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Abkürzungsverzeichnis: 
 

 

3D    =  dreidimensional 

2D    =  zweidimensional 

A   =  Artefakt 

A.    =  Arteria, Arterie 

Abb.    =  Abbildung 

A-Mode  =  Amplituden-Modulation 

B-Mode   =  Brightness-Modulation 

F   =  Fibrin 

Fa.    =  Firma 

GE    =  General Electrics Inc. 

GK   =  Glaskörper 

H   =  Hyphaema 

HAK   =  hintere Augenkammer 

HH   =  Hornhaut 

I   =  Iris 

I‘   =  Iridodialysis 

K   =  Iriskolobom 

KW   =  Kammerwinkel 

L    =  Lider 

L‘    =  Linse in Auflösung 

LHK    =  hintere Linsenkapsel 

LHK‘   =  Vorwölbung der hinteren Linsenkapsel 

LS    =  Linsenstroma 

LS‘    =  teilweise echogenes Linsenstroma 

LVK   =  vordere Linsenkapsel 

LVK‘   =  vordere Linsenkapsel im Schallschatten 

M./Mm   =  Musculus/ Musculi, Muskel/Muskeln 

MHz    =  Megahertz 

Min.    =  Minute 

M-Mode   =  Motion-Modulation 
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N   =  Netzhautablösung 

Nr.    =  Nummer 

OD    =  Oculus dexter, rechtes Auge 

OS    =  Oculus sinister, linkes Auge 

P   =  Pupille 

P’   =  unregelmäßige Pupille 

PRF   =  Pulse Repetition Frequence 

PC    =  personal computer 

R   =  Linsenruptur 

ROI   =  Region of Interest 

S   =  posteriore Synechie 

Sek.   =  Sekunde 

SL   =  Subluxation der Linse 

SR   =  Skleralring 

TCG/TGC  =  time compensated gain / time gain compensation 

VAK   =  vordere Augenkammer 

Z   =  Iriszyste 

ZK   =  Ziliarkörper 
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1. EINLEITUNG 
 

Das Auge stellt das primäre Sinnesorgan der Vögel dar. Verhaltensweisen wie die Fähigkeit 

zum Fliegen, die Orientierung im Raum und ein selbstständiger Nahrungserwerb sind eng an die 

Funktionsfähigkeit der Augen gebunden. Durchschnittlich 7,6 % der Vogelpatienten weisen 

okulare Veränderungen auf, woraus sich die Notwendigkeit einer aussagekräftigen 

ophthalmologischen Untersuchung ergibt (KORBEL 1991, 2012). Bleiben die pathologischen 

Veränderungen an den Augen nämlich unerkannt, kann es durch falsche medizinische 

Versorgung zu einer Einschränkung der Lebensqualität und damit zu Leiden und Schmerzen für 

den Vogel kommen. Einen besonderen Stellenwert nehmen hier die Wildvögel ein, da eine 

Wiederauswilderung an die Wildbahntauglichkeit der Tiere und damit an einen 

uneingeschränkten Visus gebunden ist. 

Sind bei Trübungen im vorderen Augensegment allerdings nicht alle Strukturen im Auge 

erkennbar, hat sich der Einsatz der zweidimensionalen Sonographie sowohl in der Human- als 

auch in der Veterinärmedizin als nützliches Hilfsmittel bewährt (BYRNE und GREEN 2002; 

GEVELHOFF 1996; GONZALEZ et al. 2001; WILLIAMS et al. 1995). Auch in der Ornitho-

Ophthalmologie ist der Einsatz dieser Ultraschalltechnik beschrieben (GUMPENBERGER und 

KOLM 2006; HARRIS et al. 2008; KORBEL et al. 2008; KORBEL et al. 2009; LABELLE et al. 

2012; LEHMKUHL et al. 2010; SQUARZONI et al. 2010; STROBEL 2010). 

 

In der Humanophthalmologie hat sich zusätzlich seit einigen Jahren die dreidimensionale 

Sonographie etabliert (DOWNEY et al. 1996; FINGER 2002; NELSON et al. 1999). Ihr Einsatz in 

der Veterinärophthalmologie ist bisher auf wenige Einzelbeschreibungen beim Pferd und 

Kleintier beschränkt (LIST 2002; VOSOUGH et al. 2007). In der Ornitho-Ophthalmologie wurden 

bisher lediglich zwei Mäusebussarde mit dieser Methode untersucht (REESE 1999). 

 

Ziel der vorliegenden Arbeit ist es daher, die Einsatzmöglichkeiten und den klinischen Nutzen 

der dreidimensionalen Sonographie am Vogelauge zu untersuchen. Besonderen Wert wird 

dabei auf die Darstellung und Darstellbarkeit physiologischer und pathologischer Strukturen im 

vorderen Augensegment gelegt. Durch das Anfertigen von Aufnahmen postmortal präparierter 

Bulbi sollen die in der sonographischen Untersuchung erhobenen physiologischen und 

pathologischen Befunde nachträglich evaluiert werden. 
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2. LITERATUR 
 

 

2.1 Grundlagen der Sonographie 
 

2.1.1 Geschichte der dreidimensionalen Sonographie in der 
Ophthalmologie 
 

In den 1970er Jahren wird die dreidimensionale Ultraschalltechnologie erstmals in der 

Humanmedizin vorgestellt und bereits 1983 von der japanischen Arbeitsgruppe Yamamoto et al. 

am Auge erprobt (PRAGER et al. 2010; THIJSSEN 1993). In den Jahren 1984 - 1986 entwickeln 

Yamamoto et al. immer bessere Scanmethoden mit Vertikaldrehung eines 10 MHz-Schallkopfes 

und bessere Scaneinheiten und –programme, welche die dreidimensionalen Bilder am 

Computer entstehen lassen. Damit können sie anatomische und pathologische okulare 

Gegebenheiten feststellen und bereits Volumenmessungen durchführen. Die Datenakquisition 

erfolgt mithilfe der Immersionstechnik und selbst zusammengebauten Ultraschalleinheiten 

(YAMAMOTO et al. 1986; YAMAMOTO et al. 1984). 

 

Seit 1989 sind die ersten dreidimensionalen Ultraschallsysteme kommerziell erhältlich 

(PRAGER et al. 2010). 

 

Die Anwendbarkeit der dreidimensionalen Sonographie zur Bestimmung intraokularer 

Tumorvolumen wird in den folgenden Jahren weiter verbessert.  

1991 können Jensen et al. mittels eines modifizierten Ultraschallsystems und eines 10 MHz-

Schallkopfes durch Vertikaldrehung verhältnismäßig gute Tumorvolumenmessungen 

durchführen.  

SILVERMAN et al. (1993) können mittels parallelen Ultraschallschnittbildern Tumorvolumen 

berechnen und feststellen, dass die dreidimensionale Volumenberechnung genauere Volumina 

ergibt, als es mit anderen Berechnungsmethoden möglich ist. 
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1993 beschreiben RANKIN et al. die interessanten Anwendungsgebiete der dreidimensionalen 

Sonographie am Auge. Sie glauben, dass mithilfe der 3D-Visualisierung das Verständnis zur 

Lage pathologischer Veränderungen vor allem für den ophthalmologischen Chirurgen verbessert 

wird und Operationen besser geplant werden können. Auch die Freihandakquisitionstechnik und 

die dreidimensionale Blutflussdarstellung am Auge werden erstmals beschrieben. 

 

Seit 1995 erscheinen erstmals Berichte über die dreidimensionale Biomikroskopie am Auge 

(COLEMAN 1995; CUSUMANO et al. 1998; IEZZI et al. 1996; SILVERMAN et al. 2001; 

SILVERMAN et al. 1995). Dabei werden Schallköpfe mit einer Frequenz von 40 – 60 MHz 

verwendet um Details im vorderen Augensegment sehr genau darzustellen. Es gelingt mit der 

hochfrequenten Technik Schichtdicken von nur 40 - 50 µm zu erreichen. 

 

1996 entwickeln DOWNEY et al. einen vertikal rotierenden Schallkopf, welcher an bereits 

bestehende Ultraschallsysteme angeschlossen werden kann und mit dem anschauliche 

dreidimensionale Bilder auch von pathologischen Augenveränderungen erzeugt werden können. 

 

1998 kann der Nutzen der dreidimensionalen Sonographie bei der Therapie von choroidalen 

Melanomen gezeigt werden. FINGER et al. zeigen die Lokalisation von radioaktiven Plaques, 

welche für die Behandlung der Melanome eingesetzt werden. Sie erlangen damit einzigartige 

Ansichten im dreidimensionalen Bild (FINGER et al. 1998). ROMERO et al. zeigen die 

Anwendung der dreidimensionalen Sonographie bei der Untersuchung der extraskleralen 

Ausbreitung von Melanomen und den Nutzen der dreidimensionalen Volumenmessung dieser 

Tumore (ROMERO, FINGER, et al. 1998; ROMERO, ROSEN, et al. 1998). 

Im selben Jahr zeigen FISHER et al. die Präzision und Reproduzierbarkeit von Messungen 

mittels 3D-Technik an okularen Phantomen mithilfe der vertikalen Drehung des Schallkopfes 

(FISHER et al. 1998).  

NÉMETH und SÜVEGES (1998) können mithilfe eines kommerziellen 

Standardultraschallgerätes, welches eigentlich nicht für die Ophthalmologie gebaut wurde, auch 

die Anwendung am Auge demonstrieren. Es lassen sich physiologische Strukturen, aber auch 

pathologische Veränderungen durch Traumata, Erkrankungen und Tumoren damit sehr gut 

dreidimensional darstellen. 

DELCKER et al. (1998) stellen im gleichen Jahr eine Akquisitionsmethode in der 

Ophthalmologie vor, bei welcher keine vorgegebene Schnittbildfolge mehr eingehalten werden 
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muss. Diese sogenannte „Freihandakquisition“ erleichtert und verkürzt die Datenerfassung und 

kann somit in vielen klinischen Anwendungsgebieten eingesetzt werden. 

 

Seit 1999 werden die ersten deutschsprachigen Berichte über die dreidimensionale 

Ultraschalltechnik am Auge und ihre Vorteile für Diagnostik und Verlaufskontrollen vorgestellt 

(GRASBON et al. 2001; GRASBON et al. 1999; KLEIN und MÜLLNER 1999; RAUBER und 

MESTER 1999). 

 

Im Jahr 2000 kann erstmals der sinnvolle Einsatz der 3D-Technik bei uneinsehbarem 

Augenhintergrund gezeigt werden (ENDO et al. 2000). 

 

2002 können Finger et al. mittels konventionellem Ultraschallgerät das verbesserte Management 

bei Tumoren der Netzhaut (Retinoblastome) zeigen. Die dreidimensionale Sonographie erzeugt 

einzigartige Ansichten auch außerhalb des Auges und ermöglicht eine kurze 

Untersuchungsdauer (FINGER et al. 2002; FINGER 2002). 

 

2005 vergleichen Garcia et al. die Messungen von Sehnervenscheiden und dortigen 

Meningiomen mittels dreidimensionaler Technik und CT und kommen zu dem Ergebnis, dass 

die Messungen übereinstimmen und die 3D-Technik den Sehnerv auch außerhalb des 

Augapfels darstellen kann (GARCIA et al. 2005). 

STACHS et al. (2005) studieren mittels dreidimensionaler Ultraschallbiomikroskopie an 

künstlichen Linsenmodellen die Veränderungen der Linsen während der Akkommodation und 

übertragen die gewonnenen Informationen auf in-vivo-Situationen. 

 

2008 zeigen Forte et al. an 20 Patienten verschiedene vitreoretinale und choroidale 

pathologische Veränderungen mittels konventioneller dreidimensionaler Technik und einem 15 

MHz-Schallkopf. Den großen Vorteil an der verwendeten 3D-Technik sehen sie in der 

Darstellbarkeit der Läsionen, ihrer Umgebung und der genauen Lage im Raum (FORTE et al. 

2009). 

 

In den Jahren 2008 und 2009 veröffentlichen Reinstein et al. Studien zur Messung der Dicke 

von Korneastroma und –endothel. Mittels einer digitalen Ultraschalleinheit und einem 50 MHz-

Schallkopf werden Karten zur Dicke von Stroma und Endothel von Patienten mit gesunder 
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Hornhaut angelegt, was zur Früherkennung von Erkrankungen beitragen soll (REINSTEIN et al. 

2008, 2009). 

 

2010 werden Untersuchungen im Zusammenhang mit der Weiterentwicklung der 

minimalinvasiven Methode der Glaskörperentfernung (Vitrektomie) getätigt. Es kann mit Hilfe der 

Ultraschallbiomikroskopie und einem 35 MHz-Schallkopf die Ausdehnung und Beschaffenheit 

der Einstichkanäle an enukleierten Schweineaugen gezeigt werden (WITTE et al. 2010). 

 

1. Geschichte des dreidimensionalen Ultraschalles in der Veterinärophthalmologie: 
In der Veterinärophthalmologie liegen bisher nur drei Beschreibungen über den Einsatz der 

dreidimensionalen Technik vor. 

 

1999 kann Reese mithilfe eines konventionellen Ultraschallsystems und einem 12 MHz-

Linearschallkopfes aussagekräftige dreidimensionale Datenvolumen von Augen von Hunden, 

Pferden und zwei Mäusebussarden erstellen (REESE 1999). 

 

2002 erscheint eine Doktorarbeit über den Einsatz der dreidimensionalen Sonographie am 

Pferdeauge (LIST 2002). Zum Einsatz kommt bei dieser Arbeit ein Ultraschallsystem aus der 

Humanmedizin und ein 9 MHz-Linearschallkopf. Durch manuelles Verschieben des Schallkopfes 

auf dem geschlossenen Oberlid lassen sich Datenvolumen von physiologischen und 

pathologischen Gegebenheiten erstellen und aus Ebenen und Ansichten darstellen, die mit der 

konventionellen B-Mode Sonographie nicht zu erreichen sind. List sieht die dreidimensionale 

Sonographie des Pferdeauges als Bereicherung in der ophthalmologischen Diagnostik. 

 

Im Jahr 2007 untersucht die Arbeitsgruppe um Vosough Augen gesunder Hunde mittels 

konventioneller dreidimensionaler Ultraschalltechnik und einem 5 - 12 MHz-Linearschallkopfes. 

Sie stellen physiologische okulare Strukturen dreidimensional dar und vermessen die 

Sehnervenscheidendicke. Im Vergleich zu anderen Messmethoden wie der 

Computertomographie liefert die dreidimensionale Messung genauere Ergebnisse (VOSOUGH 

et al. 2007). 
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2.1.2 Physikalische Grundlagen 
 

1. Ultraschallwellen: 
Als Ultraschall werden Schallwellen oberhalb des menschlichen Hörbereiches von 20.000 Hz 

bezeichnet. Dabei drückt die Frequenz des Schalles die Anzahl der Schwingungen pro Sekunde 

aus. In der medizinischen Diagnostik werden typischerweise Frequenzen von 1 – 12 MHz, in 

Sonderfällen auch bis zu 20 MHz eingesetzt (GÖTZ 1983; GUTHOFF 1988; POULSEN 

NAUTRUP 1998). 

Schallwellen stellen mechanische Wellen dar, welche an Materie gebunden sind. In einer 

Schallwelle schwingen die Materieteilchen mit einer bestimmten Anregungsfrequenz um ihre 

Ruhelage. Die Teilchen werden aber nicht fortbewegt, sondern es findet nur ein 

Energietransport mit einer für jedes Medium charakteristischen Ausbreitungsgeschwindigkeit 

statt. Die Materieteilchen durchlaufen dabei abwechselnd Stadien von Verdichtung und 

Verdünnung (GLADISCH 1993; POULSEN NAUTRUP 1998). 

Das Prinzip der Ultraschalldiagnostik basiert auf der Reflexion. Akustische Energie wird in Form 

einer longitudinalen Welle in ein Gewebe ausgesendet und trifft auf eine akustische 

Grenzfläche, also auf zwei Medien mit unterschiedlichem Schallwiderstand. Dabei wird ein 

unterschiedlich großer Teil der Energie reflektiert und kann am Ausgangspunkt als Echo 

empfangen und bewertet werden (BYRNE und GREEN 2002; GLADISCH 1993; GÖTZ 1983). 

Das Verhalten von Schallwellen im Gewebe wird durch Faktoren wie Schallintensität, 

Schallwellengeschwindigkeit und –widerstand, Größe und Oberflächenbeschaffenheit des 

Gewebes sowie Einfallwinkel der Schallwellen bestimmt (POULSEN NAUTRUP 1998). 

 

2. Schallintensität: 
Die Schallintensität wird durch die maximale Auslenkung der Schwingung der Schallwelle, also 

ihrer Amplitude bestimmt. Durch vermehrte Energiezufuhr kommt es zur Vergrößerung der 

Amplitude, was im Ultraschall zu einer helleren Darstellung auf dem Monitor führt (POULSEN 

NAUTRUP 1998). 

 

3. Schallwellengeschwindigkeit: 
Die Ausbreitungsgeschwindigkeit der Schallwellen ist abhängig von der Wellenlänge und der 

Frequenz der Schallwellen, sowie von der Dichte und Elastizität des durchdrungenen Gewebes. 

Ein dichtes und weniger elastisches Medium wird von den Schallwellen schneller durchlaufen, 

als ein weniger dichtes Medium, wie beispielsweise Wasser (BYRNE und GREEN 2002; 
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GLADISCH 1993; POULSEN NAUTRUP 1998). Durchschnittlich 1540 m/s beträgt die 

Ausbreitungsgeschwindigkeit der Schallwellen im Gewebe (FLÜCKIGER 1990; GÖTZ 1983). 

 

4. Schallwellenwiderstand: 
Der Schallwellenwiderstand kann auch als akustische Impedanz eines Stoffes bezeichnet 

werden. Abhängig ist der Schallwellenwiderstand von Materialeigenschaften wie die 

Molekülbindung untereinander und die Trägheit der Elementarmassen, welche einer 

Schallausbreitung entgegenwirken (GÖTZ 1983; POULSEN NAUTRUP 1998). 

 

5. Reflexion: 
Wenn Ultraschallwellen senkrecht auf eine Grenzfläche zwischen zwei Geweben mit 

unterschiedlicher akustischer Impedanz treffen, dann wird ein Teil der Wellen senkrecht zur 

Grenzfläche reflektiert und zum Schallkopf zurückgeworfen (FARROW 1996; POULSEN 

NAUTRUP 1998). Der Reflexionsgrad ist umso höher, je mehr sich die beiden 

Schallwiderstände an der Grenzfläche voneinander unterscheiden, also umso größer der 

Impedanzunterschied ist. Sehr große Impedanzunterschiede mit überwiegender Reflexion 

stellen akustische Grenzflächen wie Luft oder Knochen dar (FLÜCKIGER 1990; GÖTZ 1983; 

POULSEN NAUTRUP 1998). 

 

6. Transmission: 
Die nicht reflektierten Schallwellen setzen ihren Weg im neuen Medium fort, was als 

Transmission bezeichnet wird. Je kleiner der Impedanzunterschied der benachbarten Gewebe, 

umso höher ist der Anteil transmittierter Ultraschallwellen (GÖTZ 1983; POULSEN NAUTRUP 

1998).  

 

7. Brechung: 
Zur Brechung der Schallwellen kommt es, wenn Schallwellen nicht senkrecht auf eine 

akustische Grenzfläche treffen. Die reflektierten Wellen werden gebrochen, erreichen den 

Schallkopf nicht wieder und können so nicht registriert werden. Die Stärke der Brechung ist hier 

ebenfalls von der akustischen Impedanz des nachfolgenden Gewebes abhängig. Nicht 

reflektierte Schallwellen werden ebenfalls gebrochen und setzten ihren Weg im Gewebe 

transmittierend fort (POULSEN NAUTRUP 1998). 
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8. Streuung: 
Ist eine akustische Grenzfläche von unregelmäßiger Form, rau oder sehr klein, so wird ein Teil 

der Schallwellen gestreut und es gelangt nur ein vermindertes Echo zurück an den Schallkopf 

(BYRNE und GREEN 2002; POULSEN NAUTRUP 1998). Durch Streuung von Schallwellen ist 

es jedoch erst möglich runde Konturen im Ultraschall darzustellen (GLADISCH 1993). Mit 

zunehmender Frequenz steigt die Intensität der gestreuten Schallwellen (GÖTZ 1983). 

 

9. Beugung: 
Treffen Schallwellen auf Randbereiche von Hindernissen, welche stark absorbierend sind, so 

werden die Schallwellen in den sogenannten Schallschatten hineingebeugt. Die Beugung ist von 

der Wellenlänge und Frequenz abhängig, wobei bei zunehmender Frequenz (kürzere 

Wellenlänge) die Erscheinung der Beugung kleiner wird. Bei sehr kleinen Objekten, welche 

kleiner als die Wellenlänge des Ultraschalls sind, entsteht ein artifizielles Beugungsmuster, 

welches sich für jedes Organ typisch darstellt (GÖTZ 1983; POULSEN NAUTRUP 1998). 

 

10. Absorption: 
Beim Durchwandern von Gewebe wird ein Teil der Schallenergie in Wärme umgewandelt. 

Dieser Reibungsverlust steht dem Bildaufbau nicht mehr zur Verfügung.  

Abhängig ist die Absorption von der Schallfrequenz und der Gewebebeschaffenheit. Je höher 

die Frequenz ist, umso mehr Wärme entsteht und umso stärker ist die Absorption. Daher kann 

nur eine geringere Eindringtiefe mit einer hohen Frequenz erreicht werden. Die Absorption ist in 

dichteren Geweben stärker, als in weniger dichten Geweben. Somit können Schallschatten 

hinter Knochen entstehen (BYRNE und GREEN 2002; GLADISCH 1993; POULSEN NAUTRUP 

1998). 

 

11. Dämpfung: 
Als Dämpfung wird die fortlaufende Abschwächung der Schallintensität beim Durchlaufen 

biologischer Gewebe bezeichnet, wobei sie mit steigender Frequenz zunimmt. Als Folge werden 

die Echos aus größeren Tiefen schwächer empfangen und auf dem Monitor weniger hell 

abgebildet (GLADISCH 1993). 
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2.1.3 Technische Grundlagen 
 

1. Schallwellenerzeugung und -empfang: 
Um Ultraschallwellen zu erzeugen, bedient man sich in der medizinischen Diagnostik des 

piezoelektrischen Effektes. Piezoelektrische Kristalle, welche sich im Schallkopf befinden 

können bei Anlage einer elektrischen Wechselspannung zur Schwingung angeregt werden und 

Schallwellen aussenden. Umgekehrt führen reflektierte Schallwellen durch dieselben Kristalle 

wiederum zur Erzeugung von Spannung. Ein und derselbe Kristall besitzt somit die Funktion des 

Senders und Empfängers und wird als Transducer oder Ultraschallwandler bezeichnet 

(GLADISCH 1993; GÖTZ 1983; POULSEN NAUTRUP 1998). 

Ultraschallgeräte arbeiten in der Regel nach dem Impuls-Echo-Verfahren, wobei zunächst ein 

Ultraschallimpuls ausgesandt wird und danach auf Empfang umgeschaltet wird. Die Anzahl der 

Impulse pro Sekunde (Pulse-Repetition-Frequence PRF) liegt dabei etwa bei 300 - 3000 

(BYRNE und GREEN 2002; FARROW 1996; POULSEN NAUTRUP 1998). 

Mithilfe des Empfängers kann anschließend das elektrische Signal auf dem Bildschirm 

dargestellt werden. 

 

2. Schallstrahlgeometrie: 
Die Geometrie des Schallfeldes, welches durch die räumliche Ausdehnung der Ultraschallwellen 

entsteht, weist die Form einer kegelförmigen Schallkeule auf (GLADISCH 1993). Die axiale 

Ausdehnung der Ultraschallimpulse ist in jedem Abstand vom Schallkopf gleich und ist abhängig 

von der Impulsdauer und -länge. Die laterale Ausdehnung des Schallfeldes variiert in 

Abhängigkeit zur Eindringtiefe und Schallkopfgeometrie und kann in ein Nahfeld, ein Fernfeld 

und in eine Fokuszone eingeteilt werden (Vergleiche Abbildung 1) (POULSEN NAUTRUP 1998). 
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Schallimpulses und nimmt mit steigender Frequenz und kürzerem Impuls zu. Die maximale 

axiale Auflösung liegt bei 0,1 – 1,5 mm (BYRNE und GREEN 2002; GÖTZ 1983; POULSEN 

NAUTRUP 1998). 

Unter der lateralen Auflösung wird der Mindestabstand zweier Objekte bezeichnet, welche 

nebeneinander senkrecht zum Schallstrahl liegen. Sie steht in Abhängigkeit zur Ausdehnung der 

Schallkeule, ist also abhängig von Schallfrequenz, Schallkopfgeometrie und Eindringtiefe. Je 

schmaler der Schallstrahl, umso höher stellt sich die laterale Auflösung dar. Sie liegt stets unter 

der axialen Auflösung und kann 0,6 – 0,3 mm betragen (GLADISCH 1993; GÖTZ 1983; 

POULSEN NAUTRUP 1998). 

 

Des Weiteren ist die Bildqualität abhängig von der Geschwindigkeit des Bildaufbaus, der 

Grauwertauflösung und schließlich von den unterschiedlichen Verstärkerfunktionen und 

elektronischen Nachbearbeitungsprogrammen der verschiedenen Ultraschallgeräte (GLADISCH 

1993). 

 

4. Preproccessing: 
Als Preproccessing werden alle Einstellungsänderungen an den Ultraschallsignalen bezeichnet, 

bevor sie auf dem Monitor als Bild wiedergegeben werden (POULSEN NAUTRUP 1998). 

 

Es besteht die Möglichkeit die Intensität des ausgesandten Ultraschallimpulses auf 45 – 75 % 

zu reduzieren, was im Allgemeinen für einen guten Bildaufbau reicht (POULSEN NAUTRUP 

1998). 

 

Mithilfe der Gesamtverstärkung (Gain), welche in Dezibel gemessen wird, kann eine 

gleichmäßige Verstärkung der Echos aus allen Gewebetiefen erfolgen. Dabei wird die vom 

Schallkopf ausgesendete Energie nicht erhöht, es erfolgt lediglich eine Veränderung der 

Intensität der auf dem Monitor dargestellten Echos. Durch Erhöhung des Gainfaktors können 

schwächere Echos besser dargestellt werden, was allerdings zu einer Verringerung des 

Kontrastumfanges und zu Artefakten führen kann. Der Gainfaktor sollte jeweils so gewählt 

werden, dass der gesamte Bildbereich gleichmäßig hell dargestellt wird und sich 

flüssigkeitsgefüllte Strukturen anechogen darstellen (BYRNE und GREEN 2002; POULSEN 

NAUTRUP 1998). 
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Die zeitabhängige Verstärkung (time compensated gain TCG oder aber auch time gain 

compensation TGC) ist für die optimale Bilddarstellung tieferliegender Strukturen von 

Bedeutung. Durch Reflexion, Absorption und Streuung kommt es zu einem Intensitätsverlust der 

Ultraschallwellen in tieferliegenden Geweben. Durch eine Verstärkung später reflektierter Echos 

anhand des Tiefenausgleichsreglers, kann bei gleichzeitiger Reduktion von Kontrast und 

Erhöhung der Bildunschärfe ein gutes diagnostisches Bild auf dem Monitor erzeugt werden 
(GÖTZ 1983; POULSEN NAUTRUP 1998). 

 

Mithilfe des Echoenhancements ist es möglich, Echos bestimmter Reflexionsqualität zu 

verstärken und somit gewünschte Strukturen besser darzustellen (POULSEN NAUTRUP 1998). 

 

Der Abstand zwischen dem kleinsten und größten zu registrierenden Echo wird durch den 

Dynamikbereich bestimmt. Bei einer hohen Dynamik besteht das Bild aus sehr vielen 

Graustufen und stellt sich weich dar. Es lassen sich so auch feine Unterschiede darstellen. 

Umgekehrt enthält ein Bild mit geringer Dynamik weniger Graustufen und wirkt härter 

(POULSEN NAUTRUP 1998). 

 

Mithilfe der Bildintegration können bis zu zwei Ultraschallbilder addiert dargestellt werden, was 

kleine Strukturen geringer Echogenität hervorheben lässt, allerdings das Bild weicher und 

kontrastärmer macht. Die Bildglättung sollte nur bei wenig bewegten Bildern angewandt werden, 

da es sonst zu Unschärfen kommt (POULSEN NAUTRUP 1998). 

 

5. Schallköpfe: 
Es existieren drei verschiedene Formen von Transducern: Linear-, Sektor- und 

Konvexschallkopf. Da im Rahmen der vorliegenden Arbeit mit einem Linearschallkopf gearbeitet 

wurde, soll dieser genauer beschrieben werden. 

 

Unter einem Linear- oder Parallelschallkopf versteht man eine Multikristallsonde, welcher aus 

dicht nebeneinander liegenden Piezoelementen besteht. Mehrere Kristalle werden zu Gruppen 

zusammengefasst und gemeinsam während eines Sende-Empfang-Ablaufs eingeschaltet. 

Linearschallköpfe ermöglichen eine gute Schallfeldgeometrie, hohe laterale Auflösung, eine gute 

elektronische Fokussierung mit mehreren Fokuszonen in verschiedenen Tiefen und durch 

Überlappung der Kristallgruppen eine enge Bildzeilenanordnung, was zu einer Verschönerung 

des Bildeindruckes führt.  



LITERATUR 
______________________________________________________________________ 

 

18 
 

Linearschallköpfe sind einfach in der Handhabung, haben eine große Schnittfläche, was eine 

zügige Übersicht ermöglicht, eine sehr gute schallkopfnahe Auflösung und eine gleichbleibend 

gute Bildqualität in allen Abbildungstiefen. Der Nachteil besteht in der manchmal zu großen 

Auflagefläche (FLÜCKIGER 1990; GLADISCH 1993; POULSEN NAUTRUP 1998). 

 

2.1.4 Sonographische Gewebedarstellung und Artefakte 
 

Der Begriff „Artefakt“ bezeichnet ein Kunstprodukt in der bildgebenden Diagnostik. Es handelt 

sich hierbei um Strukturen, die artifiziell sind, fehlen, an der falschen Stelle abgebildet werden 

oder eine falsche Form, Größe oder Helligkeit aufweisen (FARROW 1996; MEIER 1989). 

Teilweise haben die Artefakte ihren Ursprung im B-Bild, zum Teil entstehen sie aber erst bei der 

Gewinnung dreidimensionaler Bilder (NELSON et al. 2000). Einige Artefakte erleichtern jedoch 

die Interpretation der Ultraschallbefunde (BYRNE und GREEN 2002). 

 

2.1.4.1 Echogenität 
Unter Echogenität versteht man die Eigenschaft der Gewebegrenzflächen Ultraschallwellen zu 

reflektieren und zu streuen, damit diese auf dem Monitor dargestellt werden. Im Ultraschallbild 

können Strukturen anhand ihrer Binnenstruktur, Oberfläche, Begrenzung, Größe und 

topographischen Lage beurteilt werden. Charakterisiert werden sie durch Echostärke, -größe 

und –dichte. Diese drei Parameter definieren ein Echomuster und ermöglichen eine Einteilung in 

echofreie, echoarme und echodichte Bereiche (POULSEN NAUTRUP 1998). 

 

1. Echofrei: 
Anechogen stellen sich alle Gewebe ohne akustische Grenzfläche dar. Sie bestehen in der 

Regel aus Flüssigkeiten und werden auf dem Monitor gleichmäßig schwarz abgebildet. 

 

2. Geringe Echodichte: 
Hypoechogen stellen sich Gewebe dar, welche lediglich aus feinen, einzelnen, schwachen, 

mittel- bis dunkelgrauen Echos zusammengesetzt werden. 

 

3. Mittlere Echodichte: 
Echogene Strukturen werden aus zahlreichen, gleichmäßig verteilten, feinen bis mittelfeinen, 

hell- bis mittelgrauen Echos mittlerer Dichte dargestellt. 
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4. Große Echodichte: 
Hyperechogen stellen sich Grenzflächen zwischen Geweben mit deutlichem 

Impedanzunterschied dar. Sie werden durch zahlreiche grobe bis feine, starke bis mittelstarke 

Echos großer Dichte dargestellt und  auf dem Monitor weiß bis hellgrau abgebildet. 

 

5. Echoverteilung: 
Eine gleichmäßige Echoverteilung führt zu einer homogenen, eine ungleichmäßige 

Echoverteilung zu einer inhomogenen Gewebestruktur. Die unterschiedlichen Eigenschaften 

führen zu einer charakteristischen Textur der einzelnen Gewebe. 

 

2.1.4.2 B-Mode Artefakte 
1. Rauschen: 
Unter Rauschen versteht man sehr viele kleine bis mittelgroße unregelmäßige Echos, welche 

dem Ultraschallbild ein milchiges Aussehen verleihen. Diese Echos entstehen durch zu große 

Signalverstärkung und sind besonders in echofreien Gebieten störend (GLADISCH 1993; 

POULSEN NAUTRUP 1998). 

 

2. Wiederholungsechos – Reverberationen: 
Treffen Schallwellen senkrecht auf stark reflektierende Grenzflächen können sie vorzeitig zum 

Schallkopf zurückgeworfen werden und sich mehrfach zwischen Schallkopf und Grenzfläche hin 

und her bewegen. Auf dem Monitor werden die wiederholten Echos in regelmäßigen Abständen 

parallel zu der stark reflektierenden Grenzfläche mit immer geringerer Intensität abgebildet. Die 

Reverberationen treten nicht nur hinter sondern auch vor der Grenzfläche auf und können auch 

durch ungenügende Ankopplung des Schallkopfes an die Gewebeoberfläche entstehen. (MEIER 

1989; POULSEN NAUTRUP 1998; SUSAL 1987). 

Eine Sonderform des Wiederholungsechos ist der Kometenschweifartefakt. Er entsteht hinter 

Geweben mit starker akustischer Impedanz wie Metall oder Gas und bewirkt eine 

Schallverstärkung vermutlich durch Mehrfachreflexionen innerhalb des Fremdkörpers 

(GLADISCH 1993; SCANLAN 1991). 

 

3. Schallschatten: 
Wenn Ultraschallwellen auf Gewebe mit sehr großer akustischer Impedanz wie Knochen, 

Verkalkungen oder gasgefüllte Strukturen treffen, dann kommt es zur Totalreflexion mit 
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anschließendem Schallschatten, welcher sich auf dem Monitor einheitlich schwarz darstellt 

(FARROW 1996; POULSEN NAUTRUP 1998). 

 

4. Schallverstärkung: 
Durchwandern Schallwellen flüssigkeitsgefüllte Strukturen, kommt es zu einer geringeren 

Abschwächung der Energie als im umliegenden Gewebe. Als Folge dessen werden Echosignale 

hinter einer flüssigkeitsgefüllten Struktur relativ stärker und damit auf dem Monitor heller 

dargestellt (MEIER 1989). 

 

5. Schichtdickenartefakt: 
Schichtdickenartefakte treten infolge zu großer lateraler Ausdehnung der Schallwellen im 

Gewebe dann auf, wenn ein Teil der Schallwellen auf flüssigkeitsgefülltes Gewebe und der 

andere Teil auf das umliegende Weichteilgewebe trifft. Durch den berechneten Mittelwert der 

zurückgeworfenen Signale entsteht eine unscharf begrenzte Kontur des Gewebes und eine 

fälschlicherweise zu starke echogene Darstellung der flüssigen Struktur (FARROW 1996; 

SCANLAN 1991). 

 

6. Schallkeulenartefakt: 
Durch herabgesetztes laterales Auflösungsvermögen und vorhandenen Nebenkeulen im 

Schallstrahl können Strukturen, welche eigentlich neben der optischen Achse liegen, in der Mitte 

des Schallstrahls, dem Mittellot, abgebildet werden (FARROW 1996; MEIER 1989). 

 

7. Widerspiegelung: 
Eine spiegelnde Reflexion entsteht, wenn Schallwellen senkrecht auf eine große glatte 

Oberfläche treffen. Es entsteht ein relativ starkes Echo, welches bei runden flüssigkeitsgefüllten 

Strukturen an der Vorder- und Hinterwand  zu erkennen ist. 

Zu einer diffusen Reflexion kommt es beim Auftreffen von Schallwellen auf eine raue 

Oberfläche. Es entsteht durch Streuung der Schallwellen in viele Richtungen ein geflecktes 

unruhiges Bild (MEIER 1989). 

 

8. Verzeichnung: 
Durch Verwendung eines Sektorschallkopfes werden konkave Strukturen stärker konkav und 

konvexe Gebilde zu flach abgebildet. Dieses Phänomen kann besonders am Auge auftreten. 

Auch bei Verwendung eines Linearschallkopfes entsteht dieser Effekt am Auge bei der axialen 
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Untersuchungsebene, da die starke Linsenperipheriekrümmung die Ultraschallwellen nach 

außen bricht und es zusätzlich zu einer starken Änderung der Schallgeschwindigkeit innerhalb 

der Linse kommt. Es kommt zu einer scheinbaren Verkürzung des Auges, was sich in einer 

echoreichen Vorwölbung in den Glaskörper im Bereich der Bulbuswand darstellt (GUTHOFF 

1988; SUSAL 1987). 

 

2.1.4.3 Dreidimensionale Artefakte 
NELSON et al. (2000) teilen 3D-Artefakte in Artefakte ein welche schon im zweidimensionalen 

Bild vorhanden sind, welche erst durch die Ansicht der dreidimensionalen Volumenbilder 

entstehen und in solche Artefakte, welche einzigartig für die dreidimensionale Sonographie sind. 

Für die Diagnosestellung und Erkennung von Artefakten im dreidimensionalen Bild ist es wichtig, 

auch die ursprünglichen Scanebenen auszuwerten und gegebenenfalls neue Datenvolumen zu 

erstellen. 

 

Artefakte, welche schon im zweidimensionalen Bild vorhanden sind, basieren hauptsächlich auf 

Problemen in der Bildauflösung, Dämpfung und Übertragung. Oft kann es durch die 

ungewöhnliche dreidimensionale Form der Artefakte zu Verwirrungen kommen (PRAGER et al. 

2010). 

