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I. INTRODUCTION 

1. Nucleic acids as pharmaceutical tools 

Genetic disorders like mucoviscidosis 1, severe combined immunodeficiency 

(SCID) 2, haemophilia 3 and acquired viral infections 4-5 have their origin at gene 

level. Classical gene therapy addresses these diseases by inserting functional DNA 

into the human genome in order to replace defect gene sections. DNA based 

therapy has been extended to other areas like cancer therapy 6 and vaccination 7. 

However, safety concerns about interference with the human genome and 

incidence of side effects remain.  

Consequently, the focus of nucleic acid research shifted to the application of RNA. 

RNA interference (RNAi), discovered by Fire et al. 8, leads to specific gene 

silencing and hence, the inhibition of the cellular expression of a protein. Tuschl et 

al. 9 demonstrated that double stranded, small synthetic interfering RNA (siRNA) 

mediates target specific RNA interference without significant side effects. After 

reaching the cytosol with help of appropriate carriers, siRNAs are incorporated in a 

multiprotein complex called RNA induced silencing complex (RISC). Thereafter, the 

enzyme Argonaute 2 unwinds the siRNA and the sense strand of the siRNA is 

cleaved 10-11. The RISC is activated by the guide strand (antisense strand) which 

remains incorporated 12 and hence, cleaves repeatedly the complementary mRNA. 

As a result, the gene of interest is silenced for several days.  

A prerequisite for successful delivery of genetic information into target cells of 

patients is the existence of appropriate carriers. Efficient viral and synthetic vectors 

already exist for ex vivo nucleic acid delivery, whereas efficient and successful in 

vivo transport of DNA, RNA or siRNA to target cells is still limited. In terms of 

efficiency, viral vectors are still the most potent systems. Nonetheless synthetic 

vectors possess distinct advantages, like lower immunogenic potential, reduced 

mutagenic risk, and easier handling and manufacturing 13-17. A combination of both 

worlds, the design of ‘synthetic viruses’, might be most advantageous 18-21.  
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2. Delivery systems for nucleic acids 

Anionic charge, large size and degradability of nucleic acids by nucleases make 

administration of naked nucleic acids rather inefficient in reaching the target 

location 22-23. For these reasons, special carriers have been developed to aid the 

delivery of genetic material. They are designed to protect nucleic acids in the 

extracellular environment and to mediate their transport into the cytoplasm 24. 

Several barriers including stickiness to non-target cells, extracellular fluids, and 

matrix have to be overcome 25. Cell entry, endolysosomal escape, cytoplasmic 

trafficking and vector unpacking are further bottlenecks for successful delivery 26-28. 

In case of gene delivery, the functional plasmid DNA (pDNA) encoding the protein 

has to be delivered into the nucleus 29.  

The most common synthetic vectors are cationic lipids and polymers which form 

electrostatic complexes with the negatively charged nucleic acid. The payload is 

packaged into nanosized structures enabling uptake into cells 27, 30. In case of 

polymers, the polyplex stability and transfection efficiency depends on the chemical 

type, molecular weight and topology of the cationic polymer, as well as the ratio of 

polymer to nucleic acid 31-33. Polyamine structures, including poly-L-lysine, linear 

and branched polyethylenimines (PEIs) or polyamidoamine (PAMAM) dendrimers, 

are an often used class of artificial vector systems. In some polymers such as PEI 

or PAMAM, only a fraction of amine groups are protonated at physiological pH. The 

remaining basic groups may exhibit a buffering effect (proton-sponge effect) upon 

entry into the endosome. The pH-mediated creation of new cationic polymer 

charges triggers an influx of chloride counter-ions followed by water. The resulting 

osmotic pressure, together with interactions of the cationic polymer with the 

membrane, is assumed to rupture the lysosome/endosome releasing the carrier 

and its cargo into the cytosol 34-36. 

 

2.1. Polydisperse delivery systems 

Polyethylenimine, a polydisperse delivery system, has been one of the gold 

standards for polymeric pDNA transfer in vitro and in vivo 37. Various forms of 

branched PEI (bPEI) with molecular weights between 2 kDa and 800 kDa have 

been used frequently. bPEI contains primary, secondary, and tertiary amino 
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groups. These amines have pKa values spanning a broad pH range, resulting in 

high buffering capacity. The degree of protonation of the amines increases from 

roughly 20 to 45%, as pH decreases from 7 to 5 34. bPEI is synthesized by 

polymerization of aziridine and hence, has a very heterogeneous and polydisperse 

structure. 

Branched PEI and many other related polymers and their derivatives show a 

heterogeneous distribution of molecular weight and isomers, what significantly 

influences physicochemical properties, biological efficiency, and cytotoxicity 38-41. 

Moreover, random attachment of one or even several different functional domains 

results in heterogeneous conjugates that might be useful in experimental 

approaches, but are rather unsuitable for clinical developments 42. 

 

2.2. Precise delivery systems 

A possible solution to the inherent drawbacks of macromolecules derived by 

random polymerization is the synthesis of defined polymeric systems as nucleic 

acid carriers. The precise structure definition allows the evaluation of structure 

activity relationships.  

 

2.2.1. Dendrimers 

Dendritic structures are built from a series of branches extending outward from an 

inner core. Each iteration leads to a higher generation material and therefore to 

dendrimers with higher molecular weight. They consist of three distinct parts: A 

core, branching units and branches which can be chemically altered independently. 

As a result, an enormous variety of possible dendrimers exist 43. 

Denkewalter 44 reported the synthesis of L-lysine based dendrimers in the early 

1980s which are usually synthesized by means of solid phase peptide synthesis 

(SPPS) introduced by Merrifield in 1963 45. Boc-protected lysines were coupled to 

the core repeatedly after TFA deprotection resulting in dendritic polylysine 

structures of different generations. Multiple antigen peptide (MAP) systems are a 

distinct type of dendritic structures containing an inner oligolysine core, multiple 

copies of synthetic peptide antigens and a simple amino acid, such as alanine or 
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glycine, as internal standard for monitoring the synthesis process 46. These 

systems are used in vaccines to induce immunoreactions. 

Starburst polyamidoamine (PAMAM) dendrimers are spherical, highly ordered, 

dendritic polymers with positively charged primary amino groups on their surface at 

physiological pH. The manufacturing process is a series of repetitive steps starting 

with a central initiator core. This core may consist of either an ammonium as 

trivalent initiator or an alkylenediamine as tetravalent initiator. Methyl acrylates are 

added to the core by exhaustive Michael addition followed by amidation of the 

resulting ester with an excess of alkylenediamine. Each complete growth step 

represents a new generation of polymer with a larger molecular diameter, twice the 

number of reactive surface sites, and approximately twice the molecular weight of 

the preceding generation 47.  

 

2.2.2. Peptidic carriers 

Monodispersity and exact composition, defined by peptide sequence, are key 

advantages of peptidic carriers. This structural definition allows the evaluation of 

structure activity relationships. Natural amino acids with cationic or protonated side 

chains are able to bind nucleic acids through electrostatic interactions and build 

positively charged polyplexes which are taken up through endocytosis.  

Solid phase peptide synthesis (SPPS) provided important technology such as 

orthogonal protective groups which can be very useful for synthesizing 

monodisperse sequence-defined polymers 48. Instead of applying only protected 

natural amino acids in SPPS, artificial monomer building blocks are introduced to 

precisely position various functionalities within the peptide sequence. Natural and 

artificial amino acids, but also monomers of completely different chemistries, 

chemical targeting ligands, polyethylene glycol (PEG) molecules or lipophilic 

domains can be used as functional groups. Hartmann and Börner applied SPPS for 

generating sequence-defined multifunctional polyamidoamines (PAA) 49-52. 

Alternate coupling steps of diacids (succinic anhydride, Suc) and diamines, like 

diamino-N-methyldipropylamine (Damp) or (tBoc)-spermine (tBoc-Spe), led to 

stepwise assembly of polyamidoamines (Figure 1) 53. Within the single component 

PAA-block segment, functionalities were positioned precisely along the polymer 

allowing local control of the chain properties.  
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Figure 1: Alternate coupling steps of Suc and tBoc-Spe on solid phase 

 

As a variation of the concept, Schaffert et al. 54 introduced novel Fmoc/Boc-

protected polyamino acids (Stp, Gtp, Gtt, Ptp, Figure 2) fully compatible with 

standard Fmoc-peptide synthesis. Fmoc-polyamino acids contain diacids as well as 

diamines in one building block. The secondary amines of tetraethylenepentamine 

(tp) or triethylenetetramine (tt) were protected with di-tert-butyl dicarbonate 

(Boc2O). The symmetrical Boc-protected diamines were monoacetylated in the first 

step with various cyclic anhydrides: Succinic (S), phthalic (P) or glutaric (G) 

anhydride, followed by subsequent Fmoc-protection. The novel building blocks 

were assembled by standard Fmoc/Boc SPPS, optionally in combination with 

natural amino acids (Figure 2) to provide defined polycations 54. The presented 

strategy has been applied for synthesis of a library of over 600 defined polycationic 

carriers for nucleic acid delivery, including efficient pDNA and siRNA carriers 55-56. 

The artificial amino acids Stp, Gtp, or Gtt were applied together with lysines as 

branching units, cysteines as bioreversible disulfide forming units, and various fatty 

acids as domains providing hydrophobic stabilization, but also endosomal 

membrane destabilization. 

Figure 2: SPPS compatible building blocks and SPPS-based polymer assembly 
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Figure 3: Classes of oligomer structures. 

 

As topology can influence biophysical and biological properties, branched polymers 

(2-arm, 3-arm, 4-arm and 5-arm) or linear polymers optionally with modification in 

the center (T-shapes) or the end of chains (i-shapes, U-shapes) were designed and 

tested (Figure 3). 

 

3. Precise conjugation techniques 

A plain polymer, even when optimized and modified with lipid or hydrophobic 

domains, may not be the ideal carrier for overcoming all delivery steps. Therefore, 

conjugation of additional natural or artificial biometric transport functionalities such 

as cell targeting ligand or shielding domains may further improve the carrier 

system. In order to modify the conjugates at a defined position, precise conjugation 

techniques are needed. 

A series of ‘click chemistry’ conjugation techniques have become available 57-60 

which are useful tools for precise conjugation at selected sites of macromolecules. 

As a variation of the Huisgen 1,3-dipolar cycloaddition the Cu(I)-catalyzed 

cycloaddition of terminal alkynes and azides (CuAAC) 61-63 proceeds efficiently and 

selectively under aqueous reaction conditions and in presence of various other 

functionalities or biomolecules 64-65 (Scheme 1).  
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Scheme 1: Cu(I)-catalyzed 1,3-dipolar cycloaddition reaction  

 

Click chemistry is fully compatible with the reaction conditions used for solid phase 

synthesis, in the synthesis of peptides, and for modification of oligonucleotides. 

Copper-free click chemistries were even performed in living organisms 66. Several 

applications for polymer polymerizations and conjugations for nucleic acid delivery 

have been reported 67-70. Copper-assisted or copper–free click chemistry can also 

be used for the synthesis of siRNA conjugates 71.  

Another conjugation technique is native chemical ligation (NCL, Scheme 2). Native 

chemical ligation was originally developed to connect two unprotected peptides for 

the total synthesis of proteins 72. An amide bond is formed by transthioesterification 

followed by intramolecular nucleophilic rearrangement between thioester and 

cysteine. The chemoselective reaction occurs in mild aqueous solution, is simple 

and gives almost quantitative yields 73. Byun attached cysteine-PEG to a titanium 

surface with thioester containing phosphonic acid conjugates 74. This approach 

indicates the usefulness of NCL as toolkit for surface bioconjugation and 

functionalization. The potential of NCL in the synthesis of precise polymers or 

conjugates for nucleic acid delivery has to be further investigated. 
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Scheme 2: Native chemical ligation 
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4. Polyplex stability 

Intracellular localization of nucleic acid targets and the inability of siRNA and other 

oligonucleotides to diffuse across cellular membranes require formulation with 

carriers 13, 15, 75-76. High stability is an important requirement for in vivo 

administration of polyplexes, because free nucleic acids i) are degraded by DNases 

or RNases, ii) cannot enter cells, because of their negative charge, and iii) in case 

of small oligonucleotides are rapidly cleared through the urinary tract due to their 

size 77. Tumor vessels are leaky, resulting in enhanced permeability. Therefore, 

particles are taken up into the interstitium and remain there for a long time due to 

the poor lymph drainage for tumors. This phenomenon is known as the 

tumor­selective enhanced permeability and retention (EPR) effect 78. 

Macromolecules with a molecular weight > 40 kDa, as well as some nanoparticles 

exhibit the EPR effect 79-80. After intravenous (i.v.) injection, serum proteins or blood 

cells interact with the polyplexes potentially leading to aggregation or dissociation. 

Therefore, stable and neutral particles in a range of ~ 100 nm 81 are considered as 

ideal for i.v. injection, because they can benefit from the EPR effect 78. In contrast, 

other polyplex properties are required for intratumoral (i.t.) injections. Nomura et al. 

showed that larger and positively charged liposomes are superior for i.t. injections 

compared to smaller and uncharged liposomes 82. Therefore, precise changes in 

the oligomer structure can affect size, charge and stability of the polyplexes leading 

to differences in biodistribution, cellular uptake, and release of the nucleic acid in 

the cytoplasm.  
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5. Polyplex size 

Polyplex size influences the clearance and biodistribution to a great extent. After 

intravenous administration, very small particles (< 6 nm) are quickly eliminated by 

renal excretion 83, whereas larger particles are taken up by the monomolecular 

phagocytic system cells, which are predominantly present in liver and spleen. 

Particles between 150 and 300 nm are distributed in the liver and spleen, whereas 

30-150 nm particles are found in the bone marrow, heart, kidney and stomach 84. 

For intravenous administrations, particle size is a particularly important polyplex 

characteristic. The upper end of a size distribution is crucial to prevent clogging of 

capillaries. Extravasation of siRNA complexes through fenestrations of tumor 

capillaries dictates certain size requirements 85. The EPR effect leads to an 

accumulation of nanoparticles in the tumor because of the leaky tumor vessels and 

the poor lymph drainage of tumors 78. Depending on tumor type, the size of gaps 

between tumor endothelial cells ranges from 100 to 780 nm 86. On the contrary, the 

tight endothelial junctions of normal vessels are between 5 and 10 nm. The 

diameter of those fenestrations in the liver are around 100 nm, hence particles 

< 100 nm improve circulation half-life 79, 87. Therefore, the ideal particle size for 

cancer treatment heavily depends on the type of administration.  

Ideal carrier systems reach the target tissue avoiding all other tissues, thereby 

preventing side effects. In addition, polyplexes should be stable in the blood stream 

after injection. Binding of negatively charged proteins, like serum albumin, or blood 

cells can lead to aggregation. Serum components may also disassemble the 

polyplexes, leading to degradation of the siRNA. These changes in the polyplex 

properties can affect biodistribution, cellular uptake and siRNA release in the 

cytoplasm.  

Particle size data from literature is difficult to compare, if determined with different 

methods due to the different underlying principles 88. Up to now, no standard 

technique is available, as the choice of methods largely depends on availability, 

application, and required measurement. However, good understanding of the 

polyplex characteristics may allow prediction of in vivo performance, as well as 

particle design and formulation development in a rational fashion. As a result, 

reliable size determination is important.  
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6. Aims of the thesis  

High stability is an important requirement for in vivo administration of polyplexes, 

because DNases or RNases degrade free nucleic acids. Moreover, nucleic acids 

cannot enter the cells because of their negative charge, and they are rapidly 

cleared through the urinary tract due to their size. Consequently, the first aim of the 

thesis was to increase the stability of polyplexes, based on precise, polycationic 

oligomers. This should be achieved by integration of stabilizing components into 

the oligomer sequences which lead to stabilization through π-π interactions, 

hydrogen bonds, hydrophobic interactions or covalent bonds. Biodegradability of 

the polyplexes should be maintained after chemical modification for a low toxicity 

profile of the nanoparticle. The optimal stabilizing domain should display maximal 

delivery performance in vitro and in vivo. Biophysical and biological properties of 

such stabilized particles were examined for their potential as effective nucleic acid 

delivery systems.  

Nanoparticle size is important for in vivo delivery as it influences clearance and 

biodistribution to a great extent. Hence, the second aim of the thesis was the 

comparison of four particle sizing methods for the characterization of siRNA 

polyplexes. Therefore, the assembly of three sequence-defined oligomers into 

polyplexes was investigated with dynamic light scattering, atomic force microscopy, 

nanoparticle tracking analysis, and fluorescence correlation spectroscopy. In this 

way, the suitability, advantages and disadvantages of these methods to determine 

polyplex sizes was evaluated. 

Interaction of the carrier surface with blood components and off-target cells 

influences the choice of carrier. Therefore, the surface of polycationic delivery 

systems should be shielded to avoid interactions during blood circulation. As 

maximally shielded particles do not interact with their targets, the incorporation of 

an active targeting domain into the structure of the carrier system is necessary. As 

a result, the third aim of the thesis was the synthesis of activated ligands with 

shielding and targeting domains. Afterwards, those ligands should be attached to 

already existing, polycationic structures with the help of native chemical ligation.  
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II. MATERIALS AND METHODS 

1. Chemicals and reagents 

Amino acids and resins were purchased from Iris Biotech (Marktredwitz, Germany) and 

Novabiochem GmbH (Hohenbrunn, Germany). Pybop®, HBTU and syringe reactors (PP 

reactor with PE frit) were bought from Mulitsyntech GmbH (Witten, Germany). HOBt was 

purchased from Sigma Aldrich (München, Germany). N10-(Trifluoroacetyl)pteroic acid was 

obtained from Clausen & Kaas (Fraum, Denmark) and Fmoc-N-amido-dPEG®24-acid from 

Quanta Biodesign (Powell, USA). All solvents and small molecule reagents were 

purchased in high quality from Sigma-Aldrich (Steinheim, Germany), Iris Biotech 

(Marktredwitz, Germany), Merck (Darmstadt, Germany) or AppliChem (Darmstadt, 

Germany), unless stated otherwise.  

All cell culture consumables (dishes, well plates, flasks) were obtained form NUNC 

(Langenselbold, Germany) or TPP (Trasadingen, Switzerland). Fetal bovine serum (FBS), 

cell culture media and antibiotics were purchased from Invitrogen (Karlsruhe, Germany), 

glucose from Merck (Darmstadt, Germany), HEPES from Biomol GmbH (Hamburg, 

Germany) and sodium chloride from Prolabo (Haasrode, Belgium). Luciferase cell culture 

5x lysis buffer and D-luciferin sodium salt were obtained from Promega (Mannheim, 

Germany). pCMVLuc plasmid DNA (pDNA) was purchased from PlasmidFactory (Bielefeld, 

Germany). Cy5-labeling kit for pDNA labeling was obtained from Mirus Bio (Madison, 

USA). Ready to use siRNA duplexes (small letters: 2’methoxy-RNA; s: Phosphorothioate, 

dT: Deoxythymidine) were kindly provided by Axolabs GmbH (formerly Roche Kulmbach, 

Kulmbach, Germany), or in case of RAN siRNA was purchased from Dharmacon (Thermo 

Fischer Scientific Inc., Lafayette, USA) in case of RAN siRNA: 

Control siRNA (Mut):  sense:  5’­AuGuAuuGGccuGuAuuAGdTsdT-3’  

 antisense: 5‘-CuAAuAcAGGCcAAuAcAUdTsdT-3‘ 

Cy5-labeled siRNA sense: (Cy5)-5’-cuuAcGcuGAGuAcuucGAdTsdT-3’ 

 antisense: 5’­UCGAAGuACUcAGCGuAAGdTsdT-3’ 

GFP-siRNA  sense:  5'­AuAucAuGGccGAcAAGcAdTsdT-3' 

(silencing of eGFPLuc protein) antisense: 5'-UGCUUGUCGGCcAUGAuAUdTsdT-3' 

Cy7-labeled siAHA1 sense: 5’-(Cy7)(NHC6)-GGAuGAAGuGGAGAuuAGudTsdT-3’ 

 antisense:  5’-ACuAAUCUCcACUUcAUCCdTsdT-3’  

RAN siRNA antisense. 5’-AGAAGAAUCUUCAGUACUAUU-3’ 

 sense: 5’­UAGUACUGAAGAUUCUUCUUU-3’  
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Dilutions of siRNA and polymers were prepared in 20 mM HEPES pH 7.4 and 20 mM 

HEPES with 5% glucose (HBG) pH 7.4. All buffer components were solved in MilliQ water 

with a conductance below 0.06 µS and the pH was adjusted, if necessary. Afterwards, the 

buffers were filtered with a sterile filter with 0.2 µm pore size. Succinoyl 

tetraethylenepentamine (Stp) based, sequence-defined oligomers were synthesized as 

described below. 

 

2. Solid phase assisted peptide synthesis 

2.1. Synthesis of 3-Fmoc-4-diaminobenzoic acid (Fmoc-Dbz) 

The synthesis of 3-Fmoc-4-diaminobenzoic acid was performed as described by Blanco-

Canosa et al. 73. 3,4-diaminobenzoic acid was solved in a 1:1 mixture of sodium 

bicarbonate NaHCO3(aq) (0.1 M, pH 7.9) and ACN. N-(9-fluorenylmethyl-

oxycarbonyloxy)succinimide was added to the turbid solution in small portions over 30 min. 

After one hour, three drops of 1 M NaOH solution were added. Reaction progress was 

monitored with thin layer chromatography in ethyl acetate. After 6 h, acidification with HCl 

(1 M) formed a precipitate that was filtered and washed with cooled MtBE, n-hexane and 

methanol. The white solid was dried under vacuum.  

 

2.2. Synthesis of ICH-CAMP 

2-Amino-4-hydroxy-6-methylpyrimidine was dissolved in 1,6-diisocyanatohexane and 

heated to 100°C for 17 h. The reaction mixture was cooled and 125 mL n-pentane were 

added. The resulting precipitate was filtered and thoroughly washed with 250 mL 

n­pentane. The product was dried at 50°C by means of vacuum distillation, yielding 

2­(6­Isocyanahexylaminocarbonylamino)-6-methyl-4(1H)pyrimidinone (ICH-CAMP) as 

white powder. The product was washed again with 350 mL n-pentane and dried in vacuo 

over night. 

 

2.3. Attachment of the first amino acid 

2.3.1. Loading of a chlorotrityl chloride resin with Fmoc-Tyr(tBu)-OH 

After swelling 1.2 mmol of a chlorotrityl chloride resin (750 mg) in DCM for 10 min, 

Fmoc­Tyr(tBu)-OH (0.75 eq) and DIPEA (1.5 eq) were added to the resin for 1 h. The 
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reaction solvent was drained and a mixture of DCM/MeOH/DIPEA (80/15/5) was added 

twice for 10 min. After the removal of the reaction mixture, the resin was washed 5 times 

with DCM. 

