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1. Introduction  

1.1 Yersinia enterocolitica 

1.1.1 Yersinia species and infection 

Yersiniae are gram-negative bacteria that belong to the family of Enterobacteriaceae. They are 

facultative anaerobes with an optimal growth temperature of 27°C. There are 11 known 

species and 3 of them are pathogenic for humans: the genetically closely related Y. 

pseudotuberculosis and Y. pestis and the more distantly related Y. enterocolitica. These 

bacteria share a common tropism for lymphoid tissues and the ability to resist the host 

protective innate immune responses, even though their routes of transmission are quite 

different. Y. enterocolitica and Y. pseudotuberculosis infections typically result in 

gastroenteritis and lymphadenitis while Yersinia pestis is the causative agent of pneumonic 

plagues and bubonic plagues. Y. enterocolitica are commonly transmitted via the fecal-oral 

route (Putzker et al., 2001). Humans usually get infected by the consumption of contaminated 

food (in particular pork) or water. After ingestion, the bacteria survive passage through the 

stomach and enter the small intestine where they cross the intestinal barrier probably through 

specialized epithelial cells called M cells to disseminate into mesenteric lymph nodes, liver 

and spleen (Fig.1) (Hanski et al., 1989). M cells are dispersed among the villi of the small 

intestine in non-follicle-associated epithelium or associated with follicle-associated 

epithelium where they overlay lymphoid follicles such as Peyer’s patches ( Siebers and Finlay, 

1996).  

Y. pestis is commonly transmitted through flea bites or by inhalation and then invades and 

multiplies in regional lymph nodes corresponding to the infection point (Achtman et al., 1999; 

Brubaker, 1991). Subsequent dissemination via the lymphatic system and bacteremia with 

necrotic and hemorrhagic lesions in many organs lead to death of humans or rodents (mice, 

rats) within 2 to 3 days after infection. 

 

1.1.2 Virulence factors of Y. enterocolitica 

Common to all three human pathogenic Yersinia species is the presence of a 70-kb virulence 

plasmid (pYV) (called pCD1 in Y. pestis) that encodes the nonfimbrial Yersinia adhesin 

YadA (Y. pestis does not express YadA as a result of inactivating gene mutation), a type III 

secretion system (T3SS; also known as the injectisome, for Yersinia: Ysc-T3SS), and several 

secreted and translocated host cell injected effector proteins called Yersinia outer proteins  
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Fig. 1. Scheme of infection route of Y. enterocolitica. Y. enterocolitica are commonly transmitted to humans by 

the consumption of contaminated food or water. After ingestion, the bacteria survive passage through the 

stomach and enter the small intestine, where they cross the intestinal barrier through M cells to multiply in the 

PPs and mesenteric lymph nodes, and finally disseminate into liver and spleen. 

 

(Yops) (Cornelis, 2002). Besides the pYV plasmid, enteropathogenic yersiniae also carry two 

chromosomally-located virulence determinants which support the intestinal invasion and 

virulence in mice: the inv gene, encoding an outer membrane protein called invasin (Inv) (Y. 

pestis does not express Inv as a result of inactivating gene mutation), which mediates the 

penetration of enterophatogenic yersiniae across the mucosal barrier by targeting M-cells 

(Clark et al., 1998; Hanski et al., 1989; Isberg et al., 2000; Isberg and Leong, 1990), and the 

high pathogenicity island (HPI), which comprises genes involved in the synthesis of the 

siderophore yersiniabactin (Ybt) (Carniel, 2001; Schubert et al., 2004). The HPI is also 

present in Y. pestis and other members of Enterobacteriaceae (e.g. extraintestinal E. coli, 

pathotype ExPEC). 

The plasmid-encoded Ysc–T3SS allows Yersinia to deliver Yops into the cytosol of targeted 

phagocytes and other hematopoetic cells. These Yop effectors could disturb the dynamics of 

the cytoskeleton and block the phagocytosis by macrophages and polymorphonuclear 

leukocytes (PMNs) (Ruckdeschel et al., 1995; Fallman et al., 1995; Persson et al., 1997; 

Rosqvist et al., 1990; Visser et al., 1995). They could also impair the production of reactive 

oxygen/nitrogen species (ROS/RNS), pro-inflammatory cytokines, chemokines as well as 

adhesion molecules (Boland and Cornelis, 1998; Denecker et al., 2002; Palmer et al., 1998; 

Schulte et al., 1996). These actions allow the invading Yersinia to survive and multiply 

extracellularly, mainly in lymphoid tissues such as lymph nodes, spleen and liver (Cornelis et 

al., 1989; Simonet et al., 1990).  
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The Ysc–T3SS includes the Ysc (Yop secretion) needle-like apparatus — called the Ysc 

injectisome — and about 6 Yop effector proteins that are secreted by this apparatus. The tip 

protein LcrV (Yersinia V antigen) together with YopB and YopD act as transmembrane 

channel (translocon) by forming pores in the host cytoplasma membrane, whereby Yops are 

translocated into the cytosol of target cell (Fig.2) (Hakansson et al., 1996; Neyt and Cornelis, 

1999; Rosqvist et al., 1991; Sory and Cornelis, 1994). Upon delivery into a host cell, Yop 

effectors modulate eukaryotic signaling pathways for the benefit of the pathogen (Fig.2) 

(Viboud and Bliska, 2005).  

Fig. 2. Offense weapons of Yersinia. (Modified from Heesemann et al., 2006). Yersiniae harbor pYV-plasmid- 

and chromosomally-encoded virulence factors. pYV encodes the T3SS, a set of about six anti-host effector 

proteins (Yersinia outer proteins YopE, YopP, YopT, YopH, YopO and YopM) which are microinjected into 

contacted host cells to play their roles, and the nonfimbrial Yersinia adhesin YadA. With this armament, 

yersiniae replicate extracellularly in lymphatic tissue and encounter the immune defenses of the host. The 

chromosomally-encoded virulence factors include the inv gene, encoding an outer membrane protein called 

invasin (Inv), which mediates the penetration of yersiniae across the mucosal barrier by targeting M-cells, and 

the high pathogenicity island (HPI), which encodes the yersiniabactin (Ybt) iron-uptake system. 
 

So far, six Yop effectors have been identified and functional characterized: YopH, YopE, 

YopT, YopO / YpkA, YopP/YopJ and YopM. A short summary of the functions of Yops is 

given bellow: 

YopE is a GTPase-activating protein that acts preferentially on RhoG and with lower activity 

on Rac1 and RhoA, which may explain the YopE-associated effect of actin stress fiber 

destruction (Black and Bliska, 2000; Roppenser et al., 2009; Rosqvist et al., 1991; Von 

Pawel-Rammingen et al., 2000). Recent research showed that YopE could also inhibit 

reactive oxygen species (ROS) production by inactivating Rac2  (Songsungthong et al., 2010). 
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YopH contains a C-terminal catalytic domain that is very similar to eukaryotic protein 

tyrosine phosphatase (PTPase) enzymes (Zhang et al., 1994) and is involved in resistance to 

phagocytosis and inhibition of oxidative busrt (Guan and Dixon, 1990). YopH affects 

phosphotyrosine proteins associated with signalling from the ß1-integrin receptor, such as 

focal adhesion kinases, p130Cas, and the immune-cell-specific Fyn-binding protein (Fyb, also 

called ADAP or SLAP-130) (Black and Bliska, 1997; Hamid et al., 1999; Persson et al., 

1997). YopH also downregulates the expression of monocyte chemoattractant protein 1 

(MCP-1), a chemokine that is involved in the recruitment of macrophages to lymph nodes 

(Sauvonnet et al., 2002). In addition, YopH also contributes to the modulation of the adaptive 

immune response by impairing T- and B-cell activation (Alonso et al., 2004; Yao et al., 1999). 

YopM is still enigmatic. It is a leucine-rich repeat (LRR) protein that can traffic to the 

nucleus of infected cells (Boland et al., 1996), but its function is as yet unclear. YopM has 

been shown to causes a decrease in NK cell populations in spleens (McCoy et al., 2010). 

YopM forms a protein complex with two cellular kinases, protein kinase C-like 2 (PRK2) and 

ribosomal S6 kinase 1 (RSK1) (McDonald et al., 2003). The interaction of YopM with RSK1 

seems to be essential for virulence of Yersinia (McCoy et al., 2010). Recently, it was shown 

that the LRR6-15 region of the YopM of Y. pseudotubeculosis is required for PRK2 binding, 

whereas the C-terminal domain of YopM (from LRR12 to C-terminus) is required for binding 

to RSK1. Deletion of either of these domains from YopM resulted in increased production of 

IFN-γ and decreased levels of IL-18 and IL-10 in serum of infected mice, and subsequently to 

the abrogation of the virulence of Y. pseudotuberculosis via the orogastric route of infection 

(McPhee et al., 2010). 

YopO (YpkA in Y. pseudotuberculosis and Y. pestis) is a multidomain protein that contains 

an N-terminal serine/threonine kinase domain, a C-terminal guanine nucleotide dissociation 

inhibitor (GDI) domain Rho-GTPase, followed by a domain required for binding to actin. The 

GDI domain of YopO binds to and prevents nucleotide exchange in Rac and RhoA that 

results in the inhibition of stress fiber formation (Barz et al., 2000; Dukuzumuremyi et al., 

2000;). However, YopO seems to specifically block Rac-dependent Fc-receptor 

internalization pathway but not complement receptor 3-dependent uptake, which is controlled 

by Rho activity (Groves et al., 2010).  

Actin binding to YopO is necessary for effective autophosphorylation of YopO at amino acids 

serin (S) 90 and S95 and subsequent activation of YopO’s kinase activity (Trasak et al., 2007). 

The kinase activity of YopO regulates rounding/arborization and is specifically required for 

inhibition of Yersinia YadA-dependent phagocytosis (Trasak et al., 2007). Previously, a 
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molecular target for the serine/threonine kinase domain of Yersinia protein kinase A (YpkA) 

has been discovered. Navarro et al. demonstrated that YpkA phosphorylates Gαq at Ser47, a 

key residue located in the diphosphate binding loop that is important for GTP binding, and 

thus resulting in the impairment of guanine nucleotide binding by Gαq and subsequent 

inactivation of multiple Gαq-mediated signalling pathways (Navarro et al., 2007). 

Interestingly, Gαq knockout mice have increased bleeding times and defective platelet 

activation (Offermanns et al., 1997). Bleeding abnormalities are, remarkably, also the 

hallmark phenotype of the plague, suggesting that YpkA-mediated inhibition of Gαq may 

contribute to the most documented symptoms of Yersinia pestis infection, extensive bleeding 

(Laskowski-Arce and Orth, 2007; Navarro et al., 2007). 

YopQ (YopK in Y. pseudotuberculosis and Y. pestis) has been shown to control the 

translocation of Yop effectors into eukaryotic cells by regulating the size of the translocation 

pore (Holmstrom et al., 1997). Recently, YopK has been shown to inhibit NLRP3/NLRC4 

inflammasome recognition of TTSS by yet unknown mechanism (Brodsky et al., 2010).   

YopT is a cysteine protease that preferentially inactivates Rho GTPases, including RhoA, 

Rac1 and Cdc42, by cleaving the C-terminal geranylgeranylated-cysteine methyl ester and 

thereby releasing the GTPases from the membrane and leading to their inactivation (Fueller 

and Schmidt, 2008; Shao et al., 2002; Zumbihl et al., 1999).  

YopP (YopJ in Y. pseudotuberculosis and Y. pestis) induce apoptosis in macrophages and 

dendritic cells (DCs), but not in human neutrophils (Spinner et al., 2010), and inhibit the 

activation of the mitogen-activated protein kinases (MAPKs), like extracellular signal-

regulated kinase (ERK), c-Jun N-terminal Kinase (JNK) and p38, and the Nuclear factor-

kappa B (NF-κB), thereby inhibiting the release of inflammatory cytokines, such as tumor 

necrosis factor alpha (TNF-α) and interleukin-8 (IL-8) (Ruckdeschel et al., 1997, 1998, 

Boland and Cornelis, 1998; Denecker et al., 2001; Denecker et al., 2002).  

However, the molecular function of YopP/J is controversial. Whereas some reports have 

shown that YopJ has acetyltransferase activity and prevent activation of IKK and MAPKK 

family members by acetylating serine and threonine residues in the activation loop of 

MAPKKs and IKKs (Mittal et al., 2006; Mukherjee et al., 2006), other studies showed that 

YopJ acts as a cysteine protease and, similarly deubiquitinates proteins by cleaving of lysin 

(K)48- and K63-linked (poly)ubiquitin chains from proteins involved in the signal 

transduction cascade, such as TRAF2, TRAF6, IKKα, IKKß, and IκBα and thereby inhibiting 

activation of NF-κB (Haase et al., 2005; Sweet et al., 2007; Thiefes et al., 2006; Zhou et al., 

2005a). This attenuation of signal transduction is clearly observed when YopP/YopJ is 
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overexpressed. Whether YopP/YopJ is involved in attenuation of the ubiquitination of cellular 

proteins by direct deubiquitination remains to be elucidated (Haase et al., 2005; Mukherjee et 

al., 2007), because both ubiquitination and phosphorylation are essential post-translational 

modifications that are involved in the activation of MAPK and NF-κB signaling pathways 

(Perkins, 2006). Furthermore, phosphorylation is often a prerequisite for subsequent substrate 

recognition by the ubiquitin-conjugating machinery to dock with and ubiquitinates substrates 

(Adhikari et al., 2007; Perkins and Gilmore, 2006; Yamamoto et al., 2006). Thus, YopJ-

mediated acetylation of MKKs that competes with phosphorylation targeted to the same 

serine and threonine residues would result in the attenuation of ubiquitination and, 

subsequently, alter the course of MAPK and NF-κB signaling pathways. 

There are yet no known eukaryotic functional homologs of YopJ that have executed serine 

and threonine acetylation. In contrast, many cellular deubiquitinating enzymes are known, 

which attenuates NF-κB signalling by selectively removing K48-linked monoubiquitin and/or 

K63-linked polyubiquitin chains (Sun, 2008). 

 

1.2 The �F-κB family 

NF-κB was first identified as a DNA-binding complex governing transcription at the 

immunoglobulin light chain gene intronic enhancer over 25 years ago (Lenardo et al., 1987; 

Sen and Baltimore, 1986). Later on, it was identified as a principal transcriptional regulator 

that plays a pivotal role in innate and adaptive immunity, inflammation, development, cell 

proliferation and survival. In mammals, the NF-κB family consists of five members called 

RelA (p65), RelB, c-Rel, NF-κB1 (p50/p105), and NF-κB2 (p52/p100) (Gilmore and 

Herscovitch, 2006). RelA, RelB, and c-Rel are synthesized as mature proteins associated with 

inhibitory proteins termed IκBs (inhibitors of NF-κB), while NF-κB1 and NF-κB2 are first 

synthesized as large precursors, p105 (105kDa) and p100 (100kDa), which are 

posttranslationally processed to the DNA-binding subunits p50 and p52, respectively. 

NF-κB proteins are characterized by the presence of a conserved 300-amino acid Rel 

homology domain (RHD) that is located toward the N terminus of the protein. The RHD 

contains a nuclear localization sequence (NLS) and is responsible for dimerization, interaction 

with IκBs, and binding to DNA. Besides to the RHD, RelA or RelB and c-Rel also contain a 

transactivation domain through which they activate transcription (Ghosh and Karin, 2002). In 

contrast, p50 and p52 have only a DNA binding domain and lack the transactivation domain. 

Therefore, p50 and p52 are only able to promote gene transcription if they either form a 
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heterodimer with RelA, RelB, or c-Rel or recruit other coactivators, like Bcl-3 (a member of 

the IκB family) (Massoumi et al., 2006), which contains a transactivation domain that 

switches the transcriptional properties of NF-κB p50 or p52 homodimers from a repressive 

state to an activating state.  

Generally, in normal resting cells, NF-κB members are sequestered within the cytoplasm in a 

latent form as a homo- and heterodimeric complex through its association with the inhibitory 

IκB proteins, which consists of IκBα, IκBβ, IκBε, IκBγ and Bcl-3 (Hayden and Ghosh, 2004). 

IκBs contain multiple ankyrin repeats that interact with and mask the NLS of associated Rel 

proteins, and thus prevent nuclear translocation of Rel subunits. IκBs contain also an N-

terminal regulatory domain, which controls their inducible degradation. The precursor NF-κB 

proteins, NF-κB1 (p105) and NF-κB2 (p100), also function as IκBs as a result of ankyrin 

repeat regions in their C-termini and  of which must be degraded in order to generate the 

mature Rel subunits. Upon exposure to pro-inflammatory agents such as TNF-α, IL-1, B-cell 

mitogens, bacterial lipopolysaccharide (LPS), or viral infection, IκB kinase (IKK) complex 

are activated and subsequently lead to the phosphorylation of IκBs on two conserved serine 

residues, which result in the subsequent ubiquitination and degradation of the IκBs by the 26S 

proteasome (Nishikori et al., 2005; Verma et al., 1995). NF-κB is thus liberated by this 

cytoplasmic “switch” and subsequently translocates into the nucleus, where it acts as a 

transcription factor by binding to regulatory DNA sequences known as κB sites (Chen et al., 

1998), thereby initiating transcription of target genes that encode cytokines, chemokines, 

adhesion molecules and cell survival proteins. 

The NF-κB activation pathways are broadly classified as the canonical and non-canonical 

pathways, depending on whether activation involves IκB degradation or p100 processing 

(Fig.3). 
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Fig.3. Pathways leading to the activation of �F-κB. (Adapted from Perkins, 2007). The canonical pathway is 

induced by TNF-α, IL-1 and many other stimuli, and is dependent on activation of IKKβ. This activation results 

in the phosphorylation (P) of IκBα at Ser32 and Ser36, leading to its ubiquitination (Ub) and subsequent 

degradation by the 26S proteasome. Release of the NF-κB complex allows it to relocate to the nucleus. Under 

some circumstances, the NF-κB–IκBα complex shuttles between the cytoplasm and the nucleus (not shown). 

IKK-dependent activation of NF-κB can occur following genotoxic stress. Here, NF-κB essential modifier 

(NEMO, aka IKKγ) localizes to the nucleus, where it is sumoylated and then ubiquitinated, in a process that is 

dependent on the ataxia telangiectasia mutated (ATM) checkpoint kinase. NEMO relocates back to the 

cytoplasm together with ATM, where activation of IKKβ occurs. IKK-independent atypical pathways of NF-κB 

activation have also been described, which include casein kinase-II (CK2) and tyrosine-kinase-dependent 

pathways. The non-canonical pathway results in the activation of IKKα by the NF-κB-inducing kinase (NIK), 

followed by phosphorylation of the p100 NF-κB subunit by IKKα. This results in proteasome dependent 

processing of p100 to p52, which can lead to the activation of p52–RelB heterodimers that target distinct κB 

elements. Phosphorylation of NF-κB subunits by nuclear kinases, and modification of these subunits by 

acetylases and phosphatases, can result in transcriptional activation and repression as well as promoter-specific 

effects. Moreover, cooperative interactions with heterologous transcription factors can target NF-κB complexes 

to specific promoters, resulting in the selective activation of gene expression following cellular exposure to 

distinct stimuli. Ac, acetylation; bZIP, leucinezipper-containing transcription factor; HMG-I, high-mobility-

group protein-I; IκB, inhibitor of κB; IKK, IκB kinase; LMP1, latent membrane protein-1; LPS, 

lipopolysaccharide; NF-κB, nuclear factor-κB; RHD, Rel-homology domain; TAD, transcriptional activation 

domain; TF, transcription factor; UV, ultraviolet; Zn-finger TF, zinc-finger-containing transcription factor. 
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1.2.1 The canonical �F-κB pathway 

In the canonical pathway, which is the predominant NF-κB signaling pathway, stimulating 

cells with agonists like TNF-α, LPS or IL-1β activate the IKK complex that is composed of 

two catalytic subunits IKKα and IKKβ and a regulatory subunit IKKγ (also known as NF-κB 

essential modulator, NEMO). Activated IKK phosphorylates IkBα, predominantly via the 

action of IKKβ, triggering its lysine-48–linked polyubiquitination and proteasomal 

degradation, releasing associated NF-κB subunits to translocate into the nucleus. Studies with 

knockout mice have shown that IΚΚβ is the dominant kinase in regulating pathogen-

associated molecular patterns (PAMPs)-, TNF-, and IL-1-induced activation of NF-κB (Li et 

al., 1999; Tanaka et al., 1999), whereas IKKα revealed an opposing role to IKKβ in the 

control of inflammation and innate immunity. IKKα contributes to suppression of NF-κB 

activity by accelerating both, the turnover of the NF-κB subunits RelA and c-Rel, and their 

removal from pro-inflammatory gene promoters (Lawrence et al., 2005). 

 

1.2.2 The non-canonical pathway 

In contrast to receptor-mediated activation of the canonical NF-κB pathway, which occurs 

within minutes and does not require new protein synthesis, activation of the noncanonical NF-

κB pathway takes several hours and requires new protein synthesis (Zarnegar et al., 2008). 

The non-canonical pathway of NF-κB activation operates mainly in B cells in response to 

stimulation of a subset of the TNF receptor superfamily, including B cell activated factor 

(BAFF), lymphotoxin-β (LTβ) and CD40 ligand that mediate secondary lymphoid 

organogenesis, maturation of B cells, adaptive humoral immunity, and promotion of cell 

survival (Zarnegar et al., 2004). Stimulation of these receptors leads to the recruitment of 

multiple adaptor proteins, such as TNF receptor-associated factor (TRAF) 2, TRAF3, TRAF6 

(Hinz et al., 2010; Zarnegar et al., 2008) that recruit cellular inhibitor of apoptosis 1 and 2 

(cIAP1 and cIAP2) and NF-κB inducing kinase (NIK). Subsequently, NIK is activated 

through a currently unknown mechanism, which in turn selectively phosphorylates and 

activates the IKKα catalytic subunit independent of IKKβ and NEMO (Mahoney et al., 2008; 

Zarnegar et al., 2008). IKKα homodimer then phosphorylates NF-κB2/p100 at two C-terminal 

serine residues leading to the selective degradation of its IκB-like domain by the proteasome. 

The mature p52 subunit and its binding partner Rel-B translocate into the nucleus to regulate 

gene expression (Belich et al., 1999). 

The physiological role of p52 is highlighted by the association of mice lacking p52 (NF-κB2) 

with their impairment to develop normal B cell follicles and germinal centers (Caamano et al., 
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1998; Franzoso et al., 1998; Paxian et al., 2002). 

 

1.2.3 Atypical �F-κB activation pathway  

Like the canonical and non-canonical pathways, the atypical NF-κB pathway also plays an 

important part in immune functions (Beinke and Ley, 2004). But unlike the noncanonical 

pathway, constitutive processing of NF-κB1/p105 to produce p50 subunit by the 26s 

proteasome is not regulated by the agonists stimulation. In fact, p105 is phosphorylated by 

IKK after activation of the canonical pathway, targeting it for partial degradation by the 

proteasome to release p50 for RelA association. Because the inducible degradation of p105 

regulates NF-κB as well as the activation of Tpl-2 kinase (Beinke and Ley, 2004), therefore, it 

is considered to be an atypical pathway (Sun and Ley, 2008). Tpl-2 is a mitogen-activated 

protein (MAP) 3-kinase that  regulates inflammatory responses by mediating Toll-like 

receptor (TLR)-stimulated activation of ERK and production of TNF-α in macrophages 

(Beinke and Ley, 2004). 

 

1.3 Ubiquitination and deubiquitination 

1.3.1 Ubiquitin and ubiquitination 

Ubiquitin (Ub) is a highly conserved 76-amino-acid polypeptide that is covalently, but 

reversibly, attached to one or more lysine (Lys) residues of target proteins through an 

enzymatic cascade involving three classes of enzymes termed Ub-activating (E1), Ub-

conjugating (E2 or Ubc) and Ub-ligating (E3) enzymes (Fig.4) (Hershko and Ciechanover, 

1998). In the first step, ubiquitin is activated by E1 in an ATP-dependent reaction. Secondly, 

the activated ubiquitin is transferred to E2, forming an E2-Ub thioester. Finally, in the 

presence of E3, ubiquitin is attached to a target protein through an isopeptide bond between 

the carboxyl terminus of ubiquitin and the ε-amino group of a lysine residue in the target 

protein. 

The types of Ub modification of proteins are diverse. In the simplest form, a single Ub 

molecule is attached, which is defined as monoubiquitination (Fig.4) (Hicke and Dunn, 2003). 

Alternatively, several Lys residues can be tagged with single Ub molecules, giving rise to 

multiple monoubiquitination, also referred to as multiubiquitination (Fig.4) (Haglund et al., 

2003). Since Ub contains seven Lys residues itself (Lys6, Lys11, Lys27, Lys29, Lys33, Lys48 

and Lys63), Ub molecules can form different types of chains in an iterative process, known as 

polyubiquitination, and each Lys residue is possibly involved in chain formation in vivo. 
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However, Ub chains linked via Lys48 or Lys63 are the best characterized so far (Hicke et al., 

2005). Generally, polyubiquitin chains linked through lysine at position 48 of ubiquitin (Lys 

48) target protein substrates for degradation by the 26S proteasome (Hershko and 

Ciechanover, 1998; Hochstrasser, 1995), whereas K63-linked polyubiquitin chains regulate 

many functional activities, such as protein trafficking, protein–protein interactions, DNA 

repair and regulation of signal-transduction events, independently of proteolytic degradation 

(Adhikari et al., 2007; Chen, 2005; Hershko and Ciechanover, 1998; Liu et al., 2005; Pickart 

and Eddins, 2004).  

Like phosphorylation, ubiquitination is a reversible process that is counter-regulated by 

deubiquitinating enzymes (DUBs). 

 

1.3.2 Deubiquitinating enzymes and Deubiquitination 

Deubiquitinating enzymes (DUBs) form a large group of proteases that hydrolyze ubiquitin 

chains from proteins, peptides, or small molecules, a process that is known as 

deubiquitination to oppose the functions of their counteractive ubiquitinases, which play an 

important role in regulating ubiquitin-dependent pathways. The existence of close to 100 

DUBs in the human genome implies that DUBs may possess certain levels of substrate 

specificity and participate in specific biological functions. DUBs can be divided into five 

families according to their catalytic domains: the ubiquitin carboxy-terminal hydrolases 

(UCHs), the ubiquitin-specific proteases (USPs), the ovarian tumour-related proteases 

(OTUs), the Machado–Joseph disease protein domain proteases (MJDs), and the 

Jab1/Pab1/MPN-domain-containing metallo-enzymes (JAMMs) (Nijman et al., 2005; Sun, 

2008).  

The UCH family consists of a small number of structurally related DUBs that are known to 

cleave short ubiquitinated peptides, which play an important role in the recycling of free 

ubiquitin. The physiological role of UCHs is highlighted by the association of one member, 

UCH-L1, one of the most abundant proteins in the mammalian nervous system, with the 

development of neurodegenerative diseases (Chen et al., 2010; Gong and Leznik, 2007; Sun 

and Ley, 2008). 

USPs are characterized by the presence of two conserved sequence motifs — the cysteine and 

histidine boxes — in their catalytic domain (Gong and Leznik, 2007) and form the largest 

family of DUBs with 53 and 54 USP genes that have been so far identified in the human and 

mouse genome, respectively (Gong and Leznik, 2007). Although the function of most DUBs 

is yet to be characterized, one USP-family member, CYLD, has been extensively studied in 
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Fig. 4. Scheme of the protein ubiquitination process. (Modified from Sun, 2008). The ubiquitination reaction 

is catalysed by the sequential and cooperative actions of three enzymes: the ubiquitin-activating enzyme (E1), 

the ubiquitin-conjugating enzyme (E2) and the ubiquitin ligase (E3). In the first step, ubiquitin is activated by E1 

in an ATP-dependent reaction. Secondly, the activated ubiquitin is transferred to E2, forming an E2-Ub thioester. 

