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Summary

The visual and vestibular systems play one of the central roles in the perception of ver-

ticality, spatial orientation, maintenance of balance and distinguishing self-motion from

motion of the environment. As the brain continuously and simultaneously receives an

enormous quantity of information through their receptor organs, collaboration between

these systems at different levels of information processing is crucial for the proper exe-

cution of the above mentioned functions. Psychophysical and neuroimaging research in

humans has provided support for the concept of a reciprocal inhibitory visual-vestibular

interaction, the functional significance of which lies in suppression of potential mismatch

between incongruent sensory inputs delivered from the two systems. Functional magnetic

resonance imaging (fMRI) enabled visualization of this interaction through detection of

blood-oxygen-level-dependant (BOLD) signal increases or signal decreases in the visual

and vestibular networks during unisensory stimulation. Specifically, visual stimulation

related to the percept of self-motion, such as optokinetic stimulation, was shown to elicit

BOLD signal increases in areas involved in visual processing along with BOLD signal

decreases in areas involved in vestibular processing.

Increasing age was shown to alter the morphological and functional properties of the

sensory, motor and cognitive systems. Previous research has revealed that senescence

associates with deterioration of both, visual and vestibular functions, as well as a change

in the psychophysical measurements related to their interaction. However, the effects of

age on the BOLD signal pattern reflecting the visual-vestibular interaction have not yet

been investigated. Exploring these effects in healthy subjects could offer the possibility

to detect early age-related changes in the cortical function occurring before a decline in

behavioural measurements can be detected. Aside broadening the scientific knowledge

on the physiological changes with age in the sensory systems and their interactions, such

research would also help to better understand the pathophysiological processes underlying

various visual and vestibular disorders investigated in neuroimaging studies. Therefore,

the aim of this doctoral thesis was to explore how the BOLD signal related to the visual-

vestibular interaction during optokinetic nystagmus (OKN) changes with age in healthy

subjects. It specifically aimed to investigate the age-related changes in the spatial and

temporal patterns of the signal during unaltered oculomotor performance. In order to

obtain information on the diverse effects of age, the changes in the mean of the BOLD
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signal, as well as the changes in its temporal variability were analyzed. For the purpose

of differentiating between global and task-related changes with age, the alterations of the

BOLD signal during OKN were compared to the alterations of the BOLD signal elicited

by a pure visual and a pure motor task.

In the frame of this work, we were able to show that significant age-related changes in the

mean of the BOLD signal and in its temporal fluctuations occur prior to any measurable

decline in OKN performance. The changes in the mean of the BOLD signal were task-

specific and possibly reflected age-related alterations in neurovascular coupling and neural

processing related to OKN. They were found only in cortical and subcortical areas of the

visual system. The changes in the temporal fluctuations of the BOLD signal were not

specific for the OKN task, but rather region-specific, affecting mostly areas know to be

part of the multimodal vestibular processing network.
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1 Introduction

1.1 Visual system

The visual system provides humans with crucial sensory information about the environ-

ment, as it enables the perception of objects, shapes, colours and motion of the surround-

ing. The visual receptors (photoreceptors) are located in the retina, and transform light

energy into neural signals. These signals are then carried through the retinofugal projec-

tion (consisted of the optic nerve, optic chiasm and optic tract) to the lateral geniculate

nucleus (LGN). From LGN, ascending pathways lead to the primary visual cortex (V1)

where discrimination of changes in visual orientation, spatial frequencies and colours, as

well as global organization of the scheme takes place (Lamme and Roelfsema, 2000). From

V1, two large-scale cortical streams originate: the ’dorsal stream’, projecting towards the

parietal lobe, and the ’ventral stream’, projecting towards the temporal lobe. The ’dorsal

stream’ includes the areas V2, V3, V5 and the medial superior temporal area (MST). It

has been assumed to be involved in the analysis of visual motion, visual control of action

and navigation. The ’ventral stream’ includes the areas V2, V3, V4 and part of the in-

ferior temporal lobe (IT) and has been assumed to be involved in the perception of the

visual world (Bear et al., 2006). The LGN, V1 and the higher visual areas are not only

interconnected with driving feed-forward connections, but also with modulatory feedback

projections which modify and shape the respective neural responses.

Parts of the axons from the optic tract do not project cortically, but end in the pretectum

of the midbrain and control the pupil size and certain types of eye movements. Other

axons of the optic tract project to the superior colliculus of the midbrain and control

the eye and head movements through indirect connections with motor nuclei in the brain

stem, thereby stabilizing the image on the retina during visual motion. Although the

initiation of these reflexes is not under cortical control they can be modified by top-down

projections from the cortex.

The visual system cooperates tightly with the other sensory as well as motor systems at

different levels of information processing. Through these inter-sensory and sensory-motor

interactions, it is involved in the performance of simple actions, such as the optokinetic

nystagmus, as well as in that of higher functions such as orientation in space, perception
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of verticality or self-motion.

1.2 Vestibular system

The vestibular system provides information on the accelerating movements of the head.

The vestibular end organ is located in the inner ear of each side and it consists of two

otolith organs (utricle and saccule) and the three semicircular canals (anterior, posterior

and horizontal canal). The otolith organs are sensitive to linear acceleration and the force

of gravity, while the semicircular canals sense rotational accelerations. Each pair of semi-

circular canals is positioned in such a way that the canal on one side lays almost parallel

to its counterpart on the other side. In this way, they work in a push-pull manner during

acceleration in a certain direction. For example, rightward head rotation stimulates the

right horizontal semicircular canal and at the same time inhibits the left horizontal semi-

circular canal. This simultaneous excitation on one side and inhibition on the other makes

the vestibular afferents, which are active even at rest, highly sensitivity to accelerating

motion in different directions. Through combined activation of the receptors in both, the

otolith organs and the semicircular canals, a vast range of physical motions experienced in

everyday life can be sensed. The neural signals from the vestibular receptors are carried

through the vestibular nerve and the vestibular nuclei located in the medullary brain stem

to the ocular motor nuclei (i.e. vestibule-ocular reflex) as well as to the cerebellum. From

here, feed-forward ascending (cortical) and descending (spinal) pathways originate. The

vestibular nuclei also receive modulatory projections from the cerebellum, the visual and

the somatosensory cortical areas, and combine vestibular information with information

form other sensory modalities.

It is characteristic for the vestibular system that its central processing is highly convergent

and multimodal (Angelaki and Cullen, 2008). Because it can only sense accelerating mo-

tion, the vestibular system alone cannot provide information on position and self-motion,

and therefore cannot give rise to a separate conscious sensation. In fact, unlike in the

case of the other sensory systems, no primary (unimodal) vestibular cortex can be iden-

tified. Rather, a multimodal network of cortical areas receiving vestibular input, where

extensive multimodal convergence with other sensory and motor signals occurs, executes

the highest functions of this system. Animal studies have identified the area 2v at the

tip of the intraparietal sulcus (IP), area 3aV in the central sulcus, area 7 in the inferior

parietal lobule, the parieto-insular vestibular cortex (PIVC) in the monkey (Grüsser et al.,

1990a,b), and the anterior suprasylvian sulcus and the temporo-parietal cortex in the cat

(Andersson and Gernand, 1954) as part of this multimodal vestibular network. Imaging
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studies in humans using caloric or galvanic vestibular stimulation have identified a similar

network of the temporo-parietal cortex, the posterior insula, the anterior cingulate cortex,

the precuneus, the supramarginal gyrus, the hippocampus, the thalamic pulvinar and the

cerebellar vermis comprising the human homologue of this multimodal vestibular network

(Bottini et al., 1994; Bucher et al., 1998; Deutschländer et al., 2002; Stephan et al., 2005;

Dieterich, 2007).

Through collaboration with the other sensory and the motor systems, the vestibular

system helps to form the sense of balance and verticality, contributes to the coordination

of head, body and eye movements, as well as to the adjustments of the body posture

and the perception of self-motion. Thereby, just as the visual system, it plays a crucial

role in everyday life as it enables the performance of important reflexes, such as the

vestibulo-ocular reflex, and variety of precepts.

1.3 The visual-vestibular interaction

As discussed above, the visual and vestibular systems, both contribute to the perception

of verticality, maintenance of balance, spatial orientation and distinguishing self-motion

from object motion. Together with the somatosensory system they cooperate to determine

the internal representation of space and subjective body orientation in unique 3-D coordi-

nates, which are either egocentric (body-centered) or exocentric (world-centered) (Brandt

and Dieterich, 1999). Proper execution of these functions requires continuous transforma-

tion and integration of the information coded in the coordinates of the peripheral sensory

organs of each system. It has been proposed that a potential mismatch between incongru-

ent sensory information from the both systems could be resolved by reciprocal inhibitory

inter-sensory interaction (Brandt et al., 1998). The functional significance of such inter-

action would be to allow suppression of a potential mismatch between two incongruent

or misleading sensory inputs by shifting the sensorial weight to the dominant or more

reliable modality (Brandt et al., 2002).

The role of the visual-vestibular interaction can be demonstrated in the example of self-

motion perception. Self-motion perception can be dominated either by vestibular or visual

input. On the one hand, vestibular stimulation invariably leads to sensation of body mo-

tion, however, only during acceleration or deceleration. Visual motion, on the other hand,

provides information on motion during constant velocities and can lead to two perceptual

interpretations: self-motion or motion of the surrounding. Therefore, motion perception

during constant velocity, is mainly dependent on the visual system. The actual horizon-
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tal direction and speed perceived during constant velocity motion are transduced only

by the relative optic flow of the surroundings. Concurrent vertical vestibular stimula-

tions and secondary involuntary head accelerations provide vestibular information that

is inadequate or even misleading with respect to self-motion perception in the horizontal

direction. It is therefore desirable, under this condition, that they are suppressed by de-

activation of the input from the vestibular system (Brandt and Dieterich, 1999).

The visual-vestibular interaction plays also a crucial role in the perception of verticality

by matching the cortical visual and vestibular 3-D coordinate maps. A mismatch between

these maps has been assumed to underlie room tilt illusions, transient upside-down vision

or apparent 90-degree tilts of the visual scene occurring in central vestibular disorders.

As two different verticals - visual and vestibular - cannot be perceived at the same time, a

cortical mechanism which integrates visual-vestibular input is necessary to determine the

current percept of a unique verticality (Brandt, 1999). In the case of room tilt illusions,

the plasticity of the visual-vestibular interaction enables vision to ’dominate and correct’

the spatial orientation, based on the empirical spatial cues for upright contained in the

visual scene (Brandt and Dieterich, 1999).

Support of the concept of reciprocal inhibitory visual-vestibular interaction has been found

in previous behavioural and imaging studies. Probst et al. (1985) have shown that thresh-

olds for detecting vestibular body accelerations (vestibular system) are increased during

optokinetically induced vection (visual system). Straube et al. (1987) demonstrated that

somatosensory and vestibular stimulation inhibits optokinetically induced self-motion per-

ception when applied simultaneously. Imaging studies using functional magnetic reso-

nance imaging (fMRI) and positron emission tomography (PET) have visualized this in-

teraction, by showing signal increases in the cortical areas of the stimulated system, along

with simultaneous signal decreases in the cortical areas of the system not receiving any

input. Stimulation of the vestibular system, using galvanic or caloric stimulation, elicited

signal increases in the multisensory vestibular areas and simultaneous signal decreases in

the visual cortex (Bense et al., 2001; Deutschländer et al., 2002; Stephan et al., 2005).

Conversely, visual optokinetic stimulation, which is linked to the perception of self-motion,

elicited signal increases in the visual cortical areas and simultaneous signal decreases in

the areas of the multimodal vestibular cortex (Brandt et al., 1998; Deutschländer et al.,

2002; Dieterich et al., 2003; Konen et al., 2005; Kikuchi et al., 2009).

Based on this, it can be concluded that both, vestibular stimulation, as well as visual

stimulation linked to the percept of self-motion, can be used to explore various aspects of
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the visual-vestibular interaction.

1.4 Optokinetic nystagmus - a probe into the visual-vestibular

interaction

Visual optokinetic stimulation presents the coherent and continuous movement of targets

across the visual field, either due to actual motion of the surrounding, or due to relative

motion during self-motion. As such, it is closely related to the perception of self-motion

and therefore, presents a useful tool for investigating the interaction between the visual

and vestibular systems. Optokinetic nystagmus (OKN) is the oculomotor reflex elicited

by optokinetic stimulation; its function is to stabilize the retinal image during visual mo-

tion. It is comprised of slow tracking eye movements and fast resetting saccades. The

tracking eye movements are the slow component of OKN in the direction of the visual

stimulus which enable following of the moving targets. The saccades are the fast com-

ponent of OKN in the direction opposite to that of the visual stimulus, which reset the

eye to its original position. Brain areas involved in the generation of saccades and slow

tracking movements are located in the occipital cortex, the adjacent visual-motion areas

(MT/MST complex), the frontal eye fields (FEF), the supplementary eye fields (SEF),

the parietal eye fields (PEF), the cerebellum and the brain stem (Büttner and Büttner-

Ennever, 2006)(Fig. 1.1).

Imaging studies in humans have shown consistent results by demonstrating signal in-

creases in these visual and oculomotor areas during performance of OKN (Bucher et al.,

1997; Dieterich et al., 1998, 2003; Konen et al., 2005; Bense et al., 2006; Della-Justina

et al., 2008; Kikuchi et al., 2009). It was further revealed that OKN does not only elicit

signal increases in the visual and oculomotor cortex areas, but also concurrent signal de-

creases in the multimodal vestibular brain regions. In an fMRI study using small-field

optokinetic stimulation, (Dieterich et al., 2003) found decreases of the blood-oxygen-level-

dependant (BOLD) signal in the posterior insula, retroinsular cortex, superior temporal

gyrus, precentral gyrus, inferior parietal lobule, anterior cingulate gyrus, hippocampus

and corpus callosum (Figs. 1.2 and 1.3).