About 30 mg of the resin were removed and dried to determine the loading of the resin. 

Therefore, an exact amount of resin was treated with 1 mL deprotection solution (20% 

piperidine in DMF) for 1 h. Afterwards, the solution was diluted and absorption was 

measured at 301 nm. The loading was then calculated according to the equation 

 

with D as dilution factor. 

The residual resin was treated twice with 20% piperidine in DMF and twice with 20% 

piperidine DMF with 2% DBU to remove the Fmoc protection group. Reaction progress was 

monitored by Kaiser test 89. Afterwards, the resin was washed with DMF, DCM and 

n­hexane, and dried in vacuo. 

 

2.3.2. Loading of a chlorotrityl chloride resin with Fmoc-Cys(trt)-OH 

The loading was performed analogously to the loading of a chlorotrityl chloride resin with 

Fmoc-Tyr-(tBu)-OH. Instead of Fmoc-Tyr(tBu)-OH, Fmoc-Cys(trt)-OH was used as amino 

acid. 

 

2.3.3. Loading of a chlorotrityl chloride resin with Fmoc-Glu-OtBu 

The loading was performed analogously to the loading of a chlorotrityl chloride resin with 

Fmoc-Tyr-(tBu)-OH. Instead of Fmoc-Tyr(tBu)-OH, Fmoc-Glu-OtBu was used as amino 

acid. 

 

2.3.4. Loading of a chlorotrityl chloride resin with dde-Lys(Fmoc)-OH 

The loading was performed analogously to the loading of a chlorotrityl chloride resin with 

Fmoc-Tyr-(tBu)-OH. Instead of Fmoc-Tyr(tBu)-OH, dde-Lys(Fmoc)-OH was used as amino 

acid. 
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2.3.5. Loading of a MBHA Rink amide resin with Dbz-Fmoc 

After swelling 0.05-0.3 mmol of a MBHA Rink amide resin in DCM for 10 min, the Fmoc 

protection group was removed. Therefore, the resin was treated four times with 20% 

piperidine in DMF. After washing of the resin, four equivalents of Fmoc-Dbz, DIPEA (8 eq) 

and PyBOP®/HOBt (4 eq) were added for 1.5 h. Reaction progress was monitored with 

Kaiser test. The reaction solvent was drained and the resin was washed with DMF, DCM 

and n-hexane, and dried in vacuo. 

 

2.4. Convergent fragment synthesis 

2.4.1. Convergent synthesis of Fmoc-Tyr(tBu)3-OH 

After swelling 1.2 mmol of a Tyr(tBu) chlorotrityl resin in DCM for 30 min, four equivalents 

of Fmoc-Tyr(tBu)-OH, DIPEA (8 eq) and PyBOP®/HOBt (4 eq) were added for 30 min. The 

reaction solvent was drained and the resin was washed five times with DMF and DCM. 

Reaction progress was monitored by Kaiser test. To remove the Fmoc protection group, 

the resin was treated twice with 20% piperidine in DMF and twice with 20% piperidine DMF 

with 2% DBU. After a positive Kaiser test, the resin was washed wit DMF and DCM. 

Afterwards, Fmoc-Tyr(tBu)-OH, DIPEA (8 eq) and PyBOP®/HOBt (4 eq) were added for 

30 min to the resin. After a negative Kaiser test, the resin was washed with DMF, DCM and 

n-hexane, and dried in vacuo. 

 

2.4.2. Convergent synthesis of Boc-Tyr(tBu)3-OH 

The first part was performed as described for the synthesis of Fmoc-Tyr(tBu)3-OH. After 

the second coupling of Fmoc-Tyr(tBu)-OH, the resin was washed and the Fmoc protection 

group was removed. After a negative Kaiser test, four equivalents of di-tert-carbonyl 

dicarbonate (Boc2O) and DIPEA (8 eq) were added twice for 30 min to the resin. After a 

negative Kaiser test, the resin was washed with DMF, DCM and n-hexane, and dried in 

vacuo. 

 

2.4.3. Convergent synthesis of FolA(trt)-OH 

After swelling 0.2 mmol of a Glu-OtBu chlorotrityl resin in DCM for 30 min, four equivalents 

of N10-(Trifluoroacetyl)pteroic acid, DIPEA (16 eq) and PyBOP®/HOBt (4 eq) in DMF were 

added for 2.5 h. The reaction solvent was drained and the resin was washed five times with 
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DMF. Reaction progress was monitored by Kaiser test. To remove the trifluoroacetyl 

protection group, the resin was treated with 50% ammonia in DMF for 30 min. Afterwards, 

the resin was washed with DMF. This deprotection cycle was repeated three times. Trityl 

chloride (20 eq) and DIPEA (20 eq) in DCM were added for 2 h in order to protect the 

pteroic acid with an acid labile protection group. The resin was washed with DMF, DCM 

and n-hexane, and dried in vacuo. 

 

2.4.4. Cleavage conditions 

For cleavage of the protected building block, the resin was treated with 10 mL/g(resin) 

cleavage solution: The building blocks were treated with a DCM/TFE (7.5:2.5) mixture 

5­10 times for 20 min till no absorption was detectable on a thin layer chromatography 

plate. The solvents of the combined filtrates were removed and the residue was dried in 

vacuo. 

 

2.5. Oligomer synthesis 

2.5.1. Synthesis of the T-Shape 464: H2N-C-Y3-Stp2-[(Y3)2)-K]K-Stp2-Y3-C-OH 

After swelling of 0.05-0.20 mmol of Cys(trt) chlorotrityl resin in DCM for 30 min, three 

equivalents of Fmoc-Y(tBu)3-OH, DIPEA (6 eq) and PyBOP®/HOBt (3 eq) were added for 

50 min. The reaction solvent was drained and the resin was washed five times with DMF 

and DCM. Reaction progress was monitored with Kaiser test. To remove the Fmoc 

protection group, the resin was treated twice with 20% piperidine in DMF and twice with 

20% piperidine DMF with 2% DBU. After a positive Kaiser test, the resin was washed with 

DMF and DCM. Four equivalents of a solution of Fmoc-Stp(Boc)3-OH (Synthesis described 

in 54) in DCM/DMF, DIPEA (8 eq) and PyBOP®/HOBt (4 eq) were added to the resin and 

the vessel was agitated until Kaiser test indicated complete conversion (normally 40 min). 

The reaction solvent was drained and the resin was washed five times with DMF and DCM. 

This cycle was repeated. To introduce a branching point Fmoc-Lys(dde)-OH was used in 

the next coupling step. Fmoc-Lys(dde)-OH (4 eq), DIPEA (8 eq) and PyBOP®/HOBt (4 eq) 

dissolved in DMF/DCM were added and the synthesis vessel was agitated for 40 min. After 

a negative Kaiser test, the resin was washed with DMF. After treatment with 20% 

piperidine in DMF, 20% piperidine in DMF with 2% DBU and washing the resin with DMF 

and DCM, Fmoc-Stp(Boc)3-OH (4 eq), DIPEA (8 eq) and PyBOP®/HOBt (4 eq) in DMF 

were added for 30 min. After successful reaction the resin was treated twice with 20% 

piperidine in DMF and twice with 20% piperidine in DMF with 2% DBU. The reaction 
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solvent was drained and the resin was washed five times with DMF and DCM. This cycle 

was repeated. Three equivalents of Fmoc-Y(tBu)3-OH, DIPEA (6 eq) and PyBOP®/HOBt 

(3 eq) were added for 50 min. The reaction solvent was drained and the resin was washed 

five times with DMF and DCM. To remove the Fmoc protection group, the resin was treated 

twice with 20% piperidine in DMF and twice with 20% piperidine DMF with 2% DBU. After a 

positive Kaiser test and washing of the resin, Boc-Cys(trt)-OH (4 eq) solved in DMF/DCM, 

DIPEA (8 eq) and PyBOP®/HOBt (4 eq) were added for 40 min. After a negative Kaiser 

test, the dde protecting group was cleaved using 2% hydrazine monohydrate in DMF 

(10­15 times for 5 min) till no significant A301 was measurable in the deprotection mixture. 

Fmoc-Lys(Fmoc)-OH (4 eq), DIPEA (8 eq) and PyBOP®)/HOBt (4 eq) were added to the 

resin for 40 min. In order to cap unreacted primary amino groups, the resin was acetylated 

using 10 equivalents of acetic anhydride and 20 equivalents of DIPEA before the 

subsequent removal of the Fmoc protecting group. After removal of the Fmoc protecting 

group, 4 equivalents of the Boc-Tyr(tBu)3-OH dissolved in DMF/DCM, 8 equivalents of 

DIPEA and 4 equivalents of PyBOP®/HOBt were added to the resin for 60 min. After 

completion of the reaction, the resin was washed with DMF, DCM and n-hexane, and dried 

in vacuo. 

 

2.5.2. Reverse synthesis of 408: [(ICH-CAMP-Stp5)2K]K[K(OleA)2]-OH 

After swelling of 0.05-0.20 mmol of dde-Lys chlorotrityl resin in DCM for 30 min, four 

equivalents of Fmoc-Lys(Fmoc)-OH, DIPEA (8 eq) and PyBOP®/HOBt (4 eq) were added 

for 40 min. The reaction solvent was drained and the resin was washed five times with 

DMF and DCM. Reaction progress was monitored with Kaiser test. To remove the Fmoc 

protection group, the resin was treated twice with 20% piperidine in DMF and twice with 

20% piperidine DMF with 2% DBU. After a positive Kaiser test, the resin was washed with 

DMF and DCM. Eight equivalents of a solution of oleic acid in DCM/DMF, DIPEA (16 eq) 

and PyBOP®/HOBt (8 eq) were added to the resin and the vessel was agitated until Kaiser 

test indicated complete conversion (normally 40 min). The reaction solvent was drained 

and the resin was washed five times with DMF and DCM. Afterwards, the dde protecting 

group was cleaved using 2% hydrazine monohydrate in DMF (10-15 times for 5 min) till no 

significant A301 was measurable in the deprotection mixture. After washing the resin five 

times with DMF and DCM, Fmoc-Lys(Fmoc)-OH (4 eq), DIPEA (8 eq) and PyBOP®)/HOBt 

(4 eq) dissolved in DMF/DCM were added and the synthesis vessel was agitated for 

40 min. After a negative Kaiser test, the resin was washed with DMF and DCM. After 

treatment with 20% piperidine in DMF and washing the resin with DMF and DCM, 

Fmoc­Stp(Boc)3-OH (4 eq), DIPEA (8 eq) and PyBOP®/HOBt (4 eq) in DMF were added 
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for 30 min. After successful reaction, the resin was treated twice with 20% piperidine in 

DMF. The reaction solvent was drained and the resin was washed five times with DMF and 

DCM. This cycle was repeated four times. ICH-CAMP (15 eq) was solved in DMF and 

added to the resin for 48 h. After completion of the reaction, the resin was washed with 

DMF, DCM and n-hexane, and dried in vacuo. 

 

2.5.3. Synthesis of Nbz-PEG2-A 

After swelling of 0.025 mmol of Dawson-Dbz AM resin in DCM for 30 min, the Fmoc 

protection group was removed. Therefore, the resin was treated twice with 20% piperidine 

in DMF and twice with 20% piperidine DMF with 2% DBU. After washing of the resin, four 

equivalents of Fmoc-N-amido-dPEG2 acid, DIPEA (8 eq) and PyBOP®/HOBt (4 eq) were 

added for 1.5 h. The reaction solvent was drained and the resin was washed five times with 

DMF and DCM. Reaction progress was monitored with Kaiser test. To remove the Fmoc 

protection group, the resin was treated twice with 20% piperidine in DMF and twice with 

20% piperidine DMF with 2% DBU. After a positive Kaiser test, the resin was washed wit 

DMF and DCM. Four equivalents of a solution of Boc-Ala-OH in DCM/DMF, DIPEA (8 eq) 

and PyBOP®/HOBt (4 eq) were added to the resin and the vessel was agitated until Kaiser 

test indicated complete conversion (normally 40 min). The reaction solvent was drained 

and the resin was washed five times with DMF and DCM. Afterwards, 10 equivalents of 

p­nitrophenyl chloroformate in DCM were added for 60 min. After removal of the solution 

and washing of the resin with DCM, DIPEA (10 eq) in DMF was added twice for 15 min. 

After completion of the reaction, the resin was washed with DMF, DCM and n-hexane and 

dried in vacuo. 

 

2.5.4. Cleavage conditions 

For cleavage, the resin was treated with 10 mL/g(resin) cleavage solution: The resin was 

treated with a TFA/Water/TIS (95:2.5:2.5) mixture for 1.5-2.5 h. The resin was filtered off 

and washed twice using pure TFA, followed by one DCM wash. The combined filtrates 

were concentrated and either precipitated by dropwise addition into ice-cold MTBE or other 

suitable mixtures. The precipitate was collected by centrifugation. The precipitate/film was 

dissolved in 10 mM HCl with 30% acetonitrile unless stated otherwise and purified with size 

exclusion chromatography (G 10 column). The collected fractions were snap frozen and 

lyophilized. 
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2.6. Proton NMR spectra 

1H NMR spectra were recorded using a Jeol JNMR-GX 400 (400 MHz) unit produced by 

Jeol. All spectra were recorded without tetramethylsilane (TMS) as internal standard and 

therefore all signals were calibrated to the residual proton signal of the solvent. The 

coupling constant had an accuracy of 0.3 Hz. Chemical shifts are reported in ppm and refer 

to the solvent as internal standard (D2O at 4.80, CDCl3 at 7.26, DMSOxD6 at 2.50, and 

DMFxD6 at 2.73, 2.91 and 8.01). Data are reported as s = singlet, d = doublet, t = triplet, 

m = multiplet; integration was performed manually. The spectra were analyzed using 

MestreNova (Ver. 5.2.5-4119 by MestReLab Research). 

 

2.7. Native chemical ligation 

Native chemical ligation was performed at room temperature with the following ligation 

buffer: 6 M guanidine hydrochloride, 200 mM disodium hydrogen phosphate, 20 mM 

tris(2­carboxyethyl)phosphine hydrochloride (TCEP*HCl) and 200 mM 

4­mercaptophenylacetic acid (MPAA). The pH was adjusted to 7.0 with 3 M sodium 

hydroxide solution. Ligations were carried out with a 1.3-fold molar excess of polycation 

over the Nbz-oligomer and a reaction time of 2-3 h. Afterwards, the product was purified 

with size exclusion chromatography (G 10 or G 25 column) in 10 mM HCl with 30% 

acetonitrile. The collected fractions were snap frozen and lyophilized.  

 

3. Biophysical characterization 

3.1. DNA and siRNA polyplex formation 

Polyplex formulations for transfection and gel shift experiments were prepared as follows: 

100-200 ng of pDNA or 500 ng of siRNA and the calculated amount of oligomer were 

diluted in separate tubes in 10 μL of 20 mM HEPES buffered 5% glucose pH 7.4 (HBG) 

each. The nucleic acid and the polycation solution were mixed by rapidly pipetting up and 

down (at least 5 times) and incubated for 30-40 min at RT in order to form the polyplexes 

necessary for transfection and gel shift experiments. 
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3.2. Gel shift assays 

3.2.1. DNA binding assay  

A 1% agarose gel was prepared by dissolving agarose in TBE buffer (trizma base 10.8 g, 

boric acid 5.5 g, disodium EDTA 0.75 g, and 1 L of water) and boiling everything up to 

100°C. After cooling down to about 50°C and addition of GelRed, the agarose gel was cast 

in the electrophoresis unit. Polyplexes, containing 100 ng pDNA in 20 μL HBG and loading 

buffer (prepared from 6 mL of glycerine, 1.2 mL of 0.5 M EDTA, 2.8 mL of H2O, 0.02 g of 

bromophenol blue) were placed into the sample pockets. Electrophoresis was performed at 

120 V for 80 min. 

 

3.2.2. siRNA binding assay  

A 2.5% agarose gel was prepared containing GelRed as described above. Polyplexes 

containing 500 ng siRNA in 20 µL HBG and loading buffer (containing xylene cyanol) were 

placed into the sample pockets. Electrophoresis was performed at 120 V for 40 min. 

 

3.2.3. Gel shift assay of siRNA polyplexes in 90% FBS  

2.5 µg of control siRNA and the oligomer at N/P 12 were diluted in separate tubes to a total 

volume of 12.5 µL in 20 mM HEPES pH 7.4. The nucleic acid solution was added to the 

diluted polycation, mixed and incubated for 30-40 min at room temperature. Afterwards, 

fetal bovine serum (FBS) was added to the samples. All samples had a final concentration 

of 90% FBS. The samples were incubated either at room temperature or 37°C for different 

time points. Meanwhile, a 2.5% agarose gel was prepared, by dissolving agarose in TBE 

buffer and heating the suspension up to 100°C. After cooling down to about 50°C and 

addition of GelRed, the clear agarose gel solution was cast into an electrophoresis unit. 

After 0, 10, 30 and 90 min, 20 µL of the samples and 4 µL loading buffer were carefully 

mixed and placed into the sample pockets. Electrophoresis was performed at 120 V for 

40 min. 

 

3.3. Methods for particle size determination 

3.3.1. Dynamic laser light scattering 

pDNA and siRNA polyplexes were formed as follows: 10 µg of nucleic acid and the 
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calculated amount of oligomer (N/P 12) were diluted in separate tubes in a total volume of 

50 µL of buffer. The siRNA solution was added to the oligomer solution and mixed by 

rapidly pipetting up and down for at least 5 times resulting in a final nucleic acid 

concentration of 200 µg/mL. The incubation time was 30-40 min in order to complete 

polyplex formation. For DLS measurement, the polyplex solution was diluted 1:20 with 

buffer and measured in a folded capillary cell (DTS1060) with laser light scattering using a 

Zetasizer Nano ZS with backscatter detection (Malvern Instruments, Worcestershire, UK). 

The viscosity influences the diffusion of the particles, hence the hydrodynamic diameter, 

and therefore, an accurately known viscosity and constant temperature was needed. For 

size measurements, equilibration time was 0 min, temperature was 25°C, and an automatic 

attenuator was used. The refractive index of the solvent, in our case water, was 1.330 and 

the viscosity was 0.8872 mPa/s.  

The DLS set up for the size measurements was calibrated with narrow distributed 

polystyrene latex nanoparticles with a size of 60 and 200 nm and a refractive index of 

1.590 from Thermo Scientific (formerly Duke Scientific Corp.). Each sample was measured 

3 times with 10 subruns of 10 seconds. A single exponential was fit to the correlation 

function with Cumulants analysis to obtain the Z-average diameter and the polydispersity 

index (PdI). The standard deviation after data analysis was not the distribution of the size 

around the mean, but the variation of the median amongst n measurements of the same 

sample 84. The DLS set up for the zeta potential measurements was calibrated with a zeta 

potential transfer standard of -50 mV from Malvern Instruments. The zeta potential was 

calculated by the Smoluchowski equation 90. Therefore, 10 up to 30 subruns of 10 s at 

25°C (n = 3) were measured. 

 

3.3.2. Fluorescence correlation spectroscopy 

Unlabeled control siRNA was spiked with Cy5-labeled siRNA in formulation buffer (20 mM 

HEPES pH 7.4) in order to determine the size of the polyplexes with FCS. The calculated 

amount of oligomer (N/P) diluted in formulation buffer, was mixed with siRNA solution to 

concentrations of 200 µg siRNA per mL. Afterwards, the polyplexes were incubated at 

room temperature for 30 min. For the size measurements in buffer and FBS, the samples 

were diluted 1:40 in buffer or fetal bovine serum. Undiluted samples were analyzed to 

investigate polyplex self-assembly over time. For serum measurements, FBS was added to 

a final concentration of 90%, after polyplex formation. Afterwards, the polyplexes were 

incubated at room temperature or 37°C and measured at different time points. The minimal 

volume for polyplex analysis was 200 µL for all measurements with a final concentration of 

Cy5-labeled siRNA of 50 nM in each sample. FCS measurements were performed on an 
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Axiovert 200 microscope with a ConfoCor 2 unit (Carl Zeiss, Jena, Germany). A HeNe 

laser (633 nm, average power of 50 µW at the sample) was used for excitation. The 

objective was a 40x (NA = 1.2) water immersion apochromat (Carl Zeiss, Jena, Germany). 

Samples were measured in eight well LabTek I chamber slides (NUNC, Wiesbaden, 

Germany). The laser beam focused at about 200 µm above the bottom of the wells 

containing the samples. Autocorrelation and analysis were performed using a ConfoCor 2 

software. Starting value for analysis was 3-18 µs to cut off photo-physical effects. To 

determine the structural parameter and measurement parameters, Cy5 dye in water was 

analyzed before each data acquisition. All data were evaluated with a one component fit, 

unless stated otherwise. The hydrodynamic radius was calculated with the help of the data 

evaluation program FCS-R v0.7. Measurements in fetal bovine serum were viscosity 

corrected. Therefore, the viscosity of FBS was determined using a microviscosimeter 

(AMVn, Anton Paar, Ostfildern, Germany), resulting in a viscosity of 1.18 mPa/s. As a 

result, the hydrodynamic radii of all samples, obtained with the data evaluation program 

FCS-R v0.7, were multiplied with 0.75 (viscosity of water/ viscosity of FBS). 

 

3.3.3. Atomic force microscopy 

Polyplex preparation was performed in 20 mM HEPES buffer pH 7.4 with a siRNA 

concentration of 100 µg/mL and a N/P ratio of 12. Polyplexes were prepared by mixing the 

siRNA stock solution (200 µg/mL) with the oligomer stock solution 1:1 through pipetting. 

Samples were incubated for 30 min to ensure complete complex formation. Samples were 

diluted 1:200 (49 polyplexes) and 1:50 (332 and 279 polyplexes) for AFM measurements in 

the formulation buffer (20 mM HEPES buffer pH 7.4). The particles had to be attached onto 

a flat substrate. Therefore, a freshly cleaved mica sheet was used, as an atomically flat 

substrate, which was negatively charged. After complex formation, 5 μL of the diluted 

polyplexes with positive surface charge were deposited onto the freshly cleaved mica 

sheet, which was glued to a metal puck (Plano, Dresden, Germany) and incubated for 

~ 3 min, resulting in a surface coated with nanoparticles. After mounting the metal puck 

onto the AFM, the cantilever fluid cell was installed into the device and filled with 

approximately 30 µL buffer solution. Samples were imaged in the tapping mode on a 

Multimode VIII AFM (Bruker AXS, Santa Barbara, USA). Imaging at room temperature was 

performed in formulation buffer with DNP-S oxide-sharpened silicon nitride cantilevers and 

SNL sharp nitride levers (Bruker Probes, Camarillo, USA) using resonance frequencies 

between 7-9 kHz of the narrow 100 μm, 0.32 N/m cantilever spring constant. Imaging 

parameters were optimized for best image quality, in combination with the maintenance of 

the highest possible set point to minimize damage to the samples. Images were 
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post­processed by subtracting a 3rd order polynomial from each scan line. Drive amplitudes 

were ~0.11 V, integral gains ~ 2, and proportional gains ~ 4. Atomic force microscopy was 

performed by Julia Kasper and Max Scheible.  

