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1 Introduction 

As sessile organisms, plants are continuously exposed to biotic and abiotic stimuli. In order 

to enable acclimation, they have successfully developed a vast number of specific and 

regulated signalling processes. This allows plants to coordinate their cellular metabolism in 

response to these environmental changes. In order to (co-)regulate all metabolic pathways 

plants use elaborated mechanisms of communication that relay signals received by 

different receptors via intracellular secondary messengers. Thereby, secondary messengers 

provide a solution to amplify the strength of the signal in a specific manner. 

1.1 Calcium as a secondary messenger 

The divalent ion of calcium (Ca2+) is a ubiquitous and well-known secondary messenger in 

all eukaryotic organisms (Berridge et al. 2000; Clapham 2007). It mediates stimulus-

response in diverse cellular processes. Such processes include metabolism, ion transport, 

transcription, protein folding, protein phosphorylation, and many more (Yang and 

Poovaiah 2003; Dolmetsch et al. 1998; Trewavas 1999; Li et al. 1998). Intracellular 

Ca2+concentration is maintained at a low resting level by pumps that transport this cation 

across membranes into intracellular calcium stores or out to the extracellular space. In 

response to biotic or abiotic stimuli, temporary and spatially controlled changes on calcium 

concentration are produced. They are subsequently perceived and decoded by specific 

sensor-transducers resulting in the selective activation of targeting effectors that regulate 

specific processes. There are structural motifs such as the EF-hand domains that are able to 

bind calcium with high affinity (Nakayama and Kretsinger 1994). The EF-hand domain is 

formed by two helices separated by a loop which is composed of negatively charged 

residues responsible for the binding of calcium. The most well studied EF-hand protein 

family that is found in all eukaryotes are the calmodulins (CaMs). CaM is not an enzyme 

but an allosteric activator of target proteins either by a calcium-regulated interaction or as a 

permanent component of an enzyme complex (Stefan et al. 2008). Calcium regulation is 

best investigated in the cytosol and the nucleus (for recent reviews: DeFalco et al. 2010; 

Dodd et al. 2010; Kudla et al. 2010), while the role of calcium for chloroplast function 

needs to be further studied. 
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1.2 Calcium regulated processes in chloroplasts 

Chloroplasts are characteristic organelles of photosynthetic eukaryotes originated from an 

ancient symbiosis in which a supposedly already nucleated cell engulfed an ancestral 

photosynthetic cyanobacterium (Cavalier-Smith 2000; Margulis 1970). Further evolution 

has resulted in the transfer of genes from the symbiont to the nuclear genome (Martin and 

Herrmann 1998), resulting in a tight coordination and communication between the 

organelle and the nucleus. In addition to photosynthesis, plastids perform many essential 

biochemical functions such as fatty acid biosynthesis, nitrite and sulphate reduction and 

amino acid biosynthesis (Lopez-Juez and Pyke 2005; Nelson and Ben-Shem 2004; 

Neuhaus and Emes 2000). To ensure that chloroplast development and function is closely 

coordinated with the requirement of the surrounding cell, environmental and 

developmental signals have to be transduced into the organelle.  

Early studies suggested that chloroplasts contribute to the homeostasis of cellular calcium 

as well as other ions (Portis and Heldt 1976). Studies on calcium content showed the 

calcium concentration in the chloroplast to be between 15 to 25 mM (Neish 1939; Larkum 

1968; O'Keefe and Dilley 1977; Nobel 1969; Yamagishi et al. 1981). Considering that 

calcium forms insoluble precipitates with phosphate, this concentration is quite high. 

Therefore it is believed that Calcium is associated with membranes and macromolecules, 

otherwise complexed and/or sequestered within the thylakoid lumen (Brand and Becker 

1984). The free stromal calcium concentration of non-illuminated chloroplasts was 

estimated to be about 2–6 µM (Kreimer et al. 1988) whereas the resting calcium 

concentrations in the cytosol is in the nanomolar range (Johnson et al. 1995). Several 

studies indicate the presence of a calcium transporter/pump between the chloroplast 

envelope and cytosol (Kreimer et al. 1985; Muto et al. 1982; Ferro et al. 2003) and a cation 

channel in the thylakoid (Enz et al. 1993). Still, their molecular identity has not been 

identified so far. A diurnal rhythm of calcium flux into the stroma has been shown by 

using the calcium indicator aequorin (Johnson et al. 1995; Sai and Johnson 2002). The 

stromal free calcium concentration was about 150 nM in the light. Within 20-25 minutes 

after transition of chloroplasts from light to dark, a transient calcium increase was observed 

to about 5-10 µM (Johnson et al. 1995). In addition to this feauture, very little is still 

known about the calcium fluxes within this organelle. 
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Most of the studies on calcium-dependent chloroplast processes focus on photosynthesis 

and CO2-fixation. Ferredoxin, the electron transfer mediator protein of the photosystem I 

PSI) has been identified as a specific calcium-binding protein. It exhibits a higher capacity 

for binding calcium in its reduced state (Surek et al. 1987). Calcium is also required as a 

co-factor in photosystem II (PSII) for the oxygen evolution system (Miqyass et al. 2007). 

PSII contains a set of intrinsic membrane proteins (PsbA, B, C, D, E, and F) and three 

tightly-bound extrinsic proteins. In eukaryotes, these are PsbO, PsbP and PsbQ. Of these, 

PsbO has been reported as a Calcium -binding protein (Heredia and De Las Rivas 2003; 

Kruk et al. 2003). Shutova and collaborators (2005) showed that calcium might be 

involved in proton-dependent activation/deactivation of PsbO by testing the binding of 

calcium under different pH conditions. Using a basic pH, similar to the stromal pH under 

light conditions, PsbO undergoes conformational changes and the amino acid residues 

required for binding become exposed to the medium allowing the binding of Ca2+or Mn2+. 

However, at pH 7, estimated stromal pH upon dark conditions, the binding does not occur 

(Shutova et al. 2005). Calcium has also been shown to be essential for photo-assembly of 

PSII manganese clusters by preventing photoinactivation (Chen et al. 1995). The role of 

calcium is clearly important for oxygen evolution within PSII, however, the mechanism for 

delivery of the cation into the complex is still an open question. 

The Calvin-Benson-Bassham cycle (CBB) is responsible for CO2 fixation within the 

context of photosynthesis and calcium was shown to modulate activation and catalysis of 

the enzymes fructose 1,6-bisphosphatase (FBP) and sedoheptulose l,7-biphosphatase 

(SBP). Hertig and Wolosiuk demonstrated that calcium had a positive effect on FBP 

activation by pre-incubating the enzyme together with fructose-bisphosphate (1980; 1983). 

This calcium activation was furthermore shown to be linked to the redox status of the 

enzyme. The reduced FBP, was shown to behave in the same activity range as oxidized 

FBP pre-incubated with calcium and fructose 1,6-bisphosphate (Chardot and Meunier 

1990). In similar way, SBP becomes activated when reduced by thioredoxin upon dark-

light transitions (Cadet and Meunier 1988). Nevertheless, high calcium concentrations 

inhibit the catalytic efficiency of FBP and SBP (Charles and Halliwell 1980; Portis and 

Heldt 1976; Wolosiuk et al. 1982).  

Other chloroplast processes are also regulated by calcium. The thylakoid calcium sensing 

protein CAS binds calcium with low affinity but high capacity (Han et al. 2003). CAS is 
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believed to be a key regulator of the stomatal closure process (Han et al. 2003; Nomura et 

al. 2008; Tang et al. 2007; Weinl et al. 2008) and to be involved in photosynthesis 

regulation (Vainonen et al. 2008). The calcium-regulated network was further extended 

with the identification of several CaM-regulated proteins in plastids. NAD Kinase, which 

catalyzes the phosphorylation of NAD in the presence of ATP, was the first CaM-regulated 

enzyme identified in plants (Anderson et al. 1980). TIC32, a component of the protein 

import machinery, represents the predominant calmodulin-binding protein of the inner 

envelope affecting protein import in a calcium-CaM dependent manner (Chigri et al. 

2006). Several other CaM-binding proteins have been identified in the chloroplast, 

including PsaN, a subunit of PSI (Reddy et al. 2002), the chaperonine CPN10 (Yang and 

Poovaiah 2000), as well as the AAA+-ATPases, CIP111 and AFG1L1 (Buaboocha et al. 

2001; Bussemer et al. 2009). However, no CaM was so far identified in plastids and very 

little is known on EF-hand containing proteins in this organelle. So far, only the (p)ppGpp 

synthase-degradase (Kasai et al. 2004; Kasai et al. 2002; Tozawa et al. 2007) and a 

chloroplast envelope localized member of the calcium-dependent mitochondrial carrier 

family SAMTL (Stael et al. 2011; Ferro et al. 2003) were shown to bind calcium via their 

EF-hands.  

 

 

 

Fig. 1 - Overview of the calcium-regulation network in chloroplasts - Depicted are 
proteins/processes in chloroplasts that have been correlated to calcium, including direct calcium-
binding (yellow), calmodulin-binding (red), calcium-dependent phosphorylation (green) or effects 
of calcium on enzyme activity (blue) (adapted from Rocha and Vothknecht 2012). 
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An overview of the known calcium-regulated processes in chloroplasts is given in figure 1. 

Nevertheless, the current knowledge on regulation of chloroplast calcium-dependent 

processes is still limited and merits further investigation. 

 

1.3 The chloroplast phosphoproteome 

The first event regulated by protein phosphorylation within the chloroplasts was identified 

in 1977 when Bennett demonstrated phosphorylation of light-harvesting complex (LHC) 

proteins (Bennett 1977). Phosphorylation was shown to be used for the adjustments of the 

photosynthetic machinery to light and changes in redox status (Schwacke et al. 2003; 

Durek et al. 2010). However, three decades later, several thylakoid proteins have been 

shown to undergo phosphorylation but very few protein kinases involved in this regulation 

have been identified. The best described are the thylakoid-associated “state transition” 

kinases Stt7 and Stl1 from Chlamydomonas and their Arabidopsis orthologs STN7 and 

STN8. They reversibly phosphorylate diverse components of the PSII and its light-

harvesting antenna (LHCII) (Bonardi et al. 2005; Bellafiore et al. 2005; Heazlewood et al. 

2008). They are involved in optimizing the photosynthetic acclimation to fluctuating light 

conditions and repair of photodamaged PSII (Rochaix 2007; Tikkanen and Aro 2012). In 

higher plants, the STN8 kinase was also found to be involved on the phosphorylation of 

CAS in a light-dependent manner, with the phosphorylation site on the stromal domain 

(Vainonen et al. 2008). It was further suggested that phosphorylation cascades initiated at 

the thylakoid membrane may regulate chloroplast processes via soluble stromal kinases 

such as casein kinase II (Larkin et al. 2007; Goujon et al. 2010; Wittekind et al. 1989). 

Nevertheless, no direct evidence for the phosphorylation of chloroplast kinases by other 

kinases has so far been presented. Further steps in the understanding of this process were 

recently provided by advances in phosphopeptide enrichment methods combined with 

improvements of mass spectrometric analysis instruments. These techniques have 

unravelled new phosphorylation sites in the chloroplast proteome (Preisinger et al. 2008; 

Baginsky 2009; Reiland et al. 2009) and a wide range of phosphoproteins in chloroplasts 

(Reiland et al. 2009). Nevertheless, the overall knowledge about chloroplast 

phosphoproteome remains very scarce (Bayer et al. 2012).   
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While phosphorylation/dephosphorylation represents a widespread form of regulation of 

enzyme activity, the phosphorylation reaction in turn can be regulated in different manners. 

One well-described form is the control by calcium and CaM via calcium-dependent protein 

kinases (CDPK) or calcium-CaM-dependent kinases (Harper and Harmon 2005; Kudla et 

al. 2010). CDPKs are bifunctional proteins which contain a kinase domain and a CaM-like 

domain. The calcium-induced conformational change of the CDPK directly stimulates the 

kinase activity resulting in the phosphorylation of the kinase substrate. In contrast, 

calcium-CaM-dependent kinases are regulated by calcium that induces the binding of CaM 

to the kinase. While calcium-dependent regulation of phosphorylation is well described for 

the cytosol, calcium-dependent phosphorylation of chloroplast proteins has only been 

detected recently for several thylakoid proteins (Stael et al. 2011).  

 

1.4 Primary carbon metabolism 

In photo-autotrophic organisms, photosynthesis converts light energy into ATP and 

NADPH which acts as the reducing power source for several cellular processes. The 

Calvin-Benson-Bassham cycle (CBB), also called reductive pentose phosphate cycle, fixes 

atmospheric CO2 into carbon backbones that are used for starch and sucrose biosynthesis 

(Bassham et al. 1950). The reduction of carbon from CO2 to hexose (C6H12O6) requires 

ATP for free energy and NADPH as a reducing agent. These reactions take place in the 

stroma of the chloroplasts and comprise three stages: fixation of CO2 by ribulose 1,5-

bisphosphate carboxylase/oxygenase (RuBisCO) to form 3-phosphoglycerate; reduction of 

3-phosphoglycerate to produce hexose sugars; and re-generation of ribulose 1,5-

bisphosphate by extensive carbon shuffling. 

Plants can also carry out the Pentose Phosphate Pathway (PPP). This pathway is common 

to all living organisms where glucose is oxidized and decarboxylated to generate NADPH 

needed for the biosynthesis of many biomolecules (Kruger and von Schaewen 2003). The 

PPP furthermore provides pentose sugars used in the synthesis of nucleic acids like RNA, 

DNA and nucleotide coenzymes as well as less common four- and seven-carbon sugars. 

This pathway is also known as the hexose monophosphate pathway, the phosphogluconate 

pathway, or the pentose shunt (Berg JM 2002). Generally, the PPP breaks down glucose 

into pentose to generate NADPH, whereas the CBB uses NADPH to reduce carbon dioxide 

and generate hexoses. For that reason, the CBB is sometimes referred to as the reductive 
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pentose phosphate pathway (Sillero et al. 2006). The PPP and the CBB share several 

enzymes such as ribose 5-phosphate isomerase, ribulose 5-phosphate 3-epimerase, 

transaldolase and transketolase.  

 

1.4.1 Transketolase as a key enzyme  

Transketolase (TKL; EC 2.2.1.1) is a ubiquitous key enzyme of carbon metabolism, 

especially in plants due to its amphibolic role in both the CBB and the PPP. TKL was first 

isolated from yeast in 1953 (Racker et al. 1953) and since then, has been characterized 

from a number of sources. It belongs to the group of a thiamine diphosphate-dependent 

enzymes, and requires Mg2+ ions for catalytic activity. The ability of TKL to transfer two-

carbon dihydroxyethyl moieties from different ketose-phosphate sugars (donor substrate) 

onto divers aldose-phosphate sugars (acceptor substrate) (Murphy and Walker 1982; 

Villafra.Jj and Axelrod 1971; Schenk et al. 1997) is an important part of several metabolic 

pathways. The biocatalyst ability of transferring two carbons for the formation of new 

sugars makes TKL also a very important enzyme for industrial organic synthesis (Schenk 

et al. 1998; Turner 2000; Fessner 1998).  

TKL catalyzes two reactions within the regenerative part of the CBB:  

F6P + G3P  E4P + X5P 

S7P + G3P  R6P + X5P 

In the PPP pathway, the enzyme catalyzes the same reactions in a reverse direction within 

the non-oxidative branch of the pathway (Stitt and Aprees 1979): 

E4P + X5P  F6P + G3P 

R6P + X5P  S7P + G3P 

Thereby, TKL plays an important role in the production of several precursors of different 

metabolic pathways (Fig. 2). For example, E4P is required for the shikimate pathway that 

produces aromatic amino acids as well as precursors for secondary metabolites involved in 

plants defense and signalling (Dixon and Paiva 1995). The pentose sugars R5P and X5P 

are important for synthesis of ribose 5-phosphate, a precursor of nucleotide and nucleic 

acids synthesis (Pilz et al. 1984). F6P and G3P are involved in glycolysis, gluconeogenesis 

and starch biosynthesis (Hers and Hue 1983; Dennis and Greyson 1987).  
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Fig. 2 - Transketolase catalyzes reversible reactions - Reactions catalyzed by tansketolase are 
showed by thick arrows, and dashed lines indicate some destination of the TKL products. The 
abbreviated substrates are as follows: F6P, fructose 6-phosphate; G3P, glyceraldehyde 3-
phosphate; R5P, ribulose 5-phosphate; X5P, xylulose 5-phosphate; S7P, sedoheptulose 7-
phosphate; E4P, erythrose 4-phosphate. 
 
 
In plants, TKL was first isolated and characterized from spinach chloroplasts (Teige et al. 

1998). The Arabidopsis genome contains two paralogues of TKL (AtTKL1 and AtTKL2). 

AtTKL1 is generally expressed with highest expression levels in leaves and other green 

tissue. AtTKL2 is mainly present in late seeds (Schmid et al. 2005) (Fig. 3).  

 

in
te

n
si

ty

10000

5000

2500

0

7500

Expression levels of AtTKL1 and AtTKL2

roots

cotyledons
leaves

flo
wer

polle
n

late se
ed

 

Fig. 3 - Expression levels of both TKL homologues in Arabidopsis - AtTKL1 is the most 
expressed protein with high intensity in leaves and other green tissues and AtTKL2 is mainly 
expressed in non photossynthetic tissues.  
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1.5 Aim of this study 

The aim of this research was to investigate the calcium-dependent regulation in 

chloroplasts with a special focus on calcium-dependent protein phosphorylation.  

