Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München

Protonierte Schwefelsäuren

von Mathias Hopfinger

aus

Kaufbeuren, Deutschland

<u>Erklärung</u>

Diese Dissertation wurde im Sinne von § 7 der Promotionsordnung vom 28. November 2011 von Herrn Prof. Dr. A. Kornath betreut.

Eidesstattliche Versicherung

Diese Dissertation wurde eigenständig und ohne unerlaubte Hilfe erarbeitet.

München, den 01.10.2012

(Mathias Hopfinger)

Dissertation eingereicht am 10.10.2012 1. Gutachter: Prof. Dr. A. Kornath 2. Gutachter: Prof. Dr. T.M. Klapötke Mündliche Prüfung am 29.11.2012

Und nichts ist beliebig und nichts ist egal. Atme ein, atme aus, du hast immer die Wahl. - Kettcar -

-gewidmet meiner Frau und meiner Familie-

Danke: Alex Aline Andreas Can Christian Dad Dennis Dominik Evelyn Felix Gaby Heidi Hr. Beck Hr. Karaghiosoff Hr. Klapötke Hr. Langhals Hr. Lorenz Hr. Mayer Jimmy eat world Joe Karin Karl O. Kettcar Klebsi Mahdi Markus Martina Micha Michi Mum Nadine Ralf Sabine Theresa

Inhaltsverzeichnis

1	Abst	'ract	1
2	Einl	eitung	2
	2.1	Die Definition und Stärke einer Säure	2
	2.2	Supersäuren	4
	2.3	Das Element Schwefel und Schwefelsäuren	6
	2.3.1	Schwefel	6
	2.3.2	Dischwefelsäuren	6
3	Mot	ivation	8
	3.1	Dischwefelsäuren	8
	3.2	Das Supersäuresystem HF/GeF ₄	9
	3.3	Schwefelsäurederivate	9
4	Disk	ussion	10
	4.1	Thioschwefelsäure, H ₂ S ₂ O ₃	10
	4.1.1	Bildung und Stabilität	10
	4.1.2	Schwingungsspektren	13
	4.1.3	NMR-Spektrum	21
	4.1.4	Theoretische Berechnungen des H ₂ S ₂ O ₃ -Moleküls	22
	4.2	Protonierte Thioschwefelsäure, $H_3S_2O_3^+ MF_6^-$ (M = As, Sb)	24
	4.2.1	Bildung und Stabilität	24
	4.2.2	Schwingungsspektren	24
	4.2.3	NMR-Spektrum	32
	4.2.4	Theoretische Berechnungen des $H_3S_2O_3^+$ -Kations	33
	4.3	Dithionige Säure, H ₂ S ₂ O ₄	34
	4.3.1	Bildung und Stabilität	34
	4.3.2	Schwingungsspektren	35
	4.3.3	NMR-Spektrum	41
	4.3.4	Theoretische Berechnungen des $H_2S_2O_4$ -Moleküls	42
	4.4	Protonierte Dithionige Säure, $H_3S_2O_4^+MF_6^-$ (M = As, Sb)	44
	4.4.1	Bildung und Stabilität	44

4.4.2	Schwingungsspektren	44
4.4.3	NMR-Spektrum	53
4.4.4	Theoretische Berechnungen des $H_3S_2O_4^+$ -Kations	54
4.5	Protonierte Dischweflige Säure H ₃ S ₂ O ₅ ⁺ MF ₆ ⁻ (M = As, Sb)	55
4.5.1	Bildung und Stabilität	55
4.5.2	NMR-Spektrum	
4.5.3	Theoretische Berechnungen des $H_3S_2O_5^+$ -Kations	64
4.6	Dithionsäure, H ₂ S ₂ O ₆	65
4.6.1	Bildung und Stabilität	65
4.6.2	Schwingungsspektren	
4.6.3	Theoretische Berechnungen von H ₂ S ₂ O ₆	71
4.7	Protonierte Dithionsäure, $H_3S_2O_6^+MF_6^-$ (M = As, Sb)	
4.7.1	Bildung und Stabilität	73
4.7.2	Schwingungsspektren	73
4.7.3	Theoretische Berechnungen des $H_3S_2O_6^+$ -Kations	79
4.7.4	Zerfall von $H_3S_2O_6^+SbF_6^-$	
4.8	Protonierte Dischwefelsäure, $H_3S_2O_7^+MF_6^-$ (M = As, Sb)	
4.8.1	Bildung und Stabilität	
4.8.2	Schwingungsspektren	
4.8.3	Theoretische Berechnungen des H ₃ S ₂ O ₇ ⁺ -Kations	
4.8.4	NMR-Spektrum von $H_3S_2O_7^+AsF_6^-$	
4.9	$Peroxodischwefels \ddot{a}ure, H_2S_2O_8 \dots$	
4.9.1	Bildung und Stabilität	95
4.9.2	Schwingungsspektren	96
4.9.3	NMR-Spektrum	
4.9.4	Theoretische Berechnungen des Peroxodischwefelsäure-Moleküls	
4.10	Protonierte Peroxodischwefelsäure, $H_3S_2O_8^+MF_6^-$ (M = As, Sb)	103
4.10.1	Bildung und Stabilität	
4.10.2	Schwingungsspektren	
4.10.3	Theoretische Berechnungen des H ₃ S ₂ O ₈ ⁺ -Kations	
4.11	Protonierte Schwefelsäure, H ₃ SO ₄ ⁺ MF ₆ ⁻ und H ₃ SO ₄ ⁺ GeF ₅ ⁻ (M = As, Sb)	114
4.11.1	Bildung und Stabilität	114
4.11.2	Schwingungsspektren	115
4.11.3	Theoretische Berechnungen des H ₃ SO ₄ ⁺ -Kations	

4 .	.12	Protoniertes Dimethylsulfoxid - Hydroxydimethylsulfoniumhexadekatetraf	luoridogermanat
		[(CH ₃) ₂ SOH ⁺] ₄ [Ge ₃ F ₁₆ ⁴⁻] ^[71]	
4.	12.1	Bildung und Stabilität	
4.	12.2	Schwingungsspektrum von[(CH ₃) ₂ SOH] ⁺ ₄ [Ge ₃ F ₁₆] ⁴⁻	
4.	12.3	NMR Spektrum	
4.	12.4	Einkristallröntgenstrukturanalyse von $[(CH_3)_2SOH^+]_4[Ge_3F_{16}^{4-}]$	
4 .13	}	Protonierte Amidoschwefelsäure NH ₃ SO ₃ H ⁺ MF ₆ ⁻ (M = As, Sb)	
4.	13.1	Bildung und Stabilität	
4.	13.2	Schwingungsspektren	145
4.	13.3	Theoretische Berechnungen des NH ₃ SO ₃ H ⁺ -Kations	
4.14	1	Protonierte Aminomethansulfonsäure NH3CH2SO3H ⁺ MF6 ⁻	
4.	14.1	Bildung und Stabilität	
4.	14.2	Schwingungsspektren	
4.	14.3	Theoretische Berechnungen des NH ₃ CH ₂ SO ₃ H ⁺ -Kations	
4.15	5	Protonierte Aminoethansulfonsäure NH₃C₂H₄SO₃H⁺MF6 [−] und NH₃C₂H₄SO	$_{3}\mathrm{H}^{+}\mathrm{GeF}_{5}^{-}$ (M =
		As, Sb)	
4.	15.1	Bildung und Stabilität	
4.	15.2	Schwingungsspektren	
4.	15.3	NMR-Spektren	
4.	15.4	$Einkristallröntgenstrukturanalyse \ von \ H_3NC_2H_4SO_3H^+SbF_6^{-\ [99]} \$	
4.	15.5	Theoretische Berechnungen des NH ₃ C ₂ H ₄ SO ₃ H ⁺ -Kations	
4.16	j	Protoniertes Methansulfonamid, CH ₃ SO ₂ NH ₃ ⁺ MF ₆ ⁻ (M = As, Sb)	
4.	16.1	Bildung und Stabilität	
4.	16.2	Schwingungsspektren	
4.	16.3	Theoretische Berechnungen des CH ₃ SO ₂ NH ₃ ⁺ -Kations	
5 Zi	usa	mmenfassung	
6 E	xne	rimenteller Teil	
·	-r-		201
0.1		Arbeitstechnik	
6.2		Verwendete Chemikalien	
6.3		Verwendete Geräte und Analysenmethoden	
6.3	3.1	Raman-Spektroskopie	
6.3	3.2	IR-Spektroskopie	
6.3	3.3	NMR-Spektroskopie	
6.3	3.4	Einkristallröntgenstrukturanalyse	

6.3.5	Theoretische Berechnungen	
6.4 S	ynthesen	204
6.4.1	Darstellung von D ₃ NSO ₃	
6.4.2	Darstellung von D ₃ NCH ₂ SO ₃	
6.4.3	Darstellung von D ₃ NC ₂ H ₄ SO ₃	
6.4.4	Darstellung von CH ₃ SO ₂ ND ₂	
6.4.5	Darstellung von Thioschwefelsäure, H2S2O3	
6.4.6	Darstellung von Deutero-Thioschwefelsäure, D2S2O3	
6.4.7	Darstellung von Thioschwefelsäure aus H ₂ S und ClSO ₃ H ^[39]	
6.4.8	Darstellung von protonierter Thioschwefelsäure, $H_3S_2O_3^+AsF_6^-$	
6.4.9	Darstellung von protonierter Thioschwefelsäure $H_3S_2O_3^+SbF_6^-$	
6.4.10	Darstellung von deuterierter Thioschwefelsäure, D ₃ S ₂ O ₃ ⁺ AsF ₆ ⁻	
6.4.11	Darstellung von deuterierter Thioschwefelsäure, D ₃ S ₂ O ₃ ⁺ SbF ₆ ⁻	
6.4.12	Darstellung von Dithionsäure, H2S2O4	
6.4.13	Darstellung von Deutero-Dithionsäure, D ₂ S ₂ O ₄	
6.4.14	Darstellung von protonierter Dithioniger Säure, H ₃ S ₂ O ₄ ⁺ AsF ₆ ⁻	
6.4.15	Darstellung von protonierter Dithioniger Säure, H ₃ S ₂ O ₄ ⁺ SbF ₆ ⁻	
6.4.16	Darstellung von deuterierter Dithioniger Säure, D ₃ S ₂ O ₄ ⁺ AsF ₆ ⁻	
6.4.17	Darstellung von deuterierter Dithioniger Säure, D ₃ S ₂ O ₄ ⁺ SbF ₆ ⁻	
6.4.18	Darstellung von protonierter Dischwefliger Säure, H ₃ S ₂ O ₅ ⁺ AsF ₆ ⁻	
6.4.19	Darstellung von protonierter Dischwefliger Säure, H ₃ S ₂ O ₅ ⁺ SbF ₆ ⁻	
6.4.20	Darstellung von deuterierter Dischwefliger Säure, D ₃ S ₂ O ₅ ⁺ AsF ₆ ⁻	
6.4.21	Darstellung von deuterierter Dischwefliger Säure, D ₃ S ₂ O ₅ ⁺ SbF ₆ ⁻	
6.4.22	Darstellung von protonierter Dithionsäure, $H_3S_2O_6^+$ SbF $_6^-$	
6.4.23	Darstellung von deuterierter Dithionsäure, D ₃ S ₂ O ₆ ⁺ SbF ₆ ⁻	
6.4.24	Darstellung von Dithionsäure, H2S2O6	
6.4.25	Darstellung von Deutero-Dithionsäure, D ₂ S ₂ O ₆	
6.4.26	Darstellung von protonierter Schwefelsäure, $(H_3SO_4^+)_n(GeF_5^-)_n$	
6.4.27	Darstellung von deuterierter Schwefelsäure, $(D_3SO_4^+)_n(GeF_5^-)_n$	
6.4.28	Darstellung von protonierter Schwefelsäure, $H_3SO_4^+AsF_6^-$	
6.4.29	Darstellung von deuterierter Schwefelsäure, D ₃ SO ₄ ⁺ AsF ₆ ⁻	
6.4.30	Darstellung von protonierter Schwefelsäure, $H_3SO_4^+SbF_6^-$	
6.4.31	Darstellung von deuterierter Schwefelsäure, D ₃ SO ₄ ⁺ SbF ₆ ⁻	
6.4.32	Darstellung von Hydroxydimethylsulfoniumdecahexafluoridogermanat,	
	$[(CH_3)_2SOH^+]_4Ge_3F_{16}^{4-}$	
6.4.33	Darstellung von protonierter Amidoschwefelsäure, $NH_3SO_3H^+AsF_6^-$	
6.4.34	Darstellung von protonierter Amidoschwefelsäure, NH ₃ SO ₃ H ⁺ SbF ₆ ⁻	
6.4.35	Darstellung von protonierter Deutero-Amidoschwefelsäure, ND ₃ SO ₃ D ⁺ AsF ₆ ⁻	

7.3	Abkürzungsverzeichnis	226
7.2	Publikationen	224
7.1	Lebenslauf	222
Lite	ratur	
6.4.4	4 Darstellung von protoniertem Deutero-Methansulfonamid, $CH_3SO_2ND_3^+SbF_6^-$	
6.4.4	3 Darstellung von protoniertem Deutero-Methansulfonamid, $CH_3SO_2ND_3^+AsF_6^-$	
6.4.4	2 Darstellung von protoniertem Methansulfonamid, $CH_3SO_2NH_3^+SbF_6^-$	
6.4.4	1 Darstellung von protoniertem Methansulfonamid, CH ₃ SO ₂ NH ₃ ⁺ AsF ₆ ⁻	
	$\mathrm{SbF_6}^-$	
6.4.4	0 Darstellung von protonierter Deutero-Aminomethansulfonsäure, ND ₃ CH ₂ SO ₃ D ⁺	
	AsF ₆ ⁻	
6.4.3	9 Darstellung von protonierter Deutero-Aminomethansulfonsäure, ND ₃ CH ₂ SO ₃ D ⁺	
6.4.3	8 Darstellung von protonierter Aminomethansulfonsäure, NH ₃ CH ₂ SO ₃ H ⁺ SbF ₆ ⁻	
6.4.3	7 Darstellung von protonierter Aminomethansulfonsäure, NH ₃ CH ₂ SO ₃ H ⁺ AsF ₆ ⁻	
6.4.3	6 Darstellung von protonierter Deutero-Amidoschwefelsäure, ND ₃ SO ₃ D ⁺ SbF ₆ ⁻	
	6.4.3 6.4.3 6.4.3 6.4.3 6.4.4 6.4.4 6.4.4 6.4.4 6.4.4 <i>Lite</i> 7 .1 7 .2	 6.4.36 Darstellung von protonierter Deutero-Amidoschwefelsäure, ND₃SO₃D⁺SbF₆⁻

Abbildungsverzeichnis

Abbildung 1 Aciditätsbereiche der gebräuchlichsten Supersäuren	5
Abbildung 2 Temperaturinduzierter Zerfall von H ₂ S ₂ O ₃	
Abbildung 3 FT-Raman- und FT-IR-Schwingungspektrum von H ₂ S ₂ O ₃	
Abbildung 5 FT-Raman-Spektrum $H_2S_2O_3$ (Schwarze Linie) im Vergleich mit den quantenchemisch berechneten	
Schwingungen RPBE1PBE/6-311G(3df,3pd) (rote Sterne)	16
Abbildung 6 FT-Raman-Spektrum des Reaktionsgemisches aus H ₂ S und ClSO ₃ H	17
Abbildung 7 FT-Raman- und FT-IR-Schwingungsspektrum von D ₂ S ₂ O ₃	
Abbildung 9 Ab initio berechnete Strukturen (RPBE1PBE/6-311G(3df, 3pd)) der $[H_2S_2O_3(HF)_2]$ -Einheit und des	
H ₂ S ₂ O ₃ - Moleküls.	22
Abbildung 10 FT-Raman- und FT-IR-Schwingungsspektrum von $H_3S_2O_3^+AsF_6^-$	
Abbildung 11 FT-Raman- und FT-IR-Schwingungsspektrum von $H_3S_2O_3^+SbF_6^-$	
Abbildung 12 FT-Raman- und FT-IR-Schwingungsspektrum von $D_2S_2O_3^+AsF_6^-$	
Abbildung 13 FT-Raman- und FT-IR-Schwingungsspektrum von $D_2S_2O_3^+SbF_6^-$	
Abbildung 14 ¹ H-NMR-Spektrum von $H_3S_2O_3^+AsF_6^-$ in SO ₂ bei -40 °C	32
<i>Abbildung</i> 15 Gasphasenstrukturoptimierung der protonierten Thioschwefelsäure $(H_3S_2O_3^+)$	33
Abbildung 16 FT-Raman- und FT-IR-Schwingungsspektrum von $H_2S_2O_4$	
Abbildung 19 Ab initio berechnete Strukturen (RPBE1PBE/6-311G(d,p)) der $[H_2S_2O_4(HF)_2]$ -Einheit und des $H_2S_2O_4(HF)_2$	₂ O ₄ -
Moleküls	42
Abbildung 20 FT-Raman- und FT-IR-Schwingungsspektrum von $H_3S_2O_4^+AsF_6^-$	46
Abbildung 21 FT-Raman- und FT-IR-Schwingungsspektrum von $H_3S_2O_4^+SbF_6^-$	
Abbildung 22 FT-Raman- und FT-IR-Schwingungsspektrum von $D_3S_2O_4^+AsF_6^-$	······ 50
Abbildung 23 FT-Raman- und FT-IR-Schwingungsspektrum von $D_3S_2O_4^+SbF_6^-$	
Abbildung 24 ¹ H-NMR-Spektrum von $H_3S_2O_4^+AsF_6^-$ in SO ₂ bei -60 °C	53
<i>Abbildung</i> 25 <i>Gasphasenstrukturoptimierung der protonierten Dithionige Säure</i> $(H_3S_2O_4^+)$	54
Abbildung 26 FT-Raman- und FT-IR-Schwingungsspektrum von $H_3S_2O_5^+AsF_6^-$	
Abbildung 27 FT-Raman- und FT-IR-Schwingungsspektrum von $D_3S_2O_5^+AsF_6^-$	59
Abbildung 28 FT-Raman- und FT-IR-Schwingungsspektrum von $D_3S_2O_5^+SbF_6^-$	
Abbildung 29 ¹ H-NMR-Spektrum von $H_3S_2O_5^+AsF_6^-$ in SO ₂ bei -65 °C	63
<i>Abbildung</i> 30 <i>Gasphasenstrukturoptimierung der protonierten Dischwefligen Säure</i> $(H_3S_2O_5^+)$	64
Abbildung 31 FT-Raman- und FT-IR-Spektrum der freien Dithionsäure, $H_2S_2O_6$	
Abbildung 32 FT-Raman- und FT-IR-Spektrum der freien Deutero-Dithionsäure, $D_2S_2O_6$	69
Abbildung 33 Gasphasenstrukturoptimierung der freien Dithionsäure ($H_2S_2O_6$)	72
Abbildung 34 FT-Raman- und FT-IR-Spektrum der protonierten Dithionsäure, $H_3S_2O_6^+SbF_6^-$	
Abbildung 35 FT-Raman- und FT-IR-Spektrum der protonierten Dithionsäure, $D_3S_2O_6^+SbF_6^-$	77
<i>Abbildung</i> 36 <i>Gasphasenstrukturoptimierung von protonierter Dithionsäure</i> $(H_3S_2O_6^+)$	80
Abbildung 37 Temperaturabhängige FT-Raman-Spektren zur Darstellung des Zerfalls der protonierten Dithionsä	ure

zu protonierter Schwefelsäure ab –40 °C	
Abbildung 38 FT-Raman- und FT-IR-Schwingungsspektrum von $H_3S_2O_7^+AsF_6^-$	
Abbildung 39 FT-Raman- und FT-IR-Schwingungsspektrum von $H_3S_2O_7^+SbF_6^-$	
Abbildung 40 FT-Raman- und FT-IR-Schwingungsspektrum von $D_3S_2O_7^+AsF_6^{-\dots}$	
Abbildung 41 FT-Raman- und FT-IR-Schwingungsspektrum von $D_3S_2O_7^+SbF_6^-$	
Abbildung 42 Gasphasenstrukturoptimierung der protonierten Dischwefelsäure ($H_3S_2O_7^+$)	
Abbildung 43 ¹ H-NMR-Spektrum von $H_3S_2O_7^+AsF_6^-$ in SO ₂ bei -41 °C	
Abbildung 44 FT-Raman- und FT-IR-Schwingungsspektrum von H ₂ S ₂ O ₈	
Abbildung 45 FT-Raman- und FT-IR-Schwingungsspektrum von D ₂ S ₂ O ₈	
Abbildung 46 ¹ H-NMR-Spektrum von $H_2S_2O_8$ in SO ₂ bei -41 °C	
Abbildung 47 Gasphasenstrukturoptimierung der Peroxodischwefelsäure ($H_2S_2O_8$)	
Abbildung 48 FT-Raman- und FT-IR-Schwingungsspektrum von $H_3S_2O_8^+AsF_6^-$	
Abbildung 49 FT-Raman- und FT-IR-Schwingungsspektrum von $H_3S_2O_8^+SbF_6^-$	
Abbildung 50 FT-Raman- und FT-IR-Schwingungsspektrum von $D_3S_2O_8^+AsF_6^-$	
Abbildung 51 FT-Raman- und FT-IR-Schwingungsspektrum von $D_3S_2O_8^+SbF_6^-$	
<i>Abbildung</i> 52 <i>Gasphasenstrukturoptimierung der protonierten Peroxodischwefelsäure</i> $(H_3S_2O_8^+)$	113
Abbildung 53 FT-Raman- und FT-IR-Schwingungsspektrum von $H_3SO_4^+AsF_6^-$	
Abbildung 54 FT-Raman- und FT-IR-Schwingungsspektrum von $H_3SO_4^+SbF_6^-$	
Abbildung 55 FT-Raman- und FT-IR-Schwingungsspektrum von $D_3SO_4^+AsF_6^-$	
Abbildung 56 FT-Raman- und FT-IR-Schwingungsspektrum von $D_3SO_4^+SbF_6^-$	
Abbildung 57 FT-Raman- und FT-IR-Schwingungsspektrum von $(H_3SO_4^+)_n(GeF_5^-)_n$	124
Abbildung 58 FT-Raman- und FT-IR-Schwingungsspektrum von $(D_3SO_4^+)_n(GeF_5^-)_n$	
<i>Abbildung</i> 59 <i>Gasphasenstrukturoptimierung des Trihydoxyoxosulfoniumkations</i> $(H_3SO_4^+)$	133
Abbildung 60 Gasphasenstrukturoptimierung der $[H_3SO_4(HF)_3]^+$ -Einheit	
Abbildung 61 FT-Raman- und FT-IR-Schwingungsspektrum von $[(CH_3)_2SOH^+]_4[Ge_3F_{16}^{4-}]$	137
Abbildung 62 Darstellung der Ionenstruktur von $[(CH_3)_2SOH^+]_4[Ge_3F_{16}^{4-}]$	141
Abbildung 63 Darstellung der Elementarzelle entlang der a-Achse	143
Abbildung 64 FT-Raman- und FT-IR-Schwingungsspektrum von $NH_3SO_3H^+AsF_6^-$	
Abbildung 65 FT-Raman- und FT-IR-Schwingungsspektrum von $NH_3SO_3H^+SbF_6^-$	
Abbildung 66 FT-Raman- und FT-IR-Schwingungsspektrum von $ND_3SO_3D^+AsF_6^-$	
Abbildung 67 FT-Raman- und FT-IR-Schwingungsspektrum von $ND_3SO_3D^+SbF_6^-$	
Abbildung 68 Gasphasenstrukturoptimierung von $NH_3SO_3H^+$	156
Abbildung 69 FT-Raman- und FT-IR-Schwingungsspektrum von $NH_3CH_2SO_3H^+AsF_6^-$	
Abbildung 70 FT-Raman- und FT-IR-Schwingungsspektrum von NH3CH2SO3H ⁺ SbF6	
Abbildung 71 FT-Raman- und FT-IR-Schwingungsspektrum von $ND_3CH_2SO_3D^+AsF_6^-$	
Abbildung 72 FT-Raman- und FT-IR-Schwingungsspektrum von $ND_3CH_2SO_3D^+SbF_6^-$	
Abbildung 73 Gasphasenstrukturoptimierung von $NH_3CH_2SO_3H^+$	167
Abbildung 74 FT-IR- und FT-Raman-Spektrum von $H_3NC_2H_4SO_3H^+AsF_6^-$	
Abbildung 75 FT-IR- und FT-Raman-Spektrum von $H_3NC_2H_4SO_3H^+SbF_6^-$	

Inhalt

Abbildung 76 FT-IR- und FT-Raman-Spektrum von $D_3NC_2H_4SO_3D^+AsF_6^-$	
Abbildung 77 FT-IR- und FT-Raman-Spektrum von $D_3NC_2H_4SO_3D^+SbF_6^-$	
Abbildung 78 1 H-NMR-Spektrum von $H_{3}NC_{2}H_{4}SO_{3}H^{+}AsF_{6}^{-}$ in SO_{2}	
Abbildung 79 ¹³ C-NMR-Spektrum von $H_3NC_2H_4SO_3H^+AsF_6^-$ in SO_2	180
Abbildung 80 Darstellung der Ionenstruktur von $H_3NC_2H_4SO_3H^+SbF_6^-$	
Abbildung 81 Darstellung der Einheitszelle entlang der a-Achse	
Abbildung 82 Gasphasenstrukturoptimierung von $NH_3C_2H_4SO_3H^+$	
Abbildung 83 FT-IR- und FT-Raman-Spektrum von CH ₃ SO ₂ NH ₃ ⁺ AsF ₆	
Abbildung 84 FT-IR- und FT-Raman-Spektrum von CH ₃ SO ₂ NH ₃ ⁺ SbF ₆	
Abbildung 85 FT-IR-und FT-Raman-Spektrum CH ₃ SO ₂ ND ₃ ⁺ AsF ₆	
Abbildung 86 FT-IR- und FT-Raman-Spektrum von CH ₃ SO ₂ ND ₃ ⁺ SbF ₆	
Abbildung 87 Gasphasenstrukturoptimierung von CH ₃ SO ₂ NH ₃ ⁺	
Abbildung 88 Kristallstruktur von (CH ₃) ₂ SOH ⁺	
Abbildung 89 Protonierte Aminosulfonsäuren und Sulfonamid	

Tabellenverzeichnis

Tabelle 2 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_2S_2O_3$ 18 Tabelle 3 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $D_2S_2O_3$ 20 Tabelle 4 : Ausgewählte experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ für $H_2S_2O_3$ und 23 Tabelle 5 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_3S_2O_3^+MF_6^-$ 27 Tabelle 6 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_3S_2O_3^+MF_6^-$ 31 Tabelle 7 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_3S_2O_4^+MF_6^-$ 37 Tabelle 8 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_2S_2O_4$ 40 Tabelle 9 : Ausgewählte experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_2S_2O_4$ und $[H_2S_2O_4(HF)_2]$ 43 Tabelle 10 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_3S_2O_4^+MF_6^-$ ($M = As, Sb$) 48 Tabelle 11 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_3S_2O_3^+AF_6^-$ 52 Tabelle 12 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_3S_2O_3^+AF_6^-$ 52 Tabelle 13 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_3S_2O_3^+AF_6^-$ 52	Tabelle 1 : Formale Reihe der Dischwefelsäuren und ihrer Salze	. 7
Tabelle 3 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $D_2S_2O_3$	Tabelle 2 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_2S_2O_3$	18
Tabelle 4 : Ausgewählte experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ für $H_2S_2O_3$ und	Tabelle 3 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $D_2S_2O_3$ 2	20
$[H_2S_2O_3 (HF)_2].$ 23 $Tabelle 5 : Experimentelle und berechnete Schwingungsfrequenzen [cm-1] und Intensitäten für H_3S_2O_3^+MF_6^-$	Tabelle 4 : Ausgewählte experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ für $H_2S_2O_3$ und	23
Tabelle 5 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_3S_2O_3^+MF_6^-$ 27Tabelle 6 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $D_3S_2O_3^+MF_6^-$ 31Tabelle 7 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $D_2S_2O_4$ 37Tabelle 8 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $D_2S_2O_4$ 40Tabelle 9 : Ausgewählte experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $D_2S_2O_4$ und $[H_2S_2O_4(HF)_2]$ 43Tabelle 10 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_3S_2O_4^+MF_6^-$ ($M = As, Sb$)48Tabelle 11 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_3S_2O_5^+AsF_6^-$ 52Tabelle 12 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_3S_2O_5^+AsF_6^-$ 52Tabelle 12 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_3S_2O_5^+AsF_6^-$ 52Tabelle 13 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_3S_2O_5^+AsF_6^-$ 57Tabelle 13 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_3S_2O_5^+AsF_6^-$ 61Tabelle 14 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_2S_2O_6$ 68Tabelle 15 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_2S_2O_6$ 68Tabelle 16 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_2S_2O_6^+$	$[H_2S_2O_3 (HF)_2]$	23
Tabelle 6 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $D_3S_2O_3^+MF_6^-$	$Tabelle \ 5: Experimentelle \ und \ berechnete \ Schwingungs frequenzen \ [cm^{-1}] \ und \ Intensitäten \ f\"{u}r \ H_3S_2O_3^{+}MF_6^{-} \ \dots \dots \dots \dots D_n^{-1}$	27
Tabelle 7 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_2S_2O_4$	$Tabelle\ 6: Experimentelle\ und\ berechnete\ Schwingungsfrequenzen\ [cm^{-1}]\ und\ Intensitäten\ f\"{u}r\ D_3S_2O_3^{+}MF_6^{-}3$	31
Tabelle 8 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $D_2S_2O_4$	Tabelle 7 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_2S_2O_4$ 3	37
Tabelle 9 : Ausgewählte experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ für $H_2S_2O_4$ und $[H_2S_2O_4(HF)_2]$ 43 Tabelle 10 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_3S_2O_4^+MF_6^-$ ($M = As, Sb$) 48 Tabelle 11 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $D_3S_2O_4^+MF_6^-$ ($M = As, Sb$) 52 Tabelle 12 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_3S_2O_5^+AsF_6^-$ 52 Tabelle 13 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $D_3S_2O_5^+MF_6^-$ ($M = As, Sb$) 61 Tabelle 14 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_2S_2O_6$ 62 70 Tabelle 15 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_2S_2O_6$ 70 Tabelle 16 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_2S_2O_6$ 70 70 70 70 70 70 70 70 70 70 70 70 71	Tabelle 8 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $D_2S_2O_4$	40
 43 Tabelle 10 : Experimentelle und berechnete Schwingungsfrequenzen [cm⁻¹] und Intensitäten für H₃S₂O₄⁺MF₆⁻ (M = As, Sb)	Tabelle 9 : Ausgewählte experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ für $H_2S_2O_4$ und $[H_2S_2O_4(HF)_2]$	1
Tabelle 10 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_3S_2O_4^+MF_6^-$ ($M = As, Sb$)48Tabelle 11 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $D_3S_2O_4^+MF_6^-$ ($M = As, Sb$)52Tabelle 12 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_3S_2O_5^+AsF_6^-$ 61Tabelle 13 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $D_3S_2O_5^+MF_6^-$ ($M = As, Sb$)61Tabelle 14 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_2S_2O_6$ 61Tabelle 15 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_2S_2O_6$ 70Tabelle 16 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_2S_2O_6^+$ 75Tabelle 16 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_2S_2O_6^+$ 75Tabelle 16 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_2S_2O_6^+$ 78Tabelle 17 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_2S_2O_6^+$ 75Tabelle 17 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_2S_2O_6^+$		43
As, Sb)48Tabelle 11 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $D_3S_2O_4^+MF_6^-$ ($M =$ As, Sb52Tabelle 12 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_3S_2O_5^+AsF_6^-$ Tabelle 13 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $D_3S_2O_5^+MF_6^-$ ($M =$ As, Sb)61Tabelle 14 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_2S_2O_6$ 68Tabelle 15 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $D_2S_2O_6$ 70Tabelle 16 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_2S_2O_6^+$ 75Tabelle 17 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_2S_2O_6^+$ 76	Tabelle 10 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_3S_2O_4^+MF_6^-$ ($M = C_2O_4^+MF_6^-$)	
Tabelle 11 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $D_3S_2O_4^+MF_6^-$ ($M = As, Sb$ Tabelle 12 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_3S_2O_5^+AsF_6^-$ 57Tabelle 13 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $D_3S_2O_5^+MF_6^-$ ($M = As, Sb$)61Tabelle 14 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_2S_2O_6$ 68Tabelle 15 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $D_2S_2O_6$ 68Tabelle 16 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_2S_2O_6^+$ 76Tabelle 17 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_2S_2O_6^+$ 76Tabelle 17 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_2S_2O_6^+$ 78Tabelle 17 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_2S_2O_6^+$ 78Tabelle 17 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_2S_2O_6^+$ 78	As, Sb)	48
 As, Sb	Tabelle 11 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $D_3S_2O_4^+MF_6^-$ ($M = C_2O_4^+MF_6^-$)	
Tabelle 12 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_3S_2O_5^+AsF_6^-$	As, Sb	52
Tabelle 13 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $D_3S_2O_5^+MF_6^-$ ($M = As, Sb$) 61 Tabelle 14 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_2S_2O_6$ 68 Tabelle 15 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $D_2S_2O_6$ 70 Tabelle 16 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_2S_2O_6^+$ 75 Tabelle 17 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $D_3S_2O_6^+$ 78	Tabelle 12 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_3S_2O_5^+AsF_6^-$ 5	57
As, Sb)61Tabelle 14 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_2S_2O_6$ 68Tabelle 15 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $D_2S_2O_6$ 70Tabelle 16 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_2S_2O_6^+$ 75Tabelle 17 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $D_3S_2O_6^+$ 78	Tabelle 13 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $D_3S_2O_5^+MF_6^-$ ($M = C_2O_5^+MF_6^-$)	
Tabelle 14 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_2S_2O_6$	As, Sb)	51
Tabelle 15 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $D_2S_2O_6$ 70Tabelle 16 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_2S_2O_6^+$ 75Tabelle 17 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $D_3S_2O_6^+$ 78	Tabelle 14 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_2S_2O_6$	58
Tabelle 16 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_2S_2O_6^+$	Tabelle 15 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $D_2S_2O_6$	70
Tabelle 17 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $D_3S_2O_6^+$	Tabelle 16 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_2S_2O_6^+$	75
	Tabelle 17 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $D_3S_2O_6^+$	78

Tabelle 18 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_3S_2O_7^+SbF_6^-$	86		
Tabelle 19 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $D_3S_2O_7^+MF_6^-$	91		
Tabelle 20 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_2S_2O_8$	97		
Tabelle 21 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $D_2S_2O_8$ 1	00		
$abelle 22$: Experimentelle und berechnete Schwingungsfrequenzen [cm^{-1}] und Intensitäten für $H_3S_2O_8^+MF_6^-$ 100			
Tabelle 23 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $D_3S_2O_8^+MF_6^-$ 1	11		
Tabelle 24 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_3SO_4^+MF_6^-$ 1	18		
Tabelle 25 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $D_3SO_4^+MF_6^-$ 1.	22		
Tabelle 26 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $(H_3SO_4^+)_n (GeF_5^-)_n$ 1.	25		
Tabelle 27 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $(D_3SO_4^+)_n (GeF_5^-)_n IZ$	28		
Tabelle 28 : Ausgewählte experimentelle (gemittelt) und berechnete Schwingungen von $H_3SO_4^+$ und $[H_3SO_4(HF)_3]^+$. L	31		
Tabelle 29 : Ausgewählte experimentelle (gemittelt) und berechnete Schwingungen von $D_3SO_4^+$ und $[D_3SO_4(HF)_3]^+$. L	32		
Tabelle 30 : Geometrieparameter von $H_3SO_4^+$ 1	33		
Tabelle 31 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für			
$[(CH_3)_2SOH^+]_4[Ge_3F_{16}^{4-}]1$	38		
Tabelle 32 : Zusammenfassung der NMR-Signale von $(CH_3)_2SO$, $(CH_3)_2SOH^+AsF_6^-$ und $[(CH_3)_2SOH^+]_4Ge_3F_{16}^{4-}$ 1	39		
Tabelle 33 : Kristallstrukturdaten für $[(CH_3)_2SOH^+]_4[Ge_3F_{16}^{4-}]$	40		
<i>Tabelle 34 : Ausgewählte Bindungslängen (pm) und -winkel (°) in der Kristallstruktur von [(CH₃)₂SOH⁺]₄[Ge₃F₁₆⁴⁻]</i>			
	42		
Tabelle 35 : Ausgewählte interatomare Abstände (pm) und Winkel (°), in der Kristallstruktur von			
$[(CH_3)_2SOH^+]_4[Ge_3F_{16}^{4-}]1$	42		
$Tabelle \ 36: Experimentelle \ und \ berechnete \ Schwingungsfrequenzen \ [cm^{-1}] \ und \ Intensitäten \ für \ NH_3SO_3H^+ \ 1 \ Marchar \ Solution \ Solution\ \ Solution \ Solution\ \ Solution\ \ Solution \ Sol$	49		
Tabelle 37 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $ND_3SO_3D^+$ 1	54		
<i>Tabelle 38 : Experimentelle und berechnete Schwingungsfrequenzen</i> $[cm^{-1}]$ <i>und Intensitäten für</i> $NH_3CH_2SO_3H^+$ 1	61		
Tabelle 39 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $ND_3CH_2SO_3D^+$ In $ND_3CH_2SO_3D^+$	65		
Tabelle 40 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_3NC_2H_4SO_3H^+ \dots 1$	72		
Tabelle 41 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $D_3NC_2H_4SO_3D^+ \dots 1$	77		
Tabelle 42 : Kristallstrukturdaten und Parameter für $H_3NC_2H_4SO_3H^+SbF_6^-$	82		
Tabelle 43 : Ausgewählte Bindungslängen und –winkel in $H_3NC_2H_4SO_3H^+SbF_6^-$ (pm, °)	83		
Tabelle 44 : Parameter der Wasserstoffbrückenbindungen für $H_3NC_2H_4SO_3H^+SbF_6^-$ (pm, °)	85		
Tabelle 45 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $CH_3SO_2NH_3^+$ 1	91		
Tabelle 46 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $CH_3SO_2ND_3^+$ 1	95		
Tabelle 47 : Zusammenfassung der dargestellten und untersuchten freien und protonierten Dischwefelsäuren1	99		
Tabelle 48 : Verwendete Chemikalien 2	01		
Tabelle 49 : NMR-Messfrequenzen gemessener Nuklide	03		

1 Abstract

Most of the disulfuric acids like thiosulfuric acid (H₂S₂O₃), dithionous acid (H₂S₂O₄), disulfurous acid, (H₂S₂O₅), dithionic acid (H₂S₂O₆), disulfuric acid (H₂S₂O₇) and peroxydisulfuric acid (H₂S₂O₈) have never been obtained as pure compounds, because they are not stable at ambient temperatures. Therefore no experimental evidences are known for their structures. In this thesis, the synthesis and spectroscopical characterization of the disulfuric acids H₂S₂O_x (x = 3,4,6,8) is presented. The compounds were obtained by the reaction of dry Na₂S₂O_x or K₂S₂O_x with anhydrous HF at -60 °C. The protonated species H₃S₂O_y⁺MF₆⁻ (y = 3 - 8) were synthesized and characterized using the superacidic systems HF/MF₅ (M = As, Sb). The protonation of sulfuric acid, (H₃SO₄⁺)_n(GeF₅⁻)_n, with the new superacidic system HF/GeF₄ is presented and gives evidence for the acid strength of this system. Moreover, the first single crystal structure of protonated dimethylsulfoxide (DMSO), [(CH₃)₂SOH⁺]₄[Ge₃F₁₆]⁴⁻ is discussed. The protonated forms of the aminosulfonic acids NH₃SO₃, NH₃CH₂SO₃, NH₃C₂H₄SO₃ and methanesulfonamide (CH₃SO₂NH₂) are described. In this context, the first crystal structure of protonated taurine, NH₃C₂H₄SO₃H⁺SbF₆⁻ is discussed.

2 Einleitung

2.1 Die Definition und Stärke einer Säure

Historisch gesehen wurde das Konzept der Acidität eingeführt, um physiologische Eigenschaften von Stoffen, wie z.B. Geschmack, zu beschreiben (lateinisch acidus: sauer, acetum: Essig). Es zeigte sich bald, dass Mineralsäuren wie Salzsäure, Schwefelsäure oder Salpetersäure eine Schlüsselrolle bei chemischen Umsetzungen spielen. Ihre Bedeutung bei chemischen Reaktionen, auch im industriellen Maßstab, ist dementsprechend außerordentlich groß. Bei der Wirkungsweise von Säuren spielt das Wasserstoffproton H⁺ eine entscheidende Rolle: Wegen seines leeren 1s-Orbitals ist seine elektronische Repulsion vernachlässigbar, hat aber einen effektiven polarisierenden Effekt. Daraus ergibt sich eine starke Elektronenaffiniät, welche dazu führt, dass H⁺ in kondensierter Phase immer an einem oder mehreren Molekülen gebunden ist. Die vereinfachende Schreibweise "H⁺" ist trotzdem weitgehend in der Literatur akzeptiert. Für die quantitative Behandlung der Säurestärke ist das Verständnis der Natur des Protons substantiell.^[1] Die erste Annäherung an diese Thematik wird Arrhenius zugeschrieben. Bereits um 1880 veröffentlichte er ein Konzept der ionischen Dissoziation in Wasser, um damit die Stärke von verschiedenen Säuren zu erklären.^[2] Nach seiner Definition sind Säuren Substanzen, die in Wasser dissoziieren und dabei die Konzentration an H⁺ erhöhen. Ebenso erhöhen Basen die Konzentration an OH- Ionen. Aufbauend auf diese Theorie erweiterten Lowry und Brønsted 1923 dieses Konzept auf protonenhaltige, wasserähnliche Lösungsmittel. [3-4] Alle Spezies, die Protonen abgeben, wurden nun als Säuren, und alle Spezies, welche Protonen aufnehmen, als Basen bezeichnet. Hydroxidionen sind demnach nicht mehr notwendiges Kriterium für Basen. Die Dissoziation einer Säure HA in einem Lösungsmittel S kann als Säure-Base-Gleichgewicht wie folgt beschrieben werden:

$$HA + S \rightleftharpoons A^{-} + SH^{+} \tag{1}$$

Bei der hierbei neu entstehenden Säure SH⁺ bzw. Base A⁻ wird auch von den konjugierten Säure-Base-Paaren HA/A⁻ bzw. SH⁺/S gesprochen. Im wässrigen System wäre also das Gleichgewicht wie folgt:

$$2 \operatorname{H}_2 O \rightleftharpoons \operatorname{H}_3 O^+ + O \operatorname{H}^-$$

In Konsequenz ist die Dissoziation einer Säure immer abhängig von der Basizität des Lösungsmittels, was die Einführung einer absoluten Säureskala aufzeigt. Zumindest innerhalb eines Lösungsmittelsystems können aber Skalen zur Säurestärke eingeführt werden. Die wohl bekannteste ist die pH-Skala, welche von *Sørensen* 1909 mit folgender Beziehung eingeführt wurde: ^[5]

$$E = C - \frac{RT}{F} \log(a_H^{+})$$
⁽³⁾

Als Grundlage dient hier die Aktivität des Protons a_{H}^{+} , welche quantitativ mit Potentialmessungen an einer Wasserstoffelektrode erfasst werden kann. Der pH-Wert einer verdünnten Lösung ergibt sich aus der Konzentration des solvatisierten Protons nach Gleichung (4):

$$pH = -\log[HS^+] \tag{4}$$

Streng genommen gilt diese Formel nur für verdünnte, wässrige Lösungen, da die H⁺-Ionenaktivität nicht unabhängig vom Bezugsystem gemessen werden kann. Nach dem *National Bureau of Standard* kann die pH-Skala für Lösungen bei idealen experimentellen Bedingungen bis maximal 0.1 M verwendet werden. ^[1] Diese Eingrenzung ist im Hinblick auf chemische Umsetzungen, die außerhalb dieser Rahmenbedingungen liegen, unbefriedigend. Abhilfe bietet hier das Konzept der Aciditätsfunktionen. Diese wurden von *Hammet* und *Deyrup* 1932 eingeführt und beruhen auf der Messung des Protonierungsgrades schwach basischer Indikatoren (B) in saurer Lösung und der Einführung einer Funktion H₀ nach dem Massenwirkungsgesetz:

$$H_0 = pK_{BH}^{+} - \log \frac{[BH^+]}{[B]}$$
(5)

Hammet postulierte, dass die Funktion H_0 für eine bestimmte Serie von Lösungen mit wechselnder Acidität einheitlich ist. In verdünnten, wässrigen Lösungen geht die

Aciditätsfunktion in die pH-Wert-Skala über. Damit wurde die bisher beste und allgemein gültigste Methode formuliert, um die Stärke von Säuren und Basen zu bestimmen.

