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SUMMARY 
 

 

TOPIC I: 

DYNAMIC TRANSCRIPTOME ANALYSIS MEASURES RATES OF MRNA SYNTHESIS AND 

DECAY IN YEAST 
 

To obtain rates of mRNA synthesis and decay in yeast, we established dynamic transcriptome 
analysis (DTA). DTA combines non-perturbing metabolic RNA labeling with dynamic kinetic 
modeling. DTA reveals that most mRNA synthesis rates are around several transcripts per cell 
and cell cycle, and most mRNA half-lives range around a median of 11 min. DTA can monitor the 
cellular response to osmotic stress with higher sensitivity and temporal resolution than 
standard transcriptomics. In contrast to monotonically increasing total mRNA levels, DTA 
reveals three phases of the stress response. During the initial shock phase, mRNA synthesis and 
decay rates decrease globally, resulting in mRNA storage. During the subsequent induction 
phase, both rates increase for a subset of genes, resulting in production and rapid removal of 
stress-responsive mRNAs. During the recovery phase, decay rates are largely restored, whereas 
synthesis rates remain altered, apparently enabling growth at high salt concentration. Stress-
induced changes in mRNA synthesis rates are predicted from gene occupancy with RNA 
polymerase II. Thus, DTA realistically monitors the dynamics in mRNA metabolism that underlie 
gene regulatory systems. 
 

 

 

 

TOPIC II:   

MEDIATOR PHOSPHORYLATION PREVENTS STRESS RESPONSE TRANSCRIPTION DURING 

NON STRESS CONDITIONS 
 

The multiprotein complex Mediator is a coactivator of RNA polymerase (Pol) II transcription 
that is required for the regulated expression of protein-coding genes. Mediator serves as an 
endpoint of signaling pathways and regulates Pol II transcription, but the mechanisms it uses are 
not well understood. Here we used mass spectrometry and dynamic transcriptome analysis to 
investigate a functional role of Mediator phosphorylation in gene expression. Affinity 
purification and mass spectrometry revealed that Mediator from the yeast S. cerevisiae is 
phosphorylated at multiple sites a 17 out of its 25 subunits. Mediator phosphorylation levels 
change upon an external stimulus set by exposure of cells to high salt concentrations. 
Phosphorylated sites in the Mediator tail subunit Med15 are required for suppression of stress-
induced changes in gene expression under non-stress conditions. Thus dynamic and differential 
Mediator phosphorylation contributes to gene regulation in eukaryotic cells. 
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1. Regulation of gene expression in Eukaryotes 
 

 

In 1958, Francis Crick postulated the fundamental model of how the flow of genetic information 

is directed through the cell. The central dogma of molecular biology describes the basic features 

involved in gene expression: DNA, which provides all information about evolution and 

functionalities of the organism. Messenger RNA as the activated and fleeting form of information, 

which serves as blueprint for proteins that execute cellular functions (Crick, 1958; Crick, 1970).  

 Many levels are involved in gene expression and each level is targeted for regulation. On 

the level of transcription (SECTION 1.1.1), activated transcription factors recognize DNA sequence 

elements and act as nucleation point for recruitment of coactivators and the Pol II machinery 

onto promoter regions (SECTION 1.1.2). Chromatin constitutes DNA topology and forms a 

structural barrier for transcription. Chromatin remodeling complexes adapt DNA topology to 

transcription by shifting nucleosome positions. Positioning and repositioning of nucleosomes as 

well as dynamic modification of histone tails are involved in regulation of every step of 

transcription (SECTION 1.1.3). Coactivators integrate the activation signal of transcription factors 

to the general Pol II machinery and coordinate the removal of nucleosomal barriers for proper 

transcription (SECTION 1.1.4). The chronology of regulatory events is modeled by the 

transcription cycle, which divides the transcriptional process into the main steps: initiation, 

elongation, termination and reinitiation. The transcritption cycle model integrates different 

steps to activate DNA encoded information by synthesis of RNA, as the activated and fleeting 

form of genetic information (SECTION 1.1.5 & 1.1.6). RNA molecules are processed on the post-

transcriptional level before being transported to the cytoplasm to be subjected to the ribosome 

for translation. The major pathway for cytoplasmic messenger RNA degration is initiated by 

deadenylation (SECTION 1.2.1), followed by two alternative degradation pathways. The Exosome 

pathway degrades mRNA in 3’-5’ direction, which requires the removal of 3’-poly(A) tail 

(SECTION 1.2.2 & 1.2.3). An alternative pathway requires decapped mRNA and degrades in 5’-3’ 

direction, which includes cotranslational degradation of ribosome-bound mRNA (SECTION 1.2.4). 

A minority of mRNA is degraded deadenylation-independently, indicating an additional level of 

regulation for selected mRNA (SECTION 1.2.5). Messenger RNA can be stored in cytoplasmic P-

bodies, which appear when excess of mRNA substrates overburdened the 5’-3’degradation 

system  (SECTION 1.2.6).  

 Regulation of genetic information requires coordination of many levels, resulting in well 

defined temporal expression patterns that are characteristic for specific gene expresssion 

programs (Yosef, et al. 2011). Cell cycle, starvation, stress response and many other processes 

require a dynamic reorganisation between alternative gene expression programs that ensure 

cellular functionality under negative environmental changes. The high osmolarity glycerol 
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(HOG) pathway in S. cerervisiae is a paradigma for studying stress induced gene expression in 

eukaryotes (SECTION 2.1 & 2.2). Stress induced dynamics of gene expression require the exact 

quantitative and temporal coordination of individual transcript levels, which might result from 

an dynamic equilibrium of mRNA synthesis and decay. 

 

 

1.1 Regulation of Transcription in Saccharomyces cerevisiae 

The process of transcription is initiated by sequence specific transcription factors that recognize 

unique DNA sequence elements. The “ground state” of yeast promoters is inactive and activation 

can be achieved by single transcription activators or a combination of different activators 

binding to the upstream activation sequence (UAS) (Hahn & Young, 2011). Alternatively, 

transcription inactivation is achieved by repressors binding to upstream repression sequences 

(URS). The principle of combinatorial control of transcription has been shown for transcription 

of cell cycle genes, stress response (Bhoite, et al. 2001; Simon, et al. 2001; Horak, et al. 2002; Tan 

et al. 2008; Ni, et al. 2009) and glucose starvation (Young, et al. 2003; Tachibana, et al. 2005; 

Ratnakumar & Young 2010). DNA bound transcription factors serve as nucleation point for 

coregulators and general transcription factors to initiate the PIC assembly on the promoter.  

 

1.1.1 Transcription factors 

Transcription factors connect cellular regulation processes to transcription. Activated by several 

regulatory events, like phosphorylation, oxidation, cytoplamsic-nuclear shuttling, proteolysis or 

interaction with regulatory proteins, transcription factors are able to either initiate (activators) 

or repress (repressors) transcription. Transcription factors are one major determinant that 

connects cellular signaling to gene expression. There are several mechanisms of transcription  

factor activation. One of the best studied mechanisms is the activation of oxidative stress 

response (high H2O2 concentrations) by Yap1. Oxidative stress induces a conformational change 

of Yap1 by forming a disulfide bond between Cys598 and Cys303 that masks a C-terminal export 

signal (NES) leading to the accumulation of Yap1 in the nucleus (Delaunay, et al. 2000; Georgiou, 

2002; Okazaki, et al. 2007). Yap1 activates transcription by recognition and binding to the SV40-

AP1 recognition element ARE (TGACTAA), a specific DNA sequence which is recognized by an 

basic leucine zipper domain (Fernandes, et al. 1997; Landschulz, et al. 1998).  

The common functionalities of transcription factors are organized in functional modules. 

The DNA binding module, that recognizes specific DNA sequences, the transactivation module, 

that exhibits transcriptional activation potential and a multimerization module, that mediate 

homo- or heterologous interactions (Kadonagan, 2004). These functional modules can be either 

combined in one protein or shared between different proteins that act synergistically 

(Brivanlou, et al. 2002). A major mechanism of transcriptional activation is the recruitment of 

regulatory proteins onto the promoter region of specific genes (Brivanlou, et al. 2002). Many of 

these proteins are chromatin associated factors, e.g. chromatin remodelers, histone acetylases, 

histone methylases, HDACs, kinases, which modulate transcriptional activity (Orphanides, et al. 

2002). For example, the activation domain of the human heat shock factor Hsf1 has been shown 

to recruit SWI/SNF to stress responsive genes (Sullivan, et al. 2001). In yeast, a number of acidic 

activators, e. g. Gcn4, Gal4 or Hap4 have been shown to interact with Tra1, a common subunit of 

SAGA and histone acetyl transferase NuA4 (Brown, et al. 2001; Narlikar, et al. 2002; Baker, et al. 

2009; Bhaumik, et al. 2001).   
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Transcriptional repressors are involved in regulation of transcription by preventing the 

assembled general transcription machinery to initiate transcription. The Ssn6-Tup1complex, for 

example, is a conserved family of repressors, which has been found in yeast, flies, worms and 

mammals (Smith & Johnson, 2000). Ssn6-Tup1 is recruited to the promoter region of target 

genes by DNA binding proteins, like Mig1, Crt1 and Rox1 (Nehlin, et al. 1991; Balasubramanian, 

et al, 1993; Huang, et al. 1998), resulting in a decrease of respective transcript levels by up to 

10-3 (Redd, et al. 1996). The majority of Ssn6-Tup1 repressed genes are involved in stress 

response and response to environmental changes. As an example, low glucose levels lead to 

phosphorylation of Mig1, which is exported from the nucleus and leads to derepression of 

glucose-repressed genes by removal of Ssn6-Tup1 from the promoter (De Vit, et al. 1997; 

Treitel, et al. 1998; Ostling & Ronne, 1998).  Ssn6-Tup1 appears most likely to repress genes by 

preventing the promoter assembled general transcription machinery from transcription 

initiation. Evidence comes from the deletion of several Mediator proteins in yeast which all 

affect Ssn6-Tup1 repression (Carlson, M. 1997; Myer & Young, 1998), and the interaction of 

Tup1 with N-terminal tails of histones H3 and H4 (Edmondson, et al. 1998; Ducker & Simpson, 

2000).  

Expression of most eukaryotic genes is context dependent and might by modulated 

through combinatorial assembly of a set of gene specific regulators. There is striking evidence, 

that regulation of transcription is achieved by a set of factors which assemble in unique 

combinations of factors that result in a highly selective activation of transcription. The promoter 

regions contain many specific binding sites for multiple transcription factors to allow each gene 

to be regulated by multiple signaling pathways (Orphanides & Reinberg, 2002). In some cases, 

DNA binding proteins function as both, activator or repressor. For example, the yeast Mcm1 

transcription factor combines both functions as activator or repressor. Mcm1 activates 

transcription when associated to Fkh2 or represses when bound to Yox1 (Darieva, et al. 2010; 

Leatherwood, et al. 2010). During osmotic stress the yeast transcription factor Sko1 is activated 

by phosphorylation and converts the repressor Ssn6-Tup1 into an activating state which 

recruits SAGA histone acetylase and SWI/SNF to osmotic stress inducible promoters (Proft & 

Struhl, 2002). However, the combinatorial assembly of regulatory proteins is modulated by 

several processes, like posttranslational modifications, nuclear localization, conformational 

changes, proteolysis, chromatin assembly and accessibility to DNA binding sites. The 

mechanisms of regulation of gene expression at the level of transcription factors and repressors 

are conserved from yeast to human and the fact, that 5% of the human genome is predicted to 

encode transcription factors underscores the importance to this level of regulation (Tupler, et al. 

2001). 

 

1.1.2 Core promoter architecture 

The general transcription factors and Pol II assemble to the preinitiation complex (PIC) at 

specific sequence elements on the promoter. The minimal set of DNA elements required for 

basal transcription is defined as the core promoter (Smale & Kadonaga, 2003). The core 

promoter architecture consists of the TATA element, initiator (INR), downstream promoter 

element (DPE), motif 10 element (MTE) and TFIIB recognition element (BRE). These functional 

elements are recognized by basal transcription factors and serve as platform for PIC assembly.  

TATA elements. The TATA element consists of a T/A rich sequence exhibiting a conserved 

TATWAWR motif, which is recognized by the TATA box binding protein (TBP) (Basehoar, et al. 

2004). In S. cerevisiae, the TATA element is located within a window of 50-120 bp upstream of 
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transcription start site (TSS) (Hampsey, 1998; Zhang & Dietrich, 2005).  TBP recognizes the 

TATA element by two quasi-symmetrical domains, which contact the DNA minor groove by 

hydrophobic interactions. TBP kinks the DNA at the 5’ and 3’ ends of the TATA element and 

partially unwinds the DNA helix (Smale & Kadonaga, 2003). DNA recognition by TBP serves as a 

nucleation point for PIC assembly (Koleske & Young, 1994; Ranish, et al. 1999). TBP has been 

identified as a subunit of the general transcription factor TFIID, but, however, TBP interacts also 

with the Spt-ADA-Gcn5-acetyltransferase complex (SAGA). Only 13 % of yeast promoters 

contain TATA elements and the majority of these promoters are SAGA dependent, highly 

regulated and generally stress responsive (Hahn & Young, 2011). TATA-less promoters, 

however, require TBP also for function, but bind the basal transcription factor TFIID, which 

indicates alternative pathways for PIC assembly (Seizl, et al. 2011; Cormack, et al. 1992; Burley, 

1996; Pugh & Tijan 1991; Hahn, et al. 1989; Sikorsky & Buratowski, 2009; Smale, 1996).  

 

Initiator (INR). The initiator sequence is located around the transcription start site (TSS) 

and can be weakly bound by Pol II itself or strongly when Pol II is accompanied by TFIIB, TFIID 

and TFIIF (Dikstein, 2011). The TFIID subunits Taf1 and Taf2 directly contact the INR element. 

The functionality of the INR can be either alone, in combination with the TATA element or in 

conjunction with the downstream promoter element (DPE) (Dikstein, 2011). TATA element and 

INR function synergistically when both are located within a window of 25-30 bp, but 

independently when separated by more than 30 bp (Smale & Kadonaga, 2003). 

 

DPE and MTE. The downstream promoter element (DPE) and the motif-10 element 

(MTE) are two important sequence elements in higher eukaryotes. However, DPE and MTE do 

not appear to be present in S. cerevisiae, but belong to the class of sequence elements recognized 

by TFIID and function in combination either with the INR or in combination with TATA and INR 

(Juven-Gershon & Kadonaga, 2010).  

 

BRE (BREu / Bred). TFIIB interacts with the major groove upstream and with the minor 

groove downstream of the TATA element (Nikolov, et al. 1995). The DNA sequence which 

promotes the interaction was named TFIIB recognition element (BRE) and the two contact sites 

were titled upstream BRE (BREu) and downstream BRE (BREd). Both sites function in 

conjunction with the TATA element and have been found to increase or decrease the levels of 

basal transcription (Juven-Gershon & Kadonaga, 2010).  

 

All of these core promoter elements are degenerate, low specificity DNA sequences that 

vary in conservation among species. The variations and multiplicity of different core promoter 

element combinations contribute to the nature of combinatorial gene regulation (Hahn & Young, 

2011; Smale & Kadonaga, 2003). 

 

1.1.3 Chromatin and Chromatin remodeling 

Nucleosomes are inhomogeneously distributed throughout the genome and form a defined DNA 

topology pattern. The region approximately 150-200 bp upstream of the TSS is kept free of 

nucleosomes and is called the nucleosome free region (NFR), which might ensure the 

accessibility for non-histone proteins and assemblation of the transcription machinery (Yuan, et 

al. 2005; Lee, et al. 2007; Jiang & Franklin, 2009). Nucleosomal DNA is wrapped around core 

histones (H3, H4, H2A, H2B), which are predominant globular proteins. Histones form an 
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unstructured N-terminal tail, which is dynamically modified with defined consequences for 

chromatin function and structure. Histone modifications show two functional characteristics: 

First, the change in the net charge of nucleosomes affects inter- or intranucleosomal DNA-

histone interactions, which result in a closed, unaccessible topology (heterochromatin) or in an 

open, accessible topology (euchromatin) (Li, et al. 2007). Second, individual histone 

modifications are recognized by non-histone proteins, which coordinate adaption of the DNA 

topology to every step of transcription as well as to reestablish the correct chromatin state. 

Histone modifications are selectively recognized by specialized domains that can be found in 

many non-histone proteins. For example, the yeast methyltransferase Set1 has been shown to 

catalyze the di- and tri-methylation of H3K4 and stimulate the transcriptional activity of many 

genes, as shown for pph3, ino1 and met16 (Santos-Rosa, 2002; Briggs, et al. 2001). Tri-

methylated H3K4 is present exclusively at active genes and peaks at transcription start sites 

(Santos-Rosa, et al. 2002; Pokholok, 2005). The SAGA subunit Chd1 recognizes di- and 

trimethylated of H3K4 by its chromodomain (Pray-Grant, et al. 2005; Daniel, et al. 2005; 

Flanagan, et al. 2005) and mediate the stabilization of SAGA onto chromatin (Bhaumik, S.R., 

2011). Once SAGA is recruited to the promoter region, it may stimulate recruitment of TBP to 

SAGA dependent genes by an combined interaction with Spt3 and Spt8 to TBP (Bhaumik, et al. 

2002; Larschan, et al. 2001; Laprade, et al. 2007).  

 

Chromatin remodeling. Chromatin creates a structural barrier for each step of eukaryotic 

transcription (Narlikar, et al. 2002). DNA is wrapped 1.65 turns around the histone octamer and 

the  resulting chromatin structure constitute DNA topology which leads to either accessible or 

buried DNA regions (Luger, et al. 1997). To ensure a proper activation of transcription, 

chromatin must be dynamically coordinated with all steps of transcription to ensure 

accessibility of all regulatory factors and general transcription machinery to DNA. By altering the 

nucleosome position, coactivator proteins enhance or regulate the accessibility of the general 

transcription machinery to the transcription start site. Chromatin remodeling complexes use 

ATP hydrolysis to slide, eject, insert or restructure histones to change nucleosomal topology 

(Mohrmann, et al. 2005; Saha, et al. 2006; van Vugt, et al. 2007). Histones exhibit 14 DNA 

contacts, which have to be broken and reconstructed by remodeling complexes during 

translocation of nucleosomes along the DNA. Approximately 4.2 kJ/mol are required for 

breaking one histone-DNA contact and approx. 59 kJ/mol to remove the histone completely 

(Luger, et al. 1997; Gottesfeld, et al. 2001). The different substrate specificity is provided by 

additional domains or associated factors, because all chromatin remodeling activities are part of 

a multiprotein complex (Narlikar, et al. 2002). 

 In yeast, there are five different subfamilies of the ATPase super-family 2 (SF2) of the 

DEAD/H-box nucleic acid stimulated ATPase (Eisen, et al. 1995). According to their additional 

specificity, the yeast chromatin remodeling complexes are classified by their protein motifs: 

SWI2/SNF2-types have bromodomains which recognize acetylated lysines (Winston, et al. 

1999), ISWI-types contain SANT and SLIDE domains, that involve histone tail and linker DNA 

binding respectively (Grune, et al. 2003), CHD-types bear chromo-domains, that bind to 

methylated lysines (Bannister, et al. 2001), and INO80-type have DBINO domains that are 

predicted to bind DNA (Bakshi, et al. 2004). Nucleosome remodeling by SWI/SNF is stimulated 

by promoter bound SAGA, which acetylates histone H3 by its intrinsic HAT activity. SWI/SNF 

removes acetylated histone 3 from the gal1-promoter (Hassan, et al. 2002; Chandy, et al. 2006). 

Moreover, HAT complexes such NuA4 and SAGA increase RSC-stimulated transcription of Pol II 
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in vitro (Carey, et al. 2006). Therefore, the HAT activity of SAGA promotes SWI/SNF activity and 

the rapid removal of promoter nucleosomes and contribute to transcription initiation as it has 

been shown for gal1 and pho5 promoters (Reinke, et al. 2005; Weake & Workman, 2010).  

ISWI proteins are involved in nucleosome repositioning at the promoter which may 

block transcription by potentially impeding the TBP binding to DNA (Mellor, et al. 2004; 

Stockdale, et al. 2006; Morillon, et al. 2003; Lindstrom, et al. 2006; van Vugt, et al. 2007). Upon 

transcription initiation, ISWI force the repositioning of nucleosomes on the coding region, which 

may shift Pol II into elongation (Mellor, et al. 2004; Morillon, et al. 2003).  

 

1.1.4 Transcription Coactivators: Mediator, SAGA, TFIID and Tafs 

The Mediator complex bridges gene specific regulatory factors to the general Pol II transcription 

machinery and stimulates high induction levels of activator-dependent transcription (see 

CHAPTER IV). The S. cerevisiae Mediator complex consists of 25 subunits which can be subdivided 

into four distinct modules: 

 

The head module consists of seven individual subunits (Med6, Med8, Med11, Med17, 

Med18, Med20 and Med22). The Med8 subunit links two parts of the head module, the Med8(C), 

Med11/22 part which contacts the TBP and the Med8(N), Med6, -17, -22, -11 part which 

contacts the Rpb3/11 subunits of Pol II (Takagi, et al. 2006; Lariviere, et al, 2008; Cai, et al. 

2010). The Mediator head binds weakly to a minimal PIC composed of Pol II, TFIIF, TFIIB, TBP 

and promoter DNA, suggesting a possible function in stabilizing the PIC. 

 

The middle module appears as an elongated subcomplex composed of nine subunits 

(Med1, Med4, Med7, Med9, Med10, Med21, Med31, Med14 and Med19). The middle module is 

targeted by gene specific transcription factors. The flexibility of the elongated structure may 

allow for the conformational changes upon binding to Pol II (Koschubs, et al. 2010; Cai, et al. 

2009). 

 

The tail module interacts with a variety of transcription activators and consists of Med5, 

Med16 and the Med15, Med2 & Med3 submodule. Mutations in the tail module result in 

predominantly decreased gene expression (Hahn & Young, 2011), suggesting a function in 

integrating signaling pathways to activation of transcription. 

 

The kinase module consists of four subunits (Med12, Med13, CDK8 and cycC), which are 

dissociable from the Mediator complex and have both, positive and negative effects on gene 

expression (Björklund & Gustafsson, 2005; van de Peppel, et al. 2005; Taatjes, et al. 2010). The 

kinase module provides the cyclin dependent kinase (CDK) activity of the Mediator. During 

transcription initiation, the S5 position of the C-terminal domain of Pol II (CDT) is 

phosphorylated by Kin28 subunit of TFIIH and CDK8, which promotes the dissociation of the 

Mediator complex from the CTD (Jasnovidova & Stefl, 2012).  

 

In yeast, there are two distinct mechanisms, which are mediated either by SAGA (Spt-

Ada-Gcn5-Acetyltransferase) or TFIID. Both complexes share TBP and are involved in PIC 

formation. The S. cerevisiae SAGA complex consists of fifteen non-essential and six essential 

subunits, which regulate gene expression through covalent modification of histones (Bhaumik, 

2011). The Gcn5 and Ubp8 components possess histone acetyl transferase (HAT) and histone 
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deubiquitylase activity. In addition, SAGA is targeted by transcription activators, which promote 

the recruitment and histone covalent modifications and guide its stabilization with TBP on the 

promoter (Daniel, et al. 2007; Bhaumik, 2011). Approx. 90% of genes require TFIID for 

expression and this mechanism is SAGA independent. TFIID is composed of TBP and a conserved 

set of TBP associated factors (TAFs), which are arranged in a promoter dependent composition. 

The direct interaction of the TAFs and transcription activators suggest a flow of information 

from the activators to the PIC at TFIID dependent genes (Garbett, et al. 2007; Bhaumik, 2011). 

 
Table 1: Complexes involved in Pol II preinitiation complex (PIC) assembly (adapted from Sikorski & Buratowski, 2009);  

Pol II 12 Subunits; catalyzes transcription of all mRNAs and a subset of noncoding RNAs including snoRNAs and miRNAs 

TFIIA 
2–3 subunits; functions to counteract repressive effects of negative cofactors like NC2; acts as a coactivator by interacting 
with activators and components of the basal initiation machinery 

TFIIB 
Single subunit; stabilizes TFIID-promoter binding; aids in recruitment of TFIIF/Pol II to the promoter; directs accurate 
start site selection 

TFIID 
14 subunits including TBP and TBP Associated Factors (TAFs); nucleates PIC assembly either through TBP binding to 
TATA sequences or TAF binding to other promoter sequences; coactivator activity through direct interaction of TAFs and 
gene specific activators 

TFIIE 
Two subunits; helps recruit TFIIH to promoters; stimulates helicase and kinase activities of TFIIH; binds ssDNA and is 
essential for promoter melting 

TFIIF 
2–3 subunits; tightly associates with RNA Pol II; enhances affinity of RNA Pol II for TBP-TFIIB-promoter complex; 
necessary for recruitment of TFIIE/TFIIH to the PIC; aids in start site selection and promoter escape; enhances elongation 
efficiency 

TFIIH 
10 subunits; ATPase/helicase necessary for promoter opening and promoter clearance; helicase activity for transcription 
coupled DNA repair; kinase activity required for phosphorylation of RNA Pol II CTD; facilitates transition from initiation to 
elongation 

Mediator 
At least 24 subunits; bridges interaction between activators and basal factors; stimulates both activator dependent and 
basal transcription; required for transcription from most RNA Pol II dependent promoters 

SAGA 20 subunits; interacts with activators, histone H3, and TBP; histone acetyltransferase activity; deubiquitinating activity 

TFIIS 
One subunit; stimulates intrinsic transcript cleavage activity of RNA Pol II allowing backtracking to resume RNA synthesis 
after transcription arrest; stimulates PIC assembly at some promoters 

NC2 
Two subunits; binds TBP/DNA complexes and blocks PIC assembly; can have both positive and negative effects on 
transcription 

Mot1/bTAF1 
Single subunit; induces dissociation of TBP/DNA complexes in ATP dependent manner; can have both positive and 
negative effects on transcription 

 

1.1.5 RNA Polymerase II and Preinitiation Complex 

Transcription initiation by RNA Polymerase II requires a set of general transcription factors, 

which assemble to the preinitiation complex (PIC) on the promoter region (Table 1). The general 

transcription factors mediate promoter recognition, recruitment of Pol II, connect gene-specific 

factors to the PIC, interact with histones and promote DNA unwinding (Sikorsky & Buratowski, 

2009). Furthermore, regulation of Pol II activity depends on a plethora of additional factors that 

mediate the central steps in the transcription cycle.   

 

RNA Polymerase II. Synthesis of mRNA in eukaryotes is carried out by the RNA 

dependent Polymerase II (Pol II). The structure is composed of 12 subunits, which consist of the 

10-subunit catalytic core and the heterodimeric Rpb4/7 subcomplex (Cramer, et al. 2001; 

Armache, et al. 2005) (Figure 1). The largest subunit, Rpb1, exhibits an elongated C-terminal 
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domain (CTD), which consists of tandem repeats with the consensus sequence YSPTSPS. The 

number of YSPTSPS-repeats varies between S. cerevisiae (26 repeats) and H. sapiens (52 

repeats), which appear to correlate with genomic complexity (Egloff, et al. 2012). Post-

translational modifications of the Pol II CTD mediate a variety of functional processes. The 

dynamic modifications synchronize transcriptional and co-transcriptional steps with every step 

of the transcription cycle. The possibilities of CTD phsophorylation generate a wide range of 

distinct combinations, which led to the CTD-code model (Egloff, et al. 2012). The CTD is involved 

in assembly of the PIC, functionally interacting with the Mediator, coupling chromatin 

remodeling to transcription, synchronizing mRNA processing (capping, splicing, 

polyadenylation) and mediating mRNA export (Hahn & Young, 2011; Egloff, et al. 2012). 

 

 
Figure 1: Complete RNA Polymerase II structure. (adapted from Armache, et al. 2005). A) & B) ribbon diagram 
showing RNA Polymerase II model from the front view (A) and top view (B). Dashed lines represent disordered loops. 
C) The diagram illustrate the relative positions of the subunits within the structure.  

 

1.1.6 Polymerase II Transcription cycle 

The process of mRNA synthesis can be functionally organized in the transcription cycle which is 

divided into the major steps: Transcription initiation, elongation, termination and reinitiation 

(Orphanides, et al. 1996; Roeder, 1996; Svejstrup, 2004).  

 

Transcription initiation begins with the formation of the PIC at the promoter. Although a 

number of activation mechanisms have been proposed, the best-studied and apparently the 

major mechanism of transcription activation is described by the recruitment model (Hahn & 

Young, 2011; Ptashne and Gann, 2002; Chatterjee & Struhl, 1995). Gene specific activators 

recruit the co-activators (e.g. Mediator) and general transcription factors onto the promoter 

(Figure 2). The TBP (TFIID), TFIIA and TFIIB form a complex with promoter DNA for binding 

Pol II. Additionally, TFIIF is involved in stabilization of the PIC and contributes to setting the 

transcription start site (Hahn & Young, 2011). Transcription initiation begins with the formation 

of the closed promoter complex, which includes the 10 subunit Pol II, the subcomplex Rpb4/7, 

the promoter complex (TBP/TFIID; TFIIA, TFIIB, TFIIF), TFIIE, TFIIH and TFIIS (Sikorsky & 

Buratowski, 2009; Cheung & Cramer, 2012; Hahn & Young, 2011).  

 

Transcription start site scanning in S. cerevisiae. There is evidence, that S. cerevisiae Pol II 

scans the DNA sequence for a suitable transcription start. Consistent with this, the gal1 and 

gal10 promoter regions are unwound from approx. 20 bp to 90 bp downstream from the TATA 

element and through the TSS (Giardina & Lis, 1993; Kuehner & Brow, 2006; Steinmetz, et al. 

2006). The proposed mechanism requires DNA strand unwinding and DNA translocation which 
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is promoted by the TFIIH (Rad25/XBP) helicase under ATP hydrolysis (Hahn & Young, 2011). 

The mechanism of start site selection in S. cerevisiae is dependent on TFIIB, TFIIF and Pol II, as 

mutations in all of this factors reduce accuracy of start site selection significantly (Kostrewa, et 

al. 2009; Hahn & Young, 2011). Isomerisation from the closed to the open promoter complex 

involves a dramatic conformational change that requires the TFIIH helicase dependent 

separation of DNA strands around the TSS (DNA melting). The single stranded DNA is inserted 

into the active site of Pol II. The initially formed DNA/RNA hybrid is not sufficient to form a 

stable complex, which results in short RNAs during abortive initiation (Luse & Jacob, 1987; 

Shandilya & Roberts, 2012). When the RNA reaches a length of 6 nucleotides and more, initiation 

factors are released and a stable transcription elongation complex is formed (Cheung & Cramer, 

2012). 

Transcription elongation starts with the escape of Pol II from the promoter region and 

catalyzes template-directed formation of the RNA phosphodiester bond, which is stimulated by  

several transcription elongation factors (Brueckner, et al. 2009). At DNA lesions in the template 

strand or incorporation of noncomplementary nucleotides, Pol II moves backwards 

(backtracking) and can cause transcriptional arrest. Negative elongation factors can significantly 

slow elongation or induce a transient pause to allow promoter proximal regulation or 

overcoming the nucleosome barrier during elongation (Petesch & Lis, 2012; Palangat, et al. 

2005). The reactivation of Pol II elongation requires additional factors, such as TFIIS, which 

stimulate RNA cleavage or Spt4/5, which increases transcriptional processivity (Martinez-

Ruboco, et al. 2011; Werner, 2012; Sikorsky & Buratowski, 2009). The nascent mRNA is 

processed co-transcriptionally, to form the 5’-cap (m7G-PPP), splice introns, assemble mRNPs 

and form the poly(A)-tail when reaching the termination.  

Termination of transcription involves dissociation of the template DNA at the termination 

site, which is located up to 1 kb downstream of the poly(A) site. This stage of transcription is 

critical, because mRNA is released from the DNA template and Pol II is prepared to re-initiate 

transcription. Additionally, accurate termination prevents active Pol II from perturbing nearby 

promoters. Such transcriptional interference has been observed in yeast where genes are closely 

spaced and commonly expressed (Greger & Proudfoot, 1998; Proudfoot, et al. 2002). There are 

two different models describing the termination mechanism. The “anti-terminator-model” 

postulates that 3’-processing factors induce a conformational change to enable recruitment of 

termination factors or to displace an anti-termination factor (Logan, et al. 1987). The “torpedo 

model” postulates that the 5’-end of the RNA, which is formed by poly(A) directed cleavage of 

the RNA,  is used as substrate for a nuclease, such as Rat1 or nuclear Xrn1. The nuclease catches 

up with the elongating Pol II and dissociates the elongation complex from DNA (Proudfoot, 

1989). The released pre-mRNA undergoes subsequent maturation and processing steps before it 

is exported to the cytoplasm and prepared for translation. 

Re-initiation and gene looping. In yeast the transcription factor TFIIB has been shown to 

interact with termination specific complexes. From this observation, a model was proposed that 

assumes the formation of DNA loops which position the termination site in close proximity to 

the promoter. TFIIH has been shown to be involved in promoter-terminator contacts and 

recycling of Pol II by recruiting to the re-initiation scaffold, that have remained on the promoter 

after the previous round of transcription (Calvo, et al. 2003; Singh, et al. 2007; Shandilya & 

Roberts, 2012). 
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1.2 Post-transcriptional regulation of gene expression 

The mRNA degradation network plays a crucial role in quality control, surveillance and mRNA 

metabolism. There are only two enzymatic functions, Xrn1 and the Exosome, which execute 

cytoplasmic degradation of bulk mRNA. In principle, mRNA itself carries intrinsic singals for 

guiding its own degradation encoded in sequence features like AU-rich elements, stabilizer 

elements (STE) and others cis-acting elements. The main stability determants, however, are 5’-

cap and 3’-poly-A-tail, which act as safeguards to prevent mRNA from unspecific degradation 

(Figure 3). 

 

1.2.1 Deadenylation dependent decay  

Degradation of cytoplasmic bulk mRNA is initiated by shortening the 3’-poly(A)-tail. This 

deadenylation step is the only reversible step in the turnover-pathway and it allows - under 

specific circumstances - selected transcripts to get readenylated and return to polysomes (Gray, 

et al. 1998; Tucker, et al. 2001; Mitchell and Tollervey, 2001). In S. cerevisiae, two deadenylase 

complexes, namely Pan2-Pan3 and Ccr4-Not, have been identified. Current models suggest that 

the Pan2-Pan3 complex is involved in the early step of poly(A) metabolism, because it trims a 

poly(A)-tail of initially approx. 200 nucleotides to about 55-75 nucleotides in length (Brown, et 

al. 1998). The main deadenylase in yeast is Ccr4-Not, a large multisubunit complex which exists 

in two prominent forms of 1.2 MDa or 2 MDa and consits of 9 core subunits (Collart, 2003). The 

Ccr4 and Caf1 subunits provide the deadenylase activtiy and both are required for normal 

deadenylation within the cytoplasm. After removal of the poly(A)-tail, the transcript takes one of 

two irreversible routes for degradation. The unprotected  mRNA 3’-end is substrate for the 

Exosome, which hydrolysis mRNA in 3’-5’ direction (Exosome pathway). Transcripts taking the 

other route for degradation, must undergo an additional step which removes the 5’-cap from the 

mRNA body. This decapping step is followed by hydrolysis in 5’-3’ direction accomplished by the 

exoribonuclease Xrn1. Interestingly, Hu et al. (Nature, 2010) could show, that Xrn1 hydrolysis 

even polysomal mRNA and therfore degrade transcripts cotranslationally. However, both the 

Xrn1  and the Exosome pathway are not mutually exclusive, because knock-out experiments on 

each pathways had only minimal effects on the transciptome. This observation implies a 

functional redundancy of the two pathways but the question of their relative contribution to 

bulk mRNA degradation is not fully understood.  (Garneau, et al. 2007, Collard, 2003).  

 

1.2.2 The 3’-5’ exoribonucleolytic pathway: Exosome 

The Exosome pathway degrades transcripts in 3’-5’ direction after the initial polyadenylation 

step. The Exosome is a multiprotein complex which is present in protozoa, yeast and mammalian 

cells and exists as a nucleic and a cytoplasmic variant. The structural core of the eukaryotic 

Exosome is composed of nine subunits. Central structural element is a ring-like structure 

consisting of six PH-domain carrying RNase proteins (Ibrahim, et al, 2008) which are flanked by 

three proteins harbouring either S1- or KH domains, which are often found in RNA binding 

proteins (Bonneau, et al. 2009). This overall structural composition is conserved in other RNA-

degrading protein complexes of simpler architecture in archeae and bacteria.  

 Regulation of Exosome activity: There are in principle two mechanisms that block 

Exosome activity and provide a possible strategy for modulation between Exosome and Xrn1 

dependent degradation. A well characterized example is the heptameric Lsm complex in yeast. 

The initial deadenylation step forms a short oligo(A)-fragment which provides an unprotected 
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3’-terminus which is a preferred substrate for Exosome degradation. The Lsm complex, 

recognizes and binds to the unprotected 3’-end to prevent the transcript from Exosome activity. 

Lsm bound transcripts are shifted to degradation by the alternative 5’-3’ exonucleolytic pathway 

(decapping-pathway), where Lsm is required for efficient decapping (Tharun, et al. 2005). 

Another example is the PAPBD domain of the 3’-poly(A) binding protein Pap1 (PAPBC1) which 

has been described to prevent mRNA from 3’-5’ degradation, when PAPBC1 is bound to the  

poly(A)-tail. Trans-acting factors may induce a conformational change in PAPBC1 and induce its 

dissociation from poly(A) sequence (Ibrahim, et al. 2009). 

 

1.2.3 Scavenger enzymes and stress response 

After mRNA degradation by the Exosome, a short oligonucleotide is released which carries the 

5’-cap structure. An accumulation of capped oligonucleotides in the cytoplasm is problematic, 

because cap-binding proteins, like the translation initiation factor eIF4E, can be titrated and this 

might lead to inhibition of translation (Filman, et al. 2006). To ensure that capped 

oligonucleotides are rapidly removed, a specialized function is needed to recognize and 

immediatly degrade selectively those structures. This function is provided by scavenger 

decapping enzymes, like Dcp-S in humans and a heterodimer consisting of Dcp1 and Dcp2 in 

yeast. Scavenger enzymes are members of the HIT family of pyrophosphatases and use a 

histidine-triad for their enymatic activity (Coller, 2000). The substrates of both Dcp-S and 

Dcp1/Dcp2 are selectively short oligonucleotide. This selectivity is important to prevent 

scavenger enzymes from prematurely decapping mRNA which are not targeted for degradation 

(Coller, et al. 2004). Recent studies, however, demonstrated that the Dcs1/Dcs2 heterodimer is 

involved in regulation of mRNA turnover and stress response. Malys, et al. (2004) could show, 

that the transcription of  Dcs1/Dcs2 heterodimer is induced by nutrient stress and disruption of 

Dcs1/Dcs2 heterodimer anticipate trehalose regulation, which is critical for cellular stress 

response (Malys, et al. 2004). Although the principle task of Dcs1/Dcs2 heterodimer is to 

dispose capped oligonucleotides resulting from Exosome mRNA degradation, the heterodimer 

plays also a role in stress response and modulation of mRNA stability by maintaining the  5’-3’ 

decay pathway. 