Finally, in the presence of E3, ubiquitin is attached to a target protein through an isopeptide bond between the 

carboxyl terminus of ubiquitin and the ε-amino group of a lysine residue in the target protein. Since Ub contains 

Lys residues itself, Ub molecules can form different types of chains in an iterative process, known as 

polyubiquitination. The K48-linked polyubiquitin chains generally mark substrate proteins for proteasomal 

degradation and to release free ubiquitin molecules, whereas the K63-linked polyubiquitin chains together with 

monoubiquitin mediate various non-degradative functions, including protein trafficking, protein–protein 

interactions, functional activation of signalling factors, receptor endocytosis, DNA repair and DNA replication, 

and gene transcription. DUBs can deconjugate the ubiquitin chains from ubiquitinated proteins and proteasomal 

degradation products, thereby reversing the ubiquitination process and regenerating free ubiquitin molecules.  

 

both patients and animal models.  

OTUs, being composed of about 24 members in the human genome, form the second largest 

mammalian DUB family (Gong and Leznik, 2007; Makarova et al., 2000). The first OTU 

gene was identified in Drosophila melanogaste and it was found to regulate the development 

of the ovaries of the Drosophila melanogaste; mammalian OTUs were later discovered based 

on OTU-domain homology (Makarova et al., 2000). Several OTU-family members, such as 
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A20, Cezanne, DUBA and otubain-1, are involved in the regulation of immune responses.  

Until now, little is known about the MJD and JAMM families of DUBs, and it is still unclear 

whether they also have a role in immune regulation. 

Although the role of DUBs in the immune system has been less well studied, accumulating 

evidence has provided important information about how Ubiquitination/deubiquitination 

regulates signal transduction from different immune receptors of both the innate and adaptive 

immune system, such as TLRs, TNFR, and T and B cell receptors (TCR, BCR). 

 

1.4 The role of Ubiquitination in innate immune signaling pathways 

Upon exposure to PAMPs, the innate immune response and the subsequent inflammation 

reaction rely on evolutionarily conserved receptors termed pattern-recognition receptors 

(PRRs) (Lee and Kim, 2007). These signaling receptors, such as TLRs, and the nucleotide-

binding oligomerization domain (NOD) receptors, have the ability to activate several 

phosphorylation-dependent signaling cascades that lead to the activation of  transcription 

factors, such as NF-κB, activator protein-1 (AP1), IFN-regulatory factor 3 (IRF-3), and IRF-7. 

In regard of the aforementioned information the IKK complex (two catalytic subunits, IKKα 

and IKKβ, and a regulatory subunit IKKγ, also known as NEMO) phosphorylates IκBs and 

p105, which triggers K48-linked ubiquitination and proteasomal degradation of these 

inhibitors and release of p50 from p105, leading to the nuclear translocation of canonical NF-

κB complexes (e.g. p50/RelB).  

IKK activation by TLRs and cytokine receptors requires members of the TRAF (TNF 

receptor-associated factor) family, which belongs to another family of adaptor proteins that 

bridge the intracellular domains of multiple receptors, such as TNFR, IL1R, and TLRs, to 

downstream effectors involved in the inflammatory and innate immune signaling pathways. 

The TRAF family consists of seven members, TRAF1 through TRAF7. TRAF3 and TRAF6 

are most important in PRR signaling among TRAF family members. The TRAF6-dependent 

pathway engages MAPKs and IKK, which activate transcription factors, such as AP-1 and 

NF-κB that participate in proinflammatory cytokine induction (Fig.5a). Unlike TRAF6, 

TRAF3 is required for the activation of IRF-3 and the induction of type I interferons but not 

NF-κB. IRF-3 regulates e.g. the transcription of IFNα/β genes in response to viral infection 

(Hacker et al., 2006; Oganesyan et al., 2006) (Fig.5b). TLR signaling is transduced through 

nondegradative K63-linked polyubiquitination of adapter proteins, such as TRAF6 and 

TRAF3. Polyubiquitinated TRAFs recruit downstream signalling molecules that function as 
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both adaptors and E3 ubiquitin ligases by catalysing K63-linked self-ubiquitination and the 

ubiquitination of other signalling molecules. For instance, the ubiquitin-dependent IKK-

activating kinase, TAK1 (transforming-growth factor-β- activated kinase 1) which recognizes 

the K63-linked ubiquitin chains through its partner protein, TAB2 (TAK1-binding protein 2) 

or TAB3, is recruited and activated (Fig.5a). IKKγ also has ubiquitin-binding function and 

recognizes K63-linked ubiquitin chains (Ea et al., 2006; Wu et al., 2006). Together, the 

ubiquitinated TRAFs form a platform that recruits TAK1 and IKK complexes and thus 

leading to their activation (Adhikari et al., 2007).  

This whole activation process is subject to tight regulation by negative mechanisms, and 

accumulating evidence indicates that the DUBs have a crucial role in this control of innate 

immune-receptor signalling. It is reported that CYLD, a member of the USP family of DUBs, 

could target multiple ubiquitinated signalling molecules and thus regulates diverse biological 

functions. As the role of CYLD in Yersinia infection is the focus of this thesis, a more 

detailed description is presented in the next section. 
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Fig. 5. Regulation of innate immune-receptor signalling by deubiquitinating enzymes (DUBs). (Adapted 

from (Sun, 2008). Toll-like receptors (TLRs) stimulate the K63-linked ubiquitination of TRAF6 and TRAF3, 

which leads to the recruitment of downstream signalling molecules. (a) Ubiquitinated TRAF6 recruits the IKK 

complex and its activating kinase, transforming growth factor-β-activated kinase 1 (TAK1) in association with 

TAK1-binding protein 1 (TAB1) and TAB2 through the ubiquitin-binding function of IKKγ and TAB2, leading 

to activation of these kinases. The IKK complex phosphorylates IκB, triggering its K48-linked ubiquitination 

and proteasomal degradation. Through TAX1-binding protein 1 (TAX1BP1) and A20-binding inhibitor of NF-

κB 1 (ABIN1), A20 binds to and deubiquitinates TRAF6 and IKKγ, respectively, thereby negatively regulating 

NF-κB signalling. CYLD is also involved in the negative regulation of NF-κB signaling by deubiquitinating 

TRAFs (see the following chapter). Deubiquitination of IκB, which is another mechanism for the negative 

regulation of NF-κB, involves USP15 (ubiquitin-specific protease 15), a DUB that is associated with the COP9 

signalosome (CSN). (b) Ubiquitinated TRAF3 recruits the IKK-related kinases, TANK-binding kinase 1 (TBK1) 

and IKKε, through the adaptor protein TANK (TRAF-family-member-associated NF-κB activator). Similar to 

IKKγ, TANK is ubiquitinated in the signalling complex. Deubiquitination of TRAF3 is mediated by DUBA, a 

crucial and specific negative regulator of type I interferon (IFN) induction. (c) The cytoplasmic RNA sensor, 

retinoic-acid-inducible gene I (RIG-I), undergoes ubiquitination on binding to viral RNA, which is required for 

its association with the adaptor, IPS1 Interferon β-promoter (IF�B-promoter stimulator 1), and activation of 

downstream signalling events. It is currently unclear which DUB regulates the deubiquitination of RIG-I.  
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1.5 Cylindromatosis (CYLD) 

1.5.1 The discovery of CYLD 

CYLD was originally identified as a gene mutated in familial cylindromatosis (FC, OMIM 

132700), an autosomal dominant predisposition to multiple neoplasms of the skin appendages 

and it was termed cylindroma because of their characteristic microscopic architecture (Bignell 

et al., 2000) (Fig.6A). Cylindromas are benign tumours that typically appear on the scalp and 

are thought to be derived from hair follicle stem cells (Massoumi and Paus, 2007). The 

development of many tumours on the scalp sometimes leads to the formation of a confluent 

mass which may ulcerate or even get infected, and which has led to the designation ‘turban 

tumour syndrome’ (Fig.6B).  

 

(A)              (B) 

Fig. 6. Macroscopic pictures of two patients with cylindromatosis. A was adopted from Massoumi et al. 

(Massoumi and Paus, 2007) . B was adpted from Biggs et al. (Biggs et al., 1995). 

 

In familial cylindromatosis, the cylindromas usually begin to appear in the second or third 

decades, accumulating in number and growing slowly in size throughout the adult life and it 

seems that women are more frequently affected than men.This disease can cause considerable 

discomfort and disfigurement and, in severe cases, removal of the scalp and reconstruction 

using skin grafts is required. Malignant change with distant metastasis is unusual despite the 

profusion of benign lesions. 

Linkage analysis in families with multiple cylindromas mapped the susceptibility gene 

(CYLD) to a single locus on chromosome 16q12-13 (Biggs et al., 1995). Loss of 

heterozygosity at the same locus was reported in a large number of these tumors suggesting 

that CYLD may function as a tumor suppressor (Biggs et al., 1996; Biggs et al., 1995; 
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Takahashi et al., 2000). Most of the mutations, which are mainly located at the C-terminal of 

the CYLD coding sequence, lead to the formation of truncated proteins (Bignell et al., 2000). 

Besides to its role in the etiology of cylindromatosis, CYLD also acts as a tumor suppressor in 

multiple types of human cancer, which includes melanoma (Massoumi et al., 2009), colon 

carcinoma (Hellerbrand et al., 2007), lung cancer (Zhong et al., 2007) and multiple myeloma 

(Annunziata et al., 2007; Keats et al., 2007).  

CYLD expression is highest in the human brain, skeletal muscles, and testes (Bignell et al., 

2000), whereas in mouse, the highest expression levels of CYLD are detected in the brain, 

thymus, testes, and skin (Massoumi et al., 2006). 

 

1.5.2 Functional domains of CYLD 

Full-length CYLD is composed of 20 exons (the smallest being 9 bp), of which the first 3 are 

untranslated (UTR) (Fig.7), and extends over approximately 56 kb of genomic DNA. Exon 3 

(in the 5´ UTR) and the 9-bp exon 7 (which is coding) both show alternative splicing. 

Overlapping exon 1 is a GC-rich region where there are many CpG dinucleotides and which 

has the properties of a CpG island. CYLD protein is predicted to be approximately 956 aa 

long (molecular weight approximately 120kDa). 

CYLD protein contains several functional domains (Fig.7) (reviewed e.g. in Massoumi, 2010). 

Motif analysis revealed that the C-terminal region of CYLD displayed good sequence 

similarity to ubiquitin-specific proteases (USP) (Nijman et al., 2005). Like other members of 

the DUB enzymes, CYLD also exhibits a catalytic domain composed of two conserved 

subdomains at the C terminus that contains the active cysteine and histidine which form the 

catalytic pocket. The B-box-type zinc finger domain within UCH is found in TRIM (tripartite 

motif) proteins that are E3 ligases. Although in vitro ubiquitination assays demonstrated that 

CYLD lacks ubiquitin ligase activity, it appears that the B-box plays an important role in 

CYLD cellular localization and deletion of the CYLD B-box resulted in sustained nuclear 

localization. In addition, CYLD contains within its N-terminal section three cytoskeletal-

associated-protein glycine-(CAP-Gly) motifs that have been proposed to participate in 

binding to microtubules (Weisbrich et al., 2007). Indeed, recent studies could show that 

CYLD associates with microtubules, and the first CAP-Gly domain of CYLD is mainly 

responsible for the interaction (Gao et al., 2008). 

Comparison of the CYLD sequence with itself reveals a short, repeated segment of 

approximately 25 amino acids (aa 388–413 and 446–471) that is rich in proline residues. This 

proline-rich region may constitute an SH3-binding domain, which mediates protein-protein 
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interactions in signal transduction or vesicle-transport pathways (Feng et al., 1994).  

 

Fig. 7. The structure of the CYLD protein (figure was taken from Massoumi 2010). The CYLD protein 

contains three CAP-Gly repeats (blue), two proline-rich segments (gold), a phosphorylation region (gray), and a 

zinc-finger-like B-box motif (green) within the UCH (or USP) domain (red). The first three exons are 

untranslated (UTR).  

 

1.5.3 CYLD substrates and their reported functions 

Many different cellular functions have been ascribed to CYLD and the loss of CYLD 

expression promotes cell survival (Brummelkamp et al., 2003; Kovalenko et al., 2003; 

Trompouki et al., 2003), cell proliferation (Massoumi et al., 2006), and migration (Gao et al., 

2008). Moreover, the study of Cyld
-/-

 animals highlights the importance of CYLD in 

regulating diverse physiological processes, including spermatogenesis (Wright et al., 2007), 

osteoclastogenesis (Jin et al., 2008), and the immune response (reviwed e.g. in Sun, 2008). In 

the following the functions of CYLD being identified so far and the substrates involved will 

be described. 

Proliferation and cell cycle: the CYLD–BCL3 association leads to a significant reduction in 

the Lys-63-polyubiquitination of BCL3, a process that is important for BCL3 nuclear 

translocation and cyclin D1 upregulation (Massoumi et al., 2006). Midbody localization of 

CYLD induces inactivation of HDAC6 and a delay in cytokinesis, owing to an increase in 

acetylated α-tubulin (Gao et al., 2008; Wickstrom et al., 2010). Deubiquitination of polo-like 

kinase1(PLK1) by CYLD promotes cell division, and is required for entry into mitosis 

(Stegmeier et al., 2007).   

Ca
2+

 channel signaling: Deubiquitination of the Ca
2+

 TRPA1 (Transient receptor potential 

cation channel, subfamily A, member 1) channel by CYLD increases the cellular pool of 

TRPA1 proteins (Stokes et al., 2006).  

Survival and apoptosis: The removal of the Lys-63-linked polyubiquitin chains from 

TRAF2, TRAF6 or NEMO by CYLD attenuates TNF-α-induced classical NF-κB signaling, 

and leads to programmed cell death (Brummelkamp et al., 2003; Kovalenko et al., 2003; 
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Trompouki et al., 2003). In addition, CYLD enhances cell survival by deubiquitinating 

TRAF2 which leads to subsequent JNK activation and induction of apoptosis (Reiley et al., 

2004). CYLD can also remove Lys-48-linked polyubiquitin chains from drosophila (d) 

TRAF2, thereby preventing the proteolytic degradation of TRAF2 (Xue et al., 2007). A direct 

interaction between TRIP and CYLD is necessary for downregulation of NF-κB activity after 

TNF-α stimulation and subsequent cell survival (Regamey et al., 2003).  

Inflammation: CYLD negatively regulates pathogen-induced inflammation and NF-κB 

signaling via TRAF6 and TRAF7 deubiquitination (Lim et al., 2007).  

T-cell development and activation: CYLD-mediated Lys-48- and Lys-63-deubiquitination 

of the tyrosine kinase Lck blocks downstream TCR signaling (Reiley et al., 2006). CYLD-

mediated TAK1 deubiquitination prevents the spontaneous activation of TAK1 and its 

downstream signaling. This activity prevents sustained inflammation (Reiley et al., 2007).  

Antiviral response: CYLD can negatively regulate innate antiviral responses through RIG-I 

deubiquitination (Friedman et al., 2008; Zhang et al., 2008).  

Spermatogenesis: CYLD deubiquitinates receptor-interacting protein 1 (RIP1) in wild-type 

germ cells and blocks the aberrant expression of survival genes via NF-κB signaling (Wright 

et al., 2007). 

 

1.5.4 Cyld-deficient mice  

In order to unravel the in vivo role of CYLD, a series of CYLD-deficient mice have been 

recently engineered and characterized (Hovelmeyer et al., 2007; Massoumi et al., 2006; 

Reiley et al., 2006; Trompouki et al., 2009; Zhang et al., 2006). Generally, these studies have 

confirmed the physiological importance of this enzyme and provided interesting insights into 

new putative functions of CYLD. However, also contradictory phenotypes were reported. 

Here is a short summary of the initial phenotypic characterization of Cyld
−/−

 mice and their 

engineering stratigies reported by the five groups mentioned above. The engineering 

strategies could so far be relevant; diverse cyld gene targeting strategies and/or genetic 

background of used embryonic stem (ES) cells or mice could be the reason for contradictory 

results obtained from the different knockout mice. 

1. Massoumi et al. reported in their CYLD knockout mice that tumors are only formed by this 

Cyld
-/-

-mice after treating animals with a two-stage carcinogenesis protocol (Massoumi et al., 

2006). This group went on to show that the development of skin tumors in Cyld
−/−

 mice is 

associated with elevated cyclin D1 expression in Cyld
−/−

 keratinocytes, which is dependent on 
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the alternative NF-κB pathway. So far no alterations in T and B cell development or 

abnormalities of the secondary immune organs in these knockout mice have been reported.  

Their Cyld
−/− 

mice (Massoumi et al., 2006) were generated using a targeting construct in 

which the ATG-containing exon 4 of the Cyld gene was disrupted with a lacZ reporter and a 

neomycin gene. The targeting vector was electroporated into R1 ES cells (passage 13), and 

two independently targeted ES cell clones were injected into C57Bl/6 blastocysts to generate 

germline chimeras. The chimeric founders were crossed to C57Bl/6 females to establish 

heterozygous Cyld
+/- 

and subsequently homozygous Cyld
−/−

 mice. 

2. Reiley et al. (Jin et al., 2007; Reiley et al., 2007; Reiley et al., 2006) identified, in contrast 

to Massoumi et al. (Massoumi et al., 2006), a critical role for CYLD in thymocyte 

development, and T and B lymphocyte activation.  

Cyld
−/− 

mice from Reiley et al. were generated as follows: PCR with the high-fidelity Takara 

LA DNA polymerase was used to amplify 5-kilobase and 2.75-kilobase DNA fragments of 

Cyld from 129 x 1/SvJ genomic DNA. The 5-kilobase fragment (part of exon 1 and its 

upstream sequence) and the 2.75-kilobase fragment (part of exon 1, the entire exon 2 and 

intron sequences) were cloned into the pPNT targeting vector upstream and downstream of 

the neomycin-resistance gene, respectively. This targeting vector was partially sequenced, 

was linearized and electroporated into R1 mouse ES cells (Nagy et al., 1993). Recombinant 

embryonic stem cells were injected into C57BL/6 x DBA/2 blastocysts.  

3. Zhang et al. (Zhang et al., 2006) reported increased colonic inflammation and colon cancer 

incidence in their Cyld
−/− 

mice compared with wild-type mice, after azoxymethane and 

dextran sulfate sodium administration. 

Their Cyld
−/−

 mice (Zhang et al., 2006) were generated by Lexicon Genetics Inc. In general, 

the ATG start codon is in exon 2, and a gene-targeting construct was designed to delete exons 

2 and 3 and replace them with a lacZ reporter and a neomycin resistance gene. The targeting 

vector was linearized and electroporated into Lex-1 ES cells. Clones resistant to G418 were 

selected and screened for homologous recombinants by Southern blot analysis. Two targeted 

ES cell clones were microinjected into C57BL/6-albino blastocysts, and the resulting 

chimeras were mated to C57BL/6-albino females to generate mice heterozygous for the Cyld 

mutation. 

4. The three aforementioned groups all inactivated Cyld by disrupting the translation-

initiation-ATG–containing exon (exon 1, 2 or 4). A fourth research group (Hovelmeyer et al., 

2007) reported recently the disruption of B-cell homeostasis in mice overexpressing solely an 
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alternatively spliced CYLD product, which is catalytically active but lacks the TRAF2 and 

IKKγ–interacting domains.  

The Cyld mutant mice (Hovelmeyer et al., 2007) were generated by applying standard gene 

targeting techniques in mouse ES cells. Using Cre/loxP technology, three different mouse 

strains were generated. The first strain, Cyld
neo

, contains the neo resistance gene upstream of 

exon 7, decreasing transcription of Cyld. The second strain, Cyld
FL

, harbors two loxP sites 

flanking exon 7 of Cyld. Finally, Cyld
ex7/8

 mice lacking exon7 after Cre-mediated 

recombination through transient transfection of the targeted ES cells with a Cre-expressing 

plasmid, or by crossing Cyld
FL

 with CD19-Cre mice, in order to delete exon7 solely in B cells. 

Cyld
ex7/8

 mice were born at the expected Mendelian frequencies and survived normally when 

housed under specific pathogen-free conditions. Germline deletion of exon 7 should lead to 

splicing from exon 6 to 8 resulting in an out-of-frame translation of CYLD. RT-PCR was 

applied to cDNA from mouse embryonic fibroblasts (MEFs) of the indicated genotypes using 

primers located in exon 6 and 9 of the CYLD transcript to verify the absence of the WT allele 

in Cyld
ex7/8

 MEFs. This analysis revealed an unexpected shorter amplified product besides the 

expected band from the full-length transcript (FL-CYLD) in WT MEFs. This shorter product 

represents an alternative splice variant of CYLD lacking exons 7 and 8, termed sCYLD. 

Cyld
ex7/8

 MEFs are devoid of the fulllength transcript, but express the sCYLD splice variant 

excessively. sCYLD protein is a naturally occouring splice variant that could be detected in 

different tissues and cells of WT animals. 

5. However, none of the targeting approaches mentioned above mimic the identified 

mutations of Cyld in human tumors, which leads to truncation of the catalytic domain of 

CYLD. Trompouki and collegues used a conditional approach to introduce and characterize 

phenotypically a carboxyl-terminal truncating mutation of Cyld that mimics the characterized 

oncogenic human mutations (Trompouki et al., 2009). However, their approach revealed a 

previously unidentified role of Cyld in lung maturation. The lungs of these mice demonstrated 

an immature phenotype resulting in respiratory dysfunction and perinatal lethality. However, 

because a Cre-loxP–based conditional approach was used for Cyld inactivation, this mouse 

model will enable to study the biological role of Cyld in specific tissues. 

To generate targeting construct, Trompouki et al. (Trompouki et al., 2009) used genomic 

DNA from a 129Ola mouse. The targeting vector was designed to flank an exon 9–containing 

0.95-kb HgaI-SalI genomic fragment with loxP sites (flx). The vector also consisted of a 4.95-

kb BamHI-HgaI genomic fragment as the 5′ arm of homology then a loxP-flanked neomycin 

resistance gene expression cassette, followed by a second 2.65-kb SalI-ClaI genomic 
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fragment as the 3′ arm of homology and a thymidine kinase expression cassette. The 

neomycin resistance gene was used for the positive selection of correctly targeted stem cells, 

and the thymidine kinase gene was used for the negative selection of incorrectly targeted ES 

cells. Correctly targeted ES cell clones were injected onto C57BL/6 blastocysts for chimera 

production and germ line transmission. Mice carrying the recombined Cyld
flx

 locus in the 

germ line were crossed with Cre transgenic mice expressing the Cre recombinase.  

 

1.6 Objectives of the doctoral project  

CYLD is suggested as a key negative regulator for NF-κB signaling by deubiquitinating 

TRAFs and IKK-γ subunit (Brummelkamp et al., 2003; Kovalenko et al., 2003; Yoshida et al., 

2005). Furthermore, CYLD inhibits also indirectly the activation of c-Jun N-terminal kinase 

(JNK) and p38 (Reiley et al., 2004; Yoshida et al., 2005). Yersinia has also evolved strategies 

to selectively target signaling pathways of NF-κB and MAPKs (such as p38, ERK and JNK), 

allowing them to interfere with the transcription of immune response genes (reviewed in 

Navarro et al., 2005; Ruckdeschel et al., 1997). 

Because of the overlapping functions of CYLD and virulence factors of Yersinia, and given 

that many infections are known to induce or promote cell transformation e.g. by inducing 

constitutive NF-κB activation (Lax and Thomas, 2002; McLaughlin-Drubin and Munger, 

2008; McNamara and El-Omar, 2008), it is worthwhile to explore whether, conversely, 

mutations in tumor suppressor genes, especially those that interfere with NF-κB and MAPK 

signalling, would benefit or detriment pathogens.  

Therefore, the aim of this study was to investigate the role of CYLD in regulation of innate 

immune responses to the enteric pathogen, Yersinia enterocolitica by comparing Cyld
+/-

-

C57Bl/6 mice with Cyld
-/-

-C57Bl/6 mice in regard of 

            (i) control of the bacterial burden in spleen   

            (ii) cytokine/chemokine response 

(iii) MAP kinase- and NF-κB signality pathway 

(iv) in vitro bacterial killing 

(v) in comparison with Salmonella infection 
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2. Materials and Methods 

2. 1 Materials 

2.1.1 Chemicals and media 

Table 1- Chemicals and media 

�ame Company 

Acrylamide/Bisacrylamide                                      National Diagnostics, Atlanta, USA 

Agar Roth GmbH & Co. KG, Karlsruhe, Germany 

Agarose Biozym, Hess. Oldendorf, Germany 

Albumin Fraction V Roth GmbH & Co. KG, Karlsruhe, Germany 

Ammoniumsulfate Applichem 

Ampicillin Sigma-Aldrich, Taufkirchen, Germany 

Ampuwa
®

 Fresenius Kabi, Bad Homburg, Germany 

APF Invitrogen, Karlsruhe, Germany 

APS Sigma-Aldrich, Taufkirchen, Germany 

Aqua bidest, DNase- free Gibco-Invitrogen, Karlsruhe, Germany 

Bacto-Agar Difco 

Bacto-Hefeextrakt MP Biomedicals Inc. 

Bacto-Trypton Difco 

Bench Mark Prestained Protein Ladder Invitrogen, Karlsruhe, Germany 

BHI (Brain Heart Infusion)-Medium  Oxoid, Hampshire, England 

Brilliance Listeria agar Oxoid Germany GmbH, Wesel, Germany 

Brilliance Salmonella agar Oxoid Germany GmbH, Wesel, Germany 

Bis-Acrylamide SERVA, Heidelberg, Germany 

BSA (bovine serum albumine)  Biomol, Hamburg, Germany 

Calciumchlorid  Roth GmbH & Co. KG, Karlsruhe, Germany 

CCF2/4  Invitrogen, Karlsruhe, Germany 

Chloramphenicol  Sigma-Aldrich, Taufkirchen, Germany 

Chloroform  Roth GmbH & Co. KG, Karlsruhe, Germany 

CIN-Agar Oxoid Germany GmbH, Wesel, Germany 

Coomassie Brilliant Blue™ R250   Biomol, Hamburg, Germany 

D-+-Glucose  Sigma 

DMEM Gibco-Invitrogen, Karlsruhe, Germany 
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DMSO  Sigma-Aldrich, Taufkirchen, Germany 

DNA-size standard (DNA-ladder) (Ready 

Load™ 1 kb)  

Invitrogen, Karlsruhe, Germany 

DTT  Applichem, Darmstadt, Germany 

EDTA  Sigma 

EGTA Sigma 

Ethanol (~99.8 %) Roth GmbH & Co. KG, Karlsruhe, Germany 

Ethidiumbromide Roth GmbH & Co. KG, Karlsruhe, Germany 

FBS (Fetal Bovine Serum)  Gibco-Invitrogen, Karlsruhe, Germany 

Formaldehyde 37 %  MERCK, Darmstadt, Germany 

Geneticin ( G418 )  Gibco-Invitrogen, Karlsruhe, Germany 

Gentamicin solution  Invitrogen 

Glutamine  PAA Laboratories GmbH 

Glycerine  Roth GmbH & Co. KG, Karlsruhe, Germany 

Glycine  MP Biomedicals Inc. 

HBSS (Hanks Balanced Salt Solution)  PAA Laboratories GmbH 

HEPES (N-2 [Hydroxyethyl] piperazine-N’-

[2-Ethanesulfonic acid]) 

Gibco-Invitrogen, Karlsruhe, Germany 

H2O2  Merck 

HCl  Roth GmbH & Co. KG, Karlsruhe, Germany 

IL-2 recombinant ImmunoTools, Friesoythe, Germany 

Immersion oil  Zeiss 

IPTG  Applichem 

Iso-propanol  Roth GmbH & Co. KG, Karlsruhe, Germany 

Kanamycin  Sigma-Aldrich, Taufkirchen, Germany 

KCl  Merck 

KH2PO4  Sigma 

K2HPO4  Sigma 

LB (Luria Bertani)-Agar  Oxoid, USA 

LB (Luria Bertani)-Medium  Oxoid, USA 

L-Glutamine (200 mM)  Gibco-Invitrogen, Karlsruhe, Germany 

Liquid Nitrogen  Linde 

LPS  Quadratech Diagnostics, England 

Luminol (3-Aminophthalhydrazide) Fluka (Sigma), Artikelnr.0925321 
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2-Mercaptoethanol  Applichem 

Milk powder (Blotting grade) Roth GmbH & Co. KG, Karlsruhe, Germany 

Moviol 4-88  Sigma-Aldrich, Taufkirchen, Germany 

NaCl Roth GmbH & Co. KG, Karlsruhe, Germany 

Na2HPO4 (water free)  Applichem 

NaH2PO4  Applichem 

NaOH  Sigma 

Paraformaldehyde Fluka 

PBS  Gibco-Invitrogen, Karlsruhe, Germany 

Peptone  Merck 

Penicillin-Streptomycin-Solution  Gibco-Invitrogen, Karlsruhe, Germany 

pH-Meter Calibration-solution (pH 4.0, 7.0, 

10.0)  

Applichem 

PMSF (Phenylmethylsulfonylfluoride)  Applichem 

Poly-L-Lysine  Sigma-Aldrich, Taufkirchen, Germany 

Ponceau S-Concentrate  Sigma-Aldrich, Taufkirchen, Germany 

Protease Inhibitor Cocktail Tablets  Roche Diagnostics GmbH, Mannheim, 

Germany 

Proteose Peptone  Difco Laboratories, Detroit 

Saponin  Applichem 

SDS  (sodium dodecyl sulfate) Roth Diagnostics GmbH, Mannheim, 

Germany 

Sodium acetate  Roth GmbH & Co. KG, Karlsruhe, Germany 

Sucrose  Applichem 

TEMED  Biomol, Hamburg. Germany 

Tris  MP Biomedicals Inc. 