 

1. Bildauflösungsartefakte: 
Sie entstehen durch falsche Auflösung im 2D-Bild, verursachen im 3D-Bild verdickte und 

formveränderte Strukturen falscher Größe und führen zu Messfehlern und falscher 

Diagnosestellung. 

 

2. Dämpfungsartefakte: 
Durch falsch eingestellte Parameter wie Helligkeit im 2D-Bild kann es zu Dämpfungsartefakten 

im dreidimensionalen Bild kommen. Dies führt zu Schattenbildung und dem fälschlicherweise 

Auffinden von Zysten oder dem Fehlen von Organbestandteilen.  

 

3. Übertragungsartefakte: 
Sie entstehen durch Wiederholungsechos, Spiegelbilder, Brechung und Schallkeulenartefakte 

im zweidimensionalen Bild (NELSON et al. 2000). 
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Artefakte, welche einzigartig für dreidimensionale Bilder sind, können in Erfassungs-, 

Wiedergabe- und Bearbeitungsartefakte eingeteilt werden (NELSON et al. 2000). 

 

4. Erfassungsartefakte: 
Unter ihnen versteht man alle Artefakte, welche durch Bewegung bei der Datenerfassung des 

dreidimensionalen Volumens entstehen. Die Artefakte werden meist durch Eigenbewegung des 

Patienten, seine Atmung, seinen Herzschlag und durch Augenbewegung oder durch Bewegung 

des Untersuchers verursacht.  

Auch durch falsch kalibrierte Ultraschallgeräte und falsche Datenübertragungsgeschwindigkeit 

bei Ultraschallsystemen ohne Positionssender kann es zu Erfassungsartefakten kommen 

(DOWNEY et al. 2000; NELSON et al. 2000). 

 

5. Wiedergabeartefakte: 
Diese Artefakte entstehen bei der Auswahl falscher Volumenmodi nach der Datenakquisition. 

Durch Einstellung der Oberflächendarstellung, eines falschen „Region of Interest“, falschem 

Kontrast, Grauwert, Schwellenwert, Zoom oder falscher Helligkeit kann es zu vielfältigen 

Artefakten wie Verlust von Strukturen, Defekten, zusätzlichen Strukturen oder Schattenbildung 

kommen (NELSON et al. 2000). 

 

6. Bearbeitungsartefakte: 
Wird die freie Sicht auf Strukturen von Interesse durch andere Strukturen im Volumenbild 

versperrt, kann ein „elektronisches Skalpell“ diese entfernen. Artefakte entstehen immer dann, 

wenn zu viele diagnostisch wichtige Informationen entfernt worden sind (NELSON et al. 2000). 

 

2.1.5 Untersuchungsverfahren 
 

In der diagnostischen Sonographie kann zwischen A-Mode, B-Mode und Dopplersonographie 

unterschieden werden.  Die dreidimensionale Sonographie beruht auf der Rekonstruktion von B-

Mode-Bildern (BYRNE und GREEN 2002; POULSEN NAUTRUP 1998).  

Im Folgenden sollen die für diese Arbeit relevanten Untersuchungsverfahren beschrieben 

werden. 
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2.1.5.1 B-Bild-Verfahren 
Beim B-Bild-Verfahren werden Echos durch Lichtpunkte wiedergegeben. Die Position der 

Punkte auf dem Monitor korrelieren mit der Zeit, welche ein Echo benötigt um zum Transducer 

zurückzukehren. Die Helligkeit der Punkte ist proportional zur Intensität der Echos und wird 

durch verschiedene Graustufen dargestellt. Somit können Grenzflächen anatomischer 

Strukturen als virtuelles Schnittbild wiedergegeben werden (GLADISCH 1993; POULSEN 

NAUTRUP 1998; RANTANEN und EWING 1981). 

Es kann zwischen eindimensionalen B-Bild-Verfahren (M-Mode) und zweidimensionalen 

Compound- und Real-Time-Verfahren unterschieden werden (POULSEN NAUTRUP 1998). Für 

die vorliegende Arbeit ist lediglich das Real-Time-Verfahren von Bedeutung. 

 

1. Real-Time-Verfahren: 
Bei diesem Echtzeitverfahren werden 10 – 60 zweidimensionale Einzelbilder pro Sekunde durch 

einen automatischen Scanvorgang auf dem Bildschirm dargestellt. Dadurch entsteht ein  

kontinuierlicher Bildablauf, wie bei einem Film. Bei dieser Methode der Wahl in der 

sonographischen Diagnostik können physiologische Bewegungsabläufe beurteilt und 

gewünschte Regionen kontinuierlich durchmustert werden (BYRNE und GREEN 2002; 

GLADISCH 1993; POULSEN NAUTRUP 1998; RANTANEN und EWING 1981). 

 

2.1.5.2 Dreidimensionale Sonographie 
1. Datenakquisition: 
Um aus zweidimensionalen Schnittbildern ein dreidimensionales Bild computergestützt zu 

rekonstruieren, muss die Lagebeziehung der einzelnen Schnitte zueinander exakt, das heißt 

mathematisch genau, bekannt sein. Jeder Ultraschallschnitt wird dabei durch drei Koordinaten in 

einem rechtwinkligen Koordinatensystem in seiner räumlichen Lage bestimmt. Sind alle drei 

Koordinaten bekannt, kann ein dreidimensionales Bild aus der koordinierten Schnittbildfolge 

erfolgen (SOHN et al. 1988). Es bestehen verschiedene Möglichkeiten zur Gewinnung einer 

koordinierten Schnittbildfolge. Entweder stehen die Schnittbilder durch einen definierten Abstand 

oder durch einen bestimmten Winkel miteinander in Beziehung (Vergleiche Abbildung 2). 
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Abbildung 2: Dreidimensionale Akquisitionsmethoden  
a) Parallele Schnittbilderfassung, b) Schnittbilderfassung durch horizontale Schallkopfneigung,  
c) Schnittbilderfassung durch vertikale rotierende Schallkopfneigung, d) Freihandakquisition (nach Fenster 
& Downey, 2000). 
 
 
Bei der parallelen Schnittbildfolge, welche auch bei der Magnetresonanztherapie und der 

Computertherapie genutzt wird, kann der Schallkopf manuell oder durch eine mechanische 

Vorrichtung parallel über eine Oberfläche verschoben werden. Die Geschwindigkeit, mit welcher 

dabei der Schallkopf verschoben wird, muss konstant gehalten werden, damit in regelmäßigen 

Abständen Einzelschnitte angefertigt werden können. Die Vorteile dieser Datenakquisition liegen 

in der relativ schnellen und einfachen Erfassung der Daten. Nachteilig wirkt sich die relativ große 

Strecke aus, welche abgefahren werden muss und Unebenheiten der Körperoberfläche, welche 

eine Erfassung einer koordinierten Schnittbildfolge nahezu unmöglich machen (FENSTER und 

DOWNEY 2000; POULSEN NAUTRUP 1998; SOHN 1994).  

 

Durch Neigung des Schallkopfes stehen die einzelnen Schnittbilder über einen definierten 

Winkel miteinander in Beziehung. In einem größeren Gehäuse liegt ein elektrischer Schrittmotor, 

welcher den Schallkopf drehen kann. Erfolgt die Drehung um eine senkrecht (vertikal) stehende 

Achse, schneiden sich die Bilder in einem gemeinsamen Schnittpunkt, dem Kreismittelpunkt. 

Wird der Schallkopf um eine horizontale Achse gedreht, liegt der Drehpunkt innerhalb des 

Schallkopfes und es werden Schnittbilder gewonnen, welche sich nicht überlappen. Die 

horizontale Drehung stellt die Methode der Wahl dar.  

Die Vorteile der Schallkopfneigung liegen in der Kompaktheit des Schallkopfes und der 

schnellen dreidimensionale Rekonstruktion durch die einfache geometrische Anordnung der 

Schnittbilder. Der Nachteil dieser Methode liegt in der schlechten Auflösung in tieferen Lagen, 

da mit zunehmender Entfernung zum Drehpunkt, die Schnittbilder weiter voneinander entfernt 

liegen (NELSON et al. 1999; POULSEN NAUTRUP 1998; SOHN 1994). 
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Die Freihandakquisition stellt neuerdings eine weitere Möglichkeit der Schnittbildakquisition 

dar. Dabei ist der Schallkopf mit einem Positionsgeber ausgestattet, welcher dem Computer die 

genaue Lage und Orientierung des Transducers im Raum vermittelt. Der Untersucher muss 

keine koordinierte Schnittbildfolge einhalten, sondern hat die Möglichkeit die Ebenen und 

Beziehungen der Schnittbilder zueinander selbst zu wählen. Es ist bei dieser Technik allerdings 

darauf zu achten, dass keine zu großen Lücken bei der Datenakquisition entstehen (FENSTER 

und DOWNEY 2000; NELSON et al. 1999; SAKAS et al. 2000). 

 

2. 3D-Rekonstruktion: 
Die Anzahl der zweidimensionalen Schnittbilder bestimmt anschließend Größe und Auflösung 

des dreidimensionalen Volumens. Während der Scanzeit, also der Zeit während der Anfertigung 

der Einzelschnittbilder, dürfen sich Untersucher und Patient nicht bewegen, um Artefakte zu 

vermeiden. Die Scanzeit sollte auch von Eigenbewegungen der Organe abhängig gemacht 

werden. Es ist daher ein Kompromiss zwischen möglichst vielen Ebenen und Dauer der 

Scanzeit einzugehen (POULSEN NAUTRUP 1998).  

 

Um schließlich aus den Schnittbildern ein dreidimensionales Volumen zu rekonstruieren, muss 

jedes zweidimensionale Bild an die korrekte Stelle im Gesamtbild platziert werden. Die 

vorhandenen Möglichkeiten dafür beruhen auf den Merkmalen der Einzelschnitte oder deren 

Voxel. Letztere Rekonstruktion stellt die Methode der Wahl dar (FENSTER und DOWNEY 2000; 

NELSON et al. 1999). 

 

Bei der voxelbasierten Rekonstruktion wird ein dreidimensionales Raster von Bildelementen 

aufgebaut, wobei jeder Pixel aus den zweidimensionalen Bildern an die korrekte Stelle in diese 

Volumenmatrix gesetzt wird. Dabei werden nicht gescannte Bildpunkte vom Programm aus dem 

Mittelwert umliegender Bildpunkte errechnet. Bei dieser Methode kommt es zu keinem 

Informationsverlust, allerdings können hierbei durch zu große Lücken bei der Datenakquisition 

falsche Informationen hinzugefügt werden. Zusätzlich verschlechtert sich durch die 

Lückenfüllung auch die Auflösung. 

 

3. Darstellungsmöglichkeiten der 3D-Bilder: 
Es gibt verschiedene Möglichkeiten die dreidimensionalen Bilder auf dem Monitor 

wiederzugeben. 
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Zum einen besteht die Möglichkeit, die einzelnen orthogonalen Schnittebenen in einem 

Vierquadrantenbildschirm darzustellen. In diesem sogenannten „Schnittebenenmodus“ können 

alle zweidimensionalen Einzelbilder aus jeder beliebigen errechneten Richtung betrachtet 

werden und so das komplette Datenvolumen untersucht werden (DOWNEY et al. 2000; 

NELSON und PRETORIUS 1997). 

 

Bei der Oberflächendarstellung werden lediglich die Konturen einer Struktur dargestellt. Die 

gesamte Ultraschallinformation innerhalb des Organs wird nicht angezeigt. Mit dieser Methode 

lässt sich die gewünschte Struktur eindeutig dreidimensional darstellen, sie funktioniert 

allerdings nur, wenn große Unterschiede in den Ultraschalleigenschaften von Organ und 

Umgebung bestehen (FENSTER und DOWNEY 2000; SOHN 1994). 

Bei der transparenten Darstellungsweise bleiben alle Ultraschallbildinformationen vorhanden 

und werden zu einem gläsernen dreidimensionalen Bild zusammengesetzt. Dadurch wird das 

errechnete Bild sehr komplex und ist räumlich erst dann zu erkennen, wenn es am Computer 

gedreht wird (POULSEN NAUTRUP 1998; SOHN 1994). 

Eine Kombination aus Oberflächen- und Transparenzdarstellung ist ebenso möglich, wie die 

Darstellung des dreidimensionalen Volumens in einer zeichnerisch perspektivischen 

Nischendarstellung, die Darstellung mit maximal eingestellter Intensität, oder als 

Röntgendarstellung, mittels derer alle zweidimensionalen Bilder summiert als ein einziges Bild 

dargestellt werden (DOWNEY et al. 2000; LEES 2001; POULSEN NAUTRUP 1998). 

 

4. Bearbeitung der 3D-Bilder: 
Da alle Bildpunkte im vorhandenen Volumen erfasst und berechnet wurden, kann das Volumen 

wie oben erwähnt in allen erdenklichen Ebenen geschnitten werden und so auch Schnitte 

dargestellt werden, welche mit der zweidimensionalen Sonographie nicht erreicht werden 

können (SOHN 1994). Da jeder Punkt exakt dem Raum und damit seiner Nachbarschaft 

zugeordnet ist, können anatomische Lagebeziehungen und pathologische Veränderungen 

leichter erkannt und verstanden werden, die Orientierung ist somit erleichtert (DELCKER et al. 

1998; POULSEN NAUTRUP 1998). 

Mithilfe verschiedener Computerprogramme ist es möglich, das Datenvolumen weiter zu 

bearbeiten. Es ist möglich, die dreidimensionalen Datensätze zu drehen, heranzuzoomen, 

einzufärben, Licht und Schatten zu verändern und mithilfe eines elektronischen Skalpells 

unerwünschte Informationen aus dem Volumen herauszuschneiden (FENSTER und DOWNEY 

2000; LEES 2001; MERZ et al. 2000; NELSON und PRETORIUS 1997).  
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Eine weitere wichtige Bearbeitungsmöglichkeit stellt die Volumenberechnung dar, welche vor 

allem in der Ophthalmologie im Rahmen der Tumordiagnostik eine Rolle spielt (FINGER 2002; 

JENSEN und HANSEN 1991; SILVERMAN et al. 1993). 

 

 

2.2 Ophthalmologische Sonographie 
 

2.2.1 Indikation 
 

Die wichtigste Indikation für die zweidimensionale okulare Sonographie in der Human- wie in der 

Veterinärophthalmologie stellt die Trübung von Augenbinnenstrukturen dar, welche eine 

vollständige ophthalmologische und ophthalmoskopische Untersuchung verhindert. Diese 

Trübungen können durch Hornhauttrübungen, Linsentrübungen, Blutungen und durch 

Entzündungsprodukte entstehen (BYRNE und GREEN 2002; GUTHOFF und GUTHOFF 1987; 

KRAUTWALD-JUNGHANNS und NEUMANN 1991; SCOTTY et al. 2004). 

Weitere Indikationen liegen bei Traumata, Läsionen an Iris, Ziliarkörper, Linse, Augenfächer und 

Fundus, retrobulbären Entzündungen, Fremdkörpern, Bulbusrupturen, Linsenluxationen, 

Größenveränderungen des Bulbus, Vermessungen des Auges und ganz besonders bei 

Vorhandensein von Tumoren vor (BYRNE und GREEN 2002; COLEMAN et al. 1973; 

GONZALEZ et al. 2001; GUTHOFF 1999; HUGHES und BYRNE 1987; KRAUTWALD-

JUNGHANNS und NEUMANN 1991). 

 

Indikationen für die dreidimensionale Sonographie bestehen ebenfalls bei Vorhandensein von 

Trübungen im Auge, Hypotonie, Erkrankungen von Iris und Ziliarkörper, Hyphaema und 

Fremdkörper. Die wichtigste Indikation stellen allerdings Tumore dar, da mittels 

dreidimensionaler Sonographie ihre genaue Struktur, Größe, Lage und ihr Volumen ermittelt 

werden kann und die Umfangsvermehrungen aus einzigartigen Ebenen betrachtet werden 

können (CUSUMANO et al. 1998; ENDO et al. 2000; FINGER 2002; GRASBON et al. 2001; 

NELSON et al. 1999; SILVERMAN et al. 1993). 
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2.2.2 Untersuchungsmethoden 
 

In der okularen Sonographie können verschiedene Methoden für die Untersuchung des Auges 

angewandt werden. Es kann zwischen der transpalpebralen Methode, der Untersuchung mithilfe 

einer Vorlaufstrecke und der Kornea-Kontakt-Methode unterschieden werden. 

 

Bei der transpalpebralen Methode, welche teilweise in der Humanmedizin und 

Veterinärmedizin bei Hunden und Pferden eingesetzt wird, erfolgt die Ultraschalluntersuchung 

durch die geschlossenen Lider hindurch. Es können mit dieser Methode zwar auch 

schallkopfnahe Strukturen dargestellt werden, es kommt jedoch meist zu einer schlechteren 

Auflösung aufgrund der Dämpfung der Ultraschallwellen durch die Lidstrukturen (BYRNE und 

GREEN 2002; SCHUTZ und BRONSON 1974; WILLIAMS et al. 1995). 

 

Mithilfe einer Vorlaufstrecke, welche den Abstand zwischen Schallkopf und Auge vergrößert, 

können durch Überwinden des schallkopfnahen ungenügend aufgelösten Nahbereiches auch 

Strukturen im vorderen Augensegment gut dargestellt werden. Die Vorlaufstrecken bestehen 

entweder aus Kunststoff, aus flüssigkeitsgefüllten Kissen oder stellen wassergefüllte 

Augentrichter (Immersionsverfahren) dar, welche direkt auf die Hornhaut oder Sklera aufgesetzt 

werden (GONZALEZ et al. 2001; GUTHOFF 1988; POULSEN NAUTRUP 1998; PURNELL 

1969). 

 

Die Methode der Wahl stellt allerdings die direkte Kornea-Kontakt-Methode dar (BYRNE und 

GREEN 2002; GONZALEZ et al. 2001; WILLIAMS et al. 1995). Sie liefert die aussagekräftigsten 

Bilder vor allem des hinteren Augensegmentes. Als Ankopplungsmedium eignet sich 

Methylzellulose ebenso wie kommerziell erhältliches steriles Ultraschallgel. Wird das Gel 

reichlich auf den Schallkopf aufgetragen, kann es die Funktion einer Vorlaufstrecke übernehmen 

und auch Strukturen im vorderen Augensegment können sehr gut dargestellt werden 

(WILLIAMS et al. 1995). Durch den direkten Kontakt des Auges mit Ultraschallgel muss in jedem 

Fall eine Oberflächenanästhesie der Hornhaut erfolgen (POULSEN NAUTRUP et al. 1998). 

Bei der Untersuchung von Vogelaugen mittels Ultraschall wird in der Literatur in den meisten 

Fällen die direkte Kornea-Kontakt-Methode angewendet (GUMPENBERGER und KOLM 2006; 

LABELLE et al. 2012; LEHMKUHL et al. 2010; SQUARZONI et al. 2010; STROBEL 2010). 

Allerdings werden in der Ornitho-Ophthalmologie auch Ultraschallverfahren mit einer 
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Vorlaufstrecke beschrieben (HARRIS et al. 2008; HUFEN und KORBEL 2009; KORBEL et al. 

2009). 

 

2.2.3 Untersuchungsebenen 
 

Nach BYRNE und GREEN (2002) lassen sich die primär wichtigen Untersuchungsebenen für 

das Auge in eine axiale, eine transversale und in eine longitudinale Ebene einteilen (Vergleiche 

Abbildung 3). 
 
 

 
Abbildung 3: sonographische Untersuchungsebenen am Auge 
a) axiale, b) transversale und c) longitudinale Untersuchungsebene (aus Byrne et al. 2002). 
 
 
Bei der axialen Schallkopfausrichtung, welche auch bei der vorliegenden Arbeit zur 

Anwendung kommt, wird der Schallkopf mittig auf die Kornea platziert und die Linse und der 

Sehnerv im Zentrum des Bildes ausgerichtet. Verschiedene axiale und auch paraxiale Schnitte 

können so im Uhrzeigerformat angefertigt werden.  

Bei der axialen horizontalen Schallkopfausrichtung zeigt die Markierung des Schallkopfes nach 

nasal, bei der axialen vertikalen Ausrichtung des Schallkopfes wird der Schallkopf um 90° 

gedreht und die Markierung zeigt nach dorsal. 

Bei paraxialen Schnitten durch das Auge wird die Schallkopfposition leicht nach nasal, temporal, 

dorsal oder ventral variiert. 

Vorteil der axialen Untersuchungsebene stellt das einfache Verständnis von okularen Strukturen 

dar. Nachteilig ist die schlechtere Auflösung von hinter der Linse gelegenen Augenstrukturen 

durch die Brechung und Dämpfung der Schallwellen beim Durchdringen der Linsenstrukturen. 
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Trotzdem stellt die axiale Untersuchungsebene in der Veterinärmedizin die Methode der Wahl 

dar, da eine Umgehung der Linse am wachen Tier nicht immer zu realisieren ist (BYRNE und 

GREEN 2002; GONZALEZ et al. 2001; POULSEN NAUTRUP et al. 1998). 

 

Bei der transversalen und longitudinalen Untersuchungsebene wird der Schallkopf nicht auf 

der Kornea, sondern auf die Konjunktiva bzw. der Sklera aufgesetzt. Damit wird versucht die 

Linse zu umgehen, um bessere Ultraschallbilder der hinteren Augenstrukturen zu erlangen. 

Dabei zeigt die Markierung des Schallkopfes bei der longitudinalen Ebene stets in Richtung 

Pupille, wohingegen die Schnittebene bei der transversalen Scanebene immer parallel zur 

Pupille gerichtet ist.  

In der Humanmedizin stellen diese Untersuchungsebenen die Ebenen der Wahl dar, in der 

Veterinärmedizin sind am wachen Tier diese Ebenen aber kaum realisierbar, da der Bulbus 

meist zu tief in der Orbita liegt und eine willentliche Rotation des Bulbus durch den Patienten 

nicht durchgeführt wird (BYRNE und GREEN 2002; GONZALEZ et al. 2001; POULSEN 

NAUTRUP et al. 1998). 

 

 

2.3 Das Vogelauge 
 

2.3.1 Anatomische Grundlagen und sonographische Normal-
befunde des vorderen Augensegmentes 
 

Voraussetzung für die korrekte Beurteilung eines Ultraschallbildes ist die genaue Kenntnis der 

Anatomie und Physiologie des Vogelauges. Im Folgenden soll vor allem auf die Besonderheiten 

der Vogelanatomie auch in Bezug auf die Relevanz für die vorliegende Arbeit eingegangen 

werden. 

 

2.3.1.1 Orbita 
Die Augenhöhle wird von Knochen des Hirnschädels durch Anteile der Ossa frontale, 

squamosum, laterosphenoidale, lacrimale und ethmoidale gebildet (TIEDEMANN 1810). Sie ist 

bei den meisten Vogelarten nach ventral nicht vollständig knöchern geschlossen, sondern nur 

durch das faszienartige Ligamentum suborbitale verbunden. Beide Augenhöhlen liegen nahe 
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beieinander und werden lediglich durch das dünne Septum interorbitale getrennt (EVANS 1979; 

FREWEIN und SINOWATZ 2004; TIEDEMANN 1810). 

Der Processus supraorbitalis – ein nach kaudolateral ausgezogener Fortsatz des Os lacrimale 

überragt das Auge tagaktiver Greifvögel dorsal und schützt es gegen traumatische Einwirkungen 

(KORBEL 1994). 

Tagaktive Vögel weisen in der Regel eine sehr tiefe Orbita auf, welche Schutz vor traumatischen 

Einflüssen bietet. Bei vielen dämmerungsaktiven Vögeln wird diese Aufgabe jedoch von dem 

knöchernen Skleralring (Anulus ossicularis sclerae) übernommen, da hier die Augenhöhle nur 

eine sehr flache Form aufweist. 

Der Augapfel ruht auf dem Sinus infraorbitalis wie auf einem Luftkissen und ist nicht wie bei 

Säugetieren von einem retrobulbären Fettkörper umgeben (REESE et al. 2008).  

 
2.3.1.2  Bulbus 
Der Augapfel ist bei allen Vögeln verhältnismäßig sehr groß (SLONAKER 1918) und nimmt 

einen großen Teil des Kopfes ein. Beträgt der Anteil beider Augen von Menschen lediglich 1 % 

am Kopfgewicht, so können es bei tagaktiven Greifvögeln und Eulen 22 – 32 % sein (KORBEL 

1994; REESE et al. 2008).  

Der Bulbus der Vögel ist nicht kugelförmig. Vielmehr ähnelt er einem Rotationsellipsoid, bei 

welchem der Äquatordurchmesser stets größer als der Längsdurchmesser ist (FREWEIN und 

SINOWATZ 2004). Der vordere Abschnitt (Bulbus oculi anterior) ist stärker gekrümmt als der 

hintere Teil des Augapfels (Bulbus oculi posterior) mit dem schalenartigen Fundus oculi. Ein 

ringförmiger konkaver Abschnitt, welcher durch den knöchernen Skleralring gestützt wird, stellt 

die Verbindung der beiden Abschnitte des Augapfels dar (REESE et al. 2008). 

 

Der Bulbus kann in verschiedene Formen unterteilt werden (BEZZEL 1990; REESE et al. 2008): 

• flache Augapfelform  (tagaktive schmalköpfige Vögel, z.B. Tauben, Papageien) 

• globuläre Augapfelform (tagaktive breitköpfige Vögel, z.B. Taggreifvögel) 

• tubuläre Augapfelform (dämmerungsaktive breitköpfige Vögel, z.B. Eulen) 

• flachglobulärer Mischtyp (z.B. Entenvögel) 
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Abbildung 4: Augapfelformen beim Vogel 
flache, globuläre und tubuläre Bulbusform (aus WOOD (1917)). 

 

 

Die optische Achse von Kornea und Linse weicht im Vogelauge leicht nach nasal von der 

Mittelachse ab, wodurch im Augapfel eine Asymmetrie entsteht. Dies wird durch einen nasal 

schmaleren Ziliarkörper verursacht, wodurch das binokulare Sehen erleichtert wird (BEZZEL 

1990; FRANZ 1934; REESE et al. 2008; SEIDEL 1988).  Durch Anordnung der Augäpfel lateral 

am Kopf entsteht zwar nur ein monokulares Sehfeld, es kann aber bei vielen Vogelarten durch 

besonders bewegliche Halswirbel ein Gesichtsfeld von bis zu 360° erreicht werden (REESE et 

al. 2008). 

 

Die Wand des Augapfels besteht aus drei Schichten:  

• der äußeren Augenhaut (Tunica fibrosa bulbi)  

• der mittleren Augenhaut (Tunica vasculosa bulbi, Uvea)  

• der inneren Augenhaut (Tunica interna bulbi, Retina).  

 

Im Inneren des Augapfels befinden sich Glaskörper, Linse und Kammerwasser (FREWEIN und 

SINOWATZ 2004). 

 

2.3.1.3 Tunica fibrosa bulbi 
Die äußere Augenhaut wird von der hinteren undurchsichtigen weißen Sklera und der vorderen 

transparenten Hornhaut (Cornea) gebildet. Ihre Funktion besteht darin, dem Augapfel Stabilität 

und Festigkeit zu geben, dem Augeninnendruck einen Widerstand entgegenzusetzen und ihn 

vor äußeren Einflüssen zu schützen (REESE et al. 2008). 
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Die Sklera besteht aus Bindegewebe, in welches hyaline Knorpelplatten eingelagert sind. Diese 

können am Augenhintergrund eine Aussparung für den Durchtritt des N. opticus bilden 

(FREWEIN und SINOWATZ 2004). Im Bereich des Übergangs von Sklera in Kornea geht die 

Knorpelplatte in den Skleralring über. Diese besteht bei den meisten Vogelarten aus 15 kleinen 

sich überlappenden Knochenplättchen (Ossicula sclerae), welche formgebend für das Auge 

sind, als Ansatzpunkt des Strahlenkörpers gelten und die okularen Strukturen vor allem bei der 

Akkommodation schützen (MURPHY 1984; REESE et al. 2008). 

 

Die Hornhaut besteht beim Vogel aus 5 Schichten (REESE et al. 2008): 

• vorderes Hornhautepithel (Epithelium corneae externum) 

• Bowman-Membran (Lamina limitans superficialis, sehr stark ausgeprägt) 

• Bindegewebige Eigenschicht (Substantia propia corneae) 

• Descemetsche Membran (Lamina limitans profunda, kann auch fehlen) 

• hinteres Hornhautepithel (Epithelium corneae internum) 

 

Die Kornea ist bei den verschiedenen Vogelarten unterschiedlich stark gewölbt, beispielsweise 

besitzen Wasservögel eine sehr flache Hornhaut im Gegensatz zu Eulenvögel mit entsprechend 

stark gekrümmter Kornea (REESE et al. 2008). 

Die Hornhautdicke beträgt mit Ausnahme von Wasservögeln und einigen tagaktiven Greifvögeln 

ca. 0,4mm und ist damit dünner als die Hornhaut von Säugetieren (FREWEIN und SINOWATZ 

2004; MARTIN 1985; REESE et al. 2008). 

Die Hornhaut ist mit zahlreichen sensiblen Nervenfasern versorgt, besitzt aber keine Gefäße, die 

Nährstoffversorgung erfolgt daher über Kammerwasserdiffusion und Diffusion aus dem 

präkornealen Tränenfilm (REESE et al. 2008). 

 

2.3.1.4 Tunica vasculosa bulbi 
Die mittlere Augenhaut besteht aus 3 Abschnitten (FREWEIN und SINOWATZ 2004): 

• der Regenbogenhaut (Iris) 

• dem Strahlenkörper (Corpus ciliare) 

• der Aderhaut (Choroidea) 

 

Die Iris als vorderster Anteil der Uvea trennt zusammen mit der Linse die bis zur Hornhaut 

reichende große vordere Augenkammer (Camera anterior bulbi) von der weitaus kleineren 
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zwischen Iris und Linse liegenden hinteren Augenkammer ab. Mit  ihrer zentralen Kante bildet 

die Iris das runde Sehloch (Pupilla) (REESE et al. 2008).  

An ihrem Ursprung, dem Ziliarkörper, hat die Iris einen sehr schmalen Durchmesser, wird im 

mittleren Teil dicker und nimmt dann zum Pupillenrand wieder an Dicke ab (MARTIN 1985).  

Die Vorderfläche besteht aus einer Schicht Pigmentzellen und Fibroblasten, die Hinterfläche 

wird von zwei Epithelschichten (Stratum pigmentosum) gebildet. Das Irisstroma enthält lockeres 

pigmenthaltiges Bindegewebe, in welches die überwiegend quergestreiften und damit willkürlich 

gesteuerten Muskeln M. sphincter pupillae und M. dilatator pupillae liegen (FREWEIN und 

SINOWATZ 2004). Sie ermöglichen eine sehr schnelle Hell-Dunkel-Adaption. Bei einigen 

Tauchvögeln ist der M. sphincter pupillae sehr kräftig ausgeprägt und kann die Linse bei der 

Akkommodation durch die Pupillenöffnung wölben. 

Die starke Pigmentierung sorgt einerseits dafür, dass Licht nur durch die Pupille ins Auge fallen 

kann, andererseits sorgt sie in Verbindung mit Blutgefäßen und Fetteinlagerungen auch für die 

Farbe der Iris. Durch eine pigmentfreie, fett- und blutgefäßarme Zone im Bereich der Pupille bei 

Tauben, wodurch das dunkle Pigment der stark pigmentierten Irishinterfläche durchschimmert, 

entsteht der sogenannte „Wertring“ (REESE et al. 2008; SEIDEL 1988). Bei Tauben besitzt die 

Iris zusätzlich auch reflektierende Zellen (Iridozyten), welche ein Tapetum lucidum bilden 

(MARTIN 1985; OLIPHANT 1987). 

Die Irisbasis wird an der Sklera durch das Ligamentum pectinatum verankert, welches aus 

einem weitmaschigen elastischen Fasergeflecht besteht. Diese Faserbündel überbrücken den 

Kammerwinkel (Angulus iridocornealis) (FREWEIN und SINOWATZ 2004). 

 

Der Strahlenkörper (Corpus ciliare) hat laut REESE et al. (2008) verschiedene zentrale 

Aufgaben: 

• Verankerung der Linse im Augapfel 

• Verformung von Linse und Kornea durch seine Muskulatur 

• Zentraler Bestandteil des Akkommodationsmechanismus 

 

Das Corpus ciliare stellt einen leicht vorgewölbten, ringförmigen Wulst dar und liegt zwischen 

der Irisbasis (Margo ciliaris iridis) und der Aderhaut. Nach außen ist er am knöchernen 

Skleralring befestigt (FREWEIN und SINOWATZ 2004). 

Die innere Oberfläche des Corpus ciliare besitzt zahlreiche meridional verlaufende Falten 

(Plicae ciliares), welche nach vorne den Strahlenkranz (Corona ciliaris, Pars plicata) mit den 

Ziliarfortsätzen (Processus ciliaris) und nach hinten den Orbiculus ciliaris (Pars plana) bilden 
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(KORBEL 1994; REESE et al. 2008). Die Plicae ciliares besitzen ein zweischichtiges Epithel, die 

untere Schicht besteht aus hochprismatischen melaninreichen Zellen und entspricht dem 

Pigmentepithel der Pars optica der Retina. Die zweite Schicht besteht aus nichtpigmentierten 

hochprismatischen Epithelzellen, welche das Kammerwasser produzieren (FREWEIN und 

SINOWATZ 2004).  

Der Aufhängeapparat der Linse besteht aus den Ziliarfortsätzen und dem Strahlenbändchen 

(Zonula ciliaris). Die Spitzen der Ziliarfortsätze der Plicae ciliares verschmelzen an der 

Peripherie der Linse mit dieser und bieten somit der Linse eine stabile Fixierung, so dass 

Linsenluxationen beim Vogel vergleichsweise selten zu beobachten sind (KORBEL 2001). Das 

Strahlenbändchen besteht aus Zonulafasern (Fibrae zonulares), welche aus der Pars ciliaris 

retinae entspringen und zur Linsenkapsel ziehen. Die Zonulafasern sind allerdings – im 

Gegensatz zum Säugetierauge -  nur von wenig Bedeutung für die Aufhängung der Linse 

(FREWEIN und SINOWATZ 2004; REESE et al. 2008).  

Der Ziliarmuskel (M. ciliaris) ist bei Vögeln quergestreift und liegt in das Stroma des Ziliarkörpers 

eingelagert.  

 

Nach DUKE-ELDER (1958) und REESE et al. (2008) unterscheidet man einen: 

• vorderen M. ciliaris anterior (Cramptonscher Muskel, alte Nomenklatur M. cornealis 

anterior) 

• hinteren M. ciliaris posterior (Brückescher Muskel, alte Nomenklatur M. cornealis 

posterior) 

 

Der M. ciliaris anterior entspringt an der Innenseite der Sklera auf Höhe des Skleralringes und 

hat seinen Ansatz im Stroma der Kornea. Der M. ciliaris posterior hat seinen Ursprung ebenfalls 

an der Innenseite des Skleralringes, zieht aber an die Basis des Ziliarkörpers. Ein in der 

früheren Literatur beschriebener Müllerscher Muskel wird heute dem M. ciliaris posterior als 

Fibrae radiales zugeordnet (FRANZ 1934; MARTIN 1985; REESE et al. 2008). 

 

Der Ziliarspalt (Sinus cilioscleralis) wird durch eine innere und äußere Platte des Ziliarkörpers 

gebildet. Über den Kammerwinkel steht er mit der vorderen Augenkammer in weit offener 

Verbindung. Das von Bindegewebsbälkchen bekleidete Maschenwerk des Ziliarspaltes begrenzt 

die Fontanaschen Räume, welche die Verbindung zwischen den Augenkammern und dem 

Schlemmschen Kanal herstellen. Dieser ist für den Abfluss des Kammerwassers zuständig. Der 
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Ziliarspalt ermöglicht erst durch Verschiebung des Ziliarkörpers mit den Ziliarfalten die 

Akkommodation im Vogelauge (FREWEIN und SINOWATZ 2004; REESE et al. 2008). 

 

2.3.1.5 Linse 
Die transparente verformbare bikonvexe Linse (Lens) liegt zwischen Iris und Glaskörper und ist 

epithelialen Ursprungs (REESE et al. 2008). Bei tagaktiven Vögeln ist ihre Form flach, bei 

nachtaktiven Spezies und Wasservögeln ist sie sphärisch (KORBEL 1994). Sie ist weicher und 

damit verformbarer als bei Säugetieren, was vor allem für Tauchvögel aber nicht für Eulenvögel 

gilt (BEZZEL 1990). 

 

Sie besteht aus folgenden Anteilen: 

• Linsenkapsel (Capsula lentis) 

• Ringwulst (Pulvinus anularis lentis) 

• Linsenkammer (Vesicula lentis) 

• Linsenkern (Corpus centrale lentis) 

 

Die Linsenkapsel bildet eine semipermeable Barriere und dient über Diffusion der Ernährung der 

Linse. Ebenso verhindert die Kapsel den Kontakt des Linseneiweißes mit dem Immunsystem 

(REESE et al. 2008). Unter der Kapsel liegt an der Linsenvorderfläche ein einschichtiges 

Epithel. Äquatorwärts werden die Zellen dieses Epithels immer länger und bilden sechsseitige 

Prismen, welche radiär zur Linsenachse gerichtet sind. Sie bilden den vogeltypischen Ringwulst, 

welcher den Linsenäquator gürtelförmig umgibt und als Ansatz der Ziliarfortsätze fungiert 

(FREWEIN und SINOWATZ 2004). Eine wichtige Funktion des Ringwulst wird in 

Zusammenhang mit der Schnelligkeit der lentikulären Akkommodation vermutet (REESE et al. 

2008). Laut SLONAKER (1918) hat der Ringwulst auch nutritive Eigenschaften, da er Flüssigkeit 

in die zwischen Ringwulst und Linsenkörper liegende Linsenkammer sezerniert. 

Der Aufbau des Linsenkerns gleicht dem anderer Vertebraten. Konzentrische Lagen von 

Linsenfasern (Fibrae lentis), welche von zentral nach peripher in ihrer optischen Dicke 

abnehmen, stellen die Grundlage des Linsenkerns dar. Weiterer Bestandteil bei vielen 

Vogelarten ist Glykogen (FREWEIN und SINOWATZ 2004). 

