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Reading Directions: The thesis contains 5 rather independent parts.

To encourage the respective non-expert reader, casual introductions to

the respective topics are given. Moreover, personal notes are included

regarding goals, motivations and outlooks to possible further work.

These italic sections may be skipped, as the core material is self-

contained and equipped with separate technical overviews.

Notations: (for further notions, see the index on the last page)

We are working over the base �eld k = C and denote by kn the set

of primitive n-th roots of unity. The Galois �elds are Fpn . All algebras
will be �nite-dimensional from chapter 2 on, except for part 5.

We denote by Zn,Dn,Qn,An, Sn the usual �nite groups, whereas the

symbols An, Bn, Cn, Dn, En, F4 are reserved for the respective Dynkin

diagrams (and the associated simple groups of Lie type). Extraspecial

groups are denoted as usual p2n+1
± , especially D4,Q8 = 22+1

± ([Hu83] p.

349�).

We add the notation Xn for an arbitrary diagram and Zn = A
(1)
n−1 for a

simply-laced n-cycle.We use the graph theory notation A2 ∪B3 rather

than the geoemtric A2 ×B3 for disconnected diagrams. Sometimes we

speak of the shape (triangular, A2, D4 etc.) and mean the graph with-

out distinguishing multiple edges or other di�ering decorations.

The dual group is always denoted as G∗, whereas k× is the multiplica-

tive group. The center is Z(G), the commutator subgroup G′ and any

centralizer Cent(g). Kernel and image of maps are denoted Ker, Im.

For an action of a group on a set and a given subset, we use the more

suggestive terms normalizer and centralizer for the stabilizer resp. point

wise stabilizer of the subset.

Second version with many small corrections, February 2013
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Abstract

Themain goal of this thesis is to explore a new general construction

of orbifoldizing Hopf- and Nichols algebras, describe the growth of

the automorphism group and compare the behaviour of certain as-

sociated categories to Kirillov's orbifoldizing. Together with outlooks

towards vertex algebras these aspects form the 5-fold subdivision

of this thesis.

Themain applications of this theory is the construction of new �nite-

dimensional Nichols algebras with sometimes large rank. In the pro-

cess, the associated group is centrally extended and the root system

is folded, as shown e.g. for E6 → F4 on the title page. Thus, in some

sense, orbifoldizing constructs new �nite-dimensional quantum groups

with nonabelian Cartan-algebra.

Orbifoldizing forme is the following class of phenomena: Given some

proper object H and several �twistings� A(p) thereof, that are forming

a group p ∈ Σ with A(e) = H. Then the sum of all A(p) is again a

proper object, the orbifold Ω:

Ω =
⊕
p∈Σ

A(p)

• The geometric intuition behind this (see example below) is

the decomposition of functions Ω = F(G) on a covering Lie

group G → Γ into �twisted� functions A(p) = F(Γp) on the

quotient i.e. sections in nontrivial line bundles Γp over Γ with

monodromy prescribed by p. Especially H = A(e) = F(Γ).

• The algebraic intuition relies on generalized Schur cover

groups [Hu83]: For a �nite groupring H = k[Γ] and a sub-

group Σ ⊂ H2(Γ,k×), the sum (as an algebra) of twisted

grouprings A(p) = kp[Γ] yields the groupring Ω = k[G] of a

central extension by Σ. The aim has been to reduce projective

representation theory for Γ to ordinary ones over G.

The group-interpretation has been the driving force behind the con-

struction and for group-Hopf-algebras it is recovered accordingly.



Zusammenfassung

Das Hauptziel dieser Arbeit ist es, eine neue allgemeine Konstruk-

tion von OrbifoldHopf- undNichols-Algebren zu untersuchen, sowie

das Wachstum der Automorphismen-Gruppe zu beschreiben und

das Verhalten bestimmter damit assoziierter Kategorien mit der Orbifold-

Konstruktion von Kirillov zu vergleichen. Mit einem Ausblick auf Ver-

tex Algebren stellen diese Aspekte die 5 Teile dieser Arbeit dar.

Die Hauptanwendung dieser Theorie ist die Konstruktion neuer,

endlich-dimensionaler Nichols-Algebren von teils groÿem Rang. Bei dem

Vorgang wird die Gruppe zentral erweitert und das Wurzelsystem gefal-

tet, siehe z.B. E6 → F4 auf der Titelseite. Wir konstruieren also neue,

endlich-dim. Quantengruppen mit nichtabelscher Cartan-Algebra.

Unter Orbifoldizing verstehe ich persönlich dabei die folgende Klasse

von Phänomenen: Gegeben sei ein Objekt H und mehrere �twists� A(p)

hiervon, welche eine Gruppe p ∈ Σ bilden, wobei A(e) = H. Dann

erhält die Summe aller A(p) wieder die Struktur eines Objektes im

herkömmlichen Sinne, dem Orbifold:

Ω =
⊕
p∈Σ

A(p)

• Die geometrische Intuition hierfür (siehe folgendes Beispiel)

ist die Zerlegung von Funktionen Ω = F(G) auf einer über-

lagernden Lie-GruppeG→ Γ in �getwistete� FunktionenA(p) =

F(Γp) auf dem Quotienten, d.h. Schnitte in nichttrivialen Ger-

adenbündeln Γp auf Γ, wobei die Monodromie durch p gegeben

wird. Insbesondere ist H = A(e) = F(Γ).

• Die zugrundegelegte algebraische Intuition stammt von Dar-

stellungsgruppen [Hu83]: Für eine endlich-dimensionalen Grup-

penalgebra H = k[Γ] und eine Untergruppe Σ ⊂ H2(Γ, k×)

ist die Summe (als Algebren) der getwisteten Gruppenringe

A(p) = kp[Γ] wieder ein Gruppenring Ω = k[G] einer zen-

tralen Erweiterung mit Σ. Das Ziel dieser Konstruktion war

die Zurückführung von projektiver Darstellungstheorie von Γ

auf gewöhnliche Darstellungstheorie von G.

Letztere Interpretation war der Leitfaden dieser neuen Konstruktion

und für Gruppen-Hopfalgebren ergeben sich Darstellungsgruppen.
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A Geometric Example To Start With

First o� all, let us consider an intuitive geometric example, before we

proceed to algebraic one's and summarize our methods and results:

Suppose G is a semisimple simply-connected complex Lie group and Σ

a �nite abelian group with it's dual Σ∗ (∼= Σ) normally contained in G.

By standard theory, the quotient Γ := G/Σ∗ is again a Lie group with

fundamental group π1(Γ) ∼= Σ∗.

Now elements in the algebra of (continuous) C-functions f ∈ F(G) (or

equivalently every section in the trivial line bundle over G) can be

uniquely written as a linear combination of Σ-covariant functions

with respect to some 1-dimensional representation p ∈ Σ∗∗ ∼= Σ of Σ∗:

F(G) ∼=
⊕
p∈Σ

Fp(G) via f(x) =
∑
p∈Σ

fp(x) =
∑
p∈Σ

(
1

|Σ|
∑
g∈Σ∗

p(g)f(g.x)

)
fp ∈ Fp(G) := {f ∈ F(G) | ∀g∈Σ∗, x∈G f(g−1.x) = p(g)f(x)}

For p = e trivial (the Σ∗-invariant functions) this leads exactly to

the algebra of Γ-functions F1∗(G) = F(Γ) or again the sections in the

respective trivial line bundle over Γ. The other Fp(G) correspond to

sections in precisely all nontrivial line bundles Γp, i.e. are �functions�

on Γ with prescribed monodromy p(g) along each cycle g ∈ π(Γ) ∼= Σ.

Note that for p 6= e the Fp(G) = F(Γp) are no algebras any more, but

modules over the algebra F(Γ).

F(G) ∼=
⊕
p∈Σ

F(Γp)

Be warned, that in this thesis the structures appear dualized. E.g.

A(p) will be comodule algebras, A(p)A(q) = A(pq) becomes the coprod-

uct and the natural algebra map H = A(e) ⊂ Ω a quotient Ω→ H.

As well, the reader is warned, that in this geometric example, the term

�orbifold� is reserved for the smaller space Γ. In contrast, in existing

and new cases below, orbifoldizing shall describe the entire algebraic

process above (twist and sum) and orbifold the larger algebra Ω.
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My Motivations And Goals

My initial motivation to search for a notion �orbifoldizing�, such as

the two examples described above, in a more general Hopf algebra set-

ting, emerged from my diploma thesis [Len07]: I constructed vertex

algebras �uniformly� from strong Hopf algebra structures, including

so-called lattice algebras. Upon �nishing, I came across the much cele-

brated vertex algebra orbifoldizing yielding the Moonshine module

(see part 5). Here, the relevant existing orbifoldizing constructions are:

• An equivariant category composed of a braided part (un-

twisted sector) and several �modules-alikes� (twisted sectors)

contains a new braided category as its invariant part.

• A vertex algebra (axiomatizing CFT operators) and a given

(cyclic) group acting on it, leads to the notion of twisted ver-

tex modules, which are proper modules over the �xed vertex

subalgebra. The equivariant part of all of them summed up (as

vertex modules) can sometimes again be given the structure

of a new full vertex algebra.

I decided to also study the e�ect of orbifoldizing in the algebraic set-

ting �rst, where I kept close connection to the Schur cover group case:

I hoped to then establish similar to my thesis a �messy� once-and-for-

all-isomorphy to the series' calculations and be able to perform much

of the ad-hoc work in a �cleaner� purely algebraic setting.

Thus, in the following work I want to give a general orbifoldizing con-

struction forHopf algebras andNichols algebras in particular. The

latter are tensor algebras of braided vector spaces modulo some rela-

tions associated to the braiding. They appear e.g. as quantum Borel

part in the classi�cation of pointed Hopf algebras [AS], such as the

truncated Uq(g). Hence I wish to add the following to the lists above:

• Suppose a given Hopf algebra and multiple Bigalois objects

forming a group. These �twistings� will be explained below

and are sometimes viewed as noncommutative principle �bre

bundles; compare this to the example above! As well, they are

algebras, but no Hopf algebras. Then, the direct sum of all

these Bigalois objects as an algebra can again be given the

structure of a Hopf algebra. The construction specializes to

generalizations of Schur cover groups if applied to grouprings.
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• Suppose a Nichols algebra over a �nite group, some sub-

group of group-2-cocycles and an action of this twisting group

on the vector space as �twisted symmetries� H → Hσ. Then,

the direct sum of all twistings contains a new Nichols alge-

bra over a centrally extended group (as a certain Σ-stabilizer,

excluding the newly appearing coradical).

The vertex algebras, my diploma thesis' construction would assign

to both the base Hopf algebra and the orbifold, seem to behave ac-

cordingly, but there are several complications. Thus, in this thesis I

will neither dare a general construction nor tackle the tremendous cal-

culations necessary on the vertex side to show how it could coincide

especially with the ad-hoc constructed Moonshine module, but leave it

with a qualitative outlook on both.

The surprising occurrence during my work was on the other hand, that

the mere construction on the algebraic side can contribute notewor-

thy to the present research on �nite-dimensional Nichols algebras �

objects with a remarkably rich structure continuing root systems of

semisimple Lie algebras, that enabled their classi�cation over abelian

groups by Heckenberger [H05]. Over nonabelian groups, this trend per-

sist ([HS08]), but only few examples are known so far.

The more I got fascinated by the algebraically strong and notoriously

combinatorially �avoured subject, and the more some use of orbifoldiz-

ing became clear, my thesis' goal willingly shifted into an according

direction, such that now the backbone, the more general results and

the worked-out applications fall solely into this branch of algebra.

Doubtless, a completed path to constructing the moonshine module

along these approaches, let alone new cases, would require much future

work, many further adaptions and might very well be unsuccessful after

all. However, I would like to voice my opinion about the necessity to

explore new options for a purely algebraic analysis of the impressing

phenomena this �eld of study has to o�er, and to the stimuli it might

yet feed back to algebra itself.

Simon Lentner, Munich, May 20th 2012
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Summary: Methods And Results Of This Thesis

We give a brief overview over each part, point to central notions and

theorems and give credit to valuable personal in�uences along the way.

Orbifoldizing Hopf Algebras

The �rst part of this thesis deals with the orbifoldizing procedure itself

on the level of Hopf algebras. We establish a rather general categorical

setting1 (twisting groups, see De�nition 1.5), in which we can prove the

main result of this part: The construction of the orbifold Hopf algebra

in Theorem 1.6. We will subsequently (section 1.6) realize this abstract

situation by a subgroup of Bigalois objects and additional data.

We also describe the behaviour of some characteristic subsets, as one

passes to the orbifold, such as the coradical (Theorem 2.4) and the

skew-primitives (Theorem 2.9). Under certain conditions, two usually

�desired� properties of a Hopf algebra, namely pointedness and link-

indecomposability will survive the process and also hold in the orbifold.

Finally we apply this to the situation, in which the initial Hopf algebra

is composed of a groupring and a Nichols algebra (a sort of quantum

Borel part). We will give a construction (Theorem 3.2), that uses far

more concrete data, namely a group of group-2-cocyles, that deter-

mine the new coradical, and a representation of Σ on H by so-called

twisted symmetries (isomorphisms to a Doi twist). This situation of

just orbifoldizing Nichols algebras will be focused on in part 2, where

these twisted symmetries (though no automorphisms) still preserve the

Dynkin diagram and hence can be well identi�ed.

We conclude by addressing the vice-versa question on how to inherently

characterize all Hopf algebras, that arise as orbifolds. The answer is the

surprisingly general Reconstruction Theorem 3.6, proven by a variant of

Masuoka's push-out construction [M01], which has some classi�catory

value for Nichols algebras (see part 2).

1The author thanks Prof. Schneider and Prof. Masuoka for suggesting this

course of action, that especially clari�ed the issue of �coherent choices� of Bigalois

isomorphisms ιp,q. See also Remark 1.10.
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Orbifoldizing Nichols Algebras

This is the main part of the thesis. To keep independent of the �rst

part, we shall start the second part by giving a quick, yet thorough

construction of orbifolds purely in the context of Nichols algebras (The-

orem 4.4). These ad-hoc constructions have been already prepared in

Theorem 3.2: The Bigalois objects (twistings) in the �rst part are re-

placed by group 2-cocycles and twisted symmetries of the underlying

Yetter-Drinfel'd-module.

Orbifoldizing then constructs new examples of �nite�dimensional inde-

composable (even faithful) Nichols algebras2 over a nonabelian group

extension by the twisting group. E.g. in sections 3.2 and 4.4 we �nd:

Z2
2 ←− D4,Q8 S4 ←− GL2(Z3)

The already mentioned root systems and their generalized Dynkin

diagrams reduce in the orbifold to a subsystem/-diagram �xed by the

twisted symmetries, a behaviour known for semisimple Lie algebras as

diagram folding (see e.g. [Gi06], p. 47�), while the dimension of each

node (roughly a conjugacy class) increases as shown on the cover:

2The author thanks Prof. Schneider for stimulating discussions, especially re-

garding root systems of Nichols algebras, for pointing out the sources [H05][HS10],

and for addressing the question of constructing faithful Nichols algebras.
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Mainly, we shall study, which of the specimen in Heckenberger's list

allow an Zp-orbifoldizing to a nonabelian nilpotent group of class 2

(classi�cation in Theorem 6.1, proof entire chapter 6). Exemplary, sec-

tion 7.1 uses this result to clarify the existence of such Nichols algebras

over most groups of order 16 and 32. We also do some steps towards a

classi�cation by deorbifoldizing hypothetical Nichols algebras back to

an abelian groupring, where we consult Heckenberger's list. Thereby

we can �nd all such Nichols algebras (examples in sections 5.3 as well

as 7.2 and 7.3) or rule out their very existence (examples in section 7.4).

The key methods are:

• First of all in section 6.1 the analysis of which folding are

possible for Dynkin diagrams (generally in Theorem 6.8 and

for abelian groups in Theorem 6.9), and checking it against

�Heckenberger's list� for abelian groups (tediously in section

6.6).

• For cases not ruled out, we conversely prove in Theorem 6.15

the existence of so-called symplectic root systems (De�ni-

tion 6.14) for the Dynkin diagrams in question: This is a basis

of Zn2 (viewed as symplectic vector space), which re�ects the

desired diagram. It is similar to usual root systems, but far

weaker (many graphs are possible) and should be rather seen

as an additional datum ensuring the twisted symmetry.

• To yield even faithful Nichols algebras (orbifolds have al-

ways trivial Σ-action), one may Doi twist certain orbifolds over

the nonabelian group (see examples in section 7.1).

• Conversely, we derive certain conditions on any possible Σ-

action from constraints given in [HS08]. This can in several

cases restrict their number to such an extend, that the remain-

ing cases can be numerically exhausted by Doi twists using

Matsumoto's spectral sequence (section 5.2). Thus, by the re-

construction theorem, every such Nichols algebra is a Doi twist

of an orbifold. The �rst example is in section 5.3, others have

been described above.
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Orbifoldizing Automorphisms

We then turn our attention to the behaviour of the group of Hopf al-

gebra automorphisms as the Hopf algebra undergoes orbifoldization -

particularly in the aim of identifying large simple groups3. We de�ne

certain subgroups B,N ⊂ Aut(Ω) (De�nition 9.5) related to Aut(H)

and the permutation action on certain central idempotents4 (by Lemma

9.3). These subgroups should be visualized as the group-theoretic gen-

eralization of the subgroup of upper triangular resp. monomial matrices

in Lie groups over �nite �elds.

Under very speci�c conditions (section 9.2) we are able to construct a

so-called Tits building in Theorem 9.10. This is an abstract simplicial

complex with an action of Aut(Ω). Corollary 9.11 then immediately

shows the previously de�ned B,N ⊂ Aut(Ω) to form a so-called BN-

pair in these cases by standard theory (e.g. [L05]).

3The author thanks Prof. Humphreys and Prof. Pasechnik for pointing out

literature on the stricter notion of a �split� BN -pair in low rank and for laying

out the weaker amalgam construction for sporadic simple groups upon my ques-

tion in MathOver�ow (http://mathover�ow.net /questions/93463/weak-bn-pair-

tits-system-for-sporadic-groups).
4The author thanks Dr. Steinberg for providing an explicit description of

the simplicial complex (see below) associated to idempotents of an algebra

upon my question in MathOver�ow regarding this (http://mathover�ow.net/

questions/93862/simplicial-complex-made-of-central-idempotents-of-an-algebra).

This direct approach, however, turned out not to be suitable afterwards.
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Orbifoldizing Categories

There is an existing notion of orbifoldizing equivariant categories by

Kirillov [K04]. We will connect to this notion5 by showing, that the

category of bicomodule algebras, the Bigalois groupoid as well as the

Yetter-Drinfel'd modules, behave accordingly if we pass to the orbifold

Hopf algebra.

More speci�cally, there is a two-step process: The respective categories

over H correspond to the untwisted sectors of the equivariant cat-

egory. We will extend them to include twisted sectors consisting of

respective projective representations, which altogether yields an

equivariant category in all cases. Then, Theorems 10.1 resp. 11.2 show

the invariant part (Kirillov's orbifoldization) to be categorically equiv-

alent to the respective category over Ω.

Note that again, this is very much inspired by the behaviour of Schur

cover groups, the model for our construction: As already mentioned,

they have been de�ned to study projective representations of the smaller

groups in terms of ordinary representations of the larger group.

5The author thanks Prof. Schweigert for stimulating discussions after a mini-

talk the author gave in Oberwolfach 2010, in which he pointed out this notion and

asked for a connection, as well as for the invitation to a talk in his Research Seminar

(Hamburg 2011) and the discussions afterwards.
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Orbifoldizing Quantum fields

Last, we give an outlook on the status of the initial motivation: The

construction of the Monster vertex algebra purely from Hopf al-

gebra structures. A vertex algebra is an in�nite-dimensional, graded

structure and certain operator-valued Laurent series given with their

product associative only up to δ-functions. It is commonly viewed as

axiomatizing quantum �eld theory operators.

The remarkable vertex algebra in question has as automorphisms the

Monster group and as graded dimensions the Fourier coe�cients of the

modular j(z)-function. It was (as a module) constructed by Frenkel,

Meurman and Lepowsky in [FLM84] and is an important step in

Borcherd's proof of the Moonshine Conjecture, see for example the

extensive survey [G06].

We start by an overview of the authors diploma thesis [Len07]6, which

constructs a vertex algebra from certain rather general Hopf algebra

data (Theorem 12.9). We also describe in section 12.3, which Hopf

structure leads to the so-called lattice vertex algebras. For the Leech-

lattice this is the starting point, which is orbifoldized to the Moonshine

Module, that subsequently even supports a rather ad-hoc vertex alge-

bra structure.

The conjectural aim is now to perform an orbifoldization on the

Hopf-algebra side and obtain an in�nite-dimensional Nichols alge-

bra still possessing a root system! Then one has to show, that the as-

sociated vertex algebra is the desired vertex algebra. Note that already

the Moonshine Module construction points to an explicit conjectural

twisting 2-cocycle in section 12.2.

Moreover, the BN -pair established above should directly proof the au-

tomorphism group to be the monster group - in fact, this assumption

gives more valuable hints on the assumed orbifold (see section 12.4).

6The author thanks Prof. Schottenloher, supervisor of both thesis', for his long-

term support and encouragement even for far-fetched goals, and for the countless

hours of stimulating discussions about quantum �eld theories, vertex algebras, and

their connection to various �elds of mathematics and theoretical physics.
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However, two very severe obstacles appear:

• Section 12.3: The orbifoldization starts with a non-proper �twist-
ing group�, yielding only a quasi-associative Hopf algebra,

with associativity constraint prescribed by the Parker loop.

• Section 12.4: The orbifoldiziation is performed not over a group,

but a groupoid Σ of di�erent Doi twist Hopf algebras. Hence

we obtain �rst a weak Hopf algebra Ω′ (see Remark 1.7) and

hope to yield the actual Hopf algebra Ω as an amalgam com-

pletion. This should correspond to the well-known BN -pair of

the Monster group being non-proper in the sense that B ∩N
is not normal in N and the quotient being the Weyl groupoid.

Especially for these two extensions of this thesis, we at present have

only vague clues � moreover, up to now, there seems to exist no the-

ory of Hopf algebra amalgams.

The author wishes to emphasize again, that this goal is far from being

completed and it is very likely, that the aspired approach will not be

possible and/or helpful after all! Nevertheless, his supervisor has en-

couraged the author to (gladly) include these thoughts as an outlook

to this thesis.





Part 1

Orbifoldizing Hopf Algebras





Basic Concepts:

Physics, Symmetry And Hopf Algebras

The concept of symmetry has been fundamental to physics. Compact

Lie groups usually corresponding to local gauge �elds leading e.g. to

the standard model of 3 nature forces, namely U1, SU2, SU3 for elec-

tromagnetic, weak and strong interaction, uni�ed in a single SU5. The

irreducible representations thereby determine the particle spectrum of

the theory and one studies fusion rules of couples of particles by tensor-

ing the representations and again decomposing them into irreducible

representations (á la Clebsch Gordan). On the other hand the symme-

tries of spacetime is governed by the noncompact SL2(C) (covering

the Lorentz group SO3,1(R)) leading to �elds of scalars, spinors, vectors

etc and again their respective tensors, such as the �eld stress.

One may introduce Hopf algebras solely by searching for more gen-

eral algebraic symmetry principles, that still support the fundamental

notions of tensoring and dualizing their representations:

Suppose H an algebra of symmetries and a representation/module V

or A (with even an algebra structure); the four main examples we

may want to have in mind are formulated as algebras

• a discrete group HGroup = C[Z2] (linearly extended)

• a Lie algebra HLie = U(sl2) (multiplicatively extended)

acting typically either on

• a �nite-dimensional representation V

• the algebra of functions on the manifold e.g. (for simplicity)

the polynomial ring A = C[x, y] onM = C2 with tangent space

V = 〈x, y〉C.
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Widespread examples in physics include the following:

vector space V Algebra A

HGroup Anyon models Re�ection g.

f(x, y)
g.7−→ f(−x,−y)

HLie Particle Multiplets Lie Derivatives, e.g. sl2 : LE,LF ,LH

(angular momentum etc.) f(x, y)
LE7−→ y ∂

∂x
f(x, y), . . .

Given two such representations V, V ′ we form the tensor represen-

tation V ⊗C V and the dual representation V ∗ as it is well known:

• Group elements g simply act on each tensor factor simulta-

neously and via g−1 on dual elements.

• Lie algebra elements (primitives) E act on the tensor

factors via Leibniz rule and on dual elements by −E.
One should require any additional algebra structure A ⊗ A → A

to entwine the respective actions de�ned above (=module homomor-

phisms). This explains (see above), why group elements act on the

algebra of functions naturally as automorphisms, while Lie algebra

elements act as derivatives. Such is called a module algebra.

A Hopf algebra H in general is now de�ned to be an algebra with an

additional comultiplication, counit and antipode

H
∆−→ H ⊗H

H
ε−→ k

H
S−→ H

As intended, the tensor product, trivial representation (kε) and dual

representation may be formed via the new action:

H ⊗ (V ⊗W )
∆−→ (H ⊗H)⊗ (V ⊗W )

ρV ⊗ρW−→ V ⊗W

H ⊗ k ε−→ k⊗ k mult.−→ k

H ⊗ V ∗ S−→ H ⊗ V ∗ ◦h.−→ V ∗

The datum (∆, ε, S) of a Hopf algebra comes with certain compati-

bility conditions, that ensure precisely these constructions are well-

behaved (let µ be the multiplication of H):
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∆ is algebra map ⇔ U ⊗ V is again representation

∆ is coassociative ⇔ U ⊗ (V ⊗W )→ (U ⊗ V )⊗W
(id⊗∆)∆ = (∆⊗ id)∆ entwines the H-action

ε is algebra map ⇔ kε is a representation

∆, ε are counital ⇔ V ⊗ kε,kε ⊗ V → V

(id⊗ ε)∆ = (ε⊗ id)∆ = ∆ entwine both the H-action

S ful�lls the antipode condition ⇔ V ∗ ⊗ V eval−→ kε
dual−→ V ⊗ V ∗

µ(S ⊗ id)∆ = µ(id⊗ S)∆ = 1H · ε both entwine the H-action

The classical examples HGroup, HLie �t into this picture by becoming

Hopf algebras, if they are endowed with structures exactly matching

the rules given above:

∆(g) = g ⊗ g ε(g) = 1 S(g) = g−1

∆(E) = 1⊗ E + E ⊗ 1 ε(E) = 0 S(E) = −E

Note that under certain conditions, there is even an equivalence! There

exist two generalizations (�weak quasi-Hopf algebras� allowing e.g. a

nontrivial F -matrix) that exhaust at least all tensor categories with

�nitely many simple objects [EO03].

We conclude by introducing important subsets for a Hopf algebra H::

• By ∆ being an algebra map (and S giving an inverse) the set

of all grouplike elements g ∈ H with ∆(g) = g ⊗ g of a Hopf

algebra H forms a group G(H) ⊂ H.

• More generally, the sum of all simple subcoalgebras, i.e. min-

imal in being stable under ∆, ε, is called coradical and is

the dual (co-) version of the Jacobson radical in algebra. As

each grouplike g ∈ G(H) for itself is already stable (i.e. a 1-

dimensional subcoalgebra) the coradical contains k[G(H)]. If

they even coincide, we call the Hopf algebra pointed.

• Moreover, elements with ∆(X) = g ⊗ X + X ⊗ h for g, h

grouplike are called skew-primitives , and they correspond

to skew-derivational action with respect to some additionally

existing automorphisms (i.e. grouplikes) g, h.

In this thesis we mainly concern ourselves with pointed Hopf algebras.

Their classi�cation (especially for abelian groups G(H)) is addressed

in the second part's introduction, leading directly to Nichols algebras.
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group

Bigalois Objects As Twisted Hopf Algebras

One can easily de�ne 2-cocycles over an arbitrary Hopf algebra H:

σ : H⊗H → k× with σ(x(1), y(1))σ(x(2)y(2), z) = σ(y(2), z(2))σ(x, y(1)z(1))

However, in contrast to the cocommutative case (e.g. a group), they

do not form a group! Rather, one has to simultaneously consider 2-

cocycles over di�erent, slightly deformed Hopf algebras. Their product

is only again a 2-cocycle, if they ��t together� as we shall see now:

De�nition. A groupoid Σ is a category, such that every morphism

is an isomorphism. Especially a group is presented as a single object O

with the group being Mor(O,O).

Instead of dealing with the actual 2-cocycles, one usually considers:

De�nition. A H-L-Bigalois object between Hopf algebras H,L is a

bicomodule A between them, with an algebra structure on A com-

patible with left-H- and right-L-coaction:

δL : A→ H ⊗ A δL(ab) = δL(a)δL(b) δL(1A) = 1H ⊗ 1A

δR : A→ A⊗H δR(ab) = δR(a)δR(b) δR(1A) = 1A ⊗ 1H

Thirdly, both sides need to satisfy a nondegeneracy, namely the canon-

ical map A⊗ A→ H ⊗ A shall be bijective:

can : (a⊗ b)→ a(0) ⊗ a(1)b

We call the set of isomorphism class of H-L-Bigalois objects BiGal(H,L).

We will show how BiGal(H,L) forms a groupoid and how this can be

used instead of bare 2-cycles. A comprehensive reference is [S04].

De�nition. Two �tting Bigalois objects, i.e. A ∈ BiGal(H,L), B ∈
BiGal(L,E) may be cotensored over L to get a new Bigalois object:

{a⊗b ∈ A⊗B | (δR⊗id)(a⊗b) = (id⊗δL)(a⊗b)} =: A�LB ∈ BiGal(H,E)

In several instances (e.g. H pointed or �nite-dimensional), all Bigalois

objects are cleft, meaning that each is isomorphic toH as left comodule

via a cleaving map (if a Bigalois object is even isomorphic to H as

bicomodule, it is called bicleft).

Any cleft Bigalois object is isomorphic as left comodule algebra to a

cocycle-twists σH:
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• The left H-coaction coincides with the coproduct on H.

• The multiplication is deformed by a 2-cocycle σ ∈ Z2(H,k×).

a ·σH b := σ(a(1), b(1))a(2)b(2)

• Every such one-sided Galois object may be non-uniquely com-

pleted to a Bigalois object in BiGal(H,L) for a unique Hopf

algebra L (this is generally true). For cocycle-twists, L turns

out to be theDoi twistHσ, whichH as coalgebra with doubly

deformed multiplication

a ·Hσ b := σ(a(1), b(1))a(2)b(2)σ−1(a(3), b(3))

which can be proven to be again a Hopf algebra.

Throughout this work, this Doi twist appears as �mild modi�cation� of

a Hopf algebra structure (i.e. to change the Σ-action in section 5.2).

Especially, their categories of modules are equivalent. It should not be

confused with the �twisted� Bigalois object!

Finally,H ∈ BiGal(H,H) itself (and all it's Doi twists L ∈ BiGal(L,L))

are respective units and for any A ∈ BiGal(H,L) there is an inverse

Bigalois object B ∈ BiGal(L,H) such that

A�LB ∼= H B�HA ∼= L

Hence taking as objects all Doi twists of some given H and as mor-

phisms all Bigalois objects between them, multiplied via �, we obtain

the Bigalois groupoid BiGal(H).

Example. In case H = k[G] (or another cocommutative H) there are

no nontrivial Doi twists (L = H), and we get a Bigalois group:

BiGal(H) = BiGal(H,H) ∼= Aut(G) nH2(G,k×)

Here, the algebra σH de�ned above is the well-known twisted groupring

kσ[G], while the additional automorphism corresponds to di�erent right

H-coaction to choose from (we mentioned the �completion� is non-

unique).

More generally, the subgroup of the groupoidBiGal(H,H) ⊂ BiGal(H)

correspond to so-called lazy 2-cocycles σ.





Technical Overview On Methods & Results

This part describes the author's abstract concept of orbifoldizing Hopf

algebras. It starts with De�nition 1.5 of a categorical context �twisting

group�, that stages the general setting, where our ansatz works.

The basic idea is to take a �nite, abstract subgroup(oid) Σ of twistings

(e.g. inside the Bigalois groupoid BiGal(H)) with coherently chosen

isomorphisms of the underlying twisted objects' multiplication:

Ap�Aq
ιp,q∼= Apq p, q ∈ Σ

This can be cleanly formulated as a bifunctor between two bicategories.

We then construct in several steps (sections 1.3 to 1.5) from such con-

text a new Hopf algebra Ω composed as a direct sum of the |Σ| di�er-
ently twisted algebras A(p), p ∈ Σ of a smaller given one H = A(e),

with a �mixed� coalgebra structure extended from H by the demanded

�xed isomorphisms ι−1
q,r for each p = qr:

A(p)
ι−1
q,r−→ A(q)�A(r) ⊂ A(q)⊗ A(r)

Main Theorem (1.6). Given a twisting group Σ of H, the Ω de�ned

above is a Hopf algebra and H-H-bicomodule algebra. We have a Hopf

algebra surjection and injection:

iΣ : kΣ → Ω πH : Ω→ H

Thus this basic construction can be understood as practically form-

ing the dual groupring of Σ

kΣ =
⊕
p∈Σ

epk

but instead of (1-dimensional) primitive idempotents ep
∆7→
∑

p=qr eq ⊗
er we use the entire algebras A(p). Ω has thereforeH = A(e) as quotient

(untwisted sector) and further contains new idempotents ep = 1A(p)

forming the dual groupring of the twisting group kΣ ⊂ Ω.
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We then quickly turn in section 1.6 to a concrete realization of the

abstract twisting setting as one well known to Hopf algebra theory,

namely Bigalois objects of H. This case has the particularly nice prop-

erty of small coinvariants and thus we �nd:

Theorem (1.13). We have an exact sequence of Hopf algebras

k→ kΣ iΣ−→ Ω
πH−→ H → k

The embedding s of H as A(e) is a cleaving/section, hence this central

extension is cleft. Then Ω is isomorphic to a bicrossed product

(kΣ)τ,ρ#σ,1H

Our ansatz can hence be alternatively understood as to produce a

bicrossed product datum (obeying rather complicated compatibilities)

from a suitable group of Bigalois objects with �xed isomorphisms ιp,q.

We proceed in section 1.7 with the �rst example ofH,Ω being grouprings.

We recover our initial motivation (Schur cover group) of Ω begin a cen-

trally extended groupring, now even as a Hopf algebra. A curious

occurrence compared to the classical Schur cover (that uses only co-

homology classes) is, that the speci�c choice of a subgroup of 2-cycles

necessary to de�ne the coalgebra structure on the orbifold, already pins

down the group elements in the Schur cover groupring. Thereby it de-

termines a speci�c Schur cover group; note that this is in general not

unique (despite the �xed isomorphy class of the algebra structure). For

example are k[D4] ∼= k[Q8] the two Schur covers of Z2 × Z2.

We then should turn our attention to the in�uence of orbifoldiza-

tion to a couple of characteristic subsets of the Hopf algebra (chp.

2), namely the coradical, the grouplikes and the skew-primitives.

In each case we describe their behaviour (Theorems 2.4 and 2.9) and

give precise conditions ensuring that certain aspired properties hold

still in the orbifoldization, namely pointedness (Corollary 2.5) and link-

indecomposability (Theorem 2.10).
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Explicitly we will �nd altogether:

• Dimension is controlled by dim(Ω) = dim(H) · |Σ|.
• Semisimplicity of the algebra H is preserved (Remark 2.1).

• The group of grouplikes undergoes a central extension

Σ∗ −→ G := G(Ω) −→ Γ := G(H)

prescribed by restricting the twisting 2-cocycle to the group.

res : Σ→ H2(Γ,k×)

• Pointedness survives if among others Σ abelian (see below).

• The vector spaceM = H1/H0 of skew-primitives (modulo triv-

ials) in H is preserved, but the homogeneous components de-

compose into eigenspaces of Σ acting as twisted symmetries.

• Generation only by grouplikes and skew-primitives (-derivations)

is preserved under the same conditions as pointedness.

• The number of link-components inH grows moderately, bounded

by Ker(res) and thus:

• Link indecomposability of H is preserved in Ω, if G is even a

stem-extension Σ ⊂ G′ whence Ker(res) = 0.

The proof idea is to (quite) uniquely pin down (cleft images of) group-

likes resp. skew-primitives in any Bigalois object solely in terms of their

coaction, while left-to-right some nontrivial correspondence may apply,

which leads to an action of the group of Bigalois objects Σ on G(H) as

automorphism resp. on Prim(H) as twisted symmetries. All this is

technically done in the Lemma 2.2 resp. 2.8 using the Galois property.

These observations determine the coradical Ω0 resp. skew-primitives Ω1

by proving them to be sub-orbifolds of H0 resp. H1 inside Ω.

The preceding study of the groupring's orbifold behaviour (Lemma

1.17) then gives quickly precise conditions for Ω to again be pointed:

Corollary (2.5). Let H be pointed and �nite-dimensional, then an orb-

ifold of Bigalois objects Ω is pointed i� Σ is abelian and the above re-

striction of the twisting group to the grouplikes (G(p))p∈Σ is bicleft.

We will refer to these conditions as the usual setting, under which

we will work throughout the rest of this thesis.
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On the other hand, in Theorem 2.9 we �nd the new skew-primitives by

simultaneously diagonalizing the twisted symmetries (Σ now abelian!).

Thereby the space of ḡ, 1-skew-primitives decomposes into eigenspaces

to di�erent eigenvalues λ, corresponding to di�erent liftings of ḡ ∈
Γ := G(H) to the central extension g ∈ G := G(Ω). Especially for

stem-extension Σ∗ ⊂ G′ (and more generally Frattini extensions) we

can use, that any such lift choices of generating (gi)i∈I ∈ G(H) gener-

ate the extension, hence Ω may also again be link-indecomposable.

To apply our construction, in section 3.1 we restrict ourselves to the

later-on most relevant case of H a Radford biproduct k[Γ]#B(M) of

the group with a Nichols algebra. We solely use group 2-cocyces σ ex-

tended trivially to all of H and thereof construct a general twisting

group in Theorem 3.2. This orbifoldizing of Nichols algebras will be

discussed extensively in the second part of this thesis.

Finally in Theorem 3.6 we prove conversely, that a Hopf algebra is an

orbifoldization for a given central Σ∗ ⊂ G, i� Σ∗ is central in all of Ω.

The proof uses a variant of Masuoka's push-out construction [M01].

We shall exploit it in the second part to reversely disprove existence

of �nite-dimensional Nichols algebras over some larger G by writing

it as an orbifold from the central quotient Γ. Note that this rather

trivial behaviour is (in both directions) enhanced by considering also

Doi twists of orbifolds!



CHAPTER 1

Categorically Orbifoldizing

We start by describing our construction in an abstract, categorical man-

ner and give an explicit realization by Bigalois objects in section 1.6:

The notion of bicategories (de�ned by Bénabou in [B67]) will be used

in the following to combine the structure of a groupoid (only ��tting

ends� may be multiplied) with an enrichment of the arrows to being ob-

jects in a new category, including nontrivial �second-order� morphisms.

The reader should keep in mind e.g. the Morita category of rings

with bimodules, where we may tensor such bimodules over one ring

and get associativity up to bimodule isomorphisms.

1. Bicategories

De�nition 1.1 ([B67] p. 3-6). A bicategory S consists of a set of

points S0, where for each pair H,L ∈ S0 a category S(H,L) is de-

�ned. We call its objects p, q edges and its morphisms 2-cells (or just

morphisms). Additionally, the data includes given identity edges

IH ∈ S(H,H) and composition functors:

S(H,L)× S(L,E)
cHL,LE−→ S(H,L)

Especially for two edges p, q we thus get a composite, denoted p⊗S q.

Additionally one demands respective natural transformations:

• Associativity isomorphism α:

cHE,EF ◦ (cHL,LE × idS(E,F )) ∼= cHL,LF ◦ (idS(H,L) × cLE,EF )

such that the pentagonal identity holds.

• Left/right identities isomorphisms:

cHL(IH × idS(H,L)) ∼= Id ∼= cHL(idS(H,L) × IL)

such that the triangular identities hold.
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Especially there is the step-down category S̄, an ordinary category

with objects H ∈ S0 and morphisms the isomorphy classes [S(H,L)] of

edges. For bimodules e.g. this yields the usual Morita category.

Remark 1.2. Nowadays, edges are often called horizontal morphisms

opposed to the (vertical) morphisms. The composition is often as well

denoted as horizontal.

As bicategories are 2-categories with non-strict associativity, they are

sometimes called weak 2-categories.

De�nition 1.3 ([B67] p. 29f). A bicategory functor between bicat-

egories S → C consists of the following data:

• A map A : S0 → C0

• Functors A(H,L) : S(H,L)→ C(A(H), A(L)). We denote the

specialization to an object (edge) p ∈ S(H,L) by A(p).

• For each point H ∈ S0 an identity morphisms Ia(H) → A(H,H)IH
• A family of natural transformations

cCa(H)a(L),a(L)a(E) ◦ (A(H,L)× A(L,E))
ι−→ A(H,E) ◦ cSHL,LE

We denote the specialization of this transformation to some

objects (p, q) ∈ S(H,L)× S(L,E) by

ιp,q : A(p)⊗C A(q)→ A(p⊗S q)

Furthermore, for each triple (p, q, r) ∈ S(H,L)×S(L,E)×S(E,F ) we

have the coherence condition:

AαS(p, q, r)◦ιp⊗Sq,r◦(ιp,q⊗SidA(r)) = ιp,q⊗Sr◦(idA(p)⊗Sιq,r)◦αC(A(p), A(q), A(r))

and a similar coherence for the identity morphisms.

2. Twisting groups

For our purposes, a bicategory functor (see above) A : S → C is

basically a functor between the step-down-categories of points and iso-

morphy classes of edges Ā : S̄ → C̄. However, A has to assign to an

edge p ∈ S(H,L) a speci�c representative A(p) ∈ C(A(H), A(L))

and for edge concatenation a speci�c second-order-morphisms

ιp,q : A(p)⊗C A(q)→ A(p⊗S q)
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The following notion should be viewed as some formalized group of

�twistings� of a Hopf algebra, i.e. the set of twistings bears a group

structure - and its structural maps carry over to maps between the

�twisted algebras� (multiplication to ι and inversion to ρ). It is designed

solely to enable the next subsections' constructions.

De�nition 1.4. A twisting semigroupoid (Σ, A, ι) for a �nite semi-

groupoid Σ (i.e. an ordinary category) is a bifunctor (A, ι) between the

following bicategories S → C:
• S the bicategory with points H ∈ Obj(Σ), edges p ∈ Mor(Σ),

and only the respective identity IH as morphisms on each edge.

• C the bicategory where points H,L are Hopf algebras, edges

in C(H,L) are H-L-bicomodule algebras, concatenations ⊗C

are the respective cotensor-products, the identity edges IH ∈
C(H,H) are H with the natural H-H-bicomodule structure

given by (∆H ,∆H) and morphisms are bicolinear algebra maps.

• such that the ιp,q are bijective and for p ∈ S(H,L) the maps

ι−1
IH ,p

, ι−1
p,IL

coincide with the left/right comodule maps on A(p).

(we usually identify the points H ∈ S0 with the Hopf algebra A(H) and

the bicomodule algebra IA(H)
∼= A(IH))

While this will be su�cient to de�ne (possibly weak) orbifold bialge-

bras, we need an additional datum to obtain an antipode. For Bigalois

objects (section 1.6) this can be derived solely from the data

above (as proven in Lemma 1.11), but in the general case the author

does neither see a proof, nor a solid categorical de�nition.

De�nition 1.5. A twisting groupoid (Σ, A, ι, ρ) is a twisting semi-

groupoid for a �nite groupoid Σ, and for each Σ-edge p two k-linear
maps (that will turn out to be actually equal in section 1.5):

ρL,Rp : A(p−1)→ A(p)

such that with µA(p) the algebra multiplication the following holds:

µA(p)(ρ
L
p ⊗ idA(p))ι

−1
p−1,p = 1A(p)εH = µA(p)(idA(p) ⊗ ρRp )ι−1

p,p−1

(this implies especially ρRIH = ρLIL = SH)

If Σ is a proper group (i.e. Obj(Σ) = {O}) we brie�y call Σ a twisting

group of H := A(O). In this case, we abbreviate as usual p ∈ Σ(O,O)

by p ∈ Σ and the unique unit IO by e.
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3. The Bicomodule Algebra

Given a twisting group, we de�ne Ω as H-H-bicomodule algebra to be

the direct sum of all �twisted� bicomodule algebras A(p):

Ω(Σ) =
⊕
p∈Σ

A(p)

Clearly the sum of all proper twistings
⊕

p 6=eA(p) is an ideal and sub-

bicomodule, so we have the following bicomodule algebra surjection

(splitting multiplicatively and as a bicomodule map, but not unit-

preserving via the obvious inclusion s : H = A(e)→ Ω):

πH : Ω→ A(e) = H

There's also the later most relevant algebra inclusion of the dual groupring

of Σ obviously landing in the coinvariants and the center of Ω:

iΣ : kΣ 3 φ 7→
∑
p∈Σ

φ(p)1A(p) ∈ Ω(Σ)

4. The Coalgebra

Since Ω is a direct sum of A(p) we de�ne ∆, ε on each of them:

∆|A(p) : A(p)→
⊕

p=qr∈Σ

A(q)⊗ A(r) ⊂ Ω⊗ Ω

We de�ne this map by piecing together the demanded ι−1-morphisms

∆|A(p) =
⊕

p=qr∈Σ

ι−1
q,r

We further choose ε|A(e) = εH and zero on all other A(p).

