -0,251 0,062 -0,359 0,588 0,437 1,00  

 0,023 0,01 0,131 0,231 0,352 0,260 -0,220 -0,085 -0,299 0,190 0,210 1,00  

 0,038 0,106 0,177 0,333 0,306 0,298 -0,186 0,012 -0,231 0,26 0,177 1,00  

GPT -0,003 0,079 0,163 0,249 0,129 0,272 -0,052 0,169 -0,085 0,646 1,00  

 -0,164 0,039 0,342 0,382 0,137 0,546 0,003 0,078 -0,019 0,802 1,00  

 0,008 0,061 0,331 0,255 0,28 0,415 -0,093 -0,051 0,015 0,753 1,00  

GOT 0,041 0,178 0,339 0,628 0,443 0,607 -0,168 0,055 -0,393 1,00   

 -0,014 0,085 0,471 0,656 0,326 0,811 -0,033 0,041 -0,093 1,00   

 -0,035 0,027 0,520 0,573 0,496 0,716 -0,108 -0,067 -0,174 1,00   

CHE -0,075 -0,089 -0,279 -0,303 -0,363 -0,232 0,082 0,014 1,00   

 -0,177 -0,191 -0,194 -0,230 -0,273 -0,121 0,216 0,153 1,00   

 0,204 0,022 -0,238 -0,302 -0,13 -0,107 0,069 0,005 1,00   

Lipase -0,041 0,029 -0,156 -0,160 -0,221 -0,156 0,368 1,00    
 -0,086 0,031 -0,137 -0,008 -0,239 -0,08 0,645 1,00    
 -0,078 0,053 -0,173 -0,064 -0,146 -0,187 0,551 1,00    

Amylase 0,066 0,072 -0,126 -0,306 -0,363 -0,109 1,00     
 -0,141 -0,036 -0,112 -0,083 -0,212 -0,057 1,00     
 -0,016 0,008 -0,226 -0,122 -0,145 -0,075 1,00     

LDH 0,122 0,303 0,230 0,57 0,502 1,00   

 0,112 0,093 0,441 0,679 0,478 1,00   

 0,103 0,107 0,494 0,588 0,636 1,00   

CRP 0,287 0,255 0,223 0,538 1,00  

 0,256 0,178 0,243 0,307 1,00  

 0,188 0,117 0,390 0,489 1,00  

CYFRA 0,074 0,112 0,212 1,00   

21-1 -0,010 -0,031 0,380 1,00   

 -0,065 0,003 0,424 1,00   

Nukleosomen -0,030 0,238 1,00  

Impact 0,098 0,205 1,00  

Plasma 0,006 0,084 1,00  

Nukleosomen 0,395 1,00  

Impact 0,705 1,00  

Serum 0,661 1,00  

Nukleosomen 1,00  

 Handtest 1,00  

Serum 1,00  
 

Tabelle 15: Korrelationen aller Patienten und Marker 
Spearman-Korrelationskoeffizienten beim Ausgangswert, 24-Stundenwert und 48-Stundenwert  
(R-Werte > 0,25 oder < -0,25 sind grau hinterlegt; N=Nukleosomen; HS=Handtest, IS=Impact Serum,  
IP=Impact Plasma) 
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4.1.2 Kinetik der Laborparameter in den einzelnen Diagnosegruppen 

Die Gesamtheit der 113 untersuchten Patienten stellt bezüglich ihrer Grunderkrankungen ein 

sehr heterogenes Kollektiv dar. Aufgrund dessen wurde das Kollektiv nach Art des 

Malignoms in verschieden Gruppen eingeteilt. Absteigend beginnend mit der zahlenmäßig 

größten Gruppe waren dies: Patienten mit kolorektalem Karzinom, Mammakarzinom, 

Gallenwegs- und Pankreaskarzinom, Carcinoid, hepatozellulärem Karzinom und eine 

Mischgruppe mit malignem Melanom, Magenkarzinom, Sarkom, Ovarial- und 

Urothelkarzinom.  

Die Nukleosomen im Handtest zeigen bei allen Diagnosen einen starken Anstieg innerhalb 

der ersten 24 Stunden. Auch am zweiten Tag nach Therapie (48h) bleiben sie im Vergleich 

zum prätherapeutischen Wert deutlich erhöht (Abbildung 22). 
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Abbildung 22: Kinetik der Nukleosomen (Handtest) bei den verschiedenen untersuchten  
Tumorentitäten (Diagnosegruppen)  
(Basiswert , 24 Stunden  und 48 Stunden  nach SIRT) 
 

       CRC               CCC          Mamma    Carcinoide       HCC            Sonstige  
       N=49              N=15            N=22           N=7               N=6                N=13 
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Bei den Nukleosomen im Impact Serum ist der Anstieg nach 24h und 48h nicht so ausgeprägt, 

da die initialen Werte bereits höher sind (Abbildungen 23, 24). Bei Mischdiagnosen kommt es 

sogar zu einem Rückgang der Wertlagen. Das Bild der Nukleosomenfreisetzung im Plasma 

(Impact) ähnelt wieder jenem der Handtest-Messungen im Serum. Auch hier kommt es zu 

deutlichen Anstiegen einen Tag nach SIRT und meist zu einem weiteren nach 48h (Abbildung 

25). 

 

CYFRA 21-1 zeigt ebenfalls bereits 24h nach SIRT einen deutlichen Konzentrationsanstieg. 

Am ausgeprägtesten ist diese Kinetik bei den Mammakarzinom-Patientinnen (Abbildung 26). 

Auch das CRP steigt bei allen Gruppen postinterventionell an; insbesondere ist ein weiterer 

Anstieg der Serumkonzentration 48h nach SIRT zu verzeichnen. Ein Ausnahme bildet hierbei 

die Gruppe der HCC-Patienten (Abbildung 27). Bei LDH zeigt sich nur ein Anstieg der 24h 

und 48h-Werte bei den Gruppen der Patienten mit Kolon und Mammakarzinom sowie der 

Mischgruppe. Bei den anderen Entitäten sind keine eindeutigen Veränderungen zu sehen 

(Abbildung 28). Die Leberwerte GOT und GPT zeigen Anstiege der 24h-Werte bei allen 

Diagnosegruppen mit Ausnahme von Gallengangs- und Pankreaskarzinom und HCC, ebenso 

steigt Bilirubin nach 24h und 48h in allen Gruppen an (Abbildungen 29, 30, 34). Hingegen 

fallen die CHE-, Lipase- und Amylase-Werte bei fast allen Diagnosegruppen nach dem ersten 

und/oder zweiten Tag nach SIRT ab (Abbildungen 31, 35, 36). AP und GGT schließlich 

zeigen nur geringe oder uneinheitliche Veränderungen im Verlauf (Abbildungen 32, 33).  

 

 

 

 

 
Abbildung 23: Nukleosomen (Handtest) in den 
Diagnosegruppen als Basiswert , 24  und 48 
Stunden  nach SIRT  

 Abbildung 24: Nukleosomen (Impact Serum) in 
den Diagnosegruppen als Basiswert , 24  und 
48 Stunden  nach SIRT  

 
 
 
 
 

   CRC     CCC    Mamma    Carcin   HCC   Sonstige 
   N=49    N=15     N=22        N=7      N=6      N=13 

N
uk

le
os

om
en

 H
S

 [n
g/

m
l] 

10 

100 

1000 

10000 10000 

N
uk

le
os

om
en

 IS
 [n

g/
m

l] 1000 

100 

10 
   CRC     CCC    Mamma    Carcin   HCC   Sonstige 
   N=49    N=14     N=22        N=7      N=6      N=14 



4   Ergebnisse  Gesamtkollektiv 

- 71 - 

 

 

 

 
Abbildung 25:Nukleosomen (Impact Plasma) in 
den Diagnosegruppen als Basiswert , 24  und 
48 Stunden  nach SIRT  

 Abbildung 26: CYFRA 21-1 in den 
Diagnosegruppen als Basiswert , 24  und 48 
Stunden  nach SIRT  

 
 

 

 

 
Abbildung 27:CRP in den Diagnosegruppen als 
Basiswert , 24  und 48 Stunden  nach SIRT  

 Abbildung 28:LDH in den Diagnosegruppen als 
Basiswert , 24  und 48 Stunden  nach SIRT  

  
 

 

 

 
Abbildung 29:GOT in den Diagnosegruppen als 
Basiswert , 24  und 48 Stunden  nach SIRT  

 Abbildung 30: GPT in den Diagnosegruppen als 
Basiswert , 24  und 48 Stunden  nach SIRT  
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Abbildung 31:CHE in den Diagnosegruppen als 
Basiswert , 24  und 48 Stunden  nach SIRT  

 Abbildung 32: GGT in den Diagnosegruppen 
als Basiswert , 24  und 48 Stunden  nach 
SIRT 

 
 

 

 

 
Abbildung 33:AP in den Diagnosegruppen  
als Basiswert , 24  und 48 Stunden  nach 
SIRT  

 Abbildung 34: Bilirubin in den Diagnose-
gruppen als Basiswert , 24  und 48 Stunden  
nach SIRT  

 
 

 

 

 
Abbildung 35:Amylase in den Diagnosegruppen 
als Basiswertvor Therapie , 24  und 48 Stunden 

 nach SIRT  

 Abbildung 36: Lipase in den Diagnosegruppen 
als Basiswert vor Therapie , 24  und 48 
Stunden  nach SIRT  
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4.1.3 Überleben der Patienten nach Diagnosegruppen 

Im Folgenden werden die verschiedenen Diagnosegruppen anhand der Überlebensdauer 

verglichen. Wie in den unten stehenden Kaplan-Meier-Kurven zu sehen ist, haben die 

Mammakarzinom-Patientinnen insgesamt die ungünstigste Prognose. Eineinhalb Jahre nach 

SIRT lebten noch etwa 10% der untersuchten Patientinnen, das mediane Überleben betrug 9,8 

Monate und ist damit wesentlich schlechter als bei Patienten mit Galle- und 

Pankreaskarzinom, die im Median 16 Monate nach Therapie verstarben. Allerdings ist zu 

berücksichtigen, dass bei den Patientinnen mit einem Mammakarzinom die SIRT nur noch die 

ultima ratio war und im Median erst über 100 Monate nach der Erstdiagnose eingesetzt 

wurde. Die besten Überlebensraten zeigte die Gruppe der hepatozellulären Karzinome, 

gefolgt von den Carcinoiden. Ein Jahr nach SIRT lebten in diesen beiden Gruppen noch über 

80% der Patienten (Abbildung 37). 
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Abbildung 37: Kaplan-Meier-Kurven des Gesamtkollektivs nach Diagnose 
(  = zensiert) 
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4.1.4 Korrelation der Laborparameter mit dem Einjahresüberleben in den einzelnen 

Diagnosegruppen 

Eine genaue Auswertung der Aussagekraft der verschiedenen Biomarker bezüglich des 

Einjahresüberlebens wird nur in den beiden größten Diagnosegruppen, dem Kollektiv der 

kolorektalen und Mammakarzinome in den folgenden Kapiteln analysiert. In den anderen 

Gruppen wurde aufgrund der geringen Fallzahl darauf verzichtet.  

 

Bei den cholangiozellulären und Pankreaskarzinomen verstarben sieben der 15 Patienten 

innerhalb des ersten Jahres nach SIRT. Bei dieser Gruppe differenzieren die 

Nukleosomenwerte im Handtest am zweiten Tag nach Therapie und der 24-Stundenwert von 

CYFRA 21-1, sowie Bilirubin an beiden Tagen nach SIRT signifikant nach dem 

Einjahresüberleben.  

Von den sechs Patienten, die wegen eines Hepatozellulären Karzinoms mit SIRT behandelt 

wurden, verstarb nur einer im ersten Jahr nach der Therapie. Allerdings konnte keiner der 

gemessenen Parameter zu einem der untersuchten Zeitpunkte diesen Patienten signifikant 

identifizieren (Tabelle 16). 

Sieben Patienten unterzogen sich SIRT wegen eines Carcinoids. Bei zwei konnten keine 

Daten über das Einjahresüberleben akquiriert werden. Von den fünf verbleibenden verstarb 

ein Patient innerhalb des ersten Jahres. Ähnlich wie bei den hepatozellulären Karzinomen ist 

auch in diesem kleinen Kollektiv keine Signifikanz zu erkennen.  

Die Mischgruppe umfasst 14 Patienten. Von diesen gingen 13 in die Berechnung ein und fünf 

überlebten länger als ein Jahr. In dieser Gruppe kann bei CYFRA 21-1 zu allen drei 

betrachteten Zeitpunkten signifikant bezüglich des Einjahresüberlebens unterschieden 

werden. Weitere signifikante Werte sind wie bei den cholangiozellulären Karzinomen das 

Bilirubin in den ersten zwei Tagen nach SIRT, sowie die 48-Stundenwerte der Nukleosomen 

im Impact Serum und von CHE (Tabelle 17). 

 

Einen Tag nach SIRT zeigen die Nukleosomen im Handtest ein heterogenes Bild: Bei den 

Mammakarzinom- , Gallenwegs- und Pankreaskarzinom-, sowie bei HCC-Patienten sind die 

Werte der Einjahresüberlebenden höher als bei den Verstorbenen; ein umgekehrtes Verhältnis 

zeigt sich für die kolorektalen Karzinome, Carcinoide und in der Mischgruppe. Signifikant 

wird dieser Unterschied nur bei Patienten mit einem kolorektalen Karzinom (Abbildung 39). 

Bei den Nukleosomen im Handtest 48 Stunden nach SIRT sind durchgehend bei allen 

Tumorentitäten höhere Werte mit einem längeren Überleben assoziiert (Abbildung 38). 

Jedoch ist dieser Konzentrationsunterschied nur in der Mischgruppe signifikant. 
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Abbildung 38: Vergleich der Nukleosomenkonzentrationen (Handtest) 48-Stunden nach SIRT bei den 
Tumorentitäten im Einjahresüberleben. Innerhalb eines Jahres nach SIRT verstorben , lebend . 
 

Die Nukleosomen im Impact Serum am zweiten Tag nach SIRT weisen mit Ausnahme des 

Mammakarzinom- und des Mischkollektivs, die eine umgekehrte Wertelage einnehmen, eine 

ähnliche Konstellation wie die Nukleosomen im Handtest auf. Signifikant ist dieser 

Unterschied jedoch nur im Mischkollektiv (Abbildung 40). 

CYFRA 21-1 im 24-Stundenwert zeigt ein ähnlich heterogenes Bild wie die Nukleosomen. 

Beim Kolorektalkarzinom- und Mischkollektiv sind die Konzentrationen signifikant niedriger 

bei den Patienten, die länger als ein Jahr nach SIRT lebten. Ein ähnliches Ergebnis zeigt sich 

für die Mammakarzinomenpatientinnen, jedoch ist dieser Unterschied nicht signifikant 

(Abbildung 41). 

Beim CRP weisen niedrigere Werte 24 Stunden nach SIRT bei allen Gruppen auf einen 

Überlebensvorteil hin, allerdings wird zu keinem Zeitpunkt eine Signifikanz erreicht 

(Abbildungen 42), wohingegen beim GOT sich kein Trend abzeichnet (Abbildung 43). 

Beim 24-Stundenwert des Bilirubins hingegen sind beim Mischkollektiv und den  

CCC-Patienten höhere Konzentrationen signifikant mit einem längeren Überleben assoziiert 

(Abbildung 44). 

     CRC            CCC          Mamma       Carcinoide       HCC           Sonstige  
  N=22/28        N=8/8          N=8/18            N=3/1           N=6/1             N=6/7 
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Abbildung 39: Einjahresüberleben der 
Gruppen nach Nukleosomen- (Handtest) -24-
Stundenwerten. Innerhalb eines Jahres nach SIRT 
verstorben , überlebend .  

 Abbildung 40: Einjahresüberleben der 
Gruppen nach Nukleosomen- (Impact Serum) -
24-Stundenwerten. Innerhalb eines Jahres nach 
SIRT verstorben , überlebend .  

 

 

 

 

 

Abbildung 41: Einjahresüberleben der 
Gruppen nach CYFRA 21-1-24-Stundenwerten. 
Innerhalb eines Jahres nach SIRT verstorben , 
lebend .  

 Abbildung 42: Einjahresüberleben der 
Gruppen nach CRP-24-Stundenwerten. 
Innerhalb eines Jahres nach SIRT verstorben , 
lebend . 

 

 

 

 

 

Abbildung 43: Einjahresüberleben der 
Gruppen nach GOT-24-Stundenwerten. 
Innerhalb eines Jahres nach SIRT verstorben , 
lebend . 

 Abbildung 44: Einjahresüberleben der 
Gruppen nach Bilirubin-24-Stundenwerten. 
Innerhalb eines Jahres nach SIRT verstorben , 
lebend . 
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  Median CCC/Pankreas  Median HCC  
Gesamt-
kollektiv 

Zeit 
[Stunden] 

Nicht 
verstorben 

Verstorben p-Wert  Nicht 
verstorben 

Verstorben p-Wert  

0 165,9 239,1 0,9539 332,3 151,0 0,5582
24 858,6 289,4 0,3253 1599,9 258,5 0,2416

Nukleosomen 
HS [ng/ml] 

48 730,2 253,1 0,0332 541,7 439,9 0,5582
0 243,0 1030,0 0,1599 1488,0 732,0 0,5582

24 522,5 975,0 0,4777 1996,0 258,0 0,2416
Nukleosomen 

IS [ng/ml] 
48 902,0 315,5 0,3329 1606,0 695,0 0,5582
0 18,3 17,0 0,6093 477,0 208,0 1,0000

24 16,4 27,4 0,1252 404,0 134,0 1,0000
Nukleosomen 

IP [ng/ml] 
48 62,4 44,7 0,6171 255,0 123,0 1,0000
0 3,5 3,8 0,2502 1,6 2,3 0,2416

24 3,4 5,6 0,0447 1,9 2,7 1,0000
CYFRA 21-1 

[ng/ml] 
48 14,3 8,2 0,7469 1,9 2,0 1,0000
0 223,0 288,5 0,2725 264,0 247,0 1,0000

24 250,0 249,0 0,3067 180,0 187,0 1,0000
LDH 
[U/l] 

48 259,0 287,5 0,4320 212,0 182,0 0,5582
0 0,7 1,8 0,4851 0,5 1,0 1,0000

24 0,8 1,1 0,6844 0,5 0,7 1,0000
CRP 

[mg/dl] 
48 3,4 1,3 0,2720 0,5 0,4 0,7664
0 39,5 34,0 0,7280 33,0 77,0 0,5582

24 41,0 38,0 1,0000 26,0 55,0 0,5525
GOT 
[U/l] 

48 56,5 37,5 0,7956 34,0 63,0 1,0000
0 30,5 24,0 0,2218 34,0 63,0 0,2348

24 29,0 26,0 0,6428 28,0 50,0 0,2416
GPT 
[U/l] 

48 32,0 28,0 0,3961 32,0 50,0 0,2416
0 395,0 176,0 0,0933 120,0 258,0 0,2416

24 335,0 153,0 0,1832 96,0 225,0 0,2416
GGT 
[U/l] 

48 348,0 141,5 0,1066 106,0 231,0 0,2416
0 7,0 5,8 0,1321 7,7 5,5 0,2348

24 6,2 5,0 0,2716 6,1 5,1 0,2416
CHE 
[kU/l] 

48 6,0 5,3 0,7469 5,6 4,8 0,2416
0 174,0 176,0 0,6854 112,0 258,0 0,2416

24 147,0 132,0 0,9539 88,0 205,0 0,2416
AP 

[U/l] 
48 145,5 118,0 0,6052 91,0 190,0 0,2416
0 0,6 0,4 0,0974 0,9 0,6 0,5582

24 1,1 0,6 0,0268 1,0 0,8 0,7664
Bilirubin 
[mg/dl] 

48 0,5 0,7 0,0365 1,1 0,7 0,5582
0 71,5 51,0 0,4867 57,0 79,0 1,0000

24 42,5 42,0 0,7282 35,0 43,0 1,0000
Amylase 

[U/l] 
48 40,0 36,0 0,9484 37,0 40,0 1,0000
0 33,0 9,0 0,1176 15,0 79,0 1,0000

24 21,5 3,0 0,2201 10,0 28,0 1,0000
Lipase 
[U/l] 

48 23,5 10,0 0,2190 21,0 56,0 1,0000
 
Tabelle 16: Mediane und Signifikanzen der Laborparameter im Einjahresüberleben bei Gallengangs-, 
Pankreaskarzinom- und HCC-Patienten 
p-Werte < 0,05 sind grau hinterlegt (HS=Handtest, IS=Impact Serum, IP=Impact Plasma) 



4   Ergebnisse  Gesamtkollektiv 

- 78 - 

 

  Median Carcinoide  Median Sonstige  
Gesamt- 
kollektiv 

Zeit 
[Stunden] 

Nicht 
verstorben 

Verstorben p-Wert  Nicht 
verstorben 

Verstorben p-Wert  

0 44,7 164,2 0,7237 549,1 95,0 0,1222
24 228,8 612,0 0,2888 503,9 572,6 0,6261

Nukleosomen 
HS [ng/ml] 

48 493,0 480,0 1,0000 1442,6 515,9 0,2556

0 182,9 349,0 0,7237 980,5 2333,0 0,3531
24 269,5 648,0 0,7237 1184,5 775,0 0,5203

Nukleosomen 
IS [ng/ml] 