Triton X-100  Sigma-Aldrich, Taufkirchen, Germany 

TrypanBlue   SERVA, Heidelberg, Germany 

Trypsin-EDTA  Gibco-Invitrogen, Karlsruhe, Germany 

Trypton MP Biomedicals Inc. 

Tween 20  Sigma-Aldrich, Taufkirchen, Germany 

Yeast-Extract Difco 
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2.1.2 Enzymes and markers 

Table 2- Enzymes and markers 

�ame Company 

Bench Mark
 TM

 Prestained Protein Ladder  Invitrogen, Karlsruhe, Germany 

BioMix Red   Bioline, Luckenwalde, Germany 

DNA-Ladder for Agarose gel  MBI Fermentas, St Leon-Rot, Germany 

Pfu-Polymerase  MBI Fermentas, St Leon-Rot, Germany 

Proteinase K  MBI Fermentas, St Leon-Rot, Germany 

Protease Inhibitor Cocktail Tablet(complete)  

 

Roche Diagnostics GmbH, Mannheim, 

Germany 

Restriction enzymes MBI Fermentas, St Leon-Rot, Germany 

Shrimp alkaline phosphatase  MBI Fermentas, St Leon-Rot, Germany 

T4-DNA-Ligase  MBI Fermentas, St Leon-Rot, Germany 

Taq-Polymerase  MBI Fermentas, St Leon-Rot, Germany 

 

2.1.3 Antibodies 

Table 3- Antibodies 
 

�ame Company 

Anti-GFP Santa Cruz Biotechnology, Heidelberg, 

Germany 

Anti-Actin Santa Cruz Biotechnology, Heidelberg, 

Germany 

Rabbit Anti-Listeria ActA This institute 

Rabbit Anti-Salmonella enterica, Serotype 

Enteritidis 

This institute 

Rabbit Anti-Yersinia (WA-vital, serovar O:8) This institute 

HRP-conjugated anti-Rabbit IgG  

(Horseraddish-peroxidase) 

Santa Cruz Biotechnology, Heidelberg, 

Germany 

FITC-conjugated anti-Rabbit IgG Sigma-Aldrich, Taufkirchen, Germany 

FITC-conjugated anti-Mouse IgG Sigma-Aldrich, Taufkirchen, Germany 

PE-Cy7-conjugated anti-CD45 eBioscience, NatuTec GmbH, Frankfurt, 

Germany 



Materials and Methods 

27 

 

PE-conjugated anti-B220 (CD45R) BD, Heidelberg, Germany 

PE-conjugated anti-CD4 BD, Heidelberg, Germany 

FITC-conjugated anti-CD4 BD, Heidelberg, Germany 

APC-H7-conjugated anti-CD4 eBioscience, NatuTec GmbH, Frankfurt, 

Germany 

PE-conjugated anti-CD8alpha (Ly2) BD, Heidelberg, Germany 

PerCP-conjugated anti-CD8alpha (Ly2) eBioscience, NatuTec GmbH, Frankfurt, 

Germany 

FITC-conjugated anti-CD8alpha (Ly2)  BD, Heidelberg, Germany 

PE-conjugated anti-Gr1 (Ly6G)  BD, Heidelberg, Germany 

APC- conjugated anti-CD11b eBioscience, NatuTec GmbH, Frankfurt, 

Germany 

PE-conjugated anti-CD11c BD, Heidelberg, Germany 

APC-Alexa750-conjugated anti-CD11c eBioscience, NatuTec GmbH, Frankfurt, 

Germany 

Rat Anti-Mouse CD16/CD32 eBioscience, NatuTec GmbH, Frankfurt, 

Germany 

FITC-conjugated anti-NK-1.1 BD, Heidelberg, Germany 

APC-conjugated anti-CD49b eBioscience, NatuTec GmbH, Frankfurt, 

Germany 

PE-Texas Red conjugated F4-80 Caltag Laboratories 

PE-Cy5-conjugated F4-80 eBioscience, NatuTec GmbH, Frankfurt, 

Germany 

 

2.1.4 Kits 

Table 4- Kits 

 

�ame Company 

Mouse Cytokine Flex Set (CBA) BD, Heidelberg, Germany 

FACE
TM

  STAT4 Chemi ELISA Kits Active Motif 

Mouse TLR1-9 Agonist Kit  InvivoGen/Cayla SAS 

Mouse Cell Signaling Flex Set (CBA) BD, Heidelberg, Germany 

pJNK1/2 (T183/Y185), p38 (T180/Y182), 

and pERK1/2 (T202/Y204), tolal JNK(1/2), 

BD, Heidelberg, Germany 
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total p38α  multiplex Flex Set Cytometric 

Bead Array (Cat. No. 560213, 560010, 

560012, 560214 and 560145, respectively) 

Nuclear extraction Kit Active Motif 

TransAM™ NFκB Family Kits Active Motif 

 

2.1.5 Consumables 

Table 5- Consumables 
 

�ame Company 

Pipettes 5 ml, 10 ml und 25 ml (sterile, Plastic)  Greiner 

Falcon-tubes, 15 ml und 50 ml  Greiner 

Gloves  Flexam 

Microtiter plates, Maxisorp F96  Nunc 

Paper napkins  ZVG 

Parafilm “M”
® 

 ANC 

Pasteur-Pipettes  Brand 

Petri-dishes for Bacterial culture  Greiner 

Petri-dishes for cell culture  Greiner 

Pipette Tips 10 µl, 200 µl and 1000 µl  Sarstedt 

Plastic cuvettes 1 ml  Greiner 

PVDF-Membrane  Millipore 

Reaction tubes 0.5 ml  ABgene 

Reaction tubes 1.5 ml und 2 ml  Eppendorf 

X-ray films  Amersham 

Safeseal Tips 10µl, 100µl and 1250µl  Biozym, Hess. Oldendorf, Germany 

Scalpel  Braun 

Sterile-Filter (0.2 µm)  Schleicher & Schuell 

Vinyl-gloves Sempermed 

Whatman-Filter paper Schleicher & Schuell 

Cell culture flasks, 25 cm
2
 und 75 cm

2
 Greiner 

Cell culture plates (6 and 24 well) Greiner 

Centrifugation tubes 14 ml Greiner 
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2.1.6 Instruments and devices 

Table 6- Instruments and devices 

 

Instruments and devices Company 

Agarose Gel-Electrophoresis apparatus  Peqlab and Gibco 

Autoclave  Varioklav, Germany 

Centrifuge: 

Eppendorf 5417R 

Sigma 3K30B and 1K15B  

 

 

Hamburg, Germany  

Braun Biotech International, Osterode in 

Harz, Germany 

CO2-Incubator (37°C, 5 % CO2) Heraeus 

FACS-Canto II  BD, Heidelberg, Germany 

Gel documentation  Bio-Rad 

Gel Drying System  Bio-Rad 

Glass wares Schott, VWR Brand 

Heat block (Thermomixer 5436)  Eppendorf 

Ice machine  

Ice machine  

Sierra  

Scotsman 

Incubator BBD 6220 

Incubator shaker 

Heraeus, Hanau, Germany  

B. Braun Biotech 

Magnetic stirrer heat able  Labortechnik 

Microscope: 

- Phase contrast microscope ID 02  

- Fluorescence microscope Olympus BX61 

 

Zeiss 

Olympus, Hamburg, Germany 

Microwave  AEG 

Microplate reader Fluostar Optima BMG Labtech, Jena, Germany 

Neubauer chambers  Josef Peske Gmbh, Germany 

PCR-Thermocycler Gene Amp PCR 

System 2400  

Perkin Elmer, Foster City, CA, USA 

pH-Meter   Hanna Instruments, Kehl am Rhein, 

Germany 

Pipettes  Gilson 

Pipettes Eppendorf Power Supply 200/2.0  

Thermoshaker Thermomixer compact Eppendorf, Hamburg, Germany 



Materials and Methods 

30 

 

SDS-Gel electrophoresis apparatus  Peqlab 

Shaking incubators:  

Certomat


 R, B. and  BS-1 B Braun Biotech International, Osterode am 

Harz, Germany 

Spectrophotometer Ultrospec 3000,  Pharmacia Biotech, Freiburg, Germany 

Sterile Working bench  Heraeus, HS12, Hanau, Germany 

Transblot SD Semidry Transfer Cell  Bio-Rad 

Sonificator (Sonifier 250)  Branson 

UV-Transilluminator  BIO- RAD Laboratories, München, 

Germany 

Vortex Genie 2  Scientific Industries 

Voltage devices Power Pac 1000,  Bio-Rad Laboratories, München, Germany 

Weighing balance  Kern & Sohn 

Water bath GFL®  

 

2. 2 Methods 

2.2.1 Microbiology 

2.2.1.1 Bacteria strains 

Yersinia enterocolitica serotype O:8, wild type strain WA-314, this is a clinical isolate 

harbouring the virulence plasmid pYV (Heesemann and Laufs, 1983; Heesemann et al., 1986). 

In this thesis, this strain is denoted WA(pYV).  

WA-C: pYV cured strain obtained from WA-314 

WA-C (pYV::CM) is an isogenic derivative of Yersinia enterocolitica serotype O: 8 strain 

WA(pYV), which contains a chloramphenicol resistance (Cmr) cassette in a noncoding region 

of the pYV plasmid, upstream of yadA-gene (Trulzsch et al., 2004). 

WA-C (pYV∆∆∆∆H): WA(pYV) with deleted yopH-gene ( Trulzsch et al., 2004) ). 

WA-C (pYV∆∆∆∆P): WA(pYV) with deleted yopP-gene (Trulzsch et al., 2004). 

WA(pYV∆∆∆∆LcrD): WA(pYV) with inactivated lcrD gene, Ysc-T3SS defect (Ruckdeschel et 

al, 1996) 

Yersinia pseudotuberculosis serotype O3 wild type strain YPIII pIB1, is a virulent clinical 

isolate that naturally lacks yopT and its chaperone, sycT ( Viboud et al., 2006).  
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Salmonella typhimurium mutant SB300 (streptomycin resistance: StrR)  (SL1344) (Hoiseth 

and Stocker, 1981).  

Listeria monocytogenes serotype 1/2a streptomycin resistant mutant obtained from strain 

10403. The parental strain 10403 was first reported by Edman et al. (Edman et al., 1968) as an 

isolate from a human skin lesion and is further described by Bishop et al. (Bishop and 

Hinrichs, 1987).  

Escherichia coli strain K12 (JM109) is a non-pathogenic laboratory strain (Kuhnert et al., 

1997; Yanisch-Perron et al., 1985). 

 

2.2.1.2 Bacteria culture medium 

Table 7- Culture medium for the bacteria 

 

Medium or Agar Application 

LB medium: 

10 g Peptone, 5 g Yeast-extract, 10 g NaCl  were dissolved with 

distilled water to 1000 ml and then autoclaved. 

LB-Agar:  

10 g Peptone, 5 g Yeast-extract, 10 g NaCl and 15 g Agar were 

dissolved with distilled water to 1000 ml and then autoclaved. 

E.coli 

Yersinia  

Salmonella 

BHI-Medium:  

37 g BHI-powder was dissolved in distilled water to 1000 ml and 

then autoclaved.  

BHI-Agar:  

37 g BHI-powder and 15 g Agar were dissolved in distilled water 

and filled up to 1000 ml and then autoclaved. 

Listeria 

 

Table 8- Antibiotics used in the study 

 

antibiotic bacteria strain working 

concentration 

stock 

solution 

dissolved in 

Chloramphenicol (Cm) WA-C (pYV::CM) 

WA314-Yops-Bla-

Reporter strains  

(defined in chapter 

2.2.1.1.) 

30 µg/ml 30 mg/ml 70% 

Ethanol 
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Kanamycin (Km) WA-C(pYV∆H) 

WA-C(pYV∆P) 

100 µg/ml 50 mg/ml H2O dest. 

Streptomycin (St) Salmonell 

Listeria 

100 µg/ml 100 mg/ml H2O dest. 

Gentamycin (Gt) 

 

Ampicillin (Amp) 

depends 

 

depends 

depends 

 

100 µg/ml 

10 mg/ml 

 

100 mg/ml 

Commercial 

product 

H2O dest. 

 

 

2.2.1.3 Bacteria mouse passage and storage 

Prior to use for infection experiments, the pathogenic strains of Yersinia, Salmonella and 

Listeria were passaged through mice by intraperitoneal infection with 5x10
5
-5x10

6
 colony 

forming unit (CFU). After 18-20 h, peritoneal lavage was plated on selective agars, Yersinia-

selective CIN-agar, Brilliance Salmonella agar or Brilliance Listeria agar, respectively (Oxoid 

Germany GmbH, Wesel, Germany). One single colony from each strain was picked  to 

inoculate an overnight liquid culture in Luria-Bertani (LB)- or brain heart infusion (BHI)-

medium, supplemented with antibiotics (chloramphenicol, 30 µg/ml; kanamycin, 50 µg/ml or 

streptomycin, 100 µg/ml) where appropriate, and incubated at 27°C (Yersinia) or 37°C 

(Salmonella, Listeria). Bacteria in the stationary phase were sedimented and resuspended in 

LB-medium (Yersinia, Salmonella) or BHI-medium (Listeria) containing 15-20 % glycerol. 1 

ml aliquots were frozen immediately in liquid nitrogen and stored at -80°C (stock aliquots). 

Serial dilutions from stock aliquot were plated to determine the CFU per ml for pathogens 

used for mouse infection. Mouse passage was performed every 3 to 6 months. 

 

2.2.1.4 Bacteria culture and CFU determination 

For mouse infection experiments with Yersinia, the appropriate concentration was prepared 

by diluting a frozen stock with PBS.  

For mouse experiments with Salmonella and Listeria, or in vitro infection experiments, 

overnight cultures were prepared by inoculating the bacteria stocks in LB-medium (for 

Salmonella and E. coli) or BHI-medium (for Listeria and Yersinia), supplemented with 100 

µg/ml streptomycin in the case of Salmonella and Listeria, 100 µg/ml Kanamycin in the case 

of WA-C (pYV∆H) and WA-C (pYV∆P),  or 30 µg/ml chloramphenicol in the case of WA-C 

(pYV::CM), and incubated at 27°C (for Yersinia strains) or 37°C (for all the other  strains). 
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Thereafter the overnight cultures were diluted 1:50 in fresh medium, supplemented with 0.3 

M NaCl in the case of Salmonella to allow the expression of TTSS encoded by the Salmonella 

pathogenicity island 1 (SPI-1) which supports the invasion of Salmonella into host cells. The 

cultures were incubated for further 1.5 h (Yersinia) or 2.5-3 h (Listeria, Salmonella) at 37°C. 

Bacteria were then sedimented, resuspended in 1 ml cold PBS (in the case of Yersinia) or in 

5-10 ml cold PBS (Listeria, Salmonella) and the OD600 was determined. The OD600 of 

Yersinia suspension was adjusted to 0.36 with PBS that corresponds to a concentration of ca. 

3x10
9
 CFU/ml. The OD600 of 0.1 corresponds to ca. 5x10

7
 CFU of Salmonella/ml, 10

8
 CFU of 

Listeria/ml or ca. 2.5x10
7
 CFU of E. coli K12/ml, respectively. The appropriate concentration 

for infection was then prepared by dilution with cell culture medium (with or without FCS) 

for in vitro infection or with PBS for mouse infection. 

The equation that was used to adjust Yersinia CFU was as follows: 

(Volume of Yersinia (in µl) x OD600 measured / 0.36) - Volume of Yersinia (in µl) = the 

volume (µl) that should be added or removed from the Yersinia culture, in order to reach a 

concentration of 3x10
9
 CFU Yersinia /ml. 

 

2.2.2 Mouse experiments 

2.2.2.1 Mouse infection 

Cyld
-/-

-knockout mice were generated by R. Massoumi as previously described (Massoumi et 

al., 2006). The mice are on a C57Bl/6J X 129Sv genetic background. All mice were bred 

under specific pathogen-free conditions. Female mice were used for infection experiments at 

7–12 wk of age and the actually administrated dose was determined by plating serial dilutions 

on the appropriate agar plates. 

For mouse infection experiments with Yersinia, the appropriate concentration was prepared 

from frozen stock suspensions by two times washing with PBS and then diluted with PBS. 

Stock suspensions were prepared as mentioned before by growing bacteria to stationary phase 

in LB medium at 27°C, followed by freezing in 15% glycerol. For oral infection, mice were 

subjected to fasting 16 h prior to the infection and 5 x 10
8
 CFU/20µl was administrated by 

peroral feeding through a pipette or by injection of an approprimate volume and CFU. 

For mouse infection with Salmonella and Listeria, overnight cultures were prepared by 

inoculating the bacteria stocks in LB-medium (for Salmonella) or BHI-medium (for Listeria), 

supplemented with 100 µg/ml streptomycin in the case of Salmonella and Listeria and 

incubated at 37°C. Thereafter, the overnight cultures were diluted 1:50 in fresh medium, 
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supplemented with 0.3 M NaCl in the case of Salmonella to allow the expression of TTSS 

encoded by the Salmonella pathogenicity island 1 (SPI-1) which mediates the invasion of  

Salmonella to the host cells. The cultures were incubated for further 2.5-3 h at 37°C. Bacteria 

were then sedimented, resuspended in 10 ml cold PBS and the OD600 was determined. The 

appropriate concentration for infection was then prepared by dilution with PBS (OD600 of 0.1 

corresponds to ca. 5x10
7
 CFU of Salmonella/ml).  

For intraperitoneal (i.p.) infection, mice were infected with the appropriate CFU in 500 µl 

DPBS. Syringe (1- or 3-ml syringe with 25-G needle) was filled with bacterial suspension, e.g. 

bacteria in DPBS and air bubbles were removed. The mouse was manually restrained with the 

abdomen being exposed, and the head was tilted backward. Needle was inserted into the 

lower left or right quadrant of the abdomen, avoiding the abdominal midline. The infection 

dose was injected with moderate pressure and speed.  

Mice were sacrificed by CO2 asphyxiation at indicated days. Organs (spleen, liver, Peyer’s 

patches) were surgically removed and put in 2 mL tubes containing 1 ml PBS (for each liver, 

it was splited into three parts and put into three tubes) and 1 stainless steel bead (Ø 5 mm; 

Qiagen) and the organ was then homogenized in a mixing mill (Retsch, MM2000, Haan, 

Germany) by shaking 2-3 min at an oscillation frequency of 20 Hz. CFU were determined by 

first plating serial dilutions on LB- or BHI-plates supplemented with the appropriate 

antibiotics and then counting the CFU after incubation of ca. 40 h at 27°C (Yersinia) or 12-36 

h at 37°C (Listeria, Salmonella). Statistical analysis of two mice groups was performed using 

a two-tailed Student’s t test with Welch’s correction. A p-value of less than 0.05 was 

considered to be statistically significant. 

 

2.2.2.2 Saphenous vein puncture for blood sampling from mice 

For the mouse, the circulating blood volume is about 5.5-7% of the body weight. For example 

a mouse with a weight of 25 g contains between 1.37 and 1.75 ml of circulating blood 

(Guidelines for the Survival Bleeding of Mice and Rats (NIH) http://oacu.od.nih.gov/ARAC/

Bleeding.pdf). 

Blood was collected from the lateral saphenous vein. This method yield enough blood for 

cytokine determination (0.1-0.2 ml), anaesthesia is not necessary, and enables serial blood 

collection from the same site without a need for new puncture wounds (Hem et al., 1998). The 

mouse was placed in a (perforated) restraining tube, so that its head was covered and the hind 

legs were free (Fig.8 Step1). The saphenous vein is found on the caudal surface of the thigh. 

Hair was removed from the area with scalpel (Fig.8 Step 2) to expose the saphenous vein 
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(Fig.8 Step3). The saphenous vein was punctured with a 22-gauge needle (Fig.8 Step4) and 

microvette collection tube (Sarstedt, Germany) was held against the blood drop that forms on 

the skin (Fig.8 Step5). When the needed blood volume was collected, the end of the 

microvette tube was sealed by a plastic cap (Fig.8 Step6) and the tube was inserted into the 

outer case (Fig.8 Step7). To stop the bleeding, pressure with cotton tissue was applied to the 

puncture site (Fig.8 Step8). The mouse was put back into the cage (Fig.8 step 9). Blood 

samples were incubated at 4°C for at least two hours and then centrifuged at ca. 5000 g for 10 

min. Supernatants (serums) were transferred in new tubes and stored at -20°C. Blood 

collection from sacrificed mice was performed by puncture of the heart and collecting the 

flowing blood by using 1 ml pipette.  

 

Fig. 8. Photographic documentation of blood sampling from the saphenous vein. 

 

2.2.2.3 Proteose peptone elicitation of peritoneal exudate cells (PECs) 

 The murine peritoneal cavity provides a convenient site to obtain either resident or elicited 

macrophages and neutrophils (Edwards et al., 2006). Usually, the number of macrophages or 

neutrophils present in the peritoneum under nonelicited condition is insufficient for extensive 

cellular or biochemical studies. Therefore, eliciting agents, such as thioglycollate- Bio-Gel, or 

proteose peptone solutions have to be injected intraperitoneally several hours (for neutrophils) 

or days (for macrophages) prior to cell harvest to enrich the amount of phagocytes (Hoover 
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and Nacy, 1984). However, such elicitation will also alter the physiologic characteristics of 

the cells collected, such as the increased rate of plasma membrane turnover as well as 

increased phagocytic and respiratory burst capacity, and can exhibit variable responses to 

cytokine stimulation. 

Considering that neutrophils are among the first cells to migrate into the inflammatory focus 

(within 2 to 4 hr) followed by a macrophage infiltrate, we prepared a differential elicitation 

procedure for neutrophils and macrophages, respectively.  

For neutrophil elicidation, 3% (w/v) Proteose Peptone /D-PBS (without Ca
++

 or Mg
++

) was 

freshly prepared and filtered through sterile 0.22 µm cartridge. 3 ml of this soltution were i.p 

injected. After 3 hours, PECs were isolated by lavage of the peritoneal cavity (2.2.2.4.) and 

used for in vitro infection experiments including respiratory oxidative burst or phagocytosis 

assay. Under theses conditions, neutrophils constituted about 60-90% of PECs. Since 

neutrophils are short-lived, they should be used within 2-4 hours after harvesting. 

For macrophage elicitation, mice were i.p injected with 2 ml freshly prepared and sterile 

filtered (through 0.22 µm filter sterile cartridge) 10% (w/v) Proteose Peptone /D-PBS 

(without Ca or Mg). Three days later, PECs were isolated by lavage (2.2.2.4.) and used for in 

vitro infection experiments. Since macrophages are acutely sensitive to the biological effects 

of endotoxin, all reagents must be of high quality and endotoxin-free. If the yield of peritoneal 

cells seems unusually high, then the possibility of an ongoing low level of infection in the 

colon should be considered due to colon puncture during proteose/peptone injection.  

Experienced yields of peritoneal cells were as follows:  

Naive adult mice provided 1-3 x l0
6 

cells per mouse (of which 20-30% were adherent cells, 

majority macrophages). Elicited mice provided 3-15 x l0
6
 cells per mouse (60->80% were 

adherent cells). 

3 ml 3% proteose peptone/DPBS i. p. injection resulted 3 hr later in 60-90% neutrophils 

(CD45+Ly6G+) and 10-30% macrophages (CD45+F4/80+) (Results are acquired by FACS 

analysis in this study). 

 

2.2.2.4 Peritoneal lavage 

This method was performed as mentioned by Stall et.al (Stall et al., 1988) and the website 

(http://icg.cpmc.columbia.edu/cattoretti/Protocol/MousePathology/CollectPerC.html) with 

some minor modifications. It can be applied for peritoneal cells collection and bacteria mouse 

passage. In general, mice were sacrificed by CO2 asphyxiation and immersed in 70% ethanol 

for ca. 5 min. The abdominal skin below the sternum was carefully nicked (taking care not to 
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nick the peritoneum). The abdominal skin was ripped apart with a firm but gentle movement 

by grabbing the two sides of the cut gently to expose the sternum and the pelvis (Fig.9 image 

A). Care should be taken not to rip the major abdominal vessels in order to avoid blood flow 

into the peritoneal cavity. The surface of the abdomen was again disinfected with 70% 

ethanol. 10ml syringe fitted with a 27-gauge short needle was prepared, first filled with 2 ml 

of air and thereafter with 5-6 ml of DPBS (Fig.9 image B). Air is very important in this step. 

The sternum was grabbed with the tweezers and the abdominal cavity was gently filled with 

DPBS. The needle was removed and followed by self-sealing of the peritoneum. The mouse 

was hold in the hand and shaken vigorously back and forth, left and right for about 15-20 

times. The mouse was put back on the table. Pasteur pipette was prepared by attaching a 

rubber pipette. The sternum together with some peritoneum was grabbed with the tweezers 

and air-filled Pasteur pipette was inserted in the peritoneal cavity with a swirling movement 

(Fig.9 image C). The air was expressed in the cavity to distend the peritoneum and the 

peritoneal lavage fluid was aspirated. The success of peritoneal lavage depends on the 

distension of the peritoneum. The peritoneum was washed several times by injecting DPBS in 

the peritoneum with the Pasteur pipette and re-aspirating it.  

 

Fig. 9. Collection of Peritoneal Cells.  Images were adapted from the website 

( http://icg.cpmc.columbia.edu/cattoretti/Protocol/MousePathology/CollectPerC.html) 

  

2.2.3 Cell biology and Immunology 

2.2.3.1 Poly-L-lysine treatment of well plates  

Well-plates were coated with 0.01%, mol wt 150,000-300,000, sterile-filtered, cell culture 

tested Poly-L-lysine solution to let the cells attach to the bottom. In general, each well was 

covered with Poly-L-lysine (volume was depending on size of the well) and kept at room 

temperature for 1 hour under the culture hood. Poly-L-lysine solution was aspirated, and then 

washed with sterile water. The wash-step was repeated twice. The plates were allowed to dry 

completely (with the lids on) in the hood. Poly-L-lysine-coated plates could be stored at 4°C, 

wrapped in foil or applied for experiments directly. 
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2.2.3.2 Preparation of the splenocytes and determination of cell number 

Mice were sacrificed by CO2 asphyxiation. Spleen was surgically removed from the mouse 

and was put in a tube with 1 ml cold D-PBS. The spleen was placed into 40 µm cell strainer 

(BD). A plunger end of syringe was used to mash the spleen through the cell strainer into 50 

ml Falcon tube. The cell strainer was rinsed with D-PBS to reach a final volume of ca.10 mL. 

The strainer was discarded. Cells suspension was spun at 300 x g/4°C for 5 minutes. 

Supernatants were discarded and cell pellet was resuspended in 5-10 mL erythrocytes lysis 

buffer, and incubated at RT for 5-10 minutes. 5 mL RPMI 1640 medium were added and cells 

were spun. Cell pellet was resuspended in 5 mL RPMI 1640 medium and any dead cell mass 

was discarded.  

The estimation of the number of cells in a suspension was determined with a Neubauer 

counting chamber. 10 µL cell suspensions was mixed with 10 µL 0.4% trypan blue, and a 

drop of the mixed cell suspension was added on the top of the Neubauer count chamber 

covered by a cover-slip and the number of cells in the central largest square was counted 

under the light microscope. The exact number of cells per ml of the suspension was obtained 

by cells multiplying the number of cells in the large square x 10
4
 (volume of the large square 

is 10
-4

 ml) x 2 (dilution number) = Cell number/ml suspension. 

