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Zusammenfassung

Diese Arbeit enthält eine Kombination aus methodologischer Arbeit mit sehr weitem Fokus
und einigen konkreten astrophysikalischen Anwendungen. Der Wissensstand über das
galaktische interstellare Medium wird durch Studien neuer Methoden für die Entschlüssel-
ung ausgewählter Eigenschaften im Zusammenhang mit seinem Magnetfeld erweitert. Da-
bei werden die notwendigen statistischen Werkzeuge auf rigorose Weise aus wahrschein-
lichkeitstheoretischen Überlegungen hergeleitet.

Eine Größe, welche die statistischen Eigenschaften von Magnetfeldern beschreibt, ist
deren Helizität. Eine jüngst entwickelte Methode zum Nachweis magnetischer Helizität
unter Benutzung astronomischer Beobachtungen wird hier auf Daten der Milchstraße ange-
wandt. Dies liefert zwar kein positives Ergebnis, könnte aber durch die komplexe Messsitu-
ation bedingt sein. Um dies zu klären wird eine Reihe von galaktischen Simulationen
vorgenommen. So kann gezeigt werden, dass die Helizitätsdetektion mit dieser Methode
in Fällen fehlschlägt, in denen die zugrundeliegende Elektronendichte zu stark variiert.
Folglich kann geschlossen werden, dass dies in der Milchstraße entweder der Fall ist oder
das galaktische Magnetfeld nicht helisch ist.

Desweiteren wird eine Methode zur Rekonstruktion kontinuierlicher Signale aus ver-
rauschten Daten entwickelt, für die das Rauschniveau unbekannt ist. Dies ist unter an-
derem nötig um eine korrekte Anwendung des Helizitätstests zu gewährleisten. Eine
solche Rekonstruktion wird durch die Verwendung der räumlichen Korrelationsstruktur
des Signals möglich, die aus dem selben Datensatz auf selbstkonsistente Weise rekonstru-
iert wird. Fluktuationen in den Daten, die inkonsistent mit dieser Korrelationsstruktur
sind, werden dann dem Rauschen in den Daten zugeschrieben.

Die Entwicklung dieser Methode ist zum Teil durch das Ziel motiviert, eine Himmelskarte
des galaktischen Beitrags zum astronomischen Faradayrotationseffekt zu erstellen. Diese
liefert Informationen sowohl über das galaktische Magnetfeld als auch über die Dichte
der freien thermischen Elektronen. Da die beobachtete Größe die Faradayrotation einer
Radioquelle ist, die durch sämtliche Magnetfelder zwischen der Quelle und dem Beobachter
beeinflusst wird, müssen extragalaktische Beitrage herausgefiltert werden. Die Methode
zur Rekonstruktion bei unsicherem Rauschniveau wird benutzt um die extragalaktischen
Beiträge – sowie einige andere Beobachtungseffekte – dem Rauschen in den Daten zuzu-
schreiben und so den galaktischen Beitrag zu separieren. Die resultierende Karte ist die de-
tailgenaueste und präziseste ihrer Art und die einzige in der die extragalaktischen Beiträge
herausgefiltert wurden.



xviii Zusammenfassung

Schlussendlich wird eine Methode zu Rekonstruktion von log-normal-verteilten Signal-
feldern entwickelt, also von strikt positiven Größen, bei denen die Stärke der Fluktuationen
über mehrere Größenordnungen schwankt. Dies geschieht mit Blick auf die Rekonstruktion
von Emissionskarten für verschiedene Prozesse im galaktischen interstellaren Medium.



Summary

In this thesis we present a combination of methodological work with very wide focus and
some specific astrophysical applications. We advance the knowledge on the Galactic inter-
stellar medium by studying new ways of inferring select properties related to its magnetic
field. We derive the statistical tools needed in a rigorous way from probabilistic consider-
ations.

One quantity describing the statistical properties of magnetic fields is their helicity.
We apply a recently developed technique to detect magnetic helicity from astronomical
observations to data from the Milky Way. No indications of helicity are found. Using a
series of simulations in the Galactic setting, we are able to show that the technique fails
to detect helicity in cases in which the underlying electron density varies too strongly.
Thus, we are able to conclude that either this is the case in the Milky Way or the Galactic
magnetic field is non-helical.

We further develop a technique, needed among other things to enable the correct appli-
cation of the helicity test, to reconstruct continuous signals from noisy data for which the
noise level is unknown. To do this, we make use of the statistical correlation structure of the
signal which we reconstruct from the same data set in a self-consistent way. Fluctuations
in the data that are inconsistent with this correlation structure are then assigned to the
data’s error budget.

The development of this technique is partly motivated by the goal of creating an all-
sky map of the Galactic contribution to the astronomical Faraday rotation effect, which
probes both the Galactic magnetic field and the density of free thermal electrons. Since
the quantity that is observed is the Faraday rotation of a radio source, influenced by all
magnetic fields between the source and the observer, extragalactic contributions need to be
filtered out. We use the technique for reconstructions in the presence of an uncertain degree
of noisiness to assign the extragalactic contributions – as well as some other observational
effects – to the error budget of the data and thus single out the Galactic contribution. The
resulting map is the most detailed and precise map of its kind and the only one in which
the extragalactic contributions have been filtered out.

Finally, we develop a method to reconstruct log-normal signal fields, i.e. strictly pos-
itive signal fields for which the strengths of the fluctuations vary over several orders of
magnitude. This is done with a view to reconstructions of emission maps due to different
processes in the Galactic interstellar medium.
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Chapter 1

Introduction

In this thesis we study the Milky Way galaxy, especially aspects related to its magnetic
field. In our attempts to learn about the Galactic magnetic field, we also explore the general
question how to deduce knowledge from observations. This problem is tackled using the
statistical framework of signal inference. The learning techniques that we develop within
this framework are then applied in the Galactic setting.

In this introductory chapter, we start by setting the stage for studies of the Milky Way
by summarizing what is known about the most important aspects of our home galaxy and
introducing the physical processes that make these aspects tangible for astronomers. We
then go on to introduce the statistical framework in which we will develop signal inference
techniques in later chapters. We conclude this chapter by giving an outline of the content
of the thesis.

1.1 Galactic astrophysics

In this section, we briefly introduce the physical background of the astronomical signals
with which we will deal in later chapters. We start by giving a rough overview over the
Milky Way galaxy, continue by describing the physical processes that make the interstellar
medium observable, and finish by describing some constituents of the Milky Way galaxy,
focussing on the components of the interstellar medium that will be important in this work.

1.1.1 The Milky Way

The Milky Way is a spiral galaxy, i.e. most of its stars, gas, and dust are situated within a
flat disk. The gas and dust distribution is more concentrated in the vertical direction than
the distribution of the stars. The mass density due to the different components of the disk
can be approximated as

ρ(r, z) = ρ0 e−r/r0 e−|z|/z0 , (1.1)

where ρ0 is the density in the Galactic center, r is the radial distance from the center, and
z is the vertical distance from the mid-plane of the disk. For the stellar disk, the scale
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Figure 1.1: The near-infrared sky as seen by the Diffuse Infrared Background Experiment
aboard the Cosmic Background Explorer satellite. Measurements at wavelengths of 1.25,
2.2, and 3.5 µm are represented by blue, green, and red colors, respectively. The main
part of the radiation is starlight. The red areas show directions in which the shorter
wavelengths have been absorbed and thus indicate the presence of large amounts of dust.
The image was provided by NASA’s Legacy Archive for Microwave Background Data
Analysis (http://lambda.gsfc.nasa.gov/).

lengths are r
(stellar)
0 ≈ 3.5 kpc and z

(stellar)
0 ≈ 330 pc. The gas and dust components have a

similar radial extent but are somewhat flatter with z
(gas, dust)
0 ≈ 160 pc (Maoz 2011).

Within the disk, the stellar, gas, and dust densities exhibit a spiral structure that might
be caused by gravitational interaction and the resulting density waves (Lin & Shu 1964;
Francis & Anderson 2009). The higher gas density in the spiral arms leads to enhanced
star formation. Thus, the stellar population within the arms tends to be younger. The
Galactic center is surrounded by a roughly spherical stellar bulge of about 1 kpc in radius
(Maoz 2011), which is made up of older stars. At the very center of the Milky Way resides
a supermassive Black Hole of about 4× 106 M�.

The solar system is located slightly above the midplane of the disk at a height of z� ≈
30 pc and a distance of r� ≈ 8 kpc from the Galactic center (Maoz 2011). Unfortunately,
experimental studies of the Milky Way and its components are only possible within the
solar system. Thus, all observable quantities are always projections along the line of sight.
Overcoming these projection effects is one of the great challenges of signal inference in the
astrophysical context.

http://lambda.gsfc.nasa.gov/
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Figure 1.1 shows an example for such a projected observation of the Milky Way, a
Mollweide projection of the near-infrared sky as measured by the Diffuse Infrared Back-
ground Experiment aboard the Cosmic Background Explorer satellite (e.g. Boggess et al.
1992). This image shall also serve to explain the Mollweide projection and the Galactic
coordinate system that we will use throughout this work whenever we present full-sky
maps. The Galactic plane, seen as a stripe on the sky from our vantage point, extends
horizontally along the middle of the image and defines the great circle of zero Galactic
latitude (b = 0◦). The northern part (0◦ < b < 90◦) is plotted in the top half, and
the southern part (0◦ > b > −90◦) in the bottom half. The Galactic center lies in the
direction that is plotted in the center of the image at zero longitude and zero latitude
(l = 0◦, b = 0◦). In the image, the stellar bulge is visible around the Galactic center.
The eastern hemisphere (0◦ < l < 180◦) is plotted to the left from the center, while the
western hemisphere (−180◦ < l < 0◦ or 180◦ < l < 360◦) is plotted to the right. The oval
circumference corresponds to the half great circle of l = ±180◦.

The whole Galaxy is embedded in a halo of Dark Matter, whose existence and shape
can be inferred from observations of stellar velocities (Battaglia et al. 2005, 2006). This
halo is roughly spherical in shape and its radial mass density profile can be fitted by an
NFW profile (Navarro et al. 1997) given by

ρ(r) =
ρ0

r
r0

(
1 + r

r0

)2 , (1.2)

where ρ0 is the central density and r0 is a radial scale length. Such a fit leads to a total
mass for the Dark Matter halo of about 1012 M� (Battaglia et al. 2005, 2006), roughly 100
times the mass of the visible matter in the Milky Way.

The interstellar medium, i.e. the ordinary matter that is not bound in compact objects
such as stars and the electromagnetic fields that permeate this matter, will be the main
focus of this thesis. Neutral and ionized gas, dust grains, and highly energetic charged
particles confined by the interstellar magnetic field are the main actors in interstellar space.
These interact with each other and with the stars through a multitude of different channels.
Stars form heavy elements which are then distributed into interstellar space at the end of
their lifetime in supernova explosions, thus enriching the gaseous phase of the Galaxy; gas
atoms and molecules condense to form larger dust grains, large gas clouds collapse to form
stars; magnetic fields exert pressure, changing or preventing such collapses; dust grains
destroy each other in collisions or grow through adhesion; starlight and cosmic rays ionize
the gas and break up molecules and dust grains; dust absorbs starlight and reemits the
energy in the form of thermal infrared radiation; magnetic fields trap the ionized cosmic
ray particles and guide the plasma in its movement, the plasma drags the magnetic field
lines along as it moves; etc. (see Spitzer 2007, for a broader review).

Supernova explosions and inhomogeneous radiation pressure can cause turbulence in
this complex multi-component fluid. The evolution of this turbulence will be influenced
by the presence of a magnetic field. Vice versa, turbulent motions of ionized gas can ef-
fectively twist up magnetic field lines and thus enhance the field’s strength. The origin
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of the Galactic magnetic field, its large-scale and small-scale structure, and the details of
its interaction with the other components of the interstellar medium are all far from being
completely understood. Fortunately, some of the involved components and processes leave
imprints on the electromagnetic radiation that passes through, or is emitted from, inter-
stellar space and thus open up opportunities to observationally constrain the happenings
there. Chapters 2 and 4 are examples for attempts to shed some light on the interstellar
medium by making efficient use of these imprints.

1.1.2 Physical processes

The most direct way of imaging the gaseous phase of the interstellar medium is the observa-
tion of electromagnetic radiation that is emitted by the atoms or molecules. By identifying
atomic or molecular transition lines in emission or absorption of background light, it is
possible to study the chemical composition of the gas. Hotter gas exhibits wider lines than
cold gas and therefore the temperature can also be determined spectroscopically.

By far the most common element in the interstellar medium is hydrogen. Thus, tran-
sitions in atomic hydrogen are often used to study the gas in the Galaxy. One of the most
widely used transitions is the Hα line, i.e. the transition from the n = 3 level to the n = 2
level of hydrogen, where n is the principal quantum number. The intensity of this line
can, after correction for dust absorption, be used as a proxy for the line of sight integrated
squared density of free electrons,

Em =

∫ ∞
0

dl n2
e, (1.3)

known as emission measure (e.g. Reynolds et al. 1974; Finkbeiner 2003). Another promi-
nent line is the hyperfine transition of the ground level of atomic hydrogen resulting in
emission at a wavelength of λ ≈ 21 cm, which is often used in radio-astronomical studies
(e.g. McClure-Griffiths et al. 2009). By studying the exact frequency of the observed lines
and associating the shifts to velocity differences via the Doppler effect, one can on the
one hand constrain the velocities of gas clouds and on the other hand, constrain the gas
distribution in the Milky Way by mapping velocities to distances via a model for the dif-
ferential Galactic rotation (e.g. Kerr 1969; Lockman 2002; Nakanishi & Sofue 2003; Jones
& Dickey 2012). Molecules with useful emission and absorption lines for these types of
studies include OH (e.g. Dickey et al. 2012), H2O (e.g. Batchelor et al. 1980; Walsh et al.
2011), and CO (e.g Nakanishi & Sofue 2006).

The Zeeman splitting of atomic and molecular energy levels due to the presence of a
magnetic field can cause new line transitions and thus lead to observational signatures of
the Milky Way’s magnetic field. The polarization properties of these lines depend on the
orientation of the magnetic field with respect to the line of sight and thus both the strength
and orientation of the magnetic field can be constrained from their observation (e.g. Heiles
& Troland 2005; Heiles & Robishaw 2009).

The free thermal electrons (as opposed to the high energy cosmic ray electrons) in the
interstellar medium scatter off each other and off ions. When accelerated in such a way,



1.1 Galactic astrophysics 5

they emit bremsstrahlung, in this context known as free-free emission. The intensity of this
radiation is sensitive to the emission measure, Eq. (1.3), and can in principle be used to
constrain the distribution of these electrons. However, its direct observation is complicated
by the fact that the total radiation is dominated by other Galactic emission mechanisms at
all frequencies except for a narrow range at microwave frequencies (see e.g. Smoot 1998).

A more useful effect for constraining the distribution of thermal electrons is the disper-
sion that they cause on electromagnetic waves. The oscillating electric field of radiation
passing through the interstellar plasma induces oscillations in the free electrons. The
eigenfrequency of the electronic oscillations is given by the plasma frequency

νp =

√
nee2

πme

, (1.4)

where e is the elementary charge and me is the electron mass (see e.g. Rybicki & Lightman
2008). This leads to a dielectric constant and therefore a refractive index which are fre-
quency dependent. Therefore, radiation with a higher frequency travels faster through the
plasma. This effect is detectable in the observations of pulsars.

Pulsars are rotating neutron stars that emit periodic pulses of radiation with a contin-
uous frequency spectrum. Due to the dispersion within the interstellar plasma, the shorter
wavelengths arrive at Earth earlier than the longer wavelengths. In the limit of high
frequencies compared to the plasma frequency, ν � νp, which is satisfied for observable
radiation in interstellar space, this time delay per frequency becomes

dt

dν
= − e2

πcmeν3
Dm, (1.5)

where

Dm =

∫ L

0

dl ne (1.6)

is the dispersion measure (see e.g. Rybicki & Lightman 2008). Thus, if the electron density
ne is assumed to be known, the dispersion of the pulses can be used to determine the
distance L of the pulsar (e.g. Lorimer 2008). Vice versa, if the distance to the pulsar is
known, the dispersion measure constrains the distribution of free thermal electrons along
the line of sight (e.g. Cordes & Lazio (2002), see also Sec. 1.1.3).

Another effect that can be used to investigate the properties of the interstellar plasma
is the scattering of radiation on density fluctuations, known as interstellar scintillation.
Armstrong et al. (1995) have used this effect to constrain the statistical properties of the
fluctuations in the thermal electron density (see also Johnston et al. 1998; Bhat & Gupta
2002).

Finally, the dusty component of the interstellar medium leaves imprints on the observed
radiation as well. Due to the multitude of different molecules and the wealth of their
excitation modes, the physics involving dust grains is inarguably more complicated than
what we have discussed so far. Therefore, we only attempt to give a rough qualitative
overview over the involved processes.
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Figure 1.2: Composite image of the radiation detected by the Planck satellite. Observations
in nine frequency channels from 30 GHz to 857 GHz are combined. The blue and pink
colors correspond to thermal emission from dust grains. Image credit ESA / LFI & HFI
Consortia.

Optical and near-optical light suffers from interstellar extinction, i.e. absorption and
scattering through dust grains. Since this extinction is most efficient if the wavelength
of the radiation is near the grain size and typical interstellar dust grains have diameters
of at most a few hundred nm (Weingartner & Draine 2001), blue light is absorbed more
efficiently. Thus, the presence of dust along a line of sight leads to the effect of interstellar
reddening (Draine 2003), visible in Fig. 1.1. The extinction can be used to constrain the
composition and three-dimensional distribution of dust in the Galaxy (e.g. Marshall et al.
2006).

The scattered radiation is reemitted at lower frequencies and can be directly observed
at infrared wavelengths. Thus, sky maps of thermal dust radiation have been created e.g.
by Schlegel et al. (1998). These maps are commonly used to predict the thermal dust
emission at microwave frequencies (e.g. Finkbeiner et al. 1999). Figure 1.2 shows such a
direct observation by the Planck satellite.

One important aspect of non-spherical dust-grains is their tendency to be aligned with
the Galactic magnetic field, with their longest axis perpendicular to the field lines. While
the detailed processes leading to this alignment are not known with certainty, it seems
that particle collisions and radiative torques could be the main contributors (Greaves et al.
1999; Lazarian & Hoang 2009). As a consequence of the grain alignment, interstellar dust
extinction is more efficient for radiation polarized orthogonal to the magnetic field, leading
to an effective polarization of starlight parallel to the intervening magnetic field (e.g. Heiles
2000). On the other hand, the far-infrared radiation emitted by the dust grains has a net
polarization parallel to the long axis of the grains and therefore orthogonal to the magnetic
field (e.g. Ponthieu et al. 2005; Draine & Fraisse 2009, 2012).
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Another observable consequence of non-spherical dust grains is the recently discov-
ered so-called anomalous microwave emission (Kogut 1999), an emission component in
the microwave band that is spatially correlated with thermal dust emission at far-infrared
frequencies (Kogut et al. 1996). This component has since been identified to result from
dust grains that are spinning or precessing around magnetic field lines (Draine & Lazarian
1998a,b; Hoang & Lazarian 2012).

The constituents of the interstellar medium that are most important for the present
study are free thermal electrons, magnetic fields, and cosmic rays. In the following sections,
we will briefly describe the processes leading to the observational consequences that we will
use in later chapters, namely Faraday rotation and synchrotron emission, and summarize
the most important aspects of the current understanding of these components.

Faraday rotation

In Chapters 2 and 4, we use the effect of Faraday rotation to study the magnetic field and
density fluctuations in the interstellar medium. We dedicate this section to the description
of the underlying physical processes, following Rybicki & Lightman (2008).

The relevant setting is that of an interstellar plasma, containing mainly protons and
thermal electrons with density ne, permeated by a magnetic field described by a field vector
~B. The presence of the magnetic field breaks the isotropy of the plasma and introduces
the cyclotron frequency,

νc =
eB

2πmec
, (1.7)

as the frequency with which the electrons gyrate about the magnetic field lines. Here, c is
the speed of light in vacuum.

We will study the propagation of electromagnetic radiation along the magnetic field
line under the assumption that the strength of the oscillating magnetic field due to the
propagating wave – and the resulting Lorentz force on free electrons – can be neglected with
respect to the strength of the fixed magnetic field ~B. Consider first a circularly polarized
electromagnetic wave, propagating along the z-axis defined by the magnetic field direction,
whose electric field vector is described by

~Er/l(t) = Ee2πiνt (êx ∓ iêy) , (1.8)

where the indices r and l stand for right and left-handed polarization and correspond to the
minus and plus sign on the right hand side, respectively. Here, êx, êy, and êz are the basis
vectors of a cartesian coordinate system. Qualitatively speaking, right- and left-handed
circularly polarized radiation will induce gyration movements in the electron field. Due to
the presence of the magnetic field, the favored gyration frequency is shifted from zero in
one direction, depending on the direction of the magnetic field, thus leading to different
refractive indices for right- and left-handed polarization.

More quantitatively, the electric field will induce motions in the free electrons (the
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protons can be neglected due to their high mass) governed by

me
d~v

dt
= −e ~E − e

c
~v ×Bêz, (1.9)

where ~v is the velocity of an electron. Substituting the expression for the electric field into
this equation gives the velocity field

~vr/l = − ie

2πme (ν ± νc)
~E. (1.10)

Using the electric current density, j = −neev, one finds for the electric conductivity

σr/l =
j

E
=

ie2ne

2πme (ν ± νc)
. (1.11)

This expression can be used to calculate the dielectric constant

εr/l = 1−
2σr/l

iν
= 1−

ν2
p

ν (ν ± νc)
, (1.12)

which is now dependent on polarization. Therefore, right- and left-handed circularly po-
larized waves travel at different speeds along the magnetic field in the interstellar plasma.

Now consider a linearly polarized wave, which can be regarded as a superposition
of right- and left-handed circularly polarized waves. After having traveled a distance L
through the magnetized plasma, the angle by which the electric field vector of each of these
components has rotated is

ϕr/l =

∫ L

0

dl kr/l =

∫ L

0

dl
2πν

c

√
εr/l, (1.13)

where we have made use of the wave number kr/l of the two polarization states. Superposing
these two waves after a distance L therefore leads again to a linearly polarized wave, but
with a polarization plane that has been rotated with respect to the original one by an angle
∆ϕ = (ϕr − ϕl) /2. This rotation of the polarization plane is the effect known as Faraday
rotation.

In the limit of ν � νp and ν � νc, the integrand in the last equation can be expanded,
yielding for the rotation of the polarization plane

∆ϕ =
π

c

∫ L

0

νcν
2
p

ν2
=

e3λ2

2πm2
ec

4

∫ L

0

ne
~B · d~l. (1.14)

In the last step, we have generalized the expression from a magnetic field oriented along
the line of sight to a general magnetic field, where the scalar product ensures that only the
line-of-sight component contributes. The orthogonal component of the magnetic field does
in general influence the rotation angle as well, however, this contribution can be neglected
in the limit that we consider here (see e.g. Schlickeiser 2002).
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Taking out the wavelength-dependence, we define the Faraday depth corresponding to
a physical distance L as

φ =
e3

2πm2
ec

4

∫ L

0

ne
~B · d~l. (1.15)

Note that there is no one-to-one correspondence between physical distances and Faraday
depths. While each physical distance can be assigned an unambiguous Faraday depth via
the last equation, the converse is not true. Due to reversals of the magnetic field, one
Faraday depth will in general correspond to several physical distances.

The Faraday depth as defined in Eq. (1.15) is sometimes also referred to as rotation
measure (RM) because of the most common means of its estimation. In this procedure,
the position angle of the polarization plane is measured at several frequencies and the
Faraday depth is estimated as the proportionality constant between the position angle
and the squared wavelength. For clarity, we will reserve the term rotation measure for
observational estimates of Faraday depths done in this way. Chapter 4 contains a more
extensive discussion of this distinction.

The estimation of the Faraday depth of a source via a rotation measure fit has a couple
of drawbacks. One problem is the inherent ambiguity of position angle measurements with
respect to integer multiples of π. Especially if only a few wavelengths are used for the
observation, there is a risk of mistaking a rotation by a small angle for a rotation by a
little more than 180◦ and vice versa. Another problem is the difficulty with which multiple
emission components along a line of sight are identified. If in reality instead of one source,
several sources are observed, each located at a different Faraday depth, this will in general
not be obvious. At best, the fit of φ versus λ2 will appear very noisy, however, if one source
is dominant, the fitting procedure can lead to a distorted estimate of this source’s Faraday
depth without this being apparent.

In the derivation of Eq. (1.15) we have assumed that the observed polarized radiation
is generated at a distance L from the observer. However, in general there will be some
emission all along the line of sight. In this case the polarization plane of the radiation
is rotated by a different amount, depending on where it was emitted, and the simple
relationship between rotation angle and wavelength breaks down and is replaced by a
Fourier relationship,

P (λ2) =

∫ +∞

−∞
dφ F (φ)e2iφλ2 , (1.16)

between the Faraday depth, φ, and the squared wavelength, λ2 (Brentjens & de Bruyn
2005). Here, F (φ) is the complex polarized emissivity per Faraday depth and P (λ2) is the
complex polarized intensity observed at a wavelength λ. The technique of RM synthesis
(Burn 1966; Brentjens & de Bruyn 2005) builds on this Fourier relationship. By taking
observations at many different frequencies and approximately inverting the above equation,
several sources or even continuous emission along a line of sight can be dealt with. This
technique is also less prone to the nπ ambiguity.

It is evident from Eq. (1.15), that observations of Faraday depths can be used to study

the density of thermal electrons, ne, or the Galactic magnetic field, ~B. However, neither
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of these quantities is known, therefore, directly inferring one of them from observations of
Faraday depths is problematic. Sources of linearly polarized radiation that are used for
these kinds of studies are mainly pulsars and radio galaxies. In both cases, the integral
projection in Eq. (1.15) is a problem. Not only are the observations only sensitive to one
component of the magnetic field, they also only yield a projection along the line of sight.
The usage of pulsars has the benefit that by using different pulsars that are embedded
in the Milky Way, one can in principle probe different distances. However, only very few
pulsars have accurate distance information (e.g. Schnitzeler 2012). Extragalactic sources,
on the other hand, always probe the full line of sight through the Galaxy. They have,
however, the disadvantage of probing extragalactic environments as well. In Chapter 4,
we present an attempt at statistically separating the extragalactic contributions from the
Galactic ones.

Synchrotron emission

Synchrotron emission is another probe of the Galactic magnetic field, which we will use in
Chapter 2. Here, we briefly discuss the underlying physical mechanism and observational
consequences.

The ingredients needed for synchrotron radiation to occur are highly relativistic elec-
trons and a magnetic field. Any electrons that have a velocity component orthogonal to
the magnetic field will be accelerated by the Lorentz force, gyrate about the magnetic field
lines, and emit radiation due to their accelerated motion.

Due to the high energy of the involved electrons, relativistic effects become important.
The relativistic gyration frequency becomes

νs =
eB

2πγmec
, (1.17)

where γ =
(

1− v2

c2

)−1/2

is the Lorentz factor for an electron moving with velocity v. The

acceleration of the electron, perpendicular to its velocity, can be written as

a⊥ = 2πνsv⊥, (1.18)

where v⊥ is the component of the electron’s velocity that is oriented perpendicular to the
magnetic field, and the power emitted in form of radiation becomes

P =
2e2

3c3
γ4a2

⊥ =
2

3

γ2e4

m2
ec

5
B2v2

⊥ (1.19)

(Rybicki & Lightman 2008). Note the dependence on the squared magnetic field strength.
To get the average power from an electron moving with velocity v, one needs to average
over all possible orientations of the velocity vector. Assuming an isotropic distribution for
the velocities, this gives another factor 2/3, yielding as the radiated power

P =

(
2

3

)2
γ2e4

m2
ec

5
B2v2. (1.20)



1.1 Galactic astrophysics 11

For non-relativistic electrons, the frequency of the radiation would simply equal the
gyration frequency, however relativistic beaming effects lead to the radiation emitted during
each rotation appearing as a pulse of much shorter duration than the gyration period. The
superposition of these pulses leads to an effective spectrum that is much wider than for
non-relativistic electrons. In addition, the gyrating electrons will not all have the same
velocity v or energy E. The energy or velocity distribution of particles will influence the
observed spectrum of the synchrotron radiation.

If the energy distribution of cosmic ray electrons can be approximated by a power law
with index p, i.e.

dnCRE ∝ E−p dE, (1.21)

the observed power of synchrotron radiation can be approximated as a power law as well,

P (ν) ∝ ν−s, (1.22)

where the synchrotron spectral index is given by s = (p − 1)/2, as shown e.g. by Rybicki
& Lightman (2008).

Calculating the polarization properties of this radiation, one arrives at a net linear po-
larization perpendicular to the magnetic field projected onto the plane of the sky. The max-
imum obtainable degree of polarization is 75% (Ginzburg & Syrovatskii 1965). However,
in observations of Galactic synchrotron emission, the polarization fractions are typically
much lower (e.g. Burigana 2006), due to several depolarization effects. The change of
magnetic field orientation within the instrumental beam leads to a partial compensation
of different polarization directions, known as beam depolarization. The presence of mag-
netic fields along the line of sight leads to Faraday rotation of the emitted synchrotron
radiation. Radiation at different wavelengths gets rotated by different amounts and there-
fore the total polarization within a finite instrumental frequency window gets diminished.
This effect is called Faraday depolarization and is typically only important at frequencies
ν . 1 GHz (Stroman & Pohl 2009). Finally, any observed synchrotron radiation will be
a superposition of radiation emitted at different distances along the line of sight. Since
the orientation of the magnetic field can change with distance, so can the polarization
direction. The superposition therefore has a reduced polarization fraction.

In conclusion, although synchrotron radiation can in principle be used to probe both the
strength of the Galactic magnetic field (see Eq. (1.19)) and its orientation, it suffers from
similar complications as Faraday rotation observations. While the latter are weighted
with the thermal electron density, the former is sensitive to the density of cosmic ray
electrons and even to their energetic composition, and both effects suffer from a line of
sight projection. Nevertheless, both effects are being used to constrain the configuration
of the Galactic magnetic field (see Sec. 1.1.3).

1.1.3 Components related to the Galactic magnetic field

In this section, we describe the current understanding of the components of the interstellar
medium that will play a role in the following chapters. These are the components that
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are observationally most entangled with the Galactic magnetic field, namely the free ther-
mal electrons influencing Faraday rotation observations, the cosmic rays influencing the
emission of synchrotron radiation, and the magnetic field itself.

Thermal electrons

The term ‘thermal electrons’ is used here to describe the free electrons that are part of the
thermally ionized interstellar plasma, as opposed to the relativistic cosmic ray electrons.
Sometimes the term warm ionized medium is also used. In the context of Faraday rotation,
the electrons of this phase act as the resonators in the interstellar plasma and are therefore
important for magnetic field studies.

The spatial distribution of thermal electrons is governed by the large-scale disk and
spiral structure of the Galaxy, compression in shock fronts e.g. from supernova explosions,
and turbulent motions. On all levels, the motion of the thermal electrons is also influenced
by the presence of magnetic fields and vice versa.

The first non-trivial model for the three-dimensional distribution of the thermal elec-
trons in the Milky Way was deduced by Taylor & Cordes (1993) who for the first time
included information on the location of the spiral arms deduced from radio observations
of ionized hydrogen. They constrained their model using pulsar dispersion measure data
(see Eq. (1.6)) and observations of interstellar scintillation.

The most commonly used model for the electron distribution to date was devised by
Cordes & Lazio (2002) and can be seen as an extended and updated version of the model
by Taylor & Cordes (1993). The electron distribution within the Galactic plane in this
model, known as NE2001, is shown in Fig. 1.3. This model benefitted from a larger number
of available observations of Dm. Furthermore, some knowledge about the structure of the
local interstellar medium, i.e. the solar neighborhood, was explicitly included in the model.
Cordes & Lazio (2002) also included pulsar scintillation observations as well as accurate
measurements of Hα radiation as a proxy for emission measure, to determine the large-scale
variations in the fluctuation strength of the free electron density. Altogether, the NE2001
model is made up of a thin Galactic disk, a thick Galactic disk, which is less concentrated
both in the radial and in the vertical direction, the spiral arm structure, an extra component
around the Galactic center, and the local structure in the solar neighborhood.

Gaensler et al. (2008) argued using observations of pulsar dispersion measures and
diffuse Hα radiation that the scale height of the thick disk component is in reality about
twice as large as advocated by Cordes & Lazio (2002). However, Schnitzeler (2012) recently
argued that this extended thick disk can be ruled out using pulsar dispersion measure
observations.

One important point to note is that most of the models rely heavily on pulsar dispersion
measurements, which need to be complemented with a distance estimate for the pulsars
to yield information on the three-dimensional electron distribution. However, many of the
estimated pulsar distances used e.g. by Cordes & Lazio (2002) are themselves derived from
dispersion measure observations under the assumption of a certain electron distribution.
This circular argumentation is not always solved self-consistently.
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Figure 1.3: Cut through the Galactic plane of the NE2001 model for the thermal electron
density. Dark colors correspond to high densities, light colors to low ones. The size of the
depicted area is 30 kpc×30 kpc. The Galactic center is in the middle of the plot, the sun is
located in the horizontal center next to the small dark spot (the gum nebula) in the upper
half. Figure from Cordes & Lazio (2002).
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Schnitzeler (2012) confronts several models of differing complexity for the Galactic
electron distribution with measurements of dispersion measures for pulsars for which in-
dependent and accurate distance estimates exist. He shows that more complex models
including spiral arms are not necessarily better supported by the currently available data
than very simplistic axisymmetric models. In conclusion, while a rough consensus exists
in the literature regarding the broad geometry of the thermal electron distribution in the
Milky Way, observational data are at present not suited to constrain any detailed features.

Cosmic rays

The interstellar medium is permeated by a fluid of highly energetic, charged particles,
mainly protons, around ten percent α-particles, even fewer more massive nuclei, and rel-
ativistic electrons, collectively known as cosmic rays (e.g. Schlickeiser 2002). The main
importance of this component of the interstellar medium will be the synchrotron radiation
originating from the cosmic ray electrons gyrating around magnetic field lines. We will
use the polarization properties of this radiation to probe the Galactic magnetic field in
Chapter 2.

The origin of these particles and the means of their acceleration are a topic of active
research. One likely source of particles are supernova explosions in which these particles
can be created and ejected and undergo ensuing shock acceleration. A similar acceleration
mechanism can happen in stellar winds. Additionally, the most energetic particles are
likely to be of extragalactic origin and might be accelerated in active galactic nuclei (see
Schlickeiser 2002, for details). For observations on Earth, solar wind particles are a sig-
nificant contaminant. However, these are unimportant when studying effects on Galactic
scales, such as synchrotron emission.