48 288,0 701,0 0,2765 1342,0 422,0 0,0268

0 7,7 182,0 0,3711 5,2 62,7 0,2548
24 90,0 139,0 0,7237 45,1 154,0 0,5160

Nukleosomen 
IP [ng/ml] 

48 375,0 197,0 1,0000 87,0 204,0 0,3299

0 1,3 2,2 0,7237 0,8 8,8 0,0378
24 6,1 2,8 0,7237 2,2 15,5 0,0383

CYFRA 21-1 
[ng/ml] 

48 5,0 3,7 0,7237 2,2 21,9 0,0119

0 201,0 295,0 0,2888 285,5 323,0 0,2840
24 411,5 234,0 1,0000 451,0 369,0 0,5160

LDH 
[U/l] 

48 417,0 222,0 1,0000 514,5 496,0 0,8301

0 0,4 11,9 0,2888 0,4 2,2 0,0535
24 0,8 11,2 0,2888 1,4 2,0 0,5595

CRP 
[mg/dl] 

48 4,3 6,3 0,7237 2,9 5,0 0,8303

0 27,0 52,0 0,2765 28,5 52,0 0,0531
24 176,5 42,0 1,0000 85,0 63,0 0,2840

GOT 
[U/l] 

48 45,0 121,0 0,7237 93,0 57,0 0,4320

0 28,0 27,0 1,0000 22,5 39,0 0,3901
24 48,5 26,0 0,7237 42,0 39,0 0,5203

GPT 
[U/l] 

48 84,0 24,0 0,2888 49,5 34,0 0,1973

0 30,5 192,0 0,7237 81,5 187,0 0,1747
24 36,0 192,0 0,7237 96,0 167,0 0,2840

GGT 
[U/l]  

48 66,0 194,0 0,7237 102,5 143,0 0,2840

0 8,4 7,6 0,7237 9,1 6,2 0,1331
24 8,1 7,4 0,7237 7,6 5,7 0,0538

CHE 
[kU/l] 

48 7,1 7,5 0,7237 7,2 4,7 0,0383

0 106,0 307,0 0,2888 133,0 166,0 0,5203
24 92,0 306,0 0,2888 117,0 127,0 0,9430

AP 
[U/l] 

48 99,5 314,0 0,2888 146,0 114,0 0,7748

0 0,6 0,7 0,4682 0,6 0,5 0,2162
24 1,1 0,9 1,0000 1,0 0,7 0,0168

Bilirubin 
[mg/dl] 

48 1,6 0,8 0,7237 1,1 0,7 0,0443

0 64,0 62,0 1,0000 56,0 69,0 0,8301
24 55,5 35,0 0,2888 64,0 54,0 0,3531

Amylase 
[U/l] 

48 45,0 45,0 1,0000 53,5 47,0 0,3907

0 25,5 41,0 0,7237 21,5 26,0 0,7202
24 38,0 20,0 0,2888 39,0 21,0 0,3531

Lipase 
[U/l] 

48 17,5 50,0 0,7237 40,5 20,0 0,1979
 
Tabelle 17: Mediane und Signifikanzen im Einjahresüberleben bei Carcinoiden und in der Mischgruppe 
p-Werte < 0,05 sind grau hinterlegt (HS=Handtest, IS=Impact Serum, IP=Impact Plasma 
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4.2 Laborparameter bei Patienten mit kolorektalem Karzinom 

Von den 113 Patienten der Studie wurden insgesamt 49 Patienten untersucht, die sich 

aufgrund eines hepatisch metastasierten kolorektalen Karzinoms einer SIRT unterzogen, 

wobei ein Patient zwei Therapien erhielt und deshalb insgesamt 50 Therapien bewertet 

wurden. Blutabnahmen erfolgten bei allen Patienten vor Beginn der Therapie, drei und sechs 

Stunden nach der Therapie und an den zwei folgenden Tagen. Zusätzlich zu den beim 

Gesamtkollektiv gemessenen Parametern wurden in dieser Diagnosegruppe in allen Proben 

die Tumormarker CEA und CA 19-9 bestimmt.  

 

Die Nukleosomen im Handtest bleiben über den ersten Tag (3h und 6h-Werte) relativ stabil, 

zeigen jedoch nach 24 Stunden den höchsten relativen Anstieg in diesem Kollektiv mit fast 

einer Vervierfachung des Ausgangswertes (Abbildung 56). Der 48-Stundenwert fällt im 

Verhältnis zum Vortag nur leicht ab, ist aber immer noch signifikant höher als der 

Ausgangswert vor Therapie (Abbildungen 45, 46). 
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Abbildung 45: Kinetik der Nukleosomen (Handtest) beim Kolorektalkarzinomkollektiv 
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Einen ähnlich hohen relativen Anstieg wie die Nukleosomen im Handtest zeigen nur noch 

CRP und die Nukleosomen im Impact (Plasma) im 48-Stundenwert (Abbildungen 48, 53, 57). 

CYFRA 21-1, die Nukleosomen im Handtest sowie im Impact Serum erreichen ihren 

Maximalwert bereits nach 24 Stunden; hingegen steigen die Nukleosomenwerte im Impact 

Plasma, CEA, CA 19-9, CRP, LDH, GOT, GPT und Bilirubin auch 48h nach SIRT noch 

weiter an (Abbildungen 47, 49, 50, 51, 52, 53, 54, 58, Tabelle 18). Interessanterweise gibt es 

einen temporären signifikanten Abfall in den ersten Stunden nach SIRT sowohl bei den 

Nukleosomen im Impact (Plasma und Serum) als auch bei CYFRA 21-1 (Tabelle 19). Die 

Cholinesterase sinkt als einziger Parameter über die gesamte Zeit ab (Abbildungen 55, 57).  

 

 

 

 
Abbildung 46: Kinetik der Nukleosomen 
(Handtest) im Kollektiv der kolorektalen 
Karzinome  

 Abbildung 47: Kinetik der Nukleosomen 
(Impact Serum) im Kollektiv der kolorektalen 
Karzinome  

 
 
 

 

 

 
Abbildung 48: Kinetik der Nukleosomen 
(Impact Plasma) im Kollektiv der kolorektalen 
Karzinome  

 Abbildung 49: Kinetik des CYFRA 21-1 im 
Kollektiv der kolorektalen Karzinome  
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Abbildung 50: Kinetik des CEA im Kollektiv 
der kolorektalen Karzinome.  

 Abbildung 51: Kinetik des CA 19-9 im 
Kollektiv der kolorektalen Karzinome.  

 
 
 

 

 

 
Abbildung 52: Kinetik des LDHs im Kollektiv 
der kolorektalen Karzinome 

 Abbildung 53: Kinetik des CRPs im Kollektiv 
der kolorektalen Karzinome.  

 
 
 

 

 

 
Abbildung 54: Kinetik des GOTs im Kollektiv 
der kolorektalen Karzinome 

 Abbildung 55: Kinetik des CHEs im Kollektiv 
der kolorektalen Karzinome 
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Abbildung 56: Relative Kinetik der Mediane der Nukleosomen und der Tumormarker  
                          im Kollektiv der kolorektalen Karzinome 
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Abbildung 57: Relative Kinetik der Mediane von LDH, CRP, GOT, GPT und CHE  
                          im Kollektiv der kolorektalen Karzinome 



4   Ergebnisse  Kolorektalkarzinom 

- 83 - 

0,00

1,00

2,00

3,00

4,00

0h 24h 48h

Zeit [Stunden]

re
la

tiv
e 

W
er

te

AP=160 ,0 U/l GGT=183,5 U/l Bilirubin=0,7 mg/dl

Amylase=58,0 U/l Lipase=26 U/l
 

Abbildung 58: Relative Kinetik der Mediane der Cholestaseparameter und Pankreasenzyme 
                          im Kollektiv der kolorektalen Karzinome 
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CRC-Kollektiv Referenz 0h 3h 6h 24h 48h 
 190,5 197,6 237,4 751,6 596,0 Nukleosomen HS 

[ng/ml] <56 5,0 - 1625 35 - 2502 41 - 2065 22 - 4335 52 - 2547 
 838,0 245,0 245,0 992,5 707,0 Nukleosomen IS 

[ng/ml]  10,5 - 9144 11,6 - 7076 12,0 - 4466 39 - 4515 112 - 2984 
 47,2 35,4 39,1 101,1 164,0 Nukleosomen IP 

[ng/ml]  1,6 - 591 35,4 - 486 4,0 - 498 0,0 - 617 0,6 - 851 
 10,0 9,3 8,8 28,6 27,5 CYFRA 21-1 

[ng/ml] <2,2 0,8 - 246 0,9 - 240 1,1 - 230 1,0 - 811 1,5 - 638 
 320,0 343,5 356,5 351,0 433,0 CEA 

[ng/ml] < 3,4 2,0 - 31620 1,9 - 33010 1,9 - 16980 1,6 - 36120 1,6 - 37550 
 40,0 41,6 49,7 48,7 56,4 CA 19-9 

[U/ml] < 37 2,4 - 11530 2,3 - 24400 2,2 - 8748 2,4 - 18550 2,3 – 1700 
 393,5   486,5 585,0 LDH 

[U/l] < 250 178,0 - 3068   143,0 - 2923 142,0 - 3585 
 1,3   1,3 4,6 CRP 

[mg/dl] < 0,5 0,1 - 20   1,3 - 22 0,1 - 16,3 
 52,0   74,5 68,5 GOT 

[U/l] < 33 24,0 - 190   15,0 - 339 19,0 - 317 
 34,5   46,0 48,5 GPT 

[U/l] < 35 15,0 - 268   14,0 - 178 13,0 - 136 
 7,3   6,3 5,9 CHE 

[kU/l] 5,0-13,3 2,8 - 11,1   2,8 - 11,1 5,9 - 10,5 
 183,5   165,5 168,5 GGT 

[U/l] < 38 33 - 712   31 - 577 31 - 653 
 160,0   148,0 156,0 AP 

[U/l] < 135 81 - 742   63 - 655 61,0 - 630 
 0,7   1,0 1,2 Bilirubin 

[mg/dl] < 1,0 0,3 - 1,9   0,4 - 2,2 0,4 - 2,8 
 58,0   44,0 46,5 Amylase 

[U/l] < 100 20 - 136   20 - 429 20 - 519 
 26,0   18,0 20,0 Lipase 

[U/l] < 60 3,0 - 263   3,0 - 585 3,0 - 495 
 
Tabelle 18: Mediane und Bandbreiten der Paramater im Kollektiv der kolorektalen Karzinome 
                    (HS=Handtest, IS=Impact Serum; IP=Impact Plasma; h=Stunde) 
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Variable Zeit p-Wert  Variable Zeit p-Wert  Variable Zeit p-Wert
Nukleosomen HS 3h-0 0,4875 CEA 3h-0 0,7428 GPT 24h-0 0,0108
Nukleosomen HS 6h-0 0,1686 CEA 6h-0 0,4603 GPT 48h-0 0,0097
Nukleosomen HS 24h-0 < 0,0001 CEA 24h-0 0,0172 CHE 24h-0 < 0,0001
Nukleosomen HS 48h-0 < 0,0001 CEA 48h-0 0,0509 CHE 48h-0 < 0,0001
Nukleosomen IS 3h-0 0,0001 CA 19-9 3h-0 0,0076 GGT 24h-0 < 0,0001
Nukleosomen IS 6h-0 < 0,0001 CA 19-9 6h-0 0,4756 GGT 48h-0 0,0001
Nukleosomen IS 24h-0 0,7205 CA 19-9 24h-0 0,0518 AP 24h-0 < 0,0001
Nukleosomen IS 48h-0 0,3105 CA 19-9 48h-0 < 0,0001 AP 48h-0 < 0,0001
Nukleosomen IP 3h-0 0,0091 LDH 24h-0 0,0555 Bilirubin 24h-0 0,0001
Nukleosomen IP 6h-0 0,0127 LDH 48h-0 0,0001 Bilirubin 48h-0 < 0,0001
Nukleosomen IP 24h-0 0,0696 CRP 24h-0 0,1549 Amylase 24h-0 < 0,0001
Nukleosomen IP 48h-0 0,0016 CRP 48h-0 0,0167 Amylase 48h-0 < 0,0001
CYFRA 21-1 3h-0 0,1734 GOT 24h-0 0,0004 Lipase 24h-0 0,0122
CYFRA 21-1 6h-0 0,0477  GOT 48h-0 0,0001  Lipase 48h-0 0,0058
CYFRA 21-1 24h-0 < 0,0001        
CYFRA 21-1 48h-0 < 0,0001        

Tabelle 19: Signifikanzen der Kinetik im Bezug zum prätherapeutischen Wert im CRC-Kollektiv 
(p-Werte < 0,05 sind grau hinterlegt; HS=Handtest Serum, IS=Impact Serum, IP=Impact Plasma; h=Stunde) 
 

4.2.1 Korrelation der Laborparameter 

Im Folgenden werden die Werte aller Laborparameter im Kollektiv der Patienten mit einem 

kolorektalen Karzinom auf ihre Korrelation untereinander untersucht. Dazu werden die R-

Werte (Spearman-Korrelations-Koeffizient) für die Zeitpunkte vor Therapiebeginn sowie 

einen und zwei Tage nach SIRT miteinander verglichen. Auf die Zeitpunkte drei und sechs 

Stunden nach Therapie wird verzichtet (Tabelle 20). 

Die Nukleosomen im Handtest zeigen vor allem eine gute Korrelation mit den Nukleosomen 

im Impact Serum. Sonst korrelieren nur die 24-Stundenwerte von CEA, AP, CHE, CRP, LDH 

und CYFRA 21-1 mit den Nukleosomen im Handtest. Die Nukleosomen im Impact Serum 

korrelieren mit den 24-Stundenwerten von AP, CHE, CRP, CEA und zusätzlich mit den 

prätherapeutischen Werten von CEA und Bilirubin. Die Nukleosomen im Impact Plasma 

gemessen korrelieren mit den anderen Messarten der Nukleosomen nur mit den 24-

Stundenwerten im Impact Serum. Mit Ausnahme von Lipase, GPT, Bilirubin und CA 19-9 

zeigen jedoch alle anderen Parameter für die Nukleosomen im Impact Plasma gemessen eine 

gute Korrelation.  

CRP, LDH und CYFRA 21-1 korrelieren untereinander sowie mit CA 19-9, CEA, AP und 

GOT zu allen Zeitpunkten. Gute Korrelationen zu allen betrachteten Zeitpunkten bestehen 

weiterhin zwischen den beiden Pankreasenzymen Amylase und Lipase, den Leberwerten AP, 

GOT, GPT und GGT und den Tumormarkern CEA und CA 19-9. CHE korreliert zu allen 

Zeitpunkten mit CEA, CRP, GGT und AP, GOT mit CA 19-9, CEA und AP. 
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CRC-
Kollektiv N-HS N-IS N-IP CYF  CRP LDH AMY LIP CHE GOT GPT GGT BILI  AP CEA CA 19-9 

CA 19-9 -0,083 0,109 0,218 0,493 0,341 0,468 -0,303 -0,172 -0,209 0,452 0,065 0,259 0,097 0,253 0,559 1,00 

  0,191 0,122 0,243 0,426 0,273 0,356 -0,118 0,054 -0,212 0,289 0,066 0,204 0,005 0,288 0,526 1,00 

  0,123 0,231 0,242 0,434 0,370 0,371 -0,110 0,083 -0,198 0,279 0,071 0,225 -0,021 0,309 0,525 1,00 

CEA 0,133 0,306 0,390 0,616 0,564 0,657 -0,463 -0,169 -0,368 0,501 0,221 0,429 0,058 0,338 1,00  
  0,288 0,326 0,398 0,579 0,409 0,548 -0,397 -0,089 -0,334 0,441 0,158 0,399 0,038 0,433 1,00  
  0,044 0,060 0,390 0,628 0,493 0,500 -0,412 0,014 -0,355 0,401 0,119 0,429 -0,038 0,397 1,00  

AP -0,128 -0,052 0,385 0,745 0,700 0,688 -0,435 -0,073 -0,550 0,711 0,266 0,659 0,343 1,00   
  0,298 0,265 0,404 0,631 0,696 0,609 -0,442 -0,254 -0,477 0,606 0,389 0,687 0,133 1,00   
  -0,021 0,064 0,542 0,676 0,592 0,622 -0,309 -0,076 -0,407 0,659 0,411 0,705 0,061 1,00   

Bilirubin -0,047 0,287 0,308 0,277 0,160 0,276 -0,002 0,151 -0,330 0,362 0,191 0,390 1,00    
  -0,153 0,017 0,071 0,040 -0,093 0,058 0,232 0,332 -0,202 0,242 0,285 0,149 1,00    
  -0,136 -0,237 -0,074 0,130 0,047 0,066 0,187 0,242 0,037 0,240 0,206 0,046 1,00    

GGT -0,126 0,032 0,450 0,592 0,504 0,571 -0,322 0,057 -0,280 0,728 0,550 1,00     
  0,018 0,176 0,289 0,360 0,463 0,322 -0,332 -0,114 -0,258 0,378 0,343 1,00     
  -0,019 0,029 0,403 0,554 0,419 0,422 -0,285 0,026 -0,187 0,468 0,353 1,00     

GPT -0,050 0,132 0,122 0,188 0,202 0,278 -0,077 0,138 -0,002 0,576 1,00      
  -0,233 0,039 0,185 0,363 0,151 0,479 0,037 0,044 0,052 0,785 1,00      
  -0,087 -0,122 0,163 0,274 0,279 0,431 -0,085 -0,099 0,082 0,729 1,00      

GOT -0,001 0,169 0,401 0,729 0,615 0,830 -0,349 -0,142 -0,427 1,00       
  0,086 0,168 0,464 0,746 0,438 0,810 -0,168 -0,101 -0,149 1,00       
  -0,047 -0,093 0,518 0,747 0,564 0,832 -0,174 -0,136 -0,207 1,00       

CHE -0,034 -0,106 -0,372 -0,483 -0,527 -0,457 0,248 0,094 1,00        
  -0,432 -0,405 -0,359 -0,243 -0,504 -0,251 0,271 0,182 1,00        
  0,104 -0,103 -0,371 -0,291 -0,283 -0,237 0,064 -0,082 1,00        

Lipase -0,026 0,151 -0,207 -0,313 -0,287 -0,352 0,388 1,00         
  -0,082 0,050 -0,192 -0,178 -0,314 -0,077 0,516 1,00         
  -0,096 0,069 -0,217 -0,141 -0,234 -0,167 0,459 1,00         

Amylase -0,091 -0,099 -0,276 -0,480 -0,627 -0,482 1,00          
  -0,226 -0,164 -0,169 -0,266 -0,433 -0,206 1,00          
  -0,086 -0,017 -0,268 -0,265 -0,417 -0,281 1,00          

LDH 0,027 0,185 0,548 0,875 0,675 1,00           
  0,276 0,209 0,528 0,900 0,581 1,00           
  0,092 -0,018 0,660 0,853 0,679 1,00           

CRP 0,183 0,110 0,425 0,751 1,00            
  0,400 0,293 0,320 0,563 1,00            
  0,171 0,006 0,521 0,677 1,00            

CYFRA 21-1 0,049 0,056 0,478 1,00             
  0,239 0,204 0,479 1,00             
  0,098 0,010 0,610 1,00             

Nukleosomen  -0,034 0,210 1,00              
 Impact 0,149 0,296 1,00              
 Plasma -0,007 -0,085 1,00              

Nukleosomen  0,336 1,00               
 Impact 0,615 1,00               
 Serum 0,587 1,00               

Nukleosomen  1,00                
 Handtest 1,00                

 Serum 1,00                
 
Tabelle 20: Korrelationen aller Marker im Kollektiv  Kolorektalkarzinom 
Spearman-Korrelationskoeffizienten beim Ausgangswert, 24-Stundenwert und 48-Stundenwert  
(R-Werte > 0,25 oder < -0,25 sind grau hinterlegt; N=Nukleosomen; HS=Handtest, IS=Impact Serum, IP=Impact 
Plasma) 
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4.2.2 Korrelation zwischen Laborparametern und Therapieansprechen 

Circa drei Monaten nach SIRT wurde mittels bildgebender Verfahren das Ansprechen auf 

SIRT beurteilt und die Patienten in zwei Gruppen eingeteilt: Als Progressive Disease (PD) 

wurden ein Fortschreiten der Metastasierung in der Leber beziehungsweise eine neu 

aufgetretene Organmanifestation oder das Versterben des Patienten gewertet. Die NON-PD-

Gruppe zeigte keinen Hinweis auf eine Progression der Erkrankung oder eine Teilremission. 

Von den 50 untersuchten Therapien wurden 36 Patienten als progressiv klassifiziert. Bei zwei 

Patienten fand zwischen SIRT und Staging eine Therapie statt - sie erfüllten beide die 

Kriterien für eine Progression. Alle anderen Patienten erhielten zwischenzeitlich keine 

Therapie.  