This pattern of BOLD signal increases in visual and oculomotor areas and simultane-

ous signal decreases in multimodal vestibular areas was interpreted as a correlate of the

reciprocal inhibitory visual-vestibular interaction. The interaction between the visual,

vestibular and oculomotor systems can be demonstrated during combined visual and

vestibular stimulation such as during self-rotation, which induces OKN. As the rotation
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Figure 1.1: Outline of the traditional descending pathways for pursuit (A) and saccades
(B). Diagram depicts a lateral view of the monkey brain. Shaded regions
indicate specific areas within the cerebral cortex, cerebellum, and brain stem,
and arrows indicate the anatomical connections between these areas. Regions
demarcated with dashed lines indicate structures normally covered by the
cerebral cortex. For clarity, not all relevant areas are depicted and arrows
do not always correspond to direct anatomical connections (Krauzlis, 2004)
(reprinted with kind permission from The American Physiological Society).
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Figure 1.2: Activation areas during horizontal visual optokinetic stimulation of a re-
stricted field of view obtained by statistical group analysis (n=7). Activa-
tion maps were superimposed onto selected transverse sections of a standard
brain template and thresholded at P=0.001 (uncorrected). Activations were
found bilaterally in the striate and extrastriate visual cortex areas with the
maximum in the lingual gyrus, inferior and medial occipital gyri, inferior tem-
poral gyrus, cuneus, as well as in the temporo-occipital areas, the occipital
gyrus, and the precuneus. In addition, significant increases were found in the
precentral gyri in both hemispheres at two different sites, one in the rostral
and medial parts (BA 6) at the junction of the superior frontal sulcus with
the precentral sulcus and the other in caudal and lateral parts (BA 9) at the
border to the medial frontal gyrus (Dieterich et al., 2003) (reprinted with kind
permission from Springer Science and Business Media)
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Figure 1.3: Areas with signal decreases during visual optokinetic stimulation of a re-
stricted field of view obtained by statistical group analysis (n=7). Activa-
tion maps were superimposed onto selected transverse sections of a standard
brain template and thresholded at P=0.0001, corrected for multiple compar-
isons. Signal decreases were found in clusters of the temporo-parietal lobe
bilaterally, including the posterior insula (first and second long insular gyri),
retroinsular areas, the transverse temporal gyri (BA 41), superior temporal
gyri (BA 22), and pre- and postcentral gyri (BA 4 and 6). Additional signal
decreases were seen in rostrodorsal parts of the superior temporal gyri (BA
22) in the right hemisphere, reaching into the inferior parietal lobule (BA 40),
the inferior-anterior insula, as well as bilaterally in the hippocampus with the
adjacent optic radiation, the corpus callosum, and the anterior cingulate gyri
(BA 24, 22). In the rostral brain regions signal decreases of the precentral
gyrus extended into two Brodmann areas, bilaterally into BA 4 and on the
left side into BA 6 (not mapped) (Dieterich et al., 2003) (reprinted with kind
permission from Springer Science and Business Media).
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reaches constant velocity, the vestibular drive for OKN declines and the otpokinetic stim-

ulation becomes the main source of input for the oculomotor response. Previous animal

studies have shown that this occurs as optokinetic stimulation activates the velocity stor-

age mechanism (indirect component of OKN) in the vestibular nuclei through the nucleus

of the optic tract (NOT) located in the pretectum (for review on the direct and indirect

components of OKN refer to (Cohen et al., 1977) and for review on NOT function refer

to (Cohen et al., 1992)). This functional cooperation of the visual and vestibular systems

was pointed as an explanation for the observed BOLD signal changes in the study of

Dieterich et al. (2003). Namely, visual optokinetic stimulation is linked to the visual per-

ception of self-motion. Such unimodal stimulation, as discussed in Brandt et al. (1998),

could theoretically lead to a potential mismatch between the sensory inputs form the

visual and vestibular systems and would therefore, require shifting of the sensorial weight

to the more dominant sensory modality, in this case the visual system. It was suggested

that in imaging studies this would consequently result in the observed pattern of BOLD

signal increases in the visual cortical areas and signal decreases in the cortical network

receiving vestibular input. Later imaging studies have offered supporting results (Konen

et al., 2005; Kikuchi et al., 2009).

Based on these findings and the fact that OKN offers directly measurable parameters

of performance, this reflex can be utilized for exploring the effects of age on the visual-

vestibular interaction in human imaging studies.

1.5 Age-related changes of the signal measured in imaging studies

Imaging studies in humans investigating the effects of age on the signal related to sen-

sory, motor and cognitive functions have demonstrated age-related changes in the brain’s

spatial and temporal activation patterns related to a specific task. Increasing age was

shown to associate with task-specific and region-specific signal decreases, accompanied

by decline in behavioural performance. Such signal decreases were suggested to reflect

age-related primary deficits in neural function (Rajah and D’Esposito, 2005). Beside

age-related signal decreases, signal increases in task-related and non-task-related brain

regions have widely been demonstrated. Park et al. (2001) classified these age-related

signal increases in three types of functional changes: contralateral recruitment, in which

younger adults recruit a brain area in one hemisphere, while older subjects additionally

use the homologous area in the contralateral hemisphere (Cabeza et al., 2002); unique

recruitment, in which older adults additionally recruit brain areas not homologous to any

brain region activated in the younger adults (McIntosh et al., 1999); and substitution, in
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which older adults do not recruit a brain area usually activated in the younger adults,

but use different brain regions for the performance of the same function (Hazlett et al.,

1998).

The observed signal increases together with the accompanying changes in the behavioural

performance led to the forming of two hypotheses, the ’functional compensation’ and

the ’dedifferentiation’ hypothesis, aiming to explain the neural background of the ob-

served age-related changes. The ’functional compensation’ hypothesis refers to the signal

increases in non-task related brain areas which correlate with better behavioural perfor-

mance in the older adults. According to this hypothesis, while older adults recruit both,

task related and non-task related brain areas, the activity in the task related regions might

be decreased compared to the activity in the younger adults. The recruitment, however,

of the non-task related brain areas should result in concomitant improvement of task

performance (Rajah and D’Esposito 2005). This hypothesis was originally conceptualized

in the PET study of (Cabeza et al., 1997), who observed that aside age-related signal

decreases, older adults also showed age-related signal increases and a bilateral pattern

of prefrontal cortex (PFC) activity during verbal recall compared to a rather unilateral

pattern found in younger subjects. Other studies have similarly demonstrated age-related

BOLD signal increases, as well as recruitment of additional brain networks during specific

task performance, and suggested that these could present a reflection of neuronal compen-

satory mechanisms which counteract cognitive or sensorymotor decline (Madden et al.,

1999, 2004; Reuter-lorenz et al., 2000; Cabeza et al., 2002; Ward and Frackowiak, 2003;

Heuninckx et al., 2008). The observation of age-related reorganization of the cortical acti-

vation has been further supported by other PET and electrophysiological studies (Levine

et al., 2000; De Sanctis et al., 2008). Studies on age-related changes of the multisensory

interactions have broadened this concept by showing reduction of the inhibitory reciprocal

interaction and increase of the multimodal integration with advancing age (Laurienti et

al., 2006; Peiffer et al., 2009; Zwergal et al., 2010).

The ’dedifferentiation’ hypothesis in the broader sense of its meaning posits that increasing

age correlates with an increase in brain areas recruited to perform a specific task or with a

recruitment of different brain regions than the ones used in the younger adults. Unlike the

’functional compensation’ hypothesis, the ’dedifferentiation’ hypothesis could encompass

not only signal changes reflecting functional compensation which improves performance,

but also changes which have no effect on the performance, or changes which reflect age-

related dedifferentiation of neural function (Park et al., 2001; Rajah and D’Esposito,

2005; Voss et al., 2008). The latter refers to a decrease of the signal-to-noise ratio in the
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cortical processing which would lead to a decrease in regional process-specificity and an

age-related increase in non-specific cortical activations during different tasks (Li et al.,

2001). Such changes would lead to diffuse signal increases in cortical regions in a non-

selective manner, which does not correlate well with the behavioural performance in the

older adults (Logan et al., 2002).

Most of the above mentioned studies addressed the effects of age on the spatial pattern

of cortical activation and interpreted these signal changes as a reflection of age-related

changes in neural function. Many studies, however, have also explored the effects of age on

the temporal pattern of the BOLD signal, as well as the effect of age on the neurovascular

coupling as a reason for changes in the measured signal (Taoka et al., 1998; D’Esposito et

al., 1999; Buckner et al., 2000; Huettel et al., 2001; Hesselmann et al., 2001; Harris et al.,

2011). Studies using pure motor or pure visual tasks demonstrated age-related changes

in the BOLD signal latency and duration, in the absence of any amplitude alterations

(Taoka et al., 1998; Huettel et al., 2001; Richter and Richter, 2003). They suggested

that these findings rather reflect changes in neurovascular coupling due to age-related de-

generative alterations in the brain’s vasculature, structure and neural metabolism, than

isolated changes in neural function.

Although there is an extensive literature on the age-related changes of the BOLD signal

correlated to sensory, motor and cognitive tasks, no study is available on the changes of the

BOLD signal reflecting visual-vestibular interaction. Previous research has demonstrated

that both, the visual and the vestibular system, deteriorate with increasing age (Allison et

al., 1984; Baloh et al., 2001; Jahn et al., 2003; Snowden and Kavanagh, 2006). Behavioural

studies on age-related changes in the interaction between these systems have shown an

altered gain modulation in senescence (Paige, 1994; Deshpande and Patla, 2007). Yet,

changes in the visual-vestibular interaction which develop prior to any evident decrement

in performance cannot be assessed solely based on behavioural measures, but require

additional imaging parameters. As the effects of age on the spatial and temporal BOLD

signal pattern, reflecting visual-vestibular interaction, have not yet been investigated,

it remains unclear whether age-related changes of this signal can be observed during

preserved task performance, and whether they, under such conditions, reflect global or

task-specific effects of age.
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1.6 Age-related changes of OKN performance and oculomotor

function

Behavioural studies on the effects of age on OKN have shown a decrease in its perfor-

mance with increasing age. This decrease, however, seems to be dependent on the velocity

and type of applied optokinetic stimulation. Most of the previous studies demonstrated a

decline in OKN performance when stimulus velocities above 40 ◦/s were used. Simons and

Büttner (1985) investigated the effects of age on the maximal OKN slow phase velocity

(SPV) and found that it closely followed stimulus velocity up to 40 - 50 ◦/s, but than pro-

gressively decreased with increasing age. They noted that this decrease was not restricted

to ages above 60, but rather a continuous process already affecting subjects in the fourth

and fifth decade. Baloh et al. (1993) found that the OKN gain (defined as the ratio of

OKN slow phase velocity and stimulus velocity) rapidly decreased when higher stimulus

velocities were applied in subjects above 75 years. During lower stimulus velocities, how-

ever, the OKN gain was normal and reached one. Kato et al. (1994) further showed that

the age-related changes in the OKN SPV were not only dependent on stimulus velocity,

but also on whether stimulation with constant or linearly increasing velocity was applied.

Namely, when using linearly increasing stimulus velocity significant decrease in OKN SPV

was observed at 40 ◦/s, whereas during constant velocity stimulation this decrease occurred

at velocities of above 60 ◦/s. Significant age-related decline of OKN gain during stimulus

velocity of 60 ◦/s was further demonstrated in the study of (Kerber et al., 2006). These

studies suggest that OKN performance remains unaffected by senescence during relatively

low velocity stimulation, but decreases significantly when higher stimulus velocities are

used.

Although the effects of age on the OKN performance have been thoroughly investigated,

the age-related changes of the BOLD response pattern elicited by this reflex remain to

be explored. Previous research on aging effects on the BOLD signal during non-reflexive

oculomotor tasks (prosaccades and antisaccades) has shown a shift in the spatial pat-

tern of the BOLD response, accompanied by an overall decrease in its amplitude, while

demonstrating only a moderate decrease in the oculomotor performance (Raemaekers et

al., 2006). Investigating the effects of age on the BOLD signal pattern during OKN would

not only offer new information on how the brain changes with increasing age during per-

formance of common reflexive tasks, but will also provide an insight into the effects of age

on the visual-vestibular interaction.
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1.7 Methodological aspect: functional magnetic resonance imaging

and the blood-oxygen-level-dependent (BOLD) signal

As the name implies, magnetic resonance imaging is a technique that generates images

of biological tissues by usage of strong magnetic fields. Through application of a series

of changing magnetic gradients and oscillating electromagnetic fields energy is being ab-

sorbed by the atomic nuclei of the tissue. The MRI scanners are tuned to the frequency

of the hydrogen nuclei (essentially containing one proton), which are the most prevalent

nuclei in the human body and posses their own spins. When a subject is placed in the

scanner, all the protons in the body align with the applied magnetic field (B0). Additional

application of a specific radiofrequency (RF) pulse disturbs the protons and changes their

orientation. As the RF pulses are switched off, the protons tend to return to their original

position, during which they emit energy in form of radio waves which are then measured.

The BOLD (blood-oxygen-level-dependent) signal, which is the basis of fMRI, essentially

presents the change in the emission of RW due to changes in the ratio of deoxygenated

(Hb) and oxygenated (HbO2) haemoglobin in a certain part of the tissue. It presents a

relative measure as it is always estimated in relation to the ratio of deoxygenated and

oxygenated haemoglobin during a baseline condition. Haemoglobin is an iron-containing

oxygen transport metaloprotein in the red blood cells of all vertebrates. It consists of four

globular subunits (2a and 2), each one containing a cofactor - heme, which is a porphyrine

structure containing iron molecules with different valences (Fe2+orFe3+). Depending on

the current valence of the iron molecule, the heme can temporarily and reversibly bind

O2 and deliver it for use in the cell metabolism. The oxygenated and deoxygenated

haemoglobin posses different magnetic properties when placed in a magnetic field, such

as in the MRI scanner. Hb has the properties of a paramagnetic substance, which means

that its atoms have a net magnetic moment, but are oriented randomly throughout the

sample, resulting in zero magnetization. During application of an external magnetic field,

the moments tend towards alignment along it, giving a net magnetization which increases

with the strength of the applied magnetic field. Therefore, Hb creates magnetic inhomo-

geneities which consequently lead to a lower signal emission. The HbO2 has the properties

of a diamagnetic material as its atoms posses no magnetic moments and therefore have

no magnetization in a zero field. When a magnetic field is applied, a small negative

moment is induced on the diamagnetic atoms, which is proportional to the applied field

strength. This magnetic moment, however, is small and can be even neglected, because

of which HbO2 does not change the local homogeneity of the magnetic field. Therefore, a

decrease of the Hb/ HbO2 ratio will result in a decrease of local field inhomogeneity and

consequently a relative increase in RW emission from this part of the tissue (Huettel et
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al., 2004).

Taking this into consideration, the origin of the BOLD signal can be explained in a very

simplified manner with several sequential steps (Fig. 1.4). First, an increase in the neu-

ral activity leads to an increased demand on energy (in form of adenosine-triphosphat

ATP) and oxygen (O2). Extraction of oxygen from the Hb molecule initially increases the

Hb/HbO2 ratio. However, certain neural and astrocytic factors accompanying increased

neural activity lead to a change in the regional vascular tonus (dilatation of arteries and

capillaries), which then causes an increase in the regional cerebral blood flow (CBF) and

cerebral blood volume CBV, and through that, an increase in the delivery of HbO2. The

delivery of HbO2, however, overpasses the demands on O2 from the cells’ metabolism,

which results in an increase in HbO2 concentration in the local tissue. Based on this

change of the Hb/HbO2 ratio in certain part of the brain at a given moment, as well as

the structure of the tissue, changes in the emitted RW can be used to make assumptions

about the neural activity in this part of the brain. From the above mentioned, it can be

resumed that the BOLD signal presents a correlate of the neural processes one aims to

investigate. The relationship between these neural processes and the subsequent vascu-

lar response leading to changes in the measured BOLD signal is known as neurovascular

coupling. For proper interpretation of the BOLD signal it is of crucial importance to

understand the complexity of the mechanisms underlying neurovascular coupling.

Recent studies strongly suggest that it is rather the changes of synaptic state that affect

the blood flow than the changes in neural output (Logothetis et al., 2001; Logothetis,

2008). As both, neural input (integration and processing) and neural output (conduction,

spiking) require energy, it is important to have in mind the energy budget of the neurons.