 

1.2.4 The 5’-3’-exoribonucleolytic pathway: Decapping and degradation by Xrn1  

After deadenylation, cytoplasmic bulk mRNA can be exoribonucleolytically degraded in 5’-3’ 

direction by the exonuclease Xrn1. Transformation of mature mRNA into Xrn1 substrate 

requires transcripts with a free 5’-monophosphate mRNA. This is achieved by hydrolysis of 

m7Gpp-cap structure from 5’-end of mRNA (decapping). In S. cerevisiae decapping is performed 

by a heterodimeric enzyme complex which consists of Dcp1 and Dcp2. Several experiments 

revealed, that the heterodimer accepts execusivly a 7-methyl-group, bound to mRNA of at least 

25 nucleotides in length (Coller, et al. 2000). The catalytic acitivity is intrinsic to Dcp2, which 

harbours a NUDIX motif that is often found in pyrophosphatases. Mutations in the Dcp2-NUDIX-

motif inactivate the decapping activity of the Dcp1/Dcp2 heterodimer. This observation suggests 

a model that Dcp1 modulates the enzymatic activity of Dcp2. 
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Figure 3: Overview to key processes of mRNA life-cycle in Saccharomyces cerevisiae. Transcription: Nascent RNA is generated by 
Pol II transcription, which is divided in three major steps: initiation, elongation and termination. Co-transcriptional processes: The 
major determinants of mRNA stability (5’-cap and 3’-poly(A)tail) are covalently added to the precursor mRNA. Cotranscriptionally, 
the 5’-end is covalently modified by addition of 7-methylguanylate cap (capping) and the 3’-end is polyadenylated. Most eukaryotic 
genes require the removal of introns from precursor mRNA to form mature mRNA (splicing). Transcripts containing an premature 
nonsense codon are recognized and subjected to the nonsense mediated decay (NMD) pathway, which is part of the general mRNA 
surveillance mechanism (Vasudevan, et al. 2003). Export factors assemble on the mature mRNA, form a messenger 
ribonuclecleoprotein complex (mRNP), which directs the transcript to the cytoplasm. Post-transcriptional processes localize the 
mRNPs to specific foci, where polysome assembly result in translation of genetic information into amino acid sequence and protein 
formation. Messenger RNA decay can occur after an initial deadenylation step, followed by degradation using one of two alternative 
degradation pathways. Degradation by the exonuclease Xrn1 degrades transcripts in 5’-3’ direction after removal of the 5’-cap 
structure. Degradation by Xrn1 includes even polysomal mRNA and can occur co-translationally (Hu, et al., 2009). The alternative 
pathway degrades mRNA in 3’-5’direction by the Exosome. Selected transcripts carry intrinsic degradation singnals and undergo an 
specific degradation pathway, that cleaves mRNA endonucleolytically. The resulting fragments are subjected to Xrn1 or to the 
Exosome for comlete degradation. Messenger RNA can be stored in cytoplasmic P-bodies, which appear when the 5’-3’degradation 
system is seemingly overloaded. The surveillance mechanism ensure fidelity and quality of mRNPs and translation. The No-go 
mechanism degrades ribosomal transcripts, on which the ribosome have stalled during translation. The non-stop mediated decay 
detect and degrade transcripts, which lack a stop codon. Analogous to the nuclear NMD, the cytoplasmic nonsense-mediated decay 
degrades transcriptis containing an premature stop codon to prevent from production of truncated proteins. (own figure based on 
following references: Housley, et al 2009; Garneau, et al. 2007; Kultarni, et al., 2010; Parker & Song 2004; Atkinson, et al., 2008; 
Tomecki et al. 2010; Keene, 200; Rodriguez-Navarro, et al. 2011; Hu, et al., 2009;  Harel-Sharvit, et al., 2010; Lotan, et al. 2005). 
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Regulation of decapping enzymes: Decapping is the critical step to initiate 5’-3’ exoribonucleolytic 

decay by Xrn1. Several proteins have been identified which function either to accelarate or 

decelerate the decapping process. Inhibitors of decapping are among proteins involved in 

upstream processes, like deadenylation. For example, the poly(A)-binding protein Pab1 is able 

to inhibit decapping and might connect the upstream deadenylation step to decapping 

(Morrissey, et al. 1999). In addition, the cap-binding protein eIF-4E, required for initiation of 

translation, also impedes decapping (Coller et al. 2004). Proteins belonging to decapping 

enhancers can be separated in two groups. The first group contains proteins, that act as general 

enhancers and are not transcript specific. The predominant representative is the LSM-heptamer, 

that binds to the 3’-oligo(A)-tail after deadenylation (Tharun, et al. 2005). The LSM-complex 

might act as a switch to favor the decapping/Xrn1  pathway versus degradation by the Exosome. 

Further members are Dhh1, which is a DEAD-box containing helicase (Coller, et al. 2001) and 

Pat1 (alias: MRT1), a topoisomerase II associated factor, which has been shown to interact with 

the LSM complex and is functionally linked to poly(A)-binding protein Pab1 (Bonnerot, et al. 

2000; Wang, et al. 1996). The second class of decapping enhancers act not globally but have an 

effect on selected transcripts. Other representatives are members of the Puf family, which bind 

to individual mRNAs and control decapping processivity with high specificity (Isken, et al. 2008). 

A connection to another decay-process, the nonsense-mediated-decay (NMD), is made by the 

mRNA-specific regulators Upf1/2/3 wich are required for recognition and rapid decapping 

induced by NMD (Isken, et al. 2008; Maquat, et al. 2001). 

 

5’-3’-exoribonucleolytic activity: Xrn1  

After decapping, transcripts provide a 5’-monophosphate which is a preferred substrate for the 

5’-3’ exoribonnuclease Xrn1 (alias: KEM1), a member of a large familiy of conserved 

exonucleases. Homologues of Xrn1  are found in all eukaryotes, including the human homologue 

HsXrn1  and pacman in Drosophila melanogaster. A nuclear variant of Xrn1  has been identified, 

the exonuclease Rat1 (alias: Xrn2), which is involved in RNA processing and poly(A)-dependend 

and –independent transcription termination. Rat1 and Xrn1 are closely related sharing a 

sequence identity of 39% (Kenna, et al. 1993) and suggesting a functional redundancy of both 

enzymes, which is provided in different cellular compartments (Johnson, et al. 1997). Xrn1  has 

been located in P-bodies and colocalizes with enzymes required for mRNA decapping (Sheth, et 

al. 2003).  

 

1.2.5 Deadenylation independent decay 

Unusual degradation pathways 

Although deadenylation-dependent decay is the major route for bulk mRNA degradation in the 

cytoplasm, there is a minority of mRNAs which undergo unusual pathways for degradation. 

Recent studies on selected reporter transcripts revealed that selected mRNAs can bypass the 

regular deadenlyation step and are subjected to degradation by either Xrn1 or Exosome. 

 Deadenylation-independent decapping. Selected transcripts bypass the initial 

deadenylation step and are degraded despite a poly(A)-tail on their 3’-end (deadenylation-

independent decapping). The predominant representative for deadenylation-independent 

decapping is an mRNA encoding for Edc1,  a protein which has been identified as enhancer of 

decapping.  Analysis of the 3’-UTR revealed a poly(U)-track that is required for both protection 

from deadenylation and deadenylation-independent degradation. Muhlrad & Parker (2005) 
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hypothesized that this mechanism is essential for a feedback-loop regulation that might 

compensate a decrease of decapping activity. Surprisingly, the decapping of Edc1-mRNA is 

slowed in the absence of Not2, Not4 and Not5. All three proteins interact with Ccr4/Pop2 

deadenylase complex and might be a possible link between mRNA deadenylation and decapping 

(Muhlrad & Parker, 2005). A second example of deadenylation-independent decay is given by 

the mRNA of yeast ribosomal protein Rps28b, member of the small 40S subuint. The Rps28b 

protein is able to bind a specific stem-loop structure in the 3’-UTR of its own transcript and 

recruits thereby Edc3, an enhancer of decapping. Badis, et al. (2004) could show, that this 

autoregulatory mechanism is strongly dependent of Edc3 and binding of Rps28b to its own 

transcript might recruit the decapping machinery via Edc3. In summary, these two examples 

illustrate that deadenylation-independent decapping – in contrast to degradation of bulk 

cytoplasmic RNAs – provides a possible regulatory mechanism for selected subsets of 

transcripts. 

 

mRNA decay fast-track: Endoribonucleolytic pathway 

In S. cerevisiae, the RNase multiprotein-complex Mrp cleaves the 5’-UTR (as shown for the clb2 

transcript) at several points and creates fragments with accessible substrates for both Xrn1 and 

Exosome (Gill, et al. 2004). The resulting fragments are degraded in both directions at once. Mrp 

is restricted to the nucleus and mitochondria, with exeption at the end of mitosis, when it is 

transported to special foci called TAM- a special type of P-bodies, the place where degradation of 

transcripts takes place. This strategy is a fast-track for degradation of mRNA and perhaps the 

most efficient and it provides a novel way to regulate the cell-cycle via regulated degradation of 

selected transcripts encoding regulatory proteins. 

 

1.2.6 P-bodies 

In S. cerevisiae, proteins involved in translation-initiation, deadenylation, decapping and 5’-3’ 

exonucleolytic pathway, nonsense-mediated decay and components of the Exosome form 

granular cytoplasmic foci, which are called P-bodies and appear when the 5’-3’ decay system is 

overloaded with mRNA (Garneau, et al. 2007). P-bodies decrease in number and size or 

disappear completely, when the amount of mRNA to be decayed is reduced. Current models 

suggest, that P-bodies are cellular sites of mRNA decay, but all proteins involved are not 

exclusively located inside P-bodies but also in the cytoplasm. It is most likely that P-bodies are 

formed when the interplay between translation and mRNA decay has to be regulated, e.g. in 

response to cellular stress (Garneau, et al. 2007).  

Upon severe osmotic stress, stabilized mRNAs are observed to be moved into a 

nontranslating pool in P-bodies which coincides with an inhibition of translation (Uesono, et la., 

2002). A decrease in translation rates correlates with an increase in P-bodies, where mRNA 

decay factors are concentrated and mRNA decay can occur (Teixeira, et al, 2005; Parker and 

Sheth, 2007; Halbeisen, et al. 2009).  Simultaneous repression of translation and deadenylation 

allows cells to selectively translate mRNA required for stress response, while retaining the 

majority of the cytoplasmic pool of mRNAs for later reuse and recovery from stress (Hilgers, et 

al. 2006). Inhibition of mRNA deadenylation and degradation after hyperosmotic stress was also 

observed in human cells (Gowrinshankar, et al. 2006). In a hog1 mutant, the P-bodies remain 

assembled for hours and Hog1 affects the kinetics of P-body disassembly and the return of 

mRNA to translation (Romero-Santacreu, et al. 2009). 
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2. HOG pathway in Yeast 
 

 

2.1 HOG-pathway as model for stress induced gene expression  

In all eukaryotes, response to environmental changes are mediated via stress activated protein 

kinases (SAPKs), which lead to a complex reorganization of cellular functions and extensive 

reorganisaiton of gene expression (Hohmann, S., 2002; De Nadal, et al. 2010). The network 

which coordinates stress induced gene expression is highly dynamic, efficient and responds 

remarkably flexible to different stress types and intensities by constant reconfiguration with 

tight temporal coherence  (Yosef, et al. 2011; de Nadal and Posas, 2010; Lopez-Maury, et al. 

2008). To analyze the characteristics of stress induced gene expression, the response of S. 

cerevisiae to osmotic stress is commonly used as a model, because many of the components have 

highly conserved homologues in humans. Individual kinases of the yeast high osmolarity – 

glycerol (HOG) pathway can be replaced by the corresponding human enzymes, as it has been 

shown for Hog1, Pbs2 and Ssk2 when replaced by their mammalian counterparts, p38 alpha, 

Mkk3, Mtk1 respectively (de Nadal & Posas, 2010). 

  

2.1.1 Human Hog1 homologue  p38  and associated diseases 

The human Hog1-homologue p38 is involved in neuronal cell death and has been shown to be 

activated in Parkinson’s disease models (Kim et al. 2010). p38 is implicated in cytoskeletal 

abnormalities of spinal motor neurons, a feature of familial and sporadic ALS, through aberrant 

phosphorylation and consequent aggregation of neurofilaments (Kim, et al. 2010). P38 

activation results in downstream activation of p53 and treatment with p38-inhibitor 

(SB239063) protected primary dopaminergic neurons from cell death and prevented the 

downstream phosphorylation of p53 and its translocation into the nucleus in vivo in the  ventral 

midbrain (Karunakaran, et al. 2008).  

 

2.2 HOG pathway in S. cerevisiae 

Environmental changes such as high salt concentrations create a hyperosmotic force that causes 

water efflux and reduction of intracellular pressure (Hohmann, 2002; Melamed, et al. 2008). The 

altered membrane potential change the activity of transmembrane proteins (Norbeck & 

Blomberg, 1998), and disrupts ion homeostasis and pH equilibrium, which causes protein 

misfolding and generation of reactive oxygen species (ROS) (Mendoza et al. 1994; Lahav et al. 

2004; Koziol et al. 2005; Mortensen et al. 2006). Cells respond to high salinity by activation of 

several processes which monitor osmotic pressure, control water content, turgor, cellular shape 

and result in activation of gene expression program to antagonizes osmotic stress (Klipp, et al. 
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2005; Hohmann, 2002). In yeast, high salt concentrations are sensed by two transmembrane 

osmosensor systems, Sln1 and Sho1. Both activate the HOG phosphorylation cascade, that 

activates the mitogen activated kinase Pbs2 (Hao, et al. 2007; Tatebayashi, et al. 2006; O’Rourke, 

et al. 2002). Pbs2 phosphorylates the cytoplasmic kinase Hog1 which translocates into the 

nucleus within minutes (Westfall, et al. 2008; Ferrigno, 1998), induces cell cycle arrest (Escote, 

et al. 2004), dissociation of chromatin bound proteins (Proft & Struhl, 2004), and translation 

inhibition (Uesono & Toh, 2002). Activated Hog1 induces reorganization of transcription by 

phosphorylation of several specific transcription factors and interaction with the Pol II 

transcription machinery (Hohmann, 2002). The stress response results in intracellular 

production of glycerol and trehalose which function as osmolytes to reduce osmotic pressure 

and enable cells to reenter the cell cycle (Hohmann, et al. 2002; Macia, et al. 2009). Glycerol 

accumulation is enhanced by the rapid closing of aquaglyceroporin Fps1 (osmolarity-regulated 

glycerol channel) (Klipp, et al. 2005; Mollapour, et al. MCB, 2007).  

 

2.2.1 Activation of transcription 

Hog1 is activated by Pbs2 via phosphorylation and regulates activity of several transcription 

factors involved in activation of stress responsive genes.  Hot1, Smp1, Msn2 and Msn4 activate 

transcription of different subsets of genes and ensure a coordinated expression of genes with 

similar functions (coregulation). Msn2 and Msn4, for example, are required for transcription of 

genes belonging to the environmental stress response (ESR) (Gasch, et al. 2000). ESR genes are 

induced by several stresses, such as DNA damage, heat shock, osmo- and oxidative stress; In 

S. cerevisiae, the induction of ESR genes is not governed by a single regulatory system but rather 

by many pathways and transcription factors. Another type of coregulation is carried out by Sko1, 

which functions as activator or repressor of different subgroups of stress inducible and Hog1 

dependent genes (Rep, et al. 2000; Proft, et al. 2001). Phosphorylation by Hog1 modifies the 

association of Sko1 with Tup1-Ssn6 and allows the recruitment of chromatin remodeling 

complexes, such as SAGA and SWI/SNF to promoters (Proft & Struhl, 2002; Zapater, et al. 2007; 

Proft & Struhl, 2004; Guha, et al. 2007; Kobayashi, et al. 2008).  

Hog1 regulate not only the function and activity of several transcription factors, Hog1 

itself is recruited to target promoter and indicate a role in regulation of transcription (De Nadal 

& Posas, 2010; Alepuz, et al. 2001; Chellappan, 2001; Proft & Struhl, 2002). The binding of Hog1 

is only restricted to osmotic stress inducible genes (Pascual-Ahuir, et al. 2006; Pokholok, et al. 

2006; Proft, et al, 2006). Hog1 interacts tightly to the largest Pol II subunit Rpb1 

(phosphorylated on Ser5 and Ser7 of the C-terminal domain) and play a role in elongation 

(Alepuz, et al. 2003). Hog1 interacts with elongating Pol II and recruits Rpd3 histone deacetylase 

complex to stress-specific promoters which leads to a reduced accessibility of Pol II and 

deficient gene expression (deNadal and Posas, 2010; deNadal, et al. 2004). 
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1. Materials 
 

1.1 Bacterial strains 

Bacterial strains which were used in this work are listed in table 2. For cloning, E. coli XL-1 Blue 

strains were used. Protein expression was performed with E. coli  BL21-CodonPlus (DE3)RIL 

cells. 
Table 2: Echerischia coli strains 

Strain Description Source 

XL-1Blue 
rec1A; endA1; gyrA96; thi-1; hsdR17; supE44; relA1; lac[F’ 
proAB lacIqZM15Tn10(Tetr)] 

Stratagene 

BL21-CodonPlus(DE3)RIL 
B; F-; ompT; hsdS(rB, mB); dcm+; Tetr; gal (DE3); endA; Hte 
[argU, ileY, leuW, Camr] 

Stratagene 

 

1.2 Yeast strains 

Yeast strains which were used within the experimental work for this study are listed in table 3. 

The strains were generated by Susanne Röther (lab of Katja Strässer, Gene Center, Ludwig-

Maximilians University, Munich), by Stephan Jellbauer (lab of Ralf-Peter Jansen, Gene Center, 

Ludwig-Maximilians Unviersity, Munich) or by own preparation. Selected strains were 

purchased from European Saccharomyces cerevisiae Archive for Funktional Analysis (Euroscarf; 

Institute of Molecular Biosciences, Johann Wolfgang Goethe-University, Frankfurt). 

 
Table: 3: Saccharomyces cerevisiae strains 

Strain Genotype Source 

RS453 TAP-Srb4 
MATa; Ade2-1; His3-11,15; Ura3-52; Leu2-3,112; Trp1-1; Can1-
100;Gal+; 

Susanne Röther 

RS453 TAP-Srb4Lys1::KanMX 
MATa; Ade2-1; His3-11,15; Ura3-52; Leu2-3,112; Trp1-1; Can1-
100; Gal+;Lys1::KanMX 

Susanne Röther 

BY4742 MAT,his2Δ1,leu2Δ0,met15Δ0,ura3Δ0 Euroscarf 

BY4742 Med15/ 
YOL051w::KanMX 

MAT,his2Δ1,leu2Δ0,met15Δ0,ura3Δ0,YOL051w::KanMX Euroscarf 

BY4742 Hog1/YLR113w::KanMX MAT; his2Δ1; leu2Δ0; met15Δ0; ura3Δ0; YLR113w::KanMX Euroscarf 

TAP-Med19 
W303; MATa or MAT; leu2D3; 112 trp1D1;can1D100; ura3D1; 
ade2D1; his3D11-15; TAP-Rox3 

Stephan Jellbauer 

W303 Med19/YBL093c::clonNAT 
W303; MATa or MAT; leu2D3; 112 trp1D1;can1D100; ura3D1; 
ade2D1; his3D11-15; YBL093C::ClonNAT 

Stephan Jellbauer 
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YBL093c::clonNAT 
MATa,his2Δ1,leu2Δ0,met15Δ0,ura3Δ0,YBL093C::clon
NAT 

Stephan Jellbauer 

BY4742 Med15phospho-mutant 
(D30P) 

 
MAT,his2Δ1,leu2Δ0,met15Δ0,ura3Δ0, 
Med15T728A 
Med15S729A 
Med15S730A 
Med15S746A 
Med15T750A 
Med15S752A 
Med15S767A 
Med15T769A 
Med15S783A 
Med15S785A 
Med15S789A 
Med15T793A 
Med15S796A 
Med15S798A 
Med15T800A 
Med15S803A 
Med15T804A 
Med15S810A 
Med15T820A 
Med15T828A 
Med15TS831A 
Med15S978A 
Med15S983A 
Med15S984A 
Med15S985A 
Med15S987A 
Med15S1003A 
Med15S1008A 
Med15S1018A 
Med15S1034A 
 

This work 

BY4742 Med15phospho-mutant 
(D7P) 

MAT,his2Δ1,leu2Δ0,met15Δ0,ura3Δ0, 
Med15T746A 
Med15T750A 
Med15T796A 
Med15T798A 
Med15T769A 
Med15T767A 
Med15T800A 

This work 

 

1.3 Oligonucleotides 

Oligonucleotides were used for classical cloning. The oligonucleotides were purchased from 

Thermo (Thermo Fisher Scientific Inc.) in RP-HPLC quality. The oligonucleotides were named in 

the following order: name of the gene – organism – restriction site – occasionally: N-termanl/C-

terminal tag for affinity purification; seq = sequencing primer; UTR = untranslated region; rt_pcr 

= quantitative real time PCR;  – foreward/reverse primer.  

 
Table: 4: Oligonucleotides  

ID Name Sequence 

CM-18 
Rox3-Sc-NdeI-N-Strep-TEV-
For 

GGGCCCGGGCATATGGCTTCTAGAGTGGACGAAACTACAGTCCCC T 

CM-19 Rox3-Sc-HindIII-Rev GGGCCCGGGAAGCTTTTACTACTCCAGCCTCCTTCTTTTCATATCCCTTCA 

CM-54  
Rox3-Sc-pET-NdeI-TEV-
Strep-8-For 

GGGCCCGGGCATATGGAAAACCTGTATTTTCAGGGATGGAGCCACCCGCAGTTCGAAA
AAACTACAGTCCCCTCATACTACTATTACGTGGAT 
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CM-38 
Rox3-Sc-Rev-HindIII-
Cterm-Strep-TEV 

GGGCCCGGGAAGCTTTTATTTTTCGAACTGCGGGTGGCTCCA TCCCTGAAAA 
TACAGGTTTTCCTACTCCAGCCTCCTTCTTTTCATATCCTC 

CM-54 
Rox3-Sc-pET-NdeI-TEV-
Strep-8-For 

GGGCCCGGGCATATGGAA AACCTGTATTTTCAGGGATGGAGCCACCCGCAG 
TTCGAAAAA ACTACAGTCCCCTCATACTACTATTACGTGGAT 

CM-55 
Rox3-Sc-pET-NdeI-TEV-
Strep-30-For 

GGGCCCGGGCATATGGAAAACCTGTATTTTCAGGGATGGAGCCACCCGCAGTTCGAAA
AACTACAGGACTTGATATCGGTGTATGGCTTGGATGACATCTCCAGGCAAGTG 

CM-56 
Rox3-Sc-pET-NdeI-TEV-
Strep-102-For 

GGGCCCGGGCATATGGAA AACCTGTATTTTCAGGGATGGAGCCACCCGCAG 
TTCGAAAAAGATACAACCACCTCAGCAGGGTCAAAACATGTCAGA 

CM-57 
Rox3-Sc-pET-NdeI-TEV-
Strep-180-For 

GGGCCCGGGCATATGGAAAACCTGTATTTTCAGGGATGGAGCCACCCGCAG 
TTCGAAAAAAAGCCAATCCGGCTCAAATTCAGGTAACAA 

CM-58 
Rox3-Sc-pET-HindIII-101-
Rev 

GGGCCCGGG AAGCTT TTACATGTCTGGGTTATTTTGGAAAAGAATATGTGCTAT 

CM-60 
Rox3-Sc-pET-HindIII-160-
Rev 

GGGCCCGGG AAGCTTTTATCCCCCTTGGTTCTGGTTTGCGAATCTGCTTGG ATA TGA 

CM-61 
Rox3-Sc-pET-HindIII-180-
Rev 

GGGCCCGGGAAGCTTTTAGCTTTTTCCTGTACCGTCTAGATCAAACGCCAAGTCGTCT
ACATC 

CM-77 Gal11-seq-001-for ATGTCTGCTGCTCCTGTCCAAGACAAA 

CM-78 Gal11-seq-001-rev TGTTGTTGAGGAGTCAATTGACGCCTC 

CM-79 Gal11-seq-002-for ACAATTAGTGAACCAGATGAAAGTGGC 

CM-80 Gal11-seq-002-rev GCTTGACAGGTTCCGTCATCGTACTAC 

CM-81 Gal11-seq-003-for AAAGTTTTATTAGGAAATACATTAACC 

CM-82 Gal11-seq-003-rev TGGGTTAGGTTGTTGCTGAGCTTGTTG 

CM-83 Gal11-seq-004-for CTACATGGGTTGACACCTACTGCAAAG 

CM-84 Gal11-seq-004-rev TGCTGCATTTGCTGTAGTGACTGTTGC 

CM-85 Gal11-seq-005-for TTTACAGCAATTGAAAATGCAGCAGCA 

CM-86 Gal11-seq-005-rev CCATAGGAGACTGTACAGTCTTCATAT 

CM-87 Gal11-seq-006-for GTGCACAACCATCATATAATAGTGCCA 

CM-88 Gal11-seq-006-rev TCTTTTTCTTGGGTTGCCGACATCCAT 

CM-89 Gal11-seq-007-for AAAGCCAGCGTATTAGAAATAAGCCCG 

CM-90 Gal11-seq-008-rev TCAAGTAGCACTTGTCCAATTATTCCA 

CM-101 
Sc-Rox3-18-NdeI-Strep-
TEV-F 

GGGCCCGGGCATATGTGGAGCCACCCGCAGTTCGAAAAAGAAAACCTGTATTTTCAGG
GACCGGAAACTACATATACGTACCAACAA 

CM-106 
Sc-Rox3-18-NdeI-His-TEV-
F 

GGGCCCGGGCAATGCACCATCACCATCACCATGAAAACCTGTATTTTCAG 
GGACCGGAAACTACATATACGTACCAACAA 
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CM-120 
Sc-Rox3-39-NdeI-Strep-
Throm-For 

GGGCCCGGGCATATGTGGAGCCACCCGCAGTTCGAAAAACTGGTGCCAAGGGGC 
AGCGGCTTGGATGACATCTCCAGGCAAGTG 

CM-130 Sc-Rox3-UTR-SmaI-for GGGCCCGGGCCCGGGTCCAGACGGAAACCATACAATGCCTCC 

CM-131 Sc-Rox3-UTR-SacI-rev GGGCCCGGGGAGCTCAAGCATTGTGCTATTGTGGCTTCCCTT 

CM-234 
Sc-Gal11-NLS-974-EcoRI-
for 

GGGCCCGGGGAATTCTTTAAAGACTTGTCC 

CM-235 
Sc-Gal11-NLS-1044-XhoI-
rev 

GGGCCCGGGCTCGAGTCCTGATTTTGTCAT 

CM-358 Ctt1-rt_pcr-for TGGTCTTGTTCGTTTTTCCA 

CM-359 Ctt1-rt_pcr-rev TGGGTCTCTTGCAGTGTCTG 

CM-360 Stl1-rt_pcr-for CCGTGTCAATGCAAATCGT 

CM-360 Stl1-rt_pcr-for CGTGGCGATTCAGGTAGTTT 

CM-362 Gpd1-rt_pcr-for GGTCTAGGCTGGGGTAACAA 

CM-363 Gpd1-rt_pcr-rev GATCTCACCCAAACCGACTC 

CM-377 Act1-rt_pcr-for TCCGTCTGGATTGGTGGT 

 Tub1-rt_pcr-for AGGGAAGAGTTTCCTGATCGT 

 Tub1-rt_pcr-rev AAGTCTTCGGAGAGGGCAAG 

 Kss1-rt_pcr-for TGCTTCAATTCAATCCTGACA 

 Kss1-rt_pcr-rev TTGCCAGGTAAGGGTGTCTT 

 Sfg1-rt_pcr-for ACGAACCCTCTCACCGTCTA 

 Sfg1-rt_pcr-rev TTCAGAGATTTGGCTGGTACTG 

 Rnd18-rt_pcr-for AAACGGCTACCACATCCAAG 

 Rnd18-rt_pcr-rev TCCCTGAATTAGGATTGGGTAAT 

CM-430 RT-PCR-Cpt1-for1 TGCGATATTGTGCAGCTTTT 

CM-431 RT-PCR-Cpt1-rev1 GCTAGATAAAGTTTGTGGGTGTGA 

CM-432 RT-PCR-Cpt1-for2 TCAAACCATCTGGCACACTAA 

CM-433 RT-PCR-Cpt1-rev2 CGGTTTCAACATCAAACACAA 
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CM-434 RT-PCR-Gpi10-for1 TTGCATTTCTGGCATGTTTG 

CM-435 RT-PCR-Gpi10-rev1 TGCTGGGAATTACCCAAATAA 

CM-436 RT-PCR-Gpi10-for2 AATGATTTTAACTTCTATTGCCCTCT 

CM-437 RT-PCR-Gpi10-rev2 TTTTATCATTTGTCCGCCTGT 

CM-438 RT-PCR-Pac1-for1 CGTCCTGTTCCAGAGATCAAA 

CM-439 RT-PCR-Pac1-rev1 TTCAACGACCAACCATTGTG 

CM-440 RT-PCR-Pac1-for2 TCTGTTGCAAGAATCAGTGGA 

CM-441 RT-PCR-Pac1-rev2 CCATACTTTCGTTACTGGTGTCA 

 

1.4 Plasmids 

Plasmids which were used in this study are listed in table 5. The plasmids were generated by 

classical cloning or by insertion of synthetic genes (purchased from GeneArt or Mr. Gene; both 

are now registered trademarks of Invitrogen) into the respective vector of interest. Some of the 

plasmids were ordered from Addgene (Cambrigde, MA, USA) or from Dana-Farber/Harvard 

Cancer Center (Boston, MA, USA). 

 

Table: 5: Plasmids  

code Construct aa vector sites 
Affinity-

Tag 
Primer Comment 

CH-9 S.c.-Rox3 full lenth 1 – 222 pET-21b 
NdeI / 
HindIII 

Strep-tag@N-
terminus 

CM-18 
CM-19 

Classical 
cloning 

CH-10 S.c.-Rox3 full length  1 - 222 pET-21b 
NdeI / 
HindIII 

Strep-tag@C-
terminus 

CM-18 
CM-38 

Classical 
cloning 

CH-13 S.c.-Rox3-7-102 8-101 pET-21b  
NdeI / 
HindIII 

Strep-tag@N-
terminus 

CM-54 
CM-58 

Classical 
cloning 

CH-14 S.c.-Rox3-7-161 8-160 pET-21b 
NdeI / 
HindIII 

Strep-tag @ 
N-terminus 

CM-54 
CM-60 

Classical 
cloning 

CH-15 S.c.-Rox3-7-181 8-180 pET-21b 
NdeI / 
HindIII 

Strep-tag@N-
terminus 

CM-54 
CM-61 

Classical 
cloning 

CH-16 S.c.-Rox3-30-180 30-180 pET-21b 
NdeI / 
HindIII 

Strep-tag@N-
terminus 

CM-55 
CM-61 

Classical 
cloning 

CH-17 S.c.-Rox3-101-181 102-180 pET-21b 
NdeI / 
HindIII 

Strep-tag@N-
terminus 

CM-56 
CM-61 

Classical 
cloning 

CH-18 S.c.-Rox3-180-220 181-220 pET-21b 
NdeI / 
HindIII 

Strep-tag@N-
terminus 

CM-57 
CM-19 

Classical 
cloning 
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CH-26 S.c.-Rox3-7 8-222 pET-21b 
NdeI / 
HindIII 

Strep-tag@N-
terminus 

CM-54 
CM-19 

Classical 
cloning 

CH-29 Sc-Rox3-Δ17Δ181 18-180 pET-21b 
NdeI/Hin
dIII 

Strep-
Tag@N-term 

CM-101 
CM-61 

Classical 
cloning 

CH-30 
Sc-Rox3-Δ17Δ180 
(163 aa+tag; 18430  Da+tag) 

18-180 pET-21b 
NdeI/Hin
dIII 

His-Tag@N-
term 

CM-106 
CM-61 

Classical 
cloning 

CH-37 Sc-Rox3-Δ32Δ180 33-180 pET-21b 
NdeI/ 
HindIII 

Strep-
Tag@N-term; 
Thrombin 

CM-101 
CM-61 

Classical 
cloning 

CH-39 

S.c.-Med15/Gal11-full length 
(+UTR) 
(Insert-length: 
4445 bp) 

5’-UTR 
(500bp) 
+Gal11∆N
LS 
3’-UTR 
(300bp) 

pRS-316 
KpnI/ 
XbaI 

---------  
Classical 
cloning 

CH-40 S.c.-Med15/Gal11-fl 1-1081 pUC-36 
EcoRI/ 
XhoI 

----- 
CM-24 
CM-25 

Classical 
cloning 

CH-44 Sc-Rox3-NLS 181-221 
VCH2 
mCherry-
puc36 

EcoRI/ 
XhoI 

--------- --------- 
Classical 
cloning 

CH-45 Sc-Rox3-full length 1-220 
VCH2 
mCherry-
puc36 

EcoRI/ 
XhoI 

--------- --------- 
Classical 
cloning 

CH-46 Sc-Rox3ΔNLS 1-180 
VCH2 
mCherry-
puc36 

EcoRI/ 
XhoI 

--------- --------- 
Classical 
cloning 

CH-49 S.c.-Med15/Gal11-NLSonly 974-1044 
VCH-2 
(mCh-
Puc36) 

EcoRI/ 
XhoI 

----- 
CM-234 
CM-235 

Classical 
cloning 

CH-50 
Sc-Rox3-UTR 
500 up UTR 
300 down UTR 

Full length 
+ UTR 

Prs-316 
SacI/ 
SmaI 

 
CM-130 
CM-131 

Classical 
cloning 

CH-54 Sc-Rox3-Δ17Δ220 18-220 pET-21b 
NdeI/ 
HindIII 

Strep-
Tag@N-term; 
TEV 

CM-101 
CM-19 

Classical 
cloning 

CH-61 S.c.-Med15/Gal11-NLS only 974-1044 Prs-316 
EcoRI/ 
XhoI 

----- 
CM-234 
CM-235 

Classical 
cloning 

CH-63 
Sc-Rox3-UTR 
+500 up UTR 
+300 down UTR 

Full length 
+ UTR 

Prs-314 
SacI/ 
SmaI 

 
CM-130 
CM-131 

Classical 
cloning 

CH-68 
Sc-Rox3-UTR 
500 up UTR 
300 down UTR 

Full length 
+ UTR 

Prs-315 
SacI/ 
SmaI 

 
CM-130 
CM-131 

Classical 
cloning 

CH-71 Gal11-full length +UTR  Yeplac181 
SmaI 
(destroye
d) 

---------- ----------  

CH-78 Sc-Rox3-Δ38Δ220 39-220 pET-21b 
NdeI/ 
HindIII 

Strep-
Tag@N-term; 
Thrombin 

CM-120 
CM-19 

Classical 
cloning 

CH-89 
Gal11-C-terminus all 
phosphosites mutaed to alanine 
-Syntehic clone- 

974-1044 
pMA 
 

BamHI/ 
HindIII 

---------- ---------- 

 
Synthetic clone 
(MrGene) 
Oder-Nr.: 
0910454 
 
S983A 
S984A 
S985A 
S1003A 
S1008A 
S1018A 
S1034A 
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CH-90 Sc-Rox3-EWE6 

1-192+ 
KKGRTNL
EVRWLH
QHIVTVM  
RI 

pMK-RQ ---------- ---------- 

Deletion of 
A577 causes 
a frameshift 
@ R193 

 
Synthetic clone 
ordered from 
MrGENE;  
 
designed after 
EWE6 from 
David Gross 
 

CH-91 
Gal11-C-terminus all 
phosphosites mutated to alanine 
-Syntehic clone- 

974-1044 

VCH2 
(pug36 with 
mCherry) 
 

BamHI/ 
HindIII 

---------- ---------- 

Synthetic clone 
(MrGene) 
Oder-Nr.: 
0910454 
 
S983A 
S984A 
S985A 
S1003A 
S1008A 
S1018A 
S1034A 

CH-92 Sc-Rox3-EWE6 

1-192+ 
KKGRTNL
EVRWLH
QHIVTVM  
RI 

VCH2 
HindIII/ 
XhoI 

CM-341 
CM-342 

Deletion of 
A577 causes 
a frameshift 
@ R193 

Cloned from  
CH-90 
 

CH-93 
Gal11-full length with all 
phosphosites are mutated to 
alanine 

Nucleo-
tides: 
-583-
Gal11-
+624 

pMK    

Synthetic clone 
from GeneART; 
 
 

CH-94 
Gal11-full length with all 
phosphosites are mutated to 
alanine 

Nucleo-
tides: 
-583-
Gal11-
+624 

Prs-315    

Synthetic clone 
from GeneART; 
 
 

CH-95 Sc-Med3 full length 1-397 Prs315 
HindIII/ 
SacII 

 
CM-346 
CM-347 

Templ@e: 
MSe-P016 

CH-97 Sc-Med6+Point Mutations+UTR 
1-
296+UTR 

Pmk 
ApaI/ 
SacII 

---------- ---------- 

Sc-Med6 PMs: 
 
T206A 
T208A 
S209A 
T211A 
T216A 
S225A 
S228A 
S229A 
T233A 
T240A 
S243A 
T244A 
T245A 
T250A 
T253A 
T256A 
T260A 
T265A 
 
Ordered form 
MrGene: 
0921300_Sc-
Med6 
+500bpup 
+300b_pmk 
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CH-98 Sc-Med6+Point Mutations+UTR 
1-
296+UTR 

Prs315 
ApaI/ 
SacII 

---------- ---------- 

Sc-Med6 PMs: 
 
T206A 
T208A 
S209A 
T211A 
T216A 
S225A 
S228A 
S229A 
T233A 
T240A 
S243A 
T244A 
T245A 
T250A 
T253A 
T256A 
T260A 
T265A 
 
Ordered form 
MrGene: 
0921300_Sc-
Med6 
+500bpup 
+300b_pmk 
 

VCH-2 pmCherry-puc36 
mCherry-
CDS 

Puc36 
XbaI/ 
EcoRI 

---------- ---------- 

EGFP-CDS was 
replaced by 
mCherry-CDS 
 

PEN5 

Promoter fusion construct: 
S.c.-STL1-promoter 
(-800/+3) 
Fused to LAC-Z coding sequence 

 Ylp358R 
EcoRI/ 
PstI 

 ---------- 

Eulalia de 
Nadal 
 (Proft, et al. 
2006) 
and 
Alepuz, et al. 
2002 
 

SB-131 Sc-Rox3 full length 1-220 pUC-36 EcoRI/ 
XhoI ---------- ---------- 

Sonja Baumli; 
Lab-stock 

SB-132 Sc-Rox3ΔNLS 1-180 pUC-36 
EcoRI/ 
XhoI 

---------- ---------- 
Sonja Baumli; 
Lab-stock 

SB-133 Sc-Rox3 full length 1-220 pET-24d 
NcoI/ 
NotI 

---------- ---------- 
Sonja Baumli; 
Lab-stock 

SB-134 Sc-Rox3ΔNLS 1-180 pET-24d 
NcoI/ 
XhoI 

---------- ---------- 
Sonja Baumli; 
Lab-stock 
 

SB-135 Rox3-NLS 181-221 pUC-36 

EcoRI / 
XhoI ---------- ---------- 

Sonja Baumli; 
Lab-stock 

TEVnew TEV protease  pET-24d 

 
His-tag@N-
terminus; 

---------- 

Arie Gerlof;  
Michael Stattler 
Lab; Munich; 

 

1.5 Chemicals and reagents 

Chemicals which were used in this study were obtained from Roth (Karlsruhe, Germany), Serva 

Electrophoresis (Heidelberg, Germany), Sigma Aldrich (Seelze, Germany), Invitrogen (NY, USA), 

Merck (Darmstadt, Germany), Formedium (Hunstanton, Norfolk, GB). Chemicals and reagents 

from other sources are explicitly mentioned. Chemicals, reagents and enzymes for cloning were 

obtained from Roche (F. Hoffmann La-Roche; Germany), Fermentas (St. Leon Rot, Germany), 

New England Biolabs (Frankfurt am Main, Germany), Agilent/Stratagene (Waldbronn, 
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Germany).  Commercial kits from Qiagen (Hilden, Germany) were used for DNA preparations 

during classical cloning.  