 

3.3.4. Nanoparticle tracking analysis 

The calculated amount of oligomer (N/P 12) and the siRNA were diluted in 20 mM HEPES 

pH 7.4 in two separate tubes. The siRNA solution and the oligomer solution were mixed 1:1 

resulting in a final siRNA concentration of 100 µg/mL. For nanoparticle tracking analysis 

experiments, all samples were diluted 1:5000 with formulation buffer. NTA was performed 

with a digital microscope LM20 System (NanoSight, Salisbury, UK). The diluted samples 

were injected with sterile syringes (BD Discardit II, USA) into the sample chamber 

equipped with a 640 nm diode laser. All samples were measured in the single shutter and 

gain mode for 40 s with manual shutter, gain, brightness and threshold adjustments at 

room temperature. The extended dynamic range mode, which splits the capture video into 

two videos with independent shutter and gain settings, was not useful to monitor a broader 

size range of the particles, as in this case the maximum shutter level was limited to 700. 

The video images of the particles, moving under Brownian motion, were captured and 

analyzed by the NTA 2.0 image analysis software (NanoSight, Salisbury, UK). Three 

measurements of each, always newly injected, sample were performed. The mean size 

and SD values obtained by the NTA software are based on the arithmetic values calculated 

with the sizes of all the particles analyzed by the software. Nanoparticle tracking analysis 

measurements were made by Julia Kasper.  

 

3.4. Buffer capacity 

The oligomer sample, containing 15 µmol protonable amines, was diluted in a total volume 

of 3.5 mL sodium chloride solution (50 mM) and the pH was adjusted to 2 by addition of 

hydrochloric acid. Afterwards, a back titration with 0.05 M sodium hydroxide (NaOH) was 

performed with an automatic titration system (Titrando 905 from Metrohm, Germany), until 

a pH of 11 was reached.  

 

3.5. Erythrocyte leakage assay 

Fresh, citrate buffered murine blood was washed with phosphate-buffered saline (PBS). 

The washed murine erythrocyte suspension was centrifuged and the pellet was diluted to 
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5x107 erythrocytes per mL with PBS (pH 7.4, 6.5, and 5.5). A volume of 75 μL of 

erythrocyte suspension and 75 µL of oligomer solution were added to each well of a 

V­bottom 96-well plate (NUNC, Denmark) resulting in final concentrations of 2.5 μM, 5 µM 

and 7.5 µM oligomer per well. All samples were pipetted in quadruplicates. The plates were 

incubated at 37°C under constant shaking for 1 h. After centrifugation, 80 µL of the 

supernatant were analyzed for hemoglobin release at 405 nm using a microplate plate 

reader (Spectrafluor Plus, Tecan Austria GmbH, Grödig, Austria). 

 

4. In vitro analysis 

4.1. Cell culture 

Mouse neuroblastoma cells Neuro2A and Neuro2A/EGFPLuc cells, stably expressing the 

CMV-eGFPLuc cassette (Clontech) encoding a fusion of enhanced green fluorescent 

protein and GL3 firefly luciferase under the control of the CMV promoter 91-92, were grown 

in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% FBS, 4 mM 

stable glutamine, 100 U/mL penicillin, and 100 µg/mL streptomycin. 

 

4.2. Flow cytometry 

Neuro2A cells were seeded into 24-well plates coated with collagen at a density of 

5x104 cells/well. After 24 h, culture medium was replaced with 400 μL fresh growth medium 

containing 10% FBS. Transfection complexes for pDNA or siRNA delivery at N/P ratio of 12 

in 100 μL HBG, containing either 2.5 μg siRNA or 1 µg pDNA (20% of the nucleic acids 

were Cy5-labeled) were added to each well and incubated at 37°C for 4 h. All experiments 

were performed in triplicates. Subsequently, cells were washed twice with 500 µL PBS 

containing 100 I.U. of heparin for 15 min to remove any polyplexes sticking to the cell 

surface. Cells were detached with trypsin/EDTA and taken up in PBS with 10% FBS. 

Cellular uptake was assayed by excitation of Cy5 at 635 nm and detection of emission at 

665 nm. Cells were appropriately gated by forward/sideward scatter and pulse width for 

exclusion of doublets. DAPI (4',6-diamidino-2-phenylindole) was used to discriminate 

between viable and dead cells. Data were recorded by Cyan™ ADP flow Cytometer (Dako, 

Hamburg, Germany) using Summit™ acquisition software (Summit, Jamesville, USA) and 

analyzed by FlowJo® 7.6.5 flow cytometric analysis software. Flow cytometry studies were 

performed by Petra Kos.  
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4.3. Luciferase gene silencing 

Gene silencing experiments were performed in stably transfected Neuro2A/EGFPLuc cells 

using 0.5 μg/well of either GFP-siRNA for silencing of the eGFPLuc protein, or 

control­siRNA as a control. siRNA delivery was performed in 96-well plates with 

5000 cells/well in triplicates. Cells were seeded 24 h prior to transfection and then medium 

was replaced with 80 μL fresh growth medium containing 10% FBS. Transfection 

complexes for siRNA delivery (20 μL formed in HBG) at different N/P ratios were added to 

each well and incubated at 37°C. At 48 h after transfection, cells were treated with 100 μL 

cell lysis buffer (25 mM Tris, pH 7.8, 2 mM EDTA, 2 mM DTT, 10% glycerol, 1% Triton 

X­100). Luciferase activity in the cell lysate was measured using a luciferase assay kit 

(100 μL Luciferase Assay buffer, Promega, Mannheim, Germany) and a Lumat LB9507 

luminometer (Berthold, Bad Wildbad, Germany). The relative light units (RLU) were 

presented as percentage of the luciferase gene expression obtained with only buffer 

treated control cells. Luciferase gene silencing experiments were performed by Daniel 

Edinger and Thomas Fröhlich. 

 

4.4. Luciferase reporter gene expression 

Neuro2A cells were seeded 24 h prior to pDNA delivery using 1x104 cells/well in 96-well 

plates. In vitro transfection efficiency of the polymers was evaluated using 200 ng 

pCMVLuc per well. All experiments were performed in quintuplicates. Before transfection, 

medium was replaced with 80 μL fresh medium containing 10% FBS. Transfection 

complexes formed at different protonable nitrogen/phosphate (N/P) ratios in 20 μL HBG 

were added to each well and incubated at 37°C. At 24 h after transfection, luciferase 

activity was determined as described above. Luciferase reporter gene expression 

experiments were performed by Petra Kos.  

 

4.5. Cell viability assay (MTT) 

Neuro2A cells were seeded into 96-well plates at a density of 1x104 cells/well. After 24 h, 

culture medium was replaced with 80 μL fresh growth medium containing 10% FBS and 

transfection complexes (20 μL in HBG) at different N/P ratios were added. All studies were 

performed in quintuplicates. 24 h post-transfection, 10 μL MTT (3-(4,5-Dimethylthiazol-2-

yl)-2,5-diphenyltetrazolium bromide; 5 mg/mL) were added to each well reaching a final 

concentration of 0.5 mg MTT/mL. After an incubation time of 2 h, unreacted dye and 

medium were removed. The purple formazan product was dissolved in 100 µL/well DMSO 
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(dimethyl sulfoxide) and quantified by a microplate reader (Tecan, Switzerland) at 530 nm 

with background correction at 630 nm. The relative cell viability (%) related to control wells 

containing cell culture medium with 20 µL HBG was calculated by [A] test/[A] control × 100. 

Cell viability was determined by Petra Kos.  

 

5. In vivo experiments 

For all in vivo experiments female Rj:NMRI-nu (nu/nu) (Janvier, Le Genest-St-Isle, France) 

mice were chosen, housed in isolated vented cages with a 12 h day/night interval and food 

and water ad libitum. Animal experiments were performed according to guidelines of the 

German law of protection of animal life and were approved by the local animal experiments 

ethical committee. 

 

5.1. Polyplex distribution 

Different polyplexes (N/P 12) containing 50 µg siRNA including 50% Cy7-labeled siAHA1 

were mixed in a total volume of 250 µL (HBG). Fluorescence imaging was performed 

utilizing the IVIS Lumina system with Living Image software 3.2 (Caliper Life Sciences, 

Hopkinton, USA). After anesthetizing the mice with 3% isoflurane in oxygen, polyplexes 

were injected into the tail vein and the distribution was measured after 0, 0.25, 0.5, 1, 4, 

and 24 h with a CCD camera (IVIS Lumina™). Experiments were performed in triplicates 

by Laura Schreiner, Annika Herrmann and Daniel Edinger and pictures were analyzed 

using the Living Image software. 

 

5.2. Neuro2A tumor treatment 

Mice were injected subcutaneously with 5×106 Neuro2A-eGFPLuc cells into their left flank 

at day 0. Two days later, the mice were separated into 6 groups (n = 5) based on their 

bioluminescence signal (Caliper Life Sciences, Hopkinton, USA). Bioluminescence imaging 

was performed 15 min after intraperitoneal injection of 100 μL luciferin solution 

(c = 60 mg/mL), recorded by a CCD camera (IVIS Lumina™) and analyzed using Living 

Image software 3.2. Intratumoral treatment with polyplexes, containing oligomers 49 and 

332 complexing either 50 μg RAN siRNA or control siRNA (N/P 12) in a total volume of 

50 µL (HBG) was also started at day 2 and repeated at day 4, 8, 11, 14. Tumor growth was 

recorded with bioluminescence imaging at day 8, 11, 14, 16 and 18. Caliper measurements 

were performed twice every week. Mice were sacrificed after their tumors reached a size of 
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1500 mm3 (length x width2/2). Bioluminescence signals were analyzed with the IVIS Lumina 

system with Living Image software 3.2 (Caliper Life Sciences, Hopkinton, USA). Neuro2A 

treatment experiments were performed by Raphaela Kläger and Daniel Edinger.  

 

6. Statistical analysis 

Results are presented as mean ± standard deviation (SD), unless stated otherwise. 

Statistical significance of differences was evaluated by t-test. P-values < 0.05 were 

considered significant. Statistics were performed with Graph Pad Prism 5®. 
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III. RESULTS 

1. Stabilizing effects of tyrosine trimers on pDNA and siRNA 

polyplexes 

Several modifications of the pDNA transfection agent polyethylenimine (PEI) have 

been reported to convert it into a suitable siRNA carrier 92-96. Creusat et al. modified 

PEI with hydrophobic natural amino acids 94 and showed that the random 

modification of 10-20% of PEI nitrogens with tyrosines was beneficial in regards of 

buffer capacity, reduced cytotoxicity, and siRNA 97 or oligonucleotide 98 delivery. 

Modification of PEI with tyrosines occurred at random positions and only one single 

tyrosine was attached per nitrogen. Tyrosine modified PEI showed favorable 

properties: It did not display hemolytic activity, but polyplexes nevertheless 

escaped endosomes due to their endosomal protonation capacity. Moreover, those 

polyplexes displayed an increased stability in glucose solution, favorable for in vivo 

application. Self-assembly of tyrosine containing biopolymers into nanostructures 

has been described in a different context to be facilitated through the π­π 

interactions of the aromatic rings of single neighboring tyrosines or tyrosine dimers 

99-100. As a result, we aimed at optimizing the serum stability of polyplexes based on 

sequence-defined carriers 55-56, 101. For this purpose, we evaluated the effect of 

three consecutive tyrosines as stabilizing components and synthesized various 

oligomers containing oligotyrosine motifs at defined positions.  

 

1.1. Design and synthesis of oligotyrosine containing oligomers 

Solid phase assisted synthesis, first published by Merrifield 45, enables the use of a 

high excess of educts which drives the coupling reaction to completion. Moreover, 

the excess of reagents and by-products during synthesis could be easily separated 

from the growing oligomer by filtration and washings.  



IV. Results     28 

Load resin

Kaiser test

Positive

Negative

Wash

Couple

Cleave completely 
synthesized peptide

Purifiy

Deprotect

Kaiser test

Wash

Positive

Negative

 

Figure 4: Solid phase peptide synthesis 

 

Solid phase assisted synthesis involves numerous repetitive steps (Figure 4): After 

loading the resin with a N-protected amino acid, the desired sequence is 

assembled from C-terminus to N-terminus by alternate cycles of deprotection and 

coupling. Reaction progress is monitored through Kaiser test. The functional groups 

of the side chains are protected with permanent, acid labile groups like trityl (trt), 

tert-butyl (tBu), 2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl (Pbf), or 

tert­butyloxycarbonyl (Boc) which are stable at the reaction conditions used during 

peptide elongation. The α-amino group is shielded by the temporary protecting 

groups 1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)-ethyl (dde) or fluorenyl-

methoxycarbonyl (Fmoc). The temporary protection groups are removed under mild 

basic conditions that preserve the integrity of the oligomer and reduce the rate of 

epimerization. The temporary N-terminal protecting group is removed allowing the 

addition of the next amino acid through activation of its α-carboxylic group. In a final 

step, the peptide is released from the resin and the acid labile side chain protecting 

groups are simultaneously removed.  
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1.1.1. Convergent building block synthesis 

Fully protected, repeating tyrosine sequences Fmoc-Y(tBu)3-OH and 

Boc­Y(tBu)3­OH were synthesized first by means of convergent synthesis. After 

assembly of the desired Y3 fragment on a 2-chlorotrityl chloride resin with solid 

phase assisted synthesis, the side chain protected fragments were released under 

mild acid conditions. Thereafter, the cleavage solution was removed under vacuum. 

The convergent building blocks were used like side chain protected amino acids for 

synthesis of the following oligotyrosine containing oligomers. Consequently, 

synthesis times were shortened and the abundance of deletion sequences was 

reduced.  

 

1.1.2. Structural overview 

Various precise, polycationic oligomers containing 1,2-diaminoethane subunits 

(Stp) were synthesized applying solid phase assisted synthesis and purified by 

means of size exclusion 55-56, 101. We demonstrated that crosslinking domains 

(cysteines) at the periphery of the oligomer and the lytic and stabilizing domain 

(dioleic acid motif) in the oligomer center were essential structural prerequisites for 

oligonucleotide transfer activity. Tyrosine motifs were introduced as new stabilizing 

building blocks. Initially, we synthesized linear oligomers Xn-Stp3-C with one, three, 

or six aromatic amino acids (X = phenylalanine (F), tryptophan (W) or tyrosine (Y)). 

The oligomer Y6-Stp3-C was the only one which showed a silencing tendency if 

complexed with eGFP-siRNA (Figure 5).  

Elongation of the aromatic amino acid chain to 9 or 12 consecutive tyrosines did 

not improve transfection efficiency. As a result, we introduced at least six tyrosines 

in our structures divided in tyrosine motifs with three consecutive tyrosines which 

should stabilize the polyplexes through π-π interactions. 
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On the one hand, Y3 motifs were introduced to replace the terminal cysteines at the 

periphery, or the hydrophobic domain in the center. On the other hand, additional 

tyrosine trimers were added just before the terminal cysteines. Consequently, the 

resulting oligomers (schematic overview Figure 6 and sequences listed in Table 1) 

contain an oligotyrosine motif either in the periphery, the center, or both, whereas 

the oligomer 49 and controls (216 and 413) lack aromatic amino acids. 

 

 

F6-
Stp

3-
C

Y
6-

Stp
3-

C

W
6-

S
tp

3-
C

0

50

100

eGFP (N/P 6)

Mut (N/P 6)

eGFP (N/P 12)

Mut (N/P 12)

L
u

c
if
e
ra

s
e
 e

x
p

re
s
s
io

n
 [

%
 o

f 
c
o

n
tr

o
l]

 

Figure 5: Gene silencing in neuroblastoma cells. eGFP-targeted siRNA (eGFP) or control 

siRNA (Mut) polyplexes were used for eGFPLuc gene silencing in Neuro2A-eGFPLuc cells, 

polyplexes were tested at N/P 6 and 12. Transfection experiments were performed by 

Thomas Fröhlich and Daniel Edinger.  
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Figure 6: Schematic overview of structures with oligotyrosine motifs in the center or the 

periphery of the succinoyl tetraethylenepentamine (Stp) oligomer chains. 

 

Table 1: Selected oligomer sequences (N- to C-terminus). 

 Oligomer Sequence 

 49  C-Stp2-[(OleA)2-K]K-Stp2-C 

controls 216  A-Stp2-[(OleA)2-K]K-Stp2-A 

413  C-Stp2-[K]K-Stp2-C 

peripheral tyrosines 331  [C-Y3-Stp3]2K 

332  Y3-Stp2-[(OleA)2-K]K-Stp2-Y3 

454  C-Y3-Stp2-[(OleA)2-K]K-Stp2-Y3-C 

465  C-Y3-Stp2-[K]K-Stp2-Y3-C 

589  [C-Y3-Stp3]2K-Stp3-Y3-C 

590  [Y3-Stp3]2K-Stp3-Y3 

central and peripheral 

tyrosines 

333  Y3-Stp2-[(Y3)2-K]K-Stp2-Y3 

464  C-Y3-Stp2-[(Y3)2-K]K-Stp2-Y3-C 

central tyrosines 468  C-Stp2-[(Y3)2-K]K-Stp2-C 

]K represent branching points with branching at the α,ε-amino group of lysine.  
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1.2. Biophysical characterization 

Agarose gel shift assays were performed to assess siRNA or pDNA binding ability 

of oligotyrosine containing polyplexes (Figure 7A and B, respectively). With regard 

to siRNA polyplexes, the control oligomer 413 with terminal cysteines, but without 

oligotyrosines and fatty acids, displayed the weakest siRNA binding ability, followed 

by control oligomer 216 containing fatty acids in the center, but without 

oligotyrosines and cysteines.  
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Figure 7: Nucleic acid binding ability of oligomers determined by agarose gel shift assay at 

different N/P ratios. Polyplex formation in HBG and 30 min incubation time. A) siRNA; B) 

pDNA. 
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Oligomers 331 and 465 having terminal oligotyrosines and cysteines, but lacking 

central fatty acids and oligotyrosines, showed complete siRNA binding only at high 

N/P ratios. Similarly, oligomers 468 with central tyrosines and terminal cysteines 

and the three arm structure 590 with only lateral oligotyrosines showed incomplete 

siRNA binding at low N/P ratios. The replacement of terminal cysteines (49) by 

oligotyrosines (332) or the substitution of terminal cysteines and central fatty acids 

(49) by oligotyrosines (333) displayed analogous gel-shift properties. This 

demonstrates that terminal oligotyrosines can substitute the stabilizing activity of 

either terminal cysteines or central fatty acids. Structures with a combination of 

terminal oligotyrosines and cysteines (454, 464, 589) independent of their central 

modification (fatty acid or oligotyrosines) led to an even better siRNA retardation 

compared to the oligomers 49, 332, and 333 (Figure 7). The results display that an 

addition of tyrosines before the terminal cysteines enhanced the stabilizing effect of 

cysteines.  

In contrast, for pDNA all oligomers containing a combination of terminal 

oligotyrosines and cysteines with and without central modifications (without 331, 

465; with 454, 464, 589) led to complete pDNA binding comparable to oligomer 49. 

In accordance to the findings for siRNA complexation, oligomers 216, 413, 468, 

and 590 showed complete pDNA binding only at high N/P ratios (Figure 7B). These 

data revealed that siRNA requires a combination of terminal cysteines and 

oligotyrosines, as well as a central modification (oligotyrosines or fatty acids) for 

stable polyplex formation. Contrary, the much larger pDNA only required a 

combination of terminal oligotyrosines and cysteines for stable polyplex formation.  

For further characterization, particle size and zeta potential of polyplexes were 

analyzed with DLS (Table 2). siRNA polyplexes of oligomer 468 with solely central 

tyrosines could not be analyzed, because no signal was measurable. Polyplexes 

with 331, 465, and 590 were over 600 nm in diameter. The size of all other siRNA 

polyplexes at N/P 12 was in a range applicable for further evaluations. Contrary to 

siRNA formulation, all oligomers formed polyplexes with pDNA with sizes between 

90 and 540 nm. 
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Table 2: Particle size (Z-average) and zeta potential of polyplexes (N/P 12) formed in 

HEPES buffer determined with DLS. Polyplexes were diluted 1:20 before measurement. 

Variations refer to the median of three measurements of the same sample. 

siRNA 

Z-average 

[nm] 

Zeta 

potential 

[mV] 

DNA 

Z-average 

[nm] 

Zeta 

potential 

[mV] 

49 polyplexes 23 ± 4 24.9 ± 1.0 49 polyplexes 114 ± 1 43.6 ± 1.3 

216 polyplexes 32 ± 2 5.1 ± 0.3 216 polyplexes 139 ± 3 27.0 ± 1.6 

331 polyplexes 644 ± 15 21.7 ± 0.9 331 polyplexes 175 ± 3 21,6 ± 1.6 

332 polyplexes 150 ± 2 38.1 ± 0.8 332 polyplexes 93 ± 1 43.8 ± 0.9 

333 polyplexes 334 ± 46 16.7 ± 0.3 333 polyplexes 287 ± 46 20.7 ± 0.5 

413 polyplexes n. d.* n. d.* 413 polyplexes 358 ± 8 16.2 ± 1.3 

454 polyplexes 99 ± 2 50.7 ± 0.8 454 polyplexes 99 ± 1 53.2 ± 2.8 

464 polyplexes 243 ± 12 13.3 ± 0.4 464 polyplexes 180 ± 5 21.5 ± 1.8 

465 polyplexes 1570 ± 194 11.8 ± 0.7 465 polyplexes 244 ± 18 14.0 ± 2.5 

468 polyplexes n. d.* n. d.* 468 polyplexes 542 ± 22 12.7 ± 1.8 

589 polyplexes 233 ± 3 33.4 ± 0.6 589 polyplexes 115 ± 2 19.6 ± 1.4 

590 polyplexes 703 ± 44 18.0 ± 0.4 590 polyplexes 144 ± 2 17.8 ± 0.6 

*not detectable (no measurable signal). 

 

The buffer capacity of the oligomers was investigated with the help of acidimetric 

back titration (Table 3). Therefore, the differential buffer capacities of the oligomers 

were determined between the endosomal pH of 5.5 and the physiological pH of 7.4. 

In comparison to oligomer 49, the buffer capacity of oligotyrosine containing 

oligomers was higher due to the phenolic group within the amino acid. Moreover, 

the pH-specific lytic potential of oligomers was investigated with the help of an 

erythrocyte leakage assay (Figure 8). 
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Table 3: Buffer capacity of oligomers determined between pH 5.5 and 7.4 by acidification 

to pH 2 and back titration with NaOH. 