Specific goals of this study were: 

1) To identify new targets of calcium-dependent protein phosphorylation involved in the 

regulation of chloroplasts processes as well as the kinases and phosphatases conveying this 

regulation; 

2) To elucidate the role of these calcium-dependent phosphoproteins and to understand the 

environmental and developmental signals that are transduced in this manner; 

3) To identify new calcium-binding proteins in the chloroplast and to characterise their 

regulation mechanisms; 

4) In general, to better understand the role of protein phosphorylation in the network of 

calcium regulatory events. 
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2 Materials  

2.1 Chemicals 

Table 1 - Materials used in this study 

Name Company 

Chlamydomonas reinhardtii TKL  
(CrTKL; CL54b03) clone 

Kazuza DNA Research Institute (Japan) 

X5P 

F6P 

G3P 

R5P 

TPP 

ß-NAD 

ß-NADH 

G3PDH 

Sigma-Aldrich (Germany) 

Oligonucleotides Eurofins MWG Operon (Germany) 

Complete protease inhibitor cocktail  

Phosphatase inhibitor Phospho-Stop (EDTA Free) 
Roche (Germany) 

Immobilon PVDF membrane Milipore (Germany) 

Ni-NTA agarose Quiagen (Germany) 

Protein A sepharose Thermo (Germany) 

Chitin beads New England Biolabs (USA) 

 

2.2 Enzymes and kits 

Table 2 - Enzymes and kits used in this study 

Name Company 

Restriction enzymes  

DNA-polymerase 

Fermentas (Germany), New England Biolabs 
(USA), GeneCraft (Germany) 

Nucleobond AX 

Nucleospin Extract II 

NucleoSpin RNA II 

Macherey-Nagel (Germany) 

RNase H Minus, Point Mutant Promega (Germany) 
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2.3 Molecular weight and size markers 

For SDS PAGE, the following protein weight standards were used: "Low Molecular 

Weight Marker” consisting of -lactalbumin, soybean trypsin inhibitor, trypsinogen, 

carbonic anhydrase, glyceraldehydes 3-phosphate dehydrogenase, egg albumin, and bovine 

albumin (14.2, 20.1, 24.0, 29.0, 36.0, 45.0, and 66.0 kDa, respectively) (Sigma-Aldrich, 

Germany) or PageRulerTM Prestained Protein Ladder Plus (Fermentas, Germany). The 

DNA marker GeneRuler™ 1kb DNA Ladder Plus (Fermentas, Germany) was used for 

agarose gels.  

 

2.4 Oliogonucleotides 

Table 3 - Oligonucleotides used in this study 

Name Sequence (5'-3') 

AtTKL1-fw ATAAGCGGCCGCGCTGTTGAGACTGTTGAGCCAACCA 

AtTKL1-rv ATAAGGATCCTTAGAAGAATGACTTGGCCG 

AtTKL1 Ser428Asp-fw CACCAGAGGACCCAGGTGATG 

AtTKL1 Ser428Asp-rv ACCTGGGTCCTCTGGTGTGTA 

AtTKL1 Ser428Ala-fw CACCAGAGGCTCCAGGTGATG 

AtTKL1 Ser428Ala-rv ACCTGGAGCCTCTGGTGTGTA 

AtTKL1-YFP-fw ATAGGGCCCATGGCTTCTACTTCTTCCCTCGCTCTC 

AtTKL1-YFP-rv ATAGCGGCCGCAGAAGAATGACTTGGCCGCA 

AtTKL2-fw ATAAGCGGCCGCGCCGCCGTAGAGGCAATCGTGACA 

AtTKL2-rv TATTGGATCCTTAAATAAGTGACTTGGCTG 

AtTKL2-YFP-fw ATAGGGCCCATGGCTTCTACTTCTTCTCTAGCG 

AtTKL2-YFP-rv ATAGCGGCCGCAAATAAGTGACTTGGCTGCT 

AtCP12-1-fw ATACCATGGCTACATCGGAAGGAGAGAT 

AtCP12-1-rv TTAGCGGCCGCAATTATCATAAGTACGACAC 

AtPsaN-fw TTATTATCCATGGCTGCTTCTGCTAATGCTGGCGTCAT 

AtPsaN-rv AATATAGCGGCCGCATATAAGAATAGATGAAAAC 

CrTKL-fw ATACATATGCAGACCATGCTGAAGCAGCGCTGCC 

CrTKL-rv ATACTCGAGGTGCTGCAGGGTGGCCTTGG 

E4PDH-fw ATACATATGACCGTACGCGTAGCGATAAA 

E4PDH-rv ATACTCGAGCCTGAAAGCAACAGTAGCCA 
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Table 4 - Accession numbers of proteins used in this study 

 Organism Genebank Accession /AGI 

AtTKL1 Arabidopsis thaliana NP_567103.1 / At3g60750 

AtTKL2 Arabidopsis thaliana NP_566041.2 / At2g45290 

AtCP12-1 Arabidopsis thaliana NP_566100.2 / At2g47400 

PsaN Arabidopsis thaliana NP_201209.1 / At5g64040 

CAS Arabidopsis thaliana NP_197697.1 / At5g23060 

VAR1 Arabidopsis thaliana NP_568604.1 / At5g42270 

VAR2 Arabidopsis thaliana NP_850156.1 / At2g30950 

SAMTL Arabidopsis thaliana NP_850252.1 / At2g35800 

CrTKL Chlamydomonas reinhardtii XP_001701881 

E4PDH Escherichia coli NP_289494.1 

 

 

2.5 Plasmid DNA vectors 

Table 5 - List of vectors used in this study 

Vector Purpose Company 

pTwin1 Protein expression New England Biolabs (USA) 

pET21b Protein expression Novagen (Germany) 

pBIN19 Plant transformation (Bevan 1984) 

 

 

2.6 Bacteria strains 

Table 6 - List of bacteria strains used in this study 

Organism Strain name Company 

E. coli DH5 (Hanahan 1985) 

E. coli ER2566 NEB (USA) 

E. coli BL21(DE3) Novagen (USA) 

A. tumefaciens AGL1 (Lazo et al. 1991) 

 

 

2.7 Isotopes 

Radioactive nucleotides [γ−32P] ATP (3000 Ci/mmol) and 45CaCl2 ((13.90 mCi/mg) were 

provided from Perkin Elmer (USA).  
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2.8 Antibodies 

Primary polyclonal antibody (-AtTKL1) was generated in rabbit raised against purified 

recombinant mature AtTKL1 protein (Biogenes, Germany). 

 

2.9 Plant material and growth conditions 

Arabidopsis thaliana (cultivar Columbia Col-0) and Nicotiana benthaminana were grown 

on soil and Pisum sativum (cultivar Arvika) was grown on vermiculite, both at 22°C under 

a 16h/8h photoperiod at 150 μmol·m-2 · s-1. Chlamydomonas reinhardtii (cw15 cell wall-

less strain) were grown as described previously by Rochaix (1988) under illumination at 

20 μmol·m-2 ·s-1 at 25°C. 
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3 Methods 

3.1 Nucleic acid methods 

3.1.1 General nucleic acid methods 

Standard molecular biological methods were performed according to Sambrook J (1989). 

This includes: amplification of DNA by the polymerase chain reaction, agarose gel 

electrophoresis, detection of DNA, determination of DNA concentration, growing 

conditions of bacteria and bacterial transformation (Sambrook J 1989). RNA isolation, 

restrictions and ligation of DNA fragments were performed according to the manufacturers 

of the enzymes or kits. The plasmids were generated by alkaline lysis with SDS 

(Sambrook, 1989) or kit according to the manufacturer. Purification of PCR products and 

purification of DNA fragments from agarose gels were carried out also according to the 

manufacturer’s instructions. 

 

3.1.2 Plasmid DNA mini preparation from E. coli 

An over-night-culture of 2 ml was centrifuged for 2 min at 16,000 g and the supernatant 

was removed. The pellet was resuspended in 200 μl of resuspension buffer P1 (50 mM 

Tris/HCl pH 8.0, 10 mM Na2EDTA (including 100 μg/ml RNase) followed by addition of 

lysis buffer P2 (200 mM NaOH, 1% SDS) to lyse the cells. To mix the suspension, the 

tubes were inverted three times and incubated for 5 min at RT. The E. coli lysate was 

neutralized by the addition of 200 μl of neutralisation buffer P3 (3 M potassium acetate pH 

5.5) and mixed by inverting three times. After 20 min incubation at 4°C the suspension 

was centrifuged for 10 min at 16,000 g. To precipitate the DNA the supernatant was mixed 

with 0.7 times isopropanol and incubated at -20°C for 20 min followed by centrifugation at 

16,000 g at 4°C. The supernatant was removed and the pellet was washed with 500 μl 70% 

EtOH. The pellet was dried at RT and resolved in 50 μl H2O.  

 

3.1.3 Reverse transcription RT-PCR 

Reverse transcription was carried out using the Promega M-MLV reverse Transcriptase, 

RNase H Minus, Point Mutant, according to the manufacturer’s instructions. In a final 
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volume of 14 μl 1 μg total RNA and 0.5 μg oligo (dT)15 were mixed and heated to 70°C 

for 5 min, then cooled quickly on ice for 5 min followed by the addition of 5 μl MMLV RT 

5x Reaction Buffer, 1.25 μl 10 mM dNTP mix and 1μl M-MLV RT (H-). The reaction was 

mixed and incubated at 40°C for 60 min. 1-2 μl reverse transcripted cDNA was used for 

PCR amplification using the Taq from GeneCraft (Germany). 

 

3.2 Protein methods 

3.2.1 General protein methods 

Proteins were separated by SDS-PAGE according to Laemmli (1970). Polyacrylamide gels 

were stained by coomassie brilliant blue R250 (Sambrook J 1989). Chlorophyll 

concentration was determined as described by Arnon (1949). Protein concentration was 

determined either according to Lowry et al. (1951) or by using the coomassie Bradford 

protein assay kit (Thermo, Germany) according to manufacture instructions. Transfer of 

proteins onto PVDF membranes was done according the semi-Dry-Blot method (Khyse-

Andersen 1984). Radiolabeled proteins were detected by exposure to phosphoimager 

screens analysed on a Typhoon Trio (GE Healthcare) or by exposure to X-ray film at -

80°C (FUJI). 

 

3.2.2 Purification of stromal extracts from Arabidopsis and Pisum  

Chloroplasts were purified from 6-7 weeks old Arabidopsis leafs as described by 

Seigneurin-Berny et al. (2008) and from 7-9 days old pea leafs as described by 

Waegemann and Soil (1991). Chloroplasts were disrupted by suspension in lysis buffer (20 

mM Tricine/NaOH pH 7.6, 10% (v/v) glycerol, 1 mM DTT) supplemented with 5 mM 

EGTA, protease and phosphatase inhibitors. After incubation on ice for 15 min, 

membranes and soluble components were separated by centrifugation at 60,000 g for 10 

min. To extract membrane associated proteins, the membrane pellet was subsequently 

resuspended with lysis buffer containing 0.8 M NaCl and centrifuged again at 60,000 g for 

10 min. Supernatants of the first and second centrifugation were combined, concentrated 

and desalted into lysis buffer using VivaspinTM 500 columns (3 kDa cutoff, GE Healthcare) 

and is referred to as stromal protein fraction. The remaining pellet contained the membrane 

protein fraction. All procedures were carried out on ice or at 4°C. 
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3.2.3 Preparation of Chlamydomonas total cell extract 

Total cell extract out of Chlamydomonas reinhardtii (cw15 cell wall-less strain) was 

prepared as described above for chloroplasts.  

 

3.2.4 Expression and protein purification using the pTWIN system 

The isolation of recombinant proteins without tag was done using the IMPACT™-pTWIN 

protein purification system from NEB, according to the manufacturer’s instructions. All 

TKLs, AtPsaN and AtCP12-1 lacking the N-terminal amino acids were cloned into 

pTWIN1 in frame with the N-terminal intein tag. Point mutations at position Ser428 in the 

AtTKL1(S/A) and AtTKL1(S/D) variants were generated by site-directed mutagenesis on the 

pTWIN-AtTKL1 plasmid. An overnight culture of E. coli (ER2566) carrying the pTWIN 

expression plasmid was inoculated in 500 ml LB with 100 µg/ml ampicillin. The culture 

was incubated at 37°C under vigorous shaking until OD600 of 0.6 was reached and 

expression was induced by 1 mM IPTG. The culture was incubated at 16°C over night 

under vigorous shaking and E. coli were harvested by centrifugation for 10 min at 2,900 g. 

Bacterial pellets were resuspended in 20 ml pre-cooled pTWIN buffer B1 

(20 mM HEPES/NaOH pH 8.5; 1000 mM NaCl; 1 mM EDTA; 1 mM DTT). To break the 

cells, the French press was used and lysate was clarified by centrifugation at 16,000 g at 

for 20 min. The supernatant was applied to a column packed with 2 ml (bed volume) of 

chitin beads which were washed in precooled pTWIN buffer B1. The column was washed 

with 100 ml of pre-cooled pTWIN buffer B1 and fast flushed with 4 ml pre-cooled pTWIN 

buffer B2 (20 mM HEPES/NaOH pH 7.0; 500 mM NaCl; 1 mM EDTA; 1 mM DTT). To 

induce protein cleavage the column was incubated at RT over night. After the elution with 

pTWIN buffer B2, the buffer was exchanged to 20 mM Tricine/NaOH pH 7.6, 1 mM DTT 

and the protein was concentrated by ultrafiltration in VivaspinTM 500 columns (3 kDa 

cutoff, GE Healthcare). Unless otherwise stated, all purification steps were performed on 

ice or at 4°C. 

 

3.2.5 Expression and protein purification using the 6x-His tag system 

The CrTKL and E4PDH were purified under native conditions by using pET21b with a C-

terminal 6x-Histidine tag. An overnight culture of E. coli (ER2566 or BL21) carrying the 
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respective expression plasmid was inoculated in 500 ml LB with 50 µg/ml ampicillin. The 

culture was incubated at 37°C under vigorous shaking until OD600 of 0.6 was reached and 

expression was induced by 1 mM IPTG. The culture was incubated at 37°C for 4 hours 

under vigorous shaking and E. coli were harvested by centrifugation for 10 min at 2,900 g. 

Bacterial pellets were resuspended in 20 ml 50 mM HEPES/NaOH pH 8.5; 300 mM NaCl; 

10 mM imidazole; 1 mM DTT and cells disrupted by French press. The cellular extract 

was centrifuged for 20 min at 16,000g and supernatant incubated 1h30 and under agitation 

with 500 µl of Ni-NTA superflow. The incubated solution was then poured in a column 

and beads were washed with 200 ml of 50 mM HEPES/NaOH pH 8.5; 300 mM NaCl; 

20 mM imidazole; 1 mM DTT. Proteins were eluted with 50 mM HEPES pH 8.5; 

300 mM NaCl; 250 mM imidazole; 1 mM DTT. The buffer was exchanged to 

20 mM Tricine/NaOH pH 7.6, 1 mM DTT and the protein was concentrated by 

ultrafiltration in VivaspinTM 500 columns (3 kDa cutoff, GE Healthcare). Unless otherwise 

stated, all purification steps were performed on ice or at 4°C. 

 

3.2.6 Standard protein phosphorylation assays of endogenous proteins 

Phosphorylation assays for the detection of endogenous phosphoproteins were conducted 

using 10 - 20 µg soluble stromal proteins from either Arabidopsis or Pisum. Assays were 

carried out in a total volume of 50 µl in kinase buffer (20 mM Tricine/NaOH pH 7.6, 

10 mM MgCl2, 10% (v/v) glycerol, 1 mM DTT, 5 μM ATP and 2–5 μCi [γ−32P] ATP) 

supplemented with either 5 mM CaCl2, 5 mM CdOAc, 5 mM ZnOAc, 5 mM CuCl2, 

5 mM MnCl2, 5 mM NiSO4, or 2 mM EGTA. .Reactions were carried out for 25 min at RT 

and stopped by the addition of 12 μl of 4xSDS-sample buffer. Proteins were separated by 

SDS-gel electrophoresis and stained with coomassie brilliant blue R-250. Radiolabeled 

proteins were detected by exposure to phosphoimager screens analysed on a Typhoon Trio 

(GE Healthcare) or by exposure to X-ray film at -80°C (FUJI). 

 

3.2.7 Phosphorylation assays of recombinant proteins 

100 - 200 ng recombinant of AtTKL1, AtTKL1(S/D) AtTKL2, CrTKL, PsaN, CAS, VAR1, 

VAR2 or GST were used as substrate. Reactions were carried out using catalytically 

amounts (50–100 ng) of Arabidopsis stromal and extrinsic proteins, chloroplast membrane 
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proteins or Chlamydomonas total cell extract. Assays were carried out in a total volume of 

50 µl in kinase buffer supplemented with either 5 mM CaCl2 or 2 mM EGTA. .Reactions 

were carried out for 25 min at RT and stopped by the addition of 12 μl of 4xSDS-sample 

buffer. Proteins were separated by SDS-gel electrophoresis and stained with coomassie 

brilliant blue R-250. Radiolabeled proteins were detected by exposure to phosphoimager 

screens analysed on a Typhoon Trio (GE Healthcare) or by exposure to X-ray film at 

-80°C (FUJI). 

 

3.2.8 Kinase assay of immunoprecipitated proteins 

By using stromal extracts out of Arabidopsis or Pisum purified chloroplasts, 

phosphorylation assays were conducted with about 100 μg total proteins in a total volume 

of 200 µl in kinase buffer supplemented with 5 mM CaCl2. For LC-MS/MS proposes, the 

same assay was conducted in parallel but without radiolabeled [γ−32P] ATP. Reactions 

were carried out for 25 min at RT and after incubated for 1 hour with 10 µl protein A-

Sepharose and 6 µl of -AtTKL1 antibody. The beads were washed three times with 

800 µl of 20 mM Tricine/NaOH pH 7.6 and 1 mM DTT by centrifugation at 1,000 g for 

2 minutes. The proteins were eluted with 50 µl SDS solubilization buffer, heated at 96°C 

and centrifugated at 14,000 g for 2 minutes. The samples were analyzed by SDS-PAGE 

separation and protein staining with coomassie brilliant blue R-250. The incorporation of 

radioactivity was measured by exposing the dry gel to X-ray film at -80°C (FUJI). 