Coassociativity: This follows directly after restricting to a sum-

mand A(p)⊗A(q)⊗A(r) from the pentagonal identity satis�ed

by the ι's and the associativity of Σ.

Counitality: This holds, because on every summand A(p):

(idΩ ⊗ ε)∆ = (idΩ ⊗ ε)
⊕

p=qr∈Σ

ι−1
q,r = (idA(p) ⊗ εH)ι−1

p,e = idA(p)

as all summands except p = pe vanish by de�nition of ε = εΩ,

while the last equation follows from ι−1
p,e being the H-comodule

map. The other way around works identical.
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Note further that for any A(p) with p 6= e the coproduct always has

left or right tensor factors in some A(q) with q 6= e. So
⊕

p 6=eA(p) is

also a coideal and πH a coalgebra map. We calculate easily, that the

inclusion iΣ : kΣ → Ω is also a coalgebra map:

Since the ι are algebra maps, clearly ι−1
p,q(1A(pq)) = 1A(p) ⊗ 1A(q). Now

∆(iΣ(φ)) = ∆(
∑
p∈Σ

φ(p)1A(p)) =
∑

p=qr∈Σ

φ(qr)1A(q) ⊗ 1A(r) =

is by construction of the kΣ-coproduct φ(qr) = φ(1)(q)⊗ φ(2)(r)

=
∑
q,r∈Σ

φ(1)(q)1A(q) ⊗ φ(2)(r)1A(r) = iΣ(∆kΣ(φ))

Furthermore ε(iΣ(φ)) = φ(e) = εkΣ(φ).

5. The Hopf Algebra

Let us �rst check the bialgebra axioms:

ε is an algebra map: This is clear since we de�ned it induced

by the algebra map εH on a direct summand of the algebra.

∆ is unital: This is the consequence of the group law in Σ:

∆(1Ω) =
∑
p∈Σ

∑
p=qr

1A(q) ⊗ 1A(r) =
∑
q,r∈Σ

1A(q) ⊗ 1A(r) = 1Ω ⊗ 1Ω

Here we used again that ι−1
q,r(1A(qr)) = 1A(q) ⊗ 1A(r).

∆ is multiplicative: We have to distinguish two cases for any

a ∈ A(p), b ∈ A(q) (which again su�ces by linear extension):

Let �rst be p 6= q. Then ∆(ab) = ∆(0) = 0 by construc-

tion of the algebra. But ∆(a) and ∆(b) consist of elements

in the spaces A of the respective decompositions of p, q, and

their tensor factors cannot lay in the same A on both sides

simultaneously, since the factors determine their product in Σ

uniquely. Thus the product of any elementary tensors in ∆(a)

with ∆(b) also vanishes. Now take p = q. By the argument

above, the only non-vanishing products of elementary tensors

in ∆(a),∆(b) are the ones in the very same decompositions

of p, i.e. for every ι−1 separately. But these were bicomodule

algebras maps, yielding each respective summand of ∆(ab).
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Finally we are coming to the antipode S :=
⊕

p∈Σ ρ
L,R
p . Note that we

actually get a-priori di�erent left and right antipodes, but as ∗-inverses
of idH , they have to coincide. Let us thus check its de�ning property

µ(S ⊗ id)∆ = 1Ωε = µ(id⊗ S)∆

On all direct summands A(p), p 6= e, ε vanishes. But for any such

a ∈ A(p) the expression S(a(1)) ⊗ a(2) takes values in the sum of

A(q−1) ⊗ A(r) over all p = qr and thus the two tensor factors lay

in the same direct summand i� q−1 = r which is impossible for p 6= e.

Thus all products in S(a(1))a(2) also vanish. The other way around is

totally analogous.

On the unit summand H = A(e) however, for any h ∈ A(e), the ex-

pression S(a(1))⊗a(2) is a sum of products coming from A(p)⊗A(p) for

all possible p ∈ Σ (e = p−1p). So to prove S(a(1))a(2) = ε(a)1Ω we can

restrict ourselves to any A(p). But there it follows from the de�ning

condition on ρLp . Again the other way around is analogously for ρR.

Summarizing the preceding section we have proven:

Theorem 1.6. Given a twisting group of H, then the orbifold Ω de-

�ned step-by-step in the preceding sections is a Hopf algebra and H-H-

bicomodule algebra. We have a Hopf algebra injection and surjection:

iΣ : kΣ → Ω πH : Ω→ H

Remark 1.7. Note without proof that if Σ were a general twisting

groupoid, we expect to obtain weak Hopf algebras [EO03] with 1

de�ned as above and ε the sum of all εA(H)
∼= εA(idH) for all base objects

H ∈ Obj(Σ). Especially, Ω contains the weak Hopf algebra dual to kΣ.

Note that Theorem 1.13 generally shows that Ker(πH) = Im(iΣ)+Ω

and the embedding s : H = A(e) → Ω is a cleaving/section. However,

the coinvariants may be considerably larger, if not obtained from Bi-

galois objects. Hence these maps generally form no exact sequence in

the sense of e.g. [A96] p. 7.

Remark 1.8. Note without further details that by construction Ω is

even a functor from twisting groups to Hopf algebras, where morphisms

of twisting groups are natural transformations between the respective

underlying bicategory functors A,A′. The maps πH , iΣ are special cases

thereof for the trivial twisting groups (Σ, A(e)) = ({e}, H) resp. (Σ,k).
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6. Realization Via Bigalois Objects

We now want to give an explicit realization of the categorical data de-

manded above and interpret the resulting orbifold (as de�ned above) to

be a bicrossed product. The proper generalization of twisted grouprings

to arbitrary Hopf algebras H are the Galois objects resp. 2-cocycles,

which however fail to form a group. So one usually considers (isomor-

phy classes of) Bigalois objects, and these form a groupoid BiGal(H)

via the cotensor-product �H studied extensively (see [S04]). Turning

this situation into a twisting group(oid) has been the model to our

de�nition, but a certain technical �choice-� problem arises:

De�nition 1.9. As a twisting group(oid) of Bigalois objects , we

understand a group(oid)-morphism Ā : Σ→ BiGal(H) and speci�cally

chosen representatives A(p) (with each A(IH) = H) and speci�cally

chosen isomorphisms ι realizing the �-multiplication of Bigalois objects

ιp,q : A(p)�HA(q)→ A(pq)

obeying pentagonal identity. The bifunctor and ρ are constructed below!

While the existence of the ι is already guaranteed by the structure

of the Bigalois groupoid, they are not unique and these ambiguities

could easily result in the ι-pentagonal identity to fail - there simply

may not be a natural all-at-once choice. Hence we can not simply write

down twisting groups from Ā without additional knowledge. The main

cases where we can are the bicleft/lazy Bigalois objects in Lemma

1.14, which we will use to determine the coradical of Ω in Theorem 2.4.

Remark 1.10. To resolve the issue of uniqueness generally, by a help-

ful comment of A. Masuoka, we �x directly a speci�c twisting 2-cocycle

σ ∈ Z2(H) in its cohomology class, thereby arriving in an extension of

the original Bigalois group by the 2-borders.

This can be done conceptually well by �xing a so-called cleaving jA :

H → A yielding immediately a speci�c 2-cocycle representative. The

cleaving on a product A�B is thereby de�ned as (idA ⊗ jB) ◦ δRA ◦ jA.

This is the line of action, we will take in section 3.1, especially Lemma

3.4 (product cleaving) to construct twisting groups, that will lead to the

further study of orbifoldizing Nichols algebras in the second part.
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It may, however, in more general cases cause a Bigalois object to ap-

pear multiple times, corresponding to di�erent cohomologous cocycles

respectively cleavings. To see an example for this, see Remark 1.16.

Otherwise, this is the only obstruction and we obtain a twisting group:

Lemma 1.11. Given a set of choices for the ιp,q above ful�lling the

conditions in De�nition 1.5, we can obtain suitable ρR,Lp from the re-

spective left and right can-maps on each Bigalois object A(p)

Corollary 1.12. Thus, the data in De�nition 1.9 de�nes a bifunctor

A (De�nition 1.3) and hence a twisting group (De�nition 1.5):

• The map on points is clear from Ā.

• The functors A(H,L) map each edge p ∈ Σ to the chosen

representative A(p) and the only trivial morphism accordingly.

• By choice of A(IH) = H the identity morphism is strict. Thus,

also the respective coherence condition is trivial.

• The associativity constraint αS in Σ is strict, whereas αC comes

from vector spaces. Hence a natural transformation ι satisfying

coherency is given by the ιp,q satisfying the pentagonal identity.

Proof. Viewing A(p) as right Galois object yields the well-known

can−1(1A(p) ⊗−) : H 3 h 7→ h[1] ⊗ h[2] ∈ A(p)⊗ A(p)

We omit the �rst argument in what follows! De�ne ρLp by:

A(p−1)
ι−1

e,p−1

→ H�A(p−1)
can−1

−→ A(p)⊗A(p)�A(p−1)
ιp,p−1

→ A(p)⊗H εH→ A(p)

Note that we omitted the brackets on the (co-)tensor factors, because

can is right colinear with the comodule structure of the tensor product

induced by the right factor ([S04] Lemma 2.1.7). We have to verify the

de�ning condition from the pentagonal identity of the ι:

(ρLp ⊗ idA(p))ι
−1
p−1,p = (1A(p) ⊗ εHιp,p−1 ⊗ idA(p))(can

−1 ⊗ ι−1
p−1,p)ι

−1
e,e

Since ι−1
e,e = ∆H and again using the above right colinearity of can−1

(in the right factor) we furthermore have:

= (1A(p) ⊗ εHιp,p−1 ⊗ idA(p))(idA(p) ⊗ idA(p) ⊗ ι−1
p−1,p)(idA(p) ⊗ ι−1

p,e)can
−1

= can−1

In the last equation we simpli�ed (again by pentagonal identity) the

maps on in the right factors (εHιp,p−1 ⊗ idA(p))(idA(p) ⊗ ι−1
p−1,p)ι

−1
p,e to
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(εH ⊗ idA(p))ι
−1
e,p which is by counitality just idA(p).

This proves the de�ning condition by [S04] lemma 2.1.7:

µA(p)(ρ
L
p ⊗ idA(p))ι

−1
p−1,p = µA(p)can

−1 = 1A(p)εH

Analogously we may consider A(p) as left Galois object to obtain ρR.

�

We end this section by describing an additional property of Ω, that

is true when we obtain the twisting group from Bigalois objects as

described above. We already saw that iΣ lands in the center and the

H-coinvariants of Ω. In the Bigalois case, this is already all of Ωcoinv:

Theorem 1.13. We have an exact sequence of Hopf algebras

k→ kΣ iΣ−→ Ω
πH−→ H → k

The embedding s of H as A(e) is a cleaving/section, hence this central

extension is cleft. By [A96] p. 17 then Ω is isomorphic to a bicrossed

product

(kΣ)τ,ρ#σ,1H

Proof. The maps are by construction injective resp. surjective.

We �rst show generally that

Ker(πH) = Im(iΣ)+Ω = iΣ(Ker(εΣ))Ω

�⊃� follows easily, as the φ ∈ kΣ with 0 = εΣ(φ) = φ(e) are precisely

those with iΣ(φ) vanishing on A(e). By considering the basis of primi-

tive idempotents ep ∈ kΣ we have iΣ(ep)Ω = A(p), hence they generate

(for p 6= e) already all of Ker(πH).

Secondly, in the case of the A(p) being Bigalois objects we have:

ΩcoinvH =
⊕
p∈Σ

A(p)coinvH =
⊕
p∈Σ

1A(p)k = Im(iΣ)

Hence the sequence is exact in the sense of [A96] p. 7. Finally we note

that the natural embedding s : H = A(e) → Ω is a cleaving/section

in the sense of [A96] p. 18: It is clearly colinear and ∗-invertible via

s ◦ SH , as s is an algebra map. �
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7. Example: Grouprings

Let us discuss a easy situation where we can immediately write down

a twisting theory, namely for lazy Bigalois objects, see [BC06]. This

is of special interest for orbifolds of grouprings, as due to their co-

commutativity all Bigalois objects are lazy. Note that in this case our

construction has already been independently considered in [Bo97] to

enable projective liftings.

Lazy Bigalois objects are bicleft up to an automorphism and we shall

further see, that the automorphisms are trivial (bicleft case) if Ω should

again be a groupring (Lemma 1.17). Hence this presents the Hopf al-

gebraic description of the Schur-group setting in a more general

form (see Theorem 2.7): Some cocycles may appear multiple times and

others none, while the coproduct �xes a speci�c group extension.

Lemma 2.2 will show, that the above situation is contained in every

orbifold, which will lead us ultimately to the description of an orbifold's

coradical as sub-orbifold in Theorem 2.4.

Lemma 1.14. Given a group morphism σ from Σ to the group of

lazy 2-cocycles of H. Then for A(p) := σ(p)H the associated bicleft

Bigalois objects, there is a natural choice of the ι via ∆H that satis�es

pentagonal identity. We can also write down ρR,L from SH and hence

immediately obtain a twisting group.

De�nition 1.15. We will speak of a bicleft twisting group and use

the symbol jp, p ∈ Σ with je = idH for the associated bijective bicleaving

maps. Note that besides their bicolinearity, also their determination of

the special choices for the ι is of most importance!

Proof. Let σH,τ H,τσH be bicleft, i.e. twistings of H by a lazy

2-cocycle, isomorphic to H as bicomodule algebras. Then the cotensor

product σH�H
τH ∼=τσ H as Bigalois objects, we can even have such an

isomorphism induced by ∆H (via the above identi�cations with H, see

e.g. [BC06]). Clearly, taking these as ι, the pentagonal identity holds

by coassociativity of H. We obtain ρR,L again by Lemma 1.11. �

Note that this by no means is the only choice. One may obtain non-

bicleft Bigalois objects from lazy 2-cocycles by modifying the left co-

module structure by an automorphism of H.
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Remark 1.16. In fact, by a result of Schauenburg BiGal(k[G]) is a

semidirect product Aut(G) n H2(G,k×). If one changes the latter to

Z2(G,k×) we get an extension thereof, corresponding to Bigalois objects

with �xed cleavings. Any group morphism to this group can be turned

into a twisting theory by an argument similar to the above. This is a

model for the general case (see Remark 1.10).

Also, even bicleft Bigalois objects could be combined with the ι modi-

�ed by an obstructional 2-cocycle of Σ. However, both these cases will

later be excluded as an obstruction to pointedness in Corollary 2.5:

Lemma 1.17. A twisting group of a �nite-dimensional groupring k[Γ]

yields as orbifold again a groupring i� it is bicleft in the sense above

and Σ is abelian.

Proof. Suppose Ω = k[G] be a groupring. Since iΣ is a Hopf

algebra injection of kΣ, surely Σ has to be abelian and hence kΣ ∼=
k[Σ∗]. Also, πH has to come from a surjection of groups and hence

splits via some j as a coalgebra map. We may use the restrictions as

compatible bicleavings:

jp := j|A(p) : H → A(p)

Clearly je = idH and as the H-H-bicomodule structure can be recov-

ered by ∆Ω and πH , the jp are all bicolinear. Having j a coalgebra map

also shows they induce the ι via ∆H :

ιp,qjpq = (jp ⊗ jq)∆H

To �nally show ∗-invertibility, note by de�nition

1A(p)εH = µA(p)(idA(p) ⊗ ρkp)ιp,p−1

which me may concatenate with je = idH and use the above formula:

= µA(p)(jp ⊗ ρkpjp−1)∆H = jp ∗ (ρkpjp−1)

Bijectivity follows by normal basis (Doi/Takeuchi, see [S04]).

Conversely: We give an explicit isomorphism of coalgebras using the

bijective jp that induce the ι's

f : kΣ ⊗ k[Γ]→ Ω

f(φ⊗ g) :=
∑
p∈Σ

φ(p)jp(g)
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proven by explicit calculation:

∆Ω(f(φ⊗ g)) =
∑
q,r∈Σ

φ(pq)jq(g)⊗ jr(g) = f(φ(1) ⊗ g)f(φ(2) ⊗ g)

εΩ(f(φ⊗ g)) = φ(e)εH(je(g)) = φ(e) = εkΣ(φ)

�

The isomorphism at the end of the last proof also clari�es how the

choice of a speci�c group of 2-cocycles in Lemma 1.14 determines the

speci�c resulting group extension. This will be needed in section 3.1 to

yield a prescribed extended coradical:

Corollary 1.18. Consider a central extension Σ∗ → G→ Γ. It's well

known, that any set-theoretic split s : Γ→ G yields a u ∈ Z2(Γ,k×).

Σ→ Z2(Γ,k×)

p 7→ p ◦ u
then yields a bicleft twisting group structure Σ on k[Γ] and the corre-

sponding orbifolds is precisely Ω ∼= k[G] as Hopf algebras. Note this is

stricter than determining the groupring, as it completely �xes G.

Proof. Extend s by left multiplication (and then linearly) to an

isomorphism of coalgebras, multiplicatively only in the left factor:

kΣ ⊗ k[Γ] ∼= k[Σ∗]⊗ k[Γ]→ k[G]

The concatenation with the f−1 in the proof above yields again a bi-

jective coalgebra map Ω → k[G], but now also an algebra map as

seen on each A(p): Di�erent A(p), A(q) map to di�erent idempotents

ep, eq ∈ kΣ, hence cancel. Elements jp(g), jp(h) ∈ A(p) map to

k[G] 3 epj(g)j(h) = epj(gh)c(g, h) = epj(gh)c(g, h)(p)

which is exactly the multiplication in A(p) ∼= kc(g,h)(p)[Γ] under the

natural correspondence. �
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Properties

We now want to discuss the structure of the Hopf algebras de�ned above

in more depth in case of Bigalois objects over some pointed and �nite-

dimensional H. We calculate the coradical and in case Ω is pointed the

space of skew-primitives (especially the link-decomposition) and thus

�nd conditions for pointedness and link indecomposibility.

Remark 2.1. Since s is a multiplicative splitting of πH preserving

ε, left/right integral ΛH carry to resp. integrals ΛΩ. Especially if H

is �nite-dimensional, the well known criterion of Eilenberg/Sweedler

(�Maschke�) asserts that Ω is semisimple i� H is.

1. The Coradical

First, we concern ourselves with the coradical Ω0, i.e. the sum of all

simple subcoalgebras of Ω and clarify pointedness. Denote Γ = G(H)

and G = G(Ω) in what follows. We prove now, that we may restrict

our study to the case of a groupring H in Lemma 1.17:

Lemma 2.2. Take a cleft Bigalois object A(p) and Γ �nite:

(1) For every g ∈ Γ there is a z ∈ A(p) with δR(z) = z⊗g, unique
up to a scalar factor k×.

(2) For all z above, there is a unique h ∈ Γ with δL(z) = h⊗ z.
(3) The subspace G(p) ⊂ A(p) spanned by the z obtained above for

all g ∈ Γ is an underlying k[Γ]-k[Γ]-Bigalois object (namely

the image of k[Γ] under any left- or right cleaving). Especially

G(e) = k[Γ] ⊂ H = A(e) itself.

(4) The restriction of any ιp,q to G(pq) maps bijectively to G(p)�G(q)

and the restriction of ρR,L to G(p−1) maps to G(p). Hence we

get an underlying twisting group of k[Γ] and its orbifold is a

sub-Hopf algebra of Ω.

Remark 2.3. As in the later case of the skew-primitives (Lemma 2.8)

one may combine the unique left-right-association g ↔ h for each p ∈ Σ

43
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to a group homomorphism Σ→ Aut(Γ). Since we will only be interested

in G(p) being bicleft (pointedness!), this will always be trivial and g = h

above; so we shall pursue this no further.

Proof.

1. By using any right-colinear cleaving j, one may obtain such a z =

j(g), which by ∗-invertibility of j is even invertible. Now for a second

z′ ful�lling the condition, the expression z−1z′ is coinvariant and hence

a scalar.

2. Take such a g, z; since δR,L commute, by uniqueness δL(z) is also of

the form h⊗ z, where h ∈ H. But this already concludes h ∈ Γ.

3. Using the above invertibility of each z, we �nd a split of the can-

map on both sides, as can(z, z−1b) = g⊗ b. Since Γ is �nite, bijectivity

follows by dimension (probably �niteness is unnecessary, as our split is

colinear).

4. First, the bicolinearity of the ι ensures the above property left/right-

sided for the left/right tensor factor(s) of ι(z) ∈ A(p)�A(q) and we

just saw this implies the respective other-sided version, so both tensor

factors land in G(p) resp. G(q). We show the same for ρL (ρR): Note

�rst that, as above, for any g ∈ Γ we have ιp−1,p(g) = s(z ⊗ w) with

0 6= s ∈ k and z, w respective left/right cleaving images of g. Thus the

de�ning condition of ρL reads:

ρL(z)w = 1A(p)

Again using invertibility ρL(z) = w−1 ∈ G(p). Varying g and extending

linearly, this concludes the assertion on all of G(p−1). �

Theorem 2.4. Let H be �nite-dimensional, Ω an orbifold of Bigalois

objects (De�nition 1.9) and denote by L ⊂ Ω the sub-Hopf algebra

constructed as the groupring orbifold above:

L =
⊕
p∈Σ

G(p) ⊂ Ω

Then k[G(Ω)] ⊂ L ⊂ Ω0. If furthermore H is pointed, the second

inclusion is an equality: L = Ω0.

Proof. k[Γ] is semisimple, and so is its orbifold by Remark 2.1.

With �nite dimension and characteristic zero this also implies cosemisim-

plicity (Larson/Radford); hence L is contained in the coradical Ω0.



1. THE CORADICAL 45

Suppose further we are given a grouplike

G(Ω) 3 z =
∑
p∈Σ

zp

Because πH is a Hopf algebra map, ze = πH(z) is also grouplike in

H = G(e). The grouplike condition in Ω reads ι−1
p,q(zpq) = zp ⊗ zq and

hence by part 4 of lemma 2.2 all zp ∈ G(p) and thus z ∈ L.

For the second assertion, consider any simple subcoalgebra C ∈ Ω:

Since the H-H-bicomodule structure can be obtained by coproduct

and the Hopf algebra map πH : Ω → H restricting to A(e) = H, C

is also a H-H-subbicomodule. Since H is pointed, we can �nd an 1-

dimensional subcomodule vk ⊂ C with δL(v) = g ⊗ v for some g ∈ G.
The direct summands vp of v in each sub-bicomodule algebra A(p)

share this property, so by de�nition vp ∈ G(p). Hence this v implies

a nontrivial intersection of C with the group orbifold and by assumed

simplicity C is already entirely contained in L. �

Since we already discussed the orbifold of a groupring in section 1.7

and especially when it is again a groupring in Lemma 1.17, we can

immediately give necessary and su�cient conditions for pointedness:

Corollary 2.5. Let H be pointed and �nite-dimensional, then an orb-

ifold of Bigalois objects Ω is pointed i� Σ is abelian and the above

restriction of the twisting group to the grouplikes (G(p))p∈Σ is bicleft.

We will refer to these conditions as the usual setting , under which

we will work throughout the rest of this thesis.

Also, the characterization of bicleft twisting groups gives us a useful

map restricting the twisting 2-cocycles underlying the A(p) to k[Γ]:

res : Σ
σ→ Z2(Γ,k×)→ H2(Γ,k×)

It controls G, as it will enable us to write G as a double extension of

Γ: The �rst is Schur-group-alike in the sense that it is also made up

of di�erent (but not necessarily all) noncohomological group rings, i.e.

the image of res. This will turn out to preserve link-indecomposability.

De�nition 2.6. A stem extension Σ∗ → G → Γ is a central exten-

sion with Σ∗ ⊂ G′.
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The second extension is made up of the trivial twistings, and is in con-

trast solely abelian in the sense that it has trivial intersection with the

commutators of G and hence already fully appears as abelianized ex-

tension Gab → Γab. It exhibits a tendency to be decomposable, though

not in general (see Theorem 2.10 and the counterexample).

Theorem 2.7. Every central extension G/Σ∗ ∼= Γ can be decomposed

into a stem extension G → N and an extension N → Γ, where the

kernel has trivial intersection with the image of G′ (this is folk).

In our usual setting, the respective kernels turn out isomorphic to Im(res)

and Ker(res). We prove this by characterizing Σ∗∩G′ as exactly those
characters of Σ factorizing over res. Especially for res injective, G is

a stem extension of Γ, and for res bijective, G is a Schur-cover of Γ.

Proof. For the general decomposition set N := G/(Σ∗ ∩ G′).
Clearly G → N is a stem extension. The kernel of N → Γ on the

contrary is Σ∗/(Σ∗ ∩ G′) and hence has trivial intersection with N ′ =

G′/(Σ∗ ∩G′).

We prove the actual claim via the given characterization of commu-

tators by the factorizing condition, which immediately shows the �rst

kernel to be Im(res)∗ and hence the second kernel to be Σ∗/Im(res)∗ ∼=
Ker(res)∗ - so by duality of abelian groups we are done.

Any 1-dimensional representation f of k[G] has exactly one direct sum-

mand p ∈ Σ where its restriction is again a 1-dimensional represen-

tation f |G(p) and 0 elsewhere. But properly twisted grouprings have

no such representations (e.g. since there is a 1:1-correspondence be-

tween these representations of any G and the Schur group D(G) due

to D(G)ab = Gab). Hence G(p) is always untwisted and p ∈ Ker(res).

Thus, some φ ∈ Σ∗ ⊂ G factorizes, i� we have φ(p) = 1 for all such

p ∈ Ker(res), i� f(φ) = 1 for all 1-dimensional representations f . But

G′ is exactly the set of all grouplikes in the kernel of every 1-dimensional

representation. �
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2. The Skew Primitives

We want to show that Ω1/Ω0 = H1/H0, i.e. the nontrivial skew-primitives

in Ω are unique πH-liftings of the non-trivial skew-primitives inH. How-

ever, the space will decompose to skew-primitives over di�erently lifted

grouplikes according to an eigenspace decomposition under the action

of �twisted symmetries� θ (the name becomes clear in Theorem 3.2 and

part 2). Then we will give a criterion for link-indecomposability solely

in terms of the res-map.

As with the grouplikes we need to link left- and right coaction on the

primitives (compare Lemma 2.2), yielding the twisted symmetries:

Lemma 2.8. For a Bigalois object A(p) in the usual setting, suppose

we are given a g ∈ Γ and X ∈ Prim1,g a skew-primitive in H:

(1) There exists a z ∈ A(p) with

δR(z) = z ⊗ g + 1A(p) ⊗X

unique up to adding jp(g)k, where jp : k[Γ]→ G(p) ⊂ A(p) is

the bicleaving of the twisting group of the grouplikes demanded

by the usual setting (Corollary 2.5).

(2) There is a corresponding skew-primitive Y ∈ Prim1,g with

δL(z) = 1⊗ z + Y ⊗ jp(g)

subsequently unique up to adding (g − 1H)k.
(3) This correspondence gives rise to a bijective map

θ(p) : H1/H0 → H1/H0

preserving the trivial skew-primitives H0 ∩ Prim1,g.

(4) These maps can be combined to a group morphism:

θ : Σ→ GL(H1/H0)

Proof.

1. The existence is clear by an arbitrary cleaving. Now let z, z′ both

have the property we demanded, then

δR(z − z′) = (z − z′)⊗ g

which implies z − z′ ∈ jp(g)k by the uniqueness in Lemma 2.2.

2. Write down a completely general expression for the left coaction of
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an arbitrary such z:

δL(z) = 1⊗ z +
∑
i

ai ⊗ bi

We �rst use the relation δLδR = δRδL:

(δL ⊗ idH)δR(z) = (1⊗ z ⊗ g +
∑
i

ai ⊗ bi ⊗ g) + 1⊗ 1A(p) ⊗X

(idH ⊗ δR)δL(z) = (1⊗ z ⊗ g + 1⊗ 1A(p) ⊗X) +
∑
i

ai ⊗ δR(bi)

hence all bi are in jp(g)k again by uniqueness and we may write:∑
i

ai ⊗ bi =: Y ⊗ jp(g)

To clarify Y further we use that δL is a comodule structure:

(idH ⊗ δL)δL(z) = (1⊗ 1⊗ z + 1⊗ Y ⊗ jp(g)) + Y ⊗ g ⊗ jp(g)

!
= (∆H ⊗ idA(p))δ

L(z) = 1⊗ 1⊗ z + ∆(Y )⊗ jp(g)

which concludes Y ∈ Prim1,g. A di�erent choice z′ = z + jp(g)t with

t ∈ k just changes Y by (g − 1H)t:

δL(v + jp(g)t) = 1⊗ v + Y ⊗ jp(g) + g ⊗ jp(g)t

= 1⊗ (v + jp(g)t) + (Y + (g − 1H)t)⊗ jp(g)

3. We consider θ(p) : X 7→ Y + (g − 1H)k, which is a well de�ned

map H1 → H1/H0. Since again by uniqueness (Lemma 2.2) trivial

skew-primitives are sent to trivial skew-primitives, this map factorizes:

θ(p) : H1/H0 → H1/H0

Again, considering the �left-to-right� situation instead yields an inverse

by the uniqueness property shown above.

4. Unitality is clear as H = A(e) is bicleft (with the trivial cleaving),

so let us check multiplicativity: For any p, q ∈ Σ and X ∈ Prim1,g, we

may choose a zX ∈ A(q) and get a Y ∈ Prim1,g as above. Subsequently

we obtain for Y some zY ∈ A(p) and Z ∈ Prim1,g, which re�ects the

situation θpθq(X) = Z.

To construct a respective element zXY ∈ A(pq), note �rst that

z := 1A(p) ⊗ zX + zY ⊗ jq(g) ∈ A(p)�A(q)
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as calculated explicitly from the above choices:

(δR ⊗ idA(q))z = (1A(p) ⊗ δL)z

= 1A(p) ⊗ 1⊗ zX + 1A(p) ⊗ Y ⊗ jq(g) + zY ⊗ g ⊗ jq(g) =

Note further that:

δR(z) = 1A(p)⊗zX⊗g+zY⊗jq(g)⊗g+1A(p)⊗1A(q)⊗X = z⊗g+ι−1
p,q(1A(pq))⊗X

δL(z) = 1⊗1A(p)⊗zX+1⊗zY⊗jq(g)+Z⊗jp(g)⊗jq(g) = 1⊗z+Z⊗ιp,q(jpq(g))

Bicolinearity preserves these two properties for zXY := ιp,q(z) ∈ A(pq)

and hence the latter element concludes θpq(X) = Z. �

Now we can prove the main theorem of this section, stating how θ

controls Ω1. The main idea is to simultaneously diagonalize all θ(p)

(Σ is abelian!). This yields a decomposition of Prim1,g into eigenspaces

that πH-lift to di�erent spaces Prim1,gφ where gφ ∈ G are πH-lifts of

g determined by the respective eigenvalue in φ ∈ Σ∗. The fact that θ

is only de�ned up to trivial skew-primitives re�ects the fact, that on

the other hand their number greatly increases with the grouplikes. This

adds some some technicality to the proof below:

Theorem 2.9. Take a θ-eigenbasis X̄i of H1/H0 adapted to Prim1,g

with eigenvalues φi ∈ Σ∗. For every representing 1-g-skew-primitives

Xi ∈ H1 there exists a πH-lift zi ∈ Ω1 that is 1-gφ-skew-primitive for

G 3 gφi :=
∑
p∈Σ

jp(g)φi(g)

(see Lemma 1.14). This already yields all skew-primitives in Ω1 up to

trivial ones. Especially as vector spaces Ω1/Ω0 = H1/H0.

Proof. Note that in the usual setting Σ is abelian and H �nite

dimensional, so we really can diagonalize all θ(p) simultaneously on

H1/H0. Moreover, as θ preserves the Prim1,g, the eigenbasis is indeed

adapted to this decomposition. It's also clear, that we can choose rep-

resentatives in the Prim1,g by multiplying a suitable grouplike.

For the �rst claim we restrict our attention to one such θ-eigenvector

X ∈ Prim1,g with eigenvalue φ, dropping the index i. By the preceding

lemma, we can �nd for every q ∈ Σ a zq ∈ A(q), unique up to jq(g)k,
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with the properties given there, especially a left analogon Y ∈ H1.

Since Y = φ(q)X by the de�nition of θ(q) we have for some scalar t:

Y = φ(q)X + (g − 1H)t

By taking zq−jq(g)t instead, we have unique choices for zq with t = 0

for each q ∈ Σ; especially ze = X ∈ H.

Exactly as in the preceding lemma's proof 4 (for zX = zq and Y =

φ(q)X, zY = φ(q)zp), we can form

1A(p) ⊗ zq + φ(q)zp ⊗ jq(g) ∈ A(p)�A(q)

and this and its ιp,q-image enjoy the same properties with Z = φ(p)φ(q)X.

Hence by uniqueness the latter is already equal to zpq and thus:

ι−1
p,q(zpq) = 1A(p) ⊗ zq + φ(q)zp ⊗ jq(g)

Now �nally the following πH-lifting of X

z :=
∑
p∈Σ

zp

can easily be calculated to be a gφ-skew-primitive:

∆(
∑
r∈Σ

zr) =
∑
p,q∈Σ

ι−1
p,q(zpq) =

∑
p,q∈Σ

1A(p) ⊗ zq + φ(q)zp ⊗ jq(g)

= 1Ω ⊗ (
∑
q

zq) + (
∑
p

zp)⊗ (
∑
q

φ(q)jq(g)) = 1⊗ z + z ⊗ gφ

To show the second claim, we analyze the kernel K of the map

Ω1/Ω0
πH−→ H1 → H1/H0

where we know the restriction lands in πH(Ω1) ⊂ H1 and the map fac-

torizes over the Ω0 quotient, both because πH is a Hopf algebra map.

Note we've just proven above, that this is a surjection.

Take an element z =
∑

p∈Σ zp ∈ Ω1 with z ∈ K, meaning we have ze =

πH(z) ∈ k[Γ] = G(e). By Lemma 2.2 for every p ∈ Σ the A(p)⊗A(p−1)-

term ι−1
p,p−1(ze) is ∆(z) again lands in G(p)⊗G(p−1). But on the other

hand, skew-primitiveness implies this summand to be in

G(p)⊗ zp−1 + zp ⊗G(p−1)

concluding all zp ∈ G(p) and thus z ∈ Ω0. Hence K is trivial and the

above map is a bijection. �
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While the nontrivial skew-primitives get uniquely lifted, still something

worth noticing happens. Recall the de�nition of link-components for

a pointed Hopf algebra. One de�nes a graph called quiver, whose nodes

are G(H) and between g and h an edge i� there exist nontrivial g-h-

primitives (trivial are the scalar multiples of g − h). Now one looks at

the connected components of the graph. A connected H is called

link-indecomposable . Another way of putting this is to just consider

the edges joining 1, i.e. the 1-g-primitives: The connected component

of 1 then is just the subgroup of G(H) generated by all g, for which a

nontrivial 1-g-primitive exists.

Note that it is clear from the above result and the Hopf algebra map πH
that if g, h ∈ Γ ⊂ H are disconnected, so are all liftings gφ, hχ ∈ G ⊂ Ω.

On the other hand we have:

Theorem 2.10. If H is link-indecomposable, there is a subgroup M ⊂
Gab with surjective restriction of Gab → Γab, such that the entire preim-

age M of M in G is precisely the link-component of 1.

Especially the number of connected components of Ω0 is at most |Ker(res)|,
thus if res is injective, Ω is also link-indecomposable.

Remark 2.11. The proof below is a slight re�nement of the well known

fact that for stem extension Gab = Γab (the case of res injective above),

any lifts of Γ-generators already generate all of G.

Proof. Because H is supposed link-indecomposable, we have a

set of nontrivial 1 − gi−skew-primitives Xi, such that the gi gener-

ate Γ = G(H). Now by the previous result, these can be lifted to

1− (gi)φi−skew-primitives for some φi, i.e. for some liftings of gi under

G → Γ. We want to characterize the subgroup M of G generated by

these in terms of its image M in Gab:

First note that the restriction of G → Γ to M remains surjective,

because the images gi generate Γ (the same is certainly true in the

abelianized situation, which proves this condition on M).

Next we observe, that because Σ∗ → G→ Γ is a central extension, the

commutator subgroupM ′ is already all of G′, because in every product

of commutators in G we may change the entries by Σ∗ (i.e. in their
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�bers) without changing the actual commutator, until all lay in M .

Finally consider the extension G → Gab, sending M to M . Because

ker = G′ = M ′ ⊂ M , M is the entire preimage of M , concluding the

main assertion.

The numerical bound follows from this, the �surjective restriction�-

condition above and Theorem 2.7:

[G : M ] = [Gab : M ] ≤ [Gab : Γab] = [Nab : Γab] = [N : Γ] = |Ker(res)|

�

The precise description of the link-component of 1 is included in the

statement, because the estimation alone may sometimes be to crude:

In section 4.4 we shall see an example with

Gab
∼= Z4

mod 2−→ Z2
∼= Γab

so res is not injective, but nevertheless the only possibleM is obviously

all of Gab. Hence this Ω is still link-indecomposable, even though we

are not dealing with a stem extension.

Remark 2.12. Note that incorporating knowledge from the θ one may

thoroughly sharpen the �surjective restriction�-condition on M above,

because there we only used one lifting per g ∈ Γ.

Take as an example Gab = Z6 = 〈g〉 and Γab = Z2 = 〈h〉: If the lift of

any 1 − a−skew-primitive (a = h) yields a lift aφ = g, g5, we are �ne

(M = Gab), yet we cannot rule out the case M = 〈g3〉 6= Gab. But if

we know that θ has two di�erent eigenvalues, M is again always all of

Gab and the orbifold stays indecomposable.

One could thus derive combinatorial lower bounds on the number of

di�erent eigenvalues depending on the �new� cyclic factors in Gab →
Γab, that always ensure link-indecomposability � but we do not pursue

this any further here.



CHAPTER 3

Orbifoldizing back and forth

1. Constructing Smash-Examples

In this section, we want to give a practical approach to quickly write

down a twisting group (Σ, A, ι, ρ) for a Hopf algebraH, that is Radford-

products of the coradical k[Γ] with a braided Hopf algebra B(M). In-

troducing the notion of twisted symmetry we will be able to choose

the twisting group such that the orbifold Ω has a prescribed coradical

k[G], where G is a stem-extension of Γ by Σ.

After setting up some machinery, our �rst example is originally due

to Milinski and Schneider [MS00] and over G = D4, which we stem-

extend from Γ = Z2 ⊗ Z2, where we can use the classi�cation results

from Heckenberger [H08].

This situation will be analyzed in much greater depth in the

second part of this thesis � the non-expert reader is referred

to the introductions there, especially regarding Nichols al-

gebras on see page 2. The main purpose of this section is to

connect the explicit, but rather ad-hoc constructions in part 2

(Theorems 4.4 and 5.1) to the abstract approach taken above.

Assumption 3.1. Suppose for the remainder of the section Γ a �nite

group and H a �nite-dimensional, indecomposable Hopf algebra of the

form H = k[Γ]#B(M) with B(M) the Nichols algebra of some k[Γ]-

Yetter-Drinfel'd module M . We demand further M to be minimally

indecomposable, i.e. no proper indecomposable submodule exists.

Note that this is not as restrictive as it seems at �rst glance: If there at

all exists a �nite-dimensional, pointed, indecomposable Hopf algebra

with the prescribed coradical k[Γ], we may take its sub-Hopf algebra

H ′ generated by grouplikes and skew-primitives and consider gr(H ′)

which is of the form demanded. To ful�ll the last condition, we choose

53
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any minimal set of simple Yetter-Drinfel'd modules, that is still inde-

composable and take H the sub-Hopf algebra generated by these.

Theorem 3.2. Suppose we are given a stem-extension Σ∗ → G→ Γ

and a �nite-dimensional, indecomposable Hopf algebra H = k[Γ]#B(M)

with coradical k[Γ]. To reach the speci�c coradical k[G], we identify

Σ with a subgroup of Z2(Γ,k×) (Corollary 1.18). Note that for stem-

extensions by Theorem 2.7, the σ ∈ Σ belong even to distinct cohomol-

ogy classes, so the especially the map Σ→ Z2(Γ, k×) is injective.

Suppose further a given linear action θ of Σ on H as twisted sym-

metries, i.e. θσ is for each σ ∈ Σ a Hopf algebra isomorphism Hσ
∼= H

to the Doi-twist (with the trivial extension of σ to H, see proof below).

Note that we denote the Σ-argument σ by a lower index. Suppose fur-

ther, that θσ restricted to the coradical is the trivial identi�cation.

Then (this is the content of the theorem) we can de�ne a twisting group

Σ of H in accordance with the usual setting, where res (p. 45) bijec-

tively maps every σ ∈ Σ to its own cohomology class [σ] ∈ H2(Γ, k×)

and the θ de�ned in Theorem 2.8 coincides with the one above.

Thus by Theorems 1.6, 2.10 and 2.4 the orbifold construction yields

a �nite-dimensional link-indecomposable orbifold Hopf algebra Ω with

coradical k[G].

Remark 3.3. Actually it is already possible to construct the twisted

symmetry solely on the Yetter-Drinfel'd modules M (see De�nition

4.2), which greatly eases their construction by using their structure the-

ory. This is used in part 2, especially Theorem 4.4.

Proof. Out aim is to construct a twisting theory (especially all

A(σ) and ιτ,σ) ful�lling the above assertions. Note �rst that since H ∼=
k[Γ]#B(M) is a Radford biproduct, we may extend each given σ ∈
Σ ⊂ Z2(Γ,k×) trivially to a 2-cocycle over H (e.g. [CF04] Prop. 4.2)

by:

σ(g1#x1, g2#x2) := ε(x1)ε(x2)σ(g1, g2)

Restricting again to k[Γ] shows that the res-map is as described.
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Next the twist σH is a Hσ-H-Galois object. To turn this into an H-

H-Bigalois object A(σ), we concatenate to the left with the assumed

given Hopf algebra isomorphism θp. Note that thereby θσ restricted to

skew-primitives matches the θp-maps from Lemma 2.8.

Having de�ned the Bigalois objects A(σ), let us turn to the other struc-

tural elements of a twisting group; we need to establish the existence

of some ι's. The following lemma generalizes the well-known fact, that

lazy 2-cocycles can be multiplied, to the present situation where the

cocycles are trivial extensions of lazy ones.

Lemma 3.4. Each θσ : Hσ → H gives rise to an isomorphism of Bi-

galois objects (where the product 2-cocycle τσ coincides with the trivial

extension of the product of group 2-cocycles to H):

ι−1
τ,σ : τσH ∼= τH� σH

h 7→ θσ(h(1))⊗ h(2)

Here and in the proof we use extensively the natural (right colinear)

identi�cation (resp. cleavings) of the Bigalois objects with H.

Proof. It is clear from coassociativity and the left comodule al-

gebra structure on σH de�ned above, that ι−1 lands in the cotensor

product. Right colinearity is obvious, whereas left colinearity relies on

the fact that we chose the isomorphisms such that θτθσ = θτσ.

