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Die vorliegende kumulative Dissertation umfasst zwei Manuskripte, die mit 
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Maximilians-Universität München vorab publiziert wurden.  
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1. Einleitung 

1.1 Relevanz für die pädiatrische Onkologie  

Maligne Erkrankungen stellen im Kindesalter nach Unfällen die zweithäufigste Todes-

ursache dar. Insgesamt sind jedoch Kinder sehr viel seltener betroffen als Erwachsene – nur 

2 % aller Tumorerkrankungen fallen ins Kindesalter [1]. Im Zeitraum von 1975 bis 2006 

konnte die Mortalitätsrate aller onkologischen Erkrankungen im Kindesalter um mehr als 

50 % gesenkt werden [2]. Neben neuen Therapieansätzen ist besonders die verbesserte 

Diagnostik für diesen Erfolg maßgebend. Tritt eine maligne Erkrankung auf, ist für die 

Primärdiagnostik ein schnelles und möglichst exaktes Staging notwendig, um die genaue 

anatomische Tumorausbreitung und die Metastasen zu erfassen. Anschließend wird ein 

adäquates, stadienabhängiges Therapiekonzept erstellt. Im Verlauf der Tumortherapie 

(Follow-up) sind aussagekräftige Untersuchungen zum Therapiemonitoring und zur 

frühzeitigen Rezidiverkennung von entscheidender therapeutischer Relevanz [3].  

 

1.2 Onkologische Bildgebung  

In der onkologischen Pädiatrie wird – wie in den bildgebenden Fächern üblich – 

grundsätzlich zwischen der morphologischen und funktionellen Darstellung unterschieden. 

Der Vorteil der morphologischen Verfahren wie der Computertomographie (CT), der 

Magnetresonanztomographie (MRT) und des Ultraschalls (US) liegt dabei in der exakten 

Darstellung anatomischer Strukturen. Voraussetzung für die fehlerfreie Interpretation ist die 

genaue Kenntnis der physiologischen anatomischen Verhältnisse. Aussagen über bestimmte 

Stoffwechselwege sowie über die Stoffwechselaktivität in relevanten Geweben und Organen 

können mit morphologischen Verfahren im Allgemeinen nicht getroffen werden. Dies gelingt 

mit Hilfe funktioneller Verfahren wie der Positronenemissionstomographie (PET), der 

planaren Szintigraphie und der Single Photon Emission Computer Tomography (SPECT). Je 

nach verwendetem Radiotracer können Stoffwechselauffälligkeiten generalisiert oder in 

speziellen Geweben sichtbar gemacht werden. Der entscheidende Nachteil funktioneller 

Untersuchungsmodalitäten besteht in ihrer geringen räumlichen Auflösung, die eine 

Zuordnung von fokalen metabolischen Auffälligkeiten zu bestimmten anatomischen 

Strukturen erheblich beeinträchtigt [4], [5], [6]. In den folgenden Abschnitten wird kurz auf die 

grundlegenden Prinzipien der Bildgebungsmodalitäten dieser Arbeit eingegangen.  
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1.3 18F-Fluordesoxyglukose Positronenemissionstomographie 

Das zentrale Verbindungsglied der beiden zugrunde liegenden Veröffentlichungen dieser 

Dissertation ist die 18F-Fluordesoxyglukose Positronenemissionstomographie (18F-FDG-

PET)-Diagnostik bei kindlichen Tumoren. Für diese Bildgebungsmodalität wird ein 

Radiopharmakon, bestehend aus der radioaktiv markierten Substanz und einem Träger-

molekül, intravenös appliziert. In der Onkologie wird hierfür häufig radioaktiv markierte 

Fluordesoxyglukose verwendet, die in den Glukosestoffwechsel der Zellen eingeschleust und 

nur sehr langsam verstoffwechselt wird (metabolic trapping). Diese reichert sich bevorzugt in 

Gewebe mit erhöhter Stoffwechselrate wie beispielsweise in maligne entartetem Gewebe 

an [7]. Das Radiopharmakon emittiert Positronen, die an Elektronen im umliegenden 

Gewebe abgebremst werden und mit diesen wechselwirken (Annihilation). Dabei werden 

zwei Photonen mit einer Energie von 511 keV in einem Winkel von 180 ° ausgesandt 

(Vernichtungsstrahlung). Ein um den Patienten gelagerter Detektorring registriert die 

eintreffenden Gammaquanten. Durch Koinzidenzschaltung wird nur bei gleichzeitigem 

Eintreffen zweier Photonen ein Bildsignal erzeugt und entsprechend der geometrischen 

Verhältnisse die anatomisch-topographische Zuordnung des Positronenzerfalls be-

rechnet [5]. 

 

1.4 Magnetresonanztomographie 

Die Magnetresonanztomographie (MRT) ist ein Schnittbildverfahren ohne Verwendung 

ionisierender Strahlung [8]. Das Verfahren beruht größtenteils auf dem Kernspin von 

Protonen im menschlichen Körper, die sich unter Einwirkung eines äußeren Magnetfeldes 

parallel ausrichten und mit einer bestimmten Frequenz schwingen. Bei Wegfall des äußeren 

Magnetfeldes geben die Protonen die aufgenommene Energie wieder ab, die registriert und 

mittels Umrechnung zur Bildgebung genutzt werden kann [5]. 

  

1.5 123I-Metaiodbenzylguanidin-Szintigraphie/SPECT 

Die 123I-Metaiodbenzylguanidin (123I-MIBG)-Szintigraphie dient der Diagnostik katechol-

aminproduzierender Tumoren des peripheren sympathischen Nervensystems [9]. Dabei wird 

das applizierte Noradrenalinanalogon 123I-MIBG über einen präsynaptischen Transporter in 

die Tumorzellen aufgenommen und in Vesikeln gespeichert [9]. Das an MIBG gekoppelte 
123I-Iod ist ein Gamma-Strahler. Die aus dem Körper austretende Strahlung wird mit einer 

Gammakamera detektiert und mittels eines Szintillationskristalls in Lichtblitze umgewandelt. 

Ein Photomultiplier führt zu einer Verstärkung des Signals um den Faktor 105, wodurch ein 

elektrisches Signal entsteht. Die Single Photon Emission Computer Tomography (SPECT) 
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dient dazu, aus den Messdaten sagittale, axiale und coronare Aufnahmen zu rekonstruieren. 

Dafür rotieren eine oder mehrere Gammakameras um den Patienten. Die räumliche 

Auflösung ist gering, jedoch werden Überlagerungseffekte wie bei der planaren Szintigraphie 

vermieden [5]. 

 

1.6 Statistik 

Die statistische Beurteilung der verschiedenen bildgebenden Verfahren erfolgte in beiden 

Studien anhand der Sensitivität und Spezifität. Die Sensitivität ist ein Parameter für die 

Empfindlichkeit eines Untersuchungsverfahrens und errechnet sich aus dem Quotienten der 

korrekt positiven Resultate und der Summe der richtig positiven und falsch negativen 

Befunde. Die Sensitivität kann damit als Maß für die Wahrscheinlichkeit des richtigen 

Erkennens einer malignen Erkrankung beziehungsweise einer malignen Läsion betrachtet 

werden. Eine Untersuchungsmethode mit hoher Sensitivität erfasst nahezu alle tatsächlichen 

Tumorläsionen, jedoch ist die Rate der falsch positiven Befunde unter Umständen hoch. In 

der Onkologie sind die Existenz und das Erkennen von Metastasen von entscheidender 

Bedeutung für die Klassifikation der malignen Erkrankung und für die Wahl des am besten 

geeigneten Therapiekonzepts. Daher spielt die Sensitivität der verwendeten Bildgebungs-

verfahren in beiden zugrunde liegenden Studien in der Primärdiagnostik eine zentrale Rolle.  

Im Follow-up einer onkologischen Erkrankung besteht die Anforderung an die bildgebenden 

Verfahren dagegen vor allem in der zuverlässigen Erkennung von Rezidiven, die sicher von 

residuellen Läsionen nach operativer Versorgung oder Chemotherapie abgegrenzt werden 

müssen. Die genaue Anzahl der Läsionen und Metastasen ist im Follow-up dagegen weniger 

entscheidend. Dies gelingt am besten mit Bildgebungsmodalitäten, die über eine hohe 

Spezifität, das heißt über eine hohe Wahrscheinlichkeit für das Erkennen negativer Befunde, 

verfügen. Die Spezifität ist dabei der Quotient der korrekt negativen Resultate und der 

Summe aus richtig negativen und falsch positiven Befunden. Für den Vergleich von 

Sensitivität und Spezifität der einzelnen Bildgebungsmethoden wurde der positive Likelihood-

Quotient bestimmt und mit Hilfe des McNemars Chi-square Tests erfolgte die statistische 

Analyse. Verwendet wurde das „Statistical Package for 230 the Social Sciences (SPSS, 

version 15.0, Chicago, IL, 231 USA)”. Das Signifikanzniveau betrug p<0.05.  
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1.7 Fragestellung 

Die 18F-FDG-PET ist heutzutage eine etablierte Untersuchungsmodalität in der pädiatrischen 

Onkologie – in der Erwachsenenonkologie wird die 18F-FDG-PET bereits routinemäßig in 

Kombination mit weiteren Bildgebungsmodalitäten eingesetzt [10], [11]. Weltweit liegen 

allerdings nur wenige Studien aus der Kinderonkologie zu Kombinationsmöglichkeiten der 
18F-FDG-PET mit anderen Bildgebungsmodalitäten vor. Beide dieser Arbeit zugrunde 

liegenden Studien kombinieren die 18F-FDG-PET mit einem weiteren Bildgebungsverfahren – 

erstens einer morphologischen Modalität (MRT) und zweitens einer weiteren funktionellen 

Bildgebungsmodalität (123I-MIBG-Szintigraphie) – und evaluieren die diagnostische Zusatz-

information.  

 

1.8 Kombinierte 18F-FDG-PET/MRT verglichen mit 18F-FDG-PET und MRT 

Diagnostic value of combined 18F-FDG PET/MRI for staging and restaging in paediatric 
oncology. 
 
Pfluger T, Melzer HI, Mueller WP, Coppenrath E, Bartenstein P, Albert MH, Schmid I. Eur J 
Nucl Med Mol Imaging. 2012 Nov;39(11):1745-55.  
 

In dieser Studie wurde der mögliche Zusatznutzen einer kombinierten 18F-FDG-PET/MRT-

Diagnostik im Vergleich zur solitären Bildgebungsmodalität in der pädiatrischen Onkologie 

untersucht. Die Fragestellung ergab sich aus der Problematik, dass sowohl die 18F-FDG-PET 

als auch die MRT alleine häufig zu unzureichenden Aussagen in der Diagnostik pädiatrischer 

Krebserkrankungen führen. Während sich in der Erwachsenenonkologie die kombinierte 

Bildgebung bereits in Form des PET-CT-Scans etabliert hat, erfolgt die Anwendung der PET-

CT in der Pädiatrie nur nach strenger Indikationsstellung [3], [11]. Die applizierte Strahlen-

dosis der PET-CT-Untersuchung wird hauptsächlich durch das CT-Protokoll bestimmt [12]. 

Aufgrund der erhöhten Empfindlichkeit von Kindern gegenüber ionisierender Strahlung und 

des damit verbundenen höheren Risikos für strahleninduzierte Sekundärmalignome wird die 

PET-CT in der Pädiatrie zurückhaltend eingesetzt [13]. Demgegenüber ist die MRT zwar ein 

strahlungsfreies Verfahren, jedoch bestehen beim alleinigen Einsatz der MRT häufig 

Schwierigkeiten, sehr kleine Läsionen und Knochenmarksmetastasen bildmorphologisch 

darzustellen und zu identifizieren [14]. Zudem ist eine Unterscheidung zwischen vitalem 

Tumorgewebe und avitalen residualen Gewebeveränderungen nach Therapie nur ein-

geschränkt möglich, was vor allem zu Fehlinterpretationen im Follow-up führt [15]. Da die 

eingangs erwähnte applizierte Strahlendosis jedoch zum überwiegenden Teil durch das CT-

Protokoll verursacht wird, erscheint der Einsatz der 18F-FDG-PET bei Kindern prinzipiell 

hinsichtlich der damit verbundenen Risiken gerechtfertigt [12]. Um wie in der Erwachsenen-
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onkologie die oben genannten methodenimmanenten Nachteile einer rein morphologischen 

Bildgebung auszugleichen, kommt bei Kindern somit die Kombination der strahlungsfreien 

MRT mit der 18F-FDG-PET in Frage. 