 

3.2.9  Protein separation by 2D-PAGE 

For the calcium-dependent phosphorylation assays, phosphorylation reactions were 

conducted with 150 - 250 µg soluble stromal and extrinsic proteins. Assays were carried 

out in a total volume of 120 µl in kinase buffer supplemented with either 5 mM CaCl2, or 

2 mM EGTA. .Reactions were carried out for 25 min and stopped by 480 µl of methanol 

and 120 µl chlorophorm. Samples were vigorously vortexed in between and centrifuged for 

3 minutes at 14,000 g. After discarding the top aqueous layer, 480 µl methanol was added, 

samples vortexed and centrifuged for 6 min. Without disturbing the pellet, the methanol 

and chlorophorm was removed, pellets were washed with 300 µl 80 % acetone, and dried. 

All operations were carried at RT. For LC-MS/MS proposes, the same assay was 
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conducted in parallel but without radiolabeled [γ−32P] ATP. Chloroform/methanol 

precipitated protein pellets from phosphorylation reactions were resuspended in 40 µl H2O 

and solubilized in 200 µl rehydration buffer 1 (7 M urea, 2 M thiourea, 2% (w/v) CHAPS, 

0.5% (v/v) IPG buffer, 0.002% (w/v) bromophenol blue and 1 mM DTT) for 30 minutes at 

RT. Proteins were applied to 11 cm immobilized Dry-StripsTM (pH 3-11, NL, GE 

Healthcare) and separated using the BioRad Protean IEF Cell Isoelectric Focusing System 

according to the following programme: Passive rehydratation a 20 °C for 16 hours; rapid – 

0.5 kVh (0.5 kV); linear – 0.8 kVh (0.1 kV); linear – 7.0 kVh (6 kV); linear 3.7 kVh 

(6 kV); hold (0.5 kV) in a total of 12 kVh. Afterwards, the strips were equilibrated 

consecutively in equilibration buffer (75 mM Tris/HCl pH 8.8, 6 M urea, 30% (v/v) 

glycerol, 2% (w/v) SDS and 0.002% (w/v) bromophenol blue) containing 10 mg/ml DTT 

and in equilibration buffer containing 25 mg/ml iodacetamide for 20 min each. Proteins 

were separated in the second dimension by SDS-PAGE stained with coomassie brilliant 

blue R-250.  

For the calcium-binding assays, 80 µl of soluble stromal and extrinsic proteins (150 - 250 

µg) were resuspended in 400 µl rehydration buffer 2 (7 M urea, 2 M thiourea, 4% (w/v) 

CHAPS, 0.7% (v/v) IPG buffer, 0.002% (w/v) bromophenol blue and 40 mM DTT) for 30 

minutes at RT. Proteins were applied to 24 cm immobilized Dry-StripsTM (pH 3-11, NL, 

GE Healthcare) and separated using the BioRad Protean IEF Cell Isoelectric Focusing 

System according to the following programme: Passive rehydratation a 20 °C for 20 hours; 

rapid – 1 h (0.15 kV); rapid – 1 h (0.3 kV); rapid – 1 h (0.6 kV); rapid – 1 h (1 kV); linear 

(ramp) – 1 h (10 kV); rapid – 45 kV/h (10 kV); hold  (1 kV). Afterwards, the strips were 

equilibrated consecutively in equilibration buffer containing 10 mg/ml DTT and in 

equilibration buffer containing 25 mg/ml iodacetamide for 20 min each. Proteins were 

separated in the second dimension by SDS-PAGE and blotted on PVDF membrane. 

 

3.2.10   Calcium overlaying assays  

Assays were performed as described earlier by Maruyama et al. (1984) with minor 

modifications. When using recombinant proteins expressed in E. coli, proteins were 

directly spotted on activated PVDF membranes or when 2D analysis were required, 

proteins were blotted onto PVDF activated membrane. The membrane was washed three 

times for 15 min with 100 µl Ca2+ washing buffer (60 mM KCl, 5 mM MgCl2, 
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60 mM imidazole/HCl pH 6.8). The membrane was incubated for 10 min at RT with 100 

ml calcium washing buffer containing 30 µl 45CaCl2. Subsequently, the membrane was 

washed for five minutes with 50% ethanol. Radioactivity signals were detected by 

exposure on phospho-imaging screens and analysed on a FUJI FLA-3000 (FUJIFILM, 

Germany). The membrane was subsequently stained with coomassie brilliant blue R-250. 

For LC-MS/MS proposes, the same assay was conducted in parallel but without blotting or 

performing the radiolabelling. This way, SDS-PAGE was stained with coomassie brilliant 

blue R-250 after the second dimension, and spots of interest were excised. 

 

3.2.11    Analysis of peptides by LC-MS/MS  

Coomassie brilliant blue stained gel bands or spots were processed as previously described 

by Spirek et al. (2010) and Bayer et al. (2011). Alternatively, samples were enriched for 

phosphopeptides by the use of TiO2 following the procedure described by Mazanek et al. 

(2007). LC-MS/MS analysis was done in cooperation with the mass spectrometry facilities 

of the Max F. Perutz Laboratories (Austria). Peptides were separated on an UltiMate 3000 

HPLC system (Dionex). Digests were loaded on a trapping column (PepMap C18, 5µm 

particle size, 300 μm i.d. x 5mm) equilibrated with 0.1% TFA (trifluoric acetc acid) and 

separated on an analytical column (PepMap C18, 3 μm, 75 μm i.d. x 150mm) applying a 

90 minutes linear gradient from 2.5% up to 40% ACN with 0.1% formic acid. The HPLC 

was directly coupled to a LTQ-Orbitrap Velos mass spectrometer (Thermo Fisher 

Scientific) equipped with a nanoelectrospray ionization source (Proxeon, Denmark). The 

electrospray voltage was set to 1500 V. The mass spectrometer was operated in the data-

dependent mode: 1 full scan (m/z: 300-1800, resolution 60,000) with lock mass enabled 

was followed by maximal 20 MS/MS scans. The lock mass was set at the signal of 

polydimethylcyclosiloxane at m/z 445.120025. Screening of the charge state was on, singly 

charged signals and ions with no charge state assigned were excluded from fragmentation. 

The collision energy was set at 35%, Q-value at 0.25 and the activation time at 10 msec. 

Fragmented ions were set onto an exclusion list for 90 s. 

Raw spectra were interpreted by Mascot 2.2.04 (Matrix Science) using Mascot Daemon 

2.2.2. The peptide tolerance was set to 2 ppm, MS/MS tolerance was set to 0.8 Da. Proteins 

were identified from the full genome sequence of TAIR9. Carbamidomethylcysteine was 

set as static modification, oxidation of methionine and phosphorylation of serine, 
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threonine, tyrosine were set as the variable modifications. Trypsin was selected as protease 

and two missed cleavages were allowed. MASCOT results were loaded into Scaffold 

(Ver. 3.00.02; Proteome Software) for an X! Tandem Search. Peptide identifications were 

accepted at a probability greater than 95% and protein identifications at a probability 

greater than 99%, as assigned by the Protein Prophet algorithm (Keller et al. 2002; 

Nesvizhskii et al. 2003). In case of phosphorylation studies spectra were reanalysed with 

Proteome Discoverer 1.2 (Thermo Scientific). Search parameters were set as described for 

the Mascot search. Results were pre-filtered using XCorr (+2, +3, +4) = 2, 2.5, 3 and 

identified phosphopeptides were subjected to stringent manual validation. 

 

3.2.12   TKL activity assay using X5P and R5P as substrates 

Conversion of X5P and R5P into G3P and S7P was measured as described previously by 

De La Haba et al. (1955) with minor changes. A 200 µl reaction mixture contained 

20 mM glycylglycine/NaOH pH 7.2 or 8.0, 0.1 mM TPP, 0.14 mM ß-NADH, 

15 mM MgCl2, 5 mM CaCl2, 20 units G3PDH (based on triosephosphate isomerase units) 

and 0.1 µg recombinant TKL. To measure kinetic parameters for X5P, 1.7 mM R5P was 

used and X5P content varied between 0.1 and 3.0 mM. To measure kinetic parameters for 

R5P, 1.5 mM X5P was used and R5P content varied between 0.125 and 3.0 mM. 

Conversion of NADH to NAD+ was measured as change in Abs340 (= 6220 M-1•cm-1) 

using a Tecan Safire2 microplate reader at 30°C. 

 

3.2.13   TKL activity assay using G3P and F6P as substrates 

Conversion of F6P and G3P into E4P and X5P was measured as described by Naula et al. 

(2008) with minor changes. A 200 µl reaction mixture contained 50 mM Tris/HCl pH 7.2 

or 8.0, 0.1 mM TPP, 2.5 mM ß-NAD, 15 mM MgCl2, 5 mM CaCl2, 20 - 30µg E4PDH and  

2-3 µg recombinant TKL. To measure kinetic parameters for F6P, 2.0 mM G3P was used 

and F6P content varied between 0.1 and 20.0 mM. To measure kinetic parameters for G3P, 

5.0 mM F6P was used and G3P content varied between 0.125 and 2.0 mM. A control 

reaction without TKL was carried out under the same conditions and with 2.0 mM G3P 

and 20.0 mM F6P. The solutions were quickly mixed for 30 sec and conversion of NAD+ 
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to NADH was measured as change in Abs340 (= 6220 M-1•cm-1) using a Tecan Safire2 

microplate reader at 30°C.  

 

3.2.14   Calculation of TKL specific activity and statistical analysis 

Specific activity was expressed as µmol of oxidized/reduced NADH per minute per 

milligram of TKL. The kinetic parameters were obtained by fitting the experimental data to 

the Michaelis Menten equation (V = Vmax•[S]/(Km + [S]) using GraphPad Prism 

Software, Version 5.01, San Diego, CA, USA. 

 

3.2.15   Sequence alignment and phylogenetic motif analysis 

Sequence alignments were obtained by ClustalW software (Goujon et al. 2010; Larkin et 

al. 2007) and box-shading was performed by BOXSHADE 3.31 available at 

http://mobyle.pasteur.fr. The logo representing the residue probability around the 

phosphorylation site was generated using the Weblogo 3 program (Crooks et al. 2004) 

based on the sequence alignment. A complete list of accession numbers is given in Annex 

Table 1. 

 

3.3 Plant methods 

3.3.1 Agrobacterium mediated expression in Nicotiana benthaminana 
leafs 

pBin19 35S: C-terminal YFP constructs were transformed via electroporation in 

Agrobacterium (AGL1) plated on LB media containing 50 μg/ml kanamycin. One clone 

was inoculated in LB media containing 50 μg/ml kanamycin and incubated over night at 

30°C under shaking. On the next day 50 ml of LB media containing 50 μg/ml kanamycin 

was inoculated with the pre-culture and adjusted to an OD600 of 0.05. Then the culture was 

incubated at 30°C under vigorous shaking until an OD600 of 0.2 was reached. The bacteria 

suspension was harvested by centrifugation at 2,900 g at RT for 10 min and resuspended in 

25 ml induction media (10 mM MES pH 6.0, 10 mM MgCl2, 200 μM Acetosyringone). 

After 2 h incubation at 30°C the cells were again centrifuged at 2,900 g at RT for 10 min 

and resuspended in 10 ml of 5 % sucrose containing 200 μM acetosyringone. Leaves of 3-4 
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weeks old tobacco plants (Nicotiana benthaminana) were infiltrated with Agrobacterium 

tumefaciens (AGL1) carrying the different pBIN19 constructs. Infiltrated leaves were 

collected after 36 h and used for protoplast isolation as described previously by Koop et al. 

(1996). Fluorescence images were obtained using the confocal laser scanning microscope 

TCS-SP5 (Leica Microsystems, Germany) and the Leica LAS AF software. 

 

3.4 Bacteria methods 

3.4.1 Preparation of chemical-competent E. coli 

Chemical-competent E. coli were prepared as previously described by Inoue et al. (1990) 

but with minor changes. A pre-culture of LB supplemented with 20 mM MgSO4 was 

inoculated with 3-5 independent E. coli clones and incubated at RT under shaking over 

night. 600 ml of LB supplemented with 20 mM MgSO4 was adjusted with the pre-culture 

to OD600 of 0.2 and incubated under shaking at RT until an OD600 of 0.5 was achieved. 

Cells were harvested by centrifugation at 700 g for 10 min at 4°C and resuspended in 50 

ml ice cooled TB buffer (10 mM CaCl2, 10 mM PIPES/NaOH pH 6.7, 15 mM KCl, 55 

mM MnCl2). After incubation on ice for 30 min the cells were again harvested by 

centrifugation at 400 g for 10 min at 4°C and resuspended in ice cooled TB buffer 

supplemented with 7% DMSO. The suspension was incubated on ice for additional 30 min, 

splited into 450 μl aliquots and frozen away at -80°C. 

 

3.4.2 Preparation of electro-competent Agrobacteria 

Over-night culture of Agrobacteria was inoculated in 600 ml LB and incubated at 30°C 

under vigorous shaking for 1.5 days until an OD600 of 1.5-2 was reached. The suspension 

was cooled down on ice for 10 min. The cells were precipitated by centrifugation for 

15 min at 6,000 g at 4°C and resuspended in 50 ml of 1 mM HEPES/NaOH pH 7.0. Cells 

were again precipitated by centrifugation at 4,000 g at 4°C for 15 min and resuspended in 

1 mM HEPES/NaOH pH 7.0. This washing step was additionally repeated twice and then 

the 1 mM HEPES pH 7.0 was replaced by 10 % glycerol. The cells were again precipitated 

by centrifugation at 4,000 g at 4°C for 15 min and resuspended in 4-6 ml 10 % glycerol. 

Aliquots of 400 μl per 1.5 ml vial tubes were frozen in liquid nitrogen and stored at -80°C.
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4 Results 

Plants are continuously exposed to different stimuli. In order to properly adapt to stresses 

and changes in their environment they evolved specific signalling transduction 

mechanisms to regulate various cellular processes in response to these stimuli. In many 

cases, these complex strategies involve cross-talk between different signalling networks 

and metabolic pathways, acting in a specific and orchestrated manner. In eukaryotic cells, 

calcium plays an important role in regulating a great variety of cellular processes by acting 

as a secondary messenger. However, very little is known about calcium-mediated 

regulation within endosymbiotic organelles, such as the chloroplast. The aim of this thesis 

was to investigate mechanisms of calcium-dependent regulation of chloroplast functions 

with a special focus on calcium-dependent protein phosphorylation. 

 

4.1 Chloroplast targets of calcium-dependent protein phosphorylation 

Protein phosphorylation/dephosphorylation is a well-established means to transfer signals 

and to regulate protein function or metabolic pathways (Cohen 2000). It represents a wide-

spread form of regulation of enzyme activity and can by itself be regulated in different 

manners. One well described form is the control by calcium via CDPKs and calcium-CaM-

dependent kinases (Cheng et al. 2002; Harmon et al. 2000). While 

phosphorylation/dephosphorylation is also a common regulatory mechanism in 

chloroplasts, no evidence for calcium-dependent phosphorylation of chloroplast proteins 

has so far been described.  

To investigate potential calcium-dependent phosphorylation, intact chloroplasts were 

separated into soluble (stromal and extrinsic proteins) and membrane bound fractions. 

Phosphorylation assays were than performed using 32P-labeled ATP in the presence or in 

the absence of calcium, using the calcium specific chelator ethylene glycol tetraacetic acid 

(EGTA) to remove any endogenous calcium. Following that, proteins were separated by 

1D- (SDS) or 2D-PAGE (IEF-SDS) and phosphorylation patterns were analyzed by 

autoradiogram. Candidate proteins that undergo calcium-dependent changes in 

phosphorylation were subsequently identified by mass spectrometry.  
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4.1.1 Calcium-dependent protein phosphorylation assays using stromal 

extracts 

Calcium-dependent phosphorylation was initially accessed within the soluble 

choroplastidic proteome of Pisum sativum and protein phosphorylation was analyzed by 

SDS-PAGE and autoradiography (Fig. 4, Pisum). A dominating 73 kDa protein was 

observed as being phosphorylated only in the presence of calcium and a protein of about 

65 kDa was only phosphorylated in its absence. The same experiment was then performed 

with a stromal fraction from Arabidopsis thaliana (Fig. 4, Arabidopsis).  

 

Calcium
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ArabidopsisPisum  

Fig. 4 - Calcium-dependent phosphorylation of stromal proteins - Autoradiograms of stromal 
proteins separated by SDS-PAGE after phosphorylation assays in the presence of calcium (+) or 
EGTA (-) in both Pisum and Arabidopsis. 

 

In contrast to Pisum, more proteins were generally found to be phosphorylated, most of 

which showed no changes in correlation to the absence or presence of calcium. A clear 

difference in the phosphorylation pattern could again be observed for a few proteins, 

including the 65 kDa protein that is only phosphorylated in the absence of calcium. Two 

proteins of about 73 and 50 kDa showed phosphorylation only in the presence of calcium. 
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4.1.2 Specificity of phosphorylation to calcium 

The 73 kDa phosphoprotein is especially intriguing due to the similar results obtained for 

Pisum and Arabidopsis. In order to ensure calcium specificity of the phosphorylation of the 

73 kDa protein, phosphorylation reactions were performed in the presence of a number of 

different divalent cations such as nickel, manganese, cooper, zinc, cadmium and calcium as 

well as in the presence of EGTA (Fig. 5).  

 

EGTACaCd

72

KDa

*
Cu ZnMnNi

72

32P

Stain
 

Fig. 5 - Calcium specific phosphorylation of the 73 kDa protein - Autoradiogram (upper panel) 
and coomassie brilliant blue stained gel (lower panel) of SDS-PAGE separated stromal proteins 
after phosphorylation assays in the presence of different cations or EGTA shows a strict calcium-
dependency for the phosphorylation of the 73 kDa protein.  