Der Linsenkern von Nesthockern ist in den ersten Lebenswochen noch durch einen hohen 

Gehalt an Glykogen getrübt und wird erst mit dem Flüggewerden klar (LO et al. 1993; REESE et 

al. 2008). 
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1. Akkommodation:  

In Ruhestellung ist das Vogelauge ferngestellt, eine Akkommodation bewirkt also immer eine 

Naheinstellung des Auges (BEZZEL 1990). Vogelaugen weisen einen Refraktions- und 

Akkommodationsapparat von hoher Leistung auf. Das Akkommodationsvermögen der Vögel ist 

sehr unterschiedlich entwickelt. Die Mehrzahl der Vögel hat eine Akkommodationsbreite von 20 

Dioptrien. Tauchvögel sind zu Änderungen um 40 bis 80 Dioptrien befähigt, um den 

Refraktionsfehler bei der Unterwassersicht auszugleichen. Eulenvögel haben lediglich einen 

Anpassungsspielraum von 2 bis 8 Dioptrien und können daher relativ schlecht scharf sehen 

(DUKE-ELDER 1958; KORBEL 1994; MARTIN 1985; SEIDEL 1988; SIVAK et al. 1985). 

 

Drei verschiedene Arten der Akkommodation finden sich im Vogelauge:  

• Korneale Akkommodation  

• Lentikuläre Akkommodation 

• Retinale Akkommodation 

 

Durch Kontraktur des M. ciliaris anterior (Cramptonscher Muskel) wird eine veränderte 

Hornhautkrümmung erreicht. Bei nachtaktiven Vögeln, welche fast vollständig korneal 

akkommodieren, ist dieser Muskel sehr stark ausgeprägt (MARTIN 1985; REESE et al. 2008). 

Die lentikuläre Akkommodation wird durch Kontraktion des M. ciliaris posterior (Brückescher 

Muskel) bewirkt, wodurch der Ziliarkörper gegen den Ringwulst gedrückt wird und dieser die 

Linse verformt. Bei Tauchvögeln, welche fast ausschließlich lentikulär Akkommodieren, ist 

dieser Muskel stark ausgeprägt und sie besitzen eine stark verformbare Linse. 

Eine Verlagerung der Linse nach vorne wird durch die Zonulafasern und das Ligamentum 

pectinatum verhindert. 

Die retinale Akkommodation im Rahmen der Feinjustierung kommt durch Zurückziehen der 

Netzhaut durch choroidale Muskelfasern zustande (KORBEL 1994; MARTIN 1985; REESE et al. 

2008). 

 

2.3.1.6 Augenbinnenräume 
Die Augenbinnenräume werden unterteilt in: 

• Vordere Augenkammer (Camera anterior bulbi) 

• Hintere Augenkammer (Camera posterior bulbi) 

• Glaskörperraum (Camera vitrea bulbi) 
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Die vordere größere Augenkammer wird begrenzt von Irisvorderseite, Linsenvorderfläche und 

Kornea. Die hintere Augenkammer wird durch Irisrückseite, Linse und Ziliarkörper begrenzt und 

stellt sich beim Vogel als sehr klein dar, weil die große Linse sehr weit peripher reicht und auch 

der Vorderrand des Strahlenkranzes die Irishinterfläche fast berührt (FREWEIN und SINOWATZ 

2004). Beide Augenkammern stehen über die Pupille miteinander in Verbindung. Gefüllt sind sie 

mit Kammerwasser, welches von der Pars caeca retinae gebildet und in die hintere 

Augenkammer sezerniert wird. Es fließt über die Pupille in die vordere Augenkammer und kann 

von dort über den Kammerwinkel in die Fontana-Räume des Ziliarspaltes wieder abfließen. Die 

Konsistenz des Kammerwassers ist normalerweise wässrig, kann aber bei Eulenvögeln 

dickflüssig und fadenziehend sein, weil über das hintere Korneaendothel muköse Substanzen 

abgegeben werden (REESE et al. 2008). 

 

2.3.1.7 Lider 
Drei Augenlider schützen Augapfel und Hornhaut: 

• Oberes Augenlid (Palpebra dorsalis seu superior) 

• Unteres Augenlid (Palpebra ventralis seu inferior) 

• Drittes Augenlid (Nickhaut, Palpebra tertia, Membrana nicitans) 

 

Oberes und unteres Lid sind am Rand der Orbita befestigt und begrenzen mit ihren freien 

Rändern die Lidspalte (Rima palpebrarum). Im Gegensatz zu Eulen- und Papageienvögeln ist 

das untere Augenlid bei den meisten Vogelarten größer und beweglicher als das obere Lid. 

Gestützt wird es durch eine bindegewebige Platte (Tarsus palpebralis), welche bei Greifvögeln 

auch knorpelig sein kann. 

Die Oberseite der Lider kann bei Taubenrassen federlos, bei Hühnern mit sehr feinen Federn 

schütter und bei Wasservögeln mit dichten kurzen Federn besetzt sein, welche bis knapp an den 

Lidrand (Limbus palpebralis) reichen. 

An der Lidinnenseite (Facies conjunctivalis) liegt die Lidbindehaut (Tunica conjunctiva 

palpebrarum), welche am Grund des Bindehautsackes (Saccus conjunctivae) in die Tunica 

conjunctiva bulbi übergeht (FREWEIN und SINOWATZ 2004; REESE et al. 2008). 

 

Die Nickhaut stellt sich als eine sehr dünne und meist nahezu durchsichtige Duplikatur der 

Bindehaut dar und ist aus einer Konjunktivalfalte entstanden. Sie befindet sich in ihrer Ruhelage 

im medialen Augenwinkel und zieht sich von dorsonasal in ventrotemporale Richtung über die 

Hornhaut. Zwei kräftige Muskel (Mm. quadratus et pyramidalis membranae nictitantes) sind für 
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die Beweglichkeit der Nickhaut verantwortlich. Der M. quadratus bildet oberhalb des Sehnervs 

eine Sehnenschleife (Trochlea), durch welche die Endsehne des M. pyramidalis durchtritt, 

welche in einer Rinne verläuft. 

Kleine federartige Epithelfortsätze auf der Innenseite der Nickhaut reinigen die Hornhaut beim 

Überstreichen und verteilen den präkornealen Tränenfilm. Weitere Aufgaben des dritten 

Augenlides bestehen im Schutz der Hornhaut vor Austrocknung während des Fluges und bei 

Tauchvögeln – bei denen die Nickhaut vollständig transparent ist – als zusätzliches refraktäres 

Element bei der Unterwassersicht (BEZZEL 1990; DUKE-ELDER 1958; FREWEIN und 

SINOWATZ 2004; REESE et al. 2008). 

 

2.3.1.9 Muskeln des Augapfels 
Die Augenmuskelpyramide besteht laut REESE et al. (2008) aus vier geraden Augenmuskeln: 

• M. rectus dorsalis 

• M. rectus ventralis 

• M. rectus temporalis 

• M. rectus nasalis 

 

und aus 2 schiefen Augenmuskeln: 

• M. obliquus dorsalis 

• M. obliquus ventralis 

 

Die geraden Muskeln können den Bulbus um seine horizontale und vertikale Achse bewegen. 

Die zwei schiefen Muskeln lassen leichte Drehbewegungen des Bulbus um die Längsachse zu 

(FREWEIN und SINOWATZ 2004). 

Die Beweglichkeit des Bulbus ist bei Vögeln unterschiedlich ausgeprägt und meist durch das 

vollständige Ausfüllen der Augenhöhle eingeschränkt. Durch rudimentär ausgebildete 

Augenmuskulatur und die zusätzliche Einbettung der Augen in den umfangreichen Skleralring, 

haben Eulenvögel nahezu unbewegliche Augen. Sie müssen daher zur Fixierung ihren Kopf hin- 

und her bewegen. Durch gute Beweglichkeit von Kopf und Hals kann die geringe Beweglichkeit 

der Augen so kompensiert werden (BEZZEL 1990; REESE et al. 2008). 
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2.3.1.10 Sonographische Darstellung 
In der Literatur finden sich nur wenige Beschreibungen über die Darstellung okularer Strukturen 

von Vögeln im 2D-Ultraschall (GUMPENBERGER und KOLM 2006; HARRIS et al. 2008; 

KRAUTWALD-JUNGHANNS und NEUMANN 1991; LABELLE et al. 2012; LEHMKUHL et al. 

2010; SQUARZONI et al. 2010; STROBEL 2010), allerdings gibt es viele Untersuchungen zur 

2D-Sonographie an Augen verschiedener Tierarten wie beim Pferd (CRONAU und GERHARDS 

2004; GEVELHOFF 1996; ROGERS et al. 1986), beim Kleintier (COTTRILL et al. 1989; 

HOFFMANN und KÖSTLIN 2004; POULSEN NAUTRUP et al. 1998), beim Wiederkäuer (EL-

MAGHRABY et al. 1995; POTTER et al. 2008) und natürlich auch beim Menschen (BAUM 1964; 

BRONSON 1973; GUTHOFF 1988; OSSOINING 1979), wobei Speziesunterschiede kaum ins 

Gewicht fallen. 

 

1. Zweidimensionale Darstellung: 

Für die zweidimensionale Darstellbarkeit von Vogelaugen soll im Folgenden besonders auf 

vogelanatomische Spezifitäten eingegangen werden. 

 

Die Kornea stellt sich als eine doppelte konvex gebogene hyperechogene Linie dar, welche 

nach außen hin das Korneaepithel und die Basalmembran und nach innen hin die Descemet-

Membran sowie das Korneaendothel darstellt. Zwischen den beiden Linien befindet sich das 

Stroma, welches sich hypo- bis anechogen darstellt. Die peripheren Anteile der Kornea stellen 

sich beim Vogel in der axialen Schnittebene laut STROBEL (2010) nicht immer dar. 

Die vordere Augenkammer stellt sich anechogen und frei von Inhalt dar (KRAUTWALD-

JUNGHANNS und NEUMANN 1991; LEHMKUHL et al. 2010). Eine Darstellung der hinteren 

Augenkammer gelingt nur beim Kleintier (HOFFMANN und KÖSTLIN 2004) und beim Pferd 

(CRONAU und GERHARDS 2004) nicht jedoch beim Vogelauge (STROBEL 2010). 

 

Die Linse wird im Ultraschall durch zwei konvex gebogene hyperechoische Linien gebildet, 

welche vorderer und hinterer Linsenkapsel entsprechen. Die hintere Linsenkapsel ist weniger 

stark konvex gebogen. Von der Linse sind nur die Pole darstellbar, da im Äquatorbereich der 

Linse keine Reflexion in Richtung Schallkopf erfolgt. Das Linsenstroma stellt sich anechogen dar 

(SQUARZONI et al. 2010; STROBEL 2010; WILLIAMS et al. 1995).  

 

Iris und Ziliarkörper sind Strukturen von mittlerer Echogenität und befinden sich vor und seitlich 

der Linse. Aufgrund des Skleralringes und der daraus resultierenden Schallauslöschung kann 
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der Ziliarkörper nicht bei allen Vogelarten in der axialen Schallebene dargestellt werden 

(GUMPENBERGER und KOLM 2006; STROBEL 2010). 

 

Der Skleralring verhindert durch Schallauslöschung der dahinterliegenden Strukturen die 

vollständige Darstellung des Bulbus von Vögeln (GUMPENBERGER und KOLM 2006; 

SQUARZONI et al. 2010). 

 

Die Augenlider stellen sich echogen dar und liegen im vorderen und lateralen Bereich des 

Schallbildes. Die Nickhaut stellt sich ebenfalls echogen dar (COTTRILL et al. 1989). 

 

2. Dreidimensionale Darstellung: 

Die dreidimensionale Sonographie von Vogelaugen ist bisher nur in einem einzigen Fall 

beschrieben (REESE 1999), bei Pferden und Hunden gibt es einzelne Arbeiten zu 3D-

Ultraschall am Auge (LIST 2002; VOSOUGH et al. 2007). Lediglich in der Humanmedizin gibt es 

zahlreiche Beschreibungen (GRASBON et al. 2001; IEZZI et al. 1996; NELSON et al. 1999; 

SILVERMAN et al. 1995). 

 

Die Hornhaut stellt sich dreidimensional als doppelte echogene konvexe Linie dar, welche 

Korneaendothel und –epithel darstellen. Das Stroma ist wie im zweidimensionalen Ultraschall 

echofrei (LIST 2002; SILVERMAN et al. 1995). Je nach Untersuchungstechnik ist die Kornea 

nicht immer von Strukturen der Lider zu differenzieren. 

Die vordere Augenkammer stellt sich dreidimensional als echofreier Raum dar (NELSON et al. 

1999; VOSOUGH et al. 2007), in welchem Wiederholungsechos zu finden sein können (LIST 

2002). Die Darstellung der hinteren Augenkammer wird nicht beschrieben. 

 

Die Linse wird im dreidimensionalen Ultraschall nur durch eine vordere leicht konvexe und 

hintere leicht konkave hyperechogene Fläche abgebildet (LIST 2002; VOSOUGH et al. 2007). 

 

Die echogene Iris bildet die Pupille, welche sich beim Pferd queroval als echofreier Bezirk 

darstellt. Iris und Ziliarkörper erscheinen echogen und können im Volumenbild beim Pferd nicht 

immer voneinander differenziert werden (LIST 2002). Beim Menschen lassen sich Iris und 

Ziliarkörper dreidimensional darstellen und voneinander abgrenzen (IEZZI et al. 1996; NELSON 

et al. 1999; SILVERMAN et al. 2001). 
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Durch Ausschneiden des Volumenbildes lässt sich der Kammerwinkel beim Vogel darstellen 

(REESE 1999). 

 

Die Bulbuswand stellt sich als echoreicher Bezirk dar und es kann durch Drehung des 

dreidimensionalen Bildes die Sklera vom übrigen echoreichen retrobulbären Gewebe 

abgegrenzt werden (LIST 2002). Je nach Größe des Augapfels ist er im 3D-Bild jedoch nicht 

immer komplett darstellbar (DOWNEY et al. 1996; GRASBON et al. 2001). 

 

Die Lider stellen sich dreidimensional als echoreiche Bezirke in unmittelbarer Nähe zur 

Ankopplungszone des Schallkopfes dar (LIST 2002; YAMAMOTO et al. 1984). 

 

2.3.2 Pathologische Veränderungen des vorderen Augen-
segmentes und sonographische Darstellung  
 

2.3.2.1 Bedeutung pathologischer Veränderungen 
Das Auge stellt das primäre Sinnesorgan der Vögel dar. Der Verlust der Sehfähigkeit kann nicht 

vollständig von anderen Sinnesleistungen wie dem Gehör oder dem Tastsinn kompensiert 

werden. Auch sind vogelspezifische Verhaltensweisen wie die Fähigkeit zum Fliegen eng an die 

Funktionsfähigkeit der Augen gebunden. KORBEL (1994) konnte eine Inzidenz von 

Augenerkrankungen beim Vogelpatienten von 7,6 % feststellen.  

 

2.3.2.2 Kornea und Sklera 
Erkrankungen von Hornhaut und Sklera kommen nach KORBEL (1994) bei 16,9 % der 

Augenpatienten vor, wobei hauptsächlich Traumata und bakterielle Infektionen die Ursache 

dafür sind. MURPHY et al. (1982) konnten in einer Studie bei wildlebenden Greifvögeln bei 35 % 

der Vögel Veränderungen an der Kornea feststellen.  

Eine Einteilung kann in angeborene Veränderungen, entzündliche und nicht entzündliche 

Keratopathien sowie in Neoplasien erfolgen (GILGER 2008). 

 

1. Angeborene Veränderungen: 

Im Falle eines Keratoglobus liegt eine Größenzunahme der vorderen Augenkammer mit 

Dickenverminderung der Hornhaut vor. Neben einer an das Z-Chromosomen gebundenen, 

rezessiv vererbten Form bei Hühnern, gibt es den Zustand auch bei Drucksteigerung im Auge 
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(BITGOOD und WHITLEY 1986; KORBEL und MAGGS 2012; KORBEL und MAGGS 2012; 

MODIS et al. 2005; SCHMIDT 1988). 

 

Sonographisch stellt sich ein Keratoglobus zwei- und dreidimensional als Erweiterung der 

vorderen Augenkammer mit Verdünnung des Hornhautstromas und –epithels dar (BYRNE und 

GREEN 2002; REINSTEIN et al. 2009). 

 

2. Entzündliche Keratopathien: 

Sie lassen sich unterteilen in nicht-ulzerierende und ulzerierende Keratitiden, wobei es auch 

Überschneidungen gibt (MAGGS 2008). 

 

Nicht-ulzerierende Keratitiden entstehen durch Traumata, mechanischen Irritationen, 

neurologischen Ausfällen, Intoxikationen wie zu hohen Ammoniakkonzentrationen in der Luft, 

durch Infektionen mit verschiedenen Bakterien, Pilzen oder Viren, wie Salmonellen, 

Mykoplasmen, Paramyxoviren oder Avipoxviren oder durch unbekannte Ursachen wie bei der 

einseitigen Keratitis bei Uhus und Waldkäuzen (KORBEL 1994; MARTIN 1995; SEIDEL 1988; 

WILLIAMS 1994). Symptome äußern sich in Ödembildung, Vaskularisation, Pigmentbildung, 

Narbenbildung, Lipidansammlung, Fibrose, Einwanderung von Leukozyten und schließlich 

Einschmelzung der Kornea (MAGGS 2008). 

 

Mithilfe der Sonographie lassen sich milde Keratitiden nicht darstellen, höhergradige Keratitiden 

lassen sich zwei- und dreidimensional darstellen, wenn eine Dickenzunahme der Hornhaut 

vorliegt (GEVELHOFF 1996; LIST 2002; STROBEL 2010). 

 

Ulzerierende Keratitiden sind definiert als Korneaveränderungen, bei denen es zu Verlust von 

Epithelzellen kommt. Ganz allgemein besteht die Ursache in zu starker Abnutzung der Kornea 

bei ungenügender Regeneration (MAGGS 2008). Ursachen eines Ulcus sind vielfältig und 

können durch Traumata, Fremdkörper, Insektenstiche, Chemische Noxen, Infektionen mit 

Bakterien, Pilzen, Viren wie Avipoxviren, einschmelzende Keratitiden, metabolische Störungen, 

Dystrophie oder idiopathisch entstehen (BUYUKMIHCI 1985; GILGER 2008; KARPINSKI 1983; 

KORBEL 1992; MARTIN 1995; SEIDEL 1988). 

 

Im zweidimensionalen Ultraschall zeigt sich eine Dickenzunahme der Hornhaut bis auf den 

Bereich, in dem sich das Ulkus befindet. Hier scheint das Epithel sonographisch dünner zu sein 
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(CRONAU und GERHARDS 2004). Eine dreidimensionale sonographische Darstellung von 

ulzerierenden Keratitiden wird in der Literatur nicht beschrieben. 

 

3. Nicht-entzündliche Keratopathien: 

Sie können kristallartige Trübungen der Kornea zur Folge haben und durch Lipideinlagerungen 

aufgrund von Stoffwechselstörungen, durch Vitamin-A-Mangel, durch angeborene Dystrophien 

oder aufgrund von sekundärer Degeneration bei Entzündungen der Augen entstehen. Durch 

Schädigung der Kornea kann es auch zu Ödemen kommen (GILGER 2008; KORBEL 1992). 

Beim Vogel ist die punktförmige Keratitis der Amazonen beschrieben. Sie ist nur vorübergehend 

und von unbekannter Ätiologie (KARPINSKI 1983). 

 

Ödeme der Hornhaut stellen sich im zwei- und dreidimensionalen Ultraschall hyperechogen als 

Dickenzunahme dar (CRONAU 2004; LIST 2002; POULSEN NAUTRUP et al. 1998). 

 

4. Neoplasien: 
Neoplasien der Hornhaut konnten von KORBEL (1994) nur in 1,5 % der Fällen von 

Hornhauterkrankungen nachgewiesen werden. Sie stellen beim Vogel die Ausnahme dar. In der 

Kleintiermedizin kann eine Einteilung in Dermoide, Pseudotumore und echte Tumore erfolgen. 

Neoplasien entstehen vor allem am Übergang von Sklera zur Kornea und kommen häufiger bei 

Pferd und Rind vor (MAGGS 2008; MARTIN 1995). 

 

Neoplasien der Hornhaut stellen sich zwei- und dreidimensional als unregelmäßige 

hyperechogene Massen dar, welche bis in das Stroma der Kornea reichen können (BENTLEY et 

al. 2003; LIST 2002).  

 

5. Pathologische Sklera-Veränderungen: 

Veränderungen der Sklera sind beim Vogel sehr selten. KORBEL (1994) konnte nur bei 0,3 % 

der Patienten eine Veränderung in Zusammenhang mit einer okularen Mykose, einer 

Schussverletzung und einer Waldkauzkeratitis feststellen. Durch Traumata kann es auch im 

Bereich des Skleralringes zu Veränderungen kommen (MURPHY 1984). Beim Kleintier sind 

Episkleritiden und Skleritiden von Neoplasien zu unterscheiden (MAGGS 2008; MARTIN 1995). 

 

Sonographisch stellt sich eine Skleritis im zweidimensionalen Ultraschall als 

Bulbuswandverbreiterung mit herabgesetzter Reflektivität dar. Sie kann sonographisch leicht mit 
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einem Tumor verwechselt werden (GUTHOFF 1988). Bei chronischen Entzündungen kann die 

Folge auch eine Verdünnung der Sklera sein (BYRNE und GREEN 2002). Melanome, welche 

durch die Sklera ziehen werden dreidimensional sonographisch von ROMERO, FINGER, et al. 

(1998) beschrieben. 

 

2.3.2.3 Vordere und hintere Augenkammer 
Durch Traumata, Fremdkörper oder entzündliche Prozesse, meist ausgehend von der Uvea 

kann es zu Vorkommen unphysiologischen Inhaltes in der vorderen Augenkammer kommen. 

Dabei handelt es sich am Häufigsten um Einblutungen, Fibrin, einen Fremdkörper, Trübungen 

oder ein Hypopyon (HENDRIX 2008; MURPHY 1984).  

 

Blut in der vorderen Augenkammer, auch Hyphaema genannt, entsteht wenn Blutgefäße der 

Uvea oder Retina zerstört werden oder anormal geformt sind (HENDRIX 2008). Nach MURPHY 

(1984) stellen Einblutungen den häufigsten Befund im vorderen Augensegment bei Greifvögeln 

dar. Ursachen sind häufig Traumata, lokale Intoxikationen durch Bienenstiche, Entzündungen 

der Uvea, Gerinnungsstörungen, Neoplasien, Neovaskulisation, angeborene Anomalien bis hin 

zu chronischen Glaukomen (HENDRIX 2008; KORBEL 1994; SEIDEL 1988). 

 

In der zwei- und dreidimensionalen Sonographie stellt sich Blut in der vorderen Augenkammer 

nur schwach echogen bis hypoechogen dar, wobei ältere Einblutungen auch stärker echogen 

sein und auch als diffuse Masse dargestellt werden können (POULSEN NAUTRUP et al. 1998; 

SILVERMAN et al. 1995; STROBEL 2010). 

 

Fibrinansammlungen in der vorderen Augenkammer können in Folge einer Uveitis entstehen 

oder durch Abbau von vorhandenem Blut, wobei durch niedrige fibrinolytische Aktivität beim 

Vogel die Fibrinkoagula auch sehr langsam abgebaut werden können (GYLSTORFF und 

GRIMM 1998; KORBEL und GRIMM 1989). Bei Infektionen mit Herpes-, Reo- und 

Paramyxoviren können ebenfalls fibrinöse Ergüsse in der vorderen Augenkammer beobachtet 

werden (KORBEL 1992). 

 

Im zweidimensionalen Ultraschall stellt sich Fibrin als unregelmäßige echoreiche Schlieren und 

Stränge dar (DIETRICH 2006; STROBEL 2010). Mittels dreidimensionaler Sonographie lassen 

sich zusätzlich Verklebungsbezirke des Fibrins mit umliegenden Strukturen darstellen (LIST 

2002). 
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Als Hypopyon wird die Ansammlung von neutrophilen Granulozyten und Fibrin in der vorderen 

Augenkammer bezeichnet (MARTIN 1995). Beschrieben sind Entstehungen durch vordere 

Uveitiden, Salmonellen- und Reovirusinfektionen (HENDRIX 2008; KORBEL 1992; KORBEL et 

al. 1996). 

 

Sonographisch stellt sich ein Hypopyon zwei- und dreidimensional echoreich aus vielen 

Einzelpunkten bestehend oder als Masse dar (DIETRICH 2006; LIST 2002). 

 

2.3.2.4 Uvea 
Veränderungen der Uvea und der vorderen Augenkammer finden sich laut KORBEL (1994) bei 

15,2 % der untersuchten Augenpatienten, wobei meistens Greifvögel betroffen sind und die 

Ursachen am häufigsten Traumata, bakterielle Infektionen und Pockenviruserkrankungen sind. 

MURPHY et al. (1982) konnte in einer Studie bei 10,4 % der Greifvögel Veränderungen an der 

Uvea feststellen.  

 

1. Uveitis: 
Eine Einteilung der Aderhautentzündungen kann je nach beteiligter Strukturen in eine Uveitis 

anterior (Iridozyklitis), Uveitis posterior (Choroiditis) und Panuveitis erfolgen (HENDRIX 2008). 

Symptome einer Uveitis können Photophobie, Blepharospasmus, Schmerz, Miosis, Epiphora, 

Trübungen des Kammerwassers, Hypopyon, Hyphaema, episklerale Gefäßeinsprossung, 

erniedrigter intraokulärer Druck und Korneaödem sein. Im Folgenden kann es zu Synechien, 

Hyperpigmentationen der Iris, Irisschwellungen, Formveränderungen der Pupille, Glaukomen, 

Katarakten und Netzhautödemen oder –ablösungen kommen (MILLER 2008; SEIDEL 1988; 

WILLIAMS 1994). 

Uveitiden können selbstständig von der Uvea ausgehen oder durch Erkrankungen, die auf die 

Uvea übergreifen entstehen (HENDRIX 2008). 

Ursachen einer Uveitis sind vielseitig und reichen von Traumata und Infektionen mit Pilzen, 

Bakterien wie Salmonellen, Viren wie Herpes-, Picorna-, Reo-, Paramyxo, Flavi- und 

Avipoxviren, Parasiten und Protozoen bis hin zu Fremdkörpern, Neoplasien, metabolischen 

Störungen, Toxinen oder systemischem Überdruck (GYLSTORFF und GRIMM 1998; HENDRIX 

2008; KORBEL 1992; MILLER 2008; PAULI et al. 2007). 

Sonographisch lässt sich eine Uveitis zweidimensional als Dickenzunahme von Iris und 

Ziliarkörper darstellen, wobei sich auch die Linsenkapsel verschwommen darstellen kann 

(POULSEN NAUTRUP et al. 1998; WILLIAMS et al. 1995). Im dreidimensionalen Ultraschall 
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lässt sich zusätzlich die Ausdehnung der Dickenzunahme darstellen (SILVERMAN et al. 1995). 

Die Darstellung der Begleitsymptome einer Uveitis werden hier nicht erneut beschrieben. 

 

2. Synechien: 
Als Synechie wird die Verklebung der Iris entweder mit dem Korneaendothel (vordere Synechie) 

oder mit der vorderen Linsenkapsel (hintere Synechie) bezeichnet (MARTIN 1995; MILLER 

2008). Meist entstehen Synechien in Folge einer Uveitis oder durch Traumata (KORBEL 1992; 

MILLER 2008; MURPHY 1984).  

Durch hintere Synechien kommt es meist zu Schädigungen des Pupillenrandes und somit zu 

einer irregulären Pupillenform (MILLER 2008). 

Falls eine hintere Synechie die komplette Pupille umfasst, entsteht eine Iris bombata (Iris 

bombé). Kammerwasser kann von der hinteren Augenkammer nicht mehr über die Pupille in die 

vordere Augenkammer abfließen und sammelt sich im Raum zwischen Irishinterfläche und 

Linsenvorderfläche an. Durch den zunehmenden Druck wird die Iris immer stärker vorgewölbt 

und beim Kleintier sind sekundäre Glaukome die Folge. Auch bei einer vorderen Synechie kann 

durch Verlegung des Kammerwinkelabflusses beim Kleintier ein sekundäres Glaukom die Folge 

sein (MILLER 2008). 

 

Im zweidimensionalen Ultraschall stellt sich eine vordere Synechie als hyperechogene Linie der 

Iris dar, welche an das Korneaendothel zieht (CRONAU 2004). Eine hintere Synechie ist beim 

Vogel aufgrund der kleinen hinteren Augenkammer schwierig darzustellen, Linsenvorderfläche 

und Iris erscheinen aber verstärkt hyperechoisch (STROBEL 2010). Bei einer Iris bombata 

erscheinen Linsenvorderfläche und Iris verdickt, im zentralen Bereich miteinander verklebt und 

ein anechogener Raum befindet sich zwischen ihnen, welches die hintere Augenkammer 

darstellt (CRONAU und GERHARDS 2004). Auch dreidimensional lassen sich hintere und 

vordere Synechien sonographisch darstellen (CUSUMANO et al. 1998; LIST 2002; REESE 

1999). 

 

3. Zysten und Neoplasien: 
Nach HENDRIX (2008) und MILLER (2008) können Iriszysten angeboren sein oder sekundär 

nach Entzündungen entstehen. Sie bestehen aus stark pigmentierten Epithelzellen, können evtl. 

sekretorische Aktivität aufweisen und entspringen kaudal der Iris oder am Ziliarkörper, am 

hinteren Irisepithel, am Pupillenrand oder befinden sich frei in der vorderen und hinteren 

Augenkammer. Sie kommen einzeln oder multipel, uni- oder bilateral vor und haben 
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unterschiedliche Form und Größe. Falls die Iriszysten zu groß werden können sie auch die Sicht 

einschränken, eine Trübung der Kornea, Pigmentation der Linsenkapsel, Einschränkung der 

Irisfunktion oder Kammerwasserabflussstörungen verursachen. 

MURPHY (1984) und KORBEL (1994) konnten bei je einem Wildvogel als Zufallsbefund eine 

Iriszyste feststellen. 

 

Im zwei- und dreidimensionalen Ultraschall stellen sich die Zysten mit hyperechogener Kapsel 

und hypoechogenen Inhalt dar, welche in die vordere Augenkammer ragen können (BYRNE und 

GREEN 2002; DIETRICH 2006; IEZZI et al. 1996). 

 

Neoplasien der Uvea sind beim Vogel sehr selten (SEIDEL 1988). KORBEL (1994) konnte nur 

bei 1,6 % der Augenpatienten Neoplasien der Uvea feststellen. Tumore lassen sich in primäre 

und sekundäre Tumore nach Metastasierung einteilen. Die häufigsten Tumore bei Vögeln stellen 

Melanome dar, beim Kleintier sind auch Adenome und Adenokarzinome beschrieben. Sie gehen 

vor allem von den pigmentierten Zellen der Iris und des Ziliarkörpers aus (HENDRIX 2008; 

MILLER 2008; MURPHY 1984). 

 

Mittels zweidimensionaler Sonographie lassen sich Neoplasien als umschriebene Zubildungen 

geringer bis mittlerer Echogenität mit homogenem Inhalt darstellen (BOROFFKA et al. 2007; 

BYRNE und GREEN 2002; DIETRICH 2006; DZIEZYC et al. 1986). Mittels dreidimensionaler 

Sonographie können Neoplasien zusätzlich in ihrem ganzen Ausmaß dargestellt werden 

(CUSUMANO et al. 1998; IEZZI et al. 1996; ROMERO, FINGER, et al. 1998). 

 

4. Sonstige Veränderungen: 
Durch eine Hypo- und später Aplasie der Iris kann es zu Iriskolobomen kommen. Die 

Veränderungen sind entweder angeboren, oder entstehen sekundär durch chronische 

Glaukome, Uveitiden, Traumata oder im Alter. Symptome sind Löcher und Spalten in der Iris, 

ausgefranzte Pupillenränder, Anisokorie bis hin zum Verlust des Pupillarreflexes (HENDRIX 

2008; MILLER 2008). Beim Vogel sind unter anderem beim Greifvogel Kolobome beschrieben 

(GYLSTORFF und GRIMM 1998; SEIDEL 1988). 

 

Im zweidimensionalen Ultraschall lassen sich die Läsionen als hypoechogene Löcher in der Iris 

darstellen (BYRNE und GREEN 2002). Zur dreidimensionalen Darstellbarkeit im Ultraschall 

liegen in der Literatur keine Informationen vor. 
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Eine Iridodialysis bezeichnet die Ablösung der Iris vom Ziliarkörper (MARTIN 1995). Ursachen 

dafür sind in den meisten Fällen Traumata, es werden aber auch Ablösungen bei 

Glaukomoperationen beobachtet. Zerreißungen der Iris durch Fremdkörper werden beim 

Greifvogel regelmäßig beobachtet (BUYUKMIHCI 1985; MURPHY 1984). 

 

Je nach Ausmaß der Zerreißung lässt sich die Iridodialysis im zwei- und dreidimensionalen 

Ultraschall als hyperechoische Struktur darstellen, die in die vordere Augenkammer reicht 

(BYRNE und GREEN 2002; CUSUMANO et al. 1998). 

Fremdkörper lassen sich je nach ihrer Dichte und Oberfläche als hyperechoische Gebilde mit 

mehr oder weniger starker Ausprägung eines Schallschattens oder Kometenschweifes 

darstellen (BYRNE und GREEN 2002; WILLIAMS et al. 1995). Dreidimensional kann 

sonographisch der genaue Kontakt zu den umliegenden Strukturen, sowie Größe und 

Ausdehnung des Fremdkörpers dargestellt werden (IEZZI et al. 1996; NÉMETH und SÜVEGES 

1998). 

 

2.3.2.5 Linse 
Erkrankungen der Linse wurden von KORBEL (1994) bei 11,3 % der Vögeln mit 

Augenerkrankungen festgestellt. In knapp der Hälfte der Fälle konnte die Ätiologie der 

Linsenerkrankungen nicht geklärt werden, ansonsten waren oftmals bakterielle Infektionen, 

Traumata und Infektionen mit Avipoxviren die Ursache. Wichtige Erkrankungen bei Vögeln 

stellen Katarakte, Dislokationen der Linse und Kapselrupturen dar. In einer Studie über 

wildlebende Greifvögel lag die Inzidenz für Erkrankungen der Linse sogar bei 28,6 % (LABELLE 

et al. 2012). 

 

1. Katarakt: 
Der Begriff der Katarakt umfasst eine Reihe von okulären Erkrankungen, welche mit Trübungen 

der Linse oder ihrer Kapsel einhergehen. Die Trübungen können dabei unterschiedliche Größe, 

Form, Lokalisationen, Ätiologie, Alter und Fortschreitungsgrade aufweisen (OFRI 2008). 

Katarakte werden beim Vogel regelmäßig beobachtet (BUYUKMIHCI 1985; WILLIAMS 1994) 

und konnten von MURPHY et al. (1982) bei 10,4 % der untersuchten Greifvögel gefunden 

werden. 

Eine Einteilung der Katarakte erfolgt beim Säugetier in Reifegrad (Cataracta incipient, C. 

immatura, C. matura, C. hypermatura), Lokalisation (Cataracta capsularis, C. subcapsularis, C. 

polaris anterior et posterior, C. nuclearis), Konsistenz (flüssig, weich, hart) oder Ätiologie 
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(congenital, degenerativ, traumatisch). Beim Fortschreiten einer Katarakt kann es auch zur 

Schrumpfung der Linse (Linsenpyknose) kommen (OFRI 2008). Beim Vogel erfolgt die 

Einteilung nach MURPHY (1984) und GYLSTORFF und GRIMM (1998) in eine juvenile, senile 

und traumatische Katarakt. 

 

Eine juvenile Katarakt wird vor allem bei Eulen beobachtet, ihre Ursache ist meist unbekannt, sie 

kann im Laufe des Wachstums aber auch wieder verschwinden (GYLSTORFF und GRIMM 

1998; MURPHY et al. 1982). Nesthocker werden allgemein mit einer transienten Katarakt 

geboren, welche durch Glykogeneinlagerungen bedingt ist und im Alter verschwindet (LO et al. 

1993). 

 

Die senile Katarakt wird vor allem bei in Gefangenschaft gehaltenen Vögeln wie alten 

Wanderfalken, tagaktiven Greifvögeln, Kanarienvögeln, Psittaciden, Enten und vielen anderen 

Vögeln vorgefunden (MURPHY 1984; SEIDEL 1988). 

 

Traumatische Katarakte sind vor allem bei Wildvögeln zu finden, wobei hier vor allem 

Eulenvögel betroffen sind (MURPHY et al. 1982). 

 

Ursachen einer Katarakt sind wie oben beschrieben Traumata, aber auch Infektionen mit 

Salmonellen, Picorna- oder Paramyxoviren, Diabetes, Vitaminmangel, Alter oder eine erbliche 

Komponente, welche beim Kanarienvogel und Ara beschrieben ist (GYLSTORFF und GRIMM 

1998; KORBEL 1992; KORBEL et al. 1996; LAWTON 1993; MURPHY et al. 1982; SEIDEL 

1988). 

 

Eine Katarakt lässt sich im zwei- und dreidimensionalen Ultraschall durch erhöhte Echogenität 

von Linsenkapsel oder Stroma darstellen (KRAUTWALD-JUNGHANNS und NEUMANN 1991; 

LIST 2002; STROBEL 2010). Zudem sind durch die Trübung auch die Ränder der Linse im 

Schall sichtbar, jedoch teilweise auch unscharf begrenzt (POULSEN NAUTRUP et al. 1998; 

WILLIAMS et al. 1995). Einen Zusammenhang zwischen zunehmender Echogenität der Linse 

mit Fortschreiten der Katarakt konnte von SCOTTY et al. (2004) herausgefunden werden. Eine 

Schrumpfung der Linse (Linsenpyknose) konnte von STROBEL (2010) zweidimensional 

dargestellt werden, für die dreidimensionale Sonographie liegen keine Informationen in der 

Literatur vor. 
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2. Dislokation der Linse: 
Verlagerungen der Linse werden als Subluxationen (teilweise Lageveränderung) und Luxationen 

(vollständige Lageveränderung) bezeichnet. Die Linse kann in die vordere Augenkammer 

dislozieren (Luxatio lentis anterior) oder in den Glaskörperraum (Luxatio lentis posterior) 

(DAVIDSON und NELMS 2008).  