Um die diagnostische Wertigkeit der kombinierten Diagnostik mit 18F-FDG-PET/MRT gegen-

über den Einzelverfahren zu evaluieren, wurden 132 pädiatrische Patienten in die Studie 

eingeschlossen und insgesamt 813 bildmorphologische Läsionen in 270 Untersuchungs-

paaren untersucht. Zum Zeitpunkt der Untersuchung bestand bei jedem Patienten der 

Verdacht auf eine maligne Erkrankung oder der Patient wurde im Rahmen des Therapie-

monitorings bei bestätigter onkologischer Erkrankung im Follow-up untersucht. Eine 

Vorselektion bezüglich der Tumorentitäten fand dabei nicht statt. Zunächst wurden in 

separater Analyse die 18F-FDG-PET-Bilddaten und die MRT-Bilddaten ausgewertet. 

Anschließend erfolgte eine kombinierte Bildanalyse teilweise mithilfe einer Bildfusion. In der 

Datenauswertung wurden zum einen alle 813 malignitätsverdächtigen Läsionen einzeln 

beurteilt, und zum anderen erfolgte eine untersuchungsbezogene Bildbetrachtung der 270 

Untersuchungspaare. Hierbei war die genaue Metastasenanzahl unerheblich, jeder Patient 

wurde zum Zeitpunkt der Untersuchung als positiv oder negativ für das Vorliegen einer 

Tumorerkrankung eingestuft.  

In der Datenanalyse der Einzelläsionen betrug die Sensitivität der 18F-FDG-PET 86 %, der 

MRT 94 % und der kombinierten 18F-FDG-PET/MRT 97 %. Die Spezifität stellte sich für die 
18F-FDG-PET mit 85 %, für die MRT mit 38 % und für die kombinierte 18F-FDG-PET/MRT mit 

81 % dar. Somit konnte gezeigt werden, dass die kombinierte 18F-FDG-PET/MRT-Diagnostik 

den Einzelverfahren hinsichtlich der Sensitivität überlegen ist. Folglich profitieren die 

Patienten von beiden Untersuchungsmodalitäten; die 18F-FDG-PET ermöglicht ein gezieltes 

Staging mit Metastasensuche und die MRT dient vor allem der Darstellung der lokalen 

Tumorausdehnung, was zur Biopsie- oder Operationsplanung unerlässlich ist.  

Dagegen war in der untersuchungsbezogenen Auswertung die MRT mit einer Sensitivität 

von 100 % in der Primärdiagnostik der kombinierten 18F-FDG-PET/MRT (100 %) und der 18F-

FDG-PET (98 %) gleichwertig beziehungsweise überlegen. Als Konsequenz dieser 

Ergebnisse sollte bei Malignitätsverdacht zunächst eine MRT-Untersuchung zur Darstellung 

der lokalen Tumorausdehnung sowie zur Biopsie- und Operationsplanung erfolgen. Sofern 

eine bestätigte maligne Erkrankung mit Verdacht auf eine multilokuläre Ausdehnung vorliegt, 

sollte die Diagnostik im nächsten Schritt um eine 18F-FDG-PET zum exakten Staging und zur 

Suche von auf den MRT-Aufnahmen nicht sichtbaren Metastasen ergänzt werden. Im 

Follow-up jedoch stellte sich die 18F-FDG-PET als spezifischste Untersuchungsmodalität mit 

einer Spezifität von 81 % im Gegensatz zur MRT mit 30 % und der 18F-FDG-PET/MRT mit 

71 % dar. Somit ist im Follow-up die 18F-FDG-PET die alleinig ausreichende Bildgebungs-

methode. Jedoch empfiehlt sich im Falle eines 18F-FDG-PET positiven Herdes mit 
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vermutetem Rezidiv oder Metastasen im Anschluss eine MRT-Untersuchung zur besseren 

morphologischen Übersicht und weiteren Therapieplanung. Allerdings sind einige 

Organsysteme wie zum Beispiel die Nieren und ableitenden Harnwege mit der 18F-FDG-PET 

nur unzureichend beurteilbar. 18F-FDG wird renal ausgeschieden und sammelt sich in der 

Harnblase an. Tumoren in diesen Arealen sind häufig nicht von der umgebenden Radio-

traceransammlung zu unterscheiden. Bei vermuteter maligner Erkrankung in diesen 

Regionen ist deshalb das morphologische Korrelat der MRT sowohl in der Primärdiagnostik 

als auch im Follow-up unverzichtbar. 

 

1.9 18F-FDG-PET verglichen mit 123I-MIBG-Szintigraphie/SPECT  

123I-MIBG scintigraphy/SPECT versus 18F-FDG PET in paediatric neuroblastoma.  
 
Melzer HI, Coppenrath E, Schmid I, Albert MH, von Schweinitz D, Tudball C, Bartenstein P, 
Pfluger T. Eur J Nucl Med Mol Imaging. 2011 Sep;38(9):1648-58. 
 

Die zweite dieser Arbeit zugrunde liegende Studie beschäftigt sich mit der Diagnostik 

peripherer neuroblastischer Tumoren. Neuroblastome sind embryonale Tumoren und 

entstehen entweder aus dem Nebennierenmark oder Ganglien des Grenzstrangs [16]. Zur 

Gruppe der peripheren neuroblastischen Tumoren gehören je nach Anteil der Stroma-

kompontente die Neuroblastome, Ganglioneuroblastome und die Ganglioneurome. Je nach 

Differenzierungsgrad werden gut oder wenig differenzierte, reife oder unreife, sowie 

undifferenzierte Tumorzellen in der Histologie unterschieden [16]. Aufgrund ihres 

neuroektodermalen Ursprungs ist die Mehrzahl der Neuroblastome fähig, Katecholamine zu 

produzieren und zu verstoffwechseln [17]. Dies nutzt die nuklearmedizinische Bildgebung mit 

der 123I-MIBG-Szintigraphie/SPECT, die heutzutage die bevorzugte Bildgebungsmodalität bei 

Verdacht auf ein Neuroblastom ist [18]. 123I-MIBG wird als Noradrenalinanalogon in die Zelle 

aufgenommen und gespeichert [9]. Aufgrund noch ungeklärter Ursache verlieren jedoch ca. 

8 % der Neuroblastome die Fähigkeit 123I-MIBG anzureichern, wodurch falsch negative 123I-

MIBG-Szintigraphie/SPECT Befunde entstehen [19]. Die 123I-MIBG-Szintigraphie/SPECT-

Untersuchung ist für diese Untergruppe der Neuroblastompatienten in der Primärdiagnostik 

und im Follow-up daher nicht geeignet.  

In dieser Studie wurde untersucht, ob bei Neuroblastompatienten mit negativer oder nicht 

aussagekräftiger 123I-MIBG-Szintigraphie/SPECT die nachgeschaltete Untersuchung mit 18F-

FDG-PET einen diagnostischen Zusatznutzen bringt und deshalb generell empfohlen werden 

sollte. Dazu wurden 19 pädiatrische Patienten mit peripheren neuroblastischen Tumoren in 

die Studie eingeschlossen. Diese Patienten erhielten zunächst eine 123I-MIBG-

Szintigraphie/SPECT sowie im Abstand von wenigen Tagen eine 18F-FDG-PET-Diagnostik. 

Insgesamt wurden 23 Untersuchungspaare ausgewertet und 58 Läsionen evaluiert. Es 
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zeigte sich, dass neuroblastische Tumoren, die kein oder nur sehr wenig 123I-MIBG 

anreichern, in der 18F-FDG-PET einen deutlichen Hypermetabolismus aufweisen können. Die 

Sensitivität der 123I-MIBG-Szintigraphie/SPECT im Vergleich zur 18F-FDG-PET für dieses 

Patientenkollektiv betrug 50 % zu 78 %, die Spezifität 75 % zu 92 %. In dieser Patienten-

gruppe stellte sich die 18F-FDG-PET damit sensitiver und spezifischer dar als die 123I-MIBG-

Szintigraphie/SPECT. Maligne Neuroblastomzellen, die die Fähigkeit zur 123I-MIBG 

Aufnahme verloren haben, sind demzufolge mithilfe der 18F-FDG-PET darstellbar und die 

nachgeschaltete 18F-FDG-PET ist mit einem eindeutigen diagnostischen Zusatznutzen 

verbunden. Als Konsequenz dieser Ergebnisse wird folgender Diagnostikalgorithmus 

vorgeschlagen: Pädiatrische Patienten mit Verdacht auf Neuroblastom erhalten zunächst 

eine 123I-MIBG-Szintigraphie/SPECT und eine MRT-Untersuchung. Zeigt sich eine 

Diskrepanz zwischen funktioneller und morphologischer Bildgebung oder den klinischen 

Befunden, wird als nächstes ergänzend eine 18F-FDG-PET durchgeführt. Hat sich ein neuro-

blastischer Tumor als nicht 123I-MIBG-affin erwiesen, so bietet sich die 18F-FDG-PET als 

alleinige Bildgebungsmethode zur Vitalitätskontrolle im Follow-up an. Auf eine 123I-MIBG-

Szintigraphie/SPECT kann in diesem Fall verzichtet werden.  

 



 - 11 -

2. Zusammenfassung  

Thema dieser Dissertation ist die multimodale Bildgebung in der pädiatrischen Onkologie. In 

beiden zugrunde liegenden publizierten Studien wird die Aussagekraft der 18F-

Fluordesoxyglukose Positronenemissionstomographie (18F-FDG-PET) kombiniert mit einer 

weiteren Bildgebungsmodalität bei pädiatrisch-onkologischen Patienten evaluiert. Die 18F-

FDG-PET zählt zu den funktionellen Bildgebungsverfahren. Mithilfe radioaktiv markierter 

Glukose wird der Hypermetabolismus maligne entarteter Zellen dargestellt. Dies führt zur 

Visualisierung des Primärtumors, hilft bei der Metastasensuche und ermöglicht ein exaktes 

Tumorstaging.  

In der ersten Studie wurde in einem hinsichtlich der Tumorentitäten nicht vorselektierten, 

onkologisch-pädiatrischen Patientenkollektiv die kombinierte 18F-FDG-PET/MRT-Diagnostik 

mit den jeweiligen Einzelmodalitäten in der Erkennung maligner Läsionen verglichen. In der 

Primärdiagnostik stellte sich die kombinierte 18F-FDG-PET/MRT-Bildgebung der alleinigen 
18F-FDG-PET- oder MRT-Diagnostik als überlegen heraus. Im Follow-up erwies sich die 18F-

FDG-PET aufgrund ihrer hohen Spezifität als geeignete alleinige Bildgebungsmodalität; eine 

weitere Untersuchung mittels MRT bringt im Falle einer negativen 18F-FDG-PET keinen 

zusätzlichen diagnostischen Nutzen. Als Ausnahme gelten Tumoren des Urogenitaltraktes, 

die mittels 18F-FDG-PET nicht sicher von unspezifischen Radiotraceransammlungen in den 

harnableitenden Wegen abgegrenzt werden können. 