 

Table 6: Growth media 

Media Application Description 

LB E. coli culture 1% (w/v) tryptone; 0.5% (w/v) yeast extract; 0.5% (w/v) NaCl 

SOB E. coli culture 
2% (w/v) tryptone; 0.5% (w/v) yeast extract; 8.55 mM NaCl; 2.5 mM 
KCl; 10 mM MgCl2 

SILAC-media Yeast culture 

0.67% (w/v) Formedia yeast nitrogen base without amino acids,, 2% 
glucose, 200 mg/l adenine, 200 mg/l tyrosine, 10 mg/l histidine, 10 
mg/l methionine, 60 mg/l phenylalanine,  
40 mg/l tryptophan, 20 mg/l uracil, 20 mg/l arginine 
 
For stable isotope labeling, SILAC media contained 30 mg/l 13C6-, 
15N2-lysine (heavy lysine, Cambridge Isotopes) or 30 mg/ml 
12C6, 14N2-lysine (light lysine, Sigma Aldrich)  

YPD Yeast culture 2% (w/v) peptone; 2% (w/v) glucose; 1.5% (w/v) yeast extract  

Synthetic complete 
media (SC) 

Yeast culture 
0.69% (w/v) nitrogen base; 0.6% (w/v) CSM amino acid drop out 
mix; 2% (w/v) glucose; pH 5.6-6.0 

YPD solid media Yeast culture 
2% (w/v) peptone; 2% (w/v) glucose; 1.5% (w/v) yeast extract; 
1.5% (w/v) agar  

SC drop out solid 
media 

Yeast culture 
0.69% (w/v) nitrogen base; 0.6% (w/v) CSM amino acid drop out 
mix; 2% (w/v) glucose; pH 5.6-6.0; 1.5% (w/v) agar 

5‘FOA-solid media Yeast culture SC (-ura) + 0.01% (w/v) uracil; 0.2% (w/v) 5-FOA 

Synthetic defined 
media (SD) 

Yeast culture 
Nitrogen and carbon sources, vitamins, trace elements, minerals 
according to manufacturer`s information (ForMedium) with specific 
drop outs; only essential amino acids; pH 5.6-6.0 

 

 
Table 7: Media additives for E. coli and S. cerevisiae 

Media Description Stock solution Applied concentration 

IPTG Isopropyl-ß-D-thiogalactopyranosid 1 M in H20 0.5 mM for E. coli culture 

Ampicillin Antibiotic 100 mg/ml in H20 
100 μg/ml for E. coli culture, 
50 μg/ml for yeast culture 

Kanamycin Antibiotic 30 mg/ml in H20 30 μg/ml for E.a coli culture 

Chloramphenicol Antibiotic 50 mg/ml in EtOH 50 μg/ml for E. coli culture 

Tetracyclin Antibiotic 12.5 mg/ml in 70% EtOH 12.5 μg/ml for yeast culture 

Nourseothricin 
(clonNAT) 

Antibiotic 100 mg/ml in H20 100 μg/ml for yeast culture 

Geneticin (G418) Antibiotic 200 mg/ml in H20 200 μg/ml for yeast culture 
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1.6 Buffers and solutions 

Buffers, dyes and solutions which were generally used for different experiments are listed in 

table 8. Buffers which were used for protein purification were filtered sterile or autoclaved. 

Buffers for HPLC systems were additionally degassed before usage.  

 
Table 8: Buffers and solutions 

Name Description Method 

electrophoresis buffer 25 mM Tris; 0.1% (w/v) SDS; 250 mM glycine SDS-PAGE 

4x stacking gel buffer 0.5M Tris; 0.4% (w/v) SDS; pH 6.8 at 25°C SDS-PAGE 

4x separation gel buffer 3 M Tris; 0.4% (w/v) SDS; pH 8.9 at 25°C SDS-PAGE 

1x Bradford dye 1:5 dilution of Bradford concentrate (BioRad) SDS-PAGE 

MOPS electrophoresis 
buffer 

10.46% (w/v) MOPS  
(3-(N-Morpholino)propanesulfonic acid); 6.06% (w/v)TRIS base; 1% (w/v) 
SDS; 0.3% EDTA 

SDS-PAGE 

MES electrophoresis 
buffer 

1% (w/v) MES 2-(N-morpholino)ethanesulfonic acid 6.06% (w/v)TRIS base; 
1% (w/v) SDS; 0.3% EDTA 

SDS-PAGE 

5x SDS sample buffer 
250 mM Tris/HCl pH 7.0 at 25°C, 50% v/v) glycerol, 0.5% (w/v) 
bromophenol blue, 7.5% (w/v) SDS, 12.5% (w/v) mercaptoethanol 

SDS-PAGE 

Gel staining solution 
50% (v/v) ethanol; 7% (v/v) acetic acid; 0.125% (w/v) Coomassie Brilliant 
Blue R-250 

Coomassie staining 

Gel destaining solution 5% (v/v) ethanol; 7.5% (v/v) acetic acid 
Coomassie staining 

TBE 8.9 mM Tris; 8.9 mM boric acid; 2 mM EDTA (pH 8.0, 25°C) 
Agarose gel 
Electrophoresis 

TE 10 mM Tris pH 7.4; 1 mM EDTA 
Nucleic acids; yeast 
transformation 

10xTBS 500 mM Tris/HCl pH 7.5, 1.5 M NaCl 
Agarose gel 
Electrophoresis 

1 x PBS 2 mM KH2PO4; 4 mM Na2HPO4; 140 mM NaCl 3 mM KCl, pH 7.4 @ 25°C Diverse applications 

6x Loading dye 
(Fermentas) 

1.5 g/l bromophenol blue; 1.5 g/l xylene cyanol; 50% (v/v) glycerol 
Agarose gel 
Electrophoresis 

100x PI 
0.028 mg/ml Leupeptin; 0.137 mg/ml Pepstatin A; 0,017 mg/ml PMSF; 0.33 
mg/ml benzamidine in 100% EtOH p.a. 

Protease inhibitor mix 

TFB-1 
30 mM KOAc, 50 mM MnCl2, 100 mM RbCl, 10 mM CaCl2, 15% (v/v) glycerol,  
pH 5.8 at 25°C 

Chemically competent 
cells 

TFB-2 10 mM MOPS pH 7.0 at 25°C, 10 mM RbCl, 75  mM CaCl2, 15% (v/v) glycerol 
Chemically competent 
cells 

Phosphatase-Inhibitor 
Mix 

40 mM p-nitrophenylphosphate, 2 mM sodiumpyrophosphate,   
2 mM sodium ortho-vanadate, 50 mM sodium fluoride 

SILAC 

TAP buffer A 
250 mM sodium chloride, 50 mM TRIS/HCl pH 7.5, MgCl2, 0.15% m/w NP-40, 

1 mM DTT 
Tandem affinity 
purification 

TAP buffer B 100 mM sodium chloride 50 mM TRIS/HCl pH 7.5, MgCl2, 1 mM DTT 
Tandem affinity 
purification 

Calmodulin-buffer 
100 mM sodium chloride 50 mM TRIS/HCl pH 7.5, MgCl2, 2 mM CaCl2;  
1 mM DTT 

Tandem affinity 
purification 
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TAP elution buffer 10 mM Tris pH 8.0, 20 mM EGTA 
Tandem affinity 
purification 

Avidin 
50 μmol/l avidin; 50% (w/v) glycerin; 20 mM Tris pH 8.0; 150 mM NaCl;  
10 mM ß-mercaptoethanol 

Strep-tagII 

50x d-Desthiobiotin 125 mM d-desthiobiotin; in 500 mM Tris pH 8.0 Strep-tagII 

Rox3-buffer A 500 mM sodium chloride, 20 mM TRIS pH 8.0, 10 mM ß-mercaptoethanol Protein purification 

Rox3-buffer B 150 mM sodium chloride, 20 mM TRIS pH 8.0, 10 mM ß-mercaptoethanol Protein purification 

MonoQ-buffer A 50 mM NaCl, 20 mM Tris pH 8.5@4oC, 10 mM ß-mercaptoethanol Protein purification 

MonoQ-buffer B 2 M NaCl, 20 mM Tris pH 8.5 @ 4oC, 10 mM ß-mercaptoethanol Protein purification 

50% (w/v) PEG 3,350 50% (w/v) PEG 3,350, sterile Yeast transformation 

1 M lithium acetate 1 M lithium acetate, pH 7.5 Yeast transformation 

Salmon sperm DNA 2 mg/ml Salmon sperm DNA in water (dd) Yeast transformation 

YTFB 0.2 M lithium acetate, 40% (w/v) PEG 3,350, 100 mM DTT Yeast transformation 

TCA-buffer A 10% Trichloracetic acid (TCA) in water (dd) Protein precipitation 

 

1.7 Buffers and solutions for DTA 

Buffers and solution used for dynamic transcriptome anaylsis (DTA) are listed in table 9. 

Additional buffers and solutions were used as part of commercial kits. RNA extraction for DTA 

was perfomed with RiboPure-Yeast Kit (Ambion/Applied Biosystems), µMACS Streptavidin Kit 

(Miltenyi Biotec, Bergisch Gladbach, Germany) and RNeasy MinElute Cleanup Kit (Qiagen, 

Hilden, Germany). 

 
Table 9: Buffers and solutions  for dynamic transciptome analysis (DTA) 

Name Description Method 

10x Biotinylation buffer 100 mM Tris pH7.5; 10 mM EDTA; H2O (RNAse free) DTA 

RNA washing buffer 100 mM Tris, pH7.5; 10 mM EDTA;  1M NaCl; 0.1%Tween; H2O (RNAse free) DTA 

Biotin-HPDP-stock 1 mg/ml biotin-HPDP dissolved in dimethylformamide DTA 

RNA-Wash-solution1 
100 mM TRIS pH 7.5; 10 mM EDTA; 1 M sodium chloride, 0.1 % (w/v) TWEEN 20; 
RNAse-free water; 

DTA 

RNA-Elution buffer 100 mM DTT in RNAse free water DTA 
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2. Methods 
 

 

2.1 General Methods 

2.1.1 Preparation of chemically competent E. coli cells 

A 200 ml LB medium was inocculated from an over night grown preculture to an OD600 of 0.05. 

The culture was incubated for several hours at 37oC to a final OD600 of 0.5,  chilled on ice for 

10 min before the cells were centrifuged at 3200 g for 10 min. The cells were washed with 50 ml 

TFB-1 buffer (Table 8) and resuspended in 4 ml TFB-2 buffer (Table 8). The resulting cell 

suspension was divided into 50 µl aliqotes, flash-frozen in liqid nitrogen and stored at -80oC. 

 

2.1.2 Transformation of E. coli cells 

To a 50 µl aliquot of the chemically competent E. coli cells (MATERIAL & METHODS, 2.1.1), 100 ng 

of plasmid DNA or 3-5 µl of the ligation reaction (Material & Methods 2.1.3) were added and 

incubated on ice for 20 min. The transformation mix was heat shocked for 15 sec at 45oC and 

immediatly cooled down on ice for at least 1 min, before 250 ml of room temperature LB 

medium was added. Cells were incubated for 1 hour at 37oC under constant shaking at 1400 rpm 

using the Thermomixer (Eppendorf). The transformation mix was plated on selective LB plates 

and incubated at 37oC over night.  

 

 2.1.3 Molecular cloning 

Primer design: Primer used in PCR were designed with the following properties: First, a 9 

nucleotide GC-rich sequence was added at the 5’-end, followed by a restriction site and optional 

sequence encoding (in-frame) for hexahistidine- or streptavidin-tag (strep-tag II). Second, the 

complementary sequence was designed between 18 and 25 nucleotides to reach a theoretical 

melting temperature (calculated with BioEdit (Hall, 1999)) of approx. 55oC. The complementary 

sequence ended with either a G or C nucleotide. Third, complementary sequences between the 

primerpairs were avoided. An overview to all primer which were used in this study is given in 

table 4 in this section. 

 

Polymerase chain reaction (PCR): The polymerase chain reaction was carried out with Pwo 

polymerase (Invitrogen), Taq polymerase (Fermentas), Herculase or Herculase II polymerase 

(Agilent), Phusion (Finnzymes) and Pfu polymerase (Fermentas). The respective conditions and 

requirements are adapted according to the manufactorer’s manual and recommendations. 

Typically, the reaction was performed in 50 µl scale, which contained 1-30 ng of plasmid DNA or 

100-200 ng of genomic DNA template, polymerase specific buffer, 0.2 mM dNTP-mix, 0.5 µM 

forward and reverse primer each, optionally MgCl2 or DMSO, and variable amounts of 

polymerase (0.5 to 5 U). For test purposes, the PCR mix was scaled down to 25 µl. 
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Thermocycling programs (Biometra T3000 thermocycler) were optimized for each PCR in 

particular by variation of specific primer annealing temperature (gradient PCR cycler; Biometra 

TProfessional) and elongation time. PCR products were visualized by 1% agarose gel 

electrophoresis (MATERIAL & METHODS, 2.2.1) and purified with QIAquick gel extraction kit 

following the manufacturer’s protocol (Qiagen). 

 

Enzymatic restriction cleavage and ligation: PCR products and plasmids were cleaved by 

restriction endonucleases (New England Biolabs and Fermentas) as recommended by the 

manufacturer’s protocol. The enzymes were thermally inactivated and digested vectors were 

dephosphorylated by addition of 2.0 U CIAP (Fermentas), incubated at 37oC for 30 min and 

inactivated by heating at 85oC for 15 min. Vectors were visualized by 1% agarose gel 

electrophoresis (MATERIAL & METHODS, 2.2.1) in 1 x TBE buffer, and visualized by 

ethidiumbromide (Invitrogen) or SYBR safe DNA staining (1:10.000, Invitrogen). Plasmids were 

purified by QIAquick gel extraction kit following the manufacturer’s protocol (Qiagen). Cleaved 

PCR products were purified using QIAquick PCR purification kit (Quiagen). PCR fragments and 

linearized vectors were ligated in a 20 µl scale using T4 DNA Ligase (5 U, Fermentas) following 

the manufacturer’s recommendations. Concentrations of vectors and PCR fragments were 

adjusted  dependent on the different reactions. The ligation mix was incubated at 16oC overnight 

and transformed into chemically competent E. coli XL1 blue cells (Table 2) as described in this 

section (2.1.2). Transformed cells were plated on selective LB plates and incubated at 37oC 

overnight. Single colonies were picked to inoculate a 5 ml LB media containing the respective 

selectivity marker and the cells were cultured at 37oC overnight. Plasmids were isolated by 

QIAquick Miniprep kit (Qiagen) and verified by 1% agarose gel electrophoresis after 

endonucleolytic cleavage and DNA sequencing (MWG and GATC-biotech). 

 

2.1.4 Protein expression in E. coli 

Typically, recombinant proteins were expressed in E. coli BL21- Codon plus (DE3)RIL cells 

(Stratagene). The cells were transformed with the expression vector carrying the desired 

protein coding sequence as described above (MATERIAL & METHODS 2.2). The expression culture 

of the disired volume containing LB-medium and the required antibiotics was inoculated from 

an overnight grown preculture of the transformed cells in a 1:100 dilution. Cells were grown at 

37oC up to an OD600 between 0.5 to 0.8 and then cooled on ice for 30 min. Protein expression was 

induced by the addition of IPTG to a final concentration of 0.5 mM. The expression cultures were 

incubated at 18oC for 12 hours. All subsequent steps were performed on ice or in the cold room 

at 4oC. The cells were pelleted by centrifugation at 4400 g for 20 min (Sorvail, SLC-6000 rotor) 

and washed with the lysis buffer. The cell pellet was flash-frozen in liquid nitrogen and stored at 

-80oC. 

 

2.1.5 Lysis of E. coli cells 

Cell pellets were resuspended in 50 ml of the protein specific lysis buffer (MATERIAL & METHODS, 

Table 8) and sonicated for 20 min using a flat 0.5’’ working tip with 20% duty time and 40% 

output on a Branson sonifier system. For larger volumes of expression culture, cell lysis was 

performed using the cell homogenizer (Emulsiflex, Avestin). The completeness of cell lysis was 

checked by microscopy. The resulting cell extract was centrifuged two times at 24000 g (Sorvail, 

SS-34 rotor) for 20 min each and the clearified lysate was applied to the subsequent protein 
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purification procedure. For analysis, a sample from the remaining pellet was resuspended with 

SDS containing buffer (SDS loading buffer, see Table 8), incubated 5 min at 92oC and analysed by 

SDS-PAGE (MATERIAL & METHODS 2.2.4). 

 

2.1.6 Measurement of protein concentration 

Protein concentrations were measured usually with Bradford assay (Bradford, 1976) by 

addition of 1 µl to 5 µl of protein solution to 1 ml of the Bradford reagent  solution (Bio-Rad). 

The protein concentration was measured by absorbtion at 595 nm and corrected relative to a 

reference curve which was prepared for each batch of the Bradford reagent solution using 

bovine serum albumin (Fraktion V, Roth) as a standard. Alternatively, protein concentrations 

were measured by absorption at 280 nm spectrophotometer (ND-1000, NanoDrop) and 

calculated by molar absorption coefficient obtained from the protein sequence using the 

ProtParam program (Gasteiger, et al. 2005). 

 

2.1.7  Limited proteolysis 

Limited proteolysis time course in combination with Edman sequencing was used to localize 

relative positions of ordered protein regions. The purified protein (100 µl; 1 mg/ml) was mixed 

with 1 µg of either Trypsin or Chymotrypsin. The protein digestion was performed as time 

course starting upon addition of the protease followed by incubation at 37oC. Samples were 

taken after 30 sec and 1, 3, 8, 15 and 30 min. The reactions were inhibited by addition of 5 x SDS 

sample buffer (Table 8) and incubation at 92oC for 5 min. The samples were analyzed by SDS-

PAGE and the N-terminal sequence of the separated protein fragments were analyzed by Edman 

sequencing (Niall, 1973). 

 

 

2.2 Electrophoresis 

2.2.1 Electrophoretic separation of DNA 

Electrophoretic separation of DNA was performed by horizontal agarosegel electrophoresis 

using PerfectBlue Gelsystems electrophoresis chambers (Peqlab). The agarose concentrations 

varied between 1% to 3% in 1 x TBE buffer, depending on the length of DNA. To visualize DNA 

samples, either ethidiumbromide (0.7 µg/ml, Invitrogen) or SYBR safe DNA staining (1:10.000; 

Invitrogen) was added. Samples were mixed with 6 x loading dye (Table 8) and DNA was 

visualized and documented using the UV-transiluminator at 366 nm (Royal-INTAS Science 

Imaging Instruments).  

 

2.2.2 Electrophoretic separation of RNA 

For electrophoretic separation and analysis of RNA the E-Gel agarose gel electrophoresis system 

(E-Gel Power Base; Invitrogen) was typically used. The RNA sample (250 ng to 2 µg) was mixed 

with sterile distilled and RNase free water (Invitrogen) to a final volume of 20 µl and loaded 

onto the agarose E-gel (1%). If needed, RNA was denaturated by incubating the samples for 

5 min at 65oC, before the samples were loaded onto the E-gel (1%).  
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2.2.3 Spectrophotometric analysis of RNA 

For quality control prior to microarray analysis, RNA samples during the preparation were 

analyzed by the automated spectrophotometric system Experion (BioRad). RNA samples (5 

ng/µl to 500 ng/µl) were denaturated by incubation for 2 min at 70oC, followed by immediately 

cooling down on ice. The preparation of the RNA samples for analysis were performed as 

described in the manufacter’s manual using the Experion RNA StdSens Starter Kit (2008). All 

chemicals and reagents are original consumables from BioRad, with exception of RNase free 

water, which was provided from Invitrogen. 

 

2.2.4 Electrophoretic separation of proteins – SDS-PAGE 

Proteins were separated by SDS-polyacrylamid gel electrophorsis (SDS-PAGE) using the 

electrophoresis system of Biorad. Typically, proteins were separated in 15% acrylamide (Roth) 

and 0.4% bisacrylamide (Roth) gels in SDS electrophoresis buffer (Table 8) (Laemmli, 1970). To 

separate protein from protein complexes which require separation of a broad range of 

molecular weights,  4-12% gradient gels were used (Bis-Tris Nupage; Invitrogen). Dependent on 

the range of molecular weights of the proteins, either MOPS or MES buffer (Table 8) was used in 

combination with X-cell Sure Lock Mini Cell electrophoresis system (Invitrogen) following the 

manufacturer’s instructions.  

 
 

2.3 Edman sequencing 

Edman sequencing allows for identification of the amino-acid sequence at the N-terminus of 

proteins or protein fragments. The protein fragments of interest were carefully excised from 

SDS-gel after separation by SDS-PAGE and staining with Coomassie blue (Table 8). The proteins 

were transfered to a PVDF membrane (Roth) by Western blotting or passive adsorption. The 

Western blotting was performed in PABS buffer (Table 8) at 100 V for 2 h or 20 V overnight at 

4oC. The passive adsorption was performed in several steps: First, the excised band from SDS-

PAGE, containing the protein of interest, was dried in a speed-vac and rehydrated in 20 µl of 

swelling buffer at room temperature. Second, 100 µl of sterile destilled water was added to the 

previous mix. Third, a piece of PVDV membrane, previously soaked in absolute ethanol, was 

added to the mix. After the mix turned blue, 10 µl of methanol was added and the mix was 

incubated for 4 days at room temperature until the transfer was complete. This is inidicated by 

the migration of the coomassie blue from the solution onto the PVDF membrane. The membrane 

was washed five times with 10% methanol and vortexing for 30 sec. The PVDV membrane was 

dried by evaporation of the remaining methanol and applied to PROCISE 491 sequencer 

(Applied Biosystems). For identification of the N-terminal amino acid sequence, 5 cycles were 

performed based on the automated Edman degradation (Niall, 1973). 

 

2.4 Standard mass spectromety 

To identify proteins copurified in endogenous preparations, mass spectrometry analysis was 

used (MALDI) after separation of the proteins with SDS-PAGE and in-gel digestion of the 

proteins of interest. The analysis was performed at the central lab for protein analytics (ZfP, Axel 

Imhof, University of Munich).  
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2.5 Bioinformatic tools 

 
Gene and protein sequences were retrieved from NCBI database (www.ncbi.nlm.nih.gov), from 

UniProt (www.uniprot.org) or from the Saccharomyces Genome database (SGD; 

http://www.yeastgenome.org).  

 

Primer design and DNA sequence analysis was displayed and edited by Bioedit sequence 

alignment editor (Hall, 1999; http://www.mbio.ncsu.edu/bioedit/ bioedit.html).  

 

Bioinformatic analysis were performed by ProtParam (http://web.expasy.org/ protparam/) and 

the Bioinformatic Toolkit (Biegert, et al. 2006).  

 

Multiple sequence alignments were performed with ClustalW2 

(http://www.ebi.ac.uk/Tools/msa/clustalw2/) or  

T-Coffee (http://www. ebi.ac.uk/Tools/msa/tcoffee/) and multiple sequence alignments were 

displayed with ESPript (Gouet, et al. 1999; http://espript.ibcp.fr/ESPript/ESPript/).  

 

Protein secondary structure prediction were predicted by I-Tasser (Zhang, 2008; Roy, et al. 2010) 

(http://zhanglab.ccmb.med.umich.edu/I-TASSER/), HHPred (Soeding, et al. 2005) 

(http://toolkit.lmb.uni-muenchen.de/), Jpred (http:// www.compbio.dundee.ac.uk/www-

jpred/) (Cole, et al. 2008) and PsiPred (http://bioinf.cs.ucl.ac.uk/psipred/) (Bryson, et al. 2005; 

Jones, 1999).  

 

The primer design for quantitative real-time PCR was supported by ProbeFinder version 2.45 for 

Yeast (http://qpcr.probefinder.com/ organism.jsp).  

 

Nuclear localization sequences were analysed with NLSdb database system (Nair, et al. 2003) 

(http://rostlab.org/services/nlsdb/submit.php). Transcription factor analysis was performed 

with Yeastract database (Teixeira, et al. 2006) (http://www.yeastract.com/).  

 

Analysis of protein interaction were performed with support of the STRING database (Jensen, et 

al. 2009) (http://string-db.org/) and BioGrid database (Breitkreuz, et al. 2008) 

(http://thebiogrid.org/). The interaction data were visualized by Cytoscape softwar package 

(Melissa, et al. 2007) (http://www.cytoscape.org/). Microarray data were visualized by the Mev 

software package (Saeed, et al. 2003) (http://www.tm4.org/mev/).  

 

Gene ontology search was performed with GO Gene Ontology Slim mapper 

(http://www.yeastgenome.org/cgi-bin/GO/goSlimMapper.pl).  

 

Bioinformatics for dynamic transcriptome analysis was performed by Achim Tresch and Björn 

Schwalb under usage of the R-package Bioconductor (Gentleman, et al. 2004; Smyth, 2004 ) and 

LSD (http://www.lmb.uni-muenchen.de/tresch/LSD.html). 
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2.6 Yeast genetics and methods 

2.6.1 Isolation of genomic DNA from yeast 

(modified protocol from the Lab of Steven Hahn; (Hoskins, 1997)) 

Cells taken from a single yeast colony were cultured in a 10 ml YPD over night. From this 

preculture, 30 ml YPD were inocculated and grown over night to a final OD of 2x108 cells/ml. 

Cells were pelleted at 3000 rpm/5 min/4oC and washed with 10 ml sterile distilled (SD) water. 

Cell pellet was resuspended in 3 ml of buffer 1 (0.9 M sorbitol, 0.1 M EDTA, 50 mM DTT, pH 7.5) 

and incubated with Zymoylase (0.25 mg dissolved in 0.9 M sorbitol) with occasional shaking at 

37oC for 15-120 min until 80-90% of the cells were converted to spheroblasts. The spheroblasts 

were centrifuged at  3000 rpm/5 min/4oC and resuspended in 3 ml of buffer 2 (50 mM Tris-HCl, 

50 mM EDTA, pH 8.0) followed by addition of 0.3 ml of 10% SDS and incubation at 65oC for 

30 min. After addition of 1 ml of KOAc, the spheroblast suspension was set on ice for 60 min. The 

supernatant was transferred to a new 50 ml centrifuge tube and centrifuged at 

15.000 rpm/30 min/4oC (Sorval, SS34). The supernatant was transferred into a new centrifuge 

tube and 4 ml of ice-cold absolute ethanol was added to the precipitated nucleic acids. After 

centrifugation, the supernatant was removed and the pellet was washed with 4 ml 70% ethanol. 

The pellet was resuspended with 300 µl TE-buffer (pH 7.5) and 15 µl RNase (10 mg/ml, DNase-

free) was added and incubated at 37oC for 30 min. The resulting DNA was extracted with 300 µl 

phenol/cholorform soultion (1:1) and washed with 15 µl isopropanol containing buffer (3 M 

NaOAc, 900 µl isopropanol). The resulting pellet was washed with 80% ethanol. The obtained 

DNA pellet was dryed on air, resuspended in 100-300 µl TE (pH 7.5).For extraction of yeast 

genomic DNA for test purposes, the DNeasy blood & tissue kit (Quiagen) was used in 

combination with the QIAcube robot (Quiagen). The extraction was carried out as described in 

the manufacturer’s manual (May 2008). 

 

2.6.2 Yeast transformation 

A 20 ml YPD culture was inocculated from a single colony and incubated over night at 30oC. An 

aliquot from the preculture was used to inocculate a 100 ml YPD culture to reach an initial OD600 

of 0.25. The cells were cultured at 30oC für 5-6 hours to reach an OD600 of 1.0. Cells were pelleted 

(5 min, 2500 rpm, room temterature) and washed with 25 ml sterile destilled water, before 

resuspension in 1 ml Lithium Acetate (freshly diluted from a 1 M stock solution). After 

centrifugation for 15 sec at top speed (Eppendorf micro centrifuge), the pellet was resuspended 

with 400 µl L 100 mM LiAc. To this suspension, 240 µl polyethyleneglycol (50% w/v PEG 3350), 

36 µl LiAc (1 M), 50 µl single stranded DNA (salmon-testis DNA, 2mg/ml; previously incubated 

at 95oC for 5 min and immediately kept on ice) and 34 µl PCR product or plasmid (susspended in 

sterile distilled water) was added in this order. The transformation mix was vortexed and 

incubated at 30oC for 30 min before the cells were heat shocked at 25oC for 30 min. The cells 

were centrifuged at for 15 sec. at 6000 rpm (Eppendorf micro centrifuge) and resuspended in 

500 µl of 1 x TE (pH 7.5). For antibiotic resistance selection, cells were resuspended in 1 ml of 

room temperature YPD and incubated at 30oC for 3 hours. Finally, cells were plated on 

selectivity plates at 30oC over night.  

 

2.6.3 Yeast cell lysis 

Cell lysis was performed by adding one pelletvolume of lysisbuffer (250 mM NaCl; containing 

phosphatase- and protease Inhibitors) and two volumes of glassbeads (0.5 mm of diameter; 
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Soda lime/Roth) to the pellet. The mixuture was transferred to planetary mill  (Pulverisette, 

Fritsch) and run 2 cycles of 500 rpm/4 min. The lysate was centrifuged at 4000 rpm for 5 min at 

4oC (Eppendorf 5810 R; rotor: A-4-62). The supernatant was ultracentrifuged (Beckman L-70; 

SW-28 rotor) at 27000 rpm for 1 h at 4oC before the fatty top phase was removed with a water 

pump and the clarified supernatant was transferred into a 50 ml Falcon tube. 

 

2.6.4 TAP integration 

For tandem affinity purification of selected yeast proteins, the TAP-tag was integrated into the 

genomic locus by homologous recombination according to the original protocol (Puig, et al. 

2001; Rigaut, et al. 1999). For homologous recombination for N- or C-terminal tagging, the 

respective PCR product carrying the the epitope and complementary sequence of the genetic 

locus, was generated as described previously (Baudin, et al. 1993). The protocol is described in 

detail in (Knop, et al. 1999). 

 

2.6.5 Tandem affinity purification 

To the clarified lysate resulting from a 2 l culture, 0.4 ml of lysisbuffer washed IgG beads were 

added and incubated for 1 h at 4oC (mixing by rotation) (Table 8). The mixture was centrifuged 

once (Eppendorf 5810 R; rotor: A-4-62) at 1800 rpm for 2 min at 4oC before the supernatant was 

removed. IgG-beads were transferred onto one 5 ml mobicol column and washed 3 times each 

with 10 ml 250 mM NaCl containing lysis buffer and subsequently with 5 ml 100 mM NaCl 

containing lysisbuffer before IgGbeads were equally divided into six 1.5 ml eppendorf tubes. For 

TEV-cleavage, 10 μl TEV was added to each of the tubes and incubated at 18oC for 90 min 

(mixing by rotation). The TEV-eluate was removed by centrifugation at 13000 rpm for 5 min 

(Heraeus, Biofuge pico; rotor: PP-1/99). The supernatant from each tube was transferred to a 

2.0 ml eppendorf tube.  

 

Binding to Calmodulin Sepharose 4B beads (GE Healthcare, Sweden) was performed by adding 

2.5 ml Calmodulin-buffer (Table 8) to the IgG-TEV-eluate. According to the manufacturer’s 

recommendations, the appropriate amount of Calmodulin beads were washed with Calmodulin-

buffer and added to the proteinsolution, which was previously divided equally into several 2 ml 

gravity flow columns (Biorad). The mixture was incubated for 2 h at 4oC (mixing by rotation). 

After the supernatant was removed by gravity flow, each of the Calmodulin columns was washed 

twice with 10 ml of Calmodulin-buffer. Proteins were eluted by adding 600 µl TAPelution-buffer 

(Table 8) and incubated at 37oC for at least 1 h or overnight. Alternatively, the proteins were 

eluted by addition of 50 µl SDSsample buffer (Table 8) and incubated at 90oC for 10 min for a 

subsequent analysis by SDS-PAGE. 

2.6.6  yeast microscopy  

Preparation of slides: The slides were coated with 0.02% (w/v) poly-L-Lysine. The solution was 

dropped onto the slide (Roth, Germany) and incubated at room temperature for 5 min and 

washed three times with sterile and deionized water. 

 

Preparation of cells: Yeast cells expressing GFP- or mCherry- (Shanner, et al. 2004) tagged 

proteins were grown over night in YPD medium, diluted to OD600 of 0.2 and incubated at 30oC to 

an OD600 of approx. 0.8. To reduce the autofluorescence of YPD medium, 1 ml of the 

cellsuspension was washed three times with SD-medium (Table 8). The cells were resuspended 
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in 200 µl of SDmedium and 5 µl of the suspension was spotted onto the poly-L-Lysine coated 

slides. After the cells were sitting down for 10 min, the slides were washed with 50 µl 1x PBS 

buffer (Table 8) with 1.0 ng/ml DAPI and incubated for another 10 min. After washing two times 

with 1x PBS-buffer, 5 µl of 1x PBS was added and the cells were covered with a cover-slip (Roth, 

Germany) and appropriately sealed. The cells were immediately analyzed by microscoy. 

 

Microscopy: The cells were analyzed using a Leica AF6000 at 100x magnification and LAS AF 

Software. Exposure times and intensity were adjusted to an optimal contrast and ranged up to 

200 ms for DIC images, up to 500 ms for DAPI and up to 2 s for the GFP or mCherry channel. 

 

2.7 Dynamic Transciptome Analysis (DTA) 

2.7.1 Cell growth and RNA labeling  

The S. cerevisiae strain used was BY4741 MATa, his2Δ1, leu2Δ0, met15Δ 0, ura3Δ 0 (Euroscarf).  

The strain was transformed with plasmid YEpEBI311 (2 micron, LEU2) carrying the human 

equilibrative nucleoside transporter hENT1 (S. Jellbauer and P. Milkereit, unpublished).  

Samples for establishing DTA method were grown in SD medium (Table 6) overnight, diluted to 

an OD600 of 0.1 the next day and grown to mid-log phase (final OD600 of 0.8, corresponding to 

1.75 x 107 cells per ml).  4-thiouridine (Sigma) was added to the media to a final concentration of 

500 µM and cells were harvested after different labeling times. Cells were centrifuged at 4,000 

rpm for 1 min and cell pellets were immediately flash frozen in liquid nitrogen. Samples for 

quantitative qRT-PCR and for salt-stress experiments were grown in SILAC medium (Table 6) 

overnight, diluted to an OD600 of 0.1 the next day and grown to mid-log phase (final OD600 of 0.8 

corresponding to 1.75 x 107 cells per ml). Cells were harvested 0, 6, 12, 18, 24, 30 and 36 min 

after addition of NaCl to a final concentration of 0.8 M. 6 min before each of the timepoints, 4-

thiouridine was added to the cells.  

 

2.7.2  RNA extraction 

Total RNA was extracted with the RiboPure-Yeast Kit (Ambion/Applied Biosystems), following 

the manufacturer’s protocol. Labeled RNA was chemically biotinylated and purified using 

strepatavidin coated magnetic beads as described (Doelken, et al. 2008).  

 

2.7.3  Microarray analysis 

Labeling of samples for array analysis was performed using the GeneChip 30IVT labeling assay 

(Affymetrix) with 100 ng input RNA. Samples were hybridized to GeneChip Yeast Genome 2.0 

microarrays following the instructions from the supplier (Affymetrix). Quality control and array 

processing was done using GCRMA (Wu et al, 2004) for expression quantification and LIMMA 

(Smyth & Speed, 2003) for elementary array comparisons. 

 

2.7.4 Extraction of mRNA synthesis and decay rates 

Steady-state assumption: During the labelingtime, 4-thiouridine is integrated into transcribed 

mRNA and generates a pool of labeled mRNA.  At time-point t=0, 4-thiouridine is added to the 

cells and the total mRNA amount at any time t 0 consists of preexisting mRNA (unlabeled) and 

nascent mRNA (labeled). Without any disturbance of the cells, the total mRNA amount per cell is 

considered to be constant over time, because constant synthesis and decay rates basically 
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determine an equilibrium if averaged over a cell cycle period (“steady-state” assumption). This 

assumption is valid, because – although different sets of transcripts exhibit variations in 

synthesis and decay rates during cell cycle – we measure a large, unsynchronized ensemble of 

cells. The steady-state assumption also averages temporal fluctuations of transcript levels. Thus, 

for unsynchronized cells, DTA measures the average mRNA synthesis and decay rates.  

 

Synthesis- and decayrates under steady state assumption: Synthesis and decay rates determine a 

mRNA equlibrium (steady state). Assuming that the total mRNA levels are constant over time, 

the amount of newly synthesized mRNA after normalization is equal to the amount of 

preexisting mRNA which is decayed within the same time. An increase of total mRNA abundance 

over all cells is proportional to an increase in cell number during labeling time. Since cells are 

labeled during mid-log phase an increase in cellnumber follows an exponential growth. 

Therefore we define a constant growthrate  We assume that a specific mRNA (originating from 

the corresponding gene) decays with a constant decay rate , if no other processes interfere, the 

unknown decay rate can be obtained by solving for lg. Once the decay rate is known, the 

corresponding half-life is given by (ln 2)/lg. The steady-state assumption implies that mRNA is 

decayed at the same rate as they are synthesized.  

 

Model improvement: The basic assumptions derive a model that describes an idealized state 

which does not cover experimental limitations, e.g. mRNA labeling efficiencies, incomplete 

biotinylation and strepavidin purification, technical variance, etc.; Moreover the model does not 

account for unsystematic experimental variations. Therefore a set of parameters has to be 

defined which represents all significant discrepancies between the experimental conditions and 

the idealized model. Most parameters are not experimentally accessible and have to be 

iteratively converged. The parameter optimization were performed by Björn Schwalb and Achim 

Tresch and can be found in detail within the Supplementary Material to our publication (Miller, 

et al. 2011). 

 

2.7.5 Dynamics of mRNA synthesis and decayrates 

For conditions which might alter transcription globally, the steady state approach has to be 

extended. Under highly dynamic conditions, the total mRNA levels might not be assumed to be 

constant over time, because synthesis and decayrates are not necessarily in a dynamic 

equilibrium. Under those conditions, the total mRNA amount and any single mRNA population is 

dynamically growing with altered rates. This assumption was introduced into the static model 

described above by definition of an mRNA specific and time dependent “growth-rate” which 

describes the temporal variations of individual transcript levels. Due to the short labelingtime, 

we modeled the local dynamic behavior of the total mRNA by an exponential function.  The 

dynamic model was validated by complementary data for mRNA half-lives obtained by 

quantitative real-time PCR (MATERIALS & METHODS 2.7.6). The optimization of the dynamic model 

was performed by Björn Schwalb and Achim Tresch and description can be found in detail 

within the Supplementary Material to our published article (Miller, et al. 2011). 