 

As can clearly be seen, the 73 kDa protein is only phosphorylated in the presence of 

calcium. None of the other divalent cations could replace calcium in the reaction 

confirming the specificity of the observation. Interestingly, the 65 kDa protein that is not 

phosphorylated in the presence of calcium is phosphorylated in the presence of several but 

not all divalent cations, indicating that the phosphorylation of this protein is not directly 

correlated to the presence or absence of calcium but might be influenced by other factors.  

 

4.1.3 Identification of candidates by LC-MS/MS 

To obtain a better resolution for the identification of the candidates, the proteins were 

separated on 2D-PAGE using isoelectric focusing in the first and SDS-PAGE in the second 

dimension (Fig. 6), resulting in a more detailed map of the phosphorylation pattern. As 

before, several proteins are clearly phosphorylated independently of calcium. However, 

some proteins are phosphorylated only in the presence of calcium (Fig. 6, spots A, C and 

D) and others only in the presence of EGTA (Fig. 6, spots F, G, H and I).  
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Fig. 6 - Identification of calcium-dependent stromal phosphoproteins - Autoradiograms (upper 
panel) and coomassie brilliant blue stained gels (lower panel) of stromal proteins from Arabidopsis. 
Proteins were separated by 2D-PAGE (IEF followed by SDS-PAGE), after phosphorylation assays 
in the presence of calcium (+) or EGTA (-). Proteins indicated by an arrow were excised and 
analyzed by LC-MS/MS.  
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From the coomassie stained gels it is also visible that some proteins in the region ~12 kDa 

undergoes a pI shift independently of phosphorylation but dependent on calcium. 

In order to identify candidates, “cold” phosphorylation assays were performed with the 

same samples. Protein spots were excised out of the coomassie brilliant blue stained gel 

from the regions of interest and proteins were analyzed by mass spectrometry. As was to 

be expected from such a complex mixture of proteins, peptides were found that matched 

several different proteins, a list of which can be found as Annex Table 2. The candidate list 

was filtered based on the estimated molecular mass (excluding cleaved targeting peptides), 

the theoretical isoelectric point of the mature protein (Wilkins et al. 1999) and predicted 

chloroplastidic localization according to the Aramemnon database (Schwacke et al. 2003). 

Moreover, the list only displays proteins for which a phosphopeptide was previously 

identified in phosphoproteomic approaches (PhosPhAt database, Durek et al. 2010; 

Heazlewood et al. 2008). 

 

4.2 Transketolase as a calcium-dependent phosphoprotein 

LC-MS/MS analysis of the spots A and B (Fig. 6, coomassie brilliant blue stain) revealed 

several peptide masses that matched the predicted amino acid sequence of TKL from 

Arabidopsis (Fig. 7). The Arabidopsis genome encodes two isoforms of TKL, AtTKL1 

(At3g60750) and AtTKL2 (At2g45290). Both proteins contain a predicted chloroplast 

targeting sequence and the triangle in Fig. 7 indicates the potential cleavage site for the 

transit peptide deduced by similarity to TKL from spinach (Teige et al. 1998). While 

AtTKL1 and 2 share 88.5% identity and 94.2% similarity on amino acid sequence level, 

the alignment in Fig. 7 shows that three peptides matched both isoforms, but the majority 

of peptides are specific for AtTKL1 (Fig. 7, grey boxes). None of the peptides was specific 

to AtTKL2, strongly indicating that the protein spots in position A and B represents 

AtTKL1.  

Mature AtTKL1 after cleavage of the targeting peptide has a predicted protein mass of 

73 kDa and a predicted IEP of 5.33, both of which correlates well with the features of the 

73 kDa phosphoprotein upon 1D- and 2D-PAGE separation. Shifting of AtTKL1 to the 

acidic side of the gel is also in accordance with a post translational modification by 

phosphorylation. 
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Fig. 7 - Alignment of deduced amino acid sequences of AtTKL1 and AtTKL2 - Grey bars 
behind the sequence indicate the peptides found by tandem mass spectroscopy (Annex Table 3). A 
triangle indicates the potential cleavage site for the transit peptide as predicted by similarity to 
spinach transketolase (Teige et al. 1998). Lines under AtTKL2, represent the conserved amino 
acids between both proteins. Sequence alignment was performed using ClustalW 2.0 (Larkin et al. 
2007; Goujon et al. 2010). 
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4.2.1 Calcium-dependent phosphorylation of recombinant AtTKL 

To confirm calcium-dependent phosphorylation of AtTKL, phosphorylation assays were 

performed with recombinant proteins. Mature forms of both AtTKL1 and 2 without tag 

were produced using the pTWIN system and proteins were purified under native 

conditions. To be able to phosphorylate the recombinant proteins, “catalytic” amounts of 

stromal proteins were included in the reaction. As before, assays were performed in the 

presence of either Ca2+ or EGTA and the results were analysed by SDS-PAGE and 

autoradiogram (Fig. 8). To ensure that endogenous 73 kDa protein would not interfere with 

the results, control assays were performed without recombinant protein and no signal was 

detected at 73 kDa under these conditions (Fig. 8, Str).  

 

Ca2+ + - + - + -

AtTKL1 + Str StrAtTKL1

+ - + - + -

AtTKL2 + Str StrAtTKL2

72

kDa

55

36

72

55

36

Stain

P32

 

Fig. 8 -TKL is phosphorylated in a calcium-dependent manner - Recombinant AtTKL1 and 
AtTKL2 were expressed and purified in E. coli. Both proteins can be phosphorylation by ‘catalytic’ 
amounts of stromal and membrane extrinsic extract. Recombinant proteins and stromal extract 
alone were used as controls.  

 

Assays with recombinant AtTKL without stroma also showed no phosphorylation 

indicating that no protein kinase from E. coli contaminated the purified protein 

(Fig. 8, AtTKL1 and 2). In the presence of stromal extract and recombinant protein, 

phosphorylation could be observed at the corresponding size of AtTKL1 and AtTKL2 only 

in the presence of calcium (Fig. 8, AtTKL1 and 2 + Str). This shows that recombinant 

AtTKL1 and AtTKL2 can both be phosphorylated by a stromal protein kinase in a 
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calcium-dependent manner, thereby confirming the identity of the 73 kDa phosphoprotein 

as chloroplast TKL.  

Interestingly, a protein at about 68 kDa was phosphorylated in the stromal extract alone 

independent of calcium. This protein was not observed before, which might be due either 

to slight differences in the preparation of the stromal extract or inhibition of 

phosphorylation of this protein at higher stroma concentrations. 

 

 

4.2.2 AtTKL is phosphorylated by a stromal kinase 

To confirm the exclusive localization of the corresponding protein kinase in the chloroplast 

stroma, chloroplast proteins were separated into stromal (Str) and membrane proteins 

(Mem) and phosphorylation assays were performed with recombinant AtTKL1 and 

AtTKL2 (Fig. 9). 
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Fig. 9 - TKL is phosphorylated by a stromal kinase - Purified recombinant AtTKL1 and 
AtTKL2 can be phosphorylation by ‘catalytic’ amounts of stromal protein extracts (Str) but not by 
membrane proteins (Mem). Recombinant proteins, stromal and extrinsic extracts (Str) and 
membrane proteins (Mem) were used alone as controls. Upper panel shows the autoradiograms and 
lower panel the coomassie stained proteins. 

 

It is clearly visible from the autoradiogram that both proteins can only be phosphorylated 

when stromal proteins are present in the assay but not in the presence of membrane 

proteins. Both chloroplast fractions were also tested individually without recombinant 
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proteins and no phosphorylation could be observed at 73 kDa. This confirms the 

phosphorylation of AtTKL by a soluble stroma-localized protein kinase. 

 

4.2.3 Characterization of AtTKL1 phosphorylation 

While the in vitro data indicate that both Arabidopsis TKLs can be phosphorylated in a 

calcium-dependent manner, the LC-MS/MS data suggested AtTKL1 as the target identified 

in the initial experiments. This is in good accordance with the fact that AtTKL1 seems to 

be the ubiquitous isoform with a high expression level especially in leafs (see Fig. 3), 

while AtTKL2 is only expressed in late seed. Therefore, subsequent experiments were 

preformed exclusively with AtTKL1. 

To better understand the kinetics of the phosphorylation reaction, time-dependent and 

protein-concentration dependent phosphorylation assays were performed using 

recombinant AtTKL1 and “catalytic” amounts of stromal extract (Fig. 10). Results were 

not only visualized by SDS-PAGE and autoradiogram but also quantified with the software 

AIDA Version 3.52-046, according to the autoradiogram color intensity and expressed in 

Integral/Area - background intensity (PSL/mm2). 

Time-dependency of the reaction was measured by stopping the reaction at different time 

points between 0 to 25 minutes (Fig. 10, A). Phosphorylated AtTKL1 appears after about 

30 seconds and the intensity of the phosphorylation signal increases until a saturation is 

reached after about 15 - 20 min. The phosphorylation dependency on AtTKL1 was also 

tested by using different amounts of recombinant protein (30 – 1000 ng) in the assay. Not 

surprisingly, the signal intensity increased in a linear manner with the increasing amount of 

AtTKL1 (Fig. 10, B) indicating that a wide range of substrate concentration can be used 

without affecting the kinase reaction.  
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Fig. 10 - Characterization of AtTKL1 phosphorylation - A. Time course assay – 
Phosphorylation reactions were stopped at different time points (0 – 25 minutes) by addition of 
SDS-PAGE sample buffer and intensity of AtTKL1 phosphorylation was analyzed by 
autoradiogram after SDS-PAGE separation (upper panel). The lower panel represents a plot of time 
versus phosphorylation intensity. B. Protein concentration assay – Phosphorylation was performed 
with different amounts of recombinant AtTKL1. Upper panel shows the autoradiogram of reactions 
containing amounts of AtTKL1 ranging from 30 – 1000 ng protein). The chart in the lower panel 
represents the linear dependency of phosphorylation intensity on protein concentration. Intensity of 
phosphorylation was detected with the software AIDA Version 3.52-046, according to the 
autoradiogram color intensity and expressed in Integral/Area – background intensity (PSL/mm2). 

 

4.3 Topology and phylogeny of TKL 

4.3.1 Identification of the phosphorylation site of AtTKL1 

With the recent advances in mass spectrometry, it became the tool of choice for 

phosphopeptide identification. However, it is still challenging to investigate this post-

translation modification in complex biological samples especially with phosphorylated 

proteins that are present only in low abundance.  

To identify the exact position(s) at which AtTKL1 is phosphorylated, the endogenous 

Arabidopsis TKL was thus enriched by immuno-precipitation using stromal extract and an 

antibody raised against recombinant AtTKL1 (Fig. 11, A). Stromal extract (L) was 

incubated with protein A agarose and -AtTKL1 and the flow-through containing unbound 

proteins was collected (FT). After thourough removal of unbound portein (W), proteins 

interaction with the antibody were removed from the beads by boiling the sample for 5 

minutes with SDS solubilization buffer. 
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Fig. 11 - Enrichment of endogenous AtTKL by co-immuno-precipitation ‐ A. Endogenous 
stromal AtTKL could be enriched by immune-precipitation with -AtTKL1 (-AtTKL1). Pre-
immune serum was used as a control for the specificity of the antibody (pre-serum). Coomassie 
brilliant blue stain of: L - loading of stromal extracts; FT - flow through; W – washing; E – elution. 
B. Elution fraction of stromal AtTKL enriched by co-immuno precipitation after a “cold” 
phosphorylation assay. For a better resolution, proteins were separated by a 10% SDS-PAGE and 
stained with coomassie brilliant blue. Bands “a” and “b” were analyzed by LC-MS/MS (Table 7). 

 

SDS-PAGE analysis shows that a protein band of the molecular mass of AtTKL could be 

eluted from the beads in the presence of -AtTKL1. When pre-immunserum was used as a 

control, no protein bound to the beads indicating the specificity of the antibody to AtTKL 

(Fig. 12, A, pre-serum). 

To determine the phosphorylation site of AtTKL1, a ‘cold’ calcium-dependent 

phosphorylation assay was performed with Arabidopsis stromal extract followed by 

immuno-precipitation using this antibody. This time, the elution fraction was separated on 

an SDS-PAGE with lower acrylamide concentration (10%) for a better separation of TKL 

from the heavy chains of the antibody (Fig. 11, B). Under these conditions, two protein 

bands can be observed in the elutate at 73 kDa and at 74 kDa. Both bands were 

independently excised out of the PAGE and analyzed by LC-MS/MS with a special focus 

on the identification of phosphopeptides. To increase the yield of phosphorylated peptides, 

a specific enrichment step with TiO2 was performed.  

 

Table 7 - Phosphopeptides identified in AtTKL1 ‐ Arabidopsis proteins pulled down with the 
antiserum against AtTKL1 (see Fig. 11, B) were analysed by LC-MS/MS. A single phosphopeptide 
could be detected from the protein band at 74 kDa, which matches AtTKL1.  

Band Protein Identification Phosphopeptide 

a AtTKL1 (At3g60750) ALPTYTPES(p)PGDATR 

b AtTKL1 (At3g60750) ---- 
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Only peptides belonging to AtTKL1 could be identified in both proteins confirming the 

specificity of the antibody. It also shows that both proteins represent AtTKL1. The analysis 

furthermore yielded a single phosphopeptide indicating a phosphorylation of serine in 

position 428 (Ser428) in the AtTKL1 sequence (Annex Fig. 2). Interestingly, the 

phosphopeptide was only found in the protein with slightly higher molecular mass, 

indicating that the difference in separation behavior might be due to the phosphorylation 

(Figs. 11, B).  

Since no further phosphopeptide was identified, a variant of AtTKL1 was constructed 

containing a serine to alanine exchange at this position. Purified recombinant AtTKL1 and 

AtTKL1S/A were then used for calcium-dependent phosphorylation assays with “catalytic” 

amounts of stromal proteins (Fig. 12). 
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Fig. 12 - AtTKL1 is phosphorylated at a single serine residue - Recombinant AtTKL1(S/A) 

lacking Ser428 identified in the phosphopeptide analysis could no longer be phosphorylated by 
stromal extracts. Upper panel shows the autoradiogram and lower panel the commassie brilliant 
blue stain.  

 

In contrast to the control assay with AtTKL1, no phosphorylation could be observed for 

recombinant AtTKL1(S/A) (Fig. 12) neither in the presence or absence of calcium, 

confirming that phosphorylation of AtTKL1 occurs solely at Ser428.  

 

4.3.2 Phylogenetic distribution of TKL phosphorylation 

A sequence alignment of TKLs from a number of different photosynthetic organisms 

showed a conserved domain around the phosphorylated Ser428. Based on the presence of an 

amino acid susceptible to undergo phosphorylation at this position, TKLs can be grouped 

in two classes. The first class includes vascular plants, where a serine or very rarely 

threonine residue (e.g. in Pisum sativum) are present (Fig. 13, upper panel). In contrast, the 
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second class includes TKLs from mosses, algae and cyanobacteria that exclusively possess 

aspartate in place of the serine (Fig. 13, lower panel).  

 

 

 

Fig. 13 - Phylogenetic conservation of TKL phosphorylation - Sequence alignment of the 
conserved region containing the phosphorilation site of AtTKL1 (red). Vascular plants contain a 
conserved serine (or with less occourence a threonine). TKLs from cyanobacteria, algae and 
mosses exclusively contain an aspartate in the same position. The probability analysis was based on 
the alignment included on Annex Fig. 3.  

 

A serine residue is also found in TKL from Selaginella, a spike moss belonging to the 

lycophytes, which phylogentically are placed between the bryophytes and the 

euphyllophytes.  

The presence of an aspartate makes it unlikely that non-vascular plant TKLs are 

phosphorylated at this position. Nevertheless, TKL phosphorylation of a non-vascular 

photosynthetic organism was also analysed. To that end, recombinant transketolase from 

Chlamydomonas reinhardtii (CrTKL) was expressed in E. coli and purified under native 

conditions. Using the recombinant protein and soluble extracts from this alga, 

phosphorylation assays with 32P-ATP were performed in the presence or absence of 

calcium (Fig. 14). 
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Fig. 14 - CrTKL is not phosphorylated - Phosphorylation assays with recombinant CrTKL and 
soluble extracts of Chlamydomonas reinhardtii. Reactions were performed in the presence of Ca2+ 
or EGTA and control reactions with recombinant protein or Chlamydomonas extracts alone were 
tested. Proteins were separated by SDS-PAGE, stained with coomassie brilliant blue (lower panel) 
and phosphorylation patterns analyzed by X-ray film (upper panel). 

 

No phosphorylation of the recombinant protein could be observed at all in these assays 

including endogenous phosphorylation in the alga extracts around the 73 kDa region. 

However, other proteins in the extract undergo calcium-dependent phosphorylation 

showing that calcium-dependent kinases are present (~ 58 and 50 kDa). This data strongly 

suggests that CrTKL is not phosphorylated in the same manner as AtTKL1. 

To confirm phosphorylation of TKL from other vascular plants, an immuno precipitation 

of the phosphorylated 73 kDa protein from Pisum was tested using the -AtTKL antibody. 

A kinase assay in the presence of calcium was done with stroma isolated from purified 

chloroplasts from Pisum sativum. The phosphorylation reaction was subsequently 

incubated with the -AtTKL1 antiserum and protein A agarose and endogenous PsTKL 

was pulled down. After SDS-PAGE separation and protein staining, phosphorylation of the 

pulled-down protein was evaluated by X-ray film. A protein of the correct size was pulled-

down with the antibody and the autoradiogram showed that this protein is radiolabeled, 

thus strongly supporting that also PsTKL can be phosphorylated in the same calcium-

dependent manner (Fig. 15). 
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Fig. 15 - PsTKL is phosphorylated - The 73 kDa phosphorylated protein from Pisum stroma can 
be pulled-down with the antiserum against AtTKL1. Upper panel shows the autoradiogram and 
lower panel the correspondent gel stained with coomassie brilliant blue. 

