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1. INTRODUCTION 

Extensive research in the field of redox regulation particularly during the last couple of years 

has reshaped the mainly ´bad-guy´ image of reactive oxygen species (ROS) and has 

provided a clearer understanding of thiol-based redox chemistry in living organisms. 

Previously, ROS have been mainly considered to compromise cell survival by damaging 

cellular macromolecules and exerting cell-death-promoting effects. But cells also express 

systems that deliberately produce ROS to mediate numerous physiological processes, 

including cell cycle progression, cell survival and redox-regulated transcription regulation. 

Cells have developed versatile and sophisticated mechanisms to ensure an appropriate 

redox balance. To maintain cellular redox balance, cells rely on non-enzymatic antioxidants 

as well as on enzymatic antioxidant systems. Endogenous and nutritional compounds such 

as glutathione (GSH), cysteine, uric acid, coenzyme Q, ascorbic acid (vitamin C), 

α-tocopherol (vitamin E) and carotenoids may directly interact with ROS to detoxify them. 

Enzymes involved in the regulation of the cellular redox state are superoxide dismutases 

(SOD), catalases, peroxiredoxins (Prx), and enzymes of the glutathione-dependent system 

and the thioredoxin-dependent system. The two major factors that keep the cytosol and 

cellular compartments in a reduced state are the tripeptide GSH and the oxidoreductase 

thioredoxin (Trx). Thioredoxin and its co-operating molecules are ubiquitous in archea, 

bacteria and eukarya. Various pathologies and chronic diseases result from an imbalance 

between the cellular ROS production and their clearance by antioxidant defense systems. 

Atherosclerosis, Alzheimer´s disease and cancer represent only few of a wide range of 

disorders, which are believed, at least in part, to be caused by pathologically elevated 

intracellular ROS levels. The present study aims to elucidate functions of the mammalian 

mitochondrial thioredoxin reductase (Txnrd2), particularly in tumour pathologies. 

1.1. The mammalian thioredoxin family 

Due to their intracellular localisation, two main thioredoxin-dependent systems are described 

in mammals. The most studied system is localised in the cytosol consisting of thioredoxin 1 

(Trx1) and the thioredoxin reductase 1 (Txnrd1) 306. The second less characterised system is 

mainly confined to mitochondria and consists of thioredoxin 2 (Trx2) and thioredoxin 

reductase 2 (Txnrd2) 107. Both systems in their respective compartment exert similar 

mechanisms to keep proteins of these cellular compartments in a reduced state. Furthermore, 

a third thioredoxin reductase, also named thioredoxin/glutaredoxin reductase (Txnrd3/TGR), 

was discovered that is predominantly expressed in testis. This enzyme differs from the other 
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two Txnrds in that it is able to reduce oxidised glutathione (GSSG) and glutathione-related 

disulfides besides the main substrate, oxidised thioredoxin (Trx-S2) 
302. 

1.1.1. Thioredoxins 

Thioredoxins are relatively small proteins (10 to 12 kDa) that contain two conserved cysteinyl 

residues in the active site sequence -Cys-Gly-Pro-Cys- 334. These two cysteines are essential 

for the ability of thioredoxins to reduce other proteins. During the thiol-disulfide exchange 

reaction they undergo reversible oxidation and reduction. Thioredoxin (Trx-(SH)2) reduces 

disulfide bonds in proteins. The oxidised form of thioredoxin (Trx-S2) is in turn reduced by 

thioredoxin reductase in an NADPH-dependent reaction (Figure 1-1). Genetic deletion of 

Trx1 and Trx2 is embryonic lethal, reflecting the essential role of both in murine 

embryogenesis 200, 233. 

Both thioredoxins are essential for keeping intracellular proteins in a reduced state. 

Depending on their subcellular localisation, both thioredoxins fulfil different tasks and 

participate in a broad range of signalling pathways. Thioredoxins supply reducing equivalents 

to enzymes like ribonucleotide reductase 177 and some thioredoxin peroxidases 51. Through 

thiol-disulfide exchange reactions they may reduce Cys in transcription factors, thereby 

regulating the expression of stress response genes and oxidative stress-related apoptosis 226. 

It has also been reported that thioredoxins function as growth factors in cells 106 and have the 

ability to inhibit the process of apoptosis 14. Thus, it seems likely that thioredoxins may also 

contribute to pathological changes in living organisms. After infections, myocardial ischemia-

reperfusion and oxidative stress, serum/plasma levels of thioredoxin were found to be 

elevated and expression levels positively correlated with the occurrence of cardiac 

diseases 163. In 2001 Nakamura et al. discovered increased levels of thioredoxin in the serum 

of human immunodeficiency virus (HIV)-patients which was shown to be associated with 

poor prognosis 225. 

1.1.2. Thioredoxin reductases 

Thioredoxin reductases fundamentally differ between lower and higher organisms. In 

complex eukaryotes these enzymes are more closely related to glutathione reductase (GR) 

than to bacterial thioredoxin reductase. For instance, the enzyme is larger and displays 

broader substrate specificity compared to their bacterial counterparts. Additional to the N-

terminal active site mammalian thioredoxin reductases have an additional redox active site at 

the conserved C-terminus sequence containing selenocysteine (Sec) (-Gly-Cys-Sec-Gly- ) 

(Figure 1-2). 
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Thioredoxin reductases belong to the family of flavoproteins and are homodimeric proteins of 

55 to 56 kDa. Each monomer contains an active site coupled with a redox-active disulfide, 

FAD as a prosthetic group and an NADPH binding site (Figure 1-2). The enzymes are named 

thioredoxin reductases due to their ability to reduce oxidised thioredoxin (Trx-S2). The 

postulated mechanism for the reduction of thioredoxin by mammalian thioredoxin reductase 

is displayed in figure 1-1 357.  

In addition to thioredoxin, other substrates have been shown to be reduced by thioredoxin 

reductases. The substrate spectrum depends on the subcellular localisation of the enzyme. 

Txnrd1 is known to interact with lipid hydroperoxides 30, dehydroascorbic acid 201 and the 

ascorbyl free radical 202. Substrates of the Txnrd2 shall be discussed in a subsequent section 

(see chapter 1.2.1). 

Similar to Trx1 and Trx2, targeted deletion of either Txnrd1 or Txnrd2 is embryonic lethal in 

mice, albeit at different embryonic stages 61, 151. 

1.1.3. Selenium is essential for thioredoxin reductase activity 

Selenium is a non-metal chemical element, which is in its properties related to sulphur and 

tellurium. Selenium salts are toxic in large amounts, but in trace amounts selenium is 

essential for cellular function. As selenocysteine (Sec) it is incorporated in the active site of 

enzymes, e.g. glutathione peroxidases, thioredoxin reductases or iodide peroxidases. 

During the conversion of inorganic selenium to organic forms, many different metabolites are 

formed in animals. Hydrogen selenite is a key metabolite of selenium. It provides selenium 

for the synthesis of selenoproteins including thioredoxin reductases. Selenium is essential for 

the activity of thioredoxin reductases. The addition of 1 µM sodium selenite to the culture 

medium increased the cellular activity of thioredoxin reductase 37-fold in MCF-7 breast 

cancer cells, 19-fold in HT-29 colon cancer cells and 8-fold in A549 lung cancer cells. This 

increase in activity was accompanied with a slight elevation of mRNA and protein amount of 

the enzyme 101. In vivo, dietary supplementation of rats with supra-nutritional levels of 

selenium causes a transient increase in activity without affecting protein levels of thioredoxin 

reductase 25. These results indicate that the elevated activity is due to increased selenium 

incorporation. 

Selenium is incorporated in thioredoxin reductases in form of the 21st amino acid Sec. Sec is  

encoded by the opal codon UGA, which is normally recognised as a signal for termination of 

protein synthesis 191. But in the presence of a specific cis-acting element in the 

3`untranslated region (UTR), a mRNA secondary structure termed SECIS (selenocysteine 

insertion sequence) element, the UGA is decoded as Sec 107. Sec is essential for the 

catalytic activity of thioredoxin reductases. A truncated enzyme lacking the Sec-Gly peptide 
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or with Sec replaced by Ser resulted in an inactive enzyme. Mutation of the Sec to Cys 

resulted in a decreased activity, increased binding of thioredoxin and a change in pH 

optimum 358. Removal of the C-terminus, where Sec is located, either by enzymatic treatment 

(carboxypeptidase), alkylation, or Cre-mediated deletion resulted in inactivation of 

thioredoxin reductases 61, 118, 151, 356. 

 

Figure 1-1: Postulated mechanism for the reduction of Trx by mammalian Txnrd 
The catalytic reaction starts with the reduction of the selenenylsulfide (I.) to the selenolate anion (-Se

-
) 

(II.). The selenolate anion attacks the disulfides of Trx and the resulting enzyme-Trx-mixed 
selenenylsulfide is attacked by Cys497 to regenerate the selenenylsulfide (III.). The latter is reduced 
again by the active site thiolate of the other subunit (IV.). During the reaction the active site dithiol 
maintains the selenol in the reduced state. In general, the selenolate anion represents a better 
nucleophilic and leaving group than the thiolate anion. The scheme was adapted from Zhong et al., 
2000 

357
. 
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1.2. Mitochondrial thioredoxin reductase 

In december 2010 a search for ´thioredoxin reductase´ returns 1642 entries (thereof 128 

reviews) in the free digital archive of biomedical and life sciences, Pubmed, starting in 1964. 

An extensive search for ´mitochondrial thioredoxin reductase´ resulted in only 36 hits 

(including 2 reviews) starting in 1998.  

The mammalian Txnrd1 was the first enzyme of the group to be discovered in 1996 306. 

Hence structure, function and implication in physiological and pathological processes have 

been mainly elaborated for Txnrd1, whereas much less is known about Txnrd2, which 

predominantly localises to mitochondria. 

1.2.1. Structure and function of Txnrd2 

The discovery of a mitochondrial thioredoxin 293 predicted the existence of a mitochondrial 

thioredoxin reductase that maintains this thioredoxin in its reduced form. The identification 

and initial characterisation of a novel human thioredoxin reductase included a different 

molecular mass and distinct pattern of tissue expression compared to the cytosolic form 107. 

This enzyme showed 54% homology with the cytosolic thioredoxin reductase and harbours 

the same catalytic sites. Moreover, it contains an 36 amino acid long N-terminal extension 

(absent in Txnrd1), which emerged to be a typical mitochondrial leader peptide (Figure 1-2). 

Almost simultaneously, mitochondria-specific thioredoxin reductase were described in 

Saccharomyces cerevisiae 241, mouse 214, rat 267 and cow 330. Except for the yeast enzyme, 

all reductases are selenoproteins. The human mitochondrial thioredoxin reductase consists 

of 18 exons and maps to chromosome 22q11.2 213. In mouse the gene maps to chromosome 

16q11.2 214. The mRNA of Txnrd2 was found to be expressed in all human, mouse and rat 

tissues analysed, with highest expression levels in tissues with high energy demand (e.g. 

testis, skeletal muscle, heart, liver) 181. 

The mitochondrial electron-transport system consumes 85-90% of the oxygen required within 

cells. Due to incomplete reduction of oxygen to water in the mitochondrial respiratory chain, 

mitochondria are one of the sites with the highest ROS production in cells, in particular 

superoxide anion (O2•
–), hydrogen peroxide (H2O2) and hydroxyl radicals (HO•) 290. 

Glutathione peroxidases (GPx), glutathione reductase (GR) and manganese superoxide 

dismutase (MnSOD) 258 are located in mitochondria and are known to scavenge ROS 

generated by the respiratory chain. In the cytosol, catalase and glutathione peroxidases 

break-down H2O2 to H2O. By now it is believed that catalase is absent in most mitochondria 

except in mitochondria of cardiomyocytes 13, 259. Txnrd2 is able to detoxify mitochondrial H2O2 

either directly or indirectly via thioredoxins to maintain the peroxide scavenging mitochondrial 

thioredoxin-dependent peroxidases (Prx3 and Prx5) in their active state 329 (Figure 1-3). 
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First reported for Txnrd1 115, 303, 306, various isoforms have been also described for Txnrd2 184. 

Lescure et al. used computer-based screens for the RNA hairpin directing Sec incorporation 

to discover novel selenoproteins and found two proteins (SelZf1 and SelZf2) that obviously 

arise from the same gene as Txnrd2 but show differences in domains at the N-terminus, 

probably due to alternative splicing 184. The observation that alternative first exon splicing of 

Txnrd2 results in the formation of predicted mitochondrial and cytosolic isoforms could be 

confirmed by further studies 215, 302. It is believed that this remarkable heterogeneity within 

thioredoxin reductases results from evolutionary conserved genetic mechanisms, conducted 

by complex regulation of expression and specific intracellular localisation of mammalian 

thioredoxin reductases. Only one of the discovered isoforms of the Txnrd2 resides in the 

mitochondria (mitochondrial matrix), whereas the others are predicted to reside also in the 

cytosol. These latter isoforms show no catalytic specificity towards mitochondrial Trx (Trx2) 

versus cytosolic Trx (Trx1), both could serve as substrates 315. Up to now it is less 

understood which functions the different isoforms perform.  

 

Figure 1-2: Structure of mammalian mitochondrial thioredoxin reductase (Txnrd2) 
(A) Domain structures of the human cytosolic thioredoxin reductase (I) and the mitochondrial 
thioredoxin reductase (II). The various domains and the cleavage site of Txnrd2 are indicated in the 
keynotes. Triangles indicate the N-terminal catalytic active sites. The image was adapted from 
Mustacich et al., 2000 

221
. (B) Ribbon representation of the crystal structure of the Txnrd2. Subunit A is 

shown in dark colours and subunit B in light colours. The FAD-domain is displayed in yellow, the 
NADPH-domain in green and the interface-domain in blue. Bound FAD molecules are represented 
with carbon atoms coloured in grey, nitrogen atoms in blue, oxygen atoms in red and phosphorus 
atoms in cyan. Sulphur atoms (yellow) represent side-chains of Cys483 located at the dimer interface. 
Adapted from Biterova et al., 2005 

29
. 
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Figure 1-3: Electron transfer from the NADPH/H+ via the mitochondrial Trx-dependent 
system to H2O2 
The image depicts an electron transport system for peroxide reduction in mitochondria. Txnrd2 
recovers oxidised Trx2 (Trx2-S2), which, in turn restores oxidised peroxiredoxin 3 (Prx3ox). 
Peroxiredoxins are homodimers that reduce H2O2 with a peroxidatic (catalytic) Cys which in turn 
oxidises to sulphenic acid (-SOH). The -SOH interacts with the resolving Cys of the other subunit to 
form a disulfide. Finally the disulfide is reduced by Trx2. Adapted from Watabe et al., 1997 and 
D´Autreaux et al., 2007 

67, 329
. 

1.2.2. Implication of Txnrd2 in mitochondrial metabolism 

Mitochondria are membrane-enclosed organelles ranging from 0.5 to 10 µm in size and are 

found in most eukaryotic cells 137. Through oxidative phosphorylation and the citric acid cycle 

they are the powerhouses of the cell and produce the majority of energy in a cell in form of 

adenosine triphosphate (ATP). Mitochondria are further involved in a wide range of cellular 

processes including cell growth, differentiation, control of the cell cycle, cellular signalling as 

well as apoptosis 204. The number of mitochondria in a cell varies by organism and tissue 

type. Depending on their energy demand, some cells only have one mitochondrion whereas 

other cells have thousands of mitochondria. Mitochondria are composed of different 

compartments that carry out specialised functions (Figure 1-4). Depending on the tissue and 

species, mitochondrial proteins differ from each other. It is predicted that the mitochondrial 

proteome is regulated dynamically. Notably, some mitochondrially localised proteins and 

tRNAs are encoded by the mitochondrial genome, which displays substantial similarities to 

the bacterial genome. 
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Figure 1-4: Mitochondria structure 
The outer membrane of mitochondria contains channels and transport proteins that facilitate the 
exchange of molecules and ions with the cytosol. Large molecules can not pass the outer membrane 
of the mitochondria. The inner membrane is composed of various invaginations (=cristae), leading to a 
huge enlarged surface area. Most chemical reactions occur there and therefore the membrane 
contains the major protein complexes of the respiratory chain. The inner membrane encloses the 
mitochondrial matrix which contains ribosomes, granules, the mitochondrial nucleotides and enzymes, 
e.g. of the citric acid cycle. Image adapted from Frey and Mannella, 2000 

97, 237
. 

As mentioned above, Txnrd2 functions as an electron donor for Trx2 and other substrates. In 

particular, Txnrd2 obtains reducing equivalents from NADPH/H+ in order to reduce and 

recycle mainly oxidised Trx2 (Figure 1-3). Trx2 itself catalyses reductions of protein disulfides 

(e.g. peroxiredoxins) at much higher rates than glutathione 8. 

Through this redox-recycling system, Txnrd2 has been suggested to control mitochondrial 

ROS levels as well as the redox state of mitochondrial proteins. It is known that ROS 

generated in mitochondria are involved in cell signalling and participate, for example, in 

apoptotic processes 307. Mitochondrial ROS are e.g. considered to be involved in the opening 

of the mitochondrial permeability transition pore (PT), which is implicated in Ca2+ efflux 362. 

Opening of the PT has been shown to be dependent on redox-sensitive dithiol groups 246, 267. 

Several studies suggested that the mitochondrial thioredoxin reductase affects the regulation 

of the PT opening 267, 269. 

Increased H2O2 generation due to stimulation with tumour necrosis factor-α (TNF-α) resulted 

in increased oxidation of oxidised Txnrd2. This, in turn , causes reduced scavenging of H2O2, 

resulting in induction of apoptosis. These results indicate that an accumulation of oxidised 

Txnrd2 accelerates TNF-α-induced apoptosis 56, 159. Furthermore, overexpression of an 

alternative splicing variant of Txnrd2 in HeLa cells resulted in the induction of apoptotic cell 
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death, confirming the involvement of the mitochondrial thioredoxin reductase in apoptotic 

signalling 54. 

In vitro observations of cells overexpressing Txnrd2 revealed a reduced proliferation 

independent of selenium supplementation 228. Overexpression of a dominant-negative 

Txnrd2 in HeLa cells increased ROS production, accompanied with extended protein tyrosine 

phosphorylation and accelerated progression of G1 to S phase in the cell cycle 161. These 

studies are suggestive of an involvement of Txnrd2 in the regulation of cell proliferation.  

Formation as well as reduction of disulfide bonds is a major regulatory mechanism for the 

function of numerous proteins. The redox balance in the mitochondrial matrix is 

indispensable for the proper function of the respiratory chain. The mitochondrial ATPase 

F0- F1 complex and cytochrome-c-oxidase, both participants in the respiratory chain, have 

been reported to be regulated by redox mechanisms 346-347. It has been predicted that Txnrd2 

may not only act as an antioxidant regenerator, but possibly also plays a role in directly 

reducing members of the respiratory chain. Indeed, it was demonstrated that Txnrd2 directly 

reduces cytochrome c. Furthermore, overexpression of Txnrd2 increased the resistance to 

cytotoxicity induced by antimycin A and myxothiazol, both inhibitors of complex III 228. 

To date, the entire impact of Txnrd2 on mitochondria function and the explicit underlying 

mechanisms are not fully understood. 

1.2.3. Targeted deletion of Trx2 and Txnrd2 

Mutational insertion leading to a homozygous silenced mouse gene for the mitochondrial 

thioredoxin caused early embryonic lethality. The embryos displayed an open anterior neural 

tube and showed massively increased apoptosis. The time point of embryonic lethality 

(E12.5) is accompanied by the maturation of mitochondria and initial oxidative 

phosphorylation. Embryonic fibroblasts with homozygous deletion of Trx2 are also not viable. 

This demonstrates that Trx2 is indispensable for mouse development and also for respiring 

cells 233. 

Previously, different mouse models with targeted inactivation of Txnrd2 were established in 

our laboratory. The ubiquitous Cre-mediated deletion of Txnrd2 (Figure 1-5) was lethal 

around embryonic stage E13.5 - E15.5 62, 61. Reduced proliferation of cardiac cells and 

increased apoptosis of fetal blood cells in the liver are the major reasons for the severe 

anaemic phenotype and partial growth retardation of Txnrd2–/– embryos. In contrast to 

Trx2-null cells 233, Txnrd2-null fibroblasts could be isolated and cultured from E12.5 embryos. 

In vitro Txnrd2-null fibroblasts demonstrated decreased proliferation and increased sensitivity 

to experimental glutathione depletion. Since Txnrd2-null embryos displayed a thinner 

ventricular heart wall and a decreased proliferation of cardiomyocytes, a mouse with cardiac 
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tissue-restricted ablation for Txnrd2, which resulted in fatal dilated cardiomyopathy, was 

investigated 62, 61. The newborn mice died within several hours after birth due to congestive 

heart failure accompanied with generalised edema, liver congestion, globular heart shape 

and atrial dilatation. Cardiomyocytes displayed swelling and destruction of mitochondrial 

cristae. These results demonstrated that the Txnrd2 obviously plays an indispensable part in 

early embryogenesis, haematopoiesis as well as heart function. 

To bypass embryonic and postnatal lethality of Txnrd2-null mice, a tamoxifen-inducible 

cardiac tissue-specific knockout mouse for Txnrd2 was generated 157. Unexpectedly, 

inducible adult heart-specific Txnrd2-null mice were fully viable and displayed no apparent 

signs of abnormalities in histopathological analysis of cardiac tissue. Referring to the 

anaemic phenotype of ubiquitous Txnrd2-null embryos, T- and B-lymphocyte-specific 

(CD4- and CD19+ cells) deletion of Txnrd2 was investigated 109. Development and 

differentiation of both cell types in thymus and bone marrow was not impaired. Also, 

proliferation and activation in response to CD40 and IL-4 was unaffected in B-cells. 

Furthermore, nervous system-specific deletion of Txnrd2 revealed no apparent 

histopathological changes in any brain region 292. These findings support the consideration 

that Txnrd2 has important tissue- and organ-specific functions depending on the 

developmental state. The established conditional knockout models for Txnrd2 and cellular 

systems thus offer powerful tools for further investigations concerning the involvement of 

Txnrd2 in cellular function and the underlying molecular mechanisms. 

 

Figure 1-5: Conditional deletion of the Txnrd2 gene 
(A) The upper line shows the 3´region of the wild-type Txnrd2 gene with Sec encoded by exon 17 (red 
diamond) and the SECIS element located on exon 18 (green diamond). (B) Exons 15 and 18 are 
flanked with loxP sites (blue triangles) for conditional gene targeting. (C) Deletion of the C-terminally 
located redox-center is mediated by Cre-Recombinase. Adopted from Conrad et al., 2004 

61
. 
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1.3. Tumour biology: How cancer arises 

Cancer is a term used for diseases in which abnormal cells divide without control and are 

able to invade other tissues. Cancer is the second most frequent cause of death in Germany. 

In 2008, 29% men and 22% women died due to cancer in Germany 17. Each day about 

20,000 people worldwide die from cancer. Cancer constitutes a particularly challenging task 

for both research and clinical practice, it affects practically each and every organ in the 

human body (except myocardium) and each type of cancer has its own modus operandi and 

rules to develop and progress. 

However, cancer treatment has improved in recent years and today more than half of all 

patients in Germany are still alive five years after the frightful diagnosis of cancer. 

1.3.1. The multi-step process of cancer 

As a reward of research over the last 30 decades, it is now well-known that cancer 

represents a disease involving dynamic changes in the genome and that multiple rate-limiting 

steps are required to turn a normal cell into a malignant cancer cell. The number of genes 

that are involved in this progression is large and their identification is still ongoing. The 

impact of one gene on the development of cancer can vary at different time points of the 

process. 

As mentioned above, nearly all tissues in the body can develop malignancies, even different 

cell types in the same tissue. The basic processes that produce these diverse tumours 

appear to be quite similar. Normally cells reproduce only when instructed to do so by 

communication with adjacent cells. Thus, it is ensured that each tissue maintains a size and 

architecture appropriate to the organisms need. Tumour cells are able to violate this scheme 

and follow their own internal agenda for proliferation. They are furthermore able to migrate 

from the site of their origin and can thus invade other tissues, forming masses at distant sites 

in the organism. It is suggested that a normal cell has to undergo six essential alterations in 

their normal behaviour to dictate and manifest malignant growth. These six modifications are 

in particular (i) self-sufficiency in growth signals, (ii) insensitivity to growth-inhibitory signals, 

(iii) evasion of apoptosis (programmed cell death), (iv) limitless replicative potential, (v) 

sustained angiogenesis and (vi) tissue invasion and metastasis 131. This indicates that the 

genomes of tumour cells are invariably altered at multiple sites. Furthermore tumour 

development occurs in five major stages: (i) genetically altered cell, (ii) hyperplasia, (iii) 

dysplasia, (iv) in situ cancer and (v) invasive cancer 336 (Table 1-1). 

It is proposed that so-called proto-oncogenes and tumour suppressor genes play pivotal 

roles in triggering tumour development and account for the uncontrolled cell proliferation. 

Under physiological conditions proto-oncogenes (e.g. N-ras, c-myc) and tumour suppressor 
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genes (e.g. APC, p53, VHL) are essential regulators of the life cycle of cells, the former 

prompting, the latter inhibiting growth. When mutated, proto-oncogenes become 

carcinogenic oncogenes that drive excessive proliferation. In contrast, tumour suppressor 

genes are inactivated and this loss of function deprives the cell of crucial brakes that prevent 

inappropriate growth 144, 336. Numerous other classes of genes were already identified to 

participate in the initiation and even more in the progression (see chapter 1.3.4.) of cancer 

malignancies and emerged essential for tumour cells to attract blood vessels (see chapters 

1.3.2. and 1.3.3.) or to invade adjacent tissues and metastasise. 

 

Table 1-1: Stages of tumour development 
Adapted from Weinberg, 1996 

336
. 

i 
Genetic mutation 

in one single-cell 

one cell experiences a mutation that makes itself more likely to 

divide and proliferate 

ii Hyperplasia 
the altered cell and its descendants grow and divide 

excessively 

iii Dysplasia 
descendants keep on dividing excessively and begin to look 

abnormal 

iv In situ cancer 
at the place of origin the single-cell and its descendants form a 

mass of exorbitant growing cells with an abnormal shape 

v Invasive cancer 

some cells experience further mutations and start invading 

adjacent tissues, shed into the blood or lymph system and 

establish new tumors in distant organs: the tumour is now 

described as malignant. 

  

1.3.2. Tumour vascularisation: the ´angiogenic switch´ 

In the early stage of tumour formation genetic and epigenetic alterations activate oncogenes 

and/or inhibit tumour suppressor genes, leading to uncontrolled proliferation. Once the 

tumour mass reaches a critical size, tumour cells distant to blood vessels lack appropriate 

supply with oxygen and nutrients. In the 1970s Judah Folkman hypothesised that vessels are 

an indispensable prerequisite for the expansion of the tumour beyond a diameter of 1-2 mm3 

93. Without an appropriate vasculature cells either undergo apoptosis/necrosis and further 

tumour growth is impaired (tumour dormancy) (Figure 1-6 a). Unfortunately tumour cells can 
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overcome this inconvenience. The so called ´angiogenic switch´ is controlled by changes in 

the balance between pro- and anti-angiogenic factors secreted by the tumour cells 

themselves or by cells of the tumour microenvironment. This multi-step process induces the 

formation of new blood vessels from pre-existing blood vessels and reconstitutes the supply 

with oxygen and nutrients (Figure 1-6 b-e). Furthermore, tumour vascularisation offers an 

effective way to remove waste products as well as the chance to metastasise. Numerous 

distinct angiogenic factors have been identified in the past decades. It is proposed that these 

factors directly or indirectly induce proliferation and differentiation of endothelial cells. The 

prototypic pro-angiogenic factor, and a major regulator of physiological and also pathological 

angiogenesis, is the vascular endothelial growth factor-A (VEGF-A) (see chapter 1.3.3) 84, 145, 

186, 286. Fibroblast growth factor (FGF-1 and -2), platelet-derived growth factor (PDGF-B 

and - C) as well as the angiopoietins (Ang-1 and -2) are only some of a multitude of 

important positive regulators of tumour angiogenesis. However, a large number of anti-

angiogenic factors have also been characterised so far. Thrombospondin (TSP1) and 

endostatin are extracellular matrix-associated anti-angiogenic factors, whereas a second 

group comprises soluble factors like interferon-α and –β as well as angiostatin. In summary, 

the ´angiogenic switch´ is a complex process in which genetic and epigenetic events within 

the tumour cells and the tumour stroma causes the balance to shift from pro- and anti-

angiogenic factors towards the former. This in turn favours tumour angiogenesis and thus 

ongoing tumour growth 11, 48, 126. 
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Figure 1-6: The ´angiogenic switch´ in tumour progression 
The ´angiogenic switch´ is a crucial event in the development of a growing tumour. It can occur at 
different stages in the process of formation and is subject to the nature of the tumour and the 
surrounding microenvironment. Tumours mainly grow as avascular nodules (a) until they reach a 
critical size and a steady-state level of proliferating and apoptotic cells. To facilitate exponential 
tumour growth, the ´angiogenic switch´ is indispensable. Starting with perivascular detachment and 
vessel dilation (b) the process continues with angiogenic sprouting (c), and formation and maturation 
of new vessels (d). Recruitment of perivascular cells completes this process of tumour vascularisation. 
As long as the tumour grows, the formation of new blood vessels continues. The vessels especially 
provide oxygen and nutrients to hypoxic and necrotic areas of the tumour. The image was taken from 
Bergers and Benjamin, 2003 

22
. 

1.3.3. Vascular endothelial growth factor in tumour angiogenesis 

Recent evidence indicates that angiogenesis and vessel maturation are highly complex and 

coordinated processes, requiring the sequential activation of a series of receptors by 

numerous ligands in endothelial and mural cells 49, 150, 349. However, VEGF, as a major 

regulator of blood vessel formation and function, often represents a rate-limiting step in 

physiological angiogenesis. VEGF is an essential survival factor for endothelial cells, in vitro 

and in vivo. Loss of a single VEGF allele resulted in defective vascularisation and early 

embryonic lethality 47, 85. 
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The history of isolation of a tumour ´vascular permeability factor´, the identification of VEGF 

and discovery of other VEGF-related molecules and their receptors is reported in several 

reviews by Ferrara et al 88-89, 87. This chapter aims to briefly mention the activities of VEGF 

and its relevance to tumour biology. 

Several studies demonstrated that VEGF has the ability to promote growth of vascular 

endothelial cells derived from arteries, veins and lymphatics 86, 186, 232, 243-244, 250. Furthermore, 

it was shown that VEGF induces lymphangiogenesis in vivo 222-223. VEGF is also known to be 

an essential survival factor for endothelial cells. VEGF prevents endothelial cell apoptosis 

mediated by the phosphoinositide 3-kinase (PI3K)-pathway 98, 113 and, furthermore, induces 

the expression of the anti-apoptotic proteins Bcl-2, A1 112, XIAP 312 and survivin 313. Inhibition 

of VEGF resulted in extensive apoptotic changes in the vasculature of neonatal mice 114. 

Furthermore, numerous studies demonstrated that VEGF impacts on bone marrow cells and 

haematopoiesis, and influences vascular permeability and haemodynamic effects (for review 

see Ferrara et al 88). 

Considering with its versatile functions, it is not surprising that VEGF plays a role in several 

pathological conditions. VEGF is reported to be involved in haematological pathologies, 

intraocular neovascular syndromes, inflammatory disorders and brain edema as well as 

pathologies of the female reproductive tract 88. Notably, VEGF mRNA is expressed in the 

vast majority of human tumours 42, 40-41, 124, 249, 318 and it was demonstrated that many tumour 

cells secrete VEGF in vitro 84, indicating VEGF as a mediator of tumour angiogenesis. But 

not only tumour cells produce and deliver VEGF, it was also reported that tumour cells 

chemotactically attract tumour-surrounding stromal cells which also produce and secrete 

paracrine factors like VEGF (Figure 1-7) 70, 99, 139, 153, 160. 

The concept of anti-angiogenic therapy has been validated in numerous cancer cell lines, 

traditional transplant tumour models as well as genetically engineered mouse models of 

cancer, beginning in the mid-1990s and continuing to the present 10, 32-33, 31, 146, 160, 208, 328. 

Several clinical trials already led to the approval of a number of anti-angiogenic therapies 

targeting the VEGF/VEGFR2 pathway in certain types of cancer that are commercially 

available since 2005. The FDA (Food and drug administration)-approved agents include 

bevacizumab (Avastin®), a humanised monoclonal antibody for VEGF, as well as several 

small molecule tyrosine kinase inhibitors of VEGF receptors and other key growth factor 

receptors 66, 141, 256-257, 333, 345. 

Notably, the anti-angiogenic therapy alone is not beneficial for cancer patients unless 

combined with chemotherapy or radiation therapy 149, 164, 168, 178. The paradox that cytotoxic or 

radiation therapies require blood vessels for delivering drugs and oxygen but anti-angiogenic 

therapies kill blood vessels, could be resolved by Jain et al. He postulated in 2001 that the 
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application of anti-angiogenic agents can ´normalise´ the abnormal vasculature, resulting in 

more efficient delivery of drugs and oxygen to the targeted cancer cells 149. 

Indeed tumour blood vessels are leaky, tortuous, dilated, saccular and have a chaotic pattern 

of interconnection which can result in an inappropriate drug supply. However, it is noteworthy 

that anti-angiogenic drugs have not produced long-term effects in terms of tumour shrinkage, 

dormancy or long-term survival. The common result is a delayed progression following a 

period of clinical benefit, suggesting an emerging resistance against the therapy 23. 

Besides, experimental data could demonstrate that targeting the VEGF pathway resulted in 

tumour adaptation and progression to stages of greater malignancy including increasing 

invasion and metastasis 236. 

Altogether, anti-angiogenesis therapies emerged as significant advancements in cancer 

treatment though the high expectations had to be scaled down. 

 

Figure 1-7: Contribution of VEGF to tumour angiogenesis 
Tumour cells itself produce VEGF, but also tumour-associated stromal cells are an important source of 
VEGF. In response to chemotactic stimuli, stromal cells are recruited to the tumour and deliver VEGF 
and other angiogenic factors. Image adapted from Ferrara, 2004 

88
. 

1.3.4. Hypoxia and Hif-signalling in tumour biology 

Hypoxia defines a cellular condition in which oxygen becomes restricted and the supply is 

unable to meet the demand. Obviously, hypoxia is linked to the pathology of several 

diseases like cardiovascular diseases, stroke or cancer. Numerous reports on the relevance 

of hypoxia in the progression of tumours were published in the last decade, reflecting the 

eminent implication of this biological phenomenon in malignant processes 1, 3, 35-36, 156. To 

understand how hypoxic conditions are generated in the tumour and in which way cells 

respond to the decreased availability of oxygen, it is essential to understand tumour 
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progression and metastasis. As already mentioned, cells have to undergo various changes in 

their metabolism to become malignant 131. However, hypoxia seems to be involved in the 

progression of nearly all types of cancer. Massive proliferation of tumour cells disconnects 

cells from the vascular network, leading to restriction in oxygen supply and nutrient 

availability. Histological observations of malignant tissue revealed a central core of necrotic 

cells in numerous tumours. An oxygen partial pressure (pO2) at low levels between 

1-10 mmHg has been observed in solid tumours 308. Together with restricted glucose supply, 

it seems obvious that this contributes to necrotic cell death in the middle of the tumour tissue 

(Figure 1-8). Hypoxic zones are postulated to have a reduced response to radiotherapy and 

several chemotherapy resistances due to limited deliverance of drugs 100, 108, 140, 176. 

 

Figure 1-8: Implication of hypoxia and Hif-1αααα in tumour physiology 
The pO2 drops from blood vessels to the distant tumour tissue. Tumour cells residing close to the 
vessel are well oxygenated (light green) whereas cells that are more distant from the vessel are 
exposed to hypoxic stress (dark green). The latter stabilise Hif-1α, leading to stimulation of expression 
of numerous target genes. The target genes encode factors that modulate adaptation to the hypoxic 
situation of the cell (blue arrows). Tumour cells which fail to stabilise Hif-1α undergo necrosis or 
apoptosis (white cells). The image was adapted from Keith et al., 2007 

156
. 
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Cells exposed to hypoxic conditions are able to respond by increasing rates of anaerobic 

glycolysis and/or induction of angiogenesis or in the last resort they undergo cell death via 

apoptosis/necrosis. A prominent family of transcription factors, the hypoxia inducible factors 

(Hifs), can activate adaptive processes that enhance the likelihood of survival. 