 

2.7.6 Quantitative Real-Time PCR  

mRNA levels were determined for 8 genes:  act1 (YFL039C), ctt1 (YGR088W), gpd1 (YDL022W), 

kss1 (YGR040W), rdn1 (rRNA locus), sfg1 (YOR315W), stl1 (YDR536W), and tub2 (YFL037W).  
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The experiment was performed in two similar steps: Step 1 was performed under normal 

growth conditions whereas step 2 was performed the identically after addition of 0.8 M NaCl. 

mRNA levels were analyzed at 0, 2.5, 6, 10, and 16 min after addition of 1,10-phenanthroline 

(100µg/ml final concentration) and 0, 12, 30, and 36 min.  4-thiouridine labeling time (500 µM 

final concentration) for all samples was 6 min. RNA was extracted using the RiboPure-Yeast Kit 

(Ambion/Applied Biosystems), following the manufacturer’s protocol.  cDNA synthesis was 

performed with 500 ng RNA originating from total, unlabeled and labeled mRNA using the 

iScript cDNA Synthesis Kit (BioRad).  Primers were designed with the ProbeFinder software 

(Roche Applied Science) and individual primer-pair efficiency was tested and ranged between 

95%-100%. PCR reactions contained 1 µl DNA template, 2 µl of 10 µM primer pairs and 12.5 µl 

SsoFast EvaGreen Supermix (BioRad). Quantitative PCR was performed on a Bio-Rad CFX96 

Real-Time System (Bio-Rad Laboratories, Inc.) using a 3 min denaturing step at 95°C, followed 

by 49 cycles of 30 s at 95°C, 30 s at 61°C and 15 s at 72°C. Threshold cycle (Ct) values were 

determined by application of the corresponding Bio-Rad CFX Manager software version 1.1 

using the Ct determination mode “Regression”. Two biological and three technical replicates 

were used for each time point and technical variance was minimized using in-plate controls. 

 

2.7.7 Estimation of mRNA labeling efficiency 

The model is based on the incorporation of 4-thiouridine into newly synthesized transcripts. 

Therefore, the correction for incomplete 4-thiouridine labeling (labeling bias)  is essential for 

data normalization. Because the biotinylation and purification efficiency was already corrected 

by introduction of a set of parameters (MATERIALS & METHODS 2.7.4), we assumed here that every 

biotinylated transcript contributes to the measured labeled mRNA fraction. Under the 

assumption that incorporation of uridine resp. 4-thiouridine at each position occurs 

stochastically and independently, the labeling bias can be described as the probability that a 

newly synthesized single mRNA does not accidently incorporate a 4-thiouridine at a uridine 

position. Based on this, the labeling bias is dependent on the number of uridines within a certain 

transcript. Therefore, the labeling bias results in a systematic, non-linear prolongation of mRNA 

half-life estimates, which might have a stronger impact on shorter transcripts. The introdution of 

the labeling bias into the model were performed by Björn Schwalb and Achim Tresch. The 

labeling-bias correction was extensively simulated and details can be found within the 

Supplementary Material to our published article (Miller, et al. 2011).  

 

2.7.8 Genomic occupancy profiling 

For genomic occupancy profiling by ChIP-chip we used S. cerevisiae strain BY4741 containing a 

C-terminal tandem affinity purification (TAP) tag on the Pol II subunit Rpb3 (Open Biosystems). 

We confirmed that the TAP tag was at the correct genomic position, that the tagged Rpb3 

subunit was expressed, and that the strain grew normally at 30°C. Yeast cells were grown in YPD 

medium until exponential phase (OD600 ~ 0.8) and then were stressed by the addition of 0.8 M 

NaCl. ChIP-chip was performed for biological replicates 0, 12, and 24 min after salt addition with 

high-resolution tiling microarrays and data were analyzed as described (Mayer, et al. 2010). 

 

2.7.9 Rank gain analysis: 

Rank gain analysis was introduced to the dynamic DTA formalism to replace the total least 

squares regression as the first step in steady-state estimation. To identify genes, which exhibit 
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induction or repression during osmotic stress, we considered the gain or loss of ranks relative to 

the initial timeframe 0-6 min. This procedure is considered to be more robust than the fold 

change approach, because of the assumption that most genes do not respond to the osmotic 

stress. To identify induced or repressed genes, synthesis rates were ranked for each time frame: 

0-6, 6-12, 12-18, 18-24, 24-30 and 30-36 min. Genes demonstrating similar rankgains were 

categorized into 5 cluster: The up-cluster contains genes showing a rank gain of more than 2000, 

the up-even cluster between 1000 and 2000 and the even-cluster between 1000 and 1000. The 

down-even cluster contains genes which show a rank-gain between -1000 and -2000, the down 

cluster lower than -2000. With this approach, a set of 480 genes was identified, whose mRNA 

stability exhibit a rank gain below 500 during the osmotic stress response. Thus, as this set of 

genes exhibits no significant variation during osmotic stress, this set is considered as stable 

mRNA and used for linear normalization of the labeled datasets. The rank gain analysis was 

introduced by Björn Schwalb and Achim Tresch and details can be found within the 

Supplementary Material to our published article (Miller, et al. 2011).  

 

2.8 Mediator Phosphorylation 

2.8.1 Cell growth and SILAC 

For purification of endogenous Mediator, we introduced a tandem affinity purification (TAP) tag 

at the N-terminus of Med17 in S. cerevisiae strain RS453 with mating type alpha (Puig, et al. 

2001). For SILAC, we modified this strain by disruption of the lys1 gene with KanMX6 to 

introduce lysine auxotrophy. Cells were grown in YPD or SILAC media (Table 6) at 30oC to late 

log-phase. For stable isotope labeling, SILAC media contained 30 mg/l 13C6-, 15N2-lysine (heavy 

lysine, Cambridge Isotopes) for the salt stress sample, or 30 mg/ml 12C6-, 14N2-lysine (light lysine, 

Sigma Aldrich) for the control. Salt stress was introduced by adding crystalline sodium chloride 

to the heavy lysine-containing media to a final concentration of 0.5 M. After incubation for 

20 min, equal amounts the two populations were mixed. 

 

2.8.2 Purification of endogenous Mediator proteins 

Cells were lysed by beat-beating (500 rpm, 4 min, 2 cycles) using glassbeads (0.5 mm diameter). 

Purification of endogenous Mediator using ProteinA/IgG (GE healthcare) affinity precipitation 

was performed as described (Puig, et al. 2001), except that all buffers contained 1 mM 

dithiotreitol (DTT), protease inhibitors (Table 7), and phosphatase inhibitors (40 mM p-

nitrophenylphosphate, 2 mM sodium-pyrophosphate, 2 mM sodium ortho-vanadate, 50 mM 

sodium fluoride). IgG-bound proteins were washed with high salt buffer (Table 8) and low-salt 

buffer (Table 8). Proteins were cleaved from IgG beads by tobacco edge virus (TEV) protease for 

60 min at 18oC. Eluted proteins were precipitated by adding four volumes of methanol, one 

volume of chloroform, and three volumes of protease-free double-distilled water. After 

centrifugation, the pellet was washed with four volumes of methanol and centrifuged again. 

Remaining methanol was discarded and the proteinprecipitate was dried. A sample was 

analyzed by 4-12% SDS-PAGE (NUPAGE, Invitrogen).  

 

2.8.3 Mass spectrometry 

The protein pellet was dissolved and denatured in 8 M urea (Roth), reduced with 1 mM DTT for 

45 min and alkylated with 5 mM iodoacetamide for 45 min. Proteins were digested in solution 

either with endoproteinase trypsin or Lys-C (Wako) overnight at room temperature. 
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Phosphopeptide enrichment was performed using titanium dioxide (TiO2) beads (Larsen, et al. 

2005). LC-MS/MS analysis was performed on an LTQ-Orbitrap instrument (Thermo Fisher) 

connected to a nanoflow HPLC system (Agilent 1100 or Proxeon EASY-nLC system) through a 

Proxeon nanoelectrospray ion source. Peptides were separated on an in-house packed 75 μm 

reversed-phase C18 column. Survey scans were acquired in the Orbitrap analyzer and the ten 

most intense precursor ions were subjected to collision-induced fragmentation and acquisition 

in the ion trap.  The instrument was operated with the “lock mass option” (Olsen, et al. 2005) 

and multistage activation was enabled to improve phosphopeptide fragmentation. The MS raw 

data files were processed with MaxQuant (version: 1.1.1.18) (Cox, et al. 2008; Cox, et al. 2009). 

The MS/MS spectra were searched against the concatenated target decoy S. cerevisiae ORF 

protein database, concatenated with reversed versions of all sequences and combined with the 

most commonly observed contaminants. Enzyme specificity was set to Lys-C and up to three 

missed cleavages and three labeled lysine residues were allowed. Cysteine 

carbamidomethylation was considered as a fixed modification, and methionine oxidation, 

protein N-acetylation and phosphorylation on serine, threonine and tyrosine residues were set 

as variable modifications. 

 

2.8.4 Generation of  med15 mutant strains  

D7P and D30P mutant strains were generated in three steps. First, to replace selected 

phosphorylated serine and threonine residues in the Med15/YOL051w coding sequence by 

alanine (Chapter IV, Table 21 and Table 22), we synthesized (GeneART) a DNA construct 

containing the 5’-UTR (583 bp upstream). The modified coding sequence of Med15/YOL051w 

(D30P mutant-sequence), and the 3’UTR (624 bp downstream) were inserted in vector prs-315 

(AMP/Leu) (Sikorsky, et al. 1989) under the control of the cen6/arsh4 promoter with the use of 

NotI/SalI restriction sites. Second, a Med15/ YOL051w::URA3 strain was generated by 

integration of a Ura3 cassette harboring overlapping sequences to Med15/YOR051w 5’- and 3’-

UTR regions into BY4741 strain (MATa , his3Δ1, leu2Δ0, met15Δ0, ura3Δ0, Euroscarf) by 

homologous recombination. Med15/YOL051w::URA3 strain was selected twice on URA minus 

medium and confirmed by sequencing. Third, the Ura3 cassette was removed by D7P or D30P 

mutant sequence using homologous recombination and selected twice on 5’-fluorotic acid (5’-

FOA) containing media. The exact genetic position and completeness of the genomic D7P or 

D30P mutant insertion were analyzed by sequencing. For mutant D7P all steps were as above 

except that we synthesized (Invitrogen) a DNA construct containing the Med15 positions (2114 

bp and 3333 bp) with the modified coding sequence of Med15/YOL051w (D7P mutant-

sequence), in vector prs-315 (AMP/Leu), and that we generated a Med15/YOL051w::URA3 

strain by integration of a Ura3 cassette harboring overlapping sequences to Med15/YOR051w 

between the relative postions 2139 bp and 3243 bp into BY4741 strain (MATa, his3Δ1, leu2Δ0, 

met15Δ0, ura3Δ0, Euroscarf). 

 

2.8.5 DTA of D7P, D30P and med15 

For DTA, the D30P, D7P and med15 mutant and wild-type strains (BY4741, MATa, his3Δ1, 

leu2Δ0, met15Δ0, ura3Δ0, Euroscarf) were transformed with plasmid YEpEBI311 (2 micron, 

Leu2) carrying the human equilibrative nucleoside transporter hEnt1. Cells were grown in 

SILAC media without leucine. Cells were grown to mid-log-phase of 0.8 (corresponding to 

1.75x107 cells). For control samples, 4-thiouridine (SIGMA) was added to the media and 
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adjusted to a final concentration of 500 µM. Cells were further incubated for 6 min (labeling 

time) and harvested by centrifugation at 4000 r.p.m. for 1 min. For stress samples, sodium 

chloride was added to the sample to a final concentration of 0.8 M. 4-thiouridine was added 

18 min after salt addition and cells were harvested after 6 min labeling time as above. DTA was 

performed with Affymetrix arrays as described in this section.  

 

2.8.6 Sensitivity screen  

We tested the med15 mutant for sensitivity to high salt conditions and med15 deletion mutant 

for different stress conditions. Wild-type (BY4742, Euroscarf), med15 mutant,med15 deletion 

mutant cells (MATalpha, his2Δ1, leu2Δ0, met15Δ0, ura3Δ0; YOR051w::KanMX; (Euroscarf)) and 

hog1 deletion mutant (MATalpha, his2Δ1, leu2Δ0, met15Δ0, ura3Δ0; YLR113w::KanMX; 

(Euroscarf)) were grown in liquid YPD media (1% yeast extract, 2% bacto-peptone, 2% glucose, 

2% agar, 200 mg/liter adenine) to mid logarithmic phase. The cells were pelleted by 

centrifugation and washed twice with sterile, double distilled water. The first cell suspension 

was adjusted to an optical density at 600 nm to 1.0 and diluted in 1: 10 steps to 10-1, 10-2, 10-3, 

10-4. The resulting cell suspensions were spotted on YPD/agar solid media and incubated either 

at 25oC, 30oC or 37oC 3 days or 5 days. Sensitivity to high salt concentrations was tested by the 

same procedure except that YPD/agar solid media contained either 0, 0.4 M or 1.2 M sodium 

chloride (med15 deletion mutant) or 0, 1.2 M (med15 mutant) and cells were incubated at 30oC 

for 5 days. 

 

2.8.7 Comparative DTA (cDTA) 

For cDTA, we used the published protocol (Sun, et al., 2012), with the following exceptions. The 

D7P mutant strain, med15 and wild-type strain (BY4741, MATa, his3Δ1, leu2Δ0, met15Δ0, 

ura3Δ0, Euroscarf) were transformed with plasmid YEpEBI311 (2 micron, Leu2) carrying the 

human equilibrative nucleoside transporter hEnt1. Cells were grown in SILAC media without 

leucine to mid-log-phase of 0.8 (corresponding to 1.75x107 cells) and labeled with 4sU for 6 min. 

Cells were centrifuged at 2465 x g at 30oC for 1 min and re-suspended in RNAlater solution 

(Ambion/Applied Biosystems). The cell concentration was determined by Cellometer N10 

(Nexus) before flash-freezing in N2 (liq). Schizosaccaromyces pombe (Sp) cells were grown in YES 

medium overnight, diluted to OD600=0.1 and grown to OD600=0.8. 4sU (SIGMA) was added to a 

final concentration of 500 µM and cells were incubated for 6 min. Cells were centrifuged at 

2465 g at 30oC for 1 min and re-suspended in RNAlater solution (Ambion/Applied Biosystems) 

before flash-freezing in liquid nitrogen. The Sp cells were taken from a general stock to eliminate 

errors by experimental variations. Sp cells were counted by Cellometer N10 (Nexus) and mixed 

with Sc cells in a 1:3 ratio, resulting in 4 x 108 cells in total. Control and stress samples were 

treated as described in this section. Total RNA extraction, labeled RNA purification, sample 

hybridization, and microarray scanning were as described in this section and (Sun, et al., 2012). 

 

2.9 Mediator Subunit Rox3 

2.9.1 Recombinant expression of Saccharomyces cerevisiae Rox3 

Recombinant Rox3 protein variants were expressed with E. coli BL21- Codon plus (DE3)RIL cells 

(Stratagene) as described in MATERIALS & METHODS section 2.1. After centrifugation at 4400 g for 

20 min at 4oC (Sorvail, SLC-6000), the cells were resuspended in Rox3-buffer A with  protease 

inhibitors (MATERIALS & METHODS section, Table 1.7). Cell lysis was performed as described 



CHAPTER II: MATERIALS & METHODS  

 

 

 

- 44 - 

 

MATERIALS & METHODS section 2.1) with the following exceptions: Sonication was performed for 

12 min with 25% duty cycle and 40% output on ice. The cell lysate was centrifuged two times at 

16.000 rpm for 30 min at 4oC (Sorvail, SS34 rotor).  

 

Purification by Ni-NTA: Corresponding to a 2 l expression culture volume, a 2 ml colomn of Ni-

NTA (Qiagen) was prepared and equilibrated with Rox3-buffer A (Material & Method section, 

Table 1.7). The clearified lysate was loaded to the Ni-NTA colomn and the column was washed 

with 12 column volumes (CV) of Rox3-buffer A, 25 CV of Rox3-buffer A containing 20 mM 

imidazole and finally with 3 CV buffer B (Table 8). Proteins were eluted from the column with 

Rox3-buffer B containing 300 mM imidazole. Samples from the pellet, cell lysate, washing steps 

and elution were analyzed by SDS-PAGE (MATERIAL & METHOD 2.1). The proteins were purified 

by anion exchange chromatography using the MonoQ (5/50, GE Healthcare). The MonoQ column 

was preequilibrated with MonoQ-buffer A (Material & Method section, Table 1.7) and proteins 

were eluted with 10 CV gradient until 50% MonoQ-buffer B (Table 8). The elutionfractions were 

collected and analyzed by SDS-PAGE. After concentration (10 kDa cutoff) the sample was applied 

to size exclusion chromatography (Superose 12, GE Healthcare), and equilibrated with Rox3-

buffer B (Table 8).  

 

Purification by Streptavidin: Corresponding to a 2 l expression culture volume, Rox3 variants 

were purified with 1 ml Strep-Tactin MacropPrep (IBA) by gravity flow colums (BioRad) 

according to the manufacturer’s instructions. The column was equilibrated with Rox3buffer A 

(Table 8), before the clarified lysate was loaded (note that the manufacturer recommends the 

addition of avidin to the cell lysate). The bound proteins were washed with 12 column volumes 

(CV) of Rox3buffer A, 5 CV of Rox3buffer B (Table 8). Proteins were eluted by addition of d-

Desthiobiotion (IBA) and concentrated in a 10 kDa MWCO spin concentrator and applied to size 

exclusion chromatography (Superose 12, GE Healthcare), and equilibrated with Rox3buffer B.  

 

2.9.2  In vitro transcription assays 

An in vitro transcription assay was used to quantify the activity of various Rox3 protein variants 

to activate transcription of a model plasmid (the in vitro transcription assay was performed by 

Martin Seizl, Cramer lab, Gene Center, Munich). Nuclear extracts were prepared from 3 l of 

culture as described  elsewhere (Hahn lab, www.fhcrc.org/labs/hahn) and plasmid transcription 

was performed essentially as described (Ranish and Hahn, 1991). Transcription reactions were 

carried out in a 25 ml volume. The reaction mixture contained 100 mg nuclear extract, 150 ng of  

pSH515 plasmid, 1_ transcription buffer (10 mM HEPES pH 7.6, 50 mM potassium acetate, 

0.5 mM EDTA, and 2.5 mM magnesium acetate), 2.5 mM DTT, 192 mg of phosphocreatine, 0.2 mg 

of creatine phosphokinase, 10U of RNase inhibitor (GE Healthcare), and 100 mM nucleoside 

triphosphates. For activated transcription, 150 ng of Gal4–VP16 or 200 ng of Gal4–Gal4AH was 

added. The reaction was incubated at room temperature for 40 min and then stopped with 180 

ml of 100mM sodium acetate, 10mM EDTA, 0.5% sodium dodecyl sulphate, and 17 mg of 

tRNA/ml. Samples were extracted with phenol–chloroform and precipitated with ethanol. 

Transcripts were analyzed by primer extension essentially as described (Ranish & Hahn, 1991). 

Instead of the 32P-labelled lacI oligo, 0.125 pmol of a fluorescently labelled 50-FAM-oligo was 

used. Quantification was performed with a Typhoon 9400 and the ImageQuant Software (GE 

Healthcare). 
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2.10 Supporting Methods 

2.10.1 Preparation of TEV protease 

Tabacco egde virus protease was recombinantly expressed in E. coli as described in section 

(MATERIALS & METHODs 2.1). The coding sequence of N-terminally tagged His6-TEV protease was 

cloned into a pET-24d vector (plasmid was friendly supplied by Arie Geerlof). The cell pellet was 

resuspended in 30 ml lysis buffer (50 mM Tris HCl pH8.0, 200 mM NaCl, Protease Inhibitor mix,  

40 µl DNaseI (1 mg/ml). The suspension was lysed by sonication for 20 min using a flat 0.5’’ 

working tip with 20% duty time and 40% output on a Branson sonifier system. The resulting cell 

extract was centrifuged at 24000 g (Sorvail, SS-34 rotor) for 20 min followed by 

ultracentrifuging step for 30 min at 27.000 rpm (SW32 rotor, Beckman). Imidazole was added to 

the clarified lysate to a final concentration of 10 mM and applied to 5 ml Chelating Sepharose 

column (Pharmacia), charged with NiCl2 and equilibrated with chelating buffer (50 mM Tris-HCl 

pH8.0, 300 mM NaCl, 1 mM ß-mercaptoethanol, 20% (w/v) glycerol) containing 10 mM 

imidiazole. The column was washed with 10 CV chelating buffer containing 30 mM imidazole 

before the protein was eluted with chelating buffer containing 300 mM imidazole. The protein 

solution was loaded onto a 50 ml HiTrap 26/10 desalting column (GE healthcare) and 

preequilibrated with desalting buffer (50 mM Tris-HCl pH 8.0, 150 mM NaCl, 1 mM DTT, 20% 

(w/v) glycerol). The fractions were pooled and glycerol was added to a final concentration of 

50% (w/v) glycerol and stored at -80oC. 

 

 
 
Figure 4: Vectormap of mCherry vectors VCH2 and Ycplac33-mCherry. A The VCH2 vector can be used in yeast for creation of N-
terminal tagged proteins with mCherry. B The Ycplac33-mCherry vector allow for creating C-terminal tagged proteins with mCherry 
in yeast. 

2.10.2 Generation of mCherry vectors for S. cerevisiae 

VCH2-vector: The coding sequence mCherry coding sequence from the pRSET-B mCherry vector 

was amplified by PCR and cloned into the yeast puc36 vector to replace the GFP coding 

sequence. This construct allowed for N-terminal tagging of proteins with mCherry (MATERIALS & 

METHODS, classical cloning)  



CHAPTER II: MATERIALS & METHODS  

 

 

 

- 46 - 

 

Ycplac33-mCherry-vector: The mCherry coding sequence from the pRSET-B mCherry 

vector was amplified by PCR and cloned into the yeast Ycplac33 into the multiple cloning site. 

This construct allowed for C-terminal tagging of proteins with monomeric fluorescence protein 

mCherry (Shanner, et al. 2004).  
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1. Introduction 
 

 

1.1 Dynamic coordination of mRNA synthesis and decay 
 

The flexibility of living organisms to adapt to environmental changes is a key competence for 

survival. This phenomenon is based on the ability of all living organisms to switch dynamically 

between alternative gene expression programs. The dynamic reprogramming adjusts 

homeostasis, governs differentiation in response to environmental signals and adaption to 

stress. Regulation of dynamic reorganization of gene expression requires a tightly coupled 

network that generates transcripts with optimal timing and efficiency, coordinates transcription, 

post-transcription and protein production, and combines robustness to flexibility of re-adaption 

(Keene, et al. 2007). 

Most studies on gene expression regulation are focused on mechanistic details of 

transcription and the principles that control mRNA production. However, recent studies 

revealed that post-transcriptional mechanisms are involved in gene expression control, 

especially variation of mRNA stability during stress response (Petersen & Lindquist, 1988; 

Bönisch, et al. 2007; Romero-Santacreu, et al., 2009). To understand the principles and 

mechanisms that control gene expression, it is essential to monitor transcriptional and post-

transcriptional events within a well defined context. The response to environmental changes 

induce extensive dynamic reorganisation of gene expression, which require regulation on both 

levels, mRNA synthesis and decay.  

Changes in mRNA synthesis and decay rates must be measured without perturbation of 

the cellular system and the changes in mRNA synthesis and decay rates must be monitored 

globally and with high temporal resolution. However, this cannot be achieved by standard 

transcriptomics, which only measures mRNA abundance. Current methods for mRNA half-live 

determination use heat shock, chemical inhibitors or sarkosyl to achieve transcriptional 

inhibition. These methods measure mRNA abundance and either mRNA  half-lives or synthesis 

rates. However, to study regulation of gene expression, the simultaneous measurement of mRNA 

synthesis and decay rates is essential to reveal transcriptional and post-transcriptional control 

principles. 

Post-transcriptional mRNA processes are regulated by mRNA binding ribonucleoproteins 

(RNPs), which recognize specific mRNA features such as secondary structure elements or 

sequence motifs and direct mRNA to the decay machinery (Parker & Sheth, 2007; Halbeisen, et 

al. 2006; Halbeisen, et al. 2009). RNPs may control groups of functionally related genes, which 

are regulated by similar signatures. This kind of coregulation at the post-transcriptional level 

was denoted as “RNA operons” or “decay regulons” (Keene & Tenenbaum, 2002; Wang, et al. 

2002) and has been shown to regulate gene expression in S. cerevisiae, D. melanogaster and 

mammalian cells (Keene, et al. (2007). 
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1.1.1 Variation of synthesis rates in response to environmental changes 

Variation of synthesis rates in response to environmental changes reveal a general discrepancy 

between temporal variation of total mRNA levels and synthesis rates. A lack of parallelism 

between the temporal variation of total mRNA levels and synthesis rates revealed a time delay 

between total mRNA levels and transcription rates (Molina-Navarro, et al. 2008; Hayles, et al. 

2010). It might be a general feature that changes in synthesis rates are more intense and faster 

than changes in total mRNA abundance, indicating that synthesis rates enable a dynamic 

monitoring of transcriptional activity in response to osmotic stress (Romero-Santacreu, et al. 

2009). 

 

1.1.2 mRNAPs and transcript stability determinants 

The two main signals that determine mRNA stability are located at both ends of mRNAs: 5’cap 

(7-methylguanylate) and poly(A) tail at the 3’end. These stability determenants are introduced 

cotranscriptionally and function in two ways: First, both act as safeguards by protecting mRNA 

against exonucleases and therefore ensure a controlled appropriation for translation. The 

second function is to provide a platform for mRNA binding proteins (mRNPs) wich are involved 

in regulation of translation, cotranslational processes, storage and, at least, degradation of the 

transcripts. 

Besides the  5’cap and poly(A) tail, there are other elements which influence mRNA 

stability. In eukaryotes, mRNA stability is regulated by sequence elements predominantly found 

in the 3’-UTR. The best studied sequence elements are AU-rich elemtens (ARE) (Garnau, et al. 

2007). In human cells, Khabar, et al. (2005) showed that more than 8 % of the human 

transcriptome are mRNA containing AU-rich-elements, which encode e.g. for cytokines, proto-

oncogenes, transcription factors and for proteins involved in a variety of cellular processes, such 

as cell growth, signal transduction as well as transcription and translation control. AU-rich 

elements are recognized by regulatory proteins, such as human tristetraproline (TTP), AU-rich 

binding factor-1 (Auf1) and KH splicing regulatory protein (KSRP). This proteins bind to ARE 

and recruit the mRNA decay machinery to target transcripts. These factors interact directly or 

indirectly  with the mRNA decay machinery. For example, Auf1 interacts with the Exosome 

(Chen, et al. 2001) and recruit the Exosome for degradation on ARE-containing mRNAs. KSRP 

binds to both the PARN deadenylase and the Exosome which results in an accelarated decay of 

selected mRNAs (Gherzi, et al. 2004; Tran, et al. 2004). However, AU-rich elements not only lead 

to an accelarated decay of certain transcripts, but – in some cases – AREs have a stabilizing effect 

on selected transcripts. This discrepancy can be explained by a competition between stabilizing 

and destabilizing factors. It was shown in S. cerevisiae that AREs are recognized by the poly(A) 

mRNA binding protein Pub1 which plays a central role in stabilization of  transcripts (Ruiz-

Echevarria, et al. 2000). 

In addition to AREs, other sequence elements has been identified that modulate mRNA 

stability. In S. cerevisiae, mutation analysis identified sequences which have an intrinsic 

stabilizing effect on transcripts. These stabilizer elements (STE) are located in the mRNA 5’-

region and have been found to modulate stability of the mRNA encoding for transcription factor 

Gcn4. STEs are recognized preferentially by the poly(A) mRNA binding protein Pub1 which 

stabilizes the gcn4 transcript and modulates Gcn4 dependent metabolic processes, such as 

amino acid biosynthesis. It has been shown that mutations in the STE lead to destabilization of 

the gcn4 transcript by targeting mRNA to nonsense-mediated decay (NMD). Similar 
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observations have been made for the transcript encoding for Yap1, a central regulator of the 

oxidative stress response in yeast. This observations indicate that post-transcriptional processes 

contribute to regulation of transcription factors (Hinnebusch et al. 1997; Ruiz-Echevarria, et al. 

2000; Bernard, et al. 2004; Rebbapragada, et al. 2009).  

 

1.1.3 Coregulation and operons 

RNPs provide a mechanism to coregulate gene expression, which has been described as post-

transcriptional RNA regulons (Keene, et al. 2007). In S. cerevisiae, for example, a subset of 154 

mRNAs, which encode for mitochondrial proteins, were selectively recognized by Puf3 (Garcia-

Rodriguez, et al. 2007). Puf3 interacts with a cis-acting consensus binding motif (UGUANAUA), 

represses translation of these transcripts and leads to their stabilization (Wickens, et al. 2002). 

The Puf3 function is coupled with the type of cellular carbonsource: Puf3 mRNAs are unstable in 

cells grown in glucose but stable when ethanol is provided as carbon source.  

Other proteins of the Puf family are involved in coregulation of functional related 

transcripts and imply that each Puf protein is involved in selevtive cellular processes (Foat, et al. 

2005). Each of the Puf family proteins (Puf1-Puf5) bind a distinct subpopulation of mRNAs that 

encode for proteins with related functions, such as spindle body components, nuleolar 

regulatory proteins,  chromatin remodeling enzymes and membrane proteins. Over 700 mRNAs 

(approx. 10% of the transcriptome) are targets of the five Puf RNPs (Gerber, et al. 2004; Keene, 

et al. 2007 and Refs. within). The mechanism of regulating mRNA stability has been investigated 

in detail for mRNAs of cox17, tif1, hxk1 and HO endonuclease (Olivas & Parker , 2003, Ulbrecht, 

et al. 2008). HO endonuclease is involved in mating-type switching within the late G1 cell cycle 

(Hershkowitz, et al. 2000). HO expression is regulated on the post transcription level: A specific 

mRNA consensus sequence on the 3’-UTR is recognized by Puf5, which together with Puf4 

regulates HO mRNA stability (Goldstrohm, et al. 2006; Tadauchi, et al. 2001; Goldstrohm, et al. 

2007). Hook, et al, (2007) could show that in a Puf4 mutant, the mRNA half-live increased from 

9 min in wild-type cells to 19 min. The Puf5 mutant shifted the half-live to 35 min, whereas the 

Puf4-Puf5 double mutant showed an increase of mRNA half-live to 90 min.  Obviously, Puf4-Puf5 

mark HO mRNA for accelerated degradation and therefore act as negative regulators of HO. 

Evidence for a potential mechanism cames from the observation, that Puf4 directly binds Pop2, 

which is member of the Ccr4-Not deadenylase. Interestingly, Puf5 is a target of two MAP kinases 

(Fus3 and Kss1), and the cell cycle kinase Cdc28, which seems to be the regulatory interface of 

Puf5 to the signaling pathway of cell cycle control (Wickens, et al. 2002) and might function as 

connection between gene expression control and mRNA metabolism.  

 

1.1.4 RNA half live and cell cycle time  

Several global studies on mRNA half live determination have been performed in bacteria, plants, 

mammalian and yeast. The median mRNA half lives ranged from 5.7 min in Escherichia coli 

(Bernstein, et al. 2001), 10 min in Halobacterium salinarium (Hundt, et al. 2007) to 3.8 h in 

Arabidopsis thaliana (Narsai, et al. 2007). In mammalian cells, the median mRNA half lives varied 

from 7.1 h in mouse embryonic stem cells (Sharova, et al. 2009) to 10 h in human hepatocellular 

carcinoma cells (Yang, et al. 2003). In S. cerevisiae, transcript half lives were preferentially 

determined by using a temperature sensitive mutant of the largest Pol II subunit Rpb1 (Rpb1-1) 

(Nonet, et al. 1987). The median mRNA half live of S. cerevisiae was determined by several 

studies to lies between 19 min to 34 min (Holstege, et al. 1998; Grigull, et al. 2004; Wang, et al. 
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2002; Shalem, 2008). Since the median mRNA half lives vary considerably throughout the 

different species, Yang and colleagues postulated the dependence between median transcript 

half live and cell cycle time (Yang, et al. 2003). 

 

1.1.5 Post-transcriptional regulation of response to osmotic stress 

Stability modulation of selected mRNAs has been observed to be one level that is used by MAP 

kinases to coordinate reorganisation of gene expression in response to environmental changes 

(Shalem, et al. 2008; Lai, et al. 2002; Molin, et al. 2009; Romero-Santacreu, et al. 2009; Grigull, et 

al. 2004). The human Hog1 homologue, p38, stabilizes the cytokine mRNAs regulating the 

binding of destabilization factor TTP (tristetraprolin) to AU-rich elements (ARE) in the 3’-UTR 

(Sandler, et al. 2008). The yeast mRNA tif51a, whose stability is regulated by its ARE, is 

destabilized when Hog1 function was inhibited (Vasudevan & Peltz, 2001). In S. cerevisiae, the 

hxt1 (encoding for transmembrane glucose transporter) mRNA was stabilized under osmotic 

stress conditions (Greatrix, et al. 2006). 

Genome wide studies on mRNA stability in yeast suggested that mRNA decay contribute 

to genetic regulation of stress response and nutrient deprivation (Grigull et al. 2004). During the 

initial phase, global transcript stability decreases within 6 min after stress induction, whereas 

stress-responsive transcripts exhibit an increase in stability (Molin, et al. 2009; Romero-

Santacreu, et al. 2009). After 30 min, a sharp decrease in mean stability of all initially stabilized 

stress related transcripts was observed, whereas stress-repressed genes become stabilized, 

indicating a cellular adaption to stress. The changes in stability between 6 and 30 min correlate 

with changes in steady-state levels between 30 and 60 min indicating that changes in transcript 

stability precede steady-state levels after osmotic shock. Hog1 affects both, steady-state levels 

and stability of stress-responsive transcripts and the modulation is dependent on the applied 

osmotic pressure (Molin, et al. 2009; Romero-Santacreu, et al. 2009): After treatment with 0.7 M 

NaCl, the levels of induced mRNAs peak after 45 min (Rep, et al. 2000), while lower salt 

concentration causes earlier peaking (Posas, et al. 2000).  

 

1.2 mRNA half-live determination 

Standard transcriptomics are focused on differentially expressed genes by measuring changes in 

mRNA abundance. However, mRNA abundance levels are the result from an equilibrium 

between mRNA synthesis and decay. Therefore, changes of mRNA abundance levels are 

determined by alterations of mRNA synthesis and decay rates. Since standard transcriptomics 

monitor relative changes in mRNA levels, expression profiling is unable to measure changes in 

mRNA synthesis and decay. To overcome this limitation, standard transcriptomics has been 

combined with additional experimental approaches: 

Current experimental methods in yeast follow two distingt strategies for analyzing the 

mRNA synthesisrates, half-live and decayrates. The first strategy allows for measurement of 

transcript half-live and decayrates by using transcription inhibitors. The second strategy 

monitors nascent mRNA synthesis and transcript stabilities by using the genomic-run-on 

technique. This technique is based on the blockage of cellular functions by treatment with 

sarkosyl, which is combined with radioactive labeling during a subsequent run-on reaction 

(Hiroyashi, et al. 1999; Garcia-Martinez, et al. 2004).  

However, both strategies use invasive experimental steps which have negative side 

effects. An alternative approach for unperturbed measurement of mRNA synthesis and decay 
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rates uses labeled mRNA. While these principles have been successfully used for mammalian, 

insect and plant cells, this approach is not applicable for yeast. 

 

1.2.1 Inhibitors 

The first approach to measure mRNA stability in terms of half-lives and underlying kinetics is 

achieved by blocking transcription followed by analysis of mRNA abundance at several time 

points. Under the assumption that mRNA decay is a stochastic process and can be described by 

an exponential function, the change in mRNA abundance at any given time point is considered as 

first order process. Therefore, mRNA decay will be described by first derivation dC/dt, where C 

represents mRNA abundance present at time t. Assuming an idealized situation, in which 

transcription is completely inhibited at time-point t=0, the subsequent reduction of mRNA 

abundance during time-points t>0 is then a direct indication of mRNA half-live. To ensure a 

complete blockage of transcription at t=0, several Pol-II inhibitors have been used for studies in 

yeast and cultured cell lines of higher eukaryotes (for review see Ross, et al. 1995). As an 

overview, the predominantly used inhibitors and the temperature-sensitive Pol II mutant Rpb1-

1 are described in the following paragraphs. Recent studies, however, revealed that these 

experimental approaches have some negative side effects on transcriptomics.  

 

Actinomycin-D (ActD) 

Several studies on mRNA half-live in yeast as well as in higher eukaryotes made use of 

Actinomycin-D (ActD), thiolutin and 1,10-Phenantrolin (Phen). For example, Raghavan, et al. 

(2002) applied ActD to human T lymphocytes and identified short-lived mRNAs encoding for 

cytokines, cell surface receptors, signal transduction regulators, transcription factors, cell cycle 

regulators and regulators of apoptosis. ActD was recently used in archaea to analyze mRNA 

stability to identify novel RNA degrading characteristics (Evguenieva-Hackenbert, et al. 2008). 

Narsai, et al. (2007) treated cultured arabidopsis thaliana cells with ActD and showed, that 

genes possessing at least one intron produce significantly more stable transcripts as intron-less 

genes. However, recent studies revealed some severe drawbacks of ActD. ActD affects the 

cellular ATP pool and produces therefore significant side effects by influencing other ATP-

dependent processes (Ross, et al. 1995). This leads to considerable differences between results 

obtained with ActD and other methods utilizing less toxic compounds. Harrold, et al. (1991) 

compared values of mRNA half-lives of immunoglobulin heavy- and light chain encoding 

transcripts in mouse myeloma cells obtained from different methods. Surprisingly, the values 

ranged from 2.4 h (ActD) to 5.9 h (DRB). Additionally, actD binds to GC-rich sequences of DNA 

and inhibits RNA Pol II, which leads to DNA damage response and apoptosis. The DNA damage 

response activates several RNPs, such as human HuR, and AU-binding factor 1 (Auf1), which 

stabilize target mRNAs or modulate translation.  
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1,10-phenanthroline (Phen) 

1,10-phenanthroline (Phen) works as a chelating agent that forms stable complexes by 

coordination of bivalent ions, especially with Ni2+, Zn2+ and Mg2+(Chang, et al. 1970; Chang, et al. 

1978; Santiago, et al. 1986; Johnston, et al. 1994). The inhibitory effect on RNA polymerases has 

been described by Scrutton, et al. for E. coli (1971). Additionally, Phen has been observed to 

intercalate DNA, which probably contributes to shut-off transcription (Drew, et al. 1984). Phen 

has been deployed as inhibitor in a variety of studies on mRNA synthesis and halflive. Yin, et al. 

(2000) used Phen to analyze changes in mRNA stability encoding for fbp1 and pck1 in response 

at low glucose levels. They could show, that low glucose levels strongly repress transcription of 

both, fbp1 and pck1, and additionally lead to accelerated degradation of the corresponding 

mRNAs. In a genome-wide study, Grigull, et al. (2004) compared the changes in mRNA levels 

between Phen, cordyceptin, actD and thiolution with the temperature-sensitive mutant Rpb1-1 

in yeast. Among these inhibitors, Phen showed almost identical expression profile to Rpb1-1. 