  

Together, these results suggest that calcium-dependent phosphorylation of TKLs might be 

evolutionary conserved in vascular plants but not present in algae or mosses. 

In order to understand the role of phosphorylation for AtTKL1, the position of the Ser428 

was assigned in a 3D model of the crystalized maize TKL (Gerhardt et al. 2003) (Fig. 16). 

The maize ZmTKL is highly similar to AtTKL1, including a strongly conserved domain 

around the phosphorylation site of Arabidopsis. 

 

Ser428

 

Fig. 16 - Modelling of the AtTKL1 phosphorylation site - The phosphorylation site (red sphere) 
was modelled onto the 3D-structure of the maize TKL (PDB 1ITZ), which contains a conserved 
serine in the same position as AtTKL1. The TPP cofactor is labelled in orange. 

 

TKL forms a functional dimer with the active site located in a groove formed by the 

contact site of the two monomers The Ser428 is localized in a loop between -helix 12 and 
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-sheet 6 just at the beginning of the so-called central domain. While the central domain is 

involved in dimer interface formation as well as TPP cofactor binding, the phosphoserine 

is located in a loop that extents to both sides out of the compact center of the dimer 

(Fig. 16). It is far removed from the substrate entrance channel and the conserved residues 

that are required for binding of either the substrates or the TPP co-factor. 

 

4.4 Influence of phosphorylation on TKL activity 

TKL plays an important role in plant metabolism as an integral part of both the Calvin 

Benson cycle (CBB) and the pentose phosphate pathway (PPP). The enzyme is involved in 

the reversible conversion of the following phosphate sugars: ribose-5 phosphate (R5P), 

xylulose 5-phosphate (X5P), erytrose 4-phosphate (E4P), glyceraldehydes 3-phosphate 

(G3P), sedoheptulose 7-phosphate (S7P) and fructose 6-phosphate (F6P). This way, TKL 

is involved in several reactions that will yield different news phosphate-sugars. These 

sugars can serve as intermediates of important metabolic reactions including the 

regeneration of ribulose 1,5-bisphosphate as well as synthesis of nucleic acids, amino acids 

and other derivatives. The PPP also produces NAD(P)H for anabolic reactions in non-

photosynthetic tissue and in the dark. 

According to the 3D structure of TKL, the phosphorylation site is not in close proximity to 

the active center. Nevertheless, a post-translation modification by phosphorylation could 

affect protein structure and therefore the kinetics parameters of the enzyme. In order to 

study the influence of AtTKL1 phosphorylation on Ser428, in vitro assays were setup to 

determine the kinetic parameters of TKL for several sugars. Recombinant AtTKL1 and a 

AtTKL1(S/D) variant, in which Ser428 was mutated to aspartic acid, were expressed in E. coli 

and purified under native conditions to apparent homogeneity (see Fig. 19). The 

AtTKL1(S/D) variant was included to mimic constant phosphorylation so that it could be 

compared to recombinant AtTKL1 which is present in a non-phosphorylated form under 

these conditions. 

Diurnal studies have revealed an increase in stromal pH from 7 to 8 upon illumination 

(Heldt et al. 1973; Werdan et al. 1975). Furthermore, other stromal enzymes have been 

reported to change their activity in a light dependent manner (Woodrow et al. 1984; 
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Anderson 1973; Anderson 1974). Therefore, the experiment was extended by measuring 

the protein performance at pH 7.2 and 8.0 representing dark and light conditions. Kinetic 

parameters (Km, Vmax, and Kcat/Km) were than calculated for both TKL variants and for 

different substrates (X5P, R5P, F6P and G3P).  

 

4.4.1 Kinetic parameters for X5P and R5P 

The kinetic parameters of AtTKL1 for the reaction X5P + R5P  S7P + G3P  were 

assessed by a well-established TKL assay (De La Haba et al. 1955) using a coupled 

reaction with triose phosphate isomerase (TPI) and glycerol 3-phosphate dehydrogenase 

(GDH) as shown in figure 17. The GDH reaction utilizes NADH and can therefore be 

measure photometrically. Special care was taken to ensure that neither GDH nor TPI where 

limiting under the chosen conditions.  
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Fig. 17 - Standard coupled assay for measuring TKL activity using R5P and X5P as 
substrates - The conversion of X5P (ketol donor) and R5P (ketol acceptor) by TKL to S7P and 
G3P cannot be measured directly. The produced G3P will thus be converted in dihydroxyacetone 
phosphate (DHAP) by triose phosphate isomerase (TPI). The subsequent conversion of DHAP to 
D-glycerol 3-phosphate by glycerol 3-phosphate dehydrogenase (GDH) requires NADH. The 
output of measurement is the conversion of NADH to NAD+ that can be detected by 
spectrophotometry at 340 nm. 
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To study the kinetic parameters for each sugar, the concentration of one substrate was 

varied between the range of 0.1 to 3.0 mM while the other sugar substrate was kept 

constant at a high concentration. All reactions followed Michaelis-Menten kinetics 

(Annex Fig. 1 shows the estimated fit and demonstrates the goodness-of-fit of the 

estimation routine) and maximum velocity of the reactions was calculated for a linear 

range of 5 minutes. Table 8 shows the mean values and standard deviation of Vmax, Km 

and Kcat/Km derived from these measurements.  

 

Table 8 - Kinetic parameters of AtTKL1 for X5P - Purified AtTKL1 and AtTKL1(S/D) protein 
were used to determine the kinetic parameters by the method represented in Fig. 17. Each value 
represents the average of four independent determinations including standard deviation at different 
X5P concentrations (up to 3.0 mM) in the presence of 1.7 mM R5P. 

 X5P 

 AtTKL1 Vmax 
(µmol/min•mg TKL) 

Km 
(µM) 

Kcat/Km 
(M-1•s-1) 

wt 14.3 ± 0.3 164.3 ± 19.2 2.6•E+05 
pH 7.2 

S428D 15.3 ± 0.3 260.6 ± 22.4 1.4•E+05 

wt 13.1 ± 0.3 115.9 ± 14.6 3.5•E+05 
pH 8.0 

S428D 13.5 ± 0.3 102.5 ± 12.3 3.2•E+05 

 

 

The analysis of the kinetic constant Vmax for X5P revealed no significant changes either 

depending on pH or between the two TKL variants. Nonetheless, at pH 7.2, the wild-type 

and S/D variant show different apparent KmX5P values of 164.3 and 260.6 µM, 

respectively. This nearly two-fold increase of the KmX5P is reflected by a two-fold decrease 

in catalytic activity. By contrast, at pH 8.0, both protein variants have comparable higher 

KmX5P and Kcat/Km. 

For R5P, no significant changes were observed between the two variants for both kinetic 

constants (Table 9). The pH has a large effect on the Michaelis constant and the catalytic 

efficiency. At pH 8.0 an increase in KmR5P of about two to three fold is observed when 

compared to pH 7.2 and the catalytic efficiency decreased by about 40 % (Table 9).  
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Table 9 - Kinetic parameters of AtTKL1 for R5P - Purified AtTKL1 and AtTKL1(S/D) protein 
were used to determine the kinetic parameters by the method represented in Fig. 17. Each value 
represents the average of five independent determinations including standard deviation at different 
R5P concentrations (up to 3.0 mM) in the presence of 1.5 mM X5P.  

 R5P 

pH AtTKL1 Vmax 
(µmol/min•mg TKL) 

Km 
(µM) 

Kcat/Km 
(M-1•s-1) 

wt 18.4 ± 0.5 486.7 ± 42.5 9.2•E+04 
7.2 

S428D 17.9 ± 0.7 508.7 ± 58.3 9.3•E+04 

wt 20.9 ± 0.8 1245.0 ± 104.8 4.1•E+04 
8.0 

S428D 20.6 ± 1.6 1399.0 ± 233.8 3.9•E+04 

 

In summary, these results suggest that AtTKL1 activity is affected by pH, specifically for 

R5P. Furthermore, phosphorylation of TKL increases affinity for X5P at pH 7.2 but not at 

pH 8.0.  

 

4.4.2 Kinetic parameters for F6P and G3P 

The conventional and established substrates used for kinetic measurements of TKL are 

R5P and X5P. However, schematic in figure 18 represents an alternative method for 

measuring TKL activity as recently proposed by Naula et al. (2008).  
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Fig. 18 - Coupled assay for measuring TKL activity using F6P and G3P as substrates - In a 
coupled reaction the conversion of F6P and G3P in X5P and E4P by TKL can be measured by a 
subsequent conversion of E4P into 4PE (4-phosphate-D-erythronate) by E4PDH that produces 
NADH. The output of measurement is the conversion of NAD+ to NADH that can be detected by 
spectrophotometry at 340 nm.   
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This new method uses F6P (ketol donor) and G3P (ketol acceptor) as substrates. They will 

be converted in X5P and E4P and activity can be measured in a coupled reaction using 

erythrose 4-phosphate dehydrogenase (E4PDH) (E.C 1.2.1.72). This auxiliary enzyme 

converts E4P to 4-phosphate D-erythronate in a reaction that will reduce NAD+ to NADH 

and can thus be measured photometrically. 

The assay requires E4PDH as auxiliary enzyme and since it is not commercially available, 

recombinant enzyme was prepared in E. coli. The protein was purified under native 

conditions using a C-terminal 6xHis-tag and protein purity was confirmed by SDS-PAGE 

and staining with coomassie brilliant blue (Fig. 21, B). E4PDH was originally thought to 

be a G3P dehydrogenase (Alefounder and Perham 1989) but more recent studies revealed 

that G3P is not an efficient substrate (Zhao et al. 1995; Boschi-Muller et al. 1997). 

Figure 19, A depicts plots of NADH production versus time, when AtTKL1 or 

AtTKL1(S/D) are used together with E4PDH in this coupled reaction. Using 2.5 mM ß-

NAD+, 1.2 µg TKL, 20 µg E4PDH, 2.0 mM G3P and 5.0 mM F6P, the reaction reaches 

saturation at 2 relative units of absorbance in about 50 min. The affinity of E4PDH to G3P 

is reflected in a control assay without TKL (Fig. 19, A, blue line). Because it presents a 

very residual slope, control assays were run for all conditions analysed and in order to 

determine the final maximum slope of the TKL reaction, the slope value of the control 

reaction without TKL was deducted. 

Since E4PDH was not previously characterized, several parameters were initial analysed to 

optimize the assay. The optimal concentration of G3P was accessed by varying 

concentrations of this phosphate sugar at a fixed concentration of E4PDH, AtTKL1 and 

F6P (Fig. 19, C). Maximum TKL activity occurs with 2.0 mM G3P and an inhibitory effect 

is observed with concentrations above this concentration. At 10.0 mM G3P, almost no 

AtTKL1 activity can be detected. To not limit the assay by the coupled reaction, optimal 

ratio of AtTKL1 and E4PDH to ensure excess of E4PDH activity was also elucidated 

(Fig. 19, D) and utilized in further assays. This way, the optimal conditions for this 

reaction were determined as: 2.0 mM G3P, ≥ 1.2 µg/200µl AtTKL1 and ≥ 10.0 µg/200µl 

E4PDH. 
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Fig. 19 - Characterization of the coupled reaction with E4PDH - A. Raw data of NADH 
production at 340 nm by using AtTKL1 (green), AtTKL1(S/D) (red) and a control reaction without 
TKL (blue). B. Recombinant AtTKL1, AtTKL1(S/D) and E4PDH used for kinetic assays. Protein 
was isolated and purity of the recombinant protein was confirmed by SDS-PAGE and coomassie 
brilliant blue staining. C. Inhibition of AtTKL1 activity by G3P. Different G3P concentrations 
were tested in the presence of 1.2 µg AtTKL1, 30.0 µg E4PDH and 10.0 mM F6P. The graph 
shows the maximum slope of reaction (OD340/minute). D. Determination of the excess amount of 
E4PDH. The graphic represents the maximum slope of 200 µl reactions (OD340/minute) by using 
different amounts of AtTKL1 (0.006, 0.012, 0.06, 0.12, 0.6, and 1.2 µg) and E4PDH 
(0.0, 1.5, 2.9, 5.7, 11.5 and 57.0 µg).  

 

As before, the kinetic parameters of both TKL variants for F6P and G3P were determined 

at pH 7.2 and 8.0 (Annex Fig. 1 shows the estimated fit and demonstrates the goodness-of-

fit of the estimation routine). All reactions followed Michaelis-Menten kinetics and 

maximum velocity of the reactions was calculated for a linear range of 5 minutes.  

Table 10 shows the mean values and standard deviation of Vmax, Km and Kcat/Km of 

both enzymes for F6P. The analysis revealed a general increase of Km and Vmax for the 

wild type enzyme compared to the S/D mutant. Furthermore, both enzymes show a higher 

KmF6P at pH 7.2 than at 8.0. The wild type KmF6P increases four-fold to 23.1 mM and the 

mutant three-fold to 11.4 mM. However, these changes in KmF6P are not reflected to the 

same extent in the catalytic efficiency. The Kcat/Km values are extremely low for both 

reactions and the differences in between the enzymes are about 20 to 25 %. 
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Table 10 - Kinetic parameters of AtTKL1 for F6P - Purified AtTKL1 and AtTKL1(S/D) protein 
were used to determine the kinetic parameters by the method represented in Fig. 18. Each value 
represents the average of four independent determinations including standard deviation at different 
F6P concentrations (up to 20.0 mM) in the presence of 2.0 mM G3P.  

 F6P 

 AtTKL1 Vmax 
(µmol/min•mg TKL) 

Km 
(mM) 

Kcat/Km 
(M-1•s-1) 

wt 4.0 ± 0.2 23.1 ± 1.7 1.4•E+01 
pH 7.2 

S428D 2.4 ± 0.1 11.4 ± 0.6 1.7•E+01 

wt 5.5 ± 0.2 7.4 ± 0.8 6.1•E+01 
pH 8.0 

S428D 4.1 ± 0.1 4.1 ± 0.3 8.0•E+01 
 

The analysis of the kinetic parameters of AtTKL1 and AtTKL1(S/D) upon G3P is 

represented in Table 11 but differences between the two protein variants are relatively 

minor. Both enzyme variants have a higher KmG3P (five-fold higher) and Vmax (two-to-

three fold higher) at pH 8.0 compared to pH 7.2 that is reflected by a lower catalytic 

activity. 

 

Table 11 - Kinetic parameters of AtTKL1 for G3P - Purified AtTKL1 and AtTKL1(S/D) protein 
were used to determine the kinetic parameters by the method represented in Fig. 18. Each value 
represents the average of five independent determinations including standard deviation at different 
G3P concentrations (up to 2.0 mM) in the presence of 6.0 mM F6P.  
 
 G3P 

 AtTKL1 Vmax 
(µmol/min•mg TKL) 

Km 
(µM) 

Kcat/Km 
(M-1•s-1) 

wt 0.7 ± 0.0 124.7 ± 19.2 7.3•E+02 
pH 7.2 

S428D 0.8 ± 0.0 162.4 ± 21.2 6.1•E+02 

wt 1.5 ± 0.1 625.1 ± 118.7 2.9•E+02 
pH 8.0 

S428D 1.8 ± 0.1 822.7 ± 83.6 2.7•E+02 
 

 

4.5 TKL is localized exclusively in chloroplasts 

The exact distribution of components of the PPP in plants is still a matter of debate. It was 

suggested that the two PPP enzymes TKL and aldolase are localized exclusively in 

chloroplasts, even though the PPP pathway is present in both chloroplasts and the cytosol. 
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This would require that chloroplast TKL not only provides enzymatic reactions for CBB 

and the chloroplast PPP but also for cytosolic PPP. So far, localization of TKL in plants 

was based on the presence of the targeting peptide as well as results from either LC-

MS/MS analysis (Reiland et al. 2009; Joyard et al. 2010; Peltier et al. 2006; Kleffmann et 

al. 2004) or enzyme assays using different sub-cellular extract (Schnarrenberger et al. 

1995; Teige M 1996). To assess these results, the subcellular localization of AtTKL1 and 

AtTKL2 was analysed by transient expression of YFP fusion proteins and confocal laser 

scanning microscopy. The full-length coding region of AtTKL1 and AtTKL2 was fused N-

terminally to YFP in a vector suitable for Agrobacterium-mediated transformation. The 

constructs were then expressed in leaf cell of Nicotiana benthaminana under control of the 

cauliflower mosaic virus CaMV 35S promoter. Protoplasts were prepared from transformed 

tobacco leaves and analysed by fluorescence microscopy (Fig. 20) under conditions that 

allowed the monitoring of YFP as well as chlorophyll fluorescence. 

 

AtTKL1 / 2

1 67 741
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YFP chlorophyll overlay

AtTKL1
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Fig. 20 - AtTKL1 and AtTKL2 are localized exclusively in chloroplasts - AtTKL1-YFP and 
AtTKL2-YFP were transiently expressed in tobacco leaf cells. Fluorescence of YFP (green) and 
chlorophyll (red) was analyzed by laser scanning fluorescence microscopy using protoplasts 
isolated from transformed leafs.  
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For both constructs the YFP signal clearly overlaps with the chlorophyll fluorescence (Fig. 

20, chlorophyll) and is not visible anywhere else in the cell (Fig. 20, merged), thereby 

supporting an exclusive chloroplast localization of both AtTKL1 and 2. 

 

4.6. Thylakoid targets of calcium-dependent protein phosphorylation 

In collaboration with the group of Dr. Markus Teige at the Max F. Perutz Laboratories of 

the University of Vienna, potential target of calcium-dependent phosphorylation were also 

elucidated within the thylakoid proteome. In an approach similar to what is described in 

4.1.3 for stromal proteins, Simon Stael identified potential thylakoid targets by LC-MS/MS 

and a list of candidates is represented on table 12.  