In der zweiten Studie wurde der Nutzen einer nachgeschalteten 18F-FDG-PET-Bildgebung 

bei pädiatrischen Patienten mit peripheren neuroblastischen Tumoren untersucht, die in der 

Standarddiagnostik mittels 123I-Metaiodbenzylguanidin (123I-MIBG)-Szintigraphie/Single 

Photon Emission Computer Tomography (SPECT) keine aussagekräftigen Befunde auf-

zeigten. Dies ist in der täglichen Routinediagnostik bei ca. 8 % der Patienten mit 

Neuroblastom beziehungsweise peripheren neuroblastischen Tumoren der Fall. In dieser 

Studie konnte gezeigt werden, dass der unspezifische Radiotracer 18F-FDG sich sehr gut in 

Neuroblastomen anreichert und somit hilfreich für die Tumor- und Metastasendarstellung und 

das Staging ist. Folglich sollte bei Verdacht auf ein Neuroblastom im Fall einer Diskrepanz 

zwischen 123I-MIBG-Szintigraphie/SPECT, MRT und den klinischen Befunden eine 18F-FDG-

PET ergänzend erfolgen. Zur Verlaufskontrolle primär 123I-MIBG-negativer neuroblastischer 

Tumoren stellte sich die 18F-FDG-PET allein als suffiziente Bildgebungsmethode heraus.  

Zusammenfassend erwies die 18F-FDG-PET im Rahmen kombinierter Bildgebungs-

modalitäten sowohl in der Primärdiagnostik als auch im Follow-up maligner Erkrankungen in 

der Pädiatrie als mitentscheidende funktionelle Untersuchungsmodalität. 
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3. Summary 

The evaluation of multimodal imaging in paediatric oncology is the main theme of this thesis. 

Both published studies evaluate 18F-fluorodesoxyglucose positron emission tomography (18F-

FDG-PET) combined with an additional imaging modality in paediatric oncological patients. 
18F-FDG-PET is a functional imaging modality, using radioactive glucose to demonstrate 

hypermetabolism in malignant transformed cells. Therefore, it enables the visualisation of the 

primary tumour, helps with the search for metastases, and leads to exact tumour staging.  

The first study focuses on combined 18F-FDG-PET/MR imaging in comparison to 18F-FDG-

PET or MR imaging alone for the detection of malignant lesions in a non-selected patient 

collective. In patients suffering from a variety of paediatric tumours, combined 18F-FDG-

PET/MR imaging proofed its utility in the primary diagnostic work-up. In the follow-up, 18F-

FDG-PET is recommended as single imaging modality due to its high specificity unless the 

malignancy is located in 18F-FDG-PET inaccessible regions such as the urinary tract, where 

unspecific radiotracer accumulation hides malignant transformed tissue.   

The focus of the second study is on 18F-FDG-PET as a diagnostic tool in children with 

peripheral neuroblastic tumours. Neuroblastomas are commonly visualized on the 123I-

metaiodobenzylguanidine (123I-MIBG)-scintigraphy/single photon emission computer 

tomography (SPECT). However, a subgroup of neuroblastomas fails to accumulate the 

specific radiotracer 123I-MIBG. In this study, the non-specific radiotracer 18F-FDG 

demonstrated a high affinity to neuroblastoma and helped detecting malignant disease. In 

case of a discrepancy between 123I-MIBG scintigraphy/SPECT, MRI and clinical findings in 

patients with neuroblastic tumours, 18F-FDG is recommended in the primary diagnostic work-

up. In the follow-up of primary 123I-MIBG negative neuroblastic tumours, 18F-FDG-PET is 

sufficient as single imaging modality.  

To sum up, in both studies, 18F-FDG-PET combined with an additional imaging modality 

demonstrated to be indispensable in paediatric oncology for both the primary diagnostic 

work-up and the follow-up.    
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Abstract
Purpose The present study compares the diagnostic val-
ue of 18F-fluorodeoxyglucose (FDG) positron emission
tomography (PET) and MRI to combined/registered 18F-FDG
PET/MRI for staging and restaging in paediatric oncology.
Methods Over 8 years and 2 months, 270 18F-FDG PET and
270MRI examinations (mean interval 5 days) were performed
in 132 patients with proven (n0117) or suspected (n015)
malignant disease: solid tumours (n064), systemicmalignancy
(n053) and benign disease (n015). A total of 259 suspected
tumour lesions were analysed retrospectively during primary
diagnosis and 554 lesions during follow-up. Image analysis
was performed separately on each modality, followed by anal-
ysis of combined and registered 18F-FDG PET/MRI imaging.
Results A total of 813 lesions were evaluated and confirmed
by histopathology (n0158) and/or imaging follow-up (n0
655) after 6 months. In the separate analysis of 18F-FDG
PET and MRI, sensitivity was 86 %/94 % and specificity
85 %/38 %. Combined/registered 18F-FDG PET/MRI led to
a sensitivity of 97 %/97 % and specificity of 81 %/82 %.

False-positive results (18F-FDG PET n069, MRI n0281,
combined 18F-FDG PET/MRI n085, registered 18F-FDG
PET/MRI n080) were due to physiological uptake or post-
therapeutic changes. False-negative results (18F-FDG PET
n050, MRI n020, combined 18F-FDG PET/MRI n011,
registered 18F-FDG PET/MRI n011) were based on low
uptake or minimal morphological changes. Examination-
based evaluation during follow-up showed a sensitivity/
specificity of 91 %/81 % for 18F-FDG PET, 93 %/30 %
for MRI and 96 %/72 % for combined 18F-FDG PET/MRI.
Conclusion For the detection of single tumour lesions, reg-
istered 18F-FDG PET/MRI proved to be the methodology of
choice for adequate tumour staging. In the examination-based
evaluation, MRI alone performed better than 18F-FDG PET
and combined/registered imaging during primary diagnosis.
At follow-up, however, the examination-based evaluation
demonstrated a superiority of 18F-FDG PET alone.

Keywords Paediatric oncology . 18F-FDG PET .MRI .

Combined/registered image analysis

Introduction

From 1975 to 2006 the combined mortality rate of all
malignant childhood cancers declined by more than 50 %
[1]. Early detection of disease or relapse, staging of the
malignancy and therapy monitoring are important for patient
management and prognosis [2]. In 1998, combined morpho-
logical and functional imaging was implemented in the
positron emission tomography (PET)/CT scanner [3]. PET
with 18F-fluorodeoxyglucose (FDG) proved its utility in
adult oncology, but its inability to provide anatomical infor-
mation displays a significant weakness [4, 5]. Combination
of the high sensitivity and specificity of 18F-FDG PET with
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the high anatomical resolution of CT improves diagnostic
accuracy [6, 7]. Currently, PET/CT is a major diagnostic
tool in oncology [2, 8]. However, an important disadvantage
of a CT scan is the exposure to ionizing radiation [9]. In
paediatric patients, radiation exposure is of particular con-
cern due to an increased susceptibility of children towards
secondary malignancies induced by radiation compared to
adults [10]. The main radiation dose of PET/CT is often due
to the CT protocol with a range of 1.3–18.6 mSv for a CT
scan [9, 11]. MRI offers an alternative morphological imag-
ing approach avoiding additional radiation exposure [12,
13]. Since it provides excellent soft tissue contrast and since
fast imaging sequences including whole-body imaging ca-
pabilities are available, ideas of integrated PET/MRI have
emerged [14, 15]. The first simultaneous PET/MR images
have been acquired of the human brain and body [16, 17].
The aim of this retrospective study was to determine the
diagnostic value of combined and registered image analysis
of 18F-FDG PET and MRI for staging and restaging in
paediatric oncology.

Materials and methods

Patients

Over a time period of 8 years and 2 months, 270 MRI and 270
18F-FDG PET examinations were performed in 132 paediatric
patients (77 male and 55 female, mean age 11 years and
1 month, age range 9 months–18 years and 3 months) and were
analysed retrospectively. All patients had suspected (n015) or
pathologically proven (n0117) malignant disease (Table 1).
For all patients, written informed consent was available. Of
the patients, 33 were examined for primary diagnosis, 56 for
follow-up and 43 for both settings. A total of 76 combined
MRI and 18F-FDG PET studies were performed for initial
staging and 194 during follow-up. Follow-up scans were
performed in a free interval of at least 4 weeks after tumour-
specific therapy or—for benign disorders—after an appropri-
ate watch and wait period. Inclusion criteria were suspected
malignant disease and a maximum time frame of 30 days
(mean time interval 5 days, range 0–30 days) between the
MRI and the 18F-FDG PET examinations. Patients were ex-
cluded if there had been any tumour-specific therapy between
18F-FDG PETand the MRI scan. For each lesion, histopathol-
ogy and/or imaging follow-up data after a minimal time period
of 6 months had to be available.

Acquisition protocol

18F-FDG PET scans were performed with an Allegro PET
scanner (Philips Medical Systems, Hamburg, Germany). All
patients fasted for at least 4 h and blood glucose level was

examined for deviation from normal level prior to 18F-FDG
PET imaging. One hour before scanning, 18F-FDG with a
dosage according to the body weight and the guidelines of
the European Association of Nuclear Medicine (EANM)
[18] (range 30–200 MBq, mean 125 MBq) was injected
intravenously, and the patient was instructed to rest until
the beginning of the examination. 18F-FDG PET was per-
formed using three to ten bed positions (depending on the
size of patients) with a 2-min acquisition time per bed
position. Images were attenuation corrected using transmis-
sion scans obtained with a 137Cs source. Data acquisition
was done in three-dimensional mode using a row action
maximum likelihood algorithm (3-D RAMLA). The exam-
ination field of view (FOV) was of the whole body. 18F-
FDG PET images were reviewed on a HERMES worksta-
tion (Nuclear Diagnostics, Hägersten, Sweden).

MRI was performed with a 1.5 T scanner (Magnetom
Vision, Siemens, Erlangen, Germany). The FOV included
the region suspected of tumour affection. Lesions were
included for evaluation only if they were within the FOV
of 18F-FDG PET as well as MRI. Head or body array coils
were used according to the size of the patient. Axial, coronal
or sagittal spin-echo or fast spin-echo T1- and T2-weighted
images and short τ inversion recovery (STIR) images were
obtained. The slice thickness ranged from 3 to 6 mm. In
addition, gadopentetate dimeglumine (Magnevist, Schering,
Berlin, Germany) was injected intravenously (0.2 ml/kg of
body weight) to assess contrast enhancement of suspected
lesions on T1-weighted sequences. Sedation was necessary
for 18F-FDG PET in nearly all children aged 2 years or
younger (n09), for MRI in nearly all children aged 4 years
or younger (n017) or if patients were uncooperative (n013).

