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1 Introduction and motivation 
 

 

 

The Dion-Jacobson phase perovskite KCa2Nb3O10 and the two-dimensional (2D) nanosheets 

derived from it [TBAxH1-x]+[Ca2Nb3O10]-, where TBA+ is the bulky organic cation tetra-n-

butlyammonium, constitute an important dielectric system [1]. The bulk KCa2Nb3O10 is a 

perovskite where the Nb ions occupy the B-sites whereas the A-sites in the perovskite 

structure are taken by K and Ca ions in a layered fashion such that a layer of K ions on A-sites 

is followed by two layers of Ca ions. Chemical substitution in KCa2Nb3O10 allows for 

replacement of K ions with bulk organic cation tetra-n-butlyammonium and protons. On 

replacement with the TBA+ ions, the interlayer distance increases to a level such that the 2D-

layers become independent of each other thereby leading to exfoliation into a 2D-

nanostructure [2]. 

The crystal structure of KCa2Nb3O10 was first proposed by Dion et al. [3] to be tetragonal. A 

subsequent X-ray powder diffraction study by Fukuoka et al. suggested [4] it to crystallize in 

orthorhombic symmetry. A rather recent study by Tokumitsu et al. [5] used single crystal 

neutron diffraction and refined the crystal structure to a monoclinic system. Computationally 

this structure model has not yet been optimized, doing so would lead to better understanding 

of octahedral distortions in the crystal structure. 

KCa2Nb3O10 has been suggested by various researchers for a wide array of potential 

applications [6-8]. Thangadurai et al. [6] have shown the utility of using KCa2Nb3O10 as an ionic 

conductor. Domen et al. [7] have demonstrated the photocatalytic capability of KCa2Nb3O10. 

Upon doping with Eu3+ or La3+ Bizeto et al. reported [8] KCa2Nb3O10 to turn 

photoluminescent. 

Valence electron energy loss spectroscopy (VEELS) in a transmission electron microscope 

(TEM) analyses the energy lost by electrons which pass through the probe materials, 

concentrating on the energies lost due to interaction of the beam electrons with the valence 

electrons. Typically the energy resolution of the VEELS experiments is among other things 

limited by the energy spread of the beam electrons [9]. Recent advances in instrumentation 

[10] have helped to improve the energy resolution with the use of commercially available 
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monochromators attached to TEMs. Scientists have successfully demonstrated the 

applicability of VEELS for determining the band gaps of various sorts of materials [9,11-14] 

using commercially available monochromators. In addition VEELS has also been 

demonstrated to be reliable method for experimentally determining the dielectric function [15-

17]. 

Another technique [18] which has recently gained the attention of the scientific community in 

studying the band gap of materials is the Tran-Blaha modified Becke Johnson (TB-mBJ) 

potential within density functional theory (DFT). DFT has been well known to predict lower 

band gap values [19,20] than experimentally determined. This new technique (TB-mBJ) has 

performed well on a number of systems ranging from semiconductors to insulators [18]. From 

a point of view of pertinence, it is interesting to understand the possible applicability of these 

two methods (monochromated VEELS and TB-mBJ based DFT) for a dielectric material 

KCa2Nb3O10. 

With the synthesis of graphene in 2004 [21], the idea of 2D-materials has caught attention of 

scientific the community. Scientists have successfully been able to exfoliate 2D-

nanostructures based on oxides [22], hydroxides [22], boron nitride [23] and metal 

disulphides [24]. These developments have thrust the advancements in potential applications 

of KCa2Nb3O10 based 2D-nanosheets to forefront [25-29]. 

In the last decade KCa2Nb3O10 has been used extensively to synthesize 2D nanosheets [2,30-

33]. These 2D-nanosheets of [TBAxH1-x]+[Ca2Nb3O10]- have been reported to have potential 

applications in a number of technologies [25-29]. Compton et al. [25] showed the 

applicability of [TBAxH1-x]+[Ca2Nb3O10]- nanosheets for photochemical water splitting. 

Okamoto et al. showed [26] that such sheets upon Rh-doping could be used for H2 production 

from water/methanol without catalyst loading. Sasaki and co-workers have reported the use of 

such nanosheets as potential nano dielectric materials [27,28]. In a recent report, Chang et al. 

showed the utility of [TBAxH1-x]+[Ca2Nb3O10]- nanosheets for building multi-junction 

polymer solar cells [29]. 

Two studies have already been published on the electronic structure of systems based on 

[TBAxH1-x]+[Ca2Nb3O10]- nanosheets. Compton et al. determined [25] the band gap of 

[TBAxH1-x]+[Ca2Nb3O10]- nanosheets after drying the suspension containing the nanosheets 

and performing diffuse reflectance measurements. Akatsuka et al. [34] determined the band 

gap of [TBAxH1-x]+[Ca2Nb3O10]- nanosheets of varying thickness upon deposition on indium-
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doped tin oxide (ITO) substrate by performing photochemical measurements. Both these 

reports provide insights into the electronic structure of [TBAxH1-x]+[Ca2Nb3O10]- nanosheets 

however suffer from one common problem. These studies investigate the electronic structure 

of [TBAxH1-x]+[Ca2Nb3O10]- nanosheets which have been deposited on a surface and as such 

do not probe free standing nanosheets. In addition both the studies provide an average picture 

whereby the signal obtained from many sheets is analyzed in the evaluation of the band gap. 

Majority of the optical methods (like the ones used in the above mentioned studies [25,34]), 

fail to individually probe nanostructure because the light waves, by virtue of their 

wavelengths (wavelengths of the order of few hundred nm) are not able to locally probe 

individual nanosheets. As such, the electronic structure of individual freely suspended 

nanosheets is not well understood. 

In this work DFT based ab initio calculations were performed on KCa2Nb3O10 which should 

help in better understanding the octahedral distortions in the crystal structure. Moreover, in 

light of the possible applications of KCa2Nb3O10 [6-8] these calculations shall allow for 

elucidation of the electronic properties of KCa2Nb3O10 which are critical to these potential 

applications. 

In this study, electronic structure of bulk KCa2Nb3O10 is studied using DFT and VEELS. This 

shall test the correlation between these two techniques, i.e. monochromated VEELS and TB-

mBJ potentials [18] in determining the band gap of KCa2Nb3O10. A further comparison with 

photocatalysis measurement of Domen et al. [30] would allow for evaluating the success of 

these two approaches. Moreover from the calculations light could be shed upon the dielectric 

behavior of KCa2Nb3O10. 

Given the intense interest of the scientific community in the [TBAxH1-x]+[Ca2Nb3O10]- 

nanosheets, it is interesting to determine their electronic structure. The central objective of 

this study is to understand the electronic structure (band gap in particular) of individual 

[TBAxH1-x]+[Ca2Nb3O10]- nanosheets and its relation to the electronic structure of 

KCa2Nb3O10. It is hoped that this work shall augment the understanding of this material 

family consisting of bulk KCa2Nb3O10 and [TBAxH1-x]+[Ca2Nb3O10]- nanosheets. 
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2 Methods and Materials 
 

 

 

The understanding of structure and properties of calcium niobate perovskite family requires a 

basic understanding of some central concepts, terminology, details and techniques. This 

chapter is devoted to fostering the comprehension of these indispensible motifs. To begin with 

salient features of quantum mechanics are discussed. Using these concepts the band theory of 

solids is built upon and described about it are ways to understand semiconductors and 

dielectrics. Theory of dielectrics and its application for understanding the optical properties is 

discussed. 

Perovskites, in general, and the properties of Dion-Jacobson phase KCa2Nb3O10, in particular, 

are described. The principles of synthesis of two dimensional nanostructures are discussed 

along with their applicability for synthesizing perovskite nanosheets. Finally the structure and 

properties of calcium niobate perovskite nanosheets are detailed. 

To understand the above mentioned material family, two methods of investigations are 

described. As the first method, transmission electron microscopy and electron energy loss 

spectroscopy were utilized. The interaction of electrons with matter and further the various 

techniques in transmission electron microscopy are explained. The energy loss suffered by 

electrons transmitted through a sample is summarized and is used to explain the excitations of 

valence and core-shell electrons. Density functional theory is described as a theoretical 

method for understanding the properties of solids. The terminology, approximations and 

methods employed in density functional theory are described. 

2.1 Concepts in Solid State Physics 
2.1.1 Formalism in Quantum Mechanics 

This section is primarily based on the text Introduction to Quantum Mechanics by D. J. 

Griffiths [1]. 

Quantum mechanics approaches the problems of physics in a different manner than classical 

Newtonian mechanics. As most of the important theories ranging from band theory for 
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semiconductors to dielectric theory are based on the formalism of quantum mechanics, it is 

worthwhile describing the formalism. In quantum mechanics, Schrödinger’s equation plays a 

role analogous to Newton’s second law in Newtonian mechanics. The state of the particle is 

described in terms of its wave function 𝛹(𝑥, 𝑡) which is obtainable solving the time-

dependent Schrödinger’s equation (Equation 2.1) 

𝑖ℏ 𝜕𝛹
𝜕𝑡

=  − ℏ2

2𝑚
 𝜕

2𝛹
𝜕𝑥2

+ 𝑉𝛹         (2.1) 

where ℏ is the Planck’s constant divided by 2π, i square root of -1, t time, m mass and V the 

potential energy function. An important corollary of Equation 2.1 being that knowledge of 

𝛹(𝑥, 0) i.e. the initial conditions, solving the Schrödinger’s equation allows for determining 

𝛹(𝑥, 𝑡) for later times. The dichotomous point between the two theories (classical and 

quantum mechanics) is the description of the state of a particle with the help of wave function. 

The wave function can be described with the help of Born’s statistical interpretation which 

states that the probability 𝑃𝑎−𝑏,𝑡 of finding the particle at a point between positions a and b at 

time t is described in Equation 2.2 

∫ |𝛹(𝑥, 𝑡)|2 𝑑𝑥 =  𝑃𝑎−𝑏,𝑡
𝑏
𝑎                      (2.2) 

where a and b are points in space. 

Theories in solid state physics, like the density functional theory and band theory concern a 

steady state situation, i.e. the potential V is independent of t, more specifically, the expectation 

value of all states is constant in time. For the case of steady state situations, the Schrödinger’s 

equation takes the form (better known as time independent Schrödinger’s equation) described 

in Equation 2.3 

− ℏ2

2𝑚
 𝜕

2𝜓
𝜕𝑥2

+ 𝑉𝜓 = 𝐸𝜓         (2.3) 

where E is the expectation value of total energy. A more common way of representing the 

time independent Schrödinger’s equation is in terms of Hamiltonian operator Ĥ as given in 

Equation 2.4. 

Ĥ𝜓 = 𝐸𝜓           (2.4) 

An infinite number of solutions 𝜓𝑛(𝑥) exist. The wave function can be expressed as a linear 

combination of these solutions (Equation 2.5) where 𝑐𝑛 is coefficient for 𝜓𝑛. 
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𝜓(𝑥, 𝑡) =  ∑ 𝑐𝑛𝜓𝑛(𝑥, 𝑡)∞
𝑛=1           (2.5) 

The formalism described until now can be expanded into three dimensions. The Hamiltonian 

obtained from classical mechanics can be written as shown in Equation 2.6 

𝐻� = 1
2
𝑚𝑣2 + 𝑉 =  1

2
𝑚�𝑝𝑥2 + 𝑝𝑦2 + 𝑝𝑧2� + 𝑉       (2.6) 

where the momentum operators can be described as 𝑝𝑥 = ℏ
𝑖
 𝜕
𝜕𝑥

 ; 𝑝𝑦 = ℏ
𝑖
 𝜕
𝜕𝑦

 ; 𝑝𝑧 = ℏ
𝑖
 𝜕
𝜕𝑧

 .  

For a potential with radial symmetry the wave function can be separated into radial and 

angular components as given in Equation 2.7 

𝜓�𝑟,𝜃𝑝,𝜑𝑝� = 𝑅(𝑟)𝑌(𝜃𝑝,𝜑𝑝)         (2.7) 

where 𝑅(𝑟) and 𝑌(𝜃𝑝,𝜑𝑝) are the radial and angular components of the wavefunction, 𝜃𝑝 and 

𝜑𝑝 being the polar and azimuthal angles respectively in the polar coordinates. 

The solution of the time independent Schrödinger’s equation is labyrinthine and requires a 

number of approximations for calculating it for crystals. Usage of density functional theory to 

solve it shall be described subsequently in Section 2.4. 

2.1.2 Electrons in periodic potential 

This section is based on the texts Introduction to Quantum Mechanics by D. J. Griffiths [1] 

and Solid State Physics by Ashcroft and Mermin [2]. 

In a crystal, the positions of atoms are well defined and possess translational and rotational 

symmetry. Felix Bloch formulated this fact into a mathematical theorem stating that when the 

potential in the single-particle Hamiltonian has the translation periodicity of the Bravais 

lattice, then 𝑉𝑠𝑝(𝒓 + 𝑹) = 𝑉𝑠𝑝(𝒓), where 𝑉𝑠𝑝 is the single-particle potential and R a 

translation vector comprising of integral multiples of unit cell vectors. From this, one can 

deduce that the single-particle wave functions also follow translational symmetry as given in 

Equation 2.8. 

𝜓𝑘(𝒓 + 𝑹) =  𝑒𝑖𝒌·𝑹𝜓𝑘(𝒓)         (2.8) 

The equation 2.8 relates the wave function at any given point in space from a known point. In 

the case that the two points are separated by an integral value of lattice constants, the wave 

functions at the two points are equivalent. 
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The periodicity of the crystal can be formulated in the reciprocal space which helps in the 

analysis using plane waves. The unit cell of the crystal in reciprocal space is defined as the 

Brillouin zone.  

At zero Kelvin, the electrons fill up the energy levels till Fermi energy EF. The band structure 

depicts the span of energy states (also sometimes referred to as bands) in the reciprocal space 

along specific directions. In a semiconductor there exist forbidden states, just above the Fermi 

energy, such that no states exist in those regions. Depending on the span of the states in the 

conduction and valence bands the semiconductor can be classified as direct or indirect. A 

schematic depicting the band structure of direct and indirect semiconductors is shown in 

Figure 2.1. In a direct band gap semi conductor, the top of the valence band and the bottom of 

the conduction band occur at the same coordinate along the momentum space. In the case of 

indirect semiconductors the top of the valence band and the bottom of the conduction band 

exist at different values of momentum in the momentum space. Therefore, for a transition of 

an electron from the valence into conduction bands only energy is required in the case of 

direct band gap semiconductor whereas both energy and momentum are required for the case 

of indirect semiconductor. The energy difference between the conduction band minimum and 

valence band maximum is known as the band gap. A semiconductor can allow passage of 

current through it by the movement of electrons or holes. A hole is the absence of an electron 

in an energy level which should be otherwise filled. 

 

Figure 2.1: On the left, schematic of the bandstructure of a direct band gap semiconductor and 

on right of an indirect semiconductor are shown. 
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Semiconductors in addition can be classified into two categories, intrinsic and extrinsic. In an 

intrinsic semiconductor the carriers (electrons or holes), are contributed negligibly by any 

impurities (dopants) present. Extrinsic semiconductors on the contrary contain small amounts 

of dopant atoms, which contribute dominantly to the charge carriers, thereby accounting for 

most of the charge transfer. 

2.1.3 Optical properties of solids and dielectric formalism 

This section is based on the text Optical properties of solids by Mark Fox [3]. 

Optical properties of solids represent the response of the solid to applied electromagnetic 

fields. The electromagnetic fields inside a material differ from that in vacuum. The 

displacement D is the electric field that would have been generated if instead of the solid, 

vacuum was present in the space being investigated. In the presence of a medium (solid), the 

electric field strength decreases by a factor of ε where ε is the dielectric function of the 

material. ε is a complex tensor of the order 3x3 and it relates the components of electric 

displacement vector D and the electric field 𝐸�⃗  as given in Equation 2.9 

𝑫𝛼 =  ∑ 𝜀𝛼𝛽𝐸�⃗𝛽𝛽           (2.9) 

where α,β Є 1,2,3. 

The complex dielectric function contains two parts real and imaginary, related in Equation 

2.10. 

𝜀 = 𝜀1 + 𝑖𝜀2                     (2.10) 

The optical properties like the refractive index n and the extinction coefficient 𝑘𝑥 can be 

computed from ε as shown in Equations 2.11 and 2.12. 

𝑛 = 1
√2

 �𝜀1 + (𝜀12 + 𝜀22)1 2� �
1
2�                             (2.11) 

𝑘𝑥 = 1
√2

 �−𝜀1 + (𝜀12 + 𝜀22)1 2� �
1
2�                  (2.12) 

The real and imaginary parts of the dielectric function are not independent of each other. On 

applying Kramers Kronig transformation, one can be obtained from the other. 

The loss function describes the energy loss suffered by an electron as it passes through a solid. 

The loss function S can be described using the dielectric function as given in Equation 2.13. 
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𝑆 = 𝐼𝑚 �− 1
𝜀
� = 𝜀2

�𝜀12+𝜀22�
                   (2.13) 

As fast moving electrons pass through a solid, a predominant excitation that is induced in the 

material is that of plasmons. Plasmon is a collective oscillation mode of the valence or 

conduction band electrons of the solid, whereby, in addition to their random thermal motion, 

the electrons obtain a small collective motion component induced by the electromagnetic field 

changes due to the electron passing by. From the real part of the dielectric function the 

plasmon can be identified as the position where 𝜀1 crosses the energy axis with a positive 

slope. 

An important approximation used in the study of collective excitations is the random-phase 

approximation. This was first proposed by Bohm and Pines [4] in 1951 and has since been 

constantly used in the study of collective excitations. The electrons of the material respond to 

the electromagnetic wave in two types of responses, occurring simultaneously. The first one is 

in-phase with the wave such that the phase difference between the electron response and the 

wave causing it is independent of the position. This response contributes to the collective 

organized excitations. The other response has a phase difference with the wave producing it 

and depends on the positions of the electrons. Given that the positions of the electrons are 

random, this second response tends to average out to zero when a large number of electrons 

are considered. Neglecting the contributions due to this second response in the analysis is 

called the random phase approximation [4]. 

