Regulation des Wachstums von BT474 humanen Mammakarzinomzellen durch Morphin

Inaugural-Dissertation zur Erlangung der tiermedizinischen Doktorwürde
der Tierärztlichen Fakultät
der Ludwig-Maximilians-Universität München

von Inka Regine Weingärtner

aus Schweinfurt

München 2013
Gedruckt mit der Genehmigung der Tierärztlichen Fakultät
der Ludwig-Maximilians-Universität München

Dekan: Univ.-Prof. Dr. Joachim Braun
Berichterstatter: Univ.-Prof. Dr. Hermann Ammer
Korreferenten: Univ.-Prof. Dr. Dr. h.c. Hans-Joachim Gabius
 Univ.-Prof. Dr. Johannes Hirschberger
 Priv.-Doz. Dr. Marlon R. Schneider
 Priv.-Doz. Dr. Sabine André

Tag der Promotion: 9. Februar 2013
Für meine liebe Oma,
meine Eltern,
die besten Brüder
und meinen
wundervollen Freund
INHALTSVERZEICHNIS

I
EINLEITUNG ... 1

II
LITERATURÜBERSICHT .. 3

1.
Opioid und Opioid-Rezeptoren .. 3

 1.1
Opioid-Rezeptoren .. 3
 Einteilung der Opioid-Rezeptoren ... 4
 Signaltransduktion über G-Proteine ... 5
 Klassische Effektor-systeme der Opioid-Rezeptoren .. 6
 Adenyllylcyclasen ... 7

1.2
Liganden der Opioid-Rezeptoren .. 8
 Endogene Liganden .. 8
 Morphin ... 9
 Synthetische Liganden ... 9

1.3
Interaktionsmöglichkeiten mit anderen Receptorsystemen 10

2.
ErbB Rezeptoren ... 10

 2.1
Struktureller Aufbau .. 11

 2.2
Liganden der ErbB Rezeptoren .. 11

 2.3
Aktivierung und Deaktivierung .. 12

 2.4
Besonderheiten der einzelnen ErbB Rezeptoren .. 14

3.
Mitogene Signalwege der Zelle ... 14

 3.1
Erk1/2-Signalkaskade .. 15

 3.2
Akt-Signaltransduktion .. 16

4.
BT474 Zellen .. 16

III
FRAGESTELLUNG .. 18

IV
MATERIAL UND METHODEN ... 19

1.
Material ... 19

 1.1
Geräte ... 19

 1.2
Zellkultur ... 21
 Verbrauchsmaterialien ... 21
 Zellen, Zellkulturmedien und Additive ... 21
Inhaltsverzeichnis

1.3 **Molekularbiologie, Proteinanalytik und Zytchemie** .. 23
 - Verbrauchsmaterialien .. 23
 - Chemikalien .. 24
 - Puffer .. 26
 - Verbrauchsfertige Lösungen ... 28
 - Liganden, Stimmulatoren und Inhibitoren ... 28
 - DNA, Primer und Antikörper .. 29
 - DNA .. 29
 - Primer ... 29
 - Antikörper .. 30

2. **Methoden** ... 32
2.1 **Zellkultur** .. 32
 - Wachstumsbedingungen ... 32
 - mRNA Isolation und cDNA Synthese .. 33
 - Präparation von Zellmembranen .. 34
 - Zelldichte und Versuchsvorbereitung ... 34
 - Intrazelluläre cAMP Akkumulation .. 35
 - Bestimmung des Zellwachstums ... 36
 - Zellwachstumsbestimmung mittels Kristallviolett-Assay .. 36
 - Bestimmung der Proliferationsrate mit BrdU ... 37
 - Stimulation der Erk1/2 und Akt .. 37
 - Darstellung der Apoptose mit Annexin V/Propidiumiodid-Färbung 38
 - Bestimmung des PARP-Abbaus .. 39

2.2 **Molekularbiologische, proteinanalytische und zytchemische Methoden** 40
 - Polymerase-Kettenreaktion und Gelelektrophorese ... 40
 - Proteinbestimmung nach Lowry ... 42
 - Radioligandenbindung ... 43
 - Western Blot ... 44
 - Enzyme-linked Immunosorbent Assay (ELISA) ... 48
 - Co-Immunpräzipitation ... 48

2.3 **Datenauswertung** .. 49
V ERGEBNISSE ..50
1. Charakterisierung der BT474 Zellen ...50
 1.1 Endogene Opioid-Rezeptoren in BT474 Zellen ..50
 1.2 Bestimmung der Rezeptormenge durch Radioligandenbindung51
 1.3 Ausstattung der BT474 Zellen mit G-Proteinen ..51
 1.4 Adenylylcyclasen als Effektorsysteme der Opioid-Rezeptoren52
 1.5 Regulation der intrazellulären cAMP-Akkumulation52
2. Interaktion von Opioiden mit dem Zellwachstum53
3. Beeinflussung der Proliferation durch Opioid ...55
 3.1 Aktivierung der Erk1/2 durch Opioid ..55
 3.2 Bestimmung der Proliferationsrate mittels BrdU-Assay57
4. Interaktion von Morphin mit dem Akt-Signalweg ...58
5. Induktion der Apoptose durch Morphin ..59
 5.1 PARP Degradation in BT474 Zellen ..59
 5.2 Annexin V/Propidiumiodid-Färbung ..60
6. Durch chronische Morphin-Behandlung induzierte Veränderungen
im ErbB Signalweg ..62
 6.1 Untersuchung des Mechanismus der Erk1/2-Aktivierung62
 6.2 Untersuchung des Mechanismus der Akt-Aktivierung64
7. Rolle des ErbB1 Rezeptors in der Erk1/2- und Akt-Aktivierung65
8. Veränderungen in der relativen ErbB Rezeptor-Menge und der
Bildung von Rezeptor-Heterodimeren nach chronischer Morphin-
Behandlung ..67
 8.1 Bestimmung der relativen ErbB Rezeptor-Menge nach chronischer
Morphin-Behandlung ..67
 8.2 Bestimmung der ErbB1 Heterodimere nach Opioid-Behandlung68
VI DISKUSSION ..70
1. BT474 als Zellmodell für µ-Opioid-Rezeptor vermittelte Effekte70
2. Einfluss von Morphin auf das Wachstum von BT474 Zellen71
Inhaltsverzeichnis

3. Regulation der BT474 Zellproliferation und Apoptose durch Morphin .. 72

4. Morphologische Veränderungen der BT474 Zellen durch Behandlung mit Morphin und Heregulin-β1 74

5. Interaktion von Morphin mit dem ErbB Rezeptor-Netzwerk 75

6. Schlussfolgerung ... 80

VII ZUSAMMENFASSUNG ... 82

VIII SUMMARY .. 83

IX LITERATURVERZEICHNIS .. 84

X ANHANG .. 94

1. Abbildungsverzeichnis .. 94

XI DANKSAGUNG ... 96
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abb.</th>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Adenylylcyclase</td>
<td></td>
</tr>
<tr>
<td>AG825</td>
<td>N-(3-Chlorophenyl)-6,7-dimethoxy-4-quinazolinamin</td>
<td></td>
</tr>
<tr>
<td>AG1478</td>
<td>N-(3-Chlorophenyl)-6,7-dimethoxy-4-quinazolinamin</td>
<td></td>
</tr>
<tr>
<td>AK</td>
<td>Antikörper</td>
<td></td>
</tr>
<tr>
<td>Aq.</td>
<td>Doppelt destilliertes Wasser</td>
<td></td>
</tr>
<tr>
<td>Bp</td>
<td>Basenpaar</td>
<td></td>
</tr>
<tr>
<td>BSA</td>
<td>Bovines Serumalbumin</td>
<td></td>
</tr>
<tr>
<td>BTC</td>
<td>Betacellulin</td>
<td></td>
</tr>
<tr>
<td>cAMP</td>
<td>Zyklisches Adenosin-3',5'-monophosphat</td>
<td></td>
</tr>
<tr>
<td>cDNA</td>
<td>Komplementäre DNA</td>
<td></td>
</tr>
<tr>
<td>Ci</td>
<td>Curie</td>
<td></td>
</tr>
<tr>
<td>cn</td>
<td>Kontrolle</td>
<td></td>
</tr>
<tr>
<td>CO₂</td>
<td>Kohlenstoffdioxid</td>
<td></td>
</tr>
<tr>
<td>cpm</td>
<td>Counts per minute</td>
<td></td>
</tr>
<tr>
<td>CTC</td>
<td>Kupfersulfat-Tartrat-Natrium-Carbonat Lösung</td>
<td></td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s Modified Eagle Medium</td>
<td></td>
</tr>
<tr>
<td>DMEH</td>
<td>DMEM mit Hepes</td>
<td></td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxid</td>
<td></td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonukleinsäure</td>
<td></td>
</tr>
<tr>
<td>DOR</td>
<td>δ-Opioid-Rezeptor</td>
<td></td>
</tr>
<tr>
<td>DTT</td>
<td>Threo-1,4-dimercapto-2,3-butanediol</td>
<td></td>
</tr>
<tr>
<td>EAH</td>
<td>Essigsäureanhydrid</td>
<td></td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethyldiamintetraessigsäure</td>
<td></td>
</tr>
<tr>
<td>EGF</td>
<td>Epidermal growth factor</td>
<td></td>
</tr>
<tr>
<td>EGTA</td>
<td>Ethylenglycol-bis(ß-aminoethylether)-N,N,Nˊ,Nˊ,-tetraessigsäure</td>
<td></td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked immunosorbent assay</td>
<td></td>
</tr>
<tr>
<td>ER</td>
<td>Epiregulin</td>
<td></td>
</tr>
<tr>
<td>Erk</td>
<td>Extracellular signal-regulated kinase</td>
<td></td>
</tr>
<tr>
<td>EtOH</td>
<td>Ethanol</td>
<td></td>
</tr>
<tr>
<td>FKS</td>
<td>Fetales Kälberserum</td>
<td></td>
</tr>
<tr>
<td>For.</td>
<td>Forskolin</td>
<td></td>
</tr>
<tr>
<td>GAPDH</td>
<td>Glycerinaldehyd-3-phosphat-dehydrogenase</td>
<td></td>
</tr>
<tr>
<td>G-Protein</td>
<td>Guaninnukleotidbindendes Protein</td>
<td></td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Deutscher Name</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>GDP</td>
<td>Guanosindiphosphat</td>
<td></td>
</tr>
<tr>
<td>GTP</td>
<td>Guanosintriphosphat</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>Stunde</td>
<td></td>
</tr>
<tr>
<td>HB</td>
<td>Homogenisierungspuffer</td>
<td></td>
</tr>
<tr>
<td>HB-EGF</td>
<td>Heparin-binding EGF-like growth factor</td>
<td></td>
</tr>
<tr>
<td>HCl</td>
<td>Salzsäure</td>
<td></td>
</tr>
<tr>
<td>Hepes</td>
<td>N-[2-Hydroxyethyl]piperazin-N'-[2-etahnsulfonsäure]</td>
<td></td>
</tr>
<tr>
<td>IBMX</td>
<td>3-Isobutyl-1-methylxanthin</td>
<td></td>
</tr>
<tr>
<td>IC₅₀</td>
<td>Halbmaximale Hemmkonzentration</td>
<td></td>
</tr>
<tr>
<td>JNK</td>
<td>c-Jun N-terminale Kinase</td>
<td></td>
</tr>
<tr>
<td>kb</td>
<td>Kilobasenpaare</td>
<td></td>
</tr>
<tr>
<td>Kₒ</td>
<td>Dissoziationskonstante</td>
<td></td>
</tr>
<tr>
<td>KOR</td>
<td>κ-Opioid-Rezeptor</td>
<td></td>
</tr>
<tr>
<td>mAb</td>
<td>Monoklonaler Antikörper</td>
<td></td>
</tr>
<tr>
<td>MAPK</td>
<td>Mitogen-aktivierte Protein-Kinase</td>
<td></td>
</tr>
<tr>
<td>MG</td>
<td>Molekulargewicht</td>
<td></td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
<td></td>
</tr>
<tr>
<td>MOR</td>
<td>μ-Opioid-Rezeptor</td>
<td></td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger RNA</td>
<td></td>
</tr>
<tr>
<td>PAA</td>
<td>Polyacrylamid</td>
<td></td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphat-gepufferte Kochsalzlösung</td>
<td></td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase-Kettenreaktion</td>
<td></td>
</tr>
<tr>
<td>PEG</td>
<td>Polyethylenglycol</td>
<td></td>
</tr>
<tr>
<td>Pen</td>
<td>Penicillin</td>
<td></td>
</tr>
<tr>
<td>PMSF</td>
<td>Phenylmethylsulfonyl-Fluorid</td>
<td></td>
</tr>
<tr>
<td>Pi3K</td>
<td>Phosphoinositid-3-Kinase</td>
<td></td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonukleinsäure</td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>Reverse Transkriptase</td>
<td></td>
</tr>
<tr>
<td>Rt</td>
<td>Raumtemperatur</td>
<td></td>
</tr>
<tr>
<td>sec</td>
<td>Sekunde</td>
<td></td>
</tr>
<tr>
<td>SDS</td>
<td>Natrium-Dodecylsulfat</td>
<td></td>
</tr>
<tr>
<td>Strep</td>
<td>Streptomycin</td>
<td></td>
</tr>
<tr>
<td>TAE</td>
<td>Tris-Acetat-EDTA-Puffer</td>
<td></td>
</tr>
<tr>
<td>TEA</td>
<td>Triethylamin</td>
<td></td>
</tr>
<tr>
<td>TBS/T</td>
<td>Tris-gepufferte Kochsalzlösung mit Tween</td>
<td></td>
</tr>
<tr>
<td>TEMED</td>
<td>N,N,N',N'-Tetramethylethylendiamin</td>
<td></td>
</tr>
<tr>
<td>TGF-α</td>
<td>Transforming growth factor-α</td>
<td></td>
</tr>
<tr>
<td>Tris</td>
<td>Trihydroxymethylamino-methan</td>
<td></td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolett</td>
<td></td>
</tr>
<tr>
<td>Wort.</td>
<td>Wortmannin</td>
<td></td>
</tr>
</tbody>
</table>
I EINLEITUNG

Haupteinsatzgebiet der Opiode als starke Analgetika ist neben der Narkoseprämedikation die Behandlung starker Schmerzen, wie Tumorschmerzen [7-9]. Darüber hinaus ist bekannt, dass Opiode neben ihrer „klassischen“ analgetischen Wirkung auf verschiedenste Weise auch in den Zellzyklus eingreifen können, direkt oder durch Transaktivierung von Wachstumsfaktor-
Einleitung

Rezeptoren [10, 11].
II LITERATURÜBERSICHT

1. Opiode und Opioid-Rezeptoren

1.1 Opioid-Rezeptoren

Einteilung der Opioid-Rezeptoren

die schnelle Toleranzentwicklung angesehen. Das Ausmaß der Desensibilisierung hängt dabei von der Dauer der Exposition und der intrinsischen Aktivität des Agonisten ab [31].

Signaltransduktion über G-Proteine

Opioid-Rezeptoren gehören zur Familie der G-Protein-gekoppelten Rezeptoren [13]. Diese bestehen aus dem extrazellulären N-Terminus, sieben transmembranären Domänen, die gleichzeitig drei extra- und intrazelluläre Schleifen ausbilden und einem intrazellulären C-Terminus [29]. Die Opioid-Rezeptoren weisen eine Homologie von 60% auf, wobei sich die Struktur der transmembranären Domänen und der intrazellulären Schleifen stark ähneln. Sequenzunterschiede bestehen vor allem in den extrazellulären Schleifen sowie im C- und N-Terminus [29, 32]. Die extrazellulären Domänen sind an der Ligandenbindung beteiligt, während die intrazellulären Schleifen und der C-Terminus für die Kopplung an G-Proteine verantwortlich sind [33].

Die G-Proteine selbst stellen heterotrimere Proteine dar, die aus einer α-Untereinheit und einem funktionellen βγ-Dimer bestehen [34-36]. Die α-Untereinheit besitzt eine Bindungsstelle für Guaninnukleotide und eine intrinsische GTPase-Funktion für die Hydrolyse von GTP zu GDP. Solange GDP gebunden ist, kann das βγ-Dimer an die α-Untereinheit binden. Die Bindung der βγ-Untereinheit wiederum verstärkt die Fähigkeit der Kopplung des G-Proteins an den Rezeptor. In der GDP-gebundenen Form ist das G-Protein inaktiv und fähig, an einen nicht-aktivierten Rezeptoren zu binden [36]. Nach Rezeptoraktivierung dissoziiert GDP ab, woraufhin GTP mit hoher Affinität gebunden wird, dieses liegt in der Zelle in hohem Überschuss vor. Die GTP-gebundene α-Untereinheit dissoziiert daraufhin ab und kann wie die freigesetzten βγ-Dimere entsprechende Effektorsysteme aktivieren [35, 36]. Durch die Hydrolyse von GTP zu GDP wird die Aktivierung der α-Untereinheit beendet, die βγ-Untereinheit kann wieder reassoziiern [36]. Die schematische Struktur eines inaktiven G-Protein-gekoppelten Receptors und die Ereignisse nach Aktivierung durch Ligandenbindung werden in Abbildung 1 verdeutlicht.
Welche Effektorwege durch das G-Protein aktiviert werden, hängt ab von der Zusammensetzung aus Subtypen der α-, β- und γ-Untereinheiten [34, 37]. Charakterisiert werden die verschiedenen Untereinheiten unter anderem durch ihre Sensitivität gegenüber zweier bakterieller Toxine, dem Pertussis-Toxin (PTX) aus Bordetella pertussis und dem Cholera-Toxin (CTX) aus Vibrio cholerae [38, 39]. Nach Art der α-Untereinheit lassen sich die G-Proteine in vier Gruppen einteilen: G_{s}-Proteine sind CTX-sensitiv und umfassen α_{s} oder α_{olf}-Untereinheiten; G_{i}-Proteine bestehen aus den PTX-sensitiven α_{i1-3}, α_{6}- oder PTX-insensitiven α_{x}-Untereinheiten; G_{q}-Proteine enthalten α_{q/11}- oder α_{16}-Untereinheiten und G_{12}-Proteine sind durch α_{12}- und α_{13}-Untereinheiten charakterisiert [37-39]. Die Signaltransduktion hängt darüber hinaus auch von der Ausstattung der Zelle mit verschiedenen Effektorsystemen ab [36]. Opioid-Rezeptoren leiten ihre Information hauptsächlich durch Kopplung an G_{i}- und G_{q}-Proteine weiter [38]. Die analgetische Wirkung durch μ-Opioid-Rezeptoraktivierung wird über PTX-sensitive G_{i}-Proteine vermittelt [7].