Oligomer Buffer capacity [%] 

49 19.0 

331 21.0 

332 24.3 

333 24.1 

454 22.2 

464 21.4 

465 19.0 

468 21.1 

589 17.4 

590 18.0 
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Figure 8 Erythrocyte leakage assay at different pH values. Erythrocytes were incubated 

with 2.5 µM oligomer solutions at 37°C and the indicated pH values. Hemoglobin release 

was measured after 1 h. 
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Only dioleic acid modified oligomers showed significant pH-specific lytic potential, 

whereas tyrosine-containing oligomers without fatty acid modification did not 

mediate any significant lysis. The endosomal escape of oligomers with fatty acids is 

therefore a combination of “proton sponge” effect and lytic activity, whereas 

oligomers without fatty acids lack lytic activity illustrated in the leakage assay. 

Oligotyrosine modified oligomers apparently (based on the subsequently 

demonstrated bioactivity) form polyplexes with improved “proton sponge” effect 

sufficient for endosomal escape, as already pointed out with the acidimetric 

titrations.  

 

1.3. Uptake and transfection efficiency 

After their biophysical characterization, the cellular uptake of selected oligomers 

was investigated using Neuro2A cells (Figure 9).  
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Figure 9: Cellular internalization study using flow cytometry. Cellular uptake of Cy5-labeled 

siRNA or pDNA, complexed with oligomer 49, 332, 333, 454, and 468 (N/P 12) was 

determined by the means of flow cytometry. The intensity of the Cy5 signal resembles the 

amount of polyplexes taken up into Neuro2A cells. “Count” represents cumulative counts of 

cells with indicated Cy5 fluorescence after appropriate gating by forward/sideward scatter 

and pulse width. Dead cells (DAPI positive, less than 2%) were excluded from analysis. All 

experiments were performed in triplicates. A) siRNA; B) pDNA. Flow cytometry studies 

were performed by Petra Kos. 
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Polyplexes with 333 displayed the lowest siRNA uptake (Figure 9A), whereas 468 

polyplexes displayed the strongest shift compared to control treated cells. 

Nevertheless, the uptake curve for 468 polyplexes did not follow the Gaussian 

distribution showing a broad shoulder with a low count rate. Connecting this data 

with the DLS data, 468 polyplexes seemed to form undesirable aggregates leading 

to a strong uptake in a small subpopulation of cells. pDNA complexed with oligomer 

333 or 468 displayed the lowest uptake. The reason for the different uptake profiles 

of oligomer 468 is its ability to form large aggregates with siRNA, but not with 

pDNA, as observed with DLS measurements. In general, a correlation between 

zeta potential and nucleic acid uptake could be seen: The lower the positive charge 

of the polyplexes, the lower the uptake.  

Nearly all tested polyplexes showed efficient pDNA transfection activity except the 

control oligomers (216 and 413) and oligomers where terminal cysteines as well as 

central lytic domains had been replaced by oligotyrosine motifs (333 and 590). 

Replacing terminal cysteines by oligotyrosines (332) or adding oligotyrosines to the 

terminal cysteines or replacing the central lytic domain with oligotyrosines (464) led 

to improved luciferase expression comparable to oligomer 49 (Figure 10A).  

Oligomer 468 with oligotyrosines instead of fatty acids as lytic domains showed 

equivalent pDNA transfection compared to oligomer 49. Three-arm structures 

required terminal cysteines in order to mediate gene transfer (oligomer 589 

compared to 590). The pDNA transfection data were in accordance with the 

biophysical characterization and uptake studies. Moreover, they confirmed the 

favorable effect of tyrosine trimer integration. The cell viability assay (Figure 11) did 

not reveal any cytotoxicity for all tested pDNA polyplexes. 
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Figure 10: Gene transfer (A) and gene silencing (B) in neuroblastoma cells. Luciferase 

pDNA polyplexes were tested for luciferase expression in Neuro2A cells, eGFP-targeted 

siRNA (eGFP) or control siRNA (Mut) polyplexes for eGFPLuc gene silencing in 

Neuro2A­eGFPLuc cells, polyplexes were tested at N/P 6 and 12. Top: Polyplexes without 

tyrosines. Center: Polyplexes with tyrosine motif in the periphery. Bottom: Polyplexes with 

central and peripheral tyrosines or only central tyrosines. Transfection experiments were 

performed by Petra Kos, Thomas Fröhlich and Daniel Edinger. 
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Figure 11: Metabolic activity of Neuro2A cells after transfection with pDNA polyplexes 

(N/P 12). Positive control: Linear PEI (LPEI). MTT assay was made by Petra Kos.  

 

For siRNA transfection, the addition of oligotyrosines to the terminal cysteines was 

a favorable modification (oligomers 454, 464, 465, 589) leading to stronger target 

gene knockdown compared to oligomer 49. The alteration of the central domain 

(fatty acid 454, oligotyrosine 464, and lysine 465) showed only moderate influence 

on the transfection efficiency. Solely, the substitution of the central fatty acid by 

oligotyrosines (oligomer 468) improved transfection efficiency, whereas replacing 

both the terminal cysteines and the central hydrophobic domain by oligotyrosines 

led to an inactive polyplex (oligomer 333 and 590) (Figure 10B). In summary, the 

new class of oligotyrosine containing oligomers was efficient in pDNA and siRNA 

transfection, in most cases superior to oligomer 49.  

 

1.4. Serum stability 

For simulating in vivo conditions, the polyplexes were analyzed for their stability in 

fetal bovine serum (FBS). Therefore, polyplexes were first formed in HEPES buffer, 

followed by the addition of FBS. The samples were incubated at room temperature 

and 37°C for 0, 10, 30 and 90 min. Afterwards, gel electrophoresis was performed 

to investigate if the polyplexes were stable, partially stable or instable. Free siRNA 

migrates in the gel due to its negative charge, whereas intact polyplexes stay in the 

pockets of the agarose gel (Figure 12).  
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Figure 12: Polyplex stability in 90% FBS at RT and 37°C at different time points. 

Polyplexes, formed with stabilized control siRNA, were incubated at room temperature for 

30 min before FBS was added. Heparin (50 I.U.) was added to dissociate polyplexes. 

 

Moreover, polyplexes were treated with 50 I.U. of heparin per sample after 90 min 

in order to dissociate polyplexes, and to investigate whether the siRNA was 

degraded by serum proteins. The band of the stabilized siRNA of all heparin treated 

samples had comparable intensity to free siRNA at all time points. Hence, no 

degradation of the complexed or free siRNA occurred during the incubation time. 

This is not unexpected as 2’-methoxy stabilized siRNA was applied in our 

experiments. After gel electrophoresis, no siRNA migration was observable for 454, 

464, and 589 polyplexes, confirming the serum stability of these polyplexes both at 

room temperature and 37°C. In contrast, 332 and 49 polyplexes dissociated 

partially at 37°C after 90 min, as a band at the free siRNA level appeared. This data 

showed that a combination of oligotyrosines and cysteines at the ends of our 

oligomers led to a favorable stabilization and improved resistance to serum protein 

mediated disassembly. The remaining oligomer polyplexes were instable in serum 
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and free siRNA was detected immediately after addition of serum.  

Consequently, the stability of polyplexes in serum was investigated with 

fluorescence correlation spectroscopy (FCS). Therefore, oligotyrosine modified 

polyplexes with particle sizes smaller than 300 nm were investigated. The size limit 

was chosen due to the limited size of the confocal volume 102. Table 4 shows the 

polyplex stability in serum after different time points at room temperature and 37°C. 

All radii were viscosity corrected for data analysis. The viscosity of serum was 

measured with a microviscosimeter.  

 

 

Table 4: Hydrodynamic radii r, diffusion times, number of particles in the confocal volume, 

and fit chi2 of polyplexes in serum at room temperature or 37°C determined with FCS. 

Samples were evaluated with one component fit, unless stated otherwise (2c. = two 

component fit). 

RT r [nm] 
Diffusion time 

[µs] 

Number of 

particles 
fit chi2 

free siRNA     

1 min 2.3 239.4 49.3 9.4E-09 

49 polyplexes     

1 min 49.2 5464.1 2.2 6.4E-06 

10 min 68.0 7560.2 2.0 2.1E-05 

30 min 68.2 7581.8 2.2 1.1E-05 

90 min 2c. (33.8%) 2.2 245.0 

18.0 3.2E-07 

90 min 2c. (66.2%) 77.1 8565.1 

332 polyplexes     

1 min 113.4 12600.4 0.6 1.9E-04 

10 min 123.3 13700.3 0.5 3.5E-04 

30 min 115.6 12844.3 1.0 1.7E-04 

90 min 128.0 14222.9 0.3 5.6E-03 
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Table 4: Continued 

RT r [nm] 
Diffusion time 

[µs] 

Number of 

particles 
fit chi2 

454 polyplexes     

1 min 82.8 8758.4 0.421 5.6E-03 

10 min 84.6 8953.9 0.408 2.8E-03 

30 min 105.2 11132.3 0.208 2.0E-03 

90 min 91.8 9718.2 0.418 2.1E-03 

464 polyplexes     

1 min 102.0 10797.2 0.254 1.7E-03 

10 min 95.3 10085.5 0.245 3.7E-03 

30 min 120.1 12709.9 0.193 6.2E-03 

90 min 119.45 12640.8 0.235 1.8E-03 

589 polyplexes     

1 min 164.4 17394.2 0.133 6.3E-02 

10 min 165.2 17480.1 0.161 2.4E-02 

30 min 165.6 17521.9 0.324 4.0E-03 

90 min 188.0 19891.3 0.149 2.8E-02 

 

37°C r [nm] 
Diffusion 

time [µs] 

Number of  

particles 
fit chi2 

free siRNA     

1 min 2.4 272.2 86.0 7.8E-08 

49 polyplexes     

1 min 52.3 5892.5 1.4 9.3E-05 

10 min 59.4 6687.0 1.1 4.8E-04 

30 min 2c.(6.0%) 2.4 272.2 
5.9 1.6E-06 

30 min 2c.(94.0%) 65.5 7372.7 

90 min 2c. (82.0%) 2.4 272.2 
57.4 3.4E-08 

90 min 2c. (18.0%) 52.6 5924.6 
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Table 4: Continued 

37°C r [nm] 
Diffusion 

time [µs] 

Number of  

particles 
fit chi2 

332 polyplexes     

1 min 110.5 12442.6 0.3 1.0E-02 

10 min 109.0 12278.5 0.3 8.6E-04 

30 min 114.2 12865.9 0.4 9.9E-04 

90 min 2c. (52.8%) 2.4 272.2 

21.6 1.7E-07 

90 min 2c. (47.2%) 102.9 11588.6 

454 polyplexes     

1 min 103.7 10969.6 0.370 3.8E-03 

10 min 103.1 10910.8 0.092 2.0E-01 

30 min 86.8 9186.0 0.399 2.3E-03 

90 min  121.2 12821.3 0.546 5.4E-04 

464 polyplexes     

1 min 97.4 10310.0 0.251 3.8E-03 

10 min 95.0 10056.8 0.186 9.0E-03 

30 min 86.7 9178.7 0.171 2.7E-02 

90 min  103.8 10988.8 0.252 8.8E-03 

589 polyplexes     

1 min 164.4 17394.2 0.133 6.3E-02 

10 min 174.7 18481.9 0.241 2.9E-03 

30 min 165.6 17526.8 0.191 4.4E-02 

90 min  157.9 16709.8 0.239 1.8E-02 
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49 polyplexes are stable for 30 min at room temperature, but dissociated at 37°C 

within the same time. After 90 min, dissociation of the polyplexes was observed for 

both temperatures. Contrary to 49 polyplexes, the new tyrosine-modified 332, 454, 

464, and 589 polyplexes displayed enhanced serum stability. Dissociation at room 

temperature was not observed at any time. Measurements at 37°C showed only a 

slightly decreased stability of the siRNA polyplexes. Terminal tyrosine and cysteine 

containing 454, 464, and 589 polyplexes remained stable at 37°C for 90 min. For 

the 332 polyplexes with tyrosines replacing cysteines, however, the number of 

observed particles in the confocal volume increased from < 1 to 21.6 after 90 min at 

37°C, and free siRNA was detectable. Nevertheless, the stability of 332 was higher 

than stability of the 49 polyplexes. In contrast to 49 polyplexes with only 18% intact 

polyplexes after 90 min 103, as much as 47% intact 332 polyplexes were still 

detectable. This data fit very well to our gel shift findings, showing the improved 

stability of the new oligomers with peripheral oligotyrosines. 

 

1.5. In vivo experiments 

In a next step, the distribution of siRNA polyplexes after systemic administration 

was evaluated with the help of Cy7-labeled siRNA. Polyplexes were injected 

intravenously into mice (n = 3). Near-infrared (NIR) fluorescence imaging revealed 

a short circulation time followed by fast renal clearance of both uncomplexed 

siRNA, as well as the control (216, 413) and 590 polyplexes due to polyplex 

dissociation in the blood (Figure 13).  
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Figure 13: Intravenous administration of siRNA polyplexes. Time-dependent distribution of 

50 µg Cy7-labeled siRNA after intravenous injection using no carrier, or oligomers as 

polyplex carrier. Upper panel: Ventral position. Lower panel: Dorsal position. Experiments 

were performed in triplicates by Laura Schreiner, Annika Herrmann and Daniel Edinger, 

one representative mouse per group is shown. 
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Figure 13: Continued. 
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Figure 13: Continued. 

 



IV. Results     48 

333

464

465

0 min           15 min        30 min            1 h             4 h              24 h

333

464

465

0 min           15 min        30 min            1 h             4 h              24 h

 

 

333

464

465

0 min           15 min        30 min            1 h             4 h              24 h

333

464

465

0 min           15 min        30 min            1 h             4 h              24 h

 

Figure 13: Continued. 
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Polyplexes of four oligomers (331, 464, 465, and 468) showed a strong quenching 

of the fluorescent Cy7 signal upon polyplex formation. This hampered the 

monitoring of the siRNA distribution by NIR bioimaging. The lack of Cy7 signal over 

a long period (Figure 13) however suggests prolonged polyplex stability of these 

oligotyrosine oligomers. The oligomer 333 displayed a good systemic tissue 

distribution for at least 1 hour, though at 4 hours only a high signal in the kidneys 

and the bladder was seen (Figure 13). The agarose gel shift showed low serum 

stability, explaining the renal and bladder signal as probable consequence of the 

release of free siRNA.  

49, 454, and especially 332 polyplexes displayed initially a good systemic 

distribution of the polyplexes (Figure 13). Already right after injection, a signal in the 

liver was observed in the dorsal pictures. The liver signal was still visible at 4 hours, 

with a signal in the bladder appearing at this time point. The 332 polyplexes 

showed the most beneficial distribution, followed by 454 and then 49 polyplexes. 49 

polyplexes displayed fastest clearance by the kidneys (at 1 h) and disappearance 

from the liver (at 4 h) which is consistent with lower polyplex stability.  

Consequently, the polyplexes of 49 (as control) and 332 were investigated for their 

therapeutic potential. Mice were treated intratumorally with RAN siRNA and control 

siRNA polyplexes at day 2, 4, 8, 11 and 14 after inoculation of the eGFP-luciferase 

expressing Neuro2A tumor cells. Tumor growth was monitored by bioluminescence 

imaging (Figure 14), which was significantly reduced for mice treated with oligomer 

332 RAN siRNA polyplexes compared to control siRNA treated animals. Only with 

332 RAN siRNA polyplexes a significantly reduced tumor volume was found, 

whereas oligomer 49 RAN siRNA polyplexes did not show any reduction of the 

tumor burden in this experimental setting. 
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Figure 14: Tumor growth of subcutaneous Neuro2A-eGFPLuc tumors in mice after 

repeated intratumoral treatment (5 mice per group) with polyplexes of oligomers 49 or 332 

and RAN siRNA or control siRNA (N/P 12). Animals were treated with 50 µg siRNA per 

mouse at days 2, 4, 8, 11 and 14 after inoculation of the tumor cells. Top: Tumor 

development was determined by bioluminescent signal for the Neuro2A-eGFPLuc cells 

after intraperitoneal injection of luciferin. Bottom: Tumor weight of the mice at the time of 

termination of the experiment. The experiment was terminated when the first tumor of the 

oligomer group reached a size of 1500 mm3. Significance of 50 µg RAN siRNA against 

50 µg control siRNA was evaluated by t-test (***p<0.0005; **p<0.005; *p<0.05). This 

experiment was performed by Raphaela Kläger and Daniel Edinger. 
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2. Further stabilizing motifs for pDNA and siRNA polyplexes 

Stability of polyplexes plays an important role for in vivo delivery, as 

above­mentioned. Therefore, various further stabilizing components were 

integrated into the oligomer structures by means of solid phase assisted synthesis. 

Their stabilizing potential as well as the preservation in efficacy was investigated 

for pDNA or siRNA polyplexes.  

A new synthetic procedure had to be introduced in order to attach certain motifs to 

the peripheral ends of T-shapes, as peptide elongation after coupling of these 

components was impossible. Therefore, these stabilizing motifs were incorporated 

as last synthesis step. The central component of the T-shape was synthesized first. 

Afterwards, the linear backbone was assembled. Therefore, this synthesis 

procedure was called ‘reverse synthesis’. A chlorotrityl chloride resin was loaded 

with dde-Lys(Fmoc)-OH. After Fmoc deprotection and load determination, 

Fmoc­Lys(Fmoc)-OH as branching unit was coupled. After a negative Kaiser test, 

the central domain was attached to the resin. After dde deprotection with hydrazine 

hydrochloride in DMF, another branching point was introduced. After successful 

coupling and deprotection, the polycationic artificial amino acids were coupled, 

followed by the stabilizing motif. In a final step, the peptide was released from the 

resin and the acid labile side chain protecting groups were simultaneously 

removed. 

 

2.1. Ureido-pyrimidinone containing oligomers 

Dankers et al. 104 introduced ureido-pyrimidinones which were coupled to peptides 

by means of solid phase peptide synthesis. Figure 15 shows the formation of 

non­covalent, hydrogen bonds between two ureido-pyrimidinone monomers.  
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Figure 15: Hydrogen bond formation between two ureido-pyrimidinone monomers 104.  

 

2.1.1. Building block synthesis 

The synthesis of 2-(6-isocyanahexylaminocarbonylamino)-6-methyl-4(1H)-

pyrimidinone (ICH-CAMP) was described by Dankers et al. 104. 2-Amino-4-hydroxy-

6-methylpyrimidine was dissolved in 1,6-diisocyanatohexane and heated to 100°C 

for 17 h. The reaction mixture was cooled and n-pentane was added. The resulting 

precipitate was filtered and washed with n-pentane. After vacuum distillation of the 

product, ICH-CAMP was obtained as white powder. In order to determine identity 

and purity, mass spectroscopy and NMR spectroscopy were performed (page 106).  

 

2.1.2. Oligomer synthesis 

The ureido-pyrimidinone containing oligomer was synthesized with the help of solid 

phase assisted synthesis. Therefore, one T-shape oligomer was modified at the 

N­terminus with ICH-CAMP in order to investigate the effect of this modification on 

nucleic acid binding ability and transfection efficiency. The sequence of the 

oligomer with ureido-pyrimidinone motifs and its analog without stabilizing motifs 

are listed in Table 5.  

Table 5: Selected oligomer sequence and its analog (N- to C-terminus).  

Oligomer Sequence 

407 [(Stp5)2K]K[K(OleA)2] 

408 [(ICH-CAMP-Stp5)2K]K[K(OleA)2] 
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2.1.3. In vitro characterization 

Agarose gel shift assays were performed to assess siRNA binding ability of 

oligomer 407 and 408 polyplexes (Figure 16). The control oligomer 407 without 

ICH-CAMP motifs displayed a higher siRNA binding ability at N/P 6 than the 

oligomer 408 polyplexes with the ureido-pyrimidinone modification. 

 

Both polyplexes showed efficient pDNA transfection activity compared to buffer 

treated cells. The ureido-pyrimidinone motif of oligomers 408 did not modify 

luciferase expression. As a result, oligomers 407 and 408 displayed comparable 

luciferase expression (Figure 17A).  

For siRNA transfection, the addition of ureido-pyrimidinone motifs led to a slight 

increase in target gene knockdown compared to polyplexes without the 

ureido­pyrimidinone motifs (Figure 17B). However, the effect of the 

ureido­pyrimidinone modification on siRNA knockdown was lower than for analogs 

with cysteine modification 56.  
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Figure 16: siRNA binding ability of oligomers determined by agarose gel shift assay at 

different N/P ratios. Polyplex formation in HBG and 30 min incubation time.  
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Figure 17: Gene transfer (A) and gene silencing (B) in neuroblastoma cells. Luciferase 

pDNA polyplexes were tested for luciferase expression in Neuro2A cells, eGFP-targeted 

siRNA (eGFP) or control siRNA (Mut) polyplexes for eGFPLuc gene silencing in 

Neuro2A­eGFPLuc cells, polyplexes were tested at N/P 6 and 12. Transfection 

experiments were performed by Petra Kos, Thomas Fröhlich and Daniel Edinger. 

 

2.2. Pyridyl-thiourea containing oligomers 

Creusat et al. 105 introduced pyridylthiourea grafted polyethylenimine which led to 

effective siRNA-mediated gene silencing in vitro and in vivo. The resulting 

polymers with a modification degree of 28% relative to ethylenimine did not have 

hemolytic activity. Moreover, the polyplexes were stable in 4.5% glucose for 

several hours.  
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Figure 18: π-π interaction between two pyridyl thiourea containing monomers 105.  

 

2.2.1. Oligomer synthesis 

One T-shape oligomer was modified at the N-terminus with 3-pyridyl isothiocyanate 

(PITC) in order to investigate the effect of this modification on transfection 

efficiency. Therefore, the T-shape 587 was synthesized by means of reverse 

synthesis as described above for the ICH-CAMP modified oligomers. The 

sequence of the oligomer with 3-pyridyl isothiocyanate motifs and its analog 

without stabilizing motifs are listed in Table 6.  

 

Table 6: Selected oligomer sequence and its analog (N- to C-terminus).  

Oligomer Sequence 

468 C-Stp2-[(Y3)2-K]K-Stp2-C 

587 [(PITC-Stp2)2K]K[K(Y3)2] 

 

 

2.2.2. Transfection efficiency 

For siRNA transfection, the substitution of cysteines with 3-pyridyl isothiocyanate 

motifs like in oligomer 587 led to a complete loss of target gene knockdown 

compared to 468 polyplexes with cysteine motifs (Figure 19).  
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Figure 19: Gene silencing in neuroblastoma cells. eGFP-targeted siRNA (eGFP) or control 

siRNA (Mut) polyplexes for eGFPLuc gene silencing were tested in Neuro2A-eGFPLuc 

cells, polyplexes were tested at N/P 6 and 12. Transfection experiments were performed by 

Thomas Fröhlich and Daniel Edinger. 