Inhibition of transcription by Phen exhibits some drawbacks: First, Phen works as metalchelator 

that probably sequesters Mg2+ in the active center of RNA polymerases and it is most likely, that 

other magnesium dependent processes or enzymes are affected by Mg2+ depletion. Second, Phen 

induces heat-shock response in yeast. After treatment with Phen, hsp82 mRNA reach same levels 

as in response to heat-shock  (Adams, et al. 1991).   
 

Pol-II temperature-sensitive mutant: Rpb1-1 

The temperature-sensitive mutant Rpb1-1 has been identified by Nonet, et al. (1987).  By 

shifting the temperature from 240C to 360C, the authors observed a detectable reduction in 

mRNA abundance after 15 min and after 45 min, a significant loss in global mRNA abundance 

(Nonet, et al. 1987). The availability of a ts-mutant which shuts off exclusively Pol-II 

transcription enabled a number of studies producing interesting results in mRNA turnover and 

promoted yeast to become a modelorganism for studies on mRNA decay (Herrick, et al. 1990; 

Moore, et al. 1991; Li, et al. 1999; Grigull, et al. 2004; Wang, et al. 2002; Shalem, et al. 2008). For 

example, Holstege, et al. (1998) used the Rpb1-1 strain and combined transcriptional shut off 

with microarray analysis of global mRNA half-lives. With this approach, half-lives of 5735 

mRNAs were calculated. However, a major drawback of this strategy lies in the temperature shift 

which is necessary to shutoff transcription completely. Several studies observed a high 

induction of heat-shock response genes which might introduce a stress dependent change in 

mRNA stability and therefore to a potential bias in mRNA half-live determination (Preiss, et al. 

2003).  

 

1.2.2 Genomic run on (GRO) 

Genomic-run-on (GRO) has been developed to measure transcription rates and quantify mRNA 

abundance to obtain genomewide mRNA synthesis and decayrates under steady-state 

conditions (Birse, et al. 1997; Hirayoshi & Lis, 1999; Garcia-Martinez, et al. 2004). GRO is 

performed in three steps:  First, S. cerevisiae cells are permeabilized in a cold sarkosyl buffer for 

20 min which stops all physiological processes and disrupts all chromatin associated proteins 

with the exception of elongating RNA polymerases. Second, the run-on reaction is performed for 

5 min in the presence of  radioactive 33P-UTP label, which is incorporated into nascent mRNA 

molecules during elongation. Third, transcripts are isolated and hybridized on custom made 

nylon-microarrays. The values obtained in the GRO-experiment are proportional to the average 

density of  Pol II under the assumption of a constant Pol II elongation rate (Garcia-Martinez, et 
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al. 2004). However, GRO is an opportunity to measure mRNA kinetics, but there are some 

limitations: First, GRO requires sarkosyl to permeabilize the cell wall to ensure uptake of the 

radioactive label. This causes an instantaneous loss of nucleosidetriphosphate and a complete 

chromatin disruption (Pérez-Ortin, 2008; Hirayoshi & Lis, 1999). Second, GRO measures nascent 

mRNA synthesis rates. Nascent mRNA undergoes several quality control and processing steps 

until the mature mRNA is prepared for translation.  

 

 

1.3 Aim and scope of this project 

Cells confronted with threatening environmental changes rapidly reorganize cellular processes 

to ensure survival. This requires reorganization of the active gene expression program to 

synthesize specialized proteins and circumvent the pressure of stress.  Gene expression is a 

highly dynamic process, which induces response on different time scales to external 

perturbations. Dissecting this dynamic process, both functionally and mechanistically, is 

fundamental to understanding  gene regulation. The central question is, what mechanism 

underlie the dynamic reorganization of gene expression that process the external signal into a 

specific change in gene expression? 

The majority of studies dealing with regulation of gene expression is focused on 

regulation of transcription and utilize mRNA abundance as a measure of gene expression. 

However, RNA abundance results from the tightly coordinated balance between transcription 

and degradation. Therefore, reorganisation of the active gene expression program might be a 

question of regulating mRNA synthesis and stability. To follow the regulation of gene expression 

during stress response, dynamics in mRNA synthesis and degradation must be monitored 

simultanously, without perturbation of the cellular system. This cannot be achieved by standard 

transcriptomics, which only measure mRNA abundance and cannot resolve relative 

contributions of transcription and transcript half-lives to total RNA levels.  

The aim of this project was to monitor the contribution of RNA synthesis and decay to 

genetic expression. The yeast S. cerevisiae is an ideal model eukaryote for systematic analysis, 

but mRNA synthesis and decay cannot be measured without cellular perturbation.  

 In this study, we developed a novel method to measure simultaneously total mRNA 

abundance, mRNA synthesis and decay rates in the yeast S. cerevisae. We report on the 

development of metabolic labeling of RNA, referred to as dynamic transcriptome analysis (DTA). 

Metabolic labeling enables selective isolation of newly synthesized transcripts from total cellular 

RNA. DTA is an easy-to use, non-perturbing method, that allows for global and simultaneous 

monitoring of synthesisrates and transcript half-lives (section 2.1). We combined the metabolic 

labeling approach with Affymetrix microarray analysis and an advanced, quantitative dynamic 

model. DTA revealed changes in synthesis and decay rates at unprecedented sensitivity and 

temporal resolution (section 2.1.1, 2.1.2 and 2.1.3). Under normal conditions, RNA synthesis and 

decay rates were obtained under steady-state conditions for normal growth. RNA half-live 

distribution for more than 4000 genes of S. cerevisiae revealed the dynamics of cellular RNA 

during cell cycle (section 2.1.4). Our work revealed that synthesis and decay are uncoupled 

under normal growth conditions (section 2.1.5).  

In response to environmental changes, cells dynamically reorganize their gene 

expression programs within minutes. Following the stress stimulus, dynamics of mRNA 

synthesis and decay were monitored with temperal resolution (section 2.2). DTA was used to 

monitor the conserved osmotic stress response pathway, to investigate contributions in RNA 
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synthesis and decay to gene expression during genetic reorganization (section 2.2.1 to 2.2.5). 

DTA data were combined with Pol II occupancy profiles (ChIP-chip) which investigate 

connection of mRNA synthesis rates and Pol II redistribution during changes in the  active gene 

expression program (section 2.2.6). Our results establish DTA as a highly valuable tool for the 

analysis of dynamic changes in mRNA metabolism and as a method that can provide quantitative 

data for modeling complex gene-regulatory systems. 
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2. Results & Discussion 
 

2.1 Simultaneous analysis of RNA synthesis and decay rates in yeast 

Under normal growth conditions, stable mRNA levels result from transcription and degradation 

with constant rates, which lead to a dynamic equilibrium which sets total mRNA levels. 

Therefore, mRNA levels might be the result of a regulated balance between transcript synthesis 

and degration. To investigate mechanisms that control gene expression, it is essential to analyze 

the relative contributions mRNA synthesis and decay to total mRNA levels. For simultaneous 

measurement of RNA synthesis and decay in yeast, we established an experimental strategy for 

non-perturbing RNA labeling in yeast in combination with RNA microarray analysis and 

mathematical modeling.  

 

2.1.1 Non-perturbing RNA labeling in yeast 

Monitoring of RNA synthesis rates can be achieved by metabolic labeling with nucleoside 

analogs (Cleary, et al. 2005; Kenzelmann, et al. 2007). Thio-substituated nucleoside analogues 

are not naturally found in eukaryotes and can be purified from cell lysates. The nucleoside 

analog 4-thiouridine is readily taken up by many eukaryotic cells and is efficiently incorporated 

into de novo synthesized RNA (Cleary, et al. 2005; Kenzelmann, et al. 2007; Doelken, et al. 2008; 

Cleary, et al. 2007). This can be used to metabolically label and isolate newly transcribed RNA 

from total cellular RNA with high specificity (Kenzelmann, et al. 2007; Dolken, et al. 2008). To 

establish 4-thiouridine labeling in the budding yeast S. cerevisiae, we cultured cells in the 

presence of 100 µM-5 µM 4-thiouridine. Although we observed a concentration dependent, 

specific incorporation of 4-thiouridine, the efficiency of incorporation was low and the amount 

of recovered newly transcribed RNA was very small (data not shown). This implied inefficient 

uptake of 4-thiouridine into yeast cells rather than an intracellular blockage in activation or 

incorporation by RNA polymerases. 

In the fission yeast Schizosaccharomyces pombe, expression of the human equilibrative 

transporter (hEnt1) enables cellular uptake of the nucleoside analog 5-bromo-2’deoxyuridine, 

resulting in labeling of DNA during replication (Hodson, et al. 2003). To test whether this 

transporter could also mediate efficient uptake in S. cerevisiae, we grew yeast strain BY4741 

expressing hEnt1 to mid logarithmic phase, added 4-thiouridine and isolated RNA at different 

time points (Figure 6). This significantly enhanced 4-thiouridine incorporation to a level similar 

to that generally achieved in mammalian cells, thereby facilitating efficient separation of total 

cellular RNA into newly transcribed and pre-existing RNA (Figure 5A). 

We next tested whether Pol II incorporates the thionucleotide normally into RNA in vitro 

(Brueckner, et al. 2007; Sydow, et al. 2009). Pol II used the substrates UTP and 4-thiouridine-

triphosphate (4sUTP) with very similar kinetics. Whereas kcat was unchanged, KM increased from 

3 nM for UTP to 13 nM for 4sUTP, indicating a slightly decreased substrate affinity that may 

result from weaker base pairing between 4sUTP and the template (Figure 5B). This minor 
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difference is likely irrelevant in vivo, where substrate concentration is higher by several orders 

of magnitude than these KM values.  

 

 

 
 

Figure 5:  Non-perturbing RNA labeling in yeast. (A) Scatterplots of log-intensities Tgr, Ugr and Lgr depicted for the 1st 
replicate of the 6 min labeling time. Numbers represent Spearmean correlations. (B) 4sUTP is modeled into the 
crystal structure of a Pol II transcribing complex (PDB code: 116H). The thio-group at position 4 can form a hydrogen 
bond with the DNA template strand (blue). Nascent RNA is in red. (C) The yeast transcriptome is undisturbed by 
expression of the human nucleoside transporter hEnt1. The volcano plot compares mRNA levels after 6 min and 
24 min labeling versus wild-type cells without labeling. Each dot corresponds to one gene, the x-axis displays the 
log2(fold) of that gene, the y-axis represents the multiple testing adjusted P-value. In all, 17 genes showed a 
significant change in mRNA levels (adjusted P-value <5%), only 3 were at least two fold after 6 min labeling time.  

 

To investigate whether RNA labeling perturbed gene expression in vivo, we compared RNA 

levels in 4-thiouridine treated hEnt1 expressing cells with untreated wild type cells (MATERIALS 

& METHODS). For a labeling period of 6 min, we observed no significant changes in RNA levels as 

measured with Affymetrix expression arrays (Figure 5C). Although other cellular processes may 

be influenced by 4-thiouridine, their effect on mRNA metabolism is apparently not significant, as 

changes in the total mRNA levels were not observed. 
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Figure 6: Dynamic transcriptome analysis in yeast. Scheme of metabolic mRNA labeling in yeast. Nascent mRNA is 
labled with 4-thiouridine and thiol specifically biotinylated following cell lysis and preparation of total cellular RNA. 
Fractionation into pre-existing and nascent mRNA is achieved with streptavidin beads. 

 

2.1.2 Dynamic transcriptome analysis (DTA) 

To determine the optimum labeling time, we purified total, newly transcribed (labeled), and pre-

existing (unlabeled) RNA at 3, 6, 12, and 24 min after 4-thiouridine addition, and subjected these 

fractions to expression array analysis (MATERIALS & METHODS). Replicate data always showed 

correlations above 0.9 for each RNA fraction at each time point (data not shown). To estimate 

mRNA synthesis and decay rates from individual time point measurements, a new quantitative 

steady-state model was developed. The model assumes a constant RNA synthesis rate and an 

exponential decay rate, and no rate changes during the labeling time. The model accounts for 

exponential cell growth and for variations in RNA extraction efficiencies. It also corrects for 

differences in the fraction of newly synthesized RNAs that escape labeling. This fraction is larger 

for shorter RNAs, and depends on the uridine content of the RNA and the labeling efficiency 

(Figure 8A).  

Reproducibility assessment of the data and simulation studies suggested an optimum 

labeling time of 6 min, which was subsequently used in all experiments. This was short enough 

to meet the assumption of constant synthesis and decay rates during labeling, but sufficiently 

long to yield enough labeled RNA for robust measurements. The relative decay rates within an 

experiment can be estimated reliably, but the absolute values are more difficult to obtain. We 

refer to this method of deriving mRNA synthesis and decay rates after a short RNA labeling pulse 

as dynamic transcriptome analysis (DTA) (Figure 6). 

 

2.1.3 Validation of DTA decay-rates under normal conditions 

The comparison of replicate experiments revealed that relative mRNA half-lives are estimated 

reliably by DTA and exhibit a high correlation of 0.95. However, the absolute mRNA half-live 

values differ by small factors of approx. 1.1 to 1.7. Therefore, the absolute values for decay rates 

must be validated by complementary experimental data. For this purpose, we measured the 

decayrates of selected genes with quantitative real-time PCR (qRT-PCR) after inhibition of RNA 

Pol II by 1,10-phenantroline (Figure 7). Three groups of genes were chosen for qRT-PCR: 

Housekeeping genes, which are commonly used as reference genes in qRT-PCR are classified in 

group 1 (rRNA locus rdn1, YFL037w/tub2, YFL039c/act1). Group 2 comprises salt-stress 

responder genes (YDL022w/gpd1, YGR088w/ctt1, YDR536w/stl1). In group 3 genes were 

chosen which show a significant stabilization of their mRNA after salt-stress (YGR040w/kss1, 

YOR315w/sfg1). The decay of selected transcripts was determined corresponding to the time-



CHAPTER III: DYNAMIC TRANSCRIPTOME ANALYSIS MEASURES RATES OF MRNA SYNTHESIS AND DECAY  

 

 

 

- 59 - 

 

points 0, 2.5, 6, 10 and 16 min relative to Pol II inhibition. From each time-point, C(t)-values 

resulting from cDNA obtained from total and labeled mRNA were determined. To calculate the 

decay-profiles from qRT-PCR data, C(t) values were rescaled and used as validation for a decay-

model that delivered estimated decay-rates. The amount of labeled and total mRNA as quantified 

by DTA were confirmed by qRT-PCR , as well as the estimated decay-rates for the wild-type. This 

results show, that the estimation of decayrates by DTA is generally consistent with values 

obtained from qRT-PCR. Therefore, DTA provide a method for estimation of absolute mRNA 

decayrates (Figure 7). 

 

 

 
 
Figure 7: Validation of DTA data. (A) Design of the qRT-PCR experiments. Samples of total and labeled mRNA were 
taken (after a labeling period of 6 min) of the wild type. qRT-PCR was performed for a set of selected genes (MATERIALS 

& METHODS). The mRNA decay rates of selected genes were determined with qPCR by an mRNA decay time series 
taken at t = 0, 2.5, 6, 10, 16 min after transcriptional shut off. (B) Bar plots of the DTA (grey) and qRT-PCR (black) 
decay rate estimates. 

 

2.1.4 Synthesis rates are low for most mRNAs 

We used DTA to derive synthesis rates and decay rates (halflives) for most (4508) of the yeast 

mRNAs. On the basis of a published rough estimate of 15 000 mRNA transcripts per yeast cell 

(Hereford and Rosbash, 1977), we calculated the synthesis rate as the number of mRNA 

molecules produced per cell per cell cycle time (150 min) (Figure 8B). The obtained rates 

correlated with previously reported rates obtained by nuclear run-on (Pelechano & Perez-Ortin, 

2010). Synthesis rates ranged from 1 to 600 mRNAs per cell per cell cycle time. The synthesis 

rate distribution is strongly right skewed (skewness 5), with a median synthesis rate of 18 RNAs 

per cell and cell cycle time (mean 31, 1st quartile 11, and 3rd quartile 33). This shows that only a 

few copies are made for most mRNAs (Figure 8B). This observation is generally consistent with 

single molecule live-cell imaging (Park et al, 2010). We observed that mRNAs with high 

synthesis rates encoded ribosomal protein genes and genes involved in ribosome biogenesis, 

whereas mRNAs with low synthesis rates originated from genes that are silenced during normal 

growth, including most TFs (Figure 8B). 

 

2.1.5 mRNA decay is not correlated with synthesis 

DTA measured a median mRNA half-live of 11 min (mean 14, 1st quartile 9 and 3rd quartile 17 

min, Figure 8B). The half-life distribution is strongly right skewed (skewness 8). Thus, most 
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mRNAs in yeast are synthesized and degraded several times during cell cycle time. Gene 

ontology (GO) analysis revealed that mRNAs with the shortest half-lives are involved in the 

regulation of transcription, cell cycle and mRNA processing (Figure 8C). In contrast, mRNAs with 

long half-lives are involved in carbon and nitrogen metabolism and include many transcripts 

encoding housekeeping enzymes (Figure 8D). 

The decay rates did not correlate with published rates (Holstege, et al. 1998; Wang, et al. 

2002; Grigull, et al. 2004; Shalem, et al. 2008), which were obtained with protocols that perturb 

mRNA metabolism (data not shown). The decay rates did not correlate with mRNA length (data 

not shown), inconsistent with models that assume stochastic degradation, but consistent with 

degradation control at the level of mRNA deadenylation and decapping. Many mRNAs with long 

half-lives contained AU-rich elements in their 3’-untranslated region, consistent with a 

stabilizing role of these elements (Barreau, et al. 2005). Decay rates correlated weakly with 

mRNA levels (Spearman correlation -0.59), but synthesis rates correlated well (Spearman 

correlation 0.84) (data not shown). However, synthesis rates did not correlate with decay rates 

(Spearman correlation -0.15). This indicates that mRNA synthesis and decay are functionally 

independent during normal growth, and that both processes contribute to setting cellular mRNA 

levels.  

 

 
Figure 8: Determination of mRNA synthesis and decay rates. (A) The comparison of transcript length and DTA decay 
rates (estimated with DTA) shows that degradation speed (= decay rate =log(2)/half-life) is uncorrelated with 
transcript length. The spearman correlation coefficient is 0.06. It is noteworthy that a correlation coefficient of 0.64 is 
obtained, if discrepancies that are due to 4-thiouridine/Biotin labeling are ignored. Without bias removal, the half-
lives of 72% of RNAs are artificially elongated by a factor of at least 2, so that the overall ranking of the half-lives is 
strongly altered. (B) Center, scatter plot of the mRNA half-lives and synthesis rates for exponentially growing yeast 
cells. Colored points belong to the indicated gene sets (green, ribosomal biogenesis genes; violet, ribosomal protein 
genes; red, stress genes; dark gray, transcription factors (TFs). Assuming Gaussian distributions, ellipses show the 
75% regions of highest density for the respective sets. Histograms along the x axis resp. y axis show the global half-life 
resp. synthesis rate distribution (light gray) and the half-life resp. synthesis rate distribution of the TFs (dark gray). 
Overall half-lives and synthesis rates are uncorrelated (Spearman correlation 0.06), however some gene groups 
behave differently (correlations: Ribosomal protein genes (Rp) 0.79, Ribosomal biogenesis genes (RiBi) 0.35, ISA 
stress module genes 0, TFs 0.07). (C) (D) Gene Ontology (GO) analysis of the short-lived mRNAs (lower 25% of the 
half-life distribution). The 10 most significant categories are displayed, sorted from bottom (most significant) to top. 
Red line, proportion of short-lived transcripts in the whole population (25% by construction). The number of short-
lived transcripts in the resp. GO category is given relative to the GO category size (green bar) and relative to the 
number of short-lived transcripts (black line). Dashed line, relative size of the GO set in the whole population.  
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2.2 Stress induced reorganization of gene expression 

The above analysis and published studies estimate mRNA synthesis and decay rates only in the 

steady-state (Doelken, et al. 2008; Amorim, et al. 2010).  Under stress conditions, however, the 

assumption of steady-state mRNA levels cannot be maintained, when cells rapidly change their 

transcriptional program. To monitor dynamics in mRNA metabolism with altered synthesis and 

decay rates, the DTA model has to be extended for variations of global mRNA levels. This was 

achieved by introduction a time-dependent “growth-rate” for each individual mRNA into the 

steady-state model (MATERIALS & METHODS).  

 

 

 
 
Figure 9: Design of the time series experiment. (A) Each time window (└─┐) corresponds to one sample, left end 
marks the start of the 4-thiouridine labeling, right end marks the time of mRNA extraction. Upper panel shows the 
drop in labeling efficiency from roughly one 4-thiouridine in 200 uridines to one 4-thiouridine in 400 uridines during 
the osmotic stress response. (B) Increased sensitivity and temporal resolution of DTA compared to standard 
transcriptomics. Grey: Time course of the total mRNA fraction of the Hog1-induced genes (Capaldi, et al. 2008). Red: 
Time course of the synthesis rates of the same gene set. The solid lines represent the time course of the median, the 
shaded bands are the central 95% regions, respectively. In contrast to the monotonically increasing total mRNA time 
course, the synthesis rates clearly show three response phases. (C) Expression changes of the five clusters (up, up-
even, even, down-even, down – see Materials and methods) that were defined in a normalization-independent manner. 
The box plot shows synthesis rate folds (30 min vs. 0 min). 

 

2.2.1 DTA monitors rate changes during osmotic stress 

To monitor rate changes, and thus the dynamics in mRNA metabolism, we extended DTA to a 

time-resolved analysis of the yeast osmotic stress response. Cells were grown to logarithmic 

phase and split into control and sample cultures (Figure 9A). Sodium chloride was added to the 

sample culture to a concentration of 0.8 M. Control and sample cultures were divided in aliquots, 

and 4-thiouridine was added at 0, 6, 12, 18, 24, and 30 min after salt addition. After labeling for 

6 min, total, labeled, and unlabeled RNA was purified and analyzed with gene expression arrays. 

DTA estimated rates within the time windows 0-6, 6-12, 12-18, 18-24, 24-30, and 30-36 min 
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after stress induction. The results were confirmed for selected genes by quantitative RT-PCR at 

12 and 24 min after stress induction (Figure 9). 

 

2.2.2 Three phases of the osmotic stress response 

DTA resolved three phases of the osmotic stress response with unprecedented clarity. In the 

first 12 min after salt addition (shock phase), essentially all synthesis and decay rates decreased, 

reflecting global transcription down-regulation and mRNA stabilization. Within 12-24 min after 

salt addition (induction phase), synthesis rates strongly increased for a subset of mRNAs. These 

stress induced mRNAs show increased decay rates, likely to ensure their rapid removal towards 

the end of the response. Finally, decay rates were mostly restored, whereas a fraction of the 

synthesis rates remained at levels distinct from the starting values (recovery phase) (Figure 8B). 

We could not monitor complete recovery, which takes about two hours (Macia, et al. 2009), but a 

fraction of synthesisrates apparently remains at values different from the starting values, to 

ensure continued expression of salt homeostasis genes, and lower expression of housekeeping 

genes. DTA also revealed a drop of labeling efficiency from 0.5% to 0.27% (Figure 9A), reflecting 

the known inhibition of cellular uptake of small molecules during stress. 

 

2.2.3 Temporary correlation of mRNA synthesis and decay rates 

We transformed all rates to their ranks within the rate distributions, to circumvent an error-

prone estimation of an unknown normalization factor between measurements at different time 

points. By comparing the ranks of synthesis rates in the data sets 6 and 36 min after salt 

addition, five clusters of genes were defined (Figure 9C): ‘up’ (379 genes, rank gain > 2000), ‘up-

even’ (587 genes, rank gain 1000-2000), ‘down-even’ (520 genes, rank loss 1000-2000), ‘down’ 

(416 genes, rank loss > 2000), and ‘even’ (all remaining 4074 genes). Although global mRNA 

synthesis and decay were not correlated before stress, some gene groups showed positive and 

negative correlations during stress (Figure 8B). An analysis of the changes in synthesis and 

decay rates reveals a temporary interdependence of the rates of mRNA synthesis and decay 

during the first two stress phases (Figure 10). During the shock phase, a decrease in synthesis 

rate is usually accompanied by a decrease in decayrate. During the induction phase, an increase 

in synthesisrates is generally accompanied by  an increase in decayrate. They become again 

uncorrelated during recovery. The nature of a possible physical coupling underlying this 

temporary correlation of rates remains to be explored. 

 

2.2.4 High temporal resolution reveals mRNA dynamics  

Resolution of the three phases of stress response was dependend on DTA and was not possible 

by measuring total mRNA levels only (Figure 9B). To test the performance of DTA with an 

unbiased gene set, we monitored the previously described 305 Hog1-responsive genes (Capaldi, 

et al. 2008). DTA detected an initial decrease in synthesis rates during shock, whereas total RNA 

levels increased (data not shown). This was however not due to increased transcriptional 

activity, but rather due to residual transcription activity combined with mRNA stabilization 

(Figure 10). Also, the signal-to-noise ratio in detection of changes in synthesis rates was on 

average two times higher than that of measuring differences in total mRNA levels. Thus 

conventional transcriptomics fails to unveil the nature of the changes in mRNA metabolism upon 

stress, which are however monitored by DTA. 
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Figure 10: Dynamics of synthesis and decay rates in the osmotic stress time series. Each diagram corresponds to one 
time point. Each point corresponds to one gene, which is colored according to its affiliation with one of the clusters 
(rank gain analysis) and the ellipses show the 75% regions of highest density within each cluster, assuming Gaussian 
distributions. The shape of the ellipses indicate the correlation structure within a cluster. 

 

2.2.5 Validation of DTA decay rates by qRT-PCR  

To validate the dynamic DTA-model, mRNA levels estimated by DTA were compared to those 

obtained by qRT-PCR during osmotic-stress response. Cells were grown to mid-logarithmic 

phase and osmotic stress was induced by adding 0.8 M sodium chloride to the cells. 4-thiouridine 

was added at 0, 6, 24 and 30 min after salt addition for a constant labeling time of 6 min 

corresponding to the timewindows 6-12, 24-30 and 30-36 min. Total and labeled mRNA from 

each timepoint were isolated and analyzed by qRT-PCR. The C(t)-values were processed as 

described in MATERIALS & METHODS. The mRNA levels were calculated relative to the unstressed 

control samples at 0 min and the obtained mRNA folds of qRT-PCR were compared to values 

estimated by the dynamic DTA model (Figure 11). Although the mRNA values quantified by qRT-

PCR and DTA show a weak correlation after 12 min, the mRNA values correlated above 0.9 for 

30 and 36 min, respectively. This results show that the dynamic DTA model provides a reliable 

estimation of mRNA values during osmotic stress response, even when constant mRNA levels 

cannot be assumed.  
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Figure 11: Validation of DTA decay rates by qRT-PCR. RT-PCR Bar plots of the DTA (grey) and PCR (black) decay rate 
estimates, obtained as described in Section 13.2(DTA) resp. Section 15.2(PCR). The left plot shows the wild type, the 
right plot shows the situation after 12 min of osmotic stress. 

 

2.2.6 High sensitivity detects new stress response genes 

Due to the increased sensitivity, DTA reveals many genes that are induced during stress. The up 

cluster contained genes associated with GO terms related to stress response. Of the stress 

module genes as defined by the iterative structure algorithm (Ihmels et al. 2002), 74% showed a 

rank gain greater than 1000. The up cluster contained only three transcription factors (TFs), 

consistent with the pre-existence of TFs for stress response and their post-translational 

activation (Proft & Struhl, 2004, and references therein). The up cluster contained 62% genes 

that were up-regulated in a recent study of the osmotic stress response (Capaldi et al. 2008). 

However, DTA also detected 58 new genes involved in the osmotic stress response (Figure 12; 

Table 10; MATERIALS & METHODS). These are mostly genes of unknown function, except Ubc5, 

which is known to mediate degradation of abnormal proteins during cellular stress. Of genes in 

the up cluster, 35% were uncharacterized, compared to only 16% over all yeast genes. Yeast 

strains with single knock-outs of the newly revealed stress genes did generally not show growth 

defects under high salt conditions (data not shown), providing a possible explanation for why 

they were not discovered previously. 

 

 
Figure 12: High sensitivity of DTA detecs new stress response genes. Volcano plot comparing the synthesis rates 36 min 
after osmotic stress induction with wild type synthesis rates. The x-axis shows the difference of the ranks of a gene in 
the 36 min synthesis rates distribution and the wild type synthesis rates distribution. The y-axis shows the 
significance of a change in synthesis rates, as measured with limma (Smyth, 2004). It is given as the log odds 
(synthesis rate is different/synthesis rate is unchanged) for each gene. Grey dots: Hog1 and/or Msn2/4 dependent 
osmotic stress genes identified by (Capaldi et al. 2008). The 58 dots in green are novel genes also clearly involved in 
the transcriptional response to osmotic stress. 
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2.2.7 Genomic Pol II redistribution predicts mRNA synthesis rate changes 

To investigate whether mRNA synthesis rates correlate with the presence of Pol II at transcribed 

genes, we determined occupancy profiles for the Pol II subunit Rpb3 by chromatin 

immunoprecipitation (ChIP) and tiling microarray (chip) analysis, and calculated the mean Pol II 

occupancy between the transcription start site (TSS) and the polyadenylation site (pA) for each 

gene (Mayer, et al. 2010). We also measured ChIP-chip profiles 12 and 24 min after salt addition, 

to investigate whether Pol II is redistributed over the genome upon stress. At all three time 

points (0, 12, and 24 min), the mean Pol II gene occupancy was calculated. The three resulting 

Pol II occupancy vectors were compared with the vectors of total RNA, newly synthesized RNA, 

and synthesis rates at all six 6min time windows of the osmotic stress (Figure 13). Pol II gene 

occupancies at 0, 12 and 24 min correlated only weakly with mRNA levels, but very well with the 

levels of  labeled mRNA and with the synthesis rates at the corresponding time points (Figure 

13). The results also demonstrated the low temporal resolution of standard transcriptomics, as 

Pol II occupancy 12 and 24 min after stress induction correlated with mRNA levels at a later 

time point (Figure 13). We averaged Pol II occupancy profiles over genes belonging to the even, 

down, and up clusters (Figure 14). The even cluster showed a typical gene-averaged profile with 

elevated Pol II levels on the transcribed region and peaks around the TSS and poly(A) site. This 

profile persisted during stress, although overall polymerase levels decreased. The down cluster 

genes apparently lost most if not all Pol II during stress. In contrast, the up cluster genes did not 

contain detectable amounts of Pol II before stress but gained Pol II during stress. The shape of 

the averaged profile of up cluster genes after 24 min of salt stress showed an even distribution 

of Pol II that was very different from the canonical profile (Figure 14), maybe because of a high 

density of Pol II on these stress-induced genes. Thus, Pol II occupancy predicted mRNA synthesis 

rates and Pol II redistribution upon stress predicted changes in synthesis rates. On the other 

hand, the observed correlations confirm that DTA realistically monitors changing transcriptional 

activity. 
 
 

 
 

Figure 13: Pol II gene occupancy predicts mRNA synthesis. A) The vectors of mean Pol II occupancies on transcribed 
regions were calculated from ChIP-chip data at 0, 12, and 24 min after salt stress and compared with the vectors of 
total mRNA levels (left), labeled mRNA (middle), and synthesis rates (right) at each time point of the osmotic stress 
time course experiment. The pair-wise Spearman correlation values are represented by colorcoded squares.  
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Figure 14:  Osmotic stress induced genomic Pol II redistribution. Left: Mean Pol II occupancy profiles of all selected 
clusters. Profiles are obtained after 0, 12 and 24 min of osmotic stress (light blue, blue, dark blue lines). Vertical 
dotted lines are drawn at the TSS and the pA site. Right: Heatmaps of the Pol II profiles for all cluster at 0, 12, and 24 
min. Each row corresponds to one gene. The vertical dotted lines mark TSS and pA of each gene. Pol II occupancy from 
low to high is coded with colors ranging from dark to bright. 
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3. Conclusion and Outlook 
 

We developed Dynamic Transcriptome analysis (DTA) for measuring simultaneously the critical 

characteristics of mRNA metabolism: mRNA abundance, synthesis rates and half-lives. DTA can 

monitor mRNA metabolism on a global scale, with a high dynamic range, high sensitivity and 

temporal resolution and without perturbation of the transcriptome. This was achieved by a 

metabolic mRNA labeling approach, which comprises genetically facilitated cellular uptake of 

the nucleoside analog 4-thiouridine, metabolic RNA labeling, separation and microarray analysis 

of total, newly transcribed and pre-existing RNA. DTA combines the metabolic labeling approach 

with a quantitative dynamic model, that enables extraction of synthesis and decay rates and 

mRNA half-lives from the array data. This allows for time-resolved correlation analysis of mRNA 

synthesis and decay, which revealed the contribution of transcription and post-transcriptional 

processes to gene expression. To obtain synthesis rates that reflect the production of complete 

transcripts, the DTA protocol selects for polyadenylated RNA by hybridizing the 3’-region of 

transcripts on the array. DTA was developed as a tool for simultaneous monitoring of gene 

expression control on different levels in parallel to get insights into the interplay between 

transcriptional and post-transcriptional regulation of gene expression.   

We applied DTA to wild-type yeast cells to monitor the undisturbed mRNA metabolism. 

During exponential growth, most genes are transcribed and produce only a few copies per cell 

and cell cycle time. The median mRNA half-live of 11 min revealed a generally rapid transcript 

turn-over. Transcript synthesis and decay are generally not correlated, indicating that 

transcription and mRNA degradation contribute independently to steady-state mRNA levels. 

Yeast cells respond to stress situations by an fast reorganization of the gene expression 

program. To study this fast, efficient and precise change between the normal growth and stress 

response on a transcriptomic level, we used DTA to monitor mRNA synthesis and decay during 

osmotic stress. DTA follows dynamic changes in mRNA synthesis and decay and revealed three 

phases of the stress response: Within the initial shock phase (0-12 min), transcription is globally 

decreased and mRNA required for normal growth is stabilized, apparently to store them. During 

the subsequent induction phase (12-24 min), synthesis rates for a subset of mRNA are strongly 

increased, indicating the induction of the stress response program. The strongly induced 

transcripts exhibit also severe destabilization, probably thus allowing their rapid removal after 

adaption to stress. We observed also an extensive redirection of cellular resources, probably to 

antagonize rapidly the stress situation. During the later adaption phase (24-30 min), decay rates 

are restored whereas synthesis rates remain at altered values, indicating that the cells undergo a 

second reorganization of gene expression. Many transcripts required for normal growth exhibit 

increased synthesis rates, whereas stress responsive genes were still expressed to stabilize to 

the stress situation.  

DTA identified 58 new genes induced by osmotic stress, including many genes of 

unknown function. DTA followed the dynamic changes in mRNA synthesis and decay during 

osmotic stress response, with higher sensitivity and temporal resolution than ordinary 

transcriptomics and thus provides new biological insights. Theoretical considerations show that 

changes in synthesis rate can more quickly change mRNA levels for low abundant transcripts 
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(Alon, 2006). Changes in decay rates can only efficiently change mRNA levels for highly 

abundant transcripts. This is consistent with our observations of the osmotic stress by DTA. 

Probably, this concept might be also realized in other gene regulatory systems, which require a 

fast and inducible reprogramming of gene expression. 

Parts of our observations are consistent with published data on the osmotic stress 

response in yeast. After global inhibition of transcription, Molin et al. (2009) observed a sharp 

decrease in mean stability of all initially stabilized stress related transcripts whereas stress-

repressed genes become stabilized within 30 min. Genomic run-on analysis showed that osmotic 

stress provokes mRNA stabilization and sequestration into P-bodies (Romero-Santacreu, et al. 

2009). P-bodies develop at 0.8 M NaCl within minutes (Teixeira & Parker, 2007). Proft & Struhl 

(2004) observed an immediate dissociation of most proteins from chromatin. This may be 

causative to the rapid decrease of mRNA synthesis and decay rates during the initial shock phase 

(Proft & Struhl, 2004; Mettetal, et al. 2008). This may go along with a transient depression of 

tranlationally active ribosomes (Warringer, et al. 2010). Reprogramming during osmotic stress 

response is dependent on MAP kinase Hog1, which interact with elongating Pol II. Induction of 

stress responsive genes goes along with Hog1 dependent phosphorylation of a number 

transcription factors that are required for transcription.  

DTA correlate well with Pol II occupancy profiling during osmotic stress response. We 

could show that the mRNA synthesis rates obtained by DTA are consistent with the Pol II ChIP-

chip profiling. Therefore, Pol II occupancy profiling and synthesis rates obtained by DTA 

apparently monitor the same biological process and reflect the transcriptional activity of Pol II. 

Thus, previously obtained correlations of Pol II occupancy with mRNA abundance levels 

(Andrau et al, 2006; Steinmetz, et al, 2006; Pelechano et al, 2010; Venters and Pugh, 2009; 

Mayer et al, 2010; Rodriguez-Gil et al, 2010) are only an indirect effect of the correlation of 

mRNA synthesis rates with mRNA levels.  

The combination of DTA and Pol II occupancy profiling imply that the reprogramming of 

gene expression during stress response may be the result of two steps: First, we could show that 

the dissociation of most proteins during the initial shock phase lead also to global removal of Pol 

II from transcription start sites. This is consistent with Proft & Struhl (2004), who observed a 

dissociation of many chromatin bound proteins immediately after stress response induction. 

Second, we observed the recruitment of Pol II and the PIC assembly on stress induced promoters 

during the induction phase, whereas the recruitment to non responder genes was not observed. 

This observations implies that the fast reprogramming in the induction phase might be the 

result of a global and unspecific Pol II drop off, followed by a selective recruitment of Pol II to 

stress responder genes.  

 

Outlook 

DTA has great potential for studying processes that regulate gene expression. Since switching 

between alternative gene expression programs is a multilevel process, DTA provides an 

important tool for an integrative approach. The simultaneous measurements of mRNA 

abundance levels, synthesis and decay would provide valuable insights into cellular response to 

changes in environmental conditions, chemical substances or radiation exposure. By developing 

DTA as a tool for S. cerevisiae, the role of yeast as a model organism for fundamental studies is 

invigorated. The combination of global analysis, the high dynamic range, high sensitivity and 

temporal resolution of DTA with Pol II profiling may be used to improve models of the osmotic 

stress response (Capaldi, et al. 2008; Muzzey, et al. 2009). DTA-derived rates of mRNA synthesis 
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are averaged over a cell population and a time period of 6 min, suggesting that they are 

independent of the nature of transcription, which may occur in bursts and discontinuously 

(Suter, et al. 2011; Zenklusen, 2008; Tan, et al. 2010; Cai, 2008).  

DTA has great potential to analyze the mechanisms that underlie mRNA metabolism and 

turnover. With DTA we could demonstrate global changes in response to high salt 

concentrations. The next step would be to investigate the detailed mechanisms that couple 

transcription and post-transcriptional processes. As exemplified for the Pol II subunit RBP4/7 

which has been identified in cytosolic P-bodies during stress response (Lotan, et al. 2005; Harel-

Sharvit, et al. 2010), the interplay between different levels of the mRNA live-cycle is the key of 

orchestration the gene expression control network. DTA may be used for decipher the pathways 

of mRNA decay and the regulation of mRNA half-lives by RNA-binding proteins. Post-

transcriptional regulons such as the yeast Puf-proteins (Duttagupta et al. 2005), which integrate 

mRNA from functionally related genes into context dependent coregultion, might be also 

analyzed by DTA.  