Image analysis

Lesion-based image analysis was performed by reviewing
the images of both modalities. A lesion was included if it
was considered positive for tumour involvement either on
18F-FDG PET or MRI. Individual data analyses of both
modalities were performed by two independent observers
with long-term experience (>5 years) with paediatric 18F-
FDG PET as well as paediatric MRI diagnostics. Analysis
was obtained with knowledge of clinical data and laboratory
results, but without knowledge of the findings of the other
imaging modality. To determine whether regression or dis-
appearance of lesions was evident on follow-up examina-
tions, observers needed to know the findings from the
previous examination of the same modality. A total of 813
suspicious lesions were evaluated. There were 67 patients
who had several examination pairs (43 patients primary
diagnosis and follow-up—24 several follow-up examina-
tions); hence, their lesions were reanalysed in at least 1 (or
up to 5) follow-up examination. On 18F-FDG PET, a lesion
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was judged positive if it showed a non-physiological glu-
cose metabolism with a maximum standardized uptake val-
ue (SUVmax) higher than that of the patient’s normal right
liver lobe. The SUV is used in PET imaging for (semi-
)quantitative analysis of 18F-FDG uptake. The SUV is cal-
culated over a region of interest at time points t as the ratio
of tissue radioactivity concentration (MBq/kg) at time t and
injected dose (MBq) at the time of injection divided by body

weight (kg) [19]. For determination of SUVmax, maximum
tissue radioactivity concentration of the region of interest
was taken. On MRI scans, morphologically suspicious
lesions with increased contrast enhancement and/or oedem-
atous changes were judged positive. For observers to reach a
decision on lesions with discrepant results on both modali-
ties, a diagnostic confidence score of three levels was estab-
lished for each modality: 10both observers were uncertain

Table 1 Confirmed diagnoses in 813 lesions suspected of tumour affection at primary diagnosis and follow-up

Final diagnosis Patients
(n0132)

Lesions
(n0813)

Size (cm) PETpos PD
(n0217)

PD SUVmax PETpos F/U
(n0162)

F/U SUVmax

Systemic malignant tumours

Acute lymphatic leukaemia 2 6 2.1 1 11.6 5 5.1

Burkitt’s lymphoma 4 9 1.6 1 12.2 4 3.5

Hodgkin’s lymphoma 33 366 2.6 96 5.4 50 3.6

Non-Hodgkin’s lymphoma 13 88 1.7 38 7.2 3 5.2

Langerhans cell histiocytosis 1 3 1.8 0 – 1 0.7

Solid malignant tumours

Adrenal gland carcinoma 2 6 1.9 1 4.1 3 3.6

Carcinoma of the salivary gland 1 2 0.9 0 – 0 –

Carcinoma of the small intestine 1 8 0.9 0 – 3 1.5

Germ cell tumour/yolk sac tumour 4 18 2.8 1 2.8 9 2.9

Hepatoblastoma/hepatic cell carcinoma 3 6 2.6 0 – 6 2.5

Malignant schwannoma 1 2 1.6 0 – 2 1.2

Neuroblastoma 6 60 3.9 12 2.6 11 2.6

Neuroendocrine neoplasm 1 6 1.2 3 4.6 0 –

Pancreatic carcinoma 1 8 1.4 0 – 0 –

Primitive neuroectodermal tumour 4 27 2.3 0 – 21 2.5

Pneumoblastoma 1 1 2.0 0 – 1 2.7

Renal cell carcinoma/Wilms’ tumour 2 8 3.4 2 4.2 2 2.2

Rhabdomyosarcoma 15 77 3.4 22 3.3 16 1.9

Sarcoma of soft tissue and bone 21 81 3.2 22 4.5 22 2.7

Thyroid carcinoma 1 1 1.1 0 – 1 2.6

Benign tumours

Adrenal gland adenoma 1 1 1.8 0 – 0 –

Ganglioneuroma 3 4 2.5 1 1.6 0 –

Inflammatory pseudotumour 1 2 1.3 2 4.2 0 –

Lipoblastoma 1 1 1.7 0 – 0 –

Myxoid tumour 1 1 1.4 0 – 0 –

Neurofibromatosis 1 4 1.7 4 3.1 0 –

Inflammatory and lymphoproliferative disease

Autoinflammatory syndrome 1 1 1.2 1 6.8 0 –

Chronic granulomatosis 1 2 1.6 2 4.3 0 –

Common variable immune deficiency 1 3 1.2 3 4.0 0 –

Inflammatory lymph nodes 1 4 1.5 2 2.4 0 –

Post-transplant lymphoproliferative disorder 1 5 1.2 1 3.9 2 4.4

Ossifying myositis 1 1 1.4 1 2.9 0 –

Sarcoidosis 1 1 1.3 1 2.3 0 –

PD primary diagnosis, F/U follow-up
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about a positive or negative finding, 20one observer was
uncertain and one observer was certain and 30both observ-
ers were certain. The diagnostic confidence score was
assigned to each lesion on 18F-FDG PET and on the MRI
scan separately. Combined assessment of both modalities
was based on the diagnostic confidence score of separate
modalities and performed by the same two observers. In
case of discrepancies, the finding of the modality with the
higher diagnostic confidence level was used. If both modal-
ities were discrepant and revealed the same score value, the
lesion was judged positive. Combined image analysis was
done by reviewing both data sets (18F-FDG PET and MRI)
side by side on one workstation, however, without any kind
of image synchronization. For analysis of registered image
data sets, a computer-assisted interactive matching method
was used, where 18F-FDG PET and MRI data sets were
superimposed manually on a HERMES workstation (Nucle-
ar Diagnostics, Hägersten, Sweden) in all three orientations.
As a result, spatially synchronized images could be
reviewed side by side and/or in an image fusion mode on
one workstation. In combined and registered image analysis,
a lesion was judged positive if the area of increased 18F-
FDG uptake was concordant with a morphologically detect-
able lesion on MRI and did not correspond to physiological
structures. In the examination-related assessment, the whole
examination was judged positive with respect to vital tu-
mour tissue if at least one of the assessed lesions was
positive.

Standard of reference

The standard of reference was established by histopatholog-
ical findings of the lesions (n0158) or imaging follow-up
controls (n0655) after a minimal time period of 6 months
(18F-FDG PET and MRI: n0283, MRI: n0224, 18F-FDG
PET: n0148). A lesion was classified as either “false-posi-
tive” or “true-negative” if it disappeared without any
tumour-specific therapy during the observation period or if
it turned out to be an obvious physiological structure or
uptake. A non-physiological structure was classified as ei-
ther “true-positive” or “false-negative” if it persisted or
progressed during follow-up or showed an objective regres-
sion under specific therapy.

Statistical analysis

The diagnostic techniques were compared in terms of sen-
sitivity and specificity based on true-positive, true-negative,
false-positive and false-negative rates. The positive likeli-
hood ratio was calculated for each modality. Sensitivity and
specificity of two diagnostic techniques were compared
using McNemar’s chi-square test. The p values were calcu-
lated two-sided, and p<0.05 was indicative of significance.

The analysis was performed using the Statistical Package for
the Social Sciences (SPSS, version 15.0, Chicago, IL,
USA).

Results

Table 1 summarizes the distribution of the different tumour
entities, the morphological lesion diameter and the SUVmax.
Size and SUVmax of every single lesion were determined—
in each row a mean diameter (in cm) and a mean SUVmax

are given for the respective group of disease. Findings of
primary diagnosis and follow-up are presented in Tables 2
and 3.

Lesion-based analysis

Of 813 lesions, 360 (44.3 %) proved to be vital tumour
tissue. In the analysis of all lesions, 18F-FDG PET, MRI,
combined 18F-FDG PET/MRI and registered 18F-FDG PET/
MRI resulted in a sensitivity of 86 %/94 %/97 %/97 % and
in a specificity of 85 %/38 %/81 %/82 %. As there were
only a few true-negative findings at primary diagnosis,
specificity was not calculated in this context. At follow-up,
the sensitivity of 18F-FDG PET alone was significantly
lower than the sensitivity of MRI (p<0.001) or combined/
registered 18F-FDG PET/MRI (p<0.001 for each pair).
Follow-up specificity of MRI was significantly lower com-
pared to the other diagnostic techniques (p<0.001 for each
pair). In the assessment of all 813 lesions, 18F-FDG PET
classified 310 of 360 lesions as positive and 384 of 453 as
negative for vital tumour involvement. The mean diagnostic
confidence score was 2.5. Sources of false-positive and
false-negative findings are shown in Table 4. In the assess-
ment of all 813 lesions, MRI classified 340 of 360 lesions as
positive and 172 of 453 as negative for vital tumour in-
volvement. The mean diagnostic confidence score was 1.9.
In the assessment of all 813 lesions, combined 18F-FDG
PET/MRI analysis classified 349 of 360 lesions as positive
and 368 of 453 as negative and registered 18F-FDG PET/
MRI analysis 349 of 360 lesions as positive and 373 of 453
as negative for vital tumour involvement. 18F-FDG PET and
MRI resulted in discrepant findings in 326 lesions. 18F-FDG
PET was incorrect in 72 and MRI in 254 lesions.

Examination-based analysis

For a total of 270 scans, vital tumour was proven in 140
(51.8 %) examinations. Again, due to the low number of
true-negative findings, specificity was not calculated for
primary diagnosis. In disease follow-up, specificity of 18F-
FDG PET was significantly higher than specificity of MRI
(p<0.001), combined 18F-FDG PET/MRI (p00.008) or
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registered 18F-FDG PET/MRI (p00.019). Specificity of
MRI was significantly lower than specificity of combined
or registered 18F-FDG PET/MRI (p<0.001 for each pair).
The differences in sensitivity were not significant for all
pairs in primary diagnosis and follow-up. Due to the higher
diagnostic confidence score, all 11 false-positive scans from
18F-FDG PET remained on combined imaging in primary
diagnosis, although MRI could identify two suspicious
lesions as physiological uptake. There was no difference
between combined and registered 18F-FDG PET/MRI anal-
ysis in primary diagnosis. In one patient with rhabdomyo-
sarcoma, combined and registered 18F-FDG PET/MRI led to
the detection of the primary tumour, which was not identi-
fiable on 18F-FDG PET alone, and therefore influenced
tumour staging. At follow-up, only combined and registered
18F-FDG PET/MRI allowed correct tumour staging in eight
patients. Combined and registered imaging could correct
four false-negative 18F-FDG PET and four false-negative
MRI examinations. Those four false-negative findings on
18F-FDG PET were due to lesions next to highly metabolic
physiological structures and due to movement artefacts. In
the examination-based analysis, there was no case where the
only relevant tumour lesion was outside the FOV of MRI
and only detectable with 18F-FDG PET.

Discussion

As 18F-FDG PET and MRI represent the most powerful
functional and morphological imaging modalities in paedi-
atric oncology nowadays, it is important to evaluate if a
combined 18F-FDG PET/MRI approach adds significant
information to the use of separate imaging modalities during
primary diagnosis and follow-up.

Lesion-based analysis

In our study, a special strength of 18F-FDG PET was its
sensitivity of more than 90 % during primary diagnosis and
a specificity of more than 85 % during follow-up. These
results confirm that 18F-FDG PET is an important imaging
modality in paediatric oncology. It influences therapeutic
decisions and produces results comparable to adult oncolo-
gy [20]. As reported in the literature, a source of false-
positive findings is represented by physiological 18F-FDG
uptake in ureters, bowel, lymphatic tissue, thymus, brown
fat and muscle [4] (Table 4, Fig. 1). In paediatric lymphoma
patients, differentiation between a mediastinal mass and
physiological thymic or increased post-therapeutic uptake
is required [21]. In our setting, SUVmax was not an

Table 2 Imaging findings of
lesion-based analysis in primary
diagnosis (n0259) and follow-
up (n0554)

PD primary diagnosis, F/U
follow-up examination

Findings 18F-FDG PET MRI 18F-FDG PET/MRI
image combination

18F-FDG PET/MRI
image registration

PD F/U PD F/U PD F/U PD F/U

True-positive 197 113 201 139 215 134 215 134

True-negative 24 360 8 164 19 349 19 354

False-positive 20 49 36 245 25 60 25 55

False-negative 18 32 14 6 0 11 0 11

Sensitivity (%) 92 78 93 96 100 92 100 92

Specificity (%) – 88 – 40 – 85 – 87

Pos. likelihood ratio – 6.5 – 1.6 – 6.1 – 7.1

Table 3 Imaging findings of
examination-based analysis in
primary diagnosis (n076) and
follow-up (n0194)

PD primary diagnosis, F/U
follow-up examination

Findings 18F-FDG PET MRI 18F-FDG PET/MRI
image combination

18F-FDG PET/MRI
image registration

PD F/U PD F/U PD F/U PD F/U

True-positive 63 69 64 71 64 73 64 73

True-negative 1 96 3 35 1 84 1 85

False-positive 11 22 9 83 11 34 11 33

False-negative 1 7 0 5 0 3 0 3

Sensitivity (%) 98 91 100 93 100 96 100 96

Specificity (%) - 81 - 30 - 71 - 72

Pos. likelihood ratio - 4.8 - 1.3 - 3.3 - 3.4
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appropriate parameter to discriminate between benign and
malignant lesions. There was a large overlap especially
between malignant and inflammatory lesions, which com-
plicates lesion identification on 18F-FDG PET (Table 1). A
ganglioneuroma lesion showed increased 18F-FDG uptake
although ganglioneuroma is classified as benign [22]. Be-
nign bone tumours can reach an SUVmax up to 3.5 [23], and
malignant bone/bone marrow lesions normally range from
1.2 to 7.5 [24]. In inflammatory or irradiated tissue, an
SUVmax>2.5 can frequently be found [25, 26] (Fig. 2).
Granulocytes and mononuclear cells use glucose as an en-
ergy source during their metabolic burst [27]. Due to the
immunocompromising effect of cytotoxic chemotherapy,
infectious disease commonly occurs during or after chemo-
therapy [28]. In our study, the majority of false-positive
findings were caused by post-therapeutic or inflammatory
changes (Table 4). In false-negative findings, the tumour
lesions could not be differentiated from surrounding healthy
tissue with physiological uptake due to either limited size of
the lesion or lesion site in structures with high physiological
18F-FDG accumulation (Fig. 3). Furthermore, malignant
tumours do not always accumulate 18F-FDG: a low meta-
bolic rate leads to weak uptake [4]. In addition, 18F-FDG
PET missed 2 of 11 intrapulmonary lesions. A known
weakness of 18F-FDG PET is its restricted spatial resolution
of 4–10 mm in commercial scanners [4]: small nodular
metastases are commonly missed and with 18F-FDG PET/
CT the sensitivity for the detection of malignant lesions of
paediatric primary bone tumours is lower compared to con-
ventional imaging [29]. However, the SUVmax evaluation of
pulmonary lesions is important for the prediction of re-
sponse to chemotherapy [29].