In 1992, Hif-1α was first described when the mechanism of hypoxia-induced erythropoietin 

expression was discovered 283. Hif-1α is a heterodimeric transcription factor consisting of two 

subunits, α and ß. The ß-subunit is also known as aryl hydrocarbon receptor nuclear 

translocator (ARNT). Whereas ARNT is constitutively expressed, the stability, subcellular 

localisation and transcriptional activity of the α-subunit is affected mainly by oxygen levels 323. 

In order to act as a transcription factor, Hif-1α translocates into the nucleus and dimerises 

with Hif-1ß. There are two more known members of the Hif-family that possess structural 

similarity with Hif-1α, Hif-2α and Hif-3α. Whereas Hif-2α also activates transcription and 

induces hypoxia-mediated gene expression, Hif-3α was found to act as a Hif-1α antagonist 

180. However, up to now Hif-1α has been studied most. 

Under normoxic conditions, Hif-1α is rapidly degraded via the pVHL-mediated ubiquitin-

proteasome pathway. Post-translational Hif-1α is hydroxylated by prolyl hydroxylases (PHDs) 

at two sites within its ODD domain and further acetylated by ARD1 acetyltransferase 

(Figure 1-9) 179. Thus, Hif-1α is labelled to interact with an E3 ubiquitin-protein ligase 

complex composed of pVHL, elongin B&C and cullin 2. Upon polyubiquitination Hif-1α is 

degraded by the 26S proteasome (Figure 1-10). 

Under hypoxic conditions the PHDs become inactive, Hif-1α is no longer hydroxylated and 

less acetylated 179. Hence, Hif-1α can not be targeted by pVHL for proteasomal degradation, 

becomes stabilised and translocates into the nucleus (Figure 1-10). Once stabilised and 

translocated to the nucleus, Hif-1α dimerises with Hif-1ß and binds to the hypoxia-response-

element (HRE) in several genes (Figure 1-10). Subsequently, Hif-1α acts as a master 

regulator of oxygen-regulated gene expression and targets more than 60 putative genes 180. 

Hif-1α is known to regulate transcription and thereby influences events like angiogenesis 

(VEGF), cell proliferation (TGF-α, TGF-ß3, cyclin G2), cell survival (IGF2, NOS2), glucose 

metabolism (GLUT1, GAPDH), iron metabolism (transferrin) and erythropoiesis (EPO) 121, 180. 

Several target genes of Hif-1α have been predicted to participate in malignant processes. 

Indeed, Hif-1α is overexpressed in many different types of cancer 305. This often correlates 

with increased angiogenesis, malignant progression and treatment failure 355. 
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Figure 1-9: Gene domain structure of human Hif-1αααα 
The amino acid residues 402, 532 and 564 are targeted for hydroxylation by PHDs and acetylation by 
ARD under normoxia, leading to Hif-1α destabilisation. The amino acid residue 803 is hydroxlated by 

FIH (factor inhibiting Hif-1α) under normoxic conditions and inhibits the association with p300/CBP, 
essential for Hif-1α stabilisation and DNA-binding. [bHLH = basic helix-loop-helix-PAS family-domain, 
PAS-domain = acronym for Per, ARNT and Sim (first recognised members of this family), ODD = 
oxygen-dependent degradation domain, TAD-N = N-terminal transcriptional domain, NLS = nuclear 
localisation signals, TAD-C = C-terminal transcriptional domain, OH = hydroxyl group, CH3 = methyl 
group.] Image modified from Lee et al., 2004 

179
. 

However, oxygen-independent mechanisms that stabilise Hif-1α under normoxic conditions 

also exist. This has been reported for many growth factors and cytokines 136, 296, 353. The 

mechanisms underlying this activation are proposed to rely on elevated ROS production 253. 

Interference of ROS with the Hif-1α pathway under normoxic conditions was first 

demonstrated by exposing cells to exogenous ROS. Stabilisation of Hif-1α protein and 

activation of Hif-1α target genes was induced by H2O2 or several other oxidative stressors 37, 

53, 71, 198. These effects could be reversed by adding several antioxidant components like 

N-acetylcysteine, glutathione and vitamins E or C 104, 128, 238, 270, 288, 361. But prior to addressing 

the responsibility of ROS in Hif-signalling it is crucial to consider the intracellular kinetics of 

ROS in response to pO2 changes. On the one hand, formation of ROS was found to be 

decreased under hypoxic conditions 45, 190, 324 but on the other hand, cumulative reports 

document that hypoxia actually increases intracellular ROS production, predominantly via the 

mitochondria 44, 58, 111, 127, 198, 234. The latter is somewhat paradox as the substrate (oxygen) for 

the mitochondria to make ROS should be less abundant. While these discrepancies could be 

due to technical demands and limitations in ROS quantification 2, the excact mechanisms of 

mitochondrial ROS production during hypoxia still remain to be fully elucidated. Therefore, it 

might be useful to establish one general reliable, quantitative and sensitive method for 

measuring ROS. 
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Figure 1-10: Hif-1αααα is regulated by oxygen availability 
Blue arrows indicate Hif-1α signalling under normoxic conditions with hydroxylation through PHDs, 
acetylation through ARD1 and binding of further proteins for proteasomal degradation. Red arrows 
illustrate the signalling pathway under hypoxic conditions with stabilisation and accumulation of Hif-1α, 
leading to the binding of several co-activator proteins (Hsp90 = heat shock protein 90, p300 and CBP) 
and translocation into the nucleus. In the nucleus, Hif-1α binds to HRE (hypoxia-response element) of 
several genes that are involved in cell proliferation, apoptosis, angiogenesis and energy metabolism. 
The image was adapted from Lee et al., 2007 

180
. 
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Though the changes in ROS production due to hypoxia are still controversial matters, over 

the last decade several feasible points of interaction of ROS in the pathway of Hif-signalling 

are now considered clear (Figure 1-11). It has been already reported that redox-dependent 

pathways are involved in Hif-1α stabilisation and DNA-binding 143, 175, 324. Further 

investigations revealed that ROS may have an impact on Hif-1α expression via the activation 

of kinases. Tyrosine kinase inhibitors completely blocked Hif-1α synthesis and DNA-binding 

activity under hypoxic conditions 325. 

In particular PHDs, which have a considerable regulatory impact on Hif-1α under hypoxia, 

offer an attractive target for ROS to interfere with the Hif-1α pathway. PHD2 has been 

reported to reside in the cytosol 210, where it is directly exposed to ROS derived from NADPH 

oxidases 6. H2O2 produced in the mitochondrial matrix can relocate to the cytosol and 

influence PHD activity 44, 127. Activity of PHDs requires several co-factors. The availability of 

oxygen is an absolute determinant in PHD activity. Furthermore, the enzymes require 

α-ketoglutarate, ferrous iron (Fe2+), and ascorbate for full activity. Sustained production of 

ROS was found to reduce the cellular pool of Fe2+ , thereby increasing the proportion of PHD 

in the inactive Fe3+ oxidation state 111. At physiological concentrations ascorbate was shown 

to enhance PHD activity, thereby promoting Hif-1α degradation 166. 

In summary, hypoxic areas in tumours even display the beginning of a hypoxic signalling 

cascade. Decreasing oxygen levels are accompanied by increasing stabilisation of Hif-1α. 

Subsequently, a broad range of genes implicated in cell survival/death, metabolism, 

angiogenesis, pH regulation, adhesion, extracellular matrix remodelling, migration, and 

metastasis are targeted, leading to adaptive cellular reactions. It is also reported that hypoxic 

signalling seems to be crucially involved in promoting invasive potential of tumour cells 36. 

Besides oxygen-dependent stabilisation of Hif-1α in tumour cells also defects in the 

regulation of Hif-1α degradation can contribute to malignant processes and promote tumour 

progression as well as invasiveness. Von Hippel Lindau (VHL) disease, a hereditary cancer 

syndrome, results from a mutation in the von Hippel-Lindau tumour suppressor gene, leading 

to loss of function. As a consequence, Hif-1α is stable and acts as versatile transcription 

factor. This syndrome is characterised by the presence of highly vascularised tumours 

including renal angioma, renal cell carcinoma and phaeochromocytoma. Therefore, a strong 

link between Hif-1α, angiogenesis and tumour progression is provided 91, 169. 
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Figure 1-11: Involvement of reactive oxygen species in Hif-signalling 
Stabilisation and DNA-binding of Hif-1α revealed as ROS-sensitive processes (red arrows). Interaction 
of ROS with Fe

2+
 and ascorbate limits factors crucial for the activity of PHDs. Thus, degradation of 

Hif-1α is interrupted. Once stabilised and translocated to the nucleus, the binding of Hif-1α to the HRE 
of several genes occurs in a redox regulated manner. The illustration was adapted from Kaelin et al., 
2005 and Pouyssegur et al., 2006 

152, 253
. 

1.3.5. Implication of mitochondria in tumour progression 

With their central position in cellular metabolism, mitochondria play a critical role in a broad 

range of diseases (Figure 1-12). Metabolic defects in Parkinson disease, neuronal injuries, 

cardiovascular diseases, mediated cell death in diabetes, and cancer depict only a few. A 

pivotal role for mitochondria has been predicted for the process of aging. Several 

mitochondrial functions decline with increasing age. Decreased membrane fluidity and 

intrinsic rate of proton leakage across the inner mitochondrial membrane are only some of 

these age-associated mitochondrial changes. It has been suggested that there is an age-

dependent accumulation of ROS due to progressive dysfunctions of mitochondria 290. In 
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many human diseases, chronically elevated levels of ROS contribute to the disease trigger 

and pattern. Oxidative stress is a conserved signal for cell death and mitochondria are the 

switchboard of the apoptotic machinery 235. For instance ischemia-reperfusion and drug 

injuries are accompanied by increased ROS production, inducing mitochondrial dysfunction 

and increasing mitochondrial autophagy 260. 

As already mentioned (see chapter 1.3.4.), it has been proposed that mitochondria contribute 

to hypoxic signalling 44, 111, 127, 198, 234. Mitochondria generally represent a major source of ROS 

in the cells. Several groups could demonstrate that H2O2 is required for the induction of 

Hif-1α target genes under hypoxic conditions 52, 74, 81. Moreover, three recent studies 

demonstrated that, under hypoxic conditions, mitochondria produce a burst of ROS that 

stabilises Hif-1α, which could be impaired by blocking mitochondrial function either 

chemically or pharmacologically 44, 198, 280. An additional study demonstrated that Hif-1α is 

also stabilised in cells lacking functional respiration, disproving the latter assumption 19. 

Though, this subject is obviously inconsistent and requires further investigation. 

One more controversial issue comprises the mitochondria and their relevance in malignant 

processes. In the 1930s Otto Warburg discovered a functional disruption of mitochondria in 

tumour cells. He observed elevated lactate levels in cancer cells compared to normal cells 

even though adequate oxygen for oxidative phosphorylation was available 327. He could show 

that cancer cells can obtain approximately the same energy from fermentation (glycolysis) 

than from respiration. In contrast, normal cells obtain much more energy from respiration. 

Thus Warburg postulated that the disruption of respiration in cancer cells must be irreversible 

but not to such an extent that the cells are killed. Since he observed that cancer cells cannot 

regain normal respiration even if oxygen is available, he assumed that the destruction of 

respiration might be the origin of cancer cells 327. Later on, studies challenged his thesis and 

revealed that the mitochondria of tumour cells are not dysfunctional, do respire and produce 

ATP 119. However, it has been shown that many tumours contain somatic mutations in 

mitochondrial DNA 46, 252. One would assume that the outcome is probably a sub-optimal or 

non-functional oxidative phosporylation and ATP synthesis, meaning that cells must 

accelerate anaerobic glycolysis. But the functional consequences of mitochondrial DNA 

mutations might be marginal and of peripheral importance to tumourigenesis. Limited 

evidence indicates that some of these mutations might directly promote tumour growth 247, 289. 

More recently, it was discovered that mitochondrial proteins can act as tumour suppressors. 

Somatic mutation of succinate dehydrogenase (SDH), member of the TCA, has been shown 

to lead to the development of phaeochromoytoma or paraanglioma 15, 75, 251. 

To this day Warburg’s thesis has been neither completely confirmed nor absolutely disproved. 

However, it has been proven that cancer cells indeed exhibit a higher rate of anaerobic 

glycolysis. This extensive utilisation of glucose is currently used for visualisation of tumours 
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via positron emission tomography 102. During the last decade several studies suggested that 

the Warburg effect is less related to mitochondrial defects but even more to alterations in 

signalling. As mentioned above, mitochondria are more than a powerhouse for cells. They 

contribute to Ca2+ homeostasis, cell death signalling, redox signalling, as well as cell growth 

and survival (Figure 1-12). Obviously, these functions are crucial for tumour cell physiology 

and many extensive reports have examined these features faithfully 116, 203, 335. Nearly 30 

years ago, new therapeutic approaches started to specifically target mitochondria. Anti-

cancer agents exclusively targeting these organelles are now termed ´mitocans´. They aim to 

destabilise mitochondria, resulting in efficient cell death and long-term suppression of tumour 

growth. A redox silent vitamin E analogue epitomised by α-tocopheryl succinate (alpha-TOS) 

is proposed to be such a mitochondria-selective anti-cancer agent. It has been described to 

efficiently target complex II of the respiratory chain, thereby disrupting electron flow 231. 

As already mentioned, normal cells have to undergo six major alterations in their properties 

to become a tumour cell 131. These days, many researchers include a seventh important 

alteration, a change in cellular metabolism in relation to mitochondrial functions 69. 

 

Figure 1-12: Implication of mitochondria in cancer cells and tumour progression 
This illustration depicts the complex relationship between mitochondrial activities and malignant 
processes in a simplified way. The six issues are mentioned and partially discussed in the text. Image 
adapted from Mayevsky et al., 2009 

203
. 
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1.4. Thioredoxin reductases in relation to cancer and Hif-signalling 

The literature suggests that the thioredoxin-dependent system may be involved in several, if 

not all stages of tumour development. However, the relative importance at the hallmarks of 

cancer (Hanahan and Weinberg, 2000) by the thioredoxin system and its individual elements 

is far from clear and certainly varies between different types of cancer. Most reports 

concerning the thioredoxin system in disease and mainly cancer refer to the cytosolic 

thioredoxin and thioredoxin reductase (Txnrd1) 9, 16, 221. Inhibition of Txnrd1 via siRNA in 

human hepatocellular carcinoma cells resulted in the accumulation of cells in cell cycle 

phase G2/M. The anti-apoptotic Bcl-family member Bcl-2 was decreased and, in contrast, the 

tumour suppressor and regulator of cell cycle, p53, was increased 103. Overexpression of 

Txnrd1 has been reported for numerous cancer types, proposing the enzyme as a target for 

cancer therapy. Long-term knockdown of Txnrd1 in Lewis lung carcinoma cells via stable 

siRNA transfection revealed a change from a cancer cell phenotype to a normal cell 

phenotype 350. In vivo, the knockdown of Txnrd1 resulted in reduced tumour progression and 

metastasis, even more Txnrd1 knockdown cells-derived tumours lost the targeting siRNA 

construct. These results indicate that the cytosolic form of thioredoxin reductases is pivotal 

for tumour promotion and is especially indispensable for self-sufficiency in growth signals of 

malignant cells 351. In contrast, recent work in our lab demonstrated that Txnrd1 is not 

essential for tumour growth. Txnrd1-deficient MEFs could be succesfully transformed with 

the two proto-oncogenes c-myc and Ha-rasV12, maintained in culture, and showed equal 

proliferative capacity. Furthermore, loss of Txnrd1 function had no impact on anchorage-

independent growth in vitro and tumour growth in vivo 197. 

Up to now, only one study reported about on elevated expression of the mitochondrial 

thioredoxin reductase (Txnrd2) in tumour tissue. Txnrd2 and a second mitochondrial protein, 

peroxiredoxin 3 (Prx3), were expressed to a significant higher degree in hepatocellular 

carcinoma tissue compared to adjacent healthy tissue 59. 

 

For cells, the thioredoxin system offers one of several effective tools to scavenge free ROS, 

recover oxidised disulfides of proteins, and, most importantly, keep the cell in a more 

reduced state. Hif-1α, as mentioned above, has recently been reported to respond to redox-

dependent regulatory mechanisms. The cytosolic form of thioredoxin (Trx1) was found to be 

increased in several tumour tissues and has been linked to aggressive tumour growth. 

Moreover, the mRNA levels of Trx1 increased in cells exposed to hypoxia 24. Thus, the 

question arises whether there is any functional connection between thioredoxin and Hif-1α. 

Stable transfection of human breast cancer cells with human Trx1 significantly increased 

Hif-1α protein levels, Hif-1α transactivation activity, and also caused an increase in protein 
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products of hypoxia-responsive genes (VEGF, iNOS). On the other hand, transfection of a 

redox-inactive Trx1 resulted in a decrease in Hif-1α protein, Hif-1α transactivation activity 

and VEGF protein levels 338. Irreversible inhibition of Trx1 using two specific inhibitors (PX-12 

and pleurotin) prevented hypoxia-induced Hif-1α protein stabilisation, transactivation activity 

and furthermore reduced VEGF as well as iNOS levels 339. 

In a previous study, cells were stably transfected to overexpress either Trx1 or Trx2 and 

effects on Hif-1α where investigated. Surprisingly, the results for these two thioredoxins 

produced opposite effects. Overexpression of Trx1 increased Hif-1α protein and activity, 

whereas overexpression of Trx2 decreased Hif-1α protein level and transactivation activity. 

Further investigations revealed that the differences are not due to altered transcription or 

degradation of Hif-1α, but may depend on altered phosphorylation and activities of proteins 

of the Akt pathway, mitogen-activated protein kinases and ROS production 359. Observation 

of nitric oxide (NO)-evoked Hif-1α stabilisation offered similar results. Overexpression of Trx1 

resulted in Hif-1α accumulation accompanied by increased transactivation activity, 

phosphorylation of p42/44 mitogen-activated protein kinase and elevated intracellular ATP 

levels. Cells overexpressing Trx2 showed opposite effects which was also true for 

overexpression of Txnrd2 360. Nevertheless, despite the underlying mechanisms for the 

controversial actions of thioredoxins in Hif-1α signalling still requiring further investigation 

there is increasing evidence that the thioredoxin system interferes with Hif-1α. 
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1.5. Intention of the present work 

Our group could previously demonstrate that Txnrd2 is essential for embryogenesis, heart 

development and function, and especially haematopoeisis 61. Subsequently, the impact of 

Txnrd2 knockout on cell proliferation was investigated in vitro, the reply to oxidative stress, 

as well as interactions with other redox-regulating enzymes, e.g. the glutathione-dependent 

system and peroxiredoxins, using primary Txnrd2-deficient MEFs 245. 

Over the last decades the function of cytosolic Txnrd (Txnrd1) has been investigated 

intensely. Besides its impact on cell proliferation, apoptosis and redox-signalling, Txnrd1 was 

found to be upregulated in many cancer cell lines and solid tumours. Less is known about 

Txnrd2 and its contribution to malignant processes. Up to now only one study could show 

that Txnrd2 in particular is highly expressed in hepatocellular carcinoma tissue 59. 

Using immortalised MEFs, transformed MEFs and eEPCs, the present study aims to 

investigate Txnrd2 functions, particularly in normal cell physiology, tumour cell physiology 

and malignant processes with the following hypotheses: 

 

• Txnrd2 deletion has long-term effects on cell metabolism. 

 

• Txnrd2 deletion affects tumour cells in vitro and tumour growth in vivo. 

 

• Txnrd2 knockout influences endothelial cell function. 
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2. MATERIALS AND METHODS 

2.1. Materials 

CHEMICALS     COMPANY      

2-Log DNA ladder    NEB Biolabs GmbH, Frankfurt a.M., Germany 

2-Propanol     Merck KGaA, Darmstadt, Germany 

Acetic acid 100%    AppliChem GmbH, Darmstadt, Germany 

Acrylamide 30% (Mix 37.5:1)   Genaxxon Biosience GmbH, Ulm, Germany 

ADP      Sigma-Aldrich GmbH, Taufkirchen, Germany 

Agarose low EEO    AppliChem GmbH, Darmstadt, Germany 

Agarose, TopVisionTM LMGQ   Fermentas GmbH, St. Leon-Rot, Germany 

Ammonium persulfate   AppliChem GmbH, Darmstadt, Germany 

Ampicillin sodium salt    Sigma-Aldrich GmbH, Taufkirchen, Germany 

Aqua ad iniectabilia    B. Braun Melsungen AG, Melsungen, Germany 

Ascorbic acid     Sigma-Aldrich GmbH, Taufkirchen, Germany 

Bacto agar     Applichem GmbH, Darmstadt, Germany 

Bacto yeast extract    Sigma-Aldrich GmbH, Taufkirchen, Germany 

Boric acid     Merck KGaA, Darmstadt, Germany 

Bovine serum albumin (albumin fraction V) AppliChem GmbH, Darmstadt, Germany 

Bromophenol blue    Sigma-Aldrich GmbH, Taufkirchen, Germany 

Calcium chloride    Sigma-Aldrich GmbH, Taufkirchen, Germany 

Chloroquine diphosphate   Sigma-Aldrich GmbH, Taufkirchen, Germany 

Crystal violet     Sigma-Aldrich GmbH, Taufkirchen, Germany 

DCF, DCFDA     Invitrogen, Karlsruhe, Germany 

Digitonin     Sigma-Aldrich GmbH, Taufkirchen, Germany 

Disodium hydrogenphosphate  Merck KGaA, Darmstadt, Germany 

D-Mannitol     Merck KGaA, Darmstadt, Germany 

dNTPs for PCR, premixed   GE Healthcare, Freiburg, Germany 

ECLTM, Western Blotting Reagent  GE Healthcare, Freiburg, Germany 

EDTA      AppliChem GmbH, Darmstadt, Germany 

EGTA      AppliChem GmbH, Darmstadt, Germany 

Eosin G, 0.5%     Roth Carl GmbH & Co., Heidelberg, Germany 

ER-TrackerTM Green     Invitrogen, Karlsruhe, Germany 

Ethanol     Merck KGaA, Darmstadt, Germany 
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Ethidium bromide    Sigma-Aldrich GmbH, Taufkirchen, Germany 

Ethyl ether     Sigma-Aldrich GmbH, Taufkirchen, Germany 

FITC-dextran     Sigma-Aldrich GmbH, Taufkirchen, Germany 

Forene®     Abbott GmbH & Co KG, Wiesbaden, Germany 

Glutamate     Sigma-Aldrich GmbH, Taufkirchen, Germany 

Glycerol     AppliChem GmbH, Darmstadt, Germany 

Glycin      AppliChem GmbH, Darmstadt, Germany 

Hämalaun solution, acidic   Roth Carl GmbH & Co., Heidelberg, Germany 

K-lactobionate     Sigma-Aldrich GmbH, Taufkirchen, Germany 

L-Glutathione oxidised disodium salt  Sigma-Aldrich GmbH, Taufkirchen, Germany 

Malate      Sigma-Aldrich GmbH, Taufkirchen, Germany 

Magnesium chloride    AppliChem GmbH, Darmstadt, Germany 

Magnesium sulphate    Merck KGaA, Darmstadt, Germany 

Methanol     AppliChem GmbH, Darmstadt, Germany 

Mitotracker® Green FM   Invitrogen, Karlsruhe, Germany 

Mitotracker® Red CMH2XRos  Invitrogen, Karlsruhe, Germany 

MitoSOXTM Red    Invitrogen, Karlsruhe, Germany 

MOPS      Sigma-Aldrich GmbH, Taufkirchen, Germany 

NAD phosphate, reduced tetrasodium Sigma-Aldrich GmbH, Taufkirchen, Germany 

Nonfat dried milk powder   AppliChem GmbH, Darmstadt, Germany 

Nonyl acridine orange   Invitrogen, Karlsruhe, Germany 

Page RulerTM Prestained Protein Ladder Fermentas GmbH, St. Leon-Roth, Germany 

Paraformaldehyde    Merck KGaA, Darmstadt, Germany 

Perchloric acid 70%, absolute  AppliChem GmbH, Darmstadt, Germany 

Phenol/Chlororform/Isoamyl alcohol  Roth Carl GmbH & Co., Karlsruhe, Germany 

Phenylmethylsulfonyl fluoride  Merck KGaA, Darmstadt, Germany 

Ponceau S     Sigma-Aldrich GmbH, Taufkirchen, Germany 

Potassium acetate    Merck KGaA, Darmstadt, Germany 

Potassium chloride    Merck KGaA, Darmstadt, Germany 

Potassium cyanide    Sigma-Aldrich GmbH, Taufkirchen, Germany 

Potassium dihydrogen phosphate  Merck KGaA Darmstadt, Germany 

Rotenone     Sigma-Aldrich GmbH, Taufkirchen, Germany 

Rubidium chloride    Sigma-Aldrich GmbH, Taifkirchen, Germany 

Sodium chloride    AppliChem GmbH, Darmstadt, Germany 

Sodium deoxycholate    Sigma-Aldrich GmbH, Taufkirchen, Germany 

Sodium dodecyl sulfate   Sigma-Aldrich GmbH, Taufkirchen, Germany 
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Sodium fluoride    Merck KGaA, Darmstadt, Germany 

Sodium orthovanadate   Enzo Life Sciences GmbH, Lörrach, Germany,  

Succinate     Sigma-Aldrich GmbH, Taufkirchen, Germany 

SuperSignal® West Femto Substrate Fisher Scientific GmbH, Schwerte, Germany 

Taurine     Sigma-Aldrich GmbH, Taufkirchen, Germany 

Tetramethylethylenediamine (TEMED) AppliChem GmbH, Darmstadt, Germany 

Tetramethylphenylenediamine  Sigma-Aldrich GmbH, Taufkirchen, Germany 

Thiazolylblau (MTT)    Roth Carl GmbH & Co., Heidelberg, Germany 

Trichloracetic acid    Sigma-Aldrich GmbH, Taufkirchen, Germany 

Tris      AppliChem GmbH, Darmstadt, Germany 

Triton X-100     AppliChem GmbH, Darmstadt, Germany 

Tryptone     Difco Laboratories, Michigan, USA 

Tween 20     AppliChem GmbH, Darmstadt, Germany 

Xylene cyanol     Sigma-Aldrich GmbH, Taufkirchen, Germany 

CELL CULTURE REAGENTS  COMPANY      

Antimycin A     Sigma-Aldrich GmbH, Taufkirchen, Germany 

Collagen G     Biochrom AG, Berlin, Germany 

Dichloricacid sodium 98%   Sigma-Aldrich GmbH, Taufkirchen, Germany 

Dimethyl sulfoxide    AppliChem GmbH, Darmstadt, Germany 

Dulbecco´s Modified Eagle Medium,  Invitrogen, Karlsruhe, Germany 

high glucose (4.5 g/l glucose) 

Dulbecco´s Modified Eagle Medium,  Invitrogen, Karlsruhe, Germany 

low glucose (1 g/l glucose) 

Dulbecco´s Modified Eagle Medium,  Invitrogen, Karlsruhe, Germany 

no glucose 

D-(+)-Galactose    Sigma-Aldrich GmbH, Taufkirchen, Germany 

Fetal calf serum    Biochrom AG, Berlin, Germany 

Fibronectin     Harbor Bio-Products, Norwood, USA 

Gelatine from porcine skin   Sigma-Aldrich GmbH, Taufkirchen, Germany 

HEPES     Invitrogen, Karlsruhe, Germany 

L-Buthionine sulfoximine (BSO)  Sigma-Aldrich GmbH, Taufkirchen, Germany 

L-Glutamine, 200 mM, liquid   Invitrogen, Karlsruhe, Germany 

MatrigelTM Basement Membrane Matrix BD Biosciences, Heidelberg, Germany 

MEM non-essential amino acids (100x) Invitrogen, Karlsruhe, Germany 

N-Acetyl-L-cysteine (NAC)   Sigma-Aldrich GmbH, Taufkirchen, Germany 
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Penicillin-Streptomycin Solution, 100 mM Invitrogen, Karlsruhe, Germany 

PuradiscTM
 25 AS Syring filter, 0.2 µM Whatman GmbH, Dassel, Germany 

Puromycin dihydrochloride   Sigma-Aldrich GmbH, Taufkirchen, Germany 

Sodium Pyruvate MEM 100 mM, liquid Invitrogen, Karlsruhe, Germany 

Sodium selenite    Sigma-Aldrich GmbH, Taufkirchen, Germany 

Trypan blue (0.4%)    Sigma-Aldrich GmbH, Taufkirchen, Germany 

Trypsin 0.05% (1x), sodium EDTA, liquid Invitrogen, Karlsruhe, Germany 

α-Tocopherol (α-Toc)    Sigma-Aldrich GmbH, Taufkirchen, Germany 

ß-Mercaptoethanol     Invitrogen, Karlsruhe, Germany 

ANTIBODIES     COMPANY     

anti-Akt     NEB GmbH, Frankfurt a.M., Germany 

anti-CD31/PECAM1    Millipore GmbH, Schwalbach/Ts., Germany 

anti-cleaved Caspase-3   NEB GmbH, Frankfurt a.M., Germany 

anti-c-myc     Santa Cruz Biotechnology, Heidelberg, Germany 

anti-FLAG     Sigma-Aldrich GmbH, Taufkirchen, Germany 

anti-GAPDH     Millipore GmbH, Schwalbach/Ts., Germany 

anti-Glutathione reductase   Santa Cruz Biotechnology, Heidelberg, Germany 

anti-goat IgG H&L chain specific  Merck KGaA, Darmstadt, Germany 

anti-HIF-1α     Acris Antibodies GmbH, Herford, Germany 

anti-Ki-67     BD Biosciences, Heidelberg, Germany 

anti-mouse IgG, H&L chain specific  Merck KGaA, Darmstadt, Germany 

anti-PHD2     Acris Antibodies GmbH, Herford, Germany 

anti-Peroxiredoxin 3    BioVendor R&D GmbH, Heidelberg, Germany 

anti-Phospho-Akt (Ser473)   NEB GmbH, Frankfurt a.M., Germany 

anti-rabbit IgG, H&L chain specific  Merck KGaA, Darmstadt, Germany 

anti-Ras     NEB GmbH, Frankfurt a.M., Germany 

anti-rat-HRP conjugat   Dianova GmbH, Hamburg, Germany 

anti-Thioredoxin-2    R&D systems GmbH, Wiesbaden, Germany 

anti-Txnrd1 polyclonal antisera  Dr. Vladim Gladyshev, University of Nebraska, 

      Lincoln, USA 

anti-Txnrd2 monoclonal antisera  Dr. Elisabeth Kremmer, Helmholtz Zentrum, 

      München, Germany 

anti-Txnrd2 polyclonal antisera  Dr. Vladim Gladyshev, University of Nebraska, 

      Lincoln, USA 

anti-VEGF-A     Acris Antibodies, Herford, Germany 
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anti-α-Tubulin     Sigma-Aldrich GmbH, Taufkirchen, Germany 

anti-ß-Actin     Sigma-Aldrich GmbH, Taufkirchen, Germany 

 

The production of a monoclonal antibody against murine Txnrd2 was performed in 

collaboration with Dr. Elisabeth Kremmer and Dr. Tamara Perisic (Helmholtz Zentrum, 

München). Rats were immunised with a mouse thioredoxin-reductase 2-specific peptide 

(VKLHISKRSGLEPTVTG) coupled to ovalbumin (OVA)/ Keyhole limpet hemocyanin (KHL). 

The peptides were obtained from Peptide Specialty Laboratories (Heidelberg, Germany). 

More than 30 hybridoma clones were screened by immunoblotting until two being 

immunoreactive against Txnrd2 were found. The antibody-rich supernatant of the hybridoma 

clones #1C4 and #1D3 were used in the present study. 

ENZYMES     COMPANY      

Antarctic Phosphatase   NEB GmbH, Frankfurt a.M., Germany 

Glutathione reductase, from bakers yeast Sigma-Aldrich GmbH, Taufkirchen, Germany 

RNase A     Qiagen GmbH, Hilden, Germany 

Protease Inhibitor Cocktail   Roche Diagnostics GmbH, Heidelberg, Germany 

Proteinase K     Roth Carl GmbH & Co., Karlsruhe, Germany 

Restriction Endonucleases   NEB GmbH, Frankfurt a.M., Germany 

T4 DNA Ligase    Promega GmbH, Mannheim, Germany 

Taq DNA polymerase    Qiagen GmbH, Hilden, Germany 

KITS AND DISPOSABLES   COMPANY      

ApopTag® peroxidase in situ  Millipore GmbH, Schwalbach/Ts., Germany 

Apoptosis Detection Kit 

BCA Protein Assay Kit   Fisher Scientific GmbH, Schwerte, Germany 

EnzyLightTM ATP Assay Kit (EATP-100) Biotrend Chemikalien GmbH, Cologne, Germany 

Gel Extraction Kit    Qiagen GmbH, Hilden, Germany 

Jetstar 2.0 Plasmid Purification System Genomed GmbH, Loehne, Germany 

Lactate Assay Kit II, Colorimetric (450nm) BioCat GmbH, Heidelberg, Germany 

Light Cycler® Fast Start ,   Roche Diagnostics GmbH, Mannheim, Germany 

DNA MasterPLUS Set, SYBR Green I 

Light Cycler Capillaries   Roche Diagnostics GmbH, Mannheim, Germany 

Parafilm M®     Pechiney Plastic Packaging Company  
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Polypropylene tubes    Greiner Bio-One GmbH, Frickenhausen;  

      Germany 

QIAshredder     Qiagen GmbH, Hilden, Germany 

Quantikine ELISA Kit (Mouse VEGF) R&D systems GmbH, Wiesbaden, Germany 

Reverse Transcription System  Promega GmbH, Mannheim, Germany 

RNase-Free DNase Set   Qiagen GmbH, Hilden Germany 

RNeasy Mini Kit    Qiagen GmbH, Hilden, Germany 

SuperFrost® Plus slides   Fisher Scientific GmbH, Schwerte, Germany 

Tissue-Tek® O.C.T.TM    Sakura, Zoeterwonde, Netherlands 

OLIGONUCLEOTIDES   SEQUENCE      

GENOTYPING 

TR2_Del_for     5´-CACGACCAAGTGACAGCAATGCTG-3´ 

TR2_Del_rev     5´-CAGGCTCCTGTAGGCCCATTAAGGTGC-3´ 

TR2_Flox_for     5´-CAGGTCACTAGGCTGTAGAGTTTGC-3´ 

TR2_Flox_rev     5´-TTCACGGTGGCGGATAGGGATGC-3´ 

 

REAL-TIME PCR 

16S rRNA_for     5´-CCGCAAGGGAAAGATGAAAGAC-´3 

16S rRNA_rev    5´-TCGTTTGGTTTCGGGGTTTC-´3 

18S rRNA_for     5´-GGACAGGATTGACAGATTGATAG-3´ 

18S rRNA_rev    5´-CTCGTTCGTTATCGGAATTAAC-3´ 

Aldolase_for     5´-AGCTGTCTGACATCGCTCACCG-3´ 

Aldolase_rev     5´-CACATACTGGCAGCGCTTCAAG-3´ 

Glut-1_for     5´-CTAGAGCTTCGAGCGCAGCGC-3´ 

Glut-1_rev     5´-AGGCCAACAGGTTCATCATC-3´ 

Glut-3_for     5´-TGTCACAGGAGAAGCAGGTG´-3 

Glut-3_rev     5´-TCATGAAAACGGAGCAAACA´-3 

Glut-4_for     5´-TCATTCTTGGACGGTTCCTC-´3 

Glut-4_rev     5´-AGTGCGTCAGACACATCAGC-´3 

Hexokinase_for    5´-GCCAGCCTCTCCTGATTTTAGTGT-´3 

Hexokinase_rev    5´-GGGAACACAAAAGACCTCTTCTGG-´3 

Hif-1α_for     5´-CAGCGATGACACAGAAACTG-3´ 

Hif-1α_rev     5´-GGGGCATGGTAAAAGAAAGT-3´ 

PHD1_for     5´-GTCTGGTATTTTGATGCCAAGGAAC-3´ 

PHD1_rev     5´-AGTGATACTTAGTGCCCTCCACACC-3´ 
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PHD2_for     5´-GTTGATAACCCAAATGGAGATGGAA-3´ 

PHD2_rev     5´-AGTTCAACCCTCACACCTTTCTCAC-3´ 

PHD3_for     5´-GACTGTCTGGTACTTCGATGCTGAA-3´ 

PHD3_rev     5´-GTCGTCTGCAGGTATTTCTGGAGTT-3´ 

Pgc1α_for     5´-AATGCAGCGGTCTTAGCACT-3´ 

Pgc1α_rev     5´-TTTCTGTGGGTTTGGTGTGA-3´ 

Prx3_for     5´-GTCTGCCTCTGCCCAAGGAAA-´3 

Prx3_rev     5´-CTTGGTGTGTTGATCCAGGCA-´3 

Prx5_for     5´-AATCTCATCAAAGTTCCTGCCC-´3 

Prx5_rev     5´-ACCACAGAACTTGGCAGAGCTGC-´3 

TrxR2E15_for     5´-TTCACGGTGGCGGATAGGGATGC-3´ 

TrxR2E18_rev    5´-TGCCCAGGCCATCATCATCTGACG-3´ 

VEGF_for     5´-CAAGTGGTCCCAGGCTGCACCC-3´ 

VEGF_rev     5´-CCCTGAGGAGGCTCCTTCCTGCC-3´ 

ß-Actin_for     5´-CCAAGGCCAACCGCGAGAAGATGAC-3´ 

ß-Actin_rev     5´-AGGGTACATGGTGGTGCCGCCAGAC-3´ 

 

All DNA-oligonucleotides were obtained from Eurofins MWG Operon, Ebersberg, Germany. 

