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2. Zusammenfassung 
 
Endotheliale Vorläuferzellen bei Patienten mit Diabetes mellitus sind dysfunktional. Bisher 

fehlen jedoch wirkungsvolle Therapien, um diese Funktionsstörung zu rekonstituieren. Da 

Adiponectin positive Effekte auf die Endothelfunktion hat, wurden in der vorliegenden Arbeit 

die funktionellen Auswirkungen einer Behandlung von endothelialen koloniebildenden Zellen 

(endothelial colony-forming cells; ECFC) mit globulärem Adiponectin (gAcrp), der aktiven 

Domäne des Adiponectins, untersucht.  

ECFC wurden aus Peripherblut von Patienten mit Diabetes mellitus Typ 2 (dmECFC) isoliert 

und mit ECFC von jungen, gesunden Probanden (yECFC) sowie gleichaltrigen Probanden 

ohne Diabetes mellitus (hECFC) verglichen. Die Zellen wurden über 48 Stunden mit gAcrp 

behandelt und anschließend hinsichtlich Zellzahl, Zellzyklus und Migrationsfähigkeit 

untersucht. Zur Evaluation in vivo wurden menschliche ECFC in normoglykämische, athyme 

NMRI nu/nu Mäuse, sowie in Mäuse mit Streptozotocin-induzierter Hyperglykämie injiziert, 

die zuvor einer einseitigen Hinterlaufischämieoperation unterzogen wurden. 

Während dmECFC im Vergleich zu yECFC und hECFC eine funktionelle Beeinträchtigung 

zeigten, verbesserte gAcrp deren Proliferation und Migration signifikant. Diese Effekte waren 

allerdings bei hECFC ausgeprägter als bei dmECFC und sind über den Cyclooxygenase-2-

Weg vermittelt. Besonders hervorzuheben ist jedoch, dass eine deutliche und anhaltende 

Verbesserung der in vivo-Neovaskularisation im Vergleich zu unbehandelten dmECFC 

beobachtet werden konnte, wenn die Tiere mit gAcrp-vorbehandelten Zellen behandelt 

wurden. Dieser Behandlungserfolg stellte sich sowohl unter normoglykämischen, als auch 

unter hyperglykämischen Bedingungen ein. 

Zusammenfassend konnte gezeigt werden, dass eine Vorbehandlung von ECFC mit gAcrp 

deren Funktionalität in vitro und in vivo unter normoglykämischen, wie auch unter 

hyperglykämischen Bedingungen verbessert. Eine Zelloptimierung mittels gAcrp vor 

Zelltherapie könnte also ein neuartiger Ansatz sein, um der funktionellen Beeinträchtigung 

von ECFC bei Diabetikern zu begegnen. 



 

 5 

3. Einleitung 
 

Kardiovaskuläre Erkrankungen sind weiterhin die häufigste Todesursache in der 

Bundesrepublik Deutschland wie auch in der gesamten westlichen Welt. In der 

Bundesrepublik starben in 2010 insgesamt 353.000 Menschen an Herz-Kreislauf-

Erkrankungen. Das Statistische Bundesamt listet die chronische ischämische Herzkrankheit, 

den akuten Myokardinfarkt und die Herzinsuffizienz als häufigste zum Tode führende 

Diagnosen. Unter den zehn häufigsten Ursachen finden sich weiterhin der Schlaganfall und 

die hypertensive Herzkrankheit (1).  

Bei Patienten, die an Diabetes mellitus leiden, treten diese Erkrankungen früher und stärker 

in Erscheinung. Die ersten Daten aus einem größeren Patientenkollektiv stammen aus der 

Framinghamstudie. Die Autoren konnten damals anhand der 20-Jahre-follow-up-Daten 

zeigen, dass Patienten, die an Diabetes leiden, ein etwa doppelt so großes Risiko für 

kardiovaskuläre Erkrankungen hatten, wie dies bei Nichtdiabetikern der Fall war. Die 

Herzinsuffizienz trat demnach bei männlichen Diabetikern beinahe doppelt so häufig, bei 

weiblichen Diabetikern sogar beinahe viermal so häufig auf wie bei Gesunden. Ein ähnliches 

Bild zeigte sich beim Risiko für die koronare Herzkrankheit. Auch Schlaganfälle traten mehr 

als doppelt so häufig auf wie bei der gesunden Vergleichsgruppe (2). 

Andere Studien kommen sogar noch zu akzentuierteren Ergebnissen. So ist in einer Studie 

ein etwa 2,5faches Risiko für das Entstehen einer Herzinsuffizienz für Patienten mit Diabetes 

mellitus im Vergleich zu gesunden Vergleichsprobanden beschrieben (3). Das relative Risiko 

für einen Herzinfarkt beträgt bei männlichen Patienten mit Diabetes mellitus laut einer 

schwedischen Studie von Lundberg et al. 2,9, bei weiblichen Patienten sogar 5,0 bei 

gleichzeitig höherem Risiko für einen fatalen Ausgang des Ereignisses (4).  

Doch nicht nur diese akut bedrohlichen Erkrankungen sind beim Diabetiker häufiger. Gerade 

sich schleichend entwickelnde Erkrankungen wie die diabetische Retinopathie, die 

diabetische Nephropathie sowie das diabetische Fußsyndrom sind mit langen und für den 
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Patienten stark beeinträchtigenden Verläufen vergesellschaftet. Dies alles belastet nicht nur 

den Patienten selbst, sondern bedeutet auch eine große sozioökonomische Belastung (5).  

Sowohl den akuten als auch den chronisch verlaufenden kardiovaskulären Erkrankungen 

gemein ist die zugrundeliegende Gefäßschädigung, deren Progression zwar mittels 

Reduktion der Risikofaktoren als auch pharmakotherapeutisch gemindert werden kann, für 

die aber bislang wirkungsvolle Therapiestrategien fehlen.  

Im Laufe der letzten Jahre ist die regenerative Medizin vermehrt in den Fokus der 

Wissenschaft gerückt und hat in Folge auch zu vermehrter Präsenz dieser Thematik in den 

Medien und in der Öffentlichkeit geführt.  

Da die Selbstregeneration des Körpers einerseits beschränkt ist, andererseits, wie oben 

erwähnt, das Aufhalten der Progression vorhandener Pathologien in vielen Fällen mit einem 

fortbestehenden Funktionsverlust, bedingt durch Gewebeuntergang, verknüpft ist, sucht die 

regenerative Medizin Wege, diesen Funktionsverlust durch Steigerung des 

Regenerationspotentials des körpereigenen Gewebes als auch durch einen Ersatz von 

untergegangenem Gewebe durch autologes oder allogenes Material auszugleichen. 

Als Ausgangsmaterial für die Herstellung von transplantierbarem Gewebe, seien es Zellen 

zur zellbasierten Therapie oder Gewebeverbände, dienen hierbei Stammzellen, die die 

Eigenschaft besitzen, sich in alle oder zumindest mehrere Zellarten der drei Keimblätter und 

damit unterschiedlichste Gewebetypen auszudifferenzieren.  

Erstere, die so genannten embryonalen Stammzellen, werden aus der inneren Zellmasse 

von Blastozysten gewonnen und haben die Fähigkeit eine unbestimmte Zeit weiter zu 

wachsen und dabei ihre Pluripotenz zu erhalten (6; 7). Aufgrund dieser Eigenschaft sind sie 

in vielen Ländern Gegenstand intensiver Forschung, gerieten aber auch aufgrund ethisch-

moralischer Diskussionen durch den Gewinnungsmodus beim Menschen in die Kritik.  

Im Laufe der letzten Jahre tat sich noch eine weitere Möglichkeit auf, die die Vorteile von 

embryonalen Stammzellen im Hinblick auf die mögliche Ausdifferenzierung mit einer relativ 

einfachen Gewinnung frei von größeren ethischen Bedenken vereint. Diese induzierten 

pluripotenten Stammzellen wurden erstmals 2006 von Takahashi und Yamanaka 
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beschrieben. Die Autoren zeigten, dass mittels Zugabe von vier Faktoren, Oct3/4, Sox2, c-

Myc und Klf4, zu Fibrozyten, die unter Zellkulturbedingungen wie für embryonale 

Stammzellen üblich gehalten wurden, diese zu Zellen reprogrammiert werden konnten, die 

die Fähigkeit besaßen, sich wie embryonale Stammzellen in Zellen aller drei Keimblätter zu 

differenzieren (6). 