 

2.3. Stabilizing effect of C-R-C motifs on pDNA and siRNA polyplexes 

Wu et al. 106 introduced twin disulfides C-X-C (cysteine-any-cysteine) for orthogonal 

disulfide pairing which led to the formation of stable dimers linked together by two 

disulfide bonds. As reduction of the disulfide bond of oligomers with twin disulfides 

was slower than of single cysteines, this motif might have a positive stabilizing 

effect on pDNA and siRNA polyplexes.  
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Figure 20: Orthogonal disulfide pairing between two oligomers with C-R-C motif 106.  
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2.3.1. Oligomer synthesis and structures 

T-shape oligomers with cysteines in the periphery were chosen and further 

modified. Therefore, the cross-linking single cysteines were replaced by the 

C­R­C motifs which led to orthogonal disulfide pairing and directed folding as 

described by Wu et al. 106. All resulting oligomers had a constant number of 

protonable 1,2-diaminoethane motifs within the artificial amino acids providing 

electrostatic nucleic acid binding and endosomal buffering. Consequently, the 

resulting oligomers (sequences listed in Table 7) contain twin disulfide motifs in the 

periphery and dioleic acids, tyrosine trimers, or both as additional stabilizing 

components, either in the center, the periphery, or both.  

Table 7: Selected oligomer sequences (N- to C-terminus) with twin disulfides and analogs 

with single cysteines. 

Oligomer Sequence Analog 

591 C-R-C-Stp2-[K]K-Stp2-C-R-C 413 

592 C-R-C-Stp2-[(OleA)2-K]K-Stp2-C-R-C 49 

593  C-R-C-Stp2-[(Y3)2-K]K-Stp2-C-R-C 468 

594  C-R-C-Y3-Stp2-[K]K-Stp2-Y3-C-R-C 465 

595 C-R-C-Y3-Stp2-[(OleA)2-K]K-Stp2-Y3-C-R-C 454 

596 C-R-C-Y3-Stp2-[(Y3)2-K]K-Stp2-Y3-C-R-C 464 

 

2.3.2. Biophysical characterization 

Agarose gel shift assays were performed to assess siRNA or pDNA binding ability 

of C-R-C motif containing polyplexes (Figure 21A or B). With regard to siRNA 

polyplexes, the oligomer 591 with terminal C-R-C motif, but without oligotyrosines 

and fatty acids displayed the weakest siRNA binding ability, similar to oligomer 413 

with single cysteines (Figure 7A). All other oligomers displayed complete siRNA 

binding at a N/P of 12, in contrast to the analogs with single cysteines (Figure 7A). 

These results show that the C-R-C motif is beneficial for siRNA binding compared 

to structures with terminal single cysteines and/or tyrosines. Stable siRNA polyplex 

formation is achieved by combining terminal C-R-C motifs and oligotyrosines, or a 

central modification with oligotyrosines or fatty acids. 
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Figure 21: Nucleic acid binding ability of oligomers determined by agarose gel shift assay 

at different N/P ratios. Polyplex formation in HBG and 30 min incubation time. A) siRNA; B) 

pDNA. 

 

 

Table 8: Particle size (Z-average) and zeta potential of polyplexes (N/P 12) formed in 

HEPES buffer determined with DLS. Polyplexes were diluted 1:20 before measurement. 

Variations refer to the median of three measurements of the same sample. 

siRNA 

Z-average 

[nm] 

Zeta 

potential 

[mV] 

DNA 

Z-average 

[nm] 

Zeta 

potential 

[mV] 

591 polyplexes n. d.* n. d.* 591 polyplexes 285 ± 22 23.9 ± 0.5 

592 polyplexes 672 ± 76 33.5 ± 0.9 592 polyplexes 121 ± 1 38.2 ± 1.2 

593 polyplexes 160 ± 6 24.7 ± 0.9 593 polyplexes 105 ± 2 35.8 ± 0.4 

594 polyplexes 197 ± 1 20.0 ± 1.2 594 polyplexes 188 ± 3 27.4 ± 1.3 

595 polyplexes 162 ± 5 37.4 ± 1.4 595 polyplexes 100 ± 1 41.3 ± 1.2 

596 polyplexes 192 ± 2 17.5 ± 0.6 596 polyplexes 115 ± 2 33.3 ± 0.8 

*not detectable (no measurable signal). 
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In contrast, for pDNA, all twin disulfide containing oligomers showed complete 

binding at N/P > 3 independent of the additional stabilizing motifs (Figure 21B). All 

twin disulfide oligomers displayed therefore superior pDNA binding compared to 

oligomers with single cysteines (Figure 7B). In case of pDNA, stable polyplex 

formation was achieved with the help of twin disulfides.  

For further characterization, particle size and zeta potential of polyplexes were 

analyzed with DLS (Table 8). No signal was measurable for siRNA polyplexes of 

oligomer 591 without central modification. Therefore, 519 polyplexes could not be 

analyzed just as their analogs 413. Polyplexes of 592 were over 600 nm in 

diameter. Hence, the addition of the twin disulfides to the oligomer 49 led to a 

drastic increase in polyplex size. The size of all other siRNA polyplexes at N/P 12 

was in a range applicable for further evaluations. Polyplexes of 593 formed 

particles with 160 nm in diameter, whereas siRNA particles of the single cysteine 

analog 468 could not be analyzed. Contrary to siRNA formulation, all oligomers 

formed polyplexes with pDNA with sizes between 100 and 300 nm. 

The buffer capacity of the oligomers was investigated with the help of acidimetric 

back titration (Table 9). Therefore, the differential buffer capacities of the oligomers 

were determined between the endosomal pH of 5.5 and the physiological pH of 7.4. 

The buffer capacities of oligomers with single cysteines (Table 3) and twin 

disulfides were in the same order of magnitude.  

 

Table 9: Buffer capacity of oligomers determined between pH 5.5 and 7.4 by acidification 

to pH 2 and back titration with NaOH. 

Oligomer Buffer capacity [%] 

591 14.9 

592 19.9 

593 22.4 

594 19.2 

595 21.2 

596 21.5 
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Figure 22: Erythrocyte leakage assay at different pH values. Erythrocytes were incubated 

with 2.5 µM oligomer solutions at 37°C and the indicated pH values. Hemoglobin release 

was measured after 1 h. 

 

Moreover, the pH-specific lytic potential of oligomers was investigated with the help 

of an erythrocyte leakage assay (Figure 22). Dioleic acid modified oligomers 

showed significant pH-specific lytic potential, whereas oligomers with twin disulfides 

or tyrosine containing oligomers without fatty acid modification did not mediate any 

significant lysis (Figure 22). The oligomer 596 was an exception to this rule. 

Combination of the C-R-C motif with terminal and central tyrosines led to significant 

lysis, even without fatty acid modifications. The oligomer 595 displayed the highest 

lytic activity due to the combination of terminal twin disulfides, oligotyrosines, and 

central fatty acids.  

The endosomal escape of oligomers with fatty acids is therefore a combination of 

“proton sponge” effect and lytic activity. The additional arginines and cysteines in 

the oligomers with C-R-C motif did not influence buffer capacities.  

 

2.3.3. Transfection efficiency 

Nearly all tested polyplexes showed efficient pDNA transfection activity compared 

to buffer treated cells. Oligomers 593 and 596 with central oligotyrosine 

modification displayed the highest luciferase expression comparable to oligomer 
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464 and 468 without the twin disulfide modification (Figure 23A and Figure 10A). 

Oligomer 594 with a C-R-C motif showed equivalent pDNA transfection compared 

to oligomer 413 with only single cysteines. In contrast, gene transfer efficiency of 

oligomers 592, 594 and 595 with the C-R-C motif was lower than for the structural 

analogs with single cysteines. Cell viability assay (Figure 24) did not reveal any 

cytotoxicity for all tested pDNA polyplexes.  

 

Figure 23: Gene transfer (A) and gene silencing (B) in neuroblastoma cells. Luciferase 

pDNA polyplexes were tested for luciferase expression in Neuro2A cells, eGFP-targeted 

siRNA (eGFP) or control siRNA (Mut) polyplexes for eGFPLuc gene silencing in 

Neuro2A­eGFPLuc cells, polyplexes were tested at N/P 6 and 12. Transfection 

experiments were performed by Petra Kos, Thomas Fröhlich and Daniel Edinger. 
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Figure 24: Metabolic activity of Neuro2A cells after transfection with pDNA polyplexes 

(N/P 6 and 12). MTT assay was performed by Petra Kos.  

 

Regarding siRNA delivery, addition of twin disulfides did not increase target gene 

knockdown compared to siRNA polyplexes with single cysteine oligomers 

(Figure 23B and Figure 10B). In case of oligomer 594 polyplexes, silencing efficacy 

was even abolished. In summary, the new class of C-R-C motif containing 

oligomers was efficient in pDNA and siRNA transfection. Nevertheless, in most 

cases they were less efficient than oligomers with single cysteines.  

 

2.3.4. Serum stability 

For simulating in vivo conditions, siRNA polyplexes were analyzed for their stability 

in fetal bovine serum (FBS). Therefore, polyplexes were first formed in HEPES 

buffer, followed by the addition of FBS. The samples were incubated at room 

temperature or 37°C for 0, 10, 30 and 90 min. Afterwards gel electrophoresis was 

performed to investigate if the polyplexes were stable, partially stable or instable. 

Free siRNA migrates in the gel due to its negative charge, whereas intact 

polyplexes stay in the pockets of the agarose gel (Figure 25). Moreover, polyplexes 

were treated with 50 I.U. of heparin per sample after 90 min in order to dissociate 

polyplexes, and to investigate whether the siRNA was degraded by serum proteins. 
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Figure 25: siRNA polyplex stability in 90% FBS at RT and 37°C at different time points. 

Polyplexes, formed with stabilized control siRNA, were incubated at room temperature for 

30 min before FBS was added. Heparin (50 I.U.) was added to dissociate polyplexes. 

 

After gel electrophoresis, siRNA migration was only observable for 591 polyplexes. 

As a result, 591 polyplexes dissociated, as a band at the free siRNA level appeared 

immediately after addition of serum. In contrast, all other polyplexes were stable in 

90% FBS. This data showed that the twin disulfides led to a favorable stabilization 

and improved resistance to serum protein mediated disassembly, if compared with 

structures with single cysteines (Figure 12). 

Consequently, the stability of polyplexes in serum was investigated with 

fluorescence correlation spectroscopy (FCS). Therefore, C-R-C motif containing 

siRNA polyplexes with particle sizes smaller than 300 nm were investigated. The 

limit was chosen due to the size of the confocal volume. Table 10 shows polyplex 

sizes in HEPES. 

Table 10: Hydrodynamic radii (r), diffusion times, number of particles in the confocal 

volume, and fit chi2 of polyplexes determined with FCS. 

 r [nm] Diffusion time [µs] Number of particles fit chi2 

free siRNA 2.3 214.7 16.1 5.0E-08 

593 polyplexes 75.7 6922.3 0.219 1.1E-03 

594 polyplexes 161.6 14788.4 0.049 5.2E-02 

595 polyplexes 40.0 3658.7 0.377 5.6E-04 

596 polyplexes 55.9 5111.7 0.179 1.2E-03 
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In serum, all radii were viscosity corrected for data analysis. Addition of FBS led to 

a slight increase in siRNA polyplex size of 20-60 nm over time. The new 

C­R­C modified polyplexes displayed enhanced serum stability, as all polyplexes, 

except 591 polyplexes, were completely stable at 37°C for 90 min as determined 

with FCS measurements and gel shift assay. Single cysteine polymers of 454 and 

464 were already completely stable in 90% FBS at 37°C for 90 min. As a result, an 

increase in stability for 595 and 596 polyplexes with twin disulfides could not be 

observed. In contrast, polyplexes of the analogs 49, 468, and 465 without 

C­R­C motif displayed lower serum stability. Data from FCS measurements and gel 

shift assay showed that 49 polyplexes were partially stable in serum (Figure 12 and 

Table 4). 468 siRNA polyplexes were not measurable with DLS, whereas 465 

polyplexes had a diameter of over 1 µm (Table 2). Consequently, 468 and 465 

polyplexes could not be analyzed with FCS due to the limited size of the confocal 

volume. Gel electrophoresis experiments displayed that 468 and 465 polyplexes 

were instable in serum. This data demonstrated the improved stability of the new 

oligomers with peripheral twin disulfides. 

 

 

3. Comparison of four different particle sizing methods for 

siRNA polyplex characterization 

The ability to reliably determine the size of siRNA polyplexes is the key to the 

rational design of particles and their formulation, as well as their safe application in 

vivo. Particle size data from literature is hardly comparable, if different methods 

have been used, due to the different underlying principles 88. Up to now, no 

standard technique is available, as the choice of methods largely depends on 

availability, application and required measurement.  

Four analytical methods were evaluated for their suitability to analyze the 

characteristics of homogeneous and heterogeneous siRNA polyplexes: Dynamic 

light scattering (DLS), atomic force microscopy (AFM), nanoparticle trafficking 

analysis (NTA) and fluorescence correlation spectroscopy (FCS). Therefore, three 

siRNA polyplex compositions were used. The oligomers were precisely synthesized 

and consisted of hydrophobically modified oligoaminoamides. 
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3.1. Synthesis of oligomers 

Three polycationic oligomers 49, 332 and 279 (sequences listed in Table 11) with 

1,2-diaminoethane subunits (Stp) were synthesized using solid phase assisted 

synthesis as described above 55-56, 101. Therefore, natural amino acids like cysteine 

(C), lysine (K), alanine (A) and tyrosine (Y) were combined with the unsaturated 

fatty acids oleic acid (OleA) or linoleic acid (LinA).  

All oligomers had varying amounts of hydrophobic groups. The T-shape oligomer 

49 had a dioleic acid motif (OleA) and cysteines, whereas in 332 the cysteines 

were replaced with oligotyrosine motifs. In U-shape 279 the dilinoleic acid (LinA) 

motif was added twice at the ends of the protonable backbone. These 

oligoaminoamides are able to bind negatively charged nucleic acids through 

electrostatic interactions. The fatty acids stabilize the so called polyplexes through 

hydrophobic interactions. In addition, cysteines form covalent disulfide bridges, 

whereas the oligotyrosine motif stabilizes through π-π stacking 99, 107. All polyplexes 

were prepared at N/P ratios of 12. The excess of polycation led to positively 

charged polyplexes, which are able to interact with the negatively charged cell 

membrane and therefore, endocytotic uptake into cells is possible. The formed 

polyplexes of the oligomers lead to efficient eGFPLuc silencing in stably transfected 

mouse neuroblastoma cells Neuro2A/eGFPLuc with low toxicity 55-56, 108. 

 

Table 11: Sequences of the selected oligomers. The U-shape oligomer 279 was 

synthesized by Irene Martin. 

Oligomer Sequence 

49 C-Stp2-[(OleA)2-K]K-Stp2-C 

332 Y3-Stp2-[(OleA)2-K]K-Stp2-Y3 

279 A-[(LinA)2K]K-Stp3-[(LinA)2-K]K-A 

]K: Lysine with branching at α,ε–amino groups. 
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3.2. Dynamic laser light scattering 

Dynamic light scattering is a technique for measuring particles in the nanometer 

region. DLS measures the Brownian motion and relates this to the hydrodynamic 

diameter of the particles, according to the Stokes-Einstein equation 109. Brownian 

motion is the random movement of particles in solution, which results from the 

bombardment of the particles with surrounding solvent molecules 110. Smaller 

particles lead to faster Brownian motion and therefore, higher intensity fluctuations 

109. The rate, at which the intensity of the scattered light fluctuates, is detected with 

suitable optical arrangements and converted into a correlation function. In a first 

step, intensity, volume and size distribution of the dynamic light scattering 

measurements of the three different siRNA polyplexes, formulated in HEPES 

buffer, were compared (Figure 26).  

The DLS results of the 332 siRNA polyplexes showed only one peak in the 

intensity, number, and volume distribution (Figure 26B). Hence, the hydrodynamic 

diameters were in the same order of magnitude of ~ 150 nm, independently of the 

investigated distribution.  

The intensity distribution of 49 polyplexes showed a small peak > 1 µm resulting in 

a high intensity mean and therefore, an irreproducible Z-average (Figure 26A and 

Table 12). In contrast, the diameter determined with volume or number distribution 

was significantly smaller. For the 279 polyplexes no correlation of the distributions 

was observable (Figure 26C). 

 

 

Figure 26: Particle size measurement of siRNA polyplexes with DLS in HEPES pH 7.4. 

Comparison of intensity, number, and volume distribution versus size distributions. A) 49; 

B) 332; C) 279 polyplexes. 
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All samples were prepared in 50 µL buffer to reach a siRNA concentration of 

200 µg/mL. Before DLS measurement all samples were diluted 1:20, as a volume 

of ~ 1 mL was necessary for the accurate and reproducible size and zeta potential 

measurements in a folded capillary cell. For this reason, the influence of different 

dilution buffers was analyzed in order to find a most suitable buffer providing 

reliable results for all further measurements (Table 12). As high salt concentrations 

can lead to polyplex aggregation, we compared particle sizes in buffers with low 

salt concentration (20 mM HEPES, 10 mM NaCl) with particles in high salt 

concentrations (150 mM NaCl). Therefore, polyplexes were mixed in 20 mM 

HEPES, 10 mM NaCl or 150 mM NaCl and diluted after polyplex formation with the 

same buffer to 1 mL. The results of this experiment are displayed in Table 12. 

 

Table 12: Influence of buffer on particle diameter determined with DLS. Variation of the 

median amongst three measurements of the same sample is shown, not the standard 

deviation. 

 

Z-average 

[nm] 

PdI 

 

Intensity 

mean  

[nm] 

Number 

mean  

[nm]  

Volume 

mean  

[nm]  

Zeta 

potential 

[mV] 

49 polyplex       

20 mM HEPES 35.2 ± 1.8* 0.28 ± 0.05 275 ± 123 18.0 ± 0.5 34.4 ± 6.3 20.8 ± 0.6 

10 mM NaCl 40.2 ± 15 0.28 ± 0.08 475 ± 151 12.7 ± 0.6 23.3 ± 2.1 33.4 ± 6.6 

150 mM NaCl 46.4 ± 0.2 0.22 ± 0.02 345 ± 66 16.6 ± 1.0 32.1 ± 3.2 - 

332 polyplex       

20 mM HEPES 150 ± 2.2 0.15 ± 0.02 180 ± 8.5 84.2 ± 13 154 ± 7.2 38.1 ± 0.8 

10 mM NaCl 125 ± 0.8 0.20 ± 0.01 192 ± 31 66.6 ± 3.9 187 ± 63 48.6 ± 1.4 

150 mM NaCl 149 ± 1.3 0.13 ± 0.01 173 ± 2.4 99.0 ± 3.6 155 ± 1.8 - 

279 polyplex       

20 mM HEPES 414 ± 11 0.31 ± 0.02 668 ± 8.2 239 ± 15 1011 ± 12 25.6 ± 0.6 

10 mM NaCl 579 ± 89 0.56 ± 0.04 609 ± 185 51.3 ± 27 468 ± 71 44.5 ± 0.7 

150 mM NaCl 223 ± 4.6 0.62 ± 0.05 582 ± 64 19.3 ± 6.6 302 ± 61 - 
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49 polyplexes showed a decreased number and volume mean diameter, when 

prepared and diluted in 10 mM NaCl, whereas intensity and Z-average mean 

diameter increased. As mentioned before, the intensity distribution of 49 polyplexes 

showed a small peak > 1 µm, resulting in a high intensity mean and therefore, an 

irreproducible Z-average. The size determined with number and volume distribution 

gave similar results in 20 mM HEPES and physiological NaCl concentration. 332 

polyplexes gave constant sizes independent of the dilution buffer and the 

investigated distribution. As a result, 49 and 332 polyplexes were stable in 

physiological salt concentration, because no aggregation occurred. In contrast, for 

279 polyplexes no correlation between buffers and distribution was observable. 

This effect might be due to the lipophilic character of those polyplexes. Zeta 

potential was lower in 20 mM HEPES as in 10 mM NaCl, independent of the 

polycation in the polyplex. Zeta potential in the physiological salt concentration of 

150 mM NaCl could not be measured, as the high salt concentration shielded the 

electric charge of the polyplexes. Moreover, the voltage led to a corrosion of the 

electrodes.  

In addition, the influence of glucose on particle measurements with DLS was 

investigated. The dilution with HBG led to the appearance of a glucose peak with a 

diameter of 1 nm in the volume and number distribution, due to the high glucose 

concentration of 5% (w/v) in the sample. Therefore, accurate analysis of the size of 

the polyplexes was not possible in HBG. 

All salt containing buffers were suitable for data analysis, whereas glucose 

containing buffers hindered data analysis due to the appearance of a glucose peak 

and high salt concentrations obscured zeta potential measurements. Therefore, we 

performed all further measurements in 20 mM HEPES. 

Additionally, the influence of the preparation buffer on particle size was 

investigated: The polyplexes were mixed in HEPES or HBG buffer and diluted with 

HEPES. It was discovered that the buffer, in which the samples were mixed, had no 

influence on size and zeta potential. 

DLS was also applied to determine 49 and 332 polyplex stability in buffer over time. 

Stability was not analyzed for 279 polyplexes due to the inhomogeneous results 

gained with DLS. Therefore, 49 and 332 polyplexes were formed in 20 mM HEPES, 

incubated at room temperature for 30 min up to 21 days, and analyzed afterwards 
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with DLS. Both polyplexes were extremely stable over time and no aggregation was 

observable. Hence, particle size stayed constant in HEPES buffer over 3 weeks. 

 

Figure 27: Polyplex stability in buffer at room temperature over time. A) Volume mean of 

49 polyplexes; B) Z-average of 332 polyplexes. 

 

3.3. Atomic force microscopy 

Atomic force microscopy allows the visualization of particles with sub-nanometer 

resolution in three dimensions 111. The main element of the AFM is the sensor, a 

pyramidal tip attached to a 100-400 µm long cantilever, which is in contact with the 

sample 112. The highest resolution can be achieved with a tip that ends in a single 

atom. The simplest mode is the contact mode, where the tip is permanently in 

contact with the sample surface, causing the cantilever to deflect. This mode is 

limited to relatively firm samples 113. The tapping AFM, also known as intermittent 

contact AFM was used, where the sample is exposed to minimized forces. 