Attwell and Laughlin (2001) estimated that the biggest energy is required at the synaptic

level and is mainly used for restoring ionic gradients after uptake of glutamate. Conse-

quently, the BOLD signal need not directly be dependent on spiking activity, but rather

reflect a constellation of factors associated with neural activity in a certain area. Harris

et al. (2011) discussed that neurotransmitters released during synaptic activation directly

influence blood flow and therefore, the BOLD signal might most closely reflect excitatory

synaptic activity. The neurovascular coupling which is the base of the BOLD signal, is

mediated via neural and astrocytic vasoactive ions (K+, Ca++, and H+), metabolites

(adenosine, lactate), diffusible gases (NO, CO), vasoactive neurotransmitters (acetho-

line, dopamine, vasoactive intestinal peptide) and arachidonic derivatives. Studies on the

correlation between the BOLD signal and the neural electrophysiological recordings in a

certain area have immensely contributed to the understanding of this signal. Logothetis
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Figure 1.4: Schematic diagram showing the different stages of how BOLD signals are
generated, from neurobiology through physics to data analysis. On the left,
neural activity releases transmitters (glutamate) which act via neuronal and
asctrocytic signalling systems to trigger an increase of local blood flow. Neu-
ronal activity also leads to O2 consumption and generation of paramagnetic
deoxygenated haemoglobin (Hb) from diamagnetic oxygenated haemoglobin
(HbO2). The blood flow increase brings in fresh oxygenated blood which
(in adults) lowers the local concentration of Hb. This decreases the non-
homogenizing effect that Hb has on the local magnetic field which protons
in H2O experience. As a results, after radiofrequency (RF) pulse is applied
transverse to the magnetic field used to align the proton spins (B0), the syn-
chronised spin precession in the transverse plane dephases more slowly (graph
on right). The difference in decay time between the red (HbO2) and blue
(Hb) curves in the graph generates the increased MRI signal from protons in
areas where neurons are active, which is represented as the red spots superim-
posed on a structural image of the brain at the top right (Harris et al., 2011)
(reprinted with kind permission from Elsevier).
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et al. (2001) recorded the single unit activity (SUA), the multi unit activity (MUA) and

the local field potentials (LFP) in the visual cortex of monkeys while simultaneously per-

forming fMRI. This study demonstrated a positive correlation between the BOLD signal

and all of the three electrophysiological parameters. However, the correlation between

the BOLD signal and the LFP was stronger and the LFP showed to be a better predictor

of the signal. This was not because the correlation coefficient for MUA was smaller than

the one for LFP, but because of the dissociation between LFP and MUA (which is always

correlated to SUA). Therefore, they concluded that the BOLD signal rather reflects the

neural population’s input and processing (as LFP) than the neural spiking (reflected in

SUA). In order to further investigate these claims, studies have been performed to explore

the relation between MUA and LFP. Goense and Logothetis (2008) showed dissociation

between the two parameters through neural adaptation. Namely, the neural spiking rate

decreased shortly after stimulus onset, while the LFP remained increased for a longer

period of time. Rauch et al. (2008) further showed that such dissociation can also be

seen after serotonin injection in the visual cortex, which caused a decrease in MUA, but

no change of LFP or the BOLD signal. As these results, however, were obtained from

primary sensory areas, it is possible that higher cognitive areas might show different re-

lations between the BOLD signal and the electrorecordings. Furthermore, it must be

noted that these correlations can be non-linear, dependent on the investigated brain area

and task, as well as on the functional context. Therefore, as concluded by Raichle and

Mintun (2006), for the interpretation of imaging studies it is important to see the brain

not as a system primarily responding to changing contingencies, but as one operating on

its own, intrinsically, with sensory information interacting with rather than determining

the operation system.

1.8 Aim of the thesis

As the functions of the visual and vestibular systems deteriorate with increasing age

(Allison et al., 1984; Baloh et al., 2001; Jahn et al., 2003) the question arises how the

interaction between these systems conforms to those changes. Determining the func-

tional and structural alterations of the visual and vestibular networks in normal aging

would render a solid ground for the future investigations of the functional changes seen

in neuroimaging studies on peripheral and central disorders of these systems. This doc-

toral thesis thus attempts to explore the effects of age on the visual-vestibular interaction

elicited by visually induced OKN and investigate how these effects manifest in fMRI.

Specifically, it aims to investigate whether age-related changes in the spatial and tem-

poral pattern of the BOLD response occur before alterations in the OKN performance
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can be detected. Aside from exploring the age-related changes in the mean of the BOLD

signal, this work also investigates the age dependencies of its temporal variability. Of

further interest is to distinguish between the global and the task-specific effects of age on

the BOLD signal. Therefore, we compare the aging effects on the OKN-elicited BOLD

response with the aging effects on the BOLD response elicited by two control tasks: a

purely visual task where coupling of visual and motor information, such as during OKN,

is not required, and a motor task which activates brain areas that are not involved in

OKN. The purpose of the visual control task is to test whether age-related changes are

task-specific or specific for one functional system (i.e. the visual); whereas the purpose of

the second control task is to further test whether age-related changes are system specific

or global. The performed analyses have focused on three aspects of BOLD signal changes:

1. Age-related changes in the positive BOLD response (PBR) during OKN. The pur-

pose of this analysis was to investigate the effects of age on the visual and multi-

sensory areas showing PBR during visual optokinetic stimulation. It particularly

intended to differentiate between global effects of age, possibly explained by age-

related changes in the brain’s structure, vasculature and metabolism, and changes

specific for the OKN task.

2. Age-related changes in the negative BOLD response (NBR) during OKN. This

analysis aimed to extend the findings from the first analysis to the concept of the

visual-vestibular interaction. Therefore, the effects of age on the NBR in the multi-

sensory vestibular network were explored and compared to the aging effects in the

areas showing PBR. The purpose was to investigate whether the changes in the

visual-vestibular interaction comply with the findings on the aging effects demon-

strated in other multisensory interactions.

3. Age-related changes in the temporal variability of the BOLD response during OKN.

The purpose of this analysis was to assess the temporal fluctuations of the BOLD

signal and explore the aging effects which could not be addressed with the previous

two analyses.
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2 Methods

2.1 Subjects

Sixty-eight right-handed healthy subjects, evenly distributed between 20 and 80 years,

were examined. Twenty-three subjects had to be excluded from the analysis after inspec-

tion of data quality (see 2.5.2). Consequently, 45 subjects, evenly distributed between 20

and 76 years (47.6 years ± 17.9) were included in the study. All subjects were free of

neurological, psychiatric and cerebrovascular disorders and received no medication known

to affect the neural function. In order to ensure that all subjects were free of neuropsy-

chological deficits and able to sufficiently perform the visual tasks, cognitive deficits using

the Montreal Cognitive Assessment Test (MoCA), visual acuity using the Snellen chart,

and fixation ability were tested prior to the experiment and all the subjects meet the

required criteria. Forty-two participants were right-handed and three participants were

ambidextrous according to the 10-item inventory of the Edinburgh test (Oldfield, 1971).

The mean handedness score of the whole group was 88.66%± 24.90.

2.2 Experimental design, tasks and stimuli

Three different functional imaging experiments have been performed by all subjects. Be-

side the horizontal-OKN experiment, we conducted two additional fMRI experiments as

we intended to differentiate between age-related differences specific to OKN and general

age effects on BOLD-excitability. As OKN is an oculomotor reflex which requires coupling

of visual and motor information, we chose a purely visual and a purely motor task as our

control experiments. For the purely visual task we chose checkerboard stimulation, in

order to obtain data from the visual system during a task where coupling of visual and

motor information, such as during OKN, is not required. For the purely motor control

experiment, we chose a finger-tapping task in order to acquire data from the motor system

which is not involved in OKN.

During the experiments, subjects laid supine in the MRI scanner, while visual stim-

uli were back projected on a screen in front of them using an LCD video projector.

The stimuli were produced by a laptop running Matlab and the Cogent 2000 Toolbox
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(http://www.vislab.ucl.ac.uk/cogent.php).

The OKN experiment contained two conditions of OKN stimulation (translational move-

ment towards right or towards left) and one rest condition (stationary pattern). It was

conducted in two imaging runs, each run containing ten blocks of OKN stimulation (five

in each direction) and ten blocks of the rest condition. We used a stimulus pattern

that consisted of 600 black and white dots (diameter = 0.5◦), randomly positioned on

a grey background. During the OKN stimulation, the pattern was moving rightwards

or leftwards with a constant velocity of 15 ◦/s, whereas during rest condition the pattern

remained stationary. We chose a velocity of 15 ◦/s in order to ensure that all subjects, in-

dependent of age, were able to easily perform the task. The field of view was restricted to

25◦ in the horizontal and 19◦ in the vertical axes (small field of view) and therefore did not

induce apparent self-motion perception (vection). During the OKN stimulation, subjects

were instructed to passively look at the middle of the screen, without following the dots

from one side to the other and without fixating the background, thereby eliciting ’stare’

type of optokinetic nystagmus (Konen et al., 2005; Kashou et al., 2010). During the rest

condition the subjects were instructed to fixate a dot in the middle of the screen in order

to prevent after-nystagmus. Additionally, in order to ensure that all subjects were able to

produce OKN at 15 ◦/s, prior to the OKN experiment, we determined the individual maxi-

mal velocity of the OKN stimulus at which subjects still produced OKN. For this purpose

we used the same stimulus pattern as for the OKN experiment, this time however, mov-

ing rightwards with continuously increasing velocity starting at 12 ◦/s (OKN velocity test).

The checkerboard experiment contained one active (flickering-checkerboard) condition and

a rest condition, during which the checkerboard pattern remained stationary. We used a

circular black-and-white checkerboard stimulus (inner diameter 1◦, outer diameter 17.5◦)

with a fixation point at the centre. During the active condition, the black and white fields

were interchanging at a rate of 18Hz, whereas during the rest condition they remained

stationary. The subjects were instructed to fixate the centre point of the checkerboard

during the whole time. The experiment was conducted in one imaging run, containing

seven blocks of active condition and seven blocks of rest condition. The finger-tapping

experiment contained one active (self-paced finger-tapping) condition, during which sub-

jects had to repetitively press a button with the index finger of the dominant hand, and

a rest condition, during which subjects did not perform the motor task. Subjects were

trained to perform the finger-tapping task with a frequency of 2Hz prior to scanning.

The beginning of each active condition was announced by the appearance of the com-

mand ’GO’ on the screen, whereas the beginning of each rest condition was announced
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by the appearance of the command ’rest’. The experiment was conducted in one imaging

run, containing seven blocks of active condition and seven blocks of rest condition. The

performance of the subjects was controlled by a button-pressing response device. All

participants included in the study were trained to perform the experimental tasks prior

to measurement.

2.3 Video-oculography (VOG)

The performance of the subjects during the OKN experiment, checkerboard experiment

and OKN velocity test was controlled on-line and recorded by VOG. Eye movements were

recorded from the right eye using an analog MRI compatible infrared camera (MRC Sys-

tems GmbH, Heidelberg) that was mounted on the head coil of the scanner. EyeSeeCam

software (www.eyeseecam.com) was used for real-time image processing and recording

of VOG data at a sampling frequency of 60 Hz. For synchronization purposes, the Eye-

SeeCam software recorded stimulus onsets and onsets of MRI volumes along with the

VOG data. For transformation of the eye movement data into degrees of horizontal and

vertical axes, a 5-point calibration was performed at the beginning of the recording. Dur-

ing calibration subjects repeatedly fixated a sequence of given gaze directions: the central

position and four lateral positions in the horizontal and vertical axis (±8.5◦).

2.4 Functional MRI acquisition

Magnetic resonance imaging was performed on a 3 T scanner (GE Signa Excite HD, Mil-

waukee, USA), equipped with an 8-channel head coil. In order to minimize head motion,

the subject’s head was fixated in the MR head-coil with a fixation band on the forehead

and fixation cushions on both sides of the head. The subjects wore hearing protection.

Functional images were acquired using echo-planar imaging (EPI) with a T2*-weighted

EPI sequence (TE = 40ms, TR = 2800ms, FOV = 200x200mm, matrix =64x64x42 and

voxel size 3.125 x 3.125 x 3.5mm).

The OKN experiment contained two imaging runs of alternating blocks of rightward or

leftward OKN stimulation with rest conditions in between. Each run started with a rest

condition. The block length was 16.8 seconds (6 scans) and each run lasted 5.6 minutes.

One run contained 120 MRI volumes. The checkerboard and finger-tapping experiments

contained one imaging run of alternating blocks of active and rest conditions, each run

started with an active codition. The block length was 16.8 seconds (6 scans) and each

run lasted 3.9 minutes. One run contained 84 MRI volumes.
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Each volume in the three experiments consisted of 44 transversal slices that covered the

whole brain including the cerebellum. Additionally, a 3D gradient-echo sequence (fast-

spoiled gradient recalled, FSPGR) was used to obtain a T1-weighted anatomical image

with a resolution of 0.86 x 0.86 x 0.7 mm.

2.5 Data analysis

2.5.1 VOG data analysis

Analysis of the eye movement recordings included estimation of the mean slow phase

velocity (SPV), the mean saccadic frequency and the mean saccadic amplitude during

OKN for each subject. The mean SPV was used to calculate the OKN gain as the ratio

of nystagmus slow-phase velocity and stimulus velocity. Blocks where subjects did not

have OKN were detected off-line and removed from the analysis. From the additional

recordings of the OKN velocity test, we calculated the maximal OKN velocity for each

participant.

2.5.2 fMRI data analysis

Age-related changes of the positive and negative BOLD responses

Data processing was performed using statistical parametric mapping software (SPM5,

http://www.fil.ion.ucl.ac.uk/spm), implemented in Matlab (The Mathworks Inc.,

USA). The functional MRI data were realigned using a mean image as a reference in order

to correct for head motion. The high resolution T1 image from every subject was coreg-

istered to the mean image of the motion corrected functional image volumes. T1 images

were then segmented into grey and white matter using unified segmentation (Ashburner

and Friston, 2005). The normalization parameters obtained during the segmentation step

were used to perform spatial normalization of the EPI volumes to the Montreal Neuro-

logical Institute (MNI) template (Friston et al., 1995). Therefore, all coordinates in this

paper refer to the MNI coordinate system. After normalization, the EPI volumes had a

voxel size of 3 x 3 x 3 mm3. In order to attenuate high-frequency noise, data sets were

smoothed using an isotropic Gaussian kernel with a size of 8 mm FWHM.

The data from 23 subjects had to be excluded from further analysis due to the following

quality criteria: stimulus correlated head movement (7 subjects), head movement larger

than 2mm per TR (1 subject), insufficient quality of eye movement recordings due to

insufficient pupil recognition (4 subjects), fatigue (8 subjects) and misunderstanding of

the experimental instructions (3 subjects).
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Single subject statistical analysis was performed for each experiment separately. Statisti-

cal parametric maps (SPMs) were calculated on a voxel-by-voxel basis by using a general

linear model with a canonical hemodynamic response function (HRF) and its temporal

and dispersion derivative (Henson et al., 2002). The head movement parameters that

have been obtained in the realignment step were included as additional regressors of no

interest. An orthogonality matrix was computed, depicting the magnitude of the cosine

of the angle between each pair of columns in the model design matrix. Data with cos

> 0.6 between the regressors of interest and any of the head movement regressors were

not included in the further analysis due to stimulus correlated head movements. Contrast

images were generated as linear combinations of the parameter estimates for the contrasts

of interest. The model for the OKN experiment contained regressors modeling the blocks

of OKN stimulation: OKN canonical HRF, OKN temporal derivative, OKN dispersion

derivative. Blocks of insufficient performance (see 2.5.1) were included as additional re-

gressors of no interest.