 

Table 12 - Overview of potential thylakoid targets of calcium-dependent phosphorylation - As 
identified by LC-MS/MS within the thesis work of Simon Stael in the group of. Dr. Markus Teige 
at the Max F. Perutz Laboratories of the University of Vienna (Stael et al., 2012). In case of Var, 
peptide matched both known isoforms of the protein.  
 

ID AGI code Description 

PsaN At5g64040 Photosystem I subunit N 

CAS At5g23060 ‘Calcium sensing’ protein 

VAR1/VAR2 At5g42270/At2g30950 Variegated 1 and 2, FtsH proteases 

PsbP-1 At1g06680 Photosystem II subunit P-1 

PsaH-2 At1g52230 Photosystem I subunit H-2 
 

 

4.6.1. Validation of calcium-dependent phosphorylation 

As with the TKL, these potential targets needed to be further validated by using 

recombinant proteins. To that end, the most likely targets PsaN, CAS, VAR1, and VAR2 

were expressed and purified under native conditions from E. coli. In case of CAS and 

PsaN, the proteins were purified without a tag by using the pTwin system. By contrast, 

VAR1 and VAR2 were purified by a C-terminal gluthathione-S-transferase (GST) tag. 

PsaN is a small nuclear-encoded component of PSI that is only associated with the 

thylakoid membrane and was expressed in its mature form without its targeting sequence. 
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CAS, VAR1, and VAR2 are nuclear-encoded proteins that reside in the thylakoid 

membrane but all known phosphorylation sides were found in the C-terminal, stromal 

exposes part of the proteins (Vainonen et al. 2008; Reiland et al. 2009). Therefore, only the 

C-terminal part was cloned, resulting in soluble expression of the proteins.  

All constructs were then used for in vitro phosphorylation assays using catalytical amounts 

of stromal extracts in the presence of either Ca2+ or EGTA. As before, control kinase 

assays were performed with recombinant protein or stromal extracts alone. Proteins were 

separated by SDS-PAGE, stained by coomassie brilliant blue and phosphorylation was 

detected by autoradiogram (Fig 21).  
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Fig. 21 - Validation of potential thylakoid targets of calcium-dependent phosphorylation -
Purified recombinant PsaN, CAS, VAR1, VAR2, and GST were analysed using catalytically 
amounts of stromal extracts. All four proteins can be phosphorylated in a calcium-dependent 
manner. Recombinant proteins (two lanes on the right) and stromal extract (two lanes on the left) 
alone were used as controls. The left panel display the autoradiogram of 32P-labelled proteins and 
the right panel is the protein loading control stained with coomassie brilliant blue. 
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No phosphorylation was detected when only recombinant proteins were included in the 

assay, showing that there is no contamination with an E. coli protein kinase able to 

phosphorylate these proteins (Fig 21, first two lanes). On the other hand, PsaN, CAS, 

VAR1 and VAR2 were all clearly phosphorylated in a calcium-dependent manner by 

stromal extracts. However, despite similar amounts of proteins in the assay, the intensity of 

VAR2 phosphorylation was significantly less compared to VAR1. While in the case of 

PsaN and CAS a slight reaction in the presence of EGTA can be observed, the signal is 

highly increased in the presence of calcium. Phosphorylation in the absence of calcium 

could be due to further phosphorylation sides that are targeted by another calcium-

independent kinase. 

 

 

4.7 Identification of chloroplast calcium-binding proteins 

The overall aim of this thesis was to elucidate novel components of the calcium-regulation 

network in chloroplasts. In addition to calcium-dependent phosphorylation, stromal 

proteins were also analysed for the presence of calcium-binding proteins. To that end, 

stromal proteins were separated by 2D-PAGE using isoelectric focusing in the first and 

SDS-PAGE in the second dimension. The separated proteins were then transferred by 

Western blot onto a PVDF membrane and calcium-binding assay was executed by 

incubation of the membrane with the radioactive isotope 45Ca after re-naturation of the 

proteins on the membrane. To avoid unspecific binding due to positive charge, the reaction 

was competed with an excess of the divalent cation Mg. As can be seen from the 

autoradiogram, a prominent protein of about ~12 kDa which resides on the acidic region of 

the membrane shows the only clear calcium-binding under these conditions. 
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Fig. 22 – Calcium-binding assay of stromal proteins – Stromal proteins from Arabidopsis 
separated by 2D-PAGE (IEF followed by SDS-PAGE), after calcium-binding assays in the 
presence of 45Ca. Coomassie brilliant blue stained gel (upper panel) and autoradiogram (lower 
panel). The protein indicated by an arrow was excised and analyzed by LC-MS/MS.  

 

Due to its location and abundance, the protein spot was easily identified on a 

corresponding SDS-PAGE stained with coomassie brilliant blue. The spot of interest 

(Fig. 22, A) was excised out of the gel and analysed by LC-MS/MS. Two peptides matched 

the sequence of one isoform of the small chloroplast protein CP12-1 from Arabidopsis 

(AtCP12-1, At2g47400) as shown by the grey bars in figure 23. The predicted protein mass 

of AtCP12-1 is 13.5 kDa for the full length protein and 12 kDa for the mature protein after 

cleavage of the targeting peptide. Furthermore, the mature protein has a theoretical 

isoelectric point of 4.15 (Wilkins et al. 1999), which is in agreement with the position of 

the protein in the 2D PAGE analysis. 
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   1 MTTIAAAGLN VATPRVVVRP VARVLGPVRL NYPWKFGSMK RMVVVKATSE GEISEKVEKS

  61 IQEAKETCAD DPVSGECVAA WDEVEELSAA ASHARDKKKA GGSDPLEEYC NDNPETDECR

 121 TYDN*
 

Fig. 23 - Deduced amino acid sequence of AtCP12-1 - Grey bars behind the sequence indicate 
peptides found by tandem mass spectroscopy that matched to this protein. A triangle indicates the 
potential cleavage site for the transit peptide (Emanuelsson et al. 1999) as well as the N-terminal of 
the protein used for the calcium-binding assays. 

 

To validate if AtCP12-1 can indeed bind calcium, recombinant protein was produced in 

E. coli. For this propose, the coding region of AtCP12-1 without targeting peptide was 

cloned in the pTwin vector and recombinant protein was purified under native conditions 

without a tag. Calcium-binding assays with 45Ca were performed by spotting of purified 

protein onto a PDVF membrane (Fig. 24, A). Equal amounts of Aequorin (Aeq) were 

spotted as positive control, since the protein contains three calcium-binding EF domains. 

Cytochrom C (CytC) was used as a negative control. Results were analyzed by 

autoradiogram and equal loading of the different proteins onto the PDVF membrane was 

assessed by coomassie brilliant blue staining of the membrane (Fig. 24, B).  
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Fig. 24 – Calcium-binding capacity of AtCP12-1 - A. Autoradiograms of calcium-binding assay 
using recombinant AtCP12-1 (CP12), aequorin (Aeq) and Cytochrom C (CytC). Four µg of each 
protein were spotted onto a PVDF membrane. The calcium-binding protein aequorin and 
cytochrome C were used as positive and negative controls, respectively. B. Purity of recombinant 
proteins used for calcium-binding assays was assessed by SDS-PAGE. 
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It is clearly visible, that by using approximately equal amounts of protein, AtCP12-1 is 

able to bind calcium to a similar extent than Aeq and no binding was detected for the 

negative control CytC. 

In addition to AtCP12-1, calcium-binding assays were also performed to validate the SAM 

transporter-like protein as a calcium-binding protein (SAMTL). Within frame of the 

collaboration with the Teige group, SAMTL, a calcium-dependent mitochondrial carrier 

was found to localize to inner envelope of chloroplasts (Stael et al. 2011). Furthermore, 

SAMTL contains a predicted and rather unusual single EF-hand. 
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Fig. 25 - Calcium-binding capacity of SAMTL - A. Autoradiograms of calcium-binding assay 
(45Ca) using recombinant SAM transporter-like protein (SAMTL), aequorin (Aeq) and bovine 
serum albumin (BSA). Proteins were spoted onto PVDF membrane (2.5 µg and 0.25 µg, 
respectively, Stain) B. Purity of recombinant SAMTL was assessed by SDS-PAGE. 

 

In order to test the calcium-binding capacity of SAMTL, the N-terminal domain of the 

carrier, containing the predicted EF-hand, but excluding the carrier domain was 

recombinantly expressed and purified from E. coli under native conditions. A radiolabeled 

calcium (45Ca) overlay assay was then performed by spotting two different amounts of 

SAMTL onto a PVDF membrane. Aeq was used as positive and BSA as negative control 

(Fig. 25). SAMTL is able to bind Ca2+ in vitro to a similar extent as Aeq and no binding to 

calcium was detected for BSA. Surprisingly, the intensity of the autoradiogram of 

SAMTL, with one single EF-hand, appeared to be comparable to that of Aeq even though 

this protein contains three EF-hands. Nonetheless, from this calcium binding assay, no 

quantitative conclusion can be drawn. 
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5 Discussion 

Protein phosphorylation is one of the most important post-translational modifications and 

involved in the regulation of many cellular processes. In the cytosol calcium-dependent 

protein phosphorylation is a well-established process (Kudla et al. 2010; Harper et al. 

2004) but so far very little was known about this kind of regulation in chloroplast. This 

study provides clear evidences for multiple targets of calcium-dependent phosphorylation 

in this organelle both in the stroma as well as in the thylakoid membrane.  

 

5.1 Transketolase as a calcium-dependent phosphoprotein 

The metabolic enzyme transketolase (TKL) was identified as one of the main targets 

undergoing calcium-dependent phosphorylation in the stroma. TKL is a ubiquitous enzyme 

present in every living organism and is involved in carbon metabolism. Several lines of 

evidence indicate that in all plant tissues TKL protein accumulates at higher levels than 

would be expected from transcript abundance (Baginsky et al. 2005; Teige et al. 1995). 

This way, a post-translational modification, such as calcium-dependent phosphorylation, 

might play a role in the regulation of this enzyme. The genome of Arabidopsis encodes two 

isoforms of this enzyme, both localized exclusively in chloroplasts. By using recombinant 

protein we can observe that both isoform undergo calcium-dependent phosphorylation in 

the same manner. Furthermore, the experiments presented here indicate that AtTKL1 and 2 

are phosphorylated by a stroma localized kinase, since no membrane proteins are required 

in the assay. Very little is known about soluble kinases in chloroplasts (Bayer et al. 2012) 

but it was suggested, that casein kinase II (CKII) is mainly responsible for phosphorylation 

of stromal proteins (Baginsky and Gruissem 2009). However, CKII is not known to work 

in a calcium-dependent manner and till present, it was not possible to phosphorylate 

AtTKL with CKII in vitro. The only report of TKL in vitro phosphorylation comes from 

animal models. By using protein kinase C and to smaller extent cAMP-dependent protein 

kinase and CKII, the TKL from rat can be phosphorylated (Soh 1996). However, neither 

cAMP-dependent protein kinase nor protein kinase C have been identified in chloroplasts. 

Therefore, it will be eminent in the future to further elucidate the complete content of 

chloroplast kinases and their relation to the known substrates of protein phosphorylation.  
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Phosphoproteomic studies have revealed at least 39 different chloroplast proteins targets of 

phosphorylation involved in carbohydrate metabolism (Lohrig et al. 2009). In addition, 

serine is the most common phosphorylation site in chloroplast proteins (Baginsky and 

Gruissem 2009). The evidences presented in this work, indicate that AtTKL1 is exclusively 

phosphorylated on Ser428 since a single exchange of this amino acid to an alanine is 

sufficient to completely abolish AtTKL1 phosphorylation (Fig. 12). Thereby, results 

presented in this study corroborate earlier reports from large-scale proteomic studies that 

AtTKL1 is subject to phosphorylation (Reiland et al. 2009; Sugiyama et al. 2008; 

Nakagami et al. 2010). These studies use proteins isolated directly from biological material 

without any additional phosphorylation reaction thereby confirming that this 

phosphorylation indeed occurs in vivo. By multiple sequence alignment of TKLs from 

different photosynthetic organisms, we can observe the high homology in the sequence 

surrounding this potential phosphorylation site among vascular plants. In some cases, like 

Pisum, a threonine replaces the serine, but this residue is equally well phosphorylated by 

all known serine/threonine kinases (Edelman et al. 1987). Remarkable is the fact that 

orthologous proteins from cyanobacteria, algae and mosses contain a highly conserved 

asparate in the same position. Aspartate is not commonly phosphorylated in chloroplasts 

but is often employed to mimic serine phosphorylation in protein studies (Wittekind et al. 

1989). Comparative genomic analysis has revealed that a replacement of acidic residues by 

a phosphorylatable serine or threonine has occurred frequently during evolution (Pearlman 

et al. 2011) and TKL seems to represent another example. Another interesting fact is that 

the TKL of Selaginella, also contains a serine in this position. Phylogenetically, lycophytes 

are the oldest extant vascular plants placed in the transition between the bryophytes and the 

euphyllophytes, which comprise ferns, gymnosperms and flowering plants. They have 

been suggested as key models for the understanding of major evolutionary adaptation to 

life on land, such as vascular tissue, leaves, stems, and lignification (Banks 2009). In fact, 

lignin is the hallmark of vascular land plants, and recent studies revealed that syringyl 

lignin accumulates in the plant cell wall in response to fungal penetration (Menden et al. 

2007). Bringing together, these evidences indicate that calcium-dependent phosphorylation 

of TKLs is a later evolutionary acquisition that occurs from lycophytes onwards. Thus, 

TKL phosphorylation might present an environmental adaptation important for regulation 

of metabolic pathways involved in protection of terrestrial stresses such as pathogen attack 

(see below).  
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TKLs in general form functional homodimers with the active site located in a groove 

formed by the contact site of the two monomers (Gerhardt et al. 2003; Svergun et al. 

2000). Based on the 3D crystal structure of the maize TKL (Gerhardt et al. 2003), the 

Ser428 is localized in a loop far removed from the substrate entrance channel and the 

enzyme active center. This way, phosphorylation of AtTKL1 is unlikely to influence 

dimerization and no evidence for such a function could be obtained in this study either by 

BN-PAGE or size exclusion chromatography (data not shown). While enzyme activity is a 

tempting target, there are also other features that might be influenced by this post-

translational modification, such as the spatial distribution of the enzyme with chloroplasts. 

One of the greatest enigmas with regard to TKL is its functional distribution between 

different pathways that take place in the same compartment and that utilize the opposite 

direction of a readily reversible reaction. That both TKLs from Arabidopsis are indeed 

localized in the chloroplast could be confirmed by our YFP-fusion analysis. One way, to 

allocate TKL between different pathways would be the interaction of TKLs with other 

enzymes of the CBB or PPP but such interactions have so far not been demonstrated. 

Nevertheless, it has been suggested that TKLs undergoes spatial distribution within the 

chloroplasts (Teige et al. 1998). Based on immuno-gold labeling, using spinach 

chloroplasts, they proposed a strong association of TKL non-apressed thylakoids. 

Phosphorylation of TKL might therefore be a means to associate or dissociate the protein 

with the thylakoid membrane.  

 

5.2 The role of phosphorylation in chloroplast carbon metabolism 

Protein phosphorylation/dephosphorylation is one of the most important regulatory 

modifications on the post-translational level (Olsen et al. 2006; Hunter 2007). The speed in 

transfer a phosphoryl group catalysed by protein kinases and the conformational changes 

caused by adding negative charges, make this mechanism an effective way of controlling 

enzyme activity. For enzyme assays using recombinant proteins, an exchange of serine to 

aspartate is often employed since this amino acid residue mimics serine phosphorylation 

due to its shape and charge (Wittekind et al. 1989). In case of AtTKL1, the effect of the 

S/D exchange was measured for different substrates representing distinct reactions of TKL 

in both the PPP and CBB. The study was further extended by measuring kinetic parameters 
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of AtTKL1 at different pH values, representing the physiological range of the stroma under 

light (pH 8.0) or dark (pH 7.2) conditions (Heldt et al. 1973; Werdan et al. 1975).   