2.2 Supersäuren

Im Jahr 1927 prägten *Conant* und *Hall* erstmals den Begriff "Supersäure" in einer Publikation im *Journal of the American Chemical Society*. ^[6] Während einer Studie zur Wasserstoffionenaktivität bemerkten sie, dass Schwefelsäure und Perchlorsäure in Eisessig Salze mit verschiedenen schwachen Basen, wie Ketonen und anderen Carbonylverbindungen, bildeten. Eine ähnliche Salzbildung wurde wiederum in wässriger Lösung nicht beobachtet. Die Autoren erklärten diese Beobachtung mit der Erhöhung der Konzentration an $CH_3COOH_2^+$ -Ionen und nannten fortan diese Lösungen "Supersaure Lösungen". Diese Thematik wurde bis zu Olah's Studien stabiler Carbokationen in nichtwässrigen supersauren Lösungen in den 1960er Jahre nicht weiterverfolgt. ^[7-8] Daraufhin definierte *Gillespie* den Begriff "Supersäure" willkürlich, aber seitdem weitgehend akzeptiert, als System, welches stärker als 100% ige Schwefelsäure ist. ^[9-10] Diese Definitionsgrenze entspricht einem H₀-Wert von -12. Typische Beispiele für supersaure Brønstedsäuren sind Fluorsulfonsäure oder Trifluormethansulfonsäure mit H₀-Werten von -15.1 bzw. -14.1.

Die Chemie der Supersäuren hat sich seit den 1970er Jahren zu einem Forschungsfeld mit wachsender Bedeutung entwickelt. Die Erkenntnis, dass Friedel-Crafts-Reaktionen generell säurekatalysiert sind und über konjugierte Lewis-Brønsted-Säuresysteme ablaufen, hat den Anwendungsbereich säurekatalysierter Reaktionen erweitert. Friedel-Crafts-Säuresysteme sind jedoch nur $10^3 - 10^6$ mal stärker als 100% ige Schwefelsäure. Die Entdeckung der "Magic Acid", einem Lewis-Brønsted-Säuresystem aus Fluorsulfonsäure und Antimonpentafluorid, welche $10^7 - 10^{10}$ mal stärker als 100% Schwefelsäure ist, erweckte neues Interesse an Supersäuren und deren Chemie. In diesem System konnten Kationen mit Elektronenmangel, wie z.B. Carbokationen, Oxoniumionen, Haloniumionen und Halogenkationen, beobachtet werden. Nachfolgende Arbeiten auf diesem Gebiet öffneten neue Sichtweisen auf die Chemie der Supersäuren. Weil der Säurebegriff immer mit einer konjugierten Base verknüpft ist, ermöglichen Supersäuren die Erweiterung säurekatalysierter Reaktionen auf sehr schwache Basen und damit auf gesättigte Kohlenwasserstoffsysteme wie beispielsweise Methan.^[1] Nach aktuellem Wissensstand erstreckt

sich der Aciditätsbereich von Supersäuren bis zu H₀-Werten von etwa -30 für das System HF:SbF₅ 1:1. Für diese Bereiche existieren jedoch bislang keine brauchbaren Indikatoren. ^[11] Werden aber Gasphasen-Daten mit Supersäure-Protonierungsstudien verglichen, dann könnte dessen Acidität bis zu H₀-Werten von -50 bis -60 extrapoliert werden. Nachfolgend sind die H₀-Bereiche der bisher untersuchten Supersäuresysteme zusammengefasst. ^[11]

Abbildung 1 Aciditätsbereiche der gebräuchlichsten Supersäuren. Die gefüllten und gestrichelten Balken sind mithilfe von Indikatoren gemessen worden; die gestrichelten Balken sind mittels kinetischen Messungen bestimmt worden; in () mol % Lewis Säure. Entnommen aus G. A. Olah, S. Prakash "Superacid Chemistry".

2.3 Das Element Schwefel und Schwefelsäuren

2.3.1 Schwefel

Sowohl in der belebten Natur als auch in der chemischen und pharmazeutischen Industrie gehört Schwefel zu den wichtigsten Elementen. Sogar im Weltall sind Schwefelverbindungen weit verbreitet.^[12] In der Erdkruste kommt Schwefel in elementarer Form oder als Metallsulfid bzw. -sulfat, wie z.B. Pyrit FeS₂, Bleiglanz FeS, Zinkblende ZnS oder Gips CaSO₄·2H₂O, vor. ^[13] Wichtig bleibt festzuhalten, dass alle Organismen Schwefel in anorganischer oder organischer Form enthalten. Elementarer Schwefel besitzt eine ausgeprägte Tendenz, Ringe oder Ketten auszubilden, wobei die S8-Ringe mit S-S-Einfachbindungen am stabilsten sind. ^[14] Durch gezielte Synthesen können aber weitere, metastabile Schwefelallotrope, wie z.B. S₆, S₇, S₁₀, S₁₁ oder S₂₀, hergestellt werden.^[15] Einerseits wird Schwefel aus unterirdischen Lagerstätten nach dem Frasch-Verfahren gewonnen, bei dem überhitztes Wasser den Schwefel aus Sand und Kalk schmilzt und mit Pressluft diesen an die Oberfläche befördert. ^[16] Der größte Teil des industriell Oxidation von produzierten Schwefels stammt jedoch aus der petrochemischem Schwefelwasserstoff nach dem Claus-Prozess. [17]

2.3.2 Dischwefelsäuren

Schwefel bildet eine große Anzahl von formalen Sauerstoffsäuren, wie z.B. H₂SO, H₂SO₂, H₂SO₃ und H₂SO₄. Viele davon haben eine außerordentliche Bedeutung bei technischen Prozessen, im natürlichen geobiologischen Schwefelkreislauf der sich auf die Atmosphärenchemie erstreckt und wichtige Umweltschutzrelevante Aspekte beinhaltet. ^[13]

Im Besonderen soll hier auf die Dischwefelsäuren hingewiesen werden. Lehrbücher der anorganischen Chemie nennen hier, wie in Tabelle 1 aufgezeigt, die Klassifizierung der Dischwefelsäuren des Typs $H_2S_2O_n$ in den Oxidationsstufen +2 bis +6. ^[14, 18] Das wäre die Thioschwefelsäure ($H_2S_2O_3$), die Dithionige Säure ($H_2S_2O_4$), die Dischweflige Säure ($H_2S_2O_5$), die Dithionsäure ($H_2S_2O_6$), die Dischwefelsäure ($H_2S_2O_7$) und die Peroxodischwefelsäure ($H_2S_2O_8$). Es bleibt festzuhalten, dass die Säurestärke grundsätzlich mit steigender Oxidationsstufe größer wird. ^[18] Überraschenderweise sind die meisten der eben genannten Dischwefelsäuren instabil und konnten deshalb bisher nicht in reiner Form beobachtet werden. ^[13] Die einzigen Ausnahmen sind die Dischwefelsäure und die Peroxodischwefelsäure. ^[18-19] In Anwesenheit von Wasser und sauren Bedingungen neigen die übrigen Dischwefelsäuren zum Zerfall und konnten deshalb bisher nicht charakterisiert werden.^[20] Dennoch sind die entsprechenden Salze der genannten Säuren beständig und ausführlich untersucht worden.

Säuren des Typs H ₂ S ₂ O _x		
Formel	Name	Salze
<u> </u>	Thioschwefelsäure	Thiosulfate
1120203	Dischwefel(II)-säure	Disulfate(II)
ЦСО	Dithionige Säure	Dithionite
$\Pi_2 \Im_2 \mho_4$	Dischwefel(III)-säure	Disulfate(III)
	Dischweflige Säure	Disulfite
$\Pi_2 \Im_2 \mho_5$	Dischwefel(IV)-säure	Disulfate(IV)
	Dithionsäure	Dithionate
$\Pi_2 \Im_2 \bigcup_6$	Dischwefel(V)-säure	Disulfate(V)
	Dischwefelsäure	Disulfate
Π23207	Dischwefel(VI)-säure	Disulfate(VI)
$H_2S_2O_8$	Peroxodischwefel(VI)-säure	Peroxodisulfate(VI)

Tabelle 1 : Formale Reihe der Dischwefelsäuren und ihrer Salze

aus A. F. Holleman, E. Wiberg, Lehrbuch der Anorganischen Chemie, 102. Auflage Walter de Gruyter, Berlin, New York, 2007

3 Motivation

3.1 Dischwefelsäuren

Die Tatsache, dass die formell so geläufigen Dischwefelsäuren so unzureichend untersucht sind, motivierte in der vorliegenden Promotionsarbeit, Wege zu finden, diese Dischwefelsäuren analytisch zu erfassen. Dabei könnte eine erste Annäherung an eine Stabilisierung, die Protonierung der stark sauren Dischwefelsäuren sein. (siehe Gleichung (6))

$$Na_{2}S_{2}O_{x} + 3 HF/MF_{5} \xrightarrow{HF, -60 \circ C} H_{3}S_{2}O_{x}^{+}MF_{6}^{-} + 2 NaMF_{6} \xrightarrow{M = As, Sb; x = 3-8}$$
(6)

Die dadurch entstehenden H₃S₂O_x⁺-Kationen sollten als salzartige Verbindung mit einem Anion stabilisiert und bei tiefen Temperaturen unter Luft- und Wasserausschluss analysierbar sein. Die Supersäurechemie unter Verwendung der binären Systeme HF/AsF₅ oder HF/SbF₅ stellt hierbei eine ideale Methode dar: Einerseits setzt die Supersäurechemie grundlegend eine wasserfreie Umgebung voraus, was angesichts der Hydrolysesensitivität reiner Dischwefelsäuren vorteilhaft ist. Außerdem gelingt die Protonierung starker Säuren im supersauren Bereich, wie bereits mehrfach durch Minkwitz et. al. gezeigt wurde. [21-22] Eine Synthese protonierter Spezies aus den entsprechenden Salzen bietet hier ebenfalls Vorteile, da die Salze beständig und einfach zu trocknen sind. Erste Beispiele für diesen Ansatz konnten bereits in meiner Masterarbeit zu protonierter Schwefelsäure und schwefliger Säure gezeigt werden.^[23] Ein vorstellbarer Reaktionsablauf ist in Gleichung (7) dargestellt. Dabei sollte Fluorwasserstoff als seinerseits bereits außerordentlich starke Säure $(H_0 = -15)^{[1]}$ in situ die freie Säure aus ihrem Salz frei setzen, und diese unmittelbar zur protonierten Verbindung H₃S₂O_x⁺MF₆⁻ führen. Nun wäre weiterhin anzunehmen, dass bei Verzicht auf eine Lewissäure es durchaus möglich sein könnte, das Zwischenprodukt, also die freie Säure, bei tiefen Temperaturen soweit zur Durchführung spektroskopischer Analytik stabilisieren zu können. Diese Umsetzungen sind zentrales Thema dieser Promotionsarbeit und werden nachfolgend umfassend diskutiert.

$$Na_{2}S_{2}O_{x} + 2 HF \xrightarrow{HF} H_{2}S_{2}O_{x} + 2 NaF \xrightarrow{3HF/MF_{5}} H_{3}S_{2}O_{x}^{+}MF_{6}^{-} + 2 NaMF_{6}$$
(7)
$$M = As, Sb; x = 3-8$$

3.2 Das Supersäuresystem HF/GeF₄

Mit einer Fluoridionenaffinität von $pF^- = 8.30$ kann Germaniumtetrafluorid als einigermaßen starke Lewis-Säure eingeschätzt werden ($pF^-(SbF_5) = 12.03$; pF^- (AsF₅) = 10.59).^[24] Dementsprechend sollte es mit HF ein Supersäuresystem mit akzeptablem Protonierungspotenzial bilden. Bisher gab es zum Supersäuresystem HF/GeF₄ jedoch kaum Untersuchungen; im Supersäure-Basislehrbuch "Superacid Chemistry" von *George A. Olah* ist das System nicht erwähnt. ^[1] Kürzlich wurden in einer Promotionsarbeit erste Versuche zum System HF/GeF₄ unternommen. ^[25] Es wurde dabei gezeigt, dass es in der Lage ist schwache Basen wie Me₂S zu protonieren. Um die Acidität abschätzen zu können, wäre es hilfreich, sehr schwache Basen wie Schwefelsäure einzusetzen und damit zu zeigen ob es sich um ein supersaures System handelt.

3.3 Schwefelsäurederivate

Strukturell verwandt mit den Dischwefelsäuren existiert eine Reihe von Aminosulfonsäuren. Diese sind teilweise von biologisch relevanter Natur, weswegen es sich anbieten würde, die bisher nicht beschriebenen protonierten Formen herzustellen und zu charakterisieren. Die im Rahmen dieser Arbeit untersuchten Verbindungen sind Amidoschwefelsäure, NH₃SO₃, Aminomethansulfonsäure, NH₃CH₂SO₃, Aminoethansulfonsäure, NH₃C₂H₄SO₃ sowie Methansulfonamid, CH₃SO₂NH₂.

4 Diskussion

4.1 Thioschwefelsäure, H₂S₂O₃

4.1.1 Bildung und Stabilität

Die Salze der Thioschwefelsäure, allen voran Na₂S₂O₃ und NH₄S₂O₃, sind seit langem bekannt und finden große Anwendung in Industrie und Technik. ^[26] Natriumthiosulfat, Na₂S₂O₃ · 5 H₂O, welches im hundert Kilotonnenmaßstab hergestellt wird, wird vor allem als "Fixiersalz" in der Analogphotographie, zur Chlorentfernung nach Bleichprozessen oder bei Iodometrischen Analysen eingesetzt. ^[27] Thiosulfate sind außerdem in der Natur weit verbreitet und spielen eine Schlüsselrolle im biogeochemischen Schwefelkreislauf. ^[28] So entsteht Thiosulfat durch enzymatische Oxidation von Sulfid und Schwefel oder durch Reaktion von Sulfit mit Schwefel oder Polysulfiden bzw. –sulfanen. Bestimmte Schwefelbakterien nutzen Thiosulfationen zur oxidativen Energiegewinnung mithilfe von Enzymen z.B. nach Gleichung (8). ^[29]

$$2 [S_2O_3]^{2-} \to [S_4O_6]^{2-} + 2 e^-$$
(8)

Obwohl an der Existenz der freien Thioschwefelsäure ($pk_1 = 0.6$; $pk_2 = 1.8$) ^[30] kein Zweifel besteht und praktisch jedes Lehrbuch der Anorganischen Chemie diese Verbindung vermerkt, konnte sie bisher nicht direkt spektroskopisch beobachtet und charakterisiert werden. ^[30-35] Dementsprechend ist die Struktur dieser Spezies bisher experimentell nicht belegt. Bislang wurden weitgehend zwei mögliche Tautomere der Thioschwefelsäure angenommen: Das (OH)₂-Tautomer **1** und das (SH)(OH)-Tautomer **2**.

Theoretische Arbeiten von *Steudel et al.* konnten zeigen, dass das Tautomer **2** um 41 kJ mol⁻¹ energieärmer und damit stabiler sein sollte. Weiterhin gelang es außerdem, das bisher einzige Beispiel eines Hydrogenthiosulfates in Form des Monoammoniumsalzes herzustellen und Raman-Spektroskopisch zu charakterisieren. ^[36-37] Wenngleich die Existenz der Thioschwefelsäure nur aufgrund der elementaranalytischen Zusammensetzung gefolgert wurde, gelangen *Schmidt et al.*

mehrere Synthesen. In etherischer Lösung beständige Thioschwefelsäure wurde aus Natriumthiosulfat und wasserfreiem Hydrogenchlorid oder aus Schwefeltrioxid und Schwefelwasserstoff hergestellt (Gleichungen (9)und (10)).^[38]

$$Na_2S_2O_3 + HCl \rightarrow H_2S_2O_3 + 2 NaCl$$
(9)

$$SO_3 + H_2S \rightarrow H_2S_2O_3 \tag{10}$$

Die lösungsmittelfreie Spezies konnte nach Gleichung (11) aus Chlorsulfonsäure und Schwefelwasserstoff synthetisiert werden: ^[39]

$$ClSO_3H + H_2S \rightarrow H_2S_2O_3 + HCl$$
(11)

Das nach Gleichung (11) in maximal 81% Ausbeute neben höheren Polyschwefelsäuren erhaltene Produkt wird als farblose, hochviskose, ölige Flüssigkeit beschrieben.^[40] Die freie Thioschwefelsäure, $H_2S_2O_3$, ist vor allem in wässrigen Lösungen hinsichtlich der Zersetzung zu Schwefel, Schwefeldioxid, Polythionsäuren und Wasser instabil (siehe Gleichung (12) und (13)). ^[20]

$$H_2S_2O_3 \rightarrow 1/8 S_8 + SO_2 + H_2O$$
 (12)

$$[HS_2O_3]^- + [S_2O_3]^{2-} + H^+ \to [HS_3O_3]^- + [SO_3H]^-$$
(13)

Motiviert durch unzureichende analytische Daten und der damit experimentell immer noch ungeklärten Struktur der freien Thioschwefelsäure, wurde eine neue Synthese nach Gleichung (14) durchgeführt. Die Nutzung des in den supersauren Bereich grenzenden wasserfreien Fluorwasserstoffs, welcher zugleich als Protonierungsreagenz sowie als Lösungsmittel dient, ermöglicht eine wasserfreie Synthese der freien Thioschwefelsäure aus Natriumthiosulfat bei –60 °C. Dementsprechend wurde Fluorwasserstoff bzw. Deuteriumfluorid in etwa 100fachem Überschuss eingesetzt.

$$Na_2S_2O_3 + 2 HF \rightarrow H_2S_2O_3 + 2 NaF$$
 (14)

Die hydrolyse- und temperaturempfindliche Thioschwefelsäure sowie das Nebenprodukt Natriumfluorid verblieben unter N₂-Schutzgas im FEP-Reaktor, nachdem der überschüssige Fluorwasserstoff im dynamischen Vakuum bei tiefen Temperaturen entfernt wurde. Reine Thioschwefelsäure wurde als ölig-viskose Flüssigkeit durch Filtration aus einer Acetonitril-Lösung von dem Nebenprodukt NaF getrennt. Raman-spektroskopische Studien bei verschiedenen Temperaturen zeigen die beginnende Zersetzung der Thioschwefelsäure ab -15 °C, wie in Abbildung 2 gezeigt. Der Zerfall der Thioschwefelsäure, sehr wahrscheinlich mehrstufig über Polythionsäuren, wie in den Gleichungen (12) und (13) zu sehen, kann anhand der Intensitätszunahme der Raman-Linie bei 470 cm⁻¹ registriert werden. Diese ist sehr charakteristisch für Schwefel in seiner stabilsten Modifikation.^[41] In gleichem Maße werden die Ramanlinien der SS-Valenzschwingung bei 407 cm⁻¹ sowie der SO₂-Deformationsschwingung bei 519 cm⁻¹ kleiner. Das Abnehmen der letztgenannten Ramanlinie lässt sich auf das Entweichen von entstehendem gasförmigem Schwefeldioxid zurückführen, welches in den evakuierten Küvettenraum entweicht und so mit vorliegendem instrumentellem Aufbau nicht mehr gefasst werden kann. Mit diesem analytischen Aufbau lässt sich der stufenweise Zerfall der Thioschwefelsäure mit steigender Temperatur zu letztendlich Schwefel und SO₂ experimentell zeigen.

Abbildung 2 Temperaturinduzierter Zerfall von $H_2S_2O_3$. CCD-Raman-Spektren im Bereich von 350 cm⁻¹ – 750 cm⁻¹. Laser = 514 nm.

4.1.2 Schwingungsspektren

a) Schwingungsspektrum von $H_2S_2O_3$

Das Raman- und IR-Spektrum von $H_2S_2O_3$ ist in Abbildung 3 wiedergegeben. Bei 2517 cm⁻¹ tritt eine charakteristische, Raman-intensive SH-Valenzschwingung auf und liefert direkt den Beleg für das Vorliegen des (SH)(OH)-Tautomers. Weiterhin wird eine Schwingung bei 892 cm⁻¹ (Ra) bzw. 880 cm⁻¹ (IR) registriert, die typisch für eine SSH-Deformationsschwingung ist.

Abbildung 3 FT-Raman- und FT-IR-Schwingungspektrum von $H_2S_2O_3$. Temperatur -120 °C, Ra-Laser = 1064 nm.

Im Bereich $1000 - 1300 \text{ cm}^{-1}$ werden, wie in Abbildung 3 gezeigt, die SO-Valenzschwingungen sowie die SOH-Deformationsschwingung beobachtet. Die OSO-Deformationsschwingungen treten bei 643 cm⁻¹ bzw. bei 522 cm⁻¹ auf. Als sehr charakteristisch und intensitätsstark wird die SS-Valenzschwingung bei 412 cm⁻¹ (Ra) bzw. 414 cm⁻¹ (IR) beobachtet. Die durch Berechnungen bei 3821 cm⁻¹ erwartete OH-Valenzschwingung wird im Raman-Spektrum nicht beobachtet und im IR-Spektrum durch Eis überlagert, das während des Meßvorgangs auf den IR-Fenstern kondensiert. Wie später gezeigt wird, gelingt der Nachweis der OD-Valenzschwingung im $D_2S_2O_3$.

Abbildung 4 FT-Raman-Spektren von $H_2S_2O_3$ (Schwarze Linie) im Vergleich zu $Na_2S_2O_3$ (rote Linie). Temperatur -120 °C, Laser = 1064 nm.

Der Vergleich zwischen dem Raman-Spektrum des Eduktes $Na_2S_2O_3$ und der freien Thioschwefelsäure (Abbildung 4) zeigt eine deutliche Rotverschiebung der dominanten SS-Valenzschwingung um 37 cm⁻¹. Auf die im Vergleich zum Edukt neu entstandenen Schwingungen (SH-Valenzschwingung und SSH-Deformationsschwingung) wurde bereits eingegangen). Die auf dem RPBE1PBE/6-311G(3df,3pd)-Niveau berechneten Schwingungsfrequenzen sind in guter Übereinstimmung mit den experimentell gefundenen. Der Vergleich ist in Abbildung 5 und in Tabelle 2 zusammengefasst.

Abbildung 5 FT-Raman-Spektrum $H_2S_2O_3$ (Schwarze Linie) im Vergleich mit den quantenchemisch berechneten Schwingungen RPBE1PBE/6-311G(3df,3pd) (rote Sterne). Temperatur – 120 °C, Laser = 1064 nm.

Die von *Schmidt* vorgeschlagene Synthese von Thioschwefelsäure aus Chlorsulfonsäure und Schwefelwasserstoff (Gleichung (11)) wurde zu Vergleichszwecken reproduziert.^[39] In dieser Synthese wird $H_2S_2O_3$ nur neben höheren Thionsäuren erhalten, wie *Schmidt* bereits durch indirekte Analysemethoden folgerte.^[40] Erstmals wurde das Reaktionsgemisch spektroskopisch untersucht, und das Hauptprodukt Thioschwefelsäure konnte identifiziert werden (siehe Abbildung 6).

Abbildung 6 FT-Raman-Spektrum des Reaktionsgemisches aus H₂S und ClSO₃H. Das Hauptprodukt ist H₂S₂O₃ (Kreise) neben höheren Polyschwefelsäuren (Sterne). Temperatur -120 °C, Laser $\lambda = 1064$ nm.

$H_2S_2O_3$		$H_2S_2O_3$		
			$H_2S_2O_3$	Zuordnung
ex	p.	nach ^[39] aus H ₂ S und CISO ₃ H	calc. ^{(a),(b)}	-
Ra (Int.)	IR (Int.)	Ra (Int.)	(IR/Ra)	
			3821 (140/60)	v (OH)
2517 (100)	2514 (vw)	2537 (80)	2717 (3.7/91)	v (SH)
1331 (3.3)		1334 (3.3)	1479 (184/5.0)	$v_{as}(SO_2)$
1203 (6.1)	1207 (m)	1224 (2.9)	1230 (164/13)	v _s (SO ₂)
1147 (17)	1136 (w)	1124 (21)	1144 (67/2.9)	δ (SOH)
1042 (40)		1036 (29)		v _s (SO ₂)
891 (18)	880 (s)	895 (4.7)	879 (84/6.3)	δ (SSH)
			847 (151/6.2)	δ (SH) + ν (S-OH)
643 (11)	621 (s)	641 (3.4)	634 (174/8.6)	δ (SO ₂)
522 (38)	518 (vw)	511 (0.5)	504 (17/1.7)	δ (SO ₂)
			460 (18/1.9)	δ (SO ₂)
412 (72)	414 (m)	412 (100)	402 (0.5/16)	v (S-S)
292 (31)		290 (5.2)	308 (49/0.9)	ω (SOH)
			303 (21/1.7)	ω (SOH)
179 (20)		190 (2.8)	267 (0.7/2.0)	δ (SSO)
154 (21)			159 (16/1.5)	ω (SOH) + ω (SSH)

Tabelle 2 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_2S_2O_3$ mit C_1 - Symmetrie

(a) Berechnet auf dem PBE1PBE/6-311G(3df,3pd) Niveau. (b) Berechnete IR- und Raman-Intensitäten sind in runden Klammern ($[km/mol], [Å^4/amu]$) angegeben. Ohne Skalierungsfaktor.

b) Schwingungsspektrum von $D_2S_2O_3$

In Abbildung 7 ist das FT-Raman-Spektrum der deuterierten Thioschwefelsäure, D₂S₂O₃, gezeigt. In guter Übereinstimmung mit der Isotopenverschiebung von Valenzschwingungsfrequenzen nach der *Redlich-Teller*-Regel^[42] wird die OD-Valenzschwingung bei 2486 cm⁻¹ (Ra) bzw. 2492 cm⁻¹ (IR) beobachtet. Zusätzlich ist die SSD-Deformationsschwingung im Vergleich zu H₂S₂O₃ um etwa 200 cm⁻¹ rotverschoben. Die weiteren Gerüstschwingungen sind dagegen mit der nichtdeuterierten Thioschwefelsäure vergleichbar. Da das benutzte DF Spuren von HF-Verunreinigungen aufweist, tritt zusätzlich bei ≈ 2500 cm⁻¹ die Raman-Linie der intensiven SH-Valenzschwingung auf.

Abbildung 7 FT-Raman- und FT-IR-Schwingungsspektrum von $D_2S_2O_3$. Temperatur -120 °C, Laser $\lambda = 1064$ nm.

	$D_2S_2O_3$		$D_2S_2O_3$		
				Zuordnung	
	exp.		calc. ^{(a),(b)}	_	
	Ra (Int.)	IR (Int.)	(IR/Ra)		
	2486 (8.5)	2492 (s)	2640 (68/69)	v (OD)	
	1832 (100)	1876 (s)	1790 (4.1/72)	v (SD)	
	1336 (1.4)	1441 (sh)		v (S=O)	
	1211 (14)	1212 (s)		v_{as} (SO ₂)	
	1147 (33)		953 (96/5.1)	δ (SOD)	
	1048 (33)	1025 (s)	874 (110/1.4)	v _s (SO ₂)	
	665 (11)	712 (vw)	809 (21/9.4)	δ (SSD)	
	643 (117)	638 (m)	628 (81/17)	ν (S-OD) + δ (SSD)	
	524 (33)	522 (sh)	549 (53/10)	δ (SO ₂)	
	409 (53)	465 (sh)	449 (75/23)	v (SS)	
			331 (22/15)	δ (SO ₂)	
			313 (40/7.4)	δ (O-S-OD)	
	292 (37)		274 (20/38)	δ (SO ₃)	
			195 (0.7/5.7)	ω (SO ₂)	
	176 (15)		176 (3.8/3.4)	ω (SOD)	
			109 (77/1.3)	ω (SOD) + ω (SSD)	

Tabelle 3 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ *und Intensitäten für* $D_2S_2O_3$ *mit* C_1 - *Symmetrie*

(a) Berechnet auf dem RPBE1PBE/6-311G(d,p) Niveau. (b) Berechnete IR- und Raman-Intensitäten sind in runden Klammern ([km/mol],[$Å^4$ /amu]) angegeben. Ohne Skalierungsfaktor.

4.1.3 NMR-Spektrum

Das ¹H-NMR-Spektrum von $H_2S_2O_3$ wurde in SO_2 bei -40 °C gemessen. Das -SH-Protonensignal wird bei 3.0 ppm und das -OH-Protonensignal bei 4.3 ppm beobachtet (siehe Abbildung 8). Beide Signale zeigen äquivalente Integrale von 1. Bei einer Verschiebung von 7.9 ppm wird ein Signal detektiert, welches Rückständen von HF zugeordnet wird. ^[43] Die Präparation der Thioschwefelsäure wurde direkt im FEP-NMR-Röhrchen durchgeführt. Im Unterschied zu den vorgenannten Präparationen ist eine restlose Entfernung von HF hierbei oftmals nicht möglich. Das Spektrum wurde intern mit d₆-Aceton referenziert, welches in den Zwischenraum von NMR-Röhrchen und FEP-Inliner gegeben wurde.

Abbildung 8 ¹*H-NMR-Spektrum von H*₂S₂O₃ *in SO*₂ *bei* -40 °*C, f* = 400.182 *MHz. Mit Stern (*) gekennzeichnete Signale zeigen Rückstände von HF an.*

4.1.4 Theoretische Berechnungen des H₂S₂O₃-Moleküls

Strukturoptimierungen des freien H₂S₂O₃-Moleküls wurden unter Verwendung der Methode RPBE1PBE mit dem Basissatz 6-311G(3df,3pd) und 6-311G(d,p) durchgeführt. ^[44-45] Danach wurden die Schwingungsfrequenzen in harmonischer Näherung sowie die IR- und Raman-Intensitäten berechnet. Die berechneten Gerüstschwingungen sind in guter Übereinstimmung mit den experimentell beobachteten. Die S-S-Bindungslänge in Thioschwefelsäure beträgt 207 pm und ist damit vergleichbar mit früheren Berechnungen. ^[46] Damit bewirkt die Protonierung des Thiosulfates an dieser Bindung zuerst eine schwache Bindungsstärkung. Die S=O-Bindungen sind im Bereich normaler Doppelbindungen bei etwa 142 pm. Die Länge der S-OH-Bindung ist erwartungsgemäß mit etwa 156 pm größer.

Diskrepanzen werden vor allem für die OH- und SH- Valenzschwingungen beobachtet, welche um bis zu 200 cm⁻¹ überschätzt werden. Es ist anzunehmen, dass diese Abweichungen aus starken Wasserstoffbrückenbindungen im Festkörper resultieren, da deren Bildung gewöhnlich zu einer Rotverschiebung der entsprechenden OH- und SH-Streckschwingungen führt. Um die Einflüsse von Wasserstoffbrückenbindungen zu zeigen, wurden zwei Fluorwasserstoffmoleküle an das freie $H_2S_2O_3$ -Molekül modelliert. Diese Methode brachte in der Vergangenheit im Arbeitskreis Kornath bereits gute Ergebnisse. ^[21] Die $[H_2S_2O_3(HF)_2]$ -Einheit wurde unter Verwendung der Methode RPBE1PBE und dem Basissatz 6-311G(3df,3pd) berechnet. Die gasphasenoptimierten Strukturen der freien Thioschwefelsäure sowie der $[H_2S_2O_3(HF)_2]$ -Einheit sind in Abbildung 9 gezeigt.

Abbildung 9 Ab initio berechnete Strukturen (RPBE1PBE/6-311G(3df,3pd)) der $[H_2S_2O_3(HF)_2]$ -Einheit und des $H_2S_2O_3$ - Moleküls.

Die formale Addition von HF-Molekülen an das freie Molekül beeinflusst einige Schwingungsmoden signifikant. Besonders die OH- und SH-Streckschwingungen werden aufgrund der Bildung von S-O···H···F-H und S···H···F-H-Wasserstoffbrückenbindungen zu niedrigeren Wellenzahlen verschoben. Die daraus resultierenden Schwingungsfrequenzen stimmen gut mit den experimentell beobachteten überein (siehe Tabelle 4). So verschiebt sich die Frequenz der SH-Valenzschwingung durch die moddelierte HF-Addition von 2717 cm⁻¹ nach 2518 cm⁻¹. Der beobachtete Wert liegt bei 2558 cm⁻¹. Noch deutlicher ist die Annäherung an den experimentellen Wert im Falle der OH-Streckschwingung. Hier verschiebt sich in der $[H_2S_2O_3(HF)_2]$ -Einheit die entsprechende Frequenz um 542 cm⁻¹ und stimmt danach mit 3279 cm⁻¹ sehr gut mit der beobachteten Frequenz (3241 cm⁻¹) überein. Auch wenn die [H₂S₂O₃(HF)₂]-Einheit nur ein sehr vereinfachtes Modell des Festkörpers darstellt, sind die Übereinstimmungen der berechneten Schwingungsfrequenzen mit den beobachteten sehr zufriedenstellend. An dieser Stelle läge der Gedanke nahe, dass die isolierte Thioschwefelsäure womöglich als HF-Addukt vorliegt. Dieses kann jedoch ausgeschlossen werden, da eine üblicherweise intensitätsstarke H-F-Valenzschwingung in den IR-Spektren nicht auftritt. Darüberhinaus wird bei der H₂S₂O₃-Zersetzung in einer Glasküvette keine Glasätzung beobachtet.

Tabelle 4 : Ausgewählte experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ für $H_2S_2O_3$ und $[H_2S_2O_3 (HF)_2]$ mit C_1 -Symmetrie

$H_2S_2O_3$	$H_2S_2O_3$	$[H_2S_2O_3(HF)_2]$	Zuordnung
exp ^(a)	calc. ^(b)	calc. ^(b)	•
3241	3821	3279	v (OH)
2558	2717	2518	v (SH)
1331	1479	1382	v_{as} (SO ₂)
889	879	907	δ (SSH)
392	402	396	v (S-S)

(a) gemittelte experimentelle IR- und Raman-Schwingungen (b) berechnet auf dem RPBE1PBE/6311-G (3df,3pd) Niveau. Ohne Skalierungsfaktor.

4 .2 Protonierte Thioschwefelsäure, $H_3S_2O_3^+MF_6^-$ (M = As, Sb)

4.2.1 Bildung und Stabilität

Die Synthese von $H_2S_2O_3^+MF_6^-$ (M = As, Sb) wurde bei -65 °C nach folgender Gleichung durchgeführt:

$$Na_2S_2O_3 + 3 XF/MF_5 \rightarrow X_3S_2O_3^+MF_6^- + 2 NaMF_6$$
 (15)
(X = H, D; M = As, Sb)

Fluorwasserstoff bzw. Deuteriumfluorid wurde bei der Reaktion in etwa 100fachem Überschuss eingesetzt, da es sowohl als Reagenz als auch als Lösungsmittel diente. Die gebildeten Salze $X_3S_2O_3^+MF_6^-$ sowie das Nebenprodukt Na $^+MF_6^-$ fielen bei -65 °C quantitativ als farblose Feststoffe aus. Im dynamischen Vakuum wurde das überschüssige Lösungsmittel innerhalb von 12 h entfernt. Das verbleibende hydrolyse- und temperatursensitive Produktgemisch ist bis -30 °C unzersetzt haltbar. Am trockenen Produktgemisch wurden Raman-, IR- und NMR-spektroskopische Untersuchungen durchgeführt.

4.2.2 Schwingungsspektren

a) Schwingungsspektrum von $H_3S_2O_3^+MF_6^-$ (M = As, Sb)

In Abbildung 10 und Abbildung 11 ist das FT-Raman- und FT-IR-Spektrum von H₃S₂O₃⁺AsF₆⁻ und H₃S₂O₃⁺SbF₆⁻ wiedergegeben. In Tabelle 5 sind die experimentellen und quantenchemisch berechneten Schwingungsfrequenzen sowie deren Zuordnung aufgelistet. Die OH-Streckschwingung wird jeweils im Raman-Spektrum nicht beobachtet, sie tritt jedoch im IR-Spektrum bei 3192 cm⁻¹ (AsF₆⁻) bzw. 3139 cm⁻¹ (SbF₆⁻) als breite Bande auf. Die SH-Valenzschwingung wird als schmale Linie bei 2526 (Ra, AsF₆), 2529 (IR, AsF₆), 2534 (Ra, SbF₆) und 2537 cm⁻¹ (IR, SbF₆) beobachtet. Die Lage der S=O-Valenzschwingung ist in guter Übereinstimmung mit der quantenchemisch berechneten Frequenz bei etwa 1341 cm⁻¹. Ebenso werden die gegenüber dem eingesetzten Natriumthiosulfat neu auftretenden SOH-Deformationsschwingungen in guter Übereinstimmung mit den berechneten Frequenzen im Hexafluoridoarsenat bei 1156 und 1136 (Ra) bzw. bei 1203 cm⁻¹ (IR) beobachtet. Die entsprechenden Frequenzen im Hexafluoridoantimonat liegen bei 1148 cm⁻¹ (Ra) und 1130 cm⁻¹ (IR). Die antisymmetrische SO₂-Valenzschwingung tritt bei 1004 (Ra, AsF₆⁻), 1011 (IR, AsF₆⁻), 1037 (Ra, SbF₆) und 1017 cm⁻¹ (IR, SbF₆) auf und die entsprechende symmetrische Valenzschwingung bei 901 cm⁻¹ (IR, AsF₆⁻) und 878 cm⁻¹ (IR, SbF₆⁻). Um 410 cm⁻¹ wird die SS-
Streckschwingung beobachtet. Diese ist somit im $H_3S_2O_3^+$ -Kation gegenüber dem Natriumthiosulfat um etwa 44 cm⁻¹ rotverschoben. Bei 700, 585 und 371 cm⁻¹ (Ra) bzw. 717 cm⁻¹ und 404 cm⁻¹ (IR) treten die für das AsF₆⁻-Oktaeder typischen Linien auf. Die Linien für das SbF₆⁻-Anion werden bei 667, 581 und 286 cm⁻¹ (Ra) bzw. 775 cm⁻¹ (IR) beobachtet.

Abbildung 10 FT-Raman- und FT-IR-Schwingungsspektrum von $H_3S_2O_3^+AsF_6^-$. Temperatur –120 °C, Laser $\lambda = 1064$ nm.

Abbildung 11 FT-Raman- und FT-IR-Schwingungsspektrum von $H_3S_2O_3^+SbF_6^-$. Temperatur –120 °C, Laser $\lambda = 1064$ nm.

		S			
H₃S	${}_{2}O_{3}^{+}$	H₃S	S ₂ O ₃ ⁺	$H_3S_2O_3^+$	
As	F ₆	Sb	₽F ₆ ¯		Zuordnung
ex	кр.	e	xp.	calc. ^{(a),(b)}	
Ra (Int.)	IR (Int.)	Ra	IR (Int.)	(IR/Ra)	
	3192 (vs)		3239 (vs)	3720 (296/59)	ν (OH)
				3689 (344/106)	ν (OH)
2526 (45)	2529 (s)	2534 (100)	2537 (w)	2651 (52/84)	ν (SH)
1341 (14)	1345 (s)		1337 (m)	1399 (165/8.1)	v (S=O)
1156 (7.5)	1203 (w)	1148 (22)		1178 (96/3.1)	δ (SOH)
1136 (2.4)			1130 (m)	1157 (70/2.3)	δ (SOH)
1004 (10)	1011 (m)	1037 (44)	1017 (m)	949 (205/1.4)	v_{as} (SO ₂)
975 (6.7)	970 (m)		972 (w)	916 (59/5.4)	δ (SH)
	901 (w)		878 (s)	890 (196/12)	v_s (SO ₂)
671 (16)	622 (s)			600 (101/8.4)	δ (SO ₃)
470 (4.7)	471 (vw)	519 (8.3)	502 (w)	469 (52/1.4)	ω (SOH)
450 (24)	455 (vw)	466 (4.2)	458 (w)	450 (52/2.2)	ω (SOH)
412 (32)	404 (s)	408 (95)	413 (w)	408 (33/9.6)	v (S-S)
322 (3.6)				378 (48/1.8)	ω (SOH)
289 (5.7)				302 (53/1.0)	ω (SOH)
				290 (13/1.7)	ω (SOH)
219 (15)				238 (38/2.6)	ω (SOH)
				129 (38/3.9)	ω (SH)
700 (100)	716 (vs))
585 (13)					AsF_6^-
371 (35)	404 (vs)				J

Tabelle 5 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_3S_2O_3^+MF_6^-$ mit C_1 - Symmetrie

J	675 (vs)	667 (89)
SbF ₆		581 (11)
J		286 (37)

(a) Berechnet auf dem RPBE1PBE/6-311G(d,p) Niveau. (b) Berechnete IR- und Raman-Intensitäten sind in runden Klammern ([km/mol], [Å⁴/amu]) angegeben. v = very (sehr), s = strong (stark), m = medium (mittel), w = weak (schwach). Ohne Skalierungsfaktor.

b) Schwingungsspektrum von $D_3S_2O_3^+MF_6^-$ (M = As, Sb)

In Abbildung 12 ist das FT-Raman- und FT-IR-Spektrum von $D_3S_2O_4^+AsF_6^-$ wiedergegeben. Die dazugehörige Auflistung der Schwingungsfrequenzen und ein Vergleich mit den quantenchemisch berechneten Frequenzen sowie deren Zuordnung ist in Tabelle 6 zusammengefasst. Wie erwartet wird die OD-Valenzschwingung im Raman-Spektrum beobachtet und befindet sich im Vergleich zum nicht-deuterierten Kation rotverschoben bei 2304 cm⁻¹ (Ra) bzw. bei 2411 cm⁻¹ (IR). Durch den H-D-Austausch ebenfalls verschoben ist die SD-Valenzschwingung, welche bei 1835 cm⁻¹ (Ra) und 1839 cm^{-1} (IR) auftritt. Bei 1337 cm^{-1} (Ra) bzw. 1342 cm^{-1} (IR) wird die S=O-Valenzschwingung beobachtet, während die antisymmetrische und symmetrische SO2-Valenzschwingung bei 1128 cm⁻¹ und 1033 cm⁻¹ (Ra) bzw. 1192 cm⁻¹ und 1039 cm⁻¹ (IR) SOD-Deformationsschwingungen wird auftritt. Die Rotverschiebung der von der quantenchemischen Rechnung überschätzt. Diese Schwingungen werden mit geringer Intensität bei 980, 893 und 710 (Ra) bzw. 972 und 881 cm⁻¹ (IR) beobachtet. Bei 700, 585 und 371 (Ra) bzw. 716 cm⁻¹ (IR) treten die für das AsF₆⁻-Oktaeder typischen Linien auf.

Das FT-Raman-Spektrum und das FT-IR-Spektrum von $D_3S_2O_3^+SbF_6^-$ ist in Abbildung 13 wiedergegeben.

Die OD-Valenzschwingung wird bei 2538 cm⁻¹ (Ra) bzw. bei 2428 cm⁻¹ (IR) beobachtet. Die SD-Valenzschwingung befindet sich bei 1837 cm⁻¹ (Ra) bzw. bei 1836 cm⁻¹ (IR). Die Linien der SO-Valenzschwingungen treten sehr intensivschwach bei 1325, 1147 und 1037 cm⁻¹ (Ra) bzw. bei 1332 cm⁻¹, 1144 cm⁻¹ und 1026 cm⁻¹ (IR) auf. Die Linien für das SbF₆⁻-Oktaeder werden erwartungsgemäß bei 667, 583 und 286 cm⁻¹ (Ra) bzw. bei 674 cm⁻¹ (IR) beobachtet.

Abbildung 12 FT-Raman- und FT-IR-Schwingungsspektrum von $D_2S_2O_3^+AsF_6^-$. Temperatur –120 °C, Laser $\lambda = 1064$ nm.

Abbildung 13 FT-Raman- und FT-IR-Schwingungsspektrum von $D_2S_2O_3^+SbF_6^-$. Temperatur –120 °C, Laser $\lambda = 1064$ nm.

Tabelle 6 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $D_3S_2O_3^+MF_6^-$ mit C_1 - Symmetrie

D ₃ S ₂	${}_{2}O_{3}^{+}$	D ₃ S ₂	O_3^+	$D_3S_2O_3^+$	
Asl	- 6	SbF	6		Zuordnung
ex	р.	exp		calc. ^{(a),(b)}	
Ra (Int)	IR (Int)	Ra (Int.)	IR (Int)	(IR/Ra)	
2304 (26)	2411 (s)	2538 (29)	2428 (w)	2709 (162/30)	v (OD)
	2347 (s)			2684 (204/51)	v (OD)
1835 (48)	1839 (m)	1837 (100)	1836 (w)	1903 (25/42)	v (SD)
1337 (16)	1342 (s)	1325 (6.9)	1332 (m)	1396 (148/8.5)	v (S=O)
1128 (31)	1192 (w)	1147 (31)	1144 (s)	976 (125/3.4)	v_{as} (SO ₂)
1033 (4.6)	1039 (s)	1037 (38)	1026 (m)	923 (213/4.7)	v _s (SO ₂)
980 (2.9)	972 (s)			862 (87/4.1)	δ (SOD)
893 (8.0)	881 (w)		898 (m)	849 (77/4.2)	δ (SOD)
710 (10)				683 (8.9/3.9)	δ (SSD)
671 (18)	622 (m)			573 (89/7.9)	δ (SO ₃)
461 (100)	507 (w)	460 (7.5)	501 (w)	447 (30/1.5)	δ (SO ₂)
				419 (26/2.0)	δ (SO ₂)
408 (40)	414 (m)	405 (80)	405 (vw)	395 (20/9.7)	v (S-S)
285 (10)				310 (27/0.7)	ω (SOD)
				272 (2.4/1.8)	ω (SD)
219 (13)				247 (36/0.6)	ω (SOD)
				186 (32/1.4)	ω (SOD)
				100 (22/2.3)	ω (SD)
700 (81)	716 (vs)				ſ
585 (20)					≻ AsF ₆ ¯
371 (44)					J
		667 (79)	674 (vs)		J
		583 (5.6)			SbF ₆ [−]
		286 (31)			J

(a) Berechnet auf dem PBE1PBE/6-311G(d,p) Niveau. (b) Berechnete IR- und Raman-Intensitäten sind in runden Klammern ([km/mol],[\hat{A}^4 /amu]) angegeben. v = very (sehr), s = strong (stark), m = medium (mittel), w = weak (schwach). Ohne Skalierungsfaktor.