Klassische Effektorsysteme der Opioid-Rezeptoren
Zu den „klassischen“ Effektorsystemen der Opioid-Rezeptoren werden Adenylylcyclasen, Kalium(K⁺)-Kanäle und spannungsabhängige Calcium(Ca^{2+})-Kanäle gezählt. Eine Aktivierung der Opioid-Rezeptoren resultiert in einer Inhibition spannungsabhängiger Ca^{2+}-Kanäle und einer Aktivierung

Abb. 1 Schematische Struktur eines G-Protein-gekoppelten Opioid-Rezeptors.
1) Inaktiver Rezeptor mit assoziiertem G-Protein. 2) Durch Ligandenbindung aktivierter Rezeptor, das G-Protein dissoziiert ab und kann in der Folge die intrazellulären Zielstrukturen aktivieren.
hyperpolarisierender K⁺-Kanäle [13]. Die Regulation der Adenylylcyclasen führt zu Änderungen im intrazellulären Gehalt des „second-messengers“ 3’,5’-zyklisches Adenosin Monophosphat (cAMP) [35].

Adenylylcyclasen

cAMP ist eines der wichtigsten Signalmoleküle, das in den Zellen von Säugetieren und dem Menschen durch Adenylylcyclasen synthetisiert wird [40]. Die Familie der Adenylylcyclasen besteht aus 9 membrangebundenen Isoformen (AC1-9) und einer weiteren löslichen Isoform, die sich in vielen Charakteristika von den membrangebundenen Formen unterscheidet [41, 42]. Die 9 Isoformen besitzen ein Molekulargewicht von 120-150 kDa, das durch Glykosylierung erhöht werden kann. Die Adenylylcyclasen bestehen aus einem kurzen N-Terminus, zwei großen hydrophilen zytoplasmatischen Schleifen (C1 und C2) und zwei hydrophoben Abschnitten (M1 und M2), die von jeweils 6 Plasmamembrandurchspannenden Domänen gebildet werden [40, 41]. Die katalytische Region wird aus Teilen der beiden zytoplasmatischen Schleifen gebildet (C1a und C2a). Das Substrat der Adenylylcyclasen ist an zweiwertige metallische Kationen wie Magnesium (Mg²⁺) oder Mangan (Mn²⁺) gebundenes Adenosintriphosphat (ATP), unter physiologischen Bedingungen ist es Mg²⁺-ATP [41].

Die Regulation der Adenylylcyclasen erfolgt primär über αs-, αi- und βγ-Untereinheiten der G-Proteine, eine weitere Modulation der Aktivität ist aber auch durch Ca²⁺/Calmodulin, Adenosin und durch die Proteinkinasen A (PKA) und C (PKC) möglich. Darüber hinaus werden alle Isoformen durch das Diterpen Forskolin aus Coleus forskolii stimuliert [40, 41, 43]. Aufgrund ihrer Sensitivität gegenüber den verschiedenen Regulatoren können die 9 Isoformen in verschiedene Gruppen eingeteilt werden. Die erste Gruppe kann durch Ca²⁺/Calmodulin aktiviert werden und umfasst die AC1, 3 und 8. Die zweite Gruppe wird durch die PKC phosphoryliert und stimuliert, ebenso wie durch die βγ-Untereinheit der G-Proteine. Ihr gehören die Isoformen 2, 4 und 7 an. Die dritte Gruppe umfasst die AC5 und 6, die durch niedrige Ca²⁺-Konzentrationen inhibiert werden. Die vierte Gruppe schließlich wird durch die AC9 repräsentiert, die weder durch Ca²⁺ noch durch βγ-Untereinheiten der G-Proteine reguliert wird [41]. Die αs-Untereinheit der G-Proteine führt immer zu einer Stimulation, eine Inhibition durch die αi-Untereinheiten und eine Regulation durch die βγ-Untereinheit ist dagegen abhängig von der jeweiligen AC-Isoform [40]. Die βγ-
Untereinheit kann durch Komplexierung der \(\alpha \)-Untereinheit inhibitorisch wirken, aber auch selbst in Anwesenheit von \(\alpha_s \) die AC2, 4 und 7 aktivieren. \(\beta \gamma \)-Untereinheiten inhibieren die AC1 und haben keinen Einfluss auf die Aktivität der AC3, 5, 6, 8 und 9. Die PKA-vermittelte Phosphorylierung der AC5 und 6 kann als negativer Rückkopplungsmechanismus verstanden werden, da diese Proteinkinase cAMP-abhängig ist [41].

Der Effekt von Opioiden auf die intrazelluläre cAMP Produktion hängt maßgeblich von der Ausstattung einer Zelle mit verschiedenen G-Proteinen und Adenylylcyclasen ab [38, 41]. Die Fähigkeit der Opioid-Rezeptoren die PKC und die intrazellulären Ca\(^{2+} \)-Konzentrationen zu regulieren ist zudem eine Möglichkeit, indirekt Einfluss auf Ca\(^{2+} \)/Calmodulin- oder PKC-abhängige Adenylylcyclase-Subtypen zu nehmen [29]. Die Regulation der intrazellulären cAMP-Produktion wird als Marker für die Funktion von Opioid-Rezeptoren herangezogen, da die Desensibilisierung von Opioid-Rezeptoren mit dem Verlust der Regulation der Adenylylcyclasen einhergeht [23].

1.2 Liganden der Opioid-Rezeptoren

Endogene Liganden der Opioid-Rezeptoren sind Substanzen, die im Körper synthetisiert werden und spezifisch an Opioid-Rezeptoren binden [8]. Die natürlichen Liganden weisen eine bestimmte Selektivität gegenüber den verschiedenen Rezeptor-Typen auf, es handelt sich dabei jedoch nicht um eine absolute Präferenz gegenüber einem bestimmten Rezeptor-Typ [9]. Darüber hinaus wurden für die verschiedenen Rezeptor-Typen jeweils hochspezifische Liganden synthetisiert, die sich teilweise durch eine weitaus größere Spezifität als die endogenen Liganden auszeichnen. Die Affinität zu spezifischen Liganden dient unter anderem auch der pharmakologischen Charakterisierung und der Einteilung in die Rezeptor-Typen und ihre Subtypen [13].

Endogene Liganden

Endogene Liganden für Opioid-Rezeptoren werden vor allem im zentralen und peripheren Nervensystem gebildet. Sie stellen wichtige Modulatoren des Immunsystems dar und beeinflussen endokrine, gastrointestinalen und cardiovaskulären Funktionen [8]. Zu den natürlichen Liganden gehören die Enkephaline ([Met]- und [Leu]-Enkephalin), \(\beta \)-Endorphin und die Dynorphine (A und B). Pro-Opiomelanocortin dient als Vorläufer sowohl für \(\beta \)-Endorphin, als auch für ACTH

Morphin

Im Gegensatz zu anderen Liganden führt die Aktivierung von µ-Opioid-Rezeptoren durch Morphin nicht zu einer vermehrten Rezeptor-Internalisierung [46]. Der hochspezifische µ-Opioid-Rezeptor Agonist DAMGO bedingt, wie auch viele endogene Opiode, eine vermehrte Endozytose der Rezeptoren [7, 23, 32].

Synthetische Liganden

Für alle drei Opioid-Rezeptoren wurde eine Vielzahl an hochaffinen, spezifischen Liganden synthetisiert, die auch zur Identifizierung und Charakterisierung der verschiedenen Rezeptor-Subtypen genutzt werden. Der µ-Opioid-Rezeptor wird durch eine hohe Bindungsaffinität zu seinem synthetischen Enkephalin derivat DAMGO, der δ-Opioid-Rezeptor durch eine hohe Bindungsaffinität zu dem peptidergen Agonisten DPDPE und der κ-Opioid-Rezeptor durch eine hohe
Affinität zu den synthetischen Verbindungen U50,488 und U69,593 charakterisiert. Während U50,488 an κ1- und κ2-Subtypen bindet, weist U69,593 eine hohe Selektivität gegenüber dem κ1-Subtyp auf [13].

1.3 Interaktionsmöglichkeiten mit anderen Receptorsystemen

Aufgrund dieser Mechanismen ergeben sich für Opiode vielfältige Möglichkeiten in mitogene Signalwege und in das Wachstumsverhalten von Tumorzellen einzugreifen.

2. ErbB Rezeptoren

Die ErbB Rezeptoren stellen die bedeutendste Familie der Wachstumsfaktor-Rezeptoren dar, die zu den Rezeptor-Tyrosin-Kinasen (RTK) gezählt werden. Die vier Mitglieder werden als ErbB1, ErbB2, ErbB3 und ErbB4 oder alternativ auch als HER1, HER2, HER3 und HER4 bezeichnet [3, 49]. Die ErbB Rezeptoren werden in Geweben mesenchymalen und epidermalen Ursprungs exprimiert und sind für die Regulation von Zellwachstum, Differenzierung und Apoptose verantwortlich [50, 51]. Viele Tumorzellen weisen Abweichungen von der natürlichen Ausstattung mit ErbB Rezeptoren auf und nutzen die potenzen Wachstumssignale der ErbB Rezeptoren für eine schnelle klonale Expansion [50]. Die Überexpression und gesteigerte Aktivierung einzelner ErbB Rezeptoren resultiert in einer ungehinderten Proliferation, Migration, Metastasierung und
verminderter Apoptose [3]. Insbesondere der ErbB1 und der ErbB2 werden in vielen verschiedenen Tumorzellarten überexprimiert [51].

Die ErbB Rezeptoren zeichnen sich durch die Fähigkeit aus, in einer Zelle eine Vielzahl verschiedener mitogener Signalwege aktivieren zu können [49]. In welcher Weise dabei die Proliferation einerseits und die Apoptose andererseits beeinflusst werden, hängt vom Zelltyp, vom Zellzyklus sowie von der Ausstattung der Zelle mit verschiedenen Rezeptoren und Signalwegen ab [49]. Darüber hinaus nehmen die beteiligten Rezeptor-Typen und deren Liganden Einfluss auf die Art der Signalweiterleitung [50-52]. Insbesondere der ErbB2 wird in verschiedenen Mammakarzinomen als Resultat einer Genamplifikation überexprimiert und stellt dadurch ein prädestiniertes Angriffsziel für die Entwicklung spezifischer, zielgerichtet der Therapiestrategien dar [4, 53].

2.1 Struktureller Aufbau
Strukturell bestehen ErbB Rezeptoren aus drei verschiedenen Domänen. Die extrazelluläre Domäne ist zuständig für die Ligandenbindung, über eine einzelne Trans-Membran-Domäne werden die Signale an die intrazelluläre Domäne weitergeleitet. Diese beinhaltet die Tyrosin-Kinase-Funktion und vermittelt die Signalweiterleitung an entsprechende intrazelluläre Adapterproteine [54]. Neben der katalytischen Einheit trägt die intrazelluläre Domäne auch verschiedene regulatorische Phosphorylierungsstellen [51, 54].

Obwohl die vier ErbB Rezeptor-Typen über einen gemeinsamen Bauplan verfügen, weisen sie funktionelle Unterschiede in Bezug auf die Ligandenbindung und katalytische Aktivität auf [52].

2.2 Liganden der ErbB Rezeptoren
Die endogenen Liganden der ErbB Rezeptoren umfassen die Neureguline 1-4 (NRG1-4), die alternativ auch als Hereguline (HRG) bezeichnet werden. Unter ihnen ist HRG1 mit den Splicevarianten α, β1, β2 und β3 am besten charakterisiert [49]. HRG1 und HRG2 binden sowohl an ErbB3 als auch an ErbB4, HRG3 und HRG4 dagegen nur an ErbB4 [51]. Der Epidermal growth factor (EGF), der Transforming growth factor-α (TGF-α), der Heparin-bindende EGF-like growth factor (HB-EGF), Epiregulin (ER), Amphinregulin (AR) und Betacellulin (BTC) stellen Liganden des ErbB1 dar [49]. ER, BTC und HB-EGF können zusätzlich auch an ErbB4 binden [6]. Für ErbB2 ist derzeit noch kein endogener Ligand
bekannt [51]. Die Liganden der ErbB Rezeptoren werden aus Zellmembran-gebundenen Vorstufen, durch Matrix-Metalloproteinasen (MMPs) enzymatisch freigesetzt [4, 50]. Abbildung 2 stellt die ErbB Rezeptoren und ihre endogenen Liganden schematisch dar.

2.3 Aktivierung und Deaktivierung

Die Aktivierung eines Rezeptors durch Bindung eines Liganden führt zu Konformationsänderungen in der extrazellulären Domäne und ermöglicht so die Dimerisierung mit einem Partner [54]. Die Dimerisierung führt zur Aktivierung der Rezeptoren durch Auto- oder gegenseitige Phosphorylierung mit anschließender Aktivierung der Tyrosin-Kinase-Funktion [49]. Die Phosphorylierung C-terminaler Tyrosinreste ermöglicht zudem die Bindung unterschiedlicher Adapterproteine, wie dem GTPase activating Protein (Gab), Ras (von Rat sarcoma) und den Src-homology 2 (SH2, abgeleitet von der Proteinkinase c-Src) enthaltenden Proteinen Grb2 (Growth factor receptor-bound protein 2) und Phospholipase Cγ (PLCγ) [50, 51]. Die Adapterproteine vermitteln ihrerseits die Information an verschiedene mitogene Signalwege. Die ErbB Rezeptoren können MAP-Kinasen direkt über Grb2 oder indirekt über die Phosphotyrosin-bindende Domäne (PTB) des Shc-Adapter-Proteins aktivieren [51]. Darüber hinaus können sie auch die Phosphoinosid-3-Kinase (Pi3K) aktivieren [54]. Während alle ErbB Rezeptoren in der Lage sind MAP-Kinase-Wege zu aktivieren, können ErbB3 und ErbB4 direkt die regulatorische p85 Einheit der Pi3K binden und so den Akt-Signalweg effizient induzieren, ErbB1 und ErbB2 dagegen können die Pi3K nur indirekt aktivieren [50]. Alle mitogenen
Signalkaskaden münden in einer Aktivierung von Transkriptionsfaktoren, die den Zellzyklus regulieren [50]. Die Variabilität in der Zusammensetzung des ErbB Netzwerks ermöglicht der Zelle eine hohe Adaptationsfähigkeit gegenüber den verschiedensten auto- und parakrinen Einflüssen [51].

Die Rezeptoraktivierung wird durch Endozytose und anschließende lysosomale Degradation beendet, dabei wird die Dauer der Signaltransduktion vom aktivierenden Liganden und den am Dimer beteiligten Rezeptor-Typen bestimmt [50].

2.4 Besonderheiten der einzelnen ErbB Rezeptoren

3. Mitogene Signalwege der Zelle
wichtiger Signalweg führt über die Akt, die neben der Vermittlung zytoprotektiver Effekte auch Proliferation, Zellwachstum und Proteinsynthese beeinflussen kann [2, 56]. Beide Signalwege können durch verschiedene RTKs und G-Protein-gekoppelte Rezeptoren reguliert werden und stellen somit einen möglichen Angriffspunkt für die Interaktion mit Opioiden dar [11, 57].

3.1 Erk1/2-Signalkaskade
Die Erk1/2 werden durch extrazelluläre Signale aktiviert und leiten die Information über eine Aktivierung von Transkriptionsfaktoren an den Zellkern weiter [58-60]. Im Gegensatz zu JNK und p38-Mitogen aktivierten Kinasen, die hauptsächlich mit Entzündungsvorgängen in Verbindung gebracht werden, spielen Erk1/2 eine bedeutende Rolle für die Regulation von Proliferation, Wachstum und Differenzierung der Zelle [61]. Tumorzellen nutzen unter anderem einen fehlerregulierten Erk1/2-Signalweg, um schnelles Wachstum durch gesteigerte Proliferation zu erreichen. Veränderungen im Erk1/2-Signalweg oder in vorgeschalteten Systemen sind in über der Hälfte aller Tumoren zu finden [62].

Die Aktivierung von MAP-Kinasen erfolgt über eine Kaskade sequenzieller Phosphorylierungsschritte und beginnt mit der Phosphorylierung der MAP-Kinase-Kinase-Kinase (MAPKKK oder MEKK). Diese phosphoryliert ihrerseits eine MAP-Kinase-Kinase (MAPKK oder MEK), die schließlich eine MAP-Kinase, zum Beispiel die Erk1/2 aktiviert [63]. Die Erk1/2 befindet sich im inaktiven Zustand im Zytosol und kann nach Aktivierung entweder in den Zellkern eintreten und dort entsprechende Transkriptionsfaktoren aktivieren oder verschiedene zytoplastische Zielproteine an Serin/Threonin-Resten phosphorylieren [63, 64]. Die Signalübertragung wird durch Dephosphorylierung oder Degradierung beendet [63]. Die Aktivierung des Erk1/2-Signalweges wird meist durch RTKs über Ras-GTPasen induziert [65], kann aber auch intrazellulär durch PLC erfolgen [51]. Ras-GTPasen aktivieren ihrerseits Raf (von rapidly accelerated fibrosarcoma oder rat fibrosarcoma), das in der Signalkette als MAPKKK fungiert und die MEK aktiviert [60, 62, 64, 65].

3.2 Akt-Signaltransduktion

Ein weiterer wichtiger mitogener Signalweg der Zelle ist die Signaltransduktion über Akt. Dieser Signalweg reguliert Zellwachstum, Proliferation und Apoptose [56, 68]. Die Kontrolle der Apoptose ist nötig, um die Zelle an äußere Einflüsse anzupassen und um defekte Zellen auszusortieren. Tumorzellen weisen häufig eine pathologisch gesteigerte Akt-Aktivierung auf, die dem programmierten Zelltod entgegenwirkt und eine schnelle Proliferation ermöglicht [56].