2.2 Dion-Jacobson phase perovskite KCa2Nb3O10 and nanosheets 

2.2.1 Perovskites and their structure 

Perovskites are inorganic compounds with the general formula ABX3. The main feature of the 

perovskite structure is the octahedral coordinated polyhedron around the B-cations [5]. These 

octahedrons consist of anions X located at the corners of the octahedra with the cations B 

located at the center [5]. The octahedra share corners to form octahedral chains. In the cavities 

of these octahedra the cations A are located [5]. Generally the anion X is oxygen or fluorine 

[6], B a small transition metal cation like Ti, Nb [7] and A is a larger s-, d- or f-block cation 

like K, Sr [7]. 

Ideal arrangement of atoms in the perovskite structure generates a crystal structure within 

cubic system and space group Pm3m [5]. SrTiO3 possesses the ideal perovskite structure with 
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cubic symmetry as shown in Figure 2.2. The Ti ions occupying the B sites at the center of 

octahedra with oxygen ions at X sites (corners of the octahedra). The Sr ions occupy the A 

sites in between the octahedra. Clearly as is evident from Fig. 2.2a, the perovskite structures 

contains multiple layers of A ions and BX3 octahedra. 

 

Figure 2.2: The structure of SrTiO3 (a) showing the bluish grey octahedra consisting of Ti 

ions at the center and O atoms (in red) at the corners of the octahedra. The space between the 

octahedra is occupied by A site cation Sr (shown in green). On right (b) unit cell of SrTiO3. 

Figures based on structure model proposed by Jauch and Palmer [8]. 

A large number of perovskites however deviate from the ideal perovskite structure. The 

divergence from the ideal structure is predominantly caused by the tilting of octahedra from 

ideal positions although they maintain their connectivity [5]. In addition, a common feature of 

the perovskite structure is that the A-site cations can be of different types, like the perovskites 

of Dion-Jacobson family [9,10] with a chemical formula AʹAk-1BkO3k+1, with Aʹ being a 

monovalent cation [11] generally Li, K, Na, Rb, Cs.  

The structure of the Dion-Jacobson phase AʹCa2Nb3O10 where Aʹ is Li, K, Na, Cs and Rb is 

shown in Figure 2.3. Depending on the size of cation Aʹ the layered structure containing three 

layers of NbO6 octahedra modifies accordingly by rotation of the octahedra and the position 

of Aʹ cations. The significant point of difference between the different Dion-Jacobson phases 

is the local coordination of the alkaline cation. The local coordination number of the alkaline 

cation varies from 4 in NaCa2Nb3O10 and 6 in KCa2Nb3O10 to 8 in RbCa2Nb3O10 and 

CsCa2Nb3O10 [12]. 
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Figure 2.3: Structure of Dion-Jacobson phase AʹCa2Nb3O10 where Aʹ is Li, K, Na, Cs and Rb. 

Figure based on structure models published in Refs. 13-17. 

2.2.2 Dion-Jacobson phase KCa2Nb3O10 

The Dion-Jacobson phase KCa2Nb3O10 has been an interesting material from various 

perspectives since it was first synthesized by Dion et al. in 1981 [9]. Dion et al. proposed, on 

the basis of X-ray measurements KCa2Nb3O10 to have a tetragonal crystal structure [9]. 

Subsequently Fukuoka et al. [12] investigated the structure with the help of single crystal X-

ray diffraction. They determined [12] KCa2Nb3O10 to be orthorhombic with space group 

Cmcm (space group number 63), lattice parameters a, b and c to be 3.8802, 29.508 and 7.714 

Å. Their structure model [12] however suffered from partial occupancies of O atoms on two 
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sites as is shown in Figure 2.4. Interestingly, they observed [12] stacking faults and twins in 

some of the crystals synthesized. 

 

Figure 2.4: The orthorhombic crystal structure of KCa2Nb3O10 as proposed by Fukuoka et al. 

[12] with atoms shown in the following coding, potassium (magenta), calcium (blue), oxygen 

(red) and niobium (green). The atoms depicted half-red have partial O occupancy of 0.5 on 

that site. 

Subsequently, Tokumitsu et al. studied the crystal structure of KCa2Nb3O10 using powder 

neutron diffraction [13] suggesting it to have a monoclinic structure of space group P21/m 

(space group number 11) and lattice parameters a, b, c and γ to be 7.7418, 7.7073, 14.859 Å 

and 97.51° respectively. They argued [13] the preponderance of their model against that of 

Fukuoka et al. [12] on the basis of the fact that neutron beams interact with the nuclei more 

strongly as compared to X-rays. In addition they took into account some weak reflections [13] 

which had been left out for the refinement of Fukuoka et al. [12]. The crystal structure of 

KCa2Nb3O10 determined by Tokumitsu et al. is shown in Figure 2.5. The rotation of the NbO6 

is clearly apparent. This structure model [13] does not suffer from partial occupancies. The 

crystal structure highlights the layered perovskite structure with layers of K, Ca, and Nb 

cations. 
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Figure 2.5: The crystal structure of KCa2Nb3O10 as determined by Tokumitsu et al. [13] with 

the oxygen, calcium and potassium atoms shown in red, blue and magenta. The Nb atoms are 

located at the center of the green octahedra with oxygen atoms at the extremities. 

KCa2Nb3O10 is an interesting material with wide variety of potential applications in sight. 

Thangadurai and Weppner demonstrated the use of KCa2Nb3O10 as an ionic conductor [18]. 

Domen et al. showed its applicability as a photocatalyst [19]. Fukuoka et al. observed 

superconductivity upon Li intercalation [20]. Bizeto et al. found Eu3+ and La3+ doped 

KCa2Nb3O10 to be luminescent [21]. Recently Akatsuka et al. evinced the applicability of 

KCa2Nb3O10 as a dielectric [22]. Despite a number of potential application, the electronic 

structure of KCa2Nb3O10 is not well understood. 

For the measurements performed on KCa2Nb3O10 discussed in this work, KCa2Nb3O10 was 

synthesized in a manner akin to that proposed by Jacobson et al. [10]. The synthesis was 

carried out by Pirmin Ganter and Christian Ziegler; the details of synthesis have been 

previously reported [23]. Commercially available powders of K2CO3, CaCO3 and Nb2O5 were 

mixed in a molar ratio 1.1:4:3 and ground. Mixture was pre-heated at 900°C and then fired up 

to 1200°C for 60 hours. The purity of as-synthesized KCa2Nb3O10 was confirmed by powder 

X-ray diffraction. 

2.2.3 [TBAxH1-x]+[Ca2Nb3O10]- nanosheets 

The discovery of graphene in 2004 [24] accentuated the possibility of synthesizing two-

dimensional (2D) structures. This caught the attention of scientists worldwide who tried to 



18 
 

synthesize 2D structures by delaminating other materials. Success has been achieved in 

synthesizing 2D structures based on oxides [25], boron nitride [26], metal dichalcongenides 

[27] and metal disulphides [26-28]. Scientists have been able to successfully exfoliate the 

KCa2Nb3O10 structure by replacing the K+ with bulky organic ligands [29-30]. Delamination 

of KCa2Nb3O10 was first successfully performed about two decades ago by Treacy and co-

workers [31]. The recent interest [22,29,30,32,33] in this exfoliated 2D-nanostructure comes 

from the possibility of making complex hetero-nanostructures from it [25]. Sasaki and co-

workers have demonstrated its potential use as a nano-dielectric [32,33]. Compton and co-

workers demonstrated the utility of these nanosheets for photochemical water-splitting [34]. 

Recently Chang and co-workers [35] have demonstrated the utility of these nanosheets as 

electron transport material in polymer organic solar cells. With such a wide number of 

possible electronic applications in sight, it becomes worthwhile investigating the electronic 

properties of these nanosheets, especially the band gap. 

These [TBAxH1-x]+[Ca2Nb3O10]- nanosheets have a structure similar to that of KCa2Nb3O10 a 

fact highlighted in Figure 2.6. The K+ ions get chemically replaced by protons and tetra-n-

butylammonium ions (TBA+). This layer of bulky cations and protons increases the distance 

between the [Ca2Nb3O10]- layers to such an extent that they become independent of one 

another, thereby leading to the formation of independently existing 2D-nanosheets. The TBA+ 

ions do not take any particular crystallographic positions, unlike K+, partly due to their huge 

size. 

 

Figure 2.6: Schematic of KCa2Nb3O10 unit cell (a) and [TBAxH1-x]+[Ca2Nb3O10]- nanosheet 

(b). 

The measurement shown in this work were performed on [TBAxH1-x]+[Ca2Nb3O10]- nanosheet 

synthesized by Pirmin Ganter and Christian Ziegler; details have been detailed elsewhere 
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[23]. Synthesis was carried out using a method similar to the one of Ebina et al. [30]. 1g 

KCa2Nb3O10 was treated with 5M HNO3 (40 cm3) for four days with daily renewal of acid 

that culminated in the conversion to protonic oxide HCa2Nb3O10·1.5H2O, the product being 

recovered with filtration, washing with water and air-drying. 0.2 g of product was dispersed in 

50 cm3 of tetra-n-butlyammonium hydroxide 30-hydrate aqueous solution mixed in the molar 

ration 1:1 and subsequently shaken for four weeks at a rotational speed of 200 rpm. The 

composition of the synthesized [TBAxH1-x]+[Ca2Nb3O10]- nanosheets was determined by 

inductively coupled plasma-atomic emission spectroscopy (ICP-AES) suggesting x ≈ 0.8. 

2.3 Transmission electron microscopy and electron energy loss 

spectroscopy 

To experimentally study the properties of KCa2Nb3O10 and [TBAxH1-x]+[Ca2Nb3O10]- 

nanosheets the transmission electron microscope can be used in a number of possible ways. 

As such, it is apt that a discussion of such experiments should be preceded by a description of 

the transmission electron microscopy and the electron energy loss spectroscopy. This section 

and its constituent subsection detail the physical principles, instrumentations and the various 

modes involved with these two techniques. 

2.3.1 Electron interactions with matter 

This section is based on the texts Transmission electron microscopy, A textbook for Materials 

Science by D. B. Williams, C. B. Carter [36] and Electron energy-loss spectroscopy in the 

electron microscope by R. F. Egerton [37]. 

Despite the multitude of varieties in which the electron microscopes are used worldwide 

today, similarities exist in the manner in which the electrons interact with the matter. When a 

fast moving electron, like in a transmission electron microscope enters the sample, it interacts 

with the nuclei and the electrons of the material. These interactions induce change in the path, 

energy and phase of the electrons. Each, or a combination of these changes to the electrons 

allow for getting information about the sample. The principle interactions are depicted in 

Figure 2.7. Typically, the samples used in the electron microscope are very thin ~100nm or 

thinner [36]. As a consequence, majority of the electrons go through the sample. Some 

however do get backscattered due to the interactions with the nuclei. The transmitted 

electrons that pass through the sample could have lost some energy (inelastically scattered) or 

lost no energy (elastically scattered electrons). The majority of imaging techniques used in a 
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TEM primarily utilize an admixture of the unscattered and the elastically scattered electrons. 

The electron energy loss spectroscopy and consequentially the energy filtered - transmission 

electron microscopy (EF-TEM) uses the inelastically scattered electrons for analysis. The 

secondary (electrons of the sample ejected due to inelastic collisions with the probing 

electrons) and the backscattered electrons are used in the scanning electron microscopes; 

these signals are generally not analyzed in the TEM. As the probing electrons have high 

energies, typically between 60 and 300 keV in a commercial TEM, X-rays and Auger 

electrons are also generated; analyzing them offers insights into the chemical nature of the 

material. Auger electron detectors are generally not available with commercial TEMs but X-

ray spectroscopes are. 

 

Figure 2.7: Schematic showing the various types of signals generated due to interactions of 

probing electrons with the sample. 

2.3.2 Instrumentation in a TEM 

This section is based on the text Transmission electron microscopy, A textbook for Materials 

Science by D. B. Williams and C. B. Carter [36]. 

The TEM was first developed by Ruska and Knoll [38] and inherent features of their design 

have stood the test of time. The modern TEM consists of a number of intricate pumps, lenses 

and detectors to name a few, which ultimately allow for the utility of the microscope. A 

schematic of a TEM is shown in Figure 2.8. At the top is the electron source (also known as 
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the electron gun) from which electrons are emitted. The electron gun can be of three types, 

thermal, field or Schottky. The thermal gun ejects electrons when the source is heated beyond 

a particular temperature (therefore thermal sources are made of tungsten filament) while the 

field emitter ejects electrons when a very high electric field is applied to it and electrons 

tunnel out. Consequentially the field emission guns have a sharp needle like geometry so as to 

intensify the effective electric field at the tip of the needle as governed by the Fowler-

Nordheim Theory [39]. The Schottky source functions on the basis of a mixture of the thermal 

and field emission processes whereby both heat and electric field are applied to eject the 

electrons. Schottky emitters often have a ZrO2 coating which further reduces the potential 

barrier that electrons need to overcome. 

Right below the electron gun, the electrostatic terminals connected to the high-tension tank 

are located which accelerate the ejected electrons to the required energy. These are succeeded 

by a number of lenses and apertures, primarily the condenser and objective aperture-lens 

systems. The condenser lens system controls the intensity of the beam used for illuminating 

the sample and the electron beam size whereas the objective lens system accounts for the 

focus conditions for imaging. Adjacent to the objective lens system (in some configurations of 

the microscope inside the objective lens) lies the position for the specimen. Typically, the 

specimen is placed on a holder which is inserted into the column. The goniometer positions 

the sample at this location ‘inside’ or adjacent to the objective lens. The goniometer is used 

for moving or tilting the sample. The apertures of the objective lens allow for choosing the 

forward scattered beam or specific diffracted beams. This subsequently helps in choosing the 

bright field, the dark field or the high resolution transmission electron microscopy (HR-TEM) 

modes. 

The objective lens system is followed by the intermediate lens and the projector lens system 

which magnifies the image made by the objective lens system. When changing the strength of 

the intermediate lens, a diffraction pattern can be obtained on the screen. In the diffraction 

mode, a selected area aperture governs the area of the sample exposed to the radiation. In the 

diffraction mode, the intermediate lens selects the back focal plane of the objective lens as the 

object. In the imaging mode, the first image obtained by the objective lens is used as object 

and further magnified. Finally a fluorescent screen / detector is positioned at the bottom of the 

column to obtain the images or diffraction pattern. In the case of electron energy loss 

spectroscopy, the EELS detector is positioned below the fluorescent screen, which is lifted 

and the electrons go through the entrance aperture to the EELS detector. 
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Figure 2.8: Assembly of a TEM (Image accessed from Wikimedia Commons, used under 

GNU Free Documentation License, Version 1.2). 
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2.3.3 High resolution transmission electron microscopy 

This section is based on the text Transmission electron microscopy, A textbook for Materials 

Science by D. B. Williams, C. B. Carter [36]. 

High resolution transmission electron microscopy (HR-TEM) is a phase contrast imaging 

mode whereby the waves interact with each other and on the bases of their phase difference 

generate the image. In modern TEMs acquiring HR-TEM images is becoming a routine affair, 

however their interpretation could be tricky especially in the cases of nano-structures. The 

biggest success of HR-TEM lies in its ability to provide atomic resolution as is shown in 

Figure 2.9 for the case of a silicon crystal oriented in the [11�0] zone axis, showing the (110) 

and (111) planes. The fast fourier transform (FFT) of the HR-TEM image entails the details 

embedded in the image as a function of the spatial frequencies chosen (which are governed by 

the focusing conditions). The FFT of an HR-TEM image is analogous to the selected area 

diffraction pattern observed from the region imaged. 

 

Figure 2.9: HR-TEM image of silicon showing the (110) and (111) planes when oriented in 

the [11�0] zone-axis along with the FFT (inset). 
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2.3.4 High angular annular dark field scanning transmission electron microscopy 

This section is based on the text Transmission electron microscopy, A textbook for Materials 

Science by D. B. Williams, C. B. Carter [36]. 

The HR-TEM images despite the plethora of information that they provide in terms of 

resolution, lack a certain feature. These images are per se phase contrast images, i.e. changing 

the phase with the help of the objective lens excitation changes the way particular positions 

are visualized in the image. High angular annular dark field scanning transmission electron 

microscopy (HAADF-STEM) offers a way out as in the HAADF-STEM mode the contrast is 

due to the Rutherford scattering and is linked to the atomic column positions. 

In the HAADF-STEM mode, a convergent beam is scanned across the sample and the annular 

detectors measure the signal emanating from the points being scanned. The intensity in 

HAADF-STEM mode images is related to the mass-thickness of the material, i.e. thicker 

areas, or areas with higher average atomic number appear brighter. Typically at high 

resolutions (atomic scales) the intensity in HAADF-STEM mode is related to 𝑍2 whereby 𝑍 is 

the average atomic number of the material. The resolution is governed by the electron probe 

size. 

2.3.5 Physics of electron energy loss spectroscopy 

This section is based on the text Electron energy-loss spectroscopy in the electron microscope 

by R. F. Egerton [37]. 

Electron energy loss spectroscopy is based on the analysis of the energy lost by transmitted 

electrons as they pass through a given material. The energy lost by the electrons is indicative 

of the excitations induced in the material. 

As a fast moving electron moves through a sample, it interacts with the electrons and the 

nuclei of the material. In scattering theory, such interactions are studied in terms of 

differential cross section 𝑑𝜎 𝑑𝛺⁄  which represents the probability of an incident electron 

being scattered (per unit solid angle 𝛺) [37]. The situation can be visualized according to the 

following schematic (Figure 2.10). The incident electron with momentum vector 𝒌𝟎 scatters 

through an angle 𝜃 and a scattering vector (also referred to as momentum transfer vector) 𝒒 to 

attain a momentum 𝒌𝟏. 

The momentum transfer vector can be calculated as given in Equation 2.15 
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𝑞2 = 𝑘02(𝜃2 + 𝜃̅𝐸2)                    (2.15) 

where 𝜃̅𝐸  is the characteristic angle corresponding to the mean energy loss 𝐸�. 𝜃̅𝐸  can be 

calculated as given in Equation 2.16 

𝜃̅𝐸 = 𝐸�/(𝛾𝑚0𝑣2)                    (2.16) 

where 𝛾2 = (1 − 𝑣2 𝑐2⁄ )−1, 𝑣 the velocity of the incident electron, 𝑐 the velocity of light in 

free space and 𝑚0the rest mass of electron. 

