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Abstract

In this dissertation we take the first steps towards a generalization of symplectic topol-
ogy, which includes e.g. Gromov-Witten invariants and Fukaya categories, to general-
ized complex geometry. In order to facilitate this, we extend the notion of pseudoholo-

morphic curves to arbitrary almost generalized complex manifolds.

Our ansatz is motivated by instantons in the generalized B-model of topological string
theory defined on generalized Calabi-Yau manifolds. It is shown that instantons are

not invariant under B-transformations as geometric objects, but only modulo canoni-
cal transformations acting on the string super phase space ΠT ∗LM of M . To establish

an invariant notion, we introduce generalized pseudoholomorphic pairs, or abbrevi-
ated (E,J )-holomorphic pairs. They consist of a map Φ : Σ → M and an isotropic
embedding λ : TM → E. Here (Σ, jΣ) is a compact Riemann surface, (M,J ) is an

almost generalized complex manifold and (E, q, [·, ·], π) is an exact Courant algebroid
over M . The almost generalized complex structure J acts on E.

Moreover, the notions of tamed as well as compatible almost generalized complex
structures are defined. Exploiting them we will introduce the generalized energy of
a pair (Φ, λ) and we will show that (E,J )-holomorphic pairs admit an energy identity.

Furthermore, the generalized energy is a topological invariant for a suitable choice of
an isotropic embedding.

Additionally to that we will establish the local theory of generalized pseudoholo-

morphic pairs. In particular we will prove an identity theorem for them. The main
theorem of the local theory states that a (E,J )-holomorphic pair can be locally in-

terpreted as an ordinary pseudoholomorphic curve in a space of doubled dimension,
where half of the coordinates of the map are constant.

First results concerning the deformation theory of (E,J )-holomorphic pairs are devel-

oped. We will give an explicit expression for the vertical differential of a section ∂J
in a Banach bundle. In doing so, a map Φ is (E,J )-holomorphic, for a fixed isotropic

embedding λ, precisely if ∂J (Φ) = 0. In order to obtain an explicit expression, tor-
sion as well as a generalized Levi-Civita connection on an exact Courant algebroid are
invented. It transpires that the vertical differential is the composition of a real linear

Cauchy-Riemann operator, which is Fredholm, and an upper semi-Fredholm opera-
tor. Hence, in contrast to the almost complex case, the vertical differential is not a

Fredholm operator but semi-Fredholm. To tackle this problem, admitted vector fields
along a map Φ are invented.

Two additional important results are the following. First, for any Hyperkähler man-

ifold we will give an interpolation between the Bogoliubov transformation of the A-
model with symplectic structure ωI and the B-model with complex structure J . This



enables one to view mirror symmetry of Hyperkähler manifolds as a continuous sym-

metry rather than a discrete one. Second, an intrinsically geometric formulation of
non-linear sigma models is derived and the existence of a mode expansion in curved
spacetimes is motivated. In order to achieve linearity, the solution space has to get en-

hanced by non-physical modes which are not associated to a world-sheet map. Physi-
cal states are recovered via a cohomological constraint.
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Zusammenfassung

In dieser Dissertation werden die Grundlagen für eine Verallgemeinerung herkömm-
licher symplektischer Topologie hin zu verallgemeinert komplexe Mannigfaltigkeiten
ausgearbeitet. Um dies zu ermöglichen, erweitern wir den Begriff der pseudoholo-

morphen Kurve auf beliebige fast verallgemeinert komplexe Mannigfaltigkeiten.

Unser Ansatz wird durch Instantonen im verallgemeinerten B-Modell topologischer
Stringthorie auf verallgemeinerten Calabi-Yau Mannigfaltigkeiten motiviert. Es wird

gezeigt, dass Instantonen nicht als geometrische Objekte unter B-Transformationen in-
variant sind, sondern nur modulo kanonischer Transformationen auf dem String Super

Phasenraum ΠT ∗LM von M . Um einen invarianten Begriff zu erlangen, führen wir
verallgemeinert pseudoholomorphe Paare, bzw. abgekürzt (E,J )-holomorphe Paare
ein. Diese bestehen aus einer Abbildung Φ : Σ→M und einer isotropen Einbettung λ :

TM → E. Hierbei ist (Σ, jΣ) eine Riemannsche Fläche, (M,J ) eine fast verallgemeinert
komplexe Mannigfaltigkeit und E ein exakter Courant Algebroid über M , wobei die

fast verallgemeinert komplexe Struktur J auf E operiert.

Weiterhin werden die Begriffe der zahmen und der kompatiblen fast verallgemeinert
komplexen Strukturen eingeführt. Diese ermöglichen es eine verallgemeinerte Energie

eines Paares (Φ, λ) zu definieren. Es zeigt sich, dass (E,J )-holomorphe Paare eine
Energie-Identität erfüllen und die verallgemeinerte Energie nach der Wahl einer geeig-

neten isotropen Einbettung eine topologische Invariante ist.

Daraufhin wird die lokale Theorie verallgemeinert pseudo-holomorpher Paare ent-
wickelt. Insbesondere wird für diese ein Identitätssatz bewiesen. Der Hauptsatz der

lokalen Theorie besagt, dass ein (E,J )-holomorphes Paar lokal als eine gewöhnliche
pseudo-holomorphe Kurve in einem Raum der doppelten Dimension aufgefasst wer-
den kann, wobei eine Hälfte der Koordinaten der Abbildung konstant ist.

Darüber hinaus werden erste Resultate bezüglich einer Deformationstheorie (E,J )-
holomorpher Paare hergeleitet. Dazu wird ein expliziter Ausdruck für das vertikale

Differenzial eines Schnitts ∂J in einem Banachbündel angegeben. Dabei ist eine Ab-
bildung Φ, für eine feste isotrope Einbettung λ, genau dann (E,J )-holomorph, wenn
∂J (Φ) = 0 gilt. Um das Angeben eines expliziten Ausdrucks für das vertikale Differen-

zial zu ermöglichen, wird die Torsion eines Zusammenhangs und der verallgemeinerte
Levi-Civita Zusammenhang auf einem exakten Courant Algebroid eingeführt. Es stellt

sich heraus, dass sich das vertikale Differenzial als Komposition eines reellen Cauchy-
Riemann Operators, welcher Fredholm ist, und eines oberen semi-Fredholm Operators
darstellen lässt. Im Gegensatz zum komplexen Fall ist das vertikale Differenzial daher

kein Fredholm-Operator, sondern nur semi-Fredholm. Um sich einer Lösung dieses
Problems zu nähern, wird der Begriff des zugelassenen Vektorfeldes entlang einer Ab-
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bildung Φ definiert.

Zwei weitere wichtige Ergebnisse sind die Folgenden. Erstens wird für eine beliebige
Hyperkähler Mannigfaltigkeit (M, I, J,K) eine Interpolation zwischen dem Bogoli-
ubov transformierten A-Modell bezüglich der symplektischen Struktur ωI und dem

B-Modell bezüglich der komplexer Struktur J hergeleitet. Dies ermöglicht Spiegel-
symmetrie von Hyperkähler Mannigfaltigkeiten nicht als diskrete, sondern als kon-

tinuierliche Symmetrie aufzufassen. Zweitens wird eine intrinsisch geometrische For-
mulierung nichtlinearer Sigma-Modelle angegeben und die Existenz einer Modenen-
twicklung in gekrümmten Raumzeiten motiviert. Um Linearität zu erreichen, muss

der Lösungsraum mittels nicht-physikalischer Moden angereichert werden, welche
nicht einer Abbildung zwischen der Weltfläche Σ und der Zielmannigfaltigkeit M zu-

geordnet sind. Die Eigenschaft einer Mode physikalisch zu sein wird mittels einer
kohomologen Bedingung ausgedrückt.
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1. Introduction

Since their invention by Mikhail Gromov in his 1985 paper [Gro85], pseudoholomor-

phic curves have had profound influence on the development of symplectic topology.
They were one of the main inspirations for the creation of Floer homology and are of

great importance for other constructions like Gromov-Witten invariants and quantum
cohomology. These concepts are ingredients of the so called A-side of mirror symme-
try.

Mirror symmetry is part of a web of dualities of string theory and states that type
IIa superstring theory compactified on a Calabi-Yau manifold M and type IIb super-
string theory compactified on a mirror manifold M ′ are equivalent. If this is true, any

statement of type IIa superstring theory can be translated into a statement of type IIb
superstring theory and vice versa. Since it is a very difficult task to compute interesting

observables on Calabi-Yau manifolds and because it is even unclear how to formulate
superstring theory in a non perturbative way, it is presently too optimistic to hope for
a complete and rigorous proof of such kind of conjectures relating different manifesta-

tions of string theory.

The situation improves if we restrict ourselves to topological string theory [Wit88,

Wit91]. In this framework the mirror symmetry conjecture states that the A-model
on a Calabi-Yau manifold M is equivalent to the B-model on the mirror manifold M ′

and vice versa.

The so called A-model and B-model of topological string theory are constructed by
twisting the nonlinear sigma-model of maps Φ from a Riemann surface Σ into a man-
ifold M . In physical language, the twisting is done by shifting the spin of fermions by

one half of their R-charge [MS103]. If we shift spins using a vector R-symmetry U(1)V ,
we arrive at the so called A-model. By using an axial R-symmetry U(1)A, we obtain

the so called B-model. In mathematical terms, one twists the respective spin bundles of
the holomorphic or anti-holomorphic components of the fermions by either the square
root of the canonical bundle or the anti-canonical bundle. This can be done in two

inequivalent ways, leading to the A-model and the B-model [Wit91], too. The twisted
action splits into a sum of a BRST-invariant part and a part which is independent of

any metric. The BRST-invariant part has no effect on correlators. Hence, the resulting
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CHAPTER 1. INTRODUCTION

theory is of topological nature.

In the closed sector, mirror symmetry predicts the equivalence of the so called anti-
chiral ring of M , which decodes the quantum structure of supersymmetric ground
states in the A-model, and the chiral ring on M ′, which decodes the quantum structure

of supersymmetric ground states in the B-model. In the following we will give some
basics about (anti-) chiral rings.

The space of physical operators in the A-model can be expressed as de Rham coho-

mology, instantons are precisely given by pseudoholomorphic curves with respect to a
specific integrable complex structure and correlators are essentially given by Gromov-

Witten invariants. Consequently, the anti-chiral ring is a physical realization of quan-
tum cohomology. This also shows that topological string theory provides us with a
physical motivation of quantities which are of great importance in symplectic topol-

ogy.

In the B-model, supersymmetric ground states are realized as Dolbeault cohomology

and instantons are constant maps into M . Genus 0 correlators are given by

〈O1 · · ·Os〉 =
∫

M

〈ω1 ∧ · · · ∧ ωs,Ω〉 ∧ Ω ,

where Ω is the holomorphic n-form, Oi are local physical operators represented by

complex forms ωi and

〈ω,Ω〉 ∧ Ω := ωi1···in
j1···jn

Ωi1···in dz
j1 ∧ · · · ∧ dzjn ∧ Ω .

Calculations can often be performed explicitly in the B-model. If mirror symmetry is

true, this could for instance be used to compute quantum cohomology in the mirror
manifold.

In the open sector, additional degrees of freedom arise in the form of branes.1 Incorpo-
rating them there is a well known category theoretic formulation of mirror symmetry
in the open sector. If we view strings which are stretched between a stack of branes

as morphisms, branes form a (A∞-) category [MS209]. It transpires that B-branes are
equivalent to the bounded derived category of coherent sheaves, whereas A-branes

form an enriched version of the Fukaya category. Hence, in the open sector, the equiva-
lence of the A-model and the B-model is restated as the Kontsevich homological mirror
symmetry conjecture [Kon94]. It has only been proven in special cases. First, Alexan-

der Polishchuk and Eric Zaslow proved it in [PZ98] for elliptic curves and Paul Seidel
in [Sei03] for quintic surfaces.

1If they are defined in the A/B-model, we call them A/B-branes.
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More recently [KO03], it turned out that, at least on the physical level, A-branes do

not only wrap special Lagrangian submanifolds, but also coisotropic submanifolds of
M . The construction of morphisms between coisotropic branes is not understood, yet.
First examples have been given in [AZ05]. They considered the case of A-branes wrap-

ping coisotropic submanifolds of elliptic curves. In doing so they used the mode ex-
pansion of an open string which stretches between two coisotropic branes to show

that morphisms are given by a non-commutative deformation of the algebra of func-
tions which are defined on the intersection of the two present branes. If M is not flat,
their proof cannot be applied. Then the classical equation of motion is not given by

a Laplace equation and is highly nonlinear. Hence, the sum of two solutions is not a
solution anymore and there is a priori no mode expansion at hand.

We resolve this issue by giving an intrinsically geometric formulation of nonlinear
sigma models and showing that it is possible to recover some kind of mode expan-
sion. In order to do that, one has to enhance the solution space by non-physical modes.

This yields a linear problem. Later it is possible to decide which states are physical
by looking at some cohomological constraint. For any smooth embedding Φ of the

world sheet Σ into the target manifold M , the resulting equation of motion is given
by a Laplace-Beltrami equation with respect to a covariant exterior derivative which
is associated to the pullback connection Φ∗∇. This equation can be solved and we

get for any embedding an enhanced solution space.2 Expressed in physical language,
this yields the statement that any physically sensible state is the linear combination of

modes, but not any linear combination is a physically sensible state. This construction
can potentially be applied in order to extend the proof of Aldi and Zaslow to manifolds
with non-vanishing Christoffel symbols.

From the purely symplectic or purely complex point of view it is not clear how to imply
coisotropic branes into the picture of mirror symmetry, which gives a deep connection
between symplectic and complex expressions on a mirror pair.

Generalized complex geometry unifies symplectic and complex geometry in a more
general framework. It has been invented by Nigel Hitchin in [Hit02] and has been fur-

ther developed by his students Marco Gualtieri [Gua03] and Gil Cavalcanti [Cav04]. In
generalized complex geometry one extends geometric structures on the tangent bundle
TM to the direct sum of the tangent- and the co-tangent bundle.

As an example let us consider the notion of a generalized complex structure. It is an
almost complex structure on TM := TM⊕T ∗M which is integrable with respect to the
Courant bracket3 on TM . It is possible to show that J is also orthogonal with respect

2In the present work we will not develop all details.
3Equivalently it is possible to use the Dorfman bracket.
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CHAPTER 1. INTRODUCTION

to a naturally defined inner product q on TM and, hence, is complex and symplectic at

the same time. Therefore, it is not surprising that both usual complex and usual sym-
plectic structures can be realized as generalized complex structures. More generally,
it is possible to extend the notions of generalized complex geometry to arbitrary exact

Courant algebroids. The latter had been defined in [LWX97] and [Roy99]. In contrast
to usual geometry, symmetries of generalized complex geometry are not just given by

diffeomorphism, but also by so called B-transformations.

Almost 20 years ago, S. James Gates et al. realized in [SJGR84] that Kähler structures
are not the most general type of target space geometry admitting extended N = 2

supersymmetry. Recall that such supersymmetry is an essential ingredient in the con-
struction of topologically twisted sigma-models. Instead they found out that more

general geometries are allowed and identified them as so called bi-Hermitian geome-
tries. They are given by a pair (I1, I2) of integrable almost complex structures which
are Hermitian with respect to the same metric g and covariantly constant with respect

to some connections ∇± with torsion being dictated by a 2-form b. In [Gua03] it has
been shown that bi-Hermitian geometries can be expressed in the language of general-

ized complex geometry as so called twisted generalized Kähler manifolds. Moreover,
Maxim Zabzine proved in [Zab06] that the most general target manifold M such that
the string super phase space ΠT ∗LM admits extended supersymmetry is given by a

generalized complex manifold.

Extended supersymmetry of this kind of sigma models can be used to extend the con-
struction of the A-model and the B-model of topological string theory to twisted gener-

alized Kähler manifolds. This has been done by Kapustin and Li in [KL07]. One impor-
tant point which has to be addressed, in order to be able to do the topological twist, is

the need for non anomalous R-symmetries. They are present if M possesses a twisted
generalized Calabi-Yau metric geometry. The classical structure of local observables is
given by Lie algebroid cohomology with respect to some generalized complex struc-

ture J1, while Instantons are given by solutions to an equation which involves J2. Here
J1 and J2 define the generalized Kähler structure under consideration.

A Bogoliubov transformation of the A-model can be realized as a special case of the
generalized B-model in the following way. The two generalized complex structures
J1 and J2, which define the generalized Kähler structure, are associated to the Kähler

form ω and its complex structure I , respectively. Then local observables are given
by a Bogoliubov transformation of de Rham cohomology and instantons are given by

pseudoholomorphic curves with respect to I . If we interchange the role of I and ω, we
obtain the usual B-model. Hence, the generalized B-model includes the A-model and
the B-model as special manifestations.

10



Up to now there is no answer to the question whether the generalized B-model is of

topological nature. Some results into that direction can be found in [Zuc06], [Pes07]
and [Chu08]. In this work we will encounter similar problems. They will be solved by
allowing for local canonical transformations in order to get a generalized energy which

is invariant under homotopy.4

The above considerations suggest that there exists a more general framework in which

it is possible to give a unified description of the mathematics of mirror symmetry and
related topics. It should be given by an extension of symplectic topology to general-
ized complex manifolds. Let us name this extension “generalized complex topology”.

As symplectic topology can be motivated by stringy considerations, we are allowed
to expect that generalized complex topology will arise as a rigorous treatment of the

generalized B-model. In order to initiate this development, we will introduce gen-
eralized pseudoholomorphic curves among other things. They are motivated by the
instantons in the generalized B-model and interpolate between ordinary pseudoholo-

morphic curves and constant maps. Up to now there is no examination of instantons in
the generalized B-model of topological string theory in the literature. A complete list

of the topics which will be treated in this dissertation can be found in the next chapter.

It is remarkable that mirror symmetry is conjectured to be connected to other deep
mathematical problems like the geometric Langlands conjecture [GW08]. Using con-

cepts of string theory, Geometric Langlands correspondence for arbitrary reductive
Lie Groups can essentially be rephrased as self mirror symmetry of the Hitchin moduli
space of semi-stable Higgs bundles.

As a first application of our notions we will exploit the generalized B-model to give
a smooth interpolation between the A-model and the B-model being defined on the

same Hyperkähler manifold. The existence of such a smooth interpolation enables one
to view mirror symmetry of Hyperkähler manifolds not as a discrete symmetry, as it
is done in the literature, but as the equivalence of the two endpoints of a continuous

deformation. In particular the Hitchin moduli space is a Hyperkähler manifold. This
kind of construction can be applied to any pair of structures which can be connected

through the moduli space of generalized complex structures.

4Strictly speaking, we will choose an isotropic splitting λ : TM → E ∼= TM such that the generalized
energy is invariant. In physical language this corresponds to a canonical transformation.
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2. Summary and Structure of the

Dissertation

The present work is divided into five parts. Part I contains the introduction as well
as a summary. Part II gives a physical motivation of the mathematical considera-

tions in part III. One exception is chapter 4, which concerns nonlinear sigma models.
It develops the foundation of a possible quantization of nonlinear sigma models on
curved manifolds. As it helps to understand the physical motivation of part III and

because it is connected to the computation of string states which are stretched between
coisotropic branes, it is included in this work. Part III develops the theory of general-

ized pseudoholomorphic pairs. Part IV contains conclusions, an outlook and acknowl-
edgments. Part V is given by an appendix treating generalized complex geometry. In
the following we will give a more detailed summary.

Part II begins with a presentation of supersymmetric quantum mechanics (SQM). Ac-
cording to definition 3.1.1 we will call a quantum mechanics a SQM if the following

conditions are fulfilled:

• Its Hilbert space has a Z2-grading generated by an operator (−1)F whose spec-
trum is {−1, 1}.
• There are odd operators Q, Q† which square to zero.

• It is true that 2H = {Q,Q†}, where H is the Hamiltonian and H is even with
respect to (−1)F .

• The supercharges Q and Q† are formally adjoint to each other.

Afterwards we will show that the energy spectrum of a SQM is non-negative and we
will define the notion of supersymmetric ground states. They are by definition anni-

hilated by Q and Q†. It will transpire that supersymmetric ground states are exactly
the zero-energy states. After exploring the consequences of a decomposition of the
Hilbert space into energy eigenspaces we will define the Witten index. Two important

results in chapter 3 are theorem 3.1.8 and the localization principle. The former states
that supersymmetric ground states are given by Q-cohomology, which is also called

BRST-cohomology. The latter shows in particular that path integration localizes to Q-

13



CHAPTER 2. SUMMARY AND STRUCTURE OF THE DISSERTATION

fixed configurations if we compute expectation values of supersymmetric operators.

At the end of chapter 3 we will demonstrate the concepts of SQM using supersymmet-
ric quantum mechanics on Riemannian manifolds.

Then we will turn to an exposition of nonlinear sigma-models on Riemannian man-

ifolds. We will do that in an intrinsically geometric way. To this end let (Σ, h) and
(M, g) be Riemannian manifolds, ∇ be the Levi-Civita connection of g and Φ : Σ→ M

be a smooth embedding. It will turn out that the fundamental degrees of freedom (for
fixed Σ and M) of nonlinear sigma-models are not given by Φ, but by dΦ. Here dΦ is a
Φ∗TM-valued 1-form on Σ being defined by dΦ(u) := TΦ ◦ u for u ∈ Γ(Σ, TΣ).

After giving an L2-norm 〈·, ·〉 on the space of Φ∗TM-valued k-forms, we will show that
the action of nonlinear sigma-models can be globally expressed as S[Φ] = 〈dΦ, dΦ〉.
After denoting the exterior covariant derivative with respect to the pullback connection

Φ∗∇ by dΦ∗∇ and its formal adjoint with respect to 〈·, ·〉 as d†Φ∗∇, we will prove that the
equations of motion can be globally written as d†Φ∗∇dΦ = 0. Moreover, we will show

that ∇ being torsion free implies dΦ∗∇dΦ = 0. Hence, stationary points of S[Φ] will be
given by Φ∗TM-valued dΦ∗∇-harmonic 1-forms.

The fact that dΦ as well as Φ∗∇ depend non trivially on Φ renders the equations of

motion highly nonlinear. Instead of solving d†Φ∗∇dΦ = 0, we will look at the easier
linear problem d†Φ∗∇ξ = 0, where ξ is an arbitrary Φ∗TM-valued 1-form. We will denote

the space of all ξ with d†Φ∗∇ξ = 0 by HΦ. It will be possible to recover solutions of the
original problem as all ξ ∈ HΦ which obey ξ = dΦ.

We will proof that HΦ1 and HΦ2 are isomorphic in the case of Φ1 and Φ2 being homo-

topic to each other and M being flat. Moreover, we will heuristically show that this
is also true in the general case. This will be done in several steps. First, we will act
with the map which is an isomorphism in the flat case on HΦ1 . Afterwards, we will

deform the 1-form part of ξ ∈ HΦ1 ⊂ Ω1(Σ,Φ∗
1TM) into a solution with respect at Φ2.

This will be done using series methods and we will omit a proof that the present series

converge. The problem in finding a general proof can be rephrased as a continuation
problem. We would need to extend a section in Ω1(Φ1(Σ), TM |Φ1(Σ)) to a section of
Ω1(F(Σ, I), TMF(Σ,I)), where F : Σ× I → M is a homotopy of Φ1 and Φ2, such that the

continuation of d∇ξ is equal to d∇ acting on the continuation of ξ. At the end of chapter
4 we will briefly state a program how to proceed towards a quantization of nonlinear

sigma-models.

In chapter 5 the extension of topological string theory to generalized complex mani-
folds will be treated. First, we will review [KL07] and explain the construction of the

generalizedB-model of topological string theory. In particular, we will give an expres-
sion for instantons. Kapustin and Li call them twisted generalized complex maps. As
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we will show, their notion is not invariant under B-transformations. Instead, incorpo-

rating results of Zabzine [Zab06], it will transpire that instantons are invariant under
B-transformation modulo canonical transformations on the string super phase space
ΠT ∗LM of M .

We will include these additional degrees of freedom into a definition of generalized
pseudoholomorphic curves. This will be done by introducing generalized pseudo-

holomorphic pairs in part III. They consist of a map Φ : Σ → M and an isotropic
embedding λ : TM → E, where E is an exact Courant algebroid. Recall that a map
λ : TM → E is called isotropic if and only if q(λ(X), λ(Y )) = 0 for all X , Y ∈ TM .

Below you can find more details on generalized pseudoholomorphic pairs. After the
examination of the transformation behavior of instantons we will give a smooth inter-

polation between the A-model and the B-model on Hyperkähler manifolds. At the end
of chapter 5 we will consider topological branes in the A-model and review that they
are coisotropic submanifolds with additional structure. In the language of generalized

complex geometry, A-branes can be described as generalized Lagrangian submanifolds
of the generalized complex manifold M .

Part III develops the theory of (E,J )-holomorphic pairs. At the beginning we will

recall very briefly the well known notion of J-holomorphic curves in symplectic man-
ifolds. Then we will examine different possible extensions of J-holomorphic curves to

generalized complex manifolds. Besides looking at some seemingly natural extensions,
we will examine one definition given in the literature [OP11]. We will argue that none
of these notions suit our purpose of finding a unified description of the mathematics of

mirror symmetry/S-duality. Thereafter we will turn immediately to the development
of the theory of generalized pseudoholomorphic pairs as they are motivated by string

theory.

Let (Σ, jΣ) be a Riemann surface, M be a real 2n-dimensional manifold, Φ : Σ → M

be a sufficiently smooth map, (E, q, [·, ·], π) be an exact Courant algebroid over M , J
be an almost generalized complex structure on E and λ : TM → E be an isotropic
embedding. The pair (Φ, λ) will be called (E,J )-holomorphic, or generalized pseudo-

holomorphic, if

J ◦ λ ◦ TΦ = λ ◦ TΦ ◦ jΣ . (6.3.1)

In proposition 6.3.4 we will show that this definition is invariant under orthogonal
automorphism of E with respect to q. If λ is an isotropic splitting of E, we will call Φ

a generalized pseudoholomorphic curve (with respect to E and s), or simply “(E,J )-
holomorphic curve”. If, moreover, E is given by the standard Courant algebroid, we

will name Φ a J -holomorphic curve.
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In order to be able to define a generalized energy, we will introduce the notions of

tamed and compatible almost generalized complex structures. Thereby, an almost gen-
eralized complex structure J2 will be called tamed by J1 if

−q(J1J2A,A) > 0 (6.3.6)

for all A ∈ E. They will be named compatible if they are tamed and [J1,J2] = 0. In a
remark we will argue that J2 is tamed by J1 if and only if J1 is tamed by J2. Thus we

will call two structures J1, J2 taming each other simply tamed. An interesting result
is the possibility to rephrase a generalized Kähler structure as a pair of integrable and
compatible generalized complex structures. Two tamed almost generalized complex

structures will be used to define a metric G on E via

G(A,B) := −1
2
q({J1,J2}A,B) , (6.3.8)

where A, B ∈ E.

In section 6.4 we will give an important technical result concerning (E,J )-holomor-
phic pairs. We will show that there exists an almost generalized complex structure J ′

on TM for any almost generalized complex structure J on E , such that (Φ, λ) is an
(E,J )-holomorphic pair, if and only if Φ is aJ ′-holomorphic curve. This statement can
be found in proposition 6.4.4. Its proof uses proposition 6.4.3, which reduces (E,J )-
holomorphic pairs to (E,J )-holomorphic curves, and theorem 6.4.1. Theorem 6.4.1
states that any isotropic embedding λ : TM → E can be expressed as the composition

of an orthogonal automorphism Λ of E, as usual with respect to q, and an isotropic
splitting s.

In section 6.5 we will exploit G to define the generalized energy of a pair (Φ, λ), where

Φ : Σ → M is a map and λ : TM → E is an isotropic embedding. We will realize that
the generalized energy is invariant under orthogonal transformations of E (cf. propo-
sition 6.5.2) and that generalized pseudoholomorphic pairs obey an energy identity

(cf. proposition 6.5.3). Moreover, we will prove that, after choosing a suitable isotropic
embedding, the generalized energy is invariant under homotopy if J1 is a regular in-

tegrable generalized complex structure and the Ševera class [H ] of E vanishes. This
is still general enough to cover manifolds which do not admit any integrable complex
structures or symplectic structures.

Chapter 7 presents the local theory of generalized pseudoholomorphic curves. At the
beginning we will compute a local expression of (6.3.1). It reads

∂φµ

∂s
λ(eµ) +

∂φµ

∂t
J (φ)λ(eµ) = 0 (7.1.10)
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and we name it the “generalized nonlinear Cauchy-Riemann equation”. We will ex-

ploit it to analyze the local behavior of (E,J )-holomorphic pairs. In particular we will
prove an identity theorem for them. It is corollary 7.2.2. Moreover, we will show in the-
orem 7.3.1 that solutions of (6.3.1) obey elliptic regularity. Thereafter we will extend the

notions of simple and somewhere injective curves to generalized complex manifolds
and examine their properties. We will discover that (E,J )-holomorphic curves locally

behave in the same way as ordinary J-holomorphic curves. The reason for this will
be clarified in theorem 7.4.4. It states the following: If (Φ, λ) is an (E,J )-holomorphic
pair and J ∈ Cl, then it is true that for every σ ∈ Σ there exist neighborhoods Ω ⊂ Σ of

σ and U ⊂M of Φ(σ) and an almost complex structure J on U ×U of class Cl such that
(Φ, p0) : Ω→ U×U is a (local) J-holomorphic curve for any fixed p0 ∈ U . Its proof uses

theorem 6.4.1, propositions 6.4.3 and 6.4.4 as well as the existence of a geodesically
convex neighborhood of any point in a smooth manifold. It is not possible in general
to find an almost complex structure J everywhere on M such that Φ × p has the same

properties as in theorem 7.4.4.

Chapter 8 will treat first results concerning the global theory of (E,J )-holomorphic

pairs. We will invent a torsion operator T , associated to a connection on E, which
extends the very well known notion of torsion on TM to exact Courant algebroids.
It will not be a tensor in general, but its restriction to any Dirac structure in E will

be tensorial. This will enable us to define a generalized Levi-Civita connection with
respect to s on E. It will be defined as

∇XA = ∇X(s(Y ) + π∗(ξ)) := s(∇XY ) + π∗(∇∗
Xξ) +

1

2
π∗(iXiYH) . (8.1.7)

In particular the restriction of T to s(TM) vanishes. Using these concepts we will be
able to compute the vertical differential DΦ of

∂J (Φ) :=
1

2
(s ◦ dΦ+ J ◦ s ◦ dΦ ◦ jΣ) . (7.1.2)

In contrast to usual symplectic topology, the generalized vertical differential will not be

a Fredholm operator (acting on the Sobolev completion of C∞(Σ,M)), but semi-Fred-
holm. This will be true because DΦ will be the composition of a real Cauchy-Riemann
operator DΦ, which will be Fredholm, and a semi-Fredholm operator s. The operator s

will be induced by the isotropic splitting s : TM → E. In order to keep notions simple,
we will denote both with the same symbol. This will render the examination of the

structure of the moduli space of pseudoholomorphic curves more involved than in the
symplectic case.

We will take the first steps towards a solution of the deformation problem by intro-

ducing admissible vector fields along a map Φ. They will be defined as vector fields
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CHAPTER 2. SUMMARY AND STRUCTURE OF THE DISSERTATION

ξ along Φ such that the tangent map of Φt lies inside the kernel of B := s∗ ◦ J ◦ s for

all t. The deformation Φt will be induced by the geodesic flow along ξ. By only incor-
porating admissible vector fields along Φ, we will infer that the vertical differential of
∂J (Φ) will decompose as s ◦DΦ. This will show that the excess degrees of freedom of

Ω0,1(Σ,Φ∗E), which render DΦ ◦ s to be only semi-Fredholm, will separate if we only
deform in directions dictated by admissible vector fields. The operator DΦ will for-

mally look exactly like the vertical differential of symplectic topology. We will stop the
present examination of the global structure of solutions to (6.3.1) at this point. At the
end we will give some examples to clarify our notions.
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3. Supersymmetric Quantum Mechanics

In this introductory chapter we review the methods and ideas of supersymmetric
quantum mechanics. Although we will give a slightly different exposition of the mate-
rial, we will orientate ourselves at [MS103] and [Wit82]. This chapter is rather informal

and has a lack of mathematical rigor, but its ideas and methods are quite important for
this work. We will begin with the definition of a supersymmetric quantum mechanics

and proceed with the exposition of the general structure of its Hilbert space. In partic-
ular we will show that supersymmetric ground states are given by BRST-cohomology
and motivate the appearance of instantons in supersymmetric theories. Afterwards

we will consider SQM on Riemannian manifolds M . We will show that in this case the
supersymmetric ground states are given by de Rham cohomology of M . Thereafter,

we will explain perturbative ground states. The end of this chapter will discuss the
important notion of instanton corrections.

3.1. Generalities of Supersymmetric Quantum Mechanics

We start our treatment of supersymmetric quantum mechanics by stating some general
remarks about the structure of the Hilbert space of a SQM. In the following we will
assume that the objects we are talking about do all exist and are well defined.

3.1.1. Structure of Hilbert Space and Witten-Index

At the beginning we should fix our terminology. To this end let us state

Definition 3.1.1. We call a quantum mechanics with a Z2 graded Hilbert space H (with pos-

itive definite inner product 〈·, ·〉) a supersymmetric quantum mechanics (SQM), if there exist

operators H , Q, Q† and (−1)F acting on H, such that

1. Q and Q† are formally adjoint operators with respect to 〈·, ·〉,
2. The spectrum of (−1)F is given by {1,−1},
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CHAPTER 3. SUPERSYMMETRIC QUANTUM MECHANICS

3. the grading of H is defined with respect to (−1)F , i.e. for

HB :=
{
ψ ∈ H|(−1)Fψ = ψ

}
and HF :=

{
ψ ∈ H|(−1)Fψ = −ψ

}
(3.1.1)

it is true that

H = HB ⊕HF , (3.1.2)

4. H is an even operator in the sense that

[H, (−1)F ] = 0 , (3.1.3)

5. Q and Q† are odd operators, i.e.

{Q, (−1)F} = {Q†, (−1)F} = 0 and (3.1.4)

6. the supersymmetry algebra is given by

Q2 = (Q†)2 = 0 , (3.1.5)

{Q,Q†} = 2H . (3.1.6)

We call H the Hamiltonian and Q, Q† the supercharges.

Now we will state three simple, but important, consequences of this definition of SQM.
That is

Proposition 3.1.2. Let a SQM in the sense of definition 3.1.1 be given. Then it is true that

1. the supercharges are conserved,

2. Q,Q† define maps between the bosonic eigenspace and fermionic eigenspace,

Q,Q† : HF −→ HB (3.1.7)

Q,Q† : HB −→ HF , (3.1.8)

3. the spectrum of H is non-negative and

4. A state ψ has zero energy if and only if it is annihilated by Q and Q†.

Proof. From (3.1.5) and (3.1.6) it follows that the supercharges are conserved,

[H,Q] = [H,Q†] = 0 . (3.1.9)
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3.1. GENERALITIES OF SUPERSYMMETRIC QUANTUM MECHANICS

Second can be inferred from equation (3.1.4).

Equation (3.1.6) and the fact that there are no negative norm states implies the non-
negativeness of the spectrum of H . Indeed, let ψ be an eigenvector of H with eigen-
value λ. Then it is true that

λ|ψ|2 = 〈ψ, λψ〉 = 〈ψ,Hψ〉 =
〈

ψ,
1

2
{Q,Q†}ψ

〉

=
1

2

(
|Qψ|2 + |Q†ψ|2

)
. (3.1.10)

Since the norm of a state is positive, it follows that λ > 0. The last equation also implies

that a state ψ has zero energy if and only if it is annihilated by Q and Q†.

Remark 3.1.3 The action of Q and Q† on a state ψ defines the variation of ψ under su-

persymmetry transformations. Hence, zero energy states are invariant and are called
supersymmetric. Let us denote supersymmetric states with zero energy as supersym-
metric ground states.

In the following we assume that H can be decomposed in terms of eigenspaces Hn of

the Hamiltonian H with eigenvalue En and E0 < E1 < E2 < . . ., i.e.

H =
⊕

n

Hn . (3.1.11)

Then another easy consequence of definition 3.1.1 is

Proposition 3.1.4. Let a SQM in the sense of definition 3.1.1 be given and letH be decompos-

able into energy eigenspaces. Then the grading respects the energy levels and the supercharges

map fermionic states of energy En to bosonic states of the same energy and vice versa.

Proof. Since (−1)F commutes with the Hamiltonian, (−1)F maps Hn to Hn and thus
the grading respects the energy levels

Hn = HB
n ⊕HF

n . (3.1.12)

Here (−1)F acts onHB
n as 1 and onHF

n as −1. As the supercharges Q and Q† commute
with the Hamiltonian, too, they map fermionic states of energy En to bosonic states of

the same energy and vice versa:

Q,Q† : HF
n −→ HB

n , (3.1.13)

Q,Q† : HB
n −→ HF

n , (3.1.14)
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Some of our future considerations will crucially rely on the following fact: Let O be a

supersymmetric operator, i.e. [[Q,O]] = 0 where [[·, ·]] denotes the graded commutator.
Then we will see that only zero energy states contribute to the expectation value of O.
The excited states pair together because of supersymmetry and cancel their respective

contributions. Strictly speaking, this is true because of

Proposition 3.1.5. Let a SQM in the sense of definition 3.1.1 be given and let H be decom-

posable into energy eigenspaces. Then the fermionic and bosonic eigenspaces of energy En are

isomorphic if En > 0.

Proof. Let En > 0 and Q1 := Q + Q†. Then (Q1)
2 = 2H acts as 2En on Hn and is,

therefore, invertible. Hence,

HF
n
∼= HB

n . (3.1.15)

Remark 3.1.6 Zero-energy eigenspaces are not isomorphic in general. In fact, the dif-

ference of the dimension of the bosonic zero-energy eigenspace and the dimension of
the fermionic zero-energy eigenspace is invariant under supersymmetry preserving

deformations of the theory. This will be examined in the following.

Let a SQM be given. We deform its Hamiltonian and thereby its spectrum. Let us as-

sume that we do this in such way that the deformed theories are also SQMs with the
same Hilbert space. Energy levels can be splitted, massive states can become mass-

less, massless states can become excited and so on. But this has to happen in pairs
of bosons and fermions since we assume the presence of supersymmetry during and
after the deformation. Hence, the number of bosonic ground states minus the number

of fermionic ground states is invariant during the deformation. This invariant is called
supersymmetric index or Witten index. Let state this more precisely in

Definition 3.1.7. Let a SQM in the sense of definition 3.1.1 be given. Then we call the differ-

ence dimHB
0 − dimHF

0 the Witten index of the SQM under consideration.

During the above mentioned deformation, excited states pair together and have differ-

ent sign of (−1)F . The Hamiltonian acts on zero-energy states as 0. Hence, the Witten
index can be expressed as

dimHB
0 − dimHF

0 = Tr(−1)F e−βH . (3.1.16)

Our next aim is to find a recipe to compute the supersymmetric ground states. It will
transpire that they can be represented as Q-cohomology of some complex. Then the

Witten index is given by its Euler number. That is
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Theorem 3.1.8. Let a SQM in the sense of definition 3.1.1 be given and letH be decomposable

into energy eigenspaces. Moreover, let there exist an operator F , which we call fermion-number

operator, such that

[F,Q] = Q and (−1)F = eiπF . (3.1.17)

Moreover, letH be decomposable into eigenspaces with respect to F . If the eigenvalues of F are

given as a representative set R = {0, 1, . . . , 2k − 1} of Z2k, with corresponding eigenspaces

Hp for p ∈ R, it is true that supersymmetric ground states are given as the cohomology of the

Z2k graded complex

−−−−→Q −−−−→Q −−−−→Q −−−−→Q· · · Hp−1 Hp Hp+1 · · · (3.1.18)

and the Witten index is given by its Euler characteristic. The cohomology is also called BRST

cohomology.

Proof. Using eq. (3.1.17), a straight forward computation shows that

[H,F ] = [H, eiπF ] = 0 , (3.1.19)

as well as

[F,Q†] = −Q† . (3.1.20)

In particular (3.1.19) implies (3.1.3). By assumption it is true thatH can be decomposed
as

H =
⊕

p∈R

Hp . (3.1.21)

If we define

HB :=
⊕

p even

Hp and HF :=
⊕

p odd

Hp , (3.1.22)

this is naturally isomorphic to (3.1.2). Because of equation (3.1.19) we are also able to

decompose Hp into energy eigenspaces,

Hp =
⊕

n

Hp
n . (3.1.23)

Equation (3.1.17) is the defining property of Q having fermion-number, or R-charge, 1.
Therefore, it follows together with eq. (3.1.19) that for all n

Q : Hp
n −→ Hp+1

n and Q† : Hp
n −→ Hp−1

n . (3.1.24)
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which shows together with Q2 = 0 that (3.1.18) defines a complex.

At each of the excited levels this complex is exact. Let En > 0, ψ ∈ Hp
n and Qψ = 0.

Then ψ = QQ†(2En)
−1ψ and ψ is exact. Now let En = 0 and ψ ∈ Hp

0. Then it is by
definition true that Qψ = 0 and thus [ψ] ∈ Hp(Q). On the other hand, if [ψ] ∈ Hp(Q)

and d†ψ = 0, it is obviously ψ ∈ Hp
0. If dψ = 0 and d†ψ 6= 0 we infer that Hψ 6= 0 which

is a contradiction. Hence,

Hp
0 = Hp(Q) :=

kerQ : Hp −→ Hp+1

imQ : Hp−1 −→ Hp
. (3.1.25)

Let us look at this result from a different perspective. We saw above that one necessary

condition for ψ being a supersymmetric ground state is Qψ = 0. But since we are
looking at a supersymmetric theory, we consider two states ψ and ψ + Qξ for some ξ

to be physically equivalent.

Hence, we have shown that the supersymmetric ground states can be characterized by
the cohomology of the complex (3.1.18). If we define

HB
0 =

⊕

p∈R∧p even

Hp(Q) and HF
0 =

⊕

p∈R∧p odd

Hp(Q) (3.1.26)

we get for the Witten index

Tr(−1)F e−βH =
∑

p∈R

(−1)p dimHp(Q) , (3.1.27)

which is the Euler characteristic of (3.1.18).

Remark 3.1.9 We say that states inHp have fermion-number p.

3.1.2. Localization Principle

Here we will give a short motivation for the localization principle as it has been done
in [Wit91]. This is an important technical tool for computations in supersymmetric
theories. It states that in order to perform a path integration, it suffices to sum over all

contributions which are invariant under supersymmetry transformations. This can be
seen as follows.

Let us look at an arbitrary quantum field theory and assume that we want to perform

a path-integration over some space F of fields. Moreover, assume the existence of a
group G which acts on F from the left. The side from where G operates on F is not

important. Then it is possible to decompose F into orbits under G. Suppose G acts
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MANIFOLDS

freely and denote the orbit-space as F/G. Path-integration over F is now performed

by first integrating over G and afterwards over F/G. If O is a G-invariant observable,
we get

O =

∫

F

[Dφ] e−SO = vol(G)

∫

F/G

[Dφ] e−SO . (3.1.28)

Let us apply this to the case where G is the symmetry generated by Q, namely super-
symmetry, andO is invariant under Q. Since supersymmetry is a fermionic symmetry,

its volume is 0. This means that as long as we consider Q-invariant operators, path
integration yields 0 if the symmetry acts freely on F . In general G does not act freely,
but there is a fixed point set F0.

Let F0 6= ∅ and G be a fermionic symmetry. Furthermore, let E be a G invariant neigh-
borhood of F0, namely G E ⊆ E . Then G acts freely on the complement of E and its
contribution to path integration yields 0. The neighborhood E can possibly be arbi-

trary small. Therefore, the above procedure can be viewed as a localization procedure.
The details depend on the vanishing of Q− id on F0. Generically the path integral col-

lapses to a sum over the Q-fixed points weighted by the determinant of the transverse
degrees of freedom.

Later we will see that the set F0 is precisely the set of instantons and the above local-

ization explains the appearance of instanton contributions to non-perturbative results
in supersymmetric quantum theories.

3.2. Example: Supersymmetric Quantum Mechanics on

Riemannian Manifolds

In this section we want to apply the results of the previous one to a simple example.
We will consider supersymmetric quantum mechanics on a Riemannian manifold. It
is a supersymmetric non-linear sigma model with one-dimensional world-sheet. We

will define the Hilbert space and give expressions of Q, Q†, H and the algebra of ob-
servables. We will also review the important notion of instanton corrections and show

why they are important.
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3.2.1. Supersymmetric Non-Linear Sigma Models with

One-Dimensional World-Sheet

Let (M, g) be an oriented, compact Riemannian manifold with coordinate maps ξµM and
T a one-dimensional real manifold, which we use to parameterize time. Moreover, let
Φ : T −→ M be a differentiable map with local coordinates φµ := ξµM ◦ Φ. It defines

the bosonic variables. Fermions of this theory are φ∗TM valued spinors. Since the spin
bundle of a one dimensional manifold is the trivial bundle T × C,

ψ, ψ ∈ Γ(T ,C⊗ φ∗TM) , (3.2.1)

with ψ, ψ being complex conjugates of each other and locally

ψ = ψµ
∂

∂xµ

∣
∣
∣
∣
Φ

, as well as ψ = ψµ
∂

∂xµ

∣
∣
∣
∣
Φ

. (3.2.2)

The action of SQM on a Riemannian manifold reads

S =

∫

T

dt

(
1

2
gµν φ̇

µφ̇ν +
i

2
gµν

(

ψ
µ
Dtψ

ν −Dtψ
µ
ψν
)

− 1

2
Rµνρσψ

µψνψρψσ
)

, (3.2.3)

whereDtψ
µ = ∂tψ

µ+Γµνλ(∂tφ
ν)ψλ is the Dirac operator of C⊗φ∗TM , Rµνρσ are the com-

ponents of the Riemann curvature tensor R with respect to the Levi-Civita connection
∇ and Γµνλ the Christoffel symbols of (M, g). At this point we do not want to go into

the details of the construction and physical meaning of this action and postpone it to
chapter 5.