VECTORS        VECTOR TYPE  

141pCAG-3SIP-mock-puro1      Expression 

141pCAG-3SIP-mxCT1      Intermediate 

141pCAG-3SIP-N´TAPe-mito-mTxnrd2-puro   Expression 

391 pEcoEnv-IRES-puro2      Expression 

392 pMDLg_pRRE2       Expression 

393 pRSV_Rev2       Expression 

441 L1 Ha-rasV12-IRES-golgiVENUS 2    Expression 

443 L1 c-myc IRES-mitoVENUS2     Expression 

442 L1-N´TAPe-mito-mTxnrd2-Stop(U524Stop)-IRES-puro3 Expression 

442 L1-N´TAPe-mito-mTxnrd2-IRES-puro1    Intermediate 

442 L1-N´TAPe-IRES-puro1      Expression 

 

Assigned vectors were kindly provided by 1 Dr. Tamara Perisic, 2 Dr. Pankaj Kumar Mandal 

and 3 Katja Möllmann (Helmholtz Zentrum, München). 
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BACTERIA     COMPANY      

TOP10 E.coli cells    Invitrogen, Karlsruhe, Germany  

CELL LINES            

MOUSE EMBRYONIC FIBROBLASTS (MEFs) 

MEFs were isolated from mouse embryos derived from mice heterozygous for Txnrd2 at 

embryonic day E12.5 61. The cell lines used in the present study were analysed via 

genotyping and named Txnrd2+/+ for wild-type cells and Txnrd2-/- for knockout cells. Txnrd2-/- 

cells were stably transfected with the vectors pCAG-3SIP-mock and pCAG-NTAPe-

mmitoTxnrd2 to generate the cell lines Txnrd2-/--mock and Txnrd2-/--add-back (reconstitution 

of Txnrd2 in Txnrd2-/- cells). The cell line Txnrd2-/--stop was created using the vector 442-L1-

N´TAPe-mito-mTxnrd2-Stop(U524Stop)-IRES-puro (reconstitution of Txnrd2 carrying an inert 

active site in Txnrd2-knockout cells ). 

 

TRANSFORMED CELL LINES 

Txnrd2+/+ and Txnrd2–/– MEFs were transformed by transducing them with lentiviruses 

encoding the two proto-oncogenes c-myc and the mutated Ha-rasV12 (Val12). 

Via soft agar assay, transformed Txnrd2+/+ and Txnrd2-/- single-colony derived cells could be 

isolated and cultures established. 

 

EMBRYONIC ENDOTHELIAL PROGENITOR CELLS (eEPCs) 

At E7.75, eEPCs were isolated from mouse embryos derived from Txnrd2 heterozygous 

mice. Txnrd2 wild-type and Txnrd2 knockout cells were identified via genotyping using PCR. 

To reconstitute Txnrd2 expression, Txnrd2-/- cells were stably transfected with pCAG-3SIP-

mock and pCAG-NTAPe-mmitoTxnrd2 vectors, yielding Txnrd2-/--mock and Txnrd2-/--add-

back cell lines. 

 

HEK 293-T CELLS  

The HEK 293-T cells, kindly provided by Dr. Tamara Perisic (Helmholtz Zentrum, München), 

were used as packaging cells for lentiviral production. 

 

PORCINE AORTIC ENDOTHELIAL CELLS (PAEC) 

Endothelial cells from porcine aortas (PAEC) served as controls in the tube formation assay. 

The cells were kindly provided by Dr. Theres Hennig (Walter Brendel Centre, München). 
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MOUSE STRAINS           

C57BL/6     Charles River Laboratories, Sulzfeld, Germany 

Hemizygous Txnrd2 mice (Txnrd2+/–) Dr. Marcus Conrad (Helmholtz Zentrum,  

      München, Germany) 

VE-Cadherin-CreER mice   Prof. Dr. Ralf Adams (Max Planck Institute for 

      Molecular Biomedicine, Münster, Germany) 

EQUIPMENT AND TOOLS   COMPANY      

Cell Counter, Coulter AcT8   Beckman Coulter GmbH, Krefeld, Germany 

Confocal laser scanning microscope Leica Microsystems, Wetzlar, Germany 

Leica TCS SP5 

Cooling centrifuge – for microtubes  Heraeus Instruments, Fisher Scientific, 

Biofuge Primo R    Schwerte, Germany 

Cooling centrifuge – for falcon tubes Heraeus Instruments, Fisher Scientific, 

Megafuge 1.0R    Schwerte, Germany 

Coulter® ZZ Particle Count    Beckman Coulter GmbH, Krefeld, Germany 

Cryotome HM 560    Microm, Walldorf, Germany 

Cytoperm 2     Heraeus Instruments, Fisher Scientific, 

      Schwerte, Germany 

Digital camera IXUS55   Canon, Krefeld, Germany 

Electrophoresis chamber   Peqlab Biotechnologie GmbH, Erlangen,  

      Germany 

ELISA plate reader, Infinite F200  Tecan, Crailsheim, Germany 

Flow Cytometer FACSort   BD Biosciences, Heidelberg, Germany 

Fluorescence microscope Axiophot  Carl Zeiss AG, Jena, Germany 

equipped with a AxioCam MRm 

Gel Doc 1000     Bio-Rad Laboratoires, Munich, Germany 

GenePulser II     BioRad Laboratories GmbH, Munich, Germany 

Imaging system for western blot analysis Hamamatsu Photonics, Herrsching/Ammersee, 

Digital CCD Camera (ORCA-ER)  Germany 

Lightmicroscope Olympus IX50  Olympus, Hamburg, Germany 

Lumat LB 9507    Berthold Technologies GmbH & Co KG, 

      Bad Wildbad, Germany 

Mastercyclerep gradient for PCR  Eppendorf GmbH, Hamburg, Germany 
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Multichannel pipette    Eppendorf GmbH, Hamburg, Germany 

Oxygraph-2k     Oroboros® Instrumenst GmbH, Innsbruckl, 

      Austria 

PHM 82 Standard pH Meter   Radiometer GmbH, Willich, Germany  

Spectrophotometer    Eppendorf, Hamburg, Germany 

Thermocycler for real-time PCR  Roche Diagnostics GmbH, Mannheim, Germany 

Light Cycler 1.5 

Table centrifuge, EBA 12   Hettich Zentrifugen, Tuttlingen, Germany 

Ultra-Turrax® X 120 CAT   Bochem Instrumente GmbH, Weilburg, Germany 

UV-Star 96-well plate    Greiner Bio-One GmbH, Frickenhausen,  

      Germany 

Varioklav® steam steriliser   H+P Labortechnik AG, Oberschleißheim,  

      Germany 

xCELLigence RTCA SP system  Roche Diagnostics GmbH, Mannheim, Germany 
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2.2. Methods 

2.2.1. Cell culture techniques and related assays 

Cell culture work was performed under sterile conditions using an air flow work bench (Steril 

compact VBH 48C2, Grandi, Milan, Italy). All cell culture reagents and instruments were 

autoclaved with a steam steriliser (Varioklav®). Cells were cultured in an incubator at 37°C 

with water-saturated atmosphere, aerated with 5% CO2. Depending on the cell line, oxygen 

levels were kept at 20% or adjusted to 5% by regulating the nitrogen supply. Cell behaviour 

and appearance was observed using a light microscope (Olympus IX50, 10 x objectives). 

2.2.1.1. Cell culture 

BACTERIAL CELLS 

The bacterial strains TOP10 were cultured over night, either on Luria-Bertani (LB) agar 

plates or in liquid LB medium in an incubator at 37°C. Transformed bacteria were selected 

using the antibiotic ampicillin at a final concentration of 25µM. 

LB medium     LB agar       
20 mM   MgSO4   20 mM   MgSO4 
10 mM   KCl   10 mM   KCl 
1% (w/v)  Tryptone  1% (w/v)  Tryptone 
0.5% (w/v)  Bacto yeast extracts 0.5% (w/v)  Bacto yeast extracts 
0.5% (w/v)  NaCl   0.5% (w/v)  NaCl 
      1.2% (w/v)  Bacto-agar 

 

MURINE EMBRYONIC FIBROBLASTS (MEFs) 

Hemizygous Txnrd2+/– mice 61 were mated and females were checked daily for vaginal 

mucous plugs. A vaginal mucous plug is detectable at E0.5. At E12.5 pregnant mice were 

sacrificed by cervical dislocation. Uterine horns were dissected and placed into sterile PBS. 

Embryos were separated from the placenta and the surrounding tissue removed. The body 

trunk was separated from the head, limbs and organs. It was rinsed several times with PBS 

to wash out blood and loose tissue. Single embryo trunks were minced by two forceps and 

incubated with Trypsin/EDTA at 37°C for 15 min. By vigorous pipetting, the body trunks were 

homogenised and the cell suspension was plated in 6 cm dishes and was referred to as 

passage number 0 (p0). The cells were cultured in standard DMEM at 37°C, 5% CO2 and 5% 

O2. When the cells reached confluence they were split at a ratio of 1:3 and plated on a larger 
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sized tissue plate. At early passage numbers (p1, p2, p3) part of the cells were cryo-

conserved in liquid nitrogen. Only fibroblasts cultured until they reached the passage number 

10 were referred to as ´primary´. Primary fibroblasts cultured in standard DMEM and at 37°C, 

5% CO2 and 5% O2 were routinely split by trypsinisation at a ratio of 1:3 every 3rd or 4th day. 

Cells with passage numbers >10 (immortalised) were routinely split at a ratio of 1:6 every 3rd 

or 4th day. 

To determine the genotype of the cells, genomic DNA from either mouse embryo tails or 

cultured cells (p1) was isolated and analysed by PCR with the following primer pairs 

TR2_Del_for/TR2_Del_rev and TR2_Flox_for/TR2_Flox_rev. The distance between 

TR2_Del_for and TR2_Del_rev binding site is small enough to be amplified only when the 

floxed allele is deleted by Cre recombinase. The primer pair TR2_Flox_for/TR2_Flox_rev 

was used to detect the wild-type allele 61. Only cells with the wild-type (Txnrd2+/+, control) and 

knockout (Txnrd2-/-) genotype were used for subsequent experiments.  

PBS (-)      standard DMEM    
137  mM  NaCl   500 ml  DMEM (high glucose) 1x 
2.68 mM  KCl   10%  FCS 
8.10 mM  Na2HPO4  1%  L-Glutamine (200 mM) 
1.47 mM  KH2PO4  1%  Penicillin-Streptomycin 
in 1l H2O 
pH 7.4 

 

EMBRYONIC ENDOTHELIAL PROGENITOR CELLS (eEPCs) 

For the isolation and characterisation of embryonic EPCs 134, hemizygous Txnrd2 mice were 

mated and females were monitored daily for mucous plugs. At day E7.75, pregnant females 

were sacrificed and the uterus was dissected. The egg cylinders with adjacent yolk sacs 

were washed several times in PBS and the body trunk dissected. The trunk was incubated in 

Trypsin/EDTA at 37°C for 15-20 min. Dissociated cells were plated in 96-well plates on 

γ-irradiated, non-proliferating murine fibroblasts serving as feeder layer. The cells were 

grown in eEPC-DMEM at 37°C, 5% CO2 and 5% O2 until cell colonies with cobblestone like 

cell morphology emerged on the fibroblast layer. When the cells reached confluence they 

were cultured on larger sized plates covered with γ-irradiated fibroblasts. Finally after two 

passages on 10 cm dishes, the cells were transferred to 0.1% gelatine-coated plates in the 

absence of a fibroblast layer and several aliquots were prepared for cryo-conservation. The 

genotype of the cells was determined as already described for MEFs, and Txnrd2+/+ 

(wild-type, control) and Txnrd2-/- (knockout) eEPCs were used for subsequent experiments. 

eEPCs were further grown on 0.1% gelatine pre-coated culture dishes and routinely split at a 

ratio of 1:6 every 3rd day. 
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eEPC-DMEM      
500 ml  DMEM (high glucose) 1x 
15%  FCS 
1%  L-Glutamine (200 mM) 
1%  Penicillin-Streptomycin 
1%  non-essential amino acids 100x 
2%  HEPES (1 M) 
0.03%  ß-Mercaptoethanol (50 mM) 

 

HEK293 T CELLS (HUMAN EMBRYONIC KIDNEY CELLS) 

HEK293 T cells were cultured at 37°C in a humidified incubator with 5% CO2 and 5% O2. 

Every 3rd or 4th day the cells were split at a ratio of 1:6 and cultured in standard DMEM. 

PORCINE AORTIC ENDOTHELIAL CELLS (PAEC) 

The cells were grown in standard DMEM in a humidified incubator at 37°C, 5% CO2 and 20% 

O2. Every 3rd or 4th day the cells were split at a ratio of 1:3. 

 

2.2.1.2. Cell harvesting and passaging 

Cells were subcultured to 80-90% confluence. Cells were washed with PBS(-) and incubated 

in Trypsin/EDTA-solution (1 ml per 10 cm plate) for 5 min at 37°C. During this time, adherent 

cells detached from the plates due to the proteolytic activity of trypsin and the ability of EDTA 

to capture bivalent cations as a chelating agent. This process was checked by means of light 

microscopy and, finally the activity of trypsin was stopped by adding FCS-containing 

standard DMEM. Depending on the experiment, different splitting rates were chosen, ranging 

from 1:3 to 1:6 (see for each cell line). Finally, the cells were cultured in medium as indicated 

above. 

Trypsin/EDTA      
0.5%  trypsin 
0.2%  EDTA 

 

2.2.1.3. Cryo-conservation and thawing 

For long-time storage, aliquots of all cell lines were frozen and stored in liquid nitrogen. Cells 

were grown on 10 or 15 cm diameter culture dishes to 90% confluence. After trypsin 

treatment, cells were collected by centrifugation (5 min, 1200xg) and the pellet was 
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resuspended in freezing medium. Aliquots were frozen at -80°C over night and subsequently 

transferred to a liquid nitrogen tank. 

When needed, cells were quickly defrosted at 37°C in a waterbath, added to a falcon tube 

containing standard DMEM and collected by centrifugation (5 min,1200xg). The pellet was 

resolved in standard DMEM, the cells added to a 10 cm diameter culture dish and cultured at 

37°C. After 24 h, cells were checked by means of light microscopy and the medium was 

refreshed. 

Freezing medium     
10%  DMSO 
in FCS 

 

2.2.1.4. Determination of cell number 

NEUBAUER HAEMOCYTOMETER 

Cells were collected from culture dishes via trypsinisation and suspended in an appropriate 

amount of medium. Subsequently, 30 µl of the cell suspension was mixed with an equal 

amount of 0.4% trypan blue solution and cells were counted in a Neubauer haemocytometer. 

Trypan blue can pass the membrane of dead cells, thereby allowing these cells to be 

excluded during counting (see chapter 2.2.1.6. first subitem). 

CELL COUNTER COULTER® 

Cells were collected from culture dishes via trypsinisation and suspended in an appropriate 

amount of medium. Subsequently, 100 µl of the cell suspension was diluted in 10 ml of a 

NaCl solution and analysed by a Coulter® AcT8. Cell numbers are expressed as cells/ml. 

 

2.2.1.5. Cell stimulation and inhibition 

TREATMENT WITH L-BUTHIONINE SULFOXIMINE (BSO) 

BSO is known to specifically inhibit the enzyme γ-glutamyl-cysteine-synthase (competitive 

inhibition) that is necessary to synthesise glutathione. Txnrd2-/- cells lack one major redox-

regulating enzyme, which is located in the mitochondria. It has been shown that treatment of 

primary Txnrd2-/- cells with BSO leads to reduced proliferation and finally causes cell death 61. 

In the present study BSO was used as a stressor to further investigate functions of Txnrd2. 
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Therefore the cells were treated with 10 µM BSO for several hours or over night in different 

experimental settings. 

BSO solution      
150 mM  BSO 
in ethanol 

 

STARVATION 

Cells were stressed by depletion of essential nutrients and growth factors. Therefore, cells 

were grown on 6 cm or 10 cm diameter culture dishes until 80% confluence in standard-

DMEM. The culture medium was replaced by DMEM-starvation and cells were incubated for 

4 h or over night. 

DMEM-starvation     
500 ml  DMEM (low glucose) 1x 
1%  Penicillin-Streptomycin 

 

GALACTOSE-SUPPLEMENTATION 

Cells were stressed by deprivation of glucose and replacement by galactose. Therefore, 

equal numbers of cells were placed on 6-well culture plates and cultured with DMEM-

galactose over a period of 5 days. Number of cells was analysed every day (see chapter 

2.2.1.4., first subitem and 2.2.1.6. first subitem). 

DMEM-galactose     
500 ml  DMEM (no glucose) 1x 
10%  FCS 
1%  L-Glutamine (200 mM) 
1%  Penicillin.Streptomycin 
1%  HEPES (1 M) 
1%  Sodium Pyruvate (100 mM) 
1%  D-Galactose (1 M) 

 

2.2.1.6. Viability and proliferation 

TRYPAN BLUE DYE EXCLUSION METHOD 

Equal numbers of cells were plated in 6-well dishes in triplicate and cultured in different 

media (DMEM-low glucose, DMEM-galactose) or treated with several compounds over 5 

days. Every 24 h cells were counted using the trypan blue exclusion method. Trypan blue is 
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excluded from viable cells whereas dead cells are stained blue due to disrupted membranes. 

Cells were collected in 1 ml standard-DMEM after incubation with trypsin. 30 µl of the cell 

suspension was mixed with 30 µl of 0.4% trypan blue solution (Sigma-Aldrich GmbH) and 

cells were counted in a Neubauer haemocytometer. Only viable cells were counted. 

DMEM-low glucose    DMEM-galactose    
1x  DMEM (low glucose)  1x  DMEM (no glucose) 
10%  FCS    10%  FCS 
1%  Penicillin-Streptomycin  1%  Penicillin-Streptomycin 
1%  L-Glutamin   1%  L-Glutamin 
      10 mM  D-Galactose 
      10 mM  HEPES 
      1 mM  Sodium pyruvate 

 

MTT ASSAY 

MTT assay was performed to measure the viability of primary eEPCs 218. 96-well culture 

plates were coated with 0.1%-gelatine and 15,000 cells were plated in triplicate. Cells were 

cultured in 200 µl of eEPC-DMEM over 5 days and the cell number was estimated via MTT 

every 24 h. Therefore, 20 µl of MTT (50 µg) was added to the medium and incubated for 4 h 

at 37°C in the incubator. The medium was aspirated and the formazan crystals were 

dissolved by adding 200 µl of isopropanol. Absorbance was measured at 570 nm (620 nm 

reference wavelength) in a Tecan spectrophotometer. The data were acquired by Magellan 

software (version 6.4, Tecan). 

Thiazolyl blue reagent (MTT)    
stock solution 5 mg/ml in PBS, 
steril filtered, stored at 4°C protected from light 

 

xCELLigence RTCA SP system 

The xCELLigence system (Roche) monitors cellular events in real-time without the 

incorporation of labels by measuring electrical impendance across interdigitated micro-

electrodes integrated in the bottom of its special tissue culture plates. The impedance 

measurement provides quantitative information about the biological status of the cells, 

including cell number. The RTCA SP (single-plate) Instrument consists of a RTCA Analyser, 

a RTCA SP Station, as well as a RTCA Control Unit, and is designed for the use of one 

E-Plate 96 (a specialised 96-well plate used with the RTCA Instrument). The RTCA SP 

Station together with the E-Plate 96 is placed into a regular cell culture incubator. The RTCA 
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Control Unit receives the data measured by the RTCA Analyser and uses the RTCA 

Software 1.0 for set-up, real-time display, and analysis of each experiment. 

The actual variable being measured is derived from the change in electrical impedance as 

the living cells interact with the biocompatible microelectrode surface in the E-Plate well. The 

signal is converted to the parameter called cell index. The cell index correlates with the 

number of viable cells on the 96 E-plate. The experiment was performed in triplicate and 

2,500 cells were plated in a final volume of 50 µl culture medium each well. Cells were 

allowed to settle for four hours and afterwards incubated with several stimuli (e.g. 10 µM 

BSO) or left untreated. Proliferation of cells was monitored and cell index data were aquired 

throughout a course of 70 h. 

 

2.2.1.7. Soft agarose assay 

The anchorage-independent growth of c-myc/Ha-ras-transformed fibroblasts was 

investigated using the soft agarose assay. Each well of a 6-well culture plate was precoated 

with 2 ml base agar matrix and allowed to cool at 4°C for 30 min. Cells were harvested by 

adding trypsin/EDTA-solution. 500 cells per well were plated in agar matrix on top of the 

base agar matrix layer. The matrix was allowed to cool at 4°C for 30 min, covered with 

standard DMEM and the plate was returned to the incubator. The single cell-derived colonies 

appeared after three to four days. After seven days the colonies were fixed with methanol 

and stained with crystal violet. Plates were washed with aqua ad iniectabilia several times 

and allowed to dry before numbers of colonies were counted visually. 

Base agar matrix    Agar matrix      
1%  Agarose, TopVision

TM
 LMGQ 0.5%  Agarose, TopVision

TM
 LMGQ 

in PBS(-)     in PBS(-) 

 

2.2.1.8. Isolation of single-colony derived cell lines 

For in vitro and in vivo investigations concerning tumour growth and progression, 

transformed cell lines were generated by single-cell cloning. At day 7 of growth multiple 

colonies derived from Txnrd2+/+ and Txnrd2-/- c-myc/Ha-ras-transformed fibroblasts were 

picked from the soft agar assay and transferred to a 96-well plate. Colonies were cultured in 

standard-DMEM over night and cells were released from the colony spheroid by incubation 

with trypsin/ETDA-solution and plated in fresh standard DMEM on a 96-well plate on the next 

day. When the cells reached confluence they were split on larger sized plates. DNA was 

isolated and protein lysates were prepared in order to check the genotype and the 
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expression of c-myc and Ha-ras. Transformation was also verified by monitoring VENUS 

expression using FACS analysis. 

2.2.1.9. Matrigel® tube formation assay 

In vitro angiogenesis assays are important tools for studying the mechanisms of 

angiogenesis. In the present work the Matrigel® tube formation assay was used to study 

angiogenesis. Matrigel® is an extracellular matrix derived from murine tumours containing 

essential growth factors. BD Matrigel® (Becton Dickinson) was thawed on ice at 4°C 24 h 

before the assay was started. 24-well culture plates and sterile tips were pre-cooled at 4°C. 

Every well was coated with 100 µl Matrigel® avoiding air bubbles. The plate was incubated 

for 30 min at 37°C allowing the Matrigel® to polymerise. Cells were harvested from 80% 

confluent 10 cm plates by trypsin/EDTA. 30,000 cells were dispensed in 1 ml eEPC-DMEM 

and added per well. Plates were incubated at 37°C for 30 min, gently shaken every 10 min. 

Sprouting was observed over 24 h every 4 h. Pictures were taken from each well using a 

microscope (Olympus IX50, 10 x objective) and a digital camera (Canon IXUS 55). PAEC 

were plated as positive control and observed in parallel. Number of branching points were 

estimated at several time points. 

2.2.2. Flow cytometry 

Flow cytometry is an already approved method for quantitative and functional analysis of 

cells addicted to cell size, granularity and fluorescence intensity. A wide range of applications 

can be achieved by using flow cytometry (e.g. cell cycle analysis, apoptosis, membrane 

potential, etc.). In the present study flow cytometry was used for the quantitative analysis of 

intracellular ROS accumulation as well as determination of mitochondrial mass. All 

measurements were performed using the BD FACSort (Becton Dickinson). Fluorescence 

was measured using the appropriate filters for the respective fluorochromes. Data were 

analysed by the CellQuest software (Becton Dickinson) and WinMDI software (version 2.9). 

Suitable solutions, like sheath fluid (BD FACSFlowTM), cleaning (BD FACSClean) and 

rinsing solution (BD FACSRinse), were purchased from Becton Dickinson. 
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2.2.2.1. Determination of cellular ROS 

DICHLOROFLUORESCIN DIACETATE  

2´,7´-Dichlorofluorescin diacetate (DCFH-DA), a derivative of fluorescein, is a cell-permeant 

indicator for free intracellular reactive oxygen species (ROS). The reduced and acetylated 

form (DCFH-DA) is non-fluorescent and able to pass the cell membrane. Cleavage of the 

acetate group by intracellular esterase yields a non-fluorescent charged form that is much 

better retained in the cell (DCFH). This compound is trapped inside the cells and oxidised to 

the fluorescent compound DCF depending on the cellular oxidation status. 300,000 cells 

were plated on 6 cm culture plates the day before the experiment. Cells were incubated with 

2 µM DCFH-DA in DMEM without FCS for 45 min at 37°C in the incubator protected from 

light. Cells were harvested, resolved in 300 µl PBS(-) and transferred to round bottom 

polypropylene tubes (Greiner Bio-One GmbH). Fluorescence intensity was measured at an 

excitation wavelength of 488 nm and emission wavelength of 530 nm (FL-1). A number of 

approximately 10,000 cells was analysed for each sample. Mean fluorescence intensity (MFI) 

was measured for at least three independent experiments. 

DCFH-DA solution     
2 mM   DCFH-DA 
in ethanol 

 

MITOSOXTM RED SUPEROXIDE INDICATOR 

To investigate the production of cellular ROS in the c-myc/Ha-ras-transformed fibroblasts the 

MitoSoxTM Red superoxide indicator was used. After transfection with the lentivirus for c-myc 

and Ha-ras the transformed cells express VENUS. The strong fluorescence of VENUS 

makes it impossible to use DCFH-DA for the detection of cellular ROS. The non-fluorescent 

MitoSoxTM Red is cell-permeant and rapidly targeted to the mitochondria. There it becomes 

oxidised by superoxide and exhibits a red fluorescence. 300,000 cells were plated on 6 cm 

culture plates the day before the experiment. Cells were protected from light and incubated 

with 5 µM MitoSoxTM Red in DMEM without FCS for 30 min at 37°C. Cells were harvested, 

resolved in 300 µl PBS(-) and transferred to round bottom polypropylene tubes (Greiner Bio-

One GmbH). Fluorescence intensity was measured at an excitation wavelength of 488 nm 

and emission wavelength of 580 nm (FL-2). A number of approximately 10,000 cells was 

analysed for each sample. MFI was measured for at least three independent experiments. 
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MitoSox
TM

 Red solution     
5 mM  MitoSox

TM 
Red 

in DMSO 

 

2.2.2.2. Quantification of mitochondria in cells 

MITOTRACKER® GREEN AND RED 

The Mitotracker® Probes contain a mildly thiol-reactive chloromethyl moiety and selectively 

label mitochondria in living cells. It is predicted that Mitotracker® Green and Mitotracker® 

Red can be used to measure mitochondrial mass independent of mitochondrial membrane 

potential (MMP) 242. In the present study both agents were used to determine the 

mitochondrial mass in non-transformed and c-myc/Ha-ras-transformed fibroblasts. Since the 

transformed cells exert strong fluorescence due to VENUS expression, Mitotracker® Red 

was chosen. 300,000 cells were plated on 6 cm culture plates the day before the experiment. 

Cells were protected from light and incubated with 20 nM Mitotracker® Green or with 100 nM 

Mitotracker® Red in DMEM without FCS for 25 min at 37°C. Cells were harvested, resolved 

in 300 µl PBS(-) and transferred to round bottom polypropylene tubes (Greiner Bio-One 

GmbH). Mitotracker® Green fluorescence intensity was measured at an excitation 

wavelength of 448 nm and an emission wavelength of 516 nm (FL-1). Mitotracker® Red 

fluorescence intensity was measured at an excitation wavelength of 488 nm and an emission 

wavelength of 599 nm (FL-2). A number of approximately 10,000 cells was analysed for each 

sample. MFI was measured for at least three independent experiments. 

Mitotracker® Green solution    Mitotracker® Red solution   
1 mM   Mitotracker® Green  1 mM  Mitotracker® Red 
in DMSO      in DMSO 

 

NONYL  ACRIDINE ORANGE 

Alternatively, mitochondrial mass was measured using a second experimental setting by 

staining cells with nonyl acridine orange (NAO). NAO is well retained in the mitochondria and 

its uptake is reported to be independent from mitochondrial membrane potential (MMP) 287. 

300,000 cells were plated on 6 cm culture plates the day before the experiment. Cells were 

protected from light and incubated with 10 nM NAO in PBS(+) without FCS for 20 min at 

37°C. Cells were harvested, resolved in 300 µl PBS(+) and transferred to round bottom 

polypropylene tubes (Greiner Bio-One GmbH). Fluorescence intensity was measured at an 

excitation wavelength of 448 nm and an emission wavelength of 519 nm (FL-1). 
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Mitochondrial mass was normalised to the content of endoplasmic reticulum (ER). Therefore 

cells were stained with the ER-specific dye ER-TrackerTM Red. The stain consists of the 

green fluorescent BODIPY® TR dye and glibenclamide. Glibenclamide binds to the receptors 

of ATP-sensitive K+-channels which are prominent on the ER. Cells were protected from light 

and incubated with 1 µM ER-TrackerTM in PBS(+) with 5% FCS for 20 min at 37°C. 

Fluorescence intensity was measured at an excitation wavelength of 448 nm and an 

emission wavelength of 511 nm (FL-1). A number of approximately 10,000 cells was 

analysed for each sample. MFI for NAO and ER-TrackerTM was measured for at least three 

independent experiments. The estimated MFI for NAO was normalised to the MFI for ER-

TrackerTM. 

NAO-solution      ER-Tracker
TM

     
1 µM  Acridine Orange 10-NONYL  1 mM  ER-Tracker

TM
 

in ethanol      in DMSO 

 

2.2.3. High-resolution respirometry 

High-resolution respirometry (HRR) provides an important tool to study changes in 

mitochondrial respiratory chain function and mitochondrial ATP production in living cells and 

isolated mitochondria. We used the Oxygraph-2k (Oroboros®) (Figure 2-1) to determine 

endogenous oxygen consumption and activity of respiratory chain complexes in living 

fibroblasts, as described recently 216. 

 

Figure 2-1: Oxygraph-2k 
The Oxygraph-2k provides the instrumental basis for the high-resolution respirometry and offers the 
opportunity to measure low respiratory activities, fast kinetic transitions and low oxygen levels in living 
cells, isolated mitochondria from cells or biopsies. The picture is taken from the official Oroboros® 
homepage. 
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Mitochondrial respiration was studied at 30°C in respiration medium B 173. Approximately 1.2 

Mio cells were resolved in 120 µl respiration medium B and applied to the Oxygraph-2k 

chamber. The experiment was performed with constant stirring of cells. Permeabilisation of 

cell membranes was achieved by adding 10 µg digitonin per 106 cells. Endogenous oxygen 

consumption was observed over at least 10 min. Complex I respiration was measured in the 

presence of glutamate/malate (10 mM/ 5 mM) and ADP (1 mM) and inhibited with rotenone 

(0.5 µM). ComplexII/III were measured after addition of succinate (10 mM) and inhibited with 

antimycin A (2.5 µM). Finally Complex IV was assessed in the presence of ascorbate/TMPD 

(2 mM/ 0.5 mM) and inhibited with KCN (1 µM). The software DatLab (Oroboros®) was used 

for data acquisition and analysis (Figure 2-2). Respiratory flux was calculated as the time 

derivative of oxygen concentration measured at 1 s sampling intervals and expressed in O2 

flux per cells [pmol/s*Mio]. Values were corrected for instrumental and chemical background. 

 

Figure 2-2: High-resolution respirometry in permeabilised murine fibroblasts 
The graph depicts Oxygraph-2k recording of the respiratory activities in murine fibroblasts. Upper line 
represents the oxygen concentration and the lower line the oxygen flux. The vertical lines represent 
times of addition of stimulants or inhibitors. (CI = activity of Complex I. CII+III = activity of Complex II 
und III, CIV = activity of Complex IV, Dig = digitonin, Glu/Mal = glutamate/malate, Asc/TMPD = 
ascorbate/Tetramethylphenylendiamin) 

Respiration medium B    
0.5     M  EGTA 
3     mM  MgCl2xH2O 
60   mM  K-lactobionate 
20   mM  Taurine 
10   mM  KH2PO4 
20   mM  HEPES 
110 mM  Mannitol 
1g/l   BSA 
pH 7.1 
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2.2.4. Molecular biology techniques 

2.2.4.1. Isolation of genomic DNA 

Cell pellets and tissue samples were lysed in DNA lysis buffer supplemented with 50 µg/ml 

proteinase K. Samples were incubated over night at 55°C with constant shaking at 550xg. 

DNA was isolated using phenol/chlorophorm/isoamyl alcohol extraction. Therefore an equal 

volume of phenol/chloroform/isoamyl was added, samples were vortexed for 20 s and 

centrifuged 6 min at 10,000xg. The upper aqueous phase was recovered and again mixed 

with an equal volume of phenol/chloroform/isoamyl. After 6 min of centrifugation at 10,000xg 

the aqueous phase was separated and precipitated by adding 2.5x volume of ethanol 

containing 50 mM NaCl. After centrifugation for 10 min at 10,000xg and 4°C the pellet was 

washed two times in ice-cold 70% ethanol, centrifuged as indicated above and air-dried. The 

DNA was dissolved in 100 µl 1xTE-buffer and stored at -20°C or used for genotyping of 

animals or cells and for further expression analysis. 

DNA lysis buffer     1x TE-buffer     
10 mM  Tris pH 7.6    1    M  Tris pH 7.6 
10 mM  EDTA     0.5 M  EDTA pH 8.0 
0.5%  SDS 
10 mM  NaCl 

 

2.2.4.2. Isolation of total RNA 

Total RNA from tissue samples and cells was isolated using the RNeasy Mini Kit (Qiagen) 

according to the manufacturer’s instructions. Maximum 30 mg of frozen or fresh tissue and 

approximately 1x106 cells were lysed in an appropriate amount of RLT buffer (denaturing 

guanidine-thiocyanate containing buffer) supplemented with 10 µl/ml ß-mercaptoethanol. 

Samples were homogenised using QIAshredder columns (Qiagen) centrifuging 2 min at 

maximum speed. Ethanol was added to provide proper binding conditions and the sample 

was applied onto RNeasy Mini spin columns. During centrifugation at 10,000xg the total RNA 

binds to the column and contaminants can be removed. On-column DNase digestion with 

RNase-free DNase Set (Qiagen) was performed to reduce DNA contamination. With an 

appropriate amount of 30 to 50 µl of RNase-free water total RNA was eluted. Aliquots were 

stored at -80°C after determination of concentration at 260 nm using a spectrophotometer 

(Eppendorf). 
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2.2.4.3. Synthesis of cDNA 

For cDNA synthesis an amount of 1 µg RNA was used. Reverse transcription was performed 

using the Reverse Transcription System (Promega) according to manufacturer’s instructions. 