Durch die stabile Verankerung der Linse durch Ziliarkörperfortsätze kommt es beim Vogel eher 

selten zu Luxationen oder Subluxationen (KORBEL 2001), jedoch konnte MURPHY et al. (1982) 

bei 7,4 % der untersuchten Greifvögel Luxationen der Linse beobachten. 

 

Symptome einer Luxation oder Subluxation sind Hyphaema, Linsenbewegung (Linsenschlottern) 

und die Darstellbarkeit der Ziliarkörperfortsatzspitzen an der Linsenperipherie, welche sich als 

dunkel pigmentiertes Band darstellen. Bei einer Luxatio lentis anterior kommt es zu einer 

Verlagerung der Iris nach posterior, wodurch die vordere Augenkammer sehr tief erscheint. 

Durch den Lupeneffekt lassen sich Irisstrukturen und Pupillenöffnung vergrößert darstellen 

(KORBEL 2001). Durch Verlegung des Filtrationswinkels mit der Linse kann es infolge einer 

anterioren Luxation zu einem Sekundärglaukom kommen, wohingegen posteriore Luxationen 

ungefährlicher sind (DAVIDSON und NELMS 2008). 

Ursachen sind beim Vogel in den meisten Fällen massive Traumata, wobei beim Kleintier auch 

angeborene Veränderungen oder Glaukome in Frage kommen (DAVIDSON und NELMS 2008; 

KORBEL 2001; SEIDEL 1988). 

 

Im zweidimensionalen Ultraschall lässt sich eine Subluxation dezent durch einen Spalt zwischen 

Iris und Linse darstellen (POULSEN NAUTRUP et al. 1998). Eine anteriore Luxation der Linse 

ist durch einer veränderten Tiefe der vorderen Augenkammer und durch die hyperreflektiven 

Ränder der Linse in der vorderen Augenkammer und der Pupille liegend gekennzeichnet 

(DIETRICH 2006; GUMPENBERGER und KOLM 2006). Bei einer posterioren Luxation stellen 

sich die Ränder der Linse hyperechogen im Glaskörperraum liegend dar (WILLIAMS et al. 

1995). Auch dreidimensional lassen sich vordere und hintere Luxationen sowie Subluxationen 

darstellen (FORTE et al. 2009; LIST 2002; YAMAMOTO et al. 1986). 

 

3. Kapselruptur: 
Ursachen einer Linsenkapselruptur können Traumata, Katarakte oder eine länger bestehende 

Luxation der Linse sein. Linsenprotein wird vom Körper als fremd erkannt und löst eine 

linseninduzierte bzw. phakolytische Uveitis oder Endophthalmitis aus (KORBEL 2001; OFRI 
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2008). ANDERSON und BUYUKMIHCI (1983) konnten eine Endophthalmitis 

phacoanaphylactica durch vorangegangene Linsenluxation beim Vogel nachweisen. 

BUYUKMIHCI (1985) konnte in einer Studie bei 5,4 % der untersuchten Greifvögel eine 

Linsenruptur feststellen. 

 

Mittels zweidimensionaler Sonographie ist eine irreguläre Kontur der Linsenkapsel erkennbar. 

Mittel- bis starkechogenes kristallartiges Material ist im Bereich der Rupturstelle der Linse 

sonographisch darstellbar (BYRNE und GREEN 2002; STROBEL 2010). Für die 

dreidimensionale Sonographie liegen in der Literatur keine Daten vor. 
 

2.3.2.6 Pathologische Veränderungen des gesamten Bulbus 
1. Endophthalmitis und Panophthalmitis: 
Eine Endophthalmitis stellt die Entzündung des gesamten inneren Auges dar, wohingegen bei 

der Panophthalmitis eine generalisierte Entzündung des Auges mit Einbeziehung orbitaler 

Strukturen vorliegt (MARTIN 1995). Bei Vögeln kann die Ursache in Infektionen mit Bakterien 

wie Salmonellen oder Mykobakterien, Pilzen, Viren wie Avipoxviren, Verletzungen des Auges 

oder vorangegangene Linsenluxationen mit Auflösung der Linse liegen (ANDERSON und 

BUYUKMIHCI 1983; GYLSTORFF und GRIMM 1998; KARPINSKI 1983; KORBEL 1992). 

Entzündungen des gesamten Auges kommen beim Vogel nur unregelmäßig vor, konnten in 

einer Greifvogelstudie aber bei 6,7 % der Patienten nachgewiesen werden (MURPHY et al. 

1982; MURPHY 1984). 

 

Mittels der zweidimensionalen Sonographie lassen sich bei einer Endophthalmitis 

unterschiedliche sonographische Befunde wie Trübung der intraokularen Strukturen, generelle 

echographisch sichtbare Strukturierung des Glaskörperraumes, Ödembildung und 

Dickenzunahme der Bulbuswandschichten erheben. Bei einer Panophthalmitis sind zudem 

Veränderungen der Sklera, Episklera und des Retrobulbärraumes sonographisch darstellbar 

(BYRNE und GREEN 2002; GUTHOFF 1988). Mittels dreidimensionaler Sonographie lassen 

sich zusätzliche Befunde wie wabiger Umbau des Glaskörperraumes, gesteigerte Echogenität 

und ein nicht mehr Vorhandensein der vorderen Augenkammer finden (LIST 2002). 
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2. Größenveränderungen: 
Eine Vergrößerung des gesamten Augapfels wird als Buphthalmus bezeichnet. Eine abnorme 

angeborene Verkleinerung bezeichnet man als Mikrophthalmie, eine Schrumpfung nach 

starker Entzündung oder Trauma heißt Phthisis bulbi  (MARTIN 1995; MILLER 2008). 

Ursachen einer Vergrößerung des Bulbus sind in den meisten Fällen Druckanstiege im Auge 

(MILLER 2008). 

Eine Verkleinerung des Augapfels stellt die häufigste angeborene Missbildung bei Vögeln dar 

und geht mit erheblicher Desorganisation des Augengewebes einher (BUYUKMIHCI et al. 1988; 

WILLIAMS 1994). Ursachen können aber auch neonatale Traumata darstellen (MURPHY 1984). 

 

Mittels zwei- und dreidimensionalem Ultraschall kann ein Buphthalmus durch Vergrößerung des 

Augapfels anhand eines vergrößerten Augendurchmessers dargestellt werden (LIST 2002; 

SCOTTY et al. 2004). 

 

Im zweidimensionalen Ultraschall lassen sich bei einem angeborenen Mikrophthalmus eine 

axiale Verkürzung des Bulbus, häufige Missbildungen intraokulärer Strukturen wie Kolobome 

und Zysten im Orbitaraum darstellen. Bei einer erworbenen Phthisis bulbi kommt es 

sonographisch zu einer Verkleinerung des Bulbus bei gleichzeitiger Zunahme der 

Bulbuswandstärke, wobei der Großteil durch Sklera und Aderhaut gebildet wird (CRONAU 2004; 

GUTHOFF 1988). Auch mittels dreidimensionaler Sonographie können diese Befunde erhoben 

werden (LIST 2002). 

 

3. Glaukom: 
Als Glaukom wird der krankhaft erhöhte Augeninnendruck bezeichnet (MARTIN 1995). 

Symptome und Folgen können neben dem erhöhten intraokulären Druck (IOP), Schmerzen, 

Blepharospasmus, Gefäßeinsprossung, Korneaödem, Buphthalmus, vertiefte oder flache 

vordere Augenkammer, dilatierte Pupille, Linsenluxation, Funktionseinschränkung von Sehnerv 

und Netzhaut und schließlich Blindheit darstellen (GELATT et al. 2008; MILLER 2008). 

Als Ursachen beim Vogel sind Traumata, Hyphaema, iatrogene Folgen nach 

Kataraktoperationen, genetische Ursachen, Entzündungen des Auges, hintere und vordere 

Synechien, Zubildungen im Auge und Linsenluxationen beschrieben (BUYUKMIHCI 1985; 

GYLSTORFF und GRIMM 1998; KORBEL 2001; LAWTON 1993; MILLER 2008). 
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Im zwei- und dreidimensionalen Ultraschall erkennt man eine Vergrößerung des Bulbus mit 

Vertiefung oder Abflachung der vorderen Augenkammer und eventuell eine Verdickung von 

Linsenkapsel, Retina, Sklera, Hornhaut oder Choroidea (BYRNE und GREEN 2002; LIST 2002; 

POULSEN NAUTRUP et al. 1998). 

 

 

2.4 Pathologisch-anatomische Untersuchung des 
Auges 
 

In der Literatur finden sich bereits ausführliche Untersuchungen zur postmortalen 

Dokumentation von okularen Strukturen (RAVELHOFER 1985). Es soll deshalb im Folgenden 

nur ein kurzer Überblick gegeben werden. 

Die Fotographie stellt in der Human-, aber auch Vogelmedizin ein wichtiges Bindeglied zwischen 

Wissenschaft und Praxis dar und hat die wichtige Aufgabe der Dokumentation, Instruktion, 

Kommunikation und Illustration (BENGEL 1994; KORBEL 1990). 

 

2.4.1 Vorbereitung der Augen 
 

1. Entnahme: 
In der Literatur stehen verschiedene Methoden zur Enukleation von Vogelaugen zur Verfügung, 

wobei der Zugang zum Auge entweder transaural oder lateral erfolgen kann (KERN 2008; 

MURPHY et al. 1983). SAUNDERS und RUBIN (1975) beschreiben beim Säugetier die 

Enukleationstechniken an euthanasierten und narkotisierten Tieren und SLATTER (2008) zeigt 

mittels der lateralen und transpalpebralen Methode weitere Techniken zur Bulbusextirpation. 

Eine Kombination der genannten Methoden wird von RAVELHOFER (1985) beschrieben. 

 

2. Fixation: 
Die enukleierten Augen müssen alsbald von anhaftenden extraokulären Geweben freipräpariert 

werden und in 10 %igem gepufferten Formalin fixiert werden (RAVELHOFER 1985; SAUNDERS 

und RUBIN 1975). Dabei ist es wichtig die vordere Augenkammer mittels Parazentese mit 

Formalin aufzufüllen, da es sonst zu einem Kollabieren der vorderen Augenkammer kommen 

kann (RAVELHOFER 1985). Die Dauer, welche nötig ist, bis das Auge komplett durchfixiert ist, 
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hängt von der Größe des Auges ab und beträgt einige Stunden bis maximal 48 Stunden 

(WERTHER et al. 2011). 

 

3. Kallotierung: 
Für die Kallotierung der Bulbi von Vögeln finden sich in der Literatur mehrere Angaben. 

RAVELHOFER (1985) beschreibt eine annähernd vertikale Schnittführung, bei der das Auge in 

eine kleinere dorsotemporale und eine größere ventronasale Hälfte geteilt wird (Vergleiche Abb. 

5 OD). CANDIOTO et al. (2011) beschreiben in Anlehnung an EHRENHOFER (2001) zusätzlich 

eine nahezu horizontale Schnittführung, bei der das Auge in eine größere dorsonasale und eine 

kleinere ventrotemporale Hälfte geteilt wird (Vergleiche Abb. 5 OS). Bei dieser Schnittführung 

bleibt der Augenfächer unverletzt und befindet sich in der ventrotemporalen Bulbushälfte. 

 

 

Abbildung 5: verschiedene Schnittführungen zur Bulbuskallotierung 
OS: Oculus sinister, linkes Auge, annähernd horizontale Schnittführung; OD: Oculus dexter, rechtes Auge, 
annähernd vertikale Schnittführung, (nach SLONAKER (1918), KORBEL (1994) und CANDIOTO et al. 
(2011)). 
 
 
2.4.2  Die fotografische Dokumentation 
 

1. Grundlagen: 
Die verschiedenen Techniken zur ophthalmologischen Fotographie bei Vögeln wurden von 

KORBEL (1994) etabliert. 
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Es sollten bei der fotografischen Dokumentation prinzipielle Gesichtspunkte beachtet werden: 

die Aufnahmen sollten reproduzierbar unter standardisierten Bedingungen angefertigt werden, 

der Bildinhalt sollte wenn möglich weitestgehend reduziert werden, der Hintergrund sollte nicht 

vom Bildinhalt ablenken und Objekte müssen vom Betrachter ganzheitlich wahrgenommen 

werden können (BENGEL 1994; KORBEL 1994). 

 

Für die Makrofotografie haben sich eine Kleinbild-Spiegelreflexkamera mit Makroobjektiv, 

welches Abbildungsmaßstäbe bis 1:1 abdeckt und eine Kombination von Ring- und 

Servoblitzgeräten bewährt (BENGEL 1994; KORBEL 1990). 

 

Das Objekt des Interesses sollte sich beim Fotografieren möglichst in der Bildmitte befinden und 

unwichtige oder störende Details sollten an den Bildrand geordnet werden. Eine achsengerechte 

Fotografie sollte angestrebt werden (BENGEL 1994). 

Bei der Fotografie des gewünschten Objektes muss auf die korrekte Belichtung großen Wert 

gelegt werden. Überbelichtung und Unterbelichtung müssen durch richtiges Einstellen der 

Blende, welche die einfallende Lichtmenge reguliert, verhindert werden. Die Veränderung der 

Blendenöffnung wirkt sich dabei nicht nur auf die Bildhelligkeit, sondern auch auf die 

Schärfentiefe aus. Es ist zusätzlich zu beachten, dass die Helligkeit eines Objektes mit dem 

Abstand zur Kamera korreliert. Bei verdoppeltem Abstand zum Objekt kommt es zu einer 

vierfachen Abnahme des Lichtes. (BENGEL 1984; SNOW 2009). 

 

Die Zone der Schärfentiefe kann als die Zone betrachtet werden, bei der es zu Unschärfen 

kommt, welche das Auge noch als ausreichend scharf wahrnimmt (BENGEL 1994). In dieser 

Zone wird das abzubildende Objekt in der Tiefe seiner räumlichen Ausdehnung ausreichend 

weit scharf dargestellt und gleichzeitig vom Hintergrund abgehoben, also freigestellt. Abhängig 

ist die Schärfentiefe vom Abbildungsmaßstab und der Blendenöffnung, wobei als Faustregel 

gelten kann, dass eine kleine Blendenöffnung eine große Tiefenschärfe und umgekehrt eine 

große Blendenöffnung eine kleine Tiefenschärfe zur Folge hat. Im Nahbereich liegen etwa 50 % 

des Schärferaumes vor und hinter der Einstellebene (BENGEL 1994; KORBEL 1990). 

 

Das Mittel der Wahl zur Beleuchtung stellt die Blitzbeleuchtung dar, da mit konstanten 

Fotoleuchten eine Farbverschiebung nach rot und eine Wärmeentwicklung zu erwarten ist 

(KORBEL 1990). Die zangenförmige Anordnung zweier Blitzgeräte ermöglicht plastische und 
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kontrastreiche Aufnahmen. Die Blitze sollten nahe der optischen Achse platziert werden und 

rotieren können, um Schattenbildungen zu vermeiden (BENGEL 1994). 

 

2. Fotografie kallotierter Augen: 
Um Reflexionen zu vermeiden, müssen die kallotierten Bulbi mit Wasser aufgefüllt werden und 

mittels vertikaler Aufnahmerichtung fotografiert werden. Der Augapfel sollte dabei um 10 – 15 

cm erhöht vor einem einfarbigen Hintergrund positioniert werden. Einerseits soll so der 

Hintergrund nicht vom Präparat ablenken, andererseits wird durch die Erhöhung des Objektes 

eine Isolierung vom Hintergrund und damit eine Freistellung erzielt. Der Hintergrund 

verschwindet in der Unschärfezone und es kann eine schattenfreie Aufnahme entstehen. Die 

Ausleuchtung der Blitze orientiert sich an der Beschaffenheit des Auges und muss anhand 

verschiedener Versuchsreihen getestet werden (KORBEL 1990; RAVELHOFER 1985).
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3. MATERIAL UND METHODEN  
 

 

3.1 Material 
 

3.1.1 Probanden 
 
Für diese Arbeit wurden im Zeitraum von Januar 2011 bis April 2012 die Augen von 91 Vögeln 

aus 13 verschiedenen Ordnungen mittels dreidimensionaler Sonographie untersucht. Es 

handelte sich dabei um Patienten, die an der Klinik für Vögel, Reptilien, Amphibien und 

Zierfische behandelt wurden, sowie um Vögel aus verschiedenen Auffangstationen, einem 

zoologischen Garten und einer Straußenfarm. 

Der Schwerpunkt der Arbeit wurde auf die Untersuchung von Vögeln mit Augenveränderungen 

gelegt, wobei das gesunde Partnerauge zu Vergleichszwecken teilweise mituntersucht wurde. 

 

Es handelte sich bei den Vögeln um 25 verschiedene Arten aus 13 Ordnungen, wobei der 

Mäusebussard (Buteo buteo) mit 18 Vertretern die am häufigsten untersuchte Art darstellte. 

In der folgenden Tabelle (Nr. 1) sind die untersuchten Vogelarten, sortiert nach Ordnung, die 

Anzahl der Individuen und falls bekannt, das Geschlecht zusammengefasst. 

 

 
Tabelle 1: Probanden und Artenverteilung 

 gesamt männlich weiblich 
un-

bestimmt 

Accipitriformes 21    

Mäusebussard 

(Buteo buteo, LINNAEUS 1758) 
18 1 1 16 

Habicht 

(Accipiter gentilis,  

LINNAEUS 1758) 

1 0 0 1 

Rauhfußbussard 1 1 0 0 
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(Buteo lagopus,  

PONTOPPIDAN 1763) 

Sperber 

(Accipiter nisus, LINNAEUS 1758) 
1 0 0 1 

Falconiformes 6    

Turmfalke 

(Falco tinnunculus,  

LINNAEUS 1758) 

5 0 0 5 

Merlin 

(Falco columbarius,  

LINNAEUS 1758) 
1 0 0 1 

Strigiformes 9    

Waldkauz 

(Strix aluco, LINNAEUS 1758) 
6 0 1 5 

Uhu 

(Bubo bubo, LINNAEUS 1758) 
2 1 0 1 

Sumpfohreule 

(Asio flammeus, PONTOPPIDAN 

1763) 

1 0 0 1 

Psittaciformes 17    

Kongo-Graupapagei 

(Psittacus erithacus erithacus, 

LINNAEUS 1758) 

11 5 4 2 

Blaustirnamazone 

(Amazona aestiva,  

LINNAEUS 1758) 

3 0 0 3 

Nymphensittich 

(Nymphicus hollandicus, LINNAEUS 

1758) 

2 1 1 0 

Rotkopfkunure 

(Aratinga mitrata, VON SPIX 1824) 
1 0 0 1 
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Anseriformes 7    

Hausgans 

(Anser anser domesticus, LINNAEUS 

1758) 

6 4 2 0 

Stockente 

(Anas platyrhynchos,  

LINNAEUS 1758) 

1 1 0 0 

Galliformes 12    

Haushuhn 

(Gallus gallus domesticus, 

LINNAEUS 1758) 

12 0 12 0 

Columbiformes 4    

Taube 

(Columba livia, GMELIN 1789) 
4 0 0 4 

Passeriformes 3    

Buchfink 

(Fringilla coelebs,  

LINNAEUS 1758) 

1 1 0 0 

Rabenkrähe 

(Corvus corone corone, LINNAEUS 

1758) 

1 0 0 1 

Rauchschwalbe 

(Hirundo rustica, LINNAEUS 1758) 
1 0 0 1 

Cuculiformes 1    

Kuckuck 

(Cuculus canorus,  

LINNAEUS 1758) 

1 0 0 1 

Piciformes 1    

Grünspecht 

(Picus viridis, LINNAEUS 1758) 
1 0 0 1 
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Ciconiiformes 7    

Roter Sichler 

(Eudocimus ruber,  

LINNAEUS 1758) 

7 0 0 7 

Charadriiformes 1    

Waldschnepfe 

(Scolopax rusticola,  

LINNAEUS 1758) 

1 0 0 1 

Struthioniformes 2    

Strauß 

(Struthio camelus,  

LINNAEUS 1758) 

2 0 0 2 

gesamt 91    

 

 

Augenveränderungen wurden bei 78,0 % (n=71) der Probanden festgestellt, wobei die 

Veränderungen in 52,1 % (n=37) der Fälle beide Augen betrafen. Es handelte sich insgesamt 

also um 108 veränderte Augen. 

Veränderungen, welche ausschließlich das vordere Augensegment betrafen, konnten bei 17,6 % 

(n=19) der Augen beobachtet werden, Veränderungen, welche ausschließlich das hintere 

Augensegment betrafen, wurden bei 46,3 % (n=50) der Augen festgestellt.  

Bei 36,1 % (n=39) der Augen konnten Veränderungen an den Augen festgestellt werden, die 

das vordere und das hintere Augensegment betrafen. 

 

Die vorliegende Studie beschreibt ausschließlich das vordere Augensegment, in einer Studie 

von LIEPERT (2013) werden Bulbus und das hintere Augensegment behandelt. 
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3.1.2 Material für die ophthalmologische Untersuchung 
 

1. Spaltlampe: 
Es handelte sich bei der verwendeten Spaltlampe um das Fabrikat Kowa SL 15 (Fa. Kowa, 

Tokio (Japan)). Die Untersuchung des Auges konnte bei 10- und 16facher Vergrößerung und 

drei verschiedenen Lichtintensitäten, sowie mittels Cobalt-Blaufilter erfolgen. Ebenfalls war die 

Spaltenbreite variierbar zwischen 0,1, 0,2 und 0,8 mm. 

 

2. Diaskleralkegel: 
Der verwendete Diaskleralkegel wurde zusammen mit dem Otoskop Heine Beta NT 3,5V (Fa. 

Heine, Herrsching (Deutschland)) für die direkte Untersuchung des vorderen und hinteren 

Augensegmentes verwendet. Durch die Patientenlinse kam es zu einer 5 - 7 fachen 

Vergrößerung der Strukturen im hinteren Augensegment, daher war nur ein kleiner Teil des 

Augenhintergrundes einsehbar.  

 

3. Kopfbandophthalmoskop: 
Die indirekte binokulare ophthalmoskopische Untersuchung wurde mittels 

Kopfbandophthalmoskop Heine Omega 100 (Fa. Heine, Herrsching (Deutschland)) in 

Verbindung mit Ophthalmoskopierlupen durchgeführt. Es waren drei unterschiedliche 

Lichtintensitäten bzw. unterschiedliche Lichtkegeldurchmesser und drei verschiedene 

Lichtfarben (weiß, grün, blau) einstellbar. 

 

4. Ophthalmoskopierlupen: 
Für die indirekte Ophthalmoskopie wurden Linsen „Double Aspheric“ (Fa. Volk Optical Inc. 

Mentor (USA)) mit verschiedener Brechkraft von 30 bis 90 Dioptrien und Clear View ® - 

Linsenvergütung benötigt. Durch die Brechung der Ophthalmoskopierlupen konnte ein größerer 

Ausschnitt des hinteren Augensegmentes dargestellt werden. Die Dioptrienzahlen der Linsen 

richteten sich dabei nach der Größe des Vogelauges, bei größeren Vogelaugen wurden Linsen 

mit einer niedrigeren Dioptrienzahl verwendet, bei kleineren Vogelaugen verwendete man 

Linsen mit einer höheren Dioptrienzahl. Eine Auswahl an verwendeten Dioptrienzahlen zeigt 

Tabelle 2.  

Das dargestellte Bild des Augenhintergrundes stellte sich durch die Verwendung von 

Ophthalmoskopierlupen spiegelverkehrt und auf dem Kopf stehend dar. 
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Tabelle 2: verwendete Dioptrienzahl für die indirekte Ophthalmoskopie 

Tierart Dioptrienzahl 

Mäusebussard 30 

Huhn 78 

Taube 90 

 

 
5. Tonometer: 
Zur Ermittlung des Augeninnendruckes (IOD) wurde das Tonometer Tono-Pen® XL (Mentor 

Corporation, Santa Barbara (USA)) oder das Tonometer Tonovet (Fa. Acrivet, Heningsdorf, 

(Deutschland)) verwendet. 

 

6. Funduskamera: 
Zur fotographischen Dokumentation ungewöhnlicher oder stark ausgeprägter pathologischer 

Veränderungen des vorderen oder hinteren Augensegmentes wurden bei einigen Probanden 

Aufnahmen mit der Kamera GENESIS, Kowa Handheld Fundus Camera (Fa. Eickemeyer, 

Tutlingen (Deutschland)) angefertigt. 

 

7. Fluoreszeintest: 
Bei Vögeln, bei denen der Verdacht auf Defekte in der Hornhaut bestand, wurde die Kornea vor 

der Augenultraschalluntersuchung mit steriler Fluoreszein-Lösung SE Thilo (Fa. Alcon Pharma 

GmbH, Wien (Österreich)) angefärbt, um gegebenenfalls Defekte in der Hornhaut zu lokalisieren 

und nachzuweisen. 

 

3.1.3 Material für die sonographische Untersuchung 
 

1. Ultraschallgerät: 
Die Ultraschalluntersuchungen erfolgten mit dem portablen Fabrikat Voluson i (Fa. GE (General 

Electrics) Healthcare Ultraschall Deutschland GmbH, Solingen (Deutschland)). Dabei handelte 

es sich um ein mobiles Gerät im Laptopformat. Mit diesem Gerät bestand die Möglichkeit zur 

Ultraschalluntersuchung im B-Mode, M-Mode, Volumen-Mode und es besaß Dopplerfunktionen 

(CFM, PW-Doppler). 
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Für die Bildverarbeitung standen verschiedene Verarbeitungstechnologien wie CRI (Compound 

Resolution Imaging) und SRI2 (Speckle Reduction Imaging) zur Verfügung.  

 

Die Bildanzeige war aus 256 Graustufen aufgebaut. Es bestand die Möglichkeit einen bis drei 

Foci, verschiedene Zoomfunktionen, Messfunktionen, verschiedene Frequenzstufen und 

verschiedene Eindringtiefen zu wählen. Auch bestand die Möglichkeit zum Preproccessing 

mithilfe von Gain, TGC, PRF, Dynamik oder Enhancement. 

Im Volumenmodus konnte zwischen verschiedenen Akquisitionen (3D-Schnittebenen, 3D-

Rendering und 4D-Echtzeit-Akquisition) und weiteren Volumenmodi wie Oberflächenmodus, 

Transparenzmodus, Nische-Darstellung, Tomografische-Darstellung und Volumenberechnung 

gewählt werden. Auch konnte bei den Volumendatensätzen anschließend Kontrast, Helligkeit, 

Grau- und Farbskala, Schwellenwert (Tresh), Hintergrund, Zoom, Transparenz, 

Betrachtungsrichtung und Untersuchungsbereich (Region of Interest, ROI) geändert und 

festgelegt werden. 

Die Volumendatensätze konnten mithilfe der Software MagiCut elektronisch bearbeitet werden 

und 3D-Artefakte ausgeschnitten werden. 

Die Speicherung der Daten war sowohl auf dem Gerät selbst, als auch auf externen Medien 

(DVD oder Festplatte) möglich. 

 

 
Abbildung 6: Ultraschallgerät voluson i 
Firma GE (General Electrics) Healthcare Ultraschall Deutschland GmbH, Solingen (Deutschland) 
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2. Ultraschallsonde: 
Die Ultraschalluntersuchungen wurden mit der Linearsonde R SP6-16RS  (Fa. GE (General 

Electrics) Healthcare Ultraschall Deutschland GmbH, Solingen (Deutschland)) durchgeführt. 

Diese verfügte über eine Frequenz von 5,6 – 18,4 MHz, einer Eindringtiefe von ca. 37,4 mm, 

einer Auflagefläche von 52 x 52 mm, einer Scanbreite von 38 mm und einem Gewicht von 376 

g. Die 192 piezoelektrischen Elemente ermöglichten eine besonders genaue artefaktfreie 

Darstellung der Augenstrukturen. 

In der vorliegenden Arbeit wurde die höchstmögliche Frequenzstufe der Linearsonde gewählt. 

 

 
Abbildung 7: Ultraschallsonde R SP6-16RS 
Linearsonde, Firma GE (General Electrics) Healthcare Ultraschall Deutschland GmbH, Solingen 
(Deutschland) 
 
 
3. Verbrauchsmaterial: 
Bei dem Verbrauchsmaterial handelte es sich um Ultraschallgel, Lokalanästhetikum, sterile 

physiologische Kochsalzlösung, Vitamin A-haltige Augensalbe, Handtücher sowie um 

Reinigungstücher für die Ultraschallsonde. 

Als Ultraschallgel wurde das Fabrikat SERVOSON (Fa. Servoprax® GmbH, Wesel 

(Deutschland)) verwendet. Das Gel war für die Anwendung am Auge geeignet und bewirkte eine 

gute Ankopplung. 
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Bei dem verwendeten Lokalanästhetikum handelte es sich um 0,4%iges Oxybuprocain-

Hydrochlorid (Conjuncain®, Fa. Dr. Mann Pharma und Bausch & Lomb GmbH, Berlin 

(Deutschland)). Es wurde zur Anästhesie der sensiblen Kornea verwendet. 

 

Da keine Vorlaufstrecke verwendet wurde und eine Schädigung der Kornea durch Kontakt mit 

der Ultraschallsonde verhindert werden wollte, musste reichlich Ultraschallgel verwendet 

werden. Dieses befand sich nach der Untersuchung häufig noch im Bereich der Augen und des 

Kopfgefieders und wurde mit angewärmter steriler physiologischer Kochsalzlösung vorsichtig 

entfernt. 

 

Im Anschluss an die Augenuntersuchung wurde jedes Auge mit einer Vitamin A-haltigen 

Augensalbe (Regepithel®, Fa. Alcon Pharma GmbH, Freiburg (Deutschland)) behandelt. 

 

Die Handtücher dienten dazu, den Vogel während der Untersuchung darin einzuwickeln und 

somit Abwehrbewegungen zu unterbinden und zusätzlich optisch ruhigzustellen. Es wurde stets 

darauf geachtet, die Atmung des Probanden durch die Handtücher nicht einzuschränken. 

Zusätzlich dienten die Handtücher dazu die Kochsalzlösung bei der anschließenden Reinigung 

des Vogelauges aufzufangen und das Gefieder des Vogels vor weiterer Durchnässung zu 

schützen.  

 

Mit den Reinigungstüchern Cleanisept® Wipes (Fa. Dr. Schumacher GmbH, Malsfeld 

(Deutschland)) wurde im Anschluss an jede Ultraschalluntersuchung die Ultraschallsonde von 

Gelresten gereinigt. Gleichzeitig bewirkten die Tücher eine Desinfektion der Sonde. 

 

3.1.4 Material für die postklinische Dokumentation 
 
Um die Veränderungen im vorderen Augensegment, welche bei der Ultraschalluntersuchung 

festgestellt werden konnten besser dokumentieren aber auch überprüfen zu können, wurden die 

enukleierten Augen euthanasierter Probanden in 10 %igem Formalin fixiert, kallotiert, 

fotographisch dokumentiert und anschließend am PC betrachtet und ausgewertet. 

 

Die fotografische Dokumentation erfolgte mithilfe der Digitalkamera Nikon 80D (Fa. Nikon, Tokio 

(Japan)) und dem Makroobjektiv Nikon AF-S Mikro NIKKOR 60 mm 1:2.8 G ED (Fa. Nikon, 

Tokio (Japan). 
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Es wurde zur optimalen Ausleuchtung der kallotierten Bulbi das Setup nach KORBEL (1994) 

verwendet. Dies beinhaltete die Verwendung von zwei Blitzen der Fabrikate Novoflex Makroblitz 

und Novoflex Makroblitz Servo (Fa. Novoflex, Memmingen (Deutschland)), welche an flexiblen 

Armen befestigt waren und mit einem Stativ verbunden waren. Der erste Blitz wurde zusammen 

mit der Kamera ausgelöst, der zweite reagierte mittels Lichtsensor auf den ersten Blitz. 

 

Die Bulbi wurden mithilfe einer schwarzen Knetmasse, welche eine Kuhle formte, auf eine 

schwarze Unterlage positioniert. 

 
 

3.2 Untersuchungsmethoden  
 

Zu Beginn wurden die Patienten einer klinischen Untersuchung unterzogen, um ein genaues 

Bild über den Gesundheitszustand zu erhalten. Dabei wurde besonders auf das 

Allgemeinbefinden, die Atmung, den Ernährungszustand, auf das Gewicht und den 

Pflegezustand geachtet. 

Die Untersuchungen wurden so kurz wie nötig gehalten, unnötige Geräusche vermieden und 

alle Vorbereitungen im Voraus getroffen, um den Vögeln nur einem Minimum an Stress 

auszusetzen.  

Es wurden ausschließlich Vögel in die Studie aufgenommen, bei welchen ein stabiler Zustand 

zum Zeitpunkt der klinischen Untersuchung festgestellt werden konnte. Als weitere 

Vorsichtsmaßnahme wurden Patienten nur dann sonographisch untersucht, wenn keine akute 

Perforation oder ein Substanzverlust der Hornhaut vorlag. 

 

3.2.1 Die ophthalmologische Untersuchung 
 

Im Anschluss an die Allgemeinuntersuchung erfolgte die ophthalmologische Untersuchung. 

Diese erfolgte in Anlehnung an KORBEL et al. (2001) und wurde in der Regel am wachen Vogel 

durchgeführt. 

Für die vollständige Untersuchung des hinteren Augensegmentes war eine Mydriasis 

Voraussetzung. Aufgrund der quergestreiften Pupillarmuskulatur der Vogelaugen, musste auf 

andere Mittel zur Weitstellung der Augen zurückgegriffen werden, als in der Säugetiermedizin 

(KARPINSKI 1983). 
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In den Fällen, in den eine Narkose nötig war, beispielsweise im Rahmen der röntgenologischen 

Diagnostik, konnte die durch die Narkose induzierte Mydriasis für die Augenuntersuchung 

genutzt werden. 

Bei Eulenvögeln konnte zusätzlich die bei dieser Spezies vorkommende Schreckmydriasis für 

die Untersuchung des hinteren Augensegmentes ausgenutzt werden. 

In manchen Fällen wurden die Augen mittels intracameraler Applikation von 0,02 – 0,03 ml einer 

3 %igen d-Turbocurarin-Lösung weitgestellt (MURPHY 1987). 

 

Falls die narkoseinduzierte Mydriasis zur Augenuntersuchung genutzt wurde, musste die 

konventionelle Reihenfolge der ophthalmologischen Untersuchung umgekehrt werden, da die 

narkoseinduzierte Mydriasis nur sehr kurz anhielt. In diesen Fällen wurde zuerst die 

Untersuchung des Augenhintergrundes mittels binokularer indirekter Ophthalmoskopie 

durchgeführt. 

 

1. Allgemeine ophthalmologische Untersuchung: 
Zuerst erfolgte die Beobachtung des nicht fixierten sich unbeobachtet fühlenden Vogels, wobei 

im Anschluss durch Drohreaktionen der Visus beurteilt wurde. 

Zunächst erfolgte die Beurteilung der okularen Adnexe, wobei besonders auf Asymmetrie der 

Lider, der Bulbuslage und der Schädelkonturen geachtet wurde, welche zum Beispiel durch 

Schwellungen, Hämatome, Verletzungen der Haut oder Chemosis verursacht werden konnten. 

Auch Lakrimation, Epiphora, Sekretion und Blepharospasmus wurden beurteilt. Hierbei wurden 

immer beide Vogelaugen vergleichend betrachtet. 

Ebenfalls wurde die Ohröffnung auf eventuelle Veränderungen wie Einblutungen untersucht. 

Anschließend erfolgte die Untersuchung des Auges mittels punktförmiger Lichtquelle, wofür ein 

Diaskleralkegel verwendet wurde. Es wurden die Distanzuntersuchungen im seitlich 

auffallenden, durchfallenden und reflektierten Licht durchgeführt, um Hornhaut, vordere 

Augenkammer, Iris und vordere Linsenkapsel zu beurteilen und pathologische Veränderungen 

wie beispielsweise Größenveränderungen, Trübungen, Auflagerungen und Fremdinhalt wie Blut 

oder Fibrin zu diagnostizieren. 

 

2. Spezielle ophthalmologische Untersuchung: 
Nach der allgemeinen ophthalmologischen Untersuchung erfolgte die Untersuchung der 

Probanden mittels Spaltlampe, wobei durch 10 – 16 fache Vergrößerung der Augenstrukturen 

mithilfe der Spaltlampe einfacher Veränderungen des vorderen Augensegmentes erkannt 
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werden konnten. Durch Darstellung der drei purkinje-sansonschen Spiegelbilder konnten 

Lageveränderungen und Trübungen der Linse erkannt werden. 

 

Die Untersuchung des hinteren Augensegmentes erfolgte monokular direkt mittels 

Diaskleralkegel, wobei nur ein kleiner Ausschnitt des Augenhintergrundes darstellbar war. Dies 

konnte mittels binokularer indirekter Ophthalmoskopie umgangen werden. 

Hierzu wurden ein Kopfbandophthalmoskop und eine Ophthalmoskopierlupe, welche zwischen 

das Auge des Untersuchers und das Auge des Vogels positioniert wurde, verwendet. Auch hier 

erfolgte die Beurteilung des Augenhintergrundes auf pathologische Veränderungen. 

Erfolgte die ophthalmologische Untersuchung der Tiere in Auffangstationen, dem zoologischen 

Garten und der Straußenfarm, so wurde aufgrund nicht vorhandener technischer Geräte 

lediglich eine direkte Ophthalmoskopie mittels Diaskleralkegel durchgeführt. 

 

Bei Verdacht auf Veränderungen des Augeninnendruckes, wie dies bei einem Glaukom oder 

einer Uveitis vorkommen kann, wurde der Augeninnendruck mittels Tonometer gemessen. Dafür 

wurden an jedem Auge drei Messungen durchgeführt und der Mittelwert aus den 

Messergebnissen mit Referenzwerten aus der Literatur verglichen. 

 

Um Verletzungen der Kornea auszuschließen, wurde bei Probanden mit Verdacht auf 

Hornhautläsionen vor der Augenultraschalluntersuchung ein Fluoreszein-Test durchgeführt. 