4.2.3 NMR-Spektrum

Das ¹H-NMR und ¹⁹F-NMR-Spektrum von $H_3S_2O_3^+AsF_6^-$ wurde bei -60 °C in SO₂ gemessen. Im ¹H-NMR-Spektrum (Abbildung 14) wird das SH-Protonensignal bei 7.22 ppm detektiert. Die Protonenresonanz der beiden OH-Protonen, wird als breites Signal bei 8.51 ppm beobachtet. Das Verhältnis der beiden Integrale von 1.0 : 2.5 untermauert die Annahme einer HS-S(O)(OH)₂ – Konformation des $H_3S_2O_3^+$ -Kations. Bei einer Verschiebung von 11.3 ppm wird ein zusätzliches Signal detektiert, welches Rückständen von HF zugeordnet wird. In NMR-Studien zu HF/SbF₅-Lösungen verschiedener Zusammensetzungen werden ¹H-NMR Verschiebungen von 8.0 – 16 ppm beschrieben. ^[43] Im ¹⁹F-NMR-Spektrum wird ein für das AsF₆⁻-Anion typisches Signal bei -56.6 ppm registriert. ^[47]

Abbildung 14 ¹*H-NMR-Spektrum von* $H_3S_2O_3^+AsF_6^-$ *in* SO_2 *bei* -40 °C, f = 400.182 *MHz. Mit Stern (*)* gekennzeichnete Signale zeigen Rückstände von HF an.

4.2.4 Theoretische Berechnungen des $H_3S_2O_3^+$ -Kations

Die auf dem RPBE1PBE/6-311G (3df,3pd) - Niveau berechnete Struktur von protonierter Thioschwefelsäure ist in Abbildung 15 gezeigt. Die Länge der S=O-Bindung ist mit 141.4 pm im Bereich einer normalen S=O-Doppelbindung. Die S-OH-Bindungen sind dagegen mit etwa 155 pm durch die Protonierung erwartungsgemäß verlängert, haben aber noch teilweise Doppelbindungscharakter. Es fällt auf, dass die protonierte Thioschwefelsäure eine im Vergleich zur freien Thioschwefelsäure verkürzte S-S-Bindung von 203 pm aufweist. Dieser Befund kann in den Schwingungsspektren durch Blauverschiebung der v(S-S) bei protonierter Thioschwefelsäure gezeigt werden. Damit bewirkt die Protonierung des Thiosulfates zum H₃S₂O₃⁺-Kation an dieser Bindung eine Bindungstärkung.

Abbildung 15 Gasphasenstrukturoptimierung der protonierten Thioschwefelsäure $(H_3S_2O_3^+)$ auf dem *RPBE1PBE/6-311G (3df,3pd)-Niveau*

4.3 Dithionige Säure, H₂S₂O₄

4.3.1 Bildung und Stabilität

Die Salze der Dithionigen Säure, die Dithionite, werden vor allem wegen ihres starken Reduktionsvermögens als Färbe- und Druckereihilfsmittel und als Bleichmittel in der Textil- und Papierindustrie eingesetzt. Hierbei ist besonders das Natriumdithionit-Dihydrat zu nennen, welches im Bereich mehrerer hundert Kilotonnen pro Jahr hergestellt wird. Weiterhin werden Dithionite in der analytischen Chemie eingesetzt. Dithionite werden in der Technik durch Reduktion von SO₂ hergestellt. Dabei wird als Reduktionsmittel entweder eine wässrige Aufschlämmung von Zinkstaub oder eine methanolische Lösung von Natriumformiat im alkalischen Milieu verwendet. ^[48] Über die Konformation und die Struktur der Dithionite gab es lange Zeit keine Klarheit. Aus Raman-spektroskopischen Studien folgerten *Simon* und *Küchler* dass das Dithionit-Ion in wässriger Lösung planar mit D_{2h} -Symmetrie vorliegt ^[49], während Einkristall-Röntgenstrukturanalysen von Na₂S₂O₄ zwei SO₂⁻-Einheiten mit einer langen SS-Bindung (239 pm) und ekliptischer Konfiguration mit annähernd C_{2v} -Symmetrie zeigen. ^[50]

Trotz der vielseitigen Anwendungsgebiete der Dithionite in der Industrie und Technik ist die freie Dithionige Säure, $H_2S_2O_4$ (pK₁ = 0.35; pK₂ = 2.45) bisher nicht untersucht worden, da sich Dithionite beim Ansäuern in wässrigen Lösungen gemäß folgender Gleichung zersetzen: ^[48]

$$2 S_2 O_4^{2-} + H_2 O \rightarrow 2 H S O_3^{-} + S_2 O_3^{2-}$$
 (16)

Eine theoretische *ab initio* - Studie von *Steudel et al.* favorisiert die Konformation der Dithionigen Säure als (OH)OSSO(OH) – Tautomer.^[51]

Motiviert durch das Fehlen experimenteller Belege für die Struktur der freien Dithionigen Säure, wurde eine neue Synthese nach Gleichung (17) durchgeführt.

$$Na_2S_2O_4 + 2 HF \rightarrow H_2S_2O_4 + 2 NaF$$
(17)

Wasserfreier Fluorwasserstoff, welcher zugleich als Säure sowie als Lösungsmittel dient, ermöglicht eine wasserfreie Synthese von $H_2S_2O_4$ aus Natriumdithionit bei -60 °C. Die tiefen Temperaturen und der Ausschluss von Wasser verhindert die in (16) gezeigte Zerfallsreaktion. Die hydrolyse- und temperatursensitive Dithionige Säure sowie das Nebenprodukt Natriumfluorid verblieben unter N₂-Schutzgas im FEP-Reaktor, nachdem der überschüssige Fluorwasserstoff im dynamischen Vakuum bei tiefen Temperaturen entfernt wurde.

Raman-spektroskopische Studien des Produktgemenges bei verschiedenen Temperaturen zeigen die beginnende Zersetzung der Dithionigen Säure ab -40 °C zu letztendlich elementarem Schwefel und SO₂.

4.3.2 Schwingungsspektren

a) Schwingungsspektrum von $H_2S_2O_4$

Das FT-IR- und FT-Raman-Spektrum von $H_2S_2O_4$ ist in Abbildung 16 wiedergegeben. In Tabelle 7 sind die beobachteten und quantenchemisch berechneten Schwingungsfrequenzen sowie die Zuordnung der Schwingungen für $H_2S_2O_4$ angeführt. Die OH-Streckschwingung tritt im IR-Spektrum bei 3225 cm⁻¹ als breite Bande auf. Die SH-Valenzschwingung wird als intensive Linie bei 2516 cm⁻¹ (Ra) bzw. breite Bande bei 2555 cm⁻¹ (IR) registriert, was auf das Vorliegen der Dithionigen Säure als (SH)(OH)-Tautomer hindeutet. Die S=O Valenzschwingung wird bei 1205 cm⁻¹ (Ra) bzw. bei 1183 cm⁻¹ (IR) beobachtet und die Die S-(OH)-Valenzschwingung bei 797 cm⁻¹ (Ra) bzw. 771 cm⁻¹ (IR). Im Vergleich zu den v(SO₂) in Natriumdithionit ist die S=O Valenzschwingung um etwa 20 cm⁻¹ blauverschoben und die v(S-O) stark rotverschoben. Damit kann die Protonierung am O-Atom gezeigt werden. Bei 1049 cm⁻¹ (Ra) bzw. 1022 cm⁻¹ (IR) tritt die SOH-Deformationsschwingung auf. Die Deformationsschwingung δ (SSH) tritt bei 889 cm⁻¹ (Ra) bzw. 878 cm⁻¹ (IR) auf. Im Einklang mit einer relativ schwachen und langen SS-Bindung tritt die SS-Valenzschwingung bei 293 cm⁻¹ auf.

Die schwingungsspektroskopischen Befunde weisen eindeutig darauf hin, dass, zumindest bei tiefen Temperaturen, das (SH)(OH)-Tautomer gegenüber dem (OH)(OH)-Tautomer bevorzugt ist (Siehe Schema (18)). Wie in 4.3.1 beschrieben, hatten *Steudel et al.* in einer theoretischen Arbeit von 1998^[51] das (OH)(OH)-Tautomer als energetisch günstiger berechnet. Diese theoretische Voraussage kann durch die vorliegenden Ergebnisse nicht bestätigt werden.

$$O \xrightarrow{O} O \xrightarrow{O} O H$$

$$O \xrightarrow{I_{2^{+}}} S \xrightarrow{+} O \xrightarrow{I_{2^{+}}} S \xrightarrow{+} O \xrightarrow{I_{2^{+}}} S \xrightarrow{+} S \xrightarrow{+} O \xrightarrow{I_{2^{+}}} S \xrightarrow{+} O \xrightarrow{I_{2^{+}}}$$

Abbildung 16 FT-Raman- und FT-IR-Schwingungsspektrum von $H_2S_2O_4$. Temperatur -120 °C, Laser $\lambda = 1064$ nm.

e e					
H ₂ S	S ₂ O ₄	$H_2S_2O_4$			
e	(D.	calc. ^{(a),(b)}	Zuordnung		
Ra (Int.)	IR (Int.)	(IR/Ra)			
	3225 (vs)	3829 (168/125)	v (OH)		
2516 (100)	2555 (s)	2393 (39/138)	ν (SH)		
		1387 (202/8.3)	$v_{as}(SO_2)$		
1205 (15)	1183 (w)	1201 (73/15)	v (S=O)		
		1149 (286/16)	$v_s(SO_2)$		
		1086 (1.3/13)	δ (OSH)		
1049 (35)	1022 (vw)	1061 (94/9.2)	δ (SOH)		
889 (22)	878 (s)	934 (104/7.2)	δ (SSH)		
797 (0.9)	771 (vw)	758 (158/7.9)	ν (S-OH)		
632 (31)	612 (m)	551 (16/15)	δ (SSO)		
521 (6.7)		500 (33/7.1)	δ (OSO)		
487 (69)	475 (m)	416 (37/5.7)	δ (OSO)		
402 (64)		332 (54/10)	ω (SO ₂ H)		
293 (12)		233 (13/16)	v (SS)		
220 (0.8)		224 (93/15)	ω (OH)		
204 (7.9)		183 (6.2/2.9)	ρ (SO ₂ H)		
148 (19)		161 (9.4/1.1)	τ (SO ₂ H)		
		55 (7.8/0.5)	τ (SO ₂ H)		

Tabelle 7 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_2S_2O_4$ mit C_1 - Symmetrie

(a) Berechnet auf dem RPBE1PBE/6-311G(d,p) Niveau. (b) Berechnete IR- und Raman-Intensitäten sind in runden Klammern ([km/mol],[Å⁴/amu]) angegeben. v = very (sehr), s = strong (stark), m = medium (mittel), w = weak (schwach). Ohne Skalierungsfaktor.

a) Schwingungsspektrum von $D_2S_2O_4$

In Abbildung 17 ist das FT-IR- und FT-Raman-Spektrum von $D_2S_2O_4$ abgebildet. Die beobachteten und quantenchemisch berechneten Schwingungsfrequenzen sowie deren Zuordnung ist in nachfolgender Tabelle 8 zusammengefasst. Die OD-Streckschwingung wird sowohl im Raman- als auch im IR-Spektrum beobachtet. Sie tritt bei 2489 cm⁻¹ (Ra) bzw. 2431 cm⁻¹ (IR) auf. Die beiden Raman-Linien bei 2539 cm⁻¹ bzw. 2393 cm⁻¹ sind einerseits durch Spuren von HF (v (SH)) entstanden bzw. durch eingeschlepptes D_2O zu erklären. Die SD-Valenzschwingung ist im Einklang mit der *Teller-Redlich-Regel* um etwa den Faktor $\frac{1}{\sqrt{2}}$ rotverschoben und wird bei 1812 cm⁻¹ (Ra) bzw. 1909 cm⁻¹ (IR) beobachtet.

Die S=O Valenzschwingung wird bei 1237 cm⁻¹ (IR) registriert. Bei 958 und 862 (Ra) bzw. 937 und 745 cm⁻¹ (IR) treten die im Vergleich zu $H_2S_2O_4$ wie erwartet rotverschobenen SOD-Deformationsschwingungen auf. Bei 487 cm⁻¹ (Ra) bzw. 496 cm⁻¹ tritt die sehr intensive SSO-Deformationsschwingung auf. Die SS-Valenzschwingung wird bei 252 cm⁻¹ (Ra) beobachtet.

Abbildung 17 FT-Raman- und FT-IR-Schwingungsspektrum von $D_2S_2O_4$. Temperatur -120 °C, Laser $\lambda = 1064$ nm.

-		
ੱ	7 0	

Tabelle 8 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $D_2S_2O_4$ mit C₁-Symmetrie

D	$P_2S_2O_4$	$D_2S_2O_4$	Zuordnung
	exp.	calc. ^{(a),(b)}	-
Ra (Int.)	IR (Int.)	(IR/Ra)	
2489 (28)	2431 (s)	2788 (98/62	v (OD)
1812 (54)	1909 (m)	1724 (27/67)	v (SD)
	1368 (w)	1385 (206/8.5)	v_{as} (SO ₂)
	1237 (s)	1197 (82/15)	v (S=O)
1036 (9.6)	1024 (m	1145 (284/17)	v _s (SO ₂)
958 (0.9)	937 (m)	800 (43/4.6)	δ (OSD)
862 (2.8)	745 (s)	785 (48/7.9)	δ (SOD)
629 (7.0)	630 (vs)	756 (76/6.9)	v (S-OD)
		717 (129/3.1)	δ (SSD)
487 (100)	496 (m)	534 (6.4/13)	δ (SSO)
466 (4.8)		493 (27/8)	δ (OSO)
406 (12)		411 (28/6.8)	δ (OS(OD))
313 (1.2)		313 (35/12)	ω (SO ₂ D)
252 (4.3)		230 (3.8/21)	v (S-S)
216 (2.4)		188 (33/3.1)	ω (OD)
184 (6.8)		163 (31/2.8)	ω (OD)
		155 (12/1.8)	ρ (SO ₂ D)
		54 (7.6/0.5)	τ (SO ₂ D)

(a) Berechnet auf dem PBE1PBE/6-311G(d,p) Niveau. (b) Berechnete IR- und Raman-Intensitäten sind in runden Klammern ([km/mol], [Å⁴/amu]) angegeben. v = very (sehr), s = strong (stark), m = medium (mittel), w = weak (schwach). Ohne Skalierungsfaktor.

4.3.3 NMR-Spektrum

Das ¹H-NMR-Spektrum von $H_2S_2O_4$ wurde in SO_2 bei –60 °C gemessen. Das SH-Protonensignal wird bei 4.7 ppm und die OH-Protonenresonanz als breites Signal bei 10.1 ppm beobachtet (Siehe Abbildung 18). Bei einer Verschiebung von 7.7 ppm wird ein Signal detektiert, welches Rückständen von HF zugeordnet wird. ^[43] Das breite OH-Protonensignal, sowie beobachtete Multipletts lassen die Vermutung zu, dass HF-Rückstände im FEP-Inliner zu unterschiedlichen HF-Addukten geführt hat. Das Spektrum wurde intern mit Aceton referenziert, welches in den Zwischenraum von NMR-Röhrchen und FEP-Inliner gegeben wurde.

Abbildung 18¹H-NMR-Spektrum von H₂S₂O₄ in SO₂ bei −60 °C. Mit Stern (*) gekennzeichnete Signale zeigen Rückstände von HF an. Weiterhin wird das von Aceton verursachte Referenzsignal gefunden. Das von Wasser verursachte Signal rührt von Verunreinigungen in der Referenzsubstanz.

4.3.4 Theoretische Berechnungen des H₂S₂O₄-Moleküls

Die Strukturoptimierungen des freien $H_2S_2O_4$ -Moleküls wurden unter Verwendung der Methode RPBE1PBE mit dem Basissatz 6-311G(d,p) durchgeführt. ^[44-45] Danach wurden die Schwingungsfrequenzen in harmonischer Näherung sowie die IR- und Raman-Intensitäten berechnet. Die Gerüstschwingungen sind in guter Übereinstimmung mit den experimentell beobachteten Werten. Wie schon in 4.1.4 diskutiert, werden Diskrepanzen vor allem für die OHund SH- Valenzschwingungen beobachtet. An das freie $H_2S_2O_4$ wurden formal zwei Fluorwasserstoffmoleküle addiert um die Einflüsse von Wasserstoffbrückenbindungen zu simulieren. Die $[H_2S_2O_4(HF)_2]$ -Einheit wurde ebenfalls unter Verwendung der Methode RPBE1PBE und dem Basissatz 6-311G(d,p) berechnet. Die gasphasenoptimierten Strukturen der freien Thioschwefelsäure sowie der $[H_2S_2O_4(HF)_2]$ Einheit sind in Abbildung 19 gezeigt.

Abbildung 19 Ab initio berechnete Strukturen (RPBE1PBE/6-311G(d,p)) der $[H_2S_2O_4(HF)_2]$ -*Einheit und des* $H_2S_2O_4$ -*Moleküls*

Die formale Addition von HF Molekülen an das freie Molekül beeinflusst einige Schwingungsmoden signifikant. Besonders die OH- und SH-Streckschwingungen werden aufgrund der Bildung von S-O···H···F-H und S···H···F-H Wasserstoffbrückenbindungen zu niedrigeren Wellenzahlen verschoben. Die daraus resultierenden Schwingungsfrequenzen stimmen gut mit den experimentell Experimentellen überein (sieheTabelle 9). So verschiebt sich die Frequenz der SH-Valenzschwingung durch die simulierte HF-Addition von 2393 cm⁻¹ nach 2493 cm⁻¹. Der beobachtete Wert liegt bei 2536 cm⁻¹. Eine Annäherung an den experimentellen Wert wird auch im Falle der OH-Streckschwingung gefunden. Hier verschiebt sich in der $[H_2S_2O_4(HF)_2]$ -Einheit die entsprechende Frequenz um 192 cm⁻¹ und ist danach mit 3637 cm⁻¹ in besserer Übereinstimmung mit der beobachteten Frequenz (3225 cm⁻¹). Auch wenn die $[H_2S_2O_4(HF)_2]$ Einheit nur ein sehr vereinfachter Ansatz darstellt die Wechselwirkungen im Festkörper zu simulieren, sind die Übereinstimmungen der berechneten Schwingungsfrequenzen mit den beobachteten sehr zufriedenstellend, berücksichtigt man, dass kein Skalierungsfaktor für die berechneten Frequenzen verwendet wurde. Die S-S-Bindungslänge in der berechneten Dithionigen Säure beträgt 227 pm und ist damit kürzer als die beobachtete S-S-Bindungslänge (239 pm) im Dithionit-Einkristall. ^[52] Damit bewirkt die Protonierung des Dithionites an dieser Bindung eine Bindungsstärkung. Dieser Befund kann ebenfalls durch eine schwache Blauverschiebung der v(S-S) im Raman-Spektrum von $H_2S_2O_4$ im Vergleich zu Natriumdithionit gestützt werden. Die S=O-Bindungen sind im Bereich normaler Doppelbindungen bei etwa 144 pm. Die Länge der S-OH-Bindung ist erwartungsgemäß mit etwa 165 pm deutlich größer.

$H_2S_2O_4$	$H_2S_2O_4$	$[H_2S_2O_4(HF)_2]$	Zuordnung
exp ^(a)	calc. ^(b)	calc. ^(b)	-
3225	3829	3637	ν (OH)
2536	2393	2493	ν (SH)
784	758	792	ν (S-OH)
293	233	250	v (S-S)

Tabelle 9 : Ausgewählte experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ für $H_2S_2O_4$ und $[H_2S_2O_4(HF)_2]$ mit C_1 -Symmetrie

(a) gemittelte experimentelle IR- und Raman-Schwingungen (b) berechnet auf dem RPBE1PBE/6311-G(d,p) Niveau. Ohne Skalierungsfaktor.

4.4 Protonierte Dithionige Säure, $H_3S_2O_4^+MF_6^-$ (M = As, Sb)

4.4.1 Bildung und Stabilität

Die Dithionige Säure, $H_2S_2O_4$, welche mit $pK_1 = 0.35$ und $pK_2 = 2.45$ ^[48] im Säurestärkenbereich von starken Säuren liegt ^[53], sollte durchaus mit den supersauren Systemen HF/AsF₅ und HF/SbF₅ protonierbar sein, zumal diese supersauren Systeme in der Lage sind, Fluorsulfonsäure und Schwefelsäure zu protonieren. ^[21-22]

Die Synthese von $H_3S_2O_4^+MF_6^-$ (M = As, Sb) wurde bei -65 °C nach folgender Reaktionsgleichung durchgeführt:

$$Na_2S_2O_4 + 3 HF/MF_5 \rightarrow H_3S_2O_4^+MF_6^- + 2 NaMF_6$$
(19)

Fluorwasserstoff bzw. Deuteriumfluorid wurde in etwa 100fachem Überschuss eingesetzt, da es sowohl als Reagenz als auch als Lösungsmittel diente. Die gebildeten Salze $H_3S_2O_4^+MF_6^-$ sowie das Nebenprodukt Na⁺MF₆⁻ fielen bei -65 °C quantitativ als farblose Feststoffe aus. Im dynamischen Vakuum wurde das überschüssige Lösungsmittel innerhalb von 12 h entfernt und das verbleibende hydrolyse- und temperatursensitive Produktgemisch bleibt bis -40 °C unzersetzt haltbar. Am trockenen Produktgemisch wurden Raman-, IR- und NMR-spektroskopische Untersuchungen durchgeführt.

4.4.2 Schwingungsspektren a) Schwingungsspektrum von $H_3S_2O_4^+MF_6^-$ (M = As, Sb)

Nachfolgend ist das FT-Raman- und FT-IR-Spektrum von $H_3S_2O_4^+AsF_6^-$ in Abbildung 20 wiedergegeben. In Tabelle 10 sind die beobachteten und quantenchemisch berechneten Schwingungsfrequenzen sowie deren Zuordnung für das $H_3S_2O_4^+$ -Kation aufgelistet.

Die OH-Streckschwingung wird im Raman-Spektrum nicht beobachtet. Sie tritt im IR-Spektrum bei 3123 cm⁻¹ als breite Bande auf. Auffällig ist das reproduzierbare Auftreten von zwei SH-Valenzschwingungen im typischen Bereich von S-H-Valenzschwingungen um etwa 2500 cm⁻¹. Zusammen mit den quantenchemischen Gasphasenoptimierungen auf dem RPBE1PBE/6-311G-Niveau und Vergleichen mit quantenchemischer Rechnungen anderer möglicher Tautomere, lässt dieses den Schluss zu, dass das $H_3S_2O_4^+$ -Kation bei tiefen Temperaturen in der Konformation (OH)(O)HSSH(O)₂ vorliegt (20).

Die S=O-Valenzschwingung wird bei 1342 cm^{-1} (Ra) und 1345 cm^{-1} (IR) beobachtet. Im Einklang mit der quantenchemischen Rechnung treten mehrere SH-Deformationsschwingungen bei 1052, 980, 904 und 828 cm⁻¹ (Ra) bzw. 976, 919, 829 cm⁻¹ (IR) auf.

Die SS-Valenzschwingung wird mit kleiner Intensität bei 250 cm⁻¹ beobachtet. Im Vergleich zu Dithionit (232 cm⁻¹) ^[52] und Dithioniger Säure (293 cm⁻¹) kann somit eine S-S-Bindungslänge erwartet werden, deren Wert in etwa in der Mitte der beiden genannten Spezies liegt.

Bei 702, 587 und 374 cm⁻¹ (Ra) bzw. 717 cm⁻¹ (IR) treten die für das AsF_6^- -Oktaeder typischen Linien auf. Das Schwingungsspektrum von $H_3S_2O_4^+SbF_6^-$ ist in Abbildung 21 wiedergegeben. Auch hier werden zwei SH-Streckschwingungen bei 2560 cm⁻¹ und 2491 cm⁻¹ (Ra) beobachtet, was ebenfalls auf die (OH)(O)HSSH(O)₂-Konformation deutet. Die Linien für das SbF_6^- -Oktaeder treten erwartungsgemäß bei 668, 583 und 286 cm⁻¹ (Ra) bzw. bei 674 cm⁻¹ (IR) auf.

Abbildung 20 FT-Raman- und FT-IR-Schwingungsspektrum von $H_3S_2O_4^+AsF_6^-$. Temperatur –120 °C, Laser $\lambda = 1064$ nm.

Abbildung 21 FT-Raman- und FT-IR-Schwingungsspektrum von $H_3S_2O_4^+SbF_6^-$. Temperatur –120 °C, Laser $\lambda = 1064$ nm.

H ₃ S ₂ O ₂	⁺ AsF ₆ ⁻	H ₃ S ₂ C	⁺ SbF ₆ [−]	$H_3S_2O_4^+$	Zuordnung
ex	p.	ex	р.	calc. ^{(a),(b)}	
Ra (Int.)	IR (Int.)	Ra (Int.)	IR (Int.)	(IR/Ra)	
	3123 (s)		3101 (s)	3713 (352/138)	ν (OH)
2529 (11)	2529 (w)	2560 (8.7)	2539 (w)	2502 (7/50)	ν (SH)
2506 (7.6)		2491 (19)		2474 (0.7/218)	ν (SH)
	1529 (m)			1498 (143/10)	v_{as} (S=O)
1342 (5.0)	1345 (w)		1334 (m)	1320 (138/20)	ν (S=O)
1189 (1.5)	1178 (m)			1183 (112/49)	ν (SO ₂)
1153 (5.8)			1133 (m)	1103 (59/3.5)	δ (SOH)
1052 (1.8)		1051 (0.7)	1019 (m)	1060 (1.4/11)	δ (SOH)
980 (18)	976 (s)	1033 (17)	977 (m)	940 (28/20)	δ (SOH)
904 (6.1)	919 (w)	860 (7.3)	903 (vw)	871 (106/16)	δ (SSH)
828 (7.4)	829 (m)		829 (w)	803 (215/17)	δ (SSH)
565 (0.9)	565 (w)		558 (w)	500 (39/3.4)	δ (SO ₂)
476 (36)	468 (w)	466 (65)	511 (w)	449 (143/3.1)	ω (SOH)
416 (8.8)	414 (m)	410 (21)		413 (140/9.4)	δ (HSS)
292 (2.5)				365 (70/5.5)	ω (SOH)
266 (2.5)				302 (27/6.7)	ω ((SO₂H)-S(OH)(O)⊢
250 (1.9)		239 (2.0)		182 (15/21)	ω ((SO₂H)-S(OH)(O)Η
221 (10)		189 (2.4)		148 (4.2/2.9)	v (S-S)
154 (11)		151 (2.5)		97 (4.3/1.4)	ρ ((SO ₂ H)-S(OH)(O)H
				45 (5.8/0.3)	τ ((SO ₂ H)-S(OH)(O)H
702 (100)	717 (vs)				J
587 (21)					≻ AsF ₆ ¯
374 (59)					J
		668 (100)	674 (vs)		٦
		583 (16)			} SbF₂⁻
		286 (53)			

Tabelle 10 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_3S_2O_4^+MF_6^-$ (M = As, Sb) mit C_1 -Symmetrie

(a) Berechnet auf dem PBE1PBE/6-311G(d,p) Niveau. (b) Berechnete IR- und Raman-Intensitäten sind in runden Klammern ([km/mol],[Å⁴/amu]) angegeben. v = very, s = strong, m = medium, w = weak. Ohne Skalierungsfaktor.

b) Schwingungsspektrum von $D_3S_2O_4^+MF_6^-$ (M = As, Sb)

In Abbildung 22 ist das FT-Raman- und FT-IR-Spektrum von $D_3S_2O_4^+AsF_6^-$ wiedergegeben. Die dazugehörige Auflistung der beobachteten Schwingungsfrequenzen und ein Vergleich mit den quantenchemisch berechneten Frequenzen sowie deren Zuordnung ist in Tabelle 11 zusammengefasst. Wie erwartet wird die OD-Valenzschwingung im Raman-Spektrum beobachtet und befindet sich im Vergleich zum nicht-deuterierten Kation rotverschoben bei 2303 cm⁻¹ (Ra) bzw. bei 2407 cm⁻¹ (IR). Durch den H/D-Isotopeneffekt sind die beiden SD-Valenzschwingungen bei 1839 cm⁻¹ und 1819 cm⁻¹ (Ra) bzw. bei 1838 cm⁻¹ (IR) nicht aufgelöst und ebenfalls rotverschoben. Bei 1337 cm⁻¹ (Ra) bzw. 1336 cm⁻¹ (IR) wird die antisymmetrische SO₂-Valenzschwingung bei 1072 cm⁻¹ (Ra) auftritt. Die Rotverschiebung der SD-Deformationsschwingungen werden von der quantenchemischen Rechnung durchschnittlich um etwa 80 cm⁻¹ überschätzt. Sie werden bei 711, 672 und 559 cm⁻¹ (Ra) bzw. 811 und 558 cm⁻¹ (IR) beobachtet. Bei 702, 586 und 374 cm⁻¹ (Ra) bzw. 714 cm⁻¹ (IR) treten die für das AsF₆⁻-Oktaeder typischen Linien auf.

Das FT-Raman-Spektrum und das FT-IR-Spektrum von $D_3S_2O_4^+SbF_6^-$ ist in Abbildung 23 wiedergegeben. Die OD-Valenzschwingung wird bei 2290 cm⁻¹ (Ra) bzw. bei 2355 cm⁻¹ beobachtet. Die zwei SD-Valenzschwingungen treten bei 1846 cm⁻¹ und 1809 cm⁻¹ (Ra) bzw. mit geringer Intensität und deswegen nicht aufgelöst bei 1844 cm⁻¹ (IR) auf. Die Linien der SO-Valenzschwingungen treten sehr intensivschwach bei 1331, 1196 und 1066 cm⁻¹ (Ra) auf. Die SD-Deformationsschwingungen werden bei 556 cm⁻¹ (Ra) bzw. bei 884, 817, 630, 557 cm⁻¹ (IR) registriert. Die Linien für das SbF₆⁻-Oktaeder werden erwartungsgemäß bei 669, 583 und 286 cm⁻¹ (Ra) bzw. bei 674 cm⁻¹ (IR) beobachtet. Im Wesentlichen treten im Kation des SbF₆⁻-Salzes keine wesentlichen Unterschiede zum AsF₆⁻-Salz auf. Dieses sei an dieser Stelle angemerkt, da HF/SbF₅ wesentliche acider als HF/AsF₅ ist. Es wäre eventuell denkbar, dass bei höherer Aciditat womöglich ein anderes Tautomer gebildet wird.

Abbildung 22 FT-Raman- und FT-IR-Schwingungsspektrum von $D_3S_2O_4^+AsF_6^-$. Temperatur –120 °C, Laser $\lambda = 1064$ nm.

Abbildung 23 FT-Raman- und FT-IR-Schwingungsspektrum von $D_3S_2O_4^+SbF_6^-$. Temperatur –120 °C, Laser $\lambda = 1064$ nm.

Tabelle 11 : Experimentelle und berechnete Schwingungsfrequenzen	$[cm^{-1}]$ und Intensitäten für $D_3S_2O_4^+MF_6^-$ ($M =$
As, Sb mit C ₁ -Symmetrie	

$D_3S_2O_4$	⁺ AsF ₆ ⁻	$D_{3}S_{2}O_{4}$	⁺ SbF ₆ ⁻	$D_3S_2O_4^+$	Zuordnung
ex	p.	exp).	calc. ^{(a),(b)}	
Ra (Int.)	IR (Int.)	Ra (Int.)	IR (Int.)	(IR/Ra)	
2303 (11)	2407 (s)	2290 (28)	2355 (m)	2570 (209/68)	v _s (OD)
1839 (5.9)	1838 (w)	1846 (2.2)	1844 (vw)	1714 (2.1/71)	ν (SD)
1819 (11)		1809 (8.6)		1692 (1.0/105)	v (SD)
1337 (1.5)	1336 (m)	1331 (1.0)		1422 (143/10)	v _{as} (SO ₂)
1186 (3.2)	1190 (s)	1196 (1.0)		1250 (125/20)	v (S=O)
1072 (2.8)		1066 (1.0)		1117 (120/51)	v _s (SO ₂)
	988 (s)	978 (0.9)	976 (w)	841 (57/3.3)	δ (SOD)
	887 (m)		937 (w)	778 (118/4.2)	δ (SOD)
	811 (w)		884 (m)	742 (3.6/6.0)	δ (SD)
711 (21)			817 (w)	733 (5.7/7.9)	δ (SD)
672 (35)			630 (s)	668 (24/7.9)	δ (SD)
559 (19)	558 (s)	556 (6.6)	558 (w)	597 (148/12)	δ (SD)
472 (100)		489 (1.6)	513 (w)	471 (40/3.5)	$\delta(SO_2)$
440 (11)		467 (30)		396 (64/4.4)	δ (SOD)
		409 (3.1)		367 (106/10)	ω (SOD)
280 (1.8)				278 (35/6.8)	ω (SOD)
241 (8.9)		221 (3.7)		265 (50/2.9)	ω (SOD)
218 (60)		184 (1.0)		169 (50/2.9)	v (S-S)
()		152 (0.7)		132 (16/21)	ω (SD(O)(OD)-SO ₂
		96 (49)		91 (3.8/1.2)	ρ (SD(O)(OD)-SO ₂
		()		41 (5.2/0.3)	τ (SD(O)(OD)-SO ₂ I
702 (80)	714 (vs)			(0.2.0.0))
586 (19)	× ,				AsF ₆
374 (53)					

669 (100)	674 (vs)	
583 (9.0)		SbF ₆
286 (41)		

(a) Berechnet auf dem RPBE1PBE/6-311G(d,p) Niveau. (b) Berechnete IR- und Raman-Intensitäten sind in runden Klammern ([km/mol],[Å⁴/amu]) angegeben. V = very (sehr), s = strong (stark), m = medium (mittel), w = weak (schwach). Skalierungsfaktor 0.950.

4.4.3 NMR-Spektrum

Das ¹H-NMR-Spektrum von $H_3S_2O_4^+AsF_6^-$ wurde in SO_2 bei -60 °C gemessen. Die SH-Protonenresonanz wird als breites Signal bei 8.67 ppm detektiert. Das OH-Protonensignal ist weiter tieffeldverschoben und kann bei 12.6 ppm beobachtet werden (Siehe Abbildung 24). Bei einer Verschiebung von 11.3 ppm wird ein Signal detektiert, welches Rückständen von HF zugeordnet wird. ^[43] Im ¹⁹F-NMR-Spektrum wird ein für das AsF₆⁻-Anion typisches Signal bei -57.2 ppm beobachtet. ^[47]

Abbildung 24 ¹*H*-*NMR*-Spektrum von $H_3S_2O_4^+AsF_6^-$ in SO_2 bei -60 °C, f = 400.182 MHz. Mit Stern (*) gekennzeichnete Signale zeigen Rückstände von HF an.

4.4.4 Theoretische Berechnungen des $H_3S_2O_4^+$ -Kations

Die auf dem RPBE1PBE/6-311G (3df,3pd) – Niveau berechnete Struktur von protonierter Dithioniger Säure ist in Abbildung 25 gezeigt. Die Länge der S=O-Bindung ist mit 142 - 144 pm im Bereich einer normalen S=O-Doppelbindung. Die S-OH-Bindung sind dagegen mit 159.2 pm durch die Protonierung erwartungsgemäß verlängert, haben aber noch teilweise Doppelbindungscharakter. Es fällt auf, dass das $H_3S_2O_4^+$ -Kation eine im Vergleich zur freien Säure verlängerte S-S-Bindung von 242.9 pm aufweist und damit im Bereich der im Dithionit-Einkristall gefundenen Bindungslänge liegt (239 pm ^[52]).

Abbildung 25Gasphasenstrukturoptimierung der protonierten Dithionige Säure $(H_3S_2O_4^+)$ auf dem
RPBE1PBE/6-311G (3df,3pd)-Niveau

4 .5 Protonierte Dischweflige Säure $H_3S_2O_5^+MF_6^-$ (M = As, Sb)

4.5.1 Bildung und Stabilität

Die Salze der Dischwefligen Säure, die Disulfite $(S_2O_5^{2-})$, weisen eine ungewöhnlich lange SS-Bindung von 220.5 pm auf und außerdem vergleichsweise kurze SO-Bindungen (SO₂-Gruppe:150 pm; SO3-Gruppe: 145 pm). Dementsprechend zersetzen sich diese Salze schon ab 400 °C zu Na₂SO₃ und SO₂. Natriumdisulfit wird technisch als Reduktions- und Konservierungsmittel eingesetzt. ^[18] Über die freie Dischweflige Säure gibt es bisher keine Kenntnisse: Sie ist bis dato nicht experimentell untersucht worden und es existieren keinerlei analytischen oder theoretische Daten hinsichtlich ihrer Stabilität, Konformation oder Struktur. Versuche im Rahmen meiner Promotion, die freie Dischweflige Säure, wie schon bei H₂S₂O₃ oder H₂S₂O₄ in HF gezeigt, darzustellen, scheiterten. Es konnten lediglich erwartete Zerfallsprodukte von H₂S₂O₅ wie z.B. SO₂ nachgewiesen werden. Somit bleibt fürs Erste festzuhalten, dass die Dischweflige Säure im für uns labortechnisch möglichen Temperaturrahmen bis –70°C nicht zugänglich ist. Die Protonierung des Natriumdisulfites mit den Supersäuresystemen HF/AsF₅ und HF/SbF₅ erzeugt jedoch die protonierte Dischweflige Säure H₃S₂O₅⁺MF₆⁻ (M = As, Sb), welche bei tiefen Temperaturen kurzzeitig stabilisiert werden kann. Die Synthese zu H₂S₂O₅⁺MF₆⁻ (M = As, Sb) wurde bei –65 °C nach folgendem Reaktionsschema durchgeführt:

$$Na_2S_2O_5 + 3 HF/MF_5 \rightarrow H_3S_2O_5^+MF_6^- + 2 NaMF_6$$
 (21)
(M = As, Sb)

Fluorwasserstoff bzw. Deuteriumfluorid wurde bei der Reaktion in etwa 100fachem Überschuss eingesetzt, da es sowohl als Reagenz als auch als Lösungsmittel diente. Die gebildeten Salze $H_3S_2O_5^+MF_6^-$ sowie das Nebenprodukt Na⁺MF₆⁻ fielen bei -65 °C quantitativ als farblose Niederschläge aus. Im dynamischen Vakuum wurde das überschüssige Lösungsmittel innerhalb von 12 h entfernt und das verbleibende hydrolyse- und temperatursensitive Produktgemisch bleibt bis -40 °C unzersetzt. Am trockenen Produktgemisch wurden Raman-, IR- und NMRspektroskopische Untersuchungen durchgeführt.

a) Schwingungsspektrum von $H_3S_2O_5^+AsF_6^-$

In Abbildung 26 ist das Raman- und FT-IR-Spektrum von $H_3S_2O_5^+AsF_6^-$ wiedergegeben und in Tabelle 12 sind die beobachteten und quantenchemisch berechneten Schwingungsfrequenzen sowie deren Zuordnung für das $H_3S_2O_4^+$ -Kation angeführt. Die OH-Streckschwingung, welche im Raman-Spektrum nicht beobachtbet wird, tritt als intensive Bande im IR-Spektrum bei 3247 cm⁻¹ auf. Eine SH-Streckschwingung im typischen Bereich um 2500 cm⁻¹, wie bei $H_2S_2O_3$ oder $H_2S_2O_4$, wird nicht beobachtet. Somit liegt das $H_3S_2O_5^+$ -Kation ausschließlich als OH-Tautomer vor (22):

$$HO - S - S + (22)$$

Die Antiymmetrische und symmetrische SO₂-Valenzschwingung wird bei 1385 cm⁻¹ (Ra) bzw. 1163 cm⁻¹ (Ra) und 1205 cm⁻¹ (IR) beobachtet. Bei 992 cm⁻¹ und 937 cm⁻¹ (Ra) bzw. bei 883 cm⁻¹ (IR) treten die SOH-Deformationsschwingungen auf. Die v(S-OH)-Frequenzen sind durch die Protonierung verglichen mit Natriumdisulfit rotverschoben zu 912, 710 und 676 cm⁻¹ (Ra). Die SO₃-Deformationsschwingung wird bei 563 cm⁻¹ (Ra) bzw. 535 cm⁻¹ (IR) beobachtet. Als Indiz für eine sehr lange Schwefel-Schwefel-Bindung wird die SS-Streckschwingung bei 237 cm⁻¹ (Ra) gewertet. Bei 701, 586 und 372 cm⁻¹ (Ra) bzw. 700 cm⁻¹ (IR) treten die für das AsF₆⁻-Oktaeder typischen Linien auf.

Abbildung 26 FT-Raman- und FT-IR-Schwingungsspektrum von $H_3S_2O_5^+AsF_6^-$. Temperatur –120 °C, Laser $\lambda = 1064$ nm.

Tabelle 12 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_3S_2O_5^+AsF_6^-$ mit C1 -
Symmetrie

H ₃ S ₂ O	₅ ⁺ AsF ₆ ⁻	$H_3S_2O_5^+$	Zuordnung
e>	(p.	calc. ^{(a),(b)}	_
Ra (Int.)	IR (Int.)	(IR/Ra)	
	3247 (vs)	3425 (410/149)	ν (OH)
		3416 (243/91)	ν (OH)
		3409 (311/35)	ν (OH)

1385 (2.2)		1372 (173/7.2)	$v_{as}(SO_2)$
1163 (4.0)	1205 (m)	1120 (129/21)	$v_s(SO_2)$
992 (2.7)		1044 (119/8.7)	δ (SOH)
937 (16)	883 (s)	1016 (92/8.9)	δ (SOH)
		1002 (83/3.3)	δ (SOH)
912 (11)		813 (166/21)	v (S-O)
710 (22)		805 (215/5.8)	v _{as} (O-S-O)
676 (25)		767 (70/2.5)	v _s (O-S-O)
563 (26)	535 (w)	508 (314/3.2)	δ (SO ₃)
		443 (20/3.5)	δ (SO ₂)
480 (10)		419 (132/3.6)	ω (OH)
430 (2.1)	438 (w)	415 (46/3.2)	ω (OH)
	409 (w)	374 (44/1.7)	ω (OH)
		353 (19/1.1)	ω (OH)
		320 (50/1.0)	ω (OH)
		273 (42/13)	ω (OH)
237 (3.7)		226 (9.4/8.1)	v (S-S)
		205 (2.2/11)	τ (OH)
		150 (13/1.1)	ω (SO-SO ₂)
		123 (2.5/0.0)	ρ (SO ₂ -SO ₃)
		54 (2.4/0.2)	ρ (SO ₂ -SO ₃)
701 (60)	700 (s))
586 (13)			AsF ₆ [−]
372 (100)			J

(a) Berechnet auf dem RPBE1PBE/6-311G(d,p) Niveau. (b) Berechnete IR- und Raman-Intensitäten sind in runden Klammern ([km/mol],[$Å^4$ /amu]) angegeben. V = very (sehr), s = strong (stark), m = medium (mittel), w = weak (schwach). Skalierungsfaktor 0.913.

b) Schwingungsspektrum von $D_3S_2O_5^+MF_6^-$ (M = As, Sb)

In Abbildung 27 ist das FT-Raman- und FT-IR-Spektrum von $D_3S_2O_5^+AsF_6^-$ wiedergegeben. Die dazugehörige Auflistung der beobachteten Schwingungsfrequenzen und ein Vergleich mit den quantenchemisch berechneten Frequenzen, sowie deren Zuordnung, ist in Tabelle 13 aufgeführt. Wie erwartet werden die OD-Valenzschwingung im Raman-Spektrum beobachtet und treten im

Vergleich zum H-Isotopomer rotverschoben bei 2303 cm⁻¹ (Ra) bzw. 2659 cm⁻¹ und 2613 cm⁻¹ (IR) auf. Die SO₂-Valenzschwingungen werden bei 1360 cm⁻¹ und 1186 cm⁻¹ (Ra) bzw. bei 1432 cm⁻¹ und 1291 cm⁻¹ (IR) registriert. Bei 932 cm⁻¹ und 913 cm⁻¹ (Ra) bzw. 1052 cm⁻¹ und 982 cm⁻¹ (IR) treten die (S-OD)-Valenzschwingungen auf. Die SOD-Deformationsschwingungen werden bei 834 cm⁻¹ (IR) und 692 cm⁻¹ (Ra) beobachtet. Bei 672, 563 und 369 cm⁻¹ (Ra) bzw. 699 cm⁻¹ und 399 cm⁻¹ (IR) treten die für das AsF_6^- -Oktaeder typischen Linien auf. Das FT-Raman-Spektrum und das FT-IR-Spektrum von $D_3S_2O_5^+SbF_6^-$ ist in Abbildung 28 wiedergegeben. Die Schwingungsfrequenzen des Kations $D_3S_2O_5^+$ sind dort vergleichbar mit denen von $D_3S_2O_4^+AsF_6^-$. Die Linien für das SbF_6^- -Oktaeder werden erwartungsgemäß bei 668, 583 und 286 cm⁻¹ (Ra) bzw. bei 675 cm⁻¹ (IR) beobachtet.

