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Zusammenfassung

Die folgende Dissertation basiert auf drei wissenschaftlichen Arbeiten zum Thema
Pricing und Hedging von Lebensversicherungsrisiken mit Hilfe des Risk-Minimi-
zation Ansatzes. Eine der wichtigen Charakteristika dieser Arbeit ist, dass das
Hedging der Versicherungsrisiken mit Hilfe von Longevity Bonds méglich ist, die
das systematische Mortalitétsrisiko reprasentieren. Im ersten Artikel wird der Fall
einer einzelnen versicherten Person in einem sehr allgemeinen Setting beziiglich
des zugrundeliegenden Asset-Preises und der Payoff-Struktur untersucht, d.h. es
wird auflerhalb des Brownschen Settings gearbeitet, insbesondere sind Spriinge
des Asset-Preises zuldssig. Auflerdem werden weder die Unabhéngigkeit der zu-
grundeliegenden Prozesse noch bestimmte technische Annahmen wie die Existenz
der Mortalitdtsintensitdt benotigt. Der zweite Artikel ist eine Erweiterung fiir
den Fall eines homogenen Versicherungsportfolios. Hauptneuerungen dieser Ar-
beit sind, dass das sogenannte Basisrisiko berticksichtigt und konkret modelliert
wird. Dieses Risiko entsteht dadurch, dass die Versicherung ihre Risiken nicht
perfekt absichern kann, indem sie in ein Hedging Instrument investiert, das auf
einem Longevity Index basiert, nicht auf dem Versicherungsportfolio selbst. Die
Abhéngigkeit zwischen dem Index und dem Versicherungsportfolio wird mit Hilfe
eines affinen Diffusionsprozesses mit stochastischem Drift modelliert. Der letzte
Artikel analysiert den Fall eines Portfolios, das aus Individuen verschiedener Alter-
sklassen besteht. Die kohorteniibergreifende Abhéngigkeitsstruktur des Portfolios
wird beriicksichtigt, indem die Mortalitédtsintensitdten als Random Field model-
liert werden. Anhand konkreter Beispiele wird die Konsistenz mit historischen
Mortalitatsdaten und Korrelationsstrukturen gezeigt.
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Abstract

This dissertation is based on three papers on pricing and hedging of life insur-
ance liabilities by means of the risk-minimization approach. One of the important
features of this work is that we allow for hedging of the risk inherent in the life
insurance liabilities by investing in longevity bonds representing the systematic
mortality risk. In the first article we consider the case of one insured person in
a very general setting regarding the underlying asset price and the structure of
the insurance payment process studied, i.e. we work outside the Brownian setting,
in particular the asset price may have jumps. Besides that, we are able to relax
certain technical assumptions such as the existence of the mortality intensity and
we do not require the independence of the underlying processes. The second paper
provides an extension to the case of a homogenous insurance portfolio. Main nov-
elties of this work are that we take into account and explicitly model the basis risk
that arises due to the fact that the insurance company cannot perfectly hedge its
exposure by investing in a hedging instrument that is based on a longevity index,
not on the insurance portfolio itself. We model the dependency between the index
and the insurance portfolio by means of an affine mean-reverting diffusion process
with stochastic drift. The last article considers an insurance portfolio that consists
of individuals of different age cohorts. In order to capture the cross-generational
dependency structure of the portfolio we model the mortality intensities as ran-
dom fields. We also provide specific examples consistent with historical mortality
data and correlation structures.
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Chapter 1

Introduction

This dissertation is based on three papers on pricing and hedging of life insurance
liabilities by means of the well-known risk-minimization approach (see Biagini and
Schreiber [8], Biagini, Rheinldnder, and Schreiber [10] and Biagini, Botero, and
Schreiber [9]). In the first article we consider the case of one insured person in a
very general setting regarding the underlying asset price and the structure of the
insurance payment process studied. The second paper provides an extension to
the case of a homogenous insurance portfolio, where all individuals belong to the
same age cohort. The last article considers an insurance portfolio that consists of
individuals of different age cohorts.

Mortality or longevity is a primary source of risk for many insurance and pension
products. For example, annuity providers face the risk that the mortality rates of
pensioners might fall at a faster rate than expected, whereas life insurers are ex-
posed to the risk of unexpected increases in mortality. The traditional method of
dealing with mortality risk is through suitable insurance or reinsurance contracts.
However, reinsurers are often reluctant to take on the aggregated bulk risk typical
of these transactions, thus leading to securitization as a new form of risk transfer
and consequently to the creation of a new life market, see, e.g., Blake et al. [17]. In
this context pricing and modeling of mortality-linked securities has been studied
extensively in the literature, for an overview on the valuation and securitization
of mortality risk we refer to Cairns et al. [19].

Mortality risk can essentially be split into systematic risk represented by the mor-
tality intensity, i.e. the risk that the mortality rate of an age cohort differs from
the one expected at inception, and idiosyncratic or unsystematic risk, i.e. the risk
that the mortality rate of the individual is different from that of its age cohort.
The first kind of risk may be hedged by investing in longevity bonds, see, e.g.,
Cairns et al. [19]. These bonds pay out the conditional survival probability at
maturity as a function of the hazard rate or mortality intensity, which is given
by so-called longevity or survivor indices. Survivor indices, provided by various
investment banks, consist of publicly available mortality data aggregated by popu-
lation, hence providing a good proxy for the systematic component of the mortality
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risk. One of the features of our approach is to allow for hedging of the risk inherent
in the life insurance liabilities by investing not only in the stock and money market
account, but also in longevity bonds, accounting for the systematic mortality risk.
When modeling life insurance liabilities we make use of the similarities between
mortality and credit risk and follow the intensity-based or hazard rate approach of
reduced-form modeling, see, e.g., Bielecki and Rutkowski [12]. Since it is impossi-
ble to completely hedge the financial and mortality risk inherent in the liabilities
of the insurance company, even in this setting where we allow for investments
in products representing the systematic mortality risk, the market is incomplete
and it is thus necessary to select one of the techniques for pricing and hedging in
incomplete markets. Here we make use of the popular risk-minimization method
first introduced by Follmer and Sondermann [36]. The idea of this technique is
to allow for a wide class of admissible strategies that in general might not nec-
essarily be self-financing, and to find an optimal hedging strategy with “minimal
risk” within this class of strategies that perfectly replicates the given claim. For
a survey on risk-minimization and other quadratic hedging methods we refer to
Schweizer [58].

In Chapter 2, based on results from Biagini and Schreiber [8], we study the problem
of pricing and hedging life insurance liabilities for the case of one insured person
in a very general setting by means of the risk-minimization approach. First we
consider a financial market model with one risky primary asset, e.g. a stock, and
the riskless money market account. In this setting we compute the price and
hedging strategy for an insurance payment process whose value may depend on
the primary assets as well as on the time of death of a single individual, such
as a unit-linked life insurance contract. In a second step we extend the financial
market by introducing two mortality-linked securities, a longevity bond, incorpo-
rating the systematic longevity risk, and a pure endowment contract, representing
the unsystematic mortality risk. The main idea then is to hedge the financial and
(systematic and unsystematic) mortality risk by investing in both the stock and
the bank account, as well as in the two mortality-linked securities. We would like
to emphasize, that hedging with these two mortality-linked securities is intrinsic
in our modeling context, in a sense that it does not depend on the specific form
of the insurance payment process. One may argue, that in the case where large
portfolios with independent risks are pooled by insurance companies, the unsys-
tematic risk might be eliminated by law of large number arguments. However,
in many cases portfolios with a smaller number of insured lives are of interest.
Furthermore in some situations, for instance in the case of catastrophic mortality
events, it is not realistic to assume independence between members of the port-
folio. Hence hedging of both the systematic and unsystematic mortality risk and
thus completely eliminating the cost term may be of great value in many practical
applications. There exist a number of studies that focus on applications of the risk-
minimization approach in the context of mortality modeling, see, e.g., Barbarin
[4], Biagini et al. [11], Mgller et al. [26, 27, 53, 54] and Riesner [57]. However,



most authors study quadratic hedging for very specific insurance products in a
Brownian setting, whereas we allow for more general assumptions regarding the
given filtrations and the structure of the insurance liabilities. Also, some authors
such as Moller [53, 54] and Riesner [57] assume independence between the financial
market and the insurance model. In the context of credit risk modeling Biagini
and Cretarola [5, 6, 7] study local risk-minimization for defaultable claims, again
in a Brownian setting. Here we allow for mutual dependence between the time of
death and the asset prices behavior as in Biagini and Cretarola [6, 7] and Biagini
et al. [11], however we extend their results since we allow for a more general struc-
ture of the insurance payment process and we do not require the existence of the
mortality intensity. Besides that, similarly as in Barbarin [4], we work outside the
Brownian setting, in particular we allow for jumps in the asset price. Hence in
this chapter we extend earlier work on risk-minimization for insurance products
in several directions: we work in a very general setting regarding the underlying
asset price and the structure of the payment process studied, we are able to relax
certain technical assumptions such as the existence of the mortality intensity and
we do not require the independence of the underlying processes. We also allow
for investments in the primary assets as well as in two further mortality-linked
securities.

In Chapter 3, based on results from Biagini, Rheinlénder, and Schreiber [10], we
study pricing and hedging of life insurance liabilities for the case of a homogenous
insurance portfolio. In a financial market where we allow for hedging by investing
in longevity bonds representing the systematic mortality risk we take into account
and explicitly model the basis risk that arises due to the fact that the insurance
company cannot perfectly hedge its exposure by investing in a hedging instrument
that is based on a longevity index, not on the insurance portfolio itself. Because
of differences in socioeconomic profiles (with respect to e.g. health, income or
lifestyle), the mortality rates of the population typically differ from those of the
insurance portfolio. Hence the hedge will be imperfect, leaving a residual amount
of risk, know as basis risk. There exist a number of empirical studies concerned
with quantifying and modeling mortality basis risk, see, e.g., Cairns et al. [20],
Coughlan et al. [23], Dowd et al. [30], Jarner and Kryger [43], Li and Hardy [48]
and Li and Lee [49]. Li and Lee [49] are the first to study the mortality rate of
closely related populations within a global modeling context. They extend the
well-known Lee-Carter model by introducing the concept of a global improvement
process together with mean-reverting idiosyncratic variations for each population.
Cairns et al. [20], Dowd et al. [30] and Jarner and Kryger [43] model the mortality
rates of a small population that is a subpopulation of a larger reference popula-
tion, where the relationship between the large and small population’s mortality
rates is determined by a mean-reverting stochastic spread. In this chapter, simi-
larly as in Biffis [13], we model the mortality intensity of the insurance portfolio
together with the intensity of the population by means of a multivariate affine
square-root diffusion. The dependency between the two populations is captured
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by the fact that the intensity of the insurance portfolio is fluctuating around a sto-
chastic drift, which is given by the mortality intensity of the reference index. This
model is intuitive in its interpretation, as well as analytically tractable through
its affine structure. Affine models have become very popular in many areas of
applied financial mathematics, such as exotic option pricing, or interest rate and
credit risk modeling. An overview of the theory of affine processes can be found in
Duffie et al. [32], as well as in Filipovi¢ and Mayerhofer [35] for the case of affine
diffusions. As mentioned above, there exist a number of studies that focus on ap-
plications of the risk-minimization approach in the context of mortality modeling
or in related areas such as credit risk. As in Chapter 2, here we work in a general
setting where we allow for mutual dependence between the times of death and the
financial market, as well as for general payoff structures similarly as in Barbarin
[4] and Biagini et al. [6, 7]. Besides that, similarly as in Biagini et al. [11] and Dahl
et al. [27], we allow for hedging of the insurance liabilities by investing not only in
the primary financial market, but also in an instrument representing the system-
atic mortality risk. Dahl et al. [27] also model the dependency between two death
counting processes, the first one representing an insurance portfolio and the second
one the whole population. They allow for dependency between the mortality in-
tensities via correlated diffusion terms. Here we consider an affine mean-reverting
diffusion model with stochastic drift and model the portfolio mortality intensity
as depending on the evolution of the intensity of the population. This has the
great advantage, of capturing the basis risk between the insurance portfolio and
the longevity index in a very natural way, thereby offering an intuitive interpre-
tation while remaining analytically tractable due to the affine structure. Also in
this way it is not necessary to artificially introduce a second death counting pro-
cess representing the population. Hence in this chapter we extend earlier work
on risk-minimization for insurance products in several directions: we provide ex-
plicit computations of risk-minimizing strategies for a portfolio of life insurance
liabilities in a complex setting. Thereby we explicitly take into account and model
the basis risk between the insurance portfolio and the longevity index and allow
for investments in hedging instruments representing the systematic mortality risk.
Besides that, we allow for a general structure of the insurance products studied
and we do not require certain technical assumptions such as the independence of
the financial market and the insurance model.

In Chapter 4, based on results from Biagini, Botero, and Schreiber [9], we consider
an insurance portfolio that consists of individuals of different age cohorts. In a
financial market where we allow for hedging by investing in longevity bonds repre-
senting the systematic mortality risk we capture the cross-generational dependency
structure of the portfolio by modeling the mortality intensities as random fields.
We also provide specific applications consistent with historical mortality data and
correlation structures. In practice, one typically considers homogeneous classes of
policyholders and then aggregates market valuations of liabilities at portfolio level
without taking dependencies between cohort classes into account. To the best of



our knowledge there exist only very few studies concerned with quantifying and
modeling inter-age dependencies in stochastic mortality models. Based on a mul-
tivariate time series study of yearly mortality rates Loisel and Serrant [50] propose
a discrete-time multi-dimensional extension of the well-known Lee-Carter model
that takes inter-age correlations into account. Blackburn and Sherris [15] and
Jevtic et al. [45] propose affine continuous-time factor models for the mortality
surface, allowing for correlation across different generations. Biffis and Millosso-
vich [14] model the mortality intensity surface as a random field and with a view
on the insurer’s future business consider market valuations of pure endowment
contracts with deterministic survival benefit. Random fields have been employed
in mathematical finance when modeling the term structure of interest rates (see,
e.g., Furrer [38], Goldstein [39], Kennedy [47]) and have proven to be very useful
in our context as well. Similarly as Biffis and Millossovich [14], we model the mor-
tality surface as a random field parameterized in time and age at inception of the
contract. In a complex setting with a portfolio consisting of different age cohorts
we study risk-minimization for life insurance liabilities (unit-linked pure endow-
ment, term insurance and annuity contracts) at an aggregate level. By modeling
the mortality intensities as a random surface we are able to look simultaneously in
both the time and age direction. This is very important, since there is statistical
evidence that typical downward mortality improvement trends are not homoge-
neous across age cohorts (see, e.g., Andreev [2] and Forfar and Smith [37]). Besides
that, this approach enables us to establish a mortality model consistent with his-
torical data that takes inter-age correlations into account in a natural and elegant
way. Since the mortality intensity of every age cohort is an affine process, the
model is analytically tractable, allowing us to compute hedging strategies for life
insurance liabilities in an immediate and parsimonious way. Hence in this chap-
ter we extend earlier work on risk-minimization for insurance products in several
directions: we provide explicit computations of risk-minimizing strategies for life
insurance liabilities written on an insurance portfolio in a complex setting where
we consider different age cohorts simultaneously. Thereby we take into account
and explicitly model the dependency structure of the insurance portfolio by intro-
ducing analytically tractable affine models for the mortality intensities consistent
with historical mortality data based on Gaussian random fields. Besides that,
similarly as in Chapter 2 and 3, we allow for hedging by investing in a family of
longevity bonds representing the systematic mortality risk and we do not require
certain technical assumptions such as the independence of the financial market
and the insurance model.
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Chapter 2

The Single Life Case

2.1 Introduction

In this chapter, based on Biagini and Schreiber [8], we study the problem of pri-
cing and hedging life insurance liabilities for the case of one insured person in a
very general setting by means of the risk-minimization approach. First we con-
sider a financial market model with one risky primary asset, e.g. a stock, and the
riskless money market account. In a second step we extend the financial market
by introducing two mortality-linked securities, a longevity bond, incorporating the
systematic longevity risk, and a pure endowment contract, representing the unsys-
tematic mortality risk. We allow for a very general setting regarding the structure
of the payment process studied and the underlying asset prices, in particular we
work outside the Brownian setting and the asset prices may have jumps. Besides
that we are able to relax certain technical assumptions such as the existence of
the mortality intensity and we do not require the independence of the underly-
ing processes. The remainder of this chapter is organized as follows: Section 2.2
introduces the general setup. In Section 2.3, we provide our main result by com-
puting the Galtchouk-Kunita-Watanabe (GKW) decomposition and finding the
price and risk-minimizing strategy of the life insurance liabilities. The financial
market is extended by two tradable mortality-linked securities representing the
systematic and unsystematic mortality risk in Section 2.4, thus completing the
market and eliminating the cost process. Section 2.5 then concludes this chapter
with a specific example where we consider a unit-linked term insurance contract in
a jump-diffusion model for the asset price with affine stochastic mortality intensity.

2.2 The Setting

For a fixed time horizon T" > 0 we consider a simple financial market model defined
on a given probability space (£2, G, P) consisting of one risky asset with discounted
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asset price X and discounted bank account X i.e. X? =1, ¢ € [0,T]. On this
probability space we assume given a filtration F = (J)ic[o,7], such that X is a
local (P, F)-martingale, i.e. the financial market given by X is arbitrage-free.