 

Bei den Nukleosomen im Handtest ist prätherapeutisch kein Unterschied zu sehen. Nach 3 

und 6 Stunden zeichnet sich ein Trend zu höheren Werte in der Progressionsgruppe ab; nach 

24 Stunden schließlich ist ein hochsignifikanter Unterschied zwischen den Respondergruppen 

vorhanden. (Abbildung 59, Tabelle 21). 
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Abbildung 59: Kinetik der Nukleosomen (Handtest) bei den Respondergruppen 
im Kollektiv Kolorektalkarzinome (PD =  ; NON-PD =  ) 
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Außerdem sind auch signifikante Unterschiede bezüglich des Therapieansprechens für die 

prätherapeutischen Werte von CYFRA 21-1, CEA, LDH und GOT zu sehen (Tabelle 21). Bei 

CA 19-9 und CHE sind sowohl die prätherapeutischen Basiswerte, als auch die 24- und 48-

Stundenwerte bezüglich des Therapieansprechens signifikant unterschiedlich, wobei bei CA 

19-9 hohe Werte und bei der CHE niedrige Werte mit einem ungünstigen Therapieansprechen 

einhergehen (Tabelle 21). Der 48-Stundenwert zeigt bei keinem der Parameter eine solitäre 

Signifikanz, wenn nicht auch schon der Ausgangs- und der 24-Stundenwert signifikant sind. 

Ähnlich den Nukleosomen im Handtest zeigen auch die Impactmessungen sowohl im Plasma, 

als auch im Serum einen Trend zu höheren Werte für Nonresponder (Abbildungen 60, 61, 

62). Auch bei CYFRA 21-1, CEA, CA 19- 9, CRP und LDH haben Nonresponder über den 

beobachteten Zeitraum tendenziell höhere Werte (Abbildungen 63, 64, 65, 66, 67). Nur bei 

CHE und zum Teil bei der GOT zeigen sich umgekehrte Verhältnisse (Abbildungen 68, 69).  

 

 

 

 
Abbildung 60: Kinetik der Nukleosomen 
(Handtest) im Kollektiv Kolorektalkarzinome  
(PD = ; NON-PD = ) 

 Abbildung 61: Kinetik der Nukleosomen 
(Impact Serum) im Kollektiv Kolorektal-
karzinome (PD = ; NON-PD = ) 

 
 
 

 

 

 
Abbildung 62: Kinetik der Nukleosomen 
(Impact Plasma) im Kollektiv Kolorektal-
karzinome (PD = ; NON-PD = ) 

 Abbildung 63: Kinetik von CYFRA 21-1 bei 
den Respondergruppen im Kollektiv 
Kolorektalkarzinom (PD = ; NON-PD = ) 
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Abbildung 64: Kinetik von CEA bei den 
Respondergruppen im Kollektiv Kolorektal-
karzinom (PD = ; NON-PD = ) 

 Abbildung 65: Kinetik von CA 19-9 bei den 
Respondergruppen im Kollektiv Kolorektal-
karzinom (PD = ; NON-PD = ) 

 
 
 

 

 

 
Abbildung 66: Kinetik des CRPs bei den 
Respondergruppen im Kollektiv Kolorektal-
karzinom (PD = ; NON-PD = ) 

 Abbildung 67: Kinetik des LDHs bei den 
Respondergruppen im Kollektiv Kolorektal-
karzinom (PD = ; NON-PD = ) 

 
 
 

 

 

 
Abbildung 68: Kinetik des GOTs bei den 
Respondergruppen im Kollektiv Kolorektal-
karzinom (PD = ; NON-PD = ) 

 Abbildung 69: Kinetik des CHEs bei den 
Respondergruppen im Kollektiv Kolorektal-
karzinom (PD = ; NON-PD = ) 
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  Median  

Marker Zeit [Stunden] NON-PD PD p-Wert 
0 198,5 190,5 0,9559 
24 239,1 820,0 0,0034 

Nukleosomen HS  
[ng/ml] 

48 239,1 820,0 0,9054 
0 743,0 847,0 0,4451 
24 722,0 1102,5 0,0518 

Nukleosomen IS  
[ng/ml] 

48 548,5 767,5 0,0587 
0 22,4 62,5 0,0977 
24 93,6 118,0 0,5380 

Nukleosomen IP  
[ng/ml] 

48 163,5 165,0 0,6741 
0 6,9 13,4 0,0309 
24 28,4 28,6 0,5030 

CYFRA 21-1  
[ng/ml] 

48 19,6 28,4 0,3047 
0 162,0 494,0 0,0472 
24 265,5 508,0 0,1086 

CEA  
[ng/ml] 

48 229,5 503,0 0,0804 
0 18,6 125,0 0,0012 
24 17,9 118,0 0,0079 

CA 19-9  
[U/l] 

48 20,9 143,0 0,0048 
0 349,0 524,0 0,0145 
24 450,0 499,0 0,5328 

LDH   
[U/l] 

48 572,0 585,0 0,4720 
0 0,9 1,9 0,2939 
24 1,1 2,2 0,2136 

CRP  
[mg/dl] 

48 4,4 5,0 0,4892 
0 37,5 56,0 0,0492 
24 111,0 71,5 0,7705 

GOT  
[U/l] 

48 85,0 66,0 0,8798 
0 38,0 30,0 0,6112 
24 52,0 39,0 0,1121 

GPT  
[U/l] 

48 54,0 36,0 0,1027 
0 183,5 183,5 0,8883 
24 168,5 164,0 0,8627 

GGT  
[U/l] 

48 177,5 167,5 0,8037 
0 153,0 192,0 0,6501 
24 156,0 142,0 0,7788 

AP  
[U/l] 

48 156,0 150,5 0,7295 
0 0,7 0,7 0,5116 
24 0,9 1,0 0,8962 

Bilirubin   
[mg/dl] 

48 1,1 1,2 0,8709 
0 8,3 6,5 0,0170 
24 7,1 5,8 0,0146 

CHE  
[kU/l] 

48 6,9 5,4 0,0105 
0 64,5 54,0 0,3463 
24 45,5 43,0 0,7870 

Amylase  
[U/l] 

48 50,5 44,0 0,8968 
0 27,0 25,0 0,7250 
24 17,5 18,0 0,6654 

Lipase  
[U/l] 

48 16,5 21,0 0,4113 
 
Tabelle 21: Mediane und Signifikanzen der Respondergruppen im CRC-Kollektiv 
p-Werte < 0,05 sind grau hinterlegt (HS=Handtest, IS=Impact Serum, IP=Impact Plasma) 
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4.2.3 Korrelation des bildgebendenen Stagings mit dem Gesamtüberleben 

In den beiden folgenden Kaplan-Meier-Kurven wurde das Überleben der Patienten dem 

Therapieansprechen im Staging drei Monate nach SIRT gegenübergestellt. In Abbildung 70 

wird das Staging in drei Gruppen eingeteilt: Remission, Stable Disease und Progression. 

Zwischen diesen drei Gruppen kann jedoch kein signifikanter Unterschied bezüglich des 

Gesamtüberlebens hergestellt werden. In Abbildung 71 wurden die Patienten mit Remission 

und Stable Disease zu einer Gruppe  zusammengefasst: Es zeigt sich ein deutlicher 

Unterschied vor allem ein Jahr nach SIR-Therapie; über den gesamten beobachteten Zeitraum 

wird allerdings das erforderliche Signifikanzniveau knapp verfehlt (p = 0,0660).  

 
Abbildung 70: Überleben der Patienten nach drei Respondergruppen 
                          im Kollektiv Kolorektalkarzinome (  = zensiert) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
Abbildung 71: Überleben der Patienten nach zwei Respondergruppen 
                          im Kollektiv Kolorektalkarzinome (  = zensiert) 
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4.2.4 Korrelation der Laborparameter mit dem Einjahresüberleben 

Bei den Nukleosomen im Handtest differenziert der 24-Stundenwert signifikant zwischen den 

Patienten, die länger beziehungsweise kürzer als ein Jahr nach SIRT leben. Hierbei sind 

höhere Nukleosomenwerte mit einer schlechten Prognose assoziiert. An den anderen 

untersuchten Zeitpunkten ist kein signifikanter Unterschied erkennbar (Abbildung 72, Tabelle 

22). 
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Abbildung 72: Vergleichende Kinetik der Nukleosomen (Handtest) im Einjahresüberleben 
im Kollektiv Kolorektalkarzinom (nach einem Jahre verstorben , lebend ) 
 

Neben den Nukleosomen im Handtest zeigen auch die Nukleosomen im Impact Serum und 

die Amylase einen Tag nach SIRT signifikant das Einjahresüberleben an. Bei den 

Nukleosomen im Impact Plasma hingegen ist nur der prätherapeutische Ausgangswert mit 

dem Einjahresüberleben assoziiert. Zu allen drei untersuchten Zeitpunkten konnten bei einer 

Vielzahl von Parametern Signifikanzen festgestellt werden, so für die Tumormarker CYFRA 

21-1, CEA und CA 19-9, die Leberparameter GGT, AP, CHE und GOT, sowie CRP und 

LDH. Hingegen lassen die Parameter Lipase, Bilirubin und GPT zu keinem der untersuchten 

Abnahmezeitpunkte eine Aussage über das Einjahresüberleben zu (Tabelle 22).  
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Deutlicher als bei den Nuklesomen im Handtest und im Serum in der Impactmessung zeigen 

die Impactmessungen im Plasma erhöhte Werte bei Patienten, die im ersten Jahre nach SIRT 

verstarben (Abbildungen 73, 74, 75). Auch bei CYFRA 21-1, CEA, CA 19-9, CRP, LDH und 

GOT sind erhöhte Werte mit einem kürzeren Überleben assoziiert (Abbildungen 76, 77, 78, 

79, 80, 81). Lediglich die CHE zeigt eine umgekehrte Korrelation (Abbildung 82).  

 

 

 

 

 
Abbildung 73: Vergleichende Kinetik der 
Nukleosomen (Handtest) im Einjahres-
überleben (verstorben , lebend ) 

 Abbildung 74: Vergleichende Kinetik der 
Nukleosomen (Impact Serum) im 
Einjahresüberleben (verstorben , lebend ) 

 
 
 

 

 

 
Abbildung 75: Vergleichende Kinetik der 
Nukleosomen (Impact Serum) im Einjahres-
überleben (verstorben , lebend )  
im Kolorektalkarzinomkollektiv 

 Abbildung 76: Vergleichende Kinetik des 
CYFRA 21-1 im Einjahresüberleben  
(verstorben , lebend ) 
im Kolorektalkarzinomkollektiv 
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Abbildung 77: Vergleichende Kinetik des CEAs 
im Einjahresüberleben (verstorben , lebend ) 
im Kolorektalkarzinomkollektiv  

 Abbildung 78: Vergleichende Kinetik des  
CA 19-9 im Einjahresüberleben (verstorben , 
lebend ) im Kolorektalkarzinomkollektiv 

 
 
 

 

 

 
Abbildung 79: Vergleichende Kinetik des CRPs 
im Einjahresüberleben (verstorben , lebend ) 
im Kolorektalkarzinomkollektiv 

 Abbildung 80: Vergleichende Kinetik des LDHs 
im Einjahresüberleben ( verstorben , lebend ) 
im Kolorektalkarzinomkollektiv 

 
 
 

 

 

 
Abbildung 81: Vergleichende Kinetik des GOTs 
im Einjahresüberleben (verstorben , lebend ) 
im Kolorektalkarzinomkollektiv 

 Abbildung 82: Vergleichende Kinetik des CHEs 
im Einjahresüberleben (verstorben , lebend ) 
im Kolorektalkarzinomkollektiv 
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  Median  

Marker Zeit [Stunden] Nicht verstorben Verstorben p-Wert 
0 190,5 205,9 0,5634 
24 564,3 955,0 0,0032 

Nukleosomen HS 
[ng/ml] 

48 704,1 567,4 0,8023 
0 867,0 838,0 0,6647 
24 789,0 1226,0 0,0181 

Nukleosomen IS  
[ng/ml] 

48 606,0 745,0 0,2929 
0 21,8 126,0 0,0122 
24 66,0 156,5 0,1046 

Nukleosomen IP  
[ng/ml] 

48 114,0 232,0 0,0142 
0 6,2 31,5 0,0000 
24 14,8 41,2 0,0050 

CYFRA 21-1  
[ng/ml] 

48 15,4 42,3 0,0004 
0 83,0 902,0 0,0003 
24 103,0 878,0 0,0010 

CEA  
[ng/ml] 

48 105,0 859,0 0,0005 
0 23,5 277,5 0,0002 
24 19,4 256,0 0,0018 

CA 19-9  
[U/l] 

48 23,1 300,0 0,0013 
0 316,0 604,5 0,0000 
24 389,0 659,5 0,0103 

LDH  
[U/l] 

48 451,0 873,0 0,0019 
0 0,5 7,8 0,0000 
24 0,8 5,9 0,0001 

CRP  
[mg/dl] 

48 3,1 7,7 0,0016 
0 36,0 63,5 0,0000 
24 59,0 84,0 0,0440 

GOT  
[U/l] 

48 58,0 85,0 0,0097 
0 33,0 37,0 0,3063 
24 45,0 4,0 0,6592 

GPT  
[U/l] 

48 52,0 42,0 0,7867 
0 8,3 5,9 0,0004 
24 5,2 -0,9 0,0002 

CHE  
[kU/l] 

48 6,9 5,0 0,0002 
0 131,0 252,5 0,0039 
24 119,0 229,0 0,0054 

GGT  
[U/l] 

48 136,0 216,0 0,0050 
0 119,0 226,0 0,0006 
24 101,0 214,0 0,0003 

AP  
[U/l] 

48 108,0 207,0 0,0007 
0 0,6 0,8 0,1877 
24 0,9 1,0 0,9197 

Bilirubin  
[mg/dl] 

48 1,1 1,2 0,7862 
0 64,5 54,0 0,0919 
24 52,0 38,5 0,0289 

Amylase  
[U/l] 

48 53,0 41,0 0,1353 
0 25,5 26,0 0,8813 
24 19,0 14,0 0,3832 

Lipase 
[U/l] 

48 19,0 21,0 0,6665 
 
Tabelle 22: Mediane und Signifikanzen nach dem Einjahresüberleben im CRC-Kollektiv 
p-Werte < 0,05 sind grau hinterlegt (HS=Handtest, IS=Impact Serum, IP=Impact Plasma) 
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4.2.5 Korrelation der Laborparameter mit dem Gesamtüberleben 

Im Folgenden wurde die Bandbreite der gemessenen Laborwerte vor und 24 Stunden nach 

Therapie in Quartile eingeteilt. In den Kaplan-Meier-Berechnungen wurden diese Quartile als 

Cut-offs verwendet, um Unterschiede im Überleben für Patienten mit hohen Werten im 

Gegensatz zu Patienten mit Werten im niedrigeren Bereich zu zeigen.  

 

Bei den Nukleosomen im Handtest überleben die Patienten mit prätherapeutischen Werten in 

der dritten Quartile am längsten, aber dieser Unterschied ist nicht signifikant. Der 24- 

Stundenwert differenziert hingegen signifikant zwischen den Prognosegruppen; die Patienten 

mit den niedrigsten Werten (erste Quartile) leben am längsten während jene mit den höchsten 

Werten (vierte Quartile) am schnellsten versterben (Abbildungen 83, 84, 85, Tabelle 23). 
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Abbildung 83: Überleben in Quartilen von Nukleosomen (Handtest) 24 Stunden nach SIRT  
                          im Kollektiv kolorektale Karzinome (  = zensiert) 
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Auch bei den Nukleosomen im Impact Serum kann, wie bei den Nukleosomen im Handtest, 

der Wert einen Tag nach SIRT signifikant hinsichtlich des Überlebens differenzieren, der 

prätherapeutische Wert hat jedoch keine Aussagekraft. Die Nukleosomen im Impact Plasma 

hingegen zeigen, wie auch die Tumormarker CYFRA 21-1, CEA und CA 19-9 sowie CRP, 

LDH und die Leberparameter GOT, CHE, AP und GGT, sowohl prätherapeutisch als auch 24 

Stunden nach SIRT signifikante Unterschiede in den Prognosegruppen. Keine Aussagekraft 

bezüglich des Gesamtüberlebens zu den beiden untersuchten Zeitpunkten zeigen GPT, 

Bilirubin und die Pankreasenzyme Amylase und Lipase (Tabelle 23).  

In den Abbildungen 86 – 91 sind exemplarisch die Kaplan-Meier-Überlebenskurven für die 

Parameter CYFRA 21-1, LDH, CEA, CA 19-9, CRP und GOT (jeweils die 

prätherapeutischen Werte) gezeigt.  
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Abbildung 84: Überleben in Quartilen der 
Nukleosomen (Handtest) prätherapeutisch im 
Kollektiv kolorektale Karzinome (  = zensiert) 

 Abbildung 85: Überleben in Quartilen der 
Nukleosomen (Handtest) 24 Stunden nach 
SIRT im Kollektiv kolorektale Karzinome  
(  = zensiert) 
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Abbildung 86: Überleben in Quartilen von 
CYFRA 21-1 prätherapeutisch im Kollektiv 
kolorektale Karzinome (  = zensiert) 

 Abbildung 87: Überleben in Quartilen von 
LDH prätherapeutisch im Kollektiv 
kolorektale Karzinome (  = zensiert) 
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Abbildung 88: Überleben in Quartilen von CEA 
prätherapeutisch im Kollektiv kolorektale 
Karzinome (  = zensiert) 

 Abbildung 89: Überleben in Quartilen von CA 
19-9 prätherapeutisch im Kollektiv kolorektale 
Karzinome (  = zensiert) 
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Abbildung 90: Überleben in Quartilen von CRP 
prätherapeutisch im Kollektiv kolorektale 
Karzinome (  = zensiert) 

 Abbildung 91: Überleben in Quartilen von 
GOT prätherapeutisch im Kollektiv kolorektale 
Karzinome (  = zensiert) 
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1. Quartil  2. Quartil  3. Quartil  4. Quartil  p-Wert  Marker  Zeit 

Med. ÜL 

[Monate] 

95% KI  

 

Med. ÜL 

[Monate] 

95% KI  

 

Med. ÜL 

[Monate] 

95% KI  

 

Med. ÜL 

[Monate] 

95% KI  

 

Log-

rank 

< 83 83 - 190 191 - 415 > 415 
0h 17,3 1,5 -  8,2 4,6 - 17,2 3,2 - 23,8 6,0 1,5 - 15,4 0,1315 

< 384 384 - 751 752 - 1232 > 1232 
N- HS 
[ng/ml] 

24h 23,8 4,9 - 23,8 8,0 2,5 - 13,8 4,0- 20,6 5,1 1,4 - 6,1 0,0003 
< 156 156 - 676 677 - 1525 > 1525 

0h 19,6 4,0 -  4,9 2,8 - 8,8 13,0 4,4 - 18,8 15,8 1,5 -  0,4058 
< 438 438 - 874 875 - 1461 > 1461 

N- IS 
[ng/ml] 

24h 20,6 4,9 -  13,8 5,1 -  6,2 3,2 - 23,8 4,7 2,7 - 15,4 0,0061 
< 15 15 - 26 27 - 182 > 182 

0h 15,4 5,9 -  20,6 2,8 -  5,0 2,8 - 19,6 5,0 1,5 - 7,8 0,0155 
< 29 29 - 71 72 - 256 > 256 

N- IP 
[ng/ml] 

24h 13,0 4,4 -  19,6 2,4 - 23,8 7,8 4,6 - 19,6 3,7 1,4 - 5,1 0,018 
< 5,3 5,3 - 10 11,0 - 32 > 32 

0h 20,6 8,2 -    4,9 -  7,0 2,8 - 18,8 3,1 1,4 - 5,1 <0,0001 

< 13,8 13,8 - 28,6 28,7 - 74,4 > 74,4 
CYFRA 
[ng/ml] 

24h 20,6 8,2 - 23,8 7,3 3,4 -  6,2 3,1 -  4,6 1,4 - 15,0 0,0017 

< 55 55 - 320 321 - 1041 > 1041 
0h 20,6 3,1 -  19,6 5,6 -  8,3 4,2 - 18,8 3,1 1,4 - 6,1 0,0002 

< 85 85 - 351 352 - 982 > 982 

 
CEA 
[U/l] 

24h 22,2 8,2 - 23,8 19,6 4,2 -  5,5 2,5 - 8,8 4,9 1,5 - 15,0 0,0001 

< 10 10,0 - 48 48 - 285 > 285 
0h 15,4 3,1 -  23,8 8,2 -  6,6 2,8 -  4,9 1,4 - 6,2 0,0005 

< 10 10 - 48,7 49 - 285 > 285 
CA 19-9 

[U/l] 
24h 15,4 3,1 -  17,8 4,2 - 23,8 6,6 2,8 -  5,5 1,4 - 11,0 0,0087 

> 0,5 0,5 - 1,3 1,4 - 8,3 > 8,3 
0h 23,8 19,6 -  15,0 3,4 -  6,8 4,4 - 15,0 3,1 1,4 - 5,1 <0,0001 

< 0,7 0,7 - 1,3 1,4 - 6,4 > 6,4 
CRP 

[mg/dl] 
24h 23,8 11 - 23,8   4,7 -  8,8 5,8 - 15,4 3,0 1,4 - 5,1 <,0001 

< 299 299 - 393 394 - 604 > 604 
0h 20,6 8,2 -  18,8 4,7 -  8,8 1,5 - 23,8 3,2 1,5 - 5,0 <0,0001 

< 336 336 - 486 486 - 878 > 878 
LDH 
[U/l] 

24h 23,8 8,2 -  11,0 4,4 -  6,8 4,6 - 16,8 2,8 1,4 - 15,0 0,0002 
< 35 35 - 52 53 - 66 > 66 

0h 20,6 15,0 -  13,8 5,0 -  6,8 4,6 - 15,0 3,0 1,4 - 4,2 <0,0001 
< 48 48 - 74 74 - 135 > 135 