The model for the finger-tapping experiment contained the regressors TAP canonical

HRF, TAP temporal derivative and TAP dispersion derivative, which modeled the blocks

of motor activity. The model for the checkerboard experiment contained the regres-

sors FLICKER canonical HRF, FLICKER temporal derivative and FLICKER dispersion

derivative, modeling the blocks of flickering checkerboard stimulation.

In each model t-contrasts were defined to obtain contrast images with the effects of each

regressor separately. For each experiment, the following contrasts were created: posi-

tive BOLD response (PBR) (revealing positive estimate of the canonical HRF), positive

latency to peak (revealing positive estimate of the temporal derivative) and positive dis-

persion (revealing positive estimate of the dispersion derivative). For more clarity, a pos-

itive estimate of the temporal derivative reveals a shorter latency to peak of the BOLD

response, compared to the prediction posed by the canonical HRF model. A negative

estimate of the temporal derivative on the other hand, fits a longer latency to peak.

Regarding the estimate of the dispersion derivative, a positive estimate fits a narrower

BOLD response compared to the canonical HRF model, while a negative estimate of the

dispersion derivative fits a wider BOLD response (Fig. 2.1).

The amount of percent BOLD signal change for the motor task in the finger-tapping

experiment was calculated from the local maximum in the hand motor area of every sub-

ject. Percent BOLD signal change for the checkerboard task was calculated from the



24 2. Methods

)stinu yartibra( esnopser
2.1      6.0        0       6.0-  0                    10                    20                   30                    40           

time (seconds)

2.1      6.0        0       6.0-  0                    10                    20                   30                    40           
time (seconds)

)stinu yartibra( esnopse r

A. Canonical response + temporal derivative (TD)

B. Canonical response + dispersion derivative (DD)

narrower dispersion
wider dispersion

stimulus
canonical response (CR)
CR + positive parameter 
estimate of TD
CR + negative parameter 
estimate of TD

longer latency

shorter
latency

stimulus
canonical response (CR)
CR + positive parameter 
estimate of DD
CR + negative parameter 
estimate of DD

Figure 2.1: Exemplary canonical hemodynamic response function (CR) combined with
temporal and dispersion derivatives. Incorporation of the derivative terms al-
lows to model for variations in subject-to-subject and voxel-to-voxel responses.
The temporal derivative (TD) allows the peak response to vary by plus or mi-
nus one second, the dispersion derivative (DD) allows the width of the response
to vary by a similar amount. Positive estimate for TD corresponds to fit a
response that occurs earlier compared to the CR. Positive estimate for DD
corresponds to a narrower response (Ashburner et al., 2009). A) Variation of
response latency by positive or negative TD parameter estimate. B) Variation
of response width by positive or negative DD parameter estimate.).
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local maximum in the primary visual cortex. In order to use age, OKN gain, maximal

OKN velocity, percent of BOLD signal change during finger-tapping and percent of BOLD

signal change during checkerboard stimulation as covariates in the second level analysis,

we performed Spearman’s rank correlation test to test whether there is any correlation

between age and the other variables. The t-contrast images obtained by the single subject

analysis were entered into a second level statistical analysis to test for group effects on a

between subject basis (Frison and Pocock, 1992; Woods, 1996). For the OKN experiment,

separate one-sample t-tests were performed for the OKN canonical HRF, OKN temporal

derivative and OKN dispersion derivative. The test for the canonical HRF contained one

contrast image (OKN PBR) from every subject and the additional covariates age, OKN

gain, maximal OKN velocity, percent of BOLD signal change during finger-tapping and

percent of BOLD signal change during checkerboard stimulation. The tests for the tem-

poral and dispersion derivative contained one contrast image (OKN positive latency to

peak or OKN positive dispersion, respectively) from each subject and the covariates age,

OKN gain and maximal OKN velocity.

For the finger-tapping and checkerboard experiments, separate one-sample t-tests were

performed for the canonical HRF, temporal derivative and dispersion derivative, using

one contrast image from every subject (TAP PBR or FLICKER PBR, TAP latency to

peak or FLICKER latency to peak and TAP dispersion or FLICKER dispersion, respec-

tively). Age was included in each test as additional covariate.

For all three experiments, we tested for positive and negative main effects of each regressor

(canonical HRF, temporal derivative and dispersion derivative), as well as positive and

negative correlation of these effects with age. When testing for the effects of the temporal

and dispersion derivatives, we used the statistical maps of the OKN PBR contrast or OKN

NBR contrast as a region-of-interest (ROI) mask, in order to test only voxels where either

positive estimate or negative estimate of the canonical HRF was found. A threshold of

p<0.05 (corrected for multiple comparisons using the FDR-method) was used to test for

significance. In the following text we will refer to the positive estimate of the canonical

HRF as PBR amplitude and negative estimate of the canonical HRF as NBR amplitude.

Positive or negative estimate of the temporal derivative is referred to as PBR shorter or

longer latency to peak, respectively, and positive or negative estimate of the dispersion

derivative as narrower or wider PBR dispersion, respectively.

We further wanted to test if there was a significant difference between the effects of age

on the PBR latency to peak or dispersion found in the OKN experiment and those found
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in the checkerboard and finger-tapping experiment. Therefore, from each experiment we

used the parameter estimates from the estimated global maximum for the contrasts re-

flecting correlation between age and PBR latency to peak or dispersion. These values

together with the subjects’ age were then used to construct a covariance matrix of age,

OKN and checkerboard variables and a covariance matrix of age, OKN and finger-tapping

variables. We performed a likelihood ratio test for each covariance matrix to test the null

hypothesis that the regression slopes of age and the other two variables in the matrices

were identical. The same analysis was also used to test whether the regression slope of

age and PBR latency to peak in hMT/V5 differed from the regression slope in the cortical

areas showing significant age-related changes.

In order to get a clearer depiction of the age-related differences in the hemodynamic re-

sponse function (HRF) we additionally divided the subjects in three age groups (Group

1: 20 to 39 years, Group 2: 40 to 59 years and Group 3: 60 to 76 years) and reconstructed

the profile of the individual HRF for every subject based on the parameter estimates for

canonical HRF, temporal derivative and dispersion derivative. From these reconstructed

hemodynamic responses, we calculated a group-mean response along with its standard

deviation. The plots showed that separate brain areas have different overlaps of the mean

HRF and its standard deviation between the groups (Fig. 2.2).

We were interested in testing whether these effects can have an influence on the estimation

of the age differences in PBR or NBR amplitude. For this purpose, we additionally per-

formed a full-factorial, one-way between-subjects ANOVA in order to test for the main

effects of the OKN canonical HRF regressor in each group individually, and then test

for differences in the PBR or NBR amplitude between the groups. We therefore, used

the OKN PBR contrast images from the single subject analysis, along with OKN gain,

maximal OKN velocity, percent of BOLD signal change during checkerboard and percent

of BOLD signal change during finger-tapping as covariates of no interest. The following

contrasts were computed: OKN PBR and OKN NBR for each group separately, and con-

trasts testing for pair-wise differences in OKN PBR or OKN NBR between each pair of

groups. A threshold of p<0.05 (FDR corrected) was used to test for significance.

In order to assess general age-related changes of grey and white matter volume, we per-

formed voxel-based morphometry (VBM), using the optimized method of Good (Good

et al. 2001) on the high resolution T1 weighted images. We then correlated local grey

matter and white matter volume with the subjects’ age.
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Age-related changes in the temporal variability of the BOLD response

As a measure for the temporal variability of the BOLD response in each voxel during

an imaging run, we used the method described in (Garrett et al., 2010) to calculate the

signal’s standard deviation (SD). For calculation of the signal’s SD the smoothed and

normalized images from each imaging run as obtained by the preprocessing steps in 2.5.2

were used. For the OKN experiment, both directions of the stimulation were treated

as one equal stimulus condition (horizontal movement towards right and towards left).

Blocks of stimulation or rest were additionally normalized and concatenated in order to

correct for large block offsets as described in detail in (Garrett et al., 2010). For this

purpose, the signal was converted into percent of mean global signal, and the mean sig-

nal in each stimulation block was subtracted from the signal in each voxel. After block

concatenation, the SD for each voxel was calculated across this concatenated mean-block

corrected time series, resulting in two images per subjects (SD stimulation and SD rest)

which were then used to test for within-group and between-group effects.

As head motion during the scanning procedure can be a source of signal variance in fMRI

time series (Friston et al., 1996), it is necessary to control for motion effects when es-

timating changes in SD. In order to do this, we calculated the Center of Mass (COM)

of all inbrain voxels for each subject. Cumulative displacement of this coordinate over

the whole measurement (COM-displacement) was computed from the head motion pa-

rameters (translations and rotations) that had been estimated in the realignment step

(see 2.5.2). The vector of COM-displacement values form all subjects was then used to

explore the correlation between age and head motion, and later control for motion effects

in the between-group analyses. A Spearman rank correlation test revealed a significant

positive correlation between age and COM-displacement. Therefore, in order to use COM-

displacement as a covariate in the between-group analyses, the COM-displacement vector

and the age vector were orthogonalized using principal component analysis (PCA). The

resulting vector of COM-displacement scores was then entered as a covariate of no interest

in the imaging data between-group analyses.

The SD stimulation and SD rest images from each subject were included a paired t-test

used to assess the differences in variability between stimulation and rest in all subjects.

The test was performed for each experiment separately and contained two contrasts:

SD stimulation - SD rest and SD rest - SD stimulation. In order to asses age-related

changes in variability during stimulation and during rest, the SD stimulation and SD rest

images from each subject were included in separate one-way between-subjects ANOVAs

to test for differences between each pair of groups (Group 1: 20 - 39 years, Group 2: 40
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- 59 years and Group 3: 60 - 76 years) in SD stimulation or SD rest, respectfully. Each

between-subject ANOVA contained the orthogonalized COM-displacement vector from

the respective experiment as a covariate of no interest in order to control for the effects

of head motion. For the OKN experiment, OKN gain and maximal OKN velocity were

used as additional covariates of no interest. A threshold of p<0.05 (FDR corrected) was

used to test for significance.

We were interested in exploring whether the age-related changes found in the signal’s

SD occur in areas showing PBR or NBR during stimulation. Therefore, we used the

statistical maps of the OKN PBR and OKN NBR contrasts from the OKN canonical

HRF one-sample t-test (see 2.5.2) as an inclusion mask for ROI analyses. Anatomical

localizations of the results from each analysis were determined using the Harvard-Oxford

Cortical Structural Atlas, the Harvard-Oxford Subcortical Structural Atlas, the Juelich

Histological Atlas and the Cerebellar Atlas in MNI152 in FSLView 3.1. (http://www.

fmrib.ox.ac.uk/fsl/fslview/atlas.html).
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3 Results

3.1 Video-oculography data

Analysis of the eye movement recordings showed that the applied visual stimulation

elicited OKN and that all subjects included in the analysis were able to accurately perform

the task. The mean OKN gain for the whole group was 0.7± 0.2 (range from 0.1 to 1.2),

the mean frequency of resetting saccades was 2.9Hz ± 0.5; (range from 0.9 to 4.1) and

the mean amplitude of saccades was 3.2◦±0.9 (range from 1.7 to 5.7). The OKN velocity

test revealed mean maximal OKN velocity of 26 ◦/s ± 8.9 (range from 10.2 to 47.6).

3.2 Covariates analysis

The Spearman rank correlation test showed no significant correlation between age and

OKN gain or maximal OKN velocity (age/gain rs = 0.09, p=0.55; age/maximal OKN

velocity rs = 0.05, p=0.70). The mean percent BOLD signal change during checkerboard

stimulation for the whole group was 2.96% ± 1.25 (range: 1.15 to 5.82), and the mean

percent BOLD signal change during the finger-tapping task was 2.02% ± 0.77 (range:

0.74 to 4.33). No significant correlation between age and these two variables was found

(age/percent BOLD signal change during checkerboard stimulation rs = 0.04, p=0.77 and

age/percent BOLD signal change during finger-tapping stimulation rs = −0.01, p=0.91).

3.3 Dynamics of the positive BOLD response (PBR) and their age

dependencies

3.3.1 Group fMRI data analysis of PBR amplitude, latency to peak and dispersion

OKN experiment

The OKN experiment revealed a symmetrical bilateral pattern of PBR in the primary

visual cortex and the adjacent visual areas in the occipital cortex and parietal cortex

(Fig. 3.1). Additionally, PBR was found bilaterally in the parietal eye field (PEF), the

frontal eye field (FEF) and supplementary eye field (SEF), the frontal orbital cortex, as

well as in the lateral geniculate body (Suppl. Tab.1). All the areas showing PBR during

OKN also showed shorter latency to peak, compared to the estimate predicted by the
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Figure 3.1: Positive BOLD response (PBR) during OKN compared to viewing a static
pattern (p<0.05 FDR) overlaid on transversal sections through a group mean
anatomical image. Key: LGN - lateral geniculate body, V1 - priamry vi-
sual cortex (occipital cortex), hMT/V5 - human analogue of medial tempo-
ral/medial superior temporal cortex, FEF - frontal eye field, PEF - parietal
eye field.
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Figure 3.2: Comparison of PBR dynamics for the three experiments: OKN, checkerboard
and finger-tapping (p<0.05 FDR). OKN (left): shorter latency and wider
dispersion in lateral geniculate body, occipital cortex, frontal eye field and
parietal eye field. Checkerboard (middle): shorter latency in occipital ar-
eas and wider dispersion in almost all areas showing PBR. Finger-tapping
(right): shorter latency and wider dispersion in almost all areas showing PBR
(Table1)).

canonical model of the hemodynamic response function (HRF), except for the frontal

orbital cortex bilaterally (Fig. 3.2, Suppl. Tab.1), which at lower statistical threshold

(uncorrected, p<0.001, cluster size ≥ 5) showed longer latency to peak. Wider dispersion

of PBR compared to the one predicted by the canonical model of HRF, was also found in

all of the areas showing PBR (Fig.8, Suppl. Tab.1), except for the frontal orbital cortex

bilaterally. None of the areas showing PBR during OKN showed narrower dispersion of

the signal.

Checkerboard experiment

In the checkerboard experiment PBR during flickering checkerboard stimulation was found

bilaterally in the primary visual cortex and adjacent visual areas in the occipital and
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parietal cortex, lateral geniculate body, FEF and SEF, as well as the putamen and frontal

orbital cortex. In both hemispheres, area V1/BA17, V2/BA18 and hMT/V5 showed

shorter PBR latency to peak. The right inferior frontal gyrus, as well as the right putamen

and right superior parietal lobule showed longer PBR latency to peak (Suppl. Tab.2).

Additionally, wider PBR dispersion was found in most of the areas activated during

checkerboard stimulation (Fig. 3.2, Suppl. Tab.2).