 
Table 10: Genes identifyed by DTA during response to osmotic stress. 

Name Gene Description 

AFR1 YDR085C 
Protein required for pheromone-induced projection (shmoo) formation; regulates septin 
architecture during mating; has an RVXF motif that mediates targeting of Glc7p to mating 
projections; interacts with Cdc12p 

ARR2 YPR200C 
Arsenate reductase required for arsenate resistance; converts arsenate to arsenite which can then 
be exported from cells by Arr3p 

ATH1 YPR026W Acid trehalase required for utilization of extracellular trehalose 

BOP2 YLR267W Protein of unknown function 

CPS1 YJL172W Vacuolar carboxypeptidase yscS; expression is induced under low-nitrogen conditions 

DAN3 YBR301W 
Cell wall mannoprotein with similarity to Tir1p, Tir2p, Tir3p, and Tir4p; member of the 
seripauperin multigene family encoded mainly in subtelomeric regions; expressed under anaerobic 
conditions, completely repressed during aerobic growth 

DIA1 YMR316W 
Protein of unknown function, involved in invasive and pseudohyphal growth; green fluorescent 
protein (GFP)-fusion protein localizes to the cytoplasm in a punctate pattern 

ECI1 YLR284C 
Peroxisomal delta3,delta2-enoyl-CoA isomerase, hexameric protein that converts 3-hexenoyl-CoA to 
trans-2-hexenoyl-CoA, essential for the beta-oxidation of unsaturated fatty acids, oleate-induced 

ECM12 YHR021W-A Non-essential protein of unknown function 

FMP23 YBR047W 
Putative protein of unknown function; proposed to be involved in iron or copper homeostatis; the 
authentic, non-tagged protein is detected in highly purified mitochondria in high-throughput 
studies 

FSH1 YHR049W 
Putative serine hydrolase that localizes to both the nucleus and cytoplasm; sequence is similar to S. 
cerevisiae Fsh2p and Fsh3p and the human candidate tumor suppressor OVCA2 

GIP1 YBR045C 
Meiosis-specific regulatory subunit of the Glc7p protein phosphatase, regulates spore wall 
formation and septin organization, required for expression of some late meiotic genes and for 
normal localization of Glc7p 

GSM1 YJL103C 
Putative zinc cluster protein of unknown function; proposed to be involved in the regulation of 
energy metabolism, based on patterns of expression and sequence analysis 

GSP2 YOR185C 
GTP binding protein (mammalian Ranp homolog) involved in the maintenance of nuclear 
organization, RNA processing and transport; interacts with Kap121p, Kap123p and Pdr6p 
(karyophilin betas); Gsp1p homolog that is not required for viability 
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HMX1 YLR205C 
ER localized, heme-binding peroxidase involved in the degradation of heme; does not exhibit heme 
oxygenase activity despite similarity to heme oxygenases; expression regulated by AFT1 

ICT1 YLR099C 
Lysophosphatidic acid acyltransferase, responsible for enhanced phospholipid synthesis during 
organic solvent stress; null displays increased sensitivity to Calcofluor white; highly expressed 
during organic solvent stress 

LEE1 YPL054W Zinc-finger protein of unknown function 

MAG1 YER142C 
3-methyl-adenine DNA glycosylase involved in protecting DNA against alkylating agents; initiates 
base excision repair by removing damaged bases to create abasic sites that are subsequently 
repaired 

MST27 YGL051W 
Putative integral membrane protein, involved in vesicle formation; forms complex with Mst28p; 
member of DUP240 gene family; binds COPI and COPII vesicles 

PAU2 YEL049W 
Member of the seripauperin multigene family encoded mainly in subtelomeric regions, active during 
alcoholic fermentation, regulated by anaerobiosis, negatively regulated by oxygen, repressed by 
heme 

PCL1 YNL289W 
Cyclin, interacts with cyclin-dependent kinase Pho85p; member of the Pcl1,2-like subfamily, 
involved in the regulation of polarized growth and morphogenesis and progression through the cell 
cycle; localizes to sites of polarized cell growth 

PEP12 YOR036W 
Target membrane receptor (t-SNARE) for vesicular intermediates traveling between the Golgi 
apparatus and the vacuole; controls entry of biosynthetic, endocytic, and retrograde traffic into the 
prevacuolar compartment; syntaxin 

PET10 YKR046C 
Protein of unknown function that co-purifies with lipid particles; expression pattern suggests a role 
in respiratory growth; computational analysis of large-scale protein-protein interaction data 
suggests a role in ATP/ADP exchange 

PFK26 YIL107C 
6-phosphofructo-2-kinase, inhibited by phosphoenolpyruvate and sn-glycerol 3-phosphate; has 
negligible fructose-2,6-bisphosphatase activity; transcriptional regulation involves protein kinase A 

PRM8 YGL053W 
Pheromone-regulated protein with 2 predicted transmembrane segments and an FF sequence, a 
motif involved in COPII binding; forms a complex with Prp9p in the ER; member of DUP240 gene 
family 

REC102 YLR329W 
Protein involved in early stages of meiotic recombination; required for chromosome synapsis; 
forms a complex with Rec104p and Spo11p necessary during the initiation of recombination 

RNR3 YIL066C 
One of two large regulatory subunits of ribonucleotide-diphosphate reductase; the RNR complex 
catalyzes rate-limiting step in dNTP synthesis, regulated by DNA replication and DNA damage 
checkpoint pathways via localization of small subunits 

SCS22 YBL091C-A 
Protein involved in regulation of phospholipid metabolism; homolog of Scs2p; similar to D. 
melanogaster inturned protein 

SGF11 YPL047W 
Integral subunit of SAGA histone acetyltransferase complex, regulates transcription of a subset of 
SAGA-regulated genes, required for the Ubp8p association with SAGA and for H2B deubiquitylation 

SPG5 YMR191W 
Protein required for survival at high temperature during stationary phase; not required for growth 
on nonfermentable carbon sources 

SPL2 YHR136C 
Protein with similarity to cyclin-dependent kinase inhibitors; downregulates low-affinity phosphate 
transport during phosphate limitation; overproduction suppresses a plc1 null mutation; GFP-fusion 
protein localizes to the cytoplasm 

SRL3 YKR091W 
Cytoplasmic protein that, when overexpressed, suppresses the lethality of a rad53 null mutation; 
potential Cdc28p substrate 

STB2 YMR053C 
Protein that interacts with Sin3p in a two-hybrid assay and is part of a large protein complex with 
Sin3p and Stb1p 

STF1 YDL130W-A 
Protein involved in regulation of the mitochondrial F1F0-ATP synthase; Stf1p and Stf2p may act as 
stabilizing factors that enhance inhibitory action of the Inh1p protein 

TGL2 YDR058C 
Protein with lipolytic activity towards triacylglycerols and diacylglycerols when expressed in E. coli; 
role in yeast lipid degradation is unclear 

THO1 YER063W 
Conserved nuclear RNA-binding protein; specifically binds to transcribed chromatin in a THO- and 
RNA-dependent manner, genetically interacts with shuttling hnRNP NAB2; overproduction 
suppresses transcriptional defect caused by hpr1 mutation 

UBC5 YDR059C 
Ubiquitin-conjugating enzyme that mediates selective degradation of short-lived, abnormal, or 
excess proteins, including histone H3; central component of the cellular stress response; expression 
is heat inducible 

UGX2 YDL169C 
Protein of unknown function, transcript accumulates in response to any combination of stress 
conditions 
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YBR056W-A YBR056W-A 
Dubious open reading frame unlikely to encode a protein, based on available experimental and 
comparative sequence data; partially overlaps the dubious ORF YBR056C-B 

YDL085C-A YDL085C-A 
Putative protein of unknown function; green fluorescent protein (GFP)-fusion protein localizes to 
the cytoplasm and nucleus 

YER185W YER185W 
Plasma membrane protein with roles in the uptake of protoprophyrin IX and the efflux of heme; 
expression is induced under both low-heme and low-oxygen conditions; member of the fungal lipid-
translocating exporter (LTE) family of proteins 

YET1 YKL065C 
Endoplasmic reticulum transmembrane protein; may interact with ribosomes, based on co-
purification experiments; homolog of human BAP31 protein 

YGL010W YGL010W Putative protein of unknown function; YGL010W is not an essential gene 

YIL046W-A YIL046W-A Putative protein of unknown function; identified by expression profiling and mass spectrometry 

YIL055C YIL055C Putative protein of unknown function 

YJL185C YJL185C 
Putative protein of unknown function; mRNA is weakly cell cycle regulated, peaking in G2 phase; 
YJL185C is a non-essential gene 

YKL133C YKL133C 
Putative protein of unknown function; has similarity to Mgr3p, but unlike MGR3, is not required for 
growth of cells lacking the mitochondrial genome (null mutation does not confer a petite-negative 
phenotype) 

YLR031W YLR031W Putative protein of unknown function 

YLR108C YLR108C 
Protein of unknown function; green fluorescent protein (GFP)-fusion protein localizes to the 
nucleus; YLR108C is not an esssential gene 

YLR285C-A YLR285C-A Putative protein of unknown function; identified by fungal homology and RT-PCR 

YMR034C YMR034C 
Putative transporter, member of the SLC10 carrier family; identified in a transposon mutagenesis 
screen as a gene involved in azole resistance; YMR034C is not an essential gene 

YNL040W YNL040W 
Putative protein of unknown function with strong similarity to alanyl-tRNA synthases from 
Eubacteria; green fluorescent protein (GFP)-fusion protein localizes to the cytoplasm; YNL040W is 
not an essential gene 

YNL130C-A YNL130C-A Protein of unknown function; dgr1 null mutant is resistant to 2-deoxy-D-glucose 

YNL211C YNL211C 
Putative protein of unknown function; green fluorescent protein (GFP)-fusion protein localizes to 
mitochondria; YNL211C is not an essential gene 

YNR068C YNR068C Putative protein of unknown function 

YOL024W YOL024W Putative protein of unknown function; predicted to have thiol-disulfide oxidoreductase active site 

YPR098C YPR098C Protein of unknown function, localized to the mitochondrial outer membrane 

YPR172W YPR172W 
Protein of unknown function, transcriptionally activated by Yrm1p along with genes involved in 
multidrug resistance 
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1. Introduction 
 

1.1 The Mediator Coactivator complex 

Regulation of transcriptional activity is dependent on gene-specific transcription factors that 

respond to environmental signals. In eukaryotic cells, these transcription factors require co-

activator complexes to transmit signals to the RNA polymerase II machinery. Among these co-

activators, the Mediator complex plays a key role by interacting with transcription factors and 

the Pol II machinery. Mediator dysfunction leads to a variety of diseases, including mental 

retardation and cancer (Malik, et al. 2010). 

  

1.1.1 Discovery and conservation of Mediator complexes 

First evidence for an intermediary function between transcription activators and Pol II arose 

from  squelching experiments in yeast (Gill & Ptashne, 1988) and mammalian cells (Triezenberg, 

et al. 1988). Squelching experiments investigate the interference of one activator by 

overexpression of another activator for the potential to activate Pol II transcription. One try to 

explain this phenomenon was that both activators compete for binding the same target within 

the basal transcription machinery. However, neither the addition of an excess of Pol II, nor any 

of the GTFs were able to relieve squelching. Since addition of a crude yeast extract was able to 

relieve squelching, the conclusion was drawn that an additional functionality is required that 

mediate between activators and the basal transcription machinery (Flanagan, et al. 1991; 

Kelleher, et al. 1990). Genetic screens in yeast identified genes by their ability to suppress the 

cold-sensitive phenotype of Pol II mutant with truncated CTD. These genes were termed 

“suppressors of RNA polymerase B” (Srb) and all 9 Srb proteins turned out to be subunits of the 

coactivator complex Mediator (Nonet & Young, 1989). Mediator is a highly conserved 

multiprotein complex, which has been identified in yeast  (Kelleher, et al. 1990; Flanagan, et al. 

1991), plants (Bächström, et al. 2007) and metazoans (Malik, et al. 2010). An ancient 17-subuint 

Mediator core complex has been identified, which is conserved in all eukaryotes (Bourbon, et al. 

2008). Mediator complexes in higher eukaryotes contain additional subunits (Table 12). 

 

1.1.2 Modular structure of Mediator complexes 

In S. cerevisiae, the Mediator complex consists of 25 subunits and accumulates a mass of 

1.4 MDa. The subunits are organized in four functional modules, named head-, middle-, tail- and 

kinase-module (Björklund, et al. 2005; Cai, et al. 2009). Each module provides a dedicated 

function. The head-module has been identified to provide an interface for binding Pol II-TFIIF 

(Takagi, et al. 2006), the kinase module harbors enzymatic function which is involved in 

phosphorylation of Pol II C-terminal domain (CTD) (Kang, et al. 2001, Näär, et al. 2002). The 

middle and more evidently the tail module are interaction platforms for regulatory proteins and 

transcription factors. Structural information on the Mediator shape came from several electron 
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microscopy data, that revealed a conformational change between a closed conformation and a 

open conformation, when bound to Pol II (Asturias, et al. 1999; Cai, et al. 2010; Davis, et al. 2002; 

Dotson, et al. 2000; Elmlund, et al. 2006; Näär, et al. 2002; Taatjes, et al. 2002; Taatjes, et al. 

2004). Biochemical studies (Kang, et al. 2001), gene expression profiling (van de Peppel, et al. 

2005), yeast two-hybrid screen (Gulielmi, et al. 2004) and deletion studies (Koschubs, et al, 

2010) revealed many details of subunit composition within the Mediator. Crystal structures are 

available for CycC (Hoeppner, et al. 2005), Med7C/Med21 (Baumli, et al. 2005), Med7N/Med31 

(Koschubs, et al. 2009), Med8C/Med18/Med20 (Larivière, et al. 2006) and Med15-KIX domain 

(Thakur, et al. 2005; Yang, et al. 2006; Bontems, et al. 2010). Very recently, the crystal structure 

of the Mediator head module has been solved and revealed the architecture of S. pombe head 

consisting of Med6, Med8, Med11, Med17, Med18, Med20 and Med22 (Larivière, et al. 2012). 

 

 
 
Figure 15: Model for assembly of basal transcription machinery on the promoter. In response to cellular signals, gene 
specific regulatory factors recognize DNA recognition elements (DNA RE). DNA bound transcription factors serve as 
nucleation point for recruitment of coactivators (RSC, ISWI, Swi/Snf, NuA4, Chd1, INO80, Swr1), which change the 
chromatin environment and facilitate PIC assembly on the promoter (TATA = TATA box; INR = Initator element; DPE 
= downstream promoter element; the transcription start site is represented by arrow). The Mediator and SAGA form 
an interface between gene specific activators/repressors and the Pol II transcription initiation machinery. The 
Mediator is involved in gene-looping by interaction with cohesins. The Mediator head module is colored in blue, the 
middle module in green, the tail module in magenta and kinase module in orange. Mediator subunits essential for 
yeast viability are outlined in yellow (own illustration, adapted from Martin Seizl & Tobias Koschubs, both Gene 
Center Munich). 

 

1.1.3  Mediator function in regulation of Pol II transcription  

Mediator connects the gene specific set of transcriptional activators to the Pol II initiation 

complex and forms an interface between gene-specific factors and the general transcription 

machinery (Cantin, et al. 2003; Malik & Roeder, 2010).  Mediator is a target of cellular signaling 

pathways. The human Mediator subunit Med1 is targeted by thyroid hormone receptor 

(Ranchez, et al. 1999) and Med1 phosphorylation by the ERK kinase is involved in thyroid 

receptor pathway (Belakavadi, et al. 2008). Human Med23 is an endpoint of the insulin-signaling 

pathway, which induces MAP kinase-dependent activation of Elk1 (Wang, et al. 2005; Wang, et 

al. 2009). The yeast subunit Med15 is targeted by Oaf1, a transcription activator involved in 

sensing fatty acid levels (Thakur, et al. 2008). Subunit Med15 also interacts with Pdr1, a factor 

involved in multidrug resistance (Thakur, et al. 2008; Jedidi, et al. 2010). 
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Table 11: Mediator subunits 

S. cerevisae Module alias 
S.c.-Theoretical mass 

[kDa] 
H. sapiens 

Med1 Middle Med1 64,251 
Tap220 

Arc/Drip200 

Med2 Tail Med2 47,717  

Med3 Tail Pgd1, Hrs1, Med3 43,079  

Med4 Middle Med4 32,205 
Trap36 

Arc/Drip36 

Med5 Tail Nut1 128,793  

Med6 Head Med6 32,819 
hMed6 

Arc/Drip33 

Med7 Middle Med7 25,585 
hMed7 

Arc/Drip34 
Arc32 

Med8 Head Med8 25,268 Arc32 

Med9 Middle Cse2, Med9 17,376  

Med10 Middle Nut2, Med10 17,908 
hNut2 

hMed10 

Med11 Head Med11 15,168  

Med12 Kinase Srb8 166,859 
Trap230 

Arc/Drip240 

Med13 Kinase Ssn2, Srb9 159,999 
Trap240 

Arc/Drip250 

Med14 Middle/Tail Rgr1 123,357 
Trap170 

Arc/Drip250 
Arc105 

Med15 Tail 
Gal11, RAR3, SDS4, 

SPT13, ABE1 
120,308 

Trap95 
Drip92 

Med16 Tail 
BEL2, GAL22, SDI3, 

SSF5, SSN4, TSF3, RYE1 
111,296 

Trap95 
Drip92 

Med17 Head Srb4, Med17 78,475 
Trap80 

Arc/Drip77 

Med18 Head Srb5, Med18 34,288 P28b 

Med19 Head/Middle Rox3, Nut3, Ssn7 24,857 LCMR1 

Med20 Middle Srb2, Hrs2 22,894 hTrfp 

Med21 Middle Srb7 16,071 hSrb7 

Med22 Head Srb6 13,863 Surf5 

Med31 Middle Soh1 14,741 hSoh1 

Cdk8 Kinase 
Ssn3, GIG2, NUT7, 

SRB10, UME5, RYE5, 
CDK8 

62,847 
Cdk8 

hSrb10 

CycC Kinase Srb11, Ssn8, Ume3 37,790 
CyC 

hSrb11 

    
Med25 

Arc92/Acid1 

    
Med26 

Arc70/Crsp70 

    
Med28 
Fksg20 

    
Med30 
Trap25 
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The yeast Mediator subunits Med2, Med4, and Med13 are phosphorylated, and these 

phosphorylation events play a role in transcription, Kin28-dependent processes, and the 

Ras/PKA pathway, respectively (Chang, et al. 2004; Guidi, et al. 2004; Hallberg, et al. 2004; Lui, 

et al. 2004.  

 In S. cerevisiae, the Mediator is generally required for Pol II transcription. Mediator 

promotes assembly of complexes required for transcription initiation on the promoter. The 

mechanism is most likely through physical interactions to Pol II, GTFs and transcription 

activators (Cantin, et al. 2003). Meditator recruitment to the promoter requires DNA bound 

activators and this is independent of Pol II recruitment (Cosma, et al. 2001). The Mediator and 

other factors built up the reinitiation scaffold, which remain on the promoter during 

transcription elongation to enable a rapid reinitiation of actively transcribed genes (Yudkovsky, 

et al. 2000). In higher eukaryotes, distant enhancers contribute to regulation of transcription by 

cooperative activation (Spitz & Furlong, 2012). To achieve cooperative activation, enhancers and 

activators must be positioned to enable physical interaction. This is achieved by gene looping 

and a recent study revealed a direct interaction between Mediator and cohesions, which brings 

distal enhancers in close proximity to the promoter (Kagey, et al. 2010)(Figure 15). The tail 

module has been identified to be involved in histone acetylation. ScMed5 show intrinsic histone 

acetyltransferase activity (HAT), which might be involved in preparation the nucleosome 

environment for transcription (Lorch, et al. 2000). 

 There is some evidence that Mediator have a negative effect on transcription. The kinase 

module is reversibly associated with the Mediator and the Cdk8 kinase is involved in 

phosphorylation of the CTD. It has been shown that the S. pombe kinase module sterically blocks 

interaction between Mediator and Pol II (Elmlund, et al. 2006). Mediator mutants led to 

increased transcriptional activity at selected genes (van de Peppel, et al. 2005). One mechanism 

might be through the Mediator interaction to the general corepressor Ssn6-Tup1 complex 

(Papmichos-Chronakis, et al. 2000).  

 

1.1.4 Mediator and human diseases  

The Mediator functions as integrator of cellular information and contributes to spatiotemporal 

control of Pol II transcription. As an endpoint of cellular signaling, the Mediator combines the 

determinative set of intrinsic and extrinsic signals to a defined output for the basal transcription 

machinery. Several studies in mice revealed that Mediator mutations are invariably lethal or 

lead to distinctive changes in organogenesis and altered gene expression programs similar to 

defects in essential developmental transcription factors (Spaeth, et al. 2011 and references 

within). 

 

Mediator and cancer 

As an endpoint of several signaling pathways, the Mediator is functionally linked to regulation of 

cellular growth, development and differentiation. Recent studies revealed associations between 

specific cancers and individual Mediator subunits. The human Med1 is linked to breast cancer, 

which is the leading cause of cell deaths among women (Jemal, et al. 2011). The steroid hormone 

estrogen (17-ß-estradiol; E2) has been shown to induce and promote breast cancer in the 

animal model (Russo, et al. 2006). Mediator is a functional coregulator for members of the 

nuclear receptor superfamiliy. It has been shown, that the breast cancer related subtype of 

estrogen receptor (ER) interacts with Med1, which is the primarily receptor interface to the 

Mediator (Spaeth, et al. 2011). Med1 plays also a role in prostate cancer, which is the second 
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most frequently diagnosed cancer (Jemal, et al. 2011). Prostate cancer is driven by androgens 

through their interactions with the androgen receptor (AR). Androgen responsive genes are 

activated by a ligand-activated transcription factor that control prostate cancer cell growth and 

survival (Heinlein, et al. 2007; Lupien, et al. 2009). Med1 is critical for AR-dependent signaling 

and activation of AR response genes. It has been hypothesized that phosphorylation of Med1 by 

MAP kinase can be involved in the AR-dependent activation mechanism, as MAP kinases itself 

are constitutively activated in many prostate cancers (Beklavadi, et al. 2008; Pandey, et al. 

2005). Other Mediator subunits have been indentified to be associated with cancers, as Med28 

and breast cancer, Cdk8 and colon cancer and melanoma (Spaeth, et al. 2011 and references 

within).  

 

 
Table 12: Molecular disposition of human Mediator subuints linked to pathological disorders  

 (Spaeth, et al., 2011) 

Disease/disorder Mediator subunit 

Neurodevelopmental disorders  

X-linked mental retardation syndromes 
FG syndrome 
Lujan syndrome 

Med12 (Missense mutation) 
Med12 (Missense mutation) 

Infantile cerebral and cerebellar atrophy Med17 (Missense mutation) 

Autosomal recessive axonal Charcot-Marie-
Tooth disease 

Med25(Missense mutation) 

Cardiovascular disorders  

Transpostion of the great arteries (TGA) Med13 (Haploinsufficiency, (Missense mutation) 

22q11.2 deletion syndrome Med15 (deletion) 

Behavioral disorders  

Shizophrenia; psychosis Med12 (Polymorphism) 

Cancer  

Bladder Med19 (overexpression) 

Breast 
Med1 (overexpression) 

Med19 (overexpression) 
Med28 (overexpression) 

Colon 
Med28 (overexpression) 
Cdk8 (overexpression) 

Med1 (reduced expression) 

Lung Med19 (overexpression) 

Melanoma 
Med1 (reduced expression) 

Med23 (chromosomal deletion) 
Cdk8 (overexpression) 

Pancreas Med29 (overexpression) 

Prostate 
Med1 (overexpression) 

Med28 (overexpression) 

 

 



CHAPTER IV: MEDIATOR PHOSPHORYLATION PREVENT STRESS RESPONSE TRANSCRIPTION   

 

 

 

- 78 - 

 

1.2 Aim and scope of this project 
 

Mediator is a target of cellular signaling pathways, but it is poorly understood how it integrates 

regulatory signals, and how it transfers the output to the Pol II machinery. However, a functional 

influence of posttranslational modification of the Mediator has not been investigated 

systematically.  

A paradigm for a conserved signaling pathway is the response of yeast cells to high salt 

concentrations. Osmotic stress activates the conserved mitogen-activated protein (MAP) kinase 

cascade, which leads to cell cycle arrest (Alexander, et al. 2001; Escote, et al. 2001), affects 

interaction between proteins and chromatin (Proft, et al. 2004), and induces transcription of 

stress-responsive genes (Causton, et al, 2001; Gasch, et al, 2002; Melamed, et al. 2008; Macia, et 

al. 2009). Osmotic stress response includes three phases (shock-, induction- and recovery 

phase)(Molin, et al. 2009; Romero-Santacreu, et al. 2009; Miller, et al. 2011). Transcription 

activity is initially reduced (shock phase), but stress-induced genes are heavily transcribed 

within 12-24 min (induction phase), and cells then fully adapt to growth in high-salt conditions 

(recovery phase). Response to osmotic stress goes along with significant changes in the 

phosphoproteome (Soufi, et al. 2008). 

Due to recent technological and methodological advances, mass spectrometry (MS)-

based proteomics has established itself as a powerful and versatile approach for global and 

quantitative investigation of many aspects of biology (Cox, et al. 2011). Stable isotope labeling of 

amino acids in culture (SILAC) (Ong, et al. 2002) is one of the most popular quantitative 

proteomics methods with a wide range of biological applications (Mann, 2006). Although mass 

spectrometry is well suited for the study of nearly all post-translational modifications (Witze, et 

al. 2007), it has proven particularly successful in characterizing phosphorylation dynamics 

(Macek, et al. 2009). Due to the availability of efficient techniques for phosphopeptide 

enrichment, tens of thousands of phosphorylation sites can be identified in a single experiment 

(Holt, et al. 2009; Huttlin, et al. 2010; Olsen, et al. 2010; Ringbolt, et al. 2011).  

The aim of this study was to identify new Mediator phosphosites, observe 

phosphorylation dynamics in response to osmotic stress and characterize the impact of 

Mediator phosphosites to transcription. Here we used affinity purification and MS to show that 

yeast Mediator is phosphorylated at 17 of its 25 subunits in vivo. We then used SILAC to show 

that the phosphorylation level at some of the identified sites changes during the osmotic stress 

response. Finally we used mutagenesis and dynamic transcriptome analysis (DTA) to show that 

phosphorylated amino acid residues on the Mediator subunit Med15 are required for setting 

cellular mRNA synthesis rates during stress. These results demonstrate that Mediator is 

extensively modified post-translationally, and that Mediator phosphorylation contributes to 

transcription regulation during cellular stress response. 
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2. Results & Discussion 
 

2.1 Systematic analysis of Mediator phosphorylation 

2.1.1 Mediator is phosphorylated on many sites in vivo 

To obtain endogenous Mediator, we generated a yeast strain carrying an N-terminal tandem 

affinity purification (TAP)-tagged version of Med17. Cells were grown in YPD medium to late-

logarithmic phase, and Mediator was affinity-purified in the presence of phosphatase inhibitors 

(Puig, et al. 2001) (Figure 16A; MATERIALS & METHODS). This preparation was active in promoter-

dependent transcription in vitro (data not shown). Pure Mediator was digested with trypsin to 

generate peptides that were subjected to a phosphoenrichment procedure (Larsen, et al. 2005).  

Phosphopeptides were analyzed by liquid chromatography-tandem mass-spectrometry (LC-

MS/MS) on a high-resolution linear ion trap Orbitrap instrument (Figure 16B; MATERIALS 

& METHODS). 

The phosphopeptides contained 125 unique phosphorylated sites that were 

heterogeneously distributed over 17 different Mediator subunits (Figure 16C). Phosphosites 

were concentrated in the Mediator middle (36%) and tail (48%) modules. Of the 125 

phosphosites, 37 have previously been reported (Guidi, et al. 2004; Hallberg, et al. 2004; 

Gruhler, et al, 2005; Chi, et al. 2007; Li, et al. 2007; Smolka, et al. 2007; Albuquerque, et al. 2008; 

Soufi, et al. 2008), whereas 88 were novel (Table 14). Because phosphosite localization can be 

challenging when a peptide contains multiple serine, threonine, or tyrosine residues, we 

assigned each phosphosite to one of three localization classes. Phosphosites were categorized 

into p(STY)-class I, II, or III, if the localization probability value for the phospho group was above 

0.75, between 0.25 and 0.75, or below 0.25, respectively (Olsen, et al. 2006; Macek, et al. 2009). 

Of the 125 phosphosites, 82, 38, and 5 were ascribed to class I, II and III, respectively (Figure 

16D-E). These results reveal that Mediator is phosphorylated on many sites during exponential 

cell growth in vivo (Figure 17A-C; Table 14). 

 

2.1.2 Mediator phosphorylation changes during stress 

We next tested whether the phosphorylation status of Mediator changes in response to an 

external stimulus. We used SILAC to monitor the response of yeast cells to osmotic stress. Yeast 

cells auxotrophic for lysine were grown either in light or heavy (13C6/15N2) lysine containing 

SILAC medium to mid-logarithmic phase (MATERIALS & METHODS). Sodium chloride was added to 

a concentration of 0.5 M to the culture grown on heavy lysine, whereas the culture grown on 

light lysine was left untreated. Cells were harvested 20 min after salt addition, when expression 

of stress mRNAs is highly induced (Molin, et al. 2009; Miller, et al. 2011). Equal amounts of the 

cultures were combined and Mediator was isolated. Proteins were digested with endopeptidase 

Lys-C, to ensure that a majority of peptides contained at least one lysine (Ong, et al. 2003) 

(Figure 18A-B). The obtained peptides cover 53% of the amino-acid sequence of Mediator-core 
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proteins. Levels of 20 Mediator subunits were unchanged, providing an accurate basis for data 

normalization. 

Phosphopeptides were enriched and analyzed by mass spectrometry (MATERIALS & 

METHODS). We detected peptides from 21 Mediator subunits. These peptides contained 29 

unique phosphosites, which derived from subunits Med1, 2, 3, 4, 5, 6, 7, 14, 15, and 17. A 

replicate experiment revealed 23 additional sites, resulting in a total of 52 unique phosphosites 

(Figure 18C; Table 15). Of these, 15 sites in Med5 and Med15 showed significantly decreased 

phosphorylation with a ratio of heavy to light lysine-containing peptide intensities between 0.2 

and 0.6, whereas one site in Med14 showed significantly increased phosphorylation (Table 13). 

All of these dynamically phosphorylated sites were located in predicted loops of the Mediator 

tail module, which interacts with transcription regulators  (Park, et al. 2000; Jedidi, et al. 2010). 

 
 

 
 

 
Figure 16: Mediator is highly phosphorylated in vivo. (A) SDS-PAGE analysis of endogenous Mediator proteins that 
were co-purified with TAP-Med17 from wild-type S. cerevisiae. Protein bands were stained with Coomassie blue and 
identified by mass spectrometry (TEV, TEV protease bands). (B) Diagram illustrating the workflow for analysis of 
Mediator phosphosites by high-performance LQ MS/MS. (C) Schematic view of Mediator with Med subunits labeled 
with numbers and highlighted in grey if they were found to be phosphorylated under normal growth conditions. The 
four modules of Mediator are also indicated. (D) Bar chart showing the number of phosphosites classified into p(STY) 
classes A (black), B (light grey), and C (dark grey). (E) Bar chart showing the number of phosphorylated serine 
(black), threonine (light grey), and tyrosine (dark grey) residues in Mediator proteins. 
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Figure 17: Distribution of phosphorylation sites in Mediator subunits. (A-C) Schematic illustration of phosphosite 
positions on the primary structure of Mediator subunits belonging to the head (A), middle (B), and tail (C) modules. 
Phosphosites classified in p(STY)-class I (high localization probability) are highlighted in black and p(STY)-class II 
(medium localization probability) in white, respectively. 
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Figure 18: Mediator phosphorylation changes during osmotic stress. (A) Schematic diagram of SILAC experiment 
workflow. (B) SDS-PAGE analysis of endogenous yeast Mediator preparation (SILAC) that was used as input for mass 
spectrometry analysis. Copurified proteins were stained with Coomassie blue (TEV, TEV protease bands). (C) 
Schematic view of Mediator with subunits that were detected to be phosphorylated under osmotic stress conditions. 
Subunits with unaltered phosphorylated sites are in grey, subunits with phosphorylated sites that show altered levels 
of phosphorylation are in black. 

 

 

 
Table 13: Mediator sites that change phosphorylation level during salt stress 

Subunit 
Amino 

acid 
Position Sequence window 

pSTY-
class 

Localization 
p-value 

PTM 
Score 

Ratio H/L 
normalized by 

proteins 

Med5 S 257 TNEFVGSPSLTSP II 0,504487 35,82 0,60258 

Med5 S 259 EFVGSPSLTSPQY II 0,349267 35,82 0,60258 

Med5 T 261 VGSPSLTSPQYIP II 0,351505 35,82 0,60258 

Med5 S 262 GSPSLTSPQYIPS II 0,728166 35,82 0,60258 

Med5 S 268 SPQYIPSPLSSTK III 0,188482 35,82 0,60258 

Med5 S 271 YIPSPLSSTKPPG III 0,190959 35,82 0,60258 

Med5 S 272 IPSPLSSTKPPGS II 0,306 35,82 0,60258 

Med5 T 273 PSPLSSTKPPGSV II 0,306287 35,82 0,60258 

Med14 T 1036 DTKRLGTPESVKP I 0,999212 40,65 1,4734 

Med15 S 746 TPKVPVSAAATPS I 1 139,73 0,59134 

Med15 T 750 PVSAAATPSLNKT I 0,75299 139,73 0,59134 

Med15 S 796 QQPTPRSASNTAK II 0,431756 62,19 0,28888 

Med15 S 798 PTPRSASNTAKST II 0,431756 62,19 0,28888 

Med15 T 769 GRTKSNTIPVTSI I 0,999999 121,83 0,23904 

Med15 S 767 VNGRTKSNTIPVT I 1 121,83 0,23904 

Med15 T 800 PRSASNTAKSTPN II 0,328631 62,18 0,28888 
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2.2 Mediator phosphorylation is involved in Stress response Transcription 

 

2.2.1 Med15 phosphosites contribute to suppression of stress-induced changes in gene 

expression under non-stress conditions. 

The above analysis identified 30 phosphorylated sites that cluster in the Med15 C-terminal 

region (Figure 17C). Seven of these sites are dynamically changed in response to osmotic stress. 

To test whether the phosphorylated sites are functionally involved in the regulation of 

transcription, we created two mutant strains that carry point mutations on selected sites (Figure 

20A; Tables 16-17). The first mutant, referred to as D7P, carries alanine mutations on the seven 

dynamically phosphorylated sites, whereas in the second mutant, D30P, all 30 phosphorylated 

sites clustering near the C-terminus of Med15 were mutated to alanine (Figure 20A). Mutation of 

phosphorylated serine and threonine residues to alanine is functionally similar to the 

dephosphorylated state (Thorsness, et al. 1987). The clustering of 30 phosphosites in the Med15 

C-terminus suggested that combinatorial phosphorylation on multiple sites affect biological 

outcome (Thomson, et al. 2009; Barik, et al. 2010), as was shown for cell cycle control 

(Kovomägi, et al. 2011) and for transcription regulation (Holmberg, et al. 2002). 

We performed dynamic transcriptome analysis (DTA) for D30P mutant and wild-type 

cells under normal conditions. DTA uses metabolic RNA labeling to globally monitor mRNA 

synthesis and decay rates with high sensitivity (Miller, et al. 2011). We carried out metabolic 

RNA labeling by addition of 4-thiouridine for 6 min, extracted RNA, separated labeled RNA from 

pre-existing RNA and analyzed the labeled RNA to generate expression profiles on Affymetrix 

microarrays (Miller, et al. 2011). We performed comparative DTA (cDTA) under identical 

experimental conditions for the D7P mutant, a strain lacking subunit Med15 (med15) and the 

wild-type strain under normal conditions. cDTA allows for direct comparison of synthesis and 

decay rates in different yeast strains (Sun, et al. 2012).  

Mutation of the seven dynamically phosphorylated sites in the D7P strain significantly 

altered the expression of 64 genes. We found 53 genes induced, suggesting a mild negative effect 

of the dynamic phosphosites on transcription. We searched for significantly enriched GO terms, 

which are ranked by Fisher’s exact test. Among the subset of 53 induced genes, we identified a 

significant enrichment of genes involved in response to temperature stimulus, autophagy, and 

carbohydrate metabolism. We found stress markers induced by mutation of dynamically 

phosphorylated sites under physiological conditions. For example, we detected Hsp12, a 

responder to heat shock, oxidative and osmotic stress (Welker, et al. 2010; Morano, et al. 2012), 

Ddr2, which is induced under environmental stress conditions (Kobayashi, et al. 2012; Treger, et 

al. 1998; Hirata, et al. 2003), and the glycogen synthases Gsy1 and Gsy2, which are also induced 

under several environmental stress conditions (Unnikrishnan, et al. 2003; Enjalbert, et al. 2004; 

Zähringer, et al. 2000). These observations indicate that the dynamic phosphosites contribute to 

the repression of genes involved in response to stress conditions under non-stress conditions 

(Figure 20B). 

The expression profile of the strain carrying thirty mutated phosphosites in the Med15 

C-terminal region (D30P) showed significantly altered transcription for 326 genes under normal 

growth conditions. The loss of function caused by the D30P mutation led to the induction of 240 

genes, indicating that native phosphorylation of these sites has a negative effect on transcription. 

In comparison to the genes induced by the mutated dynamic phosphosites (D7P), the stable 

phosphosites act on additional pathways. A GO term analysis revealed the induction of genes 
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involved in response to stimulus, vacuolar protein catabolic process, autophagy and oxidation 

and reduction (Table 22). These GO terms reflect the cellular adaption to environmental changes 

(Rubinsztein, et al. 2011; Singh, et al. 2011; Murray, et al. 2011). Taken together, the overall 

transcriptome changes observed in the D30P mutant strain are similar to those observed in the 

D7P strain, albeit more pronounced. 

We next compared the D7P and D30P profiles to the med15 profile under normal 

growth conditions. Med15 deletion altered the expression of 1743 genes. The transcriptome 

changes observed in the med15 mutant strain resemble those observed during a salt stress 

response, although it was less pronounced (Figure 20C). We analyzed this subset of genes for 

enriched regulatory factors and ranked the factors by Fisher`s exact test. Among the induced 

genes, targets of Sok2 and Rap1 were significantly enriched. We also found a general 

dependence on the general coactivator SAGA and transcription factor Msn2 (Figure 19).  

We next tested whether the observed D7P- and D30P-dependent induction of genes 

contributes to the cellular response to osmotic stress. We focused on the expression profile of 

the wild type within the stress induction phase (18-24 min after addition of salt). The GO terms 

associated with carbohydrate metabolism and response to stimulus were enriched in the wild-

type profile under osmotic stress conditions, but also in the mutants D7P, D30P and med15 

under non-stress conditions (Figure 20D). We calculated the induction level of each GO term by 

the percentage of genes induced by D7P relative to the whole set of genes in the corresponding 

GO term. We found the highest induction by D7P mutations for the GO term response to 

temperature stimulus (15%) and for hexose transport (20%) (Figure 20D). Taken together, both 

dynamically and stably phosphorylated sites in Med15 contribute to the repression of genes 

involved in the response to environmental changes under non-stress conditions. 