The theory is invariant under infinitesimal supersymmetry transformations

δφµ = ǫψµ − ǫψµ , (3.2.4)

δψµ = ǫ(iφ̇µ − Γµνλψ
νψλ) , (3.2.5)

δψµ = ǫ(−iφ̇− Γµνλψ
νψλ) , (3.2.6)

i.e. δS = 0 under (3.2.4) - (3.2.6). By a Noether theorem there are conserved charges
(one for ǫ and one for ǫ) associated to this continuous symmetry, which we call super-
charges. They are given by

Q = igµνψ
µφ̇ν , (3.2.7)

Q† = −igµνψµφ̇ν . (3.2.8)

Equation (3.2.3) has another important symmetry. It leaves bosons unchanged while it

acts on fermions as a constant phase rotation

ψµ −→ e−iαψ and ψµ −→ eiαψµ , α ∈ R . (3.2.9)
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The resulting Noether charge reads

F = gµνψ
µψν . (3.2.10)

This is also our first example of a so called R-symmetry. Later we will use such kind of
invariance to construct so called “topological non-linear sigma-models” via topological

twisting.

Next we show that (3.2.3) defines a SQM in the sense of the last section. As is explained
there, the existence of a fermion-number operator is one important ingredient and the

operator associated to the charge F will act as such a one.

Let us denote the conjugate momentum of φµ as pµ = gµνφ̇
ν . Then the supercharges

can be expressed in terms of the conjugate momentum as

Q = iψµpµ and Q† = −iψµpµ . (3.2.11)

We quantize the system by imposing canonical (anti-) commutation relations

[φµ, pν] = iδµν , (3.2.12)

{ψµ, ψν} = gµν , (3.2.13)

with all other (anti-)commutators vanishing. Using this and (3.2.10) results in

[F, ψµ] = −ψµ and [F, ψµ] = ψµ . (3.2.14)

In accordance to section 3.1 we define

H :=
1

2
{Q,Q†} . (3.2.15)

Using (3.2.7), (3.2.8), (3.2.10) and (3.2.12), simple calculations show

[F,Q] = Q , [F,Q†] = −Q† and (3.2.16)

[H,F ] = 0 . (3.2.17)

Therefore, F really defines a fermion-number operator in the sense of section 3.1.

The next step in constructing a quantum pendant to the classical theory given by (3.2.3)
is to specify a representation of the quantum algebra. For that purpose we have to
define a Hilbert space, where the algebra of observables can operate. Let us define this

Hilbert space to be the space of complexified differential Forms H := Ω(M) ⊗ C on M
equipped with the Hermitian inner product

〈ω1, ω2〉 :=
∫

M

ω1 ∧ ∗ω2 . (3.2.18)
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We give a representation of the algebra of observables in local coordinates acting onH
as

φµ = xµ× , (3.2.19)

pµ = − iLeµ , (3.2.20)

ψµ = dxµ∧ , (3.2.21)

ψµ = gµνieµ , (3.2.22)

where iX is the substitution operator and Leµ denotes the Lie-derivative in eµ = ∂
∂xµ

direction. Using

iX (ω1 ∧ ω2) = (iXω1) ∧ ω2 + (−1)pω1 ∧ iXω2 , (3.2.23)

where ω1 ∈ Ωp(M) and ω2 ∈ Ωq(M), an easy calculation shows that (3.2.19) - (3.2.22)

fulfill (3.2.12) and (3.2.13).

Since the intention of this chapter is just to give a motivation for later considerations,
we do not want to address the question in which sense these operations really define

operators on Ω(M), i.e. whether and in which sense they are continuous, smooth or
bounded. But it is clear that the above operators are subject to coordinate transfor-

mations. We defined them with respect to certain local coordinate neighborhoods. To
be well defined operators, changing coordinates and acting on elements of Ω(M) have

to commute. This clearly holds. Thus the canonical (anti-) commutation relations are
independently true in all coordinate systems. This can also be seen by a straight for-
ward calculation transforming the right hand side and the left hand side of (3.2.12) and

(3.2.13).

By denoting the state which is annihilated by all ψµ as |0〉we obtain the correspondence

|0〉 ←→ 1 (3.2.24)

ψµ |0〉 ←→ dxµ (3.2.25)

ψµ1ψ
µ
2 |0〉 ←→ dxµ ∧ dxν (3.2.26)

...

Because of equations (3.2.14) it is obviously true that the fermion-number associated

to a state which corresponds to a p-form is p. Thus we observe thatH is graded by the
fermion-number which is given by the form-degree, i.e.

H =

n⊕

p=0

Ωp(M)⊗ C . (3.2.27)
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Our next aim is to construct the supersymmetric ground states. To this end we have to

give an expression of Q acting onH. Let ω ∈ Ωp(M). Then locally

Qω = iψµpµω = dxµ ∧ (Leµω) = dxµ ∧ 1

p!

∂ωµ1...µp
dxµ

dxµ1 ∧ . . . ∧ dxµp = dω (3.2.28)

and

Q†ω = d†ω , (3.2.29)

where d† is the formal adjoint of d with respect to (3.2.18). Therefore, the Hamiltonian
is

H =
1

2
{Q,Q†} = 1

2
(dd† + d†d) =

1

2
∆ , (3.2.30)

where ∆ is the ordinary Laplace operator on M . Hence, the zero energy states are
precisely the harmonic forms and we get

H0 = Harm(M, g) =

n⊕

p=0

Harmp(M, g) . (3.2.31)

This is consistent with [F,Q] = Q, i.e. the space of supersymmetric ground states is

graded by fermion-number, which is the form-degree here. Moreover, we know by the
general structure of a Hilbert space of a supersymmetric quantum mechanics that

H0 = H(Q)∗ = H∗
dR =

n⊕

p=0

Hp
dR
∼=

n⊕

p=0

Harmp(M, g) (3.2.32)

as graded complexes. This refines to

Hp
dR
∼= Harmp(M, g) . (3.2.33)

Last but not least we are are able to give an expression of the Witten index of this

system. It reads

Tr(−1)F e−βH =
n∑

p=0

(−1)p dimHp(Q) =
n∑

p=0

(−1)php(M) = χ(M) , (3.2.34)

where hp(M) are the Betti numbers and χ(M) is the Euler characteristic of M .
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3.2.2. Deformation by Potential Term

One aim of this chapter is to review the connection between supersymmetric quan-
tum mechanics and Morse theory. To gain this connection we will have to deform the
Theory. This subsection gives a brief discussion what we mean by a deformation of a

theory in this given context. Let h : M −→ R be a smooth map and a deformation of
the action (3.2.3) be

∆S =

∫

T

(

−1
2
gµν∂µh∂νh− (Dµ∂νh)ψ

µψν
)

(3.2.35)

with Dµ∂νh = ∂µ∂νh− Γκµν∂κh. This changes the supersymmetry transformations to

δφµ = ǫψµ − ǫψµ , (3.2.36)

δψµ = ǫ
(

iφ̇µ − Γµνκψ
νψκ + gµν∂νh

)

, (3.2.37)

δψµ = ǫ
(

−iφ̇µ − Γµνκψ
κψν + gµν∂νh

)

. (3.2.38)

The expression for R-symmetry remains unchanged, while the supercharges are now
given by

Qh = d+ dφµ ∧ ∂µh = d+ dh∧ = e−hdeh =: dh = e−hQ0e
h (3.2.39)

Q†
h = (d+ dφµ ∧ ∂µ)†h = e−hd†eh =: dh = e−hQ†

0e
h , (3.2.40)

with Q0 being the expression of Qh for h = 0. The Hamiltonian reads

Hh =
1

2
{Qh, Q

†
h} =

1

2

(

dhd
†
h + d†hdh

)

(3.2.41)

It is clear that [F,Qh] = Qh and [F,Q†
h] = −Q†

h still holds and thus HSUSY is graded by

form-degree. Moreover, we have the following commutative diagram

−−−−→ −−−−−−→d −−−−−−−→d −−−−−−−→d −−−−→−−−−−→ e−h

−−−−−→ e−h

−−−−−→ e−h

−−−−→ −−−−−−→e−hd eh −−−−−−−→e−hd eh −−−−−−−→e−hd eh −−−−→

0 Ω0(M) Ω1(M) . . . Ωn(M) 0

0 Ω0(M) Ω1(M) . . . Ωn(M) 0

(3.2.42)

where the vertical arrows are isomorphisms. Therefore, we get isomorphic spaces

Hp
h,0
∼= Hp(Qh) ∼= Hp(Q0) ∼= Hp

dR(M) ∼= Hp
0,0 . (3.2.43)

In particular, dimHp
h,0 is invariant with respect to changes of h and, hence, the Witten

index Tr(−1)F e−βH is invariant, too.

32



3.2. EXAMPLE: SUPERSYMMETRIC QUANTUM MECHANICS ON RIEMANNIAN
MANIFOLDS

3.2.3. Perturbative Ground States

In [Wit82] Edward Witten described a beautiful connection between supersymmetric
quantum mechanics and Morse-theory. It appears by computing instanton corrections
to perturbative ground states Ψi. Physically this means we construct states which are

massless up to any order in perturbation theory. But there are non-perturbative quan-
tum corrections to their mass which are called instantons.1 This subsection is devoted

to the construction of perturbative ground states. The next one will give a short moti-
vation of a very important tool in supersymmetric field theories, the localization prin-
ciple. After that we will identify the instantons which contribute to 〈Ψi, QΨj〉.
Let (M, g) be a Riemannian manifold. Consider a deformation of supersymmetric
quantum mechanics on M by λh : M → R in the sense of the last subsection, where h

is a Morse function with critical points x1, x2, ..., xN . This yields

Hλ =
1

2
∆ +

1

2
λ2gµν∂µh ∂νh +

1

2
λDµ∂νh [ψ

µ, ψν ] (3.2.44)

as the Hamiltonian. It is clear that at very large λ, low energy states localize at critical

points of h.

Let us expand h around its critical points xi

h = h(xi) +
n∑

I=1

cI(x
I)2 +O

(
(xI)3

)
, (3.2.45)

where cI are the eigenvalues of the Hessian of h at xi. Therefore, we get in normal
coordinates at xi up to leading order in perturbation theory for Hλ

H0(xi) =
n∑

I=1

(
1

2
pI

2 +
1

2
λ2(cI)

2(xI)2 +
1

2
λcI [ψ

I , ψI ]

)

. (3.2.46)

This can be done since a change in h or g does not affect Q-cohomology. If we compare
this to the Hamiltonian of the supersymmetric harmonic oscillator,

HI
osc =

1

2
pI

2 +
1

2
ωI

2x2 +
1

2
ωI [ψ

,ψ], (3.2.47)

we infer that

H0(xi) =

n∑

I=1

HI
osc , (3.2.48)

1Instantons are special solutions to the equations of motion which extremize the action and are located
in time. Hence the name instanton.
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with ωI = λcI . Now Hosc has got eigenfunctions

e−
1
2
ωx2 |0〉 for ω > 0

and

e+
1
2
ωx2ψ |0〉 for ω < 0 .

Since [HI , HJ ] 6= 0 we get for the ground-states up to leading order in perturbation
theory

Ψ
(0)
i = e−

λ
2

∑n
I=1 |cI |(x

I )2
∏

J :cJ<0

ψJ |0〉 . (3.2.49)

Observe that the number of ψJ which multiply |0〉 is the Morse index µi of h at xi
and, hence, Ψ

(0)
i is a µi-form. It is possible to add corrections to Ψ

(0)
i yielding Ψi, such

that Ψi is a ground state to all orders of perturbation theory. Since the latter preserves

fermion-number, it holds

Ψi ∈ Ωµi(M)⊗ C . (3.2.50)

3.2.4. Instanton Corrections

In this subsection we will apply the localization principle to supersymmetric quantum
mechanics on Riemannian manifolds. In the last subsection we constructed perturba-

tive ground-states Ψi corresponding to critical points xi of h : M → R. They are mass-
less up to any order in perturbation theory. But there are possible quantum corrections
to their masses such that some of them produce non-vanishing matrix elements of Qh.2

As for λ→∞ all states diverge except Ψi for all i. Moreover, the considerations in sub-
section 3.2.2 show that the number of ground states is invariant under deformations of

h. Therefore, the number of true ground states does not exceed the number of critical
points. Calculating

Qij = 〈Ψi, QΨj〉 (3.2.51)

will enable us to define a quantum corrected action ofQ on approximate ground states,

QΨi =
N∑

j=1

〈Ψj , QΨi〉Ψj =
N∑

j=1

QjiΨj . (3.2.52)

2In order to keep notations simple we drop the h in the following.
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Thus, we sought after

∫

M

Ψj ∧ ∗(d+ dh∧)Ψi = 〈Ψj, QΨi〉 . (3.2.53)

Because differential-forms of different degree are orthogonal with respect to (3.2.18),
the above equation is only non-vanishing if µj = µi + 1. Since we are not aware of the

concrete form of Ψi, we compute (3.2.53) using path-integration.

In the large volume limit λ → ∞ the perturbative ground states localize at the critical
points of h. Therefore, h viewed as an operator sends

h : Ψi 7→ h(xi)Ψi . (3.2.54)

Now let e−TH project on the perturbative ground state which corresponds to the critical
point xi of h. Then it holds

lim
T→∞

〈
Ψj, e

TH [Q, h]e−THΨi

〉
=

〈

Ψj ,

(

Qh(xi)− h(xj)Q+O
(
1

λ

))

Ψi

〉

. (3.2.55)

Hence, we infer

〈Ψj , QΨi〉 =
1

h(xi)− h(xj) +O
(
1
λ

) lim
T→∞

〈
Ψj , e

TH [Q, h]e−THΨi

〉
. (3.2.56)

To get an expression which we are able to compute we use

[Q, h]ω = [d+ dh∧, h]ω = dh ∧ ω + hdω + hdh ∧ ω − hdω − hdh ∧ ω =

= dh ∧ ω = ∂µh dφ
µ ∧ ω = ∂µhψ

µω (3.2.57)

to obtain

〈Ψj , QΨi〉 =
1

h(xi)− h(xj) +O
(
1
λ

)

∫

F

DφDψDψ e−SEψµ∂µh . (3.2.58)

Here F is the set of superfields with bosonic part given by

Fbos = {φ : T −→M |φ(−∞) = xi ∧ φ(∞) = xj} (3.2.59)

and SE is the euclidean action obtained by wick rotation t = −iτ . Its bosonic part reads

Sbos =
1

2

∞∫

−∞

dτ

(∣
∣
∣
∣

dφµ

dτ
± λgµν∂νh

∣
∣
∣
∣

2

∓ λ(h(xj)− h(xi))
)

, (3.2.60)
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where we used |V µ|2 := V µgµνV
ν and the boundary conditions φ(−∞) = xi as well as

φ(∞) = xj . Equation (3.2.60) is minimized by

dφµ

dτ
± λgµν∂νh = 0 for h(xj) ≶ h(xi) . (3.2.61)

Later we will see that Q-fixed points in field-space fulfill (3.2.61), too. There a sign

will be chosen naturally. Such configurations are precisely the instantons of the theory.
Before we will treat that, we should look for possible deformations of an instanton. To
this end let us look at a first order variation of (3.2.61),

d

dǫ

(
d(φµ + ǫ δφµ)

dτ
± λgµν(φµ + ǫ δφµ)∂νh(φ

µ + ǫ δφµ)

)∣
∣
∣
∣
ǫ=0

= (3.2.62)

= D±δφ
µ := Dτδφ

µ ± λgµν(Dµ∂κ)δφ
κ = 0 .

This means that deformations of an instanton are given by the zero-modes of D±. In
particular we get for the fermion bilinear part of SE

Sψψ = −
∞∫

−∞

dτ gµν(D−ψ
µ)ψν . (3.2.63)

We saw in subsection 3.1.2 that path-integration of an operator which is invariant un-

der Q only picks up Q-fixed points in field-space. To be able to use this fact we have to
assure that [Q, h] = ψµ∂µh is invariant under Q. Since [Q, h] has fermion-number 1 and

{Q, [Q, h]} = Q2h−QhQ +QhQ− hQ2 = 0 , (3.2.64)

this obviously holds. The infinitesimal euclidean supersymmetry transformation gen-

erated by Q (ǫ = 0) are

δφµ = ǫψµ , (3.2.65)

δψµ = ǫ

(

−dφ
µ

dτ
+ λgµν∂νh− Γµνκψ

µψν
)

, (3.2.66)

δψµ = 0 . (3.2.67)

Thus we observe that the Q-fixed configurations (instantons) in field-space are given

by

ψµ = 0 and
dφµ

dτ
= λgµν∂νh , (3.2.68)

which is exactly the instanton equation (3.2.61) for h(xj) > h(xi). This shows that in

this case an instanton is an ascending gradient flow for h from xi to xj (steepest ascent).
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Since there is one insertion of ψµ in (3.2.58), we observe that the path-integral is non-

vanishing if and only if there is one more D− zero-mode of ψµ than ψµ zero-modes.
Hence indD− = 1. Next we will motivate that the index of the respective Dirac opera-
tor is given by the relative Morse index

indD− = ∆µ = µj − µi . (3.2.69)

Proof. Let Hh(x) be the Hessian of h at x. As a map Hh(x) : TxM −→ TxM it is rep-

resented as a symmetric n × n matrix and can be diagonalized using eigenvectors eI
with corresponding eigenvalues λJ . A family of eigenvectors and eigenvalues along a

trajectory φ starting at xi and ending at xj fulfills

Hh(φ(τ))eI(φ(τ)) = λI(τ)eI(τ) . (3.2.70)

The family of eigenvalues is called spectral flow. Now the relative Morse-index counts

the net number of eigenvalues going from positive to negative values,

∆µ = #{λI(−∞) > 0 ∧ λ(∞) < 0} −#{λI(−∞) < 0 ∧ λ(∞) > 0} . (3.2.71)

Consider the differential operator

D̃∓ := D̃τ ∓ φ∗Hh , (3.2.72)

with eI being parallel with respect to D̃−. It can be written as

D̃∓ :=
d

dτ
∓









λ1(τ) 0 · · · 0

0 λ2(τ)
...

...
. . . 0

0 · · · 0 λn(τ)









. (3.2.73)

Since D− = Dτ − φ∗Hh it holds indD− = ind D̃−. Next we will compute ind D̃− and

see that it equals the relative Morse index ∆µ. To this end we look at the equation
D̃∓f∓ = 0. It is solved by

fI,∓(τ) = eI exp



±
τ∫

o

λI(τ
′)dτ ′



 . (3.2.74)

Using

∞∫

−∞

|fI,∓|2dτ =

∞∫

−∞

exp



±2
τ∫

o

λI(τ
′)dτ ′



 dτ (3.2.75)
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we observe that fI,− is square normalizable if and only if λ(∞) < 0 and λ(−∞) > 0,

whereas fI,+ is square normalizable if and only if λ(∞) > 0 and λ(−∞) < 0. Therefore,
ind D̃− = dimker D̃− − dimker D̃+ = ∆µ . This shows the claim.

Now we are ready to evaluate (3.2.58). We will do so by using the quadratic approx-
imation of SE, omitting terms of higher degree than two in fermion fields. This is

justified since we saw that in order to perform path-integration of a supersymmetric
expression we can sum over the Q-fixed points (3.2.61) weighted by small fluctuations
around these configurations. Let us denote bosonic fluctuations by ξ, the fermionic

fluctuations by ψ, ψ and the bosonic part of a Q-fixed configuration by γ. Then the use
of (3.2.63), (3.2.60) and the natural choice of the signs therein yields

SE = −λ(h(xi)− h(xj)) +
∫ (

1

2
|D−ξ|2 − (D−ψ)ψ

)

dτ . (3.2.76)

It is clear by definition that the ξ zero modes with respect to D− are given by the de-
formations of γ. Therefore, path-integration over the zero modes of ξ results in an

integral over the moduli space [γ] of γ. The kernel of D− is one-dimensional and we
denote deformations of γ by δγ and its coordinate τ1.

3 Physically this corresponds to a

translation of the instanton in space-time. Zero modes of ψµ are notated as ψµ0 . Thus,

∫

φ(−∞)=xi
φ(∞)=xj

DξDψDψ e−SE(ξ,ψ,ψ)[Q, h] =
∑

γ

∫

non-zero
modes

DξDψDψ

∫

[γ]

d(δγ)

∫

dψ0 ψ
µ
0×

× ∂µh(γ + δγ)eλ(h(xi)−h(xj))e−
∫
( 1
2
|D−ξ|2−(D−ψ)ψ)dτ

(3.2.77)

Setting DΦ := DξDψDψ e−
∫
( 1
2
|D−ξ|2−(D−ψ)ψ)dτ and putting in the respective definitions

yields up to order 1/λ

(h(xi)− h(xj))Qij =
∑

γ

eλ(h(xi)−h(xj))
∫

non-zero
modes

DΦ

∞∫

−∞

dτ1

∫

dψ0

d(δγ)

dτ1
ψµ0∂µh(γ + δγ)

(3.2.78)

As at the boundary of [γ] the instanton stays at xj and xi, we are able to evaluate

3According to [γ](τ, τ1) = γ(τ + τ1) = γ(τ) + δγ(τ, τ1).
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(3.2.78),

∑

γ

eλ(h(xi)−h(xj))
∫

non-zero
modes

DξDψDψ e−
∫
( 1
2
|D−ξ|2−(D−ψ)ψ)dτ (h(xj)− h(xi)) =

=
∑

γ

eλ(h(xi)−h(xj)) (h(xj)− h(xi))
det′D−

| det′D−|
︸ ︷︷ ︸

nγ

. (3.2.79)

Therefore, the matrix-element Qji is given by

Qji =
∑

γ

nγ e
−λ(h(xj)−h(xi)) . (3.2.80)

Absorbing the exponential factor via Ψi −→ eλh(xi)Ψi we conclude that

QΨi =
∑

j:∆µ=1

(
∑

γ

nγ

)

Ψj . (3.2.81)

Next we wish to determine the precise value of nγ . Looking at (3.2.53) and (3.2.80) we

observe that the integral gets dominant contributions by a path γ of steepest ascent of
h. Thus nγ = 1 if the orientation of Ψi ∧ ∗(d + dh∧)Ψj coincides with the orientation
of M along γ and nγ = −1 otherwise. It can be shown [Wit82] that this coincides with

the definition of the differential in Morse-homology. Since we do not need it at this
point, I will not review the proof here. The important fact is that in order to get the

true ground states we construct the graded space of approximate ground states with µ
chains

Cµ :=
⊕

µi=µ

CΨi , (3.2.82)

being the free graded complex of critical points of h. Then Q acts on this complex by

(3.2.81)

−−−−−→ −−−−−→Q −−−−−→Q −−−−−→Q −−−−−→Q
0 C0 C1 . . . Cn 0 . (3.2.83)

This is exactly the Morse-complex and its cohomology defines true ground-states. This

is in accordance with the fact that Morse-homology is isomorphic to ordinary de Rham
cohomology.

We should learn the following from this considerations. To obtain the true supersym-

metric ground states of a supersymmetric quantum mechanics we can do two things.
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If there is a well defined operator Q acting on the states in the prescribed manner, su-

persymmetric ground-states are given by its cohomology. The other way to get them
is to start with approximate (perturbative) ground states Ψi and compute quantum
corrections to the action of Q. Using the localization principle they can be calculated

via summing over infinitesimal neighborhoods of Q-fixed points, which are instantons
in the theory. This will result in some kind of Morse-theory. In the A-model of topo-

logical string theory for example such considerations lead to Floer-homology. A good
introduction to Floer theory can be found in [Sal97].
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4. Nonlinear Sigma-Models on

Riemannian Manifolds

In this chapter we treat nonlinear sigma-models on Riemannian manifolds. The focus
will be on the formulation of the material in a thorough geometrical language. After

that we will give an intuitive construction of solutions of the equations of motion, be-
ing harmonic maps, via topological methods. Although this construction seems to be
very natural, the author has not found such constructions applied to this context else-

where in the literature. One corollary of this construction is, in physical language, the
proof that even in curved space, strings obey a mode-expansion. This is a surprising

result, at least from the mathematical viewpoint. The resulting equations of motion
are nonlinear and therefore the sum of two solutions is not a solution in general. It
turns out that in contrast to euclidean space-time, in the curved case not every mode

of the string is physical, but only those which are associated to a smooth map between
the world-sheet Σ and the target manifold M . At the end of chapter 4 we will give a

short outlook of possible applications of these concepts. But as the focus of this work is
on a generalization of pseudo-holomorphic curves to generalized complex manifolds,
we will not go very much into details. In particular, we will state a program of how to

construct the quantum theory of nonlinear sigma models on arbitrary target manifolds.

In textbooks on string theory, e.g. [Pol98a], [GSW87] and [BBS07], nonlinear sigma-
models are usually introduced as a generalization of a particle to a tiny vibrating string

of energy moving in space-time. While a moving particle defines a so called world line,
a moving string defines an embedding of a world-sheet Φ(Σ)1. It is postulated to be in

such a way that the area of the embedding Φ : Σ→ M into Lorentzian space-time M is
minimal, i.e.

S0 = i

∫

Σ

ηµν∂aφ
µ∂bφ

νηabd2σ . (4.0.1)

is minimal. This is the starting point of the formulation of string theory as a conformal

quantum field theory, which we will not discuss here.

1The genus of Σ corresponds to the loop expansion of ordinary QFT.
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4.1. Action and Equations of Motion

To be more precise, let (M, g,∇) be a Riemannian manifold with metric g and Levi-

Civita connection ∇. Moreover, let (Σ, h) be a Riemann surface and Φ : Σ → M be a
smooth embedding, i.e. an injective immersion, of Σ into M . If M is a manifold, we
denote the coordinate maps as ξM . Let us define the action of nonlinear sigma-models

to be

S[Φ] :=

∫

Σ

√

|h| d2σ gµν(Φ(σ)) ∂aφµ∂bφν hab , (4.1.1)

where φµ are local coordinates of Φ. Here we slightly abuse notation, since we omit the
use of a partition of unity to integrate over the whole manifold Σ. Using the fact that

Σ is two-dimensional, it is easy to show that (4.1.1) is invariant under Diff(M), Diff(Σ)

and Weyl(Σ).

Proposition 4.1.1. Let (M, g,∇), (Σ, h) and Φ : Σ → M be as above. Then in local coordi-

nates the equations of motion for Φ defined by (4.1.1) are

∆Σφ
λ − Γλµν

∂φµ

∂σa
∂φν

∂σb
hab = 0 . (4.1.2)

Proof. A proof can be found in [Jos95].

The next section will treat a global formulation of S[Φ] and its equations of motion.

4.2. Geometric Formulation

In order to obtain a global and intrinsically geometric formulation of non-liner sigma-
models, we have to exploit several constructions. We will see that the fundamental
objects in such theories are differential forms on Σ with values in in the pullback of the

tangent bundle πTM : TM → M under Φ, which we denote as Φ∗TM . Its total space is
given by

Φ∗TM := {(σ,X) ∈ Σ× TM |Φ(σ) = πTM(X)} (4.2.1)

with transition functions

t∗ij(σ) := tTMij (Φ(σ)) , (4.2.2)
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and projections

pr1 : Φ
∗TM −→ Σ, (σ,X) 7−→ σ , (4.2.3)

pr2 : Φ
∗TM −→ TM, (σ,X) 7−→ X . (4.2.4)

In particular, the forms which are needed to enable a global formulation of (4.1.1) are

associated to a smooth map Φ : Σ→M and defined as

dΦ(v) := TΦ ◦ v . (4.2.5)

Here v ∈ Γ(Σ, TΣ), and TΦ is the differential of Φ.2 To see that this truly defines a
Φ∗TM valued one-form, i.e. an element of Ω1(Σ,Φ∗TM), we first need

Lemma 4.2.1. Let Σ and M be smooth manifolds and Φ : Σ→M be a smooth map. Then

Γ(Σ,Φ∗TM) ∼= {f : Σ→ TM |πTM ◦ f = Φ} . (4.2.6)

We will call such maps vector fields along Φ.

Proof. Let U ∈ Γ(Σ,Φ∗TM). Hence, (pr1 ◦ U)(σ) = σ. Thus, U(σ) = (σ,Xσ) with

πTM(Xσ) = σ. Therefore, we define fU(σ) := Xσ. By construction fU is a vector-field
along Φ. The map g : U 7→ fU is clearly injective. Moreover, there is a map h : f 7→ Uf
defined by Uf (σ) := (σ, f(σ)). By construction it is true that Uf ∈ Γ(Σ,Φ∗TM) and

g ◦ h = id, as well as h ◦ g = id.

Usual one-forms ω ∈ Ω1(Σ) assign smoothly to every point σ ∈ Σ a linear map TσM →
R, which means ω(σ)(v) ∈ R for v ∈ Γ(Σ, TΣ). Because of πTM ◦ dΦ(v) = Φ, we infer
that dΦ(v) is a vector-field along Φ. Using lemma 4.2.1, dΦ assigns smoothly to every
σ ∈ Σ a linear map TσΣ → pr1

−1(σ) =: (Φ∗TM)σ . Hence, it can be interpreted as a

Φ∗TM valued one-form.

To give a summary, we draw the commutative diagram

−−−−−−−−→TΦ

−−
−−
−−
→

v

−−−−−−→ πTΣ

−−−−−−→ πTM

−−−
−−−
−−−
−−−
→

dΦ(v)

−−−−−−−−−−→Φ−−−−−−−−−−−−−−−−−−−−−−→

U

−−−−−
−−−−−

−−−−−
−−−−−

−−→

pr1 −−−
−−
−−
−−
−−
−−
−−
−−
−→

pr2

TΣ TM

Σ M

Φ∗TM

(4.2.7)

2We use this convention to emphasize that T is a functor from the category of smooth manifolds Man∞
to the category of smooth vector bundles VecB.
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Since we are interested in the connection between dΦ and equation (4.1.1), whose in-

tegrand is a local expression, we have to compute the local coordinates of dΦ. To this
end recall that for any vector-bundle π : E → Σ the space of E-valued forms on Σ, i.e.
Ω∗(Σ, E), is isomorphic to

Ω∗(Σ, E) ∼= Ω∗(Σ)⊗E ∼=
dimΣ⊕

k=0

Ωk(Σ)⊗E . (4.2.8)

Hence, every η ∈ Ωk(Σ, E) can be decomposed as

η = ωµ ⊗Xµ (4.2.9)

η(u) := ωµ(u) ·Xµ , (4.2.10)

where Xµ ∈ Γ(Σ, E), u ∈ Γ(Σ, TΣ).3 In the case of E being equipped with a linear
connection ∇, we define its action on E-valued p-forms via

d∇η ≡ ∇(ηµ ⊗Xµ) := dηµ ⊗Xµ + (−1)pηµ ∧ ∇Xµ . (4.2.11)

If p = 0 the wedge product is just ordinary multiplication.

Let us return to the computation of the local expression of dΦ. After decomposing
v ∈ Γ(Σ, TΣ) as v = va ⊗ ∂a, we obtain

dΦ(v) = TΦ ◦ v = va
∂

∂σa
(
ξµM ◦ Φ ◦ ξ−1

Σ

)
(σ)

∂

∂xµ
= va

∂φµ

∂σa
∂

∂xµ
. (4.2.12)

Thus we conclude that locally

dΦ =
∂φµ

∂σa
dσa ⊗ ∂

∂xµ
. (4.2.13)

Since S[Φ] has to be a number for all Φ, we need an inner product on Ω∗(Σ,Φ∗TM) to
achieve this. Such an inner product can be constructed using the metric g on TM and

h on TΣ by defining for α = η⊗U ∈ Γ(Σ,Φ∗TM) and β = ω⊗ V ∈ Γ(Σ,Φ∗TM) a local
inner product

(α, β) := h(η, ω) g̃(U, V ) . (4.2.14)

Here g̃ is the metric on Φ∗TM which is induced by g, i.e.

g̃σ(U, V ) := gΦ(σ)(pr2 U, pr2 V ) . (4.2.15)

3Hence, local sections U of E can be written as U = Uµ ⊗ eµ. This corresponds to the usual decompo-
sition U = Uµeµ.
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Let us define a global inner product on Ω∗(Σ,Φ∗TM) by

〈α, β〉 :=
∫

Σ

(α, β) ∗ 1 , (4.2.16)

where the Hodge-star acts on Σ. This enables us to state

Proposition 4.2.2. Let (Σ, h) and (M, g) be Riemannian manifolds and Φ ∈ C1(Σ,M). Then

equation (4.1.1) can be written as

∫

Σ

√

|h| d2σ gµν(Φ(σ)) ∂aφµ∂bφν hab = 〈dΦ, dΦ〉 (4.2.17)

Proof. Using ∗1 = dvolΣ =
√

|h| dσ1 ∧ . . . ∧ dσdimΣ and locally

(dΦ, dΦ) = gΦ(σ)

(
∂φµ

∂σa
∂

∂xµ
,
∂φν

∂σb
∂

∂xν

)

hσ(dσ
a, dσb) = gµν

∂φµ

∂σa
∂φν

∂σb
hab , (4.2.18)

as well as equation (4.2.16) the statement is evident.

Hence, we obtained a global formulation of the action of nonlinear sigma-models. It
would be very natural, if we could bring the left d in 〈dΦ, dΦ〉 on the right side to
gain 〈Φ, d† dΦ〉. The operator d† should be the formal adjoint of d. Then minimizing

the action would be achieved by demanding d† dΦ = 0. This should correspond to
some harmonic element in some complex. But not surprisingly, such a naive ansatz

is somehow problematic. First, 〈·, ·〉 acts on Φ∗TM valued k-forms and Φ is a map
between Σ and M . Second, since dΦ is a Φ∗TM valued one-form, d†dΦ has to be a
Φ∗TM valued zero-form, i.e. a section in Φ∗TM , for an explanation via complexes to

make sense. But then Φ has to be a section of Φ∗TM , too. This is obviously not the case.
One possible way out of this conflict could be to view Φ as a Φ∗TM valued zero-form,

since by lemma 4.2.1 all sections of Φ∗TM encode the information on Φ as a map from
Σ to M .

Later we will see that the equations of motion in this global setting read τ(Φ) :=

−d†Φ∗∇ dΦ = 0. Here d†Φ∗∇ is the formal adjoint of dΦ∗∇ which is the covariant exterior
differential on Ω∗(Σ,Φ∗TM) with respect to the pullback connection Φ∗∇ of the Levi-

Civita connection ∇ on TM . The Φ∗TM valued zero-form τ(Φ) is sometimes called
“tension-field”.

This suggests that d† from above should be in fact d†Φ∗∇ and there should be some Φ∗TM

valued zero-form ϕ such that dΦ = dΦ∗∇ϕ. In section 4.3 we ask whether a d†Φ∗∇-closed
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element can be written as dΦ. The existence of such a ϕ would ease the search for an

answer, but we will not follow this route now.

Our next goal is the global formulation of the equations of motion. It is

Proposition 4.2.3. Let (Σ, h) and (M, g) be Riemannian manifolds, ∇ the Levi-Civita con-

nection on TM , Φ : Σ → M a smooth embedding and S[Φ] = 〈dΦ, dΦ〉. Then the associated

equations of motion are

d†Φ∗∇ dΦ = 0 , (4.2.19)

where Φ∗∇ is the pullback of ∇ to Φ∗TM .

To be able to prove this proposition we have to recall a few facts on fiber bundles and
connections.

Let π : E → Σ and π̃ : Ẽ → Σ̃ be vector bundles with connection∇ and ∇̃, respectively.

Moreover, let ϕ : E → Ẽ be a bundle map which restricts to isomorphisms ϕσ in each
fiber above σ and induces a bijective map ψ : Σ→ Σ̃. Then for any connection ∇̃ on Ẽ

there is a connection ∇ on E such that ϕ is connection preserving, viz. the diagram

−−−−−→ϕ♯

−−−−−→∇

−−−−−→ ∇̃

−−−−→

ϕ♯

Γ(Σ, E) Γ(Σ̃, Ẽ)

Ω1(Σ, E) Ω1(Σ̃, Ẽ)

(4.2.20)

commutes, see [GHV72] section 7.13. The map ϕ♯ : Ω∗(Σ̃, Ẽ)→ Ω∗(Σ, E) is defined by

(ϕ♯(U))(σ) := ϕ−1
σ (U(ψ(σ)) , (4.2.21)

for U ∈ Γ(Σ̃, Ẽ) and more generally

(ϕ♯α)σ(u1, . . . , uk) := ϕ−1
σ

(
αψ(σ)(Tψ u1, . . . , Tψ uk)

)
, (4.2.22)

where u1, ..., uk ∈ Γ(Σ, TΣ) and α ∈ Ω∗(Σ̃, Ẽ) for k ≥ 1. The connection ∇ is defined by

∇(ϕ♯U) := ϕ♯
(

∇̃(U)
)

. (4.2.23)

It remains to show that for any u ∈ Γ(Σ,Φ∗TM) there exists a U ∈ Γ(Φ(Σ), TM |Φ(Σ))

such that u = ϕ♯U . This is
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Lemma 4.2.4. Let π : E → Σ and π̃ : Ẽ → Σ̃ be vector bundles and ϕ : E → Ẽ be a

bundle map which restricts to isomorphisms ϕσ in each fiber above σ and induces a bijective

map ψ : Σ→ Σ̃. Then ϕ♯ is also bijective.

Proof. Let ũ1, ũ2 ∈ Γ(Σ̃, Ẽ). Assume ϕ♯(ũ1) = ϕ♯(ũ2). Then it follows by definition that
ϕ−1 ◦ ũ1 ◦ ψ = ϕ−1 ◦ ũ2 ◦ ψ. Since both ϕ and ψ are bijective and in particular injective

we conclude ũ1 = ũ2. To show surjectivity of ϕ♯ define ũ := ϕ ◦ u ◦ ψ−1 for u ∈ Γ(Σ, E).
It is defined for all u and fulfills ϕ♯(ũ) = u.

The connection ∇ is called the pullback of ∇̃ and is the unique connection such that ϕ
is connection preserving.

Let us apply this construction to the present case of the nonlinear sigma-model by

calculating the connection coefficients of Φ∗∇. In the notation of above we have the
given data

Σ = Σ , (4.2.24)

Σ̃ = Φ(Σ) , (4.2.25)

E = Φ∗TM , (4.2.26)

Ẽ = TM |Φ(Σ) , (4.2.27)

∇ = Φ∗∇TM , (4.2.28)

∇̃ = ∇TM , (4.2.29)

ϕ = pr2 , (4.2.30)

ψ = Φ . (4.2.31)

With a slight abuse of notation we denote ∇TM ≡ ∇. Let us first note that according
to lemma 4.2.4 it follows that (pr2)

♯eµ is a local frame of Φ∗TM , interpreted as vector

fields along Φ, if eµ is a local frame of TM |Φ(Σ). Then it is true that

(Φ∗∇)
(
δνµ · (pr2)♯eν

)
(

∂

∂σa

)

= (pr2)
♯(∇eµ) =

= pr2
−1 ◦ ∇eµ ◦ TΦ

(
∂

∂σa

)

=

(

σ,∇ ∂φλ

∂σa
∂

∂xλ

eµ

)

=

=
∂φλ

∂σa
Γκλµ · (σ, eκ) =

∂φλ

∂σa
Γκλν(pr2)

♯eκ , (4.2.32)

where ∂
∂σa

is a local frame of TΣ and Γλµν are the Christoffel symbols. Therefore, the
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connection coefficients of Φ∗∇ read4,

Aλaν =
∂φµ

∂σa
Γλµν . (4.2.33)

If we extend the action of Φ∗∇ to Φ∗TM valued k-forms α via equation 4.2.11, we get
our sought after exterior covariant differential dΦ∗∇. One lemma which we will need

in a moment is

Lemma 4.2.5. Let π : E → Σ and π̃ : Ẽ → Σ̃ be vector bundles, f : E → Ẽ a bundle map

restricting to isomorphisms in each fiber and inducing a map ψ : Σ → Σ̃, g a Riemannian

structure on Ẽ, ∇̃ a linear connection on Ẽ,∇ the pullback connection of ∇̃ and h the pullback

of g. Then it is true that if ∇̃ is a metric connection on Ẽ with respect to g, it follows that ∇ is

a metric connection on E with respect to h.

Proof. Let eµ be a local frame of Ẽ. Since f restricts to isomorphisms in each fiber, it

follows that f ♯eµ is a local frame of E. By definition the metric h at σ ∈ Σ is given by

(hσ)µν := hσ(f
♯eµ, f

♯eν) := gf(σ)(eµ, eν) . (4.2.34)

To prove that∇ is a metric connection it suffices to show

∂

∂σa
(hσ)µν = Aλaµ(hσ)λν + Aλaν(hσ)µλ . (4.2.35)

The above calculation of the connection coefficients of Φ∗∇ shows, mutatis mutandis,
that the connection coefficients Aµaν of a general pullback connection ∇ are

Aλaν =
∂ψµ

∂σa
Γλµν , (4.2.36)

where Γλµν are the connection coefficients of ∇̃. Because of the fact that ∇̃ is a metric

connection it follows that

∂

∂σa
gf(σ)(eµ, eν) =

∂ψκ

∂σa
∂

∂σ̃κ
g(eµ, eν) =

∂ψκ

∂σa
(
Γλaµ(hσ)λν + Γλaν(hσ)µλ

)
=

= Aλaµ(hσ)λν + Aλaν(hσ)µλ (4.2.37)

Thus the assertion is true.

Remarks 4.2.6 1. We call h := f ♯g the pullback of g w.r.t. the bundle map f : E →
Ẽ. The usual pullback under a map ψ : Σ → Σ̃ corresponds to f = Tψ, which
clearly induces ψ. Then it is true that f ♯ = ψ∗, in accordance to the usual defini-

tion.
4We use the convention that the connection coefficients of a general linear connection ∇ are defined as
Aλ

µνeλ = ∇eµeν = (∇eν)(eµ) = (Aλ
ν ⊗ eλ)(eµ) = (Aλ

ν)µeλ.
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2. It is possible to lax the condition of f restricting to isomorphisms in each fiber to

f just being injective. But since we will only need the assertion in the given form,
we omit this generalization.

The next step in our preparation of the proof of proposition 4.2.3 is to get an expression
of d†Φ∗TM , i.e. the formal adjoint of dΦ∗∇ w.r.t. equation (4.2.16). It is given in

Lemma 4.2.7. Let (Σ, h) be a Riemannian manifold, π : E → Σ be a vector bundle and∇ be a

linear metric connection on E with respect to a Riemannian structure g on E. Then the formal

adjoint of d∇ with respect to the obvious generalization of equation (4.2.16) to E, is

d†∇(η
µ ⊗ eµ) = (−1)(k−1) dimΣ+1 ∗

(
d ∗ ηµ + Aµλ ∧ ∗ηλ

)
⊗ eµ , ηµ ∈ Ωk(Σ) , (4.2.38)

where ∗ is the Hodge-star operator with respect to h.

Proof. Let α = αµ ⊗ eµ ∈ Ωk(E) and β = βν ⊗ eν ∈ Ωk(E). The proof will just be a
straight forward calculation. First we need

d∇(α
µ ⊗ eµ) = dαµ ⊗ eµ + (−1)kαµ ∧ (Aµν ⊗ eν) =

= dαµ ⊗ eµ + (−1)2k(Aµν ∧ αν)⊗ eµ =

= (dαµ + Aµν ∧ αν)⊗ eµ . (4.2.39)

Moreover, let us denote the metric on Ω∗(Σ) by h and the given fiber metric on E by g.
Then it holds

〈d∇α, β〉 =
∫

Σ

gµν h(d∇α
µ, βν) ∗ 1 =

∫

Σ

gµν d∇α
µ ∧ ∗βν =

=

∫

Σ

gµν dα
µ ∧ ∗βν +

∫

Σ

gµν A
µ
λ ∧ αλ ∧ ∗βν . (4.2.40)

A simple calculation shows

d(gµν α
µ∧∗βν) = dgµν ∧αµ∧∗βν+ gµν dαµ∧∗βν −gµν αµ∧∗(−1)kd+1 ∗d∗βν (4.2.41)

Using the fact that g is a metric connection, i.e.

dgµν = gµν A
λ
ν + gλν A

λ
µ , (4.2.42)

equation (4.2.41) yields

gµν dα
µ ∧ ∗βν = d(gµν α

µ ∧ ∗βν) + gµνα
µ ∧ ∗(−1)kn+1 ∗ d ∗ βν−

−gµλAλν ∧ αµ ∧ ∗βν − gλνAλµ ∧ αµ ∧ ∗βν , (4.2.43)
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where n = dimΣ. If (gµν α
µ ∧ ∗βν)|∂Σ = 0 or ∂Σ = ∅, it follows that5

〈dαµ ⊗ eµ, βν ⊗ eν〉 =
∫

Σ

gµνα
µ ∧ ∗(−1)kn+1 ∗ d ∗ βν −

∫

Σ

gµλA
λ
ν ∧ αµ ∧ ∗βν−

−
∫

Σ

gλνA
λ
µ ∧ αµ ∧ ∗βν .