GOT 
[U/l] 

24h   11,0 -  6,3 4,6 - 19,6 5,6 2,8 - 15,4 3,4 1,5 - 15,0 0,0006 
< 26 26 - 34 35 - 50 > 50 

0h 18,8 5,2 -  7,8 3,1 -  13,8 5,1 - 15,4 3,8 1,5 - 23,8 0,0801 
< 30,0 30,0 - 46,0 47 - 64 > 64 

 
GPT 
[U/l] 

24h 20,6 5,2 -  5,5 4,4 - 15,0 15,0 2,6 - 19,6 4,1 1,5 -  0,0849 
< 5,8 5,8 - 7,3 7,4 - 8,4 > 8,4 

0h 5,1 1,5 - 6,2 5,9 2,8 -  11,0 4,0 - 19,6 28,8 11,0 - 3,8 0,0005 

< 5,1 5,1 - 6,3 6,4 - 7,6 > 7,6 
CHE 
[kU/l] 

24h 4,7 1,4 - 6,8 5,4 2,5 - 20,6 23,8 4,4 -  18,8 8,2 -  0,0001 
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1. Quartil  2. Quartil  3. Quartil  4. Quartil  p-Wert Marker  Zeit 

Med. ÜL 

[Monate] 

95% KI  

 

Med. ÜL 

[Monate] 

95% KI  

 

Med. ÜL 

[Monate] 

95% KI  

 

Med. ÜL 

[Monate] 

95% KI  

 

Log-

rank 

< 110 110 - 183 184 - 282 > 282 
0h 19,6 5,9 -  18,8 4,4 - 20,6 5,2 2,8 - 15,4 4,4 2,5 - 7,8 0,0007 

< 94 94 - 165 166 - 274 > 274 
GGT 
[U/l] 

24h 19,6 6,8 -  6,2 4,4 - 20,6 15,0 2,8 -  4,8 2,5 - 7,8 0,0036 
< 114 114 - 160 161 - 321 > 321 

0h 20,6 8,2 -  18,8 4,6 - 23,8 6,2 3,2 -  4,2 1,5 - 5,5 <0,0001 
< 98 98 - 148 149 - 265 > 265 

AP 
[U/l] 

24h 23,8 8,2 -  16,7 4,6 - 19,6 7,8 3,4 - 18,8 3,7 4,1 - 6,2 <0,0001 
< 0,5 0,5 - 0,7 0,8 - 1,2 > 1,2 

0h 15,0 4,4 -  11,0 2,8 -  18,8 5,1 -  4,4 1,5 - 15,0 0,1281 
< 0,8 0,8 - 1,0 1,1 - 1,8 > 1,8 

Bilirubin  
[mg/dl] 

24h 10,3 4,0 - 19,6 11,0 4,6 -  6,8 2,5 -  8,2 1,5 - 23,8 0,3848 
< 44 44 - 58 59 - 75 > 75 

0h 5,2 1,4 - 18,8 8,8 3,2 - 19,6 8,0 2,5 - 23,8   5,8 -  0,9908 
< 35 35 - 44 44 - 63 > 63 

Amylase 
[U/l] 

24h 5,2 3,2 - 15,4 7,0 3,1 -  13,8 2,8 -  20,6 1,5 -  0,9948 
< 13 13 - 26 27 - 38 > 38 

0h 5,21,5 -  18,8 2,8 -  8,8 4,0 -  13,0 3,4 - 19,6 0,6083 
< 10 10 - 18,0 19 - 28,0 > 28 

Lipase 
[U/l] 

24h 5,2 3,2 - 18,8 5,0 2,8 -  15,4 5,5 - 23,8 11,0 1,5 - 20,6 0,6391 
 
Tabelle 23: Medianes Überleben der Patienten im Kolorektalkarzinomkollektiv nach Quartilaufteilung 
der Parameter und zugehörige p- Werte 
(p-Werte < 0,05 sind grau hinterlegt, N=Nukleosomen, HS=Handtest, IS=Impact Serum, IP=Impact Plasma) 

 

4.2.6 Multivariate Analysen zum Gesamtüberleben 

Alle hinsichtlich des Gesamtüberlebens in der univariaten Analyse signifikanten Parameter 

wurden zur Basis 2 logarithmiert, um dann als stetige Variable in die multivariate Berechnung 

einzufließen. Um gleiche Fallzahlen zu schaffen, und damit eine bessere Vergleichbarkeit, 

wurden fehlende Werte (prätherapeutisch: LDH 6 Werte, CHE 4 Werte, AP 3 Werte, CA 19-9 

und CEA jeweils 2 Werte, Nukleosomen im Handtest 1 Wert; 24 Stunden nach Therapie: 

LDH 2 Werte, CA 19-9, CEA und Nukleosomen jeweils 1 Wert) durch den Median des 

Kollektivs ersetzt und jeweils Berechnungen mit und ohne Ersetzung durchgeführt. Da sich 

keine Unterschiede fanden, wurden die ersetzten Werte beibehalten.  

In einem ersten Schritt wurden alle möglichen Zweier- und Dreierkombinationen der 

prätherapeutischen Werte kombiniert (Modell 1), um die Vielzahl der möglichen 

multivariaten Modelle darzustellen und keinen Parameter versehentlich zu früh zu übergehen. 

All jene Modelle, bei denen alle einzelnen Parameter sich als unabhängige prognostische 
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Faktoren erwiesen, wurden dann anhand des Akaike Information Criterion (AIC), ein Maß für 

die Stärke eines prognostischen Modells, miteinander verglichen. 

Den niedrigsten AIC, und damit die beste prognostische Aussagekraft, wurde dabei in der 

Zweierkombination der prätherapeutischen CRP- und GOT-Werte errechnet, die damit besser 

waren als jede Dreierkombination. Ähnlich gute AIC-Werte erzielte auch die Kombination 

von CRP und LDH, welches als alternatives Modell ebenso geeignet wäre.  

Ein einem weiteren Schritt wurden auch die 24-Stundenwerte in die Kaplan-Meier-Analysen 

einbezogen (Modell 2). Hier konnte die prognostische Aussagekraft durch die Hinzunahme 

der Nukleosomen im Handtest 24 Stunden nach Therapie zu den prätherapeutischen CRP- 

und GOT-Werten noch weiter gesteigert werden. (Tabelle 24). 

 

  Parameter Koeffizient 
Hazard-

Ratio 
95%-Konfidenz-  

interval Chi 2 p-Wert AIC 

CRP 
(0h) 0,501 1,6 1,3 - 2,1 18,7 < 0,0001 

Modell 1  
 

Prätherapeutische  
Werte GOT 

(0h) 
0,930 2,5 1,5 - 4,4 11,1 0,0009 

183,3 

CRP 
(0h) 

0,355 1,4 1,9 - 1,8 7,2 0,0073 

GOT 
(0h) 

1,323 3,8 2,0 - 7,3 15,7 < 0,0001 

Modell 2 
 

Prätherapeutische  
+ 

24-Stunden- 
werte Nukleosomen  

HS 
(24h) 0,522 1,7 1,2 - 2,4 8,3 0,0039 

175,4 

 
Tabelle 24: Multivariate Modelle mit AIC und Signif ikanzen der einzelnen Parameter  
                     im Kolorektalkarzinomkollektiv 
                    (p-Werte < 0,05 sind grau hinterlegt; HS=Handtest) 
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4.3 Laborparameter bei Patientinnen mit Mammakarzinom 

Unter den 113 der in die Studie untersuchten Patienten befanden sich 22 Patientinnen, die sich 

wegen Lebermetastasen eines Mammakarzinoms einer SIRT unterzogen. Die Blutabnahmen 

erfolgten bei allen Patienten vor Beginn der Therapie, drei und sechs Stunden nach der 

Therapie und an den zwei folgenden Tagen nach SIRT. Zusätzlich zu den beim 

Gesamtkollektiv gemessenen Parametern wurden in dieser Diagnosegruppe in allen Proben 

die Tumormarker CEA und CA 15-3 bestimmt.  

 

Die Nukleosomen im Handtest zeigen bei den Patientinnen mit einem Mammakarzinom 

relativ zum prätherapeutischen Wert eine Verdreifachung der Wertlagen nach 24 Stunden. 

Dieser signifikante Anstieg bleibt auch noch am zweiten Tag nach SIRT erhalten (Abbildung 

92, Tabellen 25, 26). 

Auch bei den Nukleosomen im Impact Plasma sind die Anstiege am ersten und zweiten Tag 

nach SIRT signifikant. Hingegen starten die Nukleosomen im Impact Serum von hohen 

Ausgangswerten, fallen während des ersten Tages deutlich ab, um dann 24h und 48h nach der 

Therapie wieder etwa zum Ausgangswert anzusteigen. 

Den mit Abstand größten Sprung zeigt CYFRA 21-1 mit einem über 20-fachen Anstieg 24 

Stunden nach SIRT. Weitere signifikante Anstiege gibt es bei LDH, CRP, Bilirubin und den 

Leberenzymen GOT und GPT jeweils einen Tag nach Therapie. Fallende Werte hingegen 

sind bei den Cholestaseparametern CHE und AP, sowie bei der Amylase zu sehen. GGT und 

die Tumormarker CEA und CA 15-3 bleiben über den betrachteten Zeitraum stabil und zeigen 

keine signifikanten Veränderungen (Abbildungen 93 und 94). 
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Mamma-CA- 
Kollektiv  

Referenzwert 0h 3h 6h 24h 48h 

134,4 114,4 187,6 404,1 333,5 Nukleosomen HS  
[ng/ml] 

  
< 56 8,9 - 771 20,1 - 1609 31 - 1325 52 - 1420 44 - 973 

534,5 125,0 111,0 440,0 501,0 Nukleosomen IS  
[ng/ml] 

  
  40 - 8789 3,1 - 779 11,2 - 2086 53 - 2509 32 - 1895 

27,6 49,0 32,3 75,7 146,5 Nukleosomen IP  
[ng/ml] 

  
  0,2 - 616 5,8 - 627 6,4 - 628 15,9 - 796 17,0 - 1442 

5,6 5,7 11,0 126,0 83,4 CYFRA 21-1  
[ng/ml] 

  
< 2,2 1,1 - 73 13,0 - 73 2,5 - 183 2,6 - 695 3,4 - 722 

6,1 6,5 5,9 5,7 5,8 CEA  
[ng/ml] 

  
< 3,4 1,5 - 300 1,5 - 1812 1,4 - 167 1,1 - 293 1,5 - 296 

227,0 235,0 175,0 241,0 227,5 CA 15-3 
[U/ml] 

  
< 28 21,9 - 2871 16,9 - 2859 23,1 - 3616 23,1 - 7427 20,1 - 10250 

276,0     475,0 389,0 LDH 
[U/l] 

  
< 250 194 - 755     227 1877 228 - 2979 

0,3     0,8 1,7 CRP  
[mg/dl] 

  
< 0,5  0,1 – 2,5     0,3 - 2,8 0,4 - 11,1 

46,5     103,0 93,5 GOT  
[U/l] 

  
< 33 24 - 127     35 - 677 40 - 666 

34,0     63,0 56,0 GPT  
[U/l] 

  
< 35 11,0 - 136     11,0 - 325 12,0 - 287 

95,5     88,5 84,5 AP  
[U/l] 

  
< 135 53 - 677     41,0 - 747,0 47,0 - 647,0 

92,5     101,5 98,5 GGT  
[U/l] 

  
< 38 23 - 1671     17,0 - 1852 25 - 1758 

6,9     6,3 5,5 CHE  
[kU/l] 

  
5,0-13,3 4,0 - 10,3     2,8 - 9,2 3,6 - 8,6 

0,6     0,9 1,2 Bilirubin  [mg/dl]   
< 1,0 0,2 – 1,6     0,5 - 2,5 0,6 - 2,9 

59,0     49,0 44,5 Amylase 
[U/l] 

  
< 100  35 - 129     24 - 478 21,0 - 200 

33,5     22,5 27,5 Lipase 
[U/l] 

  
< 60 4,0 - 62     4,0 - 813 7,0 - 186 

 
Tabelle 25: Mediane und Schwankungsbreiten im Kollektiv Mammakarzinom 
                    (HS=Handtest, IS=Impact Serum, IP=Impact Plasma) 
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Abbildung 92: Relative Kinetik der Mediane der Nukleosomen und der Tumormarker  
im Mammakarzinomkollektiv (HS=Handtest, IS=Impact Serum, IP=Impact Plasma) 
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Abbildung 93: Relative Kinetik der Mediane von CRP, LDH, GOT, GPT und CHE  
im Mammakarzinomkollektiv 
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Abbildung 94: Relative Kinetik der Mediane von AP, GGT, Bilirubin und den Pankreasenzymen  
im Mammakarzinomkollektiv 
 
 
 
 

Variable Zeit p-Wert   Variable Zeit p-Wert   Variable Zeit p-Wert  
Nukleosomen HS 3h-0 0,8801 LDH 24h-0 0,0001 GPT 24h-0 0,0001

Nukleosomen HS 6h-0 0,4524 LDH 48h-0<0,0001 GPT 48h-0 0,0001

Nukleosomen HS 24h-0 0,0039 CRP 24h-0 0,0001 CHE 24h-0<0,0001

Nukleosomen HS 48h-0 0,0019 CRP 48h-0<0,0001 CHE 48h-0<0,0001

Nukleosomen IS 3h-0 0,0070 CEA 3h-0 0,0595 AP 24h-0 0,0078

Nukleosomen IS 6h-0 0,0124 CEA 6h-0 0,5367 AP 48h-0 0,0011

Nukleosomen IS 24h-0 0,9375 CEA 24h-0 0,8014 GGT 24h-0 0,3789

Nukleosomen IP 48h-0 0,4392 CEA 48h-0 0,4578 GGT 48h-0 0,7897

Nukleosomen IP 3h-0 0,7562 CA 15-3 3h-0 0,3253 Bilirubin 24h-0<0,0001

Nukleosomen IP 6h-0 1,0000 CA 15-3 6h-0 0,8210 Bilirubin 48h-0<0,0001

Nukleosomen IP 24h-0 0,0012 CA 15-3 24h-0 0,4297 Amylase 24h-0 0,0915

Nukleosomen IP 48h-0 0,0001 CA 15-3 48h-0 0,8140 Amylase 48h-0 0,0181

CYFRA 21-1 3h-0 0,6944 GOT 24h-0<0,0001 Lipase 24h-0 0,6830

CYFRA 21-1 6h-0 0,2598 GOT 48h-0<0,0001 Lipase 48h-0 0,7119

CYFRA 21-1 24h-0<0,0001        
CYFRA 21-1 48h-0<0,0001        
 
Tabelle 26: Signifikanzen der Parameter in Bezug zum prätherapeutischen Wert  
                    im Mammakarzinomkollektiv 
                   (p-Werte < 0,05 sind grau hinterlegt; HS=Handtest, IS=Impact Serum, IP=Impact Plasma) 
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4.3.1 Korrelation der Laborparameter mit dem Therapieansprechen 

Circa drei Monaten nach der SIR-Therapie wurde mittels klinischer Untersuchung, PET-CT, 

MRT und Kontrolle der Laborwerte ein Staging durchgeführt und damit das Ansprechen auf 

die Therapie beurteilt. Alle Patientinnen erhielten zwischen SIRT und dem ersten Staging 

keine weitere Therapie. Von den 22 untersuchten Patientinnen mit Mammakarzinom wurden 

16 im Staging als progressiv klassifiziert, bei fünf wurde von einem Therapieansprechen 

ausgegangen. Da bei einer Patientin keine Stagingergebnisse vorlagen, wurde diese aus den 

Berechnungen ausgeschlossen.  

 

Bei den Nukleosomen im Handtest können zu keinem Zeitpunkt signifikanten Unterschiede 

der Wertlagen hinsichtlich des Therapieansprechen gefunden werden (Abbildung 95, Tabelle 

27). 
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Abbildung 95: Kinetik der Nukleosomen (Handtest) bei den Respondergruppen 
                          im Mammakarzinomkollektiv (PD =  ; NON-PD = ) 
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Obwohl bei CYFRA 21-1 vor allem nach 24 Stunden ein starker Anstieg der Werte vorliegt, 

sind die absoluten Wertlagen bei Respondern und Nonrespondern vergleichbar und zeigen 

keine signifikanten Unterschiede (Abbildung 97, Tabelle 27). Auch der über die Zeit relativ 

stabile Tumormarker CEA (Abbildung 98), sowie alle anderen evaluierten Parameter können 

die Patientengruppen nicht signifikant hinsichtlich des Therapieansprechens unterscheiden. 

Die einzige Ausnahme ist der Mammakarzinom-assoziierte Tumormarker CA 15-3 

(Abbildung 99), der zu allen drei untersuchten Zeitpunkten signifikant höher ist bei Patienten 

mit einem ungünstigen Therapieansprechen (Tabelle 27). 

 

 

 

 
Abbildung 96: Kinetik der Nukleosomen 
(Handtest) bei den Respondergruppen  
im Mammakarzinomkollektiv  
(PD= ; NON-PD = ) 

 Abbildung 97: Kinetik des CYFRA 21-1 bei den 
Respondergruppen  
im Mammakarzinomkollektiv 
(PD = ; NON-PD = ) 

 
 
 

 

 

 
Abbildung 98: Kinetik des CEA bei den 
Respondergruppen  
im Mammakarzinomkollektiv 
 (PD = ; NON-PD = ) 

 Abbildung 99: Kinetik des CA 15-3 bei den 
Respondergruppen  
im Mammakarzinomkollektiv 
(PD = ; NON-PD = ) 
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 Median  

Marker Zeit [Stunden] NON-PD PD p-Wert 
0 230,5 99,0 0,3020

24 417,6 404,4 1,0000
Nukleosomen HS  
[ng/ml] 

48 496,5 321,5 0,5357
0 597,0 510,0 0,9671

24 1344,0 423,5 0,1731
Nukleosomen IS  
[ng/ml] 

48 587,0 410,0 0,7726
0 21,0 27,6 0,7270

24 45,4 75,7 0,3859
Nukleosomen IP  
[ng/ml] 

48 106,0 146,5 0,6497
0 4,5 5,6 0,5629

24 144,0 126,0 0,9014
CYFRA 21-1  
[ng/ml] 

48 72,7 85,7 0,3423
0 1,9 6,5 0,1863

24 1,7 6,3 0,1265
CEA  
[ng/ml] 

48 3,9 5,9 0,2828
0 91,8 310,5 0,0186

24 68,5 344,0 0,0186
CA 15-3 
[U/l] 

48 53,9 267,5 0,0118
0 279,0 256,0 0,4319

24 323,0 475,0 0,6625
LDH  
[U/l] 

48 401,0 358,5 0,8043
0 0,2 0,3 0,3789

24 0,9 0,7 0,7087
CRP  
[mg/dl] 

48 1,5 1,7 0,9340
0 31,0 57,5 0,0630

24 94,0 106,5 0,3859
GOT  
[U/l] 

48 68,0 94,5 0,1731
0 31,0 42,5 0,3018

24 52,0 63,0 0,4572
GPT  
[U/l] 

48 47,0 59,5 0,3420
0 43,0 92,5 0,8688

24 152,0 96,0 0,7098
GGT  
[U/l] 

48 122,0 94,0 0,8365
0 6,9 6,7 0,6497

24 6,6 6,3 0,9014
CHE  
[kU/l] 

48 5,6 5,7 0,9014
0 78,0 102,5 0,4328

24 68,0 88,5 0,5087
AP  
[U/l] 

48 80,0 84,5 0,6795
0 0,5 0,6 0,7378

24 0,7 1,0 0,2802
Bilirubin  
[mg/dl] 

48 1,0 1,3 0,1840
0 70,0 55,0 0,2003

24 57,0 41,5 0,4325
Amylase  
[U/l] 

48 53,0 42,5 0,5087
0 31,0 36,0 0,8042

24 19,0 25,0 0,8040
Lipase  
[U/l] 

48 25,0 27,5 0,5910
 
Tabelle 27: Mediane und Signifikanzen der Respondergruppen im Mammakarzinomkollektiv 
                    p-Werte < 0,05 sind grau hinterlegt (HS=Handtest, IS=Impact Serum, IP=Impact Plasma) 
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4.3.2 Korrelation des Therapieansprechens mit dem Überleben 

Als nächstes wurden die Gruppen der Nonresponder und Responder im 

Mammakarzinomkollektiv hinsichtlich des Überlebens verglichen. Die folgenden Kaplan-

Meier-Kurven zeigen den signifikanten (p = 0,0077) Unterschied der Gruppen im Follow-up 

bis zu zwei Jahren mit einem deutlich besseren Überleben für jene Patienten, die gut auf die 

SIRT angesprochen hatten (Abbildung 100).  
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Abbildung 100: Überleben nach Therapieansprechen im Mammakarzinomkollektiv 
                            (  = zensiert) 
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4.3.3 Korrelation der Laborparameter mit dem Einjahresüberleben 

16 der 22 untersuchten Patientinnen verstarben innerhalb des ersten Jahres nach SIRT.  