Die Akt ist eine Serin/Threonin-Kinase, die in den drei verschiedenen Isoformen Akt1/PKBα, Akt2/PKBβ und Akt3/PKBγ existiert [68]. Der Akt-Signalweg wird vor allem durch den „second messenger“ Phosphatidylinositol-3,4,5-triphosphat (PIP₃) initiiert, der über eine Pi3K-vermittelte Phosphorylierung aus Phosphadidylinositol-4,5-bisphosphat (PIP₂) entsteht [51, 69]. PIP₃ rekrutiert die Akt an die Zellmembran, wo diese durch Phosphorylierung aktiviert wird. Die Akt aktiviert ihrerseits spezifische Zielstrukturen, wie zum Beispiel Transkriptionsfaktoren und Bcl-2 Proteine (B-cell lymphoma-2 Proteine), die für das Eintreten der Zelle in die Apoptose eine Rolle spielen [56, 69]. Die verschiedenen Isoformen der Pi3K (Pi3K IA, IB, II und III) können sowohl durch Rezeptor-Tyrosin-Kinasen (Pi3K IA, II) als auch durch die βγ-Untereinheit von G-Protein-gekoppelte Rezeptoren (Pi3K IA und IB) aktiviert werden [69, 70]. Eine Möglichkeit die Akt-Signaltransduktion zu beenden, stellt die Phosphatase PTEN (Phosphatase und Tensin homolog) dar, die PIP₃ dephosphoryliert [56].

Der Akt-Signalweg kann über eine Aktivierung des mammalian Target of Rapamycin (mTOR) das Zellwachstum und durch Interaktion mit MAP-Kinase-Signalwegen die Proliferation beeinflussen. Das Eintreten der Zellen in den programmierten Zelltod wird durch Blockade proapoptotischer Proteine wie Bcl-2 und anderer Apoptose-auslösender Mechanismen gehemmt [56].

4. BT474 Zellen

BT474 Zellen wurden ursprünglich aus einem soliden, invasiven, ductalen Mammakarzinom einer 60-jährigen Patientin isoliert [71, 72]. Diese Zellen zeichnen sich insbesondere durch Überexpression von ErbB2, als Folge einer Genamplifikation, aus [73, 74]. Etwa 25-30% aller Mamakarzinome weisen pathologisch erhöhte ErbB2 Konzentrationen auf [75], die im Zusammenhang mit einem schnellen Fortschreiten der Tumorerkrankung, einer erhöhten
III FRAGESTELLUNG

Als Zellmodell wurden BT474 Mammakarzinomzellen gewählt, die durch Überexpression des ErbB2 und physiologische Konzentrationen an ErbB1 und ErbB3 charakterisiert sind.

Zunächst soll die Frage geklärt werden, ob sich die ausgewählten BT474 Zellen als Zellmodell für die Untersuchung spezifisch durch Opioid-Rezeptoren vermittelter Effekte auf das Wachstum von Tumorzellen eignen. Hierzu wurde die Expression und funktionelle Charakterisierung von endogenen Opioid-Rezeptoren in BT474 Zellen vorgenommen.

Anschließend wurde der Einfluss spezifisch durch µ-Opioid-Rezeptoren vermittelter Effekte auf das Wachstumsverhalten und die zu Grunde liegenden Signalmechanismen in BT474 Zellen untersucht.

Schließlich soll die Zusammensetzung und Funktion des ErbB Rezeptor-Netzwerks als möglicher Angriffspunkt einer chronischen Morphin-Behandlung bestimmt werden.
IV MATERIAL UND METHODEN

1. Material

1.1 Geräte

<table>
<thead>
<tr>
<th>Gerät</th>
<th>Bezeichnung</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brutschrank</td>
<td>Modell 6000</td>
<td>Heraeus (Hanau)</td>
</tr>
<tr>
<td>Gefrierschrank</td>
<td>Liebherr Premium NoFrost Modell GNP 3666 Index 20F/001 -20°C</td>
<td>Liebherr Hausgeräte GmbH (Ochsenhausen)</td>
</tr>
<tr>
<td>Gefrierschrank</td>
<td>-80°C</td>
<td>GFL (Gesellschaft für Labortechnik mbH, Burgwedel)</td>
</tr>
<tr>
<td>Sterilbank</td>
<td>Laminar Flow. Modell 6.12 S</td>
<td>BDK Luft- und Reinraumtechnik GmbH (Sonnenbühl-Genkingen)</td>
</tr>
<tr>
<td>Wasserbad Zellkultur</td>
<td>Julabo 20B</td>
<td>Helmut Saur (Reutlingen)</td>
</tr>
<tr>
<td>Zentrifuge</td>
<td>Minifuge</td>
<td>Heraeus (Hanau)</td>
</tr>
<tr>
<td>Zentrifuge</td>
<td>Micro Rapid/K</td>
<td>Andreas Hettich GmbH & Co. KG (Tuttlingen)</td>
</tr>
<tr>
<td>Zentrifuge</td>
<td>Sorvall RC 6+</td>
<td>Thermo Scientific (Waltham, USA)</td>
</tr>
<tr>
<td>Wasserbad</td>
<td></td>
<td>GLW (Gesellschaft für Laborbedarf mbH; Würzburg)</td>
</tr>
<tr>
<td>PCR-Cycler</td>
<td>T Professional BASIC</td>
<td>Biometra GmbH (Göttingen)</td>
</tr>
<tr>
<td>Gelelektrophoresekammer f. Agarosegelektrophorese</td>
<td>Easy Cast TM Modell B1</td>
<td>Owl, Separation Systems (Rochester, USA)</td>
</tr>
<tr>
<td>Anschlussgerät für Gelelektrophoresekammer</td>
<td></td>
<td>Biometra GmbH (Göttingen)</td>
</tr>
<tr>
<td>Semi-dry Blotter</td>
<td>Multiphor II</td>
<td>Pharmacia LKB</td>
</tr>
<tr>
<td>Gelgießstand für SDS-Gele</td>
<td></td>
<td>Bio-Rad Laboratories GmbH (München)</td>
</tr>
<tr>
<td>Material und Methoden</td>
<td>Mini-Protean II</td>
<td>Bio-Rad Laboratories GmbH (München)</td>
</tr>
<tr>
<td>--</td>
<td>--------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Gelektrophoresekammer für SDS-Gelektrophorese</td>
<td>Power supply, Modell 1000/500</td>
<td>Bio-Rad Laboratories GmbH (München)</td>
</tr>
<tr>
<td>Anschlussgerät für Semi-dry Blotter und Gelektrophoresekammer</td>
<td>E.A.S.Y. RH-3</td>
<td>Herolab GmbH (Wiesloch)</td>
</tr>
<tr>
<td>Video-Densitometer</td>
<td>AF 100</td>
<td>Scotsman Ice Systems Frimont S.P.A. (Mailand, Italien)</td>
</tr>
<tr>
<td>Eismaschine</td>
<td>Genesys 10S UV-Vis Spectrometer</td>
<td>Thermo Scientific (Waltham, USA)</td>
</tr>
<tr>
<td>Photometer</td>
<td>Tecan spectra</td>
<td>Tecan Group Ltd. (Männedorf, Schweiz)</td>
</tr>
<tr>
<td>ELISA-Reader</td>
<td>Systec 2540 EL</td>
<td>biomedis Laborservice GmbH (Gießen)</td>
</tr>
<tr>
<td>Autoklav</td>
<td>UL50</td>
<td>Memmert GmbH & Co. KG (Schwabach)</td>
</tr>
<tr>
<td>Sterilisator</td>
<td>LS 6500</td>
<td>Beckmann-Coulter (Krefeld)</td>
</tr>
<tr>
<td>Scintillationsmesssystem</td>
<td>Labovert</td>
<td>Leitz (Wetzlar)</td>
</tr>
<tr>
<td>Mikroskop Zellkultur</td>
<td>900 & Grill</td>
<td>SEVERIN Elektrogeräte GmbH (Sundern)</td>
</tr>
<tr>
<td>Microwelle</td>
<td>REAX 2000</td>
<td>Heidolph Instruments GmbH & Co. KG (Schwabach)</td>
</tr>
<tr>
<td>Schüttler</td>
<td>compact</td>
<td>Eppendorf (Hamburg)</td>
</tr>
<tr>
<td>Thermomixer</td>
<td>TPM-2</td>
<td>Sarstedt AG & Co. (Nümbrecht)</td>
</tr>
<tr>
<td>Schüttler</td>
<td>Mini Rocking Platform</td>
<td>Biometra GmbH (Göttingen)</td>
</tr>
<tr>
<td>Rüttelplatte</td>
<td>1-10 µl, 10-100 µl, 100-1000 µl, 500-5000 µl</td>
<td>Eppendorf (Hamburg)</td>
</tr>
<tr>
<td>Pipetten</td>
<td>Vibra Cell™</td>
<td>Sonics & Materials Inc. (Danbury, USA)</td>
</tr>
<tr>
<td>Ultraschall Processor</td>
<td>Kinematica® 8/EU 9452 220V 50Hz</td>
<td>Bachofer (Reutlingen)</td>
</tr>
<tr>
<td>Zellhomogenisator</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.2 Zellkultur

Verbrauchsmaterialien

<table>
<thead>
<tr>
<th>Produkt</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zellkulturflaschen mit Vent Schraubkappen 75/150 cm²</td>
<td>TPP® (Techno Plastic Products AG; Trasadingen, Schweiz)</td>
</tr>
<tr>
<td>Zellkultur Schalen Ø 60/100 mm</td>
<td>TPP® (Trasadingen, Schweiz)</td>
</tr>
<tr>
<td>Zellkultur Testplatten 6/12/24/96</td>
<td>TPP® (Trasadingen, Schweiz)</td>
</tr>
<tr>
<td>Zentrifugen Röhrchen (PP/Polypropylen) 15/50 ml</td>
<td>TPP® (Trasadingen, Schweiz)</td>
</tr>
<tr>
<td>Vakuum Filtrationssysteme 150 ml</td>
<td>TPP® (Trasadingen, Schweiz)</td>
</tr>
<tr>
<td>Nunc-immuno plate F96 maxisorp</td>
<td>Nunc A/S (Roskilde, Dänemark)</td>
</tr>
<tr>
<td>Deckgläser 24 x 32 mm</td>
<td>Carl Roth GmbH & Co. KG (Karlsruhe)</td>
</tr>
<tr>
<td>Objektträger 76 x 26 mm</td>
<td>Menzel Gläser (Gerhard Menzel GmbH, Braunschweig)</td>
</tr>
<tr>
<td>Safe-Lock Tubes 1,5/2,0 ml</td>
<td>Eppendorf (Hamburg)</td>
</tr>
<tr>
<td>MultiGuard® Barrier Tips 1-10/10-100/100-1000 µl</td>
<td>Sorenson BioScience, Inc. (Salt Lake City, Utah, USA)</td>
</tr>
<tr>
<td>Serologische Pipetten 5/10/25 ml</td>
<td>Josef Peske GmbH & Co. KG (Aindlingen-Arnhofen)</td>
</tr>
<tr>
<td>Glasteuerpipetten</td>
<td>Josef Peske GmbH & Co. KG (Aindlingen-Arnhofen)</td>
</tr>
<tr>
<td>Parafilm “M” Laboratory film</td>
<td>Pechiney Plastic Packaging (Chicago, IL., USA)</td>
</tr>
</tbody>
</table>

Zellen, Zellkulturmedien und Additive

<table>
<thead>
<tr>
<th>Produkt</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>BT–474 Human Breast Carcinoma cell line; Passage 32</td>
<td>CLS-Cell lines service (Eppelheim)</td>
</tr>
<tr>
<td>RPMI 1640</td>
<td>PAN-Biotech GmbH (Aidenbach)</td>
</tr>
</tbody>
</table>
Material und Methoden

<table>
<thead>
<tr>
<th>Produkt</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMEM</td>
<td>PAN-Biotech GmbH (Aidenbach)</td>
</tr>
<tr>
<td>DMEH</td>
<td>Selbst hergestellt aus DMEM (s. oben) und 25 mM Hepes (s. unten)</td>
</tr>
<tr>
<td>Fetales Kälberserum (FKS)</td>
<td>PAA Laboratories GmbH (Cölbe)</td>
</tr>
<tr>
<td>Trypsin-EDTA solution 1 x</td>
<td>PAN-Biotech GmbH (Aidenbach)</td>
</tr>
<tr>
<td>Phosphat-gepufferte Kochsalzlösung (Phosphate buffered saline; PBS)</td>
<td>Selbst hergestellt (vgl. Puffer), für Zellkultur steril filtriert</td>
</tr>
<tr>
<td>Penicillin/Streptomycin</td>
<td>PAN-Biotech GmbH (Aidenbach)</td>
</tr>
<tr>
<td>Enrofloxacin</td>
<td>ICN Biomedicals Inc. (Aurora, USA)</td>
</tr>
<tr>
<td>Heregulin-ß1 (rhNRG-1-ß/HRG-ß1, Extracellular domain, recombinant human; 377-HB)</td>
<td>R&D Systems (Minneapolis, USA)</td>
</tr>
<tr>
<td>Epidermal Growth Factor (rec EGF human)</td>
<td>Bachem AG (Bubendorf, Schweiz)</td>
</tr>
<tr>
<td>Insulin Solution, human (Recombinant, insulin at 10 mg/ml in 25 mM HEPES, pH 8,2)</td>
<td>Sigma-Aldrich Chemie GmbH (Taufkirchen)</td>
</tr>
<tr>
<td>Morphin-HCl</td>
<td>Merk Millipore GmbH (Schwalbach/Ts,)</td>
</tr>
<tr>
<td>Naloxon-HCl</td>
<td>Merk Millipore GmbH (Schwalbach/Ts,)</td>
</tr>
</tbody>
</table>

Gebrauchsfertige Lösungen

<table>
<thead>
<tr>
<th>Produkt</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Strand cDNA Synthesis Kit #K1611</td>
<td>Fermentas GmbH (St. Leon-Rot)</td>
</tr>
<tr>
<td>peqGOLD TriFast™</td>
<td>PEQLAB Biotechnologie GmbH (Erlangen)</td>
</tr>
<tr>
<td>Annexin V-FITC Apoptosis Detection KIT</td>
<td>Bender MedSystems® (Lausen, Schweiz)</td>
</tr>
<tr>
<td>Cell Proliferation ELISA, BrdU colorimetric</td>
<td>Roche (Mannheim)</td>
</tr>
<tr>
<td>Trypan Blue Solution 0,4%</td>
<td>Sigma-Aldrich Chemie GmbH (Taufkirchen)</td>
</tr>
<tr>
<td>Material und Methoden</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kristallviolettblau Art. 1408 (C_{25}H_{30}CIN_{3}ACS)</th>
<th>Merk Millipore GmbH (Schwalbach/Ts.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vecta MountTM AQ Aqueous mounting Medium</td>
<td>Vector Laboratories, Inc. (Burlingame USA)</td>
</tr>
<tr>
<td>Complete Protease Inhibitor Mix</td>
<td>Roche (Mannheim)</td>
</tr>
<tr>
<td>Fluka Analytical Poly-L-lysine hydrobromide 70’000-150’000</td>
<td>Sigma-Aldrich Chemie GmbH (Taufkirchen)</td>
</tr>
</tbody>
</table>

1.3 Molekularbiologie, Proteinanalytik und Zytochemie

Verbrauchsmaterialien

<table>
<thead>
<tr>
<th>Produkt</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safe-Lock Tubes 1,5/2,0 ml</td>
<td>Eppendorf (Hamburg)</td>
</tr>
<tr>
<td>PCR-Einzelgefäße mit angehängtem Deckel 0,2 ml (781300)</td>
<td>Brand GmbH & Co. KG (Wertheim)</td>
</tr>
<tr>
<td>Zählzubereitung Minis®</td>
<td>Zinsser Analytic GmbH (Frankfurt am Main)</td>
</tr>
<tr>
<td>Microglasfilterpapier (Glass-Mikrofibre Discs grade MGB)</td>
<td>Muntkell & Filtrak GmbH (Bärenstein)</td>
</tr>
<tr>
<td>Pipettenspitzen 1-10/10-100/100-1000 µl</td>
<td>Josef Peske GmbH & Co. KG (Aindling-Arnhofen)</td>
</tr>
<tr>
<td>Ampuwa® Wasser für Injektionszwecke und andere Anwendungen (PCR-H_{2}O)</td>
<td>Fresenius Kabi AG (Bad Homburg)</td>
</tr>
<tr>
<td>Einmalküvetten PS halbmicro/1,6 ml</td>
<td>A. Hartenstein Gesellschaft für Labor- und Medizintechnik mbH (Würzburg)</td>
</tr>
<tr>
<td>Schraubtube 1,5/2,0 ml (APEX® Screw-Cap Microcentrifugation Tubes)</td>
<td>Josef Peske GmbH & Co. KG (Aindling-Arnhofen)</td>
</tr>
<tr>
<td>HyperfilmTM ECL Hyperperformance chemiluminescence film</td>
<td>Amersham Biosciences UK Ltd. (Buckinghamshire, UK)</td>
</tr>
<tr>
<td>ImmobilonTM PVDF Membran (Immobilon-P Transfer Membrane 0,45 µm)</td>
<td>Merk Millipore GmbH (Schwalbach/Ts.)</td>
</tr>
<tr>
<td>Electrode Paper Novablot (PKG/500) Filterpapier für Semi-Blotting</td>
<td>GE Healthcare Bio-Science AB (Uppsala, Schweden)</td>
</tr>
</tbody>
</table>
Chemikalien