(4.2.44)

Moreover,

〈
Aµλ ∧ αλ ⊗ eµ, βν ⊗ eν

〉
=

∫

Σ

gµνA
µ
λ ∧ αλ ∧ ∗βν , (4.2.45)

which cancels the last term in (4.2.44). Hence, we conclude

〈d∇(αµ ⊗ eµ), βν ⊗ eν〉 =
〈
αµ ⊗ eµ, (−1)kn+1 ∗ d ∗ βν ⊗ eν

〉
−
∫

Σ

gµνA
λ
ν∧αµ∧∗βν . (4.2.46)

It remains to analyze the last summand in equation (4.2.46). It reads

−
∫

Σ

gµλA
λ
ν ∧ αµ ∧ ∗βν =

∫

Σ

gµλα
µ ∧ ∗ (−1)k(n−(k+1))+1 ∗ Aλν ∧ ∗βν

=

∫

Σ

gµλ α
µ ∧ ∗

(
(−1)kn+1 ∗ Aλν ∧ ∗βν

)
=

=
〈
αµ ⊗ eµ, (−1)kn+1 ∗ Aλν ∧ ∗βν

〉
. (4.2.47)

Altogether we get

〈d∇(αµ ⊗ eµ), βν ⊗ eν〉 =
〈
αµ ⊗ eµ, (−1)kn+1 ∗

(
d ∗ βλ + Aλν ∧ ∗βν

)
⊗ eλ

〉
. (4.2.48)

This is almost our result. The last step is to observe β ∈ Ωk+1(Σ, E) and, hence, if we

view d†∇ as an operator d†∇ : Ωk(Σ, E) → Ωk−1(Σ, E), we have to change k into k − 1.
This yields equation (4.2.38).

Now we are ready for the

Proof of proposition 4.2.3. We have to show that the local expression of−d†Φ∗∇ dΦ is given
by equation (4.1.2). Since the Levi-Civita connection ∇ on TM is a metric connection

5In fact, this condition applied to dΦ yields the condition for a D-brane.
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and the inner product (4.2.16) on Φ∗TM is defined with respect g̃, i.e. the pullback of

g w.r.t. pr2, it follows by lemma 4.2.5 that Φ∗∇ is a metric connection, too. By lemma
4.2.7 the expression of the formal adjoint of the exterior covariant differential dΦ∗∇ in
local coordinates acting on dΦ is

−d†Φ∗∇ dΦ = −d†Φ∗∇

(
∂φµ

∂σa
dσa ⊗ ∂

∂xµ

)

=

=

(

− ∗ d ∗ ∂φ
µ

∂σa
dσa
)

⊗ ∂

∂xµ
+

(

− ∗ Aµλ ∧ ∗
∂φµ

∂σa
dσa
)

⊗ ∂

∂xµ
. (4.2.49)

Let us analyze the first summand. Its form part fulfills

− ∗ d ∗ ∂φ
λ

∂σa
dσa = d†dφλ . (4.2.50)

Moreover, it holds φλ ∈ Ω0(Σ). Hence, d†φλ = 0. Thus, it is true that the first summand
in equation (4.2.49) reads

(

− ∗ d ∗ ∂φ
λ

∂σa
dσa
)

⊗ ∂

∂xλ
= (d†d+ dd†)φλ ⊗ ∂

∂xλ
= ∆Σφ

λ ⊗ ∂

∂xλ
. (4.2.51)

Now let us examine the second summand of eq. (4.2.49). Its form part is realized as

−∗Aµλ∧∗
∂φλ

∂σa
dσa = ∗−Aµcλ

∂φλ

∂σa
hab

1

(m− 1)!
ǫbb2...bm

√

|h|dσc∧dσb2∧· · ·∧dσbm , (4.2.52)

where m := dimΣ and ǫ is the totally antisymmetric tensor. Next we will show

1

(m− 1)!
ǫbb2...bm

√

|h|dσc ∧ dσb2 · · · ∧ dσbm = δcb ∗ 1 . (4.2.53)

Interchanging dσbi and dσbi+1 in the left hand side of (4.2.53) results in a sign change

by −1. This change of sign is compensated by ǫbb2...bibi+1...bm = −ǫbb2...bi+1bi...bm . If b 6= c

either ǫbb2...bm = 0 or dσc ∧ dσb2 ∧ · · · ∧ dσbm = 0. Hence,

1

(m− 1)!
ǫbb2...bm

√

|h|dσc ∧ dσb2 · · · ∧ dσbm =
√

|h|δcb dσ1 ∧ · · · ∧ dσm = δcb ∗ 1 . (4.2.54)

Combining equations (4.2.52), (4.2.53), ∗ ∗ 1 = 1 and hab = hba, we arrive at
(

− ∗ Aλν ∧ ∗
∂φν

∂σa
dσa
)

⊗ ∂

∂xλ
=

(

−Γλµν
∂φµ

∂σa
∂φν

∂σb
hab
)

⊗ ∂

∂xλ
. (4.2.55)

Altogether we showed that in local coordinates

−d†Φ∗∇ dΦ =

(

∆Σφ
λ − Γλµν

∂φµ

∂σa
∂φν

∂σb
hab
)

⊗ ∂

∂xλ
. (4.2.56)

51



CHAPTER 4. NONLINEAR SIGMA-MODELS ON RIEMANNIAN MANIFOLDS

In the next section we will define the enhanced solution space of degree k, denoted as

Hk(Φ,Σ,M). It is the set of all d†Φ∗∇-closed Φ∗TM-valued k-forms on Σ. The connection
of this enhanced solution space and harmonic maps6 is given by the fact that dΦ ∈
H1(Φ,Σ,M). Moreover, it is also true that dΦ is dΦ∗∇-closed and, hence, harmonic. To

see this we look at

Proposition 4.2.8. Let (Σ, h) and (M, g) be Riemannian manifolds,∇ be the associated Levi-

Civita connection on TM and Φ : Σ→M be a smooth embedding. Then it holds

dΦ∗∇ dΦ = 0 , (4.2.57)

Proof. Let ω = ωµ ⊗ eµ ∈ Ωk(Φ(Σ), TM |Φ(Σ)). Then it follows that

dΦ∗∇(pr2
♯ω) = dΦ∗∇

(
(pr2

∗ωµ)⊗ (pr2
♯ eµ)

)
=

= d(pr2
∗ωµ)⊗ pr2

♯eµ + (−1)k(pr2∗ωµ) ∧ Φ∗∇(pr2♯eµ) =
= pr2

♯dωµ ⊗ pr2
♯eµ + (−1)kpr2∗ωµ ∧ pr2

♯∇eµ =

= pr2
♯
(
dωµ ⊗ eµ + (−1)kωµ ∧ ∇eµ

)
=

= pr2
♯ (d∇ω) , (4.2.58)

where we used pr2
♯(ωµ⊗ eµ) = (pr2

∗ωµ)⊗ (pr2
♯ eµ) and lemma 4.2.4. Moreover, in local

coordinates it is true that

(
pr2

♯ idTM
)

σ
(v) = pr2

−1
(
idΦ(σ)(TΦ ◦ v)

)
= pr2

−1(dΦ(v)) = (σ, dΦ(v)) . (4.2.59)

Therefore, lemma 4.2.1 induces pr2
♯(idTM) = dΦ. Thus,

dΦ∗∇dΦ = pr2
♯ (d∇ idTM) (4.2.60)

and

(d∇ id)(X1, X2) = ∇X1(idX2)−∇X2(idX1)− id([X1, X2]) . (4.2.61)

The last expression equals the torsion of ∇ and vanishes due to the fact that ∇ is Levi-

Civita.

6The name harmonic map results from the fact that they generalize harmonic functions f : Σ → R,
which is the special case M = R.

52



4.3. EXTENDED SOLUTION SPACES AND FLOWS

4.3. Extended Solution Spaces and Flows

In the last section we proved three propositions. The first one, prop. 4.2.2, shows
that the action of nonlinear sigma-models is given by the L2-norm of dΦ, which is a

Φ∗TM-valued one-form. The second and third one, namely props. 4.2.3 and 4.2.8, to-
gether show that dΦ is both d†Φ∗∇-closed and dΦ∗∇-closed and, hence, a dΦ∗∇-harmonic

one-form. If we look at equations (4.1.2), we see that the corresponding equations of
motion are highly nonlinear. Thus many arguments of string theory, which use the
mode-expansion of a vibrating string, do not apply naively. As an example which

is connected to this work I want to mention [AZ05]. There they study co-isotropic
A-branes in the sigma-model on a four-torus. They find that morphisms between co-

isotropic branes are given by a fundamental representation of the noncommutatively
deformed algebra of functions on the intersection of the two branes. The noncommu-
tativity parameter is expressed in terms of the bundles on the branes. They conjecture

these findings to hold in general. Furthermore, they write “Noncommutativity arose
from the nonexistence of solutions to the equations of motion that were linear in time.

As a result, there were no separate conjugate momenta to the zero-mode oscillators -
they formed their own momentum conjugates and did not simultaneously commute.
This argument also depended on the decoupling of these modes from the oscillators

of the open string.” and “This assumption would follow from an orthogonal basis of
solutions to the appropriate Laplace equation (equations of motion) with boundary

conditions determined by the curvatures, with respect to an appropriately defined in-
ner product.”. We saw that the equations of motion are not given by a simple Laplace
equation on curved manifolds, but it should be possible to show the existence of such

a mentioned orthogonal basis. Although d†Φ∗∇dΦ = 0 is nonlinear7, there is a back-door
to recover the existence of a mode expansion.

Let us look at the equation

d†Φ∗∇α = 0 , (4.3.1)

where α ∈ Φ∗TM . It is a first-order linear partial differential equation and fulfills
in particular the principle of super-position. That means the set of all solutions to

this equation forms a vector-space. Given (Σ, h) and (M, g,∇), we call this space the
enhanced solution space of Φ and denote it by HΦ. It clearly depends on all given data,

but to simplify notation we do not explicitly write down these dependencies.

The problem of constructing harmonic maps, which is highly nonlinear, can thus be
expressed as two linear problems. First, construct to any Φ its enhanced solution space

7Both the operator which acts on dΦ and dΦ itself depend non-trivially on the embedding Φ
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and afterwards ask which of these forms belong to an embedding, i.e. α = dΦ for

α ∈ HΦ. This can be interpreted physically. Any harmonic map Φ gives rise to a dΦ∗∇-
harmonic one-form dΦ which lies inHΦ. The latter most probably has a basis and thus
dΦ can be expressed as a linear combination. This is the existence of a mode-expansion,

even in curved space. But there is a difference to euclidean space. There every linear
combination gives raise to a physically sensible state of a vibrating string. Here not

every mode is physical, only those which can be written as dΦ for some embedding Φ

are. In Euclidean space, every mode simply belongs to some embedding Φ. It could be
asked whether we improved something, since the enhanced solution space still seems

to depend on Φ. Let us state

Conjecture 1. Let Φ1 : Σ → M and Φ2 : Σ → M be two differentiable maps which are

homotopic to each other. Then it holdsHk
Φ1
∼= Hk

Φ2
for all k.

As an example consider Σ = S2. The above conjecture then tells us that there is one
class of enhanced solution spaces for every homotopy-class of embeddings S2 → M ,

i.e. for every element of π2(M). Hence, in order to construct harmonic maps, we could
first compute π2(M) and construct HΦ for every Φ ∈ π2(M).

The conjecture can be motivated by the following argument. In fact, conjecture 1 can

be inferred from the stronger statement of commutativity of

−−→ −−−→
dΦ∗

0∇−−−→

d†
Φ∗
0
∇

−−−→
dΦ∗

0∇−−−→

d†
Φ∗
0
∇

−−−−−−→
dΦ∗

0∇ −−−−−−→

d†
Φ∗
0
∇

−−−−−→ J0

−−−−−→ J1

−−−−−→ J2

−−→ −−−→
dΦ∗

1
∇−−−→

d†
Φ∗
1∇

−−−→
dΦ∗

1
∇−−−→

d†
Φ∗
1∇

−−−−−−→
dΦ∗

1
∇ −−−−−−→

d†
Φ∗
1∇

0 Ω0(Φ∗
0TM) Ω1(Φ∗

0TM) Ω2(Φ∗
0TM) · · ·

0 Ω0(Φ∗
1TM) Ω1(Φ∗

1TM) Ω2(Φ∗
1TM) · · ·

(4.3.2)

where Ji are the sought after isomorphisms. Without loss of generality, let Φ0 and Φ1

be C∞-homotopic via Fσ(t). Then vector fields X(σ, 0) along Φ0 can be transported to

vector fields X(σ, 1) along Φ1 using D(Ḟσ(t)), where D(X) is some linear differential
operator depending on X , e.g. the covariant derivative along X . It remains to identify
D(X). This is J0 in diagram (4.3.2).

As a preliminary consideration let us focus on sections in Φ∗
tTM , i.e. J0. To examine

the structure of the above idea suppose D(X) = ∇X . If U0 is a vector field along Φ0,
there is an initial-value problem,

∇ ˙Fσ(t)
XU0(t) =

(

d
(
XU0

)µ

dt
+ Γµνλ ˙Fσ(t)

ν (
XU1

)λ

)

eµ = 0 , with XU0(0) = U0 .

(4.3.3)
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Here we consider the homotopy F as a flow and construct its associated generating

vector field with respect to the covariant derivative. Because of the theorem of Picard-
Lindelöf, this system of ODEs has a unique solution XU0(t). We define J0 : Φ∗

0TM →
Φ∗

1TM by

J0 ((σ, U0)) :=
(
σ,XU0(1)

)
. (4.3.4)

Clearly J0 is a bundle isomorphism. The inverse map is given by the generating vector

field XU1 of the flow Fσ(1 − t). It is a diffeomorphism and is fiber preserving. Let us
show that J0 is linear. Additivity can be inferred from XU0(t) + XU ′

0(t) fulfilling the
definition of XU0+U ′

0 . The equation J0(fU0) = fJ0(U0) for f being a function on Σ is

true since f does not depend on any variables in M and can thus be considered as a
constant in equation (4.3.3).

Let us extend the action of J0 to elements α ∈ Ωk(Φ∗
0TM) by

(Jkη)(v) := J0(η(v)) i.e. Jk(η
µ ⊗ eµ) = ηµ ⊗ J0eµ . (4.3.5)

Unfortunately, this Jk does not lead to a commutative diagram (4.3.2), in general. If

we would have used ∗L∇
X∗, where L∇

X := ιX∇ + ∇ιX , instead of ∇X in (4.3.3) and
additionally M would be flat, i.e. has vanishing Riemann tensor, Jk would render

(4.3.2) to be commutative and would send harmonic forms to harmonic forms. This
is true since the commutator of L∇

X and d∇ gives the curvature of ∇. This implies the
vanishing of the commutator of Jk and d†∇ and, hence, d†∇ acting on the continuation of

ω is the same as the continuation of d†∇ω. Hence, we proved

Theorem 4.3.1. Let (Σ, h) and (M, g) be two Riemannian manifolds such that the Riemann

tensor of (M, g) vanishes. Furthermore, let Φ1 and Φ2 be homotopic to each other. Then the

enhanced solution spaces with respect to Φi are isomorphic, i.e. HΦ1
∼= HΦ2 .

Next we show that there should be an isomorphism8 between the two enhanced so-
lution spaces of Φ0 and Φ1, respectively. Let η ∈ Hk(Φ0), i.e. η ∈ Ωk(Φ∗

0TM) and

d†Φ0∗∇
η = 0. Suppose

Φt(σ) := Fσ(t) = Φ0(σ) + δΦt(σ) = Φ0(σ) + (δ1Φ)(σ)t + (δ2Φ)(σ)t
2 + . . . . (4.3.6)

We would wish to view this as a real expansion, but if someone feels uncomfortable

with that, view it as a formal deformation. Furthermore, expand

Γµλν(Φ0 + δΦ(t)) = Γµλν(Φ0) + Γµλν;α1(Φ0) δΦ(t)
α1+

+
1

2
Γµλν;α1α2(Φ0) δΦ(t)

α1δΦ(t)α2 + . . . , (4.3.7)

8I do not call the following a proof, since we use methods which we do not prove to be e.g. convergent.
Nevertheless they show how to identify the two spaces and are very constructive.
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where f;α1 denotes the partial derivative of f with respect to the coordinate xα1 . At Φt
it holds

d†Φ∗
t∇
Jkη = d†Φ∗

t∇
(ηµ⊗ J0eµ) = (−1)dimΣ(k−1)

(
∗d ∗ ηµ + (−1)k ∗ Aµν(t) ∧ ∗ην

)
⊗ J0eµ ,

(4.3.8)

where we used J0 from equation (4.3.4) to map a Φ∗
0TM valued k-form to a Φ∗

tTM

valued k-form. Next we deform η to η(t) = ηµ(t)⊗ J0eµ at Φt, i.e.

ηµ(t) = ηµ + (δ1η
µ)t + (δ2η

µ)t2 + . . . (4.3.9)

and determine δiη
µ such that d†Φ∗

t∇
ηµ(t) = 0. Using (4.3.7) it follows that

Γµλν(Φ(t)) = Γµλν(Φ0) +

∞∑

k=1

1

k!
Γµλν(k)t

k , (4.3.10)

with

Γµλν(k) =
k∑

l=1

Γµλν ;α1···αk

(
k∑

j1,··· ,jl=1

δk,j1+...+jl (δj1φ)
α1 · · · (δjlφ)αl

)

. (4.3.11)

Therefore9,

Aµaν(t) =
∞∑

k=0

1

k!
Aµaν(k)t

k =
∞∑

k=0

1

k!

(
k∑

l=0

∂(δlφ)
λ

∂σa
Γµλν(k − l)

)

tk . (4.3.12)

Hence, equation (4.3.8) becomes after an easy calculation

d†Φ∗
t∇
Jkη =(−1)dimΣ(k−1)

∞∑

i=0

(

d†Φ∗
0∇
(δiη)

µ +

+ (−1)k ∗ dσa ∧ ∗
i∑

j=1

1

j!
Aµaν(j)(δi−jη)

µ

)

ti ⊗ J0eµ . (4.3.13)

Together with d†Φ∗
t∇
Jkη

!
= 0 this yields

d†Φ∗
0∇
(δiη)

µ = (−1)k+1 ∗ dσa ∧ ∗
i∑

j=1

1

j!
Aµaν(j)(δi−jη)

µ . (4.3.14)

9We set Γµ
λν(0) := Γµ

λν(Φ0).
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Let us assume that d†Φ∗
0∇
η = 0 can be solved and there is an associated Green-operator.

Then (4.3.14) can be solved successively. Indeed, if we assume that we know all δjη up
to i − 1, the right hand side only depends on these δjη with j < i. Then the Green-
operator can be used to construct δiη. This motivates Hk(Φ0) ∼= Hk(Φt). Thus we can

view the enhanced solution space of Φ as a topological invariant.

The next question is to ask whether η = dΦ for some embedding Φ. If we look at

dΦ =
∂φµ

∂σa
dσa ⊗ eµ = dφµ ⊗ eµ , (4.3.15)

we infer that this question is connected to the fact whether all components of dΦ are
globally exact forms. Let us call the corresponding cohomology class [0].

Let us summarize our results. We found a geometrical formulation of nonlinear sigma-

models. They are closely connected to Hodge-theory and are in some manner a gen-
eralization of the latter. It should be noted that the Yang-Mills equations read d∇Ω

ω =

d†∇Ω
ω = 0, where Ωω is the curvature form of a connection ω on a principal fiber bun-

dle, and are thus very similar to our equations of motion. If there is some differential
operator D which commutes with d†∇ and if Φ0 is homotopic to Φt, we could infer that

Jk : Ωk(Σ,Φ∗
0TM) → Ωk(Σ,Φ∗

tTM) is also a map Jk : Hk(Φ0) → Hk(Φt). Here Jk is
given by (4.3.5) and J0 is defined as the continuation of 0-forms in Ω0(Φ0(Σ), TM |Φ0(Σ))

to 0-forms in Ω0(Φt(Σ), TM |Φt(Σ)) via D (see above). Thus, every homotopy class [Φ0]

gives rise to an enhanced solution spaceHk([Φ0]) and harmonic maps Φ : Σ→M with
fixed [Φ0] are given as the elements ofH1([Φ0]) ∩ [0].

In particular, our considerations show that there is always a mode expansion. It de-
pends on the homotopy class to which the embedding of the world sheet belongs to.

Furthermore, not every mode is physical, in general. Only those with dΦ ∈ [0] are. This
holds independently of conjecture 1 and could be used to determine supersymmetric
ground states in supersymmetric nonlinear sigma-models with co-isotropic A-branes.

This should give raise to the non-commutativization of M and was shown in [AZ05]
for the special case of M being a torus, which is nearly literally the same as Euclidean

space. The above ideas should enable a general proof.

Moreover, the above ideas may enable the quantization of nonlinear sigma models
on curved manifolds. Let us briefly state a program to achieve this. First the exact

structure of the enhanced solution space H1
Φ should be examined. This should lead to

similar results as the solution space of the Laplace equation. Using the similar meth-
ods as in the flat case it should be possible to quantize H1

Φ. The last step will be to

find a quantum analog of ξ = dΦ for some map Φ : Σ → M . As the set of all ξ = dΦ

may be some kind of variety in the enhanced solution space, the set of all states which

correspond to dΦ should be some kind of variety inside the quantization of H1
Φ. An-
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other possible ansatz is to introduce some kind of cobordism between conformal field

theories. Physical states are then some kind of section in the Fréchet bundle E → B,
where B = C∞(Σ,M) and EΦ = Ω1(Σ,Φ∗TM). Since the focus of this work is on a gen-
eralization of pseudo-holomorphic curves to generalized complex geometry, we will

postpone the detailed examination of the quantization of nonlinear sigma models to
the future.
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H-Flux

This chapter is an exposition of topological sigma models with H-Flux. Most of section
5.1 is a review of [KL07], but with more care on technical details. An exposition of this

material is important for this work as it is the physical motivation of the considerations
in part three, “The Mathematics of Topological Sigma-Models with H-Flux”. We will

see that the most general target manifold allowing for N = (2, 2) supersymmetry is
a so called twisted generalized Kähler manifold. Looking at R-symmetry, which we
will use to construct the topological twisted theory, we will conclude that there is an

obstruction to M . For R-symmetry being present at the quantum level, the first Chern-
class of some bundleE → M has to vanish. If we also pretend the absence of anomalies

of Q2
BRST = 0, the generalized canonical bundle of the target manifold M has to be

trivial. Thus M has to be a twisted generalized Calabi-Yau manifold [Gua03],[Hit02],
i.e. M has to admit a generalized Calabi-Yau metric geometry. The work [KL07] ends

with a section called ”Towards the Twisted Generalized Quantum Cohomology Ring”.
There they examine the instantons of the theory and use them to formulate the concept

of a twisted generalized complex map.

We will use their concept to give a precise definition in part three.1 At the end of sec-
tion 5.1 we will investigate the behavior of their concept under B-field transformations,

as physical objects, and interpret this in terms of results of [Zab06]. We will see that
their instantons are invariant under B-field transformations modulo canonical trans-

formations on the super-loop space of the target manifold. In section 5.2 we will give
a smooth interpolation between the A- and the B-model of a Hyperkähler manifold
through the generalized B-model. Even though they are not of immediate importance

to the rest of this work, in section 5.3 we will review the concept of coisotropic branes.
They play an important role in far reaching applications of topological string theory,

like the physical motivation of Langlands duality. For sake of completeness and future
reference these branes will be treated here as well.

1In analogy to their pendant in symplectic geometry we will call such maps J -holomorphic curves or
generalized pseudoholomorphic curves.
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5.1. Topological Supersymmetric Nonlinear Sigma-Model

with H-Flux

Here we will give an extension of the nonlinear sigma model of the last section to

supersymmetric theories. This is mainly a review of [KL07], which is a generalization
of [Kap05], footing on [SJGR84]. Although we will not give a rigorous exposition, we
will present more technical details as in [KL07].

This review will be as follows. We will start by giving the action of (1, 1)-supersym-
metric nonlinear sigma-models withH-flux. After that we will demand the existence of
another supersymmetry such that the whole theory is (2, 2)-supersymmetric. This will

lead to the consequence that the target manifoldM is a so called bi-hermitian manifold.
In modern language a bi-hermitian manifold is a twisted generalized Kähler manifold.

Relevant definitions are given in the appendix.

Thereafter we will give some facts about so called topologically twisted sigma-models
and will recall the generalized complex twisted theory. In [KL07] this was called gen-

eralized B-twist. The only difference between generalized A- and B-twists is a sign
change of one of the two given generalized complex structures of the generalized

Kähler manifold. As noted in [KL07], the two models can be converted into each other
by a Bogoliubov transformation, at least at the classical level. The description of the
topologically twisted theory will also contain a treatment of anomalies.

Afterwards we will construct the vector-space structure of BRST-cohomology of oper-
ators, i.e. without its algebraic structure, which would comprise quantum corrections.
The complete algebraic structure would give raise to the so called chiral ring of the

theory. Using methods of chapter 3 we will explain why the space of supersymmetric
ground states is given by a certain Lie algebroid cohomology of the so called canoni-

cal complex associated to M . Comprising instanton corrections this would lead to the
construction of the quantum cohomology ring of the theory.

5.1.1. Action, Supersymmetry and Geometrical Implications

Let us start by demanding that the action of supersymmetric sigma-models with H-

flux is given by2

S[Φ] =
1

2

∫

d2σd2θ(gab(φ) +Bab(φ))D+Φ
aD−Φ

b . (5.1.1)

2Due to the presence of fields which are usually denoted by Greek letters, we use Latin letters for
space-time indices.
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Here (M, g) is a Riemannian manifold, H is a real closed three-form onM withH = dB

locally,

Φa = φa + θ+ψa− + θ−ψa− + θ−θ+F a (5.1.2)

are components of a supermap from (1, 1) superworldsheet to (M, g) and supercovari-

ant derivatives

D± =
∂

∂θ±
+ iθ±∂± , ∂± = ∂0 ± ∂1 . (5.1.3)

To be able to construct a topologically twisted theory, we need extended, i.e. N = (2, 2)

supersymmetry. In [SJGR84] it is shown that such supersymmetry transformations can
be written as

δΦa = −i(ǫ+Q+ + ǫ−Q−)Φ
a , (5.1.4)

δ̃Φa = (ǫ̃+ + ǫ̃−Q̃−)Φ
a = ǫ̃+I+(φ)

a
bD+Φ

b + ǫ̃I−(φ)
a
bD−Φ

b . (5.1.5)

The first transformation corresponds to usual (1, 1) supersymmetry, while the second
one is an additional supersymmetry transformation. The two infinitesimal generators
δ and δ̃ automatically commute. The requirement that δ̃ fulfills the algebra of (1, 1) su-

persymmetry forces I± to be a pair of integrable almost complex structures. Invariance
of S under δ̃ dictates g to be hermitian with respect to both I+ and I−. Furthermore, I±
are covariantly constant w.r.t. connections ∇±, i.e. d∇±

I± = 0, with torsion defined by
H . The coefficients of ∇± are

(A±)
a
bc = Γabc ±

1

2
gadHdbc , (5.1.6)

where Γµλν denote the Christoffel symbols. Due to the presence of torsion, (g, I±) do
not define Kähler structures. Instead they define a so called bi-Hermitian structure. In

[Gua03] it is shown that these data are equivalent to specifying a pair of twisted gen-
eralized complex structures (J1,J2) which define a twisted generalized Kähler struc-

ture.That means the most general target manifolds allowing N = (2, 2) supersymmet-
ric nonlinear sigma-models with H-flux are twisted generalized Kähler manifolds.

5.1.2. Topologically Twisted Theory

Next we will construct the topologically twisted version of N = (2, 2) supersymmetric

nonlinear sigma-models with H-flux. At the beginning we will give some notes on
topologically twisted sigma models in general. The full theory, in particular the quan-

tum theory, of nonlinear sigma models are quite complicated, as we saw in the last
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section. Topologically twisted theories are easier to describe, since in some sense they

are projections to the symplectic or complex analytic aspects of the full theory. Thus it
is possible to state that they are a nice framework to test the mathematics of string the-
ory. Another reason for examining topologically twisted theories is that supersymmet-

ric nonlinear sigma models do not admit global supersymmetry on the world-sheet,
as there is no global covariantly constant spinor ǫ. In contrast to this fact topologically

twisted theories allow global supersymmetry [MS103]. Moreover, many mathematical
applications like mirror symmetry, e.g. [Kon94, MSm99, MS103, MS209, KO04] and
references therein, or the recent formulation of the geometric Langlands conjecture via

the special case of mirror symmetry of Hitchin’s moduli space [KW06, GW08, Fre09a]
use these theories explicitly or implicitly.

For the possibility to do the topological twist, there has to be at least one non-anoma-
lous R-symmetry, i.e. U(1) symmetry. Having such a symmetry at hand, one shifts
the spin of fermions by one half of the R-charge. Mathematically this corresponds to

twisting, i.e. tensoring, the spin bundle with a U(1)R-bundle. After twisting, all terms
involving the metric become Q-exact. For the ordinary A- and B- model this has been

shown in [Wit88, Wit91]. The proof in generalized geometry is still lacking. First at-
tempts are given in [Pes07], [Zuc06] and [Chu08]. By standard arguments correlators
involving such terms vanish. We face a similar problem in section 6.5. There we find

that there is an isotropic embedding λ : TM → E which enable one to write the gen-
eralized energy of a map Φ as the sum of a term which vanishes for instantons and a

topological term. Although λ will not be involutive in general, in every neighborhood
it corresponds to a canonical transformation of the super loop-space. The correspon-
dence between B-transformations and canonical transformations was first mentioned

in [Zab06].

There are two U(1) R-symmetries (one vector and one axial). The vector like symme-
try is always non-anomalous, whereas the anomaly of U(1)A depends on c1(M). For

Kähler manifolds it is non-anomalous if M is Calabi-Yau.

In order to apply this construction to the generalized complex case, we observe that I±
induce two splittings of the complexified tangent bundle

TMC
∼= TM

(1,0)
+ ⊕ TM (0,1)

+
∼= TM

(1,0)
− ⊕ TM (0,1)

− , (5.1.7)

where the decompositions are the usual holomorphic and anti-holomorphic ones w.r.t.

I±. Accordingly, the fermions ψ± decompose into holomorphic components ψh± and
anti-holomorphic components ψa±, too,

ψ+ =
1

2
(1− iI+)ψ+ +

1

2
(1+ iI+)ψ+ = ψh+ + ψa+ , (5.1.8)
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ψ− =
1

2
(1− iI−)ψ− +

1

2
(1+ iI−)ψ− = ψh− + ψa− . (5.1.9)

Classically, there are two inequivalent ways of assigning U(1) charges to the compo-
nents of ψ±. For sake of completeness we give the following table

component qV qA q(U(1)E) L q(U(1)E′) L′ q(U(1)E′′) L′′

1
2
(1− iI+)ψ+ −1 −1 −1

2

√
K −1 K −1 K

1
2
(1 + iI+)ψ+ 1 1 −1

2

√
K 0 C 0 C

1
2
(1− iI−)ψ− −1 1 1

2

√
K 0 C 1 K

1
2
(1 + iI−)ψ− 1 −1 1

2

√
K 1 K 0 C

Here qV and qA denote the charge under vector- and axial-R-symmetry, respectively.

The line bundle L denotes the bundle of which the components are sections before
the twist. One primed objects denote the A-twist, whereas two primed objects denote
the B-twist. Topological twisting is achieved by shifting the spin of the fermions by

one-half of the R-charge. This amounts to tensoring the bundles L by the respective
R-symmetry bundles, as depicted in the table.

It is very important that a sign change of I− interchanges the A- and the B-twist. This

is true since qV (ψ−) = 0 and changing the sign of I− produces

1

2
(1− iI−)ψ− 7−→

1

2
(1 + iI−)ψ− . (5.1.10)

Next we examine what happens at the quantum level. We adopt the argumentation of

[MS103], chapter 13.2.2. By the Atiyah-Singer index theorem, the difference of #ψh−-
zero-modes and #ψa−-zero-modes is given by the index of the Dirac operator with re-

spect to I−, i.e.

indD− = dimkerDz̄,− − dimkerDz,− =

∫

Σ

c1

(

φ∗TM
(1,0)
−

)

=

∫

Σ

φ∗c1

(

TM
(1,0)
−

)

=

=
〈

φ∗(Σ), c1

(

TM
(1,0)
−

)〉

=: k− , (5.1.11)

where φ∗(Σ) denotes the homology class induced by Σ. The difference of #ψh+-zero-
modes and #ψa+-zero-modes is given by

indD+ = dimkerDz̄,+ − dimkerDz,+ =

∫

Σ

c1

(

φ∗TM
(1,0)
+

)

=

∫

Σ

φ∗c1

(

TM
(1,0)
+

)

=

=
〈

φ∗(Σ), c1

(

TM
(1,0)
+

)〉

=: k+ . (5.1.12)
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Let there be a := m− + k− zero modes of ψ− and b := m+ + k+ zero modes of ψ+. Now

look at the expression

f(z1, . . . za+m−
, w1, . . . , wb+m+) :=

〈
ψh−(z1) · · ·ψh−(za)ψa−(za+1) · · ·ψa−(za+m−

)

×ψ+(w1) · · ·ψ+(wb)ψ+(wb+1) · · ·ψ+(wb+m+)
〉
.

(5.1.13)

This transforms as

f 7−→ e iα(k−−k+)f (5.1.14)

under U(1)V and

f 7−→ e iβ(k−+k+)f (5.1.15)

under U(1)A. Here α, β ∈ R are the variables of the respective (global) R-symmetry.

Correlators and in particular f 6= 0 are invariant under R-symmetry if exp(α(k− −
k+)) = 1 and exp(β(k− + k+)) = 1. This has to hold for all α, β and we infer together
with k± ∈ Z that

k− − k+ = 0 for U(1)V and (5.1.16)

k− + k+ = 0 for U(1)A . (5.1.17)

Because this has to be true for all embeddings Σ, we conclude

c1(TM
(1,0)
− )− c1(TM (1,0)

+ ) = 0 for U(1)V and (5.1.18)

c1(TM
(1,0)
− ) + c1(TM

(1,0)
+ ) = 0 for U(1)A . (5.1.19)

This is the same result as in [KL07] and can also be obtained using Fujikawa’s method,
which uses the transformation behavior of the measure of path integration. Observe

that the two conditions are interchanged if we change the sign of I−.

The above result can also be formulated in the language of generalized complex geom-
etry. We saw that N = (2, 2) supersymmetry requires M to be a twisted generalized

complex manifold with two commuting twisted generalized complex structures (TGC)
J1 and J2 and positive definite metric G = −qJ1J2 on TM ⊕ T ∗M . As [KL07] we use

the results of section 6.4 in [Gua03]. Let C± be the ±1 eigenbundles of G. There are
isomorphisms π± : C± → TM induced by the natural projection TM ⊕ T ∗M → TM .
Furthermore, let L1, L2 denote the + i eigenbundle of J1, J2, respectively. Because of

the fact that J1 and J2 commute, it is true that

L1 = L+
1 ⊕ L−

1 and L2 = L+
2 ⊕ L−

2 , (5.1.20)
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where the superscript ± refers to the eigenvalue± i of the other TGC structure. Hence,

C± ⊗ C ∼= L±
1 ⊕ (L±

1 )
∗ ∼= L±

2 ⊕ (L±
2 )

∗ . (5.1.21)

The anomaly free conditions can now be formulated as

c1(L2) = 0 for U(1)V and (5.1.22)

c1(L1) = 0 for U(1)A . (5.1.23)

The two conditions are interchanged if we change the sign of I−, as the latter inter-

changes J1 and J2. This looks quite similar to the condition of a manifold being a
Calabi-Yau manifold. But it differs from the one givingM a twisted generalized Calabi-
Yau metric geometry. The latter implies (5.1.22) and (5.1.23), but not the other way

around. If we additionally demand the absence of QBRST anomaly, (M,J1,J2) defines
a twisted generalized Calabi-Yau metric geometry [KL07].

Our next aim is to show the equivalence of the BRST-cohomology of operators and the
Lie algebroid cohomology associated to J1, at least at the classical level. First we will
give a construction of the BRST operator after the generalized complex twist. Follow-

ing [KL07] we will focus on the B-twist. This is not essential, since we saw that the
difference of the A-twist and the B-twist is the sign of I−. Afterwards we will construct

the supersymmetric ground states of the resulting theory using methods of chapter 3.
As M is assumed to be a TGC-CY manifold, the resulting space is isomorphic to BRST
cohomology ([MS103] mutatis mutandis). We will refer the result of [KL07] that the

space of Ramond-Ramond ground states is isomorphic to the Lie algebroid cohomol-
ogy associated to J1. Recall that we used J1 to define the topological twist. Hence, the

generalization of Quantum cohomology to generalized complex geometry should be
given by a deformation of Lie algebroid cohomology.

5.1.3. BRST Cohomology of Operators

Let (M,J1) be a twisted generalized Calabi-Yau manifold. Looking at the B-twisted

theory let us define χ := (1 + iI+)ψ+ and λ := (1 + iI−)ψ−. They are sections of

φ∗TM
(1,0)
+ and φ∗TM

(1,0)
− , respectively, whereas (1 − iI+)ψ+ and (1 − iI−)ψ− are spin

one fields. Moreover, let us define

QL :=
1

2
(Q+ + iQ̃+) and QR :=

1

2
(Q− + iQ̃−) . (5.1.24)

Since we assume M to be generalized Calabi-Yau, the central charges of the super-
symmetry algebra vanish and QL and QR are nilpotent operators.3. Define QBRST :=

3In the open sector this may be different due to the bubbling of holomorphic discs.
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QL + QR. To get an expression of the action of QBRST on operators, we need the super-

symmetry algebra. Noting that δW = iǫ[[Q,W ]] for any field W and graded commuta-
tor [[A,B]] := AB+(−1)kA+kBBA, the transformations of the scalar fields underQL and
QR are

[[QL, φ
a]] = χa , (5.1.25)

[[QL, χ
a]] = 0 , (5.1.26)

[[QL, λ
a]] = −(Γ−)

a
bcχ

bλc , (5.1.27)

[[QR, φ
a]] = λa , (5.1.28)

[[QR, χ
a]] = 0 , (5.1.29)

[[QR, λ
a]] = −(Γ+)

a
bcλ

bχc . (5.1.30)

Local observables of the topological theory have the form

Of = fa1...ap;b1...bqχ
a1 · · ·χapλb1 · · ·λbq , (5.1.31)

where f ∈ Γ(Σ, φ∗(Ω
(0,p)
+ ⊗ Ω

(0,q)
− ). First we state the result of the action of the super-

charges on the scalar fields,

[[QL,Of ]] = OD(−,+)f
and (5.1.32)

[[QR,Of ]] = OD(+,−)f
. (5.1.33)

HereD(±,∓) denotes the covariantization of ∂± w.r.t. ∇∓. In order to show that equation

(5.1.32) is true, let us regard f ∈ φ∗Ω
(0,p)
+

(

M,φ∗Ω
(0,q)
−

)

. If p = q = 0 it holds

[[QL,Of ]] = [[QL, f ]] = f(φ+ χ)− f(φ) = (∂+f)a1χ
a1 = O∂+f . (5.1.34)

Using

[[Q,AB]] = [[Q,A]]B + (−1)kAA[[Q,B]] (5.1.35)

and equations (5.1.25) - (5.1.27), a straight forward calculation yields

[[QL,Of ]] =
(

(∂+fa1...ap;b1...bq)ap+1 − (Γ−)
c
ap+1b1

fa1...ap;c...bq − . . .

. . .− (Γ−)
c
ap+1bq

fa1...ap;a1...c

)

χa1 · · ·χap+1λb1 · · ·λbq = OD(−,+)f
. (5.1.36)

Equation (5.1.33) can be shown analogously. Now the space of local observables has a

bi-grading by left- and right-moving R-charges, corresponding to p and q. This gives a
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bi-complex

−−
−−
−→

QR

−−
−−
−→

QR

−−
−−
−→

QR

−−−−−−−→QL −−−−−→QL −−−−−→QL −−−−−−−→QL

−−
−−
−→

QR

−−
−−
−−
→

QR

−−
−−
−→

QR

−−−−−−−−→QL −−−−−−−→QL −−−−−−−→QL −−−−−−−−→QL

−−
−−
−→

QR

−−
−−
−→

QR

−−
−−
−→

QR

−−−−−−−→QL −−−−−→QL −−−−−→QL −−−−−−−→QL

−−
−−
−→

QR

−−
−−
−→

QR

−−
−−
−→

QR

...
...

...

· · · Op−1,q+1 Op,q+1 Op+1,q+1 · · ·

· · · Op−1,q Op,q Op+1,q · · ·

· · · Op−1,q−1 Op,q−1 Op+1,q−1 · · ·

...
...

...

(5.1.37)

and its total cohomology gives the space of physical states.

5.1.4. Supersymmetric Ground States

We will review that, at the classical level, the cohomology of states in nonlinear sigma-
models with H-flux is isomorphic to the Lie algebroid cohomology of the canonical
complex associated to (M,J1). Definitions can be found in appendix A.

To this end we will show as a preliminary step that any function of the bosonic coordi-
nates φ and fermionic scalars χ, λ can be rewritten as a function on ΠL1, L1 being the

eigenbundle of J1 with eigenvalue − i.

Let us define

ψa :=
1√
2

(
ψa+ + iψa−

)
and ρa :=

1√
2
gab
(
ψb+ + iψb−

)
. (5.1.38)

They are sections of φ∗TMC and φ∗T ∗MC, respectively. Introducing a fermionic field

Ψ :=

(
ψ

ρ

)

(5.1.39)
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taking values in φ∗TMC ⊕ φ∗T ∗MC
∼= φ∗(TMC ⊕ T ∗MC), we get anti-commutation

relations

[[Ψ(σ)α,Ψ(σ′)β]] = (q−1)αβδ(σ − σ′) . (5.1.40)

Using the explicit expression of J1,

J1 =

(
I1 β1
B1 −I∗1

)

, (5.1.41)

where

I1 =
1

2
(I+ + I−) , (5.1.42)

β =
1

2
(ω−1

− − ω−1
+ ) , (5.1.43)

B =
1

2
(ω+ + ω−) , (5.1.44)

it is easy to check

1√
2

(
1 i

1 − i

)(
χ

λ

)

= (1 + iJ1)Ψ . (5.1.45)

Hence, any function of the bosonic coordinates and fermionic scalars can be rewritten
as a function on ΠL1. Since we are interested in the supersymmetric ground states in

the RR sector, we are allowed to use point particle approximation. This guides us to
the realm of supersymmetric quantum mechanics in the sense of chapter 3.

In this approximation the Noether charges associated to Q+ and Q− are

Q+ = ψa+gabφ̇
b − i

6
Habcψ

a
+ψ

b
+ψ

c
+ and (5.1.46)

Q− = ψa−gabφ̇
b +

i

6
Habcψ

a
−ψ

b
−ψ

c
− . (5.1.47)

We choose the BRST charges to be Q := Q+ + iQ− and Q† := Q+ − iQ−. Then it is true
that

Q2 = (Q†)2 = 0 and 4H = {Q,Q†} . (5.1.48)

Here H is the Hamiltonian of the supersymmetric quantum mechanics,

H =
1

2
gabφ̇

aφ̇b − 1

4
R

(+)
abcdψ

a
+ψ

b
+ψ

c
+ψ

d
+ . (5.1.49)
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As we saw in theorem 3.1.8, supersymmetric ground states are in one to one corre-

spondence with the elements of QBRST-cohomology. The same arguments as in chapter
3 imply

Q = dH = d−H ∧ . (5.1.50)

Our next step is to identify QBRST in this context. The R-current reads

J = − i

2
(ω+(ψ+, ψ+) + ω−(ψ−, ψ−)) . (5.1.51)

Because of the canonical anti-commutation relations the fermions χ and λ have charge

+1 under J . Expressing χ and λ by ψ and ρ and quantizing the latter by

ψa ←→ dxa∧ , ρa ←→ i ∂
∂xa

, (5.1.52)

the R-current becomes

J = − i(B ∧+iβ − iI1) , (5.1.53)

where iI1 = Ia1 b(dx
b∧) ◦ i ∂

∂xa
. Thus, J obviously depends only on J1.