Die adulten Stamm- und Progenitorzellen, welche als postnatale Stammzellen definiert sind, 

sind zwar aufgrund ihrer geringeren Differenzierungsfähigkeiten eingeschränkter in ihren 

Einsatzmöglichkeiten, jedoch einfach z.B. aus dem Blut oder dem Knochenmark von 

Patienten zu gewinnen. Somit können sie auch für eine autologe Transplantation von den 

zukünftigen Empfängern selbst entnommen werden.  

Das prominenteste Beispiel für eine Therapie mit adulten Stammzellen ist die 

Knochenmarktransplantation, die schon seit vielen Jahren in der klinischen Routine 

durchgeführt wird. Über diese blutbildenden Stammzellen hinaus fanden sich im Laufe der 

letzten Jahre noch in vielen weiteren Geweben adulte Stamm- und Progenitorzellen, die für 

die unterschiedlichsten Gewebe ein gewisses regeneratorisches Potential besitzen.  

In der Literatur verdichten sich die Hinweise aus experimentellen und frühen klinischen 

Studien, die vermuten lassen, dass endotheliale Vorläuferzellen, die aus dem Knochenmark 

ins periphere Blut mobilisiert werden, in Gebiete ischämisch geschädigten Gewebes 

einwandern und dort zur Neovaskularisation beitragen, wodurch die Gewebeperfusion 

verbessert und so die Geweberegeneration unterstützt wird (8-10). Auch wenn für 

endotheliale Vorläuferzellen aus dem Knochenmark und aus dem peripheren Blut  in 

verschiedensten experimentellen und klinischen Ansätzen bereits eindrücklich gezeigt 

werden konnte, dass sie in der Lage sind, die Neovaskularisation zu verbessern, ist der 

klinische Einsatz sogenannter früher endothelialer Progenitorzellen durch deren begrenztes 

Proliferationsvermögen und eher monozytären Phänotyp beschränkt (3; 6; 7; 11-14).  

Im Gegensatz dazu bilden die endothelialen koloniebildenden Zellen (endothelial colony-

forming cells, ECFC) eine äußerst homogene Subpopulation der endothelialen 
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Vorläuferzellen. Diese zeichnen sich durch großes proliferatives Potential und eine starke 

endotheliale Prägung aus (14).  

ECFC können aus Nabelschnurblut gewonnen werden. Auch eine Isolation aus Peripherblut 

ist möglich. Hierbei wiederum kann das Blut von gesunden Probanden, als auch von 

Patienten (z.B. mit Diabetes mellitus) verwendet werden. Aufgrund dieser manigfaltigen 

Gewinnungsmöglichkeiten erscheinen ECFC daher für eine zellbasierte Therapie zur 

Gefäßregeneration sehr geeignet. Zwar zeigen aus Nabelschnurblut gewonnene Zellen eine 

hohe proliferative Kapazität im Vergleich zu Peripherblut-ECFC, doch ist deren klinische 

Anwendung durch die Notwendigkeit einer mit der Zelltherapie einhergehenden 

immunsuppressiven Therapie begrenzt. Andererseits sind die Vorläuferzellen, die von 

Patienten mit kardiovaskulären Risikofaktoren und Erkrankungen, einschließlich Diabetes 

mellitus, isoliert wurden, hinsichtlich der verfügbaren Zellzahl eingeschränkt, dysfunktional 

und werden mit gestörter Gefäßhomöostase und –funktion in Zusammenhang gebracht (15-

17). Außerdem zeigen Progenitorzellen in vitro eine Funktionseinschränkung, wenn sie 

erhöhten Glucosespiegeln ausgesetzt werden (18-20). Deshalb ist es beim Entwickeln 

zellbasierter Therapieregime, die Nutzen aus den Neovaskularisationsfähigkeiten autologer, 

endothelialer Vorläuferzellen ziehen möchten, unabdingbar, auch Strategien zur Aufhebung 

der funktionellen Defizite einzubeziehen, die durch die Erkrankung an den Zellen 

hervorgerufen wurden. Diese müssen dann beispielsweise, wie im Folgenden dargestellt, auf 

die Zellen von Diabetikern angewandt werden, bevor diese in vivo  eingesetzt werden.  

Zahlreiche Studien berichteten über eine enge Assoziation zwischen den Blutspiegeln von 

Adiponectin (auch bekannt als adipocyte complement-related protein of 30 kDa, Acrp30) - 

einem Hormon, das aus Adipozyten stammt – und Diabetes mellitus Typ 2. Während bei 

Typ-2-Diabetes niedrigere Adiponectinspiegel nachgewiesen werden konnten (21), zeigten 

Menschen mit hohen Serumadiponectinspiegeln ein geringeres Risiko einen Diabetes zu 

entwickeln (22; 23). Darüberhinaus sind höhere Adiponectinspiegel mit einer geringeren 

Wahrscheinlichkeit assoziiert, eine Insulinresistenz oder einen Typ 2-Diabetes zu entwickeln 

(24-26). Deshalb untersuchten wir die Effekte, die durch eine Behandlung von  ECFC von 
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Patienten mit Typ 2-Diabetes (dmECFC) mit der aktiven Domäne des Adiponectins, dem 

sogenannten globulären Adiponectin (gAcrp), hinsichtlich Zellzahl und –funktion zu erzielen 

sind. Wir konnten zeigen, dass sich globuläres Adiponectin sehr gut als Vorbehandlung 

eignet, um dmECFC vor ihrem Einsatz in der Zelltherapie funktionell zu rekonstituieren. 

Besonders hervorzuheben ist die Tatsache, dass die Effekte, die durch die Vorbehandlung 

erzielt werden konnten, auch in einer hyperglykämen Umgebung persistierten und auch in 

hyperglykämen Mäuse nach Hinterlaufischämie zu einer funktionellen Verbesserung führten. 

Dies ist im Hinblick auf die klinische Relevanz der gAcrp-Vorbehandlung von besonderer 

Bedeutung. 
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4. Material & Methoden 

4.1 Isolation humaner Progenitorzellen 
 

Peripherblut wurde von Patienten mit Typ-2-Diabetes und einem HbA1c > 7,5 % [n=8; 

Männer und postmenopausale Frauen, 60±5,8 Jahre alt] einerseits, von gleichaltrigen 

Kontrollprobanden, die nicht an Diabetes mellitus litten [n=5; Männer und postmenopausale 

Frauen, 66±3,6 Jahre alt] (siehe Anhang, Tabelle 1) andererseits, sowie von jungen, 

gesunden Männern [n=5; 26,4±0,8 Jahre alt] entnommen. Letztere dienten als Quelle für voll 

funktionsfähige ECFC. Die Blutentnahme wurde nach ausführlicher Aufklärung, reichlicher 

Überlegung seitens der Patienten und schriftlicher Einwilligung vorgenommen.  

Die Isolation und Kultivierung der ECFC wurde, wie von Yoder et al. zuvor beschrieben, 

durchgeführt (27). Hierzu wurde Vollblut aus einer peripheren Vene entnommen, zunächst 

mit PBS verdünnt und anschließend der Ficoll-Dichtezentrifugation zugeführt. Die so 

gewonnenen Zellen wurden sodann in 6-well-Zellkulturplatten kultiviert. Diese wurden zuvor 

mit Rattenschwanzcollagen Typ 1 beschichtet (BD Biosciences, Bedford, MA). Als 

Kulturmedium diente endotheliales Basalmedium-2 (EBM-2), dem 10% FCS (fetal calf 

serum, fetales Kälberserum) und EGM-2 SingleQuots (hEGF, hFGF-B, VEGF, 

Ascorbinsäure, Hydrocortison, Long-R3-IGF-1, Heparin und Gentamicin / Amphotericin) 

zugesetzt waren. Nach 24 Stunden wurden nicht-adhärente Zellen und Debris entfernt. 

Während der ersten sieben Tage wurde das Medium täglich, danach alle zwei Tage 

gewechselt bis sich Zellkolonien zeigten. Die Kolonien wurden unter Verwendung von 

Trypsin gezielt mit der Pipette entnommen, in neue Zellkulturplatten überführt und für die 

Experimente weiter expandiert. Die so gewonnenen Zellen wurden anschließend während 

der letzten 48 Stunden mit PBS (Kontrolle) oder humanem, rekombinantem gAcrp30 (1 

µg/ml; Peprotech, Hamburg, Germany) in Gegenwart oder Abwesenheit von Parecoxib (100 

µM; Dynastat™; Pfizer Inc., New York, NY, USA), Superoxiddismutase (300 U/ml; Sigma, 

Steinheim, Deutschland) oder L-NMA (1 mM; Sigma, Steinheim, Deutschland) behandelt.  
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Parallel dazu wurden ECFC von Patienten mit Diabetes mellitus Typ 2 und gesunden 

Kontrollen zur Ermittlung der Populationsverdopplungszeit über mindestens 25 Tage in 

Kultur gehalten. Die Zellen wurden regelmäßig bei einer Konfluenz von etwa 80% gesplittet, 

die Zellzahl wurde gezählt und 500.000 Zellen anschließend in einer neuen Kulturflasche 

wieder in Kultur genommen. Die Verdopplungszeit der Zellpopulation wurde wie folgt 

berechnet: 

Td = (t2 - t1) * log(2) / log(q2 / q1) 

(Td: Verdopplungszeit der Population; t2: zeitlicher Endpunkt; t1: zeitlicher Startpunkt; q2: 

Endpopulationsgröße; q1: Startpopulationsgröße). 