We now introduce the time of death of an individual, given by a strictly positive
random variable 7 : Q — [0,7] U {oo}, defined on the probability space (2,9, P)
with P(7 = 0) = 0 and P(7 > t) > 0 for each ¢t € [0,7]. Note that since the time
horizon T is usually fixed as the maturity of the life insurance contract, in order
to ensure that P(7 > T") > 0 (the remaining lifetime 7 is not necessarily bounded
by T') it is necessary to allow 7 to take values larger than T, indicated here by
the convention that 7 can assume the value infinity. We define the death process
Hi = 1{;<4 and denote by H = (g'ft)te[o,T] the filtration generated by this process.
In this setting we consider the extended market G = FV H, such that the informa-
tion available to all agents in the market at time ¢ is assumed to be §; = F; V H;
and we put § = Gp. It is clear that 7 is an H-stopping time, as well as a G-
stopping time, but not necessarily an F-stopping time. In fact here we assume
that the random time 7 avoids every F-stopping time 7, i.e. P(7 = 7) = 0, and
under this hypothesis we have that 7 is a totally inaccessible G-stopping time and
AU, = 0 for any F-adapted cadlag process U (see, e.g., Coculescu et al. [21] or
Blanchet-Scalliet and Jeanblanc [18]). All filtrations are assumed to satisfy the
usual hypotheses of completeness and right-continuity. We postulate that all F-
local martingales are also GG-local martingales, and in the sequel we refer to this
hypothesis as Hypothesis (H). This hypothesis is well-known in the literature of
reduced form approaches for valuating defaultable claims, for a discussion of this
hypothesis we refer to Blanchet-Scalliet and Jeanblanc [18]. In this setting we
follow the hazard rate or intensity-based approach, well-known from reduced-form
modeling of credit derivatives (see, e.g., Bielecki and Rutkowski [12]), which means
that as opposed to the structural approach the default time occurs as a surprise
for the market participants, since the time of death 7 is a totally inaccessible stop-
ping time. Therefore it is not possible to predict 7, and an important role is then
played by the conditional distribution function of 7, given by

Ft = ]P(T S t|?t),
and we assume F; < 1 for all t € [0, T]. Then the hazard process T' of 7 under P
Ft = — 111(1 — Ft) = — 111E[]].{T>t} | 3’}]

is well-defined for every ¢ € [0,7]. In particular under the above conditions the
hazard process I' is continuous and increasing (see, e.g., Coculescu et al. [21])
and we additionally assume that I'p is bounded. Note that this rather strong
assumption is not always required in concrete examples, since it may be possible
to directly check the necessary integrability conditions (see also Section 2.5). The
process

et =P(r>t|F), telo,T],
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is often called a survivor index and according to Cairns et al. [19] can be seen as
the basic building block for many other mortality-linked securities. The need for
standardization in the life markets has led to the creation of various such indices
by investment banks comprising publicly available mortality data for various age
cohorts across populations of many different countries. Therefore many market-
traded securities have payments linked to a survivor index, e.g. they pay out
the survivor index or a function of the survivor index at maturity 7. Hence a
fundamental role is played by the F-martingale

Ele ' |G =E[e "7 |F] = E[lirapy | F], t€[0,77, (2.2.1)

since it represents the information on the mortality risk contained in the filtration
F, i.e. it describes the systematic mortality risk as we will see in Section 2.3 and
2.4. Note that in the first equation of (2.2.1) we have used that Hypothesis (H) is
equivalent to the fact that conditioning on G; can be replaced by conditioning on
F: for Fp-measurable random variables (see, e.g., Bielecki and Rutkowski [12]).
Commonly the hazard rate process I' is represented as an integral over the mortal-
ity intensity, which itself is given by a diffusion. Here we work in a more general
setting, since we do not require the existence of the mortality intensity. Instead
we describe the systematic mortality risk component E[1 -7y |, t € [0,77, as
driven by a local F-martingale Y strongly orthogonal' to X, see (2.4.1) in Section
2.4 and also (2.5.4) in Section 2.5, where Y is given by a Brownian motion. In
general, financial markets may be affected by consistent or sudden variations of
the mortality rate, hence we a priori do not consider X and Y to be independent.
However, we suppose that they are strongly orthogonal, since mortality is exter-
nal to the financial markets, and not hedgeable by investing only in the primary
assets.

By Proposition 5.1.3 of Bielecki and Rutkowski [12] we obtain that the compen-
sated process M given by

M, = H,—Tyr,, te€]0,T], (2.2.2)

follows a G-martingale. Since M is a finite variation process and X has no jump
in 7, by Proposition 4.52 of Jacod and Shiryaev [42, Chapter I] for the square
bracket process we have

(X, M]; = (X, M%)+ Y AXAM,
0<s<t
= > AXAM, = XM =0,

0<s<t

t € [0,T], where X© and M denote the continuous martingale parts of X and
M. Hence by Proposition 4.50 of Jacod and Shiryaev [42, Chapter I}, XM is a

We recall that two local martingales X, Y are said to be strongly orthogonal if the product
(XtY:)iepo,1) is a local martingale.
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local martingale, i.e. X and M are strongly orthogonal. Note that by the same
arguments M is in fact strongly orthogonal to any F-adapted local martingale.
In this setting we now introduce a square integrable (discounted) life insurance
payment process A:

A = 1<nAr + Loyl my A, (2.2.3)

where A = (/_Lg)te[oﬂ is an F-predictable process, such that E {SUPte[o,T} /_X%} < 0

and A is a Gp-measurable random variable, such that E[A?] < oo.

Remark 2.2.1. We would like to comment on the structure of A as defined in
(2.2.3). The first part

1<ty Ar

consists of a so-called term insurance contract, i.e. the contract pays out A, at
the random time T in case of death before T'. The second part

Lir>1}A

is a pure endowment contract, i.e. the contract pays out A in case of survival until
T. It is now widely acknowledged (see, e.g. Barbarin [4], Biffis [13] and Mpller
[58]) that most mortality linked securities of practical relevance are of the form
(2.2.3). For example, consider an annuity contract with accumulated payments
up to the time of death given by C' = (Ct)scjo,r), where C is an F-adapted, non-
negative continuous increasing process such that Cy = 0. Then the accumulated
payoff can be decomposed as

T

i.e. the payoff is given by (2.2.3) with A, = C; and A = Cp. Also note that
the form of A is in fact very general as a consequence of Lemma 4.4 in Chapter
IV.2 of Jeulin [44], where the general form of a G-predictable process in terms of
F-predictable processes is given.

Recall that the primary financial market is arbitrage-free (but not necessarily com-
plete), and it is a well-known fact that Hypothesis (H) is a sufficient condition for
the market given by the larger filtration G to be arbitrage-free, see, e.g., Blanchet-
Scalliet and Jeanblanc [18]. Nevertheless, since it is impossible to hedge a short
position in A by investing in a portfolio consisting only of the primary assets our
extended market model G is incomplete even in the case where the reduced market
generated by X is complete. In order to find a price and hedge for the life insurance
liabilities we therefore make use of a well-known quadratic hedging method for pri-
cing and hedging in incomplete markets, the (local) risk-minimization approach
that will be briefly discussed in the following section.
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Remark 2.2.2. In this work our focus is on risk-minimization with an application
to life markets in a general setting, i.e. our modeling framework regarding the two
primary assets is generic in a sense that we do not specify the dynamics of the
bank account, but instead directly comsider everything in a discounted world. In
fact various choices for the discounting factor are feasible in this context, such as
the so-called P-numéraire portfolio®, under which according to Platen and Heath
[55] the discounted asset prices are local martingales if they are described by con-
tinuous processes or in a wide class of jump-diffusion models.

2.3 Risk-Minimization for Life Insurance Liabilities

Under the hypotheses of Section 2.2 we now compute the price and hedging stra-
tegy for the life insurance payment process A as introduced in (2.2.3) by applying
the results of Appendix A. In order to find a hedging strategy with optimal cost,
we compute the GKW decomposition of

E[A7|S:] = E[Li;<ryAr | G + E[L oy A| G, t€[0,T]. (2.3.1)

a) b)

We now separately compute the terms a) and b) in (2.3.1). We start with a).
Lemma 2.3.1. Let A = (At)te[O,T] be given as in (2.2.3). Then for a) in (2.3.1)

we have the following decomposition:

E[1, <7y Ar | Ge] = mg +/] ]1{T>S}6FS dmg + | ](AS — e U,)dM,, tel0,T),
- 0,t - 0,t

where .
Uy = my — / Age T=dr, (2.3.2)
0

and

T _
my = E U Agelsdr, ?t] . (2.3.3)
0

Proof. First note that since I' is continuous and increasing and M is stopped in
7, by Proposition 5.1.3 of Bielecki and Rutkowski [12] we have that

Li=ljgel =1 [ LodMy=1- [ am, tefoT]. (234
10,¢] 10,¢]

2 A strictly positive, finite, self-financing portfolio V* with initial capital 1 is called P-numéraire
portfolio, if every nonnegative, finite, self-financing portfolio V' with initial capital 1, when de-
nominated in units of V*, forms a supermartingale, that is for 0 < s <t < T':

Vi
E
{Vt*

< Vs

Fs .
Sy
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Then by Corollary 5.1.3 of Bielecki and Rutkowski [12] for ¢ € [0, 7] we have
El{r<ryAr |G = Ly Ar + Lils,

where U is given by (2.3.2) and m is given by (2.3.3). By (2.3.4) and an application
of It6’s formula we get

LUy = mg + L, dU, + Us— dLs
10,1] 10,1]

t _
=i+ | Lpmgeding - [ 1pmg At - [ CUdM,
0 o - 0,t]
since U has no jumps in 7. Hence for ¢ € [0,T] we obtain that
_ _ t _
E[]-{TgT}AT ’ gt] = HiA; +mo + ‘/]0 | ]]-{7'2s}erS dms — /0 ]1{7'25}145 dl’s
t
— / el Uy dM,
10,¢]
= mg + / Lsgpe s dimg + / (As — el=U,) d M,
0 0,¢]

and the result follows. O

Note that Corollary 5.1.3 of Bielecki and Rutkowski [12] requires A to be bounded.
However, it can be easily seen that this result also holds if E[sup;cjo 1 A?] < o0
and we may therefore apply it in our setting. For the second term b) of (2.3.1) we
have the following result.

Lemma 2.3.2. Let A € L?(Sp,P). Then for b) in (2.3.1) we have the following

decomposition:

Bl A1) =m0+ [ Lpogeldm— [ elmad,, te(0.7)
10,¢] - 10,¢]

where

iy = E[Lg oy A| F). (2.3.5)
Proof. By Corollary 5.1.1 of Bielecki and Rutkowski [12] we have
E[]]'{T>T}A ‘ 9,5] =Limy, tE€ [0, T],

where m is given by (2.3.5). By the same arguments as in the proof of Lemma
2.3.1 we get

Lymy = mo + Ls_dmg + mg— dLg
10,¢] 10,¢]

= 1My +/ Lsget s dimg —/ elsimg dMs,
10,¢] - 10,¢]

hence the result follows. O
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The next theorem states the most important result of this chapter, providing the
risk-minimizing strategy of the insurance payment process as defined in (2.2.3).

Theorem 2.3.3. In the market model outlined in Section 2.2, every insurance
payment process admits a risk-minimizing strategy ¢ = (£,£°) given by

ft = ]]-{th}ertggna
& =V,—&X; =V — Ipsye "Xy,

with discounted value process
Vi(p) = E[Ar|G:] — A
:m0+/ ]-{T>s}eFS£;n dX5+/ ]1{7'>s}ers77;n dYs
10,t] - 10,t] -

+ / T(rsgpel™ dCT + / M AM, — A, (2.3.6)
10,¢] - 10,¢]
and optimal cost process
Cilg) =mo+ [ Appzgel il dVer [ psgelacr+ [ pMam, (237)
10,t] - 10,¢] - 10,¢]

for t € [0,T], where the processes M, m, ™, &m n™ and C™ are introduced
respectively in (2.2.2) and (2.3.9) - (2.3.11).

Proof. By Lemma 2.3.1 and Lemma 2.3.2 for t € [0, 7] we have that

VA =E[Ar| G = mo + / Lisgpe s dmg + M d M, (2.3.8)
10,¢] - 10,t]
with
T _ ~
my = ﬁlt + ’ﬁlt =E [/ Ase*FS dFS EFt + ]E[]]-{‘r>T}A ‘ 3’}] (239)
0

and -

Y = Ay — (U + 1), (2.3.10)

where m, m, and U are defined in (2.3.2), (2.3.3) and (2.3.5).

We now compute the martingale representation for the process m as defined in
(2.3.9) in terms of the underlying driving process X and Y, as introduced in Section
2.2. By Lemma 2.1 of Schweizer [58] for all £, n F-predictable processes satisfying

E VOTffd[X]s] E V()Tnidms

we have that the integral processes [&sdXs, [nsdYs are square integrable F-
martingales. Furthermore, since X and Y are strongly orthogonal, by Proposition

< 00,
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4.50 of Jacod and Shiryaev [42, Chapter I] the bracket process [X,Y] is a local
martingale, hence

[ax., ndesLZ/Otfsnsd[X,YL te (0,7,

is a local martingale, e.g. by Jacod and Shiryaev [42, Chapter I, 3.23], and since
by the Kunita-Watanabe inequality we have

T 1/2 T 1/2
/ fzdms] E[/ nzdms] < o0,
0 0

it is in fact a (uniformly integrable) martingale, and therefore (again by Proposi-
tion 4.50 of Jacod and Shiryaev [42, Chapter I]) the product

t
E [ sup ‘/ §sms A[X, Y
tefo,11' /0

<E

t t
/ssts-/ nedYs, tel0,T],
0 0

is a (uniformly integrable) martingale, i.e. the two processes are strongly orthog-
onal. Since by (2.2.3) and Jensen’s inequality for any ¢ € [0,T] we have

([ )

E[m?] < E[A?] < oo,

E[m?] <E <E

sup flf < 00,
t€[0,T]

as well as
the process m as given in (2.3.9) is a square integrable F-martingale as a sum of

square integrable martingales. Hence, e.g. by Protter [56, Chapter IV.3], m admits
a decomposition

mt:mo—i—/] ]g;ndxs+/] LAY+ CY e 0T] (2.3.11)
0,¢ 0,

where £, n™ are F-predictable processes satisfying
T 2 T 2
E [ JNGE d[X]S] E [ | ).

and C™ is a square integrable martingale strongly orthogonal to [&*dX, and
[ nirdYs, ie. [EMdXs-C™, [0 dY, - C™ are (uniformly integrable) martingales.
Therefore we have that

VA =E[Ar| S = mo +/] ]1{728}6F55;n dX +/} | Lirsspel ng dYy
0,t 0,t

< 00,

+/ Lisae dcgn+/ oMdM,, tel0,T]. (2.3.12)
10,¢] 10,¢]
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We now prove that (2.3.12) is indeed the GKW decomposition of E[Ar|G;]. To
this end we need to show that the integral with respect to X in (2.3.12) is square
integrable, and that the process

Lit = [ LsgpelnldY, + / Lirsspe "dC + | 4! dM,
10,¢] - 10,¢] - 10,¢]

t € [0,T], is square integrable and strongly orthogonal to the space J%(X) of
stochastic integrals with respect to X. First note that by (2.2.3) we have

E[(V/")?] < E[A7] < o0, te[0,T],

hence V4 is a square integrable martingale and E[[V4]7] < oo (see, e.g. Corollary
3 of Theorem 27 in Chapter II of Protter [56]). Since

T
E[[VA]T] =FE [/0 (1{728}@5)2 dmls| + E

T
| >2d[M]s] ,
where we have used (2.3.8) and the fact that m has no jumps in 7, i.e.

[m, M)y = Y Am,AM, =0, te[0,T],
0<s<t

we have that

E [ [ wran,

Besides that since I is increasing and I'p is bounded, we have that

T
EVO (Lprsge €2 d[X],| < oo, (2.3.13)

and analogously for the second and third term in (2.3.12) we have that

E [/OT(R{Tzs}ersn?)Qd[Y]s] < 00, (2.3.14)

as well as

< 0.

T
E [ | Qg2 aicm,

Hence all integrals in (2.3.12) are square integrable martingales by Lemma 2.1
of Schweizer [58], and L4 is square integrable as the sum of square integrable
martingales. Furthermore for a G-predictable process ¥ € L?(X), i.e.

E l/OT Y2d[X]s| < oo, (2.3.15)
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we have that
t
|:/¢s dst/]l{Tzs}ersn;ndYts} :/0 1{725}6F3¢sn§nd[X7 Y], te [O7T]7
t

is a local martingale, e.g. by Jacod and Shiryaev [42, Chapter I, 3.23], and in view
of (2.3.14) and (2.3.15) and again by the Kunita-Watanabe inequality we have

t
E [ up. ‘ /0 Lirsae v d[X, Y]

< 00,
telo, T

i.e. the bracket process is in fact a (uniformly integrable) martingale, and therefore
by Proposition 4.50 of Jacod and Shiryaev [42, Chapter I] the product

t t
/wsts-/ Lisge onldYs, te[0,T],
0 0 -

is a (uniformly integrable) martingale. With the same arguments it can easily be
seen that

t t
/¢des./ 1sge™dC™, te0,T],
0 0 -

is a (uniformly integrable) martingale. Finally

[/ws ax,, [ v dMs]t
= [[witarx.an, <o

for t € [0,T] since X and M are strongly orthogonal and X has no jumps in 7,
i.e. the product

t t
[ weax,. [lan, e,
0 0
is also a (uniformly integrable) martingale. Putting everything together we have
obtained that .
/ Vs dXs - LY, t€0,T),

0
is a (uniformly integrable) martingale for ¢» € L?(X), i.e. L is strongly orthogonal
to J2(X) and thus (2.3.12) is the GKW decomposition of E[A7 | G;]. By the results

of Appendix A it then follows that the risk-minimizing strategy ¢ = (&, £0) is given
by

& = Lirsgye &7,
& =Vi—-&Xy,

for ¢t € [0,T], with discounted value process V() = E[Ar|G;] — A; and optimal
cost process Cy(p) = mo + L. O
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Note that in (2.3.6) every term is stopped in 7, i.e. the value process is constant
after 7. Besides that every integral with respect to the local F-martingales X, Y

and C™ contains the ratio
Lir>g

P(T >t ’ fTrt) ’

i.e. the actual survival event divided by the conditional survival probability on F.
Also note that the cost process in (2.3.7) is essentially made up of three compo-
nents, given in terms of orthogonal integrals with respect to the processes Y, C™
and M. While the component associated to C™ in general cannot be eliminated
unless the processes X and Y have the predictable representation property (see
Corollary 2.3.4), the other two integrals with respect to Y and M represent the
systematic and unsystematic component of the mortality risk. As we will see in
Section 2.4, these risks may be eliminated by introducing suitable mortality-linked
products related to Y and M on the financial market.

Corollary 2.3.4. Assume X and Y have the predictable representation property
with respect to the filtration F (see, e.g., Protter [56, Chapter IV.3]). Then C™ =0
in decomposition (2.3.11) and the square integrable martingale m defined in (2.3.9)
admits a decomposition

m :m0+/ g"g@dxmu/ qrdy,, tel0,T), (2.3.16)
10,¢] 10,¢]
where €™ and 7™ are F-predictable process satisfying

E [ /0 T(é?)?dms] E [ /0 R ar,

In this case the insurance payment process A as defined in Section 2.2 admits a
risk-minimizing strategy @ = (&, £°) given by

< Q.

gt = ]]-{th}ertggna
& =Vi—&Xi =Vi — 1psye g Xy,
with discounted value process

Vi(¢) = E[Ar | 5] —
—m0+/ I]-{T>s}e gs dX

/ 1 sgenrdY, +/ M dM, — Ay (2.3.17)
10,¢]
and optimal cost process

Cu(@) = mo + / 1irsgye 7™ dY, + / YM dM,,
10,¢] - 10,¢]

for t € [0, T], where the processes M, m, M, ém and 7™ are introduced respec-
tively in (2.2.2), (2.3.9), (2.3.10) and (2.3.16).
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The predictable representation property is often associated with the completeness
of the underlying financial market. However, assuming that the predictable rep-
resentation property holds does not necessarily imply that the financial market
is complete and vice versa, since these properties depend largely on the specific
characteristics of the underlying driving price processes as well as the structure of
the filtration (see, e.g., Cont and Tankov [22, Remark 9.1]).
Note that in Corollary 2.3.4, (2.3.16) means that the GKW decomposition of the
square integrable F-martingale m has a special structure, where the orthogonal
part consists only of the integral with respect to Y. In particular we have that
™ =0 in (2.3.11) if (X,Y) have the predictable representation property with
respect to the filtration F. This is the case for example if F is generated by two in-
dependent Brownian motions driving X and Y. However in more general settings
it often may not be possible to decompose m in this way, in fact this is the case
in many jump diffusion models. However we will see in Section 2.5, that if the life
insurance payment process has a special structure then it might be possible to find
a decomposition of m as in (2.3.16), even if X and Y do not have the predictable
representation property with respect to F (see (2.5.7) in Section 2.5).

2.4 Extending the Financial Market

We now turn to a more detailed analysis of the cost process in (2.3.7). If we con-
sider the GKW decomposition as computed in (2.3.6) for a given payment process,
we can see that the cost is generated by the following orthogonal components:

e Y the driving process of the conditional survival probability,
e M, the compensated jump process of the time of death, and

e C™, the orthogonal part due to the predictable decomposition of the [F-
martingale m in (2.3.9).