At primary diagnosis, MRI demonstrated a sensitivity of
more than 90 %, which was comparable to the sensitivity of
18F-FDG PET. At follow-up, MRI presented a high sensi-
tivity but at the same time a significantly lower specificity

when compared to 18F-FDG PET, combined or registered
18F-FDG PET/MRI (p<0.001 for each pair). MRI studies
provide a diversity of diagnostic information regarding the

Table 4 Lesion-based analysis: source of false-positive and false-negative findings

18F-FDG PET MRI Comb. 18F-FDG PET/MRI Reg. 18F-FDG PET/MRI

Findings Source PD F/U PD F/U PD F/U PD F/U

False-positive Total 20 49 36 245 25 60 25 55

Benign tumour 2 – 2 6 2 4 2 4

Inflammatory tissue 12 16 32 31 19 18 19 19

Physiological uptake/physiological structure 6 9 2 2 4 5 4 5

Post-therapeutic changes/bone marrow oedema – 24 – 206 – 33 – 27

False-negative Total 18 32 14 6 0 11 0 11

Low metabolic rate limited size 7 13 9 4 – 8 – 8

Physiological uptake urinary tract 11 19 – – – 3 – 3

Reactive soft tissue changes – – 5 2 – – – –

PD primary diagnosis, F/U follow-up examination

Fig. 1 A 5.5-year-old girl with rhabdomyosarcoma—false-positive on
18F-FDG PET. At primary diagnosis, 18F-FDG PET (a, b) shows an
increased uptake in the submandibular region; a lymph node metastasis
of the rhabdomyosarcoma was suspected. On the MRI (c T2-weighted
sequence, d image fusion), no morphological changes are seen in this
location. Therefore, the uptake corresponds to physiological muscle
activity. During follow-up, the lesions disappeared on 18F-FDG PET.
The retromandibular primary tumour with its growth through the skull
base is seen on 18F-FDG PET (a)
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exact anatomical tumour site, tumour composition, soft tis-
sue analysis and tissue characterization [30]. Therefore,
MRI is important in the primary diagnostic workup to
correctly assess the exact tumour and biopsy site for ade-
quate therapy planning [31]. MRI showed difficulties in
identifying viable bone/bone marrow tumour lesions due
to limited morphological size and/or soft tissue changes at
the time of scanning. False-positive findings were mostly
caused by nonspecific inflammatory lymph node enlarge-
ment or infectious tissue changes (Table 4) [12, 32]. At
follow-up, a major weakness of MRI was its low specifici-
ty—post-therapeutic changes like persisting bone marrow
oedema (Fig. 4), necrotic tissue, contrast enhancement in
successfully treated lesions and the fact that bone marrow
appearance in children varies with age favoured the misin-
terpretation [12, 32]. Among lymphoma patients, Baba et al.
demonstrated difficulties in distinguishing between vital
tumour tissue and residual mass composed of necrosis or
fibrosis on morphological imaging [33]. In our study, with
many lymphoma patients, lymph node enlargement without
active tumour was regularly seen on a post-therapeutic MRI
scan. Few false-negative findings occurred when tumour
involvement was missed because of small morphological

size or recurrent disease in a post-surgical setting. Due to
its low specificity, MRI is not sufficient as a single imaging
modality in the follow-up.

At primary diagnosis, combined and registered image
analysis of 18F-FDG PET/MRI did not miss any tumour
lesion and increased sensitivity to 100 %. 18F-FDG PET/
MRI especially proved its utility in the correct characteriza-
tion of bone/bone marrow lesions. For the initial detection
of skeletal metastases, Daldrup-Link et al. compared whole-
body MRI to 18F-FDG PET and bone scintigraphy in chil-
dren and young adults: 18F-FDG PETwas the most sensitive
imaging method [34]. Using combined and registered image
analysis of 18F-FDG PET/MRI no bone/bone marrow lesion
was missed. In cases where physiological structures could
not be distinguished from tumour tissue on 18F-FDG PET,
the high spatial resolution and soft tissue contrast of the
MRI helped to outline the anatomical structure. In the
follow-up, the sensitivity of combined and registered 18F-
FDG PET/MRI imaging was significantly lower than that of
MRI alone in the lesion-based analysis (p<0.001 for each
pair). This was due to our diagnostic confidence score,
where lesions without any evidence of tumour involvement
were assigned to a score value of 3. Therefore, in some of

Fig. 3 A 1.5-year-old boy with
rhabdomyosarcoma of the
urinary bladder—false-negative
on 18F-FDG PET. The lesion in
the bladder is not visible on 18F-
FDG PET (a) due to radiotracer
accumulation in the urinary
bladder. Fat-suppressed T1-
weighted MRI after contrast
application (b) shows an intra-
vesical tumour. On the regis-
tered image (c) the
disconcordant location of the
bladder is due to different fill-
ing at the time of examination

Fig. 2 A 4-year-old-boy with abdominal pain—false-positive on 18F-
FDG PET/MRI. During primary diagnosis, 18F-FDG PET (a) shows
increased uptake in wo intrahepatic lesions. MRI (b fat-suppressed T1-
weighted sequence after contrast application) and registered images (c)

demonstrate a contrast-enhancing necrotic mass. A malignant tumour
of the liver could not be excluded. Biopsy showed an intrahepatic
abscess
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our cases with a discrepancy between 18F-FDG PET and
MRI, the false-negative 18F-FDG PET finding overruled the
true-positive MRI finding. With combined and registered
imaging, the majority of false-positive findings in bone/
bone marrow and in lymph nodes on MRI could be identi-
fied as post-therapeutic changes in successfully treated tu-
mour lesions. With image registration, five false-positive
findings could be adjusted in contrast to combined image
analysis alone (Fig. 5). Positive likelihood ratios of 18F-
FDG PET, combined and registered 18F-FDG PET/MRI
further indicate a moderate improvement in post test prob-
ability in follow-up if positive. In our study, 18F-FDG PET
alone, combined and registered 18F-FDG PET/MRI had
higher specificities than MRI alone.

Examination-based analysis

In the examination-based analysis, at primary diagnosis, 11
examinations rated as false-positive remained even when
using combined and registered imaging. The patients mainly
suffered from inflammatory disease (Fig. 2). In these cases,
tumour involvement has to be ruled out by histopathological
analysis. Therefore, additional 18F-FDG PET was not help-
ful for tumour detection and differentiation during primary
diagnosis in our patient cohort. At the follow-up, 18F-FDG
PET resulted in seven false-negative scans due to a lesion
location next to or in the urinary bladder, movement arte-
facts and a lung metastasis. In the literature, difficulties in
evaluating the pelvis on 18F-FDG PET due to the radiotracer

Fig. 4 A 9.5-year-old boy with
Hodgkin’s lymphoma—false-
positive on MRI. At follow-up,
MRI (a T2-weighted STIR, b
T1-weighted sequence after
contrast application) shows re-
sidual bone marrow oedema in
the right iliac bone after che-
motherapy (arrow). 18F-FDG
PET (c) and follow-up exami-
nations confirmed disease
remission

Fig. 5 A 10-year-old boy with
metastasized Ewing sarcoma—
false-positive on 18F-FDG PET
and MRI and true-negative on
registered 18F-FDG PET/MRI.
At follow-up, MRI (a, c T2-
weighted STIR) shows, among
other things, increased signal in
the 10th thoracic and 4th lum-
bar vertebral bodies. On the
18F-FDG PET (b, d) multiple
foci of increased 18F-FDG up-
take are found in the spine.
Both modalities alone led to the
suspicion of multiple vital me-
tastases in the spine. However,
on combined imaging after im-
age registration, the areas of
bone marrow oedema on MRI
correspond to photopenic
defects on 18F-FDG PET,
thereby proving inactivity of
the respective lesions. This
true-negative finding was con-
firmed at follow-up after
6 months, when the patient was
in disease remission
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accumulation in the urinary bladder have been reported by
Mody et al. [35]. In case of obvious movement artefacts,
morphological image correlation is recommended. Franzius
and Juergens reported that CT is superior for the detection of
pulmonary metastases and the mediastinal and hilar lymph
node status [36]. If relevant for tumour staging, an addition-
al CT of the thorax especially in soft tissue/bone sarcoma is
recommended. Nowadays, the majority of 18F-FDG PET
examinations are performed as 18F-FDG PET/CT; hence,
an additional separate CT of the thorax will not be necessary
during follow-up in future. However, in selected cases, a
diagnostic CT of the thorax with breath-holding in inspira-
tion has to be added to the low-dose attenuation correction
CT during the same imaging session. In addition, a hybrid
18F-FDG PET/CT could identify anatomical structures of
18F-FDG PET-positive lesions and therefore reduce the
number of false-positive findings. However, MRI offers a
superior soft tissue contrast compared to CT [14]. MRI led
to five false-negative scans mainly in bone/bone marrow
lesions. 18F-FDG PET demonstrated all of these active bone
marrow lesions. Combined and registered 18F-FDG PET/
MRI helped to adjust false-negative scans on 18F-FDG PET
especially in 18F-FDG PET inaccessible regions. In the
follow-up, the specificity of an imaging modality is partic-
ularly important in order to avoid unnecessary biopsies or
surgery. MRI alone resulted in an overly high number of
false-positive scans in our patients. In the majority of per-
sistent morphological tissue changes the scan was true-
negative on 18F-FDG PET. 18F-FDG PET resulted in a
specificity of 81 %, which was significantly higher than
the specificity of 71 % of combined imaging (p00.008),
72 % of registered imaging (p00.019) and 30 % of MRI
alone (p<0.001). In most cases, the false-positive 18F-FDG
PET scan occurred in patients with uptake in inflammatory
tissue, physiological structures and post-therapeutic
changes. In those cases, however, clinical signs and labora-
tory findings typical for inflammatory disease are often
helpful for performing a short-term follow-up examination
instead of an immediate biopsy. In a patient with Ewing
sarcoma, both imaging modalities and combined imaging
were false-positive. Only image registration could prove
disease remission: The morphological changes could be
identified as post-treatment residual oedematous tissue and
the increased 18F-FDG PET uptake as reactivated bone
marrow after chemotherapy (Fig. 5).