<table>
<thead>
<tr>
<th>Produkt</th>
<th>Abkürzung</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agarose Basic</td>
<td></td>
<td>AppliChem GmbH (Darmstadt)</td>
</tr>
<tr>
<td>Protein A-agarose</td>
<td></td>
<td>Thermo Scientific (Waltham, USA)</td>
</tr>
<tr>
<td>Ammoniumpersulfat</td>
<td>APS</td>
<td>Sigma-Aldrich Chemie GmbH (Taufkirchen)</td>
</tr>
<tr>
<td>Albumin, proteasefrei (bovin)</td>
<td>BSA</td>
<td>Carl Roth GmbH & Co. KG (Karlsruhe)</td>
</tr>
<tr>
<td>Chloroform</td>
<td>CHCl₃</td>
<td>Merk Millipore GmbH (Schwalbach/Ts.)</td>
</tr>
<tr>
<td>Dimethylsulfoxid</td>
<td>DMSO</td>
<td>Carl Roth GmbH & Co. KG (Karlsruhe)</td>
</tr>
<tr>
<td>Dithiobis-(succinimidyl propionat)</td>
<td>DSP</td>
<td>Thermo Scientific (Waltham, USA)</td>
</tr>
<tr>
<td>Dithiotreitol</td>
<td>DTT</td>
<td>Sigma-Aldrich Chemie GmbH (Taufkirchen)</td>
</tr>
<tr>
<td>Dinatriumhydrogenphosphat</td>
<td>Na₂HPO₄</td>
<td>Merk Millipore GmbH (Schwalbach/Ts.)</td>
</tr>
<tr>
<td>Essigsäureanhydrid</td>
<td>EAH</td>
<td>Sigma-Aldrich Chemie GmbH (Taufkirchen)</td>
</tr>
<tr>
<td>Ethyenglycol-bis(β-Aminoethyltheter)-N,N,N’,N’-Tetraessigsäure</td>
<td>EGTA</td>
<td>Sigma-Aldrich Chemie GmbH (Taufkirchen)</td>
</tr>
<tr>
<td>Ethidiumbromid</td>
<td>EtBr</td>
<td>Sigma-Aldrich Chemie GmbH (Taufkirchen)</td>
</tr>
<tr>
<td>Folin-Ciocalteau´s Phenol Reagenz</td>
<td></td>
<td>Sigma-Aldrich Chemie GmbH (Taufkirchen)</td>
</tr>
<tr>
<td>Formaldehyd 37%</td>
<td>CH₂O</td>
<td>Sigma-Aldrich Chemie GmbH (Taufkirchen)</td>
</tr>
<tr>
<td>3-Isobutyl-1-Methylxanthin</td>
<td>IBMX</td>
<td>Sigma-Aldrich Chemie GmbH (Taufkirchen)</td>
</tr>
<tr>
<td>Kupfer-II-sulfat x 5 H₂O</td>
<td>CuSO₄</td>
<td>Carl Roth GmbH & Co. KG (Karlsruhe)</td>
</tr>
<tr>
<td>Kaliumchlorid</td>
<td>KCl</td>
<td>Carl Roth GmbH & Co. KG (Karlsruhe)</td>
</tr>
<tr>
<td>Luminol (3-Aminophtalhydrazid)</td>
<td></td>
<td>Fluka (Teil der Sigma-Aldrich Chemie GmbH; Taufkirchen)</td>
</tr>
<tr>
<td>Material und Methoden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>Magnesiumchlorid</td>
<td>MgCl<sub>2</sub></td>
<td>Carl Roth GmbH & Co. KG (Karlsruhe)</td>
</tr>
<tr>
<td>Methanol</td>
<td>MeOH</td>
<td>Carl Roth GmbH & Co. KG (Karlsruhe)</td>
</tr>
<tr>
<td>Natriumchlorid</td>
<td>NaCl</td>
<td>Calbiochem (Teil der Merk Millipore GmbH; Schwalbach/Ts.)</td>
</tr>
<tr>
<td>Natrium-Laurylsulfat</td>
<td>SDS</td>
<td>Carl Roth GmbH & Co. KG (Karlsruhe)</td>
</tr>
<tr>
<td>N-(2-Hydroxyethyl) piperazin-N’- (2- Etansulfonsäure)</td>
<td>HEPES</td>
<td>Sigma-Aldrich Chemie GmbH (Taufkirchen)</td>
</tr>
<tr>
<td>Phenylmethylsulfonyl- Fluorid</td>
<td>PMSF</td>
<td>Sigma-Aldrich Chemie GmbH (Taufkirchen)</td>
</tr>
<tr>
<td>Polyethylenglycol 6000</td>
<td>PEG</td>
<td>Merk Millipore GmbH (Schwalbach/Ts.)</td>
</tr>
<tr>
<td>Polyoxyethylen-Sorbitan- Monolaurat (Twee® 20)</td>
<td>Tween</td>
<td>Sigma-Aldrich Chemie GmbH (Taufkirchen)</td>
</tr>
<tr>
<td>Salzsäure</td>
<td>HCl</td>
<td>Carl Roth GmbH & Co. KG (Karlsruhe)</td>
</tr>
<tr>
<td>SDS ultra pure</td>
<td>SDS C<sub>12</sub>H<sub>25</sub>NaO<sub>4</sub>S</td>
<td>Carl Roth GmbH & Co. KG (Karlsruhe)</td>
</tr>
<tr>
<td>Triethylamin</td>
<td>TEA</td>
<td>Carl Roth GmbH & Co. KG (Karlsruhe)</td>
</tr>
<tr>
<td>TRIS Ultra Qualität Tris- (hydroxymethyl)- aminomethan</td>
<td>Tris C<sub>4</sub>H<sub>11</sub>NO<sub>3</sub></td>
<td>Carl Roth GmbH & Co. KG (Karlsruhe)</td>
</tr>
<tr>
<td>Triton X 100</td>
<td>(C<sub>14</sub>H<sub>22</sub>O(C<sub>2</sub> H<sub>4</sub>O)n) (n=9-10)</td>
<td>Carl Roth GmbH & Co. KG (Karlsruhe)</td>
</tr>
<tr>
<td>Tetramethylbenzamidin</td>
<td>TMB</td>
<td>Sigma-Aldrich Chemie GmbH (Taufkirchen)</td>
</tr>
<tr>
<td>N,N,N’,N´- Tetramethylethylendiamin</td>
<td>TEMED</td>
<td>Sigma-Aldrich Chemie GmbH (Taufkirchen)</td>
</tr>
<tr>
<td>Wasserstoffperoxid</td>
<td>H<sub>2</sub>O<sub>2</sub></td>
<td>Merk Millipore GmbH (Schwalbach/Ts.)</td>
</tr>
</tbody>
</table>
Puffer

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Abkürzung/ pH Wert</th>
<th>Zusammensetzung</th>
</tr>
</thead>
</table>
| Phosphat-gepufferte Kochsalzlösung (phosphate-buffered saline) | PBS pH=7,4 | NaCl 140 mM
KCl 3 mM
Na₂HPO₄ x 2 H₂O 8 mM
KH₂PO₄ 1,5 mM
Aq. Bidest. |
| Tris-Acetat-EDTA-Puffer; Laufpuffer Agarose-Gelelektrophorese | TAE | Tris 0,04 M
Eisessig 0,02 M
Na⁺EDTA 0,001 M
Aq. Bidest. |
| Elektrophoresepuffer (SDS-Gelelektrophorese) | | Tris 0,025 M
Glycin 0,2 M
SDS 0,003 M
Aq. Bidest. |
| Tris 1,25 M | pH=6,8 | Tris 1,25 M
Aq. Bidest. |
| Tris 1,5 M | pH=8,8 | Tris 1,5 M
Aq. Bidest. |
| Tris 5mM | pH=7,4 | Tris 5mM
Aq. Bidest. |
| Tris-gepufferte Kochsalzlösung mit Tween (Tris-buffered saline and Tween) | TBS/T pH=8,0 | Tris 0,025 M
NaCl 0,19 M
Tween 20 0,1%
Aq. Bidest. |
| Tris-Magnesium-Puffer | TM-Puffer pH=7,4 | Tris 50 mM
MgCl₂ 5 mM
Aq. Bidest. |
| Resolving-Puffer | Strip-Puffer pH=2,0 | NaH₂PO₄ 0,1 M
Aq. Bidest. |
<table>
<thead>
<tr>
<th>Material und Methoden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homogenisierungs-Puffer</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Tris-Natrium-Puffer</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Coating Puffer (ELISA)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Blocking Puffer (ELISA)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Assay Puffer (ELISA)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Waschpuffer (ELISA)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Substratlösung A (ELISA)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Substratlösung B (ELISA)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Kupfersulfat-Tartrat-Natriumcarbonat</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Material und Methoden

| **Anodenpuffer I (Western Blot)** | pH=10,4 | Tris 0,25 M
| | | MeOH 100 ml
| | | Aq. Bidest. 400 ml
| **Anodenpuffer II (Western Blot)** | pH=10,4 | Tris 0,025 M
| | | MeOH 100 ml
| | | Aq. Bidest. 400 ml
| **Kathodenpuffer (Western Blot)** | pH=7,6 | E-amino-n-capronsäue 2,6 g
| | | MeOH 100 ml
| | | Aq. Bidest. 400 ml

Gebrauchsfertige Lösungen

<table>
<thead>
<tr>
<th>Produkt</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pfu-DNA-Polymerase</td>
<td>Fermentas GmbH (St. Leon-Rot)</td>
</tr>
<tr>
<td>6 x DNA Loading Dye</td>
<td>Fermentas GmbH (St. Leon-Rot)</td>
</tr>
<tr>
<td>dNTP Set 100 mM Solutions</td>
<td>Fermentas GmbH (St. Leon-Rot)</td>
</tr>
<tr>
<td>GeneRuler<sup>TM</sup> 100 bp Plus DNA Ladder</td>
<td>Fermentas GmbH (St. Leon-Rot)</td>
</tr>
<tr>
<td>Roti<sup>®</sup>-Safe GelStain ready-to-use</td>
<td>Carl Roth GmbH & Co. KG (Karlsruhe)</td>
</tr>
<tr>
<td>Roti<sup>®</sup>-Load1 Proteinauftragspuffer reduzierend, 4 x konz.</td>
<td>Carl Roth GmbH & Co. KG (Karlsruhe)</td>
</tr>
<tr>
<td>Rotiphorese<sup>®</sup> Gel 30 (37,5:1) Gebrauchsfertige, gasstabilisierte, wässrige 30% Acrylamidstammllösung mit 0,8% Bisacrylamid im Verhältnis 37,5:1</td>
<td>Carl Roth GmbH & Co. KG (Karlsruhe)</td>
</tr>
<tr>
<td>Rotiszint<sup>®</sup> eco plus LSC- Universalcocktail</td>
<td>Carl Roth GmbH & Co. KG (Karlsruhe)</td>
</tr>
</tbody>
</table>

Liganden, Stimmulatoren und Inhibitoren

<table>
<thead>
<tr>
<th>Produkt</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>[³H]DAMGO (30-60 Ci/mmol)</td>
<td>Perkin Elmer (Rodgau)</td>
</tr>
<tr>
<td>Forskolin</td>
<td>Sigma-Aldrich Chemie GmbH (Taufkirchen)</td>
</tr>
</tbody>
</table>
Material und Methoden

<table>
<thead>
<tr>
<th>Wortmannin</th>
<th>Calbiochem (Teil der Merk Millipore GmbH; Schwalbach/Ts.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-)-Epigallocatechin Gallate (EGCG) #324880</td>
<td>Calbiochem (Teil der Merk Millipore GmbH; Schwalbach/Ts.)</td>
</tr>
<tr>
<td>AG 825 #121765</td>
<td>Calbiochem (Teil der Merk Millipore GmbH; Schwalbach/Ts.)</td>
</tr>
<tr>
<td>AG 1478 #658548</td>
<td>Calbiochem (Teil der Merk Millipore GmbH; Schwalbach/Ts.)</td>
</tr>
</tbody>
</table>

DNA, Primer und Antikörper

DNA

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Beschreibung</th>
<th>Bezugsquelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>mMOR</td>
<td>Muriner μ-Opioid-Receptor, in pcDNA 3.1(+)</td>
<td>Dr. Lei Yu (University of Minneapolis, USA)</td>
</tr>
<tr>
<td>rDOR</td>
<td>δ-Opioid-Receptor der Ratte, in pcDNA 3.1(+)</td>
<td>Dr. Graeme I. Bell (University of Chicago, USA)</td>
</tr>
<tr>
<td>hKOR</td>
<td>Humaner κ-Opioid-Receptor in pcDNA 3.1(-)</td>
<td>Dr. Graeme I. Bell (University of Chicago, USA)</td>
</tr>
<tr>
<td>cDNA BT474</td>
<td>komplementäre DNA durch reverse Transkription der RNA</td>
<td>Eigene Herstellung (s. unten)</td>
</tr>
</tbody>
</table>

Primer

<table>
<thead>
<tr>
<th>Target</th>
<th>Bezeichnung</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC1</td>
<td>hAC_1for hAC_1rev</td>
<td>MWG Biotech AG (Ebersberg)</td>
</tr>
<tr>
<td>AC2</td>
<td>hAC_2for hAC_2rev</td>
<td>MWG Biotech AG (Ebersberg)</td>
</tr>
<tr>
<td>AC3</td>
<td>hAC_3for hAC_3rev</td>
<td>MWG Biotech AG (Ebersberg)</td>
</tr>
<tr>
<td>AC4</td>
<td>hAC_4for hAC_4rev</td>
<td>MWG Biotech AG (Ebersberg)</td>
</tr>
<tr>
<td>AC5</td>
<td>hAC_5for hAC_5rev</td>
<td>MWG Biotech AG (Ebersberg)</td>
</tr>
<tr>
<td>AC6</td>
<td>hAC_6for hAC_6rev</td>
<td>MWG Biotech AG (Ebersberg)</td>
</tr>
<tr>
<td>AC7</td>
<td>hAC_7for hAC_7rev</td>
<td>MWG Biotech AG (Ebersberg)</td>
</tr>
<tr>
<td>AC8</td>
<td>hAC_8for hAC_8rev</td>
<td>MWG Biotech AG (Ebersberg)</td>
</tr>
<tr>
<td>AC9</td>
<td>hAC_9for hAC_9rev</td>
<td>MWG Biotech AG (Ebersberg)</td>
</tr>
<tr>
<td>MOR</td>
<td>rhMORfwd rhMORrev</td>
<td>metabolion international AG (Martinsried)</td>
</tr>
<tr>
<td>DOR</td>
<td>mhDORfwd mhDORrev</td>
<td>metabolion international AG (Martinsried)</td>
</tr>
<tr>
<td>KOR</td>
<td>hKORfwd hKORrev</td>
<td>metabolion international AG (Martinsried)</td>
</tr>
<tr>
<td>GAPDH</td>
<td>GAPDH_fwd GAPDH_rev</td>
<td>First Strand cDNA Synthesis Kit, Fermentas GmbH (St. Leon-Rot)</td>
</tr>
</tbody>
</table>

Antikörper

<table>
<thead>
<tr>
<th>Zielantigen</th>
<th>Antikörper Bezeichnung</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>G(_{i})(\alpha)2</td>
<td>Eigene Herstellung</td>
<td></td>
</tr>
<tr>
<td>G(_{i})(\alpha)3</td>
<td>Eigene Herstellung</td>
<td></td>
</tr>
<tr>
<td>G(_{i})(\alpha)</td>
<td>Eigene Herstellung</td>
<td></td>
</tr>
<tr>
<td>Gß</td>
<td>Eigene Herstellung</td>
<td></td>
</tr>
<tr>
<td>G(_{q/11})(\alpha)</td>
<td>Gramsch Laboratories (Schwabhausen)</td>
<td></td>
</tr>
<tr>
<td>G(_{12})(\alpha)</td>
<td>Gramsch Laboratories (Schwabhausen)</td>
<td></td>
</tr>
<tr>
<td>G(_{13})(\alpha)</td>
<td>Gramsch Laboratories (Schwabhausen)</td>
<td></td>
</tr>
<tr>
<td>G(_{14})(\alpha)</td>
<td>Gramsch Laboratories (Schwabhausen)</td>
<td></td>
</tr>
<tr>
<td>ErbB1</td>
<td>EGF Receptor (D38B1) XP (R) Rabbit mAb #4267S</td>
<td>Cell Signalling (New England Biolabs GmbH, Frankfurt am Main)</td>
</tr>
<tr>
<td>Antibody/Protein</td>
<td>Description</td>
<td>Manufacturer/Location</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>ErbB2</td>
<td>HER2/ErbB2 (29D8) Rabbit mAb #2165P</td>
<td>Cell Signalling (New England Biolabs GmbH, Frankfurt am Main)</td>
</tr>
<tr>
<td>ErbB3</td>
<td>HER3/ErbB3 (1B2E) Rabbit mAb #4754S</td>
<td>Cell Signalling (New England Biolabs GmbH, Frankfurt am Main)</td>
</tr>
<tr>
<td>ErbB4</td>
<td>ErbB-4 (C-18) sc-283, Lot #C0904 rabbit polyclonal IgG</td>
<td>Santa Cruz Biotechnology Inc. (Heidelberg)</td>
</tr>
<tr>
<td>Erk1/2</td>
<td>p44/42 MAPK (Erk1/2) Rabbit Ab #9102</td>
<td>Cell Signalling (New England Biolabs GmbH, Frankfurt am Main)</td>
</tr>
<tr>
<td>Phospho-Erk1/2 Thr202/Tyr204</td>
<td>P-p44/42 MAPK (T202/Y204) (20G11) Rabbit mAb #4376S</td>
<td>Cell Signalling (New England Biolabs GmbH, Frankfurt am Main)</td>
</tr>
<tr>
<td>Akt</td>
<td>Akt (pan) (40D4) Mouse mAb #2920S</td>
<td>Cell Signalling (New England Biolabs GmbH, Frankfurt am Main)</td>
</tr>
<tr>
<td>Phospho-Akt Ser 473</td>
<td>P-Akt (S473) Rabbit Ab #9271S</td>
<td>Cell Signalling (New England Biolabs GmbH, Frankfurt am Main)</td>
</tr>
<tr>
<td>PARP Asp 214</td>
<td>PARP (46D11) mAb #9532</td>
<td>Cell Signalling (New England Biolabs GmbH, Frankfurt am Main)</td>
</tr>
<tr>
<td>β-Tubulin</td>
<td>Beta-Tubulin Antibody #2146</td>
<td>Cell Signalling (New England Biolabs GmbH, Frankfurt am Main)</td>
</tr>
<tr>
<td>Mouse-Fc</td>
<td>W402B 21575903 Anti-Mouse IgG HRP Conjugate</td>
<td>Promega (Madison, USA)</td>
</tr>
<tr>
<td>Rabbit-Fc</td>
<td>Anti-rabbit IgG HRP-linked Antibody #7074S</td>
<td>Cell Signalling (New England Biolabs GmbH, Frankfurt am Main)</td>
</tr>
</tbody>
</table>
2. Methoden

2.1 Zellkultur

Wachstumsbedingungen

Standardwachstumsmedium:

- RPMI
- 10% FKS
- 100 IU/ml Penicillin
- 0,1 mg/ml Streptomycin
- 0,2% Enrofloxacin
- 0,02 mg/ml Insulin

Sofern nicht anders beschrieben, wurden alle Medien und Zusätze vor Gebrauch im Wasserbad auf eine Temperatur von 37°C erwärmt.