In a final volume of 20 µl cDNA was synthesised at 42°C using random primers. Incubation 

time was extended to 60 min to obtain more abundant transcripts. At 95°C enzyme activity 

was stopped and samples were placed on ice. The cDNA was stored at -20°C and used for 

semi-quantitative PCR and quantitative Real-time PCR. 

2.2.4.4. Polymerase chain reaction (PCR) 

The standard PCR was performed in a Mastercycler ep gradient (Eppendorf) (Table 2-1). 

The individual PCR steps were optimised for each template and primer pair combination. For 

all amplification reactions the Taq polymerase (Qiagen) was used. Primers were designed 

with the software Primer3 v 0.4.0 275 and obtained from Eurofins MWG GmbH (Ebersberg). 

1-20 ng of DNA and cDNA to be amplified was mixed with DNA polymerase (2.5 units), 

oligonucleotide primers (0.3 µM each), dNTPs (200 µM each, Fermentas), 1x PCR buffer and 

MgCl2 (3 mM) in a final volume of 25 µl in water. After PCR amplification the size of the 

product was analysed by gel electrophoresis. 

 

Table 2-1: PCR standard protocol 

Step Time Temperature Cycles 

Initial denaturation 3 min 94°C  

Denaturation 1 min 94°C  

Annealing 
1 min 55-65°C  

according to primer pairs 
30-35 

Elongation 1 min 72°C  

Prolonged elongation 7 min 72°C  

 

2.2.4.5. Real-time PCR 

For quantitative expression analysis the LightCycler FastStart DNA MasterPLUS SYBR 

Green I Kit (Roche) was used and PCR was performed with the LightCycler 1.5 System 

(Roche) (Table 2-2). According to the manufacturer’s instructions (Roche) each RT-PCR 

reaction contained cDNA, respective oligonucleotide primers, the LightCycler Master Mix 

(Taq DNA polymerase and SYBR Green I dye) in a final volume of 10 µl. RT-PCR primer 

were designed with an optimal melting temperature (TM) of approximately 58°C and a 
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product size between 200 and 300 bp using the Primer3 software V 0.4.0 275. To minimise 

unspecific amplification of possible genomic DNA contaminations, primer pairs were 

designed that hybridise on different exons. Further formation of non-specific products is 

minimised by the hot start effect of the FastStart Taq DNA polymerase. The amplification is 

detected by measurement of the fluorescence signal at 530 nm of SYBR Green I that binds 

to the double-stranded DNA. Relative to the amount of double-stranded DNA the 

fluorescence signal increases during PCR. The specificity of the amplified product was 

observed by melting curve analysis which should reveal only one peak at a characteristic 

melting temperature depending on the GC-content and amplicon length. The expression 

levels of the gene of interests were normalised to the expression levels of 18S rRNA, ß-actin 

or aldolase. At least three independent experiments were performed for statistical evaluation. 

 

Table 2-2: Real-time PCR standard protocol 
Step Time Temperature Cycles 

Pre-Incubation 10 min 95°C 1 

Amplification 

Denaturation 10 s 95°C  

Annealing 10-45 s according to primer pairs 35-40 

Elongation 30 s 72°C  

Melting Curve 

Denaturation 1 s 95°C  

Annealing 60 s 65°C 1 

Melting 1 s 95°C  

Cooling 30 s 40°C 1 

 

2.2.4.6. Agarose gel electrophoresis 

A 1% agarose gel in TBE buffer containing ethidium bromide (0.05 µg/ml) was prepared and 

allowed to polymerise. The appropriate DNA marker and samples containing loading buffer 

at a ratio of 1:6 were poured into the gel pockets. Separation was performed in an 

electrophoresis chamber (Peqlab Biotechnologie GmbH) at 80 to 100 Volts (power supply 

Phero-Stab 0310, Biotec-Fischer). Fluorescence of PCR products was documented and 

analysed with a Gel Doc 1000 station (Bio-Rad). 
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TBE buffer    Loading buffer 6x     
89 mM   Tris  10 mM   Tris pH 7.6 
89 mM   Boric acid 0.03%   Bromphenol blue 
2.5 mM   EDTA  0.03%   Xylene cyanol 
pH 8.3     60%   Glycerol 
     60 mM   EDTA 

 

2.2.4.7. Cloning techniques 

PREPARATION OF COMPETENT BACTERIA 

Chemically competent E.coli TOP10 were produced by a modified rubidium chloride 

method 274. E.coli TOP 10 were cultured on an agar plate at 37°C over night. A single colony 

was inoculated in 2.5 ml of LB medium without antibiotic in a loose-capped falcon and 

incubated at 37°C with constant shaking over night. The over night culture was diluted 1:100 

in 250 ml LB medium containing KCl (100 mM) and MgCl2 (200 mM) and bacteria were 

grown until the absorbance at a wavelength of 600 nm reaches 0.4 to 0.6. Bacteria cells 

were pellet at 4,500xg for 5 min at 4°C and gently resuspended in 0.4x of the original volume 

of ice-cold standard transformation buffer 1 (TFB1). The remaining steps were carried out on 

ice. Finally the cells were concentrated in 0.04x of the original volume of ice-cold TFB2, 

aliquots of 100 µl were snap-frozen in liquid nitrogen and stored at -80°C until further use. 

TFB1       TFB2      
30   mM  potassium acetate  10 mM  MOPS (pH 6.5) 
10   mM  CaCl2    75 mM  CaCl2 
50   mM  MgCl2    10 mM  RbCl 
100 mM  RbCl    15%  glycerol 
15%   glycerol    pH 6.5 
pH 5.8 
filter-sterilise (0.45 µm)     filter-sterilise (0.45 µm) 

 

TRANSFORMATION OF BACTERIA BY HEAT SHOCK 

For transformation of bacteria 100 µl aliquots from -80°C stocks were thawed on ice, gently 

mixed with 1-10 pg plasmid DNA or 10 µl ligation preparation and incubated on ice for up to 

20 min. Cells were heated for 1-2 min at 42°C and placed on ice for 10 min. 1 ml of pre-

warmed LB medium without antibiotic was added and cells were incubated at 37°C for 

45 min with constant shaking. After centrifugation for 5 min at 3,500xg LB medium excess 

was discarded and the pellet was dissolved in 200 µl LB medium. All plasmids in the present 

study expressed ß-lactamase for selection and thus the resolved cells were plated on a LB 
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agar plate containing 50 µg/ml ampicillin and incubated at 37°C for approximately 16 h until 

single cell colonies became visible. 

PREPARATION OF PLASMID DNA 

Plasmid DNA was purified using the Plasmid Purification System Jetstar (Genomed) 

following the manufacturer’s instructions. The volume of solutions described here 

corresponds to a maxi prep and yields an amount of 50 to 500 µg plasmid DNA. After 

transformation of bacteria single colonies were inoculated in 5 ml of LB medium containing 

50 µg/ml ampicillin. Bacteria were vigorously shaked for 16 h at 37°C. After centrifugation at 

4000xg and 4°C for 15 min the cell pellet was resolved in 10 ml of E1 resuspending buffer 

containing RNase (100 µg/ml). 10 ml of E2 lysis buffer were added, mixed carefully and 

incubated for 5 min at room temperature. After addition of 10 ml E3 neutralising buffer 

centrifugation was performed at 12,000xg and 4°C for 10 min. Supernatant was applied to 

the pre-treated columns and allowed to pass through. After washing with 60 ml of E5 

washing buffer the column was transferred to a fresh 50 ml falcon and plasmid DNA was 

eluted with 15 ml of E6 elution buffer. DNA was precipitated with 0.7 volume (10.5 ml) of ice-

cold isopropanol and after centrifugation (30 min, 12,000xg, 4°C) the pellet was washed with 

70% ethanol. The pelletised plasmid DNA was dried and resolved in 200-500 µl TE-buffer 

and stored at -20°C. The concentration of the plasmid DNA was determined by measuring 

the absorbance at 260 nm in a spectrophotometer (Eppendorf). 

Buffer E1   Buffer E2   Buffer E3    
50 mM Tris   200 mM NaOH   3.1 M potassium acetate 
10 mM EDTA   1.0% SDS   pH 5.5 
pH 8.0 

Buffer E4   Buffer E5   Buffer E6    
600 mM NaCl   800 mM NaCl   1250 mM NaCl 
100 mM sodium acetate 100 mM sodium acetate 100   mM Tris 
0.15% TritonX-100  pH 5.0    pH 8.5 
pH 5.0  
All buffers E1 – E6 were constituents of the Plasmid Purification System Jetstar and purchased from 
Genomed. 

 

Mini preps were performed using a similar protocol from Qiagen (QIAprep MiniPrep Kit) 

following the manufacturer’s instructions yielding 20-30 µg of plasmid DNA. 

RESTRICTION DIGESTION OF PLASMID DNA 

Restriction digestion was performed using corresponding endonucleases and appropriate 

buffers from NEB (New England Biolabs). Restriction mixture was prepared according to the 
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manufacturer’s instructions and incubated for an adequate time (4 h or 16 h) and a suitable 

temperature. Plasmid DNA was loaded on a 1% low melting point agarose gel stained with 

ethidium bromide and separated at 80 to 100 V. Using a scalpel the fragment of desired size 

was excised and DNA was removed from the agarose by the Qiagen Gel Extraction Kit 

(Qiagen) according to the instruction manual. 

DEPHOSPHORYLATION OF LINEARISED VECTOR DNA 

To avoid religation, the vector DNA was treated with the Antarctic Phosphatase (New 

England Biolabs). The Antarctic Phosphatase catalyses the removal of 5´phosphate groups 

and thus the vector DNA can not self-ligate. According to the instruction manual the 

dephosphorylation protocol was performed in appropriate buffers at 37°C. Finally enzyme 

activity was inhibited at 65°C for 5 min. The vector DNA was then used for ligation. 

LIGATION OF PLASMID DNA 

T4 DNA Ligase purified from E.coli was used for ligation of the desired insert with the 

appropriate plasmid back-bone according to the instruction manual (New England Biolabs). 

T4 DNA Ligase catalyses the formation of phosphodiester bonds between juxtaposed 

5´phosphate and 3´hydroxyl termini in duplex DNA and is able to join blunt end and cohesive 

end termini. A common ligation mixture in a final volume of 20 µl consisted of: 

2 µl   10x T4 ligase buffer 

1 µl   T4 DNA Ligase (stock 400,000 units/ml) 

2 µl   dephosphorylated vector (~50 ng) 

4 µl   insert (~150 ng) 

11 µl  aqua ad iniectabilia 

The ligation was carried out at 16°C over night. Afterwards the ligation mixture was used for 

transformation of competent bacteria. Successful integration of the desired insert into the 

vector was monitored after transformation. Therefore plasmid DNA from over night cultures 

of single colonies was exposed to restriction digestion with specifically selected 

endonucleases. Restriction pattern after electrophoretic separation was aligned with the 

plasmid map using the pDRAW32 program version 1.0 (AcaClone software). 
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2.2.4.8. Cloning of Txnrd2 in the pCAG-3SIP system 

To generate the expression vector 141pCAG-3SIP-N´TAPe-mito-mTxnrd2-puro (Figure 2-4) 

the lentiviral vector 442-PL1-N´TAPe-mito-mTxnrd2-IRES-puro (not depicted) was digested 

with EcoRI and PmlI. The Txnrd2 fragment was isolated and cloned into the backbone of the 

plasmid 141pCAG-3SIP-mXCT (Figure 2-3) after digestion with EcoRI and PmlI. Successful 

transfection of cells was observed by using an anti-Txnrd2 antibody. 

 

Figure 2-3: Map of the intermediate vector 141pCAG-3SIP-mXCT 
Abbreviations: ampR (ß-lactamase: ampicillin resistance gene), hCMVieE (human cytomegalovirus 
immediate early-enhancer modified chicken ß-actin promoter), mxCT (encoding mouse xCT light chain, 
the substrate-specific subunit of the cystine transporter, system xc–), EMC IRES (internal ribosome 
entry site), PuroR (puromycin N-acetyltransferase gene), globin pA (globin poly A signal), SV40 ori pA 
(simian virus 40 origin of replication), 3xstopp (three stop codons in al three open reading frames). 
EcoRI and PmlI depict unique restriction sites used for cloning. 
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Figure 2-4: Map of the expression vector 141pCAG-3SIP-N´TAPe-mito-mTxnrd2-puro 
Abbreviations: ampR (ß-lactamase: ampicillin resistance gene), hCMVieE (human cytomegalovirus 
immediate early-enhancer modified chicken ß-actin promoter), MLS TR2 (mitochondrial leader 
sequence for Txnrd2), Flag-tag (polypeptide protein tag), Strep-tag (synthetic peptide sequence 
towards Strep-Tactin), mitoTR2 (gene of interest: mitochondrial Txnrd), EMC IRES (internal ribosome 
entry site), PuroR (puromycin N-acetyltransferase gene), globin pA (globin poly A signal), SV40 ori pA 
(simian virus 40 origin of replication), 3xstopp (three stop codons in al three open reading frames). 
EcoRI and PmlI depict unique restriction sites used for cloning. 
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2.2.5. Gene transfer methods 

2.2.5.1. Generation of lentiviral vectors and transduction of target cells 

Lentiviruses are able to deliver a significant amount of genetic information into the DNA of 

the host cell and have the ability to replicate in non-dividing cells. Thus they are one of the 

most efficient systems of gene delivery. In the present work the HIV-based 3rd generation 

ecotropic lentiviral vector system was used to transduce murine fibroblasts. To avoid any 

recombinant events, all necessary proteins for the lentivirus production including Env, Gag, 

Pol, Rev are encoded by three different plasmids. In this system the natural promoter is 

replaced by promoters from other viruses (e.g. Rous sarcoma virus) to ensure maximum 

biosafety. Further the 5´and 3´-LTRs are truncated, all accessory genes are removed and the 

virus is pseudotyped with glycoproteins from other viruses. 

For the virus production HEK 293-T cells were used as packaging cell line. Cells were grown 

in 10 cm culture plates to 70% confluence and transfected simultaneously with four plasmids 

via the calcium phosphate method. For each 10 cm plate a transfection plasmid mix was 

added consisting of: 

2 µg pEcoEnv-IRES-puro 

5 µg pMDLg_pRRE 

10 µg pRSV_Rev 

5 µg transfer vector (gene of interest). 

The transfection plasmid mix was mixed up with 50 µl of 2.5 M calcium chloride in water to a 

final volume of 500 µl. While air was bubbled through this mixture, 500 µl of 2x HEPES-

buffered saline was added, agitated for several minutes and then kept for 20 min at room 

temperature. 20 ml of transfection medium were added to the cell monolayer and 1 ml of the 

above prepared transfection mixture was dispensed drop by drop in each culture plate. Cells 

were incubated for 8 to 12 h and then the medium was replaced by fresh transfection 

medium without chloroquine. The cells were incubated for further 36 h at 37°C in a 

humidified incubator. Supernatants containing virus particles were collected, filtered through 

a 0.22 µm sterile filter and concentrated by ultracentrifugation at 8000xg at 4°C for nearly 

16 h. The supernatant was discarded and virus particles were resuspended in 200 µl of cell 

culture medium. Aliquots were stored at -80°C until use. 

For transduction of mammalian cells the virus containing solution was thawed on ice shortly 

before use. The day before, cells were seeded on 6-well culture plates and grown to 60% 

confluence. The medium was replaced by fresh culture medium and 10-20 µl of virus 

containing solution was added to each well. Incubation time varied between 24 to 48 h, 

subsequently the medium was replaced by fresh culture medium. 
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The transduction efficiency was analysed by flow cytometry after 72 h by monitoring VENUS 

expression in the case of the two lentiviral vectors 441 L1 Ha-rasV12 IRES golgi VENUS and 

443 L1 c-myc IRES mito VENUS. 

Stable cell lines displaying a Txnrd2-mutation (U524Stop) were generated by transducing the 

cells with 442-L1-N´TAPe-mito-mTxnrd2-Stop(U524Stop)-IRES-puro and 442-L1-N´TAPe-

IRES-puro for control, both carrying the puromycin resistance gene. After incubation with 

virus particles the cells were selected with puromycin, starting from 0.5 µg/ml to a final 

concentration of 1 µg/ml. 

2x HEPES-buffered saline   Transfection medium    
50   mM HEPES    1x DMEM (high glucose) 
280 mM NaCl    10% FCS 
1.5  mM Na2HPO4   1% L-Glutamine 
pH 7.05      1% Penicillin-Streptomycin 
      2% HEPES 
      25 µM Chloroquine 

 

2.2.5.2. Electroporation 

Due to an externally applied electrical field the electrical conductivity and permeability of the 

cell plasma membrane significantly increases. The so called electroporation method is widely 

used as a way of introducing substances into a cell (e.g. molecular probes, drugs or pieces 

of coding DNA). Therefore cells were plated on 10 cm culture plates and grown to 80% 

confluence. Cells were harvested via trypsin/EDTA and washed with PBS(-). Approximately 

three to five x106 cells in 500 µl PBS(-) were used and mixed with 20 to 30 µg plasmid. 

Electroporation was performed in 0.4 cm cuvettes using the GenePulser II apparatus 

(BioRad) with standard settings of 240 V and 950 µF capacitance. The transfected cells were 

plated on a 10 cm culture plate containing standard medium with 10% FCS and cultured over 

night. Not later than 24 h after electroporation selection with appropriate antibiotic should be 

initiated at low concentration. 

Stable transfected cells were achieved using the plasmids 141pCAG-3SIP-mock-puro and 

141pCAG-3SIP-N´TAPe-mito-mTxnrd2-puro. 24 h after electroporation selection with 

0.5 µg/ml puromycin was initiated and over a period of 2 weeks increased to a final 

concentration of 2 µg/ml puromycin. 
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2.2.6. Protein biochemistry 

2.2.6.1. Preparation of protein lysates 

Cells were harvested, lysed in an appropriate volume of protein lysis buffer and incubated for 

10 min on ice. The lysed cells were minced and dissolved using an insulin syringe. By 

centrifugation at 10,000xg at 4°C for 20 min cell debris were separated from the soluble 

proteins. The protein lysates were stored at -20°C or directly used for protein quantification 

and further investigations. For analysis of protein expression in tumour samples or mouse 

organs, frozen or fresh tissue was covered with an appropriate amount of protein lysis buffer 

(50 mg tissue in 1 ml protein lysis buffer). After incubation of 10 min on ice the tissue was 

minced and homogenised using the Ultra-Turrax® X120 CAT (Bochem Instrumente GmbH). 

Non-soluble fragments were removed by centrifugation at 2500xg and 4°C for 10 min. 

Subsequent the supernatant was again centrifuged at 10,000xg and 4°C for 20 min and the 

collected supernatant was stored at -20°C or directly used for further analysis. 

Protein lysis buffer           
20   mM Tris 
137 mM NaCl 
2     mM EDTA 
10%  Glycerol 
0.1%  Sodium deoxylcholate (freshly added) 
pH 7.4 
Protease-inhibitors were added shortly before use (Protease-Inhihitor-Cocktail, Roche) according to 
the instruction manual. For investigation of protein phosphorylation the phosphatase inhibitors sodium 
fluoride (0.5 mM) and Na3VO4 (0.5 mM) were freshly added to the lysis buffer. 

 

2.2.6.2. Protein quantification 

Quantification of protein amount was performed using the bicinchoninic assay BCATM Protein 

Assay Reagent A/B (Perbio, Fisher-Scientific) according to the instruction manual. The 

calibration curve was established using a 2 mg/ml bovine serum albumin solution. Protein 

standard and samples in the appropriate dilution were incubated for 30 min at 37°C with BCA 

reagents (A/B=50/1) in 96 well plates. Protein standard was measured in duplicate and 

samples in triplicate. Absorbance of the accumulating BCA-complex was estimated at 

550 nm in an spectrophotometer (Tecan). Concentration of protein was calculated by linear 

regression and expressed in µg/µl. 
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2.2.6.3. Immunoblotting 

Proteins were separated using the SDS-Page electrophoresis depending on their molecular 

weight in an electric field. Equal amounts of protein (15-20 µg) were mixed with 4x loading 

buffer and exposed to 95°C for 10 min. Samples for the detection of HIF-1α protein 

(~120kDa) were incubated at 37°C for 10 min to avoid formation of large protein clusters that 

could disrupt electrophoretic separation. Depending on the molecular weight of the protein of 

interest the samples were separated on gels containing different amounts of acrylamid (low 

kDa - 12%, high kDa - 8%) (Table 2-3). Separation was performed in electrophoresis running 

buffer at constant voltage (300 V) in a Mighty Small II SE 250/SE 260 mini vertical unit 

(Amersham). 

Table 2-3: Composition of acrylamid stacking and separating gel 
Stacking gel                                4% Separating gel                          8%                     12%            

Acrylamide/Bis-

Acrylamide 30%/0.8% 
13% 

Acrylamide/Bis-

Acrylamide 30%/0.8% 
26% 40% 

Tris pH 6.8 125 mM Tris pH 8.8 375 mM 375 mM 

SDS 0.1% SDS 0.1% 0.1% 

APS 0.05% APS 0.05% 0.05% 

TEMED 0.1% TEMED 0.1% 0.1% 

 

After electrophoretic separation proteins were transferred to a nitrocellulose membrane 

(Amersham). Semi-dry blotting was performed in transfer buffer using a self-made blotting 

unit at constant voltage (300 V) and ~0.8 mA per 1 cm2 of membrane for 1 h. Efficiency of 

the transfer was observed by short incubation of the membrane in 2% PonceauS solution. 

Unspecific protein bonds were blocked with 5% skim milk in 1x washing buffer for 2 h at 

room temperature with constant shaking. Primary antibodies were dissolved in 5% skim milk 

or BSA in 1x washing buffer and hybridisation was performed over night at 4°C with constant 

shaking (Table 2-4). After 3 times washing in 1x washing buffer, the membrane was 

incubated with an HRP-conjugated secondary antibody in 3% skim milk for at least 1 h at 

room temperature (Table 2-5). Visualisation was achieved by incubation with ECL reagent 

(Amersham) or SuperSignal® West Femto Maximum Sensitivity Substrate (Thermo 

Scientific) and the Digital CCD Camera from Hamamatsu Photonics. Analysis was performed 

using a Wasabi imaging software (Hamamatsu Photonics). For re-probing, the membranes 

were incubated for 10 min in stripping buffer. Prior to incubation with a new primary antibody 

the membrane was blocked with 5% skim milk or BSA in 1x washing buffer for 60 min. 



MATERIALS AND METHODS  62 
 

4x loading buffer   Electrophoresis running buffer  Transfer buffer  
250 mM Tris (pH 6.8)  124 mM Tris   39 mM Glycin 
8%  SDS   960 mM Glycin   48 mM Tris 
40%  Glycin   0.5%  SDS   0.037% SDS 
400 mM ß-Mercaptoethanol      10% Methanol 
0.02%  Bromophenol blue 

2% PonceauS     1x washing buffer (TBS-T)  Stripping buffer  
2% PonceauS   50   mM Tris   0.4 M NaOH 
30% TCA    150 mM NaCl   in dh2O 
     0.1%  Tween20 

 

Table 2-4: Primary antibodies for immunoblotting 
Antigen Isotype MW (kDa) Dilution Order Number 

ß-Actin rabbit polyclonal, IgG 42 1:1000 A 2066 

Akt rabbit polyclonal, IgG 60 1:1000 #9272 

c-Myc rabbit polyclonal, IgG 67 1:200 sc-764 

FLAG mouse-monoclonal, IgG1 10 1:2000 F3165 

GAPDH mouse monoclonal, IgG1 36 1:1000 MAB374 

Glutathione reductase rabbit polyclonal, IgG 65 1:500 sc-32886 

Hif-1α rabbit polyclonal, IgG 115 1:500 NB100-479 

PHD2 rabbit polyclonal, IgG 43 1:500 NB100-2219 

Prx 3 rabbit polyclonal, IgG 20-30 1:1000 LF-PA0030 

Phospho-Akt 

(Ser473) 
rabbit polyclonal, IgG 60 1:1000 #9271 

Ras rabbit polyclonal, IgG 21 1:1000 #3965 

Trx2 rabbit polyclonal, IgG 12 1:2000 AF3254 

β-Tubulin mouse monoclonal, IgG1 55 1:1000 T4026 

Txnrd1 rabbit polyclonal, IgG 56 1:1000 - 

Txnrd2 (#1C4) rat monoclonal 56 undiluted - 

Txnrd2 rabbit polyclonal 56 1:1000 - 

VEGF-A rabbit polyclonal, IgG 45 1:500 PA1080 

 

Table 2-5: Secondary antibodies for immunoblotting 
Antigen Dilution Order Number 

Goat anti-mouse IgG HRP conjugate 1:5000 401253 

Goat anti-rabbit IgG HRP conjugate 1:5000 401353 

Goat anti-rat IgG HRP conjugate 1:5000 112-035-062 

Rabbit anti-goat IgG HRP conjugate 1:5000 401515 
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2.2.6.4. Immunohistochemistry 

HEMATOXYLIN-EOSIN HISTOLOGY 

To study tumour morphology tissue was fixed in 4% paraformaldehyde in PBS(-) over night 

at 4°C and embedded in paraffin. Five-micrometer sections were treated with Mayer´s 

hematoxylin and 2% eosin to stain cell nuclei and cytoplasma, kindly performed by the group 

of Dr. Irene Esposito (Institute of Pathology, Helmholtz Zentrum, München). 

 

IMMUNOSTAINING OF CRYO- AND PARAFFIN-SECTIONS FROM TUMOUR TISSUE 

For cryo-sections tissues were frozen in OCT embedding medium (Sakura) and stored 

at -20°C. Ten-micrometer frozen sections were prepared using a cryotome (HM 560, Microm), 

mounted on poly-L-lysine-coated glass slides Superfrost® Plus (Thermo Scientific) and fixed 

in acetone at -20°C for 10 min. Paraffin-sections were prepared as mentioned above (see 

chapter 2.2.6.4. first subitem). Before staining sections were deparaffinised with xylene and 

rehydrated through graded alcohol into destilled water. Antigen retrieval was achieved by 

microwave pre-treatment in sodium citrate buffer (10 mM). For both, cryo- and paraffin-

sections, endogenous peroxidase activity was quenched by incubating the sections in 

methanol containing 1% H2O2. Non-specific binding sites were blocked by incubation in 

PBS(-) containing 5% BSA for 1 h at room temperature. Hybridisation with primary antibody 

was performed at 4°C over night with 5% BSA in PBS(-) in a humidified chamber. Omission 

of the primary antibody served as a control. After three times washing with PBS(-) sections 

were incubated with the peroxidase-conjugated secondary antibody in 5% BSA with PBS(-) 

for 1 h at room temperature. Immunoperoxidase staining was performed using the Vector 

ABC Kit and Vector DAB or AEC Kit (Vector Laboratories Inc). Immunostaining was analysed 

using the Olympus BX41 microscope in combination with the digital camera CAMEDIA C-

5050 and the software Olympus DP-Soft v3.2 (Olympus, Tokio, Japan). Analysis of 

proliferation using Ki67 (Dianova, diluted 1:200) as marker and quantification of apoptotic-

necrotic areas by means of cleaved-caspase 3 (Cell Signaling, diluted 1:200) staining were 

kindly performed and analysed by the group of Dr. Irene Esposito (Institute of Pathology, 

Helmholz Zentrum, München). Quantification of tumour vascularisation was achieved by 

PECAM-1/CD31 (Acris, diluted 1:150) staining. Three representative sections were analysed 

per animal and five random micrographs were taken from each region of interest from all 

three sections. Total blood vessels were determined by counting the number of blood 
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vessels in fifteen random microscopic visual fields using a 20x objective. All analyses were 

done in a blinded fashion by two researchers. 

2.2.6.5. Enzyme-linked immunosorbant assay 

To measure mouse VEGF in cell culture supernatants and tissue homogenates, the 

Quantikine Mouse VEGF Immunoassay (R&D) was used following the instruction manual. In 

brief, a 96-well microplate was pre-coated with a polyclonal antibody specific for mouse 

VEGF. For calibration a recombinant mouse VEGF (500 pg/ml) solution was used. To 

analyse cell culture supernatants, cells were seeded in 24-well culture plates and cultured in 

500 µl of standard DMEM or exposed to starvation until 80% confluence. Supernatants were 

collected and stored at -20°C until analysis was performed. To prepare tissue homogenates, 

tumours were washed once in ice-cold PBS(-) and homogenised in an appropriate amount of 

protein lysis buffer containing protease inhibitor (Roche) using the Ultra-Turrax® X 120 CAT 

(Bochem). The homogenates were centrifuged at 5,000xg for 10 min, non-soluble material 

was discarded and supernatants were centrifuged again at 10,000xg and 4°C for 20 min. 

Samples were stored at -20°C until further use. Standards and assay controls were loaded in 

duplicate, samples with equal amount of protein in triplicate to the pre-coated 96-well 

microplate. Mouse VEGF binds to the immobilised antibody and any unbound substances 

are removed by washing steps. Afterwards an enzyme-linked polyclonal antibody specific for 

mouse VEGF was added to each well. Following incubation, unbound antibody-enzyme 

reagent is removed by washing and a substrate solution is added. The enzymatic reaction 

yields a blue product that turns yellow after adding the stop solution. Absorbance of the 

yellow substrate was measured at 450 nm in a spectrophotometer (Tecan). The intensity of 

the colour is in proportion to the amount of mouse VEGF bound in the initial step. Sample 

values were read of the standard curve and expressed in pg/mg protein. 

2.2.7. Biochemical assays 

2.2.7.1. Estimation of glutathione reductase activity in cells 

The activity of the glutathione reductase (GR) in cells was analysed by measuring the 

decrease of absorbance at 340 nm due to oxidation of NADPH to NADP+, co-factor of the 

reduction of oxidised glutathione (GSSG) (Figure 2-5). 
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Figure 2-5: Reduction of glutathione 
Together with its co-factor NADPH/H

+
, glutathione reductase (GR) catalyses the reduction of oxidised 

glutathione (GSSG) to the reduced form of glutathione (GSH). 

Cells were plated on 10 cm dishes and cultured in standard DMEM to 80% confluence. Cells 

were harvested and resolved in 10x of volume in cell extraction buffer and incubated on ice 

for 30 min. After centrifugation the supernatant was stored at -20°C or directly analysed for 

protein amount and GR activity. GR activity was measured using 25 µg protein of samples 

and glutathione reductase from yeast, containing 0.3-0.6 U/ml (Sigma), was used for 

calibration. Standard, positive control (lysate of mouse liver) and samples were estimated in 

triplicate using a UV-perivious 96-well plate. After intense shaking, decrease of absorbance 

was monitored over 10 min and reading was taken every 2 min at 340 nm in a Tecan 

spectrophotometer with UV filter. The change in absorbance/min from the standard was used 

to calculate the GR activity in the samples and expressed as U/mg protein. 

Cell extraction buffer     Solution A     
200 mM potassium phosphate buffer  200 mM potassium phosphate 
100 µM  PMSF     10   mM EDTA 
20%  Triton X-100    pH 7.2 

Solution B   Solution C  Solution D     
30 mM GSSG   0.8 mM NADPH  1% BSA 
in water    in solution A  in solution A 

 

2.2.7.2. Determination of total glutathione in cells 

Total glutathione content (GSH + GSSG) in cells was determined by performing a modified 

assay based on a method first described by Tietze (Figure 2-6) 309. 

Therefore cells were plated on 10 cm culture dishes and harvested at 80% confluence. For 

further analysis 1x106 cells were used. After washing with PBS(-) cells were resolved in 5% 

TCA, incubated on ice for 30 min and pelletised by centrifugation at 10,000xg and 4°C for 

10 min. The cell pellet was resuspended in 0.5 M NaOH and samples were analysed for 

protein amount and after that stored at -20°C. By performing an ether extraction (0.01 M HCl-

ether), interfering proteins as well as metabolising enzymes were removed from the samples 

and glutathione was released from the cells. The aqueous phase was collected and 

incubated at 37°C for 15 min to remove all ether residues. A 30 mM GSSG solution (Sigma) 

was used for calibration. All reagents were prepared freshly and 50 µl of sample, blank or 
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standard were loaded to a 96-well plate in triplicate. Solution A was added and absorbance 

was estimated at 405 nm in a Tecan spectrophotometer. Finally, solution B was added and 

absorbance was measured after 30 s, 2 min and 5 min. Concentration of total glutathione in 

samples was calculated using the standard absorbance values and expressed in µM/mg 

protein. 

 

Figure 2-6: GSH recycling mechanism by Tietze 309 
The general thiol reagent DTNB reacts with GSH to form the 412 nm chromophore TNB and GSTNB. 
The GSTNB is subsequently reduced by GR and NADPH, releasing a second TNB molecule and 
recycling the GSH; thus amplifying the response. Any oxidised glutathione (GSSG) initially present in 
the reaction mixture or formed from the mixed disulfide reaction of GSH with GSTNB is rapidly 
reduced to GSH. 

Solution A     Solution B     
177  mM potassium-phospahte buffer 1.3 U/ml glutathione reductase 
0.74 mM DTNB    in water 
0.15 mM NADPH 

 

2.2.7.3. Measurement of GSH concentration in tumour samples by HPLC 

The isocratic high-performance liquid chromatography (HPLC) was used for the 

measurement of total glutathione (GSH+GSSG), reduced (GSH) and oxidised (GSSG) 

glutathione based on the estimation of total homocysteine with some modifications 90. In brief, 

the measurement is based on the derivatisation of thiol groups with a thiol-specific 

fluorogenic marker (7-fluoro-benzo-2-oxa-1,3-diazole-4-sulphonate), which can be separated 

isocratically by reverse-phase HPLC using a Superspher 100 RP-18 column as stationary 

phase. Tumours were collected following six or 10 days of tumour growth and snap-frozen. 

Sample preparation and processing as well as HPLC measurement was kindly performed by 

Dipl.Ing. Pirkko Koelle (Group PD. Dr. Peter Kuhlencordt, Medizinische Poliklinik, Klinikum 

der Universität München) 
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2.2.7.4. Quantification of lactate in cell culture and tumour tissue 

Lactate is a major intermediate of anaerobic metabolism and plays important roles in many 

biological processes. Abnormal changes in concentration of lactate have been related to 

several diseases (diabetes, lactic acidosis, tumours). To estimate lactate in cell culture 

supernatants and tumour tissue the Lactate Assay Kit II (BioCat) was performed according to 

the instruction manual. In brief, lactate is oxidised by lactate dehydrogenase to generate a 

product which interacts with a probe to produce a colour (λmax=450 nm). The kit detects 

L(+)-lactate. Supernatants were collected from cells cultured over night in 24-well plates with 

standard-DMEM exposed to stimuli or left untreated and stored at -20°C until the assay was 

performed. For quantitative evaluation, the amount of protein in each well was determined 

using the bicinchoninic acid assay (see chapter 2.2.6.2.). Tumour tissue was dissected and 

homogenised using the Ultra-Turrax® X 120 CAT (Bochem) in an appropriate amount of 

lactate assay buffer (BioCat). After centrifugation at 10,000xg and 4°C for 20 min the clear 

homogenate was collected and stored at -20°C until protein quantification or the lactate 

assay was performed. Supernatants and tissue samples were prepared in an appropriate 

dilution and analysed in triplicates. For calibration a 1 mM lactate solution (BioCat) was used. 

Absorbance of standard and samples was measured in a spectrophotometer (Tecan) at 450 

nm. Sample readings were applied to the calibration curve and results were expressed in 

nmol/mg protein. 

2.2.7.5. Measurement of ATP in cells and tumour tissue 

Adenosine 5´triphospate (ATP) transports chemical energy within cells for metabolism and is 

a key indicator for cellular activity. To analyse the amount of ATP in cells and tumour tissue, 

the EnzyLightTM ATP Assay Kit (BioAssay Systems) was performed. The kit provides rapid 

bioluminescent determination of ATP (Figure 2-7). ATP was extracted from cells by adding 

equal volume of ATP-extraction buffer to protein lysates and stored at -80°C until analysis. 