The evolution of the cosmic ray fluid in the interstellar medium is a complicated process.
Effects like diffusion, convection, turbulence, confinement of the charged particles by the
magnetic field, reacceleration, interactions with other cosmic ray particles and background
photons all play a role (e.g. Strong & Moskalenko 2001; Strong et al. 2007; Yan & Lazarian
2008). Due to scattering of the particles by plasma waves in the interstellar medium, their
resulting velocity distribution is isotropic (Schlickeiser 2002).

Phenomenological models of the distribution of the cosmic ray electrons have been
created e.g. by Page et al. (2007) and Sun et al. (2008) using observations of synchrotron
radiation. However, both these studies simultaneously fit a model for the Galactic magnetic
field and therefore restrict themselves to rather simplistic forms of the cosmic ray electron
distribution, consisting essentially of a disk with two scale heights for the radial and vertical
directions.

A recent direct measurement of electron energies using the Fermi satellite by Ackermann
et al. (2010) showed that their energy spectrum is consistent with a power law, as given by
Eq. (1.21), with a spectral index of p = 3.08± 0.05 for energies between 7 GeV and 1 TeV.
This, however, of course only represents a local measurement and does not reveal anything
about spatial variations of the energy distribution. Spatial variations in the spectral index
of the observed synchrotron radiation have indeed been detected e.g. by Bennett et al.
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(2003), indicating that the electron distribution is likely to depend on the environment.
So altogether, relatively little is known from observations about the spatial variations

of the cosmic ray electron distribution both in energy and in number density.

Magnetic fields

The Galactic magnetic field is traceable with a variety of observable effects, among them
emission from Zeeman lines, synchrotron emission, Faraday rotation, polarization of ther-
mal dust emission and partially absorbed starlight. From observations of Zeeman splitting,
Heiles (1990) deduced a typical magnetic field strength in the disk of the Milky Way of a
few µG.

A rough picture of the large-scale coherent structure of the Galactic magnetic field
can be obtained from observations of other spiral galaxies. It is in many cases easier to
infer the magnetic field structure of other galaxies from an outside perspective than it
is to disentangle the observations of the Milky Way made from within. Typically, spiral
galaxies exhibit a magnetic field that is aligned with the disk and roughly follows the
spiral pattern (e.g. Beck & Hoernes 1996; Fletcher et al. 2011). When seen edge-on, they
typically show an X-shaped magnetic field (Krause 2008). The natural assumption, which
is also supported by observational data, is that the Milky Way’s magnetic field has a similar
structure.

The existence of coherent magnetic fields raises the question of their origin. The most
promising concept that has been developed to answer this question is dynamo theory, in
which mechanical energy is extracted from turbulent gas motions and an initially weak
magnetic seed field is amplified and smoothed (e.g. Brandenburg & Subramanian 2005).
Magnetic helicity, which we study in Chapter 2 is a quantity that is conserved to high
precision during these processes. However, helicity of opposite sign is generically produced
on large and small scales (e.g. Subramanian 2002). Observationally detecting this helicity
would be a strong point in favor of turbulent dynamo theory as an explanantion for galactic
magnetic fields. As an explanation for the existence of the seed fields, several ideas are being
discussed, e.g. the Biermann battery mechanism (e.g. Widrow 2002) and the existence of
primordial magnetic fields (e.g. Gasperini et al. 1995).

The Galactic magnetic field can be regarded as the sum of three qualitatively different
components (Jaffe et al. 2010). The first is a large-scale component, which is coherent
over kpc length-scales. This component is likely to be the product of a dynamo acting
on Galactic scales. The second component is an isotropic random field, sometimes also
referred to as turbulent field. Strength, orientation, and sign of the magnetic field of this
component change randomly from position to position. This field is thought to result
directly from turbulent motions in the magnetized interstellar plasma, as well as from
supernova outflows. The third component is referred to as ordered field, anisotropic random
field, or striated random field. Its field vectors share the same orientation, but their sign
and direction varies randomly. This last field configuration arises for example when a
medium containing an isotropic random field is strongly compressed along one or two axes.
Since the same plasma deformations also shape the coherent component, the orientations
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of the two field components are commonly assumed to be the same (e.g. Jansson & Farrar
2012a).

These three components can be distinguished by their impact on observations of Faraday
rotation and synchrotron radiation. On average, non-zero Faraday rotation is only pro-
duced by the coherent component when observed along the orientation of the magnetic
field. Spatially strongly varying Faraday rotation is also produced by the isotropic random
component and by the anisotropic random component when observed along the direction
of this field. The coherent and anisotropic random components both produce polarized
synchrotron radiation, but only in directions orthogonal to the field lines. The isotropic
random component, on the other hand, produces synchrotrom emission in all directions,
however, its polarization cancels on average.

Simple parametric models of the coherent magnetic field exhibiting a spiral structure
in the Galactic plane were devised e.g. by Page et al. (2007) and Sun et al. (2008). While
Page et al. (2007) used only synchrotron data to constrain the parameters of their model,
Sun et al. (2008) added observations of Faraday rotation. Jansson et al. (2009) used up-
dated synchrotron and Faraday rotation data to optimize several parametric models of
the coherent field component and found that most best-fit models had changed signifi-
cantly due to the new data. Detailed studies of the coherent magnetic field within the
Galactic disk were performed e.g. by Brown et al. (2003b); Han et al. (2006); Van Eck
et al. (2011), especially with a view on the number and locations of possible field reversals.
The conclusions range from a total absence of field reversals to a field reversal between
each spiral arm and inter-arm region. Haverkorn et al. (2006a) studied the fluctuations
of the isotropic random component in arm and inter-arm regions using Faraday rotation
observations. They found that the fluctuations happen on smaller spatial scales inside the
spiral arms. Combined models of the coherent and isotropic random components of the
Galactic magnetic field were created by Fauvet et al. (2011, 2012), who used observations
of synchrotron and thermal dust emission to constrain their model parameters. In these
models, however, the only fit parameter describing the isotropic random components is
the relative amplitude of this component with respect to the coherent one, assumed to be
the same throughout the Galaxy. Jaffe et al. (2010) for the first time modeled all three
components to fit synchrotron and Faraday rotation observations, albeit only within the
Galactic plane.

Recently, Jansson & Farrar (2012a,b) finally created a full three-dimensional model of
the Galactic magnetic field allowing for all three components, based on up-to-date syn-
chrotron and Faraday rotation data. Their coherent field model itself consists of three
components. The first is a disk field, which is purely azimuthal in the inner Galaxy and is
made up of eight magnetic spiral arms in the outer Galaxy. The other two coherent com-
ponents are a purely toroidal and a purely poloidal component that together make up the
magnetic field in the Galactic halo. Additionally, an anisotropic random field component
is assumed, which is aligned with the coherent field and whose relative amplitude is the
same everywhere. Taking into account all data, they fit a total of 35 parameters describing
the random and coherent fields and find that the anisotropic random component is about
35% stronger than the coherent component. Fig. 1.4 shows a comparison of the strengths
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Figure 1.4: Comparison of coherent and random magnetic field strengths in the Galactic
plane according to Jansson & Farrar (2012b). The left panel shows the strength of the
random field, the right panel the strength of the disk component of the coherent field.
The direction of the coherent field is clockwise (in this top-down view) in rings 3-6 and
counterclockwise in the others. Figure from Jansson & Farrar (2012b)

of the coherent and random fields in the disk. The coherent magnetic field model also has
the desirable property of being divergence-free and reproducing the characteristic X-shape
when seen edge-on.

All these modeling attempts, however, suffer from the complexity of having to deal with
line of sight projections as observables and the degeneracies between magnetic features and
features in the electron densities (cosmic rays or thermal electrons) that this causes. The
evidence for certain features in the coherent component of the Galactic magnetic field
changes almost on a yearly basis as new data become available and modeling techniques
are improved. The random components can only be described statistically, so a detailed
prediction of the magnetic field strength and direction for each location in the Milky Way
is at the moment out of the question. More detailed three-dimensional reconstruction
attempts taking into account all available observables and optimizing the thermal and
cosmic ray electron densities at the same time need to be undertaken in the future.

1.2 Signal inference

In the previous section we have already seen that deducing information about physical
quantities from observations is not always a trivial task. In this section, we will elab-
orate a bit more on the challenges and the methodology that can be used to overcome
these challenges. This will serve as background for the statistical techniques developed in
Chapters 3 and 5. Throughout this work, we generally follow the notational conventions
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of information field theory (Enßlin et al. 2009).

1.2.1 General framework

In physics and astronomy, we do experiments because we would like to learn something
about a physical quantity. It is, however, not always possible to measure the properties
of this quantity directly, as we have seen for example for the distribution of the different
components of the interstellar medium. The outcome of the measurement is therefore
related in a not necessarily trivial way to the quantity of interest. We call this quantity
the signal s and the observation results the data d and write

d = g(s, . . . ), (1.23)

where the function g encodes the way in which our observation is sensitive to the underlying
signal.

This function can in general depend on other unknown quantities that we might not be
interested in. One such quantity that appears in any experimental setting is measurement
noise. If we assume that the noise n is additive in our measurement, we can separate it
from the function g and write

d = f(s) + n. (1.24)

Assuming that the fuction f is fully known, we are left with two problems. First, we have
to get rid of the noise contribution to the data, which is difficult because it is unknown
to us. Second, we have to invert the function f to get an estimate for the quantity s that
we are interested in. However, this may be impossible since the value of f(s) may well be
the same for different values of s, i.e. the observation may be degenerate with respect to
different signal configurations. These are the two main challenges that need to be overcome
when doing inference on the signal.

So far, we have not specified what kinds of mathematical objects s, n, and d are. They
each could be a single number or a vector of numbers. In the cases that we are interested
in here, the signal s will even be a field, i.e. a continuous function on some manifold M,

s : M−→ C. (1.25)

To deal with the statistical inference of continuous fields with infinitely many degrees of
freedom, the framework of information field theory was developed by Enßlin et al. (2009)
(see also Lemm 2003). Much of Chapters 3 and 5 builds on this framework.

In our applications, the manifold M will either be an interval, a flat two-dimensional
rectangle, or the two-sphere S2. The last case has special relevance in astronomy since
the sky can be regarded as a sphere, so that one naturally uses S2 as signal domain if one
attempts to reconstruct the dependence of some quantity on the direction in the sky, but
not the dependence on the distance from Earth.

The data, on the other hand, are always finite, since the outcome of any measurement
can be summarized in finitely many numbers. Therefore, the function f in Eq. (1.24) can
never be invertible when the signal is a continuous field.
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A special case of Eq. (1.24) that we will make heavy use of is the case of a linear
mapping f , which can be written as an operator applied to the signal,

d = Rs+ n. (1.26)

The operator R is known as response operator. For signals with a finite number of degrees
of freedom, it becomes a matrix, which is not necessarily square. For continuous signals,
we can write the expression for the i-th data point as an integral over the manifold,

di =

∫
M

dx Ri(x) s(x) + ni. (1.27)

This specialization is still sufficiently general to accomodate a large variety of observational
scenarios. The response operator can for example incorporate line of sight integrations as
often needed in Galactic astrophysics, convolutions with a beam function, projections onto
specific regions or positions in which the signal was observed, Fourier transformations that
are part of interferometric observations, etc.

When trying to answer questions about the signal, we need to know which signal con-
figurations are likely and which are not. In other words, we need to assign probabilities.
In Bayesian probability theory one distinguishes between the prior probability distribu-
tion, P(s), which describes the probability of different signal configurations based on any
theoretical or empirical knowledge that one might have before conducting the measure-
ment, and the posterior probability distribution, P(s|d), which is the same, only after the
data have been observed. The prior and posterior distribution describe our knowledge on
the signal before and after the experiment. These two are connected by the data likeli-
hood P(d|s), which encodes how likely the observed data are, given a particular signal
configuration, via Bayes’ theorem,

P(s|d) =
P(d|s)P(s)

P(d)
. (1.28)

The denominator in this equation is the so-called evidence. Since it is not signal dependent,
it is unimportant when making inferences about s, but can in principle be calculated via

P(d) =

∫
Ds P(d|s)P(s). (1.29)

Here and in the following,
∫
Ds denotes an integral over all possible signal configurations,

i.e. all possible signal values for each location onM. The shape of the likelihood function
P(d|s) follows from Eq. (1.24) or (1.26) in combination with the noise statistics. A first
example for this will be given in the next section.

In information field theory, the right hand side of Bayes’ theorem is rewritten as

P(d, s)

P(d)
=

1

Zd
e−H(d,s), (1.30)
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to highlight the identity of statistics and thermodynamics. The partition function Zd =
P(d) again only depends on the data and the Hamiltonian

H(d, s) = − ln (P(d, s)) (1.31)

captures all the important information and is often easier to handle mathematically.
Once the posterior probability distribution is derived, the question arises which signal

configuration is the right answer to the inference problem. In principle, there is no single
right answer; the posterior distribution is all that we can know about the signal. However,
it is nevertheless useful to condense the information into a single result, ideally with an
uncertainty estimate. For this, different choices are possible.

One possibility is to look for the signal configuration with the highest probability by
simply maximizing the posterior distribution – or equivalently minimizing the Hamiltonian
– with respect to s,

δH(d, s)

δs

∣∣∣∣
s=m(MAP)

= 0. (1.32)

Here, δ denotes a variational derivative. This gives the maximum a posteriori solution
m(MAP). An uncertainty estimate for this solution can be calculated by expanding the
Hamiltonian up to second order around its minimum and identifying the second order
term with the inverse uncertainty covariance,

(
D(MAP)

)−1
:=

δ2H(d, s)

δs2

∣∣∣∣
s=m(MAP)

. (1.33)

This corresponds to replacing the posterior distribution with a Gaussian distribution that
passes through its maximum and has D(MAP) as covariance matrix. The uncertainty covari-
ance includes information on the typical size of the uncertainty at each location ofM and
the correlation of variations at different locations. The benefit of the maximum a posteriori
solution is that it is usually comparatively easy to calculate. The drawback is that it takes
into account only local information at the maximum of the posterior distribution and the
presence of any heavy tails or further local maxima goes unnoticed.

A choice that is influenced by the whole posterior distribution is the posterior mean,

m := 〈s〉P(s|d) =

∫
Ds sP(s|d), (1.34)

which is an average over all possible signal configurations, each weighted with its posterior
probability. Here, we have also introduced an angular bracket notation for expectation
values with respect to probability distributions, which we will use throughout this thesis.
An uncertainty estimate for the posterior mean is straightforwardly defined as the second
connected moment of the posterior distribution,

D :=

〈(
s− 〈s〉P(s|d)

)(
s− 〈s〉P(s|d)

)†〉
P(s|d)

. (1.35)
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The † symbol denotes a transposed and complex conjugated quantity1. While the posterior
mean of course also does not capture any distinct features of the posterior distribution, it
is a more comprehensive summary than the maximum a posteriori. It can be shown (Weig
& Enßlin 2010) that the posterior mean minimizes the expectation for the L2-norm of the
error,

m = argmin
m̃

(
〈||s− m̃||L2〉P(s|d)

)
. (1.36)

We will use the posterior mean whenever feasible.

1.2.2 The Gaussian case

In this section, we demonstrate how to calculate the posterior distribution for a Gaussian
signal under the assumption of Gaussian noise and discuss the result.

Gaussianity for the signal means that we assume a Gaussian prior probability distribu-
tion, given by

P(s) = G(s, S) :=
1

|2πS|1/2
e−

1
2
s†S−1s. (1.37)

Here,

S =
〈
ss†
〉
P(s)

(1.38)

is the signal covariance describing the size of the typical fluctuations in the signal and the
correlation structure and the vertical lines denote a determinant. If the signal is just a
single number, the covariance becomes the variance. The term in the exponential of the
Gaussian can also be written explicitly as

s†S−1s =

∫
M

dx

∫
M

dy s̄(x)S−1(x, y) s(y). (1.39)

In Eq. (1.37) we have also assumed that the prior is centered on zero, i.e. 〈s〉P(s) = 0.
Generalizing the calculation to a Gaussian prior with a different mean is straightforward.
We also assume signal-independent Gaussian noise with zero mean, i.e.

P(n) = G(n,N), (1.40)

where the exponentiated term now reads

n†N−1n =
∑
i

∑
j

n̄i
(
N−1

)
ij
nj, (1.41)

since the noise, like the data, is always finite-dimensional.

1If one thinks of s as a finite-dimensional vector, it becomes clear that ss† is a matrix and s†s is a
scalar.
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The first step is to calculate the likelihood function, which under the assumption of
Eq. (1.26) as data model, can be done easily by marginalizing over the noise,

P(d|s) =

∫
Dn P(d, n|s) =

∫
Dn P(d|n, s)G(n,N)

=

∫
Dn δ(d−Rs− n)G(n,N) = G(d−Rs,N). (1.42)

Here, the δ-distribution arises since the data are fully determined once the signal and noise
are given. Next, we simply multiply the result with the signal prior to obtain the posterior

P(s|d) ∝ P(d|s)P(s) ∝ G(d−Rs,N)G(s, S) ∝ G(s−m,D). (1.43)

The last step involves a little algebra, after which one finds

D =
(
S−1 +R†N−1R

)−1
(1.44)

for the posterior covariance and
m = DR†N−1d (1.45)

for the posterior mean. This last equation is known as the Wiener filter (e.g. Enßlin et al.
2009). Since the posterior is again Gaussian in this case, the posterior mean and maximum
a posteriori solution agree and are both given by the Wiener filter.

The terms in the Wiener filter equation deserve a short discussion. Starting from the
right side, the field R†N−1d = j is known as information source in the context of infor-
mation field theory. It is a response-over-noise weighted representation of the data. The
weighting scheme downweights data points that have been poorly observed and the ones
for which the noise contribution is expected to be large. This field drives the reconstructed
map m away from the zero mean of the prior.

Next is the application of the posterior covariance operator, D, called information
propagator. The reconstructed map at one position, m(x), is made up of the values of
the information source at all positions, each weighted with the appropriate value of the
information propagator,

m(x) =

∫
M

dy D(x, y) j(y). (1.46)

Hence, the information is propagated from each position y to its final destination x.
The information propagator, given in Eq. (1.44), consists of two parts. One part is a

projection of the inverse noise covariance into the space of possible signals by means of the
response operator, R†N−1R. Qualitatively, this operator distinguishes between regions of
M that are well observed and those which are not. The other part of D is the inverse
signal covariance, S−1, which separates regions of high expected signal fluctuations from
those with low variations. In the limiting case of a region with high signal fluctuations that
are well observed, S−1 ≈ 0 and R†N−1R 6= 0, the information propagator becomes D ≈(
R†N−1R

)−1
, thus effectively undoing the response-over-noise weighting of the data and

applying something close to an inverse response operator to compensate for the response
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operator in Eq. (1.26), without extrapolations. In the other extreme case, in which the
observations are very poor, R†N−1R ≈ 0, the information propagator is the same as
the signal covariance and extrapolates widely. In general, there will be poorly observed
regions, for which information has to be propagated across longer distances, and well
observed regions, for which little extrapolation is necessary. The information propagator
automatically balances the information from all locations in the appropriate manner for
each point of the reconstruction. Note, however, that the two parts of the propagator will
in general have different eigenbases, so one always has to consider the whole of M and
cannot consider points or regions individually. The Wiener filter theory forms the basis for
the signal inference techniques that we develop in Chapters 3 and 5.

It should be clear by now, that the signal and noise covariances play an important role
in the reconstruction of Gaussian signals. Their precise knowledge is important for an
accurate result. However, in general, at least the signal covariance S is not known. To
overcome this problem, several strategies have been developed (Wandelt et al. 2004; Jasche
et al. 2010b; Enßlin & Weig 2010; Enßlin & Frommert 2011). We will briefly outline the
derivation as done by Enßlin & Weig (2010), since Chapters 3 and 5 build on it directly.

The basic idea is to augment the Gaussian signal prior with a well-chosen prior for the
signal covariance, P(S), and derive the posterior via marginalization over the covariance,

P(s|d) ∝ P(d|s)P(s) = P(d|s)
∫
DS P(s|S)P(S). (1.47)

The resulting posterior, however, is highly non-Gaussian and calculating its mean is there-
fore not possible analytically. Enßlin & Weig (2010) therefore suggest to find an optimal
Gaussian approximation to this posterior, described by its mean m and its covariance D.
Fitting for m and D then gives the critical filter estimate for the signal and its uncertainty.
The detailed assumptions regarding the structure of the signal covariance, the choice of
priors, and the approximations made can be found e.g. in Chapter 3.

1.2.3 Statistical homogeneity and isotropy

One assumption that we will make in all later chapters is the assumption of homogeneous
and isotropic prior statistics. Statistical homogeneity means that the prior is invariant
under translations inM, statistical isotropy means that it is invariant under rotations. In
the case of M = S2, which will be important in later chapters, translational invariance is
not defined.

In the case of a zero-mean Gaussian prior, the statistics are fully described by the
covariance. Consider therefore a signal on the two-sphere with a covariance given by

S(n̂, n̂′) = 〈s(n̂)s̄(n̂′)〉P(s) . (1.48)

Here, n̂ and n̂′ are two unit vectors, denoting two directions or two positions on S2.
Assuming statistical isotropy now means that the covariance cannot depend on the two di-
rections individually, but can only depend on their angular separation, given by arccos (n̂ · n̂′).



24 1. Introduction

We can therefore write
S(n̂, n̂′) = S(n̂ · n̂′). (1.49)

Instead of as a function of positions on S2, we can also express the covariance in
spherical harmonic components as

S(`m),(`′m′) = 〈s`ms̄`′m′〉P(s) , (1.50)

where

s`m =

∫
S2

dΩ Ȳ`m(n̂) s(n̂) (1.51)

is a spherical harmonic component of the signal field. Using the orthogonality of the
spherical harmonic functions,∫

S2
dΩ Ȳ`m(n̂)Y`′m′(n̂) = δ``′δmm′ , (1.52)

and the expansion of a Legendre polynomial in terms of spherical harmonics,

P`(n̂ · n̂′) =
4π

2`+ 1

∑̀
m=−`

Ȳ`m(n̂)Y`m(n̂′) (1.53)

(e.g. Abramowitz & Stegun 1964), as well as an expansion of the signal covariance in terms
of Legendre polynomials,

S(n̂ · n̂′) =
∞∑
`=0

S(`)P`(n̂ · n̂′), (1.54)

we can calculate the covariance in spherical harmonic representation as

S(`m),(`′m′) = 〈s`ms̄`′m′〉P(s) =

∫
S2

dΩ

∫
S2

dΩ′ Ȳ`m(n̂)Y`′m′(n̂
′) 〈s(n̂)s̄(n̂′)〉P(s)

=
∞∑
`′′=0

4π

2`+ 1
S(`′′)

`′′∑
m′′=−`′′

∫
S2

dΩ

∫
S2

dΩ′ Ȳ`m(n̂)Y`′m′(n̂
′)Ȳ`′′m′′(n̂)Y`′′m′′(n̂

′)

=
∞∑
`′′=0

4π

2`′′ + 1
S(`′′)

`′′∑
m′′=−`′′

δ``′′δmm′′δ`′`′′δm′m′′

= δ``′δmm′
4π

2`+ 1
S(`). (1.55)

We thus see that as a consequence of the statistical isotropy the signal covariance becomes
diagonal in the basis given by the spherical harmonics and the diagonal entries depend
only on `. The combination 4π

2`+1
S(`) is called the angular power spectrum of the signal

and usually denoted as C`. A similar result can be derived for signals in Euclidean space,
replacing the spherical harmonics with Fourier modes. In this case, statistical homogeneity
leads to a diagonal covariance matrix in the Fourier basis with entries that depend on the
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Figure 1.5: Comparison of Gaussian random fields with different power spectra. The top
row shows the angular power spectra and the bottom row the corresponding signals.

wavevector ~k; statistical isotropy then leads to diagonal entries that only depend on the
absolute value of the wavevector.

The information contained in the power spectrum is the average strength of the signal
fluctuations on different scales. For signals on the sphere, the scales of the fluctuations
are given by ` (roughly as ∆θ = 180◦/`) and C` is the variance of the spherical harmonics
components s`m. To illustrate the importance of the power spectrum, we plot two versions
of a randomly generated signal realization in Fig. 1.5. The spherical harmonics components
are drawn randomly from Gaussian distributions with variances C`. For the two versions,
the random seeds were chosen equal, only the values of C` were changed. As can be readily
seen in the plots, higher C`-values for small ` correspond to more pronounced large-scale
features in the signal and higher C`-values for large ` correspond to more pronounced
small-scale features.

The assumption of statistical isotropy simplifies the inference formalism greatly, insofar
as the covariance is now fully described by the power spectrum. It does, on the other
hand, also restrict the discussion somewhat, since the generality is partly lost. One should
be aware, however, that making this assumption for the prior statistics only amounts to
assuming that there are no a priori special directions. If the observed data distinguish
some directions from others, this will be taken into account in the posterior distribution,
which will not be isotropic.
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1.2.4 Gaussianity assumption

In all of the applications that we discuss in this thesis, we assume Gaussian statistics in
one way or another. The reasons for this are manifold and shall be outlined here.

One obvious reason is that Gaussian probability distributions are easy to calculate with.
Gaussian expectation values of powers of the signal can for example easily be calculated
using Isserlis’ theorem (often also called Wick theorem, Isserlis (1918)). The other, far
better reason is that Gaussianity is often a good approximation. If the signal of interest
arises for example as the sum of many independent components that can be assumed to
approximatively follow the same statistics, the central limit theorem (e.g. Caticha 2008)
tells us that the signal will be roughly Gaussian distributed. This applies for instance to
many astrophysical signals defined on the sky that arise as projections along the line of
sight through many independent regions of the universe or the Milky Way.

Another reason why Gaussianity is a justified assumption stems directly from probabil-
ity theory. Assuming that a priori we know nothing about the signal of interest, a natural
choice for the signal prior would be a flat prior, i.e. assuming equal probability for all signal
realizations. If we now assume that we gain knowledge about the signal’s covariance, the
question arises how we should update our flat prior to incorporate this knowledge.

The most widely accepted recipe for updating probability distributions when knowl-
edge about a certain expectation value is gained is the maximum entropy principle (e.g.
Caticha & Preuss 2004). This principle is based on three axioms, namely that the update
should be conducted in such a way that new information on a subset of all possible signal
configurations only affects this subset, that it is independent of any coordinates, and that
it does not matter whether two independent systems are updated together or individually.
From these three axioms, a rule can be derived how to update probability distributions in
such a way that they are only changed in ways that are absolutely necessary to accomodate
the newly available information.

Applying this rule to the case where we start with a flat probability distribution and
gain knowledge about the signal’s covariance leads directly to a Gaussian distribution, as
shown e.g. by Caticha & Preuss (2004). Thus one can say that the zero-mean Gaussian
prior is the only prior that contains information about the signal’s covariance and nothing
else. Therefore, the Gaussian assumption is perfectly justified in cases in which only the
covariance is a priori known.

More commonly, we do not know the covariance a priori but we do know that it is an
important part of the problem. This is what Caticha (2012) calls “the important case”.
He argues that it should not make a difference for the probability distribution that best
describes the system whether we happen to know certain things or not. He therefore
concludes that whenever we know that a certain expectation value contains important
information on the system under consideration, we should apply the maximum entropy
principle as if this expectation value was known to us. Thus, since our discussion in the
last two sections has shown that the signal covariance is indeed an important factor in our
considerations, following this line of argumentation, we arrive again at the conclusion that
we should choose a Gaussian signal prior.
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One caveat, however is included. While the updating scheme is by design coordinate
independent, our choice of a flat prior to start with is not. Since we are dealing with
continuous signal values, we are always talking about probability densities. Therefore, it
makes a difference whether we choose to pick a uniform prior for a certain signal or e.g.
for its logarithm. We will explore this a bit more in the next section.

1.2.5 Beyond Gaussianity

There are certainly situations in which a Gaussian signal prior is a poor choice. Such
a situation arises if we know for physical reasons that our signal has certain properties
that are not well described by a Gaussian distribution. A common case for example is
a signal that can only be positive. The tails of the Gaussian that extend infinitely far
in both directions are certainly nonsensical in this case. Another case that arises often
in astrophysics is a signal that has lots of small features and a few that are orders of
magnitude stronger. Here, also, the Gaussian distribution reaches its limit.

In cases in which both positivity and the vast range of fluctuation strengths apply, a
good solution is to simply consider the logarithm of the field of interest as the signal. If s
is a Gaussian signal, es will be a field that exhibits these properties, known as a log-normal
field. The application of the exponential function thereby has to be interpreted pointwise,
i.e. individually for the values of s at each location on M. If we then adapt Eq. (1.26) to
read

d = Res + n, (1.56)

the likelihood will change and the posterior P(s|d) will become highly non-Gaussian. We
discuss this case in Chapter 5.

Thus, by choosing an appropriate transformation for the signal field, one can in some
circumstances avoid the use of a non-Gaussian prior, albeit at the expense of having to
deal with a complicated likelihood.

Whenever one uses non-Gaussian probability density distributions, be it due to the
choice of a non-Gaussian prior or due to the presence of non-linearities in the system,
such as in Eq. (1.56), one quickly gets to a point where arriving at exact results ana-
lytically becomes impossible. One possible solution to this conundrum is to try to solve
the exact problem numerically. For this, a whole variety of sampling techniques has been
developed (see e.g. Neal 1993; Robert & Casella 2004, for reviews of the field). The basic
idea is to draw a large number of samples from a given probability distribution and to
calculate expectation values by averaging over the samples. A different approach is to use
approximations to reformulate the problem in a way that it becomes solveable analyti-
cally. Examples are the use of renormalization techniques (Enßlin & Frommert 2011) or
the use of perturbative expansions as developed by Enßlin et al. (2009). Another example
is the Gaussian approximation to the non-Gaussian posterior in the fashion introduced by
Enßlin & Weig (2010) that we mentioned at the end of Sec. 1.2.2. This last technique is
the method of choice for treating non-Gaussian probability distributions for the remainder
of this work.
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1.3 Outline

In the remaining chapters, we tackle a few of the open inference problems in the context of
Galactic astrophysics. We focus on studies of the Galactic magnetic field and the related
components of the interstellar medium.

In Chapter 2, we study the applicability of a technique developed recently by Junklewitz
& Enßlin (2011) to detect magnetic helicity from observations of Faraday rotation and
synchrotron emission. Using several sets of simulated observations in the Galactic setting,
we test under which conditions the technique can be expected to yield reliable results.
Of special importance are the assumptions that one makes about the distribution of free
thermal electrons and cosmic ray electrons throughout the Milky Way. As we pointed out
in Sec. 1.1.3, little is known about these distributions and studying the impact of false
assumptions is therefore important. Thus, only conclusions regarding a combination of the
electron densities and the magnetic field can be drawn.

To apply the technique to observational data, a continuous map of the Galactic Faraday
depth is needed. As a first attempt, we use observational data from extragalactic radio
sources along with the critical filter formalism of Enßlin & Weig (2010) to construct such a
map. However, due to the use of extragalactic sources, the map created in this way contains
not only the Galactic contribution to Faraday rotation but also unknown extragalactic
contaminations. These should ideally have been assigned to the error budget of the data.

To overcome the problem of an unknown error budget, we develop the extended critical
filter formalism in Chapter 3. The idea is to make use of the correlation structure of the
signal, itself reconstructed from the entirety of the available data under the assumption
of statistical isotropy, to separate fluctuations in the data that are consistent with this
correlation structure from other ones that can then be assigned to the error budget. Thus,
we are able to make use of data with an uncertain amount of uncertainty. We study
the performance of this methodology in a variety of test cases with simulated signals and
controlled noise characteristics.

In Chapter 4, we employ this newly developed algorithm to create an improved map of
the Galactic Faraday depth. For this, we want to assign any extragalactic contributions to
the error budget of the data points. However, the size of the extragalactic contributions
is not known. At best, an expectation for the average extragalactic contribution can be
deduced, but it is expected to vary vastly from one data point to the other. Additionally,
there are several observational reasons why a few of the data points are likely to be faulty.
For these as well, we should drastically increase the error budget, but we have no way of
telling in advance which of the data points they are. Therefore, we are in a situation that is
ideally suited for the extended critical filter formalism. Before using it to reconstruct a map,
we assemble an extensive data catalog of Faraday rotation observations of extragalactic
sources, consisting of newly provided data as well as data from the literature. We finally
present our statistical results and discuss their possible astrophysical implications.

After this, we train our view on the reconstruction of Galactic emission maps. The
emission intensity due to most physical processes discussed in Sec. 1.1.2 can be expected
to be orders of magnitude higher within the Galactic disk than within the halo. Also, it
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is always positive. Thus, we find ourselves in exactly the situation described in Sec. 1.2.5,
in which a log-normal description is appropriate. Therefore we develop in Chapter 5 a
technique to reconstruct log-normal signal fields from observational data in cases in which
the signal covariance is unknown.

Another aspect introduced in that chapter is the notion of spectral smoothness. For
statistically isotropic signals, the covariance is determined by the power spectrum. In many
cases, this power spectrum is expected to be a smooth function of the scale-length. We
study in Chapter 5 how to incorporate this expectation in a fully Bayesian way with the
usage of an appropriate prior, thus alleviating the need for an ad-hoc treatment of spectral
smoothness for the critical and extended critical filter. We again study the performance of
the resulting algorithm in a series of simulated scenarios.

Finally, we summarize our conclusions in Chapter 6 and give a brief outlook on future
work.
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Chapter 2

Probing magnetic helicity with
synchrotron radiation and Faraday
rotation

Note: This chapter has been published in Astronomy & Astrophysics (Oppermann et al.
2011a).

2.1 Introduction

Helicity is of utmost interest in the study of astrophysical magnetism. Mean field theories
for turbulent dynamos operating in the Galactic interstellar medium have been successful
in explaining how the observed magnetic field strengths are maintained (e.g. Subramanian
2002). These theories predict that helicity is present on small scales in interstellar magnetic
fields. Observationally detecting or excluding helicity in these fields would therefore either
strongly suggest that these theories are valid or indicate that there are some flaws in them.