The first reaction analysed was the conversion of X5P and R5P into S7P and G3P (Table 8 

and 9). This reaction is part of the PPP, which is especially important in the night or in 

non-photosynthetic tissues. The PPP comprises an oxidative and a non-oxidative phase, the 

former of which generates NADPH independent from photosynthesis (Izawa et al. 1998) 

and produces X5P and R5P. The non-oxidative phase of PPP starts with these products of 

the oxidative phase, and it is important to point out that the kinetic constants calculated for 

the wild-type AtTKL1 upon X5P and R5P are in a range of those previously observed in 

other studies with TKLs from photosynthetic organisms (Bouvier et al. 1998; Gerhardt et 

al. 2003; Teige et al. 1998). More importantly, it is precisely the reaction with those two 

substrates where AtTKL1 phosphorylation seems to have a modulation effect in ‘night’ 

conditions, i.e. at pH 7.2. Glucose 6-phosphate dehydrogenase is the starting enzyme of the 

oxidative branch of PPP and it catalyzes the conversion of glucose 6-phosphate to  

6-phosphogluconolactone in presence of NADP+. This enzyme is inhibited by light 

(Scheibe et al. 1989) due to a redox regulation by thioredoxins (Udvardy et al. 1984). This 

way, the non-oxidative steps of PPP mediated by TKL are also inhibited due to a lack of 

substrate but can readily occur in dark conditions. This is reflected by an extreme increase 

in Km for R5P in the light. Based on these considerations, any change in enzyme 

performance due to a post-translation modification should have its biological relevance 

during the dark period. This fits very well with the observation, that changes in the kinetic 

parameters between AtTKL1 and AtTKL1(S/D) are indeed much more pronounced at a 

lower pH. The Km of the non-phosphorylated enzyme for X5P increased by about 50 %, 

suggesting that phosphorylation lowers affinity to this substrate under dark conditions. The 

serine to aspartate exchange also lowers the catalytic efficiency (Kcat/Km) for substrate 

utilization by about two fold. Depending on the metabolic demand of the organism, 

phosphorylation might thus play an important role in modulating carbon fluxes within the 

PPP. When AtTKL1 is phosphorylated, the affinity to X5P decreases and this way, pentose 

phosphates can be channeled out of the PPP into other metabolic reactions. One of the 

reasons might be a cellular need for the synthesis of nucleic acids and other derivatives of 

these. This way, the excess of X5P can be exported to the cytosol by the X5P/phosphate 

translocator (Eicks et al. 2002). It was reported that the desiccation-tolerant plant 

C. plantagineum, which contains three TKLs, has continuously high expression of one 
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TKL. The other two genes are only expressed during the process of rehydration 

(Bernacchia et al. 1995). Based on these observations, Schenk and coworkers proposed 

that increase in expression might be linked to the increased need for nucleotides and amino 

acids during the accelerated growth of rehydrating plants (Schenk et al. 1998). By contrast, 

if PPP runs its course, the pentose phosphates X5P and R5P are converted into G3P and 

F6P mediated by a higher affinity of the non-phosphorylated TKL for X5P. The non-

oxidative branch of PPP also generates E4P, a precursor of the shikimate pathway that 

produces aromatic amino acids as well as precursors for secondary metabolites involved in 

plant defense and signalling (Jensen 1986; Dixon and Paiva 1995). E4P is a product of 

both the PPP and the CBB, however, Geiger and Servaites suggested that if E4P would be 

withdrawn from the CBB in large amounts, the cycle would be depleted (Geiger and 

Servaites 1994). Thus it is more likely that E4P is removed from the non-oxidative branch 

of the PPP rather than from the CBB. This would require the TKL reaction with X5P and 

R5P to take place and channel these pentose phosphates into the non-oxidative branch of 

the pathway. Activity studies with small changes in TKL content, showed reduced levels 

of E4P in tobacco plants. This led to photosynthesis inhibition and significantly decreased 

of aromatic amino acids and soluble phenylpropanoids content (Henkes et al. 2001). Thus 

it can be envisioned that even minor changes in affinity of AtTKL1 for one of the sugars 

also affect E4P levels. Therefore, calcium-dependent phosphorylation of TKL could be a 

mechanism to coordinate the different cellular requirements of intermediates of the PPP. 

The second reaction analysed was the conversion of G3P and F6P into X5P and E4P 

(Table 10 and 11), which occurs in the CBB and represents an important decision point for 

the fate of the sugars. The affinity of AtTKL1 for G3P does not reflect any dependence on 

phosphorylation either in the dark or the light, since only minor changes were observed on 

the kinetic parameters at both pHs. Nevertheless, the analysis did detect an inhibitory 

effect of G3P on AtTKL1 activity (Fig. 19, C). This is consistent with previous studies, 

where a feedback inhibition of TKL by G3P was identified and proposed to restrict the 

regeneration of ribulose 1,5-bisphosphate under conditions where high steady-state 

concentrations of the intermediates of the CBB are maintained (Knowles 1985). In order to 

avoid inhibition of the cycle, the triose phosphate/phosphate translocator would than 

mediate the export of G3P to the cytosol for sucrose synthesis (Fliege et al. 1978; Flugge et 

al. 1989; Fischer et al. 1994; Flügge and Heldt 1984). However, phosphorylation has a 

significant impact on the biochemical properties of TKL for F6P. The KmF6P calculated is 
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higher than those of all the other sugars analyzed. Indeed, it is in the mM range and thus 

about 10 times higher than the KmR5P. Nevertheless, this is in agreement with previous in 

vivo measurements with spinach TKL that revealed a KmF6P of 3.2 mM and KmR5P of 

0.4 mM (Schenk et al. 1998). Furthermore, the cellular content of F6P was estimated to be 

approximately 5 to 10 fold higher than R5P (Cruz et al. 2008; Sagisaka 1974). Considering 

that the one goal of CBB is to fix CO2 to generate carbohydrates and F6P is an important 

intermediate, the results presented here are in agreement with previous observations. F6P is 

a precursor for starch synthesis, the major storage carbohydrate in plants. During 

photosynthesis, transient starches are accumulated during the day and degraded at night to 

provide carbons for non-photosynthetic metabolism (Geiger and Servaites 1994). Since 

F6P is also required for the regeneration of ribulose 1,5-bisphosphate by CBB, the cell has 

to drive F6P utilization preferentially in the direction of X5P and E4P production during 

the day. This could explain the relatively low KmF6P observed at light-simulated conditions 

compared to the dark. Furthermore, diurnal analysis of metabolites has shown that F6P 

contents decreased after transition from dark to light (Kenyon et al. 1981). This way, the 

higher KmF6P values observed at pH 7.2 might be correlated with the greater availability of 

this sugar in the dark. The data presented here furthermore indicate that phosphorylation 

influences the affinity of AtTKL1 to F6P independent of dark/light-simulated conditions. 

In both cases, AtTKL1(S/D) exhibits an approximately two fold higher affinity to F6P than 

the wild-type. The extremely low catalytic efficiency of AtTKL1 in catalysing this reaction 

can be related to a high activation energy of F6P or to the in vitro conditions under which 

this assay was carried. However, there is no available data showing the real efficiency of 

this reaction. Nevertheless, minor changes detected for the catalytic efficiency of AtTKL1 

(~20 - 30%) upon phosphorylation are sufficient to enhance the protein performance 

towards the usage of F6P as a substrate. Based on the observations presented here, it could 

be suggested that AtTKL1 is mostly dephosphorylated during the normal flow of the CBB, 

thereby allowing 5 out of 6 fixated carbons to be used for regeneration of ribulose 1,5-

bisphosphate. However, as a fast response to external stimuli, a higher demand on E4P 

would be required for secondary metabolism and this signal could be mediated by calcium-

dependent processes. This would affect the CBB enzymes FBP and SBP that undergo an 

inhibition upon increase of calcium (Charles and Halliwell 1980; Portis and Heldt 1976; 

Wolosiuk et al. 1982), which would stop the CBB temporarily from running. This is 

important, since the removal of E4P out of the cycle would prevent regeneration of 
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ribulose 1,5-phosphate. Even though, the high amounts of F6P accumulated in the 

chloroplast should be enough to transiently produce enough E4P by TKL for such an 

immediate response. Consequently, the transient of calcium would also mediate the 

phosphorylation of TKL, which than would exhibit higher affinity to F6P. This is 

necessary since the F6P pool would rapidly be diminishing under these conditions.  

 

 

Fig. 26 – Proposed model for TKL regulation by calcium-dependent phosphorylation – The 
upper panels represent the regulation mechanism of transketolase (TKL) during light and the lower 
panels during dark conditions. Enzymes included in the scheme are: aldolase (ALD), 
phosphoribulokinase (PRK), fructose 1,6-bisphosphatase (FBP), sedoheptulose-bisphosphatase 
(SBP), ribose 5-phosphate isomerase (RPI), ribulose phosphate 3-epimerase (RPE) and 
ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO). Sugars included in the scheme are: 
glucose 6-phosphate (G6P), fructose 6-phosphate (F6P), glyceraldehyde 3-phosphate (G3P), 
ribulose 5-phosphate (R5P), xylulose 5-phosphate (X5P), sedoheptulose 7-phosphate (S7P) and 
erythrose 4-phosphate (E4P). 
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All in all, these results indicate that phosphorylation of AtTKL1 might be an important part 

of its regulation during a typical light-dark cycle of the plant and Figure 26 represents a 

proposed model for the TKL regulation mechanism in correlation to its function in carbon 

metabolism. Nevertheless, it remains unclear whether calcium-dependent phosphorylation 

of AtTKL1 is limited to a role on enzyme activity exclusively in the diurnal rhythm of the 

plant. For instance, studies on Populus revealed oscillations in phosphate sugars content 

throughout the year (Sagisaka 1974) without any evidence how this oscillation is regulated. 

To really understand the role of calcium-dependent phosphorylation of AtTKL1 for the 

plant it will be essential to elucidate the in vivo effect of this modification, e.g. by 

introducing non-phosphorylatable or phospho-mimicking variants of AtTKL1 into 

Arabidopsis plants. 

 

 

 

 

5.3 Thylakoid targets of calcium-dependent protein phosphorylation 

Our studies on calcium-dependent phosphorylation also identified potential targets in the 

thylakoid membrane (Stael et al. 2012) and in vitro phosphorylation assays confirmed 

PsaN, CAS, VAR1 and VAR 2 as calcium-dependent phosphoproteins. 

The ATP-dependent peptidaseVAR1 and it’s a close homologue VAR2 belong to the gene 

family of metalloproteases. Mutants lacking VAR1 or 2 exhibit leaf variegation and 

sensitivity to photoinhibition (Sakamoto et al. 2003). Together, they are responsible for the 

protein turnover of photo-damaged D1 subunits of photosystem II (PSII) (Lindahl et al. 

2000; Aro et al. 2005; Kato et al. 2009). In order to prevent photo-inhibition of the PSII, 

the subunit D1 needs to be constantly recycled (Aro et al. 1993). Protein phosphorylation 

may control VAR1 and VAR2 activity in the same way it regulates other group of 

proteases (Kurokawa and Kornbluth 2009). This way, the transient increase on stromal free 

calcium concentration upon transition from light to dark (Sai and Johnson 2002) might be 

responsible for phosphorylation of VAR1 and 2. In the dark, the phosphorylated protease 

will switch off its activity, since it is longer needed to degrade photo-damaged D1 protein. 
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The calcium-sensing receptor (CAS) was previously reported to be phosphorylated in a 

light dependent manner (Vainonen et al. 2008). Contrary to current knowledge that have 

only shown a calcium spike after light-dark transition this would suggest calcium-

dependent phosphorylation is mediated by an increase of the calcium concentration under 

light (Kreimer et al. 1985; Roh et al. 1998; Muto et al. 1982). This is another indication 

that indeed our current model on chloroplast calcium fluxes might be very incomplete. By 

instance, a transient increase in calcium concentration could mediate regulation of CAS 

upon stress. The region comprising the previously identified phosphorylation site of CAS 

(Thr380) was used for the calcium-dependent phosphorylation assays (Vainonen et al. 2008; 

Reiland et al. 2009). Interestingly, this threonine is exposed to the stromal site but the 

calcium-binding site of CAS is part of the proteins transmembrane region (Han et al. 

2003). This raises the question if binding of calcium to CAS is in any way related to its 

calcium-dependent phosphorylation.  

PsaN, the extrinsic luminal PSI component, had been previously identified as a potential 

calmodulin binding protein (Reddy et al. 2002). The role of PsaN phosphorylation within 

the PSI is more difficult to explain, however, this is more an indication of a diferencial 

regulation of function. 

The identity of the protein kinase(s) responsible for this calcium-dependent 

phosphorylation is still elusive. However, this data demonstrate that most likely it is a 

soluble kinase, for several reasons. First, the recombinant proteins were phosphorylated by 

a fraction containing salt-washed soluble proteins. Second, the phosphorylation site of 

CAS as well as the C-terminal part of VAR1 and 2 (Sakamoto et al. 2003) faces the 

stromal side of the thylakoid. This would exclude membrane-intrinsic thylakoid protein 

kinases such as the STN7 and STN8. Nevertheless, further studies must be conducted to 

elucidate the role of calcium-dependent phosphorylation on these targets and to identify 

both the kinase and phosphatase involved in this regulation. 
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5.4  Identification of novel calcium-binding proteins 

Calcium-binding is known to play a role in the regulating enzyme activity (Cheung 1980) 

and therefore calcium-binding proteins might be part of the chloroplast calcium regulon. 

The results presented here demonstrate that the chloroplast protein AtCP12-1 is such a 

calcium-binding protein. CP12 has been identified in many photosynthetic organisms 

including plants, green algae, cyanobacteria and diatoms (Wedel et al. 1997; Wedel and 

Soll 1998; Lebreton et al. 2003; Scheibe et al. 2002; Nicholson et al. 1987; O'Brien et al. 

1976; Boggetto et al. 2007; Erales et al. 2008). In higher plants, the CP12 family is 

comprised of three members, CP12-1, 2 and 3 (Singh et al. 2008). CP12 contains four 

conserved cysteine residues which form two disulfide bridges (Wedel and Soll 1998; 

Graciet et al. 2003; Marri et al. 2009) and it plays an important role in the regulation of the 

CBB serving as a linker for the assembly of a supramolecular complex between 

phosphoribulokinase (PRK) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH). 

GAPDH was the first light-regulated chloroplast enzyme discovered in plants (Ziegler and 

Ziegler 1965). In vivo, GAPDH is dark-inactivated through the interaction with PRK and 

CP12 (Wedel and Soll 1998). This process, like several other CBB enzymes, is mediated 

by the ferredoxin-thioredoxin system upon light-dark transition (Buchanan and Balmer 

2005; Wolosiuk et al. 1993). This way, only oxidized CP12, with two disulfide bonds, is 

active in complex formation (Wedel and Soll 1998). Other experiments demonstrated that 

the oxidized CP12 is able to bind other divalent cations such as Cu2+ and Zn2+ (Delobel et 

al. 2005). Furthermore, Cu2+ was found to be involved in modulation of CP12 transition 

from reduced to oxidized state by modulating the protein structure (Erales et al. 2009). In 

the same way, binding of calcium might as well represent a mechanism to regulate the 

CP12-1 by inducing conformational changes. The role of calcium in modulating enzyme 

activity is extended to other CBB enzymes (Charles and Halliwell 1980; Wolosiuk et al. 

1982). Ettinger suggested that calcium is actively transported into the lumen during the day 

to prevent calcium-dependent inhibition of CO2-fixation (Ettinger et al. 1999). Upon light-

dark transition, the transient increase on stromal free calcium concentration (Sai and 

Johnson 2002) might be responsible for regulation of the CP12-1. However, additional 

experiments will be needed to investigate the role of calcium in CP12-1 mediated super-

complex formation and its correlation to redox regulation. 
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Summary 

Plants are sessile organisms that have to cope with many environmental adversities. In 

order to successfully respond to diverse biotic and abiotic stimuli, they created a number of 

different signalling networks. Calcium is one of the most important secondary messengers, 

mediating many environmental cues. As photosynthetic organisms, many important 

processes take place in chloroplasts. However, very little is known about calcium-

regulation within this organelle. The aim of this work was to identify components of this 

calcium-regulation network in the chloroplast. This included the identification and partial 

characterization of the calcium-binding proteins CP12-1 and SAMTL. Based on a 

proteomic approach, calcium-dependent targets of phosphorylation were also identified in 

the thylakoids, such as CAS, VAR1, VAR2 and PsaN. In the same manner, the 

transketolase (TKL) was identified as the major target of calcium-dependent 

phosphorylation in the stroma. TKL plays an important role in carbon metabolism, by 

converting intermediates of the Calvin-Benson-Bassham cycle (CBB) and the pentose 

phosphate pathway (PPP). Calcium-dependent phosphorylation of Arabidopsis TKL by a 

stromal protein kinase could be confirmed in vitro using recombinant protein. 

Phosphorylation of TKL occurs at a single serine residue that is conserved in TKLs of 

vascular plants. By contrast, in cyanobacteria, algae and mosses, an aspartate is present in 

this position. No phosphorylation could be observed for the Chlamydomonas protein 

indicating that calcium-dependent phosphorylation of TKL evolved as a vascular plant 

specific trait. The influence of phosphorylation on enzyme activity was analysed using 

recombinant wild-type TKL and a variant where the phosphorylation site was exchanged to 

an aspartate residue, thereby mimicking phosphorylation. The study was extended by 

measuring the enzyme activity under two different pHs that would simulate the stromal 

conditions under light or dark. The effect of this serine exchange was measured for 

different substrates representing distinct reactions of TKL in both the CBB and the PPP. 

Indeed, depending on the substrate, differences could be observed between wild type and 

S/D variant as well as under different pH conditions. These differences indicate a distinct 

function of TKL phosphorylation within the CBB and the PPP. Together, these results not 

only present the first evidence for calcium-dependent phosphorylation of chloroplast 

proteins but also show that this regulation might play an important role in carbon 

metabolism..
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Zusammenfassung 

Da Pflanzen nicht in der Lage sind den Standort zu wechseln, entwickelten sie effektive 

Strategien, um auf biotische und abiotische Reize zu reagieren. Calcium ist einer der 

wichtigsten sekundären Botenstoffe, der Umweltreize in die Zelle vermittelt. In Pflanzen 

finden viele wichtige Prozesse in den Chloroplasten statt. Trotzdem ist nur sehr wenig über 

Calciumregulation in diesem Organell bekannt. Ziel dieser Arbeit war es Bestandteile des 

Calciumsignalnetzwerks in Chloroplasten zu finden und zu charakterisieren. Unter 

anderem wurden dabei die calciumbindenden Proteine CP12-1 und SAMTL identifiziert. 