Therefore, the contact of the tip and the sample lasts only for several nanoseconds 

and thus, the analysis of supple materials is possible, such as living cells, 

biomembranes or liposomes 114. A piezoelectric crystal is oscillating and hence, 

exciting the cantilever. If the tip interacts with the sample at its low point, a damping 

of oscillation can be observed. The height of the AFM stage is adjusted to keep the 

damping at a constant rate. The tip scans across the sample and from the up and 

down movements of the AFM, the topography of the sample can be extracted. The 

cantilever is bending due to forces between tip and sample, when the tip is 

engaging a surface. This deflection, which is proportional to the force applied to the 
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sample (Hooke’s law), is used to directly visualize a surface topography. The AFM 

pictures revealed individual nanoparticles for all formulations. The picture of 49 

polyplexes displayed a large number of spherical polyplexes between 15 and 

45 nm in diameter, which were homogeneous in size (Figure 28A). For 332 

polyplexes the number of particles observed under the microscope was a lot 

smaller, in spite of a dilution of 1:50. The particles had a diameter of 120-170 nm 

(Figure 28B). Contrary, the AFM picture of 279 polyplexes showed a large number 

of small particles with a diameter of 80-110 nm (Figure 28C). In addition, particles 

up to 430 nm were observed, reflecting the heterogeneity of this polyplex sample. 

 

 

Figure 28: AFM pictures of siRNA polyplexes in HEPES pH 7.4. A) 49 polyplexes 

d = 15­45 nm; B) 332 polyplexes d = 120-170 nm; C) 279 polyplexes d = 80-430 nm. Scale 

bars represent 500 nm. These measurements were performed by Julia Kasper and Max 

Scheible.  

 

3.4. Nanoparticle tracking analysis 

Nanoparticle tracking analysis is based on a laser illuminating microscopic 

technique. Compared to DLS measurements, NTA does not measure the intensity 

of the scattered light. A laser excites particles suspended in a fluid, which then 

scatter light and hence, the particle position is determined under a microscope 115. 

The Brownian motion of these illuminated particles is analyzed by a camera in 

real­time. The rate of the movement is related solely to the viscosity of the liquid, 

the temperature, and the size of the particles. Each particle is simultaneously, but 

separately visualized and tracked from frame to frame by particle tracking image 

analysis software 116. The rate of the particle movement is related to a sphere 
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equivalent hydrodynamic diameter and calculated through a variation of the 

Stokes­Einstein equation. The lower size limit for the analysis with NTA is around 

35 nm for particles with high refractive index, like gold nanoparticles. As a result, 

nanoparticle tracking analysis measurements were suitable for medium sized 

particles. 332 polyplexes displayed a mean diameter of 139 ± 47 nm, if settings 

with low threshold were used. The polyplex size did not change significantly, when 

settings with high threshold or the extended dynamic range mode was utilized. The 

standard deviation was the variation of the median amongst different 

measurements. The 3D plot of the relative intensity versus the particle size 

displayed one peak with two maxima (Figures 29A).  

The resolution of the NTA was therefore higher than for the DLS. In contrast, 

polyplexes of 49 were too small to be tracked due to the size limit, independently of 

the settings. The calculated mean diameter of 155 ± 48 nm did not reflect reality. 

For 279 polyplexes, the mean diameter was 128 ± 35 nm. According to AFM 

measurement, the size of the main population was in this magnitude, whereas the 

few large particles could not be tracked, even if the threshold was at its maximum. 

Figure 29B shows the video frames of the tracked 332 polyplexes corresponding to 

the three dimensional graph (Figure 29A), which were followed in real-time by a 

camera. The polyplex size, hence their homogeneity or heterogeneity, and their 

scattering intensities could be observed.  

 

A) B)A) B)

 

Figure 29: NTA of 332 polyplexes in HEPES pH 7.4. A) 3D plot of relative intensity versus 

particle size. B) Microscope pictures of tracked particles. This experiment was performed 

by Julia Kasper. 
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3.5. Fluorescence correlation spectroscopy 

Fluorescent correlation spectroscopy is a technique that allows to measure 

spontaneous fluctuations of molecules in a small open volume, the so called 

confocal volume (< 1 fL) 102, 117. A confocal diaphragm (pinhole) on the image 

surface limits the passage of the fluorescent signal and enables the collection of 

light exclusively from the confocal volume. Fluorescently labeled molecules are 

excited entering the laser focus. The number of the fluorescent labeled molecules 

has to be low enough to assure that each one contributes substantially to the 

fluorescence signal. Emitted light is collected by the confocal detection optics in 

conjunction with an avalanche photodiode. Fluctuations in the recorded intensity 

signal either represent molecules entering, or leaving the detection volume 118. The 

duration of the fluctuations is determined by the degree of mobility of the diffusing 

species and the size of the confocal volume. These molecules lead to characteristic 

time decays, depending on their diffusion constants due to Brownian motion. 

Hence, the higher the count rate, the smaller the particles. Search for 

self­similarities is done by autocorrelation, a mathematical method that compares 

intensities at different time points. The shape of the resulting autocorrelation 

function is determined by the underlying dynamic process. Hence, the 

autocorrelation function G(t) gives information about two important parameters:  

i) The diffusion time of the particles, which is directly proportional to their size 

(hydrodynamic radius), and ii) the total number of particles contributing to the signal 

within the confocal volume (N) 119-120. Cy5-labeled siRNA was spiked with 

unlabeled siCtrl and then complexed with 49, 332, and 279 at a N/P ratio of 12. 

Relative correlation function curves G(t) and fitting functions curves G(t) fit are 

shown in Figure 30A.  

For 49 and 332 polyplexes G(t) and G(t) fit overlap in a perfect match. In contrast, 

G(t) of 279 polyplexes deviated visibly from G(t) fit, indicating an imperfect fit, which 

could not be improved using a two or three component fit. Additionally, the signal of 

49 polyplexes declined more rapidly than for 332 and 279 polyplexes resulting in a 

smaller diffusion time and thus, smaller particles.  

 



IV. Results     73 

A) B)A) B)

 

Figure 30: FCS measurement of all three polyplexes in HEPES. A) Relative correlation 

functions G(t) and fitting functions G(t) fit. B) Count rate of the polyplexes. 

 

The count rate displayed sharp peaks for 332 and 279 polyplexes in the intensity 

fluctuations, indicating the presence of more than one labeled siRNA in the 

polyplex. In contrast, uniform count rates were observed for 49 polyplexes and 

therefore, only one labeled siRNA was present in the polyplex (Figure 30B). It is 

likely, that multiple unlabeled siRNAs were present in all polyplexes. Moreover, the 

values for the count rate were lower for 332 and 279 polyplexes, which was 

consistent with their hydrodynamic radii. The count rate was highest for 49 

polyplexes, indicating smaller particles, compared to the above mentioned 

polyplexes.  

Data analysis of all polyplexes resulted in hydrodynamic radii of 19.3, 95.8, and 

147.5 nm for 49, 332, and 279 polyplexes, respectively (Table 13).  

 

Table 13: Hydrodynamic radii (r), diffusion times, number of particles in the confocal 

volumes, and fit chi2 of polyplexes determined with FCS. 

 r [nm] Diffusion time [µs] Number of particles fit chi2 

free siRNA 2.2 245.0 51.8 1.1E-08 

49 polyplex 19.3 1371.0 3.8 4.0E-06 

332 polyplex 95.8 6799.9 0.1 4.1E-04 

279 polyplex 147.5 10473.9 0.5 6.2E-03 
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The size of free labeled siRNA was 2.2 nm. The number of particles decreased 

from 51.8 to < 4, when polyplexes were measured. This decrease in N may be due 

to the influence of the polycation on the fluorescence properties of the siRNA. The 

chi-square (chi2) test is a statistical hypothesis test used for testing the presence of 

autocorrelation and therefore, the lower the value, the better the fit. Fit chi2 was 

highest for 279 polyplexes, which was consistent with the imperfect overlap of the 

G(t) with G(t) fit (Figure 30A). As a result, the few large particles in the 279 

polyplexes affected FCS measurements, because those large particles were bigger 

than the confocal volume. Moreover, some polyplexes had a very high number of 

labeled siRNAs incorporated and therefore, the light intensity was higher than the 

detection limit. Consequently, measurement time was decreased to 5 s in order to 

minimize the probability of large particle entering the confocal volume.  

 

In addition to particle size measurements, FCS made monitoring of the polyplex 

self-assembling process possible. Polyplexes were prepared in higher 

concentrations compared to all other FCS measurements, mixed directly in the 

eight well chamber slides, and analyzed after different time points. It was clearly 

visible that 332 polyplex formation was incomplete after 10 minutes (Figure 31B) 

due to the high deviation of G(t) from G(t) fit, even though the diffusion time was 

already at 7404 µs.  

 

A) B)A) B)

 

Figure 31: Polyplex self-assembly with FCS. Relative correlation functions G(t) and fitting 

functions G(t) fit of A) 49 polyplexes and B) 332 polyplexes after 10 and 30 min. 
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This diffusion time corresponded to a radius of 92 nm. In contrast, after 30 min the 

fitting of the correlation function resulted in a perfect overlay of G(t) and G(t) fit.  

The effect of time on polyplex self-assembly was more drastic for 49 polyplexes: 

After 10 min the diffusion time of the polyplexes was ten fold higher than after 

30 min of incubation, resulting in radii of 395 nm and 24.2 nm, respectively 

(Figure 31A). Moreover, the number of particles was 7.5, compared to 52.9 after 

30 min. In addition, chi2 fit was with 1.3E-05 higher than after 30 min. Therefore, a 

fitting of 49 polyplexes was not possible after 10 min. Polyplex sizes did not vary, if 

analyzed after 60 min. These measurements proved that an incubation time of 

30 min was sufficient for the self-assembly into polyplexes. 

 

Using FCS, analysis both polyplex size and stability in full serum is possible. 

Polyplexes of 49 were formed in HEPES buffer prior to the dilution with a 40-fold 

volume of fetal bovine serum (FBS). Table 4 shows the polyplex stability in serum 

after different time points at room temperature and 37°C. All radii were viscosity 

corrected for data analysis. An increase in size was observed after addition of FBS 

due to the attachment of serum proteins to the polyplexes. 49 polyplexes were 

stable for 30 min at room temperature (Table 4). In contrast, a dissociation of those 

polyplexes was observed at 37°C already after 30 min. The count rate (number of 

particles in confocal volume) of the polyplexes increased slightly, indicating a partial 

release of labeled siRNA. With a two component fit, 6% of free siRNA was 

detected, which is consistent with the increase in particle number. After 90 min, a 

partial dissociation of the polyplexes was observed for both temperatures. 

Polyplexes were more stable at room temperature than at 37°C resulting in 66% 

and 18% intact polyplexes, respectively. The count rate shifted to higher values 

(18.0 at room temperature and 57.4 at 37°C) demonstrating a significant release of 

siRNA, well consistent with results of an agarose gel shift assay detecting free 

siRNA (Chapter 1.4). All FCS measurements in this section were performed 

together with Julia Kasper. 
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4. Native chemical ligation 

Protection of the carrier surface from interactions with blood components and 

off­target cells plays an important role in the choice of carrier system. The 

hydrophobic or charged surface of delivery systems can be shielded to avoid 

interactions with blood components during circulation. Polyethylene glycol (PEG) is 

the most prominent molecule used for shielding 121-123. An ideally stabilized and 

shielded particle should be able to circulate for an extended time without cell 

interaction. Therefore, interaction of a maximally shielded particle with its target is 

not possible. Consequently, an active targeting domain has to be incorporated into 

the structure of the carrier system to allow uptake and accumulation at the targeted 

site. As a result, receptor ligands or their analogs are integrated into the carrier 

structure in order to enable receptor specific interactions with the target site.  

In the current thesis, native chemical ligation (NCL), a precise conjugation 

technique, is employed to connect existing non-targeted structures with shielding 

and targeting domains. NCL is a chemoselective chemistry that forms an amide 

bond by transthioesterfication followed by intramolecular nucleophilic 

rearrangement between thioesters and cysteine 74. This simple reaction occurs in 

mild aqueous solution, and gives almost quantitative yields without side reactions 

with other functional groups 73. Since the first report by Dawson in 1994 72, studies 

involving the use of NCL have focused on the total synthesis of proteins 124-126. The 

application of the NCL reaction for other areas remains largely unexplored. 

Therefore, we investigated if NCL is a suitable technique to attach shielding and 

targeting domains to already existing oligomers of our library.  

 

4.1. Principles of NCL 

Blanco-Canosa et al. 73 published a chemical reaction which is compatible with 

reaction conditions used for solid phase peptide synthesis. Two prerequisites for 

the successful ligation were necessary: i) An oligomer with a N-terminal cysteine, 

and ii) an oligomer with a C-terminal, aromatic N-acylurea moiety. Therefore, 

3,4­diaminobenzoic acid (Dbz) was attached to a MBHA Rink amide resin or a 

preloaded Dawson Dbz AM resin was used. The Dbz-group was stable at standard 

Fmoc SPPS coupling and deprotection protocols. After oligomer elongation, the 
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Dbz-group was converted into N-acyl-benzimidazolinone (Nbz) with the help of 

p­nitrophenyl chloroformate (Scheme 4).  
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Scheme 4: Conversion of a Dbz peptide on the resin to a Nbz peptide with the help of 

p­nitrophenyl chloroformate.  

 

4.1.1. Synthesis of model oligomers for NCL 

Two activated model oligomers FolA-PEG2-Nbz and the non-targeted A-PEG2-Nbz 

were synthesized to prove suitability of the method for the attachment of a shielding 

and targeting domain to a polycation. Therefore, a defined PEG2 with two ethylene 

oxide monomer units was attached to the deprotected Dbz Dawson resin. After 

successful coupling, the Fmoc protection group of PEG2 was removed. As last 

coupling step either Boc-Ala-OH, or protected folic acid synthesized by means of 

convergent synthesis were coupled. Afterwards the Dbz was converted into the 

Nbz group with p-nitrophenyl chloroformate and the resin was washed twice with 

DIPEA in DMF (Scheme 4). The products were cleaved of the resin and all 

protection groups were removed by treating the resin with triisopropylsilane, DCM, 

water, and TFA. Afterwards, the raw products were precipitated in cooled n-hexane 

and ether. After centrifugation, the Nbz-PEG2-A peptide was purified with size 

exclusion chromatography. NMR (page 112) and FAB mass analysis proved the 

purity and identity of the model structure A-PEG2-Nbz. The purification of 

FolA­PEG2-Nbz with SEC was not possible due to the poor solubility in water and 

acetonitrile. Consequently, it was applied for NCL without further purification (NMR 

page 112).  

Moreover, the polycation C-Stp2-C with a N-terminal cysteine was synthesized with 

standard SPPS procedures on a chlorotrityl chloride resin preloaded with 

Fmoc­Cys(trt)-OH. NMR (page 111) and FAB mass analysis proved the purity and 

identity of this small oligocation.  
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Table 14: Solid phase assisted peptide synthesis based model oligomers for native 

chemical ligation. Mass was determined with FAB analysis.  

Sequence Formula Calculated mass 

[M+H]+ 

Detected mass 

[M+H]+ 

Nbz-PEG2-A C18H25N5O6 408.1 408.4 

C-Stp2-C C30H62N12O7S2 767.4 767.6 

 

4.1.2. Ligation of model oligomers 

After purification and lyophilization of oligomers C-Stp2-C and A-PEG2-Nbz, native 

chemical ligation was performed (Scheme 5). The educts (molar ratio of 

A­PEG2­Nbz to polycation C-Stp2-C = 1 : 1.3) were solved in ligation buffer 

containing guanidine hydrochloride, disodium hydrogen phosphate, TCEP*HCl and 

4-mercaptophenylacetic acid. After a ligation time of 2-3 h, the products were 

purified with size exclusion. Simultaneously, the buffer salts were removed. Native 

chemical ligation of the unpurified FolA-PEG2-Nbz with C-Stp2-C was performed 

accordingly. 
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Scheme 5: Native chemical ligation of the activated model oligomer A-PEG2-Nbz and the 

polycation C-Stp2-C.  

 

After lyophilization, the products were analyzed with NMR and MALDI-TOF mass 

spectrometry. Mass spectra (Table 15) and NMR (page 112) proved the expected 

identity of the two products.  
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Table 15: Native chemical ligation of model oligomers. Mass was determined with 

MALDI­TOF analysis.  

Sequence Formula Calculated mass Detected mass 

A-PEG2-C-Stp2-C C40H80N14O11S2 997.3 997.4 

FolA-PEG2-C-Stp2-C C56H92N20O15S2 1349.6 1349.2 

 

4.2. Synthesis of shielded and targeted oligomers for NCL 

Different targeting ligands like folic acid (FolA), B6, GE11 and cMBP were coupled 

on a MBHA rink amide resin preloaded with Dbz-Gly-Fmoc to a defined PEG24 as 

previously described. Those ligands target the folic acid receptor, transferrin 

receptor, EGF receptor, and hepatocyte growth factor, respectively. After oligomer 

elongation, the Dbz-group was converted into Nbz and the oligomer was cleaved 

off the resin. The resulting activated oligomeric structures FolA-PEG24-G-Nbz, 

B6­PEG24-G-Nbz, GE11-PEG24-G-Nbz and cMBP-PEG24-G-Nbz and the control 

A­PEG24-G-Nbz (Table 16) are now available for coupling by means of native 

chemical ligation to oligomers with N-terminal cysteines out of the existing library of 

over 600 structures.  

 

Table 16: Solid phase assisted peptide synthesis based shielded and targeted oligomers 

for native chemical ligation. Mass was determined with ESI analysis.  

Sequence Formula Calculated mass  Detected mass 

[M+H]+ 

z 

FolA-PEG24-G-Nbz C80H128N12O33 1785.9 894.4 2 

B6-PEG24-G-Nbz C103H184N22O37 2322.7 775.5 3 

GE11-PEG24-G-Nbz C136H206N22O46 2885.2 1443.7 2 

cMBP-PEG24-G-Nbz C125H207N31O44 2848.1 950.5 3 

A-PEG24-G-Nbz C64H116N6O29 1433.6 1433.8 1 
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IV. DISCUSSION 

1. Stabilizing effects of tyrosine trimers on pDNA and siRNA 

polyplexes 

For efficient nucleic acid delivery in vitro and in vivo certain bottlenecks have to be 

mastered. The negative charge of the cell membrane hinders the uptake of 

negatively charged nucleic acids due to charge repulsion. Therefore, polycationic 

carriers are commonly used to bind the nucleic acids forming polyplexes with 

positive surface charge. For nucleic acid binding, at least four 1,2-diaminoethane 

units were incorporated in the oligomer structure. The primary and secondary 

amines are partially protonated under physiological conditions and therefore, are 

able to bind nucleic acids by means of electrostatic interactions. The uptake into 

the cells is then mediated through endocytosis. As a result, a correlation between 

zeta potential and uptake was seen: The higher the zeta potential the better the 

uptake. Aggregates, like in the case of oligomer 468 polyplexes, led to an 

increased uptake and hence, transfection efficacy in vitro, but were unsuitable for in 

vivo use, because clogging of capillaries must be prevented 85. As the next 

bottleneck, the payload has to be released out of the endosomes. The endosomal 

escape is mediated through the endosomal buffering by the phenolic groups in the 

aromatic amino acid tyrosine 97 and/or the endosomolytic activity of unsaturated 

fatty acids 56.  

Stabilization of polyplexes plays an important role for the successful delivery of 

nucleic acids in vitro and especially in vivo. Hence, certain prerequisites to ensure 

polyplex stabilization were incorporated in the oligomer structures: i) The 

hydrophobic dioleic acid motif, ii) cysteines, and iii) the oligotyrosine motif. Each 

component resulted in a different principle of stabilization: i) Hydrophobic 

interactions, ii) disulfide bridges, or iii) π-π stacking 99. To ensure polyplex stability 

cysteines, a dioleic acid motif, an oligotyrosine modification, or a combination of 

these were integrated in the oligomer structure in the center, the periphery, or both. 

Oligomers modified with solely tyrosines (333, 589) were less efficient in binding 

nucleic acid and displayed a decreased transfection efficiency. All other oligomers, 

except the controls, increased luciferase expression > 100-fold after pDNA 

transfection and showed efficient target gene silencing with siRNA. Therefore, we 
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can conclude that efficient nucleic acid transfer requires the combination of two 

different stabilizing components. 

The stability of polyplexes in 90% serum was analyzed by gel electrophoresis, 

demonstrating favorable stability of our new oligotyrosine based oligomers. For a 

more precise determination of intact polyplexes after several incubation times in 

90% serum, we used fluorescence correlation spectroscopy (FCS) for the 

quantification of both free siRNA and intact polyplexes 118. The size limit of the 

confocal volume hindered FCS measurements of siRNA polyplexes > 300 nm 102. 

Comparing gel-shift and FCS data generated a sequence of stability for the 

differently modified siRNA polyplexes as follows: 49 < 332 < 454, 464, 589. 

Accordingly, oligomers with lateral oligotyrosines formed more stable polyplexes in 

comparison with structures with terminal cysteines. Nevertheless, oligomers 

combining oligotyrosines and cysteines in the periphery displayed superior polyplex 

stability. 

On account of these beneficial properties, experiments were performed to evaluate 

the in vivo distribution of Cy7-labeled siRNA by the various polyplexes. Some 

oligomers quenched the fluorescent signal of the Cy7-labeled siRNA, making an in 

vivo comparison of these oligomer polyplexes impossible due to detection reasons. 

Even though, the oligomers quenched the signal, no signal of Cy7-labeled siRNA 

was observed in the kidneys or the bladder. This allows the conclusion that the 

polyplexes were still intact and hence, no dissociation took place. In contrast, the 

distribution of polyplexes of oligomers 49, 332, and 454 could be detected, 

revealing a prolonged presence of siRNA in tissues for all polymers compared to 

free siRNA and control oligomers. NIR fluorescence imaging revealed short 

circulation times followed by a fast renal clearance 127-128 for free siRNA with a 

hydrodynamic radius of approximately 2.3 nm and for control polyplexes. As the 

sizes of our control polyplexes were larger than the renal filtration limit of 6 nm in 

diameter, dissociation must have occurred before elimination through the kidneys. 

The hydrophobic modification of 49, 332, and 454 polyplexes led to an 

accumulation in the liver 129. However, a fluorescence signal could be detected in 

the whole mouse for several hours. Circulation times of polyplexes with oligomers 

332 and 454 were longer than with 49, revealing the higher stability of these 

polyplexes consistent with the in vitro experiments. As a result, high serum stability 

is beneficial for polyplex distribution, but oligomer characteristics, like 
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hydrophobicity, also play an important role. The addition of oligotyrosines resulted 

in the design of more stable oligomers showing a superior in vivo distribution. 

In accordance to the stability and favorable biocharacteristics of 332 polyplexes, 

siRNA transfer efficacy in vivo was examined. The 49 polyplexes were applied as 

controls 55. As the current polyplex versions lacked any targeting or shielding 

domains, intratumoral delivery of therapeutic RAN siRNA 130 or control siRNA 

polyplexes was performed, with administration into Neuro2A tumor bearing NMRI 

mice twice a week. In a former experiment, we showed that tumor growth of 

animals treated with 49 siRNA polyplexes was significantly reduced when animals 

were treated more frequently (3 times a week) 55. In the current study, the 

intratumoral injections were diminished to only twice a week. With this new 

application regime, 49 polyplexes did no longer reduce tumor growth significantly 

compared to animals treated with control siRNA. In contrast, the treatment with 332 

RAN siRNA polyplexes reduced the tumor volume significantly from day 14 

onwards. These data show the efficacy of oligomer 332 in the i.t. treatment of 

Neuro2A tumor bearing mice.  