4.2 Bestimmung der Blutadiponectinspiegel 
 
Bei der Blutabnahme wurden Spenderplasmaproben gewonnen und bei -20 °C  konserviert. 

Zu einem späteren Zeitpunkt wurden die Adiponectinplasmaspiegel mit dem Human 

Adiponectin ELISA Kit (Millipore, St. Charles, Missouri, USA) nach Herstellerangaben 

gemessen. 

4.3 Durchflusszytometrie 
 

Die Expression der Oberflächenmarker CD31, CD34 und VEGFR2 wurde mittels 

Durchflusszytometrie bestimmt. Die Zellen wurden anfangs mit Flebogamma (Grifols, 

Langen, Deutschland) vorbehandelt, um eine unspezifische Bindung der Antikörper zu 

verhindern. Anschließend wurden sie mit Antikörpern gegen die humane 

Oberflächenmoleküle CD31, CD34 (beide ebioscience, San Diego, CA, USA) und VEGFR2 

(ReliaTech, Wolfenbüttel, Deutschland) gefärbt. Diese Färbungen wurden in frühen 

Passagen durchgeführt (Passage 8 bis 10). Jede Analyse beinhaltete 105 eingeschlossene 

Ereignisse.  
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Die Zellzyklusanalyse wurde mithilfe eines BrdU (Bromdesoxyuridin) Flow Kit (BD) anhand 

der Herstellerangaben durchgeführt. Hierbei wurden die Zellen 2 Stunden mit BrdU inkubiert 

(“gepulst”).  

Alle Proben wurden an einem FACSCalibur gemessen und mit der Software CELLQuest 

analysiert (beides BD).  

4.4 mRNA-Expression 
 

Zum Nachweis der spezifischen Adiponectin-Rezeptoren AdipoR1 und AdipoR2 wurde die 

RNA sowohl von gesunden Kontrollen als auch von Diabetikern isoliert. Dies erfolgte mit 

einem RNeasy Kit (Qiagen, Hilden, Deutschland) nach Herstellerangaben.  

Die Quantifizierung von AdipoR1 und AdipoR2 mRNA wurde mit einer  RT-PCR an 100 ng 

RNA unter Verwendung der zuvor beschriebenen Primer durchgeführt (28). 

4.5 Knock-down von AdipoR1 und AdipoR2 
 

Um die funktionelle Relevanz von AdipoR1 und AdipoR2 zu erfassen, transfizierten wir 

ECFC mit Accell siRNA (Thermo Scientific, Waltham, MA, USA) für AdipoR1 und/oder 

AdipoR2 nach Herstellerangaben. Danach wurde die Zellzahl in Abhängigkeit von einer 

Behandlung mit gAcrp erfasst. 
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4.6 Bestimmung der in vitro-Migrationsfähigkeit der Progenitorzellen  
 

Für diese Bestimmung wurden die Zellen über 48 Stunden mit 1 µ g/ml gAcrp, 100 µM 

Parecoxib, 300 U/ml Superoxiddismutase oder deren Kombinationen vorbehandelt. 5 x 105 

Zellen wurden jeweils in 250 µl DMEM + 5% FCS resuspendiert und in die obere Kammer 

einer modifizierten Boyden Kammer (BioCoat® invasion assay, 8 µm pore size, BD) 

eingebracht. Die obere Kammer wurde in eine 24-well-Zellkulturplatte mit 500 µl EGM-2 pro 

well eingesetzt. Nach einer Inkubationszeit von 12 Stunden bei 37°C und 5% CO2 wurden 

die Membranen vorsichtig aus den boyden chambers ausgeschnitten und auf Objektträgern 

die transmigrierten Zellen mit DAPI (4′,6-Diamidin-2-phenylindol) angefärbt. Pro Probe 

wurden 4-6 Gesichtsfelder mit einem AxioScope 40 mit AxioCam MRc 5 (Carl Zeiss, Jena, 

Deutschland) bei 10facher Vergrößerung aufgenommen und mit der Software ImageJ 

(National Institutes of Health, USA) gezählt.  

4.7 Western Blot 
 
Zur Bestimmtung der Akt-Expression, einem prosurvival-Marker, wurden die Zellen über 6 

Stunden in serumfreiem Medium gehalten, dann mit gAcrp oder Insulin als Positivkontrolle 

behandelt und anschließend dem Western Blot zugeführt. 

Dazu wurden die Zellen zunächst in Zelllysepuffer mittels Ultraschall lysiert, die festen 

Zellbestandteile abzentrifugiert und dann die Proteinkonzentration im Lysat über den BCA 

Protein Assay (Fischer Scientific, Schwerte, Deutschland) bestimmt. 

Sodann wurden gleiche Proteinmengen jeder Probe durch Gelelektrophorese aufgetrennt 

und über einen klassischen Tankblot auf Nitrozellulose transferiert. Schließlich wurde die 

Membran zunächst mit Milchpulver geblockt, mit Akt-Antikörper behandelt, unspezifische 

Signale durch mehrere Waschschritte reduziert und im letzten Schritt ein sekundärer 

Antikörper mit Meerrettichperoxidase aufgebracht. Dieser führte über die Oxidation von 

Luminol zu einer Chemolumineszenzreaktion, welche dann auf Film aufgenommen wurde. 
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4.8 Echtzeitdarstellung der Superoxidproduktion in vitro  
 

Die Zellen wurden über 12 Stunden mit 1 µg/ml gAcrp stimuliert und anschließend während 

der letzten 10 Minuten vor Analyse mit MitoSOX Rot (Invitrogen, Barcelona, Spanien; 5 µM) 

inkubiert. Die Level des mitochondrialen Superoxides in Anwesenheit oder Abwesenheit von 

gAcrp wurden durch Quantifizierung der MitoSOX Rot-Intensität mittels eines konfokalen 

Leica SP2-Mikroskops bestimmt (Leica, Wetzlar, Deutschland). 

4.9 Messung von Prostaglandin E2- und NO-Spiegeln in 
Zellkulturüberständen 

 
Zunächst wurden Zellkulturüberstände in einer Vakuumzentrifuge aufkonzentriert. Zur 

Spiegelbestimmung von Prostaglandin E2 und NO wurden sodann ein Prostaglandin E2 

ELISA (Cayman Chemical, Ann Arbor, MI, USA), sowie ein fluorometrischer NO Assay Kit 

(Biovision, Mountain View, CA, USA) nach Herstellerangaben durchgeführt.  

4.10 Tiermodelle  
 

Alle Tierversuche wurden entsprechend der institutionellen Richtlinien und nach 

Genehmigung durch das Institutional Animal Care and Use Committee of the CNIO (Madrid, 

Spanien), bzw. durch die Regierung von Oberbayern (München, Deutschland) durchgeführt. 

Weibliche, athyme NMRI nu/nu Nacktmäuse (Janvier, Le Genest-Saint-Isle, France) kamen 

hierbei zur Verwendung. Zur Induktion eines Diabetes wurden die Tiere nach dem low-dose 

streptozotocin induction protocol des AMDCC (Animal Models of Diabetic Complications 

Consortium) behandelt. Hierfür wurden die Tiere über 4 Stunden nüchtern gehalten und 

erhielten anschließend eine intraperitoneale Injektion mit Streptozotocin (50 mg/kg 

Körpergewicht; Sigma). Diese Prozedur wurde über fünf Tage täglich wiederholt. Am 28. Tag 

wurde die Hyperglykämie über eine Bestimmung der Uringlucose mit einem Combur 10 

Teststreifen (Roche, Grenzach-Wyhlen, Deutschland) durchgeführt. Nur Tiere, die einen 
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minimalen Glucosegrad von 3+ (entspricht etwa >750 mg/dl) aufwiesen, wurden für die 

Experimente verwendet. 