Then a natural question is: Can we introduce mortality-linked products into the
financial market, that can be used to hedge the cost parts due to Y and M? For
illustration purposes in the following we set C™ = (0 and for the short rate we
assume 1, = 0, t € [0,7], i.e. the bank account is constant. Following Cairns
et al. [19] we now assume there exists another risky asset traded on the market,
a zero-coupon longevity bond with maturity 7T (PtT)tE[O’T], with discounted asset
price given by

PtT = E[eirT ‘ 9,5] = E[eirT “(ft] = IE:[:ll{7'>T}| EFt]v te [OvT]v

i.e. a zero-coupon bond that pays out the survivor index at maturity. As discussed
in Section 2.2, since it is given by the conditional survival probability, it may be
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seen as incorporating the systematic mortality risk. Recall that we have defined
Y as driving the martingale P7 i.e.

Pr :POT+/ ¢PL dy,, telo,T), (2.4.1)
10,4

for an F-predictable process (. If ¢; # 0 a.s. for all ¢t € [0,7], inserting this in
(2.3.17) immediately leads to
Vi(p) = E[A7 | G¢] — A
+/ 1 Fsémax. +/ T
=m >5}€ Qs s >} - T
0 10,4] {r>s} 10,4 {r> }CSPT

sS—

m
S

dpPT

+ | el dM, - A (2.4.2)
101

i.e. we obtain the price of the life insurance payment process in terms of the
investments in X and PT, thereby eliminating the cost part associated to the
systematic mortality risk. We now assume that there exists a third risky asset
actively traded on the market, directly related to the time of death 7. This
will finally enable us to eliminate the cost part due to M. We introduce a pure
endowment contract E = (Et)te[O,T]v i.e. a life insurance contract that pays 1 at
maturity T if the individual survived, with present value

Ey = E[]]‘{T>T} ‘ 915]7 te [O> T]

As the following computations show, E, PT and M are closely related to each
other and we may find a representation of M in terms of PT and E. By Lemma
5.1.2 of Bielecki and Rutkowski [12] we have that

E[lirsry | T

E, =1 =L,PF, ¢ T
¢ {r>t} P(T>t|9‘~t) tte > € [07 ]7

where L; = (1— H;)el't. By (2.3.4) and since PT has no jumps in 7, it follows that
LPF = LoPf + / Ls—dPI'+ | PLdL,
0,¢] 0,t]

:LOPOT+/ Le_drl — [ PLebsdm,,
10,4 0,4

i.e. for t € [0,T] we have
dE; = Ly_dPl — P et A,

and
1

Pl el

Lir>1)
pPr

dM; = dpP! — dFE;.
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Note that PL el # 0 for all t € [0,T]. Hence by inserting this in (2.4.2) we
obtain

Vi(@) =E[A7 |G/ — Ay
=my +/ ]l{T>s}€FS£§I dXs
10,2] -

e1"3771771 wM wM
Tiog | 2 + =2 dPT—/ S dE, — A;.
+ 0/ {r>s} (CsPST_ + pT s 0.4 psT_el“s t

In practice insurance companies often trade mortality-linked contracts similar to
PT_ where the payoff at maturity is directly linked to a survivor index. Examples
of such products include e.g. the EIB/BNP and Swiss Re bonds in 2004 or futures
and options on survivor indices (see, e.g., Blake et al. [16]). However, as shown
very clearly by the above computations, by themselves these products are not able
to offer complete protection against mortality risk, since a remaining source of
randomness is directly related to the knowledge of 7, i.e. the unsystematic, indi-
vidual mortality risk, and requires an additional asset in order to be hedged.

2.5 Example: Unit-linked Life Insurance

In this section we assume given two independent Brownian motions W' = (W4)¢(0,77,
WH = (W{')epo,r) and a compound Poisson process Q = (Qt):cjo,71,

Ny
Qt:ZY;; tE[O,T],
=1

where N = (N¢)e(o, is a Poisson process with intensity A > 0 and Y; are i.i.d.
random variables independent of N with ¥; > —1 a.s., ¢ > 1, such that E[Y;] =
B < oo and E[Y{] < co. We then assume that the filtration F is generated by
these three processes, i.e. F = FW v FW* v FQ, where FW, F"* and F? are the
natural filtrations of W, W# and @). For the discounted asset price process we
assume a jump diffusion model

dX; = o X, AW, + X dQr, X0 = 7, (2.5.1)
for t € [0,T], with Q= Q; — BAt and 0 = (0t)icjo,) is a bounded, F-adapted
process. Then X is a local martingale and the solution to (2.5.1) is given by

Ny

Xt:xexp{/otades— <,3At+;/0t03ds>}H(Yi+1), te[0,7].

i=1

Since ¢ is bounded and by Doob’s maximal inequalities we have

E [ sup XE] < AE[X%] < e1exp{(c — 1)AT} < oo, (2.5.2)
te[0,T)
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where ¢; € Ry and ¢ = E[(Y; + 1)?], hence X is in fact a (uniformly integrable)
martingale. We assume that the hazard process admits the following representa-
tion:

t
Iy :/ psds, tel0,7T], (2.5.3)
0

where the default intensity or mortality rate i is a non-negative F-progressively
measurable process. Stochastic mortality modeling has been studied extensively
in the literature, see, e.g., Biffis [13], Dahl [25] and Milevsky and Promislow [52]
for different modeling approaches for the spot force of mortality in continuous
time and Cairns et al. [19] for an overview of existing modeling frameworks for
stochastic mortality. Here we follow the affine approach of Dahl [25] and assume
that p is given by the Cox-Ingersoll-Ross model

due = (a+bue) dt + ey/ue dWY', po =0,

for t € [0,7], b € R and a,c € R;. Note that the process I' as introduced in
(2.5.3) is not bounded, however we will show later, that the results of Section 2.3
remain valid in this setting even without this assumption, in particular equations
(2.3.13) and (2.3.14) still hold. Since p is an affine process, e.g. by Filipovié¢ [34]
we have that

E[e 07 |Gy = e TR[eJe Heds | V4] = o Teea®+80m 4 ¢ [0, 7],
where the functions a(t) and §(t) satisfy the following equations:
Oa(t) = —af(t), «(T) =0,
Q) = 1 - bB(1) — S PB(0), BT =0,

t € [0,T]. It is well-known that the explicit solutions are given by

2a 2/')/6(7_b)(T_t)/2
Oé(t) =—1In )
c (v = b) (T — 1) + 2y

2(e7(T=1) — 1)
(v =0)(erT0 —1) + 29’

8(t) = -

t € [0,T], where v := vb?+2¢2. Then by Ito’s formula, since the process
e Tita®+BMne € 0,7, is continuous we get

d(e Trea®FBWmy — o=LiaO)+68Om . /a8 (t) AW}, (2.5.4)

hence in this setting the local martingale Y, introduced in Section 2.2 and (2.4.1)
in Section 2.4 as the driving process of the martingale Elexp{—I'r} | F], is given
by the Brownian motion W#. Note that @ and W, W*# are independent (see,
e.g., Chapter 11 of Shreve [60]) and by simple calculations it is easy to see that
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W, W# are independent if and only if they are strongly orthogonal. Similarly
one can also show that @W and @W“ are martingales. Hence in this context
we may apply the results of Section 2.3, since the underlying driving processes
are strongly orthogonal martingales. We now study the case where the insurance
payment process as defined in Section 2.2 is given by a (discounted) unit-linked
term insurance contract:
Ar = 1<y Xr,

i.e. a life insurance contract that pays out the discounted asset price in the case
of death prior to maturity. Since X has no jumps in 7, we have that

Lrer Xr = Lirery Xoms

ie. Ay = X;_fort e [0,T] and A = 0 in (2.2.3) and consequently for m as defined
in (2.3.9) it follows that

T
my =E l / X, e Tsdr, ‘ sft]
0

t
_ / X,e Tsdl, + E
0

T
/ Xoe e dl | 9-}] , telo,T]. (2.5.5)
t
By the independence of W#* and W, () we get
T T
E l / Xye T dr, ?t] = / E [Xse—Fs s
¢ t
T w r
:/t E[X, |57 v 32| E e T,
T u
=X;E [/ e_FSusds‘ffF/ ]
t

- X, (e—rt—E[e—FT‘ﬂV“D, te0,7]. (2.5.6)

fft} ds

1" | ds

Then by (2.5.5) and (2.5.6) we have that

e /ot Xoe T dl + Xpe ™" = X, [e7T7 | 1]

t
:/ e T dX, — X;E [T | V], te 0,7,
0
and by inserting (2.5.4) and again by the independence of W and W* we have
d(Xte*Fﬁa(tHﬁ(t)ut) — e~ Teta(t)+B(t) [AX; 4+ Xpey/mB(t)dW)]
for t € [0,T]. Therefore we obtain

my =z(1— @)+ [ e Ts(1 — X&) HFEIms) X,
10,1

t
- /0 e/ (s) X e Tera&) T8 ms qur - ¢ e [0, T). (2.5.7)
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We would now like to comment on the integrability conditions as imposed in
Section 2.3 and how they apply in this context. Note that (2.5.7) implies that the
processes ™ and ™ as introduced in (2.3.11) are well-defined and in this setting
given by

& = e T (1 — 2 OH8Om) 4 e (0,7,

and
= —ey/B(t) Xye T8O e [0, 7).

Hence in (2.3.13) we have
’ r 2
E |:/0 (1{723}6 Sggn) d[X]S‘|
T
<E l/ (1— ea(8)+5(8)us)2 d[X]S]
0

<AE[[X]r] < E [ sup X7| < oo,

o te[0,7]

¢y € Ry, where we have used (2.5.2) and the Burkholder-Davis-Gundy inequalities.
Furthermore, in (2.3.14) we have

T
E VO (ﬂ{Tzs}ersn?”‘)Qd[Y]sl

B [ (eyls)Xpe e 2 dms]
0

T
< c3E | sup Xt2 E / s ds
t€[0,T] 0

< 00,

c3 € Ry, since () is bounded on [0,7] and the integral over the square root
process p has finite first moments, see, e.g., Dufresne [33]. Hence the results
of Section 2.3 remain valid in the context of this model, even though IT" is not
bounded.

By (2.3.2), (2.5.5) and (2.5.6) for U; we obtain

Uy = my — /Ot XoeTdly = X, (e —E e T | F]), teo, 1),

hence for M as defined in (2.3.10) we have

M = A, — " U = Xy — Xy (1 — 2Oy ¢ e (0,77,
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and again, since X has no jump in 7, in (2.3.6) we obtain:
Vi = E[l<m X7 [ Ge] — At
=z(1—e*0) 4 /] | 1oy (1 — @@ q X,
0,t

t
- /0 Loy /s B(s) X TP qyy

+ X eS8 qpr, — A, te€]0,T],
10,¢]

or, in the setting of Section 2.4 with two additional risky assets PT and E,

Vi=a(l—e®O) 4 [ 15401 — @) gx,
jog]

t t 1
— / ]]-{T>S}€Fs X, dPST + / BT (1{T>S} Xsea(s)+ﬁ(s),us) dPST
0 - 0 g 2

1
= [ e (Koet ) g - a,

= (1 - ea(o)) +/ Lirsa (1 — ea(5)+5(5)“5) dX,
10,¢] -

— | X.,dE,— A, tel0,T).
10,t]



Chapter 3

Homogeneous Insurance
Portfolio

3.1 Introduction

In this chapter, based on Biagini, Rheinlénder, and Schreiber [10], we study the
problem of pricing and hedging life insurance liabilities for the case of a homoge-
nous insurance portfolio. Main features of this work are that we take into account
and explicitly model the basis risk that arises due to the fact that the insurance
company cannot perfectly hedge its exposure by investing in a hedging instru-
ment that is based on a longevity index, not on the insurance portfolio itself. We
model the dependency between the index and the insurance portfolio by means
of an affine mean-reverting diffusion process with stochastic drift. The remainder
of this chapter is organized as follows: Section 3.2 introduces the general setup,
including the structure of the insurance portfolio and the financial market. In
Section 3.3 we compute the price and the risk-minimizing strategy of the life in-
surance payment streams. We also provide specific applications in the context of
unit-linked life insurance contracts.

3.2 The Model

Let T' > 0 be a fixed finite time horizon and (2, G, P) a probability space equipped
with a filtration G = (5¢)se(o,7) Which contains all available information. We
define §; = J; V Hy, and put § = Gy, where H = (H;)icpo,1) is generated by
the death counting processes of the insurance portfolio (see Subsection 3.2.1).
The background filtration F = (F})e[o,7) contains all information available except
the information regarding the individual survival times. Here we define F; =
o{(Ws, WE,WHE) . 0 < s < t}, t €0,T], where W, W# and WH# are independent
Brownian motions driving the financial market and the mortality intensities (see

25
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Subsections 3.2.1 and 3.2.2). In the following we introduce the three components of
the model: the insurance portfolio, the financial market and the combined model.

3.2.1 Insurance Portfolio and Mortality Intensities

We consider a portfolio of n lives all aged x at time 0, with death counting process
n
Ne=> Tgeicy, t€[0,T],
i=1

where 7%¢ : Q0 — [0,7] U {oc}, and for convenience in the following we omit the
dependency on x. We assume that P(7° = 0) = 0 and P(7* > t) > 0fori=1,...,n
and t € [0,T]. Note that since the time horizon T is usually fixed as the maturity of
the life insurance liabilities, in order to ensure that P(7* > T) >0 fori=1,...,n
(the remaining lifetimes are not necessarily bounded by T'), it is necessary to allow
7% to take values larger than 7', indicated here by the convention that 7! can assume
the value infinity. We define 3; = 3} V- - - VHP?, with H: = o{H: : 0 < s < t} and
Hi =1 {ri<ty- We assume that the times of death 7t are totally inaccessible G-
stopping times, and an important role is then played by the conditional distribution
function of 7%, given by

F!=P(r"'<t|F), i=1,...,n,
and we assume F} < 1 for all t € [0, T]. Then the hazard process I'* of 7¢ under P
Ii=—In(1-F/)=—-InE[lg iy |F], (3.2.1)

is well-defined for every t € [0,T]. Since the insurance portfolio is homogenous in
the sense that all individuals belong to the same age cohort, we set I'* = I', where

¢
Ft:/usds, t€[0,7T].
0

Similarly as in Biffis [13], we assume that the mortality intensity p is given as the
solution of the following set of stochastic differential equations:

Ay = y1(fi — pu)dt + o1 /p AW, (3.2.2)
djiy = y2(m(t) — fir)dt + o9/ AW, (3.2.3)

for t € [0,7] and pp = o = 0, where v1, 2, 01, 02 > 0, and m : [0,7] — R4
is a continuous deterministic function. The existence and uniqueness of a strong
solution (p, &) to the set of stochastic differential equations (3.2.2) - (3.2.3) is
proved in Appendix E of Biffis [13] by using Proposition 2.13 and 2.18 in Chapter
5 of Karatzas and Shreve [46], as well as results of Deelstra and Delbaen [29]. The
process i represents the mortality intensity of the equivalent age cohort of the
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population, and can be derived by means of publicly available data of the survivor
index

_ t
St = exp <—/ fLs ds) , te€]0,T7. (3.2.4)
0

According to Cairns et al. [19] survivor indices can be seen as basic building
blocks for many mortality-linked securities. The need for standardization in the
life markets has led to the creation of various such indices by investment banks
and many market traded securities have payments linked to survivor indices. The
dynamics of i in (3.2.3) are given by a non-negative affine square root diffusion,
mean-reverting towards the deterministic drift m, which can be seen as best es-
timate for p, such as an available mortality table. Hence p as defined in (3.2.2)
is a non-negative affine process, fluctuating around a stochastic drift given by the
mortality intensity pu of the respective age cohort of the population. Note that
many empirical studies have shown that the mortality of life insurance portfolios
is often lower than that of the equivalent age cohort of the population due to so-
cioeconomic factors such as lifestyle, income, etc. This characteristic feature can
easily be incorporated in our model e.g., by replacing the stochastic drift & by
it — e and m by m — ¢ for a constant € > 0 in (3.2.2) - (3.2.3).

We also assume that for i # j, 7,77 are conditionally independent given Jr, i.e.

El(risnyLirissy | Fr] = E[lgriny [ F]E[lisg [Fr], 0<st<T. (3.2.5)

This assumption is well-known in the literature of credit risk modeling, see, e.g.,
Chapter 9 of Bielecki and Rutkowski [12]. All individuals within the insurance
portfolio are subject to idiosyncratic risk factors, as well as common risk factors,
given by the information represented by the background filtration F. Intuitively,
the assumption of conditional independence means that given all common risk
factors are known, the idiosyncratic risk factors become independent of each other.

3.2.2 The Financial Market

Since our focus is on modeling the basis risk between the insurance portfolio and
the longevity index, for simplicity we consider a rather simple model of a financial
market defined on (2,9, G,P) consisting of a bank account or numéraire B with
constant short rate r > 0, i.e.

By =exp{rt}, te[0,7],

as well as two risky assets with asset prices S and P. We assume that S follows
the P-dynamics

dS, = S (rdt + o(t, S,) dW),  t € [0,T], (3.2.6)

with Sy = s and we assume that o satisfies certain regularity conditions that ensure
the existence and uniqueness of a solution to (3.2.6). We denote by X = S/B the
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discounted asset price, i.e. the dynamics of X are given by

S,
dXx; =d (Bt) =o(t, S) X, dW,, tel0,T). (3.2.7)
t
Following Cairns et al. [19] we assume that P is the price process of a longevity
bond with maturity T representing the systematic mortality risk, i.e. P is defined
as a zero-coupon bond that pays out the value of the survivor or longevity index
as defined in (3.2.4) at 7. This means the discounted value process Y = P/B is
given by
GH
v, =E|-L
-~ |

- Jexp(— i fisds)
o =[5

St] , telo,T). (3.2.8)

Thus the discounted asset prices X, Y are continuous (local) (P, F)-martingales,
i.e. the financial market is arbitrage-free, since the physical measure P belongs
to the set of equivalent local martingale measures. Note that the asset prices are
F-adapted, however the trading strategies are allowed to be G-adapted, i.e. in the
following sections we consider (discounted) hedging portfolios

Vilp) =& X, + Y+ €, te0,T],

where p = (£%,£Y,¢Y) is a G-adapted process (see also Definition A.0.3 in Ap-
pendix A). This implies that all agents invest according to information incorpo-
rating the common risk factors such as the financial market and the mortality
intensities, as well as the individual times of death.