 

 

Figure 2.10: Schematic illustrating the initial and final momentum vector of the probing 

electron 𝒌𝟎 and 𝒌𝟏 respectively along with scattering vector 𝒒 and scattering angle 𝜃. 

In order to describe the scattering more precisely, the behavior of the electrons in the solid 

must be specified in terms of transition from an initial state wavefunction 𝜓0 to a final state 

𝜓𝑓. This was incorporated in the Bethe Theory as related in Equation 2.17, where 𝑉(𝑟) is the 

potential responsible for the scattering and 𝑑𝜏 infinitesimally small volume element. 

𝑑𝜎𝑓
𝑑𝛺

= � 𝑚0
2𝜋ℏ2

�
2 𝑘1
𝑘0

 �∫𝑉(𝑟)𝜓0𝜓𝑓∗exp (𝑖𝒒 · 𝒓)𝑑𝜏�
2
                (2.17) 

Given that inelastic scattering is an important phenomenon for consideration, it is worth 

considering the double differential scattering cross section 𝑑2𝜎 𝑑𝛺𝑑𝐸⁄  (the probability of an 
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electron getting scattered through a solid angle 𝛺 and losing energy 𝐸) which can be 

described as given by Equation 2.18 

𝑑2𝜎
𝑑𝛺𝑑𝐸

≈ 4𝛾2𝑅
𝐸𝑘02

� 1
𝜃2+𝜃�𝐸

2�
𝑑𝑓
𝑑𝐸

                   (2.18) 

where 𝑓 is the generalized oscillator strength and 𝑅 is the Rydberg’s energy. 

Another method of describing the double differential scattering cross section is with the help 

of the dielectric formulation of energy loss. It has been shown that the double differential 

scattering cross section can be described as given in Equation 2.19 where 𝑎0 is the first 

Bohr’s radius, 𝑛𝑎 is the number of atoms per unit volume and 𝜀 the dielectric function. 

𝑑2𝜎
𝑑𝛺𝑑𝐸

≈ 𝐼𝑚 [−1/𝜀(𝒒,𝐸)]
𝜋2𝑎0𝑚0𝑣2𝑛𝑎

� 1
𝜃2+𝜃�𝐸

2�                     (2.19) 

Clearly, the double differential cross section is proportional to the loss function 𝑆 =

𝐼𝑚 [−1/𝜀(𝒒,𝐸)]. 

The relativistic motion of electrons is accounted for in the above equations, however, under 

certain cases another energy loss process, namely the Cerenkov radiation can occur, which is 

not accounted for in the equations given above. When the speed of electrons travelling in a 

medium exceeds the phase velocity of light in that medium, light waves are generated, and the 

phenomenon called as Cerenkov radiation. When the criterion given in Equation 2.20 is 

satisfied, Cerenkov radiation is generated. 

2
21( ) cE vε >

                       (2.20) 

Cerenkov radiation is strongly dependent on two factors, the angular range of collection and 

the thickness of the sample being investigated. von Festenberg showed [40,41] that Cerenkov 

radiations contribute significantly to the energy loss spectrum acquired only at very low 

angles < 0.01 mrad. In addition, Cerenkov radiations contribute negligible scattering cross 

section when the thickness of the sample probed is less than 0.5 times the inelastic mean free 

path length of the material investigated [42]. 

A typical EEL spectrum has three main parts, as is shown in Figure 2.11. The most intense 

feature is the zero loss peak (ZLP), which basically represents all the electron which have lost 

no perceptible energy. As the ZLP primarily shows the energy spread of electrons which have 

lost no perceptible energy interacting with the specimen, it offers insight into the electron 
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source and spectrometer resolution. Typically for a thermal source, the full-width at half the 

maximum (FWHM) of the ZLP could be as less as 1 eV, for a Schottky source 0.6 eV and for 

a cold field emission gun 0.3 eV. Using a monochromator the resolution can be further 

improved to a FWHM of about 0.1 eV. 

At greater energy loss values , the valence loss excitations are envisaged, typically up to 50 

eV. These energy losses occur when the primary beam interacts with the valence band 

electrons, which in turn respond to the changing electromagnetic field by jumping to higher 

energy levels or by collective excitation modes like the plasmon. 

At higher energy loss values, the excitation of core shell electrons are envisaged in the loss 

spectrum as the core-loss edges. The classification system used for these excitations is such 

that excitations from 1s states to higher unoccupied levels are known as K-edges, from 2s as 

L1-edges, from 2p1/2 and 2p3/2 as L2,3-edges, from 3s as M1-edges, from 3p1/2 and 3p3/2 as M2,3-

edges, from 3d3/2 and 3d5/2 as M4,5-edges and so on for higher levels. 

 

Figure 2.11: A typical EEL spectrum showing the zero loss peak, the valence excitations and 

the core-loss excitations. On right is a schematic of the energy levels in the solid. Adapted 

from Ref. 43. Image © C. Scheu, reproduced with permission. 
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2.3.6 Electron energy loss spectroscopy Instrumentation 

This section is based on the text Electron energy-loss spectroscopy in the electron microscope 

by R. F. Egerton [37]. 

The acquisition of the loss spectrum requires an array of intricate technologies. One common 

feature which improves the energy resolution, and hence expands the amounts of information 

extractable in modern TEMs is the monochromator. The monochromator typically tightens 

the energy width of the electron source, at the cost of reducing the beam intensity. A 

schematic of Wien-type monochromator is shown in Figure 2.12. The operating principle of 

this type of monochromator is based on classical electrodynamics and similar to an EELS 

spectrometer described below. The beam of electrons is perpendicularly subjected to 

orthogonal electric and magnetic fields, their magnitudes being chosen such that electrons of a 

particular velocity experience no net force, thereby passing through undeviated. A slit is 

positioned right below to separate these electrons from those with differing energies. A side 

effect of using a Wien-type monochromator is that the beam current decreases. This setback 

can however been rectified by using a higher acquisition time, if the material under 

investigation in not beam sensitive. 

 

Figure 2.12: On the left (a) a schematic of a Wien-type monochromator which operates by 

inducing on to the electron beam orthogonal electric and magnetic fields. Improvement in the 

energy resolution due to the narrowing of the ZLP from a FWHM of 0.60 eV to 0.18 eV (b). 

Image © Yaron Kauffmann, Technion-Israel Institute of Technology, reproduced with 

permission. 
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The energy loss spectrum is acquired by the energy loss spectrometer which is located 

beneath the fluorescent screen. A schematic of the EEL spectrometer is shown in Figure 2.13. 

The entry of the electron beam into the spectrometer is governed by the spectrometer entrance 

aperture. The size and position of the spectrometer entrance aperture governs the momentum 

transfer q.  

Below the entrance aperture a magnetic prism is located which applies magnetic field on the 

beam such that electrons get separated on the basis of their energy. After the prism several 

lenses follow which determine the magnification of the spectrometer. A detector can be 

placed to determine the energy spread of the electrons in the spectrum mode, whereby the 

EEL spectrum is obtained. Another possible feature is using electrons with a particular energy 

loss (selected with the help of an energy selecting slit) to subsequently make an image of the 

area probed using these electrons. This technique is commonly referred to as energy filtered 

transmission electron microscopy (EF-TEM). 

Typically, the EELS can be operated in three modes. The first, namely the image mode 

whereby paraxial illumination is used, second the diffraction mode, whereby the TEM is 

operated in diffraction mode, or the STEM mode whereby a convergent beam scans the probe. 

 

Figure 2.13: A schematic of the EEL spectrometer. Image © Yaron Kauffmann, Technion-

Israel Institute of Technology, reproduced with permission. 
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2.3.7 Applications of electron energy loss spectroscopy 

This section is based on the text Electron energy-loss spectroscopy in the electron microscope 

by R. F. Egerton [37]. 

Electron energy loss spectroscopy offers a plethora of information about the material 

investigated. Different sets of information require specific analysis and as such are dealt with 

differently. The excitations up to about 50 eV are predominantly caused by the excitations of 

the valence electrons and the spectrum spanning this energy range is referred to as valence 

electron energy loss spectrum (VEELS).  

In a semiconducting material, the smallest possible valence electron excitation possible is the 

excitation of an electron from the top of the valence band to the bottom of the conduction 

band. Extracting the band gap from VEELS is challenging because the ZLP typically has tails 

which extend to higher energies. Therefore, the scattering cross section due to this excitation 

of electrons from valence to conduction bands can get overshadowed by the tail of the ZLP. 

Usage of a monochromator decreases the span of the tails of ZLP and as such it enhances the 

chances of, though not assures, the determination of band gap. Since the availability of 

monochromators attached to commercial TEMs, determining band gaps in a TEM has become 

an interesting experimental option, especially for nanostructures which can be individually 

probed using STEM mode. 

In addition to the band gap, the VEELS contains information about the dielectric function. 

When the VEEL spectrum is acquired with collection angles of the order of a few µrad, it is 

possible to obtain the dielectric function from the VEEL spectrum by employing Kramers 

Kronig analysis. The most dominant feature in the VEEL spectrum is the plasmon excitation. 

The scattering cross section for plasmon excitation can be used to find out the thickness of the 

area investigated or determine the chemical phase present. 

The second important type of EELS signal studied is the core-loss EELS. The core-loss EELS 

provides information about the composition of the material. The core loss EELS contains the 

core-loss edges, which upon comparison with literature allow for determining the elements 

present. In addition, the scattering cross section of particular edges in the core-loss EELS can 

be analyzed to determine the approximate chemical composition of the material.  

When a particular core-loss edge is studied in detail, with low spectrometer dispersion, it is 

possible to ascertain the fine-structure of the particular core-loss edge. This fine structure 
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helps in identifying the bonding type. For example, on the basis of the C-K edge analysis, it is 

possible to determine the % sp2 versus % sp3 character in a sample. In addition, it is possible 

to study the coordination chemistry of transition metals with the help of core-loss EELS. 

2.4 Density Functional Theory 

For calculating the properties of materials, DFT has over past few decades developed as a 

reliable computational tool. Progress in the field was pioneered by Hohenberg, Kohn and 

Sham whose theorems [44,45] illustrated the possibilities and advantages of dealing with 

electron densities instead of many-body wave functions and their applicability for solving the 

Schrödinger’s equation. This section describes the central tenets of DFT and the various 

approximations involved.  

This section is primarily based on the introductory text to the subject of DFT by Stefaan 

Cottenier [46]. 

2.4.1 Schrödinger’s equation for a solid 

A solid is constituted by heavy positively charged nuclei and relatively lighter negatively 

charged electrons. If the solid consists of N nuclei, it implies that the number of particles to be 

taken into consideration is N+ZN, where Z is the average atomic number of the solid. The 

Hamiltonian of the solid is described in Equation 2.21 where 𝑀𝑖 is the mass of the 𝑖th nuclei, 

𝑅𝚤���⃗  the radius vector of the 𝑖th nuclei, 𝑚𝑒 mass of electrons, 𝑟𝚤��⃗  position vector of 𝑖th the 

electron, 𝑍𝑖 atomic number of the 𝑖th nucleus and 𝜖0 the permittivity of free space. 
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                      (2.21) 

The first term on the right hand side (RHS) of Equation 2.21 is the kinetic energy of the 

nuclei, the second term the kinetic energy of the electrons. The third term represents the 

potential energy due to the electron nuclei interactions. The fourth term represents potential 

energy due to the electron-electron interactions while the fifth term lists the potential energy 

due to the nucleus-nucleus interactions. 

In a solid, as the nuclei are effectively fixed to their positions (and possess only limited 

vibrational motion) the fifth term would be a constant. The nuclei are a lot heavier than the 
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electrons. When the nuclei move, the electrons due to the huge mass difference involved 

effectively adjust accordingly instantaneously; hence the nuclei can for practical purposes be 

assumed to be fixed and the first term in Equation 2.21 can be neglected. This approximation 

is known as the Born-Oppenheimer approximation and was first proposed by Born and 

Oppenheimer in 1927 [47]. The electrons being the preponderating player in the Equation 

2.21, the potential due to the interaction of the electrons with the nuclei is referred to as 

external potential 𝑉𝑒𝑥𝑡. This potential is treated as an external feature for the many-electron 

system. 

2.4.2 Theorems of Hohenberg and Kohn 

In their seminal paper published in 1964 [44] Hohenberg and Kohn laid the foundation of the 

density functional theory. They showed [44] that there exists a one-to-one correspondence 

between the ground state density of a many electron system and the external potential 𝑉𝑒𝑥𝑡 

[46]. A direct corollary of the above theorem is that the ground state expectation value of any 

observable is a unique functional of the ground state electron density [46]. This showed that 

the electron density contains as much information as the many body wavefunctions [46]; 

hence instead of dealing with many body wavefunctions, it is possible to rather deal with the 

electron density. In their second theorem Hohenberg and Kohn showed [44] that the ground-

state total energy functional 𝐻[𝜌] ≡ 𝐸𝑉𝑒𝑥𝑡[𝜌] is of the form given by Equation 2.22 [46] 

where 𝜌 is the electron density. 

𝐸𝑉𝑒𝑥𝑡[𝜌] =  𝐹𝐻𝐾[𝜌] + ∫𝜌 (𝑟)𝑉𝑒𝑥𝑡(𝑟)𝑑𝑟                  (2.22) 

In Equation 1.22 𝐹𝐻𝐾[𝜌] is the universal Hohenberg-Kohn density functional for any many 

electron system. Kohn and Sham further built upon this knowledge by creating a 

mathematically feasible framework for solving the Hamiltonian [45]. They showed that using 

the Hohenberg-Kohn Theorem for finding the electron density, the Hamiltonian can be 

interpreted as the energy functional of a non-interacting classical electron gas subject to two 

potentials, one due to nuclei and the other due to the exchange and correlation effects [46]. 

The Kohn-Sham Hamiltonian is described in Equation 2.23. 

𝐻�𝐾𝑆 =  − ℏ2

2𝑚𝑒
∇��⃗ 𝑖2 + 𝑒2

4𝜋𝜖0
 ∫ 𝜌(𝑟′)

|𝑟−𝑟′|
+  𝑉𝑥𝑐 + 𝑉𝑒𝑥𝑡                        (2.23) 

The third term in Equation 2.23 𝑉𝑥𝑐 contains the potential due to exchange correlation effects. 

The second term in Equation 2.23 is known as the Hartree operator 𝑉𝐻. The ground state 
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density 𝜌(𝑟) of the 𝑁 electron system can be described as given in Equation 2.24 where 𝜑𝑖(𝑟) 

is the single particle wave function. 

𝜌(𝑟) =  ∑ 𝜑𝑖∗(𝑟)𝑁
𝑖=1 𝜑𝑖(𝑟)                   (2.24) 

The single particle picture used above is based on the approximation that the system can be 

described as a collection of classical ions and essentially single quantum mechanical particles 

that reproduce the behavior of the electrons [48]. 

The Hartree operator 𝑉𝐻 and the exchange correlation operator 𝑉𝑥𝑐 are dependent on the 

density 𝜌(𝑟) which is dependent on the 𝜑𝑖 which are being searched [46]. This implies the 

nature of the problem is that of self-consistency. The way to go around it is to assume an 

initial density, solve the Kohn-Sham Hamiltonian and from the eigenvalues generated a new 

density is obtained. When this iteration process leads to a difference between the two densities 

before and after an iteration below a particular level, the calculation is assumed converged. 

A particularly tricky part in this calculation is the incorporation of exchange correlation 

effects. A number of approximate methods exist. Generalized gradient approximation (GGA) 

has been successfully demonstrated to be an effective method for calculating the ground state 

properties [49]. 

2.4.3 APW+lo method 

For solving the Kohn-Sham Hamiltonian an essential part is defining the electron density. The 

electron density can be defined in terms of various sets of basis vectors. The choice of basis 

vectors is critical as it should be small, such that less computational power is required, at the 

same time it should not be biased, such that it is not inclined to favor particular sort of 

solutions. A number of methods exist for defining the basis vectors, one of the most important 

being the augmented plane waves + local orbitals (APW+lo) approach.  

In the APW+lo approach the space is divided into muffin-tin radii located concentric with the 

atomic nuclei. The electrons inside these muffin-tin radii are described by atomic 

wavefunctions. In the interstitial region a plane wave basis set is used to describe the electron 

density [46].  

The basis function in the APW+lo method has two types of functions. The first kind are 

augmented plane waves linked to fixed energy levels 𝐸1,𝑙
𝛼  [46] as described in Equation 2.25 
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where 𝐼𝑛 represents the interstitial region, 𝑢𝑙𝛼 solution to the radial part of Schrödinger’s 

equation for atom 𝛼, 𝑌𝑚𝑙  the spherical harmonics, 𝑉 the volume and 𝑆𝛼 the muffin-tin region. 
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                     (2.25) 

The second type of function used is the local orbitals as described in Equation 2.26. 

𝜑𝛼,𝑙𝑜
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           (2.26) 

The constants 𝐴𝑙𝑚
𝛼,𝑙𝑜 and 𝐵𝑙𝑚

𝛼,𝑙𝑜 are determined by normalization and applying boundary 

conditions requiring continuity at the boundaries of the muffin-tin sphere. A further 

improvement to this method is the usage of another set of local orbitals to describe the 

electrons from semi-core states. These local orbitals are described as shown in equation 2.27 

where 𝑢𝑙𝛼 is a radial function of normalization. 