 

Erythrocyte lysis buffer (3/2 stock and store at 4°C) 

Ammonium chloride 8.29 g/l; potassium hydrogen carbonate (KHCO3) 1 g/l or NaHCO3 

0.783 g/l; EDTA 0.0371 g/l, dissolved in 1 l Ampuwa and filter sterilized.  

Working solution: mix 2 portions of Erythrocyte lysis buffer with 1 portion D-PBS. 

 

2.2.3.3 Generation of BMDC from mice 

The method to generate dendritic cells from mouse bone marrow was taken from Lutz. et al. 

with some minor modifications (Lutz et al., 1999). In general, mice were sacrificed by CO2 

asphyxiation. All muscle tissues (rough tissue from the femurs, tibias and humerus) were 

removed with gauze. The bones were placed in a 60-mm dish with 70% ethanol for 5 min and 

then transferred into 60-mm dish with PBS. One or both ends of the bones were cut gently 

with scalpel, and then the bone marrow was flushed out by using a syringe and 27-gauge 

needle with 20 ml of RPMI 1640. Cells were centrifuged at 300 x g/ 4°C for 5 min.  

Bone marrow cells from one mouse were resuspended in ca. 64 ml RPMI 1640 medium, 

containing 20 ng/ml GM-CSF, 10% fetal bovine serum (FCS), penicillin (P) (100 
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U/ml)/streptomycin (S) (100 mg/ml). The cell suspension was then split into eight Petri dishes 

(8 ml/dish) and incubated at 37°C (day 0). 

On day 3, 8 ml RPMI 1640 medium, containing 20 ng/ml GM-CSF, 10% FCS, P/S, were 

added into each dish.  

On day 6, 8 ml cell culture medium was collect from each dish and centrifuged at 300 x g, 

4°C for 5 min. The supernatant was discarded, the cell pellet was resuspended in 64 ml RPMI 

1640 medium, containing 20 ng/ml GM-CSF, 10% FCS, P/S, and split into the eight dishes.  

On day 8 or 9, the BMDCs were ready to use. Non-attached cells were collected and 

centrifuged at 300 x g/4°C for 5 min. 6 ml cold PBS were added into each dish and incubated 

on ice for 300 x g/4°C ca. 20-30 min. Thereafter, cells were collected gently by using the cell 

scraper and centrifuged at 300 x g/4°C for 5 min. BMDCs were resuspended in RPMI 1640 

medium (depending on subsequent experiments, with or without 5% FCS and/or 

penicillin/streptomycin) and counted. 

 

2.2.3.4 Generation of BMDM from mice 

Bone marrow cells were isolated from the mice as described before in chapter 2.2.3.3. 

Bone marrow cells from one mouse were resuspended in ca. 64 ml RPMI 1640 medium, 

containing 10 ng/ml M-CSF, 10% FCS, penicillin (P) (100 U/ml)/streptomycin (S) (100 

mg/ml). The cell suspension was distributed into eight Petri dishes and incubated at 37°C in 

5% CO2/air (day 0). 

On day 3, 1 ml RPMI 1640 medium, containing 40 ng/ml M-CSF, 10% FCS, P/S, were added 

into each dish. The used M-CSF concentration allows to reach a final concentration of 5 

ng/ml of M-CSF. 

The BMDM were harvested as follows: the culture supernatant was discarded and ca. 5 ml 

cold PBS was put into each dish and incubated at 4°C for ca. 30 min. BMDM cells were then 

detached by pipetting up and down several times and centrifuged at 300 x g/4°C for 5 min. 

BMDM were resuspended in RPMI 1640 medium (depending on subsequent experiments, 

with or without 5% FCS and/or penicillin/streptomycin) and counted. Cell concentration was 

adjusted and cells were seeded on well plates. Generally, for the 48-well plate, 2 x 10
5 

cells 

(in 100 µl medium) for each well were seeded. 

 

2.2.3.5 Phagocytosis and intracellular growth assay 

Phagocytosis assay was performed as mentioned by Hamrick et al. with some minor 

modifications (Hamrick et al., 2000). In general, mice were i.p. injected with 2 ml 10% sterile 
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proteose peptone/DPBS (0.22 µm filter-sterilized). Three days later, PECs were harvested and 

resuspended in RPMI 1640 medium containing 5% FBS and gentamicin (5 µg/ml) at a 

concentration of 5 x 10
5 

cells/ml, and 0.5 ml of the cell suspension was placed into each well 

of a 48-well cell culture cluster plate (Costar, Cambridge, Mass.). Two hours later, the 

medium was removed and the plastic adherent cells were washed three times with 0.5 ml of 

Hanks balanced salt solution (HBSS) and then incubated in 0.5 ml of RPMI 1640 medium 

containing 5% FBS (without antibiotics) at 37°C in a humidified 5% CO2 incubator. Eighteen 

to twenty-four hours later, approximately 2.5 x 10
6
 bacteria in 100 µl RPMI 1640 medium 

containing 5% FBS were added to the wells (this corresponded to MOI of 10). As control, 

some cell-free wells were seeded only by bacteria. The wells were mixed and centrifuged at 

RT, 300 x g /5 min. The well plate was incubated at 37°C in a humidified 5% CO2 incubator 

for 30 min. Thereafter the wells were washed gently three times with 0.5 ml of pre-warmed 

PBS, 500 µl RPMI 1640 medium containing 5% FBS and 100 µg/ml gentamicin were added 

to the cells and incubated for ca. 90 min at 37°C. The supernatants were then discarded and 

the wells were washed for three times with 0.5 ml of PBS each to eliminate loosely attached 

bacteria. Then, ca. 500 µl cold 0.1% Triton X-100/PBS were added into each well for cell 

lysis and incubated at 4°C for ca.15 min. Released bacteria were then collected by pipetting 

up and down very carefully and the wells were washed with ca.500 µl cold PBS. Both washes 

from each well were pooled together and serial dilutions were plated on LB-agar plates. After 

ca. 40 h/26°C (Yersinia) or 20 h/37°C (E. coli JM109) incubation, CFU were counted and 

documented. The gentamicin-protection assay was applied to determine the intracellular 

bacterial survivors. 

After 30 min (or 60 min) of infection, the wells were gently washed three times with 0.5 ml of 

pre-warmed PBS and then 500 µl RPMI 1640 medium containing 5% FBS and 6 µg/ml 

gentamicin were added to kill the left extracellular bacteria at 37°C (time periods as indicated). 

Surviving intracellular bacteria were determined by plating serial dilutions of 0.1 % Triton R 

lysed infected cells as described above. The initial number of phagocytosed bacteria was 

defined as the CFU after 30 min of infection and 1 hr of gentamicin treatment. 

For phagocytosis and intracellular growth assay with BMDMs, procedures were performed 

just exactly like that with PECs or splenocytes. 

 

10% proteose peptone/DPBS: 

Freshly prepared and sterile filtered through 0.22 µm cartridge. 
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0.1% Triton X-100/PBS: 

100µl Triton X-100 were added to 100 ml PBS and stored for ca. 1 week at 4°C (the solution 

is stable during this short storage time). 

  

2.2.3.6 In vivo phagocytosis assay 

Mice were injected i.p. with 1 ml 10% proteose peptone. Ca. 40 h later the mice were infected 

i.p. with 500 µl PBS containing 5x10
7
 CFU of Y. enterocolitica WA(pYV). 2 h after infection, 

peritoneal lavage was performed and PECs were centrifuged at 300 x g, 4°C for 5 min. PECs 

were then counted and same cell numbers were used from each mouse to determine the CFU 

of Yersinia that were being phagocytized and survived intracellularly. The cells were first 

resuspended in PBS containing 200 µg/ml gentamicin and incubated at 37°C for 90 min to kill 

the extracellular bacteria. Thereafter cells were permeabilized with 0.1% Triton X-100/PBS at 

4°C for 5 min, and serial dilutions were plated on LB-agar plates. The number of the 

phagocytized Yersinia could then be counted after ca. 40 h incubation at 27°C as CFU. 

 

2.2.3.7 Respiratory Oxidative Burst 

2.2.3.7.1 Peritoneal cells for APF respiratory oxidative burst assay 

Mice were injected i.p. with 3 ml 3% Proteose Peptone/D-PBS (0.22 µm/ filter-sterilized, 

freshly prepared) for 3 h. 3 h later, PECs were carefully prepared as mentioned in chapter 

2.2.3.3. The PECs were incubated with 2 ml erythrocytes lysis buffer at RT for 5 min, 

centrifuged at 4° C x 300 g x 5 min. PECs were then resuspended in 1 ml RPMI1640 (without 

phenol red, Invitrogen Cat. No. 11835), containing 2.5% FCS, and the cell concentration were 

adjusted to 8 x 10
5
 /180 µl. PECs were incubated on ice for at least 30 min in order to down 

regulate any preparation-resulted activation of the PECs. A small part of the cells was used 

for cell surface staining (see chapter 2.2.3.13) and FACS analysis in order to determine the 

fraction (%) of the different immune cells within the PECs of each mouse. Only PECs from 

the mice which had similar fractions of neutrophils (CD45+Ly6G+) and macrophages 

(CD45+F4/80+) were applied for the assay.  

8 x 10
5
 PECs in 180 µl medium were seeded per well in 24-well plate. 20 µl APF, dissolved 

in RPMI 1640 medium (without phenol red) containing 2.5% FBS were added to each well. 

This corresponds to a final working concentration of 10 µM (1:500 dilution from a 5 mM 

stock solution). Cells were incubated at 37°C for 30 min as described previously et.al 

(Setsukinai et al., 2003). The plates were protected from light during the entire assay period.  
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30 µl of bacteria suspension (resuspended in RPMI1640 containing 2.5% FCS) were added to 

the APF-loaded cells at MOI = 10 and incubated for 15 min, 30 min, 60 min, 90 min or 2 h. 

The actual infection doses were determined (CFU) by plating aliquotes on the LB-agar plates. 

Prior to infection, bacterial infection doses were incubated at 37°C for 5 min. Noninfected 

cells were used as control. After infection, the cells were collected in cold FACS-buffer, 

subjected to cell surface staining (see chapter 2.2.3.13) and analysed by FACS. 

 

2.2.3.7.2 Splenocytes for luminol respiratory oxidative burst assay 

Splenocytes were seeded on the white Grainer F bottom 96 well plate at a density of 1 x 10
5 

cells per well in 100 µl RPMI 1640 medium containing 5% FBS, and incubated at 37°C for ca. 

30 min to 1 h. Stock solution of luminol reagent (100 µg/ml) was diluted at 1: 100 in D-PBS. 

10 µl of the diluted luminol were added to each well and incubated at 37°C for 30 min. Cells 

were then infected with bacteria at MOI of 2-50. Noninfected cells were used as control. The 

plate was centrifuged at 300 x g/4°C for 2 min and the measurement of luminescence was 

started immediately using luminescence plate reader (FLUOstar OPTIMA, BMG LABTECH). 

The white Grainer F bottom plate can be washed with 70% ethanol followed by immersing in 

the 70% ethanol overnight, and then next day washed again with 70% ethanol and allowed to 

dry under the flow, and then it can be reused for new assays. 

 

2.2.3.8 �F-κB transcription factor assay 

Splenocytes were resuspended in RPMI 1640, containing 5% FCS, and seeded in 6-well plate 

at a concentration of ca. 8 x 10
6 

cells/800 µl/well. The plates were incubated at 37°C for 1 h 

and then infected with bacteria at MOI 10-80 for 30 min, 60 min, or 90 min. Nonstimulated 

cells were used as control. The actual infection dose (CFU) was determined by plating 

aliquote of the infection dose on LB-agar plates. The nuclear extracts were prepared using the 

nuclear extraction kit, according to the manufacturers' protocols (Active Motif). The nuclear 

extraction samples were stored at -80°C for future use.  

NF-κB activation was measured and quantified using TransAM NF-κB family kit (Active 

Motif). This enzyme-linked immunosorbent assay (ELISA) is based on quantitative 

determination of p50-, p65-, c-Rel-, p52-, and RelB-binding to specific consensus DNA 

sequences that are immobilized on 96-well plate. The assay was performed according to the 

manufacturer’s instructions. In some cases also whole cell lysates can be used (see 

manufacturer’s instructions). Whole cell lysates or nuclear extracts were prepared after 

stimulation for the indicated time. 20 µl of whole cell lysates or nuclear extract were added 



Materials and Methods 

43 

 

per ELISA well, incubated for 1 h at RT, washed 3 times, and then incubated with anti-p50, 

anti-p65, anti-c-Rel, anti-p52 or anti-RelB primary antibodies for 1 h. Thereafter, the wells 

were washed 3 times, and then incubated with the secondary peroxidase-conjugated antibody 

for 1 h at RT. After three times washing, the developing solution was added, incubated for 8-

10 min, and then the reaction was stopped by adding 100 µl stop solution. The absorbance 

was then immediately read at 450 nm with reference wavelength of 655 nm using Sunrise™ 

microplate absorbance reader (Tecan, Germany). 

Phosphatase inhibitors/PBS (20 ml): 10 x PBS 2 ml; H2O (Amupuwa) 17 ml; phosphatase 

inhibitors 1 ml (supplied by Active Motif, part of the TransAM™ NFκB Family Kits). 

 

2.2.3.9 Cell signalling assay 

BMDCs were seeded at 2x10
6
cells/well in 12-well plates in RPMI 1640 medium, containing 

10% FCS, and incubated for 2-4 h at 37°C to enable cell adherence. Medium was discarded 

and 500 µl RPMI without FCS were added and incubated for 3-4 hours to perform cell 

starving. The reason for serum deprivation is that cell culture medium contains FCS which in 

turn contains many growth factors. Because of these factors and due to autocrine factors 

released by the cells under culture, cells will be in a state of continuous stimulation. This 

results in the activation of secondary messenger molecules (such as diacylglycerol, 

phosphatidylinositols, cAMP, Ca
2+

, nitric oxide (NO) and carbon monoxide (CO)) in pulses 

which would interrupt the signalling pathways that should be tracked and mask the effects 

(Herschman et al., 1991; Ran et al., 1986). Therefore, it is necessary to prevent these signals 

by serum deprivation. By doing so, cells will enter quiescent state (G0 state) where they rest 

and there is no or minimum activity going inside the cell (Stice et al., 1999). But they could 

respond as soon as a stimulant is added. 

After cell starving, cells were infected with 100 µl bacteria in RPMI 1640 medium at MOI 15. 

The plate was centrifuged for 2 min at 300 x g/4°C and then incubated at 37°C for different 

time points. Thereafter, the plate was incubated on ice, the supernatants were discarded and 

cells were resuspended in 110 µl denature buffer (CBA Cell Signaling master buffer kit; Cat. 

No. 560005 BD Biosciences) and transferred to 1.5 ml tube. Samples were incubated at 

100°C for 5 min and then put on ice immediately before storing at -80°C for later use. 

Phosphorylation states of p38 (T180/Y182), JNK1/2 (T183/Y185) and Erk1/2 (T202/Y204) 

were analyzed by using CBA Cell Signaling Flex Sets (BD Biosciences). The rate of 

phosphorylated kinases was determined by calculating the ratio of phosphorylated to the total 

kinase. Total JNK(1/2) and total p38α  were determined using the corresponding multiplex 
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Flex Set Cytometric Bead Array (BD Biosciences). Before use, cell lysates samples were 

centrifuged at ca. 15000 x g/4°C for 3 min to pellet debris and samples were diluted at 1:8 

with the appropriate volume of assay diluent to reduce the percentage of SDS. The assay was 

performed according to the manufacturer’s instructions. Quantification of non-phosphorylated 

proteins and phospho-proteins (units/ml) was based on a calibration curve, which was 

established for each Flex Set using corresponding recombinant (phospho) proteins. FACS 

data were acquired on FACS CantoII (BD Biosciences) and analysed using the FCAP Array 

Software. The percent of phosphorylated proteins was determined by normalising the amount 

(units) of phosphorylated proteins to the corresponding total protein amount. 

 

Denature buffer: 

5 x denature buffer 800 µl; H2O (Ampuwa) 3 ml; 1M DTT 4 µl; protease inhibitors cocktail 

40 µl; phosphatase inhibitors 200 µl. Prepare freshly! 

 

2.2.3.10 STAT4 cell signaling assay 

Splenocytes and BMDCs were prepared as mentioned in chapter 2.2.4.2 and 2.2.4.3, 

respectively. 2x10
5
 BMDCs, 5x10

5
 splenocytes, or a mix of 2x10

4
 BMDCs and 4.5x10

5
 

splenocytes (ca. 1:22) were seeded in poly-L-lysine-coated wells of 96-well clear-bottom 

white plate in RPMI 1640 medium, supplemented with 5% FCS, and incubated at 37°C for 

ca.2 h to let the cells attach to the bottom. Cells were then treated as follows:  

Cells were infected with Y. enterocolitica WA314, S. typhimurium, or L. monocytogenes for 1 

h at MOI of 5-50. After 1 h, medium was replaced by RMPI1640 medium containing 5%FCS 

and 6 µg/ml gentamycin, and incubated for further 4 h. Some wells were stimulated with 1 

µg/ml LPS for 4 h, or 100 ng/ml recombinant IL12 for 30 min. Experiments were done in 

triplicate and the actual infection dose (CFU) was determined by plating aliquots of the 

bacteria on LB-agar plates. 

The phosphorylated and/or total STAT4 was measured using FACE™ STAT4 Chemi Kit 

(Cat. No.48420 Active Motif), according to the manufacturer’s instructions. In general, 

following stimulation, the cells were rapidly fixed to preserve activation-specific protein 

modifications. Each well was then incubated with the primary antibody that recognizes either 

phosphorylated STAT4 or total STAT4. Subsequent incubation with secondary HRP-

conjugated antibody and developing solution provides an easily quantified chemiluminescent 

readout. The relative number of cells in each well is then determined using the provided 

Crystal Violet solution. 
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 2.2.3.11 In vitro stimulation of cells for cytokine production  

For preparing the cell culture supernatants, 2x10
5
 BMDCs/well or 5x10

5 
splenocytes/well 

were seeded in 96-well plate in RPMI 1640 medium containing 5% FCS, and incubated for 2-

4 h to enable the cells to adhere. Supernatants were removed and new 100 µl RPMI 1640 

medium (containing 5% FCS) and supplemented with different Toll-like receptor (TLR) 

agonists (see table 9) or bacteria at desired MOI (usually MOI=15) were given to the cells. 

Alternatively, bacteria were heat killed by exposure to 60°C for 1 h (Yersinia) (Kampik et al., 

2000), 80°C for 45 min (Listeria) (Genovese et al., 1999), or 75°C for 1 h (Salmonella) 

(Sakharov et al., 1961). To control the viability of heat-killed bacteria, an aliquot of the 

heated suspensions was plated on the appropriate agar plates and incubated for 40 h. Cells 

were then incubated at 37°C for different time points. In some cases living bacteria were 

killed 1 h after starting infection by exchanging cell culture medium with another one 

containing 5 µg/ml gentamicin. Experiments were done in duplicate or triplicate. 

After infection/stimulation for the desired time, the plates were incubated on ice, and the 

supernatants were collected and stored at -80°C for later use.  

Prior to use, samples were mixed by vortexing and centrifuged at ca. 15.000 x g /4°C for 3 

min to pellet debris. 50 µl of each cell culture supernatant was applied for quantifying 

cytokine concentrations according to the manufacturer’s instructions (BD, Cat. No. 558266).  

 

Table 9- TLRs agonists applied in this study. Table was modified from InvivoGen. All TLR 

agonists were purchased from InvivoGen/Cayla SAS (Catalog # tlrl-kit1m) 
 

Agonist TLR Working con. Stock solution con. Volume of solvant 

Pam3CSK4 TLR1/2 0.1-1 µg/ml 100 µg/ml 100 µl H2O 

HKLM TLR2 10
8
cells/ml 10

10 
cells/ml 100 µl H2O 

Poly(I:C) TLR3 10ng-10 µg/ml 1 mg/ml 500 µl H2O 

Poly(I:C) LMW TLR3 10ng-10 µg/ml 1 mg/ml 500 µl H2O 

LPS-EK TLR4 10ng-10 µg/ml 100 µg/ml 1 ml H2O 

ST-FLA TLR5 10ng-10 µg/ml 100 µg/ml 100 µl H2O 

FSL1 TLR6/2 1 ng-1 µg/ml 100 µg/ml 100 µl H2O 

ssRNA40 TLR6/7 0.25-10 µg/ml 100 µg/ml 250 µl H2O 

ODN1826 TLR9 5 µM 500 µM 31 µl H2O 
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2.2.3.12 Cytokines measurement using cytometric bead array kit (CBA) 

Analysis of cytokines from cell culture supernatants, collected mouse serum or homogenized 

organs was performed by using a cytometric bead array kit (CBA) (BD, Biosciences) and 

FACS data were acquired on FACS CantoII (BD Biosciences) and analysed using the FCAP 

Array Software (Fig.10). Standard curves were determined for each cytokine from a range of 

10-5000 pg/ml.  

This assay is based on beads coated with antibodies against the respective cytokines of 

interest which allow the capture of cytokines in a small sample volume. Furthermore, the 

beads for each cytokine have specific colour allowing the contribution of each beads 

population to one kind of cytokine and thus make it possible to measure all cytokines of 

interest within one sample. Captured cytokines can be then detected by incubating the beads 

with PE-conjugated detection antibodies against the cytokines and the concentration can be 

quantified by comparing the PE fluorescence intensities with those of the standards for each 

cytokine. In this assay, only two times of incubation are needed and one hour for each. 

The beads for the cytokines of interest were pre-mixed and then incubated with cell culture 

supernatants (50 µl) or serum (5-25 µl) in a FACS tube at RT. After 1 h, PE-conjugated 

antibodies against for each cytokines were pre-mixed in a separate tube, added to the samples 

and incubated for another 1h. Thereafter 1 ml wash-buffer was added; the beads were 

centrifuged at 200 x g for 10 min and then resuspended in about 200 ul wash-buffer. The 

samples were then measured by FACS CantoII (BD Biosciences). FACS data were analysed 

using the FCAP Array Software. Standard curves were determined for each cytokine from a 

range of 10-5000 pg/ml. 

 

2.2.3.13 Immune cells recruitment assay 

Cyld
+/-

 and Cyld
-/-

 mice were infected i.p. with 2.5 x 10
5
 Y. enterocolitica WA314 for 20 h or 

3 days, respectively. Peritoneal lavage and spleens were then harvested; splenocytes and 

PECs were subjected to cell staining with cell type-specific markers (see table 5 and table 6) 

and then subjected to FACS Canto II analysis. Data were collected and analyzed with FlowJo-

8.8.4. Software (Tree Star Inc, USA). Only the results from mice groups that had similar 

bacteria loads in their spleen were considered. 

 

2.2.3.13.1 Staining with cell type-specific markers 

Antibodies (Abs) against cell type-specific markers were combined in 3 different groups for 



Materials and Methods 

47 

 

Incubation (1h)
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FACS Analyze

Serum

Beads with capture 

antibodies

PE-conjugated 

detection antibodies

Incubation 

(1h)

T�F
IL-2

IF�-g
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IF�-g

MCP-1

T�F

IL-2
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Samples 

preparation: ~ 1h

FACS analysis: 

depends on samples number: ~1-2 h

Fig. 10. Work flow of CBA procedure.  
 

splenocytes (table 10) or in 1 group for peritoneal cells (table 11). About 1-2x10
6 

splenocytes 

or PECs were taken for each staining group. The appropriate cell number of splenocytes or 

PECs were centrifuged at 300 x g /4°C for 10 min, resuspended in 100 µl, 220 µl or 320 µl 

FACS buffer (depending on number of cells and antibody set of interest , containing Fc-Block 

(Anti-CD16/32, 5 µg Fc Block for ca.1x 10
7 

cells), and incubate at 4°C for ca. 20 min. Cell 

samples were then split where appropriate (into 2 or 3 pre-labelled tubes, ca.100 µl in each 

tube). 10 µl of the corresponding antibody-set were added to each tube, mixed by pipetting up 

and down 3-4 times and incubated at 4°C for 30 min. 1000 µl FACS buffer were then added 

and centrifuged at 300 x g/4°C for 10 min. Cell pellets were resuspended in ca. 300 µl FACS 

buffer and analyzed by FACS. Alternatively, cell pellets were resuspended in 100 µl 3.7% 

formaldehyde, incubated at 4°C for 10-30 min. 1 ml FACS Buffer were then added and 

centrifuged at 300 x g/4°C for 10 min. This wash step was repeated once again to remove 

completely formaldehyde that can affect especially the tandem fluorophores. Cells were then 

resuspended in ca. 300 µl FACS Buffer and stored at 4°C, protected from light, for later 

analysis by FACS.  
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10
5
 cells were acquired on FACS Canto II. Data were collected and analyzed with FlowJo-

8.8.4. software (Tree Star Inc, USA). Absolute numbers of splenocytes subpopulations were 

calculated based on their percentage and the total number of leukocytes. 

 

Table 10- Staining markers for splenocytes 

 

Group Antibodies 

 

Dilutions  

(for 10
6
 cells in 100 µl) 

Cell type 

1 CD45-PE-Cy7  

B220/CD45R-PE 

CD11c-APC-Alexa750 

F4/80-PE-Cy7 

1:3 

1:3 

1:5 

1:5 

Leukocytes  

B  cells  

DCs  

Macrophages 

2 CD45-PECy7  

CD49b-APC 

CD8-PerCP 

1:3 

1:3 

1:3 

Leukocytes 

Natural Killer cells 

CD8 T cells 

3 

 

Ly6G-PE 

CD45-PE-Cy7 

CD4-PE 

1:5 

1:3 

1:3 

Neutrophils 

Leukocytes 

CD4 T cells 

 

Table 11- Staining markers for peritoneal cells 

 

Group Antibodies Dilutions (for 10
6
 cells in 100µl) Cell type 

1 CD45-PE-Cy7 1:3 Leukocytes 

 F4/80-PE-Cy7 1:3 Macrophages 

 CD11b-APC 1:5 Monocyte/macrophages 

 Ly6G-PE 1:5 Neutrophils 

 

FACS Buffer (0.22 µm-filter sterilized and stored at 4°C):  

D-PBS (without magnesium and calcium), 2% FCS, 2 mM EDTA. 

 

2.2.3.14 Immunohistochemistry (IHC) 

Mice were sacrificed, tissues were isolated, rinsed in PBS, and carefully embedded in O.C.T 

embedding compound (Sakura Finetek / Hartenstein) in plastic mold, by avoiding air bubbles. 

Tissues were shock-frozen by setting the mold on top of liquid nitrogen until 70-80% of the 
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block turns white. Then, the block was put on top of dry ice. Frozen blocks were stored at -

80°C for long-term storage.  

For cryosectioning, frozen blocks were mounted on the cryostat holder (never, at any point, 

let the tissue warm up to temperatures above -15°C). Frozen blocks were allowed to 

equilibrate in the cryostat chamber for about 5 min. 6-10 µm sections were then cut using a 

cryomicrotome (Leica CM 1950) and collected onto pre-labelled SuperFrost Plus slides 

(Menzel-Gläser / Hartenstein). The best sections are usually obtained when the block 

temperature is around -18°C to -20°C. The sections were allowed to dry by incubating at RT 

for at least 1 h and processed for staining or stored at -20 °C.  

For staining, slides were first fixed by immersing slides in acetone (-20°C cold) for 10 min on 

ice, and dried for few minutes at RT. The fixed slides were rehydrated two times in Tris-

Buffered Saline with 0.1% Tween-20 (TBST) two times for 5 min, whereby TBST solution 

was changed in between washes (Note: Once the sections are re-hydrated with Tris-saline, 

never let the tissue dry out again; this will ruin the tissue architecture). Slides were put in 

cover plates and transferred into a slide rack (Thermo Fisher Scientific). Blocking was 

performed by incubating slides with 5% normal goat serum in TBST (150 µl/each slide) at RT 

for 45-60 min, and then washed three times each with 2 ml TBST. Thereafter slides were 

incubated for 1 h at RT with 150 µl/each slide TBST/2.5% normal goat serum containing 

rabbit O:8 antiserum (WA vital) raised against Y. enterocolitica O8 (Heesemann and Laufs, 

1983) diluted 1:5000 in combination with one of the following antibodies that were diluted 

1:200: rat anti-mouse CD45R/B220 or hamster anti-mouse CD11c-DC (BD biosciences). 