3.2.3 The Combined Model

We consider the extended market G = F Vv H, such that the information available
in the market at time ¢ € [0,7] is assumed to be §; = F; vV H;. All filtrations
are assumed to satisfy the usual hypotheses of completeness and right-continuity.
We postulate that all F-local martingales are also G-local martingales, and in the
sequel we refer to this hypothesis as Hypothesis (H). This hypothesis is well-known
in the literature on enlargements of filtrations, for a discussion of this hypothesis
we refer to Blanchet-Scalliet and Jeanblanc [18] and Bielecki and Rutkowski [12,
Chapter 6]. In this setting we study life insurance liabilities in form of insurance
payment streams as introduced by Mgller [54]. It is now widely acknowledged
(see, e.g. Barbarin [4], Biffis [13] and Mgller [53]) that most payment streams of
practical relevance are covered by the three building blocks pure endowment-, term
insurance-, and annuity contracts. Following Barbarin [4], the pure endowment

contract consists of a payoff
CP®(n — Nrp) (3.2.9)

at T, where CP® is a non-negative Fp-measurable random variable such that
E[(CP¢)?] < oo, i.e. the insurer pays the amount CP¢ at the term T of the con-
tract to every policyholder of the portfolio who has survived until 7. The term
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insurance contract is defined as
T . n T . . n .
/ ClidN, =Y / CHAH! =3 1 riery Ol (3.2.10)
0 i=170 i=1
where C* is assumed to be a non-negative F-predictable process such that

E [ sup (Cf1)21 < 00,
te[0,T]

i.e. the amount CZ is payed at the time of death 7 to every policyholder i,
i =1,...,n. The annuity contract consists of multiple payoffs the insurer has to
pay as long as the policyholders are alive. We model these payoffs through their
cumulative value C{ up to time ¢, where C* is assumed to be a right-continuous,
non-negative increasing F-adapted process such that

< 00.

E [ sup (Cf)?
t€[0,T]

The cumulative payment up to time 7' is then given by
T n_T .
/ (n— N,)dCo = Z/ (1 mi)dos. (3.2.11)
0 /0

Similarly as in Mgller [53] or Riesner [57] we also provide specific examples (see
Corollary 3.3.6, Corollary 3.3.8 and Corollary 3.3.10) where in the context of
unit-linked life insurance products we set CP¢ = f(Sr), Cf* = f(S;) and Cf =
fg f(Sy)du in (3.2.9) - (3.2.11) for a function f that satisfies sufficient regularity
conditions. Recall that (X,Y) is a (P, F)-local martingale, i.e. the market given
by (P,F) is arbitrage-free, and Hypothesis (H) implies that the extended finan-
cial market defined by G = F VvV H is also arbitrage-free. However, the market
is not complete since the times of death occur as a surprise to the market and
hence represent a kind of “orthogonal” risk. In particular any derivative relying
on information of the individual times of death such as the insurance liabilities
introduced in (3.2.9) - (3.2.11) cannot be perfectly hedged by investing in (X,Y).
Therefore in the following section in order to find a price and hedging strategy for
the insurance payment processes, we make use of a well-known quadratic hedg-
ing method for pricing and hedging in incomplete markets, the risk-minimization
approach, a brief review of which is given in Appendix A.

Remark 3.2.1. We would like to briefly comment on the fact that the insurance
payment streams introduced in (3.2.9) - (3.2.11) can actually also be interpreted
as T-claims, i.e. non-negative Gp-measurable random wvariables, hence the risk-
minimizing strategies may equivalently be found by means of the original method by
Féllmer and Sondermann [36]. To this end note that the pure endowment contract
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consists of a single payoff at time T, hence it is a European type contingent claim
by definition. Furthermore, the discounted term insurance contract has the same
payoff as the discounted T-claim

n ) n T . . T .
H=B;"Y 1, CLB.'By = Z/D CtB;ldH! = /0 CtB;1dNy,
i=1 i=1

where the insurer’s liabilities C% are deferred and accumulated using the riskless
asset B. By the same arguments the annuity contract can also be interpreted as
discounted T-claim. In Remark A.3 of Moller [54] it is shown how in this case
the approaches of Follmer and Sondermann [36] and Mpller [54] coincide in the
sense that they deliver equivalent risk-minimizing strategies. In particular the in-
vestment in the risky assets is equal in both settings. The portfolio value process
and investment in the riskless asset differ only in the sense that the portfolio value
in the payment stream setting is seen as after the insurance payments have been
settled, whereas the value process in the setting of Follmer and Sondermann [36]
accounts for the insurance liabilities by accumulating them on the bank account as
deferred payments.

3.3 Risk-Minimization for Life Insurance Liabilities

In the setting of Section 3.2 we now compute the price and hedging strategy for
the life insurance liabilities by applying the results of Appendix A. We start with
some preliminary results.

3.3.1 Preliminary Results

For i =1,...,n we consider the finite variation process
Léz(l_HZ)erta te [OvT]a

then by Lemma 5.1.7 of Bielecki and Rutkowski [12] we have that L’ is a local G-
martingale, where G* := (%)te[o,T} and G =FVHL t€[0,T],i=1,...,n. Since
the hazard process I'y, t € [0,T], of 7" exists and is continuous and increasing, by
Proposition 5.1.3 of Bielecki and Rutkowski [12] we have that the compensated
process M* given by

M} =H! —T,,.:, te[0,T], (3.3.1)
follows a local G'-martingale, such that
M} = —/ e T=dLi, tel0,T], (3.3.2)
10,¢]
and
Li=1- Li_dM!, te]o,T).

10,%]
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Furthermore, since
E[[M]7] =E[H{] <1<oo, i=1,...,n,

e.g., by Protter [56, Corollary 4 after Theorem 27 in Chapter II] M? is a square
integrable martingale. From (3.3.1) we have that the F-hazard process I" and the
(F, G*)-martingale hazard process A’ of 7 coincide. By (3.2.5) (see, e.g., Lemma
9.1.1 of Bielecki and Rutkowski [12]) M® is also a G-martingale, i.e. T is also
the (IF,G)-martingale hazard process of 7¢. Note that it is easily seen that for
j # 1, (3.2.5) implies that L°L? is a local G-martingale (see also Proposition 6.1
in Chapter 3 of Barbarin [4]), hence L? and L7 are strongly orthogonal. Then by
(3.3.2) we have that M* and M7 are also strongly orthogonal. Note that since M*
are G-martingales and

n ] t
M= YoM = Ni— [[(n=N.ueds, t€(0.7) (3:33)
i=1

is a G-martingale, the process (fg(n — Ns-)ps ds)iepo,r] is the G-compensator of
N. In the following by making use of the affine structure of (p, 1) as introduced
in (3.2.2) and (3.2.3) we compute the dynamics of different processes related to
(w4, 1), such as the longevity bond introduced in (3.2.8), that will be needed for
the computations in Sections 3.3.2 - 3.3.4.

Lemma 3.3.1. For the longevity bond as introduced in (3.2.8) we have the dy-
namics:

t _
y;:y0+/ Yoe T BT (s)our /i AWE,  t € [0, ),
0
where BT is given by the following differential equation:
1
OB (1) =1+ 7" (1) - 5o3(87 ()%, B1(T) = 0. (3.34)

Proof. We rewrite (u, 1) as introduced in (3.2.2) and (3.2.3) as

M) 0 -1 M e o1/t 0 wi
) = Comion) + (5 2) () o ("3 i) ()

for t € [0,T], i.e. (u, i) is affine. By equation (B.0.1) in Appendix B we immedi-
ately obtain

T
Y, =E |f§Xp <_/t Hs d5> ’?t‘| = eXp(OzT(t) + 5T(t)ﬂt)a te [O,T},

where

087(0) =1+ 6" (0) - 50357 (W) 47T =0,
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and
dra’ (t) = —yem(t)8" (1), o' (T) =0.

Then by It6’s formula we obtain
dY; = Yi(0a™ (t) + 0,87 (t)jae)dt + Vi 37 () djas + %Yt(ﬁT(t))Qd@%
= Yi(fu dt + 87 (t) oo/ AW]'),
and by (3.2.8) we have that
dY, = Yie "B (t)oo /[ AW, t € [0,T],
hence the result follows. O

The following lemma will be needed in the proofs of Corollary 3.3.6 and 3.3.10.

Lemma 3.3.2. Fizu € [0,T]. For

Z{" = Elexp(—-Tw) |F] =E [exp (— /Ou Is ds) ‘CT’}] . tel0,ul,

we have the following dynamics:

t t _
zt=Zy+ [ ZB o dWl + [ Z)nyE AW, (335)
0 0

where BY and B3 are given by the following differential equations:

QBL(E) = 1+ MBL() — SR BLW) B =0, (33.6)
OBH(6) = —BY(0) +1aBY(0) — AR (B0, () = 0. (3.3.7)

Proof. Fix u € [0,T]. With the same arguments as in the proof of Lemma 3.3.1,
by equation (B.0.1) in Appendix B we have

Z¢=E {exp (—/t Is ds) ‘3}} = exp(a“(t) + BY () e + 55 () fir) (3.3.8)
for ¢t € [0, u], where the functions a*, 5} and 5§ are given by

QBL(H) =1+ M) — JoRBHW) AL =0,

935 (t) = —mB1 () + 7282 (1) — %03(53@))27 f3(u) =0,
Opa(t) = —yam(t)By (1), a“(u) = 0.
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Then, again by an application of Itd’s formula, we obtain that
Az =7} [(atau(t) + OB () + OB (8) i) At + B (t) duy + B3 (¢) djag
1 u 1 u - u u -
+ S (BE) Al + (B3 (D) d(m)e + B (0)83 (1) d(p. ).
= Z} (e dt + By (t)or Ve AWY + B5(8) oo/ AW])
for t € [0, u], hence the result follows. O

The following lemma will be needed in the proof of Corollary 3.3.8.
Lemma 3.3.3. Fizu € [0,T]. For

u
Z=FE [exp (—/ s ds) Ha,
0

we have the following dynamics:

fft}, te (0,4,

t A A
zpv =25+ [ 22 (Bis) + BY(5)22) on Vi d W

t R . _
+ [ 2 (B05) + 85 22) oo/ AW, (3:3.9)
where Z" is given by
Zpt = 6" (t) + Byt + By ()i, t € [0,ul, (3.3.10)

and &, B”f and Bé‘ are given by the following differential equations:
OB () = mPBY(t) — o BLBY(D),  Bi(uw) =1, (3.3.11)
053 (t) = =P (1) + 7255 (1) — o3B3 (1) 35 (¢), 3 (u) = 0, (3.3.12)
O (t) = —pm(t)F5(1), 4" (u) =0,

and B, By, and Z}{* are given in (3.3.5) - (3.3.7).

Proof. Fix u € [0,T]. With equation (B.0.1) in Appendix B we immediately obtain

E [eXp (— /t s dS) oy

where Z}* is given in (3.3.8) and

7% = &% (t) + B () e + BL) e, t € [0,ul,

5| =222y te o)

with

BI(t) =By (t) — o1 BLAL(E),  Bi(u) =1,

0B (t) = =B (t) +12B3 (1) — 0385 (1) B (1), B (u) =0,
&U(t) = —yam(t)By(t), a&“(u) =0.
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Then, again by an application of It6’s formula, we obtain
dZ{ = (06" () + OB} (t) e + B3 ()] At + B (t) dpty + B () dfiy
= [BI () B (D)ot — B3 (1)B5 (t)os fir] dt
+ Bt (t)or v/ AW + B3 (o /la AW,

and
d(Z¢2y) = ZpdZy + Z dZy + (2, 2",
= Z{'[we 2} at + (BY(8) + BY(8) Z¢) o1 /1 AW
+ (B3 () + B3 (1) Z{) o2/l AW
for t € [0, u], hence the result follows. O

The following remark elaborates more in detail on the technical assumptions re-
garding the model choice for (u, ) in (3.2.2) - (3.2.3).

Remark 3.3.4. As stated in Biffis [13], from a technical point of view for the
existence and uniqueness of a solution (u, i) of the set of stochastic differential
equations (3.2.2) - (3.2.3) it is not necessarily required that the Brownian motions
WH and WH are independent. In fact from an intuitive point of view it is plausible
to actually allow for correlation between the two Brownian motions driving p and
. However, we would like to remark that relaxing the independence assumption
destroys the affine structure of (u, 1) (see, e.g., Dai and Singleton [28], Duffie
et al. [32] or Filipovié¢ and Mayerhofer [35]), hence in order to obtain analytical
expressions for the conditional expectations in Lemma 3.3.2 and 3.3.3 it is in fact
necessary to assume that W* and WH are independent. Also note that in (3.3.23),
(3.3.29) and (3.3.35) we will make use of the fact that the Brownian motions W
driving the asset price S as introduced in (3.2.6) and (WH, WH) driving (11, 1) are
independent. Of course it is possible to relax this independence, however then in
order to evaluate the conditional expectations in (3.3.23), (3.3.29) and (3.3.35) it
is necessary to define (S, u, i) as a multi-dimensional affine diffusion (with respect
to correlated Brownian motions). This is only possible if the diffusion coefficients
are constants for all three processes, in which case p and i are no longer non-
negative and for the volatility of the asset price we have o(t,S;) = o, t € [0,T],
for a constant o > 0.

In the following we calculate the prices and hedging strategies of insurance pay-

ment streams as introduced in (3.2.9) - (3.2.11) by means of the risk-minimization
approach (see Appendix A). We start with the pure endowment contract.

3.3.2 Pure Endowment Contract

For the pure endowment contract introduced in (3.2.9) we define the payment

process
cre

By

AP = (n— Ny) =Ty, t€[0,T], (3.3.13)
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where CP¢ is a non-negative Fp-measurable random variable and E[(CP¢)?] < oc.

Proposition 3.3.5. In the setting of Section 3.2 the payment process AP¢ intro-
duced in (3.3.13) admits a risk-minimizing strategy ¢ = (&,£0) = (¢X,¢Y,£%) given
by
_ex vy [(n= Nyt (n - N
gt_(gt 752& )_ ( O'(t,Xt)Xt ) )/%BT(
&=V - X -4,

Jer T yp
t)O'Q\/th ) ’

for t € [0, T], with discounted value process
t t
V) =g+ [ eXax,+ [ e v+ o - ap
0 0

where

t
e — / (n— Ny)elsgpt dWH — / UPeels dM,
0 10,¢]

fort € [0,T), where T (t) and My are defined in (3.3.3) and (3.3.4) and UP®, 1,
PH, and PP are given by

pe
U =E [eFTg

t t t _
fft} = Uge+/0 (LN dWS+/0 ngdwg‘+/o P dWH (3.3.14)

T

where 1, Y* and Y are F-predictable processes satisfying

E [/OTws)?ds] JE [/OTws)?ds] E VOTwz)?ds

The optimal cost and risk processes are given by

< oQ.

CP*(p) = nUg" + Li",
RY*(¢) = E[(LY — L{*)* | G,
fort €[0,T].
Proof. Let t € [0,T]. Then we have that

n Cpe
pe — .
E[A7 |G = ;E [1{TZ>T} By

9t:| )

and by Proposition 4.10 and 5.11 of Barbarin [4, Chapter 3|, as well as Corollary
5.1.1 of Bielecki and Rutkowski [12] and (3.2.5) we have

pe
¢ 9t]

JP = {11 ey —
t {r>T} Br
t '
= U + / L dure — / Ureels AM, (3.3.15)
0 10,1
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where e
Pe _ | | T
U; [e 5

Cﬂ] , te[0,T],
T

is a square integrable martingale, since E[(CP¢)?] < co. By the martingale repre-
sentation theorem for Brownian filtrations (see, e.g., Theorem 43 of Protter [56,
Chapter IV.3]) we have that

t t t _
o = U+ [ wedWk [orawr s [uiawt, te o),
0 0 0
where v, ¥* and # are F-predictable processes satisfying

E [/()T(ws)st] E [/(]T(wgfds] E VOT(gz;g)?ds

Hence by (3.2.7) and Lemma 3.3.1 for ¢ € [0, 7] we have that

< Q.

n

t t
E[AT |G = Z(Ug’%r /0 Lisgpe s dWs + /0 Liisge gl dWh

i=1

t _ _ .
+ / Lppisg e ul dWE — / Ureets i) (3.3.16)
0 - 10,¢]
t t
= nUL* +/ X dX, +/ erav, + -, (3.3.17)
0 0

where

(’I’L — Nt)eFt@ZJt
O'(t, Xt)Xt ’
vy (n— Np)er T+l

% = VBT (toavi

& =

and .

b = /0 (n — Ny)el =t dWH — /]0 ) UPeel's dM. (3.3.18)
It remains to prove that (3.3.17) is indeed the GKW decomposition of E[A% | Gy,
i.e. that all integrals are square integrable and that

t t
Uﬁﬂﬁ/ﬁm)w,mmm
0 0

is a (uniformly integrable) martingale for all G-predictable processes X e L2(X),
€Y € L2(Y). To this end note that since JP®? is a square integrable martingale,
we have that E[[JP%?]7] < co. Then from (3.3.15) we follow that

E[[J**{]7] = E [/{)T(Lé)Qd[UW]S] +E V()T(Ug’ee“)Qd[M"]s < 00,
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i=1,...,n, since [UP*, M']; = 0, t € [0,T]. Hence by Lemma 2.1 of Schweizer
[58] we have that

t
/L;dUge, t € 0,7,
0

and .
/(—Ug’eefs)dM;', t € 0,77,
0

are square integrable martingales. Again by the martingale representation theorem
we have that

t t . t b _
/ Ll dure — / B AW, + / D AWE / DEAWE, e [0,T], (3.3.19)
0 0 0 0
where 9%, )¢ and " are F-predictable processes satisfying

E [ | T(&;’)?ds] E [ [ T(zzy’ifds] E [ [ @y as

Hence by comparing (3.3.16) with (3.3.19) for i = 1,...,n and ¢t € [0,7] we have
that

< oQ.

U= Lirimge O = s el O = Lisge oy,

since W, W# and W# are independent. Hence (¢%,¢Y) € L?(X,Y) and LP¢ as
defined in (3.3.18) is a square integrable martingale as the sum of square integrable
martingales. It remains to prove that

t t
(/ 5§dXS+/5§’dYS>-Lf€, te[0,77,
0 0

is a (uniformly integrable) martingale for all G-predictable processes £X € L?(X),
€Y e L2(Y). However, this follows directly from the fact that for ¢t € [0,7],
(W, M]; = [WF, M]; =0 and [W, W#]; = [WH,WH]; = 0 and by using Proposition
4.50 of Jacod and Shiryaev [42, Chapter IJ. O

Note that the cost process is the sum of two orthogonal martingales, the first of
which is related to the fact that due to the structure of (u, i) as defined in (3.2.2)
- (3.2.3) the financial market given by the filtration I is not complete. The second
integral is related to the unpredictability of the times of death.

In the following (see Corollary 3.3.6, 3.3.8 and 3.3.10) we now consider special
payoff structures in the context of unit-linked life insurance products, where the
life insurance liabilities are given in terms of a non-negative Borel measurable
function f(S¢) of the asset price S, t € [0,T]. Then following Mgller [53] for fixed
u € [0, T] the arbitrage-free price process

FU(t,8) =E[exp (—r (u—1t) f(S)|F], tel0,u], (3.3.20)
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associated with the payoff f(S,) at time u can be be characterized by the partial
differential equation

1
—rF (L 5) + F'(ts) + rsFY (L s) + 5ot 8)2s?F(t,s) = 0, (3.3.21)

with boundary value F“(u,s) = f(s), where we denote by F}'(t,s), F¥(t,s) and
F(t, s) the partial first and second order derivatives of F'* with respect to ¢ and
S.