𝜑𝛼,𝐿𝑂
𝑙𝑚 (𝑟) =  

0                                                                                                                𝑟 ∉  𝑆𝛼
[𝐴𝑙𝑚

𝛼,𝐿𝑂𝑢𝑙𝛼 �𝑟′,𝐸1,𝑙
𝛼 � + 𝐶𝑙𝑚

𝛼,𝐿𝑂𝑢𝑙𝛼�𝑟′,𝐸2,𝑙
𝛼 �]𝑌𝑚𝑙 (𝑟̂′)                              𝑟 ∈ 𝑆𝛼

        (2.27) 

2.4.4 Treatment of exchange correlation effects 

The Kohn-Sham Hamiltonian (Equation 2.23) is exact barring the Born-Oppenheimer 

approximation [46]. Solving it however requires knowledge of the contribution of exchange-

correlation effects [46]. The exchange energy is contributed in the single particle picture by 

the virtue of the property that if two electrons of same spin interchange positions, the sign of 

the many-body wave function should be inverted [48]. The correlation property relates to the 

fact that each electron is affected by the motion of every other electron [48]. 

The exchange correlation energy as a functional of the electron spin densities must be 

approximated for solving the Kohn-Sham Hamiltonian [49]. Two popular methods exist for 

this. The first being the local density approximation (LDA) and the second being generalized 

gradient approximation. 

The LDA methodology calculates the exchange correlation energy by dividing the space into 

infinitesimally small volumes with constant density [46]. The plus point of this methodology 

is that it is unambiguous and requires no selection of parameters [46]. On the contrary it does 

not perform well for highly variant electron densities [46]. 
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The second method (GGA) improves upon by calculating the exchange correlation energy due 

to an infinitesimally small element by making it dependent on not only the local density in 

that volume but also the density in the neighboring volumes [46]. There is no universal GGA 

and as such these contributions can be calculated in a number of ways. The most popular 

GGA methodology is that proposed by Perdew, Burke and Ernzerhof (PBE-GGA)[49]. 

2.4.5 Band gap problem 

DFT based methods perform exceedingly well in describing the ground state properties, for 

example crystal structures, bulk moduli and phase diagrams to name a few [48,50]. However, 

DFT fails to correctly predict properties relating to the excited states, for example band gap 

[51,52]. The theorems of Hohenberg and Kohn [32] are mathematically valid only for ground 

states [53] thereby handling of excited states, like the conduction band states, within the 

framework is not accurate. 

Tran and Blaha [54] have proposed an alternate methodology (TB-mBJ) by modifying the 

methodology proposed by Becke and Johnson [55] which has turned out to be very helpful in 

determining band gaps of semiconductors [54,56-58]. Becke and Johnson had proposed 

“exact-exchange” optimized effective potential in atoms [55]. TB-mBJ methodology modifies 

this potential [55] by adding a weighing element determined by the ratio of the gradient of 

density with the density (∇𝜌/𝜌) and has been used with much success [54,56-58]. 
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3 Density functional theory based calculations on bulk 
KCa2Nb3O10 

 

 

 

DFT has proved to be an extremely useful tool for understanding the properties of solids [1,2]. 

This section entails the DFT calculations performed on KCa2Nb3O10. An augmented plane 

wave and local orbital (APW+lo) approach, as incorporated in the commercial WIEN2k 

software code [3] was used. The results presented in this chapter are based on a manuscript, 

“Electronic structure of KCa2Nb3O10 as envisaged by density functional theory and valence 

electron energy loss spectroscopy” currently under review at the Physical Review B. 

3.1 Computational details 

The crystal structure as proposed by Tokumitsu and co-workers was used for performing the 

calculations [4]. The crystal axes were reoriented to define crystal parameters a, b, c and γ as 

14.859 Å, 7.7418 Å, 7.7073 Å, and 97.51° respectively. The corresponding crystal structure is 

illustrated in Figure 3.1. The structure has overall 23 inequivalent atoms and the unit cell 

contains 4 formula units. The Nb atoms in the median (200) crystallographic plane shall be 

referred to as Nb1, Nb2 whereas the Nb atoms in between Ca and K layers as Nb3, Nb4. 

 

Figure 3.1: The crystal structure of KCa2Nb3O10 contains parallel planes of K, Ca and Nb in 

addition to oxygen atoms. 
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The atomic spheres (muffin-tin radii) sizes used for K, Ca, Nb, and O were 2.42, 2.03, 1.69 

and 1.50 atomic units (a.u.) respectively. Atomic wavefunctions in the muffin-tin spheres 

were expanded up to angular momentum l=10. Semi-core states (Ca - 3s, 3p; K - 3s, 3p; Nb - 

4s, 4p; O - 2s) were expanded using local orbitals. The size of the basis set for the plane wave 

expansion used in the interstitial region was governed by fixing the parameter RMTKmax = 7 

where RMT is the smallest muffin-tin radius and Kmax is largest plane wave used in expansion. 

To cross-check the adequacy of the plane wave basis used calculations were performed on the 

geometry optimized structure. The individual force components on all atoms were within 5 

mRy/a.u. thereby justifying the choice of parameters used. For geometry optimization of the 

structure, exchange-correlation effects were treated according to the generalized gradient 

approximation as proposed by Perdew, Burke and Ernzerhof (PBE-GGA) [5]. To determine 

the electronic properties, namely the density of states (DOS), bandstructure, dielectric 

function and the loss function, Tran-Blaha modified Becke Johnson Potential [6] was used for 

treating the exchange correlation effects. The irreducible Brillouin zone was sampled with a 

[4x4x2] k-mesh for performing self-consistency cycles. The self-consistency cycle was 

assumed to be finished when the force components on the individual atoms fell below 5.0 

mRy/a.u. Subsequently for obtaining the DOS and the bandstructure a denser k-mesh of 

[8x8x4] k-points was used for sampling the irreducible Brillouin zone. Optical properties 

(dielectric function) were calculated using the OPTIC program [7] of the WIEN2k package 

which was executed by computing the momentum transfer matrix elements in the energy 

range -5 and 5 Ry. Two different methodologies were used for ascertaining the dielectric 

function. For the low energy region E<25 eV no scissor operator was applied for computing 

the dielectric function. However for determining the dielectric function in higher energy range 

(25 eV<E<50 eV) the transitions were shifted by an amount ∆E=2.5 eV towards higher 

energies. 

3.2 Structure optimization 

Experimentally determined structures are generally very accurate with regards to unit cell 

parameters and symmetry of the structure. Despite that, in crystals with complex unit cells 

relative positions could be further refined using ab-initio methods. DFT has been widely used 

for optimizing the crystal structures. A number of ways exist to optimize the crystal structure 

[3], for example relaxing the unit cell parameters; allowing structure to relax along a 

particular axis; minimizing the total energy; minimizing the forces on individual atoms. Given 

the fact that this study, concerns the electronic structure and not with mechanical properties 
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like bulk modulus (for whose determination unit cell parameters need to be relaxed), we 

optimize the structure by minimizing the overall force components. Using PBE-GGA 

potentials for describing the exchange correlation effects, the structure of KCa2Nb3O10 was 

optimized such that overall the force components on individual atoms converged to values 

below 5 mRy/a.u. The structures before (labeled initial) and after (labeled final) geometry 

optimization, when viewed parallel to the crystallographic b axis are shown in Figure 3.2.  

 

Figure 3.2: The crystal structure of KCa2Nb3O10 before and after geometry optimization 

labeled as initial and final respectively. 

Geometry optimization of the KCa2Nb3O10 structure changed the fractional atomic positions 

(Table 3.1) by 0.033 Å for Ca3 as compared to the experimental structure [4]. The Nb-O 

distances varied less than 0.02 Å for Nb1 and Nb2 thereby leading to minimal changes to the 

Nb1(2)-O octahedra. On the other hand the Nb-O distances of Nb3 and Nb4 changed up to 

0.07 Å for the Nb3(4)-O octahedra which rotate slightly. These rotations and the large 

movements of the Ca ions lead to changes in some Ca-O bond lengths by up to 0.3 Å. Overall 

these large changes around Ca lead to change in the bond valence sums from 2.44-1.90-1.65-

2.34 to 2.33-2.16-1.81-2.02 (Ca1-Ca2-Ca3-Ca4) thereby making them much closer to the 

formal valence of Ca (+2). K1-O2-K2 distances become much more similar as some K-O 

distances change up to 0.2 Å. Overall the structure becomes flatter along the bc plane.  
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Table 3.1: Theoretically optimized (top) and experimental (bottom) fractional atomic 
positions in KCa2Nb3O10. 

Ca 1 0.6495   
0.653 

0.7855   
0.78 

0.75 
0.75 

Ca 2 0.3405 
0.346 

0.7023 
0.717 

0.75 
0.75 

Ca 3 0.6384 
0.628 

0.2893 
0.322 

0.75 
0.75 

Ca 4 0.3480 
0.351 

0.1969 
0.201 

0.75 
0.75 

K 1 0.0203 
0.035 

0.6302 
0.616 

0.25 
0.25 

K 2 0.0071 
0.008 

0.1226 
0.132 

0.25 
0.25 

Nb 1 0.5 
0.5 

0 
0 

0 
0 

Nb 2 0.5 
0.5 

0.5 
0.5 

0 
0 

Nb 3 0.7900  
0.7848 

0.5778 
0.571 

0.9960 
0.004 

Nb 4 0.7889  
0.789 

0.0733 
0.075 

0.9943 
0.987 

O 1 0.6293  
0.629 

0.4998 
0.495 

0.0304 
0.033 

O 2 0.9091 
0.905 

0.6220 
0.594 

0.9644 
0.983 

O 3 0.7741 
0.77 

0.3211 
0.316 

0.0136 
0.012 

O 4 0.7444 
0.749 

0.5503 
0.541 

0.75 
0.75 

O 5 0.7764 
0.775 

0.5923 
0.574 

0.25 
0.25 

O 6 0.5226 
0.514 

0.5660  
0.576 

0.75 
0.75 

O 7 0.5131 
0.520 

0.7536 
0.755 

0.0673 
0.053 

O 8 0.6286 
0.630 

0.0635 
0.006 

0.0486 
0.052 

O 9 0.9067 
0.906 

0.0879 
0.081 

0.9530 
0.953 

O 10 0.7464 
0.748 

0.8139 
0.818 

0.9869 
0.974 

O 11 0.7389 
0.733 

0.0757 
0.065 

0.75 
0.75 

O 12 0.7842 
0.782 

0.0504 
0.069 

0.25 
0.25 

O 13 0.5309 
0.528 

0.9570 
0.973 

0.75 
0.75 
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3.3 Bandstructure 

The bandstructure of a material represents the electron eigenstates in the reciprocal space. 

Conventional DFT based methods, PBE-GGA for example underestimate the band gaps [8,9]. 

This is because of the fact that the theorems of Kohn and Hohenberg are mathematically valid 

only for ground states (electron eigenstates below the Fermi energy) [10]. TB-mBJ potential 

[6] have been demonstrated to accurately determine the band gap values (and hence the 

positions of conduction band states) for various semiconductors and insulators [6]. Therefore, 

once the geometry was optimized using the PBE-GGA, electronic structure was calculated 

using the TB-mBJ potential. For bandstructure calculations a denser k-mesh of [8x8x4] k-

points was used to sample the irreducible Brillouin zone. The calculated bandstructure along 

with the Brillouin zone is shown in Figure 3.3. 

 

Figure 3.3: The bandstructure (left) and the Brillouin zone (right) of KCa2Nb3O10. The Fermi 

energy (top of the valence band) is defined to be zero energy. 

The bandstructure of KCa2Nb3O10 illustrates it to be a direct band gap semiconductor with the 

top of the valence band and the bottom of conduction band lying at the Γ point in the Brillouin 
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zone. The band gap of the KCa2Nb3O10 is 3.1 eV. The valence band states have a high density 

close to the Fermi energy (-5 eV to 0 eV). The conduction band on the other hand has a very 

limited number of states close to the conduction band onset of 3.1 eV. In contrast, from 4 eV 

to 6 eV there exists a dense bunch of conduction band eigenstates. Moreover, the valence 

band states close to the Fermi energy are particularly flat whereas the conduction band states 

close to the band onset (3.1 eV to 4.0 eV) are energetically dispersed. Interestingly, all the 

states close to the Fermi energy, in valence and conduction bands, are particularly flat along 

the Γ-A direction in the reciprocal space (Fig 3.3). 

3.4 Density of States 

The density of states was determined using the TB-mBJ potentials [6]. The total and partial 

DOS are depicted in Figure 3.4. The total DOS reveals KCa2Nb3O10 to be a wide band gap 

semiconductor with a band gap value of 3.1 eV. 

 

Figure 3.4: The total as well as partial Ca, K, Nb and O densities of states of KCa2Nb3O10. 

The partial DOS reveal semi-core states in the following energy domains Nb-4p -30.9 to -30.3 

eV; K-3s -28.6 to -27.9 eV; Ca-3p -20.2 to -19.0 eV; O-2s -18.4 to -16.2 eV; and K-3p -11.3 

to -10.8eV. In the valence and conduction bands an effective intermixing between various 



47 
 

atomic states is seen. The valence band comprises predominantly of O-2p states, in addition to 

a small number of Nb-3d states. The first conduction band (3.1 to 6.0 eV) on the contrary 

comprises of Nb-3d states primarily and to some extent O-2p states. 

Given that the crystal structure of KCa2Nb3O10 consists of two types of Nb positions (Nb1, 

Nb2 and Nb3, Nb4), it is worth investigating the contribution of these two types of Nb atomic 

positions to the DOS. The partial DOS contributions of Nb1,2 and Nb3,4 are illustrated in 

Figure 3.5 in the energy range -6 to 10 eV. It is evident that the two types of Nb atomic 

positions contribute very differently to the DOS. The conduction band onset at 3.1eV is 

contributed by the states of Nb1,2 i.e. the Nb atoms in the median plane (200) of the crystal.  

 

Figure 3.5: The partial DOS contributions of Nb1,2 and Nb3,4 atomic positions in the valence 

and conduction bands. 

Furthermore, the partial DOS contributions of Nb-4d orbitals offer insight into the bonding 

character. To this end the partial DOS contributions of t2g-like and eg-like orbitals were 

investigated such that in local coordinates centered at each Nb atom the two Nb-4d orbitals 

pointing towards oxygen atoms were classified as eg-like and the other three Nb-4d orbitals 

pointing in between the O atoms as t2g-like. The partial DOS contributions of t2g-like and eg-

like orbitals illustrated in Figure 3.6 show the Nb-4d states of t2g-like symmetry to be 
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predominantly contributing to the lower conduction band whereas the eg-like states contribute 

to the upper conduction band. 

 

Figure 3.6: Partial DOS contributions of Nb-4d orbitals with t2g and eg character. 

3.5 Dielectric function 

Dielectric function is a complex tensor function of order 3x3. In the case of monoclinic 

crystals like KCa2Nb3O10, it contains non-zero off-diagonal elements [7,11], however such 

(small) terms have been neglected in analysis. Average dielectric function was computed as 

the average of the three diagonal elements of the dielectric function tensor. The dielectric 

function of KCa2Nb3O10 was computed from the electron densities generated using the 

OPTIC package [7] in WIEN2k [3]. The execution of this program computes the momentum 

transfer matrix elements between occupied and empty states which relate to the imaginary 

part of the dielectric function 𝜀2. The computed 𝜀2 , shown in Figure 3.7, indicates two broad 

transition bands with maxima at 6.1 and 9.0 eV. The first band in the energy range 4.5 and 7.0 

eV delineates the transitions from the valence band to the Nb-t2g-like bands with the 

maximum at 6.1 eV. The second band between 7.0 and 11.0 eV represents the transitions of 

valence electrons into Nb-eg-like states. A comparison between the partial DOS (Figure 3.4) 

and the 𝜀2 (Figure 3.7) helps one in identifying the transitions due to semi-core states. The 
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excitation of K-3p electrons into K-3d states result in excitation shown in 𝜀2 at 23 eV (labeled 

in Fig 3.6 with K). Ca-3p electrons being promoted into Ca-3d states lead to a peak in 𝜀2 at 28 

eV (labeled with Ca). Excitation of Nb-4p electrons are responsible for the transitions 

beginning at 35 eV (labeled with Nb). 

 

Figure 3.7: Computed 𝜀2 indicating the various electronic transitions in KCa2Nb3O10. 

The real part of the dielectric function 𝜀1 was computed from the imaginary part 𝜀2 by 

applying the Kramers Kronig transformation. The computed 𝜀1 is shown in Figure 3.8. The 

plasmon excitations can be identified as the points where 𝜀1 is zero and has a positive slope 

with respect to the energy axis [12,13]. Clearly, at three points Ep1 11.3eV, Ep2 30.0eV and 

Ep3 37.0eV these conditions are satisfied indicating the existence of plasmon excitations at 

these energies. In addition, the value of 𝜀1 at high energies (frequencies) 𝜀∞, also known as 

the high-frequency dielectric function, describes the dielectric response of the material under 

electromagnetic fields varying so fast that the material is not able to adjust the electron 
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densities in response, and hence responds by an overall temporally invariant dielectric 

response [14]. From Figure 3.8 the 𝜀∞ for KCa2Nb3O10 is determined to be 0.77. 

 

Figure 3.8: The real part of dielectric function 𝜀1 depicting the plasmon excitations Ep1, Ep2 

and Ep3 and the high frequency dielectric constant 𝜀∞. 

The value of 𝜀1 at low frequencies 𝜀0 is defined as the dielectric response of the material 

under very slowly varying electromagnetic fields [12]. However, it would be incorrect to 

interpret the computed value of 𝜀1 at E=0 eV (4.0) as 𝜀0 because in the computational 

methodology used, one computes the dielectric response of the material only with electronic 

transitions as the response mechanism. In general, the dielectric response of a material to an 

applied dynamic electric field depends upon a number of response mechanisms [15], like 

displacement polarization, atomic polarization, lattice vibrations, electronic excitations etc. At 

lower frequencies <1013 Hz the polarization is dominated by mechanisms like displacement 

polarization, phonons etc. Events of such sorts are not taken into account while calculating the 

dielectric function in this methodology thereby interpreting value of 𝜀1 at E=0 eV would be 

incorrect. 
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3.6 Loss Function 

The loss function 𝑆 relates to the energy lost by a beam of fast electrons as it passes through a 

material [16]. The loss function is known to clearly depict the plasmon excitations [12]. After 

applying the Kramers Kronig transformation, the computed loss function 𝑆 is shown in Figure 

3.9. The plasmon excitations Ep2 and Ep3 are clearly visible, however Ep1 is not discernible 

due to the single electron transitions around E~11 eV overlapping. 