Limitations

In our retrospective study the heterogeneous patient cohort
with a huge variety of tumour entities made it difficult to
compare single tumour entities within our study group and
to other published studies. Most studies focus on a single
malignancy. Lesion-based analyses are of limited use for

treatment decisions: clinical classification systems such as
the Ann Arbor system for lymphoma [37] and the TNM
classification for solid tumours proposed by the American
Joint Committee on Cancer [38] are widely used and deter-
mine therapeutic decisions. Those classification systems do
not require detection of every single lesion, even in cases of
a solitary lesion. However, lesion-based analyses are impor-
tant to evaluate the diagnostic accuracy of imaging modal-
ities. Considering the clinical impact of our study, we
included an examination-related evaluation. Histopatholog-
ical findings were not available for every lesion; however, at
primary diagnosis every malignancy was proven histopath-
ologically. In patients suffering from diffuse metastatic dis-
ease, a histological verification of every single lesion is
impossible [39]. Within our setting, we assumed a lesion
to be negative if it did not show any changes in behaviour,
size or 18F-FDG uptake without tumour-specific therapy
over a period of 6 months. Non-detectable lesions on 18F-
FDG PET or MRI cannot be distinguished from nonexistent
lesions in the case of a newly detected tumour lesion during
follow-up. Therefore, the sensitivity will be overestimated,
as seen in our study, with a value of 100 % in combined and
registered 18F-FDG PET/MRI analysis at primary diagnosis.
The specificity of an imaging modality includes information
on the detection of true-negative findings. At the time of
primary diagnosis the number of true-negative findings was
very low because most patients were suffering from vital
tumour disease. In order to avoid distorting the specificity,
we did not calculate it for the primary diagnosis in this
context. Due to the rating of the modality with the higher
diagnostic confidence score, there might be an unfair disad-
vantage for combined and registered 18F-FDG PET/MRI
compared to the modalities alone. Several patients were
examined in various follow-up examinations. The fact that
some lesions were evaluated more than once could have led
to a distortion of the results. In our study setting, all exami-
nations were carried out on separate imaging devices. In the
literature, similar image comparison was complicated by
factors like breathing artefacts, variable filling of the bladder
or slightly different body position [40]. Those factors could
have influenced our image analysis and could probably be
overcome with simultaneous image acquisition in a com-
bined PET/MRI scanner.

Conclusion

For detection of single tumour lesions, registered 18F-FDG
PET/MRI proved to be the methodology of choice for
adequate tumour staging in our patients. The future will
show whether combined 18F-FDG PET/MR scanners with
simultaneous image acquisition have the potential to further
reduce movement artefacts, misinterpretations due to phys-
iological changes and the number of sedations. In the
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examination-based evaluation, which is most important for
patient management, MRI alone performed better than 18F-
FDG PET, combined and registered imaging during primary
diagnosis. Furthermore, MRI is needed for exact interven-
tion planning. In the follow-up, however, examination-
based evaluation demonstrated a superiority of 18F-FDG
PET alone, especially when taking into account the few
limitations of 18F-FDG PET in case of suspected lesions
located in the region of the urinary bladder and in case of
movement artefacts.

Due to our findings, MRI is recommended as the method
of choice during primary diagnosis and should be comple-
mented by 18F-FDG PET in case of multifocal disease. On
the other hand, during follow-up, 18F-FDG PET is most
important. Additional low-dose or ultra-low-dose CT, which
is used for attenuation correction in modern PET/CT scan-
ners, has to prove whether further improvements of 18F-
FDG PET results can be achieved during follow-up. As
therapy response monitoring becomes more and more im-
portant in paediatric oncology, there might be an increasing
part for combined 18F-FDG PET/MRI during primary diag-
nosis, as the initial tumoural 18F-FDG uptake is indispens-
able in addition to the morphological information from
MRI.

Conflicts of interest None.
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Abstract
Purpose To analyse different uptake patterns in 123I-MIBG
scintigraphy/SPECT imaging and 18F-FDG PET in paedi-
atric neuroblastoma patients.
Methods We compared 23 123I-MIBG scintigraphy scans
and 23 18F-FDG PET scans (mean interval 10 days) in 19
patients with a suspected neuroblastic tumour (16 neuro-
blastoma, 1 ganglioneuroblastoma, 1 ganglioneuroma and 1
opsomyoclonus syndrome). SPECT images of the abdomen
or other tumour-affected regions were available in all
patients. Indications for 18F-FDG PET were a 123I-MIBG-
negative tumour, a discrepancy in 123I-MIBG uptake
compared to the morphological imaging or imaging results
inconsistent with clinical findings. A lesion was found by

123I-MIBG scintigraphy and/or 18F-FDG PET and/or
morphological imaging.
Results A total of 58 suspicious lesions (mean lesion
diameter 3.8 cm) were evaluated and 18 were confirmed
by histology and 40 by clinical follow-up. The sensitivities
of 123I-MIBG scintigraphy and 18F-FDG PET were 50%
and 78% and the specificities were 75% and 92%,
respectively. False-positive results (three 123I-MIBG scin-
tigraphy, one 18F-FDG PET) were due to physiological
uptake or posttherapy changes. False-negative results (23
123I-MIBG scintigraphy, 10 18F-FDG PET) were due to low
uptake and small lesion size. Combined 123I-MIBG
scintigraphy/18F-FDG PET imaging showed the highest
sensitivity of 85%. In 34 lesions the 123I-MIBG scintigra-
phy and morphological imaging findings were discrepant.
18F-FDG PET correctly identified 32 of the discrepant
findings. Two bone/bone marrow metastases were missed
by 18F-FDG PET.
Conclusion 123I-MIBG scintigraphy and 18F-FDG PET
showed noticeable differences in their uptake patterns. 18F-
FDG PET was more sensitive and specific for the detection
of neuroblastoma lesions. Our findings suggest that a 18F-
FDG PET scan may be useful in the event of discrepant or
inconclusive findings on 123I-MIBG scintigraphy/SPECT
and morphological imaging.

Keywords 123I-MIBG scintigraphy . 18F-FDG PET.

Neuroblastoma . Paediatrics

Introduction

Neuroblastoma accounts for about 8% of paediatric
malignancies and is responsible for approximately 15% of
cancer deaths in children [1, 2]. At diagnosis, roughly 50%
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of the patients have distant metastases [3]. The 5-year
event-free survival rate strongly depends upon age, molec-
ular markers and the stage of disease [4]. It ranges from
99% in stage I to about 45% in stage IV disease [5, 6].
Therefore staging is crucial for appropriate treatment [7].

Due to its neuroendocrine origin, the malignancy takes
up catecholamines and related substances. The catechol-
amine analogue 123I-meta-iodobenzylguanidine (123I-
MIBG) is widely used to image tumours of the sympa-
thetic nervous system and 123I-MIBG scintigraphy is well
established for staging and evaluation of therapeutic
response [8, 9]. However, the assessment of MIBG scans
presents some difficulties: false-negative MIBG scans
were reported as early as 1990 [10], and false-negative
123I-MIBG scintigraphy is still a problem, and may lead to
incorrect down-staging [7]. In about 8% of neuroblastoma
patients MIBG scintigraphy gives a false-negative result at
diagnosis, even though there is clear evidence of disease
[11]. In particular, MIBG scintigraphy gives a false result
concerning bone marrow involvement [12]. The coexis-
tence of hot and cold 123I-MIBG lesions still remains
unclear.

Positron emission tomographywith 18F-fluorodeoxyglucose
(18F-FDG PET) depicts the metabolic state of cancer cells and
provides information on the malignant potential of the
disease [13]. 18F-FDG PET findings correlate well with
the disease status [14]. Nevertheless, 18F-FDG PET has
rarely been used in the context of neuroblastic tumours.
Neuroblastomas concentrate 18F-FDG before cytoreduc-
tive therapy, whereas intra- and posttherapeutic uptake is
variable [13]. Sharp et al. found 18F-FDG PET to be useful
in low stage neuroblastoma in patients with tumours that
weakly accumulate 123I-MIBG and at major decision
points during therapy [15].

The aim of this retrospective study was to investigate the
usefulness of 18F-FDG PET in a preselected population of
patients with neuroblastoma and with inconclusive or
inconsistent results on 123I-MIBG scintigraphy/SPECT
imaging and morphological imaging.

Materials and methods

Search algorithm

From July 2004 to July 2010, 245 123I-MIBG scintigraphy
scans were performed in 108 patients with proven or
suspected neuroblastic tumours, and 42 18F-FDG PET scans
were performed in the same group during the same time
period. 18F-FDG PET was performed if there was a 123I-
MIBG-negative tumour, a discrepancy in the 123I-MIBG
uptake compared to morphological imaging, or results
inconsistent with the clinical findings. The inclusion

criterion for the study was a maximum period of 30 days
(mean 10 days, range 0–30 days) between 123I-MIBG
scintigraphy, 18F-FDG PET and morphological imaging. If
there was no coincident morphological study available, the
patient was excluded. Patients with a proven diagnosis
other than neuroblastoma, ganglioneuroblastoma, or gan-
glioneuroma were excluded. Examinations were performed
either before or at least 6 weeks after chemotherapy.
Patients were excluded if there had been any tumour-
specific therapy between 123I-MIBG scintigraphy and 18F-
FDG PET. Histopathology and/or clinical follow-up data
for each lesion had to be available. Thus, 23 instances in 19
patients met the inclusion criteria.

Patients

Simultaneously 23 123I-MIBG scintigraphy scans and 23
18F-FDG PET scans were performed in 19 paediatric
patients (ten male and nine female; mean age 5 years
11 months; age range 8 months to 19 years 1 month) and
analysed retrospectively. Six combined 123I-MIBG scin-
tigraphy scans and 18F-FDG PET scans were performed
for initial staging and 17 during follow-up. Of the 19
patients, 16 had histologically proven neuroblastoma, 1
ganglioneuroblastoma, 1 ganglioneuroma and 1 opsomyo-
clonus syndrome. According to the International Neuro-
blastoma Staging System [16], patients were classified as
stage I (3 patients), stage IIA (1), stage III (3) and stage IV
(11). The patient with opsomyoclonus syndrome was not
categorized. Concerning bone and bone marrow involve-
ment, 123I-MIBG scintigraphy scans were ranked accord-
ing to the SIOPEN classification system [17]. The
skeleton was divided into 12 anatomical sections and a
score from 0 to 6 was assigned to each section: score 0 (17
scans), 1 (2 scans), 2 (1 scan), 4 (1 scan), 5 (1 scan) and
19 (1 scan). In molecular testing, three neuroblastomas
showed MYCN oncogene amplification and 1p deletion,
14 tumours were MYCN-negative and in one patient the
MYCN amplification status was unknown.

Acquisition protocol

123I-MIBG scans were performed under thyroid blockade
with perchlorate over 3 days, starting 30–60 min before
administration of 123I-MIBG at a dose of 10 mg/kg per day.
The administered dose of 123I-MIBG was adapted to body
weight according to the dosage card of the EANM [18]. A
dual-head gamma camera (Prism 2000 XP; Philips Medical
Systems, Best, The Netherlands) was used with a medium-
energy collimator. Imaging was performed 24 h after slow
intravenous injection of 123I-labelled MIBG (spot images of
the whole body, matrix 256×256 pixels, dorsal/ventral
view, maximum acquisition time per image 10 min; above
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120 cm body size whole-body scan with a table feed of
6 cm/min). In all patients, SPECT images of the abdomen
or other tumour-affected regions were available (3° steps,
2×180°; 15 s per step; matrix 128×128 pixels).

18F-FDG PET scans were acquired with a Philips
Allegro PET scanner. All patients fasted for at least 4 h
and blood glucose levels were determined to monitor for
deviation from normal levels prior to 18F-FDG PET
imaging. Furosemide and butylscopolamine were adminis-
trated to minimize physiological activity in the bowel and
bladder. 18F-FDG was injected intravenously 1 h before
scanning at a dose according to body weight and the
guidelines of the EANM [19], and the patient was
instructed to rest until the beginning of the examination.
PET was performed using three to ten bed positions
(depending on the size of the patient) with a 2-min
acquisition time per bed position. Images were
attenuation-corrected and were acquired in 3-D mode using
a row action maximum likelihood algorithm (3D RAMLA).
The examination field-of-view was the whole body. To
avoid motion artefacts, sedation was necessary in 6 of the
23 examinations.