It is well known that QBRST can be expressed via

QBRST =
1

2
(Q + [J,Q]) . (5.1.54)

Hence, it remains to express J in the language of generalized complex geometry. To
this end let A = X ⊕ ξ ∈ Γ(M,TMC ⊕ T ∗MC). It acts on ρ ∈ ∧∗ T ∗MC via

A · ρ = iXρ+ ξ ∧ ρ . (5.1.55)

Since J1 is an endomorphism of TMC ⊕ T ∗MC with eigenvalues ± i it follows that a
grading operator R(J1) can be defined by

[R(J1), A] = − iJ1A , ∀A ∈ Γ(TMC ⊕ T ∗MC) . (5.1.56)

This condition fixes R(J1) up to a constant. Using the explicit form of J1 results in

J1A · ρ =
(
iI1X − iβ(ξ) − iXB ∧ −I∗1 (ξ)∧

)
ρ . (5.1.57)

A solution of this equation is given by R(J1) = − i(B ∧ +iβ − iI1) = J . Thus J is a
grading operator of

∧∗ T ∗MC with respect to J1. It follows that

QBRST =
1

2
(dH + [R(J1), dH)]) =

1

2
(dH +R(J1)dH − dHR(J1)) = ∂H . (5.1.58)
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Moreover, it is true that
(∧∗ T ∗MC, ∂H

)
is a graded module over the complex of oper-

ators, (
∧∗ L1, dL), i.e. [Gua03]

∂H(s · ρ) = (dLs) · ρ+ (−1)|s|s · ∂Hρ for s ∈
∧

∗L1 , ρ ∈
∧

∗T ∗MC . (5.1.59)

Interpreting this equation as QBRST(s · ρ) = (QBRSTs) · ρ + (−1)|s|s · (QBRSTρ), it be-

comes clear that QBRST acts on operators (i.e.
∧∗ L1) as dL. Therefore, the BRST-

cohomology of operators is isomorphic at the classical level to the Lie algebroid co-
homology (

∧∗ L1, dL).

Strictly speaking, it remains to show that the resulting theory is a topological field the-
ory, indeed, since it is not clear how to write it as the sum of a topological term and a
QBRST exact term. First results into this direction can be found in [Zuc06], [Chu08] and

[Pes07]. In [KL07] it is also shown that the Frobenius structure of the resulting TQFT
is in the complex case identical to the very well known one, whereas it is only isomor-

phic in the symplectic case. There one has to perform a Bogoliubov transformation to
get the usual action of forms on themselves by wedge product. This is in accordance

with 4.26 of [Gua03]. Section 6 of [KL07], “Towards the Twisted Generalized Quantum
Cohomology Ring” tries to give a first discussion of quantum corrections. Using the
same arguments as in section 3.2.4 of this work, they figure out the relevant instantons

and call them twisted generalized complex holomorphic maps. The complete set of
BRST transformations on the fields can be found in [Zuc06] and [Chu08]. For H = 0

the BRST-fixed points fulfill in local coordinates

(δµ
ν + i(jΣ)µ

ν)
1

2
(1− iI+)

a
b∂νφ

b = 0 , (5.1.60)

(δµ
ν − i(jΣ)µ

ν)
1

2
(1− iI−)

a
b∂νφ

b = 0 , (5.1.61)

where jΣ is the complex structure on Σ. Comparing the equations given in [KL07] with
[Zuc06] and [Chu08] it turns out that in [KL07] there is a sign error. This sign also
manifests in the formulation of equations (5.1.60)-(5.1.61) as

(1 + iJ1)

(
∂σφ

g∂tφ

)

= 0 , (5.1.62)

which is in accordance with [Zab06]. The error possibly originates in the fact that the
A-twist in the latter references is the B-twist in the former and vice versa. The result of

Kapustin and Li, i.e. eq. (4.3.3) in [Li05], is the right one, as there seems to be a second
sign error in the step from (4.3.2) to (4.3.3). Expanding equations (5.1.60) and (5.1.61)

into real and imaginary part we deduce that they are equivalent to

Tφ ◦ jΣ = I+ ◦ Tφ and (5.1.63)

Tφ ◦ jΣ = −I− ◦ Tφ . (5.1.64)
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Using the concrete form of J1 and J2 we can write these two equations compactly as

J2 ◦ (ι ◦ Tφ) = (ι ◦ Tφ) ◦ jΣ , (5.1.65)

where ι : TM → TM ⊕ T ∗M =: TM is the canonical embedding. Kapustin and Li call
them twisted generalized complex maps.

Recall that the Lie algebroid cohomology with respect to J1 computes the supersym-

metric ground states. If we want to know the instanton corrections to this classical
structure, we need to solve an equation for the other generalized complex structure J2,

which is in some sense compatible to J1, cf. section 6.3. This is similar to the physical
motivation of quantum cohomology. There the Lie algebroid cohomology is given by
(a Bogoliubov transformation of) the usual de Rham cohomology for J1 being just a

symplectic structure ω. The other structure J2 is given by an ordinary almost complex
one, namely I , which renders M to be Kähler, leading to the known results.

5.1.5. Behavior of Instantons under B-transformations

We should take a moment to examine the behavior of equation (5.1.65) under B-trans-

formations.

One possible interpretation is that a B-transformation only changes H to H + dB = H ,
asB has to be a closed 2-form. Thus instantons are invariant under this transformation.

At first sight this is a nice result and we should check whether we find an interpretation
of it in terms of generalized complex geometry.

Naively, one could think that the B-field transformed equation (5.1.65) is given by

eBJ2e
−B ◦ eB(ι ◦ Tφ) = eB(ι ◦ Tφ) ◦ j , (5.1.66)

as exp(B) should also act on ι ◦ TΦ, which maps into TM . This equation is clearly
equivalent to equation (5.1.65), in accordance with the above argument.

There are two possible issues with such a behavior.

The first one concerns the search for non-trivial examples of generalized pseudoholo-
morphic curves. Equation (5.1.66) tells us that if we do not find a solution for some

generalized complex structure, there will not be a solution in the whole equivalence
class under B-transformations. Recall that every type zero generalized complex struc-

ture is a B-transformation of a symplectic structure.

The second and more important one concerns an inconsistency in the prescribed object.
Let us assume that we start with a generalized complex structure J2 and look at equa-

tion (5.1.65). Performing a B-transformation we end up with a generalized complex
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structure J ′
2. We saw above that (5.1.66) is the same equation as (5.1.65). If we would

have started with J ′, the equation would not be the same. This can be rephrased as
performing a B-transformation on the equation is not equivalent to starting with the
transformed J ′

2. This is a serious problem and will be resolved in the following.

One possible way to resolve this issue is to look at equation (5.1.62). We saw that it is
equivalent to (5.1.65). In [Zab06] it is shown that a canonical transformation acting on

ΠLM which is not originated by a diffeomorphism results in

(1 + iJ1)

(
∂σφ

g∂tφ+ i∂σφb

)

= 0 , (5.1.67)

as g∂tφ is the canonical momentum associated to ∂σφ for the nonlinear sigma model.
This equation is true if and only if

(
1 + ie−bJ1e

b
)
(
∂σφ

g∂tφ

)

= 0 . (5.1.68)

Therefore, a canonical transformation which acts on ΠT ∗LM by b induces a B-trans-
formation by −b acting on J1. This induces a B-transformation by −b acting on J2.

Therefore, a B-transformation acting on TM also induces a canonical transformation
on the super loop-space. In other words, there exists a canonical transformation, which

clearly should not have any effect on physics, such that a B-transformation acts only
on J and not on the embedding ι : TM → TM . Using this we get that modulo canon-
ical transformations the transformed equation is given by the equation with respect to

the transformed generalized complex structure. This is in some sense B-field invari-
ance. We still have the problem that there is not yet a notion of a B-field transformed

instanton, or generalized pseudoholomorphic curve in the language of part three, such
that the B-field transformed instanton is a solution of the B-field transformed instan-
ton equation. This is the reason why we take ι not to be the canonical embedding,

which is not present in the case of a general exact Courant algebroid anyway, but an
arbitrary isotropic embedding λ : TM → TM and call the resulting object a gener-

alized pseudoholomorphic, or simply J -holomorphic, pair. The above consideration
shows that B-transformations on λ correspond to canonical transformations on the su-
per loop-space in the case of supersymmetric nonlinear sigma models.

If one wants to determine the instantons of a supersymmetric theory, one has to find
the BRST fixed points and not just the purely bosonic fixed points, as explained in sec-
tion 3.1.2. This might be a possible issue in the literature. Thus the instanton equation

for H 6= 0 possibly differs from the above one. In [Li05] he writes that the moduli
space of instantons has to be known to proceed the calculation of the quantum struc-

ture of supersymmetric nonlinear sigma models with H-flux. Since the former is not
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known, yet, he stops there. This is the starting point of our mathematical treatment

of J2-holomorphic curves. We will examine the moduli-space of instantons to do the
next step towards Quantum cohomology in generalized complex geometry and other
related topics. The latter should be a deformation of the Lie algebroid cohomology

associated to the canonical complex of J1.

5.2. Interpolation Between A- and B-Model on Hyperkähler

Manifolds

In this section I want to give a nice interpolation between the A- and B- Model on
Hyperkähler manifolds through the generalized B-model. This can for instance be
used to view mirror symmetry of Hyperkähler manifolds as a continuous symmetry

rather than a discrete one. Recall that a manifold (M, I) is mirror to another manifold
(N, J) if the A-model on M is equivalent to the B-model onN and the B-model on M is

equivalent to the A-model onN . Hopefully, the generalizations of the Fukaya category
and quantum-cohomology will turn out to be only dependent on the homotopy class of
the generalized complex structures defining it. Then such a continuous interpolation

between the A- and B- model could be used to prove the equivalence of the appropriate
categories.4 With this in mind, it should be possible to prove the Mirror symmetry of

arbitrary Hyperkähler manifolds with respect to a pair of complex structures with their
associated Kähler forms.

More concretely, let (M, g, I, J,K) be a Hyperkähler manifold. Recall that this means

M admits a 2-sphere of complex structures with respect to which g is Hermitian. In
particular it is true that there are three complex structures which obey

I2 = J2 = K2 = IJK = −1 . (5.2.1)

To give an interpolation between the A-model in complex structure J and the B-model

in complex structure I , we define the following two almost generalized complex struc-
tures,

J1(t) := sin(t)JI + cos(t)JωJ
and (5.2.2)

J2(t) := sin(t)JωI
+ cos(t)JJ . (5.2.3)

As usual JI , JJ , JωI
and JωJ

are the generalized complex structures associated to the

complex structures I , J and the Kähler forms ωI , ωJ (compare equations (A.4.4) and

4They are the enhanced Fukaya category and the bounded derived category of coherent sheaves.
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(A.4.5)). Then it is true that

J1(0) = JωJ
and J2(0) = JJ (A-model in symplectic structure ωJ ) , (5.2.4)

J1

(π

2

)

= JI and J2

(π

2

)

= JωI
(B-model in complex structure I) . (5.2.5)

Therefore, the generalized B-model defined by (J1(t),J2(t)) interpolates between the
(Bogoliubov transformation of the) A-model in complex structure J and the B-model in

complex structure I . It remains to show that (J1(t),J2(t)) is a generalized Kähler struc-
ture. In the language of definition 6.3.6 this means we have to show that (J1(t),J2(t))

is a pair of integrable generalized complex structures being tamed by each other and
being compatible.

After expanding J1(t)J2(t) we obtain

J1(t)J2(t) = sin2(t)JIJωI
+sin(t) cos(t)JIJJ+sin(t) cos(t)JωJ

JωI
+cos2(t)JωJ

JJ . (5.2.6)

Because of ω−1
J ωI = −Jg−1gI = −JI and ωJω

−1
I = −gJIg−1 = gIJg−1 = I∗J∗gg−1 =

I∗J∗ it follows that JIJJ = −JωJ
JωI

. Equation (5.2.6) now simplifies to

J1(t)J2(t) =

(
0 g−1

g 0

)

. (5.2.7)

Hence, J2(t) is tamed by J1(t). Interchanging I and J in the above calculations yields

J2(t)J1(t) =

(
0 g−1

g 0

)

= J1(t)J2(t) . (5.2.8)

This shows that J1(t) and J2(t) are compatible structures for all t.

Next we will show that they are both integrable. This will be done by demonstrating
that for all t they are B-transformations of a symplectic structure. Then it follows

immediately that J1(t) and J2(t) are integrable almost generalized complex structures.
Let us first consider J1(t). It is true that

etan(t)ωKJ1(t)e
− tan(t)ωK =

(
1 0

tan(t)ωK 1

)(
sin(t)I − cos(t)ω−1

J

cos(t)ωJ − sin(t)I∗

)

×
(

1 0

− tan(t)ωK 1

)

=

(
1 0

tan(t)ωK 1

)(
0 − cos(t)ω−1

J

sec(t)ωJ − sin(t)I∗

)

=

=

(
0 − (sec(t)ωJ)

−1

sec(t)ωJ 0

)

. (5.2.9)
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Now d tan(t)ωK = tan(t)dωK = d sec(t)ωJ = 0 implies that J1(t) is a B-transformation

of a symplectic structure and thus integrable. A completely analogous calculation
shows that

J2(t) = e− cot(t)ωK

(
0 −(csc(t)ωI)−1

csc(t)ωI 0

)

ecot(t)ωK . (5.2.10)

Therefore, J2(t) is integrable for all t. Altogether it follows that (J1(t),J2(t)) defines
a generalized Kähler structure and its associated generalized B-model interpolates be-

tween the Bogoliubov transformation of the A-model in complex structure J and the
B-model in complex structure I . It remains to construct the Lie-algebroid cohomology

and to incorporate instantons to calculate the generalized chiral ring. In order to show
that we get a physically sensible model we have to show that (J1(t),J2(t)) define gen-
eralized Calabi-Yau metric geometries for all t. The answer of these questions will be

given somewhere else.
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5.3. Coisotropic Branes and Geometry

In this section we will give a geometrical definition of classical A-branes. The defi-

nition of rank-one branes will follow the world sheet approach in [KO03] while we
will give a more detailed exposure. Our aim is to develop the sufficient and neces-
sary conditions for an object to be a (classical) A-brane, which is a Dirichlet brane,

or D-brane, being defined in the topologically twisted A-theory of non-linear sigma-
model with boundary. They play an important role in “Homological Mirror Conjec-

ture” [Kon94],[KO03],[AZ05],[PZ98] and the gauge theory formulation of “Geometric
Langlands Conjecture” [KW06],[Fre09b]. We will see that the classical conservation of
the R-current, which underlies the topologically twisted N = (2, 2) non-linear sigma-

model, on the endpoints of open strings ending on A-branes will give some algebraic
conditions on the given data.

5.3.1. Setup and Characterization via Poisson-Structures

Let X be a Kähler manifold with metric G and Kähler form ω. Then the complex struc-
ture Iω which is associated to the Kähler form ω reads Iω = G−1ω. This follows from

the fact that the (1, 1)I form ω ∈ Γ
(
X, (T 1,0X)

∗ ⊗C (T 0,1X)
∗)

=: A1,1(X) is defined as
ω(U, V ) = g(IU, V ) for all U ∈ T 1,0X and V ∈ T 0,1X . Since we will use the topologi-
cally twisted N = (2, 2) non-linear sigma-model, absence of anomalies of R-symmetry

in the bulk sector dictates us to further demand X being Ricci flat and, hence, Calabi-
Yau. Therefore, let c1(X) = 0.

Next, we want to specify the objects which are potential candidates for being A-branes.

The strings which end on a brane may carry a charge. Hence, we look at submanifolds
Y ⊂ X equipped with a line bundle πL : L→ Y and a unitary connection ∇.

Since A-branes are defined in the context of topologically twisted non-linear sigma
models, we have to specify some additional data. Let Σ be an open string world-sheet,
i.e. a Riemann surface Σ with boundary ∂Σ. Then we call Φ : Σ → X , where Φ(∂Σ) ⊂
Y , the sigma-model fields and the fermions ψ, ψ̄ are sections of Φ∗(TX) ⊗ ΠS±, with
S± being semi spinor line bundles and Π is the parity-reversal functor. Furthermore,

we define supercurrents

Q± :=
i

4
√
2
G(ψ, ∂Φ)± ω(ψ, ∂Φ) (5.3.1)

Q̄± :=
i

4
√
2
G(ψ̄, ∂̄Φ)± ω(ψ̄, ∂̄Φ) (5.3.2)
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and U(1) R-currents

J := − i
2
ω(ψ, ψ) (5.3.3)

J := − i
2
ω(ψ̄, ψ̄) . (5.3.4)

Next, we wish to give the classical boundary conditions which ∂Φ and ψ fulfill on Y .

In order to be able to specify them, we use G to decompose TX|Y ∼= NY ⊕ TY , where
TY is the tangential bundle of Y and NY is the normal bundle of Y in X with respect
to G. The boundary conditions are then given by5

∂Φ = R(∂̄Φ) and (5.3.5)

ψ = R(ψ̄) . (5.3.6)

Here R is an endomorphism of TX|Y . It is well known that it can be expressed with

respect to the above decomposition of TX|Y as

R = (− idNY )⊕ (g − F )−1 (g + F ) , (5.3.7)

where g = G|TY and F is the curvature of (Y, L,∇). Equation (5.3.7) reflects the fact
that Σ is the trajectory of a string end-point, which is charged with respect to the gauge

fields on the brane. Thus, the end-points are subjected to the Lorentz force. Equa-
tion (5.3.7) tells us that the velocity of the end-points is tangent to the brane and the

Lorentz force is balanced with the tension of the moving string. Furthermore, R is an
orthogonal transformation with respect to G, i.e.

RT GR = G . (5.3.8)

This can be seen by inserting (5.3.7) into (5.3.8).

So far, we do not know whether Y defines a D-brane or not. To check this we observe
that Q+ + Q− = Q̄+ + Q̄− on the boundary, which can be easily checked by putting

the boundary conditions into (5.3.1) and (5.3.2). Hence, Y defines at least a D-brane
[Pol98b].

In addition, the topologically twisted non-linear-sigma-model must preserve N = 2

supersymmetry [Wit95]. This can be done in two inequivalent ways:

Q± = Q̄∓ and J = −J̄ (A-type) (5.3.9)

5The transformation behavior of the fermions is dictated by the presence of N = 1 supersymmetry on
the world-sheet.
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and

Q± = Q̄± and J = J̄ (B-type) (5.3.10)

on the boundary. For now we concentrate on A-type boundary conditions. Combining
equations (5.3.1), (5.3.2), (5.3.5), (5.3.6) and (5.3.9) we get

RT ωR = −ω . (5.3.11)

In the following we will look at the geometric implications of (5.3.11) on (Y, L,∇).
Since I = G−1ω, it is easy to check that R I = I R. Now let us choose a basis of TX|Y ,
where the first dimRX − dimR Y vectors span NY and the remaining dimR Y vectors

span TY . Let in this basis the inverse of the Kähler form ω be expressed as

ω−1 =

(
A B

−BT C

)

, (5.3.12)

where AT = −A and CT = −C so that ωT = −ω. Because of R−1 = − idNY ⊕(g +

F )−1(g − F ) and RTωR = −ω ⇔ R−1ω−1(R−1)
T
= −ω−1, a straight forward calculation

shows that (5.3.11) is equivalent to

A = 0 (5.3.13)

B F = 0 (5.3.14)

g C g = F C F (5.3.15)

5.3.2. Geometric Implications and Definition of Classical Rank-One

Coisotropic A-Branes

Next we look for a geometric formulation of the algebraic properties (5.3.13), (5.3.14)

and (5.3.15). First, we will show that property (5.3.13) is equivalent to Y being a
coisotropic submanifold of X . Second, we will observe that (5.3.14) is equivalent to

F descending to a form on some sub-bundle of TY . Third we will use (5.3.15) to define
an almost complex structure, which is distinct from I and acts on the normal bundle of
the foliation associated to the symplectic radical L Y of TY with respect to ω.

As for the first property, let TzY
⊥
ω := {U ∈ TzX | ∀V ∈ TzY : ω(U, V ) = 0}. It is

clear that Y ⊂ X ⇒ TzY ⊂ TzX for z ∈ Y .6 Recall that Y is coisotropic in (X,ω) iff

6Strictly speaking TzY can be embedded into TzX such that the embedding fulfills above property.
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∀z ∈ Y : TzY
⊥
ω ⊂ TzY . Since ω is a Kähler form and in particular non-degenerate7, it is

possible to regard it as an isomorphism

ωz : TzX → T ∗
zX , with (5.3.16)

U 7→ αU := ωz(U, ·) . (5.3.17)

Next we will examine the properties of αU for U ∈ TzY ⊥
ω . The definition of the ω-radical

TzY
⊥
ω implies that αU(V ) = 0 for all V ∈ TzX . Therefore, let us define T ∗

z Y
⊥
ω := {α ∈

T ∗
zX | ∀V ∈ TzY : α(V ) = 0}. To prove that Y is coisotropic we need following

Lemma 5.3.1. Let TzY
⊥
ω and T ∗

z Y
⊥
ω be as above. Then it holds

ω−1
z

(
T ∗
z Y

⊥
ω

)
= TzY

⊥
ω . (5.3.18)

Proof. Let α ∈ T ∗
z Y

⊥
ω . Then Uα := ω−1

z (α) is defined by α(V ) = ωz(Uα, V ) for all V ∈
TzX . Since α(V ) = ωz(Uα, V ) = 0 for all V ∈ TzY , it follows that Uα ∈ TzY ⊥

ω and, hence,

ω−1
z (T ∗

z Y
⊥
ω ) ⊆ TzY

⊥
ω .

Let Uα ∈ TzY ⊥
ω . Then α := ωz(Uα, ·) fulfills ω−1

z (α) = Uα. Thus, TzY
⊥
ω ⊆ ω−1(T ∗

z Y
⊥
ω ).

Altogether, we infer ω−1
(
T ∗
z Y

⊥
ω

)
= TzY

⊥
ω .

Now we are able to show that (5.3.13) is equivalent to Y being coisotropic in (X,ω).
This is subject of the following

Proposition 5.3.2. Let (X,ω,G) be a Kähler manifold, Y →֒ X be a submanifold of X and the

inverse Kähler form ω−1 be expressed as in (5.3.12). ThenA = 0 if and only if Y is a coisotropic

submanifold of (X,ω).

Proof. Let α ∈ T ∗
z Y

⊥
ω and ∂

∂xµ
be basis vectors of TzX , where the first dimRX − dimR Y

vectors span NzY and the remaining dimR Y vectors span TzY . Moreover, let dxµ be
their dual basis vectors. Then

〈α, U〉 = α(U) = αµdx
µ

(

V ν ∂

∂xν

)

= αµV
ν dxµ

(
∂

∂xnu

)

= αµV
µ . (5.3.19)

Hence, it is clear that in this basis α can be written as

α =
(
α1

T 0
)
. (5.3.20)

7Recall that ωz(U, V ) = g(U, I V ) for U, V ∈ TzX , an hermitian structure g and an almost complex
structure I .

79



CHAPTER 5. TOPOLOGICAL SIGMA MODELS WITH H-FLUX

Let A = 0. Lemma 5.3.1 tells us that for every vector U ∈ TzY ⊥
ω there exists a 1-form

α ∈ T ∗
z Y

⊥
ω such that U = ω−1α. This implies together with (5.3.20)

U = ω−1α =

(
0 B

−BT C

)

·
(
α1

0

)

=

(
0

−BTα1

)

∈ TzY (5.3.21)

for all U ∈ TzY ⊥
ω and, hence, TzY

⊥
ω ⊆ TzY for all z ∈ Y .

Now let Y be a coisotropic submanifold of (X,ω). Thus, it is true that ω−1(T ∗
z Y

⊥
ω ) =

TzY
⊥
ω ⊆ TzY for all z ∈ Y . Hence, it holds that

U = ω−1α =

(
A B

−BT C

)

·
(
α1

0

)

=

(
Aα1

−BTα1

)
!∈ TzY (5.3.22)

for arbitrary U and associated α1. Therefore, Aα1 = 0 for arbitrary α1 which enables us

to infer that A = 0. This proves the proposition.

Since Y is coisotropic, the rank of ωz is constant along Y and we can define the kernel

of ω, which is a sub-bundle of TY ,

L Y :=
∐

z∈Y

TzY
⊥
ω , (5.3.23)

where
∐

denotes the disjoint union. Furthermore, we define an equivalence relation

on TY by

u1 ∼ u2 :⇔ πTY (u1) = πTY (u2) ∧ u1 − u2 ∈ L Y , (5.3.24)

with πTY : TY → Y being the projection in TY . There exists a short exact sequence

−−−−−→ −֒−−→ −→→ −−−→0 LzY TzY TzY/LzY 0 (5.3.25)

for all z ∈ Y , where LzY := TzY
⊥
ω and FzY := TzY/LzY := TzY/∼. Thus it is true that

TzY = LzY ⊕FzY for all z ∈ Y and

FY :=
∐

z∈Y

FzY (5.3.26)

is well defined. Therefore, we have a decomposition

TY = L Y ⊕FY . (5.3.27)

Later we will give a geometric interpretation of FY and L Y . To be able to interpret

BF = 0 geometrically, we need
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Proposition 5.3.3. Let (X,ω,G) be a Kähler manifold, Y a coisotropic submanifold of (X,ω),

L Y be as above, πL : L→ Y a unitary line bundle with a unitary connection∇ and curvature

F and the inverse Kähler form ω−1 be parameterized as in (5.3.12). Then BF = 0 if and only

if F (LzY ) = {0} for all z ∈ Y .

Proof. Let z ∈ Y and V ∈ LzY . Then by lemma 5.3.1 there exists a unique α ∈ T ∗
z Y

⊥
ω

such that V = ω−1α. Let F act on TX|Y by first projecting on TY and then acting by F
on the result, i.e. for all z ∈ Y it is true that F on TzX can be written as

F̃ =

(
0 0

0 F

)

(5.3.28)

Then it follows that

F (V ) = F̃ω−1α =

(
0 0

0 F

)

·
(

0 B

−BT C

)

·
(
α1

0

)

=

(

0
(
α1

TBF
)T

)

(5.3.29)

Let BF = 0. Then equation (5.3.29) implies that F (V ) = 0 for all V ∈ LzY and z ∈ Y
and, hence, F (LzY ) = {0} for all z ∈ Y . Let F (LzY ) = {0} for all z ∈ Y . Then
F (V ) = 0 for all V ∈ LzY and z ∈ Y . From equation (5.3.29) we infer that α1

TBF = 0

for arbitrary α1. Therefore, BF = 0 and the proposition is proven.

Proposition 5.3.3 implies that the curvature F descends to a section of
∧2

FY , i.e. an

element f ∈ H0(Y,
∧2

FY ). Therefore, F = 0⊕ f on TzY = LzY ⊕FzY . Furthermore,
it is clear that ω(LzY ) = {0}. Thus, ω can be written as ω = 0⊕σ on TzY = LzY ⊕FzY .
Later we will need

Lemma 5.3.4. Let (X,ω,G) be a Kähler manifold, Y →֒ X be a submanifold of X , z ∈ Y ,

LzY := TzY
⊥
ω and FzY := TzY/LzY . Then ω = 0 ⊕ σ on TzY = LzY ⊕FzY and σ is

non-degenerate on FzY .

Proof. Let (X,ω,G) be a Kähler manifold, Y →֒ X be a submanifold ofX , LzY := TzY
⊥
ω

and FzY := TzY/LzY . Then it follows by definition that ω(LzY ) = {0}. Thus,
ω = 0⊕σ. Suppose that there exists an U ∈ FzY such that for all V ∈ FzY it holds that
ω(U, V ). Since ω(U, VL ) = 0 for all VL ∈ LzY , it holds that ω(U, V ) = 0 for all V ∈ TzY .

Hence, U ∈ LzY and [U ] = [0] ∈ FzY . Therefore, σ is non-degenerate on FzY for all
z ∈ Y .

Our next aim is to show that σ−1f is an almost complex structure on FzY . To that
purpose we have to assure ω−1F : FzY → FzY and ω−1F is well defined on FzY .

This is part of
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Lemma 5.3.5. Let (X,ω,G) be a Kähler manifold, Y →֒ X be a submanifold ofX , πL : L→ Y

a unitary line bundle with a unitary connection ∇ and curvature F , z ∈ Y , LzY := TzY
⊥
ω ,

FzY := TzY/LzY and F (LzY ) = {0} for all z ∈ Y . Then J := ω−1F is a well-defined

linear map from FzY to FzY .

Proof. Let U ∈ FzY . Since TzX = TzY ⊕ NzY and G(TzX) = T ∗
zX it follows that

T ∗
zX = G(TzY )⊕G(NzY ). It is obvious that

G(TzY ) ∼= AnnTzY (T ∗
zX) := {α ∈ T ∗

zX : α(NzY ) = {0}} ∼= T ∗
z Y , (5.3.30)

where AnnT ∗
zX (TzY ) is the annihilator of TzY in T ∗

zX and analogously

G(NzY ) ∼= N∗
z Y := (NzY )

∗ . (5.3.31)

Therefore, it is possible to embed iT ∗
z Y : T ∗

z Y →֒ T ∗
zX . Thus, ω−1F can be defined by

−−−−→F −֒−−→
iT∗

z Y −−−→ω−1

TzY T ∗
z Y T ∗

zX TzX . (5.3.32)

Since F (LzY ) = {0} it follows by proposition 5.3.3 that BF = 0 and, hence, J(U) ∈
TzY . Every vector U tangent to Y lies in exactly one equivalence class [U ] ∈ FzY . So J

can be regarded as a map J : FzY → FzY .

Next we have to ensure that this map is well defined. This can be achieved by ex-
amining the definition of J = ω−1F . Recall that U ′ = J(U) = ω−1F (U) is defined by

ω(U ′, V ) = F (U, V ) for all V ∈ TzY . Let U1, U2 ∈ [U ] and U1 6= U2. Then U2 = U1 + UL ,
where LzY ∋ UL 6= 0. Since F (LzY ) = {0}, it follows that

F (U2, V ) = F (U1 + UL , V ) = F (U1, V ) + F (UL , V ) = F (U1, V ) (5.3.33)

and, thus, J(U1) = J(U2). Therefore, J is well defined on FzY . Analogously it follows
that [U ′] ∈ FzY is unique.

Since we have shown that J : FzY → FzY is a well defined map, it is possible to state

Proposition 5.3.6. Let (X,ω,G) be a Kähler manifold, Y →֒ X be a submanifold of X , πL :

L → Y a unitary line bundle with a unitary connection ∇ and curvature F , F (LzY ) = {0}
for all z ∈ Y and the inverse Kähler form ω−1 be represented as in (5.3.12). Furthermore, let f

and σ be as in lemma 5.3.4 and above. Then J := σ−1f : FzY → FzY fulfills J2 = − idFzY

for all z ∈ Y if and only if gCg = FCF .
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Proof. Let z ∈ Y . Since G−1ω is an almost complex structure, we infer that Gω−1G =

−ω on TzX and in particular on TzY . Let us decompose TzY = LzY ⊕ FzY . Then
F = 0 ⊕ f and ω = 0 ⊕ σ with respect to this decomposition. Lemma 5.3.4 tells us
that σ is non-degenerate on FzY and in particular invertible. For g = G|TY it then

follows that Gω−1g = 0 ⊕ (−σ) on TzY . The proof of lemma 5.3.5 also shows that
ω(FzY ) = F (FzY ) and it is true that ω(FzY ) = σ(FzY ) as well as F (FzY ) = f(FzY ).

Thus, it follows from lemma 5.3.5 that J := σ−1f : FzY → FzY is a well defined map.
Since F (LzY ) = {0} for all z ∈ Y , it follows by proposition 5.3.3 that BF = 0. This in
turn implies

ω−1F (U) =

(
0 B

−BT C

)

·
(
0 0

0 F

)

·
(
0

U

)

=

(
0

CF U

)

∀U ∈ TzY . (5.3.34)

Moreover, it holds

Gω−1G(U) = Gω−1(g(U)
︸︷︷︸

∈T ∗
z Y

) = G

(
0 B

−BT C

)

·
(

0

gU

)

= G

(
BgU

CgU

)

︸ ︷︷ ︸

∈TzX

. (5.3.35)

If we decompose G = g⊥ ⊕ g on TzX = NzY ⊕ TzY , it follows that

Gω−1G(U) = g⊥Bg(U)⊕ gCg(U) ∈ N∗
z Y ⊕ T ∗

z Y (5.3.36)

Restricting equation (5.3.36) to TzY yields Gω−1G|TzY = 0 ⊕ gCg. Moreover, it holds
Gω−1G = −ω and, hence, gCg = 0⊕ (−σ) acting on LzY ⊕FzY .

Let us assume gCg = FCF . Then it follows that Fω−1F = Gω−1G = −ω restricted to
FzY . This allows us to infer

J2 =
(
ω−1F

)2
∣
∣
∣
FzY

=
(
σ−1f

)2
= − idFzY . (5.3.37)

Now suppose σ−1f is an almost complex structure on FzY . Then it follows that
fσ−1f = −σ. Thus, FCF = Fω−1F |FzY = −ω|FzY = 0 ⊕ (−σ). Since G−1ω is a com-

plex structure, it is also true that gCg = Gω−1G|FzY = −ω|FzY = 0 ⊕ (−σ). Therefore,
gCg = FCF .

This completes the examination of the geometrical implications of equations (5.3.13),
(5.3.14) and (5.3.15) on a submanifold Y of X and a line bundle πL : L → Y with
connection ∇. These implications are given by propositions 5.3.2, 5.3.3 and 5.3.6. We

showed that they are in fact equivalent to (Y, L,∇) defining a classical rank one A-
brane in theN = (2, 2) supersymmetric topologically twisted non-linear sigma-model.

This guides us to
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Definition 5.3.7. Let (X,ω,G) be a Kähler manifold, Y →֒ X be a submanifold of X and

πL : L→ Y a unitary line bundle with a unitary connection∇ and curvature F . Then we call

(Y, πL : L→ Y,∇) a classical rank one A-brane if and only if

1. Y is a coisotropic submanifold of X ,

2. F descends to a section in FY , i.e. if we regard F as a bundle morphism TY → T ∗Y it

holds F = 0⊕ f on TY = L Y ⊕FY and

3. for ω : TY → T ∗Y with ω = 0⊕ σ on TY = L Y ⊕FY , f as above and J := σ−1f :

FY → FY it is true that J2 = − idFY .

In particular, the support of a rank-one A-brane is a coisotropic submanifold Y →֒ X ,
which we defined via the skew-complement of TY in TX . Another definition will be

useful to us, too. A submanifold is coisotropic if and only if ω|Y has a constant rank
and its kernel L Y ⊂ TY is an integrable distribution, which is equivalent to [U, V ] ∈
Γ(Y,L Y ) for all U, V ∈ Γ(Y,L Y ). By the Frobenius theorem L Y arises from a regular
foliation Φ of Y , i.e. the vector fields tangent to the leaves of the foliation are given
by Γ(Y,L Y ). The quotient bundle FY is called the normal bundle of the foliation.

We stop here our exposition of classical coisotropic A-branes. In generalized complex
geometry the role of these coisotropic A-branes will be played by so called generalized

Lagrangian submanifolds. If we restrict M to be a symplectic manifold, a generalized
Lagrangian submanifold is precisely given by a classical rank one coisotropic A-brane.
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6. First Look at Generalized

Pseudoholomorphic Curves

This part of the work considers a definition and the properties of J -holomorphic, or
generalized pseudoholomorphic, curves. Our definition differs from a definition of

generalized holomorphic maps in the literature [OP11]. This is due to the fact that
we ultimately aim towards a possible generalization of Quantum Cohomology and

Fukaya Category to generalized complex (GC) geometry. Such an extension would
surely enable one to shed light on the mathematics of mirror symmetry and to find
new or relations between known invariants of symplectic and complex geometry.

To motivate our definition of generalized pseudoholomorphic curves, let us recall the
importance of pseudoholomorphic curves in topological string theory. They appear

for example as instantons in the calculation of the anti-chiral ring of a manifold. The
latter gives the quantum structure of states in the topological A-model under consid-
eration. A mathematical formulation of the anti-chiral ring is given by Quantum Co-

homology. Hence, a mathematical treatment of the generalized chiral ring, i.e. the
quantum structure of states in the generalized B-model, should lead towards a gener-

alization of Quantum Cohomology. This generalization should be a deformation of the
Lie algebroid cohomology associated with an integrable generalized complex structure
J1. Fukaya categories are the mathematical formulation of the quantum structure of

branes in the topological A-model. Hence, a mathematical formulation of generalized
B-branes will lead to a generalization of Fukaya categories to generalized complex

manifolds. This motivates why we should take the results of string theorists serious
and develop a mathematical treatment of instantons in the generalized B-model.

We will begin the examination of generalized pseudoholomorphic curves by reviewing

very briefly some facts about J-holomorphic curves in ordinary complex geometry. Af-
ter that we will look at possible natural generalizations of this notion and the problems
in finding them. Then we will probe the definition given in [OP11] and explain why it

does not suite our purpose. Thereafter we will turn to a definition of J -holomorphic
curves which suites our purpose. Furthermore, motivated by the almost complex case,

we will find the almost generalized complex counterpart of tamed and compatible
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structures, simple curves and somewhere injective curves. Eventually we will exam-

ine the local structure of generalized pseudoholomorphic curves. In particular, we will
show, using a theorem of Aronszajn, that they satisfy an identity theorem analogous to
holomorphic curves and give a criterion for a generalized pseudoholomorphic curve

to be simple. The main theorem of the local theory is theorem 7.4.4. It states that lo-
cally a J -holomorphic curve can be interpreted as an ordinary pseudoholomorphic

curve taking values in a space of doubled dimension while one half of the coordinates
are constant. Then we will turn to the global behavior of J -holomorphic curves. We
will find the generalized complex counterpart of the vertical differential. In contrast to

usual symplectic topology it is not a Fredholm operator, but an upper semi-Fredholm
operator. This complicates the deformation theory of generalized pseudoholomorphic

curves. In order to solve this problem we will invent admissible vector fields along a
map Φ. If we only incorporate infinitesimal deformations given by admissible vector
fields, the excess degrees of freedom get removed. At the end we will look at some

examples and show that our notion reproduces the known cases.

In the following Σ is assumed to be a compact Riemann surface.

6.1. J-Holomorphic Curves in Complex Manifolds

We recall the well known notion of J-holomorphic curves. Let M be a 2n-dimensional
real manifold and (Σ, j) a Riemann surface. Furthermore, let J : TM → TM be an

almost complex structure on M , i.e. an automorphism of TM which squares to −1. A
map Φ : Σ → M is called J-holomorphic, or pseudoholomorphic, if J ◦ TΦ = TΦ ◦ j.
Starting from this definition one can construct the moduli space of J-holomorphic
curves, [MS04] and references therein, using the differential operator ∂J(Φ) = dφ +

J ◦ dΦ◦ j = 0. Here we will not go into the details as we will generalize these consider-

ations later to almost GC manifolds. Another equivalent criterion for a map Φ : Σ→M

to be J-holomorphic is

Proposition 6.1.1. Let TΣ(1,0) and TM (1,0) be the +i-eigenbundle of j and J in TΣC and

TMC. Furthermore, let TΦC, JC and jC be the complexifications of TΦ, J and j, respectively.

Then it is equivalent

1. JC ◦ TΦC = TΦC ◦ jC (6.1.1)

2. TΦC(TΣ
(1,0)) ⊆ TM (1,0) . (6.1.2)

Proof. The proof of this proposition is obvious and left to the reader.
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6.2. Holomorphic Curves in Generalized Complex

Manifolds

It is a difficult task to find “the” appropriate generalization of pseudoholomorphic

curves. In this subsection we discuss various possible definitions of generalized pseu-
doholomorphic curves, in particular one which can be found in the literature.

The common definition of J-holomorphic curves Φ : Σ → M uses the existence of a

naturally induced map TΦ between TΣ and TM . Unluckily, there is no such naturally
induced map between the associated Pontrjagin bundles TΣ := TΣ⊕ T ∗Σ and TM :=

TM⊕T ∗M . This relies on the fact that the construction of a push-forward of an element

in T ∗Σ to T ∗M cannot be done without additional data.

Given metrics h on Σ and g on M one can exploit the isomorphism h−1 : T ∗Σ → TΣ

to produce a vector-field which can be naturally mapped to TM . Afterwards g can
be used to map the resulting section in TM to a section in T ∗M . Altogether, we get
g ◦ TΦ ◦ h−1 : T ∗Σ → T ∗M . If we define TΦh,g := TΦ ⊕ g ◦ TΦ ◦ h−1, we get a map

TΦh,g : TΣ → TM . Clearly the property of a map being holomorphic should only
depend on the map, the manifolds and the respcetive structures. Here we have some

additional structures, namely the metrics. At least the special case of a map from a
Riemann surface to an almost complex or almost symplectic manifold reproduces the
holomorphic maps as well as the constant maps, the instantons of the A- and B- model

of topological strings. In particular, the equations are independent of g and h. Whether
this holds in general is not part of our interest in this work, so we will not develop this

further.

Another possible generalization of J-holomorphic maps to GC geometry uses propo-
sition 6.1.1. In order to be able to do this, we need a notion of pushforward in GC

geometry. It is given by the following consideration. Let (M1,J1) and (M2,J2) be al-
most GC manifolds and Φ :M1 → M2 be C1. An almost generalized complex structure
on M can either be given by an automorphism J : TM → TM fulfilling

J 2 = −1 and (6.2.1)

∀A,B ∈ TM : q(JA,JB) = q(A,B) , (6.2.2)

where q(X ⊕ ξ, Y ⊕ η) := η(X) + ξ(Y ). Or it can be given by an almost Dirac-structure
LM with real index zero. That is a subbundle LM ⊆ TMC which is maximally isotropic
w.r.t. q and obeys LM ∩ LM = {0}. The bundle LM is given by the +i-eigenbundle

of JC in TMC [Gua03]. Recall that in complex geometry TM (1,0) is also given by the
+i-eigenbundle of the complexified almost complex structure. Proposition 6.1.1 then

states that the pushforward of the almost complex structure TΣ(1,0) is a subbundle of
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the almost complex structure TM (1,0). Hence, for almost GC manifolds we have to look

at the pushforward of almost Dirac structures. It is given by

(TΦ)∗LM1 := {TΦ(u)⊕ ξ ∈ TM2 ⊕ T ∗M2 : u⊕ (TΦ)∗ξ ∈ LM1} . (6.2.3)

Then it seems natural to call a map Φ :M1 → M2 generalized holomorphic if (TΦ)∗LM1

⊆ LM2 . Both sides of this relation are almost Dirac structures and have, due to their

maximal isotropy, in particular maximal dimension. Hence, M1 and M2 have to have
the same dimension for this definition to be non trivial. Alternatively, one can use the
pullback of almost Dirac structures,

(TΦ)∗LM2 := {u⊕ (TΦ)∗ξ ∈ TM1 ⊕ T ∗M1 : TΦu⊕ ξ ∈ LM2} , (6.2.4)

and call Φ generalized holomorphic if (TΦ)∗LM2 = LM1 . If TΦ is injective, i.e. Φ

is an immersion, this definition recovers the usual holomorphic maps for both M1

and M2 being almost complex and the iso-symplectic maps for both M1 and M2 be-

ing almost symplectic. If TΦ is not injective, it seems that although all maps in the
complex/symplectic case are holomorphic/iso-symplectic, not all holomorphic/iso-
symplectic maps are generalized holomorphic. This is very puzzeling and suggests

that this kind of definition is very likely not the right one. If M1 is almost complex and
M2 is almost symplectic, this definition renders j to be compatible with the pullback

of the almost symplectic structure1 ω. As in two dimensions all almost complex struc-
tures are compatible with a surface-form2 Φ∗ω, all maps Φ : M1 → M2 are generalized
holomorphic in this manner. Remember that we wish to apply our results to mirror

symmetry and related topics. So we have to recover constant maps as holomorphic
maps from a Riemann surface to an symplectic manifold, which is obviously not the

case here.

The next possible definition which we want to examine is the one of [OP11]. It is given
by

Definition 6.2.1. Let (Σ, L(DΣ, ǫΣ)) and (M,LM (DM , ǫM)) be regular almost generalized

complex manifolds and Φ : Σ→M be C1. Furthermore, let

PΣ/M := L
(

DΣ/M ∩DΣ/M , Im
(

ǫΣ/M
∣
∣
DΣ/M∩DΣ/M

))

.

Then we call Φ generalized holomorphic, iff

1. TΦ(DΣ) ⊆ DM and

1This is a non-degenerate 2-form, not necessarily closed.
2I thank K. Cieliebak for clarifying this to me.
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2. (TΦ)∗(PΣ) = PM .

Remarks 6.2.2 1. Recall that an almost generalized complex structure can either be
given by an automorphism J or an almost Dirac structure L with real index
zero. Any such Dirac structure is in particular a maximal isotropic subbundle of

TM ⊕ T ∗M . If it is regular, i.e. π(L) has constant rank, it is possible to write it as

L(D, ǫ) := {X ⊕ ξ ∈ D ⊕ T ∗M : ξ|D = iXǫ} , (6.2.5)

where D is a subbundle of TM and ǫ ∈ ∧2E∗.

2. A map f between vector spaces with Poisson structures (V1, π1) and (V2, π2) is
called a Poisson morphism, if it maps Poisson bi-vectors to Poisson bi-vectors.