Abbildung 27 FT-Raman- und FT-IR-Schwingungsspektrum von $D_3S_2O_5^+AsF_6^-$. Temperatur –120 °C, Laser $\lambda = 1064$ nm.

Abbildung 28 FT-Raman- und FT-IR-Schwingungsspektrum von $D_3S_2O_5^+SbF_6^-$. Temperatur –120 °C, Laser $\lambda = 1064$ nm.
Tabelle 13 : Experimentelle und berechnete Schwingungsfrequenzen [cm ⁻] und Intensitäten für $D_3S_2O_5$ MF ₆ (M = As, Sb) mit C ₁ -Symmetrie

Tabelle 13 · Ex ntelle und herechnete Schwingungsfrequenze $\int am^{-1} l$ and I intermetities the first $D \leq O^{+}ME^{-}$ (M

D	$D_3S_2O_5^+$ AsF ₆ ⁻		S₂O₅ ⁺ F ₆ ⁻	$D_{3}S_{2}O_{5}^{+}$	Zuordnung
	exp.	ex	р.	calc. ^{(a),(b)}	
Ra (Int.)	IR (Int.)	Ra (Int.)	IR (Int.)	(IR/Ra)	
	2659 (m)		2579 (w)	2678 (225/75)	ν (OD)
	2613 (m)		2405 (m)	2671 (150/43)	ν (OD)
2303 (89)		2157 (0.4)	2325 (m)	2665 (165/17)	ν (OD)
1360 (3.5)	1432 (m)		1334 (w)	1469 (171/7.6)	v _{as} (O=S=O)
1186 (3.8)	1291 (m)	1048 (0.8)	1194 (m)	120 (159/23)	v _s (O=S=O)
932 (11)	1052 (s)		1080 (vw)	874 (102/15)	ν (S-O)
913 (2.4)	982 (s)	913 (2.8)		868 (127/16)	v (S-O)
				838 (95/1.9)	δ (SOD)
	834 (s)		817 (s)	818 (63/2.8)	δ (SOD)
				813 (21/3.5)	δ (SOD)
692 (16)		702 (1.3)		796 (70/2.5)	δ (SOD)
535 (1.9)			554 (m)	536 (284/2.2)	δ (SO ₃)
				470 (30/4.0)	δ (S=O)
416 (5.3)				408 (27/2.9)	δ (SOD)
375 (3.1)			374 (w)	378 (22/2.5)	δ (SO2)
				357 (12/6.6)	ω (OD)
				313 (26/0.8)	ω (OD)
251 (2.0)				278 (41/1.6)	ω (OD)
				266 (39/7.0)	ω (OD)
				222 (9.2/10)	v (S-S)
				213 (10/6.7)	τ (OD)
				151 (12/0.8)	ω (SO-SO2)
				126 (3.8/0.0)	ρ (SO2-SO3)
				56 (2.2/0.2)	τ (SO2-SO3)

 672 (100)	699 (vs)			J
563 (65)				SF6 [−]
369 (89)	399 (vs)			J
		668 (100)	675 (vs)	J
		583 (16)		> SbF ₆ ⁻
		286 (47)		J

(a) Berechnet auf dem RPBE1PBE/6-311G(d,p) Niveau. (b) Berechnete IR- und Raman-Intensitäten sind in runden Klammern ([km/mol],[Å⁴/amu]) angegeben. V = very (sehr), s = strong (stark), m = medium (mittel), w = weak (schwach). Skalierungsfaktor 0.980.

4.5.2 NMR-Spektrum

Das ¹H-NMR-Spektrum von $H_3S_2O_5^+AsF_6^-$ wurde in SO₂ bei -60 °C gemessen. Die drei OH-Protonensignale und das Signal welches auf Rückstände von HF ^[43] zurückzuführen ist, werden im Bereich 8.98 - 9.25 ppm beobachtet (Siehe Abbildung 29). Im ¹⁹F-NMR-Spektrum wird ein für das AsF₆⁻- Anion typisches Signal bei -56.4 ppm beobachtet. ^[47]

Abbildung 29 ${}^{1}H$ -*NMR*-Spektrum von $H_{3}S_{2}O_{5}^{+}AsF_{6}^{-}$ in SO_{2} bei -65 °C, f = 270.166 MHz

4.5.3 Theoretische Berechnungen des $H_3S_2O_5^+$ -Kations

Die auf dem RPBE1PBE/6-311G (d,p) – Niveau berechnete Struktur von protonierter Dischwefeliger Säure ist in Abbildung 30 gezeigt. Die Länge der S=O-Bindung ist mit etwa 142 pm im Bereich einer normalen S=O-Doppelbindung. Die S-OH-Bindungen sind dagegen mit 157.0 pm bis 160.2 pm durch die Protonierung erwartungsgemäß stark verlängert, haben aber noch teilweise Doppelbindungscharakter. Die S-S-Bindung ist mit 230.4 pm relativ lang. Aus Einkristallstrukturanalysen wurde die S-S-Bindung im Disulfit-Anion mit 221 pm bestimmt.^[52]

Abbildung 30 Gasphasenstrukturoptimierung der protonierten Dischwefligen Säure $(H_3S_2O_5^+)$ auf dem *RPBE1PBE/6-311G (d,p)-Niveau*

4.6 Dithionsäure, H₂S₂O₆

4.6.1 Bildung und Stabilität

Die Dithionsäure tritt in natürlichen Lebensräumen und auch in industriellen Prozessen auf und spielt demzufolge eine Rolle im globalen Schwefelkreislauf.^[54] Ihre Gewinnung kann durch Oxidation der Schwefligen Säure bzw. durch Reduktion von Schwefeltrioxid erfolgen. Die Dithionsäure konnte bisher jedoch nie als Reinstoff isoliert werden, da sie, auch bei tiefen Temperaturen, beim Konzentrieren aus wässrigen Lösungen gemäß Gleichung (23) zerfällt: ^[55] Die Dithionsäure kann in wässrigen Lösungen nur bis höchstens 3.7 mol/L konzentriert werden. ^[30]

$$H_2S_2O_6 \rightarrow H_2SO_4 + SO_2 \uparrow$$
(23)

Als Säurestärke der Dithionsäure in wässrigen Lösungen wurde pKa = 1.9 bestimmt. ^[56] Untersuchungen der Struktur von Natriumdithionat mit Röntgenbeugungsmethoden ergaben eine gestaffelte Anordnung von zwei SS-Verknüpften SO₃-Einheiten mit einem verhältnismäßig langen SS-Bindungsabstand von 214 pm. Experimentelle Strukturuntersuchungen der freien Dithionsäure sind bislang nicht bekannt. Gemäß nachfolgender Reaktionsgleichung wurde die Synthese der freien Dithionsäure ausgehend vom Natriumdithionat durchgeführt:

$$Na_2S_2O_6 + 2 HF \rightarrow H_2S_2O_6 + 2 NaF$$
(24)

Fluorwasserstoff wurde hierbei sowohl als Reagenz als auch als Lösungsmittel eingesetzt. Das Produktgemisch fiel dabei quantitativ bei einer Reaktionstemperatur von –60 °C als farbloser Feststoff aus. Im dynamischen Vakuum wurde bei –78 °C das überschüssige Lösungsmittel entfernt. Das hydrolyseempfindliche Produkt bleibt bis etwa –40 °C unzersetzt haltbar. Erst bei höheren Temperaturen tritt Zerfall ein, wobei erwartungsgemäß Schwefelsäure und Schwefeldioxid gemäß Gleichung (23) gebildet wird. ^[55] Die Synthese der deuterierten Spezies erfolgte in gleicher Weise nach der vorgenannt beschriebenen Gleichung. Mit den trockenen Produkten wurden anschließend Raman- und IR-spektroskopische Untersuchungen durchgeführt. NMR-Untersuchungen konnten aufgrund der Schwerlöslichkeit der Dithionsäure in SO₂ nicht durchgeführt werden.

4.6.2 Schwingungsspektren

a) Schwingungsspektrum von $H_2S_2O_6$

Abbildung 31 zeigt die FT-Raman- und FT-IR-Spektren der freien Dithionsäure. In Tabelle 14 sind die beobachteten und quantenchemisch berechneten Schwingungen auf dem RPBE1PBE/6-311G(3df,3pd)-Niveau zusammengefasst.

Abbildung 31 FT-Raman- und FT-IR-Spektrum der freien Dithionsäure, $H_2S_2O_6$. Temperatur –120 °C, Laser $\lambda = 1064$ nm.

Die OH-Valenzschwingungen werden im Raman-Spektrum nicht beobachtet, sie treten im IR-Spektrum bei 3415 cm^{-1} und 3229 cm^{-1} auf. Entsprechend den berechneten Werten tritt die antisymmetrische SO₂-Valenzschwingung im Raman-Spektrum mit geringer Intensität bei

1274 cm⁻¹ und im IR-Spektrum bei 1276 cm⁻¹ auf. Die symmetrische SO₂-Valenzschwingung tritt als intensitätsstarke Linie bei 1081 cm⁻¹ im Raman-Spektrum und als starke Bande im IR-Spektrum bei 1095 cm⁻¹ auf. Sie stimmt gut mit der quantenchemisch berechneten Frequenz überein. Die SOH-Deformationsschwingung wird nur im IR-Spektrum bei 886 cm⁻¹ beobachtet und sie ist gegenüber den quantenchemisch berechneten Werten um etwa 40 cm⁻¹ rotverschoben. Die Linie im Raman-Spektrum bei 813 cm⁻¹ bzw. die Bande bei 820 cm⁻¹ im IR-Spektrum werden einer der beiden guantenchemisch berechneten antisymmetrischen S-OH-Valenzschwingungen zugeordnet. Die durch Protonierung induzierte S-O-Bindungsverlängerung lässt sich dadurch an der Rotverschiebung dieser Valenzschwingung zeigen. Die SO₃-Deformationsschwingungen treten in beiden Spektren (Ra: 607 cm⁻¹ und 590 cm⁻¹; IR: 603 cm⁻¹) in guter Übereinstimmung mit den theoretisch berechneten Frequenzen (608 cm⁻¹) auf. Die SO₂-Deformationsschwingung ist bei 570 cm⁻¹ zu beobachten. Im Vergleich zu den berechneten Werten ist sie etwa um 100 Wellenzahlen blauverschoben. Die Linie im Raman-Spektrum bei einer Wellenzahl von 419 cm⁻¹ wird ebenfalls der SO₂-Deformationsschwingung zugeordnet. Bei 317 cm⁻¹ wird im Raman-Spektrum eine SOH-Deformationsschwingung (ω (SOH)) registriert. Die Linie bei 249 cm⁻¹ wurde der SS-Streckschwingung zugeordnet. Sie wird nur im Raman-Spektrum mit großer Linienintensität beobachtet und liegt im Vergleich zu den quantenchemisch berechneten Frequenzen geringfügig blauverschoben vor.

H	$I_{3}S_{2}O_{6}$	$H_3S_2O_6$	
			Zuordnung
	exp.	calc. ^{(a),(b)}	_
Ra (Int.)	IR (Int.)	(IR/Ra)	
	3415 (s)	3405 (61/172)	ν (OH)
	3229 (s)	3402 (27/114)	ν (OH)
1274 (2.0)	1276 (vs)	1346 (1.7/238)	v_{as} (SO ₂)
		1324 (8.9/26)	$v_{as}(SO_2)$
1081 (100)	1095 (m)	1126 (31/0.7)	v_{s} (SO ₂)
		1111 (0.8/285)	$v_{as}(SO_2)$
		1027 (2.6/7.3)	δ (SOH)
	886 (w)	1025 (3.1/209)	δ (SOH)
		813 (15/12)	v_{as} (S-OH)
813 (36)	820 (s)	780 (0.1/305)	v_{as} (S-OH)
607 (18)	603 (s)	608 (10/0.0)	δ (SO ₃)
590 (19)		504 (0.0/313)	δ (SO ₃)
570 (19)	570 (s)	465 (3.2/4.3)	δ (SO ₂)
419 (34)		437 (0.5/41)	δ (SO ₂)
		426 (2.3/12)	δ (OS(OH))
		402 (0.6/22)	ω (SOH)
		341 (0.1/107)	ω (SOH)
317 (50)		320 (1.4/5.3)	ω (SOH)
		262 (4.4/6.9)	ρ (SO ₃ H-SO ₃ H)
		261 (6.5/0.4)	ρ (SO ₃ H-SO ₃ H)
249 (12)		223 (11/0.4)	v (S-S)
		133 (0.2/28)	ω (SOH)

Tabelle 14 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_2S_2O_6$ mit C_1 -Symmetrie

129 (0.3/9.1)	ρ (SO ₃ H-SO ₃ H)
48 (0.0/0.7)	τ (SO ₃ H-SO ₃ H)

(a) Berechnet auf dem RPBE1PBE/6-311G (3df,3pd)–Niveau (b) Berechnete IR- und Raman-Intensitäten sind in runden Klammern ([km/mol],[Å⁴/amu]) angegeben. V = very (sehr), s = strong (stark), m = medium (mittel), w = weak (schwach). Skalierungsfaktor: 0.900.

b) Schwingungsspektrum von $D_2S_2O_6$

In Abbildung 32 ist das FT-Raman – und FT-IR-Spektrum von $D_2S_2O_6$ wiedergegeben. Die dazugehörige Auflistung der beobachteten Schwingungsfrequenzen und ein Vergleich mit den quantenchemisch berechneteten Frequenzen, sowie deren Zuordnung ist in Tabelle 15 aufgeführt. Wie erwartet werden die OD-Valenzschwingungen im Raman-Spektrum beobachtet und treten im Vergleich zum H-Isotopomer rotverschoben bei 2529 (Ra) bzw. 2470 cm⁻¹ (IR) auf.

Abbildung 32 FT-Raman- und FT-IR-Spektrum der freien Deutero-Dithionsäure, $D_2S_2O_6$. Temperatur –120 °C, Laser $\lambda = 1064$ nm.

Die OD-Valenzschwingung tritt im Raman-Spektrum bei 2529 cm⁻¹, im IR-Spektrum bei 2470 cm⁻¹ jeweils als intensive Linie bzw. Bande auf. Die Banden im IR-Spektrum bei 1284 cm⁻¹ und 1439 cm⁻¹ werden den beiden antisymmetrischen SO₂-Valenzschwingungen zugeordnet. In beiden Spektren werden symmetrische SO₂-Streckschwingungen bei 1083 cm⁻¹ (Ra) bzw. 1075 cm⁻¹ (IR) beobachtet. Sie stimmen gut mit den quantenchemisch berechneten Werten überein. Die vier SOD-Deformationsschwingungen werden alle im IR-Spektrum registriert (771, 755, 725 und 709 cm⁻¹). Im Raman-Spektrum hingegen wird nur eine dieser Schwingungen bei 789 cm⁻¹ beobachtet. SO₃-Sowohl die als auch die antisymmetrische symmetrische Deformationsschwingungen treten in beiden Spektren bei 602 cm⁻¹ und 578 cm⁻¹ auf. Hierbei stimmen die Frequenzen der antisymmetrischen SO3-Deformationsschwingungen gut mit den quantenchemisch berechneten Werten überein. Dagegen sind die Frequenzen der entsprechenden symmetrischen Schwingung um etwa 70 Wellenzahlen gegenüber den Rechnungen blauverschoben. Die beiden SO₂-Deformationsschwingungen treten im IR-Spektrum bei 488 cm⁻¹ und 467 cm⁻¹ jeweils als schwache Banden auf. Die Linie bei 407 cm⁻¹ wird der antisymmetrischen S(O)(OD)-Deformationsschwingung zugeordnet.

	D	₂ S ₂ O ₆	$D_2S_2O_6$	
				Zuordnung
-	(exp.	calc. ^{(a),(b)}	
	Ra (Int.)	IR (Int.)	(IR/Ra)	
	2529 (90)	2470 (s)	2478 (30/96)	v (OD)
			2476 (13/69)	v (OD)
		1439 (w)	1341 (1.7/334)	v_{as} (SO ₂)

Tabelle 15 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $D_2S_2O_6$ mit C_1 -Symmetrie

		1126 (31/0.7)	$v_{s}(SO_{2})$
1083 (100)	1075 (m)	1111 (0.7/293)	$v_{s}(SO_{2})$
789 (39)	771 (w)	821 (9.2/11)	δ_{as} (SOD)
	755 (w)	792 (0.9/363)	δ_{as} (SOD)
	725 (m)	770 (6.4/1.0)	δ (SOD)
	709 (m)	766 (1.6/40)	δ_{as} (SOD)
601 (46)	602 (m)	608 (10/0.0)	$\delta_{s}(SO_{3})$
570 (5)	578 (m)	504 (0.0/285)	$\delta_{as}(SO_3)$
	488 (vw)	461 (3.0/1.6)	$\delta_{as}(SO_2)$
420 (35)	467 (vw)	434 (0.5/31)	$\delta_{as}(SO_2)$
407 (3)		404 (2.0/18)	δ_{as} (OSOD)
		377 (1.1/15)	ω (SOD)
		283 (1.3/28)	ω (SOD)
		278 (1.8/1.3)	ω (SOD)
		250 (9.5/0.8)	ρ (SO ₃ D-SO ₃ D)
		250 (2.8/27)	v (S-S)
		207 (6.6/0.7)	ω (SOD)
		125 (0.2/28)	ρ (SO ₃ D-SO ₃ D)
		122 (0.3/9.1)	ρ (SO ₃ D-SO ₃ D)
		55 (0.0/0.8)	τ (O ₃ S-SO ₃)

(a) Berechnet auf dem RPBE1PBE/6-311G (3df,3pd)–Niveau (b) Berechnete IR- und Raman-Intensitäten sind in runden Klammern ([km/mol],[Å⁴/amu]) angegeben. V = very (sehr), s = strong (stark), m = medium (mittel), w = weak (schwach). Skalierungsfaktor: 0.900.

4.6.3 Theoretische Berechnungen von $H_2S_2O_6$

Umfangreiche Berechnungen der Geometrie der freien Dithionsäure sind in der Literatur zu finden. ^[54] H₂S₂O₆ kann dabei in unterschiedlichen Symmetrien auftreten. Durch Rotation entlang der SS-Bindung können diese ineinander überführt werden, da sie schwingungsspektroskopisch nicht unterscheidbar sind. Den Rotationsisomeren ist jedoch gemeinsam, dass die beiden verzerrt trigonal-pyramidalen SO₃-Einheiten gestaffelt (staggered) zueinander sind. Abbildung 33 zeigt das stabilste Konformer mit C_1 -Symmetrie berechnet auf dem RPBE1PBE/6-311G (3df,3pd)-Niveau. Da keine SH-Valenzschwingung beobachtet wird, ist das Vorliegen von H₂S₂O₆ als OH-Tautomer bestätigt.

Abbildung 33 Gasphasenstrukturoptimierung der freien Dithionsäure (H₂S₂O₆) auf dem RPBE1PBE/6-311G (3df,3pd)-Niveau

4.7 Protonierte Dithionsäure, $H_3S_2O_6^+MF_6^-$ (M = As, Sb)

4.7.1 Bildung und Stabilität

In Analogie zu den Protonierungen der Thioschwefelsäure, der Dithionigen Säure und der Dischwefligen Säure sollte es ebenfalls möglich sein, die Dithionsäure in supersauren Medien zu protonieren, obwohl ihre Säurestärke größer ist.^[48] Dazu wurde Natriumdithionat nach folgender Reaktionsgleichung umgesetzt:

$$Na_2S_2O_6 + 3 HF/MF_5 \xrightarrow{-60^{\circ}C,5 \min} H_3S_2O_6^+MF_6^- + 2 NaMF_6 \quad (M = As, Sb)$$
 (25)

Bei der Reaktion wird Hydrogenfluorid in einem etwa hundertfachen Überschuss eingesetzt, da es sowohl als Reagenz als auch als Lösungsmittel dient. Ebenso ist der dreifache Überschuss an Arsenpentafluorid notwendig, da Nebenprodukt Natriumhexafluoridoarsenat bzw. als Natriumhexafluoridoantimonat gebildet wird. Nach Entfernung des Lösungsmittels im dynamischen Vakuum, verbleibt ein farbloser Feststoff, der schon während der Reaktion bei -60 °C aufgrund seiner Schwerlöslichkeit ausgefällt. Am trockenen Produktgemisch wurden Raman- und IRspektroskopische Untersuchungen durchgeführt. NMR-Studien waren aufgrund der Schwerlöslichkeit des Produktes in SO₂ nicht möglich. Durch Vergleiche von Schwingungsspektren konnte festgestellt werden, dass die vermeintlich protonierte Dithionsäure als Hexafluoridoarsenat sofort in protonierte Schwefelsäure gemäß Gleichung (26) zerfallen ist. ^[23, 55] Die Acidität des HF/AsF_5 -Systems reicht offensichtlich nicht aus um das $H_3S_2O_6^+$ -Katon zu stabilisieren.

$$\mathrm{H}_{3}\mathrm{S}_{2}\mathrm{O}_{6}^{+} \rightarrow \mathrm{H}_{3}\mathrm{SO}_{4}^{+} + \mathrm{SO}_{2}\uparrow$$

$$(26)$$

4.7.2 Schwingungsspektren

a) Schwingungsspektrum von $H_3S_2O_6^+SbF_6^-$

Das Raman- als auch das IR-Spektrum von $H_3S_2O_6^+SbF_6^-$ ist in Abbildung 34 wiedergegeben. Tabelle 16 enthält die experimentell beobachteten und quantenchemisch berechneten Schwingungsfrequenzen. Die OH-Valenzschwingungen treten im IR-Spektrum bei 3452, 3257 und 3107 cm⁻¹ auf. Die symmetrische SO₂-Valenzschwingung wird bei 1090 cm⁻¹ und 1215 cm⁻¹ registriert. Die SOH-Deformationsschwingungen werden im Raman-Spektrum bei

1031, 912 und 898 cm⁻¹ beobachtet. Diese Schwingungen werden im IR-Spektrum den Banden bei 1098, 1028, 911 und 884 cm⁻¹ zugeordnet. Die beiden antisymmetrischen S-OH-Valenzschwingungen treten bei 876 und 775 cm⁻¹ (Ra) bzw. 821 und 794 cm⁻¹ (IR) auf. Sie berechneten Werten überein. Zwei weitere S-OHstimmen gut mit den Deformationsschwingungen (ω (S-OH)) werden im Raman-Spektrum bei 418 cm⁻¹ und 407 cm⁻¹ registriert, was gut mit den berechneten Werten übereinstimmt. Die Linie bei 230 cm⁻¹ wird der SS-Streckschwingung zugeordnet. Die Linien für das SbF₆⁻-Anion werden bei 668, 652, 637, 582, 560 und 286 cm⁻¹ (Ra) bzw. bei 675 cm⁻¹ (IR) beobachtet. Dies deutet auf eine verzerrte Geometrie des Anions hin.

Abbildung 34 FT-Raman- und FT-IR-Spektrum der protonierten Dithionsäure, $H_3S_2O_6^+SbF_6^-$. Temperatur -120 °C, Laser $\lambda = 1064$ nm.

Diese Ergebnisse und ein Vergleich der experimentellen Ergebnisse der protonierten Dithionsäure mit theoretisch berechneten Werten lassen den Schluss zu, dass die Protonierung des Dithionats in HF/SbF₅ bzw. DF/SbF₅ möglich ist und die Verbindung bei tiefen Temperaturen unzersetzt bleibt.

Tabelle 16 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_2S_2O_6^+$ mit C_1 -Symmetrie

H ₃ S ₂ C	0_6^+ SbF $_6^-$	$H_3S_2O_6^+$	
			Zuordnung
e	exp.	calc. ^{(a),(b)}	
Ra (Int.)	IR (Int.)	(IR/Ra)	
	3453 (w)	3342 (300/86)	v (OH)
	3257 (vw)	3337 (297/39)	v (OH)
	3107 (m)	3307 (389/120)	v (OH)
	1632 (m)	1401 (145/6.0)	$v_{as}(SO_2)$
	1427 (w)	1273 (148/11)	v (S=O)
1090 (14)	1215 (m)	1154 (99/20)	$v_{s}(SO_{2})$
1031 (2.6)	1098 (w)	1014 (83/3.8)	δ (SOH)
	1028 (w)	1010 (52/4.2)	δ (SOH)
912 (2.9)	911 (w)	977 (68/5.4)	δ (SOH)
898 (1.1)	884 (w)	863 (239/2.4)	v_{as} (SO ₂) + δ (SOH)
876 (1.6)	821 (m)	836 (8.6/20)	v_{as} (S-OH)
775 (4.3)	794 (m)	806 (239/1.3)	v_{as} (S-OH)
		547 (56/7.7)	$\delta_{s}(SO_{3})$
		459 (285/0.9)	$\delta_{as}(SO_3)$
		451 (16/2.5)	$\delta_{as}(SO_2)$
		436 (67/2.3)	ω (SOH)
418 (0.4)		415 (12/1.0)	ω (SOH)
407 (10)		405 (47/1.3)	ω (SOH)
		382 (35/1.6)	ω (SOH)

		277 (50/2.1)	ω (SOH)	
		241 (14/2.5)	ρ (SO ₃ H-SO ₃ H)	
		220 (37/2.6)	ω (SOH)	
230 (1.6)		183 (16/12)	v (S-S)	
		170 (86/3.3)	ω (SOH)	
		119 (1.3/0.4)	ρ (SO ₃ H-SO ₃ H)	
		116 (4.0/0.1)	ρ (SO ₃ H-SO ₃ H)	
		38 (2.2/0.1)	τ (SO ₃ H-SO ₃ H)	
668 (100)	675 (vs))	
652 (4.9)				
637 (6.7)			SbF ₆	
582 (11)				
560 (4.9)				
286 (39)			J	

(a) Berechnet auf dem RPBE1PBE/6-311G (3df,3pd)–Niveau (b) Berechnete IR- und Raman-Intensitäten sind in runden Klammern ([km/mol],[\hat{A}^{4} /amu]) angegeben. S = strong (stark), m = medium (mittel), w = weak (schwach). Skalierungsfaktor: 0.900.

b) Schwingungsspektrum von $D_3S_2O_6^+SbF_6^-$

In Abbildung 35 ist das Raman-Spektrum, sowie das IR-Spektrum der deuterierten Dithionsäure wiedergegeben. Tabelle 17 beinhaltet neben den gemessenen Schwingungsfrequenzen die berechneten Schwingungsfrequenzen sowie deren Zuordnung. Die OD-Valenzschwingungen werden in beiden Spektren mit schwacher Intensität bei 2292 (Ra), 2403 und 2336 cm⁻¹ (IR) registriert. Die S=O-Valenzschwingung wird nur im IR-Spektrum bei 1399 cm⁻¹ beobachtet. Die Frequenz stimmt gut mit den berechneten Werten überein. Die symmetrische SO₂-Streckschwingung einer wird bei 1288 cm⁻¹ in Übereinstimmung mit dem berechneten Wert registriert. Im IR- und Raman-Spektrum werden SOD-Deformationsschwingungen beobachtet (Ra: 1091, 1040, 891 und 774 cm⁻¹; IR: 1025 cm⁻¹ und 838 cm⁻¹), welche jeweils nur um etwa 30 cm⁻¹ von den berechneten Daten abweichen. Im Raman-Spektrum tritt eine SO₂-Deformationsschwingung bei 407 cm⁻¹ auf. Die Linie bei 231 cm⁻¹ wird der SS-Valenzschwingung zugeordnet.

Abbildung 35 FT-Raman- und FT-IR-Spektrum der protonierten Dithionsäure, $D_3S_2O_6^+SbF_6^-$. Temperatur -120 °C, Laser $\lambda = 1064$ nm.

Tabelle 17 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $D_3S_2O_6^+$ mit C_1 -Symmetrie

$D_3S_2O_6$	₅ ⁺ SbF ₆ [−]	$D_3S_2O_6^+$	
			Zuordnung
e	exp.		
Ra (Int.)	IR (Int.)	(IR/Ra)	
		2704 (42/164)	v (OD)
	2403 (w)	2699 (19/168)	v (OD)
2292 (4.9)	2336 (m)	2675 (57/236)	v (OD)
	1475 (w)	1553 (6.2/141)	$v_{as}(SO_2)$
	1399 (m)	1412 (11/134)	v (S=O)
	1288 (s)	1281 (20/114)	$v_{s}(SO_{2})$
1091 (9.6)	1025 (m)	1008 (3.4/126)	δ (SOD)
1040 (6.0)		954 (19/93)	v_{as} (SOD)
891 (4.3)		906 (5.4/168)	v_{as} (SOD)
	838 (s)	857 (1.4/50)	δ (SOD)
		819 (1.3/71)	δ (SOD)
774 (5.8)		803 (3.3/69)	δ (SOD)
		586 (5.8/106)	δ (SO ₃)
		497 (2.4/32)	v_{as} (SO ₂)
		493 (1.9/197)	δ (SO ₃)
		454 (2.1/34)	δ (SO ₂)
		423 (1.1/22)	δ (SO ₂)
407 (7.8)		411 (1.6/32)	δ (SO ₂)
		338 (0.3/32)	ω (SOD)
		280 (4.0/5.8)	ρ (SO ₃ D-SO ₃ D)
		261 (3.0/4.1)	ρ (SO ₃ D-SO ₃ D)
		203 (3.1/53)	ω (SO ₃)
231 (5.9)		200 (10/3.9)	v (S-S)
		142 (1.1/47)	ω (SOD)

		128 (0.1/4.2)	ρ (SO ₃ D-SO ₃ D)
		123 (0.6/4.1)	ρ (SO ₃ D-SO ₃ D)
		41 (0.0/2.1)	τ (SO ₃ D-SO ₃ D)
669 (100))
653 (9.5)	658 (vs)		
617 (2.4)			
583 (10)			SbF ₆
559 (3.5)	557 (w)		
308 (2.8)			
286 (5.9)			J

(a) Berechnet auf dem RPBE1PBE/6-311G (3df,3pd)–Niveau (b) Berechnete IR- und Raman-Intensitäten sind in runden Klammern ([km/mol],[Å⁴/amu]) angegeben. s = strong (stark), m = medium (mittel), w = weak (schwach). Ohne Skalierung.

4.7.3 Theoretische Berechnungen des $H_3S_2O_6^+$ -Kations

Die auf dem RPBE1PBE/6-311G (3df,3pd) – Niveau berechnete Struktur von protonierter Dithionsäure ist in Abbildung 36 gezeigt. Es fällt auf, dass die protonierte Dithionsäure eine lange SS-Bindung von 223 pm aufweist. Die gleiche Bindung im berechneten Dithionat-Anion ist zum Vergleich nur 219 pm lang und die der freien Dithionsäure 216 pm. Damit bewirkt die Protonierung des Dithionatsalzes an dieser Bindung zuerst eine Bindungstärkung welche dann wieder bei Bildung des $H_3S_2O_6^+$ -Kations deutlich geschwächt wird. Aus Kristallstrukturen von Dithionat-Salzen wurden die S-S-Bindungslängen mit 208-216 pm bestimmt. ^[44] Die S=O-Bindungen sind im Bereich normaler Doppelbindungen bei etwa 140 pm. Bei der Berechnung des Dithionat-Anions registriert man eine Bindungslänge von 146 pm. Die Protonierung führt also hier zur Bindungstärkung. Die S-OH-Bindungen sind dagegen mit 153-155 pm durch die Protonierung erwartungsgemäß verlängert, haben aber noch teilweise Doppelbindungscharakter. Diese Bindungschwächung ist weniger groß als in der berechneten freien Säure (157 pm).

Abbildung 36 Gasphasenstrukturoptimierung von protonierter Dithionsäure $(H_3S_2O_6^+)$ auf dem RPBE1PBE/6-311G (3df,3pd)- Niveau

4.7.4 Zerfall von $H_3S_2O_6^+SbF_6^-$

Um den Zerfall der protonierten Dithionsäure zu untersuchen, wurden FT-Raman-Spektren bei verschiedenen Temperaturen aufgenommen. Dazu wurde die Temparatur in einer Glasküvette beginnend von –196 °C langsam erhöht. In den Raman-Spektren in Abbildung 37 ist der Zerfall zu protonierter Schwefelsäure und SO₂ beginnend ab –40 °C gezeigt.

$$H_3S_2O_6^+ \rightarrow H_3SO_4^+ + SO_2 \uparrow$$
(27)

Bei einer Temperatur von $-196 \,^{\circ}$ C wird die Linie der intensiven symmetrischen SO₂-Valenzschwingung von H₃S₂O₆⁺ bei 1090 cm⁻¹ beobachtet. Ab $-40 \,^{\circ}$ C verliert diese Linie zunehmend an Intensität, während die Linie bei 914 cm⁻¹ an Intensität gewinnt. Diese Linie ist die charakteristische symmetrische SO₃-Valenzschwingung der protonierten Schwefelsäure. ^[23] Entstehendes gasförmiges Schwefeldioxid, welches in den evakuierten Küvettenraum entweicht, kann mit vorliegendem instrumentellem Aufbau nicht mehr gefasst werden.

Abbildung 37 Temperaturabhängige FT-Raman-Spektren zur Darstellung des Zerfalls der protonierten Dithionsäure zu protonierter Schwefelsäure ab -40 °C. Laser $\lambda = 1064$ nm.

4.8 Protonierte Dischwefelsäure, $H_3S_2O_7^+MF_6^-$ (M = As, Sb)

4.8.1 Bildung und Stabilität

Die Dischwefelsäure ist ein wichtiges Zwischenprodukt bei der nach dem Kontaktverfahren hergestellten Schwefelsäure, einer der wichtigsten technischen Chemikalien. Zudem ist ihr Kaliumsalz Bestandteil des vanadiumbasierten Katalysators im o.g. Verfahren. Im Handel sind Gemische von H₂SO₄ und SO₃ erhältlich (mit 20% SO₃-Überschuss als rauchende Schwefelsäure oder 65% SO₃ Überschuss als Oleum), da genau diese beiden Zusammensetzungen Schmelzpunktsminima aufweisen und bei Raumtemperatur als viskose Flüssigkeiten vorliegen. ^[13, 18] Da die Acidität der Dischwefelsäure im Vergleich zum Fluorwasserstoff auf der Hammetskala (H₀-Wert –14.8) ^[18, 57] deutlich stärker ist, kann diese in reinem wasserfreiem Fluorwasserstoff nicht aus ihrem Salz Kaliumdisulfat dargestellt werden. Röntgenografisch ist die Dischwefelsäure bisher nur als Natrium- und Kaliumdisulfat untersucht worden und es existieren einige Beispiele für metallgebundene S₂O₇²⁻-Anionen. ^[58-60] Schwingungsspektroskopische Untersuchungen von Oleum in verschiedenen Zusammensetzungen wurden ausführlich in der Vergangenheit diskutiert. ^[61-62] Bisher existieren keine Beispiele für eine protonierte Dischwefelsäure, deren Darstellung sollte aber mit den starken Supersäuresystemen HF/AsF₅ und HF/SbF₅ möglich sein.

Die Synthese von $H_2S_2O_7^+MF_6^-$ (M = As, Sb) wurde bei -65 °C nach folgender Reaktionsgleichung durchgeführt:

$$K_2S_2O_7 + 3 \text{ HF/MF}_5 \longrightarrow H_3S_2O_7^+\text{MF}_6^- + 2 \text{ KMF}_6$$

$$(28)$$

$$(M = As, Sb)$$

Fluorwasserstoff bzw. Deuteriumfluorid wurde bei der Reaktion in etwa 100fachem Überschuss eingesetzt, da es sowohl als Reagenz als auch als Lösungsmittel dient. Die gebildeten Salze $H_3S_2O_7^+MF_6^-$ sowie das Nebenprodukt K⁺MF₆⁻ fallen bei -65 °C quantitativ als farblose Niederschläge aus. Im dynamischen Vakuum wurde das überschüssige Lösungsmittel innerhalb von 12 h entfernt und das verbleibende hydrolyse- und temperatursensitive Produktgemisch bleibt bis -10 °C unzersetzt haltbar. Am trockenen Produktgemisch wurden Raman-, IR- und NMR-spektroskopische Untersuchungen durchgeführt.

4.8.2 Schwingungsspektren

a) Schwingungsspektrum von $H_3S_2O_7^+MF_6^-$ (M = As, Sb)

In Abbildung 38 und Abbildung 39 sind die FT-Raman- und FT-IR-Spektren von H₃S₂O₇⁺AsF₆⁻ bzw. H₃S₂O₇⁺SbF₆⁻ wiedergegeben. In Tabelle 18 sind die beobachteten Frequenzen sowie die quantenchemisch berechneten Werte auf dem RPBE1PBE/6-311G(3df,3pd)-Niveau aufgelistet. Die OH-Streckschwingungen werden im IR-Spektrum bei 3239 cm^{-1} (AsF₆) bzw. 3698 cm⁻¹ (SbF_6) als breite Bande beobachtet. Bei 1423 cm⁻¹ (Ra, AsF₆) und 1358 cm⁻¹ (IR, AsF₆) bzw. 1392 cm⁻¹ (Ra, SbF₆) und 1402 cm⁻¹ (IR, SbF₆) wird die S=O-Streckschwingung registriert. Weitere SO-Streckschwingungen werden im Bereich von 1428 cm⁻¹ bis 1220 cm⁻¹ registriert. Die SOH-Deformationsschwingungen treten im Bereich von 1162 cm⁻¹ bis 915 cm⁻¹ auf. Die S-OH-Streckschwingungen liegen im Bereich von 901 cm⁻¹ bis 822 cm⁻¹. Die OSO- und SO₃-Deformationsschwingungen treten, wie erwartet, im Bereich von 660 cm⁻¹ bis 531 cm⁻¹auf. Bei 726, 693, 581 und 377 cm⁻¹ (Ra) bzw. 706 cm⁻¹ (IR) werden die für ein verzerrtes AsF₆⁻-Oktaeder typischen Linien registriert. Entsprechend werden die für das SbF₆⁻-Oktaeder erwarteten Linien bei 661, 575 und 295 cm⁻¹ (Ra) bzw. bei 668 cm⁻¹ (IR) gefunden. Die Reaktion von H₂S₂O₇ mit HF zu H₂SO₄ und Fluorsulfonsäure, FSO₃H kann ausgeschlossen werden, da entsprechende Schwingungen von Fluorsulfonsäure bzw. protonierter Fluorsulfonsäure nicht in den Schwingungsspektren beobachtet werden.

Abbildung 38 FT-Raman- und FT-IR-Schwingungsspektrum von $H_3S_2O_7^+AsF_6^-$. Temperatur -120 °C, Ra-Laser = 1064 nm. *= durch den Messprozess eingeschleppte H_2O -Spuren.

Abbildung 39 FT-Raman- und FT-IR-Schwingungsspektrum von $H_3S_2O_7^+SbF_6^-$. Temperatur -120 °C, Ra-Laser = 1064 nm. * = durch den Messprozess eingeschleppte H_2O -Spuren

H₃S Asl	₂ O ₇ ⁺ F ₆ [−]	H₃S₂ Sbl	207 ⁺ = ₆ -	$H_3S_2O_7^+$	Zuordnung
ex	р.	ex	р.	calc. ^{(a),(b)}	
Ra (Int.)	IR (Int.)	Ra (Int.)	IR (Int.)	(IR/Ra)	
			3698 (m)	3587 (208/116)	ν (OH)
				3583 (316/25)	ν (OH)
				3576 (440/38)	ν (OH)
	1428 (m)		1422 (m)	1520 (201/3.6)	v_{as} (SO ₂)
1423 (7.5)	1358 (m)	1392 (3.4)	1402 (m)	1409 (178/5.3)	v (S=O)
1232 (22)	1220 (m)	1226 (3.2)	1234 (m)	1254 (117/14)	v_{s} (SO ₂)
1162 (0.1)	1201 (m)	1168 (19)		1110 (49/3.5)	δ (SOH)
		1080 (2.0)	1073 (w)	1098 (91/3.9)	δ (SOH)
				1092 (99/3.0)	δ (SOH)
993 (5.9)	977 (m)	997 (5.2)	1024 (s)	986 (441/2.0)	δ (SOH)
915 (35)		912 (25)	915 (w)	952 (253/0.8)	δ (SOH)
	901 (w)		881 (m)	906 (288/3.0)	ν (S-OH)
851 (16)	833 (m)	847 (14)	822 (w)	885 (70/28)	ν (S-OH)
660 (6.8)				606 (164/4.3)	δ (OSO)
556 (15)	545 (w)	557 (5.3)	531 (m)	561 (90/2.1)	δ (SO ₃)
				527 (48/0.3)	δ (SO ₂)
				500 (247/1.7)	δ (SO ₃)
				487 (26/3.0)	δ (SO ₂)
				460 (33/2.1)	δ (SO ₂)
429 (1.8)		427 (1.4)		427 (45/2.0)	ω (SOH)
				413 (38/0.3)	ω (SOH)
	392 (s)	395 (17)		397 (48/0.8)	ω (SOH)

Tabelle 18 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_3S_2O_7^+SbF_6^-$ mit C_1 -Symmetrie

				283 (37/0.5)	ω (SOH)
				277 (16/2.5)	ω (SOH)
				265 (73/3.2)	ω (SOH)
				225 (36/4.0)	ω (SOH)
				164 (65/1.5)	ω (SOH)
85 (20)		93 (25)		118 (5.1/0.4)	ω (SO ₃)
				67 (2.8/0.1)	ρ (SO ₃)
				29 (2.8/0.0)	τ (SO ₃)
726 (7.8))
693 (100)	706 (vs)				
581 (22)					ASF_6
377 (51)					J
		661 (100)	668 (vs)))
		575 (20)			
		295 (25)			

(a) Berechnet auf dem RPBE1PBE/6-311G (3df,3pd)–Niveau (b) Berechnete IR- und Raman-Intensitäten sind in runden Klammern ([km/mol],[Å⁴/amu]) angegeben. vs = very strong (sehr stark), s = strong (stark), m = medium (mittel), w = weak (schwach). Skalierungsfaktor 0.962.

b) Schwingungsspektrum von $D_3S_2O_7^+MF_6^-$ (M = As, Sb)

Die gemessenen FT-Raman- und FT-IR-Spektren sind in Abbildung 40 und Abbildung 41 wiedergegeben. Eine Aufstellung aller beobachteten Schwingungen sowie der quantenchemisch berechneten Schwingungsfrequenzen ist in nachfolgender Tabelle 19 gegeben. Die OD-Valenzschwingung wird bei 2321 cm⁻¹ (Ra, AsF₆⁻) und 2496 cm⁻¹ (IR, AsF₆⁻) bzw. bei 2157 cm⁻¹ (Ra, SbF₆⁻) und als nichtaufgelöste Banden zwischen 2487 und 2398 cm⁻¹ (IR, SbF₆⁻) beobachtet. Die SO₂ – und S=O Valenzschwingungen treten vergleichbar mit H₃S₂O₇⁺MF₆⁻ im Bereich 1418 -1185 cm⁻¹ auf und die v(S-OH) Valenzschwingungen im Bereich 1023 – 924 cm⁻¹. Durch die Deuterierung erfahren die SOD-Deformationsschwingungen eine schwache Rotverschiebung zu 892 cm⁻¹ (IR, SbF₆⁻). Die SOS-, SO₃- und SO₂-Deformationsschwingungen werden im erwarteten Bereich zwischen 601 cm⁻¹ und 487 cm⁻¹ registriert. Bei 693, 581 und 378 cm⁻¹ (Ra) bzw. 699 cm⁻¹ (IR) treten die für ein AsF₆⁻-Oktaeder typischen Linien auf und die für das SbF₆⁻-Oktaeder erwarteten Linien werden bei 662, 576 und 295 cm⁻¹ (Ra) bzw. bei 673 cm⁻¹ (IR) beobachtet.

Abbildung 40 FT-Raman- und FT-IR-Schwingungsspektrum von $D_3S_2O_7^+AsF_6^-$. Temperatur -120 °C, Ra-Laser = 1064 nm. * = durch den Messprozess eingeschleppte H_2O -Spuren.

Abbildung 41 FT-Raman- und FT-IR-Schwingungsspektrum von $D_3S_2O_7^+SbF_6^-$. Temperatur –120 °C, Ra-Laser = 1064 nm. * = durch den Messprozess eingeschleppte H₂O-Spuren.