 

Figure 3.9: The computed loss function S of KCa2Nb3O10. 

A comparison of the computed loss function 𝑆 (Figure 3.9) with the imaginary part of the 

dielectric function 𝜀2 (Figure 3.7) indicates the transitions occurring at energies 28 eV and 

40eV to be due to electrons from Ca and Nb.states The local maximum in loss function at 

about 25 eV is due to the local minima of 𝜀2 at this energy. The experimentally determined 

loss function (see Section 4.3) on comparison with literature [17-19] allows one to identify the 

Ca M2,3 and Nb N2,3 edges at 35 eV and 46 eV. Clearly, the position of the corresponding 

excitations determined by the ab-initio calculations is inaccurate. 

3.7 Semi-core states 

It has been known that ab-initio methods like DFT underestimate the position of semi-core 

states [20]. This stems from two causes. Firstly, DFT based methods cancel self-interaction 
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incompletely [21]. Secondly, the excitations due to semi-core effects produce large excitonic 

effects which cannot be modeled by single particle approaches [22]. We attribute the above to 

cause the discrepancy in the position of the computed Ca M2,3 and Nb N2,3 edges. 

To better model these semi-core states an empirical method is proposed. The 𝜀2 relates to 

excitations of electrons. These excitations are due to the valence and semi-core electrons 

excited into the unoccupied states. Hence, to better model the excitations due to semi-core 

states, separate 𝜀2 were computed due to valence and semi-core states. As, the excitations due 

to semi-core states occur at energies larger than the ones computed by conventional DFT 

methods, a mathematical shift to the 𝜀2 due to semi-core states to a higher energy by a value 

∆E is applied. By varying ∆E a good convergence between the experimental and computed 

loss functions with regards to Ca M2,3 and Nb N2,3 edges for ∆E = 2.5 eV was obtained. The 

corrected 𝜀1, 𝜀2 and loss function are depicted in Figure 3.10. The feature in the corrected loss 

function at 44.5 eV depicts the Nb N2,3 edge. The excitation of K-3p electrons into 

unoccupied states results in the excitation at 27.8 eV as is seen in the loss function. The peak 

in 𝜀2 at 32.8 eV, which is related to the excitation of Ca-3p electrons is indiscernible in the 

loss function due to the plasmon peak at 34 eV. 
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Figure 3.10: The corrected 𝜀1, 𝜀2 and loss function of KCa2Nb3O10. 
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3.8 Comparison with literature 

DFT calculations performed in the present work suggest KCa2Nb3O10 to be a direct band gap 

semiconductor. Though there does not exist any report about the type of band gap in 

KCa2Nb3O10, a recent report [23] suggests that [TBAxH1-x]+[Ca2Nb3O10]- nanosheets formed 

from KCa2Nb3O10 are indirect-band gap semiconductors. These measurements could still 

conform with the results shown in this work if KCa2Nb3O10 turns from direct to indirect type 

semiconductor upon exfoliation. This however can only be confirmed upon performing 

calculations on [TBAxH1-x]+[Ca2Nb3O10]- nanosheets which are tedious and beyond the scope 

of this work. 

The band gap value (3.1 eV) determined using DFT calculations employing TB-mBJ potential 

matches well with the experimentally determined value of 3.35 eV by Domen et al. [24]. The 

paltry incongruence could be imputed to the low DOS at the conduction band onset which 

makes inference of band onset fallacious. TB-mBJ potentials have previously been 

demonstrated to successfully determine the band gaps of semiconductors (Si, Ge, GaAs etc.), 

insulators (LiF, Kr etc.) and correlated transition metal oxides (MnO, NiO) [6]. This study 

further shows the applicability of the TB-mBJ methodology to dielectric material 

KCa2Nb3O10 for determining the band gap. 

Generally for determining the optical properties of a material, a “scissor shift” is often applied 

[25-27]. In this scissor shift, the excitations are mathematically shifted to a higher energy 

because the conduction band Kohn-Sham eigenvalues calculated are generally incorrect. The 

calculations performed in this work however match well with the experimental loss function 

(Section 3.3) thereby showing that TB-mBJ methodology allows for determination of optical 

properties without applying a scissor shift (for energy range < 20 eV). 

3.9 Summary 

Structure optimizations indicate the atomic positions of the individual atoms in KCa2Nb3O10 

to be flatter in the bc planes than the structure model proposed by Tokumitsu et al. [4]. This 

implies the stability of a flatter structure along the bc planes. This result is of importance, 

because this is the only family of planes across which the KCa2Nb3O10 could be chemically 

exfoliated into a 2D-nanostructure [28]. The band gap value of 3.1 eV computed using TB-

mBJ potential matches well with the value of 3.35 eV experimentally determined by Domen 

and co-worker’s catalysis measurements [24]. The calculated bandstructure reveals that 
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KCa2Nb3O10 is a direct-type semiconductor. The DOS shows a low density of conduction 

band states close to the band onset of 3.1eV. The partial DOS reveals that the onset of 

conduction band is predominantly due to Nb-3d states. The computed 𝜀1 suggests the 

existence of three plasmon excitations in KCa2Nb3O10. The computed loss function and 𝜀2 

depict the excitations of semi-core electrons from K-3p, K-3s, Ca-3p and Nb-4p orbitals into 

unoccupied states. A shift of excitations due to the semi-core electrons by 2.5eV to higher 

energies allows for better modeling of the Ca M2,3 and Nb N2,3 edges in the loss function. 
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4 Electron energy loss spectroscopy of KCa2Nb3O10 
 

 

 

EELS pertains to analyzing the energies of electrons which have interacted with the specimen 

material. As the probing electrons interact with the material, they lose energy while they 

cause excitations in the material [1]. The energy lost in such processes reflects the chemical 

and electronic structure of the material. The work presented here is based on the analysis of 

EELS signal in the transmission mode. The low energy (E<50 eV) region predominantly 

reflects excitations of the valence electrons and is sometimes referred to as valence electron 

energy loss spectroscopy (VEELS). These excitations can be single electron in nature or 

collective (known as plasmon). In the recent years with the advent of commercially available 

monochromators, determining band gaps using VEELS has become a viable experimental 

option. This chapter entails VEELS and EELS measurements performed on the bulk 

KCa2Nb3O10 to understand its electronic structure. Results presented are currently under 

review at the Physical Review B as a publication entitled “Electronic structure of KCa2Nb3O10 

as envisaged by density functional theory and valence electron energy loss spectroscopy.” All 

measurements elaborated here were performed with Yaron Kauffmann, Department of 

Materials Science and Engineering, Technion - Israel Institute of Technology. 

4.1 VEELS Acquisition 

The acquisition of EEL spectra is circuitous. A number of parameters like the collection 

angle, time of acquisition, spectrometer dispersion and thickness of area chosen are very 

paramount in acquiring the appropriate spectra for analysis. All measurements were 

performed using an FEI-TITAN 80-300 scanning transmission electron microscope equipped 

with a field emission gun, a Wien-type monochromator and Gatan Tridiem 866 energy filter 

having a 2k-CCD camera. For VEELS measurements, an area of single crystalline 

KCa2Nb3O10 was chosen such that its thickness, as determined by an EELS thickness map [1], 

was approximately equal to 0.3 times the inelastic mean free path length λ. To offset effects 

due to anisotropy [2], the sample was oriented into a random orientation such that it was not 

in zone-axis with any high symmetry direction. STEM mode was used for all VEELS 

measurements employing convergence and collection angles of 9.5 mrads each. To make sure 
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the point-spread function of the detector [1] does not limit the resolution of the measurements, 

a spectrometer dispersion of 0.02 eV/channel was used. A spectrum acquired in the energy 

range -5 to 36 eV is shown in Figure 4.1. Evidently for a thin sample, the most dominant 

feature is the ZLP at 0 eV. The ZLP when acquired in vacuum expounds on the energy 

spectrum of the electrons emitted by the electron source. 

 

Figure 4.1: VEEL spectrum acquired from a KCa2Nb3O10 particle ca. 0.3 times the mean free 

path length (λ) thick showing the most dominant feature being the ZLP. 

A closer look at the acquired VEEL spectrum, illustrates the presence of valence excitations, 

exemplified in Figure 4.2. For thin samples the intensity of valence loss excitations is more 

than two orders of magnitude less than that of ZLP. This makes it difficult to improve the 

signal-to-noise ratio (SNR) due to the limited intensity range the detector is able to record 

signal in. Acquiring VEELS from a thicker region can decrease the difference between the 

intensity of ZLP and valence loss excitations, however such data would have limited usability 

for determining band gaps as has been shown by Gu and co-workers [3]. The acquired VEEL 

spectrum shown in Figure 4.2 shows the valence loss excitations and allows for determining 

the loss function S of KCa2Nb3O10. The low SNR however makes it difficult to determine the 

band gap with reasonable accuracy. 
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Figure 4.2: A magnified version of VEEL spectrum of KCa2Nb3O10 illustrating the valence 

electron excitations. 

Therefore for acquiring a better VEEL spectrum with higher SNR from which determination 

of band gap would be possible, a two-fold method was adopted. Another VEEL spectrum was 

acquired from the same position, with a different energy loss region probed. The second 

VEEL spectrum was acquired from approximately 1.5 to 42 eV, such that it encompassed the 

tail of the ZLP on the positive side and the valence loss excitations. For accurate 

determination of the band gap the calibration of this spectrum is indispensable. Hence, to 

calibrate this spectrum both the spectra were juxtaposed and the second spectrum containing 

the ZLP tail and valence loss features with better SNR moved (along the energy axis) until 

overlap was achieved between the valence loss features. The error in this calibration 

procedure can be approximated to ± 0.1 eV. The VEEL spectrum after calibration is shown in 

Figure 4.3 along with the VEEL spectrum containing the complete ZLP which was previously 

acquired. After calibration, the two spectra were spliced into a single spectrum. This spectrum 

was used for all subsequent VEELS analysis. The spliced spectrum shown in Figure 4.4 

shows significantly better SNR, which is important especially in the region 2-5eV. 
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Figure 4.3: The calibrated VEEL spectrum in the region 3-40 eV containing the ZLP tail and 

valence excitations (blue) and the VEEL spectrum acquired with complete ZLP (red). 

 

Figure 4.4: The spliced spectrum showing the VEEL spectrum of KCa2Nb3O10 with better 

SNR. 

4.2 Band gap determination using VEELS 

The ZLP contains the electrons which have lost no perceptible energy. The electron sources 

do not eject electrons with a fixed energy. Typically the energy spread of a thermal electron 

source, as described by its FWHM could be as much as 1-2 eV. Usage of a Schottky source 

improves it, however a cold field emission gun (FEG) is even better and can have an energy 
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spread (FWHM) of 0.3 eV. In addition, it is also possible to mathematically deconvolute the 

acquired loss spectrum obtained with a cold-FEG for determining band gaps [4]. 

Without the deconvolution, the energy resolution offered by cold-FEG in VEELS experiments 

is not sufficient for determination of band gaps due to the pronounced tails of the ZLP. 

Moreover, applying deconvolution on noisy data can generate artifacts. Therefore, 

determination of band gaps was impeded due to instrumental limitations. Recently, 

monochromators have become commercially available. Typically, it is possible to achieve an 

energy resolution up to 0.1 eV with the help of these monochromators. In this study, a Wien-

type monochromator was used which allowed for a FWHM up to 0.15 eV. 

The energy profile of the source is sometimes also referred to as the instrument function. The 

acquired VEEL spectrum contains both the ZLP and the valence loss excitations which might 

superimpose on each other. In cases of insulators or very high band gap semiconductors with 

band gap energies greater than 6 eV, the two features can be separately identified and hence 

the onset of the first valence loss excitation (band gap) can be determined. However for the 

case of semiconducting materials with band gaps in the range 1-4 eV, the ZLP and conduction 

band onset can overlap, thereby making the determination of band gap non-trivial. Removal 

of the ZLP would allow for obtaining the loss function. Theoretically for perfectly 

monochromated electron source, the ZLP would be a delta function, however in reality, it has 

finite energy spread. A number of ways exist for describing the ZLP. It can be approximately 

described as a Gaussian, a Gaussian-Lorentzian or other mathematical functions [1]. The most 

accurate description is acquiring the ZLP in vacuum. 

The tail of the ZLP have a high level of noise as shown in Figure 4.5 where the acquired 

VEELS from KCa2Nb3O10 and the spectrum acquired from vacuum are shown after 

normalizing their intensities. Subtracting the ZLP acquired in vacuum from the VEEL 

spectrum should ideally allow for determination of band gaps, however as is evident from 

Figure 3.5, the high noise levels on the tails would make it difficult to determine the exact 

position of conduction band onset in the energy range 2-4eV. As the DFT calculations and the 

experimental measurements on the band gap of KCa2Nb3O10 by Domen and co-workers [5] 

predict the band gap to be in this energy domain, a need for better method to separate the 

instrument function and the valence excitations cannot be understated. 
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Figure 4.5: The VEEL spectrum acquired from KCa2Nb3O10 (black) and the ZLP acquired in 

vacuum (red). The VEEL spectrum acquired in vacuum had a lower exposure time so as to 

limit detector damage due to the higher intensity of ZLP in vacuum. 

Removal of a superimposing feature preceding the energy loss excitation of interest has been 

an integral part of EELS analysis. For extracting the core-loss signal the most commonly used 

method is describing the preceding feature with a power-law function and subtracting it to 

obtain the signal due to the particular excitation. In the recent years, scientists have 

demonstrated the usage of this technique (power-law subtraction) to remove the ZLP 

component from the acquired VEEL spectra [3,6,7]. Erni and Browning [7] have determined 

the value of band gap from the power-law subtracted ZLP using an intricate mathematical 

operation. They smoothened the ZLP subtracted spectrum using a Savitzky-Golay filter and 

calculated the first derivative of the smoothened curve. Subsequently they fitted a Lorentzian 

to the first derivative and calculated the FWHM of the first peak of the Lorentzian. Then they 

determined the band gap Eg as given in Equation 4.1. where EIP is the inflection point (first 

maximum of the Lorentzian) and LFWHM the FWHM for the first peak of the Lorentzian. 

𝐸𝑔 =  𝐸𝐼𝑃 −  0.5 𝐿𝐹𝑊𝐻𝑀          (4.1) 

Instead of using this approach, in the present work, band gap was determined as the onset 

point where the power-law subtracted signal crosses the noise level. Irrespective of the 

method used for determination of the onset, careful attention needs to be paid to the region 

where the power-law approximation is applied to determine the ZLP tail.  
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Figure 4.6: The VEEL spectrum (black) and the ZLP subtracted spectrum (green) when 

power-law is used to describe the tail of ZLP (red) on the basis of the ZLP tail in the energy 

range 1.8-2.5 eV. 

 

Figure 4.7: The VEEL spectrum (black) and the ZLP subtracted spectrum (green) when 

power-law is used to describe the tail of ZLP (red) on the basis of the ZLP tail in the energy 

range 2.5-3.5 eV. 
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Figures 4.6 and 4.7 highlight the dependence of the band gap onto the region where the 

power-law function was used to describe the tail of the ZLP. By describing the power-law 

function in the energy range 1.8-2.5 eV (Figure 4.6), the onset can be determined as 3.2 eV 

whereas describing it in the energy range 2.5-3.5 eV (Figure 3.7) the onset can be determined 

as 3.6 eV. Out of the two, the first one is correct. This is because power-law can appropriately 

describe a decaying signal, however the signal in the energy range 3-4 eV is rather flat. This 

implies the decaying tail of the ZLP is superimposed with a monotonically increasing signal 

leading to an overall constant intensity in the energy range 3-4 eV. The conduction band onset 

is better illustrated in the ZLP subtracted signal shown in Figure 4.8. Given the error in the 

alignment procedure to be ±0.1 eV, the band gap of KCa2Nb3O10 is determined to be 3.2±0.1 

eV within the range of experimental error. If alignment procedures could be perfected and 

better SNR obtained, the error in the measurement could be as low as 0.04 eV (the width of 

two channels) however experimental limitations hinder this utopian target. However, the band 

gap value augurs well with the calculated band gap value of 3.1 eV and the experimentally 

determined value of 3.35 eV by Domen and co-workers [5]. 

 

Figure 4.8: The ZLP subtracted VEEL spectrum of KCa2Nb3O10 indicating the conduction 

band onset of 3.2 eV. 
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4.3 Loss function comparison 

The ZLP subtracted loss function is related to the double differential scattering cross section. 

In the case of thicker samples, multiple scattering can occur, whereby an electron can excite 

multiple excitations before it exits the sample. In such cases the recorded EEL or VEEL 

spectrum contains these multiple scattering processes superimposed on the ideal spectrum 

which contains only single excitations, known as single scattering distribution. Mathematical 

formulations have been developed to remove such multiple scattering effects, for example the 

Fourier Log deconvolution and the Fourier Ratio deconvolution [1]. These methods have been 

extensively used by scientists for obtaining the single scattering distribution when VEELS has 

been acquired from thicker regions [8,9]. However, these multiple scattering processes 

contribute significantly to the signal when the thickness of the area irradiated is close to the 

mean free path length or greater. Given that, the area investigated for VEELS acquisition is 

about 0.3 times the mean free path length thick, the probability of multiple scattering events 

interfering with the acquired signal is negligible.  

The ZLP subtracted VEEL spectrum, which is the experimentally determined loss function, 

and the theoretically determined loss function are plotted in Figure 4.9. 
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Figure 4.9: The theoretically and experimentally determined loss function of KCa2Nb3O10. 

The experimentally determined and the theoretically calculated loss functions show excellent 

agreement up to 20 eV. The resolution of the theoretically determined loss function is better 

as it allows for discerning sub features of larger peaks, for example, the peak in the energy 

range 12-16 eV appears as a single broad peak in the experimental spectrum, however in the 

theoretical spectrum the splitting of the peak is visible. 

The excitations in the energy range E<20 eV are dominated by single electron transitions, as 

opposed to collective excitations like plasmon. A comparison with the theoretically computed 
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imaginary part of the dielectric function allows one to understand the nature of these single 

electron excitations. The peak in the region 5-7.5 eV can be attributed to the excitations of 

valence band electrons from Nb-4d states into the unoccupied states with Nb-t2g-like 

character. 