Dafür wurde jeweils ein steriler Tropfen Fluoreszein-Lösung in jedes Auge geträufelt, nach einer 

Minute mit steriler physiologischer Kochsalzlösung das Auge gespült und anschließend mit der 

Spaltlampe unter Blaufilter auf Hornhautdefekte hin untersucht. 

 

3.2.2 Die sonographische Untersuchung 
 

Im Anschluss an die ophthalmologische Untersuchung der Probanden erfolgte die 

Ultraschalluntersuchung beider Augen. Der Zeitpunkt der sonographischen Untersuchung 

richtete sich dabei nach der gesundheitlichen Verfassung des Patienten. Bei körperlich stabiler 

Verfassung erfolgte die Ultraschalluntersuchung zeitnah innerhalb von 24 Stunden nach der 

ophthalmologischen Untersuchung.  
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1. Vorbereitung der Probanden: 
Die Hornhaut der Vogelaugen wurde mithilfe eines Tropfens 0,4 %igem Oxybuprocain-

Hydrochlorid (Conjuncain®, Fa. Dr. Mann Pharma und Bausch & Lomb GmbH, Berlin 

(Deutschland)) anästhesiert, wobei in jedem Fall nach Auftragen mindestens 1 Minute gewartet 

wurde, bis die sonographische Untersuchung begonnen wurde. Eine Allgemeinanästhesie war 

im Regelfall nicht notwendig. Lediglich in einigen wenigen Einzelfällen, bei denen eine 

vollständige klinische und sonographische Untersuchung der Tiere aufgrund von starker 

Stressanfälligkeit und weiterer schwerwiegender Verletzungen nicht möglich war, wurden die 

Patienten mittels Inhalationsnarkose mit Isofluran (IsoFlo®, Firma Albrecht GmbH, Aulendorf 

(Deutschland)) in Narkose gelegt und anschließend untersucht. 

Die Patienten wurden dann in ein ausreichend großes Handtuch eingewickelt, um 

Abwehrbewegungen zu vermeiden und in aufrechter Position zwischen den Oberschenkeln des 

sitzenden Untersuchers platziert. Lediglich bei sehr kleinen Vögeln wie Buchfinken und sehr 

großen Tieren wie adulten Uhus, Gänsen und ausgewachsenen Straußen wurde diese Methode 

abgewandelt. Sehr kleine Patienten wurden in ein Handtuch eingewickelt und in der Hand fixiert, 

Uhus von einer zweiten Person fachgerecht gehalten und lediglich der Kopf vom Untersucher 

fixiert, Gänse wurden in ein Bettlaken eingewickelt, auf eine Unterlage gesetzt und lediglich der 

Hals fixiert und Strauße standen aufrecht und eine zweite Person fixierte den Körper des Tieres. 

 

2. Sonographischer Untersuchungsgang: 
Die Untersuchung erfolgte in einem ruhigen und abgedunkelten Raum, es war zusätzlich zum 

Untersucher eine Hilfsperson vor Ort nötig, die das Ultraschallgerät bediente. 

Bevor mit der Ultraschalluntersuchung begonnen werden konnte, erfolgte für 

Dokumentationszwecke die Eingabe der Patientendaten, wie Stammnummer, Vogelart, Besitzer, 

Alter, Geschlecht und Untersucher. Datum und Uhrzeit wurden von dem Gerät automatisch 

angegeben. 

Für jede sonographische Untersuchung wurde eine ausreichend große Menge Ultraschallgel auf 

die Ultraschallsonde gegeben. Dies war einerseits für die Ankopplung des Schallkopfes 

notwendig, andererseits wurde so eine direkte Berührung des Schallkopfes mit der Kornea 

verhindert, um mechanische Schädigungen an der Hornhaut zu vermeiden. 

Die Untersuchung der Augen erfolgte zuerst im zweidimensionalen B-Mode, um sich einen 

Überblick über die physiologischen und pathologischen Verhältnisse am Auge zu schaffen. 

Anschließend wurden die Augen im Volumenmodus je nach Lokalisation der pathologischen 

Veränderung jeweils in ein bis vier verschiedenen Ebenen untersucht. 
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Die Ultraschalluntersuchungen wurden in dieser Studie von zwei verschiedenen Untersuchern 

durchgeführt, wobei einer der Untersucher Rechtshänder und der Andere Linkshänder war. 

Wurde die Untersuchung von dem Rechtshänder durchgeführt, wurde stets mit dem rechten 

Vogelauge begonnen. Dabei wurde der Vogel so zwischen den Oberschenkeln fixiert, dass er 

vom Untersucher weg sah. Mit der linken Hand konnte nun der Vogelkopf im Kappengriff fixiert 

und mit der rechten Hand die Ultraschallsonde bedient werden. Für die Untersuchung des linken 

Auges wurde der Vogel so gedreht, dass er zum Untersucher hin sah und dieser erneut mit der 

rechten Hand die Sonde bedienen konnte. 

Wurde die Untersuchung von dem Linkshänder durchgeführt, begann die Sonographie stets mit 

dem linken Vogelauge, wobei das gleiche oben beschriebene Schema angewendet wurde, nur 

jeweils umgekehrt mit der anderen Hand. 

 

3. B-Modus: 
Im zweidimensionalen B-Modus konnte sich ein Überblick über das Vogelauge und 

pathologischer Veränderungen geschafft werden. Dieser Modus diente gleichzeitig auch als 

Ausgangspunkt für die spätere Untersuchung im Volumenmodus. 

 

Geräteeinstellungen: 

Die Einstellungen des Gerätes wurden jeweils an das Vogelauge angepasst und für jeden 

Probanden neu eingestellt. 

Zu Beginn wurde im Untermenü die Qualität auf „hoch“ gestellt, um die bestmögliche Bildqualität 

zu garantieren. 

Es wurde stets die höchstmögliche Frequenz von ca. 18 MHz durch Einstellung „resol“ am Gerät 

gewählt. 

Zoom und Eindringtiefe wurden jeweils so eingestellt, dass das komplette Vogelauge 

einschließlich der extraokularen Muskeln dargestellt werden konnte. 

Der Fokus wurde so gewählt, dass er sich jeweils auf Höhe der Strukturen von Interesse befand. 

Die TGC wurde nun so gewählt, dass alle gewünschten Strukturen deutlich zu erkennen waren, 

ohne dass Wiederholungsartefakte auftraten oder sich Strukturen zu prominent darstellten. 

Die Gesamtverstärkung (Gain) wurde so eingestellt, dass sich im physiologischen Fall Kornea, 

vordere und hintere Linsenkapsel deutlich abzeichneten, gleichzeitig sich aber vordere 

Augenkammer, Linsenstroma und Glaskörper anechogen darstellten. Dies war in der Regel bei 

einem Gain von –9 der Fall. Anschließend wurde durch Erhöhung der Gesamtverstärkung 

geprüft, ob nicht doch Veränderungen in Form von Trübungen oder Fremdmaterial im Auge 
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vorhanden waren, welche durch eine niedrige Gesamtverstärkung gelegentlich nicht darstellbar 

waren. 

 

Schnittebenen: 

Die Untersuchung im B-Mode startete in der axialen vertikalen Schnittebene. Der Schallkopf 

wurde senkrecht auf das Auge platziert und die Schallkopfmarkierung zeigte nach dorsal 

(Vergleiche Abb. 8). Im Ultraschallbild wurde darauf geachtet, dass Kornea und Linse parallel 

zueinander lagen und sich deren maximale axiale Ausdehnung auf einer senkrechten Linie 

befand. Diese Positionierung war auch die Voraussetzung zur späteren Erzeugung des 

dreidimensionalen Ultraschallbildes. 

In einigen wenigen Fällen wurde zusätzlich die axiale horizontale Schnittebene untersucht. 

Dabei wurde der Schallkopf waagerecht auf das Vogelauge platziert, so dass die Markierung 

des Schallkopfes nasal zeigte. Es wurde ebenfalls auf die parallele Lage von Kornea und Linse 

zueinander im Ultraschallbild geachtet. Die Untersuchung in dieser horizontalen Schnittebene 

war im Normalfall nicht nötig, da die Ebene mittels dreidimensionaler Ultraschalltechnik 

automatisch berechnet wurde. 

Das Vogelauge wurde gegebenenfalls in ein bis zwei weiteren Ebenen (transversal und 

longitudinal) mittels zusätzlicher Dopplerfunktion für eine weitere wissenschaftliche Arbeit 

untersucht. Dies diente zur Darstellung des Augenfächers. In dieser Arbeit soll nicht weiter 

darauf eingegangen werden. 
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Abbildung 8: Schematische Darstellung der Ultraschalluntersuchung 
Am Beispiel der axialen vertikalen Schallkopfführung (Markierung zeigt nach dorsal); Fixierung des 
Patienten (Mäusebussard (Buteo buteo)) im Kappengriff; Darstellung ohne Ultraschallgel. 

 

 

4. Volumen-Modus: 
Voraussetzung für eine Volumenakquisition war die zweidimensionale Darstellung des Auges in 

der axialen vertikalen und gegebenenfalls der horizontalen Schnittebene. 

Durch Drücken der Volumenmodus-Taste „4D“ wurde die Volumenmodusfunktion eingeschaltet 

und das benötigte Volumenkästchen im Bildbereich angezeigt. Dieses begrenzte den 

Untersuchungsbereich ROI (Region of Interest). Das Kästchen konnte in seiner Größe dem 

Bulbus des Vogels so angepasst werden, dass das komplette Auge darin dargestellt werden 

konnte und durch Bewegen des Trackballs verschoben werden. 

Anschließend stellte man den Volumen-Schwenkwinkel ein. Dieser lag je nach Größe des 

Auges zwischen 20 und 25 Grad. 

Die Qualität wurde stets auf „maximal“ gestellt, was Einfluss auf die Liniendichte im Verhältnis 

zur Akquisitionsgeschwindigkeit hatte und eine hohe Scandichte bei langsamerer Akquisition 

bedeutete. 

Im Menübereich wurde der Visualisierungsmodus „Schnittebenen“ gewählt. 

Das zweidimensionale Ausgangsbild stellte den zentralen zweidimensionalen Scan des 

Volumens dar. Die eigentliche Volumenakquisition wurde nun durch Drücken der Taste „Freeze“ 
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automatisch durch eine Kippbewegung des Schallkopfes durchgeführt. Dabei war es sehr 

wichtig, den Schallkopf ruhig auf dem Auge zu positionieren, um Bewegungsartefakte zu 

vermeiden. 

Die Aufnahmedauer variierte von sieben bis zwölf Sekunden, was von der Größe des 

Volumenkästchens (Tiefenbereich und Winkel) und der Qualität abhing. Es wurde 

standardmäßig ein Winkel von 20° gewählt, bei dem 211 Einzelschnitte angefertigt wurden. 

Daraus wurde das Volumen anschließend vom PC konstruiert. Der Abstand der Schnitte 

zueinander hing dabei von der Entfernung zum Schallkopf ab, da durch Neigung des 

Schallkopfes die Erfassung der Einzelschnittbilder erfolgte. Dadurch lagen Schnittpunkte, 

welche sich näher am Schallkopf befanden, näher beieinander, als Schnittpunkte, die weiter 

vom Schallkopf entfernt waren.  

Der durchschnittliche Abstand der Schnitte betrug 155 µm, wobei der Abstand bei sehr kleinen, 

nahe am Schallkopf gelegenen Augen (bspw. bei Finkenartigen) durchschnittlich 145 µm betrug 

und bei sehr großen Augen (bspw. Uhus) bis hin zu 178 µm. 

 

5. Bearbeitung der dreidimensionalen Bilder: 
Nach der Volumenakquisition schaltete das System automatisch in den Lesemodus mit 4 

Quadranten um. Hierbei handelte es sich um die Ansicht der drei orthogonalen Schnittebenen. 

Das linke obere Schnittbild A entsprach dabei dem zentralen zweidimensionalen Scan - also der 

Schallebene. Je nach Schallkopfausrichtung war dies die axiale vertikale oder axiale horizontale 

Ebene. Das rechte obere Schnittbild B stellte den vom PC berechneten dazugehörigen 

orthogonalen Scan dar, entweder als axiale horizontale oder axiale vertikale Ebene. Das linke 

untere Schnittbild C stellte den berechneten transversalen Scan dar (Vergleiche Abbildung 9). 
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Abbildung 9: Volumenscan im Visualisierungsmodus „Schnittebenen“  
Axiale vertikale Schallebene, OS eines Mäusebussards (Buteo buteo); oben links vertikale Schnittebene, 
oben rechts horizontale Schnittebene, unten links transversale Schnittebene (im Anschnitt Iris und vordere 
Linsenkapsel). 
 
 
Die Position des Volumenkörpers im Verhältnis zur Anzeigeebene wurde durch ein relatives 

Koordinatensystem bestimmt (Vergleiche Abbildung 10). Es bestand aus drei orthogonalen 

Achsen (die oben beschriebenen Schnittebenen A, B und C), deren gemeinsame Schnittstelle 

das dreiachsige Rotationszentrum darstellte. Am Bildschirm wurde der gemeinsame 

Schnittpunkt zur Orientierung als farbiger Punkt innerhalb der einzelnen Schnittbilder dargestellt.  
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Abbildung 10: Schnittebenen A, B und C 
Schnittebenen A, B und C und die entsprechende Anzeige der Ebenen A, B und C auf dem Bildschirm 
(aus ANONYM (2008)). 
 

 

Durch Drehung dieser Achsen und Verschiebung des Rotationszentrums konnten nun zur 

Bearbeitung der Bilder alle vorstellbaren Ebenen angezeigt werden (ANONYM 2008). So war es 

möglich, durch die Einzelschnitte in den jeweiligen Ebenen durchzufächern und 

zweidimensionale Aufnahmen davon zu speichern.  

 

Anschließend wurde im Menübereich der Visualisierungsmodus „3D Rendering“ gewählt. In 

diesem Modus stellte sich nun im unteren rechten Quadranten das vom PC erzeugte 

dreidimensionale Bild dar, wobei die Schnittebene A im Verhältnis zum angezeigten 

dreidimensionalen Bild vertikal und die Schnittebene B horizontal war (Vergleiche Abbildung 11). 
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Abbildung 11: Volumenscan im Visualisierungsmodus „3D Rendering“ 
Axiale vertikale Schallebene. OD eines Haushuhnes (Gallus gallus domesticus);  
oben links vertikale Schnittebene, oben rechts horizontale Schnittebene, unten links transversale 
Schnittebene (im Anschnitt der Glaskörper), unten rechts berechneter dreidimensionaler Volumenscan. 
 
 
Durch Wahl der Taste „Edit Roi“ konnte in den drei Schnittebenen der gewünschte 

Untersuchungsbereich (Region of Interest) festgelegt werden. Nur was sich innerhalb dieses 

Bereiches befand, wurde als dreidimensionales Bild berechnet und angezeigt. Genutzt wurde 

diese Funktion um sich einzelne gewünschte Strukturen im vorderen Augensegment, wie 

Hornhaut, Kammerwinkel, Iris, Pupille oder Linsenkapsel separat darzustellen und aus Ebenen 

zu betrachten, die sonst durch andere Strukturen verdeckt wurden. 

Es konnten nun verschiedene Modi zur Darstellung der Ultraschallstrukturen eingestellt werden. 

Für diese Arbeit wurde einerseits der Oberflächenmodus gewählt, bei dem lediglich die Konturen 

eines Organs räumlich dargestellt wurden und der Inhalt des Organs leer und somit ohne 

Information war. Mit diesem Modus ließen sich einzelne abgrenzbare Strukturen gut erkennen. 

Voraussetzung war allerdings, dass die darzustellende Oberfläche von hypoechoischen 

Strukturen umgeben war. 
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Andererseits wurde der Transparenzmodus gewählt, welcher ein gläsernes Bild des Volumens 

zeigte. Dies bedeutete, dass die gesamte Information in dem dargestellten Organ erhalten blieb. 

Ein räumlicher Eindruck des Organs entstand erst durch seine Drehung am Bildschirm. 

Für jeden Volumenscan wurden Einstellungen wie Kontrast, Helligkeit, Grauwert, Schwellenwert, 

Zoom und Transparenz am dreidimensionalen Bild individuell vorgenommen. 

Mithilfe des Programms „MagiCut“ war es möglich unerwünschte Strukturen innerhalb des 

Untersuchungsbereiches zu entfernen. Damit gelang eine noch bessere Darstellung von 

Strukturen, die aufgrund von anatomischen Verhältnissen mittels konventioneller Sonographie 

verborgen geblieben wären. 

Die Bearbeitung der Datensätze war lediglich am Ultraschallgerät möglich, einzelne Bilder und 

auch Videosequenzen von rotierenden Volumenscans, welche mithilfe der Ultraschallsoftware 

aus einzelnen dreidimensionalen Bildern erstellt werden konnten, wurden gespeichert und 

später am PC nachbearbeitet.  

 

6. Nachbereitung der Probanden: 
Nach Abschluss der Ultraschalluntersuchung und noch bevor die Bearbeitung der 

dreidimensionalen Bilder am Ultraschallgerät erfolgte, wurden Auge und Gefieder des 

Probanden mit sauberen Einmalpapiertüchern und körperwarmer steriler physiologischer 

Kochsalzlösung gereinigt und eine Vitamin A-haltige Augensalbe auf die Hornhaut aufgebracht. 

Anschließend wurde der Vogel in eine ruhige abgedunkelte Patientenbox verbracht. 

 

3.2.3 Die postklinische Dokumentation 
 

Wurde bei den untersuchten Vögeln im Anschluss an die Ultraschalluntersuchung eine infauste 

Prognose gestellt, zum Beispiel weil die Auswilderbarkeit und Wildbahntauglichkeit bei 

Wildvögeln nicht mehr gegeben war, so wurden die Augen unmittelbar nach fachgerechter 

Euthanasie der Tiere entnommen und für weitere Untersuchungen asserviert. 

 

Für die Entnahme der Augen wurde die transpalpebrale Technik angewendet, für die lediglich 

eine gebogene Gewebeschere und eine feine anatomische Pinzette benötigt wurden. 

 

1. Präparation der Bulbi: 
Die entnommenen Bulbi wurden in 10 %iger Formalinlösung fixiert, wobei nach zehn Minuten, 

zwei Stunden und 24 Stunden die vordere Augenkammer mittels Parazentese mit Formalin 
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gestellt wurde, um Fixationsartefakte wie Einsinken der vorderen Augenkammer oder 

Netzhautablösungen zu vermeiden. 

 

Zur weiteren Bearbeitung wurden die Augen aus dem Formalin entnommen und mit destilliertem 

Wasser abgespült. 

 

Die Kallotierung der Bulbi erfolgte mit Rasierklingen in der annähernd horizontalen Ebene. 

Durch die Schnittführung wurde der Augenfächer nicht beschädigt und befand sich in der 

ventrotemporalen Bulbushälfte. 

 
2. Fotografische Dokumentation: 
Für die fotografische Dokumentation der Bulbi wurde die Kamera auf einem Stativ befestigt und 

die präparierten Bulbushälften so auf einer Unterlage unter das Objektiv platziert, dass sich die 

Schnittfläche horizontal zum Boden befand. Die Augenhälften wurden nun mit physiologischer 

Kochsalzlösung soweit aufgefüllt, dass sich eine gewölbte Wasseroberfläche ergab (Paralaxie). 

Die beiden Blitze wurden so platziert, dass der Bulbus vollständig ausgeleuchtet wurde. 

Die Fotografien der Bulbi wurden bei Blenden zwischen 11 - 22 und einer effektiven 

Belichtungszeit von 1/160 sek. fotografiert. Dabei war die Belichtungszeit durch den Blitz 

vorgegeben. 

Die Einstellung des Fokus wurde so gewählt, dass Strukturen wie Hornhaut, Linse, Ziliarkörper 

und Augenfächer scharf abgebildet wurden. Pathologische Veränderungen wurden zusätzlich 

fokussiert. 

Anschließend wurden die Bilder am PC nachbearbeitet und der Hintergrund mithilfe der 

Software Microsoft Word 2010 (Fa. Microsoft Corporation, Redmont, USA) freigestellt. 
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4. ERGEBNISSE  
 

 

4.1 Durchführung 
 

1. Untersuchungsdauer: 
Die Dauer der Untersuchung richtete sich zum einen nach der Vogelart und den damit 

verbundenen anatomischen Besonderheiten und zum anderen nach dem Stressempfinden der 

Tiere. Bei sehr stressanfälligen Tieren wurde die Untersuchung immer nur so kurz wie möglich 

gehalten, um ein Kollabieren der Patienten zu vermeiden. Bei Tieren, welche an das Handling 

gewöhnt waren und weniger stressempfindlich erschienen, wurde die Untersuchung so lange 

durchgeführt, bis ein auswertbares Bildergebnis erzielt wurde. Dabei wurde aber auch hier auf 

jegliches Unbehagen und Stressempfinden der Vögel geachtet und die Untersuchung 

nötigenfalls unterbrochen. Konnten die Vögel aufgrund von starker Stressanfälligkeit und 

weiterer schwerwiegender Erkrankungen nur in Narkose klinisch und sonographisch untersucht 

werden, dann wurde das Auge so lange sonographisch untersucht, bis ein gutes Bildergebnis 

erzielt wurde. Die Untersuchung erfolgte jedoch nur in sehr wenigen Einzelfällen in Narkose (2,2 

%, n=2, ein Turmfalke (Falco tinnunculus) und eine Waldschnepfe (Scolopax rusticola)). 
 

Des Weiteren war die Untersuchungsdauer abhängig von der Kooperation der Patienten. Da 

sich der Vogel während der genaueren Untersuchung des Auges und vor allem bei der 

Datenakquisition nicht bewegen durfte, musste bei Abwehrbewegungen des Tieres oder 

Drehbewegung des Kopfes oder der Augen die Datenakquisition wiederholt werden.  

 

Die Dauer der Auswertung der dreidimensionalen Datensätze variierte ebenfalls und war 

abhängig vom Ausmaß der pathologischen Veränderungen am Auge. So dauerte die 

Auswertung bei multiplen Defekten am Auge länger, als wenn nur einzelne oder keine 

pathologischen Veränderungen zu finden waren. 

 

Die Tabelle 3 zeigt für jede Vogelordnung eine Übersicht über die durchschnittliche Anzahl der 

benötigten Versuche für die erfolgreiche Datenakquisition, die Untersuchungsdauer für den 
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Patienten pro Schallebene und die durchschnittliche Dauer der Auswertung eines 

Datenvolumens, wobei sich der Patient während dieser Zeit bereits wieder in seiner Box befand.  
 

 

Tabelle 3: Anzahl der Versuche der Datenakquisition, Dauer der Untersuchung pro Schallebene 
und Auswertungszeit eines Datenvolumens pro Schallebene 

 Versuche Dauer pro Ebene  
Auswertungs-

dauer pro Ebene  

Accipitriformes 1,9 3 min. 58 sek. 30 min. 39 sek. 

Falconiformes 2,7 3 min. 26 sek. 24 min. 

Strigiformes 1,3 4 min. 1 sek. 27 min. 11 sek. 

Psittaciformes 1,4 3 min. 29 sek. 28 min. 

Anseriformes 1,3 3 min. 33 sek. 24 min. 33 sek. 

Galliformes 1,7 2 min. 30 sek. 38 min. 30 sek. 

Columbiformes 1,7 3 min. 22 sek. 22 min. 47 min. 

Passeriformes 1,2 3 min. 17 min. 

Cuculiformes 1,0 2 min. 20 sek. 30 min. 

Piciformes 1,0 2 min. 40 sek. 50 min. 

Ciconiiformes 1,5 3 min. 12 sek. 20 min. 

Charadriiformes 3,0 5 min. 40 min. 

Struthioniformes 1,5 2 min. 30 sek. 22 min. 30 sek. 

Durchschnitt 1,6 3 min. 19 sek. 28 min. 52 sek. 

 

 

Im Durchschnitt waren 1,6 Versuche nötig, um ein Datenvolumen artefaktfrei zu erstellen, wobei 

die Anzahl der Versuche bei Wildvögeln und Gänsevögeln am niedrigsten und bei Falkenartigen 

und Schnepfen am höchsten war. Allerdings wurde im Rahmen dieser Arbeit nur eine einzige 

Schnepfe untersucht, welche sich in Narkose befand. Die Daten sind daher nicht repräsentativ. 
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Durchschnittlich 3 min. und 19 sek. betrug die Zeit, bis die Datenakquisition einer Schallebene 

erfolgt war und während der sich der Vogelpatient in der Hand befand, wobei die Zeit von 2 min. 

und 20 sek. bei Kuckucksartigen bis 5 min. bei Schnepfenartigen variierte. Wie oben 

beschrieben befand sich die untersuchte Schnepfe allerdings in Narkose, was die lange 

Untersuchungszeit erklärt. 

Die Dauer der Auswertung pro Schallebene betrug durchschnittlich 28 min. und 52 sek., wobei 

im Durchschnitt nur 17 min. Zeit für die Auswertung bei Sperlingsvögeln, jedoch bis zu 50 min. 

bei Spechtartigen benötigt wurde. 

 

2. Toleranz und Verträglichkeit: 
Zeigten einige wenige Patienten zu Beginn der Untersuchung Abwehrbewegung und 

Lautäußerungen bei der Fixation, der Applikation des Lokalanästhetikums und später bei der 

Annäherung des Schallkopfes, so beruhigten sie sich in der Regel schnell wieder und die 

Untersuchung konnte zügig und ohne Probleme durchgeführt werden.  

 

Kam es während der Sonographie zu Anzeichen von Stress, Abwehrbewegungen oder 

Kreislaufschwäche, so wurde die Untersuchung sofort abgebrochen und der Patient in eine 

abgedunkelte Box verbracht. Dies geschah jedoch nur in 2,2 % der Fälle (n=2, ein Haushuhn 

(Gallus gallus domesticus) und eine Rauchschwalbe (Hirundo rustica)), wobei sich die Tiere in 

ihrer Box sehr schnell wieder erholten. 

 

Bei keinem der Patienten konnten im Anschluss an die sonographische Untersuchung 

ophthalmologische Probleme beobachtet werden. 

 

 

4.2 Dreidimensionale Darstellung des vorderen 
Augensegmentes 
 

4.2.1 Darstellbarkeit physiologischer Strukturen 
 

Im Folgenden soll auf die Darstellung und Darstellbarkeit physiologischer Strukturen des 

vorderen Augensegmentes beim Vogel eingegangen werden. Die Darstellbarkeit der okularen 
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Strukturen ist grundsätzlich gleich oder ähnlich, es konnten aber einige artspezifische 

Besonderheiten festgestellt werden. Auf diese wird an der jeweiligen Stelle genauer 

eingegangen. 

 

 
Abbildung 12: Volumenscan eines physiologischen Taubenauges (Columba livia) 

Volumenscan im Visualisierungsmodus „3D Rendering“ in der axialen vertikalen Schallebene, 
Oberflächenmodus, OS in der Aufsicht; L: Lider, HH: Hornhaut, I: Iris, P: Pupille. 
 
 
1. Hornhaut und Sklera: 
Die Hornhaut stellte sich dreidimensional als schmale langgezogene doppelte konvex gebogene 

Linie dar. Die zwei hyperechogenen Linien konnten dabei dem Epi- und Endothel der Hornhaut 

zugeordnet werde. Dazwischen befand sich das anechogene Stroma (Vergleiche Abb. 13 und 

14). Jedoch war es nicht immer möglich das Stroma von den restlichen Hornhautstrukturen 

abzugrenzen, da es sich in der dreidimensionalen Ansicht ähnlich echogen darstellte 

(Vergleiche Abb. 16). Die seitlichen Anteile der gewölbten Hornhaut ließen sich durch Brechung 

der Ultraschallwellen in der axialen Schallebene meist nicht darstellen. 

HH P 

L 

L 
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Hatte der Patient zum Zeitpunkt der Ultraschallaufnahme das Auge geschlossen, so konnte die 

Hornhaut meist nur schlecht von den angrenzenden Lidern abgegrenzt werden. 

 

 
Abbildung 13: Physiologisches Mäusebussardauge (Buteo buteo) 

Volumenscan im Visualisierungsmodus „3D Rendering“ in der axialen horizontalen Schallebene, 
Oberflächendarstellung, Nachbearbeitung mittels elektronischen Skalpells. OD in der seitlichen Ansicht;  
HH: Hornhaut, VAK: vordere Augenkammer, I: Iris, P: Pupille, LVK: vordere Linsenkapsel, HAK: hintere 
Augenkammer, LS: Linsenstroma, LHK: hintere Linsenkapsel, ZK: Ziliarkörper, LHK‘: Vorwölbung der 
hinteren Linsenkapsel. 
 

 

2. Vordere und hintere Augenkammer: 
Die vordere Augenkammer stellte sich als anechogener Raum dar. Die hintere Augenkammer 

konnte nicht bei allen Vogelarten dargestellt werden, aber vor allem bei tagaktiven Greifvögeln 

war sie als schmaler anechogener Raum zwischen Iris und Linsenvorderkapsel gut darstellbar 

(Vergleiche Abb. 13 und 14). 
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3. Linse: 
Die Linse wurde im dreidimensionalen Ultraschall durch eine vordere stärker konvex gebogene 

und hintere weniger konkav gekrümmte hyperechogene Linie abgebildet. Je nach 

Akkommodationsstatus konnte sich die vordere Linsenkapsel dabei durch die Pupillenöffnung in 

den Raum der vorderen Augenkammer vorwölben. Bei tagaktiven Greifvögeln konnte 

dreidimensional oftmals eine punktförmige Vorwölbung der hinteren Linsenkapsel in Richtung 

Linsenstroma abgebildet werden. Des Weiteren kam es in einigen Fällen zu 

Wiederholungsechos hinter der Linsenkapsel (Vergleiche Abb. 15). Die peripheren Anteile der 

hinteren Linsenkapsel wurden im Ultraschall nicht abgebildet.  

Das Linsenstroma stellte sich anechogen dar. 

 

4. Iris und Ziliarkörper: 
Die Iris stellte sich mäßig echogen bis hyperechogen dar und bildete die kreisrunde Pupille, 

welche entweder als echofreier Bezirk oder durch die Vorwölbung der Linse erkennbar war 

(Vergleiche Abb. 13 und 15). Bei Eulenvögeln war die Iris durch das Auftreten einer 

Schreckmydriasis und dem ausgeprägtem Skleralring nicht immer darstellbar (Vergleiche Abb. 

16).  

 

Der Ziliarkörper war im dreidimensionalen Bild in der axialen Schallebene durch den Skleralring 

nicht immer abgrenzbar. Er stellte sich ähnlich echogen wie die Iris dar. 
 

 

 

 

HH 

VAK 

HAK I 
LVK 
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Abbildung 14: Physiologisches Mäusebussardauge (Buteo buteo) 
Volumenscan im Visualisierungsmodus „3D Rendering“ in der axialen vertikalen Schallebene, OD in der 
Oberflächendarstellung, Wahl einer schmalen ROI-Box, Nachbearbeitung mittels elektronischen Skalpells. 
HH: Hornhaut, VAK: vordere Augenkammer, I: Iris, LVK: vordere Linsenkapsel, HAK: hintere 
Augenkammer, LS: Linsenstroma, LHK: hintere Linsenkapsel. 
 
 

 
Abbildung 15: Physiologisches Habichtauge (Accipiter gentilis) 
Volumenscan im Visualisierungsmodus „3D Rendering“ in der axialen vertikalen Schallebene, 
Oberflächendarstellung, Nachbearbeitung mittels elektronischen Skalpells. OS mit Ansicht von kaudal 
nach kranial, Sicht auf die hintere Linsenkapsel; LHK: hintere Linsenkapsel, P: Pupille, ZK: Ziliarkörper, 
SR: Skleralring, A: Artefakt. 
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5. Skleralring: 
Der Skleralring stellte sich als hyperechogene Struktur peripher der Linse dar und war in den 

meisten Fällen nicht vom umliegenden Gewebe differenzierbar. Eine Ausnahme stellten hier 

Eulenvögel dar, bei denen der Skleralring deutlich ausgeprägt und im dreidimensionalen Bild 

sichtbar war (Vergleiche Abb. 16). In jedem Fall löste er aber einen Schallschatten aus, welcher 

im Ultraschallbild als hyperechogene ringförmige Struktur sichtbar war. Der Skleralring hatte 

auch Einfluss auf die Darstellbarkeit der Bulbusform. Nur flache Bulbusformen konnten sicher 

dargestellt werden. 

 
6. Kammerwinkel: 
Durch Wahl eines schmalen Ausschnitts des Volumenbildes ließ sich der Kammerwinkel in der 

axialen Schallebene bei den verschiedenen Bulbusformen darstellen (Vergleiche Abb. 18 und 

Abb. 19). Stellten sich die angrenzenden Strukturen wie Iris oder Lider nur schwach echogen 

dar, so war es schwierig den Kammerwinkel genau abzugrenzen. 
 

7. Lider: 
Die Lider waren dreidimensional als echogene bis hyperechogene flächige Bereiche in Nähe 

des Schallkopfes erkennbar und waren je nach Lidschluss zum Zeitpunkt der Aufnahme mehr 

oder weniger ausgeprägt sichtbar (Vergleiche Abb. 12). 
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Abbildung 16: Physiologisches Waldkauzauge (Strix aluco) 
Volumenscan im Visualisierungsmodus „3D Rendering“ in der axialen vertikalen Schallebene, 
Oberflächendarstellung, Nachbearbeitung mittels elektronischen Skalpells. Aufsicht und seitliche Ansicht;  
HH: Hornhaut, VAK: vordere Augenkammer, I: Iris, P: Pupille, LVK: vordere Linsenkapsel, SR: Skleralring, 
LHK: hintere Linsenkapsel. 

 

 
Abbildung 17: Physiologisches Kongo-Graupapageiauge (Psittacus erithacus erithacus) 

Volumenscan im Visualisierungsmodus „3D Rendering“ in der axialen horizontalen Schallebene, 
Oberflächendarstellung, Nachbearbeitung mittels elektronischen Skalpells. 
OS mit Ansicht schräg von der Seite und von kaudal nach kranial; HH: Hornhaut, LVK: vordere 
Linsenkapsel, LHK: hintere Linsenkapsel, I:Iris, P: Pupille, ZK: Ziliarkörper. 
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Abbildung 18: Physiologisches Uhuauge (Bubo bubo) 
Volumenscan im Visualisierungsmodus „3D Rendering“ in der axialen vertikalen Schallebene, 
Oberflächenmodus, OS mit seitlicher Ansicht durch Wahl einer schmalen ROI-Box, Nachbearbeitung 
mittels elektronischem Skalpells; L: Lider, HH: Hornhaut, VAK: vordere Augenkammer, I: Iris, P: Pupille, 
LVK: vordere Linsenkapsel, KW: Kammerwinkel, LS: Linsenstroma, LHK: hintere Linsenkapsel, SR: 
Skleralring, ZK: Ziliarkörper. 

 

 

Abbildung 19: Physiologisches Gänseauge (Anser anser domesticus) 
Volumenscan im Visualisierungsmodus „3D Rendering“ in der axialen horizontalen Schallebene, 
Oberflächenmodus, OD in der seitlichen Aufsicht in Richtung Kammerwinkel, Nachbearbeitung mittels 
elektronischem Skalpells; L: Lider, I: Iris, P: Pupille, LVK: vordere Linsenkapsel, KW: Kammerwinkel. 
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4.2.2 Darstellbarkeit pathologischer Strukturen 
 

Von den 91 untersuchten Patienten hatten 41,8 % der Tiere (n=38) pathologische 

Veränderungen im vorderen Augensegment. Dabei kamen die Veränderungen bei 52,6 % der 

Tiere (n=20) beidseitig und bei 47,4 % (n=18) einseitig vor. Somit traten bei den 38 Tieren 

pathologische Veränderungen im vorderen Augensegment an insgesamt 58 Augen auf. 

Die Ursache der Veränderungen konnte nicht in allen Fällen geklärt werden, sie war oftmals 

aber traumatischer, infektiöser oder kongenitaler Ätiologie.  

Die angefertigten dreidimensionalen Ultraschallbilder wurden mit der vorangegangenen 

ophthalmologischen und ophthalmoskopischen Untersuchung, den zweidimensionalen 

sonographischen Einzelbildern und gegebenenfalls mit postmortal angefertigten Bildern der 

fixierten und kallotierten Augen verglichen. 

 

4.2.2.1 Kornea 
Veränderungen der Hornhaut konnten bei 14,3 % der Patienten (n=13) beobachtet werden. Die 

Veränderungen lagen in 53,8 % der Fälle (n=7) beidseitig und in 46,2 % der Fälle (n=6) einseitig 

vor. 

 

1. Keratoglobus: 
Bei 7,7 % der Patienten (n=7, sechs Hühner (Gallus gallus domesticus) und eine Taube 

(Columba livia)) konnte ein Keratoglobus ophthalmologisch diagnostiziert werden. Dieser lag bei 

71,4 % der Vögel (n=5) beidseitig und bei 28,6 % (n=2) einseitig vor. Als Ursache wurde bei den 

Haushühnern eine erblich bedingte Erkrankung angenommen. Bei der Taube war der 

Keratoglobus entweder viraler, traumatischer oder kongenitaler Ätiologie. 

 

Sonographisch ließ sich ein Keratoglobus als Zunahme der Tiefe der vorderen Augenkammer 

und Abnahme des Hornhautdurchmessers bei 85,7 % der Tiere (n=6) darstellen (Vergleiche 

Abb. 20 und 21). 
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Abbildung 20: Keratoglobus bei einem Haushuhn (Gallus gallus domesticus) 
Volumenscan im Visualisierungsmodus „3D Rendering“ in der axialen vertikalen Schallebene, OD in der 
Oberflächendarstellung, Nachbearbeitung mittels elektronischen Skalpells. HH: verdünnte Hornhaut, VAK: 
vertiefte vordere Augenkammer, I: Iris, LVK: vordere Linsenkapsel, HAK: hintere Augenkammer im 
Anschnitt, LS: Linsenstroma, LHK: hintere Linsenkapsel, KW: Kammerwinkel, L: Lider. 
 