The next corollary provides an application of Proposition 3.3.5 where we set

P = f(57)

in (3.2.9) and (3.3.13), where f : Ry — R, is a Borel measurable function such
that

E |f(S1)?] < o0,

i.e. we define the payment process

S,
szm—mﬁgh%m t €10, 7). (3.3.22)

Corollary 3.3.6. In the setting of Section 3.2 the payment process AP intro-
duced in (3.3.22) admits a risk-minimizing strategy ¢ = (&,£0) = (£X,¢Y,£%) given
by

& = (n— N Z FL (1, 50),
o _ (n= N IO L () F (¢ 5) 2]
t VAT (1) ’

& =PI () - X - &Y,

fort € [0,T], with discounted value process
t t
VPl () = nz{ FT(0, o) + / & dX, + / & v, + Ly — aped,
0 0
where

t
177 = [ NG (o E (5,527 A

— / els s T (s, 8)zF d M,
10,1]

for t € [0,7T), where BT (t), BL(t), BI(t), FT(t,S;), FI(t,S,), ZF' and My are
defined in (3.3.3) - (3.3.7), (3.3.20) and (3.3.21).
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Proof. By the independence of the underlying driving processes, for UP¢ as defined
n (3.3.14) we have

Ur =E {e—FngTT) ] ?t} = Ele 7| F,|E [fg;) \ 3@] , (3.3.23)

for t € [0,T], and by (3.2.6) - (3.2.7), (3.3.20) - (3.3.21) and It6’s formula the

discounted arbitrage-free price process ﬂ , t €10, 7], follows the dynamics

FT(tvst) _ T _ T
d T = Fs (t, St)O'(t, St)Xt dW; = Fs (t, St) dX,;, te [O,T], (3324)
t

and by integration by parts and (3.3.5) and (3.3.24) we obtain that

t
P — OTFT(o,so)+/ o (s, X)X, FT (s, 8,) 27 AW,

( Ss) FT(s,S5)

+/ ﬁl S)o1\/Ths———= ZT dwk —I—/ BT s)oon/ fis 5 ZST dwk
for t € [0, T, hence the result follows by using Proposition 3.3.5. O

3.3.3 Term Insurance Contract

For the term insurance contract introduced in (3.2.10) we define the payment
process
t Ctz ti

, n cti
Aiz = ; dN Z/ 8 dHZ Z ]]'{Tiﬁt}BiT_’ t e [07T]7 (3325)
i=1 L

where C* is assumed to be a non-negative F-predictable process such that

E [ sup (C’fz)z] < 0.
te[0,7)

Proposition 3.3.7. In the setting of Section 3.2 the payment process A intro-
duced in (3.3.25) admits a risk-minimizing strategy ¢ = (&,£0) = (£X,¢Y,£%) given

by

& =58 = (n — Np)eltopy (n— Np)eletr Tyl
RN CE R A CLA
&=V - X -8V,

fort € [0, T], with discounted value process

) . t t ) )
Vi) =l + [ e¥ax,+ [ € av+Lff - A,
0 0
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])or.

for t € [0,T], where BT (t) and M, are defined in (3.3.3) and (3.3.4) and where
Ut ap, p* and * are given by

. T (i
f'=E / —e o dly
U, . B. e

' t t t
éw/ ¢sdws+/ ¢5dW£+/ iAW
0 0 0

where

, ¢
L= [ o= Noeuraws + [
0

10,¢]

C;ti T Ctz
- —E —tels=Tuqr
< BS [ s B b

] (3.3.26)

where 1, Y* and Y are F-predictable processes satisfying

E [ / T(%)st] E [ J T(zpz)?ds] E [ [ wras

The optimal cost and risk processes are given by

< Q.

Ci' (@) = nUg' + L',
R () = E[(LT — L")*| G,

fort €10,T].

Proof. By Proposition 4.11 and 5.12 of Barbarin [4, Chapter 3], as well as Corollary
5.1.3 of Bielecki and Rutkowski [12] and (3.2.5) we have

[ |9t—n +/ n — N, U“

Ctz T Ctz
+/ s . ) ~Mu Fs Ty dI‘u
10,4] (Bs [ s DBy

|

is a square integrable martingale, since by Jensen’s inequality for any ¢ € [0,7] we

have
E[(Uf)’] < [sup (cty? (/ de” )] [sup (051‘)2],
t€[0,T t€[0,T]

and E {supte[oﬂ (sz)ﬂ < 00. By the martingale representation theorem for Brow-

])or.

where

€ (0,77,

' T (i
U“:EV &,
0

s

nian filtrations we have that

. . t t t _ _
U“:U(ﬁ“r/ ¢5dWS+/ q,z)gdwy+/ YEAWE, te(0,T),
0 0 0
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where 1, ¥* and * are F-predictable processes satisfying

T T T
Bl [ wotds| B[ @rds| B[ w7ds| < oc.
0 0 0
Hence by (3.2.7) and Lemma 3.3.1 we have that
4 ot t ‘
E[Af]9)] =ntf + [ eXax,+ [ & avi+1f, (3.3.27)
0 0
where
o _ (0= N
t O'(t, Xt)Xt ’
é—Y _ (TL - Nt)ert—i_rquZ)lE
' YiBT (t)oo/Iin
and

, t
L = [ = Nty awy

Cti T Cti
+ / s _E —uwels=Tugr, 75| | dM;.
10,1] (Bs [ s Bu

By the same arguments as in the proof of Proposition 3.3.5 we obtain that all
integrals in (3.3.27) are square integrable and strongly orthogonal, hence (3.3.27)
is indeed the GKW decomposition of E[A% | G,]. O

Note that Corollary 5.1.3 of Bielecki and Rutkowski [12] requires C* to be bounded.
However, it can be easily seen that this result also holds if E[sup,co 7 (CH)?] < o0
and we may therefore apply it in our setting.

The next corollary provides an application of Proposition 3.3.7 where we set

CIfZ = f(St)7 te [OaT]a
in (3.2.10) and (3.3.25), where f : Ry — R is a Borel measurable function such

that

E l sup f(S;)?| < oo,

te[0,7]

i.e. we define the payment process

X t n .
fmk/ffhmzz%@ﬁﬁitemn (3.3.28)
0 S i=1 T
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Corollary 3.3.8. In the setting of Section 3.2 the payment process A% introduced
in (3.3.28) admits a risk-minimizing strategy ¢ = (£,£0) = (£X,£Y,€0) given by

T
X = (n— Ny / FU(t, 8,)Z"" du

€ = (n = NPT G ) [P 8024 B 0) + 95025
& =V'p) - & X - 531@
for t € [0,T], with discounted value process
) T t t ) )
V(o) = [ ZgEr 0, S0 dut [ X aX+ [ e v L - AP,

where

) t T pu N
L = [Nl / B2 55) 2uBi(s) + Bi(5) 220 s dud W

B;
T
+ ( E[/ 1(Su) FSF”dFu|3"SD dM.
10,¢] B,
B
3

for t € [0,T)], where BT (t), BL(t),
ZM", 7% and M; are defined in (3.
(3.3.21).

%(t)z (t): g( ) u(tast>: Fsu(tast% Ztuy
3) - (3.3.7), (3.3.9) - (3.3.12), (3.3.20) and

Proof. For U' as defined in (3.3.26) we have

Ul =F [/ J8) 1., du‘&’"tl
_ /0 E fﬂ]E[e‘F

where we have used Fubini’s theorem and the independence of the underlying
driving processes. By the same arguments as in the proof of Corollary 3.3.6 we
have that

g 145

] du, tel0,7], (3.3.29)

t

53} = FU(0,8) + / F(s,8)0(s, Xo) XoLpsery AW, (3.3.30)
0 <

for 0 <t, uw < T, where F“(u,S,) = f(Sy). Furthermore, by (3.3.9) we have

Zt“’u =K [efru,u

] :Zwur/tz;‘ <B1( )+ BY(s)Z )Ul\//Ts:n-{s<u}dW

+/Zu By (s) + BY(s)Z )02\//731{5<u}d , 0<t,u<T,
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where BY, BY, BY, BY, Z* and Z* are given in (3.3.5) - (3.3.7) and (3.3.10) -
(3.3.12). Then since all integrands are continuous (see Theorem 15 in Chapter IV
of Protter [56]), once again by It6’s formula and by the stochastic Fubini theorem
(see, e.g., Theorem 65 in Chapter IV of Protter [56]) we obtain

Ut — /OT Zy F*(0, So) du + /Ot /T F(s,55) 28" (s, X.) X du dW,
" /ot /ST FU(;;SS)Z;L(B%(S) + BY(s) Z)o1y/fis du dWE
" /ot /sT FU(]_;:SVS)Z:(BS(S) + BY(5) 22 ) o2\ fis du dWE
for t € [0, T, hence the result follows by using Proposition 3.3.7. 0O

3.3.4 Annuity Contract

For the annuity contract introduced in (3.2.11) we define the payment process

t 1 n t 1
A“:/ n— Ny)— dCo = / Liiog—dC? te[0,T], 3.3.31
r= - Nogacz=3 [t g 0.7, 333D

where C“ is assumed to be a right-continuous, non-negative increasing F-adapted
process such that
E | sup (C#)?] < oo.
t€[0,T]
Proposition 3.3.9. In the setting of Section 3.2 the payment process A% intro-
duced in (3.3.31) admits a risk-minimizing strateqy @ = (&,£0) = (€X,€Y,£0) given
by

b= (5.¢r) = [N (n— Nl Ty
P ot. X)X, * YT (toavim )
§=Ve)-& X~ &Y
fort € [0,T], with discounted value process

t t
Vete) =nUg + [ €Xax,+ [ el av,+ g - Ap,
0 0

where

t Ters_ru
= [ - N)eurawr - [ mf acs |7, | an,,
0 10,1] s By
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fort € [0,T], where BT (t) and My are defined in (3.3.3) and (3.3.4) and U?, 1,
Pt and Y* are given by

a r eiFS d a
-
vz =E| [ G ac:

t t t _
H’t] :U8+/ Vs dWs+/ 1[12‘de+/ AWl
0 0 0

(3.3.32)
where 1, Y* and Y are F-predictable processes satisfying
T T T ~
E V <ws)2ds] , E l/ <wé‘)2ds] , E V (Y2 ds| < oco.
0 0 0
The optimal cost and risk processes are given by
Ci(p) = nUg + L,
Ri(p) = E[(L§ — L§)* | Gdl, (3.3.33)

fort €10,T].

Proof. By Proposition 4.12 and 5.13 of Barbarin [4, Chapter 3], as well as Propo-
sition 5.1.2 of Bielecki and Rutkowski [12] and (3.2.5) we have

t
E[A%|S,] = nUZ + / (n — Ny)els dUe
0

T JPaTu
[ E / dce
[O,t} l s Bu

?s] dMs,

where

T e_Fs
U /0 5 dc:

t € [0,T], is a square integrable martingale, since E {supte[O’T](Cf)Q} < oo and

t t t _
fft] = U+ [weawo+ [urawr+ [plaw,
0 0 0

where 1, ¥* and 1* are F-predictable processes satisfying

E l / T(%)st] E l J Twz)zds] E [ [ wras

The result follows by the same arguments as in the proofs of Proposition 3.3.5 and
3.3.7. O

< Q.

Note that Proposition 5.1.2 of Bielecki and Rutkowski [12] requires C* to be
bounded. However, it can be easily seen that this result also holds if

E [ sup (C’ta)2] < 0.
t€[0,T]
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The next corollary provides an application of Proposition 3.3.9 where we set

co — /Otf(Ss)ds, te[0,T],

in (3.2.11) and (3.3.31), where f : Ry — R is a Borel measurable function such
that

< o0,

E [ sup f(S)?
te[0,7]

i.e. we define the payment process

A?vf = /Ot(n — Ns) fgs) ds = zn: At ]].{Ti>s}f‘(BSS) ds, te [O,T] (3334)
s i=1 s

Corollary 3.3.10. In the setting of Section 3.2 the payment process A%f intro-
duced in (3.3.34) admits a risk-minimizing strategqy @ = (&,£0) = (X, €Y, £0) given
by

T
X = (n— Nt)eft/ FU(t, 5,)Z" du
¢
T
& = (n— NIV (0) 7 [ R ¢, 5) 2 du
t
& =Vilp) & X~ &Yy
fort € [0, T], with discounted value process
T t t
Vi) =n [ ZgFr o s dut [ €Xaxo+ [ el avie1pf - apd,
0 0 0
where

t T Fu
Lgvf:/(n—Ns)er/ B}‘(s)al\/,thi(s’Ss)ZS“dude
0 s s

B
T oTaTu
[ E / dce
/]O,t] [ s By

fOT’ t € [07T]7 where 5T(t)7 6%(”7 /Bg(t% Fu(tvst)7 Fsu(tvst)7 th and Mt are
defined in (3.3.3) - (3.3.7), (3.3.20) and (3.3.21).

?s] dMs,

Proof. For U as defined in (3.3.32) we have
T
Us =E V e‘r“f(su)du‘fﬂ]
0 Bu

:/OTE f(;:))?t]la[e—“

Fi|du, te0,T] (3.3.35)
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where we have used Fubini’s theorem and the independence of the underlying
driving processes. By (3.3.5) we have

t
Z0=E et |5] = 28+ /O ZBY(5)01 /FiaT sy AW
t —
+ [ 2233(5)on Vsl oy AW (3.3.36)
; <

for 0 < t, u < T, where $1(t) and [B2(t) are given in (3.3.6) - (3.3.7), and by the
same arguments as in the proof of Corollary 3.3.8 we have that

T t T
Ug:/ ngu(o,so)du+// o (s, X)X F2 (s, 55) 2% du dW,
0 0 Js

t T Fu 7513
[ ey g auawe

t T Fu _

—i—/ / B3 (s)o2 ﬁS(Bf’SS)ngudWS“, te[0,7],
0 Js s

where we used (3.3.30), (3.3.36), Itd’s formula and the stochastic Fubini theorem.

Then the result follows by using Proposition 3.3.9. O

We conclude this section with a remark regarding the hedging error of the risk-
minimizing strategies as computed in Propositions 3.3.5, 3.3.7 and 3.3.9. Following
Barbarin [4], Mgller [53] and Riesner [57] we take the initial intrinsic risk Ro(y) as
a measure of the total risk associated with the non-hedgeable part of the insurance
claims. In the case of the annuity contract, for R§(y) as defined in (3.3.33) we

have
T 2
( / ¢ dMs> ]
0

2
Ry(p) = El(L§ — L§)"] = E [( [t Ny dWé‘) +E

_9E l(/OT(n _ Nt dWﬁ) (/OT G dMS>

where (; = E| tT ert];fr“ dC8¢ | F], t € [0,T], and since W# and M are strongly

orthogonal, the square integrable martingales

(/Ot(n — Ny)el syl dWS“) ; (/Ot Cs dMs) , te[0,7]

are strongly orthogonal, and e.g., by Proposition 4.50 in Chapter I of Jacod and
Shiryaev [42], we have that

E K/OT(n — Nyt dWé‘) (/OT Cs dMSﬂ = 0.

I
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Furthermore

T 2 n T 2
E [(/ (n—Ns)eFS@Z)gdWS“> ] => E (/ 1{Ti>s}efs¢gdwg> ]
0 i=1 0
T T
+ZE [(/ Jl{Ti>S}er¢g dWﬁ) (/ IL{Tj>s}er¢g deﬂ ,
0 0

7]
and by (3.2.1), (3.2.5) and Fubini’s theorem we have that

T 2 n T
( /O 1{T¢>s}efs¢gdwg> ] =ZE[ /0 1{7i>s}€2F$(wé‘)2d8]
=1

T

n

Y E

i=1

n_ T
= Z/ E [E[]l{-ri>s} EAC (1/’5)2} ds = nE [/
=170 0
as well as
r r r r
ZE [(/0 ]]'{Ti>8}e S¢g dW;) (/0 ]]'{Tj>s}e swé dW5>‘|

i#]

T
=> E [/0 LirissyLirissye * (¥4)° dS]
i#]

el () ds] ,

; - 0 E E ]'{T >3} {T-7>S} s)€ s S E 0 s S| .
Ilellce

M 2
E </OT(n—Ns)er¢gdW5> ] — nE [/Ters(q/}g‘)st

+(n?—n)E VOTW)Q ds| .

0

Be;ides that
WA, 2 n T \ 2 T A T A\
— i i J
E _</0 Cdes> ] izglE [(/0 Cde5> —I—i;j]E l(/o Cde5> </0 Cde5>_

and since M* and M/ are strongly orthogonal for i # j, by Proposition 4.15 in
Chapter I of Jacod and Shiryaev [42] it follows that

SR K/OTCSdM;') (/OTcdezﬂ —0,

i#]

hence

T

T e T i - 2
(/0 Gs dMS> = ;E[ 0 G (M >8] = ;/0 E [Csﬂ{fi>s}/15} ds

E
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Putting the results together we obtain that

)

R3() = nE [ [ ey ds] + (= n)E [ [y ds] +nE [ [ e s

0

hence

R§(p T
nh—>Holo \/2() = $]E [/0 (5?2 ds]. (3.3.37)
The analogous results hold for the pure endowment and term insurance contract.
Therefore, in contrast to the setting in Mgller [53], with increasing portfolio size
the hedging error cannot be fully eliminated. As noted already in Barbarin [4] the
non-diversifiable term in (3.3.37) is related to the incompleteness of the market
given by the filtration F.



Chapter 4

Portfolio with Different Age
Cohorts

4.1 Introduction

In this chapter, based on Biagini, Botero, and Schreiber [9], we study the problem
of pricing and hedging life insurance liabilities for the case of an insurance port-
folio that consists of individuals of different age cohorts. In order to capture the
cross-generational dependency structure of the portfolio we model the mortality
intensities as random fields. We also provide specific examples consistent with his-
torical mortality data and correlation structures. The remainder of this chapter is
organized as follows: Section 4.2 introduces the general setup, including the struc-
ture of the insurance portfolio and the financial market. In Section 4.3 we propose
two illustrative examples of intensity field models consistent with characteristics
of typical mortality data. In Section 4.4 we compute risk-minimizing strategies of
the life insurance liabilities at aggregate portfolio level. Section 4.5 then concludes
with specific examples where we compare risk-minimizing strategies and the de-
pendency structure for different intensity field models.

4.2 The Setting

Let T > 0 be a fixed finite time horizon and (2, §,P) a probability space equipped
with a filtration G = (Gt);c(o,r) Which contains all available information. We
define §; = F; V 3, and put § = Gr, where H = (3;),c(o,7] is generated by the
death counting processes of the insurance portfolio (see Subsection 4.2.1). The
background filtration F = (fft)te[o,T] contains all information available except the
information regarding the individual survival times. Here we define F = FX v F#,
where FX is the filtration containing information regarding a risky asset, e.g., a
stock (see Subsection 4.2.2), F* is the filtration containing information regarding
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the mortality intensities (see Subsection 4.2.1) and we assume that FX and F# are
independent. In the subsequent sections we introduce the three components of the
model: the insurance portfolio, the financial market and the combined model.