However, since helicity is a quantity that describes the three-dimensional structure of
a magnetic field and most observation techniques produce at best two-dimensional images
leading to an informational deficit, it has thus far largely eluded observers. Previous
work on the detection of magnetic helicity in astrophysical contexts has focused mainly
on either magnetic fields of specific objects, such as the Sun (see e.g. Zhang 2010, and
references therein) or astrophysical jets (cf. e.g. Enßlin 2003; Gabuzda et al. 2004), or
cosmological primordial magnetic fields (e.g. Kahniashvili & Ratra 2005; Kahniashvili et al.
2005). Two exceptions are the work by Volegova & Stepanov (2010), in which the use of
Faraday rotation and synchrotron radiation for detecting magnetic helicity was suggested
for the first time, and the work of Kahniashvili & Vachaspati (2006), in which the use of
charged ultra high energy cosmic rays of known sources is suggested for probing the three-
dimensional structure of magnetic fields through which they pass. However, the sources
of ultra high energy cosmic rays are not known yet and the applicability of this test is
therefore limited.
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The LITMUS (Local Inference Test for Magnetic fields which Uncovers heliceS) proce-
dure for the detection of magnetic helicity suggested by Junklewitz & Enßlin (2011) probes

the local current helicity density ~B ·~j, which for an ideally conducting plasma becomes

~B ·~j ∝ ~B ·
(
~∇× ~B

)
. (2.1)

Here, the magnetic field is denoted by ~B and the electric current density by ~j. The test
uses measurements of the Faraday depth and of the polarization direction of synchrotron
radiation to probe the magnetic field components along the line of sight and perpendicular
to it, respectively. Its simple geometrical motivation should make it applicable in a gen-
eral setting, provided these quantities can be measured. The results depend only on the
properties of the magnetic field along a line of sight and are therefore purely local in the
two-dimensional sky projection. Our aim is to test this idea on observational as well as on
simulated data, thereby determining the conditions under which the test will yield useful
results.

This paper is organized as follows. In Sect. 2.2, the basic equations used in the LITMUS
test are reviewed. They are applied to observational data describing the Galactic magnetic
field in Sect. 2.3, with special emphasis on a sophisticated reconstruction of the Faraday
depth, described in Sect. 2.3.2. Section 2.4 is devoted to a thorough general assessment
of the test’s reliability. To this end it is applied to simulated observations of increasing
complexity. Section 2.4.1 describes the application in a flat sky approximation, whereas
Sect. 2.4.2 examines all-sky simulations, finally arriving at complete simulations of the
Galactic setting in Sect. 2.4.2, where realistic electron distributions are added. We discuss
our results and conclude in Sect. 2.5.

2.2 The helicity test

For a thorough introduction into the ideas behind the LITMUS test, the reader is referred
to Junklewitz & Enßlin (2011). Here, we only summarize the resulting equations.

On the one hand side, synchrotron emission produced by cosmic ray electrons is used
to probe the magnetic field component perpendicular to the line of sight. Its polarization
is described by the complex field

P = Q+ iU = |P | e2iχ, (2.2)

where Q and U are the usual Stokes parameters quantifying the linearly polarized com-
ponents of the radiation with respect to some orthogonal coordinate system and χ is the
polarization angle with respect to the first coordinate direction. On the other hand, the
Faraday depth

φ ∝
∫

LOS

ne
~B · d̃l (2.3)

is used to probe the magnetic field component parallel to the line of sight (LOS).
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A helical magnetic field will lead to a gradient of the Faraday depth that is parallel
to the polarization direction of the synchrotron emission, as was argued in Junklewitz &
Enßlin (2011). In order to compare the directions of the two quantities, this gradient is
also formulated as a complex field

G =

((
~∇φ
)
x

+ i
(
~∇φ
)
y

)2

= |G| e2iα, (2.4)

with

α = arctan


(
~∇φ
)
y(

~∇φ
)
x

 , (2.5)

where the indices x and y denote its components with respect to the coordinates used.
The helicity test that is performed in this work consists simply of multiplying G with the
complex conjugate of the polarization P ∗. If the two angles χ and α differ by a multiple of
π (i.e. the gradient and the polarization direction are parallel), the product will be real and
positive. If they differ by an odd multiple of π/2 (i.e. the two directions are perpendicular),
it will be real and negative. Any orientation in between will produce varying real and
imaginary parts in the product. Thus, observational directions along which a magnetic
field is helical are indicated by a positive real part and a vanishing imaginary part of the
product. Averaging over all observational directions will give an indication of the global
helicity of the field.

It was furthermore shown by Junklewitz & Enßlin (2011) that the ensemble average
of this product over all magnetic field realizations given a magnetic correlation tensor
(and therefore a helicity power spectrum) is a measure for the squared integrated spectral
current helicity density

〈GP ∗〉 ~B ∝
(∫ ∞

0

dk
εH(k)

k

)2

, (2.6)

with large scales weighted more strongly than small scales.

2.3 Application to Galactic observations

In this section, we try to answer the question whether the magnetic field of the Milky
Way is helical by applying the LITMUS test to the available observational data. Since the
magnetic field is localized in a region that surrounds the observer, all relevant quantities
will be given as fields on the sphere S2, i.e. as functions of the observational direction,
specified by two angles ϑ and ϕ, which are taken to represent the standard spherical polar
coordinates in a Galactic coordinate system.



34 2. Probing magnetic helicity

2.3.1 Observational data

For the synchrotron emission, we use the data gathered by the WMAP satellite after seven
years of observations1, described in Page et al. (2007). Since the foreground synchrotron
emission is most intense at low frequencies, we use the measurement in the K-Band, which
is centered at a frequency of ν = 23 GHz. Furthermore, we assume that the detected
polarized intensity is solely due to Galactic synchrotron emission. Thus, the Stokes Q and
U parameter maps (defined with respect to the spherical polar coordinate directions ~̂eϑ
and ~̂eϕ in the Galactic coordinate system) can be simply combined according to Eq. (2.2)
to give the complex quantity P whose argument is twice the rotation angle of the plane of
polarization with respect to the ~̂eϑ-direction

χ(ϑ, ϕ) =
1

2
arctan

(
Im(P (ϑ, ϕ))

Re(P (ϑ, ϕ))

)
(2.7)

(cf. Junklewitz & Enßlin 2011).
There are several depolarizing effects that have to be considered when dealing with

polarization data. Faraday depolarization, which is important only at low frequencies due
to the proportionality of the Faraday rotation angle to the square of the wavelength, can
be safely neglected in the K-Band. Depolarization effects due to different magnetic field
orientations along the line of sight are certainly present. However, they are present as well
in the numerical test cases presented in Sect. 2.4, which yield good results. Additionally,
depolarization due to the finite beam-size of the WMAP satellite and the finite pixel size
of the polarization maps used in this study can play a role. The only way to limit this
effect is to use higher resolution maps, ultimately necessitating the use of Planck data in
the future.

In order to construct a map of the Faraday depth, we use the catalog of rotation mea-
surements provided by Taylor et al. (2009)2. These provide an observational estimate of the
Faraday depth for certain directions in the sky where polarized radio point-sources could be
observed. Since the catalog encompasses a large number (37 543) of point-sources, it paints
a rather clear picture of the structure of the Faraday depth. However, Earth’s shadow pre-
vents observations in a considerably large region within the southern hemisphere.

2.3.2 Reconstructing the Faraday depth map

The reconstruction is conducted according to the critical filter method first presented in
Enßlin & Frommert (2011). A more elegant derivation of the same filter can be found in
Enßlin & Weig (2010). Since this formalism takes into account available information on
the statistical properties of the signal in the form of the power spectrum3, it is able to
interpolate into regions where no direct information on the signal is provided by the data,

1The data are available from NASA’s Legacy Archive for Microwave Background Data Analysis at
http://lambda.gsfc.nasa.gov.

2The catalog is available at http://www.ucalgary.ca/ras/rmcatatlogue.
3See App. A for notes on the definition and usage of power spectra for real and complex fields.



2.3 Application to Galactic observations 35

0

20

40

60

80

100

120

140

160

0 0.5 1 1.5 2 2.5 3

p(
ϑ

)

ϑ

Figure 2.1: Vertical Galactic profile p(ϑ) of the Faraday depth.

such as the shadow of Earth in this case. Furthermore, it takes into account the available
information on the uncertainty of the measurements. All in all it is expected to lead to a
reconstructed map of the Faraday depth that is much closer to reality than e.g. a map in
which the data were simply smoothed to cover the sphere. Small-scale features that are
lost in such a smoothing process are for example reproduced by the critical filter algorithm.

Data model

The field that is to be reconstructed here is the sky-map of the Faraday depth. In order to
apply the critical filter formula, the signal should be an isotropic Gaussian field. Since the
Faraday depth clearly is larger along directions passing through the Galactic plane, the
condition of isotropy is not satisfied. Therefore, a vertical profile is calculated by binning
the observations into intervals [ϑi, ϑi + ∆ϑ), calculating the root mean square rotation
measure value for each bin and smoothing the resulting values to obtain a smooth function
p(ϑ). The result is shown in Fig. 2.1. This profile is used to approximatively correct the
anisotropies induced by the Galactic structure and the resulting signal field

s(ϑ, ϕ) =
φ(ϑ, ϕ)

p(ϑ)
(2.8)

is assumed to be isotropic and Gaussian with a covariance matrix S. The Gaussian co-
variance matrix is determined solely by the angular power spectrum coefficients Cl, the
reconstruction of which is part of the problem at hand.
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The data d, i.e. the rotation measure values in the catalog, are taken to arise from the
signal s by multiplication with a response matrix R, which consists of a part encoding the
specific directions in which the signal field is probed in order to produce the measurements
and another part that is a simple multiplication with the vertical profile p(ϑ). Additionally,
a Gaussian noise component n is assumed with a covariance matrix N = diag(σ2

1, σ
2
2, . . . ),

where σi is the one sigma error bar for the ith measurement in the catalog. Thus, the data
are given by4

d = Rs+ n = R̃ps+ n. (2.9)

Recent discussions in the literature (see e.g. Stil et al. 2011) have shown, however, that the
error estimates as quoted in the catalog are probably too low. In addition, any contribution
to the measured data from intrinsic Faraday rotation within the sources will further increase
the error budget since the signal field in this context is only the contribution of the Milky
Way. We therefore adapt the error bars of Taylor et al. (2009) according to the formula

σ(corrected) =

√
(fσσ)2 + (σ(int))

2
, (2.10)

respectively. Here, the factor fσ accounts for the general underestimation of the errors
in the catalog of Taylor et al. (2009), whereas the additive constant σ(int) represents the
average contribution of the sources’ intrinsic Faraday rotation. As numerical values, we
use fσ = 1.22, which was found by Stil et al. (2011) by comparing the data of Taylor et al.
(2009) and Mao et al. (2010) on sources that are contained in both catalogs, and σ(int) =
6.6 m−2, which corresponds to the upper end of the numbers found by Schnitzeler (2010).
Since the error contribution from the internal Faraday rotation is not correlated with the
measurement error, the two contributions add up quadratically in the noise covariance
matrix.

Reconstruction method

For signal and noise fields with a Gaussian prior probability distribution, the posterior
probability distribution of the signal field is again a Gaussian, i.e. it is of the form
P(s|d, Cl) = G(s − m,D), where a multivariate Gaussian probability distribution with
covariance matrix X is denoted by

G(x,X) =
1

|2πX|1/2
exp

(
−1

2
x†X−1x

)
, (2.11)

where the † symbol denotes a transposed and complex conjugated quantity. In order to
reconstruct the mean signal field m = 〈s〉, where the brackets denote the posterior mean,
it is also necessary to reconstruct the angular power spectrum Cl. To do so, the critical
filter formulas

m = Dj (2.12)

4The discretized version used in the implementations is di =
∑

j Rijsj + ni =
∑

j R̃ijpjsj + ni, where
the index j determines a pixel on the sphere, so that sj = s(ϑj , ϕj) and pj = p(ϑj).
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Figure 2.2: Results of the reconstruction of the signal field and Faraday depth. The
left column shows the posterior mean of the signal field m (panel (a)) and its one-sigma

uncertainty
√
D̂ (panel (c)). The right column shows the resulting map of the Faraday

depth pm (panel(b)) and the corresponding one-sigma uncertainty

√
p2D̂ (panel (d)) in

m−2.
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and

Cl =
1

2l + 1
tr
((
mm† +D

)
Sl
)

(2.13)

are iterated, starting with some initial guess for the power spectrum. Here, the signal
covariance matrix is expanded as S =

∑
l ClSl, where Sl is the projection onto the spherical

harmonic components with index l. Furthermore, D is the posterior covariance matrix,

D =
(
S−1 +R†N−1R

)−1
, (2.14)

and j is the information source term,

j = R†N−1d. (2.15)

Since the critical filter is on the brink of exhibiting a perception threshold (cf. Enßlin
& Frommert 2011) and it is generally more desirable to overestimate a power spectrum
entering a filter than to underestimate it, the coefficients Cl are subjected to a procedure
in which the value of Cl is replaced by max {Cl−1, Cl, Cl+1} after each iteration step. The
advantage of overestimating the power spectrum can be seen by considering the limit of
Cl →∞ in Eq. (2.12) and (2.14). For high values of Cl, the first term in Eq. (2.14) can be
neglected and Eq. (2.12) becomes

mCl→∞ = s+R−1n. (2.16)

Thus, by overestimating the power spectrum the importance of its exact shape is diminished
and the reconstruction will instead follow the information given directly by the data more
closely. Considering an extreme underestimation of the power spectrum, Cl → 0, on the
other hand, would lead to

mCl→0 = 0, (2.17)

suppressing the information given by the data.

Calculating 〈G〉G(s−m,D)

Once the posterior mean of the signal is reconstructed, the corresponding field G can be
calculated according to Eq. (2.4), assuming φ = m. However, since Eq. (2.4) is a nonlinear
transformation of the Faraday depth, that is not the same as the posterior mean of G.
This can be estimated by averaging over a large number of samples, according to

〈G(s)〉G(s−m,D) ≈
1

Nsamples

Nsamples∑
k=1

G(sk). (2.18)

Here, the samples sk are drawn from the posterior probability distribution G(s−m,D). In
our implementation we use the method of Jasche et al. (2010b) to generate these samples,
i.e. we generate corrections yk to the posterior mean m by drawing signal and noise
realizations from the respective prior probability distributions,

s̃k ←↩ P(s|S), (2.19)
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Figure 2.3: Angular power spectrum of the signal field s. The solid curve shows the
resulting power spectrum as calculated with the critical filter formalism. The dashed line
depicts the signal power spectrum used to generate large-scale uncertainty corrections for
the calculation of G according to Sect. 2.3.2.
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Figure 2.4: Results of the calculation of the gradient field G and the application of the
LITMUS test. The first row shows estimates for the absolute values of the field G. Panel
(a) shows G as calculated directly from the posterior mean m of the signal field, whereas
panel (b) takes into account large-scale uncertainty corrections as described in Sect. 2.3.2.
Panel (c) shows the absolute value of the polarized intensity P as measured by the WMAP
satellite and panel (d) shows the result of the LITMUS test, namely Re (GP ∗), in arbitrary
units, using G and P as shown in panels (b) and (c), respectively. Note the logarithmic
color code of panels (a)–(c).
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nk ←↩ P(n|N), (2.20)

combining them into a data realization according to

dk = Rs̃k + nk, (2.21)

and calculating the difference between the signal realization and the Wiener filtered data
realization

yk = s̃k −DR†N−1dk. (2.22)

The signal realizations
sk = m+ yk (2.23)

are shown by Jasche et al. (2010b) to follow the posterior probability distribution5. For
reasons of numerical feasibility, we consider only large scale corrections to the posterior
mean in our calculation, i.e. we introduce a small-scale power cut-off for the signal power
spectrum that describes the prior probability distribution used in Eq. (2.19).

Thus, given m and D, the posterior mean for the Faraday depth is given by 〈φ〉 = pm,

its one sigma error bars by ±p
√
D̂, and the posterior mean for the field G by the above

sampling approximation, where the signal samples sk are multiplied with the Galactic
profile function p(θ) to give realizations of the Farady depth. Here, D̂ is the vector that
contains the diagonal elements of the matrix D.

2.3.3 Results

Figures 2.2 – 2.4 summarize the results of the Faraday depth reconstruction and the appli-
cation of the LITMUS test to these data. All calculations are conducted at a HEALPix6

resolution Nside = 64. The left column of Fig. 2.2 shows the reconstructed signal field as
well as its uncertainty as they are calculated using the critical filter method. Evidently,
the reconstruction method is able to extrapolate from the available information into re-
gions where no data are taken, i.e. the Earth’s shadow in the lower right of the projection.
However, only structures on scales comparable to the extent of the region without infor-
mation are reconstructed within it and the reconstruction’s uncertainty becomes large in
this region, as well as near the Galactic poles, where the signal-response to noise ratio of
the data is low.

The outcome for the angular power spectrum is shown in Fig. 2.3. Clearly, the critical
filter predicts a large amount of power on small scales. Therefore the rather high values
seen in Fig. 2.2.c are mainly due to uncertainty on small scales. This may in part be due
to an underestimation of the error bars of extreme data points which are not accounted
for by our rather crude correction of the error bars as described by Eq. (2.10).7

5A cautionary note regarding a bias for the posterior variance calculated from these samples is given
in App. B.

6The HEALPix package is available from http://healpix.jpl.nasa.gov.
7A thorough study of the problem of reconstructing a signal field with unknown power spectrum from

data with unknown error bars will be presented in a future paper.
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The right column of Fig. 2.2 shows the reconstructed Faraday depth and its uncertainty,
obtained from the left column of Fig. 2.2 by a simple multiplication with the Galactic profile
function p(ϑ). Clearly, the field 〈φ〉 takes on only low values within the information-less
region, whereas, again, its uncertainty is especially large there.

Figure 2.4 shows the two fields used in the LITMUS test as well as its result. The field
G calculated according to the sampling prescription, Eq. (2.18), is shown in panel (b). In
the sampling procedure, large-scale uncertainty corrections that are described by the signal
power spectrum shown in Fig. 2.3 are taken into account. For comparison, the field G as
calculated from the posterior mean of the signal field without any uncertainty corrections
is shown in panel (a). The main effect of the uncertainty corrections is to increase the
values within the region where no data points were measured and in the polar regions.
The spatial structure of G, however, remains largely unchanged.

Finally, the real part of the product GP ∗ is shown in the last panel of Fig. 2.4. By
visual inspection, it is not immediately clear whether positive values dominate this image.
Taking the spatial average Re 〈GP ∗〉S2 does in fact yield a negative value. Nevertheless, we
performed another test for helicity. In order to assess helicity on small scales, the two fields
G and P are rotated with respect to one another about an angle β around the Galactic
axis and their product is again averaged over the whole sky. For a helical magnetic field,
this procedure should result in a curve Re 〈GP ∗〉S2 (β) that exhibits a maximum at β = 0,
since the correlations between the fields G and P are expected to be local. The resulting
curve for this test is shown in Fig. 2.5. Not only does it not take on its global maximum
at β = 0, but the point β = 0 does not seem to be special in any way. Therefore, no
indication of helicity is found.

We also performed the analysis with a different function p(ϑ), created by doubling the
smoothing length in its calculation. The results of the reconstructed map of the Faraday
depth changed only slightly, i.e. the variance of the difference between the reconstructions
with the two different profiles is 0.65% of the variance of the original 〈φ〉-map shown in
Fig. 2.2.b.

2.4 Application to simulated data

In order to check whether the nondetection of helicity in the previous section allows the
conclusion that the Galactic magnetic field is in fact nonhelical, we now apply the same
helicity test to a number of artificially generated magnetic fields with known helicity.

2.4.1 Planar implementation

The most simple setting that can be considered is the observation of a well localized
magnetic field structure. In the limit of great distances between the magnetic field under
consideration and the observer, the lines of sight penetrating the field become parallel. We
assume the field to be contained in a cubic box which is oriented along the lines of sight.
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Figure 2.5: Rotational curve for Re 〈GP ∗〉S2 in arbitrary units.

The field in the box is generated by the garfields code (first applied in Kitaura
& Enßlin 2008). This code draws the three cartesian components of the magnetic field
in Fourier space independently of a common power spectrum, assumed here to be a
Kolmogorov-type spectrum of the form PB(k) ∝ k−5/3−2, according to Gaussian statis-
tics. In order to produce a magnetic field without divergence, its frequency components
parallel to the respective k-vector are then subtracted

~Bdiv-free(~k) ∝ ~B(~k)− ~k
~k · ~B(~k)

k2
. (2.24)

A degree of helicity is then imprinted onto the field by applying the formula

~Bdiv-free,hel(~k) ∝ ~Bdiv-free(~k) + η
i~k × ~Bdiv-free(~k)

k
, (2.25)

where η = 0 leaves the field unaffected and η = ±1 produces the highest degree of helicity.

Finally, we assume the thermal and cosmic ray electron densities to be constant through-
out the box. Thus, the observables Q, U , and φ can be obtained by simply integrating the
appropriate magnetic field components along the box direction associated with the line of
sight. Then the complex quantities G and P are easily calculated and multiplied, yielding
two-dimensional images of GP ∗. This procedure is conducted for various realizations of
random magnetic fields both without helicity (η = 0) and with maximal helicity (η = 1).
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Figure 2.6: Maps of Re (GP ∗) for a particular magnetic field realization in arbitrary units.
Panel (a) shows the case with maximal helicity (η = 1), panel (b) the one without helicity
(η = 0).
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Results

The resulting images for one random magnetic field realization are shown in Fig. 2.6. The
cube was discretized for the calculation into 5123 pixels. It can already be seen by eye
that positive values of Re (GP ∗) dominate in the case with maximal helicity (panel (a)),
whereas in the case without helicity (panel (b)), positive and negative values seem to be
roughly equally represented. Calculating the spatial averages over the whole square yields
Re 〈GP ∗〉� = 2.3 ·10−3 and Re 〈GP ∗〉� = −1.5 ·10−4 for the case with and without helicity,
respectively.

We calculated this spatial average for the results of the LITMUS test applied to 100
different random magnetic field realizations, both with and without helicity. Averaging
these values for the helical fields and for the nonhelical fields separately yields a positive
value in the helical case. Normalizing all values such that this average becomes equal to
one yields

〈Re 〈GP ∗〉�〉samples = 1.0, σRe〈GP ∗〉� = 0.63

in the case with helicity and

〈Re 〈GP ∗〉�〉samples = −0.025, σRe〈GP ∗〉� = 0.34

in the case without. Clearly, the LITMUS test yields positive results if applied to helical
fields, whereas its results fluctuate around zero if applied to nonhelical fields. This is
exactly the behavior that should be expected and the basic functioning of the LITMUS
test is thereby demonstrated in this setting.

2.4.2 Spherical implementation

As a next step, the applicability of the LITMUS test is checked for magnetic fields sur-
rounding the observer, as in the case of the Galactic field. Again, several sets of mock
observations are produced. These simulations are conducted using the hammurabi code
(see Waelkens et al. 2009) in connection with the garfields code8. The hammurabi
code allows for a large scale analytic field model and an additional Gaussian random field
component, which can be generated by the garfields code with a preset degree of helic-
ity as described in Sect. 2.4.1. It then integrates the different field components, weighted
with the appropriate electron density, along radial lines of sight and produces sky maps of
simulated observations of the Stokes parameters Q and U and Faraday depth φ (among
others), thus providing all necessary ingredients to perform the LITMUS procedure.

Constant electron densities

For simplicity, we start again by setting the densities of the thermal electrons and the
cosmic ray electrons to constant values throughout the simulated galaxy.

8Both codes are available from http://www.mpa-garching.mpg.de/hammurabi/hammurabi11.
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(a)

�1 1

(b)

�1 1

Figure 2.7: Maps of Re (GP ∗) for a particular magnetic field realization in arbitrary units
in a spherical setting. Panel (a) shows the case with maximal helicity (η = 1), panel (b)
the one without helicity (η = 0).

Gaussian random field. First, in order to apply the test to a field with a well-defined
degree of helicity, the field strength of the large scale analytic component is set to zero,
such that the simulated Galactic field is a purely random one with a chosen degree of
helicity. As in the planar case, we choose either no helicity (η = 0) or maximal helicity
(η = 1).

Figure 2.7 shows the maps of Re (GP ∗) for one particular Gaussian random magnetic
field with a power law index of −5/3, with helicity and without helicity, respectively. As
for the planar implementation, one can immediately see that positive values dominate in
the helical case and positive and negative values are roughly equally represented in the
nonhelical case.

Figure 2.8 shows the results of the rotational test described in Sect. 2.3.3 for this
particular magnetic field realization. Clearly, the spatial average Re 〈GP ∗〉S2 takes on a
sharp maximum at β = 0 and is positive in the case with helicity, while it does not have
a maximum there and in fact happens to be negative in the case without helicity. This is
exactly the result expected from the LITMUS test.

The sharpness of the peak in Fig. 2.8 indicates that the helicity is to be found in small-
scale features. As a test of this assertion, we calculated the spherical multipole components
Glm and Plm of the complex gradient and polarization fields. Note that the spatial average
over the product of the fields is proportional to the sum of the products of the multipole
components, i.e.

Re 〈GP ∗〉S2 =
1

4π
Re

(
lmax∑
l=0

l∑
m=−l

GlmP
∗
lm

)
, (2.26)

where lmax is determined by the finite resolution of the map. If we now neglect the first
terms in the sum, i.e. the small-l contributions, we arrive at a spatial average over the
product in which all large-scale features were neglected. The resulting rotational curves
for the same magnetic fields used for Fig. 2.8 are shown in Fig. 2.9, where only multipole
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moments with l ≥ 25 were considered. It can be seen that this procedure further sharpens
the peak at β = 0 and strengthens it relative to other local maxima in the curves, thus
facilitating the detection of small-scale helicity. The same result for the observational data
studied in Sect. 2.3 is shown in Fig. 2.10. Clearly, there is still no sign of helicity in this
case.

Furthermore, we created a set of 100 different Gaussian random magnetic fields, per-
formed the LITMUS test, and calculated the spatial average Re 〈GP ∗〉S2 for all of them.
Each field realization was considered in a version without helicity and a version with max-
imal helicity, just as in the case of the planar implementation. Averaging over the 100
samples yields again a positive value in the helical case. Normalizing all values such that
this average is equal to one yields

〈Re 〈GP ∗〉S2〉samples = 1.0, σRe〈GP ∗〉S2 = 0.25

in the helical case and

〈Re 〈GP ∗〉S2〉samples = −0.27, σRe〈GP ∗〉S2 = 0.23

in the nonhelical case. This clearly underlines the success of the LITMUS test in the
spherical setting.

Since the magnetic field of the Milky Way is known to be much stronger in the vicin-
ity of the Galactic plane than in the halo region, we repeated the analysis with random
realizations of Gaussian magnetic fields that are confined to the region within a vertical
distance of 8 kpc of the Galactic plane. The results of the LITMUS procedure for these
fields still turn out to be a reliable indicator for magnetic helicity.

Large scale field models. As a next step, the (helical or nonhelical) random magnetic
field component is switched off completely and replaced by an analytic large scale magnetic
field model. Several sets of simulations are performed using different models for the Galactic
large scale field. For these analytic models, the current helicity can be calculated directly,
giving an expectation as to whether the helicity test should produce positive results or not.

The results of the rotational helicity test are shown in Fig. 2.11 for the large scale
magnetic field model described in Page et al. (2007), i.e.

~B(r, ϕ, z) = B0 [ cos (ψ(r)) cos (χ(z)) ~̂er

+ sin (ψ(r)) cos (χ(z)) ~̂eϕ

+ sin (χ(z)) ~̂ez

] (2.27)

in Galactic cylindrical coordinates, where

ψ(r) = ψ0 + ψ1 ln

(
r

8kpc

)
(2.28)
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Figure 2.8: Rotational curve for Re 〈GP ∗〉S2 in arbitrary units. The solid and dashed lines
depict the results for the same magnetic field with helicity parameter η = 1 and η = 0
respectively. Constant electron densities are assumed.
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Figure 2.9: Same as Fig. 2.8, only with large-scale contributions neglected.
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Figure 2.10: Same as Fig. 2.5, only with large-scale contributions neglected.
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Figure 2.11: Rotational curve for Re 〈GP ∗〉S2 in arbitrary units. The solid line corresponds
to the best-fit magnetic field model of Page et al. (2007), the dashed line to a model where
the parameter χ0 is set to zero. Constant electron densities are assumed.
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and

χ(z) = χ0 tanh

(
z

1kpc

)
. (2.29)

The solid curve corresponds to the parameters favored by Page et al. (2007), namely
χ0 = 25◦, ψ0 = 27◦, and ψ1 = 0.9◦. This corresponds to a simple flat spiral in the Galactic
plane which becomes more and more screw-like with vertical distance z from the Galactic
plane, so that a slight degree of helicity is inherent in the field geometry. This can be
verified by direct calculation according to Eq. (2.1), yielding

~j · ~B = B2
0

sin (χ(z)) cos (χ(z))

r
(sin (ψ(r)) + ψ1 cos (ψ(r))) , (2.30)

which is nonzero for any generic point away from the Galactic plane. The resulting line
in Fig. 2.11 is not a clear indication for this helicity. However, the curve is nevertheless
sensitive to the angle χ0, which produces the helicity. Lowering its value, i.e. making the
spirals more and more parallel to the Galactic plane, changes the results of the LITMUS
test. The extreme case of χ0 = 0, i.e. Bz = 0 everywhere, for which the value of Eq. (2.30)
becomes zero everywhere, is also shown in Fig. 2.11. This curve’s value at β = 0 is even
more distinct from its maximum than in the case of the solid line. This example shows
that while the results react in a systematic way on changes in the parameters, the test is
not suited to detect helicity on the largest scales.

We used the model of Page et al. (2007) in the demonstration of this effect mainly
because of its mathematical simplicity. More sophisticated models can be found e.g. in
Sun et al. (2008), Jansson et al. (2009), Jaffe et al. (2010), and references therein.

The role of the electron densities

In order to get closer to a realistic model of the Milky Way, as a next step we replace the
constant electron densities with realistic models. The hammurabi code allows the use
of the NE2001 model for the thermal electron density (cf. Cordes & Lazio 2002, 2003) to
compute the Faraday depth and several analytic models for the cosmic ray electron density
to compute the synchrotron emissivity (see also Waelkens et al. 2009). In the calculations
performed to obtain the results presented here, the cosmic ray electron distribution model
of Page et al. (2007) was used.

Gaussian random field. The resulting rotational curves, as calculated with the realistic
electron distributions, for the case of the Gaussian random field are shown in Fig. 2.12.
Neither in the case with helicity (η = 1), nor in the case without helicity (η = 0) does the
curve take on its maximum at β = 0. This is the expected result in the latter case but
contradicts the expectation in the former one. Therefore, the helicity imprinted onto the
small scale magnetic field clearly fails to be detected by the test applied.
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Figure 2.12: Same as Fig. 2.8, only with realistic electron densities used in the calculation.
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Figure 2.13: Same as Fig. 2.11, only with realistic electron densities used in the calculation.
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Large scale field models. The result for the large scale magnetic fields is shown in
Fig. 2.13. There actually seems to be a maximum in the vicinity of β = 0 now. This is
true, however, for the case of the planar spiral model (χ0 = 0) as well as for the model with
helicity (χ0 = 25◦). Therefore, the proposed helicity test might under certain circumstances
even indicate helicity on large scales where there is none, if the observer is surrounded by
the field. Other magnetic field models with planar spirals, such as the bisymmetric (i.e.
~B(r, ϕ, z) = − ~B(r, ϕ+ π, z)) spiral model of Stanev (1997) lead to similar results.

2.5 Discussion and conclusion

The present work presents the first application of the LITMUS test for magnetic helicity
proposed by Junklewitz & Enßlin (2011) to actual data. The application of the test in-
volves thoroughly reconstructing a map of the Faraday depth distribution, calculating its
transformed gradient field G, creating a map of GP ∗, averaging over this map, shifting
the two fields with respect to each other to see whether any signal vanishes, and filtering
out large-scale contributions for a better detection of small-scale helicity. This procedure,
applied to observations of the Faraday depth and polarization properties of the synchrotron
radiation within our own galaxy in Sect. 2.3, does not show any signs of helicity in the
Milky Way’s magnetic field.

In order to assess the significance of this, the applicability of the test was probed in
different artificial settings. The complexity of these settings was increased bit by bit to
find out under what circumstances exactly the LITMUS test yields reliable results. It was
found that meaningful results can be achieved if the electron densities do not vary on the
scales of the magnetic field, both in the regime of magnetic field structures whose distance
from the observer is much greater than their extension, as shown in Sect. 2.4.1, and in the
regime of magnetic fields surrounding the observer, as shown in Sect. 2.4.2. We showed
that the performance of the LITMUS test with regard to small-scale helicity is further
improved by dropping the first few terms in Eq. (2.26). However, indications of helicity
on large scales are unreliable, as shown in Sect. 2.4.2. Furthermore, it was demonstrated
in Sect. 2.4.2 that any non-trivial electron density may distort the outcome of the test
to a point where even small-scale helical structures fail to be detected. This is not too
surprising since e.g. a variation in the thermal electron density will introduce a gradient
in the Faraday depth that is not caused by the magnetic field structure. Therefore the
nondetection of helicity for the Galactic magnetic field does not necessarily mean that the
field is nonhelical on small scales. It may be the case that small-scale fluctuations of the
electron density introduce effects in the observational data that prevent the detection of
helicity.

So, as a natural next step, the hunt for helicity in astrophysical magnetic fields should
focus on a region that is small and/or homogeneous enough for the assumption of constant
electron densities to hold at least approximatively. Although our work has shown that the
helicity test that we studied is not suitable for all astrophysical settings, we are confident
that it may nevertheless yield useful results if applied in a setting with constant electron
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densities.
As a side effect of this paper, it was demonstrated in Sect. 2.3.2 that the method

proposed by Enßlin & Frommert (2011) to reconstruct a Gaussian signal with unknown
power spectrum is very well suited for practical application.
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Chapter 3

Reconstructing signals from noisy
data with unknown signal and noise
covariance

Note: This chapter, as well as Appendix C, has been published in Physical Review E
(Oppermann et al. 2011b).

3.1 Introduction

The problem of signal inference consists of reconstructing a set of parameters or even a
continuous field s from some data set d, which is influenced in some way by the signal,

d = f(s) + n. (3.1)

Two problems will arise. First, the function f may not be invertible and, second, the noise
term n will not be known. In the Bayesian framework, one uses prior information on the
signal and the noise term to calculate a best estimate for the true signal realization or,
ideally, the whole probability distribution for the signal given the prior information and
the information contained in the data.

Symmetry considerations and knowledge about the underlying physics of the signal and
the measurement process may restrict the class of priors that one has to consider. They
might, however, still contain some free parameters that then become part of the inference
problem. The case in which the signal covariance contains uncertain parameters was tackled
by Enßlin & Frommert (2011), producing a whole class of filters for this problem. The filter
that we extend in this work was reproduced by Enßlin & Weig (2010), where the principle
of minimum Gibbs free energy was introduced (cf. also Sect. 3.3), and successfully applied
in an astrophysical setting by Oppermann et al. (2011a).