 

Abbildung 21: Keratoglobus bei einer Haustaube (Columba livia) 
Volumenscan im Visualisierungsmodus „3D Rendering“ in der axialen vertikalen Schallebene, 
Vierquadrantenbildschirm, unten rechts Volumenscan OS in der Oberflächendarstellung. Nachbearbeitung 
mittels elektronischen Skalpells. HH: Hornhaut, VAK: vertiefte vordere Augenkammer, I: Iris, LVK: vordere 
Linsenkapsel, HAK: hintere Augenkammer, LS: Linsenstroma, LHK: hintere Linsenkapsel, ZK: 
Ziliarkörper, KW: Kammerwinkel. 
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2. Nicht-ulzerierende Keratitiden: 
Bei 2,2 % der Patienten (n=2, eine Stockente (Anas platyrhynchos) und ein Waldkauz (Strix 

aluco)) konnte eine nicht-ulzerierende Keratitis in der ophthalmologischen Untersuchung 

festgestellt werden. Bei dem Waldkauz lag die Keratitis beidseitig vor, bei der Ente war nur das 

rechte Auge betroffen. Die Ursache der Keratitiden war wahrscheinlich traumatischer Natur.  

Bei der Stockente lag nur eine geringgradig ausgeprägte länger bestehende Keratitis vor, 

welche sich sonographisch nicht darstellen ließ. Der Waldkauz hatte jedoch eine beidseitig stark 

ausgeprägte Keratitis, welche sich sonographisch durch Zunahme der Hornhautdicke und 

Darstellbarkeit der Hornhautperipherie zeigte (Vergleiche Abb. 22 und 23). Bei diesem Patienten 

lagen weiterhin multiple schwerwiegende Veränderungen an den Augen vor (Vergleiche 

Abschnitt Uvea und Linse). 
 

 

Abbildung 22: Keratitis bei einem Waldkauz (Strix aluco) 
Volumenscan im Visualisierungsmodus „3D Rendering“ in der axialen vertikalen Schallebene, 
Vierquadrantenbildschirm, unten rechts Volumenscan OD in der Oberflächendarstellung, seitliche Aufsicht 
auf die verdickte Hornhaut. HH: verdickte Hornhaut, VAK: vordere Augenkammer, L: Lider. 
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Abbildung 23: Keratitis bei einem Waldkauz (Strix aluco) 
Volumenscan im Visualisierungsmodus „3D Rendering“ in der axialen horizontalen Schallebene, OS in der 
Oberflächendarstellung, Wahl einer schmalen ROI-Box, Nachbearbeitung mittels elektronischen Skalpells. 
Gleicher Patient wie in Abb. 22; HH: verdickte Hornhaut, VAK: vordere Augenkammer, L: Lider,  I: Iris, 
LVK: vordere Linsenkapsel, LS: Linsenstroma, LHK: hintere Linsenkapsel, ZK: Ziliarkörper, KW: 
Kammerwinkel, A: Artefakt. 
 
 
3. Ulzerierende Keratitiden: 
Eine Keratitis mit Substanzverlust, wurde lediglich in einem Sonderfall sonographisch untersucht  

(1,1 %), da wie in Kapitel C.2 Untersuchungsmethoden bereits erwähnt, ein Ulkus als 

Kontraindikation für die Ultraschalluntersuchung galt. Ein Mäusebussard (Buteo buteo), bei dem 

die perforierende Hornhautverletzung als alt und abgeheilt galt, stellte den Patienten dar. Die 

Ursache war ein vorausgegangenes Trauma. 

Sonographisch war es jedoch nicht möglich, den abgeheilten Defekt oder eine Verdünnung oder 

umliegende Verdickung der Hornhaut darzustellen. 

 

4. Nicht-entzündliche Keratopathien: 
Bei 2,2 % der Patienten (n=2, zwei Haushühner (Gallus gallus domesticus)) konnte in der 

ophthalmologischen Untersuchung eine nicht-entzündliche Keratopathie festgestellt werden. Die 

Veränderung lag bei einem Patienten einseitig und bei dem anderen beidseitig vor. Sie stellte 
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sich als milchige Trübung der Hornhaut dar. Es wurde eine nicht-entzündliche Ätiologie 

angenommen.  

 

Sonographisch konnten die Keratopathien nicht dargestellt werden, da keine Dickenzunahme 

der Hornhaut vorlag. 

 

D.2.2.2 Vordere und hintere Augenkammer 
Pathologische Veränderungen traten bei 13,2 % der Patienten (n=12) auf und waren nur in der 

vorderen Augenkammer zu finden. Die Veränderungen traten in 91,7 % der Fälle (n=11) 

einseitig und in 8,3 % der Fälle (n=1) beidseitig auf. Es handelte sich dabei um Blut, Fibrin oder 

um freie Zellen. 

 

1. Hyphaema: 
Bei 8,8 % der Patienten (n=8, ausschließlich Wildvögel: ein Buchfink (Fringilla coelebs), ein 

Grünspecht (Picus viridis), eine Waldschnepfe (Scolopax rusticola), eine Rauchschwalbe 

(Hirundo rustica), ein Kuckuck (Cuculus canorus), eine Stockente (Anas platyrhynchos), ein 

Turmfalke (Falco tinnunculus) und ein Waldkauz (Strix aluco)) konnte in der ophthalmologischen 

Untersuchung eine Einblutung in das vordere Augensegment festgestellt werden. Bei allen 

Patienten wurde das Hyphaema nur einseitig beobachtet. Die Ursache war in jedem Fall ein 

vorangegangenes Trauma.  

 

Sonographisch ließen sich die Einblutungen in die vordere Augenkammer nur bei 50 % der 

Vögel (n=4) gut darstellen, bei 25 % der Patienten (n=2) war das Hyphaema schlecht, bei 25 % 

der Tiere (n=2) gar nicht darstellbar. 

Einblutungen stellten sich im Ultraschall je nach Grad der Einblutung als schwache hypo- bis 

stark hyperechogene Strukturen dar (Vergleiche Abb. 24 und 25). 
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Abbildung 24: Hyphaema bei einer Rauchschwalbe (Hirundo rustica) 
Volumenscan im Visualisierungsmodus „3D Rendering“ in der axialen vertikalen Schallebene, OD in der 
Oberflächendarstellung, Wahl einer schmalen ROI-Box, Nachbearbeitung mittels elektronischen Skalpells, 
Hornhaut durch geschlossene Lider nicht darstellbar; L: Lider, VAK: vordere Augenkammer, I: Iris, LS: 
Linsenstroma, LHK: hintere Linsenkapsel, H: Hyphaema, KW: Kammerwinkel. 
 

 

Abbildung 25: Hyphaema bei einem Waldkauz (Strix aluco) 
Volumenscan im Visualisierungsmodus „3D Rendering“ in der axialen vertikalen Schallebene, 
Vierquadrantenbildschirm, unten rechts Volumenscan OD in der Oberflächendarstellung, Aufsicht auf das 
Hyphaema und die vordere Linsenkapsel. HH: Hornhaut, VAK: vordere Augenkammer,  I: Iris, LVK: 
vordere Linsenkapsel, LS: Linsenstroma, LHK: hintere Linsenkapsel, H: Hyphaema. 
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2. Fibrin: 
Bei 4,4 % der untersuchten Vögel (n=4, ein Haushuhn (Gallus gallus domesticus), ein Turmfalke 

(Falco tinnunculus), ein Waldkauz (Strix aluco) und eine Sumpfohreule (Asio flammeus)) konnte 

ophthalmologisch oder bei der pathologischen Untersuchung der Augen eine einseitige 

Fibrinansammlung in der vorderen Augenkammer festgestellt werden. Die Ursache lag bei den 

Wildvögeln vermutlich in einem vorangegangenen Trauma. Bei dem Haushuhn wurde eine 

entzündliche Ätiologie der Fibrinablagerung angenommen. 

 

Sonographisch konnte Fibrin auch bei einer hochgradigen Ansammlung nicht oder nur sehr 

schlecht dargestellt werden. Die Abbildung 26 zeigt das postmortal angefertigte Bild einer 

hochgradigen Fibrineinlagerung in die vordere Augenkammer bei einem Waldkauz. Abbildung 

27 zeigt das dazugehörige Ultraschallbild. In der zwei- und dreidimensionalen Sonographie ließ 

sich das Fibrin lediglich schwach echogen bei 25 % der Patienten (n=1) darstellen. 

 

3. Freie Zellen: 
Bei 1,1 % der Patienten (n=1, ein Haushuhn (Gallus gallus domesticus)) konnte in der 

ophthalmologischen Untersuchung beidseitig freie Zellen in der vorderen Augenkammer 

festgestellt werden. Eine entzündliche Ätiologie wurde angenommen. 

 

Sonographisch ließen sich diese Zellen jedoch nicht darstellen. 
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4.2.2.3 Uvea 
Pathologische Veränderungen der Uvea konnten bei 19,8 % der Patienten (n=18) festgestellt 

werden. In 88,9 % der Fälle (n=16) traten die Veränderungen einseitig, in 11,1 % der Fälle (n=2) 

beidseitig auf. Am häufigsten waren Synechien und Iriszysten zu beobachten. 

 

1. Uveitis: 
Da wie im Abschnitt B.3.2.4 Uvea beschrieben bei einer Uveitis vielseitige Symptome vorhanden 

sein konnten, war es schwierig die genaue Patientenzahl zu ermitteln, welche an einer Uveitis litt 

oder gelitten hatte, da einzelne Veränderungen auch bei anderen Krankheitsbildern auftreten 

konnten. 

Lediglich bei 1,1 % der untersuchten Patienten (n=1, ein Nymphensittich (Nymphicus 

hollandicus)) konnte die Diagnose phakoanaphylaktische Uveitis gestellt werden. Der Patient litt 

an einer Linsenruptur aufgrund einer hochgradigen Katarakt der Linse, woraufhin eine 

Entzündung der umliegenden Uvea entstand.  

Sonographisch konnte die Ruptur und die Katarakt nachgewiesen werden und eine 

Dickenzunahme von Iris, Ziliarkörper und Linse konnte beobachtet werden (Vergleiche Abb. 28, 

46 und Abschnitt Dislokation der Linse). 

 

 
Abbildung 28: phakoanaphylaktische Uveitis bei einem Nymphensittich (Nymphicus hollandicus) 
Volumenscan im Visualisierungsmodus „3D Rendering“ in der axialen vertikalen Schallebene, 
Oberflächendarstellung, OS in der seitlichen Aufsicht. phakoanaphylaktischer Uveitis, Linsenruptur und 
Cataracta hypermatura erkennbar, gleicher Patient wie in Abb. 48; L: Lider, LVK: vordere Linsenkapsel, I: 
Iris, ZK: Ziliarkörper, LS: Linsenstroma, LHK: hintere Linsenkapsel, R: Linsenruptur. 
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Bei 1,1 % der Patienten (n=1, eine Haustaube (Columba livia)) konnte als alleinige 

Veränderungen des linken Auges eine Verfärbung der Iris beobachtet werden. Dabei war der 

nasale Teil der Iris halbmondförmig dunkelrot verfärbt (Siehe Abbildung 29).  

Sonographisch konnte kein Unterschied in der Echogenität oder Dicke der Iris festgestellt 

werden. 

 

In den restlichen Fällen konnte die Diagnose Uveitis nicht gestellt werden, oft aber der Verdacht 

geäußert werden, dass die vorliegenden Befunde durch eine vorangegangene Uveitis 

verursacht worden waren.  
 

 

Abbildung 29: farblich veränderte Iris bei einer Taube (Columba livia) 
Blende 14, Belichtung 1/125 sek., OS mit nasal farblich veränderter Iris. 
 
 

2. Iriszysten: 
Bei 6,6 % der Patienten (n=6) konnten ophthalmologisch eine oder mehrere Iriszysten 

diagnostiziert werden. Die Zysten kamen in 33,3 % der Fälle (n=2) beidseitig und in 66,7 % der 

Fälle (n=4) einseitig vor. Bei den Patienten handelte es sich ausschließlich um Hausgänse 

(Anser anser domesticus) und die Veränderungen stellten Zufallsbefunde dar. Eine angeborene 

Ätiologie wurde bei allen Patienten angenommen. 
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Sonographisch konnten die Iriszysten lediglich bei 66,7 % der Patienten (n=4) dargestellt 

werden. Dabei kam es vor allem auf die Größe und Lage der Zysten an. Sehr kleine und am  

peripheren Irisrand gelegene Zysten konnten nicht oder nur teilweise als schwach echogene 

Strukturen dargestellt werden. Größere und am Pupillenrand gelegene Iriszysten waren bereits 

im zweidimensionalen Ultraschallbild gut zu erkennen (Vergleiche Abb. 30). Im 3D-Ultraschall 

stellten sich die Zysten als rundliche schwach bis stärker echogene Strukturen dar, wobei 

Stroma und Rinde stets die gleiche Echogenität aufwiesen (Vergleiche Abb. 31). Allerdings 

stellten sich die Iriszysten sonographisch stets weniger prägnant als in der ophthalmologischen 

Untersuchung dar (Vergleiche Abb. 32).  

 

 

Abbildung 30: Iriszysten bei einer Hausgans (Anser anser domesticus) 
Zweidimensionales Ultraschallschnittbild in der axialen horizontalen Schallebene. OD, gleicher Patient wie 
in Abb. 32; L: Lider, HH: Hornhaut, I: Iris, LHK: hintere Linsenkapsel, VAK: vordere Augenkammer, Z: 
Iriszyste. 
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Abbildung 31: Iriszysten bei einer Hausgans (Anser anser domesticus) 
Volumenscan im Visualisierungsmodus „3D Rendering“ in der axialen horizontalen Schallebene, 
Oberflächendarstellung, OS in der seitlichen Aufsicht, Nachbearbeitung mittels elektronischen Skalpells; 
LVK: vordere Linsenkapsel, P: Pupille,  I: Iris, HAK: hintere Augenkammer, LHK: hintere Linsenkapsel, Z: 
Iriszyste. 
 

 
Abbildung 32: Iriszyste bei einer Hausgans, (Anser anser domesticus) 
fotographische Dokumentation, OS mit multiplen Iriszysten, gleicher Patient wie in Abb. 30. 
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3. Synechien: 
Bei 5,5 % der Patienten (n=5, eine Waldschnepfe (Scolopax rusticola), eine Stockente (Anas 

platyrhynchos), eine Blaustirnamazone (Amazona aestiva), ein Mäusebussard (Buteo buteo) 

und ein Sperber (Accipiter nisus)) konnte in der ophthalmologischen Untersuchung eine 

einseitige Synechie festgestellt oder der Verdacht darauf ausgesprochen werden. 

Dabei lag bei 20 % der Patienten (n=1, ein Mäusebussard (Buteo buteo)) eine anteriore und bei 

80 % der Patienten (n=4) eine posteriore Synechie vor. Die Ursache konnte nicht vollständig 

geklärt werden und war entweder traumatischer Natur oder die Folge einer Uveitis. 

 

Sonographisch konnte die anteriore Synechie nicht dargestellt werden, die posterioren 

Synechien waren nur in 25 % der Fälle (n=1) im Ultraschall darstellbar. 

Die hintere Synechie stellte sich im Ultraschall als eine Verdickung der Iris und vorderen 

Linsenkapsel und dem Verlust der Pupille dar (Vergleiche Abb. 33 und 34). 
 

 

Abbildung 33: Synechia posterior bei einem Sperber (Accipiter nisus) 
Volumenscan im Visualisierungsmodus „3D Rendering“ in der axialen vertikalen Schallebene, 
Vierquadrantenbildschirm, unten rechts Volumenscan OD in der Oberflächendarstellung, Aufsicht auf die 
vordere Linsenkapsel, Iris und der posterioren Synechie, Verlust der Pupille. Gleicher Patient wie in Abb. 
34; HH: Hornhaut, VAK: vordere Augenkammer, I: Iris, LS: Linsenstroma, LHK: hintere Linsenkapsel, S: 
posteriore Synechie. 
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Abbildung 35: veränderte Pupille bei einem Rauhfußbussard (Buteo lagopus) 
Volumenscan im Visualisierungsmodus „3D Rendering“ in der axialen vertikalen Schallebene, OD in der 
Oberflächendarstellung, Schrägaufsicht auf Iris und Linsenvorderkapsel, Nachbearbeitung mittels 
elektronischen Skalpells; I: Iris, LVK: vordere Linsenkapsel, P‘: unregelmäßige Pupille. 
 
 
4. Iris bombata: 
Bei 1,1 % der Patienten (n=1, ein Haushuhn) konnte eine einseitige vollständige hintere 

Synechie mit Vorwölbung der Iris in die vordere Augenkammer beobachtet werden. Als Ursache 

wurde eine vorausgegangene Entzündung des Auges angenommen. 

 

Sonographisch ließ sich die Iris verdickt, als rundliche Vorwölbung in die vordere Augenkammer 

darstellen, wobei gleichzeitig die hintere Augenkammer vergrößert war. Ihr Inhalt stellte sich 

schwach hypo- bis anechogen dar (Vergleiche Abb. 36). 

 

 

P‘ 

LVK 

I 



ERGEBNISSE 
______________________________________________________________________ 

 

105 
 

 

Abbildung 36: Iris bombata bei einem Haushuhn (Gallus gallus domesticus) 
Volumenscan im Visualisierungsmodus „3D Rendering“ in der axialen vertikalen Schallebene, 
Oberflächendarstellung, OS in der seitlichen Aufsicht auf das Auge, zusätzlich zur Iris bombata ist eine 
Netzhautablösung zu erkennen, gleicher Patient wie in Abb. 48 und 50; HH: Hornhaut, VAK: vordere 
Augenkammer, HAK: hintere Augenkammer, I: Iris, LHK: hintere Linsenkapsel, LS: Linsenstroma, N: 
abgelöste Netzhaut. 
 
 

5. Iriskolobom: 
Bei 2,2 % der Patienten (n=2, ein Waldkauz (Strix aluco) und eine Blaustirnamazone (Amazona 

aestiva)) konnte in der ophthalmologischen Untersuchung bei jeweils einem Auge ein Loch in 

der Iris festgestellt werden. Als Ursache war bei dem Waldkauz ein vorangegangenes Trauma 

anzunehmen, da noch weitere schwerwiegende Veränderungen wie Iridodialysis und Luxatio 

posterior der Linse vorlagen (Vergleiche auch Abschnitt Linse und Iridodialysis). Bei der 

Blaustirnamazone wurde als Ursache für das Kolobom ein diagnostiziertes Glaukom oder eine 

altersabhängie Entwicklung angenommen. 

 

Sonographisch konnte das Loch in der Iris in beiden Fällen dargestellt werden (Vergleiche Abb. 

37, 38 und 39). Es war im Ultraschall durch ein hypo- bis anechogenes Loch in der Iris 

gekennzeichnet. 
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Abbildung 37: Iridodialysis, Iriskolobom und Linsenluxation bei einem Waldkauz (Strix aluco) 
Volumenscan im Visualisierungsmodus „3D Rendering“ in der axialen vertikalen Schallebene, 
Oberflächendarstellung, OD mit seitlicher Aufsicht auf das Auge, gleicher Patient wie in Abb. 38, 40 und 
41;  HH: Hornhaut, L: Lider, VAK: vordere Augenkammer, I: Iris, I‘: Iridodialysis, K: Iriskolobom, L‘: Linse in 
Auflösung, GK: Glaskörper. 
 

  
 

Abbildung 38: Iridodialysis und Iriskolobom bei einem Waldkauz (Strix aluco) 
Volumenscan im Visualisierungsmodus „3D Rendering“ in der axialen vertikalen Schallebene, OD in der 
Oberflächendarstellung, Seitliche Aufsicht auf Iris und Pupille, Hornhaut nicht dargestellt; gleicher Patient 
wie in Abb. 37, 40 und 41; I: Iris, P: Pupille, K: Iriskolobom. 
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Abbildung 39: Iriskolobom bei einer Blaustirnamazone (Amazona aestiva)  
Volumenscan im Visualisierungsmodus „3D Rendering“ in der axialen vertikalen Schallebene, OS in der 
Oberflächendarstellung, Aufsicht auf Iris, Pupille und vordere Linsenkapsel, Hornhaut nicht dargestellt, 
Durch Schrägschnitt durch die Linse liegt die rechte Linsenhälfte im Schallschatten und stellt sich 
hypoechogen dar; I: Iris, LVK: vordere Linsenkapsel, LVK‘: vordere Linsenkapsel im Schallschatten, P: 
Pupille, K: Iriskolobom. 
 
 
6. Iridodialysis: 
Bei 1,1 % der Patienten (n=1, der oben erwähnte Waldkauz (Strix aluco)) konnte in der 

pathologischen Untersuchung eine Zerreißung der Iris und Verlagerung in den Glaskörperraum 

festgestellt werden (Vergleiche Abb. 41). Wie oben erwähnt handelte es sich dabei ätiologisch 

um ein Trauma. 

 

Sonographisch stellte sich die Zerreißung als hyperechogene Lokalisation der Iris im 

Glaskörperraum dar, wobei noch eine teilweise Verbindung zum Ziliarkörper und restlichem 

Irisgewebe bestand (Vergleiche Abb. 37, 40 und 41). 
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4.2.2.4 Linse 
Bei 17,6 % der untersuchten Patienten (n=16)  konnte in der ophthalmologischen  oder 

pathologischen Untersuchung eine Veränderung der Linse festgestellt werden. Die 

Veränderungen traten in 68,8 % der Fälle (n=11) einseitig und in 31,2 % der Fälle (n=5) 

beidseitig auf. Am häufigsten handelte es sich bei den pathologischen Veränderungen um 

Katarakte. 

 
1. Katarakt: 
16,5 % der Patienten (n=15, vier Haushühner (Gallus gallus domesticus), eine Krähe (Corvus 

corone corone), ein Kuckuck (Cuculus canorus), eine Stockente (Anas platyrhynchos), ein Uhu 

(Bubo bubo), ein Turmfalke (Falco tinnunculus), ein Mäusebussard (Buteo buteo), ein Sperber 

(Accipiter nisus), drei Blaustirnamazonen (Amazona aestiva) und ein Nymphensittich 

(Nymphicus hollandicus)) wiesen in der ophthalmologischen Untersuchung eine Trübung der 

Linse auf. Die Katarakt lag in 33,3 % der Fälle beidseitig und in 66,7 % der Fälle einseitig vor.  

Es lagen unterschiedliche Ursachen vor, welche nicht immer geklärt werden konnten.  

Bei den Haushühnern konnte es sich um eine erbliche oder degenerativ entwickelte Form der 

Katarakt handeln oder eine vorangegangene Uveitis die Ursache darstellen. 

Bei der Krähe, dem Kuckuck und der Stockente lag vermutlich eine traumatische oder infektiöse 

Ätiologie zugrunde.  

Bei dem Uhu, dem Mäusebussard, dem Sperber und dem Turmfalken wurde aufgrund von 

weiteren vermutlich traumatisch bedingten Veränderungen im Auge ein Trauma als Ursache 

angenommen. 

Bei den Blaustirnamazonen und dem Nymphensittich wurde eine altersabhängige Entstehung 

der Katarakt angenommen. 

 

Sonographisch konnte eine Katarakt nur in 33,3 % der Fälle (n=5) gut dargestellt werden, in 

53,4 % der Fälle (n=8) nur unsicher und in 13,3 % der Fälle (n=2) gar nicht diagnostiziert 

werden. Die Darstellbarkeit mittels Ultraschall war abhängig vom Grad der Katarakt, 

geringgradig ausgeprägte Linsentrübungen konnten im Ultraschall genau wie punktförmige 

Katarakte in der Regel gar nicht dargestellt werden. Zusätzlich sahen Katarakte in der 

ophthalmologischen Untersuchung oftmals prägnanter als in der sonographischen Untersuchung 

aus. 

Bei einer kapsulären Katarakt waren vordere und manchmal auch hintere Linsenkapsel und die 

Iris hyperechogen und verdickt darstellbar. Beim Vorliegen einer posterioren kapsulären 
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Katarakt konnte die hintere Linsenkapsel bis in die Peripherie dargestellt werden. Bei einer 

nuklearen Katarakt stellte sich das sonst anechogene Linsenstroma hypo- bis mäßig echogen 

dar und konnte oftmals leicht mit Artefakten im Stroma verwechselt werden. 

Aufgrund der verdickten Linsenkapsel konnte es zu Wiederholungsartefakten hinter der 

Linsenkapsel kommen (Vergleiche Abb. 42 und 43). 
 

 

Abbildung 42: Katarakt bei einer Rabenkrähe (Corvus corone corone) 
Zweidimensionales Ultraschallschnittbild in der axialen vertikalen Schallebene. OS mit cortikaler und 
geringgradig capsulärer Katarakt und Wiederholungsechos, gleicher Patient wie in Abb. 43 und 44; L: 
Lider, HH: Hornhaut, I: Iris, LVK: vordere Linsenkapsel, LHK: hintere Linsenkapsel, LS‘: teilweise 
echogenes Linsenstroma, VAK: vordere Augenkammer, A: Artefakt. 
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Abbildung 45: Katarakt bei einem Waldkauz (Strix aluco) 
Volumenscan im Visualisierungsmodus „3D Rendering“ in der axialen vertikalen Schallebene, 
Vierquadrantenbildschirm, unten rechts Volumenscan in der Oberflächendarstellung, Wahl einer schmalen 
ROI-Box, seitliche Sicht auf die Linse, OD mit Cataracta immatura; VAK: vordere Augenkammer, LVK: 
vordere Linsenkapsel, LS: Linsenstroma, LHK: hintere Linsenkapsel, N: Netzhautablösung, A: Artefakt. 
 

 

2. Dislokation der Linse: 
Bei 2,2 % der untersuchten Patienten (n=2, ein Uhu (Bubo bubo) und ein Mäusebussard (Buteo 

buteo)) konnte eine Subluxation, bei 1,1 % der Patienten (n=1, ein Waldkauz (Strix aluco)) eine 

Luxation der Linse nach posterior festgestellt werden. In allen Fällen wurde ein 

vorangegangenes Trauma als Ursache angenommen. 

 

Sonographisch konnte die Subluxation der Linse nur in 50 % der Fälle (n=1) dargestellt werden, 

und hier war das Auffinden der Veränderung am einfachsten im Schnittbildmodus möglich 

(Vergleiche Abb. 46). Die Subluxation stellte sich als leichte Kippung und Vorwölbung der Linse 

in Richtung vordere Augenkammer und als dezenter Spalt zwischen Iris und Linsenkapsel dar. 
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Abbildung 46: Subluxation der Linse bei einem Mäusebussard (Buteo buteo) 
Zwei zweidimensionale Ultraschallschnittbilder in der axialen vertikalen Schallebene. OD mit anteriorer 
Subluxation der Linse und partieller nuklearer Katarakt. L: Lider, HH: Hornhaut, I: Iris, LVK: vordere 
Linsenkapsel, LHK: hintere Linsenkapsel, LS: Linsenstroma, LS‘: teilweise echogenes Linsenstroma, 
VAK: vordere Augenkammer, SL: Subluxation der Linse. 

 

 

Die posteriore Linsenluxation bei dem Waldkauz konnte sonographisch als Verlagerung der 

Linse in den Glaskörperraum dargestellt werden. Da sich die Linse in Auflösung befand, konnten 

die Linsenränder nicht als solches dargestellt werden, es war lediglich ein hyperechogener 

rundlicher Bereich im Glaskörperraum zu erkennen (Vergleiche Abb. 37 und 40, Abschnitt 

Iridodialysis). 

 

3. Kapselruptur: 
Bei 2,2 % der Patienten (n=2, ein Waldkauz (Strix aluco) und ein Nymphensittich (Nymphicus 

hollandicus)) konnte in der ophthalmologischen und pathologischen Untersuchung eine 

einseitige Ruptur der Linsenkapsel festgestellt werden. Die Ursache lag bei dem Waldkauz 

vermutlich in einer länger bestehenden posterioren Linsenluxation (Vergleiche Abschnitt 

Dislokation der Linse), der Nymphensittich litt an einer Cataracta hypermatura, welche durch 

längeres Bestehen vermutlich zur Ruptur der Kapsel geführt hatte. 

 

Sonographisch ließ sich die Ruptur der Linse in beiden Fällen darstellen. Bei dem 

Nymphensittich stellte sich die Ruptur als anechogenes Loch in der vorderen Linsenkapsel dar 
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(Vergleiche Abb. 47), beim Waldkauz konnte durch Luxation nach posterior und eine Auflösung 

der Linsenkapsel, die Linse im Glaskörperraum als hyperechogene Struktur identifiziert werden, 

wobei keine Ränder der Linse mehr darstellbar waren (Vergleiche Abb. 37 und 40 Abschnitt 

Iridodialysis). 
 

 

Abbildung 47: anteriore Linsenruptur und Cataracta hypermatura bei einem Nymphensittich 
(Nymphicus hollandicus) 
Volumenscan im Visualisierungsmodus „3D Rendering“ in der axialen vertikalen Schallebene, 
Vierquadrantenbildschirm, unten rechts Volumenscan OD in der Oberflächendarstellung,  
Wahl einer schmalen ROI-Box, seitliche Sicht auf das Auge. Gleicher Patient wie in Abb. 28; L: Lider, 
VAK: vordere Augenkammer, LVK: vordere Linsenkapsel, LS: Linsenstroma, LHK: hintere Linsenkapsel, 
R: Linsenruptur. 

 

 

4.2.2.5 Pathologische Veränderungen des gesamten Bulbus 
Veränderungen, welche den gesamten Bulbus betrafen, traten in 7,7 % der untersuchten Fälle 

(n=7) auf. Die Veränderungen lagen in 28,6 % der Fälle (n=2) einseitig und in 71,4 % der Fälle 

(n=5) beidseitig vor. Es handelte sich außer beim Buphthalmus um Einzelfälle. 
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1. Endophthalmitis: 
Bei 1,1 % der Patienten (n=1, ein Haushuhn (Gallus gallus domesticus)) konnte eine einseitige 

Endophthalmitis festgestellt werden. Diese entwickelte sich aus einer vorangegangenen 

Netzhautablösung und Iris bombata (Vergleiche Abschnitt Uvea und Abb. 36) und wurde im 

Endstadium zu einer Phthisis bulbi (Siehe unten und Abb. 50). 

 

Sonographisch stellte sich die Entzündung als Glaskörpertrübung und Verdickung der 

Bulbuswandschichten dar (Vergleiche Abb. 48) 

 

 

Abbildung 48: Endophthalmitis und Iris bombata bei einem Haushuhn (Gallus gallus domesticus) 
Zweidimensionales Ultraschallschnittbild in der axialen vertikalen Schallebene, OS, gleicher Patient wie in 
Abb. 36 und 50; L: Lider, HH: Hornhaut, I: Iris, LVK: vordere Linsenkapsel, LHK: hintere Linsenkapsel, LS: 
Linsenstroma, GK: Glaskörper, B‘: verdickte Bulbuswand. 
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2. Buphthalmus: 
Eine Vergrößerung des Augapfels konnte bei 6,6 % der Patienten (n=6, eine Taube (Columba 

livia), vier Haushühner (Gallus gallus domesticus) und eine Blaustirnamazone (Amazona 

aestiva)) beobachtet werden. Bei der Taube und den Hühnern kam die Veränderung beidseitig 

vor und als Ursache wurde ein Keratoglobus angenommen (Vergleiche Abschnitt Kornea). 

Bei der Blaustirnamazone lag der Buphthalmus einseitig vor und war vermutlich aufgrund eines 

Glaukoms entstanden (Vergleiche Abschnitt Glaukom und Abb. 51 und 52). 

 

Sonographisch konnte der Buphthalmus bei allen Patienten anhand eines vergrößerten 

Augendurchmessers dargestellt werden, wobei bei Tieren mit Keratoglobus vor allem der 

Durchmesser der vorderen Augenkammer vergrößert war (Vergleiche Abb. 49). 

 

 

Abbildung 49: Keratoglobus und Buphthalmus bei einer Haustaube (Columba livia) 
Volumenscan im Visualisierungsmodus „3D Rendering“ in der axialen vertikalen Schallebene, OD in der 
Oberflächendarstellung, Wahl einer schmalen ROI-Box, seitliche Sicht auf das Auge. Beachte die Tiefe 
der vorderen Augenkammer. 
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3. Phthisis bulbi: 
Bei 1,1 % der Patienten (n=1, ein Haushuhn (Gallus gallus domesticus)) entwickelte sich eine 

einseitige Schrumpfung des Augapfels als Folge einer länger bestehenden Iris bombata und 

Netzhautablösung (Vergleiche Abschnitt Uvea). 

 

Sonographisch stellte sich die Phthisis bulbi als Verkleinerung des Augapfels mit massiver 

Dickenzunahme der Bulbuswand und Desorganisation der Augeninnenstrukturen dar 

(Vergleiche Abb. 50). 

 

 

Abbildung 50: Phthisis bulbi bei einem Haushuhn (Gallus gallus domesticus) 
Volumenscan im Visualisierungsmodus „3D Rendering“ in der axialen vertikalen Schallebene, OS in der 
Transparenzdarstellung, Wahl einer schmalen ROI-Box, seitliche Sicht auf das Auge, gleicher Patient wie 
in Abb. 36 und 48; HH: Hornhaut, VAK: vordere Augenkammer, LVK: vordere Linsenkapsel, LHK: hintere 
Linsenkapsel, GK: Glaskörper, N: Netzhautablösung, B‘: verdickte Bulbuswand. 
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4. Glaukom: 
Bei 1,1 % der Patienten (n=1, eine Blaustirnamazone (Amazona aestiva)) konnte ein einseitiges 

Glaukom in der ophthalmologischen Untersuchung diagnostiziert werden. Eine zurückliegende 

Entzündung der Augeninnenstrukturen im Bereich des vorderen Augensegmentes war hier die 

wahrscheinlichste Ursache des Druckanstieges.  

 

Sonographisch konnte eine Größenzunahme des Bulbus, genauso wie eine Verdickung von 

Hornhaut und Linsenkapsel und eine Abflachung der vorderen Augenkammer beobachtet 

werden (Vergleiche Abb. 51 und 52). Gleichzeitig wurde bei dem Patienten eine Katarakt 

diagnostiziert. 
 

 
Abbildung 51: Glaukom und Cataracta hypermatura bei einer Blaustirnamazone (Amazona aestiva) 
Zweidimensionales Ultraschallschnittbild in der axialen vertikalen Schallebene, OS, gleicher Patient wie in 
Abb. 52; L: Lider, HH: Hornhaut, I: Iris, ZK: Ziliarkörper, LVK: vordere Linsenkapsel, LHK: hintere 
Linsenkapsel, LS: Linsenstroma, VAK: vordere Augenkammer, GK: Glaskörper, B: Bulbuswand. 
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Abbildung 52: Glaukom und Cataracta hypermatura bei einer Blaustirnamazone (Amazona aestiva) 
Volumenscan im Visualisierungsmodus „3D Rendering“ in der axialen vertikalen Schallebene, OS in der 
Oberflächendarstellung, Wahl einer schmalen ROI-Box, seitliche Sicht auf das vordere Augensegment, 
gleicher Patient wie in Abb. 51; L: Lider, HH: Hornhaut, I: Iris, ZK: Ziliarkörper, LVK: vordere Linsenkapsel, 
LHK: hintere Linsenkapsel, LS: Linsenstroma, VAK: vordere Augenkammer. 

 

 

 

 

 
 

VAK 
HH 

LVK I 
ZK 

LS 

LHK 

L 



DISKUSSION 
______________________________________________________________________ 

 

120 
 

5. DISKUSSION  
 
 

5.1 Untersuchungsmaterial und –Methodik 
 

1. Ultraschallgerät und Sonde: 
Das Ultraschallgerät Voluson i in Kombination mit der Linearsonde R SP6-16RS ermöglichte 

eine klinisch detaillierte ergebnisliefernde Darstellung des Vogelauges und seiner Adnexe.  

Da das Ultraschallgerät Laptopformat hat und damit klein und portabel ist, konnten 

Untersuchungen auch ohne Probleme außerhalb der Klinik, beispielsweise in Auffangstationen 

oder Tiergärten, durchgeführt werden. 

 

Die Sonde lieferte durch ihre hohe Auflösung auch hochwertige Aufnahmen von relativ kleinen 

Bulbi, beispielsweise denen von Nymphensittichen (Nymphicus hollandicus). Eine Limitierung 

des Auflösungsvermögens war jedoch bei kleineren Augen, wie denen von Buchfinken (Fringilla 

coelebs), erkennbar. Die Eindringtiefe reichte aus, um auch sehr große Augen, wie die vom 

Vogel Strauß (Struthio camelus), sonographisch darzustellen.  

Die Auflösung der Sonde von 18 MHz lag dabei über der verwendeten Auflösung von 5 – 12 

MHz bei der dreidimensionalen Sonographie in der Veterinär- und Humanmedizin (GRASBON 

et al. 2001; LIST 2002; ROMERO, FINGER, et al. 1998; VOSOUGH et al. 2007) und deutlich 

unter der verwendeten Auflösung von 50 MHz bei der biomikroskopischen dreidimensionalen 

Ultraschalltechnik (IEZZI et al. 1996; REINSTEIN et al. 2008; SILVERMAN et al. 1995). 

Die Linearsonde war sehr groß und durch ihr Gewicht bei längerer Untersuchungsdauer 

unhandlich. STROBEL (2010) beobachtet in ihren Untersuchungen mit der gleichen 

Ultraschallsonde, dass durch die große Auflagefläche zu Beginn der Untersuchung die 

Orientierung am Auge erschwert sein kann, was sich allerdings nach einer kurzen 

Eingewöhnungszeit durch die Position der Ultraschallsonde und des Vogelkopfes mit der 

dazugehörigen Darstellung auf dem Monitor einstellt. Dies konnte in eigenen Untersuchungen 

bestätigt werden. 

Durch die Größe der Linearsonde und der anatomischen Besonderheit der Vogelaugen, dem 

Skleralring, war es nicht möglich, die Augen in der transversalen und longitudinalen Schallebene 

mit Umgehung der Linse zu untersuchen, wie dies in der Humanmedizin gefordert wird (BYRNE 
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und GREEN 2002). Allerdings wird die Umgehung der Linse durch Anwendung einer kleineren 

Auflagefläche mithilfe eines Sektor- oder Konvexschallkopfes auch in anderen Studien an 

Vogelaugen nicht erreicht (GUMPENBERGER und KOLM 2006; LABELLE et al. 2012; 

SQUARZONI et al. 2010).  