In den Thylakoiden wurden Proteine wie CAS, VAR1, VAR2 und PsaN identifiziert, die 

Ziel einer calciumabhängigen Phosphorylierung sind. Auf die gleiche Weise wurde die 

stromale Transketolase (TKL) identifiziert, und es wurde gezeigt, dass diese einer calcium-

abhängigen Phosphorylierung unterliegt. TKL spielt eine wichtige Rolle im 

Kohlenstoffmetabolismus, in dem sie Zwischenprodukte des Calvin-Benson-Bassham 

Zyklus (CBB) und des Pentosephosphatwegs (PPP) umsetzt. In vitro wurde bestätigt, dass 

TKL aus Arabidopsis durch eine stromale Proteinkinase calcium-abhängig phosphoryliert 

wird. Die Phosphorylierung der TKL findet sequenzspezifisch an einem Serin statt. Dieses 

befindet sich in einem in Gefäßpflanzen konserviertem Motiv, ist jedoch in 

Cyanobakterien, Algen und Moosen durch ein Aspartat ersetzt. In der TKL aus 

Chlamydomonas konnte entsprechend keine Phosphorylierung gezeigt werden, was darauf 

hinweist, dass sich diese calcium-abhängige Phosphorylierung erst in Gefäßpflanzen 

entwickelt hat. Der Einfluss der Phosphorylierung auf die Enzymaktivität wurde mit Hilfe 

von rekombinanter Wildtyp TKL und einer Variante, in der die Phosphorylierungsstelle 

durch ein Aspartat ausgetauscht wurde, was eine Phosphorylierung nachahmt, untersucht. 

Die Enzymaktivität der beiden TKL Varianten wurde unter zwei verschiedenen pH-Werten 

gemessen, welche den natürlichen stromalen Bedingungen unter Licht bzw. Dunkelheit 

entsprechen. Die Auswirkung des Aminosäurenaustauschs auf die Aktivität der TKL 

wurde für verschiedene Phosphozucker gemessen, die den Substraten des CBB und PPP 

entsprechen. In Abhängigkeit von den eingesetzten Substraten, konnten sowohl 

Unterschiede zwischen dem Wildtyp und der Aspartat-Mutante als auch unter 

verschiedenen pH-Bedingungen, festgestellt werden. Das weist auf eine Funktion der TKL 

Phosphorylierung für den Kohlenhydratfluss im CBB und PPP hin. Die Ergebnisse 

bestätigen die Präsenz calcium-abhängiger Phosphorylierung im Chloroplasten und zeigen, 

dass diese Regulation im Kohlenstoffmetabolismus eine wichtige Rolle spielt. 



List of references 

79 

List of abbreviations 

 

BSA bovine serum albumin 

CaM calmodulin  

CBB Calvin-Benson-Bassham cycle 

CDPK calcium-dependent protein kinase 

CP12 CP12 domain-containing protein 

DTT 1,4-Dithiothreitol 

E4P erythrose 4-phosphate 

E4PDH erythrose 4-phosphate dehydrogenase 

EDTA ethylenediaminetetraacetic acid 

EGTA ethylene glycol tetraacetic acid 

F6P fructose 6-phosphate 

FBP fructose 1,6-bisphosphatase 

G3P glyceraldehydes 3-phosphate 

G3PDH α-glycerophosphate dehydrogenase-triosephosphate isomerise 

GAPDH glyceraldehydes 3-phosphate dehydrogenase 

GDH glycerol 3-phosphate dehydrogenase 

IEF isoelectric focusing 

IEP isoelectric point 

Km Michaelis constant 

PSI photosystem I 

PSII photosystem II 

PPP pentose phosphate pathway 

PRK phosphoribulokinase 

PVDF polyvinylidene difluoride 

R5P ribose 5-phosphate 

RT room temperature 

S7P sedoheptulose 7-phosphate 

SBP sedoheptulose-bisphosphatase 

SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis 

TKL transketolase 

TPI triose phosphate isomerase 

Vmax saturating velocity 

X5P xylulose 5-phosphate 

YFP yellow fluorescent protein 

TPP thiamine pyrophosphate 
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Annexes 

 

Annex Table 1 - Accession numbers used for sequence alignment and residue probability 
determination. 

 Organism EMBL / GenebankAccession Numbers 

AtTKL1 Arabidopsis thaliana NP_567103 

AtTKL2 Arabidopsis thaliana NP_566041.2 

AlTKL Arabidopsis lyrata XP_002876580 

ThTKL Thellungiella halophila BAJ33959 

RcTKL Ricinus communis XP_002511690 

StTKL Solanum tuberosum CAA90427 

PtTKL Populus trichocarpa ABK92500 

NtTKL Nicotiana tabacum ACF60500 

SoTKL Spinacia oleracea O20250 

CaTKL Capsicum annuum CAA75777 

OsTKL Oryza sativa AAO033154 

VvTKL Vitis vinifera XP_002280760 

SbTKL Sorghum bicolor XP_002437762 

ZmTKL Zea mays ACF88120 

PsTKL Picea sitchensis ACN39962 

PpTKL Physcomitrella patens XP_001769997 

SmTKL Selaginella moellendorffii XP_002991185 

OlTKL Ostreococcus lucimarinus XP_001418785 

MpTKL Micromonas pusilla XP_003061196 

VcTKL Volvox carteri XP_002953691 

CrTKL Chlamydomonas reinhardtii XP_001701881 

TeTKL Thermosynechococcus elongatus NP_682660 

PmTKL Prochlorococcus marinus YP_292380 
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Annex Table 2 – Candidate targets of Ca2+-dependent phosphorylation identified by LC-
MS/MS - The list was filtered based on the estimated molecular weight (excluding cleaved 
targeting peptides), the theoretical isoelectric point of the mature protein (Wilkins et al. 1999) and 
predicted chloroplastidic localization according to the Aramemnon database (Schwacke et al. 
2003).The phosphopeptides identified in previously phosphoproteomic approaches are also 
included (PhosPhAt database, (Durek et al. 2010; Heazlewood et al. 2008). 

Spot
Accession

Number
Aramenon

Score
phosphopeptide identified

Theoretical
pI / Mw (Da)

A AT3G60750.1 28,20 ALPTYTPE(pS)PGDATR 5.33 / 73035.38

AT3G60750.1 28,20 ALPTYTPE(pS)PGDATR 5.33 / 73035.38

AT5G36880.1 6,50 HVE(pS)MSQLPSGAGK 5.35 / 73223.11

ATCG00120.1 C GKISA(pS)ESR 5.19 / 55328.27

ATCG00480.1 C TNPTTSNPEV(pS)IR 5.38 / 53933.84

ATCG00490.1 C
LSGGDHIHAG(pT)VVGK
K(pT)FQGPPHGIQVER

5.87 / 52955.06

AT1G06680.1 27,60
FEDNFDATSNLNVMV(pT)PTDK

TNTDFLP(pY)NGDGFK
5.77 / 24797.62

AT5G20720.1 23,40 (pY)AGTEVEFNDVK 5.23 / 21326.46

AT4G05180.1 24,80 FYIQPL(pS)PTEAAAR 9.32 / 19506.14

AT5G52960.1 19,30 SSDAEEV(pS)DTEDEWLK 6.17 / 14417.24

AT4G21280.1 28,40 YDLN(pT)II(s)(s)KPK 9.14 / 19165.80

AT2G41220.1 28,50
NGSQVLVL(pS)DR

MP(pT)V(pT)MEQAQK
6.07 / 170048.86

AT1G10760.1 11,80 TPFVKSGGN(pS)HLK 5.35 / 148240.15

AT5G13630.1 23,10 GSDKGIL(pS)DVELLK 5.33 / 143958.70

AT1G29900.1 20,10 ELVDVEQYLMSGTLSEI(pT)K 5.27 / 123061.66

AT5G48960.1 17,30 LDDGFI(pS)ADLGTLDYKGLYK 5.26 / 64285.23

AT5G51820.1 17,80 ANGGFI(oxM)SA(pS)HNPGGPEYDWGIK 5.27 / 62201.37

AT1G70820.1 24,20 TA(pS)HLPYTR 5.27 / 62201.37

AT1G55490.1 23,70 LA(pS)KVDAIKATLDNDEEK 5.26 / 58228.73

AT2G28000.1 21,90
NVVLDEFG(pS)PK

LADCVGL(pT)LGPR
4.80 / 57203.52

ATCG00120.1 C GKISA(pS)ESR 5.19 / 55328.27

AT5G48300.1 25,50 E(pT)DADITVAALPMDEQRATAFGL(oxM)K 5.33 / 49434.24

AT1G48860.1 19,70 K(pT)FPD(pY)FQVLER 5.76 / 51760.43

ATCG00120.1 C GKISA(pS)ESR 5.19 / 55328.27

ATCG00480.1 C TNPTTSNPEV(pS)IR 5.38 / 53933.84

ATCG00490.1 C
LSGGDHIHAG(pT)VVGK
K(pT)FQGPPHGIQVER

5.87 / 52955.06

AT1G32500.1 16,30 IRDSSAETLLSTPWP(pS)R 5.16 / 49001.06

AT2G39730.1 22,80
GLAYD(pT)SDDQQDITR

MGINPIMM(pS)AGELESGNAGEPAK
5.09 / 46260.61

AT4G20360.1 22,70 V(pT)KIMNDK 5.31 / 44722.29

AT3G12780.1 22,40 (pS)VGDLTSADLK 5.04 / 42638.25

AT5G28500.1 19,80 (oxM)L(pS)LTATTLSSSIF(t)Q(s)K 4.73 / 42641.32

AT1G42970.1 19,60
DSPLEVVVLND(pS)GGVK

IVDNE(pT)ISVDGK
5.59 / 42795.92

AT5G35630.1 25,00 TIEKPVEDP(pS)ELPK 5.28 / 42474.76

AT4G05180.1 24,80 FYIQPL(pS)PTEAAAR 9.32 / 19506.14

AT4G21280.1 28,40 YDLN(pT)II(s)(s)KPK 9.14 / 19165.80
I

B

C

D/E

F

G

H

 



Annexes 

83 

Annex Table 3 - Sequence coverage and total number of non-redundant peptides assigned to 
the 73 kDa protein identified as AtTKL1. 

AT3G60750.1|Symbols:|transketolase, putative | chr3:22454004-22456824 FORWARD 
Protein identification probability (100%), Protein percentage of total spectra (0.76%) 
Total number of spectra (99), Number of unique peptides (20), Sequence coverage (26%) 

Peptide sequence Previous aminoacid Next aminoacid Number of spectra 

FAAYEK K K 3 

AFGDFQK K A 4 

TPSILALSR K Q 5 

NPYWFNR K D 5 

FLAIDAVEK R A 6 

YPEEASELK K S 5 

KTPSILALSR R Q 8 

TVTDKPTLIK K V 4 

NGNTGYDEIR K A 5 

ESVLPSDVSAR K V 3 

KYPEEASELK K S 9 

VTTTIGYGSPNK K A 8 

NLSQQCLNALAK R V 6 

SIITGELPAGWEK K A 2 

ANSYSVHGAALGEK K E 3 

LPHLPGTSIEGVEK K G 4 

ALPTYTPESPGDATR K N 10 

HTPEGATLESDWSAK R F 3 

QKLPHLPGTSIEGVEK R G 4 

SIGINSFGASAPAPLLYK K E 2 

 99 
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Annex  Table 4 - TKL velocities calculated for the substrates X5P and R5P - The independent 
measurements were tested at pH 7.2 and 8.0, using purified recombinant AtTKL1 and AtTKL1(S/D).  

n
1 8.660 9.595 11.597 12.523 13.878 6.521 9.477 12.983 13.980 13.552
2 7.384 9.666 11.032 12.444 13.664 6.130 9.072 12.049 13.802 12.786
3 6.933 9.686 11.641 13.188 12.979 6.030 9.162 12.054 13.167 13.349
4 8.171 10.068 12.909 13.106 13.788 6.622 9.522 12.178 14.057 13.864
5 8.885

[X5P] µM 200 400 1000 1500 3000 200 400 1000 1500 3000

n
1 6.523 9.809 10.810 11.793 12.873 7.716 11.013 12.887 13.939 14.004
2 6.592 9.863 10.524 11.365 12.880 6.975 10.478 11.642 12.661 12.348
3 6.121 8.991 11.247 12.782 13.089 7.085 10.327 11.290 12.721 12.186
4 6.736 10.249 12.656 12.963 14.111 5.352 10.248 12.094 13.225 13.055

[X5P] µM 100 400 1000 1500 3000 100 400 1000 1500 3000

AtTKL1 AtTKL1 (S/D)

AtTKL1 AtTKL1 (S/D)

X5P pH 8.0 - Velocity (μmol/min x mg TKL)

X5P pH 7.2 - Velocity (μmol/min x mg TKL)

 

 

n
1 4.578 6.817 8.488 14.019 15.992 4.677 6.087 8.288 13.179 15.849
2 4.510 6.324 8.053 13.721 15.522 4.843 5.927 7.886 12.257 15.719
3 4.128 6.413 7.940 13.414 14.953 4.980 6.168 7.929 12.001 15.701
4 5.555 6.161 8.447 13.919 16.557 5.118 6.663 7.419 12.010 16.605
5 5.226 6.319 8.890 14.255 17.268 5.112 6.197 7.852 12.919 16.675

[R5P] µM 125 250 500 1500 3000 125 250 500 1500 3000

n
1 2.499 3.804 5.714 11.639 14.948 2.971 3.596 5.283 10.285 14.490
2 2.124 3.760 5.267 11.180 14.065 2.864 3.326 4.986 9.325 14.075
3 2.024 3.630 5.183 10.741 14.008 3.215 3.610 4.987 9.229 14.032
4 3.068 3.975 5.919 11.315 15.457 3.838 4.572 4.762 9.624 15.132
5 2.848 3.761 5.798 11.453 15.879 3.444 3.709 4.993 10.028 15.357

[R5P] µM 125 250 500 1500 3000 125 250 500 1500 3000

AtTKL1 (S/D)

R5P pH 8.0 - Velocity (μmol/min x mg TKL)

R5P pH 7.2 - Velocity (μmol/min x mg TKL)
AtTKL1 AtTKL1 (S/D)

AtTKL1 
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Annex  Table 5 - TKL velocities calculated for the substrates F6P and G3P - The independent 
measurements were tested at pH 7.2 and 8.0, using purified recombinant AtTKL1 and AtTKL1(S/D).  

n
1 0.252 0.902 2.201 3.078 4.143 0.229 0.996 2.194 2.943 3.434
2 0.238 0.877 2.147 2.994 4.096 0.216 0.928 2.056 2.837 3.387
3 0.265 0.847 2.165 3.029 4.090 0.205 0.873 2.037 2.866 3.347
4 0.236 0.876 2.248 3.143 4.208 0.208 0.891 2.123 2.915 3.444

[F6P] mM 0.1 1 5 10 20 0.1 1 5 10 20

n
1 0.193 0.372 0.722 1.181 1.873 0.213 0.384 0.747 1.105 1.587
2 0.188 0.361 0.687 1.136 1.799 0.214 0.377 0.704 1.074 1.494
3 0.183 0.360 0.673 1.153 1.837 0.214 0.381 0.693 1.083 1.497
4 0.190 0.371 0.696 1.194 1.889 0.206 0.384 0.734 1.123 1.564

[F6P] mM 1 2 5 10 20 1 2 5 10 20

AtTKL1 AtTKL1 (S/D)

AtTKL1 AtTKL1 (S/D)

F6P pH 7.2 - Velocity (μmol/min x mg TKL)

F6P pH 8.0 - Velocity (μmol/min x mg TKL)

 

 

n
1 0.4241 0.4587 0.6945 0.6583 0.3184 0.4821 0.6959 0.6677
2 0.3609 0.4527 0.6687 0.6389 0.3493 0.5185 0.6045 0.6510
3 0.3613 0.5025 0.6066 0.6385 0.3081 0.5036 0.6524 0.6623
4 0.3494 0.5697 0.6313 0.3559 0.4906 0.6506 0.7030
5 0.6100 0.6891

[G3P] µM 125 250 500 1000 125 250 500 1000

n
1 0.309 0.549 0.760 1.119 1.164 0.244 0.425 0.799 1.090 1.344
2 0.365 0.515 0.699 0.863 1.036 0.221 0.452 0.571 0.986 1.215
3 0.249 0.401 0.512 0.860 1.063 0.190 0.402 0.555 0.973 1.268
4 0.275 0.298 0.516 0.805 1.347 0.259 0.349 0.683 0.996 1.242
5 0.403 0.678 0.227 0.489 0.743 1.051

[G3P] µM 125 250 500 1000 2000 125 250 500 1000 2000

AtTKL1 AtTKL1 (S/D)

G3P pH 8.0 - Velocity (μmol/min x mg TKL)

G3P pH 7.2 - Velocity (μmol/min x mg TKL)
AtTKL1 AtTKL1 (S/D)
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Annex  Fig. 1 - Michaelis-Menten curves of TKL activity vs X5P, R5P, F6P and G3P 
concentration - Enzymatic reactions were performed pH 7.2 (A) and 8.0 (B). Enzyme parameters 
were calculated by nonlinear curve fitting using the software GraphPad Prism Version 5.01 for 
Windows. 
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#1 b⁺ b²⁺ Seq. y⁺ y²⁺ #2 
1  72.04 36.52 A     15  
2  185.13 93.07 L  1584.69 792.85 14  
3  282.18 141.59 P  1471.61 736.31 13  
4  383.23 192.12 T  1374.56 687.78 12  
5  546.29 273.65 Y  1273.51 637.26 11  
6  647.34 324.17 T  1110.45 555.73 10  
7  744.39 372.70 P  1009.40 505.20 9  
8  873.44 437.22 E  912.35 456.68 8  
9  1040.43 520.72 S-Phospho 783.30 392.16 7  
10  1137.49 569.25 P  616.30 308.66 6  
11  1194.51 597.76 G  519.25 260.13 5  
12  1309.53 655.27 D  462.23 231.62 4  
13  1380.57 690.79 A  347.20 174.11 3  
14  1481.62 741.31 T  276.17 138.59 2  
15     R  175.11 88.06 1   

Annex Fig.  2 - Annotated spectrum for the phosphopeptide identified in AtTKL1. 
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Annex Fig. 3 – Sequence alignment of TKLs from different photosynthetic organisms – The 
phosphor-peptide identified by LC-MS/MS is marked with red asterisks. The list of accession 
numbers is given by annex table 1. 
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