4.4 Plasmons 

A plasmon excitation is a collective excitation mode where the delocalized electrons interact 

with the electromagnetic fields created by the incident electron as it passes through and move 

in a collective motion as a superimposition on their random thermal motion. Mathematically 

the conditions for plasmon excitation are when the real part of the dielectric function crosses 

the energy axis with a positive slope. As shown in Section 3.5 theoretical calculations suggest 

these conditions to be satisfied at three points Ep1 11.3 eV, Ep2 30.0 eV and Ep3 37.0 eV. A 

comparison between the experimentally and theoretically determined loss function (illustrated 

in Figure 4.10) in the energy range 0-40 eV indicates differences between the loss functions in 

the high energy range 20 eV<E<40 eV. 

The biggest difference that one sees between the two loss functions is the intensity of plasmon 

excitations Ep2 30.0 eV and Ep3 37.0 eV. Theoretically determined loss function shows 

(Figure 4.10) these plasmon excitations to have a small energy width and high intensity, 

however in the experimentally acquired spectrum these two features are non-existent. This 

indicates a possible limit to the computational methodology for properly mimicking the 

higher energy excitations.  

It is worth comparing the loss function of KCa2Nb3O10 with Nb2O5 which also has Nb with an 

oxidation state of +5. Bach and co-workers have shown [10] that Nb2O5 has a broad triple 

plasmon in the energy range 15-27 eV. Theoretical calculations also predict the existence of 

three plasmons however the experimental loss function does not contain the last two as 

narrow high intensity peaks as the calculations suggest. Similar to the experimental spectrum 

of Nb2O5 published by Bach and co-workers [10] a broad flat valley like feature is observed 

in the experimental loss function in the energy range 20-28 eV, however it is hard to 

categorize these excitations. 
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Figure 4.10: Theoretically and experimentally determined loss functions in the energy range 

0-40 eV. 

4.5 Semi-core excitations 

Excitations of the semi-core electrons to the higher unoccupied levels are manifested in the 

experimentally acquired EEL spectrum. To this end an EEL spectrum was acquired in TEM 

mode using a spectrometer dispersion of 0.2 eV/channel. The EEL spectrum is shown in 

Figure 4.11. 
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Figure 4.11: EEL spectrum of KCa2Nb3O10 acquired in TEM mode showing the edges Ca-

M2,3 and Nb-N2,3. 

Two features are observed with maxima at 35eV and 45.5 eV. Comparison with literature 

[11,12] allows for characterizing the first peak at 35 eV to belong to the Ca-M2,3 edge. Bach 

and co-workers [10] showed that Nb in an oxidation state of +5 shows a delayed maximum at 

the N2,3 edge at 46 eV. The imaginary part of the computed dielectric function (Figure 3.7) 

suggests excitations due to Ca-3p and Nb-4p electrons to occur at 28 and 35 eV. 

These facts indicate the semi-core excitations to occur at energies higher than those predicted 

by DFT calculations. Scientists have previously shown that DFT calculations predict the 

semi-core energy levels to exist at energies higher than they actually exist [13]. This has been 

linked to fact that self-interaction is incompletely canceled in these calculations [14]. 

Corrected loss function computed by mathematically shifting the position of excitations in ε2 

due to semi-core states to a higher energy value by 2.5eV are shown in Figure 4.12. The 

position and shape of the computed Nb-N2,3 edge matches well with that of experimentally 



71 
 

determined one. A closer look at the corrected ε2 computed indicates the position of 

excitations due to Ca-3p electrons at 32.8 eV, however the plasmon excitation in the corrected 

loss spectrum at 34 eV makes it hard to identify the Ca-M2,3 edge in the computed corrected 

loss function. 

 

Figure 4.12: The corrected loss function of KCa2Nb3O10 in the energy range 30-60 eV. 

4.6 Core-loss Excitation 

The core-loss EEL spectrum represents the excitations of electrons from deep lying core states 

into higher unoccupied states. As the deep lying core levels are localized i.e. they belong to 

specific atoms, these features can be related to the oxidations states, bonding character 

amongst others. The core-loss EEL spectrum of KCa2Nb3O10 was acquired in diffraction 

mode with a collection angle of 9.5 mrads using cumulative acquisition mode with acquisition 

time of 0.64 s and a spectrometer dispersion of 0.2 eV/channel. 

A comparison with literature allows for identification of the EELS edges at the following 

energies: Nb-M4,5 onset 205 eV, maximum at 237 eV [10]; K-L2,3 peaks at 294 and 296 eV 

[15]; Ca-L2,3 peaks at 346 and 350 eV [16]; Nb-M2,3 peaks at 362 and 377 eV [10,12]; O-K 
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edge, onset at 532 eV [12]. This qualitatively confirms the chemical composition of 

KCa2Nb3O10 being K, Ca, Nb and O. 

 

Figure 4.13: Core-loss EEL spectrum of KCa2Nb3O10 acquired in TEM mode showing the 

Nb-M4,5, K-L2,3, Ca-L2,3, Nb-M2,3 and O-K edges. 

4.7 Comparison with literature 

VEELS measurements constituted of acquiring 50 spectra with an acquisition time of 0.14 s 

per acquisition. This choice was based on the fact that despite all the electromagnetic and 

noise insulation, the frequency of the mains power supply interferes and causes oscillations of 

the spectrum acquired [17]. The acquired spectra when juxtaposed showed variation in 

position to the extent few deci-electron volts (Illustrated in Figure 4.14) similar to the 

variations measured by Kimoto et al. [17]. 
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Figure 4.14: The fluctuations in the acquisition show the movement of ZLP in fifty successive 

acquisitions with an acquisition time of 0.14 s each. 

Ströger-Pollach and Schattschneider had questioned the applicability of STEM-VEELS for 

correct band gap determination [18]. They had related it to the fact that their “difference-

method” for mathematically removing the contribution of relativistic losses has limited 

applicability in the STEM mode [18]. However, the measurements shown in this work allow 

for successful determination of the band gap of KCa2Nb3O10 in STEM mode, similar to other 

researchers who have been successful with this methodology [7,4,19]. This success is related 

to appropriate choice of thickness and collection angles such that Cerenkov radiation does not 

contribute significantly to the acquired spectrum [3].  

Gu et al. had shown that when band gap measurements are performed in regions with 

thicknesses below about half the mean free path length in that material, Cerenkov losses 

contribute negligible scattering cross section [3] as is shown in Figure 4.15 (Reproduced from 

Ref. 3 with permission from the American Physical Society, © American Physical Society 

2007). Therefore having chosen thickness of about 0.3 times the mean free path length no 

artifacts related to the band gap measurements were observed for KCa2Nb3O10. 
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Figure 4.15: (a) VEEL spectra of h-GaN shows a lower onset when acquired from thicker 

regions, as quantitatively highlighted (t is the thickness and λ the mean free path length) in (b) 

which overall leads to incorrect identification of band gap (c) for thicknesses greater than 0.5 

times the mean free path length. Figures (a), (b) and (c) are reproduced from Gu et al. Phys. 

Rev. B 75, 195214 with the permission of the American Physical Society, Maryland, US. 

Article available online at http://prb.aps.org/abstract/PRB/v75/i19/e195214. 

http://prb.aps.org/abstract/PRB/v75/i19/e195214�
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Another parameter effecting the contribution of Cerenkov radiation is the collection angle. 

The angular variation of Cerenkov radiations had been first shown by von Festenberg [20,21]. 

He showed that Cerenkov radiation contributes significantly to the loss spectrum only at 

collection angles of the order 0.01 mrad. Subsequently Gu et al. had shown [3] the correctness 

of von Festenberg’s [20,21] theory using better instrumentation. Gu et al. showed [3] that the 

Cerenkov radiation contribute significantly only at collection angles of about 20 µrad as is 

shown in Figure 4.16 (Reproduced from Ref. 3 with permission from the American Physical 

Society, © American Physical Society 2007). Therefore, as for the measurements on for 

KCa2Nb3O10 a collection angle of 9.5 mrad was used, the chances of Cerenkov radiation 

interfering with the signal can safely be neglected. 

 

Figure 4.16: The angular variation of VEEL spectra acquired from h-GaN showing a bump 

due to Cerenkov radiation for collection angles up to 20 µrad. Figure reproduced from Gu et 

al. Phys. Rev. B 75, 195214 with the permission of the American Physical Society, Maryland, 

US. Article available online at http://prb.aps.org/abstract/PRB/v75/i19/e195214. 

In light of these facts, it is worth emphasizing that the success in obtaining the band gap of 

KCa2Nb3O10 from VEELS measurements reported in this work stems from the appropriate 

choice of collection angle and thickness. 

The determination of onset of the conduction band visualized in the VEEL spectrum has 

rather been an open question in the scientific community. Rafferty and Brown [22] proposed 

http://prb.aps.org/abstract/PRB/v75/i19/e195214�
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that in the loss function (VEELS), the conduction band onset for a direct band gap 

semiconductor should be of the form I ~ (E-Eg)0.5 whereas for an indirect band gap 

semiconductor of the form I ~ (E-Eg)1.5 . Later Lazar et al. demonstrated [23] the applicability 

of this relation for the direct and indirect transitions in cubic-GaN (Figure 4.17a, Reproduced 

from Ref. 23 with permission from Elsevier Ltd. UK). The spectrum could be described with I 

~ (E-Eg)1.5 in the energy range 2-3.2 eV (indicating indirect transition) and with I ~ (E-Eg)0.5 

for direct band gap transition in momentum space in the enrgy range 3.2-5 eV. Park et al. later 

demonstrated [24] the possibility of using a linear-fit to the conduction band onset. The 

performed VEELS measurements (Section 3.2) do not indicate an onset of the form I ~ (E-

Eg)0.5 which would have an abrupt onset though DFT calculations indicate KCa2Nb3O10 to be 

a direct band gap semiconductor. A linear fit to the onset, shown in Figure 4.17b 

approximately describes the nature of onset in KCa2Nb3O10. A possible cause for divergence 

could be low density of states close to the band onset at 3.1 eV (as suggested by DFT 

calculations). 

 

Figure 4.17: The ZLP subtracted VEELS showing the conduction band onset for (a) GaN 

[Reprinted from Lazar et al. Ultramicroscopy 96, 535 (2003) with permission from Elsevier 

Ltd. UK] and (b) KCa2Nb3O10. 

Gallegos-Orozoco and co-workers [25] used a computational methodology (APW+lo and 

PBE-GGA for exchange correlation effects) similar to this study on KCa2Nb3O10 and 

achieved a general agreement between theoretical and experimental loss functions of 

ferroelectric and paraelectric BaTiO3. However, in their study they were able to identify 
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plasmon excitations distinctly with the theoretical and experimental values while in this study, 

easy identification of plasmon is non-trivial. Morales-Rodriguez and Espinosa-Magana [26] 

used a TB-mBJ potential, like this work, however had more success in predicting the plasmon 

excitation of ZnO. 

4.8 Summary 

Experimental acquisition of VEELS requires ingenious choice of parameters like the 

acquisition time, spectrometer dispersion, collection angle etc. Acquiring the complete VEEL 

spectrum in one acquisition leads to high noise levels around the tail of ZLP, thereby 

increasing the margin of error in band gap determination. Acquiring two spectra, one 

containing the complete ZLP along with valence excitations, the other containing the tail of 

the ZLP with the valence loss excitations and splicing them together generates a better VEEL 

spectrum for band gap determination. Power-law function effectively describes the tails of the 

ZLP and upon subtraction allows for determination of the band gaps. The choice of energy 

window where the power-law function is defined is critical and choosing power-law function 

to describe a non-decaying signal can lead to erroneous band gap values. The conduction band 

onset can be effectively described by a straight line fit. STEM-VEELS allows for effectively 

determining the band gap of KCa2Nb3O10 to be 3.2±0.1 eV whereby the error is contributed 

primarily by the alignment procedure used. Computed and experimentally determined loss 

functions show good agreement in the energy range 0-20 eV. The available data does not 

allow for experimentally identifying the plasmon excitations. Core-loss EELS allows for 

conforming the chemical nature of KCa2Nb3O10 as manifested by the EELS edges Nb-M4,5, 

K-L2,3, Ca-L2,3, Nb-M2,3 and O-K. 
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5 Structure and properties of calcium niobate 
perovskite nanosheets 

 

 

 

Since the discovery of graphene [1] by Novoselov and co-workers, considerable attention has 

been paid by the scientific community to the synthesis, characterization and properties of such 

two-dimensional (2D) structures. In addition to the significant success in physical and 

chemical synthesis of graphene, scientists have been able to replicate the success in 

synthesizing other families of 2D-structures. 2D-nanostructures based on oxides [2], boron 

nitride [3], metal dichalcongenides [4] and metal disulphides [5] have been synthesized. One 

family of 2D-nanosheets that has attracted considerable attention is the exfoliated calcium 

niobate perovskite based nanosheets [6]. These nanosheets have been synthesized by 

delamination of the Dion-Jacobson perovskite KCa2Nb3O10 [7] and has been purported to be 

an ideal candidate for nanoelectronics as a dielectric material [8]. These exfoliated nanosheets 

have a hybrid structure, given by the chemical formula of [TBAxH1-x]+[Ca2Nb3O10]- whereby 

a central inorganic anionic layer of [Ca2Nb3O10]- is surrounded by the organic ligand tetra-n-

butylammonium ions (TBA+) and hydrogen ions. 

This chapter entails the results on the [TBAxH1-x]+[Ca2Nb3O10]- hybrid-nanosheets using 

electron microscopy, atomic force microscopy and electron energy loss spectroscopy that help 

in understanding the very basic properties of these hybrid-nanosheets like the structure, 

crystallinity, band gap etc. Also described in detail is the methodology developed for 

acquisition and processing of VEELS data from nanostructures. The synthesis of these 

nanosheets was carried out by Pirmin Ganter and Christian Ziegler under the supervision of 

Prof. Bettina Lotsch. The details of synthesis have been published previously in the 

Bachelor’s thesis of Pirmin Ganter [9]. The AFM measurements shown here were performed 

by Christian Ziegler. Findings presented in this chapter have in part been compiled into a 

paper entitled, “Extracting band gaps from hybrid two-dimensional nanostructures in the 

nanometer domain” and shall be sent to Nano Letters. All measurements (other than the AFM 

measurement) elaborated here were performed with Yaron Kauffmann, Department of 

Materials Science and Engineering, Technion - Israel Institute of Technology. 
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5.1 Synthesis of nanosheets 

The bulk KCa2Nb3O10 synthesis was carried out in a way similar to that proposed by Jacobson 

and co-workers [7]. Stoichiometric mixture of commercially available K2CO3, CaCO3 and 

Nb2O5 with 10% molar excess of K2CO3 was ground. After thoroughly mixing, the mixture 

was fired to a temperature of 1200°C and kept at this temperature for 60 hours. For 

synthesizing the nanosheets, an approach similar to that of Ebina and co-workers [10] was 

followed. 1 g of KCa2Nb3O10 was treated with 5 M HNO3 (40 cm3) for four days whereby the 

acid was daily renewed culminating in the conversion into the protonic oxide 

HCa2Nb3O10·1.5H2O which was recovered by filtration. For exfoliation, 0.2 g of 

HCa2Nb3O10·1.5H2O was dispersed in 50cm3 tetra-n-butylammonium hydroxide 30-hydrate 

aqueous solution at a molar ratio 1:1. The solution was shaken for four weeks and non-

dispersed solid removed with centrifugation at 3000 rmp. Inductively coupled plasma – 

atomic emission spectroscopy was performed to obtain the chemical composition [TBAxH1-

x]+[Ca2Nb3O10]- with x≈0.8. 

5.2 STEM as a complimentary characterization tool to AFM for 

nanosheets 

AFM has been used widely for characterizing 2D structures [1,2,4,6], obtaining their heights 

and characterizing regions of multiple stacks on the basis of their thickness. A similar 

procedure was followed for characterizing the [TBAxH1-x]+[Ca2Nb3O10]- hybrid nanosheets. A 

diluted suspension of nanosheets was allowed to dry on a silicon substrate and studied using 

an Asylum MFP-3D Stand Alone AFM (Asylum Research, Santa Barbara, California, US) 

equipped with a Si micro-cantilever (300 Hz resonant frequency and 26.1 N/m spring 

constant). An AFM image acquired from the diluted [TBAxH1-x]+[Ca2Nb3O10]- hybrid 

nanosheets dispersed on Si-substrate is shown in Figure 5.1a. The nanosheets have a size 

ranging from a few hundred nanometers up till a few microns. At certain regions the sheets 

stack up. The height profile (Figure 5.1b) acquired along the arrow shown in the AFM image 

(Figure 5.1a) suggests the height of a single sheet to be 3.4 nm and in a stack, the height jump 

for each subsequent sheets to be ~ 2.9 nm.  



83 
 

 

Figure 5.1: AFM image (a) of [TBAxH1-x]+[Ca2Nb3O10]- nanosheets and the height profile (b) 

measured along the arrow shown in (a). Measurements performed by Christian Ziegler, 

Department of Chemistry, Ludwig-Maximilians University. 
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Previously Sabio and co-workers utilized high angular annular dark field (HAADF) STEM to 

characterize metal and metal nanoparticle loaded [TBAxH1-x]+[Ca2Nb3O10]- nanosheets [11]. 

The nanosheets, when deposited on a surface and left to dry form stacks with limited 

interaction between the sheets.  

For electron microscopy investigations, the nanosheets suspension was diluted, drop coated 

onto a lacey-C coated copper grid and dried. Imaging the [TBAxH1-x]+[Ca2Nb3O10]- 

nanosheets depicted a picture similar to that generated by AFM measurements. The HAADF-

STEM image acquired (Figure 4.2a) showed the existence of sheets in the size range a few 

hundred nm up to a few microns. In the HAADF-STEM mode, the intensities observed can be 

related to the atomic number and the thickness [12]. The dark regions are categorized as 

vacuum. This hypothesis was tested by acquiring EELS from this region and it showed no 

signal above the noise level thereby indicating absence of any matter in these regions. 