 

Bei den Nukleosomen im Handtest gibt es mit Ausnahme der prätherapeutischen Werte eine 

leichte Tendenz zu höheren Wertlagen bei Patientinnen mit einem längeren Überleben. Diese 

Unterschiede sind jedoch nicht signifikant (Abbildung 101, Tabelle 28). 
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Abbildung 101: Vergleichende Kinetik der Nukleosomen (Handtest) im Einjahresüberleben 
                            im Mammakarzinomkollektiv (nach einem Jahre verstorben , lebend ) 
 



4   Ergebnisse  Mammakarzinom 

- 111 - 

Die Nukleosomen im Impact Serum zeigen eine ähnliche Konstellation wie die Nukleosomen 

im Handtest. Hier findet sich sogar ein signifikanter Unterschied für den 24h-Wert, wobei 

hohe Werte prognostisch günstiger erscheinen (Abbildung 102, Tabelle 28). Ein umgekehrtes 

Verhältnis zeigt sich bei CYFRA 21-1, bei dem höhere Werte tendenziell auf eine schlechtere 

Prognose hindeuten (Abbildung 103). Keine unterschiedlichen Wertelagen in beiden 

Prognosegruppen finden sich hingegen beim Tumormarker CEA, der ungeachtet der Prognose 

durchgehend auf einem Niveau stabil bleibt (Abbildung 104). Allerdings korreliert wiederum 

CA 15-3 zu allen Zeitpunkten, d.h. sowohl prätherapeutisch als auch ein und zwei Tage nach 

SIRT, signifikant mit dem Einjahresüberleben. Hierbei sind hohe Werte mit einer ungünstigen 

Prognose assoziiert (Abbildung 105). 

 

 

 

 
Abbildung 102: Vergleichende Kinetik der 
Nukleosomen (Impact Serum) im 
Einjahresüberleben (nach einem Jahr verstorben 

, lebend ) im Mammakarzinomkollektiv  

 Abbildung 103: Vergleichende Kinetik von 
CYFRA 21-1 im Einjahresüberleben (nach 
einem Jahr verstorben , lebend )  
im Mammakarzinomkollektiv  

 
 
 

 

 

 
Abbildung 104: Vergleichende Kinetik von 
CEA im Einjahresüberleben (nach einem Jahr 
verstorben , lebend ) 
im Mammakarzinomkollektiv  

 Abbildung 105: Vergleichende Kinetik von  
CA 15-3 im Einjahresüberleben (nach einem 
Jahr verstorben , lebend )  
im Mammakarzinomkollektiv  
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  Median  
Marker Zeit [Stunden] Nicht verstorben Verstorben p-Wert 

0 103,8 158,2 0,9119 
24 512,8 309,2 0,1970 

Nukleosomen HS 
[ng/ml] 

48 435,9 318,6 0,6318 
0 350,5 567,5 0,6851 

24 1469,0 370,5 0,0010 
Nukleosomen IS  
[ng/ml] 

48 455,0 501,0 0,7964 
0 42,7 27,6 0,9690 

24 135,2 75,7 0,4837 
Nukleosomen IP  
[ng/ml] 

48 164,5 146,5 0,5309 
0 4,2 5,7 0,3958 

24 43,2 142,0 0,3195 
CYFRA 21-1  
[ng/ml] 

48 44,8 101,3 0,2532 
0 6,1 6,0 0,5069 

24 5,7 5,7 0,5802 
CEA  
[ng/ml] 

48 5,8 6,2 0,3962 
0 70,6 346,0 0,0110 

24 76,4 371,0 0,0110 
CA 15-3  
[U/l] 

48 76,4 308,5 0,0110 
0 262,5 279,0 0,5333 

24 335,5 483,0 0,4596 
LDH   
[U/l] 

48 395,0 378,5 1,0000 
0 0,3 0,5 0,4330 

24 0,8 0,8 1,0000 
CRP  
[mg/dl] 

48 2,7 1,7 0,7119 
0 46,0 46,5 0,2848 

24 106,5 103,0 0,4389 
GOT  
[U/l] 

48 81,5 93,5 0,4837 
0 45,5 32,5 0,8537 

24 64,0 63,0 1,0000 
GPT  
[U/l] 

48 63,0 54,5 0,6850 
0 39,0 120,5 0,1725 

24 58,5 125,5 0,1501 
GGT  
[U/l] 

48 65,0 130,0 0,1130 
0 86,5 104,5 0,4389 

24 76,5 93,5 0,3019 
AP  
[U/l] 

48 82,5 91,0 0,5801 
0 0,6 0,6 0,7084 

24 0,8 1,0 0,3738 
Bilirubin   
[mg/dl] 

48 1,2 1,2 0,9704 
0 7,3 6,6 0,4837 

24 6,2 6,3 0,9119 
CHE  
[kU/l] 

48 5,3 5,5 0,7401 
0 73,0 58,5 0,5550 

24 43,0 55,5 0,9119 
Amylase  
[U/l] 

48 48,5 44,5 0,8249 
0 30,5 36,0 0,9412 

24 20,5 25,0 0,7961 
Lipase 
[U/l] 

48 25,5 31,5 0,8536 
   
  Tabelle 28: Mediane und Signifikanzen nach dem Einjahresüberleben  
                       im Mammakarzinomkollektiv 
                       p-Werte < 0,05 sind grau hinterlegt (HS=Handtest, IS=Impact Serum, IP=Impact Plasma) 
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5   Diskussion 

Aktuellen Berichten zufolge sterben 25% der Deutschen an einer Neoplasie [Destatis 2009]. 

Schaut man sich nur den mittleren Altersbereich an, sind maligne Tumore sogar für mehr als 

die Hälfte der Todesfälle verantwortlich [Karim-Kos 2008]. In Deutschland rangieren 

Malignome damit hinter den Herzkeislauferkrankungen an zweiter Stelle in der 

Todesursachenstatistik [Destatis 2009].  

 

Kennzeichen für ein malignes Wachstum sind neben schnellem lokal-destruktiven Wachstum 

auch die Fähigkeit zur Metastasierung, das heißt Streuung in tumorferne Gewebe und Organe 

[Roche 2003]. Die Leber stellt aufgrund ihrer guten Durchblutung und Filterfunktion einen 

Hauptmanifestationsort für Fernmetastasen dar. Am häufigsten stammen die Lebermetastasen 

aus einem Tumor des Gastrointestinaltrakts, da das venöse Blut aus diesem Bereich über die 

Pfortader in die Leber geleitet wird. Aber auch Patienten mit Mamma- und 

Bronchialkarzinom sowie mit einer Vielzahl weiterer Malignome können Lebermetastasen 

entwickeln. Sehr viel seltener als Lebermetastasen sind die primären Lebertumoren wie das 

hepatozelluläre und cholangiozelluläre Karzinom. 

 

Entscheidend für die Prognose bei Lebermetastasen ist neben der Ausbreitung und Verteilung 

die Lokalisation und Histologie des Primärtumors. So kann beim kolorektalen Karzinom 

durch eine Operation noch ein kurativer Therapieansatz entstehen, und es werden Fünf-

Jahresüberlebensraten von über 50% erreicht [Abdel-Misih 2009], im Gegensatz zu einem 

medianen Überleben von 14,2 Monaten, wenn die operablen Metastasen konservativ 

behandelt werden und 6,9 Monaten bei nicht resektablen Lebermetastasen [Scheele 1990]. 

Jedoch sind bei Diagnosestellung nur 10-20% der Patienten überhaupt für eine kurative 

Operation geeignet [Abdel-Misih 2009]. 

 

Die Lebermetastasenresektion des Mammakarzinoms nimmt im Gegensatz dazu nicht 

annähernd einen so hohen Stellenwert ein. Hauptgrund dafür ist, dass das mediane Überleben 

der streng selektierten operierten Patientinnen mit 14,5 bis 63 Monaten sehr eng an dem der 

konservativ behandelten Patientinnen [Pagani 2010] mit 25,3 Monaten liegt  

[Tampellini 1997].  

 

Seit einigen Jahren bilden die lokoregionären Therapien neben den systemischen Therapien 

und der Chirurgie das dritte Standbein in der onkologischen Behandlung von 
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Lebermetastasen. Diese umfassen chemische lokalablative Verfahren wie TACE, die 

thermischen Therapien wie RFA und Kryoablation und die radiotherapeutische SIRT.  

Bei SIRT handelt es sich um ein relativ neues Therapieverfahren, das durch die doppelte 

Blutversorgung der Leber möglich ist und eine zielgerichtete Tumorschädigung unter 

Schonung des gesunden Lebergewebes erlaubt. Obwohl das Prinzip für die SIRT schon in den 

1960er Jahren entwickelt wurde, steckt die SIRT als Therapieoption bei Lebermetastasen, was 

klinische Erfahrung und Wissen über die theoretischen Hintergründe anbelangt, noch in 

seinen Anfängen.  

 

Zu Beginn wurde SIRT als Viertlinientherapie und palliatives Verfahren eingesetzt, wenn alle 

anderen Therapieoptionen ausgeschöpft waren. Inzwischen konnten vor allem bei Metastasen 

kolorektalen Ursprungs eine akzeptable Toxizität und vielversprechende Ansprechraten bei 

Kombination von systemischen Standard-Chemotherapieschemata und SIRT gezeigt werden 

[Sharma 2007] [Van Hazel 2004] [Gray2001], so dass diese Kombination in einer aktuellen 

Studie auch das erste Mal als Firstlinetherapie bei Lebermetastasen evaluiert wird  

[Cade 2010]. Sollte diese Studie zeigen, dass Patienten von dieser zusätzlichen lokalen 

Therapie profitieren, könnte SIRT in Zukunft schon in frühen Phasen des Therapiekonzeptes 

für Patienten mit kolorektalem Karzinom stehen.  

 

Da bereits bekannt ist, dass nicht alle Patienten gleich stark auf die Therapie ansprechen 

[Cianni 2009], wäre es optimal, prädiktive und prognostische Parameter und Faktoren zu 

kennen, die das Therapieansprechen schon vor oder zumindest in den ersten Tagen nach 

Therapiebeginn anzeigen. Somit könnte bereits prätherapeutisch eine Patientenstratifikation 

stattfinden und so unnötige Kosten und Nebenwirkungen für den Patienten vermieden 

werden, beziehungsweise zeitnah posttherapeutisch eine Therapieplanmodifikation oder  

-intensivierung vorgenommen werden. Insgesamt sind diese Prognosefaktoren essentiell für 

das individuelle Patientenmanagement, das die Zukunft der modernen Medizin prägen wird  

 

Studiensetting und Auswahl der untersuchten Biomarker 

Serumbiomarker sind ideal, um diese Ziele zu erreichen, da sie kostengünstig und einfach im 

peripheren Blut zu bestimmen sind und es somit ermöglichen in posttherapeutischen 

Serienmessungen die systemischen Auswirkungen der SIR-Therapie zu monitoren.  

In dieser Studie wurde ein Panel an Laborparametern untersucht, die jeweils unterschiedliche 

(patho-)physiologischen Aspekte der Tumorbiologie und der Therapieeffekte widerspiegeln.  
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Für die Bestimmung des Ausmaßes der Tumorerkrankung und die Tumoraktivität wurden die 

jeweils etablierten Tumormarker berücksichtigt, im Speziellen CEA und CA 19-9 beim 

kolorektalen Karzinom, CA 15-3 und CEA beim Mammakarzinom und AFP beim 

hepatozellulären Karzinom. Vor allem CEA zeigt bei Patienten mit Lebermetastasen stark 

erhöhte Werte [Goldstein 2005]. Die Zelltodparameter Nukleosomen, LDH und CYFRA 21-1 

reflektieren sowohl die pathophysiologischen Prozesse in den hochproliferativen Karzinomen 

als auch die zellulären und immunologischen Prozesse der SIR-Therapie auf den Tumor und 

den Gesamtorganismus. Die Lebermarker GOT, GPT, GGT, CHE, AP und Bilirubin und die 

Pankreasenzyme Amylase und Lipase wurden eingeschlossen, um die organspezifischen 

Veränderungen und die potenziellen Nebenwirkungen, wie zum Beispiel die beschriebenen 

milden Pankreatitiden, zu überwachen [Pöpperl 2005]. CRP wurde als prognostischer Marker 

bei Tumorerkankungen [Wang 2009] und anerkannter Inflammationsparameter ebenfalls in 

die Messungen aufgenommen.  

 

In dieser Studie erfolgten die Blutentnahmen prätherapeutisch, drei und sechs sowie 24 und 

48 Stunden nach der Therapie. Diese engmaschige Überwachung, die in der klinischen 

Routine sonst nur für pharmakokinetische Fragestellungen Verwendung findet, wurde 

gewählt, um die relevanten Zeitpunkte für die einzelnen Parameter herauszuarbeiten, ohne 

dass entscheidende Konzentrationsdynamiken verpasst werden. Die Abnahmen einen und 

zwei Tage nach Therapie wurden hinzugenommen, da aus früheren Studien bei Patienten 

unter Radiochemotherapie bekannt war, dass hier die stärksten Veränderungen v.a. für die 

Zelltodparameter zu erwarten sind, und die Marker zu diesen Zeitpunkten eine hohe 

prädiktive Aussagekraft besaßen [Kremer 2005] [Kremer 2006]. 

 

Besonderes Augenmerk wurde in dieser prospektiven Studie auf die Vollständigkeit der 

Blutabnahmen, sowie auf die strenge Einhaltung der vordefinierten Zeitpunkte gelegt. Durch 

eine enge Zusammenarbeit zwischen Station und Labor wurden Verzögerungen und 

Möglichkeiten für Fehler in der Präanalytik verhindert und zu jedem Zeitpunkt kontrolliert. 

Die Bestimmung aller Biomarker wurde von wenigen, gut ausgebildeten Laborkräfte und von 

mir selbst nach ausführlicher sachkundiger Anleitung durchgeführt. Alle Proben wurden mit 

den gleichen standardisierten Tests untersucht, und jeweils alle Proben eines Patienten 

wurden in einem Testlauf bestimmt, um Einflüsse von eventuell vorhandenen Unterschieden 

zwischen den Assays zu minimieren. Um die Varianz zwischen verschiedenen Testläufen zu 

kontrollieren, wurden regelmäßig Interassaykontrollen durchgeführt. Alle Proben aller primär 
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bereits eingeschlossenen Patienten wurden unabhängig von den klinischen Datenn und den 

Untersuchungsergebnissen der statistischen Auswertung zugeführt.  

 

Allgemeine Prognosefaktoren bei SIRT 

Obwohl Prognosefaktoren unabdingbare Grundlage für ein individuelles 

Patientenmanagement darstellen, wurden dazu bisher zu SIRT nur wenige Studien 

veröffentlicht.  

 

Zwei Studien bei primären Leberzellkarzinomen konnten zeigen, dass vor allem Parameter, 

die auf einen aggressiven Tumor hinweisen, wie multifokale Ausbreitung, portale 

Hypertension und hoher AFP-Spiegel sowie Marker, die auf eine unzureichende 

Leberfunktion schließen lassen, wie ein erniedrigter Albumin- oder erhöhter Bilirubinspiegel, 

mit einem kürzeren Überleben nach SIRT assoziiert sind. Als weitere negative Faktoren für 

das Überleben wurden ein schlechter Allgemeinzustand, demographische Daten wie junges 

Alter und weibliches Geschlecht, sowie ein mangelndes Therapieansprechen in der 

Bildgebung mehrere Wochen nach SIRT identifiziert. [Salem 2010] [Iñarrairaegui 2010]  

 

Bildgebende Verfahren zur Erfassung makroskopischer Veränderungen der Tumorläsionen, 

wie CT, MRT und Sonographie, können jedoch erst nach mehreren Wochen bis Monaten das 

Therapieansprechen korrekt anzeigen [Riaz 2009], so dass bei einem Therapieversagen 

wertvolle Zeit für eine eventuell notwendige Therapieintensivierung verloren geht.  

 

Auch für sekundäre Lebertumoren gibt es eine Studie, in der ebenfalls das 

Therapieansprechen in der morphologischen Bildgebung und der Allgemeinzustand des 

Patienten, sowie der prätherapeutische Bilirubinspiegel als prognostische Faktoren erkannt 

wurden. Als zusätzliche negative Faktoren zeigten sich eine hohe Tumorlast, extrahepatische 

Metastasen und Mammakarzinom als Primärtumor. Mit einem längeren Überleben war 

hingegen ein posttherapeutischer Abfall der zirkulierenden Lymphozyten assoziiert. 

Allerdings fiel darunter jeder posttherapeutische Wert unter der Norm zu jedem Zeitpunkt 

nach der Therapie ohne Einbezug der prätherapeutischen Konzentration, so dass dies nur ein 

unspezifischer Wert für die frühe Therapieevaluation darstellt. [Dunfee 2010]  

 

Zum Teil können die oben aufgeführten Ergebnisse in dieser Studie bestätigt werden. Das 

Mammakarzinom als Primarius der Lebermetastasen war auch in diesem Setting im Vergleich 

mit den anderen eingeschlossenen Tumorentitäten mit einem weit schlechteren Überleben 
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assoziiert. Ein Grund dafür könnte sein, dass sich die Tumorbiologie des Mammakarzinoms 

im metastasierten Stadium als systemische Erkrankungen stark von der anderer 

Tumorentitäten unterscheidet und SIRT als solitäre lokoregionäre Therapie zur Behandlung 

dieser Erkrankung nicht ausreicht, sondern eher einen relevanten Beitrag in Kombination mit 

anderen Therapien leisten kann [Jakobs 2008 C]. Überraschend ist vor allem, dass die 

Mammakarzinompatientinnen sogar eine schlechtere Prognose aufwiesen als die Patienten, 

die wegen eines inoperablen cholangiozellulären Karzinoms oder Metastasen eines 

Pankreaskarzinoms mit SIRT behandelt wurden und diese im Normalfall unter konservativer 

Therapie mit einer relativ kurzen Überlebenszeiten assoziiert sind. Ein Grund für diese 

Zahlenumkehr könnte sein, dass viele Patienten mit cholangiozellulärem Karzinom SIRT als 

Primärtherapie erhielten, im Gegensatz zu den Mammakarzinompatientinnen, bei denen SIRT 

erst sehr spät als letzte Therapieoption nach mehreren systemischen Therapien – im Median 

nach mehr als 100 Monaten nach Erstdiagnose – erfolgte.  

 

Im Gegensatz zu den Ergebnissen von Dunfee et al. [Dunfee 2010] korreliert der 

prätherapeutische Bilirubinspiegel in der hier durchgeführten Studie bei keinem der 

Tumorentitäten signifikant mit dem Überleben. Grund hierfür könnte eine unterschiedliche 

statistische Auswertung der Studien sein: In beiden Studien waren Patienten mit einem 

Bilirubinspiegel von > 2 mg/dl ausgeschlossen, jedoch wurde bei Dunfee et al. ein Cut-off bei 

1,3 mg/dl gesetzt, wohingegen in diesem Setting durch die Verwendung von mehreren 

Quartilen als Cutoffs die Werte als eine quasi-kontinuierliche Variable in die Auswertung 

eingingen.  

 

Auch bezüglich der Korrelation des Therapieansprechens in der Bildgebung mit dem 

Überleben decken sich die Ergebnisse nur teilweise. In der hier durchgeführten Studie wurde 

nur bei den beiden größten Kollektiven, dem Mamma- und kolorektalen Karzinom, eine 

Auswertung bezüglich der Bildgebung und des Überlebens durchgeführt. Dort zeigte sich für 

das Kollektiv der Mammakarzinom-Patientinnen eine signifikante Korrelation während bei 

Kolorektalkarzinom-Patienten sich lediglich ein Trend ergab, da das Signifikanzniveau von 

p>0.05 knapp verfehlt wurde. Eine Erklärung hierfür könnte sein, dass in diesem Kollektiv 

Patienten zum Teil bei schlechtem Therapieansprechen in der bildgebenden Kontrolle bereits 

nach 3 Monaten erneute systemische Therapien erhielten, so dass die Ergebnisse bezüglich 

des Überlebenszeitraums etwas beeinflusst wurden. Ferner schieden in der Remissionsgruppe 

zwei Patienten bereits kurz nach dem Staging aus der Studie aus und es konnte kein weiterer 

Follow-up erhoben werden.  
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Bei Lebermetastasen von Kolorektalkarzinom-Patienten konnte gezeigt werden, dass mit 

Hilfe der prätherapeutischen Tc99
m-MAA-SPECT mit einer Sensitivität von 89% und einer 

Spezifität von 65% das Therapieansprechen der einzelnen Tumorläsionen im PET-CT sechs 

Wochen nach SIRT prognostiziert werden kann [Flamen 2008]. Allerdings ist dieses 

Verfahren bei diffuser Metastasierung, dem Hauptanwendungsgebiet der SIRT, sehr 

aufwändig, da für jeden Tumorknoten eine einzelne Berechnung durchgeführt werden muss. 

Der Nutzen in Bezug auf die Prädiktion des Therapieansprechens ist fraglich, da das 

Ansprechen der einzelnen Läsionen und nicht das Gesamtansprechen beurteilt wird. Im 

Gegensatz dazu war es Ziel der vorliegenden Studie, anhand von wenigen, prätherapeutisch 

einfach zu bestimmenden Laborparametern eine Vorhersage über das Gesamt-

therapieansprechen zu treffen. Somit würden teure und langwierige Berechnungen entfallen, 

und man könnte mit einer Blutentnahme bereits prätherapeutisch eine Aussage treffen. 

Für die Verfeinerung der Dosiskalkulation können die Ergebnisse der Studie von Flamen et 

al. jedoch von großem Nutzen sein, da damit ein Weg gefunden wurde, die Dosis, die 

theoretisch jedem einzelnen Tumorknoten zuzuführen ist, zu berechnen und somit eventuell 

die nötige Gesamtaktivität besser prätherapeutisch kalkuliert werden kann.  