Normoglykämische und hyperglykämische Tiere wurden einer Hinterlaufischämieoperation 

unterzogen und 24 Stunden später intravenös mit 5x105 ECFC pro Maus behandelt (29). Um 

eine Hinterlaufischämie zu erzeugen, wurde der proximale Teil der rechten Femoralarterie 

einschließlich der oberflächlichen und tiefen Äste durch Elektrokoagulation ligiert. Die 

darüberliegende Haut wurde mit chirugischen Klammern verschlossen. Nach einer, 

respektive zwei Wochen wurde die Perfusion beider Hinterläufe mit einem O2C Laser 

Doppler mit LFM-2 Microsonde (2 mm tissue penetration; Lea Medizintechnik, Giessen, 

Deutschland) gemessen. Vor der Untersuchung wurden die Tiere auf eine 37°C warme 

Heizplatte gelegt, um Messunterschiede durch Schwankungen der Umgebungstemperatur 

zu minimieren. Die relative Perfusion wurde über den Quotienten aus Durchblutung von 

ischämischem und nicht-ischämischem Lauf errechnet.  

Darüber hinaus untersuchten wir den Blutfluss mithilfe eines intravitalen 

Floureszenzbildgebungsverfahrens im Nahinfrarotbereich (30). Nach intravenöser Injektion 

des Fluorophors Indocyaningrün (ICG; Sigma) wurden Bilder in einem in vivo-Imaging 

System (IVIS)-200 (Caliper Life Sciences, Hopkinton, MA, USA) aufgenommen und mit der 

Software Living ImageTM 3.2 analysiert. 

4.11 Histologische Untersuchungen 
 

Der Einbau von ECFC in die ischämische Muskulatur wurde durch histologische Analysen 

mithilfe eines konfokalen Lasermikroskops untersucht. Hierzu wurden die Hinterläufe der 

Tiere am Ende der Experimente entnommen, in Kryomedium eingebettet und auf -20°C 

eingefroren. Die Proben wurden mit einem Ultramikrotom geschnitten, auf Objektträger 

aufgebracht und anschließend gefärbt. Lectin-FITC kam hierbei als Marker für endotheliale 

Zellen zum Einsatz. Humane Oberflächenmarker (Human-Leucocyte-Antigen A, B und C; 

HLA-ABC) wurden mit Alexa-647 gefärbt, um die transplantierten humanen Zellen im 
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murinen Gewebe zu identifizieren. Zudem wurden die Zellkerne mit DAPI (4′,6-Diamidin-2-

phenylindol), einem Farbstoff, der spezifisch den Zellkern darstellt, gefärbt.  

In einem weiteren Experiment sollte geprüft werden, inwieweit ein verstärktes Einwandern 

der ECFC in den Zielbereich nach gAcrp-Behandlung zu einer verbesserten Funktion führt. 

Hierzu wurden unbehandelte und gAcrp-vorbehandelte dmECFC mit dem roten CellTracker 

CM-Dil gefärbt, bevor diese in Mäuse (5x105 Zellen/Maus) injiziert wurden, die 24 Stunden 

zuvor einer Hinterlaufischämieoperation unterzogen worden waren. Nach weiteren 24 

Stunden wurden die Tiere geopfert und wie oben genannt für eine histologische 

Untersuchung vorbereitet. Die Zellkerne wurden hier mit ToPro-3 angefärbt (beide Invitrogen, 

Deutschland). Dann wurden die Schnitte mit einem konfokalen Leica SP5 Mikroskop 

gescannt und die Zahl der ToPro-3+/CM-Dil+ Zellen wurde gezählt. Anschließend wurde die 

Zellzahl pro gescanntem Feld errechnet.  

4.12 Statistik 
 

Die Ergebnisse für kontinuierliche Variablen sind als Mittelwerte ± SEM angegeben. Der 

Vergleich von kontinuierlichen Variablen wurde mit dem Kruskal-Wallis-Test, gefolgt von 

einem paarweisen Vergleich mit dem Mann-Whitney-Test durchgeführt. Kategorische 

Variablen wurden mit dem Pearson χ2 Test verglichen. P-Werte < 0.05 wurden als statistisch 

signifikant gewertet. Alle Analysen wurden mit SPSS 16.0 (SPSS Inc., Chicago, IL, USA) 

durchgeführt.  
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5. Ergebnisse 

5.1 Populationsverdopplungszeit bei ECFC von Patienten mit Diabetes 
mellitus Typ 2 

 
Die Unterschiede in der Proliferation zwischen ECFC von Patienten mit Diabetes mellitus 

Typ 2 (dmECFC) und ECFC von jungen, gesunden Probanden als maximalfunktionale 

Positivkontrolle (yECFC) wurden bestimmt. Nach nur fünf Tagen hatten die yECFC ihre Zahl 

im Vergleich zu den dmECFC bereits verdoppelt. An Tag 15 überragte die Population der 

yECFC die der dmECFC bereits um das 2,9fache, am Tag 25 gar um das 3,2fache. Die 

daraus errechnete Populationsverdopplungszeit betrug damit 6,7 Tage für dmECFC im 

Vergleich zu 4,6 Tagen bei yECFC (p<0,05; Abbildung 1).  

 

 

Abbildung 1: Die Proliferation von jungen, gesunden Kontrollen (yECFC; weiße Quadrate, gestrichelte 
Linie; n=5) und dmECFC (schwarze Rauten, durchgehende Linie; n=4) wurde anhand von 
Populationsverdopplungskurven verglichen (p<0.01 dm ECFC versus yECFC). 
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Interessanterweise wurden keine signifikanten Unterschiede zwischen yECFC und ECFC 

von gleichaltrigen nicht-Diabetikern (hECFC) hinsichtlich Zellzahl nach 48 Stunden in Kultur 

(Abbildung 2) festgestellt. 

 

Abbildung 2: Zellzahlen von jungen, gesunden Kontrollen (yECFC; n=5), gleichaltrigen nicht-
Diabetikern (hECFC; n=3) und Diabetikern (dmECFC; n=8) verglichen nach 48 Stunden in Kultur. 

Da sich die anamnestischen Angaben zwischen den Spendern von hECFC und dmECFC 

nur hinsichtlich Vorliegen eines Diabetes mellitus Typ 2, des body mass index (BMI) und der 

antidiabetischen Medikation unterschieden (siehe Anhang, Tabelle 1), stützen die Daten die 

Hypothese, dass die verminderte Funktion der dmECFC tatsächlich am ehesten dem 

Diabetes zuzuschreiben ist.  

5.2 Phänotypische Evaluierung der hECFC und dmECFC  
 

Die konventionelle Lichtmikroskopie zeigte bei dmECFC und hECFC eine Morphologie, die 

jener entsprach, die zuvor für ECFC, welche aus Nabelschnurblut gewonnen waren,  

beschrieben wurde (14) (Abbildung 3).  
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Abbildung 3: Typische ECFC-Morphologie bei hECFC und dmECFC im lichtmikroskopischen 
Vergleich. 40x Vergrößerung.  

Wie in der Durchflusszytometrie ermittelt, war die Expression der endothelialen Marker CD31 

und VEGFR-2, ebenso wie die des Vorläuferzellmarkers CD34 bei beiden Gruppen auf 

einem gleichen Level (Abbildung 4) und blieb im zeitlichen Verlauf unverändert (Abbildung 

5). 

 

Abbildung 4: Expression endothelialer Oberflächen- und Progenitormarker bei dmECFC und hECFC 
(n=3).  

 

hECFC dmECFC 
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Abbildung 5: Die Expression von CD31, CD34 und VEGFR-2 wurde mittels Durchflusszytometrie im 
zeitlichen Verlauf gemessen.  

Weiterhin zeigte eine Behandlung mit Adiponectin keine signifikanten Änderungen der 

Oberflächenexpression von CD31, CD34 oder VEGFR2 (Abbildung 6). 

 

Abbildung 6: Änderungen in der Expression von CD31, CD34 und VEGFR2 bei ECFC von Diabetikern 
(weiße Säulen) und nicht-diabetischen gleichaltrigen Kontrollpersonen (schwarze Säulen) nach gAcrp-
Behandlung.  
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Ein Unterschied der Expression von CD34 zeigte sich weder bei Behandlung mit gAcrp, noch 

zwischen Diabetikern und Gesunden. Hingegen ließ sich exemplarisch ein 

Expressionsunterschied in Abhängigkeit von der Zellkonfluenz messen (Abbildung 7). 

 

Abbildung 7: Abhängigkeit der CD34-Expression von der Zellkonfluenz in Kultur.  