Für die Untersuchung des vorderen Augensegmentes war allerdings die axiale vertikale und 

gegebenenfalls horizontale Schallebene ausreichend. GUMPENBERGER und KOLM (2006) 

beschreiben eine zusätzliche transversale Ebene zur Beurteilung des vorderen 

Augensegmentes. Diese wurde in dieser Arbeit insofern auch untersucht, da sie vom Computer 

nachträglich berechnet wurde. 

Der Vorteil der großen Auflagefläche der Sonde bestand in der optischen Ruhigstellung der 

Patienten, da das Auge während der Untersuchung durch den Schallkopf vollkommen 

abgeschirmt war. Diese Erfahrung konnte bereits von STROBEL (2010) gemacht werden. 

 

2. Ankopplungsmethoden: 
In der vorliegenden Arbeit wurde das Kornea-Kontakt-Verfahren, wie bereits bei anderen 

Untersuchungen an Vogelaugen geschehen, angewendet (GUMPENBERGER und KOLM 2006; 

SQUARZONI et al. 2010; STROBEL 2010). Um allerdings auch die schallkopfnahen okularen 

Strukturen gut darzustellen, wird in der Literatur das Verwenden einer Vorlaufstrecke empfohlen 

(GONZALEZ et al. 2001; POULSEN NAUTRUP 1998). Durch Auftragen einer ausreichend 

großen Menge Ultraschallgel als Vorlaufstrecke und durch Verwenden einer auch im Nahbereich 

hochauflösenden Linearsonde konnten die Strukturen des vorderen Augensegmentes trotzdem 

in den meisten Fällen gut dargestellt werden. Nachteilig erwies sich lediglich das Verkleben des 

periokularen Gefieders durch das Verwenden einer großen Menge an Ultraschallgel. Zu dieser 

Erkenntnis kommen auch KORBEL et al. (2009) und STROBEL (2010) in ihren Untersuchungen. 

 

Die transpalpebrale Methode, bei der die Sonographie durch die geschlossenen Lider hindurch 

erfolgt, wurde in dieser Arbeit, genau wie in der Literatur beschrieben, als schlechter angesehen 

(BYRNE und GREEN 2002; STROBEL 2010; WILLIAMS et al. 1995). Bei geschlossenen Lidern 

war es nicht immer möglich, die Hornhaut von den angrenzenden Strukturen abzugrenzen. 

Durch den eingelagerten Tarsus palpebralis im Unterlid und eine starke Befiederung vor allem 

bei Eulenvögeln konnte es zusätzlich zu störenden Artefakten kommen. Dies wird auch von 

STROBEL (2010) beschrieben. 
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3. Fixationsmaßnahmen:  
Die angewendeten Fixationstechniken bewährten sich während dieser Arbeit sehr. Die 

Untersuchung erfolgte stets in einem ruhigen und abgedunkelten Raum. In Anlehnung an die 

Untersuchungen von STROBEL (2010) waren die Patienten in ein Handtuch eingewickelt und 

zwischen den Beinen des sitzenden Untersuchers fixiert. Dies erleichterte es, 

Abwehrbewegungen frühzeitig zu erkennen und das Allgemeinbefinden des Tieres zu 

überprüfen und auf Änderungen schnell zu reagieren. Die Patienten in dieser Arbeit waren daher 

ebenfalls sehr ruhig und die Untersuchung konnte stets zügig durchgeführt werden. Um eine 

tierschutzgerechte Untersuchung zu garantieren, wurden Abbruchkriterien festgelegt, bei 

welchen die Untersuchung unverzüglich unterbrochen wurde. Dies geschah, wenn sich das 

Allgemeinbefinden der Patienten drastisch verschlechterte oder Anzeichen von Stress, wie 

Schnabelatmung, Plustern und Apathie gezeigt wurde. 

 

Lediglich bei sehr kleinen Vögeln und bei größeren Tieren wie Gänsen, Uhus und adulten 

Straußen wurde die Fixationstechnik entsprechend abgewandelt. In jedem dieser Fälle gelang 

eine schonende und tierschutzgerechte Fixierung des Patienten und es konnten auswertbare 

Ultraschallbilder produziert werden. 

 

Die Patienten wurden für die Untersuchung nicht sediert, wie dies auch in anderen Arbeiten der 

Fall war (GUMPENBERGER und KOLM 2006; KORBEL et al. 2009; SQUARZONI et al. 2010; 

STROBEL 2010). Durch eine fachgerechte Fixation der Tiere und einer lediglich geringen 

Belastung für den Patienten wurden die festgelegten Abbruchkriterien in 97,8 % der Fälle nicht 

erreicht, was die Schlussfolgerung für diese Arbeit zulässt, dass eine Allgemeinanästhesie bei 

der Ultraschalluntersuchung am Vogelauge nicht zwingend erforderlich ist. 

Lediglich in zwei Fällen konnte die klinische und anschließende sonographische Untersuchung 

nur am narkotisierten Vogel erfolgen, da durch weitere schwerwiegende Erkrankungen oder 

Verletzungen und ein damit verbundenes erhöhtes Stresspotential, die Untersuchungen am 

wachen Tier nicht möglich waren. Bei Untersuchungen in Narkose traten keine störenden 

Eigenbewegungen des Vogels auf, jedoch konnte die direkte Kornea-Kontakt-Methode durch 

das Schließen der Lider während der Narkose erschwert sein. Es wurde daher bei diesen Tieren 

manuell versucht die Lider zu öffnen, was auch in allen Fällen gelang. 
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4. Technik der Datengewinnung: 
Die Untersuchungen begannen stets im zweidimensionalen B-Modus. Es konnte sich hier 

bereits ein Überblick über das Auge verschafft werden und gleichzeitig konnten die 

Geräteeinstellungen vorgenommen werden, welche auch Voraussetzung für die anschließende 

dreidimensionale Sonographie waren. 

 

Der in der Regel verwendete Winkel von 20° war ausreichend groß, um den gesamten Bulbus 

zu erfassen. Bei sehr kleinen Augen, wie von Finkenartigen genügte auch ein kleinerer Winkel 

von 15°, wobei bei Uhus und Straußen ein Winkel von 25° gewählt wurde.  

 

Die Dauer der Datenakquisition von sieben bis zwölf Sekunden war in einigen Fällen zu lang, 

um artefaktfreie Aufnahmen zu erstellen. Eigenbewegungen konnten durch Aufstützen der 

schallkopfführenden Hand auf einer Unterlage unterbunden werden. Es war jedoch nicht 

möglich, Bewegungen der wachen Vögel während der Zeit der Akquisition zu kontrollieren.  

Um diese sogenannten Erfassungsartefakte zu verhindern, wird in der Literatur die Verkürzung 

der Scanzeit vorgeschlagen (DOWNEY et al. 2000). 

Diese war in der vorliegenden Studie abhängig von der Größe des Winkels, der Größe des 

gewählten Volumenkästchens und der eingestellten Qualität. Um die Scandauer zu verkürzen, 

wurden daher der Winkel und das Volumenkästchen so klein wie möglich gewählt. Um jedoch 

den kleinstmöglichen Abstand der Einzelschnitte zueinander zu erlangen und damit die 

größtmögliche Informationsmenge zu erhalten, wurde darauf verzichtet die Qualität, also die 

Auflösung der Aufnahmen, zu vermindern. Es konnte in diesem Punkt kein Kompromiss 

zwischen Dauer der Datengewinnung und Anzahl der Einzelbilder wie von POULSEN 

NAUTRUP (1998) gefordert, gefunden werden. Falls Erfassungsartefakte auftraten, wurde die 

Volumenakquisition wiederholt. Es waren somit im Durchschnitt 1,6 Versuche nötig, um ein 

artefaktfreies Datenvolumen zu erstellen.  

Um Erfassungsartefakte weiter zu reduzieren, müssten Ultraschallsysteme weiterentwickelt und 

damit die Datenakquisition verkürzt werden. In der Humanmedizin werden bereits Systeme 

eingesetzt, welche 40 Einzelschnitte pro Sekunde anfertigen können, was einer ungefähren 

Scanzeit von 5 Sekunden für das Auge entspricht (FORTE et al. 2009). Eine Verminderung der 

Eigenbewegung der Patienten stellt in der Veterinärmedizin ein größeres Problem als in der 

Humanmedizin dar. Daher ist es vermutlich nicht möglich Bewegungsartefakte ohne eine 

Sedation der Patienten vollständig zu verhindern. 
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Durch die automatische Kippbewegung des Schallkopfes war es nicht nötig, den Schallkopf 

manuell über das Auge zu verschieben. Die horizontale Schallkopfneigung stellte auch die in der 

Literatur geforderte Methode der Wahl dar (POULSEN NAUTRUP 1998). Es konnte damit eine 

koordinierte Schnittfolge, was nach SOHN et al. (1988) als eine Voraussetzung für den 

dreidimensionalen Ultraschall gilt, produziert werden und es gelang eine schnelle 

dreidimensionale Rekonstruktion. Es wären somit auch Messungen der Augenbinnenstrukturen 

möglich gewesen, was in dieser Arbeit allerdings nicht zum Einsatz kam. 

Ein Nachteil des Schallkopfneigens bestand in der schlechteren Auflösung durch Vergrößerung 

des Abstandes der Einzelschnitte zueinander, was bei zunehmender Entfernung zum Schallkopf 

auftrat. Dies geschah durch das Verwenden einer reichlichen Menge Ultraschallgel als 

Vorlaufstrecke und trat bei sehr großen Augen im hinteren Augensegment auf. Der Abstand der 

Einzelschnitte in weiter Entfernung zum Schallkopf konnte dabei bei sehr großen Vogelaugen 

(bspw. Uhus) um bis zu 76 µm zu den schallkopfnahen Einzelschnitten variieren, wobei dies für 

die vorliegende Arbeit nur von untergeordneter Bedeutung ist. 

 

5. Bearbeitung der dreidimensionalen Bilder: 
Der große Vorteil der angefertigten dreidimensionalen Volumenbilder bestand in den 

vorhandenen Bearbeitungsmöglichkeiten. Es war möglich das Volumen durch Rotation und 

Wahl eines beliebigen Untersuchungsausschnittes in jeder gewünschten Schnittebene 

darzustellen und somit Ansichten zu erlangen, die aufgrund anatomischer Verhältnisse am Auge 

mittels zweidimensionaler Sonographie nicht möglich gewesen wären. Zu den gleichen 

Ergebnissen kommen unter anderem auch SOHN (1994), CUSUMANO et al. (1998), FINGER et 

al. (1998), GRASBON et al. (2001) und LIST (2002). 

Die anatomischen und pathologischen Lagebeziehungen konnten wie auch in der Literatur 

beschrieben durch die exakte Position der Bildpunkte zueinander im Koordinatensystem leichter 

erkannt werden, was die Orientierung deutlich erleichterte (DELCKER et al. 1998; POULSEN 

NAUTRUP 1998). 

 

Bei der Verwendung des „Schnittebenenmodus“ konnte der komplette dreidimensionale 

Datensatz in jeder beliebig gewählten Ebene als zweidimensionales Einzelbild dargestellt 

werden. Bei Durchsicht aller einzelnen Schnittbilder des Volumens konnten so Strukturen von 

Interesse verfolgt und topographische Informationen gesammelt werden. So war die Gefahr eine 

Struktur von Interesse zu übersehen sehr gering. Es konnten so mithilfe des 

„Schnittebenenmodus“ pathologische und physiologische Zusammenhänge im Auge sehr gut 
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beurteilt werden und die Augenveränderungen waren teilweise leichter nachvollziehbar. Dies 

deckt sich mit den Aussagen von DOWNEY et al. (1996), ENDO et al. (2000), GRASBON et al. 

(2001), LIST (2002) und FORTE et al. (2009). 

 

Bei der dreidimensionalen Darstellung eines Ultraschallbildes entsteht nach Meinung von 

HAMPER et al. (1994), CUSUMANO et al. (1998), GRASBON et al. (2001) und FINGER (2002) 

das dreidimensionale Bild nicht mehr vor dem geistigen Auge des Untersuchers, sondern wird 

vom Computer berechnet, kann archiviert werden und anderen erneut präsentiert werden. Auch 

ist die Gefahr geringer, dass diagnostische Informationen bei Erstellung des geistigen 

dreidimensionalen Bildes verloren gehen (DOWNEY et al. 1996). Dies wurde im Rahmen dieser 

Arbeit ebenfalls als vorteilhaft empfunden, da durch Präsentation der dreidimensionalen 

Aufnahmen das Verständnis der Patientenbesitzer für das Krankheitsgeschehen erleichtert war. 

Durch zusätzliches Drehen des Bildes, Vergrößerung und Veränderung der Parameter wie 

Helligkeit, Kontrast oder Grauwert kann der räumliche Eindruck verstärkt werden und die 

Interpretation erleichtert werden (CUSUMANO et al. 1998; HAMPER et al. 1994). Diesen 

Aussagen kann ebenfalls nach eigenen Erfahrungen zugestimmt werden. Durch Veränderung 

der Parameter konnten jedoch in wenigen Fällen Wiedergabeartefakte entstehen, wie sie von 

POULSEN NAUTRUP (1998) und NELSON et al. (2000) beschrieben werden. Daher mussten, 

wie von diesen Autoren gefordert, stets die einzelnen Scanebenen durchgesehen werden und 

gegebenenfalls neue Datenvolumen aufgenommen werden, wenn nicht eindeutig ersichtlich 

war, ob es sich um ein Artefakt oder um eine Struktur von Interesse handelte. 

Die Wahl eines geeigneten Untersuchungsbereiches „Region of Interest“ und die Rotation des 

Volumens, halfen bei der dreidimensionalen Darstellung physiologischer und pathologischer 

Gegebenheiten am Vogelauge. Die Rotation des Volumens war vor allem bei der transparenten 

Darstellungsweise nötig, da alle Ultraschallbildinformationen enthalten waren und sich das Bild 

sehr komplex darstellte. Auch LIST (2002) und NELSON et al. (1999) sind der Meinung, dass 

die Bildrotation den räumlichen Eindruck verstärkt und somit das Verständnis für die 

anatomischen Zusammenhänge verstärkt wird. 

Bestanden große Unterschiede in den Ultraschalleigenschaften von Organ und Umgebung, so 

wurde die Oberflächendarstellung gewählt und damit lediglich die Konturen des Organs 

abgebildet. Dabei gingen zwar die Informationen innerhalb des Organes verloren, die 

gewünschte Struktur wurde aber eindeutig dreidimensional abgebildet. Da das Auge hohe 

Impedanzunterschiede der einzelnen Strukturen aufweist (RANKIN et al. 1993), wurde in den 

meisten Fällen diese Darstellungsweise gewählt. 
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Eine weitere wichtige Bearbeitungsmöglichkeit war das elektronische Skalpell. Damit konnten 

störende Artefakte und unerwünschte Bereiche innerhalb des Untersuchungsbereiches entfernt 

werden, welche die Sicht auf Strukturen von Interesse versperrten. Damit war es möglich, noch 

bessere und einzigartige Ansichten des Volumenbildes zu erlangen. Problematisch wurde es nur 

dann, wenn nicht eindeutig erkennbar war, ob es sich um ein Artefakt oder um eine 

pathologische Struktur handelte. Nach NELSON et al. (2000) können leicht 

Bearbeitungsartefakte entstehen, wenn zu viele diagnostisch wichtige Informationen entfernt 

werden. Im Zweifelsfall musste in diesem Fall ein neues Datenvolumen aufgenommen werden, 

um sicher auszuschließen, dass es sich um kein Artefakt handelte. 

 

Die Bearbeitung der Datenvolumen war nur im Anschluss an die Datenakquisition möglich. Es 

musste also vor der Anfertigung eines neuen Datensatzes das vorhandene Datenvolumen 

durchgesehen und Einzelbilder oder Videosequenzen abgespeichert werden. Mit Ausnahme der 

gespeicherten Bilder ging der Datensatz bei Betätigung eines neuen Datenvolumens verloren. 

Es wäre in einigen Fällen hilfreich gewesen, den kompletten Datensatz abzuspeichern und 

später erneut wieder aufzurufen, wie dies mit zusätzlicher Software möglich gewesen wäre und 

als großer Vorteil der dreidimensionalen Sonographie angesehen wird (NELSON et al. 1999).  

 

Die Bearbeitungsdauer der einzelnen Datensätze lag im Durchschnitt bei 28 min. und 52 sek. 

und war vom Ausmaß der pathologischen Veränderungen im Auge abhängig. Lagen keine oder 

nur sehr wenige Veränderungen vor und konnten diese schnell und sicher diagnostiziert und 

dargestellt werden, so war die Bearbeitungsdauer nur kurz. Wenn multiple Veränderungen 

vorlagen, oder Veränderungen nur in bestimmten Darstellungsweisen oder Schnittebenen 

darstellbar waren, so verlängerte sich die Dauer der Auswertung. Da während dieser Zeit kein 

Patientenkontakt vorlag, bestand keine Limitation in der Auswertungszeit. Auch in der 

Humanophthalmologie wird eine längere Bearbeitungszeit der Datensätze angegeben, wenn 

kein Patientenkontakt besteht. Dem Patienten wird eine unangenehme lange 

Untersuchungsdauer erspart und der Untersucher kann sich bei der Auswertung so viel Zeit 

lassen wie er möchte, was eine gründlichere Untersuchung des Datensatzes fördert (DOWNEY 

et al. 1996; FINGER et al. 2002; NELSON et al. 1999). 
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5.2 Die sonographische Untersuchung 
 

5.2.1 Durchführung 
 

1. Untersuchungsdauer: 
Die Dauer der Untersuchung einer Ultraschallebene lag im Durchschnitt bei 3 min. 19 sek., 

wobei hier auch die Applikation des Lokalanästhetikums und die Einstellungen im B-Mode mit 

eingerechnet wurden. In der Literatur liegen keine Daten über die Dauer der Untersuchung 

mittels dreidimensionaler Ultraschalltechnik für das Vogelauge vor. Es wird aber eine kürzere 

Untersuchungsdauer bei der dreidimensionalen Ultraschalltechnik in der Humanophthalmologie 

angegeben, als für die zweidimensionale Sonographie, da die Auswertung des Datensatzes 

ohne Patientenkontakt geschieht (FORTE et al. 2009; ROMERO, FINGER, et al. 1998). 

STROBEL (2010) gibt bei der Untersuchung von Wildgreifvögeln eine Untersuchungszeit beider 

Augen mittels konventioneller Sonographie von 9 min. und 41 sek an. GUMPENBERGER und 

KOLM (2006) benötigen 5 - 10 Minuten für die Untersuchung im B-Mode. Mit Hilfe der 

dreidimensionalen Ultraschalltechnik konnte die Untersuchungszeit somit verkürzt werden, da 

mit der Erfassung einer Schallebene alle weiteren Ebenen vom Computer berechnet wurden 

und nicht mehr wie bei STROBEL (2010) mehrere Ebenen am Vogelauge nacheinander erfasst 

werden mussten. 

Es kam in dieser Arbeit somit zu einer Schonung der Patienten, da – wie bereits von DOWNEY 

et al. (1996) beschrieben - mit zunehmender Untersuchungsdauer der Patient unruhiger wird. 

Dies stellt somit einen begrenzenden Faktor für die Dauer der sonographischen Untersuchung 

dar. 

Wurde bei hochgradigen pathologischen Veränderungen mehr als ein Volumenscan 

durchgeführt, oder beide Augen sonographisch untersucht, so musste der Vogel nach 

Auswertung einer Ebene erneut eingefangen und fixiert werden. Die gesamte Untersuchungszeit 

konnte daher bei der Anfertigung von mehr als zwei Volumenscans länger sein, als die von 

STROBEL (2010) angegebene Zeit. Um auch in diesen Fällen eine tierschutzgerechte 

Untersuchung zu garantieren, wurden - wie oben bereits erwähnt – für jede Untersuchung 

Abbruchkriterien festgelegt, bei denen die Sonographie unverzüglich unterbrochen wurde.  

Die Untersuchung in mehr als zwei Ebenen geschah jedoch nur in Ausnahmefällen, weshalb die 

Untersuchungszeit für die Patienten in der Regel kürzer, als die für die konventionelle 
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Sonographie angegebene Zeit war. Dies war mit einer geringeren Belastung für den Vogel 

verbunden. 

Wurden mehrere Ebenen untersucht, um beispielsweise auch den Augenfächer darzustellen 

oder lagen die Veränderungen an beiden Augen vor, so musste der Patient wiederholt aus 

seiner Box eingefangen und fixiert werden. Fraglich ist, ob diese Tatsache mit mehr Stress 

verbunden war, als eine längere Untersuchungszeit mit Durchführung aller Datenakquisitionen. 

Die Patienten, welche mehrmals eingefangen und fixiert wurden, zeigten aber kein 

abweichendes Verhalten oder Allgemeinbefinden zu den lediglich einmal untersuchten Vögeln. 

Die Abbruchkriterien wurden daher nicht erreicht und es handelte sich auch in diesen Fällen um 

eine tierschutzgerechte und minimal-invasive Untersuchung für den Vogel. 

 

Die Dauer der Untersuchung korrelierte bei Greifvögeln und Falkenartigen mit der Anzahl der 

Versuche, welche nötig waren, bis ein auswertbares Datenvolumen erstellt war. Es lag über der 

durchschnittlichen Anzahl der benötigten Versuche und war auf das teilweise unruhige Verhalten 

der Vögel während der sonographischen Untersuchung zurückzuführen.  

Sehr ruhige Tiere wie Eulenvögel, oder an das Handling gewöhnte Tiere wie Gänse, benötigten 

nur wenige Versuche, bis ein Datensatz erfolgreich aufgenommen war. Bei diesen Patienten war 

es somit möglich eine ausführlichere sonographische Untersuchung durchzuführen, was sich 

wiederum auf die Länge der Untersuchung auswirkte. 

Wurden Wildvögel untersucht, bei denen ein hohes Stresspotential angenommen wurde, so 

wurde die Untersuchung so kurz wie möglich gehalten, um ein Kollabieren der Tiere zu 

vermeiden. Das erklärt die kurze Untersuchungszeit und die wenigen benötigten Versuche bei 

Spechtartigen, Sperlingsvögeln und Kuckucksartigen. Bei diesen Patienten wurden deshalb 

auch weniger gute Ergebnisse toleriert, um eine tierschutzgerechte Untersuchung zu 

garantieren. Bei längerer Untersuchungsdauer wurde bei den sehr stressempfindlichen Tieren 

eine zu hohe Belastung durch die Fixation und den menschlichen Kontakt angenommen, was 

als ein maßgebliches Abbruchkriterium angesehen wurde. 

Lediglich bei einer Waldschnepfe (Scolopax rusticola) wurden überdurchschnittlich viele 

Versuche und eine längere Untersuchungszeit toleriert, um ein auswertbares Datenvolumen zu 

erzeugen. Allerdings wurde die Schnepfe auch in Narkose untersucht, weshalb eine längere 

Untersuchungsdauer als annehmbar und noch tierschutzgerecht für den Vogel angenommen 

wurde, als für Wildvögel, welche sich nicht im narkotisierten Zustand befanden. 
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2. Toleranz und Verträglichkeit: 
In der Literatur sind bisher keine Angaben zur Verträglichkeit der dreidimensionalen 

Sonographie  am Vogelauge zu finden. 97,8 % der Probanden zeigten keine negativen Effekte 

während und nach der Untersuchung. Die gewählten Abbruchkriterien wurden während der 

Sonographie nicht erreicht und die Patienten zeigten nach dem Zurücksetzen in ihre 

Patientenbox ein normales arttypisches Verhalten, was sich beispielsweise in Futteraufnahme 

oder Komfortverhalten äußerte. Lediglich bei einer Rauchschwalbe (Hirundo rustica) und einem 

Haushuhn (Gallus gallus domesticus) kam es während der Untersuchung zu stressbedingter 

Dyspnoe und zu einem Kollaps, weshalb die Sonographie unverzüglich beendet wurde und 

Sofortmaßnahmen, welche zu einer Kreislaufstabilisierung führten, eingeleitet wurden. Bei 

beiden Vögeln kam es aber zu keiner längerfristigen Beeinträchtigung des Allgemeinbefindens 

und sie erholten sich sehr schnell wieder in einem Ruhekäfig. Die Ursachen für die Dyspnoe und 

den Kollaps lagen bei der Schwalbe vermutlich an einem erhöhten Stresspotential, da der 

Wildvogel nicht an eine Fixation und Manipulation durch den Menschen gewöhnt war. Das sonst 

sehr ruhige und an das Handling gewöhnte Haushuhn erlitt den Kollaps vermutlich deswegen, 

weil am Tag der Untersuchung ein sehr warmes und schwüles Klima herrschte, was zu einer 

zusätzlichen Belastung für den Vogel führte.  

Wie dies auch in den Untersuchungen von STROBEL (2010) der Fall war, kam es im Laufe der 

vorliegenden Arbeit zu keiner Messung der Stressparameter oder des Blutdruckes, was zu einer 

objektiveren Einschätzung der Stressbelastung der Patienten geführt hätte. Es wurde lediglich – 

wie von STROBEL (2010) beschrieben - auf das Vorhandensein von anderen Anzeichen von 

Stress, wie Abwehrbewegungen, reduziertem Muskeltonus oder Kreislaufschwäche geachtet 

und in die Abbruchkriterien für die Untersuchung mit eingearbeitet. 

 

Schäden, welche durch die Ultraschalluntersuchung produziert wurden, konnten in keinem der 

Fälle beobachtet werden. Es wurde jedoch nicht standardmäßig ein Fluoreszeintest im 

Anschluss an die Untersuchung durchgeführt, sondern die Patienten wurden lediglich 

adspektorisch auf okulare Auffälligkeiten hin untersucht. Um Schäden an den Augen durch die 

Untersuchung sicher auszuschließen, müssten in weiteren Untersuchungen ein Fluoreszeintest 

und eine erneute ophthalmologische Untersuchung im Anschluss an jede 

Ultraschalluntersuchung erfolgen.  

Die Beobachtungen in dieser Studie decken sich jedoch mit denen in der Literatur (DOWNEY et 

al. 1996; LIST 2002; THIJSSEN 1993). 
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Trotz Reinigung des Kopfgefieders von Gelresten nach der Ultraschalluntersuchung mittels 

warmer physiologischer Kochsalzlösung und Einmaltüchern, war es nicht immer möglich das 

Ultraschallgel komplett aus dem Gefieder zu entfernen. Dies war vor allem bei Eulenvögeln 

aufgrund der starken periokularen Befiederung der Fall. Alle Tiere entfernten jedoch im Rahmen 

des normalen Putzverhaltens das restliche vorhandene Ultraschallgel innerhalb weniger Tage. 

Ähnliche Beobachtungen werden auch von STROBEL (2010) gemacht. 

 

5.2.2 Darstellbarkeit physiologischer Strukturen 
 

Die Darstellung von physiologischen und pathologischen Strukturen im vorderen Augensegment 

gelang in dieser Arbeit nicht in jedem Fall zuverlässig. Dies lag zum einen an der Größe des 

Vogelauges – für die sehr kleinen Augen von Buchfinken (Fringilla coelebs) reichte die 

Auflösung der 18-MHz-Sonde nicht mehr aus. Die Anwendung der Biomikroskopie, wie sie in 

der Humanophthalmologie Anwendung findet, wäre in diesen Fällen von Vorteil (IEZZI et al. 

1996; REINSTEIN et al. 2008). Zum anderen könnte die schlechte Darstellbarkeit auch an der 

vorhandenen Schallstrahlgeometrie in diesem Bereich gelegen haben. Nach POULSEN 

NAUTRUP (1998) und GLADISCH (1993) bieten Linearschallköpfe zwar eine gute 

schallkopfnahe Auflösung, allerdings konnten die Veränderungen im vorderen Augensegment 

bei Verwendung von zu wenig Ultraschallgel als Vorlaufstrecke und nicht optimaler Wahl des 

Fokus trotzdem im Nahfeld der Schallkeule liegen. Dies könnte in einigen Fällen eine 

schlechtere Bildqualität verursacht haben. Die Anwendung des Immersionsverfahrens als 

Vorlaufstrecke wie bei HUFEN und KORBEL (2009) und HARRIS et al. (2008), hätte die 

Ergebnisse sicherlich ebenfalls verbessert. Dieses Verfahren bedeutete aber die Untersuchung 

der Patienten unter Allgemeinanästhesie, worauf in dieser Arbeit aus tierschutzrechtlichen 

Gründen bewusst verzichtet wurde. 

Die Minimalanforderungen an verwertbare Ultraschallbilder richten sich demzufolge an die 

Größe der Vogelaugen, an die vorhandene Gerätetechnik mit hochauflösenden 

Ultraschallsonden und die Wahl der Untersuchungsmethode mit oder ohne Vorlaufstrecke und 

Untersuchung der Patienten unter Allgemeinanästhesie oder im wachen Zustand. 

 

Die Darstellbarkeit physiologischer Augenstrukturen entsprach grundsätzlich der in der Literatur 

beschriebenen dreidimensionalen Darstellung von Vogelaugen (REESE 1999), Pferdeaugen 

(LIST 2002), Hundeaugen (VOSOUGH et al. 2007) und Augen von Menschen (GRASBON et al. 
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2001; IEZZI et al. 1996; NELSON et al. 1999; SILVERMAN et al. 1995). Im Folgenden wird 

daher nur noch auf Unterschiede in der Darstellung von Vogelaugen eingegangen. 

 

1. Hornhaut: 
Die Hornhaut ließ sich dreidimensional, anders als in der Literatur von LIST (2002) und 

SILVERMAN et al. (1995) beschrieben, nicht immer als eine doppelte konvex gebogene Linie 

darstellen. Dabei war im zweidimensionalen Einzelbild das hyperechogene Endo- und Epithel 

zwar noch vom anechogenen Stroma zu differenzieren, jedoch war bei der Wahl einer relativ 

breiten ROI-Box die gesamte sonographisch darstellbare Hornhaut dreidimensional abgebildet. 

Dabei überlagerten sich die zwei gebogenen Linien so, dass es nicht immer möglich war, das 

dazwischen befindliche anechogene Stroma darzustellen. 

 

2. Vordere und hintere Augenkammer: 
Die Darstellung der hinteren Augenkammer konnte in dieser Arbeit erstmals vor allem bei den 

Augen von tagaktiven Greifvögeln erfolgen. In der Literatur liegen zur Darstellbarkeit mittels 

dreidimensionaler Ultraschalltechnik bisher keine Daten vor. Die Darstellbarkeit mithilfe der 

konventionellen Sonographie gelingt auch anderen Untersuchern wie STROBEL (2010) und 

GUMPENBERGER und KOLM (2006) nicht für das Vogelauge. 

 

3. Linse: 
Die punktförmige Vorwölbung der hinteren Linsenkapsel in Richtung Linsenstroma und die 

linienförmigen Strukturen im Anschluss an die hintere Linsenkapsel wurden als Artefakte 

eingeschätzt. Die Veränderungen traten bereits im zweidimensionalen Bild auf, wie dies bei 

STROBEL (2010) ebenfalls der Fall war. Die Artefakte waren daher im dreidimensionalen Bild 

als Übertragungsartefakte zu werten. 

 

4. Iris und Ziliarkörper: 
Die Iris ließ sich ähnlich echogen wie in der Literatur beschrieben darstellen. Eine Ausnahme 

bildeten die Eulenvögel, wenn eine meist schreckinduzierte Mydriasis vorlag. Dabei war die 

Pupille so hochgradig dilatiert, dass die Iris sich weder im zwei-, noch im dreidimensionalen Bild 

darstellen ließ, da sie im Bereich des bei Eulenvögeln stark ausgeprägten Skleralringes lag. Das 

gleiche galt für den in diesem Bereich gelegenen Ziliarkörper. Dies deckt sich mit den 

Beschreibungen für die konventionelle Sonographie von GUMPENBERGER und KOLM (2006) 

und STROBEL (2010). 
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Anders als für den Menschen von SILVERMAN et al. (2001) und IEZZI et al. (1996), aber wie für 

das Pferd von LIST (2002) beschrieben, ließen sich Iris und Ziliarkörper durch eine ähnliche 

Echogenität nicht immer voneinander abgrenzen. 

 

5. Skleralring: 
Mit dieser Arbeit gelang erstmals die dreidimensionale Darstellung des Skleralringes bei 

Eulenvögeln. Dafür liegen in der Literatur noch keine Daten vor. Wie bereits für die 

zweidimensionale Sonographie beschrieben, verursachte der Skleralring einen Schallschatten, 

der verhinderte, dass die Bulbusform vollständig dargestellt werden konnte (GUMPENBERGER 

und KOLM 2006; SQUARZONI et al. 2010). Es war jedoch in dieser Arbeit möglich, trotz 

Schallschatten, flache Bulbusformen dreidimensional darzustellen.  

 

5.2.3 Darstellbarkeit pathologischer Strukturen 
 

Ein Großteil der pathologischen Zustände am Vogelauge konnte erstmals mit dieser Arbeit 

dreidimensional dargestellt werden. 

 

5.2.3.1 Hornhaut 
Erkrankungen der Hornhaut hatten für diese Arbeit nur eine untergeordnete Bedeutung, da sie in 

der ophthalmologischen Untersuchung bereits gut diagnostizierbar waren und oftmals nur bei 

hochgradigen Veränderungen dargestellt werden konnten. Dies deckt sich mit der Aussage von 

POULSEN NAUTRUP et al. (1998) und STROBEL (2010) für die zweidimensionale 

Sonographie. 

Eine Indikation zum Ultraschall bestand dennoch immer dann, wenn durch Trübungen der 

Hornhaut die Augeninnenstrukturen nicht oder nur eingeschränkt erkennbar waren (BYRNE und 

GREEN 2002; GUTHOFF und GUTHOFF 1987).  

In der Humanmedizin wird zur dreidimensionalen Darstellung der Hornhaut die 

Ultraschallbiomikroskopie mit Schallkopffrequenzen über 50 MHz angewendet. Damit ist auch 

eine genaue Dickenmessung der Hornhaut möglich (REINSTEIN et al. 2008, 2009). 

 

1. Keratoglobus: 
Die dreidimensionale Darstellung des Keratoglobus entspricht der in der Literatur beschriebenen 

Darstellung von BYRNE und GREEN (2002) und REINSTEIN et al. (2009) und deckt sich mit 
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den in der ophthalmologischen Untersuchung gewonnenen Informationen und der Literatur 

(KORBEL und MAGGS 2012).  

 

2. Nicht-ulzerierende Keratitiden: 
Die dreidimensionale Darstellung von Keratitiden entspricht der von LIST (2002) beschriebenen 

Darstellbarkeit. Dabei war es – genau wie in der Literatur beschrieben – nicht möglich 

geringgradig ausgeprägte Keratitiden im Ultraschall sicher zu diagnostizieren. Dies war lediglich 

bei einer Dickenzunahme der Hornhaut möglich. Da wie aber bereits beschrieben eine Keratitis 

schon in der ophthalmologischen Untersuchung eindeutig diagnostizierbar war und die 

sonographische Untersuchung nur unsichere Ergebnisse lieferte, erbrachte die 

Ultraschalluntersuchung in diesem Fall keinen Vorteil. 

 

3. Ulzerierende Keratitiden: 
Da ein Ulkus als Kontraindikation für die Ultraschalluntersuchung galt, wurde lediglich ein 

Patient mit einem bereits abgeheilten Ulkus sonographisch untersucht. Es war jedoch nicht 

möglich, zwei- oder dreidimensional einen Substanzverlust darzustellen. Vermutlich war durch 

die Abheilung des Defektes keine umliegende Hornhautverdickung und eine Abnahme des 

Hornhautdurchmessers im Bereich des Ulkus – wie von CRONAU (2004) beschrieben - mehr 

vorhanden. 

 

4. Nicht-entzündliche Keratopathien: 
Bei zwei Haushühnern (Gallus gallus domesticus) konnte eine nicht-entzündliche milchige 

Trübung der Hornhaut diagnostiziert werden. Diese gingen jedoch nicht mit einer 

Dickenzunahme der Kornea einher, deshalb waren sie sonographisch nicht diagnostizierbar. 

Dies deckt sich, wie oben bereits erwähnt, mit den Aussagen von LIST (2002) und POULSEN 

NAUTRUP et al. (1998). 

 

5.2.3.2 Vordere und hintere Augenkammer 
 

1. Hyphaema: 
Einblutungen in die vordere Augenkammer konnten in dieser Arbeit unterschiedlich gut 

sonographisch dargestellt werden. In der Hälfte der Fälle war es mithilfe des Ultraschalls nur 

unsicher oder gar nicht möglich, ein Hyphaema nachzuweisen. Die Ursache könnte einerseits im 

Grad der Einblutung liegen, da sehr feine Blutschlieren sonographisch schwieriger zu 
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diagnostizieren waren, als hochgradige Blutmassen. Zum anderen könnte die unterschiedliche 

Darstellbarkeit aber auch mit dem Alter der Einblutung zusammenhängen. Wie von 

GEVELHOFF (1996) und STROBEL (2010) für die konventionelle Sonographie beschrieben, 

stellen sich frische Einblutungen anechogen oder lediglich hypoechogen dar, wohingegen ältere 

Blutmassen gut diagnostiziert werden können.  

Einen Vorteil bot die Ultraschalltechnik, wie bereits erwähnt, nur dann, wenn durch das 

Hyphaema weitere Strukturen im Auge nicht einsehbar waren. Dies ist auch die Meinung von 

COLEMAN et al. (1973). 

 

2. Fibrin: 
Fibrineinlagerungen in die vordere Augenkammer konnten nur sehr schlecht dargestellt werden. 

Bei drei Patienten war nur ein Fibrinschleier vorhanden, welcher zwei- und dreidimensional, trotz 

Anpassung der Geräteeinstellungen, nicht abgebildet werden konnte. Es gelingt jedoch 

STROBEL (2010) solche geringgradigen Fibrinschleier als hypoechogene bis echogene 

Strukturen darzustellen. 

Lediglich mäßig echogen stellte sich in dieser Arbeit eine hochgradige Fibrineinlagerung in die 

vordere Augenkammer dar, was sich wiederum mit den Aussagen von LIST (2002) für die 

dreidimensionale Sonographie deckt. In anderen Literaturangaben wird Fibrin jedoch als 

hyperechogene Struktur im Ultraschall beschrieben (DIETRICH 2006; GEVELHOFF 1996; 

STROBEL 2010).  