 

Evaluation des Therapieansprechens durch bildgebende Verfahren 

Mit der modernen Bildgebung ist nicht nur eine genauere Dosiskalkulation möglich, sondern 

vor allem auch eine Evaluation des Therapieansprechens. Allerdings gibt es zwischen den 

verschiedenen Verfahren große Unterschiede: 

 

In dieser Studie wurde das Therapieansprechen nach aktuellem Standard mit PET-CT und 

MRT evaluiert. Die Untersuchungen fanden durchgehend mit nur wenigen Ausnahmen bei 

allen Patienten zwei bis drei Monate nach SIRT statt. Dieser Zeitabstand stellt den Mittelweg 

dar zwischen dem Wunsch, möglichst schnell Ergebnisse zu erhalten, und dem Wissen um die 

langsamen makroskopischen Veränderungen, wie sie in CT- und MRT-Bildern 

wiedergegeben werden. Neben der Trägheit besteht ein weiterer Nachteil der 

morphologischen Bildgebung darin, dass vitales oft nur unzureichend von avitalem Gewebe 

unterschieden werden kann und dass eine Größenzunahme durch posttherapeutische 

Blutungen und Ödembildung unter Umständen als Progression fehlgedeutet wird und 

nekrotische zentrale Anteile nur unzureichend in die Beurteilung eingehen [Cianni 2009]. 

 

Eine frühere und präzisere Evaluation des Therapieansprechens ist mit dem neuen 

Hybridverfahren PET-CT möglich, das die unscharfe, aber dafür funktionelle Darstellung des 
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PETs mit der morphologischen Genauigkeit des CTs verbindet und somit die ideale 

Bildgebung für die Evaluation des Therapieansprechens bei lokoregionären Therapien, wie 

beispielsweise SIRT, darstellt [Atassi 2008]. Deshalb wurde in dieser Studie, bei diskordanten 

Befunden im Staging zwischen MRT und PET-CT, das Ergebnis des PET-CTs stärker 

gewichtet und als Grundlage für die statistische Auswertung des Therapieansprechens 

verwendet.   

 

Ein allgemeines Problem der bildgebenden Verfahren ist die Objektivierung und damit die 

Vergleichbarkeit der Bilder. Für die morphologischen Verfahren CT und MRT wurden 

deshalb die RECIST- und WHO-Kriterien entwickelt. Da es sich dabei um eine Erfassung der 

jeweils größten Durchmesser handelt, sind sie eher für die Beurteilung einzelner 

Tumorläsionen und weniger für eine diffuse Metastasierung, wie sie häufig bei  

SIRT-Patienten vorliegt, geeignet. Ein weiterer Nachteil dieser Kriterien liegt darin, dass 

zentrale Nekrosen, die häufig durch SIRT entstehen, nicht zwingend durch eine 

Verkleinerung des Durchmessers in die Beurteilung eingehen und somit eine 

Fehlinterpretation möglich ist, wenn man sich strikt an diese Kriterien hält. Für das PET 

hingegen existieren bisher (noch) keine einheitlichen Bewertungsrichtlinien, so dass auch hier 

eine Objektivierung des Ergebnisses bisher nicht möglich ist. [Bilbao 2008 S. 95] In dieser 

Studie wurde deshalb, wie in der klinischen Routine üblich, das Ansprechen jeder einzelnen 

Therapie durch Vergleich der prätherapeutischen Bilder mit den Bildern des Stagings in 

Anlehnung an die RECIST-Kriterien bewertet, da man sich der Limitationen der bestehenden 

Bewertungskriterien in Zusammenhang mit diesem speziellen Patientenkollektiv bewusst war. 

 

Obwohl SIRT eine lokoregionäre Therapie mit auf die Leber beschränkter Wirkung ist, wurde 

die Korrelation der Biomarker mit dem Gesamttherapieansprechen bewertet, indem auch das 

Entstehen neuer extrahepatischer Metastasen und das Versterben des Patienten innerhalb der 

ersten drei Monate nach SIRT als Progress gewertet wurden. Das Gesamttherapieansprechen 

wurde dem fokussierten Blick auf den Krankheitsprozess in der Leber vorgezogen, da auch 

die meisten der in dieser Studie evaluierten Biomarker den systemischen Effekt der Therapie 

und den Allgemeinzustand des Patienten - eventuell vorbestehende Mikrometastasen, die in 

der Bildgebung noch nicht miterfasst wurden, mit eingeschlossen - widerspiegeln und nicht 

solitär für das Krankheitsgeschehen in der Leber stehen. Bemerkenswert in diesem 

Zusammenhang ist jedoch, dass trotz dieses Settings auch hepatische Marker, wie 

Leberenzyme und Cholestaseparameter, prognostische Relevanz zeigten.  
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Kinetik der Biomarker im Therapieverlauf  

Insgesamt konnte im Gesamtkollektiv beobachtet werden, dass alle Biomarker, mit Ausnahme 

der spezifischen Tumormarker, die nur in den Subkollektiven ausgewertet wurden, sich alle 

Parameter signifikant nach 24 und spätestens 48 Stunden nach SIRT in ihrer Konzentration 

veränderten: Die Zelltodparameter Nukleosomen und CYFRA 21-1 ebenso wie die 

Leberenzyme GOT und GPT sowie Bilirubin stiegen bereits 24 Stunden nach SIRT an, als 

Hinweis auf den gesetzten Zellschaden und die einsetzende Zytolyse. Etwas protrahiert kam 

es dann auch zu einem Anstieg von CRP, was am ehesten als Zeichen der posttherapeutischen 

Inflammation zu werten ist. Abfallende Konzentration zeigten erstaunlicherweise die 

Cholestasewerte AP und GGT sowie die Pankreasenzyme Lipase und Amylase. Vor allem bei 

Lipase und Amylase wurde eigentlich als Hinweis auf eine (milde) posttherapeutische 

Pankreatitis durch fehlplatzierte Mikrosphären ein Anstieg erwartet, der sich jedoch in 

unserem Setting nicht nachweisen ließ. Möglicherweise zeigt sich in diesen fallenden Werten 

bereits der positive therapeutische Effekt der SIRT mit verbessertem Galleabfluss und somit 

auch fallenden Cholestasewerten.  

 

Da Nukleosomen Zelltodprodukte sind und Malignome sich durch einen hohen Zellumsatz 

mit sowohl exzessiver Proliferation als auch Zelltod auszeichnen, konnte schon in 

verschiedenen Studien gezeigt werden, dass Tumorpatienten erhöhte Nukleosomenwerte mit 

interindividuellen Schwankungen aufweisen [Holdenrieder 2001 B] [Ellinger 2008 A] [Kuroi 

1999] [Schwarzenbach 2008]. Dabei wurden höhere Wertelagen bei fortgeschrittenen 

Tumorleiden und bei metastasierten Kolorektalkarzinomen beobachtet, was mit der 

zunehmenden Menge an dysfunktionalen Zellen zusammenhängen könnte [Holdenrieder 

2008]. 

 

So zeigten sich die Nukleosomen auch in dieser Studie erwartungsgemäß prätherapeutisch 

sowohl im Gesamtkollektiv (Median 171,9 ng/ml) als auch bei den Kolorektal- (Median 190 

ng/ml) und Mammakarzinompatienten (Median 134,4 ng/ml) auf einem sehr hohen Level, 

verglichen mit der 95. Perzentile eines gesunden Mischkollektivs (< 56 ng/ml) [Holdenrieder 

2001 A]. Bereits sechs Stunden nach Therapie lassen sich steigende Tendenzen in allen 

Kollektiven nachweisen, die sich auch 24 Stunden nach SIRT noch weiter fortsetzen. Sowohl 

der 24-, als auch der 48-Stundenwert, der zwar eine leicht fallende Tendenz im Vergleich zum 

24-Stundenwert zeigt, sind jeweils signifikant höher als der prätherapeutische Wert. 
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Diese posttherapeutische Kinetik der Nukleosomen mit initialem Anstieg und folgendem 

Abfall konnte ebenfalls schon in der Vergangenheit bei verschiedenen Tumorentitäten und 

Therapien gezeigt werden, wie etwa beim nicht-kleinzelligen Bronchialkarzinom unter 

Chemotherapie [Holdenrieder 2004 A] und bei Kolorektalpatienten unter Radiochemotherapie 

[Kremer 2006]. Im Unterschied zu diesen systemischen Behandlungen, die jeweils über 

mehrere Monate in mehrwöchigen Zyklen gegeben werden, handelt es sich bei SIRT um eine 

lokoregionäre Therapie, die einmalig als Gesamtdosis appliziert wird und deren 

Hauptwirkung sich aufgrund der relativ kurzen Halbwertszeit von 64,1 Stunden von Yttrium90 

in den ersten Tagen nach SIRT entfaltet. Dies könnte eine Erklärung dafür sein, dass sich die 

Kinetik, die sich in den anderen Studien über eine ganze Woche oder mehrere Wochen 

erstreckte, bei dieser Studie innerhalb der ersten zwei Tage nach Therapie bereits 

nachvollziehen lässt.  

 

Beim Impact-Nukleosomentest handelt es sich auch um ein immunologisches Testverfahren 

ähnlich wie beim ELISA-Handtest. Es werden sogar dieselben Antikörper verwendet, 

allerdings in umgekehrter Reihenfolge und mit anderen Puffern, die die Bindung zu den 

Antigenen möglicherweise beeinflussen können. So war es durchaus erstaunlich, dass die 

Nukleosomen in der Impactmessung im Serum, das auch das Grundmaterial des ELISA- Test 

darstellt, sowohl im Gesamt-, als auch beim Kolorektalkarzinomkollektiv eine durchgehende 

(das heißt zu allen gemessenen Zeitpunkten) Korrelation mit den Nukleosomen im Handtest 

zeigen. Die Nukleosomen in der Impactanalyse im Plasma hingegen korrelieren zu keinem 

Zeitpunkt mit den Nukleosomen im Imapct Serum oder im ELISA- Test, was frühere 

Erfahrungen bestätigt, dass sich Nukleosomen im Plasma anders verhalten als solche im 

Serum [Holdenrieder 2001 A]. 

 

Bezüglich des Therapieansprechens konnte weder im Kollektiv der kolorektalen Karzinome 

noch der Mammakarzinome durch die beiden neuen Parameter eine signifikante Aussage 

getroffen werden. Bei den univariaten Analysen bezüglich des Gesamtüberlebens bei 

Patienten mit kolorektalem Karzinom waren sowohl die Nukleosomen in der Impactmessung 

im Serum als auch im Plasma signifikant, so dass sie in die multivariaten Berechnungen mit 

eingingen, doch hier konnte keine unabhängige signifikante Aussagekraft erkannt werden. 

Insgesamt handelt es sich bei den Nukleosomen in der Impactbestimmung um einen 

vielversprechenden neuen Ansatz, eine automatisierte Messmethode für einen bereits in 

mehreren Studien getesteten Parameter zu entwickeln. Die Differenzen der Ergebnisse zum 

Handtest legen allerdings nahe, dass noch weitere grundlegende und methodische 
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Untersuchungen nötig sind, um die Voraussetzung für einen Routinetest in der klinischen 

Labordiagnostik zu schaffen. 

 

Bzgl. der Korrelationen zwischen den unterschiedlichen Parametern zeigte sich in vielen 

Punkten ein zu erwartendes Bild: Die Cholestaseparameter AP und GGT sowie die 

Leberenzyme GOT und GPT, als auch die Pankreasenzyme Lipase und Amylase korrelierten 

stark untereinander zu allen untersuchten Zeitpunkten. Auch die unspezifischen Marker CRP 

und LDH zeigten wie erwartet zu einer Vielzahl an unterschiedlichen Parametern zu 

verschiedensten Zeitpunkten Korrelationen. Nicht zu erwarten war jedoch, dass die 

Nukleosomen im ELISA nicht signifikant mit den anderen Zelltodparametern CYFRA 21-1 

und LDH korrelierten, sondern lediglich mit den Nukleosomen der Impactmessung im Serum, 

was darauf schließen lässt, dass die Nukleosomen im ELISA einen eigenständigen 

unabhängigen Parameter darstellen. 

 

Nukleosomen und Biomarker bei Patienten mit kolorektalem Karzinom 

Die Gruppe der Patienten mit kolorektalem Karzinom stellte in dieser Studie die zahlenmäßig 

größte und auch von der Verteilung des Therapieansprechens die homogenste Gruppe dar, so 

dass eine genauere Auswertung in diesem Subkollektiv erfolgte.  

Wie im Gesamtkollektiv zeigten alle untersuchten Parameter spätestens nach zwei Tagen 

signifikante Konzentrationsänderungen. Für die Biomarker mit hohem Umsatz und kurzer 

Halbwertszeit wie Nukleosomen und LDH war dies zu erwarten, im Gegensatz zu den 

Tumormarkern CEA und CA 19-9, die als relativ stabil gelten und deren Messung deshalb im 

Follow-up von Kolorektalkarzinompatienten von den Leitlinien auch nur in 

Dreimonatsabständen empfohlen wird [Sturgeon 2008]. 

Die erste Auswertung erfolgte bezüglich der Prädiktion, das heißt eine Voraussage über das 

Therapieansprechen schon vor Therapie, beziehungsweise in den ersten Tagen nach SIRT. 

Prätherapeutisch signifikante prädiktive Aussagen waren bei den Zelltodparametern CYFRA 

21-1 und LDH sowie den Tumormarkern CEA und CA 19-9 und zusätzlich bei den 

Leberparametern GOT und CHE vorzufinden. Bezüglich der 24h-Werte fanden sich 

signifikante Unterschiede zwischen den Responsegruppen für Nukleosomen im ELISA- Test, 

CA 19-9 und ebenfalls wieder bei CHE, was auf eine potentielle Einsatzmöglichkeit dieser 

Marker für eine frühzeitige Therapiebeurteilung innerhalb der ersten 24 Stunden nach SIRT 

hinweist.  
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Da sich im Kollektiv jedoch keine eindeutige Korrelation zwischen Therapieansprechen und 

Überleben zeigte, erfolgte in einem zweiten Schritt eine Auswertung bezüglich der 

Überlebensprognose, wo sich eine ähnliche Konstellation wie bei der Therapieprädiktion 

zeigte: CEA konnte als hochsensitiver Marker für Lebermetastasen kolorektalen Ursprungs 

mit starker prognostischer Aussagekraft [Goldstein 2005] in dieser Studie bestätigt werden. 

Die prätherapeutische CEA-Konzentration zeigte sich nicht nur signifikant für das 

Therapieansprechen, sondern auch für das Überleben. Zusätzlich wiesen die CEA-Werte ein 

und zwei Tagen nach SIRT prognostische Aussagekraft auf. 

  

Auch bei CA 19-9 waren nicht nur der prätherapeutische Wert, sondern auch die 

Konzentrationen 24 und 48 Stunden nach Therapie sowohl signifikant für das 

Therapieansprechen, als auch für das Überleben. Diese Befunde sind konsistent mit 

Ergebnissen anderer Studien, in denen gezeigt werden konnte, dass CA 19-9, obwohl es nicht 

offiziell von den aktuellen europäischen Leitlinien für das Follow-up von 

Kolorektalkarzinom-Patienten empfohlen wird [Duffy 2007], vor primärer Resektion eine 

prognostische Aussagekraft bezüglich der Überlebenszeit hat [Reiter 2000]. 

 

Bei CYFRA 21-1 handelt es sich ebenfalls um einen anerkannten Tumormarker, dessen 

Anwendungsgebiet sich aber vor allem auf das Bronchial- und Mammakarzinom erstreckt 

[Holdenrieder 2009] [Nakata 2000]. Jedoch sind die Zytokeratin-19 Fragmente vor allem Teil 

des Zellskeletts, und erhöhte Werte werden bei allen Patienten mit erhöhtem Zellumsatz 

gemessen [Bodenmüller 1992], wie beispielweise bei Tumorerkrankungen. Dabei werden bei 

metastasierten Leiden höhere Konzentrationen gefunden als im lokalisierten Stadium [Molina 

1994]. Erwartungsgemäß wurden in diesem Patientenkollektiv bereits prätherapeutisch stark 

erhöhte Werte gefunden, die sich 24 Stunden nach Therapie mehr als verdoppelten und auch 

am zweiten Tag nach SIRT auf hohem Niveau blieben. Interessanterweise zeigte sich jedoch 

nur der prätherapeutische Wert signifikant für das Therapieansprechen, wohingegen für das 

Einjahresüberleben auch die Werte ein und zwei Tage nach SIRT relevant waren.  

 

LDH korrelierte zu allen drei untersuchten Zeitpunkten stark mit CYFRA 21-1 (R > 0,85), 

was plausibel erscheint, da es ebenfalls ein Zelltodprodukt ist. Somit erklärt sich auch, dass es 

sowohl in seiner Kinetik als auch in seiner prognostischen Aussagekraft ähnliche Ergebnisse 

wie CYFRA 21-1 aufweist.  
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Obwohl die Nukleosomen ebenfalls zu den Zelltodprodukten gehören, korrelierten sie – mit 

dem Handtest gemessen – nur schwach und nur zu einem Zeitpunkt mit LDH und CYFRA 

21-1. Bezüglich des Therapieansprechens sowie für das Einjahres- und Gesamtüberleben war 

vor allem der 24-Stundenwert der Nukleosomen aussagekräftig, wobei niedrigere Werte mit 

einem guten Therapieansprechen beziehungsweise mit einem längeren Überleben assoziiert 

waren. In früheren Studien bei Patienten mit Kolorektal- und Pankreaskarzinom unter 

Radiochemotherapie konnte für keinen Einzelwert eine signifikante Aussage bezüglich des 

Therapieansprechens getroffen werden, was vielleicht an der niedrigeren Fallzahl in diesen 

Studien lag. Allerdings hatten – ähnlich den Ergebnissen dieser Studie – ebenfalls Patienten 

mit einer Progression signifikant höhere Werte innerhalb der ersten drei Tage der Behandlung 

als Therapieresponder. [Kremer 2006] [Kremer 2005] Auch bei Lungenkarzinompatienten 

wies ein starker Anstieg der Nukleosomen während der ersten Chemotherapietage auf eine 

Progression hin [Holdenrieder 2001 B] [Holdenrieder 2004A]. 

 

Auf den ersten Blick scheinen diese Ergebnisse schwer nachvollziehbar. Eine Bestrahlung 

führt zu Zelltod. Je akuter und ausgedehnter die apoptotische Reaktion desto besser ist das 

Therapieansprechen [Meyn 1993], und umso höher sollten dementsprechend die 

Nukleosomenkonzentrationen sein. Es wurden jedoch unabhängig in mehreren Studien bei 

verschiedenen Tumorentitäten und Therapieformen [Kremer 2005] [Kremer 2006] 

[Holdenrieder 2001] [Holdenrieder 2004A] [Holdenrieder 2008] [Holenrieder 2009] [Guleria 

2010] gegenläufige Ergebnisse gefunden, das heißt dass niedrige posttherapeutische Werte 

mit einem Therapieansprechen beziehungsweise mit einem längeren Überleben assoziiert 

sind. Eine Hypothese wäre, dass aggressivere Tumoren über eine bessere Blutversorgung 

verfügen und es so bei maligneren Tumoren zu einem effektiveren Abtransport und somit zu 

einem stärkeren posttherapeutischen Anstieg kommt. Eine weitere Ursache ist wohl, dass 

Patienten mit einem fortgeschritteneren Tumorleiden, schlechterem Allgemeinzustand und 

supprimiertem Immunsystem wohl nur noch ineffektiv und langsam Nukleosomen abbauen 

können.  

 

CRP ist seit langem bekannt als sensitiver, aber sehr unspezifischer Marker für Inflammation 

[Pepsy 1981], der in der Leber durch Interleukinstimulation synthetisiert wird [Castell 1990]. 

In letzter Zeit entdeckt man aber neue Anwendungsgebiete. Es hat sich gezeigt, dass es ein 

starker prognostischer Marker einerseits für die Entwicklung kardiovaskulärer Krankheiten 

[Karakas 2009], andererseits für das Überleben operierter Patienten mit Kolorektalkarzinom 

darstellt [McMillan 2003]. So ist das Ergebnis dieser Studie, dass hohe CRP-Werte mit einem 
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verkürzten Überleben bei Kolorektalkarzinompatienten assoziiert sind, konsistent mit der 

allgemeinen Studienlage, im Gegensatz zu dem Marker GOT, der in diesem Setting eine sehr 

starke prognostische Aussagekraft hat und für den eine solche Korrelation bisher nicht 

beschrieben wurde.  

Erhöhte postinterventionelle GOT-Konzentrationen können das Resultat eines 

Postemboliesyndroms sein, also einer Schädigung gesunden Lebergewebes durch Ischämie im 

Rahmen der Therapie. Die erhöhten prätherapeutischen Werte könnten jedoch für eine durch 

die Metastasierung bereits in ihrer Funktion eingeschränkte und geschädigte Leber stehen und 

deshalb prognostisch relevant sein. Für GPT und die anderen Leberparameter wie auch für die 

Pankreasenzyme wurden signifikante Konzentrationsunterschiede im Verlauf festgestellt, die 

prognostische Aussagekraft dieser Parameter war jedoch eher schwach.  