To check ι−1
τ,σ is an algebra map (unitality is clear), note that θ is gen-

erally not H-colinear, but k[Γ]-colinear, as detected on G(σ), where θσ
was trivial. This quotient comodule structure is however all we need to

calculate the trivially extended 2-cocycles: For any a, b ∈ H

ι−1
τ,σ(a) ·(A(τ)�A(σ)) ι

−1
τ,σ(b)

= τ(θσ(a(1))(1), θσ(b(1))(1))θσ(a(1))(2)θσ(b(1))(2) ⊗ σ(a(2), b(2))a(3)b(3)

= τ(a(1), b(1))θσ(a(2))θσ(b(2))σ(a(3), b(3))⊗ a(4)b(4)

because θ : Hσ → H is multiplicative with multiplication in Hσ given

by σ(a(1), b(1))a(2)b(2)σ−1(a(3), b(3)) we �nally get:

= τ(a(1), b(1))σ(a(2), b(2))θσ(a(3)b(3))⊗ a(4)b(4)

= θσ((a ·A(τσ) b)
(1))⊗ (a ·A(τσ) b)

(2) = ι−1
τ,σ(a ·A(τσ) b)

�
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The ι−1
σ,τ satisfy (the opposite version of) the pentagonal identity by the

group law θσθtau = θστ and the fact, that Hσ
∼= H as a coalgebra and

θσ are coalgebra morphisms:

(ι−1
σ,τ ⊗ id)(ι−1

στ,ν(h)) = (ι−1
σ,τ ⊗ id)(θν(h

(1))⊗ h(2))

= θτθν(h
(1))⊗ θν(h(2))⊗ h(3)

= θτν(h
(1))⊗ θν(h(2))⊗ h(3)

= (id⊗ ι−1
τ,ν)(θτν(h

(1))⊗ h(2)

= (id⊗ ι−1
τ,ν)(ι

−1
σ,τν(h))

Thus the inverse maps ισ,τ as well satisfy the pentagonal identity. Hence

we have gathered all necessary data to �nd a ρR,L by Lemma 1.11 and

obtain a twisting group.

The orbifold Ω is pointed by Corollary 2.5 with coradical as prescribed

and link-indecomposable by Theorem 2.10, as res is bijective. This

concludes the proof of Theorem 3.2. �

2. A Known Example Over D4

In [MS00] Milinski and Schneider gave examples of indecomposable

Hopf algebras over the non-abelian Coxeter groups D4,S3,S4,S5. We

want to show how the former can be constructed as an orbifold of

the abelian case. In the framework of [H08], we may simply try to

add suitable Yetter-Drinfel'd modules to force the existence of twisted

symmetries and apply Theorem 3.2.

Care has to be taken, that the sum has again �nite-dimensional Nichols

algebras. While this is the case in the later �unrami�ed� examples in

section 6.3 (the present example is a toy-model for this), in other cases

we will rather rely on the Yetter-Drinfel'd module to be already inher-

ently twisted symmetric (�rami�ed� examples in sections 6.4 and 6.5 as

well as the ad-hoc orbifolds over S4,S5 in section 4.4).

Now to the construction � we take the 4-dimensional diagonal Yetter-

Drinfel'd module de�ned by the following grouplikes and characters:

Γ = Z2 × Z2 = 〈g〉 × 〈h〉
gx = gu = g gy = gv = h
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χx = χv = (−1,−1) χu = (−1,+1) χy = (+1,−1)

where the tuples denote the resp. characters image of g, h and we use

as an index set I directly the skew-primitives

x, y u, v

with Cartan matrix of A2∪A2. We do not impose nontrivial linking- nor

root vector relations, so the resulting �nite-dimensional Hopf algebra

H (which is clearly link-indecomposable) is a Radford biproduct of the

groupring and a Nichols algebra.

Remark 3.5. For the convenience of the reader, we write down the

relations in H as they follow from [AS], without ever needing them:

• It is generated by the group

Γ = 〈g, h〉

and skew primitives x, y, u, v and relations

• The conjugation action of group elements on skew-primitives:

gixj = χj(gi)xjgi i, j ∈ {x, y, u, v}

• The trivial braided adjoint action (Serre-Relations):

xu+ ux = 0 xv + vx = 0

yu− uy = 0 yv + vy = 0

• Two identical Serre Relations for A2:

xyxy + yxyx = 0 uvuv + vuvu = 0

• Two identical sets of trivial root relations:

x2 = y2 = 0 u2 = v2 = 0

The dimension of the Nichols algebra is 64 and hence dimH = 64 · 4.

Now to the construction: H2(Γ,k×) = Z2 = {1, [σ]} and D4 is a stem-

extension (even a Schur cover) of Γ by its center. We may �nd a rep-

resenting 2-cocycle such that k[Γ] ⊕ kσ[Γ] ∼= k[D4] by Corollary 1.18.

Namely, s : D4 → Γ lifts the elements 1, g, h, gh to 1, b, ab, a3 = bab
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where a4 = b2 = 1 generate D4, we get (columns and rows resp.

1, g, h, gh):

σ =


1 1 1 1

1 1 1 1

1 −1 1 −1

1 −1 1 −1


To check the condition in Theorem 3.2 we need to �nd an involutory

twisted symmetry. Using the calculation of the Doi twisting in advance

(Theorem 4.4) we calculate the twisted centralizer characters, where

the centralizers are all of Γ:

σ(−, g)σ−1(g,−) = (+1,−1) = χx/χu = χu/χx

σ(−, h)σ−1(h,−) = (−1,+1) = χy/χv = χv/χy

Hence the Doi twisting switches χx ↔ χu and χy ↔ χv and we are

done by choosing θ(σ) to be switching x ↔ u and y ↔ v. Thus

Z2-orbifoldizing yields an indecomposable Hopf algebra of dimension

dimH · |Σ| = 64 · 4 · 2 with coradical D4.

To connect to the results in [MS00] we calculate the new skew-primitives

using Theorem 2.9. They are the eigenvectors to the trivial eigenvalue

+ = εΣ or the unique nontrivial − ∈ Σ∗:

x1 := x+ u ∈ Prim1,g+ = Primj(g) = Prim1,b

x2 := y + v ∈ Prim1,h+ = Primj(h) = Prim1,ab

x3 := x− u ∈ Prim1,g− = Prima2j(g) = Prim1,a2b

x4 := y − v ∈ Prim1,h− = Prima2j(h) = Prim1,a3b

Note that in cit. loc. Schneider and Milinski announced, that introduc-

ing the nonhomogeneous x, y, u, v considerably ease the calculation of

the relations, reducing them to usual A2 ∪ A2-relations. The present

approach may be viewed as a direct explanation for this phenomenon.

3. Reconstructing Twisting Groups

So far we have used orbifoldization to constructed pointed Hopf alge-

bras Ω, whereG = G(Ω) is a central extension by the twisting group Σ∗.

One may conversely ask, which Hopf algebras can be constructed this

way. There is a surprisingly simple characterization: By construction
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kΣ ∼= k[Σ∗] is central in Ω and it turns out, this is already su�cient.

We will demonstrate in the second part (the exemplary sections 5.3

as well as sections 7.2 to 7.4), how this result can be used to clas-

sify pointed Hopf algebras with certain prescribed coradicals. Surely a

central subgroup Σ∗ ⊂ G needs not to be central in all of Ω - counterex-

amples can be provided already by a Doi twist. However conversely, for

a certain group theoretical situation we can �nd �enough� 2-cocycles of

G to force centrality of Σ in minimal examples via a respective inverse

Doi twisting.

Theorem 3.6. A �nite-dimensional pointed Hopf algebra Ω arises as

an orbifold by a central subgroup Σ∗ ⊂ G(Ω) =: G of some smaller

Hopf algebra H with Γ := G(H) ∼= G/Σ∗ i� Σ∗ is central in all of Ω.

Remark 3.7. Note that the construction below reminds on Masuoka's

push-out construction [M01] of Bigalois objects, to which it reduces in

the case Ω = k[G]#A. In general, however, our ideals are not conjugate,

but given directly.

Proof. Certainly k[Σ∗] is central in every orbifold. Thus suppose

conversely a given pointed �nite-dimensional Hopf algebra Ω, G with

some subgroup Σ∗ ⊂ G central in Ω.

As already noted, Corollary 1.18 allows us to consider k[G] as an

orbifold of k[Γ] := k[G/Σ∗] and respectively to identify p ∈ Σ with

(possibly equal) group 2-cocycles σp. De�ne thus the following algebra

homomorphisms on k[G] projecting on each Bigalois object (twisted

groupring):

fp : k[G]→ kσp [Γ] = G(p)

with kernels generated by φ− φ(p)εΣ for respectively all φ ∈ Σ∗ ⊂ G.

Since by assumption k[Σ] is central in all of Ω we get two-sided ideals:

Ip = ker(fσp)Ω

First consider the case p = e, i.e. fe the quotient map k[G]→ k[Γ] with

kernel generated by φ− 1. As such, Ie thus is a Hopf ideal. De�ne

H := Ω/Ie
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and consider Ω as a H-H-bicomodule algebra (via ∆,∆). Since the

φ ∈ Σ∗ are grouplike and mapped to 1H by the above quotient map, Σ∗

and the ideals' generators φ−φ(σ)εΣ are coinvariants. Hence all Iσ are

sub-bicomodules and the quotients Ω/Iσ areH-H-bicomodule algebras.

We show that they are even Bigalois object � consider therefore their

can-map:

Ω/Ip ⊗ Ω/Ip → Ω/Ie ⊗ Ω/Ip

It's surjective, because it is induced by the bijective canΩ. Then bijec-

tivity follows from dimension.

Some ιp,q : Ω/Ipq ∼= Ω/Ip�Ω/Iq satisfying the pentagonal identity, may

be chosen from the isomorphism ∆ : Ω→ Ω�Ω as:

∆(φ−φ(pq)εΣ) = φ⊗φ−φ(pq)εΣ⊗ εΣ = (φ−φ(p)εΣ)⊗ (φ+φ(q)εΣ)+

+(φ+ φ(p)εΣ)⊗ (φ− φ(q)εΣ) ⊂ Ip ⊗ Ω + Ω⊗ Iq
By construction ι is injective and by dimension bijective.

Adding all quotients we get a map of bicomodule algebras:

f : Ω→
⊕
p∈Σ

Ω/Ip

It is injective, since the kernels intersect trivially (for φ 6= η ∈ Σ∗

there must be some p ∈ Σ with φ(p) 6= η(p)). Bijectivity of f follows

again by dimension. By construction of the ι this is also a coalgebra

map (considering the right side as orbifold). ρR,L can immediately be

recovered from SΩ by their de�ning properties. �



Part 2

Orbifoldizing Nichols Algebras





Basic Concepts:

Nichols Algebras As Borel Part Of Quantum Groups

Instead of attempting a full historical overview, let us start empirically

and then sketch a line of development1 leading to the central ideas and

notions, to which this thesis hopes to make a small contribution:

The known �quantum groups�, such as Uq(g) or their �nite-dimensional

truncations, are constructed as follows � conversely the very same

decomposition will govern the classi�cation as well (see below)

• The Cartan algebra, a groupring k[Γ] spanned by Ki.

• Two dual quantum Borel parts B(M),B(M∗) generated by

the vector spacesM,M∗ spanned2 by the skew-derivational/skew-

primitive simple roots Ei respectively Fi.

The Cartan algebra acts on M,M∗ as prescribed by the roots and

coacts by the obvious i-graduation. Moreover, one has to link the

Borel parts together by additional relations [Ei, Fi] ⊂ k[Γ] (nowadays

possible by a single 2-cocycle Doi twist σ [M08]):

Uq(g) ∼= (B(M)#k[Γ]#B(M∗))σ
∼= (k[Γ]#B(M ⊕M∗))σ

As in the classical case, these quantum Borel parts B(M) are the Serre-

relation-quotients of the tensor algebra of the vector spaces M,M∗. In

the quantum case however, M,M∗ carry a deforming braiding in-

duced by action and coaction of the Cartan algebra � this turns out to

be the reason, that enables Uq(g) to have �nite-dimensional quotients

and produces the atypical representation theory when qn = 1.

1The �historical development� is largely derived from facts from an inter-

view in May 2011 by N. Andruskiewitsch (http://www.sciencewatch.com/dr/nhp/

2011/11maynhp/11maynhpAndr/) and from the respective publication lists.
2To be precise, there may be additional skew-primitives, whenever further trun-

cation was possible (q root of unity). For the notation B to coincide with the Nichols

algebra, one then would have to include these in M as well � see below.
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The minimal quotient B(M) a�orded by the given braided vector

space is the Nichols algebra � a thorough introduction will be given

in the next section! Apart from W. Nichols himself, they had been con-

sidered e.g. by S.L.-Woronowicz as quotient of the tensor algebra by

the �quantum symmetrizer� in the context of noncommutative geome-

try and special cases include Y.I. Manin's �quantum linear space�.

In the late 90's, H.-J. Schneider and N. Andruskiewitsch had started to

classify �nite-dimensional pointed Hopf algebras (as Uq's truncations).

A very brief sketch of their program [AS] can be given as follows

(for some notions, see part 1 introduction): Take an arbitrary �nite-

dimensional pointed Hopf algebra H with coradical a groupring H0 =

k[Γ] (this is pointedness!), then the so-called coradical �ltration

Hn := ∆−1(Hn−1 ⊗H +H ⊗H0) ⇒ H0 ⊂ H1 ⊂ · · ·
⋃
n

Hn = H

is even a Hopf algebra �ltration and one may take the graded object

gr(H):=H0 ⊕H1/H0 ⊕H2/H1 ⊕ · · ·

H1 = M is the Γ-Yetter-Drinfel'd module of all skew-primitives, higher

Hi are either products thereof or (a-priori possible) exotic elements.

The graded sub-Hopf algebra generated only by H0, H1 is a Radford

biproduct (or smash-cosmash-product or bosonization), a semidi-

rect product of the group Hopf algebra with the braided (!) Hopf alge-

bra B(M) generated by the skew-primitives M :

gr(H) ∼= k[Γ]#B(M)

If B(M) would be a �non-minimal� quotient, additional skew-primitives

would appear in higher degree, contrary to the assumption, hence B(M)

is exactly the Nichols algebra!

Completion of the program requires a profound knowledge of these

Nichols algebras and especially, when they become �nite-dimensional:

• Liftings: Find all H belonging to some gr(H) obtained as

above. This includes the linkings as above, but also more exotic

ones, nontrivial truncations (root relations) etc.

• Generation in degree 1: Show thatH0, H1 already generates

all of H. To the present, no counterexample is known!
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As part of their e�orts for a general result, they asked the young re-

searcher I. Heckenberger for a classi�cation of general �nite-dimensional

Nichols algebras B(M) (of diagonal type, corresponding to abelian Γ),

where they had so far only used quantum linear spaces (1998) and fur-

ther ones constructed by-hand in analogy to semisimple Lie algebras

(Cartan type, 2000).

Coming from the area of noncommutative geometry, Heckenberger had

already concerned himself with the behaviour of quantum groups at

roots of unity (diploma thesis 1993), and various questions of non-

commutative di�erential calculus on them in the spirit of Woronowicz

(dissertation 1998 and later papers).

In 2004 Heckenberger successfully completed the classi�cation of �nite-

dimensional Nichols algebras of diagonal type of rank 2 and subse-

quently for arbitrary rank in 2005 (habilitation thesis [H05]).

He deepened the remarkable connection to the theory of semisimple

Lie algebras by classifying arithmetic root systems of Nichols al-

gebras and found (besides Cartan type) several sporadic non-Cartan

examples, appearing only for some small primes in the order of q. In

these cases, multiple Dynkin diagrams appear simultaneously and their

Weyl group becomes a groupoid, interchanging these diagrams. An

example for such an exotic Dynkin diagram is the following:

The cooperation of these three scientists has been remarkably fruitful

and continues to the present: Schneider and Andruskiewitsch completed

their program for abelian groups, where none of the exceptional primes

divide the group order [AS] and all three continued to investigate

the powerful root systems and the Weyl groupoid also for nonabelian

groups, e.g. in [HS08], [AHS09] and [HS10]. While Andruskiewitsch

continued especially to derive conditions ruling out �nite-dimensional

Nichols algebras, Heckenberger and Schneider could e.g. identify so-

called coideal subalgebras with elements of the Weyl groupoid.
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De�ning Yetter-Drinfel'd Modules And Nichols Algebras

We continue by a more detailed introduction to the theory of Nichols

algebras3, starting by a generic method to write down braided vector

spaces over some �nite group G. Note that this is a special case of a

much more general construction.

De�nition. A Yetter-Drinfel'd module M over a group G is a G-

graded vector space over k denoted by layers

M =
⊕
g∈G

Mg

with a G-action on M such that

g.Mh = Mghg−1

To exclude trivial cases, we call M indecomposable i� the support

{g |Mg 6= 0} generates all G and faithful i� the action is.

Note that for abelian groups, the compatibility condition means noth-

ing more then stability of the layers Mg.

The notion of a Yetter-Drinfel'd module automatically brings with it

a braiding τ on M � in fact, each group G de�nes an entire braided

category of G-Yetter-Drinfel'd modules with morphisms graded module

homomorphisms.

Lemma. Consider the following map M ⊗M →M ⊗M :

Mg ⊗Mh 3 v ⊗ w τ7−→ g.w ⊗ v ∈Mghg−1 ⊗Mg

Then τ ful�lls the Yang-Baxter-equation

(id⊗ τ)(τ ⊗ id)(id⊗ τ) = (τ ⊗ id)(id⊗ τ)(τ ⊗ id)

turning M into a braided vector space.

Example. The widespread concept of a superspace can be interpreted

as a Z2-Yetter-Drinfel'd module: It is a Z2-graded M = M0 ⊕M1 and

the nontrivial generator of Z2 acts as scalar −1. Hence the braiding τ

is a trivial �ip except on M1⊗M1 where the typical fermionic negative

�ip occurs.

3For a thorough introduction see [HLecture08]. Note that the following brief

introduction largely coincides with the respective Wikipedia-page �Nichols algebras�

initially written by the author.
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The structure of general Yetter-Drinfel'd modules is well understood:

Lemma. For k = C (as always in this thesis) any �nite-dimensional

Yetter-Drinfel'd module M over a �nite group G decomposes as such

into simple Yetter-Drinfel'd modules (the number is called rank of M):

M =
⊕
i

Mi

Lemma. Any simple M is isomorphic to some Oχg for g ∈ G and χ :

G → k character of an irreducible representation V of the centralizer

subgroup Cent(g) = {h ∈ G | gh = hg}; de�ned as follows:

• De�ne the G-graduated vector space layerwise

Oχg =
⊕
h∈G

(
Oχg
)
h

(
Oχg
)
h

:=

V for g-conjugates h ∈ [g]

{0} else

• Choose a set S = {s1, . . . sn} of representatives for the left

Cent(g)-cosets G =
⋃
k skCent(g). Then for any g-conjugate

h ∈ [g] there is precisely one sk with h = skgs
−1
k .

• For the action of any t ∈ G on any vh ∈
(
Oχg
)
h
for h ∈ [g]

determine the unique si, sj, such that

sigs
−1
i = h sjgs

−1
j = tht−1

Then s−1
j tsi ∈ Cent(g) and using the given Cent(g)-action on

V we may de�ne

t.vh := (s−1
j tsi.v)tht−1

To summarize the above: There are V -layers for each conjugate of g,

acted on as prescribed by Cent(g) (assuming the choice s0 = 1) and

solely permuted by the representing sk. Other elements are decomposed

into some Cent(g)sk and act accordingly.

Example. For abelian G (and over k = C) we have 1-dimensional

simple Yetter-Drinfel'd modules Mi = Oχigi = xik and hence the braid-

ing is diagonal with braiding matrix qij := χj(gi)

xi ⊗ xj
τ7−→ qij(xj ⊗ xi)
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De�nition. Consider the tensor algebra TM , i.e. for any homogeneous

basis xi ∈ Mgi the algebra of words in all xi. We may uniquely de�ne

skew derivations on this algebra, i.e. maps ∂i : TM → TM by

• ∂i(1) = 0

• ∂i(xj) = δij1

• ∂i(ab) = ∂i(a)b+ (gi.a)∂i(b)

These derivations can be thought of as a di�erential structure on

TM ; intuitively one would expect 1 to be the only �constant� element

in the kernel of all ∂i. However for general braidings this is far from

being true and in speci�c instances, only �nitely many dimensions will

remain. This is a remarkable phenomenon (and the direct reason for

the �nite-dimensional truncations of Uq(g) for q a root of unity):

De�nition. The Nichols algebra B(M) is the quotient of TM by

the largest homogeneous ideal I, that is invariant under all ∂i such that

M ∩ I = {0}.

So roughly, it is TM modulo all higher-order relations, that the di�er-

ential structure is �blind� with respect to.

Example. Take M with all qij = 1 (e.g. by trivial action), then I is

generated by the relations xixj = xjxi, so B(M) is just the in�nite

algebra of polynomials B(M) = k[x1, x2 . . . , xrank] (bosonic).

Example. Take G = Z2 and M = M0 ⊕ M1 the superspace with

dimension 0 + 1 i.e. fermionic q11 = −1, then x2 ∈ I and hence

B(M) = k[x]/(x2). This matches what one would expect from Pauli

exclusion principle; especially the Nichols algebra is now �nite-

dimensional.

More generally a 1-dimensional Yetter-Drinfel'd module with qii ∈ kn
a primitive n-th root of unity has Nichols algebra B(M) = k[x]/(xn).

Example. Take again G = Z2 and M = M0⊕M1 the superspace with

dimension 0 + 2 (and basis say x, y), then

B(M) = k〈x, y〉/(x2, y2, xy + yx) =
∧

M

Hence in contrary to the above a anticommutator is divided out and

the Nichols algebra is the (fermionic) exterior algebra.
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In the abelian case, Heckenberger (e.g [H08]) introduced q-decorated

diagrams, with each node corresponding to a simple Yetter-Drinfel'd

module decorated by qii, and each edge decorated by τ 2 = qijqji and

edges are drawn if the decoration is 6= 1; it turns out that this data is

all needed to determine the respective Nichols algebra.

For a symmetric braiding τ 2 = qijqji = 1 (all examples so far) the

braided commutator [xi, xj]τ = xixj − qijxjxi vanishes in B(M),

which is the reason one does not draw a line in the decorated dia-

gram. Already Kharchenko proved for G abelian, that any B(M) has

a PBW-basis of iterated braided commutators and one draws Dynkin

diagrams (with nodes again all simple Mi) much like for semisimple

Lie algebras, see section 6.1.

Example. Assume q11 = q22 = q12q21 = −1, then the diagram is:

Then some calculations show, that x3 := [x1, x2]τ 6= 0 ( 6∈M !) but

[x2, [x1, x2]τ ]τ = [x1, [x1, x2]τ ]τ = 0

Hence B(M) corresponds to the Borel part of A2 = sl3. Compare the

PBW-basis in {x1, x2, x3 = [x1, x2]τ} to the A2-root system

As q11 = q22 = −1 as well as q33 = (q11q12)(q22q21) = −1, all three

Nichols algebras B(xik) of rank 1 are fermionic. The Nichols algebra

B(x1k⊕ x2k) itself is 8-dimensional with PBW-Basis xi1x
j
2x

k
3 i, j, k ∈

{0, 1}, i.e. multiplication in B(M) yields a vector space bijection:

B(M) ∼= B(x1k)⊗B(x2k)⊗B(x3k) = k[x1]/(x2
1)⊗k[x2]/(x2

2)⊗k[x3]/(x2
3)

In the same sense, over abelian G for aij any proper Cartan matrix of

a semisimple Lie algebra is realized for braiding matrix qijqji = q
−aij
ii .
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However, several additional exotic examples of �nite-dimensional Nichols

algebras exist, that possess unfamiliar Dynkin diagrams, such as a

multiply-laced triangle, and where Weyl re�ections may connect di�er-

ent diagrams (yielding a Weyl groupoid). Heckenberger completely

classi�ed all Nichols algebras over abelian G in [H08].

Over nonabelian groups however, still much is open. Heckenberger

and Schneider studied the Weyl groupoid in this setting as well and es-

tablished a root system and a PBW-basis for �nite-dimensional Nichols

algebras in [HS08]. Only few �nite-dimensional indecomposable exam-

ples are known so far, namely D4 of type A2 and S3,S4,S5 of type A1

(Schneider et. al. [MS00]), higher analogues of D4 ([HS10]), and a

couple rank 1 examples over metacyclic groups [GranaZoo].

On the other hand, by detecting certain �defect� subcon�gurations

(so-called type D) most higher symmetric and all alternating groups

Sn≥6, An≥4 and later many especially sporadic groups were totally dis-

carded (Andruskiewitsch et. al. [AZ07],[AFGV10] etc.).



Technical Overview On Methods & Results

This is the main part of the thesis and solely concerned with orbifoldiz-

ing Nichols algebras. As we saw in Theorem 3.2, a twisting group Σ

for a Hopf algebra k[Γ]#B(M) may be written down in terms of a

subgroup of Z2(Γ, k×) and an action of Σ as (Doi-)twisted symmetries

θp : Hσp
∼→ H. Orbifoldizing then constructed a pointed Hopf algebra

k[G]#B(M̃) (and hence a Nichols algebra) over the extended group

Σ∗ → G → Γ. M̃ has a new basis of homogeneous elements as simul-

taneous eigenvectors of the twisted symmetries θp acting on M (the

eigenvalues distinguishing di�erent liftings to G).

To make the approach easier accessible and keep independence of part

1, we start with Theorem 4.4 by giving a short, direct but complete con-

struction of the orbifoldized Nichols algebra solely in terms of Yetter-

Drinfel'd modules and twisted symmetries θp thereof. Thus we con-

struct an orbifoldizing map4:

Γ
ΓY DModTwistSym(Σ) −→ G

GY DMod

(M,µ, δ, θp∈Σ) 7−→ M̃ =
(
M,µ ◦ (π ⊗ id), δ̃

)
We already observed, that the image of our correspondence consists of

modules with trivial action of Σ∗ ⊂ G. Our reconstruction Theorem

3.6 (which will be reestablished directly as well, Theorem 5.1) will once

again show this condition to be i�. Hence we get a bijection:

Γ
ΓY DModTwistSym(Σ) ↪−� G

GY DModΣ. trivial
∼= Γ

GY DMod

We will give a �rst example of a new �nite-dimensional Nichols algebra

over Z2 → Q8 → Z2
2 and Z2 → GL2(F3)→ S4 in sections 4.3 and 4.4.

4The author apologizes for not providing thorough categorical de�nitions of

Yetter-Drinfel'd modules with twisted symmetries, cocycle-deformation etc. at this

point � otherwise we could also express the functoriality of the orbifoldization

map. This has already been neglected in the �rst part, see Remark 1.8
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Then we describe an easy way to extend our correspondence to produce

Doi twists of Yetter-Drinfel'd modules with nontrivial Σ-action.

Γ
ΓY DModSym(Σ) × KerG←ΣH

2(G,k×) −→ G
GY DMod

(M,µ, δ, θp∈Σ, [σ]) 7−→ M̃σ =
(
M, (µ ◦ (π ⊗ id))σ, δ̃

)
We will furthermore get in section 5.2, through Matsumotos extension

of the spectral sequence for central extensions [IM64], a way of pre-

cisely determining the nontrivial (scalar) actions of any a ∈ Σ∗ ⊂ G on

any homogeneous component (M̃σ)g, that is induced by Doi twist:

· · · → H2(Γ,k×)
inf−→ KerG←ΣH

2(G,k×)
γ−→ Pairing(Σ∗⊗G) → · · ·

�coincidence�: a.|(M̃σ)g
= σ(a, g)σ−1(g, a) = γ(σ)(a, g) ∈ k×

This will immediately show the above map to factor to an injection:

Γ
ΓY DModSym(Σ) ×

KerG←ΣH
2(G,k×)

ImΓ←GH2(Γ,k×)
↪−→ G

GY DMod

This allows to construct new faithful examples from orbifolds, such

as the examples in section 7.1 over nonabelian groups of order 16 and

32.

On the other hand, in explicit cases we can narrow down possible Σ∗-

actions using the constraints given in [HS08] for Yetter-Drinfel'd mod-

ules with �nite-dimensional Nichols algebras. In several instances, the

left-side cohomology term will be large enough to numerically exhaust

the remaining. This then proves the map above to be surjective and

thus every Nichols algebra to be a Doi twist of an orbifold.

Γ
ΓY DModSym(Σ) ×

KerG←ΣH
2(G,k×)

ImΓ←GH2(Γ,k×)
↪−� G

GY DMod

To bound the number of actions and avoid the complication of group-

realizations, we shall always restrict ourselves to minimally indecom-

posable Nichols algebras (M contains no proper indecomposable sub-

module). As such is contained in every indecomposableM , this su�ces

to study which groups admit �nite-dimensional Nichols algebras at all.

The leading example will be the (known) classi�cation of all minimally-

indecomposable �nite-dimensional Nichols algebras over D4 (and Q8)

in section 5.3. Later examples are several related groups of order 16
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and 32 in sections 7.2 and 7.3, where again only type A2 appears.

Ultimately in section 7.4 we discard any indecomposable Nichols al-

gebra over nine groups of order 32 (the only ones of this order with

rank 3) by proving them to be Doi twists of Z2
2-orbifolds of an in�nite-

dimensional Nichols algebra with Dynkin diagram an 8-cycle. Check-

ing all cases is tedious and largely performed by considering all Weyl

equivalents at once � this table is computed by hand in section 8.1.

The centerpiece of the thesis is Theorem 6.1 which determines all

orbifoldized minimally indecomposable �nite-dimensional connected

Nichols algebras over groups with G′ = Zp, starting from the abelian

Γ = G/G′ (with Nichols algebras classi�ed in [H08]). The proof will

require all of chapter 6. Especially we �nd necessarily p = 2 and the di-

agram of Cartan type! We construct indecomposable Nichols algebras

with all Dynkin diagrams An, Dn, Bn, E6,7,8, F4 (and decomposable ones

of type Cn, G2 (p = 3!) and several non-Cartans). It's application will

be section 7.1, where we give such examples for most groups of order 16

and 32, including many nondiagonal and some even faithful Doi twists.

The main proof idea for this classi�cation is quite intriguing:

Step I: Clarify orbifoldizing on Dynkin diagram level

Although no algebra automorphisms, we will �nd twisted symmetries

to be automorphisms of the Dynkin diagram of B(M) (section 6.1) and

in Theorem 6.9 derive certain necessary conditions in rank 1 and 2.

Structurally, we show in Theorem 6.8 that the Dynkin diagram of B(M̃)

is folded corresponding to the sub-rootsystem �xed by Σ (a known

concept for Lie algebras, see e.g. [Gi06], p. 47�), while di�erent nodes

(resp. simple Yetter-Drinfel'd modules) in the orbit of the twisted sym-

metry agglutinate to a single node of higher dimension over G.

The behaviour of nodes and edges will be described using geometric

vocabulary, such as �splitting� and �rami�cation�. The latter is highly

restricted and appears for adjacent simple Yetter-Drinfel'd modulesover

G-conjugacy classes of di�erent length � the connecting edge becomes



74 TECHNICAL OVERVIEW ON METHODS & RESULTS

multiply-laced, as shown on the cover of this thesis:

The two leftmost nodes are inert (i.e. invariant under twisted symme-

tries), while the two rightmost nodes are split orbits. Accordingly, the

left edge is inert, the right is split and the intermediate is rami�ed.

Step II: Search Heckenberger's list for suitable candidates

Actually this is the �nal step in section 6.6, but of course it points to the

yet-to-be constructed examples in step III. Having clari�ed necessary

conditions for an orbifoldization of a diagonal Yetter-Drinfel'd module,

we go through Heckenberger's classi�cation [H08] and search for all

appropriate candidates with �nite-dimensional Nichols algebras

• Step 1 is the observation of a diagram automorphism and

excludes totally inert orbifolds as decomposable.

• Step 2 consist of multiple revisions of Heckenberges list:

� Step 2a searches the list for diagrams eligible to be dis-

connectedly doubled and orbifoldized unrami�ed to a Dynkin

diagram of the same type. We know from step I (split

edge) that therefore all edges must be decorated by −1,

leaving only all Cartan types for q = −1 except Bn.
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� Step 2b searches the list for all loopfree5 diagrams with

involutory automorphism, resulting in possible rami�ed

orbifolds from type E6, A2n−1, Dn and several non-Cartan.

� Step 2c searches the list for possible non-loopfree dia-

grams with involutory automorphisms. Again, step I heav-

ily restricts this case and leaves only an isolated loop

A2 → A1 for q ∈ k3.

� Step 2d searches the list for all diagrams with higher-

order automorphisms p 6= 2, resulting only in D4 → G2.

• Step 3a excludes multiply laced diagrams Cn, F4, G2 from the

unrami�ed case by exhibiting a loop between the two copies

of any long root, leaving only Cartan type ADE.

• Step 4 shows that orbifolds with a unique split node only

lead to decomposable Nichols algebras. This excludes small

and most rami�ed cases (e.g. Dn+1 → Cn and D4 → G2) and

leaves only the later-on realized unrami�ed cases An≥2, Dn≥4,

E6,7,8 and rami�ed cases E6 → F4 and A2n−1 → Bn≥3.

Step III: Construct the remaining examples

(and restrict the possible groups that realize them)

In order to bundle combinatorial considerations, the author introduces

the notion of a symplectic root systems (De�nition 6.14). Be aware,

that this is a consequent, but far less powerful extension of ordinary

root systems to symplectic vector spaces with possible nullspaces, and

many graphs admit them! On the other hand they give precise nontriv-

ial necessary and su�cient conditions on the groups rank and center

(i.e. nullspace) to realize the respective diagram as orbifold. E.g. Dn

requires more center than others. For all diagrams in question, these

symplectic root systems are classi�ed in Theorem 6.15 case-by-case.

With this knowledge, we can construct the actual Nichols algebras,

compactly describe dimension, root system etc. and give examples. This

is done case-wise:

5As for Lie algebra folding (not admitted there), we call a connected orbit loop
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• In section 6.3 the unrami�ed cases, that are constructed by

doubling a diagram of type ADE and orbifoldize it to a dia-

gram of same type. Note that the well-known example over D4

(section 3.2) was our toy-model for this case: A2 ∪ A2 → A2.

• In section 6.4 the exceptional E6 → F4 on the cover.

• In section 6.5 furthermore A2n−1 → Bn.

The systematic construction so far has only constructed �nite-dimensional

Nichols algebras for nilpotent groups of class 2. We conclude the part by

personal notes that summarize a longer-term e�ort of the author, that

could not have been achieved in this thesis, namely the clari�cation,

which higher-class nilpotent groups admit �nite-dimensional Nichols

algebras:

Commutators with odd order can be discarded rather easily and new

general results in [HS10]6 seem to exclude class > 4 with an addi-

tional trick (making the authors original argument super�uous, that

targeted rather tediously and ad-hoc the nilpotent case using [HS08]).

However, particular 2-groups of class 3 (most notably the quasidihedral

group D̃8) are very resilient, and the author has no opinion, whether

they lead to new Nichols algebras or can be discarded.

The author has presented his progresses in this direction (including

some key results of this thesis), but also this particular serious obsta-

cle, in a mini-Talk �Nichols Algebras over Nilpotent Groups� at the

Oberwolfach conference �Deformations in Mathematics and Physics�

(October 2010).

6The authors thanks Prof. Schneider for pointing out this new research of his.



CHAPTER 4

A Shortcut To Orbifold Construction

In this chapter we give short, direct constructions and proofs for orb-

ifoldizing a Nichols algebras B(M) over a group Γ to a Nichols algebra

B(M̃) over a central extension Σ∗ → G → Γ. The rather ad-hoc for-

mulas correspond to applying the abstract machinery in part 1 to a

Radford biproduct H = k[G]#B(M) as derived in Theorem 3.2.

1. Central Group Extensions

Suppose a central extension of �nite groups:

1→ Σ∗ → G
π−→ Γ→ 1 Σ ⊂ Z(G)

It can be described in terms of a class of 2-cocycles

[u] ∈ H2(Γ,Σ∗)

For our purposes, we will �nd it more convenient to rewrite the Hopf al-

gebra k[G] in terms of multiple twisted grouprings kσ[Γ], σ ∈ Z2(Γ,k×):

Lemma 4.1. We have an algebra isomorphism

φ : k[G] ∼=
⊕
p∈Σ

kσp [Γ]

where we concatenated some representative u with all 1-dimensional

representations p ∈ Σ∗∗ ∼= Σ of the coe�cient group Σ∗ to yield a

subgroup of 2-cocycles σp := p ◦ u ∈ Z2(Γ,k×).

Proof. Fix a set-theoretic split s : Γ → G of π with s(1) = 1

and u ∈ Z2(Γ,Σ∗) the associated (then normalized) 2-cocycle with

s(a)s(b) = u(a, b)s(ab). For σp := p ◦ u ∈ Z2(Γ, k×) consider the map:

φ : G 3 g 7→
∑
p∈Σ

π(g)1p · p
(

g

s(π(g))

)
∈
⊕
p∈Σ

kσp [Γ]

Here the expression a1p for a ∈ Γ and p ∈ Σ shall denote the image in

the twisted groupring kσp [Γ]. The split-condition π(s(a)) = a ensures

the fraction to be in the kernel of π and hence in Σ∗ ⊂ G.

77
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We �rst show this is an algebra homomorphism:

φ(1G) =
∑
p∈Σ

(1Γ)p · p(1) =
∑
p∈Σ

1kσp [Γ] = 1⊕
kσp [Γ]

φ(g)φ(h) =
∑
p∈Σ

π(g)π(h)σp(π(g), π(h))1p · p
(

g

s(π(g))

)
p

(
h

s(π(h))

)

=
∑
p∈Σ

π(gh)1p · σp(π(g), π(h))p

(
gh

s(π(g))s(π(h))

)

=
∑
p∈Σ

π(gh)1p · σp(π(g), π(h))p

(
gh

u(π(g), π(h))s(π(gh))

)

(σp = p ◦ u) =
∑
p∈Σ

π(gh)1p · p
(

gh

s(π(gh))

)
= φ(gh)

(note that (a1p)(b1q) = ab1pσp(a, b) for p = q and 0 else). Certainly

π(g) 6= π(h) yields independent images in the target, moreover elements

g 6= h with π(g) = π(h) di�er by a Σ-element detection by some p ∈ Σ

over k = C by duality of abelian groups. Hence the image's dimension

|G| = |Γ| · |Σ| is also the target dimension, showing bijectivity. �

We prove the following facts, that are implicitly consequences of con-

structing the group Hopf algebra k[G] via φ as an orbifoldization of

k[Γ] (being cocommutative, the easiest case). This means here, that

the coproduct carries over to the target of φ. Let us de�ne the map

∆p,q : kσpq [Γ] 3 g1pq 7→ g1p ⊗ g1q ∈ kσp [Γ]⊗ kσq [Γ]

Then we have the correspondence

(φ⊗ φ)∆(g) =
∑
p∈Σ

π(g)1p · p
(

g

s(π(g))

)
⊗
∑
q∈Σ

π(g)1q · q
(

g

s(π(g))

)

=
∑
r∈Σ

r

(
g

s(π(g))

)
·
∑
pq=r

(π(g)1p ⊗ π(g)1q) =
∑
p,q∈Σ

(∆p,qφ)(g)

Let further πe denote the algebra projection to the 1e-summand, then:

(πeφ)(g) = πe

(∑
p∈Σ

π(g)1p · p
(

g

s(π(g))

))
= π(g)

Finally this gives us an orbifold expression for the counit

εk[G] = εk[Γ] ◦ π = (εk[Γ] ◦ πe) ◦ φ
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2. Construction Theorem

The setting is as follows: LetM be a �nite dimensional Yetter-Drinfel'd

module over Γ with Nichols algebra B(M).

De�nition 4.2. An abelian group Σ together with a group homomor-

phism σ : Σ → Z2(Γ,k×) acts as twisted symmetries on M via

twisted actions θp : M →M for each p ∈ Σ, i�

• θe = idM
• θp ◦ θq = θpq

• θp is a Yetter-Drinfel'd module-isomorphism (linear, colinear)

Mσp → M , where Mσp for a 2-cocycle σp ∈ H2(Γ,k×) is de-

�ned as M with modi�ed Γ-action on homogeneous elements:

g.σpvh = σp(ghg
−1, g)σ−1

p (g, h)g.vh

It is well known (e.g. [M08] Prop. 5.2) that the modi�ed Γ-action above

produces Doi twists k[Γ]#B(Mσp)
∼= (k[Γ]#B(M))σp . Hence twisted

symmetry means �Doi twist stability� under all σp, p ∈ Σ with a co-

herent choice of isomorphisms, that turns M into a Σ-representation.

Lemma 4.3. The q-decorated generalized Dynkin diagram (see page 69

or [H08]) is preserved by the above Doi twists (i.e. by trivially extended

group 2-cocycles); as are the root systems ∆̃ (see section 6.1 or [HS08]

De�nition 6.1) and thus the Cartan matrices, Dynkin diagrams etc.

Hence twisted symmetries are no Yetter-Drinfel'd module-automorphisms,

but still Dynkin diagram automorphisms in both senses.

Proof. For the �rst assertion, we decompose M

M =
⊕
i

Oχigi

and directly calculate the q-factors after twisting:

q′′ii = χ
σp
i (gi)

= σp(gi, gi)σ
−1
p (gi, gi)χi(gi)

= χi(gi) = q′ii
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q′′ijq
′′
ji = χ

σp
i (gj)χ

σp
j (gi)

= σp(gi, gj)σ
−1
p (gj, gi)χi(gj)·

· σp(gj, gi)σ−1
p (gi, gj)χj(gi)

= χi(gj)χj(gi) = q′ijq
′
ji

For the second assertion, note that the images of some family (Wl)l∈L
again satisfy the conditions of cit. loc., as the Doi twist preserves the

Nθ
0-grading and the tensor product in Γ

ΓY DM . Hence the set of degrees

is preserved as well. �

Theorem 4.4. Suppose a central extension Σ∗ → G → Γ with some

π, s, u, σp, φ chosen as in Lemma 4.1. Suppose further M a Γ-Yetter-

Drinfel'd module with (possibly in�nite dimensional) Nichols algebra

B(M) and an action of Σ on M by twisted symmetries θp with respect

to the σp, p ∈ Σ (De�nition 4.2).

We can then de�ne the orbifoldized Yetter-Drinfel'd module M̃ over

G as follows: Take M̃ = M as vector space, pull back the action to G via

π and de�ne a new G-coaction for a (former!) homogeneous vh ∈ Mh

by φ−1-piecing together all twisted Γ-coactions:

δM̃ : M̃ →

(⊕
p∈Σ

kσp [Γ]

)
⊗ M̃ φ−1

−→ k[G]⊗ M̃

vh 7→ (φ−1 ⊗ 1M̃)
∑
p∈Σ

h1p ⊗ θp(vh)

Also, M̃ ∼= M as a braided vector space and hence B(M) ∼= B(M̃).

Proof. We have to verify that the pull-back G-action and the

above G-coaction δM̃ indeed turn M̃ into a G-Yetter-Drinfel'd module:

Clearly, the pull-back action turns M̃ into a G-module

k[G]⊗ M̃ π⊗id−→ k[Γ]⊗M →M
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Secondly, the coaction δM̃ de�nes a G-comodule via the relations of

φ with the group Hopf algebra k[G] to ∆p,q,πe (see page 78):

(φ⊗ φ⊗ 1)(1⊗ δM̃)δM̃(vh) = (1⊗ (φ⊗ 1)δM̃)
∑
q∈Σ

h1q ⊗ θq(vh)

=
∑
p,q∈Σ

h1p ⊗ h1q ⊗ θp(θq(vh))

=
∑
p,q∈Σ

h1p ⊗ h1q ⊗ θpq(vh)

=
∑
r∈Σ

∑
pq=r

h1p ⊗ h1q ⊗ θr(vh)

=
∑
p,q

(∆p,q ⊗ 1M̃)

(∑
r∈Σ

h1r ⊗ θr(vh)

)
= (φ⊗ φ⊗ 1)(∆⊗ 1M̃)δM̃(vh)

(εk[G] ⊗ 1M̃)δM̃(vh) = (εk[G]φ
−1 ⊗ 1)

(∑
p

h1p ⊗ θp(vh)

)

= (εk[Γ]πe ⊗ 1)

(∑
p

h1p ⊗ θp(vh)

)
= 1k ⊗ θe(vh) = 1k ⊗ vh

The thirdly prove the Yetter-Drinfel'd condition the assumptions

of the θp as twisted symmetries is required; denote π(g) = ḡ and again

use that h1pg1q = 0 for di�erent direct summands p 6= q:

(φ⊗ 1)(adg ⊗ g.)δM̃(vh)

= (φ(g) _ φ(g−1))⊗ g.)(φ⊗ 1)δM̃vh

=

(∑
p

ḡ1pp

(
g

s(π(g))

)
_ (ḡ−1)1pp

(
g−1

s(π(g−1))

)
⊗ g.

)
(φ⊗ 1)δM̃(vh)

=

(∑
p

σ−1
p (ḡ−1, ḡ)ḡ1p _ ḡ−11p ⊗ g.