Finger-tapping experiment

In the finger-tapping experiment the motor task elicited a well known pattern of PBR

in the hand motor area in the left precentral gyrus (BA4), as well as the basal ganglia,

the cingulate gyrus, the corticospinal tract and the cerebellar cortex (V/VI) bilaterally

(Fig. 3.2, Suppl. Tab.3). The left precentral gyrus and several other areas showed shorter

PBR latency to peak compared to the canonical model of the HRF. We found no areas

showing longer PBR latency to peak. Furthermore, wider PBR dispersion was found in the

left precentral and postcentral gyrus, cingulate gyrus bilaterally and the right cerebellar

cortex (Fig. 3.2, Suppl. Tab.3). There were no areas showing narrower PBR dispersion

compared to the canonical HRF model.

3.3.2 Age-related changes of PBR dynamics

OKN experiment

The data from the OKN experiment showed no significant change of the PBR amplitude

with age. Only a trend of decrease in PBR amplitude with increasing age was found in

the intracalcarine cortex bilaterally, the left occipital pole (BA18/V2), and the right optic

radiation (uncorrected, p< 0.001, cluster size ≥ 5). We found significant positive corre-

lation between age and PBR latency to peak in several areas of the visual cortex (Fig.

3.3). These included the intracalcarine cortex (V1/BA17), the lingual gyrus (V2/BA18),

the occipital pole (V1/V2), the occipital fusiform gyrus (V3/V4), the lateral occipital

cortex (superior division), the lateral geniculate body, the FEF and the PEF bilaterally

(Suppl. Tab.4). From all areas showing PBR during OKN, hMT/V5 was the only area

that did not show any age-related change of the PBR latency to peak. The additional

analysis of the regression slopes in hMT/V5 and in the areas showing age-related changes

of PBR latency to peak (see 2.5.2) showed significant differences between hMT/V5 and

all the areas with aging effects (p<0.001). Since these areas are unlike hMT/V5 related

to saccades (Bttner and Bttner-Ennever, 2006), we wanted to investigate whether age-

related changes in the saccadic frequency and amplitude can be detected. Therefore, we

tested the correlation between age and the mean saccadic frequency and mean saccadic
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amplitude using Spearman’s rank correlation test. The test revealed no significant corre-

lation (age/mean saccadic frequency rs = 0.01, p=0.93 and age/mean saccadic amplitude

rs = 0.12, p=0.41). Significant decrease of the PBR dispersion with increasing age was

found bilaterally in the intracalcarine cortex and occipital pole, as well as the superior

division of right lateral occipital cortex (Fig. 3.3, Suppl. Tab.4).

The estimated mean HRF and its standard deviation (Fig. 2.2 in 2.5.2) in all of the brain

areas with significant age related changes during OKN showed that separate brain areas

have different overlaps of the mean HRF and its standard deviation between the three age

groups. In order to test whether any differences in PBR amplitude between the groups

can be detected when modeling the BOLD response with only the canonical HRF, we

additionally performed a one-way, between subjects ANOVA using only the OKN PBR

contrast. This revealed a comparable activation pattern in all three age groups. Accord-

ingly, the contrasts for group differences in PBR amplitude did not reveal any significant

results. Only a trend for an age-related decrease of PBR amplitude (uncorrected, p<

0.001, cluster size ≥ 5) was revealed by the contrast Group 1 - Group 3 (the left occipital

pole, the right occipital fusiform gyrus and the intracalcarine cortex bilaterally) and the

contrast Group 2 - Group 3 (the right intracalcarine cortex).

Checkerboard experiment

The data from the checkerboard experiment showed no significant age-related change of

PBR amplitude, latency to peak or dispersion. A trend of decrease of PBR amplitude with

increasing age (uncorrected, p< 0.001, cluster size ≥ 5) was found in the paracingulate

gyrus, the middle temporal gyrus, the putamen and the lateral occipital cortex (infe-

rior division) bilaterally, as well as in the left occipital pole, the left occipital fusiform

gyrus (V3/V4), and the right inferior frontal gyrus (pars triangularis). Similarly, a non-

significant decrease of PBR latency to peak with increasing age was found in the right

occipital pole and the inferior division of the right lateral occipital cortex (V4), while

non-significant increase of PBR latency to peak was found in the right optic radiation

and the right intracalcarine cortex (V1/BA17). Additionally, we found a non-significant

decrease of PBR dispersion with increasing age in the right optic radiation.

Finger-tapping experiment

Data from the finger-tapping experiment revealed no significant age-correlated change of

PBR amplitude, latency or dispersion. A non-significant increase of PBR latency to peak

with increasing age was found in the hand motor area of the left precentral gyrus (BA4p)
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A. Increase of PBR latency to peak with age

B. Decrease of PBR dispersion with age
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Figure 3.3: Change of PBR latency to peak and PBR dispersion with age during OKN
(p<0.05 FDR). A) Increase of PBR latency to peak with age in lateral genic-
ulate body, and occipital cortex (V1, V2, V3/V4) (left). Plot of parameter
estimate of temporal derivative against age (right). Decrease of parameter
estimate reveals increase of PBR latency to peak with age. B) Decrease of
PBR dispersion in the occipital cortex (V1, V2 and the superior division of the
right lateral occipital cortex) (left). Plot of parameter estimate of dispersion
derivative against age (right). Increase of parameter estimate reveals decrease
of PBR dispersion with age.
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and in the right cerebellar hemisphere (V).

We further tested if the correlation between age and PBR latency to peak or dispersion

found in the OKN experiment was significantly different from the correlation between age

and these variables found in the checkerboard and finger-tapping experiment. A likelihood

ratio test for the covariance matrices of these variables revealed that the regression slope

of age and PBR latency to peak from the OKN experiment was significantly different

from the regression slope of age and PBR latency to peak found in the checkerboard

and finger-tapping experiment. (OKN/checkerboard p=1.1063e-009; OKN/finger-tapping

p=6.0017e-011) (Fig. 3.4). Furthermore, the regression slope of age and PBR dispersion

in the OKN experiment was significantly different from the regression slope of age and

PBR dispersion in the checkerboard experiment (OKN/checkerboard p< 0.001).

3.4 Dynamics of the negative BOLD response (NBR) and their age

dependencies

3.4.1 Group fMRI data analysis of NBR amplitude, latency to peak and dispersion

OKN experiment

The OKN experiment revealed a typical bilateral pattern of NBR in the superior and

inferior division of the lateral occipital cortex, the inferior and superior parietal lobules,

the superior temporal gyrus, the posterior cingulate gyrus, the insular cortex, the temporo-

occipital part of the inferior and middle temporal gyrus, the temporo-occipital fusiform

cortex, the putamen and the precuneus (Fig. 3.5). Additionally, most of these areas

showed longer NBR latency to peak than predicted by the estimate of the canonical

HRF. Only the putamen bilaterally showed shorter latency to peak. Furthermore, the

inferior parietal lobule, the precuneus, the posterior division of the cingulate gyrus and

the middle frontal gyrus in both hemispheres, showed a narrower NBR dispersion than

predicted by the canonical HRF model. Wider NBR dispersion was found only in the

putamen bilaterally (Fig. 3.6, Suppl. Tab.5).

Checkerboard experiment

The flickering checkerboard stimulation elicited NBR in the anterior and posterior division

of the callosal body and the precuneus bilaterally, as well as in the right thalamus and

left superior parietal lobule. Additionally, the NBR in the anterior division of the callosal

body had a narrower dispersion than predicted by the estimate of the canonical HRF
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Figure 3.5: Negative BOLD response (NBR) during OKN compared to viewing a static
pattern (p<0.05, FDR) overlaid on transversal sections through a group mean
anatomical image. OKN elicited BOLD signal decreases in areas known to con-
stitute the multimodal vestibular network. Key: CRBL - cerebellum, STG -
superior temporal gyrus, IC - insular cortex, Th - thalamus, PCUN - pre-
cuneus, iLP - inferior parietal lobule, sLP - superior parietal lobule, ACi -
anterior cingulum, MFG - middle frontal gyrus, GPoC - postcentral gyrus.
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Figure 3.6: Comparison of NBR dynamics for the three experiments: OKN, checkerboard
and finger-tapping (p<0.05 FDR). OKN (left): longer latency to peak in the
insular cortex, temporal-occipital part of the inferior temporal gyrus, inferior
lobule and precuneus bilaterally; narrower dispersion in the temporal-occipital
part of the inferior temporal gyrus and inferior parietal lobule. Checkerboard
(middle): except for the anterior division of the callosal body, no other ar-
eas showed difference in NBR dynamics compared to the prediction of the
canonical model of HRF. Finger-tapping (right): longer latency to peak in
the postcentral gyrus and the occipital pole of the right hemisphere.
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model (Fig. 3.6, Suppl. Tab.6). There were no areas showing longer or shorter NBR

latency to peak, or wider NBR dispersion than predicted by the canonical HRF.

Finger-tapping experiment

The motor task in the finger-tapping experiment elicited a bilateral NBR in the frontal

pole, the superior and middle frontal gyrus, the anterior division of the cingulate gyrus

and precuneus. Furthermore, NBR was found in the precentral and postcentral gyrus,

the occipital pole, the inferior parietal lobule and the central opercular cortex in the right

hemisphere, as well as in the superior division of the lateral occipital cortex, occipital

fusiform gyrus, lingual gyrus, middle temporal gyrus and the frontal orbital cortex in

the left hemisphere. Longer NBR latency to peak was detected in the right postcentral

gyrus and the right occipital pole, as well as in the left occipital fusiform gyrus. There

were no areas showing shorter NBR latency to peak or wider or narrower NBR dispersion

than predicted by the canonical HRF. Only at lower statistical threshold (uncorrected,

p<0.001 k ≥ 5) a narrower NBR dispersion was found in the left frontal pole and superior

frontal gyrus (Fig. 3.6, Suppl. Tab.7).

3.4.2 Age-related changes of NBR dynamics

OKN experiment

The data from the OKN experiment revealed no significant age-related change of NBR

amplitude, latency to peak or dispersion. A trend of decrease of NBR amplitude with

increasing age (uncorrected, p< 0.001, cluster size ≥ 5) was found in the left temporo-

occipital fusiform cortex and the inferior division of the left lateral occipital cortex. The

additionally performed one-way, between subjects ANOVA revealed a similar pattern of

NBR in the Group 1 and Group 2 (p<0.05, FDR), whereas the NBR pattern in Group 3

was reduced and detected at a lower statistical threshold (uncorrected, p< 0.001, cluster

size ≥ 5). Surprisingly, however, the contrasts for group differences, revealed no significant

difference in NBR amplitude between Group 3 and the other two groups. Only at a lower

statistical threshold (uncorrected, p< 0.001, cluster size ≥ 5) Group 2 showed lower NBR

than Group 1 in the right precuneus, and Group 3 showed lower NBR than Group 1 in

the temporo-occipital fusiform gyrus bilaterally, and lower NBR than Group 2 in the right

temporo-occipital part of the middle temporal gyrus.

Checkerboard experiment

The data from the checkerboard experiment revealed no significant age-related change

of NBR amplitude, latency to peak or dispersion. A decrease of NBR amplitude with
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increasing age was detected only at a lower statistical threshold (uncorrected, p< 0.001,

cluster size ≥ 5) in the precuneus and superior parietal lobule bilaterally.

Finger-tapping experiment

The finger-tapping experiment showed no significant change of NBR amplitude, latency

to peak or dispersion with increasing age. Only a trend (uncorrected, p< 0.001, cluster

size ≥ 5) of age-related decrease of NBR amplitude was found in the superior parietal

lobule and the precentral gyrus of the right hemipshere.

3.4.3 Voxel-based-morphometry

The VBM analysis revealed a general age-related reduction of grey and white matter all

over the brain. Consequently, this included all brain areas found activated during the

tasks.

3.5 Temporal variability of the BOLD signal (SD) and its alteration

with age

3.5.1 Differences between the temporal variability during stimulation and during

rest

OKN experiment

A paired-t-test revealed significantly higher SD during rest than during optokinetic stim-

ulation, as shown by the SD rest - SD stimulation contrast in the whole brain analysis

(Fig. 3.7). The ROI analysis with the OKN PBR and the OKN NBR contrast images

showed that higher SD during the rest condition was present in areas with PBR, as well

as in areas showing NBR during OKN (Suppl. Tab. 8). There were no areas showing

higher SD during stimulation than during rest.

Checkerboard experiment

The paired-t-test for the checkerboard experiment showed no significant difference between

SD rest and SD stimulation in the whole brain analysis. At lower statistical threshold

(uncorrected, p< 0.001, cluster size ≥ 5) the SD stimulation - SD rest contrast revealed

higher SD during stimulation in both cerebellar hemispheres, the thalamus and the callosal

body bilaterally, as well as in the premotor cortex, superior division of the lateral occipital

cortex and the central opercular cortex in the right hemisphere and the hippocampus in

the left hemisphere. The ROI analyses revealed that out of these areas, the thalamus
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Figure 3.7: Areas showing higher temporal variability of BOLD signal during blocks of
rest (static pattern) compared to blocks of stimulation (horizontal optoki-
netic stimulation) in the OKN experiment (p<0.05, FDR). The statistical
map showing voxels with higher SD rest than SD stimulation is overlaid on
transversal sections through a group mean anatomical image. Among other
areas, the thalamus, insular cortex, superior parietal lobule, inferior division
of the lateral occipital cortex, occipital pole, superior temporal gyrus, mid-
dle frontal gyrus and precentral gyrus showed higher variability of the BOLD
signal during rest than during to optokinetic stimulation.

bilaterally and the right callosal body were showing NBR during checkerboard stimulation.

With the ROI analysis using the FLICKER NBR contrast the difference between SD

during stimulation and SD during rest in these areas reached the significance threshold of

p<0.05, FDR corrected. The SD rest - SD stimulation contrast showed higher SD during

rest in the right occipital pole (uncorrected, p< 0.001, cluster size ≥ 5), and ROI analyses

revealed that this was an area where PBR was elicited during checkerboard stimulation.

Finger-tapping experiment

The paired-t-test for the finger-tapping experiment revealed significantly higher SD during

rest than during stimulation in the right insular cortex. The ROI analysis with the TAP-

PBR contrast revealed additional areas where such significant difference was observed:

central opercular cortex bilaterally and precentral gyrus, postcentral gyrus, juxtaposi-

tional lobule, and thalamus in the left hemisphere. No significant results were found for

the contrast SD stimulation - SD rest. No areas with NBR during finger-tapping were

found to show any difference between SD stimulation and SD rest.
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3.5.2 Age-related changes of the temporal variability during stimulation and

during rest

Correlation analysis of head motion and age

A Spearman rank correlation test revealed a significant positive correlation between the

head motion as classified by COM displacement during each experiment and age (OKN

rs = 0.42, p = 0.003; checkerboard rs = 0.31, p = 0.03; finger-tapping rs = 0.43, p =

0.003). Therefore, the COM displacement vectors from each experiment and the age vector

were orthogonalized and the appropriate COM displacement scores after orthogonalization

were then used as covariates of no interest in the one-way, between-subjects ANOVA.