$\begin{array}{ccc} D_{3}S_{2}O_{7}^{+} & D_{3}S_{2}O_{7}^{+} \\ AsF_{6}^{-} & SbF_{6}^{-} \end{array}$	$D_3S_2O_7^+$	Zuordnung								
exp. exp.	calc. ^{(a),(b)}	_								
.) IR (Int.) Ra (Int.) IR (Int.)	(IR/Ra)									
.2) 2496 (vs) 2157 (0.1) 2487 (vs)	2580 (96/ 60)	ν (OD)								
2398 (vs)	2577 (198/ 7.8)	ν (OD)								
	2570 (245/18)	v (OD)								
.9) 1430 (2.1) 1456 (w)	1498 (194/ 3.8)	v_{as} (SO ₂)								
1) 1322 (m) 1398 (10) 1319 (m)	1389 (161/ 5.4)	v (S=O)								
8) 1214 (8.0)	1237 (134/ 15)	v _s (SO ₂)								
7)										
.0) 1081 (m) 1079 (4.6) 1084 (w)	1000 (168/ 2.5)	ν (S-OD)								
1062 (0.4)	990 (425/ 2.9)	ν (S-OD)								
.9) 980 (m) 969 (1.5) 984 (w)	895 (208/ 5.3)	ν (S-OD)								
4) 924 (22)	873 (42/ 26)	v (S-(OD ₂))								
892 (6.5)	827 (40/ 1.4)	δ (SOD)								
9) 822 (s) 859 (1.0) 823 (m)	806 (118/ 1.2)	δ (SOD)								
	787 (68/ 0.7)	δ (SOD)								
.5) 596 (1.1)	591 (158/ 3.8)	δ (SOS)								
	541 (125/ 2.0)	δ (SO ₃)								
4) 551 (4.9)	513 (60/ 0.4)	δ (SO ₂)								
.9) 494 (vs) 519 (4.7) 513 (s)	489 (175/ 2.1)	δ (SO ₃)								
487 (s)	466 (35/ 2.7)	δ (SO ₂)								
	423 (6.1/ 2.3)	δ (SO ₂)								
	394 (62/ 1.4)	δ (SO ₂)								
	379 (16/ 0.4)	δ (SO ₂)								

Tabelle 19 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $D_3S_2O_7^+MF_6^-$ mit C_1 -Symmetrie (M = As, Sb)

Dischwefelsäure

				319 (24/ 0.4)	ω (SOD)
				271 (18/ 2.0)	ρ (SO ₃)
				245 (8.8/ 1.8)	ω (SOD)
		387 (11)		234 (57/ 4.7)	ρ (SO ₃)
				192 (32/ 0.9)	ω (SOD)
				129 (32/ 0.8)	ω (SOD)
88 (17)		92 (12)		109 (13/ 0.5)	ρ (SO ₃)
		68 (0.6)		65 (3.0/ 0.1)	ρ (SO ₃)
				28 (2.6/ 0.0)	τ (SO ₃)
693 (100)	699 (vs)				ſ
581 (18)					> AsF ₆
378 (47)					J
		662 (100)	673 (s)		J
		576 (13)			
		295 (45)			

(a) Berechnet auf dem RPBE1PBE/6-311G (3df,3pd)–Niveau (b) Berechnete IR- und Raman-Intensitäten sind in runden Klammern ([km/mol],[Å⁴/amu]) angegeben. vs = very strong (sehr stark), s = strong (stark), m = medium (mittel), w = weak (schwach). Skalierungsfaktor 0.950.

4.8.3 Theoretische Berechnungen des $H_3S_2O_7^+$ -Kations

Die auf dem RPBE1PBE/6-311G (3df,3pd) – Niveau berechnete Struktur von protonierter Dischwefelsäure ist in Abbildung 42 gezeigt. Die Bindungslänge von den Schwefelatomen zu dem verbrückenden Sauerstoff ist einerseits mit 151 pm im Bereich einer partiellen S-O-Doppelbindung bzw. mit 181 pm einer vergleichweise langen S-O-Einfachbindung. Diese Bindungen sind bei der berechneten Dischwefelsäure und dem Disulfat-Anion mit 175 und 171 pm bzw. 160 pm und 160 pm im Bereich von Einfachbindungen. Die Protonierung des Disulfats über Dischwefelsäure zu protonierter Dischwefelsäure resultiert in einer Bindungsschwächung der Sauerstoffbrücke. Die S-OH-Bindungen liegen mit 152-153 pm im erwarteten Bereich. Diese Beobachtung deckt sich mit bisher berechneten Bindungslängen an protonierten Schwefel-Sauerstoff-Verbindungen. Mit etwa 140 pm liegen die S=O-Bindungen ebenfalls im erwarteten Bereich. Im Vergleich zum Disulfat-Anion sind die S=O-Doppelbindungen um durchschnittlich etwa 2 pm verkürzt.

Abbildung 42 Gasphasenstrukturoptimierung der protonierten Dischwefelsäure (H₃S₂O₇⁺) auf dem RPBE1PBE/6-311G (3df,3pd)-Niveau

4.8.4 NMR-Spektrum von $H_3S_2O_7^+AsF_6^-$

Das ¹H-NMR-Spektrum von $H_3S_2O_7^+AsF_6^-$ wurde in SO_2 bei -41 °C gemessen. Das OH-Protonensignal ist tieffeldverschoben und wird als einziges von $H_3S_2O_7^+AsF_6^-$ verursachtes Signal bei 9.38 ppm beobachtet. (Siehe Abbildung 43). Bei einer Verschiebung von 12.4 ppm wird eine Protonenresonanz als breites Signal detektiert, welches Rückständen von HF zugeordnet wird. ^[43] Zwar wären zwei unterschiedliche Signale zu detektieren, jedoch findet in diesem Aciditätsbereich ein schneller Protonenaustausch statt, sodaß diese nicht aufgelöst werden können. Im ¹⁹F-NMR-Spektrum wird ein für das AsF₆⁻-Anion typisches Signal bei –57.3 ppm beobachtet. ^[47] Das Spektrum wurde intern mit einer Mischung aus d₆-Aceton und CFCl₃ referenziert, welches in den Zwischenraum von NMR-Röhrchen und FEP-Inliner gegeben wurde.

Abbildung 43 ¹*H-NMR-Spektrum von* $H_3S_2O_7^+AsF_6^-$ in SO_2 bei -41 °C, f = 400.182 MHz. Mit Stern (*) gekennzeichnete Signale zeigen Rückstände von HF an.

4.9 Peroxodischwefelsäure, H₂S₂O₈

4.9.1 Bildung und Stabilität

Die Herstellung von Peroxodischwefelsäure ist seit langem bekannt. Aus der Umsetzung von zwei Äquivalenten Chlorschwefelsäure mit 100%igem Wasserstoffperoxid entsteht diese unter Abspaltung von Chlorwasserstoff bei tiefen Temperaturen (29).^[19]

$$2 \operatorname{HSO_3Cl} + \operatorname{H_2O_2} \rightarrow \operatorname{H_2S_2O_8} + 2 \operatorname{HCl}$$

$$(29)$$

Die Verbindung zersetzt sich nur langsam zu Monoperoxoschwefelsäure, welche ihrerseits instabil hinsichtlich des Zerfalls zu Schwefelsäure und Wasserstoffperoxid ist.

Ein besserer Zugang zur Peroxodischwefelsäure und Peroxodisulfaten wurde erstmals 1910 auf elektrochemischem Weg beschrieben und seither in einer Vielzahl von Patenten verbessert. ^[63-65] Peroxodisulfate werden heute im Hundert Kilotonnenmaßstab hergestellt und als Radikalstarter für Polymerisationsreaktionen und für Ätz- und Bleichprozesse verwendet. ^[30] Kristallographische und schwingungsspektroskopische Untersuchungen wurden bisher nur an Peroxodisulfaten, nicht jedoch an der freien Peroxodischwefelsäure, durchgeführt. ^[66-67]

Die Nutzung des in den supersauren Bereich grenzenden wasserfreien Fluorwasserstoffs, welcher zugleich als Protonierungsreagenz sowie als Lösungsmittel dient, ermöglicht eine wasserfreie, Synthese von $H_2S_2O_8$ aus Peroxodisulfaten bei –60 °C. Dementsprechend wurde Fluorwasserstoff bzw. Deuteriumfluorid in etwa 100fachem Überschuss eingesetzt. Die tiefen Temperaturen und der Ausschluss von Wasser verhindern den Zerfall der Peroxodischwefelsäure. Die hydrolyseund temperatursensitive Peroxodischwefelsäure sowie das Nebenprodukt Kaliumfluorid verblieben unter N₂-Schutzgas im FEP-Reaktor, nachdem der überschüssige Fluorwasserstoff im dynamischen Vakuum bei tiefen Temperaturen entfernt wurde. Die so hergestellte Peroxodischwefelsäure ist bis –10 °C beständig.

4.9.2 Schwingungsspektren

a) Schwingungsspektrum von $H_2S_2O_8$

Das FT-Raman- und FT-IR-Spektrum von $H_2S_2O_8$ ist in Abbildung 44 wiedergegeben. In Tabelle 20 sind die und quantenchemisch berechneten Frequenzen mit einem Zuordnungsvorschlag angegeben. Die OH-Valenzschwingungen werden im IR-Spektrum bei 3237 cm⁻¹ beobachtet. Bei 1417 cm⁻¹ (IR), 1321 cm⁻¹ (Ra) und 1318 cm⁻¹ (IR) treten S=O- bzw. SO₂-Valenzschwingungen auf. Die SOH-Deformationsschwingungen werden bei 1073 cm⁻¹ (Ra) und 1047 cm⁻¹ (IR) registriert. Die v(OO)-Frequenz wird bei 895 cm⁻¹ (Ra) bzw. 886 cm⁻¹ (IR) beobachtet und die v(S-OH)-Schwingungen treten bei 865 cm⁻¹ und 829 cm⁻¹ (beide Ra) auf. Die S-O-Valenzschwingungen zur Peroxobrücke (v(S-OO)) liegen bei 742 (IR), 623 (Ra) und 668 cm⁻¹ (Ra) im charakteristischen Bereich. Bei 582 (Ra), 587 (IR), 552 (Ra) und 558 cm⁻¹ (IR) treten die SO₂-Deformationsschwingungen auf.

Abbildung 44 FT-Raman- und FT-IR-Schwingungsspektrum von $H_2S_2O_8$. Temperatur -120 °C, Ra-Laser = 1064 nm.
<u>_</u> _	<u> </u>
[]	

Tabelle 20 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten	für $H_2S_2O_8$ mit
C ₁ -Symmetrie	

H_2S	₂ O ₈	$H_2S_2O_8$	Zuordnung
ex	р.	calc. ^{(a),(b)}	_
Ra (Int.)	IR (Int.)	(IR/Ra)	
		3498 (133/38)	v (OH)
	3237 (s)	3241 (429/47)	v (OH)
	1417 (w)	1407 (165/8.0)	v_{as} (SO ₂)
1321 (7.9)	1318 (s)	1386 (277/5.7)	v (S=O)
	1207 (vs)	1184 (151/9.8)	δ (SOH)
1073 (100)		1154 (73/24)	δ (SOH)
	1047 (s)	1132 (238/5.7)	δ (SOH)
		1055 (85/2.8)	δ (SOH)
895 (17)	886 (vw)	868 (85/53)	v (O-O)
865 (31)		861 (122/7.0)	v (S-OH)
829 (75)		842 (148/1.2)	v (S-OH)
	742 (s)	746 (66/9.9)	v (S-OO)
623 (5.2)	668 (s)	655 (287/2.7)	v (S-OO)
582 (3.0)	587 (m)	557 (60/0.8)	δ (SO ₂)
552 (33)	558 (m)	550 (58/1.2)	δ (SO ₂)
		512 (34/1.6)	ω (SOH)
		498 (14/2.1)	δ (SO ₃)
		490 (84/1.8)	δ (SO ₃)
		470 (20/1.4)	ω(SOH)
438 (1.2)		440 (14/1.8)	δ (SO ₂)
425 (45)	436 (vw)	406 (11/1.1)	δ (SO ₂)
409 (1.9)		366 (3.7/1.8)	δ (SO ₂)
330 (6.7)		328 (19/1.5)	ω (SOH)

	303 (32/2.3)	ω (SOH)
	240 (48/2.0)	ω (SOH)
199 (15)	204 (0.9 /2.1)	ρ (SO ₃)
159 (5.3)	181 (22/1.3)	ρ (SO ₃)
	153 (11/0.2)	ρ (SO ₃)
93 (2.1)	64 (3.4/0.1)	ρ (SO ₃)
	45 (1.8/0.1)	τ (SO ₃)

(a) Berechnet auf dem RPBE1PBE/6-311G (3df,3pd)–Niveau (b) Berechnete IR- und Raman-Intensitäten sind in runden Klammern ([km/mol],[Å⁴/amu]) angegeben. v = very (sehr), s = strong (stark), m = medium (mittel), w = weak (schwach). Skalierungsfaktor 0.920.

b) Schwingungsspektrum von $D_2S_2O_8$

Das FT-Raman- und FT-IR-Spektrum von $D_2S_2O_8$ ist in Abbildung 45 wiedergegeben. In Tabelle 21 sind die experimentellen und quantenchemisch berechneten Frequenzen aufgeführt. Die OD-Valenzschwingungen werden wie erwartet rotverschoben bei 2426 cm⁻¹ (Ra), 2406 cm⁻¹ (IR) und 2274 cm⁻¹ (IR) beobachtet. Die S-O- und S=O-Valenzschwingungen werden im Raman-Spektrum bei 1307, 1281, 1080 und 1061 cm⁻¹ und im IR-Spektrum bei 1464, 1303, 1079 und 1051 cm⁻¹ registriert. Bei 834 cm⁻¹ (Ra) wird die OO-Valenzschwingung beobachtet. Die S-OD-Valenzschwingungen liegen bei 819 (Ra), 747 (IR) und 706 cm⁻¹ (IR). Die v(S-OO) wird bei 583 cm⁻¹ (Ra) bzw. bei 613 cm⁻¹ (IR) beobachtet und SO₂- bzw. SO₃-Deformationsschwingungen treten bei 569 (Ra), 580 (IR), 514 (Ra) und 408 cm⁻¹ (Ra) auf.

Abbildung 45 FT-Raman- und FT-IR-Schwingungsspektrum von $D_2S_2O_8$. Temperatur -120 °C, Ra-Laser = 1064 nm. * = Geräteartefakt.

Tabelle 21 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $D_2S_2O_8$ mit C_1 -Symmetrie

D_2S_2	$D_2S_2O_8$		$D_2S_2O_8$	
				Zuordnung
ex	р.		calc. ^{(a),(b)}	
Ra (Int.)	IR (Int.)		(IR/Ra)	
2426 (78)	2406 (w)	2	491 (78/18)	ν (OD)
	2274 (m)	2	309 (233/24)	ν (OD)
1307 (18)	1464 (vs)	1	373 (176/6.9)	$\nu_{as}(SO_2)$
1281 (2.8)	1303 (vs)	1	351 (269/6.8)	v (S=O)
1080 (100)	1079 (m)	1	151 (186/16)	v_s (SO ₂)
1061 (2.7)	1051 (s)	1	120 (149/22)	v_s (SO ₂)
885 (32)	886 (s)		861 (174/19)	δ (SOD)
834 (68)			846 (20/35)	v (0-0)
819 (9.3)			831 (174/5.7)	v (S-OD)
747 (8.7)	743 (m)		819 (71/2.3)	v (S-OD)
	706 (s)		788 (20/2.1)	δ(SOD)
			727 (62/10)	v (S-OO)
583 (4.3)	613 (m)		639 (247/2.6)	v (S-OO)
569 (46)	580 (s)		535 (35/1.4)	δ (SO ₂)
			530 (60/0.6)	δ (SO ₂)
	514 (s)		486 (21/2.5)	δ (SO ₃)
			483 (16/0.8)	δ (SO ₃)
			475 (60/1.6)	δ (SO ₃)
408 (35)			416 (12/2.1)	δ (SO ₂)
329 (2.3)			399 (20/1.6)	ω (SOD)
312 (0.9)			380 (10/1.1)	δ (SO ₂)
			353 (2.9/1.3)	δ (SO ₂)
			296 (11/1.9)	ω (SOD)
			268 (22/1.8)	ω (SOD)

	207 (14/0.8)	ω(SOD)
222 (39)	199 (2.3/2.7)	ρ (SO ₃ H)
	155 (32/0.7)	ω(SOD)
93 (36)	145 (14/0.3)	ρ (SO 3 H)
	61 (3.5/0.1)	τ (SO ₃ H)
	44 (1.8/0.1)	τ (SO ₃ H)

(a) Berechnet auf dem RPBE1PBE/6-311G (3df,3pd)–Niveau (b) Berechnete IR- und Raman-Intensitäten sind in runden Klammern ([km/mol],[Å⁴/amu]) angegeben. v = very (sehr), s = strong (stark), m = medium (mittel), w = weak (schwach). Skalierungsfaktor 0.900.

4.9.3 NMR-Spektrum

Das ¹H-NMR-Spektrum von $H_2S_2O_8$ wurde in SO₂ bei –41 °C gemessen. Das OH-Protonensignal wird bei 9.53 ppm beobachtet (siehe Abbildung 46). Bei einer Verschiebung von 12.2 ppm wird ein Signal detektiert, welches Rückständen von HF zugeordnet wird. ^[43] Das Spektrum wurde intern mit einer Mischung aus d₆-Aceton und CFCl₃ referenziert, welches in den Zwischenraum von NMR-Röhrchen und FEP-Inliner gegeben wurde.

Abbildung 46 ¹*H-NMR-Spektrum von* $H_2S_2O_8$ *in* SO_2 *bei* -41 °C, f = 400.182 *MHz. Mit Stern (*) gekennzeichnete Signale zeigen Rückstände von HF an.*

4.9.4 Theoretische Berechnungen des Peroxodischwefelsäure-Moleküls

Strukturoptimierungen des freien H₂S₂O₈-Moleküls wurden unter Verwendung der Methode [44-45] RPBE1PBE mit dem Basissatz 6-311G(d,p) durchgeführt. Danach wurden die Schwingungsfrequenzen in harmonischer Näherung und die IR- und Raman-Intensitäten berechnet. Die berechneten Gerüstschwingungen sind in guter Übereinstimmung mit den experimentell beobachteten. Diskrepanzen werden vor allem für die OH-Valenzschwingungen beobachtet, welche um bis zu 200 cm⁻¹ überschätzt werden. Es ist anzunehmen, dass diese Abweichungen aus starken Wasserstoffbrückenbindungen im Festkörper resultieren, da deren Bildung gewöhnlich zu einer Rotverschiebung der entsprechenden OH-Streckschwingungen führt. Die berechnete Struktur ist in Abbildung 47 gezeigt. Die Bindungslänge von den Schwefelatomen zu der Peroxo-Brücke liegt mit 161.3 und 166.7 pm im erwarteten Bereich einer S-O-Einfachbindung. In der Literatur werden diese Bindungen im röntgenografisch untersuchten $S_2O_8^{2-}$ -Anion mit jeweils 165.5 pm beschrieben.^[67] Der O-O-Abstand im berechneten Molekül beträgt 142.5 pm und ist im Vergleich zum Anion (148.2 pm) um 6.3 pm verkürzt. Die S=O- und S-OH-Bindungen liegen alle, im Vergleich zu bisherigen Berechnungen von Dischwefelsäuren, im erwarteten Bereich von 140 – 157 pm.

Abbildung 47 Gasphasenstrukturoptimierung der Peroxodischwefelsäure (H₂S₂O₈) auf dem RPBE1PBE/6-311G (d,p)-Niveau

4.10 Protonierte Peroxodischwefelsäure, $H_3S_2O_8^+MF_6^-$ (M = As, Sb)

4.10.1 Bildung und Stabilität

Die Synthese von $H_3S_2O_8^+MF_6^-$ (M = As, Sb) wurde bei -60 °C nach folgender Reaktionsgleichung durchgeführt:

$$K_2S_2O_8 + 3 \text{ HF/MF}_5 \rightarrow H_3S_2O_8^+\text{MF}_6^- + 2 \text{ KMF}_6$$
 (30)
(M = As, Sb)

Fluorwasserstoff bzw. Deuteriumfluorid wurde bei der Reaktion in etwa 100fachem Überschuss eingesetzt, da es sowohl als Reagenz als auch als Lösungsmittel diente. Die gebildeten Salze $H_3S_2O_8^+MF_6^-$ sowie das Nebenprodukt $K^+MF_6^-$ fallen bei -60 °C quantitativ als farblose Feststoffe aus. Im dynamischen Vakuum wurde das überschüssige Lösungsmittel innerhalb von 12 h entfernt und das verbleibende hydrolyse- und temperatursensitive Produktgemisch bleibt bis -10 °C unzersetzt haltbar. Am trockenen Produktgemisch wurden Raman- und IRspektroskopische Untersuchungen durchgeführt. Die Schwerlöslichkeit von $H_3S_2O_8^+MF_6^-$ in SO₂ bei tiefen Temperaturen ließen keine aussagekräftigen Ergebnisse im NMR-Experiment zu.

4.10.2 Schwingungsspektren

a) Schwingungsspektrum von $H_3S_2O_8^+MF_6^-$ (M = As, Sb)

In Abbildung 48 und Abbildung 49 sind die FT-Raman- und FT-IR-Spektren von $H_3S_2O_8^+AsF_6^$ und $H_3S_2O_8^+SbF_6^-$ wiedergegeben. Die beobachteten und quantenchemisch berechneten Frequenzen sind in Tabelle 22 aufgelistet. Die OH-Valenzschwingungen liegen bei 3207 (IR, AsF_6^-), 3433, 3368 und 3226 cm⁻¹ (IR, SbF_6^-). Die S=O- und S-O- Valenzschwingungen treten zwischen 1422 cm⁻¹ und 1224 cm⁻¹ auf und die SOH-Deformationsschwingungen werden zwischen 1188 und 958 cm⁻¹ registriert. Die OO-Valenzschwingung wird bei etwa 890 cm⁻¹ beobachtet und deutet auf eine stärkere O-O-Bindung als im Peroxodisulfat-Anion (Lit: 835 cm⁻¹ $^{[67]}$) und in der freien Peroxodischwefelsäure (834 cm⁻¹) hin. Die S-OH-Valenzschwingungen treten bei 950 cm⁻¹ und 840 cm⁻¹ auf und sind damit im für diesen Schwingungstyp charakteristischen Bereich. Neben der S-OO-Valenzschwingungen bei 809 cm⁻¹ (Ra, AsF_6^-) bzw. 817 cm⁻¹ (IR, SbF_6^-), werden SO₂- bzw. SO₃-Deformationsschwingungen von 600 cm⁻¹ bis 485 cm⁻¹ beobachtet. Bei 693, 581 und 377 cm⁻¹ (Ra) bzw. 708 und 392 cm⁻¹ (IR) treten die für ein AsF₆⁻-Oktaeder typischen Linien auf. Die für das SbF₆⁻-Oktaeder erwarteten Linien werden bei 662, 575 und 295 cm⁻¹ (Ra) bzw. bei 669 cm⁻¹ (IR) beobachtet.

Abbildung 48 FT-Raman- und FT-IR-Schwingungsspektrum von $H_3S_2O_8^+AsF_6^-$. Temperatur –120 °C, Ra-Laser = 1064 nm.

Abbildung 49 FT-Raman- und FT-IR-Schwingungsspektrum von $H_3S_2O_8^+SbF_6^-$. Temperatur -120 °C, Ra-Laser = 1064 nm.

Has	S-0- ⁺	HaS)	
As	$H_3 S_2 O_8 \qquad H_3 S_2 O_8$ $As F_6^- \qquad Sb F_6^-$		$H_3S_2O_8^+$	Zuordnung	
e	хр.	e>	(p.	calc. ^{(a),(b)}	
Ra (Int.)	IR (Int.)	Ra (Int.)	IR (Int.)	(IR/Ra)	
	3207 (vs)		3433 (m)	3775 (236/47)	ν (OH)
			3368 (w)	3707 (233/72)	v (OH)
			3226 (m)	3697 (571/42)	v (OH)
			1417 (s)	1513 (199/11)	v_{as} (SO ₂)
1422 (6.1)	1429 (s)	1415 (15)	1386 (m)	1439 (226/7.1)	v (S=O)
1224 (4.1)		1213 (29)	1214 (m)	1236 (176/28)	v_{s} (SO ₂)
1188 (14)	1199 (s)		1174 (m)	1138 (27/3.1)	δ (SOH)
				1120 (78/3.4)	δ (SOH)
			1070 (m)	1100 (96/4.1)	δ (SOH)
963 (13)	958 (m)	1008 (4.8)	1005 (m)	955 (402/4.4)	δ (SOH)
950 (1.5)			964 (m)	935 (318/8.9)	v (S-OH)
888 (19)		890 (4.8)	888 (w)	868 (64/32)	v (O-O)
841 (40)	837 (w)	822 (20)	840 (sh)	852 (159/40)	v (S-OH)
809 (29)			817 (m)	839 (32/41)	v (S-OO)
				655 (301/17)	v (S-OO)
601 (0.7)		596 (1.7)		570 (53/5.0)	δ (SO ₂)
540 (9.4)	542 (m)		555 (w)	538 (16/2.0)	δ (SO ₃)
502 (2.0)		515 (0.8)	521 (w)	505 (30/4.9)	δ (SO ₃)
		480 (0.9)	485 (m)	487 (12/2.5)	δ (SO ₃)
				472 (73/3.3)	δ (SO ₂)
				443 (22/2.4)	δ (SO ₂)
430 (4.5)		420 (21)		427 (101/2.6)	ω (SOH)
		389 (0.6)		392 (21/1.0)	ω (SOH)

Tabelle 22	: Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_3S_2O_8^+MF_6^-$ mit
(C_1 -Symmetrie, ($M = As, Sb$)

				368 (18/2.3)	ω (SOH)
328 (1.4)				334 (107/0.8)	ω (SOH)
315 (3.6)				284 (2.4/4.1)	τ (SO ₂)
209 (6.9)				226 (104/1.7)	ω (SOH)
196 (2.0)				192 (65/1.0)	ω (SOH)
				181 (26/5.6)	ω (SOH)
85 (10)		91 (12)		134 (22/1.7)	ρ (SO ₃)
				83 (0.1/0.2)	τ (SO ₃)
				53 (0.5/0.2)	ρ (SO ₃)
				36 (1.1/0.1)	τ (SO ₃)
693 (100)	708 (vs)				٦
581 (25)					≻ AsF ₆ ¯
377 (35)	392 (vs)				J
)
		662 (100)	669 (vs)		
		575 (15)			SbF ₆
		295 (25)			J
					-

(a) Berechnet auf dem RPBE1PBE/6-311G (d,p)–Niveau (b) Berechnete IR- und Raman-Intensitäten sind in runden Klammern ([km/mol], [Å⁴/amu]) angegeben. vs = very strong (sehr stark), s = strong (stark), m = medium (mittel), w = weak (schwach), sh = shoulder (Schulter). Ohne Skalierung.

b) Schwingungsspektrum von $D_3S_2O_8^+MF_6^-$ (M = As, Sb)

In Abbildung 50 und Abbildung 51 sind die FT-Raman- und FT-IR-Spektren von D₃S₂O₈⁺AsF₆⁻ und $D_3S_2O_8^+SbF_6^-$ wiedergegeben. Die beobachteten Schwingungsfrequenzen und ein Vergleich mit den für das D₃S₂O₈⁺-Kation quantenchemisch berechneten Frequenzen ist in Tabelle 23 angeführt. Die OD-Valenzschwingungen werden wie erwartet rotverschoben bei etwa 2500 cm⁻¹ registriert. Vergleichbar mit dem H-Isotopomer treten die S=O- und S-O-Valenzschwingungen um 1400 cm⁻¹ bzw. um 1200 cm⁻¹ auf. Die S-OD-Valenzschwingungen treten bei 1069, 947 (Ra. AsF_{6} , 1049, 959 cm⁻¹ (IR, AsF_{6}), bzw. bei 1000, 966 (Ra, SbF_{6}) und 1000 cm⁻¹ (IR, SbF_{6}) auf. Die OO-Valenzschwingung wird bei in den Raman-Spektren bei 886 cm⁻¹ und im IR-Spektrum bei 860 cm⁻¹ beobachtet. Diese Schwingung ist vergleichbar mit der entsprechenden Mode im H-Isotopomer. Die SOD-Deformationsschwingungen sind im Vergleich zum H-845 cm^{-1} bis 773 cm^{-1} auf. Neben der S-OO-Isotopomer rotverschoben und von Valenzschwingungen bei 607 cm⁻¹ (Ra und IR, AsF₆) bzw. 597 cm⁻¹ (Ra, SbF₆), werden SO₂bzw. SO₃-Deformationsschwingungen bei 538 bis 386 cm⁻¹ beobachtet. Bei 693, 581 und 377 cm⁻¹ (Ra) bzw. 700 und 391 cm⁻¹ (IR) treten die für ein AsF₆⁻-Oktaeder typischen Linien auf und die für das SbF_6^- -Oktaeder erwarteten Linien werden bei 662, 575 und 295 cm⁻¹ (Ra) bzw. bei 670 cm⁻¹ (IR) registriert. Die Schwingungsspektren von D₃S₂O₈⁺AsF₆⁻ und D₃S₂O₈⁺SbF₆⁻ sind insgesamt in guter Übereinstimmung mit den berechneten. Entscheidend ist an dieser Stelle, dass die OD-Schwingungen im D-Isotopomer im Raman-Spektrum registriert werden was die Protonierung an den Sauerstoffatomen anzeigt.

Abbildung 50 FT-Raman- und FT-IR-Schwingungsspektrum von $D_3S_2O_8^+AsF_6^-$. Temperatur -120 °C, Ra-Laser = 1064 nm. * = Verunreinigung HF.

Abbildung 51 FT-Raman- und FT-IR-Schwingungsspektrum von $D_3S_2O_8^+SbF_6^-$. Temperatur -120 °C, Ra-Laser = 1064 nm.

D₃S As	² 0 ₈ ⁺ F ₆ [−]	D₃S Sb	2O8 ⁺ F6 ⁻	$D_{3}S_{2}O_{8}^{+}$	Zuordnung
e>	кр.	ex	кр.		
Ra (Int.)	IR (Int.)	Ra (Int.)	IR (Int.)	(IR/Ra)	
2403 (42)	2397 (s)	2540 (8.0)	2536 (m)	2749 (134/23)	v (OD)
			2403 (vw)	2702(121/35)	v (OD)
			2322 (vw)	2691(330/19)	v (OD)
				1510(196/12)	v_{as} (SO ₂)
1420 (18)	1415 (s)	1410 (15)	1412 (s)	1437(210/7.4)	v (S=O)
	1327 (m)				
1215 (77)	1207 (s)	1206 (14)	1206 (m)	1236 (167/28)	v_{s} (SO ₂)
			1100 (m)		
			1052 (m)		
1069 (3.5)	1049 (m)	1000 (8.0)	1000 (w)	1030 (177/2.0)	ν (S-OD)
947 (24)	959 (m)	966 (3.7)		952 (310/13)	ν (S-OD)
886 (13)		885 (7.1)	860 (m)	869 (20/31)	ν (Ο-Ο)
845 (85)	843 (vw)	840 (11)		859 (105/17)	δ (SOD)
				855 (235/13)	δ (SOD)
				843 (13/50)	δ (SOD)
806 (44)	818 (vw)	812 (33)	805 (w)	810 (56/4.9)	δ (SOD)
773 (4.2)				793 (92/4.0)	δ (SOD)
607 (4.3)	607 (w)	597 (2.7)		649 (262/17)	v (S-OO)
538 (4.7)	567 (w)			566 (56/4.6)	δ (SO ₂)
520 (9.4)	533 (m)	525 (3.4)	525 (w)	529 (34/2.0)	δ (SO ₃)
489 (10)		497 (5.2)		500 (31/4.2)	δ (SO ₃)
		476 (3.1)	479 (w)	475 (32/2.4)	δ (SO ₃)
	458 (w)			457 (66/2.3)	δ (SO ₂)

Tabelle 23 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $D_3S_2O_8^+MF_6^-$ mit C_1 -Symmetrie, (M = As, Sb)

Peroxodischwefelsäure

Diskussion der Ergebnisse

	410 (10)	408 (w)	421 (26/2.7)	δ (SO ₂)
			401 (39/2.4)	δ (SO ₂)
	386 (2.1)		355 (9.2/1.3)	δ (SO ₂)
			351 (1.9/1.0)	ω (SOD)
			290 (16 /3.8)	ω (SOD)
	243 (2.1)		246 (43/0.7)	ω (SOD)
	207 (4.0)		186 (2.1/2.7)	ρ (SO ₃)
			177 (59/1.8)	ω (SOD)
			151 (36/1.9)	ω (SOD)
			123 (39/1.8)	ω (SOD)
	91 (17)		83 (0.0/0.1)	ρ (SO ₃)
			52 (0.4/0.2)	ρ (SO ₃)
			35 (1.0/0.1)	τ (SO ₃)
700 (vs)				ſ
				_ AsF ₆ ¯
391 (vs)				J
)
	662 (100)	670 (vs)		
	575 (14)			SbF_6^-
	295 (25)			
	700 (vs) 391 (vs)	410 (10) 386 (2.1) 243 (2.1) 207 (4.0) 91 (17) 700 (vs) 391 (vs) 662 (100) 575 (14) 295 (25)	410 (10) 408 (w) 386 (2.1) 243 (2.1) 207 (4.0) 91 (17) 700 (vs) 391 (vs) 662 (100) 670 (vs) 575 (14) 295 (25)	410 (10) 408 (w) 421 (26/2.7) 401 (39/2.4) 386 (2.1) 355 (9.2/1.3) 351 (1.9/1.0) 290 (16 /3.8) 243 (2.1) 246 (43/0.7) 207 (4.0) 186 (2.1/2.7) 177 (59/1.8) 151 (36/1.9) 123 (39/1.8) 91 (17) 83 (0.0/0.1) 52 (0.4/0.2) 35 (1.0/0.1) 700 (vs) 391 (vs) 662 (100) 670 (vs) 575 (14) 295 (25)

(a) Berechnet auf dem RPBE1PBE/6-311G (d,p)–Niveau (b) Berechnete IR- und Raman-Intensitäten sind in runden Klammern ([km/mol], [Å⁴/amu]) angegeben. vs = very strong (sehr stark), s = strong (stark), m = medium (mittel), w = weak (schwach), vw = very weak (sehr schwach). Ohne Skalierung.

4.10.3 Theoretische Berechnungen des $H_3S_2O_8^+$ -Kations

Strukturoptimierungen des H₂S₂O₈⁺-Kations wurden unter Verwendung der Methode RPBE1PBE mit dem Basissatz 6-311G(d,p) durchgeführt. ^[44-45] Danach wurden die Schwingungsfrequenzen in harmonischer Näherung und die IR- und Raman-Intensitäten berechnet. Die berechneten Gerüstschwingungen sind in guter Übereinstimmung mit den experimentell beobachteten. Diskrepanzen werden vor allem für die OH-Valenzschwingungen beobachtet, welche um bis zu 300 cm⁻¹ überschätzt werden. Es ist anzunehmen, dass diese Abweichungen aus starken Wasserstoffbrückenbindungen im Festkörper resultieren, da deren Bildung gewöhnlich zu einer Rotverschiebung der entsprechenden OH-Streckschwingungen führt. Die berechnete Struktur ist in Abbildung 52 gezeigt. Die Bindungslänge von den Schwefelatomen zu der Peroxo-Brücke liegt mit 158.1 und 166.7 pm im erwarteten Bereich einer S-O-Einfachbindung. Diese Bindungslängen sind im Vergleich zur berechneten freien Peroxodischwefelsäure unsymmetrischer verteilt: Die S-O-Bindung zur Peroxobrücke ist verlängert an dem Schwefelatom welcher mit zwei OH-Gruppen verknüpft ist. Der O-O-Abstand im berechneten Molekül beträgt 145.5 pm und ist im Vergleich zur berechneten freien Säure um 3.0 pm länger. Die S=O- und S-OH-Bindungen liegen alle, im Vergleich zu bisherigen Berechnungen von Dischwefelsäuren, im erwarteten Bereich von 141 -158 pm.

Abbildung 52 Gasphasenstrukturoptimierung der protonierten Peroxodischwefelsäure ($H_3S_2O_8^+$) auf dem *RPBE1PBE/6-311G (d,p)-Niveau*

4.11 Protonierte Schwefelsäure, $H_3SO_4^+MF_6^-$ und $H_3SO_4^+GeF_5^-$ (M = As, Sb)

4.11.1 Bildung und Stabilität

Schwefelsäure stellt per Definition die Grenze zum supersauren Bereich dar. ^[68] Folglich kann sie auch nur durch stärkere Supersäuren protoniert werden. In einer Arbeit von *Minkwitz* und *Seelbinder* wurde 2002 gezeigt, dass reine Schwefelsäure mit dem bis heute stärksten Supersäuregemisch HF/SbF₅ protoniert wird. ^[21-22] Dabei wurde als Ausgangsstoff das Trimethylsilylesterderivat der Schwefelsäure, (Me₃SiO)₂SO₂, verwendet. Nachfolgend konnte gezeigt werden, dass das schwächere Supersäuregemisch HF/AsF₅ ebenfalls zur Protonierung von Schwefelsäure fähig ist. Weiterhin wurde eine neue Synthesestrategie aus wesentlich zugänglicheren wasserfreien Salzen etabliert. ^[23] Weil die Schwefelsäure als Bezugspunkt für Forschungen an supersauren Systemen von herausragender Bedeutung ist, liegt der Schwerpunkt bei den hier vorgestellten Synthesen der Verbindungen H₃SO₄⁺AsF₆⁻, H₃SO₄⁺SbF₆⁻ und (H₃SO₄⁺)_n(GeF₅⁻)_n sowie ihren deuterierten Isotopomeren auf der Vervollständigung schwingungsspektroskopischer Daten und weitergehender theoretischer Berechnungen am H₃SO₄⁺-Kation. Die Umsetzungen wurden bei –60 °C nach folgenden Reaktionsgleichungen durchgeführt:

$$K_2SO_4 + 3 \text{ HF/MF}_5 \longrightarrow H_3SO_4^+\text{MF}_6^- + 2 \text{ KMF}_6$$

(M = As, Sb) (31)

$$K_2SO_4 + 3 HF/GeF_4 \xrightarrow{HF} H_3SO_4^+GeF_5^- + 2 KMF_6$$
 (32)

Fluorwasserstoff bzw. Deuteriumfluorid wurde bei der Reaktion in etwa 100-fachem Überschuss eingesetzt, da es als Reagenz und auch als Lösungsmittel diente. Die gebildeten Salze $H_3SO_4^+MF_6^-$ sowie das Nebenprodukt $K^+MF_6^-$ fielen bei –65 °C quantitativ als farblose Feststoffe aus. Im dynamischen Vakuum wurde das überschüssige Lösungsmittel innerhalb von 12 h entfernt. Das verbleibende hydrolyse- und temperatursensitive Produktgemisch bleibt bis –40 °C beständig. Am trockenen Produktgemisch wurden Raman- und IR-spektroskopische Untersuchungen durchgeführt.

4.11.2 Schwingungsspektren

a) Schwingungsspektrum von $H_3SO_4^+MF_6^-$ (M = As, Sb)

Die FT-Raman- und FT-IR-Spektren von $H_3SO_4^+MF_6^-$ (M = As, Sb) sind in Abbildung 53 und Abbildung 54 wiedergegeben. Die beobachteten und brerechneten Schwingungsfrequenzen für das $H_3SO_4^+$ -Kation und der quantenchemisch berechneten [$H_3SO_4^+(HF)_3$]-Einheit ist in Tabelle 24 gegeben. Bei 3227 cm⁻¹ (AsF₆⁻) bzw. bei 3238 cm⁻¹ (SbF₆⁻) treten im IR-Spektrum die OH-Streckschwingungen auf. Die S=O-Streckschwingung wird bei 1390 (Ra, AsF₆⁻), 1387 (IR, AsF₆⁻) und 1392 cm⁻¹ (Ra, SbF₆⁻) beobachtet und SOH-Deformations-schwingungen bei 1226 cm⁻¹ (Ra, AsF₆⁻) und 1230 cm⁻¹ (Ra, SbF₆⁻). Die v_{as}(SO₂) und v_s(SO₃) werden zwischen 1168 cm⁻¹ und 910 cm⁻¹ registriert, was im Einklang mit den schwingungsspektroskopischen Daten der isoelektronischen Phosphorsäure steht (v_{as}(PO₃) = 1066 – 1074 cm⁻¹, v_s(PO₃) = 885 cm⁻¹). ^[69] Bei 693, 581 und 377 cm⁻¹ (Ra) bzw. 707 und 388 cm⁻¹ (IR) treten die für ein AsF₆⁻-Oktaeder typischen Linien auf und die für ein verzerrtes SbF₆⁻-Oktaeder erwarteten Linien werden bei 682, 674, 661, 596, 575 und 294 cm⁻¹ (Ra) bzw. bei 667 cm⁻¹ (IR) beobachtet. Die Vorteile der Berechnung der [H₃SO₄⁺(HF)₃]-Einheit hinsichtlich der Vergleichbarkeit mit

dem gemessenen Schwingungspektrum wird eingehender in Kap 4.11.3 diskutiert.

Abbildung 53 FT-Raman- und FT-IR-Schwingungsspektrum von $H_3SO_4^+AsF_6^-$. Temperatur -120 °C, Ra-Laser = 1064 nm.

Abbildung 54 FT-Raman- und FT-IR-Schwingungsspektrum von $H_3SO_4^+SbF_6^-$. Temperatur -120 °C, Ra-Laser = 1064 nm.

Tabelle 24 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $H_3SO_4^+MF_6^-$ mit C_1 -	
Symmetrie, $(M = As, Sb)$	

H ₃ SO	₁⁺AsF₀¯	H ₃ SO ₄	⁺ SbF ₆ ⁻	$H_3SO_4^+$	$[H_3SO_4 (HF)_3]^+$	Zuordnung
e)	(p.	ex	(p.	calc. ^{(a),(b)}	calc. ^{(a),(b)}	-
Ra (Int.)	IR (Int.)	Ra (Int.)	IR (Int.)	(IR/Ra)	(IR/Ra)	
	3227 (vs)		3238 (vs)	3710 (96/101)	3259 (431/177)	ν (OH)
				3697(448/31)	3207 (2112/79)	v (OH)
				3694(426/31)	3190 (2496/64)	v (OH)
1390 (8.0)	1387 (m)	1392 (11)		1506(202/6)	1482 (216/5.3)	v (S=O)
1226 (2.7)		1230 (2.7)		1153(74/3)	1261 (46/1.0)	δ (SOH)
				1144(62/3)	1246 (124/ 2.3)	δ (SOH)
				1078(92/5)	1238 (76/1.5)	δ (SOH)
1167 (6.9)	1185 (m)	1168 (17)	1121 (m)	1016(309/1)	1078 (305/1.2)	v_{as} (SO ₂)
995 (3.1)	1003 (s)	999 (2.3)	1043 (m)	991(347/1)	1056 (369/1.3)	vas (SO ₂)
914 (18)	914 (w)	913 (24)	910 (m)	899(37/18)	935 (20/21)	v _s (SO ₃)
559 (3.4)	549 (m)	556 (7.5)	535 (m)	531(24/2)	555 (16/2.8)	δ _s (SO ₃)
				514(42/2)	546 (26/2.4)	δ_{as} (SO ₃)
				499(54/2)	534 (45/2.2)	δ_{as} (SO ₃)
				443(33/1)	445 (58/1.8)	δ (SO ₂)
428 (1.5)		428 (2.6)		412(12/0)	417 (81/1.0)	τ (SOH)
		396 (4.3)	399 (m)	321(198/2)	390 (96/ 0.8)	ω (SOH)
				298(80/0)	381 (117/ 0.4)	ω (SOH)
				225(55/3)	360 (58/1.4)	τ (SO ₂)
693 (100)	707 (vs)					J
581 (22)						AsF ₆ ⁻
377 (41)	388 (vs)					J
		682 (6.4)				Ĵ
		674 (21)				
		661 (100)	667 (vs)			SbF ₆ ⁻
		596 (2.9)				(
		575 (10)				
		294 (19))

(a) Berechnet auf dem RPBE1PBE/6-311G (3df,3pd)–Niveau (b) Berechnete IR- und Raman-Intensitäten sind in runden Klammern ([km/mol],[\hat{A}^{4} /amu]) angegeben. vs = very strong (sehr stark), s = strong (stark),, m = medium (mittel), w = weak (schwach). Ohne Skalierung.

b) Schwingungsspektrum von $D_3SO_4^+MF_6^-$ (M = As, Sb)

Die FT-Raman- und FT-IR-Spektren von $D_3SO_4^+MF_6^-$ (M = As, Sb) sind in Abbildung 55 und Abbildung 56 wiedergegeben. Die beobachteten Schwingungsfrequenzen und ein Vergleich mit den für das $D_3SO_4^+$ -Kation und der $[D_3SO_4^+(DF)_3]$ -Einheit quantenchemisch berechneten Frequenzen ist in Tabelle 25 angegeben. Bei 2268 cm⁻¹ und 2271 cm⁻¹ (Ra und IR, AsF₆⁻¹) bzw. bei 2268 cm⁻¹ und 2346 cm⁻¹ (Ra und IR, SbF₆⁻) treten die nach der *Teller-Redlich*-Regel rotverschobenen OD-Streckschwingungen auf. Dies ist insofern wichtig, da so die Protonierung ausschließlich an den Sauerstoffatomen stattfindet. Die OH-Streckschwingungen werden ausnahmslos im Raman-Spektrum nicht beobachtet. Die S=O-Streckschwingung wird wie erwartet um 1400 cm⁻¹, im Bereich einer charakteristischen S=O-Doppelbindung, beobachtet. SOD-Deformations-schwingungen bei 1052 bis 933 cm⁻¹ sind im Vergleich zum H-Isotopomer um etwa 100 cm⁻¹ rotverschoben. Im Vergleich zum H-Isotopomer hat die Deuteriumsubstitution auf die SO-Valenzschwingungen nur marginale Auswirkungen. Die vas(SO2) werden zwischen 1177 cm⁻¹ und 1064 cm⁻¹ registriert und die v_s (SO₃) bei 908 cm⁻¹. Bei 693, 581 und 378 cm⁻¹ (Ra) bzw. 707 und 388 cm⁻¹ (IR) treten die für ein AsF₆⁻-Oktaeder typischen Linien auf und die für ein verzerrtes SbF₆⁻-Oktaeder erwarteten Linien werden bei 662, 596, 575, 519 und 295 cm⁻¹ (Ra) bzw. bei 658 cm^{-1} (IR) beobachtet.