Slides were then washed three times with TBST and incubated for 1 h at RT with 150 µl/each 

slide TBST/2.5% normal goat serum containing Alex fluor 488-conjugated goat anti-rabbit 

(Invitrogen/Molecular Probes) applied for detection of rabbit anti-O:8 coated yersiniae, 

combined, where appropriate, with Alex fluor 555-conjugated goat anti-rat 

(Invitrogen/Molecular Probes) raised against CD45R/B220 antibody, Cy3-conjugated goat 

anti-hamster (dianova) raised against anti-mouse CD11c, PE-Texas Red-conjugated rat anti-

mouse F4/80, or rat Alexa fluor 647-conjugated anti mouse neutrophils (clone 7/4; AbD 

Serotec). These antibodies were used at 1:200 dilutions. The combinations of antibodies used 

for IHC are summarized in table 12. Slides were then washed three times with TBST and 

incubated for 3 min at RT with 1 µg/ml 4',6-Diamidino-2-phenylindole dihydrochloride 

(DAPI) in 150 µl TBST. Slides were then washed two times with TBST, and covered with 

Fluoprep (Biomerieux) and a coverslip. Digital images in the DAPI, FITC, PE-Texas Red, 

Cy3, and Cy5 channels were collected using an Olympus BX-61 fluorescence microscope 
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(Olympus, Germany) equipped with cell^P software (Olympus Soft Imaging System). Images 

were converted to RGB, coloured and overlaid. 

 

Table 12- Antibodies combinations used for IHC. Yersinia (WA-vital) was diluted 1:5,000. 

The other primary and secondary antibodies were diluted 1:200 

Combinations Primary Antibodies Secondary Antibodies 

A Rat anti-B220 

Rabbit anti-O:8 

Alexa 555 conujugated goat anti-Rat 

Alexa 488 conujugated goat anti Rabbit 

DAPI 

B Hamster  anti-CD3e 

Rabbit anti-Yersinia(WA-vital) 

Cy3 conujugated anti-Hamster 

Alexa 488 conujugated goat anti Rabbit 

DAPI 

C Rat anti-Ly-49D 

Rabbit anti-Yersinia(WA-vital) 

Alexa 555 conujugated goat anti-Rat 

Alexa 488 conujugated goat anti Rabbit 

DAPI 

D Hamster anti-CD11c 

Rabbit anti-Yersinia(WA-vital) 

Cy3 conujugated anti-Hamster 

Alexa 488 conujugated goat anti Rabbit 

DAPI 

E  

 

Rabbit anti-Yersinia(WA-vital) 

Alexa 647 conujugated rat anti-

neutrophils 

Alexa 488 conujugated goat anti Rabbit 

DAPI 

F  

Rabbit anti-Yersinia(WA-vital) 

PE-Texas Red rat anti-F4/80 

Alexa 488 conujugated goat anti Rabbit 

DAPI 

 

Tris-Buffered Saline Tween-20 (TBST): 

Dissolve 8.8 g of NaCl, 0.2 g of KCl, and 3 g of Tris base in 800 ml of distilled H2O. Add 

1000 ul of Tween-20, Adjust the pH to 7.4 with HCl. Add distilled H2O to 1 L. Sterilize by 

autoclaving. 

 

2.2.3.15 Translocation assay 

Beta-lactamases (β-lactamases) comprise a family of bacterial enzymes that cleave penicillins 

and cephalosporins. Coumarin cephalosporin fluorescein 4 (CCF4)-AM, a Fluorescence 
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Resonance Energy Transfer (FRET)-based fluorescent substrate, consists of a cephalosporin 

core bridging a 7-hydroxycoumarin residue and a fluorescein residue and permits the use of 

CCF4 as substrate and sensitive reporter gene expression. The lipophilic, esterified form of 

this substrate CCF4-AM readily enters the cell. Cleavage by endogenous cytoplasmic 

esterases rapidly converts CCF4-AM into its negatively charged form, CCF4, which is 

retained in the cytosol. Cleavage of the beta-lactam ring of the cephalosporin of CCF4 results 

in the separation of the fluorophores, cumarin and fluorescein, and subsequent disruption of 

FRET(Raz et al., 1998) (Fig.11). 

Overnight cultures of Yop-Bla-Reporter Yersinia which were generated by Hicham Bouabe 

(this institute, unpublished data) were incubated in LB-Medium, containing 30 µg/ml 

chloramphenicol, at 27°C. Next day, bacteria were diluted at 1:40 and incubated for 90 min at 

37°C. Bacteria were washed with cold HBSS (without Ca, Mg), resuspended in 1 ml HBSS 

(without Ca, Mg), and OD600 was determined. Infection dose (MOI = 20) in 50 µl was 

adjusted with RPMI/5% FCS according to the initial OD600 value of the bacterial suspension 

or the CFU (see chapter 2.2.1.4). 5x10
5
 BMDCs or freshly prepared splenocytes, resuspended 

in 120 µl RPMI/5% FCS without antibiotics, were seeded per well in 48 well-plate. Cells 

were incubated at 37°C for 1-2 h and then infected with the prepared reporter-strains in 50 µl 

medium at MOI = 20. Plates were incubated at 37° for 1 h. Cells were collected in cold HBSS 

(without Ca, Mg) and transferred to 1.5 ml tubes, and centrifuged at 300 x g/10 min at 4°C. 

Cells were resuspended in 300 µl CCF4-AM staining solution (Invitrogen) supplemented with 

2.5 µM probenecid (Sigma, efflux inhibitor) which were prepared according to the 

manufacturer’s instructions (Invitrogen), and incubated at RT for 75 min under agitation (ca. 

800 rpm) and shelter from light. 1 ml cold HBSS (without Ca, Mg) was added and cells were 

centrifuged at 300 x g/10 min at 4°C. Cells were resuspended in 300 µl cold PBS/0.5% 

FCS/2mMEDTA. 10
5
 cells per sample were applied for FACS Canto II analysis. Data were 

collected and analyzed with FlowJo-8.8.4. Software (Tree Star Inc, USA).  
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Fig. 11. Scheme of the translocation assay. The lipophilic, esterified form of CCF4-AM readily enters the cell.  

Cleavage of ester groups by endogenous cytoplasmic esterases rapidly converts this molecule into the 

negatively-charged substrate CCF4, which is retained in the cytosol. In the absence of β-lactamase activity, 

excitation of the coumarin (at 409 nm) in the intact molecule, results in FRET to the fluorescein, which emits a 

green fluorescence signal (at 520 nm). In the presence of β-lactamase (when translocation of Yop-Bla via the 

TTSS into host cells was occurred), enzymatic cleavage of CCF4 spatially separates the two dyes and disrupts 

FRET, so that excitation of the coumarin (at 409 nm) now produces a blue fluorescence signal (450 nm). 

TTSS 
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3. Results  

3.1 Cyld
-/- 

mice show enhanced resistance to Yersinia infection 

Yersinia enterocolitica is a Gram-negative, food-borne enteric pathogen causing human self-

limiting gastrointestinal diseases such as enteritis, terminal ileitis and mesenteric 

lymphadenitis, or septicemia with focal abscess formation in the liver and spleen (Bottone, 

1997). Similar infection course and diseases can be developed in the mouse infection model, 

where Y. enterocolitica, after e.g. oral infection, replicates in the small intestine, invades 

Peyer’s patches (PPs) of the ileum, and disseminated to the liver and spleen. In the latter 

organs, yersiniae replicate predominantly extracellularly and form localized lesions consisting 

of yersiniae microcolony infiltrated preferentially by neutrophile (abscess-like lesions) 

(Trulzsch et al., 2007). 

In order to examine whether CYLD plays a role in the host defense against Yersinia 

enterocolitica, Cyld
-/-

 mice and control Cyld
+/-

 littermates were infected orally (1 x 10
9
 CFU) 

or intraperitoneally (i.p.) (2 x 10
4
 CFU) with Y. enterocolitica strain WA-314. Interestingly, 

whereas there was no significant difference (P = 0.57) in yersiniae load in the Peyer’s patches 

of Cyld
-/- 

mice and control mice after oral infection, Cyld
-/- 

mice showed decreased yersinia 

load in the spleen and liver, after both oral and i.p. infection (Fig.12). Moreover, the closely 

related food-borne enteric pathogen Yersinia. pseudotuberculosis (O3; YPIII IB1), which is 

similar pathogenic and shares many virulence factors with Y. enterocolitica (Koornhof et al., 

1999; Smego et al., 1999), also showed less infectivity to Cyld
-/-

 mice in comparison to Cyld
+/-

-mice (Fig.13). Thus, Cyld
-/-

 mice show decreased susceptibility to Yersinia infection 

compared with Cyld
+/-

-mice.  

 

3.2 Differential susceptibility of Cyld
-/-

 mice to enteric pathogen 

To investigate whether CYLD possesses specific contribution to the host resistance to 

yersiniae, we challenged Cyld
-/-

 mice and control Cyld
+/-

 mice also with the Gram-negative S. 

enterica Serotype Typhimurium (strain SB300, here denoted as S. Typhimurium). In contrary 

to Y. enterocolitica and Y. pseudotuberculosis, S. Typhimurium is considered as a facultative 

intracellular pathogen. S. Typhimurium is a causative agent of gastrointestinal salmonellosis 

in humans. Interestingly, the susceptibility of Cyld
-/-

 mice to S. Typhimurium was comparable 

(P>0.05) to that of Cyld
+/-

 mice, after both oral and i.p. infection (Fig.14 A and B).
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 (A)                                                                 (B)  

Fig. 12. CYLD-deficient mice displayed an enhanced host resistance to infection with Y. enterocolitica 

WA-314. A: Cyld mice were infected with Y. enterocolitica WA-314 at 1 x 10
9 
orally B: Cyld

-/-
and Cyld

+/-
mice 

were i.p. 2 x 10
4
 CFU infected for 5 hours or 2 x 10

4 
i.p. for 5 days, respectively. Cyld

-/-
and Cyld

+/-
 mice spleens, 

livers and Peyer’s patches were then surgically removed from the mice, homogenized and plated on LB agar 

plates to detect the bacteria loads in these organs. Differences were considered statistically significant at P values 

< 0.05. 

 

Fig. 13. CYLD-deficient mice displayed an enhanced host resistance to i.p. infection with Y. 

pseudotuberculosis (O3; YPIII IB1). 5 Cyld
-/-

 and 6 
+/-

mice were infected with 1 x 10
5 
Y. pseudotuberculosis i.p. 

for 5 days. Spleens and livers were then surgically removed from the mice, homogenized and plated on BHI agar 

plates to detect the bacteria loads in these two organs. Differences were considered statistically significant at P 

values < 0.05. 

 

3.3 Similar immune cells influx into the peritoneal cavities and spleens of Y. 

enterocolitica infected Cyld
-/-

 and Cyld
+/- 

mice 

Recruitment of leukocytes to the site of bacterial infection is integral to immune defense. The 

recruited leukocytes, such as neutrophilic granulocytes/neutrophils and macrophages, are 

known to participate in engulfing (phagocytosis), killing (microbicidal activity) and digesting 

(release several hydrolases such as elastase, catheprin, lysozyme etc.) of bacterial pathogens 

(Geng, 2001). Thus, we wondered whether the increased resistance of CYLD-deficient mice  
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(A)                         (B) 

Fig. 14. Cyld-deficient and WT mice show similar resistance to S. typhimurium WT SB300 infection. Cyld 

mice were infected with S. typhimurium at 1 x 10
7 

orally for 5 days (A) or 1.9 x 10
4 

i.p. for 4 days (B), 

respectively. Spleens and livers were then surgically removed from the mice, homogenized and plated on the LB 

agar plates to detect the bacteria loads in these organs. Differences were considered statistically significant at P 

values < 0.05. 

 

to Yersinia infection is due to enhanced leukocyte recruitment to the site of infection leading 

to improved clearance of yersiniae. 

Therefore, we analyzed the leukocytes influx to the peritoneal cavities and spleens of Cyld
+/-

-

control micetype and Cyld
-/-

 mice after i.p. infection with 2.5x10
5
 CFU of Y. enterocolitica 

WA(pYV) for 20 h and 3 days post infection, respectively.  

Cyld
-/-

 and Cyld
+/-

 mice, which had initially comparable bacteria loads in the peritoneal cavity 

and spleens, showed similar influx of neutrophils (CD45+Ly6G+) into the peritoneal cavity 

(Fig.15A). Twenty hours after i.p. Yersinia infection, the percentage of neutrophils within 

CD45-positive peritoneal cell population increased to ca. 57% - 60% for Cyld
+/-

 and Cyld
-/-

 

mice, respectively and decreased moderately to about 44% - 50% after 3 days. A closer look 

showed that noninfected mice displayed less than 1% of which ratio increased to 56,7 % and 

60,2 % in Cyld
+/-

 and Cyld
-/-

 mice, respectively, 20 h after infection. The macrophage 

(CD45+F4/80+)-ratio, in both Cyld
+/-

 and Cyld
-/- 

mice, decreased initially from ca. 22 - 25% 

to about 9% after 20 h and then increased to about 30 - 39% for Cyld
+/-

 and Cyld
-/-

 mice, 

respectively,  after 3 days post i.p. infection. The B cell ratio (CD45+B220+) did not 

essentially change for both Cyld
+/-

 and Cyld
-/-  

mice after 20 h infection (15-20%) but 

thereafter declined below the value of the non-infected state after 3 days of infection. The 

CD8-T cells (CD45+CD8+) fraction increased 4-fold (4.3% - 4.9% compared with the 

nonstimulated ca. 1.1% – 1,5%) for both Cyld
+/-

 and Cyld
-/- 

mice after 20 h and 3 days i.p. 

infection, respectively.  
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Compared to the peritoneal cavity the influx of immune cells into the spleen upon i.p. 

Yersinia infection was quite different (Fig.15B). For example, the ratio of the neutrophils 

increased continuously during the course of infection by 25% in both Cyld
+/-

 and Cyld
-/- 

mice. 

The ratio of macrophages did not change after 20 h i.p. Yersinia infection (ca. 5%). However, 

after 3 days i.p. Yersinia infection the ratio of macrophages decreased to ca. 3%. For B and 

CD8-T lymphocytes, the percentages did not vary during the whole analyzed infection time 

and showed similar values like in noninfected mice. 

 

3.4 Growth-inhibition and/or “disruption” of Yersinia microcolonies in the 

spleen of CYLD-deficient mice 

 
The spleen is an important organ for antimicrobial immune reactivity, in particular for the 

Yersinia mouse infection model. To acquire a general view of the Yersinia infection in the 

spleen of Cyld
-/-

 and Cyld
+/+

 mice, 6 to 8 weeks old mice were i.p. infected with Y. 

enterocolitica with a dose of 9 x 10
4
 CFU and were sacrificed at day 1 (24 h) post infection 

(p.i.) or challenged with 2 x 10
4
 yersiniae and then sacrificed 5 days later. Subsequently, 10-

µm cryosections of spleens (part of the spleens were homogenized to check the bacteria loads) 

were prepared, immunostained with antibodies against neutrophils (Ly6G-Alexa 647), 

macrophages (F4/80-Texas Red), Y. enterocolitica (rabbit anti-Yersinia serum: WA-vital) and 

its corresponding secondary antibody conjugates (FITC-conjugated goat anti-rabbit antibody). 

This immunostaining was combined with cell nucleus staining using DAPI. The samples were 

then examined under fluorescence microscope.  

Results indicated that at day 1 p.i., microcolonies (a clustered community of bacteria growing 

in tissue shown as small green spots in Fig. 16A and B) in spleens were tiny and interspersed 

all over the spleen, especially in the Cyld-/- spleen (Fig. 16A). At this time point of infection, 

we could not see significant recruitment of macrophages or neutrophils into the microcolonies 

area.  

Over the course of 5 days, microcolonies in the spleen of Cyld
-/-

 mice increased in size and 

spread over the entire spleen (Fig.17A and C) being interspersed mainly with neutrophils 

(Fig.17C). In the spleen of Cyld
+/-

 mice, microabscesses of Yersinia instead of microcolonies 

were distributed homogeneously throughout the organs seemingly without a preferential 

anatomical location (Fig.17B and D), and being surrounded mainly by neutrophil 

granulocytes (Fig.17D), indicating the key role of the latter in fighting against Yersinia. 
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(A)  Peritoneal cavity 

 

(B) Spleen 

Fig. 15. Similar immune cells influx into the peritoneal cavities and spleens of Yersinia infected Cyld
-/-

 and 

Cyld
+/- 

mice. Mice were infected i.p. with 2.5x10
5
 CFU of Y. enterocolitica. Peritoneal cells (A) and splenocytes 

(B) were stained with antibodies against the indicated cell type specific surface markers and analyzed by flow 

cytometry. Cells were gated on CD45 and CD45
+
 leukocytes were analysed for the expression of the indicated 

cell type markers (F4/80, Ly6G, CD8 and B220). The bacteria burden in the peritoneal cavityperitonea and 

spleens are indicated in the tables (upper right). Data represent values of two independent experiments using 

groups of three mice (The indicated numbers are given as % of total CD45-positive cells.). 
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 (A) 

 

(B) 

 

Fig. 16. Cryosection and immunostaining of the spleen from Cyld
+/-

and Cyld
-/-

 mice. Mice were infected i.p. 

with 9 x 10
4
 CFU of Y. enterocolitica for 24 h. Spleens were removed, placed directly in O.C.T embedding 

compound, frozen in liquid nitrogen and stored at -80 °C. Frozen tissues were cut at 10 µm thickness using a 

cryomicrotome. and sections were collected onto SuperFrost Plus slides (Menzel-Gläser / Hartenstein). Tissue 

sections were stained with a rabbit anti yersiniae serum antibody and a FITC-labeled secondary antibody, 

neutrophils were stained with Ly6G-Alexa 647, macrophages were stained with F4/80-Texas Red and nuclei 

were stained with DAPI. In the early infection stage (24 h p.i.), microcolonies (indicated by white arrows) in 

spleen of Cyld
-/-

 mouse were tiny and interspersed all over the spleen (A). In the spleen of Cyld
+/-

 mouse, 

microcolonies were tiny and less than that of Cyld
-/-

 mouse (B). 

 

3.5 Cyld
-/-

 cells show higher phagocytic and intracellular killing capability 

for Y. enterocolitica 

It is well known that the inhibition of phagocytes is a major virulence mechanism of Y. 

enterocolitica which supports extracellular survival and growth of this pathogen (Grosdent et 

al., 2002). In order to elucidate whether higher phagocytosis rates are involved in the 

improved resistance of Cyld
-/-

 mice in comparison to Cyld
+/-

-mice to Yersinia infection, 10% 

proteose peptone elicited peritoneal cells (PECs) from Cyld
+/-

 and Cyld
-/-

 mice were used for 

the phagocytosis assay (see chapter 2.2.3.5). Our pilot experiments revealed that significant  
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F4/80-PE-TexasRed/Y.enterocolitica-FITC/DAPI 

   

Ly6G-Alexa647/Y.enterocolitica-FITC/DAPI 

   

Fig. 17. Immunostained cryosection of the spleen from Cyld
+/-

 and Cyld
-/-

 mice. Mice were infected i.p. with 

2 x 10
4
 CFU of Y. enterocolitica. 5 days later spleens were cryo-cut and the obtaines sections were stained with 

an anti-Yersinia antibody and a FITC-labeled secondary antibody (green), neutrophils were stained with Ly6G-

Alexa 647 (pink), macrophages were stained with F4/80-Texas Red (red) and nuclei were stained with DAPI 

(blue). Microcolonies in the spleen of Cyld
-/-

 mice increased in size (compared to their form 24h p.i.; see Fig.16) 

and spread over the entire spleen being interspersed with the macrophages (A) and neutrophils (C). In the spleen 

of Cyld-competent mice, microabscesses instead of microcolonies were distributed homogeneously throughout 

the organs being surrounded by macrophages (red) (B) and neutrophils (pink) (D). 

 

 

phagocytosis differences between Cyld
-/-

 and Cyld
+/-

 PECs were obtained at multiplicity of 

infection (MOI) of 5-10 yersiniae. This MOI allowed direct comparisons between these 

Cyld
+/-

 and Cyld
-/- 

cells and reduced potentially confounding effects associated with higher 

MOI (e.g. endotoxin effects, cell damage).  

We first monitored the behavior of Y. enterocolitica in contact with PECs at an MOI = 10 

(results from plating of infection dose) and after 30 min of infection at 37°C (adherence and 

uptake phase), gentamicin (100 µg/ml) was added and cells were incubated for further 90 min 

to kill the extracellular bacteria. Then we determined the bacterial number that were 

phagocytosed and survival intracellularly by plating the cell lysates and counted the number 

of recovered Yersinia colonies (CFU). Results showed that more bacteria (about three times 

more)  survived in Cyld
-/- 

PECs compared to Cyld
+/- 

PECs (Fig. 18A). It is of note that this 

A 

D C 

B Cyld
-/-

 

Cyld
+/-

 

Cyld
+/-

 

Cyld
-/-
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gentamicin protection assay does not differentiate between different uptake rates and survival 

rates. 

(A)                                                                            (B) 

Fig. 18. Cyld
-/- 

 PECs show higher numbers of internalized Y. enterocolitica in vitro. PECs were infected 

(MOI = 10) with Y. enterocolitica strain WA(pYV) and mutant WA(pYV∆YopH) (MOI = 10) for 30 min, 

gentamicin (100 µg/ml) was then added and cells were incubated for further 90 min. Cells were then specifically 

lysed with 0.1% Triton X-100 and serial dilutions were plated on the appropriate plates. (A) Number of CFU 

recovered from cell's interior. (B) The YopH-mediated anti-phagocytosis effect was calculated as follow: CFU 

of WA(pYV) x 100/ CFU of WA(pYV∆YopH).  

 

Several studies by other investigators demonstrated that YopH is an important effector that 

allows yersinia to resist phagocytosis by cells (Fallman et al., 1995; Grosdent et al., 2002; 

Rosqvist et al., 1988). To explore the impact of YopH on the host phagocytosis of Y. 

enterocolitica in our study, YopH mutant (WApYV∆YopH) was applied to the assay under 

the same conditions described above for strain WA(pYV). Our results are also in accordance 

with the other reports that there were more WA(pYV∆YopH) being phagocytosed (Fig.18A) 

by both the Cyld
-/- 

PECs and Cyld
+/-

 PECs compared with the strain WA(pYV), confirming 

the involvement of YopH in anti-phagocytosis effect of Yersinia. Meanwhile, our results also 

demonstrated that there were still more WA(pYV∆YopH) being phagocytosed by Cyld
-/- 

PECs compared to Cyld
+/-

 PECs. However, this time Cyld
-/- 

PECs phagocytosed only two 

times more WA(pYV∆YopH) compared to Cyld
+/-

 PECs. Thus, the anti-phagocytosis 

efficiency mediated by YopH seemed a little higher (Fig.18B) in Cyld
+/-

 PECs (ca.73%) 

compared with Cyld
-/- 

PECs (ca.58%) which indicates that YopH is more effective under the  

presence of CYLD. Furtheremore, although the improvement of Yersinia phagocytosis by 

Cyld
-/-

 cells seems to be due to attenuated function of YopH in these cells, also the 

 Cyld 
+/-    

     Cyld
-/-

 



Results 

61 

 

impairment of the anti-phagocytosis effect of other Yersinia effectors (e.g. YopE, YopO, 

YopT) in the absence of CYLD seems to contribute to this phagocytosis phenotype.  

To exclude the possibility that Cyld
-/-

 cells exhibit an intrinsic stronger phagocytic capability 

that is not specifically restricted to Y. enterocolitica, we applied PECs from Cyld
+/-

 and Cyld
-/-

 

mice for the phagocytosis assay to the non-pathogenic bacteria such as E. coli JM109 

infection. The results showed similar phagocytosis and intracellular growth of E. coli by both 

the Cyld
-/- 

and Cyld
+/-

 PECs after 1.5 h and 13 h p.i., respectively (Fig.19). 

Fig. 19. �on-pathogenic E. coli JM109 is similarly phagocytosed by Cyld
+/-

 and Cyld
-/-

 cells. PECs were 

infected with E. coli JM109 (MOI 30) for 60 min, Gentamicin (10 µg/ml) was then added and cells were 

incubated for further 1.5 h or 13 h, respectively. 

 

 

The increased Yersinia phagocytosis by Cyld
-/-

 PECs could be responsible for the increased 

resistance of Cyld
-/-

 mice to Yersinia infection. To substantiate this suggetion we checked the 

survival of Y. enterocolitica within PECs at different time points, under sustained presence of 

gentamicin (at a lower concentration, 6 µg/ml) to kill only the extracellular bacteria. As 

shown in Fig.18, the CFU of intracellular Y. enterocolitica rapidly dropped for both the 

Cyld
+/- 

PECs and Cyld
-/- 

PECs during the period of 2 h to 6 h p.i. However, in Cyld
-/-

 PECs the 

number of intracellular bacteria decreased more rapidly (from 4.5 x 10
5
 at 2 h p.i. to less than 

5 x 10
3
 at 6 h p.i.) compared with Cyld

+/- 
PECs (from 3.2 x 10

5
 at 2 h p.i. to less than 1 x 10

4
 

at 6 h p.i.). And after 12 h the majority of intracellular yersiniae in both cell types dropped 

below 10
3
. 
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Fig. 20. Cyld
-/-

  PECs display more efficient intracellular killing of internalized Y. enterocolitica  than 

Cyld
+/-

 cells. PECs were infected with  strain WA(pYV) (MOI = 5) for 60 min. Gentamicin (100 µg/ml) was 

added and cells were incubated for further 90min to kill rapidly extracellular yersiniae. For longer infection time, 

medium was exchanged with fresh medium containing only 6 µg/ml gentamicin. Cells were then lysed with 

0.1% Triton X-100 and serial dilutions were plated on appropriate plates. 
 

To validate the phagocytosis data under in vivo conditions, we performed phagocytosis assay 

in vivo (see chapter 2.2.3.6 in the method part). 

Mice were injected i.p. with 1 ml 10% proteose peptone in order to recruit phagocytic cells in 

the peritoneal cavity. Ca. 40 h later, mice were infected i.p. with Y. enterocolitica WA(pYV). 

After 2 h, peritoneal lavage was performed and PECs were treated with gentamicin for 90 min 

to kill the extracellular bacteria. Then we determined the CFU by plating PECs. Results of 

CFU showed that there were almost twofold more bacteria being phagocytosed by Cyld
-/-

 

PECs in vivo compared with Cyld
+/-

 PECs (Fig.21), and thus confirming the in vitro 

phagocytosis data. 

 

3.6 Cyld
-/-

 PECs cells show higher respiratory oxidative burst response 

specifically to Y. enterocolitica WA(pYV)  

It is well established that during phagocytosis of microorganisms or upon cell stimulation 

with soluble agents, such as the peptide formyl-methionyl-leucyl-phenylalanine (fMLP) 

derived from bacteria, phagocytes produce superoxide via catalysis of one-electron reduction  
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Fig.21. Cyld
-/-

 PECs show higher  numbers of intracellular Y. enterocolitica. CYLD mice were injected i.p. 

with 1 ml 10% proteose peptone for ca. 40h and then the mice were infected i.p. with 5x10
7
 CFU of WA(pYV). 

2 h later, PECs were prepared by lavage and same cell numbers were used from each mouse to determine the 

number of the being phagocytosed yersinia by performing permeabilization with 0.1% Triton X-100 for 5 min, 

at 4°C. Serial dilutions were plated on the appropriate agar plates. The number of phagocytosed Yersinia could 

then be counted after ca. 40 h incubation at 27°C. 