)
(φ⊗ 1)δM̃(vh)

=
∑
p

σ−1
p (ḡ−1, ḡ)ḡ1p ·σp h1p ·σp ḡ−1

p ⊗ g.θp(vh)

=
∑
p

σp(ḡ, h)σp(ḡh, ḡ
−1)

σp(ḡh, 1)σp(ḡ−1, ḡ)

(
ḡhḡ−1

)
1p ⊗ g.θp(vh)
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(cocycle) =
∑
p

σp(ḡ, h)σp(ḡh, ḡ
−1)

σp(ḡh, ḡ−1)σp(ḡhḡ−1, ḡ)

(
ḡhḡ−1

)
1p ⊗ g.θp(vh)

=
∑
p

σp(ḡ, h)

σp(ḡhḡ−1, ḡ)

(
ḡhḡ−1

)
1p ⊗ g.θp(vh)

(θp colinear) =
∑
p

σp(ḡ, h)

σp(ḡhḡ−1, ḡ)

(
ḡhḡ−1

)
1p ⊗ θp(g.σpvh)

=
∑
p

(
ḡhḡ−1

)
p
⊗ θp(g.vh) = δM̃(g.vh)

Finally, let us show that M̃ ∼= M as braided vector space:

τM̃(vg ⊗ vh) = φ−1

(∑
p

ḡ1p · p
(

g

s(π(g))

))
.vh ⊗ vg

(action via pullback) = πφ−1

(∑
p

ḡ1p · p
(

g

s(π(g))

))
.Γvh ⊗ vg

= πe

(∑
p

ḡ1p · p
(

g

s(π(g))

))
.Γvh ⊗ vg

(only p = e nonvanishing) = ḡ.Γvh ⊗ vg = τM(vg ⊗ vh)

�

Note that although we have Prim(B(M)) = M = Prim(B(M̃)) this

does not mean, that the vh are still homogeneous elements (resp. skew-

primitives in the bosonization)! Rather, the old Mh ⊂ M̃ decompose

into di�erent π-preimages of h, i.e. elements in s(h)Σ∗ ⊂ G:

To achieve this, one has to decompose each Mh into simultaneous θp-

eigenspaces Mh,λ; this is possible as we chose Σ abelian.

The λ-eigenvectors v then correspond to λs(h)-homogeneous elements:

δM̃v =
∑
p

h1p ⊗ θp(v) =
∑
p

h1p ⊗ λ(p)v =
∑
p

h1p · p(λ)⊗ v

=
∑
p

π(s(h)λ)1p · p
(
s(h)λ

s(h)

)
⊗ v = φ(s(h)λ)⊗ v

Hence Σ-eigenspaces of Γ-layer form the new G-layerMh,λ = M̃s(h)λ.



3. EXAMPLE: A NEW NICHOLS ALGEBRA OVER Q8 83

Especially since there always are eigenvectors over k = C we get ho-

mogeneous elements over at least some π-preimage:

Corollary 4.5. In case of a stem extension (Σ ⊂ G′), or more

generally a Frattini extension Σ ⊂ Φ(G), the orbifoldized M̃ is in-

decomposable i� M is, because any preimages of a Γ-generating set

generates G (see [Hu83]). This was derived generally in Theorem 2.10.

3. Example: A New Nichols Algebra Over Q8

Besides D4, the second Schur cover of

Γ = Z2 × Z2

is the quaternion group Q8, again a stem-extension by its center. Let us

again calculate the respective 2-cocycle by Lemma 1.18, namely, lift the

elements Q8 → Γ 3 1, g, h, gh to 1, i, j, k = ij where i2 = j2 = k2 = −1

generate Q8 (columns and rows resp. 1, g, h, gh):

σ =


1 1 1 1

1 −1 1 −1

1 −1 −1 1

1 1 −1 −1


Note that even though this naturally di�ers from the cocycle obtained

for D4, their σ-quotients determining the resp. Doi twists are identical:

σ(−, g)σ−1(g,−) = (+1,−1)

σ(−, h)σ−1(h,−) = (−1,+1)

Hence we may proceed completely equivalent to the preceding exam-

ple, even use the same H and obtain a pointed, indecomposable Hopf

algebra of dimension dimH · |Σ| = 64 · 4 · 2. Also the description of the

skew-primitives is identical to the one above.

Remark 4.6. This could have been also calculated directly from he

Yetter-Drinfel'd modules Oχ
b ⊕O

χ
ab and O

χ
i ⊕O

χ
j over D4 resp. Q8, with

isomorphic braiding and hence isomorphic Nichols algebras:

c =


−t1 ⊗ t1 −t2 ⊗ t1 −t2 ⊗ t1 −t1 ⊗ t1
−t1 ⊗ t2 −t2 ⊗ t2 −t2 ⊗ t2 −t1 ⊗ t2
−t2 ⊗ t1 −t1 ⊗ t1 −t1 ⊗ t1 −t2 ⊗ t1
−t2 ⊗ t2 −t1 ⊗ t2 −t1 ⊗ t2 −t2 ⊗ t2


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Note however, that because Q8 has trivial second cohomology group,

there are no faithful Doi twists � in contrast to D4!

4. Example: A New Nichols Algebra Over GL2(F3)

G := GL(2, 3) = GL2(F3) is a group with 48 elements and possesses a

normal subgroup Σ = F∗3 ∼= Z2 of scalar multiplication. The quotient

Γ := PGL2(F3) can be shown to act faithfully and 4-transitively on

the 4 projective points resp. 1-dimensional vector subspaces of (F3)2.

Thus Γ ∼= S4 and one can show that this quotient makes GL(2, 3) a

Schur cover of S4 ([Hu83] p.653).

We could �nd a suitable cocycle again by corollary 1.18, but we will

not require its explicit form in what follows.

Remark 4.7. Note without proof, that the �rst two indecomposable

Hopf algebras over Γ = S4 given already in [MS00] are not suitable

for orbifoldizing, as a Doi twist interchanges them.

Take g ∈ S4 a 4-cycle with centralizer 〈g〉 ∼= Z4, a centralizer character

χ(g) = −1 and V = Oχ
g . By [AHS09], p. 48, B(V ) is the third inde-

composable Nichols algebra over S4 of �nite dimension 242. We note

that the condition in Theorem 4.4 is ful�lled trivially:

Lemma 4.8. Suppose some g ∈ Γ has the minimal centralizer 〈g〉, then
for any V = Oχ

g we have Vσ = V , meaning the Hopf algebra H#B(Oχ
g )

is its own Doi twist under the identity map.

Proof. χ, χσ are uniquely determined by their value on g, if it gen-

erates all of the centralizer as demanded. But we immediately calculate

from the de�nition:

χσ(g) = σ(g, g)σ−1(g, g)χ(g) = χ(g)

�

Thus we are again �nished and obtain a Z2-orbifold of dimension

dimH · |Σ| = 242 · 24 · 2, which is pointed and indecomposable with

coradical GL(2, 3). This example is apparently new and matches an

open possibility (conjugacy class C4) in [FGV07].

We conclude the section by giving hints to the situation S5
∼= PGL(2, 5).

The extension GL(2, 5)→ S5 is no stem extension, which one may see
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from the abelianization Z4 = F∗5 → Z2 or from the fact that we extend

by Σ = F5 = Z4 whereas the group cohomology is only Z2, so res

cannot be injective. However (as already noted there), Theorem 2.10 is

still applicable and thus an orbifold would still be indecomposable.

Note that trying this with the known �nite-dimensional Nichols algebra

of the transposition conjugacy class (see [MS00]), we get the same

problems as above, because σ-twisting interchanges the two choices.

However, theremay exist a third possibility (see [AFGV10]) over the

2 + 3-conjugacy class. In this case, observe, that again the centralizer

of this conjugacy class is minimal and the above lemma would apply,

yielding as Z4-orbifold a pointed, indecomposable, �nite-dimensional

Hopf algebra over GL(2, 5).





CHAPTER 5

A Shortcut To Orbifold Reconstruction

1. Reconstruction Theorem

We now want to give conversely a short, direct construction and proof

for the reconstruction Theorem 3.6 in the case of a Nichols algebra

B(M) of a Yetter-Drinfel'd module over some �nite group G. Again,

the correspondence consists in the application of the abstract concepts

to the Radford biproduct k[G]#B(M).

Suppose a central extension Σ∗ → G→ Γ with some π, s, u, σp, φ chosen

as in Lemma 4.1. By construction (Theorem 4.4), any orbifold M̃ has

trivial action of Σ∗ ⊂ G (pull-back). We show also the converse is true:

Theorem 5.1. Suppose M̃ any G-Yetter-Drinfel'd module with Σ∗ ⊂
G acting trivial. Then there is a Γ-Yetter-Drinfel'd module M with a

Σ-action (θp)p∈Σ by twisted symmetries (De�nition 4.2), such that M̃

is isomorphic to the orbifold of M with respect to the θp (Theorem 4.4).

Proof. We �rst construct the Γ-Yetter-Drinfel'd module M : Take

M := M̃ as vector space, the coaction shall be the push-forward by

π (simple concatenation of δM̃), while the condition (Σ∗ acting trivial)

ensure the action factorizes to a Γ-action. This ful�lls obviously the

Yetter-Drinfel'd condition if M̃ does. Now de�ne twisted symmetries

for each p ∈ Σ on any homogeneous vh (h ∈ G) by:

θp : Mσp →M vh 7→ p

(
h

s(π(h))

)
vh

Here again, the fraction always lands in Σ. We easily verify, that these

various linear transformations obey a group law:

θe(vh) = e

(
h

s(π(h))

)
vh = vh

(θp◦θq)(vh) = p

(
h

s(π(h))

)
q

(
h

s(π(h))

)
vh = (pq)

(
h

s(π(h))

)
vh = fpq(vh)

87
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We yet have to check, that they respect the Yetter-Drinfel'd structures.

The (untwisted) colinearity is obvious by construction of the coaction.

The (twisted) linearity holds as follows (again denoting ḡ := π(g))

θp(ḡ.σpvh̄) = σp(ḡh̄ḡ
−1, ḡ)σ−1

p (ḡ, h̄)θp(ḡ.vh̄)

(M̃-YD-condition) = σp(ḡh̄ḡ
−1, ḡ)σ−1

p (ḡ, h̄)p

(
ḡh̄ḡ−1

s(π(ḡh̄ḡ−1))

)
(ḡ.vh̄)

=
σp(ḡh̄ḡ

−1, ḡ)σp(ḡ, h̄)σp(ḡh̄, ḡ
−1)

σp(ḡ, h̄)
·

· p
(

ḡ

s(π(ḡ))

)
p

(
h̄

s(π(h̄))

)
p

(
ḡ−1

s(π(ḡ−1))

)
(ḡ.vh̄)

=
σp(ḡh̄ḡ

−1, ḡ)σp(ḡ, h̄)σp(ḡh̄, ḡ
−1)

σp(ḡ, h̄)σp(ḡ−1, ḡ)
·

· p
(

ḡḡ−1

s(π(ḡḡ−1))

)
p

(
h̄

s(π(h̄))

)
(ḡ.vh̄)

=
σp(ḡh̄ḡ

−1, ḡ)σp(ḡh̄, ḡ
−1)

σp(ḡ−1, ḡ)

(cocycle) = σp(ḡh̄, 1)p

(
h̄

s(π(h̄))

)
(ḡ.vh̄)

= ḡ.θp(vh̄)

Now it is easy to show, that the above construction again applied

to an orbifoldization via M, (θp)p∈Σ yields back M̃ . For actions this

is clear and we check now for a homogeneous element vh ∈ M̃ with

h ∈ G, that this coincides with the coaction, that were obtained by

orbifoldizing the M we just found:

δOrbM (vh) := (φ−1 ⊗ 1)
∑
p∈Σ

h̄1p ⊗ θp(vh)

:= (φ−1 ⊗ 1)
∑
p∈Σ

h̄1p ⊗ p
(

h

s(π(h))

)
vh

= φ−1

(∑
p∈Σ

h̄1pp

(
h

s(π(h))

))
⊗ vh

:= (φ−1φ)(h)⊗ vh = δM̃(vh)

�
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2. Matsumotos Exact Sequence

Already by construction Σ∗ ⊂ G acts trivial on an orbifold M̃,B(M̃).

Thus we shall in what follows frequently consider an additional Doi

twist M̃σ with an additional 2-cocycle σ ∈ Z2(G,k×) over G � note

that the twistings above usually use 2-cocycles u, σp over the smaller Γ!

We already noted in section 4.2, that the Doi twist of the Hopf- or

Nichols algebra produces the following twisted action on the twisted

Yetter-Drinfel'd module M̃σ:

a.σvh = σ(aga−1, a)σ−1(a, g)a.vh

Because Σ∗ is central in G, acting formerly trivial, is acts in the twisting

on any Oχh by multiplication of the scalar

γ(a, g) := σ(g, a)σ−1(a, g)

It is a lucky �coincidence� , that this expression appears already in

literature on group cohomology, namely in Matsumoto's extension

[IM64] for central group extensions of the general Lyndon-Hochschild-

Serre spectral sequence:

1→ Γ∗ → G∗ → Σ→ H2(Γ,k×)→ H2(G,k×)Σ
γ→ Σ∗ ⊗G

Here, H2(G,k×)Σ denotes the kernel of the restriction map and the

map γ yields as expected a bimultiplicative pairing that exactly

matches the expression above!

This technique will be used in what follows to quickly determine the

result of a Doi twist on the action of Σ∗, but more importantly to enu-

merate all actions, that can be reached by this method.

The next section gives a �rst example, where already all admissible

actions (i.e. possibly producing �nite-dimensional Nichols algebras) can

be exhausted this way and Doi twists of orbifolds already classify all

such Nichols algebras.
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3. Example: All Minimal Nichols Algebras over D4,Q8

We already saw numerous times, that most Yetter-Drinfel'd mod-

ules cannot be an orbifoldization, since this is equivalent to trivial

Σ-action by Theorem 5.1. We can at most hope for this to be the only

obstruction, and in cases with �enough twists� and �few irreducible

summands� we can prove such a statement. This is an exemplary case:

Theorem 5.2. All �nite-dimensional, minimally indecomposable (Def-

inition 3.1) Nichols algebras B(M) over G = D4,Q8 are Doi twists

of Σ = Z2-orbifoldizations of �nite-dimensional Nichols algebras over

Γ = Z2 × Z2.

Proof. The �rst step is to use structural results to narrow down

possible Σ-actions, that are admitted in �nite dimensional specimen.

Theorem 5.3 ([AZ07] Lemma 2.2 and [HS08] Theorem 8.6). Suppose

a �nite-dimensional Nichols algebra: For V over a real class s−1 ∈ Os
we have χV (s) = −1; for V,W over discommuting Os 6= Ot we get

U = [V,W ] 6= {0} over [st] with χU(st) = −χV (s)χW (t).

Let us apply this to the real groups D4,Q8, where squares are in

Σ∗ = {1, g}. Any minimal generating set of conjugacy classes consists

of two distinct discommuting Os,Ot. obviously the former condition

determines (maybe trivially) some Σ-action on V,W over these classes:

1
!

= χV (s2) = χW (t2)

The latter condition can also be rewritten, as (st)2 is central:

1
!

= χ[V,W ]((st)
2) = χV ((st)2)χW ((st)2)

Hence, depending on how many nontrivial s2, t2, (st)2 ?
= g this reduces

the 22 possibilities for χV,W (g) = ±1 to 22, 21, 20 many.

Facing the above restrictions, in the second step we need to �nd

enough 2-cocycles of G to exhaust the remaining possible actions; if

the Nichols algebra is �nite, so are its Doi twist and hence all the ob-

tained twisted actions have to ful�ll the above conditions, too.

Although it is almost trivial in this case, we exemplary use Matsumo-

tos sequence above (section 5.2) to determine the number of di�erent
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action |Im(γ)| of Σ∗ on Doi twists:

1→ Γ∗ → G∗ → Σ→ H2(Γ,k×)→ H2(G,k×)Σ
γ→ Σ∗ ⊗G

Using that the relevant cohomology groups are (see e.g. [Hu83])

H2(Q8,C×) = {e} H2(Z2
2,C×) = H2(D4,C×) = Z2

and the cohomology of the cyclic Σ∗ is trivial, i.e. H2(G,k×)Σ =

H2(G,k×) we �nd |Im(γ)| = 20, 21 for G = Q8,D4 respectively:

1→ Z2
2 → Z2

2 → Z2 → Z2 → {e}
γ→ Σ∗ ⊗G

1→ Z2
2 → Z2

2 → Z2 → Z2 → Z2
γ→ Σ∗ ⊗G

So we need to check all con�gurations of conjugacy classes against this

and see, whether the Doi twist actions for the given group G exhaust

all 22 possible Σ∗-actions minus the relations established above for this

speci�c con�guration:

• Case Q8, Oi ⊕ Oj: |Im(γ)| = 20, but as i2 = j2 = g we also

get 2 independent basis relations:

χV (g) = χW (g) = 1

• Case D4, Oa ⊕ Ob: There's now nontrivial Doi twist actions

|Im(γ)| = 21 and still one basis relation left:

χV (g) = χV (a2) = 1

• Case D4, Ob⊕Oab: There are no more basis relations, but by

(st)2 = a2 = g now one product relation:

χV (g)χW (g) = 1

Note that this case could have been derived from the former

by using a Weyl-re�ection � for larger examples this is a

considerable reduction of necessary calculations. We shall use

this for the proof in section 7.4 with Weyl equivalence classes

worked out in section 8.1.

Having obtained all possible Σ-actions by Doi twists, we may twist back

M̃ to have a trivial one, hence our minimally indecomposable Nichols

algebra is an orbifoldization by the reconstruction theorem. �





CHAPTER 6

Orbifoldizing Nichols Algebras To G′ ∼= Zp

This is the centerpiece of the thesis: Throughout this chapter assume

Σ∗ = Zp → G→ Γ

to be a stem extension Σ∗ ⊂ G′ ∩ Z(G) of a �nite abelian group Γ

by a cyclic group Zp of prime order. Using Heckenberger's classi�ca-

tion [H08] of �nite-dimensional Nichols algebras B(M) over Γ abelian

we now construct and classify all �nite-dimensional minimally in-

decomposable Nichols algebras B(M̃) with connected Dynkin

diagram, which appear as orbifoldized Nichols algebra of some B(M)

via the given extension. We denote 1n := n mod 2 ∈ {0, 1}.

Theorem 6.1. For a �nite stem extension Σ∗ = Z2 → G → Γ of a

�nite abelian group Γ we can construct a �nite-dimensional minimally

indecomposable Nichols algebra B(M̃) over G for the following combi-

nation of data: Necessary 2-rank Γ (3rd column) and 2-center of G and

(4th column) and Dynkin diagram of B(M̃) (2nd column). Each case

is orbifoldized from a suitable B(M) over Γ (1st column).

Conversely (section 6.6), this list covers all components of �nite-dimen-

sional minimally indecomposable orbifold Nichols algebras over stem

extensions Zp → G→ Γ (p prime) with connected Dynkin diagram. In

particular we �nd necessarily p = 2.

• Unrami�ed (generic) simply laced components from a dis-

connected double with a symplectic root system (section 6.3):

M M̃ dimF2(Γ/Γ2) dimF2(Z(G)/G′G2)

An ∪ An An≥2 n 1n
Dn ∪Dn Dn≥4 n 2− 1n
En ∪ En En=6,7,8 n 1n

93
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• Rami�ed components from a single diagram with an order 2

automorphism and a symplectic root system for the split part

of the diagram A2, An−1 (sections 6.4 and 6.5).

M M̃ dimF2(Γ/Γ2) dimF2(Z(G)/G′G2)

E6 F4 n = 4 2 + 12 = 2

A2n−1 Bn≥3 n 1 + 1n−1 = 2− 1n

Note that rank and center precisely corresponds to the dimension and

nullspace-dimension of all symplectic root systems in Theorem 6.15.

Note by section 6.6 additional link-decomposable Nichols algebras

might be orbifoldized with one split node from the following types over

Γ. The non-Cartan q-diagrams with involutive diagram automorphisms

appear in [H08] (with ζ ∈ k3):

• an isolated loop diagrams A2 → A1, q ∈ k3.

• unrami�ed A1 ∪ A1 → A1

• rami�ed A3 → B2

• rami�ed Dn+1 → Cn
• rami�ed D4 → G2 which is the only Z3-orbifold

• several non-Cartan diagrams of shape alike A3, folding rami-

�ed to another non-Cartan diagram of rank 2.

• three non-Cartan diagrams of shape alike D4, folding rami�ed

to another non-Cartan diagram of rank 3.

• A family of non-Cartan diagrams of shape alike Dn, folding

rami�ed to C2 plus an inert non-Cartan part:
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Remark 6.2. In all these cases, the nonabelian (smaller) root lattice

corresponds to the Lie-subalgebra �xed by the diagram automorphism of

the larger root lattice over the abelian group. This correspondence has

been a classical use of diagram folding.

In our context, it can be understood as the melting of simple Γ-Yetter-

Drinfel'd modules into a simple one over G (resp. multiple equal Γ-

elements to a single G-conjugacy class) by the rede�ned G-coaction,

that uses the entire orbit of the twisted symmetries (resp. by the group's

Σ-extension).

In chapter 7 we will give nondiagonal (and especially some faithful!)

Doi twists with rank ≤ 4 over various groups of order 16 and 32 and

hence many new large-rank Nichols algebras over 2-groups.

Note that by the Reconstruction Theorem 5.1 every �nite-dimensional

indecomposable Nichols algebra over such G with trivial G′-action

hence contains a connected component described below. Subsequent

full classi�cations without the assumption of a trivial Σ∗-action in

special cases are given in sections 7.2 - 7.4.

1. Orbifoldizing Dynkin Diagrams

In what follows we shall describe the e�ect of Zp-orbifoldizing to Dynkin
diagrams of Yetter-Drinfel'd modules. We will only treat the later-on

relevant cases; however the de�nitions are general context and one may

calculate the orbifold's Dynkin diagram in the same manner as below.

Suppose a �nite-dimensional semisimple Yetter-Drinfel'd module M =⊕
i∈IMi with Mi simple. Following [HS08] De�nition 6.4, one de�nes

the generalized Cartan matrix (aij)i,j∈I by

aii = 2 aij = −suph{ad(Mi)
h(Mj) 6= 0} for i 6= j

with the adjoint action resp. braided commutator in the Nichols al-

gebra B(M) with multiplication denoted by µ:

ad(x)(y) := µ(x⊗ y − τM(x⊗ y))

One may organize this data into a Dynkin diagram by taking I as

node-set and connecting i, j whenever mij < 0. More detailedly, one
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may use standard Lie algebra symbolics for the edge, if the Cartan ma-

trix restricted to i, j matches that of a Lie algebra of rank 2; otherwise

one had to decorate th edge with the explicit tuple (−mij,−mji) as

custom for Coxeter groups or a�ne Lie algebras.

(
2 −1

−1 2

)
(

2 −2

−1 2

)
(

2 −3

−1 2

)

Especially we shall call M and B(M) (diagram-)connected, i� the

Dynkin diagram is connected, regardless of the type of edge, and sim-

ply laced if only mij = 2, 0,−1 appear.

Suppose now we are given a Nichols algebra B(M) over a group, Σ→
G → Γ, and Σ acting on M by respective twisted symmetries and

hence by diagram automorphisms (Lemma 4.3). Especially Σ per-

mutes the simple sub-Yetter-Drinfel'd modules Mi ⊂M . Construction

Theorem 4.4 then orbifoldizes M to a Yetter-Drinfel'd module M̃ over

G. By construction of the coaction on M̃ , the direct sum M̃i of an

orbit {Mi1 , . . . ,Min} of simple Mi under this action of Σ is a sub-

Yetter-Drinfel'd module of M̃ . It is not necessary simple, but:

Corollary 6.3. For a stem extension, the orbifold B(M̃) may only

be minimally indecomposable (see De�nition 3.1), if all M̃i are

simple. This is again, because any lift of Γ-generators already generate

G and hence possible summands in Mi could be omitted. Especially by

dimensionality the conjugacy class [g] ⊂ G vs. [ḡ] ⊂ Γ needs to have

grown according to the orbit length!

We suppose these assumptions in what follows, and use it to

visualize the in�uence of orbifoldizing as follows:

We draw theM -nodes at the top and the M̃ -nodes at the bottom, such

that each orbit Mik lays above the single simple M̃i and �project� by

dotted lines. We draw little nodes for the orbits Mik inside M̃i.
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De�nition 6.4. For Σ = Zp we may heuristically classify the nodes

by their Σ-orbits being totally stable or unstable:

{Mi} is inert, if

it is �xed under Σ.

Then M̃i = Mi1

as Yetter-Drinfel'd

modules meaning

no orbifoldization is

performed and Σ acts

trivial. Especially the

conjugacy class stays

the same.

An orbit {Mi1 , ...Mip}
of lenght p is called

split . By the above

for N the length of

the Γ-conjugacy class

underlying each Mil,

the lenght of the G-

conjugacy class under-

lying M̃i is pN .

A Γ-edge (i1i2) (i.e.

adMi1
(Mi2) 6= 0) is

a loop, if Mi, Mj

are in the same split

Σ-orbit. This case is

heavily restricted for

Γ abelian (Theorem

6.9) and later appear

only in decomposable

Nichols algebras (sec-

tion 6.6).

M̃i = Mi1 M̃i = ⊕pk=1Mik M̃i = ⊕pk=1Mik

We shall now focus our interest to edges in the orbifold, i.e. let M̃ =

M̃i ⊕ M̃j with M̃i, 6= M̃j simple G-Yetter-Drinfel'd modules. Either,

if both nodes are inert, we call the edge inert. Otherwise, there are

two cases other depending on the nodes' splitting behaviour, split and

branched which we shall subdivide into generic and exotic cases:
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De�nition 6.5. For a G-edge (ij) we de�ne (the next Theorem 6.8

clari�es the resulting diagram in all later-on relevant cases!):

(ij) is called tamely split, i�

both nodes are and each ik con-

nected to precisely one jl (with

equal edge-type by Σ-symmetry).

See e.g. D4 in section 3.2.

(ij) is called wildly split, if each

node ik connects to multiple ik

(possibly of di�erent edge type!).

This type will not appear for Γ

abelian (Theorem 6.9).

(ij) is called tamely branched,

i� one node is inert (say i), the

other (j) is split and the Γ-edges

(again all equal) of type A2.

(ij) is called wildly branched,

i� again one node inert and one

split, but the Γ-edges not of type

A2. They will appear only in de-

composable Nichols algebras (sec-

tion 6.6).
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We will introduce a more comfortable notation to diagrams of arbitrary

rank, giving credit to increasingly serious non-genericity, as they appear

in the later-on discussions:

De�nition 6.6. An orbifoldized diagram is exactly one of the following:

• inert i� all nodes are inert (and hence all edges)

• unrami�ed i� no loops occur and all edges are tamely split.

• rami�ed i� no loops occur, all edges are either tamely split or

tamely branched and at least one branched occurs (hence some

nodes are split, some inert).

• wild i� at least one wildly branched or wildly split edge occurs

or at least one node is a loop.

Remark 6.7. For Γ abelian, we shall prove in theorem 6.9, that

• Only a very speci�c loop may occur for p = 2.

• No wildly split edges can occur.

• Split edges only occur for p = 2 and a speci�c Γ-braiding ma-

trix and do not contain loop nodes (hence are unrami�ed).

• For two given nodes, an unrami�ed edge occurs i� the two

underlying G-elements discommute.

We shall further see by explicitly checking all cases in section 6.6

• Wildly branched and looped diagrams are both possible, but lead

only to decomposable Nichols algebras.

• Rami�cation cannot occur for p 6= 2, 3 and D4 → G2 for p = 3

leads to a decomposable Nichols algebra.

The result is quite intriguing: The only remaining cases are all p =

2, nonwild, and lead to indecomposable Nichols algebras Cartan type

diagrams, as listed in Theorem 6.1.

We now prove, that the Dynkin diagram of M̃ is indeed of the form

given above. Hereby, we will solely use the knowledge of the root system

over Γ and derive statements in analogy to classical Lie algebra folding.

In contrast however, for Nichols algebras there are several exceptional

cases possible

Theorem 6.8. The orbifold's edge-type m̃ij, m̃ji for the following cases

used later-on is as asserted above:

(1) If all nodes Mi1 , . . .Min over some orbifold node M̃i are dis-

connected to all nodes Mj1 , . . .Mjn over some orbifold node
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M̃j, then so are i, j, i.e.

ad(M̃i)(M̃j) = 0

(2) A tamely split edge orbifoldizes to a rank 2 G-Nichols alge-

bra of with the same edge type:

ad(M̃i)
n(M̃j) =

∑
k

ad(Mik)
n(Mjk)

ad(M̃j)
n(M̃i) =

∑
k

ad(Mik)
n(Mjk)

⇒ m̃ij = mij m̃ji = mji

(3) A tamely branched edge (say i inert, j split) for p = 2, 3

orbifolds to a rank 2 Nichols algebra over G of type B2, G2

respectively. More precisely i.e.

ad(M̃i)(M̃j) 6= 0 ad(M̃j)(M̃i) 6= 0

ad2(M̃i)(M̃j) = 0 ad2(M̃j)(M̃i) 6= 0

· · ·
adp(M̃j)(M̃i) 6= 0

adp+1(M̃j)(M̃i) = 0

Proof. By the construction Theorem 4.4 we have B(M) ∼= B(M̃),

hence it su�ces to successively derive the adjoint action of the Γ-Yetter-

Drinfel'd modules solely from the knowledge of the Dynkin diagram

over Γ; note that the elements Mik ⊂ M̃i are not homogeneous over G

any longer, so using braided commutators would be tedious!

(1) In this case, simply all ad vanish:

ad(
⊕
k

Mik)(
⊕
l

Mil) =
∑
k,l

ad(Mik)(Mil) = 0

(2) To calculate the necessary ad-spaces

ad(M̃i)
n(M̃) ad(M̃i)

n(M̃)

we may number the split nodes

M̃i =
⊕
k

M̃ik M̃i =
⊕
k

M̃ik

in such a way, that over Γ precisely the pair Mik ,Mjk is con-

nected , which is possible by the de�nition of tamely split
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(also by loopfreeness no Mik ,Mil are connected!). It was al-

ready mentioned, that by the transitive action of Σ = Zp on
both orbits, these edges have equal type:

mikjk =: mij mjkik =: mji

We now show inductively, that

ad(M̃i)
n(M̃) =

∑
k

ad(Mik)
n(Mjk)

(and vice versa for j, i). From this the second assertion on the

m̃ij, m̃ji follows immediately. The statement is certainly true

for n = 0, and the induction step uses as assumed ad(Mik)(Mjl) =

0 for k 6= l and all ad(Mik)(Mil) = 0:

ad(M̃i)
n+1(M̃) = ad(M̃i)

(
ad(M̃i)

n(M̃)
)

= ad

(⊕
k

Mik

)(∑
l

ad(Mil)
n(Mjl)

)
=
∑
k,l

ad(Mik) (ad(Mil)
n(Mjl))

=
∑
k

ad(Mik) (ad(Mik)
n(Mkl))

=
∑
l

ad(Mil)
n+1(Mjl)

(3) Although we would assume this statement to be true for all p,

later-on only the cases p = 2, 3 will be relevant, that can be

realized over abelian groups. In these cases the assertions fol-

low directly from the knowledge of the respective root systems

of type A3, D4 as in [Gi06], p. 47�:

• p = 2 with (Mj1 ,Mi,Mj2) of type A3 to B2:

M̃ -root ad-space above M -roots

{i} Mi {i}
{j} Mj1 ⊕Mj2 {j1, j2}
{i+ j} ad(Mi)(Mj1 ⊕Mj2) {i+ j1, i+ j2}

ad2(Mi)(Mj1 ⊕Mj2) {}
{i+ 2j} ad2(Mj1 ⊕Mj2)(Mi) {i+ j1 + j2}

ad3(Mj1 ⊕Mj2)(Mi) {}
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• p = 3 with (Mi,Mj1 ,Mj2 ,Mj3) of type D4 with Mi in the

center of the diagram to G2:

M̃ -root ad-space above M -roots

{i} Mi {i}
{j} Mj1 ⊕Mj2 ⊕Mj3 {j1, j2, j3}
{i+ j} ad(Mi)(Mj1 ⊕Mj2 ⊕Mj3) {i+ j1, i+ j2, i+ j3}

ad2(Mi)(Mj1 ⊕Mj2 ⊕Mj3) {}
{i+ 2j} ad2(Mj1 ⊕Mj2)(Mi) {i+ j1 + j2, i+ j1 + j3, i+ j2 + j3}
{i+ 3j} ad3(Mj1 ⊕Mj2 ⊕Mj3)(Mi) {i+ j1 + j2 + j3}

ad4(Mj1 ⊕Mj2 ⊕Mj3)(Mi) {}
{2i+ 3j} iterated, not above {2i+ j1 + j2 + j3}

�

We �nally give certain general necessary conditions for such rank 1, 2

orbifoldizings to be possible over Γ abelian, relying heavily on Heck-

enberger's list [H08]; in the remaining chapter we will then clarify all

possible diagrams against this list and construct the remaining:

Theorem 6.9. For Γ abelian the following necessary conditions apply:

(1) A loop may only appear for p = 2 and a decorated subdiagram

A2 in [H08] with q a primitive third root of unity.

(2) No wildly split edges can occur.

(3) A tamely split edge (ij) appears only for p = 2

M̃i = Mi1 ⊕Mi2 M̃j = Mj1 ⊕Mj2

and only if the edge decoration of the rank 4 diagram over Γ

is of (for a suitable numbering)

qi1j1qj1i1 = −1 qi2j2qj2i2 = −1

qi1j2qj2i1 = +1 qi2j1qj1i2 = +1

and only if the conjugacy classes underlying M̃i, M̃j are mu-

tually discommuting.

(4) A loop node cannot be part of a split edge.

Remark 6.10. Note that the discommuting-statement is i�: Such con-

jugacy classes have both length > 1, hence are split, and by [HS08]

Proposition 8.1 have to be connected!
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Remark 6.11. Note further, that the prescribed edge-decorations for

a split edge may corresponding to several decorated diagrams, most no-

tably A2 ∪A2 and C2 ∪C2, for q = −1 respectively q =
√
−1; the latter

will however exhibit an impossible loop in section 6.6.

Proof. Denote with σ a generator of Σ = Zp and equivalently the

2-cocycle generator and θ = θσ the associated twisted symmetry θ. De-

note the simple and diagonal (hence 1-dimensional) Γ-Yetter-Drinfel'd

modules

Mi1 = Oχḡ Mj1 = Oη
h̄

then the other can be calculated from the twisted symmetry action,

such as e.g. θ.Mi1 = Oχσḡ etc.

(1) First note, that by transitivity action of θ of order p, a loop

contains over Γ a p-cycle, which is impossible for p ≥ 4 by

[H08] (p = 3 will be disregarded at the end).

Let θ map Mi1 to some connected Mi2 , then

qi1i2qi2i1 = χ(g)χσ(g)

= χ(g)σ(g, g)σ−1(g, g)χ(g)

= q2
i1i1

Going through Heckenberger's list for diagonal rank 2 Nichols

algebras of �nite dimension ([H08] table A.1), we �nd the only

cases with symmetric node decoration qi1i1 = qi2i2 to be Row

1, 2 and 3.

Row qi1i1 = qi2i2 qi1i2qi2i1 Cartan Relation above demands

1 q 6= 1 1 A1 ∪ A1 q = −1

2 q 6= 1 q−1 A2 q3 = 1

3 −1 q 6= ±1 - impossible

The �rst case is no loop, the second is the sporadic case of the

statement, the third cannot support the relation given above.

Finally, note in in Heckenberger's list there is no 3-cycle

with all nodes, edges decorated with such q, q−1 ∈ k3, hence

p = 3 is impossible.
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(2) For a wildly split edge, each Γ-node Mik has to be connected

to at least two distinctMjk ,Mjl and vice versa; this statement

could be formulated, as though the (p, p)-bipartite graph con-

tains a (2, 2)-regular bipartite graph. As obviously no dead

ends occur, such a graph contains a cycle. Moreover the bipar-

titiveness forces the cycle length to be even, the length being

6= 2 by k 6= l, hence ≥ 4. But such a cycle is outruled again

by [H08] Lemma 20.

(3) Assume again by proper numbering i1j1 to be connected with

edge-decoration qi1j1qj1i1 =: q 6= 1. To be tamely split, all oth-

ers ik 6=1j1 have to be disconnected. Choose the further num-

bering in such a way, that the twisted symmetry θ (associated

to the chosen generator) acts as

θn.Mi1 = Mik+1

i.e. Mik+1
= Oχσkg . Then with the value

r := σ(h̄, ḡ)σ−1(ḡ, h̄)

we get for the other edge decorations:

qik+1j1qj1ik+1
= η(ḡ)χσk(h̄)

= η(ḡ)σk(h̄, ḡ)σ−k(ḡ, h̄)χ(h̄)

= rkq

As we assumed only i1j1 to be connected via q 6= 1, the only

possibility to achieve the others to be rq = r2q = · · · = rp−1 =

1 is p = 2 and q = r = −1, showing the �rst and second

�only� . For the third we proceed with the established

r = σ(h̄, ḡ)σ−1(ḡ, h̄) = −1

This means, that the underlying 2-cocycle of the stem-extension

u ∈ Z2(Γ,Z2) is also nonsymmetric on ḡ, h̄:

u(h̄, ḡ)u−1(ḡ, h̄) 6= 1

which concludes g, h to discommute in G.

(4) Suppose in the above statement i to be a loop, then j cannot

be, as this would form a 4-cycle. Hence the decorated diagram
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of rank 4 is fairly determined from the established decoration

of split edges and the loop:

where q has to be a primitive third root of unity. But such

a diagram does not appear in Heckenberger's list for rank 4

[H08] Table B.

�

2. Symplectic Root Systems

Suppose we are given a �nite group with G′ = Zp; it is a stem-extension

of it's abelianization Γ = G/G′. As usual for p-groups we consider the

skew-symmetric, isotropic commutator map [, ] (see [Hu83]):

G×G [,]−→ G′ = Zp

g, h 7→ [g, h] = ghg−1h−1

[h, g] = [g, h]−1 [g, g] = 1

Because G′ is central (�nilpotency class 2�), the map is multiplicative

(the other argument's works analogously):

[g, h][g′, h] = (ghg−1h−1)(g′hg′−1h−1)

= g(g′hg′−1h−1)hg−1h−1

= gg′hg′−1g−1h−1

= [gg′, h]

and factors to c : Γ× Γ→ Zp.

Lemma 6.12. Let u ∈ Z2(Γ,Z2) be the 2-cocycle associated to the

stem-extension Z2 → G→ Γ and set-theoretic split s : Γ→ G, then

u(ḡ, h̄)u−1(h̄, ḡ) = [g, h] = c(ḡ, h̄)

Proof. Because [, ] is invariant, when central elements, such as ∈
G′, are multiplied to the argument, it is su�cient to check the assertion

on the images of s, where we calculate:

s(ḡ)s(h̄) = u(ḡ, h̄)s(ḡh̄)

s(h̄)s(ḡ) = u(h̄, ḡ)s(ḡh̄)

= u(h̄, ḡ)s(h̄ḡ)

⇒ [s(ḡ), s(h̄)] = u(ḡ, h̄)u−1(h̄, ḡ)
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�

Because of multiplicativity [gp, h] = [g, h]p = 1 and thus the commuta-

tor map even factorizes one step further to V := Γ/pΓ ∼= Fnp

V × V 〈,〉−→ Fp denoted additively

Theorem 6.13 (Burnside Basis Theorem). Every minimal generating

set of G (no element may be omitted) consists precisely of n = dim(V )

elements g1, . . . gn, whose images in V form a basis (this holds much

more generally for all p-groups with V = G/Φ(G)).

Proof. Take a set {g1, . . . gn} with their images forming a basis of

V = Γ/pΓ, then obviously the {ḡi} also generate Γ; because some gi, gj
ought to be discommuting (otherwise G′ = 1), they already generate

all of G. Also, no element may be omitted, otherwise the remaining

images could not generate all of V . But the images of a generating set

of G certainly have to generate the quotient V . Hence, the gi form a

minimally generating set.

Assume conversely some set {g1, . . . gk} to minimally generateG: Again,

the images in V generate the entire quotient V . Assumed some linear

dependency, one may omit an element gl without compromising the

generation of all V and (as shown above) the remaining gi still gener-

ate the entire group. Thus the images form a basis. �

In what follows, we shall consider V = G/(G′Gp) as a symplectic vec-

tor space Fnp with (possibly degenerate!) symplectic form 〈v, w〉. For
a sub-vector space W ⊂ V we de�ne the orthogonal complement:

W⊥ := {v ∈ V | ∀w∈W 〈v, w〉 = 0}

Especially V ⊥ = Z(G)/(Z(P )∩G′Gp) = Z(G)/(G′Gp) is the nullspace

of vectors orthogonal on all of V (note that always 〈v, v〉 = 0). For

V ⊥ = {0} we call V nondegenerate. It is well known (see e.g. [Hu83])

that there is always a symplectic basis {xi, yi, zj} consisting of mu-

tually orthogonal nullvectors zj ∈ V ⊥ and symplectic base pairs

〈xi, yi〉 = 1 generating a maximal nondegenerate subspace. Note espe-

cially, that nondegenerate symplectic vector spaces hence always have

even dimension! These nondegenerate spaces lead for example to the

extraspecials G = 2
dim(V )+1
± , especially for dim(V ) = 2 to D4 and Q8.
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By Theorem 6.8 split edges may only appear over discommuting group

elements. The following notion is used to construct a generating set

of the nonabelian group, such that the noncommutativity matches the

edges of a given graph. Note that it is a considerably weaker notion

than that of an ordinary root system, and rather arbitrary graphs may

be realized that way; it should be rather viewed as addition to a proper

root system and Dynkin diagram, that allows stem-extension of the

underlying group as prescribed by the symplectic form.

De�nition 6.14. Given a symplectic vector space V over F2 and a

graph, a symplectic root system for this graph is a decoration β :

Nodes → V , such that the images form a basis of V and nodes i 6= j

are connected i� 〈β(i), β(j)〉 = 1F2 (note that always 〈v, v〉 = 0)

We will use the notion for one directly on simply-laced Dynkin dia-

grams, but also as tool for others, where only a part of the diagram is

split (such as A2, An−1 for rami�ed E6 → F4 and A2n−1 → Bn).

Theorem 6.15. Any simply laced Dynkin diagram Xn of rank n (viewed

as graph) admits a symplectic root system over a symplectic vector space

V of dimension n, if and only if the nullspace has minimal dimension

(= 0, 1 for n even/odd), except D2n requires a 2-dimensional nullspace.

Proof. The hardest part will be the case A2n, the other will be

derived thereof. By-hand constructions are needed for E6 and E8.

Case A2n (if): We �rst give for dim(V ⊥) = 0 (nondegenerate) a real-

ization similar to the ordinary case. For symplectic base pairs xi, yi and

the obvious numbering of An take the following alternating decoration

• β(1) = x1

• β(2k + 1) = xk + xk+1

• β(2k) = yk
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This obviously forms a basis and it is easy to see, that the only non-

trivial scalar products are:

〈β(1), β(2)〉 = 〈x1, y1〉 = 1

〈β(2k), β(2k + 1)〉 = 〈yk, xk + xk+1〉 = 1

〈β(2k + 1), β(2k + 2)〉 = 〈xk + xk+1, yk+1〉 = 1

Case A2n (only if): This is proven inductively: First note for n = 1,

that V of dimension 2 is either nondegenerate as asserted or V = V ⊥

consists only of a nullspace, in which case A2 cannot have a realization,

because all 〈v, w〉 = 0.

Now suppose we had a realization of A2n over some V with nontriv-

ial nullspace dim(V ⊥) ≥ 2 (1 is impossible by even dimension). We

consider the subspace generated by the intermediate node decorations

W =
⊕2n−1

k=2 β(k)F2, which realizes the diagram A2(n−1); by induction

W has to nondegenerate!

The remaining base elements β(1), β(2n) have in conjunction with W

to generate all of V with its assumed nontrivial nullspace of dimension

at least 2, hence there is a basis z, z′ of V ⊥ with

β(1) = z + w ∈ z +W β(2n) = z′ + w′ ∈ z +W

We now claim:

w =
n−1∑
k=1

β(2k + 1) w′ =
n−1∑
k=1

β(2k)
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which we prove for w using the nondegeneracy of W on the basis

β(l), 2 ≤ l ≤ 2n− 1 (and analogously for w′):

d := w −
n−1∑
k=1

β(2k + 1)

〈d, β(l)〉 = 〈w −
n−1∑
k=1

β(2k + 1), β(l)〉

= 〈w, β(l)〉 −
n−1∑
k=1

〈β(2k + 1), β(l)〉

= 〈β(1), β(l)〉 −
n−1∑
k=1

〈β(2k + 1), β(l)〉

To show this expression to be zero for all l, we use the knowledge of

the diagram: For l = 2, exactly the �rst term and the k = 1-term is

nonzero, for all other even l exactly the two adjacent 2k + 1 = l ± 1

are nonzero, while for odd l all summands are zero. This proves d to be

orthogonal on all basis elements of W (we are over F2!) and hence by

nondegeneracy d = 0, which concludes the claim (w′ follows sym-

metrically).