Extraction of ATP from tumour tissue was performed by homogenising the samples in an 

appropriate amount of 6% ice-cold perchloric acid. After centrifugation at 10,000xg and 4°C 

for 10 min, the pH of the supernatant was adjusted to 7 by adding 2 M K2CO3. The samples 

were stored at -80°C. Before estimation of ATP the amount of protein was quantified. The 

EnzyLightTM assay was performed according to the manufacturer’s instructions. For 

calibration a 30 mM ATP solution (BioAssay Systems) was used. Standard and samples 

were measured in duplicate using a Lumat LB 9507 (Berthold technologies GmbH & Co KG). 

Sample readings were applied to the calibration curve and results were expressed in µM/mg 

protein. 
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Figure 2-7: Bioluminescent determination of ATP 
The released ATP reacts with the substrate D-luciferin in the presence of luciferase and produces light. 
The light intensity is a direct measure of intracellular ATP concentration. 

ATP-extraction buffer    
4 mM  EDTA 
0.2%  Triton X-100 

 

2.2.8. Tumour transplantation protocols 

Animals were kept under standard conditions with food and water ad libitum (ssniff, Soest, 

Germany). All animal experiments were performed in compliance with the German Animal 

Welfare Law and been approved by the institutional committee on animal experimentation 

and the government of Upper Bavaria. 

2.2.8.1. Subcutaneous xenograft model 

Cells were harvested from 80% confluent 10 cm culture dishes. Mice were anesthetised by a 

spontaneous inhalation of isoflurane (Forene®, Abbott GmbH & Co KG). The inhalation gas 

contained a mixture of 30-40% oxygen, 60-70% nitrogen, 2.2 ± 0.2% isoflurane and was 

administered continuously through a breathing mask. 4x106 single cell-derived transformed 

cells in a final volume of 200 µl were injected subcutaneously into the flank of C57BL/6 mice. 

Tumours were allowed to develop and grow for a maximum period of 11 days. At days two, 

three, four, six, seven, eight, 10 and 11 mice were sacrificed and the tumours were collected. 

Tumour volume was determined using a sliding calliper and the tumour mass was weighted. 

Tumour tissue was snap-frozen in liquid nitrogen and stored at -80°C in several aliquots for 

isolation of DNA, RNA or protein. For immunohistochemistry tumour tissue was fixed with 4% 

paraformaldehyde and embedded in paraffin or snap frozen in liquid nitrogen, embedded in 

OCT embedding medium (Sakura) and stored at -20°C.  

2.2.8.2. Treatment of Txnrd2-deficient tumour-bearing mice with BSO 

Txnrd2-deficient single-cell derived transformed cells (4x106) in a final volume of 200 µl were 

injected subcutaneously into the flank of C57BL/6 mice. Tumours were allowed to grow for 

three days before the therapy started. BSO (20 mM) was provided in the drinking water for 

seven days. As a control a second group of Txnrd2-deficient tumour-bearing mice were 
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provided with drinking water containing no BSO. The drinking water was refreshed every 3rd 

day. The animals were sacrificed and tumour mass was weighed and volume was 

determined using a sliding calliper. For immunohistochemistry tumour tissue was snap frozen 

in liquid nitrogen, embedded in OCT embedding medium (Sakura) and stored at -20°C. 

2.2.8.3. Dorsal skinfold chamber 

The dorsal skinfold chamber is a well established in vivo model to study early processes of 

angiogenesis in tumours and to investigate functional parameters of tumour vascular network 

(Figure 2-8). Experiments were performed using C57BL/6 mice. The dorsal skinfold chamber 

was implanted under anesthesia (75 mg ketamine hydrochloride/25 mg xylazine per kg body 

weight) as already described 182. Before tumour cells were inoculated into the skinfold 

chamber animals were allowed to recover from the surgery for two or three days. Vessel 

formation and functionality was observed at days three, five and 11 following tumour cell 

inoculation. Therefore animals were placed in a polycarbonate tube and were injected 

intravenously with Fluorescein isothiocyanate (FITC)-dextran solution. Tumour 

vascularisation was observed by using 2.5x, 10x and 20x objectives (LD acroplan). Epi-

illumination was achieved using a 100 W mercury lamp with a fluorescence filter for FITC 

(excitation: 450-490 nm, emission: 515-525 nm). Images of microvessels were acquired 

using a CCD camera (AVD D7). Representative images and movies were taken from the 

tumour edge and centre. These experiments were kindly performed and analysed by Siiri 

Lüdemann (Surgical Clinic and Policlinic, LMU, München). 

 

Figure 2-8: Dorsal skinfold chamber implanted on a nude mouse 28 

FITC-labeled dextran solution     
5%  Fluorescein isothiocyanate-dextran 
in 0.9% NaCl 
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2.3. Statistics 

All experiments were performed at least three times. Results are expressed as mean values 

± SD. One-way statistical analysis was performed with SigmaStat© 2.0 for Windows (Jandel 

GmbH, Erkrath, Germany). Statistical comparisons of two samples were made by Student´s 

t-test. For non-normal data the Rank sum test was used. The corresponding tests are 

indicated in the figure legends. P values <0.05 were considered as statistically significant.  
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3. RESULTS 

3.1. Long-term effects of Txnrd2-deletion in murine fibroblasts 

Previous work in our laboratory demonstrated that deletion of Txnrd2 in freshly isolated 

murine fibroblasts restricts in vitro proliferation, disturbs redox balance and impacts on 

mitochondrial redox-regulating enzymes 61, 245. Hence, the first part of the present study 

aimed to investigate the long-term effects of Txnrd2 deletion on cellular function and 

metabolism. 

3.1.1. Characterisation of immortalised fibroblasts lacking Txnrd2 

Embryonic fibroblasts were isolated from pregnant mice at E12.5 and immortalised by serial 

passages. Cells with a passage number less than 10 were considered as ´primary´ cells and 

cells with a passage number above 10 were considered as ´immortalised´. The deletion of 

Txnrd2 was verified by semi-quantitative PCR, real-time PCR as well as immunoblotting 

(Figure 3-1 A - C). To analyse the proliferation rate of primary versus immortalised Txnrd2-

deficient fibroblasts, equal numbers of cells were plated on 6-well culture plates and 

proliferation was monitored over at least 96 h. Surprisingly, immortalised fibroblasts lacking 

Txnrd2 showed an increased proliferation rate compared to their wild-type counterparts. This 

effect was at variance to the previous observations using primary fibroblasts 61 (Figure 3-2 A). 

Primary Txnrd2-deficient fibroblasts showed reduced proliferation which could be rescued by 

antioxidants (GSH, NAC, α-Tocopherol, NaSe) 61, 245. The cells revealed increased levels of 

intracellular ROS and were highly susceptible to oxidising agents (H2O2, PEITC, antimycin A) 

and genotoxic agents 245. Expression of mitochondrial specific H2O2-scavenging enzymes, 

Prx3 and Prx5, was increased and cells were highly sensitive to inhibition of the intracellular 

de novo synthesis of GSH 245. This sensitivity to GSH-depletion was also observed in 

immortalised Txnrd2-knockout fibroblasts (Figure 3-2 B). Therefore, we were interested in 

the redox status of immortalised Txnrd2-deficient cells and their sensitivity to oxidising 

agents. 
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Figure 3-1: Analysis of Txnrd2 expression in immortalised murine fibroblasts 
Expression of Txnrd2 was analysed on the (A) genomic level or (B) on the mRNA level using 
adequate primers spanning the exons 15 to 18 coding for Sec and SECIS. Equal loading was 
confirmed by aldolase expression. (C) Txnrd2-deletion was additionally confirmed by immunoblotting. 
The expected signal at a molecular weight of 55 kDa was only detectable in Txnrd2

+/+
 fibroblasts. 

Equal loading was confirmed by analysis of α-Tubulin expression. 

3.1.2. GSH-depletion is associated with increased ROS levels in Txnrd2-

deficient cells 

To investigate, whether immortalised Txnrd2-deficient cells accumulate more intracellular 

ROS, cells were cultured overnight in the presence or absence of L-buthionine sulphoximine 

(BSO). BSO is an irreversible inhibitor of γ-glutamylcysteine synthetase (γ-GCS), the enzyme 

catalysing the first and rate-limiting step in the de novo synthesis of GSH. Cells were stained 

with DCFH-DA (a marker used for ROS detection) and afterwards analysed by flow 

cytometry. Surprisingly, and in contrast to primary fibroblasts, immortalised Txnrd2-deficient 

fibroblasts showed even slightly reduced ROS levels compared to wild-type cells under 

baseline conditions. However, treatment with 10 µM BSO for 16 h revealed a much stronger 

increase of soluble ROS in fibroblasts lacking Txnrd2 (Figure 3-2 C ). 
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Figure 3-2: Proliferation and intracellular ROS level of Txnrd2-deficient fibroblasts 
(A) Primary Txnrd2

-/-
 fibroblasts show decreased proliferation rates compared to Txnrd2

+/+
 cells. 

Analysis of immortalised fibroblasts yielded a different picture. Txnrd2
-/-

 fibroblasts showed increased 
proliferation under baseline cell culture conditions. Depicted is one representative experiment out of 
four. (B) Yet immortalised Txnrd2-deficient fibroblasts were still more sensitive towards GSH-depletion 
induced by BSO (10 µM) than wild-type cells. The line chart depicts one of three independent 
experiments. Depicted are mean values ± SD. The number of cells is expressed as cell index 
(explanation see chapter 2.2.1.6.). (C) Primary and immortalised Txnrd2

+/+
 and Txnrd2

-/-
 fibroblasts 

were stained with DCFH-DA. Primary (left panel) and immortalised (middle panel) Txnrd2
+/+

 and 
Txnrd2

-/-
 cells were analysed under baseline cell culture conditions. Soluble ROS were further 

measured in immortalised fibroblasts following BSO treatment (10 µM) (right panel). Green curves: 
Txnrd2

+/+
, red curves: Txnrd2

-/-
. Representative graphs of three independent experiments are shown. 

3.1.3. Cells respond to Txnrd2 deletion by upregulating other redox 

enzymes 

Under baseline cell culture conditions primary Txnrd2-deficient fibroblasts showed elevated 

ROS levels, whereas immortalised Txnrd2-deficient fibroblasts had ROS levels which were 

under baseline culture conditions comparable to those of wild-type cells (Figure 3-2 C, left 

and middle panel). Thus, the question raised whether compensatory upregulation of other 

redox-related enzymes may occur in the response to Txnrd2-deletion. Along the same line, 

treatment with BSO revealed a strong susceptibility of Txnrd2 knockout cells to GSH 

deprivation, indicating that one or several GSH metabolising enzymes may rescue Txnrd2-

deficiency (Figure 3-2 C, right panel). Therefore, the activity and expression of the GSH 
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recycling enzyme, glutathione reductase (GR), was investigated. Indeed, immortalised 

Txnrd2-deficient fibroblasts showed increased GR activity compared to wild-type cells under 

baseline cell culture conditions (Figure 3-3 A). In cells lacking Txnrd2, GR activity was indeed 

3-fold higher (14.9±3.9 mU/mg protein) compared to the wild-type counterparts (5.2±1.2 

mU/mg protein) (Figure 3-3 B), which was paralleled by an increased GR protein expression 

(Figure 3-3 D). On the other hand, the amount of total glutathione was comparable in wild-

type and Txnrd2-knockout cells (216±132 µM/mg protein in Txnrd2+/+ cells vs. 204±138 

µM/mg protein in Txnrd2–/– cells) (Figure 3-3 C). Interestingly, the expression level of Txnrd1 

was elevated in Txnrd2-deficient fibroblasts (Figure 3-3 E). The expression of the 

mitochondria-specific H2O2-scavenging enzymes Prx3 and Prx5 were comparable in 

immortalised wild-type and Txnrd2-null cells at mRNA and protein level under basline culture 

conditions as well as following starvation (Figure 3-3 F - G). These data were in contrast to 

previous observations in our laboratory using primary fibroblasts. Expression of Prx3 and 

Prx5 mRNA were found to be increased in primary Txnrd2-deficient fibroblasts under 

baseline culture conditions and protein expression of Prx3 strongly increased after 

stimulation with H2O2 in primary Txnrd2-deficient cells 245.  
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Figure 3-3: Activity and expression of redox-regulating enzymes 
(A) The activity of the GR was analysed in supernatants from cell lysates by measuring the decrease 
of absorbance at 340 nm due to oxidation of NADPH to NADP+ at the indicated time points. (B) GR 
activity is expressed in mU/mg protein and was compared between Txnrd2

+/+
 and Txnrd2

–/–
 cells. 

Depicted are the mean values ± SD from seven independent experiments. * p<0.05 (Student´s t-test) 
(C) Total glutathione was measured after TCA-extraction from cells and is expressed in µmol/mg 
protein. The graph shows the mean values ± SD from three independent measurements. Expression 
of GR (D) and Txnrd1 (E) was analysed by immunoblotting. One representative blot from three 
independent experiments is depicted. For equal loading expression of ß-actin was analysed. (F) 
mRNA expression of Prx3 and Prx5 in immortalised fibroblasts was analysed using semi-quantitative 
PCR under baseline culture conditions and following treatment with 10 µM BSO. Actin served as 
control. (G) Expression level of Prx3 under baseline culture conditions and after starvation was verified 
in immortalised fibroblasts using immunoblotting. ß-actin served as loading control. One 
representative blot of three independent experiments is depicted.  
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3.1.4. Structure and functionality of mitochondria in Txnrd2-deficient cells 

Mitochondrial metabolism is essential for energy production in form of ATP in cells and 

tissues. The Trx2/Txnrd2/Prx3-system is considered to play a pivotal role in scavenging 

mitochondrial ROS, thereby contributing to proper mitochondrial function. To investigate the 

impact of the Txnrd2-deletion on mitochondria, morphological and functional analyses were 

performed. Structural and intracellular organisation of mitochondria were analysed using the 

organelle-specific probe Mitotracker Green®. Mitotracker Green® is considered to 

specifically accumulate in mitochondria, independent of mitochondrial membrane potential 242. 

Mitochondria of primary wild-type and knockout fibroblasts appeared similar in shape (Figure 

3-4, upper panel). Interestingly, immortalised Txnrd2-deficient cells showed reduced 

accumulation of Mitotracker Green® and in contrast to the tubular-shaped mitochondria of 

wild-type cells they appeared more punctate (Figure 3-4, lower panel). 

 

Figure 3-4: Structural analysis of mitochondria in Txnrd2-deficient fibroblasts 
Intracellular organisation of mitochondria in Txnrd2

+/+
 and Txnrd2

–/–
 cells was analysed by confocal 

microscopy using the mitochondrial selective probe Mitotracker Green® (20 nM). The upper panel 
compares primary fibroblasts (passage number 6) and the lower panel compares immortalised 
fibroblasts (passage number >10). Depicted are representative images of one cell chosen from three 
independent stainings.  
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To quantify numbers of mitochondria in the cells, staining with Mitotracker Green® was 

performed and analysed using flow cytometry. Wild-type and knockout cells of different 

passage numbers were analysed for the mean fluorescence intensity (MFI) of Mitotracker 

Green®, which, in turn, is linear correlated to mitochondrial mass 142, 172, 242 (Figure 3-5 A). As 

expected, primary fibroblasts (p4) showed no differences in mitochondrial mass with an MFI 

of 92±13.4% for Txnrd2-deficient cells compared to 100% of control wild-type cells. However, 

immortalised Txnrd2-deficient fibroblasts (p>10) revealed significantly reduced MFI with 

61.9±14.9 % compared to 100% of control (Figure 3-5 B).  

Since the validity of mitochondrial mass estimation using Mitotracker Green® is 

controversially discussed due to its possible dependence on the membrane potential 155, 209, 

242, a second fluorescent probe was used for quantitative analysis of mitochondrial mass. 

Nonyl acridine orange (NAO) interacts with non-oxidised cardiolipin which is located in the 

inner mitochondrial membrane and is incorporated independently of the mitochondrial 

membrane potential 209. Cells were stained for 20 min with 10 nM NAO at 37°C in the dark 

and analysed by flow cytometry. For normalisation, MFI for NAO was corrected for the 

endoplasmic reticulum (ER) tracker fluorescence intensity. Primary wild-type and knockout 

cells showed approximately equal mitochondrial mass with 23.4±10.7 compared to 22.9±8.4. 

In contrast to the findings obtained with Mitotracker Green®, immortalised Txnrd2-lacking 

cells (21.9±3.8) showed no significantly reduced mitochondrial mass compared to wild-type 

cells (24.8±2.5) (Figure 3-5 C). 

Another widely-used method to quantify the amount of mitochondria is the analysis of 

mitochondrial DNA. We therefore analysed the mRNA expression level of 16S rRNA using 

semi-quantitative (Figure 3-5 D) and real-time PCR in immortalised fibroblasts. The 

expression of the mitochondria-specific mRNA was normalised to the expression of 

hexokinase mRNA (nuclear encoded). Mitochondrial DNA was comparable between wild-

type and Txnrd2-deficient immortalised cells (data not shown). These observations were in 

accordance with the results obtained from the NAO-staining and confirmed that there were 

no differences in the amount of mitochondria between primary as well as immortalised wild-

type and Txnrd2-knockout cells. 

However, previous studies were performed in our laboratory using transmission electron 

microscopy in order to analyse mitochondria in Txnrd2-deficient cardiomyocytes derived from 

heart-specific Txnrd2-knockout mice. Here, mitochondria revealed severe malformation and 

swelling with destruction or loss of cristae 61. 
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Figure 3-5: Quantitative evaluation of mitochondria in Txnrd2-deficient fibroblasts 
(A) Cells were stained with Mitotracker Green® for 25 min. Afterwards mitochondria were analysed 
using flow cytometry. Txnrd2

+/+
 (black curve) and Txnrd2

-/-
 (red curve) fibroblasts were compared at 

different number of passages (4, 10, >40 and >100). Unstained Txnrd2
+/+

 and Txnrd2
-/-

 cells showed 
equal auto-fluorescence and served as control (filled grey curve). Histogram of one out of three 
representative experiments is shown. (B) Quantitative analysis of the mean fluorescence representing 
mitochondrial mass in Txnrd2

-/-
 cells at different passage numbers (4, 10, >40 and >100). Depicted are 

mean values ± SD. Txnrd2
+/+

 cells were considered as 100% for each passage and compared to 
Txnrd2

-/-
 cells. Passage number 4 of Txnrd2

-/-
 was compared to passage number 10, >40 and >100 

with * p<0.05, # p<0.1 and n.s. = not significant (Student’s t-test). (C) Quantitative analysis of the 
mean fluorescence of NAO representing mitochondrial mass. For normalisation, mean fluorescence 
intensity of NAO was correlated to those of the ER tracker. Mean values ± SD are expressed as 
relative mitochondrial mass of three independent experiments. (D) Mitochondrial DNA was quantified 
using semi-quantitative PCR in immortalised fibroblasts. The expression of the mitochondrial-specific 
16S rRNA was normalised to the expression of the nuclear-encoded hexokinase. Aldolase expression 
served as control. 
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3.1.5. Respiratory capacity of Txnrd2-deficient cells 

The potential impact of the Txnrd2-deletion on mitochondria raised further questions 

concerning mitochondrial functionality, including respiration. Therefore, the individual 

respiratory capacity of the mitochondrial respiratory chain complexes was analysed. Using 

high-resolution respirometry (HRR) the cellular basal O2-consumption and the highest 

inducible activity of the individual complexes was studied. Primary and immortalised cells of 

both genotypes were included in the studies (Figure 3-6 A-D). 

Primary Txnrd2-deficient cells showed slightly reduced levels of cellular basal O2-

consumption with an O2-flow per cell of 5.1±2.6 pmol/s*106 compared to the wild-type cells 

(6.2±1.9 pmol/s*106) (Figure 3-7 A). The maximum achievable activity of complex I and II/III 

of the respiratory chain after stimulation was slightly decreased in primary Txnrd2-deficient 

cells (O2 flow per cells: Txnrd2+/+ vs. Txnrd2–/–; complex I: 146±34 vs. 101±47; complex II/III: 

178±42 vs. 126±72, pmol/s*106) and similar for complex IV (O2 flow per cells: Txnrd2+/+ vs. 

Txnrd2–/–, complex IV: 243±4 vs. 219±43 pmol/s*106) (Figure 3-7 B). Interestingly, 

immortalised Txnrd2-deficient cells showed a slightly elevated cellular basal O2-consumption 

with an O2-flow per cell of 4.9±3.0 pmol/s*106 compared to the wild-type cells (3.0±0.9 

pmol/s*106) (Figure 3-7 C). Furthermore, particularly complex I and complex IV of 

immortalised Txnrd2-deficient cells achieved much higher activities after stimulation with the 

corresponding substrates (O2 flow per cells: Txnrd2+/+ vs. Txnrd2–/–; complex I: 69±32 vs. 

135±18; complex II/III: 111±11 vs. 123±19, complex IV: 185±35 vs. 221±16, pmol/s*106) 

(Figure 3-7 D). Provided there is any impairment of mitochondrial morphology in 

immortalised Txnrd2-deficient fibroblasts, these results document that the cells have a fully 

active respiratory chain. 
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Figure 3-6: Functional analysis of respiratory chain complexes  
Recordings of the O2-flow in primary wild-type (A) and knockout (B) fibroblasts as well as immortalised 
wild-type (C) and knockout (D) fibroblasts were taken with an oxymeter. The blue curve represents 
changes in the oxygen concentration and the red curve depicts the oxygen flux of the cells. (See figure 
2-2 for detailed informations about the diagrams.) 
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Figure 3-7: Quantification of respiratory capacity in Txnrd2-deficient fibroblasts 
Endogenous O2-consumption, representing the cellular basal activity of respiratory chain enzyme 
complexes, was observed at least over a period of 10 min in primary (A) and immortalised fibroblasts 
(C) with no significant differences detecable. Maximum capacity of the individual complexes was 
measured after stimulation with glutamate/malat/ADP (complex I), succinate (complex II + III) and 
ascorbate/TMPD (complex III) in primary (B) and immortalised fibroblasts (D). Depicted are the mean 
values ± SD from three independent experiments. No significant differences between the activities of 
the single complexes could be observed. 

3.1.6. Metabolic changes due to Txnrd2-deletion 

A striking feature of immortalised Txnrd2 knockout cells was that the colour of the cell culture 

medium changed faster from red to yellow (= more acidic) than in wild-type cells. Therefore it 

was hypothesised that Txnrd2-knockout cells might increase their energy production via 

anaerobic glycolysis possibily resulting in a higher release of lactate into the cell culture. 

To analyse this, cells were seeded and the amount of lactate release was analysed in the 

supernatant after 16 h. Under baseline cell culture conditions primary Txnrd2-deficient 

fibroblasts produced similar amounts of lactate (9±1 nmol/mg protein) compared to wild-type 

cells (12±0.6 nmol/mg protein) (Figure 3-8 A). In contrast, immortalised Txnrd2-deficient cells 

showed a much higher lactate release into the cell culture medium (25±2 nmol/mg protein) 

compared to their wild-type counterparts (8±0.4 nmol/mg protein) (Figure 3-8 B). These 

results pointed towards a change of cellular metabolism particularly in knockout cells during 

the process of immortalisation. 
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To proof these initial observations, Txnrd2-deficient as well as wild-type cells were again 

freshly isolated from wild-type and Txnrd2-knockout embryos at E12.5. Changes of lactate 

release were studied in six individual cell lines derived from six individual embryos (three 

knockout and three wild-type cell lines were pooled in each case) in a longitudinal fashion for 

more than 20 passages. Indeed, we observed in each of the knockout clones an increasing 

lactate release over time in contrast to wild-type cells (Txnrd2+/+: p3-6 112±17, p9-12 114±7, 

p>20 96±52, nmol/mg protein) (Txnrd2–/–: p3-6 88±13, p9-12 89±15, p>20 168±126, nmol/mg 

protein) (Figure 3-8 C). 

As immortalised Txnrd2-deficient cells are highly susceptible to depletion of intracellular 

GSH-synthesis causing increased levels of intracellular ROS, we further stressed the cells by 

treatment with BSO (10 µM). Both cell types showed an increase of lactate level in the cell 

culture supernatants, but this increase appeared much stronger in wild-type than in Txnrd2-

deficient cells (Txnrd2+/+: control 100±0% vs. BSO 186±26%) (Txnrd2–/–: control 100±0% vs. 

BSO 123±15%) (Figure 3-8 D). 

In a second experimental setting the sensitivity of the cells to glucose-depletion was 

analysed by supplementing glucose-free-medium with galactose. When glucose is no longer 

available, as it can occur in solid tumours 73, cancer cells are forced to use other substrates 

like galactose 264, 272. Metabolising galactose requires oxidative phosphorylation for ATP 

production. Observation of cell growth over 96 h revealed reduced proliferation of Txnrd2-

deficient primary cells compared to control cells. In contrast, immortalised Txnrd2-deficient 

cells showed similar or even enhanced proliferation rate compared to the wild-type control 

cells (Figure 3-8 E – F). 

Additionally, the expression of several receptors and signalling molecules involved in energy 

metabolism were investigated. Since glycolysis generates approximately 19-fold less ATP 

per mole of glucose, the metabolic reprogramming of Txnrd2 deficient cells during the 

process of immortalisation might be compensated by an upregulation of genes encoding 

glucose transporters. Using semi-quantitative PCR and real-time PCR mRNA levels of the 

glucose transporter GLUT-1 (Figure 3-9 A) was analysed. No difference between 

immortalised Txnrd2-deficient and wild-type fibroblasts could be observed for GLUT-1. The 

transporters GLUT-3 and GLUT-4 were also investigated by semi-quantitative PCR, but the 

expression levels were too low to provide robust quantitative analysis (data not shown). 

Unexpectedly, the transcriptional co-activator PGC1α, an important regulator of energy 

metabolism, was found to be highly expressed in immortalised Txnrd2-deficient cells. 

Compared to the wild-type control cells (arbitrarily defined as 1), cells that lack Txnrd2 

expressed 4-fold elevated levels of PGC1α (5±2.4) (Figure 3-9 B). PGC1α promotes 

oxidative metabolism by stimulating processes such as mitochondrial biogenesis and cellular 

respiration. 
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Figure 3-8: Changes in energy metabolism due to Txnrd2-deletion 
Lactate release into the cell culture medium was analysed in preliminary experiments for primary (A) 
and immortalised (B) fibroblasts under baseline cell culture conditions. Mean values ± SD from two 
independent experiments performed in duplictaes are depicted. P values > 0.05. (C) Release of 
lactate into the cell culture medium was observed for cells of different passage numbers during 
spontaneous immortalisation. Bars represent mean values ± SD from three independent cell lines. P 
values > 0.05 (D) Lactate in cell culture supernatant after treatment with BSO (10 µM) was observed 
for immortalised fibroblasts. Lactate under baseline cell culture conditions was considered as 100% for 
each cell line. Mean values ± SD from three independent experiments are depicted.*p<0.05 (Student’s 
t-test). Proliferation of primary (E) and immortalised (F) fibroblasts was observed in glucose-free-
galactose-medium for 96 h. Depicted are mean values ± SD from three independent measurements. 
*p<0.05 (Student’s t-test) 
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Figure 3-9: Expression of GLUT-1 and PGC1α 
To analyse GLUT-1 and PGC1α quantitative real-time PCR was performed. The expression levels of 

GLUT-1 (A) and PGC1α (B) were normalised to the expression level of 18S rRNA. Depicted are mean 
values ± SD from three independent experiments. Txnrd2

–/–
 cells were compared with Txnrd2

+/+
 cells, 

the latter defined as 100%. P values > 0.05. 
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3.2. Studies of the impact of Txnrd2-deletion in transformed cells in vitro 

3.2.1. Generation of transformed Txnrd2-knockout cells 

The basis of neoplastic cell transformation are genetic and epigenetic changes 131. These 

changes mainly affect genes that are involved in the regulation of cell cycle progression and 

proliferation, such as proto-oncogenes and tumour suppressor genes. Rodent cells require at 

least two oncogenic alterations before they retain tumourigenic competence 129. The two 

proto-oncogenes c-myc and the mutated Ha-rasV12 are known to synergise in the process of 

transformation 174. To establish a transformed Txnrd2-deficient cell line, along with the 

appropriate control cell line, immortalised Txnrd2–/– and Txnrd2+/+ fibroblasts were transduced 

with lentiviruses expressing the c-myc and Ha-rasV12 oncogenes. As expected expression of 

one oncogene alone was not sufficient to promote transformation of the immortalised 

fibroblasts (Figure 3-10 A, left and middle panel), while simultaneous expression of both 

oncogenes resulted in efficient transformation of the cells (Figure 3-10 A, right panel). When 

transformed wild-type cells were plated on normal cell culture dishes they grew as 

multilayers and were only loosely attached to the culture dish, a characteristic sign of 

transformed cells. On the contrary, transformed Txnrd2-deficient cells still preferentially grew 

in a monolayer and remained tightly attached to the culture dish (Figure 3-10 B). 

Tumourigenic competence is characterised by unlimited growth potential, loss of contact 

inhibition and anchorage independent growth. Compared to the primary and immortalised 

fibroblasts the transformed cells showed a higher proliferation rate (data not shown) and 

formed single cell colonies in agar matrix (Figure 3-10 B). The lentiviral vector is coupled with 

VENUS, thus the efficiency of transformation could be assessed using flow cytometry. For 

both, wild-type and Txnrd2-deficient cells, the transduction with c-myc and Ha-rasV12 was 

comparable (Txnrd2+/+: 84±6% vs. Txnrd2–/–: 94±1% cells expressing VENUS following 

transformation). The expression of c-myc and Ha-rasV12 was also analysed by 

immunoblotting. Unlike immortalised fibroblasts, the transformed cells showed highly 

increased expression of both proto-oncogenes (Figure  3-10 C). 
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Figure 3-10: Transformation of Txnrd2 wild-type and knockout fibroblasts with c-myc 
and Ha-rasv12 

(A) Transduction of fibroblasts with c-myc (left panel) or Ha-ras
V12

 (middle panel) alone or both 
oncogenes together (right panel) using lentiviral vectors. (B) Growth behaviour of transformed 
Txnrd2

+/+
 and Txnrd2

–/–
 cells under baseline cell culture conditions. (C) To monitor expression of both 

oncogenes in transformed cells, immunoblotting was performed in immortalised fibroblasts (left panel) 
and after transformation (right panel). ß-actin served as control. 

3.2.2. Deletion of Txnrd2 impairs colony formation capacity of tumour cells 

To investigate the effects of Txnrd2 on the tumourigenic potential, clonal tumour cell lines 

were established. After transformation with c-myc and Ha-rasV12 cells were placed in soft 

agar. After seven days, individual single cell colonies were picked and expanded to establish 

transformed cell lines. Surprisingly, Txnrd2-deficient cells showed strongly reduced colony 

formation capacity (Figure 3-11 A). Compared to wild-type cells (set as 100%), the Txnrd2-

deficient cells revealed a five-fold decrease in the numbers of colonies per well (20±13 %) 

(Figure 3-11 B). To proof that this was due to the lack of Txnrd2, Txnrd2-deficient cells were 

stably transfected via electroporation with a plasmid carrying the N-terminally FLAG-tagged 

full length Txnrd2 (add-back) and an empty vector for control (mock) (Figure 3-11 C). 

Formation of colonies was observed over seven days. After reconstitution of Txnrd2 

expression, the formation of colonies was significantly increased (Figure 3-11 D). Compared 
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to the add-back cells (set as 100%) empty vector transfected cells (= mock) formed only 

36±22 % colonies per well (Figure 3-11 E). 

As described above, immortalised Txnrd2-deficient cells showed increased ROS levels, 

particularly under oxidative stress-inducing conditions (Figure 3-2 C). To proof, whether the 

reduced number of colonies is due to increased ROS-levels, soft agar assay was performed 

in the presence of the antioxidant N-acetyl-L-cysteine (NAC). Previous work in our laboratory 

demonstrated that treatment with NAC was able to reduce the elevated ROS-level in primary 

Txnrd2-deficient cells to the level of primary wild-type cells under baseline cell culture 

conditions 245. Both, Txnrd2 wild-type and Txnrd2-deficient cells were observed over seven 

days in soft agar containing 5 mM NAC (Figure 3-12 A - B). Interestingly, the numbers of 

colonies derived from wild-type cells were reduced (100±0 % vs. 67±18 %), whereas the 

numbers of colonies derived from Txnrd2-deficient cells were not affected by NAC treatment 

(16±10 % vs. 19±10 %) (Figure 3-12 C). To further investigate if the redox-regulating function 

of the Txnrd2 is crucial for the formation of colonies, Txnrd2-deficient cells were stably 

transfected with lentiviral vectors carrying the full-length Txnrd2 (add-back), a mutated 

Txnrd2 sequence (stop) and an empty vector for control (mock) (Figure 3-12 D). The 

mutation comprises a real STOP codon (UAA) instead of UGA coding for Sec at the amino 

acid U524 of the C-terminal part of Txnrd2. Thus, the mutated Txnrd2 carries an inert active 

site due to the lack of the essential amino acid for the redox-regulating functions carried out 

by the C-terminal active site. Txnrd2–/–-add-back, Txnrd2–/–-stop and Txnrd2–/–-mock 

fibroblasts were grown in soft agar over a period of seven days (Figure 3-12 E) and the 

numbers of colonies were counted (Figure 3-12 F). The number of colonies derived from 

Txnrd2–/–-add-back cells was considered as 100%. Interestingly, Txnrd2–/–-stop expressing 

fibroblasts also formed significantly more colonies (46±18% of Txnrd2–/–-add-back cells) than 

cells infected with the empty control vector (15±4% of Txnrd2–/–-add-back cells). Compared 

to the Txnrd2–/–-add-back cells, incorporation of a mutated Txnrd2 carrying a sequence 

coding for a real STOP instead of the redox-active Sec, could only partially (50%) rescue the 

impaired colonigenic competence of Txnrd2-deficient cells. 



RESULTS 88 
 

 

 

Figure 3-11: Txnrd2-deletion impairs colony formation capacity 
The colonigenic potential of transformed fibroblasts was studied using the soft agar assay. (A) 
Transformed wild-type and Txnrd2-deficient cells were grown for seven days in agar matrix. (B) 
Number of colonies per well from transformed wild-type and Txnrd2-deficient cells were compared. 
Mean values ± SD from three independent experiments are depicted. Wild-type cells were considered 
as 100%. *p<0.05 (Student’s t-test) (C) Expression of Txnrd2 was confirmed by immunoblotting 
following reconstitution of the enzyme with the FLAG-tagged full-length Txnrd2. ß-actin served as a 
control. (D) Txnrd2-deficient transformed cells were stably transfected with full-length Txnrd2 (add-
back) and an empty vector control (mock). Formation of colonies was observed after seven days in 
soft agar. (E) Number of colonies per well from mock and add-back cells were compared. Add-back 
was considered as 100%. Mean values ± SD from three independent experiments are depicted. 
*p<0.05 (Student’s t-test) 
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Figure 3-12: Influence of NAC and restoration of a redox-inactive Txnrd2 on 
colonigenic capacity 
The impact of the antioxidant NAC on the colony growth in soft agar matrix was analysed for 
transformed (A) wild-type fibroblasts and (B) Txnrd2-deficient fibroblasts. Soft agar assay was 
performed with 5 mM NAC over a period of seven days. Numbers of colonies per well were counted 
and compared with wild-type cells without NAC considered as 100%. (C) Mean values ± SD of three 
independent experiments are depicted. P values > 0.05 for Txnrd2

+/+
 control versus NAC and Txnrd2

-/-
 

control versus NAC. (D) Txnrd2-deficient cells were stable transfected with Txnrd2 (add-back) and 
Txnrd2 carrying a real STOP codon instead of Sec at the amino acid U524 (stop) and an empty vector 
for control (mock). Expression of mutated Txnrd2 was confirmed using immunoblotting. ß-actin served 
as a control. (E) Formation of colonies in soft agar was observed over a period of seven days and 
counted. (F). The add-back was considered as 100% and mean values ± SD of five independent 
experiments are depicted. *p<0.05 (Student’s t-test) 
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3.2.3. Generation and characterisation of clonal single-cell lines 

To further investigate the impact of Txnrd2-deficieny on tumour cell proliferation and 

functionality, wild-type and Txnrd2-deficient clonal single-cell lines were established from the 

transformed cell lines after growth in soft agar assay. Therefore, single cell-derived colonies 

were isolated from soft agar, expanded to clonal single-cell lines and characterised and 

analysed in vitro. The absence of Txnrd2 was confirmed by semi-quantitative PCR and 

immunoblotting (Figure 3-13 A – B). The colonigenic potential of the established clonal 

tumour cell lines was confirmed by soft agar assay (Figure 3-13 C). Quantification revealed 

no difference between wild-type (100%) and Txnrd2-deficient cells (93±23%) (Figure 3-13 D). 