 

 

of oxygen to superoxide by activated phagocyte NADPH oxidase, (Akasaki et al., 1999; 

Stuart and Ezekowitz, 2005; Takeshige et al., 1996). The reactive oxygen species (ROS) 

subsequently derived from superoxide, a precursor of microbicidal oxidants, are essential for 

microbial killing (Roos et al., 1996). The NADPH oxidase consists of cytochrome b558, a 

membrane-spanning glycoprotein, and three cytosolic proteins (p47phox, p67phox, p40phox 

and the small G-protein Rac) (Kikuchi et al., 1994; Koga et al., 1999; Kuribayashi et al., 2002; 

Sumimoto et al., 1994). Cytochrome b558, located in the plasma membrane of phagocytes, is 

a heterodimeric protein composed of a 91-kDa glycoprotein (gp91phox) and a 22-kDa protein 

(p22phox) (Yamauchi et al., 2001; Yu et al., 1997). In resting cells, the NADPH oxidase is 

non-functional (“dormant”)  because important components have to be activated to translocate 

from the cytoplasma to the cytoplasma membrane. After cells are stimulated, signaling 

cascades trigger the exchange of Rac-bound GTP by GTP, in Rac, and the phosphorylation of 

the cytosolic phox proteins (p47phox, p67phox, p40phox) by kinases. The activated cytosolic 

components of the NADPH oxidase translocate to the membrane and form a complex together 

with cytochrome b558 where they catalyze the production of superoxide (Ago et al., 1999; 

Nakanishi et al., 1992; Sumimoto et al., 1994). 
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The oxidative burst, as a rapid, transient way to produce huge amounts of ROS, represents 

one of the earliest powerful  anti-microbial defense strategy, but on the other hand, generated 

ROS released in excess into media can damage host tissue. Various techniques have been 

described to determine ROS production including chemiluminescence (Briheim et al., 1989), 

fluorescence (Rest, 1994) and cytochrome c reduction (Smith and Weidemann, 1993).  

We compared ROS production of Cyld
+/- 

and Cyld
-/- 

cells using two different ROS-sensitive 

probes. The first one was a chemiluminometric probe, 5-amino-2, 3-dihydro-1, 4-

phthalazinedione (luminol) (Allen and Loose, 1976), that reacts with ROS generated by 

phagocytes to produce an excited aminophtalate anion that emits light when returning to 

ground state. Light emission could be measured quantitatively by luminescence plate reader. 

The second one was a fluorimetric probe, Aminophenyl Fluorescein (APF) (Setsukinai et al., 

2003). APF is nonfluorescent because the fluorescence of fluorescein is quenched by 

protection of the phenolic hydroxy group at the 6’-position of fluorescein with an electron-

rich aromatic ring (aminophenyl). APF is O-deacylated upon reaction with ROS to yield 

strongly fluorescent fluorescein. Table13 summarizes the properties of the probes applied in 

our study. 

 

Table 13- Properties of the APF and Luminol probes applied in the study to measure 

respiratory oxidative burst activation. (Modified from Freitas et al., 2009). 

Probe APF/HPF Luminol 

Reactive species detected HO•, ONOO−, HOCl (only 

APF) 

O2•−, H2O2, HO•, HOCl, •NO, 

ONOO 

Intra or extracellular 

localization 

Intracellular Intracellular, extracellular 

Excitation/emission (nm) 500/520 Visible laser  

Advantages It is possible to detect HOCl 

selectively. 

Highly sensitive 

Limitations HPF and APF are not auto 

oxidized by light irradiation. 

Luminol can act as a source of 

O2 

 

 

3.6.1 Oxidative burst analysis by flow cytometry using APF  

We analyzed the intracellular ROS production by PECs using the fluorimetric probe, 

Aminophenyl Fluorescein (APF) (see chapter 2.2.3.7.1.).  

PECs from Cyld
+/- 

and Cyld
-/- 

mice were prepared by injecting i.p. 3% Proteose peptone. After 

3 h neutrophils were prepared by lavages of the peritoneal cavity (Luo and Dorf, 2001).  
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PECs from mice that showed similar cell influx, especially neutrophils (CD45+Ly6G+) and 

macrophages (CD45+F4/80+), into the peritoneal cavities (Figure. 22) were applied to the 

APF assay. As seen in the representative example in Figure.25, the Cyld
+/-

 mice No. 4351 and 

4352, showed similar relative portion of neutrophils (CD45+Ly6G+) influx as the Cyld
-/-

 mice 

No. 4355 and 4353, reaching an recruited portion of about 30% of total cells. The percentages 

of macrophages (CD45+F4/80+) were 16% and 17.3% in the Cyld
+/-

, and 16.2% and 19.2% in 

the Cyld
-/-

 mice, respectively (Fig.22).  

 

Fig. 22. Analysis of the relative composition (%) of PECs. PECs from Cyld
-/-

 mice were stained with 

antibodies against cell surface markers CD45, Ly6G and F4/80 and analyzed by FACS, Cells with similar 

numbers, especially of Ly6G+ and F4/80 + cells were applied to the oxidative burst assay. 

 

The PECs from these mice with similar neutrophil portion (%) were loaded with APF and 

then infected with Y. enterocolitica WA(pYV), L. monocytogenes or S. Typhimurium. 

Infection was stopped at different time points, cells were immunostained against cell type 

specific markers, and analysed by flow cytometer. Neutrophils (CD45+Ly6G+) were gated 

and then analyzed for the fluorescence of APF-fluorescein (oxidative burst activity) (Fig.23). 

The level of ROS production was determined by calculating the intensity, the geometric mean 

of the green fluorescence of APF (Fig.24). 
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Fig. 23. Oxidative burst analysis by flow cytometry using APF. One representative figure is choosen to show 

how the oxidative burst was analyzed. CD45+Ly6G+ cells were gated and then analyzed for APF-fluorescein. 

Data were analyzed by the FlowJo-8.8.4. software. 

 

Fig. 24. Cyld
-/-

 cells show stronger respiratory burst response to Y. enterocolitica infection compared with 

Cyld
+/-

 cells. PECs were infected with strain WA(pYV)at MOI = 10 for different time points and oxidative burst 

was analyzed by flow cytometry using APF. The geometric means of APF-fluorescence of gated CD45+Ly6G+ 

PECs was determined at different time points. Data were analyzed by the FlowJo-8.8.4. software. CD45+Ly6G+ 

cells were gated and then analyzed for APF-fluorescein. Each sample was analyzed in duplicate. 

 

Interestingly, although similar numbers of Cyld
+/-

 and Cyld
-/-

 PECs showed oxidative burst 

activity (Fig.23), the quantification of APF fluorescence intensity by calculating the 

geometric mean of the green fluorescence of APF revealed almost 2-fold higher signals for 

Cyld
-/-

 PECs than for Cyld
+/-

 PECs 30 min p.i. with strain WA(pYV) (Fig.24). 
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Studies with other bacteria strains, such as L. monocytogenes (infection at MOI = 24) or S. 

Typhimurium (infection at MOI 9) showed similar level of intracellular respiratory burst 

response to the respective infections (Fig.25). However, S. Typhimurium infected PECs (both 

Cyld
-/-

 and Cyld
+/- 

cells) reached the highest oxidative burst activity at 15 min post infection 

and this high level of APF-fluorescence sustained during the whole analyzed infection time of 

ca. 90 min, while the L. monocytogenes infected PECs showed steadily ascending intensity of 

fluorescence of APF-fluorescence geometric means during the whole analyzed infection time 

of ca. 90 min. 

Fig. 25. PECs from Cyld
-/-

 and Cyld
+/-

 mice showed similar intracellular respiratory burst response to S. 

Typhimurium infection. PECs were infected with S. typhimurium (MOI = 9) for different time points. The 

oxidative burst was analyzed by flow cytometry using APF. The geometric means of APF-fluorescence of gated 

CD45+Ly6G+ PECs was determined at different time points. Each sample was analyzed in duplicate. 

 

3.6.2 Oxidative burst analysis using luminol 

To validate the oxidative burst phenotype of Cyld
+/-

 and Cyld
-/- 

cells detected by APF-

technique, we analyzed the ROS production by PECs using another independent method 

based on the chemiluminometric probe, luminol. 

Our pilot experiments revealed that the most consistent results for luminol-based anylasis of 

oxidative burst could be generated using splenocytes. The use of PECs for oxidative burst 

assays was time and mice consuming. Only PECs with similar percentage e.g. of neutrophils 

and macrophages, after proteose peptone treatment of mice, could be subjected to the 

oxidative burst assay (see part 3.6.1.). Another problem is that pretreatment of mice with 

proteose peptone leads to differential priming level of PECs in each mouse, which would 
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result in non-consistent results in the subsequent oxidative burst assay. In contrast, 

splenocytes exhibit many advantages compared with PECs. (i) Splenocytes are removed from 

naïve mice which are not primed and thus should display similar background activities. (ii) 

Although the main ROS producers such as macrophages and granulocytes, , constitute 

together only ca. 10% of total splenocytes, this proportion is enough to detect ROS production 

using luminol, since the quantum yield of the luminol is very high and thus ROS production 

can be detected by using less than 100 phagocytes (Freitas et al., 2009). 

Splenocytes obtained from Cyld
+/- 

and Cyld
-/-

 mice were infected with Y. enterocolitica 

WA(pYV) and real time production of ROS was determined by measuring 

chemiluminescence of luminol, using luminescence plate reader (see chapter 2.2.3.7.2).  

Our results indicated that Cyld
-/-

-deficient splenocytes show higher respiratory oxidative burst 

response to Y. enterocolitica infection as measured by luminol-dependent chemiluminescence 

(relative light units: about 1,000 at the peak point) compared with that of Cyld
+/-

 splenocytes 

(with the relative light units of about 500 at the peak point of stimulation) (Fig.26). Both of 

the Cyld
+/-

 and Cyld
-/-

 cells approached their respiratory oxidative burst peak quickly, around 

10 to15 min p.i. (Fig.26). And then, the relative light units of Cyld
+/-

 splenocytes dropped very 

quickly to the ground state (with relative light units of about 200) at 25 min while Cyld
-/-

 cells 

did not approach to the basic level until ca. 45 min post infection (Fig.26).  

In agreement with the results using APF, the analysis of ROS production during infection 

with L. monocytogenes and S. Typhimurium using luminol-dependent chemiluminescence 

showed similar level of respiratory burst response by Cyld
+/- 

and Cyld
-/-

 cells (Fig.27). 

Furthermore, in contrast to infection with Yersinia, Listeria infected splenocytes (both Cyld
-/-

 

and Cyld
+/-

 cells) showed sustained high level of chemiluminescence (with the relative light 

units of about 1,000) during the whole analyzed infection time of ca. 85 min. 

These data suggest that CYLD is involved in the negative regulation of cellular oxidative 

burst activity during Yersinia infection. Thus, we conclude that Yops-mediated inhibition of 

oxidative burst seems requires CYLD. 
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Fig. 26. ROS production by Cyld
+/-

 and Cyld
-/-

 splenocytes measured by luminol chemiluminescence. 10
5
 

splenocytes were seeded in 96-well plates in medium complemented with luminol. Cells were then infected with 

Y. enterocolitica WA(pYV) at MOI = 10. Noninfected cells were used as control. The plate was centrifuged at 

300 x g / 4°C / 2 min and the monitoring of luminescence was started immediately using luminescence plate 

reader. Each sample was analyzed in triplicate. 

 

Fig. 27. ROS production by Cyld
+/-

 and Cyld
-/-

 splenocytes measured by luminol chemiluminescence. 10
5
 

splenocytes were seeded in 96-well plates in medium complemented with luminol. Cells were then infected with 

L. monocytogenes at MOI = 19 (A) or S. Typhimurium (SB300 strain) at MOI = 44 (B). Noninfected cells were 

used as control. The plate was centrifuged at 300 x g / 4°C / 2 min and the monitoring of luminescence was 

started immediately using luminescence plate reader. Each sample was analyzed in triplicate. 

 

Cyld+/+ infected 

Cyld-/-  infected 

Cyld-/-  noninfected 

Cyld+/-  noninfected 

Cyld+/+ infected 

Cyld-/-  infected 

Cyld-/-  noninfected 

Cyld+/-  noninfected 

A 

B 
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To analyze the direct contribution of CYLD to Yops-mediated inhibition of oxidative burst, 

we performed oxidative burst studies using different Y. enterocolitica mutants that are 

deficient in the expression of one yop gene. If CYLD is involved in Yop-mediated inhibition 

of oxidative burst, the infection of CYLD-deficient and CYLD-competent cells with strains 

deficient in this particular Yop should result in comparable oxidative burst responses.  

It is known that YopH inhibits oxidative burst (Ruckdeschel et al., 1996). Furthermore, 

CYLD and YopP show overlapping functions e.g. as negative regulators of MAPK (Reiley et 

al., 2004; Yoshida et al., 2005; Zhou et al., 2005a). MAPKs are known to be involved in the 

activation of oxidative burst (Brown et al., 2004; El Benna et al., 1996a; El Benna et al., 

1996b; Laroux et al., 2005; Sakamoto et al., 2006; Yamamori et al., 2002) and thus YopP is 

suggested to be also involved in the inhibition of ROS production by blocking the MAPK 

pathways (Visser et al., 1999).  

Thus, we first concentrated on the analysis of oxidative burst response of Cyld
-/-

 and Cyld
+/-

 

splenocytes to infection with WA(pYV∆YopH) and WA(pYV∆YopP).    

Data presented in Figure.28 show that both mutant WA(pYV∆YopH) (Fig.28A) and 

WA(pYV∆YopP) (Fig.28B) stimulated ROS production of splenocytes and dropped to 

ground level of the respiratory oxidative burst much later (more than 50 min post stimulation) 

than that of infected Cyld
+/-

 splenocytes (Fig.26). Thus, the stronger oxidative burst activity in 

Cyld
-/-

 cells seems not to be a direct effect of CYLD, but rather due to the inability of YopH 

or YopP to inhibit oxidative burst in the absence of CYLD. 
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(A) 

 

(B) 

Fig. 28. ROS production by Cyld
+/-

 and Cyld
-/-

 splenocytes measured by luminol chemiluminescence. 10
5
 

splenocytes were seeded in 96-well plates in medium complemented with luminol. Cells were then infected with 

mutant WA(pYV∆YopH at MOI = 27 (A) or with WA(pYV∆YopP) at MOI = 16 (B). Noninfected cells were 

used as control. The plate was centrifuged at 300 g / 4°C / 2 min and the measurement of luminescence was 

started immediately using luminescence plate reader. Each sample was analyzed in triplicate. Cyld
-/-

: blue line, 

Cyld
+/-

: purple line. 
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Cyld
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Mutant WA(pYV∆YopH) 
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3.7 Analysis of cytokine production of infected Cyld
-/- 

and Cyld
+/-

 mice (in 

vivo) and bone marrow derived dendritic cells (BMDCs, in vitro)  

A major function of the innate immune cells during microbial infection is the production of 

inflammatory mediators such as cytokines, chemokines, nitric oxide, and ROS. The 

production of inflammatory cytokines is known to be critical for the resistance of the host to 

infections (Netea et al., 2004). The mobilization of the leukocytes to the infection site, the 

initiation of acute phase response and the adaptive immune response are some of the 

mechanisms triggered by proinflammatory cytokines and chemokines. 

It has been shown that CYLD deficiency results in enhanced induction of e.g. IL-1β, IL-6, IL-

8, IFN-α and IFN-β upon stimulation by agonists and/or infection (Yoshida et al., 2005; 

Zhang et al., 2006). Furthermore, Y. enterocolitica is known to inhibit cytokine production by 

immune cells (Brubaker, 2003; Monnazzi et al., 2004). Therefore, we wondered whether the 

improved resistance of Cyld
-/-

 mice to Y. enterocolitica infection  can be assigned to the 

enhanced cytokine response. 

 

3.7.1 Similar cytokine production level of cytokines in Cyld
-/-

 and Cyld
+/- 

mice 

We first analyzed the cytokines production in serums of Cyld
+/-

 mice and the control 

littermates on day1 post infection with Y. enterocolitica. There was no significant difference 

in the induction of cytokines being checked in this study, such as TNF-α, IL6, IL10, MCP-1, 

KC and IFN-γ (Fig.29A). Furthermore, we determined cytokine production also on day 5 post 

infection in serum and liver homogenates of the same mice. Interestingly, there was higher 

production of these cytokines and chemokines except for IL 10 in the Cyld
+/-

 mice compared 

with Cyld
-/-

  mice (Fig. 29A and B).  

However, this enhanced cytokine production in the control littermate mice 5 days post 

infection, correlates with their higher bacteria burden compared to the Cyld
-/-

 mice (Fig. 12B). 

Thus, under the chosen experimental conditions (time point of infection and analysed samples 

–serum and liver-), we suggest that Cyld
-/-

 mice display a normal (as Cyld
+/-

-mice) cytokine 

response to infection. 
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(A) 

 

(B) 

Fig. 29. Cytokine production profiles in vivo. Cyld
-/-

 (n = 4) and Cyld
+/-

 (n = 4) mice were i.p. infected with 

2x10
4
 CFU of Y. enterocolitica. (A) After 1 day and 5 days post infection, blood was collected; serum was 

prepared and subjected for cytokines measurement. (B) After 5 days post infection, the mice were scarified, liver 

were removed and homogenized. Equally amount of total liver proteins were subjected to cytokines/chemokines 

measurement. (Spleens were homogenized and plated to determine the bacteria loads in the corresponding mice). 
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3.7.2 Differential expression profile of MCP-1, IL-10 and T�F-αααα by Cyld
-/-

 and Cyld
+/- 

cells in vitro 

 

Given the fact that the cytokines measured in serum and liver of infected mice would reflect 

the concentration of systemically diffused cytokines, which might differ from their 

microenvironmental concentration at the infection site, we decided to examine in vitro 

cytokine response of stimulated BMDCs and splenocytes in order to gain a more accurate 

picture of the cytokine expression profile in Cyld
-/-

 and Cyld
+/-

 mice. 

Thus, we analyzed in vitro the cytokine response of BMDCs upon infection with Y. 

enterocolitica. As control for pathogen specificity, we also analyzed cytokine response to 

infection with L. monocytogenes and Salmonella Typhimurium.    

The levels (pg/ml cell supernatant) of TNF-α, MCP-1 and IL10 in the culture supernatants of 

the non-infected and infected BMDCs were measured, respectively. Results indicated that 

Cyld
+/-

 and Cyld
-/-

 cells show similar TNF-α production upon infection with the respective 

pathogens, irrespective whether the pathogens were alive or heat-killed (HK) (Fig.30A). In 

the case of MCP-1, Cyld
-/-

 cells show decreased MCP-1 production upon infection with Y. 

enterocolitica and Salmonella Typhimurium (both live and heat-killed) (Fig.30B). As for IL-

10, Cyld
+/-

- and Cyld
-/-

 cells show similar IL-10 production upon infection with Y. 

enterocolitica and Salmonella Typhimurium, respectively (Fig.30C). However, surprisingly 

Cyld
-/-

 cells show higher IL-10 production to live L. monocytogenes infection on one hand, 

but decreased IL-10 production to heat-killed L. monocytogenes on the other hand (Fig.30C). 

Considerably, Cyld
+/-

 cells show similar IL-10 production to both live and heat-killed L. 

monocytogenes infection (Fig.30C). 

 

3.7.3 Cyld
-/- 

cells show enhanced production of IL-12 and IF�-γγγγ upon infection with 

Yersinia and Listeria 

The IL-12 family is a central immunoregulatory cytokine that promotes cell-mediated 

immune responses and the differentiation of naïve CD4
+
 cells into Th1 cells (Guler et al., 

1996). Three members constitute the IL-12 family, IL-12p70 (IL-12p40/IL-12p35), IL-23 

(IL12-p40/IL-23p19) and IL-27 (EBI3 and p28). IL-12 is produced mainly by macrophages 

and dendritic cells when induced e.g. by pathogenic organisms, including bacteria, parasites, 

fungi, and viruses (Watford et al., 2004). 

IFN-γ is a pleiotropic cytokine that plays an essential role in the innate and adaptive immunity. 

It is a major activator of macrophage functions including the release of reactive nitrogen and 

oxygen intermediates and the production of IFN-γ can be induced by diverse intracellular  
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(A)                                   (B) 

  

(C) 

Fig. 30. Differential expression profile of T�F-α α α α (A), MCP-1 (B), and IL-10 (C) by Cyld
-/- 

and Cyld
+/-

 

BMDCs upon in vitro challenge. BMDCs from Cyld
-/-

 and Cyld
+/-

 mice were seeded at 2x10
5
/well in RPMI 

1640 medium containing 5% FBS for 2-4 h. Cells were then infected with live or heat-killed (HK) Y. 

enterocolitica (WA(pYV), MOI = 10), L. monocytogenes (L.m., MOI = 24), and Salmonella Typhimurium  (S.T., 

MOI = 17). As for BMDCs infected with live bacteria, medium was exchanged 1 h post infection for 5 µg/ml 

gentamicin-containing medium. Supernatants were collected after 24 h and subjected to CBA cytokine assay.   

 

pathogens, such as L. monocytogenes  and Salmonella Typhimurium  early during primary 

infection (Bao et al., 2000; Buchmeier et al., 1985). 

IFN-γ production by the activated natural killer (NK) cells and T cells is described as part of a 

positive feedback loop of innate immune response (Tripp et al., 1993; Tripp et al., 1994; 

Unanue, 1997; Warschkau et al., 1998): microbes stimulate macrophages and DCs to produce 

cytokines such as IL-12, which activate NK cells and T cells to release IFN-γ. IFN-γ, in turn, 
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stimulates macrophages and DCs for further IL-12 production (Ma et al., 1996). The IFNγ-

activated macrophages show increased ability to kill phagocytosed bacteria, e.g. by producing 

toxic metabolites, which may limit multiplication and survival of pathogens (MacMicking et 

al., 1997).  

IL-12 and IFN-γ has been shown to play an important role in controlling Yersinia infection 

(Bohn and Autenrieth, 1996; Bohn et al., 1998; Hein et al., 2001). 

Thus, due to the importance of the IL-12/IFN-γ axis in immune response to infection, we 

measured the production of IL-12 and IFN-γ upon infection of Cyld
-/- 

and Cyld
+/-

 BMDCs. 

Our results indicated that Cyld
-/-

 BMDCs show increased (about 2.5 times more) 

IL12/IL23p40 production upon infection with live Y. enterocolitica WA(pYV) while the 

difference was not significant when Cyld
-/-

 and Cyld
+/-

 cells were stimulated with heat-killed 

WA(pYV) (Fig.31A). The release tendency of IL12/IL23p40 upon L. monocytogenes or 

Salmonella Typhimurium infection just resembles that upon infection with Y. enterocolitica 

with the exception that the concentration of IL12/IL23p40 in the infection of live L. 

monocytogenes (BMDCs of Cyld
+/-

 vs BMDCs of Cyld
-/- 

: 140 pg/ml vs 460 pg/ml) or live S. 

typhimurium (BMDCs of Cyld
+/-

 vs BMDCs of Cyld
-/- 

: 96 pg/ml vs 206 pg/ml) is much lower 

than that of live Y. enterocolitica (BMDCs of Cyld
+/-

 vs BMDCs of Cyld
-/- 

: 3,400 pg/ml vs 

10,000 pg/ml) (Fig.31A).  

Since activated T cells and activated NK cells are the main source of IFN-γ, and because our 

pilot experiments revealed that splenocytes (that contains e.g. T cells and NK cells) but not 

BMDCs produce significant amounts of IFNγ upon stimulation, we used splenocytes to study 

the production of IFN-γ. Splenocytes from Cyld
-/-

 and Cyld
+/-

 mice were infected with Y. 

enterocolitica (MOI = 10), L. monocytogenes (MOI = 14), and Salmonella Typhimurium 

(MOI = 4) for one hour, thereafter medium was changed by ca. 100 µg/ml gentamicin 

containing medium, in order to kill extracellular bacteria. The supernatants were then 

collected at 12h, 24 or 36 hours post infection. Our results show that Cyld
-/-

 splenocytes 

showed increased (at least two times more) IFN-γ production upon challenge of these three  

pathogens compared with Cyld
+/-

 splenocytes, whereby L. monocytogenes induced higher 

IFN-γ release than Y. enterocolitica (Fig.31B). 
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 (A)                                                                         (B) 

Fig. 31. Cyld
-/- 

BMDCs and splenocytes show enhanced production of IL-12 and IF�-γγγγ, respectively, upon 

bacterial infection in vitro. (A) BMDCs from Cyld
-/-

 and Cyld
+/-

 mice were seeded at 2x10
5
 cells/well or 5x10

5
 

cells/well, respectively, in RPMI 1640 medium containing 5% FBS for 2-4 h. Cells were then infected with 

living or HK Y. enterocolitica (WA(pYV), MOI = 10), L. monocytogenes (L.m., MOI = 24), and Salmonella 

Typhimurium (S.T., MOI = 17). As for BMDCs infected with live bacteria, medium was exchanged 1 h post 

infection by one 100 µg/ml gentamicin containing medium. Supernatants were collected after 24 h and subjected 

to CBA cytokine assay. (B) Splenocytes were infected with Y. enterocolitica (MOI 10), L. monocytogenes (MOI 

14) and Salmonella Typhimurium (MOI 4) for 24h. Supernatants were collected after 24 h and subjected to CBA 

cytokine assay. 

 

 

3.7.4 Differential cytokine expression profile of Cyld
-/-

 and Cyld
+/- 

cells upon stimulation 

with PAMPs in vitro 

 

Since TLR2 and the adaptor protein myeloid differentiation primary response gene 88 

(Myd88) that conveys many TLR signals, have been shown to be crucial for host defense 

against many pathogens, such as L. monocytogenes (Janot et al., 2008; Torres et al., 2004) and 

pathogenic Yersinia species (Depaolo et al., 2008; Dessein et al., 2009; Sing et al., 2002), and 

as previous works documented that CYLD acts as a negative regulator on TLR signaling 

resulting in damped cytokine production (Lim et al., 2008; Lim et al., 2007; Sakai et al., 2007; 

Yoshida et al., 2005; Zhang et al., 2006), we wondered whether TLRs in Cyld
-/-

 and Cyld
+/-

 

cells would show different activation level upon stimulation with their respective specific 

PAMPs. The production of proinflammatory cytokines represent a major early host response 

triggered by pathogen-associated molecular patterns (PAMPs)-mediated stimulation of TLRs 

and thus represent an accurate readout for TLR activity. Therefore, we analyzed cytokine 

response of BMDCs upon stimulation for 24 h with FSL-1 (1 ug/ml, a synthetic diacylated 

lipoprotein recognized by TLR2 and TLR6); with ultrapure LPS (500 ng/ml) TLR4 agonist, 
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from E. coli K12; or a polyinosinic: polycytidylic acid (1 ug/ml Poly (I:C)), a synthetic analog 

of double-stranded RNA (dsRNA, that stimulates TLR3).  

The results indicated that Cyld
+/- 

and Cyld
-/- 

BMDCs show similar TNF-α production upon 

stimulation with all three tested TLR-agonists (Fig.32A). In the case of MCP-1, Cyld
-/-

 cells 

show decreased MCP-1 production upon stimulation with LPS and Poly (I: C) (Fig.32B). 

FSL-1, a PAMP for TLR2/TLR6, did not induce any MCP-1 production by both Cyld
+/- 

and 

Cyld
-/- 

BMDCs (Fig.32B). As for IL-10, Cyld
-/-

 cells show lower IL-10 production upon 

stimulation with LPS than for Cyld
+/- 

cells (Fig.32C). FSL-1 and Poly (I:C) induced, IL-10 

production near detection limit for both Cyld
+/- 

and Cyld
-/- 

BMDCs (Fig.32C). 

The stimulation of BMDCs with LPS showed slightly higher production of IL12/IL23p40 by 

Cyld
-/-

 cells, compared to Cyld
+/-

 cells (Fig.32D). Furthermore, in comparison to WT BMDCs, 

Cyld
-/-

 BMDCs showed increased and decreased production of IL12/IL23p40 upon 

stimulation with FSL-1 and Poly (I: C), respectively (Fig.32D). Considerably, FSL-1 or Poly 

(I: C) induced, generally, lower amount of IL12/IL23p40 (lower than 500 pg/ml), compared 

to LPS stimulation (Fig.32D). These results demonstrate that TLR2 and TLR4 agonists show 

differentially responses which depends on the presence of CYLD. 

 

3.8 STAT4 cell signaling assay 

The aforementioned experiments (chapter 3.7.3) have demonstrated that Cyld
-/-

 cells show 

increased IFN-γ production upon infection with Y. enterocolitica. Therefore, we wanted to 

explore the mechanism underlying the CYLD-dependent modulation of IFN-γ production 

upon Yersinia infection.  