OKN experiment

The ANOVA test for age differences in SD stimulation (OKN) showed significant results

for the SD Group 3 - SD Group 1 contrast in superior temporal gyrus, temporal pole, cen-

tral opercular cortex, postcentral and precentral gyrus, precuneus, thalamus, and superior

frontal gyrus in the left hemisphere (Fig. 3.8 A). Furthermore, higher SD stimulation in

Group 3 compared to Group 1 was found in the right insular cortex and the planum

polare bilaterally. ROI analysis using the OKN PBR and OKN NBR contrast images

revealed that all of the areas showing higher SD stimulation in Group 3 compared to

the Group 1 were areas with NBR during OKN. At lower statistical threshold (uncor-

rected, p< 0.001, cluster size ≥ 5) the SD Group 2 - SD Group 1 contrast showed an

age-related increase of SD stimulation in the cerebellum, and the posterior and anterior

division of the cingulate cortex in the left hemisphere. The ROI analysis revealed that

the former two areas showed PBR, while the latter showed NBR during OKN. Addition-

ally, with this lower statistical threshold the SD Group 3 - SD Group 2 contrast showed

an age-related increase of SD stimulation in the left superior frontal gyrus (Suppl. Tab.9).

An ANOVA test for age differences in SD rest showed significant results for the contrast

SD Group 3 - SD Group 1 (Suppl. Tab.9). Interestingly, most of the areas found to

show age-related increase of SD during rest were the same areas showing an age-related

increase of SD during stimulation, as depicted by on overlay of both statistical maps on

a common anatomical brain image (Fig. 3.9 A, Suppl. Tab.9). Furthermore, at lower

statistical threshold (uncorrected, p< 0.001, cluster size ≥ 5) the contrast SD Group 2 -

SD Group 1 showed an age-related increase of SD rest in the right insular cortex, in the

posterior division of the left cingulate gyrus and the left crus of the cerebellum, while the

contrast SD Group 3 - SD Group 2 revealed an age-related increase in superior frontal

gyrus, planum polare, and the optic radiation of the left hemisphere (Suppl. Tab.9).
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Figure 3.8: Areas showing higher BOLD signal variability during stimulation in Group 3
(60 - 76 years) compared to Group 1 (20 - 40 years) in OKN, checkerboard
and finger-tapping experiment (p<0.05 FDR). A) OKN: age-related increase
of BOLD signal variability in insular cortex, planum polare, superior tem-
poral gyrus, postcentral gyrus and superior frontal gyrus. B) Checkerboard
(middle): age-related increase of BOLD signal variability in insular cortex and
thalamus C) Finger-tapping (bottom): age-related increase of BOLD signal
variability in insular cortex, thalamus, superior temporal gyrus and superior
frontal gyrus.
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As both, SD stimulation and SD rest showed an age-related increase in the same brain

areas we additionally tested whether the observed changes in the signal’s fluctuations

during blocks of rest could have been affected by the signal in the preceding blocks of

stimulation. For this purpose, we performed an ANOVA test for age differences in SD rest

using only the first block of rest at the beginning of the two imaging sessions in the

OKN experiment. This analysis revealed significant results for the contrast SD Group 3

- SD Group 1 that were consistent with the results from the analyses using all blocks of

rest.

Checkerboard experiment

An ANOVA test for age differences in SD during checkerboard stimulation also showed a

significant increase in SD stimulation with age. The contrast SD Group 3 - SD Group 1

revealed higher SD during stimulation in insular cortex, temporal pole, superior temporal

gyrus, temporal fusiform complex, hippocampus, thalamus, cerebellum, and the brain

stem bilaterally, the left parietal operculum and right inferior parietal lobule in the older

subjects (Fig. 3.8 B, Suppl. Tab.10). Furthermore, the contrast SD Group 3 - SD Group

2 yielded higher SD during stimulation in the elderly subjects in insular cortex bilaterally

and the planum polare and hippocampus in the right hemisphere. The contrast SD Group

2 - SD Group 1 revealed an age-related increase of SD in the superior temporal gyrus,

this however, was only seen as a trend (uncorrected, p< 0.001, cluster size ≥ 5). ROI

analyses showed that out of these areas, only the insular cortex, the hippocampus and

the thalamus showed PBR, while all the other areas showed neither PBR nor NBR dur-

ing checkerboard stimulation. We found no significant decrease of SD stimulation with

age. A trend, however, of age-related decrease (uncorrected, p< 0.001, cluster size ≥ 5)

was detected in several brain areas, most of which located in the frontal and temporo-

occipital cortex (Suppl. Tab.10). The ROI analysis restricted to areas showing PBR

during checkerboard stimulation rendered the age-related decrease in the superior frontal

gyrus bilaterally and the posterior part of the right inferior temporal gyrus significant.

The ANOVA test for age-related differences in the SD during rest revealed that most of

the areas showing an age-related increase of SD during stimulation, also showed an age-

related increase of SD during rest (Fig. 3.9 B, Suppl. Tab.11). The contrast SD Group

3 - SD group 1 showed significantly higher SD rest in Group 3 in insular cortex, tem-

poral pole, hippocampus, thalamus, and cerebellum bilaterally. The contrast SD Group

3 - SD Group 2 showed an age-related increase of SD rest in the insular cortex in both

hemispheres as well. The SD Group 2 - SD Group 1 contrast showed only a trend (un-
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Figure 3.9: Overlaps between statistical maps of age-related increase in BOLD signal vari-
ability during stimulation and age-related increase in BOLD signal variability
during rest for OKN, checkerboard and finger-tapping experiment (p<0.05,
FDR). Statistical maps showing higher BOLD signal variability in Group 3
(60 - 76 years) compared to Group 1 (20 - 40 years) during stimulation (red)
and during rest (yellow) are overlaid on transversal sections through a group
mean anatomical image. A) OKN: age-related increase of BOLD signal vari-
ability during stimulation and rest in insular cortex, palnum polare, superior
temporal gyrus and superior frontal gyrus. B) Checkerboard: age-related in-
crease of BOLD signal variability during stimulation and rest in insular cortex
and temporal pole. C) Finger-tapping: age-related increase of BOLD signal
variability during stimulation and rest in insular cortex, temporal pole, hip-
pocampus and cerebellum.
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corrected, p< 0.001, cluster size ≥ 5) of age-related increase in the left temporal pole

and right brain stem. The ROI analyses showed that these areas had neither PBR, nor

NBR during checkerboard stimulation. As during stimulation, no significant decrease of

SD rest with age was revealed by the whole brain analysis. A trend, however, of age-

related decrease in SD rest (uncorrected, p< 0.001, cluster size ≥ 5) was detected in

several areas among which: occipital pole, occipital fusiform gyrus, paracingulate gyrus,

frontal pole, superior and middle frontal gyrus, putamen, insular cortex, superior parietal

lobule, inferior division of the lateral occipital cortex, precentral gyrus, precuneus, and

the temporo-occipital fusiform complex (Suppl. Tab.11). The ROI analysis restricted to

areas showing PBR during checkerboard stimulation rendered the age-related decrease of

SD rest in all of the above mentioned brain regions significant.

Finger-tapping experiment

The ANOVA test for age-related differences in SD during stimulation (finger-tapping)

showed significantly higher SD in Group 3 compared to Group 1 and Group 2. The

contrast SD Group 3 - SD Group 1 revealed an increase of SD-stimulation with age in

the following areas: insular cortex, planum polare, superior temporal gyrus, precentral

gyrus, hippocampus, cerebellum, and thalamus in both hemispheres, as well as in left

superior frontal gyrus, left central opercular cortex, left middle temporal gyrus, right

postcentral gyrus, and right inferior parietal lobule (Fig. 3.8 C). The contrast SD Group

3 - SD Group 2 showed an age-related increase of SD stimulation in the insular cortex

and planum polare bilaterally, as well as in the right hippocampus, the inferior division

of the right lateral occipital cortex and the right cerebellar hemisphere (Suppl. Tab.12).

The contrast SD Group 2 - SD Group 1showed only a trend (uncorrected, p< 0.001, clus-

ter size ≥ 5) of SD increase with age in the right cerebellar hemisphere and left central

opercular cortex. ROI analyses showed that most of the areas with age-related increase

in SD during stimulation were also areas showing PBR during finger-tapping. No sig-

nificant age-related decrease of SD stimulation was observed in the whole brain analysis.

A trend, however, of age-related decrease (uncorrected, p< 0.001, cluster size ≥ 5) was

observed in several areas of the frontal, occipital and parietal cortex (Suppl. Tab.12).

The ROI analyses revealed that most of these areas showed NBR during finger-tapping,

while no age-related decrease of SD stimulation was observed in areas with PBR. Further-

more, the ROI analysis restricted to areas with NBR rendered the age-related decrease

of SD stimulation in the left superior and middle frontal gyrus, left intracalcarine cortex,

and right precentral gyrus significant.

The ANOVA test for age-related differences in SD during rest showed a significant increase
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in Group 3 compared to Group 1 and Group 2. Similar to the age-related differences in

SD stimulation, the contrast SD Group 3 - SD Group 1 showed that the SD during rest

was higher in the elderly in: insular cortex, planum polare, temporal pole, hippocampus,

thalamus, and cerebellum bilaterally, as well as in superior temporal gyrus, precuneus,

inferior parietal lobule, occipital pole, and intracalcarine cortex of the right hemisphere,

and in middle temporal gyrus and precentral gyrus of the left hemisphere (Fig. 3.9 C,

Suppl. Tab.13). The contrast SD Group 3 - SD Group 2 revealed higher SD rest in the

elderly in: planum polare bilaterally, insular cortex, precuneus, and inferior division of

the lateral occipital cortex in the right hemisphere, as well as superior frontal gyrus and

temporal fusiform complex of the left hemisphere. The ROI analyses showed that most

of these areas had PBR during finger-tapping, while no age-related change of SD during

rest was observed in areas with NBR. No significant age-related decrease of SD rest was

found in the whole brain analysis. A trend, however, of age-related decrease (uncorrected,

p< 0.001, cluster size ≥ 5) was observed in several areas of the frontal and parietal cor-

tex (Suppl. Tab.13). The ROI analyses showed that all of these areas had NBR during

stimulation, except for the anterior division of the cingulate cortex which showed a PBR.

Furthermore, in the ROI analysis restricted to areas with NBR during finger-tapping, the

age-related decrease of SD rest in the frontal pole and precuneus of the left hemisphere

and the paracingulate gyrus bilaterally was significant.

For clearer depiction of the areas showing significant age-related changes of SD in all three

experiments, the statistical maps of the SD Group 3 - SD Group 1 for both, SD during

stimulation and SD during rest, were overlaid on the mean anatomical image of the whole

group (45 subjects). This showed that in several brain regions, age-related increase of

SD during stimulation or SD during rest was observed in all three experiments: planum

polare bilaterally, insular cortex in the right hemisphere and left thalamus (Fig. 3.10).
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Figure 3.10: Overlaps between the statistical maps of age-related increase in BOLD signal
variability from each experiment (p<0.05, FDR). The statistical maps from
OKN (red), checkerboard (cyan) and finger-tapping (yellow), showing higher
BOLD signal variability in Group 3 compared to Group 1 during stimula-
tion (left) and during rest (right) are overlaid on transversal section through
a group mean anatomical image. The insular cortex, planum polare and
thalamus show an increase of BOLD signal variability in each of the three
experiments.



4 Discussion

Within the framework of this doctoral thesis we investigated how the cortical visual-

vestibular interaction elicited by optokinetic stimulation alters with age in humans. Specif-

ically, we investigated how these changes manifest in fMRI. By applying an experimental

paradigm that allowed unaltered OKN performance across all age groups, we were able to

offer new insights into the effects of age on the BOLD signal occurring prior to a decrement

in oculomotor performance. By exploring the age dependencies of both, the BOLD signal’s

amplitude and its temporal variability we were able to contribute to the scientific knowl-

edge on the diverse effects of age on distinct features of this signal. This work furthermore

offered new information on the age-related changes of the cortical visual-vestibular inter-

action to be expected in fMRI studies. In the following sections the results from three

separate analyses will be discussed in detail and compared to the existing literature.

4.1 Age-related changes of the positive BOLD response (PBR)

during OKN

The major findings of this analysis were: (1) OKN elicited PBR characterized by shorter

latency to peak and wider dispersion compared to the prediction of the canonical HRF

model. (2) Increasing age correlated positively with increase in PBR latency to peak

and decrease in PBR dispersion despite an unaltered oculomotor performance. (3) The

PBR amplitude during OKN performance showed no significant changes with age. (4)

No significant age-related changes were observed in the control experiments of pure visual

and pure motor tasks. Furthermore, the correlation between age and PBR dynamics in

the OKN experiment significantly differed from the one in the two control experiments.

Thus, the age-related changes of the PBR dynamics during OKN were specific for this

reflexive sensorimotor task.

Since no previous functional imaging study analysed the effects of aging on activations

elicited by a reflexive oculomotor task, we compare our findings with the available lit-

erature on PBR dynamics during visual and motor tasks, as well as with the changes

observed in our two control experiments.
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4.1.1 Interpretations of the age-related changes in PBR dynamics

Two distinct aging processes could in principle be accountable for the results obtained

from the OKN experiment. First, an unaltered oculomotor performance could indicate an

unaltered neural processing, in which case the observed age-related changes in the PBR

dynamics reflect changes in the neurovascular coupling with unaltered neural process-

ing. Second, the changes in the PBR dynamics could reflect a cortical adaptive strategy

counteracting development of age-related degenerative processes in order to enable main-

tenance of optimal performance. A combination of these two scenarios, changes in the

neural processing and changes in the neurovascular coupling in senescence, could be a

possible explanation for the observed alterations in the signal dynamics as well.

Increasing age is associated with degenerative changes in the brain’s vasculature, mor-

phology and neural metabolism, which essentially impacts the neurovascular coupling and

can therefore, affect the BOLD response. As discussed by D’Esposito et al. (2003) age

was shown to correlate with reduction of the vascular reactivity due to atherosclerotic

changes, decrease in the resting cerebral blood flow and decrease in the resting cerebral

metabolic rate of O2 consumption (CMRO2), all of which are crucial components of the

neurovascular coupling. Previous studies on age-related changes in the BOLD signal have

in fact suggested alterations in the neurovascular coupling to be the most possible ex-

planation for the observed signal changes (Taoka et al., 1998; D’Esposito et al., 1999;

Huettel et al., 2001; Hesselmann et al., 2001; Harris et al., 2011). A delay in the vascular

reactivity during stimulation should theoretically cause an increase in the latency to peak

and dispersion of the BOLD signal. In the present study, however, we found bidirectional

changes in the signal dynamics: an increase in the PRB latency to peak and a decrease of

the PRB dispersion. Therefore, changes in the vascular reactivity can not alone explain

our results. Nevertheless, as the dynamics of the BOLD signal are determined by the

simultaneous working of both, vascular reactivity and CRMO2, it is theoretically pos-

sible that disproportional age-related decreases in these components cause the observed

changes in the PBR dynamics.

However, the finding that these changes are specific for the OKN task suggests that al-

teration in the neural processing required for OKN might be a contributing factor. The

major difference between OKN and the other two experiments in terms of neural pro-

cessing is that it requires coupling of visual-motion perception with oculomotor function.