Die Kultivierung der BT474 Zellen erfolgte in oben beschriebenem Wachstumsmedium in Zellkulturflaschen mit Ventilationsdeckel und einer Bodenfläche von 75 cm² bei 37°C und 5% CO₂ im Brutschrank. Das Medium wurde alle 2 Tage gewechselt und die Zellen routinemäßig alle 7 bis 10 Tage im Verhältnis 1:5 subkultiviert. Hierfür wurde das Medium mittels eines Vakuumsaugers abgenommen, die Zellen mit 5 ml PBS gewaschen und anschließend mit 2 ml Trypsin/EDTA für 2 Minuten im Brutschrank inkubiert. Nach Stoppen der Reaktion durch Zugabe von 10 ml Wachstumsmedium wurden die Zellen resuspendiert und mit frischem Wachstumsmedium verdünnt in die neuen Zellkulturflaschen überführt.

Für die unterschiedlichen Versuche wurden die Zellen entweder auf Flaschen mit 100 cm² Bodenfläche (Radioligandenbindung) oder in Testplatten mit 6 (Annexin V-Färbung), 12 (Erk1/2- und Akt-Stimulation), 24 (Kristallviolett-Assay, cAMP-Akkumulation) oder 96 Vertiefungen (BrdU-Assay) umgesetzt und bis zu Versuchsbeginn im Brutschrank inkubiert. Die jeweils ausgesäte Zellzahl ist den Beschreibungen der einzelnen Versuche zu entnehmen.
mRNA Isolation und cDNA Synthese
Für die Isolation von mRNA wurden Zellen aus einer Zellkulturflasche mit 75 cm² Bodenfläche eingesetzt. Das Medium wurde abgesaugt, die Zellen mit 5 ml PBS gewaschen und anschließend mit 2 ml Trypsin/EDTA durch 2-minütige Inkubation im Brutschrank bei 37°C abgelöst. Nach Stoppen der Reaktion durch Zugabe von 10 ml Wachstumsmedium wurden die Zellen resuspendiert und in ein 50 ml Zentrifugen-Röhrchen überführt. Nach 10-minütiger Zentrifugation bei 4°C und 300 x g wurde der Überstand abgekippt. Die Isolation der mRNA erfolgte mit peqGOLD TriFast™ nach Protokoll des Herstellers: Das Zellpellet wurde in 8 ml Trifast aufgelöst, nach 5-minütiger Inkubation bei Rt wurden 1,6 ml Chloroform zugefügt und für 15 Sekunden geschüttelt. Nach weiterer Inkubation von 10 Minuten bei Rt folgte ein Zentrifugationsschritt von 5 Minuten bei 4°C und 12000 x g, wodurch eine Phasentrennung eintrat. Die nachfolgenden Schritte fanden auf Eis statt: Die obere wässrige Phase, welche die mRNA enthält, wurde abgenommen und in 1,5 ml Safe-Lock Tubes überführt. Pro eingesetztem 1 ml Trifast wurden 0,5 ml Isopropanol zugegeben und durch mehrmaliges Invertieren der Reaktionsgefäße gemischt. Nach 15-minütiger Inkubation auf Eis folgte eine Zentrifugation von 10 Minuten bei 4°C und 12000 x g. Der Isopropanolüberstand wurde abgekippt und es folgten zwei Waschschritte, bei denen das Pellet je in 1 ml 75% Ethanol durch vortexen resuspendiert und anschließend für 10 Minuten bei 4°C und 12000 x g abzentrifugiert wurde. Das für 10 Minuten an der Luft getrocknete mRNA-Pellet wurde in PCR-H₂O aufgenommen, die Konzentration bei λ=260 nm photometrisch bestimmt und in Aliquots bis zur weiteren Verwendung bei -80°C gelagert.

Das Umschreiben der mRNA in cDNA erfolgte mittels cDNA Synthesis Kit nach Herstellerprotokoll:

Ansatz je 1,5 ml Reaktionsgefäß:

- Nukleasefreies Wasser: 8 µl
- Reaktionspuffer 5 x (250 mM Tris-HCl, pH=8,3, 250 mM KCl, 20 mM MgCl₂, 50 mM DTT): 4 µl
- dNTP Mix 10 mM: 2 µl
- Mult. Reverse Transkriptase: 2 µl (20 u/µl)
- RNase Inhibitor Ribolock: 1 µl (20 u/µl)
• Primer Oligo (dT)$_{18}$: 1 µl (100 µM; 0,5 µg/µl; 15A$_{260}$ u/ml)
• mRNA (wie oben beschrieben isoliert): 2 µl (1 µg/µl)

Nach einer Inkubationszeit von einer Stunde bei 37°C wurde die Reaktion durch 5-minütiges Erhitzen auf 70°C gestoppt. Anschließend wurde die Konzentration der cDNA bei λ=260 nm photometrisch bestimmt und die Probe bis zur weiteren Verwendung bei -20°C gelagert.

Präparation von Zellmembranen

Zellernte und Versuchs vorbereitung
Um die Zellen zu ernten, wurde das Zellmedium mittels Vakuumsauger entfernt und die Zellen mit 5 ml PBS gewaschen. Danach wurden die Zellen mit 2 ml Trypsin/EDTA dissoziiert und vom Boden der Zellkulturflasche durch 2-minütige Inkubation im Brutschrank abgelöst. Die Reaktion wurde mit 10 ml Wachstumsmedium gestoppt und die Zellen resuspendiert. Anschließend wurde die Zellsuspension in ein 50 ml Zentrifugen-Röhrchen überführt und für 10 Minuten bei 300 x g und einer Temperatur von 4°C zentrifugiert. Nach der Zentrifugation wurde der Überstand abgekippt und das Zellpellet in 2 ml Medium
Material und Methoden

Um die Adhärenz der Zellen zu Versuchsbeginn zu gewährleisten, wurden die Zellen stets einen Tag vor Versuchsbeginn geerntet, gezählt und auf Zellkulturplatten ausgesät. Sofern nicht anders beschrieben, wurden die Zellen für die Versuche stets in einer Dichte von 1×10^5 Zellen/ml in Standardwachstumsmedium ausgesät, dies entspricht den unten angegebenen absoluten Zellzahlen pro Vertiefung:

<table>
<thead>
<tr>
<th>Plattentyp</th>
<th>Zellzahl pro Vertiefung</th>
<th>Medium pro Vertiefung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zellkultur Testplatten 6</td>
<td>4×10^3</td>
<td>4 ml</td>
</tr>
<tr>
<td>Zellkultur Testplatten 12</td>
<td>2×10^5</td>
<td>2 ml</td>
</tr>
<tr>
<td>Zellkultur Testplatten 24</td>
<td>1×10^5</td>
<td>1 ml</td>
</tr>
<tr>
<td>Zellkultur Testplatten 96</td>
<td>$2,5 \times 10^4$</td>
<td>0,25 ml</td>
</tr>
</tbody>
</table>

Folgten Versuchsansätze in denen die Zellen mit Wachstumsfaktoren behandelt wurden, enthielt das verwendete Medium alle oben genannten Inhaltsstoffe des Standardwachstumsmediums mit Ausnahme von Insulin für die Dauer der Vorbehandlung. Das Medium inklusive aller Inhaltsstoffe, die für den jeweiligen Versuch zugegeben wurden, wurde alle 2 Tage gewechselt.

Intrazelluläre cAMP-Akkumulation

Zur Bestimmung der intrazellulären cAMP-Akkumulation wurden die Zellen wie oben beschrieben geerntet, gezählt und in der angegebenen Dichte auf eine Zellkultur Testplatte mit 24 Vertiefungen in je 1 ml Standardwachstumsmedium pro Vertiefung ausgesät.

Nach Anwachsen der Zellen über Nacht wurde eine Hälfte der Platte mit Morphin (10 µM) behandelt, während die andere Hälfte unbehandelt blieb. Nach 5 Tagen wurde das Medium abgesaugt und zunächst mit 0,1 mM IBMX in 0,5 ml DMEH pro Vertiefung gewaschen, bevor die Zellen mit Forskolin (1 µM), Forskolin (1 µM) und Morphin (10 µM) oder Forskolin (1 µM) und Morphin (10 µM) mit
Material und Methoden

Bestimmung des Zellwachstums

Für die Proliferationsversuche mit Wachstumsfaktoren und Morphin wurden die Zellen wie oben beschrieben am Vortag geerntet, gezählt und in der angegebenen Zelldichte ausgesät. Für die Dauer der Versuche wurden die entsprechenden Substanzen in den unten aufgeführten Konzentration dem Versuchsmedium zugesetzt. Die chronischen Opioid-Effekte wurden nach einer 5-tägigen Vorbehandlung der Zellen mit Morphin (10 μM) evaluiert. Das Medium inklusive Wachstumsfaktoren und Morphin wurde soweit nicht anders beschrieben alle 2 Tage erneuert. Für die Proliferationsversuche wurden folgende Konzentrationen an Wachstumsfaktoren und Opioiden verwendet:

<table>
<thead>
<tr>
<th>Wachstumsfaktoren:</th>
<th>Opiode:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heregulin-β1: 40 ng/ml</td>
<td>Morphin: 10 μM</td>
</tr>
<tr>
<td>EGF: 100 ng/ml</td>
<td>Naloxon: 100 μM</td>
</tr>
</tbody>
</table>

Zellwachstumsbestimmung mittels Kristallviolett-Assay

Um die Zellzahl nach Ablauf der Versuchsduauer zu bestimmen, wurden die Zellkerne mittels Kristallviolett angefärbt. Die Versuche wurden stets in 24er Testplatten durchgeführt. Das Medium wurde abgesaugt und die Zellen anschließend 2 x mit je 0,5 ml PBS pro Kavität gewaschen. Die Zellen wurden mit 0,25 ml Kristallviolett überschichtet und für 15 Minuten bei Rt inkubiert. Nach Ablauf dieser Zeit wurde die Farblösung abgenommen und die Zellen 5 x mit je 0,5 ml PBS pro Vertiefung von überschüssigem Farbstoff befreit. Die
Zellen wurden anschließend mit je 0,25 ml 0,1 M Citronensäure für 2 Stunden bei Rt auf einer Rüttelplatte lysisiert und die Farbintensität anschließend nach 1:10 Verdünnung mit Aq. Bidest. photometrisch bei \(\lambda = 492 \) nm bestimmt. Um das Zellwachstum während des 5-tägigen Versuchszeitraums zu erfassen, wurden die Versuchsergebnisse um die Zelldichte zu Versuchsbeginn korrigiert.

Bestimmung der Proliferationsrate mit BrdU

Um das Proliferationsverhalten der BT474 Zellen infolge einer Behandlung mit Wachstumsfaktoren und Opioiden zu untersuchen, wurde der BrdU-Proliferationsassay gewählt. Die Versuche wurden entsprechend den Herstellerempfehlungen durchgeführt: Zunächst wurden die Zellen geerntet und auf eine 96er Testplatte in Standardwachstumsmedium ausgesät. Am Folgetag wurde die eine Hälfte der Zellen mit Morphin behandelt, während die andere Hälfte unbehandelt blieb. Nach 5 Tagen wurden die Zellen mit Heregulin-ß1 und Morphin, verdünnt in einem Volumen von 0,1 ml Standardwachstumsmedium ohne Insulin, behandelt. Jeder Ansatz wurde in 3fach-Bestimmung durchgeführt. Zusätzlich wurde in jede Vertiefung der Platte 10 µl Markierungsreagenz verdünnt in RPMI gegeben (Endkonzentration 10 µM BrdU), bevor die Zellen für 2 Stunden im Brutschrank inkubiert wurden. Anschließend wurde das Medium entfernt und für 30 Minuten bei Rt je 0,2 ml Fixationslösung pro Kavität der Platte zugegeben. Nach Entfernen der Fixationslösung wurden die Zellen für 90 Minuten mit 0,1 ml einer anti-BrdU-POD Lösung inkubiert. Nachdem die Antikörperlösung entfernt wurde, wurden die Zellen 3 x gewaschen, bevor mit 0,1 ml Substratlösung pro Vertiefung bis zur Entwicklung der Farbreaktion inkubiert wurde. Schließlich wurde die Farbintensität bei einer Wellenlänge von \(\lambda = 405 \) nm (Referenzfilter \(\lambda = 429 \) nm) photometrisch bestimmt.

Stimulation der Erk1/2 und Akt

Für die Bestimmung der Aktivität der Erk1/2 und der Akt wurden die Zellen geerntet, gezählt und anschließend auf zwei 12er Testplatten in Standardwachstumsmedium ausgesät. Nachdem die Zellen über Nacht angewachsen sind, wurde eine Platte für 5 Tage mit Morphin behandelt, die zweite Platte blieb als Kontrolle unbehandelt. Nach 5 Tagen wurde das Medium abgesaugt und jede Kavität der Platte zunächst mit 1 ml DMEH mit 0,1% BSA gewaschen. Zur Stimulation wurden pro Vertiefung erneut je 0,5 ml DMEH mit
0,1% BSA und Heregulin-ß1, EGF, Morphin und Naloxon, wie bei den einzelnen Versuchen angegeben, zugefügt. Die Zellen wurden anschließend für 5 Minuten bei 37°C inkubiert. Nach Ablauf der Inkubationszeit wurden die Platten direkt in ein Eisbad überführt, das Medium abgesaugt und die Reaktion durch Zufügen von 0,5 ml Auftragspuffer (Roti®-Load 1; verdünnt 1:4 in Aq. Bidest.) gestoppt. Anschließend wurden die Platten mit Parafilm verschlossen bis zum Zeitpunkt der Western Blot-Analyse bei -20°C gelagert.

Zur Aufklärung des Signalweges der Erk1/2 und der Akt wurden die Zellen nach dem Waschen in 1 ml DMEH mit 0,1% BSA je Vertiefung mit verschiedenen Proteininhibitoren für 30 Minuten vorinkubiert, bevor die Zellen wie oben beschrieben mit Wachstumsfaktoren und/oder Opioiden für 5 Minuten stimuliert wurden.

Folgende Inhibitoren wurden eingesetzt:

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Inhibierte Zielstruktur</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>AG1478</td>
<td>ErbB1</td>
<td>5 µM</td>
</tr>
<tr>
<td>AG825</td>
<td>ErbB2</td>
<td>50 µM</td>
</tr>
<tr>
<td>Wortmannin</td>
<td>Pi3K</td>
<td>1 µM</td>
</tr>
<tr>
<td>EGCG</td>
<td>Matrix-Metalloproteinasen (MMPs)</td>
<td>10 µM</td>
</tr>
</tbody>
</table>

Darstellung der Apoptose mit Annexin V/Propidiumiodid-Färbung

wurden die Zellkerne mit 1:10 in Bindungspuffer verdünntem Propidiumiodid (Endkonzentration 1 µg/ml) durch 10-minütige Inkubation bei Rt angefärbert. Nachdem die Zellen erneut 3 x mit PBS gewaschen wurden, folgte die Fixation in 2% Formaldehyd (Formaldehyd 37%, verdünnt in PBS) für 30 Minuten. Zum Schluss wurden die Zellen wiederum 3 x mit je 1 ml PBS gewaschen, bevor sie mit einem Tropfen Vecta Mount™ auf Objektträgern eingebettet wurden. Die Zellen wurden mittels konfokaler Mikroskopie unter Verwendung eines 63x/1.4 Objektivs ausgewertet (Ölimmersion).

Bestimmung des PARP-Abbaus

Für den Poly(ADP-ribose)-Polymerase 1 (PARP)-Assay wurden die Zellen geerntet, gezählt und auf zwei 12er Testplatten in Standardwachstumsmedium ausgesät. Ab dem nächsten Morgen wurde eine Platte für 5 Tage mit Morphin behandelt, die zweite Platte blieb als Kontrolle unbehandelt. Nach 5 Tagen wurde das Medium entfernt, jede Vertiefung mit 1 ml PBS gewaschen und den Zellen 2 ml Serum-reduziertes Medium (Zusammensetzung siehe unten) zugefügt. Dem Medium wurden Heregulin-ß1, Morphin und Naloxon alleine oder in Kombination zugesetzt oder die Zellen blieben als Kontrolle unbehandelt. Die so behandelten Zellen wurden für 6 Stunden bei 37°C und 5% CO₂ im Brutschrank inkubiert, bevor das Medium abgesaugt und die Reaktion mit 0,5 ml Proteinauftragspuffer (Roti®-Load 1, 1:4 verdünnt in Aq. Bidest.) pro Kavität der Platte gestoppt wurde. Die Proben wurden bis zur Durchführung des Western Blots mit Parafilm verschlossen bei -20°C aufbewahrt.

Das für die PARP-Bestimmung verwendete Medium mit reduziertem Serumgehalt setzte sich wie folgt zusammen:

Sera-reduziertes Medium:

- RPMI
- 0,5% FKS
- 100 IU/ml Penicillin
- 0,1 mg/ml Streptomycin
- 0,2% Enrofloxacin
2.2 Molekularbiologische, proteinanalytische und zytochemische Methoden

Polymerase-Kettenreaktion und Gelelektrophorese

Polymerase-Kettenreaktion

Die RT(Reverse Transkriptase)-Polymerase-Kettenreaktion (RT-PCR) wurde gewählt, um die Expression von Adenylylcyclasen (AC) und Opioid-Rezeptoren (OR) in BT474 zu bestimmen.

Zusammensetzung PCR Ansatz:

- Primer: 10 pmol je Vorwärts- und Rückwärtsprimer
- Template cDNA: 10 ng (cDNA der BT474 Zellen oder Plasmid-cDNA der entsprechenden Rezeptoren als Positivkontrolle)
- dNTP Mix: je 0,2 mM (Endkonzentration)
- Pfu DNA Polymerase: 1,25 u
- Buffer 10 x mit 20 mM MgSO₄: 5 µl
- Nukleasefreies Wasser: ad 50 µl

Als Negativkontrolle wurde ein Ansatz mit PCR-H₂O anstelle des Templates angefertigt. Um die Integrität der verwendeten cDNA zu gewährleisten, wurde ein Fragment der Glycerinaldehyd-3-phosphat-Dehydrogenase (GAPDH), welche als Haushaltsgen unabhängig vom Zelltyp, Zellzyklusstadium und äußeren Einflüssen konstitutiv exprimiert wird, amplifiziert.