But now in contrast to the assumed diagram, 1 and n have also to be

connected, yielding a contradiction:

〈β(1), β(2n)〉 = 〈w + z, w′ + z′〉 = 〈w,w′〉

=
n−1∑
i=1

n−1∑
j=1

〈β(2i+ 1), β(2j)〉

= 2n− 1 = 1

Case A2n+1 (only if): For n = 0, the 1-dimensional V has to be a

nullspace; so consider n > 0. The basis elements β(1), . . . β(2n) gener-

ate a subspace W =
⊕2n

k=1 β(k)F2 that realizes A2n. Thus by the above

W is nondegenerate and V can have at most 1-dimensional nullspace,

and by odd dimension even of exact dimension 1.

Case A2n+1 (if): For n = 0, the 1-dimensional nullspace V = zF2

supports the A1 realization (β(1) = z); so consider n > 0. To realize

this diagram over V with minimal nullspace V ⊥ = zF2, i.e. V = W ⊕
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zF2 with W nondegenerate, realize A2n over W as above and add a

node β(2n + 1) = z + xn. Because yn only appears in β(2n), the only

additional nontrivial scalar-product is 〈β(2n), β(2n+ 1)〉 = 1

Case D2n+1 (if and only if):We proceed as for A2n+1, but add to A2n

a di�erent node β(2n+1) = z+x1. Conversely, this contained A2n gen-

erating a nondegenerate W shows again dim(V ⊥) to be 1-dimensional.

Case D2n+2 (if and only if): Note again that the subspace W gener-

ated by the contained A2n node decorations is nondegenerate, hence V

has nullspace of dimension at most 2, which only leave the cases 2 and 0.

We give a construction for the former and a contradiction for the latter.

First we construct D2n+2 over V with the atypically large nullspace

V ⊥ = z1F2 ⊕ z2F2 from A2n by adding two nodes β(2n+ 1) = xn + z1

and β(2n+ 2) = xn + z2:

Secondly, suppose we had a nondegenerate V supporting D2n+2. We re-

move the branching point and consider the subspaceW ⊂ V generated

by the remaining node decorations; it has dimension 2n + 1 and a 1-

dimensional nullspace. Also, W supports now a symplectic root system

for the remaining diagram A1∪A1∪A2n−1. But the linear independent

node decorations of the two disconnected A1 have to be orthogonal on
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all of W , hence nullvectors, contradicting W to have a 1-dimensional

nullspace.

Case E7 (if and only if): E7 contains the diagram A6, which requires

a nondegenerate vector space of dimension 6. Hence the only possible

choice for V (dimension 7) has a 1-dimensional nullspace V ⊥ = zF2.

We construct a realization by adding a node β(7) = x2 + z:

Case E6 (if): It was quite surprising to the author, that (in contrast

to E7) for E6 no subdiagram seem to signi�cantly ease a construction.

We shall thus directly give an exceptional construction for V nondegen-

erate, and subsequently a by-hand exclusion of further solutions with

nontrivial nullspace by reducing to A4.

Case E6 (only if): Assume we had a symplectic root system β with

nontrivial nullspace dim(V ⊥) ≥ 2. We reduce to a contained A4, which

only supports a nondegenerate W with basis β(1), β(2), β(3), β(4)

hence the nullspace were even exactly 2-dimensional and

β(5) = z+w ∈ z+W β(6) = z′+w′ ∈ z′+W V ⊥ = zF2⊕z′F2



112 6. ORBIFOLDIZING NICHOLS ALGEBRAS TO G′ ∼= Zp

Now in analogy to the A2n induction step we claim:

w = β(2) + β(4) w′ = β(1)

Again, this is proven by using W to be nondegenerate. For w this was

done in the A2n proof, and for w′ we calculate:

d′ = w′ − β(1)

〈d′, β(1) = 〈w′ − β(1), β(1)〉

= 〈β(6), β(1)〉 − 〈β(1), β(1)〉 = 0

〈d′, β(2) = 〈w′ − β(1), β(2)〉

= 〈β(6), β(2)〉 − 〈β(1), β(2)〉 = 0

〈d′, β(3) = 〈w′ − β(1), β(3)〉

= 〈β(6), β(3)〉 − 〈β(1), β(3)〉 = 0

〈d′, β(4) = 〈w′ − β(1), β(4)〉

= 〈β(6), β(4)〉 − 〈β(1), β(4)〉 = 0

Hence d′ is in W orthogonal to all basis elements and hence d′ = 0

which concludes to claim.

Now we can �nally recover a contradicting edge between 5 and 6:

〈β(5), β(6)〉 = 〈z + β(2) + β(4), z′ + β(1)〉

= 〈β(2), β(1)〉+ 〈β(4), β(1)〉

= 1 + 0 = 1

Case E8 (if): As E8 contains E6, which requires a nondegenerate vec-

tor space W , V may only have nullspace dimensions 0 and 2. We con-

struct an example of the former, derived from the exceptional E6 root

system and an additional symplectic base-pair x5, y5, and contradict

the latter coming from the contained A7 by a new argument.
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Case E8 (only if): Thus �nally assume there were a realization over

a vector space V with nullspace of dimension 2. There is a contained

A7 diagram over the vector spaceW (nullspace dimension 1) generated

by the decorations β(1), . . . β(7).

As we supposed dim(V ⊥) = 2 there is a basis element z ∈ V ⊥ such

that β(8) = z + w ∈ z +W , which means by the diagram

〈w, β(3)〉 = 1 〈w, β(k)〉 = 0 k = 1, 2, 4, 5, 6, 7

In contrast to the previous arguments, we now want to conclude that

no such w can exist: It had to be a F2-linear combination of the basis

β(i) ∈ W , which corresponds to giving a subset

w =
∑
k∈S

β(k) S ⊂ {1, 2, 3, 4, 5, 6, 7}

As 〈w, β(3)〉 = 1 we have either 2 ∈ S or 4 ∈ S. But:

• 2 ∈ S would concludes 〈w, β(1)〉 = 1 regardless of the rest of

S, which contradicts the above assumption.

• 4 ∈ S would also require 6 ∈ S in order to keep as assumed

〈w, β(5)〉 = 0. But then 〈w, β(7)〉 = 1 again contradicts the

assumption.

�
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3. Unrami�ed Cases ADE ∪ ADE → ADE

The most natural and generic way to construct a Yetter-Drinfel'd mod-

ule with twisted symmetry Z2 (actually Zp) has already been demon-

strated on the case D4,Q8 in section 3.2; we force twisted symmetry

by doubling the diagram. We subsequently give explicit examples for

A4 ∪ A4 → A4 and D4 ∪D4 → D4.

The technical proof idea is to take a (suitable, see below) diagonal

�nite-dimensional Nichols algebra B(M ′) realizing the given diagram

over Γ. Then we calculate for an arbitrary given cocycle σ of order 2

the twisted M ′′ := M ′σ and hence obtain a natural twisted symmetry

θ of order 2 on M = M ′ ⊕M ′′σ.

Care has to be taken, not to cause additional edges between the copies,

such that B certainly stays �nite:

dim(B(M)) = dim(B(M ′ ⊕M ′′σ))

?
= dim(B(M ′)⊗ B(M ′′σ))

= dim(B(M ′))dim(B(M ′σ))

= dim(B(M ′))2

This detailed statement was found by systematically avoiding in the

necessary conditions Theorem 6.9.

• that the splitting of each edge becomes wildly in the third

proof part of the theorem, avoiding �diagonal additional edges�.

• that loops occur, avoiding �vertical additional edges�.

The former would requires p = 2, all edge decorations in M to be

qijqji = −1 and edges exactly between G-discommuting nodes, as pre-

scribed by σ. This is the crucial role for the symplectic root sys-

tems established in the last section for this construction. The latter

additionally require the node decorations to be qii = −1 and excludes

multiply-laced M ′, which is done �the other way around� as part of

checking all possible diagonal Nichols algebras in section 6.6. We again

use the notation 1n := n mod 2 = 0, 1.
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Theorem 6.16. Suppose a simply-laced Dynkin diagram of rank n and

any group G with G′ = Z2 and Γ := G/G′, such that

• dimF2(V ) = dimF2(Γ/Γ2) = n ≥ 2

• dimF2(V ⊥) = dimF2(Z(G)/G′G2) = 1n
respectively = 2− 1n for diagrams Dn

Then orbifoldizing two disconnected copies of the diagram over Γ through

it's obvious involutory diagram automorphism constructs a G-Yetter-

Drinfel'd module M̃ =
⊕n

i=1 M̃i of dimension 2n with:

• G′ acts trivially on M̃ , which is hence diagonal, but the quo-

tient V acts faithfully.

• M̃ is minimally indecomposable, i.e. indecomposable and not

properly containing an indecomposable module.

• B(M̃) is �nite-dimensional, the dimension being the square of

the single diagram's in the abelian case Zn2 .
• M̃ has the prescribed Cartan matrix and Dynkin diagram with

all nodes M̃i dimension 2 (i.e. underlying conjugacy class of

length 2).

Several faithful Doi twist and hence nondiagonal Nichols algebras for

small rank D4, A2, A3, A4 over various G are given in section 7.1.

Proof. The strategy has been outlined above:
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Step 1: We �rst construct a Yetter-Drinfel'd module M ′ of dimension

n over Γ, such that two nodes decorated with group elements ḡi, ḡj are

connected i� c(ḡi, ḡj) 6= 0 (i.e. lifts gi, gj ∈ G discommute) and the

braiding matrix only contains ±1. This is done by using precisely the

symplectic root systems constructed in theorem 6.15: V := Γ/Γ2 is a

symplectic vector space as described in the cited section with dimen-

sion dimF2(Γ/Γ2) and nullspace dimension dimF2(Z(G)/G′G2). Hence

the assumptions of the present theorem exactly match those of cit.

loc. and we get a symplectic root system basis β(i) (1 ≤ i ≤ n) of V .

Choosing ḡi ∈ Γ any lift of β(i) ful�lls c〈ḡi, gj〉 6= 0 i� i, j are connected.

We have to construct suitable characters χi : Γ→ k× that realize the

given diagram with braiding matrix ±1. Because the β(i) were a basis

of Γ/Γ2, there is exactly one χi such that χi(ḡj) = −1 if i = j or i < j

are connected and +1 otherwise. Then M ′ := ⊕Oχiḡi has the braiding

matrix qijqji = ±1 depending on whether gi, gj discommute. Note by

construction, as F2-matrix χ1, . . . χn is triangular, hence the basis gk
acts faithful, which also proves this part of the statement.

Step 2: The connection to the 2-cocycles is rather generic and similar

to previous cases: The central (stem!) extension in question is

Σ = Z2 → G→ Γ

Take a section s and u ∈ Z2(Γ,Σ) the respective cocycle. The a sym-

metry of u describes the commutator map to Σ:

u(ā, b̄)u−1(b̄, ā) = [a, b]

Thus the symplectic form describes the demand of the twisted sym-

metry on a Γ-Yetter-Drinfel'd module M̄ � take p ∈ Σ the nontrivial

p(1F2) = −1, then twisted linearity of θp on an element vb̄ ∈ Vb̄ reads
as:

ā.θp(vb̄) = σp(ā, b̄)σ
−1
p (b̄, ā)θp(ā.vb̄)

= p
(
u(ā, b̄)u−1(b̄, ā)

)
θp(ā.vb̄)

= p
(
〈ā, b̄〉

)
θp(ā.vb̄)

Hence any decorating character on some decorating group element

χk(gl) picks up an additional −1 i� [gk, gl] = −1 i� 〈ḡk, ḡl〉 6= 0.
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Step 3: We now construct such a twist-symmetric Γ-Yetter-Drinfel'd

module as in the case D4,Q8. We start with the indecomposable M ′ =⊕n
i=1M

′
i given by the Dynkin Diagram over Γ ∼= Zn2 . Then we add the

necessary twisted part (p again the nontrivial one):

M ′′ := M ′σp = M ′p◦u

It consists of simple Yetter-Drinfel'd modules M ′′
i given by the same

group elements β(i) but with twisted characters:

χ
σp
i (vb̄) := p

(
〈β(i), b̄〉

)
χi(vb̄)

By construction M := M ′ ⊕ M ′′ now admits an involutory twisted

symmetry θp interchanging the copies M ′
i ↔M ′′

i .

Step 4: We yet have to check that M still has a �nite Nichols algebra,

so we determine its full Dynkin diagram � as intended, we prove now,

that it really consists of two disconnected copies of the given one. First

be reminded on Lemma 4.3 that twisted symmetries leave Dynkin di-

agrams and decoration invariant M ′ ∼= M ′′.

Hence the tricky part is, that there are no additional mixed edges

between any M ′
i , M

′′
j . This is precisely where we need the speci�c base

choice β(i) and the fact that all qij = ±1. We have to calculate their

mixed braiding factors:

q := qM ′i ,M ′′j qM ′′j ,M ′i

= χi(β(j))χ
σp
j (β(i))

= χi(β(j)) · σp(β(j), β(i))σ−1
p (β(i), β(j))χj(β(i))

= p (〈β(i), β(j)〉)χi(β(j))χj(β(i))

= p (〈β(i), β(j)〉) q′ijq′ji

We have to distinguish two cases that yield q = 1 in di�erent ways:

• Suppose i, j disconnected in the original diagram. Then q′ijq
′
ji =

1 and at the same time by construction 〈β(i), β(j)〉 = 0, hence

q = 1.

• Suppose i, j connected by a single edge. Then q′ijq
′
ji = −1 and

at the same time by construction 〈β(i), β(j)〉 = 1, hence again

q = 1.



118 6. ORBIFOLDIZING NICHOLS ALGEBRAS TO G′ ∼= Zp

Step 5: Thus we are done: We constructed a twist-symmetric indecom-

posable M over Γ with �nite-dimensional Nichols algebra of dimension

dim(M) = dim(M ′)dim(M ′′) = dim(M ′)2. We may orbifoldize it to an

indecomposable G-Yetter-Drinfel'd module M with Nichols algebra of

the same dimension, gluing each M ′
i ,M

′′
i to a single G-conjugacy class

M̃i of length 2.

�

We shall give two explicit examples, as they would arise from the gen-

eral construction given above:

Example 6.17. We realize A4 as prescribed over a group G with 2-rank

dimF2(Γ/Γ2) = 4 and dimF2(Z(G)/G′G2) = 0, such as the extraspecial

group G = 24+1
+ = D4∗D4 (the central product identi�es the two dihedral

centers), which is generated by mutually discommuting involutions x, y

and x′, y′, corresponding to a symplectic basis of V = Γ = F4
2 nondegen-

erate. We need a Γ-Yetter-Drinfel'd module of type A4 ∪ A4 admitting

an involutory twisted symmetry

M = M ′ ⊕M ′′ =: (M1 ⊕M2 ⊕M3 ⊕M4)⊕ (M5 ⊕M6 ⊕M7 ⊕M8)

where each Mk = Oχkgk is 1-dimensional. The group elements are

determined by the respective symplectic root system in Theorem 6.15:

g1 = g5 = x g2 = g6 = y g3 = g7 = xx′ g4 = g8 = y′

Then the characters χk for k ≤ 4 were de�ned in such a way that

χk(gk) = −1, and χk(gl) = −1 for edges k < l and +1 else. This has to

be basis-transformed to be expressed as row vector showing the values

in the original basis (χ(x), χ(y), χ(x′), χ(y′)):

χ1 = (−1,−1,−1,+1)

χ2 = (+1,−1,−1,+1)

χ3 = (+1,+1,−1,−1)

χ4 = (+1,+1,+1,−1)
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As generally calculated, the twisted characters χ4+k = χσk catch an

additional −1 on every element G-discommuting with gk resp. non-

orthogonal in V :

χ5 = (−1,+1,−1,+1)

χ6 = (−1,−1,+1,+1)

χ7 = (+1,−1,−1,+1)

χ8 = (+1,+1,−1,−1)

Altogether we orbifoldize the following Γ-Yetter-Drinfel'd module, which

has a faithful Doi twist by section 7.1:

Example 6.18. We realize D4 as prescribed over a group G with 2-rank

dimF2(Γ/Γ2) = 4 and atypically large dimF2(Z(G)/G′G2) = 2, such as

the group G = Z2
2 × D4, which is generated by two mutually discom-

muting involutions x, y and two central involutions z, z′ corresponding

to a symplectic basis of V = Γ = F4
2 with dim(V ⊥) = 2. We need

a Γ-Yetter-Drinfel'd module of type D4 ∪ D4 admitting an involutory

twisted symmetry

M = M ′ ⊕M ′′ =: (M1 ⊕M2 ⊕M3 ⊕M4)⊕ (M5 ⊕M6 ⊕M7 ⊕M8)

where each Mk = Oχkgk is 1-dimensional. The group elements are

determined by the respective symplectic root system in Theorem 6.15:

g1 = g5 = x g2 = g6 = y g3 = g7 = xz g4 = g8 = xz′

Then the characters χk for k ≤ 4 were de�ned in such a way that

χk(gk) = −1, and χk(gl) = −1 for edges k < l and +1 else. This has to
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be basis-transformed to be expressed as row vector showing the values

in the original basis (χ(x), χ(y), χ(z), χ(z′)):

χ1 = (−1,+1,−1,−1)

χ2 = (−1,−1,−1,−1)

χ3 = (+1,−1,−1,+1)

χ4 = (+1,−1,+1,−1)

As generally calculated, the twisted characters χ4+k = χσk catch an

additional −1 on every element G-discommuting with gk resp. non-

orthogonal in V :

χ5 = (−1,−1,−1,−1)

χ6 = (+1,−1,+1,+1)

χ7 = (+1,+1,−1,+1)

χ8 = (+1,+1,+1,−1)

Altogether we orbifoldize the following Γ-Yetter-Drinfel'd module, which

has a faithful Doi twist by section 7.1:



4. RAMIFIED CASE E6 → F4 121

4. Rami�ed Case E6 → F4

The examples of the last two sections are �generic� in the sense, that

they exploit a disconnected doubling of a rather arbitrary Dynkin di-

agram, and the very same diagram is reproduced in the nonabelian

setting. Especially, every (nonabelian) edge corresponds to the D4 ex-

ample above; it is not allowed for the Dynkin diagrams to connect

conjugacy classes of di�erent length (e.g. abelian and nonabelian). It

turns out, that this �interconnected case� is far more restrictive! We

shall now give an example of this type, where the Z2-automorphism of

a single E6-diagram is orbifoldized to the non-simply laced F4:

Theorem 6.19. Suppose a group G with G′ = Z2 and Γ := G/G′ s.t.

• dimF2(V ) = dimF2(Γ/Γ2) = 4

• dimF2(V ⊥) = dimF2(Z(G)/G′Z(G)2) = 2

Then orbifoldizing a suitable Γ-Yetter-Drinfel'd module of type E6 through

it's involutory diagram automorphisms constructs a G-Yetter-Drinfel'd

module M̃ =
⊕4

i=1 M̃i of dimension 6, such that:

• G′ acts trivially on M̃ , which is hence diagonal, but the quo-

tient V acts faithfully.

• M̃ is minimally indecomposable, i.e. indecomposable and not

properly containing an indecomposable module.

• B(M̃) has dimension 236 (as Eq=−1
6 in [H08]).

• M̃ has the Dynkin diagram F4, where the long roots corre-

sponds to conjugacy classes of length 2 and the short roots to

a central elements (length 1).

There's also a faithful Doi twist and hence a nondiagonal Nichols al-

gebra over G = Z2
2 × D4,Z2

2 ×Q8, see section 7.1.
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Proof. Denote by z̄, z̄′, x̄, ȳ ∈ Γ some lifts of a basis of the 4-

dimensional symplectic vector space V = Γ/Γ2 with 2-dimensional

nullspace, such that z̄, z̄′ were nullvectors and x̄, ȳ was a symplectic

base pair in V , i.e. any lifts z, z′, x, y ∈ G obey:

z, z′ ∈ Z(G) [x, y] 6= 1

We directly construct the Γ-Yetter-Drinfel'd module
⊕6

k=1Oχkgk of type

E6, but otherwise proceed as in the unrami�ed case. Note that the fol-

lowing could also be derived systematically using the (rather trivial)

symplectic root system x̄, ȳ for the aspired split part of V and character

via some ordering of the nodes, as it is done for the remaining rami�ed

case below; but here we want to keep everything explicit! Further de-

note any character χ ∈ Γ∗ as row-vectors containing the basis images

(χ(z̄), χ(z̄′), χ(x̄), χ(ȳ)), then M shall be (we've introduced additional

signs for the faithfulness-statement):

One can check directly, that qii = −1 and the qijqji ± 1 exactly match

the given diagram; further already χ1, χ2, χ3, χ4 is F2-linearly indepen-

dent and z, z′ have been constructed to act as −1 on x resp. y, hence

the faithfulness assertions hold. This de�ned a proper Nichols algebra

B(M) of dimension 236, because of [HS10] Theorem 4.5 we have the

following bijection via multiplication and for q = −1 know all simple

Nichols algebras (none with q = 1 appear!):

B(M) ∼=
⊗
l∈L

B(Wl) B(Wl) ∼= k[wl]/(w
2
l )

dim(B(M)) =
∏
l∈L

2 = 2|L| = 2|∆
+| = 236
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We further check directly, that the obvious involutory diagram auto-

morphisms θ is even a twisted automorphism:

χσ1 (gk) = σ(gk, g1)σ−1
p (g1, gk)χ1(gk) = 〈ḡk, z〉χ1(gk) = χ1(gk)

χσ3 (z) = 〈z, x〉χ3(z) = χ3(z) = +1 = χ5(z)

χσ3 (z′) = 〈z′, x〉χ3(z′) = χ3(z′) = −1 = χ5(z′)

χσ3 (x) = 〈x, x〉χ3(x) = χ3(x) = −1 = χ5(x)

χσ3 (y) = 〈y, x〉χ3(z′) = −χ3(y) = +1 = χ5(y)

This shows χσ1 = χ1 and χ
σ
3 = χ5. The same calculations prove χσ2 = χ2

and χσ4 = χ6, hence θ : Mσ → M is an automorphism of Yetter-

Drinfel'd modules. Orbifoldizing again constructs a Yetter-Drinfel'd

module M̄ of the given form by section 6.1. �
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5. Rami�ed Cases A2n−1 → Bn

The second rami�cation will on the other hand be completely reduced

to the unrami�ed case An−1 ∪ An−1 → An−1 and an additional inert

node causing an additionally tamely branched edge.

Theorem 6.20. Suppose a group G with G′ = Z2 and Γ := G/G′, s.t.

• dimF2(V ) = dimF2(Γ/Γ2) = n ≥ 3

• dimF2(V ⊥) = dimF2(Z(G)/G′Z(G)2) = 1 + 1n−1

Then orbifoldizing a suitable Γ-Yetter-Drinfel'd module of type A2n−1

through it's involutory diagram automorphisms constructs a G-Yetter-

Drinfel'd module M̃ of rank n and dimension 2n− 1, such that:

• G′ acts trivially on M̃ , which is hence diagonal, but the quo-

tient V acts faithfully.

• M̃ is minimally indecomposable, i.e. indecomposable and not

properly containing an indecomposable module.

• B(M̃) has dimension 2n(2n−1) (as Aq=−1
2n−1 in [H08]).

• M̃ has the nonabelian Dynkin diagram Bn where the long roots

corresponds to conjugacy classes of length 2 and the unique

short root to a central element (length 1).

Exemplary nondiagonal and even faithful Doi twists of B3 over various

G are given in section 7.1.

Proof. As in the rami�ed case E6 → F4 above, we use the pre-

scribed dimension 1 + 1n−1 nullspace of V = Γ/Γ2 to separate V =

z̄F2 ⊕W with dim(W⊥) = 1n−1 for the split nodes and z ∈ Z(G) for

the inert node.
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Our main goal is to construct a Γ-Yetter-Drinfel'd moduleM of dimen-

sion 1+2(n−1) and Dynkin diagram A2n−1 with the involutory diagram

automorphism a twisted symmetry. The starting point is the Yetter-

Drinfel'd module constructed in the proof of section 6.3 of dimension

2(n−1) and Dynkin diagram An−1∪An−1, numbered 2 . . . 1+2(n−1),

with an involutory twisted symmetry over the subgroup Γ′ ⊂ Γ gener-

ated by any lifts of W . Denote the leftmost nodes 2, 3 of both copies

by Oχ′g ,Oχ
′

g . We extend all used characters trivially to Γ except

χ(z) = −1 χ(g) = −1 χ(gk) = +1

for all other gk, which is possible because g = g1, . . . gn was a W -basis.

Note that the former Yetter-Drinfel'd module had already been proven

to be faithful over the Γ-quotient W , with z now acting trivial on all

but the new node M1, hence faithfulness of V again holds.

First we have to check thatM indeed has decorated diagram A1+2(n−1)

for q = −1, especially dim(B(M)) = 2n(2n−1) < +∞ (determined as in

the proof in section 6.4). We've shown that already for the subdiagram

An−1 ∪ An−1, and the additional node M1 obeys for k ≥ 4:

q11 = χ(z) = −1

q12q21 = χ(g)χ′(z) = (−1)(+1) = −1

q13q31 = χ(g)χ′′(z) = (−1)(+1) = −1

q1kqk1 = χ(gk)χk(z) = (+1)(+1) = +1

Secondly we have to extend the established twisted symmetry θ of

An−1 ∪ An−1 by θ(M1) = M1, which is possible by z's centrality:

χσ(h) = σ(z, h)σ−1
p (h, z)χ(h)

= 〈h̄, z〉χ(h) = χ(h)

Finally orbifoldizing constructs M̃ with the asserted properties. �
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6. Proof Finish: The List Is Complete

We �nally want to prove, that any �nite-dimensional Nichols algebra

with Σ := G′ ∼= Zp acting trivial has solely as connected components

M̃ the types constructed above. Hence we have to check all possible

Dynkin diagrams M (possibly disconnected, see unrami�ed examples

above) over abelian groups with twisted symmetries. We excessively

use the necessary conditions proven in Theorem 6.8 for rank 1, 2 and

the lists of Nichols algebras in the abelian case from [H08] and [H05].

The proof strategy is organized as follows:

• Step 1 is the observation of a diagram automorphism and

excludes totally inert orbifolds as decomposable.

• Step 2 consist of multiple revisions of Heckenberges list:

� Step 2a searches the list for diagrams eligible for (one

connected copy of) the unrami�ed case by the necessary

conditions from cit. loc., i.e. all edges decorated by −1

resulting in all classical Cartan types for q = −1 but Bn.

� Step 2b searches the list for all loopfree diagrams with in-

volutory automorphism, resulting in E6, A2n−1, Dn (ram-

i�ed) and several non-Cartan (mostly wildly branched)

diagrams of shape alike A3, D4, Dn.

� Step 2c searches the list for loop diagrams with invo-

lutory automorphisms under heavy use of the necessary

condition (established cit. loc.), that a loop has a pre-

cise decoration and cannot be directly connected to split

nodes. The only result is an isolated loop A2 for q ∈ k3.

� Step 2d searches the list for all diagrams with higher-

order automorphisms, resulting only in D4.

• Step 3a excludes multiply laced diagrams Cn, F4, G2 from the

unrami�ed case by exhibiting a loop between the two copies

of any long root, leaving only Cartan type ADE.

• Step 4 shows that orbifoldizings with a unique split node

only lead to decomposable Nichols algebras. This leaves only

the later-on realized unrami�ed cases An≥2, Dn≥4, E6,7,8 and

rami�ed cases E6 and A2n−1 for n ≥ 3.

• Step 5 applies the necessary condition onG established for the

symplectic root systems (Theorem 6.15) and �nally states the

remaining cases to have been realized in the previous sections.
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Step 1: First we shall exploit the fact, that Σ = 〈p〉 needs to act on

M̃ via a twisted symmetry θp preserving the diagram including its dec-

orations by qii and qijqji (rank 1, 2). By the group law θpp = θpp = id,

thus θp acts as a diagram automorphism of order p. Suppose otherwise

the diagram totally inert, i.e. θp = id, then all G-nodes have conjugacy

classes of length 1. They are hence central and may not generate the

entire nonabelian G, outruling the orbifold to be indecomposable.

Step 2a: In the unrami�ed case we �nd all connectedM ′: We've proven

(rank 2) to be necessary, that qijqji = ±1, hence this has to be true for

all M ′. Going though Heckenberger's list we �nd then only possibly:

• Rank 1 of type A1 for a free q 6= 1.

• For M rank 2 (see [H05] table A.1) this can only be achieved

by Cartan-type edges:

Row q ∈ Cartan

(1 6= 1 A1 × A1)

2 k2 A2

4 k4 B2

11 k6 G2

• In rank 3 (see [H05] table A.2) again only Cartan-type dia-

grams appear, but B3 requires a second, single edge decorated

by the k4-element q in contrast to C3 bearing only k2 at edges.

Going through the entire list indeed shows:

Row q ∈ Cartan

1 k2 A3

2 k4 C3

• Rank 4 (see [H08] appendix B) is similar, but typeDn appears:

Row q ∈ Cartan

1 k2 A4

2 k4 C4

5 k2 D4

• In rank n ≥ 5 (see [H08] appendix C) the series remain

and Cartan type E appears. Again, most diagrams can be

discarded because an edge decorated by q resp. q2 and q of

larger order is demanded. Note �nally that rows 2 resp. 10

are excluded, because any simple chain C(l, q; i1 . . .) has edge-

weights q±1 and the above two cases do not admit q = −1!
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Row q ∈ Cartan

1 k2 An
3 k4 Cn

8 k2 Dn

16 k2 E6

20 k2 E7

22 k2 E8

Step 2b: In the p = 2 loopfree connected case we once again consult

Heckenberges list and look for diagram symmetries respecting the dec-

oration. Additionally, still the split edges have to be −1-decorated. The

complete list is:

• For M connected of rank 2 this is not possible (loop).

• For rank 3 (see [H05] table A.2) we have for one triangles,

which have loops at all symmetries. The usual chain diagrams

(e.g. A3) admit an apparent 2-symmetry, which would require

the right- and leftmost node decoration to coincide. These cri-

teria leaves (apart from the table below) only the following

cases, that have unsymmetrical edge-decorations.

� Row 5, diagram 3 for q ∈ k6

� Row 7, diagram 4 for q ∈ k8

� Row 17, multiple diagrams

On the other hand we �nd the following cases, which (except

of A3) are non-Cartan.

Row q ∈ Diagram Folds to

1 k2 A3 B2

8 6= 1 -

10 6= 1 -

11 k3 -

15 k3 -

Note that all but A3 yield wildly rami�ed rank 2 edge and

we did not determine these foldings in Theorem 6.8, because

only a single node is split, they will yield only decomposable

Nichols algebras in Step 4.
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• Rank 4 (see [H08] appendix B) can (as any even rank) not be

of chain form, otherwise the center edge becomes a loop. Also

no symmetries can be expected from the prolonged triangles.

So the only diagrams in question have a branch (alike D4).

Note that the �tting case row 20 is discarded by unsymmetrical

node/edge decorations:

Row q ∈ Cartan Folds to

5 free D3 C2

12 free -

13 free -

18 k3 -

All but D3 and the second diagram of row 13 (say M) orb-

ifoldize again to a wildly rami�ed edge, connected to a an

inert edge of non-Cartan type (except A1 for row 18). M

yields a tamely rami�ed orbifold B2, connected to an inert

non-Cartan edge. Again all of these examples will only deter-

mine decomposable Nichols algebras in Step 4, as they

only have a single split node.

• In rank n ≥ 5 (see [H08] appendix C), again a chain form

would require n odd (loop-freeness); hence all but the middle

two edges are split and have to be decorated by −1, which

again excludes most cases as in Step 3a. Combination with

node-decoration symmetry is needed to discard:

� In row 3 the outmost nodes require (q = q2 or) q = q−2,

which would violate the rightmost edge to bear −1.

� In row 10 the outmost nodes require (q = q2 or) q = q−2,

which would violate the rightmost edge to bear −1.
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The prolonged triangles there have always loops in their sym-

metries (even those prolonged to both sides), and the E7, E8-

shape no symmetry at all. It remains to check all Dn, E6-

shaped, where we compare the two equally-long-branch-end's

node decorations (for row 19 diagram 5 compare two inner

nodes!). Altogether we get:

Row q ∈ Cartan Folds to

1 k2 A2n−1 Bn

8 6= 1 Dn+1 Cn

10 6= 1 -

16 k2 E6 F4

Again, although all are tamely rami�ed, row 18 and 10 have

only a single split node and only yield decomposable Nichols

algebras in Step 4. Note that Dn is the �prototype for this

behaviour in all previous cases.

Step 2c: Now consider the p = 2 connected case with at least one

loop, we shall show that only A2 for q ∈ k3 remains! We showed, that

necessarily such a loop needs node decoration q−1 and edge decorations

q for q ∈ k3 and cannot be directly connected to a split node. Hence it

is either isolated and thus of rank 2 with symmetric node decoration

(see [H05] table A.1):

Row q ∈ Cartan Folds to

2 k3 A2 A1

9 k12 -

The latter is discarded by incorrect edge decoration /∈ k3.
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The second possibility is the loop to be connected to an inert node,

with the edge hence branched; this means the loop is part of a triangle

with 2-fold symmetry; see [H05] table A.2 to �nd (row 9 is discarded

by unsymmetrical edge-decoration):

Row q ∈ Cartan Folds to

6 6= ±1 -

7 6= ±1, /∈ k3 -

10 6= ±1, /∈ k3 -

All three possibilities have incorrect node decoration −1 /∈ k3, hence

no triangle can be contained (also in higher rank!)

Step 2d:We �nally consider connected diagrams with automorphisms

of order p ≥ 3, �rst by restricting just their shape without decorations.

• Loops have already been discarded for p 6= 2 in theorem 6.9,

hence especially no triangularly shaped diagrams can appear.

• Note that there is no branch point of order ≥ 3 in any diagram

in Heckenberger's list.

• Secondly suppose a p = 3 and rank > 4, then by symmetry we

would require a 3 branch point with prolongations of all ends,

which again does not appear in Heckenberger's list.

• Hence only p = 3 and rank = 4 with shape D4 is possible.

Finally we consider rank 4 and shape D4 in [H08] appendix B and

search for threefold symmetry. We �nd that rows 13, 18, 20 have

unsymmetrical node decoration and row 12 has unsymmetrical edge

decoration, leaving

Row q ∈ Cartan Folds to

5 6= 1 D4 G2
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Step 3a We now want to exclude those unrami�ed diagrams with

multiply-laced diagrams, i.e. a longer root node decorated with q 6= −1

(actually q ∈ k4 for Cn resp. q ∈ k6 for G2). Note that a nodeM1 = Oχg
with decoration q = χ(g) appears in the unrami�ed diagram together

with a copy M2 = Oχσg , hence

q12q21 = χσ(g)χ(g)

= σ(g, g)σ−1(g, g)χ(g)χ(g) = q2

and q 6= ±1 would cause a loop contrary to the assumption; however

the diagram could (but doesn't) appear in Step 2c.

Step 4: Next we claim, that diagrams with a single split edge may

only orbifoldize to decomposable Nichols algebras: Suppose otherwise,

then the group elements associated to all G-nodes generate G. Hence

at least two of these need to discommute. Then by Theorem 6.9 these

nodes have to be connected by a split edge and thus both nodes are

splits, which shows the claim.

This additional condition rules out as decomposable orbifolds:

• the isolated loop A2

• the rami�ed cases D4, Dn and further non-Cartan cases above.

• the rami�ed D4 → G2

• small ranks for the remaining: rami�ed A2 and unrami�ed A1.

which leaves only the later-on realized unrami�ed casesAn≥2, Dn≥4, E6,7,8

and rami�ed cases E6 and A2n−1 for n ≥ 3.

Step 5: We also need to show, that the conditions (matching those

in the last sections' constructions) on the group given in Theorem 6.1,

which we still prove, are necessary:

First, we prove that dimF2(Γ/Γ2) = dimF2(V ) has to coincide with the

rank of the minimally indecomposable orbifold. For this, we invoke

the Burnside Basis Theorem 6.13, that states that every minimally

generating set corresponds to a V -basis, hence has precise cardinality

dimF2(V ). Further, since conjugacy classes map to single V -element,

the same holds for minimally generating sets of conjugacy classes.
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Secondly we need to prove the given restrictions on

dimF2(Z(G)/(G′G2)) = dimF2(V ⊥)

Again, the conjugacy classes underlying the G-nodes form a basis of V .

Split nodes are connected i� the conjugacy classes discommute (Theo-

rem 6.9) and hence the subspaceW generated by the classes' images in

V supports these as symplectic root system, which means a nullspace

W⊥ exactly prescribed by Theorem 6.15. Also note, that inert G-nodes

correspond to conjugacy classes of length 1 and hence central elements

∈ G resp. nullvectors ∈ V .
• For all unrami�ed cases holds V = W and hence dimF2(V ⊥)

can directly be read from the symplectic root system (1n for

An, E6, E7, E8 resp. 2− 1n for Dn).

• For rami�ed E6 → F4 we have two inert nodes (i.e. nullvec-

tors), as well as two split nodes with diagram A2 generating

a nondegenerate W ⊂ V by symplectic root systems. Hence

V ⊥ = 2 as asserted.

• For rami�ed A2n−1 → Bn we have one inert node (i.e. nullvec-

tor), as well as split nodes with diagram An−1 generating a

W ⊂ V with nullspace dim(W⊥) = 1n−1 by symplectic root

systems. Hence V ⊥ = 1 + 1n−1 as asserted.

Finally, the cases above with the given restrictions on G and ranks

bounded from below by Step 4 were realized in the previous three

sections. This proves Theorem 6.1 and concludes the classi�cation of

this chapter.





CHAPTER 7

Applications To Nondiagonal Nichols Algebras

1. Nichols Algebras Over Most Groups Of Order 16 And 32

We shall demonstrate the result of the last sections and point to cases

yet to be treated. We denote by the symbol (Mn for any) the orb-

ifoldized Dynkin diagram and by the superscript [I], [U ], [R] inert, split

or rami�ed orbifoldizing (Mn any rank-n-module). In each case, we

use Matsumotos sequence (section 5.2) and the known cohomologies in

(section 8.2) to �nd Doi twists of the orbifolds with nontrivial action

of G′, especially nondiagonal. Elementary case-by-case considerations

are used to assert that the action is even faithful in some of these cases

(especially for Γ ∼= Zn2 ). Note that the absence does not generally con-

tradict nondiagonal Nichols algebras. An example were Doi twists of

orbifolds exhausts already all was given in section 5.3 and will be the

content of the remaining chapter.

Group G (a) Known as.. Nichols algebra Orbifolds G = Σ.(Γ) section

#1− 5 abelian (YES, faithful) X
[I]
n , n = 1 . . . 4 [H08]

#6 Z2 × D4 YES, faithful Z2.(Z2 ⊕ Z2 ⊕ Z2)

#7 Z2 ×Q8 YES Z2.(Z2 ⊕ Z2 ⊕ Z2)

#8 Z4 ∗ D4
∼= Z4 ∗Q8 YES Z2.(Z2 ⊕ Z2 ⊕ Z2)

A
[U ]
3 , X

[I]
1 ∪ A

[U ]
2 6.3

B
[R]
3 6.5

#9 (G′ 6⊂ G2) YES, nondiag. Z2.(Z2 ⊕ Z4)

#10 (G′ ⊂ G2) YES, faithful Z2.(Z2 ⊕ Z4)

#11 (G′ ⊂ G4) YES Z2.(Z2 ⊕ Z4)

A
[U ]
2 6.3

#12− 14 D8, D̃8,Q16 (?) Class 3 ZAut4 .(Z2 ⊕ Z2) (b)

.

(a)From the classi�cation [Group16]
(b)A noncentral extension. This is case G4 in [HS10], see outlook 3 of this part

135
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Group G (c) Known as.. Nichols algebra Orbifolds G = Σ.(Γ) section

#1− 7 abelian (YES, faithful) X
[I]
n , n = 1 . . . 5 [H08]

#8 Z2
2 × D4 YES, faithful Z2.(Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2)

#9 Z2
2 ×Q8 YES Z2.(Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2)

#10 Z2 × (Z4 ∗ D4) YES Z2.(Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2)

X
[I]
2 ∪ A

[U ]
2 , D

[U ]
4 6.3

X
[I]
1 ∪B

[R]
3 6.5

F
[R]
4 6.4

#11 Z2 ×#169 YES, nondiag. Z2.(Z2 ⊕ Z2 ⊕ Z4)

#12 Z2 ×#1610 YES, faithful Z2.(Z2 ⊕ Z2 ⊕ Z4)

#13 Z2 ×#1611 YES Z2.(Z2 ⊕ Z2 ⊕ Z4)

#14 Z4 × D4 YES, nondiag. Z2.(Z4 ⊕ Z2 ⊕ Z2)

#15 Z4 ×Q8 YES Z2.(Z4 ⊕ Z2 ⊕ Z2)

#16, 17 YES Z2.(Z2 ⊕ Z2 ⊕ Z4)

A
[U ]
3 , X

[I]
1 ∪ A

[U ]
2 6.3

B
[R]
3 6.5

#18 (G′ 6⊂ G2) YES, nondiag. Z2.(Z4 ⊕ Z4)

#19 (G′ ⊂ G2) YES Z2.(Z4 ⊕ Z4)

#20, 21 (G′ 6⊂ G2) YES, nondiag. Z2.(Z2 ⊕ Z8)

#22 (G′ ⊂ G4) YES Z2.(Z2 ⊕ Z8)

A
[U ]
2 6.3

#23− 25 Z2 × D8, D̃8,Q16 (?) Class 3 ZAut4 .(Z2 ⊕ Z4) (e)

#26− 32 (?) Class 3 ZAut4 .(Z2 ⊕ Z4) (e)

#33− 35 �bre products NO Z2
2.(Z2 ⊕ Z2 ⊕ Z2) (d)

#36− 41 NO Z2
2.(Z2 ⊕ Z2 ⊕ Z2) (d)

A
(1)
7 7−→ D

(2)
5 7.4

#42, 43 D4 ∗ D4, D4 ∗Q8 YES Z2.(Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2)

A
[U ]
2 ∪ A

[U ]
2 , A

[U ]
4 6.3

#44− 48 (?) Class 3 ZAut4 .(Z2 ⊕ Z4) (e)

#49− 51 D16, D̃16,Q32 NO Class 4 (f)

.

(c)From the classi�cation [Group16]
(d)These are discarded by orbifoldizing it back to an 8-cycle.
(e)Noncentral extension. This is case G4 in [HS10], see outlook 3 of this part
(f)Noncentral extension of higher class, discarded by [HS10], see outlook 3.
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Remark 7.1. Before we proceed to the proof, here are some comments.

• The cases A
[U ]
2 extending the construction for D4 have inde-

pendently been found in [HS10].

• Some Dynkin diagrams do not appear due to larger rank. E.g.

E
[U ]
6 is �rst realized over the extraspecial groups G =12+1.

• G′ = Z2
2 (such as #32 33 − 41) by no means generally con-

tradicts the existence of �nite-dimensional Nichols algebras.

Rather, there might be disconnected ones with supports N ′ =

Z2. The smallest examples include e.g.

D4 × D4, A
[U ]
2 ∪ A

[U ]
2

• Several disconnected diagrams are �adapted� to G being a direct

sum. This is not necessary, as the use of 2 symplectic basis-

pairs for A
[U ]
2 ∪A

[U ]
2 over D4 ∗D4 show, or the central element

generating the X
[I]
1 in #3216, 17.

Proof. For all connected Nichols algebras over G′ = Z2 follow

from theorem 6.1 and structure constants for each group (note that the

ordering used in the classi�cation is adapted to these!):

G exp(Γ) dimF2(Γ/Γ2) dimF2(Z(G)/G′G2)

#166−#168 2 3 1

#169−#1611 4 2 0

#328−#3210 2 4 2

#3211−#3217 4 3 1

#3218−#3219 4 2 0

#3220−#3222 8 2 0

#3242−#3243 2 4 0

Note that a nonabelian group cannot be generated by central elements,

hence not all connected components may be inert; also we've proven in

section 6.6, that a single split node may never appear in an indecom-

posable Nichols algebra. Hence the number of split nodes is always at

least 2.