Interestingly, we found an increased PBR latency to peak already in the lateral genic-

ulate body (LGN), which indicates a change in an early processing stage in the visual

pathway. As previous research has shown that the BOLD signal in early sensory areas
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correlates better with the local input and the circuits’ internal processing than with the

circuits’ output (Logothetis and Wandell, 2004), it is probable that the increase of the

PBR latency to peak in LGN rather reflects a change in the processing of both, feed-

forward (retinal) and feed-back (cortical) information in the LGN circuits, than simply a

delay in the retinal input to LGN or delay in its output to the cortical areas. In this line

of thought, changes in the internal processing of feed-forward and feed-back information

could also hold true for the other areas showing age-related changes in PBR dynamics.

These alterations in the neural processing during OKN might be an adaptive response to

the developing degenerative changes in the brain’s vasculature or microstructure, as the

performance of the subjects remained unaltered with age. It should be noted, though,

that the delay and shorter duration of the PBR response in well-performing elderly, could

also mark the beginning of the development of neural dysfunction itself.

Yet, since the BOLD signal is by its nature entirely dependent on the complex mecha-

nisms of coupling the vascular response to the neural function, it is possible that subtle

age-related changes in both, neural processing and neurovascular coupling contribute to

yield the observed results. A clear separation of the impact from each of these factors

poses a great challenge, as they might be dependent on each other. Influence of such

multiple factors could, however, better explain not only the results in this study, but also

the differences between the results from previous studies in the literature.

An interesting observation in this study was that from all the brain areas activated during

OKN, only the hMT/V5 complex did not show any age-related changes in the PBR

dynamics. As shown, the regression slope of age and PBR latency to peak in both

hMT/V5 areas was significantly different from the regression slopes found in all the other

areas showing aging effects. In contrast to all the other areas expressing age-related

changes, this area is known to be not involved in the generation or maintenance of saccades

(Büttner and Büttner-Ennever, 2006). Thus, the aging effects demonstrated in our study

seem to be restricted to the brain network related to saccades, although the saccadic

frequency and amplitude of the subjects’ OKN remained normal.

4.1.2 Task-specific changes of PBR dynamics with age

Previous studies on the age dependencies of the BOLD response elicited by simple visual

and motor tasks showed heterogeneous results. Huettel et al. (2001) and Richter and

Richter (2003) used a checkerboard task to investigate the effects of age on the signal in

the visual cortex and found no change in the PBR amplitude with age. However, Huettel

et al. (2001) described a significant decrease of the PBR latency and dispersion, whereas
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Richter and Richter (2003) found a significant increase of these parameters in advanced

age. Taoka et al. (1998) measured the time necessary for the BOLD signal in the pre-

central gyrus to reach its half-maximal increase after starting a ’hand grip’ task, and

revealed significant age-related increase of the BOLD signal latency and no change in its

amplitude or decay. Raemaekers et al. (2006) investigated the effects of age on the BOLD

signal during prosaccades and antisaccades and found an age-related shift in the spatial

pattern of the BOLD signal from posterior to frontal areas, as well as an overall decrease

of its amplitude with age. Buckner et al. (2000) compared the aging effects on the BOLD

response amplitude in the visual and motor cortex during a sensorimotor task (key-press

response at the onset of checkerboard stimulation) and found differences between these

two regions: the amplitude in the visual cortex decreased with age, while the amplitude in

the motor cortex remained intact. The discrepancies between the above mentioned find-

ings, pose the question whether the effects of age on the BOLD signal dynamics depend

on global changes in brain structure, vasculature and function, regional changes in these

features or on the performed task itself.

Our study showed that the correlation between age and PBR latency to peak or disper-

sion in the OKN experiment was significantly different from the correlation in the two

control experiments. If global vascular changes in the elderly were solely accountable

for the alterations in PBR dynamics we would have expected equal effects in all three

paradigms. Furthermore, global age-related reduction of grey matter volume can also be

excluded as a unique source of our findings, since this would have caused equal effects in

the occipital cortex during OKN and checkerboard stimulation. As global changes can-

not successfully explain our results, the question arises whether region-specific changes

in structure or function would lead to the differences we observed. The finding, how-

ever that the occipital cortex in the present study was activated during both, OKN and

checkerboard stimulation, but showed age-related differences only during the OKN task

renders this possibility unlikely. Thus, general vascular changes, global atrophy or region-

specific changes in structure and function may have an effect, but can not solely explain

our results. Instead, task-specific changes with age in the neurovascular coupling and/or

neural processing required for OKN are the most plausible explanation for the observed

alteration of the PBR dynamics.

In summary, this analysis demonstrates that significant age-related changes of the positive

BOLD response during OKN occur before any changes in the oculomotor performance

can be detected. Furthermore, these changes are specific for the reflexive OKN task and

are probably a result of both, age-related changes in the neurovascular coupling, as well
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as changes in the neural processing during OKN.

4.2 Age-related changes of the negative BOLD response (NBR)

during OKN

The main findings of this analysis were: (1) the NBR elicited by OKN had longer latency

to peak and narrower dispersion than predicted by the canonical model of HRF. (2) No

significant age-related changes of either NBR amplitude, latency to peak or dispersion

were detected in the OKN experiment. (3) The two control experiments revealed no sig-

nificant change in NBR dynamics as well. (4) A trend for age-related decrease of NBR

amplitude was detected in all three experiments.

The hypothesis of inhibitory reciprocal visual-vestibular interaction has suggested that

the BOLD signal decreases (NBR) during visual optokinetic stimulation reflect inhibition

of the vestibular processing in the multisensory vestibular cortex, due to a shift of the

sensorial weighting to the more reliable, in this case visual, modality (Dieterich et al.,

2003). Such cross-modal inhibition has also been demonstrated for other sensory modal-

ities (Alsius et al. 2005, Haxby et al. 1994, Shulman et al. 1997). It was proposed

that in imaging studies such inhibition would be observed as task-specific signal decreases

compared to the baseline and would serve to limit the distraction and interference from

other sensory modalities (Peiffer et al., 2009).

Previous behavioural and imaging studies on age-related changes in multisensory inter-

actions have suggested that increasing age associates with an increase in multisensory

processing (Laurienti et al., 2006; Peiffer et al., 2007, 2009; Zwergal et al., 2010). In terms

of fMRI research, this was suggested based on age-related decrease of NBR in task-related

brain areas and an appearance of a PBR instead (Zwergal et al., 2010), or as a change in

the amplitude and spatial pattern of the NBR in well-performing elderly subjects (Peiffer

et al., 2009). If supposed that the task-induced NBR reflects inhibitory effects in a spe-

cific cortical network, the above mentioned findings suggest that enhanced multisensory

processing is partially modulated by an age-related decline of inhibition. Previous human

and animal studies have indeed demonstrated a decrease of the inhibitory processes in

advanced age (McDowd and Filion, 1995; Peinemann et al., 2001; Schmidt et al., 2010).

Our results, however, revealed no significant age-related changes in either of the NBR

dynamics. Although the trend of age-related decrease in NBR amplitude in several mul-

tisensory regions is in accordance with the results from the previous studies, it does not

offer sufficient support. A possible reason for this could be that the task difficulty posed
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by the relatively slow velocity of optokinetic stimulation was not sufficient and challeng-

ing enough to trigger significant functional changes in the multisensory vestibular network.

In summary, the results of this analysis offer new insight into the effects of age on the

cortical visual-vestibular interaction in fMRI studies. We showed that unlike the PBR

in visual and oculomotor cortical areas, the NBR in the multisensory vestibular cortical

network does not seem to be age-dependent for a task that is not at the limit of abilities.

4.3 Temporal variability of the BOLD signal

The vast majority of fMRI studies has typically focused on average brain activation pat-

terns depicted by the mean of the BOLD signal during a given time course. This tendency

originates from the assumption that the BOLD signal’s mean conveys the most relevant

information and the variability of the signal is regarded to as ’noise’. In this sense, noise is

perceived in the sense of random or unpredictable fluctuations that obscure or do not con-

tain meaningful data or other information (Oxford English Dictionary). Previous studies,

however, have suggested that the variability in fMRI contains additional information on

the functioning of the neural system (Garrett et al., 2010, 2012; McIntosh et al., 2010;

Samanez-Larkin et al., 2010; Wutte et al., 2011). Furthermore, it has been shown that the

relationship between age and the BOLD signal’s variability differs from the relationship

with the signal’s mean (Garrett et al., 2010; Samanez-Larkin et al., 2010). Therefore,

the third objective of this doctoral thesis was to analyse the temporal variability of the

BOLD signal and its age dependencies in the OKN experiment. Additionally, we intended

to compare these findings with the ones from the two control experiments.

4.3.1 Differences between SD rest and SD stimulation

The main findings of this analysis were: (1) The OKN experiment revealed significantly

higher variability during ’rest’ than during stimulation in both, the whole brain and the

ROI analysis. (2) The areas showing such difference in variability overlapped with areas

showing PBR or NBR during stimulation. (3) The finger-tapping experiment revealed

higher variability during ’rest’ compared to stimulation in the whole brain analysis. The

ROI analysis revealed additional areas with such significant difference between conditions,

all of which had PBR during task performance. (4) The checkerboard experiment showed

no significant difference between the two conditions in the whole brain analysis. Only a

trend of higher variability during ’rest’, as well as higher variability during stimulation

in different brain areas was detected. The ROI analysis rendered the latter difference

significant in areas showing NBR during stimulation.
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In a previous study on a similar topic, Garrett et al. (2012) investigated the differences

between the signal’s variability during blocks of ’rest’ (fixation) and during blocks of four

different cognitive tasks. Contrary to our results, they found that the BOLD signal vari-

ability was significantly higher during the cognitive task blocks compared to the blocks

of ’rest’. Furthermore, the areas showing such difference in the transition from fixation

to task mostly did not overlap with areas showing task-related changes in the signal’s

mean. The authors suggested the following explanations for these findings: first, higher

variability during task performance could indicate a more sophisticated neural system

capable of greater dynamic range, allowing greater range of responses to a greater range

of stimuli, second, increase of variability during task performance could be due to big-

ger stimulus uncertainty and may provide the kinetic energy for the brain networks to

achieve a variety of possible functional states (Garrett et al., 2012). This interpretation of

signal variability as beneficial to the system builds upon previous work discussing signal

fluctuations from the perspective of stochastic resonance (Faisal et al., 2008; McDonnell

and Ward, 2011) and was supported by a study from McIntosh et al. (2008). In this

work the authors measured the variability of the EEG signal during performance of a face

memory task in children and young adults. Their study revealed that higher variability in

brain dynamics correlated with lower variability and higher accuracy in task performance.

Additionally, the young adults, as representative sample of an ’optimally’ developed and

matured system, possessed higher signal variability than the children. Therefore, they

postulated that an optimal level of internal variability is beneficial to the neural system

and might be a key feature governing brain function.

The differences between the results from the OKN and finger-tapping experiment in our

study and the findings of Garrett et al. (2012) are intriguing. A possible reason for these

differences could lie in the applied experimental paradigms. Namely, the experimental

paradigm of Garrett et al. (2012) did not allow the participants to predict which task

they would next need to perform, which ensured the stimulus uncertainty and varying

cognitive load they suggested accountable for the higher BOLD signal variability during

the task blocks (Garrett et al., 2012). Contrary to this, in our study the three exper-

imental paradigms did not pose such stimulus uncertainty, as each type of stimulation

was performed in a separate experiment. In the context of the discussion by Garrett et

al. (2012), this might indicate that higher BOLD signal variability during task perfor-

mance can only be detected when stimulus uncertainty exists, and furthermore, it mostly

occurs in areas with no task-related changes in the signal’s mean. Under conditions,

however, where the stimulus uncertainty is minimal, a decrease of variability during task
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performance could be beneficial, especially in the areas showing task-related change of the

signals mean. Several points, however, argue against such straight-forward explanation.

First, the checkerboard experiment in our study showed a trend of bidirectional changes

in BOLD signal variability, although the experimental paradigm should not have offered

higher uncertainty in stimulus occurrence than the paradigms of the other two experi-

ments. Second, Garrett et al. (2012) did not find any decrease of signal variability during

task performance which would support the assumption of variability in task-related ar-

eas as ’noise’. The discrepancies between these findings require future exploration of the

relationship between BOLD signal variability in task-related and task-non-related brain

regions, in the context of stimulus predictability.

4.3.2 Age-related changes of SD rest and SD stimulation

The main findings from this analysis were: (1) In the OKN experiment variability in both,

stimulation and ’rest’ blocks increased significantly with increasing age in an extensively

overlapping network of areas, most of which known to be part of the multisensory vestibu-

lar cortical network. (2) The ROI analysis showed that most of the areas with age-related

increase in variability had NBR during OKN. (3) No significant age-related decrease of

signal variability was found in the OKN experiment. (4)The two control experiments

yielded an age-related increase of signal variability in both, stimulation and ’rest’ blocks,

in most of the areas observed in the OKN experiment. (5) They additionally showed a

trend of age-related decrease in signal variability, mostly found in the frontal cortices.

The ROI analyses rendered this age-related decrease in variability as significant in several

areas, some of them having PBR during checkerboard stimulation, and some NBR during

finger-tapping.

These findings suggest that the age-related changes in the signal variability observed in

our study are neither task-specific (as they were detected in almost the same network

of areas during three different types of stimulation), nor specific for stimulation per se

(as they occurred during the ’rest’ condition in the same networks as well). Instead,

they seem to be specific to distinct brain areas. The largest brain region showing an

age-related increase of variability in all three experiments was the temporal-insular cor-

tex. One explanation for this could be that certain brain regions are more affected by

degenerative morphological changes and therefore have greater impact on the changes

in signal variability than others. Previous research has, for example, demonstrated that

increasing age is associated with grey matter loss, particularly notable in the frontal cor-

tices (Raz et al., 1997). However, the VBM we performed showed a decrease in grey

and white matter volume across the whole brain, with no specific spatial pattern. This
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implies that if atrophy was the source of increased variability in the BOLD signal, such

increase would occur in other portions of the brain as well. Yet, as the same results were

observed in all three experiments, an effect of grey matter reduction in this region cannot

be entirely excluded. The global changes in the vascular dynamics also cannot account

for the changes in BOLD signal variability, as the alterations in the vascular response are

unidirectional in nature (Handwerker et al., 2007). Another source of variability in fMRI

time series is head motion (Friston et al., 1996). Previous research has further shown that

head motion during scanning procedure positively correlated with increasing age (Huet-

tel et al., 2001; D’Esposito et al., 1999). Since we however, controlled for the effects of

motion in our analysis, it is unlikely that this factor can explain the increase in variability.