Here, we focus on the case where we can assume zero-mean Gaussian priors both for the
signal and for the noise. The priors are therefore completely characterized by the respective
covariance matrices. Our goal is to extend the study of Enßlin & Weig (2010) to the case
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in which both the signal covariance and the noise covariance contain parameters that are
not known a priori. This is motivated mainly by applications from the field of astrophysics.
The theory and resulting filter formulas, however, are of general applicability. Gaussian
noise, e.g., is omnipresent in nearly every area of the natural sciences and the situation in
which its variance is not precisely known should be a rather common one.

Previous work dealing with the problem of unknown noise variance has mainly dealt
with specific applications. One of these applications is the field of image reconstruction.
Here, it is usually assumed that the measured picture is the sum of the underlying signal
and a white Gaussian noise term. Often, it is further assumed that the noise level, i.e. its
variance, is the same in every image pixel. A comparison of different algorithms for noise
estimation under these assumptions was conducted e.g. by Olsen (1993). An example
for an algorithm allowing for inhomogeneous noise was presented by Starck & Murtagh
(1998), where a wavelet transform of the image is applied and the lack of correlated noise
is exploited. Most of these algorithms, however, are not derived by rigorous statistical
calculations but rather by a combination of intuition and experience.

From a mathematical viewpoint, the problem of an unknown noise prior has received
some attention in the theory of density deconvolution, which deals with the inference of the
probability density for a signal from measurements with additive noise. Here, the signal
is usually assumed to consist of independent identically distributed variables. The case
of Gaussian noise with unknown variance has been considered e.g. by Koltchinskii (2000)
and Schwarz & van Bellegem (2010).

In this work, we create a general setting with well defined assumptions and a traceable
derivation of a general filter formula within a Bayesian framework, not loosing sight of its
applicability. Our result can accomodate a host of different assumptions and models, such
as correlated or uncorrelated noise. It allows for a distinction between the data space and
the signal space, with possibly different numbers of degrees of freedom.

The remainder of the paper is organized as follows. In Sect. 3.2 we introduce our model
for the measurement process and the notation that is required. The derivation of the filter
formulas follows in Sect. 3.3. We then demonstrate the usefulness of our filter by applying
it in a set of mock observational situations in Sect. 3.4 and discuss the implications in
Sect. 3.5.

3.2 Signal model and notation

We assume a linear measurement process where the data are a superposition of a linear
signal response and a noise term,

d = Rs+ n. (3.2)

Here, both the data and noise and the signal can be finite-dimensional vectors or continuous
fields defined on some manifold. The response matrix R maps a field in the signal space
to a field in the data space. In the continuous limit the matrix vector product becomes

(Rs)i =

∫
dx Rixsx, (3.3)
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where the index denotes the value of a field at this position. In physical applications the
data vector will always be discrete, since only a finite number of measurements can be
taken, while the signal space might well be continuous. The result of any numerical signal
reconstruction, however, will at best be a discretized version of the continuous field.

Further, we assume Gaussian prior statistics both for the signal and for the noise
contribution, i.e. s←↩ G(s, S), n←↩ G(n,N), where

G(a,A) =
1√
|2πA|

exp

(
−1

2
a†A−1a

)
(3.4)

denotes a multivariate Gaussian distribution in a with covariance matrix A. We use the
dagger symbol to indicate a scalar product,

a†b =

∫
dx a∗xbx, (3.5)

and the asterisk to denote complex conjugation. This corresponds to the notation intro-
duced by Enßlin et al. (2009).

The problem of signal reconstruction is to find an optimal estimate m for the signal
realization that the measured data arose from. Optimality in an L2-norm sense leads to

m = 〈s〉P(s|d) :=

∫
Ds sP(s|d), (3.6)

i.e. the posterior mean. The integration is performed over all possible signal configurations.
In the discrete case this becomes a product of one-dimensional integrals,∫

Ds =

∫ +∞

−∞
ds1

∫ ∞
−∞

ds2 · · · , (3.7)

where s = (s1, s2, . . . ) is the vector of signal values at locations 1, 2, . . . . Ideally, we would
also like to obtain some information on the posterior distribution P(s|d) other than its
mean. If the signal and noise covariances are known, the posterior is a Gaussian G(s−m,D)
with mean

m = Dj, (3.8)

and covariance D, where j = R†N−1d is called the information source and D = (S−1 +
R†N−1R)−1 the information propagator (cf. Enßlin et al. 2009) and the dagger attached
to a matrix denotes its hermitian conjugate.

In this paper we are concerned with the case in which neither the signal covaricance
matrix S nor the noise covariance matrix N are known. We parameterize these matrices
as sums of their eigenvalues p̃k and η̃j multiplied with the projectors onto the respective
eigenspaces S̃k and Ñj. The parameters can be rescaled by including some numerical values
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s̃k and ñj in the projection-like matrices, making the rescaled version of the parameteriza-
tion

S =
∑
k

pkSk, (3.9)

N =
∑
j

ηjNj, (3.10)

where

pk =
p̃k
s̃k
, ηj =

η̃j
ñj

(3.11)

and

Sk = s̃kS̃k, Nj = ñjÑj. (3.12)

Furthermore, we define the pseudo-inverse matrices S−1
k = s̃−1

k S̃k and N−1
j = ñ−1

j Ñj, so

that S−1
k Sk and N−1

j Nj are identity operators on the respective eigenspaces.

We assume here that the eigenspaces corresponding to the different eigenvalues are
known a priori, e.g. from symmetry considerations. However, the formalism allows for
eigenvalues of different eigenspaces becoming equal a posteriori.

Finally, we also need to define some priors for the parameters pk and ηj. As was done
by Enßlin & Frommert (2011) and Enßlin & Weig (2010), we assume each parameter to be
a priori independent from all the others and use inverse Gamma distributions, i.e. power
laws with exponential cutoff, as priors for the individual parameters,

P(p, η) = P(p)P(η), (3.13)

P(p) =
∏
k

1

qkΓ(αk − 1)

(
pk
qk

)−αk
exp

(
−qk
pk

)
, (3.14)

P(η) =
∏
j

1

rjΓ(βj − 1)

(
ηj
rj

)−βj
exp

(
−rj
ηj

)
. (3.15)

The parameters αk and βj determine the steepness of the power law and the parameters
qk and rj give the position of the cutoff. In the limit (αk, βj)→ (1, 1) and (qk, rj)→ (0, 0),
this turns into the so-called Jeffreys prior, which is flat on a logarithmic scale and can
therefore be characterized as non-informative.
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3.3 Derivation of the filter formulas

With the priors for s, n, p, and η, we can calculate the joint probability of the signal and
the data by marginalizing over the parameters p and η,

P(s, d) =

∫
Dp
∫
Dη P(s, d|p, η)P(p, η)

=

∫
Dp
∫
Dη P(d|s, p, η)P(s|p)P(p, η) (3.16)

=

∫
Dp
∫
Dη G(d−Rs,N)G(s, S)P(p, η).

Solving the integrals yields

P(s, d) =
∏

k

Γ (γk) q
αk−1
k

Γ (αk − 1) (2π)ρk/2(
qk +

1

2
s†S−1

k s

)−γk
∏

j

Γ (δj) r
βj−1
j

Γ (βj − 1) (2π)µj/2
(3.17)(

rj +
1

2
(d−Rs)†N−1

j (d−Rs)
)−δj

,

where ρk = tr
(
S−1
k Sk

)
, µj = tr

(
N−1
j Nj

)
, γk = ρk/2 +αk− 1, and δj = µj/2 +βj− 1. Note

that the posterior is proportional to this joint likelihood for any given dataset.
One could construct the maximum a posteriori estimator, however, this was shown by

Enßlin & Frommert (2011) to perform poorly due to a perception threshold, i.e. modes
with too little power in the data are completely filtered out. A better estimate for the
posterior mean of the signal can be constructed using the formalism of minimum Gibbs
free energy, derived by Enßlin & Weig (2010), who introduce thermodynamic quantities by
identifying the posterior probability density with a canonical density function according to

P(s|d) =
P(s, d)

P(d)
=

e−T
−1H(s,d)

Z(d)
. (3.18)

The Gibbs energy is then
G = U − TSB, (3.19)

where U = 〈H〉P(s|d) is the internal energy, SB = 〈− logP(s|d)〉P(s|d) the Boltzmann en-
tropy, and H = − logP(s, d) is called the information Hamiltonian. The temperature T
serves as a tuning parameter, shifting the weight beteween the internal energy term and
the entropy term in the Gibbs free energy.

Approximating the posterior with a Gaussian with mean m and covariance D,

P(s|d) ≈ G(s−m,D), (3.20)
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gives an approximate internal energy Ũ , an approximate entropy S̃B, and therefore an
approximate Gibbs energy

G̃(m,D) = Ũ(m,D)− T S̃B

= 〈H(s, d)〉G(s−m,D) −
T

2
tr (1 + log (2πD)) . (3.21)

For T = 1, this approximate energy is, apart from an additive constant, identical to
the non-symmetric Kullback-Leibler distance (Kullback & Leibler 1951) between the full
posterior and the Gaussian approximation,

G̃(m,D) = 〈H(s, d) + log (G(s−m,D))〉G(s−m,D)

=

∫
Ds G(s−m,D) log

(
G(s−m,D)

P(s, d)

)
=

∫
Ds G(s−m,D) log

(
G(s−m,D)

P(s|d)

)
+ log (P(d))

= dKL [G(s−m,D),P(s|d)] + log (Z(d)) , (3.22)

as was shown already by Enßlin & Weig (2010).

The approximate internal energy in our case, calculated from the joint probability of
Eq. (3.17), is

Ũ(m,D) ∼=
∑
k

γk

〈
log

(
qk +

1

2
s†S−1

k s

)〉
G(s−m,D)︸ ︷︷ ︸

=:Ak

+
∑
j

δj

〈
log

(
rj +

1

2
(d−Rs)†N−1

j (d−Rs)
)〉

G(s−m,D)︸ ︷︷ ︸
=:Bj

, (3.23)

where we have dropped terms that are independent of m and D. The logarithms can be
expanded in an asymptotic power series, giving

Ak = log (q̃k)

−
∞∑
i=1

(−1)i

iq̃ik

〈(
qk +

1

2
s†S−1

k s− q̃k
)i〉

G(s−m,D)︸ ︷︷ ︸
=:Ãki

(3.24)
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and

Bj = log (r̃j)−
∞∑
i=1

(−1)i

ir̃ij〈(
rj +

1

2
(d−Rs)†N−1

j (d−Rs)− r̃j
)i〉

G(s−m,D)︸ ︷︷ ︸
=:B̃ji

, (3.25)

where we have chosen the linear dependencies to be captured by

q̃k =

〈
qk +

1

2
s†S−1

k s

〉
G(s−m,D)

= qk +
1

2
tr
((
mm† +D

)
S−1
k

)
(3.26)

and

r̃j =

〈
rj +

1

2
(d−Rs)†N−1

j (d−Rs)
〉
G(s−m,D)

= rj +
1

2
tr
((

(d−Rm) (d−Rm)† +RDR†
)
N−1
j

)
, (3.27)

respectively.

Here, we restrict ourselves to the zeroth order solution, i.e. we neglect all contributions
from Ã and B̃. Furthermore we set T = 1. The case with T 6= 1 is discussed up to second
order in Appendix C.

Now we search for the optimal Gaussian approximation to the posterior by minimizing
the approximate Gibbs energy, which is equivalent to minimizing the Kullback-Leibler dis-
tance between the two probability densities, according to Eq. (3.22). Taking the functional
derivatives of Eq. (3.21) with respect to m and D and equating them to zero yields the
equations

m = Dj, (3.28)

j =
∑
j

δj
r̃j
R†N−1

j d, (3.29)

D =

(∑
k

γk
q̃k
S−1
k +

∑
j

δj
r̃j
R†N−1

j R

)−1

. (3.30)

By comparing these expressions to the Wiener filter formula, Eq. (3.8), we can read off the
parameters pk = q̃k

γk
and ηj =

r̃j
δj

for the signal and noise covariance matrix, respectively.
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So altogether the equations that need to be solved simultaneously are

m = Dj (3.31a)

pk =
qk + 1

2
tr
((
mm† +D

)
S−1
k

)
ρk
2

+ αk − 1
(3.31b)

ηj =
rj + 1

2
tr
((

(d−Rm) (d−Rm)† +RDR†
)
N−1
j

)
µj
2

+ βj − 1
. (3.31c)

Thus, we find both the posterior mean and the posterior covariance for the signal. Note
that the first two of these three equations were already found by Enßlin & Frommert (2011)
and Enßlin & Weig (2010), who discussed the reconstruction of signals with unknown power
spectra. The term critical filter was coined by Enßlin & Frommert (2011) to refer to this
filter since it belongs to a family of filters lying on a line in the parameter plane used
by Enßlin & Frommert (2011) that separates the filters with a perception threshold from
those without. The additional uncertainty in the noise covariance that we introduce here
simply adds one more equation, leading to an extended critical filter.

3.4 Application to simulated signals

Here we demonstrate the performance of our signal reconstruction algorithm under different
circumstances.

3.4.1 Setup

We consider two different scenarios. First, we consider a simple one-dimensional test case,
where the signal is supposed to be a real field defined over some interval with periodic
boundary conditions. We discretize the interval into 2048 pixels. For simplicity, we set
the response matrix R to be the identity operator, so that our data set consists of 2048
individual points as well. We further assume statistical homogeneity for the signal field,
leading to a covariance matrix that is diagonal in Fourier representation,

Skk′ = 〈sks∗k′〉P(s) = δkk′Ps(k), (3.32)

with the power spectrum Ps(k) on its diagonal. For this power spectrum we choose a
simple power law

Ps(k) ∝ (1 + k)−2 (3.33)

and draw a random realization of the signal from it.

Motivated by astrophysical applications, we also consider a real signal field on the
sphere,

s : S2 −→ R. (3.34)
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Figure 3.1: Comparison of different filter algorithms in the one-dimensional test case.
Each column corresponds to a different setting. The signal, drawn from a power law power
spectrum, is the same in each case and depicted in each panel with a solid line. The left
column contains homogeneous noise, while in the middle column, the noise is suppressed
in the left third of the interval and enhanced in the right third, and in the right column the
noise is enhanced in some individual pixels. The first row shows the signal realization along
with the data. The second row shows the reconstruction using the Wiener filter formula,
assuming the correct power spectrum and under the assumption of homogeneous noise;
the third row shows the critical filter reconstruction, assuming the power spectrum to be
unknown, but still assuming homogeneous noise. The last row, finally, shows the extended
critical filter reconstruction in which both the signal power spectrum as well as the noise
variance are assumed to be unknown. The respective reconstructions are depicted by a
dashed line which lies on top of the solid one in many cases. In the two right panels of the
first row, some of the data points lie outside the area that is shown.
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Figure 3.2: Comparison of different filter algorithms in the spherical case. Each column
corresponds to a different setting. The signal, drawn from a power law power spectrum, is
the same in each case. The left column contains homogeneous noise, while in the middle
column, the noise is suppressed in the southern third of the sphere and enhanced in the
northern third, and in the right column the noise is enhanced in some individual pixels.
The first row shows the signal realization and the second row the data. The third row shows
the reconstruction using the Wiener filter formula, assuming the correct power spectrum
and under the assumption of homogeneous noise; the fourth row shows the critical filter
reconstruction, assuming the power spectrum to be unknown, but still assuming homoge-
neous noise. The last row, finally, shows the extended critical filter reconstruction in which
both the signal power spectrum as well as the noise variance are assumed to be unknown.
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Using again R = 1, the data and noise are also fields on the sphere,

d, n : S2 −→ R. (3.35)

In the numerical implementation, we use the HEALPix1 discretization scheme at a res-
olution of Nside = 16, which leads to 3 072 pixels. Under the assumption of statistical
homogeneity and isotropy, the signal covariance matrix in this case becomes diagonal in
the basis given by the spherical harmonics components,

S(`m)(`′m′) = 〈s`ms∗`′m′〉P(s) = δ``′δmm′C`, (3.36)

where C` are the angular power spectrum components. We draw our signal realization
again from a power law spectrum,

C` = (1 + `)−2 . (3.37)

We assume the noise to be uncorrelated in the position basis, making the noise covari-
ance matrix diagonal in this basis,

Nn̂n̂′ = 〈nn̂nn̂′〉P(n) = δn̂n̂′σ
2
n̂, (3.38)

where n̂ and n̂′ denote positions on the sphere or on the interval, respectively. Within
this framework, we consider three cases for the noise statistics. In the first one, we use
homogeneous noise with variance σ2

n̂ = 1/4 independent of n̂. For the second case we
divide the data space into three zones. In the left/southern third, we suppress the noise
variance by a factor of nine and in the right/northern third we enhance it by a factor
of nine, while we leave it unchanged in the middle. Finally, in the third case we again
assume homogeneous noise with variance 1/4, but we enhance the variance in five percent
of the pixels, randomly selected, by a factor of 100. Both the signal and the three resulting
data realizations are shown in Fig. 3.1 for the one-dimensional case and in Fig. 3.2 for the
spherical case, along with the results of different reconstructions that we discuss next.

3.4.2 Reconstructions

We first apply the standard Wiener filter formula, the results of which are shown in the
second row of Fig. 3.1 for the one-dimensional case and in the middle row of Fig. 3.2 for
the spherical case. For this we assume the correct power spectrum to be known, but we
assume homogeneous noise with variance 1/4 in all three cases. In the case where this
assumption is correct, the reconstruction is known to be optimal and this is confirmed by
visual inspection of the outcome. In the cases with inhomogeneous noise, the Wiener filter
fails to completely filter out the noise structures in the data in the regions where the noise
is underestimated and therefore reproduces some of them in the reconstruction, as one
would expect. This is true for the right (northern) third in the middle column of Fig. 3.1

1The HEALPix package is available from http://healpix.jpl.nasa.gov.

http://healpix.jpl.nasa.gov
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(Fig. 3.2), as well as the noisy pixels in the right column. The opposite should happen
in the left (southern) third in the middle column of Fig. 3.1 (Fig. 3.2), where the noise
is overestimated. One would expect that structures in the data that are actually due to
the signal get filtered out. This is actually happening, although it is barely visible in the
resulting plots.

Next we assume that the power spectrum is not known a priori, i.e. we apply the critical
filter. The resulting plots are shown in the third row of Fig. 3.1 for the one-dimensional
case and the fourth row of Fig. 3.2 for the two-dimensional case. In the one-dimensional
case we define the Sk operators of Eq. (3.9) to be projections onto bins of width ∆k = 2
in Fourier space, effectively assuming that the two scales that enter the bin have the same
power. This binned power is then represented by the parameer pk in Eq. (3.9). This
binning is necessary in one dimension since each individual Fourier component contains
only two degrees of freedom.2 In the spherical case, we can directly use the angular power
spectrum components C` as parameters and the projection-like operators Sk become actual
projections onto the `-th angular scale, which contains 2`+ 1 degrees of freedom. In both
cases we assume Jeffreys prior for the unknown parameters. Then we simply iterate the
first two lines of Eq. (3.31), while keeping the assumption of homogeneous noise with
variance 1/4.

In the cases where our assumptions about the noise are true, the resulting map is very
close to the Wiener filter reconstruction, confirming the assessment by Enßlin & Frommert
(2011); Enßlin & Weig (2010); Oppermann et al. (2011a) that the critical filter can yield
a very accurate reconstruction, even if the power spectrum is completely unknown. In the
cases where we have made false assumptions about the noise, however, we see the same
problems that the Wiener filter reconstruction has, only much stronger pronounced. This
is because the reconstructed power spectrum now actually accounts for the features in the
data that are due to noise where this is underestimated. With this power spectrum, the
map reconstruction tends to favor these features even more than when the correct power
spectrum is used. This amplifying effect is again much more prominent where the noise
was underestimated than where it was overestimated.

Finally, we account for the possibility that we might have misestimated the noise statis-
tics by applying the full extended critical filter, derived in Sect. 3.3. As projection-like ma-
trices Nj we choose projections onto the j-th pixel of the interval and sphere, respectively,
multiplied with our original guess for the noise variance in that pixel, σ2

j = 1/4. In this
way, the parameters ηj become correction factors for the noise variance of each data point.
For the prior parameters we choose βj = 2 and we adapt rj such that 〈log (ηj)〉P(η) = 0.

After iterating the full set of equations (3.31), we obtain the results shown in the bottom
rows of Fig. 3.1 and Fig. 3.2. In the case with homogeneous noise, we still get a result that
is similar to the Wiener filter one. This shows that we do not lose much by allowing for
some uncertainty in the noise covariance. In the cases in which our original noise estimate
was wrong, however, we obtain reconstructions of a much higher quality than from the

2Note that since our signal is real, the Fourier components associated with negative k-values do not
contain additional degrees of freedom.
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critical filter. Obviously, our algorithm succeeds in uncovering the false error bars in our
dataset and correcting them. This works especially well in the case where only individual
pixels have underestimated noise variance. This setting makes it especially easy for the
algorithm to infer the signal statistics from all the other pixels and find the pixels in which
the data points and the signal are inconsistent with one another. However, even in the case
where one third of the space is covered with underestimated noise, our algorithm still does
a good job in reconstructing the original signal. In the spherical case, the extended critical
filter performs even better than the Wiener filter. This is also true for the one-dimensional
case in the scenario where the noise in individual pixels is enhanced. In the scenario with
enhanced and suppressed noise in one third of the one-dimensional interval, the Wiener
filter performs better than the extended critical filter. It should be noted, however, that
using the Wiener filter is not an option if the power spectrum of the signal is not known a
priori.

Some further insight can be gained by looking at the reconstructed angular power spec-
tra for the spherical case. These are shown in Fig. 3.3. In the case with homogeneous
noise, the critical filter recovers the true power spectrum almost perfectly, while the ex-
tended critical filter misses some power on the smallest scales, i.e. some of the small-scale
power in the data is falsely attributed to noise and therefore not represented in the signal
power spectrum. This effect is small, however, and does not greatly influence the resulting
map.

In the case in which the noise is highly inhomogeneous, being higher and lower in one
third of the data space each, the extended critical filter misses quite a lot of power on small
scales. This results in the slightly oversmoothed map seen in Fig. 3.2. The critical filter,
however, that operates under wrong assumptions for the noise statistics, overestimates the
power on small scales significantly. This is in agreement with the very noisy reconstructed
map.

It is in the third case, in which the noise is greatly enhanced in individual pixels, that
the extended critical filter shows its full strength. While the critical filter attributes the
power in the faulty pixels to the signal and therefore overestimates the signal power by
orders of magnitude, the extended version accounts for the misestimated error bars and
does not account for these pixels in the signal power spectrum. While the result is a
power spectrum that is slightly underestimated on the smallest scales, this is again only a
comparatively small error, still leading to a good reconstruction.

These findings are confirmed by Fig. 3.4, which shows the differences of the nine recon-
structions and the signal realization. Our extension of the critical filter clearly brings the
strongest improvement in the case where the noise is enhanced in individual pixels, while
also lowering the error in the case with an extended region of underestimated noise. The
same can directly be seen for the one-dimensional case in Fig. 3.1.

Finally, we plot the standard deviation per pixel of the Gaussian approximation (3.20)
to the posterior probability distribution, i.e. the square root of the diagonal of the co-
variance matrix in the pixel basis, σ =

√
diag(D), in Fig. 3.5 for the extended critical

filter. This can be interpreted as an estimate for the 1σ-error bar of the reconstructed
maps. The region with enhanced noise in the second scenario is clearly marked out by a
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Figure 3.3: Comparison of the different reconstructed angular power spectra for the spheri-
cal scenario. The solid line depicts the theoretical power spectrum which is also used in the
Wiener filter reconstructions. The dashed line corresponds to the power of the specific sig-
nal realization and the dash-dotted and dotted lines to the power spectrum reconstructed
with the critical filter and the extended critical filter, respectively. Panel (a) shows the case
with homogeneous noise, panel (b) the one in which the noise is enhanced and suppressed
in one third of the sphere each, and panel (c) the one in which the noise is enhanced in
individual pixels.
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Figure 3.4: Absolute value of the pixelwise difference between the reconstructed maps and
the signal realization for the spherical scenario. Each row shows the results for a different
filter algorithm. As in Fig. 3.2, the left column shows the case with homogeneous noise,
the middle column the one with enhanced noise in the northern third of the sphere and
suppressed noise in the southern third, and the right column shows the case where the
noise is enhanced in individual pixels. Note that the color bar differs from the one used in
Fig. 3.2.
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Figure 3.5: Pixelwise uncertainty of the extended critical filter reconstructions in the spher-
ical scenario. The left panel shows the case with homogeneous noise, the middle panel the
case with enhanced noise in the northern third and suppressed noise in the southern third,
and the right panel the case with enhanced noise in individual pixels.
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Figure 3.6: Pixelwise uncertainty of the extended critical filter reconstructions in the one-
dimensional scenario. The left panel shows the case with homogeneous noise, the middle
panel the case with enhanced noise in the right third and suppressed noise in the left third,
and the right panel the case with enhanced noise in individual pixels. The dark curves
represent ±σ and the light curve the difference between the reconstruction and the correct
signal.

higher uncertainty of the reconstruction due to the corrected entries of the noise covariance
matrix entering the information propagator D. Note, however, that the full posterior is
non-Gaussian and the 1σ range can therefore not necessarily be interpreted as a 68% con-
fidence interval, especially since we are using a zeroth order approximation to calculate the
Gaussian approximation. In fact, in our spherical example only about 50% of the pixels of
the reconstructions lie within 1σ of the correct signal in all three noise scenarios.

Fig. 3.6 extends this study to the one-dimensional case. We plot the difference of the
signal and the reconstruction result of the extended critical filter, along with lines depicting
±σ, for the three different noise settings. In the case where the noise variance is constant
within each third of the interval, the one-sigma curve exhibits a step-like behavior at the
boundaries of the thirds, although this effect is relatively small. In the case of homogeneous
noise, the one-sigma curve is roughly constant while the individual noisy pixels in the last
scenario are reflected in the one-sigma curve by its large variations from pixel to pixel.
The fraction of the pixels for which the reconstruction lies within 1σ of the correct signal
in the one-dimensional case is 50% in the case with homogeneous noise, 63% in the case
with enhanced and suppressed noise in a third of the interval each, and 69% in the case
with enhanced noise in individual pixels.

3.5 Discussion

Using the formalism of minimum Gibbs free energy we have extended the critical filter
algorithm, developed by Enßlin & Frommert (2011) and Enßlin & Weig (2010), to an algo-
rithm that allows for uncertainties both in the signal covariance and in the noise covariance.
We have demonstrated the performance of our algorithm, Eqs. (3.31), by applying it to a
set of mock observations on the sphere, as well as in a simple one-dimensional test case.
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These applications have shown that the extended critical filter performs outstandingly
if only a few individual data points have a misestimated error bar. However, even in a
case where large portions of the data are affected, the algorithm was shown to perform
inarguably better than the critical filter, using a fixed – and faulty – assumption about
the noise statistics. We have also compared the results to those obtained from a Wiener
filter reconstruction, using the correct power spectrum, which is known to be optimal if the
assumptions about the noise statistics are correct. This filter was demonstrated, however,
to lead to reconstructed maps that are much further from the true signal than the results
of the extended critical filter in some cases where the assumptions are not correct.

The choice of the two-sphere as the space on which our signal is defined was motivated
by astrophysical applications, where we could think of the signal as an all-sky field or some
quantity defined on the surface of a star or a planet. Applications in other fields of physics
are abundant. However, it should be noted that there is nothing special about the sphere.
We could equally well have chosen a more-dimensional euclidean space, using the power
spectrum defined in Fourier space instead of the angular power spectrum, as we have done
in the one-dimensional scenario.

Furthermore, our choice of the identity operator as response matrix was made only on
account of simplicity. It allowed us to represent the data in the same fashion as the signal.
It should be clear, however, that the derived filter formulas, Eqs. (3.31), are valid for any
response matrix, even a singular one. Applications of the critical filter with non-trivial
response matrices were presented by Enßlin & Frommert (2011) and Oppermann et al.
(2011a) and such a response would not pose a problem for the extended version of the
filter.

The problem of signal reconstruction with some uncertainty in the noise variance is
certainly one of general interest. There are several ways in which uncertainty in the noise
variance might arise. It may be due to questionable assumptions that enter in the calcu-
lation of the error bars of the data. Another possibility is that it arises from the definition
of the signal itself. The quantity of interest may only be part of what has been measured
in the first place in which case the rest of the data would be noise with essentially un-
known variance. All these factors come together in the reconstruction problem considered
by Oppermann et al. (2011a). An extension of that reconstruction, using additional sets
of data and the improved algorithm presented here, is planned (Oppermann et al. 2012a).

It should be noted, however, that even with the extended critical filter, some knowledge
about either the parameters in the signal covariance or the ones in the noise covariance is
needed to arrive at a sensible reconstruction. Leaving them both completely free would
lead to a degeneracy between signal and noise that cannot be resolved. Only by assigning
an informative prior to at least one of the two sets of parameters is this degeneracy broken.
Furthermore, the functional bases in which the signal and noise covariances are diagonal,
i.e. their eingenspaces, need to differ to allow for a separation of noise from signal.
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Chapter 4

An improved map of the Galactic
Faraday sky

Note: This chapter has been published in Astronomy & Astrophysics (Oppermann et al.
2012a). Parts of Sect. 4.4.1 have been written by Jeroen M. Stil.

4.1 Introduction

Magnetic fields are ubiquitous in the interstellar medium. They are likely to play a major
dynamical role in the evolution of galaxies. It is by comparing theoretical predictions and
simulations to observations of galactic magnetic fields that the generation and dynamical
role of these magnetic fields can be understood (see e.g. Beck 2011, and references therein).
It is natural to look first and foremost at our own galaxy, the Milky Way, and try to study
its magnetic field. However, its observation is complicated by several effects. The magnetic
field is a three-dimensional vector field that varies on multiple scales throughout the Galaxy.
Thus, very many measurements of the field would be needed to determine even its large-
scale properties. Furthermore, virtually any observation suffers from a projection effect
because local effects add up along the line of sight. And finally the magnetic field cannot
be measured directly, so that related observables have to be used. These observables,
however, are not only sensitive to the magnetic field itself but also to other quantities that
are not necessarily better understood, introducing ambiguities when inferring properties
of the magnetic field. The intensity of synchrotron radiation is sensitive to the strength
of the magnetic field component orthogonal to the line of sight, but it is modulated by
the density of cosmic ray electrons (e.g. Ginzburg & Syrovatskii 1965). The direction of
this magnetic field component can be studied via the polarization direction of synchrotron
radiation and thermal dust emission (e.g. Gardner & Whiteoak 1966; Lazarian 2003). A
magnetic field component along the line of sight, on the other hand, gives rise to the effect
of Faraday rotation (e.g. Nicholson 1983; Gardner & Whiteoak 1966; Burn 1966). The
strength of this effect is influenced not only by the magnetic field but also by the density
of thermal electrons. Furthermore, when observing this effect for extragalactic sources, it
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contains contributions not only from the Galaxy, but from every position along the line of
sight to the source with a non-vanishing magnetic field and thermal electron density.

To find an unambiguous terminology that can capture these subtleties, we introduce
the concept of Faraday depth, which depends on position and is independent of any as-
trophysical source. The Faraday depth corresponds to a position at a distance r0 from an
observer and is given by a line-of-sight integral,

φ(r0) =
e3

2πm2
ec

4

∫ 0

r0

dr ne(r)Br(r), (4.1)

over the thermal electron density ne and the line-of-sight component of the magnetic field
Br. Here, e and me are the electron charge and mass and c is the speed of light. The
Galactic Faraday depth is therefore exactly this integral, where the lower boundary is the
outer edge of the Milky Way. It is this integral that contains the information on the
Galactic magnetic field.

The observational consequence of Faraday rotation on a single linearly polarized source
is a rotation of its plane of polarization about an angle that is proportional to the square of
the wavelength. The proportionality constant is equal to the source’s Faraday depth, i.e the
above integral expression, where the lower boundary is now the source’s position. Often,
the assumption that the observed polarized radiation stems from a single source is made
implicitly and a linear fit to the position angle of the plane of polarization as a function of
the squared wavelength is made. We refer to the slope of such a λ2-fit as rotation measure
(RM). For a single source this is the same as the source’s Faraday depth. However, the
polarized radiation will in general be emitted over a range of physical distances and also
over a range of Faraday depths, and the position angle will no longer vary linearly with
λ2. This emission spectrum in Faraday space can be recovered using the technique of RM
synthesis (Burn 1966; Brentjens & de Bruyn 2005). In this work we create a map of the
Galactic Faraday depth using both data that are based on RM synthesis and data that
are based on linear λ2-fits. Neither measures the Galactic Faraday depth exclusively and
we use the term Faraday rotation data when referring to data values without specifying
whether they are rotation measures or the result of a synthesis study.

A review of early work on the inference of the regular component features of the
Galactic magnetic field from RM measurements is included in the work of Frick et al.
(2001). Several studies were conducted by Morris & Berge (1964), Gardner et al. (1969),
Vallée & Kronberg (1973), Ruzmaikin & Sokolov (1977), Ruzmaikin et al. (1978), Simard-
Normandin & Kronberg (1979), Andreasian (1980), Andreasian (1982), Inoue & Tabara
(1981), Sofue & Fujimoto (1983), Vallée (1983), Agafonov et al. (1988), Clegg et al. (1992),
Han & Qiao (1994), Han et al. (1997), as well as Rand & Kulkarni (1989), Rand & Lyne
(1994), who used RM data of pulsars, and Seymour (1966, 1984), who used spherical har-
monics to obtain an all-sky RM map. Among the more recent studies aiming to constrain
the Galactic magnetic field with rotation measures of extragalactic radio sources are those
by Brown & Taylor (2001), Mao et al. (2010), Kronberg & Newton-McGee (2011), Pshirkov
et al. (2011), and Brown et al. (2003b, 2007), Nota & Katgert (2010), and Van Eck et al.
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(2011), who supplemented extragalactic RMs with pulsar rotation measures. Weisberg
et al. (2004), Vallée (2005), Vallée (2008), Han et al. (2006), and Men et al. (2008) re-
lied entirely on pulsar rotation measures for estimating the Galactic magnetic field, while
Sun et al. (2008), Jansson et al. (2009), and Jaffe et al. (2010) used rotation measures of
extragalactic sources in combination with synchrotron polarization and intensity data.

Recent attempts to create an all-sky map of Faraday rotation measure were made by
Frick et al. (2001), Johnston-Hollitt et al. (2004), Dineen & Coles (2005), and Xu et al.
(2006). However, owing to the limited number of data points available at the time, their
reconstructions are limited to the largest-scale features. A fairly sophisticated attempt was
made by Short et al. (2007), who used Monte Carlo Markov chain methods and accounted
for uncertainty in the noise covariance while avoiding the direct involvement of covariance
matrices. Realistic attempts to create all-sky maps including smaller-scale features have
been possible only since Taylor et al. (2009) published the NRAO VLA Sky Survey (NVSS)
(Condon et al. 1998) rotation measure catalog that contains data on sources distributed
roughly equally over the sky at declinations higher than −40◦. One such attempt was made
in the same publication where the data were simply smoothed to cover the celestial sphere
in regions where the data were taken. Another attempt has been made by Oppermann
et al. (2011a), using a more sophisticated signal reconstruction algorithm that takes into
account spatial correlations without oversmoothing any maxima or minima.