Das Programm der PCR-Reaktion setzte sich zusammen aus einer initialen Denaturierungsphase von 3 Minuten bei 94°C, gefolgt von 30-35 Zyklen jeweils bestehend aus einer Denaturierung für 30 Sekunden bei 94°C, der Primeranlagerung (Annealing) für 30 Sekunden bei einer Temperatur 5°C unter
Material und Methoden

der jeweiligen Schmelztemperatur des verwendeten Primer-Paars und der Extensionsphase für 45 Sekunden bei 72°C. Die PCR-Reaktion schloss mit einer 5-minütigen Extensionsphase bei 72°C ab. Die jeweilige Annealing Temperatur (AT), sowie die genaue Anzahl der Zyklen und die Sequenz der verwendeten Primer sind der folgenden Tabelle zu entnehmen:

<table>
<thead>
<tr>
<th>Ziel</th>
<th>Vorwärts Primer</th>
<th>Rückwärts Primer</th>
<th>AT</th>
<th>Zyklen</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC1</td>
<td>5´-CCGAGTTGGCATCAATG TTGGC-3´</td>
<td>5´-TCCTCAGTCACCTGGAG TTCTGC-3´</td>
<td>56°C</td>
<td>35</td>
</tr>
<tr>
<td>AC2</td>
<td>5´-CAGCATCCTCTCAGACC TCGC-3´</td>
<td>5´-CCGAATGGGAGGCAA ACATG-3´</td>
<td>57°C</td>
<td>30</td>
</tr>
<tr>
<td>AC3</td>
<td>5´-GAAGACAAATGCGAGA GAGGC-3´</td>
<td>5´-TCTCTACCACCTGGAA TGGTC-3´</td>
<td>57°C</td>
<td>30</td>
</tr>
<tr>
<td>AC4</td>
<td>5´-TCCTCCTCAACTTACCA TCC-3´</td>
<td>5´-ACACTGATGAGAGGC AGAGACC-3´</td>
<td>56°C</td>
<td>35</td>
</tr>
<tr>
<td>AC5</td>
<td>5´-ACAGGAGCAACACATC AGCG-3´</td>
<td>5´-TGAAGAAGTCTATGG CGTGGC-3´</td>
<td>58°C</td>
<td>30</td>
</tr>
<tr>
<td>AC6</td>
<td>5´-TATGACCTACTGCTTGG CGTCC-3´</td>
<td>5´-TAGTAGAGTTCATCAT TGAGGC-3´</td>
<td>57°C</td>
<td>30</td>
</tr>
<tr>
<td>AC7</td>
<td>5´-TGTTGCTCTTCAACCTC TCC-3´</td>
<td>5´-CTGTCCTGGAGAGTGA AGCAGG-3´</td>
<td>56°C</td>
<td>35</td>
</tr>
<tr>
<td>AC8</td>
<td>5´-TGGCTCTGGTCTTCACT CAC-3´</td>
<td>5´-GTTCCTCAAGGGTATC GACCTG-3´</td>
<td>56°C</td>
<td>35</td>
</tr>
<tr>
<td>AC9</td>
<td>5´-GAGTTGCGCAAGGAGATG TGATGC-3´</td>
<td>5´-TACAGGCTAGTCTTCA TGGGC-3´</td>
<td>59°C</td>
<td>35</td>
</tr>
<tr>
<td>MOR</td>
<td>5´-ATGAAGATGCGCCACA ACACTAC-3´</td>
<td>5´-GAAGAGGAGATCCAG TGCAGAC-3´</td>
<td>60°C</td>
<td>30</td>
</tr>
<tr>
<td>DOR</td>
<td>5´-GATGCGCTGGCCACA GCAC-3´</td>
<td>5´-GAACACGGCAGATTT GGTCAC-3´</td>
<td>58°C</td>
<td>30</td>
</tr>
<tr>
<td>KOR</td>
<td>5´-ACATTCGCGTGCCACC CC-3´</td>
<td>5´-TGCCACCACCACCAGG ACCA-3´</td>
<td>60°C</td>
<td>30</td>
</tr>
<tr>
<td>GAP DH</td>
<td>5´-CAAGGTCATCCATGACA ACTTTG-3´</td>
<td>5´-GTCCACCACCCTGTGG CTGTA-3´</td>
<td>58°C</td>
<td>30</td>
</tr>
</tbody>
</table>

Gelelektrophorese

Im Anschluss an die RT-PCR folgte eine Gelelektrophorese, um die amplifizierten Fragmente anhand ihrer Größe aufzutrennen.
Zusammensetzung des 1,5% Agarose Gels:

- 0,9 g Agarose
- 50 ml TAE-Laufpuffer
 - mehrmals aufkochen in der Mikrowelle und Ersetzen der Verdampfungsverluste mit Aq. Bidest.
- 0,4 μg/ml EtBr

Proteinbestimmung nach Lowry

Um die durch Radioligandenbindung bestimmte Rezeptormenge in Bezug zur Menge an Membranprotein setzen zu können, wurde eine Proteinbestimmung nach Lowry [77] durchgeführt. Die Testreagenzien setzten sich wie folgt zusammen:

Lowry Reagenz A:
- 3 ml CTC
- 3 ml 0,8 M NaOH
- 3 ml 10% SDS
- 3 ml Aq. Bidest.

Lowry Reagenz B:
- 0,5 ml Folin-Reagenz
- 2,5 ml Aq. Bidest.

Nach dem Vorbereiten der benötigten Lowry-Lösungen wurde eine Standardreihe im Doppelansatz mit definierten Proteinkonzentrationen von 0, 2,5, 5, 7,5 und 10 μg/0,1 ml BSA in Aq. Bidest. hergestellt. Für die Konzentrationsbestimmung der Proben wurden die Membransuspensionen auf Eis angetaut, in 0,1 ml TM-Puffer resuspendiert und im Doppelansatz jeweils 3 und 5 μl in 0,2 ml Aq. Bidest.
verdünnnt. Allen Ansätzen (Standardreihe/Proben) wurden 0,4 ml der Lowry-A-Lösung zugesetzt, gemischt und die Proben anschließend für 10 Minuten bei Rt inkubiert. Im nächsten Schritt wurden allen Ansätzen 0,2 ml der Lowry-B-Lösung zugefügt, gemischt und die Proben für weitere 30 Minuten im auf 37°C vorgewärmten Wasserbad inkubiert. Danach wurden die Proben in Einmalküvetten überführt und die Farbreaktion bei λ=550 nm photometrisch bestimmt. Der Proteingehalt wurde anhand der Standardreihe ermittelt.

Radioligandenbindung

Die Zellmembranen wurden in 0,1 ml TM-Puffer resuspendiert. Für die Radioligandenbindung an den μ-Opioid-Rezeptor wurde \[^{3}\text{H}]DAMGO (30-60 Ci/mmol) eingesetzt und jeder Ansatz in Dreifachbestimmung durchgeführt. In jedem 2 ml Reaktionsgefäß wurde ein Ansatz mit 0,2 ml vorbereitet, bestehend aus 160 μl der in TM-Puffer resuspendierten Membranen (entsprechend 300 μg Membranprotein), 20 μl DAMGO (1 μM) oder TM-Puffer und 20 μl \[^{3}\text{H}]DAMGO (entsprechend 15000 counts). Die Ansätze wurden gemischt und anschließend bis zum Einstellen des Equilibriums für 2 Stunden bei Rt inkubiert. Durch Zugabe von je 1 ml eiskaltem Puffer wurde die Reaktion gestoppt und ungebundene Liganden durch Filtration über Glasfaserfilter abgetrennt. Die Filter wurden zuvor durch 20-minütige Inkubation mit 0,1% PEG geblockt, um unspezifische Bindung zu vermeiden. Die Filter wurden nach Auftragen der Proben noch weitere 2 x mit je 1 ml TM-Puffer gespült, in Zählfläschchen überführt und mit je 3 ml Scintillationsflüssigkeit getränkt. Die membrangebundene Radioaktivität wurde nach 24-stündiger Extraktion im Scintillations-Messsystem bestimmt. Die spezifische Bindung von \[^{3}\text{H}]DAMGO wurde aus der Differenz von Proben, denen nur \[^{3}\text{H}]DAMGO zugesetzt war und solchen, in denen unmarkiertes DAMGO zur Verdrängung zugesetzt war, berechnet. Die maximale Bindungskapazität wurde mit Hilfe der spezifischen Bindung (B₀), der Dissoziationskonstante (K_D) und der Ligandenkonzentration (L) berechnet. Die Ligandenkonzentration wurde für jedes Experiment gesondert bestimmt. Die K_D für DAMGO am humanen μ-Rezeptor beträgt 1,4 nM [45]. Nach DeBlasi [78] kann die maximale Bindungskapazität (B_max) dann mit folgender Formel berechnet werden:

\[B_{\text{max}} = B_0 \times \frac{L+K_D}{L} \]
Durch die zugehörige Lowry-Proteinbestimmung konnte die berechnete Anzahl an Rezeptoren in Bezug zur Menge an Membranprotein gesetzt werden.

Western Blot
Mit Hilfe des Western Blots wurden die BT474 Zellen hinsichtlich ihres Gehaltes an G-Proteinen und ErbB Rezeptoren charakterisiert sowie die Aktivität der Erk1/2 und der Akt und das Auftreten von PARP-Abbauprodukten in den Zellen bestimmt.

Proben

Detektion der G-Proteine
Zur Bestimmung der G-Proteine wurden je 10 µg BT474 Membranprotein in 10 µl Proteinauftragspuffer (Roti®-Load 1) auf ein 10% SDS-Polyacrylamid Gel aufgetragen.

Bestimmung der ErbB Rezeptoren
Für den Western Blot wurden die Zellen von 3 Zellkulturflaschen mit einer Bodenfläche von je 75 cm² verwendet. Eine Flasche blieb unbehandelt, die zweite wurde mit Morphin und die dritte mit Morphin und Naloxon für jeweils 5 Tage behandelt. Danach wurden Zellmembranen wie oben beschrieben isoliert und eine Proteinbestimmung nach Lowry durchgeführt. Aus jedem Ansatz wurde eine Menge entsprechend 200 µg Membranprotein entnommen und im Eisbad mit je 1 ml eisgekühltem Aceton für 30 Minuten gefällt. Nach einer Zentrifugation von 10 Minuten bei 4°C und 6000 x g wurde der Überstand abgenommen, das Membranpellet kurz an der Luft getrocknet und in 100 µl Proteinauftragspuffer (Roti®-Load 1) aufgenommen. Eine Menge von 10 µl (entsprechend 20 µg Membranprotein) wurde in jede Geltasche eines 8% SDS-Gels aufgetragen.

Erk1/2- und Akt-Aktivitätsbestimmung sowie PARP-Degradation
Im Falle der Erk1/2- und Akt-Aktivitätsbestimmung und der Evaluation der PARP-Degradation wurden 10 µl der in Auftragspuffer solubilisierten Zellen eingesetzt.

Probenvorbereitung
Alle Proben wurden vor dem Auftragen auf das Gel zuerst 10 Sekunden mit Ultraschall behandelt, dann für 5 Minuten auf 95°C erhitzt und nach dem
Abkühlen für 10 Minuten bei 4°C und 5000 x g zentrifugiert.

SDS-Polyacrylamid Gele

10% Trenngel (für 2 Gele):
- 5 ml Rotiphorese® - Gel 30
- 3,75 ml 1,5 M Tris-HCl
- 0,15 ml 10% SDS
- 15 µl TEMED
- 75 µl APS
- 6,1 ml Aq. Bidest

8% Trenngel (für 2 Gele):
- 4 ml Rotiphorese® - Gel 30
- 3,75 ml 1,5 M Tris-HCl
- 0,15 ml 10% SDS
- 15 µl TEMED
- 75 µl APS
- 7,1 ml Aq. Bidest

Sammelgel (für 2 Gele):
- 1,7 ml Rotiphorese® - Gel 30
- 1 ml 1,25 M Tris-HCl
- 0,1 ml 10% SDS
- 20 µl TEMED
- 100 µl APS
- 7 ml Aq. Bidest

Zunächst wurde das Trenngel in einer Größe von 5 x 8 cm in eine Mini-Protean II Gelkammer gegossen und nach Auspolymerisierung mit einem Sammelgel der Größe 3 x 8 cm überschichtet. Ein Probenkamm diente als Platzhalter für die Auftragstaschen. Die Gele konnten anschließend über Nacht im Kührlraum bei 4°C vollständig auspolymerisieren.

Gelelektrophorese

Semi-Dry Blotting

Die aufgetrennten Proteine wurden anschließend auf eine Polyvinylidenfluorid(PVDF)-Membran transferiert. Zwischen die befeuchteten Graphitplatten der Blot-Apparatur wurde ein Sandwich bestehend aus 6 in Anodenpuffer I getränkten Filterpapieren, 3 in Anodenpuffer II getränkten Filterpapieren, der für 10 Minuten in Methanol aktivierten PVDF-Membran, dem Elektrophoresegel und 9 in Kathodenpuffer getränkten Filterpapieren gelegt. Der Proteintransfer fand bei einer Stromstärke von 0,8 mA/cm² für 2 Stunden statt.

Anschließend wurde die Membran für 30 Minuten durch Inkubation mit RotiBlock® (1:10 in Aq. Bidest) unter Schütteln bei Rt geblockt, um unspezifische Antikörperbindungen zu vermeiden.

Proteindetektion

Die Proteine wurden anschließend mittels Antikörperreaktion detektiert. Dafür wurden die Membranen zuerst über Nacht mit Protein-spezifischen Antikörpern (je nach Experiment) in TBS/T Puffer mit 0,1% BSA verdünnt (s. unten) bei 4°C unter Schütteln inkubiert. Am Folgetag wurde, nach dreimaligem Waschen mit je 10 ml TBS/T Puffer für 10 Minuten, der 2. Antikörper (Anti-Rabbit oder Anti-Mouse, je nach erstem Antikörper) verdünnt in TBS/T mit 0,1% BSA zugegeben. Bei den zweiten Antikörpern handelt es sich um an Meerrettich-Peroxidase (Horseraddish-Peroxidase/HRP)-gekoppelte Antikörper, die beispielsweise mittels Chemiluminiszenz detektiert werden können. Nach 1-stündiger Inkubation mit dem 2. Antikörper bei Rt unter Rütteln folgten wieder 3 Waschschritte, bevor die Banden entwickelt wurden.

Der nachfolgenden Tabelle sind die verwendeten ersten und zweiten Antikörper und die jeweils eingesetzte Verdünnung zu entnehmen:

<table>
<thead>
<tr>
<th>Zielantigen</th>
<th>Verdünnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gα2</td>
<td>1:5000</td>
</tr>
<tr>
<td>Gα3</td>
<td>1:2000</td>
</tr>
<tr>
<td>Gα</td>
<td>1:4000</td>
</tr>
<tr>
<td>Gβ</td>
<td>1:5000</td>
</tr>
<tr>
<td>Gq11α</td>
<td>1:2000</td>
</tr>
<tr>
<td>G12α</td>
<td>1:2000</td>
</tr>
<tr>
<td>Antigen</td>
<td>Konzentration</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>G₁₃α</td>
<td>1:2000</td>
</tr>
<tr>
<td>G₁₄α</td>
<td>1:2000</td>
</tr>
<tr>
<td>ErbB1</td>
<td>1:1000</td>
</tr>
<tr>
<td>ErbB2</td>
<td>1:1000</td>
</tr>
<tr>
<td>ErbB3</td>
<td>1:1000</td>
</tr>
<tr>
<td>ErbB4</td>
<td>1:1000</td>
</tr>
<tr>
<td>Erk1/2</td>
<td>1:2000</td>
</tr>
<tr>
<td>Phospho-Erk1/2 (Thr202/Tyr204)</td>
<td>1:2000</td>
</tr>
<tr>
<td>Akt</td>
<td>1:2000</td>
</tr>
<tr>
<td>Phospho-Akt (Ser473)</td>
<td>1:2000</td>
</tr>
<tr>
<td>PARP (Asp214)</td>
<td>1:1000</td>
</tr>
<tr>
<td>β-Tubulin</td>
<td>1:4000</td>
</tr>
<tr>
<td>Mouse-Fc</td>
<td>1:2000</td>
</tr>
<tr>
<td>Rabbit-Fc</td>
<td>1:2000</td>
</tr>
</tbody>
</table>

Visualisierung der Banden mit Chemoluminiszenz

ECL (enhanced chemiluminescence)-Lösung:
- 2,5 mM Luminol in DMSO
- 400 µM p-Cumarsäure in DMSO
- 100 mM Tris-HCl
- 2,7 mM 30% H₂O₂
- Aq. Bidest. ad 20 ml

Reinigung der Membranen von anheftendem Antikörper (Strippen)

Um vergleichbare Ergebnisse der Gesamtmenge an Erk1/2 und Akt in Relation zur Menge an aktivierter, phosphorylierter Form zu erhalten, mussten beide Formen anhand der gleichen Proben bestimmt werden. Um an den zur Bestimmung der phospho-Erk1/2 und phospho-Akt angefertigten Blots die Gesamtmenge an Erk1/2 bzw. Akt mittels Inkubation mit spezifischen
Material und Methoden

Antikörpern detektieren zu können, mussten die Membranen zuerst von anhaftenden Antikörpern befreit werden. Das sogenannte „strippen“ der Blot-Membranen wurde nach folgendem Protokoll durchgeführt:

- 4 x Waschen für je 15 Minuten mit je 10 ml Strip-Puffer
- 2 x Waschen für je 10 Minuten mit je 10 ml Aq. Bidest.
- 10 Minuten Waschen mit 10 ml TBS/T
- 30 Minuten Inkubation mit RotiBlock® (1:10 in Aq. Bidest.)

Danach konnten die Membranen erneut mit einem spezifischen ersten Antikörper über Nacht bei 4°C unter Schütteln inkubiert werden.