This is equivalent to f∗(graph(π1)) = graph(π2), [BR02].

3. Ornea and Pantilie callD andL(D∩D, Im(ǫ|D∩D)) the associated linear co-CR and
Poisson structures, respectively. Thus the property of a map being generalized

holomorphic can also be phrased as the differential being a co-CR linear Poisson
morphism between the associated structures, as done in [OP11].

This definition has some really nice properties, as for example a generalized holomor-
phic map is the product of iso-symplectic and holomorphic maps, up to aB-transform.

If Φ : Σ → M is a diffeomorphism, definition 6.2.1 is equivalent to (TΦ)∗LΣ = LM as
suggested and refused above. A natural question is to ask, whether the definition of

Ornea and Pantilie is equivalent or a generalization of the instantons found by Ka-
pustin and Li. This has to be answered in the negative, as we will explain now.

If the class of all generalized holomorphic maps contains the class of instantons, every

instanton has to be a generalized holomorphic map. As an example consider the case
of (Σ, j) being a Riemann surface and (M,Ω) being a symplectic manifold. Then DΣ =

TΣ(1,0) and, obviously DΣ ∩DΣ = {0}. Thus

PΣ = L(0, 0) = {u⊕ ξ ∈ 0⊕ T ∗ΣC|ξ(0) = 0} = 0⊕ T ∗ΣC . (6.2.6)

On the other hand, LM = graph(− iΩ) = {X ⊕ (− iΩ(X)) : X ∈ TMC} and, hence,

DM = TMC. Therefore, DM ∩DM = TMC, as TMC = TMC and PM = L(TMC, Im(ǫM)).
It is obvious that TΦ(DΣ) ⊆ DM and TΦ is co-CR linear. But there is a problem which
is connected to the associated Poisson structures. Namely, it is true that

(TΦ)∗PΣ = {(TΦ0)⊕ ξ | 0⊕ (TΦ)∗ξ ∈ PΣ = 0⊕ T ∗ΣC} = 0⊕ T ∗MC 6= PM (6.2.7)

for any Φ. Hence, we conclude that there are no generalized holomorphic maps be-

tween a Riemann surface and a symplectic manifold. In particular, constant maps,
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which are the instantons in this case, are not generalized holomorphic. Therefore, def-

inition 6.2.1 does not contain the instantons of the generalized B-model of topological
sigma-models. That means generalized holomorphic maps do not suite our purpose.
But as they seem to be a sensible notion of generalized holomorphic maps, we call the

instantons of chapter 5 “generalized pseudoholomorphic” or J -holomorphic.

6.3. Generalized Pseudoholomorphic Curves, Pairs, Tame

and Compatible Almost Generalized Complex

Structures

At the end of the last section and chapter 5 we saw that in order to guess a sensible gen-
eralization of the concept of symplectic topology to generalized complex geometry, we
need to look at the generalized topological twisted nonlinear sigma-model. Instantons

were found to fulfill (5.1.65). They will play a role similar to J-holomorphic curves
in symplectic topology. Strictly speaking, this equation reproduces the instantons in

every physically sensible case of the generalized B-model. We demand that this equa-
tion holds for curves in arbitrary generalized complex manifolds. For usual almost
complex manifolds such an approach leads to the right concepts.

We saw that the instanton equation is not invariant under B-transformations, viewed
as an object in generalized complex geometry. By that we mean that there is no opera-
tion acting only on Φ and dictated by the B-transformation such that the transformed

class of generalized pseudoholomorphic curves with respect to J is the class of all gen-
eralized pseudoholomorphic curves with respect to the transformed structure eBJ e−B .

As we wish to be able to generalize the objects of interest to arbitrary exact Courant
algebroids, e.g. twisted generalized complex geometry, they should be manifestly in-
variant underB-transformations. In order to restore invariance, we introduce a second

object, namely an isotropic embedding λ : TM → E, where E is an exact Courant al-
gebroid. The case which is most relevant to the generalized B-model is λ being the

canonical inclusion into the standard Courant algebroid TM .

Our next aim is to establish a precise definition of the objects of interest. To this end we
will define J -holomorphic, or generalized pseudoholomorphic, curves and the corre-

sponding notions of tamed and compatible structures. Moreover, we will show that
they reproduce the special cases of symplectic and complex manifolds. Let us start

with

Definition 6.3.1. Let (Σ, jΣ) be a Riemann surface, M be a smooth manifold, (E, q, [·, ·], π)
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be an exact Courant algebroid over M and J an almost generalized complex structure on E.

Moreover, let Φ : Σ → M be a map and λ : TM → E be an isotropic embedding (with

respect to q). Then we call (Φ, λ) a generalized pseudoholomorphic pair with respect to (E,J )
or (E,J )-holomorphic pair, iff

J ◦ (λ ◦ TΦ) = (λ ◦ TΦ) ◦ jΣ . (6.3.1)

If λ is a smooth isotropic splitting s of E, we simply call Φ a generalized pseudoholomorphic

curve with respect to E or an (E,J )-holomorphic curve. If E = TM , we call Φ just a J -

holomorphic curve.

Remarks 6.3.2 1. Recall that a map λ : TM → E is called isotropic (with respect to

q) if and only q(λ(X), λ(Y )) = 0 for all X , Y ∈ TM .

2. It is easy to prove that equation (6.3.1) is equivalent to λ(TΦ(TΣ(1,0))) ⊆ L,
where TΣ(1,0) are holomorphic tangent vectors with respect to jΣ and L is the

+ i-eigenbundle of J .

The next two examples show that definition 6.3.1 covers the well known notion of J-
holomorphic curves and shows that their symplectic pendant are constant maps.

Examples 6.3.3 1. If I is an almost complex structure on a smooth manifold M , JI
can be found in (6.3.13). After choosing λ = ι, Equation (6.3.1) is equivalent to

(
I 0

0 −I∗
)(

dΦ

0

)

=

(
I ◦ TΦ

0

)

=

(
TΦ ◦ jΣ

0

)

. (6.3.2)

This is the well known equation for J-holomorphic curves.

2. If ω is an almost symplectic structure on a smooth manifold M , Jω can also be

found in (6.3.13). After choosing λ = ι, Equation (6.3.1) is equivalent to

(
0 −ω−1

ω 0

)(
TΦ

0

)

=

(
0

ω ◦ TΦ

)

=

(
TΦ ◦ jΣ

0

)

. (6.3.3)

Since ω is non degenerate, we infer that TΦ = 0 and Φ has to be a constant map.

3. As a direct consequence we realize that if J is the product of an almost complex
and an almost symplectic structure, Φ is pseudoholomorphic in the complex di-
rections and constant in symplectic directions.

The next proposition shows that equation (6.3.1) is invariant under orthogonal auto-

morphisms of E.
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Proposition 6.3.4. Let (Σ, jΣ) be a Riemann surface, M be a smooth manifold, (E, q, [·, ·], π)
an exact Courant algebroid and J an almost generalized complex structure on E. Moreover,

let Φ : Σ → M be a map, λ : TM → E be an isotropic embedding and Λ be an orthogonal

automorphism with respect to q inducing a diffeomorphism χ : M → M . Then it is true that

that equation 6.3.1 is invariant under (Λ, χ).

Proof. Let Λ be an orthogonal automorphism of E inducing a diffeomorphism χ :M →
M , i.e.

−−−−−→Λ−−−−−−→ πE

−−−−−−→ πE

−−−−−→χ

E E

M M

(6.3.4)

commutes. Under this automorphism, J gets mapped to ΛJΛ−1, TΦ to Tχ ◦ TΦ and

λ to Λ ◦ λ ◦ Tχ−1. Now let (Φ, λ) be an (E,J )-holomorphic pair. Performing Λ on
equation (6.3.1) yields

Λ ◦ J ◦ Λ−1 ◦ Λ ◦ λ ◦ Tχ−1 ◦ Tχ ◦ TΦ = Λ ◦ λ ◦ Tχ−1 ◦ Tχ ◦ TΦ ◦ jΣ . (6.3.5)

All contributions of Λ and χ cancel each other and we see that equation (6.3.1) is in-

variant under (Λ, χ).

Remark 6.3.5 In particular this shows together with theorem 6.4.1 that (6.3.1) is inde-
pendent of the choice of an isotropic splitting. For E = TM ⊕ T ∗M this is equivalent
to the invariance of equation (6.3.1) under B-transformations.

It transpires that it is possible to reduce J -holomorphic pairs to J -holomorphic curves

if one allows the almost generalized complex structure to vary. This will be our concern
in the next section.

The main part of this work is the examination of the moduli space3 of (simple) solutions

to equation (6.3.1). In order to do this, especially to prepare for a theorem analogous to
Gromov compactness, we need

Definition 6.3.6. Let M be a smooth manifold, (E, q, [·, ·], π) be an exact Courant algebroid

over M and J1, J2 be two almost generalized complex structures on E. Then we call J2 tamed

by J1, or simply J1-tame, iff

∀ 0 6= A ∈ E : −q(J1J2A,A) > 0 . (6.3.6)

3For now we think of a moduli space as a naturally parameterized set, e.g. a subset of the Fréchet
manifold of all maps from Σ to M .
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Furthermore, we call J2 compatible with J1, iff J2 is J1-tame and [J1,J2] = 0, i.e. the two

structures commute.

Remarks 6.3.7 1. As q has signature (n, n), n being the dimension of M , J is never
tamed by itself and thus never compatible to itself. But, clearly, it commutes with

itself.

2. After observing

∀A ∈ E : −q(J1J2A,A) > 0⇔ ∀A ∈ E : q(J1A,J2A) > 0⇔
∀A ∈ E : −q(A,J2J1A) = −q(J2J1A,A) > 0 , (6.3.7)

we deduce that J1 is tamed by J2 if and only if J2 is tamed by J1.

3. Moreover, J1 is compatible withJ2 if and only if J2 is compatible withJ1. Hence,

we simply call J1 and J2 compatible.

4. If J2 is J1-tame, we get a metric on E,

G(A,B)J1,J2 := −
1

2
q ({J1,J2}A,B) , (6.3.8)

where {·, ·} denotes the anti-commutator. To reveal the symmetry of equation

(6.3.8) we observe

G(A,B)J1,J2 =
1

2
q (J1A,J2B) +

1

2
q (J2A,J1B) . (6.3.9)

Positive definiteness originates in the tameness condition. Hence, GJ1,J2 defines
a metric on E, indeed. It is obviously true that

G(ΛA,ΛB)ΛJ1Λ−1,ΛJ2Λ−1 = G(A,B)Λ−1ΛJ1Λ−1Λ,Λ−1ΛJ2Λ−1Λ = G(A,B)J1,J2 , (6.3.10)

where Λ : E → E is an automorphism of E which is orthogonal with respect
to q (cf. the next section). Therefore, the metric is invariant under orthogonal

automorphisms. In particular, it is invariant under B-transformations.

5. Moreover, the above notions of tamed and compatible almost generalized com-

plex structures are invariant under orthogonal automorphisms with respect to q.
This can be deduced from

−q(ΛJ1Λ
−1ΛJ2Λ

−1ΛA,ΛA) = −q(J1J2A,A) and (6.3.11)

[ΛJ1Λ
−1,ΛJ2Λ

−1] = Λ[J1,J2]Λ
−1 . (6.3.12)

Using the fact that Λ is an automorphism, this shows that J1 and J2 are tame
(compatible) if and only if the transformed structures ΛJ1Λ

−1 and ΛJ2Λ
−1 are

tame (compatible).
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6. A generalized Kähler structure can be rephrased as a pair of integrable, tamed

and compatible almost generalized complex structures.

7. We will denote the space of J1 compatible almost generalized complex struc-
tures on M by J(M,J1) and the space of J1-tame almost generalized complex

structures by Jτ (M,J1).

Examples 6.3.8 Let us give some simple examples of tame and compatible generalized
complex structures.

1. The first example is the obvious one. We want to show that the above defini-

tions reproduce the well known notion of tameness and compatibility in sym-
plectic geometry. To this end let (E, q, [·, ·], π) be the standard Courant algebroid

(TM, q0, [·, ·]0, pr1), JI and Jω be the associated generalized complex structures of
an almost complex structure I which is tamed by a symplectic structure ω. Recall
that the generalized complex structures can be represented as

Jω =

(
0 −ω−1

ω 0

)

and JI =
(
I 0

0 −I∗
)

. (6.3.13)

Since I is tamed by ω, it follows that ω(X, IX) > 0 ∀ 0 6= X ∈ TM . Then it is also
true that

−ω−1(η, I∗η) = −η(ω−1(I∗η)) = −η(X) = ω(X, IX) > 0 ∀ 0 6= η ∈ T ∗M , (6.3.14)

where X = ω−1(I∗η) is defined by I∗η(Y ) = ω(X, Y ) ∀Y ∈ TM and we used

I∗η(Y ) = ω(X, Y ) = η(IY ) ∀Y ∈ TM ⇔ η(Y ) = −ω(X, IY ) ∀Y ∈ TM .

(6.3.15)

Therefore, we immediately infer that

−q (JωJI(X ⊕ η), X ⊕ η) = −q(ω−1I∗η ⊕ ωIX,X ⊕ η) =

=
1

2

(
ω(X, IX)− ω−1(η, I∗η)

)
> 0 ∀X ⊕ η ∈ TM . (6.3.16)

Thus JI is tamed by Jω in the sense of definition 6.3.6.

Let Jω and JI be the generalized complex structures associated with a symplectic

structure and an almost complex structure, respectively. If JI is tamed by Jω, the
above calculation shows by restriction to TM ∼= ι(TM) = TM ⊕ 0 that I is tamed
by ω.

Now let Jω and JI tame each other. Observing

JωJI =
(

0 ω−1I∗

ωI 0

)

and JIJω =

(
0 −Iω−1

−I∗ω 0

)

, (6.3.17)
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it is easy to check that [Jω,JI ] = 0 is equivalent to ω and I being compatible.

Hence, we see that definition 6.3.6 is equivalent to tamed and compatible struc-
tures in the usual sense for the special case of an almost complex structure and a
symplectic structure.

2. Next we want to answer the question whether only symplectic structures tame
complex structures in the generalized sense. This is false in general and there

are more structures in the setting of generalized complex geometry. In order to
justify this, letJI1 be the generalized complex structure associated with an almost
complex structure I1 on a 2n-dimensional real smooth manifold M . Furthermore,

let us represent another generalized complex structure J2 as

J2 =

(
I2 β2
B2 −I∗2

)

. (6.3.18)

A straight forward calculation shows that

−q(JI1J2(x⊕ η), x⊕ η) =
1

2
(η({I1, I2}X) +B2(X, I1X)− β2(I∗1η, η)) , (6.3.19)

where we set β2(η, ξ) := ξ(β2(η)). Since this has to be true for all X ⊕ η ∈ TM , it
holds in particular for X ⊕ 0 and 0⊕ η. This implies

∀ 0 6= X ∈ TM : B2(X, I1X) > 0 and (6.3.20)

∀ 0∗ 6= η ∈ T ∗M : −β2(η, I∗1η) > 0 . (6.3.21)

These equations look very similar to the case ofB2 being a symplectic form which

tames I1 and −β2 being its associated Poisson bi-vector. Because of the presence
of I2 there is no need for B2 being non-degenerate or closed, even if J2 is inte-

grable.

Hence, we observe that there are more generalized complex structures taming I1
than just symplectic structures. This might be very important if one looks e.g. at

nilmanifolds. There are examples which do not admit any symplectic structure
or integrable almost complex structure [Sal98]. In [Gua03] it has been shown that

they admit generalized complex structures.

6.4. Reduction of J -Holomorphic Pairs to J -Holomorphic

Curves

In this section we will show that it is possible to reduce (E,J )-holomorphic pairs to

J -holomorphic curves. First, we will prove theorem 6.4.1. It states that any isotropic
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embedding λ of TM into some exact Courant algebroid E can be written as the com-

position of a splitting map s and an orthogonal automorphism Λ of E with respect to q.
Proposition 6.4.3 then shows that (Φ, λ) is an (E,J )-holomorphic pair if and only if Φ
is a (E,J ′)-holomorphic curve, where J ′ = ΛJΛ−1 is the transformed almost general-

ized complex structure. Finally, proposition 6.4.4 states that Φ is a (E,J ′)-holomorphic
curve if and only if Φ is a J ′′-holomorphic curve, where J ′′ is the induced almost gen-

eralized complex structure on TM .

More concretely, let us state

Theorem 6.4.1. Let (E, q, [·, ·], π) be an exact Courant algebroid over M , s ∈ C∞(TM,E) be

any choice of a smooth isotropic splitting of E and λ : TM → E be an isotropic embedding.

Then there exists an automorphism Λ : E → E such that

1. λ = Λ ◦ s , (6.4.1)

2. ∀A,B ∈ E : q (Λ(A),Λ(B)) = q(A,B) and (6.4.2)

3. λ ∈ Ck(M, (TM)∗ ⊗ E) ⇔ Λ ∈ Ck(M,E∗ ⊗ E) . (6.4.3)

Proof. Let (E, q, [·, ·], π) be an exact Courant algebroid over M and let us choose any

smooth isotropic splitting s of E. Moreover, let λ : TM → E be an isotropic embed-
ding. We will show that there exists an orthogonal automorphism Λ with respect to q

which fulfills (6.4.1), (6.4.2) and (6.4.3) by constructing Λ explicitly.

Since E is a exact, it fits by definition into the short exact sequence (compare appendix
A.2)

−−−−→ −−−−→π∗ −−−−→

s∗
−−−−−→π −−−−−→

s
−−−−−→0 T ∗M E TM 0 . (6.4.4)

By the splitting lemma this implies that E = s(TM) ⊕ π∗(T ∗M) ∼= TM . The last
isomorphism maps the bracket given on E to the twisted Dorfman bracket dictated by
s. In the usual case E = TM (with ordinary Courant- or Dorfman bracket), s can be

chosen to be the canonical inclusion ι : TM → TM . Because the above sequence is a
split short exact sequence, it is true that TM ∼= s(TM) and T ∗M ∼= π∗(T ∗M).

As we want to construct Λ such that in particular (6.4.1) is true, we define Λ on s(TM)

by

Λ(s(X)) := λ(X) , X ∈ TM . (6.4.5)

Therefore, it remains to define Λ on π∗(T ∗M). For notational reasons let us denote the
restriction of Λ to π∗(T ∗M) as µ acting on T ∗M , i.e. Λ(π∗(η)) := µ(η).

In view of equation (6.4.2) it is more convenient to define q(µ(η)) instead of giving a

formula for µ. Moreover, it transpired that the following calculations become more
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transparent. Recall that q(µ(η)) ∈ E∗, where we set q(A)(B) := q(A,B) and use the

same symbol in both cases in order to keep notations simple. Using the fact that q is
a pseudo-metric and in particular non-degenerate, we infer that q(µ(η)) defines µ(η)
uniquely.

Let A ∈ E. If A 6∈ λ(TM), define

q(µ(η))(A) := 0 . (6.4.6)

Whereas we define

q(µ(η))(A) = q(µ(η))(λ(X)) := q(π∗(η), s(X)) = η(X) , (6.4.7)

if A ∈ λ(TM). Compare equation (A.2.9). As λ is an isotropic embedding and in
particular an injection, there exists only oneX such thatA = λ(X). Hence, q(µ(η))(A) is

well defined and equations (6.4.6) and (6.4.7) uniquely define an element q(µ(η)) ∈ E∗.
This in turn gives µ(η) ∈ E via q−1.

The following argument shows that µ is isotropic. Let A ∈ λ(TM) ∩ µ(T ∗M). This
means that there exist η ∈ T ∗M and X ∈ TM such that A = µ(η) = λ(X). Then for all
Y ∈ TM it holds

0 = q(λ(X), λ(Y )) = q(µ(η), λ(Y )) = q(π∗(η), s(Y )) = η(Y ) . (6.4.8)

This implies η = 0. Hence, λ(TM) ∩ µ(T ∗M) = {0}. Then it follows from equation
(6.4.6) that q(µ(η), µ(ξ)) = 0.

For A = s(X) + π∗(η) we define

Λ(A) := λ(X) + µ(η) . (6.4.9)

The last equation is well defined since the decomposition A = s(X) + π∗(η) is unique

for any choice of an isotropic splitting s.

There are several things left to prove. We have to show that Λ defined by equation
(6.4.9) is an automorphism, is orthogonal with respect to q and is as smooth as λ.

The restriction of Λ to s(TM) is obviously linear, injective and as smooth as λ. Our
next step is to show that Λ is also linear restricted to π∗(T ∗M). We will do this again by
using the image of µ(η) under q. Let η1, η2 ∈ T ∗M and c ∈ R. Then it is true that

q(µ(cη1 + η2))(λ(X)) = q(µ(cη1 + η2), λ(X)) = q (π∗(c η1 + η2) , s(X)) =

= c q(π∗(η1), s(X)) + q(π∗(η2), s(X)) =

= c q(µ(η1), λ(X)) + q(µ(η2), λ(X)) =

= q (c µ(η1) + µ(η2)) (λ(X)) . (6.4.10)
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Hence, q(µ(cη1 + η2)) = q(cµ(η1) + µ(η2)) which implies µ(cη1 + η2) = cµ(η1) + µ(η2).

Thus Λ restricted to π∗(T ∗M) is linear and, therefore, Λ is linear.

The following calculation shows that Λ is orthogonal with respect to q.

q(ΛA,ΛB) = q (Λ(s(X) + π∗(ξ)),Λ(s(Y ) + π∗(η))) = q(λ(X), λ(Y ))+

+ q(λ(X), µ(η)) + q(µ(ξ), λ(Y )) + q(µ(ξ), µ(η)) =

= 0 + q(s(X), π∗(η)) + q(π∗(ξ), s(Y )) + 0 = q(s(X), s(Y ))+

+ q(s(X), π∗(η)) + q(π∗(ξ), s(Y )) + q(π∗(ξ), π∗(η)) = q(A,B) . (6.4.11)

Next we will show that Λ is an automorphism. Clearly it is an endomorphism Λ :

E → E. Since E is a finite dimensional vector bundle, it is sufficient to show that Λ

is surjective locally, i.e. at every p ∈ M . That will be done in several steps. The first
one is the proof that λ(TpM) and µ(T ∗

pM) are both maximally dimensional isotropic

subspaces of Ep. Then we will use λ(TM) ∩ µ(T ∗M) = {0} to construct a basis of the
image of Λ at p which also spans Ep. Because of Λp being an endomorphism of a finite
dimensional vector space which is surjective, it then follows that Λ is also injective.

According to our premises λ is an isotropic embedding and so λ(TpM) is isotropic and
n-dimensional. Because Ep is 2n-dimensional, it follows that λ(TpM) is a maximally

dimensional isotropic subspace of Ep.

By construction µ is isotropic, too. To be able to state that it is maximally dimensional
we will prove that µ is injective. To this end let η1, η2 ∈ T ∗M with µ(η1) − µ(η2) =

µ(η1 − η2) = 0. This implies ∀X ∈ TM : q (π∗(η1 − η2), s(X))) = (η1 − η2)(X) = 0. We
infer η1 = η2 and µ is injective. Hence, it follows that µ(T ∗M) is n-dimensional and a
maximally dimensional isotropic subspace of Ep.

Since both λ(TpM) and µ(T ∗
pM) are n-dimensional real vector spaces, they have a basis

B and B′, respectively. Recall that equation (6.4.8) implies λ(TM) ∩ µ(T ∗M) = {0}.
Hence, we infer that B and B′ are linearly independent. Thus, B∪B′ is a basis consisting
of 2n linearly independent vectors inEp. AsEp is 2n-dimensional, we infer that Λ(E) =
span(B ∪ B′) = E and Λ is surjective. Since it is an endomorphism and Ep is finite

dimensional, it follows that Λ is injective and, hence, an automorphism.

It remains to show that Λ is as smooth as λ.

Let Λ ∈ Ck(M,E∗ ⊗ E), i.e. a k-times continuously differentiable section in the endo-

morphism bundle of E. As λ = Λ◦s and s is smooth, we obtain λ ∈ Ck(M, (TM)∗⊗E).
Now let λ ∈ Ck(M, (TM)∗⊗E) for some k. This means that λ(TM) is a Ck-differentiable

isotropic distribution in E. Define sections Λ1 and Λ2 in the endomorphism bundle of
E by

Λ1(p)(A) := (λp ◦ πp) (A) and (6.4.12)
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Λ2(p)(A) :=
(
µp ◦ s∗p

)
(A) . (6.4.13)

Because E is an exact Courant algebroid, A ∈ E can be written as A = s(X) + π∗(η) for
some uniquely defined X ∈ TM and η ∈ T ∗M . Using π ◦ s = idTM , s∗ ◦ π∗ = idT ∗M ,

π ◦ π∗ = 0 and s∗ ◦ s = 0 it becomes evident that Λ = Λ1 +Λ2. Since Λ1 is a Ck section, it
remains to show that Λ2 is at least Ck. By assumption q is a smooth. Then it is true that
µ is as smooth as q ◦ µ. If q ◦ µ(η) ∈ Ck(M,E∗) for any smooth one-form η, it follows

that q ◦ µ ∈ Ck(M,T ∗M ⊗ E∗). Thus let η ∈ Γ(M,T ∗M) be an arbitrary smooth 1-form.
To prove that q ◦ µ(η) ∈ Ck(M,E∗) we have to show that q ◦ µ(η)(B) ∈ Ck(M,R) for

all sections B in E which are as smooth as possible. If B 6∈ λ(TM), it follows from
equation (6.4.6) that q ◦ µ(η)(B) = 0, which is smooth. If B(p) = λp(X) it is true that

q ◦ µ(η)(B) = q(π∗(η), s(X)) = η(X) . (6.4.14)

Hence, q ◦ µ(η)(B) ∈ C∞(M,R). Thus, q ◦ µ(η) ∈ C∞(M,E∗), which yields q ◦ µ ∈
C∞(M,T ∗M ⊗E∗) and, finally, µ ∈ C∞(M, (T ∗M)∗ ⊗E). The last assertion implies that
Λ2 ∈ C∞(M,E∗ ⊗ E). Recalling that Λ = Λ1 + Λ2 we have arrived at our result.

Remarks 6.4.2 1. If J is an integrable almost generalized complex structure on E,
obviously Λ−1JΛ is integrable if Λ is also an automorphism of the bracket. If E is

given by the standard Courant algebroid, Λ then has to be a semi-direct product
of diffeomorphisms and B-transformations.

2. We assume that the isotropic splitting is smooth. If it has only to be in Cl for some

l ∈ N, Λ would be at most Cl differentiable.

Now we are able to reduce (E,J )-holomorphic pairs (Φ, λ) to (E,J )-holomorphic

curves Φ. That is

Proposition 6.4.3. Let (Σ, jΣ) be a Riemann surface, M be a smooth manifold, (E, q, [·, ·], π)
be an exact Courant algebroid over M and J be an almost generalized complex structure on E.

Moreover, let Φ : Σ→ M be a map and λ : TM → E be an isotropic embedding. Then it is true

that (Φ, λ) is an (E,J )-holomorphic pair if and only if Φ is a (E,Λ−1 ◦ J ◦ Λ)-holomorphic

curve, where Λ is defined in theorem 6.4.1.

Proof. Since λ is an isotropic embedding and E is an exact Courant algebroid with
smooth isotropic splitting s, it follows by theorem 6.4.1 that there exists an orthogonal

automorphism Λ with respect to q such that λ = Λ ◦ s. Let us assume without loss of
generality that Λ induces id on M . If it induces χ, we define Φ′ := χ ◦ Φ and omit the

prime. Therefore, equation (6.3.1) is equivalent to

(s ◦ TΦ) ◦ jΣ =
(
Λ−1 ◦ J ◦ Λ

)
◦ (s ◦ TΦ) . (6.4.15)
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It remains to show that (Λ−1 ◦ J ◦ Λ) is an almost generalized complex structure. Using

(Λ−1 ◦ J ◦ Λ)2 = −1 and

∀A,B ∈ TM : q
((
Λ−1JΛ

)
A,
(
Λ−1JΛ

)
B
)
= q (JΛA,JΛB) = q(ΛA,ΛB) =

= q(A,B) , (6.4.16)

we infer that (Λ−1 ◦ J ◦ Λ) is an almost generalized complex structure. Therefore, Φ
fulfills the definition of a (Λ−1 ◦ J ◦ Λ)-holomorphic curve. By reversing the argument
we prove the proposition.

The next proposition shows that (E,J )-holomorphic curves are equivalent to general-
ized pseudoholomorphic curves on TM .

Proposition 6.4.4. Let (Σ, jΣ) be a Riemann surface, M be a smooth manifold, (E, q, [·, ·], π)
be an exact Courant algebroid over M and J be an almost generalized complex structure on

E. Moreover, let Φ : Σ → M be a map, λ : TM → E be an isotropic embedding and let

s : TM → E be a smooth isotropic splitting of E. Furthermore, let ψE : E → TM denote the

isomorphism between E and TM which is induced by s and let J ′ be the almost generalized

complex structure on TM which is induced by J and ψE . Then it is true that Φ is an (E,J )-
holomorphic curve if and only if Φ is a (TM,J ′)-holomorphic curve.

Proof. Let us choose a smooth isotropic splitting s of E. Then it is true that

J ′ =

(
I β

B −I∗
)

, (6.4.17)

where

I = π ◦ J ◦ s , (6.4.18)

β = π ◦ J ◦ π∗ , (6.4.19)

B = s∗ ◦ J ◦ s and (6.4.20)

−I∗ = s∗ ◦ J ◦ π∗ . (6.4.21)

Let Φ be an (E,J )-holomorphic curve. Then it follows by definition that J ◦ s ◦ TΦ =

s ◦ TΦ ◦ jΣ. This implies together with s∗ ◦ s = 0 and π ◦ s = idTM that

π ◦ J ◦ s ◦ TΦ = π ◦ s ◦ TΦ ◦ jΣ ⇔ I ◦ TΦ = TΦ ◦ jΣ and (6.4.22)

s∗ ◦ J ◦ s ◦ TΦ = s∗s ◦ TΦ ◦ jΣ ⇔ B ◦ TΦ = 0 . (6.4.23)

Therefore, J ′ ◦ ι ◦ TΦ = ι ◦ TΦ ◦ jΣ.
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Now let Φ be a J ′-holomorphic curve. By recalling that A ∈ E can uniquely be decom-

posed as A = s(X) + π∗(η) and s ◦ π being a smooth projection operator s ◦ π : E →
s(TM), it becomes evident thatJA = s(IX)+π∗(Bη) and in particularJ s(X) = s(IX).
Hence,

s ◦ TΦ ◦ jΣ + 0 = s ◦ I ◦ TΦ + π∗ ◦B ◦ TΦ = J ◦ s ◦ TΦ . (6.4.24)

Remark 6.4.5 The last two propositions show in particular that in order to prove gene-
ric properties of (E,J )-holomorphic pairs we can restrict ourselves to generalized
pseudoholomorphic curves without loss of generality. This will be important for in-

stance in the proof of the identity theorem 7.2.1.

6.5. Generalized Energy

If Φ : Σ → M is at least C1, one defines its energy as the L2-norm of dΦ, compare
chapter 4 and in particular proposition 4.2.2. Next we wish to define the generalized

energy of a pair (Φ, λ) consisting of a map Φ : Σ → M with values in a generalized
complex manifold and an isotropic embedding λ : TM → E. To achieve this we need

remarks 6.3.7 and in particular equation (6.3.8). There we used two almost generalized
complex structures taming each other to define a metric G on E.

In analogy to equations (4.2.14) ff. a metric G on E induces a metric G̃ on the pullback

bundle Φ∗E,

G̃σ(A,B) := GΦ(σ)(pr2A, pr2B) , (6.5.1)

forA, B ∈ (Φ∗E)σ. Moreover, if h is an ordinary metric on Σ, it extends to k-forms. This
yields a metric on Ωk(Σ,Φ∗E), namely the product metric. For α , β ∈ Ωk(Σ,Φ∗TM) and
α = η ⊗ A, β = ξ ⊗ B, we define a L2-norm by

〈α, β〉h,J1,J2
:=

∫

Σ

(α, β)h,J1,J2 ∗ 1 , (6.5.2)

where

(α, β)h,J1,J2 := h(η, ξ)G̃(A,B) . (6.5.3)

Now we are ready for
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Definition 6.5.1. Let (Σ, h) be a Riemann surface, M be a real 2n-dimensional smooth man-

ifold, (E, q, [·, ·], π) be an exact Courant algebroid over M and J1, J2 be two almost general-

ized complex structures on E such that J1 and J2 are tamed by each other. Furthermore, let

λ : TM → E be an isotropic embedding. Then we define the generalized energy of the pair

(Φ, λ) to be

Eh,J1,J2(Φ, λ) :=
1

2
〈λ ◦ dΦ, λ ◦ dΦ〉h,J1,J2

. (6.5.4)

An important question is whether the generalized energy is invariant under orthogo-
nal automorphisms covering diffeomorphisms. Let us explore again what that means

for the standard Courant algebroid TM . If we restrict ourselves to automorphisms
Λ respecting the Dorfman bracket, Λ has to be the free product of diffeomorphisms,

embedded in O(q,TM) ∼= O(n, n), and B-transformations. In the general case this is

Proposition 6.5.2. Let (Σ, h) be a Riemann surface, M be a real 2n-dimensional manifold,

(E, q, [·, ·], π) be an exact Courant algebroid over M and J1, J2 be two almost generalized

complex structures on E such that J1 and J2 are tamed by each other. Furthermore, let

λ : TM → E be an isotropic embedding and Λ : E → E be an orthogonal automorphism

covering a diffeomorphism χ : M → M . Then the generalized energy is invariant under the

transformation (Λ, χ).

Proof. Let Λ : E → E be an orthogonal automorphism covering χ : M → M . Then Φ

is changed to χ ◦ Φ, λ to Λ ◦ λ ◦ Tχ−1, Ji to ΛJiΛ−1 and the transformed energy can be

simplified as

Eh,ΛJ1Λ−1,ΛJ2Λ−1(χ ◦ Φ,Λ ◦ λ ◦ Tχ−1) =

=
1

2

〈
Λ ◦ λ ◦ Tχ−1 ◦ d(χ ◦ Φ),Λ ◦ λ ◦ Tχ−1 ◦ d(χ ◦ Φ)

〉

h,ΛJ1Λ−1,ΛJ2Λ−1 =

=
1

2

〈
Λ ◦ λ ◦ Tχ−1 ◦ Tχ ◦ dΦ,Λ ◦ λ ◦ Tχ−1 ◦ Tχ ◦ dΦ

〉

h,ΛJ1Λ−1,ΛJ2Λ−1 =

=
1

2
〈Λ ◦ λ ◦ dΦ,Λ ◦ λ ◦ dΦ〉h,ΛJ1Λ−1,ΛJ2Λ−1 . (6.5.5)

Looking at equations (6.5.1) to (6.5.3) and (7.1.3), it becomes evident that

1

2
〈Λ ◦ λ ◦ dΦ,Λ ◦ λ ◦ dΦ〉h,ΛJ1Λ−1,ΛJ2Λ−1 =

=
1

2
〈λ ◦ dΦ, λ ◦ dΦ〉h,Λ−1ΛJ1Λ−1Λ,Λ−1ΛJ2Λ−1Λ =

1

2
〈λ ◦ dΦ, λ ◦ dΦ〉h,J1,J2

. (6.5.6)
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In usual symplectic topology one uses the energy to control the L2-norm of the deriva-

tive of a J-holomorphic curve and shows e.g. Gromov compactness of the moduli
space of pseudoholomorphic curves. This should in principle be possible in the gen-
eralized setting. As the focus of this work is not on the examination of a possible gen-

eralization of Gromov compactness and the definition of topological invariants like
Gromov-Witten invariants, we will not go into the details. This will hopefully be part

of future work. But as a first step into that direction we state a proposition and a theo-
rem. The proposition shows that the energy of a J2-holomorphic pair is related to the
pullback of a certain 2-form on M and the theorem shows that under certain condi-

tions one can choose an isotropic embedding λ such that the energy is invariant under
homotopy.

Proposition 6.5.3. Let (Σ, h) be a Riemann surface, (E, q, [·, ·], π) be an exact Courant alge-

broid over M and J1, J2 be almost generalized complex structures such that J1 and J2 are

tamed by each other. Furthermore, let Φ : Σ → M be a map and λ : TM → E be an isotropic

embedding such that (Φ, λ) is a generalized pseudoholomorphic pair with respect to J2. Then

the following generalized energy identity holds:

Eh,J1,J2(Φ, λ) =

∫

Σ

(λ ◦ TΦ)∗ qJ1 =

∫

Σ

Φ∗(λ∗qJ1) . (6.5.7)

Moreover, if J1 and J2 are compatible, it is true that

Eh,J1,J2(Φ, λ) =
〈
∂J2(Φ, λ), ∂J2(Φ, λ)

〉
+

∫

Σ

(λ ◦ TΦ)∗ qJ1 (6.5.8)

for any C1 map Φ : Σ→M and isotropic embedding λ : TM → E.

Proof. We will show this proposition by direct computations using conformal coordi-
nates on Σ. Since Σ is two-dimensional, it is easy to show thatEh,J1,J2(Φ, λ) is invariant

under conformal transformations on Σ. It is also true that any Riemann surface is con-
formally flat. Thus, we are allowed to set without loss of generality hab = δab, i.e.

hss = htt = 1 and hst = hts = 0. Let us start our calculation by recalling that in local
coordinates it is true that (cp. equation (7.1.2))

∂J2(Φ, λ) = ds⊗ 1

2

(
∂φµ

∂s
λ(eµ) +

∂φµ

∂t
J2 λ(eµ)

)

+

+dt⊗ 1

2

(
∂φµ

∂t
λ(eµ)−

∂φµ

∂s
J2 λ(eµ)

)

. (6.5.9)
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Using this and

G(A,B)h,J1,J2 = −
1

2
q({J1,J2}A,B) =

1

2
q(J1A,J2B) +

1

2
q(J2A,J1B) (6.5.10)

we get for the local norm of ∂J2(Φ, λ) the expression

(
∂J2(Φ, λ), ∂J2(Φ, λ)

)

h,J1,J2
=

1

8
q

(

J1

(
∂φµ

∂s
λ(eµ) +

∂φµ

∂t
J2 λ(eµ)

)

,J2

(
∂φν

∂s
λ(eν) +

∂φν

∂t
J2 λ(eν)

))

+

+
1

8
q

(

J2

(
∂φµ

∂s
λ(eµ) +

∂φµ

∂t
J2 λ(eµ)

)

,J1

(
∂φν

∂s
λ(eν) +

∂φν

∂t
J2 λ(eν)

))

+

+
1

8
q

(

J1

(
∂φµ

∂t
λ(eµ)−

∂φµ

∂s
J2 λ(eµ)

)

,J2

(
∂φν

∂t
λ(eν)−

∂φν

∂s
J2 λ(eν)

))

+

+
1

8
q

(

J2

(
∂φµ

∂t
λ(eµ)−

∂φµ

∂s
J2 λ(eµ)

)

,J1

(
∂φν

∂t
λ(eν)−

∂φν

∂s
J2 λ(eν)

))

.

Exploiting the fact that q(JiA,JiB) = q(A,B) the above expression can be rewritten as

(
∂J2(Φ, λ), ∂J2(Φ, λ)

)

h,J1,J2
= −1

2
q

(
∂φµ

∂s
J1λ(eµ),

∂φν

∂t
λ(eν)

)

+

+
1

2
q

(
∂φµ

∂s
J1λ(eµ),

∂φν

∂s
J2λ(eν)

)

+
1

2
q

(
∂φµ

∂t
J2λ(eµ),

∂φν

∂t
J1λ(eν)

)

−

− 1

2
q

(
∂φµ

∂t
J2λ(eµ),

∂φν

∂s
J1J2λ(eν)

)

. (6.5.11)

Another easy calculation which is similar as above shows that the local part of the
generalized energy of (Φ, λ) reads

1

2
(λ ◦ dΦ, λ ◦ dΦ)h,J1,J2 =

1

2
q

(
∂φµ

∂s
J1λ(eµ),

∂φν

∂s
J2λ(eν)

)

+

+
1

2
q

(
∂φµ

∂t
J2λ(eµ),

∂φν

∂t
J1λ(eν)

)

. (6.5.12)

Let us now consider the difference

∆ : =
1

2
(λ ◦ dΦ, λ ◦ dΦ)h,J1,J2 −

(
∂J2(Φ, λ), ∂J2(Φ, λ)

)

h,J1,J2
=

=
1

2
q

(
∂φµ

∂s
J1λ(eµ),

∂φν

∂t
λ(eν)

)

+
1

2
q

(
∂φµ

∂t
J2λ(eµ),

∂φν

∂s
J1J2λ(eν)

)

. (6.5.13)
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As we wish to prove equation (6.5.8), let (Φ, λ) be a generalized pseudoholomorphic

pair. Then equation (6.5.9) implies that in local coordinates

∂φµ

∂s
λ(eµ) = −

∂φµ

∂t
J2 λ(eµ) . (6.5.14)

Therefore,

∆ ∗ 1 = q

(
∂φµ

∂s
J1λ(eµ),

∂φν

∂t
λ(eν)

)

ds ∧ dt = (λ ◦ TΦ)∗qJ1 , (6.5.15)

where we used

(λ ◦ TΦ)∗qJ1(u, v) = q(J1(λ ◦ TΦ)(u), (λ ◦ TΦ)(v)) =

= uavbq

(

J1
∂φµ

∂σa
λ(eµ),

∂φν

∂σb
λ(eν)

)

(6.5.16)

for u, v being vector fields on Σ. Hence, we conclude that for (Φ, λ) being a general-
ized pseudoholomorphic pair, i.e. ∂J2(Φ, λ) = 0, its energy can be expressed as (6.5.7).

Now let Φ : Σ → M be an arbitrary C1 map and λ : TM → E be an isotropic embed-
ding.4 IfJ1 and J2 are compatible, we infer that (6.5.13) still implies (6.5.15). Therefore,
equation (6.5.8) is true, which proves the proposition.

Remarks 6.5.4 1. If λ∗qJ1 is a closed 2-form on M , it is true that the energy of a

generalized pseudoholomorphic pair is invariant under homotopic deformations
of Φ. If J1 and J2 are compatible, it follows that generalized pseudoholomorphic

pairs are local minima of the generalized energy functional. That means that they
are in some sense generalized harmonic maps. These maps should be defined by
analogous considerations as in chapter 4. This will be done somewhere else.

2. The most important case from the viewpoint of the generalized B-model of topo-
logical string theory, compare chapter 5, is E = TM and λ being the canonical

embedding ι. Then it is true that the generalized energy is a topological invariant
for ι∗qJ1 being closed. If we parameterize J1 as

J1 =

(
I1 β1
B1 −I∗1

)

, (6.5.17)

this corresponds to dB1 = 0. It is not the case in general, even for integrable gen-
eralized complex structures, but can be achieved locally after a B-transformation

and diffeomorphism (cp. local Darboux theorem). In physical languange this

4Actually, at this stage λ can be an arbitrary embedding.
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can be achieved by a local canonical transformation. For symplectic manifolds,

i.e. I1 = 0, B = ω and β1 = −ω−1, where dω = 0 and ω antisymmetric and
non-degenerate, the energy is always a topological invariant. Later we will show
that there exists an isotropic embedding λ0 such that dλ∗0qJ1 = 0. In the notation

of chapter 5 this corresponds to the replacement of H by H + dB for some (not
necessarily closed) two-form B.

In order to show that this proposition is consistent with the known cases, let us look at
two examples.

Examples 6.5.5 1. First, we want to consider symplectic manifolds. To this end let

ω be a symplectic structure on M and Jω be the associated generalized complex
structure on the standard Courant algebroid E = TM . Moreover, let J2 be an

almost generalized complex structure which is Jω-tame. In particular such J2

which are associated with a ω-tame almost complex structure J do the job (see
examples 6.3.8). If we take as λ the canonical embedding ι : TM → TM , it

follows that the energy of a J2-holomorphic curve Φ is

E(Φ, ι) =

∫

Σ

Φ∗ι∗Jω =

∫

Σ

Φ∗ω . (6.5.18)

This is exactly the result for pseudo holomorphic curves in symplectic topology.

2. Next we take a look on complex manifolds. Let J be a complex structure on M

and JJ be its associated generalized complex structure. Let J2 be any almost
generalized complex structure which is JJ-tame and let again λ = ι. Then we

obtain for the energy of a J2-holomorphic curve

E(Φ, ι) =

∫

Σ

Φ∗ι∗JJ =

∫

Σ

Φ∗0 = 0 . (6.5.19)

Hence, every generalized pseudoholomorphic curve has vanishing energy in the

complex case. Observe that we may get a different energy if we take another
isotropic embedding λ.