 
 

 
 

Figure 19: The D30P phosphosites act on different genes as med15. Venn diagram of the induced datasets of D7P, D30P 

and med15 under normal growth conditions. The mutation of the 30 phosphosites induces expression of 62 genes, which are 

not induced in the Med15 knock-out. Bar plots represent the relative enrichment (fisher’s exact test) of transcription factor 

targets from a total set of 110 transcription factors (Abdulrehman, et al. 2011; Teixeira, et al, 2005) and TFIID, SAGA 

(Huisigna, et al, 2004). The length of the bars represent the percentage of genes in the subset regulated by the respective 

factor. 
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2.2.2 Med15 contributes to activation of genes involved in ribosome biogenesis during 

non-stress conditions 

The med15 mutation caused a selective repression of a subset of genes, which are involved in 

ribosomal biogenesis. The highest ranked GO terms are ribosome biogenesis, ribonucleoprotein 

complex biogenesis, RNA metabolic process, gene expression, ribosomal large subunit 

biogenesis and RNA modification (Tables 18-19). We performed MGSA analysis (Bauer, et al. 

2011) to identify a selective enrichment of transcription factor targets. Among the subset of 

repressed genes we found a significant enrichment of genes regulated by Leu3 and Fhl1 (data 

not shown). Leu3 regulates expression of genes that are involved in branched amino acid 

synthesis and it is functionally related to Gcn4 (Hinnebusch, et al. 2002). Fhl1 regulates 

transcription of ribosomal protein genes and is regulated under different growth and stress 

conditions (Martin, et al. 2004). Fhl1 function links gene expression of ribosomal protein genes 

to the TOR pathway (Martin, et al. 2004). We next compared the subset of repressed genes of the 

med15 dataset to the dataset of response of wild-type cells to osmotic stress. The down-

regulation of ribosome biogenesis genes in the med15 mutant under normal conditions is to a 

large extent similar to the repression under osmotic stress conditions in wild type cells (Figure 

20D). These observations indicate a functional role of Med15 in the expression of ribosome 

biogenesis genes and thus cell growth that is suppressed during salt stress (Figure 20B and 

20D). 

2.2.3 Mutated dynamic phosphosites do not alter osmotic stress-induced gene expression 

Recent work revealed that Med15 interacts with the general stress regulatory factors 

Msn2/Msn4 (Lallet, et al. 2006; Sadeh, et al. 2012) and that mutations of Med15 had a strong 

effect on TATA-containing and SAGA-regulated genes (Ansari, et al. 2012). Based on these 

findings, we searched the cDTA datasets for D7P, D30P, med15, and the wild type data set at 

0.8 M NaCl (induction phase 18-24 min) for enrichment of TATA-containing promoters (Seizl, et 

al. 2011) and Msn2/4 and Hog1 targets. Consistent with previous findings, we found general 

enrichment of TATA-containing genes in both, induced and repressed genes (p-value: 6.25E-11). 

Furthermore we observed a predominance of Msn2/Msn4 regulated genes within the subset of 

induced genes (p-value: 6.32E-42) (Figure 21). Because the med15 strain exhibits a slow-

growth phenotype sensitive to temperature changes and osmotic stress (MATERIALS & METHODS) 

we tested the D7P and D30P mutant strains for sensitivity to temperature and salt stress (data 

not shown). Whereas the D7P mutant strain exhibited no significant growth phenotype, the 

D30P mutant exhibits a weak slow-growth phenotype under temperature and salt stress 

conditions (data not shown). We performed a liquid growth assay to determine the doubling 

times under stress conditions (YPD; 0.8 M NaCl). Relative to wild type and D7P cells (145 min), 

the doubling time slightly increased from D30P (193 min) to med15 (205 min). To investigate 

whether this phenotype is a result of impaired transcription regulation, we performed DTA (for 

D30P & wild type) and comparative DTA (for D7P, med15 & wild type) under osmotic stress 

conditions. Cells were grown to mid-log phase and divided into control and stress samples. For 

the control samples, we carried out metabolic RNA labeling as described (Miller, et al. 2011; Sun, 

et al. 2012). For the stress samples, we induced osmotic stress by addition of sodium chloride to 

a final concentration of 0.8 M, added 4-thiouridine (DTA) after 18 min and extracted RNA after 

6 min of labeling (MATERIALS & METHODS). The time frame 18-24 min is consistent with the 

previous observation of the induction phase, when cells activate the gene expression program to 

antagonize osmotic pressure (Miller, et al. 2011; Molin, et al. 2009) (MATERIALS & METHODS).  
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Figure 20:  Effect of mutated phosphosites on global gene expression under normal growth conditions. A) Functional 
organization of S.cerevisiae Med15. Med15 is organized in several regions as described previously (KIX-domain; A-E; 
black bars, which interact with different transcription factors (Jedidi, et al. 2010; Herbig, et al. 2010), Msn2 (Lallet, et 
al. 2006), Gal4 (Jeong, et al. 2001), Gcn4 (Herbig, et al. 2010; Brzovic, et al. 2011), Pdr1 (Thakur, et al. 2009; Thakur, et 
al. 2008), Oaf1(Thakur, et al. 2009)). Q-rich regions are colored in blue. Mutant sequence features are shown below. 
The D7P mutant harbors genomic point mutations of the seven serine and threonine positions to alanine, which are 
dynamically phosphorylated during response to high salt concentrations. The D30P mutant harbors the complete set 
of all 30 phosphosites (identified during this study), which mimic the dephosphorylated state of the Med15 C-
terminus. B) Heatmap illustrating the effect of the mutated phosphosites on global gene expression (labeled mRNA 
fraction, 6 min labeling time). The genes are arranged by the highest induction or repression fold changes in order of 
D7P, D30P and med15. The horizontal lines represent genes, which are differentially expressed at least 1.5-fold in at 
least one of the data sets. Red color indicates genes, which are induced compared to the wild type control. Blue color 
indicates repressed genes. Genes were ranked by highest/lowest fold-change in order of D7P, D30P and med15. C) 
Venn diagram illustrating the overlap between the data sets of D7P, D30P and med15. D) Diagram representing 
enriched GOterms ranked by Fisher`s exact test. (upper diagram): The bars represent the percentage of genes induced 
in the D7P (black), D30P (dark gray) and med15 (middle gray) strains relative to all genes in the GO term. (lower 
diagram): The bars represent the percentage of genes repressed in the D7P (black)-, D30P (dark-grey)- and med15 
(fair-grey) mutant relative to all genes in the GO term. 
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Upon stress, levels of 3516 newly transcribed (labeled) mRNAs exhibit at least a 1.5-fold change 

in at least one of the data sets. We compared the labeled RNA fraction of D7P, D30P, med15 and 

wild type responding to 0.8 M sodium chloride within the Time frame of 18-24 min after salt 

addition. The response to osmotic stress changed about 50% of newly synthesized RNAs (Figure 

21A). 

To identify gene expression changes during the stress response caused by the mutated 

phosphosites, we calculated a linear model. We used all data sets as dependent variables and 

regressors according to their condition in a linear regression analysis. We found that mutations 

D7P, D30P and med15 do not have any additional effect on salt stress-induced expression 

changes (Figure 21B). We conclude that Med15 phosphosites are involved in repression of genes 

under non-stress conditions, but do not have additional, specific effects on gene expression 

under osmotic stress conditions.  
 

 
 

Figure 21: Linear regression analysis: Effect of Med15 phosphosite mutants on osmotic stress response. A) Global changes 

in labeled mRNA expression under normal conditions and response to osmotic stress. Heatmap illustrating the effect of the 

mutated phosphosites on global gene expression (labeled mRNA fraction, 6 min labeling time). The horizontal lines represent 

genes, which are differentially expressed at least 1.5 fold in at least one of the datasets. Red color indicates genes, which are 

relative induced compared to the wild-type control. Blue color indicates relative repressed genes. Black bars mark the genes, 

which are regulated by Msn2/4 (p-value: 6.32E-42) (second right column) or TATA containing promoter genes (p-value: 

6.25E-11) (Melamed, et al. 2008) (right column). B) linear regression analysis to decipher the influences of the mutation 

(D7P & D30P) and med15 strains under non-stress and salt stress conditions.  
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3. Conclusion & Outlook 
 

Mediator functions by receiving signals from different pathways to generate an output for the 

general transcription machinery (Malik & Roeder, 2010). However, a functional influence of 

posttranslational modification of the Mediator has not been investigated systematically. By 

combining high-resolution MS, quantitative proteomics (SILAC), and dynamic transcriptome 

analysis, we demonstrate here an extensive phosphorylation of Mediator and a contribution of 

Mediator phosphorylation to gene regulation. 

 Earlier work had shown that Mediator is phosphorylated on subunits Med2, Med4, 

Med13 and Med14 and that Med2 phosphorylation can influence Mediator function (Chang, et 

al.l, 2004; Guidi, et al. 2004; Hallberg, et al. 2004; Liu, et al. 2004). Previous proteomic analysis 

additionally revealed that subunits Med1, Med5, Med6, Med15 and Med17 are phosphorylated 

(Gruhler, et al. 2005; Chi, et al. 2007; Li, et al. 2007; Smolka, et al. 2007; Albuquerque, et al. 2008, 

Soufi, 2008). Here we used affinity purification and high-resolution MS to map 125 sites on 17 

Mediator subunits that are phosphorylated in vivo under normal growth conditions. Of these, 88 

were novel, whereas 37 were previously reported (Chang, et al. 2004; Guidi, et al. 2004; 

Hallberg, et al. 2004; Liu, et al. 2004, Gruhler, et al. 2005; van de Peppel, et al. 2005; Chi, et al. 

2007, Li, et al. 2007; Smolka, et al. 2007; Albuquerque, et al. 2008; Soufi, et al. 2008; Jain, et al. 

2009; Consortium, 2010) and confirmed here. The majority of these phosphosites is located in 

the middle and tail modules. Quantitative proteomics using SILAC revealed that a subset of these 

sites has different levels of phosphorylation during the osmotic stress response. 

Phosphorylation levels generally decrease during osmotic stress, consistent with previous 

observations (Soufi, et al. 2009). In particular, we identified 30 phosphorylated sites near the 

Med15 C-terminus, of which seven changed phosphorylation levels during stress 

The number of clustered phosphosites in Med15 suggests an important role of this tail 

module subunit for the transcriptional response to stress. Consistent with this view, Med15 

binds to transcription factors Gcn4, Pdr1, Oaf1, Hsf1, and Ace1  (Thakur, et al. 2008; Herbig, et al. 

2010; Jedidi, et al. 2010), and a med15 knockout strain (med15) exhibits a growth defect under 

hyperosmotic stress conditions (Fan, et al. 2006; Zapater, et al. 2007).  

To investigate whether these phosphosites contribute to Mediator function in gene 

regulation, we mutated a phosphorylation sites in Med15, and used DTA to investigate their 

contribution to gene regulation during the osmotic stress response. This revealed that the 30 

clustered phosphosites in Med15 are involved in suppression of stress-induced alteration of 

transcription from genes responding to environmental changes. The seven dynamically 

phosphorylated sites were required for the repression of genes involved in temperature 

stimulus, autophagy and carbohydrate metabolism under normal growth conditions. Under 

osmotic stress conditions, however, we found no significant contribution of the Med15 

phosphosites to gene expression. 
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Taken together, our results show that Mediator is phosphorylated at multiple sites in 

vivo, that the level of phosphorylation can change during stress, and that a phosphorylated 

subunit region can contribute to transcription regulation by repressing stress genes under 

normal growth conditions. One possible explanation for our observations is that Med15 

phosphorylation suppresses the association of Mediator with various activators that stimulate 

the expression of stress-induced genes. Consistent with this model, Med15 binds to transcription 

factors Msn2, Gcn4, Pdr1, Oaf1, Hsf1, and Ace1 (Thakur, et al. 2009; Jedidi, et al. 2010; Lallet, et 

al. 2006; Herbig, et al. 2010). Alternatively, transcriptional repressors that normally repress 

stress gene transcription would require specific Mediator phosphorylations for their function. 

 The combination of SILAC and mass spectrometry, to identify post-translational 

modification and the systematic investigation of combinations fo multiple phosphorylation by 

synthetic genes and DTA might be an experimental strategy even for other regulatory 

modifications. Sumolyation, Acetylation or ubiquitination are involved in tunig specific protein 

functions in regulation of gene expression.  

Further effort is needed to answer future questions of how information is transmitted 

from sigalling pathways, the Mediator and the Pol II transcription machinery to regulate genetic 

information. As shown, Mediator phosphorylation is involved in regulation of stress response 

genes in yeast. In human, recent studies have shown that phosphorylation of Med1 is associated 

with prostate cancer in a hormone induced nuclear receptor dependent mechanism. Additional 

to cancer, Mediator dysfunction leads to cardiovascular diseases, metabolic disorders and 

mental retardation. Further studies on mechanisms that regulate Mediator function could reveal 

detailed mechanisms that underly these deseases.   
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4. Tables 
 

4.1 Mediator phosphosites  
 

Table 14: Phosphopeptides from endogenous Mediator identified by mass spectrometry 
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Med1 148 S S(1)LDSSNASFNNQGK 1 I 0,999997 256,36  

Med1 151 S S(0.002)LDS(0.869)S(0.129)NAS(0.001)FNNQGK 1 I 0,868889 256,36  

Med1 152 S S(0.001)LDS(0.018)S(0.981)NAS(1)FNNQGK 2 I 0,980961 278,37  

Med1 155 S SLDSSNAS(1)FNNQGK 1 I 0,999764 256,36 Albuquerque, 2008 

Med1 363 S 
LVS(0.069)T(0.069)PS(0.315)S(0.315)NS(0.315)NS 

(0.458)S(0.458)ELEPDYQAPFSTSTK 2 
I
I 

0,315399 154,07  

Med1 364 S 
LVS(0.069)T(0.069)PS(0.315)S(0.315)NS(0.315)NS 

(0.458)S(0.458)ELEPDYQAPFSTSTK 2 
I
I 

0,315399 154,07  

Med1 366 S 
LVS(0.001)T(0.003)PS(0.02)S(0.142)NS(0.793)NS(0.02) 

S(0.02)ELEPDYQAPFSTSTK 1 I 0,793442 225,11  

Med1 368 S 
LVS(0.069)T(0.069)PS(0.315)S(0.315)NS(0.315)NS 

(0.458)S(0.458)ELEPDYQAPFSTSTK 2 
I
I 

0,458234 154,07  

Med1 369 S 
LVS(0.021)T(0.07)PS(0.281)S(0.281)NS(0.309)NS(0.313) 

S(0.717)ELEPDY(0.005)QAPFSTSTK 2 
I
I 

0,717215 154,07  

Med1 389 S NS(0.077)S(0.855)T(0.059)S(0.008)NTEPIPR 1 I 0,855457 139,39  

Med1 391 S NS(0.025)S(0.116)T(0.096)S(0.382)NT(0.382)EPIPR 1 
I
I 

0,381914 139,39  

Med1 393 T NS(0.025)S(0.116)T(0.096)S(0.382)NT(0.382)EPIPR 1 
I
I 

0,381914 139,39  

Med1 404 S HGS(1)VVEASR 1 I 1 149,55 
Albuquerque, 2008 

Smolka, 2007  

Med1 419 S S(1)KRPS(0.999)IT(0.001)EAMMLK 2 I 1 238,08  

Med1 423 S RPS(0.998)IT(0.002)EAMMLK 1 I 0,998231 212,14 
Li, 2007 

Soufi, 2009 

         

Med2 6 S VVQNS(0.989)PVS(0.002)S(0.009)VHTANFSER 1 I 0,989191 298,44 Albuquerque, 2008 

Med2 9 S 
VVQNS(0.206)PVS(0.703)S(0.26)VHT(0.831)ANFS 

(0.001)ER 2 
I
I 

0,702841 243,05  
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Med2 10 S VVQNS(0.985)PVS(0.154)S(0.859)VHT(0.002)ANFSER 2 I 0,858722 243,05  

Med2 13 T 
VVQNS(0.206)PVS(0.703)S(0.26)VHT(0.831)ANFS 

(0.001)ER 
2 I 0,830722 243,05  

Med2 208 S 
ENYQELGSLQSSSQTQLENANAANNGAAFS(0.999)PLT 

(0.001)TTR 
1 I 0,999232 235,08 

Van de Peppel, 
2005 

Hallberg, 2004   

Med2 266 S GFDDNDS(0.995)GNNY(0.005)NDINISSIENNINNNINSTK 1 I 0,995136 346,28  

         

Med3 189 S S(0.796)GS(0.193)T(0.011)MGTPTVHNSTAAAPIAAPK 1 I 0,795633 246,24  

Med3 191 S S(0.09)GS(0.807)T(0.104)MGTPTVHNSTAAAPIAAPK 1 I 0,806632 246,24  

Med3 192 T 
S(0.145)GS(0.799)T(0.526)MGT(0.526)PT(0.004)VHNST

AAAPIAAPK 2 
I
I 

0,525873 174,85  

Med3 195 T 
S(0.02)GS(0.024)T(0.024)MGT(0.925)PT(0.007)VHNSTA

AAPIAAPK 1 I 0,924891 246,24  

Med3 197 T 
S(0.145)GS(0.173)T(0.035)MGT(0.035)PT(0.611)VHNST

AAAPIAAPK 1 
I
I 

0,611461 246,24  

         

Med4 18 S S(0.73)S(0.131)S(0.131)VS(0.007)LVAEATSNTNSEDK 1 
I
I 

0,729971 269,14  

Med4 19 S S(0.094)S(0.764)S(0.118)VS(0.024)LVAEATSNTNSEDK 1 I 0,764367 269,14  

Med4 20 S 
S(0.597)S(0.597)S(0.597)VS(0.189)LVAEAT(0.01)S 

(0.003)NT(0.003)NS(0.003)EDK 2 
I
I 

0,596842 234,73  

Med4 22 S S(0.334)S(0.334)S(0.333)VS(0.998)LVAEATSNTNSEDK 2 I 0,99797 234,73  

Med4 222 S IPGEEVEETEVPTVPPS(0.5)QS(0.5)EEQK 1 
I
I 

0,499999 161,68 Albuquerque, 2008  

Med4 224 S IPGEEVEETEVPTVPPS(0.163)QS(0.837)EEQK 1 I 0,837069 161,68  

Med4 237 T EGT(1)PKTDSFIFDGTAK 1 I 0,99957 246,71 

Albuquerque, 2008  
Guidi, 2004 Li, 

2007  

Chi, 2007 Smolka, 

2007  

Hallberg, 2004  

Soufi, 2009  

Med4 240 T KEGT(0.004)PKT(0.969)DS(0.026)FIFDGT(0.001)AK 1 I 0,968929 246,71  

Med4 242 S T(0.019)DS(0.981)FIFDGTAK 1 I 0,980673 246,71 

Albuquerque, 2008  
Chi, 2007  

Smolka, 2007  
Soufi, 2009  

Med4 248 T KEGT(0.001)PKTDSFIFDGT(0.999)AK 1 I 0,998687 246,71  

         

Med5 64 T 
ASDLVDT(0.978)PS(0.021)NNTAATADTTHLHEALDIVCS

DFVK 1 I 0,978365 275,96 Albuquerque, 2008  

Med5 66 S 
KAS(0.001)DLVDT(0.499)PS(0.499)NNT(0.001)AATADT

THLHEALDIVCSDFVK 1 II 0,498934 275,96  

Med5 257 S 
DS(0.031)T(0.031)NEFVGS(0.773)PS(0.092)LT(0.031) 

S(0.031)PQY(0.01)IPSPLSSTKPPGSVNSAAK 1 I 0,772976 253,18  

Med5 259 S 
DS(0.024)T(0.024)NEFVGS(0.183)PS(0.587)LT(0.069) 

S(0.069)PQY(0.024)IPS(0.005)PLS(0.004)S(0.005)T(0.00
5)KPPGS(0.001)VNS(0.001)AAK 

1 II 0,586881 253,18  

Med5 262 S 
DS(0.001)T(0.001)NEFVGS(0.977)PS(0.147)LT(0.147) 

S(0.725)PQY(0.002)IPSPLSSTKPPGSVNSAAK 2 I 0,724792 215,35 Albuquerque, 2008  
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Med5 268 S 
DSTNEFVGSPSLTSPQY(0.001)IPS(0.967)PLS(0.012) 

S(0.01)T(0.01)KPPGSVNSAAK 1 I 0,966826 253,18 Albuquerque, 2008 

Med5 271 S 
DSTNEFVGS(0.952)PS(0.051)LT(0.147)S(0.147) 
PQY(0.146)IPS(0.573)PLS(0.662)S(0.16)T(0.16) 

KPPGS(0.001)VNSAAK 
3 II 0,662499 195,1  

Med5 278 S 
DS(0.033)T(0.033)NEFVGS(0.429)PS(0.429)LT(0.036) 

S(0.034)PQY(0.018)IPS(0.071)PLS(0.179)S(0.179)T 
(0.18)KPPGS(0.186)VNS(0.192)AAK 

2 III 0,185502 215,35  

Med5 281 S 
DS(0.033)T(0.033)NEFVGS(0.429)PS(0.429)LT(0.036) 

S(0.034)PQY(0.018)IPS(0.071)PLS(0.179)S(0.179)T 
(0.18)KPPGS(0.186)VNS(0.192)AAK 

2 III 0,191816 215,35  

Med5 682 S YYLEESNVNDS(0.996)DMLT(0.004)K 1 I 0,995628 286,16  

Med5 838 S 
VQSQS(0.002)NY(0.002)GIY(0.044)S(0.476)S(0.476)DAQ

GDPNLEPLIAK 1 II 0,476154 256,79  

Med5 839 S 
VQSQS(0.002)NY(0.002)GIY(0.044)S(0.476)S(0.476)DAQ

GDPNLEPLIAK 
1 II 0,476154 256,79  

Med5 1014 S NDS(1)AEVRQETQPK 1 I 1 154,46  

         

Med6 225 S VPTDTSTTATAATNGNNAGGGS(1)NK 1 I 1 341,32  

Med6 228 S 
S(0.181)S(0.181)VRPT(0.181)GGANMAT(0.184) 

VPS(0.187)T(0.187)T(0.187)NVNMT(0.23)VNT(0.228) 
MGT(0.242)GGQT(0.011)IDNGT(0.002)GR 

2 III 0,181253 209,5  

Med6 229 S 
S(0.181)S(0.181)VRPT(0.181)GGANMAT(0.184) 

VPS(0.187)T(0.187)T(0.187)NVNMT(0.23)VNT(0.228) 
MGT(0.242)GGQT(0.011)IDNGT(0.002)GR 

2 III 0,181253 209,5  

Med6 233 T 
S(0.181)S(0.181)VRPT(0.181)GGANMAT(0.184) 

VPS(0.187)T(0.187)T(0.187)NVNMT(0.23)VNT(0.228) 
MGT(0.242)GGQT(0.011)IDNGT(0.002)GR 

2 III 0,181253 209,5  

Med6 240 T 
S(0.005)S(0.005)VRPT(0.012)GGANMAT(0.864)VPS(0.57
6)T(0.175)T(0.186)NVNMT(0.052)VNT(0.056)MGT(0.05

5)GGQT(0.013)IDNGT(0.001)GR 
2 I 0,863718 209,5  

Med6 243 S 
S(0.005)S(0.005)VRPT(0.007)GGANMAT(0.013) 

VPS(0.593)T(0.593)T(0.568)NVNMT(0.462)VNT(0.46) 
MGT(0.198)GGQT(0.094)IDNGT(0.002)GR 

3 II 0,592586 171,88  

Med6 244 T 
S(0.005)S(0.005)VRPT(0.007)GGANMAT(0.013) 

VPS(0.593)T(0.593)T(0.568)NVNMT(0.462)VNT(0.46) 
MGT(0.198)GGQT(0.094)IDNGT(0.002)GR 

3 II 0,592586 171,88  

Med6 250 T 
S(0.005)S(0.005)VRPT(0.007)GGANMAT(0.013) 

VPS(0.593)T(0.593)T(0.568)NVNMT(0.462)VNT(0.46) 
MGT(0.198)GGQT(0.094)IDNGT(0.002)GR 

3 II 0,461857 171,88  

Med6 253 T 
SSVRPTGGANMATVPS(0.004)T(0.003)T(0.004) 

NVNMT(0.077)VNT(0.926)MGT(0.969)GGQT(0.017)IDNG
TGR 

2 I 0,925921 209,5  

Med6 256 T 
SSVRPTGGANMATVPSTTNVNMTVNT(0.009)MGT(0.939)

GGQT(0.052)IDNGTGR 
1 I 0,938822 214,26 Albuquerque, 2008  

Med6 260 T 
SSVRPTGGANMATVPSTTNVNMT(0.041)VNT(0.036)MGT

(0.145)GGQT(0.773)IDNGT(0.005)GR 1 I 0,773043 214,26  

         

Med7 214 S LTSIQDTLRT(0.249)GS(0.751)QS(0.999)PPS(0.001)SSQ 2 I 0,751232 239,75  

Med7 219 S 
LT(0.001)S(0.001)IQDT(0.028)LRT(0.106)GS(0.251) 

QS(0.805)PPS(0.55)S(0.481)S(0.776)Q 3 II 0,550011 240,65  

Med7 220 S 
LT(0.001)S(0.001)IQDT(0.028)LRT(0.106)GS(0.251) 

QS(0.805)PPS(0.55)S(0.481)S(0.776)Q 
3 II 0,481251 240,65  

Med7 221 S LTSIQDTLRTGSQS(0.999)PPS(0.002)S(0.037)S(0.961)Q 2 I 0,961147 239,75  

         

Med8 220 S FTFTGEKPIITGSTST(0.001)S(0.45)S(0.45)S(0.098)N 1 II 0,450021 210,67  

Med8 221 S FTFTGEKPIITGSTST(0.001)S(0.45)S(0.45)S(0.098)N 1 II 0,450021 210,67  
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Med9 118 S S(1)PSEWQDIIHQR 1 I 0,999948 279,51  

Med9 120 S DLLS(0.084)KS(0.097)PS(0.819)EWQDIIHQR 1 I 0,819416 279,51  

         

Med10 147 T RT(0.949)S(0.051)PIDNVSNTH 1 I 0,949122 180,17  

Med10 148 S RT(0.187)S(0.813)PIDNVSNTH 1 I 0,813052 180,17  

Med10 156 T RTSPIDNVS(0.024)NT(0.976)H 1 I 0,975873 180,17  

         

Med13 425 S QTTVSNDLENS(1)PLK 1 I 1 159,17 
Albuquerque, 2008 

Smolka, 2007   

Med13 472 S EQNENLPS(1)DKS(0.997)DS(0.003)MVDK 2 I 0,999986 162,71  

Med13 475 S EQNENLPS(1)DKS(0.997)DS(0.003)MVDK 2 I 0,997092 162,71  

Med13 477 S EQNENLPS(0.095)DKS(0.948)DS(0.957)MVDK 2 I 0,956694 162,71  

Med13 746 T IPQNDIPQT(0.569)ES(0.431)PLK 1 II 0,568941 176,38  

         

Med14 2 T T(0.456)T(0.102)T(0.102)IGS(0.34)PQMLANEER 1 II 0,455663 314,92  

Med14 3 T 
T(0.279)T(0.32)T(0.32)IGS(0.08)PQMLANEERLS(0.001) 

NEMHALK 1 II 0,320262 314,92  

Med14 4 T 
T(0.279)T(0.32)T(0.32)IGS(0.08)PQMLANEERLS(0.001) 

EMHALK 1 II 0,320262 314,92  

Med14 7 S TTTIGS(1)PQMLANEER 1 I 1 314,92 Albuquerque, 2008  

Med14 18 S 
T(0.075)T(0.086)T(0.086)IGS(0.319)PQMLANEERLS 

(0.434)NEMHALK 1 II 0,434133 170,08  

Med14 48 S NTQLHGPS(0.499)AT(0.499)DPET(0.002)TATQK 1 II 0,498769 132,93  

         

Med15 163 T RQLT(1)PQQQQLVNQMK 1 I 1 193,14 Albuquerque, 2008  

Med15 398 T 
AQNVPMNIIQQQQQQNT(0.004)NNNDT(0.001)IAT 
(0.014)S(0.05)AT(0.926)PNAAAFS(0.004)QQQNAS 

(0.001)S(0.001)K 
1 I 0,925814 203,97  

Med15 728 T NT(0.462)S(0.076)S(0.462)MDFLNSMENTPK 1 II 0,462191 245,93  

Med15 729 S NT(0.158)S(0.727)S(0.115)MDFLNSMENTPK 1 II 0,727063 245,93  

Med15 730 S NT(0.013)S(0.104)S(0.883)MDFLNSMENTPK 1 I 0,882932 245,93 Albuquerque, 2008  

Med15 746 S VPVS(1)AAATPSLNK 1 I 0,999759 205,99 Albuquerque, 2008  

Med15 750 T VPVS(0.999)AAAT(0.997)PS(0.004)LNK 2 I 0,997081 178,35 Albuquerque, 2008  

Med15 752 S VPVSAAAT(0.008)PS(0.992)LNK 1 I 0,991966 205,99 Albuquerque, 2008  

Med15 767 S S(0.997)NT(0.003)IPVTSIPSTNKK 1 I 0,996723 154,81 Soufi, 2009  

Med15 783 S KLS(0.998)IS(0.002)NAASQQPTPRSASNTAK 1 I 0,998448 238,32 
Albuquerque, 2008  

Gruhler, 2005  



CHAPTER IV: MEDIATOR PHOSPHORYLATION PREVENT STRESS RESPONSE TRANSCRIPTION   

 

 

 

- 94 - 

 

Med15 785 S KLSIS(1)NAAS(1)QQPTPR 2 I 1 293,6 
Smolka, 2007  

Albuquerque, 2008  
Soufi, 2009  

Med15 789 S KLSISNAAS(1)QQPTPR 1 I 0,999996 238,32  

Med15 793 T LSISNAASQQPT(1)PR 1 I 0,999998 238,32 Albuquerque, 2008  

Med15 796 S 
S(0.847)AS(0.17)NT(0.901)AKS(0.086)T(0.206)PNT 

(0.738)NPS(0.052)PLK 
3 I 0,847316 223,49  

Med15 798 S 
KLS(0.132)IS(0.014)NAAS(0.543)QQPT(0.194)PRS 

(0.266)AS(0.665)NT(0.188)AK 2 II 0,664764 203,01  

Med15 800 T 
S(0.028)AS(0.189)NT(0.785)AKS(0.841)T(0.156) 

PNT(0.001)NPSPLK 2 I 0,785459 203,01  

Med15 803 S SASNTAKS(1)T(0.992)PNT(0.008)NPSPLK 2 I 0,999583 203,01 
Albuquerque, 2008  

Soufi, 2009  

Med15 804 T SASNTAKS(1)T(0.992)PNT(0.008)NPSPLK 2 I 0,99188 203,01 Albuquerque, 2008  

Med15 810 S STPNTNPS(1)PLK 1 I 0,99995 140,69 Soufi, 2009  

Med15 820 T NGT(1)PNPNNMK 1 I 1 194,11  

Med15 828 T T(0.934)VQS(0.066)PMGAQPSYNSAIIENAFRK 1 I 0,933878 248,59 

Albuquerque, 2008 
(Albuquerque 2008) 

Soufi, 2009 (Soufi 

2008) 

Med15 831 S T(0.094)VQS(0.906)PMGAQPSYNSAIIENAFR 1 I 0,906148 248,59 
Albuquerque, 2008  

Soufi, 2009  

Med15 978 S 
DLS(0.399)T(0.399)LVHS(0.067)S(0.067)S(0.067)PS 

(0.027)T(0.022)S(0.476)S(0.476)NMDVGNPR 2 II 0,399447 220,7  

Med15 983 S 
DLS(0.003)T(0.003)LVHS(0.926)S(0.525)S(0.525)PS 

(0.009)T(0.009)SSNMDVGNPR 2 I 0,925609 220,7 Albuquerque, 2008  

Med15 984 S 
DLSTLVHS(0.001)S(0.994)S(0.976)PS(0.027)T(0.001)SS

NMDVGNPR 2 I 0,994309 220,7 Albuquerque, 2008  

Med15 985 S 
DLSTLVHS(0.001)S(0.994)S(0.976)PS(0.027)T(0.001)SS

NMDVGNPR 2 I 0,975761 220,7 
Gruhler, 2005  
Smolka, 2007  

Albuquerque, 2008  

Med15 987 S 
DLS(0.016)T(0.034)LVHS(0.107)S(0.742)S(0.121)PS 

(0.978)T(0.002)SSNMDVGNPR 
2 I 0,978318 220,7 Albuquerque, 2008  

Med15 1003 S RKAS(1)VLEISPQDSIASVLSPDSNIMSDSK 1 I 0,999833 279,49 
Smolka, 2007  

Albuquerque, 2008  

Med15 1008 S 
ASVLEIS(0.956)PQDS(0.042)IAS(0.004)VLS(0.975) 

PDS(0.014)NIMS(0.008)DS(0.002)KK 2 I 0,955844 275,02  

Med15 1018 S ASVLEISPQDSIASVLS(0.973)PDS(0.027)NIMSDSKK 1 I 0,97272 279,49 Smolka, 2007  

Med15 1021 S 
ASVLEISPQDSIASVLS(0.011)PDS(0.976)NIMS(0.011) 

DS(0.002)K 
1 I 0,975597 279,49  

Med15 1034 S VDS(1)PDDPFMTK 1 I 1 235,28 

Smolka, 2007  
Li, 2007  

Chi, 2007  
Albuquerque, 2008  

         

Med17 56 T ADT(0.879)S(0.121)IRLEGDELENK 1 I 0,87863 194,24  

Med17 57 S ADT(0.003)S(0.997)IRLEGDELENK 1 I 0,997496 194,24 
Smolka, 2007  

Albuquerque, 2008  

         

Med18 129 S NILHNTVPQVTNFNSTNEDQNNS(1)K 1 I 1 258,12  

         

Med19 197 S 
S(0.611)S(0.611)GS(0.362)S(0.362)MAT(0.044)PT 

(0.007)HS(0.003)DS(0.001)HEDMK 
2 II 0,610692 199,85  
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Med19 198 S 
S(0.611)S(0.611)GS(0.362)S(0.362)MAT(0.044)PT 

(0.007)HS(0.003)DS(0.001)HEDMK 2 II 0,610692 199,85  

Med19 200 S 
S(0.049)S(0.056)GS(0.747)S(0.146)MAT(0.002)PT 

(0.001)HSDSHEDMK 
1 II 0,746841 220,76  

Med19 201 S 
S(0.447)S(0.447)GS(0.451)S(0.447)MAT(0.021)PT 

(0.085)HS(0.1)DS(0.002)HEDMK 2 II 0,44693 199,85  

Med19 204 T 
SSGSS(0.003)MAT(0.813)PT(0.172)HS(0.01)DS(0.002) 

HEDMK 
1 I 0,81314 220,76  

Med19 206 T 
S(0.001)S(0.001)GS(0.005)S(0.005)MAT(0.113)PT 

(0.763)HS(0.113)DSHEDMK 1 I 0,763434 220,76  

Med19 208 S 
S(0.016)S(0.016)GS(0.013)S(0.02)MAT(0.435)PT(0.558) 

HS(0.941)DS(0.001)HEDMK 2 I 0,940917 199,85  

Med19 210 S SSGSSMAT(0.004)PT(0.15)HS(0.032)DS(0.814)HEDMK 1 I 0,814275 220,76  

         

Med31 11 T SSTNGNAPAT(0.851)PS(0.149)SDQNPLPTR 1 I 0,850876 182,11  
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4.2 Mediator phosphosites under normal and stress conditions 
 

Table 15: Phosphopeptides from endogenous Mediator (SILAC) identified by quantitative mass spectrometry 
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Med1 S 155 LDSSNASFNNQGK 1 I 0,999988 113,1 1,1403 0,93111 [8] 

Med2 S 266 GFDDNDSGNNYND 1 I 0,999916 91,06 1,2889 1,0173 [8] 

Med3 S 189 GKRGPKSGSTMGT 2 II 0,520948 110,2 0,67404  [5] 

Med3 T 195 SGSTMGTPTVHNS 2 II 0,483304 110,2 0,67404  [5] 

Med3 T 197 STMGTPTVHNSTA 2 I 1 110,2 0,67404  [5] 

Med4 S 2 MSVQDTKA 2 II 0,375866 42,7 0,89538  [5] 

Med4 S 29 LVAEATSNTNSED 2 II 0,427697 42,7 0,89538  [5] 

Med4 T 237 MAKKEGTPKTDSF 1 I 0,895187 63,90 0,88859 0,97272 [8] 

Med4 T 240 KEGTPKTDSFIFD 1 II 0,466767 63,90 0,87087 0,97272 [8] 

Med5 T 64 ASDLVDTPSNNTA 1 I 0,711911 44,01 0,75578 0,96689 [8] 

Med5 S 66 DLVDTPSNNTAAT 1 II 0,414839 44,01 0,75578 0,96689 [8] 

Med5 S 257 TNEFVGSPSLTSP 1 II 0,594324 59,16 1,0164 0,96689 [8] 

Med5 S 257 TNEFVGSPSLTSP 2 II 0,504487 35,82 0,60258  [5] 

Med5 S 259 EFVGSPSLTSPQY 3 II 0,349267 35,82 0,60258  [5] 

Med5 T 261 VGSPSLTSPQYIP 3 II 0,351505 35,82 0,60258  [5] 

Med5 S 262 GSPSLTSPQYIPS 3 II 0,728166 35,82 0,60258  [5] 

Med5 S 268 SPQYIPSPLSSTK 1 II 0,554887 59,16 1,0164 0,96689 [8] 

Med5 S 268 SPQYIPSPLSSTK 3 III 0,188482 35,82 0,60258  [5] 

Med5 S 271 YIPSPLSSTKPPG 3 III 0,190959 35,82 0,60258  [5] 

Med5 S 272 IPSPLSSTKPPGS 2 II 0,306 35,82 0,60258  [5] 

Med5 T 273 PSPLSSTKPPGSV 2 II 0,306287 35,82 0,60258  [5] 

Med5 S 1014 LHEKNDSAEVRQE 1 I 1 108,8 1,1616 0,96689 [8] 

Med6 S 225 NNAGGGSNKSSVR 1 I 0,999975 68,61 0,75332  [5] 

Med6 S 225 NNAGGGSNKSSVR 1 I 1 245,8 0,98941 0,96518 [8] 

Med7 S 214 DTLRTGSQSPPSS 1 I 0,965933 162,7   [8] 
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Med7 S 214 DTLRTGSQSPPSS 1 I 0,999754 112,6   [5] 

Med7 S 216 DTLRTGSQSPPSS 1 I 1 162,7   [8] 

Med7 S 216 LRTGSQSPPSSSQ 2 I 0,999821 112,6   [5] 

Med7 S 219 GSQSPPSSSQ 3 II 0,591076 152,58   [5] 

Med7 S 221 QSPPSSSQ 3 II 0,745165 152,58   [5] 

Med14 S 7 MTTTIGSPQMLAN 1 I 0,981906 59,61 1,0028 0,93638 [8] 

Med14 T 1036 DTKRLGTPESVKP 1 I 0,999212 40,65 1,4734 0,93638 [8] 