A study by Garrett et al. (2010) has tried to interpret the age-related changes in BOLD

signal variability as a reflection of changes in neural function. They investigated the ef-

fects of age on the BOLD signal variability during blocks of ’rest’ (fixation) and found

several areas where the variability increased and other areas where variability decreased

in advanced age. In this sense, our results are consistent with their findings, as we also

observed such bidirectionality in the changes of variability. However, in our study the

spatial network showing age-related increases of variability during ’rest’ was more ex-

tensive than the network showing variability decreases. Furthermore, some of the areas

found to show age-related decrease of variability in the study of Garret et al. showed

an increase in our analyses (the middle temporal gyrus, the precentral gyrus, the inferior

parietal lobule). Garrett et al. (2010) suggested that the bidirectionality in the age-related

changes shows that age-related differences in variability are both, spatially and direction-

ally specific. Furthermore, as younger adults represent the ’optimal’ system to which

elderly can be compared, this bidirectionality implies that even in young adults variabil-

ity is heterogeneous across the brain Garrett et al. (2010). The authors suggested that

the higher variability in the young adults could be a feature of a more ’sophisticated’,

’optimally’ operating system, rather than just background noise carrying no meaning-

ful information. They further pointed out that this assumption does not easily account

for the brain regions where age-related increase of variability was detected. Discussing

from the perspective of ’stochastic resonance’, the authors suggested that the increase of

signal variability with age might reflect compensating mechanisms counteracting neural

dysfunction. In this logic, the decreases of signal variability would then represent reduc-

tions in optimal variability levels with age (Garrett et al., 2010). The authors, however,

note that greater variability could be naturally beneficial in certain brain regions, while

disadvantageous in others.
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In our study, the OKN and finger-tapping experiments revealed higher BOLD signal vari-

ability in the ’rest’ blocks compared to the stimulation blocks in task-related brain areas.

This might imply that a decrease of variability is beneficial for optimal task performance

during the stimulation period. If the changes in BOLD signal variability should par-

tially reflect functional modulation in the neural circuitry, than the age-related variabil-

ity increases could reflect deterioration of the circuitry’s mechanisms providing optimal

’signal-to-noise’ ratio. In this line of thought, the age-related decrease of variability in

the frontal regions could then reflect a presence of compensating mechanisms. Yet, it is

possible that the optimal level of variability differs between brain regions and any excur-

sions from this level could be a sign of functional decline. Clear interpretation, however,

of the BOLD signal variability and its changes with age remains a challenging task for

future experiments.

4.4 Conclusions

This thesis demonstrates that age affects the different features of the BOLD signal in a

distinct manner. The analyses assessing the dynamics of the mean of the BOLD signal

during optokinetic stimulation have revealed task-specific changes in the temporal profile

of the PBR in the visual and oculomotor areas, and no significant changes of the NBR in

the multisensory vestibular cortical network. Importantly, the age-related changes in the

visual and oculomotor system could be detected prior to any decrement in oculomotor

performance. While the main areas of the multisensory vestibular cortical network showed

no significant age-related changes in the mean of the BOLD response, they revealed a clear

increase in its variability in the elderly. Although these changes in variability were not

specific for the OKN task, they could have an important impact on the visual-vestibular

interaction as they affect crucial regions of the multisensory vestibular network.

4.5 Future research

The present study enabled us to contribute to the scientific knowledge on different aspects

of the visual-vestibular cortical interaction in healthy young and older adults. It therefore

offered diverse control measures for the investigation of pathological changes in the visual-

vestibular interaction. Future studies can build upon these findings and further explore

whether and how the mean of the BOLD signal or its variability alter in patients with

acute or chronic dysfunctions in the visual and vestibular systems.
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you (either by publisher or by CCC) as provided in CCC's Billing and Payment terms and
conditions.  If full payment is not received on a timely basis, then any license preliminarily
granted shall be deemed automatically revoked and shall be void as if never granted. 
Further, in the event that you breach any of these terms and conditions or any of CCC's
Billing and Payment terms and conditions, the license is automatically revoked and shall be
void as if never granted.  Use of materials as described in a revoked license, as well as any
use of the materials beyond the scope of an unrevoked license, may constitute copyright
infringement and publisher reserves the right to take any and all action to protect its
copyright in the materials.

9. Warranties: Publisher makes no representations or warranties with respect to the licensed
material.

10. Indemnity: You hereby indemnify and agree to hold harmless publisher and CCC, and
their respective officers, directors, employees and agents, from and against any and all
claims arising out of your use of the licensed material other than as specifically authorized
pursuant to this license.

11. No Transfer of License: This license is personal to you and may not be sublicensed,
assigned, or transferred by you to any other person without publisher's written permission.

12. No Amendment Except in Writing: This license may not be amended except in a writing
signed by both parties (or, in the case of publisher, by CCC on publisher's behalf).

13. Objection to Contrary Terms: Publisher hereby objects to any terms contained in any
purchase order, acknowledgment, check endorsement or other writing prepared by you,
which terms are inconsistent with these terms and conditions or CCC's Billing and Payment
terms and conditions.  These terms and conditions, together with CCC's Billing and Payment
terms and conditions (which are incorporated herein), comprise the entire agreement
between you and publisher (and CCC) concerning this licensing transaction.  In the event of
any conflict between your obligations established by these terms and conditions and those
established by CCC's Billing and Payment terms and conditions, these terms and conditions
shall control.

14. Revocation: Elsevier or Copyright Clearance Center may deny the permissions described
in this License at their sole discretion, for any reason or no reason, with a full refund payable
to you.  Notice of such denial will be made using the contact information provided by you. 
Failure to receive such notice will not alter or invalidate the denial.  In no event will Elsevier
or Copyright Clearance Center be responsible or liable for any costs, expenses or damage
incurred by you as a result of a denial of your permission request, other than a refund of the
amount(s) paid by you to Elsevier and/or Copyright Clearance Center for denied
permissions.

LIMITED LICENSE

The following terms and conditions apply only to specific license types:

15. Translation: This permission is granted for non-exclusive world English rights only
unless your license was granted for translation rights. If you licensed translation rights you
may only translate this content into the languages you requested. A professional translator
must perform all translations and reproduce the content word for word preserving the
integrity of the article. If this license is to re-use 1 or 2 figures then permission is granted for
non-exclusive world rights in all languages.

16. Website: The following terms and conditions apply to electronic reserve and author
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websites:
Electronic reserve: If licensed material is to be posted to website, the web site is to be
password-protected and made available only to bona fide students registered on a relevant
course if:
This license was made in connection with a course,
This permission is granted for 1 year only. You may obtain a license for future website
posting,
All content posted to the web site must maintain the copyright information line on the
bottom of each image,
A hyper-text must be included to the Homepage of the journal from which you are licensing
at http://www.sciencedirect.com/science/journal/xxxxx or the Elsevier homepage for books
at http://www.elsevier.com , and
Central Storage: This license does not include permission for a scanned version of the
material to be stored in a central repository such as that provided by Heron/XanEdu.

17. Author website  for journals with the following additional clauses:

All content posted to the web site must maintain the copyright information line on the
bottom of each image, and the permission granted is limited to the personal version of your
paper. You are not allowed to download and post the published electronic version of your
article (whether PDF or HTML, proof or final version), nor may you scan the printed edition
to create an electronic version. A hyper-text must be included to the Homepage of the
journal from which you are licensing at http://www.sciencedirect.com/science/journal/xxxxx
. As part of our normal production process, you will receive an e-mail notice when your
article appears on Elsevier’s online service ScienceDirect (www.sciencedirect.com). That
e-mail will include the article’s Digital Object Identifier (DOI). This number provides the
electronic link to the published article and should be included in the posting of your personal
version. We ask that you wait until you receive this e-mail and have the DOI to do any
posting.

Central Storage: This license does not include permission for a scanned version of the
material to be stored in a central repository such as that provided by Heron/XanEdu.

18. Author website for books with the following additional clauses:
Authors are permitted to place a brief summary of their work online only.
A hyper-text must be included to the Elsevier homepage at http://www.elsevier.com . All
content posted to the web site must maintain the copyright information line on the bottom of
each image. You are not allowed to download and post the published electronic version of
your chapter, nor may you scan the printed edition to create an electronic version.

Central Storage: This license does not include permission for a scanned version of the
material to be stored in a central repository such as that provided by Heron/XanEdu.

19. Website (regular and for author): A hyper-text must be included to the Homepage of the
journal from which you are licensing at http://www.sciencedirect.com/science/journal
/xxxxx.  or for books to the Elsevier homepage at http://www.elsevier.com

20. Thesis/Dissertation: If your license is for use in a thesis/dissertation your thesis may be
submitted to your institution in either print or electronic form. Should your thesis be
published commercially, please reapply for permission. These requirements include
permission for the Library and Archives of Canada to supply single copies, on demand, of
the complete thesis and include permission for UMI to supply single copies, on demand, of
the complete thesis. Should your thesis be published commercially, please reapply for
permission.
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21. Other Conditions:

 

v1.6

If you would like to pay for this license now, please remit this license along with your
payment made payable to "COPYRIGHT CLEARANCE CENTER" otherwise you will be
invoiced within 48 hours of the license date. Payment should be in the form of a check
or money order referencing your account number and this invoice number
RLNK500886359.
Once you receive your invoice for this order, you may pay your invoice by credit card.
Please follow instructions provided at that time.

Make Payment To:
Copyright Clearance Center
Dept 001
P.O. Box 843006
Boston, MA 02284-3006

For suggestions or comments regarding this order, contact RightsLink Customer
Support: customercare@copyright.com or +1-877-622-5543 (toll free in the US) or
+1-978-646-2777.

Gratis licenses (referencing $0 in the Total field) are free. Please retain this printable
license for your reference. No payment is required.
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SPRINGER LICENSE
TERMS AND CONDITIONS

Nov 05, 2012

This is a License Agreement between Iskra Stefanova ("You") and Springer ("Springer")
provided by Copyright Clearance Center ("CCC"). The license consists of your order details,
the terms and conditions provided by Springer, and the payment terms and conditions.

All payments must be made in full to CCC. For payment instructions, please see
information listed at the bottom of this form.

License Number 3018320326959

License date Oct 29, 2012

Licensed content publisher Springer

Licensed content publication Experimental Brain Research

Licensed content title fMRI signal increases and decreases in cortical areas during
small-field optokinetic stimulation and central fixation

Licensed content author Marianne Dieterich

Licensed content date Jan 1, 0001

Volume number 148

Issue number 1

Type of Use Thesis/Dissertation

Portion Figures

Author of this Springer
article

No

Order reference number

Title of your thesis /
dissertation

Age-related changes of the cortical visual-vestibular interaction in
healthy subjects

Expected completion date Jan 2013

Estimated size(pages) 100

Total 0.00 EUR

Terms and Conditions

Introduction
The publisher for this copyrighted material is Springer Science + Business Media. By clicking
"accept" in connection with completing this licensing transaction, you agree that the
following terms and conditions apply to this transaction (along with the Billing and Payment
terms and conditions established by Copyright Clearance Center, Inc. ("CCC"), at the time
that you opened your Rightslink account and that are available at any time at
http://myaccount.copyright.com).

Limited License
With reference to your request to reprint in your thesis material on which Springer Science
and Business Media control the copyright, permission is granted, free of charge, for the use
indicated in your enquiry.

Licenses are for one-time use only with a maximum distribution equal to the number that
you identified in the licensing process.
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This License includes use in an electronic form, provided its password protected or on the
university’s intranet or repository, including UMI (according to the definition at the Sherpa
website: http://www.sherpa.ac.uk/romeo/). For any other electronic use, please contact
Springer at (permissions.dordrecht@springer.com or permissions.heidelberg@springer.com).

The material can only be used for the purpose of defending your thesis, and with a maximum
of 100 extra copies in paper.

Although Springer controls copyright to the material and is entitled to negotiate on rights, this
license is only valid, provided permission is also obtained from the (co) author (address is
given with the article/chapter) and provided it concerns original material which does not
carry references to other sources (if material in question appears with credit to another
source, authorization from that source is required as well).

Permission free of charge on this occasion does not prejudice any rights we might have to
charge for reproduction of our copyrighted material in the future.

Altering/Modifying Material: Not Permitted
You may not alter or modify the material in any manner. Abbreviations, additions, deletions
and/or any other alterations shall be made only with prior written authorization of the
author(s) and/or Springer Science + Business Media. (Please contact Springer at
(permissions.dordrecht@springer.com or permissions.heidelberg@springer.com)

Reservation of Rights
Springer Science + Business Media reserves all rights not specifically granted in the
combination of (i) the license details provided by you and accepted in the course of this
licensing transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment
terms and conditions.

Copyright Notice:Disclaimer
You must include the following copyright and permission notice in connection with any
reproduction of the licensed material: "Springer and the original publisher /journal title,
volume, year of publication, page, chapter/article title, name(s) of author(s), figure
number(s), original copyright notice) is given to the publication in which the material was
originally published, by adding; with kind permission from Springer Science and Business
Media"

Warranties: None

Example 1: Springer Science + Business Media makes no representations or warranties with
respect to the licensed material.

Example 2: Springer Science + Business Media makes no representations or warranties with
respect to the licensed material and adopts on its own behalf the limitations and disclaimers
established by CCC on its behalf in its Billing and Payment terms and conditions for this
licensing transaction.

Indemnity
You hereby indemnify and agree to hold harmless Springer Science + Business Media and
CCC, and their respective officers, directors, employees and agents, from and against any
and all claims arising out of your use of the licensed material other than as specifically
authorized pursuant to this license.

No Transfer of License
This license is personal to you and may not be sublicensed, assigned, or transferred by you to
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any other person without Springer Science + Business Media's written permission.

No Amendment Except in Writing
This license may not be amended except in a writing signed by both parties (or, in the case of
Springer Science + Business Media, by CCC on Springer Science + Business Media's behalf).

Objection to Contrary Terms
Springer Science + Business Media hereby objects to any terms contained in any purchase
order, acknowledgment, check endorsement or other writing prepared by you, which terms
are inconsistent with these terms and conditions or CCC's Billing and Payment terms and
conditions. These terms and conditions, together with CCC's Billing and Payment terms and
conditions (which are incorporated herein), comprise the entire agreement between you and
Springer Science + Business Media (and CCC) concerning this licensing transaction. In the
event of any conflict between your obligations established by these terms and conditions and
those established by CCC's Billing and Payment terms and conditions, these terms and
conditions shall control.

Jurisdiction
All disputes that may arise in connection with this present License, or the breach thereof,
shall be settled exclusively by arbitration, to be held in The Netherlands, in accordance with
Dutch law, and to be conducted under the Rules of the 'Netherlands Arbitrage Instituut'
(Netherlands Institute of Arbitration).OR:

All disputes that may arise in connection with this present License, or the breach
thereof, shall be settled exclusively by arbitration, to be held in the Federal Republic of
Germany, in accordance with German law.

Other terms and conditions:

v1.3

If you would like to pay for this license now, please remit this license along with your
payment made payable to "COPYRIGHT CLEARANCE CENTER" otherwise you will be
invoiced within 48 hours of the license date. Payment should be in the form of a check
or money order referencing your account number and this invoice number
RLNK500886354.
Once you receive your invoice for this order, you may pay your invoice by credit card.
Please follow instructions provided at that time.

Make Payment To:
Copyright Clearance Center
Dept 001
P.O. Box 843006
Boston, MA 02284-3006

For suggestions or comments regarding this order, contact RightsLink Customer
Support: customercare@copyright.com or +1-877-622-5543 (toll free in the US) or
+1-978-646-2777.

Gratis licenses (referencing $0 in the Total field) are free. Please retain this printable
license for your reference. No payment is required.
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