 

Mit dem Ziel, ein Modell prognostisch unabhängiger Marker zu etablieren, das die 

bestmögliche prognostische Aussage liefert, wurden in einem nächsten Schritt alle univariat 

für das Überleben relevanten Marker in eine multivariate Analyse eingebracht. Durch die 

genau eingehaltenen, eng definierten Einschlusskriterien gingen die klinischen Parameter bei 

zu großer Ähnlichkeit nicht mit in die Analysen ein. Als Bezugspunkt der Berechnungen 

wurde aus zwei Gründen die Überlebenszeit und nicht das Therapieansprechen im Staging 

gewählt. Einerseits handelt es sich dabei um einen „harten Endpunkt“, das heißt, dass bei 

dieser Auswertung vom Untersucher abhängige Unterschiede in der Beurteilung von 

bildgebenden Ergebnissen vermieden werden können; andererseits ist die verbleibende 

Überlebenszeit für den Patienten relevanter als ein Stagingergebnis.  

 

Um Cut-offs nicht willkürlich zu wählen und damit eine mögliche Optimierung 

beziehungsweise ein „Overfitting“ an die vorliegenden Daten zu vermeiden, wurden die 

Werteverteilungen eines jeden Parameters in Quartile unterteilt und erst in univariaten 

Analysen bewertet. Nur die Parameter, die dort eine prognostische Signifikanz aufwiesen, 

wurden logarithmiert zur Basis zwei, so dass sie in linearer Form in die Berechnungen 

eingehen konnten. Da es aber erhebliche Korrelationen zwischen den verschiedenen 

relevanten Parametern gab, wie beispielsweise zwischen GOT und LDH (R = 0,830), lag es 

auf der Hand, dass es mehrere mögliche Kombinationen mit ähnlicher prognostischer Stärke 

gab. Zur Vermeidung einer zufälligen Kombinationswahl wurden deshalb in einem ersten 

Schritt alle Kombinationsmodelle von jeweils zwei oder drei prätherapeutischen Werten 

anhand ihres AICs (Akaike Information Criterion) – ein Maß zur Beurteilung der 

prognostische Stärke eines Modells – verglichen. In einem zweiten Schritt wurden die 
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gleichen Berechnungen angestellt, jedoch unter gleichzeitiger Berücksichtigung der                      

24-Stundenwerte. Hierbei stellte sich die Frage, ob durch die zusätzlichen Werte eine weitere 

Verbesserung der Aussagekraft zu erreichen war.  

 

Durch dieses systematische Vorgehen wurde für die prätherapeutische Patientenstratifikation 

eine Kombination aus zwei prätherapeutischen Parametern (CRP und GOT) gefunden, deren 

individuelle prognostische Information durch die Bestimmung des 24-Stundenwertes der 

Nukleosomen noch weiter erhöht werden konnte. Dies zeigt, dass diese drei Werte 

unabhängig voneinander unterschiedliche pathologische Prozesse und Therapieeffekte 

abbilden und sich in ihrer prognostischen Aussagekraft durch Kombination noch weiter 

verstärken können. Diese prognostische Modelle, die natürlich einer weiteren Validierung in 

prospektiven Studien mit größeren Fallzahlen bedürfen, können die Grundlage für einen 

klinischen Risikoscore bilden, der im Hinblick auf Einbindung der SIR-Therapie in die 

multimodale Therapieplanung bei Patienten mit einem metastasierten kolorektalen Karzinom 

[Wasan 2011] von größter Wichtigkeit sein wird. 

 

Nukleosomen und Biomarker bei Patientinnen mit Mammakarzinom 

Im Vergleich zum Kollektiv der Patienten mit einem kolorektalen Karzinom verhalten sich 

die Marker bei Patientinnen mit einem Mammakarzinom im Allgemeinen etwas träger. Zwar 

ist bei manchen Parametern, wie beispielsweise CYFRA 21-1 ein über 20-facher Anstieg 

nach 24 Stunden zu sehen und auch die Nukleosomen im ELISA-Handtest zeigen einen 

signifikanten, wenn auch nicht so starken Konzentrationsanstieg, aber einige Marker, wie die 

Nukleosomen im Impact im Serum gemessen, die Tumormarker CEA und CA 15-3, GGT und 

Lipase unterliegen überhaupt keiner signifikanten Veränderung über den beobachteten 

Zeitraum.  

 

Insgesamt sind sowohl für das Therapieansprechen als auch für das Einjahresüberleben aus 

dem gesamten untersuchten Panel nur die Werte des Tumormarkers CA 15-3 signifikant, 

wohingegen bei den Patienten mit einem kolorektalen Karzinom sowohl für das 

Therapieansprechen als auch für die Prognose eine Vielzahl an Parametern zumindest zu 

einem Zeitpunkt signifikant waren. Zum Einen könnte dies an der insgesamt kleineren 

Kollektivgröße sowie an der geringen Anzahl von Patienten in den Response- und 

Überlebensgruppen mit der daraus resultierenden ungleichen Verteilung beruhen. Zum 

Anderen spielt sicher auch die sich stark unterscheidenden Tumorbiologie des 

Mammakarzinoms eine Rolle. 
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Dass CA 15-3 aber trotz dieser Umstände sowohl für das Therapieansprechen als auch für das 

Einjahresüberleben zu allen drei untersuchten Zeitpunkten als singulärer Wert und nicht nur 

in der dynamischen Betrachtung signifikante prädiktive und prognostische Aussagekraft 

besitzt, unterstützt seine Stellung als etablierter und aussagekräftiger Tumormarker beim 

Mammakarzinom [Duffy 2006] [Molina 2005] [Tampellini 1997]. CA 15-3 sollte deshalb in 

weiteren prospektiven Studien mit größeren Fallzahlen weiter evaluiert werden. 

 

Ausblicke 

SIRT ist auf dem Weg, mit in das Standardtherapieschema von Lebermetastasen 

aufgenommen zu werden [Wasan 2011], so dass in Zukunft der Einfluss von 

Antikörpertherapien, die sich in den letzten Jahren zunehmend adjuvant neben den 

Chemotherapien etablieren konnten, auf das Ergebnis der Radioembolisation untersucht 

werden muss. Diese Fragestellung ist vor allem hinsichtlich des antiangiogenetischen Effekts 

der Biologika interessant, da sich damit die Blutversorgung der Metastasen und somit auch 

das Ansprechen auf SIRT grundlegend ändern könnten.  

 

Einen ähnlichen Effekt könnte auch bei einer Vortherapie von HCC-Patienten mit einer 

Chemoembolisation auftreten, da hierbei zuführende Tumorgefäße embolisiert und damit 

verschlossen werden und somit die Mikrosphären den Tumor nicht erreichen können, so dass 

auch hier dringender Studienbedarf besteht. 

  

Bisher ist SIRT nur als einmalige Therapie möglich, da bis dato die Dosis, mit der das 

gesunde Lebergewebe belastet wird, nicht kalkulierbar ist und so bei einer zweiten 

Anwendung das Risiko für eine Strahlenhepatitis sehr stark ansteigt. Könnte man 

Mikrosphären nach der Applikation in einem bildgebenden Verfahren direkt darstellen, so 

könnte die Dosis sowohl für das gesunde als auch für das Tumorgewebe errechnet werden. Im 

Moment liegen die Mikrosphären mit einer Größe im Mikrometerbereich noch weit unter der 

Auflösungsgrenze von CT und MRT. Jedoch wurde in einer aktuellen Studie die Entwicklung 

zweier neuer Radiopharmaka vorgestellt, die im Gegensatz zu den jetzigen Yttriumsphären, 

die reine ß-Strahler sind, zusätzlich noch γ-Strahlung emittieren und somit direkt ohne 

Umwege durch Photonenkameras detektierbar sind. Damit ist in Zukunft eine genauere lokale 

Dosiseinschätzung möglich, wodurch dann eventuell auch eine Zweittherapie erwogen 

werden kann. Allerdings müssen auch dafür zuerst Studien zur klinischen Wirksamkeit und 

Verträglichkeit der neuen Mikrosphären durchgeführt werden. [Bult 2009] 
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Alles in allem ist es jedoch in jedem Fall für das individuelle Patientenmanagement von 

größter Wichtigkeit, dass frühzeitig das Therapieansprechen beurteilt und die 

Überlebenschancen eingeschätzt werden können, um nachfolgende Therapieschritte zu 

planen. In dieser prospektiven und explorativen Single-Center-Studie wurden Hypothesen zur 

prädiktiven und prognostischen Aussagekraft verschiedener Biomarker sowie multivariate 

Modelle von relevanten Biomarker-Kombinationen generiert, die sowohl zur 

prätherapeutischen Patientenstratifikation, als auch für die frühe Beurteilung des 

Therapieeffektes genutzt werden können. Wenn diese Ergebnisse in weiteren, 

umfangreicheren prospektiven Therapiestudien bestätigt werden können, wäre der Einsatz der 

Blut-basierten Biomarker ein hilfreiches diagnostisches Werkzeug zur Verbesserung des 

individuellen Managements von Patienten, die sich einer SIR-Therapie unterziehen. 
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Maligne Tumoren sind in Deutschland für etwa 25% der Todesursachen verantwortlich. 

Selten ist jedoch der Primarius lebenslimitierend, sondern das Auftreten von Metastasen, das 

je nach Tumorentität und Metastasenlokalisation einen kurativen Therapieansatz verhindert. 

Häufig manifestieren sich Metastasen in der Leber, bei denen sich neben der operativen 

Resektion und der systemischen zytostatischen Therapie in den letzten Jahren zunehmend 

lokale Therapieverfahren etablieren konnten. Eines davon ist die selektive interne 

Radiotherapie (SIRT), die sich die doppelte Blutversorgung der Leber zunutze macht. Durch 

Applikation von ß-Strahlung emittierenden Yttrium-Mikrosphären in die tumorversorgende 

Arteria hepatica wird selektiv das Tumorgewebe geschädigt, unter relativer Schonung des 

gesunden Lebergewebes, das überwiegend durch die Vena portae versorgt wird. Bis vor 

kurzem kam SIRT erst nach Ausschöpfung der Standardtherapieverfahren zur Anwendung. 

Jedoch aufgrund guter Ergebnisse, vor allem bei hepatischen Metastasen eines kolorektalen 

Karzinoms, wird SIRT nun auch zunehmend zu einem früheren Krankheitszeitpunkt 

verabreicht, wie eine prospektive Multicenterstudie über die Kombination aus SIRT und einer  

Chemotherapie nach FOLFOX-Schema als Erstlinien-Behandlung bei nicht resektablen 

Lebermetastasen zeigt.  

Da jedoch SIRT nicht bei allen Patienten gleich wirksam ist und mit beträchtlicher Toxizität 

einhergehen kann, wäre es optimal schon vor Therapiebeginn prognostische Marker für eine 

effiziente Patientenstratifikation zu haben, um gezielt Patienten zu identifizieren, die in 

besonderem Maß von einer SIRT profitieren. Des weiteren ist die Beurteilung des 

Therapieerfolgs durch bildgebende Untersuchungen erst nach mehreren Wochen 

aussagekräftig. Hier wären Verlaufsmarker von großer Bedeutung, anhand derer schon 

wenige Tage nach SIRT die Therapiewirksamkeit zuverlässig abgeschätzt werden kann, um 

zeitnah Therapiemodifikationen und -intensivierungen vornehmen zu können. Hierzu bieten 

sich insbesondere Biomarker an, die die Veränderung der Tumorbiologie und -aktivität, sowie 

die Tumorschädigung durch die Therapie, oder die körpereigene Immunantwort auf die 

Tumorerkrankung widerspiegeln. Vorteile der Biomarker sind einerseits die leichte 

Zugänglichkeit des Untersuchungsmaterials im peripheren Blut, wodurch auch serielle 

Messungen möglich sind, sowie andererseits die schnelle, sensitive, kostengünstige, 

zuverlässige und objektivierbare Quantifizierung der Biomarkerkonzentration.  

Ziel der vorliegenden Arbeit war es die Rolle von im Blut zirkulierenden Tumor-, Organ-, 

Inflammations- und Zelltod-assoziierten Biomarkern sowohl für die Prognosebeurteilung, wie 

auch für das Therapiemonitoring vergleichend zu untersuchen.  
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In diese unizentrische, prospektive Observationsstudie wurden insgesamt 113 Patienten mit 

hepatischen Metastasen aufgenommen, wobei Patienten mit einem kolorektalen (N=49) und 

einem Mammakarzinom (N=22) die größten Gruppen darstellten. Blutproben wurden zu 

definierten Zeitpunkten vor, drei, sechs, 24 und 48 Stunden nach der SIR-Therapie 

entnommen und nach strengen präanalytischen Standards weiter verarbeitet. Nach Abschluß 

der Rekrutierung wurden die Studienparameter gesammelt analysiert. Das 

Therapieansprechen wurde anhand von bildgebenden Untersuchungen (PET-CT und MRT) 

zwei bis drei Monate nach SIRT in Anlehnung an die RECIST-Kriterien ermittelt. Zudem 

gingen das Einjahres- und Gesamtüberleben in die Auswertungen ein. 

Bei einer Vielzahl der untersuchten Biomarker wurde bereits 24 und 48 Stunden nach SIRT 

ein deutlicher Anstieg der Wertlagen festgestellt, bei nur wenigen kam es zu einem 

Werterückgang. Diese Beobachtung traf auf die Gesamtheit der Tumorpatienten, wie auch in 

unterschiedlicher Ausprägung auf die einzelnen Subgruppen zu. 

Hinsichtlich des Therapieansprechens und der Prognoseabschätzung wurden die beiden 

größten Patientengruppen detailliert evaluiert. Im Kollektiv der kolorektalen Karzinome 

konnte eine Reihe von Markern, unter anderem CYFRA 21-1, LDH, GOT, CA 19-9 und 

CHE, bereits prätherapeutisch zwischen Patienten, die im Staging nach SIRT progredient 

waren, und jenen, die einen stabilen Krankheitszustand oder eine Teilremission hatten, 

unterscheiden. Zusätzlich diskriminierten die 24-Stundenwerte von CA 19-9, CHE und 

Nukleosomen zwischen den Patientengruppen mit unterschiedlichem Ansprechen. Ähnliche 

Ergebnisse wurden auch in der prognostischen, univariaten Auswertung hinsichtlich des 

Einjahresüberleben erzielt. In den multivariaten Analysen bezüglich der Prognose des 

Gesamtüberlebens zeigte sich die Kombination von CRP und GOT allen anderen möglichen 

Markerkombinationen von zwei und drei prätherapeutischen Parametern (Modell 1) 

überlegen. Bei Hinzunahme der 24- Stundenwerte im Modell 2 wurde die prognostische 

Aussagekraft dieser beiden prätherapeutischen Parameter durch die Nukleosomen weiter 

gesteigert. Beim Mammakarzinom erwies sich CA 15-3 als hervorragender Marker sowohl 

für die Therapieprädiktion, wie auch für die Prognoseabschätzung. 

Bestätigen sich die in dieser Arbeit gewonnenen Ergebnisse, insbesondere die prognostischen 

Modelle, in weiteren, prospektive Studien mit größeren Fallzahlen, lassen sich auf diesen 

Grundlagen Biomarker-Scores zur prätherapeutischen Patientenstratifikation und zur 

frühzeitigen Beurteilung des Ansprechens einer SIR-Therapie entwickeln, die zu einer 

individualisierten und verbesserten Behandlung von Patienten mit Lebermetastasen beitragen. 
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9   Anhang 

9.1 Abkürzungsverzeichnis 

 
A      Aktivität 

AIC      Akaike information criterion 

AP      Alkalische Phosphatase 

BSA      Body surface area (Körperoberfläche) 

CA       Cancer-antigen 

CCC      Cholangiozelluläres Karzinom 

CEA      Carcinogenes embryonales Antigen 

CHE      Cholinesterase 

CRP      C-reaktives Protein 

CT      Computertomographie 

CUP      Cancer of unknown primary 

CYFRA 21-1     Cytokeratinfragment 19 

DNS      Desoxyribonukleinsäure = Erbgut 

DSA      digitale Subtraktionsangiographie 

eV      Elektronenvolt 

GGT      Gammaglutamyltranspeptidase 

GOT      Glutamatoxalacetattransaminase 

GPT      Glutamatpyruvattransaminase 

HAC      Hepatic artery chemotherapy 

HAI       Hepatic artery infusion 

HCC      Hepatozelluläres Karcinom 

HIFU      High intensity focused ultrasound 

hochenergetisch fokussierter Ultraschall 

INR      International normalized ratio 

kDa       Kilodalton, atomare Masseneinheit 

LDH      Laktatdehydrogenase 

LITT      Laser induced thermo therapy 

M      Masse 

MHz      Megahertz 

MIRD      Medical internal radiation dose 

MRT      Magnetresonanztomographie 

MS      Mikrosphären 
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N-HS      Nukleosomen im Handtest Serum, ELISA- Test 

N-IS      Nukleosomen im Impact im Serum 

N-IP      Nukleosomen im Impact im Plasma 

NMR      Nuclear magnetic resonance 

PET      Positronen-Emissions-Tomographie 

PTT      Partial thromboplastin time 

RECIST     Response evaluation criteria in solid tumors 

RFA      Radiofrequenzablation 

RILD      Radiation induced liver disease 

SIRT      Selective internal radiation therapy 

SPECT     Singel photon emission computer tomograpy 

TACE      Transarterielle Chemoembolisation 

TAE      Transarterielle Embolisation 

TIPS      Transhepatischer portosystemischer Shunt 

T/N      tumor-to-normal-uptake-ratio 

V      Volumen 

VEGF      Vascular endothelial growth factor 

VOD      Veno-occlusive disease 

WHO      World health organisation 

5-FU      5-Floururacil (Chemotherapeutikum) 
18F-FDG     Flour18-Desoxyglucose 
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9.2 Bestätigung Ethikkommission 
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9.3 Einzelverläufe 

Die Einzelverläufe aller in der Studie untersuchten Patienten sind im folgenden Kapitel 

dargestellt. Darin wird jeder gemessene Laborwert zu den verschiedenen Zeitpunkten 

(Basiswert vor SIRT, drei, sechs, 24 und 48 Stunden nach Therapie) für jeden Patienten auf 

einer Seite dargestellt.  

In der ersten Grafik oben links auf der Seite befinden sich jeweils die absoluten Wertelagen, 

oben rechts die relativen Wertelagen der drei verschiedenen Nukleosomenmessungen.  

Alle anderen folgenden Laborparameter wurden wegen der unterschiedlichen 

Größenordnungen in relativen Werten angegeben. Die Referenzwerte sind in jeder Grafik in 

der Legende integriert und beziehen sich auf den prätherapeutischen Wert, der jeweils als eins 

gesetzt wird. Sollte kein prätherapeutischer Wert vorhanden sein, ist auch eine Darstellung 

der posttherapeutischen Daten somit nicht möglich.  

Die linke, mittlere Grafik zeigt den Verlauf der jeweils tumorspezifischen Tumormarker, 

sowie CEA, CYFRA 21-1 und CRP, die rechte, mittlere Grafik stellt den Verlauf der 

Cholestaseparameter Bilirubin, GGT und AP dar. In der Grafik links unten werden die 

Leberwerte GOT, GPT sowie LDH und in der Grafik rechts unten die Parameter Amylase, 

Lipase und CHE gezeigt.  