3. The last example which we want to consider here is the product of two general-

ized complex manifolds. If (M,JM
1 ) and (N,J N

1 ) are generalized complex mani-
folds, the productM×N is a generalized complex manifold in a natural way with
generalized complex structure J1 := JM

1 ⊕J N
1 . Any map Φ : Σ→M ×N can be

expressed as the Cartesian product of two maps ΦM : Σ → M and ΦN : Σ → N .
If the isotropic embedding λ is the direct sum of two isotropic embeddings λM
and λN , it follows that the energy of a J2-holomorphic pair (ΦM × ΦN , λM ⊕ λN)
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is the sum of E(ΦM , λM) and E(ΦN , λN):

E(ΦM × ΦN , λM ⊕ λN) =
∫

Σ

(ΦM × ΦN )
∗(λM ⊕ λN)∗q(JM

1 ⊕ J N
1 ) =

=

∫

Σ

(ΦM × ΦN)
∗(λ∗MqJM

1 ⊕ λ∗NqJ N
1 ) =

∫

Σ

Φ∗
Mλ

∗
MqJM

1 +

∫

Σ

Φ∗
Nλ

∗
NqJ N

1 .

(6.5.20)

In particular, if a manifold is the product of a symplectic and a complex manifold,
the energy is dictated by the components of Φ in the “symplectic directions”.

As mentioned above, in order to be able to construct topological invariants, we have
at least to be able to control the energy of J holomorphic pairs. Provided that the

cohomology class of the curvature H vanishes and J1 is a regular generalized complex
structure, the next theorem shows that there is a certain choice of isotropic embedding
λ : TM → E such that the generalized energy of J2-holomorphic pairs is an invariant

under homotopy. More precisely, we prove

Theorem 6.5.6. Let (Σ, h) be a Riemann surface, (E, q, [·, ·], π) be an exact Courant algebroid

over M with vanishing Ševera class [H ] and J1 be a regular generalized complex structure.

Furthermore, let J2 be an almost generalized complex structure which is tamed by J1 and

(Φ0, λ), (Φ1, λ) be two (E,J2)-holomorphic pairs. Then there exists an isotropic embedding

λ : TM → E such that E(Φ0, λ)h,J1,J2 = E(Φ1, λ)h,J1,J2 if Φ0 and Φ1 are homotopic to each

other. Moreover, λ is independent of J2, Φ0, Φ1 and compatible with the projections of E and

TM , i.e. πE ◦ λ = πTM .

Proof. The proof will have several steps. First, we will motivate our choice of isotropic

embedding λ = Λ◦ s for some smooth isotropic splitting s. This will use methods from
[AB06]. Second we will demonstrate that ds∗qΛ−1J1Λ = 0. Standard arguments then

show that the energy is invariant under homotopy.

Because of the fact that by assumption H = dB, it follows that there exists a splitting
s of the exact Courant algebroid such that H = 0. Let us choose such a splitting s :

TM → E. As J1 is regular, the +i-eigenbundle L of J1 can be written as L(D, ǫ) with
D being a subbundle of TM and ǫ ∈ Γ(D,∧2D∗). From L(D, ǫ) being of real index zero,

i.e. L∩L = {0}, it follows thatD⊕D = TM⊗C and ω∆ := Im(ǫ|D∩D) is non-degenerate
on ∆ ⊗ C := D ∩D. As J1 is integrable, we infer that D is involutive (the anchor π is
bracket preserving) and

dDǫ = dDι
∗(B + iω) = ι∗d(B + iω) = 0 . (6.5.21)
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The latter equation implies that ω∆ is closed along the leaves of the foliation given by

the distribution ∆. Next we will show that there is an orthogonal automomrphism Λ

of E covering the identity map such that Λ−1J1Λ is the direct sum of a generalized
complex structure of symplectic type and a generalized complex structure of complex

type. The symplectic structure will be given by ω∆.

Let us construct Λ explicitly. As J2 is tamed by J1, we get a natural metric G on E

induced by J1 and J2. Recall that we chose an isotropic splitting s to get rid of H .
This splitting can be used to define a metric g on TM via g(X, Y ) := G(s(X), s(Y )).
Now let ∆′ denote the orthogonal complement of ∆ with respect to g. Since ∆ is by

assumption a smooth distribution of constant rank and g is a smooth metric, we infer
that ∆′ is smooth, too.5 Combining the facts TM = ∆⊕∆′ and D ⊆ TMC we obtain a

decomposition of D into

D = ∆C ⊕ (D ∩∆′
C
) . (6.5.22)

Indeed, ∆C ⊆ D and D ∩∆′
C
⊆ D implies ∆C ⊕ (D ∩∆′

C
) ⊆ D. Conversely, X ∈ D ⊆

TMC can be written uniquely as X∆ + X∆′ . It is also true that X∆ ∈ ∆C ⊆ D which

yields X∆′ ∈ D. Therefore, it follows that X∆ ∈ ∆C and X∆′ ∈ D∩∆′
C

. Hence, we infer
that D ⊆ ∆C ⊕ (D ∩∆′

C
), obtaining (6.5.22).

Thus,

L(D, ǫ) = L(∆C ⊕ (D ∩∆′
C
), ǫ) . (6.5.23)

Our next step is the construction of an orthogonal automorphism Λ̃ of E such that

Λ̃−1
C
L(D, ǫ) = L(∆C⊕(D∩∆′

C
), ǫ|∆C

+ǫ|D∩∆′
C
) = L(∆, ǫ∆C

)⊕L(D∩∆′
C
, ǫ|D∩∆′

C
) . (6.5.24)

Before proving the existence of Λ̃ let us analyze the type of structures on the right
hand side of (6.5.24). The first question which arises is whether the above structures
are integrable. Observing ∆C = D ∩ D and D being closed under the Lie-bracket it

becomes evident that ∆C is involutive and d∆(ǫ|∆C
) = (dDǫ)|∆C

= 0 (the derivative
is defined via the Cartan formula). In particular ∆ defines a foliation of M into sub-

manifolds of dimension 2n − 2typeJ1. This foliation is called canonical symplectic
foliation. The fact that it is symplectic will be clarified in a moment. In general, ∆′

need not to be involutive. Here, ∆′ is just introduced for calculational reasons. The

result will be independent of it.

Let us now clarify what kind of generalized complex structures they are. The complex

2-form ǫ|∆C
is closed if and only if the real and the imaginary part is closed. Hence,

5It would be sufficient to choose any smooth distribution which is complementary to ∆
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ǫ|∆C
= B̃∆ − iω∆ defines a B-transformation of a symplectic structure

L(∆C, ǫ|∆C
) = eB̃∆

(
e− iω∆∆

)
. (6.5.25)

The transformation B̃∆ and the form ω∆ are real complex 2-forms, i.e. B̃∆ = B̃∆ and
analogously for ω∆. To reveal the nature of the second structure on the right hand side

of (6.5.24) we use the fact that D ∩D = {0} and infer

D ∩∆′
C ∩D ∩∆′

C
= D ∩∆′

C ∩D ∩∆′
C
= (D ∩D) ∩∆′

C ∩∆′
C
= {0} . (6.5.26)

Therefore, it is true that

L(D ∩∆′
C
, ǫ|D∩∆′

C
) = e

ǫD∩∆′
CL(D ∩∆′

C
, 0) , (6.5.27)

is the B-transformation of a complex structure. Hence, we are allowed to write

Λ̃−1
C
L(D, ǫ) = e

B̃∆+ǫ|D∩∆′
C (L(∆C,− iω∆)⊕ L(D ∩∆′

C, 0)) =

= e
B̃∆+ǫ|D∩∆′

C

(
e− iω∆L(∆C ⊕D ∩∆′

C
, 0)
)
=

= e
B̃∆+ǫ|D∩∆′

C

(
e− iω∆ detAnn(D)

)
(6.5.28)

In the second and third line we use the same symbol ω∆ for the extension of ω∆ to TM
by 0, i.e. ω∆|TM\∆ = 0.

We turn again to the construction of Λ and do the ansatz Λ̃ = exp(B). Obviously, Λ̃ is an
orthogonal automorphism covering the identity on M . Since ǫ is a complex differential

form, we infer that ǫ(X, Y ) = ǫ(X, Y ). Let s ∈ Γ(∆) and w ∈ Γ(∆′). Because of the
fact that L has real index zero, it follows that TMC = D ⊕ D. Therefore, w ∈ Γ(∆′) ⊆
Γ(∆′

C
) ⊆ Γ(TMC) combined with w being real yields the unique (uniqueness is implied

by ∆C ∩ ∆′
C
= {0}) decomposition w = d + d with d ∈ Γ(D ∩ ∆′

C
). Now let s ∈ Γ(∆)

and define the real 2-form B as

B|∆ := 0 , (6.5.29)

B|D∩∆′ := 0 , (6.5.30)

−B(w, s) := B(s, w) := 2Re ǫ(s, d) . (6.5.31)

It is easy to see that ǫ being smooth implies B being smooth. It remains to show that
equation (6.5.24) holds. Since

BC(s+ d, s′ + d′) = BC(s, s) +BC(s, d
′) +BC(d, s

′) +BC(d, d
′) =

= BC(s, d
′)− BC(s

′, d) , (6.5.32)
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it is sufficient to prove BC(s, d) = ǫ(s, d) for s ∈ ∆C and d ∈ D ∩∆′
C

. Clearly,

d =
d+ d

2
+ i

d− d
2 i

, where
d+ d

2
,
d− d
2 i
∈ W . (6.5.33)

Assume s is real. Therefore, it follows by definition that

BC

(

s,
d+ d

2

)

= 2Re ǫ

(

s,
d

2

)

= Re ǫ(s, d) (6.5.34)

and

BC

(

s,
d− d
2 i

)

= B

(

s,
d

2 i
+

d

2 i

)

= 2Re ǫ

(

s,
d

2 i

)

= Im ǫ (s, d) . (6.5.35)

Hence, B(s, d) = ǫ(s, d) for s being real. Now let s and d be complex. Then

BC(s, d) = BC

(
s+ s

2
, d

)

+ iBC

(
s− s
2 i

, d

)

= ǫ

(
s+ s

2
, d

)

+ i ǫ

(
s− s
2 i

, d

)

=

= ǫ(s, d) . (6.5.36)

Thus we obtain BC(s, d) = ǫ(s, d) and (6.5.28).

Now we are ready to choose our isotropic embedding λ. Define

λ = Λ ◦ s := Λ̃ ◦ eB̃∆ ◦ eB′ ◦ s = eB+B̃∆+B′ ◦ s , (6.5.37)

where B′ is the real form whose complexification is ǫ|D∩∆′
C
. Observe that i∗(B + B̃∆ +

B′)C = ǫ − (− iω∆) for i : D → TM being the inclusion. The right hand side of the
former equation is in particular independent of ∆′. Because of the fact that Λ covers

the identity on M , the isotropic embedding λ is compatible with the projections of E
and TM , i.e. πE ◦ λ = πTM .

Using proposition 6.4.3 we infer that (Φ, λ) is a J2-holomorphic pair if and only if Φ is
a Λ−1J2Λ-holomorphic curve. Moreover, the proof of proposition 6.5.2 shows that

E(Φ, λ)h,J1,J2 = E(Φ, s)h,Λ−1J1Λ,Λ−1J2Λ . (6.5.38)

We constructed Λ in such a way that Λ−1J1Λ =: J ′
1 is the direct sum of a symplectic

structure and a complex structure.

The next step to prove the theorem is to show that s∗qJ ′
1 is closed at every p ∈ M .

This is a local statement and, hence, we are allowed to work in a local coordinate chart

U containing p. The fact that ∆ integrates to a regular foliation shows that there are
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distinguished directions in M associated with ∆ which we call symplectic directions.

Let p ∈ M . Then in some neighborhood U ′ of p there exist smooth complex coordi-
nates z1, . . . , zk such that {dz1, . . . dzk} are linearly independent and span detAnn(D),
cf. proposition 3.12 in [Gua03]. Let us denote these directions as complex directions.

Since L(D, ǫ) is involutive with respect to the Courant bracket and π is bracket preserv-
ing, it follows that D is involutive and induces a foliation of M . The above complex

coordinats define an integrable complex structure transverse to D. By the Newlander-
Nirenberg theorem there is a diffeomorphism only affecting the complex coordinates
such that the complex structure J induced by J ′

1 is given by the standard complex

structure. Strictly speaking we need the Newlander-Nirenberg theorem for a family
of complex structures. Its existence is mentioned at the end of [NN57]. The complex

coordinates are constant along the leaves of the symplectic foliation. Compare this sit-
uation with the proof of the existence of a complex structure on the leaf space given in
proposition 4.2 in [Gua11]. Weinstein’s proof of the Darboux normal coordinate theo-

rem for a family of symplectic structures shows that there exists a leaf preserving local
diffeomorphism χ : V ′ × V ⊂ R2k × R2n−2k → U and an open neighborhood U of p

such that on each leaf

χ∗ω∆ = ω0 = dx1 ∧ dx2 + . . . dx2n−2k−1 ∧ dx2n−2k . (6.5.39)

Consider from now on U∩U ′ 6= ∅ and denote it for simplicity as U . Since the transverse

complex coordinates are constant along the leaves, it follows that J is unaffected by χ.
Hence, eTχJ ′

1e
Tχ−1

=: J0 is the direct sum of a constant symplectic structure in normal
Darboux form and a constant complex structure in normal form on Ck, where k is the

type of J1. Recall that the type is unchanged by a B-transformation. The generalized
complex structure J0 on V × V ′ reads

J0 =







0 0 −ω−1
0 0

0 J0 0 0

ω0 0 0 0

0 0 0 −J∗
0






, (6.5.40)

where all matrices are constant. Then ω0 being constant implies

0 = ds∗qJ0 = ds∗qeTχJ ′
1e
Tχ−1

= ds∗
(

eTχ
−1
)∗

qJ ′
1 = d

(

eTχ
−1 ◦ s

)∗

qJ ′
1 . (6.5.41)

Here we used
(

eTχ
−1
)∗

(qJ ′
1) (A,B) = (qJ ′

1)
(

eTχ
−1

A, eTχ
−1

B
)

= q
(

J ′
1e
Tχ−1

A, eTχ
−1

B
)

=

= q
(

eTχJ ′
1e
Tχ−1

A,B
)

=
(

q eTχJ ′
1e
Tχ−1

)

(A,B) . (6.5.42)
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Recall that exp(Tχ−1) is the embedding of Tχ−1 into Aut(E). It can be expressed in the

form

eTχ
−1

=

(
Tχ−1 0

0 χ∗

)

, (6.5.43)

acting on E = s(TM)⊕ π∗(T ∗M) for some splitting s. This implies in particular that

exp(Tχ−1) ◦ s = s ◦ Tχ−1 . (6.5.44)

Hence, equation (6.5.42) can be simplified further into

0 = d(s ◦ Tχ−1)∗qJ ′
1 = d

(
χ−1
)∗
s∗qJ ′

1 = (χ−1)∗d s∗qJ ′
1 . (6.5.45)

Since χ−1 is a diffeomorphism, it follows that d s∗qJ ′
1 = 0.

Now let (Φ1, λ) and (Φ2, λ) be two generalized pseudoholomorphic pairs with respect
to J2. Proposition 6.5.3 together with proposition 6.5.2 shows that

E(Φi, λ)h,J1,J2 =

∫

Σ

Φ∗
i (λ

∗qJ1) =

∫

Σ

Φ∗
i (s

∗qJ ′
1) (6.5.46)

Then standard arguments show that E(Φ1, λ)h,J1,J2 = E(Φ2, λ)h,J1,J2 .

Remarks 6.5.7 1. The above constructed λ is even more than an isotropic embed-

ding, it is a smooth isotropic splitting of E for the described case, even though it
is not involutive in general.

2. For such an isotropic embedding the energy is dictated by the components of Φ
in direction of the canonical symplectic foliation, while the complex directions
give vanishing contribution.

3. The proof makes still sense for non-regular J1. It is true that in every regular
neighborhood the + i-eigenbundle is of the form L(D, ǫ). In general situations
this is still the case. But then we have to work with generalized distributions

in the sense of [Sus73]. They are sub-bundles whose rank may vary along M .
Sections in D are finitely generated, but the generating system may be linearly

dependent at some points. The form part ǫ is then a section in the dual object
∧2D∗. If we define a form by its action on vector fields, the above construction
will yield an orthogonal automorphism. But as the case of regular structures is

still general enough to contain manifolds which do not admit any complex or
symplectic structure, cp. examples below, we restricted the above theorem to this

simpler context.
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4. Another problem arises if we do not assume [H ] = 0. The differential form ω∆

will no longer give a symplectic form on each leaf. This is originated in the fact
that dDǫ = i∗H for some splitting s : TM → E with curvature H and i : D → TM

being the inclusion. For general J1 acting on arbitrary exact Courant algebroids

Gualtieri proved in [Gua11] that π ◦ J1 ◦ π∗ : T ∗M → TM is a Poisson bi-vector.
Hence, a generalized complex manifold M is always a Poisson manifold in a

natural way. As such it admits a natural symplectic foliation [Wei83]. Moreover,
the leaf space inherits a natural complex structure (proposition 4.2 in [Gua11]). It
remains to construct an isotropic embedding such that J1 acts as the symplectic

structure in directions of the symplectic foliation and as the complex structure in
complex directions. Such an isotropic embedding would be implicitly given if we

were able to find a complement ∆̃′ to π∗(T ∗M) + J1π
∗(T ∗M) which is isotropic,

stable under J1 and projects isomorphically to a complement of π(J1π
∗T ∗M). We

postpone this for future work.

Examples 6.5.8 1. If we take J1 to be a complex or symplectic manifold, the con-

struction of λ yields λ = ι. Examples 6.5.5 show that this is not surprising, as the
complex case yields zero energy and the symplectic case is the known one.

2. If (M,JM
1 ) and (N,J N

1 ) are generalized complex manifolds, the product M × N
is a generalized complex manifold in a natural way with generalized complex
structure J1 := JM

1 ⊕J N
1 . Obviously, the direct sum of λM and λN , which are the

results of the above construction, is an isotropic embedding rendering the energy
to be invariant.

3. More non-trivial examples are given by nilmanifolds. Some of them do not admit

any known symplectic or complex structures [Sal98]. But they admit generalized
complex structures [CG04]. All examples listed there are generalized complex

manifolds of constant type. If we take as J1 any of those structures, they fulfill
the assumptions of theorem 6.5.6. The differential form B+ B̃∆+B′ is exactly the
real part of the exponent given in table 1 in [CG04].
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7. Local Behavior of Generalized

Pseudoholomorphic Curves

In the last chapter we examined some possible definitions of generalized holomor-
phic maps and defined the objects of interest, namely generalized pseudoholomorphic
curves, tamed structures as well as compatible structures and the generalized energy.

In this chapter we will look at the local behavior of solutions to equation (6.3.1). First,
we will calculate the coordinate expression of this equation. This will yield a gen-

eralization of the nonlinear Cauchy-Riemann equations in complex geometry. After
that we will introduce the generalized energy of a map Φ : Σ → M with values in
a generalized complex manifold. Thereafter, we will use the generalized nonlinear

Cauchy-Riemann equation to establish an identity theorem which tells us that two
curves which coincide at one point σ ∈ Σ up to infinite order are actually equal every-

where. Having proven this theorem we will proceed to the definition of somewhere
injective and simple curves. They play a special role in symplectic topology and we
expect them to do the same in generalized complex geometry. At the end of this chap-

ter we will prove an elliptic regularity theorem for generalized pseudoholomorphic
curves which states roughly that solutions to equation (6.3.1) are as smooth as J .

7.1. Generalized Nonlinear Cauchy-Riemann Equation

As mentioned in the introduction of this chapter, we will establish a local expression
for the generalized pseudoholomorphic equation (6.3.1). This can be done similar to
the complex case. Moreover, we will look at the anti-holomorphic part of λ ◦ dΦ and

give some first indications why it is important. To this end let (E, q, [·, ·], π) be an exact
Courant algebroid over M and (Φ, λ) be an (E,J )-holomorphic pair. That means they

fulfill

J ◦ λ ◦ dΦ = λ ◦ dΦ ◦ jΣ . (7.1.1)

117



CHAPTER 7. LOCAL BEHAVIOR OF GENERALIZED PSEUDOHOLOMORPHIC CURVES

In order to get a local expression and for future purposes, we restate the last equation

as

∂J (Φ, λ) :=
1

2
(λ ◦ dΦ+ J ◦ (λ ◦ dΦ) ◦ jΣ) = 0 . (7.1.2)

Using the local expression of dΦ, i.e. eq. (4.2.13), we get locally

λ ◦ dΦ =
∂φµ

∂σa
dσa ⊗ λ

(
∂

∂xµ

)

(7.1.3)

and

∂J (Φ, λ) =
1

2

(
∂φµ

∂σa
dσa ⊗ λ(eµ) +

∂φµ

∂σa
J ◦ dσa ⊗ λ(eµ) ◦ jΣ

)

=

=
1

2

(
∂φµ

∂σa
dσa ⊗ λ(eµ) +

∂φµ

∂σa
J ◦ j∗Σ(dσa)⊗ λ(eµ)

)

= 0 , (7.1.4)

where we denoted ∂
∂xµ

as eµ. It is very well known that on a two-dimensional surface

any almost complex structure is integrable. Therefore, we can choose coordinates s
and t on Σ such that

jΣ

(
∂

∂s

)

=
∂

∂t
and jΣ

(
∂

∂t

)

= − ∂

∂s
. (7.1.5)

Hence, it follows that

j∗Σ ds(u) = ds(ju) = ds(us∂t − ut∂s) = −ut (7.1.6)

and

j∗Σ dt(u) = dt(ju) = dt(us∂t − ut∂s) = us . (7.1.7)

This induces

j∗Σ ds = −dt and j∗Σ dt = ds . (7.1.8)

Equation (7.1.4) then reduces to

1

2

(
∂φµ

∂s
ds⊗ λ(eµ) +

∂φµ

∂t
dt⊗ λ(eµ) + J

(

−∂φ
µ

∂s
dt⊗ λeµ +

∂φµ

∂t
ds⊗ λ(eµ)

))

=

= ds⊗ 1

2

(
∂φµ

∂s
λ(eµ) + J

∂φµ

∂t
λ(eµ)

)

+ dt⊗ 1

2

(
∂φµ

∂t
λ(eµ)− J

∂φµ

∂s
λ(eµ)

)

= 0

(7.1.9)

118



7.2. IDENTITY THEOREM

which is equivalent to

∂φµ

∂s
λ(eµ) +

∂φµ

∂t
J (φ)λ(eµ) = 0 . (7.1.10)

This is the local form of equation (6.3.1). It will play a crucial role in finding the lo-

cal properties of J -holomorphic pairs and we call it generalized nonlinear Cauchy-
Riemann equation. Before we proceed with our local examination, we should take a

closer look on the definition of ∂J (Φ, λ). It is the anti-holomorphic part of λ ◦ dΦ as a
1-form on Σ with values in Φ∗E. This can be seen from the following consideration.

Let u be a complex vector field on Σ and decompose it into its holomorphic and anti-

holomorphic part with respect to jΣ as u = u(1,0) + u(0,1). Moreover, let us decompose
the complexification of λ ◦ dΦ into its holomorphic and anti-holomorphic part with
respect to J as λ ◦ dΦ = (λ ◦ dΦ)(1,0) + (λ ◦ dΦ)(0,1). Then it is true that

∂J (Φ, λ) =
1

2
(λ ◦ dΦ)(1,0)(u(1,0)) + 1

2
(λ ◦ dΦ)(1,0)(u(0,1))+

+
1

2
(λ ◦ dΦ)(0,1)(u(1,0)) + 1

2
(λ ◦ dΦ)(0,1)(u(0,1))+

+
i2

2
(λ ◦ dΦ)(1,0)(u(1,0))− i2

2
(λ ◦ dΦ)(1,0)(u(0,1))−

− i2

2
(λ ◦ dΦ)(0,1)(u(1,0)) + i2

2
(λ ◦ dΦ)(0,1)(u(0,1)) =

=(λ ◦ dΦ)(1,0)(u(0,1)) + (λ ◦ dΦ)(0,1)(u(1,0)) . (7.1.11)

Therefore, ∂J (Φ, λ) measures how far (λ ◦ dΦ) is not mapping +i-eigenbundles to +i-
eigenbundles, which we call anti-holomorphic. It will also play a crucial role in the

theory of deformations of J -holomorphic pairs. We will consider it, analogous to the
ordinary complex case, as a section in a Banach-bundle and investigate its intersection

with the 0-section in this bundle. Its vertical linearization with respect to some specific
connection ∇ will be the composition of a real Cauchy-Riemann operator and a semi-
Fredholm operator. This makes further examinations more involved than in usual

symplectic topology. We will resolve this issue by defining so called admissible vector
fields along Φ. These questions will be our concern in chapter 8.

7.2. Identity Theorem

In the last section we derived the generalized nonlinear Cauchy-Riemann equation.

Now we will use the former to establish an identity theorem. It states that two pairs
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which are J -holomorphic coincide if their difference vanishes to infinite order and

their isotropic embeddings are the same. We call an integrable function w : Bǫ → Cn

vanishing to infinite order at z = 0 if

∫

|z|≤r

|w(z)| = O
(
rk
)

(7.2.1)

for every k > 0, where Bǫ := {z ∈ C : |z| < ǫ}. If w is smooth, this is equivalent to the

vanishing of the∞-jet of w.

First, we will state a local version of the identity theorem. It is

Theorem 7.2.1. Let φ, ψ ∈ C1(Bǫ,R
2n) such that they are both solutions to (7.1.10) for some

almost generalized complex structure J ∈ C2(R2n,GL(4n,R)) and a fixed embedding λ :

R2n → R4n. If J has bounded derivatives and φ−ψ vanishes to infinite order at some z0 ∈ C,

it follows that φ ≡ ψ.

Before giving the proof we state the global version of the identity theorem. It is a
corollary of theorem 7.2.1 and reads

Corollary 7.2.2. Let Σ be a connected Riemann surface, M be a smooth 2n-dimensional mani-

fold, (E, q, [·, ·], π) be an exact Courant algebroid over M , J be an almost generalized complex

structure on E and J be at least C2 with bounded derivatives. Moreover, let Φ,Ψ : Σ→ M be

two J -holomorphic curves for some fixed isotropic embedding λ : TM → E. If there exists a

σ ∈ Σ such that Φ−Ψ vanishes to infinite order at σ, it holds Φ ≡ Ψ.

Proof. Using theorem 6.4.1 and propositions 6.4.3 and 6.4.4 we are allowed to assume

without loss of generality thatE = TM and λ = ι. Since two curves coincide to infinite
order if they coincide locally to infinite order, the assertion is an immediate corollary

of theorem 7.2.1.

The proof of theorem 7.2.1 will rely on

Theorem 7.2.3 (Aronszajn). Let Ω ⊂ C be a connected open set. Suppose that there is some

constant c such that the function w ∈ W 2,2
loc (Ω,R

n) satisfies the pointwise estimate

|∆w(z)| ≤ c(|w|+ |∂sw|+ |∂tw|) (7.2.2)

almost everywhere in Ω and that w vanishes to infinite order at some point z0 ∈ Ω. Then

w ≡ 0.

Proof. The theorem and its proof can be found in [Aro57].
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Now we are able to give the

Proof of theorem 7.2.1. Using theorem 6.4.1 and propositions 6.4.3 and 6.4.4 we are al-
lowed to assume without loss of generality that E = TM and λ = ι. We would like to

use theorem 7.2.3 to prove the theorem. That means we need to show that there exists
a constant c such that the difference of two J -holomorphic curves satisfies the estimate
(7.2.2). In order to do that, we need to obtain a relation between the Laplace operator

acting on a local generalized pseudoholomorphic curve and its derivative with respect
to t and s. To this end let Ω be a connected subset of C and φ : Ω → R4n be a solution

of (7.1.10) for λ = ι. Then it is true that

(∂s −J ∂t)
(
∂φµ

∂s
(eµ ⊕ 0) + J ∂φ

µ

∂t
(eµ ⊕ 0)

)

=

=
∂2φµ

∂s2
(eµ ⊕ 0) + ∂sJ

∂φµ

∂t
(eµ ⊕ 0)− J ∂

2φµ

∂t ∂s
(eµ ⊕ 0)− J ∂tJ

∂φµ

∂t
(eµ ⊕ 0) =

=
(
∂2sφ

µ + (∂sJ )∂tφµ + J ∂s∂tφµ − J ∂t∂sφµ −J (∂tJ ) ∂tφµ + ∂2t φ
µ
)
eµ ⊕ 0 =

= (∆φµ + (∂sJ )∂tφµ − (∂tJ )∂sφµ) eµ ⊕ 0 (7.2.3)

In the last step we used 0 = ∂tJ 2 = (∂tJ )J +J (∂tJ ) and equation (7.1.10). Therefore,

we get for local J -holomorphic curves

∆φ = (∂tJ )∂sφ− (∂sJ )∂tφ , (7.2.4)

where we set φ := (φµ ι(eµ)). Here it was crucial that we were able to reduce λ to the
canonical embedding ι : TM → TM . If λ is a nonconstant isotropic embedding, we
have to take care of its variation along the map Φ. This would result in additional terms

in equation (7.2.4) involving partial derivatives of λ.

Now let φ and ψ be solutions of (7.1.10). Then a simple calculation shows that

∆(φµ − ψµ)ι(eµ) = (∂t)(φ)∂s(φ
µ − ψµ)ι(eµ)− (∂sJ )(φ)∂t(φµ − ψµ)ι(eµ)+

+ [(∂tJ )(φ)− (∂tJ )(ψ)] ∂sψµι(eµ)− [(∂sJ )(φ)− (∂sJ )(ψ)] ∂tψµι(eµ) (7.2.5)

Since J (p) : R4n → R
4n, every component Jµν fulfills at every z ∈ ω

(∂tJ )µν(φ)− (∂tJ )µν(ψ) =
∫

γ

d(∂tJ )µν . (7.2.6)

Here γ(τ) = ψ(z) + τ(ψ(z)− φ(z)) and τ ∈ [0, 1]. This implies

(∂tJ )(φ)− (∂tJ )(ψ) =
∫

γ

d(∂tJ ) , (7.2.7)
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where we integrate every component for its own. Estimating the absolute value of the

integral by the product of the supremum of the integrand and the length of γ, we arrive
at

|((∂tJ )(φ)− (∂tJ )(ψ)) ∂sψµι(eµ)| ≤ ||d(∂tJ )||∞ |φ− ψ| |∂sψµι(eµ)| . (7.2.8)

A calculation which is completely analogous to the above one shows

|((∂sJ )(φ)− (∂sJ )(ψ)) ∂tψµι(eµ)| ≤ ||d(∂sJ )||∞ |φ− ψ| |∂tψµι(eµ)| . (7.2.9)

If we set

c := Max (||d(∂tJ )||∞ |∂sψµι(eµ)|, ||d(∂sJ )||∞ |∂tψµι(eµ)|, |(∂tJ )(φ)|, |(∂tJ )(ψ)|) , (7.2.10)

it follows that

|∆(φµ − ψµ)ι(eµ)| ≤ c (|∂s(φµ − ψν)ι(eµ)|+ |∂t(φµ − ψν)ι(eµ)|+ |(φµ − ψν)ι(eµ)|)
(7.2.11)

Therefore, the requirements of theorem 7.2.3 are fulfilled. This implies (φµ−ψµ)ι(eµ) =
0. Since ι(eµ) are linearly independent, we infer that φµ = ψµ.

This theorem shows thatJ -holomorphic pairs and in particular J -holomorphic curves
behave much like ordinary pseudoholomorphic curves. At least locally. Later we will

realize the reason for this behavior. A J -holomorphic curve is locally an ordinary J-
holomorphic curve into U × U , where U is some neighborhood in M . This will be dis-
cussed in details later. In ordinary symplectic topology one is interested in the moduli

space of J-holomorphic curves. In order to get finite dimensional smooth manifolds
one considers so called simple curves. As we are interested in the generalization of

symplectic topology to generalized complex topology, it is interesting to consider their
analog, too. This will be done in section 7.4. Before we are able to do that we have to
establish elliptic regularity of solutions to eq. (7.1.10).

7.3. Elliptic Regularity

This section deals with elliptic regularity of J -holomorphic pairs. It is an impor-

tant technical result in the theory of generalized pseudoholomorphic pairs. It states
roughly that solutions to equation (6.3.1) are as smooth as the almost generalized com-

plex structure J . In the theory of usual pseudoholomorphic curves it is proven using

122



7.3. ELLIPTIC REGULARITY

an elliptic bootstrapping argument. A treatment of these matters can be found in ap-

pendix B of [MS04]. There they also include the possibility of ∂Σ 6= ∅. As we will not
be concerned with this in the present work, we restrict ourselves to the case where Σ

has no boundary. But it should be easy to generalize to this case, at least locally.

We will see that it is possible to trace back elliptic regularity of J -holomorphic pairs
to the respective assertions in the ordinary theory. This relies on the fact that locally

J -holomorphic curves look like ordinary pseudoholomorphic curves in a space with
doubled dimension and the second half of the coordinates is set to some fixed point.
Later we will give a precise statement of this fact in theorem 7.4.4. Furthermore, we

will see that if J is integrable, it follows that after choosing a particular splitting s, a
J -holomorphic curve is constant in the symplectic directions and holomorphic in the

complex directions, confer section 8.2.

Let us return to the examination of elliptic regularity of J -holomorphic pairs. We will
show that given an isotropic embedding λ : TM → E, which we assume to be smooth,

solutions Φ of (6.3.1) are as smooth as J . More precisely, we will prove

Theorem 7.3.1 (Elliptic Regularity). Let l ≥ 2 and p > 2. Moreover, let (Σ, jΣ) be a Riemann

surface, M be a smooth 2n-dimensional manifold, (E, q, [·, ·], π) an exact Courant algebroid, J
be a Cl almost generalized complex structure on E and λ : TM → E be a smooth isotropic

embedding. Suppose that Φ : Σ→M is a W 1,p-function such that λ ◦ TΦ ◦ jΣ = J ◦ λ ◦ TΦ.

Then Φ is of class W l,p. In particular l =∞ implies Φ is smooth.

Proof. Choose a splitting s of E. Since λ : TM → E is a smooth embedding, it follows

from theorem 6.4.1 that there exists a smooth orthogonal automorphism Λ of E such
that λ = Λ ◦ s. Because of proposition 6.4.3 it is then true that (Φ, λ) is an (E,J )-
holomorphic pair if and only if Φ is a (E,Λ−1 ◦J ◦Λ)-holomorphic curve. In particular
(Λ−1 ◦ J ◦ Λ) is a Cl almost generalized complex structure. If we denote the almost
generalized complex structure on TM induced by (Λ−1 ◦ J ◦ Λ) asJ ′, proposition 6.4.4

shows that Φ is J ′-holomorphic.

In order to examine the regularity properties of the (E,J )-holomorphic pair (Φ, λ) it
is thus sufficient to look at the regularity properties of J ′-holomorphic curves. This

means Φ is a solution of (6.3.1) for J ′ and λ = ι : TM → TM .

It suffices to prove the result in local holomorphic coordinates on Σ and in local coor-

dinates on M . Hence, we have to show elliptic regularity for solutions to (7.1.10) for
J ′ and λ = ι, i.e.

∂sφ+ J ′(u)∂tφ = 0 , (7.3.1)
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where we set

φ := φµι(eµ) =















φ1

φ2

...

φ2n

0
...

0















. (7.3.2)

Here it is again important to absorb the dependency of λ on the map φ into the almost
generalized complex structure J ′. We have to pushforward J to coordinate charts in

order to get an almost generalized complex structure on R4n.

Since the coordinate maps ξ are diffeomorphisms, it is possible to define the pushfor-
ward of η ∈ T ∗

pM by (ξ∗η)ξ(p)(V ) := ηp((Tpξ)
−1V ), where V ∈ Tξ(p)R

2n ∼= R2n. This

yields a map

eTξ : TpM ⊕ T ∗
pM → Tξ(p)R

2n ⊕ T ∗
ξ(p)R

2n ∼= R
4n . (7.3.3)

It can be used to pushforward the almost generalized complex structure J ′ to get a
Cl−1 almost generalized complex structure J ′ on R4n. We slightly abuse notation and

denote this local structure by the same symbol J ′. In particular it is true that J ′2 = −1.

Now we are able to adopt the proof of the corresponding theorem B.4.1 in [MS04]. This
will be done by induction.

Assume that Ω ⊂ H is an open set and φ is a W 1,p
loc -weak solution of

∂su+ J ′(u)∂tφ = 0 , (7.3.4)

where φ2n+1 = φ2n+1 = . . . = φ4n = 0, cp. eq. (7.3.2). Then it can be shown
by partial integration that φ also fulfills equation (7.3.7) (there it corresponds to u).

Then φ ∈ W 1,p
loc (Ω,R

4n) satisfies the requirements of proposition 7.3.2 with n being
even, k = 1, η = 0 and J being J ′(φ) = J ′ ◦ φ ∈ W 1,p

loc (Ω,R
4n×4n). Therefore,

φ ∈ W 2,p
loc (Ω,R

4n) and J ′ ◦φ ∈ W 2,p
loc (Ω,R

4n×4n). This argument can be repeated to show

that φ ∈ W k,p
loc (Ω,R

4n) implies φ ∈ W k+1,p
loc (Ω,R4n) for k = 1, 2, . . . l− 1. By induction we

infer that φ ∈ W l,p
loc(Ω,R

4n).

The above proof used an elliptic bootstrapping argument based on

124



7.3. ELLIPTIC REGULARITY

Proposition 7.3.2 ([MS04]). Let Ω′ ⊂ Ω ⊂ H be open sets such that Ω′ ⊂ Ω. Moreover, let l

be a positive integer and p > 2. Then for every constant c0 there exists a constant c > 0 with

the following significance. Assume J ∈ W l,p(Ω,R2n×2n) satisfies J2 = −1 and

J(s, 0) = J0 :=

(
0 −1
1 0

)

(7.3.5)

as well as

||J ||W l,p(Ω) ≤ c0 . (7.3.6)

Then the following holds for every k ∈ {0, . . . , l}.
1. If φ ∈ Lploc(Ω,R

2n) and η ∈ W k,p
loc (Ω,R

2n) are such that

ϕ(Ω ∩R) ⊂ R
n × {0} ⇒

∫

Ω

〈
∂sϕ+ JT∂tϕ, φ

〉
= −

∫

Ω

〈ϕ, η + (∂tJ)φ〉 (7.3.7)

holds for every test function ϕ ∈ C∞0 (Ω,R2n), then φ ∈ W k+1,p
loc (Ω,R2n) and φ satisfies

∂sφ+ J∂tφ = η , φ(Ω ∩R) ⊂ R
n × {0} (7.3.8)

almost everywhere.

2. If φ ∈ W k+1,p
loc (Ω,R2n) satisfies the boundary condition φ(Ω ∩R) ⊂ Rn × {0}, then

||φ||W k+1,p(Ω′) ≤ c
(
||∂sφ+ J∂tφ||W k,p(Ω) + ||φ||W k,p(Ω)

)
. (7.3.9)

Proof. The proposition and its proof can be found in [MS04]. There it is proposition
B.4.9.

Remark 7.3.3 I would like to state a short remark on the notations of the above propo-
sition. The subscript “loc” stands for local and indicates the fact that the definig prop-
erty has to be true on each precompact open subset of Ω. For instance W k,p

loc (Ω,R
2n) is

the Sobolov space of maps whose weak derivatives up to order k exist and are in Lp

on each precompact open subset of Ω. The inner product 〈·, ·〉 is given by the standard

inner product in R
2n, whereas C∞0 (Ω,R2n) denotes the class of all smooth maps from Ω

to R2n with compact support.

This section treated an important result. It states in particular that the curve part Φ of
a J -holomorphic pair is smooth if the embedding and the almost generalized complex

structure is smooth.
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7.4. Critical Points, Somewhere Injective Curves and

Simple Curves

As mentioned at the end of section 7.2, this one is devoted to critical points, simple

curves and somewhere injective curves in the generalized complex context. Let λ :

TM → E be a fixed smooth isotropic embedding into an exact Courant algebroid
(E, q, [·, ·], π). By theorem 6.4.1 it is true that λ = Λ ◦ s for an orthogonal automorphism

Λ of E with respect to q and a smooth isotropic embedding s. This Λ can be absorbed
into J . Using proposition 6.4.4 we are allowed to assume without loss of generality

that λ = ι and E = TM , i.e. we can restrict ourselves to J -holomorphic curves.

At the beginning we will show that J -holomorphic curves respect the Carleman simi-
larity principle. Thereafter we will define the relevant objects in definition 7.4.2. After

that we will show that the natural extensions of the corresponding results in the theory
of ordinary pseudoholomorphic curves, which can be found in [MS04], are also true in
the generalized setting. In particular we will show that the set of preimages of a critical

value is finite and, moreover, Φ−1(p) is also finite. Then we will show the main theo-
rem of the local theory of (E,J )-holomorphic curves. It states that (E,J )-holomorphic

curves locally look like ordinary J-holomorphic curves in a space of doubled dimen-
sion. This implies the following immediately. Two J -holomorphic curves which co-
incide at a sequence whose limit is 0 and at 0 itself are connected by a holomorphic

map. The last result concerning critical points will show that two non-constant J -
holomorphic curves can only intersect in at most countably many points and those can

only accumulate at the critical values. Then we will turn to somewhere injective curves
and simple curves. In doing so we will prove that a simple J -holomorphic curve is
somewhere injective and that the set of non-injective points of Φ can only accumulate

at its critical points. At the end we will give two corollaries of this fact.

One important tool in the proof of these results has been established in the last section.

It is the elliptic regularity theorem. Another one is the Carleman similarity principle,

Theorem 7.4.1. Let p > 2, C ∈ Lp(Bǫ,R
2n×2n) and J ∈ W 1,p(Bǫ,R

2n×2n) such that J2 =

−1. Suppose that φ ∈ W 1,p(Bǫ,R
2n) is a solution of

∂sφ(z) + J(z)∂tφ(z) + C(z)φ(z) = 0 , z = s + it (7.4.1)

such that φ(0) = 0. Then there is a δ ∈]0, ǫ[, a map Ξ ∈ W 1,p(Bδ,HomR(C
n,R2n)) and a

holomorphic map f : Bδ → Cn such that Ξ(z) is invertible and

φ(z) = Ξ(z)f(z) , f(0) = 0 , Ξ(z)−1J(z)Ξ(z) = i (7.4.2)

for every z ∈ Bδ.
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Proof. This is theorem 2.3.5. in [MS04]. In their notation φ = u, Ξ = Φ and f = σ.

The significance of the Carleman similarity principle for the present work is the fol-

lowing. Let (Φ, λ) be a J -holomorphic pair. As mentioned above we are able to choose
without loss of generality λ = ι. Then Φ solves equation (6.3.1). In local coordinates

Φ can be represented by a map φ and we saw in the proof of theorem 7.3.1 that J in-
duces an almost generalized complex structure J on R4n, which is in particular almost
complex. Then it is true that φ ⊕ 0 fulfills equation (7.4.1) for n even, J(z) = J (φ(z))
and C = 0. Hence, J -holomorphic curves (and thus also pairs) fulfill the Carleman
similarity principle and the local analytic behavior of Φ is dictated by the holomorphic

map f .

Some notions which are important in the local study of J -holomorphic pairs are those
which can be found in

Definition 7.4.2. Let (Σ, jΣ) be a compact Riemann surface, M be a smooth 2n-dimensional

manifold, (E, q, [·, ·], π) be an exact Courant algebroid over M , J be an almost generalized

complex structure on E, λ : TM → E be a smooth isotropic embedding and Φ : Σ → M be

such that (Φ, λ) is an (E,J )-holomorphic pair. Then we call

1. σ ∈ Σ a critical point of (Φ, λ) iff TzΦ = 0. The image of a critical point is called a

critical value.

2. (Φ, λ) multiply covered if there exists a compact Riemann surface (Σ′, j′), a map Φ′ :

Σ′ → M and a holomorphic branched covering χ : Σ → Σ′ such that (Φ′, λ) is a J -

holomorphic pair and

Φ = Φ′ ◦ χ , deg(χ) > 1 . (7.4.3)

The pair is called simple if it is not multiply covered.

3. (Φ, λ) somewhere injective if Φ : Σ → M is somewhere injective, i.e. if there exists a

σ ∈ Σ such that

TσΦ 6= 0 , φ−1(Φ(σ)) = {σ} . (7.4.4)

A point with this property is named an injective point.

After having defined critical values, simple and somewhere injective points, we should

turn to the examination of these objects. A first question which arises in this context is
how many preimages a critical value has. The answer will tell us that there are only

finitely many and in particular we will show
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Lemma 7.4.3. Let (Σ, jΣ) be a compact Riemann surface, M be a smooth 2n-dimensional

manifold, (E, q, [·, ·], π) be an exact Courant algebroid over M , J be an almost generalized

complex structure on E, λ : TM → E be a smooth isotropic embedding and Φ : Σ → M be

such that (Φ, λ) is an (E,J )-holomorphic pair. Moreover, let J be C1 and Φ be nonconstant.

Then the set

X := Φ−1 ({Φ(σ)|σ ∈ Σ , TzΦ = 0}) (7.4.5)

of preimages of critical values is finite. Furthermore, Φ−1(z) is a finite set for every p ∈M .

Proof. First, we will reduce the assertion from generalized (E,J )-holomorphic pairs

to the case of generalized pseudoholomorphic curves. Afterwards we will proof the
lemma using the Carleman similarity principle.