A main mechanism involved in IFN-γ induction is that mediated by IL-12 and STAT4. IL-12 

binds specifically to two noncovalently linked receptor chains, IL-12R1 and IL-12R2 (Chua 

et al., 1994; Presky et al., 1996; Szabo et al., 1997), which are e.g. expressed on NK cells and 

activated T and B cells. The IL-12R1-chain interacts with Non-receptor tyrosine-protein 

kinase TYK2 (Chua et al., 1994; Zou et al., 1997) while the IL-12R2-chain interacts with 

JAK2 (Presky et al., 1996; Zou et al., 1997). The binding of IL-12 to its receptors leads to 

activation of JAK2 and TYK2, which in turn phosphorylate IL-12R, providing docking 

sitesfor the SH2 domain of STAT4 (Bacon et al., 1995a; Jacobson et al., 1995). STAT4 

specifically binds to the IL-12R2 peptide sequence pYLPSNID (where pY represents 

phosphotyrosine) (Naeger et al., 1999) and the receptor-bound STAT4 is phosphorylated on 
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(A)                                                                            (B) 

  

(C)                                                                         (D) 

Fig. 32. Differential cytokine expression profile of Cyld
-/-

 and Cyld
+/-

 BMDCs upon stimulation with 

different PAMPs in vitro. BMDCs from Cyld
-/-

 and Cyld
+/-

 mice were seeded at 2x10
5
/well in RPMI 1640 

medium containing 5% FBS for 2-4 h. Cells remained unstimulated (US) or were then stimulated with LPS (500 

ng/ml TLR4), FSL-1(1 ug/ml, TLR6/TLR2) or Poly(I:C) (10 ug/ml TLR3) for 24 h. Culture supernatants were 

collected after 24 h and subjected to CBA cytokine assay to analyse the production of TNF-a (A); MCP-1 (B); 

IL-10 (C) and IL-12/IL-23p40 (D).  

 

 

tyrosine 693 by the JAKs, promoting STAT dimerization, translocation to the nucleus, and 

regulation of IFN-γ gene expression (Bacon et al., 1995b; Cho et al., 1996).  

Besides the Jak-STAT pathway mentioned above, MKK6/p38α/STAT4 pathway as an 

important mediator of IL-12 actions has also been established (Visconti et al., 2000; Zhang 

and Kaplan, 2000). In this pathway, p38α and its upstream activator, MKK6, phosphorylate 

STAT4 on serine 721, and are required for STAT4 full transcriptional activity induced by IL-

12.  
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Since STAT4 is of particular importance in IFN-γ production, we checked the STAT4 

activation state in Cyld
-/-

 and Cyld
+/-

 cells upon different kinds of stimulation.  

An established method to study IL-12-dependent activation of STAT4 and IFN-γ is as follows: 

pre-treated (e.g. Yersinia-infected) or non-treated cells, such as NK cells or T cells (which are 

major sources for IFN-γ), are first stimulated with recombinant IL-12 and IL-18 that 

cooperate in the induction of IFN-γ. Subsequently, the production of IFN-γ and activation 

level of STAT4 are measured. However, this system is highly artificial and does not consider 

the physiological cell-cell interactions. Thus, we used another experimental procedure that 

doesn’t need the addition of exogenous stimulation factors (like IL-12 and IL-18). 

Our pilot experiments revealed that LPS-stimulated BMDCs produce high level of IL-12 but 

no significant amount of IFN-γ, whereas splenocytes (containing NK cells and T cells) 

produce strongly IFN-γ but no significant amount of IL-12. Thus, none of these cell types 

alone were appropriate to study the IL-12/STAT4/IFN-γ axis. Therefore, we decided to 

combine BMDCs and splenocytes in order to establish an experimental system enabling to 

study the IL-12/STAT4/IFN-γ axis. We supposed that BMDCs supply IL-12 which is 

important for the induction of IFN-γ production by e.g. NK cells and T cells of splenocytes. 

Therefore, splenocytes and BMDCs were prepared as mentioned in the materials and methods 

section (chapter 2.2.3.2 and chapter 2.2.3.3). 2x10
4
 BMDCs were mixed with 4.5x10

5
 

splenocytes (ca. 1:22) in RPMI 1640 medium containing 5% FCS, seeded on poly-L-Lysine-

coated wells of 96-well clear-bottom white plate and incubated at 37°C for ca. 2 h to let the 

cells attach to the bottom. Cells were then infected with Y. enterocolitica WA(pYV) (MOI = 7) 

or S. Typhimurium (MOI = 19), or stimulated with 1 µg/ml LPS. Unstimulated cells were 

applied as control. 1 h post infection, media were replaced by RMPI1640 medium containing 

5%FCS and 6 µg/ml gentamicin. Cells were incubated for further 4 h and then analysed for 

STAT4 activity (phosphorylation of tyrosine 693) using FACE™ STAT4 Chemi Kit (Active 

Motif) (see chapter 2.2.3.10).  

The results indicated that Cyld
-/-

-cells show higher STAT4 activation upon Y. enterocolitica 

infection but slightly less STAT4 activation upon LPS stimulation, compared to Cyld
+/-

-cells 

(Fig.33), and thus reflect the corresponding production level of IL-12 and IFNγ upon Yersinia 

infection (Fig. 31) and LPS stimulation (Fig. 32). Furthermore, upon S.Typhimurium 

infection, both Cyld
-/-

 and Cyld
+/-

 cells don’t show a STAT4 activation level higher than that 

of unstimulated cells (Fig.33). This is in line with our previous finding that Salmonella 

Typhimurium infected-BMDCs or splenocytes don’t produce significant amout of IL-12 or 

IFN-γ, respectively (Fig. 31). 
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Fig. 33. STAT-4 phosphorylation (Y693-P) of mixed cells after infection or LPS treatment. 2x10
4
 BMDCs 

were mixed with 4.5x10
5
 splenocytes (ca. 1:22) and infected with Y. enterocolitica (MOI = 7) or S. typhimurium 

(MOI = 19), or stimulated with 1 µg/ml LPS for 4 h (unstimulated/US  control). STAT4 Y693-phosphorylation 

activity was determined using FACE™ STAT4 Chemi Kit.  US: unstimulated 

 

3.9 Cell signalling assay 

The results presented above indicate that the suppression of phagocytosis and oxidative burst 

by Yersinia effector proteins (e.g. YopH and YopP) is reduced in CYLD-deficient cells 

resulting in improved phagocytosis and killing of Y. enterocolitica. Furthermore, we could 

show that cytokine production (IFN-γ and IL-12) and STAT4-phosphorylation of Y693 are 

enhanced in Yersinia-infected Cyld
-/- 

cells compared to Cyld
+/- 

cells (Fig. 31 – 33).  

Several studies  reported that mitogen-activated protein kinases (MAPKs), such as p38, are 

involved in the activation of signaling cascades coupling receptor stimulation with several 

cellular responses, such as phosphorylation of NADPH oxidase and STAT4, and the 

induction/activation of transcription factors, such as Elk-1, ATF-2 and AP1, that regulate e.g. 

the production of cytokines (Cui et al., 2000; El Benna et al., 1996a; Lal et al., 1999; Nick et 

al., 1997; Yamamori et al., 2000). 

p38, together with the extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase 

(JNK), are the three well-defined MAPK subfamilies (Whitmarsh and Davis, 1996), which 

are highly conserved serine/threonine protein kinases in eukaryotes (Nishida and Gotoh, 

1993). MAPKs play pivotal roles in a variety of cellular processes including proliferation, 

differentiation, apoptosis, stress response, and host immune defense. Activated MAPKs can 

phosphorylate a wide array of downstream targets, including protein kinases and other 

enzymes. p38 was first identified as a phosphorylated protein (Han et al., 1994), which is 
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activated by phosphorylation of tyrosine and threonine residues in response to a variety of 

stimuli such as N-formyl-methionyl-leucyl-phenylalanine (fMLP), GM-CSF, LPS, serum-

opsonized zymosan (OZ), and TNF-α (Krump et al., 1997; McLeish et al., 1998; Nick et al., 

1996; Yamamori et al., 2000).  

Researchers have shown that YopP, a virulence factor of Y. enterocolitica (YopJ in Y. 

pseudotuberculosis and Y. pestis), perturbs a multiplicity of signaling pathways, such as ERK, 

JNK, and p38 pathways and inhibits nuclear factor kappa B (NF-κB) pathway (Palmer et al., 

1998; Ruckdeschel et al., 1998) (see introduction). Furthermore, CYLD was also shown to 

inhibit the activation of c-Jun kinase (JNK) and p38 (Reiley et al., 2004; Yoshida et al., 2005).  

Considering this knowledge, we wondered whether the impaired suppression of cytokine 

production, phagocytosis and oxidative burst by Yersinia in Cyld
-/- 

cells is a result of its 

inability to inhibit MAPKs activation. Thus, we analyzed the activation of the MAPKs, viz. 

p38, ERK and JNK, whereby only the results about p38 and JNK will be presented and 

discussed here.  

BMDCs were infected with Y. enterocolitica WA(pYV) (MOI = 5), Yersinia mutant 

WA(pYV∆YopP) (MOI = 16) or Salmonella Typhimurium (MOI = 26). Infections were 

terminated at different time points by lysing cells and cell lysates were then subjected to CBA 

Cell Signalling assay for phospho-p38 and phospho-JNK (BD, Biosciences; and see chapter 

2.2.3.9). 

As shown in Fig. 34, Yersinia-infected Cyld
-/- 

BMDCs showed higher p38 activation 30 min 

post infection (with ca. 7% phospho-p38 of total p38) compared to Cyld
+/- 

 BMDCs (with ca. 

3% phospho-p38) (Fig.34). 15 min post infection, both cells types showed similar activation 

level of p38 (both about 4% phospho-p38) (Fig.34). 60 min post infection, the 

phosphorylation of p38 returned to the ground level (the unstimulated state) in Cyld
+/- 

cells, 

while Cyld
-/- 

cells still show some minor activation (about 2.5% phospho-p38) and did not 

return to the ground level before 90 min post infection (Fig. 34).  

In the case of infection with the mutant WA(pYV∆YopP), as expected, both Cyld
-/- 

and 

Cyld
+/- 

BMDCs show higher and sustained p38 activation compared to WA(pYV)-infection. 

However, WA(pYV∆YopP)-infected Cyld
-/-

 cells still displayed increased p38 activation at 30 

min and 60 min post infection compared to Cyld
+/- 

cells (Fig. 34). At 90 min post infection, 

the phosphorylation of p38 decreased to reach an equal level in both Cyld
-/-

 and Cyld
+/-

 cells 

(Fig. 34). However, the increased phosphorylation level was still highly significant, compared 

to cells infected with WA(pYV) (Fig.34). 
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To calculate the efficiency of YopP-mediated blockade of p38 activation, the % values for 30 

min were presented and the differences (∆-values) which are then divided by the 100 % value 

obtained from WA(pYV∆YopP)/Cyld
-/-

 cells. It is obvious that YopP could block about 77% 

of p38 phosphorylation of Cyld
+/-

 cells and only 61% of that in Cyld
-/- 

cells (Table.14). 

 

 

Fig. 34. CYLD and YopP are involved in suppression of p38 after infection. BMDCs (2 x10
6
) were infected 

with strain WA(pYV)314 (MOI = 5) or WA(pYV∆YopP) (MOI = 16). Infections were terminated at different 

time points by lysing cells and cell lysates were then subjected to CBA Cell Signalling assay for phospho-p38 

and Total p38. Cyld
-/-

-cells show higher p38 phosphorylation upon both with WA(pYV) or WA(pYV∆YopP) 

(US: unstimulated). 

 

Table 14- Comparison of YopP-mediated suppresion of p38 in Cyld
+/-

 and Cyld
 -/-

 cells. 

 

30 min p38 % ∆ Contribution of  

YopP or Cyld 

WA(pYV), Cyld
+/-

 2.60 

WA(pYV), Cyld
-/-

 6.71 
(6.71 –2.60) x 100 : 6.71 = 61.25 % Cyld effect 

WA(pYV∆YopP),Cyld
+/-

 11.15 

WA(pYV∆YopP), Cyld
-/-

 17.32 

(17.32 –11.15) x 100 : 

17.32 
= 35.62 % Cyld effect 

    

WA(pYV), Cyld
-/-

 6.71 

WA(pYV∆YopP), Cyld
-/-

 17.32 
(17.32 –6.71) x 100 : 17.32 = 61.26 % YopP effect 

WA(pYV), Cyld
+/-

 2.60 

WA(pYV∆YopP), Cyld
+/-

 11.15 
(11.15 –2.60) x 100 : 11.15 = 76.68 % YopP effect 

 

To investigate whether CYLD is involved in the modulation of p38 activity in a pathogen 

specific manner, we infected BMDCs with Salmonella Typhimurium (MOI = 26) and 

analyzed the phosphorylation of p38 at different time points post infection (Fig.35). The 

results show similar p38 activation between WT- and CYLD-deficient BMDCs. 
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Fig. 35 Cyld
+/-

-and Cyld
-/-

-BMDCs show similar p38 activation upon Salmonella Typhimurium infection. 

BMDCs (2 x10
6
) were infected with Salmonella Typhimurium (MOI = 26). Infection was stopped at different 

time points by lysing cells and cell lysates were then subjected to CBA Cell Signalling assay for phopho-p38 and 

Total p38. US: unstimulated 

 

(A)                                                                           (B) 

Fig. 36. Cyld
-/-

-BMDCs show reduced J�K activation upon Y. enterocolitica infection in comparison to 

Cyld
+/-

-cells. BMDCs (2 x10
6
) were infected with WA(pYV) (MOI = 5) (A) or WA(pYV∆YopP) (MOI = 12) 

(B). Infections were terminated at different time points by lysing cells and cell lysates were then subjected to 

CBA Cell Signalling assay for phopho-JNK and Total JNK. US: unstimulated. 

 

Next, we analysed the activation state of another MAPK member, JNK, using the same 

samples prepared for p38 analysis. Surprisingly, Cyld
-/-

-BMDCs showed reduced JNK 

activation upon WA(pYV) infection (MOI = 5) at 30min post infection (with 23% phospho-

JNK of total JNK) compared to Cyld
+/-

-BMDCs (with 46% phospho-JNK) (Fig.36A). 

However, Cyld
-/-

cells sustained their maximal JNK activation level until 60 minutes post 

infection, whereas in Cyld
+/-

-cells the JNK activation level decreased rapidely after 30 min 
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(Fig.36A). Finally, JNK activation reached the ground level at 90 min post infection, in both 

Cyld
-/-

- and Cyld
+/-

-BMDCs. 

In the case of infection with the mutant strain WA(pYV∆YopP) (MOI = 16), unexpectedly, 

both Cyld
-/-

- and Cyld
+/-

- BMDCs showed lower and late JNK activation compared to 

infection with strain WA(pYV) (Fig.36B). It is not clear whether this is due to the higher MOI 

of WA(pYV∆YopP) (MOI = 16) compared to that of WA(pYV) (MOI = 5). However, again 

Cyld
-/-

-cells show reduced JNK activation during the whole analysed infection time (Fig.36B). 

 

3.10 CYLD contribution to YopP-mediated �F-κκκκB-suppression 

Another prominent cellular target of Yersinia YopP is IKK complex which is involved in  

NF-κB activation. The effector protein YopP has been shown to interfere with NF-κB 

activation by blockade of IKKβ, resulting in attenuated transcription of immune response 

genes (Mukherjee et al., 2006; Zhou et al., 2005a). Because CYLD has also been shown to 

regulate negatively NF-κB signalling (Brummelkamp et al., 2003; Kovalenko et al., 2003; 

Salhi et al., 2004; Yoshida et al., 2005), we wondered whether YopP-mediated suppression of 

NF-κB would be altered in Cyld
-/- 

cells. 

Our pilot experiments that were performed with splenocytes being infected with Y. 

enterocolitica at different MOIs (5 to 100) for up to 150 min indicated that p65 NF-κB 

member was not significantly activated with lower MOI (<50) (see exemplary result for MOI 

= 20; Fig.37). Therefore, in the following experiments, we infected the splenocytes with MOI 

≥ 50.  

Splenocytes were infected with Y. enterocolitica WA(pYV) (MOI = 90) or mutant 

WA(pYV∆YopP) (MOI = 80) and the activation of p65 and c-Rel were analyzed using 

TransAM NF-κB family kit (Active Motif) (see chapter 2.2.3.8.). The results indicated that 

Cyld
-/-

 cells show increased p65 activation upon infection with WA(pYV) or mutant 

WA(pYV∆YopP) at 30min post infection compared to Cyld
+/-

 cells (Fig.38). However, the 

difference in NF-κB activity was reduced from ca. 40% to ca. 15% when Cyld
-/- 

and Cyld
+/-

 

cells were infected with WA(pAV) (Fig.38A) and mutant WA(pYV∆YopP) (Fig.38B), 

respectively. 

The analysis of another member of the NF-κB family, c-Rel, indicated that it did not show 

any significant activation for both Cyld
-/-

 and Cyld
+/-

 cells upon Yersinia infection (Fig.39). 

In conclusion, YopP-mediated inactivation of NF-κB is dependent, at least to some extent, on 

CYLD. 
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Fig. 37. �o significant activation of �F-κB member, p65, in both Cyld
-/- 

and Cyld
+/-

 splenocytes upon 

Yersinia infection at low MOI (<50). Splenocytes were infected in vitro with Y. enterocolitica at MOI = 20 for 

different time points. Similar amount of whole cell extracts were subjected to p65 activation assay using 

TransAM NF-κB family kit. Results are shown as % of total p65. US: unstimulated cells.  

 

Fig. 38. Cyld
-/-

 cells show increased p65 activation upon infection with WA(pYV) or mutant 

WA(pYV∆∆∆∆YopP). Splenocytes were infected in vitro with WA(pYV) at MOI = 90 (A) or WA(pYV∆∆∆∆YopP) at 

MOI = 80 (B) for different time points. Similar amount of whole cell extracts were subjected to p65 activation 

assay using TransAM NF-κB family kit. Results are given as % of total p65.  US: unstimulated cells. 

 

Fig. 39.  �o significant activation of c-Rel in both Cyld
-/- 

and Cyld
+/- 

splenocytes upon Yersinia infection. 

Splenocytes were infected in vitro with  WA(pYV) at MOI = 90 (A) or  WA(pYV∆YopP) at MOI = 80 (B) for 

different time points. Similar amount of whole cell extracts were subjected to c-Rel activation assay using 

TransAM NF-κB family kit. Results are given as % of total c-Rel. US: unstimulated cells. 

A 

A 

B 

B 
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3.11 Yops are translocated with similar efficiency into Cyld
+/-

 and Cyld
-/- 

cells 

The results shown above clearly demonstrate that Yops-mediated inhibition of immune 

defence mechanisms, such as phagocytosis, oxidative burst, NF-κB and p38, are attenuated in 

CYLD-deficient cells. This attenuation of Yop effector function could be due to decreased 

Yop translocation rate in Cyld
-/-

 cells. To investigate this possibility, we performed a 

translocation assay using a ß-lactamase reporter system (see chapter 2.2.3.15). For this assay, 

the coding sequence of TEM-ß-lactamase was fused with the 3’ end of yopH gene sequence 

and 3’ end of yopP gene sequence, respectively, and cloned into plasmid pACYC184. The 

reporter constructs (designated as pYopH-Bla or pYopP-Bla) were then transformed into Y. 

enterocolitica mutants WA(pYV∆YopH), WA(pYV∆YopP) and the secretion deficient 

mutant WA(pYV∆LcrD) (the reporter constructs and the reporter Yersinia strains were 

generated by Hicham Bouabe, unpublished data). The Ysc-T3SS defect mutant 

WA(pYV∆LcrD, pYopH-Bla) strain, is known to be highly phagocytosed and was used as 

control to confirm the translocation-dependent reporter activity of Yop-Bla. 

Using the ß-lactamase FRET-substrate, CCF4-AM, the injection of Yop-Bla proteins into host 

cells can be detected by FACS analysis based on a shift from green to blue fluorescence (see 

2.2.3.15., Fig.11).  

Splenocytes from Cyld
+/- 

and Cyld
-/- 

mice were infected with WA(pYV∆YopH, pYopH-Bla) 

(here denoted as strain YopH-Bla), WA(pYV∆YopP, pYopP-Bla (strain YopP-Bla) or 

WA(pYV∆LcrD, pYopH-Bla) at MOI = 20 for 60 min. Splenocytes were then loaded with 

CCF4-AM, stained with antibodies against immune cell surface markers and analyzed by 

FACS. 

As shown in Figure. 40, similar cell numbers were injected by strain YopH-Bla or YopP-Bla 

in both Cyld
+/-

 and Cyld
-/-

 splenocytes (Fig.40a). Furthermore, the quanification of Bla-

reporter acitivity by calculating the ratio of blue to green fluorescenc (indirect parameter of 

the amount of Bla-protein whitin a cell) revealed no differences in the efficiency of YopH-Bla 

and YopP-Bla translocation in both Cyld
+/-

 and Cyld
-/-

 splenocytes (Fig.40B).  

The infection of splenocytes with the Ysc-T3SS deficient control strain did show any blue 

fluorescence demonstrating that the measured activity of the Yop-Bla reporter strains were 

Ysc-T3SS-translocation-dependent. 

In conclusion, the impaired ability of Yops to inhibit optimally cell defense mechanisms in 

CYLD-deficient cells is not due to decreased translocation of these effectors into host cells.   
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(A) 

 

(B) 

Fig. 40. YopP- and YopH-Bla fusions are translocated with similar efficiency into Cyld
+/-

- and Cyld
-/-

 

splenocytes. Splenocytes from Cyld
+/-

 and Cyld
-/-

 mice were infected with strain YopH-Bla, strain YopP-Bla or 

Ysc-T3SS deficient control strain WA(pYV∆LcrD) at MOI = 20 for 60 min. Splenocytes were then loaded with 

CCF4-AM, stained with antibodies against leukocyte marker (CD45) and analyzed by FACS. (A) Dot plots 

showing the percentage of Yop-Bla
+
 splenocytes gated on the leukocyte marker CD45. (B) Quantification of 

Yop-Bla translocation in the Bla+ populations by measuring the ratio of blue to green fluorescence (blue/green), 

and then normalization  (blue cells) to the corresponding Bla
-
 population. 
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4. Discussion  

Recent studies have identified the tumor suppressor CYLD as a negative regulator for NF-κB 

signalling by deubiquitinating TRAFs (TRAF2; TRAF6; TRAF7) and IKK-γ subunit 

(Brummelkamp et al., 2003; Kovalenko et al., 2003; Yoshida et al., 2005). CYLD was also 

shown to inhibit the activation of the mitogen-activated protein kinases (MAPKs), JNK and 

p38 (Reiley et al. 2004; Yoshida et al. 2005).  

Interestingly, many pathogens have also evolved virulence proteins that selectively target 

pathways of NF-κB and MAPKs, allowing them to interfere with the transcription of immune 

response genes. For instance, YopP from Yersinia enterocolitica (YopJ in Y. pestis and Y. 

pseudotuberculosis) and their functional related proteins, such as VopA from Vibrio 

parahaemolyticus, AvrA and SseL from Salmonellae, AopP of Aeromonas salmonicida and 

AvrRxv of the phytopathogenic bacterium Xanthamonas campestris pv. vesicatori, have also 

been shown to inhibit the activation of NF-κB and/or MAPKs, such as p38 and JNK 

(Bonshtien et al., 2005; Du and Galan, 2009; Fehr et al., 2006; Hotson and Mudgett, 2004; 

Jones et al., 2008; Le Negrate et al., 2008; Mittal et al., 2006; Mukherjee et al., 2006; Orth et 

al., 1999; Palmer et al., 1999; Trosky et al., 2004; Zhou et al., 2005b). 

Moreover, many pathogens, such as pathogenic Yersinia spp. and Salmonella spp were 

reported to exploit or modulate the ubiquitination machinery of the host cells (Angot et al., 

2007; Hentschke et al., 2007; Hicks and Galan, 2010; Munro et al., 2007).  

Thus, considering the overlapping functions of CYLD and virulence factors, it is worthwhile 

to explore whether the tumor suppressor gene, Cyld, is beneficial or detrimental to bacterial 

infections.  

Therefore, in this study, we investigated the role of CYLD in regulation of innate immune 

responses to the enteric pathogen, Yersinia enterocolitica. 

 

4.1 Cyld
-/-

 mice show enhanced resistance specifically to Yersinia enterocolitica 

We found that the susceptibility of Cyld
-/-

 mice to Salmonella Typhimurium infection was 

comparable (P>0.05) to that of Cyld
+/-

 mice after both oral and i.p. infection. This finding 

indicates that, under our experimental conditions, CYLD seems not to play a significant role 

in Salmonella mouse infection. However, when we analysed the influence of CYLD on 

mouse resistance against Y. enterocolitica, we found that Cyld
-/- 

mice cleared more efficiently 

the bacteria in liver and spleen compared to Cyld
+/-

 mice, after both oral and i.p. infection. 

Interestingly, there was no significant difference (P = 0.57) in yersiniae load in the Peyer’s 
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patches (PPs) of Cyld
-/- 

mice and control littermates after oral infection. Thus CYLD seems 

not to be required for defense against Yersinia in the PPs. This might due to the low 

expression of CYLD in the intestine (Massoumi et al., 2006), which includes gut-associated 

lymphoid tissue (GALT), such as PPs. Furthermore, we found that the colonization phenotype 

in spleen and liver were reproducible independent of the infection route (i.p. or oral), which 

indicates that the decreased colonization of spleen and liver in CYLD-deficient mice in the 

case of oral infection, is not because of the diminished disseminating capability of Yersinia 

from intestine/PPs to spleen or liver during the early infection course.  

The increased Yersinia clearance in Cyld
-/-

 mice was not associated with increased recruitment 

of leukocytes (e.g. neutrophil, monocytes) to the infection site (see chapter 3.3). Furthermore, 

the amounts of proinflammatory cytokines, such as TNF-α, in the serum of the Cyld
+/-

 and 

Cyld
-/-

 mice 1 day post-infection, and in the supernatants of LPS-stimulated Cyld
+/-

 - and Cyld
-

/- 
BMDCs were comparable (Fig.29 and Fig.32). Thus, CYLD-deficiency does not result per 

se in a higher inflammation and stronger defence mechanism. This conclusion is supported by 

our finding that WT and Cyld
-/-

 mice showed similar susceptibility to Salmonella 

Typhimurium infection. Furthermore, Srokowski et al. who used the same Cyld
-/-

 mouse strain  

as we used could also not detect any alterations of the immune system (Srokowski et al., 

2009). These findings stand in contrast to other knockout mouse models of CYLD that 

display e.g. alterations of the immune system including hyper-induction of IFNα in virus 

infected DCs (Zhang et al., 2008) as well as protection from infections (Lim et al., 2007). 

These discrepancies may be due to the gene targeting strategies used by the corresponding 

investigators to generate the Cyld knockout mouse models (summarized in the introduction 

part: chapter 1.5.4). One consequence of the different targeting strategies may be the 

expression of different short fragments of CYLD protein or “new” splice variants instead of 

the deletion of the complete Cyld gene. For instance, a recently generated mouse strain that 

expresses solely a splice variant of CYLD lacking exons 7 and 8, displays, in contrary to mice 

lacking the fulllength CYLD, a hyperactive phenotype in DCs, enhanced activity of NF-κB 

and production of proinflammatory, and a dramatic expansion of mature B lymphocyte 

populations in all peripheral lymphoid organs (Hovelmeyer et al., 2007; Srokowski et al., 

2009). 

Taking together, the explanation of the improved resistance of Cyld
-/-

 mice does not rely on an 

intrinsic enhanced immune response. Rather we suggest that Yersinia exhibits reduced ability 

to counteract the host defence mechanisms in the absence of CYLD. 
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4.2 CYLD promotes Yops-mediated anti-host functions 

Yersinia is an extracellular multiplying bacterium that ensures its extracellular growth by 

injecting virulence proteins (Yops) into host cells via Ysc-T3SS, which interfere with several 

signaling pathways, such as MAPK cascades and RhoGTPases, resulting in the inhibition of 

phagocytosis, oxidative burst and cytokine production (Heesemann et al., 2006). 