The NVSS rotation measure catalog is, however, suboptimal in two respects. It lacks
data in a large region in the southern sky below the declination of −40◦ because of the
position of the observing telescope (VLA) and its rotation measure values were deduced
using only two nearby frequency channels (see Table 4.1). This increases the risk of in-
troducing offsets of integer multiples of π in the rotation angle, as discussed by Sunstrum
et al. (2010), and makes it impossible to detect any deviations from a proportionality to
λ2 in the polarization angle. Consequently, sources with a non-trivial Faraday spectrum
could not be identified and were assigned a possibly misleading RM value.

In this work we aim to create a map of the Galactic Faraday depth that summarizes the
current state of knowledge. To this end we combine the NVSS rotation measure catalog
of Taylor et al. (2009) with several other catalogs of Faraday rotation data of polarized
extragalactic radio sources, increasing the spatial coverage and additionally constraining
the signal also in regions where several data sets overlap. We improve on the map of
Oppermann et al. (2011a) by using this more extensive data set and by using an extended
version of the reconstruction algorithm, which takes into account uncertainties in the noise
covariance, presented by Oppermann et al. (2011b). The resulting all-sky map of the
Galactic Faraday depth will be useful in many respects. On the one hand, all-sky infor-
mation can help in bringing forth global features of the underlying physics, such as the
Galactic magnetic field or the electron distribution. On the other hand, an all-sky map
can also be useful when studying local or extragalactic features. It could, for example,
serve as a look-up table for Galactic contributions to the Faraday depth when studying
extragalactic objects.

The remainder of this paper is organized as follows: In Sect. 4.2 we briefly review the
main features of the extended critical filter algorithm that we used in our map-making



76 4. An improved map of the Galactic Faraday sky

procedure and discuss how it is applied to the situation at hand. The data sets entering
the reconstruction are listed in Sect. 4.3 and the results are presented in Sect. 4.4. In
the results section, we also include a brief discussion of the reconstructed angular power
spectrum. We summarize our findings in Sect. 4.5.

4.2 Reconstruction algorithm

To reconstruct the Galactic Faraday depth from the point source measurements, we used
the extended critical filter formalism that was presented by Oppermann et al. (2011b). This
filter is based on the critical filter that was used for the reconstruction by Oppermann et al.
(2011a) and derived by Enßlin & Frommert (2011) and Enßlin & Weig (2010) within the
framework of the information field theory developed by Enßlin et al. (2009).

4.2.1 Signal model

The signal model we used is the same as the one used by Oppermann et al. (2011a). We
briefly review the essentials.

In the inference formalism we employ, it is assumed that a linear relationship, subject
to additive noise, exists between the observed data d and the signal field s that we try to
reconstruct, i.e.

d = Rs+ n. (4.2)

Here, the response operator R describes the linear dependence of the data on the signal.
Formally, the signal could be a continuous field, e.g. some field like the Galactic Faraday
depth on the celestial sphere. In practice, however, the best we can hope for is to recon-
struct a discretized version of such a field, i.e. a pixelized sky-map. In this case, one can
think of the signal field s on the sphere as a vector of dimension Npixels, each component
of which corresponds to one pixel, and the whole set of data points d as another vector of
dimension Ndata. The response operator then becomes a matrix of dimension Ndata×Npixels

and n is another vector of dimension Ndata that contains the noise contributions to each
data point. Next, we specify the definitions of the signal field and the response matrix for
our specific application.

The critical filter algorithm, as well as the extended critical filter, is intended to statis-
tically reconstruct isotropic and homogeneous random signal fields. We briefly recapture
the meaning of this.

It is assumed in the derivation of the filter formulas (see Oppermann et al. 2011b, for de-
tails) that the signal field that describes nature is one realization of infinitely many possible
ones. Furthermore, it is assumed that some of these possibilities are a priori more likely to
be realized in nature than others, i.e. a prior probability distribution function on the space
of all possible signal realizations is defined. We assume this probability distribution to ba
a multivariate Gaussian with an autocorrelation function S(n̂, n̂′). Here, n̂ and n̂′ denote
two positions on the celestial sphere. Now, assuming statistical homogeneity and isotropy
means assuming that S(n̂, n̂′) depends only on the angle between the two positions n̂ and
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n̂′. This means that the correlation of the value of the signal field at one position with
another one at a certain distance depends only on this distance, not on the position on the
sphere (homogeneity) and not on the direction of their separation (isotropy). Note, how-
ever, that we are making this assumption only for the prior probability distribution, i.e. the
inherent probability for signal realizations. The data can (and do) break this symmetry,
making the posterior probability distribution, i.e. the probability for a signal realization
given the measured data, anisotropic. Furthermore, any single realization of a signal with
isotropic statistics can appear arbitrarily anisotropic. Extremely anisotropic realizations
will, however, be a priori more unlikely than others.

For this reason we divide out the most obvious largest-scale anisotropy introduced by
the presence of the Galactic disk. We do this by defining our signal as

s(l, b) =
φ(l, b)

p(b)
, (4.3)

i.e. the dimensionless ratio of the Galactic Faraday depth φ and a variance profile p that is
a function of Galactic latitude only. We use this simplistic ansatz for the Galactic variance
profile to account for the largest-scale anisotropies without using any specific Galactic
model in the analysis.

The profile function is calculated in a multi-step procedure. In the first step, we sort
the data points into bins of Galactic latitude and calculate the root-mean-square value for
the Faraday rotation data of each bin, disregarding any information on Galactic longitude
of the data points. We then smooth these values with a kernel with 10◦ FWHM1 to form
an initial profile function p̃. In the second step, we reconstruct the signal field, resulting in

a map m̃ and the corresponding 1σ uncertainty map ˆ̃D1/2. We use these to calculate the
corresponding posterior mean of the squared Faraday depth according to〈

φ2
〉
P(s|d)

= p̃2m̃2 + p̃2 ˆ̃D. (4.4)

The posterior mean is the ensemble average over all possible signal configurations weighted
with their posterior probability distribution P(s|d), i.e. their probability given the mea-
sured data, and is denoted by 〈·〉P(s|d). From this expected map of the squared Faraday
depth, we then calculate a new variance profile p, now using the pixel values of the map
instead of the data points. A few data points were added before repeating this final step yet
another time. The final reconstruction is then conducted with the resulting profile func-
tion. The initial variance profile and the one used in the final reconstruction are shown
in Fig. 4.1. The drop-off toward the Galactic poles of the first-guess profile function is
less pronounced since the relatively high noise component of the Faraday rotation data in
these regions enters in the root-mean-square that is calculated from the data points. The
variance profile as calculated from the final results is also shown in Fig. 4.1.

1Oppermann et al. (2011a) experimented with different smoothing lengths and found that a factor two
difference does not matter for the end result. We chose 10◦ by visual inspection of the smoothness of the
resulting profile.
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Figure 4.1: Root-mean-square Galactic profile that is used in the definition of the signal
field and is part of the response matrix as a function of Galactic latitude. The dashed
curve represents the initial profile function p̃ and the solid curve the one used in the final
reconstruction, p. The dotted curve shows the profile as calculated from the final results.

After introducing the Galactic variance profile, we can now specify the response opera-
tor. In our application, the response matrix R needs to contain both the multiplication of
the signal field with this profile function and the probing of the resulting Faraday depth
in the directions of the point sources. It is a matrix of dimension Ndata × Npixels. Each
row corresponds to one data point and each column to one pixel of the sky map. Here,
the row corresponding to the i-th data point contains a non-zero entry only in the column
corresponding to the pixel in which the i-th observed extragalactic source lies, modeling
the probing of the Faraday depth in the observed directions. This entry is the value of the
Galactic variance profile p at the latitude of the pixel, effectively rescaling the local signal
field value into a Faraday depth.

Furthermore, we assume Gaussian priors both for the signal and for the noise with
covariance matrices S and N , respectively. Since our signal field is assumed to be statis-
tically homogeneous and isotropic, its covariance matrix S is completely determined by
its angular power spectrum2 (C`)`, ` = 0, 1, . . . , `max. The minimum length scale `max is
determined by the finite resolution of the discretization. Assuming uncorrelated noise for
all data points, the noise covariance N becomes diagonal. The diagonal entries are given by
the variance calculated from the error bars given in the data catalogs, modified to account

2The angular power spectrum is defined by C` = 〈s`ms∗`m〉P(s), where s`m denotes the signal’s spherical

harmonic component of a certain azimuthal quantum number ` and an arbitrary magnetic quantum num-
ber m, the asterisk denotes complex conjugation, and the angular brackets denote an ensemble average
weighted with the prior probability distribution.
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for the expected average extragalactic contribution,

σ2 = σ2
(measurement) + σ2

(extragalactic). (4.5)

We include a multiplicative correction factor η that will be determined during the recon-
struction, making the diagonal entry of N corresponding to the i-th data point

Nii = ηiσ
2
i . (4.6)

As the extragalactic contribution, we use the value σ(extragalactic) = 6.6 rad/m2, motivated
by the study of Schnitzeler (2010).

Reasons for a deviation of η from unity could be a general underestimation of the mea-
surement error, as was discussed for the NVSS catalog by Stil et al. (2011), a misestimation
of the extragalactic contribution, a multi-component Faraday depth spectrum, but also an
offset of an integer multiple of π in the rotation angle.

4.2.2 The extended critical filter

The extended critical filter (see Oppermann et al. 2011b) is a method to simultaneously
reconstruct the signal, its covariance, given here by its angular power spectrum (C`)`, and
the noise covariance, given here by the correction factors (ηi)i. To this end, inverse Gamma
distributions are assumed as priors for the parameters of the covariances, i.e.

P(C`) =
1

q`Γ(α` − 1)

(
C`
q`

)−α`
exp

(
− q`
C`

)
(4.7)

and

P(ηi) =
1

riΓ(βi − 1)

(
ηi
ri

)−βi
exp

(
−ri
ηi

)
, (4.8)

and all these parameters are assumed to be independent. We choose α` = 1 for the
parameter describing the slope of the power law and q` = 0 for the parameter giving the
location of the exponential low-amplitude cutoff, turning the prior for each C` into Jeffreys
prior, which is flat on a logarithmic scale, enforcing the fact that we have no a priori
information on the power spectrum. For the prior of the correction factors we choose the
parameter βi = 2, since we already have information on the expected noise covariance from
the data catalogs. We adapt the value of ri such that the a priori expectation value of
log η becomes 0, thereby conforming with the catalogs.

With these values, the actual filtering process consists of iterating the three equations3

m = DR†N−1d, (4.9)

C` =
1

2`+ 1
tr
((
mm† +D

)
S−1
`

)
, (4.10)

3This is the first-order version of the extended critical filter. See Oppermann et al. (2011b) for details.
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and

ηi =
1

2βi − 1

[
2ri +

1

σ2
i

(
(d−Rm)2

i +
(
RDR†

)
ii

)]
(4.11)

until convergence is reached. Here, m is the reconstructed signal map, the †-symbol denotes

a transposed quantity, and D =
(
S−1 +R†N−1R

)−1
is the so-called information propagator

(Enßlin et al. 2009). The matrix S−1
` projects a signal vector onto the `-th length-scale

by keeping only the degrees of freedom represented by spherical harmonics components
with the appropriate azimuthal quantum number. Although we have chosen βi = 2 for
our reconstruction, we leave the parameter unspecified in these equations, since we later
compare our results to those obtained with β 6= 2 (see Sect. 4.4.2).

The three equations can be qualitatively explained. Eq. (4.9) links the reconstructed
map to the data. It consists of a response over noise weighting of the data and an appli-
cation of the information propagator to the result. The information propagator combines
knowledge about the observational procedure encoded in the response matrix R and the
noise covariance matrix N with information on the signal’s correlation structure contained
in the signal covariance matrix S. It is used in Eq. (4.9) to reconstruct the map at a
given location by weighting the contributions of all data points using this information.
The information propagator is also (approximately) the covariance matrix of the posterior
probability distribution. Therefore, it can be used to obtain a measure for the uncertainty
of the map estimate. The 1σ uncertainty of the map estimate in the j-th pixel is given
by D̂

1/2
j = D

1/2
jj . Eq. (4.10) estimates the angular power spectrum from two contributions.

The first term in the trace gives the power contained within a reconstructed map, while
the second term compensates for the power lost in the filtering procedure generating this
map. This second contribution is not contained in the map calculated via Eq. (4.9) since
the data are not informative enough to determine the locations of all features. In a very
similar fashion, Eq. (4.11) estimates the correction factors for the error bars also from two
main contributions. The first contribution simply uses the difference between the observed
data and the data expected from the reconstructed map and the second contribution com-
pensates partly for the attraction the data exhibit onto the map in the reconstruction step,
which lets some fraction of the noise imprint itself onto the map. Both contributions are
rescaled by the inverse noise variance to turn this estimate of the noise variance into a
correction factor. There is a third term in Eq. (4.11) that is solely due to the prior we
chose for η. It prevents the error bars from vanishing if a data point by chance perfectly
agrees with the map. For a detailed derivation of these formulas, the reader is referred to
Oppermann et al. (2011b).

We include a smoothing step for the angular power spectrum in each step of the it-
eration, where we smooth with a kernel with ∆` = 8 FWHM, lowering ∆` for the lowest
`-modes. This is done to avoid a possible perception threshold on scales with little power
in the data (see Enßlin & Frommert 2011). The smoothing step is also justified because
none of the underlying physical fields, i.e. the thermal electron density and the line of sight
component of the magnetic field, are expected to have vastly different power on neighboring
scales.
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Figure 4.2: Distribution of the data points on the sky. Shown is a HEALPix map at a
resolution of Nside = 128, using Galactic coordinates. The map is centered on the Galactic
center, latitudes increase upward, and longitudes increase to the left. Each black pixel
contains at least one data point.

4.3 Data sets

Tables 4.1 and 4.2 summarizes the data catalogs that we used for the reconstruction.
Altogether, the catalogs contain 41 330 measurements of the Faraday rotation of extra-
galactic point sources. Fig. 4.2 shows their distribution on the sky. The coverage is clearly
far from complete, especially at declinations below −40◦ where the Taylor-catalog does not
provide any data. However, 24% of the data points from the other catalogs lie within this
region, so some toeholds are present even there. The densely sampled region that stands
out at the top of the empty patch in Fig. 4.2 is Centaurus A, studied in the Feain-catalog.
The relative scarcity of data points near the Galactic plane is due to numerous depolariza-
tion effects caused by nearby structures in the magneto-ionic medium, as explained by Stil
& Taylor (2007). We used only extragalactic sources, and not pulsar rotation measures,
because this ensures that each measurement contains the full Galactic Faraday depth.

Since the regions of coverage of the different catalogs overlap, some of the data points
have the same underlying radio source. While this does not constitute a problem for the
reconstruction algorithm, it does in principle lead to noise correlations because the intrinsic
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Faraday rotation of this source, which is part of the noise in our formalism, enters each of
these data points in the same way. We ignore this effect in favor of a greatly simplified
analysis. The combination of the response matrix and the inverse noise covariance matrix
in Eq. (4.9) corresponds to an inverse noise weighted averaging of all data points that fall
within one sky pixel. If the error bars were only caused by the intrinsic Faraday rotation
of the sources, this would amount to an underestimation of the error bar by a factor 1/

√
k

for a source that appears in k different catalogs. In reality, the intrinsic Faraday rotation
constitutes only a fraction of the total error budget. The effect is therefore weaker.

Some of the catalogs listed in Tables 4.1 and 4.2 are themselves compilations of earlier
measurements. As a consequence, some individual observations are contained in several
of the catalogs. We have removed data points where we suspect such duplications so that
each observation is used only once. Note that this does not apply to different observations
of the same source, as discussed above. The number of data points given in Table 4.2 is the
effective number of data points that we used in our analysis from the respective catalog.

Any variation of the Galactic Faraday depth within one pixel of our map can naturally
not be reconstructed. Such variations on very small scales have been detected by Braun
et al. (2010) for a region around (l, b) ≈ (94◦,−21◦). Should several sources fall within a
pixel in such a region, our algorithm will yield an appropriate average value for the pixel
and increase the error bars of the data points until they are consistent with this average
value.

The sources studied in the Bonafede-catalog and some of the sources in the Clarke-
catalog lie within or behind galaxy clusters. They are therefore expected to have an
increased extragalactic contribution to their measured Faraday rotation. To take the cluster
contribution into account, we corrected the error bars of these points accoring to

σ2
(corrected) = σ2 + σ2

(cluster). (4.12)

To estimate the cluster contribution σ(cluster), Bonafede et al. (2010) studied resolved back-
ground sources for which several independent RM measurements are possible. σ(cluster) was
then identified with the empirical value of the standard deviation of these measurements.
Clarke et al. (2001) estimated the cluster contribution by comparing the RM values of
sources within the cluster to those of sources behind the cluster. The Johnston-Hollit-B-
catalog also contains sources associated with galaxy clusters. However, owing to the low
density of sources, an estimation of the cluster contribution is not possible in this case.
We expect a fraction of the other sources to be affected by clusters as well. However, since
information on which sources exactly are affected is missing in general, we leave it to our al-
gorithm to increase the error bars of the appropriate data points. The same problem exists
in principle for satellite galaxies of the Milky Way, such as the Large and Small Magellanic
Clouds. We do not attempt to separate their contribution to the Faraday depth from the
one of the Milky Way, so that the map we reconstruct is strictly speaking not a pure map
of the Galactic Faraday depth, but rather a map of the Faraday depth of the Milky Way
and its surroundings. Because we use spatial correlations in the reconstruction algorithm,
the Faraday depth contribution intrinsic to the sources will, however, be largely removed.
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Figure 4.3: Reconstructed dimensionless signal map m (top) and its uncertainty D̂1/2

(bottom). Note the different color codes.
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Figure 4.4: Reconstruction of the Galactic Faraday depth pm (top) and its uncertainty
pD̂1/2 (bottom) in rad/m2. Note the different color codes.
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Furthermore, some of the sources will have a non-trivial Faraday spectrum, i.e. they
exhibit polarized emission at more than one Faraday depth. While the technique of RM
synthesis (Burn 1966; Brentjens & de Bruyn 2005) is able to distinguish these sources, such
features are not described by a λ2-fit, which may therefore lead to an erroneous rotation
measure value. This problem becomes more severe if only a few frequencies are used
in the fit. In the limit of two frequencies, multi-component Faraday spectra necessarily
go unnoticed. We used the data points obtained by λ2-fits of only a few frequencies
nevertheless, and left it to the reconstruction algorithm to increase the error bars of those
with an underlying multi-component spectrum accordingly.

4.4 Results

All results shown here are calculated at a HEALPix4 resolution of Nside = 128, i.e. the
maps contain 196 608 pixels. The minimum angular scale that we consider is `max = 383,
corresponding roughly to half a degree. These results are publicly available and can be
downloaded from http://www.mpa-garching.mpg.de/ift/faraday/. The maps that we
show are all centered on the Galactic center with positive Galactic latitudes at the top and
positive Galactic longitudes plotted to the left.

4.4.1 Map

Figure 4.3 shows the reconstructed dimensionless signal map m and an estimate for its
uncertainty, given by D̂1/2. The same for the physical Galactic Faraday depth pm, i.e.
the signal multiplied by the Galactic variance profile, is shown in Fig. 4.4. As expected,
the signal reconstruction is more uncertain in regions that lack data. Furthermore, the
uncertainty in Fig. 4.3 tends to be smaller in the Galactic plane. This is because of
the higher signal response caused by the Galactic variance profile in this area. When
considering the uncertainty of the final map of the Faraday depth, i.e. the bottom panel
of Fig. 4.4, this feature is turned around. The values within the Galactic plane now tend
to be more uncertain than those near the poles. Note, however, that this is the absolute
uncertainty. Because the Galactic Faraday depths are greater for lines of sight through the
Galactic disk as well, the relative uncertainty is smaller there. This corresponds roughly
to the uncertainty shown in the bottom panel of Fig. 4.3, which can be interpreted as the
uncertainty of the Galactic Faraday depth relative to the value of the Galactic variance
profile at the specific latitude. Also, the uncertainty is only high in the Galactic plane
in pixels that do not contain any data. In the pixels that contain measurements, the
uncertainty is comparable to the error bars of the data. It should be noted, however, that
due to the approximations made in the derivation of the filter formulas (for details, see
Oppermann et al. 2011b), the presented 1σ intervals cannot be interpreted as containing
68% of the correct pixel values of the signal. Oppermann et al. (2011b) found in their
mock tests that about 50% of the correct pixel values lie within this range.

4The HEALPix package is available from http://healpix.jpl.nasa.gov.

http://www.mpa-garching.mpg.de/ift/faraday/
http://healpix.jpl.nasa.gov
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Figure 4.5: Same as the top panel of Fig. 4.3, with markings around the regions discussed
in the text. The letters labeling the regions are used for reference in the main text. Dashed
lines denote lines of constant Galactic longitude or latitude. Their angular separation is
30◦.

In general, Fig. 4.3 is better suited to make out localized features away from the Galactic
plane. The most striking of these features is the quadrupole-like structure on large scales
that favors positive Faraday depths in the upper left and lower right quadrant and negative
Faraday depths in the upper right and lower left quadrant. This has been observed in
measurements of Faraday rotation in the past, first by Simard-Normandin & Kronberg
(1980), and has often been claimed to be caused by a toroidal component of the large-scale
Galactic magnetic field that changes sign over the Galactic plane (see e.g Han et al. 1997).
Recent studies by Wolleben et al. (2010) and Mao et al. (2010) have shown, however, that
this pattern is probably at least partly caused by local features of the interstellar medium
in the solar neighborhood. At Galactic longitudes beyond roughly ±100◦, this pattern
turns into a dipolar structure, favoring negative values at the left edge of the map and
positive ones on the very right, as noted previously by Kronberg & Newton-McGee (2011).
This might be a signature of a toroidal magnetic field component that does not change
sign over the Galactic plane. But of course this could also be a local effect, independent
of the large-scale magnetic field.

Many other features are visible in the top panel of Fig. 4.3. We have marked some of the
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features that have already been discussed in the literature in Fig. 4.5 for easier reference.
Simard-Normandin & Kronberg (1980) identified three large regions (A, B, and C in

Fig. 4.5) with large angular size that stand out in Galactic Faraday depth amplitude. Stil
et al. (2011) narrowed the definitions of the regions A and C down to their more striking
parts using the NVSS RM catalog. Region A is a large area of negative Galactic Faraday
depth localized roughly at 80◦ < l < 150◦, −40◦ < b < −20◦. This region is seen in the
direction of radio Loop II, but there is little evidence that the two are associated. The
high-longitude boundary of region A coincides with part of the edge of Loop II. However,
pulsar rotation measures suggest that Region A extends more than 3 kpc along the line
of sight (Simard-Normandin & Kronberg 1980), which suggests that region A is a much
larger structure.

Region B of Simard-Normandin & Kronberg (1980) is associated with the Gum nebula.
Vallee & Bignell (1983) and Stil & Taylor (2007) identified a large magnetic shell in the
area. The arc of positive Galactic Faraday depth around 250 rad/m2 at −120◦ < l < −90◦,
b ≈ 13◦ (region b1 in Fig. 4.5) coincides with the northern Hα arc of the Gum nebula. A
small excess in Galactic Faraday depth (region b2 in Fig. 4.5) is associated with the nearby
HII region RCW 15 (l = −125◦, b = −7◦).

Region C is an area of positive Galactic Faraday depth in the range 33◦ < l < 68◦,
10◦ < b < 35◦ near the boundary of Radio Loop I. Wolleben et al. (2010) found diffuse
polarized emission at a Faraday depth of 60 rad/m2 at l ≈ 40◦, b ≈ 30◦ with associated
HI structure, and interpreted this structure as part of a separate super shell around a
subgroup of the Sco-Cen (Sco OB2 2).

Besides the Gum nebula, some extended HII regions at intermediate Galactic latitude
can be identified in the form of a localized excess in Galactic Faraday depth (Stil & Taylor
2007; Harvey-Smith et al. 2011). The HII regions Sh 2-27 around ζ Oph at l = 8◦, b = 23.5◦

(region d in Fig. 4.5) and Sivan 3 around α Cam at l = 144.5◦, b = 14◦ (region e in Fig. 4.5)
stand out as isolated regions of negative Galactic Faraday depth, while Sh 2-264 around
λ Ori (region f in Fig. 4.5) is visible as a positive excess at l = 195◦, b = −12◦. Stil et al.
(2011) presented an image of Hα intensity with rotation measure data overplotted.

Some large shells are also visible in the image of the Galactic Faraday depth. The
Galactic anti-center direction is the most favorable direction to see these large structures,
because it is less crowded than the inner Galaxy and the line of sight makes a large angle
with the large-scale magnetic field. The North Polar Spur (region g in Fig. 4.5) is the
notable exception toward the inner Galaxy. The filament of positive Galactic Faraday depth
at 180◦ < l < 200◦, b ≈ −50◦ (region h in Fig. 4.5) is associated with the wall of the Orion-
Eridanus superbubble (Heiles 1976; Brown et al. 1995). A large arc of positive Galactic
Faraday depth (region i in Fig. 4.5) rises north of the Galactic plane at around l ≈ 95◦ up
to b ≈ 65◦ around l = 180◦ and curves back to the Galactic plane at around l = 210◦ (Stil
et al. 2011). This arc of positive Galactic Faraday depth traces the intermediate-velocity
arch of atomic hydrogen gas identified by (Kuntz & Danly 1996).

Xu et al. (2006) reported RM excesses in the direction of the nearby Perseus-Pisces
and Hercules super clusters. The higher sampling provided by the new Faraday rotation
data catalogs has revealed high-latitude structures in the Galactic Faraday depth that
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warrant additional investigation of the Galactic foreground effect. Many more small- and
intermediate-scale features are visible in the top panel of Fig. 4.3. A detailed analysis of
these features is left for future work.

4.4.2 Reconstruction of the noise covariance

The extended critical filter adapts the correction factors (ηi)i, introduced in Sect. 4.2,
to make the error bars of the data conform with the local map reconstruction. This is
influenced by the surrounding data points and the angular power spectrum, which is in
turn reconstructed using the entire data. Oppermann et al. (2011b) showed that allowing
for this adaptation of the error bars leads to a slight oversmoothing of the reconstructed
map since small-scale features that are only supported by individual data points are easily
misinterpreted as noise.

In our reconstruction, we find that the median correction factor is η(med) = 0.56. This
indicates that the bulk of the data points are fairly consistent with one another and there-
fore with the reconstruction as well. As a consequence, their error bars are not enlarged
but are instead slightly decreased by the algorithm. Oversmoothing can therefore not be
a serious problem for the map as a whole. This is supported by the geometric mean of
the correction factors, for which we find η(geom) = 0.75. This corresponds to the arithmetic
mean on a logarithmic scale and its prior expectation value was tuned to be one. Looking
at the arithmetic mean on a linear scale, we find η(mean) = 6.40, indicating that there are
at least a few data points whose error bars are significantly corrected upward. Indeed,
there are 134 data points with ηi > 400, meaning that the error bar has been increased by
a factor of more than 20. These are isolated outliers in the data that are not consistent
with their surroundings.

Figure 4.6 shows the final distribution of η-values. The bulk of these values lies around
η = 1 or even slightly below. Only relatively few data points have highly increased error
bars (note the logarithmic scale of the vertical axis in Fig. 4.6). Also plotted in Fig. 4.6 is
the distribution of η-values that resulted from a reconstruction in which the slope parameter
in the prior for the correction factors was chosen to be β = 3, as well as the prior probability
distributions corresponding to β = 2 and β = 3. This shows two things. The resulting
distribution does not change much when the value of β is changed and both distributions
are better represented by a prior with β = 2. Our choice for β is thus justified.

The data points with η � 1 do not appear to be spatially clumped, making it im-
probable that any extended physical features that are present in the data are lost through
the increase in the assumed noise covariance. Any real features that might mistakenly be
filtered out in this procedure can be expected to be smaller or comparable in size to the
distance to the next data point, i.e. one or two pixels or about one degree in most parts
of the sky. The data points with strongly corrected error bars are predominantly located
near the Galactic plane. This can be clearly seen in Fig. 4.7, where we plot the distribu-
tion of the correction factors for three latitude bins separately. While the difference in the
distributions for the polar regions and the intermediate latitude bin is not very big, the
data points around the Galactic disk clearly are more likely to have correction factors at
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Figure 4.6: Comparison of the reconstructed distribution of the correction factors η that
enter the noise covariance matrix and their priors. The dark histogram and line show the
normalized distribution and prior for β = 2, respectively. The light histogram and line
show the same for β = 3.
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Figure 4.7: Comparison of the reconstructed distributions of the correction factors η for
different latitude bins. The dark solid histogram depicts the distribution for data points
within the Galactic plane, the light dashed histogram the distribution for data points
at intermediate latitudes, and the dotted histogram the one for data points in the polar
regions. Only the results obtained with β = 2 are shown.
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Figure 4.8: Comparison of the reconstructed distributions of the correction factors η for
the two data reduction techniques. The dark solid histogram depicts the distribution for
data points obtained from a linear λ2-fit and the light dashed histogram the distribution
for data points stemming from RM synthesis studies.

the high end. At least in some cases these high η-values can be interpreted as correcting an
offset in the rotation angle of π that has escaped the observational analysis. Others might
be due to a high level of polarized emissivity within the Galactic disk that can lead to
misleading RM fits. Another reason for high η-values is a higher extragalactic contribution
to the measured Faraday rotation, caused e.g. by magnetic fields in galaxy clusters. This
last reason, however, would not be expected to show any statistical latitude dependence.

As mentioned above, a non-trivial emission spectrum in Faraday space is hard to identify
when using linear λ2-fits to obtain RM values. We therefore compare the distributions of
the correction factors for data points from λ2-fits and the ones for data points that stem
from RM synthesis studies in Fig. 4.8. From the histograms it can indeed be seen that the
data from λ2-fits are more likely to have a high η-value, as expected.

Figure 4.9 shows a comparison of our reconstructed signal map with the reconstruc-
tion of Oppermann et al. (2011a), where the critical filter formalism was used without
accounting for uncertainties in the noise covariance and only data from the Taylor-catalog
were used. The differences that can be seen are twofold. On the one hand, our map shows
structure due to the additional data points that we used, most prominently at declinations
below −40◦. On the other hand, some of the features present in the older map have van-
ished because they were supported only by a single data point that was interpreted as being
noise-dominated by our algorithm. These features appear prominently both in the old map
and in the difference map, where our newly reconstructed map has been subtracted from
the old one. They have the same sign in both these maps. Also, our new reconstruction
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Figure 4.9: Comparison of the reconstruction of the dimensionless signal to earlier results.
The top panel shows the reconstructed signal field of Oppermann et al. (2011a), the middle
panel shows the same as the top panel of Fig. 4.3, only coarsened to a resolution of Nside =
64 to match the resolution of the old reconstruction. The bottom panel shows the difference
between the upper panel and the middle panel.
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Figure 4.10: Angular power spectrum of the dimensionless signal field (thick solid line),
along with a power law fit, C` ∝ `−2.17 (thick dashed line). The thin lines depict the
angular power spectra corresponding to the maps reconstructed by Dineen & Coles (2005),
corrected for the Galactic variance profile. The three RM catalogs used in their work are
from Simard-Normandin et al. (1981) (S81), Broten et al. (1988) (B88), and Frick et al.
(2001) (F01).

is less grainy. This is a combined effect of the higher resolution that we used and the
adaptation of error bars during our reconstruction.

4.4.3 Power spectrum

The reconstructed angular power spectrum of the dimensionless signal field is shown in
Fig. 4.10. It is well-described by a power law. A logarithmic least-squares fit, which is also
shown in Fig. 4.10, yields a spectral index of 2.17, i.e.

C` ∝ `−2.17, (4.13)

where we have taken scales down to ` = 300 into account. Note that owing to the typical
distance of neighboring data points of roughly one degree, structures smaller than this
angular size, corresponding to ` & 180, will in general not be reconstructed and we might
therefore be missing some power on the smallest scales. However, some data points have
smaller angular separations and we therefore have some information on the angular power
spectrum up to `max = 383.

Also shown in Fig. 4.10 is a comparison with the angular power spectra of the maps that
Dineen & Coles (2005) reconstructed. They created three separate maps from three differ-
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Figure 4.11: Second-order structure function corresponding to the angular power spectrum
plotted in Fig. 4.10 (thick solid line) and its power law fit (thick dashed line), along with
power law approximations (thin lines).

ent RM catalogs. We used the spherical harmonics components of their maps5, transformed
them into position space, and then divided them by our Galactic variance profile. We plot
the angular power spectra of the three resulting dimensionless maps. Evidently, both the
slope and the normalization of the spectra agree with our result. Haverkorn et al. (2003)
studied the angular power spectrum of rotation measures of diffuse polarized radio emission
from the local interstellar medium in two regions of the sky on scales 400 < ` < 1500. They
fitted power laws with exponents close to −1, i.e. C` ∝ `−1, significantly larger than our
result. This is not necessarily a contradiction, however, since a flattening of the angular
power spectrum on scales that are too small for our analysis could explain both results.
Furthermore, we take into account the full line of sight through the galaxy by using only
extragalactic sources, therefore the volume that we probe is significantly larger than that
probed by Haverkorn et al. (2003).

To compare our result to other earlier papers, we considered the second-order structure
function for the dimensionless signal field,

Ds(ϑ) =
〈

(s(n̂)− s(n̂′))2
〉
P(s)

= 2 (Sn̂n̂ − Sn̂n̂′) , (4.14)

where ϑ = arccos(n̂ · n̂′) and n̂ and n̂′ are two directions in the sky. Here, S denotes the
signal covariance matrix and the angle brackets denote a prior ensemble average. Since we
assume statistical homogeneity and isotropy for the signal field, Sn̂n̂ does not depend on n̂,

5Dineen & Coles (2005) provide their results at http://astro.ic.ac.uk/~pdineen/rm_maps/.

http://astro.ic.ac.uk/~pdineen/rm_maps/
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Sn̂n̂′ depends only on ϑ, and both terms are completely determined by the angular power
spectrum. This also allows us to exchange the usual spatial average with an ensemble
average in Eq. (4.14). The resulting structure function is plotted in Fig. 4.11. Using the
final angular power spectrum of our reconstruction (the solid line in Fig. 4.10), we find
a broken power law with exponents 0.65 for small angles and 0.26 for large angles with
the transition occuring around ϑ = 5◦ (the solid line in Fig. 4.11). The power law fit to
the angular power spectrum (the dashed line in Fig. 4.10) leads to a structure function
that can be approximated by a single power law with exponent 0.39 (the dashed line in
Fig. 4.11).