138 7. APPLICATIONS TO NONDIAGONAL NICHOLS ALGEBRAS

In all cases, where disconnect diagrams may appear, we need to �nd

(by Theorem 6.9) commuting conjugacy classes with the respective

supports and realize each connected components over the respective

subgroups:

• #166−#168, X
[I]
1 ∪A

[U ]
2 : Take the central element generating

the summand Z2 and the symplectic base pair for A
[U ]
2 (N =

D4).

• #328−#3210, X
[I]
2 ∪ A

[U ]
2 : As the last case.

• #328 − #3210, X
[I]
1 ∪ B

[R]
3 : Take one central generator of a

summand N = Z2 for X
[I]
1 and realize B

[R]
3 over the other

summand N = #166−#168.

• #3211 −#3213, X
[I]
1 ∪ AB

[U ]
2 : Take again the direct sum and

realize A
[U ]
2 , B2[U ] over N = #169−#1611.

• #3214−#3215, X
[I]
1 ∪ A

[U ]
2 : As above.

• #3214−#3215, X
[I]
1 ∪B

[U ]
2 : Note that the direct-sum approach

fails here! Take a, b generators of the extraspecial summand,

c the generator of the Z4-summand and g = [a, b] the central

commutator. Then we take as conjugacy classes [c] over N =

Z4 and [ac]⊕ [bc] over N = #169− 11.

• #3216, X
[I]
1 ∪AB

[U ]
2 : Take for X

[I]
1 the central [G1G2] with sup-

port N = Z4. Realize A
[U ]
2 , B

[U ]
2 over [G2]⊕ [G3] with support

N = #169−#1611.

• #3217, X
[I]
1 ∪AB

[U ]
2 : Take forX

[I]
1 the central [G3] with support

N = Z4. Realize A
[U ]
2 , B

[U ]
2 over [G1]⊕ [G2] with support N =

#169−#1611.

• #3242 − #3243, A
[U ]
2 ∪ A

[U ]
2 : Take the symplectic base pairs

[xi]⊕ [yi], each with support N = D4.

The exclusion of the cases G′ = Z2
2 (#3233−#3241) will be the content

of section 7.4, while higher classes are discussed in outlook 3.

To check nondiagonality of a Doi twist, i.e. G′ ∼= Z2 acting nontrivial,

we use Matsumotos exact sequence to determine the possible Σ actions

Im(γ) induced by Doi twists (see section 5.2). We showed, that for

cyclic stem extensions Z2
∼= Σ ⊂ G′

log2|Im(γ)| = log2|H2(G,k×)|+ 1− log2|H2(Γ,k×)|

which we check against all respective cases G′ ∼= Z2 of order |G| =

16, 32 in section 8.2.



1. NICHOLS ALGEBRAS OVER MOST GROUPS OF ORDER 16 AND 32 139

#16 H2(Γ) ≤ log2|H2(G,k×)| ≤ log2|Im(γ)|
#6 Z3

2 3 1

#7 Z3
2 2 0

#8 Z3
2 2 0

#9 Z2
2 2 2

#10 Z2
2 1 1

#11 Z2
2 0 0

#32 H2(Γ) ≤ log2|H2(G,k×)| ≤ log2|Im(γ)|
#8 Z6

2 6 1

#9 Z6
2 5 0

#10 Z6
2 5 0

#11 Z3
2 4 2

#12 Z3
2 4 2

#13 Z3
2 2 0

#14 Z3
2 3 1

#15 Z3
2 2 0

#16 Z3
2 2 0

#17 Z3
2 2 0

#18 Z4 3 2

#19 Z4 1 0

#20 Z2 2 2

#21 Z2 2 2

#22 Z2 0 0

#42 Z4
2 5 0

#43 Z4
2 5 0

Note that the last number determines even a Z2-basis of linearly in-

dependent actions of Σ, that can be achieved by Doi twists of the

respective orbifolds.

Faithfulness follows in all nondiagonal cases above, where Σ is already

the entire center. This is because all non-central elements act surely

non-trivial, while the center acts by a nontrivial scalar. Moreover, when

the center is cyclic Z = 〈g〉 with nG = Σ for some n, we again achieve

faithfulness by a nontrivial scalar center action. All these cases are

marked accordingly in the above list. �



140 7. APPLICATIONS TO NONDIAGONAL NICHOLS ALGEBRAS

2. All Nichols Algebras over #16 9, 10 (rank 2)

As we from now on pursue the classi�cation of certain minimally

indecomposable, �nite-dimensional Nichols algebras, we �rst shall give

two more examples of groups, where all such Nichols Algebras are Doi

twists of orbifolds, and which we will require in the next section. The

groups and results are very similar to the cases D4,Q8 (section 5.3):

Theorem 7.2. For G the group #9, 10 of order 16 in [Group16],

every minimally indecomposable �nite-dimensional Nichols algebra is a

Doi twist of an orbifold, with Dynkin diagram A2 (unrami�ed).

Both groups have G/G′ =: Γ = Z4 ×Z2 and hence by Burnside's basis

Theorem 6.13 minimally indecomposable Nichols algebras are of Rank

2:

M̃ = Oa ⊕Ob
Besides from their nontrivial commutator x (both G4 in [Group16])

there is a second central element y (both G3 in [Group16]) and for

both groups:

Z(G) = G2 = 〈x, y〉 ∼= Z2 × Z2

We shall characterize di�erent choices for a, b by the symbol

(u, v) = (a2, b2) ∈ Z(G)× Z(G)

Note that then the product square is then already determined

(ab)2 = aba−1b−1ba2b = xuv

and the relations determine the group completely as central extension:

〈x, y〉 = Z2
2 → G→ Z2

2 = 〈ā, b̄〉 x ∈ G′, y ∈ G2

Now, instead of calculating conjugacy classes for each group, we list

all possible 42 such con�gurations, sorted by symmetry (on row) and

some easily recognizable invariants I1,2 (number of involutions resp.

squaring to x among {a, b, ab}). Because of the group classi�cation in

order 16 ([Group16]) we know all possible groups are exactly #169, 10

and �nd the above invariants to be decisive.

Note that if I1 + I2 = 3 than y doesn't appear at all, hence Z(G) = Z2

and the groups are D4,Q8, which shall be included here to allow the

reader easy comparison to section 5.3:
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#16, I1, I2 (u, v) = (a2, b2) xuv = (ab)2 Relations ≤ log2|Im(γ)|

(D4, 2, 1)
(1, 1) x 0 + 1

1
(1, x), (x, 1) 1 1 + 0

(Q8, 0, 3) (x, x) 1 2 + 0 0

#9, 1, 1

(1, y), (y, 1) xy 0 + 0

2(1, xy), (xy, 1) y 0 + 0

(y, xy), (xy, y) 1 0 + 0

#10, 0, 1

(x, y), (y, x) y 1 + 0
1

(y, y) x 0 + 1

(x, xy), (xy, x) xy 1 + 0

(xy, xy) x 0 + 1

As in cit. loc. we give the number of independent relations (base+product)

χi(x) = −1 resp. χi(x)χj(x) = −1 on real classes g2
i = x resp. (gigj)

2 =

x. This is compared in the last column to the bounds on the image of

the map γ : H2(G,k×) → G′ ⊗ Γ in Matsumotos sequence obtained

in the previous section. We �nd again, that in all cases the relations

and the remaining Doi twists already exhaust all possible 22 actions of

G′, hence we again may Doi twist every such Nichols algebra back to

one with trivial action and hence an orbifold. The form of this Nichols

algebra is then obtained from the table in section 7.1.

3. All Nichols Algebras over #32 18 (rank 2)

Solely for application in the next section, we include yet another group

of the type above, namely (as we will see) the only

〈x, y, z〉 = Z2
2 → G→ Z2

2 = 〈ā, b̄〉 x ∈ G′; y, z ∈ G2

Theorem 7.3. For G the group #18 of order 32 in [Group32], every

minimally indecomposable �nite-dimensional Nichols algebra is a Doi

twist of an orbifold, with Dynkin diagram A2 (unrami�ed).

By the table in 7.1 the cohomology of this group ful�lls again Im(γ) ≥
2, so no relations are necessary to exhaust all possible Σ-actions by Doi

twist, which again concludes the proof.
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We only need to prove the uniqueness statement above by consulting

the list [Group32]:

• Only #3218− 22 are central extensions of abelian Γ with rank

dimF2(Γ/Γ2) = 2

• Only #3218, 19 have Γ = Z2
4 as demanded by

〈y, z〉 = Z2
2 → Γ→ Z2

2

• #3219 is discarded, as there is one generator G1 with 1 6= G4
1 ∈

G′ contrary to the demanded extension.

(note even further, that another additional independent z′ ∈ G2 cannot

be supported within 〈x, y, z, z′〉)

4. No Nichols Algebras over #32 33− 41 (rank 3)

We shall pursue our classi�catory interests beyond G′ ∼= Zp and demon-

strate a generic technique discarding all groups of order 32 and G′ =

Z2
2 = 〈x, y〉.

Theorem 7.4. There is no �nite-dimensional indecomposable Nichols

algebra over the groups #33− 41 of order 32 in [Group32].

As in the last section we will show all minimally indecomposable Nichols

algebras to be Doi twists of Z2
2-orbifolds, which is the tedious part. The

rank 2 subalgebras have been determined in the preceding sections and

the enumeration of possible conjugacy class con�gurations is done in

section 8.1 by using re�ections to determine the entire Weyl equiv-

alence class. Then, we choose a representative with many apparent

relations and exhaust the remaining possible Σ∗-actions by known co-

homology.

Then, contrary to the above cases, the two generators of twisted sym-

metries Σ = Z2
2 will show the orbifold to be of a�ne form A

(1)
7 → D

(2)
5 .

The former cannot support any a minimally indecomposable �nite-

dimensional Nichols algebras over Γ abelian (again by [H08] Lemma

20), hence also not G, which totally discards indecomposable one.
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Remark 7.5. Note that the latter arguments will generally hold in the

orbifold, whenever a triple of elements has independent commutators,

leaving for G′ noncyclic only disconnected diagrams over mutually com-

muting support and again cyclic commutators. However, there seems no

apparent argument discarding all possible nontrivial G′-actions.

Note for convenience, that these groups are (or resemble) �bre-products

G�Z2H := {(g, h) ∈ G×H | q1(g) = q2(h)}

for G,H = D4,Q8 and chosen quotients q1,2 to Z2. While for Q8 all

quotients have kernel Z4, for D4 we use the suggestive symbol long for

kernel Z2
2 and short for kernel Z4 (projecting on long/short elements):

• #33 ∼= Dlong
4 �Z2D

long
4

• #34 ∼= Dshort
4 �Z2Dshort

4

• #35 ∼= Dshort
4 �Z2Q8

∼= Q8�Z2Q8

• #36 ∼= Dshort
4 �Z2D

long
4

• #37−41 are similar, but generators in one factor power to the

commutator of the other factor.

Remark 7.6. Hence, besides A5 ⊂ S5 these are new examples of groups

admitting �nite-dimensional Nichols algebras (e.g. A2∪A2 over D4×D4)

having subgroups which do not admit such.
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We now proceed to the proof along the lines of the exemplary section

5.3 (and the preceding sections):

Step 1: Clarify rank and possible Dynkin diagrams

Again, by Bursides Basis Theorem 6.13, every minimal generating set

of conjugacy classes has precisely cardinality 3 = dimF2(Γ/Γ2), hence

any minimally indecomposable Yetter-Drinfel'd module is of the form:

M̃ = Oa ⊕Ob ⊕Oc

Again, all con�gurations of such conjugacy classes are distinguished by

the central squares (�fusions�) of the conjugacy classes

O2
a = {u} O2

b = {v} O2
c = {w} u, v, w ∈ Σ

At all by Σ∗ ⊗G ∼= Z6
2 there are 26 di�erent possible actions of Σ∗ on

these three simple Yetter-Drinfel'd modules. Only one of these, trivial

one, corresponds to a possible orbifold!

Lemma 7.7. Suppose a minimally indecomposable �nite-dimensional

Nichols algebra over G, then the Dynkin diagram is simply laced, i.e.

of type A3 or Z3 (3-cycle).

Proof. We reduce to the rank 2 cases treated above: Consider the

the minimally indecomposable Oa⊕Ob over Ga,b = 〈a, b〉 (resp. b, c and
a, c), which is depending on the con�guration an extension

〈x〉 = Z2
2 →Ga,b → Z2

2 = 〈ā, b̄〉 x ∈ G′

〈x, y〉 = Z2
2 →Ga,b → Z2

2 = 〈ā, b̄〉 x ∈ G′ y ∈ G2

〈x, y, z〉 = Z2
2 →Ga,b → Z2

2 = 〈ā, b̄〉 x ∈ G′ y, z ∈ G2

but all such minimally indecomposable �nite-dimensional Nichols alge-

bras were shown to be of type A2 in sections 5.3, 7.2 and 7.3 �

Step 2: Bound the number of possible actions by relations

Next we use again, that not all 26 actions are admissible for a �nite-

dimensional Nichols algebra by using [AHS09] and [HS08]. To reduce

the amount of by-hand case treatment of all di�erent con�gurations,

we use the knowledge of the diagrams in question and perform aWeyl

re�ection to obtain a di�erent con�guration, and the former has the

same dimension as the latter! Hence in what follows, we only have to
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�nd one discarding con�guration in each Weyl equivalence orbit. This

has to be done rather tediously:

Lemma 7.8. Every group's G = #3233 − 41 con�gurations only con-

sists of one Weyl-equivalence class and in each we �nd a con�guration

with r independent relations:

G = #33 #34 #35 #36 #37 #38 #39 #40 #41

r ≥ 3 2 3 2 4 3 3 4 4

Proof. This is the tedious by-hand part devised to section 8.1,

especially as we will need to introduce some technical notation to ob-

tain/present them as e�cient as possible. �

Step 3: Exhaust the remaining actions by Doi twists

We use again Matsumoto's sequence (section 5.2 and the knowledge

of the respective cohomologies to enumerate the number of actions

|Im(γ)|, that can be achieved by Doi twisting the orbifold:

1→ Σ∗ → G→ Γ→ 1

1→ Γ∗ → G∗ → Σ→ H2(Γ,k×)→ H2(G,k×)Σ
γ→ Σ∗ ⊗G

Let us calculate resp. bound the orders of all sequence terms:

• Generally for stem-extensions (Σ ⊂ [G,G]) we have G∗ ∼= Γ∗.

• Since Σ is abelian, |Σ∗| = |Σ| = 22.

• We know |H2(Γ,k×)| = |H2(Z3
2,k×)| = 23.

• Let some 2m ≤ |H2(G,k×)| bound the cohomology; as |H2(Σ)| =
21 the kernel of the restriction is then 2m−1 ≤ |H2(G,k×)Σ|.
• Hence by the exact sequence 2m−2 ≤ |Im(γ)|

Step 4: State that the Doi twists exhaust all possibilities

Thus our proof amount to checking 6−r ≤ m−2. The left side is stated

in Step 2 (and checked in section 8.1) , while the right side is from Step

3 with a bound 2m ≤ |H2(G,k×)| on the respective cohomology listed

in section 8.2. The proof works, because they are in lucky coincidence:

We get r + m = 8 except for #35 with even r + m = 9. Hence we

get enough twists for all admissible actions, and in consequence all our
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Nichols algebras can again be reversely Doi twisted to ones with trivial

Σ∗-action:

Corollary 7.9. Every minimally indecomposable �nite-dimensional Nichols

algebra over one of these groups is an Z2
2-orbifold of a Γ = Z3

2.

Step 5: Analyze (and here discard) the possible orbifold

To complete the proof of the main theorem, we now discard the cor-

responding Nichols algebra over Γ with two simultaneous involutory

twisted symmetries Σ ∼= Z2
2 = 〈σ, τ〉 generating an extension of Z3

2 by

Σ∗ ∼= Z2
2 = 〈gσ, gτ 〉 (as in Corollary 1.18):

Suppose the �rst summand of M contains some irreducible [ā](−1,1,?),

where we denoted as 1-dimensional character the image of the basis

and used, that for �nite dimension always χg(g) 6= 1. Then the twisted

symmetry θσ maps this to [ā](−1,−1,?) and vice versa, because [a, b] =

gσ; an analogous argument holds by [b, c] = gτ with θτ for [c̄](?,±1,−1).

However for b we have both nontrivial action of θσ, θτ , yielding all

4 irreducible Yetter Drinfel'd modules [b̄](±1,−1,±1). Hence in order to

a�ord the prescribed twisted symmetries, M has dimension ≥ 8 and

M ⊃ [ā](−1,±1,?) ⊕ [b̄](±1,−1,±1) ⊕ [c̄](?,±1,−1)

Altogether, we can draw the associated Dynkin diagram (omitting all

unclear edges between a and c) and it happens to contain an 8-cycle,

which is impossible by [H08] Lemma 20.



CHAPTER 8

Tables

1. Weyl Equivalence Classes for #32 33− 41

These worked out tables prove Lemma 7.8 used in section 7.4.

Assuming all diagrams to be simply laced we check by hand all

con�guration of squares

a2, b2, c2 = u, v, w ∈ Σ∗ = 〈x, y〉 ∼= Z2 × Z2

of some �xed conjugacy classes with one of the prescribed commutator

structures (for A3, Z3 respectively)

Oa,Ob,Oc [a, b] = x [b, c] = y [a, c] = 1

Oa,Ob,Oc [a, b] = x [b, c] = y [a, c] = xy

Not all con�gurations are independent, but may beWeyl equivalent. 2 −1 0

−1 2 −1

0 −1 2

 ⇐⇒

 2 −1 −1

−1 2 −1

−1 −1 2


In this section we will calculate explicitly all orbits of theWeyl groupoid

acting on the con�gurations, and �nd them to represent all possible

con�gurations resp. Yetter-Drinfel'd modules for each of the groups

#33−#41.

We again (see section 5.3) obtain on relation for the action of u, v, w

on one of the simple summands of the Yetter-Drinfel'd module M ⊃
Oχa ,O

ρ
b ,Oφc , assuming B(M) < +∞ and the respective class real:

χ(u) = ρ(v) = φ(w) = 1

After calculating each Weyl equivalence class (i.e. orbits of re�ections)

we may check the representative with the highest number of such re-

lations r. This �nally yields the necessary relations for the proof of

section 7.4, that are in luckily remarkable coincidence with the Schur

147
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multiplier rank n (section 8.2) r + n = 8 (9 in the exceptional #35).

G = #33 #34 #35 #36 #37 #38 #39 #40 #41

r ≥ 3 2 3 2 4 3 3 4 4

In the following, we decorate the respective Dynkin diagram's nodes

with the conjugacy classes and the edges with the commutator. Below

we denote the powers (a2, b2, c2) of the nodes and the prescribed com-

mutators (x, y)A3 resp. (x, y, xy)Z3 .

Often, after a re�ection the diagram needs to be reordered in order

to be in this standard presentation. For one, we'll need to permute the

nodes (and accordingly permute the node squares), e.g.

(12) (u, v, w) 7→ (v, u, w) (x, y, xy)Z3 7→ (y, xy, x)Z3

(23) (u, v, w) 7→ (u,w, v) (x, y, xy)Z3 7→ (xy, y, x)Z3

(13) (u, v, w) 7→ (w, v, u) (x, y)A3,Z3 7→ (y, x)A3,Z3

Secondly, still we need to perform a base transformation in Σ∗ = 〈x, y〉
and again accordingly transform the node square expressions involving

x, y. We denote this by a superscript of the x, y-images, e.g. (13)(y,x).

Now, we start calculating the in�uence of a re�ection Ri on the i-th

node. Note hereby e.g. for R1, that from a2 = u always follows

R1 (Oa) = O−1
a = Oau

with equal node square (a−1)2 = u and for (single-) connected

R1 (Oa ⊕Ob) = Oau ⊕Oab

from a2 = u, b2 = v, [a, b] = x that the new node square is (ab)2 =

uvx. The edge (commutator) is not changed [au, ab] = [a, b] = c. The

in�uence on the third depends on the shape of the diagram:

• Case A3: if Oc was not connected to Oa, it behaves trivially
under re�ection, hence we get

R1 (Oa ⊕Ob ⊕Oc) = Oau ⊕Oab ⊕Oc

and the third edge is again [ab, c] = y yielding A3 in standard

presentation as well.

• Case Z3: if Oc was connected to Oa as well, the in�uence is

the same as on Ob

R1 (Oa ⊕Ob ⊕Oc) = Oau ⊕Oab ⊕Oac
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and the third edge is now [ab, ac] = x ·y ·xy = 1 hence the new

diagram is of type A3 with Oau now the central node. It needs

to be reordered by (12)(x,xy) to be in standard presentation!

• Case R2A3: A special variation of the latter is the connection

of the re�ected node to two mutually disconnected nodes:

R2 (Oa ⊕Ob ⊕Oc) = Oba ⊕Obv ⊕Obc

And these two are now connected by an edge [ba, bc] = xy and

hence now of type Z3.

Altogether for A3 with node squares (u, v, w) and edges (x, y)A3 :

R1 (u, v, w) 7→ (u, uvx, w) (x, y)A3 7→ (x, y)A3

R2 (u, v, w) 7→ (uvx, v, vwy) (x, y)A3 7→ (x, y, xy)Z3

R3 (u, v, w) 7→ (u, vwy, w) (x, y)A3 7→ (x, y)A3

For a Z3 diagram with node squares (u, v, w) and edges (x, y, xy)Z3 :

R1 (u, v, w) 7→ (u, uvx, uwxy) (x, y, xy)Z3 7→ (x, 1, xy)(12)(x,xy)A3

R2 (u, v, w) 7→ (uvx, v, vwy) (x, y, xy)Z3 7→ (x, y, 1)A3

R3 (u, v, w) 7→ (uwxy, vwy, w) (x, y, xy)Z3 7→ (1, y, xy)(23)(xy,y)A3

Now �nally note, that a class Oa in this notation is real, i� its (central)

power u = a2 is contained in the subgroup of Σ∗ = 〈x, y〉 generated the

adjacent edges' decorations, because in this case the adjacent node's

elements b, b′ conjugate a to a−1 = ua. For Z3 this is always the case,

but for A3 care has to be taken! We get a nontrivial Σ∗-action relation

for each real classes with nonzero square. Similarly we recognize

nontrivial product relations.

We now start multiple times with some not-appeared con�guration

M = (u, v, w) with diagram A3 (where we aim to the most real classes

with nontrivial square) and calculate the fullWeyl equivalence class. (a)

To recognize the support groups for one con�guration per class,

the author calculated the involutions from the given relations; this gives

the conjugacy classes of elementary abelian subgroups and respective

centralizers, that can be looked up in the classi�cation list [Group32].

Then an explicit isomorphism was constructed, given at the end of each

Con�guration entry below.

(a)Actually we calculate the Weyl groupoid modulo the above symmetry trans-

formations. Disconnected Weyl-orbits connected by a symmetry might be fused!
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Any Con�guration (a2, b2, c2) ∈ Σ∗: The following is the generic

picture if starting with type A3. In each particular case, at some point

the entries will repeat, possibly involving a symmetry above, and we

will have thus found the entire respective Weyl orbit.

Re�ection (a2, b2, c2) [a, b], [b, c], [a, c] = Dynkin diagram

M (u, v, w) x, y, 1 A3

R1(M) (u, uvx, w) x, y, 1 A3

R2R1(M) (v, uvx, uvwxy) x, y, xy Z3

R1R2R1(M) (v, u, uw) x, 1, xy (12)(x,xy)A3

R2R1R2R1(M) (uvx, u, uw) = R1R2(M)

R3R1R2R1(M) (uvwxy, u, uw) · · · x, 1, xy (12)(x,xy)A3

R3R2R1(M) (uw,w, uvwxy) 1, y, xy (23)(xy,y)A3

R1R3R2R1(M) (uw,w, v) = R2R3R2(M)

R2R3R2R1(M) (uw,w, uvx) · · · 1, y, xy (23)(xy,y)A3

R3R1(M) (u, uvwxy, w) x, y, 1 A3

R1R3R1(M) (u,wvy, w) = R3(M)

R2R3R1(M) (vwy, uvwxy, uvx) x, y, xy Z3

R1R2R3R1(M) (vwy, u, uw) · · · x, 1, xy (12)(x,xy)A3

R3R2R3R1(M) (uw,w, uvx) · · · 1, y, xy (23)(xy,y)A3

R2(M) (uvx, v, vwy) x, y, xy Z3

R1R2(M) (uvx, u, uw) x, 1, xy (12)(y,xy)A3

R2R1R2(M) (v, u, uw) = R1R2R1(M)

R3R1R2(M) (vwy, u, uw) x, 1, xy (12)(x,xy)A3

R1R3R1R2(M) (vwy, uvwxy, uvx) · · · x, y, xy Z3

R2R3R1R2(M) (uvwxy, u, uw) = R3R1R2R1(M)

R3R2(M) (uw,w, vwy) 1, y, xy (23)(xy,y)A3

R1R3R2(M) (vwy, u, uw) = R3R1R2(M)

R2R3R2(M) (uw,w, v) 1, y, xy (23)(xy,y)A3

R1R2R3R2(M) (uw,w, uvwxy) = R3R2R1(M)

R3R2R3R2(M) (uvwxy, vwy, v) = R2R3(M)

R3(M) (u, vwy, w) x, y, 1 A3

R1R3(M) (u, uvwxy, w) = R3R1(M)

R2R3(M) (uvwxy, vwy, v) x, y, xy Z3

R1R2R3(M) (uvwxy, u, v) · · · x, 1, xy (12)(x,xy)A3

R3R2R3(M) (uw,w, v) = R2R3R2



1. WEYL EQUIVALENCE CLASSES FOR #32 33− 41 151

Con�guration (1, xy, 1) yields #33 ∼= Dlong
4 �Dlong

4 :

Re�ection (u, v, w) + Symmetries Dynkin diagram

M (1, xy, 1) A3

R1(M) (1, y, 1), (1, x, 1) A3

R2R1(M) (xy, y, 1), (x, 1, y), (1, x, xy) Z3

R1R2R1(M) (1, y, 1) = R1(M)

R3R2R1(M) (1, 1, 1) = R3R1(M)

R3R1(M) (1, 1, 1) A3

R2R3R1(M) (x, 1, y) ∼= R2R1(M)

R2(M) (y, xy, x) Z3

R1R2(M) (1, xy, 1) = M

R3R2(M) (1, xy, 1) = M

R3(M) (1, x, 1) ∼= R1(M)

We get at least 3 relations from R2(M). The group is isomorphic to

Dlong
4 �Dlong

4 (in it's standard presentation) as 〈M〉.
Con�guration (x, 1, y) yields #34 ∼= Dshort

4 �Dshort
4 :

Re�ection (u, v, w) + Symmetries Dynkin diagram

M (x, 1, y) A3

R1(M) (x, 1, y) = M

R2(M) (1, 1, 1) Z3

R1R2(M) (x, 1, y) = M

R3R2(M) (x, 1, y) = M

R3(M) (x, 1, y) = M

We get at least 2 relations from M , as Oa,Oc are real even for A3 (see

above). The group is isomorphic to Dshort
4 �Dshort

4 as 〈M〉.
Con�guration (x, y, y) yields #35 ∼= Dshort

4 �Q8
∼= Q8�Q8:

Re�ection (u, v, w) + Symmetries Dynkin diagram

M (x, y, y), (x, x, y) A3

R1(M) (x, y, y) = M

R2(M) (y, y, y), (xy, xy, xy), (x, x, x) Z3

R1R2(M) (x, xy, y) A3

R3R1R2(M) (x, xy, y) = R1R2(M)

R3R2(M) (x, y, y) = M

R3(M) (x, y, y) = M

We get at least 3 relations from R2(M). The group is isomorphic to

Dshort
4 �Q8 as 〈M〉 and to Q8�Q8 as 〈R1R2(M)〉.
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Con�guration (x, y, 1) yields #36 ∼= Dshort
4 �Dlong

4 :

Re�ection (u, v, w) + Symmetries Dynkin diagram

M (x, y, 1), (1, x, y) A3

R1(M) (x, y, 1) = M

R2(M) (y, y, 1), (xy, xy, 1), (y, 1, y) Z3

(1, x, x), (x, 1, x), (1, xy, xy)

R1R2(M) (x, xy, x), (y, xy, y) A3

R3R1R2(M) (x, 1, x), (y, 1, y) A3

R1R3R1R2(M) (1, 1, y), (1, 1, xy), (1, y, 1) Z3

(x, 1, 1), (xy, 1, 1), (1, x, 1)

R3R2(M) (xy, 1, 1), (1, 1, xy) A3

R2R3R2(M) (xy, y, 1), (1, x, xy) A3

R3(M) (x, 1, 1), (1, 1, y) A3

R2R3(M) (1, 1, y) ∼= R3(M)

We get at least 2 relations from R2(M). The group is isomorphic to

Dshort
4 �Dlong

4 as 〈M〉.
Con�guration (1, xy, y) yields #37 ∼= Dlong

4 �Q8:

Re�ection (u, v, w) + Symmetries Dynkin diagram

M (1, xy, y), (x, xy, 1) A3

R1(M) (1, y, y), (x, x, 1) A3

R2R1(M) (xy, y, y), (xy, y, xy), (x, y, y) Z3

(x, x, xy), (xy, x, xy), (x, x, y)

R1R2R1(M) (1, y, xy), (xy, x, 1) A3

R3R1R2R1(M) (1, xy, xy) = R1R2(M)

R3R2R1(M) (y, y, y), (x, x, x) A3

R2R3R2R1(M) (y, y, y) = R3R2R1(M)

R3R1(M) (1, y, y) = R1(M)

R2(M) (y, xy, xy), (y, xy, y), (y, x, x) Z3

(xy, xy, x), (x, xy, x), (y, y, x)

R1R2(M) (1, xy, xy), (xy, xy, 1) A3

R3R1R2(M) (1, y, xy) = R1R2R1(M)

R3R2(M) (y, x, y), (x, y, x) A3

R2R3R2(M) (y, x, y) = R3R2(M)

R3(M) (1, xy, y) = M

We get at least 3 relations from R2(M) plus 1 product relation from

(bc)2 = y. The group is isomorphic to Dlong
4 �Q8 as 〈M〉.



1. WEYL EQUIVALENCE CLASSES FOR #32 33− 41 153

Con�guration (y, 1, 1) yields #38:

Re�ection (u, v, w) + Symmetries Dynkin diagram

M (y, 1, 1), (1, 1, x) A3

R1(M) (y, xy, 1), (1, xy, x) A3

R2R1(M) (1, xy, x), (y, 1, x), (y, xy, 1) Z3

R1R2R1(M) (xy, 1, xy) A3

R3R1R2R1(M) (xy, x, xy) ∼= R1R2(M)

R3R2R1(M) (y, xy, 1) ∼= R2R1(M)

R3R1(M) (y, x, 1), (1, y, x) A3

R2R3R1(M) (y, x, xy), (x, xy, y), (xy, y, x) Z3

R1R2R3R1(M) (xy, xy, xy) = R3R1R2(M)

R3R2R3R1(M) (y, x, 1) = R3R1(M)

R2(M) (xy, 1, y), (1, y, xy), (x, y, 1) Z3

(x, 1, xy), (xy, x, 1), (1, x, y)

R1R2(M) (xy, y, xy), (xy, x, xy) A3

R3R1R2(M) (xy, xy, xy) A3

R3R2(M) (y, y, 1) = R3(M)

R3(M) (y, y, 1), (1, x, x) A3

R2R3(M) (x, y, 1) ∼= R2(M)

We get at least 3 relations from R2R3R1(M). The group is isomorphic

to #38 in [Group32] (a, b, c, x, y) = (G1, G2, G3, G4, G4) by (12)R1(M).

Con�guration (y, 1, x) yields #39:

Re�ection (u, v, w) + Symmetries Dynkin diagram

M (y, 1, x) A3

R1(M) (y, xy, x) A3

R2R1(M) (1, xy, 1), (y, 1, 1), (1, 1, x) Z3

R1R2R1(M) (xy, 1, y), (x, 1, xy) A3

R3R2R1(M) (x, 1, xy) ∼= R1R2R1(M)

R3R1(M) (y, 1, x) = M

R2(M) (xy, 1, xy), (1, y, y), (x, x, 1) Z3

R1R2(M) (xy, y, y), (x, x, xy) A3

R3R1R2(M) (xy, y, y) = R1R2(M)

R3R2(M) (x, x, xy) ∼= R1R2(M)

R3(M) (y, xy, x) = R1(M)

We get at least 2 relations from R2(M) plus 1 product relation from

(ab)2 = y. The group is isomorphic to #39 by (12)R1R2(M).
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Con�guration (xy, x, y) yields #40:

M (xy, x, y), (x, y, xy) A3

R1(M) (xy, xy, y), (x, xy, xy) A3

R2R1(M) (x, xy, xy) ∼= R2(M)

R3R1(M) (xy, xy, y) = R1(M)

R2(M) (xy, x, x), (x, y, x), (x, xy, xy) Z3

(y, y, xy), (y, x, y), (xy, xy, y)

R1R2(M) (y, y, x), (y, x, x) A3

R3R1R2(M) (y, x, x) = R1R2(M)

R3R2(M) (xy, xy, y) = R1(M)

R3(M) (xy, x, y) = M

We get at least 3 relations from R2(M) plus 1 product relation from

(ab)2 = y. The group is isomorphic to #40 = 〈G1, G2, G1G3, G4, G5〉
by (123)R1R2(M).

Con�guration (y, 1, xy) yields #41:

Re�ection (u, v, w) + Symmetries Dynkin diagram

M (y, 1, xy), (xy, 1, x) A3

R1(M) (y, xy, xy), (xy, xy, x) A3

R2R1(M) (1, xy, y) ∼= R2(M)

R3R1(M) (y, y, xy), (xy, x, x) A3

R2R3R1(M) (x, y, xy), (xy, x, y), (xy, x, y), (x, y, xy) Z3

R1R2R3R1(M) (xy, x, x) ∼= R3R1

R3R2R3R1(M) (xy, x, x) ∼= R3R1

R2(M) (xy, 1, x), (1, y, x), (x, xy, 1) Z3

(y, 1, xy), (y, x, 1), (1, xy, y)

R1R2(M) (xy, y, x) ∼= R3(M)

R3R2(M) (xy, xy, x) ∼= R1(M)

R3(M) (y, x, xy), (xy, y, x) A3

R2R3(M) (y, x, 1) ∼= R2(M)

We get at least 3 relations from R2R3R1(M) plus 1 product relation

from (ab)2 = y. The group is isomorphic to #41 ∼= 〈G1, G2, G2G3, G4, G5〉
by R3R1(M).
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2. Groups And Cohomologies

We list all groups G of order 32 and class 2 (and how they are obtained

as stem extensions Σ∗.Γ) from the classi�cation [Group32]. It espe-

cially contains information about the local cohomology ring H∗(G,Z2)

and we shall extract lower bounds for the Schur multiplier H2(G,k×)

by using the long exact sequence induced by the short exact sequence

of coe�cients Z2
±1−→ k× t2−→ k×

1→ Hom(G,Z2)→ Hom(G,k×)→ Hom(G,k×)→ H2(G,Z2)→ H2(G,k×) · · ·

Since Hom(G,k×) ∼= G/G′ and smaller in characteristic 2 we get:

G/[G,G] = Γ = Z3
2 the �rst three terms are equal

|H2(G,Z2)| · |G/G′ ⊗ Z2|−1 ≤ |H2(G,k×)|

Group #16 Σ∗ := G′ Γ := G/G′ log2|H2(G,Z2)| ≤ log2|H2(G,k×)|
#6 Z2 Z3

2 6 3

#7 Z2 Z3
2 5 2

#8 Z2 Z3
2 5 2

#9 Z2 Z2 × Z4 4 2

#10 Z2 Z2 × Z4 3 1

#11 Z2 Z2 × Z4 2 0

Group #32 Σ∗ := G′ Γ := G/G′ log2|H2(G,Z2)| ≤ log2|H2(G,k×)|
#8 Z2 Z4

2 10 6

#9 Z2 Z4
2 9 5

#10 Z2 Z4
2 9 5

#11 Z2 Z2
2 × Z4 7 4

#12 Z2 Z2
2 × Z4 7 4

#13 Z2 Z2
2 × Z4 5 2

#14 Z2 Z2
2 × Z4 6 3

#15 Z2 Z2
2 × Z4 5 2

#16 Z2 Z2
2 × Z4 5 2

#17 Z2 Z2
2 × Z4 5 2

(to be continued...)
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(continuing....)

Group #32 Σ∗ := G′ Γ := G/G′ log2|H2(G,Z2)| ≤ log2|H2(G,k×)|
#18 Z2 Z4 × Z4 5 3

#19 Z2 Z4 × Z4 3 1

#20 Z2 Z2 × Z8 4 2

#21 Z2 Z2 × Z8 4 2

#22 Z2 Z2 × Z8 2 0

#33 Z2
2 Z3

2 9 6

#34 Z2
2 Z3

2 9 6

#35 Z2
2 Z3

2 8 5

#36 Z2
2 Z3

2 9 6

#37 Z2
2 Z3

2 7 4

#38 Z2
2 Z3

2 8 5

#39 Z2
2 Z3

2 8 5

#40 Z2
2 Z3

2 7 4

#41 Z2
2 Z3

2 7 4

#42 Z2 Z4
2 9 5

#43 Z2 Z4
2 9 5

These information is used together with Matsumotos exact sequence

(section 5.2) for one to �nd faithful Doi twists of orbifolds (section 7.1)

or to exhaust all possible actions of Σ by such twists:

• #16 9, 10 in section 7.2

• #32 18 in section 7.3

• #33−#41 in section 7.4



Outlook: 3 Conjectural Steps To All Nilpotent Groups

The above techniques construct link-indecomposable �nite-dimensional

Nichols algebras over many nilpotent groups of class 2. As conclusion

of the second part of this thesis, the author would like to point out

some open questions, that describe consequent pursues of the above

techniques towards a total classi�cation of minimally indecomposable

�nite-dimensional Nichols algebras over the nilpotent groups and are

part of the author's ongoing e�ort:

1. Negation Of All Noncommuting Rank 3 Cases

First we want to discuss an exploit of the rather general argument in

the preceding section beyond exponent 4. One could aim to prove,

that G′ ∼= Zn2 is (mostly) generated by mutually commuting subsets of

nodes with support Ni of the type N
′
i
∼= Zp; the Dynkin diagram would

be disconnected and the Nichols algebra factorize (see below)! Since

Theorem 6.1 indeed constructs Nichols algebras for such groups, this

would clarify existence over all nilpotent groups of class 2.

Example. The group G = D4 × D4 has G′ ∼= Z2
2, but admits Nichols

algebras over the mutually commuting subgroups D4 and the overall

Dynkin diagram is A2 ∪ A2.

Problem 8.1. As in the above rank 3 examples, consider all stem

extensions Z2
2 → G → Γ with Γ abelian of rank 3, but in contrast

possibly Γ 6∼= Zn2 . We want to prove, that only exceptional examples

may appear, that could allow �nite-dimensional indecomposable Nichols

algebras.

• Clarify whether in most cases of Weyl equivalence class of

conjugacy con�gurations as in section 8.1 there exists some

Yetter-Drinfel'd module with r+ log2|Im(γ)| ≥ 6 using respec-

tive knowledge of the cohomology and give a complete list of

all exceptionals, which do not contain such a con�guration!
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• With [HS08] Theorem 8.6 (double coset statement) then prove,

that any triple of mutually discommuting elements is of the

form above (only two independent commutators) and hence

discarded!

• Deduce, that apart from exceptional (low rank?) con�guration

any Nichols algebra with G′ ∼= Znp factorizes into indecompos-
able Nichols algebras B(Gi), in the sense that

� The Dynkin diagram is disconnected

� Hence multiplication in B(G) induces a bijective map:

B(G) ∼=
⊗
i

B(Gi)

� By theorem 6.8 the conjugacy classes underlying each con-

nected components nodes generate mutually commut-

ing supports with G ⊃ G′i
∼= Z2

2. Classifying All Nichols Algebras Over G′ = Z2

Also, we do not settle with just knowing whether a group admits

Nichols algebras, but rather aim at classifying all minimally inde-

composable �nite-dimensional Nichols algebra (with possibly G′ acting

nontrivial!) as Doi twist of orbifold. This suggests an extension of the

techniques used for about D4,Q8 (section 5.3) and the groups #9, 10

of order 16 and #18 of order 32 (sections 7.2 and 7.3):

Problem 8.2. Suppose some Dynkin diagrams of B(M) with all nodes

Oχkgk colored white or black depending on whether G′ ∼= Z2 acts

as +1 or −1. The unique nontrivial Doi twist hence inverts black and

white coloration. Both subdiagrams by themselves (and after Doi

twisting the latter) present each a proper orbifold (G′ acting trivial) and

hence appear in Theorem 6.1. They especially have as Dynkin diagram

An≥3, Dn≥4, E6,7,8, F4, Bn≥3

• Clarify whether in most cases, if two black and two white el-

ements are all mutually commuting, forming an independent

set in the graph, then the generated abelian subrack over G!

(this technique was introduced in [AZ07]) contains a 4-cycle

and hence had in�nite dimension!
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• Deduce that hence in any con�gurations associated to a �nite-

dimensional orbifold, only black A1 or A2 (at most one in-

dependent node) may be coupled with one of the Dynkin dia-

grams of the list above in white (or by Doi twist vice-versa in

white/black)!

• Clarify, whether in most cases if one black and n ≥ 4 white

elements are not mutually commuting forming an n-branch in

the graph, then the generated abelian subrack (over G!) con-

tains an n-branch and hence had in�nite dimension!

• Clarify, whether in most cases, if one black and three white

elements are not mutually commuting, forming a D4 with white

center, then the re�ection on this center generates a 3-cycle in

G and hence cannot occur over 2-groups by Heckenberger's list!

• Deduce a general statement (probably including several excep-

tions from above), linking the graphs to simply-laced a�ne

Dynkin diagrams, with the black nodes precisely the addi-

tonal nodes from a�nization.

• Try to construct examples or contradict such indecomposable

�nite-dimensional Nichols algebras associated to a�ne Dynkin

diagrams and with nontrivial action G′ prescribed as above pre-

cisely on the additional a�nization nodes.

3. Nichols Algebras Over Nilpotent Groups Of Class ≥ 3

Finally we need to target nilpotent groups of class ≥ 3. While the

case > 3 seems to be discarded rather easily by extending a result

of Schneider and Heckenberger regarding the rank 2 case in general

groups [HS10], in class 3 there is a class of more resilient groups cor-

responding to the case G4 in cit. loc.. If there were an orbifold over

this group, it had to be from a certain non-minimally indecomposable

Nichols algebra over D4 �found� in the preceding section. The author

has no opinion, what the Dynkin diagram might be, or whether this

yields new cases or can be negated by a more skillful approach!

The author's study of the case of general nilpotent group G started

with the following observations about Nichols algebras B(Oχs ⊕O
ρ
t ) of

rank 2 of �nite dimension, that are strong consequences of [HS08] in

the nilpotent case and have implications on the structure of G, if an
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indecomposable �nite-dimensional B(
⊕

iOχigi ) exists:

• The general stst = tsts implies for g := [s, t] that stg = g−1

• However, a nilpotent group is direct product of Sylow-subgroups

G(p). Consider s̄, t̄ in the largest quotient of odd orderG/G(2);

since there squaring is invertible, we get from the condition on

the other hand s̄t̄ = t̄s̄.

• Suppose now there exists an indecomposable
⊕

iOχigi where

any two discommuting s = gi and t = gj commute as de-

manded above, then 〈{[s̄i]}〉 generate also G/G(2), but there

they all commute. Hence G/G(2) is abelian.

The behaviour of the rank 2 Nichols algebras B(Oχs ⊕O
ρ
t ) in question of

course depends greatly on the order of g = [s, t]. Suppose the nilpotency

class of G to be just 2 (=commutators are central), then our �rst obser-

vation shows that always g2 = 1 meaning G′ is 2-elementary-abelian.

In this work, we construct large examples of Nichols over such groups

and clarify conversely existence of minimally indecomposable �nite-

dimensional Nichols algebras (even connected) at least for G′ ∼= Z2.

The author had also put considerable e�ort into clarifying the other

cases g2n = 1 with (st)g = g−1 6= g. Before deciding the existence of

an orbifold (in one class lower), one has to exclude possible examples

with nontrivial g-actions, that are no Doi twist of trivial action; al-

though the author was able to derive certain conditions, the particular

lack of cohomology for some groups has prevented to derive the aimed

conclusion.

Example 8.3. Particularly resisent was the following case of the qua-

sidihedral group D̃8, as the author announced in a mini-talk given

at the �Oberwolfach Conference� 2010.