Because of the improved pathogen-specific resistance of Cyld
-/- 

mice to Yersinia infection, we 

speculated that Yop-mediated anti-host functions are impaired in Cyld
-/- 

cells. To address this 

question, we compared several well-known Yops-mediated anti-host functions in Cyld
-/-

  and 

Cyld
+/-

 cells. 

 

4.2.1 CYLD is required for Yops-mediated inhibition of phagocytosis 

We performed in vitro phagocytosis assay and found that Cyld
-/- 

PECs show higher 

phagocytic capability (ca. 3 times more than Cyld
+/-

 PECs) to Y. enterocolitica and display 

more efficient intracellular killing of internalized Y. enterocolitica. In vivo phagocytosis assay 

confirmed these in vitro findings. Thus, Yops-mediated inhibition of phagocytosis seems to 

be attenuated in the absence of CYLD. In order to analyze directly the contribution of CYLD 

to the anti-phagocytosis effect of a given Yop, we investigated the capability of Cyld
-/-

 and 

Cyld
+/-

 PECs to phagocytose Y. enterocolitica strain that lack YopH (chapter 3.5, Fig.18), an 

effector protein which is known to inhibit phagocytosis (Bliska and Black, 1995; Fallman et 

al., 2002; Persson et al., 1997; Rosqvist et al., 1988). Interestingly, although the phagocytosis 

of strain WA(pYV∆YopH) was higher by both Cyld
-/- 

and Cyld
+/-

 PECs compared to strain 

WA(pYV), Cyld
-/- 

PECs phagocytosed only about two times more compared to Cyld
+/-

 PECs. 

In contrast, WA(pYV) was phagocytosed about 3 times more by Cyld
-/- 

PECs compared to 

Cyld
+/-

 PECs (chapter 3.5, Fig.18A). Thus, the anti-phagocytosis effect of YopH seemed to be 

higher in Cyld
+/-

 PECs compared to Cyld
-/- 

PECs (chapter 3.5, Fig.18B), which indicates that 

CYLD might support YopH-mediated anti-phagocytosis effect. However, as 

WA(pYV∆YopH) were not phagocytosed similarly by Cyld
-/- 

PECs and Cyld
+/- 

PECs, the 

impairment of the anti-phagocytosis effect seems also ascribed to other Yersinia effectors (e.g. 

YopE, YopO, YopT) who might also contribute to this phagocytosis phenotype in the absence 

of CYLD. The contribution of YopE, YopO and YopT to the inhibition of phagocytosis has 

already been reported by several groups (Grosdent et al., 2002; Rosqvist et al., 1990). In 

further studies, the contribution of CYLD to the anti-phagocytosis effects of other Yops than 

YopH should be investigated by performing phagocytosis assays with Yop-mutants lacking 

e.g. YopE, YopO and/or YopT.  
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4.2.2 CYLD is required for Yops-mediated inhibition of oxidative burst 

Another very important characteristic of Yersinia virulence mediated by Yops is the inhibition 

of the production of reactive oxygen and nitrogen species (ROS/RNS) by host cells, such as 

macrophages and neutrophils (Allen, 2003; Hartland et al., 1994; Lian and Pai, 1985; 

Ruckdeschel et al., 1996).  

The analysis of oxidative burst response by two independent methods (chemiluminometric 

and fluorimetric probe that enable to detect intra- and extracellular ROS/RNS products; 

chapter 3.6.1 and 3.6.2) revealed that CYLD-deficient cells show significantly higher and 

extended respiratory burst response (both intra- and extracellular ROS/RNS products) to Y. 

enterocolitica infection compared to Cyld
+/-

 cells. In accordance with these results, 

internalized Yersinia bacteria were killed almost two times more efficiently in Cyld
-/-

 than WT 

PECs (Fig.20). In contrast, results acquired with other pathogenic bacteria such as L. 

monocytogenes or Salmonella Typhimurium showed similar level of oxidative burst response 

by either Cyld
+/- 

or Cyld
-/- 

cells. Thus, the improved oxidative burst activity in Cyld
-/-

 cells 

seems not to be an intrinsic effect of CYLD-deficiency, rather CYLD seems to be specifically 

involved in the negative regulation of cellular oxidative burst activity during Yersinia 

infection by promoting Yops-mediated inhibition of oxidative burst. 

In order to examine this assumption, we investigated the capability of ROS production of 

Cyld
+/- 

and Cyld
-/-

 cells during infection with Y. enterocolitica strains that lack the effector 

proteins YopH or YopP. It is already known that the protein tyrosine phosphatase YopH 

contribute to the inhibition of oxidative burst (Bliska and Black, 1995; Green et al., 1995; 

Ruckdeschel et al., 1996). Furthermore, because CYLD (deubiquitinase) and YopP 

(acetyltransferase) show overlapping functions e.g. as negative regulators of MAPK (Reiley 

et al., 2004; Yoshida et al., 2005; Zhou et al., 2005a) and MAPKs are known to be involved in 

the activation of oxidative burst (Brown et al., 2004; El Benna et al., 1996a; El Benna et al., 

1996b; Laroux et al., 2005; Sakamoto et al., 2007; Yamamori et al., 2002), YopP is also 

suggested to be involved in the inhibition of ROS production by blocking the MAPK 

pathways (Visser et al., 1999). Interestingly, Cyld
+/- 

and Cyld
-/-

 cells displayed similar 

respiratory burst response to the infection with both Yersinia mutants (∆YopH or ∆YopP), 

which persisted even beyond 40 min post-infection in comparison to ROS production by 

Cyld
+/- 

cells infected with strain WA(pYV) (Fig.26 and Fig.28). Thus, the presence of Yops 

alone is not sufficient to inhibit completely oxidative burst by Yersinia enterocolitica, rather 

CYLD protein is necessary for Yops-mediated inhibition of ROS production. 
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However, it is not clear whether the attenuated inhibition of ROS-production in Cyld
-/- 

cells is 

a direct effect of altered Yops-function in the inhibition of oxidative burst or a secondary 

effect of the improved phagocytosis ability of Cyld
-/-

 to Yersinia. It is generally accepted that 

phagocytosis is accompanied by the release of ROS (Johnston et al., 1976; Root et al., 1975; 

Root and Metcalf, 1977; Sbarra et al., 1976). But because YopP was also involved in the 

inhibition of oxidative burst (Fig.28B) and Y. enterocolitica strain lacking YopP was 

phagocytosed as efficient as the WA(pYV) parental strain (data was not shown but see: 

Grosdent et al., 2002), we suggest that the stimulation/inhibition of oxidative burst by 

Yersinia is, at least partly, independent of the phagocytosis process. This suggestion is 

supported by studies that showed some cases of phagocytosis-independent oxidative burst 

activities (Gordon and Hart, 1994; Wright and Silverstein, 1983; Yamamoto and Johnston, 

1984). 

 

4.2.3 CYLD is required for Yops-mediated inhibition of �F-κB and MAPK activation 

and cytokine production 

Yersinia enterocolitica is known to inhibit signaling pathways such as NF-κB and MAPK, 

and to attenuate cytokine production, mainly via YopP (Navarro et al., 2005; Ruckdeschel et 

al., 1997). To further validate the assumption that CYLD promotes Yop-mediated inhibition 

of host defence mechanisms, we cheeked NF-κB and p38 activation as well as cytokine 

production by Cyld
-/- 

and Cyld
+/- 

cells during Yersinia infection as further arguments.   

Kinetic studies of p38 phosphorylation and NF-κB activation during Y. enterocolitica 

infection revealed that Cyld
-/- 

cells showed higher p38 activation at 30 min and 60 min post 

infection compared to Cyld
+/-

 cells (Fig.34A). We could rule out a nonspecific intrinsic effect 

of CYLD to attenuate p38 signaling because infection with S. typhimurium resulted in similar 

activation level of p38 in Cyld
-/- 

and WT cells (Fig.35). However, when we determined YopP-

mediated inhibition of p38 activation by comparing the ratios of WA(pYV)-dependent to 

WA(pYV∆YopP)-dependent inhibition of p38 phosphorylation between Cyld
+/- 

and Cyld
-/-

 

cells, we found that YopP-mediated inactivation of p38 is higher in Cyld
+/- 

cells (about 20%) 

compared to Cyld
-/- 

cells (Fig.34B). Furthermore, the difference in NF-κB activity between 

Cyld
+/- 

and Cyld
-/- 

cells was reduced, from ca. 40% to ca. 15%, when the cells were infected 

with Y. enterocolitica-∆YopP (Fig.38). Because the elimination of YopP did not result in 

equal activation level of p38 and NF-κB in Cyld
+/- 

and Cyld
-/- 

cells, we suggest that either 

other “YopP-independent” Yersinia factors also contributes to the inhibition of p38 and NF-

κB, at least in the context of CYLD-deficiency. It is also likely that CYLD acts together with 
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YopP to mediate additive suppression of p38 and NF-κB. The later suggestion is supported by 

published data showing that CYLD negatively regulate PAMPs-dependent activation of both 

NF-κB and p38 MAPK pathways (Yoshida et al., 2005). 

MAPK cascades are the most intensively studied objectives of signal transduction pathways 

that induce the expression of cytokines (Johnson and Lapadat, 2002; Kyriakis and Avruch, 

2001). Thus, we wondered whether the differential activation of p38 in Cyld
+/- 

and Cyld
-/- 

cells 

during Yersinia infection would result in differences in their cytokine production level. 

Interestingly, while Cyld
+/- 

and Cyld
-/- 

cells showed similar production level of TNF-α after 

infection with Y. enterocolitica (Fig.30A), the production of MCP-1 was decreased and that of 

IL-12/IL-23p40 increased in Cyld
-/-

 cells compared to Cyld
+/- 

cells (Fig.30B and Fig.31A). 

Furthermore, tyrosine phosphorylation of signal transducer and activator of transcription 

(STAT)-4 and IFNγ production were enhanced in Cyld
-/-

 cells, compared to Cyld
+/- 

cells 

(Fig.31B). STAT4 provides a direct link between IL-12 receptor and cytokine-induced gene 

transcription (Watford et al., 2003; Wurster et al., 2000). An early target of IL-12 is the 

cytokine IFNγ (Lund et al., 2004; Watford et al., 2003). 

How can this differential expression profile of MCP-1, IL-12 and TNF-α by Cyld
-/-

 and WT 

cells be explained? 

The MAPKs are differentially involved in the induction of cytokine synthesis (Salojin and 

Oravecz, 2007; Zhang et al., 2009; Zhang and Dong, 2005). For instance, p38 and c-Jun N-

terminal Kinase (JNK) cooperatively induce the expression of TNF-α (Comalada et al., 2003; 

Das et al., 2009; Hoffmeyer et al., 1999; Lee et al., 1994; Srivastava et al., 1999; Swantek et 

al., 1999; Swantek et al., 1997; Wysk et al., 1999), whereas MCP-1 is induced by JNK but not 

p38 (Arndt et al., 2004; Gao et al., 2009; Nakayama et al., 2001; Xiao and Chodosh, 2005) 

(summarized in Fig.41). 

Furthermore, recent studies have demonstrated that signaling pathways do not work 

independently, but instead exhibit “cross-talks” (Dumont et al., 2001; Huang et al., 2009). For 

example, it has been shown that activated p38 inhibits the activation of JNK e.g. by activating 

phosphatases, such as protein phosphatase 2A (PP2A), which in turn inactivates the upstream 

kinases, MKK4 and MKK7, of the JNK cascade (Fig.41) (Avdi et al., 2002; Hui et al., 2007; 

Saldeen and Welsh, 2004). 
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Fig. 41. Cross-signaling between Jun �-terminal kinase (J�K) and p38 mitogen-activated protein kinases 

(MAPKs) pathways and their regulation of cytokine production (modified e.g from (Avdi et al., 2002; 

Wagner and Nebreda, 2009; Zhang and Dong, 2005). The signal cascades of p38 and JNK are activated by 

several stimuli, including microbial patterns (e.g. LPS), environmental stresses (e.g. ultraviolet irradiation, heat 

and osmotic shock, toxins), growth factors and inflammatory cytokines. The different upstream activators of 

JNK and p38 MAPKs, such as MAP1K, MAP3K, MAP4K, ASK1 and TAK1 are depicted. p38 is activated by the 

upstream MKK3 and MKK6 kinases, whereas JNK can be activated by the upstream MKK4 and MKK7 kinases. p38 and 

JNK activate the transcription factors, ATF2, Elk-1, MEF-2C and/or C-Jun. JNK and p38 are cooperatively involved in the 

induction of TNF production while MCP-1 is upregulated by JNK but not by p38. The contribution of p38 to IL-12 is more 

significant than that of JNK. The p38 and JNK pathways are the targets of Yersinia effector protein YopP. The inhibitions of 

p38 and JNK pathways by CYLD is controversial (our own data, and (Massoumi et al., 2006; Reiley et al., 2004; Yoshida et 

al., 2005).  

TAK1: transforming growth factor β-activated kinase 1; ATF2: activating transcription factor 2; ASK1: 

apoptosis signal-regulating kinase 1; MEF-2C: myocyte-specific enhancer factor 2; Elk-1: ets-like gene-1; MKK: 

Mitogen-activated protein kinase kinase; MEKK: MAP/Erk kinase kinase. 

 

Interestingly, in accordance with these published studies, we also found that the increased 

activation of p38 was accompanied with decreased JNK activity in our Yersinia-infected 

Cyld
-/-

 DCs (Fig.34 and Fig.36). Since it is JNK but not p38 that is involved in MCP-1 

induction, as mentioned above, the reduced MCP-1 production by Cyld
-/-

 DCs can be 

explained by their attenuated JNK signalling. 

In the case of TNF-α, although Cyld
-/-

 DCs showed increased p38 activation, this did not 

result in enhanced TNF production, compared to Cyld
+/-

 cells. Keeping in mind that both p38 
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and JNK are involved in the induction of TNF-α production, the similar production level of 

TNF-α suggests that p38-induced TNF-α production in Cyld
-/-

 cells is lowered out by the 

simultaneous attenuated JNK activity. 

In the case of IL-12, although, depending on stimuli and experimental conditions, JNK has 

also been shown to contribute to IL-12 production (Dobreva et al., 2008, 2009; Kim et al., 

2005; Ma et al., 2004), p38 seems to play the major role in the induction of IL-12. This is 

supported by in vivo studies on mice deficient in the Mkk3 gene, one of the two specific 

MAPK kinases (MAPKKs) that activate p38. Despite normal expression level and activation 

of JNK, Mkk3-deficient mice were defective in IL-12 production by macrophages and 

dendritic cells (Lu et al., 1999). Moreover, it was shown that JNK even negatively regulates 

LPS-induced IL-12 production in human macrophages (Utsugi et al., 2003). Considering 

these published data, we suggest that the improved production of IL-12 by our Yersinia-

infected Cyld
-/-

 DCs is due to the enhanced p38 activation. 

Taking together, the present data strongly suggest that several virulence mechanisms, such as 

inhibition of phagocytosis, oxidative burst, MAPK-signaling and cytokine production, 

mediated by Y. enterocolitica are impaired in CYLD-deficient background. Thus, functional 

CYLD seems to be required for Yops-mediated anti-host functions.  

 

4.3 Model for enhanced host defence against Y. enterocolitica in Cyld
-/-

-mice 

 

The presented data enabled us to propose an integrated model of the defense system used by 

host cells to counteract the Y. enterocolitica infection in the absence of CYLD (Fig.42). For 

the sake of convenience, all immune defense mechanisms (phagocytosis, oxidative burst, p38 

signaling, and cytokine production) are depicted in one model cell. However, one should note 

that the depicted immune defenses mechanisms in Fig. 42 are executed by different immune 

cell types.  

Upon Yersinia infection, innate immune cells such as macrophages and PMNs sense Yersinia 

through e.g. integrins (for example ß1-integrin) (Deuretzbacher et al., 2009; Falkow et al., 

1992; Gustavsson et al., 2002; Weidow et al., 2000) and/or PRRs such as TLRs (Inohara et al., 

2002; O'Neill, 2000), and transduce signaling cascades inside the cells to mobilize 

antimicrobial functions.  

Very early defence mechanisms initiated by immune cells are phagocytosis of invading 

bacteria and production of bactericidal ROS. However Yersinia enterocolitica injects within 

few minutes after contact with the immune cells several effector proteins (Yops) through Ysc-

T3SS into the cytosol of host cells to counteract the defense responses. The inhibition of 
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phagocytosis and oxidative burst are the most important counteractions initiated by Yersinia 

to evade its killing and ensure its extracellular survival. Yops, such as YopE and YopH, 

mediate the anti-phagocytosis effect and inhibition of oxidative burst. However, these 

Yersinia effectors seem not able to inhibit optimally phagocytosis, oxidative burst and MAPK 

pathways in Cyld
-/-

 cells.  

One mechanism that could lead to the enhanced activation of NADPH oxidase and 

subsequently higher production of ROS might be the enhanced p38 activation in the Yersinia-

infected Cyld
-/-

 cells. This is supported by published data that showed the involvement of p38 

in the phosphorylation and activation of NADPH oxidase (Brown et al., 2004; El Benna et al., 

1996b; Laroux et al., 2005; Sakamoto et al., 2006; Singh et al., 2009; Yamamori et al., 2002), 

and by our data that could show that YopP-deficient Yersinia lost the ability to inhibit p38 

activation (Fig.34A, and (Palmer et al., 1998; Palmer et al., 1999; Ruckdeschel et al., 1997) 

and ROS production (Fig.28B). 

In the late course of infection, the killing of Yersinia can be further improved by the MAPK 

(e.g. p38)/IL-12/STAT4/IFNγ-Axis. The elevated activation of p38 in Cyld
-/-

 cells induces 

higher production of IL-12, which acts through its IL-12R and the downstream transcription 

factor STAT4 to induce the production IFN-γ (Cho et al., 1996; Morinobu et al., 2002; Zhang 

and Kaplan, 2000). The activity of STAT4 can be further enhanced through serine 

phosphorylation by p38 (Morinobu et al., 2002; Visconti et al., 2000; Zhang and Kaplan, 

2000). IFN-γ can prime cells expressing IFNγ receptor and its downstream transcription factor 

STAT1 for further IL-12 production (Boehm et al., 1997; Trinchieri, 1995; Yoshida et al., 

1994). p38 could be also involved in the optimal activation of STAT1 by phosphorylating 

critical serine residues (Bode et al., 1999; Goh et al., 1999; Kovarik et al., 1999; Ramsauer et 

al., 2002). 

As a consequence, these p38/IL-12/STAT4/IFNγ-axis would result in establishing of a T 

helper cell (Th) 1-based immune response associated with cell-mediated immunity to kill 

internalized bacteria by inducing IFNγ−response genes, such as 2’-5’oligoadenylate 

synthetase (OAS), PKR, iNOS, NRAMP1, phox complex (NADPH oxidase), Mx proteins and 

IRGs (Boehm et al., 1997; Taylor et al., 2007; Trinchieri, 1995). The importance of the IL-

12/IFNγ-mediated immune response to protect mice against Yersinia infection has already 

been verified (Bohn and Autenrieth, 1996; Bohn et al., 1998; Hein et al., 2001). 
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Fig. 42.  Model for enhanced defence against Y. enterocolitica under conditions of CYLD deficiency. For 

details see text in 4.3. 
 

 

4.4 Outlook: How could CYLD contribute to Yops-mediated anti-host functions? 

A large body of evidence generated in this study clearly indicates that CYLD seems to be 

needed for Yops to enhance those anti-host functions. The translocation assay using a ß-

lactamase reporter system (Fig.40) revealed that the impaired ability of Yops to inhibit 

optimally cell defense mechanisms in Cyld
-/-

 cells is not due to the decreased translocation 

rate of Yops (at least the analysed YopH-Bla and YopP-Bla) into host cells. 

But how could CYLD contribute to Yop-mediated anti-host functions?  

There are at least two hypothetical scenarios on how CYLD could do that. However, both 

scenarios presuppose that, at least, some Yops are K48- and/or K63-polyubiquitinated. 

The first possible scenario could be that the deubiquitinase CYLD could remove the Ub-

chains from the K48-polyubiquitinated Yops which were marked for degradation and 

therefore enhance their half life time (t1/2). This  hypothesis is based on two considerations: (i) 

it was shown that YopE of strain WA(pYV) is K48-ubiquitinated and degraded by the 

proteasome in the target cell (Ruckdeschel et al., 2006); (ii) CYLD has recently been shown 
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to possess a deubiquitinase activity also towards K48-polyubiquitin chains (Reiley et al., 

2006).  

The second possibility could be that a subset of Yops becomes K63-polyubiquitinated after 

their translocation resulting in e.g. altered and unfavourable subcellular localization, which 

does not allow them to optimally interact with their cellular targets and exert their anti-host 

functions. CYLD could remove the K63-polyubiquitin chains and restore favourable 

subcellular localization of Yops enabling them to reach optimally their host targets. K63-

polyubiquitination is known to mediate e.g. subcellular protein trafficking (Sun, 2008). 

Furthermore, it has been shown that virulence factor, such as SopB of Salmonella, diversifies 

its function according to its ubiquitination state-dependent subcellular localization (Patel et al., 

2009). 
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5. Summary 

Recent studies have identified the tumor suppressor CYLD as a key regulator of NF-κB, a 

transcription factor that promotes cell survival and oncogenesis, as well as host defence to 

infection. In the present study, we investigated the role of tumor suppressor CYLD in 

regulation of innate immune responses of mice to Y. enterocolitica infection and for 

comparison to Salmonella Typhimurium infection. Yersinia is an extracellular multiplying 

bacterium that ensures its extracellular growth by injecting virulence proteins (Yops) into host 

cells by the injectisome Ysc-T3SS, which interfere with several signaling pathways (such as 

MAPK and NF-κB cascades), resulting in the inhibition of phagocytosis, oxidative burst and 

cytokine production. In contrast, Salmonella Typhimurium is endowed with 2 T3SS which 

inject effector proteins to induce pathogen uptake and intracellular replication. 

Surprisingly, we found that Cyld
-/-

 mice were more resistant to Y. enterocolitica than Cyld
+/-

 

mice in contrast to Salmonella Typimurium infection which appeared to be CYLD-

independent. These results suggest that CYLD acts as a detrimental factor for host survival 

during early Y. enterocolitica infection. 

Furthermore, we showed that Yops-mediated inhibition of host defense mechanisms, such as 

phagocytosis, oxidative burst, NF-κB, cytokine production and p38 activation is attenuated in 

Cyld
-/-

-phagocytic cells in respect of Cyld
+/-

 cells.  

Taken together, this study provides for the first time, an empirical demonstration of a 

pathogen-specific contribution of a tumor suppressor gene and its encoded protein, 

respectively, CYLD, to infection susceptibility in a manner that seems to be independent of its 

tumor suppression mechanism. This is another example of the extraordinary complexity of the 

pathogen/host cell interactions. 
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6. Zusammenfassung 

Der Tumorsuppressor CYLD ist ein wichtiger Regulator für Transkriptionsfaktoren, die für 

Zellüberleben, Onkogenese und Wirtsabwehr gegen Infektionserreger verantwortlich sind. In 

der vorliegenden Arbeit wurde die Rolle des Tumorsuppressorproteins CYLD bei der 

Regulation der angeborenen Wirtsabwehr gegen Yersinia enterocolitica und Salmonella 

Typhimurium im experimentellen Mausinfektionsmodell untersucht. Y. enterocolitica ist ein 

extrazellulär replizierender Erreger, der mittels seines Ysc-T3SS (Injektiosom) Yersinia outer 

proteins (Yop) in kontaktierte Wirtszellen „injiziert“ und über die Yop-Effektorwirkung die 

Wirtszell-Signaltransduktionswege kontrolliert (z. B. MAP-Kinase Wege, NF-κB Kaskaden). 

Auf diese Weise inhibieren Yersinien Phagozytose, Suerstoffradikalbildung (ROS) und 

proinflammatorische Zytokinfreisetzung. Im Vergleich dazu nutzt Salmonella Typhimurium 

zwei T3SS und die Injektion von Effektorproteinen, um internalisiert zu werden und im 

Phagosom intrazellulär zu replizieren. Vergleichende Infektionsversuche mit Yersinien und 

Salmonellen in Cyld
+/-

- und Cyld
-/-

-Mäusen ergaben ein überraschendes Ergebnis: Cyld
-/-

-

Mäuse erwiesen sich als infektionsresistenter für Yersinia als Cyld
+/-

-Mäuse. Dagegen zeigten 

Cyld
+/-

- und Cyld
-/-

-Mäuse für Salmonellen keinen Unterschied im Infektionsverlauf. Diese 

Ergebnisse weisen darauf hin, dass CYLD in der Initialphase der Yersinia-Infektion die 

Wirkung der Yop-Effektoren unterstützt. Diese Hypothese konnte durch die Ergebnisse der 

vergleichenden Phagozytenrate, ROS-Generierung, NF-κB- und p38Kinase-Aktivierung 

verifiziert werden.  

Zusammenfassend zeigen diese Untersuchungen erstmalig, wie das Tumorsuppressorprotein 

CYLD zusammen mit den Yersinia Effektorproteinen die Infektionsempfänglichkeit des 

Wirtes zum Vorteil des Erregers beeinflusst. Darüber hinaus konnte der CYLD-Effekt als 

Yersinia-spezifisch identifiziert werden. 
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8. ABBREVIATIO�S 

α Anti 

Amp ampicillin 

APC allophycocyanin 

BCR B cell receptor 

ß-me ß-mercaptoethanol 

bp base pair 

BSA bovine serum albumin 

°C temperature in degrees Celsius 

Ca Calcium  

CD cluster of differentiation 

CFU Colony Forming Units  

CO2 Carbon dioxide 

Conz. Concentration  

cpm counts per minute 

Cre site-specific recombinase (causes recombination) 

C region constant region 

dH2O Distilled Water 

dNTP desoxyribonucleotide-triphosphate 

DMEM Dulbecco’s modified Eagle medium 

DMSO Dimethyl sulfoxide 

DNA desoxyribonucleic acid 

ds double-stranded 

EDTA ethylene-diaminetetraacetic acid 

e.g. Example 

EGTA Ethylene glycol tetraacetic acid 

ERK Extracellular signal-regulated kinases 

et al. And others 

EtBr ethidium bromide 

FACS Fluorescence-activated cell sorting 

FBS Fetal bovine serum 

FCS Fetal calf serum 

FITC Fluorescein isothiocyanate 

FSC Forward scatter 
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g gram 

GMFI Geometric Mean Fluorescence Intensity 

h hour/s 

i.e. That is 

Ig Immunoglobulin 

i.p. intraperitoneally 

IPTG Isopropyl β-D-1-thiogalactopyranoside  

JNK c-Jun N-terminal kinases 

kb kilobase  

kD/ kDa kilodalton 

l liter 

LB Luria-Bertani medium 

loxP recognition sequence for Cre (locus of x-ing over of phage P1) 

m milli (10
-3

) 

M Molar (mol/l) 

mAb Monoclonal antibodies  

MHC major histocompatibility locus 

mg Milligram 

min minute 

ml milliliter 

mM millimolar 

MOI Multiplicity Of Infection 

MW Molecular weight 

µl microliter 

µM micromolar 

NaCl sodium chloride 

NaOH sodium hydroxide 

neo neomycin resistance gene 

nm Nanometer  

OD Optical density 

% percent 

PBS phosphate buffered saline 

PCR polymerase chain reaction 

PE phycoerythrine 
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PFA Paraformaldehyde 

PMN Polymorphonuclear leukocytes 

rpm Revolution per minute 

RT Room temperature 

RNA ribonucleic acid 

RU relative units 

sec Seconds 

SDS sodium dodecyl sulfate 

ss single-stranded 

SSC sodium chloride/ sodium citrate buffer 

TAE Tris-acetic acid-EDTA buffer 

Taq Pol polymerase from Thermus aquaticus 

TCR T cell receptor 

TE Tris-EDTA buffer 

TEMED Tetramethylethylenediamine 

TRIS Tris-(hydroxymethyl)-aminomethane 

TRIS-HCl Tris-(hydroxymethyl)-aminomethane-hydrochloride 

TWEEN polyoxyethylene-sorbitan-monolaureate 

µ Micro 

U units 

µg Microgram 

µl Microlitre 

UV ultraviolet 

V Volts 

Vol volume 

v/v Volume percent 

WT Wild-type 

w/v Weight per volume 

w/w Weight percent
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