 

 

2. Further stabilizing motifs for pDNA and siRNA polyplexes 

Certain prerequisites have to be fulfilled for efficient nucleic acid delivery in vitro 

and in vivo: Size, stability, transfection efficacy and negligible toxicity of the carrier 

systems. In order to increase stability of the polyplexes, various stabilizing motifs 

were incorporated into the oligomer structure: i) Ureido-pyrimidinone motifs,  

ii) 3­pyridyl isothiocyanate motifs, and iii) C-R-C motifs. Each component was 

considered to result in a different principle of stabilization: i) Hydrogen bond 

formation, ii) π-π stacking 99, and iii) disulfide bridges, respectively. 

Dankers et al. 104 introduced ureido-pyrimidinones (ICH-CAMP motif) which led to 

the formation of non-covalent hydrogen bonds between two monomers. This 

concept was used for the stabilization of our T-shaped polyplexes. In order to 

attach ureido-pyrimidinones at the N-terminus on solid phase, a new synthesis 

strategy was invented: ‘Reverse synthesis’. The ureido-pyrimidinone modified 

oligomer 408 and its analog 407 showed comparable luciferase expression. Even 
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though, siRNA gene silencing was slightly increased by the ICH-CAMP motif, the 

effect was less pronounced as for analogs with cysteine modification 56. siRNA 

binding ability was decreased by the ureido pyrimidinone modification. The ureido 

pyrimidinones did not have the desired effect on transfection efficiency and even 

displayed decreased nucleic acid binding. A possible explanation for the loss in 

binding ability is the fact that the dominating content of body fluids is body water 

and water itself forms hydrogen bonds. Ureido pyrimidinones also form hydrogen 

bonds. In the presence of water, the ureido pyrimidinone monomers interact with 

water and do not form hydrogen bonds with other ICH-CAMP monomers. 

Consequently, the specificity was insufficient to ensure stability in aqueous 

solution. As a result, this approach was not further pursued.  

Creusat et al. 105 introduced pyridyl thiourea grafted 25 kDa polyethylenimine which 

led to effective siRNA-mediated gene silencing in vitro and in vivo. However, the 

incorporation of 3-pyridyl isothiocyanate motifs into our T-shape structure led to a 

complete loss of gene silencing compared to polyplexes with cysteine motifs. The 

transfection efficiency was comparable to the control T-shape 216 with alanine 

instead of cysteines 55. The π-π interactions of the pyridyl isothiocyanate 

monomers are insufficient for polyplex stabilization. This is in accordance with the 

finding that linear oligomer structures with single tyrosine modification did not show 

any siRNA silencing compared to structures with six tyrosines. As a result, at least 

six tyrosines were introduced in our structures divided in tyrosine motifs with three 

consecutive tyrosines. The use of a pyridyl isothiocyanate trimer might increase 

transfection efficiency. However, attachment of three consecutive 3-pyridyl 

isothiocyanate is impossible due to its structure. As a result, this approach to 

increase target gene knockdown and polyplex stability was not further pursued.  

Wu et al. 106 introduced twin disulfides C-X-C (cysteine-any-cysteine) for orthogonal 

disulfide pairing which led to the formation of stable dimers linked together by two 

disulfide bonds. Employing this strategy for our purposes, polycationic oligomers 

with twin disulfides were used to form positively charged polyplexes with enhanced 

stability. T-shape oligomers with four 1,2-diaminoethane units incorporated in the 

oligomer structure were modified with the C-R-C motif.  

siRNA polyplexes of oligomer 591 could not be analyzed and 592 polyplexes 

formed aggregates and hence, were unsuitable for in vivo use, because clogging of 

capillaries must be prevented 85. The release of the payload out of the endosome is 



V. Discussion     84 

another crucial delivery step. The endosomal buffer capacity was not increased by 

the additional cysteines and arginines in the twin disulfide modification, because 

buffer capacities were comparable to analogs with single cysteines. As a result, 

only the phenolic groups in the aromatic amino acid tyrosine 97 and/or the 

endosomolytic activity of unsaturated fatty acids 56 mediated endosomal escape.  

Oligomers modified with the twin disulfides and either an oligotyrosine or a dioleic 

acid motif showed good siRNA binding. Oligomer 591 with solely the C-R-C motif 

did not show complete siRNA binding, comparable to its analog 413 with single 

cysteines. In contrast, all oligomers displayed complete pDNA binding at N/P > 3 

and therefore, increased luciferase expression > 50-fold after pDNA transfection, 

although the absolute transfection levels were still moderate. Oligomers without 

central modification (591 and 594) did not lead to efficient target gene silencing with 

siRNA. Therefore, we can conclude that efficient nucleic acid transfer requires, in 

the case of twin disulfide modified oligomers, the combination of at least one 

central and one peripheral stabilizing component. siRNA as well as pDNA binding 

was increased by the twin disulfide modification when compared to analogs with 

single cysteine modification. This higher nucleic binding ability might be 

advantageous for in vivo application. 

The stability of polyplexes in 90% serum was analyzed by gel electrophoresis 

demonstrating favorable stability of our new twin disulfide based oligomers. 

Especially 592, 593, and 594 polyplexes showed increased serum stability in the 

gel shifts compared to polyplexes containing single cysteines analogues 49, 468, 

and 465. For a more precise determination of intact polyplexes in 90% serum, we 

used fluorescence correlation spectroscopy (FCS) for the quantification of both free 

siRNA and intact C-R-C motif containing polyplexes 85. Particles of oligomer 592 

were larger than the confocal volume and therefore analysis with FCS was not 

possible. All other oligomers with twin disulfides formed more stable polyplexes in 

comparison to structures with single cysteines.  

First in vitro siRNA delivery experiments did not result in enhanced gene silencing. 

The beneficial stability properties however encourage further in vitro transfection 

and possibly in vivo experiments in the future.  
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3. Comparison of four different particle sizing methods for 

siRNA polyplex characterization 

An appropriate method for the physico-chemical characterization of siRNA 

polyplexes should be found. Therefore, four different analytical methods were 

evaluated and each one used different parameters for size determination: DLS 

converted the fluctuations of the scattered light into a correlation function. 

Therefore, particles movements through Brownian motion are related to the 

hydrodynamic diameter according to the Stokes-Einstein equation 109-110. With NTA 

illuminated particles under a microscope are tracked 115. The particles scatter light, 

which is captured by a real-time camera 116. Both methods determined the 

hydrodynamic diameter of the polyplexes. In contrast, AFM visualized the particles 

with the help of a cantilever tip 112, 114. The topography of the sample was scanned 

and hence, the diameter of the particles was determined 113. FCS measured 

spontaneous fluctuation of fluorescent molecules, which occurred in the confocal 

volume due to Brownian motion of the polyplexes. The autocorrelation function held 

information about the diffusion time and hence, the hydrodynamic radius 119-120. 

Understanding the principles that stand behind each method was essential for the 

data evaluation. For instance, the intensity of the scattered light of big particles 

hindered the simultaneous analysis of small particles with DLS, if intensity 

distribution, PdI, or Z-average were investigated. The intensity of the scattered light 

of the particles is directly proportional to the diameter by the power of 6 in the 

Rayleigh approximation and therefore, the contribution of the total scattered light by 

small particles is insignificant in the presence of big particles 131. The Mie theory is 

used to convert the intensity distribution into the volume distribution 132. If the 

intensity peak shows more than one peak, or a tail, the conversion into the volume 

distribution will give a more realistic view of the importance of the second peak or 

the tail. For example, if there are two populations of spherical particles present in 

equal numbers, which differ in size more than the factor 3, the number distribution 

will show two peaks of a 1:1 (smaller : bigger particle) ratio. If the number 

distribution is converted into the volume distribution, the peaks would change to a 

ration of 1:1000. The intensity of scattering is proportional to d6 and therefore, the 

ratio between the two peaks would change to 1:106, if it was further converted into 

the intensity distribution. In general, it can be observed that 

d(intensity) > d(volume) > d(number).  
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Figure 32: Polyplex sizes and comparison of different methods.  

 

 

All methods had their advantages and disadvantages (Figure 32): Sample 

preparation was easy and fast for DLS, NTA, and AFM, whereas for FCS at least 

one fluorescently labeled compound was necessary. DLS was the most user-

friendly method, which yielded consistent results in a relative short period of time. 

However, the results depended on the distributions used for data analysis. An 

overview of the results, obtained with the four different methods, is given in 

Table 17.  
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Table 17: Comparison of polyplex diameters obtained with DLS, AFM, FCS, and NTA. 

N.m. = number mean; V.m. = volume mean; Z-ave = Z-average; ZP = zeta potential; 

d = diameter; Mean = mean diameter. Variation of the median amongst 3 measurements of 

the same sample is shown, not the standard deviation.  

Polyplex DLS AFM FCS NTA 

49 

N.m.: 18.1  0.5 nm 

V.m.: 34.4  6.3 nm 

ZP: 20.8  0.6 mV 

15-45 nm 38.6 nm 
Mean: 155  48 nm 

 

332 
Z-ave: 150.3  2.2 nm 

ZP: 38.1  0.8 mV 
120-170 nm 191.6 nm 

Mean: 139  47 nm 

 

279 
Z-ave: 414.0  11.1 nm 

ZP: 25.6  0.6 mV 

~80-100 nm and  

≤ 430 nm 

295.0 nm 

 

Mean: 128  35 nm 

 

 

DLS measurements enabled the determination of the zeta potential of the 

polyplexes. Only positively charged polyplexes were taken up through endocytosis 

due to the negative charge of the cell membrane. DLS measurements were used to 

find a suitable dilution buffer to obtain reliable results for all further measurements 

as measurement times were short, especially when compared to AFM. All salt 

containing buffers were found suitable for data analysis, whereas glucose 

containing buffers hindered data analysis due to the appearance of a glucose peak 

at approximately 1 nm, and high salt concentrations obscured zeta potential 

measurements. Therefore, all further measurements were performed in 20 mM 

HEPES. Whereas, the measurements with DLS were fast and straightforward, NTA 

required several optimization steps and the results depended on the operator and 

the settings by a large extent. Contrary to DLS, the small 49 polyplexes could not 

be tracked and analyzed with NTA due to the detection limit of around 35 nm. This 

limit applied only for samples with high refractive index (e.g. gold nanoparticles). 

Moreover, the simultaneous analysis of small and large polyplexes was not 

possible even with high threshold settings or with the extended dynamic range 

mode. Contrary to DLS, NTA enabled indirect sample visualization and provided 

approximate particle concentrations. Both techniques showed good sizing and 

narrow distributions for the homogeneous, medium sized 332 polyplexes, whereas 

NTA had a higher resolution: One peak with two maxima was observed for 332 

polyplexes with NTA, whereas DLS showed only one peak independently of the 
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distributions. AFM was another method that allowed sample visualization and gave 

additionally a three dimensional profile of the sample. Contrary to all other 

methods, the real, and not the hydrodynamic, size of the polyplexes was 

determined. Long measurement times, charge interactions of the probe with the 

sample holder, as well as deformation of the sample through the cantilever tip were 

disadvantages of AFM. Moreover, only a small section of the sample was 

investigated and therefore, this section might not be representative for the whole 

sample. FCS is the only method, whereby particle measurements in full serum 

were possible. No background effects, like light scattering by serum proteins, 

hindered the analysis, as only the labeled component is being analyzed, in contrast 

to DLS and NTA measurements. Moreover, AFM measurements in serum were not 

possible due to the long measurement times for each sample and therefore, 

dissociation of the polyplexes. After fixing the settings needed for the calibration of 

the device, the size measurements with FCS were as fast as with DLS. Similar to 

NTA, data analysis depended on the operators and their expertise.  

DLS, AFM and FCS were suitable methods to determine the size of homogeneous 

particles, such as the polyplexes with T-shape oligomers 49 and 332. DLS 

measurements displayed small peak > 1 µm in the intensity distribution of 49 

polyplexes. Therefore, the intensity mean, Z-average and polydispersity index had 

to be evaluated with care, whereas the number and volume distribution reflected a 

more realistic particle size. Moreover, the dilution buffer influenced the results of 

the DLS particle size and zeta potential measurements. Especially sugar containing 

buffers, like HBG, led to the appearance of a glucose peak of ~ 1 nm due to the 

high sugar concentration of 5% (w/v). Similar results were reported in literature. For 

example, Kaszuba et al. 133 showed that 5% sucrose (w/v) in water displayed 

particle sizes of around 1 nm. The effects of HBG were more drastic for 49 

polyplexes than for 332 polyplexes and thus, influenced dynamic light scattering 

results. Contrary to 49 polyplexes, the analysis of 332 polyplexes with NTA led to 

accurate results with high resolution. In accordance to this, Filipe et al. 115 reported 

a higher accuracy for NTA compared to DLS for standard polystyrene beads. The 

analysis of heterogeneous polyplexes (279), displaying small and big particles, was 

a challenge with all methods. Only AFM gave information about the heterogeneity 

of the sample. DLS results did not reflect reality and varied to a great extent, 

depending on the distribution, although the fitting of the correlation function was 
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possible with the Cumulants analysis. However, the NTA measurements gave 

diameters reflecting the predominant, smaller particle fraction, whereas the bigger 

aggregates were neglected. Contrary to DLS and NTA, FCS had a size limitation of 

around 300 nm due to the size of the confocal volume. In addition, the analysis was 

not possible for particles with a high number of fluorescently labeled molecules, as 

the fluorescence intensity was higher than the detection limit. Furthermore, FCS 

was the only method whereby real-time analysis of polyplex self-assembly was 

possible. The results confirmed that an incubation of 30 min was sufficient for 

polyplex formation. 

Polyplex stability plays a crucial role in the in vivo application of siRNA polyplexes, 

as instable polyplexes are destroyed by serum proteins. Consequently, the siRNA 

is released into the blood stream, where it is degraded by RNases. FCS was the 

only method, where polyplexes in full serum are quantifiable, as reported by 

Buyens et al. 85. The size of the 49 polyplexes increased in full fetal bovine serum 

(from a hydrodynamic radius of less than 20 nm to approximately 50 nm), as 

negatively charged serum proteins attached onto the positively charged 

polyplexes 134. In contrast to their long-term stability in buffer, 49 polyplexes 

showed serum stability only to a certain degree: 66% and 18% of intact polyplexes 

were detected after 90 min at room temperature and 37°C, respectively. 

 

 

4. Native chemical ligation 

Polyethylene glycol (PEG) is used as shielding domain resulting in the protection of 

the carrier surface from interactions with blood components and non-target cells. 

Additionally, shielding increases the circulation time of carriers due to a decreased 

clearance 135 and avoids recognition by the immune system or the liver. 

Consequently, an ideally shielded particle is not able to interact with the target cell. 

Thus, a targeting ligand has to be attached to the carrier system in order to 

increase specific interactions with target cells that overexpress these receptors.  

Blanco-Canosa et al. 73 introduced an approach which is compatible with solid 

phase peptide synthesis for the generation of thioesters oligomer precursors for 

native chemical ligation. With the help of these protocols, the suitability of the 



V. Discussion     90 

method for the ligation of polycations with activated shielding and targeting 

domains was evaluated. After proving the suitability of NCL with model oligomers, 

larger shielding domains were incorporated into the oligomer structures. 

Additionally, different targeting ligands like folic acid, B6, GE11, and cMet binding 

peptide (cMBP) were attached to the shielding domains. Those ligands target the 

folic acid receptor, transferrin receptor, EGF receptor, and cMet/hepatocyte growth 

factor receptor, respectively. The resulting thioesters oligomer precursors 

FolA­PEG24-G-Nbz, B6-PEG24-G-Nbz, GE11-PEG24-G-Nbz and 

cMBP­PEG24­G­Nbz were synthesized and can now be coupled by means of native 

chemical ligation to oligomers with N-terminal cysteines out of the existing library of 

over 600 structures.  

Native chemical ligation can be performed prior to polyplex formation, as described 

above, or possibly after polyplex formation (post-ligation). The post-ligation would 

be useful for oligomers with more than one N-terminal cysteine. As a result, only 

the cysteines displayed on the polyplex surface can be modified with the shielding 

and targeting domain. Therefore, the ionic interactions between polycations and 

nucleic acids are not hampered. Further steps would be the biophysical 

characterization of the targeted structures, as well as in vitro and in vivo 

experiments.  
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V. SUMMARY 

Free nucleic acids cannot enter cells, because of their negative charge and are 

therefore degraded by DNases or RNases, or rapidly cleared through the urinary 

tract due to their size. Consequently, appropriate carriers for the transport of 

nucleic acids are needed. Endosomal escape, transfection efficacy, carrier stability, 

size, and distribution profile play an important role for successful in vivo application 

of synthetic vectors and formulation development.  

Polyplex stability was increased by integrating tyrosine trimers as stabilizing 

components into the oligomer sequences. Therefore, we synthesized precise, 

self­assembling, polycationic, oligotyrosine motif containing oligomers by means of 

solid phase assisted synthesis. Those oligomers had a favorable increase in buffer 

capacity and showed improved serum stability due to the incorporation of trimers of 

the aromatic amino acid. Our results show that these new carriers with at least two 

different polyplex stabilizing components were efficient in siRNA and pDNA 

delivery, and showed low toxicity in vitro and in vivo. Stability and hydrophobicity of 

the polyplexes affected systemic distribution upon intravenous administration and 

therapeutic efficacy in a subcutaneous tumor model.  

Ureido pyrimidinone motifs, pyridyl thiourea motifs, or cysteine-arginine-cysteine 

motifs were incorporated into the oligomer structures in order to increase polyplex 

stability. The resulting oligomers were stabilized with the help of hydrogen bonds, 

π-π interactions, and covalent disulfide bridges, respectively. As pyridyl thiourea 

modification led to a loss in transfection efficiency and ureido pyrimidinone 

modification was less beneficial on binding and transfection efficiency than cysteine 

modification, theses approaches were not further pursued. However, stabilization of 

oligomers with twin disulfides led to an increased nucleic acid binding ability and 

stability in fetal bovine serum. In contrast, gene delivery and target gene silencing 

of C-R-C modified oligomers seemed to be less efficient than with single cysteine 

modified analogs. Nevertheless, the influence of the C-R-C modification in vitro and 

in vivo has to be further investigated.  

DLS, AFM, NTA and FCS were evaluated as analytical methods for polyplex 

characterization. All methods were suitable for medium sized, homogeneous 

polyplexes. In contrast, the smaller polyplexes could not be analyzed with NTA, due 
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to the detection limit. The analysis of heterogeneous samples was delicate 

independent of the method. Only by visualization with AFM, the heterogeneity of 

polyplexes was detectable. The small amount of large particles obscured the size 

measurements with all other methods, producing misleading results, even though 

fitting of the data was possible with DLS. FCS enables monitoring of the 

self­assembly process of polyplexes. In addition, polyplex stability in full fetal 

bovine serum could be quantified with FCS. In sum, none of the tested methods for 

particle size characterization was fully satisfactory. Each of them had its 

advantages and disadvantages. Therefore, a combination of at least two methods, 

one of which should be microscopic, to analyze the potential heterogeneity of 

samples, is recommended. 

Interaction of the carrier surface with blood components and off-target cells should 

be reduced. Therefore, shielding and targeting domains should be ligated to 

already existing, polycationic structures with the help of native chemical ligation. A 

model polycation and activated oligomers containing PEG or PEG and a targeting 

ligand were used to investigate the suitability of this method to attach those 

domains. Afterwards, further activated, shielded oligomers with targeting ligand 

were synthesized. The strategy offers the possibility attaching ligands and PEG to 

oligomers out of our library with > 600 structures. The resulting oligomers need to 

be further evaluated as part of pDNA and siRNA polyplexes in vitro and in vivo.  
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VII. APPENDIX 

1.1. Abbreviations 

A Alanine, Ala 

AA Amino acid 

ACN Acetonitrile 

AFM Atomic force microscopy 

AHA1 Activator of 90 kDa heat shock protein ATPase isoform 1 

B6 Peptide sequence with affinity for the transferrin receptor 

Boc tert-Butyloxycarbonyl 

bPEI Branched polyethylenimine 

C Cysteine, Cys 

CDCl3 Deuterated chloroform 

cMBP Peptide binding to the hepatocyte growth factor receptor(cMet) 

cMet Hepatocyte growth factor receptor 

C-R-C Cysteine-arginine-cysteine 

Cy Cyanine 

Dbz 3,4-Diaminobenzoic acid 

DCM Dichloromethane 

Dde N-1-(4,4-dimethyl-2,6-dioxocyclohexylidene)ethyl 

DIPEA Diisopropylethylamine 

DLS Dynamic light scattering  

DMF N,N-Dimethylformamide 

DMFxD6 Deuterated DMF 

DMSO Dimethyl sulfoxide 

DMSOxD6 Deuterated DMSO 
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DNA Deoxyribunucleic acid 

D2O Deuterium oxide 

E Glutamic acid, Glu 

e.g. Exempli gratia (for example) 

EDTA Ethylenediaminetetraacetic acid 

EGF Epidermal growth factor 

eGFP Enhanced green fluorescent protein 

EPR Enhanced permeability and retention effect 

ESI Electron spray ionization 

EtOH Ethanol 

F Phenylalanine, Phe 

FA Fatty acid 

FAB-MS Fast atom bombardment mass spectrometry 

FACS Fluorescence-activated cell sorting 

FBS Fetal bovine serum 

FCS Fluorescence correlation spectroscopy 

Fmoc Fluorenylmethoxycarbonyl 

FolA Folic acid 

G Glycine, Gly 

G(t) Relative correlation function 

G(t) fit Fitting function curve 

GE11 Peptide binding to the EGF receptor 

HBG HEPES buffered glucose 

HEPES N-(2-hydroxyethyl)piperazine-N’-(2-ethansulfonic acid) 

HOBt Hydroxybenzotrialzole 

ICH-CAMP 2-(6-isocyanahexylaminocarbonylamino)-6-methyl-

4(1H)pyrimidinone 
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i. t. Intratumoral 

I.U. International unit 

i. v. Intravenous 

K Lysine, Lys 

LinA Linoleic acid 

LPEI Linear polyethylenimine 

Luc Luciferase 

MALDI-TOF Matrix assisted laser desorption ionization – time of flight 

MeOH Methanol 

MS Mass spectrometry 

MtBE Methyl tert-butyl ether 

MTT Dimethylthiazoldiphenyl-tetrazolium bromide 

Mut Scrambled sequence of eGFP siRNA without silencing potential 

Mw Molecular weight 

n.d.  Not defined 

N/P ratio Number of protonable nitrogens to phosphates 

Nbz N-acyl-benzimidazolinone 

NCL Native chemical ligation 

NIR Near-infrared 

NMR Nuclear magnetic resonance 

NTA Nanoparticle tracking analysis 

OleA Oleic acid 

PAMAM Polyamidoamine 

PBS Phosphate buffered saline 

PdI Polydispersity Index 

pDNA Plasmid deoxyribonucleic acid 
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PEG Polyethylene glycol 

PEG2 or PEG24 Polyethylene glycol with exactly 2 or 24 monomers 

PITC 3-Pyridyl isothiocyanate 

Pybop® Benzotriazole-1-yl-oxy-tris-(dimethylamino)-phosphonium 

hexafluorophosphate 

R Arginine, Arg 

RAN Ras (rat sarcoma)-related nuclear protein  

RLU Relative light units 

RNA Ribonucleic acid 

rpm Rounds per minute 

RT Room temperature 

SEC Size exclusion chromatography 

siRNA Small interfering ribonucleic acid 

SPPS Solid phase peptide synthesis 

Stp Succinoyl tetraethylenpentamine 

TBE Tris(hydroxymethyl)aminomethane-borate-EDTA 

tBu tert-Butyl 

TCEP Tris(2-carboxyethyl)phosphine 

TFA Trifluoroacetic acid 

TFE 2,2,2-Trifluoroethanol 

TIS Triisopropylsilane 

Trt Trityl 

v/v Volume per volume 

W Tryptophan, W 

w/v Weight per volume 

Y Tyrosine, Tyr 
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1.2. Analytical data 

Sequence:  Fmoc-Tyr(tBu)3-OH 

Molecular formula: C54H63N3O9  Mw 898.09 

FAB+ (mass found) 898.6 

1H NMR spectrum (400 MHz) in CDCl3. δ (ppm) = 1.1-1.4 (m, 27 H, -CH3 tBu), 2.6-3.1 (m, 

6 H, -CH2- tyrosine), 4.1-4.7 (m, 6 H, -CH2- fmoc, -CH- fmoc and αH amino acids), 6.8-7.1 

(m, 12 H, -CH- tyrosine), 7.25-7.8 (m, 8 H, -CH- fmoc). 