Minter & Spangler (1996) found that the structure function derived from their observa-
tions is well described by a power law with exponent 0.64 for angular scales of ϑ > 1◦. Sun
& Han (2004) studied the structure function in three different regions within the Galactic
plane and in the vicinity of the North Galactic pole. An inverse-noise-weighted average
of their power law indices yields a value of 0.11. Haverkorn et al. (2006a) and Haverkorn
et al. (2008) studied observations through interarm regions in the Galactic plane separately
from observations along Galactic arms. These authors found flat structure functions for the
observations along Galactic arms. Haverkorn et al. (2006a) found a weighted mean power
law index of 0.55 for the structure functions derived from observations through interarm
regions, while Haverkorn et al. (2008) found an inverse-noise-weighted mean power law in-
dex of 0.40. Haverkorn et al. (2003) found flat structure functions for the two regions they
studied. Roy et al. (2008) found a structure function for the region around the Galactic
center that is constant on scales above ϑ = 0.7◦ and exhibits a power law behavior with
an exponent of 0.7 on smaller scales. Stil et al. (2011) fitted broken power laws with the
breaking point at ϑ = 1◦ to the structure functions they extracted from the NVSS rotation
measure catalog (Taylor et al. 2009). They found power law indices that vary spatially.
Taking an inverse-noise-weighted average of their power law indices for the regions that
they studied in detail yields 0.37 for ϑ > 1◦ and 0.59 for ϑ < 1◦.

These observational results indicate that the slope of the structure function varies from
region to region. Our result is insensitive to these variations since our structure function
is just a description of the prior for the dimensionless signal, for which we have assumed
statistical isotropy. It can therefore be interpreted as a mean structure function across
the whole sky. The observations that yield non-flat structure functions roughly agree with
the slopes that we fitted in Fig. 4.11. The dependence of the structure function slope on
Galactic latitude (e.g. Simonetti et al. 1984; Sun & Han 2004) is partly removed in our
analysis by the division through the Galactic variance profile. Note that Simonetti et al.
(1984) and Simonetti & Cordes (1986) already suspected a break in the structure function
at roughly five degrees. However, existing studies have not shown convincing evidence for
this.

Consequences for the 3D fields

As an illustrative thought experiment, assume that an observer is sitting in the middle of
a spherical distribution of magnetoionic medium. Let ϕ̃(~x) ∝ ne(~x)Br(~x) be the product
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of the local thermal electron density and the line-of-sight component of the magnetic field
as a function of 3D position ~x, i.e. the differential contribution to the Faraday depth that
this observer is measuring. We model this field as factorizing into two parts,

ϕ̃(~x) = ϕ̄(r)ϕ(~x). (4.15)

The first part is a spherically symmetric contribution, whose functional dependence on
the radial distance from the observer is known, and the second part is assumed to be a
realization of a statistically homogeneous and isotropic random field, i.e.〈

ϕ(~k)ϕ∗(~k′)
〉

= (2π)3 δ(3)(~k − ~k′)Pϕ(k), (4.16)

where the angle-brackets denote an average over all possible field realizations, Pϕ(k) is the

Fourier power spectrum6 that describes the statistics of ϕ, and k =
∣∣∣~k∣∣∣.

Using the simplest form of ϕ̄(r), namely a constant within some finite radius r0, i.e.

ϕ̄(r) =

{
ϕ0 if r < r0

0 else
, (4.17)

and a power law for the Fourier power spectrum,

Pϕ(k) ∝ k−α, (4.18)

we calculated the angular power spectrum of the Faraday depth that the observer would
measure and compared the result numerically with Eq. (4.13) (see App. D for the details
of the calculation). We find that the two agree well if one chooses α roughly equal to the
power law index that was found for the angular power spectrum, i.e. 2.17 in this case.

A similar thought experiment has been conducted by Simonetti et al. (1984). They

assumed a Fourier power spectrum Pϕ(k) ∝ exp (−k2/k2
1) (1 + k2/k2

0)
α/2

, i.e. a power law
with a low-wavenumber cutoff at k0 and a high-wavenumber cutoff at k1, and calculated
the expected structure function. In the power law regime, i.e. 1/k1 � r0 sinϑ � 1/k0,
they found Ds(ϑ) ∝ ϑα−2 to lowest order in ϑ. Extending this study to independent
variations in the thermal electron density and the magnetic field component along the line
of sight, each described by a power law power spectrum with the same index α, Minter &
Spangler (1996) found the same dependence on ϑ.7 Our intermediate fit of Ds(ϑ) ∝ ϑ0.39

(see Fig. 4.11) therefore corresponds to α = 2.39, in rough agreement with our numerical
finding from the power spectrum analysis.

Armstrong et al. (1995) used observations of effects of interstellar radio scintillation
(see also Rickett 1977, 1990), as well as pulsar dispersion measures, to constrain the power
spectrum describing the fluctuations of the thermal electron density in the local interstellar

6Note that the definition of the Fourier power spectrum made in Eq. (4.16) corresponds to what is
sometimes referred to as the 3D power spectrum, i.e. the variance of the field ϕ at each position ~x in real
space can be calculated as

〈
ϕ2(~x)

〉
∝
∫∞
0

dk k2Pϕ(k).
7Minter & Spangler (1996) assume a rectangular shape for ϕ0 instead of a spherical one.
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medium. They found a Kolmogorov-type power spectrum, i.e. a power law index of α =
11/3 in the present notation. This result was combined by Minter & Spangler (1996) with
their own observations of rotation measures of extragalactic sources. Since they did not
find the slope expected from the Kolmogorov power law in the structure function of the
rotation measure they observed, they concluded that the outer scale of the Kolmogorov-
type turbulence is smaller than the smallest scale probed by their RM observations. They
fitted model structure functions for the variations of the thermal electron density and the
magnetic field to their own observations of RM, as well as observations of Hα intensity and
Hα velocity performed by Reynolds (1980), while also taking into account the results of
Armstrong et al. (1995) on smaller scales. This procedure led to an estimate of the angular
scale corresponding to the outer scale of the turbulence in the region of their observations of
ϑ(out) . 0.1◦. Although the outer scale of the turbulence may well vary across the Galaxy,
it is probably safe to assume that the scales larger than one degree, which are mainly
probed by the observations used in this work, are not dominated by three-dimensional
turbulence. Whether or not the simple power law behavior of the angular power spectrum
in Eq. (4.13) points to some sort of interaction between the fluctuations on different scales
is at the moment an open question.

In any case it is clear that the simplifying assumptions made in the thought experiments
presented above are far from the truth in the Galactic setting. A more realistic study will
likely have to involve numerical magneto-hydrodynamical simulations of the interstellar
medium, which have become more and more sophisticated over the last years (see e.g. de
Avillez & Breitschwerdt 2007; Kissmann et al. 2008; Burkhart et al. 2009; Tofflemire et al.
2011). Cross-checking the angular power spectrum of the Faraday depth that is predicted
by such a simulation against Eq. (4.13) might be a good indicator of how realistic the
simulation actually is. For this, an empiric variance profile would have to be calculated
from the simulated observations to create a dimensionless signal field comparable to our
reconstruction. Numerical studies will also be able to show whether the simple power law
that we find for the angular power spectrum is a functional form that arises generically or
an outcome that needs certain ingredients. This may then enable a physical interpretation
of the angular power spectrum that we find. On the other hand, if simulations show that
different physical processes are needed to create the fluctuation power on different angular
scales, our result will directly constrain the relative strength of these processes.

4.5 Conclusions

We have presented a map of the Galactic Faraday depth that summarizes the current state
of knowledge, along with its uncertainty. For the map reconstruction we used the extended
critical filter, a state-of-the-art algorithm, yielding a result that is robust against individual
faulty measurements. It is this robustness, along with the usage of the most complete data
set on the Faraday rotation of extragalactic sources to date, and the high resolution that
we are therefore able to reach, that make our map an improvement over existing studies.
Along with the map, the reconstruction algorithm yields the angular power spectrum of
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the underlying signal field, C` ∝ `−2.17, which agrees with earlier work. We discussed the
implications of this power spectrum for the statistics of the 3D quantities involved in a
greatly simplified scenario and suggested future work on simulations with the possibility
of checking predicted angular power spectra against our observational result.

All products of this work, i.e. the maps and their uncertainties, as well as the angular
power spectrum, are made available to the community8 for further analysis, interpretation,
and for use in other work where the Galactic Faraday depth plays a role.

8See http://www.mpa-garching.mpg.de/ift/faraday/ for a fits-file containing all the results and an
interactive map to explore the Galactic Faraday sky.

http://www.mpa-garching.mpg.de/ift/faraday/
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Table 4.1: Details of the surveys used for the map reconstruction (footnotes on
page 100).

identifyer telescope survey # observed wavelengths

Bonafede(1) VLA 3-5
Broten(2) various(b) various(b)

Brown CGPS(3) DRAO ST CGPS(4) 4
Brown SGPS(5) ATCA SGPS(6) 12
Clarke(7) VLA 4,6
Clegg(8) VLA 6
Feain(9) ATCA Cent. A(10) 24
Gaensler(11) ATCA SGPS test 9
Hammond(12) ATCA 23
Heald(13) WSRT WSRT-SINGS(14) 1024
Hennessy(15) VLA 4
Johnston-Hollitt A(16) ATCA 23
Johnston-Hollitt B(17) ATCA 4
Kato(18) Nobeyama 4(d)

Kim(19) various(e) various(e)

Klein(20) VLA & Effelsberg B3/VLA(21) 4
Lawler(22) various(f) (23) various(f)

Mao SouthCap(24) ATCA 32
Mao NorthCap(24) WSRT 16
Mao LMC(25) ATCA 14
Mao SMC(26) ATCA 14
Minter(27) VLA 4
Oren(28) VLA 4,6
O’Sullivan(29) ATCA 100
Roy(30) ATCA & VLA 4 and more
Rudnick(31) VLA 2
Schnitzeler(32) ATCA 12
Simard-Normandin(33) various(j) various(j)

Tabara(34) various(k) various(k)

Taylor(35) VLA NVSS(36) 2
Van Eck(37) VLA 14
Wrobel(38) VLA 6
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Table 4.2: Details of the data sets used for the map reconstruction (footnotes
on page 100).

identifyer frequency range / MHz method # data points

Bonafede(1) various(a) λ2-fit 7
Broten(2) various(b) λ2-fit 121+3/2(c)

Brown CGPS(3) 1 403-1 438 λ2-fit 380
Brown SGPS(5) 1 332-1 436 λ2-fit 148
Clarke(7) 1 365-4 885 λ2-fit 125
Clegg(8) 1 379-1 671 λ2-fit 56
Feain(9) 1 280-1 496 RM synthesis 281
Gaensler(11) 1 334-1 430 λ2-fit 18
Hammond(12) 1 332-1 524 RM synthesis 88
Heald(13) 1 300-1 763 RM synthesis 57
Hennessy(15) 1 362-1 708 λ2-fit 17
Johnston-Hollitt A(16) 1 292-1 484 RM synthesis 68
Johnston-Hollitt B(17) 1 384-6 176 λ2-fit 12
Kato(18) 8 800-10 800(d) λ2-fit 1
Kim(19) various(e) λ2-fit 20+1/2(c)

Klein(20) 1 400-10 600 λ2-fit 143
Lawler(22) various(f) λ2-fit 3
Mao SouthCap(24) 1 320-2 432 RM synthesis 329
Mao NorthCap(24) 1 301-1 793 RM synthesis 400
Mao LMC(25) 1 324-1 436 RM synthesis 188
Mao SMC(26) 1 324-1 436 λ2-fit 62
Minter(27) 1 348-1 651 λ2-fit 98
Oren(28) various(g) λ2-fit 51+4/2(c)

O’Sullivan(29) 1 100-2 000 RM synthesis 46
Roy(30) various(h) λ2-fit 67
Rudnick(31) 1 440-1 690 λ2-fit 17+2/2(c)

Schnitzeler(32) 1 320-1 1 448(i) RM synthesis 178
Simard-Normandin(33) various(j) λ2-fit 535+6/2(c)

Tabara(34) various(k) λ2-fit 62+3/2(c)

Taylor(35) 1 344-1 456 λ2-fit 37 543
Van Eck(37) 1 353-1 498 RM synthesis(l) 194
Wrobel(38) 1 373-1 677 λ2-fit 5+1/2(c)
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(1) Bonafede et al. (2010) (2) Broten et al. (1988) (3) Brown et al. (2003a)
(4) Taylor et al. (2003) (5) Brown et al. (2007) (6) Haverkorn et al. (2006b);
McClure-Griffiths et al. (2005) (7) Clarke et al. (2001); Clarke (2004)
(8) Clegg et al. (1992) (9) Feain et al. (2009) (10) Feain et al. (2011)
(11) Gaensler et al. (2001) (12) Hammond (private communication)
(13) Heald et al. (2009) (14) Braun et al. (2007) (15) Hennessy et al. (1989)
(16) Johnston-Hollitt (in prep.) (17) Johnston-Hollitt (2003); Johnston-
Hollitt & Ekers (2004) (18) Kato et al. (1987) (19) Kim et al. (1991)
(20) Klein et al. (2003) (21) Gregorini et al. (1998); Vigotti et al. (1999)
(22) Lawler & Dennison (1982) (23) Dennison (1979) (24) Mao et al. (2010)
(25) Mao (in prep.); Gaensler et al. (2005) (26) Mao et al. (2008)
(27) Minter & Spangler (1996) (28) Oren & Wolfe (1995)
(29) O’Sullivan (private communication) (30) Roy et al. (2005) (31) Rudnick
& Jones (1983) (32) Schnitzeler (in prep.) (33) Simard-Normandin et al.
(1981) (34) Tabara & Inoue (1980) (35) Taylor et al. (2009)
(36) Condon et al. (1998) (37) Van Eck et al. (2011) (38) Wrobel (1993)
(a) Three different frequency ranges, 4 510-8 490 MHz, 4 510-8 300 MHz, 1 340-
4 960 MHz, were used.
(b) Compilation of several previously published data sets.
(c) Data points that seem to be duplications of the same observations, ap-
pearing in two different catalogs, are used only once and denoted as half
data points for both catalogs, so that the sum of the data points is the total
number of data points used.
(d) Additional data from Tabara & Inoue (1980) used in the fit.
(e) Compilation of several earlier data sets, including an unpublished one for
which no details are provided.
(f) Compilation of several earlier data sets and the one described in Dennison
(1979).
(g) Three different frequency ranges, 1 360-1 690 MHz, 1 373-4 898 MHz, 1 373-
4 990 MHz, were used.
(h) The frequency range is 4 736-8 564 MHz for the ATCA observations and
4 605-8 655 MHz for the VLA observations.
(i) The frequency range is shifted to lower frequencies by up to 40 MHz for
some sources.
(j) RMs calculated from previously published and unpublished data, as well
as new measurements with various instruments.
(k) RMs calculated from previously published polarization data.
(l) λ2-fits were also produced and found to agree with the synthesis results.



Chapter 5

Reconstruction of Gaussian and
log-normal fields with spectral
smoothness

Note: This chapter, as well as Appendix E, has been submitted for publication in Physical
Review E (Oppermann et al. 2012b).

5.1 Introduction

Reconstructing continuous fields from a finite and noisy data set is a problem encountered
often in all branches of physics and the geo-sciences. In this paper we develop a method to
reconstruct a log-normal field, i.e. a field whose logarithm can be modeled as a Gaussian
random field, defined on an arbitrary manifold. We show simple one-dimensional examples
as well as planar and spherical two-dimensional cases.

The log-normal model is well suited to describe many physical fields. Its main features
are that the field values are guaranteed to be positive, that they may vary across many
orders of magnitude, and that spatial correlations may exist. One prominent example
from the discipline of astrophysics that exhibits these three features and is therefore often
modeled as a log-normal field is the matter density in today’s universe (see e.g. Coles &
Jones 1991). The simplest way to observationally estimate the matter density is to count
the galaxies per volume. The relationship between the matter density and the galaxy
number counts can be approximated as a Poisson process (e.g. Kitaura & Enßlin 2008;
Kitaura et al. 2010; Jasche et al. 2010a; Jasche & Wandelt 2012), thus making the data
likelihood Poissonian as well with the expected number of galaxies per volume element given
as a function of the underlying log-normal density field. In the statistical literature, such
a combination of a log-normal field with Poissonian statistics is known as a log Gaussian
Cox process (Møller et al. 1998). This model has been applied in fields as diverse as finance
(Basu & Dassios 2002), agriculture (Brix 2001), atmospheric studies (Pati et al. 2011), and
epidemiology (Brix & Diggle 2001; Benes̆ et al. 2002).
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The main motivation for our work, however, comes from astronomical observations of
radiative processes. The intensity of radiation coming from different directions in such ob-
servations can vary over many orders of magnitude while being spatially correlated. Thus
applying a log-normal model for its statistical description seems natural. While photon
counts bring with them a Poissonian likelihood, the observational uncertainty can be ap-
proximatively regarded to be Gaussian in the limit of large photon numbers. Therefore, we
restrict ourselves to cases in which the measurement noise can be assumed to be additive
and Gaussian.

Apart from the noise contribution, we will assume a deterministic linear relationship
between the log-normal field and the data. This model is general enough to accomodate
a large variety of observational settings, such as targeted point-wise observations across
limited areas, convolutions of the log-normal field, interferometric observations leading to
a Fourier transformed version of the log-normal field, or any combination of these effects.

The inclusion of spatial correlations in the field model is necessary for an accurate
statistical description and will aid in the reconstruction. If the spatial correlation structure
is known, knowledge of the field values at some locations can be used to extrapolate the
field into regions where the field value has not been measured or the observations have
a higher uncertainty. However, in general it is not known a priori how strongly the field
is correlated across a given distance. In the case of a statistically homogeneous field,
the correlation structure is described by the field’s power spectrum. So if one wants to
make use of the spatial correlations during the reconstruction, one needs to simultaneously
infer the power spectrum. Several techniques have been developed to solve this problem
for Gaussian fields (e.g Wandelt et al. 2004; Jasche et al. 2010b). One such technique
was derived within the framework of information field theory (Enßlin et al. 2009; Lemm
2003) by Enßlin & Frommert (2011) and later rederived by Enßlin & Weig (2010), where
the formalism of minimum Gibbs free energy was introduced and employed to tackle this
problem. In the same paper, the problem of inferring a log-normal field with unknown
power spectrum in the presence of Poissonian noise was briefly discussed. Kitaura et al.
(2012) use a Gibbs sampling procedure to reconstruct a log-normal field along with its
power spectrum from Poissonian distributed data.

Here, we use the formalism of minimum Gibbs free energy to derive filter equations for
the estimation of a log-normal field from data including a Gaussian noise component. The
filter we present results in an estimate of the field, its power spectrum, and the respective
uncertainties.

A problem that often arises when reconstructing power spectra is that the reconstructed
power spectra do not turn out smooth, especially on scales with little redundancy, despite
the true underlying spectra being smooth. One reason why this is not desirable is that
sharp kinks and drop-offs in the power-spectrum can lead to ringing effects in the recon-
structed field estimate. Another reason is that many of the fields occuring in nature are
actually expected to have smoothly varying power over different scales since neighboring
scales interact. One prominent example is the power spectrum of a viscous turbulent fluid
(Kolmogorov 1941). Smoothness of the power spectrum is often enforced by an ad-hoc
smoothing step in the power spectrum reconstruction (Oh et al. 1999; Oppermann et al.
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2011a, 2012a). Here, we follow an idea presented by Enßlin & Frommert (2011) and show
how to enforce spectral smoothness by introducing an appropriate prior for the power
spectrum that punishes non-smooth spectra. We demonstrate the feasibility of this ap-
proach using one specific example for such a smoothness prior both for the reconstruction of
Gaussian and log-normal fields and discuss the range of applicability of the chosen spectral
smoothness prior. Our approach also allows for the estimation of a complete uncertainty
matrix for the estimated power spectrum.

We first develop the formalism of the spectral smoothness prior for the case of Gaussian
signal fields in Sec. 5.2, where we show how to derive the filter formulas of Enßlin &
Frommert (2011) and Enßlin & Weig (2010) in a different way that easily accomodates an
additional smoothness prior. After demonstrating the workings of the spectral smoothness
prior, we use the Gibbs free energy formalism to derive filter formulas for the log-normal
case and transfer the spectral smoothness results to this case in Sec. 5.3. We demonstrate
the performance of our log-normal reconstruction algorithm in a variety of test cases in
Sec. 5.3.2 and conclude in Sec. 5.4.

5.2 Reconstructing Gaussian fields with spectral

smoothness

First, we need to introduce some basic assumptions and notation. We mainly follow the
notation that is used throughout the literature on information field theory (e.g. Enßlin
et al. 2009).

Throughout the paper, we assume that we are analyzing a set of data d = (d1, . . . , dr) ∈
Rr that depends on an underlying signal field s : M −→ R, subject to additive noise
n = (n1, . . . , nr) ∈ Rr,

d = f(s) + n. (5.1)

Here, M is the discrete or continuous space or manifold that the signal is defined on. In
Sec. 5.3 we will discuss the examplesM = S1, S2, and T 2. In this section, we assume the
relationship between signal field and data to be linear, described by a response operator
R, so that

d = Rs+ n. (5.2)

In most applications, the response operator will include some instrumental or observational
effects such as observations in specific locations of M, convolutions of s with an instru-
mental response function, or a Fourier transform of the signal field. The only restriction
that we make here is that the operation that generates the data from the signal has to
be linear in the signal. Finally, we restrict ourselves to real-valued signals only in the
interest of notational simplicity. All our results can be straightforwardly generalized to
complex-valued signal fields.

For the noise n, we assume Gaussian statistics,

n←↩ G(n,N), (5.3)
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described by a not necessarily diagonal covariance matrix N . Here, G(φ,Φ) denotes a
multi-variate Gaussian probability distribution function with covariance Φ,

G(φ,Φ) =
1

|2πΦ|1/2
exp

(
−1

2
φ†Φ−1φ

)
. (5.4)

We use the †-symbol to denote a transposed (and in general complex conjugated) quan-
tity and take the limit of an infinite-dimensional Gaussian whenever the argument is a
continuous field, with the appropriate limit of the scalar product

φ†ψ =

∫
M

dxφ(x)ψ(x) ∀ φ, ψ : M−→ R. (5.5)

In this section we will deal with the case that the signal field s can also be regarded –
or at least approximated – as a zero-mean Gaussian random field with covariance S,

s←↩ G(s, S). (5.6)

It can be straightforwardly shown (e.g. Enßlin et al. 2009) that the posterior mean m of
the signal field under these assumptions is given by

m =

∫
Ds sP(s|d) = Dj. (5.7)

Here,
∫
Ds denotes an integral over the configuration space of all possible signal realiza-

tions. The operator

D =
(
S−1 +R†N−1R

)−1
(5.8)

is known as the information propagator and the field

j = R†N−1d (5.9)

is called information source.
In these formulas, the presence of the Gaussian signal prior described by the signal

covariance serves as a means of regularization of the sought continuous signal field recon-
struction which otherwise is under-determined when only constrained by the finite and
noisy data set. However, in most physical applications, the signal covariance is not known
a priori. The problem of reconstructing Gaussian fields with unknown signal covariances
has in principle been solved (Enßlin & Frommert 2011; Enßlin & Weig 2010; Wandelt
et al. 2004; Jasche et al. 2010b), and even an unknown noise covariance can be overcome
(Oppermann et al. 2011b).

Enßlin & Weig (2010) use the formalism of minimum Gibbs free energy to derive filter
formulas to be applied to the data set when the signal’s covariance is unknown. We will
recapture this formalism briefly in Sec. 5.3, where we employ it to reconstruct log-normal
signal fields.
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Under the assumption of statistical homogeneity and isotropy, the unknown signal
covariance becomes diagonal in the harmonic eigenbasis, i.e. the Fourier basis for signals
defined on Euclidean space and the spherical harmonics basis for signals defined on the
sphere. In the following, we denote as ~k the vector of parameters determining one mode in
the harmonic decomposition, i.e. ~k = (k1, . . . , kn) for n-dimensional Euclidean space and
~k = (`,m) for the two-sphere, where ` is the angular momentum quantum number and m
the azimuthal one. Furthermore, k shall stand for the scale of the harmonic component,
i.e. k =

√
k2

1 + · · ·+ k2
n and k = ` for Rn and S2, respectively.

Due to the isotropy assumption, the diagonal of the signal covariance matrix, the sig-
nal’s power spectrum Pk, depends only on the scale k and not on the specific mode ~k, i.e.

S~k~k′ = δ~k~k′Pk. (5.10)

Under these symmetry assumptions, the filter formulas derived by Enßlin & Weig (2010)
can be written as

m = Dj, (5.11)

Pk =
1

αk − 1 + ρk
2

qk +
1

2

∑
{~k′|k′=k}

(∣∣m~k′

∣∣2 +D~k′~k′

) . (5.12)

Note that the first of these equations is the same as in the case of a known signal covariance,
Eq. (5.7), a generalized Wiener filter (Enßlin et al. 2009). Here, αk and qk are parameters
used to determine the priors for the spectral coefficients Pk (see Sec. 5.3 for details) and

ρk =
∑
{~k′|k′=k}

1 (5.13)

is the number of degrees of freedom on the scale k.
This formalism has been successfully applied for astrophysical reconstructions

(Oppermann et al. 2011a, 2012a) and in a more abstract computational setting (Selig
et al. 2012). In these applications, Eqs. (5.11) and (5.12) were simply iterated. However,
they were supplemented with an additional ad-hoc smoothing step for the power spectrum
as part of each iteration.

To illustrate the usefulness of a smoothing step, we set up a simple one-dimensional
test-case. Here, we assume that our signal field is defined on the one-sphere S1, i.e. the
interval [0, 1) with periodic boundary conditions, which we discretize into 100 pixels. We
make up a power spectrum for the signal of the form

Pk = P0

(
1 +

(
k

k0

)2
)−γ/2

, (5.14)

where we choose P0 = 0.2, k0 = 5, and γ = 4. Figures 5.1 and 5.2 show the power spectrum
and the signal realization randomly drawn from it, respectively.
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Figure 5.1: Power spectra of the one-dimensional test-case. The black solid line shows the
theoretical power spectrum, the blue dashed line the power in the randomly drawn signal
realization studied here, and the green dotted line shows the power spectrum reconstructed
without smoothing. The horizontal dotted line indicates the noise power, given by σ2

n/100.

Furthermore, we assume that we have measured the signal field in each of the 100 pixels
once, subject to homogeneous and uncorrelated Gaussian noise with variance σ2

n = 0.1. In
the formalism of Eq. (5.2), this corresponds to R = 1 and N = σ2

n1. The data realization
is also shown in Fig. 5.2.

We overplot in Figs. 5.1 and 5.2 the power spectrum and map reconstruction, respec-
tively, obtained by iterating Eqs. (5.11) and (5.12) without smoothing. While the signal
reconstruction suffers from some too pronounced small-scale fluctuations, the reconstructed
power spectrum fluctuates wildly for k > 10 and is therefore not trustworthy at all on these
scales. The scales on which the reconstructed power by chance peaks above the noise level
are the ones that are especially misrepresented in the reconstructed signal field.

This example should serve to illustrate that some kind of spectral smoothing is neces-
sary, especially in cases where one is interested in the power spectrum itself. In Fig. 5.2 we
also show a comparison to the Wiener filter reconstruction, i.e. Eq. (5.7), using the true
power spectrum. In the bottom panel of Fig. 5.2 it can be seen that the residuals, i.e. the
differences between the true signal and its reconstruction, are reduced if a power spectrum
is used that is closer to the true one. Smoothness is one aspect of the true power spectrum
that can be used to constrain its reconstruction.

The two-point correlation function of the signal provides another way of looking at
the smoothness property of its power spectrum. For a statistically homogeneous signal,
the power spectrum is the Fourier transform of the correlation function and vice versa.
Thus, a power spectrum that exhibits fluctuations on arbitrarily small scales in k-space
corresponds to a signal that exhibits correlations over arbitrarily large scales in position
space. Turning this argument around, any signal with correlations only over a finite range
in position space or at least correlations that are decreasing rapidly with distance will have
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Figure 5.2: Signal reconstruction in the one-dimensional test-case. The blue solid line
shows the randomly drawn signal realization, the crosses are noisy data points used to do
the reconstruction, the green dashed line shows the signal reconstruction obtained without
spectral smoothing and the red dotted line is the Wiener filter reconstruction. The lower
panel shows the same with the true signal substracted.
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a power spectrum that does not exhibit any features on arbitrarily small scales in k-space.
Thus, the power spectrum can be expected to be smooth on the reciprocal scale of the
typical correlation length scale.

In the remainder of this section, we will show how to incorporate a prior enforcing
spectral smoothness into the formalism presented thus far.

5.2.1 Reconstruction as a combination of posterior mean and
maximum a posteriori

Before incorporating a spectral smoothness prior into the derivation of Eqs. (5.11) and
(5.12), we will rederive them in a way different from the one presented by Enßlin &
Frommert (2011); Enßlin & Weig (2010).

As was already mentioned, Eq. (5.11) corresponds to the posterior mean of the signal
under the assumption of a known covariance matrix, i.e. a known power spectrum. Since
the posterior probability distribution is Gaussian in this case, its mean also maximizes the
probability, so that m is the posterior mean and the maximum a posteriori solution at the
same time,

m =

∫
Ds sP(s|d, P ) = argmax

s
{P(s|d, P )} . (5.15)

Here, we will show that Eq. (5.12) can be written as a maximum a posteriori solution
as well, considering the signal-marginalized posterior

P(P |d) =

∫
DsP(s, P |d). (5.16)

In order to do this, we first have to define a prior for the power spectrum P . In accordance
with Enßlin & Frommert (2011); Enßlin & Weig (2010), we choose independent inverse-
gamma distributions for each spectral component Pk,

P(P ) =
∏
k

PIG(Pk)

=
∏
k

1

qkΓ(αk − 1)

(
Pk
qk

)−αk
exp

(
− qk
Pk

)
. (5.17)

Here, Γ(·) denotes the gamma function, qk is a parameter defining the location of an
exponential cut-off at low values of Pk, and αk defines the slope of a power-law for large
values of Pk. By tuning these parameters, the prior can be narrowed or widened according
to the a priori knowledge about the power spectrum. Taking the limit qk → 0 and αk → 1
turns the inverse-gamma distribution into Jeffreys prior which is flat on a logarithmic scale.
In the examples presented in this paper we always take this limit in the final filter formulas.

In the following, we will work with the logarithmic spectral components

pk = logPk. (5.18)
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The corresponding prior for these can be straightforwardly derived from the conservation
of probability under variable transformations and reads

P(p) = P(P )

∣∣∣∣dPdp
∣∣∣∣

=
∏
k

qαk−1
k

Γ(αk − 1)
e−(αk−1)pk exp

(
−qke−pk

)
. (5.19)

Using this prior, we can calculate the signal-marginalized probability of data and power
spectrum, P(d, p), and its negative logarithm, the Hamiltonian

H(d, p) = − logP(d, p)

= − log

∫
DsG(d−Rs,N)G(s, S)P(p)

=
1

2
tr (logS)− 1

2
tr (logD)− 1

2
j†Dj

+
∑
k

(
(αk − 1) pk + qke

−pk
)

+ const., (5.20)

where we have made use of the definitions (5.8) and (5.9) and have collected all terms
that do not depend on the power spectrum into an unimportant additive constant. Using
the spectral dependence of the signal covariance matrix in a statistically homogeneous and
isotropic setting, Eq. (5.10), we can take the derivative of the Hamiltonian with respect to
one pk and equate it to zero, thus maximizing the posterior probability of the logarithmic
power spectrum. The resulting equation is exactly Eq. (5.12) for Pk = epk if one makes the
identification m = Dj.

Thus we have shown that the filter formulas, Eqs. (5.11) and (5.12), can be derived as
a combination of posterior mean for the signal reconstruction and maximum a posteriori
for the power spectrum. This effectively means that we have made the approximation

m =

∫
Ds sP(s|d)

=

∫
Ds
∫
Dp sP(s|d, p)P(p|d)

≈
∫
Ds
∫
Dp sP(s|d, p) δ

(
p− p(MAP)

)
, (5.21)

i.e. we have approximated the posterior probability distribution for the power spectrum
with a delta distribution centered on its maximum.

It may be worth noting that in the formalism of the maximum a posteriori solution for
the power spectrum, it is straightforward to derive a rough uncertainty estimate as well.
The Hessian of the Hamiltonian gives the curvature of the posterior probability distribution
and its inverse can thus be regarded as an uncertainty matrix. For the Hamiltonian given
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in Eq. (5.20) we obtain

∂2H(d, p)

∂pk∂pk′

∣∣∣∣
p=p(MAP)

=
(
αk − 1 +

ρk
2

)
δkk′

−1

2
e−pk−pk′

∑
{~q|q=k}
{~q′|q′=k′}

(
2<
(
m~qm

∗
~q′D~q~q′

)
+ |D~q~q′ |2

)∣∣∣∣∣∣∣∣
p=p(MAP)

, (5.22)

where <(·) denotes the real part of a complex number.

5.2.2 Spectral smoothness priors

Here, we show how to incorporate a spectral smoothness prior into the formalism developed
in the previous section. We do this by augmenting the inverse-gamma distributions previ-
ously assumed as the spectral prior with a probability distribution that enforces smoothness
of the power spectrum, so that

P(p) = Psm(p)
∏
k

PIG(pk). (5.23)

As an example, we choose a smoothness-enforcing prior of the shape

Psm(p) ∝ exp

(
− 1

2σ2
p

∫
d(log k)

(
∂2 logPk

∂ (log k)2

)2
)
. (5.24)

This prior is maximized by any power-law power spectrum and punishes deviations from
such a shape. The strength of the punishment is determined by the parameter σp. Other
useful shapes for a smoothness prior could contain the first logarithmic derivative, pun-
ishing steep spectra, or simple derivatives with respect to k, punishing abrupt changes in
the power spectrum. To illustrate the meaning of such smoothness priors and point out
possible caveats, we discuss a few specific cases in App. E.1.