Enzyme-linked Immunosorbent Assay (ELISA)

Zur Bestimmung des cAMP-Gehaltes des Zellüberstands wurde ein Enzyme-linked Immunosorbent Assay (ELISA) durchgeführt. Der ELISA wurde in einer 96er Mikrotitierplatte durchgeführt, die zuvor mit einem gegen Kaninchen-IgG gerichteten Antikörper der Ziege, der wiederum einen gegen cAMP gerichteten Antikörper aus dem Kaninchen gebunden hat, beschichtet wurde. Für den Versuch wurde eine Standardreihe als absteigende Verdünnungsreihe ausgehend von einer 10 µM cAMP-Standardlösung in Assay-Puffer angelegt und wie die Proben je 0,1 ml in Dreifachbestimmung auf die Vertiefungen der Platte aufgetragen. Die Proben wurden 1:10 in Assay-Puffer verdünnt. Zu den so beschickten Platten wurde anschließend ein cAMP-Peroxidase-Konjugat gegeben (1:5000 verdünnt in Assay-Puffer), die Platten mit Parafilm verschlossen und unter Schütteln bei 4°C über Nacht inkubiert. Am nächsten Tag wurde nach dreimaligem Waschen mit Wasch-Puffer die Substratlösung der Peroxidase (Substratlösung A und Substratlösung B im Verhältnis 1:1; 0,15 ml pro Kavität) zugegeben. Nach 5-minütiger Inkubation bei Rt unter Schütteln wurde die Reaktion durch Zugabe von 50 µl 1 M HCl pro Vertiefung gestoppt, die Farbreaktion bei λ=450 nm photometrisch gemessen und anhand der Standardkurve die Menge an cAMP bestimmt.

Co-Immunpräzipitation

wurden 3 x mit je 6 ml PBS gewaschen und anschließend mit Morphin (10 µM) oder Heregulin-β1 (40 ng/ml) für 10 Minuten bei 37°C in RPMI mit 0,1% BSA stimuliert. Die Zellen wurden in ein Eisbad überführt und erneut 3 x mit 6 ml PBS gewaschen, bevor die gebildeten ErbB Rezeptor-Dimere durch 2-stündige Inkubation mit 5 mM DSP in PBS kovalent vernetzt wurden. Die Reaktion wurde durch Zugabe von 5 mM Tris-HCl gestoppt und die Zellmembranen wie oben beschrieben isoliert. Die gebildeten Proteinkomplexe wurden in TN-Puffer mit 1% Triton X 100, 1 mM PMSF und 4% Complete Protease Inhibitor Mix für eine Stunde bei 4°C solubilisiert. Anschließend wurden die Proben 1:10 verdünnt und für 5 Minuten bei 10000 x g und 4°C zentrifugiert, bevor 2 µl Anti-ErbB1 Antikörper (Verdünnung 1:500) und 40 µl Protein A-Agarose (1:1) zugegeben und die Proben über Nacht im Kühlraum rotiert wurden. Am Folgetag wurden die Proben 5 x mit TN-Puffer mit 0,1% Triton X 100 und 1 x mit 5 mM Tris-HCl gewaschen. Anschließend wurden die Immunpräzipitate in je 0,1 ml Auftragspuffer aufgenommen und über ein 8% SDS-Gel aufgetrennt.

2.3 Datenauswertung
Alle Daten wurden als Mittelwerte mit Standardfehler aller unabhängigen Versuchsergebnisse dargestellt. Signifikante Unterschiede wurden mittels Student’s t-Test ermittelt. Die abgebildeten Western Blots, die fotografische Darstellung des Kristallviolett-Tests sowie die konfokalen Aufnahmen sind jeweils repräsentativ für mindestens 3 unabhängige Versuche.
V Ergebnisse

1. Charakterisierung der BT474 Zellen

Im ersten Schritt wurden die BT474 Zellen als Modell für die Vermittlung intrazellulärer Signale nach akuter und chronischer Morphin-Behandlung charakterisiert. Zunächst wurde die Expression endogener Opioid-Rezeptoren und anschließend deren funktionelle Kopplung an nachgeschaltete Effektorwege bestimmt.

1.1 Endogene Opioid-Rezeptoren in BT474 Zellen

Abb. 4 Nachweis endogener Opioid-Rezeptoren in BT474 Zellen.

Mittels RT-PCR konnten in BT474 Zellen nur Transkripte des μ-Opioid-Rezeptors, nicht aber des δ- oder κ-Opioid-Rezeptors identifiziert werden (Abb. 4).
1.2 **Bestimmung der Rezeptormenge durch Radioligandenbindung**

Mittels Radioligandenbindung wurde die Menge der Membran-gebundenen endogenen µ-Opioid-Rezeptoren bestimmt. \[^{3}H\]DAMGO diente in den Versuchen als Radioligand. In Membranen von Kontrollzellen (n=5) wurde eine durchschnittliche Rezeptormenge von 16,1 ± 9,7 fmol/mg Membranprotein gemessen. Nach chronischer Morphin-Behandlung (5 Tage, 10 µM) nahm die Rezeptordichte um etwa 40% auf 9,4 ± 3,4 fmol/mg Membranprotein ab (n=3).

1.3 **Ausstattung der BT474 Zellen mit G-Proteinen**

BT474 Zellen enthalten \(G_\text{i} \) (\(G_\text{i} \alpha_2, G_\text{i} \alpha_3\)) sowie \(G_\text{s} \) (\(G_\text{s} \alpha\)), \(G_\text{q} \) (\(G_\text{q/11} \alpha\)) und \(G_\text{12} \) (\(G_{12} \alpha,G_{13} \alpha,G_{14} \alpha\)) Proteine (Abb.5). Daraus ergibt sich für µ-Opioid-Rezeptoren die Möglichkeit, in BT474 Zellen verschiedene intrazelluläre Effekto ren wie AC (über \(G_\text{i}\)), PLC (über \(G_\text{q}\)) und Rho-GTPasen (über \(G_{12}\)-Familie) zu regulieren.
1.4 Adenylylcyclasen als Effektorsysteme der Opioid-Rezeptoren

Abb. 6 Nachweis verschiedener Adenylylcyclase-Isoformen in BT474 Zellen.
Von links nach rechts: Marker 100 bp; GAPDH: spezifische Bande bei 496 bp; AC1: spezifische Bande bei 143 bp; AC2: spezifische Bande bei 323 bp; AC3: spezifische Bande bei 259 bp; AC4: spezifische Bande bei 368 bp; AC5: spezifische Bande bei 313 bp; AC6, AC7: unspezifische Banden; AC8: spezifische Bande bei 195 bp; AC9: spezifische Bande bei 325 bp; Negativkontrolle (PCR-H₂O).

1.5 Regulation der intrazellulären cAMP-Akkumulation
Die BT474 Zellen besitzen die folgenden AC-Isoformen: 1-5, 8 und 9. Somit ist in BT474 Zellen eine Regulation der intrazellulären cAMP-Akkumulation durch µ-Opioid-Rezeptoren zu erwarten. Diese wurde für einen Zeitraum von 15 Minuten in Anwesenheit von Forskolin (1 µM), Morphin (10 µM) und Naloxon (100 µM) bestimmt.
Ergebnisse

In Kontrollzellen führt die akute Aktivierung der µ-Opioid-Rezeptoren mit Morphin (10 µM) zu einer Reduktion der cAMP-Produktion um 53%. Dieser Effekt wird durch 100 µM Naloxon aufgehoben.

Nach chronischer Morphin-Behandlung: Eine akute Morphin-Stimulation bewirkt eine deutliche Abnahme der intrazellulären cAMP-Produktion im Vergleich zur Kontrolle. Dieser Effekt wird gehemmt durch gleichzeitige Behandlung mit Naloxon.

Mittelwerte ± SE aus n=3 unabhängigen Versuchen. ***: signifikant für p<0,001; n.s.: nicht signifikant.

In Kontrollzellen führt die akute Aktivierung der µ-Opioid-Rezeptoren mit Morphin (10 µM) zu einer Reduktion der cAMP-Produktion um 53%. Dieser Effekt wird bei gleichzeitiger Anwesenheit von Naloxon (100 µM) aufgehoben. Obwohl die chronische Morphin-Behandlung der BT474 Zellen zu einer Abnahme der µ-Opioid-Rezeptoren führt (s. Radioligandenbindung), bewirkt die akute Stimulation mit Morphin auch in diesen Zellen eine Reduktion des intrazellulären cAMP-Gehaltes um 48%, die wiederum durch Naloxon aufhebbar ist. Diese Ergebnisse zeigen, dass BT474 Zellen intakte endogene µ-Opioid-Rezeptoren tragen, die auch nach einer chronischen Morphin-Behandlung voll funktionsfähig sind (Abb.7).

2. Interaktion von Opioiden mit dem Zellwachstum

Naive Zellen: Die Exposition der Zellen gegenüber Morphin (5 Tage, 10 µM) führt zu einer leichten Reduktion der Zellzahl. Dieser Effekt wird durch gleichzeitige Behandlung mit 100 µM Naloxon aufgehoben.

Mittelwerte ± SE normalisiert auf unbehandelte Kontrollen aus n=6 unabhängigen Versuchen; **: signifikant für p<0,005.
Die chronische Behandlung der BT474 Zellen mit Morphin hemmt insbesondere bei gleichzeitiger Anwesenheit von Heregulin-ß1 das Zellwachstum (Abb.8). In naiven Zellen reduziert die chronische Behandlung der Zellen mit Morphin das Zellwachstum um 11%. Während die 5-tägige Behandlung der Zellen mit Heregulin-ß1 das Zellwachstum um 47% stimuliert, führt die gleichzeitige Inkubation der Zellen mit Morphin zu einer Reduktion des durch Heregulin-ß1 stimulierten Wachstums um 49% (Abb.9).

Die Aufhebung der Morphin-vermittelten Hemmung des Zellwachstums durch Naloxon und das Ausbleiben vergleichbarer Effekte auf das Zellwachstum bei Verwendung des inaktiven Stereoisomers (+)-Morphin (Ergebnisse nicht gezeigt) weisen auf einen durch µ-Opioid-Rezeptoren vermittelten Effekt hin und schließen indirekte Effekte durch die alkalischen Struktur des Morphins aus.

3. Beeinflussung der Proliferation durch Opioide

3.1 Aktivierung der Erk1/2 durch Opioide

µ-Opioid-Rezeptoren können sowohl direkt als auch indirekt durch Transaktivierung von RTKs den mitogenen Erk1/2-Signalweg induzieren. Aus diesem Grund wurde zunächst die Aktivierung der Erk1/2 nach 5-minütiger Stimulation der Zellen mit Morphin (10 µM), Naloxon (100 µM) und Heregulin-ß1 (40 ng/ml) mittels Western Blot bestimmt. Die phosphorylierte Form der Erk1/2 ist die aktivierte Form, die durch phospho-Erk1/2 spezifische Antikörper detektiert werden kann. Die Gesamtmenge der Erk1/2 wurde anhand der gleichen Blots mit einem pan-reaktiven Erk1/2-Antikörper bestimmt. Das Säulendiagramm zeigt die prozentualen Werte aller Versuche, bezogen auf Heregulin-ß1 stimulierten
Ergebnisse

Kontrollzellen (100%).

Die akute Stimulation naiver BT474 Zellen mit Morphin führt zu einem Anstieg der basalen Erk1/2-Phosphorylierung um 49%. Dieser Effekt wird durch die gleichzeitige Inkubation mit Naloxon aufgehoben.

Die Stimulation naiver BT474 Zellen mit Heregulin-ß1 führt zu einem deutlichen Anstieg der Erk1/2-Phosphorylierung, der bei gleichzeitiger Behandlung mit Morphin signifikant vermindert (17%) wird. Auch dieser Morphin-vermittelte Effekt wird durch Anwesenheit von Naloxon aufgehoben.

Die chronische Morphin-Behandlung (5 Tage, 10 µM) bewirkt eine Erhöhung der basalen Erk1/2-Phosphorylierung um 56% im Vergleich zu naiven Zellen. Ein Effekt auf die Erk1/2-Aktivierung durch zusätzliche akute Morphin-Stimulation wird dadurch maskiert. Heregulin-ß1 führt auch in chronisch Morphin-

Abb. 10 Aktivierung der Erk1/2 durch Opioidne.
Oben: Repräsentative Western Blots für die Erk1/2-Phosphorylierung. Darstellung jeweils der phosphorylierten 42 und 44 kDa Form der Erk1/2 (phospho-Erk1/2), sowie darunter der absoluten Menge (Erk1/2) nach 5-minütiger Stimulation mit Morphin (10 µM) mit und ohne Naloxon (100 µM) und/oder Heregulin-ß1 (40 ng/ml).
Unten: Auswertung aller phospho-Erk1/2 Versuche; links: naive Zellen, rechts: BT474 Zellen nach chronischer Morphinbehandlung; beide Diagramme zeigen von links nach rechts die Erk1/2-Phosphorylierung in Kontrollzellen, nach Stimulation durch Morphin, Morphin mit Naloxon, Heregulin-ß1, Heregulin-ß1 mit Morphin und Heregulin-ß1 mit Morphin und Naloxon. Daten aus n=8 (naiv) bzw. n=6 (chronisch Morphin) unabhängigen Versuchen; Mittelwerte ± SE; *: signifikant für p<0,05.
behandelten BT474 Zellen zu einem deutlichen Anstieg der Erk1/2-Phosphorylierung. Anders als in naiven Zellen, führt jedoch die gleichzeitige akute Stimulation mit Morphin zu einem zusätzlichen signifikanten Anstieg der Erk1/2-Phosphorylierung um 14%. Auch dieser Effekt wird durch Naloxon aufgehoben (Abb.10).

3.2 Bestimmung der Proliferationsrate mittels BrdU-Assay

Die Proliferationsrate naiver und chronisch Morphin-behandelter (5 Tage, 10 µM) BT474 Zellen wurde für 2 Stunden in An- und Abwesenheit von Morphin (10 µM) und Heregulin-ß1 (40 ng/ml) mittels BrdU-Proliferationsassay bestimmt.

Abb. 11 Einfluss einer Morphin-Behandlung auf die Proliferationsrate der BT474 Zellen.

In naiven Zellen stimuliert Morphin im Vergleich zu Kontrollzellen die Proliferation um 16%. Heregulin-ß1 führt zu einer deutlicheren Steigerung der Proliferation, die durch gleichzeitige Behandlung mit Morphin um 10% vermindert wird.

In chronisch Morphin-behandelten Zellen bleibt die basale Proliferationsrate unverändert, eine akute Stimulation mit Morphin hat keinen weiteren Einfluss. Die Stimulation der Zellproliferation durch Heregulin-ß1 ist im Vergleich zu naiven Zellen um 16% vermindert. Anders als in naiven Zellen wird jedoch die durch Heregulin-ß1 stimulierten Proliferationsrate durch gleichzeitige Behandlung
mit Morphin zusätzlich um 10% gesteigert (Abb.11).

4. **Interaktion von Morphin mit dem Akt-Signalweg**

Die Erhöhung der Morphin-stimulierten Proliferationsrate und Erk1/2-Phosphorylierung nach chronischer Morphin-Behandlung steht im Widerspruch zur Hemmung des Wachstums der BT474 Zellen (Kristallviolett-Assay). Aus diesem Grund wurde die Regulation des Akt-Signalweges untersucht. Die Akt-Aktivierung vermittelt zytoprotektive Effekte, insbesondere durch die Hemmung der Apoptosere. Eine µ-Opioid-Rezeptor vermittelte Regulation des Akt-Signalwegs wurde wie für die Erk1/2 durch 5-minütige Stimulation von naiven und chronisch Morphin-behandelten Zellen (5 Tage, 10µM) mit Morphin (10 µM), Naloxon (100 µM) und Hergulin-ß1 (40 ng/ml) im Western Blot untersucht. Es wurde sowohl die aktivierte phosphorylierte Form der Akt als auch ihre Gesamtmengen mittels spezifischer Antikörper detektiert.

Abb. 12 Phosphorylierung der Akt nach Morphin-Behandlung.

Oben: Repräsentativer Western Blot der Akt (60 kDa) nach 5-minütiger Akt-Stimulation mit Morphin und Hergulin-ß1 in naiven (links) und chronisch Morphin-behandelten (rechts) Zellen nach Zugabe der gekennzeichneten Opioid bzw. Hergulin-ß1. Im oberen Teil abgebildet ist die aktivierte phosphorylierte Akt, darunter ist die Gesamtmenge an Akt dargestellt.

Unten: Auswertung aller Experimente. In naiven Zellen (linke Seite) und chronisch Morphin-behandelten Zellen (rechte Seite) nach Stimulation mit Morphin und Hergulin-ß1. Mittelwerte ± SE aus n=4 unabhängigen Versuchen, Werte normalisiert auf Hergulin-ß1 stimuliert naive Zellen (100%).
Wie Abbildung 12 zeigt, steigert Heregulin-ß1 die basale Phosphorylierung der Akt in naiven Zellen um 40%. Die chronische Morphin-Behandlung der BT474 Zellen führt zu einem Anstieg der basalen und der durch Heregulin-ß1 stimulierten Akt-Phosphorylierung. Eine akute Stimulation mit Morphin hat dagegen weder in naiven, noch in chronisch Morphin-behandelten BT474 Zellen Einfluss auf die Akt-Aktivierung, unabhängig von einer Stimulation durch Heregulin-ß1.

Die Tatsache, dass die chronische Morphin-Behandlung der BT474 Zellen mit einer erhöhten Akt-Phosphorylierung einhergeht, kann die im Kristallviolet-Assay beobachtete Hemmung des Zellwachstums nicht erklären.

5. **Induktion der Apoptose durch Morphin**

Neben einer verminderten Proliferation, kann eine gesteigerte Apoptose ebenfalls Ursache für die beobachtete Hemmung des Zellwachstums durch Opiode sein. Um den Einfluss von Opioiden auf das Eintreten der BT474 Zellen in den programmierten Zelltod zu bestimmen, wurde einerseits die Degradation der PARP bestimmt, andererseits wurde der Apoptosestatus mittels Annexin V/Propidiumiodid-Färbung dargestellt.

5.1 **PARP Degradation in BT474 Zellen**

Der proteolytische Abbau der Poly(ADP-ribose)-Polymerase 1 (PARP) dient als Marker der Apoptose. In naiven und chronisch Morphin-behandelten Zellen wurde der Einfluss von Morphin (10 µM) und/oder Heregulin-ß1 (40 ng/ml) auf die stressinduzierte Apoptose nach 6-stündigem Serumentzug durch Bestimmung der PARP-Degradation mittels Western Blot untersucht.
Ergebnisse

In naiven Zellen kann nach Morphin-Behandlung zwar PARP (116 kDa), nicht jedoch das initiale Abbauprodukt (89 kDa) detektiert werden. In Anwesenheit von Heregulin-ß1 dagegen tritt dieses Abbauprodukt in geringen Mengen auf.