Zumindest für diese Arbeit lieferte somit der dreidimensionale Ultraschall keinen Vorteil zur 

ophthalmologischen Untersuchung für die Diagnose und das Ausmaß einer Fibrineinlagerung in 

die vordere Augenkammer, da vor allem der Grad der Veränderungen leicht unterschätzt 

werden konnte. Wie oben beschrieben, war die Sonographie aber dann von Vorteil, wenn durch 

das Fibrin nicht alle anderen Augenstrukturen einsehbar waren. 

 

3. Freie Zellen: 
Anders als in der Literatur von DIETRICH (2006) und LIST (2002) beschrieben, konnten freie 

Zellen in der vorderen Augenkammer sonographisch nicht als echoreiche Einzelpunkte 

dargestellt werden. Die Ursache dafür wird zum einen in dem nur geringgradigen Vorhandensein 

der Zellen vermutet. Zum anderen liegt hier vermutlich ein ähnliches Problem wie für die 

Darstellbarkeit von Fibrin und Blut in der vorderen Augenkammer vor.  
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5.2.3.3 Uvea 
1. Uveitis: 
Die Diagnose „Uveitis“ konnte lediglich bei zwei Patienten in dieser Arbeit eindeutig gestellt 

werden. Eine phakoanaphylaktische Uveitis konnte im dreidimensionalen Ultraschall als eine 

Dickenzunahme der Iris, des Ziliarkörpers und eine unregelmäßig geformte vordere 

Linsenkapsel dargestellt werden. Dies wird auch für die zweidimensionale Sonographie von 

WILLIAMS et al. (1995) und POULSEN NAUTRUP et al. (1998) beschrieben.  

Bei einer Haustaube (Columba livia) lag eine nasale halbmondförmige Verfärbung der Iris als 

einziges Merkmal einer möglichen Uveitis vor. Es konnte jedoch ophthalmologisch wie 

sonographisch keine Dickenzunahme der Iris oder des Ziliarkörpers beobachtet werden. Auch 

die Echogenität der Iris war nicht verändert. Somit erbrachte die sonographische Untersuchung 

in diesem Fall keine neuen Erkenntnisse zur ophthalmologischen Untersuchung. 

 

2. Iriszysten: 
Erstmals konnte mit dieser Arbeit die Darstellung von Iriszysten am Vogelauge im zwei- und 

dreidimensionalen Ultraschall gezeigt werden. Während sich das Zystenstroma beim Menschen-

, Pferde- und Hundeauge hypoechogen darstellt (CRONAU und GERHARDS 2004; DIETRICH 

2006; IEZZI et al. 1996), konnte beim Vogelauge kein Unterschied in der Echogenität von 

Zystenstroma und Zystenkapsel festgestellt werden. 

Am Pupillenrand gelegene Zysten konnten bereits in der zweidimensionalen Sonographie 

erkannt werden. Mithilfe der Schnittbildtechnik und der Durchsicht von Einzelbildern, konnten die 

Zysten jedoch einfacher als mit der konventionellen Sonographie aufgefunden werden. Mittels 

dreidimensionaler Ultraschalltechnik war es zusätzlich möglich, die gesamte Ausdehnung in die 

vordere Augenkammer zu erkennen.  

Allerdings waren Zysten, welche am Irisrand lagen, sonographisch in der axialen Schallebene 

nicht darstellbar. Zusätzlich stellten sich die Zysten im Ultraschall stets weniger prägnant, als in 

der ophthalmologischen Untersuchung dar. Beides musste bei der Diagnosestellung und 

Beurteilung des Ausmaßes der Zysten berücksichtigt werden. 

 

3. Synechien: 
Eine anteriore Synechie konnte in dieser Arbeit sonographisch nicht dargestellt werden, Die 

Ursache lag zum einem wohl in der nur sehr schmalen Verbindung der Iris mit der Hornhaut und 

zum anderen in der oben beschriebenen problematischen Technik der Datengewinnung. Eine 
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ophthalmologische Untersuchung mittels Spaltlampe lieferte somit wesentlich bessere 

Ergebnisse, als die Sonographie. 

 

Die Darstellung posteriorer Synechien gelang nur in einem Viertel der Fälle. Dies lag vermutlich 

an der beim Vogel nur sehr kleinen hinteren Augenkammer. So war diese selbst im 

physiologischen Zustand nicht immer abgrenzbar, was eine sichere Diagnosestellung einer 

hinteren Synechie im Ultraschall erschwerte, auch wenn in der ophthalmologischen 

Untersuchung die Veränderungen eindeutig erkennbar waren. Eine sehr ausgeprägte posteriore 

Synechie war jedoch – wie in der Literatur von STROBEL (2010), REESE (1999) und LIST 

(2002) beschrieben – darstellbar. Die Durchsicht der Einzelschnitte ermöglichte ein genaues 

Auffinden der Verklebung und es konnte mittels dreidimensionaler Darstellung der Verlust der 

Pupille beim Vorliegen einer Synechie gezeigt werden. Die sonographischen Befunde stimmten 

in diesem Fall mit den pathologisch-makroskopischen Untersuchungen am Auge überein. 

 

Die in der ophthalmologischen Untersuchung diagnostizierten unregelmäßigen Pupillenränder 

wiesen nur sehr kleine Unterschiede in der Form der Pupille auf. Daher war es sehr schwierig 

diese Veränderungen sonographisch zu erfassen. Bei diesen minimalen Veränderungen wäre 

es von Vorteil, wenn die Ultraschallbiomikroskopie zur Anwendung kommen würde. 

 

4. Iris bombata: 
Erstmals gelang mit dieser Arbeit die dreidimensionale Darstellung einer vollständigen hinteren 

Synechie am Vogelauge. Diese war mit der Darstellung mittels konventioneller Sonographie 

vergleichbar (CRONAU und GERHARDS 2004). Von Vorteil war jedoch die Möglichkeit, die 

Einzelschnittbilder durchzusehen, um Verklebungsbereiche genau zu identifizieren.  

 

5. Iriskolobom: 
Die dreidimensionale Darstellung von Spalten in der Iris konnte durch diese Arbeit erstmals 

beschrieben werden. Dafür liegen in der Literatur keine Daten vor. Die Darstellbarkeit der 

Kolobome war aber mit der von BYRNE und GREEN (2002) für die zweidimensionale 

Sonographie beschriebenen vergleichbar. Durch die dreidimensionale Ansicht der Iriskolobome 

waren jedoch die Lokalisation und das Ausmaß der Veränderungen anschaulicher darstellbar, 

als dies im zweidimensionalen Ultraschall der Fall war. Die in der sonographisch Untersuchung 

gestellten Befunde konnten anschließend in der pathologisch-anatomischen Untersuchung 

verifiziert werden. 
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6. Iridodialysis: 
Eine Zerreißung der Iris bei einem Waldkauz (Strix aluco) ging mit einer Lokalisation der Iris 

nach kaudal in den Glaskörperraum einher, was sich anders als in der Literatur von BYRNE und 

GREEN (2002) und CUSUMANO et al. (1998) beschrieben, darstellte. Bei diesen Autoren wird 

eine Verlagerung der Iris in die vordere Augenkammer beschrieben. Die dreidimensionale 

Ultraschalltechnik erwies sich bei der Iridodialysis von Vorteil, da dreidimensional nicht nur das 

Ausmaß der Veränderungen besser veranschaulicht werden konnte, sondern mittels Durchsicht 

der Einzelbilder auch die teilweise noch vorhandene Anhaftung der Iris am Ziliarkörper leichter 

darstellbar war. Die dreidimensionale Ultraschalltechnik wird auch in der Literatur als Vorteilhaft 

beschrieben, um Anheftungszonen genau zu identifizieren (ENDO et al. 2000; LIST 2002). 

Durch eine Keratitis war es ophthalmologisch nicht möglich, oben genannte Befunde zu 

erheben, erst mittels der Sonographie konnten die massiven Veränderungen im Auge dargestellt 

werden. Die erhobenen Befunde der Sonographie konnten anschließend in der pathologisch-

makroskopischen Untersuchung des Auges bestätigt werden. 

 

5.2.3.4 Linse 
1. Katarakt: 
Die Darstellung von Katarakten entsprach der in der Literatur beschriebenen Darstellungsweise 

für die konventionelle und dreidimensionale Sonographie von KRAUTWALD-JUNGHANNS und 

NEUMANN (1991), WILLIAMS et al. (1995), POULSEN NAUTRUP et al. (1998), STROBEL 

(2010) und LIST (2002). Ebenfalls konnte, wie bereits von SCOTTY et al. (2004) beschrieben, 

ein Zusammenhang zwischen Echogenität und Alter der Katarakt erkannt werden. Zudem waren 

höhergradige Katarakte durch die stark veränderte Echogenität im Ultraschall leichter zu 

diagnostizieren, als punktförmige oder nur wenig ausgeprägte nukleare Linsentrübungen. Sie 

konnten leicht mit Artefakten, welche im Stroma auftraten, verwechselt werden. Ebenso konnten 

kortikale Katarakte sonographisch durch Verdickung der vorderen Linsenkapsel und 

Darstellbarkeit der Linsenperipherie nicht immer sicher von einer posterioren Synechie oder 

anterioren Uveitis abgegrenzt werden. Eine vorherige ophthalmologische Untersuchung war 

daher in jedem Fall indiziert. 

Mithilfe des dreidimensionalen Ultraschalls konnten auch einzigartige transversale Schnitte 

durch kataraktöse Linsen angefertigt und die komplette Linse einschließlich des Ausmaßes der 

Veränderungen dargestellt werden. 
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2. Dislokation der Linse: 
Die Darstellung einer Subluxation entspricht der in der Literatur von POULSEN NAUTRUP et al. 

(1998) beschriebenen Darstellungsweise für die konventionelle Sonographie. Mithilfe der 

Durchsicht der Einzelbilder konnte der dezente Spalt zwischen Iris und Linse und die räumliche 

Lage der Subluxation sehr gut dargestellt werden. 

Bei einem Uhu (Bubo bubo) war es nicht möglich die Subluxation eindeutig zwei- oder 

dreidimensional darzustellen. Der Grund dafür lag vermutlich in dem zusätzlichen Vorliegen 

einer Cataracta immatura. Die Linsenkapsel stellte sich daher verdickt und stark echogen dar, 

weshalb sich der dezente Spalt vermutlich nicht eindeutig erkennen ließ.  

 

Bei der Luxation der Linse nach posterior bei einem Waldkauz (Strix aluco) war es im 

konventionellen Ultraschall nicht auf den ersten Blick ersichtlich, an welcher Stelle sich die Linse 

befand. In diesem Fall halfen die Durchsicht der Einzelbilder und die Ansicht im Volumenmodus 

die genaue Lokalisation der Linse im Glaskörperraum zu identifizieren und das Ausmaß der 

Veränderungen zu veranschaulichen.  

Die Darstellbarkeit entsprach grundsätzlich der Darstellung in der Literatur, durch Ruptur der 

Linsenkapsel konnten die Linsenränder im Ultraschall jedoch nicht als hyperechogene 

Strukturen identifiziert werden, wie dies von WILLIAMS et al. (1995) beschrieben wird. 

In der anschließenden pathologisch-makroskopischen Untersuchung des Auges konnten die 

Ergebnisse der dreidimensionalen Sonographie bestätigt werden. 

 

3. Kapselruptur: 
Mit dieser Arbeit war es erstmals möglich eine Ruptur der Linsenkapsel mittels 

dreidimensionaler Ultraschalltechnik darzustellen. Dabei ähnelte die dreidimensionale 

Darstellung der in der Literatur beschriebenen Darstellbarkeit von BYRNE und GREEN (2002) 

und STROBEL (2010) für die konventionelle Sonographie. Allerdings war in beiden Fällen kein 

kristallartiges Material im Bereich der Rupturstelle zu erkennen. In der anschließenden 

pathologisch-makroskopischen Untersuchung des Auges konnte die Kapselruptur bestätigt 

werden. 

 

5.2.3.5 Pathologische Veränderungen des gesamten Bulbus 
1. Endophthalmitis: 
Die Darstellung einer Entzündung des gesamten inneren Auges stimmte mit der zwei- und 

dreidimensionalen Darstellung von GUTHOFF (1988), BYRNE und GREEN (2002) und LIST 
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(2002) überein. Auch hier konnten mittels Durchsicht der einzelnen Schnittbilder die 

pathologischen Veränderungen einfacher gefunden und ein Gesamtüberblick über die Zustände 

im Auge gewonnen werden. 

 

2. Buphthalmus: 
Die Darstellung eines vergrößerten Augapfels stimmte mit den Angaben von SCOTTY et al. 

(2004) und LIST (2002) überein, er konnte aber bereits zweidimensional gut diagnostiziert 

werden. 

 

3. Phthisis bulbi: 
Eine Schrumpfung des Augapfels nach massiver Entzündung stellte sich dreidimensional wie in 

der Literatur von GUTHOFF (1988) und LIST (2002) beschrieben dar. Mit Hilfe der Rotation des 

Bildvolumens und der Durchsicht der Einzelschnitte konnte ein besseres Verständnis der 

Zusammenhänge der pathologischen Veränderungen erlangt werden, als dies mit der 

zweidimensionalen Sonographie der Fall gewesen wäre. 

 

4. Glaukom: 
Ein Glaukom stellte sich in der dreidimensionalen sonographischen Untersuchung wie von 

BYRNE und GREEN (2002) und LIST (2002) beschrieben, dar. In diesem Fall waren die 

pathologischen Veränderungen bereits zweidimensional gut zu erkennen und es konnten, wie 

dies auch bei LIST (2002) der Fall war, keine zusätzlichen Informationen mittels 

dreidimensionaler Ultraschalltechnik gewonnen werden. 

 

 

5.3 Die postklinische Dokumentation 
 

1. Material und Methodik: 
Die Auswahl der Materialien und Methoden orientierte sich an den Angaben von SAUNDERS 

und RUBIN (1975), RAVELHOFER (1985), WERTHER et al. (2011) und CANDIOTO et al. 

(2011) für die Vorbereitung der Augen. Die von ihnen beschriebenen Methoden eigneten sich, 

um die Vogelaugen zu entnehmen, zu fixieren und zu kallotieren. 

Im Sinne einer standardisierten Dokumentation (BENGEL 1994) wurden alle Bulbi in derselben 

horizontalen Schnittebene kallotiert. Die Schnittführung sollte sich allerdings an der 
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sonographischen Schnittebene orientieren, um Ultraschall- und postklinische Befunde 

gegenüberzustellen und vergleichen zu können (STROBEL 2010). Da dreidimensionale 

Volumenbilder angefertigt wurden, stellte es allerdings kein Problem dar, durch Wahl der 

gewünschten Schnittebene und Drehung des Volumens, die angefertigten Ultraschallbilder mit 

den kallotierten Bulbi zu vergleichen. 

Trotz Parazentese der vorderen Augenkammer mit Formalin, wie von RAVELHOFER (1985) 

gefordert, konnten in manchen Fällen ein Einsinken der vorderen Augenkammer und artifizielle 

Choroidea- und Netzhautablösungen beobachtet werden. Durch letztgenanntes entstand eine 

Faltenbildung auf der Netzhaut. Die Bulbi wurden jedoch nicht in jedem Fall direkt nach der 

Durchfixierung kallotiert und fotografiert. Nach WERTHER et al. (2011) kommt es aber bereits 

nach 48 Stunden zu artifiziellen Netzhautablösungen, welche mit der Dauer der Lagerung 

zunehmen. Daher ist festzustellen, dass eine sofortige Kallotierung und Fotografie der Bulbi 

nach erfolgreicher Fixierung mit Formalin anzustreben ist. 

 

Für die fotographische Dokumentation richtete sich die Auswahl der Materialien und Methoden 

an die Angaben von BENGEL (1984, 1994), KORBEL (1990) und SNOW (2009). Die von ihnen 

beschriebenen Vorgehensweisen eigneten sich, um Bilder von hoher Qualität anzufertigen. 

Anders als von KORBEL (1990) beschrieben, wurden die kallotierten Augen nicht erhöht 

positioniert, um eine Freistellung vom Hintergrund zu erreichen. Die Bilder wurden am Computer 

nachträglich bearbeitet und die kallotierten Bulbi mithilfe einer Software freigestellt, was in dieser 

Arbeit zu guten Ergebnissen führte. 

 

2. Übereinstimmung der Befunde: 
Die bereits beschriebenen artifiziellen Netzhautablösungen hatten für die vorliegende Arbeit 

keine Bedeutung, da nur Veränderungen im vorderen Augensegment von Interesse waren. 

 

Die im Ultraschallbild erkennbaren punktförmigen Vorwölbungen der hinteren Linsenkapsel in 

Richtung Linsenstroma und die linienförmigen Strukturen innerhalb des Linsenstromas oder 

hinter der Linse konnten postmortal in keinem der Präparate gefunden werden. Es handelte sich 

somit mit großer Wahrscheinlichkeit um Übertragungsartefakte aus den zweidimensionalen 

Einzelbildern, welche durch Wiederholungsechos und Verzeichnung an der Linse zustande 

kamen. Mittels zweidimensionaler Sonographie konnte bereits STROBEL (2010) diese Artefakte 

feststellen. 
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Alle in der sonographischen Untersuchung festgestellten pathologischen Befunde im vorderen 

Augensegment konnten in der postklinischen Untersuchung bestätigt werden. So war es möglich 

die sonographischen Befunde bei einem Waldkauz (Strix aluco) zu bestätigen, welche durch 

Trübung der Hornhaut nicht in der ophthalmologischen Untersuchung gestellt werden konnten. 

Die Iridodialysis, das Iriskolobom und die Verlagerung und Auflösung der Linse waren mittels 

Sonographie und pathologisch-anatomischer Untersuchung gleichermaßen gut darstellbar. 

Ebenso gut darstellbar waren eine Katarakt und eine posteriore Synechie in der 

ophthalmologischen, sonographischen und pathologisch-anatomischen Untersuchung. Das 

Strukturen im Augenhintergrund keine pathologischen Veränderungen aufwiesen, konnte mittels 

Sonographie gezeigt werden und anschließend mittels pathologisch-anatomischer 

Untersuchung bestätigt werden.  

Hervorzuheben ist jedoch, dass wie bereits von BYRNE und GREEN (2002) und STROBEL 

(2010) beobachtet werden konnte, Fremdmaterial wie Fibrin, Blut oder Iriszysten sonographisch 

weniger prägnant darstellbar waren, als dies in der ophthalmologischen und vor allem 

postmortalen Untersuchung der Fall war. Von diesen Autoren wird daher gefordert, diese 

Tatsache bei der Diagnosestellung und Beurteilung des Ausmaßes der Veränderung mittels 

Sonographie bei Trübungen im dioptrischen Apparat zu beachten, da die Veränderungen leicht 

unterschätzt werden können. 
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6. ZUSAMMENFASSUNG  
 

 

Ziel der vorliegenden Arbeit war es, die Einsatzmöglichkeiten und den klinischen Nutzen der 

dreidimensionalen Sonographie in der Ornitho-Ophthalmologie zu untersuchen. Dabei wurde 

besonderen Wert auf die Darstellung und Darstellbarkeit physiologischer und pathologischer 

Strukturen im vorderen Augensegment gelegt. Zu diesem Zweck wurden von Januar 2011 bis 

April 2012 die Augen von 91 Vögeln, welche 25 verschiedenen Arten aus 13 Ordnungen 

angehörten, sonographisch untersucht. Es handelte sich dabei um Patienten, die an der Klinik 

für Vögel, Reptilien, Amphibien und Zierfische behandelt wurden, sowie um Vögel aus 

verschiedenen Auffangstationen, einem zoologischen Garten und einer Straußenfarm. Die 

Untersuchungen erfolgten primär an erkrankten Augen, wobei zu Vergleichszwecken auch das 

gesunde Partnerauge in die sonographische Untersuchung mit einbezogen wurde. Durch das 

Anfertigen von Aufnahmen postmortal präparierter Bulbi konnten die in der sonographischen 

Untersuchung erhobenen physiologischen und pathologischen Befunde evaluiert werden. 

 

Die sonographischen Untersuchungen erfolgten mit dem portablen Ultraschallgerät Voluson i 

der Firma GE Healthcare und einer 18 MHz-Linearsonde der gleichen Firma. Die postmortal 

angefertigten Fotographien wurden mit der digitalen Spiegelreflexkamera 80D der Firma Nikon 

und dem Makroobjektiv Nikon AF-S Mikro NIKKOR 60 mm 1:2.8 G ED und zwei Blitzen der 

Fabrikate Novoflex Makroblitz und Novoflex Makroblitz Servo (Fa. Novoflex, Memmingen 

(Deutschland)) durchgeführt. 

Bei allen Patienten erfolgte eine klinische und ophthalmologische Untersuchung, bevor mit der 

sonographischen Untersuchung der Augen begonnen wurde. Die Geräteeinstellungen wurden 

dabei im B-Mode vorgenommen und anschließend mittels automatischer horizontaler 

Kippbewegung des Schallkopfes das dreidimensionale Datenvolumen erfasst. Die 

Untersuchungen erfolgten mittels axialer vertikaler oder horizontaler Schallkopfposition auf dem 

Auge und dem direkten Kornea-Kontakt-Verfahren.  

Wurden Vögel aufgrund einer sehr ungünstigen Prognose euthanasiert, so wurden die Augen 

entnommen, fixiert, kallotiert und anschließend fotographisch dokumentiert. Damit konnte die 

Aussagekraft der sonographisch erstellten Befunde überprüft werden. 
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Mit Hilfe der dreidimensionalen Sonographie konnten physiologische Strukturen im vorderen 

Augensegment ab einer Vogelgröße von Nymphensittichen (Nymphicus hollandicus) zuverlässig 

dargestellt werden und erstmals gelang die dreidimensionale Darstellung einer Vielzahl von 

pathologischen Veränderungen im Vogelauge. Dabei bot die dreidimensionale Ultraschalltechnik 

den Vorteil, anatomische und pathologische Strukturen räumlich darzustellen und das 

Verständnis für die Lokalisation und das Ausmaß einer Veränderung zu verbessern. Durch 

Bearbeitung und Drehung des Volumens konnten Ansichten erlangt werden, die aufgrund 

anatomischer Verhältnisse am Auge mittels zweidimensionaler Sonographie nicht möglich 

gewesen wären. Ein weiterer diagnostischer Nutzen lag in der Verwendung des 

„Schnittebenenmodus“, bei dem der komplette dreidimensionale Datensatz in jeder beliebig 

gewählten Ebene als zweidimensionales Einzelbild abgebildet wurde. Damit konnten 

pathologische und physiologische Zusammenhänge im Auge zuverlässig und verständlicher 

dargestellt werden als mit der konventionellen Sonographie. Zudem war durch Berechnung der 

weiteren benötigten Ebenen durch den Computer die Untersuchungszeit für den Vogel verkürzt, 

was zu einer tierschutzgerechteren Untersuchung und zur Schonung des Patienten führte. 

 

Als nachteilig wurde in dieser Arbeit die Akquisitionsdauer von bis zu zwölf Sekunden 

angesehen, da dadurch oftmals aufgrund von Augen- und Lidbewegungen Artefakte im 

Datensatz entstehen konnten. Auch war es nicht möglich den kompletten Datensatz 

abzuspeichern, was in Einzelfällen zu einem Datenverlust führte. Trotz sehr guter 

schallkopfnaher Auflösung war es zudem nicht immer möglich nur geringgradig ausgebildete 

pathologische Veränderungen sonographisch sicher zu diagnostizieren. Auch war die Auflösung 

bei sehr kleinen Augen, wie denen von Buchfinken (Fringilla coelebs), limitiert. 

 

Die mithilfe der Sonographie erstellten Befunde konnten durch die ophthalmologische 

Untersuchung und die postmortal angefertigten Bulbuspräparate bestätigt werden. 

Sonographisch waren die Veränderungen jedoch in einigen Fällen weniger prägnant darstellbar, 

als dies in der ophthalmologischen und postmortalen Untersuchung der Fall war. 

 

Zusammenfassend kann die dreidimensionale Sonographie des vorderen Augensegmentes als 

Bereicherung in der Ornitho-Ophthalmologie ab einer Vogelgröße von Nymphensittichen 

(Nymphicus hollandicus) angesehen werden. Sie stellt eine sinnvolle und nützliche Ergänzung 

zur ophthalmologischen Untersuchung vor allem bei Trübungen im Bereich der Hornhaut dar 

und kann zu einer schnellen und verständlichen Diagnosestellung verhelfen. 



SUMMARY 
______________________________________________________________________ 

 

144 
 

7. SUMMARY 
 

The purpose of this study was to evaluate the application and the clinical use of three-

dimensional ultrasonography in ornitho-ophthalmology with a special focus on the appearance 

and presentability of physiologic and pathologic structures in the anterior eye segment. For this 

purpose, from January 2011 to April 2012 the eyes of 91 birds belonging to 25 different species 

from 13 orders underwent sonographic examination. Investigations were performed on patients 

from the Clinic for Birds, Reptiles, Amphibians and Pet Fish, as well as on birds from different 

rehabilitation centers, one zoological garden and one ostrich farm. The sonographic 

examinations were primarily performed on diseased eyes. Furthermore, the healthy other eye of 

the bird was also examined, for comparative purpose. By producing photographs of post mortem 

prepared eyes, the physiologic and pathologic diagnostic findings of the ultrasonographic 

examination could be evaluated. 

 

The sonographic examinations were performed with the portable ultrasound system Voluson i of 

GE Healthcare in combination with an 18 MHz linear transducer of the same company. The post 

mortem photographs were conducted with the digital reflex camera Nikon 80D and the macro 

lens AF-S Micro NIKKOR 60 mm 1:2.8 G ED of Nikon with the two flashes Novoflex Makroblitz 

and Novoflex Makroblitz Servo (Novoflex, Memmingen (Germany)). 

All patients underwent a clinical and ophthalmological examination prior to sonographic 

examination of the eyes. The alignments of the device were conducted in B-Mode; after which 

the three-dimensional data volume was determined by an automatic horizontal tilting of the 

transducer. Investigations were performed in axial vertical or horizontal position of the 

transducer on the eye and with the direct contact method. 

If animals had to be euthanized due to a very poor prognosis, the eyes were extracted, fixed, cut 

and photographs were taken. Therefore the reliability of the diagnostic findings using 

ultrasonography could be verified.  

 

With the help of three-dimensional ultrasonography, physiological structures in the anterior eye-

segment with a minimum eye-size e.g. of cockatiels (Nymphicus hollandicus) were reliably 

shown and the first three-dimensional representation of a number of pathological changes in the 

bird's eye succeeded. Thereby three-dimensional ultrasound technology provided the advantage 

to present anatomical and pathological structures in space and to improve the understanding of 
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the localization and extent of change. By editing and rotating the volume, views could be 

achieved which were not possible with two-dimensional ultrasonography according to anatomical 

conditions. A further diagnostic benefit was the use of the “sectional plane mode” in which the 

complete three-dimensional data set has been displayed in any arbitrarily chosen plane as a 

two-dimensional frame. For this reason, pathological and physiological correlations in the eye 

were shown to be reliable and easier to understand than with conventional sonography. In 

addition, the investigation time for the bird shortened because the computer calculated the other 

required planes, resulting in less stress for the patient and a better animal protection conformity. 

 

The acquisition time up to twelve seconds was considered as a disadvantage in this work, 

because often artifacts in the dataset through eye and lid movements could develop. It was also 

not possible to store the complete dataset, which resulted in individual cases to a data loss. 

Despite very good resolution near the transducer, it was not always possible to diagnose only 

slightly developed pathological alterations by ultrasonography. Furthermore, the resolution of 

very small eyes, like those of chaffinches (Fringilla coelebs), was also limited. 

 

The ultrasonographic findings could be verified through the ophthalmological examination and 

the post mortem prepared bulbs. However, sonographically, the changes were always less 

presentable than in the ophthalmic and post-mortem examination. 

 

In summary, the three-dimensional ultrasonography of the anterior eye segment can be seen as 

an enrichment in ornitho-ophthalmology with a minimum eye-size e.g. of cockatiels (Nymphicus 

hollandicus). It provides a meaningful and useful addition to the ophthalmological examination, 

especially in opacity of the cornea and may lead to a rapid and understandable diagnosis. 
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8. Resumé 
 

Le but de ces travaux était l’évaluation de l’application et de l’utilisation à des fins cliniques de 

l’ultrasonographie tridimensionnelle en ornitho-ophtalmologie. Une attention toute particulière fut 

apportée à la représentation ainsi qu’à la représentabilité des structures physiologiques et 

pathologiques du segment antérieur de l’œil. A cette fin, de janvier 2011 à avril 2012, les yeux 

de 91 oiseaux appartenant à 25 espèces différentes de 13 ordres ont été soumis à l’étude 

sonographique. Ces recherches ont été effectuées sur des patients issus de la clinique des 

oiseaux, reptiles, amphibiens et poissons d’ornement, ainsi que sur des volatiles de différents 

centres de réhabilitation, d’un jardin zoologique et d’une ferme d’élevage d’autruches.  Les 

examens furent en premier lieu effectués sur des yeux malades. En outre, l’autre œil sain de 

l’oiseau fut également  examiné à des fins de comparaison. La production de clichés réalisés sur 

des préparations postmortem d’yeux permit l’évaluation physiologique et pathologique des 

résultats obtenus par sonographie. 

 

Les examens sonographiques furent réalisés avec un système à ultrason portable Voluson i de 

la firme GE Healthcare en combinaison avec un transducteur linéaire de 18 Mhz de la même 

compagnie. Les prises de vue postmortem ont été effectuées avec un réflex numérique Nikon 

80D et un objectif macro AF-S Micro NIKKOR 60 mm 1 :2.8  G ED de la marque Nikon avec 

deux flashs Novoflex Makroblitz et Novoflex Makroblitz Servo (Novoflex, Memmingen 

(Allemagne)). Tous les patients ont subi un examen clinique et ophtalmologique avant le début 

de l’examen sonographique des yeux. Les réglages du dispositif ont été effectués en B-Mode ; 

après quoi les données en trois dimensions furent déterminées par un mouvement d’inclinaison  

horizontal automatique du transducteur. Les recherches furent conduites en position axiale 

verticale ou horizontale du transducteur sur l’œil et par la méthode avec contact direct sur la 

cornée. Si des animaux ont été euthanasiés à cause d’un pronostic vital faible, les yeux ont été 

extraits, fixés, coupés et ensuite photographiés.  Ceci permit de montrer la fiabilité des résultats 

obtenus par la méthode sonographique. 

 

Avec l’aide de l’ultrasonographie tri-dimensionnelle, des structures physiologiques dans le 

segment antérieur de l’œil purent être montrées de façon fiable et pour la première fois une 

représentation en trois dimensions d’un grand nombre de changements pathologiques dans l’œil 

de l’oiseau fut possible. 
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Ainsi la technique à ultrason tridimensionnelle présente l’avantage de représenter les structures 

anatomiques et pathologiques dans l’espace et améliore la compréhension de la localisation et 

de l’étendue d’un changement. Par traitement et réglage du volume, des vues furent obtenues 

qui, compte tenu des conditions anatomiques de l’œil, n’auraient pu être obtenues avec la 

sonographie bidimensionnelle. Un autre avantage pour le diagnostic est l’utilisation du ‘sectional 

plane mode’ dans lequel l’ensemble des données tridimensionnelles peut être représenté dans 

n’importe quel plan choisi en deux dimensions.   

De sorte que les corrélations pathologiques et physiologiques de l’œil purent être représentées 

de façon plus compréhensible et fiable que par la méthode sonographique conventionnelle. De 

plus, le temps d’examen pour l’oiseau étant raccourci du fait que l’ordinateur calcule les autres 

plans nécessaires, le stress résultant de cet examen est moindre. 

 

Un temps d’acquisition pouvant aller jusqu’à 12 secondes peut être considéré comme un 

désavantage pour ces travaux car les mouvements de l’œil et de la paupière produisent souvent 

des artefacts pendant l’enregistrement des données. 

Il n’a également pas été possible d’enregistrer l’ensemble des données ce qui entraine, dans 

certains cas, une perte d’informations. Malgré une très bonne résolution près du transducteur il 

ne fut pas toujours possible de diagnostiquer précisément de très légères altérations 

pathologiques via l’ultrasonographie. De plus, la résolution pour de très petits yeux, comme ceux 

du pinson (Fringilla coelebs), était limitée. 

 

Les découvertes dues à l’ultrasonographie purent être vérifiées par l’examen ophtalmologique 

ainsi que par les bulbes postmortem préparés. 

Toutefois d’un point de vue sonographique, la représentation des changements était toujours 

moins concise que pour l’examen ophtalmologique et post-mortem.   

 

En résumé, l’ultrasonographie tridimensionnelle du segment antérieur de l’œil peut être 

considérée comme un enrichissement dans le domaine de l’ornitho-ophtalmologie. Elle est un 

avantage utile et significatif à l’examen ophtalmologique, spécialement pour l’opacité de la 

cornée et peut conduire à un diagnostic rapide et compréhensible.   
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9. Resumen 
 

El objetivo de este estudio consistió en la evaluación de la aplicación y el uso clínico de la 

ultrasonografía tridimensional el la oftalmología ornitológica. En concreto se describió la 

apariencia y presentación de las estructuras fisilógicas y patológicas de la cámara anterior del 

ojo. Con este objetivo se sometieron a examen ultrasonográfico los ojos de 91 aves 

pertenecientes a 25 especies diferentes, las cuales se engloban dentro de 13 órdenes, desde 

enero de 2011 hasta abril de 2012. 

Las investigaciones se llevaron a cabo en pacientes privados de la Clínica de Aves, Reptiles, 

Anfibios y Peces Ornamentales, así como en aves procedentes de diferentes centros de 

recuperación, un parque zoológico y una granja de avestruces. Los exámenes ultrasonográficos 

se realizaron de forma primaria en ojos con enfermedad ocular. De forma posterior se procedió 

al examen del ojo sano del mismo paciente a efectos comparativos. La evaluación de lo 

hallazgos fisiológicos y patológicos encontrados en los exámenes ultrasonográficos se llevó a 

cabo mediante la toma de fotografías post mortem de ojos conservados. 

Para la realización del examen ecográfico se utilizó el sistema ultrasonográfico portátil “Voluson 

i” de la empresa GE Healthcare combinado con una sonda linear de 18 MHz de la misma casa 

comercial. 

Las fotografías post mortem se llevaron a cabo con una cámara digital reflex Nikon 80D y la 

lente Nikon de macro AF-S Micro NIKKOR 60 mm 1:2:8 G ED. Se utlilizaron a su vez los flashes 

NovoflexMakroblitz y NovoflexMakroblitz Servo (Novoflex, Memmingen (Alemania)). 

 

Previamente al examen ecográfico se realizó un examen clínico y oftalmológico del los ojos. Se 

seleccionó como configuración de trabajo del aparato el B-modo, tras lo cual la toma de datos 

tridimensional re determina por una inclinación automática de la sonda. Los exámenes se 

realizaron con la sonda en posición axial sobre el ojo, tanto vertical como horizontal, y en 

contacto directo con el mismo. Los ojos de los animales que, debido a un pronóstico 

extremadamente malo debieron eutanasiarse, se extrajeron, fijaron, cortaron y fotografiados, de 

tal forma fue posible comprobar la fiabilidad de los hallazgos diagnósticos encontrados 

mediante la ultrasonografía. 

 

Gracias a la ultrasonografía tridimensional se pudo mostrar con éxito y de forma fiable tanto las 

estructuras de la cámara anterior del ojo (para un tamaño mínimo de globo ocular de una ninfa 



RESUMEN 
______________________________________________________________________ 

 

149 
 

(Nymphicus hollandicus)), como la primera representación tridimensional de los cambios 

patológicos del ojo de las aves. De esta manera la tecnología de la ultrasonografía 

tridimensional proporciona la ventaja de mostrar las estructuras anatómicas y fisiológicas en el 

espacio para mejorar el discernimiento de la localización y la extensión de la alteración. 

Editando y rotando el volumen se pueden obtener diferentes vistas de la zona deseada que no 

serían posibles de adquirir con la ultrasonografía en dos dimensiones debido a las condiciones 

anatómicas. Otra ventaja diagnóstica consistió en el uso del “modo plano seccional”, en el cual 

el conjunto de datos al completo se despliega de forma arbitraria en un plano previamente 

escogido conformando un marco bidimensional. Por esta razón se mostraron las correlaciones 

fisiológicas y patológicas en el ojo de forma más fiable y más fácilmente entendible que con la 

ultrasonografía bidimensional. Además el tiempo empleado en el examen del ojo del ave se ve 

reducido ya que el software calcula el resto de planos requeridos por sí solo, lo que produce 

una reducción del estrés del paciente y se adecúa de mejor forma a las normas de protección 

animal. 

 

En el transcurso de este estudio se consideró como una desventaja el hecho de que en ciertos 

casos la obtención de las imágenes supuso un periodo de duración mayor a 12 segundos, 

debido a artefactos producidos en la toma de datos del ojo en cuestión y en los movimientos de 

los párpados. Tampoco resultó posible el almacenamiento del conjunto de datos completo, los 

que supuso en ciertos casos una pérdida de información. A pesar de la gran resolución en la 

zona más cercana a la sonda, no siempre fue posible diagnosticar alteraciones patológicas 

levemente desarrolladas mediante la ultrasonografía. La resolución se ve además limitada en 

ojo de aves extremadamente pequeñas, como en el caso del pinzón (Fringilla coelebs).  

Los hallazgos ultrasonográficos se verificaron con el examen oftalmológico y las preparaciones 

post mortem de los globos oculares. Sin embargo en ciertos casos los cambios en la ecografía 

fueron menos visible que en la oftalmoscopía y que en el examen post mortem. 

 

En resumen, la ultrasonografía en tres dimensiones de la cámara anterior del ojo se puede 

considerar como un enriquecimiento en el diagnóstico oftalmológico en el campo de la 

ornitología para tamaños de globo ocular mayores al de aves como por ejemplo  una ninfa 

(Nymphicus hollandicus). Supone una adición importante y útil al examen oftalmológico, 

especialmente en el caso de la opacidad corneal, y puede conducir a un diagnóstico más rápido 

y mejor comprensible. 
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