In vitro proliferation under baseline cell culture conditions revealed also no differences 

(Figure 3-13 E, left panel). However, GSH-depletion induced by BSO caused cell death of 

transformed Txnrd2-deficient cells (Figure 3-13 E, right panel) but not of wild-type cells in a 

manner similar to that already observed in immortalised Txnrd2-deficient fibroblasts (chapter 

3.1.2.). It was shown (chapter 3.1.3) that immortalised Txnrd2-deficient cells compensate for 

the lack of Txnrd2 by e.g. inducing the expression and activity of GR and by increasing 

Txnrd1 expression (Figure 3-3). Apparently, a similar trend was observed for transformed 

MEFs (Figure 3-14 A – B), but not for the isolated clonal single-cell lines (Figure 3-14 C – D). 

Quantitative analysis of intracellular ROS in wild-type and Txnrd2-null clonal single-cell lines, 

which was performed using MitoSox RedTM (a marker used for detection of superoxide 

anions) and flow cytometry, revealed no difference in ROS level under baseline cell culture 

conditions (Figure 3-14 E) as well as following GSH-depletion (Figure 3-14 F). Investigation 

of GR activity and total amount of GSH revealed no appreciable difference between wild-type 

and Txnrd2-deficient clonal single cell-derived cells (Figure 3-14 C – D). This was also true 

for protein amount of GR (Figure 3-14 G) and Txnrd1 (Figure 3-14 H). Accordingly, the 

isolated transformed clonal cell lines showed comparable behaviour under baseline cell 

culture conditions, no eminent differences in ROS level and tumourigenic competence. 

Therefore, the small proportion of Txnrd2-deficient cells that were able to form colonies in 

soft agar assay probably bypass Txnrd2 –deficiency by a yet-unkown mechanism. 

Nevertheless, clonal single cell-derived Txnrd2-deficient cells were still susceptible to GSH-

depletion induced cell death. 
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Figure 3-13: Proliferation and colonigenic potential of single-cell clones 
Expression of Txnrd2 in isolated single-cell clones was studied by semi-quantitative PCR and 
immunoblotting. (A) Genotyping of wild-type and knockout Txnrd2 alleles is shown. Actin served as 
control. (B) Immunoblotting showed that Txnrd2 was only detectable in transformed Txnrd2

+/+
 

fibroblasts. Equal loading was assesed by α-Tubulin expression. (C) Colonigenic potential of Txnrd2 
wild-type and Txnrd2-deficient single-cell clones was studied over a period of seven days in soft agar 
assay. The number of colonies of Txnrd2 wild-type cells was considered as 100% (D). Mean values ± 
SD of three independent experiments are depicted. (E) Proliferation of single-colony-derived cells was 
studied over a period of three days using the xCELLigence RTCA SP instrument (Roche) and the 
amount of cells is expressed as cell index (for detailed information see chapter 2.2.1.6.). Wild-type 
cells and Txnrd2-deficient cells were compared under baseline cell culture conditions (left panel) and 
after treatment with BSO (10 µM) (right panel). The experiment was performed in triplicates and mean 
values ± SD are depicted. The analysis of proliferation of single-colony derived cell lines was 
performed in three independent experiments using three different methods, trypan blue exclusion 
method, MTT assay and xCELLigence system (depicted). All three methods produced comparable 
results. 
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Figure 3-14: Analysis of ROS and redox-regulating systems following transformation 
(A) GR-activity was measured in supernatants from transformed cell lysates at 340 nm every 2 min for 
at least 14 min. (B) Activity is expressed in mU/mg protein and compared for Txnrd2

+/+
 and Txnrd2

–/–
 

cells. Depicted are mean values ± SD from five independent experiments.*p<0.05 (Student’s t-test). 
Single-colony-derived cells were treated with MitoSox

TM
 Red superoxide indicator and analysed using 

flow cytometry. (C) GR-activity of single-colony-derived cells is expressed in mU/mg protein and was 
compared for Txnrd2 wild-type and Txnrd2-deficient cells. Depicted are mean values ± SD from seven 
independent experiments. (D) Total GSH was measured after TCA-extraction from single-colony-
derived cells and is expressed in µmol/mg protein. The graph shows mean values ± SD from three 
independent measurements. (E) Level of soluble ROS was quantified under baseline cell culture 
conditions and (F) following GSH-depletion with 10 µM BSO. Mean fluorescence intensities ± SD of 
three independent experiments are depicted. Txnrd2-deficient cells were compared with Txnrd2 wild-
type cells (set as 100%). Expression of GR (G) and Txnrd1 (H) in single-colony-derived cells was 
analysed by immunoblotting. One representative blot from three independent experiments is shown. 
Equal loading was confirmed by analysis of GAPDH or ß-actin expression. 
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3.2.4. Analysis of mitochondrial parameters and cellular metabolism 

following transformation of Txnrd2-knockout cells 

Immortalised Txnrd2-deficient fibroblasts showed structural changes of mitochondria and 

alterations in cellular metabolism (Figure 3-4, 3-5, 3-8). To analyse if these changes could 

also be found in single-colony-derived cells lacking Txnrd2, staining with a mitochondrial-

specific dye and analysis of metabolic markers as well as proliferation under supply of 

different energy substrates was investigated. Staining with the mitochondria-selective probe 

Mitotracker Green® and analysis by confocal microscopy revealed no apparent differences in 

the overall morphology of mitochondria (data not shown). However, quantification of 

mitochondria following Mitotracker Red® staining using flow cytometry disclosed significantly 

reduced fluorescence intensity in single-colony-derived Txnrd2-deficient fibroblasts 

(Figure 3-15 A). We also analysed the mitochondrial DNA using real-time PCR, as already 

described for immortalised fibroblasts (see chapter 3.1.4.). Mitochondrial DNA was 

comparable between wild-type and Txnrd2-deficient single-colony derived cells (data not 

shown). 

To investigate if the deletion of Txnrd2 also has consequences on cell metabolism in single 

colony-derived fibroblasts, the concentration of lactate in cell culture supernatants was 

determined. In fact, there were significantly increased lactate concentrations in the 

supernatant of Txnrd2-deficient cells (392±57 nmol/mg protein) as compared to wild-type 

cells (298±31 nmol/mg protein) (Figure 3-15 B) suggesting that these cells produce more 

energy via anaerobic glycolysis. 

In the in vivo situation, the growing tumour lacks sufficient supply of oxygen and energy 

substrates due to inadequate vascularisation starting at a size of approximately 1mm3. Thus, 

cancer cells are often forced to use alternative substrates like glutamine or galactose for their 

energy production 264. The effects of such changes in substrate availability were studied in 

vitro over a period of at least four days. Restriction of glucose availability (1 g/l culture 

medium) did not cause any differences in the proliferation of Txnrd2-deficient and wild-type 

cells (Figure 3-15 C). In contrast, complete withdrawal of glucose and supplementation with 

glutamine and galactose revealed differences between wild-type and knockout single colony-

derived fibroblasts. Interestingly, wild-type cells showed increased cell death starting around 

24 h following incubation, whereas transformed single colony-derived Txnrd2-deficient cells 

tolerated the alternative energy sources much better (Figure 3-15 D). 

Glutamine/glutamate metabolism goes via α-ketoglutarate, TCA and thus requires oxidative 

phosphorylation. Thus, we investigated the activity of the respiratory chain of single-colony 

derived wild-type and Txnrd2-knockout cells. Using high-resolution respirometry, the basal 

O2-consumption of the cells was analysed (Figure 3-16 A). However, no difference in 
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endogenous O2-flow was detectable. In contrast, when comparing the maximum activity of 

each complex, after stimulation with the appropriate substrate, Txnrd2-deficient cells showed 

slightly increased activity at each complex and in particular at complex IV (Figure 3-16 B). 

These observations were accompanied with a similar or even slightly elevated concentration 

of intracellular ATP in the Txnrd2-deficient cells under basline cell culture conditions 

(Txnrd2+/+: 1.3±1.0 vs. Txnrd2–/–: 2.2±0.5 µM/mg protein) (Figure 3-16 C). 

 

Figure 3-15: Mitochondria shape and energy metabolism of transformed fibroblasts 
(A) To quantify mitochondria, single-colony derived cells were stained with Mitotracker Red® and 
mean cell fluorescence was analysed using flow cytometry. Values for wild-type cells were considered 
as 100% and compared to Txnrd2-deficient fibroblasts. Depicted are mean values ± SD of five 
independent experiments. *p< 0.05 (Mann-Whitney Rank sum test). (B) Release of lactate by 
transformed cells was analysed as lactate concentrations in the corresponding cell culture 
supernatants without further treatment or after incubation with 10 µM BSO. Mean values ± SD of three 
independent experiments are shown. *p<0.05 (Paired t-test) (C) Proliferation of transformed fibroblasts 
was observed over four days in low glucose-medium and (D) five days in glucose-free-galactose 
medium. Mean values ± SD from (C) two and (D) three independent experiments performed in 
triplicate are depicted. *p<0.05 (Student’s t-test) 
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Figure 3-16: Activity of the respiratory chain in transformed fibroblasts 
Mitochondrial respiratory chain activity was analysed using high-resolution respirometry (HRR). 
Approximately 1.2 Mio cells were collected in respiration medium B and O2 flow per cells was 
observed. (A) Endogenous O2 consumption, representing the cellular basal activity of respiratory chain 
enzyme complexes, was observed over at least 10 min. (B) Maximum capacity of the individual 
complexes was measured after stimulation with glutamate/malate/ADP (complex I), succinate 
(complex II + III) and ascorbate/TMPD (complex III). Depicted are mean values ± SD from three 
independent experiments. *p<0.05 (Student’s t-test) (C) The intracellular amount of ATP in cells was 
estimated using bioluminescent determination. Mean values ± SD of four independent experiments 
are compared between wild-type and Txnrd2-deficient fibroblasts. P value > 0.05. 



RESULTS 96 
 

 

3.3. Relevance of Txnrd2 for in vivo tumour growth 

Extensive research has been carried out to investigate the controversial impact of Txnrd1 on 

tumour development and progression. On the one hand the enzyme is described as a cancer 

preventing protein as it is believed to account for the putative chemo-preventive effects of 

selenium against cancer, at least in parts 39, 101, 170. On the other hand many studies observed 

elevated levels of Txnrd1 in several types of cancer and demonstrated that Txnrd1 is 

involved in tumour progression, implying that Txnrd1 may represent a potential target for 

cancer therapy 133, 192, 350-351 . Indeed, inhibition of Txnrd1 sensitises tumour cells to oxidative 

stress inducing agents and triggers apoptosis of these cells 135. It is considered that this 

impact of the Txnrd1 is associated with its role in cell proliferation, transcription, DNA repair 

and angiogenesis. Surprisingly much less is known about Txnrd2 and its relevance for 

tumour development and progression. Only one study demonstrated elevated expression of 

Txnrd2 in hepatocellular carcinomas 59. Further evidence for a potential impact of Txnrd2 on 

tumour growth was provided by the above reported in vitro experiments using transformed 

wild-type and Txnrd2-deficient cell lines (chapter 3.2.). Therefore the following experiments 

focused on the potential impact of Txnrd2 on tumour development and tumour-associated 

angiogenesis in vivo. We used the above described and characterised single colony-derived 

transformed Txnrd2-deficient fibroblasts in an ectopic, subcutaneous in vivo tumour model. 

3.3.1. Loss of Txnrd2 limits tumour growth 

To study the impact of the Txnrd2 on tumour development and progression, 4x106 

transformed single-colony derived wild-type and Txnrd2-deficient cells were transplanted 

subcutaneously into the retral flank of C57BL/6 mice (Figure 3-17 A - B). Tumour size and 

volume was analysed on days two, three, four, six, eight, ten and 11. Though single cell-

derived transformed fibroblasts showed no difference in their proliferation rate under baseline 

cell culture conditions (Figure 3-13 E), tumour mass of Txnrd2-deficient tumours revealed a 

50% reduction (0.8±0.6 g) compared to wild-type tumours (1.7±0.8 g) on day 11 of tumour 

growth (Figure 3-17 C). The same holds true also for tumour volume (Txnrd2+/+: 11.9±4.5 vs. 

Txnrd2–/– 3.8±1.6 mm3) (Figure 3-17 D). Observations of tumour mass at different time points 

during tumour growth (Figure 3-17 E) indicated that the variation between both groups 

started to emerge around day four and six, becoming highly significant on day 11 (p<0.001). 

Expression of Txnrd2 in tumours of both groups was checked on day three (Figure 3-17 F) 

and day 11 (Figure 3-17 G). These results show that loss of Txnrd2 had a clear influence on 

the progression of tumour growth. To adress how Txnrd2 affected tumour growth, further 

experiments were conducted. Therefore tumour tissue was collected and prepared for 

immunohistological stainings and immunoblot analysis. 
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Figure 3-17: Observation of tumour growth in vivo 
(A) 4x10

6
 single-colony derived wild-type and Txnrd2 knockout cells were subcutaneously injected into 

the retral flank of C57BL/6 mice and formation of tumours was observed over a period of 11 days and 
tumours were dissected. (C) Exact tumour mass and (D) volume were analysed. For determination  of 
tumour mass 24 and for tumour volume 13 individual samples are displayed. Lines and numbers 
assign mean values. *p<0.001 (Mann-Whitney Rank Sum Test) (E) Observation of development of 
tumour size is shown. Depicted are mean values ± SD. *p<0.001 (Mann-Whitney Rank Sum Test) 
(number of samples at each single time point: day2=3, day3=20, day4=3, day6=9, day8=3 and 
day11=24). (F) Txnrd2 expression was analysed in tumour sections by immunoblotting at day three 
and (G) semi-quantitative PCR at day 11. Equal loading was confirmed by ß-actin or aldolase 
expression, respectively. 
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3.3.2. Histological analysis of Txnrd2-deficient tumours 

Sections from day 11 tumours were analysed for morphological characteristics using H&E 

staining. Both groups consisted of poorly differentiated tumours with infiltration of skeletal 

muscle and sporadically subcutaneous adipose tissue (Figure 3-18 A). Cells appeared 

mainly in a less organised or diffuse growth pattern (Figure 3-18 B, right panel). However, 

some tumour cells were arranged in a fascicular pattern, comparable to a draught of fish, 

which is typical of fibrosarcomas. 

At higher magnification tumours of both groups frequently showed mitotic and apoptotic cells 

(quantification see chapters 3.3.3 and 3.3.4). Necrotic areas were frequently detectable in 

both groups, but appeared more extensive in Txnrd2-deficient tumours (Figure 3-18 A, 

asterisk). In wild-type tumours a slightly ´nodular´ architecture was distinguishable at low 

magnification (Figure 3-18 B, left panel, arrows). The ´nodules´ consisted of highly 

pleomorphic, large cells with prominent nucleoli, probably representing less differentiated 

cells, surrounded of smaller spindle cells with dark nuclei. These two cell populations were 

not clearly detectable in Txnrd2-deficient tumours (Figure 3-18 B, right panel). Taken 

together, no characteristic or quantifiable differences in the morphology of wild-type and 

Txnrd2-deficient tumours were detectable. 

3.3.3. Quantification of apoptotic cells and necrotic area in tumour sections 

For the precise quantification of apoptotic cells in tumour tissue a staining for cleaved-

caspase 3 was performed. The number of apoptotic cells (Figure 3-19 A – B) as well as the 

total necrotic area was investigated (Figure 3-19 B – C). Quantification of single apoptotic 

cells per field of view, expressed as apoptotic index, revealed no difference between wild-

type and Txnrd2-deficient tumours at day 11 (n=12 each group; Txnrd2+/+ 0.08±0.1 vs. 

Txnrd2–/– 0.07±0.05, apoptotic index). Furthermore the entire necrotic area of the whole 

tumour section, was estimated and expressed as % necrotic area. In Txnrd2-deficient 

tumours slightly larger necrotic areas were observed (3.8±1.0 %) compared to wild-type 

tumours (1.8±1.7 %). However, this difference was not significant. Comparable results were 

obtained analysing tumour sections of day 11 using the ApopTag® Peroxidase in situ 

Apoptosis Detection Kit (Millipore GmbH, Schwalbach/Ts., Germany). Txnrd2-deficient 

tumours showed similar or even slightly reduced numbers of apoptotic cells per visual field 

compared to wild-type tumours (data not shown). 
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Figure 3-18: Morphological analysis of tumour sections 
To investigate the morphological phenotype of tumours derived from wild-type cells and Txnrd2-
deficient cells, tumour sections were stained with H&E and pictures of different magnifications (A - B) 
were taken (n=12 per group). Two representative images of Txnrd2 wild-type tumour sections (A, 
upper panel) and of Txnrd2-deficient tumour sections (A, lower panel) are displayed (scale bar = 
2 mm). (B) High magnification images show different cellular organisation in the tumour tissue (scale 
bar = 100 µm). � necrotic area, � nodular architecture 
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Figure 3-19: Number of cleaved-caspase 3 positive cells in tumour sections 
To analyse the number of apoptotic cells and the ratio of apoptotic-necrotic area, paraffin sections of 
tumours were stained with an appropriate antibody for cleaved-caspase 3. (A) Number of cleaved-
caspase 3 positive cells were analysed per visual field (scale bar = 100 µm). (B) The apoptotic index 
was analysed from 12 tumour sections and mean ± SD was pooled. (C) Size of necrotic area was 
determined and quantified in relation to the total tumour area (scale bar = 2 mm). (D) The necrotic 
area was analysed from 12 tumour sections and mean ± SD are depicted. 

3.3.4. Impaired tumour growth due to restricted proliferation of tumour 

cells 

To analyse the number of proliferating tumour cells in the whole tumour tissue, sections from 

day 11 of tumour growth were stained for the proliferation marker Ki67 (Figure 3-20 A). 

Ki67-positive cells were counted per field and the ratio of proliferative and non-proliferative 

cells was expressed as proliferation index. With a proliferation index of 0.39±0.2 Txnrd2-

deficient tumours showed a significant lower proliferation index than wild-type tumours with 

an index of 0.68±0.2 (Figure 3-20 B). Investigation of the proliferation index in tumour 

sections on earlier time points did not reveal any difference between both groups (Txnrd2+/+ 

0.7±0.1 vs. Txnrd2–/– 0.6±0.2; images of day seven not shown), indicating that initial tumour 
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growth was not hampered by Txnrd2 deficiency. These results show that loss of Txnrd2 goes 

along with an impaired proliferation of tumour cells, in particular when tumours have reached 

a certain size (see also Figure 3-17 E). 

 

Figure 3-20: Analysis of proliferation in tumour sections 
(A) To quantify proliferation in tumours paraffin sections were stained with Ki67-specific antibody. (A, 
upper panel, scale bar = 1 mm) Ki67-positive cells (brown) were analysed in relation to non-stained 
(blue) cells and quantified per visual field (A, lower panel, scale bar= 100 µm). (B) Proliferation index 
was observed in 12 tumour sections of day 11 and mean ± SD are depicted.*p<0.001 (Student’s t-test). 
(C) Proliferation index was observed in three tumour sections of day seven and mean ± SD are 
depicted. 

3.3.5. Loss of Txnrd2 delays the angiogenic switch 

As rapid expansion of tumours beyond a given size requires a steady supply with sufficient 

amounts of oxygen, nutrients and growth factors, we next asked whether tumour 

vascularisation might be perturbed in Txnrd2 knockout tumours. During dissection of tumours 

at early time points after implantation, a macroscopically different appearance of the vascular 

network of tumours was detectable. Figure 3-21 A illustrates the vessel recruitment from the 

host towards the tumour tissue. Interestingly, in most cases vessels surrounding Txnrd2-
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deficient tumours appeared less prominent compared to wild-type tumours at day three 

(Figure 3-21 A). Quantification of tumour vessels at day 11 of tumour growth using 

CD31-staining, however, revealed no difference in the vessel density (Txnrd2+/+ 345±18 vs. 

Txnrd2–/– 329±8 vessels/mm2). Since growing tumours beyond a certain size supposedly 

trigger tumour angiogenesis, tumour sections from both groups were analysed for CD31 

staining at the time point of same tumour size (Figure 3-21 B). Indeed, Txnrd2-deficient 

tumours revealed reduced vessel density per tumour (155±10) compared to wild-type 

tumours (219±29). The observed difference remained significant (n=3 per group). These data 

provided first evidence that the Txnrd2 is essential for tumour cell proliferation and an 

important factor for tumour-associated angiogenesis. 

To further complete these findings, the functionality of tumour vessels was studied using 

skinfold chambers in combination with intravital microscopy. Therefore, tumour cells were 

transplanted into the skinfold chamber of C57BL/6 mice and the progression of the vascular 

network was studied after injection of a FITC-dextran solution on days three, five, seven and 

11. At early times (day three and five) the shape of the developing vascular network revealed 

already differences between wild-type and knockout tumours. Both groups of tumours 

recruited host vessels at the edges of the tumours. However, in Txnrd2-deficient tumours the 

first arising vessels appeared randomly distributed at the tumour surface, whereas in wild-

type tumours the formation of a more organised vessel network was clearly detectable 

(Figure 3-22 A – B). Analysis of tumour vessels on day 11 revealed a dense vascular 

network with smaller and larger capillaries in wild-type tumours, which appeared less 

prominent in Txnrd2-deficient tumours (Figure 3-22 C). 
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Figure 3-21: Analysis of tumour vascularisation 
(A) During dissection of tumour samples at day three, a distinct vascular network surrounding the 
tumours was observed. Depicted are two images of representative tumour sections of each genotype 
from two independent experiments (B) Number of vessels per tumour were analysed using paraffin 
sections of tumours of equal size (Txnrd2

+/+
 day 7: 0.41 ± 0.04 g; Txnrd2

-/-
 day 10: 0.39 ± 0.11g). 

Vessels were stained with an antibody against CD31 and (C) the number of vessels were quantified in 
three tumour samples from each genotype. Mean values ± SD are depicted. *p<0.05 (Student’s t-test) 
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Figure 3-22: Intravital microscopy of tumor vessel network 
Single-colony derived transformed fibroblasts were implanted into dorsal skinfold chambers and 
formation and functionality of developing vessels were studied over a period of 11 days every third day. 
(A) Images of the whole chamber windows are depicted from three representative tumours derived 
from wild-type cells (n=6) and Txnrd2-deficient cells (n=7) at day three. (B) Vessels were visualised by 
tail vein injection of FITC-dextran solution. Images are depicted from two representative wild-type 
(n=6) and Txnrd2-deficient (n=7) tumours at day three following implantation. (C) Final observations of 
tumour vascularisation at day 11 revealed different impressions of wild-type and Txnrd2-deficient 
tumours. One representative image is depicted (n=4). Scale bars = 50 µm. Dashed line defines tumour 
tissue, T = tumour 
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3.3.6. Investigation of angiogenic key players in Txnrd2-deficient tumours 

To further investigate the underlying mechanisms that led to the altered vascularisation of 

Txnrd2-deficient tumours, the expression of key-players of the angiogenic cascade was 

analysed. It is well known that growing tumours, when they reach a size of more than one 

mm3, have to overcome hypoxic conditions and the deprivation of nutrients as well as the 

lack of disposal of waste products. An important and extensively studied crucial molecule, 

which is upregulated following hypoxia and starvation, is Hif-1α. Tumour tissues of early (day 

three) and later (day six) time points of tumour growth were analysed for the expression of 

Hif-1α by immunoblotting (Figure 3-23 A). Interestingly, a significant lower expression of 

Hif-1α protein could be observed in Txnrd2-deficient tumours (day three: 0.4±0.0; day six: 

0.4±0.1) as compared to tumours expressing Txnrd2 (day three: 1.0±0.0; day six: 1.0±0.0) at 

both points time (Figure 3-23 B). 

 

Figure 3-23: Analysis of Hif-1α in tumour tissue 
(A) Protein expression of Hif-1α in tumours was observed using immunoblotting on day three and day 
six of tumour growth. Equal loading was confirmed by ß-actin immunoblotting. (B) Quantification was 
done by analysis of three tumours derived from wild-type cells (control) compared to Txnrd2-deficient 
cells. Depicted are mean values ± SD.*p<0.01 (Paired t-test). 

Hif-1α is described as a transcription factor that regulates energy metabolism of cells by 

activating a multitude of downstream target genes which are important for cellular adaptation 

to restricted oxygen and nutrient availability. The vascular endothelial growth factor (VEGF) 

is one of the most extensively studied and well known target genes of Hif-1α. As VEGF is 

crucial for vasculogenesis, angiogenesis and in particular required for tumour vessel 

development, it was interesting to study the expression of VEGF in wild-type and Txnrd2-
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knockout tumours. Therefore, tumour tissue of day three and six was analysed using 

immunblotting. Consistent with the lowered Hif-1α expression, VEGF was significantly 

reduced in Txnrd2-deficient tumours at day three (0.2±0.2) compared to wild-type tumours 

(1.0±0.0) (Figure 3-24 A). On day six of tumour growth Txnrd2-deficient tumours showed 

even slightly reduced expression of VEGF compared to wild-type tumours (Txnrd2+/+: 1.0±0.0 

vs. Txnrd2–/–: 0.6±0.2). These data were confirmed by an additional assay using VEGF 

ELISA on the same days (Figure 3-24 B). Again, Txnrd2-deficient tumours showed 

decreased levels of VEGF (day three: 0.19±0.06 pg/µg protein; day six: 0.09±0.05 pg/µg 

protein) compared to wild-type tumours (day three: 0.48±0.24 pg/µg protein, day six: 

0.12±0.05 pg/µg protein). However, the differences were not significant. 

In summary, loss of Txnrd2 in tumour cells is associated with a reduced expression of the 

transcription factor Hif-1α and its target gene VEGF. Lack of VEGF is considered as an 

important cause for a delayed angiogenic switch as well as a reduced tumour vascularisation. 

 

Figure 3-24: Quantification of VEGF in tumour samples 
(A) VEGF expression in whole tumours was studied using immunoblotting on day three and day six of 
tumour growth. ß-actin served as loading control. (B) Quantification was done with analysis of three 
tumours per group. Depicted are mean values ± SD.*p<0.01 (Paired t-test). (C) The amount of VEGF 
was further analysed by mouse VEGF immunoassay (ELISA) using whole tumour tissue lysates. 
Quantification was performed using three different tumour samples of each genotype at day three and 
at day six. Depicted are mean values ± SD. 
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The regulation of the transcription factor Hif-1α is highly complex and far from being 

understood. Indeed, the increase in Hif-1α levels may occur either on the transcriptional, 

translational or posttranslational level. It is well known that a group of enzymes regulate the 

stabilisation of Hif-1α protein. Mainly depending on the availability of oxygen prolyl 

hydroxylases (PHDs) hydroxylate Hif-1α, thereby marking the protein for proteasomal 

degradation. To investigate whether the reduced amounts of Hif-1α protein in Txnrd2-

deficient tumours might be due to increased hydroxylation and thus proteasomal degradation, 

the expression of the three PHDs (PHD1-3) was investigated in tumour tissues by semi-

quantitative PCR and immunoblotting (Figure 3-25). While PHD1 was not detectable by 

semi-quantitative PCR (data not shown), semi-quantitative PCR did not show differences in 

the expression levels of PHD2 and PHD3 (Figure 3-25 A). Since PHD2 is considered to be 

the main regulator of Hif-1α levels, and thus of great importance in tumour vessel recruitment, 

PHD2 expression was additionally investigated on protein level (Figure 3-25 B). Yet, no 

differences in PHD2 protein levels were detectable between wild-type (1.0±0.0) and Txnrd2-

deficient tumours (1.1±0.4). 

While these observations suggest that the reduced Hif-1α protein levels in Txnrd2-deficient 

tumours might not be due to changes in hydroxylation by PHDs, the enzymatic activity of 

PHD2 remains to be investigated. 

 

Figure 3-25: Quantification of PHD2 in tumours on day three and 11 
(A) Expression of PHD2 and PHD3 was analysed by semi-quantitative PCR. Aldolase served as 
control. (B) Protein expression of PHD2 in tumour tissue was analysed by immunoblotting on day 
three of tumour growth. Equal loading was confirmed by ß-actin expression. Quantification was 
performed by analysis of three tumours derived from wild-type cells compared to Txnrd2-deficient cells. 
Depicted are mean values ± SD. 
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3.3.7. Starved Txnrd2-deficient cells express decreased Hif-1α levels 

To further investigate the underlying mechanisms of reduced Hif-1α protein levels in Txnrd2-

deficient tumours, in vitro experiments were performed using transformed single-cell colony 

derived wild-type and Txnrd2-deficient fibroblasts. Cells were exposed to starvation, as this 

condition appears typically in tumours at a size of more than one mm3, when diffusion is not 

sufficient to supply enough energy substrates. The amount of Hif-1α was analysed using 

immunoblotting. Under baseline cell culture conditions Hif-1α was barely detectable in both 

cell lines (Txnrd2+/+:1.0±0.0 vs. Txnrd2–/–:0.8±0.2) (Figure 3-26). Following starvation Hif-1α 

expression strongly increased in wild-type cells, but not in Txnrd2-deficient cells (Txnrd2+/+: 

71±68 vs. Txnrd2–/–:1±0). These findings support our hypothesis that the loss of Txnrd2 

impairs Hif-1α signalling. 

 

Figure 3-26: Expression of Hif-1α in Txnrd2-deficient tumour cells 
Wild-type and Txnrd2 knockout transformed single-cell derived fibroblasts were cultured under 
baseline cell culture conditions and exposed to starvation for 4 h. Total cell lysates were analysed for 
Hif-1α by immunoblotting. ß-actin served as loading control. Txnrd2 wild-type cells under control 
conditions were considered as one and change of band density was analysed relative to control. The 
image depicts one representative immunoblot. Bars represent mean values ± SD from three 
independent experiments. P values > 0.05. 
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Next, Hif-1α expression was analysed on the mRNA level under baseline cell culture 

conditions as well as under starvation (Figure 3-27). Interestingly, under baseline cell culture 

conditions Hif-1α mRNA levels of both cell lines were similar (Txnrd2+/+: 1.0±0.0 vs. Txnrd2-/-: 

1.1±0.3), whereas Txnrd2-deficient cells failed to induce Hif-1α mRNA levels under starvation 

conditions (Txnrd2+/+: 1.9±0.8 vs. Txnrd2–/–: 0.9±0.3). Investigation of PHD2 expression by 

immunoblotting did not reveal major differences between both cell lines, neither under 

baseline cell culture conditions (Txnrd2+/+: 1.0±0.0 vs. Txnrd2–/–: 2.0±1.1) nor under 

starvation conditions (Txnrd2+/+: 1.6±0.9 vs. Txnrd2–/–: 1.7±0.6) (Figure 3-28). 

These findings tentatively support the idea that the reduced Hif-1α levels in response to 

Txnrd2 deletion are caused by changes on transcriptional level with subsequent alterations in 

protein stabilisation. 

 

Figure 3-27: Quantitative analysis of Hif-1α mRNA-level 
Transformed single-cell derived fibroblasts of both genotypes were cultured under baseline cell culture 
conditions and exposed to starvation for 4 h. Hif-1α expression was analysed using quantitative real-
time PCR. The image summarises five independent measurements. Data are shown as mean values 
± SD. Wild-type cells were considered as control and defined as one. Normalisation was performed 
using primers specific for actin. *p<0.05 (Student’s t-test) 
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Figure 3-28: Analysis of PHD2 in transformed cells 
Expression of PHD2 in transformed fibroblasts under baseline cell culture conditions and under 
starvation was analysed by immunoblotting. Depicted is one representative blot of three independent 
experiments. Bars represent pooled mean values ± SD. ß-actin served as control. 

3.3.8. Hif-1α translation is altered in Txnrd2-deficient cells 

Another possible reason for the altered Hif-1α expression might be changes in translation. A 

previous study demonstrated that the thioredoxin-dependent system exerts an influence on 

the cap-dependent translation of Hif-1α 359. In light of the findings of Zhou et al. we aimed to 

investigate the possible pathways that are involved in the regulation of Hif-1α translation. The 

PI3K/Akt-dependent signalling pathway is involved in the phosphorylation of components 

required for cap-dependent translation thereby enhancing Hif-1α accumulation. 

Therefore, the phosphorylation of the serine/threonine protein kinase Akt was investigated in 

immortalised fibroblasts by immunoblotting (Figure 3-29). Indeed, there was a difference in 

the phosphorylation of Akt at Ser473 between wild-type and Txnrd2-deficient cells. Even 

under baseline cell culture conditions the phosphorylation of Akt was decreased in Txnrd2-

deficient fibroblasts (Txnrd2+/+: 1.0±0.0 vs. Txnrd2–/– 0.6±0.2). This impairment appeared 

much stronger under starvation (Txnrd2+/+: 0.7±0.1 vs. Txnrd2–/– 0.2±0.2). 

These findings show that the decreased amount of Hif-1α in Txnrd2-deficient cells and 

tumours might be due to effects on Hif-1α transcription as well as translation and subsequent 

protein stabilisation. 
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Figure 3-29: Phosporylation of Akt  
Immortalised wild-type and Txnrd2-deficient cells were exposed to starvation for 2 h. Phosphorylation 
of Akt at Ser473 was investigated by immunoblotting. Equal loading was confirmed by immunoblotting 
total Akt. One respresentative blot is depicted and mean values ± SD from three independent 
experiments are shown. Phosphorylation of Akt in wild-type cells under baseline cell culture condition 
severed as control and was considered as one. *p<0.05 (Student’s t-test) 

 

3.3.9. Txnrd2-null tumours are susceptible to pharmacological GSH-

inhibition 

Immortalised Txnrd2-deficient fibroblasts showed higher GR activity and were susceptible to 

BSO-mediated GSH-depletion. Further in vitro experiments had indicated that also 

transformed single-colony derived Txnrd2-deficient cells were highly susceptible to BSO-

mediated cell death. Previous work in our laboratory demonstrated that growth of Txnrd1-

deficient tumours was dependent on an intact GSH-dependent pathway 197. Although, 

Txnrd1-deficient tumour cells showed higher GSH content and GR activity, they were highly 

sensitive to GSH-depletion induced cell death. Txnrd1-null tumours showed no differences in 

progression and sizes compared to control tumours, but were highly susceptible to 

pharmacological inhibition of GSH whereas wild-type tumours were not. Thus the question 

raised if additional pharmacological intervention of the GSH-dependent pathway in Txnrd2-

null tumours might be a further therapeutically efficient way to treat cancer. 
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To test GSH-dependency in vivo, 4x106 transformed single-colony derived Txnrd2-deficient 

cells were implanted subcutaneously into the flanks of C57BL/6 mice (n=8 per group). 

Tumour cells were allowed to settle until small tumours were palpable around day three. 

Starting at day three the tumour-bearing mice were treated with BSO (20 mM) via drinking 

water until day 10 of tumour growth. Mice were then sacrificed and tumours were collected 

(Figure 3-30 A). Analysis of tumour mass revealed a significant difference between the 

control group (0.84±0.27 g) and the BSO treated group (0.52±0.14 g) (Figure 3-30 B – C). 

Notably, this reduction in tumour size was about 38% in addition to the already observed 

reduction of tumour size due to Txnrd2-deletion. 

To proof, whether the application of BSO via drinking water efficiently inhibits GSH de novo 

synthesis reduced (GSH) and oxidised (GSSG) was estimated by HPLC in tumour tissue 

(Figure 3-30 D – E). We observed only a marginal difference between wild-type and Txnrd2-

null tumors for GSH (0.011±0.004 µmol/µg protein vs. 0.015±0.003 µmol/µg protein, Figure 

3-30 D) as well as GSSG (0.002±0.001 µmol/µg protein vs. 0.003±0.001 µmol/µg protein, 

Figgure 30 E). However, Txnrd2-deficient tumours treated with BSO showed a significant 

reduction in GSH (0.0007±0.0002 µmol/µg protein, Figure 3-30 D) and GSSG levels 

(0.0008±0.0003 µmol/µg protein, Figure 3-30 E) compared to the two other groups. These 

results confirm that BSO treatment efficiently depletes glutathione in vivo. Previous data from 

our laboratory have demonstrated that BSO treatment in wild-type tumour-bearing mice had 

no effect on tumour size 197. 