Abbildung 55 FT-Raman- und FT-IR-Schwingungsspektrum von $D_3SO_4^+AsF_6^-$. Temperatur -120 °C, Ra-Laser = 1064 nm.

Abbildung 56 FT-Raman- und FT-IR-Schwingungsspektrum von $D_3SO_4^+SbF_6^-$. Temperatur -120 °C, Ra-Laser = 1064 nm.

Tabelle 25 : Experimentelle und berechnete Schwingu	ngsfrequenzen [cm^{-1}] i	und Intensitäten für D ₃ SO	$_4^+MF_6^-$ mit
C_1 -Symmetrie, (M = As, Sb)			

D_3SO_4	⁺AsF ₆ ⁻	D_3SO_4	⁺SbF ₆ ⁻	$D_3SO_4^+$	$\left[D_3SO_4(DF)_3\right]^{\scriptscriptstyle +}$	Zuordnung
ex	р.	ex	(p.	calc. ^{(a),(b)}	calc . ^{(a),(b)}	
Ra (Int.)	IR (Int.)	Ra (Int.)	IR (Int.)	(IR/Ra)	(IR/Ra)	
2268 (29)	2271 (w)	2268 (21)	2346 (w)	2704 (52/49)	2379 (216/86)	v (OD)
				2692 (254/15	2340 (1123/38)	v (OD)
				2689 (245/15)	2326 (1311/32)	v (OD)
1369 (9.0)		1398 (8.3)	1371 (m)	1500 (185/6.0)	1472 (198/6.0)	v (S=O)
1175 (35)	1177 (m)	1175 (6.4)	1198 (w)	1069 (224/1.7)	1102 (242/1.3)	v_{as} (SO ₂)
1078 (2.4)	1075 (w)	1064 (2.7)	1075 (m)	1041 (217/2.0)	1075 (248/1.7)	v_{as} (SO ₂)
1052 (5.7)				909 (69/18)	948 (79/13)	δ (SOD)
1002 (2.3)	966 (m)	925 (4.8)	933 (m)	846 (67/4.2)	914 (73/5.3)	δ (SOD)
908 (27)	908 (m)	908 (48)		826 (85/0.5)	908 (96/0.9)	δ (SOD)
	833 (w)	894 (2.6)		799 (41/1.0)	894 (15/5.9)	δ (SOD)
546 (5.6)	544 (m)	547 (3.5)	555 (s)	521 (37/1.8)	539 (14/1.8)	δ (SO ₂)
				496 (52/2.0)	508 (31/1.6)	δ_{as} (SO ₃)
				459 (39/1.4)	505 (5/1.6)	δ_{as} (SO ₃)
413 (5.6)				399 (3.4/0.9)	417 (12/1.7)	τ (SO ₂)
		369 (5.9)		383 (4.3/0.8)	375 (6/1.2)	τ (SO ₂)
				243 (83/0.7)	313 (74/0.2)	τ (SO ₂)
				226 (66/0.2)	299 (82/0.1)	ω (SOD)
				167 (32/1.6)	278 (71/0.7)	ω (SOD)
693 (100)	701 (vs)					٦
581 (27)						≻ AsF ₆ ⁻
378 (45)	384 (vs)					J
		662 (100)	658 (vs))
		596 (1.7)				
		575 (12)				\succ SbF ₆ ⁻
		519 (8.8)				
		295 (19)				J

(a) Berechnet auf dem RPBE1PBE/6-311G (3df,3pd)–Niveau (b) Berechnete IR- und Raman-Intensitäten sind in runden Klammern ([km/mol],[Å⁴/amu]) angegeben. vs = very strong (sehr stark), s = strong (stark), m = medium (mittel), w = weak (schwach). Ohne Skalierung.

c) Schwingungsspektrum von $(H_3SO_4^+)_n(GeF_5^-)_n$

Das FT-Raman- und FT-IR-Spektrum von $(H_3SO_4^+)_n(GeF_5^-)_n$ ist in Abbildung 57 wiedergegeben. Die beobachteten Schwingungsfrequenzen und ein Vergleich mit den für das H₃SO₄⁺-Kation und der [H₃SO₄⁺(HF)₃]-Einheit guantenchemisch berechneten Frequenzen ist in Tabelle 26 gegeben. Die Lage der Frequenzen des H₃SO₄⁺-Kations sind den vorher beschriebenen Spektren identisch. Im für Fluridometallat-Anionen typischen Bereich $<700 \text{ cm}^{-1}$ wurde ein komplexes Muster der Schwingungsfrequenzen registriert. Gestützt durch vorangegangene Untersuchungen im Arbeitskreis Kornath^[25], deutet diese Beobachtung auf das Vorliegen eines polymer vorliegenden (GeF₅)_x-Anions hin. Durch einen Vergleich mit früheren schwingungsspektroskopischen Untersuchungen von Bartlett et al. zu fluorverbrückten (GeF5)x-Polymeren werden die Anionenschwingungen wie folgt zugeordnet: Bei 688, 661 (Ra) bzw. 770 und 720 cm⁻¹ (IR) werden die nichtverbrückenden Ge-F- Streckschwingungen beobachtet. Die v(GeF₄) tritt bei 643 cm⁻¹ (Ra) bzw. bei 583 cm⁻¹ (IR) auf. Die Streck- und Deformationsschwingungen der Ge-F-Ge-Ketten können bei 455, 428 cm⁻¹ (Ra) bzw. 525 cm⁻¹ (IR) gefunden werden, während die Deformationsschwingungen der planaren GeF₄-Einheiten bei 386 cm⁻¹(Ra) beobachtet werden. In einer vorangegangenen Arbeit wurden kristallografisch bestimmte Strukturtypen von GeF- $[Ge_2F_{10}]^{2-}$ $[Ge_4F_{19}]^{3-}$ wie und (dreier-Anionen, z.B. und *vierer*-Ringe) schwingungsspektroskpisch untersucht.^[25] Anhand dieser Daten lässt sich dennoch keine genauere Aussage über die vorliegende Anionen-Struktur in $(H_3SO_4^+)_n(GeF_5)_n$ treffen.

Abbildung 57 FT-Raman- und FT-IR-Schwingungsspektrum von $(H_3SO_4^+)_n(GeF_5^-)_n$. Temperatur –120 °C, Ra-Laser = 1064 nm.

			د میں موجود رد	
			ిం	
H₃S Ge	60₄ ⁺ F₅ [−]	$H_3SO_4^+$	$[H_3SO_4 (HF)_3]^+$	Zuordnung
ex	(D .	calc. ^{(a),(b)}	calc. ^{(a),(b)}	
Ra (Int.)	IR (Int.)	(IR/Ra)	(IR/Ra)	
	3234 (vs)	3710 (96/101)	3259 (431/177)	ν (OH)
		3697 (448/31)	3207 (2112/79)	v (OH)
		3694 (426/31)	3190 (2496/64)	ν (OH)
1390 (32)	1397 (m)	1506 (202/6)	1482 (216/5.3)	v (S=O)
1233 (7.8)	1233 (m)	1153 (74/3)	1261 (46/1.0)	δ (SOH)
		1144 (62/3)	1246 (124/ 2.3)	δ (SOH)
		1078 (92/5)	1238 (76/1.5)	δ (SOH)
1168 (49)		1016 (309/1)	1078 (305/1.2)	v _{as} (SO ₂)
999 (3.5)	1033 (s)	991 (347/1)	1056 (369/1.3)	v _{as} (SO ₂)
912 (100)	912 (m)	899 (37/18)	935 (20/21)	v _s (SO ₃)
558 (79)		531 (24/2)	555 (16/2.8)	δ_{s} (SO ₃)
		514 (42/2)	546 (26/2.4)	δ_{as} (SO ₃)
		499 (54/2)	534 (45/2.2)	δ_{as} (SO ₃)
		443 (33/1)	445 (58/1.8)	δ (SO ₂)
		412 (12/0)	417 (81/1.0)	τ (SOH)
		321 (198/2)	390 (96/ 0.8)	ω (SOH)
		298 (80/0)	381 (117/ 0.4)	ω (SOH)
		225 (55/3)	360 (58/1.4)	τ (SO ₂)
688 (45)	770 (m)			ν (Ge-F) nichtverbrückend
661 (24)	720 (m)			v (Ge-F) nichtverbrückend
643 (12)	583 (vs)			v (GeF ₆)
455 (8)	525 (vs)			v (Ketten)
428 (4.6)				

Tabelle 26 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $(H_3SO_4^+)_n(GeF_5^-)_n$ mit C₁ -Symmetrie

386 (28)	δ (GeF ₄)
347 (14))
298 (18)	Gitter
259 (13)	
220 (9)	J

(a) berechnet auf dem RPBE1PBE/6-311G(3df,3pd) Niveau. (b) Berechnete IR- und Raman-Intensitäten sind in runden Klammern ([km/mol],[Å⁴/amu]) angegeben. vs = very strong (sehr stark), s = strong (stark), m = medium (mittel), w = weak (schwach). Ohne Skalierung. Zuordnung des Anions nach. [70]

d) Schwingungsspektrum von $(D_3SO_4^+)_n(GeF_5^-)_n$

Das FT-Raman- und FT-IR-Spektrum von $(D_3SO_4^+)_n(GeF_5^-)_n$ ist in Abbildung 58 wiedergegeben. Die beobachteten und für das $D_3SO_4^+$ -Kation und der $[D_3SO_4^+(DF)_3]$ -Einheit berechneten Schwingungsfrequenzen sind in Tabelle 27 angegeben. Die Schwingungen des Kations $D_3SO_4^+$ sind auch hier vergleichbar mit den vorher beschriebenen Spektren und die komplexe Lage der Frequenzen im <700 cm⁻¹ deutet ebenfalls auf das Vorliegen eines polymeren (GeF₅⁻)_n-Anions hin. Schwingungsspektroskopisch wurden polymere (GeF₅⁻)_n-Anionen in einer vorangegangenen Arbeit im Arbeitskreis Kornath näher untersucht. ^[25] Bei 690, 682 (Ra) bzw. 691 cm⁻¹ (IR) werden die nichtverbrückenden Ge-F-Streckschwingungen beobachtet. Die v(GeF₄) wird bei 646 cm⁻¹ (Ra) bzw. bei 601 cm⁻¹ (IR) gefunden. Die Streck- und Deformationsschwingungen der Ge-F-Ge-Ketten treten bei 567, 528 (Ra) bzw. bei 567 und 510 cm⁻¹ (IR) auf, während die Deformationsschwingungen der planaren GeF₄-Einheiten bei 445 cm⁻¹(Ra) und 430 cm⁻¹ (IR) beobachtet werden.

Abbildung 58 FT-Raman- und FT-IR-Schwingungsspektrum von $(D_3SO_4^+)_n(GeF_5^-)_n$. Temperatur –120 °C, Ra-Laser = 1064 nm.

		•	ి <mark>చి</mark> ు	
		? ?**) 3	
 D ₃ S	SO4 ⁺	D.SO. ⁺		Zuordnung
Ge	₽F5 ⁻	D3004	[D ₃ 00 ₄ (Di) ₃]	Zuorunung
ex	kp.	calc. ^{(a),(b)}	calc. ^{(a),(b)}	-
Ra (Int.)	IR (Int.)	(IR/Ra)	(IR/Ra)	
2460 (29)	2452 (vw)	2704 (52/49)	2379 (216/86)	ν (OD)
		2692 (254/15	2340 (1123/38)	ν (OD)
		2689 (245/15)	2326 (1311/32)	v (OD)
1376 (24)	1383 (m)	1500 (185/6.0)	1472 (198/6.0)	v (S=O)
1171 (10)		1069 (224/1.7)	1102 (242/1.3)	v _{as} (SO ₂)
1049 (22)	1057 (s)	1041 (217/2.0)	1075 (248/1.7)	v _{as} (SO ₂)
		909 (69/18)	948 (79/13)	δ (SOD)
940 (11)	930 (s)	846 (67/4.2)	914 (73/5.3)	δ (SOD)
900 (100)	914 (s)	826 (85/0.5)	908 (96/0.9)	δ (SOD)
808 (1.8)		799 (41/1.0)	894 (15/5.9)	δ (SOD)
549 (0.7)		521 (37/1.8)	539 (14/1.8)	δ (SO ₂)
		496 (52/2.0)	508 (31/1.6)	δ_{as} (SO ₃)
		459 (39/1.4)	505 (5/1.6)	δ_{as} (SO ₃)
		399 (3.4/0.9)	417 (12/1.7)	τ (SO ₂)
		383 (4.3/0.8)	375 (6/1.2)	τ (SO ₂)
		243 (83/0.7)	313 (74/0.2)	τ (SO ₂)
		226 (66/0.2)	299 (82/0.1)	ω (SOD)
		167 (32/1.6)	278 (71/0.7)	ω (SOD)
690 (96)	691 (w)			v (Ge-F) _{nichtverbrückend}
682 (3)				v (Ge-F) _{nichtverbrückend}
646 (25)	601 (vs)			ν (GeF ₄)
567 (13)	567 (w)			v (Ketten)
 528 (35)	510 (s)			δ (Ketten)

Tabelle 27 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $(D_3SO_4^+)_n (GeF_5^-)_n$ mit C₁-Symmetrie

Schwefelsäure

Diskussion der Ergebnisse

445 (6.1)	430 (w)	δ (GeF ₄)
401 (30))
374 (12)		
346 (5.7)		
299 (15)		Gitter
248 (11)		
219 (10)		
157 (11))

(a) berechnet auf dem RPBE1PBE/6-311G(3df,3pd) Niveau. (b) Berechnete IR- und Raman-Intensitäten sind in runden Klammern ([km/mol],[Å⁴/amu]) angegeben. vs = very strong (sehr stark), s = strong (stark), m = medium (mittel), w = weak (schwach), vw = very weak (sehr schwach). Ohne Skalierung. Zuordnung des Anions nach. ^[70]

4.11.3 Theoretische Berechnungen des $H_3SO_4^+$ -Kations

Strukturoptimierungen des freien $H_3SO_4^+$ bzw. $D_3SO_4^+$ -Kations wurden unter Verwendung der Methode RPBE1PBE mit dem Basissatz 6-311G(3df,3pd) durchgeführt. ^[44-45] Danach wurden die Schwingungsfrequenzen in harmonischer Näherung berechnet. Die Gerüstschwingungen sind in guter Übereinstimmung mit den experimentell beobachteten. Diskrepanzen werden vor allem für die OH- oder OD-Valenzschwingungen beobachtet, welche um bis zu 400 cm⁻¹ überschätzt werden. Es ist anzunehmen, dass diese Abweichungen aus starken Wasserstoffbrückenbindungen im Festkörper resultieren, da deren Bildung gewöhnlich zu einer Rotverschiebung der entsprechenden OH- bzw. OD-Streckschwingungen führt. Um die Einflüsse von Wasserstoffbrückenbindungen zu untersuchen, wurden drei Fluorwasserstoffmoleküle an das freie $H_3SO_4^+$ -Kation modelliert. Diese Methode brachte in der Vergangenheit im Arbeitskreis Kornath bereits gute Ergebnisse. ^[21] Die $[H_3SO_4^+(HF)_3]$ - und $[D_3SO_4^+(DF)_3]$ -Einheit wurde unter Verwendung der Methode RPBE1PBE und dem Basissatz 6-311G(3df,3pd) berechnet. Die gasphasenoptimierten Strukturen von $H_3SO_4^+$ sowie der $[H_3SO_4^+(HF)_3]$ -Einheit bzw. deren deuterierte Isotopomere sind in Tabelle 28 gezeigt.

Die formale Addition von HF bzw. DF Molekülen an das freie $H_3SO_4^+$ -Kation beeinflusst einige Schwingungsmoden signifikant. Besonders die OH- und OD-Streckschwingungen werden aufgrund der Bildung von S-O···H···F-H-Wasserstoffbrückenbindungen zu niedrigeren Wellenzahlen verschoben. Die daraus resultierenden Schwingungsfrequenzen stimmen gut mit den experimentell beobachteten überein. So verschiebt sich die Frequenz der OH-Valenzschwingung durch theoretische HF-Addition von 3710 cm⁻¹ nach 3259 cm⁻¹. Der beobachtete Wert liegt bei 3233 cm⁻¹. Ebenfalls deutlich zu beobachten ist die Annäherung an den experimentellen Wert im Falle der OD-Streckschwingung. Hier verschiebt sich in der $[D_3SO_4^+(DF)_3]$ -Einheit die entsprechende Frequenz um 325 cm⁻¹ und stimmt danach mit 2379 cm⁻¹ sehr gut mit der beobachteten Frequenz (2344 cm⁻¹) überein (siehe Tabelle 29). Auf die übrigen Gerüstschwingungen hat das Hinzufügen der drei HF-Moleküle deutlich weniger Einfluss.

$H_3SO_4^+$	H₃SO₄ ⁺	[H₃SO₄(HF)₃]⁺	Zuordnung
ехр	calc. ^(a)	calc. ^(a)	
3233	3710	3259	v (OH)
1391	1506	1482	v (S=O)
1230	1153	1261	δ (SOH)
1162	1016	1078	v_{as} (SO ₂)
913	899	935	ν _s (SO ₃)
551	531	555	δ_s (SO ₃)

Tabelle 28 : *Ausgewählte experimentelle (gemittelt) und berechnete Schwingungen von* $H_3SO_4^+$ *und* $[H_3SO_4(HF)_3]^+$

(a) berechnet auf dem RPBE1PBE/6-311G(3df,3pd)-Niveau. Ohne Skalierung.

$H_3SO_4^+$	$D_3SO_4^+$	$[D_3SO_4(DF)_3]^+$	Zuordnung
exp	calc. ^(a)	calc. ^(a)	
2344	2704	2379	ν (OD)
1380	1500	1472	v (S=O)
1179	1069	1102	v_{as} (SO ₂)
1066	1041	1075	v_{as} (SO ₂)
949	846	914	δ (SOD)
548	521	539	δ (SO ₂)

Tabelle 29 : Ausgewählte experimentelle (gemittelt) und berechnete Schwingungen von $D_3SO_4^+$ und $[D_3SO_4(HF)_3]^+$

(a) berechnet auf dem RPBE1PBE/6-311G(3df.3pd)-Niveau. Ohne Skalierung.

In Abbildung 59 Abbildung 60 die berechneten Strukturen und sind des Trihydroxyoxosulfoniumkations bzw. der $[H_3SO_4(HF)_3]^+$ -Einheit mit den Geometrieparametern abgebildet. In Tabelle 30 ist ein Vergleich der Bindungslängen der berechneten Strukturen mit den röntgenografisch bestimmten Bindungslängen im D₃SO₄⁺-Kation angegeben. ^[22] Die S-OH-Bindungslängen liegen im berechneten H₃SO₄⁺-Kation zwischen 151.6 pm und 153.4 pm und in der [H₃SO₄(HF)₃]⁺-Einheit, etwas kürzer, zwischen 151.0 pm und 152.4 pm. Sie liegen damit näher an den in der Röntgenstruktur gefundenen Bindungslängen (149.9 pm bis 151.2 pm). Ebenso verhält es sich bei Betrachtung der S=O-Bindungslänge: Die im H₃SO₄⁺-Kation berechnete Länge beträgt 139.3 pm, und die in der $[H_3SO_4(HF)_3]^+$ -Einheit 139.9 pm (Röntgenstruktur 141.3 pm). Die Länge der O-H···F -Brücken in der $[H_3SO_4(HF)_3]^+$ -Einheit beträgt im Durchschnitt 157 pm. Dies ist deutlich kürzer als die im D₃SO₄⁺SbF₆⁻-Kristall
gefundenen interionischen O-D \cdots F-Abstände (durchschnittlich 256.6 pm). Auch wenn die $[H_3SO_4^+(HF)_3]$ -Einheit nur ein sehr vereinfachtes Modell des Festkörpers darstellt, sind die Übereinstimmungen der berechneten Schwingungsfrequenzen mit den beobachteten sehr zufriedenstellend.

Tabelle 30 : *Geometrieparameter von* $H_3SO_4^+$

	$H_{3}SO_{4}^{+(a)}$	[H ₃ SO ₄ (HF) ₃] ^{+ (a)}	D ₃ SO ₄ ⁺ exp. ^[22]
d(S=O) [pm]	139.3	139.9	141.3
d(S-OH) [pm]	151.6153.4	151.0152.4	149.9151.2

(a) berechnet auf dem RPBE1PBE/6-311G(3df,3pd)-Niveau.

Abbildung 59 Gasphasenstrukturoptimierung des Trihydoxyoxosulfoniumkations (H₃SO₄⁺) auf dem RPBE1PBE/6-311G (3df,pd)-Niveau

Abbildung 60 Gasphasenstrukturoptimierung der $[H_3SO_4(HF)_3]^+$ -Einheit auf dem RPBE1PBE/6-311G (3df,pd)-Niveau

4.12 Protoniertes Dimethylsulfoxid – Hydroxydimethylsulfoniumhexadekatetrafluoridogermanat [(CH₃)₂SOH⁺] ₄[Ge₃F₁₆⁴⁻] ^[71]

4.12.1 Bildung und Stabilität

Dimethylsulfoxid ist eine vielseitig genutzte Verbindung. Sie kann durch Oxidation von Dimethylsulfid unter Verwendung von N2O4 oder O2/N2O4 hergestellt werden. Wegen ihrer außergewöhnlichen Lösungsmitteleigenschaften, der hohen Dielektrizitätskonstante (46.7) und dem hohen Dipolmoment (4.3), wird DMSO als aprotisches Lösungsmittel in vielen chemischen Reaktionen verwendet. Weiterhin findet DMSO als Oxidationsmittel, als Trocknungsmittel und als Base (Dimsyl Anion, ([H₃C-SO-CH₂]⁻) Anwendung. Dimethylsulfoxid kann außerdem außerordentlich gut durch die Haut resorbiert werden und kann deswegen als Trägersubstanz für Medikamente wirken.^[72] Unter Berücksichtigung dieser Eigenschaften, ist es für das Verständnis säurekatalysierter Reaktionsmechanismen wichtig, den Ort des ersten Protonierungsschrittes an DMSO zu kennen. In der Literatur sind bereits einige Beispiele für protonierte Dimethylsulfoxid-Spezies bekannt. Neben theoretischen Arbeiten, [73-74] wurden unter anderem die IR-[75] spektroskopisch untersuchten Komplexe $[H(Me_2SO)_2]_2[PtCl_6]$ und $H(Me_2SO)_2]_2[OsCl_6]$ beschrieben. Durch NMR-spektroskopische Methoden wies Olah 1970 protonierte Spezies von Sulfoxiden im superaciden Medium FSO₃H/SbF₅ ("magic acid[®]") nach. Dabei postulierte er eine Protonierung am S-Atom.^[76] Schwingungsspektroskopische Untersuchungen von Spiekermann in der gleichen Lösung zeigten jedoch keine Anwesenheit von Banden im charakteristischen SH-Frequenzbereich,^[77] woraufhin *Olah* in einer späteren Publikation^[78] seine Forschungsergebnisse relativierte und eine Protonierung am O-Atom vorschlug. Bisher sind in der Literatur nur zwei mittels Röntgendiffraktometrie untersuchte Beispiele für protonierte DMSO Spezies beschrieben. Dabei handelt es sich um die jeweils hemiprotonierten Verbindungen [(DMSO)₂H][trans-[(CH₃)SOH]₂(TeCl₆)·2(CH₃)₂SO. ^[79-80] Zur Vervollständigung $Ru(DMSO)_2Cl_4$] und der Literaturdaten wurden bereits in meiner Masterarbeit die Salze (CH₃)₂SOH⁺AsF₆, $(CH_3)_2SOH^+SbF_6^-$, $(CH_3)_2SOD^+AsF_6^-$ und $(CD_3)_2SOD^+AsF_6^-$ hergestellt und spektroskopisch charakterisiert.^[23] Durch den Einsatz von deuteriertem Edukt bzw. Deuteriumfluorid wurden dabei mehrere Isotopomere dargestellt. Hier soll ergänzend eine Protonierungsreaktion in der neuen Supersäure HF/GeF₄ vorgestellt werden.

Zur Synthese von Dimethylmonohydroxysulfoniumhexadekafluoridotrigermanat wurde als Edukt trockenes Dimethylsulfoxid bzw. deuteriertes d₆-Dimethylsulfoxid eingesetzt. Die Umsetzungen wurden nach folgender Gleichung durchgeführt:

$$4 (CH_3)_2 SO + 3 GeF_4 + 4 HF \xrightarrow{-65 \,^{\circ}C, \, 10 \text{ min}} [(CH_3)_2 SOH^+]_4 [Ge_3 F_{16}^{4-}]$$
(33)

Fluorwasserstoff bzw. Deuteriumfluorid wurde bei der Reaktion in etwa 100-fachem Überschuss eingesetzt, da es sowohl als Reagenz als auch als Lösungsmittel dient. Das gebildete Salz $[(CH_3)_2SOH^+]_4[Ge_3F_{16}^{4-}]$ fiel bei -65 °C quantitativ als kristalliner, farbloser Feststoff aus. Im dynamischen Vakuum wurde das überschüssige Lösungsmittel innerhalb von 12 h entfernt. Das verbleibende hydrolysesensitive Produkt bleibt bis +20 °C unzersetzt haltbar.

Mit den isolierten Salzen wurden Raman- und NMR-spektroskopische Untersuchungen durchgeführt. Aus SO₂ wurde durch Umkristallisation ein für die Röntgenstrukturanalyse geeigneter Einkristall gewonnen.

4.12.2 Schwingungsspektrum $von[(CH_3)_2SOH]^+_4[Ge_3F_{16}]^{4-}$

In Abbildung 61 ist das FT-Raman- und FT-IR-Spektrum von $[(CH_3)_2SOH^+]_4[Ge_3F_{16}]^{4-}$ abgebildet. Die experimentell beobachteten Schwingungsfrequenzen sowie die für das $[(CH_3)_2SOH^+]$ -Kation quantenchemisch berechneten Frequenzen sind in Tabelle 31 wiedergegeben. Bei 3236 cm⁻¹ wird die v(OH) im IR Spektrum beobachtet. Die beiden Ramanintensiven CH₃-Valenzschwingungen treten bei 3038 und 2944 cm⁻¹ (Ra) sowie bei 3025, 2845 und 2633 cm⁻¹ auf (IR). Im Vergleich zur Ausgangssubstanz DMSO sind diese Schwingungen um etwa 50 cm⁻¹ blauverschoben. Die CH₃-Deformationsschwingungen werden bei 1420, 1357, 1332 cm⁻¹ (Ra) sowie 1482, 1473, 1467, 1426 und 1399 cm⁻¹(IR) beobachtet. Die neu auftretende SOH-Deformationsschwingung befindet sich bei 1150 cm⁻¹ (Ra) bzw. 1218 cm⁻¹ (IR). Aufgrund der S-O-Bindungsschwächung durch die O-Protonierung verschiebt sich die v(SO) von 1017 cm⁻¹ (Ra) in DMSO auf 865 cm⁻¹ (IR) und 867 cm⁻¹ (IR). Die CS-Valenzschwingungen treten bei 742 und 729 (Ra) bzw. 764 cm⁻¹ (IR) auf. Im Einklang mit früheren schwingungsspektroskopischen Untersuchungen von *Bartlett et al.* zu fluorverbrückten GeF_5^- Polymeren werden die Anionenschwingungen wie folgt zugeordnet: ^[70]

Bei 687, 670 cm⁻¹ (Ra) bzw. 679 cm⁻¹ (IR) werden die nichtverbrückenden Ge-F Streckschwingungen beobachtet. Die Streck- und Deformationsschwingungen der Ge-F-Ge-Ketten treten bei 488 und 382 (Ra) bzw. 530 und 398 cm⁻¹ (IR) auf, während die Deformationsschwingungen der planaren GeF₄-Einheiten bei 336 cm⁻¹(Ra) und 358 cm⁻¹ (IR) beobachtet werden.

Abbildung 61 FT-Raman- und FT-IR-Schwingungsspektrum von $[(CH_3)_2SOH^+]_4[Ge_3F_{16}^{4-}]$. Temperatur –120 °C, Ra-Laser = 1064 nm.

		3 4 - 2 -3-1	
[(CH ₃);	₂SOH ⁺]₄	(CH ₃)₂SOH ⁺	Zuordnung
[Ge ₃	F ₁₆ ⁴]		
e	kp.	calc. ^{(a),(b)}	
Ra (Int.)	IR (Int.)	(IR)[Ra)	
	3236 (m)	3580 (93/68)	ν (OH)
		3223 (6.1/64)	v_{as} (CH ₃)
		3222 (8.7/23)	v_{as} (CH ₃)
3038 (74)	3025 (m)	3207 (17/77)	v_{as} (CH ₃)
	2845 (m)	3206 (0.5/28)	v_{as} (CH ₃)
2944 (100)	2633 (s)	3081 (3.7/227)	$v_{s}(CH_{3})$
		3081 (12/2.5)	$v_{s}(CH_{3})$
	1420 (m)	1482 (63/3.8)	δ_{as} (CH ₃)
1445 (9.6)		1473 (32/20)	δ_{as} (CH ₃)
1415 (40)		1467 (18/17)	δ_{as} (CH ₃)
		1457 (7.8/5.2)	δ_{as} (CH ₃)
	1357 (s)	1426 (4.6/0.8)	$\delta_{s}(CH_{3})$
	1332 (m)	1399 (5.9/1.9)	$\delta_{s}(CH_{3})$
	1150 (w)	1218 (31/4.4)	δ (SOH)
		1085 (17/5.3)	ρ (CH ₃)
	1058 (s)	1034 (39/4.1)	ρ (CH ₃)
1000 (4.4)	971 (w)	1009 (3.9/5.1)	ρ (CH ₃)
	937 (w)	980 (2.9/1.3)	ρ (CH ₃)
865 (25)	867(vs)	692 (13/14)	ν (SO)
742 (12)	764 (s)	648 (0.8/9.4)	$v_{as}(CS)$
729 (23)		590 (3.6/28)	$v_{s}(CS)$
		279 (5.6/2.9)	ω (OH)
		252 (81/5.5)	δ (CSO)

Tabelle 31 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $[(CH_3)_2SOH^+]_4[Ge_3F_{16}^{4-}]mit C_1$ -Symmetrie

		229 (127/2.3)	ω (OH)
		175 (0.5/0.3)	τ (CH ₃)
		148 (0.6/0.29	τ (CH ₃)
687 (68)	679 (w)		v (Ge-F) _{nichtverbrückend}
670 (5)			v (Ge-F) _{nichtverbrückend}
636 (2.8)	609 (vs)		ν (GeF ₆)
488 (2.1)	530 (s)		v (Ketten)
382 (6.6)	398 (s)		δ (Ketten)
336 (7.5)	358 (s)		δ (GeF ₄)
310 (7.8)			Gitter

(a) Berechnet auf dem PBE1PBE/6-311G(d,p) Niveau.(b) Berechnete IR- und Raman-Intensitäten sind in runden Klammern ([km/mol], $[Å^4/amu]$) angegeben. Ohne Skalierung. Zuordnung des Anions nach Bartlett et al.^[70]

4.12.3 NMR Spektrum

Die mit einer Mischung aus d₆-Aceton und CFCl₃ referenzierten NMR-Signale von $[(CH_3)_2SOH^+]_4[Ge_3F_{16}^{4-}]$ in SO₂ (siehe Tabelle 32 sind in Übereinstimmung mit früheren Ergebnissen zu $(CH_3)_2SOH^+AsF_6^-$. ^[23] Im ¹H-NMR-Spektrum wird das OH-Proton bei einer Verschiebung von 7.31 ppm als breites Signal beobachtet. Die beiden Methylgruppen zeigen ein Singulett bei einer Verschiebung von 4.31 ppm. Dies entspricht einer Tieffeldverschiebung verglichen mit der Ausgangssubstanz DMSO um 1.9 ppm. Im ¹³C-NMR-Spektrum wird bei 35.8 ppm neben den Signalen der Referenzsubstanzen nur ein Signal beobachtet, welches den Methylgruppen zugeordnet wird. Im ¹⁹F-NMR-Spektrum tritt das Ge₃F₁₆⁴⁻-Anion bei –112 ppm auf.

	(CH ₃) ₂ SO	(CH ₃)₂SOH ⁺ AsF ₆ [−]	[(CH ₃) ₂ SOH ⁺]₄[Ge ₃ F ₁₆ ^{4−}]	Zuordnung
	Verschiebung ^{(a),[81]}	Verschiebung ^{(b),[23]}	Verschiebung ^(b)	
¹ ப	2.62	3.90	4.31	-CH ₃
11		7.45	7.31	-OH
¹³ C	40.8	35.0	35.8	-CH₃
¹⁹ F		-57.0	-112	Anion

Tabelle 32 : Zusammenfassung der NMR-Signale von $(CH_3)_2SO$, $(CH_3)_2SOH^+AsF_6^-$ und $[(CH_3)_2SOH^+]_4Ge_3F_{16}^{4-1}$

(a) von ^[81] in CDCl₃, die Verschiebung ist in ppm relativ zu TMS (¹H, ¹³C) angegeben (b) beobachtete NMR-Signale in SO₂, die Verschiebung ist in ppm relativ zu TMS (¹H, ¹³C) und CFCl₃ (¹⁹F) angegeben.

4.12.4 Einkristallröntgenstrukturanalyse von $[(CH_3)_2SOH^+]_4[Ge_3F_{16}^{4-}]$ Ausgewählte Parameter und Daten zur Messung der Kristallstruktur von $[(CH_3)_2SOH^+]_4[Ge_3F_{16}^{4-}]$

sind in Tabelle 33 zusammengefasst.

	[(CH₃)₂SOH ⁺]₄		[(CH₃)₂SOH ⁺]₄
	[Ge ₃ F ₁₆ ^{4–}]		[Ge ₃ F ₁₆ ⁴⁻]
Formel	$C_8H_{28}F_{16}Ge_3O_8S_6$	μ (Mo K_{α}), cm ⁻¹	3.460
<i>M</i> _r	966.43	<i>F</i> (000), e	952
Krist.größe, mm ³	0.3 x 0.1 x 0.1	Т [<i>K</i>]	123(2)
			$-9 \le h \le +5$
Kristallsystem	P2 ₁ /c	hkl Bereich	$-27 \le k \le +33$
			$-9 \le l \le +9$
Raumgruppe	monoklin	Gem. Reflexe	5956
<i>a</i> , Å	7.9406(11)	Einzelne Refl.	2961
b, Å	27.224(2)	R _{int}	0.0250
<i>c</i> , Å	7.8817(11)	Param.verfeinert	199
α, [°]	90.0	<i>R(F)/wR(F</i> ²) ^a (alle Reflexe)	0.0381/ 0.0654
β, [°]	115.850(17)	Wichtung ^b	0.0343/0.0
γ, [°]	90.0	GoF (<i>F</i> ²) ^c	0.948
V, Å ³	3094	Δρ _{fin} (max/min), e Å ⁻³	1.066/ -0.709
Ζ	2	Gerätetyp	Oxford XCalibur
$D_{\rm ber.}$, g cm ⁻³	2.093	Lösung/ Verfeinerung	SHELXS-97/SHELXL-97 ^[82-83]

Tabelle 33 : Kristallstrukturdaten für $[(CH_3)_2SOH^+]_4[Ge_3F_{16}^{4-}]$

^{a)} $R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|;$ ^{b)} $wR_2 = [\Sigma [w(F_0^2 - F_c^2)^2] / \Sigma [w(F_0)^2]]^{1/2}; w = [\sigma_c^2 (F_0^2) + (xP)^2 + yP]^{-1} and P = (F_0^2 + 2F_c^2)/3$ ^{c)} $GoF = \{\Sigma [w(F_0^2 - F_c^2)^2] / (n-p)\}^{1/2} (n = Anzahl Reflexe; p = Anzahl Parameter)$

 $[(CH_3)_2SOH^+]_4[Ge_3F_{16}^{4-}]$ kristallisiert in der monoklinen Raumgruppe $P2_1/c$ mit zwei Formeleinheiten in der Einheitszelle. Die Röntgenstruktur von $[(CH_3)_2SOH^+]_4[Ge_3F_{16}^{4-}]$ ist in Abbildung 62 wiedergegeben. Tabelle 34 enthält ausgewählte Strukturparameter.

Abbildung 62 Darstellung der Ionenstruktur von $[(CH_3)_2SOH^+]_4[Ge_3F_{16}^{4-}]$ im Kristall mit den Auslenkungsellipsoiden (50 % Wahrscheinlichkeit). Die Methyl-Wasserstoffatome sind zur besseren Übersicht nicht dargestellt. [Symmetrieoperation: i = 2-x, -y, 1-z].

Die S-C-Bindungslängen im Kation $(CH_3)_2SOH^+$ betragen zwischen 175.5(4) pm und 177.0(4) pm. Diese Abstände sind in guter Übereinstimmung mit dem in der Literatur beschriebenen Hemiprotonierten $(Me_2SO)_2H^+$ Kation. ^[79, 84] Die SO-Bindungslängen (159.3(3) pm, 158.7(3) pm) sind wie erwartet gegenüber denen in kristallinem $(CH_3)_2SO$ (151.3 pm) ^[85] deutlich länger. Im Vergleich zu dem hemiprotonierten $(Me_2SO)_2H^+$ -Kation (S-O:

153.1(4) pm and 153.6(4) pm) ^[84] sind die SO-Bindungslängen in $[(CH_3)_2SOH^+]_4Ge_3F_{16}^{4-}$ ebenfalls größer. Im $(CH_3)_2SOH^+$ -Kation hat das S-Atom eine pyramidale Umgebung mit Bindungswinkeln zwischen 98.0(2)° und 102.0(2)°.

Tabelle 34 : Ausgewählte Bindungslängen (pm) und -winkel (°) in der Kristallstruktur von $[(CH_3)_2SOH^+]_4[Ge_3F_{16}^{4-}];$ Symmetrieoperation i = x, 0.5-y, z.

S1-C1	175.8(4)	Ge1-F3	176.2(2)
S1-C2	176.6(4)	Ge1-F4	178.2(2)
S1-O1	159.3(3)	Ge1-F5	176.2(2)
S2-C3	177.0(4)	Ge1-F6	192.1(2)
S2-C4	175.5(4)	Ge2-F6	191.4(2)
S2-O2	158.7(3)	Ge2-F7	174.4(3)
Ge1-F1	176.3(2)	Ge2-F8	174.6(2)
Ge1-F2	178.8(2)		
C1-S1-C2	102.0(2)	O2-S2-C4	101.7(2)
01-S1-C1	98.0(2)	O2-S2-C3	98.3(2)
01-S1-C2	101.6(2)	Ge1-F6-Ge2	144.8(2)
C3-S2-C4	101.2(2)		

Tabelle 35 : Ausgewählte interatomare Abstände (pm) und Winkel (°), in der Kristallstruktur von $[(CH_3)_2SOH^+]_4[Ge_3F_{16}^{4-}]$. (Symmetrieoperation: i = 1+x, y, 1+z; ii = x, y, -1+z).

D-H-A	d(D-H)	d(H…A)	d(D…A)	<(D-H…A)
O1i-H1i…F2	69(3)	189(3)	257.3(3)	172(5)
O2ii-H2ii⋯F4	68(3)	199(4)	262.1(3)	155(4)

Die $(CH_3)_2SOH^+$ -Kationen sind mit dem Anion $Ge_3F_{16}^{4-}$ durch starke Wasserstoffbrückenbindungen verbunden (O1i-H1i…F2: 257.3(3) pm und O2ii-H2ii…F4: 262.1(3) pm). Die Strukturparameter der Wasserstoffbrückenbindungen sind in Tabelle 35 aufgelistet. Ein Anion $Ge_3F_{16}^{4-}$ bildet durch die Fluoratome F2 und F4 vier parallel zur c-Achse liegende H-Brückenbindungen mit Bindungslängen von 189(3) pm bzw. 199(4) pm aus (Abbildung 63).

Abbildung 63 Darstellung der Elementarzelle entlang der a-Achse. Auslenkungsellipsoide 50 % Wahrscheinlichkeit. Die Methyl-Wasserstoffatome sind zur besseren Übersicht nicht dargestellt. [Symmetrieoperation: i = 1+x, y, 1+z; ii = x, y, -1+z].

Das Anion $\text{Ge}_3\text{F}_{16}^{4-}$ weist eine bislang nicht in der Literatur beschriebene Struktur auf. Es bildet eine Kette von drei schwach verzerrten GeF₆-Oktaedern, welche in gestaffelter Konformation durch die Fluorbrücken F(6) und F(6i) verbunden sind (Abbildung 62). Die Bindungswinkel sind zwischen 86.2(1)°-93.7(1)° (F_{ax}-Ge-F_{eq}) und 173.4(1)°-180.0° (F_{ax}-Ge-F_{ax}). Der Ge-F-Ge-Winkel zwischen zwei GeF₆-Oktaedern beträgt 144.8(2)°. Ein vergleichbarer Winkel wurde bereits von *Bartlett et al.* im (GeF₅⁻)_n-Polyanion beobachtet: (XeF₅)GeF₅ (Ge-F-Ge: 140.7(1)°) und (ClO₂)GeF₅ (Ge-F-Ge: 143.2(2)° und 148.1(3)°). ^[70] In den Verbindungen (XeF₅)GeF₅ und (ClO₂)GeF₅ befinden sich ebenfalls Ketten von GeF₆-Oktaedern im Festkörper. Die Ge-F-Bindungslängen (Ge1-F1, F2, F3, F4 und F5) im Anion Ge₃F₁₆⁴⁻ betragen zwischen 174.4(3) pm und 178.8(2) pm. Diese Werte liegen im typischen Bereich von literaturbekannten Beispielen für GeF₆²⁻-Oktaeder. ^[86] Die in H-Brücken involvierten Ge-F-Bindungen (Ge(1)-F(2) und Ge(1)-F(4)) sind etwas länger als Ge(1)-F(1), Ge(1)-F(3) und Ge(1)-F(5). Dieses Verhalten konnte ebenfalls von *Minkwitz et al.* bei SbF₆⁻-Anionen beobachtet werden. ^[87] Die Bindungslängen zwischen dem Ge-Atom und dem verbrückenden Fluoratom F6 sind erwartungsgemäß größer als die nichtverbrückenden Ge-F-Bindungen (Ge(1)-F(6): 192.1(2) pm, Ge(2)-F(6): 191.4(2) pm). Diese Beobachtung wurde von *Bartlett et al.* bei den Verbindungen (XeF₅)GeF₅ und (ClO₂)GeF₅ ebenfalls beobachtet ((XeF₅)GeF₅: 189.0(1) pm und (ClO₂)GeF₅: 188.7(1) pm, 188.8(2) pm)).

4.13 Protonierte Amidoschwefelsäure $NH_3SO_3H^+MF_6^-$ (M = As, Sb)

4.13.1 Bildung und Stabilität

Die stark saure Amidoschwefelsäure (pK_s = 1) wird in der Technik vorwiegend aus Harnstoff und Oleum hergestellt. ^[18] Röntgenkristallographische Untersuchungen haben gezeigt, dass die Amidoschwefelsäure, als Zwitterion vorliegt (⁺H₃NSO₃⁻). ^[88] Das Molekül findet vielfältige Anwendung: Als Wirkstoff in Metallreinigern, Kesselsteinentfernern und Waschmitteln, als Standard in der Acidimetrie und als umweltfreundlicher Katalysator bei vielen organischen Reaktionen. ^[18, 89] Über protonierte Spezies von Amidoschwefelsäure wurde bisher in der Literatur nicht berichtet. Für die Protonierung von Amidoschwefelsäure wurden die Supersäuresysteme HF/AsF₅ und HF/SbF₅ verwendet. Die Synthese verläuft gemäß folgender Reaktionsgleichung:

$$H_3NSO_3 + XF/MF_5 \longrightarrow [H_3NSO_3H]^+MF_6^-$$
(34)
(M = As, Sb)

Hydrogenfluorid wurde in etwa 100fachem Überschuss eingesetzt, da es auch als Lösungsmittel für die Reaktion dient. Das entstandene Sulfoammoniumhexafluoridometallat fällt bei -50 °C als farbloser Feststoff aus. Im dynamischen Vakuum wurde überschüssiges Lösungsmittel innerhalb von 36 h entfernt. Sowohl das Hexafluoridoarsenat als auch das Hexafluoridoantimonat sind hydrolyseempfindlich und bis -10 °C unter Schutzgas unzersetzt haltbar. Zur Darstellung von $[D_3NSO_3D]^+MF_6^-$ wurde aus Amidoschwefelsäure durch mehrmaliges Umkristalisieren aus D_2O das deuterierte Isotopomer D_3NSO_3 isoliert und mit den Supersäuresystemen DF/AsF_5 und DF/SbF_5 protoniert. Die entstandenen Salze wurden IR- und Raman-spektroskopisch untersucht.