Let s be a smooth isotropic splitting of E. By theorem 6.4.1 it follows that there exits

a smooth orthogonal transformation Λ such that Λ ∈ C∞ and λ = Λ ◦ s. Therefore,
J ′ := Λ−1 ◦ J ◦ Λ is an almost generalized complex structure which is as smooth as
J . Proposition 6.4.3 shows that (Φ, λ) is an (E,J )-holomorphic pair if and only if Φ is

a (E,J ′)-holomorphic curve. If we denote the almost generalized complex structure
on TM induced by J ′ by J ′, too, proposition 6.4.4 shows that Φ is a J ′-holomorphic

curve. Hence, we are left to prove the lemma for the latter objects.

Since Σ is supposed to be a compact Riemann surface, we need to show that critical
points are isolated. Thus we may work locally without loss of generality.

The proof of theorem 7.3.1 shows that the coordinate maps ξM on M induce a push-
forward of the almost generalized complex structure J ′ on R4n. This structure is also
almost generalized complex, but on R4n. Let us slightly abuse notation and denote this

induced structure by J ′ : R2n → GL(4n,R).

Assume that J ′ is of class C1, Ω ⊂ C and φ : Ω → R2n is a locally J ′-holomorphic

curve. Using theorem 7.3.1 it follows that φ ⊕ 0 : Ω → R
4n is of class W 2,p for every

p <∞. Then φ⊕ 0 satisfies theorem 7.4.1 for J(z) = J ′ ◦φ(z) and C(z) = 0. Obviously,
J(z) is of class C1. This implies that φ ⊕ 0 is the composition of an invertible map Ξ

and a holomorphic map f . Since zeros of holomorphic maps are isolated it follows
that φ−1(p) is discrete in M for every p ∈ M . As M is compact, we infer that φ−1(p)

is finite. If we differentiate equation (7.4.1) for C = 0 with respect to s and define
ψ := ∂sφ⊕ 0 ∈ W 1,p(Ω,R4n) we obtain

∂sψ(z) + J(z)∂tψ + (∂sJ(z))ψ(z) = 0 . (7.4.6)

It is possible to use theorem 7.4.1 again. The same argument as above shows that zeros
of ψ are finite. Differentiating (7.4.1) with respect to t yields that the zeros of ∂tφ are

finite. Hence, it follows that the set of critical points of Φ is finite.
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Up to now we were able to prove our lemmas, propositions and theorems more or less

directly. We saw that the local behavior is exactly the same as we would expect from
the theory of ordinary J-holomorphic curves. We observed that locallyJ -holomorphic
curves fulfill a generalized nonlinear Cauchy-Riemann equation, which looks like the

ordinary one in a space which has doubled dimension and the second half of the co-
ordinates set to a constant. We will call this the local doubling trick. In the ordinary

theory of pseudoholomorphic curves one proves the analogue of lemma 7.4.8 by show-
ing that an almost complex structure looks locally, after some diffeomorphism, as the
standard complex structure on Cn. We can not expect that in the generalized context.

In the best case we are allowed to hope that this would hold up to diffeomorphisms
and a choice of a splitting of E. But it is possible to resolve this problem using the

fact that the convexity radius in a (precompact) finite dimensional manifold is finite
[Whi32]. At the same time we get a precise statement of the above mentioned local
doubling trick. It is

Theorem 7.4.4. Let M be a 2n-dimensional manifold, (E, q, [·, ·], π) be an exact Courant al-

gebroid, J be a Cl almost generalized complex structure on E, λ : TM → E be a smooth

isotropic embedding with respect to q and l > 1. Furthermore, let (Σ, jΣ) be a Riemann surface

and Φ : Σ→ M be such that (Φ, λ) is an (E,J )-holomorphic pair. Then for every σ ∈ Σ there

exist neighborhoods Ω ⊂ Σ of σ and U ⊂ M of Φ(σ), and an almost complex structure J on

U ×U of class Cl such that (Φ, p0) : Ω→ U ×U is a (local) J-holomorphic curve for any fixed

p0 ∈ U .

Proof. Let M , J , Σ, jΣ, Φ, λ and σ be as in the assertion. We will construct U and J

explicitly. Theorem 6.4.1 and propositions 6.4.3, 6.4.4 show that (Φ, λ) is an (E,J )-
holomorphic pair if and only if Φ is a Λ−1 ◦J ◦Λ-holomorphic curve. Let us denote the

generalized complex structure on TM being induced by Λ−1 ◦ J ◦Λ as J ′. The idea of
this proof is to use J ′ to define an almost complex structure on T (U ×U). It is true that

J ′ maps TM ⊕ T ∗M onto and into itself. In order to get an almost complex structure
on some subset of M ×M , we first have to map T ∗M to TM . This can be done by a

Riemannian metric, which every smooth manifold admits.

Let g be an arbitrary smooth Riemannian metric on M . Then it is true that

J ′′ :=

(
1 0

0 g−1

)

J ′

(
1 0

0 g

)

(7.4.7)

is a map J ′′ : TM ⊕ TM → TM ⊕ TM . Recall that T(p1,p2)(M ×M) = Tp1M ⊕ Tp2M .

Equation (7.4.7) only yields an almost complex structure on the diagonal of M ×M .
We will use parallel transport along geodesics inM with respect to g in order to extend

J ′′ to U × U for some open neighborhood U being specified in a moment.
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As we wish to get a well defined map from Tp2M → Tp1M , we have to ensure that there

is exactly one geodesic of specific type connecting p2 and p1. This can be achieved by
looking at a geodesically convex neighborhood of Φ(σ). Its existence has been shown
in [Whi32]. Whitehead calls it a simple convex region. A geodesically convex neigh-

borhood U of Φ(σ) is a neighborhood of Φ(σ) such that every pair of points p1, p2 ∈ U
can be connected along exactly one length minimizing geodesic γ which does not leave

U . Hence, let us choose length minimizing geodesics as the family of curves used in
the above mentioned parallel transport.

Let U be a geodesically convex neighborhood of Φ(σ) and p1, p2 ∈ U . Furthermore,

let Pp2→p1 denote the parallel transport from Tp2M to Tp1M along the uniquely defined
length minimizing geodesic starting at p2 and ending at p1. For X1 ∈ Tp1M and X2 ∈
Tp2M define

J

(
X1

X2

)

:=

(
1 0

0 (Pp2→p1)
−1

)

J ′′

(
1 0

0 Pp2→p1

)(
X1

X2

)

. (7.4.8)

Obviously it is true that J2 = −1. If Pp2→p1 is smooth in every argument, it follows that
J is also of class Cl, like J . Thus we next show that Pp2→p1 is smooth.

We will first argue that length minimizing geodesics connecting p2 and p1 depend

smoothly on p1 and p2. Then we will use this to show that parallel transport along
length minimizing geodesics is a smooth map.

It is well known that given a metric g the exponential map expp(X) with respect to∇ is

smooth in p and X . Hence, γ(t) := expp2(tX) is a smooth geodesic starting at p2 which
depends smoothly on p2 andX . Now let p1, p2 ∈ U and γ denote the length minimizing

geodesic connecting p2 and p1 in U . Then it is true that γ(t) = expp2(tγ̇(0)). Because
of the fact that the exponential map is a local diffeomorphism, it follows that expp2
maps a neighborhood of 0 in Tp2M smoothly to a neighborhood of p1 in M . Hence, the

connecting geodesic from p2 to p1 depends smoothly on p2 and p1. Furthermore, it is
well known that parallel transport of a vector along a curve depends smoothly on the

initial conditions. Therefore, parallel transport along the curve depends smoothly on
p2 and p1, too. Hence, equation (7.4.8) defines an almost complex structure J on U ×U
of class Cl.
Finally, we have to show that there is a neighborhood Ω of σ such that Φ × p0 : Ω →
U × U is a local J-holomorphic curve for every fixed p0 ∈ U .

It is true that Φ(Σ) is a subset of M . As such it can be equipped with the relative

topology induced by the given topology of M . Then open sets W in Φ(Σ) are exactly
those which are intersections with open sets inM , i.e. W ∩V for some open set V ⊂M .

Therefore, U ∩ Φ(Σ) is open in the relative topology on Φ(Σ).
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By theorem 7.3.1 it follows that Φ is of class W l+1,p for every p <∞. Using the Sobolev

embedding theorem this yields Φ being Cl. Therefore, it is in particular continuous. It
is also true that Φ : Σ → M is continuous if and only if Φ : Σ → Φ(Σ) is continuous in
the relative topology. Hence, Ω := Φ−1(U ∩ Φ(Σ)) is open as the preimage of an open

set. Since Φ(σ) ∈ U and Φ(σ) ∈ Φ(Σ), we infer that Ω is a neighborhood of σ.

Finally, we have to check whether Φ× p is a local J-holomorphic curve for every p ∈ U
if Φ is a local J -holomorphic curve. For all σ ∈ Ω it holds

J ◦ T (Φ× p0) =
(
1 0

0 PΦ(σ)→p0

)(
1 0

0 g−1

)

J ′

(
1 0

0 g

)(
1 0

0 Pp0→Φ(σ)

)(
TΦ

0p0

)

=

=

(
1 0

0 PΦ(σ)→p0

)(
1 0

0 g−1

)

J ′

(
TΦ

0∗Φ(σ)

)

=

=

(
1 0

0 PΦ(σ)→p0

)(
1 0

0 g−1

)(
TΦ ◦ jΣ
0∗Φ(σ)

)

=

=

(
TΦ ◦ jΣ

0p0

)

=

(
TΦ ◦ jΣ
Tp0 ◦ jΣ

)

= T (Φ× p0) ◦ jΣ , (7.4.9)

where 0∗Φ(σ) denotes the zero co-vector at Φ(0). Hence, Φ × p0 : Ω → U × U is a local

J-holomorphic curve.

Remarks 7.4.5 1. The above construction can be generalized to connected geodesi-
cally convex manifolds. There it is globally true that two points can be connected

by exactly one length minimizing geodesic. A trivial example is for instance R
n.

A counter example is the sphere S2. If one looks at antipodal points p1, p2, there
are infinitely many length minimizing geodesics which connect p1 and p2.

2. If the manifold is flat, the above construction can also be applied in some sense.
If M is flat, it follows that there is trivial holonomy which in turn shows that

parallel transport along a curve is independent of the curve chosen, as long as
one ensures, that the curve induces trivial monodromy.

3. If we act with J on TΦ × 0, the parallel transport maps the zero at an arbitrary

point to zero at Φ(σ). Therefore, it seems that it might be possible to use any
curve for parallel transport. Then one has to take care of monodromy effects.
Furthermore, it only defines an almost complex structure on U×p. But as we wish

to use the methods of pseudoholomorphic curves, we need an almost complex
structure in a proper neighborhood of Φ(σ). The above construction achieves

this.
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4. In algebraic topology one uses the existence of a geodesically convex neighbor-

hood of a point in a manifold to show that a compact (finite dimensional) mani-
fold obeys a “good covering”,i.e. the coordinate charts are contractible.

An immediate corollary of above theorem and remarks is

Corollary 7.4.6. Let M be a 2n-dimensional smooth manifold, (E, q, [·, ·], π) be an exact

Courant algebroid, J be a Cl almost generalized complex structure on E, λ : TM → E be

a smooth isotropic embedding with respect to q and l > 1. Furthermore, let (Σ, jΣ) be a Rie-

mann surface and Φ : Σ→M be such that (Φ, λ) is an (E,J )-holomorphic pair. If in addition

M is geodesically convex for some arbitrary smooth metric g on M , it follows that there exists

an almost complex structure J of class Cl on M × M with the property that Φ × p for any

p ∈M is a J-holomorphic curve if and only if (Φ, λ) is a J -holomorphic pair.

Proof. The crucial point in the proof is the definition of the almost complex structure
J . If M is geodesically convex, we can adopt the proof of theorem 7.4.4. Since parallel

transport depends smoothly on the initial conditions it follows that J is also of class
Cl.

Remark 7.4.7 This corollary reduces the theory of J -holomorphic pairs on a geodesi-
cally convex manifold to J-holomorphic curves on M ×M . At least as long as we are

not interested in topological invariants. This tells us that the properties of solutions
to equation (6.3.1) can be easily extracted from those of J-holomorphic curves. If one

looks at deformations, one has to be cautious in order to ensure that the second com-
ponent of Φ× p stays constant. It is possible to show that this problem is connected to

admissible vector fields along Φ, confer definition 8.1.6.

Another important technical lemma which we need in the local theory of J -holomor-

phic pairs is

Lemma 7.4.8. LetM be a 2n-dimensional smooth manifold, (E, q, [·, ·], π) be an exact Courant

algebroid, J be a C2 almost generalized complex structure on E and λ : TM → E be a smooth

isotropic embedding with respect to q. Moreover, let Ω ⊂ Σ be an open neighborhood of σ ∈ Σ

and Φ,Ψ : Ω→ M be (E,J )-holomorphic curves with respect to the same λ such that

Φ(σ) = Ψ(σ) , TσΦ 6= 0 . (7.4.10)

Then it is true that the existence of sequences zν , ζν ∈ Ω with

Φ(zν) = Ψ(ζν) , lim
ν→∞

zν = lim
ν→∞

ζν = σ , ζν 6= σ , (7.4.11)
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implies the existence of a holomorphic function χ : Bǫ(0) → ξΣ(Ω) defined in some neighbor-

hood of 0 such that χ(0) = ξΣ(σ) and locally

Ψ ◦ ξΣ = Φ ◦ ξΣ ◦ χ . (7.4.12)

Proof. Let M , J , Σ, jΣ, Φ, λ and σ be as in the assertion. As usual we use theorem 6.4.1
and propositions 6.4.3, 6.4.4 to deduce that (Φ, λ) is an (E,J )-holomorphic pair if and

only if Φ is a Λ−1 ◦ J ◦ Λ-holomorphic curve. Let J ′ := Λ−1 ◦ J ◦ Λ.

Theorem 7.4.4 shows that there is a neighborhood Ω of σ, a neighborhood U of Φ(σ)
and an almost complex structure J on U × U such that Φ × p is an ordinary pseudo-

holomorphic curve in U × U . Suppose without loss of generality that the coordinate
function ξΣ acts on Ω. Otherwise shrink Ω. Furthermore, we can assume without loss

of generality ξΣ(σ) = 0. Thus the assertion follows from the known case of pseudo-
holomorphic curves. We will give the details until the proofs are exactly the same as in
the ordinary theory.

First, we will show that there are nice coordinates of U ×U around Φ(σ)× p. After that
we will prove the assertion by using Carleman’s similarity principle.

As in the proof of theorem 7.4.4 we deduce that Φ is of class Cl. Let z = s + it ∈ ξΣ(Ω)
and w = (w1, w2, . . . , w2n) ∈ C2n where wj = xj + iyj . Take a complex Cl−1 frame Z1, Z2,
..., Z2n of (Φ× p)∗T (U × U)C|Ω such that

Z1(σ), . . . , Z2n(σ) ∈ TΦ(σ)×p(U × U)C , Z1 =
∂
(
(Φ× p) ◦ ξ−1

Σ

)

∂s
. (7.4.13)

Here we identified sections in the pullback-bundle (Φ×p)∗TM with vector fields along
Φ× p, cp. lemma 4.2.1. Define f : ξΣ(Ω)× C2n−1 →M by

f(w1, . . . , wn) := exp(Φ×p)◦ξ−1
Σ (w1)

(
2n∑

j=2

xj
(
Zj ◦ ξ−1

Σ

)
(wj) +

+

2n∑

j=2

yjJ
(
(Φ× p) ◦ ξ−1

Σ (w1)
) (
Zj ◦ ξ−1

Σ

)
(wj)

)

, (7.4.14)

where the exponential map is taken with respect to the Lie derivative. Since ξΣ is a
diffeomorphism, it follows that f is a Cl−1 diffeomorphism of a neighborhood V ∋ 0 in
C2n onto a neighborhood U ′ ∋ Φ(σ)× p in M . It fulfills f(z, 0, . . . , 0) = (Φ× p) ◦ ξ−1

Σ (z)

and

∂f

∂xj
+ J(f)

∂f

∂yj
= 0 , j = 1, . . . , 2n , (7.4.15)
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at all points of the form (z1, 0, . . . , 0). Its inverse ξU×U := f−1 satisfies

ξU×U ◦ (Φ× p) ◦ ξ−1
Σ (z) = (z, 0, . . . , 0) (7.4.16)

and

T(Φ×p)◦ξ−1
Σ (z)ξU×UJ = J0T(Φ×p)◦ξ−1

Σ (z)ξU×U , (7.4.17)

where

J0 =

(
0 12n×2n

−12n×2n 0 .

)

(7.4.18)

The last property used the inverse function theorem Tf(z)(f
−1) = (Tzf)

−1 for f being
regular, the equivalence Tf(z)(f

−1)J = J0Tf(z)(f
−1) ⇔ −J(Tf(z)(f−1))−1 = −Tf(z)f−1J0

and equation (7.4.15).

Since the assertion of lemma 7.4.8 is a local property, the above consideration shows
that we are allowed to assume without loss of generality that U = Cn, J : C2n →
GL(4n,R) is a Cl almost complex structure, and

u(z) := ξU×U ◦ (Φ× p) ◦ ξ−1
Σ (z) = (z, 0) , J(w1, 0) = i , (7.4.19)

wherew = (w1, w̃) with w̃ ∈ C
2n−1. Theorem 7.4.4 shows that u is a local J-holomorphic

curve in U ×U . The proof of Lemma 2.4.3. in [MS04] implies that Ψ× p = (Φ× p) ◦χ =

(Φ ◦ χ) × p for some χ having the required properties. There they used the Carle-

man similarity principle and constructed C explicitly by integrating the derivative of
J along a line of the form (v, τ ṽ).

If we look at the proofs in the local theory of J-holomorphic curves, e.g. concerning
critical points and the property of a curve being somewhere injective, it becomes clear
that the above statements are enough to apply the known proofs for the following

statements word by word. The first one considers the set of intersections of essentially
different J -holomorphic pairs.

Proposition 7.4.9. Let M be a 2n-dimensional smooth manifold, (E, q, [·, ·], π) be an exact

Courant algebroid, J be a C2 almost generalized complex structure on E and λ : TM → E be

a smooth isotropic embedding with respect to q. Furthermore, let Σ0, Σ1 be compact connected

Riemann surfaces without boundary. Suppose Φ0 : Σ0 → M and Φ1 : Σ1 → M are such

that (Φ0, λ) and (Φ1, λ) are (E,J )-holomorphic pairs where Φ0(Σ0) 6= Φ1(Σ1) and Φ0 is

nonconstant. Then the set Φ0
−1(Φ1(Σ1)) is at most countable and can accumulate only at the

critical points of Φ0.
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Proof. The assertion follows from theorem 6.4.1, propositions 6.4.3, 6.4.4, theorem 7.4.4,

lemma 7.4.3 and the proof of proposition 2.4.4. in [MS04]. First, it is clear by lemma
7.4.3 that the assertion is trivial for Φ1 being constant. Hence, assume Φ1 is not constant.
Let X0 ⊂ Σ0 and X1 ⊂ Σ1 denote the sets of critical points of Φ0 and Φ1, respectively. It

is possible to use lemma 7.4.8 to show that for all z0 ∈ Σ0 \X0 the following assertions
are equivalent.

1. There exists a neighborhood U0 ⊂ Σ0 of z0 such that Φ0(U0) ⊂ Φ1(Σ1).

2. There exists a sequence zν ∈ Φ−1
0 (Φ1(Σ)) \ {z0} that converges to z0.

Proving proposition 7.4.9 is equivalent to showing that the setW0 ⊂ Σ0\X0 of all points

z0 which satisfy 1 and 2 is empty. By definition this set is open and relatively closed in
Σ0 \ X0. Assuming W0 6= ∅ implies W0 = Σ0 \ X0 and, hence, by 1 Φ0(Σ0) ⊂ Φ1(Σ1).
In complete analogy it follows that Φ1(Σ1) ⊂ Φ0(Σ0). Thus Φ0(Σ0) = Φ1(Σ1) which

contradicts the assumptions of proposition 7.4.9.

Let us recall the results of this section up to now. After extending the definition of

critical values, somewhere injective curves and simple curves to (E,J )-holomorphic
pairs, we examined the properties of critical values. We proved that the set of preim-
ages of a point p ∈ Φ(Σ) is finite and that the set of intersection points between two

essentially different J -holomorphic pairs, i.e. Φ0(Σ0) 6= Φ(Σ1) for the same λ, is at
most countable and can only accumulate at the critical values. The reason why the

local theory of J -holomorphic pairs is the same as those for J-holomorphic curves is
theorem 7.4.4. It states roughly that the map part of a J -holomorphic pair is locally an
ordinary J-holomorphic curve in U × U ⊂ M ×M for some almost complex structure

J on U×U . Next we will give the generalization of the results for ordinary somewhere
injective pseudoholomorphic curves to generalized pseudoholomorphic pairs. As we

were able to extend important lemmas in the local theory of J-holomorphic curves, the
following proofs can be taken word by word from [MS04].

Let us denote the set of noninjective points, i.e. the complement of the set of injective

points, as

Z(Φ) := {σ ∈ Σ | TσΦ = 0 ∨ #Φ−1(Φ(z)) > 1}. (7.4.20)

Then we are able to formulate

Proposition 7.4.10. Let M be a 2n-dimensional smooth manifold, (E, q, [·, ·], π) be an exact

Courant algebroid, J be a C2 almost generalized complex structure on E and λ : TM → E be

a smooth isotropic embedding with respect to q, (Σ, jΣ) be a compact Riemann surface without

boundary and Φ : Σ→M be such that (Φ, λ) is a simple (E,J )-holomorphic pair. Then (Φ, λ)
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is somewhere injective. Moreover, the set Z(Φ) of noninjetive points is at most countable and

can only accumulate at the critical points of Φ.

Proof. The assertion follows from theorem 6.4.1, propositions 6.4.3, 6.4.4, lemma 7.4.8
and the proof of proposition 2.5.1. in [MS04].

Remark 7.4.11 This proposition shows that the set of injective points of Φ : Σ → M is

open and dense for every J -holomorphic pair (Φ, λ).

Next we will state a global version of lemma 7.4.8. It is

Corollary 7.4.12. Let M be a 2n-dimensional smooth manifold, (E, q, [·, ·], π) be an exact

Courant algebroid, J be a C2 almost generalized complex structure on E and λ : TM → E be

a smooth isotropic embedding with respect to q. Furthermore, let Σ0, Σ1 be compact Riemann

surfaces without boundary and Φj : Σj → M be maps such that (Φj, λ) are simple (E,J )-
holomorphic pairs with Φ0(Σ0) = Φ1(Σ1). Then there exists a holomorphic diffeomorphism

χ : Σ1 → Σ0 such that

Φ1 = Φ0 ◦ χ . (7.4.21)

Proof. As we proved lemma 7.4.3 and proposition 7.4.10 the proof of corollary 2.5.3 of
[MS04] also shows corollary 7.4.12.

Corollary 7.4.13. Let M be a 2n-dimensional smooth manifold, (E, q, [·, ·], π) be an exact

Courant algebroid, J be a C2 almost generalized complex structure on E and λ : TM → E

be a smooth isotropic embedding with respect to q. Furthermore, let Σ0, . . . ,ΣN be compact

Riemann surfaces without boundary and Φj : Σj → M , j = 0, . . . , N be such that (Φj , λ) are

simple (E,J )-holomorphic pairs and Φ0(Σ0) 6= Φj(Σj) for j > 0. Then, for every σ0 ∈ Σ0

and every open neighborhood U0 ⊂ Σ0 of σ0, there exists an annulus A0 ⊂ U0 centered at σ0
such that Φ0 : A0 →M is an embedding, Φ0

−1(Φ0(A0)) = A0 and Φ0(A0) ∩ Φj(Σj) = ∅.

Proof. Proposition 7.4.10, proposition 7.4.9 and the proof of corollary 2.5.4. in [MS04].

We stop here the examination of local properties of (E,J )-holomorphic pairs. The next
chapter treats part of their deformation theory. We will not be able to give a complete
examination but we will get many insights into the global structure of solutions to

(6.3.1).
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8. Deformations of Generalized

Pseudoholomorphic Curves

In the last two chapters we established the foundation of the theory of J -holomorphic
pairs. We gave the relevant definitions and developed the local theory. This chapter

is devoted to the study of deformations of generalized pseudoholomorphic curves.
Equation (7.1.2) will play a special role.

In the ordinary theory one uses its analog to define a section S(Φ) := (Φ, ∂J(Φ)) in a Ba-
nach bundle. Pseudo-holomorphic curves are then the intersection of S with the zero
section. In order to prove that the solutions to (6.1.1) form a finite dimensional mani-

fold one uses transversality arguments. An almost complex structure J is called regu-
lar if the vertical part of the linearization of ∂J(Φ) at J-holomorphic curves is surjective.

It can be shown (cf. for instance [MS04]) that the universal moduli spaceM∗(A,Σ, Jl)

of simple curves representing the homology classA is a separable Banach submanifold
of Bk,p × Jl. Here Bk,p is the Sobolev completion of the Fréchet manifold of all smooth

maps Σ → M . This can be used to prove that the space of regular almost complex
structures is a subset of the second category of J = J(M,ω) or J = Jτ (M,ω), i.e. it con-

tains an intersection of countably many open and dense subsets of J. Since the vertical
part of the linearization of S at a pseudoholomorphic curve is a Fredholm operator
for a regular almost complex structure, the implicit function theorem shows that the

moduli space of J-holomorphic curves is a finite dimensional manifold of dimension

dimM∗(A,Σ; J) = 2n(1− g) + 〈A, c1(M)〉 .

Unfortunately, the situation is not so simple in the generalized context. We will argue
that the vertical linearization of S is the composition of a Fredholm operator DΦ and a

semi-Fredholm operator s. The latter is only semi-Fredholm since its co-kernel is infi-
nite dimensional in general. Thus, the decomposition is semi-Fredholm, too. Even if
we restrict our calculations to the well known case of ordinary J-holomorphic curves,

the generalized vertical differential is only semi-Fredholm. Moreover, if we call a gen-
eralized complex structure regular if its associated vertical differential is surjective,

there are no regular structures. We will resolve this issue by introducing admissible
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vector fields along Φ. They are vector fields inducing deformations inside a gener-

alized distribution of TM in the sense of [Sus73]. We will not give a rigorous proof
of the statement that the resulting object solves all problems in deformation theory of
(E,J )-holomorphic pairs in this work. Instead we will look at the extreme cases of

symplectic and complex manifolds and demonstrate how the new formalism repro-
duces the known results.

In the usual theory one uses the Levi-Civita connection associated with the metric g
built from a symplectic form ω and an ω-tame almost complex structure J to get an
explicit formula for the vertical linearization. In exact Courant algebroids there is no

notion of a Levi-Civita connection since there is no tensorial torsion. Instead, we will
define a torsion operator T on a Courant algebroid, which will not be a tensor. But it

will transform as a tensor if we restrict it to an isotropic sub-bundle of E. This will be
enough to be able to construct the vertical part of S and to show that it is the above
mentioned composition.

8.1. The Vertical Differential and Admissible Vector Fields

This section is devoted to the construction of the linearization of the vertical part of S.

To this end let us start with

Definition 8.1.1. Let (π, E,M, q, [·, ·]) be an exact Courant algebroid and ∇ : Ω0(M,E) →
Ω1(M,E) be a connection on E. Then we define the generalized torsion operator T associated

with∇ as

T (A,B) := ∇π(A)B −∇π(B)A− [A,B] . (8.1.1)

Remarks 8.1.2 1. Since ∇ is a usual connection on the vector bundle E, the differ-

ence of the covariant derivatives behaves like a usual Lie-bracket. On the other
hand, the Courant bracket [A,B] behaves only like a usual Lie-bracket if we re-

strict A,B to lie inside some almost Dirac structure, cf. appendix A. This is the
reason why T is not a tensor on E.

2. There is a natural way to generalize the notion of a Levi-Civita connection to exact

Courant algebroids. The resulting object is not a connection anymore, but it is a
connection up to exact terms. Let us call it the Levi-Civita operator∇0. Restricted
to any almost Dirac-structure it is a usual connection on that subbundle. Since

we will not need it in the following, we will not go into the details. But for seek
of completeness, let us write down its expression. By considering

π(A)G(B,C)− π(C)G(A,B) + π(B)G(C,A)
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and demanding that

π(A)G(B,C) =
(
∇0
π(A)G

)
(B,C) +G(∇0

π(A)B,C) +G(B,∇0
π(A)C) , (8.1.2)

∇0
XG = 0 , as well as (8.1.3)

∇0
π(A)B −∇0

π(B)A− [A,B] = 0 , (8.1.4)

a simple calculation shows that

G(∇0
π(A)B,C) =

1

2
(π(A)G(B,C)− π(C)G(A,B) + π(B)G(C,A)−
−G([B,A], C)−G([A,C], B)−G([B,C], A)) . (8.1.5)

It is clear that there is no connection on an exact Courant algebroid which is torsion
free on E. The best we could hope for is a connection which is torsion free in some
subbundle of E. If we choose a splitting s of E, it is natural to demand that∇ is torsion

free in s(TM). Furthermore, in order to be able to parameterize the deformations of Φ
by geodesics pointing in the direction of a vector field along Φ, we have to ensure the

existence of geodesics with respect to a connection ∇.

Let us next define this connection. Since we are interested in the moduli space of
generalized pseudoholomorphic curves with respect to an almost generalized complex

structure J2 which is tamed by J1, we are aware of a metric G. It is given in equation
(6.3.8). This metric can be used to give a metric on TM via g = s∗G, i.e.

g(X, Y ) := G(s(X), s(Y )) . (8.1.6)

Now let∇ be the Levi-Civita connection associated withfd g. Observing E = s(TM)⊕
π∗(T ∗M) ∼= TM ⊕ T ∗M , where the bracket is a H-twisted version of the standard

Dorfman-bracket, let us define

∇XA = ∇X(s(Y ) + π∗(ξ)) := s(∇XY ) + π∗(∇∗
Xξ) +

1

2
π∗(iXiYH) . (8.1.7)

We call ∇ the generalized Levi-Civita connection. Recall that

H(X, Y, Z) = s∗([s(X), s(Y )])(Z) . (8.1.8)

Some of the properties of∇ can be found in

Proposition 8.1.3. Let (E, q, [·, ·], π)) be an exact Courant algebroid and ∇ be the operator

defined in equation (8.1.7). Then ∇ is a connection on E which is torsion free in s(TM) and

π∗(T ∗M). Furthermore, γ : [0, 1]→ M is a geodesic with respect to ∇ if and only if

∇γ̇s(γ̇) = 0 . (8.1.9)
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Proof. Let us first show that equation (8.1.7) defines a connection on E. The following

equations are evident:

∇fXB = f∇XB , (8.1.10)

∇X+YC = ∇XC +∇YC , (8.1.11)

∇X(B + C) = ∇XB +∇XC . (8.1.12)

Using the fact that ∇ and∇∗ are connections it follows that

∇X(fB) = s(∇XfY ) + π∗(∇∗
Xfξ) +

1

2
(iX ifYH) = s (X [f ]Y + f∇XY )+

+ π∗(X [f ]ξ + f∇∗
Xξ) +

1

2
π∗(fiX iYH) = X [f ]B + f∇XB . (8.1.13)

Hence, ∇ is a connection on E, indeed. Since E ∼= TM ⊕ T ∗M and the bracket is

mapped to the H-twisted Dorfman-bracket, it follows that

T (s(X), s(Y )) = ∇π◦s(X)s(Y )−∇π◦s(Y )s(X)− [s(X), s(Y )]H =

= ∇Xs(Y )−∇Y s(X)− π∗(iX iYH)− s([X, Y ]) =

= s(∇XY −∇YX − [X, Y ]) = 0 , (8.1.14)

where we used ∇ being torsion free. Moreover, π ◦ π∗ = 0 yields

T (π∗(η), π∗(ξ)) = ∇0η −∇0ξ − [0⊕ η, 0⊕ ξ]H = 0 . (8.1.15)

Finally, let γ : I →M be a smooth curve in M . As H is antisymmetric, it follows that

∇γ̇s(γ̇) = s(∇γ̇ γ̇) +
1

2
π∗(iγ̇iγ̇H) = s(∇γ̇ γ̇) . (8.1.16)

Hence,∇γ̇s(γ̇) = 0 if and only if γ is a geodesic with respect to ∇.

In order to be able to either compute the generalized chiral ring in topological string

theory or to be able to construct generalized Gromov-Witten invariants, it is impor-
tant to know the structure of J -holomorphic curves. In particular the question arises

whether they form a finite dimensional manifold and how far their moduli space is
compact. We will not be able to answer this question in this work, but we will take
a step towards an answer of the first question. To this end we have to construct the

generalization of the vertical differential DΦ from ordinary J-holomorphic curves. It
is the linearization of the vertical part of (Φ, ∂J (Φ)), where the vertical directions are

induced by a connection ∇ on E.
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Let us assume that we found the structure of the “moduli space” of solutions to equa-

tion (6.3.1). If we take a look at the neighborhood of some J -holomorphic curve Φ,
it is given by all small deformations Φ′ of Φ such that Φ′ is still a solution of (6.3.1).
Therefore, we should first think of how to parameterize deformations of Φ.

Let Φt be a smooth family of curves Φt : Σ→M . An infinitesimal deformation is given
by

d

dt
Φt(σ) = ξ(σ) ∈ TΦ(σ)M , (8.1.17)

hence, a vector field ξ along Φ.

Since the exponential map is locally a diffeomorphism, we can use geodesics starting

at Φ(σ) to generate all small finite deformations out of infinitesimal ones. This gives us
smooth deformations of Φ. A W k,p-neighborhood of Φ in W k,p(Σ,M) is diffeomorphic
to a W k,p-neighborhood of 0 in W k,p(Σ,Φ∗TM) via the geodesic flow in direction of ξ

Φ 7→ expΦ(ξ) , expΦ(ξ)(σ) := expΦ(σ)(λξ(σ))|λ=1 . (8.1.18)

Here expΦ(ξ)(σ) is the evaluation at λ = 1 of the geodesic γ(λ) starting at Φ(σ) with
γ̇(0) = ξ(σ). We wish to find deformations which are still J -holomorphic curves.
Therefore, we have to search for vector fields ξ along Φ such that ∂J (expΦ(ξ)) = 0. To

be able to use transversality arguments, we have to transport ∂J (expΦ(ξ)), which is an
element of Ω(0,1)(Σ, expΦ(ξ)

∗E), back to Φ. This can be achieved by pointwise parallel

transport, with respect to some connection ∇̃, of ∂J (expΦ(ξ))(ζ) along the geodesic
expΦ(λξ)(σ). We have to ensure that this connection preserves the almost generalized
complex structure J . To this end let us define a new connection

∇̃XA := ∇XA−
1

2
J (∇XJ )A . (8.1.19)

It preserves J ,

(∇̃XJ )A = ∇̃X(JA)− J ∇̃XA = (∇XJ )A+ J∇XA−
1

2
(∇XJ )A−J∇XA−

− 1

2
(∇XJ )A = 0 . (8.1.20)

Let us denote the complex bundle isomorphism given by pointwise parallel trans-
port along γσ(λ) := Φλ(σ) := expΦ(σ)(λξ(σ)) as ΨΦ(ξ) : Φ∗E → Φ∗

λE (we parallel

transport using ∇̃ and geodesics are with respect to ∇). Then define an operator
FΦ : Ω0(Σ,Φ∗TM)→ Ω(0,1)(Σ,Φ∗E) via

FΦ(ξ) := ΨΦ(ξ)
−1 ◦ ∂J (expΦ(ξ)) . (8.1.21)
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This map is precisely the vertical part of ∂J (Φ) induced by ∇̃. The following argument

shows that it is an anti-holomorphic one form, indeed.

The two assertions “FΦ(ξ) is an anti-holomorphic one form” and “J ◦ FΦ(ξ) ◦ jΣ =

FΦ(ξ)” are obviously equivalent. Since J ◦ ∂J (Φ) ◦ jΣ = ∂J (Φ), we have to show that

J ◦ ΨΦ(ξ) = ΨΦ(ξ) ◦ J for all ξ, Φ and J . The latter statement means that parallel
transport has to preserve the + i-eigenbundle. Let

P± :=
1

2
(1∓ iJ ) (8.1.22)

be the projection from E to the ± i-eigenbundle of J . Using∇XJ = 0 it follows that

∇̃γ̇A = P±∇̃γ̇X (8.1.23)

for any curve γ in M . If A is the parallel transport of A0 along γ, i.e. a solution of

∇γ̇A = 0 with boundary condition A(0) = A0 and P±A0 = A0, we deduce that P±A is
a solution of the same boundary value problem. From the theorem of Picard-Lindelöf

we infer that P±A = A for all t which means that parallel transport with respect to ∇̃
preserves J . Thus, equation (8.1.21) is true and FΦ(ξ) ∈ Ω(0,1)(Σ,Φ∗E).

Now we turn to the linearization of FΦ at 0. If Φ is a J -holomorphic curve, it is the

linearization DΦ of ∂J (Φ) and we call it the generalized vertical differential. For non
J -holomorphic curves we use DΦ(ξ) := TFΦ(0)ξ as a definition. An explicit formula
of DΦ can be found in

Proposition 8.1.4. Let M be a smooth 2n-dimensional manifold, (E, q, [·, ·], π) be an exact

Courant algebroid over M , s be a smooth isotropic splitting of E, J be an almost generalized

complex structure on E and Φ : Σ→ M be a smooth map. Define the operator

DΦ : Ω0(Σ,Φ∗TM)→ Ω0,1(Σ,Φ∗E) (8.1.24)

by DΦ(ξ) := TFΦ(0)ξ. Then

DΦξ = DΦ ◦ s(ξ) ∀ ξ ∈ Ω0(Σ,Φ∗TM) , (8.1.25)

where

DΦX =
1

2
((Φ∗∇)X+ J (Φ) ◦ (Φ∗∇)X ◦ jΣ)−

1

2
J (Φ)(∇π(X)J )(Φ) ◦ ∂J (Φ) (8.1.26)

and ∂J (Φ) :=
1
2
(s ◦ dΦ−J ◦ s ◦ dΦ ◦ jΣ) for all X ∈ Ω0(Σ,Φ∗E).
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Proof. Let us slightly abuse notation and denote sections in Φ∗TM and vector fields

along Φ by the same symbol ξ. Our first step towards a proof of this proposition is to
show that

d

dλ
FΦ(λξ)

∣
∣
∣
∣
λ=0

= ∇̃λ ◦ΨΦ(λξ) ◦ FΦ(λξ)
∣
∣
∣
λ=0

, (8.1.27)

where ∇̃λ denotes the (pointwise) connection along the curve λ 7−→ expΦ(σ)(λξ(σ)) =

γσ(λ). For any connection ∇t along a smooth curve γ it is true that

∇tA(t) = ∇γ̇A(t) = lim
h→0

(
P
γ
t+h,t(A ◦ γ)−A ◦ γ(t)

)
. (8.1.28)

Here, Pγ
t+h,t(A◦γ) denotes the parallel transport of the vector fieldA◦γ along the curve

γ with respect to∇ starting at γ(t) and ending at γ(t+h). In the case at hand this yields

∇̃λ

(
ΨΦ(σ)(λξ(σ))FΦ(σ)(λξ(σ))(ζ)

)
∣
∣
∣
λ=0

= lim
h→0

(
ΨΦ(σ)(hξ(σ))

−1ΨΦ(σ)(hξ(σ))

×FΦ(σ)(hξ(σ))(ζ)−ΨΦ(σ)(0)FΦ(σ)(0)(ζ)
)∣
∣
λ=0

=

= lim
h→0

(
FΦ(σ)(hξ(σ))− FΦ(σ)(0)

)
(ζ) =

d

dλ
FΦ(σ)(λξ(σ))(ζ)

∣
∣
∣
∣
λ=0

, (8.1.29)

where ζ is a vector field along γσ. Hence, we are able to simplify the linearization of
FΦ at 0 and evaluated at σ ∈ Σ,

TFΦ(σ)(0)ξ =
d

dλ
FΦ(σ)(λξ(σ))

∣
∣
∣
∣
λ=0

= ∇̃λ ◦ ∂J
(
expΦ(σ) (λξ(σ))

)
= (8.1.30)

= ∇̃γ̇σ ◦
1

2
(s ◦ dΦλ(σ) + J ◦ s ◦ dΦλ(σ) ◦ jΣ)

∣
∣
∣
∣
λ=0

. (8.1.31)

A straight forward computation which uses the fact that ∇̃γ̇σJ = 0 and γ̇σ|λ=0 = ξ(σ)

yields

∇̃λ ◦ ∂J
(
expΦ(σ) (λξ(σ))

)
=

1

2
(∇γ̇σ ◦ s ◦ dΦλ(σ) + J ◦ ∇γ̇σ ◦ s ◦ dΦλ(σ) ◦ jΣ)

∣
∣
∣
∣
λ=0

− 1

2
J (Φ(σ)) ◦

(
∇ξ(σ)J

)
(Φ(σ)) ◦ ∂J (Φ(σ)) . (8.1.32)

In order to simplify the expression ∇γ̇σ ◦ s ◦ dΦλ(σ)|λ=0, us show that [γ̇, γ′] = 0 for any

sufficiently smooth γ : U ⊂ R2 → M and in particular for γ(t1, t2) = expΦ(σ(t2))(t1ξ).
For a coordinate chart (U, ξU) on M it is true that

[γ̇, γ′](f) = γ̇(γ′(f))− γ′(γ̇(f)) =
(
∂xν

∂t1

∂

∂xν
∂γµ

∂t2
− ∂xν

∂t2

∂

∂xν
∂γµ

∂t1

)
∂f

∂xµ
= (8.1.33)

=

(
∂2(ξµM ◦ γ)
∂t1∂t2

− ∂2(ξµM ◦ γ)
∂t2∂t1

)
∂f

∂xµ
= 0 . (8.1.34)
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Here, ξµM is the µ-th component of the coordinate map. Hence, we deduce that

[γ̇σ, dΦλ(ζ)] = 0 . (8.1.35)

Since ∇ is torsion free in s(TM), it holds

(∇γ̇σ ◦ s ◦ dΦλ)|λ=0 (ζ) = ∇dΦλ(ζ)s ◦ γ̇σ
∣
∣
λ=0

= ∇dΦ(ζ)(s ◦ ξ) = (Φ∗∇)ζs ◦ ξ . (8.1.36)

Combining equations (8.1.32) and (8.1.36) yields the desired result.

Remark 8.1.5 The operator DΦ is a real linear Cauchy-Riemann operator and, hence,
Fredholm. On the other hand, s is only semi-Fredholm as its co-kernel is naturally

isomorphic to π∗(T ∗M), which is infinite dimensional.

It seems natural to call an almost generalized complex structure J regular, if and only

if DΦ is surjective at a J -holomorphic curve Φ. If J = JJ is associated with an almost
complex structure, it is easy to see that DΦ ◦ s = s ◦ DΦ, where DΦ is the usual ver-

tical differential known from the theory of ordinary J-holomorphic curves. This also
shows that even in the almost complex case DΦ ◦ s is not Fredholm. But the image of
Ω0(Σ,Φ

∗TM) under DΦ ◦ s is isomorphic to Ω0,1(Σ,Φ∗TM) via the projection to TM ,

i.e. the map induced by π : E → TM . That implies that π ◦ D = π ◦ DΦ ◦ s = DΦ. This
situation is in a naive sense similar to two curves intersecting transversally in a plane

but not being transversal to each other in 3-dimensional space.

One of the main difference between pseudoholomorphic and generalized pseudoholo-
morphic curves lies in the fact that I does not square to − id in general and TΦ has

to be a map into kerB. However, on kerB, it is I2 = − id. If we restrict ξ to vector
fields along Φ such that the differential of the induced deformation Φt via the geodesic
flow in direction of ξ, i.e. Φt = expΦ(tξ), is in kerB for all t, we tackled the problem of

TΦ(TΣ) ⊆ kerB. Let us call these vector fields admissible.

Definition 8.1.6. Let (Σ, jΣ) be a Riemann surface, (M, g) be a 2n-dimensional compact Rie-

mannian manifold, (E, q, [·, ·], π) be an exact Courant algebroid overM , s be a smooth isotropic

splitting of E, J be an almost generalized complex structure on E and B := s∗ ◦ J ◦ s. Fur-

thermore, let Φ : Σ→M be a map which obeys TΦ ∈ kerB and ξ ∈ Ω0(Σ,Φ∗TM) be a vector

field along Φ. Then we call ξ an admissible vector field along Φ, if

∀λ ∈ [0, 1] : T expΦ(λξ)(TΣ) ⊆ kerB , (8.1.37)

The set of all admissible ξ along Φ is denoted as V(s,Φ;J ).
Remarks 8.1.7 1. For any σ ∈ Σ it is true that fξ ∈ V(s,Φ,J ) for ξ ∈ V(s,Φ;J )σ

and f ∈ C∞(Σ, [0, 1]). In particular, if {ρi} is a partition of unity with respect to a

good covering, it follows that ρiξ is an admissible vector field along Φ.
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2. It is an important question whether V(s,Φ;J ) is complete in the topology being

induced by that on Ω0(Σ,Φ∗TM). We will not address this question in this work,
but we will examine that in the future.