 

Sequence:  Boc-Tyr(tBu)3-OH 

Molecular formula: C44H61N3O9  Mw 775.97 

DEI+ (mass found) 776.4 

1H NMR spectrum (400 MHz) in CDCl3. δ (ppm) = 1.1-1.5 (m, 36 H, -CH3 tBu), 2.7-3.2 (m, 

6 H, -CH2- tyrosine), 4.2-5.0 (m, 3 H, αH amino acids), 6.7-7.1 (m, 12 H, -CH- tyrosine). 

 

Sequence:  2-(6-Isocyanahexylaminocarbonylamino)-6-methyl- 

 4(1H)pyrimidinone (ICH-CAMP) 

Molecular formula: C13H19N5O3 Mw 293.32 

DEI+ (mass found) 293.1 

1H NMR spectrum (400 MHz) in DMF*D6. δ (ppm) = 1.3-1.7 (m, 8 H, alipathic -CH2-), 

2.1­2.2 (s, 3 H, aromatic -CH3), 3.2-3.3 (q, 2 H, alipathic -CH2-), 3.37-3.45 (m, 2 H, 

alipathic -CH2-), 5.75-5.85 (s, 1 H, aromatic -CH-). 

 

Sequence:  Fmoc-Dbz 

Molecular formula: C22H18N2O4 Mw 374.39 

DEI+ (mass found) 374.5 

1H NMR spectrum (400 MHz) in CDCl3. δ (ppm) = 4.1-4.5 (m, 3 H, -CH- and –CH2- Fmoc), 

6.7-6.75 (d, 1 H, -CH- Dbz), 7.2-7.9 (m, 10 H, -CH- fmoc and Dbz), 8.6-.8. (s, 1 H, -COOH 

Dbz). 
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Sequence:  FolA(trt) 

Molecular formula: C42H41N7O6 Mw 739.82 

ESI+ (mass found) 740.32 

1H NMR spectrum (400 MHz) in DMF*D6. δ (ppm) = 1.4-1.6 (s, 9 H, -CH3 tBu), 2.0-2.6 (m, 

4 H, -CH2- glutamic acid), 4.4-4.6 (m, 2 H, -CH2- N10-(trifluoroacetyl)pteroic acid)), 7.2-7.9 

(m, 20 H, -CH- trt and N10-(trifluoroacetyl)pteroic acid)). 

 

Sequence:  C-Stp2-[(OleA)2-K]K-Stp2-C 49 

Molecular formula: C102H200N26O15S2 Mw 2094.98 

Maldi (mass found) 2094.44 

1H NMR spectrum (400 MHz) in D2O. δ (ppm) = 0.7-0.8 (s, 6 H, -CH3 oleic acid), 1.0-2.25 

(m, 68 H, γδεH lysine, -CH2- oleic acid), 2.4-2.6 (m, 16 H, -CO-CH2-CH2-CO-), 2.8-3.1 (m, 

8 H, βH lysine and cysteine), 3.15-3.6 (m, 64 H, -CH2- Tp), 4.0-4.5 (m, 4 H, αH amino 

acids), 5.15-5.3 (m, 4 H, -CH- oleic acid). 

 

Sequence:  A-Stp2-[(OleA)2-K]K-Stp2-A 216 

Molecular formula: C102H200N26O15 Mw 2030.84 

1H NMR spectrum (400 MHz) in D2O. δ (ppm) = 0.7-0.9 (s, 6 H, -CH3 oleic acid), 1.0-2.25 

(m, 74 H, γδεH lysine, -CH3 alanine, -CH2- oleic acid), 2.4-2.6 (m, 16 H, 

­CO­CH2­CH2­CO-), 3.0-3.2 (m, 4 H, βH lysine), 3.1-3.6 (m, 64 H, -CH2- Tp), 4.0-4.25 (m, 

4 H, αH amino acids), 5.1-5.4 (m, 4 H, -CH- oleic acid). 

 

Sequence:  [C-Y3-Stp3]2K 331 

Molecular formula: C140H237N41O27S2 Mw 2990.768 

1H NMR spectrum (400 MHz) in D2O. δ (ppm) = 1.3-1.8 (m, 6 H, γδεH lysine), 2.4-2.6 (m, 

24 H, -CO-CH2-CH2-CO-), 2.65-3.1 (m, 15 H, βH lysine, cysteine and tyrosine), 3.1-3.6 

(m, 96 H, -CH2- Tp), 4.0-4.5 (m, 9 H, αH amino acids), 6.65-7.15 (m, 24 H, -CH- tyrosine). 

 

Sequence:  Y3-Stp2-[(OleA)2-K]K-Stp2-Y3 332 

Molecular formula: C150H244N30O25 Mw 2867.73  

Maldi (mass found) 2867.57 
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1H NMR spectrum (400 MHz) in D2O. δ (ppm) = 0.7-0.8 (s, 6 H, -CH3 oleic acid), 1.0-2.0 

(m, 68 H, γδεH lysine, -CH2- oleic acid), 2.3-2.7 (m, 16 H, -CO-CH2-CH2-CO-), 2.7-3.1 (m, 

16 H, βH lysine and tyrosine), 3.1-3.6 (m, 64 H, -CH2- Tp), 4.0-4.5 (m, 8 H, αH amino 

acids), 5.15-5.3 (m, 4 H, -CH- oleic acid), 6.65-7.15 (m, 24 H, -CH- tyrosine). 

 

Sequence:  Y3-Stp2-[(Y3)2-K]K-Stp2-Y3 333 

Molecular formula: C170H240N36O34 Mw 3331.9453 

1H NMR spectrum (400 MHz) in D2O. δ (ppm) = 1.0-1.8 (m, 12 H, γδεH lysine), 2.3-2.6 (m, 

16 H, -CO-CH2-CH2-CO-), 2.6-3.1 (m, 28 H, βH lysine and tyrosine), 3.1-3.6 (m, 64 H, 

­CH2- Tp), 3.8-4.5 (m, 14 H, αH amino acids), 6.65-7.15 (m, 48 H, -CH- tyrosine). 

 

Sequence:  [(Stp5)2K]K[K(OleA)2] 407 

Molecular formula: C174H352N56O26 Mw 3645.02 

Maldi (mass found) 3643.98 

1H NMR spectrum (400 MHz) in D2O. δ (ppm) = 0.75-0.85 (s, 6 H, -CH3 oleic acid), 1.1-2.3 

(m, 74 H, γδεH lysine, -CH2- oleic acid), 2.4-2.6 (m, 40 H, -CO-CH2-CH2-CO-), 2.9-3.15 

(m, 6 H, βH lysine), 3.15-3.6 (m, 160 H, -CH2- Tp), 4.0-4.3 (m, 3 H, αH amino acids), 

5.2­5.4 (m, 4 H, -CH- oleic acid). 

 

Sequence:  [(ICH-CAMP-Stp5)2K]K[K(OleA)2] 408 

Molecular formula: C200H390N66O32 Mw 4231.66 

1H NMR spectrum (400 MHz) in D2O. δ (ppm) = 0.75-0.85 (s, 6 H, -CH3 oleic acid), 1.0-2.3 

(m, 96 H, γδεH lysine, -CH2- oleic acid, -CH2- ICH-CAMP and -CH3 ICH-CAMP), 2.4-2.6 

(m, 40 H, -CO-CH2-CH2-CO-), 2.9-3.15 (m, 6 H, βH lysine), 3.15-3.6 (m, 168 H, -CH2- Tp 

and -CH2- ICH-CAMP), 4.0-4.3 (m, 3 H, αH amino acids), 5.2-5.4 (m, 4 H, -CH- oleic acid), 

5.9-5.95 (s, 2 H, aromatic -CH-). 

 

Sequence:  C-Stp2-[K]K-Stp2-C 413 

Molecular formula: C66H136N26O13S2 Mw 1566.08 

Maldi (mass found) 1565.07 

1H NMR spectrum (400 MHz) in D2O. δ (ppm) = 1.1-1.9 (m, 12 H, γδεH lysine), 2.4-2.7 (m, 

16 H, -CO-CH2-CH2-CO-), 2.8-3.1 (m, 8 H, βH lysine and cysteine), 3.1-3.6 (m, 64 H, 
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­CH2- Tp), 3.8-4.4 (m, 4 H, αH amino acids). 

 

Sequence:  C-Y3-Stp2-[(OleA)2-K]K-Stp2-Y3-C 454 

Molecular formula: C156H254N32O27S2 Mw 3074.01 

1H NMR spectrum (400 MHz) in D2O. δ (ppm) = 0.7-0.8 (s, 6 H, -CH3 oleic acid), 0.8-2.0 

(m, 68 H, γδεH lysine, -CH2- oleic acid), 2.3-2.6 (m, 16 H, -CO-CH2-CH2-CO-), 2.6-3.1 (m, 

20 H, βH lysine, tyrosine and cysteine), 3.1-3.6 (m, 64 H, -CH2- Tp), 4.0-4.6 (m, 10 H, αH 

amino acids), 5.15-5.3 (m, 4 H, -CH- oleic acid), 6.65-7.35 (m, 24 H, -CH- tyrosine). 

 

Sequence:  C-Y3-Stp2-[(Y3)2-K]K-Stp2-Y3-C 464 

Molecular formula: C174H244N38O37S2 Mw 3524.16 

1H NMR spectrum (400 MHz) in D2O. δ (ppm) = 1.1-1.9 (m, 12 H, γδεH lysine), 2.3-2.6 (m, 

16 H, -CO-CH2-CH2-CO-), 2.6-3.1 (m, 32 H, βH lysine, cysteine and tyrosine), 3.1-3.6 (m, 

64 H, -CH2- Tp), 3.8-4.5 (m, 16 H, αH amino acids), 6.65-7.15 (m, 48 H, -CH- tyrosine). 

 

Sequence:  C-Y3-Stp2-[K]K-Stp2-Y3-C 465 

Molecular formula: C120H190N32O25S2 Mw 2545.122 

1H NMR spectrum (400 MHz) in D2O. δ (ppm) = 1.1-1.8 (m, 12 H, γδεH lysine), 2.3-2.6 (m, 

16 H, -CO-CH2-CH2-CO-), 2.6-3.1 (m, 20 H, βH lysine, cysteine and tyrosine), 3.1-3.6 (m, 

64 H, -CH2- Tp), 3.7-4.5 (m, 10 H, αH amino acids), 6.65-7.15 (m, 24 H, -CH- tyrosine). 

 

Sequence:  C-Stp2-[(Y3)2-K]K-Stp2-C 468 

Molecular formula: C120H190N32O25S2 Mw 2545.12 

1H NMR spectrum (400 MHz) in D2O. δ (ppm) = 0.9-1.9 (m, 12 H, γδεH lysine), 2.3-2.6 (m, 

16 H, -CO-CH2-CH2-CO-), 2.6-3.1 (m, 20 H, βH lysine, cysteine and tyrosine), 3.1-3.6 (m, 

64 H, -CH2- Tp), 3.75-4.5 (m, 10 H, αH amino acids), 6.65-7.15 (m, 24 H, -CH- tyrosine). 

 

Sequence:  [(PITC-Stp2)2K]K[K(Y3)2] 587 

Molecular formula: C132H200N36O24S2 Mw 2739.357 

1H NMR spectrum (400 MHz) in D2O. δ (ppm) = 1.1-1.8 (m, 18 H, γδεH lysine), 2.4-2.6 (m, 

16 H, -CO-CH2-CH2-CO-), 2.65-3.1 (m, 18 H, βH lysine and tyrosine), 3.1-3.6 (m, 64 H, 

­CH2- Tp), 3.8-4.6 (m, 9 H, αH amino acids), 6.6-7.1 (m, 24 H, -CH- tyrosine), 7.8-9.2 (m, 
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4 H, PITC). 

 

Sequence:  [C-Y3-Stp3]2K-Stp3-Y3-C 589 

Molecular formula: C204H335N59O41S3 Mw 4366.41 

1H NMR spectrum (400 MHz) in D2O. δ (ppm) = 1.1-1.8 (m, 6 H, γδεH lysine), 2.4-2.6 (m, 

36 H, -CO-CH2-CH2-CO-), 2.6-3.1 (m, 42 H, βH lysine, cysteine and tyrosine), 3.1-3.6 (m, 

144 H, -CH2- Tp), 4.0-4.5 (m, 12 H, αH amino acids), 6.65-7.15 (m, 36 H, -CH- tyrosine). 

 

Sequence:  [Y3-Stp3]2K-Stp3-Y3 590 

Molecular formula: C195H320N56O38 Mw 4056.9797 

1H NMR spectrum (400 MHz) in D2O. δ (ppm) = 1.1-1.8 (m, 6 H, γδεH lysine), 2.4-2.6 (m, 

36 H, -CO-CH2-CH2-CO-), 2.6-3.1 (m, 38 H, βH lysine and tyrosine), 3.1-3.6 (m, 144 H, 

­CH2- Tp), 4.0-4.5 (m, 10 H, αH amino acids), 6.65-7.2 (m, 36 H, -CH- tyrosine). 

 

Sequence:  C-R-C-Stp2-[K]K-Stp2-C-R-C 591 

Molecular formula: C89H181N37O17S4 Mw 2169.89 

1H NMR spectrum (400 MHz) in D2O. δ (ppm) = 1.2-2.0 (m, 20 H, γδεH lysine and γδH 

arginine), 2.4-2.6 (m, 16 H, -CO-CH2-CH2-CO-), 2.8-3.2 (m, 16 H, βH lysine, arginine and 

cysteine), 3.2-3.7 (m, 64 H, -CH2- Tp), 3.8-4.4 (m, 8 H, αH amino acids). 

 

Sequence:  C-R-C-Stp2-[(OleA)2-K]K-Stp2-C-R-C 592 

Molecular formula: C125H245N37O19S4 Mw 2698.78 

1H NMR spectrum (400 MHz) in D2O. δ (ppm) = 0.7-0.9 (s, 6 H, -CH3 oleic acid), 1.0-2.3 

(m, 76 H, γδεH lysine and γδH arginine, -CH2- oleic acid), 2.4-2.6 (m, 16 H, 

­CO­CH2­CH2-CO-), 2.8-3.2 (m, 16 H, βH lysine, arginine and cysteine), 3.2-3.7 (m, 64 H, 

-CH2- Tp), 4.0-4.5 (m, 8 H, αH amino acids), 5.15-5.3 (m, 4 H, -CH- oleic acid). 

 

Sequence:  C-R-C-Stp2-[(Y3)2-K]K-Stp2-C-R-C 593 

Molecular formula: C143H235N43O29S4 Mw 3148.927 

1H NMR spectrum (400 MHz) in D2O. δ (ppm) = 0.9-1.9 (m, 20 H, γδεH lysine and γδH 

arginine), 2.4-2.6 (m, 16 H, -CO-CH2-CH2-CO-), 2.6-3.2 (m, 28 H, βH lysine, arginine, 
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cysteine and tyrosine), 3.2-3.7 (m, 64 H, -CH2- Tp), 3.8-4.6 (m, 14 H, αH amino acids), 

6.6-7.1 (m, 24 H, -CH- tyrosine). 

 

Sequence:  C-R-C-Y3-Stp2-[K]K-Stp2-Y3-C-R-C 594 

Molecular formula: C143H235N43O29S4 Mw 3148.927 

1H NMR spectrum (400 MHz) in D2O. δ (ppm) = 1.1-1.8 (m, 20 H, γδεH lysine and γδH 

arginine), 2.3-2.6 (m, 16 H, -CO-CH2-CH2-CO-), 2.6-3.1 (m, 28 H, βH lysine, arginine, 

cysteine and tyrosine), 3.1-3.6 (m, 64 H, -CH2- Tp), 3.8-4.6 (m, 14 H, αH amino acids), 

6.65-7.15 (m, 24 H, -CH- tyrosine). 

 

Sequence:  C-R-C-Y3-Stp2-[(OleA)2-K]K-Stp2-Y3-C-R-C 595 

Molecular formula: C179H299N43O31S4 Mw 3677.819 

1H NMR spectrum (400 MHz) in D2O. δ (ppm) = 0.5-0.7 (s, 6 H, -CH3 oleic acid), 0.8-1.9 

(m, 76 H, γδεH lysine and γδH arginine, -CH2- oleic acid), 2.3-2.6 (m, 16 H, 

­CO­CH2­CH2-CO-), 2.6-3.1 (m, 28 H, βH lysine, arginine, tyrosine and cysteine), 3.1-3.6 

(m, 64 H, -CH2- Tp), 4.0-4.6 (m, 14 H, αH amino acids), 5.15-5.3 (m, 4 H, -CH- oleic acid), 

6.65-7.35 (m, 24 H, -CH- tyrosine). 

 

Sequence:  C-R-C-Y3-Stp2-[(Y3)2-K]K-Stp2-Y3-C-R-C 596 

Molecular formula: C197H289N49O41S4 Mw 4127.966 

1H NMR spectrum (400 MHz) in D2O. δ (ppm) = 0.9-1.9 (m, 20 H, γδεH lysine and γδH 

arginine), 2.3-2.55 (m, 16 H, -CO-CH2-CH2-CO-), 2.6-3.1 (m, 40 H, βH lysine, arginine, 

cysteine and tyrosine), 3.1-3.6 (m, 64 H, -CH2- Tp), 3.8-4.6 (m, 20 H, αH amino acids), 

6.65-7.15 (m, 48 H, -CH- tyrosine). 

 

Sequence:  C-Stp2-C 

Molecular formula: C30H62N12O7S2 Mw 767.2 

FAB+ (mass found) 767.6 

1H NMR spectrum (400 MHz) in D2O. δ (ppm) = 2.4-2.65 (m, 8 H, -CO-CH2-CH2-CO-), 

2.8­3.1 (m, 4 H, βH cysteine), 3.2-3.7 (m, 32 H, -CH2- Tp), 4.1-4.5 (m, 2 H, αH cysteine).  
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Sequence:  Nbz-PEG2-A 

Molecular formula: C18H25N5O6 Mw 407.42 

FAB+ (mass found) 408.4 

1H NMR spectrum (400 MHz) in D2O. δ (ppm) = 0.8-1.2 (s, 3 H, -CH3 alanine), 2.2-2.6 (m, 

2 H, -CH2- PEG), 3.0-4.2 (m, 11 H, -CH2- PEG and αH alanine), 6.8-8.0 (m, 3 H, -CH- 

Nbz). 

 

Sequence:  Nbz-PEG2-FolA 

Molecular formula: C34H37N11O10 Mw 759.73 

1H NMR spectrum (400 MHz) in DMSO*D6. δ (ppm) = 1.8-2.6 (m, 6 H, -CH2- PEG and 

glutamic acid), 3.0-4.2 (m, 11 H, -CH2- PEG and αH glutamic acid), 7.0-9.0 (m, 9 H, -CH- 

Nbz and N10-(trifluoroacetyl)pteroic acid)). 

 

Sequence:  Nbz-G-PEG24-A 

Molecular formula: C64H116N6O29 Mw 1433.63 

ESI+ (mass found) 1433.8 

1H NMR spectrum (400 MHz) in D2O. δ (ppm) = 1.4-1.6 (s, 3 H, -CH3 alanine), 2.5-2.7 (m, 

2 H, -CH2- glycine), 3.2-4.2 (m, 101 H, -CH2- PEG and αH alanine), 7.0-8.0 (m, 3 H, -CH- 

Nbz). 

 

Sequence:  Nbz-G-PEG24-FolA 

Molecular formula: C80H128N12O33 Mw 1785.93 

ESI+ (mass found) 894.4 (z = 2) 

1H NMR spectrum (400 MHz) in D2O. δ (ppm) = 2.1-3.0 (m, 6 H, -CH2- glutamic acid and 

glycine), 3.2-4.2 (m, 101 H, -CH2- PEG and αH glutamic acid), 7.1-9.0 (m, 8 H, -CH- Nbz 

and N10-(trifluoroacetyl)pteroic acid)). 

 

Sequence:  Nbz-G-PEG24-B6 (= Nbz-G-PEG24-GHKAKGPRK) 

Molecular formula: C103H184N22O37 Mw 2322.69 

ESI+ (mass found) 775.5 (z = 3) 
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Sequence:  Nbz-G-PEG24-cMBP (= Nbz-G-PEG24- HHHIHDHRSLSK) 

Molecular formula: C125H207N31O44 Mw 2848.16 

ESI+ (mass found) 950.5 (z = 3) 

 

Sequence:  Nbz-G-PEG24-GE11 (= Nbz-G-PEG24-YHWYGYTPQNVI) 

Molecular formula: C136H206N22O46 Mw 2885.21 

ESI+ (mass found) 1444.2 (z = 2) 
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