4.13.2 Schwingungsspektren

a) Schwingungsspektrum von $NH_3SO_3H^+MF_6^-(M = As, Sb)$

In Abbildung 64 und Abbildung 65 sind die FT-Raman- und FT-IR-Spektren von $NH_3SO_3H^+AsF_6^-$ und $NH_3SO_3H^+SbF_6^-$ wiedergegeben. In Tabelle 36 sind die beobachteten und die für das $NH_3SO_3H^+$ -Kation quantenchemisch berechneten Frequenzen zusammengefasst. Die OH-Streckschwingung wird im IR-Spektrum bei 3324 cm⁻¹ (AsF₆⁻) und bei 3381 cm⁻¹ (SbF₆⁻) beobachtet. Die antisymmetrischen NH_3 -Valenzschwingungen treten bei 3174, 3127 (Ra, AsF₆⁻), 3167, 3147 (IR, AsF₆⁻), 3167, 3111 (Ra, SbF₆⁻), 3237 und 3150 cm⁻¹ (IR, SbF₆⁻) im

charakteristischen Bereich auf. Die entsprechenden symmetrischen Valenzschwingungen werden im Raman-Spektrum bei 3017 cm⁻¹ (AsF₆⁻) bzw. bei 3036 cm⁻¹ (SbF₆⁻) registriert. NH₃-Deformationsschwingungen werden bei 1531, 1256 (Ra, AsF₆⁻), 1545, 1256 (IR, AsF₆⁻), 1532, 1252 (Ra, SbF_6), 1531 und 1313 cm⁻¹ (IR, SbF_6) beobachtet. Im Vergleich zur Amidoschwefelsäure sind die SO₃-Valenzschwingungsfrequenzen im NH₃SO₃H⁺-Kation deutlich verschoben [90]: Die antisymmetrische und symmetrische SO2-Streckschwingung sind um etwa 100 cm^{-1} blauverschoben und werden bei etwa 1440 cm⁻¹ bzw. 1180 cm⁻¹ beobachtet. Die v(S-OH)-Frequenz ist rotverschoben und wird bei 911 cm⁻¹ (Ra) bzw. 847 cm⁻¹ (IR) registriert. Diese Beobachtung ist im Einklang mit der erwarteten Protonierung am O-Atom der SO₃-Gruppe und der dadurch resultierenden S-O-Bindungsverlängerung. Eine SOH-Deformationsschwingung wird im Raman-Spektrum bei 1039 cm⁻¹ (AsF₆⁻), 1043 cm⁻¹ (SbF₆⁻) und im IR-Spektrum bei 1034 cm⁻¹ (AsF₆⁻) und 1041 cm⁻¹ (SbF₆⁻) in guter Übereinstimmung mit der quantenchemisch berechneten Frequenz (1078 cm⁻¹) beobachtet. Im Vergleich zur S-N-Valenzschwingung der Amidoschwefelsäure (362 cm⁻¹) ist diese im NH₃SO₃H⁺-Kation um etwa 120 cm⁻¹ zu höheren Wellenzahlen verschoben (477 cm⁻¹). Die für die Anionen AsF_6^- und SbF_6^- beobachteten Schwingungsfrequenzen deuten auf eine verzerrt-oktaedrische Geometrie hin.

Abbildung 64 FT-Raman- und FT-IR-Schwingungsspektrum von $NH_3SO_3H^+AsF_6^-$. Temperatur -120 °C, Ra-Laser = 1064 nm.

Abbildung 65 FT-Raman- und FT-IR-Schwingungsspektrum von $NH_3SO_3H^+SbF_6^-$. Temperatur -120 °C, Ra-Laser = 1064 nm.

NH ₃ S	SO_3H^+	NH₃S	6O₃H ⁺	NH₃SO₃H⁺	
AsF ₆ ⁻		Sb	F ₆ ⁻		Zuordnung
e	xp.	exp.		calc. ^{(a),(b)}	
Ra (Int.)	IR (Int.)	Ra (Int.)	IR (Int.)	(IR/Ra)	
	3324 (vw)			3573 (284/54)	v (OH)
3174 (2.5)	3167 (m)	3167 (1.2)	3237 (m)	3377 (137/25)	v_{as} (NH ₃)
3127 (53)	3147 (m)	3111 (19)	3150 (m)	3362 (147/24)	v_{as} (NH ₃)
3017 (4.9)		3036 (0.2)		3266 (117/81)	v_{s} (NH ₃)
			2467 (vw)		
				1556 (25/3.0)	δ (NH ₃)
1531 (26)	1545 (m)	1532 (7.3)	1531 (m)	1549 (42/2.9)	δ (NH ₃)
1450 (26)	1441 (s)	1436 (9.8)	1444 (s)	1513 (214/3.1)	v_{as} (SO ₂)
1256 (49)	1256 (s)	1252 (24)	1313 (m)	1361 (167/0.5)	$\delta_{s}(NH_{3})$
1166 (18)	1175 (s)	1199 (4.7)	1250 (s)	1246 (129/12)	ν _s (SO ₂)
			1069 (w)		
1039 (20)	1034 (s)	1043 (9.8)	1041 (m)	1078 (78/3.7)	δ (SOH)
961 (12)	1013 (m)	963 (7.9)	1013 (m)	939 (144/6.6)	ρ (NH ₃)
946 (21)	945 (m)	941 (9.9)	940 (s)	900 (15/1.7)	ρ (NH ₃)
		911 (3.8)	847 (m)	858 (42/6.1)	ν (S-OH)
560 (8.7)	571 (m)	561 (18)		590 (172/5.3)	δ (SO ₃)
519 (57)	520 (s)	517 (30)	518 (m)	484 (26/2.0)	δ (SO ₂)
479 (13)	475 (m)	479 (4.3)	475 (w)	462 (6.8/8.3)	v (SN)
348 (33)		359 (22)		439 (24/3.0)	τ (SOH)
331 (2.1)		301 (41)		386 (79/1.2)	ω (SOH)
		230 (8.3)		298 (6.9/1.5)	ω (NH ₃)
		140 (0.6)		259 (15/1.0)	ω (NH ₃)
94 (25)		125 (2.2)		143 (0.3/0.0)	τ (NH ₃)

Tabelle 36 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $NH_3SO_3H^+$ mit C_1 -Symmetrie

Diskussion der Ergebnisse

707 (100)	708 (vs)		٦	
674 (23)				AsF_6^-
572 (44)				}
374 (51)				
		705 (4.1))
		673 (100)	698 (vs)	
		648 (14.8)		SbF ₆
		572 (2.5)		
		280 (6.4)	,)

(a) Berechnet auf dem RPBE1PBE/6-311G (3df,3pd)–Niveau (b) Berechnete IR- und Raman-Intensitäten sind in runden Klammern ([km/mol],[Å⁴/amu]) angegeben. s = strong (stark), m = medium (mittel), w = weak (schwach). Skalierungsfaktor 0.960.

b) Schwingungsspektrum von $ND_3SO_3D^+MF_6^-(M = As, Sb)$

In Abbildung 66 und Abbildung 67 sind die FT-Raman- und FT-IR-Spektren von ND₃SO₃D⁺AsF₆⁻ und ND₃SO₃D⁺SbF₆⁻ wiedergegeben. In Tabelle 37 sind die beobachteten und die für das ND₃SO₃D⁺-Kation quantenchemisch berechneten Frequenzen zusammengefasst. Gerüstschwingungen ohne Beteiligung des Deuteriumatoms sind vergleichbar mit denen in NH₃SO₃H⁺AsF₆⁻ und NH₃SO₃H⁺SbF₆⁻. Signifikante Rotverschiebungen werden wie erwartet für die ND₃-Valenzschwingungen beobachtet. Im Vergleich zum H-Isotopomer sind diese vom Bereich um 3100 cm⁻¹ nach etwa 2400 cm⁻¹ verschoben. Die OD-Valenzschwingungen nicht zugeordnet. Die S-OD-Valenzschwingung wird bei 896 (Ra, AsF₆⁻), 852 (IR, AsF₆⁻), 915 (Ra, SbF₆⁻) und 913 cm⁻¹ (IR, SbF₆⁻) registriert. Verglichen mit NH₃SO₃H⁺, tritt die SOD-Deformationsschwingung bei etwa 790 cm⁻¹ ebenfalls rotverschoben auf. Die v(S-N) wird im Raman-Spektrum bei 409 cm⁻¹(AsF₆⁻) und 432 cm⁻¹ (SbF₆⁻) beobachtet. Bei 704, 684, 573 und 374 cm⁻¹ (Ra) bzw. 696 und 542 cm⁻¹ (IR) treten die für ein verzerrtes AsF₆⁻-Oktaeder treten bei 672, 646, 573 und 280 (Ra) bzw. 668 und 560 cm⁻¹ auf (IR).

Abbildung 66 FT-Raman- und FT-IR-Schwingungsspektrum von $ND_3SO_3D^+AsF_6^-$. Temperatur -120 °C, Ra-Laser = 1064 nm.

Abbildung 67 FT-Raman- und FT-IR-Schwingungsspektrum von $ND_3SO_3D^+SbF_6^-$. Temperatur -120 °C, Ra-Laser = 1064 nm.

		•			
ND ₃ 9 As	SO₃D⁺ §F ₆ ⁻	ND₃S Sb	SO₃D ⁺ F ₆ ⁻	$ND_3SO_3D^+$	Zuordnung
e	xp.	ex	(p.	calc. ^{(a),(b)}	_
Ra (Int.)	IR (Int.)	Ra (Int.)	IR (Int.)	(IR/Ra)	
				2439 (160/26)	ν (OD)
2384 (33)	2430 (vw)	2378 (11)	2347 (vs)	2336 (74/12)	v_{as} (ND ₃)
2285 (84)	2359 (vw)	2274 (43)		2325 (79/12)	v_{as} (ND ₃)
2173 (8.5)	2327 (vw)	2173 (5.2)	2170 (m)	2187 (70/38)	v_{s} (ND ₃)
1442 (17)	1443 (m)	1441 (5.8)	1440 (s)	1414 (184/3.3)	v_{as} (SO ₂)
1238 (72)	1254 (s)	1235 (26)	1236 (s)	1168 (140/13)	v _s (SO ₂)
	1066 (m)		1101 (s)	1053 (19/1.2)	δ (ND ₃)
990 (54)	1008 (w)	988 (18)	987 (m)	1049 (18/1.2)	δ (ND ₃)
971 (8.9)		964 (7.4)		974 (108/0.7)	δ_{s} (ND ₃)
896 (7.4)	852 (s)	915 (5.7)	913 (m)	846 (123/12)	v (S-OD)
791 (23)		797 (10)	791 (m)	774 (58/1.4)	δ (SOD)
				658 (8.9/1.7)	ρ (ND ₃)
				657 (1.6/1.8)	ρ (ND ₃)
560 (11)				546 (159/4.0)	δ (SO ₃)
501 (88)		496 (33)	500 (s)	440 (22/1.9)	δ (SO ₂)
409 (5.2)		432 (3.6)		398 (0.4/9.0)	v (SN)
323 (44)		330 (11)		377 (19/1.5)	ω (OSN)
309 (2.1)		301 (31)		275 (38/0.5)	ω (ND ₃)
				255 (8.5/1.3)	ω (SOD)
		230 (4.4)		224 (14/0.7)	ω (ND ₃)
94 (88)		91 (0.3)		96 (0.3/0)	τ (ND ₃)

Tabelle 37 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für ND₃SO₃D⁺mit C₁ - Symmetrie

704 (100)	696 (vs)		N	
684 (36)				AsF ₆
573 (59)	542 (s)			}
374 (58)				
		672 (100)	668 (vs)	١
		646 (15)		
		573 (18)	560 (w)	SbF_6
		280 (7.0)		
				J

(a) Berechnet auf dem RPBE1PBE/6-311G (3df,3pd)–Niveau (b) Berechnete IR- und Raman-Intensitäten sind in runden Klammern ([km/mol],[$Å^4$ /amu]) angegeben. s = strong (stark), m = medium (mittel), w = weak (schwach). Skalierungsfaktor 0.900.

4.13.3 Theoretische Berechnungen des $NH_3SO_3H^+$ -Kations

Strukturoptimierungen des NH₃SO₃H⁺-Kations wurden unter Verwendung der Methode ^[44-45] Danach wurden die RPBE1PBE mit dem Basissatz 6-311G(3df,pd) durchgeführt. Schwingungsfrequenzen in harmonischer Näherung und die IR- und Raman-Intensitäten berechnet. Die berechneten Gerüstschwingungen sind in guter Übereinstimmung mit den experimentell beobachteten. Diskrepanzen werden vor allem für die OH- und NH-Valenzschwingungen beobachtet, welche um bis zu 200 cm⁻¹ überschätzt werden. Es ist anzunehmen, dass diese Abweichungen aus starken Wasserstoffbrückenbindungen im Festkörper resultieren, da deren Bildung gewöhnlich zu einer Rotverschiebung der entsprechenden OH-Streckschwingungen führt. Die berechnete Struktur ist in Abbildung 68 gezeigt. Die Bindungslängen der S=O-Bindungen liegen im erwarteten Bereich um 140 pm. Durch die Protonierung an einem O-Atom ist die S-O-154.2 pm. Bindung verlängert und beträgt Die S=O-Bindungslängen der freien Amidoschwefelsäure wurden mit 142.5 pm berechnet und durch Röntgenstrukturanalyse mit 143.5 – 143.8 pm bestimmt.^[91] Die Länge der S-N-Bindung beträgt in der berechneten protonierten Form 184.3 pm und ist damit im Vergleich zur berechneten freien Amidoschwefelsäure (197.7 pm) um 13.4 pm kleiner. Die beobachtete Bindungslänge in Amidoschwefelsäure beträgt 177.2 pm.^[91]

Abbildung 68 Gasphasenstrukturoptimierung von $NH_3SO_3H^+$ auf dem RPBE1PBE/6-311G (3df,pd)-Niveau

4.14 Protonierte Aminomethansulfonsäure NH₃CH₂SO₃H⁺MF₆⁻

4.14.1 Bildung und Stabilität

Aminomethansulfonsäure ist aufgrund ihrer strukturellen Verwandtschaft zu Aminosäuren, insbesondere zu Glycin, eine interessante Verbindung. ^[92] So wurde von *Ishizaki-Koizumi et al.* gezeigt, dass Aminomethansulfonsäure als Glycin-Analogon ein Molekül mit signifikanter Bioaktivität ist. ^[93] Aminomethansulfonsäure liegt in fester und gelöster Form als Zwitterion, ⁺H₃NCH₂SO⁻, vor. ^[94] Über protonierte Spezies von Aminomethansulfonsäure wurde bisher in der Literatur nicht berichtet. Für die Protonierung von Aminomethansulfonsäure wurden die Supersäuresysteme HF/AsF₅ und HF/SbF₅ verwendet. Die Synthese verläuft gemäß folgender Reaktionsgleichung:

$$H_{3}NCH_{2}SO_{3} + HF/MF_{5} \longrightarrow [H_{3}NCH_{2}SO_{3}H]^{+}MF_{6}^{-}$$

$$(M = As, Sb)$$
(35)

Hydrogenfluorid wurde im etwa 100fachen Überschuss eingesetzt, da es auch als Lösungsmittel für die Reaktion dient. Das entstandene Sulfomethylammoniumhexafluoridometallat fiel bei -50 °C als farbloser Feststoff aus. Im dynamischen Vakuum wurde überschüssiges Lösungsmittel innerhalb von 36 h entfernt. Sowohl das Hexafluoridoarsenat als auch das Hexafluoridoantimonat sind hydrolyseempfindlich und bei Raumtemperatur unter Schutzgas unzersetzt haltbar. Zur Darstellung von [D₃NCH₂SO₃D]⁺MF₆⁻ wurde aus Aminomethansulfonsäure durch mehrmaliges Umkristalisieren aus D₂O das deuterierte Isotopomer D₃NCH₂SO₃ isoliert und mit den Supersäuresystemen DF/AsF₅ und DF/SbF₅ protoniert. Die entstandenen Salze wurden IR- und Raman-spektroskopisch untersucht.

4.14.2 Schwingungsspektren

a) Schwingungsspektrum von $NH_3CH_2SO_3H^+MF_6^-(M = As, Sb)$

In Abbildung 69 und Abbildung 70 sind die FT-Raman- und FT-IR-Spektren von $NH_3CH_2SO_3H^+AsF_6^-$ und $NH_3CH_2SO_3H^+SbF_6^-$ wiedergegeben. In Tabelle 38 sind die beobachteten und die für das $NH_3CH_2SO_3H^+$ -Kation quantenchemisch berechneten Frequenzen zusammengefasst. Die OH-Streckschwingung wird im IR-Spektrum bei 3512 cm⁻¹ beobachtet. NH_3 -Valenzschwingungen treten im Bereich von 3226 cm⁻¹ bis 3125 cm⁻¹ auf und die CH-

 3000 cm^{-1} registriert. werden bei Valenzschwingungen um Im Vergleich zu Aminomethansulfonsäure sind die CH-Valenzschwingungen durch die Protonierung um etwa 50 cm⁻¹ blauverschoben. Die symmetrische SO-Valenzschwingung wird bei etwa 1200 cm⁻¹ registriert. Diese ist durch die Protonierung um 150 cm⁻¹ signifikant rotverschoben. Die SOH-Deformationsschwingung tritt bei etwa 1085 cm⁻¹ auf und die CN-Streckschwingung bei etwa 940 cm⁻¹. Die CN-Streckschwingung liegt im Vergleich zu Aminomethansulfonsäure um 65 cm⁻¹ rotverschoben vor. An dieser Stelle führt die Protonierung somit zu einer Bindungsschwächung. Um 850 cm⁻¹ wird die S-OH-Valenzschwingung beobachtet und die CS-Streckschwingung tritt im Bereich von 743 – 755 cm⁻¹ auf. Letztere ist im Vergleich zur freien Aminomethansulfonsäure nicht verschoben. Bei 718, 708, 692, 584 und 377 cm⁻¹ (Ra) bzw. 723 und 572 cm⁻¹ (IR) treten die für ein verzerrtes AsF₆-Oktaeder typischen Linien auf und die für ein verzerrtes SbF₆-Oktaeder erwarteten Linien werden bei 661, 645, 578 und 285 cm⁻¹ (Ra) bzw. bei 679 cm⁻¹ (IR) beobachtet.

Abbildung 69 FT-Raman- und FT-IR-Schwingungsspektrum von $NH_3CH_2SO_3H^+AsF_6^-$. Temperatur -120 °C, Ra-Laser = 1064 nm.

Abbildung 70 FT-Raman- und FT-IR-Schwingungsspektrum von $NH_3CH_2SO_3H^+SbF_6^-$. Temperatur -120 °C, Ra- Laser = 1064 nm.

نو 🍨	
•	

$Tabelle 38$: Experimentelle und berechnete Schwingungsfrequenzen [cm $^{-1}$] und Intensitäten für NH $_3$ CH $_2$ SO $_3$ H $^+$	
<i>mit</i> C ₁ -Symmetrie	

NH₃CH₂SO₃H ⁺ AsF ₆ [−]		NH₃CH₂SO₃H⁺ SbF ₆ ⁻		$\rm NH_3CH_2SO_3H^+$	Zuordnung
e	xp.	exp.		calc. ^{(a),(b)}	
Ra (Int.)	IR (Int.)	Ra (Int.)	IR (Int.)	(IR/Ra)	
			3512 (vw)	3573 (266/64)	v (OH)
3216 (3.0)	3217 (w)	3226 (11)	3214 (m)	3332 (134/42)	v_{as} (NH ₃)
3148 (23)	3153 (s)	3169 (5.0)	3163 (m)	3284 (129/49)	v_{as} (NH ₃)
			3125 (m)	3168 (84/49)	v_{as} (NH ₃)
3052 (8.9)	3052 (w)	3046 (14)	3044 (m)	3046 (8.2/36)	v_{as} (CH ₂)
2995 (31)	2993 (w)	2989 (36)	2987 (m)	2969 (5.7/83)	v _s (CH ₂)
1607 (3.6)	1607 (m)	1601 (1.6)	1601 (m)	1581 (43/2.7)	δ_{as} (NH ₃)
1575 (14)	1564 (m)	1581 (14)	1571 (m)	1555 (29/4.3)	δ_{as} (NH ₃)
1423 (13)	1425 (w)	1426 (8.4)	1505 (s)	1439 (108/1.8)	δ_{s} (NH ₃)
1369 (1.5)	1373 (s)	1373 (15)	1375 (s)	1398 (130/2.7)	δ_{s} (CH ₂)
1350 (35)	1347 (s)	1351 (4.2)		1394 (167/4.1)	δ_s (CH ₂)
1298 (8.8)	1300 (w)	1299 (11)	1297 (m)	1283 (1.4/0.4)	ω (CH ₂ + NH ₂)
				1250 (3.2/1.3)	τ (CH ₂)
1204 (21)	1174 (s)	1178 (70)	1187 (s)	1185 (146/ 2)	v _s (SO ₂)
1091 (10)	1078 (m)	1080 (12)	1084 (m)	1067 (64/ 3.4)	δ (SOH)
1024 (13)	1030 (vw)	1023 (21)	1021 (w)	1025 (36/2.2)	ω (NH ₃)
993 (9.1)	994 (w)			1000 (7.7/2.1)	τ (CH ₂)
964 (16)	940 (s)	924 (20)	937 (s)	945 (1.8/4.2)	ν (CN)
865 (1.1)	859 (s)	850 (4.5)	849 (m)	878 (207/7.5)	ν (S-OH)
				810 (8.8/0.4)	ρ (CH ₂)
752 (31)	755 (m)	743 (52)	743 (s)	694 (71/11)	v (C-S)
519 (19)	510 (m)	507 (17)	551 (m)	544 (21/2.8)	δ (SCN)
474 (20)	464 (m)	480 (23)	476 (s)	479 (27/3.4)	δ (SO ₂)

409 (2.0	0)				434 (6.2/2.3)	ω (SOH)
			393 (24)		360 (43/2.2)	ω (SOH)
			334 (5.5)		324 (23/1.1)	ρ (CH ₂)
					270 (100/0.8)	ω (SOH)
269 (5.2	2)		244 (9.9)		215 (8.8/0.2)	τ (NH ₃)
230 (3.	5)				201 (3.9/0.3)	τ (NH ₂ CH ₂ -SO ₃ H)
97 (58	8)		96 (47)		55 (9.3/0.2)	τ (NH ₂ CH ₂ -SO ₃ H)
718 (13	3)	723 (vs))
708 (2.0	6)					
692 (10	00)					\rightarrow AsF ₆ ⁻
584 (25	5)	572 (w)				
377 (78	3)					J
			661 (100)	679 (vs)		J
			645 (13)			
			578 (28)			
			285 (45)			J

(a) Berechnet auf dem RPBE1PBE/6-311G (3df,3pd)–Niveau (b) Berechnete IR- und Raman-Intensitäten sind in runden Klammern ([km/mol],[Å⁴/amu]) angegeben. vs = very strong (sehr stark), s = strong (stark), m = medium (mittel), w = weak (schwach). Skalierungsfaktor 0.950.

b) Schwingungsspektrum von $ND_3CH_2SO_3D^+MF_6^-(M = As, Sb)$

In Abbildung 71 und Abbildung 72 sind die FT-Raman- und FT-IR-Spektren von ND₃CH₂SO3D⁺AsF₆⁻ und ND₃CH₂SO₃D⁺SbF₆⁻ wiedergegeben. In Tabelle 39 sind die beobachteten Schwingungsfrequenzen und die für das ND₃CH₂SO₃D⁺-Kation quantenchemisch berechneten Frequenzen zusammengefasst. Gerüstschwingungen ohne Beteiligung des Deuteriumatoms sind vergleichbar mit denen in NH₃CH₂SO₃H⁺AsF₆⁻ und NH₃CH₂SO₃H⁺SbF₆⁻. Signifikante Rotverschiebungen werden wie erwartet für die ND₃-Valenzschwingungen beobachtet. Im Vergleich zum H-Isotopomer sind diese vom Bereich um 3200 cm⁻¹ nach etwa 2400 cm⁻¹ verschoben. Die OD-Valenzschwingung wird bei 2415 und 2484 cm⁻¹ (Ra und IR, AsF₆⁻) bzw. bei 2590 und 2596 cm⁻¹ (Ra und IR, SbF₆⁻) beobachtet. Verglichen mit NH₃CH₂SO₃H⁺, tritt die SOD-Deformationsschwingung bei 790 cm⁻¹ bzw. 826 cm⁻¹ (Ra und IR,

 AsF_6^{-}) signifikant rotverschoben auf. Die C-N-Streckschwingung wird bei 970 cm⁻¹ beobachtet. Die entsprechende Schwingung wird bei Deutero-Aminomethansulfonsäure bei 901 cm⁻¹ registriert. Die Protonierung führt hier zu einer Bindungsstärkung. Bei 710 cm⁻¹ tritt die v(CS) auf und ist damit verglichen mit d₃-⁺NH₃CH₂SO₃⁻ nur minimal blauverschoben.

Abbildung 71 FT-Raman- und FT-IR-Schwingungsspektrum von $ND_3CH_2SO_3D^+AsF_6^-$. Temperatur -120 °C, *Ra-Laser* = 1064 nm.

Abbildung 72 *FT-Raman- und FT-IR-Schwingungsspektrum von* $ND_3CH_2SO_3D^+SbF_6^-$. *Temperatur* -120 °C, *Ra- Laser* = 1064 nm.

	3
•	63

Tabelle 39 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für ND ₃ CH ₂ SO ₃ L	⁺ mit
C ₁ -Symmetrie	

ND₃CH₂SO₃D ⁺ AsF ₆ ⁻		$ND_{3}CH_{2}SO_{3}D^{+}$ SbF_{6}^{-}		$ND_3CH_2SO_3D^+$	Zuordnung
exp.		exp.		calc. ^{(a),(b)}	
Ra (Int.)	IR (Int.)	Ra (Int.)	IR (Int.)	(IR/Ra)	
3052 (18)	3050 (w)	3046 (16)	3043 (w)	3030 (11/35)	v_{as} (CH ₂)
2995 (46)	2993 (w)	2990 (37)	2988 (w)	2953 (7.2/81)	v_s (CH ₂)
2415 (1.2)	2484 (m)	2590 (9.2)	2596 (w)	2587 (153/31)	v (OD)
2386 (8.1)	2381 (vs)	2412 (19)	2393 (vs)	2445 (68/19)	v_{as} (ND ₃)
2355 (100)	2356 (vs)	2358 (87)	2350 (vs)	2394 (83/15)	v_{as} (ND ₃)
2273 (29)		2260 (10)		2272 (32/37)	v_{s} (ND ₃)
1424 (12)	1423 (w)	1422 (10)	1431 (s)	1393 (179/2.6)	v_{as} (SO ₂)
1356 (10)	1369 (m)	1374 (8.9)	1380 (s)	1387 (29/4.7)	δ_{s} (CH ₂)
1257 (8.1)	1257 (vw)	1260 (14)	1257 (w)	1259 (8.2/0.4)	ω (CH ₂)
				1198 (15/2.5)	τ (CH ₂)
1207 (36)	1196 (m)	1184 (48)	1192 (s)	1180 (111/12)	v _s (SO ₂)
1168 (6.8)	1162 (m)	1170 (3.4)	1170 (w)	1131 (18/1.1)	δ_{as} (ND ₃)
1132 (6.9)	1131 (w)			1125 (39/0.7)	δ_{as} (ND ₃)
1052 (8.2)	1058 (w)	1153 (5.4)	1153 (m)	1086 (75/2.4)	δ_{as} (ND ₃)
1000 (7.3)	1000 (vw)	1003 (6.4)	1010 (w)	931 (2.1/1.9)	ρ (CH ₂)
971 (22)	971 (m)	982 (13)	976 (w)	904 (32/ 5.6)	ν (CN)
960 (7.6)	943 (m)	948 (1.6)	929 (m)	874 (124/6.6)	v (S-OD)
905 (18)	879 (m)	882 (22)	877 (s)	840 (0.2/4.0)	ρ (ND ₃)
790 (5.7)	826 (vw)			805 (70/0.9)	δ (SOD)
748 (2.1)			740 (m)	688 (7.7/0.4)	ρ (ND ₃)
710 (16.1)		711 (26)	710 (m)	652 (71/8.0)	v (C-S)
554 (7.3)	542 (w)	557 (5.3)	545 (m)	518 (21/2.9)	δ (SCN)
514 (23)	506 (m)	503 (16)	509 (w)	473 (22/3.6)	δ (SO ₂)
478 (7.5)	487 (m)	484 (3.3)	492 (s)	401 (3.8/1.6)	δ (SO ₂)

(a) Berechnet auf dem RPBE1PBE/6-311G (3df,3pd)–Niveau (b) Berechnete IR- und Raman-Intensitäten sind in runden Klammern ([km/mol],[Å⁴/amu]) angegeben. vs = very strong (sehr stark), s = strong (stark), m = medium (mittel), w = weak (schwach). Skalierungsfaktor 0.945.

4.14.3 Theoretische Berechnungen des $NH_3CH_2SO_3H^+$ -Kations

Strukturoptimierungen des NH₃CH₂SO₃H⁺-Kations wurden unter Verwendung der Methode RPBE1PBE mit dem Basissatz 6-311G(3df,pd) durchgeführt. ^[44-45] Danach wurden die Schwingungsfrequenzen in harmonischer Näherung und die IR- und Raman-Intensitäten berechnet. Die berechneten Gerüstschwingungen sind in guter Übereinstimmung mit den experimentell beobachteten. Diskrepanzen werden vor allem für die OH- und NH-Valenzschwingungen beobachtet, welche um bis zu 200 cm⁻¹ überschätzt werden. Es ist anzunehmen, dass diese Abweichungen aus starken Wasserstoffbrückenbindungen im Festkörper resultieren, da deren Bildung gewöhnlich zu einer Rotverschiebung der entsprechenden OH-Streckschwingungen führt.

Die berechnete Struktur ist in Abbildung 73 gezeigt. Die S=O-Bindungen sind mit 141.7 pm und 142.3 pm im Vergleich zur protonierten Amidoschwefelsäure (4.13.3 etwas länger, aber im für diesen Bindungstyp erwarteten Bereich. Diese Bindungen sind in freier Aminomethansulfonsäure im Durchschnitt 145.3 pm. Durch die Protonierung an einem O-Atom ist die S-O-Bindung verlängert und beträgt 155.6 pm. Die Länge der C-S-Bindung beträgt in der berechneten protonierten Form 180.7 pm und ist damit im Vergleich zur berechneten freien Amnomethansulfonsäure (183.7 pm) nur marginal kleiner. Mit 149.0 pm ist die C-N-Bindung im NH₃CH₂SO₃H⁺-Kation mit der in freier Aminomethansulfonsäure vergleichbar. Die Protonierung hat somit laut den Berechnungen die größten Auswirkungen auf die Geometrie an der SO₃-Einheit.

Abbildung 73 *Gasphasenstrukturoptimierung von* $NH_3CH_2SO_3H^+$ *auf dem RPBE1PBE/6-311G (3df,pd)-Niveau*

4 .15 Protonierte Aminoethansulfonsäure NH₃C₂H₄SO₃H⁺MF₆⁻ und NH₃C₂H₄SO₃H⁺GeF₅⁻ (M = As, Sb)

4.15.1 Bildung und Stabilität

Aminoethansulfonsäure (Taurin) wurde erstmals 1827 von den Chemikern *Tiedemann* und *Gmelin* aus einer Ochsengalle isoliert. ^[95] Die Kristallstruktur von Taurin, vorerst mit einer fehlerhaften Verfeinerung der H-Atome, wurde 1963 von *Sutherland* und *Young* beschrieben. ^[96] Drei Jahre später zeigte *Okaya* dass Taurin als Zwitterion vorliegt. ^[97] Taurin spielt eine wichtige Rolle im menschlichen Metabolismus ^[98], aber bisher ist protoniertes Taurin noch nicht in kondensierter Phase beobachtet worden.

Zur Protonierung von Taurin wurden die Supersäuresysteme HF/AsF₅, HF/SbF₅ und HF/GeF₄ verwendet. Die Synthese verläuft nach folgenden Reaktionsgleichungen:

$$H_{3}NC_{2}H_{4}SO_{3} + XF/MF_{5} \longrightarrow [H_{3}NC_{2}H_{4}SO_{3}H]^{+}MF_{6}^{-}$$
(36)

$$n H_3NC_2H_4SO_3 + n XF/GeF_4 \longrightarrow [H_3NC_2H_4SO_3H^+]_n[GeF_5]_n$$

$$(X = H, D; M = As, Sb)$$
(37)

Hydrogenfluorid wurde im großen Überschuss eingesetzt, da es auch als Lösungsmittel für die Reaktion dient. Das entstandene 2-Sulfoethyl-ammoniumhexafluoridometallat fällt bei -50 °C als farbloser Feststoff aus. Im dynamischen Vakuum wurde überschüssiges Lösungsmittel innerhalb von 36 h entfernt. Sowohl das Hexafluoridoarsenat als auch das Hexafluoridoantimonatsalz sind hydrolyseempfindlich und bis -15 °C unter Schutzgas unzersetzt haltbar.

Beide Salze wurden IR- und Raman-spektroskopisch untersucht und das Hexafluoridoarsenat wurde NMR-spektroskopisch charakterisiert. Zusätzlich wurde das Hexafluoridoantimonat aus SO₂ kristallisiert und röntgenographisch untersucht.
4.15.2 Schwingungsspektren

a) Schwingungsspektrum von [H₃NC₂H₄SO₃H]⁺MF₆⁻

In Abbildung 74 und Abbildung 75 sind die FT-Raman- und FT-IR-Spektren von NH₃C₂H₄SO₃H⁺AsF₆⁻ und NH₃C₂H₄SO₃H⁺SbF₆⁻ wiedergegeben. In Tabelle 40 sind die beobachteten und berechneten Frequenzen zusammengefasst. Bei 3288 cm⁻¹ und 3232 cm⁻¹ (Ra) werden die NH₃-Valenzschwingungen beobachtet. Im Vergleich sind die entsprechenden Frequenzen der Aminoethansulfonsäure schwach blauverschoben. Im IR-Spektrum überlagern sich die OH-, NH- und teilweise CH-Valenzschwingungen im Bereich von 3300 cm⁻¹ bis 2950 cm⁻¹. Die CH₂-Valenzschwingungen treten im Bereich um 3000 cm⁻¹ auf. Diese sind im Vergleich zu Aminoethansulfonsäure mit 60 cm⁻¹ ebenfalls blauverschoben. Von 1595 cm⁻¹ bis 1463 cm⁻¹ treten die im Vergleich zu Aminoethansulfonsäure schwach rotverschoben NH₃-Deformationsschwingungen auf. Die antisymmetrische SO₂-Valenzschwingung wird bei 1395 cm⁻¹ registriert. Durch die Protonierung an der Sulfonat-Einheit liegt sie im H₃NC₂H₄SO₃H⁺-Kation um 200 cm⁻¹ blauverschoben vor. Diese Beobachtung kann damit erklärt werden, dass die Schwächung der S-OH-Bindung mit einer Stärkung der S=O-Bindung einhergeht. So wird die in Aminoethansulfonsäure charakteristisch und intensiv bei 1032 cm⁻¹ auftretende symmetrische SO₃-Valenzschwingung im 2-Sulfoethanaminiumkation nicht mehr beobachtet. Stattdessen wird zu erwähnter S=O-Valenzschwingung die S-OH-Valenzschwingung bei 836 cm⁻¹ registriert. Bei 682, 572 und 374 cm⁻¹ (Ra) bzw. 698, 568 und 379 cm⁻¹ (IR) treten die für das AsF6-Oktaeder charakteristischen Linien auf und die typischen Frequenzen für das SbF_6 -Oktaeder werden bei 651, 568 und 283 (Ra) bzw. 655 und 567 cm⁻¹ registriert.

Abbildung 74 FT-IR- und FT-Raman-Spektrum von $H_3NC_2H_4SO_3H^+AsF_6^-$, Temperatur = -120 °C, Laser $\lambda = 1064$ nm.

Abbildung 75 FT-IR- und FT-Raman-Spektrum von $H_3NC_2H_4SO_3H^+SbF_6^-$, Temperatur = -120 °C, Laser $\lambda = 1064$ nm.

Tabelle 40 : Experimentelle und berechnete Schwingungsfrequenzen	$[cm^{-1}]$ und Intensitäten für $H_3NC_2H_4SO_3H^+$ mit
C ₁ -Symmetrie	

$H_3NC_2H_4S$	6O₃H⁺ AsF ₆ ⁻	$H_3NC_2H_4SC_2$	O₃H⁺ SbF ₆ ¯	$H_3NC_2H_4SO_3H^+$	
					Zuordnung
e	xp.	ex	р.	calc. ^{(a),(b)}	
Ra (Int.)	IR (Int.)	Ra (Int.)	IR (Int.)	(IR/Ra)	
				3790 (215/68)	v (OH)
				3511 (102/32)	v_{as} (NH ₃)
3288 (5.6)		3263 (1.2)		3509 (104/38)	v_{as} (NH ₃)
3232 (16)	3229 (vs)	3230 (8.0)	3225 (vs)	3427 (60/110)	ν _s (NH ₃)
3048 (6.3)		3054 (4.5)		3176 (2.7/11)	v_{as} (CH ₂)
3013 (11)		3009 (15)		3143 (0.3/55)	v_{as} (CH ₂)
2996 (7.5)				3111 (3.4/52)	ν _s (CH ₂)
2953 (28)	2953 (m)	2961 (25)		3076 (0.7/106)	ν _s (CH ₂)
1595 (28)	1594 (m)	1606 (19)	1600 (m)	1662 (35/4.3)	δ_{as} (NH ₃)
1494 (11)	1498 (s)	1493 (1.1)	1505 (s)	1661 (49/3.8)	δ_{as} (NH ₃)
1464 (22)	1463 (m)	1474 (11)		1516 (133/1.4)	δ _s (NH ₃)
1414 (17)		1426 (3.8)		1503 (14/2.6)	δ (CH ₂)
1395 (2.0)		1406 (10)		1492 (214/3.4)	v_{as} (SO ₃)
1354 (11)	1358 (s)	1340 (9.4)	1335 (m)	1460 (2.5/4.0)	δ (CH ₂)
1330 (4.5)		1302 (1.6)		1411 (12/3.3)	ω (CH ₂)
1298 (4.7)		1276 (2.6)		1355 (12/2.9)	τ (CH ₂)
1237 (15)	1233 (w)	1241 (20)	1230 (s)	1303 (57/2.3)	ω (CH ₂)
1170 (100)	1173 (s)	1166 (19)	1165 (s)	1274 (1.1/1.8)	τ (CH ₂)
1107 (12)		1118 (2.2)		1236 (112/15)	ω (CH ₂)
1089 (3.0)		1079 (4.7)	1083 (m)	1146 (45/3.1)	ω (CH ₂ + NH ₃)
1031 (18)	1029 (m)	1043 (38)	1040 (m)	1124 (40/2.7)	δ (OH)
975 (3.0)		952 (7.4)		1075 (21/1.5)	τ (CH ₂)
936 (1.5)		925 (16)		1003 (16/4.8)	ω (CH ₂ + NH ₃)

Diskussion der Ergebnisse

Aminoethansulfonsäure

902 (24)	903 (s)			914 (12/6.3)	ω (NH ₃)
868 (20)	871 (s)	885 (5.7)		912 (20/2.1)	τ (NH ₃)
836 (25)		835 (3.4)		874 (196/3.5)	τ (NH ₃) + ν (S-OH)
		810 (24)	794 (vs)	774 (40/7.5)	ρ (CH ₂)
727 (49)		730 (16)		769 (17/7.7)	ρ (CH ₂)
701 (23)				582 (47/1.9)	δ _s (SO ₃)
490 (6.8)	490 (m)	505 (9.4)	504 (s)	457 (14/2.3)	δ_{as} (SO ₃)
469 (32)	470 (m)	486 (3.3)		366 (45/1.4)	δ (SOH + SCC)
445 (5.3)		440 (4.8)		333 (14/1.2)	ρ (CH ₂)
408 (4.6)				311 (14/5.0)	δ (SOH + NCC)
352 (2.9)		341 (19)		253 (46/0.4)	δ (SOH) + $ρ$ (NH ₃)
309 (14)				235 (0.7/0.02)	ρ (NH ₃)
251 (10)				157 (8.9/0.3)	δ (SCC)
171 (8.6)		166 (2.2)		86 (1.2/0.1)	ρ (CS)
111 (62)		115 (49)		79 (4.6/0.1)	τ (CC)
682 (91)	698 (vs)				J
572 (57)	568 (w)				AsF ₆
374 (60)	379 (s)				
		651 (100)	655 (vs))
		568 (19)	567 (m)		SbF ₆
		283 (45)			J

(a) Berechnet auf dem RPBE1PBE/6-311G (3df,3pd)–Niveau (b) Berechnete IR- und Raman-Intensitäten sind in runden Klammern ([km/mol],[Å⁴/amu]) angegeben. vs = very strong (sehr stark), s = strong (stark), m = medium (mittel), w = weak (schwach). Ohne Skalierung.

b) Schwingungsspektrum von $D_3NC_2H_4SO_3D^+MF_6^-$ (M = As, Sb)

In Abbildung 76 und Abbildung 77 sind die FT-Raman- und FT-IR-Spektren von $ND_3C_2H_4SO_3D^+AsF_6^-$ und $ND_3C_2H_4SO_3D^+SbF_6^-$ wiedergegeben. In Tabelle 41 sind die beobachteten und berechneten Frequenzen zusammengefasst. Die CH2-Valenzschwingungen treten im Bereich um 3000 cm⁻¹ auf und sind im Vergleich zu Aminoethansulfonsäure mit 60 cm^{-1} schwach blauverschoben. Bei etwa 2460 cm⁻¹ wird die OD-Valenzschwingung registriert. Im Vergleich zum H-Isotopomer stark rotverschoben werden die ND3-Valenzschwingungen im Bereich um 2350 cm⁻¹ beobachtet. Im Vergleich sind die entsprechenden Frequenzen der d₃-Aminoethansulfonsäure schwach blauverschoben. Die antisymmetrische SO₂-Valenzschwingung wird bei etwa 1350 cm^{-1} registriert. Durch die Protonierung an der Sulfonat-Einheit liegt sie im H₃NC₂H₄SO₃H⁺-Kation um 200 cm⁻¹ blauverschoben vor. Diese Beobachtung kann damit erklärt werden, dass die Schwächung der S-OD-Bindung mit einer Stärkung der S=O-Bindung einhergeht. So wird die in d₃-Aminoethansulfonsäure charakteristisch und intensiv bei 1032 cm⁻¹ auftretende symmetrische SO₃-Valenzschwingung im Deutero-2-Sulfoethanaminiumkation nicht mehr beobachtet. Stattdessen wird zu erwähnter S=O-Valenzschwingung die S-OH-Valenzschwingung bei 820 cm^{-1} registriert. Von 1080 cm^{-1} bis 1010 cm^{-1} treten die im Vergleich zu d₃-Aminoethansulfonsäure schwach rotverschoben ND₃-Deformationsschwingungen auf. Bei 690, 591 und 373 cm⁻¹ (Ra) bzw. 698, und 390 cm⁻¹ (IR) treten die für das AsF₆⁻-Oktaeder charakteristischen Linien auf und die typischen Frequenzen für das SbF₆-Oktaeder werden bei 655, 560 und 276 (Ra) bzw. 656 und 561 cm⁻¹ registriert.

Abbildung 76 FT-IR- und FT-Raman-Spektrum von $D_3NC_2H_4SO_3D^+AsF_6^-$, Temperatur = -120 °C, Laser $\lambda = 1064$ nm.

Abbildung 77 FT-IR- und FT-Raman-Spektrum von $D_3NC_2H_4SO_3D^+SbF_6^-$, Temperatur = -120 °C, Laser $\lambda = 1064$ nm.