 

5.3 Globuläres Adiponectin stimuliert die Proliferation der ECFC  
 

In der Literatur wurden niedrige Adiponectinspiegel bei Diabetikern im Vergleich zu 

Gesunden gefunden (21). Dieser Unterschied fand sich tendenziell auch bei den 

untersuchten Probanden dieser Studie. Die Nicht-Diabetiker wiesen im Schnitt Spiegel von 

10,7±1,5 µg/ml auf, während bei Diabetikern niedrigere Spiegel mit 8,2±1,8 µg/ml gemessen 

wurden. Dieser Unterschied war jedoch bei der hier vorliegenden kleinen Fallzahl nicht 

signifikant. 

Als Nächstes wurde der Effekt einer Vorbehandlung mit gAcrp auf die proliferative Kapazität 

der ECFC untersucht. Die in vitro-Vorbehandlung mit gAcrp über 48 Stunden führte zu einer 

signifikanten Steigerung der Zellzahl bei gleichaltrigen Nichtdiabetikern (hECFC; 48,4±14,1 

% Steigerung im Vergleich zur unbehandelten Kontrolle der hECFC, p<0,05) und Diabetikern 
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(dmECFC; 18±2,5 % Steigerung im Vergleich zur unbehandelten Kontrolle der dmECFC, 

p<0,05) (Abbildung 8). Die ECFC der hyperglykämen Patienten reagierten somit signifikant 

schlechter auf die Behandlung mit gAcrp (p<0.05) als die ECFC der normoglykämen 

Probanden.  

 

 

Abbildung 8: Zellzahlen von hECFC (n=3) und dmECFC (n=8) nach Stimulation mit 1 µg/ml gAcrp, 
angegeben als Differenz zwischen gAcrp-behandelt und PBS-Kontrolle (*: p<0,05 vs. Kontrolle, **: p< 
0,05 vs. Kontrolle und vs. hECFC).  

Um den Mechanismus der höheren Zellzahl in der behandelten dmECFC-Gruppe weiter zu 

untersuchen, wurde eine Zellzyklusanalyse durchgeführt. Hierbei zeigte sich, dass eine 

Stimulation mit gAcrp die Fraktion der dmECFC in der S-Phase auf 195,4±48,5% im 

Vergleich zur Kontrolle erhöht (p<0.05, Abbildung 9 & Abbildung 10).  
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Abbildung 9: Proliferation gemessen als BrdU-Inkorporation nach Stimulation mit gAcrp (n=3; *: 
p<0,05).  

 

 

Abbildung 10: Repräsentative Abbildungen der zur Evaluation der BrdU-Inkorporation mittels 
Durchflusszytometrie gewählten gating-Strategie. Oben: Kontrolle. Unten: gAcrp.  
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Desweiteren wurde die Bedeutung des sog. survivals nach gAcrp-Behandlung anhand des 

prosurvival-Proteins Akt untersucht. Es zeigte sich, dass gAcrp in der Tat die Akt-

Phosphorylierung, sowie das Gesamt-Akt hochregulierte. Insulin, die Positivkontrolle, führte 

zu einer vergleichbaren Hochregulation von Gesamt-Akt, während die Rate an 

phosphoryliertem Akt hier noch höher lag (Abbildung 11 & Abbildung 12).  

 

 

Abbildung 11: Expressionsbanden von phosphoryliertem Akt, Gesamt-Akt und dem housekeeping 
gene GAPDH. 
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Abbildung 12: Expression von phosphoryliertem Akt (p-Akt) und Gesamt Akt (total Akt) bei 
unbehandelten, mit gAcrp behandelten Zellen und mit Insulin behandelten Kontrollzellen. 

 

5.4 Mechanismen der gestörten Proliferation der dmECFC 
 

Mithilfe der RT-PCR wurde untersucht, ob hECFC und dmECFC in ähnlicher Weise über die 

spezifischen Adiponectinrezeptoren AdipoR1 und AdipoR2 verfügen (31). In der Tat 

exprimierten sowohl hECFC, als auch dmECFC AdipoR1 und AdipoR2 auf ähnlichen, hohen 

Leveln, die sich auch nicht von denen der yECFC unterschieden (Abbildung 13).  
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Abbildung 13: mRNA-Expression der spezifischen Adiponectinrezeptoren AdipoR1 und AdipoR2 bei 
diabetischen und nicht-diabetischen ECFC. Links: RT-PCR an yECFC und dmECFC; Hypoxanthin-
Guanin-Phosphoribosyl-Transferase (HPRT) als Ladungskontrolle. Rechts: realtime-PCR an hECFC 
und dmECFC mit 18S rRNA als housekeeping-Gen. 

Demnach wurde im Folgenden die Wirkung von gAcrp auf die Expansion in vitro untersucht. 

Um den Mechanismus hinter der verminderten Antwort der dmECFC auf die gAcrp-

Behandlung im Vergleich zu den hECFC weiter zu durchleuchten, wurde zunächst validiert, 

dass die Adiponectinrezeptoren bei den dmECFC tatsächlich funktionsfähig waren. Dazu 

wurden die mRNA von AdipoR1 und AdipoR2  mithilfe spezifischer siRNA ausgeschaltet 

(Abbildung 14).  
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Abbildung 14: Die selektive Inhibition von AdipoR1 und AdipoR2 wurde mit Hilfe von siRNA 
durchgeführt. Die Stimulation der Zellen mit gAcrp wurde anhand der Zunahme der ECFC ermittelt (*: 
p<0,05 vs. Kontrolle, ** p<0.05 vs. gArcp, § p<0.05 vs. AdipoR1+AdipoR2+gAcrp, §§ p< 0.05 vs. 
AdipoR1+gAcrp and AdipoR2+gAcrp, n=3).  

Die Ausschaltung der individuellen Rezeptoren AdipoR1 oder AdipoR2 oder der Kombination 

aus beiden führte zu einem signifikanten Abfall der Zellzahlen (p<0.05), die durch eine Gabe 

von gAcrp nicht aufgehoben werden konnte. Diese Daten bestätigen, dass dmECFC 

funktionierende AdipoR1- und AdipoR2-Rezeptoren exprimieren.  

Anschließend wurde der Fokus auf einen gesteigerten oxidativen Stress als Mechanismus 

der gestörten gAcrp-Antwort bei dmECFC gelegt, da die Dysfunktionalität endothelialer 

Vorläuferzellen bei Patienten mit Diabetes mellitus Typ 2 mit exzessiver Produktion von 

reactive oxygen species (ROS) in Zusammenhang gebracht wird (32). Um die weniger 

deutlichen stimulatorischen Effekte von gAcrp auf dmECFC im Vergleich zu hECFC zu 

kompensieren, wurden die Zellen zusätzlich mit Superoxiddismutase (SOD) behandelt, um 

den oxidativen Stress auf die Zellen zu vermindern. Während SOD alleine keine 

Auswirkungen auf die dmECFC-Zahl hatte, zeigte sich nach SOD-Behandlung eine 
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verbesserte Stimulierbarkeit der dmECFC (33,5±8,7% Steigerung bei SOD+gAcrp)  

(Abbildung 15).  

 

Abbildung 15: Effekt einer Behandlung von dmECFC mit gAcrp (n=7), Superoxiddismutase (SOD) 
(n=4), Parecoxib (n=6), allein oder in Kombination mit gAcrp auf die Zellzahl, angegeben als Differenz 
zwischen Behandlung und PBS-Kontrole (*: p<0.001 vs. Kontrolle; **: p<0.05; ***: p< 0.01 vs. 
Kontrolle, p<0.05 vs. gAcrp).  

Danach sollte geklärt werden, wie die gAcrp-Gabe den oxidativen Stress in ECFC 

beeinflusst. Dazu wurden hECFC und dmECFC über zwölf Stunden mit gAcrp behandelt und 

eine Echtzeitbildgebung der intrazellulären Produktion von Superoxidanionen mit MitoSOX 

Rot durchgeführt (Abbildung 16). Die Quantifizierung der Signalintensität ergab, dass die 

gAcrp-Vorbehandlung die Superoxidspiegel in diabetischen ECFC signifikant senken konnte 

(p<0.01). Deshalb wurde geschlussfolgert, dass die verminderten Effekte von gAcrp auf 

dmECFC zumindest teilweise superoxidabhängig sind oder mit Superoxid in Verbindung zu 

bringen sind.
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Abbildung 16: Effekte einer Vorbehandlung mit gAcrp auf die intrazelluläre Superoxidproduktion der 
ECFC. Repräsentative Echtzeitbilder (links) der unbehandelten und gAcrp-behandelten hECFC und 
dmECFC nach Inkubation mit MitoSOX Rot und Quantifizierung der MitoSOX-Intensität (rechts) 
(*:p<0,01 vs. Kontrolle, n=3).