4.2.1 Insurance Portfolio and Mortality Intensities

We consider an insurance portfolio consisting of n individuals belonging to a set
of age cohorts B = {x1,...,zm} C I, where the interval I = [0, 2*] is assumed to
be a given range of possible ages of individuals at time 0 and z* > 0 is a natural
upper bound for the range of ages considered. Note that m < n, in particular
if m = 1 all individuals belong to the same age cohort, whereas if m = n all
individuals belong to different age cohorts. Similarly as in Biffis and Millossovich
[14] we define a function n° : B — N, such that the quantity n” represents the
number of insureds belonging to the age cohort z, i.e., >/, n* = n. For z € B
and j = 1,...,n% we model the residual lifetime of the j-th insured person within
the age cohort  as a G-stopping time 77 : Q — [0,7] U {oo} and assume that
P(7%J = 0) = 0 and P(7%7 > t) > 0 for t € [0, T]. Note that since the time horizon
T is usually fixed as the maturity of the life insurance liabilities, in order to ensure
that P(7%7 > T) > 0 for x € B and j = 1,...,n% (the remaining lifetimes are not
necessarily bounded by 7T'), it is necessary to allow 7% to take values larger than T,
indicated here by the convention that 7% can assume the value infinity. We define
Hy = VoepHF with HF = HP' V- vV HP™, where H77 = o{ HPI : 0 < s < t}
and H;”? = L ey for t € [0,7], € B and j = 1,...,n". Furthermore we
consider a finite measure ¢ on (B, P(B)), where P(B) denotes the power set of B,
allowing us to differently weight the subsets of B. Then

/B n g(de) = D ¢(a

provides us with the weighted dimension of the portfolio B. The death counting
process associated with the age cohort x € B is given by

nfl'
NP =) 1geicy, t€[0,T), z€B.
j=1
Then the weighted random number of insureds alive at time ¢ in the portfolio is
given by

m n%i

|7 = NEC(de) = 3 P L rngla), 1€ [0.T)
i=1j=1
For z € B and j = 1,...,n* we assume that the times of death 7%/ are to-

tally inaccessible G-stopping times, and an important role is then played by the
conditional distribution function of 7%/, given by

FPI =P(r™ <t|F), te[0,T),
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and we assume th’j < 1forall t € [0,7]. Then the hazard process T*J of 77
I77 = —In(1 — F) = = E[Lesun | T, t€[0,T],

is well-defined for every t € [0, T]. For x € B we define I'* := I'*J for j = 1,...,n%,
i.e., all individuals of the same age cohort have the same hazard process. Moreover,
we assume that I'* admits a mortality intensity p*, i.e.

t
Ff:/ uEds, tel0,T], (4.2.1)
0

where p = (:U't,m)(t,x)e[QT]x 7, is a random field generated by a Brownian sheet
W = (Wia)tw)eo,r)x1> as specified in Appendix C. Note that for ¢t € [0,T] and
x € I we write j;, interchangeably with uf if we want to emphasize that for
fixed x € I we are integrating in the ¢-direction (see, e.g., Lemma 4.3.1). For
t € [0,7] and = € I the natural filtration of the Brownian sheet W is given by
Fip i =0{Wsp:0<s<t, 0<v <z}, and we define F* = (F4')yc(o,7], Where
Fy = {91, 0<z <a*} = Ve Tt For fixed x € I we assume that the process
(1§ )iejo,r) is an affine diffusion process (see also Section 4.3), which facilitates
the related computations in Section 4.4. The process u* represents the mortality
intensity of the age cohort x € I and can be derived by means of publicly available
data of the survivor index

. t
Si" = exp </ s d5> , t€l0,T], z€l. (4.2.2)
0

The need for standardization in the life markets has led to the creation of various
such indices aggregated for different age cohorts and populations by investment
banks. According to Cairns et al. [19] survivor indices can be seen as basic building
blocks for many mortality-linked securities, see also the definition of a longevity
bond for age cohort x € I in Subsection 4.2.2. This modeling approach enables
us to not only capture the dependency structure in the t-direction, but also in the
z-direction and additionally takes into account the cross-generational correlation
of the insurance portfolio. In Section 4.3 we provide explicit specifications for pu
that are consistent with typical characteristics of historical mortality data (see,
e.g., Andreev [2]) in the sense that e.g., for fixed x € I, (yit,2)1c[0,7] is decreasing
in ¢t (downward mortality trend) and for fixed t € [0, T, (ttz)zer is increasing in
T.

Forz,y€ Bandi=1,...,n% j=1,...,nY with (z,7) # (y,j) we also assume

E[lgeisnyLirvissy | F1] = E[lgeisy | Fr] E[L{rvas | I, (4.2.3)

for 0 < s,t < T, i.e., we assume conditional independence for individuals in dif-
ferent age cohorts as well as for individuals within the same age cohort. This
assumption is well-known in the literature of credit risk modeling, see, e.g., Chap-
ter 9 of Bielecki and Rutkowski [12]. All individuals within the insurance portfolio
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are subject to idiosyncratic risk factors, as well as common risk factors, given by
the information within the background filtration F. Intuitively, the assumption of
conditional independence means that if the evolution of all common risk factors is
known, the idiosyncratic risk factors become independent of each other.

4.2.2 The Financial Market

We consider a financial market defined on (€2, G, G, P) consisting of a bank account
or numéraire B with constant short rate r > 0, i.e.

By = exp{rt}, te€][0,T], (4.2.4)

as well as a risky asset, e.g., a stock, with asset price S and a family of longevity
bonds (P*), x € I. We assume that S follows the P-dynamics

Ay = 8y (rdt + o(t, ) W), €0, 7], (4.2.5)

for a Brownian motion WX = (WX Jtelo,r] With Sp = s and we assume that o
satisfies certain regularity conditions that ensure the existence and uniqueness of
a solution to (4.2.5). We denote by X = S/B the discounted asset price, i.e., the
dynamics of X are given by

St

dX;,=d (B) = O'(t, St)Xt thX, t e [O,T] (426)
t

and define FX = (?tX)tE[O v with FX := o{WX : 0 < s < t}. Following Cairns

et al. [19], for x € I we consider the longevity bond P* with maturity T representing
the systematic mortality risk inherent to the life insurance contracts for the age
cohort x, i.e., P* is defined as a zero-coupon bond that pays out the value of the
survivor or longevity index as defined in (4.2.2) at 7. This means the discounted
value process Y* = P?/B is given by

%
Y;’”:E[ST

St] . telo,T), z el (4.2.7)

Thus the discounted asset prices X, (Y?),¢s are (local) (P, F)-martingales, i.e., the
financial market is arbitrage-free and the physical measure P belongs to the set of
equivalent local martingale measures.

4.2.3 The Combined Model

We consider the extended market G = F Vv H = FX v F# v H, such that the
information available in the market at time ¢ € [0,7] is assumed to be §; =
FVH; = S",gx VIV H;. All filtrations are assumed to satisfy the usual hypotheses
of completeness and right-continuity. We postulate that all F-local martingales are
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also G-local martingales, and in the sequel we refer to this hypothesis as Hypothesis
(H). This hypothesis is well-known in the literature on enlargements of filtrations,
for a discussion of this hypothesis we refer to Blanchet-Scalliet and Jeanblanc [18]
and Bielecki and Rutkowski [12, Chapter 6]. In this setting we study unit-linked
life insurance liabilities in form of insurance payment streams as introduced by
Mpgller [54]. It is now widely acknowledged (see, e.g., Barbarin [4], Biffis [13] and
Mpgller [53]) that most payment streams of practical relevance are covered by the
three building blocks pure endowment-, term insurance-, and annuity contracts.
Following Barbarin [4] and Mgller [53], the pure endowment contract consists of a
payoff

m n%i

/ Zf Sr)greisry$(de) = > F(ST)1 eping (i) (4.2.8)

i=1j=1

at time T, where f is a non-negative function fulfilling certain regularity condi-
tions, i.e., the insurer pays the aggregate amount f(S7) to every policyholder in
the portfolio B who has survived until 7', weighted by means of the measure (.
The term insurance contract is defined by the following payoff structure:

/ Zf T:J ]'{7'95]<T}C d.’E ZZ i3 :H'{T z]<T}<(xl) (429)

i.e., the amount f(S. ;) is payed at the time of death 7%/ to policyholder j within
the age cohort z;, i = 1,...,m, j = 1,...,n%. The annuity contract consists of
multiple payoffs as functions of the asset price the insurer has to pay as long as
the policyholders are alive, i.e.,

/B </0T(nx_N§)f(S) ) ini:/ L eniayf(Ss) ds (),

i=1j=1
(4.2.10)
where weighting of the different age cohorts is again enabled through the measure
¢. In the following section we specify examples for the intensity field model intro-
duced in (4.2.1) consistent with characteristics of historical mortality data.

4.3 Intensity Field Model

It is now widely acknowledged (see, e.g., Andreev [2] and Forfar and Smith [37])
that downward mortality trends are not uniform across ages. In this context, mod-
eling mortality intensities by means of random fields as a random surface appears
as a natural modeling choice. This approach enables us to look simultaneously at
the evolution of death probabilities over time for a given age, death probabilities
across all ages at a given time and death probabilities over time for people born in
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the same year. In this section we provide two specific examples of affine intensity
field models for u as defined in (4.2.1), a Gaussian random field (see Subsection
4.3.1) with nice analytical properties and intuitive interpretation, as well as a
x%-random field (see Subsection 4.3.2) that has the advantage of restraining the
mortality intensities to non-negative values.

4.3.1 Gaussian Intensity Field

We define

ptz = f(t,x) + Oy, t€[0,T], x€l, (4.3.1)

where [1 is a deterministic function, differentiable in z and ¢, and O is a space-time
changed Brownian sheet, i.e.,

o

—ot —
Ot,z = \/%6 te O‘“/’W,,l(t)m(x), t e [O,T], T € I, (4.3.2)

with
vi(t) =e*, w(z) =€ te0,T), zel, (4.3.3)

for o, # > 0. In particular here we assume that v : [0,7] — [0,7] and v» : [0, z*] —
[0,2*]. Intuitively, u¢ . fluctuates around the deterministic mortality level . We
would like to obtain a model for p that is consistent with typical characteristics
of historical mortality data, i.e., for fixed =, (pita)iejo,r) 18 decreasing in ¢ and
for fixed t, (f4,2)zer is increasing in z. These properties can be directly imposed
on the deterministic function p(¢,x). For example, ji(t,z) could be given by the
well-known Lee-Carter model (see, e.g., Loisel and Serrant [50]):

a(t,x) = exp (a(z) + b(x)k(t)), te€][0,T], z€l, (4.3.4)

where a is a negative increasing function such that e*®) represents the general
shape of the mortality curve at age x, k is a real-valued decreasing function rep-
resenting the downward trend in time of the logarithm of the force of mortality.
The non-negative function b represents the sensitivity of the logarithm of the force
of mortality at age x to variations in k£ and allows us to model this trend hetero-
geneously over cohorts (see, e.g., Andreev [2]). For example if b is decreasing for
high values of x, it implies that mortality improvement is lower for older ages, as
suggested by Forfar and Smith [37]. Note that for ¢ € [0, T], = € I, we have that

Elut ] = p(t,z), te[0,T], zel,
and by equation (C.0.1) in Appendix C we have
o
200

2
_ Le—e(t—i-s) 629(t/\s)e—a(:c+y) eZoz(a:/\y)
2a0
= U—Qe*(;'tﬂ'e*alz*y' s,t €0, 1), z,yel (4.3.5)
2a0 ) ) b b ) b

COV(,U«t,m Hs,y) _ e 0(t+s) g—a(z+y) Oy (Wyl ()2 (z)> Wyl(s)’w(y))
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as well as
Corr(fit,z, phs,y) = e Olt=sle=alz=vl s 4 € [0,T), x,y €I,

i.e., correlation is positive, symmetric and exponentially declining. The next
lemma provides a stochastic representation of u in the t-direction.

Lemma 4.3.1. For p as defined in (4.3.1) and fivred x € I we have that

t
T = ot z) + e " (uE — @0, z)) + L/ efg(t*s)dW;Q(x), te|0,T],
pi =t x) (g — (0, 2)) 7a Jo [0, 7]

where

W) = il oy e ), (4.3.6)

is a standard Brownian motion. The set (u”),.; is a family of affine diffusion
processes, i.e., for fized x € I the dynamics of (1f)ejo,r) are given by

At =0 K,u(t,x) + W) = “ﬂ dt + %dW;’Q(“), te0,T], (4.3.7)

Proof. Fix z € I and define

- — 9 oty
Otz = Ot7l‘ = %6 Wl/12(t s te [O,T]

Note that here as for the random field p introduced in (4.2.1), for ¢ € [0,7] and
x € I we write Oy, interchangeably with Of, if we want to emphasize that for
fixed x € I we are integrating in the ¢-direction. Then E [Of] = 0 and from (4.3.5)
we have that Cov(Of,07) = %e_e‘t_‘*'. We now show that O is a stationary
Ornstein-Uhlenbeck (OU) process with dynamics
Taw2® telo, 1), (4.3.8)
a

Va

and OF ~ N(0, %) To this end we consider a process O that solves the stocha-

dO? = —0OFdt +

stic differential equation (4.3.8) such that OF ~ N(0, %) It is easily seen (see,
e.g., Example 6.8 in Chapter 5 of Karatzas and Shreve [46]) that O is given by

t
OF = e 008 + L / e~ 0t=s)qwre@ ¢ < [0,T],
ie., E[Of] =0 and

Cov(0F, 0%) = ¢=2049) (2 (20009 _ 1) 4 Var(0g) | = Z—e~01~
b 20« 0 20
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for s,t € [0,T]. Since O* and O® are Gaussian processes with the same covariance
structure, it follows that O* solves (4.3.8) and

t
OF =e %0 + 7 / efg(tfs)dW;’Q(x), t e [0,T],
with Of ~ N(0, o 6) Then by (4.3.1) it follows that

o [t ~
T — n(t,z) 4+ e " (uE — (0, x +—/ e 0s=awr@ ¢ < (0,1,
pi = it o) (g = p(0,2)) + == | [0, 7]
and by (4.3.1), (4.3.8) and Itd’s lemma we get the following dynamics for p*:
= Oji(t, z)dt + dO?
_ at#( ) x o T v2(x)
= ( 7 > ,ut}dth\/ath , tel0,T].
O

In the next lemma we compute the sharp bracket or quadratic covariation process
of u* and p¥ for x, y € I.

Lemma 4.3.2. Let u be given by the Gaussian intensity field model as introduced
n (4.3.1). Then for fived x, y € I the sharp bracket process of u® = (uf)iefo,1]

and p¥ = (1 )rejo,) s given by

e _(ﬁ—alm—ylt t 0.7
</L’:U’>t_ae ) 6[7 ]

Proof. Fix x,y € I and let v5(+) be given as in (4.3.3). For 0 < s <t < T we have
s] _ E[ (th(a:) _ W;/g(x)) (th(y) _ WSI/Q(y)) 8}

+ E[ (th’z(x) _ Wé’z(w)) W) 4 e (thlz(y) _ W:z(@/)) s]

E [wy2 Oy

+E [W£2($)Wé/2(y) ‘:}‘g}
=E KW{’Q(‘B) — WS”2(3?)) (WtW(y) _ W;Q(y))} + wr2@yyraw) (4.3.9)
= t(va(2) A va(y)) — s(va(e) Ava(y)) + WEEWEW), (4.3.10)

where in (4.3.9) we used the fact that, for fixed z € I, w2 s JF¥-measurable

and WtVQ(Z) — w¥*®) is independent of F#, and (4.3.10) is a consequence of the
covariance structure of the Brownian sheet, see also equation (C.0.1) in Appendix
C. Note that here again for ¢t € [0,7] and « € I we write W, , interchangeably
with Wi, It follows that

E [WOWED — t (na(a) A a(y))

g} = WR@WW) g (uy(z) A s(y)),
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i.e., for the two martingales W*2(®) and W*2() introduced in (4.3.6) we have that

gu] — @) _ () A a(y)

V@)

E 1@ e _ @) An)
b va(2)v2(y)

hence by Theorem 4.2 in Section 4 of Jacod and Shiryaev [42, Chapter I] we have
that
<WV2(I)’ WV2(9)> _ VQ(x) A VQ(y) t = e—a|ac—y|t’ (4311)

t Vi(@)n(y)
and by (4.3.7) for fixed z, y € I we obtain that

2
e oy — 7 [yire(@) jire()
</,L a/" >t - a <W 7W >t

2
0" _ole—
_ 9 —aleyly

(07

O]

We would like to conclude this subsection with a short remark on a model drawback
of the Gaussian framework. Mortality intensities are by definition non-negative
processes. Unfortunately, the Gaussian intensity model, although very convenient
due to its simplicity, analytical tractability and intuitive interpretation, allows for
negative values with positive probability. However, although one cannot exclude
negative mortality rates, in practical applications this probability tends to be very
small (see, e.g., Luciano and Vigna [51]), such that the probability of negative
values can usually be considered negligible.

4.3.2 Y*-Field

In order to overcome the drawback of negative mortality intensities, in this sub-
section we model the mortality intensities as a non-negative y?-random field, gen-
erated by a Gaussian random field by means of a positive transformation. We
define

fite = (c(t,x)O02)?, t€[0,T], z €, (4.3.12)

where ¢(t,z) is a continuously differentiable function in both ¢ and x and O is
defined in (4.3.2), t € [0,T], x € I. From (C.0.2) and (C.0.3) in Appendix C we

have that )

g
E ['ut:l”] = 62 (t7 x)COV(Ot,m Ot,x) = C2 (t, x)%v

for t € [0,T] and = € I and

Cov (it 2, pisy) = 2¢2(t, ) (s,y)Cov(Or 1, Os 4)?

0_4

2 2 —20|t—s| ,—2alz—
= 5p2a2¢ (t,2)cP (s, y)e~ 2lt—slg—2alz=yl,
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ie.,

—20|t— —2 -
Corr(ﬂt,xvﬂs,y) — o 20lt—s| 20z y|7

for s,t € [0,7] and z,y € I. In particular, the correlation function of the y2-field
is the square of the correlation function of the Gaussian field, thus featuring the
same properties as discussed in Subsection 4.3.1.

Lemma 4.3.3. For p as defined in (4.3.12) the set (u*),c; is a family of affine
diffusion processes, i.e., for fived x € I the dynamics of (uf)icjo,1] are given by

8tc(t .T}) o? _ 4 5,v2(x)
T _ 9 _ ’ I Y Zog2¢2 d 2 4.3.1
dui (9 c(t,x) ) <2ac(t’x) pe | di o’ c (b 2)urdW, =, (43.13)
— S (tx
fort €10, T], where ¢(t,z) = (ec(m)(_%.

Proof. Fix x € I. By It6’s formula and (4.3.8) we have that

d(e(t, 2)OF) = OF (Bhe(t, x) — e(t, ) dt + %C(t, 2)dW2® e o, ],

and by (4.3.12) it follows that

2
At = d (c(t, 2)0%)? = 2¢(t, £)OFd(c(t, 2)OF) + %c%, 2)dt

_ (202@,9:) (07)? (atc(t’ z) _ e) + ‘iCQ(t,x)> dt

c(t, )
122 2(t, 2) 02w @ teo,T].
\/a ) t t ) ’

The assertion follows by rearranging the terms. O

Lemma 4.3.4. Let uu be given by the x%-intensity field model as introduced in
(4.3.12). Then for fized x, y € I the sharp bracket process of u* = (1§ )iejo,r) and

1Y = (4 )eeo,r is given by

4 2 t
(%), = el [ pte(s, o)els,y) s, te 0.7,

Proof. Fix z,y € I. By (4.3.11) and (4.3.13) we immediately obtain

402 - B
Q" 1), = =elt @)e(t, ) ufd (W), =)

4o° z, Y —ajz—y|
= Hi g c(t,m)c(t,y)e Y dt7 te [OvT]
(67

t
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The function ¢ needs to be specified such that p as defined in (4.3.12) is consistent
with typical characteristics of historical mortality data, e.g., we define

c(t,x) = exp (;[a(m) — k:b(a:)t]) \/20970[, tel0,T], x €l, (4.3.14)

where a and b are given in (4.3.4) and k£ > 0. Then
Eluf] = exp(a(z) — kb(2)t)

and for the mean reversion level we have

% _ O exp(a(x) — kb(x)t
7 ) = Le5plole) - kba))
0+~

)

for the mean reversion speed

2 (o Bty _y (y 100

and for the volatility

4
~o%(t,a)f = \[86 expla(x) — kb(a)D)u,
fort € [0,T], x € I.