Intensity profile (Figure 5.2b) acquired along the arrow shown in Figure 5.2a showed 

quantum jumps along the arrow as it traversed from vacuum to thicker regions. The quantum 

jumps further supported the evidence for existence of nanosheets stacked in some region one 

above another. On the basis of intensity, the regions can be classified as vacuum, individual 

single sheet, double sheet and triple sheet as shown in Figure 5.2a. In the double and triple 

sheets regions, two and three sheets stack one above the other. 

The intensity profile (Figure 5.2b) shows a first quantum jump of about 7700 counts and the 

subsequent two jumps of ~ 6000 counts each. This conforms to the height profile measured by 

AFM (Figure 5.1b) whereby the first jump in height (3.4 nm) is greater than the subsequent 

jumps (~2.9 nm). These two measurements indicate that the ligand layer in between two 

[Ca2Nb3O10]- layers rearranges itself into a more close packed assembly. Despite the success 

of HAADF-STEM in determining the relative thickness of regions, absolute thickness 

measurement like in an AFM is however not possible. Quantifying the intensity in HAADF-

STEM image to absolute thickness is a tedious process, which become even more 

complicated for a hybrid material like [TBAxH1-x]+[Ca2Nb3O10]- nanosheets. Therefore, 

quantification of absolute thickness from HAADF-STEM measurements is not attempted in 

this work. 

To conclude, the applicability of HAADF-STEM for efficiently identifying regions of single 

sheet or multiple sheets in a stack is demonstrated as a complimentary tool to AFM. This is of 

importance as it allows for, in a TEM, identification of regions containing freely suspended 
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individual sheets. Accordingly their structure can be studied. Performing spectroscopy 

experiments allow for understanding the electronic and chemical nature of these sheets. 

 

Figure 5.2: HAADF-STEM image (a) of [TBAxH1-x]+[Ca2Nb3O10]- nanosheets and the 

intensity profile (b) along the arrow shown in (a). 
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5.3 HR-TEM imaging of [TBAxH1-x]+[Ca2Nb3O10]- nanosheets 

Despite the wealth of information that AFM and HAADF-STEM provide, one still has limited 

idea about the crystallinity of the nanosheets. Under ideal cases performing HAADF-STEM at 

high resolution can allow for determining the crystalline nature of the nanosheets however, 

the prolonged exposure under a convergent beam with a small probe can lead to loss of 

crystallinity. It is worth pointing out that imaging the sheets at high resolution in HAADF-

STEM mode is not impossible, as has been demonstrated by Sabio and co-workers [11], 

however it is arduous. HR-TEM on the contrary provides for an easier way to study the 

crystalline nature of nanosheets. This is because the HR-TEM utilizes a parallel beam to 

illuminate the sample, thereby decreasing the beam current experienced by the sample. 

HR-TEM images were acquired using an FEI-TITAN 80-300 scanning transmission electron 

microscope equipped with an aberration (Cs) corrector. HR-TEM image acquired from a 

single sheet is displayed in Figure 5.3 in the [100] zone axis. It reveals high crystallinity, as 

exemplified by the FFT shown in inset. In particular, it is worth noting that the nanosheet is 

single crystalline in nature. The interplanar distance observed in the HR-TEM image (Figure 

4.3) ~ 3.9Å matches well with the in-plane (parallel to bc plane) crystallographic Nb-Nb 

distances of 3.93 and 3.86 Å. The crystallinity observed can be attributed to the [Ca2Nb3O10]- 

layer in the nanosheet. The [TBAxH1-x]+ layers on the contrary would consists of ligands not 

bound to specific positions. 

HR-TEM image acquired from a double sheet region and its FFT shown in inset (Figure 5.4) 

displays a Moiré pattern, indicating the two crystals, slightly rotated with respect to each 

other. Several Moiré patterns were observed in the experiments performed such that no 

preferential direction or orientation exists in which the sheets stack upon one another, thereby 

indicating limited interaction between the sheets. 

 



87 
 

 

Figure 5.3: HR-TEM image acquired from a single sheet region and its FFT shown in inset. 

 

Figure 5.4: HR-TEM image acquired from a double sheet region and its FFT shown in inset. 

5.4 Acquisition of VEELS from [TBAxH1-x]+[Ca2Nb3O10]- nanosheets 

Acquisition of VEELS from hybrid nanosheets requires special care. Nanostructures 

disintegrate under irradiation of high energy electrons. Hence, it is necessary to understand 

the decay dynamics of the nanosheets before performing comprehensive sets of 

measurements. To study the decay mechanism, fifty spectra were acquired (in the energy loss 

region 2-42 eV) from a single sheet region when exposed to a stationary spot in STEM mode 
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of size ~1 nm. The spectra were acquired at a rate of one spectrum per second. The first, fifth, 

tenth, fifteenth, twentieth, thirtieth, fortieth and the fiftieth spectra are shown in Figure 5.5. 

 

Figure 5.5: VEEL spectra acquired one, five, ten, fifteen, twenty, thirty, forty and fifty 

seconds after irradiation. 

The disintegration of the nanosheet is manifested by the constant temporal accretion of the 

intensity in the low-loss region. The increase in intensity can be attributed to accumulation of 

carbonaceous contaminants on the sample area exposed, which is a common problem with 

convergent beam electron beams [13]. In addition, the plasmon position shifts to higher 

energy value as the sheet gets damaged and contaminated. Imaging of irradiated areas 

indicated the loss of crystallinity. In the spectra acquired, one can see that the change in the 

spectra acquired in the first five seconds is inconspicuous, especially in the low energy range 

(E<8 eV) which is preeminent for band gap extraction.  

The areas were imaged in HAADF-STEM mode to further understand the decay mechanism 

at low magnification, so that the imaging did not cause any damage to the nanosheet. The area 

imaged after irradiation is shown in Figure 5.6. The spots 1, 2, 3, 4, 5 and 6 were irradiated 

under the electron beam for five, ten, twenty, thirty, forty and fifty seconds respectively. 

Clearly there is negligible damage at and around spot 1. Damage or contamination is hard to 
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discern at spot 2 too. At spots 3 and 4 a clear hole is visible around the point of irradiation on 

the sheet. In the case of spots 5 and 6 damage is visible, however a clear hole is hard to 

discern at the magnification the image was acquired at. Degradation manifested by a faint 

halo around these spots is visible. A possible explanation could be the accumulation of 

carbonaceous species on the areas irradiated for a longer period [13]. 

 

Figure 5.6: HAADF-STEM image acquired from a single sheet region where points 1, 2, 3, 4, 

5 and 6 were irradiated for five, ten, twenty, thirty, forty and fifty seconds respectively. 

In light of these measurements it is safe to assume that the sample undergoes negligible beam 

damage in the first five seconds of irradiation. Hence for all subsequent analyses spectra were 

acquired within first five seconds of irradiation at the rate of one acquisition per second with 

acquisition time per acquire varying from 0.01 s to 0.64 s. The five acquired spectra were 

added to generate a single spectrum. 
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VEEL spectrum spanning the energy-loss range -5 to 35 eV acquired from a single sheet 

region is shown in Figure 5.7 using an acquisition time of 0.01 s per acquisition and one 

acquisition per second. The predominant feature visible is the ZLP at a E=0 eV. The 

scattering cross-section due to the valence electron excitations is hardly discernible in the 

spectrum. Upon a closer look by looking at intensities three orders of magnitude less than that 

of the ZLP the valence loss excitations can be visualized (inset Figure 5.7) albeit the high 

level of noise makes extraction of band gaps implausible. This high level of noise emanates 

from the fact that for a very thin sample (nanostructure) the scattering-cross section is very 

low, thereby the difference in intensity between the ZLP and the valence loss excitations is 

huge (three orders of magnitude in this case) giving out a high level of noise which is related 

to the dynamic range of detector. Longer read-out times per spectrum are hindered by the 

dynamical range of detector (64,000 counts) without saturating the ZLP. Therefore, for 

obtaining better SNR a two step approach is necessary where another spectrum is acquired 

containing the tail of the ZLP and the valence loss excitations. 

 

Figure 5.7: VEEL spectrum acquired from a single sheet showing a dominant ZLP and 

valence loss excitations (inset) having intensity three orders of magnitude less than that of the 

ZLP. 
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 From the acquired loss spectrum with high noise, the position of the plasmon excitation was 

determined, by performing the measurement fifteen times. This resulted in determination of 

position of plasmon excitation within an error of ±0.2 eV. Then, another five spectra were 

acquired from the single sheet region within five second of irradiation with an acquisition 

time of 0.64 s per acquire. One such spectrum is shown in Figure 5.8. The five spectra were 

summed to get a single spectrum and calibrated according to the position of plasmon 

determined previously.  

This methodology of acquiring multiple spectra and summing them up was used because of 

the fact that the frequency of AC mains interferes with the electromagnetic fields generated, 

leading to disturbances (for details see section 4.7). Aligning the acquired spectra and 

summing them up overcomes this obstacle to some extent depending on the acquisition times 

used. 

 

Figure 5.8: The VEEL spectrum acquired from a single sheet showing the valence excitations 

with a better SNR. 

This procedure was reiterated for double sheet and triple sheet. These acquired spectra were 

used for band gap determination. 
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5.5 Band gap of individual free standing nanosheet 

To obtain the band gap of the nanosheets, the contribution of the ZLP from the valence loss 

excitations needs to be deducted. As has been previously used by other scientists [14-16], a 

Power-law function can be used to describe the tail of the ZLP and can be subtracted to get 

the VEELS void of elastic scattering events. Hence, power-law based function was used to 

describe and subtract the tail of the ZLP to get the valence loss excitations. The VEEL 

spectrum acquired from the single, double and triple sheets is shown in Figure 5.9a along with 

the ZLP subtracted VEEL spectrum of KCa2Nb3O10 (Figure 5.9b). 
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Figure 5.9: The ZLP subtracted VEEL spectrum obtained from a single, double and triple 

sheet (a) and that from bulk KCa2Nb3O10 (b). 
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The ZLP subtracted VEEL spectrum of single, double and triple sheet regions show a 

common onset above the noise level at 2.9 eV. Taking into account the uncertainty in the 

alignment procedure of ±0.2 eV, the band gap of [TBAxH1-x]+[Ca2Nb3O10]- nanosheets can be 

determined to be 2.9±0.2 eV. Importantly, the measurements demonstrate that the conduction 

band onset is independent of the number of sheets probed for this family of calcium niobate 

nanosheets. The band gap of bulk KCa2Nb3O10 determined by VEELS measurements (3.2±0.1 

eV) and DFT calculations (3.1 eV) when observed in light of the band gap of nanosheets 

2.9±0.2 eV suggested that the band gap remains invariant within the range of experimental 

error when KCa2Nb3O10 is exfoliated into [TBAxH1-x]+[Ca2Nb3O10]- nanosheets. 

Despite the use of a highly localized probe (~1nm) for acquiring the VEELS from nanosheets, 

the spatial resolution obtained for these measurements is not as good. This originates partly 

because of the fact that the valence electrons are delocalized and as such are able to respond 

to an electromagnetic field at certain distances. There are two ways of understanding this 

delocalization process by quantifying the extent of delocalization contributing to the valence 

electron transitions. The first, proposed by Krivanek and co-workers [17] described the radius 

of maximum delocalization ∆xmax for excitations at energy loss E as given in Equation 5.1 

∆𝑥𝑚𝑎𝑥 ~ (ħ
𝐸

)�2𝐸0
𝑚𝑒

           (5.1) 

where ħ is the Planck’s constant divided by 2π, E0 the energy of the primary electrons and me 

the rest mass of the electron. Using this criteria the maximum extent of delocalization ∆xmax 

for the band gap transition of 2.9 eV can be calculated to be about 74 nm.  

Egerton [18] came up with a different way of describing the extent of delocalization. He 

reasoned [18] that the majority of excitations occur closer to the point of irradiation, hence an 

description of the maximum extent of delocalization carries limited practical significance. He 

proposed that a better way of describing the delocalization of excitations is in terms of 

parameter d50 such that 50% of the excitations occur within a diameter of d50 with the centre 

of the circle being the point of irradiation. The d50 can be defined as given in Equation 5.2 

𝑑50 ~ 0.8 𝜆𝑒 �
𝐸0
𝐸
�
3/4

          (5.2) 

where E0 is the energy of the primary electrons, E the energy at which the excitation occurs 

and 𝜆𝑒 the wavelength of the electrons. Utilizing this expression d50 is determined to be about 

9 nm. 
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Determination of band gaps from VEELS is complicated and contains pitfalls [19] which 

necessitate thorough analysis of procedures. One major problem is the excitation of Cerenkov 

radiations [14,19], which can overlap with the conduction band onset thereby obscuring the 

identification of conduction band onset. Typically Cerenkov radiations contribute 

significantly to scattering cross section when either the sample probed is thick (more than 0.6 

times the mean free path length of electrons in that material) or when a collection angle of a 

few micro radians is used [14]. The measurements performed on sheets were on sheets a few 

nm in thickness whereas the mean free path length for KCa2Nb3O10 is approximately 140 nm 

[20]. In addition a collection angle of 9.5 mrads was used. On account of such choice of 

parameters, one can safely conclude that the Cerenkov radiations did not interfere with the 

band gap measurements.  

Surface plasmon is a collective excitation mode of the valence electrons of a material at the 

surface [21]. It has also been reported to be a hindrance to determination of band gaps [22] in 

a TEM especially for nanostructures where the relative scattering cross-section for surface 

plasmons is considerably higher [22,23]. An adroit way of determining [24] the contribution 

of surface plasmons to a loss spectrum is the aloof beam excitation [25-27] whereby a 

converged electron beam is positioned very close (~1nm) to the edge of the material. Under 

these conditions the excitation of surface plasmons is enhanced and hence making it easier to 

identify them. When aloof beam excitation was employed for [TBAxH1-x]+[Ca2Nb3O10]- 

nanosheets, negligible signal above the noise level was observed (Figure 5.10).  

 

Figure 5.10: The VEEL spectrum for a single sheet (black) and for a single sheet in aloof 

beam condition (red). 
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A possible reason for the negligible signal in aloof beam condition is the vibrations caused in 

the loosely bound ligands [TBA]+ to the dynamic electromagnetic field due to the convergent 

electron beam. Determining the exact cause for it is deemed peripheral to the context of the 

present study and as such is not further investigated. 

5.6 Valence Excitations in [TBAxH1-x]+[Ca2Nb3O10]- nanosheets 

The VEEL spectrum of KCa2Nb3O10 and [TBAxH1-x]+[Ca2Nb3O10]- nanosheets shown in 

Figure 5.9 illustrates the similarities between the electronic structure of the two material 

families. The single excitations in both cases resemble significantly especially in the energy 

range E<8 eV thereby implying similarities in the valence and conduction bands of these two 

materials. In the case of nanosheets (Figure 5.9a) the scattering cross-section for the valence 

excitations increases monotonically as one moves from single sheet to double and triple 

sheets. The Ca-M2,3 edge at 34 eV [28] becomes more prominent in the VEEL spectrum from 

triple sheet while in the VEEL spectrum of KCa2Nb3O10 it is palpable. 

The predominant difference between the two structures is the broad plasmon excitation in the 

case of nanosheets in the energy range 16-30eV whereas in the case of KCa2Nb3O10 a valley 

is observed in the above mentioned energy range. It is possible that KCa2Nb3O10 has a broad 

multiple plasmon in this energy range like Nb2O5 [29]. Given that in this hybrid two 

component system of [TBAxH1-x]+[Ca2Nb3O10]- nanosheets the electronic structure of the 

[Ca2Nb3O10]- is similar to that of KCa2Nb3O10, the difference in plasmon behavior can be 

affiliated to the ligand layers [TBAxH1-x]+. A rationale supporting this argument is the fact 

that organic species, for instance phenolic resins show a similar broad plasmon in the energy 

range 21-24 eV [30]. 

5.7 Core-loss EELS of nanosheets 

Core-loss EELS measurements were performed on a single sheet in STEM mode to get a 

qualitative idea about the composition of the nanosheets. An acquisition time of 10 s was used 

for acquiring the EEL spectrum. The acquired VEEL spectrum is shown in Figure 5.11. A 

comparison with literature allows for identification of the edges at the following energies: 240 

eV Nb-M4,5 edge [29]; 284 eV C-K edge [28,30]; 346 eV Ca-L2,3 edge [31]; 363 eV Nb-M2,3 

edge [29]; 532 eV O-K edge [28]. 
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Figure 5.11: The core-loss EEL spectrum of a [TBAxH1-x]+[Ca2Nb3O10]- single sheet region. 

The core-loss EEL spectrum indicates the presence of Nb, Ca, O and C in the nanosheets 

which matches with theoretical composition. No perceptible signal is observed due to the K-

L2,3 edge predicating the removal of K during the exfoliation process. [TBA]+ has a chemical 

composition of [C16H36N]+ implying a very low atomic percentage of N in the overall 

nanosheets. This can be related to the fact that no perceptible signal of N is seen around 401 

eV for N-K edge [28].  

5.8 Comparison with literature 

Schaak and Mallouk synthesized [TBAxH1-x]+[Ca2Nb3O10]- nanosheets and determined the 

[TBA]+ concentration to be ~ 0.15-0.2 [6]. Li and co-workers [32] measured the height of a 

single calcium niobate perovskite nanosheet to be 1.85 nm performing AFM measurements 

under vacuum. Okamoto and co-workers [33] synthesized Rh-doped calcium niobate 

perovskite nanosheets and measured using AFM the height of 3% Rh-doped calcium niobate 

nanosheets (3% of calcium atoms being replaced with Rh atoms) to be 2.8-3.0 nm. They 

attributed the high thickness of the nanosheets to absorption of water and amine [33]. The 

height of the individual sheet (3.4 nm) measured is greater than that by other groups. In light 
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of the above mentioned works [6,32,33] it can be assumed that the high thickness of the 

nanosheets measured using AFM is due to higher [TBA]+ content, absorption of water, and 

the experimental conditions (AFM measurements being carried out under ambient pressures). 