5.2 Annexin V/Propidiumiodid-Färbung

Die Annexin V/Propidiumiodid-Färbung wurde durchgeführt, um die Induktion der Apoptose in BT474 Zellen nach chronischer Opioid-Behandlung (10 μM, 5 Tage) zu bestätigen. Annexin V bindet an Phosphatidyl-Serin, das in frühen Stadien der Apoptose auf der Zelloberfläche präsentiert wird. Propidiumiodid kann den Zellkern nur dann anfärben, wenn die Zell- und Kernmembran im fortgeschrittenen Stadium des Zelltodes für diesen Farbstoff durchlässig wird.

Abb. 13 Auftreten von PARP-Abbauprodukten nach Opioid-Behandlung.
Repräsentativer Western Blot zur Bestimmung des PARP-Abbaus.
In naiven Zellen (links) und chronisch Morphin-behandelten Zellen (rechts) jeweils nach 6-stündiger Inkubation mit Morphin und Heregulin-ß1 in serumfreiem Medium.
PARP: 116 kDa (obere Bande), degradiertes PARP: 89 kDa (untere Bande).

Abb. 14 Induktion der Apoptose in BT474 Zellen durch Morphin.
Konfokale Aufnahmen repräsentativer Annexin V/Propidiumiodid-Färbungen der BT474 Zellen. Von oben nach unten: abgebildet sind Zellen, die nicht (naiv), 5 Tage mit 10 µM Morphin, 5 Tage mit 40 ng/ml Heregulin-ß1, 5 Tage mit Morphin und Heregulin-ß1 und 5 Tage mit Morphin, Heregulin-ß1 und Naloxon (100 µM) vorbehandelt wurden. Die linke Reihe zeigt die Annexin V-FITC-Färbung (grün), in der mittleren Reihe ist die zugehörige Propidiumiodid-Färbung (rot) und rechts eine Überlagerung beider Aufnahmen abgebildet. Balken: 20 µm.

Die Ergebnisse der PARP-Bestimmung und der Annexin V-Färbung zeigen, dass die Wachstumshemmung durch chronische Morphin-Behandlung auf verstärkter Apoptose der BT474 Zellen nach chronischer Morphin-Behandlung zurückzuführen ist.

6. Durch chronische Morphin-Behandlung induzierte Veränderungen im ErbB Signalweg

Die Veränderungen in der µ-Opioid-Rezeptor vermittelten Regulation der Erk1/2- sowie der Akt-Aktivität nach chronischer Morphin-Behandlung wurden mittels verschiedener Proteininhibitoren untersucht.

6.1 Untersuchung des Mechanismus der Erk1/2-Aktivierung

Die Beteiligung der verschiedenen ErbB Rezeptor-Typen und nachgeschalteter Signalmoleküle an der Weiterleitung mitogener Opioid-Signale wurde mittels Western Blot untersucht. Die Erk1/2-Phosphorylierung nach 5-minütiger Stimulation mit Heregulin-ß1 wurde in BT474 Zellen ohne Vorbehandlung (naiv)
und nach chronischer Morphin-Behandlung (5 Tage, 10 µM) bestimmt. Vor der Stimulation wurden die Zellen eine halbe Stunde mit verschiedenen Proteininhibitoren inkubiert.

Die gewonnenen Ergebnisse implizieren, dass der ErbB1 essentiell für die basale und durch Heregulinh-β1 stimulierte Aktivierung der Erk1/2 sowohl in naiven als auch in chronisch Morphin-behandelten Zellen ist. Der ErbB2 dagegen trägt nur in chronisch Morphin-behandelten Zellen nach Stimulation durch Heregulin-β1 zur Aktivierung der Erk1/2 bei. Die Pi3K und die Matrix-Metalloproteinasen sind ausschließlich an der Aktivierung der Erk1/2 in chronisch Morphin-behandelten
Zellen, insbesondere nach Stimulation durch Heregulin-ß1 beteiligt.

6.2 Untersuchung des Mechanismus der Akt-Aktivierung

Wie für die Erk1/2, wurde auch der durch µ-Opioid-Rezeptoren vermittelte Mechanismus der Akt-Aktivierung unter Anwendung verschiedener Proteininhibitoren im Western Blot untersucht. In BT474 Zellen ohne Vorbehandlung (naiv) und nach chronischer Opioid-Behandlung (5 Tage, 10 µM Morphin) wurde die Akt-Phosphorylierung nach 5-minütiger Stimulation durch Heregulin-ß1 bestimmt, nachdem verschiedene Komponenten der Signalkaskade durch Proteininhibitoren inaktiviert wurden.

![Western Blot](image)

Abb. 16 Veränderungen in der Opioid-vermittelten Akt-Phosphorylierung nach Vorinkubation mit verschiedenen Proteininhibitoren.

Repräsentative Western Blots der Akt-Phosphorylierung nach Inkubation mit verschiedenen Proteininhibitoren. Naive (links) und chronisch Morphin-behandelte (rechts) BT474 Zellen wurden mit folgenden Inhibitoren vorinkubiert (von oben nach unten): Kontrolle ohne Inhibitor; AG1478 (ErbB1 Inhibitor); AG 825 (ErbB2 Inhibitor); Wortmannin (PI3K Inhibitor); EGCG (Inhibitor der Matrix-Metalloproteinasen); Gesamtmenge an Akt.

Die Behandlung der Zellen mit dem ErbB1 Inhibitor AG1478 führt wie bei der Regulation der Erk1/2 auch zu einer vollständigen Hemmung der basalen und

Diese Ergebnisse verdeutlichen, dass in naiven und chronisch Morphin-behandelten BT474 Zellen die basale und die durch Heregulin-ß1 stimulierter Aktivierung der Akt sowohl den ErbB1 als auch die Pi3K einschließt. Im Gegensatz zur Aktivierung der Erk1/2 ist der ErbB2 nicht an der Aktivierung der Akt beteiligt. Die Matrix-Metalloproteininasen spielen für die Aktivierung der Akt vor allem in chronisch Morphin-behandelten Zellen eine bedeutende Rolle.

7. **Rolle des ErbB1 Rezeptors in der Erk1/2- und Akt-Aktivierung**

Ergebnisse

Abb. 17 Erk1/2- und Akt-Aktivierung nach Stimulation mit dem ErbB1 Liganden EGF.

Abgebildet sind repräsentative Western Blots.
8. Veränderungen in der relativen ErbB Rezeptor-Menge und der Bildung von Rezeptor-Heterodimeren nach chronischer Morphin-Behandlung

Um die Ursache für die beobachteten Unterschiede in der Erk1/2- und Akt-Aktivierung zwischen naiven und chronisch Morphin-behandelten BT474 Zellen näher zu bestimmen, wurden mögliche Veränderungen auf Ebene der ErbB Rezeptoren untersucht. Da die Zusammensetzung von Rezeptor-Dimeren großen Einfluss auf die Aktivierung nachgeschalteter Signalwege und auf die Signalintensität besitzt, sollten zunächst die durch eine chronische Morphin-Behandlung induzierten Veränderungen in der Menge der ErbB Rezeptoren in der Zellmembran der BT474 Zellen bestimmt werden. Anschließend wurde mittels Co-Immunpräzipitation untersucht, ob in naiven und chronisch Morphin-behandelten Zellen vergleichbare Dimere für die Signaltransduktion verantwortlich sind.

8.1 Bestimmung der relativen der ErbB Rezeptor-Menge nach chronischer Morphin-Behandlung

Mittels Westen Blot mit Typ-spezifischen Antikörpern wurde die ErbB Rezeptor-Menge in den Zellmembranen der BT474 mit und ohne chronische Morphin-Behandlung evaluiert. Pro Geltasche wurden 20 µg Membranprotein eingesetzt. ß-Tubulin wurde als Kontrolle für die gleichmäßige Ladung der Proben auf das Gel benutzt.

Abb. 18 Veränderung in der ErbB Rezeptor-Menge nach chronischer Morphin-Behandlung.

Repräsentativer Western Blot der ErbB Rezeptor-Menge in BT474 Zellen ohne (naiv) und nach chronischer Morphin-Behandlung. Von oben nach unten: ErbB1, ErbB2, ErbB3, ErbB4, ß-Tubulin; jeweils (von links nach rechts) Kontrolle ohne Behandlung, nach chronischer Morphin-Behandlung (10 µM) und nach gleichzeitiger Behandlung mit Morphin und Naloxon (100 µM) für 5 Tage.

8.2 Bestimmung der ErbB1-Heterodimere nach Opioid-Behandlung

Abb. 19 Modulation der Heterodimere mit ErbB1-Beteiligung nach chronischer Opioid-Behandlung.

VI DISKUSSION

1. BT474 als Zellmodell für μ-Opioid-Rezeptor vermittelte Effekte

durchzuführen [81].

2. **Einfluss von Morphin auf das Wachstum von BT474 Zellen**

Das wichtigste Ergebnis der vorliegenden Arbeit ist die Hemmung des Wachstums der BT474 Mammakarzinomzellen durch Morphin. Daraus ergibt sich die potentielle Möglichkeit für therapeutisch eingesetzte Opioider mit antineoplastischen Behandlungsstrategien zu interferieren. Die genaue Kenntnis der Regulation des Zellzyklus, insbesondere des Wachstumsverhaltens eines Tumors, bildet die Grundlage für die zielgerichtete Behandlung von Tumoren mit Abweichungen im ErbB Rezeptor-vermittelten Zellwachstum [82, 83].

3. Regulation der BT474 Zellproliferation und Apoptose durch Morphin

Diskussion

Rezeptoren vermittelte Beeinflussung der ErbB Signalgebung hin.

Diskussion

eine negative Rückkopplung die Erk1/2-Aktivierung zu Gunsten Akt-vermittelter Survival-Effekte vermindert [100]. Eine Hochregulation der Akt-Aktivität durch Morphin könnte auch über eine Phosphorylierung der Pi3K durch βγ-Untereinheiten vermittelt werden [97].

Nachdem ausgeschlossen werden konnte, dass die Wachstumshemmung der BT474 Zellen durch Morphin auf einer direkten Hemmung proliferativer oder anti-apoptotischer Signale beruht, konnte eine gesteigerte Apoptose als Ursache für das verminderte Zellwachstum identifiziert werden. Die Apoptose war bei gleichzeitiger Stimulation durch Heregulin-ß1 besonders stark ausgeprägt.

4. **Morphologische Veränderungen der BT474 Zellen durch Behandlung mit Morphin und Heregulin-ß1**

5. **Interaktion von Morphin mit dem ErbB Rezeptor-Netzwerk**

Die ErbB Rezeptoren integrieren in gesunden Zellen eine Vielzahl auto- und parakriner extrazellulärer Signale und transferieren diese in die Zelle, die sich so an die Wachstumsbedingungen ihrer Umgebung adaptieren kann [4]. Viele Tumoren nutzen eine Hyperaktivierung des ErbB Netzwerks für die schnelle klonale Expansion [50].

Als Ursache für die Hemmung des Zellwachstums der BT474 Zellen durch chronische Morphin-Behandlung konnten quantitative und qualitative Veränderungen im ErbB Netzwerk identifiziert werden. Die chronische Morphin-

In chronisch Morphin-behandelten Zellen wird die durch Heregulin-β1 vermittelte

Die durch Heregulin-ß1 vermittelte Aktivierung der Akt wird sowohl in naiven als auch in chronisch Morphin-behandelten Zellen über Pi3K vermittelt. Dennoch bleibt die Frage, in welcher Weise Heregulin-ß1 eine Aktivierung der Akt in chronisch Morphin-behandelten Zellen ermöglicht. Es kann nicht geklärt werden, ob die Pi3K direkt über den µ-Opioid-Rezeptor oder indirekt über RTKs aktiviert wird und ob sich naive von chronisch Morphin-behandelten Zellen in diesem Punkt unterscheiden. Da der ErbB2 weder in naiven noch in chronisch Morphin-behandelten Zellen an der Aktivierung der Akt beteiligt ist liegt nahe, dass die Akt-Aktivierung in beiden Fällen durch ErbB1/ErbB3 Dimere über die direkte
Bindung des ErbB3 an die Pi3K induziert wird [105].

Diskussion

Zellen trotz der Überexpression des ErbB2 ein ErbB3-abhängiges Wachstum vorliegt [117].

Der genaue Mechanismus über den Morphin die Beteiligung der einzelnen ErbB Rezeptoren an den Signal-transferierenden Dimeren beeinflusst, muss noch näher untersucht werden. Eine mögliche Erklärung ist eine langanhaltende inhibitorische Signalgebung durch das Ausbleiben einer Rezeptor-Desensitisierung, die typisch für Morphin am µ-Opioid-Rezeptor ist [118]. So können durch Langzeitbehandlung mit Morphin kompensatorische Mechanismen in der Signalweiterleitung induziert werden, wie sie in neuronalen Geweben für die Ausbildung von Toleranz und Abhängigkeit beschrieben sind [29].

6. Schlussfolgerung

Diskussion

Während in naiven Zellen sowohl die Erk1/2- als auch die Akt-Aktivierung durch ErbB1/ErbB3 Dimere bewerkstelligt wird, findet in chronisch Morphin-behandelten Zellen eine Trennung der beiden Signalwege statt. Heregulin-ß1 stimuliert über ErbB1/ErbB3 Dimere direkt nur noch die Akt, während die Erk1/2 durch einen Pi3K abhängigen autokrinen Mechanismus unter Freisetzung eines ErbB1 Liganden von ErbB1/ErbB2 Dimeren übernommen wird. Die angegebenen Inhibitoren verdeutlichen, wie diese Hypothese aus den verschiedenen Versuchen geschlussfolgert werden kann.

VII ZUSAMMENFASSUNG

VIII SUMMARY

In the present work, the interaction of chronic Morphine treatment with the ErbB receptor signalling network in ErbB2 overexpressing BT474 human breast carcinoma cell line is studied. BT474 cells were shown to present fully functional endogenous µ-opioid receptors at their cell surface providing the ability to integrate external signals in intracellular response, even after chronic Morphine treatment. Despite the induction of mitogenic Akt and Erk1/2 signalling, chronic exposure of BT474 cells to Morphine enhances cell death, especially when these cells are simultaneously stimulated by the growth factor Heregulin-ß1. Furthermore, chronic activation of µ-opioid receptors in BT474 cells triggers complex changes in cell growth by interacting with the mitogenic ErbB receptor network through rearrangement of involved ErbB receptors. Consequently, Erk1/2 becomes separated from Akt signalling. More precise, stimulation with the growth factor Heregulin-ß1 in untreated cells leads to activation of ErbB1/ErbB3 dimers. This induces both Akt and Erk1/2 signalling, despite the overexpression of ErbB2 in this cell line. Chronic morphine treatment switches Erk1/2 activation to ErbB1/ErbB2 dimers, while ErbB1/ErbB3 dimers still promote Akt signalling. The reactivation of ErbB2 involved in dimer formation is based on direct ErbB1 activation in ErbB1/ErbB2 through an EGF-like ligand released by ectodomain shedding of membrane-bound precursors through MMPs. This autocrine feedback loop is dependent to Pi3K activation by ErbB1/ErbB3 dimers which are stimulated by Heregulin-ß1 in cells under chronic Morphine treatment. The complex regulation of mitogenic ErbB signalling network by Morphine in BT474 cells suggest that concomitant morphine treatment might enhance the sensitivity of targeted anti-tumour strategies or could support to avoid the development of resistance mechanisms.
IX LITERATURVERZEICHNIS

X ANHANG

1. Abbildungsverzeichnis

Abb.1 Schematische Struktur eines G-Protein-gekoppelten Opioid-Rezeptors S.6
Abb.2 ErbB Rezeptoren und ihre endogenen Liganden S.12
Abb.3 Aktivierung der ErbB Rezeptoren S.13
Abb.4 Nachweis endogener Opioid-Rezeptoren in BT474 Zellen S.50
Abb.5 G-Protein-Ausstattung der BT474 Zellen S.51
Abb.6 Nachweis verschiedener Adenylylcyclase-Isoformen in BT474 Zellen S.52
Abb.7 Regulation der cAMP-Akkumulation in BT474 Zellen durch µ-Opioid-Rezeptoren S.53
Abb.8 Hemmung des Zellwachstums durch Morphin S.54
Abb.9 Regulation des Zellwachstums der BT474 Zellen nach 5-tägiger Behandlung mit Opioiden und/oder Heregulin-β1 S.54
Abb.10 Aktivierung der Erk1/2 durch Opiode S.56
Abb.11 Einfluss einer Morphin-Behandlung auf die Proliferationsrate der BT474 Zellen S.57
Abb.12 Phosphorylierung der Akt nach Morphin-Behandlung S.58
Abb.13 Auftreten von PARP-Abbauprodukten nach Opioid-Behandlung S.60
Abb.14 Induktion der Apoptose in BT474 Zellen durch Morphin S.61
Abb.15 Auswirkungen der Inkubation mit Proteininhbitoren auf die durch µ-Opioid-Rezeptoren vermittelte Erk1/2-Phosphorylierung S.63
Abb. 16	Veränderungen in der Opioid-vermittelten Akt-Phosphorylierung nach Vorinkubation mit verschiedenen Proteininhibitoren	S.64
Abb. 17	Erk1/2- und Akt-Aktivierung nach Stimulation mit dem ErbB1 Liganden EGF	S.66
Abb. 18	Veränderung in der ErbB Rezeptor-Menge nach chronischer Morphin-Behandlung	S.67
Abb. 19	Modulation der Heterodimere mit ErbB1-Beteiligung nach chronischer Opioid-Behandlung	S.68
Abb. 20	Schematische Darstellung der vorgeschlagenen, durch chronische Morphin-Behandlung ausgelösten Veränderungen in der ErbB-vermittelten Signaltransduktion nach Stimulation durch Heregulin-β1	S.81
XI DANKSAGUNG

Darüber hinaus gilt mein besonderer Dank Sarah Koutnik und Corinna Mangels für die schöne Zeit und die moralische Unterstützung. Bei Sarah Koutnik möchte ich mich zudem noch für die ausgezeichnete Einführung in die verwendeten Methoden und die Unterstützung bei der Versuchsdurchführung bedanken. Andreas Blaschke danke ich für die Hilfe bei der Anfertigung der konfokalen Aufnahmen.

Allen Mitarbeitern des Institutes für Pharmakologie, Toxikologie und Pharmazie der Tierärztlichen Fakultät der LMU gilt mein Dank für eine schöne Zeit, eine tolle Atmosphäre und viele konstruktive Gespräche.