Desweiteren wurde in der Literatur beschrieben, dass Adiponectin eine Aktivierung des 

Cyclooxygenase-2-Weges (COX-2) induzieren und folglich die Prostaglandin E2 (PGE2)-

Produktion in Stromazellen steigern kann (33). Analog konnten wir zeigen, dass gAcrp die 

PGE2-Produktion in dmECFC erhöht (120±8,4%; p<0,05). Ebenfalls führte eine gleichzeitige 

Behandlung mit Parecoxib, einem selektiven Cyclooxygenase-2-Inhibitor, zu einer 

Aufhebung dieses Effekts (92±13,4%, Abbildung 17).  
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Abbildung 17: Produktion von Prostaglandin E2 in Zellkulturüberständen von dmECFC, unbehandelt 
und/oder nach gAcrp-/Parecoxib-Behandlung, gemessen mittels Prostaglandin E2-ELISA.  

Kürzlich wurde von unserer Arbeitsgruppe beschrieben, dass PGE2 die Proliferation und 

Funktion der endothelialen Progenitorzellen stimuliert. Dieser Effekt ließ sich durch Inhibition 

von COX-2 wieder zunichte machen (34). Entsprechend wurde die Hypothese aufgestellt, 

dass gAcrp-induzierte Effekte auf ECFC über den COX-2-Weg vermittelt werden. Die 

Verwendung des selektiven COX-2-Inhibitors Parecoxib alleine wirkte sich hierbei nicht auf 

die Zellproliferation aus, konnte aber wirkungsvoll den gAcrp-vermittelten Anstieg der 

Zellzahl verhindern, wenn es gleichzeitig mit gAcrp auf die Zellen angewandt wurde 

(Abbildung 17). Dies lässt vermuten, dass die stimulierenden Effekte von gAcrp zumindest 

teilweise über den COX-2-Weg vermittelt werden. Darüber hinaus wurde von unserer 

Arbeitsgruppe kürzlich bewiesen, dass Prostaglandin E1 und E2 die Proliferation und 

Migration von endothelialen Vorläuferzellen über die Induktion von eNOS bewirken (34). Zur 

Untersuchung der Abhängigkeit des gAcrp-Effekts auf ECFC-Zahlen vom eNOS-Weg 

wurden Überstände aus der Zellkultur für einen fluorometrischen NO-Assay gesammelt. 

Dieser ergab, dass gAcrp zu einer signifikanten Zunahme der Nitritspiegel führt, was auf eine 

erhöhte Produktion von NO hinweisend ist (142,2±21,8% Kontrolle, p<0.05, Abbildung 18).  
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Abbildung 18: Konzentration von Nitrit als quantitatives Maß der NO-Produktion in 
Zellkulturüberständen, *: p<0,05 vs. control, n=3. 

Damit zeigen sich Hinweise, dass gAcrp direkt die Produktion von NO stimuliert, was für eine 

Beteiligung des eNOS-Weges bei der Funktionsverbesserung der dmECFC bei der 

Behandlung mit gAcrp spricht. 

5.5 Die Behandlung mit gAcrp verbessert die migratorische Aktivität 
der dmECFC  

Migration ist eine Schlüsselfunktion von endothelialen Progenitorzellen, die entscheidend für 

die zelltherapeutischen Effekte in vivo ist (35). Bezeichnenderweise zeigten die gAcrp-

behandelten ECFC eine vergleichbar gesteigerte migratorische Aktivität bei hECFC 

(39,6±15,3% Anstieg gegenüber Kontrolle) wie er bei den dmECFC gefunden wurde 

(30,3%±9,2% Anstieg gegenüber Kontrolle) (Abbildung 19).  
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Abbildung 19: Migratorische Aktivität der ECFC nach gAcrp-Vorbehandlung (n=4) von dmECFC in 
Gegenwart oder Abwesenheit von SOD oder Parecoxib (je n=3). Der letzte Balken (weiß) zeigt einen 
Vergleich mit hECFC, die mit gAcrp behandelt wurden. (*: p<0,01 vs. control; **: p<0,05 vs. gAcrp, 
n=3). 

Ebenso wie bei der Zellzahl führte eine Parecoxibgabe alleine nicht zu einer Veränderung 

der migratorischen Aktivität, während der gAcrp-Effekt durch eine gleichzeitige 

Parecoxibbehandlung verschwand. Auf funktionaler Ebene konnte durch gleichzeitige 

Zugabe von gAcrp und SOD im Vergleich zur alleinigen gAcrp-Gabe ein weiterer Trend zu 

verbesserter Migration gezeigt werden (48,7±11,3% Steigerung bei gAcrp+SOD versus 

30,3%±9,2% Steigerung bei alleiniger gAcrp-Gabe; p=0.289).  

5.6 Die Fähigkeit zur in vivo-Neovaskularisation ist bei dmECFC 
eingeschränkt und kann durch gAcrp-Gabe wiederhergestellt 
werden 

In der Vergangenheit wurde bereits gezeigt, dass ECFC, die aus Nabelschnurblut gewonnen 

werden, in der Lage sind, in in vivo-Hinterlaufischämiemodellen die Neovaskularisation zu 

verbessern (36), jedoch existierten bisher keine veröffentlichten Daten zu hECFC und 
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dmECFC. Daher wurde der Frage nachgegangen, ob ECFC von Diabetikern und 

gleichaltrigen Kontrollen in der Lage sind, die Neovaskularisation in einem 

normoglykämischen Nacktmausmodell, welches als für eine experimentelle Zelltherapie am 

zugänglichsten betrachtet werden muss, zu verbessern (Abbildung 20).  

 

Abbildung 20: Experimentablauf zur Evaluation der Behandlung mit dmECFC oder hECFC in 
normoglykämischen NMRI nu/nu-Mäusen. 

Zunächst wurde bestätigt, dass die infundierten ECFC tatsächlich zu den ischämischen 

Gebieten wandern und sich dort in die Gefäßwände einbauen. In den durchgeführten 

histologischen Analysen fanden sich HLA-ABC-positive Zellen (rot) in enger Nachbarschaft 

zu Lectin-positiven (grünen) Blutgefäßen und darüberhinaus sogar Zellen, die sich in die 

Gefäßwand eingebaut hatten (gelb). Diese Beobachtungen bestätigen, dass die 

Therapieeffekte zumindest zum Teil einem vaskulären Einbau der ECFC zuzuschreiben sind 

(Abbildung 21). 
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Abbildung 21: Einbau humaner ECFC in das ischämische Gewebe. Histologische Analyse der 
Expression von spezifischem, humanen HLA-ABC (AlexaFluor 647: rot), dem endothelialen Marker 
Lectin (FITC: grün) und Zellkerne (DAPI: blau). Die Pfeile zeigen auf die humanen Zellen. 

Und tatsächlich konnte beobachtet werden, dass die Zellen der Nichtdiabetiker zu einer 

siginifkanten (p<0,05) Verbesserung der Hinterlaufperfusion führten (Relativer Blutfluss im 

ischämischen, verglichen mit dem nichtischämischen Lauf; 60,9±10,1% bei hECFC versus 

20,1±7,5% bei der unbehandelten Kontrolle) (Abbildung 22 & Abbildung 23). 

Lectin 
HLA-ABC 

DAPI 

Lectin 
HLA-ABC
DAPI

Lectin 
HLA-ABC 
DAPI 
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Abbildung 22: Quantifizierung der Hinterlaufperfusion nach Injektion von dmECFC, die mit gAcrp in 
Anwesenheit oder Abwesenheit von Parecoxib behandelt wurden, im Vergleich mit hECFC (*: p<0,05 
vs. control, p<0,05 vs. dmECFC, **: p< 0,05 vs. gAcrp, n=4-8). 

 

Abbildung 23: Repräsentative Bilder von Hinterlaufperfusionsmessungen, wie nach ICG-Injektion 
gemessen. Die Pfeile zeigen auf den ischämischen Hinterlauf. Die relative Durchblutung zwischen 
ischämischen und nicht-ischämischem Hinterlauf ist in Prozent angegeben.  

Entsprechend der oben angeführten in vitro-Daten zeigten auch mit dmECFC behandelte 

Tiere einen erhöhten Blutfluss, jedoch erreichten die beobachteten Unterschiede kein 

signifikantes Level im Vergleich zur unbehandelten Kontrolle, was ihrer verminderten in vivo -
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Neovaskularisationsfähigkeit zuzuschreiben ist (Relativer Blutfluss: 34,9±6,6% bei dmECFC 

vs. 20,1±7,5% bei der unbehandelten Kontrolle) (Abbildung 22 & Abbildung 23).  