Med15 S 746 TPKVPVSAAATPS 2 I 1 139,73 0,59134  [5] 

Med15 T 750 PVSAAATPSLNKT 2 I 0,75299 139,73 0,59134  [5] 

Med15 S 767 VNGRTKSNTIPVT 1 I 0,997779 108,8 0,7847 1,0152 [8] 

Med15 S 767 VNGRTKSNTIPVT 2 I 1 121,83 0,23904  [5] 

Med15 T 769 GRTKSNTIPVTSI 2 I 0,999999 121,83 0,23904  [5] 

Med15 S 783 STNKKLSISNAAS 1 I 0,930035 62,19 1,3327 1,0152 [8] 

Med15 S 796 QQPTPRSASNTAK 1 II 0,431756 62,19 0,28888 1,0152 [8] 

Med15 S 798 PTPRSASNTAKST 1 II 0,431756 62,19 0,28888 1,0152 [8] 

Med15 T 800 PRSASNTAKSTPN 1 II 0,328631 62,18 0,28888 1,0152 [8] 

Med15 S 803 ASNTAKSTPNTNP 1 II 0,506016 31,18 0,77543 1,0152 [8] 

Med15 T 804 SNTAKSTPNTNPS 1 I 0,821598 31,19 0,62814 1,0152 [8] 

Med15 T 820 TQTKNGTPNPNNM 1 I 1 63,85 1,1509 1,0152 [8] 

Med15 T 820 TQTKNGTPNPNNM 1 I 1 96,19 0,67499  [5] 

Med15 S 831 NMKTVQSPMGAQP 1 I 0,952246 86,1 1,1016 1,0152 [8] 

Med15 S 983 LSTLVHSSSPSTS 1 II 0,319945 128,3 0,98032 1,0152 [8] 

Med15 S 983 LSTLVHSSSPSTS 1 II 0,467627 100,57 0,80973  [5] 

Med15 S 984 STLVHSSSPSTSS 1 II 0,335819 128,3 0,98032 1,0152 [8] 

Med15 S 984 STLVHSSSPSTSS 1 II 0,467627 100,57 0,80973  [5] 

Med15 S 987 VHSSSPSTSSNMD 1 II 0,335819 128,3 0,98032 1,0152 [8] 

Med15 S 1008 ASVLEISPQDSIA 2 I 0,759731 74,54 1  [5] 

Med15 S 1018 SIASVLSPDSNIM 2 I 0,974119 74,54 1,0  [5] 

Med15 S 1034 KKIKVDSPDDPFM 1 I 1 242,1 1,0116 1,0152 [8] 

Med15 S 1034 KKIKVDSPDDPFM 1 I 1 164,05 0,75937  [5] 

Med17 S 57 AGKADTSIRLEGD 1 I 0,926108 106,6 1,0224 0,96252 [8] 

Med17 T 56 SAGKADTSIRLEG 1 II 0,5 106,6 0,94258 0,96252 [8] 

[5], [8] identifier of replicate experiment 
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4.3 Phosphosite mutants: Genomic point mutations 

 

 
Table 16: Genomic point mutations in D7P mutant strain 

  Relative amino-acid position Point mutation 

Med15 746 S A 

Med15 750 T A 

Med15 796 S A 

Med15 798 S A 

Med15 769 T A 

Med15 767 S A 

Med15 800 S A 

  
Table 17: Genomic point mutations in D30P mutant strain 

  Relative amino-acid position Point mutation 

Med15 728 T A 

Med15 729 S A 

Med15 730 S A 

Med15 746 S A 

Med15 750 T A 

Med15 752 S A 

Med15 767 S A 

Med15 769 T A 

Med15 783 S A 

Med15 785 S A 

Med15 789 S A 

Med15 793 T A 

Med15 796 S A 

Med15 798 S A 

Med15 800 T A 

Med15 803 S A 

Med15 804 T A 

Med15 810 S A 

Med15 820 T A 

Med15 828 T A 

Med15 831 S A 

Med15 978 S A 

Med15 983 S A 

Med15 984 S A 

Med15 985 S A 

Med15 987 S A 

Med15 1003 S A 

Med15 1008 S A 

Med15 1018 S A 

Med15 1034 S A 
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4.4 Gene Ontology analysis 
 

Table 18: med15 (induced): GO term 

GO-ID p-value x n X N Description 

7039 3,48E-39 73 118 732 6208 
vacuolar protein catabolic process 

(autophagy) 

9056 1,06E-26 190 775 732 6208 catabolic process 

44248 3,28E-24 169 680 732 6208 cellular catabolic process 

6914 3,68E-15 57 163 732 6208 autophagy 

30163 6,10E-14 84 314 732 6208 protein catabolic process 

55114 1,19E-13 92 363 732 6208 oxidation reduction 

44257 1,27E-13 81 301 732 6208 cellular protein catabolic process 

5975 8,80E-11 79 326 732 6208 carbohydrate metabolic process 

44262 1,24E-10 73 293 732 6208 cellular carbohydrate metabolic process 

44281 2,49E-10 167 912 732 6208 small molecule metabolic process 

44282 6,83E-10 45 148 732 6208 small molecule catabolic process 

9057 1,20E-08 92 442 732 6208 macromolecule catabolic process 

6066 1,43E-08 59 240 732 6208 alcohol metabolic process 

5984 2,71E-08 13 20 732 6208 disaccharide metabolic process 

44265 4,47E-08 87 421 732 6208 cellular macromolecule catabolic process 

5996 7,69E-08 38 132 732 6208 monosaccharide metabolic process 

19318 1,12E-07 35 118 732 6208 hexose metabolic process 

6112 2,29E-07 18 41 732 6208 energy reserve metabolic process 

9266 5,09E-07 19 47 732 6208 response to temperature stimulus 

51187 5,52E-07 16 35 732 6208 cofactor catabolic process 
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Table 19: med15 (repressed): GO term 

GO-ID p-value x n X N Description 

42254 1,83E-125 237 372 818 6208 ribosome biogenesis 

22613 7,44E-111 240 423 818 6208 ribonucleoprotein complex biogenesis 

6364 1,47E-97 173 252 818 6208 rRNA processing 

16072 2,02E-94 174 262 818 6208 rRNA metabolic process 

34470 1,19E-92 201 350 818 6208 ncRNA processing 

34660 2,49E-90 216 409 818 6208 ncRNA metabolic process 

6396 8,45E-61 213 532 818 6208 RNA processing 

16070 3,16E-56 271 837 818 6208 RNA metabolic process 

462 9,41E-55 78 93 818 6208 
maturation of SSU-rRNA from tricistronic 

rRNA transcript (SSU-rRNA, 5,8S rRNA, 
LSU-rRNA) 

10467 4,98E-54 451 1921 818 6208 gene expression 

30490 1,14E-53 80 99 818 6208 maturation of SSU-rRNA 

44085 1,07E-52 278 903 818 6208 cellular component biogenesis 

6417 3,07E-45 106 192 818 6208 regulation of translation 

32268 1,19E-42 110 215 818 6208 
regulation of cellular protein metabolic 

process 

10608 2,20E-41 106 206 818 6208 
posttranscriptional regulation of gene 

expression 

42273 4,76E-40 61 77 818 6208 ribosomal large subunit biogenesis 

42255 6,83E-38 56 69 818 6208 ribosome assembly 

466 4,95E-32 53 72 818 6208 

maturation of 5,8S rRNA from tricistronic 

rRNA transcript (SSU-rRNA, 5,8S rRNA, 

LSU-rRNA) 

460 4,95E-32 53 72 818 6208 maturation of 5,8S rRNA 

51246 5,45E-31 112 279 818 6208 regulation of protein metabolic process 
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Table 20: D30P (induced): GO term 

GO-ID p-value x n X N Description 

7039 5,92E-23 32 118 183 6208 
vacuolar protein catabolic process 

(autophagy) 

9266 2,65E-16 18 47 183 6208 response to temperature stimulus 

44257 2,70E-11 33 301 183 6208 cellular protein catabolic process 

30163 8,54E-11 33 314 183 6208 protein catabolic process 

9628 1,97E-09 22 165 183 6208 response to abiotic stimulus 

16052 2,69E-09 16 86 183 6208 carbohydrate catabolic process 

44275 5,35E-09 15 78 183 6208 cellular carbohydrate catabolic process 

44282 8,92E-09 20 148 183 6208 small molecule catabolic process 

9056 1,11E-08 51 775 183 6208 catabolic process 

44248 9,11E-08 45 680 183 6208 cellular catabolic process 

44265 1,49E-07 33 421 183 6208 cellular macromolecule catabolic process 

46164 3,68E-07 12 66 183 6208 alcohol catabolic process 

9057 4,66E-07 33 442 183 6208 macromolecule catabolic process 

46365 1,25E-06 11 61 183 6208 monosaccharide catabolic process 

19320 5,03E-06 10 57 183 6208 hexose catabolic process 

6091 6,20E-06 22 259 183 6208 
generation of precursor metabolites and 

energy 

44262 1,40E-05 23 293 183 6208 cellular carbohydrate metabolic process 

6007 1,44E-05 9 51 183 6208 glucose catabolic process 

6066 2,24E-05 20 240 183 6208 alcohol metabolic process 

6006 2,66E-05 12 98 183 6208 glucose metabolic process 
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Table 21: D30P (repressed): GO term 

GO-ID p-value x n X N Description 

42180 6,55E-08 17 391 59 6208 cellular ketone metabolic process 

19752 2,46E-07 16 377 59 6208 carboxylic acid metabolic process 

43436 2,46E-07 16 377 59 6208 oxoacid metabolic process 

6082 4,81E-07 16 396 59 6208 organic acid metabolic process 

44281 3,87E-06 23 912 59 6208 small molecule metabolic process 

44271 2,61E-05 12 310 59 6208 
cellular nitrogen compound biosynthetic 

process 

16053 2,98E-05 9 172 59 6208 organic acid biosynthetic process 

46394 2,98E-05 9 172 59 6208 carboxylic acid biosynthetic process 

32787 3,54E-05 8 135 59 6208 monocarboxylic acid metabolic process 

44283 5,54E-05 13 390 59 6208 small molecule biosynthetic process 

6519 1,51E-04 11 315 59 6208 
cellular amino acid and derivative 

metabolic process 

44106 1,95E-04 10 270 59 6208 cellular amine metabolic process 

6767 3,01E-04 5 63 59 6208 water-soluble vitamin metabolic process 

6766 4,02E-04 5 67 59 6208 vitamin metabolic process 

6520 4,75E-04 9 247 59 6208 cellular amino acid metabolic process 

9308 4,93E-04 10 303 59 6208 amine metabolic process 

46942 5,26E-04 5 71 59 6208 carboxylic acid transport 

19541 8,72E-04 2 5 59 6208 propionate metabolic process 

6865 1,13E-03 4 49 59 6208 amino acid transport 

15849 1,20E-03 5 85 59 6208 organic acid transport 
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Table 22: D7P (induced): GO term 

GO-ID p-value x n X N Description 

7039 2,78E-08 7,98E-06 10 118 51 vacuolar protein catabolic process (autophagy) 

9266 8,08E-08 1,16E-05 7 47 51 response to temperature stimulus 

6006 1,05E-06 6,64E-05 8 98 51 glucose metabolic process 

15749 1,16E-06 6,64E-05 5 24 51 monosaccharide transport 

8645 1,16E-06 6,64E-05 5 24 51 hexose transport 

6066 2,77E-06 1,33E-04 11 240 51 alcohol metabolic process 

19318 4,32E-06 1,77E-04 8 118 51 hexose metabolic process 

5996 9,97E-06 3,58E-04 8 132 51 monosaccharide metabolic process 

6112 1,84E-05 5,27E-04 5 41 51 energy reserve metabolic process 

8643 1,84E-05 5,27E-04 5 41 51 carbohydrate transport 

34637 2,97E-05 7,11E-04 6 75 51 cellular carbohydrate biosynthetic process 

160 8,91E-05 1,83E-03 6 91 51 carbohydrate biosynthetic process 

44257 1,34E-04 2,26E-03 10 301 51 cellular protein catabolic process 

30163 1,90E-04 2,98E-03 10 314 51 protein catabolic process 

46323 1,97E-04 2,98E-03 2 3 51 glucose import 

6091 2,17E-04 3,12E-03 9 259 51 
generation of precursor metabolites and 

energy 

5975 2,58E-04 3,53E-03 10 326 51 carbohydrate metabolic process 

9628 3,57E-04 4,26E-03 7 165 51 response to abiotic stimulus 

44265 4,90E-04 5,41E-03 11 421 51 cellular macromolecule catabolic process 

7039 2,78E-08 7,98E-06 10 118 51 vacuolar protein catabolic process 
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5. Synthesis- decay compensation (Unpublished 

additional Data) 
 

5.1 Stress induced mRNA synthesis- decay compensation  

5.1.1 Osmotic stress induced synthesis rates are compensated by increased mRNA half-

lives 

We used cDTA to obtain data sets of absolute mRNA synthesis rates and halflives for 5331 genes 

of the wildtype, med15 and D7P under normal and osmotic stress conditions (Figure 22A-B). 

Upon high salt concentrations, wild type cells show decreased absolute synthesis rates (median 

fold: 0.212), which are accompanied by a 4-fold extension of global transcript halflives (Figure 

22A). The absolute median synthesis rate decreased from 53 mRNA per cell and cell cycle under 

normal conditions to 11 under stress condition, and absolute median mRNA half-live increased 

from 18 to 71.6 min (Table 26). Therefore, osmotic stress induced change of synthesis rates is 

accompanied by prolonged transcript half-lives, indicating a potential compensation on the post-

transcriptional level (Figure 22A). Variation analysis of absolute synthesis and decayrates 

revealed, that high salt concentrations induce a strong shift in absolute synthesis and decayrates 

relative to the wild type under normal conditions (Figure 22B). The stress response of D7P 

exhibits a similar shift of median synthesis rates (from 52.5 to 11 mRNA/cell/cell cycle), but an 

increased median half-live of 106 min in response to osmotic stress conditions (Table 26). 

Therefore, response to osmotic stress induces absolute mRNA synthesis rate changes, which 

might be compensated by an increase mRNA half lives.  

 

 
Table 23: Median mRNA synthesis rate and transcript half-live. Median of absolute mRNA synthesis rates and 
transcript half-lives of wildtype, D7P and med15 under normal or osmotic stress conditions calculated from cDTA 
data sets. 

 Normal conditions Osmotic stress conditions 

Strain 

Median  
mRNA synthesis rate 

 
[mRNA/cell/cell 

cycle] 

Median  
mRNA half-live 

 
[min] 

Median  
mRNA synthesis rate 

 
[mRNA/cell/cell cycle] 

Median  
mRNA half-live 

 
[min] 

wild type 53 18 11.1 71.6 

D7P 52.5 20 11 105.7 

med15 14.75 108.4 2.4* 443.7* 

* Please note that we observed a strong shift of synthesis and decay rates in the med15 mutant during response to 
osmotic stress (data not shown). Therefore, the median absolute mRNA synthesis rate and absolute half-live for 
med15 are based on the data of 333 genes. 



CHAPTER IV: MEDIATOR PHOSPHORYLATION PREVENT STRESS RESPONSE TRANSCRIPTION   

 

 

 

- 105 - 

 

 

 

 

 
 
Figure 22:  Osmotic stress induced changes in absolute synthesis rates are compensated by increased mRNA half-lives A) 

Scatter plots comparing the changes in mRNA synthesis rates (log fold change, x-axis) and decay rates (log fold changes, y-

axis). Each dot corresponds to one mRNA and the density is represented by the brightness of grey scale. Contour lines define 

regions of equal density. Changes of absolute mRNA synthesis and decay rates in med15 under normal conditions 

compared to wild type. The center of distribution is located at (log2 fold change: -2.1 and -2.6), which indicates a global shift 

in the median synthesis rate and a global shift in the median decay rate, which is accompanied by a global change in mRNA 

levels, which is predicted by the offset of the diagonal red line from the dashed main diagonal. Scatter plot as in A; Osmotic 

stress response of wild-type cells (induction phase, 18-24 min after salt addition): Median mRNA synthesis and decay rates 

are decreased by similar factors and exhibit no change in global mRNA levels (no offset of the diagonal red line).The center 

of distribution is located at (log2fold change: -2 and -2). Scatter plot as in A; Osmotic stress response of D7P mutant cells 

(induction phase, 18-24 min after salt addition): The center of distribution is located at (log2 fold change: -2.1 and -2.6), 

which indicates a global shift in the median synthesis rate and a global shift in the median decay rate, which is accompanied 

by a global change in mRNA levels, which is predicted by the offset of the diagonal red line from the dashed main diagonal. 

B) Coupling of absolute synthesis and decay rates in response to osmotic stress. (global shift in mRNA metabolism in 

response to osmotic stress) The comparison of absolute transcript half-live (x-axis) and mRNA synthesis rate (y-axis) 

illustrates changes in mRNA metabolism that contribute to gene expression. The black dots represent the center of mRNA 

distribution (median). The 95%-confidence area is represented by grey ellipses. Osmotic stress leads to a significant decrease 

of synthesis and decay rates in the wild-type compared to normal conditions (95% region: 5065 transcripts). The D7P mutant 

exhibits a strong decrease in decay rates (95% region: 4220 transcripts). Osmotic stress leads to a strong shift of mRNA 

synthesis rates, which is partly compensated by a corresponding prolongation of transcript half-lives, indicating a coupling 

between transcription and post-transcription to adjust global mRNA levels. 
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1. Introduction 
 

1.1 Identification of Rox3 

Rox3 was identified during a search for factors which are involved in expression of heme-

regulated cytocrome c (cyc7 gene) in Saccharomyces cerevisiae (Rosenblum-Vos, et al. 1991).  

Rox3 was shown to be tightly associated with the Pol II holoenzyme and has been identified as 

component of the Mediator complex (Gustafsson, et al. 1997). Homologues of S. cerevisiase Rox3 

has been identified in fungi, metazoan, plants and mammalia (Bourbon, 2008).  The high 

sequence identity between the yeast and human Rox3 homologue suggest a conserved 

functional role within the Mediator complex. 

 The human Rox3 homologue is associated with several types of cancer. Med19 

knockdown inhibits tumor growth of ovarian cancer (Liu, et al. 2012), decrease cell proliferation 

of human gastric carcinoma (Ding, et al. 2012), prostate cancer (Cui, et al. 2011), pancreatic 

cancer (Li, et al. 2011), colorectal cancer (Ji-Fu, et al. 2012), human osteosarcoma cells (Wang, et 

al. 2011), lung cancer (Sun, et al. 2011), bladder cancer cells (Zhang, et al. 2012), human 

hepatocellular carcinoma cells (Zou, et al. 2011) and breast cancer cells (Li, et al. 2011). 

 

1.2 Rox3 function in regulation of transcription 

Rox3 mutants exhibit temperature sensitivity, osmotic sensitivity and inability to utilize Glycerol 

as a carbon source (Rosenblum-Vos, et al. 1991, Evangelista, et al 1996) and point mutatuons 

are floculent in some backgrounds (Song, et al 1996). Med19/Rox3 plays a role in regulation of 

transcription. Mediator complexes lacking Rox3 have severe defects in basal transcription 

(Baidoonbonso, et al. 2006). Rox3 is required for increased levels of the lipase Yeh1, which 

catalyses steryl ester hydrolysis under heme-deficient conditions (Köffel, et al. 2006) and Rox3 

is involved in transcription of genes required for growth under aerobic and hypoxic conditions 

(Beccera, et al. 2002). Rox3 mutants are defective in activation of Gcn4 and Gal4 induced genes 

and lead to derepression of HO-genes (Tabtiang, et al. 1998). Rox3 is involved in regulation of 

stress response genes. Activation of oxidative stress genes  by the transcription factor Yap1 in 

present of H2O2 is dependent on proper recruitment of Rox3 (Gulshan, et al. 2005) and  Rox3 

mutant derepress expression of heat-shock genes (Singh, et al. 2006) and led to severe reduction 

of TBP, SAGA and SWI/SNF recruitment on selected promoter (Govind, et al. 2005).   

Initially, Rox3 has been described as an essential factor for yeast viability. However, 

several recent studies revealed that Rox3 knockout strains have a severe growth defect, but cells 

are still viable. A Mediator complex could be purified from a Rox3 deletion strain 

(Baidoonbonso, et al. 2006). The purified Mediator complex lacking Rox3 lost the middle module 

under stringent buffer conditions. The current model of Rox3 function suggest a requirement for 

interactions between Mediator subunits and its participation in transcription factor interaction 

with the Mediator   (Baidoonbonso, et al. 2006; Singh, et al. 2006). 
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1.3 Aim & Scope 

Rox3 function is associated with several types of human cancers. Knock-down of Rox3 inhibits 

cellular growth of tumors and cancer cell lines. Rox3 is a promising candidate for studies to 

investigate the functional connection between the Mediator and regulation of transcription. 

Although it has been shown that Rox3 is part of the Mediator complex, there is a lack of 

knowledge concerning the functional role of Rox3 in regulation of transcription. Because of the 

high sequence conservation between human and S. cerevisiae, studies on yeast Rox3 is 

promising for getting insights into the functional role of Rox3 in regulation cell growth. 

 The first part of our study focuses on endogenous Rox3. To identify potential interaction 

partners within the Mediator complex, we used TAP-tagged Rox3 in combination with mass-

spectrometry (section 2.1). In the second part, we investigated the functional organization of 

Rox3. We used limited proteolysis experiments in combination with bioinformatic sequence 

analysis to model the domain architecture of Rox3. Based on these model, we designed several 

Rox3 constructs and tested the potential of Rox3 to activate transcription in vitro (section 2.3). 

The third part focus on the functional role of the Rox3 C-terminus. During the bioinformatic 

sequence analysis, we found evidence for a conserved nuclear localization sequence (NLS) in 

Rox3. We extended our analysis to all Mediator subunits and revealed a second potential NLS at 

the  Gal11/Med15 C-terminus. To test the NLS functionality in vivo, we combined Rox3 and 

Gal11/Med15 with reporter proteins (GFP and mCherry) and analysis by fluorescent 

microscopy. We used Rox3 and Gal11/Med15 C-termini to find evidence for the functional C-

terminal NLS (section 2.3). 

 

2. Results  
 

2.1 Rox3 is associated with the middle module and the Gal11-subcomplex 

Rox3 has been identified as subunit of the Mediator complex (Gustafsson, et al. 1997), however 

the available data on Rox3 interactions to Mediator subunits are contradictive. The physical and 

functional interaction of Rox3 to SRB4/MED17 suggested, that Rox3 might be part of the head 

module (Guglielmi, et al. 2004; Kang, et al. 2001). Surprisingly, recombinant Rox3 had no 

influence on the assembly of the 7-subunit head-module from its recombinantly expressed 

subunits and showed no interaction to any of the head module subunits in vitro (Takagi, 

Kornberg, 2006). 

To test whether Rox3 is stably associated with the Mediator complex, we extracted TAP-

Rox3 from yeast and analyzed the copurified proteins. We generated a yeast strain carrying an 

N-terminal tandem affinity purification (TAP)-tagged version of Rox3. Cells were grown in YPD 

medium to late-logarithmic phase, and Rox3 was purified by tandem-affinity purification as 

described previously (Puig, et al. 2001). The proteins eluted from Calmodulin beads were 

digested with Trypsin and analyzed by mass spectrometry on a high-resolution linear ion trap – 

Orbitrap spectrometer (MATERIALS & METHODS). The head, middle and tail subunits are 

copurified with TAP-Rox3 (Figure 23). However, the kinase-module was not associated with the 

copurifed Mediator core subunits. Consistent with previous findings, the kinase module is 

transiently associated with the Mediator core complex and can be released from the complex 
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(Elmlund, et al. 2006). The complete Mediator core subunits copurify with TAP-Rox3 and 

confirm the stable association with Mediator core complex. 

 

 
 

Figure 23: Rox3 is associated with the middle module and the Gal11-subcomplex. (A) SDS-PAGE of TAP-Rox3 
purification. Med5, Med14 and Med16 are dissociated from the Mediator complex after treatment with 1 M Urea. (B) 
Model of the Mediator complex. Based on our and previous findings, Rox3 might interact with Med15 submodule 
(Med15, Med2, Med3) and the middle module. 

 

To search for potential interaction partners, the TAP-Rox3-Mediator core complex was treated 

with Urea to remove weakly bound Mediator subunits and identify strong interactions to Rox3. 

The endogeneous Mediator core complex was divided into 4 fractions and immobilized on IgG 

beads by TAP-Rox3. Each of the Mediator fractions were treated with either 0 M, 1 M, 3 M, 4 M 

Urea, eluted from IgG beads by TEV proteolysis and isolated by using Calmodlin beads. The 

proteins from each of the fractions were separated by SDS-PAGE on a 4-12% gradient gel and 

protein bands were analysed by standard mass spectrometry (MATERIALS & METHODS). The 

fractions which were treated with 3 M and 4 M Urea contained no proteins, probably due to Rox3 

removal from the beads by unfolding of protein A. However, the fraction treated with 1 M Urea 

revealed the dissociation of Med5, Med14 and Med16 from the Mediator complex (Figure 23). 

This results suggest, that Med14 and the tail module subunits Med5 and Med16 might probably 

not be involved in Rox3 interactions to the Mediator core complex.  

This results confirmed the previously observed dissociation of Rgr1/Med14 from 

Mediator after Urea treatment (Baidoonbonso, et al. 2006). However the additional loss of Med5 

and Med16 but non of the other tail module proteins Gal11/Med15, Med3 and Med2 support our 

hypothesis, that Rox3 interact with the Gal11 subcomplex, which consists of Gal11/Med15, 

Med3 and Med2. This hypothesis is supported by previous observations: First, the whole middle 

module is released from the rox3 Mediator complex by treatment with 1 M Urea and leave a 

subcomplex composed of stable associated head- and tail complex (Baidoonbonso, et al. 2006). 

Second, Rox3 is not associated with the head module in vitro (Takagi & Kornberg, 2006). Taken 

together, our and previous results suggest physical interactions of Rox3 to the middle module 

and the Gal11-subcomplex. 
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Figure 24: Multiple Sequence Alignment of Rox3 from mycetes. Bioinformatic analysis and  limited proteolysis of 
recombinantly expressed Rox3 (trypsin and chymotrypsin) is combined to model the domain architecture of S. 
cerevisiae Rox3. Arrows indicate the fragments identified by Edman-sequencing after proteolysis by trypsin or 
chymotrypsin. 

 

2.2 Rox3 domain architecture and in vitro transcription assay
3
 

To identify the domain architecture of S. cerevisiae Rox3, we expressed Rox3 in E. coli, optimized 

the purification procedure and performed limited proteolysis time course using trypsin and 

chymotrypsin. In combination with multiple sequence alignment of Rox3 homologues, in silico 

secondary structure prediction and limited proteolysis, we concluded a domain architecture 

which is connected to an flexible N-termial region (Figure 24). 

To characterize the function of the Rox3 domains, we performed in vitro transcription assay 

to quantify the ability of different truncated Rox3 variants to stimulate Pol II transcription. For 

this purpose, we tested the nuclear extract of the complete Rox3 kock-out strain for the 

background signal. Since the nuclear extract of Rox3 knock-out strain exhibit no activity, the 

signal can be restored by titration of recombinantly expressed Rox3 to the reaction (Figure 25).  

Next we generated different Rox3 variants by molecular cloing (MATERIALS & METHODS). The 

constructs were expressed in E.coli, isolated by Streptactin and tested for relative expression 

levels, purification efficiency, stability against degradation and solubility (Figure 25). We 

choosed the constructs Rox3-8-180, Rox3-18-180, Rox3-30-180, Rox3-8-160 and Rox3-8-101 and 

                                                             
3 The in vitro transcription assays were performed in collaboration with Martin Seizl (Gene Center Munich). 
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tested these constructs for their potential to activate transcription. Based on the in-vitro 

transcription assay designed by Ranish, et al. (1999), we used a plasmid-based assay with a his4 

core promoter and single upstream Gal4-binding site. Depletion of the Mediator complex from 

wild type nuclear extract reduced signal intensity by 95% and is therefore defective for 

transcription in-vitro (negative control) (Figure 25C, lane 1&2). The TAP-Mediator lacking Rox3 

was significantly reduced transcription activity and addition of recombinant Rox3 was able to 

fully restore the signal to the wild type level (data not shown). Addition of recombinant Rox3 to 

the Rox3 nuclear extract is able to restore transcription up to the level of the native (TAP) 

Mediator (Figure 25C, lane 3). The truncated Rox3 variants are added in two different 

concentrations. The truncated Rox3 variants are able to restore transcription, dependent on 

their concentration (Figure 25C, lanes 3-13). Surprisingly, even the shortest Rox3 variant (8 

to101) is able to activate in-vitro transcription in this assay. To summarize this results, 

recombinant Rox3 is able to restore transcription and the region between amino acid 30 and 

101 is sufficient for Rox3 functionality to activate transcription in-vitro. 

 

 
 

Figure 25: Functional organization of S. cerevisiae Rox3. (A) Recombinantly expressed Rox3 variants used in this 
study. Each fragment was tested for expression in E. coli, purification yield, spontaneous degradation and solubility. 
B) SDS-PAGE of recombinantly expressed Rox3 variants used for in-vitro transcription assay. (C) Results of in-vitro 
transcription assay of Rox3 constructs; Lane 1: Wild type nuclear extract (100 µg) for signal normalization; Lane 2: 
Nuclear extract from Rox3 strain; Lane 3: Recombinant expressed full length Rox3 added to Rox3 nuclear extract; 
Lanes 4 & 13: Recombinant expressed Rox3 variants added to Rox3 nuclear extract in two different concentrations 
each. 
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2.3 Nuclear localization sequences in Mediator subunits Rox3 and Med15 

We searched each sequence of Mediator subunits for potential consensus sequences. By 

comparison of potential nuclear localization signals previously found in different organisms, we 

identified a nuclear localization sequence at the C-terminus of Rox3. The sequence motif 

(KRRRL) consists of a arginine-rich region, which is conserved among Rox3 homologues in fungi 

(Figure 26). To confirm this prediction and to test whether the NLS is functional in vivo, we used 

fluorescence microscopy for localization studies4. For this purpose, we created GFP fusion 

proteins of Rox3 (full length), Rox3NLS (1-180) and Rox3-NLS (181-220). The plasmid 

encoding for the GFP-fusion variants were transformed to yeast BY strain, grown in YPD with 

selectivity marker and fixed with paraformaldehyde (MATERIALS & METHODS) and analyzed by 

microscopy. For the full length Rox3, fluorescence is resticted to the nucleus, indicating a 

accumulation of Rox3 within the nucleus, as expected. For Rox3 lacking the potential NLS 

sequence (Rox3NLS), we observed an accumulation of the fluorescence singal within the 

cytoplasm. The isolated Rox3-NLS (181-220) was sufficient to direct GFP into the nucleus 

(Figure 26). This results demonstrate that the identified NLS is sufficient to direct Rox3 into the 

nucleus. 

The Mediator (1.2 MDa) is one of the largest protein complexes inside the nucleus and it 

is unclear whether the Mediator proteins are assembled within the cytoplasmn or within the 

nucleus. Because of the Mediator’s modular structure, it could be hypothezied that the passage 

through the nuclear pore complexes (NPC) happen separately for individual modules. Based on 

these assumptions, we searched all Mediator protein sequences for additional NLS. We found an 

potential NLS motif ([KR]{2}x{0,1}[KR]{2,4}x{25,34}K{2,4}x{1,2}K) at the C-terminus of 

Gal11/MED15. However, no NLS motif was found within the head-, middle- and kinase-modules. 

To test the Gal11/MED15 NLS in vivo, we generated a fusion protein of Gal11-NLS (974-1044) 

and mCherry and anlyzed the fluorescence signal by microscopy (Shaner, et al. 2004; MATERIALS 

& METHODS). Whereas the fluorescence of mCherry is accumulated within the cytoplasm, the 

fusion protein Gal11-NLS-mCherry result in accumulation within the nucleus. This result 

demonstrate that Gal11/Med15-NLS sufficient for nuclear localization in vivo and this is the first 

evidence for NLS function in Med15. However, further experiments are required to demonstrate 

whether the Gal11-NLS would be able to direct additional protiens, e.g. Med2 and Med3 which 

are members of the Gal11 subcomplex, into the nucleus and details of the context dependent 

NLS regulation.  

 

 

                                                             
4 The Rox3-GFP localization experiment was performed in collaboration with Sonja Baumli (Cramer lab, Gene Center 
Munich) and Stephan Jellbauer (Jansen Lab, Gene Center Munich). 
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Figure 26: Nuclear localization sequence in Mediator subunits Rox3 and Med15. A)Muliple sequence alingment of 
selected nuclear localization sequence of Rox3 homologues identified in mycetes. B) Functional nuclear localization 
sequence of S. cerevisiae Rox3. Left: Green fluoresent protein (GFP) has no intrinsic localization functionality. Second-
left: Cytoplasmic protein Rli1 fused to GFP as control experiment  for cytoplasmic localization. Middle: Full length  
Rox3-GFP localizes to the nucleus. Second-right: Rox3 lacking the putative NLS localizes to the cytoplasm. Right: The 
putative nuclear localization sequence is sufficient to localize GFP to the nucleus. C) Localization studies of med15-
974-1044 (Med15-NLS) in yeast. The C-terminal sequence ob Med15-974-1044 is suffiecient to localize mCherry to 
the nucleus. 
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ABBREVIATIONS 
 

Abbreviation description 

4-sU 4-thiouridine 

5’cap 
7-methylguanylate connected via triphosphate to the 5’ position of 

mRNA 

5’FOA 5-Fluoroorotic Acid 

aa Amino acid 

ActD actinomycin-D 

ALS Amyotrophic horizontal sclerosis 

AR androgen receptor 

ARE AU rich elements 

ATP adenosine triphosphate 

AU-rich element adenosine uracil rich elements 

bp Base pairs 

BRE TFIIB recognition element 

BRE 5-bromo-2’deoxyuridine 

BREd TFIIB recognition element – downstream 

BREu TFIIB recognition element – upstream 

CDK cyclin dependent kinase 

CDT Pol II C-terminal domain 

cDTA comparative dynamic transcriptome analysis 

CHD-type chromodomain helicase DNA-binding family of enzymes 

ChIP Chromatin  immunoprecipitation 

CIAP Calf Intestine Alkaline Phosphatase 

CTD Carboxy-terminal domain 

C-terminus Carboxy-terminus 

CV Column volumes 

Da Dalton 

DAPI 4',6-diamidino-2-phenylindole 

DDR DNA demage response 

DMSO Dimethylsulfoxide 

http://en.wikipedia.org/wiki/7-Methylguanosine
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DNA Desoxyribonucleic acid 

DNA RE DNA recognition element 

dNTP desoxy-nucleotide triphosphate 

DPE downstream promoter element 

DTA dynamic transcriptome analysis 

DTT 1,4-dithio-D,L-threitol 

EDTA Ethylenediaminetetraacetic acid 

eIF-4E Eukaryotic translation initiation factor 4E 

ESR environmental stress response 

et al. et alii (Latin: “andothers”) 

g earth´s gravity 

GCRMA Guanine Cytosine Robust Multi-Array Analysis 

GFP Green fluorescent protein 

GO gene ontology 

GRO genomic run on method 

GTF general transcription factor 

HAT histone acetyl transferase 

HDACs Histone deacetylase(s) 

HEPES 
N-2‐hydroxyethylpiperazine‐N’‐2-ethane 

sulfonic acid 

HOG high osmolarity glycerol pathway 

HPDP-biotine N-[6-(biotinamido)hexyl]-3′-(2′-pyridyldithio)propionamide 

HPLC high performance liquid chromatography 

HSP heat shock protein 

IgG Immunglobulin G 

IMAC immobilized metal ion affinity chromatography 

INR initiator element 

IPTG isopropyl-ß-D-thiogalactopyranoside 

ISWI Imitation Switch protein 

KH-domain nuclear ribonucleoprotein K homologue domain 

Km Michaelis-Menten constant 

KOAc Potassium acetate 

LB Lauria-Bertani (medium) 

LC MS/MS liquid chromatography mass spectrometry 

Lgr labeled mRNA of gene “g” in sample “r” 

LIMMA Linear Models for Microarray data 

Lys-C Endoproteinase 

M molar 

MALDI Matrix-assisted Laser Desorption/Ionization 
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MAPK mitogen activated kinase 

MES 2-(N-Morpholino) ethanesulfonic Acid 

MOPS 4-morpholinepropanesulonic acid 

mRNA messenger ribonucleic acid 

Mrp RNase multiprotein-complex 

MS mass spectrometry 

MTE motif ten 10 element 

NFR nucleosome free region 

NLS nuclear localization sequence/signal 

NMD nonsense mediated decay 

NPC nuclear pore complex 

NTA nitrilotriacetic acid 

N-terminus amino terminus 

NUDIX-motif Nucleoside Diphosphate Linked Moiety X 

ODnm optical density at wavelength [nm] 

ORF open reading frame 

p(STY) localization probability of STY phosphorylation positions 

pA polyadenylation site 

PAGE polyacrylamide gel electrophoresis 

P-bodies processing bodies 

PBS phosphate buffered saline 

PCR polymerase chain reaction 

PDB protein data bank 

PH-domain Pleckstrin homology domain 

Phen 1,10-phenantroine 

PI protease inhibitor 

PIC pre-initiation complex 

Pol II RNA polymerase II 

poly(A) polyadenylation  

poly(U) polyuracil 

Puf PUmilio-homology domain Family 

PVDF polyvinylidene fluoride 

qRT-PCR quantitative reverse transcriptase PCR 

RiBi ribosomal biogenesis genes 

RNA ribonucleic acid 

RNPs mRNA binding proteins 

ROS reactive oxygen species 

RP ribosomal protein genes 
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RP-HPLC reverse phase high performance liquid chromatography 

rpm rounds per minute 

rRNA ribosomal ribonucleic acid 

RSC remodel the structure of chromatin – protein familiy 

RT-PCR reverse transcriptase PCR 

S Svedberg (sedimentation coefficient unit) 

SAGA Spt-Ada-Gcn5-acetyltransferase 

SAPK stress activated protein kinases 

SC synthetic complete medium 

SD synthetic defined medium 

SDS sodium dodecylsulfate 

SILAC stable isotope labeling of amino acids in cell culture 

SOB Super Optimal Broth 

STE stabilizer elements 

SWI/SNF SWItch/Sucrose NonFermentable nucleosome remodeling complex 

SYBR-safe fluorescent dye for DNA gel electrophoresis produced by Invitrogen 

TAF TBP associated factor 

TAFs TBP associated factors 

TAP tandem affinity purification 

TATA core DNA sequence 5'-TATAAA-3' 

TCA trichloroacetic acid 

TCEP tris(2-carboxyethyl)phosphine 

TEV tobacco edge virus protease 

TFs transcription factor(s) 

Tgr total mRNA of gene “g” in sample “r” 

TOR target of rapamycin pathway 

TRIS tris-(hydroxymethyl)-aminomethane 

TSS transcription start site 

TTP tristetraproline 

U units 

UAS upstream activation sequence 

Ugr unlabeled mRNA of gene “g” in sample “r” 

URA uracil 

UTP Uracil triphosphate 

UTR untranslated region 

v/v volume per volume 

w/v weight per volume 

YPD yeast extract peptone dextrose 

http://en.wikipedia.org/wiki/Broth
http://en.wikipedia.org/wiki/DNA_sequence