Image analysis

Lesion-based image analysis was performed. A lesion was
included in the analysis if it was considered positive for
neuroblastoma involvement on 123I-MIBG scintigraphy,
18F-FDG PET or morphological imaging. Individual data
analyses of both nuclear medicine modalities were per-
formed by three independent observers, two for the 123I-
MIBG imaging and one for the 18F-FDG PET. Images were
analysed with knowledge of the clinical data, but without
knowledge of the findings of the other imaging modality.
To determine whether regression or disappearance of
lesions was evident on follow-up examinations, observers
needed to know the findings from the previous examination
of the same modality. Combined assessment of both
modalities was performed by the same three observers after
the separate analyses.

123I-MIBG scans and 18F-FDG PET images were
reviewed on a HERMES workstation (Nuclear Diagnos-
tics, Haegersten, Sweden). After combined 123I-MIBG
scintigraphy/18F-FDG PET evaluation, the same three
observers compared the findings with morphological
imaging (18 MRI scans, 5 CT scans).

A total of 58 lesions were evaluated. Two patients had
several examination pairs; hence 12 lesions were reanalysed
in at least one (up to three) follow-up examinations. A
lesion was classified a “primary tumour” if it occurred in
the adrenal gland, the sympathetic trunk or local recurrence
of the original tumour was found. All other lesions were
considered “metastases”. In both modalities, each lesion

was judged either positive or negative with regard to
tumour involvement. On the 123I-MIBG scintigraphy scans,
a lesion was judged positive if nonphysiological focal
uptake was seen. For semiquantitative analysis, the maxi-
mum count rate of each lesion was noted, and divided by
the maximum count rate of the patient’s right liver lobe.
This count rate ratio (CRR) was used to establish a
diagnostic confidence score. On the 18F-FDG PET scans,
a lesion was judged positive if it showed nonphysiological
glucose metabolism. For the diagnostic confidence score,
the maximum standardized uptake value (SUVmax) of each
lesion was determined.

To reach a decision on lesions with discrepant results in
the combined image analysis, a diagnostic confidence score
with three levels was established for each modality:

1. 123I-MIBG scintigraphy (CRR <1), 18F-FDG PET
(SUVmax <1)

2. 123I-MIBG scintigraphy (CRR 1–1.5), 18F-FDG PET
(SUVmax 1–2)

3. 123I-MIBG scintigraphy (CRR >1.5), 18F-FDG PET
(SUVmax >2)

This diagnostic confidence score was assigned to each
suspicious lesion on 123I-MIBG scintigraphy and 18F-FDG
PET scans separately. If there was a discrepancy between
the two modalities, the finding of the modality with the
higher diagnostic confidence level was used. If both
modalities were discrepant and revealed the same score,
the lesion was judged positive.

Standard of reference

The standard of reference was the histopathological
findings of the lesion (18 lesions) or by follow-up
evaluation (40 lesions). In particular, for patients with
stage IV neuroblastoma, histopathological verification of
all metastases is impossible. Therefore, follow-up exami-
nations after a minimum period of 6 months were used
for verification of the lesions: MRI (20 lesions) or CT (3
lesions) and/or 123I-MIBG scintigraphy (17 lesions) and/
or 18F-FDG PET (12 lesions). A lesion was classified as
either “false-positive” or “true-negative” if it disappeared
without tumour therapy during the observation period. A
lesion was classified as either “true-positive” or “false-
negative” if it persisted or progressed during follow-up, or
showed objective regression with specific therapy.

Results

A total of 58 lesions were evaluated, of which 46 (79%)
proved to be vital tumour tissue. The anatomical lesion sites
are shown in Table 1, and the morphological diameters
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(mean lesion diameter 3.8 cm) and the lesion distribution
according to the stage of disease are presented in Table 2.
The lesion-based results are summarized in Table 3.

123I-MIBG scintigraphy

123I-MIBG scintigraphy showed false-positive findings in
three patients due to physiological activity in a normal adrenal
gland (two lesions; Fig. 1) and physiological bowel uptake
(one lesion). They were found in patients with stage III
disease (lesion diameter in the central abdomen >5 cm) and
stage IV disease (lesion diameter in the adrenal gland <1 cm)

and in the patient with opsomyoclonus syndrome (lesion
diameter in the adrenal gland 1–2 cm).

False-negative results (23 lesions; mean lesion diam-
eter 1.7 cm) occurred in bone/bone marrow metastases in
the vertebral column (five lesions), pelvis (four lesions),
femur (seven lesions), paravertebral region (three
lesions), and adrenal region (four lesions; Fig. 2). The
23 false-negative findings are shown in relation to disease
stage in Table 4.

18F-FDG PET

On 18F-FDG PET, there was one false-positive finding in
a patient with stage IV disease. This was seen in the
adrenal region and was due to posttherapy uptake (lesion
diameter <1 cm). With regard to false-negative findings
(ten lesions; mean lesion diameter 1.6 cm), the following
neuroblastoma lesions were missed: adrenal gland tumour
(two lesions), bone/bone marrow metastases in the tibia/
femur (three lesions), vertebral column (one lesion),
retrocrural region (one lesion), presacral region (one
lesion), paravertebral region (one lesion), and thymus
(one lesion). These lesions could not be differentiated
from physiological uptake and occurred in one patient
with stage IIA disease (thymus, lesion diameter 2–5 cm),
in one patient with stage III disease (presacral region, 2–5 cm)
and in patients with stage IV disease (two lesions, adrenal
gland, 2–5 cm; two lesions, tibia/femur, <1 cm; one lesion,
tibia/femur, 1–2 cm; one lesion, vertebral column, 1–2 cm;
one lesion, retrocrural region, 1–2 cm; one lesion, para-
vertebral region, 2–5 cm).

MRI/CT

All 58 lesions were correlated morphologically with
either MRI (52 lesions) or CT (6 lesions) scans. The
nine following false-positive findings were obtained in
patients with stage IV disease: region of the primary
tumour in the adrenal gland (two lesions, lesion diameter
<1 cm and 2–5 cm) due to posttherapy changes; bone/
bone marrow involvement in the femur and pelvis (three
lesions, lesion diameter <1 cm; one lesion, 1–2 cm; one
lesion, 2–5 cm) and the vertebral column (two lesions,
lesion diameter <1 cm and 2–5 cm) due to oedematous
nonviable residual tumour. Three false-negative findings
occurred in patients with stage IV disease. These were
located in the femur (one) and the vertebral column (two)
because of small tumour size (Fig. 3).

Comparison of 123I-MIBG scintigraphy and 18F-FDG PET

In 33 lesions, discrepancies between 123I-MIBG scintigra-
phy and 18F-FDG PET were found. In 29 of these 33

Table 1 Anatomical tumour site (n=58)

Anatomical site Number
of lesions

Primary tumour Metastasis

Adrenal gland 15 15 –

Paravertebral region 6 6 –

Bone

Scapula 2 – 2

Vertebral column 11 – 11

Pelvis 6 – 6

Femur/tibia 13 – 13

Lymph nodes

Mediastinum 2 – 2

Retrocrural region 1 – 1

Presacral region 1 – 1

Other

Central abdomen 1 – 1

Total 58 21 37

Table 2 Lesion distribution according to stage, lesion diameter on
MRI/CT, and false-negative findings

Stage Diameter
(cm)

Number
of lesions

False-negative

123I-MIBG
scintigraphy

18F-FDG PET

I (n=3) 1–2 1

2–5 1 2 0

>5 1

IIA (n=1) 2–5 1 0 1

III (n=4) 2–5 1
1 1>5 3

IV (n=49) <1 14

1–2 13
20 82–5 15

>5 7

Opsomyoclonus
syndrome
(n=1)

1–2 1 0 0
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lesions, vital tumour lesions could only be detected by one
modality (8 by 123I-MIBG scintigraphy, 21 by 18F-FDG
PET; Fig. 4). Four of these 33 lesions were classified as
true-negative by only one modality (one by 123I-MIBG
scintigraphy, three by 18F-FDG PET).

Combining the two modalities, one false-positive and
seven false-negative results remained. Physiological adrenal
123I-MIBG uptake was misinterpreted as residual vital

tumour tissue after surgery in one patient. Seven false-
negative findings were either due to a misinterpretation
of viable tumour lesions as postoperative changes in the
adrenal gland region (two lesions, lesion diameter 2–
5 cm and >5 cm) or due to small size and/or low
metabolic activity in bone marrow metastases in the
vertebral column (one lesion, lesion diameter <1 cm), in
the femur (two lesions, lesion diameter <1 cm). Two

Table 3 Imaging findings in primary diagnosis and follow-up (n=58)

Finding 123I-MIBG scintigraphy 18F-FDG PET 123I-MIBG scintigraphy
and 18F-FDG PET

CT or MRI

Primary
diagnosis

Follow-up
examination

Total Primary
diagnosis

Follow-up
examination

Total Primary
diagnosis

Follow-up
examination

Total Primary
diagnosis

Follow-up
examination

Total

True-positive 11 12 23 20 16 36 19 20 39 18 25 43

True-negative 0 9 9 1 10 11 1 10 11 1 2 3

False-positive 1 2 3 0 1 1 0 1 1 0 9 9

False-negative 10 13 23 1 9 10 2 5 7 3 0 3

Sensitivity (%) 52 48 50 95 64 78 90 80 85 86 100 93

Specificity (%) – 82 75 100 91 92 100 91 92 100 18 25

Fig. 1 A 1½-year old girl with
neuroblastoma at the follow-up
evaluation 3 months after the
end of chemotherapy with a
false-positive finding on
123I-MIBG scintigraphy.
123I-MIBG scintigraphy images
show a suspect lesion in the
region of the left adrenal gland
(a–c). The corresponding
18F-FDG PET images are
true-negative with no increased
uptake (d–f), indicating that the
changes seen on 123I-MIBG
scintigraphy are physiological

1652 Eur J Nucl Med Mol Imaging (2011) 38:1648–1658



metastases were misinterpreted as physiological uptake:
a retrocrural lymph node metastasis (lesion diameter 1–
2 cm) and a metastasis in the thymus (lesion diameter
2–5 cm).

Comparison of 123I-MIBG scintigraphy and morphological
imaging

The comparison of 123I-MIBG scintigraphy and morpho-
logical imaging modalities resulted in 34 discrepant find-
ings (Table 5).

In the primary diagnosis, 12 discrepant results were
found. In all 12 lesions, 18F-FDG PET was the modality
that provided the correct evaluation (Fig. 5). In the follow-
up, 123I-MIBG scintigraphy and morphology showed 22
discrepant findings. In 20 lesions 18F-FDG PET was the
modality that provided the correct evaluation of the lesion.

Two bone/bone marrow lesions in the proximal femur
were incorrectly classified by both functional imaging
modalities; there was no discrepancy between 123I-MIBG
scintigraphy and 18F-FDG PET. These lesions were seen on
the MRI images (lesion diameter <1 cm).