In einem nächsten Schritt wurde die in vivo-Relevanz dieses Protokolls zur Vorbehandlung 

mit gAcrp in vitro evaluiert. Die so vorbehandelten dmECFC führten nach ihrer Injektion zu 

einer signifikant besseren Hinterlaufdurchblutung (Relativer Blutfluss: 65,2±5,1%, p<0.01), 

verglichen mit den mit unbehandelten dmECFC therapierten Tieren. Besonders 

bemerkenswert ist hierbei, dass sich somit die mit den gAcrp-optimierten dmECFC 

behandelten Tiere nicht von denen unterschieden, die mit hECFC therapiert wurden (p=0.67) 

(Abbildung 22 & Abbildung 23). 

Ferner wurde die Bedeutung der sog. Homing-Kapazität der Zellen (die Fähigkeit der Zellen, 

in die ischämischen Gebiete einzuwandern) für die Effekte der dmECFC-Behandlung mit 

gAcrp untersucht. Hierbei zeigten sich keine Unterschiede zwischen unbehandelten (17±12 

Zellen pro 100 Feldern) und gAcrp-behandelten dmECFC (18±9 Zellen pro 100 Felder).  

5.7 Die Effekte der Vorbehandlung bestehen im hyperglykämen Milieu 
fort  
 

Da für hyperglykäme Umgebungen gezeigt wurde, dass diese sich in vitro negativ auf 

endotheliale Vorläuferzellen auswirken (18; 20), wurde weiterhin untersucht, ob die 

Neovaskularisationskapazität von gAcrp-behandelten dmECFC in einem hyperglykämen in 

vivo-Milieu erhalten bleibt (Abbildung 24).  

 

Abbildung 24: NMRI nu/nu-Tiere wurden nach dem low-dose streptozotocin protocol der AMDCC 
behandelt, um vor Hinterlaufischämie eine Hyperglykämie zu erzeugen. 
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Tatsächlich ließen sich konsistente Therapieeffekte beobachten, die den im 

normoglykämischen Modell beobachteten entsprachen. Während die unbehandelten 

Kontrolltiere eine sehr spärliche Hinterlaufdurchblutung aufwiesen (Relative Perfusion: 

18,5±2,5%), verbesserte die Gabe von unbehandelten dmECFC die relative Perfusion 

bereits auf 45,3±5,5% (p<0,05 gegenüber der Kontrolle) (Abbildung 25).  

 

 

Abbildung 25: Relative Perfusion hyperglykämischer Mäuse, gemessen mit dem O2C-Laserdoppler 
zwei Wochen nach Hinterlaufischämieoperation (*: p<0,05 vs. control; **: p<0,05 vs. dmECFC, n=3-6).  

Darüber hinaus zeigten sich bei den Tieren noch weitere, signifikante Verbesserungen bei 

der Hinterlaufdurchblutung, wenn sie mit gAcrp-vorbehandelten dmECFC therapiert 

(71,8±2,9%, p<0,05 vs. Kontrolle, p<0,05 vs. unbehandelte dmECFC) wurden. Folglich 

konnten die gAcrp-behandelten dmECFC den dramatisch verminderten Blutfluss in einem 
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Hinterlaufischämiemodell wiederherstellen, ein Effekt, der auch in einer klinisch äußerst 

relevanten hyperglykämen in-vivo-Umgebung fortbesteht. 
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6. Diskussion 
In dieser Arbeit werden Daten aufgezeigt, die die positiven Effekte des globulären 

Adiponectins auf Zahl und Funktion endothelialer Progenitorzellen von Patienten mit Typ-2-

Diabetes belegen. Es stellte sich heraus, dass ECFC, die mit gAcrp behandelt wurden, viel 

geeigneter für eine Zelltherapie sind als ihre unbehandelten Gegenstücke. 

Beachtenswerterweise wurden diese Effekte in vivo sowohl unter nichtdiabetischen 

Bedingungen als auch in einer hyperglykämen Umgebung in diabetischen Mäusen 

beobachtet. Aufgrund der hier präsentierten Daten soll  die Vorbehandlung von ECFC, die 

von Patienten mit Typ-2-Diabetes gewonnen wurden, mit gAcrp als neuer Weg zur 

angepassten Zelloptimierung vor deren Einsatz als autologe Zelltherapie postuliert werden.  

Die verminderte Proliferation und Funktion von endotelialen Progenitorzellen (EPC) bei 

Patienten mit Typ-2-Diabetes wurde bereits zuvor beschrieben (19; 37-39). Ingram et al. 

lieferten erste Anhalte dafür, dass Nabelschnurblut-ECFC bei Neugeborenen von Müttern, 

die an Gestationsdiabetes litten, ebenfalls niedrigere Proliferationsraten und eine 

verminderte neovaskulatorische Potenz, sowohl in vitro, als auch in vivo aufwiesen (20). Die 

hier durchgeführten Experimente bekräftigen diese Befunde weiter und nähren 

darüberhinaus Hinweise auf eine verminderte Leistungsfähigkeit von ECFC aus Peripherblut 

erwachsener Patienten. In der Tat wurde eine erniedrigte Proliferationsrate der dmECFC in 

vitro und, was noch wichtiger ist, eine reduzierte Neovaskularisationskapazität in vivo 

verglichen mit nicht-diabetischen ECFC beobachtet. Unter diesem Aspekt erscheinen 

Optimierungsstrategien unabdingbar für den klinischen Einsatz dieser Zellen in einem 

autologen Setting.  

1995 beschrieben Scherer et al. erstmals ein Serumprotein, das der 

Komplementkomponente C1q ähnlich ist und ausschließlich in Adipozyten produziert wird 

und benannten es daher als adipocyte complement-related protein of 30 kDa (Acrp30), 

welches später als Adiponectin bezeichnet wurde (40). Für dieses Protein wurde in mehreren 

Studien eine Korrelation zwischen Adiponectin und Diabetes mellitus Typ 2 gezeigt. Hotta et 



 

 40 

al. stellten bei Typ-2-Diabetikern niedrigere Serumadiponectinspiegel im Vergleich zu body 

mass index-gleichen Kontrollen fest (21). Umgekehrt scheinen Menschen mit hohen 

Adiponectinspiegel ein niedrigeres Risiko für das Auftreten eines Diabetes zu haben (22; 23) 

und steigende Adiponectinspiegel scheinen die Gefahr zu reduzieren eine Insulinresistenz 

und einen Typ-2-Diabetes zu entwickeln (24-26). Erst kürzlich zeigten Shibata et al. eine 

Korrelation zwischen Adiponectinspiegeln und der Anzahl aus dem Blut stammender EPC. 

Zusätzlich berichteten sie über einen vorteilhaften Effekt von Adiponectin auf die Zahl früher 

EPC in vitro (41). Stimulierende Effekte von Adiponectin wurden ebenfalls für 

hämatopoetische Stammzellen, Osteoblasten und Mesangioblasten gezeigt (41-44). In der 

vorliegenden Arbeit wird nun erstmals ein starker Effekt einer gAcrp-Vorbehandlung auf in 

hohem Maße reine ECFC bei deren Vorbehandlung vor Gabe in ischämischen Modellen in 

vivo gezeigt.  

Vormals demonstrierten Shibata et al. weiterhin einen protektiven Effekt von Adiponectin für 

myokardiale Ischämie-Reperfusions-Schäden, welcher durch eine Inhibition der Apoptose 

über die AMP-aktivierte Proteinkinase und über die Inhibition von TNFα über COX-2-

abhängige Wege vermittelt wird (45). Zusätzlich werden Stromazellen und 

Lymphozytenvorläufer von Adiponectin über den COX-2-Weg beeinflusst (33). Weiterhin 

konnte unsere Arbeitsgruppe kürzlich zeigen, dass Prostaglandin E1 und E2 Progenitorzellen 

durch eine Induktion von eNOS bezüglich Proliferation und Funktion stimulieren können (34). 

Als Konsequenz daraus postulierten wir, dass die beobachteten Effekte von gAcrp primär 

über die Induktion von COX-2 vermittelt werden, gefolgt von einem Anstieg der 

Prostaglandin E2-Sekretion und eNOS-Expression, was zu einer verstärkten Proliferation 

und, noch wichtiger, einer gestärkten Funktion der ECFC führt. In der Tat führte die Inhibition 

des COX-2-Weges zu einer Aufhebung der Adiponectin-induzierten Effekte auf ECFC.  