HR-TEM investigations indicate the [TBAxH1-x]+[Ca2Nb3O10]- nanosheets to be highly 

crystalline. This is similar to the observance of high crystallinity in monoloyers of BN, MoS2, 

WS2 by Coleman and co-workers [3]. The difference between the two material families being 

that BN, MoS2 and WS2 have charge neutral monolayers after exfoliation while [TBAxH1-

x]+[Ca2Nb3O10]- nanosheets have cationic and anionic parts.  

VEELS measurements indicate that within the range of experimental error, the band gap of 

KCa2Nb3O10 does not significantly change as it is exfoliated to [TBAxH1-x]+[Ca2Nb3O10]- 

nanosheets. This is in congruence with the measurements of Arenal and co-workers [34] who 

with the help of VEELS demonstrated that the band gap of BN nantubes was independent of 

the nanotube diameter and invariant from that of h-BN phase. Both these measurements (this 

study and that of Arenal et al. [34]) do not conform to the quantum confinement effect which 

is known to work for systems like hematite and silicon [35,36] thereby showing the lack of 

universal applicability of the quantum confinement effect. 

A few authors have attempted to measure the band gap of [TBAxH1-x]+[Ca2Nb3O10]- 

nanosheets. Compton and co-workers [37] dried the nanosheet suspension and performed 

diffuse reflectance measurements determining the band gap of nanosheets to be 3.53 eV with 

the help of photocatalysis measurements. Akatsuka and co-workers [38] measured the band 

gap of calcium niobate nanosheets deposited on ITO substrates to be 3.44 eV doing 

photocurrent measurements.  

It was found that on drying [TBAxH1-x]+[Ca2Nb3O10]- sheets, they accumulated into huge 

micron sized chunks as indicated by the scanning electron microscopy (SEM) image (Figure 

5.12), thereby implying that the measurements of Compton and co-workers [37] relate to the 

electronic structure of those chunks and not that of individual free standing nanowires. A 

possible explanation for the divergence of the band gap values measured using VEELS and 

those reported in literature [37,38] could be the fact that only a few electronic levels exist 

close to the conduction band onset, as is suggested by the DFT calculations on KCa2Nb3O10, 

thereby making unerring band gap measurements for these nanostructures taxing.  
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Figure 5.12: Scanning electron microscope image in secondary electron mode of dried 

nanosheets. 

5.9 Summary 

In summation, it has been demonstrated that HAADF-STEM could be used for characterizing 

stacks of multiple sheets in a fashion similar to AFM however its applicability in determining 

the absolute thickness is rather limited. Nanosheets of [TBAxH1-x]+[Ca2Nb3O10]- are highly 

crystalline and when left to dry stack one above the other without any specific planar 

orientation. VEELS can be used to determine the band gaps of hybrid nanosheets however 

acquisition and analysis is arduous, requiring a two-fold approach for VEELS acquisition. 

The band gap of individual free standing [TBAxH1-x]+[Ca2Nb3O10]- hybrid nanosheets is found 

to be 2.9±0.2 eV which is within the experimental error to be considered invariant from that 

of bulk KCa2Nb3O10. The VEEL spectrum of these nanosheets is dominated by the single 

electron transitions which are similar to those observed for bulk KCa2Nb3O10. Core-loss 

EELS substantiates the removal of K atoms during the exfoliation process. 

5.10 Chapter References 

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. 

V. Grigorieva, and A. A. Frisov. Electric field effect in atomically thin carbon films. 

Science 306, 666 (2004) 



100 
 

[2] R. Ma and T. Sasaki, Nanosheets of oxides and hydroxides: Ultimate 2D charge-

bearing functional crystallites. Adv. Mater. 22, 5082 (2010) 

[3] J. N. Coleman, M. Lotaya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, 

A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H-Y. Kim, K. 

Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. 

C. Grunlan, G. Moriarty, A. Shmeliob, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, 

K. Theuwissen, D. W. McComb, P. D. Nellhist, and V. Nicolosi. Two-dimensional 

nanosheets produced by liquid exfoliation of layered materials. Science 331, 568 

(2011) 

[4] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, 

and A. Geim. Two-dimensional atomic crystals. PNAS 102, 10451 (2005) 

[5] R. J. Smith, P. J. King, M. Lotaya, C. Wirtz, U. Khan, S. De, A. O’Neill, G. S. 

Duesberg, J. C. Grunlan, G. Moriaty, J. Chen, J. Wang, A. I. Minett, V. Nicolosi, and 

J. N. Coleman. Large-scale exfoliation of inorganic layered compounds in aqueous 

surfactant solutions. Adv. Mater. 23, 3944 (2011) 

[6] R. E. Schaak and Thomas E. Mallouk. Self-assembly of tiled perovskite monolayer 

and multilayer thin films. Chem. Mater. 12, 2513 (2000) 

[7] A. J. Jacobson, J. W. Johnson, and J. T. Lewandowski. Interlayer chemistry between 

thick transition-metal oxide layers: Synthesis and intercalation reaction of K[Ca2Nan-

3NbnO3n+1](3≤n≤7) Inorg. Chem. 24, 3727 (1985) 

[8] M. Osada and T. Sasaki. Two-dimensional dielectric nanosheets: novel 

nanoelectronics from nanocrystal building blocks. Adv. Mater. 24, 210 (2012) 

[9] P. Ganter. Synthesis and characterization of [Ca2Nb3O10]- nanosheets and their 

assembly with layered double hydroxides. Bachelor’s Thesis, Department of 

Chemistry, Ludwig-Maximilians University Munich (2011) 

[10] Y. Ebina, T. Sasaki, and M. Watanabe. Study on exfoliation of layered perovskite-type 

niobates. Solid State Ionics 151, 177 (2002) 

[11] E. M. Sabio, M. Chi, N. D. Browning, and F. E. Osterloh. Charge separation in a 

niobate nanosheet photocatalyst studied with photochemical labeling. Langmuir. 26, 

7254 (2010) 



101 
 

[12] D. B. Williams, C. B. Carter. Transmission electron microscopy, a textbook for 

materials science. Springer Science + Business Media LLC (2009) 

[13] W. A. Knox. Contamination formed around a very narrow electron beam. 

Ultramicroscopy 1, 175 (1976) 

[14] L. Gu, V. Srot, W. Sigle, C. Koch, P. van Aken, F. Scholz, S. B. Thapa, C. Kirchner, 

M. Jetter, and M. Rühle. Band-gap measurements of direct and indirect 

semiconductors using monochromated electrons. Phys. Rev. B., 75, 195214 (2007) 

[15] R. Erni, and N. D. Browning. Quantification of size-dependent energy gap of 

individual CdSe quantum dots by valence electron energy-loss spectroscopy. 

Ultramicroscopy, 107, 267 (2007) 

[16] R. Erni, S. Lazar, and N. D. Browning. Prospects for analyzing the electronic 

properties in nanoscale systems by VEELS. Ultramicroscopy 108, 270 (2008) 

[17] O. L. Krivanek, M. M. Disko, J. Tafto, and J. C. H. Spence. Electron energy loss 

spectroscopy as a probe of the local atomic environment. Ultramicroscopy 9, 249 

(1982) 

[18] R. F. Egerton. New techniques in electron energy-loss spectroscopy and energy-

filtered imaging. Micron. 34, 127 (2003)  

[19] M. Stöger-Pollach. Optical properties and bandgaps from low loss EELS: Pitfalls and 

solutions. Micron 39, 1092 (2008) 

[20] T. Malis, S. C. Cheng, and R. F. Egerton. EELS log-ratio technique for specimen-

thickness measurement in the TEM. J. Elec. Microsc. Tech. 8, 193 (1988) 

[21] F. J. Garcia de Abajo. Optical excitations in electron microscopy. Rev. Mod. Phys. 82, 

209 (2010) 

[22] R. F. Egerton. Electron Energy-Loss Spectroscopy in the Electron Microscope. 

Springer Science + Business Media Inc. (2011) 

[23] J. Nelayah, M. Kociak, O. Stephan, F. J. Garcia de Abajo, M. Tence, L. Henrard, D. 

Taverna, I. Pastoriza-Santos, L. M. Liz-Marzan, and C. Colliex. Mapping single 

plasmons on a single metallic nanoparticle. Nat. Phys. 3, 348 (2007) 



102 
 

[24] M. R. S. Huang, R. Erni, H. Lin, R. Wang, C. Liu. Characterization of wurtzite ZnO 

using valence electron energy loss spectroscopy. Phys. Rev. B. 84, 155203 (2011) 

[25] M. G. Walls and A. Howie. Dielectric theory of localized valence electron energy loss 

spectroscopy. Ultramicroscopy 28, 40 (1989) 

[26] P. M. Echenique, A. Howie, and R. H. Ritchie. Comment on “Near-field electron 

energy loss spectroscopy of nanoparticles”. Phys. Rev. Lett. 83, 658 (1999) 

[27] M. A. Itskovksy, H. Cohen, and T. Maniv. Radiative interaction of a focused 

relativistic electron beam in energy-loss spectroscopy of nanoscopic platelets. Phys. 

Rev. Lett. 78, 045419 (2008) 

[28] C. C. Ahn, A. L. Krivanek, R. P. Burgner, M. M. Disko, and P. R. Swann. EELS Atlas, 

HR-EM Facility, Arizona State University, Tempe, Arizona, US (1983) 

[29] D. Bach, R. Schneider, D. Gerthsen, J. Verbeeck, and W. Sigle. EELS of niobium and 

niobium oxide phases- Part I: Plasmon and near edges fine structure. Microsc. 

Microanal. 15, 505 (2009) 

[30] Z. Zhang, R. Brydson, Z. Aslam, S. Reddy, A. Brown, A. Westwood, and B. Rand. 

Investigating the structure of non-graphitising carbon using electron energy loss 

spectroscopy in the transmission electron microscope. Carbon 49, 5049 (2011) 

[31] K. A. Mkhoyan, J. Silcox, A. Ellison, D. Ast, and R. Dieckmann. Full recovery of 

electron damage in glass at ambient temperatures. Phys. Rev. Lett. 96, 205506 (2006) 

[32] B. Li, M. Osada, T. C. Ozawa, Y. Ebina, K. Akatsuka, R. Ma, H. Funakubo, and T. 

Sasaki. Engineered interfaces of artificial perovskite superlattices via nanosheet 

deposition process. ACS Nano 4, 6673 (2010) 

[33] Y. Okamoto, S. Ida, J. Hyodo, H. Hagiwara, and T. Ishihara. Synthesis and 

photocatalytic activity of Rhodium-doped calcium niobate nanosheets for hydrogen 

production from water/methanol system without cocatalyst loading. JACS. 133, 18034 

(2011) 

[34] R. Arenal, O. Stephan, M. Kociak, D. Taverna, A. Loiseau, and C. Colliex. Electron 

energy loss spectroscopy measurement of the optical gaps on individual boron nitride 

single-walled and multiwalled nanotubes. Phys. Rev. Lett. 95, 127601 (2005) 



103 
 

[35] V. Lehmann and A. Gösele . Porous silicon formation: A quantum wire effect. Appl. 

Phys. Lett. 58, 856 (1991) 

[36] L. Vayssieres, C. Sathe, S. M. Butorin, D. K. Shuh, J. Nordgren, and J. Guo. One-

dimensional quantum confinement effect in α-Fe2O3 ultrafine nanorod arrays. Adv. 

Mater. 17, 2320 (2005) 

[37] O. C. Compton, E. C. Carroll, J. Y. Kim, D. S. Larsen and F. Osterloh. Calcium 

niobate semiconductor nanosheets as catalysts for photochemical hydrogen evolution 

from water. J. Phys. Chem. C 111, 14589 (2007) 

[38] K. Akatsuka, G. Takanashi, Y. Ebina, M. Haga, and T. Sasaki. Electronic band 

structure of exfoliated titatium – and/or niobium based oxide nanosheets probed by 

electrochemical and photoelectrochemical measurements. J. Phys. Chem. C 116, 

12426 (2012) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



104 
 

6 Conclusions and outlook 
 

 

 

To summarize, this work has detailed the electronic structure of KCa2Nb3O10 obtained via 

DFT calculations. Calculations show that upon geometry optimization of KCa2Nb3O10 

structure, small displacements of Ca atoms (up to 0.3 Å) lead to overall force minimization. 

The NbO6 octahedra get slightly distorted. Overall, the calculations show that the structure 

predicted by Tokumitsu et al. [1] modifies only slightly upon force minimization. 

The electronic structure of KCa2Nb3O10 shows many interesting features. KCa2Nb3O10 is a 

direct band gap semiconductor with a band gap of 3.1 eV. The conduction band has only a 

few available states close to the band onset between 3.1 and 4.3 eV whereas the number of 

available states increases in the energy range 4.3 to 6.0 eV. The conduction band is composed 

primarily of states contributed by Nb atoms whereas the valence band is composed of O 

contributed states. Partial DOS behavior indicates that the conduction band onset at 3.1 eV is 

primarily contributed by Nb atoms in the median (200) plane.  

VEELS measurements on KCa2Nb3O10 reveal a band gap value of 3.2 ± 0.1 eV. The loss 

functions determined experimentally and theoretically match well in the energy range below 

20 eV without the use of scissors-shift. At higher energies the semi-core excitations come into 

picture, which are not properly modeled by the computational methodology used. Better 

convergence was however reached between the experimental and theoretical results relating to 

the semi-core excitations when a mathematical scissors shift was applied to the excitations of 

semi-core electrons to higher energy values. 

The band gap value obtained from DFT calculations (3.1 eV) and the VEELS measurements 

(3.2 ± 0.1 eV) match well with the value reported by Domen et al. [2]. This shows the success 

of both these techniques. This is of importance given that conventional DFT based methods 

have been known to underestimate band gaps. Moreover the VEELS measurements show that 

band gap value can be properly determined even for a dielectric material when appropriate 

experimental conditions are used. 
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Investigations on [TBAxH1-x]+[Ca2Nb3O10]- nanosheets show that it is possible to identify 

regions of single, double or multiple sheets by comparing the intensities in STEM-HAADF 

mode. This further allows for easy identification of freely suspended sheet regions studying 

which helps understand the properties of the nanosheets without any external medium in 

vacuum. The STEM-HAADF intensity profiles, analogous to AFM profiles, show that the 

ligand layer gets compressed in the region between two [Ca2Nb3O10]- layers. 

HR-TEM measurements show the crystalline nature of [TBAxH1-x]+[Ca2Nb3O10]- nanosheets 

similar to that observed by Ebina and co-workers [3]. The crystallinity however is due to 

order in the [Ca2Nb3O10]- layers. The order in ligand layers comprising of TBA+ and protons 

is hard to determine; however the measurements reveal crystalline behavior only due to the 

[Ca2Nb3O10]- layers thereby implying that the ligand layers possess no observable 

crystallinity. 

The acquisition of VEELS from nanosheets is complex. On one hand the signal from 

nanosheets is very low due to their small sizes while on the other hand trying to get a higher 

signal by higher exposure leads to damage. The degradation behavior of the nanosheets under 

irradiation shows that limited perceivable damage occurs within the first five second. 

Moreover due to difference in intensities of ZLP and valence loss features about three orders 

of magnitude necessitates a two-step acquisition process to obtain good SNR. 

VEELS measurements from single, double and triple sheet region show an identical 

conduction band onset of 2.9 eV within an error of measurement ± 0.2 eV governed primarily 

by the alignment procedure. A comparison with the VEEL spectrum of KCa2Nb3O10 indicates 

the similarity between the two sorts of materials especially for valence loss excitations up to 8 

eV. The measurements suggest that the band gap of [TBAxH1-x]+[Ca2Nb3O10]- nanosheets to 

be equal to that of KCa2Nb3O10 within the range of experimental error. The band gap value 

measured in this work is lesser than the band gap value measured by Compton et al. [4] and 

Akatsuka et al. [5]. A possible reason for divergence could be low availability of states in the 

conduction band close to the onset, as has been suggested by the DFT calculations on 

KCa2Nb3O10 performed in this work. In addition comparison of core-loss EELS from 

nanosheets and bulk KCa2Nb3O10 suggests that exfoliation leads to replacement of K atoms 

with organic ligands. 

In process of explaining the electronic structure of this dielectric material family, a number of 

new interesting questions have emerged. First of all, it would be interesting to perform 
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theoretical calculations on [TBAxH1-x]+[Ca2Nb3O10]- nanosheets using the TB-mBJ potentials. 

This TB-mBJ methodology has proven to be successful for crystals; however its adequacy for 

nanostructures, which invariably contain surfaces, has not yet been tested and form an 

interesting problem for further research. 

Rafferty and Brown [6] had suggested that in a VEEL spectrum the onset of conduction band 

should obey I ~ (E-Eg)0.5 for direct band gap semiconductor and I ~ (E-Eg)1.5 for indirect band 

gap semiconductor. This behavior was experimentally confirmed by Lazar et al. for cubic-

GaN [7]. However subsequently, Park et al. determined [8] the band gap of SiO2 using a 

linear fit to the onset as opposed to the prediction of Rafferty and Brown [6]. This work 

indicates that a linear-fit is more correct to obtain the band onset in a VEEL spectrum of 

KCa2Nb3O10. This shows that the behavior of onset proposed by Rafferty and Brown [6] do 

hold, but only under certain conditions. Therefore it is expected that subsequently 

theoreticians could build upon the model of Rafferty and Brown [6] with a greater 

applicability.  

Generally in an EELS experiment, the plasmon is the most intense feature after the ZLP. The 

plasmon has been theoretically known to be the position where the real part of the dielectric 

function is zero and has a positive slope with respect to energy. The calculations on 

KCa2Nb3O10 have suggested that this condition is satisfied at three energy values, however 

the experimental spectrum does not show an intense feature at any of these energies. This 

divergence shows a lack of succinct understanding of plasmons at present. A probable cause 

for this is that the free electron model is extensively used for explaining the plasmon 

behavior. Free electron model could, in principle, be reasonably applicable to valence and 

conduction band electrons which are sufficiently delocalized, however it definitely would not 

give a reasonable picture of semi-core electrons which account for two of the three plasmon 

excitations theoretically suggested. It is hoped that this work shall bring the limit of present 

knowledge concerning plasmon excitations to the attention of scientific community and that 

some theoreticians hopefully shall try to model plasmon excitations in a better manner. 
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