How can we use admissible vector fields along Φ to tackle the deformation problem of
generalized pseudoholomorphic curves? The answer to this question will be given in

the following. The kernel of B is a generalized smooth subbundle of TM . That means
it is locally generated by smooth vector fields but its rank is allowed to vary along M .
If the rank is constant, we call kerB regular. In order to be able to use constructions

analogous to proposition 8.1.4, we need a connection on kerB. If kerB is regular, this is
a usual connection on the smooth vector bundle kerB. If kerB is not regular, we call an

operator ∇B : Ω0(M, kerB) → Ω1(M, kerB) a connection on kerB if it obeys the usual
properties

∇B
X+Y s = ∇B

Xs+∇B
Y s , (8.1.38)

∇B
fXs = f∇Xs , (8.1.39)

∇B
X(s+ t) = ∇B

Xs+∇B
Xt and (8.1.40)

∇B
X(fs) = X [f ]s+∇B

Xs , (8.1.41)

for all X , Y ∈ Γ(M,TM) s , t ∈ kerB and f ∈ C∞(M,R). If kerB is a smooth vec-
tor subbundle of TM (of possibly varying rank), we can project smoothly onto kerB.

Obviously we can project TpM onto kerBp at any p ∈ M . This can be done smoothly
as the following argument shows. Let us look at a open neighborhood U of p. Since

kerB is finitely generated, there exist a minimal number of smooth local sections s1,
..., sN ∈ kerB which generate kerB|U . Observe that s1, ..., sN cannot supposed to be
linearly independent since rank kerB may not be constant along M . Recall that we

are aware of a metric g on M since we examine (E,J2)-holomorphic curves where
J2 is tamed by a generalized complex structure J1. Hence, a projection operator

prkerB ∈ Ω1(M, kerB) on U is given by orthogonal projection of TM onto kerB with
respect to g:

prkerB :=

N∑

i=1

1

g(si, si)
isig ⊗ si (8.1.42)

prkerB(X) =
N∑

i=1

g(si, X)

g(si, si)
si . (8.1.43)

It is smooth because g is smooth and acts as idkerB on kerB. We claim that a connection
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on kerB is given by

∇B := prkerB ◦∇ , (8.1.44)

∇B
Xs = prkerB(∇Xs) . (8.1.45)

for ∇ being the Levi-Civita connection associated with g. To justify this we have to
show that equations (8.1.38) - (8.1.41) hold. Since prkerB is linear, equations (8.1.38) -

(8.1.40) are evident. The last property can be inferred from

∇B
X(fs) = prkerB(∇Xfs) = prkerB (X [f ]s+ f∇Xs) = X [f ] prkerB (s) + (8.1.46)

+ f prkerB(∇Xs) = X [f ]s+∇B
Xs . (8.1.47)

Therefore, ∇B is a connection on kerB. The fact that J squares to −1 implies in par-

ticular that BI − I∗B = 0. Hence, kerB is stable under I = π ◦ J ◦ s which squares to
− idkerB. Moreover, ∇B being a connection on kerB shows that

(
∇B
XI
)
s = ∇B

X(Is)− I∇B
Xs ∈ kerB . (8.1.48)

Hence, we infer that ∇B
XI is a map from kerB to kerB. In particular it is true that

(∇B
XI)I + I∇B

XI = 0. In analogy to equation (8.1.19) we define a new connection

∇̃B
Xs := ∇B

Xs−
1

2
I
(
∇B
XI
)
s , (8.1.49)

which preserves I . Let us denote the complex bundle isomorphism given by pointwise
parallel transport along γσ(λ) = expΦ(σ)(λξ(σ)) as ΨB

Φ(ξ) : Φ
∗ kerB → Φ∗

λ kerB (we par-

allel transport using ∇̃B and geodesics are with respect to∇). Then define an operator
FBΦ : V(s,Φ;J )→ Ω(0,1)(Σ,Φ∗ kerB) via

FBΦ (ξ) := ΨB
Φ(ξ)

−1 ◦ π ◦ ∂J (expΦ(ξ)) . (8.1.50)

This map is the analogous expression to equation (8.1.21). Recall definition 8.1.6 and

∂J (Φ) = s ◦ ∂I(Φ) for TΦ ∈ kerB. Moreover, kerB being linear and stable under the
action of I implies ∂I(Φ)(u) ∈ Γ(Φ(Σ), kerB) for u ∈ Γ(Σ, TΣ). Now we are ready to

state

Proposition 8.1.8. Let M be a smooth 2n-dimensional manifold, (E, q, [·, ·], π) be an exact

Courant algebroid over M , s be a smooth isotropic splitting of E, J be an almost generalized

complex structure on E and Φ : Σ→ M be a smooth map. Define the operator

DBΦ : V(s,Φ;J )→ Ω0,1(Σ,Φ∗ kerB) (8.1.51)

by DBΦ (ξ) := TFBΦ (0)ξ. We call this the reduced generalized vertical differential. Then

DBΦ (ξ) =
1

2

(
∇B
ξ ◦ dΦ+ I(Φ) ◦ ∇B

ξ ◦ dΦ ◦ jΣ
)
− 1

2
I(Φ)(∇B

ξ I)(Φ) ◦ ∂I(Φ) (8.1.52)

for all ξ ∈ V(s,Φ;J ), where ∂I(Φ) :=
1
2
(dΦ− I ◦ dΦ ◦ jΣ).
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Proof. If we use the considerations above proposition 8.1.8, the same argumentation as

in the proof of proposition 8.1.4 also shows proposition 8.1.8.

In order to be able to use transversality arguments, we need to find a generalization of

regular almost complex structures. The term “regular” is already used in generalized
complex geometry. There it is a generalized complex structure such that its associated
Poisson structure π ◦ J ◦ π∗ is regular, i.e. has constant rank. Thus we name the

generalization of a regular almost complex structure a nonsingular almost generalized
complex structure. More concretely we state

Definition 8.1.9. Let M be a smooth 2n-dimensional manifold, (E, q, [·, ·], π) be an exact

Courant algebroid over M , s be an isotropic splitting of E, J be an almost generalized complex

structure on E and A ∈ H2(M,Z). An almost generalized complex structure is called nonsin-

gular for A and Σ if DBΦ is surjective for every (E,J )-holomorphic curve Φ representing the

homology class A.

Here we stop the search for a solution of the deformation problem in the general

case. But before looking at some simple examples we should take a moment to think
about how to proceed the examination of the moduli space of (E,J )-holomorphic
curves. As a next step we should examine whether V(s,Φ;J ) is a Banach space or at

least whether there is some completion with respect to a Sobolev norm. The question
whether V(s,Φ;J ) is a vector space might be problematic to answer. After answering

these questions we should show thatDBΦ is a Fredholm operator and whether the set of
nonsingular almost generalized complex structures is of the second category in the set
of all J1-tamed or J1-compatible almost generalized complex structures. IfDBΦ is Fred-

holm and J is nonsingular and kerB is regular it follows from the implicit function
theorem that the moduli space of (E,J )-holomorphic curves is a finite dimensional

manifold. All these considerations will be done somewhere else.

Instead, we will simplify the situation by some assumptions. This will be done in the
following section. It will be the last section of this work.

8.2. Examples

As mentioned at the end of the last section we will make some assumptions which will

simplify the deformation problem. Their treatment is done in the following subsec-
tions. For simplicity we set E = TM ⊕ T ∗M with s(X) = X ⊕ 0 and H = 0, i.e. we

consider untwisted generalized complex geometry.
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8.2.1. Almost Complex Manifolds

As a first example we should show that ordinary pseudoholomorphic curves are cov-
ered by our constructions. To this end let (M, I) be an almost complex manifold and
JI be its associated almost generalized complex structure. Generalized pseudoholo-

morphic curves are exactly ordinary I-holomorphic curves. From B = 0 we infer that
kerB = TM and any vector field along Φ is admissible. Hence, we arrived at the

known theory of pseudoholomorphic curves.

8.2.2. Almost Symplectic Manifolds

Let (M,ω) be an almost symplectic manifold, i.e. ω is a non-degenerate 2-form, (Σ, jΣ)
be a Riemann surface and Φ : Σ→M be a Jω holomorphic curve. Since TΦu has to lie

inside kerB = kerω for all u ∈ TΣ, we infer that Φ has to be a constant map Φ : σ 7−→ p0
and, hence, TΦ = 0. This implies that Φ∗TM = Σ × Tp0M , Φ∗E = Σ × Ep0 , ∂J (Φ) = 0

and Φ∗∇ = 0. The linearization of FΦ(ξ) at 0 then vanishes identically and the vertical

differential then decomposes intoDΦ = s◦0 for any s : TM → E. Moreover, we realize
that DBΦ = 0. Hence, any almost symplectic structure is nonsingular.

We have shown above that only constant maps are Jω-holomorphic. Hence, admissible
vector fields along Φ are constant along Φ (this corresponds to a unique vector at p0).
Thus the space of sections in V(s,Φ;Jω) is finite dimensional. Therefore, the vertical

differential is a Fredholm operator. Any constant vector field along Φ is admissible and
lies in the kernel ofDΦ. It follows that deformations of Φ via p0 7−→ expp0(ξ) are exactly

those which are still J -holomorphic curves and the moduli-space of Jω-holomorphic
curves is M itself.

This is not surprising as only constant maps are Jω-holomorphic. But we wanted to

demonstrate that we get the intuitive answer using above formalism.

8.2.3. Parallelizable Manifolds

Our next example is a target manifold M which is paralellizable. That means that the
tangent bundle of M is trivial

TM =M × V ∼=M ×R
n ∼=M × (R⊕ · · · ⊕R) ∼= (M ×R)⊕ · · ·⊕ (M ×R) . (8.2.1)

Let J1 and J2 be two tamed generalized complex structures such that J1 is integrable
and J2 is Cl. Then they induce metric structures G on E and g on TM . The ordinary

exterior differential d is a flat connection on M × R and induces a flat connection ∇′
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on TM . In analogy to the proof of theorem 7.4.4 we can use parallel transport with

respect to this connection to extend J acting on TM ⊕ g(TM) to an Cl almost complex
structure J acting on M × M .1 Now we have the whole apparatus of deformation
theory of pseudoholomorphic curves at hand.

The proof of theorem 7.4.4 also shows that a curve Φ : Σ → M is J -holomorphic if
and only if Φ′ := Φ × p : Σ → M ×M is J-holomorphic for any fixed p ∈ M . Let us

assume that J is regular in the usual sense. Then the moduli space of J-holomorphic
curves M(A,Σ; J) is a smooth manifold of dimension 4n(1 − g) + 〈A, c1(M)〉. The
moduli space of all J -holomorphic curves is then given by the sub-variety Φ2 = p for

Φ = (Φ1,Φ2) : Σ→M ×M .

8.2.4. Existence of a Foliation into Holomorphic Poisson Manifolds

In the last example we assume that sections in kerB are involutive. If X, Y ∈ kerB,
this is equivalent to

0 = i[X,Y ]B = iXLYB − LY iXB = iX iY dB − iXdiYB = iX iY dB . (8.2.2)

We immediately see that dB = 0 is sufficient for kerB being involutive. Since kerB

is involutive, it induces a foliation of M into submanifolds such that sections in kerB

are exactly the vector fields tangential to them. If X ∈ kerB, the action of J on X

simplifies to

J s(X) =

(
I β

B −I∗
)

·
(
X

0

)

=

(
IX

BX

)

=

(
IX

0

)

. (8.2.3)

Combined with J 2 = −1 this implies that J induces an almost complex structure I on
each leave of the foliation. As TΦ has to map TΣ into kerB, we deduce that Φ has to
lie inside one leave.

Admissible vector fields are those which generate deformations of Φ inside one leaf
or which make Φ switch the leaf. In the latter case we have to ensure that during the

deformation Φt always lies in exactly one leaf.

Remark 8.2.1 Observe that in both the almost complex and the almost symplectic case

the kernel of B is involutive. Whereas in the almost complex case we get the trivial
foliation of M into M itself (M is the only leaf), we get in the almost symplectic case

a foliation of M into points. In the latter case the deformations of Φ are in particular
those who switch the leaf in which Φ lies.

1There seems to be a connection to the recently introduced notion of doubled geometry, but we will
not go into the details here.
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For simplicity let us look at deformations which stay inside one leaf L and assume that

kerB has constant rank. As these leaves are almost complex manifolds on their own,
we are able to use the known theory of ordinary pseudoholomorphic curves. This
shows that the moduli space of simple pseudoholomorphic curves which lie inside

the leaf L and represent the homology class A ∈ H2(L,Z) forms a finite dimensional
manifoldM∗

L(A,Σ;J ). The moduli space of all deformations lying inside a particular

leaf is then given by the disjoint union over all leaves admitting the homology class A,

M∗
0(A,Σ;J ) :=

∐

L

M∗
L(A,Σ;J ) = {(L,Φ)|Φ ∈M∗

L(A,Σ;J )} . (8.2.4)

It should be viewed as a family of manifolds. Its dimension is given by

dimM∗
0(A,Σ;J ) = (2− g) dimkerB + 〈A, c1(M)〉+ codimkerB . (8.2.5)

The last term in the dimension formula originates in the dimension of the leaf space of
the foliation induced by kerB. This situation should be compared to theorem 3.1.7. in

[MS04]. It states that the moduli space of simple Jλ-holomorphic curves for a regular
homotopy Jλ is a finite dimensional manifold of dimension 2n(1− g) + 〈A, c1(M)〉+1.
It is an interesting question which geometric structureM∗

0(A,Σ;J ) precisely obeys.

If kerB does not have constant rank, M∗
0(A,Σ;J ) cannot be a manifold. Since kerB

is a smooth distribution in the sense of Sussman, each leaf on the boundary where
the rank of kerB jumps has a subfoliation into leaves of the lower dimension. The

dimension of the moduli space of leaf preserving deformations depends on which side
of the boundary we are. It seems more likely thatM∗

0(A,Σ;J ) is really a stratifold. It

is possible that these problems can be solved by considering deformations which are
allowed to switch the leaf, i.e which are generated by admissible vector fields which
are not in kerB.

8.2.5. Non Constant Isotropic Embedding and the Physical Case

Let us consider the case of integrable almost generalized complex structures. In partic-
ular we should do that keeping an eye on the physical interpretation of B-transforma-

tions. Recall that a B-transformation can be interpreted as a canonical transformation
on the string super phase space of M . What is then the local form of a J -holomorphic
curve? By the generalized Darboux theorem it follows that J is up to a diffeomor-

phism and a B-transformation the direct sum of a symplectic and a complex structure.
In physical language that means that there is a local canonical transformation such that

J is the product of a complex and a symplectic structure. Examples 6.3.3 show that
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Φ is then constant in symplectic directions and pseudoholomorphic in complex direc-

tions. This is the most general case in the physical situation, i.e. amongst other things
J being integrable.

8.2.6. Generalized B-Model on Hyperkähler Manifolds

In section 5.2 we gave a smooth interpolation between topological string theories be-

ing defined on a Hyperkähler manifoldM . We found a family of generalized B-models
which connects the A-model being present at t = 0 and associated with (J, ωJ) and the
B-model being present at t = π/2 and associated with (I, ωI). Let us examine the

instantons for this family. In mathematical terms we will consider generalized pseu-
doholomorphic curves for a family of generalized complex structures being defined by

equation (5.2.3).

Let (M, I, J,K) be a Hyperkähler manifold, (Σ, jΣ) be a Riemann surface, TM the stan-
dard Courant algebroid over M , J2(t) be as in equation (5.2.3) and ι : TM → TM

be the canonical smooth isotropic splitting of TM , i.e. ι(X) := X ⊕ 0. A map Φ is
J2(t)-holomorphic if and only if

J2(t) ◦ ι ◦ TΦ = ι ◦ TΦ ◦ jΣ . (8.2.6)

Using the splitting ι this becomes equivalent to

cos(t)J ◦ TΦ = TΦ ◦ jΣ and (8.2.7)

sin(t)ωI ◦ TΦ = 0 . (8.2.8)

Since ωI is a symplectic form and in particular non degenerate, equation (8.2.8) forces

Φ to be constant for t 6= 0. If t = 0, however, the equation (8.2.7) is trivially true and
the equation (8.2.7) tells us that Φ is pseudoholomorphic with respect to J .

We observe that the moduli spaces of instantons during this deformation are not iso-
morphic.
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“Es ist nicht das Wissen, sondern das Lernen, nicht das Besitzen, sondern das

Erwerben, nicht das Dasein, sondern das Hinkommen, was den größten

Genuß gewährt.”

Carl Friedrich Gauß (1777-1855)





9. Conclusions, Conjectures and

Outlook

We presented the foundation of an extension of symplectic topology towards gener-
alized complex manifolds. In doing so we let us guide by principles originated in

topological string theory. To give a self contained exposition, we gave an introductory
chapter on supersymmetric quantum mechanics. Afterwards we reviewed the con-

struction of the generalized B-model on generalized Calabi-Yau metric geometries. As
topological string theory on ordinary Calabi-Yau manifolds provides us with a moti-
vation of e.g. quantum cohomology, the generalized topological B-model motivates

our ansatz for generalized complex topology. Subsequent to the presentation of gen-
eralized B-models we examined the transformation behavior of instantons under B-

transformations. We found instantons not being invariant, but only modulo canonical
transformations acting on ΠT ∗LM . This pointed towards the fact that additional de-
grees of freedom had to be included in order to obtain a rigorous and B-field invariant

definition of pseudoholomorphic curves taking values in generalized complex mani-
folds.

Part II also contained an intrinsically geometric formulation of nonlinear sigma-models
on a Riemannian manifold (M, g). We expressed the action of nonlinear sigma-models
as S[Φ] = 〈dΦ, dΦ〉, where dΦ ∈ Ω1(Σ,Φ∗TM) is defined by dΦ(u) := TΦ ◦ u for u ∈
Γ(Σ, TΣ) and 〈·, ·〉 is a L2-norm on the space of Φ∗TM-valued k-forms. The equations
of motion were found in this global picture to be d†Φ∗∇dΦ = 0. Here Φ∗∇ denotes the

pullback connection of the Levi-Civita connection ∇ on (M, g). Moreover, we showed
that∇ being torsion free implies dΦ∗∇dΦ = 0. Hence, harmonic maps were found to be
dΦ∗∇-harmonic 1-forms with values in Φ∗TM . This is in some sense a nonlinear version

of non-commutative Hodge theory.

In order to achieve linearity, enhanced solution spaces HΦ were introduced. The en-
hanced solution space which is associated to Φ consists of all Φ∗TM-valued 1-forms ξ

fulfilling d†Φ∗∇ξ = 0. In particular, linearity implies that the principle of superposition
is true here. Therefore, there should exist a set of basis solutions for every Φ. Instead

of d†Φ∗∇ we could also use ∆Φ∗∇ := dΦ∗∇d
†
Φ∗∇ + d†Φ∗∇dΦ∗∇. We showed that if (M, g) is
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flat and Φ1 and Φ2 are homotopic to each other, it follows thatHΦ1 andHΦ2 are isomor-

phic. Moreover, by exploiting deformation methods which used series expansions, we
gave a heuristic motivation why this should also be true if M is not flat. From a phys-
ical perspective, the enhancement of the space of harmonic maps by Φ∗TM-valued

1-forms ξ which cannot be expressed as some dΦ corresponds to the enhancement of
physical solutions of the nonlinear sigma-model by non-physical modes. This restores

the existence of a mode expansion. Every physical solution corresponds to some mode
expansion, but not every mode expansion is physically sensible. Only those which
obey the cohomological constraint ξ = dΦ. At the end of chapter 4 we gave a brief

summary of a program of how to quantize non-linear sigma models on Riemannian
manifolds with non-vanishing curvature. It will be easier to achieve a quantization

under the assumption of

Conjecture 1. Let Φ1 : Σ → M and Φ2 : Σ → M be two differentiable maps which are

homotopic to each other. Then it holdsHk
Φ1
∼= Hk

Φ2
for all k.

Part III gives an exposition of the theory of (E,J )-holomorphic pairs. They were the

main objects of interest during this work. In order to give a precise definition, let M
be a 2n-dimensional manifold, (E, q, [·, ·], π) be an exact Courant algebroid over M , J
be an almost generalized complex structure acting on E, (Σ, jΣ) be a Riemann surface,
Φ : Σ→M be a map and λ : TM → E be an isotropic embedding. Then (Φ, λ) is called
an (E,J )-holomorphic pair, if and only if

J ◦ λ ◦ TΦ = λ ◦ TΦ ◦ jΣ . (6.3.1)

We proved that this yields a B-field invariant notion. Without B-field invariance, it

would not be possible to give a consistent notion of pseudoholomorphic curves for
exact Courant algebroids.

If (Φ, λ) is an (E,J )-holomorphic pair and λ is an isotropic splitting λ : TM → E,

we name Φ an (E,J )-holomorphic curve. If additionally to that (E, q, [·, ·], π) is given
by the standard Courant algebroid (TM, q, [·, ·]0, pr1), (E,J )-holomorphic curves are
simply called J -holomorphic curves. Thereafter, tamed almost generalized complex

structures, compatible almost generalized complex structures as well as the general-
ized energy of a pair (Φ, λ) have been introduced. An important technical result which

we proved is theorem 6.4.1. It states the following: it is possible to find for any isotropic
embedding λ and every isotropic splitting s an orthogonal automorphism Λ of E such
that λ = Λ ◦ s. This enabled us to show that any (E,J )-holomorphic pair gives rise

to a J ′-holomorphic curve. We showed that (E,J )-holomorphic pairs admit an en-
ergy identity which is very similar to the corresponding expression in usual symplec-

tic topology. Moreover, we proved that there exists an isotropic embedding λ0 such
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that the generalized energy of (Φ, λ0) is invariant under homotopy if J is regular and

E has vanishing Ševera class [H ]. This still covers manifolds which do not admit any
integrable complex structures or symplectic structures.

Then we covered the local theory of (E,J )-holomorphic pairs. To this end we cal-

culated a local expression of equation (6.3.1) and named it the generalized nonlinear
Cauchy-Riemann equation. Using a theorem of Aronszajn we proved an identity the-

orem for generalized pseudoholomorphic pairs. Thereafter we showed that (E,J )-
holomorphic pairs obey elliptic regularity, i.e. if J ∈ Cl and λ is smooth, it follows that
Φ is of class Cl. In analogy to the local theory of ordinary J-holomorphic curves, we

also introduced the notions of critical points, injective points, simple pairs as well as
somewhere injective pairs and examined their properties.

It transpired that Φ, being part of an (E,J )-holomorphic pair, locally behaves exactly

as a usual pseudoholomorphic curve. We realized that this is true because of theorem
7.4.4. It states that for any σ ∈ Σ there exist neighborhoods Ω ⊆ Σ and U ⊆ M and

an almost complex structure J being defined on U × U such that Φ × p is a local J-
holomorphic curve for any p ∈ U .

After the examination of their local behavior we changed our focus towards the de-

formation theory of (E,J )-holomorphic pairs. To this end we calculated the vertical
differential DΦ of

∂J (Φ) :=
1

2
(λ ◦ dΦ+ J ◦ λ ◦ dΦ ◦ jΣ) . (7.1.2)

We viewed ∂J as a section in the infinite dimensional vector bundle E → Bwhose fiber

at Φ is the space EΦ := Ω0,1(Σ,Φ∗E) of anti-holomorphic 1-forms with values in Φ∗E.
In order to be able to give an explicit expression of the vertical differential, we had to

introduce the notions of generalized torsion and generalized Levi-Civita connections
on exact Courant algebroids. Torsion does only behave like a tensor up to exact terms
involving q, but, hence, acts tensorial on any isotropic subbundle of E. We defined a

generalized Levi-Civita connection of E (equipped with a fiber metric G) with respect
to an isotropic splitting s to be a connection ∇ on E defined by

∇XA = ∇X(s(Y ) + π∗(ξ)) := s(∇XY ) + π∗(∇∗
Xξ) +

1

2
π∗(iXiYH) , (8.1.7)

where ∇ is the Levi-Civita connection on TM associated to g := s∗G. In particular
the restriction of T to s(TM) vanishes. The vertical part is then taken with respect to

some connection ∇̃ on E which arises from the generalized Levi-Civita connection ∇
of (E,G) and leaves J invariant. It transpired that DΦ is the composition of a real

linear Cauchy-Riemann operator DΦ and an upper semi-Fredholm operator λ. Hence,

159



CHAPTER 9. CONCLUSIONS, CONJECTURES AND OUTLOOK

the vertical differential is only semi-Fredholm and it is not useful to apply the theory

of transversal intersections directly.

In order to tackle this problem, we introduced admissible vector fields along Φ. They
were defined as infinitesimal deformations of Φ which generate geodesic flows Φt such

that the differential of Φt lies inside ker(s∗◦J ◦s) for all t. By restricting small deforma-
tions of Φ to those which are generated by admissible vector fields, the exceed degrees

of freedom in the generalized vertical differential separated and we obtained the de-
composition DΦ = s ◦ DΦ.1 Here DΦ is formally given by the vertical differential of
ordinary pseudoholomorphic curves. In order to apply transversality arguments, it

remains to clarify the topological structure of admissible vector fields along a map.
If ξ is an admissible vector field along Φ and {ρi} is a partition of unity with respect

to a good covering into geodesically convex neighborhoods, ρiξ is also an admissible
vector field along Φ. Deformations of Φ via the geodesic flow generated by ρiξ can
be computed locally since it is possible to use theorem 7.4.4. Then deformations of Φ

correspond to deformations of Φ × p such that p stays a constant map. It is possible
that the importance of leaving p a constant map implies the existence of singularities

in the moduli space of generalized pseudoholomorphic curves. The exact behavior of
this construction will be examined in the future, but this ansatz seems very promising
to prove

Conjecture 2. The moduli space of (E,J )-holomorphic curves locally obeys the structure of a

manifold. More precisely, it is given by a stratifold. Gromov compactness may be incorporated

locally.

If we were able to prove some type of Gromov compactness of the moduli space of
(E,J )-holomorphic curves, it should be possible to prove

Conjecture 3. Quantum cohomology in generalized complex manifolds is given by a deforma-

tion of Lie algebroid cohomology using (E,J )-holomorphic curves.

This directs us to the question of how to apply the theory of (E,J )-holomorphic curves

to the open sector of mirror symmetry. It should be

Conjecture 4. There exists an extension of Fukaya categories towards generalized complex

manifolds. In particular, its objects are given by generalized calibrated generalized Lagrangian

submanifolds and its morphisms are an extension of Floer homology towards generalized com-

plex manifolds. Thereby, morphisms interpolate between Ext functors in the complex case and

Floer homology in the symplectic case.

1Strictly speaking we used another connection in order to compute an explicit expression, namely ∇B

defined on ker(s∗ ◦ J ◦ s).
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One important application of the above construction would be

Conjecture 5. Hyperkähler manifolds (M, I, J,K) are self-mirror. By that we mean that

(M, I) is mirror to (M,J).

This would be the most important and difficult part of the proof of the physical formu-

lation of Langlands correspondence in terms of electric-magnetic duality as it proves
that the Hitchin moduli space is self mirror. As a hint towards that result we gave a

smooth family of generalized Kähler structures on Hyperkähler manifolds which inter-
polates between the Bogoliubov transformation of the A-model with respect to some
Kähler form ωI and the B-model with respect to some complex structure J . This enables

one to view mirror symmetry in contrast to the literature not as a discrete symmetry,
but as a continuous one.

It seems that every concept from symplectic topology can be translated into a concept
on generalized complex manifolds. Every of the above conjectures can be summarized
in

Conjecture 6. There should be a functorial correspondence between symplectic topology and

complex topology.

This functorial correspondence may be connected to the miraculous duality of complex

and symplectic geometry/topology on the same manifold M . In physical terms this is
S-duality. I hope to be able to work on these topics in the future.
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A. Generalized Complex Geometry

In this appendix we give a few facts about generalized complex geometry on exact

Courant algebroid. We take this appendix from [Gua11] and restrict ourselves to the
topics which are needed to be able to follow this work.

A.1. Linear Geometry of V ⊕ V ∗

Let V be a real vector space of dimension n and let V ∗ be its dual space. Let us endow
V ⊕ V ∗ with a natural non-degenerate symmetric bilinear form q of signature (n, n),

given by

q(X ⊕ ξ, Y ⊕ η) := ξ(Y ) + η(X) . (A.1.1)

In order to examine orthogonal symmetries of this pseudo metric, we look at its Lie
algebra. An arbitrary element g in the Lie algebra may be written as a block matrix in

the splitting V ⊕ V ∗ via

g =

(
A β

B −A∗

)

, (A.1.2)

where A : V → V , B : V → V ∗, β : V ∗ → V and B, β are skew. Here B and

β are viewed as a 2-form and a bivector. By exponentiation, we obtain orthogonal
symmetries of V ⊕ V ∗ in the identity component of SO(V ⊕ V ∗). They are

exp(B) =

(
1 0

B 1

)

, exp(β) =

(
1 β

0 1

)

, exp(A) =

(
expA 0

0 (expA∗)−1

)

. (A.1.3)

The transformations exp(B) and exp(β) are referred to as B-transformations and β-
transformations , respectively. Transformations of the form exp(A) define a distin-

guished embedding of GL+(V ) into the identity component of the orthogonal group.

A maximal isotropic subspace, i.e. an isotropic subspace of maximal dimension, L of

V ⊕V ∗ is also known as a linear Dirac structure. Let ι : ∆→ V be a subspace inclusion
and let ǫ ∈ ∧2∆∗. Then

L(∆, ǫ) := {X ⊕ ξ ∈ ∆⊕ V ∗ | ι∗ξ = iXǫ} ⊂ V ⊕ V ∗ (A.1.4)
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is a maximal isotropic subspace of V ⊕ V ∗. Moreover, any linear Dirac structure in

V ⊕ V ∗ is of this form. Note that B-transformations act on L(∆, ǫ) as

exp(B) · L(∆, ǫ) = L(∆, ǫ+ ι∗B) . (A.1.5)

In fact, any maximal isotropic can be expressed as a B-transformation of L(∆, 0) =

∆⊕ Ann(∆). Another important notion can be found in

Definition A.1.1. The type of a maximal isotropic L ⊂ V ⊕ V ∗ is the codimension k of its

projection onto V.

Maximal isotropic subspaces can also be described by their associated spinor lines. The
action of V ⊕ V ∗ on the exterior algebra ∧•V ∗ (the spinors), given by

(X ⊕ ξ) · ϕ = IXϕ+ ξ ∧ ϕ , (A.1.6)

extends to a spin representation of the Clifford algebra CL(V ⊕ V∗) associated to q.

Definition A.1.2. A spinor ϕ is pure when its null space Lϕ := {v ∈ V ⊕ V ∗ | v · ϕ = 0} is

maximal isotropic.

Every maximal isotropic subspace L ⊂ V ⊕ V ∗ is represented by a unique line KL ⊂
∧•V ∗ of pure spinors. By equation (A.1.5), any maximal isotropic L(∆, ǫ) is a B-trans-
formation of L(∆, 0) for B chosen such that ι∗B = −ǫ. The pure spinor line which

has L(∆, 0) as its null space is det(Ann(∆)) ⊂ ∧kV ∗, for k being the dimension of
∆ ⊂ V . Moreover, the spinor line KL determined by a maximal isotropic L constitutes
the beginning of a filtration on spinors

KL = F0 ⊂ F1 ⊂ · · · ⊂ Fn = ∧•V ∗ ⊗ (det V )1/2 . (A.1.7)

Here Fk is defined as CLk ·KL, where CLk is spanned by products of at most k genera-
tors of the Clifford algebra.

A.2. Courant Algebroids

Let M be a real n-dimensional smooth manifold. The definition of a Courant algebroid
can be found in

Definition A.2.1. Let πE : E → M be a vector bundle over M equipped with a bundle

morphism π : E → TM , called the anchor, a non-degenerate symmetric bilinear form q and a
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bracket [·, ·]. If (E, q, [·, ·], π) satisfies the conditions

[e1, [e2, e3]] = [[e1, e2], e3] + [e2, [e1, e3]] , (A.2.1)

π([e1, e2]) = [π(e1), π(e2)] , (A.2.2)

[e1, fe2] = f [e1, e2] + π(e1)[f ]e2 , (A.2.3)

π(e1)q(e2, e3) = q([e1, e2], e3) + q(e2, [e1, e3]) , (A.2.4)

[e1, e1] = π∗dq(e1, e1) , (A.2.5)

for all e1, e2, e3 ∈ E and f ∈ C∞(M), we call (E, q, [·, ·], π) a Courant algebroid.

Remarks A.2.2 1. Strictly speaking, π∗ is a map from T ∗M into E∗, where π∗ is the

dual map of π with respect to q. In order to get a map from T ∗M into E, we
have to use q−1 ◦ π∗ instead. If A∗ ∈ E∗, q−1(A∗) is the unique A ∈ E such that
q(A,B) = A∗(B) for all B ∈ E. In order to simplify formulas, we slightly abuse

notation and denote, as common in the literature, q−1 ◦ π∗ as π∗.

2. Any Courant algebroid fits into a short sequence

−−−−→ −−−−→π∗ −−−−−→π −−−−→0 T ∗M E TM 0 . (A.2.6)

This can be seen from the following argument. Equations (A.2.2) and (A.2.5)
imply π ◦ π∗dq(e1, e1) = 0. It is sufficient that π ◦ π∗ = 0 on any chart U of M . As

any 1-form on U can be expressed as q(e, e) it follows that π ◦ π∗ = 0 on any chart
U . Hence the claim is true.

3. We use the convention that [·, ·] is given by a Dorfman bracket. Its associated

Courant bracket is given by the anti-symmetrization of [·, ·]. Both descriptions
are equivalent concerning the applications given in this work.

Another important definition is

Definition A.2.3. Let (E, q, [·, ·], π) be a Courant algebroid over M . We call (E, q, [·, ·], π) an

exact Courant algebroid if (A.2.6) is a short exact sequence.

Remarks A.2.4 1. For any exact Courant algebroid there is a canonically defined
isotropic embedding q−1 ◦ π∗ : T ∗M → E. This is true since

q
(
q−1 (π∗(ξ)) , q−1(π∗η)

)
= π∗(η)

(
q−1(π∗(ξ))

)
= η(π ◦ q−1 ◦π∗(ξ)) = 0 . (A.2.7)

2. Since q has split signature, there exists a smooth isotropic splitting s : TM → E,

i.e. a smooth map s : TM → E such that π ◦ s = id, of (A.2.6) if E is exact.
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Example A.2.5 LetE = TM := TM⊕T ∗M . It can be endowed with the same canonical

bilinear form q we described on V ⊕ V ∗. As an anchor we use π(X ⊕ ξ) := X and as a
bracket we choose the twisted Dorfman bracket

[X ⊕ ξ, Y ⊕ η]H := [X, Y ]⊕ (LXη − iY dξ + iXiYH) . (A.2.8)

A straight forward calculation shows that equations (A.2.1) - (A.2.5) are satisfied. A
smooth isotropic splitting is given by ι(X) := X ⊕ 0. If H = 0 we call TM with the

prescribed data the standard Courant algebroid.

Let s be a smooth isotropic splitting of an exact Courant algebroid (E, q, [·, ·], π). Then
t = s∗ ◦ q is a left inverse of q−1 ◦ π∗. By observing E = s(TM)⊕ π∗(T ∗M) it is possible
to express the non-degenerate inner product as

q
(
s(X) + q−1(π∗(ξ)), s(Y ) + q−1(π(η))

)
= q (s(X), s(Y )) +

+ q
(
q−1(π∗(η)), s(X)

)
+ q

(
q−1(π∗(ξ)), s(Y )

)
+

+ q
(
q−1(π∗(ξ)), q−1(π∗(η))

)
= π∗(η)(s(X)) + π∗(ξ)(s(Y )) =

= η(π ◦ s(X)) + ξ(π ◦ s(Y )) = η(X) + ξ(Y ) . (A.2.9)

Moreover, the bracket gets mapped to the H-twisted Dorfman bracket, where H is the

curvature of the splitting, i.e.

iX iYH := s∗[s(X), s(Y )] , X, Y ∈ Γ(TM) . (A.2.10)

Hence, any exact Courant algebroid (E, q, [·, ·], π) is isomorphic to (TM, q, [·, ·]H, pr1).
Definition A.2.6. A B-transformation of an exact Courant algebroid (E, q, [·, ·], π) is defined

by a closed 2-form B via

e 7−→ e + π∗iπ(e)B . (A.2.11)

A diffeomorphism χ :M → M lifts to an orthogonal automorphism of TM given by

χ∗ =

(
Tχ 0

0 (χ∗)−1

)

. (A.2.12)

We denote χ∗ also by exp(Tχ).

The most general type of automorphism which preserves the twisted Dorfman bracket

can be found in

Proposition A.2.7. Let F be an orthogonal automorphism of TM covering the diffeomorphism

χ : M → M , and preserving the H-twisted Dorfman bracket. Then F = χ∗ ◦ eB for a unique

2-form B ∈ Ω2(M) satisfying χ∗H −H = dB.
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A.3. Dirac Structures

The Dorfman bracket fails to be a Lie bracket due to exact terms involving the inner

product q. Therefore, upon restriction to a subbundle L ⊂ TM ⊕ T ∗M which is closed
under the Dorfman bracket as well as being isotropic, the anomalous terms vanish.

Then (L, [·, ·], π) defines a Lie algebroid, with associated differential graded algebra
(C∞(∧•L∗), dL). Here dL is the Lie algebroid de Rham differential with respect to π and
[·, ·]. In fact, there is a tight a priori constraint on which proper subbundles may be

involutive:

Proposition A.3.1. If L ⊂ E is an involutive subbundle of an exact Courant algebroid, then

L must be isotropic, or of the form π−1(∆), for ∆ an integrable distribution in TM .

Now we are ready to define Dirac structures in an exact Courant algebroid.

Definition A.3.2. A maximal isotropic subbundle L ⊂ E of an exact Courant algebroid

(E, q, [·, ·], π) is called an almost Dirac structure. If L is involutive with respect to [·, ·], then

the almost Dirac structure is said to be integrable, or simply a Dirac structure.

At any point p, a Dirac structure has a unique description as a generalized graph
L(∆p, ǫp), where ∆p = π(L)p and ǫp ∈ ∧2∆∗

p. Assuming that L is regular near p, we

have the following description of the integrability condition:

Proposition A.3.3. Let ∆ ⊂ TM be a subbundle and ǫ ∈ Γ(∧2∆∗). Then the almost Dirac

structure L(∆, ǫ) is integrable for the H-twisted Dorfman bracket if and only if ∆ integrates to

a foliation and d∆ = ι∗H , where d∆ is the leafwise exterior derivative.

In neighborhoods where ∆ is not regular, one has the following description of the

integrability condition.

Theorem A.3.4. The almost Dirac structure L ⊂ TM ⊕ T ∗M is involutive for the H-twisted

Courant bracket if and only if

dH(C∞(F0)) ⊂ C∞(F1) , (A.3.1)

where dHϕ := dϕ+H ∧ ϕ. That is, for any local trivialization ϕ of KL, there exists a section

X ⊕ ξ ∈ Γ(TM) such that

dHϕ = IXϕ+ ξ ∧ ϕ . (A.3.2)

Furthermore, condition (A.3.1) implies that

dH(C∞(Fk)) ⊂ C∞(Fk+1) . (A.3.3)
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A.4. Generalized Complex Structures and Integrability

It is possible to transport the definition of an almost complex structure to exact Courant

algebroids.

Definition A.4.1. An almost generalized complex structure J on an exact Courant algebroid

(E, q, [·, ·], π) is an almost complex structure J on E which is orthogonal with respect to q, i.e.

J 2 = −1 and (A.4.1)

q(J e1,J e2) = q(e1, e2) . (A.4.2)

If the + i-eigenbundle L of J , acting on the complexification of E, is involutive with respect

to [·, ·], we call J an integrable almost generalized complex structure , or simply a generalized

complex structure

Remark A.4.2 The second equation in above definition can also be formulated as J ∗ =

−J . Hence, we observe that an almost generalized complex structure on E is in some
sense an almost complex structure and an almost symplectic structure at the same time.

An immediate consequence of J being orthogonal with respect to q is that the + i-

eigenbundle of J is isotropic, i.e.

q(e1, e2) = q(J e1,J e2) = i2q(e1, e2) = −q(e1, e2) = 0 ∀ e1 , e2 ∈ L . (A.4.3)

Examples A.4.3 We give two simple examples on the standard Courant algebroid

which show that complex and symplectic structures can be embedded into this for-
malism.

1. If I is an almost complex structure, i.e. an endomorphism on TM which squares
to −1, it is evident that

JI =
(
I 0

0 −I∗
)

(A.4.4)

is an almost generalized complex structure associated to I . The + i-eigenbundle

is given by LI = TM1,0 ⊕ T ∗M0,1. Moreover, it is true that JI is integrable if and
only if I is integrable as an almost complex structure.

2. If ω is a non-degenerate 2-form on M , we can associate the almost generalized
complex structure

Jω =

(
0 −ω−1

ω 0

)

. (A.4.5)

The + i-eigenbundle is given by Lω = e− iωTM = {X ⊕ − iω(X) |X ∈ TM}. It is

true that Jω is integrable if and only if dω = 0, i.e. ω is a symplectic structure.
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The connection between Dirac structures and generalized complex structures is

Proposition A.4.4. A generalized complex structure is equivalent to a complex Dirac struc-

ture L ⊂ E ⊗ C such that L ∩ L = {0}, where L is the + i-eigenbundle of J .

As a result, the + i-eigenbundle (L, [·, ·], π) defines the structure of a Lie algebroid and

we obtain a differential complex

−−→dL −−−→dL−−−→dL −→dL· · · C∞(∧kL∗) C∞(∧k+1L∗) · · · , (A.4.6)

where

dLω(l1, . . . , lk+1) : =
k+1∑

i=1

(−1)i+1π(li)ω(l1, . . . , l̂i, . . . , lk+1)

+
∑

i<j

(−1)i+jω([li, lj ], l1, . . . , l̂i, . . . , l̂j , . . . , lk+1) . (A.4.7)

Proposition A.4.5. The Lie algebroid complex of a generalized complex structure is elliptic.

This provides us with

Corollary A.4.6. The cohomology of the complex (A.4.6), called the Lie algebroid cohomology

H•(M,L), is a finite dimensional graded ring associated to any compact generalized complex

manifold.

In order to prepare for a local classification of generalized complex structures, we need

Definition A.4.7. The type of the generalized complex structureJ is the upper semi-continuous

function

type(J ) = 1

2
dimR T

∗M ∩ J T ∗M . (A.4.8)

Moreover, we need

Proposition A.4.8. LetJ be a generalized complex structure with + i-eigenbundleL ⊂ E⊗C.

Then P := π◦J ◦π∗ is a Poisson bivector. The distribution ∆ = π◦J ◦π∗(T ∗M) integrates to

a generalized foliation by smooth symplectic leaves with codimension 2k, where k = type(J ).

A local form for a generalized complex structure is given in
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Theorem A.4.9. At any point, a generalized complex structure of type k is equivalent, by a

choice of a smooth isotropic splitting of E, to the direct sum of a complex structure of complex

dimension k and a symplectic structure of real dimension 2n− 2k.

To get an expression in a neighborhood we need

Definition A.4.10. A point p ∈ M in a generalized complex manifold is called regular when

the Poisson structure P is regular at p, i.e. type(J ) is locally constant at p. A neighborhood in

which every point is regular is called a regular neighborhood. If any p ∈ M is regular, we call

J regular.

By corollary A.4.8, a generalized complex structure defines, in a regular neighborhood
U , a foliation F by symplectic leaves of codimension 2k = 2type(J ), integrating the

distribution ∆. We get a complex structure on the leave space

Proposition A.4.11. The leaf space U/F of a regular neighborhood of a generalized complex

manifold inherits a canonical complex structure.

This enables us to state

Theorem A.4.12 (Generalized Darboux theorem). A regular point of type k in a generalized

complex manifold has a neighborhood which is equivalent to the product of an open set in Ck

with an open set in the standard symplectic space (R2n−2k, ω0).

At the end of this section we should state the definition of a generalized Calabi-Yau
structure, a generalized Kähler structure and a generalized Calabi-Yau metric geome-
try.

Definition A.4.13. The canonical line bundle of a generalized complex structure on TM is the

complex pure spinor line subbundle K ⊂ ∧•T ∗⊗C annihilated by the + i-eigenbundle L of J .

Definition A.4.14. A generalized Calabi-Yau structure is a generalized complex structure

with holomorphically trivial canonical bundle, i.e. admitting a nowhere-vanishing dH-closed

section ρ ∈ C∞(K).

Definition A.4.15. A generalized Kähler structure is a pair (J1,J2) of commuting generalized

complex structures such that G = −J1J2 is a positive definite metric on TM .

Definition A.4.16. A generalized Kähler structure (J1,J2) is called a generalized Calabi-

Yau metric geometry if J1 and J2 define a generalized Calabi-Yau structure on their own,

with nowhere vanishing dH-closed sections ρi ∈ C∞(Ki), and if both sections are related by a

constant, i.e.

(ρ1, ρ1) = c(ρ2, ρ1) , (A.4.9)

where c ∈ R is a constant.
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