Nicht nur die native Proliferation der dmECFC war im Vergleich zu den nichtdiabetischen 

vermindert, auch die gAcrp-vermittelte Steigerung der Proliferation war bei den dmECFC 

weniger stark ausgeprägt.  
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Oxidativer Stress wurde als eines der Haupthindernisse bei der Proliferation endothelialer 

Vorläuferzellen ausgemacht, da dieser die Zellen vermehrt in die Seneszenz treibt (46). 

Indem sie antioxidative Enzyme in großen Mengen exprimieren (insbesondere 

Superoxiddismutase), sind Progenitorzellen normalerweise gut gegen oxidativen Stress 

geschützt (47). Dennoch konnten Ceradini et al. zeigen, dass in Streptozotocininduzierten 

diabetischen Mausmodellen die Mobilisation, sowie die migratorische Aktivität von aus dem 

Knochenmark stammenden endothelialen Vorläuferzellen aufgrund oxidativen Stresses 

dramatisch reduziert sind. Eine Zugabe von Superoxiddismutase konnte die beobachteten, 

negativen Effekte aufheben (48). Vereinbar mit diesen Erkenntnissen zeigen wir nun, dass 

die durch gAcrp erhöhten dmECFC-Zahlen mit adjuvanter Gabe von Superoxiddismutase 

weiter gesteigert werden. Nichtsdestoweniger konnte gAcrp alleine bereits eine signifikante 

Steigerung der Zellzahl bewirken, was durch andere antioxidative Eigenschaften von 

Adiponectin ermöglicht wird, wie bereits gezeigt (1), und war in der Lage einen starken 

zelltherapeutischen Effekt in vivo zu bewirken. Dementsprechend wird hier eindeutig gezeigt, 

dass gAcrp die Spiegel der reactive oxygen species in den dmECFC reduziert.  

Darüber hinaus stellen starke, invasive Eigenschaften, welche in vitro als Zellmigration in 

einer MatrigelTM-beschichteten, modifizierten Boyden-Kammer quantifiziert werden können, 

ein unabdingbares, entscheidendes Merkmal für systemisch infundierte Progenitorzellen dar, 

damit diese in das ischämische Gewebe einwandern können. Interessanterweise bewirkte 

die alleinige gAcrp-Behandlung der dmECFC eine deutliche Zunahme bei der migratorischen 

Aktivität, die vergleichbar mit der der nichtdiabetischen ECFC war. Diese gesteigerte 

Migrationsaktivität konnte mit der gleichzeitigen Gabe von SOD noch gesteigert werden, 

wenn auch nicht auf einem statistisch signifikanten Level. Bemerkenswerterweise 

verbesserten die gAcrp-vorbehandelten dmECFC im in dieser Arbeit verwandten murinen 

Hinterlaufischämiemodell die Neovaskularisation signifikant, während unbehandelte 

dmECFC im Hinblick auf die Verbesserung der Neovaskularisation schlechtere Ergebnisse 

aufwiesen. Obwohl die Proliferation der dmECFC unter Therapie mit gAcrp durch oxidativen 

Stress immer noch limitiert ist, legen diese Daten nahe, dass die gAcrp-Vorbehandlung 
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trotzdem zu einer soliden funktionalen Verbesserung der dmECFC führt, die zu starker 

regenerativer Aktivität in vivo führt.  

Man könnte annehmen, dass die so wiedererlangte Funktionsverbesserung der gAcrp-

behandelten ECFC durch ein erneute Exposition gegenüber einer hyperglykämen 

Umgebung über die zuvor genannten oder auch unbekannte Mechanismen wieder zum 

Erliegen kommt. Eine gerade erst veröffentliche Studie von Eren et al. beschäftigte sich mit 

der Frage, ob der Erfolg einer vaskulären Zelltherapie auf die Blutadiponectinspiegel bei 

Spender oder Empfänger angewiesen ist (49). Die Autoren kommen hierbei zu dem Schluss, 

dass eine Adiponectinämie beim Empfänger essentiell für die proangiogenetischen Effekte 

der Zelltherapie sind. Diese Daten suggerieren, dass mit Adiponectin vorbehandelte 

dmECFC in einem hyperglykämen Milieu aufgrund eines supprimierten Adiponectin-

blutspiegels ineffektiv sein müssten. Jedoch zeigen unsere Ergebnisse eindeutig, dass eine 

Optimierung einer vaskulären Zelltherapie mit Adiponectin in der Tat einer ungünstigen 

hyperglykämen Umgebung standhalten kann.  

Zusammenfassend wird hier erstmals gezeigt, dass die Wirkung einer ex vivo-

Vorbehandlung mit gAcrp auf dmECFC sogar nach einem Retransfer in ein hyperglykämes 

Environment erhalten bleibt. Dies demonstriert die grundsätzliche Machbarkeit und 

Effektivität eines ex vivo Behandlungsprotokolls zur Progenitorzelloptimierung vor deren 

Verwendung in der Zelltherapie. Darüberhinaus bekräftigen diese Erkenntnisse unsere 

früheren Daten bezüglich der Wichtigkeit des COX-2-Weges für die 

Neovaskularisationkapazität isolierter ECFC (34) und wir bieten somit wichtige neue 

Hinweise darauf, dass die Aktivierung des COX-2-Weges, welche mittels gAcrp-Gabe sicher 

bewerkstelligt werden kann, ein wichtiges Ziel für zukünftige Strategien zur 

Progenitorzelloptimierung sein kann.  
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7. Ausblick 
Die regenerative Medizin ist ein sich schnell entwickelndes Feld in der Biomedizin. Die hier 

gezeigten Optimierungserfolge versprechen ein großes Potential für das gewählte Vorgehen 

einer ex vivo-Vorbehandlung vor Zelltherapie allgemein und eine Behandlung von 

endothelialen Vorläuferzellen mit Adiponectin im Speziellen. Zur klinischen Umsetzung der 

Erkenntnisse aus dieser Arbeit wie aus der gesamten Grundlagenforschung in diesem 

Bereich ist ein tiefgreifenderes Verständnis der physiologischen Abläufe der Zell- und 

Differenzierungssteuerung nötig, um die hier erlangten Ergebnisse in eine noch 

zielgerichtetere klinische Therapie translatieren zu können. Ziel kann es sein, dass eines 

Tages aus beliebigen Patientenzellen neue Zellen, Gewebe oder sogar ganze Organe durch 

quasi körpereigenes Gewebe ersetzt werden können und so der durch Krankheiten 

verursachte Funktionsverlust wieder aufgehoben werden kann. 
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9. Anhang 
 

Tabelle 1: Patienteneigenschaften der Patienten mit Diabetes mellitus Typ 2 und der gleichaltrigen 
Kontrollen ohne Diabetes mellitus Typ 2 

  
Non-diabetic controls 
n=5 

Diabetic patients 
n=8 

P-value 
 

  

Größe (m) 1.69±0.05 1.72±0.03 n.s. 
  

Gewicht (kg) 75.6±6.1 103±7.9 n.s. 
  

BMI (kg/m
2
) 26.3±1.3 34.9±2.4 0.03 

  

Alter (Jahren) 66±3.6 60±5.5 n.s. 
  

Bluthochdruck 3 (60%) 7 (88%) n.s. 
  

Hypercholesterinämie 3 (60%) 6 (75%) n.s. 
  

Hypertriglyzeridämie 0 (0%) 3 (38%) n.s. 
  

KHK 0 (0%) 1 (13%) n.s. 
  

HI 0 (0%) 0 (0%) - 
  

pAVK 0 (0%) 0 (0%) - 
  

Schlaganfall 0 (0%) 1 (13%) n.s. 
  

Niereninsuffizienz 0 (0%) 1 (13%) n.s. 
  

Antidiabetische Medikation 0 (0%) 8 (100%) 0.001 
  

Antihypertensive Medikation 3 (60%) 6 (75%) n.s. 
  

Lipidsenkende Medikation 1 (20%) 3 (38%) n.s. 
  

 

BMI: body mass index; KHK: koronare Herzkrankheit; HI: Herzinfarkt; pAVK: periphere arterielle 
Verschlusskrankheit; n.s.: nicht signifikant. Ergebnisse für kontinuierliche Variablen sind als Mittelwert 
± SEM angegeben. Vergleiche zwischen den Gruppen wurden mittels dem nicht-parametrischen 
Mann-Whitney U Test analysiert. Der Vergleich kategorischer Variablen wurde mit dem Pearson χ2 
Test durchgeführt.  
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