The spectral smoothness prior, Eq. (5.24), can be written as a Gaussian in p = logP ,

Psm(p) ∝ exp

(
−1

2
p†Tp

)
, (5.25)

where the linear operator T includes both the second derivative and the scaling constant
σ2
p. The detailed form of the operator T that we use in our calculations can be found in

App. E.2.
Introducing this prior corresponds to adding the term 1

2
p†Tp to the Hamiltonian in

Eq. (5.20). Taking its derivative with respect to one pk and equating the result with zero,
we now get

epk =
qk + 1

2

∑
{~k′|k′=k}

(∣∣m~k′

∣∣2 +D~k′~k′

)
αk − 1 + ρk

2
+ (Tp)k

. (5.26)
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Figure 5.3: Power spectra of the one-dimensional test-case with smoothness prior. The
black solid line shows the theoretical power spectrum, the blue dashed line the power
spectrum reconstructed with a smoothness prior with σ2

p = 1000, and the green dotted
line the reconstruction with a stiffer smoothness prior with σ2

p = 10. The hatched regions
around the dashed and dotted lines are the corresponding one-sigma uncertainty regions
estimated from the inverse Hessian of the Hamiltonian. The horizontal dotted line indicates
the noise level.

The only point in which this equation differs from Eq. (5.12) is the extra term Tp in the
denominator. As before, we can calculate the inverse Hessian of the Hamiltonian as an
approximate uncertainty matrix. The Hessian is

∂2H(d, p)

∂pk∂pk′

∣∣∣∣
p=p(MAP)

=
(
αk − 1 +

ρk
2

+ (Tp)k

)
δkk′ + Tkk′

−1

2
e−pk−pk′

∑
{~q|q=k}
{~q′|q′=k′}

(
2<
(
m~qm

∗
~q′D~q~q′

)
+ |D~q~q′ |2

)∣∣∣∣∣∣∣∣
p=p(MAP)

. (5.27)

5.2.3 Test-cases

Using the same one-dimensional test-case as shown in Figs. 5.1 and 5.2, we perform a
reconstruction using the spectral smoothness prior given in Eq. (5.24). The resulting power
spectra using a moderate strength for the prior with σ2

p = 1000 and a strict smoothness
prior with σ2

p = 10 are shown in Fig. 5.3. Clearly, the new reconstructions are a much
better approximation to the shape of the theoretical power spectrum than the one shown in
Fig. 5.1. Also, as expected, the power spectrum obtained when using the strict smoothness
prior turns out smoother and more closely resembles a power law.

Also shown in Fig. 5.3 is an uncertainty estimate for the reconstructed power spectra,
obtained from the Hessian of the Hamiltonian. Taking a one-sigma uncertainty estimate
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Figure 5.4: Inverse Hessian of the Hamiltonian with a smoothness prior with σ2
p = 1000.

Plotted is the full matrix given by the inverse of Eq. (5.27), evaluated at p = p(MAP). The
diagonal of this matrix can be translated into the uncertainty interval plotted in Fig. 5.3,
however, that does not take into account the correlations across different k-modes that are
visible in this plot.
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Figure 5.5: Residual power between true signals and their reconstructions averaged over
100 different realizations. The black solid line shows the theoretical power spectrum of the
signals, given by Eq. (5.14) with P0 = 0.2, k0 = 5, and γ = 4. The dotted horizontal line
indicates the noise level, corresponding to σ2

n = 0.1. The remaining lines show the residual
power for different reconstruction schemes. From top to bottom, these are a reconstruction
without any spectral smoothing (green dotted line), with an ad-hoc convolution of the
power spectrum (magenta dash-dotted line), with the smoothness prior given by Eq. (5.24)
with σ2

p = 100 (red short-dashed line), and using the correct power spectrum (blue long-
dashed line).

for the logarithmic power spectrum components,

∆p =

diag

( δ2H(d, p)

δp δp†

∣∣∣∣
p=p(MAP)

)−1
1/2

, (5.28)

we plot the uncertainty interval for the power spectra as Pk = exp
(
p

(MAP)
k ±∆p

)
. The

uncertainty interval of the power spectrum estimates calculated in this way can, however,
be misleading. It should be noted that the uncertainty of the power on the different k-
modes is correlated. To illustrate this, we plot the complete uncertainty matrix, i.e. the
inverse Hessian of the Hamiltonian, for the case with σ2

p = 1000 in Fig. 5.4. It can be seen
from this figure that the correlation of the uncertainty on different k-modes is especially
large for small scales. Furthermore, the inverse Hessian is only a rough approximation to
the uncertainties in the power spectrum estimation, which typically underestimates these.

In all following examples we will use a spectral smoothness prior with an intermediate
stiffness, given by σ2

p = 100.
To study the improvement that the spectral smoothness prior brings for the recon-

struction of the signal field, we draw 100 different signal realizations from the same power
spectrum and add 100 different noise realizations. For each of these data sets, we perform
the full reconstruction and then calculate the power of the difference between the recon-
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Figure 5.6: Power spectra of signals with correlation functions given by Eq. (E.4) (top
panel) and Eq. (E.6) (bottom panel). The black solid lines show the theoretical power
spectra, the blue dashed lines the power in the random field realization drawn from the
theoretical power spectra, and the green dotted lines the reconstructed power spectra
using the spectral smoothness prior given in Eq. (5.24) with σ2

p = 100. The parameters

substituted into Eq. (E.4) are σ = 0.2 and C0 = 1/(4
√

2π) and the ones used in Eq. (E.6)
are L = 0.2 and C0 = 0.25. The noise variance in both cases is σ2

n = 0.1. The hatched area
indicates the uncertainty of the reconstructed power spectrum estimated from the inverse
Hessian and the horizontal dotted line the noise level.
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Figure 5.7: Signal fields corresponding to the power spectra shown in Fig. 5.6. The top
panel shows a signal with a Gaussian two-point correlation function, Eq. (E.4), the bottom
panel shows one with a triangular correlation function, Eq. (E.6). Shown in each plot are
the signal realization s (blue solid line), the data d (crosses), the signal reconstruction m
(green dashed line), and an estimate of the local one-sigma uncertainty of the reconstruc-
tion, given by m ± diag(D)1/2 (hatched area). At the bottom of each panel, the same is
plotted with the true signal subtracted.
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structed field m and the true signal field s. In Fig. 5.5 we plot this power, averaged over
the 100 realizations, for different reconstruction schemes. Under the assumption that the
correct power spectrum is known a priori, the residual power is essentially given by the
noise level on scales for which the signal is dominating and by the signal power on scales for
which the noise is dominating. As can be seen from the plot, reconstructing the power spec-
trum without any spectral smoothing leads to a significantly increased residual power on
the noise-dominated scales, while the quality of the reconstructions including the smooth-
ness prior is close to the one of the Wiener filter reconstructions, showing only a slight
excess in residual power on the smallest scales. We also plot the average residual power for
reconstructions in which an ad-hoc smoothing step is applied to the power spectrum after
each iteration of Eq. (5.12). This is implemented as a simple convolution with a Blackman
window of width ∆k = 9. As can be seen in Fig. 5.5, this ad-hoc smoothing partly alle-
viates the problems of the power spectrum reconstruction but is clearly outperformed by
the rigorous application of a smoothness prior.

Finally, we consider signal fields of the types discussed in App. E.1.2 and E.1.3, i.e.
signals with Gaussian and triangular correlation functions given by Eqs. (E.4) and (E.6),
respectively. As discussed in the appendix, these correlation functions lead to theoretical
power spectra that are strongly suppressed by our spectral smoothness prior. Here, we
investigate how serious this unwanted effect is in practice.

Shown in Figs. 5.6 and 5.7 are the results of the reconstruction for the power spectra
and signal fields, respectively. We again use signals defined on an interval of length one,
which we divide into 100 pixels, and choose σ = 0.2 and C0 = 1/(4

√
2π) for the Gaussian

correlation function, Eq. (E.4), and L = 0.2 and C0 = 0.25 for the triangular correlation
function, Eq. (E.6). In both cases, the noise variance is σ2

n = 0.1.
As expected, the features in the power spectra that are discouraged by the spectral

smoothness prior are not well reconstructed. From Fig. 5.6 it is obvious that in the case
with a Gaussian correlation function, the reconstructed and true power spectra deviate
quite strongly on small scales. While the true power spectrum drops off rapidly, the
reconstructed one stays comparatively flat. In the case of a triangular correlation function,
the same can be said about the finite k-value where the true power spectrum drops to
zero. While the drop is indeed represented by the signal realization, as can be seen from
the dashed line in the lower panel, the reconstructed power spectrum stays relatively level.

However, the features in the power spectra that the filter fails to reconstruct are below
the noise level, whereas the rise of the power spectrum in the bottom panel of Fig. 5.6 on
the smallest scales, which is above the noise level, is indeed represented in the reconstructed
power spectrum as well. Thus, the signal reconstruction does not suffer significantly, as
can be seen in Fig. 5.7. An accurate reconstruction of the power spectrum is important
mainly at the scales on which the signal-response and noise are of comparable magnitude.
If the signal power is dominant, the reconstruction will follow the data closely, while it will
smooth the data heavily in the opposite case of dominating noise, irrespective of the exact
shape of the power spectrum. Thus, the reconstruction algorithm will in general perform
well even in cases in which certain features in the power spectra are not allowed by the
spectral smoothness prior. However, if the objective is an accurate reconstruction of the
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power spectrum and any such features are suspected to be present, the spectral smoothness
prior needs to be adapted to this situation.

5.3 Reconstructing log-normal fields

Now we turn to the problem of reconstructing a log-normal field. We define our signal field
s to be the logarithm of this log-normal field, so that the prior probability distribution for
s is again a Gaussian, described by a mean and a covariance S. For simplicity, we assume
the prior mean to be zero. The data model then becomes

d = Res + n, (5.29)

where we have again included additive Gaussian noise n and the application of the expo-
nential function to the signal field is to be interpreted pointwise. Due to the non-linearity
of the exponential function, the posterior of s,

P(s|d, S) ∝ G(d−Res, N)G(s, S), (5.30)

is highly non-Gaussian, even when the signal covariance S is known. Adding a prior for S
and marginalizing over it only makes the problem more complex,

P(s|d) ∝ G(d−Res, N)

∫
DS G(s, S)P(S). (5.31)

The path we pursue here is to treat this probability distribution approximatively. In
order to do so, we employ the formalism of minimum Gibbs free energy presented by Enßlin
& Weig (2010). The basic idea is to approximate the posterior P(s|d) with a Gaussian,
described by a mean m and a covariance D. An approximate Gibbs free energy can be
calculated as a function of these quantities and it was shown by Enßlin & Weig (2010) that
the optimal Gaussian approximation – in the sense of minimum Kullback-Leibler divergence
– can be obtained by minimizing the approximate Gibbs free energy with respect to m and
D.

The approximate Gibbs free energy is defined as

G̃(m,D) = Ũ(m,D)− TSB(D). (5.32)

The last term in this definition is the Boltzmann entropy

SB(D) =
1

2
tr(1 + log (2πD)), (5.33)

which depends only on the covariance D. The other term in the approximate Gibbs free
energy is the approximate internal energy

Ũ(m,D) = 〈H(s, d)〉G(s−m,D) . (5.34)
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Here, 〈·〉G(s−m,D) denotes an expectation value calculated with respect to the Gaussian
posterior approximation and H(s, d) = − logP(s, d) is the Hamiltonian of the problem.
Finally, the temperature T can be regarded as a tuning parameter that regulates the
importance that is given to the region around the maximum of the full posterior and
regions removed from the maximum. The limiting value T = 0 leads to the maximum
a posteriori solution for the signal field. In the following, we choose the default value of
T = 1 and refer the reader to Enßlin & Weig (2010); Iatsenko et al. (2012); Enßlin & Weig
(2012) for an in-depth discussion of the temperature parameter.

Assuming independent inverse-gamma distributions as priors for the power spectrum
components Pk, as we had already done in Eq. (5.17), the calculation of the Hamiltonian
yields

H(s, d) = − log (P(d|s)P(s|P )P(P ))

= − log

(
G(d−Res, N)G(s, S)

∏
k

PIG(Pk)

)
= −j†es +

1

2
(es)†Mes

+
∑
k

(
αk − 1 +

ρk
2

)
log

qk +
1

2

∑
{~k′|k′=k}

∣∣s~k′∣∣2


+ const. (5.35)

Here, we have again collected s-independent terms in an additive constant and introduced
the abbreviation

M = R†N−1R. (5.36)

In order to calculate the Gaussian expectation value of this Hamiltonian analytically, we
expand the logarithm appearing in this expression in a power series around its expectation
value

q̃k =

〈
qk +

1

2

∑
{~k′|k′=k}

∣∣s~k′∣∣2
〉
G(s−m,D)

= qk +
1

2

∑
{~k′|k′=k}

(∣∣m~k′

∣∣2 +D~k′~k′

)
(5.37)
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as

log

qk +
1

2

∑
{~k′|k′=k}

∣∣s~k′∣∣2


≈ log (q̃k)

−
imax∑
i=1

(−1)i

iq̃ik

qk +
1

2

 ∑
{~k′|k′=k}

∣∣s~k′∣∣2
− q̃k


i

. (5.38)

We truncate this expansion after the first order, i.e. imax = 1. Note that our choice of q̃k
ensures that the first-order term itself vanishes.

With this simplification, we can calculate the approximate Gibbs free energy to be

G̃(m,D) =

∫
M

dx jxe
mx+ 1

2
Dxx

+

∫
M

dx

∫
M

dy
1

2
Mxye

mx+my+ 1
2
Dxx+ 1

2
Dyy+Dxy

+
∑
k

(
αk − 1 +

ρk
2

)
log (q̃k)

− 1

2
tr(1 + log (2πD)). (5.39)

To avoid confusion, we write out explicitly all integrals appearing here and in the following.
Taking the functional derivatives with respect to m and D and equating them with zero
yields two filter equations that determine m and D. In these equations, the right hand
side expression of Eq. (5.12) appears. If we reidentify this expression with the spectral
components Pk and write S~k~k′ = δ~k~k′Pk, the two filter equations become

mx =

∫
M

dy Sxy

[
jye

my+ 1
2
Dyy

−
∫
M

dz Myze
my+mz+ 1

2
Dyy+ 1

2
Dzz+Dyz

]
(5.40)

and (
D−1

)
xy

= −jxemx+ 1
2
Dxxδxy

+

∫
M

dz Mxze
mx+mz+ 1

2
Dxx+ 1

2
Dzz+Dxzδxy

+Mxye
mx+my+ 1

2
Dxx+ 1

2
Dyy+Dxy

+
(
S−1

)
xy
. (5.41)
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Together with Eq. (5.12), the last two equations fully determine the Gaussian approx-
imation to the posterior. Solving them self-consistently gives an estimate m for the signal
field and an estimate D for the corresponding uncertainty matrix. The corresponding
approximate posterior mean estimate of the exponentiated field values then is

〈esx〉P(s|d) ≈ 〈e
sx〉G(s−m,D) = emx+ 1

2
Dxx . (5.42)

Of special interest for many applications is the case in which the matrix M = R†N−1R
is diagonal, e.g. when the noise contributions to the individual data points are uncorrelated
and the response is purely local. In this case the filter equations simplify somewhat to

mx =

∫
M

dy Sxy

[
jye

my+ 1
2
Dyy −Myye

2my+2Dyy
]

(5.43)

and (
D−1

)
xy

=
[
−jxemx+ 1

2
Dxx + 2Mxxe

2mx+2Dxx
]
δxy

+
(
S−1

)
xy
. (5.44)

5.3.1 Spectral smoothness in the log-normal case

In Sec. 5.2.1 we had seen that in the Gaussian case the full reconstruction with unknown
power spectrum can be regarded as a combination of the posterior mean reconstruction un-
der the assumption of a known power spectrum and the estimation of this power spectrum
as the one that maximizes its posterior probability. In the case of a log-normal field, the
posterior mean cannot be calculated analytically, even if the power spectrum is assumed
to be known. However, it is interesting to note that employing the formalism of minimum
Gibbs free energy to the log-normal reconstruction problem with known power spectrum,
one arrives exactly at the formulas derived in the previous section, Eqs. (5.40) and (5.41).

Thus, the full reconstruction, consisting of Eqs. (5.40), (5.41), and (5.12) can again be
regarded as a combination of the calculation of the posterior mean for the signal under
the assumption of a power spectrum and the estimation of the power spectrum according
to Eq. (5.12). From this viewpoint, the inclusion of a smoothness prior for the power
spectrum is trivial. We simply replace the power spectrum estimation step according to
Eq. (5.12) with the one derived in Sec. 5.2.2, i.e. with Eq. (5.26), just as we had done in
the Gaussian case.

5.3.2 Test cases

In this section, we present some test cases for the theory developed so far on the recon-
struction of log-normal fields. We study one-dimensional tests with differing degrees of
non-linearity and differing noise-levels, as well as two two-dimensional test-cases. For sim-
plicity, we assume an ideal local response, R = 1, except in the last example, where we
study the effects of an observational mask. The noise is assumed to be uncorrelated and
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Figure 5.8: One-dimensional log-normal reconstruction in a mildly non-linear low-noise
case. The power spectrum from which the signal realization was drawn is given by
Eq. (5.14) with P0 = 0.1, k0 = 5, and γ = 4. The noise variance is σ2

n = 0.1. The
top panel shows the exponentiated signal field es (blue solid line), the data d (crosses),

the reconstruction em+ 1
2

diag(D) (green dashed line), and the uncertainty interval of the re-

construction, given by em+ 1
2

diag(D)±(diag(D))1/2 (hatched region). The lower panel shows the
signal field s (blue solid line), the logarithm of the data log(d) (crosses), the reconstruction
m (green dashed line), and the uncertainty interval for m, given by m ± (diag(D))1/2. In
the lower panel, only data points for which log d is greater than −1.5 are shown.
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Figure 5.9: One-dimensional log-normal reconstruction in a highly non-linear low-noise
case. The plotted quantities are the same as in Fig. 5.8. The parameters describing the
power spectrum are P0 = 0.3, k0 = 5, and γ = 4 and the noise variance is σ2

n = 1. In the
lower panel, only data points for which log d is greater than −3 are shown.
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Figure 5.10: One-dimensional log-normal reconstruction in a highly non-linear high-noise
case. The plotted quantities are the same as in Fig. 5.8. The parameters describing the
power spectrum are P0 = 0.3, k0 = 5, and γ = 4 and the noise variance is σ2

n = 25. In the
lower panel, only data points for which log d is greater than −3 are shown.
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Figure 5.11: Log-normal reconstruction example in a toroidal setting. The signal’s power
spectrum is given by Eq. (5.14) with P0 = 0.3, k0 = 2, and γ = 5. The noise variance is σ2

n =
10. The top row shows the data set d (left) and its logarithm (right). In the logarithmic
version, pixels with negative data values are plotted as dark blue. The middle row shows
the exponentiated signal field es (left) and its reconstruction, given by em+ 1

2
diag(D), (right).

The corresponding non-exponentiated quantities s (left) and m (right) are shown in the
bottom row.
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Figure 5.12: Log-normal reconstruction example on a two-sphere. The quantities plotted
in the top three rows are the same as in Fig. 5.11. The bottom row shows the uncertainty
of the signal reconstruction given by diag(D)1/2 (left side) and the fractional uncertainty

of the reconstruction of the exponentiated field given by ediag(D)1/2 − 1 (right side). The
power spectrum parameters are P0 = 0.3, k0 = 5, and γ = 4 and the noise variance is
σ2
n = 10. In the top row, pixels without measurements are plotted gray.
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homogeneous, N = σ2
n1. For the smoothness prior, we use the one discussed in Sec. 5.2.2

and choose σ2
p = 100.

First, we discuss again the case of a signal on the one-sphere S1, i.e. the interval [0, 1)
with periodic boundary conditions, here discretized into 100 pixels. Shown in Figs. 5.8-5.10
are three different cases. In each of these cases, the signal realization is the same as in
Sec. 5.2, only with a differing normalization of the power spectrum. In Fig. 5.8 we show
a mildly non-linear case with P0 = 0.1 and in Figs. 5.9 and 5.10 a highly non-linear case
with P0 = 0.3. The noise variance σ2

n is 0.1 in Fig. 5.8, 1 in Fig. 5.9, and 25 in Fig. 5.10. In
the lower panels of these three figures, we show the signals and their reconstructions and
in the upper panels the exponentiated fields, es, as well as our posterior mean estimate for
these, 〈es〉P(s|d) ≈ em+ 1

2
diag(D).

In the mildly non-linear case the reconstruction is a reasonably good approximation
to the true signal both in regions of high signal values and regions of low signal values.
However, it is apparent that the quality of the reconstruction is slightly higher in the former
regions. This is due to the homogeneity of the noise statistics that we have assumed. Since
our signal response, given by Res, depends non-linearly on the signal, the noise impact is
lower in regions of higher signal values and hence the signal inference is less demanding in
these regions. From Fig. 5.8 it is apparent that this effect is well represented by the point-
wise uncertainty of the reconstruction, given by diag(D). As can be seen from Fig. 5.9,
the effect becomes more pronounced for higher degrees of non-linearity, i.e. larger signal
variances on a logarithmic scale.

The highly nonlinear case with high noise level, depicted in Fig. 5.10, exhibits a point-
wise uncertainty estimate for the reconstruction that can clearly not be interpreted as a
68% confidence interval. This is due to a known problem of the filter discussed in Sec. 5.2
and by extension also of the filter derived in this section. As discussed by Enßlin &
Frommert (2011), the filter exhibits a perception threshold. This means that if the signal-
response-to-noise ratio is lower than a certain threshold on a given scale, then the filter
will not reconstruct any power on this scale. Our usage of the spectral smoothness prior
partly alleviates this porblem in that it prevents the power of individual scales to drop to
zero. However, the reconstructed power on the noise-dominated scales will in general still
be too low. This directly affects the estimate for the reconstruction’s uncertainty, given by
D = (S−1 +M)

−1
, which tends toward zero in the limit of zero power on all scales.

Furthermore, the lack of power on all but the few signal-dominated scales can lead
to ringing effects, i.e. prominent signal-dominated features are well reconstructed and ex-
trapolated periodically into the noise-dominated regions. The deep trough in the signal
reconstruction that can be seen in the lower panel of Fig. 5.10 around pixel number 35 is
most likely due to this effect. The high degree of non-linearity acts to reinforce this effect.
As can be seen in the top panel of Fig. 5.10, the effect of the trough onto the exponentiated
reconstruction is almost intangible.

It is certainly mandatory to keep the potential problems of ringing and an underesti-
mated uncertainty in mind when reconstructing a field which is swamped by noise in the
better part of its domain. However, as can be seen from Fig. 5.10, the main features of the
signal field will still be reconstructed reliably even in such an unfavorable case.
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In these test cases, we have chosen the one-dimensional interval as domain of the log-
normal signal field mainly for illustrative purposes. The algorithm is, however, versatile in
that it can operate on virtually any space1. To illustrate this point, we close this section
with two two-dimensional examples.

In Fig. 5.11, we show an example for a signal defined on the two-torus T 2 = S1 × S1,
i.e. a segment of R2 with periodic boundary conditions. The periodicity here and in the
earlier one-dimensional examples is a consequence of our use of Fast Fourier Transform
routines. It can be approximately overcome by artificially extending the interval or the
section of R2 for more than the typical correlation length of the signal while leaving the
data unchanged when doing the reconstruction. Thus, the influence of the reconstruction
on one side of the interval or rectangle will have negligible influence on the reconstruction
on the other side.

We discretize the two-torus and its corresponding Fourier space into 50 × 50 pixels.
The rectangular orientation of the Fourier pixels leads to many different scales k being
represented, each, however, only by a few pixels, corresponding to a few different Fourier
vectors ~k. To avoid dealing with all these scales individually, we bin the scales logarith-
mically into 17 bins. We replace all summations over Fourier components with a certain
scale appearing in the filter formulas with summations over all Fourier components whose
scale falls within one bin. Thus, we reconstruct the power for each bin instead of for each
scale that is represented in the rectangular Fourier grid. The signal is again drawn from
the power spectrum given by Eq. (5.14) with P0 = 0.3, k0 = 2, and γ = 5. The noise level
is chosen as σ2

n = 10. Signal, data, and reconstruction are shown in Fig. 5.11.

The toroidal example exhibits essentially the same features that we had already seen
in the one-dimensional case. While the reconstruction is generally in good agreement with
the true underlying signal, it is less accurate in the regions of small signal values where the
signal-response-to-noise ratio is far worse due to the quite high degree of non-linearity.

In Fig. 5.12, we show an example for a reconstruction on the two-sphere S2. This
example has special relevance for astronomical applications since one can interpret the sky
as a two-sphere and therefore any astrophysical signals without distance information will
be defined on this manifold. We generate a mock signal from the power spectrum given in
Eq. (5.14) with P0 = 0.3, k0 = 5, and γ = 4. The noise level is σ2

n = 10. We discretize the
sphere using the HEALPix2 package (Górski et al. 2005) with a resolution parameter of
Nside = 16 leading to 3 072 pixels in total. The power spectrum components Pk are in this
case the components of an angular power spectrum, often denoted as C`.

In this last case study, we replace the trivial response R = 1 with a projection onto
part of the sphere, effectively masking 600 pixels around the equator for which we assume
that no measurements have been taken. This resembles a typical situation in extragalactic
astronomy, where observations through the Galactic plane are not possible due to the
obscuration by the Milky Way.

1We are using the nifty package (Selig in prep.) in our implementation. This makes changing the
domain of the signal field trivial, requiring only minuscule changes to the code.

2The HEALPix package is available from http://healpix.jpl.nasa.gov/.

http://healpix.jpl.nasa.gov/
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Fig. 5.12 shows the signal field, data, and reconstruction both in the exponentiated
and in the linear version. In the panels showing the reconstructed signal field, it can be
nicely seen how the algorithm is able to extrapolate into the gap region from the data
on the boundary. This is possible due to the knowledge of the correlation structure that
was inferred from the same data set. Also shown in Fig. 5.12 are the pixel-wise uncer-
tainty estimate of the signal field’s reconstruction, given by diag(D)1/2, and the fractional

uncertainty of the reconstructed exponentiated signal, given by ediag(D)1/2 − 1, which is ap-
proximated well by diag(D)1/2 in most regions. It can be seen that the uncertainty tends
to be higher in the regions of low signal values, as was the case in the one-dimensional
examples, and in the region around the equator which lacks observations. This is to be
expected, since the only constraint on the signal in this region comes from extrapolations
from neighboring regions using the signal’s correlation structure inferred from the data.

5.4 Summary and Conclusions

We have developed an algorithm to infer log-normal random fields from noisy measurement
data. The log-normal model was chosen due to its wide range of applications in astrophysics
and other fields. The reconstruction method uses the correlation structure of the log-normal
field to differentiate between features in the data that are due to noise and such that are
due to variations in the true underlying field. This correlation structure, determined by
the field’s power spectrum, is, however, in general not known a priori. We have therefore
extended the theory for simultaneous reconstructions of a field and its power spectrum that
was developed and applied successfully for Gaussian random fields in the past (Enßlin &
Frommert 2011; Enßlin & Weig 2010; Oppermann et al. 2011a,b, 2012a; Selig et al. 2012)
to log-normal fields.

An additional feature of our reconstruction method is the use of a smoothness prior for
the power spectrum. We have suggested to employ a prior based on the second double-
logarithmic derivative of the power spectrum and shown that it is well suited to handle
a large variety of cases. Having investigated possible pitfalls associated with the usage
of such a prior from theoretical as well as practical viewpoints, we should stress that the
derivation of the filter formulas laid out here does not depend on the specific form of the
spectral smoothness prior. In cases in which the prior we employed here cannot be expected
to yield satisfactory results it should simply be replaced by a different one.

The algorithm we have derived depends in no way on the space on which the signal field
is to be reconstructed. We have demonstrated this by showing examples of reconstructions
of mock signals on a one-dimensional interval, a flat two-dimensional space, and a spherical
space. We have discussed the performance of the algorithm in these scenarios and pointed
out possible caveats when dealing with very low signal-response-to-noise ratios.

In these application examples, we have assumed that the observational data simply
represent the underlying log-normal field, subject to additive noise. Furthermore, we have
illustrated the ability of the algorithm to extrapolate from the given data in a test case in
which these data were assumed to be incomplete, thus demonstrating the power of the usage
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of the correlation information contained in the data. The derivation of the filter formulas,
however, is even more general. It allows for an arbitrary linear relationship between log-
normal field and data, described by a response matrix R. The resulting formulas include the
general response matrix which can e.g. represent an incomplete observation, a convolution,
or a Fourier transformation. We have also allowed for a general noise covariance matrix,
thus including cases of heteroscedastic or correlated noise.

This makes the algorithm widely applicable. Applications that we have in mind include
for example the study of diffuse Galactic emission components at radio frequencies and
reconstructions of emissivity fields across galaxy clusters from interferometric observations.



130 5. Gaussian and log-normal fields with spectral smoothness



Chapter 6

Conclusions and outlook

We have developed several new statistical inference techniques and applied them in studies
of the Galaxy. Our studies of magnetic helicity are hindered by the degeneracy between
magnetic features and features in the density of free thermal electrons. Thus, we are
only able to conclude that either the Galactic magnetic field is non-helical, or the thermal
electron density varies on scales that are small enough to make a detection of magnetic
helicity with the employed technique impossible.

After developing the extended critical filter technique that enables reconstructions in
the presence of an uncertain amount of uncertainty in the data, we have applied it to the
largest available catalog of Faraday rotation observations of extragalactic sources, which
we have newly assembled here. The resulting map is not only the most detailed and most
highly resolved all-sky map of the astrophysical Faraday effect that exists so far, it is also
the only one in which the extragalactic contributions are largely filtered out. Thus, it is
ideally suited to constrain the Galactic magnetic field configuration and to subtract the
Galactic part of the Faraday rotation in cases in which the extragalactic contributions are
of interest. The statistical results of our reconstruction have opened up multiple pathways
for Galactic magnetic field studies as well.

Finally, we have left the statistical safe haven of Gaussianity to explore more compli-
cated fields. With a view on Galactic emission maps, we have developed a technique to
reconstruct log-normal fields with unknown power spectra. The promising results are now
awaiting application to observational data.

One future direction of research is the application of the log-normal reconstruction
technique for emission from different physical processes within the Milky Way. The dif-
ferent processes can be disentangled by using their different frequency dpendence. Using
observations at different wavelengths one can thus separate many emission components
from each other. Our newly developed technique will improve this methodology by mak-
ing use of the correlation structure of each component and by the realistic description of
the different emission components with a log-normal probability distribution. Making use
also of cross-correlations between the individual components will be the focus of future
work. Such a technique will be of paramount importance for observations of the cosmic
microwave background and its foregrounds as conducted e.g. by the Planck satellite.



132 6. Conclusions and outlook

On the magnetic field front, the relationship between different observables, such as
polarized synchrotron emission, polarized dust emission, and Faraday rotation, and the
opportunities that it opens for studies of statistical aspects of the Galactic magnetic field
clearly warrants more research. Ultimately, however, one will always be limited by the
degeneracy of the magnetic field and the density of the particles that cause the observable
effect. To obtain a truly reliable model of the magnetic field of the Milky Way, one will
therefore have to do inference on all these density distributions and the magnetic field at
the same time. This is of course a herculean task that will only become feasible with the
flood of new highly precise data that will become available thanks to a large number of
radio astronomical surveys that are currently being conducted or planned.



Appendix A

Power spectra for real and complex
fields

A.1 Definition of power spectrum

The power spectrum of a signal s is the diagonal of its covariance matrix S in its eigenbasis.
For statistically isotropic signals on the sphere S2 this eigenbasis is given by the spherical
harmonics and the angular power spectrum C` is independent of m, i.e.

S(`m)(`′m′) = 〈s`ms∗`′m′〉 = δ``′δmm′C`. (A.1)

Here, the signal components in the spherical harmonics basis, s`m, are complex numbers
and the asterisk denotes complex conjugation.

Here, we discuss fields on S2. In Euclidean space, analogous thoughts are valid if the
spherical harmonics components are replaced by Fourier components, i.e. ` −→ |k| and
m −→ k

|k| .

A.2 Complex signals

Instead of representing the signal by complex coefficients s`m, one can equally well represent
it by twice as many real numbers s`mr, where ` = 0, 1, . . . , m = −`, . . . , `, and r ∈
{“real”, “imaginary”}. Again, the signal covariance matrix is diagonal in this basis,

S(`mr)(`′m′r′) = 〈s`mrs`′m′r′〉 = δ``′δmm′δrr′α` (A.2)

The complex phases of s`m have to be uniformly distributed for a statistically isotropic
signal, therefore the real and imaginary parts are uncorrelated and their variances are the
same. In order to calculate the diagonal entries α`, we substitute Eq. (A.2) into Eq. (A.1),
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yielding

S(`m)(`′m′) = 〈(Re (s`m) + iIm (s`m)) (Re (s`′m′)− iIm (s`′m′))〉
= 〈Re (s`m) Re (s`′m′)〉+ 〈Im (s`m) Im (s`′m′)〉
− i 〈Re (s`m) Im (s`′m′)〉+ i 〈Im (s`m) Re (s`′m′)〉

= δ``′δmm′2α`

= δ``′δmm′C`. (A.3)

From this we can read off α` = C`
2

.

A.3 Real signals

For real signals, the condition s`,−m = s∗`m holds. Therefore the eigenbasis of the covariance
matrix is changed with respect to the complex case. The correlation of the coefficients
(s`mr)`mr becomes

S(`mr)(`′m′r′) = δ``′ (δmm′δrr′ + δm,−m′δrr′δr,“real” − δm,−m′δrr′δr,“imag”) β`. (A.4)

Substituting this into Eq. (A.1) gives

S(`m)(`′m′) = δ``′ (δmm′ + δm,−m′ + δmm′ − δm,−m′) β`
= δ``′δmm′2β`

= δ``′δmm′C`. (A.5)

So again, we read off β` = C`
2

.
This signal covariance matrix has the two Eigenvalues 2β` = C` and 0. The correspond-

ing eigenspaces are spanned by vectors of the type

v
(1)
`m = ê`,m,“real” + ê`,−m,“real”

and
v

(2)
`m = ê`,m,“imag” − ê`,−m,“imag”

for the eigenvalue C` and by vectors of the type

v
(3)
`m = ê`,m,“real” − ê`,−m,“real”

and
v

(4)
`m = ê`,m,“imag” + ê`,−m,“imag”

for the eigenvalue 0, where ` = 0, 1, . . . and m = 0, . . . , `.
Note that the eigenspaces of the second kind exist only for complex fields. If we restrict

ourselves to real fields, there is only one eigenspace for each ` which has eigenvalue C`.
Furthermore, in this case the eigenspaces are spanned by the vectors

v
(1)′

`m = ê`,m,“real”
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and
v

(2)′

`m = ê`,m,“imag”,

where still ` = 0, 1, . . . and m = 0, . . . , `.
In order to multiply a real isotropic signal field with its covariance matrix, one therefore

has to simply multiply each complex spherical harmonics coefficient s`m, or equivalently
both its real and imaginary part individually, with the corresponding coefficient of the
angular power spectrum, C`, and not with β` = C`

2
.