4.3.3 Model Comparison

With the notation of Subsections 4.3.1 and 4.3.2, in Table 4.1 we compare the
Gaussian and the y2-intensity field models as specified in (4.3.1), (4.3.12) and
(4.3.14). When comparing (4.3.8) with (4.3.13), we observe that while in the
Gaussian model we have an age- and time dependent mean reversion level with
constant mean reversion speed and volatility, in the y?-intensity field model all
three parameters are age- and time dependent. Both models are affine (see also
Example 4.4.1), thus facilitating the computation of conditional survival proba-
bilities, and allow us to model an inhomogeneous downward mortality trend while
taking into account a realistic dependency structure. In spite of the drawback
of allowing for negative values with positive probability, the Gaussian intensity
model is attractive due to its simplicity and intuitive interpretation.

4.4 Risk-Minimization for Life Insurance Liabilities

Recall that the financial market defined in Subsection 4.2.2 is arbitrage-free, how-
ever, the market is not complete since the times of death occur as a surprise to the
market and hence represent a kind of “orthogonal” risk. Therefore, in this section
in order to find a price and hedging strategy for the insurance payment processes
we make use of a well-known quadratic hedging method for pricing and hedging
in incomplete markets, the risk-minimization approach, a brief review of which is
given in Appendix A. We start with some preliminary results.
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criteria Gaussian intensity field x2-intensity field

affine yes yes

closed form solution yes no

mean reverting yes yes

mean a(t, x) exp(a(x) — kb(x)t)

mean reversion level p(t,x) + Ou(t, ) /0 O exp(a(z) — kb(x)t)/(0 + kb(z)/2)
mean reversion speed 0 2(0 + kb(z)/2)

volatility o/ /80 exp(a(z) — kb(x)t)uf
correlation e Olt—slg—alz—yl e 20lt=slg—2alo—y|
non-negative no yes

Table 4.1: Comparison between the intensity field models

4.4.1 Preliminary Results

Recall that for fixed = € I, u® = (uf)icjo,m) as defined in Section 4.2 is assumed
to be an affine diffusion process (see Appendix B), i.e., u® follows the dynamics

dpuf = 0t uf)dt + o(t, 1) d W, t e (0,7, (4.4.1)
with §(t,7) = do(t) + d1(t)r and o%(¢,7) = vo(t) + v1(t)r =: (oF)2.

Example 4.4.1. Note that for fized x € I both the Gaussian and the x>-field
models are affine. In particular, for the Gaussian intensity model as defined in
(4.3.1) by (4.3.7) we have that

do(t) = 0pu(t, z) + Opju(t,z), di(t) = —0,
2

g

Uo(t) = Ul(t) = 0.

;7
fort €[0,T), z € I. For the x*-intensity model as defined in (4.3.12) by (4.3.13)
we have that

do(t) = = (t,2), dir) =2 (atc(t’ z) _ 9) ,

c(t,z)

forte[0,T], x €.

Lemma 4.4.2. Fizu € [0,T] and x € I. If 4* is an affine diffusion satisfying
(4.4.1), then under the hypothesis of Section 4.2, the process

Z" =Elexp(—T%) | F] = E [exp <_/ Hs ds) ‘?74 ’
0
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t € [0,u], has the following dynamics:
t N
zit =g+ [ ZEvorp e de®, te ) (4.4.2)
where 5% is given by the following differential equation:
1
0f™"(t) = 1 = di(t)B7(t) — () (B7(1)?,  p*(u) =0, (4.4.3)

Proof. Fixu € [0,T] and = € I. Since p” is affine, by equation (B.0.1) in Appendix
B we immediately obtain that

7o = F [e Ji usds ?t} _E [e Ji msds

for t € [0, u], where the functions a®* and ™" are given by

057 (1) = 1= ()57 (1) = {1 (°(0))°, 4™ (w) =0,
00" (1) = ~do()F"(1) — Juolt) (B0, @) =0 (445)

Then by It6’s formula we have that

dZ7" = Z9" (0 (1) + 087" (t)f) dt + 2,7 6™ (¢)duf
Zy" (B7(1)) A (u"),

ppdt + g ($)opd W) (4.4.6)

—

()

+

NN

~T,U
t

as well as
Az = e Mzt — e 20 i dt
= 72 (o d W2t e (0,4,
hence the result follows. O

Lemma 4.4.3. Fiz u € [0,T] and x € I. If u* is an affine diffusion satisfying
(4.4.1), then under the hypothesis of Section 4.2, the process

— u
zZP=F [exp (—/ 7 ds) e
0

has the following dynamics:

sﬂ, te (0,4,

_ _ t N ~ -
ZP = 75" + / Z3ha% |37 (s) 25 + B ()| W), te(0,u],  (447)
0
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where Z&¥ is given by

Z5" = 5N (t) 4+ BP () uE,  te [0, ul, (4.4.8)

u

and &% and B are given by the following differential equations:

DBT(t) = —dy ()BT () — B=" (DB (t)vr (1),  B™"(u) =1,
QG (L) = —do(£) 37 () — B (DB (Hywo(t),  a""(u) =0,

and Z%% and %" are given by (4.4.2) and (4.4.3).

(4.4.9)

Proof. Fixu € [0,T] and z € I. Since u” is affine, by equation (B.0.1) in Appendix
B we immediately obtain that

E [eft peds o

5| =202, e
where Z" is given in (4.4.4) and

27" = 6P + B0, e [0l

with

N

™ (1) = —do ()37 (1) = B (1) (E)uo (1),

Then, again by an application of It6’s formula we obtain

OB™ (1) = —dr (H)B™" (1) — B ()" (Bor (1), BT (w) =

AZ" = (6 () + 0™ (t)uf ) dt + A7 (t)dpsf
= B (t)of (67 (1)oFdt + AW (4.4.10)

and by (4.4.6) and (4.4.10) we have

d(ZPMZPY) = ZPHaZyt + ZPMAZEt + d <Z“ z

t
2P Bm (#)of (=7 (#)otdt + )
+ 27 20 (updt + BT (@)opd W) 20 (of)? BR () B ()t
ot (2 e+ of (2087 (1) + B (1)) aw= ),

hence we obtain that
AZ7" = e TRA(ZP 2 — e TP P gt
= Zptor (20570 + B (1) WY, e [0,u),

and the result follows. O
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Remark 4.4.4. For the Gaussian field model as specified in (4.3.1) and (4.3.7),

for fized w € [0,T] and x € I we can easily compute the functions o™, 5%, &=
and B%% analytically. The closed forms for a®% and %" are given by
—O(u—t) _ 1
BE(t) = %, (4.4.11)

a(t) = [ 370(s) (Onts. ) + Oui(s,0) + s 9)ds. (1412)

fort €[0,u], as it can easily be verified by substitution in (4.4.3) and (4.4.5). The
closed forms for &™" and %" are given by

l@z,u —0(u— t)

/ 5(s) (1(s,2) + Duils )+ =5"(5) ) d

Va

fort € [0,u]. For the x?-field model in (4.3.12) if ¢ is a function of age only, i.e.,
c(t,x) = c(z), we obtain the well-known time-homogeneous Cox-Ingersoll-Ross
model for u® for any given fized x, and o®%, %%, &*" and BEv gre explicitly
computable (see Coz et al. [24]). In general, if the model has time-dependent
parameters no closed form solutions are available (see Heath et al. [40] and Hull
and White [41]) and the differential equations determining o®*, %% &™" and
/3’“3’“ have to be solved by using numerical methods.

In the following we calculate the prices and hedging strategies of the insurance pay-
ment streams introduced in (4.2.8) - (4.2.10) by means of the risk-minimization
approach (see Appendix A). An important role is played by the G-(local) martin-
gales

tATTid

MF = gEed and M =Y M, (4.4.13)

as well as

L?ﬂj AMZd =1 — / oS! dMZ3 | (4.4.14)

L7 = 1w gope =1
t {r%iI >t} 10,4

10,]
fort € [0,T],i=1,...,m, 7 =1,...,n" (see, e.g., Chapter 5 and Chapter 9 of
Bielecki and Rutkowski [12]). Recall that we consider unit-linked life insurance
products, i.e., the insurance liabilities defined in (4.2.8) - (4.2.10) are given in
terms of a non-negative Borel measurable function f(S;) of the asset price St,

€ [0,T]. Then following Mgller [53] for fixed u € [0,7] the arbitrage-free price
process

FU(t, ) = E [exp (=7 (u— 1)) £(S,)|57], t€[0,u), (4.4.15)
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associated with the payoff f(S,) at time u can be be characterized by the partial
differential equation

1
—rFU(t5) + F'(ts) + rsFY (L s) + 5ot 8)2s?F(t,s) = 0, (4.4.16)

with boundary value F“(u,s) = f(s), where we denote by F}'(t,s), F¥(t,s) and
F(t, s) the partial first and second order derivatives of F'* with respect to ¢ and
s. Also recall that we assume that trading in the (discounted) risky asset X
introduced in (4.2.6), as well as in the family of (discounted) longevity bonds Y%,
x € I, defined in (4.2.7) is possible (see Subsection 4.2.2). However, the insurance
portfolio introduced in Subsection 4.2.1 only consists of individuals belonging to
the age cohorts {x1,...,2,} C I. Therefore, the risk-minimizing strategies will
be given in terms of investments in X as well as the portfolio of longevity bonds
Y ;= (Y*,...,Y") corresponding to the age cohorts 1, ..., x,, of the insurance
portfolio, see, e.g., (4.4.18) and (4.4.19). In the following, we denote by f(f £ dYs =

A fg € dYZi, for any m-dimensional G-predictable process £ = (£1,...,&™), as
well as €Y 1= 3" YT,

4.4.2 Pure Endowment Contract

For the pure endowment contract introduced in (4.2.8) we define the payment
process

x

Af = (B:) ZlC(ﬂfz) Zl ]]'{Tzi’j>t}]]'{t:T}7 t e [O’CZ—']7 (4417)
1= 1=

where f: Ry — Ry is a Borel measurable function such that
E |f(Sr)?] < oo.

Proposition 4.4.5. In the setting of Section 4.2 the payment process AP¢ intro-
duced in (4.4.17) admits a risk-minimizing strategy ¢ = (£,€%) = (6X,£Y,€0) with
discounted value process

t t
VE(e) = BLAE | Sol + | € X, + [ € av,+ Li - AP
0 0
and
&=V - X-& "
for t € [0,T], where the investment in the (discounted) risky asset X is given by
& = FT(t,5) . C(ai)(n® — Nz, (4.4.18)

=1
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and the investment in the family of (discounted) longevity bonds Y = (Y*1 ..., Y*m)

isgiven byég/:(gle,, tY'zm)’ thh
& = FT(t, )" T=0¢ (a;) (n — NFo)elt, (4.4.19)
and m T
F*(5,85) roi . .
e — _ ) / £ \HPs) T Zwl,Tdez
! Zz::lg(Il) 0. Bs € s s

t € [0,7T], where FT(t,8), FL(t,8), Z" and MF are defined in (4.4.2),
(4.4.13), (4.4.15) and (4.4.16). The optimal cost and risk processes are given
by

CE(p)
R ()

E[AT | ol + LT,
E[(LF — LY)* | Si],

fort €10,T].
Proof. Let t € [0,T]. Then we have that

E[AY G =D ¢z) - I,
i=1 j=1

where

g S
JI—E {f;TTH{T%bT} | 9t] , (4.4.20)
for t € [0,7], i =1,...,m, j = 1,...,n%. By Proposition 4.10 and 5.11 of
Barbarin [4, Chapter 3|, as well as Corollary 5.1.1 of Bielecki and Rutkowski [12]
and (4.2.3) we have

g t . o .
JH = ygire +/ LE3 qUEipe — oo Uszvi,peer dMTid, (4.4.21)
0 0,

where M7 and LY are defined in (4.4.13) and (4.4.14) and
f(S7) e IT

Br

fort€[0,T],i=1,...,m,j=1,...,n". By the independence of the underlying
driving processes we have

U .=E

3~t:|7

zi,pe f(ST) . o f(ST) X —T wl FT(t7St) zi, T

U —E{BT e Tr 33] _E[ o || E [T | 57] =5 A
for t € [0,7] and ¢ = 1,...,m. By (4.2.5) - (4.2.6), (4.4.15) - (4.4.16) and Itd’s
formula the discounted arbitrage-free price process %tt’st), t € 10,71, follows the

dynamics

FT(t,5)\ _ r X _ T
d 7_8 = Fs (t, St)O'(t, St)Xt th = Fs (t,St) dXt, te [O,T],
t
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and by (4.4.2) and integration by parts we obtain that

Utzi,pe _ Ugi’pe+/t Z;Ui’Td (FT(Bf, Ss)) +/t FT(;, SS) dZSmi,T
0 s 0 s

t
=Uy"P* + / Z%TFT (5, 85)0(s,85) X dWX
0
t pT -
+ / (1;7 Ss) gailt g g () qiiated) (4.4.22)
0 s

for t € [0,T], i = 1,...,m. By Lemma 4.4.2 we have that for each x € I the
dynamics of the (discounted) longevity bond with maturity 7' associated to the
age cohort z as defined in (4.2.7) are given by
Z:B,T R
dyy = é—afﬁ"”’T(t)deQ(m), te[0,7]. (4.4.23)
T

Hence by (4.2.6) and (4.4.23) we obtain that

T

EIAT |G =Y C(x) Y FT(0, So)Zg"
i—1 j=1
m t o
+5 ¢ () / (n% — N#)eLs FT (s, 85) 25T o (s, S) Xy AWX
i=1 0
m t z; FT § -
#30¢C) [ e Nzt T gt gt (g arire 4 e
i=1 0 Bs
m t t
= FT(0,80) Y Clanm 25" + [ X ax,+ [ & avi+ 2, (4.4.24)
i=1 0 0

for t € [0,T], where the investment in the (discounted) risky asset X is given by

m .
& = FI(t,8) > C(ay)(n™ — Nl Z7oT,
=1

and the investment in the family of (discounted) longevity bonds Y = (Y*1,... Y*m)

is given by & = (&"",..., &), with

U= FT (4 S)e T () (n” = Nl

and
% FT(s, ;)

L = —ZC(%‘)/

el's' zzT qp i
S s
= 10,1] B;

t € [0,T]. It remains to prove that (4.4.24) is indeed the GKW decomposition
of E[A% | G¢], t € [0,T]. To this end define S = (X,Y) = (X,Y?,...,Y®") and
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¢ = (£%,€"). Note that since E[f(S7)? < oo and (4.2.4) holds, for i = 1,..,m

and j = 1,...,n% we have that J¥ introduced in (4.4.20) is a square integrable
martingale, hence E[[J%¥]7] < oo, and from (4.4.21) it follows that

T .
E [ | wsenzaee),
0

T v A
, IE[ / (UZPeeT SN2 A, | < 00, (4.4.25)
0

because d[U%P¢, M), = 0, t € [0, ] 1=1,...,mand j=1,...,n%. Since for
i=1,...,m, dWX W@, =0, te[0,T], because WX and W*2(#) are inde-
pendent, by (4.4.22), (4.4.24) and (4.4.25) and by the Kunita-Watanabe Inequality
(see, e.g., Theorem 25 in Chapter I1.6 of Protter [56]), we obtain that

T —
Euéﬂ%@

i.e., £ € L2(S) (see Definition A.0.3 in Appendix A) and LP€ is a square integrable
martingale. Since LP¢ is strongly orthogonal to all continuous F-local martingales,

it follows that .
(/ ésdss) SLPY te 0,7,
0

is a (uniformly integrable) martingale for any € € L*(S), i.e., (4.4.24) is the GKW
decomposition of E[AY | G, t € [0,T] (see equation (A.0.2) in Appendix A). [

< oo and E[[L)r] < oo,

4.4.3 Term Insurance Contract

For the term insurance contract introduced in (4.2.9) we define the payment pro-
cess

T,

Ail — Z((xl Z f T4 J ]-{Twingt}n t e [OvTL (4426)
7j=1

where f: Ry — R, is a Borel measurable function such that

< oQ.

E [ sup f(S;)?

te[0,T]

Proposition 4.4.6. In the setting of Section 4.2 the payment process A% intro-
duced in (4.4.26) admits a risk-minimizing strateqy o = (£,€9) = (£X,€Y,€%) with
discounted value process

. . t t . .
V(o) = BLAR ol + [ € aXo+ [ & avi4 Ly - At

and

& =Vlip)—&X - & Y
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for t € [0,T], where the investment in the (discounted) risky asset X is given by
m
6 =3 cledr NV [z s du
i=1

and the investment in the family of (discounted) longevity bonds Y = (Y*1 ..., Y*m)
is given by £ = (€Y', ..., &™), with

T
eF

Y% _ i i
i =C(z)(n" =Ny )W

/ FU(t, )25 (67" (0 25" +57" (1)) du,

& S, T f(Su) 1o _poi o .

t € [0,T), where FU(t,S,), Fu(t,Sy), B¥u(t), Briv(t), ZF", ZF", ZF" and M
are defined in (4.4.2) - (4.4.3), (4.4.7) - (4.4.9), (4.4. 13) and (4.4. 15) (4.4. 16)
The optimal cost and risk processes are given by

and

Ci'(¢) = E[A7 | So + Lf',
Ri'(¢) = E[(LT — L")*| G,

forte[0,T].