In summary, the inhibition of the mitochondrial Txnrd in combination with depletion of 

glutathione had a profound additive effect on tumour growth inhibition. 
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Figure 3-30: Inhibition of GSH synthesis further limits tumour growth of Txnrd2-null 
tumours 
(A)Txnrd2-deficient tumour cells were implanted subcutaneously in C57BL/6 mice and allowed to 
settle for three days. Starting at day three, mice received drinking water containing BSO (20 mM). At 
day 10 of tumour growth mice were sacrificed and tumour mass and volume were analysed. (B) 
Txnrd2-deficient tumours were susceptible to the depletion of GSH synthesis compared to the 
untreated control group. Line and numbers represent mean values of each group. (C) Mean values ± 
SD are shown in the bar chart (n= 8 tumours each group). (D) Reduced glutathione (GSH) and (E) 
oxidised glutathione (GSSG) was estimated in tumours collected at day six by HPLC. The bar charts 
represent mean values ± SD (n=8 tumours). *p<0.05 (Student’s t-test) 
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3.4. Txnrd2-deficiency modifies function of endothelial cells 

The findings of the present work support the assumption that Txnrd2 may be directly or 

indirectly involved in Hif-1α signalling in tumour cells. Several studies already demonstrated 

that Trx2 and Txnrd2 are of importance for endothelial cell function 65, 68, 212, 354. Hence, the 

last part of the present work aimed to investigate whether Txnrd2 has an impact on 

endothelial cell function. 

3.4.1. Generation and characterisation of Txnrd2-deficient eEPCs 

To investigate the impact of Txnrd2 on endothelial cell proliferation which is considered 

essential for angiogenesis, we established wild-type and Txnrd2-deficient endothelial cell 

lines. Therefore, embryonic endothelial progenitor cells (eEPCs) were chosen as an in vitro 

model and isolated from pregnant Txnrd2+/– mice at embryonic day E7.75, as described by 

Hatzopoulos 134 (Figure 3-31 A). The deletion of Txnrd2 was confirmed by semi-quantitative 

PCR (Figure 3-31 B). Then, it was analysed whether impaired proliferation, as already 

observed for primary Txnrd2-deficient fibroblasts, may also occur in Txnrd2-deficient eEPCs. 

We observed just a slightly decreased proliferation rate of Txnrd2-deficient eEPCs compared 

to the wild-type cells (Figure 3-31 C). 

Endothelial progenitor cells are known to have the capacity to form capillary like structures in 

extra-cellular matrix in vitro 154, 220, 265. Therefore, we studied the angiogenic competence of 

our isolated eEPCs in the tube formation assay using Matrigel® 7, 12, 205, 348. Cells were 

embedded in Matrigel® and the formation of sprouts was monitored over 24 h. Indeed, we 

observed a partially impaired sprouting of Txnrd2-deficient eEPCs when comparing the 

number of branching points per visual field between the groups (Txnrd2+/+ 16±6 vs. Txnrd2–/–

 3±3) (Figure 3-32 A, D). Stable re-expression of an N-terminally FLAG-tagged full-length 

Txnrd2 in Txnrd2-deficient eEPCs by electroporation (add-back) (Figure 3-32 B), was able to 

rescue the impaired sprouting capacity compared to control cells carrying an empty vector 

(mock) (mock: 6±3 vs. add-back: 14±5) (Figure 3-32 C, E). These findings suggest, that 

Txnrd2 deficiency has an adverse effect on angiogenic function of endothelial progenitor 

cells in vitro, evidenced by marginally reduced proliferation and limited angiogenic capacity of 

Txnrd2-deficient eEPCs. 
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Figure 3-31: Generation of eEPC Txnrd2 wild-type and Txnrd2-deficient cell lines 
(A) The isolation of eEPCs from heterozygous Txnrd2 breedings was performed according to 
Hatzopoulos and as described in chapter 2.2.1.1. (B) Expression of Txnrd2 was analysed on the 
genome level using semi-quantitative PCR. Actin served as control. (C) Proliferation of wild-type and 
Txnrd2-deficient eEPCs was determined by the MTT assay carried out in 96-well plates. The chart 
shows pooled mean values ± SD from three independent experiments. P values > 0.05. 
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Figure 3-32: Limited pro-angiogenic potential of Txnrd2-deficient eEPCs 
To investigate the ability of eEPCs to form three-dimensional vessels (sprouting), the in vitro tube 
formation assay was performed using the extracellular matrix Matrigel®. (A) Txnrd2 wild-type and 
Txnrd2-defcient eEPCs as well as PAEC (positive control) were plated on the extracellular matrix and 
allowed to settle for 30 min. Sprouting was observed over 24 h and pictures were taken every 4 hours. 
The images were taken after 24 h and are representative for four independent experiments. (B) To 
investigate if the observed phenotype is indeed due to Txnrd2-deficiency, Txnrd2-null cells were stably 
transfected with a vector carrying full-length Txnrd2 (add-back) and an empty vector (Mock). Txnrd2 
expression was confirmed by immunoblotting and ß-actin served as control. (C) The tube formation 
assay was performed as described above. (D) Quantitative analysis of branching points revealed that 
the sprouting of Txnrd2-deficient eEPCs is highly impaired. Depicted are mean values ± SD from four 
independent experiments with *p<0.05 (Student’s t-test). (D) Reconstitution of Txnrd2 expression in 
Txnrd2-deficient eEPCs restored the capacity of the cells to from sprouts. Depicted are mean values ± 
SD from four independent experiments with *p<0.05 (paired t-test).  
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3.4.2. Tamoxifen-inducible endothelial-specific Txnrd2 knockout mice 

We could show that Txnrd2 is crucial for the progression of tumour growth and the 

development of a fully functional tumour vascular network. Furthermore, Txnrd2 seemed to 

play a pivotal autocrine role for endothelial cell angiogenic function. To investigate the 

biological significance of Txnrd2 expression by vascular endothelial cells in vivo, tamoxifen-

inducible VE-cadherin-Cre (Cre-VE-CadherinER) transgenic mice (a kind gift of Prof. Dr. Ralf 

Adams, Max Planck Institute for Molecular Biomedicine, Münster, Germany) were crossed to 

Txnrd2fl/fl mice to generate Txnrd2wt/fl-Tg[Cre-VE-CadherinER] mice. These were further crossed with 

Txnrd2fl/fl mice to obtain Txnrd2fl/fl-Tg[Cre-VE-CadherinER] mice (Figure 3-33). The Cre-estrogen 

receptor fusion protein (CreERT2) is sequestered in the cytoplasm by heat shock protein 90 

(Hsp90). Only upon application of tamoxifen Cre protein is liberated from the complex and 

translocates to the nucleus where Cre-mediated recombination leads to endothelium-specific 

deletion of the Txnrd2. Tamoxifen application was performed orally by gavage at four 

consecutive days followed by a final fifth oral application one week later. Following eight 

weeks from the last tamoxifen application both control groups (Txnrd2wt/fl-Tg[Cre-VE-CadherinER] and 

Txnrd2fl/fl) and the endothelial-specific Txnrd2-knockout mice (Txnrd2fl/fl-Tg[Cre-VE-CadherinER]) were 

viable. The latter showed no pathological phenotype or macroscopical noticeable alterations 

in all observed organs (data not shown) compared to animals of the control groups. 
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Figure 3-33: Breeding scheme for endothelial-specific Txnrd2-null mice 
Txnrd2

fl/fl 
mice were bred with a mouse line expressing tamoxifen-inducible Cre-recombinase under 

the regulation of the vascular endothelial cadherin promotor (Tg[Cre-VE-CadherinER]). 
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4. DISCUSSION 

Growing evidence indicates that cellular redox status regulates various aspects of cellular 

function. Dependent on the dosage, oxidative stress can elicit cellular proliferation or growth 

inhibition, cell activation as well as cell death 224, 254. During the last decades the thioredoxin-

dependent system has been identified as one major player regulating cellular redox 

homeostasis 8, 167. Substantial data document the implication of Txnrd1 not only in processes 

like antioxidant defence, proliferation and apoptosis but also in cellular transformation and 

tumour growth 9, 16, 123, 221. However, much less is known about Txnrd2. Previous work 

demonstrated that Txnrd2 is not only indispensable for embryogenesis (especially heart 

development and fetal hematopoiesis) but also affects proliferation, proper mitochondrial 

function and antioxidant defence of myocardial tissue 61, 245. Recently, it has been shown that 

Txnrd2 is much higher expressed in hepatocellular carcinoma compared to adjacent healthy 

tissue 59. 

The present work aimed to clarify functions of Txnrd2 in cellular signalling and tumour growth. 

Using the Cre-loxP technology, a conditional Txnrd2 knockout mouse line was previously 

generated in our laboratory 61. We isolated fibroblasts from wild-type and Txnrd2-null 

embryos and established primary, immortalised and transformed cell lines to investigate the 

role of Txnrd2 in several aspects of cell metabolism and proliferation, tumour growth and 

angiogenesis. Indeed, we could show that disruption of the Txnrd2 gene significantly 

impaired tumour growth mainly due to altered tumour angiogenesis and altered cell 

metabolism. 

4.1. Immortalised MEFs compensate Txnrd2-deficiency by induction of 

other redox-regulating enzymes 

Data regarding the role of Txnrd2 in the regulation of cell proliferation are conflicting. 

Overexpression of a dominant negative mutant of Txnrd2 in HeLa cells in a tetracycline-

regulable manner resulted in increased production of H2O2, proliferation and progression of 

G1 to S phase in the cell cycle 161. On the other hand previous findings from our laboratory 

revealed that the full knockout of Txnrd2 in freshly isolated MEFs resulted in increased cell 

death which was accompanied with increased levels of intracellular ROS 61, 245. In the present 

study we could show that immortalised Txnrd2-deficient MEFs show increased proliferation 

compared to the wild-type cells. Furthermore, immortalised Txnrd2-knockout fibroblasts 

showed comparable amounts of intracellular ROS with wild-type cells in contrast to freshly 

isolated (primary) knockout fibroblasts. These findings were surprising and prompted us to 

further characterise the immortalised Txnrd2-deficient cells. As reported previously, primary 
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Txnrd2-null fibroblasts were highly susceptible to depletion of the GSH de-novo synthesis by 

treatment with BSO and showed massive cell death 61. BSO is known as a potent and 

specific inhibitor of γ-glutamylcysteine synthetase, catalysing the first and rate-limiting step in 

GSH biosynthesis 122. Immortalised Txnrd2-deficient and wild-type fibroblasts were treated 

with BSO and cell numbers as well as soluble intracellular ROS were analysed. Indeed, the 

immortalised fibroblasts lacking Txnrd2 were still highly susceptible to intracellular GSH-

depletion. The cells showed augmented cell death and a strong increase in intracellular ROS 

compared to the wild-type cells. 

Mitochondria are considered to be a major physiological source of ROS in the cell and thus it 

seems logic that a set of antioxidant defence systems is localised in this organelle 290. 

Therefore, it was hypothesised that other mitochondrial redox-regulating systems might 

compensate for the impaired mitochondrial thioredoxin-dependent system in immortalised 

cells. Previous findings revealed that in freshly isolated MEFs the mitochondria-specific 

peroxiredoxins, Prx3 and Prx5, were upregulated under baseline cell culture conditions 245. 

mRNA and protein levels were elevated in Txnrd2-knockout cells and could be further 

increased by various triggers of oxidative stress. This was not the case for immortalised 

Txnrd2-deficient fibroblasts. mRNA levels of Prx3 and Prx5 were comparable between 

Txnrd2+/+ and Txnrd2–/– cells and remained unchanged after BSO treatment. 

The high susceptibility of the Txnrd2-deficient cells towards GSH-depletion prompted us to 

investigate whether parts of the GSH-dependent pathway might be upregulated in our cells. 

Analysis of the activity of glutathione reductase, the enzyme that restores oxidised 

glutathione (GSSG), revealed increased activity in Txnrd2-null fibroblasts. Enhanced enzyme 

activity was accompanied by elevated protein expression. Yet, the total intracellular amount 

of the glutathione (oxidised and reduced) remained unchanged. At the same time studies in 

our laboratory concerning the role of Txnrd1 in tumourigenesis revealed similar effects in 

Txnrd1-deficient fibroblasts. Namely, Txnrd1-null cells showed elevated enzyme activity and 

increased amounts of glutathione reductase 197, supporting the assumption that deletion of 

one redox-regulating system might be compensated by upregulation of other redox-

regulating enzymes. A related phenomenon has been observed for the different forms of 

glutathione peroxidases and was described as hierarchy of selenoproteins 38, 344. While GPx1 

(cytosolic GPx) and GPx3 (plasmatic GPx) were highly susceptible to selenium deficiency by 

showing decreased protein expression and activity, GPx2 (gastrointestinal GPx) and GPx4 

(phospholipid hydroperoxide GPx) remained stable, indicating that the latter enzymes might 

compensate for the reduced activity of GPx1 and GPx3. 

We also investigated whether Txnrd1 might be affected in response to Txnrd2 deletion. 

Indeed, immunoblot analysis of Txnrd1 revealed elevated protein levels in immortalised 

Txnrd2-deficient cells. In which way the cytosolic located Txnrd1 might be able to 
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compensate for the loss of the mitochondrial located Txnrd2 remains to be clarified. Primary 

Txnrd2-knockout cells and GSH-depleted immortalised Txnrd2-knockout cells showed 

intracellular accumulation of H2O2. H2O2 is able to pass membranes and therefore could 

accumulate in the cytosol and interact with cytosolic Trx1 or Trx2 if not scavenged and 

detoxified in the mitochondria. In this case, Txnrd1 might be able to compensate for the lack 

of Txnrd2. Furthermore in vitro studies by Turanov et al., identifiying two distinct isoforms of 

Txnrd2 that are located extramitochondrially, did not show catalytic perferences for Trx2 

versus Trx1 315. In fact both, Txnrd2 and also Txnrd1, were equally active with Trx1 or Trx2. 

These data support our findings that Txnrd1 might be upregulated in Txnrd2-deficient cells to 

partially achieve reduction of intracellular ROS by reducing Trx2 instead of missing Txnrd2.  

The present findings indicate that Txnrd2-knockout cells change their expression pattern 

during immortalisation and upregulate some components of the GSH-dependent system to 

compensate consequences of Txnrd2 deletion. This allows Txnrd2-knockout cells to 

proliferate normally, which, however, makes them highly susceptible to cellular GSH-

depletion. Studying the expression pattern on a genome-wide scale before and after 

immortalisation remains to be carried out and would certainly identify more enzymes which 

are altered in Txnrd2-knockout cells. Furthermore, it might be interesting to study the 

expression pattern of redox-regulating systems following full depletion of both, Txnrd2 and 

Txnrd1. 

4.2. Txnrd2-deficient fibroblasts switch their energy metabolism from 

oxidative phosphorylation to anaerobic glycolysis 

The predicted function of Txnrd2 is to control mitochondrial ROS level as well as the redox 

state of mitochondrial proteins, thereby ensuring proper mitochondrial function 56, 159, 246, 267. 

Mitochondrial ROS are known to participate in the apoptotic pathway as well as in the 

regulation of the mitochondrial permeability transition pore (PT) and Ca2+-signalling 307, 362. 

Therefore, we were interested to study how mitochondria and particularly mitochondrial 

function are influenced if one major ROS detoxifying system is inactivated. 

 

First of all, structural and intracellular organisation of mitochondria were analysed using the 

organelle-specific probe Mitotracker Green®. Confocal microscopy revealed that 

mitochondria of primary Txnrd2 wild-type and Txnrd2-deficient fibroblasts appeared equal in 

shape and intracellular organisation. Surprisingly, mitochondria of immortalised Txnrd2-

deficient cells appeared in distinct shape and accumulated much less of the mitochondria-

specific dye. Quantification of mitochondrial mass by flow cytometry using two different 

mitochondria-selective dyes revealed conflicting results. Analysis of mitochondria in primary 
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cells showed similar accumulation of Mitotracker Green® and NAO in mitochondria of wild-

type and Txnrd2-deficient fibroblasts. Whereas in immortalised cells, quantitative evaluation 

of Mitotracker Green® enrichment in mitochondria revealed reduced accumulation in Txnrd2-

deficient cells, this was not the case using NAO, a fluorescent dye that binds in a manner 

independent of mitochondrial membrane potential to non-oxidised cardiolipin in the inner 

mitochondrial membrane. Measurments with this dye are hampered by the effect that 

cardiolipin binds NAO differently dependent on its grade of oxidation, which due to deletion of 

Txnrd2, might have changed 105, 148, 155. As estimation of mitochondrial mass by use of 

fluorescent dyes is controversially discussed 155, 209, 242 the obtained results had to be clarified 

by further analysis. Thus, we performed another independent and commonly used method, 

the analysis of mitochondrial DNA by quantitative Real-time PCR. Quantification of the gene 

encoding mitochondria-specific 16S rRNA normalised to the expression of nuclear encoded 

hexokinase of primary and immortalised fibroblasts revealed no differences between 

wild-type and Txnrd2-deficient cells. Taken together, these experiments suggest that there 

was no impact of the Txnrd2-deletion on the number of mitochondria per cell. In view of the 

conflicting data using mitochondrial-specific dyes and the potential impact of the 

mitochondrial membrane potential we have already started to further analyse mitochondrial 

membrane potential using the cationic dye JC-1 and flow cytometry, which could not be 

included in the present work due to time limitations. 

Dysfunction of mitochondria is well known to be involved in several metabolic and 

degenerative (Parkinson´s disease) diseases, aging and cancer 185, 322. It has been reported 

that altered mitochondrial function can be associated with changes in morphology of these 

organelles 320. Several observations indicate that mitochondrial energy production may be 

controlled by structural rearrangements of the organelle including the remodelling of cristae 

morphology and elongation of fragmentation of the tubular network organisation 20, 183. 

Furthermore signalling molecules, e.g. ROS and Ca2+, have been shown to induce opening 

of megachannels of mitochondrial membranes resulting in swelling and structural changes of 

the organelles as a crucial step in the apoptotic signalling of cells 319. Electron microscopy 

may therefore provide new insights into the internal organisation of mitochondria 97.It is 

therefore conceivable that in immortalised Txnrd2-deficient cells mitochondrial function was 

impaired in spite of an unaltered number of mitochondria. It has been already reported that 

elevated generation of ROS induces mitochondrial dysfunction and increases mitochondrial 

autophagy 260. Previous studies in our laboratory using transmission electron microscopy 

revealed severe malformation of mitochondria and swelling with destruction or loss of cristae 

in Txnrd2-deficient myocardial cells of newborn mice 61. Therefore, it would be interesting to 

see what the impact of Txnrd2-deletion on intracellular and structural organisation of 
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mitochondria is by using transmission electron microscopy in primary and immortalised 

fibroblasts. 

To extent these investigations, we also studied the functionality of mitochondria of Txnrd2-

deficient cells. Thus further experiments were performed to test the activity of the respiratory 

chain complexes using high-resolution respirometry (HRR). The basal cellular O2-

consumption and maximum achievable activity of each complex was slightly decreased in 

primary Txnrd2-deficient fibroblasts. Surprisingly, this was not the case for immortalised 

Txnrd2-deficient cells. Compared to wild-type cells Txnrd2-knockout cells showed an even 

slightly elevated basal O2-consumption and particularly a higher activity of complex I and IV 

after stimulation. These results were unexpected as it is obvious that any structural 

impairment of mitochondria should also impair the functionality of the respiratory chain and 

other mitochondria-specific functions. The redox balance in the mitochondrial matrix, where 

the particular complexes are located, is indispensable for proper function of the respiratory 

chain. Furthermore, it has already been reported that the ATPase F0-F1 complex and the 

cytochrom-c-oxidase are indeed regulated by redox mechanisms 346-347. In primary Txnrd2-

deficient cells the elevated production of ROS under baseline conditions was accompanied 

with a slightly impaired function of the respiratory chain. On the other hand immortalised 

Txnrd2-null fibroblasts showed no increase in the production of ROS under baseline 

conditions and similar activity of the respiratory chain compared to wild-type cells. Thus, the 

earlier described compensatory mechanisms (e.g. elevated GR activity and expression) may 

stabilise a proper redox balance in the mitochondria despite the deletion of Txnrd2 and 

therefore allow proper mitochondrial respiratory chain function. Thus, the obtained results 

indicate that there are no alterations in the number of mitochondria per cell in primary and 

immortalised wild-type and Txnrd2-knockout cells. If there are any structural changes or any 

impairments of mitochondria functions due to deletion of Txnrd2 can not be fully excluded by 

now and needs to be further investigated. 

 

Mitochondria are the major site of ATP production in a cell, yet electron flow through the 

mitochondrial respiratory chain is unevitably linked to mitochondrial ROS generation. The 

´cellular powerhouses´ provide energy much more efficiently than anaerobic glycolysis. 

Primary Txnrd2-deficient fibroblasts showed increased ROS level and increased cell death 61, 

245. Following immortalisation this phenotype was no longer detectable. Cells were able to 

compensate for the loss of Txnrd2, balance their ROS level and recover to normal 

proliferation rates. These phenomenons were accompanied by a quick decrease in pH of the 

cell culture medium of cultured immortalised Txnrd2-deficient cells. Thus, the question was 

raised whether the observed phenotype may be due to changes in cell metabolism. A switch 

from oxidative phosphorylation to anaerobic glycolysis might have several advantages for 
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cells lacking a major mitochondrial redox-regulating system. Since ROS are a by-product of 

mitochondrial respiration, a metabolic shift from oxidative phosphorylation to anaerobic 

glycolysis, by regeneration of NADH/H+ to NAD+ through lactate dehydrogenase, may allow 

cells to produce ATP only via anaerobic glycolysis and thus to reduce the overall ROS 

burden. The multienzyme pyruvate dehydrogenase (PDH) catalyses the conversion of 

pyruvate, CoA and NAD+ into acetyl-CoA, NADH and CO2 
263. This several-step process of 

oxidative decarboxylation of pyruvate occupies a central position in cellular metabolism, 

linking glycolysis with the TCA and lipid biosynthesis. In eukaryotic cells the PDH complex is 

located in the mitochondrial matrix 321, 342. The mechanisms that control PDH complex activity 

include its phosphorylation by a family of pyruvate dehydrogenase kinases (PDKs) and 

dephosphorylation by phosphopyruvatdehydrogenase phosphatases (PDPs), the first 

inactivating and the latter activating the PDH complex 239-240, 298-299. Phosphatases are known 

to be regulated through reversible oxidation of the active-site cysteine and previous studies 

have implied intracellular ROS, e.g. H2O2, as the mediators of phosphatase oxidation 58, 63. 

Thus, elevated levels of intracellular ROS, as we observed in primary Txnrd2-deficient 

fibroblasts, might induce oxidation of phosphatases thereby reducing their activity. This in 

turn might lead to an hyperphosphorylation and inactivation of the PDH complex, 

constraining the cell to switch to anaerobic glycolysis for ATP production. 

Therefore, we measured the amount of lactate released into the cell culture medium. Indeed 

we found elevated lactate levels in the supernatant of immortalised Txnrd2-deficient cells but 

not of primary Txnrd2-null cells. To further proof these results, freshly isolated cells were 

immortalised over multiple numbers of passages and lactate level were measured every few 

passages. We could actually observe increasing levels of lactate in the cell culture 

supernatant of Txnrd2-null cells during subsequent passaging of cells for immortalisation, 

which was not the case for wild-type cells. Since immortalised Txnrd2-deficient cells 

upregulate other redox-systems (e.g. GR) and thus were highly susceptible to GSH-depletion, 

we wondered if the stressing conditions due to BSO treatment might further influence the 

cellular energy metabolism. Both, wild-type and Txnrd2-deficient immortalised fibroblasts 

demonstrated an increase of lactate in the cell culture supernatant following BSO treatment. 

Interestingly, this increase appeared much stronger in wild-type cells. The observed 

phenomenon is not unknown and is already subject of research since it was first mentioned 

in the 1930s. The so-called ´Warburg-effect´ describes the switch of energy metabolism in 

cancer cells from oxidative phosphorylation to anaerobic glycolysis 326-327. Warburg 

postulated, that malignant cells have dysfunctional mitochondria and therefore rely on 

anaerobic glycolysis even in the presence of sufficient level of oxygen. Later, this view has 

been challenged and research revealed that mitochondria of tumour cells are not 

dysfunctional and are able to produce ATP 119. However, many cancer cell lines do exhibit a 
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higher rate of anaerobic glycolysis and this shift appears to be relevant for the malignant 

process and offers growth advantages 69, 326-327. It allows cells to use the most abundant 

extracellular nutrient glucose. If the glycolytic flux is high enough, the percentage of cellular 

ATP produced from glycolysis can indeed exceed that produced from oxidative 

phosphorylation 125, 248, 327. Furthermore, glucose degradation provides intermediates needed 

for biosynthetic pathways (ribose sugars, glycerol, non-essential amino acids, NADPH) 69. 

Cells were also exposed to glucose-depletion and instead cell culture medium was 

supplemented with galactose and glutamine. When glucose is no longer available, cells are 

forced to use other substrates for energy production. Metabolising these substrates 

(galactose and glutamine) requires functional mitochondria and oxidative phosphorylation for 

production of ATP 264. Whereas primary Txnrd2-deficient cells were susceptible to glucose-

depletion and showed decreased proliferation, immortalised Txnrd2-null cells easily coped 

with the change of energy source and showed enhanced proliferation compared to wild-type 

cells. These data further support the assumption that the Txnrd2-deficient cells have indeed 

functional mitochondria and compensate for the loss of Txnrd2 by upregulating other 

mitochondrial redox-systems, e.g. GR 110, 147, or cytosolic redox-systems, e.g. Txnrd1306. 

The proposed metabolic reprogramming of immortalised Txnrd2-deficient cells was not 

paralleled with an upregulation of genes participating in glucose metabolism. Using semi-

quantitative and quantitative Real-time PCR the expression of mRNA of the glucose 

transporters GLUT-1, 3 and 4 were analysed. Though it is reported that GLUT-1, 3, and 4 are 

the isoforms that are upregulated in several types of cancer 206, we could not find any change 

of expression level of all three isoforms. 

Surprisingly we observed increased mRNA level of PGC1α in immortalised Txnrd2-deficient 

fibroblasts. The transcriptional co-activator PGC1α is known as an important regulator of 

energy metabolism and mitochondrial oxygen metabolism. As a regulator of mitochondrial 

biogenesis it increases the expression of most if not all mitochondrial proteins 261, 260, 294. This 

means PGC1α increases proteins that increase ROS (enzymes of electron transport chain) 

and on the other hand PGC1α also upregulates proteins that suppress ROS. Indeed PGC1α 

exhibits dual activities: stimulation of mitochondrial electron transport while suppressing ROS 

by upregulation of ROS detoxifying proteins. Recent data support this assumption by 

showing that PGC1α regulates ROS-defense systems and protects cells from oxidative 

stress 295. Knockdown of PGC1α by siRNA technique revealed decreasing expression of 

several ROS-defense systems, e.g. SOD1, SOD2, GPx1 and catalase 295. Furthermore 

PGC1α-null cells showed increased levels of ROS and decreased expression of antioxidant 

systems 295. Thus, it might be possible that immortalised Txnrd2-null cells upregulate PGC1α, 

both, to stimulate mitochondrial respiration and to balance excessive ROS levels. 
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Taken together, immortalised Txnrd2-deficient cells employed several mechanisms to 

compensate for the loss of one major mitochondrial redox-regulating system. These 

compensatory mechanisms comprise upregulation of several other redox-pathways to cope 

with elevated ROS level and adjustment of proliferation. These results are also in 

accordance with the fact that the activities of the respiratory chain enzymes are not affected 

and the mitochondria are still functional. The proposed switch of energy production from 

oxidative phosphorylation to anaerobic glycolysis represents an additional way to protect 

mitochondria of increasing ROS production. However, if the cells really switch their 

metabolism and in which way this adjustment takes place (regulation of PDH complex 

activity), needs to be fully clarified. 

4.3. Txnrd2 is necessary for colonigenic potential of transformed MEFs 

Trx1 and its reductase Txnrd1 are reported to be augmented in various types of cancer, and 

its expression correlates with invasiveness, metastasis and poor survival rate 9, 16, 221. 

Previous reports further demonstrated that Txnrd1 is important for proliferation and 

tumourigenesis. Reduction of Txnrd1 in cancer cells reversed the malignant phenotype and 

emerged to be critical for self-sufficiency in growth signals. 101, 192, 350-351. These and other 

data provided the rationale to develop many cancer drugs targeting the thioredoxin-

dependent system, however, without discriminating between the cytosolic and mitochondrial 

forms 123, 192, 255. Contrary to the aforementioned reports recent work in our laboratory 

demonstrated that Txnrd1-deficiency in c-myc and Ha-rasV12 transformed cells had no effects 

on proliferation nor on cell cycle distribution. Likewise, tumour growth was comparable 

between Txnrd1-deficient and wild-type tumours 197. Therefore, we speculated that Txnrd2 

might be the more relevant part of the thioredoxin-system in the process of cancer 

progression. Indeed, little is known about the function of Txnrd2 in the development or 

growth of cancer. Therefore wild-type and Txnrd2-deficient MEFs were transformed by co-

transducing them with the two proto-oncogenes c-myc and Ha-rasV12 expressing lentiviruses. 

Wild-type cells grew in multilayer and loosely attached to the culture dish, which is 

characteristic for malignant cells. Interestingly, transformed Txnrd2-deficient cells 

preferentially grew in monolayer and tightly attached to the culture dish. A feature of many 

cancer cells is that they have the ability of an anchorage-independent growth when plated in 

soft agar, while most untransformed cells do not proliferate under these conditions 96. Up to 

now, multiple genetic factors for anchorage independence have been identified, but the 

molecular basis is still largely unknown 60, 281, 337. Previously, one study could demonstrate 

that the anchorage-independent phenotype is associated with increased mitochondrial 

biogenesis using genome-wide DNA microarray studies 217. To test whether deletion of 
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Txnrd2 has an influence on the anchorage-independent growth of transformed wild-type and 

Txnrd2-deficient MEFs, cells were plated in soft agar and numbers of growing colonies were 

counted. Interestingly, Txnrd2-deficient cells showed strongly reduced colony formation 

capacity compared to wild-type cells. Reconstitution of Txnrd2 in Txnrd2-null cells by 

electroporation with a plasmid carrying the full length enzyme (add-back) was able to reverse 

this phenotype. This shows that the observed effects were solely due to Txnrd2 inactivation 

and not due to possible clonal effects or differences in transformation efficiency. Similar 

observations have been reported for Txnrd1: loss of Txnrd1 function by siRNA knock-down 

led to impairment of tumourigenicity and metastatic properties of Lewis Lung Cancer Cells 

(LLC1) 350. Later it was also demonstrated that due to Txnrd1 knockdown LLC1 cells lost 

their ability to form colonies in soft agar 351. These data support the assumption that 

thioredoxin reductases may act as pro-cancer proteins. Nevertheless, at the same time as 

the present study indicated that full genetic deletion of Txnrd2 impairs colonigenicity of 

tumour cells, investigations in our laboratory could show that this is not the case for Txnrd1 

197. Opposing effects of Txnrd1 on tumour development were already reported. On the one 

hand it was shown that Txnrd1 supports p53 function and thereby may induce apoptosis in 

tumour cells, while on the other hand upregulation of Txnrd1 in various cancers suggests a 

cancer promoting influence and is furthermore accompanied with metastasis, invasivness 

and resistance to chemotherapy 9. One has to keep in mind that the discrepancies of the 

published reports may be due to different cellular systems and deletion strategies. 

Furthermore, it is challenging to distinguish between contributions of the individual 

components of the thioredoxin-dependent system to the malignat processes, thioredoxin and 

its related reductase, as both are reported to be upregulated in various types of cancer. 

However, the present results provide first evidence that Txnrd2 might be essential for 

anchorage-independent growth in tumour cells in vitro. 

In the present work, full genetic deletion of Txnrd2 was able to impair proliferation of 

transformed cells in soft agar, and we asked the question, whether its redox-regulating 

function might be involved. Lentiviral reconstitution of a mutated Txnrd2 in Txnrd2-null cells 

carrying a inert active site due to a real STOP codon instead of UGA coding for Sec, was 

able to only partly recover the formation of colonies. However, one has to keep in mind the 

C-terminal Cys located in front of Sec and also the N-terminal Cys-containing active site. 

Even though it is reported that Sec is required for the catalytic activities of the enzyme 301, 357, 

removal of Sec and incorporation of Cys and Ser revealed interesting results 358. Whereas 

the Ser-mutant did not show any catalytical activity, mutation of Sec to Cys showed catalytic 

activity in the reduction of thioredoxin with a 100-fold decreased catalytic constant (kcat) and 

10-fold reduced Michaelis constant (Km) but not in reduction of H2O2. Thus, it is possible that 

at least a residual redox-function may be achieved with the above mentioned Cys. 
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Since restoration of an modified redox-active Txnrd2 only partially rescued colony formation 

we conclude that Txnrd2 in its function as a redox-regulationg enzyme might influence the 

colonigenicity and tumourigenicity of tumour cells. 

Previous work in our laboratory demonstrated that treatment of primary Txnrd2-deficient cells 

with the thiol-containing antioxidant NAC was able to restore proliferation to levels of 

untreated wild-type cells by reducing the elevated ROS level 245. To further proof if the 

reduced formation of colonies is related to elevated oxidative stress, cells were embedded in 

soft agar containing NAC. However, NAC did not rescue the colonigenic potential of 

transformed Txnrd2-deficient cells. Interestingly, for wild-type cells the formation of colonies 

was slightly decreased due to NAC. This complies with the observation that low levels of 

ROS have a stimulatory effect on proliferation due to the transient oxidation and thus 

inactivation of protein tyrosine phosphatases, which counteract receptor tyrosine kinase 

signalling 95. Previous work in our laboratory revealed that Txnrd2-deficient cells have 

elevated levels of intracellular ROS (e.g. H2O2) and lipid peroxides 245. We assume that a 

combination of antioxidants (water-soluble and lipophilic) might fully or even partly rescue 

colony formation. The accordant experiments are already in progress but could not be 

included in the present work due to time limitations. 

4.4. Transformed Txnrd2-deficient single cell-derived cells were still 

sensitive towards GSH-depletion 

To further study the impact of Txnrd2 on tumour growth in vivo, wild-type and Txnrd2-null 

single-colony derived cell lines were established from the c-myc and Ha-rasV12 transformed 

cell lines. The batch cell lines shortly after transformation represent a mixed cell population of 

efficiently transformed and still several non-transformed cells, which might influence the 

experiemental outcome. Only efficiently transformed cells are able to grow in soft agar and 

therefore isolated single-colony derived cell lines posses a comparable efficiency of 

transformation. The established single-colony derived cell lines were characterised in vitro 

prior to studying tumour growth in vivo. Wild-type and Txnrd2-deficient single-colony derived 

cell lines showed no differences in proliferation under baseline culture conditions. Colony 

formation capacity was also identical, in contrast to batch cell lines. Under normal culture 

conditions Txnrd2-deficient single-colony derived cells showed slightly increased amounts of 

ROS, which did not further increase after depletion of GSH. However, in vitro proliferation 

rate was impaired following GSH depletion. Interestingly, Txnrd2-deficient cells had no 

alterations in the GSH-dependent pathway as observed for the immortalised Txnrd2-deficient 

fibroblasts. Txnrd2-deficient cells showed comparable activity of GR and similar levels of 

total glutathione (GSH + GSSG). Thus, the compensatory mechanisms as seen for 
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immortalised Txnrd2-deficient cells were not upregulated under normal culture conditions. 