Zusätzlich wird am Steitenende der Patient mit Alter, Geschlecht, Diagnose, 

Therapieansprechen nach drei Monaten und Überlebenszeit charakterisiert.  
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Abb. 106: Patient 61 Jahre, männlich, SIRT bei CRC, Therapieansprechen nach 3 Monaten: 
Progressive Disease, 5,5 Monate nach SIRT verstorben 
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Abb. 107: Patient 58 Jahre, männlich, SIRT bei CRC, Therapieansprechen nach 3 Monaten: 
Progressive Disease, 7,8 Monate nach SIRT verstorben 
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Abb. 108: Patient 69 Jahre, weiblich, SIRT bei CRC, Therapieansprechen nach 3 Monaten: 
Partial Remission, 18,8 Monate nach SIRT verstorben 
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Abb. 109: Patient 72 Jahre, männlich, SIRT bei CRC, 2,8 Monate nach SIRT verstorben 
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Abb. 110: Patient 64 Jahre, männlich, SIRT bei CRC, 3,4  Monate nach SIRT verstorben 
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Abb. 111: Patient 50 Jahre, weiblich, SIRT bei CRC, Therapieansprechen nach 3 Monaten: 
Progressive Disease, 19,6 Monate nach SIRT verstorben 
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Abb. 112: Patient 67 Jahre, weiblich, SIRT bei CRC, Therapieansprechen nach 3 Monaten: 
Partial Remission, 15,0 Monate nach SIRT verstorben 
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Abb. 113: Patient 69 Jahre, männlich, SIRT bei CRC, Therapieansprechen nach 3 Monaten: 
Progressive Disease, 4,6 Monate nach SIRT verstorben 
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Abb. 114: Patient 47 Jahre, männlich, SIRT bei CRC, Therapieansprechen nach 3 Monaten: 
Progressive Disease, innerhalb des Follow-ups (21,5 Monate nach SIRT) nicht verstorben 
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Abb. 115: Patient 49 Jahre, männlich, SIRT bei CRC, 2,5 Monate nach SIRT verstorben 
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Abb. 116: Patient 57 Jahre, männlich, SIRT bei CRC, Therapieansprechen nach 3 Monaten: 
Progressive Disease, innerhalb des Follow-ups (20,1 Monate nach SIRT) nicht verstorben 
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Abb. 117: Patient 62 Jahre, männlich, SIRT bei CRC, Therapieansprechen nach 3 Monaten: 
Progressive Disease, 5,1 Monate nach SIRT verstorben 
 

  

  

  



9   Anhang  Einzelverläufe 

- 163 - 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Abb. 118: Patient 68 Jahre, männlich, SIRT bei CRC, Therapieansprechen nach 3 Monaten: 
Partial Remission, innerhalb des Follow-ups (17,9 Monate nach SIRT) nicht verstorben 
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Abb. 119: Patient 68 Jahre, männlich, SIRT bei CRC, Therapieansprechen nach 3 Monaten: 
Partial Remission, 17,9 Monate nach SIRT verstorben 
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Abb. 120: Patient 66,4 Jahre, weiblich, SIRT bei CRC, Therapieansprechen nach 3 Monaten: 
Progressive Disease, innerhalb des Follow-ups (17,3 Monate nach SIRT) nicht verstorben 
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Abb. 121: Patient 51 Jahre, männlich, SIRT bei CRC, Therapieansprechen nach 3 Monaten: 
Progressive Disease, 11,0 Monate nach SIRT verstorben 
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Abb. 122: Patient 66 Jahre, männlich, SIRT bei CRC, Therapieansprechen nach 3 Monaten: 
Progressive Disease, 4,4 Monate nach SIRT verstorben 
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Abb. 123: Patient 57 Jahre, weiblich, SIRT bei CRC, Therapieansprechen nach 3 Monaten: 
Progressive Disease, innerhalb des Follow-ups (16,5 Monate nach SIRT) nicht verstorben 
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Abb. 124: Patient 63 Jahre, männlich, SIRT bei CRC, nur linker Leberlappen, 
Therapieansprechen nach 3 Monaten: Progressive Disease, innerhalb des Follow-ups (16,7 
Monate nach SIRT) nicht verstorben 
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Abb. 125: Patient 63 Jahre, männlich, zweite SIRT bei CRC, nur Lebersegment 1, 
Therapieansprechen nach 3 Monaten: Partial Remission, innerhalb des Follow-ups (16,7 
Monate nach erster SIRT) nicht verstorben 
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Abb. 126: Patient 61 Jahre, männlich, SIRT bei CRC, Therapieansprechen nach 3 Monaten: 
Stable Disease, innerhalb des Follow-ups (13,3 Monate nach SIRT) nicht verstorben 
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Abb. 127: Patient 51 Jahre, weiblich, SIRT bei CRC, Therapieansprechen nach 3 Monaten: 
Partial Remission, innerhalb des Follow-ups (15,6 Monate nach SIRT) nicht verstorben 
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Abb. 128: Patient 77 Jahre, männlich, SIRT bei CRC, 3,1 Monate nach SIRT verstorben 
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Abb. 129: Patient 61 Jahre, männlich, SIRT bei CRC, Therapieansprechen nach 3 Monaten: 
Stable Disease, 15,0 Monate nach SIRT verstorben 

  

  

  



9   Anhang  Einzelverläufe 

- 175 - 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Abb. 130: Patient 64 Jahre, männlich, SIRT bei CRC, 1,5 Monate nach SIRT verstorben 
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Abb. 131: Patient 76 Jahre, männlich, SIRT bei CRC, Therapieansprechen nach 3 Monaten: 
Progressive Disease, innerhalb des Follow-ups (26,6 Monate nach SIRT) nicht verstorben 
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Abb. 132: Patient 60 Jahre, männlich, SIRT bei CRC, Therapieansprechen nach 3 Monaten: 
Progressive Disease, 6,8 Monate nach SIRT verstorben 
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Abb. 133: Patient 61 Jahre, männlich, SIRT bei CRC, Therapieansprechen nach 3 Monaten: 
Partial Remission, 23,8 Monate nach SIRT verstorben 
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Abb. 134: Patient 36 Jahre, männlich, SIRT bei CRC, 2,8 Monate nach SIRT verstorben 
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Abb. 135: Patient 50 Jahre, weiblich, SIRT bei CRC, 1,8 Monate nach SIRT verstorben 
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Abb. 136: Patient 68 Jahre, männlich, SIRT bei CRC, Therapieansprechen nach 3 Monaten: 
Progressive Disease, innerhalb des Follow-ups (23,6 Monate nach SIRT) nicht verstorben 
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Abb. 137: Patient 67 Jahre, weiblich, SIRT bei CRC, Therapieansprechen nach 3 Monaten: 
Progressive Disease, 4,2 Monate nach SIRT verstorben 
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Abb. 138: Patient 67 Jahre, männlich, SIRT bei CRC, Therapieansprechen nach 3 Monaten: 
Progressive Disease, 20,6 Monate nach SIRT verstorben 
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Abb. 139: Patient 49 Jahre, männlich, SIRT bei CRC, Therapieansprechen nach 3 Monaten: 
Progressive Disease, innerhalb des Follow-ups (19,5 Monate nach SIRT) nicht verstorben 
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Abb. 140: Patient 54 Jahre, männlich, SIRT bei CRC, Therapieansprechen nach 3 Monaten: 
Progressive Disease, innerhalb des Follow-ups (18,7 Monate nach SIRT) nicht verstorben 
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Abb. 141: Patient 56 Jahre, männlich, SIRT bei CRC, Therapieansprechen nach 3 Monaten: 
Progressive Disease, 5,0 Monate nach SIRT verstorben 
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Abb. 142: Patient 63 Jahre, männlich, SIRT bei CRC, Therapieansprechen nach 3 Monaten: 
Progressive Disease, 6,2 Monate nach SIRT verstorben 
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Abb. 143: Patient 59 Jahre, weiblich, SIRT bei CRC, 3,2 Monate nach SIRT verstorben 
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Abb. 144: Patient 66 Jahre, männlich, SIRT bei CRC, Therapieansprechen nach 3 Monaten: 
Stable Disease, innerhalb des Follow-ups (16,2 Monate nach SIRT) nicht verstorben 
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Abb. 145: Patient 54 Jahre, männlich, SIRT bei CRC, Therapieansprechen nach 3 Monaten: 
Progressive Disease, 18,7 Monate nach SIRT verstorben 
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Abb. 146: Patient 65 Jahre, weiblich, SIRT bei CRC, Therapieansprechen nach 3 Monaten: 
Partial Remission, 15,4 Monate nach SIRT verstorben 
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Abb. 147: Patient 76 Jahre, weiblich, SIRT bei CRC, Therapieansprechen nach 3 Monaten: 
Progressive Disease, 8,8 Monate nach SIRT verstorben 
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Abb. 148: Patient 62 Jahre, weiblich, SIRT bei CRC, Therapieansprechen nach 3 Monaten: 
Stable Disease, innerhalb des Follow-ups (21,6 Monate nach SIRT) nicht verstorben 
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Abb. 149: Patient 66 Jahre, männlich, SIRT bei CRC, Therapieansprechen nach 3 Monaten: 
Progressive Disease, 8,2 Monate nach SIRT verstorben 
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Abb. 150: Patient 35 Jahre, weiblich, SIRT bei CRC, Therapieansprechen nach 3 Monaten: 
Progressive Disease, 5,2 Monate nach SIRT verstorben 
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Abb. 151: Patient 72 Jahre, männlich, SIRT bei CRC, 1,3 Monate nach SIRT verstorben 
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Abb. 152: Patient 61 Jahre, männlich, SIRT bei CRC, 1,4 Monate nach SIRT verstorben 
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Abb. 153: Patient 71 Jahre, männlich, SIRT bei CRC, Therapieansprechen nach 3 Monaten: 
Stable Disease, 4,9 Monate nach SIRT verstorben 
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Abb. 154: Patient 60 Jahre, männlich, SIRT bei CRC, Therapieansprechen nach 3 Monaten: 
Partial Remission, danach aus der Studie ausgeschieden 
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Abb. 155: Patient 69 Jahre, männlich, SIRT bei CRC, Therapieansprechen nach 3 Monaten: 
Progressive Disease, 4,0 Monate nach SIRT verstorben 
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Abb. 156: Patient 77 Jahre, männlich, SIRT bei HCC, Therapieansprechen nach 3 Monaten: 
Stable Disease, 26,0 Monate nach SIRT verstorben 
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Abb. 157: Patient 60 Jahre, männlich, SIRT bei HCC, Therapieansprechen nach 3 Monaten: 
Partial Remission, 26,5 Monate nach SIRT verstorben 
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Abb. 158: Patient 72 Jahre, männlich, SIRT bei HCC, Therapieansprechen nach 3 Monaten: 
Partial Remission, 10,9 Monate nach SIRT verstorben 
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Abb. 159: Patient 71 Jahre, männlich, SIRT bei HCC, Therapieansprechen nach 3 Monaten: 
Stable Disease, innerhalb des Follow-ups (25,8 Monate nach SIRT) nicht verstorben 
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Abb. 160: Patient 68 Jahre, weiblich, SIRT bei HCC, Therapieansprechen nach 3 Monaten: 
Stable Disease, innerhalb des Follow-ups (16,4 Monate nach SIRT) nicht verstorben 
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Abb. 161: Patient 68 Jahre, männlich, SIRT bei HCC, Therapieansprechen nach 3 Monaten: 
Progressive Disease, innerhalb des Follow-ups (15,3 Monate nach SIRT) nicht verstorben 
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Abb. 162: Patient 64 Jahre, männlich, SIRT bei CCC, Therapieansprechen nach 3 Monaten: 
Progressive Disease, 6,4 Monate nach SIRT verstorben 
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Abb. 163: Patient 54 Jahre, weiblich, SIRT bei CCC, Therapieansprechen nach 3 Monaten: 
Progressive Disease, 5,0 Monate nach SIRT verstorben 
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Abb. 164: Patient 58 Jahre, männlich, SIRT bei CCC, Therapieansprechen nach 3 Monaten: 
Partial Remission, innerhalb des Follow-ups (28,2 Monate nach SIRT) nicht verstorben 
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Abb. 165: Patient 57 Jahre, männlich, SIRT bei CCC, Therapieansprechen nach 3 Monaten: 
Stable Disease, 8,7 Monate nach SIRT verstorben 
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Abb. 166: Patient 72 Jahre, weiblich, SIRT bei CCC, Therapieansprechen nach 3 Monaten: 
Progressive Disease, 16,0 Monate nach SIRT verstorben 
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Abb. 167: Patient 67 Jahre, männlich, SIRT bei CCC, 3,4 Monate nach SIRT verstorben 
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Abb. 168: Patient 69 Jahre, männlich, SIRT bei CCC, Therapieansprechen nach 3 Monaten: 
Partial Remission, innerhalb des Follow-ups (22,4 Monate nach SIRT) nicht verstorben  
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Abb. 169: Patient 74 Jahre, weiblich, SIRT bei CCC, Therapieansprechen nach 3 Monaten: 
Partial Remission, innerhalb des Follow-ups (20,5 Monate nach SIRT) nicht verstorben 
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Abb. 170: Patient 76 Jahre, männlich, SIRT bei CCC, Therapieansprechen nach 3 Monaten: 
Partial Remission, 7,2 Monate nach SIRT verstorben 
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Abb. 171: Patient 68 Jahre, weiblich, SIRT bei CCC, Therapieansprechen nach 3 Monaten: 
Progressive Disease, innerhalb des Follow-ups (16,8 Monate nach SIRT) nicht verstorben 
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Abb. 172: Patient 62 Jahre, weiblich, SIRT bei CCC, Therapieansprechen nach 3 Monaten: 
Stable Disease, innerhalb des Follow-ups (14,4 Monate nach SIRT) nicht verstorben 
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Abb. 173: Patient 67 Jahre, männlich, SIRT bei CCC, Therapieansprechen nach 3 Monaten: 
Stable Disease, innerhalb des Follow-ups (16,1 Monate nach SIRT) nicht verstorben  
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Abb. 174: Patient 60 Jahre, männlich, SIRT bei Pankreaskarzinom, Therapieansprechen nach 
3 Monaten: Partial Remission, innerhalb des Follow-ups (30,2  Monate nach SIRT) nicht 
verstorben  
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Abb. 175: Patient 67 Jahre, männlich, SIRT bei Pankreaskarzinom, Therapieansprechen nach 
3 Monaten: Progressive Disease, 11,7 Monate nach SIRT verstorben 
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Abb. 176: Patient 73 Jahre, männlich, SIRT bei Pankreaskarzinom, Therapieansprechen nach 
3 Monaten: Progressive Disease, 10,2 Monate nach SIRT verstorben 
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Abb. 177: Patient 72 Jahre, weiblich, SIRT bei Mammakarzinom, Therapieansprechen nach 3 
Monaten: Partial Remission, innerhalb des Follow-ups (30,7 Monate nach SIRT) nicht 
verstorben 
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Abb. 178: Patient 72 Jahre, weiblich, SIRT bei Mammakarzinom Therapieansprechen nach 3 
Monaten: Progressive Disease, 4,7 Monate nach SIRT verstorben 
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Abb. 179: Patient 66 Jahre, weiblich, SIRT bei Mammakarzinom, 10,1 Monate nach SIRT 
verstorben 
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Abb. 180: Patient 55 Jahre, weiblich, SIRT bei Mammakarzinom, Therapieansprechen nach 3 
Monaten: Progressive Disease, 6,8 Monate nach SIRT verstorben 
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Abb. 181: Patient 61 Jahre, weiblich, SIRT bei Mammakarzinom, Therapieansprechen nach 3 
Monaten: Progressive Disease, 13,6 Monate nach SIRT verstorben 
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Abb. 182: Patient 65 Jahre, weiblich, SIRT bei Mammakarzinom, 3,0 Monate nach SIRT 
verstorben 
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Abb. 183: Patient 43 Jahre, weiblich, SIRT bei Mammakarzinom, Therapieansprechen nach 3 
Monaten: Progressive Disease, 13,5 Monate nach SIRT verstorben 
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Abb. 184: Patient 64 Jahre, weiblich, SIRT bei Mammakarzinom, Therapieansprechen nach 3 
Monaten: Progressive Disease, 7,9 Monate nach SIRT verstorben 
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Abb. 185: Patient 67 Jahre, weiblich, SIRT bei Mammakarzinom, Therapieansprechen nach 3 
Monaten: Progressive Disease, 8,5 Monate nach SIRT verstorben 
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Abb. 186: Patient 66 Jahre, weiblich, SIRT bei Mammakarzinom, Therapieansprechen nach 3 
Monaten: Progressive Disease, 7,5 Monate nach SIRT verstorben 
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Abb. 187: Patient 62 Jahre, weiblich, SIRT bei Mammakarzinom, 3,9 Monate nach SIRT 
verstorben 
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Abb. 188: Patient 60 Jahre, weiblcih, SIRT bei Mammakarzinom, Therapieansprechen nach 3 
Monaten: Stable Disease, 9,4 Monate nach SIRT verstorben 
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Abb. 189: Patient 64 Jahre, weiblich, SIRT bei Mammakarzinom, Therapieansprechen nach 3 
Monaten: Progressive Disease, 16,2 Monate nach SIRT verstorben 
 

 

 

  

 

 



9   Anhang  Einzelverläufe 

- 235 - 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Abb. 190: Patient 57 Jahre, weiblich, SIRT bei Mammakarzinom, Therapieansprechen nach 3 
Monaten: Partial Remission, 16,6 Monate nach SIRT verstorben 
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Abb. 191: Patient 59 Jahre, weiblich, SIRT bei Mammakarzinom, Therapieansprechen nach 3 
Monaten: Progressive Disease, 10,8 Monate nach SIRT verstorben 
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Abb. 192: Patient 59 Jahre, weiblich, SIRT bei Mammakarzinom, Therapieansprechen nach 3 
Monaten: Progressive Disease, 11,1 Monate nach SIRT verstorben 
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Abb. 193: Patient 44 Jahre, weiblich, SIRT bei Mammakarzinom, Therapieansprechen nach 3 
Monaten: Progressive Disease, 4,3 Monate nach SIRT verstorben 
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Abb. 194: Patient 44 Jahre, weiblich, SIRT bei Mammakarzinom, Therapieansprechen nach 3 
Monaten: Stable Disease, 11,9 Monate nach SIRT verstorben 
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Abb. 195: Patient 70 Jahre, weiblich, SIRT bei Mammakarzinom, 4,9 Monate nach SIRT 
verstorben 
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Abb. 196: Patient 59 Jahre, weiblich, SIRT bei Mammakarzinom, Therapieansprechen nach 3 
Monaten: Partial Remission, innerhalb des Follow-ups (17,6 Monate nach SIRT) nicht 
verstorben 
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Abb. 197: Patient 46 Jahre, weiblich, SIRT bei Mammakarzinom, Therapieansprechen nach 3 
Monaten: Progressive Disease, 11,8 Monate nach SIRT verstorben 
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Abb. 198: Patient 65 Jahre, weiblich, SIRT bei Mammakarzinom, 4,6 Monate nach SIRT 
verstorben 
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Abb. 199: Patient 43 Jahre, männlich, SIRT bei Carcinoid-Syndrom, Therapieansprechen 
nach 3 Monaten: Stable Disease, innerhalb des Follow-ups (33,7 Monate nach SIRT) nicht 
verstorben  
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Abb. 200: Patient 59 Jahre, weiblich, SIRT bei Carcinoid Syndrom, Therapieansprechen nach 
3 Monaten: Progressive Disease, innerhalb des Follow-ups (30,8 Monate nach SIRT) nicht 
verstorben 
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Abb. 201: Patient 70 Jahre, männlich, SIRT bei Carcinoid-Syndrom, Therapieansprechen 
nach 3 Monaten: Partial Remission, innerhalb des Follow-ups (26,2 Monate nach SIRT) nicht 
verstorben 
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Abb. 202: Patient 45 Jahre, weiblich, SIRT bei Carcinoid-Syndrom, Therapieansprechen nach 
3 Monaten: Progressive Disease, 2,8 Monate nach SIRT verstorben 

  

  

  



9   Anhang  Einzelverläufe 

- 248 - 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Abb. 203: Patient 64 Jahre, weiblich, SIRT bei Carcinoid-Syndrom, innerhalb des Follow-ups 
(21,5 Monate nach SIRT) nicht verstorben 
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Abb. 204: Patient 58 Jahre, männlich, SIRT bei Carcinoid-Syndrom, Therapieansprechen 
nach 3 Monaten: Progressive Disease, innerhalb des Follow-ups (10,3 Monate nach SIRT) 
nicht verstorben 
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Abb. 205: Patient 57 Jahre, männlich, zweite SIRT in den rechten Leberlappen bei Carcinoid-
Syndrom, Therapieansprechen nach 3 Monaten: Stable Disease, innerhalb des Follow-ups (9,9 
Monate nach SIRT) nicht verstorben 
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Abb. 206: Patient 57 Jahre, männlich, SIRT bei Magenkarzinom, Therapieansprechen nach 3 
Monaten: Progressive Disease, 5,2 Monate nach SIRT verstorben 
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Abb. 207: Patient 70 Jahre, männlich, SIRT bei Magenkarzinom, Therapieansprechen nach 3 
Monaten: Progressive Disease, 6,5 Monate nach SIRT verstorben 
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Abb. 208: Patient 69 Jahre, weiblich, SIRT bei Leiomyosarkom, Therapieansprechen nach 3 
Monaten: Partial Remission, innerhalb des Follow-up (25,6 Monate nach SIRT) nicht 
verstorben 
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Abb. 209: Patient 42 Jahre, männlich, SIRT bei Malignem Melanom, Therapieansprechen 
nach 3 Monaten: Progressive Disease, 15,7 Monate nach SIRT verstorben 
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Abb. 210: Patient 51 Jahre, weiblich, SIRT bei Malignem Melanom, Therapieansprechen 
nach 3 Monaten: Progressive Disease, 14,6 Monate nach SIRT verstorben 
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Abb. 211: Patient 60 Jahre, männlich, SIRT bei Malignem Melanom Therapieansprechen 
nach 3 Monaten: Stable Disease, 14,1 Monate nach SIRT verstorben 
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Abb. 212: Patient 80 Jahre, männlich, SIRT bei Malignem Melanom, Therapieansprechen 
nach 3 Monaten: Partial Remission, innerhalb des Follow-ups (11,6 Monate nach SIRT) nicht 
verstorben 
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Abb. 213: Patient 35 Jahre, männlich, SIRT bei Angiosarkom, Therapieansprechen nach 3 
Monaten: Partial Remission, innerhalb des Follow-ups (26,0 Monate nach SIRT) nicht 
verstorben 
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Abb. 214: Patient 65 Jahre, weiblich, SIRT bei Ovarialkarzinom, 3,0 Monate nach SIRT 
verstorben 
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Abb. 215: Patient 47 Jahre, weiblich, SIRT bei Ovarialkarzinom, innerhalb des Follow-ups 
(18,8 Monate nach SIRT) nicht verstorben 
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Abb. 216: Patient 53 Jahre, weiblich, SIRT bei Ovarialkarzinom, 5,3 Monate nach SIRT 
verstorben 
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Abb. 217: Patient 51 Jahre, männlich, SIRT bei Urothelkarzinom, Therapieansprechen nach 3 
Monaten: Progressive Disease, 3,9 Monate nach SIRT verstorben 
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Abb. 218: Patient 67 Jahre, weiblich, SIRT bei CUP, Therapieansprechen nach 3 Monaten: 
Progressive Disease, 9,8 Monate nach SIRT verstorben 
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Abb. 219: Patient 41 Jahre, weiblich, SIRT bei Nebennierenkarzinom, 9,6 Monate nach SIRT 
verstorben 
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