136 A. Power spectra for real and complex fields



Appendix B

Biased variance estimate from
posterior samples

B.1 Setting

Assuming a linear data model,

d = Rs+ n, (B.1)

with Gaussian signal and noise,

s←↩ G(s, S), n←↩ G(n,N), (B.2)

the posterior for the signal will also be a Gaussian

P(s|d) = G(s−m,D), (B.3)

described by a mean m and a covariance D which takes on the form

D =
(
S−1 +M

)−1
, (B.4)

where M = R†N−1R. The uncertainty of the posterior mean m can be quantified by
the local variance D̂. It is our goal to estimate this variance in a situation where we are
able to compute the matrix-vector product Ds for any signal configurations but are not
provided with the entries of the matrix D explicitly. One way of doing this is to draw
samples from the Gaussian and calculate the variance of these samples.1 It will be shown
that inaccuracies in the calculation of the product Ds can lead to a positive bias for the
resulting variance estimate.

1Note that we are dealing with a Gaussian posterior for definiteness only. Any posterior with the same
first and second connected moments can be treated in exactly the same way.
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B.2 Drawing samples

One way of drawing samples s(α) from a Gaussian probability distribution described by
a mean m and a covariance D was described by Jasche et al. (2010b). The idea is to
add residuals to the mean m. These residuals are created by drawing signal and noise
realizations from the respective priors, combining them into a data vector, and subtracting
the filtered data vector from the signal realization, according to

s̃←↩ G(s, S), (B.5a)

ñ←↩ G(n,N), (B.5b)

d̃ = Rs̃+ ñ, (B.5c)

y = s̃−DR†N−1d̃, (B.5d)

s(α) = m+ y. (B.5e)

Averaging over many different samples is then used as a proxy of calculating the expectation
value,

1

A

A∑
α=1

f(s(α)) ≈
〈
f(s(α))

〉
G(s,S)G(n,N)

. (B.6)

The expectation value of the samples is obviously m. In order to calculate the expected
variance, first consider the residual itself,

s(α) −m = y

= s̃−DR†N−1d̃

= (1−DM) s̃−DR†N−1ñ

= D
(
D−1 −M

)
s̃−DR†N−1ñ

= DS−1s̃−DR†N−1ñ. (B.7)

This leads to the expectation value for the covariance〈(
s(α) −m

) (
s(α) −m

)†〉
G(s,S)G(n,N)

= DS−1SS−1D +DR†N−1NN−1RD

= DS−1D +DMD

= DD−1D

= D. (B.8)

B.3 Effect of numerical inaccuracies

Now assume that the numerical application of the covariance matrix D′ differs from the
analytical multiplication with D by some matrix ∆ = D−D′. The numerically calculated
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residual vector y therefore becomes

s(α) −m = y

= s̃−D′R†N−1d̃

= (1−D′M) s̃−D′R†N−1ñ

= (1− (D −∆)M) s̃− (D −∆)N−1ñ

=
(
D
(
D−1 −M

)
+ ∆M

)
s̃− (D −∆)N−1ñ

=
(
DS−1 + ∆M

)
s̃− (D −∆)N−1ñ. (B.9)

This leads to an altered expectation value for the covariance,〈(
s(α) −m

) (
s(α) −m

)†〉
G(s,S)G(n,N)

=
(
DS−1 + ∆M

)
S
(
S−1D + ∆M

)†
+ (D −∆)M (D −∆)†

=DS−1D + ∆MSM∆† +DM∆† + ∆MD +DMD + ∆M∆† −DM∆† −∆MD

=DD−1D + ∆ (MSM +M) ∆†

=D + ∆ (MSM +M) ∆†. (B.10)

The matrix (MSM +M) is positive definite. If the matrix ∆ has full rank, the product
∆ (MSM +M) ∆† will therefore also be positive definite (see Petersen & Pedersen 2008)
and lead to an over-estimation of the variance.2

B.4 Alternative, unbiased methods

An alternative strategy to estimate any matrix diagonal is the method of “matrix prob-
ing” described e.g. by Selig et al. (2012). A Bayesian extension of the same method was
introduced in the same paper. The results of this appendix make clear that these meth-
ods should be preferred whenever the posterior variance needs to be estimated. In cases
in which other expectation values are of interest, as indicated in Eq. (B.6), the posterior
sampling is however often the only feasible approach.

2If ∆ does not have full rank, the product will in general be positive semi-definite and the conclusion
will still hold. A formal proof, however, is beyond the scope of this appendix.
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Appendix C

Higher order solutions for the
extended critical filter

Here we briefly list the results for nontrivial temperatures up to second order, i.e. consid-
ering terms up to i = 2 in Eqs. (3.24) and (3.25). Since the first order terms are zero for
our choice of q̃k and r̃j, we list only the resulting filter formulas for the zeroth and second
order internal energy.

C.1 Zeroth order

The zeroth order solution with arbitrary temperature is rather similar to the one with
T = 1 presented in Sect. 3.3. It is given by

m = D′j, (C.1)

j =
∑
j

δj
r̃j
R†N−1

j d, (C.2)

D′ =

(∑
k

γk
q̃k
S−1
k +

∑
j

δj
r̃j
R†N−1

j R

)−1

(C.3)

D = TD′. (C.4)

The mean m is completely unchanged. However, the covariance D of the Gaussian approx-
imation is now T times the information propagator D′, i.e. the Gaussian approximation
becomes wider at higher temperature.
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C.2 Second order

The second order solution is given by

m = D′j, (C.5)

j =
∑
j

δj
r̃j
YjR

†N−1
j d, (C.6)

D′ =

(∑
k

γk
q̃k
Xk +

∑
j

δj
r̃j
YjR

†N−1
j R

)−1

, (C.7)

Xk = 1 +
1

q̃2
k

tr

((
mm† +

1

2
D

)
S−1
k DS−1

k

)
− 1

q̃k
S−1
k D, (C.8)

Yj = 1 +
1

r̃2
j

tr

((
(d−Rm) (d−Rm)† +

1

2
RDR†

)
N−1
j RDR†N−1

j

)
− 1

r̃j
R†N−1

j RD, (C.9)

D = T

(
D′−1 −

∑
k

γk
q̃2
k

S−1
k

(
mm†

)
S−1
k

−
∑
j

δj
r̃2
j

R†N−1
j

(
(d−Rm) (d−Rm)†

)
N−1
j R

)−1

. (C.10)

Again, the only effect of the temperature is to broaden the approximate Gaussian. However,
in the second order solution the operators Xk and Yj appear, destroying the one-to-one
correspondence between the terms in these expressions for D, D′, and j and the Wiener
filter formula Eq. (3.8). Therefore, the values of the parameters pk and ηj are not imme-
diately determined by these equations. Note, however, that the goal was not to determine
the signal and noise covariance matrices, but to find the optimal Gaussian approximation
to the signal posterior, given by m and D.
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The three-dimensional Fourier power
spectrum of the differential Faraday
depth and the resulting angular
power spectrum

Defining the differential Faraday depth

ϕ̃(~x) = ne(~x)Br(~x) (D.1)

as the product of the thermal electron density and the line of sight component of the
magnetic field, we assume that its functional form factorizes into a known radial dependence
and a remaining term

ϕ̃(~x) = ϕ̄(r)ϕ(~x), (D.2)

as we had done in Eq. (4.15). We assume further that the remaining term ϕ can be modeled
as a statistically homogeneous and isotropic random field whose two-point statistics are
completely described by its power spectrum, i.e.

〈
ϕ(~k)ϕ∗(~k′)

〉
= (2π)3 δ(3)(~k − ~k′)Pϕ(k). (D.3)

Now, consider the two-point correlation function of the Faraday depth φ, represented



144 D. Three-dimensional and angular power spectrum

by its spherical harmonics components φ`m,

〈φ`mφ`′m′〉 =

〈∫
S2

dΩ Y ∗`m(n̂)φ(n̂)

∫
S2

dΩ′ Y`′m′(n̂
′)φ(n̂′)

〉
=

∫
S2

dΩ

∫
S2

dΩ′ Y`m(n̂)Y`′m′(n̂
′) 〈φ(n̂)φ(n̂′)〉

=

∫
S2

dΩ

∫
S2

dΩ′ Y`m(n̂)Y`′m′(n̂
′)

〈∫ ∞
0

dr ϕ̄(r)ϕ(rn̂)

∫ ∞
0

dr′ ϕ̄(r′)ϕ(r′n̂′)

〉
=

∫
S2

dΩ

∫
S2

dΩ′ Y`m(n̂)Y`′m′(n̂
′)

∫ ∞
0

dr

∫ ∞
0

dr′ ϕ̄(r)ϕ̄(r′) 〈ϕ(rn̂)ϕ(r′n̂′)〉

=

∫
S2

dΩ

∫
S2

dΩ′ Y`m(n̂)Y`′m′(n̂
′)

∫ ∞
0

dr

∫ ∞
0

dr′ ϕ̄(r)ϕ̄(r′)

×
〈

1

(2π)3

∫
R3

d3k ei
~k·n̂rϕ(~k)

1

(2π)3

∫
R3

d3k′ e−i
~k′·n̂′r′ϕ∗(~k′)

〉
∝
∫
S2

dΩ

∫
S2

dΩ′ Y`m(n̂)Y`′m′(n̂
′)

∫ ∞
0

dr

∫ ∞
0

dr′ ϕ̄(r)ϕ̄(r′)

×
∫
R3

d3k

∫
R3

d3k′ ei
~k·n̂re−i

~k′·n̂′r′
〈
ϕ(~k)ϕ∗(~k′)

〉
∝
∫
S2

dΩ

∫
S2

dΩ′ Y`m(n̂)Y`′m′(n̂
′)

∫ ∞
0

dr

∫ ∞
0

dr′ ϕ̄(r)ϕ̄(r′)

×
∫
R3

d3k ei
~k·(n̂r−n̂′r′)Pϕ(k). (D.4)

Using

ei
~k·n̂r =

∞∑
`=0

(2`+ 1) i`j`(kr)P`(k̂ · n̂), (D.5)

where j` is a spherical Bessel function and P` is a Legendre polynomial (e.g. Abramowitz
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& Stegun 1964), this becomes

〈φ`mφ`′m′〉 ∝
∫
R3

d3k

∫ ∞
0

dr

∫ ∞
0

dr′ Pϕ(k)ϕ̄(r)ϕ̄(r′)

×
∫
S2

dΩ Y ∗`m(n̂)
∞∑
`′′=0

(2`′′ + 1) i`
′′
j`′′(kr)P`′′(k̂ · n̂)

×
∫
S2

dΩ′ Y`′m′(n̂
′)
∞∑

`′′′=0

(2`′′′ + 1) i−`
′′′
j`′′′(kr

′)P`′′′(k̂ · n̂′)

∝
∫
R3

d3k

∫ ∞
0

dr

∫ ∞
0

dr′ Pϕ(k)ϕ̄(r)ϕ̄(r′)

×
∞∑
`′′=0

`′′∑
m′′=−`′′

i`
′′
j`′′(kr)

∫
S2

dΩ Y ∗`m(n̂)Y`′′m′′(n̂)Y ∗`′′m′′(k̂)

×
∞∑

`′′′=0

`′′′∑
m′′′=−`′′′

i−`
′′′
j`′′′(kr

′)

∫
S2

dΩ′ Y`′m′(n̂
′)Y ∗`′′′m′′′(n̂

′)Y`′′′m′′′(k̂), (D.6)

where we have used

P`(k̂ · n̂) =
4π

2`+ 1

∑̀
m=−`

Y`m(k̂)Y ∗`m(n̂). (D.7)

Performing the integrals over n̂ and n̂′ yields

〈φ`mφ`′m′〉 ∝
∫
R3

d3k

∫ ∞
0

dr

∫ ∞
0

dr′ Pϕ(k)ϕ̄(r)ϕ̄(r′)j`(kr)Y
∗
`m(k̂)j`′(kr

′)Y`′m′(k̂)

=

∫ ∞
0

dr

∫ ∞
0

dr′
∫ ∞

0

dk k2Pϕ(k)ϕ̄(r)ϕ̄(r′)j`(kr)j`′(kr
′)

∫
S2

dΩk̂ Y`m(k̂)Y`′m′(k̂)

=

∫ ∞
0

dr

∫ ∞
0

dr′
∫ ∞

0

dk k2Pϕ(k)ϕ̄(r)ϕ̄(r′)j`(kr)j`′(kr
′)δ``′δmm′ , (D.8)

which proves the statistical homogeneity and isotropy of the Faraday depth itself under
our assumptions. The angular power spectrum now is

C` ∝
∫ ∞

0

dr ϕ̄(r)

∫ ∞
0

dr′ ϕ̄(r′)

∫ ∞
0

dk k2Pϕ(k)j`(kr)j`(kr
′). (D.9)

We assume further that the power spectrum of the field ϕ is given by a power law,

Pϕ(k) ∝ k−α. (D.10)

Using the relation

j`(z) =

√
π

2z
J`+1/2(z), (D.11)
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where J`+1/2 is a Bessel function of the first kind, and the integral∫ ∞
0

dt
Jµ(at)Jν(bt)

tλ
=

aµΓ
(
µ+ν−λ+1

2

)
2λbµ−λ+1Γ (µ+ 1) Γ

(
ν−µ+λ+1

2

)
× 2F1

(
µ+ ν − λ+ 1

2
,
µ− ν − λ+ 1

2
;µ+ 1;

(a
b

)2
)

(D.12)

for µ+ ν−λ+ 1 > 0, λ > −1, and 0 < a < b, where 2F1 is Gauss’ hypergeometric function
(e.g. Abramowitz & Stegun 1964), we can solve the k-integral in Eq. (D.9),∫ ∞

0

dk k2−αj`(kr)j`(kr
′) =

π

2

∫ ∞
0

k1−αJ`+1/2(kr)J`+1/2(kr′)

=
π

2

r`+
1
2 Γ
(
`+ 1− α

2

)
2α−2 (r′)`+2−α Γ (`+ 1) Γ

(
α
2

)
× 2F1

(
`+ 1 +

α

2
, 1− α

2
; `+ 1;

( r
r′

)2
)

(D.13)

for cases in which 2`+ 2−α > 0, α− 1 > 0, and 0 < r < r′. To enforce the last condition,
we replace ∫ ∞

0

dr

∫ ∞
0

dr′ −→ 2

∫ ∞
0

dr

∫ ∞
r

dr′, (D.14)

which is possible since the integrand in Eq. (D.9) is symmetric in r and r′.
Altogether, Eq. (D.9) becomes

C` ∝
Γ
(
`+ 1− α

2

)
Γ (`+ 1)

∫ ∞
0

dr

∫ ∞
r

dr′ ϕ̄(r)ϕ̄(r′)
r`+1

(r′)`+2−α 2F1

(
`+ 1− α

2
, 1− α

2
; `+ 1;

( r
r′

)2
)
.

(D.15)

Using the power series formula

2F1(a, b; c; z) =
Γ(c)

Γ(a)Γ(b)

∞∑
n=0

Γ(a+ n)Γ(b+ n)

Γ(c+ n)n!
zn, (D.16)

which has convergence radius 1 (Abramowitz & Stegun 1964), we can expand the integral
in Eq. (D.15), yielding

C` ∝
1

Γ
(
1− α

2

) ∫ ∞
0

dr

∫ ∞
r

dr′ ϕ̄(r)ϕ̄(r′)
r`+1

(r′)`+2−α

∞∑
n=0

Γ
(
`+ 1− α

2
+ n
)

Γ
(
1− α

2
+ n
)

Γ (`+ 1 + n)n!

( r
r′

)2n

∝
∞∑
n=0

Γ
(
`+ 1− α

2
+ n
)

Γ
(
1− α

2
+ n
)

Γ (`+ 1 + n)n!

∫ ∞
0

dr ϕ̄(r)r2n+`+1

∫ ∞
r

dr′ ϕ̄(r′) (r′)
α−2n−`−2

,

(D.17)
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where we have exchanged the integration and the sum.
To arrive at the result presented in Sec. 4.4.3, we assume now that the part of the

differential Faraday depth containing the known radial dependence is constant within a
sphere of radius r0 and zero outside,

ϕ̄(r) =

{
ϕ0 if r < r0

0 else
. (D.18)

Thus, we can solve the remaining integrals, arriving at the final expression for the `-
dependence of the angular power spectrum

C` ∝
∞∑
n=0

Γ
(
`+ 1− α

2
+ n
)

Γ
(
1− α

2
+ n
)

Γ (`+ 1 + n)n!

∫ r0

0

dr r2n+`+1

∫ r0

r

dr′ (r′)
α−2n−`−2

=
∞∑
n=0

Γ
(
`+ 1− α

2
+ n
)

Γ
(
1− α

2
+ n
)

Γ (`+ 1 + n)n!

×
∫ r0

0

dr r2n+`+1 1

α− 2n− `− 1

(
rα−2n−`−1

0 − rα−2n−`−1
)

=
∞∑
n=0

Γ
(
`+ 1− α

2
+ n
)

Γ
(
1− α

2
+ n
)

Γ (`+ 1 + n)n! (α− 2n− `− 1)

∫ r0

0

dr
(
rα−2n−`−1

0 r2n+`+1 − rα
)

=
∞∑
n=0

Γ
(
`+ 1− α

2
+ n
)

Γ
(
1− α

2
+ n
)

Γ (`+ 1 + n)n! (α− 2n− `− 1)

(
1

2n+ `+ 2
rα+1

0 − 1

α + 1
rα+1

0

)
= rα+1

0

∞∑
n=0

Γ
(
`+ 1− α

2
+ n
)

Γ
(
1− α

2
+ n
)

Γ (`+ 1 + n)n! (α− 2n− `− 1)

(
1

2n+ `+ 2
− 1

α + 1

)
∝

∞∑
n=0

Γ
(
`+ 1− α

2
+ n
)

Γ
(
1− α

2
+ n
)

Γ (`+ 1 + n)n! (α− 2n− `− 1)

(
1

2n+ `+ 2
− 1

α + 1

)
. (D.19)

The integration over r′ as performed here is only valid if 0 6= α− 2n− `− 2 6= −1, which
is guaranteed to be satisfied for ` > α − 1. For these `-values, the first condition needed
for Eq. (D.13) is also satisfied. Note that the radius r0 only affects the normalization of
the power spectrum, not its shape.

Figure D.1 shows the reconstructed angular power spectrum, the power law fit C` ∝
`−2.17, and the result of a numerical evaluation of Eq. (D.15) for α = 2.17.

D.1 Statistical homogeneity and isotropy of differen-

tial Faraday rotation

As a thought experiment, assume that both the electron density ne and the line of sight
component of the magnetic field Br are statistically homogeneous and isotropic Gaussian
random fields with covariances〈

ne(~k)n∗e(~k′)
〉

= (2π)3 δ(3)(~k − ~k′)Pne(k), (D.20)
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Figure D.1: Angular power spectrum of the Faraday depth. Shown is the reconstructed
power spectrum (solid line), a power law fit (dashed line), and the prediction from Pϕ(k) ∝
k−2.17.
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〈
Br(~k)B∗r (

~k′)
〉

= (2π)3 δ(3)(~k − ~k′)PBr(k), (D.21)

and 〈
Br(~k)n∗e(~k′)

〉
= 0. (D.22)

The last assumption is justified since the line of sight component of the magnetic field will
not have a preferred direction that is correlated with the electron denisty.

Now, consider the autocorrelation of the differential Faraday rotation ϕ̃ in Fourier space,〈
ϕ̃(~k)ϕ̃∗(~k′)

〉
=

∫
R3

d3x

∫
R3

d3y e−i(
~k·~x−~k′·~y) 〈ϕ̃(~x)ϕ̃(~y)〉

=

∫
R3

d3x

∫
R3

d3y e−i(
~k·~x−~k′·~y) 〈ne(~x)Br(~x)ne(~y)Br(~y)〉

=

∫
R3

d3x

∫
R3

d3y e−i(
~k·~x−~k′·~y)C(ne) (|~x− ~y|)C(Br) (|~x− ~y|)

=

∫
R3

d3x

∫
R3

d3r e−i(
~k−~k′)·~xe−i

~k′·~rC(ne)(r)C(Br)(r)

∝ δ(3)(~k − ~k′)
∫
R3

d3r e−i
~k′·~rC(ne)(r)C(Br)(r)

∝ δ(3)(~k − ~k′)
∫
R3

d3r e−i
~k′·~r
∫
R3

d3k′′ ei
~k′′·~rPne(k

′′)

∫
R3

d3k′′′ ei
~k′′′·~rPBr(k

′′′)

= δ(3)(~k − ~k′)
∫
R3

d3k′′
∫
R3

d3k′′′ Pne(k
′′)PBr(k

′′′)

∫
R3

d3r e−i(
~k′−~k′′−~k′′′)·~r

∝ δ(3)(~k − ~k′)
∫
R3

d3k′′
∫
R3

d3k′′′ Pne(k
′′)PBr(k

′′′)δ(3)(~k′ − ~k′′ − ~k′′′)

= δ(3)(~k − ~k′)
∫
R3

d3k′′ Pne(k
′′)PBr(|k − k′′|)

∝ δ(3)(~k − ~k′)
∫ ∞

0

dk′′ k′′2Pne(k
′′)PBr(|k − k′′|), (D.23)

where the autocorrelation functions in position space, C(ne) (|~x− ~y|) = 〈ne(~x)ne(~y)〉 and
C(Br) (|~x− ~y|) = 〈Br(~x)Br(~y)〉 were used and a relative coordinate ~r = ~x−~y was introduced
in the fourth line. This result shows that the differential Faraday rotation is a statistically
homogeneous and isotropic field under the assumption that both the thermal electron
density and the line of sight component of the magnetic field have these properties.
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Appendix E

Spectral smoothness in special cases
and its practical implementation

E.1 Case studies for the spectral smoothness prior

In this appendix, we discuss a few possible correlation structures and power spectra and
examine the suitability of a spectral smoothness prior of the form described by Eq. (5.24).

E.1.1 Power law spectra

If the signal’s power spectrum is a broken power law of the shape given by Eq. (5.14), the
first double-logarithmic derivative is

∂pk
∂ log k

= − γ

1 +
(
k0
k

)2 , (E.1)

which behaves like −γ
(
k
k0

)2

for k � k0 and tends toward −γ for k → ∞. The second

double-logarithmic derivative is

∂2pk

∂ (log k)2 = − 2γ(
k
k0

+ k0
k

)2 , (E.2)

which tends toward zero both for k → 0 and k → ∞. The second derivative takes on
its extremum, given by −γ

2
, at the knee frequency k0 where the spectral index of the

power spectrum changes from 0 to γ. Thus neither a prior punishing large values for
the first logarithmic derivative, nor one punishing large values for the second logarithmic
derivative prevents the true solution from being found, provided the values of −γ and −γ

2
,

respectively, are well within the range of values that are allowed for the derivative by the
prior. In fact, choosing σp = γ/2 would allow such a change in spectral index roughly once
per e-folding of the k-value. Choosing σp = γ

2h
would turn such a kink into a less common

h-sigma event.
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The case of a broken power-law contains the special cases of a pure power-law, i.e.
k0 → 0, such as arises for example for Brownian motion of a particle, and of an exponential
two-point correlation function, i.e.

C(r) = Sxy = C0e−βr, (E.3)

where r = |x− y| is the distance between two points or time-instances x and y. Such a
correlation function arises for example from the Ornstein-Uhlenbeck process (Uhlenbeck &
Ornstein 1930). Fourier transforming this correlation function in a one-dimensional space
yields the power spectrum which takes on the form given by Eq. (5.14) with P0 = 2C0

β
,

k0 = β, and γ = 2.
However, there are also cases that do not lead exclusively to small values of the double-

logarithmic derivatives. Two such scenarios will be studied in the remainder of this ap-
pendix.

E.1.2 Gaussian correlations

Consider a two-point correlation function of Gaussian shape for a field on a one-dimensional
space, i.e.

C(r) = C0e−
r2

2σ2 . (E.4)

A field whose statistics are described by such a two-point correlation function can be re-
garded as a stationary and spatially uncorrelated field convolved with a Gaussian. Calculating
the corresponding power spectrum via Fourier transformation yields

Pk =
√

2πσC0e−
σ2k2

2 . (E.5)

This power spectrum drops quickly with increasing k, due to the flatness of the correlation
function around r = 0. Therefore, both the first and second double-logarithmic derivatives
grow unbounded as k →∞. Thus, by employing a spectral smoothness prior that punishes
large values for these derivatives, one prevents in principle the reconstruction of the true
power spectrum and supresses the small-scale correlations in the reconstructed field that
are in reality more pronounced. In cases in which Gaussian correlations are expected, it
might therefore be advisable to choose the strength of the spectral smoothness prior, given
by σp, k-dependent or choose a different smoothness prior altogether.

E.1.3 Triangular correlations

Another case in which the double-logarithmic derivatives of the power spectrum can become
divergent is a correlation function with finite support. As an example, we consider a signal
on a one-dimensional space with correlations only over the finite distance 2L, given by

C(r) =

{
C0

(
1− r

L

)
for r < L

0 else
. (E.6)
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This triangular correlation function describes a stationary and spatially uncorrelated field
that has been convolved with a top-hat kernel. Fourier transforming it yields the power
spectrum

Pk =
2C0

k2L
(1− cos (kL)) . (E.7)

This power spectrum becomes exactly zero at finite k-values. Its logarithm, and therefore
also the double-logarithmic derivatives, are divergent at these locations, so not even a k-
dependent value of σp can ensure the correct reconstruction of the power spectrum in this
case. The oscillatory behavior of this power spectrum is a generic feature of signal fields
that are correlated only over a finite distance.

Note that both in the case of only locally correlated fields and in the case of Gaussian
correlations, the double-logarithmic derivatives can be kept finite by adding a constant
floor to the power spectrum, i.e. introducing an additive part to the signal that is spatially
uncorrelated. In many cases, the variance of the uncorrelated addition needed to satisfy the
spectral smoothness prior, Eq. (5.24), will be small enough so as not to influence the signal
reconstruction significantly. Note that in practice, any field variations are restricted by the
finite pixel size and only k-values up to a finite kmax will be considered. In Sec. 5.2.3, we
investigate the effect that the spectral smoothness prior given in Eq. (5.24) has in practice
on the recunstruction of a signal field exhibiting the two potentially problematic two-point
correlations that we discussed here.

In conclusion, using a spectral smoothness prior that punishes large values for the first
or second double-logarithmic derivative of the power spectrum can lead to the introduction
of spurious small-scale variations in cases in which the true two-point correlation function
is flat around r = 0 or has only finite support. In the latter case, it can also introduce
spurious large-scale correlations. This will, however, in general only be a problem for
the reconstruction if some feature that mimics these large-scale correlations is present
in the data, i.e. caused by the noise. Another case in which the employment of any
spectral smoothness prior is obviously a bad idea is that of a signal that exhibits prominent
periodicities. The detection of such spectral lines would only get hindered by the usage of
a spectral smoothness prior.

E.2 Discretization of the spectral smoothness prior

In our implementation we use discretized values (ki)i=0,...,imax
for the length scales that

are represented on the computational grid, or in case of the two-torus, bins thereof. We
approximate the integral in the exponent of the spectral smoothness prior, Eq. (5.24), with
a sum according to

∫
d(log k)

(
∂2 logPk

∂ (log k)2

)2

≈
imax−1∑
i=1

δi (∆p)
2
i . (E.8)
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Here, we use the abbreviations

δi =
log ki+1 − log ki−1

2
(E.9)

for integer values of i and
δi = log ki+1/2 − log ki−1/2 (E.10)

for half-integer values of i. Note that we have excluded the boundaries at k0 and kimax from
the sum to avoid numerical problems at these locations.

We approximate the second logarithmic derivative as

(∆p)i =
∑
j

∆i,jpj =

pi+1−pi
δi+1/2

− pi−pi−1

δi−1/2

δi
, (E.11)

so that we can represent it as a matrix with the entries

∆i,i = − 1

δi

(
1

δi+1/2

+
1

δi−1/2

)
, (E.12)

∆i,i±1 =
1

δiδi±1

, (E.13)

acting on the vector p. All other entries of the matrix ∆ are zero.
We can now write the exponent of Eq. (5.24) as

− 1

2σ2
p

∫
d(log k)

(
∂2 logPk

∂ (log k)2

)2

= −1

2

∑
i,j=0

piTi,jpj, (E.14)

where the matrix T is given by

Ti,j =
1

σ2
p

∑
l

∆l,iδl∆l,j. (E.15)
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Germany

Teaching experience

since 2012 Co-supervision of a Master’s thesis on primordial non-Gaussianities

2011 : Co-supervision of a Bachelor’s thesis on “A map of the symmetric part
of the Faraday depth”

2011 & 2012: Conducting the exercises for the lecture Information Theory and Signal
Reconstruction

2007 - 2008: Tutoring an exercise group for the lectures Mathematics for Physicists –
I and – II



177

Refereed Publications

2012 The XENON100 exclusion limit without considering Leff as a nuisance parameter
J. H. Davis, C. Bœhm, N. Oppermann, T. A. Enßlin, and Th. Lacroix
Physical Review D, Volume 86, Issue 1, 07/2012

An improved map of the Galactic Faraday sky
N. Oppermann, H. Junklewitz, G. Robbers, M. R. Bell, T. A. Enßlin, A. Bonafede,
R. Braun, J.-A. C. Brown, T. E. Clarke, I. J. Feain, B. M. Gaensler, A. Hammond,
L. Harvey-Smith, G. Heald, M. Johnston-Hollitt, U. Klein, P. P. Kronberg, S. A. Mao,
N. M. McClure-Griffiths, S. P. O’Sullivan, L. Pratley, T. Robishaw, S. Roy,
D. H. F. M. Schnitzeler, C. Sotomayor-Beltran, J. Stevens, J. M. Stil, C. Sunstrum,
A. Tanna, A. R. Taylor, and C. L. Van Eck
Astronomy & Astrophysics, Volume 542, id.A93, 06/2012

Improving stochastic estimates with inference methods: calculating matrix diagonals
M. Selig, N. Oppermann, T. A. Enßlin
Physical Review E, Volume 85, Issue 2, 02/2012

2011 Reconstructing signals from noisy data with unknown signal and noise covariance
N. Oppermann, G. Robbers, T. A. Enßlin
Physical Review E, Volume 84, Issue 4, 10/2011

Probing magnetic helicity with synchrotron radiation and Faraday rotation
N. Oppermann, H. Junklewitz, G. Robbers, T. A. Enßlin
Astronomy & Astrophysics, Volume 530, id.A89, 06/2011

Preprints

2012 Improved CLEAN reconstructions for rotation measure synthesis with maximum like-
lihood estimation
M. R. Bell, N. Oppermann, A. Crai, T. A. Enßlin
arXiv:1211.5105; submitted to Astronomy & Astrophysics

Reconstruction of Gaussian and log-normal fields with spectral smoothness
N. Oppermann, M. Selig, M. R. Bell, and T. A. Enßlin
arXiv:1210.6866; submitted to Physical Review E



178

Presentations at scientific meetings and conferences

November 2012: “The Galactic Faraday sky – What it is, how it’s done, and why it’s
useful”
Talk given at the workshop on Polarized Foreground for Cosmic
Microwave Background in Garching, Germany

July 2012: “Reconstructing signals from noisy data with unknown signal and noise
covariance”
Talk given at the 32nd International Workshop on Bayesian Inference
and Maximum Entropy Methods in Science and Engineering in Garching,
Germany
Proceeding in review

July 2012: “The Galactic Faraday sky – What it is, how it’s done, and why it’s
useful”
Talk given at the annual meeting of the DFG research unit 1254:
“Magnetisation of Interstellar and Intergalactic Media – The Prospects
of Low-frequency Radio Observations” in Mainz, Germany

February 2012: “The Galactic Faraday sky – What it is, how it’s done, and why it’s
useful”
Talk given at the conference on Astrophysics from the Radio to the
Sub-millimeter – Planck and Other Experiments in Temperature and
Polarization in Bologna, Italy

December 2011: “The Faraday sky – mapmaking and helicity inference”
Invited seminar talk at the Institut d’Astrophysique Spatiale in Orsay,
France

May 2011: “Reconstructing CMB Foregrounds and the Faraday Sky”
Talk given at the conference on Understanding Galactic and Extragalactic
Foregrounds: a Road to Success for Cosmological Experiments in Zadar,
Croatia

May 2011: “The Faraday sky – mapmaking and helicity inference”
Talk given at the German-Russian Open Workshop on “Galactic
Magnetism – Perspectives of Observation and Modeling” in Pushchino,
Russia

January 2011: “Detecting magnetic helicity from polarization at CMB frequencies”
Poster presentation at the conference on The Millimeter and
Submillimeter Sky in the Planck Mission Era in Paris, France


	Zusammenfassung
	Summary
	Introduction
	Galactic astrophysics
	The Milky Way
	Physical processes
	Components related to the Galactic magnetic field

	Signal inference
	General framework
	The Gaussian case
	Statistical homogeneity and isotropy
	Gaussianity assumption
	Beyond Gaussianity

	Outline

	Probing magnetic helicity with synchrotron radiation and Faraday rotation
	Introduction
	The helicity test
	Application to Galactic observations
	Observational data
	Reconstructing the Faraday depth map
	Results

	Application to simulated data
	Planar implementation
	Spherical implementation

	Discussion and conclusion

	Reconstructing signals from noisy data with unknown signal and noise covariance
	Introduction
	Signal model and notation
	Derivation of the filter formulas
	Application to simulated signals
	Setup
	Reconstructions

	Discussion

	An improved map of the Galactic Faraday sky
	Introduction
	Reconstruction algorithm
	Signal model
	The extended critical filter

	Data sets
	Results
	Map
	Reconstruction of the noise covariance
	Power spectrum

	Conclusions

	Reconstruction of Gaussian and log-normal fields with spectral smoothness
	Introduction
	Reconstructing Gaussian fields with spectral smoothness
	Reconstruction as a combination of posterior mean and maximum a posteriori
	Spectral smoothness priors
	Test-cases

	Reconstructing log-normal fields
	Spectral smoothness in the log-normal case
	Test cases

	Summary and Conclusions

	Conclusions and outlook
	Power spectra for real and complex fields
	Definition of power spectrum
	Complex signals
	Real signals

	Biased variance estimate from posterior samples
	Setting
	Drawing samples
	Effect of numerical inaccuracies
	Alternative, unbiased methods

	Higher order solutions for the extended critical filter
	Zeroth order
	Second order

	The three-dimensional Fourier power spectrum of the differential Faraday depth and the resulting angular power spectrum
	Statistical homogeneity and isotropy of differential Faraday rotation

	Spectral smoothness in special cases and its practical implementation
	Case studies for the spectral smoothness prior
	Power law spectra
	Gaussian correlations
	Triangular correlations

	Discretization of the spectral smoothness prior

	Bibliography
	Acknowledgments