D̃8 := 〈a, b | b2 = a8 = 1, ba = a3b〉

M̃ := Oa ⊕Oa2b Σ 3 g2 = [a, a2b]2 = a4

In contrast to Q16, only one Oa powers to g2, which proves g2 to act

trivial only there; this are few relations (compare section 5.3. On the

other hand, in contrast to D8, there is not enough cohomology to

generate the remaining case (g2.xa2b = −xa2b) as a Doi twist.
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Towards the end of this dissertation, Schneider suggested in this context

the recent paper [HS10]. Heckenberger and himself had proven strong

implications for the structure of such groups in the general caseG′ = Zn
for B(Oχs ⊕O

ρ
t ) �nite-dimensional. More speci�c, they proved that the

support 〈Os,Ot〉 for Os,Ot discommuting (�exceptional pair�) has to

be a quotient of one of the following three in�nite groups:

G2 := 〈s, t, g | sg = g tg = g〉

G3 := 〈s, t, g | sg = g−1 tg = g g3 = 1〉

G4 := 〈s, t, g | sg = g−1 tg = g g4 = 1〉

Note that no nonabelian quotient of G3 may be nilpotent!

Problem 8.4. Decide Class 3: (such as the above groups of order

16). If such a Nichols algebra were an orbifold by Σ = 〈g2〉 of an ex-

ample with ḡ2 = 1 in Γ = G/Σ, the smaller Nichols algebra (by some

calculations) of a non-minimally indecomposable Nichols algebra with

both trivial and non-trivial Σ∗-action over D4, hence cannot be gen-

erally deorbifoldized further to the abelian case. The necessary edges

between discommuting nodes severely restricts the possible diagrams.

A good guess might be A3 ∪ A3 → C2 between conjugacy classes of

orders 2, 4 (for q = −1 of dimension 212), which could even lead to

a family Dn∪Dn → Cn−1 over central products with extraspecial groups.

A second possibility would be A
(1)
3 over conjugacy classes of both order

4. We would require the discussions of the preceding section to decide

it's existence.

Problem 8.5. Discard Class > 3: By the result quoted above, there

may not be any rank 2 Nichols algebra with support already class > 3;

namely G2,G4 have class 2, 3. Hence the only possibility were a situation

Oa ⊕ Ob ⊕ Oc with 〈a, b〉, 〈a, c〉, 〈b, c〉 of class ≤ 3, such that e.g. g ∈
[a, b]2 (which is central in 〈a, b〉) is nontrivially conjugated upon by c.

We now sketch an argument, that requires the knowledge of the Dynkin

diagram in the class 3 case above: By possibly using a Weyl re�ection

on Oa we may suppose b2 = [a, b], but then 〈b, c〉 could not have been

of class 3, because b4 = g is not central in 〈b, c〉.





Part 3

Orbifoldizing Automorphisms





Basic Concepts:

We start by reviewing very roughly the classi�cation of �nite simple

groups including the fundamental induction along the centralizers of

involutions and the characterization via BN -pairs. The former is pur-

sued in the Monster construction in part 5, which relies on a series of

remarkably unique structures. The latter we shall establish in this part

for the automorphism group of a Hopf algebra in the aim of identifying

large sporadic groups and especially the monster group M.

The Classi�cation Of Simple Groups

A remarkable beauty about the long-term e�orts to completely classify

all �nite simple groups was, that construction and classi�cation con-

verged towards the end, and new simple groups were discovered along

the way - some with virtually no other description (especially the pari-

ahs). Often, such a case exhibited already in a very early stage a chain

of �coincidences�, that strongly suggest a simple group, and hence in

many cases group order, character tables etc. was known many years

before the construction could be completed. Note that actually con-

structing them or excluding other cases is very tedious and requires

numerous ingenious concepts (such as signalizer method or local anal-

ysis) we may not attempt to present here. We will however in the suc-

ceeding section give a deeper introduction into the construction of the

simple Monster group, that will be relevant to the following discussions.

Of all simple groups, the most generic are perhaps the Lie groups over

�nite �elds. This is also, where the notion of BN -pairs emerges. This

is a pair of subgroups with very speci�c properties, that axiomatize

the notions of Borel part, Weyl group, etc. and hence to some extend

transfer classical Lie theory into group theory. They even characterize

the simple group (this is a hard theorem, see below).
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It is the conviction of the author, that proving statements about a sim-

ple group (without computer-aid), should walk along these lines to the

group � or make use of the symmetry construction principles, that of-

ten follow them as well. We want to confront the reader with the entire

list before going into details for the groups in question:

Theorem 8.6. (2) Each nonabelian �nite simple group G is isomorphic

to either a group of Lie type (3) over a �nite �eld Fq = Fpn

An≥1(q) Bn≥2(q) Cn≥3(q) Dn≥4(q) E6(q), E7(q), E8(q), G2(q), F4(q)

or of twisted Lie type (4), i.e. a simple subgroup kMn(q) ⊂ Mn(qk),

roughly �xed by a Dynkin diagram- and �eld automorphism (see below)

2An(q) 2Dn(q) 2E6(q) 3D4(q) 2B2(22n+1) 2F4(22n+1) 2G2(32n+1)

or to an alternating group An≥5 with exceptional isomorphisms to

small Lie type groups (5) or to one of the 26 sporadic groups:

Groups Common Name Construction Principle

M24,M23,M22,M12,M11 Mathieu groups Golay Code + stabilizers (see below)

Co1, Co2, Co3,McL,HS Conway groups Leech lattice + stabilizers (5)

Suz, J2 + centralizer of Suzuki chain (6)

Fi′24, F i23, F i22 Fischer groups 3-Transposition graph of an involution (7)

M, B, Th,HN,He Monster group Griess algebra + Cent(2A, 3C, 5A, 7A) (8)

or from 2B-centralizer Co1 n 224+1
+

J1, J3, Ly,Ru,ON, J4 Pariahs from prescribed 2-centralizers

A5, A5, A11,
2B2(23), A2(22), M22

(2)For classi�cation/notation see the Atlas, details are largely from an ICTS-

lecture: http://www.icts.res.in/media/uploads/Old_Talks_Lectures/Document/128

5648885MuellerWshopGAC2010.pdf
(3) A1(2), A1(3) are solvable, B2(2)′, G2(2)′ are the simple index-2 commutator

subgroup of their respective actual Lie type group. Exceptional isomorphisms occur.
(4) 2A2(22),2B2(2) solvable and 2F4(2)′,2G2(3)′ have index 2, 3 (as above)
(5) A5

∼= A1(22), A1(5) A6
∼= A1(3), B2(2)′ A8

∼= A3(2)
(5)of Leech vectors of length 4 resp. 6 resp. a 2/2/3-triangle resp. a 100-graph
(6)Cent(3D) ∼= 3× A9 ⊃ A8 ⊃ A7 ⊃ A6 ⊃ A5 ⊃ A4 ⊃ A3 ⊃ A2 leading to

to centralizers S3 ⊂ S4 ⊂ A2(2) ⊂ PSU3(3) ⊂ J2 ⊂ G2(4) ⊂ 3.Suz ⊂ Co1

(7)Possesses a conjugacy class of an involution with products ord(gigj) ≤ 3
(8)centralizers of M -conjugacy classes in Atlas-notation



THE CLASSIFICATION OF SIMPLE GROUPS 167

Groups of Lie type (1) were historically (apart from the alternating

groups) the �rst groups with established simplicity namely A1(p) =

PSL2(p) in works of Galois (1832) and An(p) by Jordan (1870). The

trend continued and soon simplicity of other classical Lie groups over

Fp was established. Dickson took the step to consider arbitrary �nite

�elds (1901) and found the �rst exceptional case G2(q) in 1905. It took

until 1955 that Chevalley gave an elegant uniform construction of all

(untwisted) groups of Lie type, by giving roughly an integral presenta-

tion of the semisimple Lie algebra envelopings, which allows considering

them over �nite �elds.

Groups of twisted Lie type (1) were subsequently found by Steinberg

(1959) in a similar way one constructs unitary groups over the com-

plex numbers. Let σ be a �eld automorphism Fqk/Fq and τ an outer

automorphism of a semisimple Lie algebra Xn (and hence the Dynkin

diagram), than one considers the �xed subgroup of στ inside the Lie-

type group kXn(q) ⊂ Xn(qk), that turns again out to be (close to) sim-

ple. Suzuki and Ree (1960, 1961) discovered further series', which come

from the curious fact, that the diagrams B2, F4, G2 have additional au-

tomorphisms over characteristic 2, 2 resp. 3, where the multiple-edge

orientation (�arrow�) can be ignored.

We proceed by reviewing (2) the induction step of the classi�ca-

tion for simple groups. In 1963 Feit and Thompson had proven that

every odd order group is solvable, hence every nonabelian simple G

has to be of even order and contains thus an involution. Brauer had

started to classify simple groups in terms of the centralizers of such

an involution (∼= GL2(Fq) in 1954). As this group is smaller than

G it allows an inductive approach, checking any known group as pos-

sible such 2-centralizer. This philosophy has been the driving force

behind the classi�cation e�ort and explains the tremendous length of

the proof (over 10.000 pages). Luckily it has turned out, that usually

a 2-centralizer of a simple group is very close to a smaller simple group.

(1)The historical remarks are taken from Wikipedia.
(2)A short version of this has been posted by the author to answer the re-

spective MathOver�ow-Question http://mathover�ow.net/ questions/17617/why-

are-the-sporadic-simple-groups-huge/93459#93459
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Example 8.7. Janko (1965) investigated possible G with 2-centralizer

2 × A1(q) q ≥ 3 and found, that either q = 3n and (later) G ∼=
2G2(32n+1), which was his prototype, or q = 4, 5 (A1(q) ∼= A5) and

G ∼= J1 is the new simple Janko group, the �rst in almost a century.

Example 8.8. The McLaughlin group McL (1969) is derived from

Co1 as stabilizer of a 2/2/3 triangle in the Leech lattice. A 2-centralizer

is the Schur cover 2.A8. The subsequent search for any 2.An ruled out

all other cases except n = 11 leading to the Lyons group Ly (1972).

Example 8.9. Quite ironically, the most resistant cases were 2-

centralizers resembling those of Lie type groups, distinguished by char-

acteristic and rank. While odd characteristics were already dealt with

by Aschbacher (�Classical involution theorem�, 1977), the even charac-

teristic case was proven �rst for rank 1, 2 (�Thin groups�, Aschbacher,

1978), for rank ≥ 4 (�Trichotomy theorem�, Gorenstein & Lyons, 1983)

and ultimately for rank 3 in �Quasithin groups�, Aschbacher &

Smith, 2004. The last proof took incredible 20 years, 1221 pages and

�nally concluded the classi�cation theorem.

While these (and almost all other) examples stop already one induc-

tion step beyond the Lie case, the following groups represent a very

remarkable chain of induction steps. It will be discussed in more depth

in the introduction of part 5.

A2(22) −→M24 −→ Co1 −→M
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Simple Groups And Their BN-Pairs

The following observation of a very speci�c constellation of subgroups

B,N places the groups of (twisted) Lie type in a �rst classi�catory

context, proves their simplicity and appears (with modi�cations) in

the treatment of sporadic simple groups as the monster (see part 5).

De�nition 8.10. A BN-pair (J. Tits 1964) or Tits system of a

�nite group G is a pair of subgroups B,N ⊂ G generating G such that

• D = B ∩N is normal in N .

• W = N/D is a Coxeter group generated by involutions wi.

• No wi normalizes B.
• For any such wi and w ∈ W we have wiBw ⊂ BwiwB∪BwB
(a sort of triangle inequality).

Example 8.11. For An(q) ∼= PSLn+1(Fq) one takes for B the subgroup

of upper triangular matrices (mod scalars F×q ) and N the monomial

matrices (one entry per column and row). Then D are the diagonal

matrices and W ∼= Sn. For this reason, we call B Borel subgroup, D

Cartan subgroup andW Weyl group with the number of generators

wi the rank.

All groups of (twisted) Lie type admit similarly a BN -pair and under

certain conditions (B solvable,
⋂
g B

g = {1}, W indecomposable) the

simplicity of G follows from G being perfect; the latter is what requires

mild modi�cations in some small examples, so e.g. the �proper� simple

commutator subgroup 2F4(2)′ has index 2 in 2F4(2).

In 1974 Tits showed, that for rank ≥ 3 in fact all groups with BN-pair

are of Lie type! He associated to every such pair an abstract simplicial

complex with G-symmetry the Tits building [L05]. We will work

with the more involved de�nition in cit. loc. in what follows, but for

convenience we include now an elementary de�nition from Wikipedia:

De�nition 8.12. A Tits building of rank n + 1 is an abstract sim-

plicial complex (call the n-simplices chambers) which is the union of

certain subcomplexes (apartments), such thats

• any two chambers lay in exactly one common apartment.

• any n − 1-simplex in some apartments A lays in exactly two

adjacent chambers in A and the thereby de�ned graph of cham-

bers is connected.
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• for any two chambers C,C ′ laying both in two apartments A,A′

there is a simplicial isomorphisms A→ A′ �xing C,C ′.

• the building is called thick, if every k-simplex k ≤ n lays

within at least three chambers.

A group G acting transitively on pairs C ∈ A of a building has a BN -

pair via B = Cent(C0) and N = Cent(A0) for some �xed choice. For

�nite, thick buildings the converse also holds.

Example 8.13. The alternating groups An possess BN-pairs as well,

coming from the doubly transitive action on |Ω| = n: Let x 6= y ∈ Ω

and take B ∼= An−1 the stabilizer of x and N the stabilizer of the

subset {x, y}; then D ∼= An−2 is the stabilizer of both x, y and W ∼= Z2

exchanging x, y. Thus in contrast to the above, they are of rank 1.

For these thin buildings (3) one introduces split BN-pairs, meaning

additionally B ∼= H o U for U nilpotent. In this case the theorem of

Fong-Seitz classi�es rank 2 as A2, B2,
2A4,

2A5, G2,
3D4,

3 F4. A similar

result exists for rank 1.

This story also partly continues for alternating and sporadic simple

groups and the building geometry and -combinatorics are studied with

great pro�t; there is a great number of generalization targeting these.

They also can be used e.g. to compute the cohomology rings (by Quillen's

map). Compare �nally the following to An:

Example 8.14. The monster group M will be constructed via a non-

proper BN-pair (see part 5), where B = Cent(z1) and N = Norm(〈z1, z2〉)
for z1, z2 suitable commuting involutions. We have D̃ = Cent(〈z1, z2〉)
normal in N with Weyl group S3, but the actual D = B ∩N is slightly

larger (permuting z2, z2z1) and non-normal.

The latter two will be prototypes for our recovery of a BN -pair of an

orbifolds automorphism group in what follows.

(3)The author thanks Prof. Humphreys and Prof. Pasechnik for pointing out

literature on the stricter notion of a �split� BN -pair in low rank and for laying

out the weaker amalgam construction for sporadic simple groups upon my ques-

tion in MathOver�ow (http://mathover�ow.net /questions/93463/weak-bn-pair-

tits-system-for-sporadic-groups).



CHAPTER 9

The Automorphism Group Of An Orbifold

We want to establish the existence of a BN -pair for the group of Hopf

algebra automorphisms of an orbifold Aut(Ω). The approach resides in

between the BN -pairs classically de�ned via the triangular and mono-

mial subgroup of matrix groups, that have arbitrary high rank, and the

2-transitive groups with B,N the 1- resp. 2-point-stabilizer (rank 1, see

above!). In some sense, we again replace points in the latter approach

by algebras, which allows far more �space� for higher-rank specimen,

while on the other hand the necessary rigidity is kept (as in An vs. M):

2 points normalized + 1 point centralized = 2 points centralized

The actual proof is carried out as usual via Tits-buildings [L05]. These

are simplicial complexes with additional structure and a symmetry ac-

tion of the group to be studied. The role of the chamber system is

hereby taken by the orbit of embeddings H = A(e) ⊂ Ω under Aut(Ω),

while the set of apartments is the orbit of a �xed intermediate Z2-

orbifold embeddings L ⊂ Ω. We will give an alternative characteriza-

tion in terms of just the involved central idempotents of Ω.

1. Two Subgroups B,N ⊂ Aut(Ω)

Let kΣ → Ω → H be an orbifold as constructed in Theorem 1.6. De-

pending on a �xed chosen involution p ∈ Σ we shall de�ne a set C
(�chambers�) and a set of subsets thereof A (�apartments�):

De�nition 9.1. The group G = Aut(Ω) of Hopf algebra automor-

phisms Ω acts naturally on the set of multiplicative (NOT necessarily

unit-preserving) embeddings sH : H → Ω. De�ne CAut to be the orbit

of the �xed chosen embedding sH,0 : H = A(e) ⊂ Ω. Then, identify

embeddings [s] = [s′] with equal images s(H) = s′(H) ⊂ Ω to de�ne C.
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De�nition 9.2. Fix now any involution p ∈ Σ and consider the orb-

ifold L := H ⊕ Hp. Then G acts also naturally on the set of multi-

plicative embeddings sL : L → Ω. De�ne AAut to be the orbit of the

embedding sL,0 : L ⊂ Ω above induced by the chosen p. Again, identify

embeddings [s] = [s′] with equal images s(L) = s′(L) ⊂ Ω to de�ne A.

Note that CAut,AAut are extensions of C,A by all H,L-automorphisms

induced from Ω. We next identify C,A with certain central idempo-

tents in Ω.

Lemma 9.3. The evaluation of an embedding at 1H resp. 1L induces a

bijection of C,A with the orbits CIdem,AIdem of the central idempotents

sH,0(1H) = 1e resp. sL,0(1L) = 1e + 1p under Aut(Ω).

Proof. The given elements clearly are central idempotents in Ω,

so are all automorphic images. Hence evaluation at 1H , 1L yields an epi-

morphisms of permutation representation CAut → CIdem resp. AAut →
AIdem. As the idempotent already de�nes the entire image s(H) =

s(1H)Ω resp. s(H) = s(1H)Ω the above epimorphisms identify em-

beddings with equal image in Ω, hence it factors through C,A to an

isomorphism.

�

Remark 9.4. We view an element [sL] ∈ A as subset of C by de�ning
[sH ] ∈ [sL] whenever the image is contained sH(H) ⊂ sL(L) ⊂ Ω. This

corresponds to the obvious view of a central idempotent x ∈ CIdem being

contained in another one y ∈ AIdem whenever x ∈ yΩ. We freely use

the terms [s], s(1H)Ω, s(H) to describe an element in C (A respectively).

Given this data, we de�ne general subsets B,N ⊂ G by taking those

automorphisms preserving the respective structure:

De�nition 9.5. Let B := Norm(H) and N := Norm(L) or equiva-

lently via idempotents B = Cent(1e) and N = Cent(1e + 1p).

Note that they also precisely normalize the orthogonal complements

B = Norm(
∑
q 6=e

Hq) N = Norm(
∑
q 6=e,p

Hq)

Hence B,N can alternatively be characterized as precisely those auto-

morphisms, that factor through the orbifold quotient πH , πL to H,L.
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De�nition 9.6. Take C ∩ L the orbit of 1e under N and de�ne for

this permutation representation ρ the image, i.e. the permutation group

N/Ker(ρ) as Weyl group W .

Note that in contrast to proper BN -pairs, we so far have in general

B ∩N ⊃ Ker(ρ) not even normal! This is topic of the next section.

2. Conditions Establishing A Generic BN-Pair

Next we assume the following conditions, that ultimately prove B,N

de�ned above to be a BN -pair for G = Aut(Ω). They amount to assum-

ing W a Coxeter group acting on C ∩ L as the regular representation,

together with conditions ensuring a �su�ciently dense� covering of Ω

by suborbifolds L along with �su�cient space� outside such an L.

(1) Condition ensuring normality: The Weyl group W acts on

C ∩L barely-transitive, i.e. transitive with trivial one-point-

stabilizers. Hence C ∩ L is the regular W -representation .

(2) Conditions enabling the de�nition of a building:

(a) The Weyl group W is a Coxeter group (we call the

Coxetersystem) S ⊂ W .

(b) Every pair of chambers g1H, g2H are elements (i.e. algebra

subsets) of at least one common apartment g3L.

(3) Condition ensuring nondegeneracy and establishing the B,N -

pair: The building is thick, i.e. for any w ∈ S not all (gwg−1)H

for g ∈ B coincide. Equivalently this means, that no w ∈ S

normalizes B.

Already the �rst condition implies (the �rigidity� mentioned above):

Lemma 9.7. B ∩N is normal in N and the quotient is W .

Proof. Any g ∈ B ∩N by de�nitions centralizes H,L ⊂ Ω. Con-

sider now C∩L with N 3 g acting on it. As g ∈ B centralizes H, by the

barely-transitiveness condition above it already centralizes the entire

set C ∩ L.

Now take some h ∈ N , then it normalizes C ∩L and hence hgh−1 again

centralizes the entire set. But this especially means it stabilizes H once

again and hence hgh−1 ∈ B ∩N . Thus B ∩N is normal in N .
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To identify the quotient, note that by the above B ∩N is the kernel of

the permutation representation ρ of N on C ∩ L. Hence N/(B ∩N) ∼=
N/Ker(ρ) =: W . �

Each element of the Weyl group de�nes an equivalence relation on C.
Especially for each w the Coxeter system S we consider:

De�nition 9.8. Two elements x, y ∈ C ∩ L are called w-equivalent,

if some preimage in w(B ∩ N) ⊂ N maps x 7→ y. Every A ∈ A is by

de�nition an automorphic image of the standard apartment A = gL,

thus we may also de�ne the translated equivalence relation on C ∩ A.
Finally we de�ne w-equivalence on all C as the transitive closure. The

equivalence class of some x ∈ C shall be denoted [x]w, the w-residue.

We show two additional rigidity statements:

Lemma 9.9.

• Let A,B ∈ A and x, y ∈ C with x, y ∈ A ∩B, then there is an

automorphisms g ∈ G with gA = B and centralizing {x, y}.
• Let A,B ∈ A and x ∈ C with x ∈ A∩B and [y]w some residue,

then there is an automorphisms g ∈ G with A = B, stabilizing

x and sending g(A ∩ [y]w) = B ∩ [y]w.

Proof.

(1) By de�nition of A as orbit there are automorphisms gAA =

L, gBB = L. Consider for x ∈ A ∩ B the elements xA =

gAx, xB = gBx ∈ L. Because W acts transitive on C ∩ L we

may �nd a gL ∈ N with gxA = xB and because it acts barely-

transitive, this already �xes analogously gyA = yA. Hence we

obtain g := g−1
B gNgA with the asserted properties.

(2) As in the �rst part of the proof, we easily �nd g := g−1
B gNgA

mapping A to B and �xing x, y. It is clear from the de�nition

(N normalizes all L∩[y]w), that then already the entire residue

of y is preserved.

�

This already de�nes enough structures on the set C and the subsets

A thereof to endow the pair with the structure of a building with

chambers C forming a chamber system via the equivalence relations

from each w ∈ S ⊂ W :
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Theorem 9.10. Under conditions 1+2 the structure B = (C,A, []w)

de�nes a building by Theorem 3.6 in [L05], because it satis�es all

conditions given there:

• Each apartment is isometric to the Coxeter complex of G: This
is clear, as we already noticed, that C ∩L is isomorphic to the

regular representation of W , which we required to be a Coxeter

group with Coxeter system S in condition 2.

• Each pair of chambers lay in a common apartment: This was

the second part of condition 2 above.

• Each pair of chambers in the intersection of two apartments

A,B, allows an isometry A → B �xing x, y: Take the auto-

morphisms g found in the last theorem.

• Each chamber in the intersection of two apartments AmB and

w-residue R allows an isometry w with gA = B, g(A ∩ R) =

A ∩R, gx = x: Take again the automorphism above.

Note that an isometry means a permutation of C, such that the set of

apartments and each equivalence-relation/residue are preserved, which

is especially true for any automorphisms g ∈ G = Aut(Ω)!

The building has a strongly transitive G-action (i.e. transitive on

chamber/apartment pairs x ∈ A) as already established above and is

thick if the additional condition 3 is ful�lled. Hence by theorem 4.5

cit. loc. the B,N above de�ne a proper BN -pair.

Corollary 9.11. Under the conditions 1+2+3 the subgroups B,N of

G = Aut(Ω) de�ne a BN-pair with Weyl group W .

Remark 9.12. We conclude by further observations and conjectures:

• Note from the proof in cit. loc. the Bruhat-decomposition

into double-cosets G = BNB.

• What does the additional condition wBw−1 ∩ B = 0 amount

to? If this condition is true, B is solvable, W connected (as

Coxeter graph) and G is perfect, then by a standard argument

G is already simple!

• When is G already the full isometry group of the building?

The author would assume Σ ∼= Zn2 to su�ce, as then any direct

summand Hσ in Ω lays in an apartment.
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3. An Arti�cial Example Aut(Ω)→ S3 n 212+1
+ ⊃ S4

We conclude by giving an arti�cial, disconnected example going

from a partial orbifold (i.e. by a subgroup of twisted symmetries), which

has already nonabelian coradical and far less automorphisms then the

primary Hopf algebra, to the full orbifold and �nd the expected growth

of the automorphism groups. Especially we give an explicit �triality� el-

ement t (analogous to the Monster's triality elements?) mixing the sec-

ondary orbifoldizing's twisted symmetry with the primary ones, which

is at the start of the secondary orbifoldization an ordinary group ele-

ment (a central commutator).

Without working out all details, we will �nd that with respect to the

above construction yields (using Sn oG := Sn nGn):

• Aut(H) = S1 o (D4 × (k×)2)× D4 o (Z2 n (k×)2)

• B = (S1 × S2) o (D4 n (k×)2)

• N = (S2 × S1) o (D4 n (k×)2) ∼= B

• B ∩N = (S1 × S1 × S1) o (D4 n (k×)2) ∼= (D4 n (k×)2)3

• N/(B ∩N) ∼= S2 is a rank-1 Coxeter group

• Aut(Ω) = S3 o (D4 n (k×)2)→ S3 n 212+1
+

• A Weyl generator n ∈ N and the product t := bn can be

viewed as duality- and triality-element, each element mix-

ing twisted and untwisted sectors.

Note that the continuous automorphisms k× come from rescaling the

nilpotent skew-primitives and may reduce to a �nite group (e.g. Z2 ⊂
k×) if a nontrivial lifting is present! As all of Σ acts trivial by construc-

tion, we may further fuse the D3
4 to an extraspecial group D∗34 =: 212+1

+ .

The remaining interesting (quotient-)part of Aut(Ω) arises from

the automorphisms of the 2-groups underlying �nite symplectic vector

space (G/(G2G′) ∼= F12
2 ), which are heavily restricted by additionally

having to preserve the Dynkin diagram (not only) as a graph.

Example 9.13. Start with the Yetter-Drinfel'd module M̂ over Γ̂ =

Z6
2 = 〈x1, y2, . . . , x3, y3〉-of type A6∪

2 , two over each conjugacy class

pair Oxi ⊕ Oyi), each pair of A2 interchanged by a twisted symme-

try Z2
∼= Σ1,2,3 ⊂ Σ ∼= Z3

2.
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We �partially� orbifoldize M̂ by Σ1 to M of type A
[U ]
2 ∪ A4∪

2 over Γ =

D4×Z4
2. On the other hand the subsequent full orbifold M̃,Ω by Σ2,3 =

Z2
2 is over G = D3

4 and of type
(
A

[U ]
2

)3∪
.

The Hopf algebra automorphisms of H = k[G]#B(M̂) and resp. of Ω

and the subgroups B,N have a decomposition series as follows

1CCent(k[G])CCent(Diagram)CNorm(ConnectedComponents)CAut(H)

The respective quotients are:

• Cent(k[G])/1 are the automorphisms of the Nichols algebra

(coradical �xed). For each connected component (type A2, A
[U ]
2 )

this is (k×)2 from rescaling the skew-primitives associated to

the nodes. Hence these therms are overall (k×)10, (k×)6 for

H,Ω respectively.

• Cent(Diagram)/Cent(k[G]) are the group automorphisms �x-

ing the Dynkin diagram. For A2 this is trivial, but for A
[U ]
2 we

get additional Z2 × Z2 corresponding to conjugating with the

respective other involution (inner automorphism).

• Norm(ConnectedComponents)/Cent(Diagram) are the group

automorphisms �ipping an A2, A
[U ]
2 -copy, i.e. Z2 for each.
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• So far this means for every connected component A2, A
[U ]
2 of

the Dynkin a automorphisms group of Z2 o k× respectively Z2 o
(Z2 × k×) = D4 n (k×)2.

• Aut(H)/Norm(ConnectedComponents) is the permutation ac-

tion on the connected components. Hence we get

� S1 × D4 for Aut(H)

� S3 for Aut(Ω)

� S1 × S2 = 〈b〉 for B
� S2 × S1 = 〈n〉 for N

Note that n does not �x H, so it mixes twisted and untwisted sector

(as below one could work the map out explicitly). An explicit additional

Ω-automorphism t = bn of order 3 interchanging all three copies of A2

can be worked out from the assumed cyclic permutation action on a2
i .

Denoting a = a1 ∈ Ω and take the basis of central idempotents 1A(p),

than

(a2, a2, a2, a2)
t7−→ (1,−1, 1,−1)

t7−→ (1, 1,−1,−1)

Altogether (using multiplicativity of t) we �nd the following matrix and

notice that it mixes twisted and untwisted sectors:

t =
1

2


1 + a2 0 1− a2 0

1 + a2 0 −a2 1

0 a2 1 1− a2

0 1 + a2 0 1− a2





Part 4

Orbifoldizing Categories



In 2010 the author was given a chance to present his ongoing work in a

mini-talk at the Oberwolfach Workshop Deformations in Mathematics

and Physics. At the very same workshop, Prof. Christoph Schweigert

(Hamburg) gave a talk Geometric and algebraic structures for general

cross modules involving also an orbifoldizing procedure for equivari-

ant categories introduced by Kirillov [K04] (who attributes the work

already to Turaev). It describes e.g. categorically the behaviour of ver-

tex algebra orbifoldizing (untwisted and twisted vertex modules, see

cit. loc.), which will be topic of part 5. In a subsequent discussion, the

question came up, if and how the construction presented in this the-

sis has a connection to the existing one � the result is the following part.

The category of comodules over an orbifold is just a duplication

of the respective category over the base Hopf algebra (as coalgebras

Ω ∼= k[Σ∗] ⊗ H). On the other hand, the category of modules corre-

sponds to projective representations of the original Hopf algebra, which

was the reason for Schur to treat the group-case long ago and was also

the motivation behind [Bo97].

Hence we can only expect more nontrivial behaviour for category no-

tions, that depend both on algebra- and coalgebra-structure. Here in-

deed we �nd categorical orbifoldizing. In both cases we take the re-

spective category over H as untwisted sector, extend it naturally to an

Σ-equivariant category and get as orbifoldization the respective cate-

gory over the Hopf algebra orbifold Ω:

• The category of bicomodules, especially the contained Biga-

lois groupoid (�Hopf algebra cohomology�, see part 1) can be

duplicated (×kΣ) to the Σ-equivariant category and yields co-

inciding orbifolds. Note that this is a rather trivial equivariant

category and it comes without braiding, which is the most

distinguishing feature of orbifoldizing categories. It is however

interesting to calculates the orbifold's Bigalois groupoid!

• The category of Yetter-Drinfel'd modules with inverse

braiding c−1 can be extended by projective Yetter-Drinfel'd

modules to the Σ-equivariant category and yields coinciding

orbifolds (again with inverse braiding). Note that this requires

to consider both categories. This is the more involved case.



Basic Concept: Equivariant Category Orbifoldization

The following notion from [K04] appears already in Turaev:

De�nition 9.14. For a �nite group Σ, a Σ-equivariant category is

a category C with a given formal Σ-decomposition of full subcategories

(�untwisted� and �j-twisted� sectors):

C =
⊕
j∈Σ

Cj

together with a Σ-action, i.e. functors Rp : C → C and natural iso-

morphisms αj,k : Rj ◦Rk
∼= Rjk such that:

R1 = id Rj(Ck) ⊂ Cjkj−1

αjk,lαj,k = αj,klαk,l

In what follows additionally assume a strict monoidal structure on C.

De�nition 9.15. Such a Σ-equivariant monoidal category C is called

equivariant fusion category, if the action is monoidal, commutes

with the biduality functor and there is a pre-braiding satisfying the

pentagonal identity (for V ∈ Cj):

cV,W : V ⊗W → Rj(W )⊗ V

Especially the untwisted sector C1 is a braided category. To yield a

braided category, we take the coherently covariant part:

Theorem 9.16. The orbifoldization C//Σ of a Σ-equivariant cate-

gory C is a braided category: Take objects (V ∈ C, (φp)p∈Σ) with:

φj : Rj(V ) ∼= V φj ◦Rj(φk) = φjk

and morphisms between (V, φ), (W,ψ) to be usual C-morphism f :

V → W satisfying ψj ◦Rp(f) = f ◦ φp and as braiding (for V ∈ Cj):

V ⊗W
cV,W−→ Rj(W )⊗ V

φWj ⊗id−→ W ⊗ V
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CHAPTER 10

Bicomodules And The Bigalois Groupoid

1. An Equivariant Category (without braiding)

Let Σ be a twisting group (1) of Bigalois objects of a Hopf algebra H

(De�nitions 1.5 and 1.9), then we consider the category of H,H-

bicomodules over H:

C =
⊕
j∈J

Ci :=
⊕
j∈J

Bicomod(H,H) = Bicomod(H,H)|Σ|

we obviously get a monoidal structure:

�H : Cj × Ck → Cjk

To turn C into an Σ-equivariant category, consider

Rj : Ck → Cjkj−1

V 7→ A(j)�HV�HA(j−1)

We easily verify that this is monoidal by taking the natural transfor-

mation Rj(_)�HRj(_) ∼= Rj(_�H_) as follows:

Rj(V )�HRj(W ) = A(j)�HV�HA(j−1)�HA(j)�HW�HA(j−1)

∼= A(j)�HV�HW�HA(j−1)

= Rj(V�HW )

where we used the isomorphisms A(j−1)�HA(j) ∼= H in [S04].

We get a natural transformation RjRk
∼= Rjk obeying associativity by

using the �xed choices ιj,k for isomorphisms A(j)�A(k) ∼= A(jk), that

have been demanded by the de�nition of a twisting group.

RjRk(V ) = A(j)�HA(k)�HV�HA(k−1)�HA(j−1)

ιj,k ιj−1,k−1

−→ A(jk)�HV�HA((jk)−1)

(1)In contrast to the pointed case in most of this thesis, we do not necessarily

have Σ abelian here.
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2. Orbifoldizations Coincides With Kirillov

We now consider the orbifoldization of the Σ-equivariant category C
de�ned above

C//Σ := {(V, (φj)j∈J) | φj : Rj(V ) ∼= V, φjk = φj ◦Rj(φk)}

and the orbifoldized Hopf algebra (Theorem 1.6)

Ω(H,Σ) =
⊕
j∈J

A(j) ∆ =
∑
i,j∈Σ

ι−1
i,j

and show that the former describes again the new Bicomod(Ω,Ω).

Theorem 10.1. The following natural transformation gives amonoidal

category equivalence

Φ : C//Σ ∼= Bicomod(Ω,Ω)

(V, (φi)i) 7→ V

The non-degeneracy of can is preserved, hence we get

Φ : BiGal(H)//J ∼= BiGal(Ω,Ω)

Proof. Split V =
⊕

i∈J Vi and take this as vector space. De�ne

the left (right) Ω-comodule structure using the cleaving maps cj :

H → A(j) by

δΩ
L(vi) =

∑
j∈J

(cj ⊗ φ−1
j )δL(vi) ⊂

⊕
j

A(j)⊗ Vjij−1

They commute, because:

(1⊗ δΩ
R)δΩ

L =
∑
j,k

(1⊗ φ−1
j ⊗ cj)(1⊗ δR)(ck ⊗ φ−1

k )δL(vi)

=
∑
j,k

(1⊗ φ−1
j ⊗ cj)(1⊗ δR)(ck ⊗ φ−1

k )δL(vi)

φ ∈Mor(C) =
∑
j,k

(ck ⊗ φ−1
j φ−1

k ⊗ cj)(1⊗ δR)δL(vi)

and analog for the right side. This turns V into a Ω,Ω- bicomodules.

Φ is invertible by taking for any Ω,Ω-bicomodule the projections

(push-forward) π of the comodule structures on Ω → H, say δL, δR

(as π is a Hopf algebra map, these are again comodule structures),

which makes V an H,H-bicomodule. It is clear from the construction

of π : Ω → H as dividing out all twisted sectors A(j), j 6= e , that
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the so-de�ned coactions coincide with the original ones. The additional

structural maps φ−1
j can be recovered via εHc

−1
j δΩ

L .

The orbifoldizations of H,H-Bigalois objects Vk yield again Ω,Ω-

Bigalois objects, as we calculate for the new left (right) can-map:

canΩ
L(v, w) =

∑
j∈J

(cj⊗φ−1
j ·wjkj−1)δL(vk) =

∑
j∈J

(cj⊗φ−1
j )canL(vk, φj(wjkj−1))

which is clearly bijective. �





CHAPTER 11

Yetter-Drinfel'd Modules

Note that as there is currently no de�nition of Yetter-Drinfel'd modules

with projective action (1) in literature (and this was out of scope of

this thesis). Thus we may only de�ne the bare category C and recover

afterwards the Rj and the pre-braiding from the known structures

on Ω-Yetter-Drinfel'd modules. Although this is technically rigid, the

author would hope for an intrinsic description of these structures solely

in C, as remarked below.

1. An Equivariant Category

Recall, that a twisting group Σ of Bigalois objects of a Hopf alge-

bra H by De�nitions 1.5 and 1.9 determines corresponding 2-cocyles

σ? : Σ→ Z2(H,k×) by providing standard cleavings cj : H → A(j).

Consider now C the category of projective H-Yetter-Drinfel'd mod-

ules associated to the above 2-cocycles, i.e.

C =
⊕
j∈Σ

Cj

with Cj Yetter-Drinfel'd modules with an action that is projective with

respect to the 2-cocycle σj, i.e.

V ∈ Cj =⇒ a.(b.v) = σj(a
(1), b(1))

(
(a(2)a(2)).v

)

(1)This is not the same as the projective Yetter-Drinfel'd modules de�ned

over groups in K. Vocke's diploma thesis [V10] and used below in outlook section

12.3. This natural notion is equivalent to modules over Dijkgraaf's Drinfel'd double

D(G)ω for a 3-cocycle ω and are projective layer-wise with respect to di�erent 2-

cocycles. Especially their category is a properly braided category! This mistake has

been noted by Prof. Schweigert in a discussion following a talk the author gave

about Nichols algebras in Hamburg 2011.
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Clearly, the usual tensor product in Y DM (diagonal action and coac-

tion) extends accordingly, because the cocycles are (convolution-) mul-

tiplied and σjσk = σjk:

⊗ : Cj × Ck = Cjk
As we'll see in the following, C can even be endowed with the structure

of a Σ-equivariant category, including a pre-braiding. The author was

so far not able to directly construct these structure from within C. Note
however, that the proof below gives valuable hints on how these should

be de�ned generally.

Remark 11.1. The author assumes Cj to be the category of relative

Yetter-Drinfel'd modules with respect to the action of σj-�twisted� bico-

module algebras A(j) over H. This would be a more natural de�nition.

2. Orbifoldizations Coincides With Kirillov

Theorem 11.2. The category C of projective Yetter-Drinfel'd modules

with Ce = G
GY DM above can be endowed with the structure of a Σ-

equivariant category including a pre-braiding, such that the orbifoldiza-

tion C//Σ is categorically equivalent to the braided category Ω
ΩY DM

with the inverse braiding!

Proof. We construct the category equivalence vice-versa and re-

cover the necessary structures in C as we move along.

Take a Yetter-Drinfel'd module M over Ω. By construction (Theorem

1.6) Ω contains a new dual groupring kΣ and hence central idempotents

(1j)j∈J = 1A(j), that are orthogonal ejek = 0 (for j 6= k) and have sum∑
j∈J 1j = 1Ω.

Consider the induced decompositions on Yetter-Drinfel'd modules M

as Ω-modules

M =
⊕
j∈J

1j.M =:
⊕
j∈J

Mj

They are submodules with only A(j) ∼= σjH acting nontrivial. Hence

they are σj-projective H-modules, which proves Mj ∈ Cj As in the

above case, the Hopf algebra projection Ω→ H immediately yields an

H-coaction on M . This yields a functor f : Ω
ΩY DM → C.
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In the next step we de�ne Rj : Ck → Cjkj−1 and for each M a family

of (φMj )j∈J , such that
(
f(M), φM

)
lands in the orbifoldized category

C//J := {(V, (φj)j∈J) | φj : Rj(V ) ∼= V, φjk = φj ◦Rj(φk)}

Let for each M set Rj(Mk) := Mjkj−1 . To de�ne the φj, we again

require the coherent choices of cleavings cj : H ∼= A(j) (as coalgebras)

demanded by De�nition 1.9 to de�ne a coalgebra map κ : Ω→ kΣ to

the linear forms on Σ. Then we may use the M -coaction

φj : v 7→ κ
(
v(−1)

)
(j) · v(0)

By the Yetter-Drinfel'd condition on M , φj maps Mjkj−1 to Mk:

φj(1jkj−1 .v) = κ
(
(1jkj−1 .v)(−1)

)
(j) · (1jkj−1 .v)(0)

= κ
(

1
(1)

jkj−1v
(−1)S

(
1

(3)

jkj−1

))
(j) ·

(
1

(2)

jkj−1 .v
(0)
)

=
∑

abc=jkj−1

κ
(
1av

(−1)1c−1

)
(j) ·

(
1b.v

(0)
)

a, c−1, j equal = κ
(
v(−1)

)
(j) ·

(
1k.v

(0)
)
∈Mk

We �nally need to check φjk = φj ◦Rj(φk):

(φj ◦Rj(φk)) (v) = φj
(
κ
(
v(−1)

)
(jkj−1) · v(0)

)
= κ

(
v(−2)

)
(jkj−1) · κ

(
v(−1)

)
(j) · v(0)

κ coalg.−map = κ
(
v(−1)

)(1)
(jkj−1) · κ

(
v(−1)

)(2)
(j) · v(0)

kΣ − coprod. = κ
(
v(−1)

)
(jkj−1j) · v(0) = φjk(v)

As last step we observe that the inverse standard braiding (2) on
Ω
ΩY DM

v ⊗ w 7→ w(0) ⊗ S−1(w(−1)).v

restricts to the desired pre-braiding

cMj ,Mk
: Mj ⊗Mk →Mjkj(−1) ⊗Mj

(2)Here we assume the antipode of Ω invertible.
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by verifying the codomain works out correctly

1j.v ⊗ 1k.w 7→ (1k.w)(0) ⊗ S−1((1k.w)(−1)).1j.v

Y D − cond. = 1
(2)
k .w(0) ⊗ S−1(1

(1)
k w(−1)S(1

(3)
k )).1j.v

=
∑
abc=k

1b.w
(0) ⊗ 1cS

−1(w(−1))1a−11j.v

c, a−1, j equal = 1jkj−1 .w(0) ⊗ 1j.S
−1(w(−1)).v

�



Part 5

Orbifoldizing Quantum Fields



Finally we give an outlook on the initial motivation of this thesis - to

construct the monster vertex algebra solely on the level of Hopf

algebras. It plays a crucial role in the proof of Monstrous Moonshine

by having the simple Monster group as its automorphism group and

it is constructed by orbifoldizing the Leech lattice vertex algebra (a

thorough introduction to these topics is given in the following). The

author hopes that orbifoldizing Hopf algebras not only reproduces the

rather abstract mechanism of constructing the orbifoldized (e.g. confor-

mal �eld theory) categories in the sense above, but also to keep track of

a representing vertex algebra. This is an in�nite-dimensional space of

Laurent-series'-valued operators, ful�lling a suitable operator-product-

expansion (associativity up to δ-functions). It can be seen as an explicit

quantization of the conformal quantum �eld theory.

Note, that this e�ort is presently far from its conclusion!

In [Len07] a general technique was introduced to write down vertex

algebras (which obey natural, but long and technical axioms) from a

given set of data, corresponding to an in�nite-dimensional Hopf algebra

and a lifting in the sense of part 1. Once established, the properties of

a vertex algebra are proven tediously, but once-and-forall. In the main

chapter 12, we give a detailed overview of these theorems, including

the examples of lattice algebras. Now the question arises:

Can one orbifoldize the Hopf algebra underlying the Leech lattice vertex

algebra, such that the orbifold Hopf algebra produces the Monster vertex

algebra? Does the Monster group action show more easily at this level?