Proof. Let t € [0,T]. Then we have that

[ ‘975 Z ZE{ B )1{721<T}’9t}7
=1 7=1 T4

and by Proposition 4.11 and 5.12 of Barbarin [4, Chapter 3|, as well as Corollary
5.1.3 of Bielecki and Rutkowski [12] and (4.2.3) we have

S 2, _’E i z T;,t1
E|:f( T ZJ)]].{T ZJ<T}‘9t:| = it +/ L I’JdU st

BTJ:Z-,j
+/ < [/ f Fl ree Fmi §S]> dM:i’j,
10,2]

and
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fort € [0,T]andi=1,...,m,j=1,...,n"% where we have used Fubini’s theorem
and the independence of the underlying driving processes. By the same arguments
as in the proof of Proposition 4.4.5 we have that

/52

t
t ] — F(0,5,) + /0 F2(s,83)0(5, 8) XaLyeny AW
for 0 <t, uw < T, where F“(u,S,) = f(Sy). Furthermore by (4.4.7) we have

invu — ]E *Fii X4
t - € Moy

:Tﬂ
_ t N N -
= Zgt o [z (BT 23 4 ()] T AW,
0

for0<t,u<Tandi=1,...,m, where %", ﬁA‘”i’”, Z%i and % are given in
(4.4.2), (4.4.3) and (4.4.8) - (4.4.9). Then for u € [0,7] by integration by parts
we obtain that

FU(t,S)
By

t u Ss , ' . . - ) |
- / (];’)Z;: oL (BT () 28 4 BT(S) ) Decuy AW, L [0,T),
0 s =

— = t —~
Z{ = F(0,5) %" +/0 Z3UFL (5, 85)0 (5, 85) XsLfscuy AW

Since all integrands are continuous (see Theorem 15 in Chapter IV of Protter [56]),
by the stochastic Fubini theorem (see, e.g., Theorem 65 in Chapter IV of Protter
[56]) and integration by parts we obtain

. T - ¢ T ~
Utx"’“:/ F“(O,SO)Zgi’"du—i—/ U(S,SS)XS/ F;‘(s,Ss)Zfi’“dudW;)(
0 0
to.:ci T N ’ ~ ~
+/ B, / FU(s, 8:) 25" (57 (5) 25" + B7(s)) dud W20
—/ (0, So) Zx’udu—i—/ / F¥(s,85)Z%" dud X,

t T‘(T s R R
—I—/ —/ FY(s,8) 250" (B*" (s) 220" + f¥%(s)) dudY?,
e )ZEH(§H () 25 4 ()

t € [0, T, where in the second equation we have used (4.2.6) and (4.4.23). Finally,
we obtain that

. , t ¢ .
E[A% | G,] = E[A% | o] + /0 eXdX, + /0 & ay, + LY, (4.4.27)

for t € [0,T], where the investment in the (discounted) risky asset X is given by

i=1
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and the investment in the family of (discounted) longevity bonds Y = (Y*1,..., Y *m)

is given by & = (&"",..., &), with
Y*i ; i eF r{T=) Ti,U T ALy
) 1:<xx»@ﬂt—N@ﬂ2¢%ﬁxh/ F(t, S0) 28 (1) 22+ 570 (1) s,

and

ti __ S . f(S ) . T f(SU) R z; T;
Lt _;qm/]o,q< 5 E[/ B¢ dre 9]) dMZi,

€ [0,7]. By the same arguments as in the proof of Proposition 4.4.5 we obtain
that the terms in (4.4.27) are square integrable and strongly orthogonal, hence
(4.4.27) is indeed the GKW decomposition of E[A%|G,], t € [0, 7). O

4.4.4 Annuity Contract

For the annuity contract introduced in (4.2.10) we define the payment process

. e kL £(Ss
Al = ZC(xi)Z/O 11{Tzi,j>5}(Bs)ds, t e (0,7, (4.4.28)
i=1 j=1

where f: Ry — R, is a Borel measurable function such that

Ekwfwﬁ

t€[0,T]

Proposition 4.4.7. In the setting of Section 4.2 the payment process A% intro-
duced in (4.4.28) admits a risk-minimizing strategy ¢ = (£,£%) = (6X,£Y,€0) with
discounted value process

t t
Vi (p) = E[AT | So] +/ & dX, +/ ¢Ydy, + L¢ — A9,
0 0

and
§=Vle) - X —¢ %
for t € [0,T], where the investment in the (discounted) risky asset X is given by

m

& =3 cledr NV [z s au
i=1
and the investment in the family of (discounted) longevity bonds Y = (Y*1, ..., Y*m)
is given by & = (¥, ..., & mm), with

. 6 r(T t)

i i Z;

p = () (0™ = N e —
t ﬁ 19

/Ft& VZ7 5 1) du
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and

_ m T f(Su) Fiiffﬁi .
_ZZIC(x’L)/]\OJ]E[/S Tue du‘ffs dMs ,

t € [0,7T], where F“(t,Sy), F&(t,St), B¥"(t), Z,"" and M are defined in (4.4.2)
- (4.4.3), (4.4.13) and (4.4.15) - (4.4.16). The optzmal cost and risk processes are
given by

Ci () = E[AT | Sol + LY,
Ri(p) = E[(L} — L{)?| Gl

forte[0,T].

Proof. Let t € [0,T]. Then we have that

[A |9 LL’rL E[ szﬂs 9‘|7
T1Jt Zz:l Z / { >}B ‘t

and by Proposition 4.12 and 5.13 of Barbarin [4, Chapter 3], as well as Proposition
5.1.2 of Bielecki and Rutkowski [12] and (4.2.3) we have

f w a ¢ x;,] Z;,a
/ Lireiins) g ’9t = Uo" +/0 Ly AUy
_/ E [/ Merii—rii du ‘ 3:81 dMSm"’j,
10,4] s By
and
Ut El/ f ’-rft]
:/ E sﬂﬂz[e—“
0

fort € [0,T]andi=1,...,m,j=1,...,n%, where we have used Fubini’s theorem
and the independence of the underlying driving processes. We proceed similarly
as in the proof of Proposition 4.4.6. By (4.4.2) we have that

t] du,

Zp =E e T

t ~
t} zz(ﬂ)ci,u+/ ZSZ'iaUO.gJi/8$i7u(s)l{sgu}dWSV2($i)7
0

for 0 <t,u <T andi=1,...,m, where %" is given in (4.4.3). Then by the
stochastic Fubini theorem (see, e.g., Theorem 65 in Chapter IV of Protter [56])
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and again by integration by parts we obtain

T t T
Uit = / F™(0, 80) Zg"" du + / a(s,55) Xs / F(s,85) 28" dudW*
0 0 s

t g% T ~
+ / 5 / FU(s, Ss) ZZ1" B (s) du dW =)
0 s Js

T t pT
:/ F“(o,so)zg““dw// F(s, 8,) 75" du d X,
0 0 Js

t er(T—s) T
—I—/ —/ FY(s,85) 250" 5%"(s) dudYr?,
0 5T pmT(s) Js (5, 5%) ®)

where in the second equation we have used (4.2.6) and (4.4.23). Finally, we obtain
that

t X t Y
E[A4% | 9] = E[4% |90 + [ & dX,+ [ & av+Lp (4.4.29)

for t € [0,T], where the investment in the (discounted) risky asset X is given by
m v T
6 = Y Gl = NP [1 2 R S du,
i=1 t

and the investment in the family of (discounted) longevity bonds Y = (Y*1,... Y *m)
is given by £ = (&¥"™",..., &™), with

el"fi er(T—t

: | ) e
I = )t = N 5 Frs)z s du

A

and

a . T f(Su) J IS T;

LY = —Z{(mi)/ E / et T du(ffs dM%i,
=1 10,t] s u

t € [0, T]. By the same arguments as in the proofs of Propositions 4.4.5 and 4.4.6

we obtain that the terms in (4.4.29) are square integrable and strongly orthogonal,

hence (4.4.29) is indeed the GKW decomposition of E[A$ | 9], ¢ € [0,T]. O

Note that Proposition 5.1.2 and Corollary 5.1.3 of Bielecki and Rutkowski [12]
requires the process f(S;), t € [0,7], to be bounded. However, it can be easily
seen that this result also holds if E[supycjo 7y f (S1)?] < co and we may therefore
apply it in our setting.

4.5 Examples

We consider the two natural extreme cases of cohort dependency in a portfolio
of pure endowment contracts: one portfolio in which all individuals belong to
different age cohorts and one where all individuals belong to the same age cohort.
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Example 4.5.1. Consider a portfolio of pure endowment contracts as defined in
(4.2.8) and let m = n, i.e., all individuals belong to different cohort classes. We
write 7% = 7%l and M* = M%! for i = 1,...,n and assume that ((z;) = 1
fori=1,...,n, i.e., all classes are equally weighted. Then from (4.4.18) we have
that the investment in the (discounted) risky asset X is given by

X = Fy(t,9) Y Lipeispet Z80T, (4.5.1)
=1

and by (4.4.19) the investment in the family of (discounted) longevity bonds Y =
(Y*r, ..., Y®) is given by

& =& with &7 = F(,S)er T Ve spelt, (45.2)

fort € [0,T), i = 1,...,n, where I'}?, Zfi’T and F(t,Sy) are given in (4.2.1),
(4.4.2) and (4.4.1%). Note that in equations (4.5.1) and (4.5.2) the processes I'}" =
fg ptids and Z;"", t € [0,T], depend on the specification of the intensity process
(Ntxi)te[O,T}- For example, in the case of the Gaussian intensity field defined in
(4.3.1) we have that

Zg?z‘,T e fot Miidsea”i’T(t)-‘rﬂri’T(t)Ofi’ te [O,T],

where p*i, 0%, o1 and B%1 are given in (4.3.1), (4.3.2), (4.4.12) and (4.4.11),

as well as
—9\t—s|€—a|xi—m]~|,

Corr(pis 4, , ,uS’xj) =e
where t, s € [0,T] and i,j =1,...,n. For the x*-field defined in (4.3.12) we have
x;, T

where p*i is given in (4.3.12). Recall that in this case in general the functions o
and %1 cannot be explicitly computed (see also Remark 4.4.4). Furthermore

—20|t—s| —2alz;—x;
COrP{jit oy, o) = €201l 20lei=

where t,s € [0,T) and i,j5 =1,...,n.

Example 4.5.2. Consider a portfolio of pure endowment contracts as defined in
(4.2.8). Let m = 1 with B = {x} and n® = n, i.e., all individuals belong to the
same age cohort, and assume ((x) = 1. Then from Proposition 4.4.5 we have that
the investment in the (discounted) risky asset X is given by

& = Fo(t, S)(n" — Nf)e'i 27T,
and the investment in the (discounted) longevity bond Y* is given by

Y= (b, 5)e T (0 — N)e't
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fort € [0,T]. In the case of the Gaussian intensity field defined in (4.3.1) we have

COT’T'(/,Lt7x7 ,us,x) - 679‘t78|7
for the x?-field defined in (4.3.12) we have
Corr(lut,xa /UJS,x) — 6_20“_8‘7

fort, s €1[0,T].
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Appendix A

Risk-Minimization for Payment
Processes

The (local) risk-minimization method is a quadratic hedging approach that was
first introduced by Follmer and Sondermann [36] in the case of European type
contingent claims and later extended to the case of payment processes by Mgller
[54] and later Schweizer [59] and Barbarin [4, Chapter 4]. In this section of the ap-
pendix for the readers convenience we briefly review all aspects of the theoretical
background that are relevant for our purposes. Note that this borrows extensively
from Mpgller [54] and Schweizer [58].

For a finite time horizon T' > 0 consider a financial market defined on a filtered
probability space (2, F,F,P), where F = (F})yc[o,7) fulfills the usual conditions,
consisting of one risk-free asset or numéraire B = (By)e(o,7), as well as d risky
assets S¢ = (Sf)te[o,Tp i =1,...,d. We denote by X = (X1, ..., X% the di-
scounted asset prices, where X' = S'/B, i = 1,...,d, and we assume that X
is a local P-martingale. In particular we assume that the market is arbitrage-
free and we are working under a risk-neutral measure, i.e., the measure P itself
belongs to the set of equivalent local martingale measures. In this setting we
would like to find a hedging strategy for an F-adapted, square integrable pay-
ment process A = (At)te[O,T]a representing cumulative discounted payments up to
time ¢, t € [0,7]. Since the market is not necessarily complete, it is in general
not possible to find a self-financing hedging strategy that perfectly replicates the
payment process A. In this context the idea of risk-minimization is to relax the
self-financing assumption, allowing for a wider class of admissible strategies, and
to find an optimal hedging strategy with “minimal risk” within this class of strate-
gies that perfectly replicates A. In the following we now explain how to find the
risk-minimizing strategy and explain in what sense this strategy is optimal. We
begin with some definitions.

Definition A.0.3. An L>-strategy is a pair o = (£,€0) = (¢1,...,&%,€9), such

77
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that € = (&1, ...,€%) is a d-dimensional process belonging to L?(X), with

1/2
L*(X) = {f ‘ & F-predictable, (E [/ngd[X,X]S§S]> < oo} ,
0

and &9 is a real-valued F-adapted process, such that the discounted value process

d
Vilp) =& - X+ & =Y & X +&, te0,T],
i=1

is right-continuous and square integrable.

For an L2-strategy ¢ the discounted (cumulative) cost process C(yp) is defined as
t
Cily) =Vilo) — | &dXo+ 4, te 0T,

where fg £dX, =34, fg €1 dX¢, describing the accumulated costs of the trad-
ing strategy ¢ during [0,¢] including the payments A;. Note that V;(y) should
therefore be interpreted as the discounted value of the portfolio ¢; held at time
t after the payments A; have been made. In particular, Vp(p) is the value of
the portfolio upon settlement of all liabilities, and a natural condition is then to
restrict to 0-admissible strategies satisfying

Vr(e) =0 P-as.

The risk process of ¢ is given by the conditional expected value of the squared
future costs
Ri(¢p) = E[(Cr(p) — Culp)* |F], te[0,T], (A.0.1)

and is taken as a measure of the hedger’s remaining risk. We would like to find a
trading strategy that minimizes the risk in a sense we define now.

Definition A.0.4. An L2-strateqy o = (&,£°) is_called risk-minimizing for the
payment stream A, if for any L*-strategy @ = (€,£°) such that V(@) = Vr(p) =
0 P-a.s., we have

Rt(‘P) < Rt(¢)7 te [OvTL
i.e., @ pointwise minimizes the risk process introduced in (A.0.1).

The key to finding the strategy with minimal risk is the well-known Galtchouk-
Kunita-Watanabe (GKW) decomposition, see Ansel and Stricker [3]. Since A is
square integrable, the expected accumulated total payments may be decomposed
by use of the GKW decomposition as

E[Ar |F,] = E[Ar | Fo] + /] XL teloT) (A.0.2)
0,
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where ¢4 € L?(X) and LA is a square integrable martingale null at 0 that is
strongly orthogonal to the space of stochastic integrals with respect to X

7x) = { [wax|ve 2},

ie., for v € L*(X), L{* [ dX, t € [0,T), is a (uniformly integrable) martingale.

Theorem A.0.5. There exists a unique 0-admissible risk-minimizing L?-strategy
¢ =(£,€"), given by

gt = éiAa
& = Vile) — & - X4,

with discounted value process
Vi(o) = E[A7 | F)] — A = E[Ar | Fo] + /]O G XL = Ay

discounted optimal cost process
Ci(yp) = E[Ar | Fo] + L' = Colp) + L,
and minimal risk process
Ri(p) = E[(L7 — L{")? | F4),
t €10,T], where €4 and LA are given by (A.0.2).

Proof. See Schweizer [58] for the single payoff case or Mgller [54] and Schweizer
[59] for the extension to the case of payment streams. O

Note that the preceding approach relies heavily on the fact that the discounted
asset prices are local martingales under the original measure P. In a more general
setting, when the discounted asset price is merely required to be a semimartingale
under P, one finds the price by following the local risk-minimization technique,
see Schweizer [59] or Barbarin [4, Chapter 4]. For more information on (local)
risk-minimization and other quadratic hedging approaches we would like to refer
the interested reader to the survey paper of Schweizer [58].
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Appendix B

Affine Diffusion Processes

In this section of the appendix we give a brief review of some aspects of the
theory of affine processes that are relevant for this work. Note that this borrows
extensively from Section 3 and Appendix A of Biffis [13]. We would also like to
refer the interested reader to Duffie et al. [32] and Filipovi¢ and Mayerhofer [35].
An affine diffusion process X = (Xi);c(o,r) With values in R” is a Markov process
defined on a filtered probability space (2, F,F,P), where F = (F;).¢(o 7y fulfills the
usual conditions, solving (in the strong sense) the stochastic differential equation

dXt = 5(t,Xt) dt+0’(t,Xt) th, t e [O,T],

where W is an n-dimensional standard Brownian motion, and (¢, X;) and o (¢, X;)
are “affine” in X in the sense that

5(t,7) = do(t) + da (),
where dp : [0,7] — R™ and d; : [0,7] — R™*™ are continuous functions and
(o(t,2)a(t,z));; = (o(t))ij + (vr(B); 2, 5 =1,....m,

for continuous functions vy : [0,7] — R™™ and vy : [0,T] — R™*™*™, Let ¢ € C,
a,b e C" and

A(t,x) = Xo(t) + M1 (t)'z,

for Ao : [0,7] — R and Ay : [0,7] — R™ continuous. Under certain technical
conditions (see, e.g., Duffie et al. [31]) for 0 < ¢ < u < T the following expression
holds:

E e ftu A(S,Xs)dsea'Xu (b’Xu + C) ’ f}'t:| = ea"(t)+ﬁ“(t)’Xt [du(t) + Bu(t)/Xt}
(B.0.1)
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where o and 5% are functions uniquely solving the following ordinary differential
equations:

DUB"(1) = M () — i (15" (1) — 8" (1) 0a ()5 1),
010" (1) = Nolt) — do(B) 5" (1) — 3 5*(1)vo (1) 5" (1),

and &* and B* are functions uniquely solving the following ordinary differential
equations:

0" (1) = —di (1) B(£) — B(t) w1 (£) 5 (¢),
0 () = —do(t)' B*(t) — B() vo(t) B (1),

for t € [0,u] with boundary conditions a®(u) = 0, f%(u) = a and [%(u) = b,

a*(u) = c.



Appendix C

Random Fields

In this section of the appendix for the readers convenience we give a brief overview
of the theoretical concepts of the theory of random fields that are relevant for
our purposes. Note that this borrows extensively from Section 2 of Biffis and
Millossovich [14]. A standard reference is Adler [1].

A real-valued random field is a collection of random variables (X;):cr, with index
set I C RV, defined on a probability space (Q,F,P) together with a collection of
distribution functions

Ftl,...,tn(b:h' . 7bn) - P(th S bla" '7th S bn)7

formeN, b e R, t; € I,i=1,...,n. Given a square integrable random field
X = (Xt)ter, the mean function is defined as m(t) = E[Xy], t € I, and the co-
variance function is defined as ¢(s,t) = Cov (Xg, X¢), s,t € I. A square integrable
random field X is homogeneous or stationary if the mean function is independent
of t, i.e., m(t) = m, t € I, and the covariance function c(s,t) is a function of ¢t — s,
s,t € I, only. In this case we write ¢(h) = ¢(0,h) for h € I.

A Gaussian random field is a random field where all finite-dimensional distribu-
tions F}, . t., n € N are multivariate normal. Note that a Gaussian random field
is completely determined by specifying its mean and covariance functions, and it
is well known that given any function m : I — R and a symmetric non-negative
definite function ¢ : I x I — R, it is always possible to construct a Gaussian ran-
dom field for which m and c are the mean and covariance function, respectively.
A Brownian sheet is the natural generalization of a Brownian motion to a multi-
dimensional index set and is defined as the continuous version of a centered Gaus-
sian field W = (Wt)teRf with covariance function

N
c(s,t) = H (si Ntj), t=(t1,....ty), s=(s1,...,sn) € RV, (C.0.1)
i=1

In particular we have that for each i = 1,..., N and fixed ¢;, j # 4, the process

~1/2 . . .
(H#i - th,...,ti,...,tzv) is a standard Brownian motion.
7 t;€R4
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In many practical applications such as interest rate or credit risk modeling one is
often interested in random fields with non-negative values. In this context x2-fields
as positive transformations of Gaussian random fields have obtained increasing
popularity. A x2-field Y = (Y;)te; with parameter n € N is defined as

Y;:(Ztl)2++(zgl)2¢ tGI,

where Z',...,Z" are independent, stationary centered Gaussian random fields
with common covariance function c(h), h € I, and variance ¢(0) = 2. For each
t € I, the random variable Y; has y2-distribution with n degrees of freedom. It is

easily seen that
E[Y;] =no?, tel, (C.0.2)

the covariance structure of Y is given by
Cov(Ys,Y;) = 2nc?(s,t)  and  Var(Y;) = 2no?, (C.0.3)

for s,t € I, where c(s,t) is the covariance function of the Gaussian fields Z¢,
i=1,...,n (see, e.g., Adler [1]). Note that Y is stationary as a consequence of
the stationarity of the Gaussian fields Z*, i =1,...,n.
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