These observations in single-colony derived cell lines were at the first sight surprising and 

the question arises what may be the advantage of the transformed Txnrd2-deficient cells 

compared to immortalised Txnrd2-deficient cells. One explanation might be the 

transformation itself. Both proto-oncogenes, c-myc and Ha-ras, are well known to perfectly 

synergise in the process of transforming murine fibroblasts 174, and are overexpressed 

(c-myc) 131, 230 or mutated (ras) 34, 144, 341 in most human tumours. The ras protein plays a 

central role in the regulation of diverse cellular processes in invertebrates and vertebrates, 

controlling processes like differentiation, cell survival and proliferation 271. Also c-myc is 

known to coordinate many of the cellular programms necessary for the growth and 

expansion of cancer cells 276, 291. Thus, under normal culture conditions transformed single-

colony derived Txnrd2-deficient cells may benefit from the induction of c-myc and mutation of 

Ha-rasV12. However, the observed persisting sensitivity to GSH-depletion indicates that 

Txnrd2-deficieny also seems to play a role in transformed cells. Even though GR and Txnrd1 

were not upregulated in transformed single-colony derived Txnrd2-null cells, one can not 

exclude alternative compensatory mechanisms that have not been investigated yet. The 

selenoproteins glutathione peroxidase 4 (GPx4) 317 and glutathione peroxidase 1 (GPx1) 211 

are known to be also located in mitochondria 77, 187, 211. Both redox enzymes are able to 

scavenge H2O2 and use glutathione as a substrate 92, 189, 195, 273, 317. 

 

We further characterised the established single-colony derived cell lines with regard to their 

mitochondrial morphology, energy metabolism and respiratory capacity. Microscopical 

observations of mitochondrial morphology using the organelle-specific dye Mitotracker 

Green® revealed no detectable variations between wild-type and Txnrd2-null single-cell 

clones. Quantification of Mitotracker Red® accumulation in mitochondria using FACS 

revealed reduced accumulation of mitochondria-selective dye in Txnrd2-null cells when 

compared to wild-type cells. As already mentioned and discussed in chapter 4.2. staining 

with mitochondria-selective dyes, used in the present study, is discussed controversially 155, 

209, 242. Mitotracker Green® and Mitotracker Red® is discussed to be membrane potential 

dependent, and we were not able to exclude changes in the mitochondrial membrane 

potential due to Txnrd2-deletion up to now. We furthermore analysed mitochondrial DNA of 

single-colony derived cells using quantitative Real-time PCR, which revealed similar amounts 

for wild-type and Txnrd2-knockout cells. Thus, we conclude that morphology and number of 

mitochondria is not altered in Txnrd2-deficient transformed cells. To fully elucidate a possible 

effect of Txnrd2-deficiency on mitochondria in transformed cells it seems essential to perform 

electron transmission microscopy, as already discussed for primary and immortalised 

fibroblasts (chapter 4.2.) 97. 



DISCUSSION 130 
 

 

 

Investigations of energy metabolism were performed by analysis of lactate release and 

proliferation in glucose-free-galactose-supplemented cell culture medium. Txnrd2-deficient 

cells released increased amounts of lactate into the culture medium under normal culture 

conditions compared to wild-type cells proposing a switch of energy production from 

oxidative phosphorylation to anaerobic glycolysis. GSH-depletion did slightly increase lactate 

levels in the cell culture supernatants of wild-type cells but not of Txnrd2-null cells, which was 

in line with the observations in immortalised Txnrd2-null cells (see chapter 4.2.). Single-cell 

clones showed similar proliferative activity when exposed to low-glucose culture medium. 

Furthermore, Txnrd2-null cells had no difficulties with the change of energy substrate when 

cultured under conditions of glucose deprivation and galactose supplementation. The cells 

showed enhanced or even similar proliferation compared to wild-type cells, indicating active 

oxidative phosphorylation and thus functional mitochondria as it was already discussed for 

immortalised Txnrd2-deficient cells in chapter 4.2. 73, 264, 272. The activity of the respiratory 

chain was analysed using HRR. Whereas basal O2-consumption remained comparable 

between wild-type and Txnrd2-null cells, maximum activity of the single respiratory 

complexes following stimulation was increased in Txnrd2-deficient cells. This effect was most 

prominent for complex IV. In accordance with the observations of the respiratory chain 

activity the Txnrd2-null cells produced similar amounts of ATP under baseline cell culture 

conditions. The results indicate that Txnrd2-deficient cells show no alterations in 

mitochondrial morphology and no impaired function of the respiratory chain. These findings 

are in accordance with the observations of the last decade, showing that tumour cells do 

have functional mitochondria and perform active oxidative phosphorylation 119. Nevertheless, 

transformed single-colony derived Txnrd2-deficient cells seem to preferentially produce ATP 

using anaerobic glycolysis instead of oxidative phosphorylation, indicated by elevated 

release of lactate. Thus, it still needs to be elucidated for what reason Txnrd2-deficient cells 

preferentially rely on anaerobic glycolysis although they have functional mitochondria. 

 

In summary, these observations demonstrate that at first sight Txnrd2 appears to be 

dispensable for transformed cells under baseline cell culture conditions in vitro. But, GSH-

depletion or deprivation of adequate energy substrates disclosed that Txnrd2-deficient 

tumour cells are indeed more susceptible to stress conditions and have several 

disadvantages and impairments due to the deletion of Txnrd2. Furthermore these data 

support the assumption that the limitations due to the Txnrd2-deletion are only partially 

caused by elevated oxidative stress and redox-dependent processes. Though, there must be 

an yet unknown additional impact of Txnrd2 that influences cellular metabolism of tumour 

cells. 
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4.5. Loss of Txnrd2 impairs tumour growth due to limited proliferation 

and diminished tumour vascularisation 

The thioredoxin-dependent system is reported to be involved at several if not all stages of the 

multi-step process of tumour development. However, most reports refer to Trx1 and Txnrd1 9, 

16, 103, 192, 221, 350-351. Literature reporting about the involvement of the mitochondrial Txnrd in 

malignant processes is scarce. Nevertheless, Txnrd2 was found to be highly expressed in 

malignant hepatocellular tissue compared to healthy tissue 59. The distinct feature of Txnrd2 

is its localisation in mitochondria. Mitochondria are not only the powerhouses of the cells but 

are also centrally involved in multiple cellular processes, e.g. Ca2+ homeostasis, cell death 

signalling, ROS signalling, as well as cell growth and survival. All these functions are crucial 

for tumour cell growth and thus mitochondria are discussed as major parts of the malignant 

processes and potential target for cancer therapy 116, 203, 335. Since Txnrd2 controls 

mitochondrial redox-balance it was considered as an attractive target to investigate. Insofar 

the in vitro findings of the present study indicated that Txnrd2 impacts anchorage-

independent growth and proliferation of transformed cells under stressing conditions. 

However, number of mitochondria per cell, morphology and respiratory chain activity were 

not impaired due to deletion of Txnrd2 in transformed cells. Therefore we were curious to see 

what impact Txnrd2-deletion exerts on tumour growth in vivo. 

Using single-colony derived wild-type and Txnrd2-knockout cells for in vivo studies of tumour 

growth, we were able to show that loss of Txnrd2 strongly affects tumour growth in vivo even 

though Txnrd2-deficiency did not affect proliferation and colonigenicity of single-colony 

derived tumour cells in vitro. Initial growth of Txnrd2-deficient and wild-type tumours was 

comparable but between four to six days post implantation tumour growth of wild-type cells 

was much stronger than that of Txnrd2-knockout cells. The impaired tumour growth was 

associated with clearly decreased proliferation of Txnrd2-deficient tumour cells. Previously, it 

was shown that HeLa cells overexpressing a catalytically inactive dominant-negative form of 

Txnrd2 show increased progression from G1 to S-phase in cell cycle and increased 

proliferation 161. Overexpression of an alternative splicing variant of Txnrd2, comprising three 

independent point deletions in the coding region and an insertion of 1228 bp in the 3´UTR 

between the stop codon and the SECIS element, caused increased apoptosis in HeLa cells 

54. Both studies investigated the impact of a catalytically inactive Txnrd2 on cell cycle and 

proliferation of tumour cells in vitro. We now show that the overall deletion of the Txnrd2 

impairs tumour growth in vivo which was at first sight mainly due to decreased tumour cell 

proliferation. 

Tumour growth beyond a certain size is dependent on an adequate supply of tumour cells 

with nutrients and oxygen as well as an effective removal of waste products. Therefore 
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tumour growth requires the induction of a tumour vasculature, termed the ´angiogenic switch´. 

It was reported that decreased activity of Txnrd1 is associated with increased VEGF 

expression, increased migration and proliferation of endothelial cells as well as enhanced 

vessel growth 297. Previous work demonstrated that siRNA-mediated knockdown of Txnrd1 

and Txnrd2 suppressed VEGF-induced NO production and also blocked eNOS activity in 

bovine aortic endothelial cells (BAEC) 300. To more precisely elucidate the mechanism by 

which deletion of Txnrd2 impairs tumour growth, we analysed tumour vascularisation. 

Macroscopical observations of tumours revealed a less developed vessel network 

surrounding Txnrd2-deficient tumours, concluding that the recruitment of host vessels 

towards newly growing tumour tissue is impaired. Quantitative analysis of CD31-positive 

cells in tumours of comparable size revealed decreased vascularisation of Txnrd2-null 

tumours, whereas vascular structures at day 11 of tumour growth did not reveal any 

difference. Yet, immunohistochemical staining of tumour sections does not provide any 

information regarding the functionality of vessels. Therefore, the development and 

functionality of tumour vasculature was investigated using skinfold chambers in combination 

with intravital microscopy. At early time points (day three) vessels of Txnrd2-deficient 

tumours appeared in an unorganised pattern and seemed to be leaky in contrast to a well 

organised developing vessel network in wild-type tumours. On day 11 of tumour growth 

wild-type tumours showed a typical dense and irregular tumour vessel network in contrast to 

Txnrd2-null tumours showing a less prominent developed but continuous vascular network. 

Without an adequate vascular supply, solid tumours can grow only to a critical size of 

1-2 mm3 due to lack of oxygen and nutrients 22, 43. Folkman hypothesised in 1971, that 

tumour blood vessel formation was dependent on a tumour angiogenic factor, and that its 

blockade during the period when a tumour is most vulnerable (e.g. prior to angiogenesis) 

may restrict tumour growth 93. Later VEGF was identified as one of the most potent tumour 

angiogenic molecules 83. The differences in tumour vascularisation at early time points 

indicates that there might be an impairment of the angiogenic signalling at the above 

mentioned critical time point of tumour growth, e.g. due to reduced production of VEGF, in 

Txnrd2-deficient tumours (see following chapter 4.6.). However, at day 11, the Txnrd2-

knockout tumours showed a functional vascular network, suggesting that the angiogenic 

signalling is not fully disturbed but only postponed. Thus, we concluded that loss of Txnrd2 

impairs tumour growth due to early severe defects in vessel recruitment thereby limiting 

tumour angiogenesis and as a consequence tumour growth. Several studies already 

revealed that Trx2 and also Txnrd2 may play a critical role for endothelial cell function 65, 68, 

212, 354. Hence, we asked the question if Txnrd2 might effect angiogenic signalling of tumour 

cells. 
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4.6. Angiogenic signalling is impaired in Txnrd2-deficient tumours and 

tumour cells 

The ´angiogenic switch´ is often described as the conversion of an avascular tumour to an 

angiogenic phenotype during the process of tumour progression 130. This implies that the 

process of angiogenesis is either switched ´on´ or ´off´. But neovascularisation becomes 

increasingly prevalent during tumour progression and is accompanied by the recruitment of 

already existing vessels of the host 22, 48, 126. The ´angiogenic switch´ is the result of changes 

in the tightly regulated balance between the expressions of pro- and anti-angiogenic 

molecules. Up to now numerous molecules have been identified that positively or negatively 

regulate the process of angiogenesis during tumour progression 48, 332. To further elucidate 

the molecular mechanisms underlying Txnrd2 dependent impairment of tumour 

vascularisation we investigated the expression of several key molecules that regulate 

angiogenesis. One prominent key-player in the regulation of tumour vascularisation is the 

transcription factor Hif-1α. Hif-1α is mainly regulated by the availability of oxygen, but also by 

several growth factors and cytokines 136, 296, 353 as well as ROS 158, 165, 199. Once activated, 

Hif-1α acts as a master regulator and regulates more than 100 putative genes that are 

involved in angiogenesis, cell proliferation, cell survival, glucose metabolism and 

erythropoiesis 82, 262, 285. One prominent representative of those genes is VEGF, the most 

potent endothelial cell mitogen and inducer of angiogenesis 50, 86, 84, 286. Both molecules, Hif-

1α and VEGF, are crucial for the ´angiogenic switch´ during the process of tumour 

progression 50, 138, 188. Indeed, we found not only reduced Hif-1α levels at early and later time 

points (day three and six) of tumour growth in Txnrd2-deficient tumours, but also a reduced 

expression of its target gene VEGF. 

To further analyse the molecular mechanisms underlying the reduced Hif-1α protein 

accumulation in Txnrd2-null tumours, we performed several in vitro experiments. First of all, 

tumour cells were exposed to starvation, a situation similar to hypoxia in tumours. We 

observed reduced Hif-1α protein accumulation in Txnrd2-deficient tumour cells after 

starvation. The predominant mode of Hif-1α regulation occurs at the level of protein 

stabilisation 57, 282, 352, and PHD2 is reported to be the responsible enzyme that sets the low 

steady-state level of Hif-1α under normoxic conditions and adequate energy supply 26. At 

protein level, PHD2 is reported to be the most abundant of all three PHDs in all mouse 

organs 304 and cell lines 5, 26 examined. Therefore, we further analysed PHD2 protein levels. 

However, no changes in PHD2 protein level between wild-type and Txnrd2-deficient tumour 

cells could be detected, which was also true for wild-type and Txnrd2-knockout tumours. At 

this point it is important to mention that the protein expression of an enzyme not urgently 

correlates with its activity. Hydroxylation of Hif-1α by PHD2 is not simply dependent on its 
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expression, though increased PHD2 activity was found to be correlated with increased 

protein expression 21, but rather on its enzymatic activity and therefore subject to the 

availability of its essential substrates, Fe2+, 2-oxoglutarate, ascorbate and oxygen 94, 279 and a 

number of potential regulators. Also environmental factors (e.g. nickel (II) and cobalt (II)) 

have been shown to inhibit PHD activity causing Hif-1α stabilisation 279. From our findings we 

conclude that it is not a compensatory increase of the protein level of PHD2 (and subsequent 

augmented degradation of Hif-1α) which would explain the decreased Hif-1α protein level. 

However, precise investigation of PHD2 activity remains to be done. 

Many studies demonstrated that Hif-1α is mainly regulated at the post-transcriptional level 

and that Hif-1α mRNA remains almost unchanged after exposure to hypoxia, starvation or 

other stimuli 76, 120, 143, 340. Nevertheless, several recent in vivo studies reported also that a 

Hif-1α mRNA upregulation occurred following exposure to hypoxia 18, 57, 117, 284, 343. Since our 

present results did not clearly reveal a regulatory role of Txnrd2 in Hif-1α protein stabilisation, 

we investigated Hif-1α mRNA levels in tumour cells under basal cell culture conditions and 

following starvation. Interestingly, we observed slightly increased Hif-1α mRNA levels in wild-

type tumour cells due to starvation but not in Txnrd2-deficient tumour cells. These findings 

support the hypothesis of an interaction of Txnrd2 with Hif-1α transcription. Previous data 

hinted towards an involvement of the Akt-dependent signalling pathway in translational Hif-1α 

regulation. For example vanadate, a substance which can produce a whole spectrum of ROS 

and is known as a potent inducer of tumours in humans and animals, has been shown to 

induce Hif-1α in a human prostate carcinoma cell line dependent on the PI3K/Akt-pathway 104. 

Furthermore, it was also reported that the thioredoxin-dependent system exerts an influence 

on the cap-dependent translation of Hif-1α via an Akt-dependent signalling pathway 359. At 

the same time it was demonstrated that Hif-1α is a transcriptional target of NFĸB which is 

activated via a PIK3/Akt-dependent pathway under hypoxic conditions 18. We first 

investigated whether the reduced level of Hif-1α protein might be due to altered Hif-1α 

translation. Indeed, we observed an impaired phosphorylation and hence activity of Akt in 

Txnrd2-deficient cells when exposed to starvation. 

In summary, these findings suggest that Txnrd2 is apparently not involved in the stabilisation 

of Hif-1α protein, but positively affects Hif-1α expression via transcription, and probably via 

Akt, translation. 

4.7. Depletion of GSH de novo synthesis in Txnrd2-null tumours further 

diminishes tumour growth 

The present findings illustrate that Txnrd2 is crucial for the colonigenic and tumourigenic 

potential of tumour cells. Previous work in our laboratory demonstrated that depletion of 
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Txnrd1 had no effect on colonigenic and tumourigenic potential of tumour cells, but additional 

depletion of the GSH-pathway efficiently impaired growth of Txnrd1-deficient tumours 196. 

Similar studies with GSH-depletion by BSO treatment caused increased cell death of Txnrd2-

deficient tumour cells in vitro. Several studies demonstrated that supply of 20 mM of BSO via 

the drinking water in mouse models does strongly deplete GSH over a period of 14 days 

without toxic side effects 331. Hence, we were interested whether GSH-depletion by BSO 

leads to a further reduction in tumour growth in Txnrd2-null tumours. Indeed, growth of 

knockout tumours was further decreased by about 38%. Measurement of GSH levels in 

tumour tissue samples by HPLC indicated a massive drop of glutathione levels. Thus we 

conclude, that the concomitant inhibition of Txnrd2 and GSH system may respresent an 

efficient pharmacological strategy for cancer treatment. Indeed, drugs targeting the 

thioredoxin-dependent system as well as the GSH-pathway are already in clinical trial phase 

311. The cancer drug motexafin gadolinium e.g., is reported to inhibit the thioredoxin-

dependent system and GSH-dependent system thereby inducing increased accumulation of 

ROS 27, 79, 132. The present study strongly supports the hypothesis that the concomitant 

inhibition of both pathways offers an attractive strategy for cancer therapy. Whether this 

reduction of tumour growth is due to excessive accumulation of ROS or due to impairment of 

tumour cell proliferation or angiogensis needs to be fully elucidated. 

4.8. Txnrd2 impacts on eEPC proliferation and angiogenic function 

Since we observed a strong effect of Txnrd2-deficiency on the recruitment of pre-existing 

host vessels and on the formation of an adequate tumour vascular network, we were further 

interested if there is also an important function of Txnrd2 specifically in endothelial cells. We 

therefore used eEPCs for in vitro studies 134 In line with the studies with primary Txnrd2-

deficient MEFs, a slightly diminished proliferation of Txnrd2-deficient eEPCs was detecable. 

Embryonic endothelial progenitor cells are known to have the capacity to form capillary like 

structures in Matrigel® 171. The tube formation assay is a well known method for studying the 

angiogenic competence of endothelial cells in vitro 7, 12, 205, 348. As we observed impaired 

vessel recruitment and angiogenesis in Txnrd2-deficient tumours, we asked whether Txnrd2 

has an impact on the angiogenic capacity of endothelial cells. Indeed, we observed impaired 

sprouting of Txnrd2-deficient eEPCs in Matrigel®. The diminished sprouting could be 

rescued by restoration of an active full-length Txnrd2 in Txnrd2-null eEPCs. These findings 

support the assumption, that Txnrd2 is essential for proper proangiogenic function of eEPCs 

and thereby pivotal for vessel formation. It was already reported that Trx2 plays a critical role 

in preserving vascular endothelial cell function 354. It increases the capacity of the cells to 

scavenge ROS and improves cellular function. Further data supported a role of Trx2 in 
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promoting ischemia-mediated arteriogenesis and angiogenesis by enhancing endothelial cell 

survival through inhibition of ASK1 activity 68, 212. Recent studies also suggest a critical role of 

Txnrd2 in the antioxidant defense of the endothelium 65. The present findings show that 

Txnrd2 appears to be important for endothelial cell proliferation and angiogenic capacity, 

though the underlying mechanisms remain to be studied. 
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4.9. Future prospects 

Over the last decades extensive research has shown that ROS and antioxidant defence 

systems play an important role in the process of tumour development and progression. 

Therefore, inhibition of members of the thioredoxin family may contribute to successful 

cancer therapy. Numerous effective natural and synthetic Txnrd inhibitors are described to 

possess anti-tumour potential. The mode of action ranges from induction of oxidative stress 

to cell cycle arrest and apoptosis. Most of these drugs target the Sec-containing active site of 

Txnrds, e.g. gold compounds, platinum compounds, arsenic trioxide, motexafin gadolinium, 

nitrous compounds and various flavonoids, extensively summarised by Urig and Tonissen 310, 

316. Several studies reported on gold(III)-compounds that specifically inhibit Txnrd2, thereby 

leading to Ca2+-dependent mitochondrial membrane permeability followed by cytochrom C 

release and induction of apoptosis 64, 268-269. Motexafin gadolinium (MGd), a drug that was 

reported to undergo redox cycling and to generate superoxide and other ROS, has been also 

shown to inhibit Txnrds and ribonucleotide reductase 78-79, 132, 193-194, 266. Currently MGd was 

tested successfully already in clinical trials (phase I-III) as single drug or in combination with 

other chemotherapeutic agents and/or radiotherapy for the treatment of different types of 

cancer 4, 80, 207, 314. 

Also BSO, a selective inhibitor of intracellular GSH-synthesis, has been shown to effectively 

enhance the cytotoxicity of cisplatin-resistant tumours and the anti-tumour activity of the 

alkylating agent melphalan 55, 277. Previous work in our laboratory demonstrated, targeting 

more than one redox-regulating system might be a promising approach for anti-cancer 

therapy 197. 

The outcome of the present study suggests that inhibition of Txnrd2 alone might offer an 

efficient way to interfere with cancer growth. Depletion of the GSH-dependent system in 

tumour-bearing mice seems to provide an additional benefit in reducing tumour growth. The 

in vitro data of the present work only partially indicate an impact of Txnrd2 on tumour cell 

proliferation and colonigenic potential, whereas our in vivo data show that genetic deletion of 

Txnrd2 affects tumour progression, most likely due to impaired vessel recruitment and 

tumour vascularisation. However, further research is needed to fully clarify the role of Txnrd2 

in proliferation, angiogenesis and endothelial cell function, especially in context of the 

discrepancies between in vitro and in vivo findings. Until now most research has been 

performed to investigate the cellular functions of the cytosolic counterpart in the context of 

tumour angiogenesis and endothelial cell function 72, 162, 219, 297, whereas only some studies 

implicate the mitochondrial thioredoxin-dependent system in endothelial function 65, 68, 212, 354. 

To further explore the role of Txnrd2 in endothelial function and tumour growth, we 
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established the tamoxifen-inducible endothelial-specific Txnrd2-knockout mice (chapter 

3.4.2). The endothelial-specific Txnrd2-knockout mice are viable and thus will offer an 

efficient tool to further investigate the role of Txnrd2 in endothelial function and tumour 

angiogenesis in vivo. To study the signalling between tumour cells and endothelial cells we 

are currently also establishing an in vitro endothelial sprouting assay 227, 229, 278. This model 

will allow us to study the consequences of genetic deletion of Txnrd2 in endothelial cells and/ 

or tumour cells in the process of endothelial cell sprouting. 
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5. SUMMARY 

The mitochondria specific thioredoxin-dependent system consists of thioredoxin 2 (Trx2), 

thioredoxin reductase 2 (Txnrd2) and thioredoxin-dependent peroxidases (Prx3 and Prx5). 

Along with the glutathione (GSH)-dependent system it is critically involved in the 

maintenance of an intracellular redox balance. 

Previous studies revealed that primary Txnrd2-deficient mouse embryonic fibroblasts (MEFs) 

show impaired proliferation, produce increased levels of reactive oxygen species (ROS) and 

are highly susceptible towards several pro-oxidants as well as depletion of the intracellular 

GSH. 

In contrast, Txnrd2-null MEFs which continuously lack Txnrd2 seemed to compensate for 

Txnrd2-deficiency by upregulation of other redox-regulating systems. Additionally, these cells 

switched their energy metabolism towards anaerobic glycolysis in favour to oxidative 

phosphorylation to protect themselves from a potentially increased formation of mitochondrial 

ROS. 

 

The main objective of the current study was to analyse the impact of Txnrd2 on tumour 

growth. Indeed we could show that loss of Txnrd2 strongly impairs the colonigenic potential 

of tumour cells whereas proliferation and ROS level were unaffected. Transformed Txnrd2-

null cells were highly susceptible to depletion of intracellular GSH. 

In vivo studies revealed that deletion of Txnrd2 resulted in 50% reduction in tumour size 

which was accompanied by reduced proliferation due to impaired formation of tumour 

vessels. These phenomena could be attributed to reduced Hif-1α and VEGF protein 

expression. In agreement with the in vitro data additional therapeutic treatment of mice 

bearing Txnrd2-null tumours with L-buthionine sulfoximine (BSO), revealed increased 

susceptibility of the Txnrd2-null tumours towards GSH-depletion and resulted in further 

reduction in tumour size about 38%. Altogether, our results identify Txnrd2 as a promising 

drug target for cancer therapy. Furthermore the dual inhibition of Txnrd2 and GSH-

dependent system, offers an attractive strategy to combat tumour growth. 

 

The second part of the study investigated, whether Txnrd2 could influence endothelial cell 

proliferation and angiogenic function directly. Therefore, wild-type and Txnrd2-deficient 

embryonic endothelial progenitor cells (eEPCs) were isolated and cultivated. In vitro 

proliferation of Txnrd2-null eEPCs was only slightly diminished. In tube formation assays, the 

cells showed impaired angiogenic capacity, indicating that Txnrd2 might be indeed pivotal for 

endothelial proangiogenic function. 
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7. APPENDIX 

7.1. Abbreviations 

A    Adenine 

ADP    Adenosine diphosphate 

AG    Aktiengesellschaft 

AMP    Adenosine monophosphate 

Amp    Ampicillin 

AmpR    Ampicillin resistance gene (ß-lactamase) 

Ang    Angiopoietin 

APC    Adenomatosis polyposis coli gene 

APS    Ammonium persulfate 

ASK-1    Apoptosis stimulating kinase 1 

ATP    Adenosine triphosphate 

BCA    Bicinchoninic acid 

Bcl-2    B-cell lymphoma 2 protein family 

BNIP3    Bcl-2/adenovirus E1B 19kDa protein-interacting protein 3 

BOOH    T-Buthylhydroperoxide 

bp    Base pair 

BSA    Bovine serum albumin 

BSO    L-Buthionine sulfoximine 

C    Cytosine 

CD    Cluster of differentiation (e.g. CD4, CD19, CD31) 

cDNA    Complementary DNA 

c-Fos    FBJ murine osteosarcoma viral oncogene homolog (also AP-1) 

c-Jun    Jun proto-oncogene 

CO2    Carbon dioxide 

Co.    Company 

Cre    Cre recombinase 

Cys    Cysteine 

DAPI    4´,6-Diamidino-2-phenylindole 

DCFH-DA   Dichlorofluoescein 

DMEM    Dulbecco´s modified eagle´s medium 

DMSO    Dimethyl sulfoxide 

DNA    Desoxyribonucleic acid 
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dNTPs    Desoxynucleoside triphosphate 

DTNB    5,5´-Dithiobis-(2-nitrobenzoic acid) 

E    Embryonic day 

EDTA    Ethylenediaminetetraacetic acid 

EGTA    Ethyleneglycoltetracetic acid 

ELISA    Enzyme-linked immunosorbant assay 

Env    Viral envelope gene 

eEPCs    Embryonic endothelial progenitor cells 

ER    Endoplasmatic reticulum 

et al.    Et alii/et aliae 

F    Farad, unit of capacitance 

FACS    Fluorescence-activated cell sorting 

FAD    Flavine adenine dinucleotide 

FCS    Fetal calf serum 

FGF    Fibroblast growth factor 

FITC    Fluorescein isothiocyanate 

fl    LoxP flanked allele 

FL-1    Fluorescence channel 1 height (bandpass 530/30) 

FL-2    Fluorescence channel 2 height (bandpass 585/42) 

Flag-tag   Polypeptide protein tag 

γ-GCS    γ-Glutamylcysteine synthetase 

g    Units of gravity 

G    Guanine 

Gag    Viral capsid gene 

GAPDH   Glyceraldehyde-3-phosphate dehydrogenase 

GLUT    Glucose transporter 

Gly    Glycine (G) 

GmbH    Gesellschaft mit beschränkter Haftung 

GPx    Glutathione peroxidase 

GR    Glutathione reductase 

GSH    Glutathione (reduced) 

GSSG    Glutathione (oxidised) 

H2O2    Hydrogen peroxide 

HO•    Hydroxyl radical 

HO2•    Hydroperoxyl radical 

h    Hour 

hCMVieE   Human cytomegalovirus modified chicken promoter 
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HEPES   (4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid 

Hif    Hypoxia-inducible factor 

HIV    Human immunodeficiency virus 

HRE    Hypoxia-responsive element 

HRP    Horseradish peroxidase 

Hsp    Heat shock protein 

Ig    Immunoglobulin 

IGF2    Insulin-like growth factor 2 

IL    Interleukin 

iNOS    Inducible nitric oxide synthase 

IRES    Internal ribosomal entry site 

JNK    C-jun N-terminal kinases 

kDa    Kilodalton 

KGaA    Kommanditgesellschaft auf Aktien 

l    Litre 

LB    Luria-Bertani (agar or medium for bacteria) 

LMP agarose   Low melting point agarose 

Ltk    Leucocyte protein tyrosine kinase 

LTR    Long terminal repeat 

Lys    Lysin 

M    Molar 

MEFs    Murine embryonic fibroblasts 

MFI    Mean fluorescence intensity 

MGd    Motexafin gadolinium 

min    Minutes 

MLS    Mitochondrial leader sequence 

MMP    Mitochondria membrane potential 

MnSOD   Manganese superoxide dismutase 

MOPS    3-(N´morpholino)propansulfonic acid buffer 

mRNA    Messenger ribonucleic acid 

MTT    Methylthiozolyldiphenyl-tetrazolium bromide 

myc    Myelocytomatosis viral oncogene homolog, proto-oncogene 

n    Number of individual measurements 

n.s.    Not significant 

NAC    N-acteylcysteine 

NADPH   Nicotinamide adenine dinucleotide phosphate 

NAO    Nonyl acridine orange 
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NaSe    Natrium selenite 

NFкB    Nuclear factor кB 

NO    Nitric oxide 

NOS2    Nitric oxide synthase 2 

N´TAPe   N-terminal tandem affinity purification enhanced tag 

1O2    Singlet oxygen 

O2    Oxygen 

O2
–•    Superoxide anion 

OD    Optical density 

ODD    Oxygen-dependent degradation domain 

p    Passage number (cell culture) 

p53    Protein 53 / tumour protein 53 

PAEC    Porcine aortic endothelial cells 

PBS    Phosphate buffered saline 

PCR    Polymerase chain reaction 

PDGF    Platelet-derived growth factor 

PECAM   Platelet endothelial cell adhesion molecule 

PEITC    Phenylethyl isothiocyanate 

PFA    Paraformaldehyde 

PGC1α   Peroxisome proliferator-activated receptor γ co-activator 1-α 

PHD    Prolyl hydroxylase 

PI3K    Phosphoinositide-3-kinase 

PMSF    Phenylmethylsulfonyl fluoride 

Pol    Viral polymerase gene 

PPi    Diphosphate 

Pro    Proline 

Prx    Peroxiredoxin 

PT    Mitochondrial permeability transition pore 

PTP1B    Protein tyrosine phosphatase, non-receptor type 1 

PuroR    Purmomycin N-acetyltransferase gene 

PX-12    1-Methylpropyl 2-imidazolyl disulfide, Txnrd inhibitor 

ras    Rat sarcoma, proto-oncogene 

RCC    Respiratory chain complex 

Rev    Viral transcriptase gene 

RNA    Ribonucleic acid 

rRNA    Ribosomal ribonucleic acid 

RO•    Alkoxyl radical 
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RO2•    Peroxyl radical 

ROS    Reactive oxygen species 

rpm    Revolutions per minute 

s    Seconds 

S    Sulfur 

SD    Standard deviation 

SDS    Sodium dodecylsulfate 

SDS-Page   Sodium dodecylsulfate-polyacrylamide gel electrophoresis 

Se    Selenium 

Sec    Selenocysteine 

SECIS    Selenocysteine insertion sequence 

SelZ    Selenoprotein Z (e.g. SelZf1, SelZf2) 

Ser    Serine 

siRNA    Small interfering RNA 

SOD    Superoxide dismutase 

Strep-tag   Synthetic peptide sequence towards Strep-Tactin 

TBE-buffer   Tris-borate-EDTA buffer 

TBS-T    Tris-buffered saline with Tween 

TCA    Tricarboxylic acid cycle 

TCA    Trichloracetic acid 

TE-buffer   Tris-EDTA buffer 

TEMED   N,N,N´,N´-tetramethylethylenediamine 

TFB    Standard transformation buffer 

Tg    Transgenic 

TGF    Transforming growth factor 

TGR    Thioredoxin-glutathione reductase (Txnrd3) 

TM    Melting temperature of primers 

TMPD    Tetramethylphenylendiamin 

TNF    Tumour necrosis factor 

Tris    Tris(hydroxymethyl)aminomethane 

Trx    Murine thioredoxin 

Trx1    Murine thioredoxin, cytosolic isoform 

Trx2    Murine thioredoxin, mitochondrial isoform 

Trx-S2    Murine thioredoxin, oxidised 

Trx-(SH)2   Murine thioredoxin, reduced 

TSP1    Thrombospondin 1 

Txnrd    Murine thioredoxin reductase 
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Txnrd1    Murine thioredoxin reductase, cytosolic isoform 

Txnrd2    Murine thioredoxin reductase, mitochondrial isoform 

Txnrd3    Murine thioredoxin-glutathione reductase (TGR) 

U    Uracil 

UGA    ´Opal´ stop codon 

UTR    3´Untranslated region 

UV    Ultra violet 

Val    Valin (V) 

VE-cadherin   Vascular endothelial cadherin 

VEGF    Vascular endothelial growth factor 

VHL    Von Hippel-Lindau gene 

vs.    Versus 

wt    Wild-type 

µ    Micro 

Ø    Diameter 
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7.2. Publications 

7.2.1. Poster presentations 

The impact of the mitochondrial thioredoxin reductase (Txnrd2) on tumour progression and 

tumour-associated angiogenesis. 

Hrdina J., Perisic T., Schneider M., Conrad M., Beck H. 

87th Annual Meeting of the German Society of Physiology, March 2-5, 2008 

Cologne, Germany 

 

Loss of mitochondrial thioredoxin reductase (Txnrd2) limits tumour growth. 

Hrdina J., Perisic T., Esposito I., Schneider M., Conrad M., Beck H. 

88th Annual Meeting of the German Society of Physiology, March 22-25, 2009 

Giessen, Germany 

 

Loss of mitochondrial thioredoxin reductase (Txnrd2) delays angiogenic switch and limits 

tumour growth. 

Hellfritsch J., Perisic T., Esposito I., Schneider M., Conrad M., Beck H. 

2nd International Seeon “Tumour-vessel” Meeting, SPP1190, DFG, September 19-22, 2009 

Seeon, Germany 

 

Loss of mitochondrial thioredoxin reductase (Txnrd2) delays angiogenic switch and limits 

tumour growth. 

Hellfritsch J., Perisic T., Esposito I., Schneider M., Pohl U., Conrad M., Beck H. 

Joint Meeting 2009 of the Society for Microcirculation and Vascular Biology and the Swiss 

Society of Microcirculation, October 8-10, 2009 

Bern, Switzerland 

 

7.2.2. Oral communication 

Loss of mitochondrial thioredoxin reductase (Txnrd2) delays angiogenic switch and limits 

tumour growth. 

Young Investigator Meeting SPP1190, May 19-21, 2010 

Dresden, Germany 
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7.2.3. Original publication 

Working title: Loss of mitochondrial thioredoxin reductase limits tumour growth by 

compromising tumour-associated angiogenesis. 

Hellfritsch J., Perisic T., Esposito I., Lüdemann S., Eichhorn M., Kuhlencordt P., Koelle P., 

Schneider M., Pohl U., Conrad M., Beck H. (in preparation) 

 

The gastrointestinal microbiota effects the selenium status and selenoprotein expression in 

mice. (2009) *Hrdina J., *Banning A., Kipp A., Loh G., Blaut M., Brigelius-Flohé R. 

J Nutr Biochem. 20 (8): 638-48 

*These authors contributed equally to this work. 
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