Discussion

The question as to whether the detection of neuroblastoma
lesions that are weakly or not affine to 123I-MIBG can be
improved by simultaneous 18F-FDG PET was investigated
by this retrospective study. The utility of the simultaneous
use of 18F-FDG PET and 123I-MIBG scintigraphy in

Fig. 2 A 7-year-old girl with
recurrent neuroblastoma and
false-negative finding on 123I-
MIBG scintigraphy. The 123I-
MIBG scintigraphy images do
not show recurrent disease (a–c)
but the 18F-FDG PET images
show a lesion in the left adrenal
region (d–f). The lesion was
histopathologically confirmed

Table 4 23 false-negative findings on 123I-MIBG scintigraphy in
relation to disease stage

Stage Lesion No. of lesions

Anatomical site Diameter (cm)

I (n=2) Adrenal gland 1–2 1

>5 1

III (n=1) Paravertebral region >5 1

IV (n=20) Vertebral column <1 2

1–2 2

2–5 1

Pelvis 1–2 1

2–5 2

>5 1

Femur <1 4

1–2 3

Paravertebral region 2–5 2

Adrenal gland 1–2 1

2–5 1
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children with neuroblastoma had already been assessed
by Sharp et al. [15]. 18F-FDG PET was found to be
superior to 123I-MIBG scintigraphy in children with stage I
or II neuroblastoma, but inferior in patients with stage IV
neuroblastoma, based on the International Neuroblastoma
Staging System. 18F-FDG PET provided additional infor-
mation in the chest, abdomen and pelvis, and depicted
neuroblastomas which did not accumulate or only weakly
accumulated 123I-MIBG. However, in patients with stage
IV disease, 123I-MIBG scintigraphy was superior to 18F-

FDG PET especially during initial chemotherapy [15]. In
our study, false-positive and false-negative 18F-FDG PET
and 123I-MIBG scintigraphy findings were distributed
almost equally throughout all tumour stages. This may
be due to the fact that patients were included in our study
only if 123I-MIBG scintigraphy and 18F-FDG PET exami-
nations had been performed before or at least 6 weeks after
cytotoxic therapy. Shulkin et al. suggested that 18F-FDG
PET was inferior to 123I-MIBG scintigraphy when used
shortly after or during systematic therapy due to a lower

Fig. 3 A 4-year-old boy at primary diagnosis of a left-sided
neuroblastoma with a false-negative finding on MRI. On the MRI
image (T2-weighted STIR sequence) suspect bone/bone marrow
lesions were found in vertebral bodies L3 and L5. L1 (arrow) does

not show pathological changes (a), whereas on the 18F-FDG PET
images (b, c) and on the 123I-MIBG scintigraphy image (d) a
suspicious lesion is apparent in L1. In addition, the primary tumour
mass is demonstrated by all three imaging modalities

Fig. 4 A 2-year-old girl with a left-sided persistent neuroblastoma
after surgery and chemotherapy and a false-negative finding on 18F-
FDG PET. In the 18F-FDG PET images no suspicious lesion is seen in
the region of the left adrenal gland (a–c). On the MRI image it is not

possible to differentiate between posttherapy changes and viable
tumour (d); however, on the 123I-MIBG scintigraphy image patholog-
ical uptake is seen (e–g) indicating persistent tumour. The lesion was
confirmed histopathologically
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tumour-to-nontumour uptake ratio and physiological 18F-
FDG accumulation [13].

Lesion-based analysis

123I-MIBG scintigraphy showed an overall sensitivity of
50% and a specificity of 75% for the detection of
neuroblastoma involvement. This is markedly lower than
in a recently published multicentre trial and meta-analysis
that confirmed a generally high sensitivity and specificity,
mostly over 80% [20, 21]. These low values in our

retrospective study are probably due to the fact that the
patient population was preselected with a high number of
negative or inconclusive findings on 123I-MIBG scintigraphy
scans. In this patient population, 18F-FDG PET exhibited a
notably higher sensitivity and specificity (78% and 92%,
respectively) than 123I-MIBG scintigraphy.

Most false-positive 123I-MIBG scintigraphy findings are
caused by nonspecific radioactive accumulation in the urinary
tract and in gastrointestinal structures [22]. This was also the
case in our study with false-positive uptake in the adrenal
region and in the gastrointestinal tract. 18F-FDG PET helped
to correctly categorize these wrongly classified lesions.

False-negative 123I-MIBG scintigraphy findings were
mostly seen in bone and bone marrow, confirming the
well-known fact that the sensitivity of 123I-MIBG scans is
limited in the detection of single bone and bone marrow
metastases [22]. The SIOPEN classification system for
bone or bone marrow involvement [17] enables the
evaluation and standardized comparison of metastatic
disease detected on 123I-MIBG scans. Due to our patient
selection with negative or inconclusive 123I-MIBG scans,
only low score values were expected in the SIOPEN
classification. This does not reflect a particular weakness
of the classification system. However, in our setting with
many bone/bone marrow lesions that were false-negative
on123I-MIBG scintigraphy, the SIOPEN classification led to
incorrect downstaging. Further false-negative lesions on
123I-MIBG scintigraphy were located in the adrenal gland
and in the sympathetic trunk. Possible reasons for these
false-negative findings have been discussed in the literature,
and include the absence of a mechanism by which 123I-
MIBG is transported into the tumour cells, small tumour
size and the coexistence of various neoplastic clones with
different uptake behaviour [11, 23].

18F-FDG PET has been reported to be equal or superior
to 123I-MIBG scintigraphy for identifying neuroblastoma
lesions in soft tissue and extracranial skeletal structures [24].
In our series, 18F-FDG PET correctly identified almost all
false-negative lesions as vital tumour tissue and proved its
utility especially in lesions negative on 123I-MIBG scintig-
raphy. Due to surrounding oedema, the two remaining false-
negative lesions were shown on morphological imaging.

In false-negative findings, there was no significant
difference between 123I-MIBG scintigraphy and 18F-FDG
PET with regard to the morphological mean lesion
diameter: 1.7 cm on 123I-MIBG scintigraphy, 1.6 cm on
18F-FDG PET. However, when looking at all 58 lesions,
the mean morphological lesion diameter was 3.8 cm.

Primary diagnosis

At primary diagnosis, 18F-FDG PET missed one lesion in
the bone marrow of the vertebral column. It correctly

Table 5 Discrepant findings: 123I-MIBG scintigraphy versus CT/MRI

Finding 123I-MIBG scintigraphy CT or MRI 18F-FDG PET

True-positive 2 22 22

True-negative 8 2 10

False-positive 2 8 0

False-negative 22 2 2

Fig. 5 A 3½-year-old boy at primary diagnosis of a stage IV
neuroblastoma and discrepant findings on 123I-MIBG scan and
morphological imaging. 123I-MIBG scintigraphy (a SPECT, b regis-
tered SPECT/MRI) only shows a slightly increased tracer uptake at the
lower and lateral border of the tumour (arrows). However, 18F-FDG
PET (c maximum intensity projection) and MRI (d) images
demonstrate extended bulky disease and 18F-FDG hypermetabolism
in the entire primary tumour
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identified all lesions that were false-negative on 123I-MIBG
scintigraphy. As initial staging requires highly sensitive
imaging modalities, 18F-FDG PET proved to be a valuable
additional staging examination in our study. Nevertheless,
in a nonselected population of neuroblastoma patients, the
sensitivity of 123I-MIBG scintigraphy in primary diagnosis
is around 90% [25]. Therefore, 123I-MIBG scintigraphy
remains a crucial initial staging modality. In primary
diagnosis, morphological imaging is needed to evaluate
operability and to detect bone marrow metastases with a
high sensitivity [26]. In our study, however, three bone/
bone marrow lesions were missed by MRI. All of them
were correctly detected by 18F-FDG PET; 123I-MIBG
scintigraphy showed only two of these bone/bone marrow
lesions and missed one.

Follow-up

During follow-up, our lesion-based analysis showed a
sensitivity of 48% vs. 64% and a specificity of 82% vs.
91% for 123I-MIBG scintigraphy and 18F-FDG PET.
Difficulties assessing neuroblastoma lesions at follow-up
have been discussed. Lesions positive on 123I-MIBG
scintigraphy at primary diagnosis that were negative on
the 123I-MIBG scan at relapse, although recurrence was
proved, have been reported [27–29]. Possible reasons are
primary negative lesions on 123I-MIBG scintigraphy or
tumour cells which survive chemotherapy and afterwards
fail to accumulate 123I-MIBG [30]. In disagreement with
our results, Taggart et al. found 123I-MIBG scintigraphy to
be more sensitive than 18F-FDG PET for individual
anatomical lesion detection in relapsed neuroblastoma
[31]. This difference may be due to our preselected patient
population with many neuroblastoma lesions that were
weakly affine to 123I-MIBG. Consequently, in our series,
18F-FDG PET was superior to 123I-MIBG scintigraphy in
the follow-up. Morphological imaging in the follow-up
evaluation lacks specificity because vital residual disease is
difficult to differentiate from necrotic tissue [32]. With a
specificity of 18%, MRI/CT was not appropriate as a single
imaging modality in the follow-up in our study.

123I-MIBG scintigraphy and 18F-FDG PET imaging
combined

Combined imaging with 123I-MIBG scintigraphy and 18F-
FDG PET was more sensitive than 18F-FDG PET alone.
However, on combining the two functional imaging
modalities, eight incorrectly classified lesions remained.
Postoperative changes and limited lesion size and/or low
metabolic activity in the modality with the higher diagnos-
tic confidence level were the main reasons for the false
lesion classification. Of these eight lesions, six showed

discrepant findings on 123I-MIBG scintigraphy and 18F-
FDG PET. In discrepant 123I-MIBG scintigraphy/18F-FDG
PET findings, comparison with morphological imaging
should be performed in order to increase diagnostic safety
in verifying subtle findings on the functional imaging [32].
In our study, only two falsely classified lesions in bone/
bone marrow remained with concordant false-negative
results on 123I-MIBG scintigraphy and 18F-FDG PET.

123I-MIBG scintigraphy and MRI/CT imaging combined

In a clinical setting, morphological imaging is added to
functional imaging to assess a patient’s disease. Of 34
discrepant findings on 123I-MIBG scintigraphy and mor-
phological imaging, all but two were correctly identified by
18F-FDG PET. They were false-negative bone/bone marrow
lesions of small size in the femur that were shown on MRI
due to tumoral oedema. A possible reason for negative 18F-
FDG PET findings is a nonmetabolic state during exami-
nation. In follow-up examinations both lesions showed a
clear progression on 18F-FDG PET.

On the other hand, in two lesions both 123I-MIBG
scintigraphy and morphological imaging produced equiva-
lent false findings: false-negative in a bone/bone marrow
lesion in the vertebral column and false-positive in the
adrenal gland. The diagnostic confidence scores on 123I-
MIBG scintigraphy and morphological imaging for those
two lesions were low, indicating equivocal findings. In both
cases 18F-FDG PET indicated the true finding.

On the basis of our results, 18F-FDG PET is recom-
mended as an additional imaging modality in the event of
discrepancies or equivocal findings on 123I-MIBG scintig-
raphy and morphological imaging.

Limitations

In our retrospective study, the number of included
patients was small due to the maximum period of
30 days between imaging modalities and due to the
pre-selection criterion of negative or inconclusive 123I-
MIBG scintigraphy. The majority of our patients suffered
from stage IV disease. A multicentre approach investi-
gating the possible use of 18F-FDG PET in neuroblasto-
mas negative on 123I-MIBG scintigraphy could obtain a
higher number of patients with a more homogeneous
distribution of disease.

Moreover, the preselected patient group in our study
does not represent the general population of patients with
neuroblastoma. The sensitivity and specificity of 123I-
MIBG scintigraphy obtained in our study is not valid for
the general population of patients with neuroblastoma. This
makes it difficult to compare our results with studies
already published in the literature.
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The specificity of an imaging modality includes infor-
mation on the detection of true-negative findings. The
number of true-negative findings was very low because all
but one of our patients suffered from vital tumour disease at
the time of the primary diagnosis. In order to avoid
distorting the specificity, we did not calculate it for the
123I-MIBG scintigraphy in this context.

Conclusion

In this study with a preselected patient population, 123I-
MIBG scintigraphy and 18F-FDG PET showed noticeable
differences in their uptake patterns. 18F-FDG PET was
more sensitive and specific for the detection of neuroblas-
toma lesions that were weakly affine to 123I-MIBG. Our
results suggest that an 18F-FDG PET scan can be
recommended if there are discrepant or inconclusive
findings on 123I-MIBG scintigraphy/SPECT imaging and
morphological imaging.

Conflicts of interest None.
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