Curiously, the latter seems to be easier approachable, as we shall see

that Hopf- and vertex-automorphisms coincide and we already estab-

lished the structure of a BN -pair on the former in part 3. The as-

sumption of this automorphism group already gives valuable hints for

a construction, as does the explicit Moonshine module underlying the

monster vertex algebra; the main missing links is constructing an orb-

ifoldizing scenario, that obeys a number of very explicit conditions. The

main obstacles are the technically involved vertex algebra orbifoldizing

and several (non-existing) generalizations needed on the Hopf side of

this thesis (e.g. amalgams). They are discussed in an extensive outlook.



Basic Concepts:

Constructing Sporadics And Especially the Monster

We have seen in part 3, that An possesses a BN-pair as well due to the

highly transitive action; a fact that in some sense points to and con-

tinues for sporadic simple groups (3) (see below). Already in 1861

(resp. 1873) the �veMathieu groups were discovered in the search for

highly transitive permutation groups:M24 acts 5-transitive on |S| = 24

(the others are stabilizers of respectively many points) and apart from

Sn,An they are (except M21) the only 4-transitive groups. The combi-

natorial structure on S preserved exactly by M24 is quite remarkable:

De�nition 11.3. A Steiner system S(k,m, n) consists of a set |S| =
n and a system of subsets (�blocks�) each of order m, such that every

subset of order k is contained in exactly one block.

Example 11.4. For a �nite projective plane S = FqP2 = F3
q\{0}/ ∼

the lines form a Steiner system S(2, q + 1, q2 + q + 1) as two distinct

points determine exactly a line (a�ne geometries yield subsystems).

Example 11.5. There is a unique Steiner system S(5, 8, 24) (Witt

geometry) and its automorphism group is M24; respective omission of

some elements of Ω lead to respective Steiner systems corresponding to

the other Mathieu groups (no Steiner systems are known for k > 5).

The Witt geometry generates (via symmetric di�erence) the excep-

tional Golay code G (4) ⊂ Ω (with automorphisms M24 as well) and

ultimately leads to the Leech lattice Λ, a highly exceptional 24-

dimensional lattice presenting a very dense spherical packing and hav-

ing as automorphism group the simple Conway group Co1 (1968).

(3)Information on historical and technical matters come from a large number

of sources, including Wikipedia, but most notably Griess' original- (Aschbacher:

�Quasithin Groups�) and Conway's revised construction of the monster group.
(4)A necessity in the Golay code's construction gives a nice �reason� for 24

being special: It is the largest number with 12 + 22 + · · ·+ 242 a square, namely 702

193
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To understand the relationship between M24, Co1 and the monster

M we recall from part 3 the classi�cation of �nite simple groups by

inductively clarifying centralizer-of-involution subgroups:

Example 11.6. The following groups are a chain of induction steps

PSL3(F22) = A2(22) −→M24 −→ Co1 −→M

accompanied by respective (here symbolic) extensions of the combinato-

rial structure having the respective group as automorphisms (compare

to the contrary taking of stabilizers to obtain simple subgroups)

F22P2 = S(2, 5, 21) −→ S(5, 8, 24) −→ Λ −→ A

While the Leech lattice has still been studied for its own sake, the

Griess algebra A is obtained �purposely�, relying heavily on the hy-

pothesis of a prescribed 2-centralizer Co1 n 224+1
+ ⊂ M and has to be

seen in strong correspondence to the theory of BN-pairs for An (see

part 3). Let us �nally review this construction in some more detail:

Assume an involution z = z1 ∈ M in the yet-to-be-constructed group

with its supposed centralizer B = Cent(z) ⊂M a split extension of an

extraspecial group Q ∼= 224+1
+ (viewed as a symplectic 24-dimensional

Z2-vector space, see section 6.2) by the simple Conway group Co1 act-

ing on Q as on the Leech lattice mod 2; the element z ∈ Cent(z) is the

central commutator in Q and preserved by Co1. Suppose further z2 a

(suitable) second involution in Q and de�ne N ⊂M as the normalizer

of the Klein-4-group V = 〈z1, z2〉 ∼= F2
2.

N can be constructed as a central extension of M24×S3 and Conway's

approach uses the newly discovered Parker loop with great pro�t.

This is a remarkable algebraic structure with 212+1 elements and should

be visualized from a Hopf algebra point of view as follows: Identify the

212 Golay code words G 3 A ⊂ {1, . . . 24} with the basis of a �nite

vector space A ∈ Z12
2 . Extend the latter by an additional Z2 = {±1}

to an algebra with nontrivial associativity constraint (given as follows

by set cardinalities | · |) ultimately yields a �deformed group� (loop):

A2 = E · (−1)|A|/4

BA = AB · (−1)|A∩B|/2

A(BC) = (AB)C · (−1)|A∩B∩C|
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As for proper BN -pairs B,N generate the (future) Monster and the in-

tersection D = B ∩N = Cent(V ) is roughly M24. However, while D̃ =

Cent(V ) is clearly normal in N with Weyl group N/H = S3
∼= A1(2)

permuting {z1, z2, z1z2}, the actual D is slightly larger (still containing

(23)) and non-normal. A representative is the utmost important tri-

ality element w conjugating the three involutions' centralizers. From

the assumed B,N,D the monster M can be obtained as an amalgam,

the explicit construction proceeds as follows:

Start with a monomial B-representation A− ∼= Λ ⊗ 212 and a B-

representation AS from the symmetric tensor square Λ⊗sym Λ (viewed

as symmetric matrices). Furthermore, in Λ there are 196560 �minimal

vectors� R (presenting the spheres packed around the center) and one

chooses an appropriate decomposition as R+ ∪ R−, yielding a third

B-representation AR spanned by symbols y(r), r ∈ R+

De�nition 11.7. The Griess algebra A, γ, τ is the B-module A :=

A−⊕AS⊕AR of dimension 196.884 = 24 ·212 + 24·25
2

+ 196560
2

, equipped

with a natural B-invariant bilinear form γ from the construction and

several B-invariant composition structures:

• τS : AS ⊗AS → AS the symmetrized matrix product.

• τSR : AS ⊗AR → AR dualized from the Λ-coaction ξ on AR

M ⊗ y(r) 7→ γ(M, ξ(r)⊗sym ξ(r))y(r)

• τR : AR ⊗AR → AR adding �positive� minimal Leech vectors

y(r)⊗y(r′) 7→ y(rr′) where possible (rr′ ∈ R+) and 0 otherwise

• τS− AS ⊗A− → A− by the matrix M ∈ AS acting on Λ

• τR− AR ⊗A− → A− from re�ecting the Λ-factor along ξ(r).

Simply adding all these structure maps yields τ : A⊗A → A, commonly
viewed as a (nonassociative) algebra or an invariant trilinear form.

One than restricts the action on A to H = B ∩ N and subsequently

extends to N in such a way, that γ, τ are still invariant (Griess had

to guess the extra triality automorphism w ∈ N). Hence B,N ⊂
Aut(A) =: G and the proof is concluded by showing �niteness of G

(from a �nite orbit in A) and CentG(z) = B, then subsequently sim-

plicity of G follows by a rather general argument working for other

groups as well (Q is a large extraspecial group in G and hence G is

close to simple).



196 BASIC CONCEPTS:

Vertex Algebras And Monstrous Moonshine

Monstrous Moonshine (a comprehensive survey is [G06], for a proof

overview see p. 412�) has �rst been observed rather accidentally (5) by

John McKay in the late 1970's: The monster group M has not even

been constructed, but much evidence pointed to an explicit character

table. McKay noticed, that the dimensions of the smallest irreducible

representations of this new sporadic group

dim(ρ0), dim(ρ1), dim(ρ2), dim(ρ3), . . . = 1, 196883, 21296876, 842609326 . . .

seemed in strange coincidence to the distinguished Fourier series

j(z) = (q−1 + 744) q = e2πiz

+ q(1 + 196883)

+ q2(1 + 196883 + 21296876)

+ q3(2 · 1 + 2 · 196883 + 21296876 + 842609326)

+ · · ·

of the modular function j(z). This function is well-known in com-

plex analysis and analytical number theory for being (in some sense)

the only holomorphic function on the upper halfplane (single pole only

in i∞), that is invariant for integral Möbius transformations PSL2(Z)

acting as fractional linear maps on the complex plane (�modular�).

As a �reason�, Conway and Norton soon conjectured the existence of

an in�nite-dimensional graded representation V \ of the monster group,

the Moonshine module, with layers according to the observation

V \
1 , V

\
2 , V

\
3 , V

\
4 , . . . = 0, ρ0 ⊕ ρ1, ρ0 ⊕ ρ1 ⊕ ρ2, 2ρ0 ⊕ 2ρ1 ⊕ ρ2 ⊕ ρ3, . . .

and graded dimension (�Thompson series�) (6) the j(z)-function

j(z)− q−1 − 744
!

= χV \(z) :=
∑
n≥0

dim(V \
n)qn

(5)Because this observation seemed too much of a coincidence, but also no

one could even imagine a connection between so distinct areas of mathematics, the

term �Moonshine� (being illegally distilled liqueur) is ascribed either to J.H. Conway

describe the craziness of this idea (�talking moonshine�) or the bottle of whiskey

o�ered by A. Ogg for the proof of a related observation involving the monster.
(6)Actually, Monstrous Moonshine even conjectures the graded trace of each

element g ∈M acting on V \ to be a so-called genus-0 Hauptmodule (-function).
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A Moonshine Module V \ having M as automorphism group was found

by I. Frenkel, J. Lepowsky and A. Meurman [FLM84]. They explicitly

orbifoldized a 24-dimensional bosonic string theory compacti�ed over

the Leech lattice Λ (typical in�nite-dimensional structures, where

modular function appear elsewhere) by the lattice's involutive auto-

morphism. Note that at this time, physicist have practically used ver-

tex algebras in string theory, but no mathematical de�nition existed.

Today we can speak mathematically of an orbifoldization of the stan-

dard lattice vertex algebra V Λ.

De�nition 11.8. A vertex algebra (see e.g [FB01]) is a vector space

of states V with a vacuum state 1 ∈ V together with a translation

operator T ∈ End(V ) and a state-�eld-correspondence

Y : V → End(V )[[z, z−1]

such that Y (a)v is a Laurent series in z and (brie�y)

• First vacuum axiom: Y (1) = vz0

• Second vacuum axiom: Y (a)1|z=0 de�ned and = a

• Translation axiom: [T, Y (a)]v = ∂
∂z
Y (a)v

• Locality: Y (a)Y (b) ∼ Y (b)Y (a) up to δ-functions

Especially associativity follows: Y (Y (a)b)v ∼ Y (a)Y (b)v

The action of the monster group is obtained from Griess' original

construction (see above): B̄ = Co1 n F24
2 acts on Λ and is (almost the

discrete part of) Aut(V Λ). In the orbifoldization, a central extension

by Z2 = 〈z〉 appears B ∼= Co1 n 224+1
+ , but it turns out non-central

in Aut(V \): An explicitly �guessed� triality automorphisms w mixes

twisted and untwisted sectors of the orbifold and hence does not nor-

malize B. It turns out to be the triality element w ∈ N that generates

together with B the entire monster M. The �rst nontrivial layer of the

vertex algebra V \
2 is the Griess algebra above (compare dimensions!).

Richard Borcherd's, a group-theoretician from Cambridge (who had

written his PhD thesis under H.J. Conway's supervision on the Leech

lattice) started a long-term e�ort, that �nally lead him to a complete

proof for the Moonshine conjecture, and earned the 1998 �elds medal.
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His proof proceeds in several steps and we shall give a rough overview:

Step 1: He constructed on the Moonshine module V \ described above

the structure of again a full vertex algebra. In fact, his e�orts lead him

1986 to the very de�nition of this structure, that mathematically rigid-

i�es the approach above.

Step 2: He associated to V \ an in�nite-dimensional Lie algebra m with

M acting as automorphisms. It turns out to possess a root system,

although all simple roots except one are imaginary. The structure is

termed generalized Kac-Moody algebra or Borcherd's-Kac-Moody

algebra. It is studied under heavy use of �physical� representation the-

ory of the Virasoro algebra (�no-ghost� i.e. a charge 24 module has

only positive L0 eigenvalues)

Step 3: Similar to the usual Weyl character formula type he obtained

a denominator identity argument for m, which is used to derive a

so-called replication formula for f = χV \ . This means there is a

polynomial P of degree n expressing the action of certain fractional

linear transformations as∑
ad=n, 0≤d<b

f

(
az + b

d

)
= P (f(z))

Such replication formulae determine the function from the �rst couple

Fourier coe�cients. In fact Norton conjectured (still open):

Conjecture 11.9. Any replicable function with rational coe�cients is

either a genus-0 Hauptmodul of Moonshine type or one of the so-called

modular �ctions q−1, q−1 + q, q−1 − q

Similarly, twisted denominator identities yield replication formulae for

the graded trace of the action of each g ∈ M (on the left side of the

above then other such traces for ga appear.

Step 4: Compare by-hand the coe�cients a1, a2, a3, a4, a6 of χ\V and

j − q−1 − 744 (respectively for the graded traces and Hauptmodules).

Since both are replicable functions, this proves them to coincide.



CHAPTER 12

Constructing Vertex Algebras From Hopf Algebras

We shall now concisely review the authors approach [Len07] to con-

struct vertex algebras from a Fock-space type Hopf algebra with a

comodule algebra and a skew-form providing a linking in the sense of

Nichols algebras as quantum Borel algebras (see part 2). We shall also

review, how the well-known examples of a Heisenberg vertex algebra

and a lattice vertex algebra can be obtained from this construction.

1. The Coordinate Ring

The critical point was a smooth algebraic framework, that serves as

a coordinate ring in the sense of algebraic geometry. The following

turns out to su�ce and especially reproduce the classical vertex algebra

notion with complex functions:

De�nition 12.1. A coordinate ring datum (H,R) consist of

• Symmetry operation: A Hopf algebra H, e.g. classically

k[T ] with Translation ∆(T ) = T ⊗ 1 + 1⊗ T .
• Polar part: An right H-module algebra R, classically k[Z] ∼=
k[g, g−1] with T acting as − ∂

∂g
. This is much smaller and

(algebraically) well-behaved than the space of Laurent series!

We call the space of linear maps M := Homk(H,R) coordinate ring.

Do not mistakenly interpret H as argument of the resulting functions

(see the isomorphy M ≈ k[[z, z−1]] in the classical case below)!

The ��ne structure� imposed by this de�nition on the to-be-used coor-

dinate ring M supports several crucial structures and de�nitions:

• The natural convolutionmultiplication onM from R-multi�

plication and H-comultiplication.

• A natural H-action on M from the one on R and the adjoint

Hopf algebra action on H itself.

• A subring of regular functions

Mreg = Homk(H, k) ⊂ Homk(H,R) = M

199
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with a map evaluation at zero

ζ : Mreg → k

φ 7→ εH∗(φ) = φ(1)

• A ring of multivariable functions

M (n) := Homk(H
⊗n, R⊗n)

that appear later as n-point functions.

• An equivalence relation ≡ up to δ(z1 − z2)-function for two

variables Homk(H1 ⊗H2,k1 ⊗ k2) generated for all r ∈ R by:

(h1⊗h2 7→ ε(h2)⊗r.S−1(h1)) ≡ (h1⊗h2 7→ r.S−1(h2)⊗ε(h1))

Here and in what follows we use the indexHi, hi, . . . to indicate

which coordinate (i.e. tensor factor Hi,ki) the respective h, r
corresponds to.

De�nition 12.2. A symmetric coordinate ring datum (H,R, γ)

consists additionally of an algebra map γ : R→ R, that is subsequently

extended by SH to M ⊃ R. It comes with an additional δ-equivalence

relation

(h1 ⊗ h2 7→ ε(h2)⊗ r.h1) ≡ (h1 ⊗ h2 7→ γ(r).h2 ⊗ ε(h1)

γ should �classically� be chosen g 7→ −g to produce the correct classical

δ-function as well.

Remark 12.3. Note the di�erence between 2-variable functions and

(�nite!) tensors of 1-variable functions

M (2) = Homk(H1⊗H2, k1⊗k2) ⊃ Homk(H,R)⊗Homk(H,R) = M⊗M

In Borcherd's' abstract categorical formalization [Bor99], the former

corresponds to �inequivalent� coordinates i, j = 1, 2 and the functions

representing objects for the bifunctor of singular bilinear maps.

For (H,R) = (k[M ],k[Z]) we can roughly construct a map M → k[[z]]

to the ring of Laurent series' by mapping R 3 g 7→ z and the projector

T ∗ 7→ z, that reduces all the above notions to their meromorphic origin

(proof in [Len07], section 5.1). Note that while an arbitrary linear map

φ ∈ Homk(H,R) may not yield proper Laurent series', all produced by

the vertex operators below indeed do (by an easy general argument).

This is certainly not true for more complicated vertex expressions, that

may involve δ-functions!



2. OBTAINING THE VERTEX ALGEBRA 201

2. Obtaining The Vertex Algebra

In the author's new approach to vertex algebras [Len07], we de�ne the

vertex algebra A implicitly by providing a vertex operator through

a map:

Y : A⊗ A⊗H → A⊗R
While such an expression cannot be directly rewritten (as one might

attempt) to Y : A→ End(A)⊗M without in�nite sums

A→ Homk(A,A)⊗̂Homk(H,R) = Homk(A,A)⊗̂M

it is very well possible to cleanly (�nitely) extract n-point functions

where all A has been plugged in resp. projected to, such that a matrix

element in the coordinate ring M (n) = Homk(H
⊗n, R(⊗n)) is left over.

Consider e.g:

〈w| Y (a) |v〉 := (h 7→ w∗(Y (a⊗ v ⊗ h))) ∈ Homk(H,R) = M

〈w| Y (a)Y (b) |v〉 := (h1, h2 7→ w∗(Y (a⊗ Y (b⊗ v ⊗ h2)⊗ h1)) ∈M (2)

Now we may formulate the construction and basic results:

De�nition 12.4. A Hopf vertex algebra datum (A, Ā, 〈〉) for a

coordinate ring datum (H,R) consists of an right H-module Hopf al-

gebra Ā (the undeformed state space, an Ā-comodule algebra A in

the category of H-modules (the deformed state space, possibly = A,

but not in the lattice algebra) and a skew-multiplicative linear form (the

linking):

〈, 〉 : Ā⊗ Ā→ R

satisfying translation covariance with respect to the H-action on R:

〈a, b.h〉 = 〈a, b〉.h 〈a.h, b〉 = 〈a, b〉.S(h)

De�nition 12.5. Translation operators series' on states Ā and

geometry R:

Γ : Ā⊗H µĀ−→ Ā

Γij : kj ⊗Hi
µR−→ kj

We may interpret the multiplication in Ā and the action of H on a

di�erent R as above of for maps H ⊗ V → V ⊗ R as matrix elements

resp. n-point functions and (using in�nite sums) End(V )-valued oper-

ator series'.
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In this view, the former is a End(A)-valued regular function and the

latter is a regular function valued by di�erential operators on another

coordinate function (again we index the coordinate in multi-variable ex-

pressions by i, j)

Both operators intrinsically exponentiate the action of H by it's double

role as regular part of the coordinate ring. In the classical setting they

were proven to both reduce to �nite translation of states and functions:

ΓA = e−zM Γ12f(z2) = f(z2 − z1)

They will even in the general case present exactly the additional mod-

i�cations appearing in the de�nition of skew-symmetry (former) and

associativity (latter).

De�nition 12.6. A symmetric Hopf vertex algebra datum

(A, Ā, 〈〉, β) for a symmetric coordinate ring datum (H,R, γ) consists

additionally of an H-linear Ā-braiding β such that Ā is β-commutative

and 〈, 〉 is β-symmetric

〈β(a⊗ b)〉 = γ(〈a, b〉)

(this is why we need to keep the freedom to deform Ā to A accordingly)

The symmetry is actually de�ned much more generally and produces

α-local vertex algebras; this includes naturally super-locality, as it ap-

pears in odd lattice algebras (see below).

Remark 12.7. Note, that in [Len07] the author has used a di�erent

de�nition, namely braiding with coe�cients satisfying the Yang-Baxter

equation, product rules and certain (H-) translation compatibilities

τ : Ā⊗ Ā→ Ā⊗ Ā⊗R

This notion was axiomatized rather arti�cially, but gives more �exibil-

ity. The fairly natural construction of such a τ from a skew-form as

above was only in the case of �classical� α = 1 (yielding locality) and

H = k[M ]; but as it applies to the here relevant examples, the author

has decided to choose this approach here.
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De�nition 12.8.

τ : a⊗ b 7−→ b(1) ⊗ a(1) ⊗ 〈a(0), b(0)〉

As two Ā are braided, both coact into H, which subsequently is plugged

into the skew-form yielding an R-coe�cient. We draw τ as braiding

and omit R in the following visualization.

For a (symmetric) Hopf vertex algebra datum we de�ne on Ā the

(local) vertex operator Y by

Y : Ā⊗ Ā⊗H −→ Ā⊗R

a⊗ v ⊗ h 7−→ µĀ(idĀ ⊗ .h)τ(a, v) = v(1)(a(1).h)⊗ 〈a(0), v(0)〉

The Hopf vertex algebra datum and especially its symmetry implies

very strong consequences on this on the composition structure of

this non-multiplicative map Y in either argument. The following gen-

eral properties are proven by explicit calculation once-and-for-all in

section 4.2 [Len07]. Viewing Y as a vertex operator, the properties pre-

cisely describe the desired vertex-axioms and for the classical choices

of the (symmetric) coordinate datum (H,R), Y thus equips Ā with the

structure of a (local) vertex algebra with translation operator T ∈ H
and vacuum vector 1Ā ([Len07] section 5.1).

Theorem 12.9. For a Hopf vertex algebra datum we obtain the follow-

ing properties, that de�ne a vertex algebra (1) in the classical context:

• First vacuum �axiom�:

〈w|Y (1)|v〉 = 〈w|v〉1M

• Second vacuum �axiom�:

〈w|Y (a)|1〉 ∈Mreg ζ〈w|Y (a)|1A〉 = 〈w|a〉1M
(1)Note that the grading is omitted, as well as conformal vector. Note on the

other hand, that we always have an action of H n Ā, hence it is quasi-conformal
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• Translation �axiom�: for t ∈ H

〈w|(.t(2))Y (a)(.S(t(1)))|v〉 = (.t)〈w|Y (a)|v〉

Especially for �classically� H = k[M ] the derivational (primi-

tive) M is the well-known translation operator and the result

above reads as:

〈w|[.M, Y (a)]|v〉 = − ∂

∂z
〈w|Y (a)|v〉

• Associativity up to δ-functions:

〈w|Y1(a)Y2(b)|v〉 ≡ 〈w|Y2 (Γ21Y1(a)|b〉) |v〉

For a symmetric Hopf vertex datum, we additionally prove skew-

symmetry and (by expanding both sides using associativity) locality:

γ〈w|ΓAY (a)|b〉 ≡ 〈w|Y (b)|a〉 〈w|Y (a)Y (b)|v〉 ≡ 〈w|Y (b)Y (a)|v〉

Notice that apart from avoiding in�nite sums and especially δ-expressions,

the structure of the state space A is the second elegance about the sug-

gested approach: As an algebra, we only consider a �Borel� subalgebra

of creation operators, set equal to the Fock space. The additional,

second copy of annihilation operators appears from the same ele-

ments through the skew-form (linking) as for semisimple Lie algebras.

This gets particularly clear, if some derivational (=primitive) element

∆(a) = 1 ⊗ a + a ⊗ 1 in the vertex operator's argument is explicitly

worked out to 〈1,−〉a = a resp. 〈a,−〉a (�rst resp. second ∆-summand).

This yields a decomposition of Y (ba)|v〉 into the classical creation term

acting after Y (b)
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and the classical annihilation term acting before Y (b)

Note that by these order issues let a normally ordered product

appears by itself - it simply re�ects the �non-multiplicatively� of the

map above in the �rst argument. This is especially used in the later-on

isomorpy proofs to known vertex algebras.

3. Examples: Lattice Algebras

We proceed by providing a �rst easy examples of a vertex algebra, that

have been shown in [Len07] to arise from the presented construction.

Example 12.10 (Heisenberg algebra). Take V = H = k[T ] with basis

pi := T i as an H-module and A = Ā = TV the Fock space with V

primitive elements ∆Ā(pi) = 1⊗ pi + pi ⊗ 1.

The H-action on V extends diagonally (i.e. via ∆H) to A, turning it

into a module algebra. Induce a linking for any κ ∈ k× by:

〈p0, p0〉 = κz−2 ∈ R

This immediately yields a (nonlocal) vertex algebra. By choice of the

even z-power, this skew-form is symmetric (in the sense above) already

for A = Ā. Hence we obtain a local vertex algebra and the author has

proven it ([Len07], section 5.2) to be isomorphic to the Heisenberg

vertex algebra πκ0 .

Similarly, one associates to larger a�ne Lie algebra g the a�ne Kac-

Moody vertex algebra. We expect again that this construction can

be recovered from taking V = 〈R〉C the respective root system with

the null-root derivation T and A = Ā the Borel part of the universal

enveloping (see [Len07], concluding remark in section 5.2).
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Example 12.11 (Lattice algebra). Suppose a lattice Λ with (−,−) the

biadditive map, take V = k[Λ] ⊗ k[T ] with basis pgi := g ⊗ T i as H-

module and Ā := k[Λ]⊗TV an extended Fock space with above's action

on TV and T.g = gpg0. Induce a linking by the following:

〈pg0, ph0〉 := (g, h)z−2

〈g, h〉 := z(g,h)

〈pg0, h〉 := (g, h)z−1 = −〈h, pg0〉

This immediately yields a (nonlocal) vertex algebra. An easy calculation

shows, that taking A = kσ[Λ] ⊗ TV = Ā(σ⊗1) for the usual 2-cocycle

([FB01] section 4.4) yields a (super-)local vertex algebra for odd/even

lattices Λ. Again, the author has provided an isomorphism to the lattice

vertex algebra in [Len07] section 5.3.

There is a very nice correspondence connecting these two notions,

the boson-fermion correspondence ([FB01] section 4.3). Namely,

simply-laced Kac-Moody vertex algebras are isomorphic to the respec-

tive lattice algebra for the root lattice. Moreover, odd lattices corre-

spond to super-vertex algebras (α nontrivial as above). Note that this

shows adequately from the choice of the deformed states Ā 6= A neces-

sary to obtain locality.

Example 12.12. The even lattice Λ =
√

2Z has a vertex algebra iso-

morphic to ŝl2 = A
(1)
1 with Dynkin diagram (m12,m21) = (2, 2).

Example 12.13. The odd lattice Λ = Z has vertex algebra isomorphic

to the vertex super-algebra of a single fermion (hence the name of the

correspondence).

The author was be interested to verify this correspondence generally

at the level of the Ā, but this was out of scope of the diploma thesis:

k[Λ]⊗ T (k[Λ]⊗ k[T ]) ∼= B(ĝ)

if Λ is the root lattice of a simply laced g and B(ĝ) the Borel part of

the a�nization, i.e. TR/Serre for the a�ne root system R as above.

Question 12.14. Is this true? How does the more complicated corre-

spondence for non-simply-laced root systems look like from this point

of view? Is there a natural construction of the respective super-vertex

algebras from root systems in of a Z2 braided category?
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We �nally sketch a far-fetched path, that could leading from the con-

structions so far to an in�nite dimensional Nichols algebra with root

system over a nonabelian group and subsequently to a vertex algebra

with automorphism group M prescribed by the BN -pair in Theorem

9.10. The author still has no complete picture, but rather a series of

explicit clues from di�erent points of view, how such a construction

would have to look like, if it existed. Even further away is the techni-

cally tedious proof, that this structure (once established) could coincide

with the ad-hoc construction due to Borcherd's.

Hence this topic is far from conclusion!, but his supervisor has

nevertheless encouraged the author to also include these thoughts as

an outlook to this thesis as follows:

Particularly nontrivial are the the following generalizations to the tech-

niques established in this thesis:

• On one side, we can prove vertex algebra automorphism to

correspond to Hopf algebra automorphisms and have a fairly

solid understanding, how twisted vertex modules are de�ned.

However, tedious calculations would be needed to indeed verify

the twisted Jacobi identity (section 12.1). From the de�nition

of the Moonshine module, in section 12.2 we can conjecture

a speci�c twisting 2-cocycle that should underlay the Z2-sub-

orbifolds L, as they appear in Theorem 9.10.

• The appearance of projective modules in the construction

above strongly suggest an orbifoldization without a coher-

ent choice of cleavings resulting in a quasi-Hopf-algebra-alike

structure. More precisely, the associativity constraint should

pick up additional signs prescribed by the Parker loop's asso-

ciator used in the Monster group's construction. This is ad-

dressed in section 12.3.

207
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• The involutive extension is not central, resulting in a non-

proper BN -pair. Hence it seems necessary to perform an orb-

ifoldization with respect to a groupoid Σ with endomorphisms

Z2, leading as described in Remark 1.7 to a weak Hopf alge-

bra. The actual Hopf algebra might then be derived thereof

by a universal completion much like a group amalgam. This is

described in section 12.4.

• Finally in section 12.5 we try to glimpse at the �big picture�,

combining all of the above. We describe an explicit twisting

groupoid Σ, consisting of multiple Z2, while the triality sym-

metry is hidden in the groupoid structure and only shows after

orbifoldizing and amalgamization. The overall (amalgamed)

orbifold of an a�ne E
(1)
8 could exhibit a speci�c Dynkin dia-

gram, while the three contained E8-root lattices are combined

to the Leech lattice. This might yield the right BN -pair to

prove this in�nite-dimensional Yetter-Drinfel'd module M̃ to

have automorphism group M.

1. Orbifoldizing Vertex Algebras Vs. Hopf Algebras

We �rst assume A = Ā. When this is no longer true (especially for lat-

tice algebras!) we would yield projective versions of the Hopf algebra

notions used below, that are yet to be de�ned.

De�nition 12.15. A Hopf vertex module is an Ā = A-module and

A-comodule algebra V as objects in HMod with

(v.a)(0) ⊗ (v.a)(1) = v(0)a(0) ⊗ v(1).a(1)

Proof. The main theorem 12.9 for constructing a vertex algebra

thereof shows, that associativity, translation and vacuum hold as for

usual vertex algebras. Hence classically these are vertex modules. �

Consider now the injective extension of abelian groups and -grouprings

of the symmetric coordinate ring datum (H,R) = (k[T ],k[g, g−1]):

1 −→ Z n·−→ Z −→ Zn = Σ

0 −→ k[g, g−1] −→ k[ n
√
g, n
√
g−1]

0 −→ R −→ R′

where the latter is a k[Σ]-comodule for Σ = 〈p〉 ∼= Zn by quotient

and module via n
√
g 7→ ζn n

√
g with ζn ∈ Zn ⊂ k×, forming a Yetter-

Drinfel'd module (as k[Σ] is commutative and cocommutative, while
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action/coaction commute). Rede�ne with this H ′ := H ⊗ k[Σ]

0 −→ Σ −→ H ′ −→ H −→ 0

and call (H ′, R′) the Σ = Zn-extended coordinate ring datum.

Remark 12.16. It appears very natural to consider other Galois ex-

tensions E of the �eld of rational functions k(T ) with ring of integers

k[T ] = H and localizations k[g, g−1] = R. Taking then Σ the Galois

group, as in the example above, leads to a respective more general no-

tion of twisted vertex module for this context.

Assume now �rst a given Hopf vertex datum (A,A, 〈〉, β) over the

extended coordinate ring. The following can be thought of as an �in-

trinsically exponentiation� of the action of Σ on A, and indeed is the

respective ΓA.

Theorem 12.17. The group Σ acts naturally (as any central grouplike

in an arbitrary H) as

(1) Hopf algebra automorphisms on the undeformed states A.

(2) vertex algebra automorphism on the associated vertex al-

gebra:

〈w|Y (a.p)(.p)|v〉 = 〈w|(.p)Y (a)|v〉

Proof. The �rst statement follows by construction via Hopf ver-

tex algebra datum, as A is an H⊗k[Σ] =: H ′-module-Hopf-algebra and

hence grouplikes p act as Hopf automorphisms.

The second statement is tougher - it is consequence of an additional

property proven in [Len07] p. 29, namely for any central t ∈ H we

have:

〈w|Y (a.t)|v〉 = 〈w|(.t(2))Y (a)(.S(t(1)))|v〉

This property expresses a general symmetry principle on H-action:

Y ◦ (.t(2) ⊗ .t(1)) = (.t) ◦ Y

〈w|Y (a.t(2))t(1)|v.〉 = 〈w|(.t(3))Y (a)(.t(1)S(t(2)))|v〉 = 〈w|(.t)Y (a)|v〉

For t = p grouplike t(1) ⊗ t(2) = p⊗ p this expresses the de�nition of a

vertex algebra automorphism.
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Note, that our symmetry principle can also be applied to the clas-

sical translation operator t = M , which is derivational (=primitive)

t(1) ⊗ t(2) = 1⊗M + M ⊗ 1. Thus, the symmetry of M is also deriva-

tional, a fact shown e.g. in [FB01] Corollary 3.6.1 as a consequence of

Goddard's uniqueness theorem: M (and any other central primitive)

acts as in�nitesimal vertex algebra automorphism:

〈w|Y (a.M)|v〉+ 〈w|Y (a)(.M)|v〉 = 〈w|(.M)Y (a)|v〉

〈w|Y (a.M)|v〉 = 〈w|[.M, Y (a)]|v〉

�

Then we can describe, how to get back to a new classical vertex alge-

bra as stabilizer of the new symmetry 〈p〉 ∼= Zn. While the substruc-

tures are established via the last theorem, most signi�cantly one gets

a reduction to the classical coordinate ring H,R simply by enforced

Σ-invariance through the R′/R-Galois property.

Theorem 12.18. The stabilizer under the action of p is a

(1) sub-Hopf algebra Ap ⊂ A.

(2) restricted vertex module A, Y |Ap⊗A over Ap.

(3) sub-vertex algebra Ap, Y |Ap⊗Ap.
and the latter are over (H,R), i.e. the action factorizes over H ← H ′

and the restricted skew-form lands in R

〈, 〉|A⊗Ap+Ap⊗A → R ⊂ R′

Proof. Deriving statements 1-3 from the last theorem are folk

in their respective subject.

The module structure factorizes by construction, as Ap is de�ned as

the Σ-stabilizer and the respective quotient projects to H ⊂ H ′.

For the skew-form observe, that by the de�ning translation covariance

of 〈〉, applied to p ∈ Σ ⊂ H ′, we have for b ∈ Ap (and the other side

respectively):

〈a, b〉 = 〈a, b.p〉 = 〈a, b〉.p

This means that for (a or) b ∈ Ap the resulting R′-element r :=

〈a, b〉 is stable under 〈p〉 = Σ, and hence by the Galois property in

R ⊂ R′. Namely in our speci�c case, all Laurent polynomials P (g) ∈
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k[ n
√
g, n
√
g−1] = R′ invariant under n

√
g 7→ ζn n

√
g lays already in k[g, g−1] =

R. �

Now note, that on the other hand, there is an induced H ′, R′-vertex

module structure for any eigenvalue λ ∈ Σ∗∗ ∼= Σ of the Σ-action on A

(Σ abelian, hence we may simultaneously diagonalize)

Ap,λ = {a ∈ A|a.p = aλ(p)} ⊂ A

Corollary 12.19. The vertex operators Y |A⊗Ap,λ de�nes an (H ′, R′)-

vertex module structure on Ap,λ, that lands in the respective twisted

sector n
√
gmk[g, g−1] (as easily seen from the action of Σ on the de�-

nition of Y .

Conjecture 12.20. The author strongly assumes, that this de�nes also

classically twisted vertex modules, as they have (H ′, R′)-associativity

holding, p acting covariantly via λ and landing in the right function

subspace. There seems however no direct �twisted associativity� to gen-

eralize, so one had to compute the twisted Jacobi identity - so far

he shied away from the necessary calculations.

As we described bicomodule algebras and especially Bigalois objects

as orbifoldizings, we may just write down the respective cocycle we

�know� to obtain the aspired example structure:

Example 12.21. There exists (for n prime) a Bigalois structure on

A = TV , given by the cocycle

σ(pi, pj) = Resz0Resz2z
−i
0 z2

n∑
r=1

(
z + z2

z + z0

)r/p 1− r
p

+ r
p
x+x0

x+x2

(x0 − x2)2
〈αr, β〉

and the map obtained above is the twisted vertex module structure over

the Heisenberg vertex algebra.

2. The sub-Orbifold L Underlying The Moonshine Module

We have no good clue so far, what exact orbifold should be formed.

However, guessing from the �known� structure of the Moonshine mod-

ule, we assume the following to be a good candidate for the Bigalois

object underlying the sub-Orbifold L ⊂ Ω used throughout part 3:
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Consider for G an even lattice the following decomposition of the sub-

lattice 2G = K ∪ −K:

K = (−1)(a,a)/2a2

and choose an irreducible kσ[G/K]-module T with a H-linear map

T
j→ TV with V = k[G]⊗H, that clari�es the action of H = k[M ]:

T
.M→ T ⊗ TV

t 7→ t⊗ t⊗ j(t)
(note that in the lattice algebra above we had T = kσ[G] and j(g) = pg0).

For the moonshine case G = Λ such a representation T can be con-

structed of dimension 212 leading to the unique twisted vertex algebra

A = T ⊗ TV .

Conjecture 12.22. There exists a projective Hopf module structure

on TV , such that the cocycle is generated by the series∑
i,j

σ(pi, pj)x
iyj = −ln

(
(1 + x)1/2 + (1 + y)1/2

2

)
(see [FLM84]) and a map j sending T -elements to order 2 elements

in TV , such that the map obtained above is the unique twisted vertex

module structure over the Leech lattice vertex algebra.

3. Projectivity And Quasi Hopf Algebras

The action of Σ∗ is not trivial for the Moonshine module! Rather, it

seems we have to start with non-coherent choices of cleavings, yielding

a Yetter-Drinfel'd module in a category with nontrivial associativity

constraints. As we'll work over the groupring k[Z12
2 ], it would be nat-

ural to try using the Parker loop (see introduction). It should yield a

group-3-cocycle ω with the category in question the modules over the

deformed Dijkgraaf double Dω(Z12
2 ), such that the R,F -matrices of the

Parker loop are recovered accordingly. Note that the author has intro-

duced (from a di�erent motivation) ω-projective Yetter-Drinfel'd

modules in an attempt to treat such categories as well via the Yetter-

Drinfel'd module approach using conjugacy classes and projective irreps

of the centralizer. The de�nition, category equivalence, basic structure

theorems and examples have been worked out cleanly as diploma thesis

by Karolina Vocke in 2010 [V10], co-supervised by the author.
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This corresponds to taking (as already for the lattice algebra) de-

formed states Ā 6= A, a comodule algebra over A. To formulate the

results of the preceding section, we need to carry over the respective

notions:

Step 1: Vertex modules are now projective Hopf modules, as the

action Ā has been twisted by a cocycle. To the knowledge of the au-

thor, this notion has not been de�ned yet, though he assumes it to be

relative Ā-A-Hopf modules structure.

Step 2: The group Σ 3 p acts naturally (as any central grouplike in

an arbitrary H) as a �twisted� bicolinear algebra automorphisms

on the deformed states Ā with respect to the action of p ∈ Σ on the

coacting Hopf algebra A, i.e.(
a(0)
)
.p⊗

(
a(0)
)
.p = (a.p)(1) ⊗ (a.p)(0).p

(ab).p = (a.p)(b.p)

Step 3: The stabilizer under p is a sub-bicomodule algebra Āp ⊂ Ā.

4. Amalgams Of Groupoids And Weak Hopf Algebras

In part 3 we have established a generic BN -pair for the automorphism

group Aut(Ω) of an orbifold. As we've seen in this part's introduction,

the monster M does not possess such, because (z1, z2 two commuting

2A-involutions)

D = B ∩N = Cent(z1) ∩Norm(〈z1, z2〉) 6= Cent(〈z1, z2〉) = D̃

is not normal in N . Rather, there are 3 subgroups D,w.D,w2.D con-

jugate by the triality element w corresponding to N∩ the centralizer

of {z1, z2, z1z2} accordingly. This already points to the fact, that the

constructions in this thesis are not general enough for this situation.

Recall that we introduced twisting groups in De�nition 1.5 for arbitrary

groupoids Σ leading presumably to weak Hopf algebras by Remark 1.7.

This corresponds to non-isomorphic Doi twists Ω ⊃ Hn = A(On) for all

objectsOn ∈ Obj(Σ), where a group had a uniqueH = A(O) (as above,

we identify object and Hopf algebra below). The twisted symmetries
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in Σ now permute the Hn and the coproduct maps Bigalois objects

A (Mor(Ol,On))→
⋃

Om∈Obj(Σ

A (Mor(Ol,Om))�Hm A (Mor(Om,On))

Is it possible to complete such a weak Ω to a proper Hopf

algebra? Well, certainly one may rede�ne H =
⊗

nHn and take

as new twisting group Σ this single object O (again Doi twist sta-

ble!) and as morphisms N -fold tensor products of Bigalois objects

with left/right each Hn precisely once (N the number of groupoid

objects); the author likes to call these H-Bigalois objects stacks. If

the groupoid was connected, then certainly Σ is a group of order

|Mor(O,O)| = N ! ·Mor(O1,O1)N ; note that only if there are canoni-

cal identi�cations we get actually Σ ∼= SN oHom(O1,O1).

But one can do better: Suppose we have underlying sub-Hopf-algebras

H ′ ⊂ H, that are Doi twist stable (with coherent choices of isomor-

phism), then we could try to identify at least these H ′n and thus yield

the analogon of a groups universal amalgam completion: Given

(in this context conjugate) subgroups Un and intersections Uij, Uijk, . . .

�nd the universal group a�ording this situation!

5. Conclusion: An In�nite Monster Nichols algebra

We directly continue the preceding section and give an explicit exam-

ple, where the amalgam that would intuitively �t the Moonshine case,

especially the observations on the BN -pair:

Note that with so few knowledge so far, the author does not

dare to claim this to be the right choice!

Take as twisting groupoid Σ the the so-called action groupoid of S3

acting on its three involution subgroups, i.e.

• Objects O, wO, w2O = 〈(23)〉, 〈(13)〉, 〈(12)〉, identi�ed with

the D,wD,w2D interchanged by the triality element w.

• Morphisms multiple copies of S3 elements, namely (for other

objects accordingly)

Hom(O,O) = 〈(23)〉 ∼= Z2

Hom(O, wO) = {w = (123), (12)}
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Assume for the moment we had for Γ = Z12
2 a projective Yetter-

Drinfel'd module M (i.e. a module over Dω(Γ) with ω producing the

Parker loop, see section 12.3) with Dynkin diagram of a�ne type E
(1)
8

(possibly using Golay code group elements G ⊂ Γ).

By Lemma 4.3 the Dynkin diagram is invariant under Doi twist, so

Mσw and Mσw2 have the same diagram. Then at least diagrammat-

ically the following situation is possible (of course the decorations

must be chosen appropriately to allow the twisted symmetries on the

subdiagrams!):

• The sub-Yetter-Drinfel'd modules and -Nichols-algebras gen-

erated by the E6 ⊂ E
(1)
8 a�ord a involutive twisted symmetry

(hence are Doi twist invariant).

• The sub-Yetter-Drinfel'd modules and -Nichols-algebras gen-

erated by the D4 ⊂ E
(1)
8 a�ord a S3-twisted symmetry (hence

are Doi twist invariant).

Then we could attempt the (hypothetical) amalgam completion, that

identi�es these sub-Diagrams:
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If the author's intuitive assumption about an amalgamed diagram is

right, we would get for the orbifoldized and amalgamed M̃ :

Note that we only marked one sub-Yetter-Drinfel'd module of each

type, which we amalgamed along; actually there are 6 of type E
(1)
8 , 3

of type E6 and a unique of type D4.

We could faintly hope for the following to �nally happen:

• The three contained E8-root-lattices form together the Leech

lattice as in Turyn's construction of the latter.

• The three grouprings k[Γ] = Z12
2 are amalgamed/orbifoldized

to a single G = 224+1
+

• Hence the B in part 3 turns out to be Co1 n 224+1
+ .

• If N is also correct, an amalgamed version of Theorem 9.10

could yield Aut(Ω) = M.

So what we've done is actually construct a nonabelian S3-orbifold, but

from the construction side only the three Z2-orbifoldizations corre-

sponding to the Hom(wkO, wkO) ∼= Z2 in the twisting groupoid Σ

with 3 objects appear; together they generate an additional triality

symmetry (123) ∈ S3 in the amalgam.
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