Tabelle 41 : Experimentelle und berechnete Schwingungsfrequenzen $[cm^{-1}]$ und Intensitäten für $D_3NC_2H_4SO_3D^+$ mit C_1 -Symmetrie

$D_3NC_2H_4S$	$I_4SO_3D^*AsF_6^ D_3NC_2H_4SO_3D^*SbF_6^ D_3NC_2H_4SO_3D^+$		$D_3NC_2H_4SO_3D^+SbF_6^-$		
					Zuordnung
ex	кр.	ex	p.	calc. ^{(a),(b)}	
Ra (Int.)	IR (Int.)	Ra (Int.)	IR (Int.)	(IR/Ra)	
3052 (11)	3047 (w)	3045 (20)	3045 (w)	3170 (2.6/37)	v_{as} (CH ₂)
3015 (56)	3004 (w)	3012 (52)		3162 (4.3/58)	v_{as} (CH ₂)
		2994 (26)	2992 (w)	3108 (0.4/72)	v _s (CH ₂)
2960 (45)	2953 (w)	2953 (84)	2951 (w)	3093 (3.6/110)	v _s (CH ₂)
2471 (2.8)	2523 (w)	2430 (10)	2428 (s)	2749 (148/35)	v (OD)
2425 (11)	2436 (s)	2410 (17)	2406 (s)	2613 (50/18)	v_{as} (ND ₃)
2368 (19)	2368 (m)	2355 (65)	2352 (s)	2528 (86/32)	v_{as} (ND ₃)
2279 (13)	2280 (m)	2263 (42)	2260 (m)	2208 (233/32)	ν _s (ND ₃)
1461 (15)	1458 (m)	1469 (14)	1468 (m)	1496 (13/4.5)	δ_s (CH ₂)
1394 (11)		1410 (16)	1408 (w)	1446 (33/4.2)	δ_s (CH ₂)
1358 (15)	1352 (s)	1354 (21)	1353 (s)	1436 (180/3.2)	v_{as} (SO ₃)
1336 (8.4)		1324 (8.6)	1324 (s)	1410 (25/0.5)	ω (CH ₂)
1284 (8.3)	1271 (m)	1277 (21)	1277 (m)	1351 (2.4/1.7)	τ (CH ₂)
1214 (9.5)	1213 (m)	1219 (11)	1215 (m)	1290 (11/2.9)	ω (CH ₂)
1170 (12)	1164 (s)	1165 (66)	1166 (s)	1225 (22/3.0)	τ (CH ₂)
1147 (2.2)	1055 (m)			1216 (87/8.7)	ω (CH ₂)
1078 (7.0)		1079 (9.6)	1077 (m)	1202 (18/0.7)	δ_{as} (ND ₃)
1051 (3.5)		1044 (6.1)		1195 (35/0.6)	δ_{as} (ND ₃)
1011 (5.9)		1014 (11)	1011 (m)	1129 (133/5.9)	δ_{s} (ND ₃)
990 (20)	983 (m)	994 (2.9)		1077 (4.5/3.1)	v (CC)
		931 (26)	914 (s)	1012 (0.5/1.0)	ρ (CH ₂) + τ (CH ₂)
892 (12)	892 (s)	897 (7.7)		992 (5.5/1.8)	ν (CN)
820 (14)		821 (15)	821 (m)	923 (165/7.5)	v (S-OD)
		801 (4.7)	800 (m)	861 (58/1.1)	δ (SOD)

Aminoethansulfonsäure

Diskussion der Ergebnisse

754 (13)		766 (39)	766 (m)	822 (18/4.8)	ρ (CH ₂) + δ (DNC)
718 (25)		710 (31)	711 (s)	799 (8.5/1.0)	ρ (CH ₂) + δ (DNC)
670 (14)		677 (4.0)	678 (s)	765 (1.3/4.6)	ω (ND ₃)
		642 (18)	643 (s)	712 (78/6.8)	τ (ND ₃) + ρ (CH ₂)
573 (18)	560 (s)			573 (56/2.3)	δ_{s} (SO ₃)
540 (8.2)				503 (21/3.7)	δ_{as} (SO ₃)
		499 (48)	496 (m)	436 (2.9/1.9)	δ (SOD)
461 (24)				410 (2.1/1.2)	δ (NCC + SCC)
		441 (12)	442 (m)	355 (13/1.1)	ρ (CH2)
		409 (5,2)		282 (22/1.3)	δ (NCC)
		351 (12)		243 (35/0.4)	δ (SOD)
287 (9.0)		294 (8.9)		219 (18/0.2)	ρ (ND ₃)
235 (4.6)		229 (15)		208 (37/0.3)	δ (SCC)
		154 (4.6)		177 (10/0.3)	ρ (SO ₃)
				70 (8.1/0.1)	τ (CH ₂ -ND ₃)
690 (100)	698 (vs)				
591 (4.5)					AsF ₆
373 (69)	390 (s)				
		655 (100)	656 (s)		
		560 (45)	561 (s)		SbF ₆
		276 (56)			J

(a) Berechnet auf dem RPBE1PBE/6-311G (3df,3pd)–Niveau (b) Berechnete IR- und Raman-Intensitäten sind in runden Klammern ([km/mol],[Å⁴/amu]) angegeben. vs = very strong (sehr stark), s = strong (stark), m = medium (mittel), w = weak (schwach), Ohne Skalierung.

4.15.3 NMR-Spektren

Das ¹H-NMR- und ¹³C-NMR-Spektrum von $H_3NC_2H_4SO_3H^+AsF_6^-$ in SO₂ gelöst wurde bei -39 °C gemessen. Das azide OH-Protonensignal tritt wie erwartet weit tieffeldverschoben bei 11.4 ppm auf. Die Protonenresonanz der NH₃-Gruppe werden bei 7.5 ppm als als breites Signal registriert und die Signale der beiden magnetisch ähnlichen CH₂-Gruppen werden bei 5.3 ppm und 5.1 ppm beobachtet. Die relativen Integrale der letztgenannten Signale betragen 3:2:2 was mit der Protonenanzahl an der NH₃- und den CH₂-Gruppen konform ist. Das Signal bei 8.4 ppm kann mit im Reaktionsansatz verbliebenen Spuren des Lösungsmittels HF erklärt werden. ^[43] Im Vergleich zur Aminoethansulfonsäure ist das Signal der NH₃-Gruppe um 2.7 ppm tieffeldverschoben und die Signale der beiden CH₂-Gruppen um 1.8 ppm tieffeldverschoben. Durch die Protonierung findet somit wie erwartet eine Entschirmung der Atome im Kation statt.

Abbildung 78 ¹H-NMR-Spektrum von $H_3NC_2H_4SO_3H^+AsF_6^-$ in SO_2 . Temperatur = -39 °C.

Im ¹³C-NMR-Spektrum werden bei 37.0 ppm und 49.0 ppm zwei Signale beobachtet, welche den Methylgruppen zugeordnet wird. Aufgrund der elektronenziehenden SO3-Gruppe wird das weiter tieffeldverschobene Signal bei 49.0 ppm dem am Schwefelatom gebundenen C-Atom zugeordnet. Im ¹⁹F-NMR-Spektrum wird ein für das AsF₆⁻-Anion typisches Signal bei –60.0 ppm beobachtet. ^[47]

Abbildung 79¹³C-NMR-Spektrum von $H_3NC_2H_4SO_3H^+AsF_6^-$ in SO_2 . Temperatur = -39 °C.

4.15.4 Einkristallröntgenstrukturanalyse von $H_3NC_2H_4SO_3H^+SbF_6^{-[99]}$

Aus SO_2 konnten für die Einkristallröntgenstrukturanalyse geeignete Kristalle von $H_3NC_2H_4SO_3H^+SbF_6^-$ erhalten werden. Das Salz kristallisiert in der orthorhombischen Raumgruppe *Pbca* mit einer Formeleinheit in der Elementarzelle. Die Röntgenstruktur ist in Abbildung 80 wiedergegeben und ausgewählte Parameter und Daten zur Messung der Kristallstruktur sind in Tabelle 42 angegeben.

Abbildung 80 Darstellung der Ionenstruktur von H₃NC₂H₄SO₃H⁺SbF₆⁻ im Kristall mit den Auslenkungsellipsoiden (50 % Wahrscheinlichkeit). Die Wasserstoffbrückenbindungen sind in gestrichelten Linien dargestellt.

	$H_3NC_2H_4SO_3H^+SbF_6^-$		$H_3NC_2H_4SO_3H^+SbF_6^-$
Empirische Formel	C2 H8 N O3 S, F6 Sb	P _{ber.} [g cm ⁻³]	2.511
Formelgewicht	361.92	μ [mm ⁻¹]	3.178
Т [К]	100	<i>F</i> (000)	1376
Kristallgröße [mm]	0.20 x 0.18 x 0.12	θ Bereich [°]	4.26-26.00
Kristallbeschreibung	Farbloser Block	Datensatz <i>h</i> ; <i>k</i> ; I	-12:6; -13:14; -20:20
Kristallsystem	orthorhombisch	R _{int}	0.0307
Raumgruppe	<i>Pbca</i> (Nr. 61)	Refl gesammelt.	9108
a [Å]	9.9037(4)	Einzelne Refl.	1870
b [Å]	11.5575(4)	Nr. Parameter	159
c [Å]	16.7270(6)	R ₁ (beobachtet)	0.0183
α [°]	90.0	wR ₂ (alle Daten)	0.0430
β [°]	90.0	S	0.914
γ [°]	90.0	Aufgelöste Dichte.[e Å -3]	-0.64, 0.59
V [Å ³]	1914.61(12)	Gerätetyp	Oxford XCalibur
Ζ	8	Lösung/Verfeinerung	SHELXS-97/ SHELXL-97

Tabelle 42 : Kristallstrukturdaten und Parameter für $H_3NC_2H_4SO_3H^+SbF_6^-$

Die Sb-F Bindungslängen im SbF₆⁻-Anion sind im Bereich von 186.33 (16)-189.77 (15) pm. Die in Wasserstoffbrückenbindungen einbezogenen Sb-F Bindungen (Sb1-F2, Sb1-F3, Sb1-F4 und Sb1-F5) sind geringfügig länger als Sb1-F1 und Sb1-F6. Diese Werte liegen in dem für das SbF₆⁻-Anion typischen Bereich. ^[87] Das SbF₆⁻-Anion bildet ein schwach verzerrtes Oktaeder. Die Bindungslängen S1-O1 und S1-O2 (143.70 (18) bzw. 142.75 (19) pm) befinden sich im typischen Bereich zwischen einer SO-Einfach- und einer SO-Doppelbindung und sind mit denen im neutralen Taurin vergleichbar. Die S1-O3 Bindung (154.8 (2) pm) ist um etwa 11 pm länger und demnach näher an einer typischen S-O-Einfachbindung. Weitere Bindungslängen sind vergleichbar mit denen in Aminoethansulfonsäure. Das S-Atom ist mit Bindungswinkeln von 104.94 (12)° – 119.77 (11)° verzerrt tetraedrisch umgeben. Ebenfalls vergleichbar mit der neutralen Spezies ist die NH₃-Gruppe, welche eine Gauche-Konformation der SO₃H-Gruppe aufweist (S1-C1-C2-N1 = -73.9 (3)°). In Tabelle 43 sind die Atomabstände und Bindungswinkel

H ₃ NC	C₂H₄SO₃H⁺		SbF ₆ -
S1-O1	143.7(2)	Sb1-F1	186.3(2)
S1-O2	142.8(2)	Sb1-F2	187.2(2)
S1-O3	154.8(2)	Sb1-F3	188.9(2)
S1-C1	176.5(3)	Sb1-F4	188.4(2)
C1-C2	151.2(4)	Sb1-F5	189.8(2)
C2-N1	149.6(4)	Sb1-F6	187.3(2)
O1-S1-O2	119.78(11)	F2-Sb1-F3	89.9(1)
O1-S1-O2	110.58(11)	F2-Sb1-F4	90.4(1)
O3-S1-C1	105.40(12)	F2-Sb1-F5	177.2(1)
S1-C1-C2	113.94(19)	F2-Sb1-F6	90.6(1)
N1-C2-C1	112.0(2)	F3-Sb1-F4	87.8(1)
		F3-Sb1-F5	88.7(1)
		F3-Sb1-F6	177.0(1)
		F4-Sb1-F5	87.1(1)
		F4-Sb1-F6	89.2(1)
		F1-Sb1-F4	175.9(1)
		F1-Sb1-F2	93.6(1)
		F1-Sb1-F3	91.4(1)
		F1-Sb1-F5	88.8(1)
		F1-Sb1-F6	91.6(1)

Tabelle 43 : Ausgewählte Bindungslängen und –winkel in $H_3NC_2H_4SO_3H^+SbF_6^-$ (pm, °)

Die Bindungslängen und –winkel der Wasserstoffbrückenbindungen sind in Tabelle 44 aufgeführt und die Einheitszelle ist in Abbildung 81 wiedergegeben. Im Kation wird eine intramolekulare N(1)-H(1A)···O(1) Wasserstoffbrücke (290.6(3) pm) beobachtet. Diese Bindung ist ebenfalls in Aminoethansulfonsäure vorhanden. ^[97] Die Kationen bilden Ketten entlang der b-Achse mit der Wasserstoffbrückenbindung N(1)-H(1B)···O(2i). Parallel dazu befinden die SbF₆⁻-Oktaeder. Entlang der a-Achse bilden die Kationen durch die H-Brückenbindung N(1)-H(1C)···O(1iii) Zickzack-Ketten. Die SbF₆⁻-Oktaeder sind ebenfalls durch H-Brücken mit den Kationen über F(2), F(3), F(4) und F(5) verbunden. Die F(3)- und F(4)-Akzeptoren eines SbF₆⁻-Oktaeders sind beide mit einem N(1)-Donoratom des gleichen Kations verbunden und bilden einen sechszähligen Ring. Die Stärke dieser beiden Wasserstoffbrückenbindungen (N···F = 306.0(3) pm bzw. 291.7(3) pm) und der N(1)-H(1C)···F(2)-H-Brücke ist mit N···F = 300.6(3) pm vergleichsweise schwach. Die stärkste Wasserstoffbrückenbindung ist wie erwartet O(3)-H(3)···F(5ii) (O···F = 262.3(3) pm). Zum Vergleich sind die O···F Kontakte in $[H_3SO_4]^+SbF_6^-$ um etwa 4-9 pm kürzer.^[22]

Abbildung 81 Darstellung der Einheitszelle entlang der a-Achse mit den Auslenkungsellipsoiden (50 % Wahrscheinlichkeit). Wasserstoffbrücken sind als gestrichelte Linie dargestellt. [Symmetrieoperationen: (i) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, z; (ii) x, $-y + \frac{1}{2}$, $z - \frac{1}{2}$; (iii) $x + \frac{1}{2}$, y, $-z + \frac{3}{2}J$.

$H_3NC_2H_4SO_3H^+SbF_6^-$					
D-H ··A	D-H	H ∩A	D ···A	< D-H ··A	
N1-H1CF2	89(3)	2.57(3)	300.6(3)	111(2)	
N1-H1A ··O1	81(4)	2.29(4)	290.6(3)	134(3)	
N1-H1B ··O2i	91(3)	2.12(3)	286.0(3)	138(3)	
N1-H1B ··F4i	91(3)	2.27(3)	291.7(3)	127(2)	
N1-H1A ··F3i	81(4)	2.38(4)	306.0(3)	143(3)	
O3-H3 ··F5ii	71(3)	1.92(3)	262.3(3)	173(3)	
N1-H1C ··O1iii	89(3)	2.00(4)	286.8(3)	163(3)	

Tabelle 44 : Parameter der Wasserstoffbrückenbindungen für $H_3NC_2H_4SO_3H^+SbF_6^-$ (pm, °)

Symmetriecodes (i) $-x + \frac{2}{2}$, $y - \frac{1}{2}$, z; (ii) x, $-y + \frac{1}{2}$, $z - \frac{1}{2}$; (iii) $x + \frac{1}{2}$, $y, -z + \frac{3}{2}$.

4.15.5 Theoretische Berechnungen des $NH_3C_2H_4SO_3H^+$ -Kations

Strukturoptimierungen des $NH_3C_2H_4SO_3H^+$ -Kations wurden unter Verwendung der Methode RPBE1PBE mit dem Basissatz 6-311G(3df,pd) durchgeführt. ^[44-45] Danach wurden die Schwingungsfrequenzen in harmonischer Näherung und die IR- und Raman-Intensitäten berechnet. Die berechneten Gerüstschwingungen sind in guter Übereinstimmung mit den experimentell beobachteten. Diskrepanzen werden vor allem für die OH- und NH-Valenzschwingungen beobachtet, welche um bis zu 200 cm⁻¹ überschätzt werden. Es ist anzunehmen, dass diese Abweichungen aus starken Wasserstoffbrückenbindungen im Festkörper resultieren, da deren Bildung gewöhnlich zu einer Rotverschiebung der entsprechenden OH-Streckschwingungen führt. Die berechnete Struktur ist in Abbildung 82 gezeigt. Die Länge der berechneten S=O-Bindungen sind mit 141.7 ppm und 141.8 ppm annähernd gleich und vergleichbar mit der Länge der in der Röntgenstruktur bestimmten Abstände (142.7 pm/143.8 pm, sieheTabelle 43). Diese Bindungen sind in der Strukturoptimierung der freien Aminoethansulfonsäure im Durchschnitt 146.6 ppm. Durch die Protonierung an einem O-Atom ist die S-O-Bindung verlängert und beträgt 158.1 pm (exp: 154.8 pm). Die Längen der C-S- und C-N-Bindungen betragen in guter Übereinstimmung mit der Röntgenstruktur in der berechneten protonierten Form 179.3 pm (exp: 176.5 pm) bzw. 150.6 pm (exp: 149.6 pm). Insgesamt sind die berechneten Strukturoptimierungen von $NH_3C_2H_4SO_3H^+$ auf dem RPBE1PBE/6-311G (3df,pd)-Niveau in sehr guter Übereinstimmung mit den aus der Röntgenstruktur von $NH_3C_2H_4SO_3H^+SbF_6^-$ gewonnenen Geometrieparametern.

Abbildung 82 *Gasphasenstrukturoptimierung von* $NH_3C_2H_4SO_3H^+$ *auf dem RPBE1PBE/6-311G (3df,pd)-Niveau*

4.16 Protoniertes Methansulfonamid, $CH_3SO_2NH_3^+MF_6^-$ (M = As, Sb)

4.16.1 Bildung und Stabilität

Methansulfonamid ist der einfachste Vertreter der Sulfonamide. Es ist in der Literatur schon lange bekannt. ^[100-103] Es kann über eine dreistufige Synthese dargestellt werden. ^[104] Methansulfonamid wurde in der Vergangenheit schwingungsspektroskopisch ^[105-106] und röntgenografisch untersucht. Es bildet monokline Kristalle der Raumgruppe *Pnma*. ^[107] Über eine Protonierte Form des Methansulfonamids wurde bisher in der Literatur nicht berichtet.

Zur Protonierung von Methansulfonamid wurden die supersauren Systeme HF/AsF₅ und HF/SbF₅ nach (38) verwendet:

$$CH_3SO_2NH_2 + HF/MF_5 \xrightarrow{-50 \,^{\circ}C, \, 10 \,^{\text{min}}} CH_3SO_2NH_3^+MF_6^-$$
(38)

Hydrogenfluorid wurde im 100fachen Überschuss als Reagenz und als Lösungsmittel eingesetzt. Das Produkt ist in HF bei -50 °C unlöslich und fällt als farbloser Feststoff aus. Im dynamischen Vakuum wurde das Lösungsmittel innerhalb von 12 h bei -78 °C entfernt. Zur Darstellung von $[CH_3SO_2ND_3]^+MF_6^-$ wurde aus Methansulfonamid durch mehrmaliges Umkristalisieren aus D₂O das deuterierte Isotopomer CH₃SO₂ND₂ isoliert und mit den Supersäuresystemen DF/AsF₅ und DF/SbF₅ protoniert. Sowohl Methansulfonammoniumhexafluoridoarsenat als auch -antimonat sind hydrolyseempfindlich und unter Schutzgas bis 0 °C beständig haltbar. Beide Salze wurden IR- und Raman-Spektroskopisch untersucht.

4.16.2 Schwingungsspektren

a) Schwingungsspektrum von $CH_3SO_2NH_3^+MF_6^-$ (M = As, Sb)

In Abbildung 83 und Abbildung 84 sind die FT-Raman- und FT-IR-Spektren von $CH_3SO_2NH_3^+AsF_6^-$ und $CH_3SO_2NH_3^+SbF_6^-$ wiedergegeben. In Tabelle 45 sind die beobachteten und berechneten Frequenzen zusammengefasst. Im Bereich von 3175 cm⁻¹ bis 3063 cm⁻¹ werden die NH₃-Valenzschwingungen registriert. Sie sind im Vergleich zu Methansulfonamid um etwa 200 cm⁻¹ rotverschoben. Diese Beobachtung kann mit der Protonierung der –NH₂-Gruppe zu einer NH₃-Aminofunktion erklärt werden. Bei etwa 3050 cm⁻¹ und 2950 cm⁻¹ treten die CH₃-Valenzschwingungen auf, deren Frequenzlage im Vergleich zu Methansulfonamid kaum verschoben ist. Bei 1536 cm⁻¹ tritt eine im Vergleich zu Methansulfonamid schwach rotverschobene NH₃-Deformationsschwingung auf. Bei etwa 1400 cm⁻¹ und 1200 cm⁻¹ werden SO-Valenzschwingungen registriert. Deren Frequenzlage ist durch die Bildung des CH₃SO₂NH₃⁺-Kations und der damit verbundenen elektronischen Veränderung im Vergleich zu Methansulfonamid um etwa 60 cm⁻¹ blauverschoben. Bei 682, 572 und 372 (Ra) bzw. 698, 569 und 379 cm⁻¹ (IR) treten die für das AsF₆⁻-Oktaeder charakteristischen Linien auf und die typischen Frequenzen für das SbF₆⁻-Oktaeder werden bei 656, 571 und 283 (Ra) registriert.

Abbildung 83 FT-IR- und FT-Raman-Spektrum von $CH_3SO_2NH_3^+AsF_6^-$, Temperatur = -120 °C, Laser $\lambda = 1064$ nm.

Abbildung 84 FT-IR- und FT-Raman-Spektrum von $CH_3SO_2NH_3^+SbF_6^-$, Temperatur = -120 °C, Laser $\lambda = 1064$ nm.

CH₃S A	SO₂NH₃⁺ sF₅¯	$CH_3SO_2NH_3^+$ SbF_6^-		$CH_3SO_2NH_3^+$	Zuordnung
e	exp.		exp.		
Ra (Int.)	IR (Int.)	Ra (Int.)	IR (Int.)	(IR/Ra)	
3197 (2.7)	3191 (s)	3196 (2.5)		3374 (117/26)	v_{as} (NH ₂)
3129 (16)	3161 (s)		3174 (s)	3347 (123/28)	v_{as} (NH ₃)
3063 (20)	3063 (m)	3061 (3.6)		3249 (114/94)	v_s (NH ₃)
3035 (13)		3036 (5.1)		3047 (10/34)	v_{as} (CH ₂)
2952 (58)	2951 (m)	2952 (14)	2951 (m)	3008 (17/44)	v _s (CH ₃)
				2917 (32/129)	v _s (CH ₃)
1536 (14)	1535 (m)	1535 (10)	1534 (w)	1546 (41/3)	δ_{as} (NH ₃)
				1536 (37/3)	δ_{s} (NH ₃)
			1432 (w)	1462 (160/4)	v_{as} (SO ₂)
1419 (4.1)	1418 (s)		1420 (w)	1360 (32/5)	δ_{as} (CH ₃)
1388 (53)	1387 (m)	1389 (20)	1388 (w)	1359 (6/3)	δ_{as} (CH ₃)
				1315 (151/1)	δ_{s} (NH ₃)
1334 (3.7)	1332 (m)	1330 (1.7)	1329 (w)	1287 (43/1)	δ_s (CH ₃)
1195 (100)	1203 (s)	1193 (49)	1200 (w)	1204 (87/15)	v _s (SO ₂)
				938 (4/1)	ρ (CH₃)
1025 (15)	1027 (w)	1027 (7.3)	1026 (w)	934 (21/3)	ρ (CH ₃)
1006 (2.1)	1008 (w)	1014 (0.7)	1013 (w)	841 (73/1)	ρ (NH ₃)
958 (5.2)	954 (m)		956 (w)	825 (10/1)	ν (NH ₃)
758 (43)	757 (w)	756 (28)	752 (m)	700 (9/10)	ν (CS)
697 (22)	702 (s)		705 (w)	492 (93/3)	δ (SO ₂)
	678 (m)	505 (22)		457 (50/5)	δ (SO ₂)
623 (48)	628 (w)	458 (24)		383 (0/11)	v (SN)
568 (36)			375 (w)	332 (1/1)	δ (CSO)

Tabelle 45 : Experimentelle und berechnete Schwingungsfrequenzen [cm⁻¹] *und Intensitäten für* CH₃SO₂NH₃⁺ *mit* C₁ *-Symmetrie*

Methansulfonamid

Diskussion der Ergebnisse

506 (39)			264 (3/2)	δ (OSN)
495 (5.0)	495 (w)		237 (11/2)	δ (CSN)
462 (26)			188 (1/0)	τ(CH ₃)
410 (3.7)			120 (0/0)	τ (NH ₃)
682 (86))
569 (36)	568 (m)			} AsF ₆ ⁻
374 (34)	379 (w)			J
		656 (100))
		571 (28)		SbF ₆ ⁻
		283 (28)		J

(a) Berechnet auf dem RPBE1PBE/6-311G (3df,3pd)–Niveau (b) Berechnete IR- und Raman-Intensitäten sind in runden Klammern ([km/mol],[Å⁴/amu]) angegeben. s = strong (stark), m = medium (mittel), w = weak (schwach). Skalierungsfaktor 0.952.

b) Schwingungsspektren von $CH_3SO_2ND_3^+MF_6^-$ (M = As, Sb)

Abbildung 85 FT-IR-und FT-Raman-Spektrum $CH_3SO_2ND_3^+AsF_6^-$, Temperatur = -120 °C, Laser, $\lambda = 1064$ nm.

In Abbildung 85 und Abbildung 86 sind die FT-Raman- und FT-IR-Spektren von $CH_3SO_2ND_3^+AsF_6^-$ und $CH_3SO_2ND_3^+SbF_6^-$ wiedergegeben. In Tabelle 46 sind die beobachteten und berechneten Frequenzen zusammengefasst. Die CH_3 -Valenzschwingungen werden bei 3064 cm⁻¹ bis 2952 cm⁻¹ beobachtet. Sie sind im Vergleich zur Methansulfonamid durch die elektronische Veränderung im entstandenen Kation um 40 cm⁻¹ blauverschoben. Im Bereich von etwa 2400 cm⁻¹ bis 2150 cm⁻¹ treten die ND₃- Valenzschwingungen auf, welche im Vergleich zu den ND-Valenzschwingungen in Deutero-Methansulfonamid um etwa 270 cm⁻¹ rotverschoben. Diese Beobachtung ist im Einklang mit der Vorstellung einer durch Protonierung der $-NH_2$ -Gruppe entstandenen NH₃-Aminofunktion. Bei etwa 1400 cm⁻¹ treten antisymmetrische SO₂-

Valenzschwingungen auf und die charakteristische symmetrische SO₂-Valenzschwingung wird bei etwa 1200 cm⁻¹ beobachtet. Deren Frequenzlage ist durch die Bildung des $CH_3SO_2ND_3^+$ -Kations und der damit verbundenen elektronischen Veränderung im Vergleich zu Methansulfonamid um etwa 60 cm⁻¹ blauverschoben. Bei 682, 569 und 371 (Ra) bzw. 701 und 575 cm⁻¹ (IR) treten die für das AsF_6^- -Oktaeder charakteristischen Linien auf und die typischen Frequenzen für das SbF_6^- -Oktaeder werden bei 655 (Ra) und 665 cm⁻¹ registriert.

Abbildung 86 FT-IR- und FT-Raman-Spektrum von $CH_3SO_2ND_3^+SbF_6^-$, Temperatur = -120 °C, Laser $\lambda = 1064$ nm. * Spuren von H_2O durch den Messprozess eingeschleppt.

CH₃SC	$D_2ND_3^+$	CH ₃ S	$O_2 N D_3^+$	CH₃SO₂ND₃⁺	Zuordnuna
As	F ₆	St	οF ₆ ⁻		g
ex	р.	e	кр.	calc. ^{(a),(b)}	
Ra (Int.)	IR (Int.)	Ra (Int.)	IR (Int.)	(IR/Ra)	
3063 (23)	3064 (s)	3061 (14)	3061 (s)	3072 (10/35)	v_{as} (CH ₂)
3035 (19)		3036 (13)		3034 (17/44)	v_{as} (CH ₃)
2952 (77)	2952 (m)	2952(65)	2951 (w)	2942(31/131)	ν_{s} (CH ₃)
2399 (20)	2394 (s)	2387 (20)		2511 (62/13)	v_{as} (ND ₂)
2379 (6.3)	2371 (s)		2381 (m)	2488 (68/13)	v_{as} (ND ₃)
2279 (39)	2274 (m)		2263 (m)	2340 (68/43)	ν_{s} (ND ₃)
				1473 (151/4)	v_{as} (SO ₂)
1417 (5.6)	1418 (s)	1419 (9.7)	1418 (s)	1372 (36/5)	$\delta_{as}(CH_3)$
1390 (58)	1399 (s)	1391 (48)	1390 (s)	1371 (9/3)	$\delta_{as}(CH_3)$
1335 (3.5)	1335 (m)		1331 (m)	1302 (27/2)	δ_{s} (CH ₃)
1197 (100)	1199 (s)	1200 (51)	1205 (s)	1216 (96/15)	v_{s} (SO ₂)
1119 (7.7)	1122 (s)	1128 (17)	1110 (s)	1127 (17/1)	δ_{s} (ND ₃)
1083 (11)	1092 (w)	1085 (8.6)	1091 (w)	1119 (18/1)	δ_{as} (ND ₃)
993 (13)	981 (w)	991 (6.8)		1008 (106/1)	ν (SN)
835 (19)	835 (m)	834 (18)	833 (m)	942 (2/1)	τ (CH ₂)
769 (4.9)		760 (12)		927 (24/2)	ν (CH ₃)
698 (39)	701 (w)	706 (17)		765 (61/7)	ν (SN)
	678 (m)	674 (40)		655 (3/2)	τ (ND ₂)
602 (44)	609 (m)		599 (m)	624 (6/6)	v (CS)
497 (63)	576 (w)	496 (39)		494 (84/2)	δ_{s} (SO ₂)
445 (34)	559 (m)	441 (7.0)		444 (49/4)	δ_{as} (OSN)
487 (4.3)	496 (m)	378 (14)		361 (1/10)	ν (SN)
	487 (m)	316 (7.5)	487 (m)	327 (0/1)	δ_{s} (CSO)
298 (51)	445 (w)	299 (17)		248 (1/1)	δ_{s} (OSN)

Tabelle 46 : Experimentelle und berechnete Schwingungsfrequenzen [cm⁻¹] *und Intensitäten für* CH₃SO₂ND₃⁺ *mit* C₁ -Symmetrie

	417 (w)	230 (15)	224 (8/2)	δ_{s} (CSN)
			188 (1/0)	τ (CH ₃)
117 (74)			87 (0/0)	τ (ND ₃)
682 (76)	701 (w)			٦
569 (35)	417 (w)			_ AsF ₆ ⁻
372 (73)				J
		655 (100))
		571 (13)		
		281 (62)		

(a) Berechnet auf dem RPBE1PBE/6-311G (3df,3pd)–Niveau (b) Berechnete IR- und Raman-Intensitäten sind in runden Klammern ([km/mol],[\hat{A}^{4} /amu]) angegeben. s = strong (stark), m = medium (mittel), w = weak (schwach). Skalierungsfaktor 0.960.

*4.16.3 Theoretische Berechnungen des CH*₃*SO*₂*NH*₃⁺*-Kations*

Strukturoptimierungen des CH₃SO₂NH₃⁺-Kations wurden unter Verwendung der Methode RPBE1PBE mit dem Basissatz 6-311G(3df,pd) durchgeführt. ^[44-45] Danach wurden die Schwingungsfrequenzen in harmonischer Näherung und die IR- und Raman-Intensitäten berechnet. Die berechneten Gerüstschwingungen sind in guter Übereinstimmung mit den experimentell beobachteten. Diskrepanzen werden vor allem für die NH-Valenzschwingungen beobachtet, welche um bis zu 200 cm⁻¹ überschätzt werden. Es ist anzunehmen, dass diese Abweichungen aus starken Wasserstoffbrückenbindungen im Festkörper resultieren, da deren Bildung gewöhnlich zu einer Rotverschiebung der entsprechenden NH-Streckschwingungen führt. Die berechnete Struktur ist in Abbildung 87 gezeigt. Die S=O-Bindungen im CH₃SO₂NH₃⁺-Kation sind mit jeweils 141.0 ppm im Vergleich zu den entsprechenden Bindungen im berechneten Methansulfonamid (143.0 pm) etwas kürzer, aber im für diesen Bindungstyp erwarteten Bereich. Durch die Protonierung am N-Atom ist die S-N-Bindung mit 190.8 pm im Vergleich zu Methansulfonamid stark verlängert. Dort beträgt sie, im für S-N-Bindungen üblichen Bereich ^[108], nur 164.9 pm. Durch die NH₃-Gruppe kann keine partielle S=N-Doppelbindung mehr ausgebildet werden.

Abbildung 87 Gasphasenstrukturoptimierung von CH₃SO₂NH₃⁺ auf dem RPBE1PBE/6-311G (3df,pd)-Niveau

5 Zusammenfassung

In der vorliegenden Arbeit wurde ausgehend von den Salzen der Dischwefelsäuren in den Oxidationsstufen +2 bis +6 in wasserfreiem Fluorwasserstoff die freien Säuren Thioschwefelsäure $(H_2S_2O_3)$, Dithionige Säure $(H_2S_2O_4)$, Dithionsäure $(H_2S_2O_6)$ und Peroxodischwefelsäure $(H_2S_2O_8)$ erstmals in reiner Form dargestellt (Gleichung (39)). Die freien Säuren wurden bei tiefen Temperaturen IR-, Raman- und NMR-spektroskopisch untersucht, die Molekülstruktur mit quantenchemischen Methoden optimiert und ihr Zerfall zu Schwefelsäuren untersucht.

$$\underset{M=As, Sb; x = 3,4,6,8}{\overset{HF}{\longrightarrow}} H_{2}S_{2}O_{x} + 2 \operatorname{NaF}$$
(39)

Unter Zuhilfenahme von Lewissäuren wie AsF₅ oder SbF₅ gelingt sogar die Protonierung der Dischwefelsäuren:

$$Na_{2}S_{2}O_{x} + 2 NaF \xrightarrow{3HF/MF_{5}} H_{3}S_{2}O_{x}^{+}MF_{6}^{-} + 2 NaMF_{6} \qquad (40)$$

$$M = As, Sb; x = 3-8$$

Die protonierten Dischwefelsäuren in den Oxidationsstufen +2 bis +6 wurden ebenfalls bei tiefen Temperaturen IR-, Raman- und NMR-spektroskopisch untersucht und die Geometrie der Disulfoniumkationen $H_3S_2O_x^+$ wurde mit quantenchemischen Methoden vorhergesagt.

Die spektroskopischen Ergebnisse ermöglichen dabei Aussagen über den Molekülaufbau, der folgendem Schema folgt: Bei Dischwefelsäuren der Oxidationsstufe +2 und +3 findet mindestens eine Protonierung am Schwefel statt, wohingegen ab der Oxidationsstufe +4 nur noch reine OH-Tautomere vorliegen (Tabelle 47).

Tabelle 47 : Zusammenfassung der dargestellten und untersuchten freien und protonierten Dischwefelsäuren

Weiterhin wurde protonierte Schwefelsäure erstmals vollständig schwingungsspektroskopisch charakterisiert.^[21, 23] Hierbei wurde das neue Supersäuresystem HF/GeF₄ eingesetzt und dessen Säurestärke demonstriert. Um quantenchemisch berechnete Schwingungsfrequenzen besser an die reale Situation in kondensierter Phase anzupassen, wurden [H₃SO₄⁺(HF)₃]-Einheiten berechnet. Die berechneten O-H…F…H-Brücken führen zu einer deutlichen Annäherung an die experimentell beobachteten Frequenzen.

Das bisher unzureichend untersuchte Dimethylhydroxysulfoniumkation, $(CH_3)_2SOH^+$ (= protoniertes DMSO) wurde mit dem Supersäuresystem HF/GeF₄ dargestellt und strukturell unter-

sucht. $(Me_2SOH^+)_4Ge_3F_{16}^{4-}$ ist das erste Beispiel für eine Kristallstruktur von vollständig protoniertem DMSO. Das $Ge_3F_{16}^{4-}$ -Anion stellt ebenfalls ein sehr interessantes Strukturmotiv dar: Es besteht aus Ketten von trans-Fluorverbrückten GeF₆-Oktaedern und ist als Trigermanat in der Literatur bisher nicht beschrieben worden.

Abbildung 88 Kristallstruktur von (CH₃)₂SOH⁺

Die protonierten Spezies von NH_3SO_3 , $NH_3CH_2SO_3$, $NH_3C_2H_4SO_3$ und $CH_3SO_2NH_2$ wurden erstmals dargestellt und charakterisiert (Abbildung 89 . Dabei wird durchwegs die Protonierung am Sauerstoff der Sulfonsäuregruppe beobachtet, was ebenfalls bereits vorher für Dischwefelsäuren in der Oxidationsstufe +6 gezeigt wurde.

Abbildung 89 Protonierte Aminosulfonsäuren und Sulfonamid

6 Experimenteller Teil

6.1 Arbeitstechnik

Alle Reaktionen wurden unter Schutzgas durchgeführt. Der hierbei verwendete Stickstoff wurde zur Entfernung der Restfeuchtigkeit über mit Orangegel und Sicapent[®] gefüllte Trockentürme geleitet. Alle Umsetzungen wurden an einer elektropolierten Edelstahl-Vakuum-Linie in verschmolzenen. ca. 15 cm langen FEP–Schläuchen mit Edelstahl/PFA-Ventilen durchgeführt. Die Edelstahl-Vakuumlinie sowie die FEP-Reaktoren wurden unmittelbar vor der Verwendung mit elementarem Fluor getrocknet (500 mbar, 15 – 30 min). Feste Ausgangsstoffe wurden vor der Verwendung für 24 – 48 h im Trockenschrank bei 135 °C getrocknet. Antimonpentafluorid (Merck) wurde vor Verwendung zweimal destilliert. DF wurde aus getrocknetem CaF₂ und D₂SO₄ dargestellt. Deuteroschwefelsäure wurde im Arbeitskreis aus SO₃ und D₂O hergestellt. SO₃ wurde aus Oleum mittels trap-to-trap Destillation gewonnen.

6.2 Verwendete Chemikalien

Bezeichnung	chem. Formel	MW [g/mol]	Sicherheits- einstufung	CAS- Nummer	Rein- heit	Quelle
Acetonitril	CH₃CN	41.05	F, Xn	[75-05-8]	p.a.	Merck
Amidoschwefelsäure	NH_3SO_3	97.09	Xi	[5329-14-6]	p.a.	Grüssing
Aminoethansulfonsäure	$NH_3C_2H_4SO_3$	125.2	Xn	[107-35-7]	99%	Alfa Aesar
Aminomethansulfonsäure	NH ₃ CH ₂ SO ₃	111.1	С	[13881-91-9]	97%	ABCR
Antimonpentafluorid	SbF₅	216.7	Xn, N	[7783-70-2]	≥98%	Merck
Arsenpentafluorid	AsF₅	169.9	Τ, Ν	[7784-36-3]	/	ABCR
Chlorsulfonsäure	CISO₃H	116.5	С	[7790-94-5]	/	1
d ₆ -Deuterodimethyl- sulfoxid	(CD ₃) ₂ SO	84.17		[2206-27-1]	99.8%	Merck
Deuteriumfluorid	DF	21.01		[14333-26-7]	/	Merck
Deuteriumoxid	D_2O	20.01		[7789-20-0]	99.5%	Merck
Dimethylsulfoxid	(CH ₃) ₂ SO	78.13		[67-68-5]	99%	Acros
Fluor	F ₂	38.00	T+, C	[7782-41-4]	/	1
Germaniumtetrafluorid	GeF ₄	148.6	Т, С	[7783-58-6]	/	AK Kornath
Hydrogenfluorid	HF	20.00	T+, C	[7664-39-3]	/	1
Kaliumdisulfat	$K_2S_2O_7$	254.3	С	[7790-62-7]	p.a.	Aldrich
Kaliumperoxodisulfat	$K_2S_2O_8$	270.3	O, Xn	[7727-21-1]	p.a.	Grüssing
Kaliumsulfat	K ₂ SO ₄	174.2		[7778-80-5]	p.a.	Merck

Tabelle 48 : Verwendete Chemikalien

Experimenteller Teil

Methansulfonamid	CH ₃ SO ₂ NH ₂	95.12	Xn	[3144-09-0]	98+%	Alfa Aesar
Natriumdisulfit	$Na_2S_2O_5$	190.1	Xn	[7681-57-4]	p.a.	Grüssing
Natriumdithionat	$Na_2S_2O_6$	206.1		[7631-94-9]	98%	Pfaltz&Bauer
Natriumdithionit	$Na_2S_2O_4$	174.1	Xn	[7775-14-6]	p.a.	Grüssing
Natriumthiosulfat	$Na_2S_2O_3$	158.1		[7772-98-7]	p.a.	ABCR
Schwefeldioxid	SO ₂	64.06	Т	[7446-06-05]	p.a.	/
Schwefelwasserstoff	H_2S	34.08	T+, F+, N	[7783-06-4]	2.0	AirLiquide
Trichlorfluormethan	CFCI ₃	137.4	Ν	[75-69-4]	1	1

6.3 Verwendete Geräte und Analysenmethoden

6.3.1 Raman-Spektroskopie

Die Analytik der festen Produkte mittels Raman-Spektroskopie wurde in einer Tieftemperatur-Schutzgasküvette durchgeführt. Als Kühlmittel diente flüssiger Stickstoff. Die Spektren wurden mit einem *Bruker Multi RAM* FT-Raman-Spektrometer mit Nd-YAG-Laser bei einer Wellenlänge von 1064 nm und einem Winkel von 180° aufgenommen. Zur Visualisierung der Spektren wurde das Programm OPUS der Firma *Bruker* ^[109] verwendet.

6.3.2 IR-Spektroskopie

Feststoffe wurden in einer Schutzgas-Tieftemperatur-IR-Zelle auf einem auf –140 °C gekühlten Cäsiumbromid-Einkristall-Fenster gemessen. Die Spektren wurden mit einem *Bruker Vertex 80v* FT-IR-Spektrometer aufgenommen. Zur Visualisierung der Spektren wurde das Programm OPUS der Firma *Bruker*^[109] verwendet.

6.3.3 NMR-Spektroskopie

NMR-Spektren wurden mit einem FT-NMR-Spektrometer der Firma *Jeol (Delta)* mit einer Flussdichte von 9.39916 Tesla (Protonenfrequenz 400 MHz) bei einer Temperatur von –65 °C bis –39 °C aufgenommen. Die Messungen der Kerne ¹H, ¹³C und ¹⁹F wurden auf Me₄Si bzw. CFCl₃ referenziert. Eine Übersicht über die Messfrequenzen ist in Tabelle 49 angegeben.

Die Synthesen für die NMR-Experimente wurden in einem FEP-Schlauchreaktor ($Ø_{aussen} = 4 \text{ mm}$) durchgeführt. Die abgeschmolzen Reaktoren wurden dann zur Messung in ein Standard-Glas-NMR-Röhrchen eingesetzt. Als Solvens wurde SO₂ eingesetzt. Die Auswertung der Spektren erfolgte mit der Software *Delta Version 4.3.7* (NMR Processing and Control Software).

Element	Nuklid	Messfrequenz	
Wasserstoff	¹ H	400.18229 MHz	
Kohlenstoff	¹³ C	100.62591 MHz	
Fluor	¹⁹ F	376.54751 MHz	
Stickstoff	¹⁴ N	28.918332 MHz	

 Tabelle 49 : NMR-Messfrequenzen gemessener Nuklide

6.3.4 Einkristallröntgenstrukturanalyse

Die Messungen der Einkristallröntgenstrukturen wurden an einem *Oxford Xcalibur3* Diffraktometer, ausgestattet mit einem *Spellman* Generator (Spannung 50kV, Stromstärke 40 mA) und einem *KappaCCD* Detektor, welcher mit einer Mo-K α Strahlungsquelle ($\lambda = 0.7107$ Å) arbeitet, durchgeführt. Die Messung der Daten bei 123 K wurde mit der Software CrysAlis CCD ^[110] durchgeführt, die Datenreduzierung mit der Software CrysAlis RED. ^[111] Die Strukturlösungen und -verfeinerungen wurden unter Verwendung der Oberfläche WinGX ^[112] und der Programme SHELXS ^[82] und SHELXL ^[83] durchgeführt und abschließend mit der Software PLATON ^[113] überprüft. Für die Absorptionskorrektur wurde die Software SCALE3 ABSPACK ^[114] verwendet. In den Einkristallstrukturen wurden die Elektronendichten der OH- und NH₃-Wasserstoffatome lokalisiert und isotrop verfeinert. Die Wasserstoffatome der CH₃-Gruppen wurden in berechneten Positionen verfeinert.

6.3.5 Theoretische Berechnungen

Unterstützend zu den synthetischen Arbeiten wurden theoretische Berechnungen unter Verwendung des Programmpaketes *Gaussian 03W Version 6.0* durchgeführt. ^[115] Der Fokus lag hauptsächlich auf der Berechnung der Schwingungsfrequenzen und stellte eine Hilfe für die Zuordnung der experimentell gemessenen Schwingungsfrequenzen dar. Zur Auswahl einer geeigneten Rechenmethode wurden zunächst die berechneten Edukte mit experimentellen Daten verglichen. Die besten Übereinstimmungen wurden mit dem begrenzten Hybrid-Dichtefunktional RPBE1PBE ^[116] in Kombination mit dem Basissatz 6-311G ^[44-45] erzielt. Strukturoptimierungen

wurden unter Verwendung des GDIIS ^[117] Algorithmus mit festen oder sehr festen Konvergenzkriterien durchgeführt. Die berechneten Schwingungsfrequenzen wurden teilweise empirisch zur Annäherung an die experimentellen Daten skaliert.

6.4 Synthesen

6.4.1 Darstellung von D₃NSO₃

In ein Schlenkgefäß wird Amidoschwefelsäure (5.0 g, 51.5 mmol) vorgelegt und unter Erwärmen auf 60 °C in 5 mL D₂O gelöst. Nachdem die Lösung auf Raumtemperatur abgekühlt ist, wird überschüssiges D₂O im dynamischen Vakuum entfernt. Zur Vervollständigung des H/D-Austausches wird diese Prozedur zweimal wiederholt. Es werden farblose Kristalle von D₃NSO₃ in quantitativer Ausbeute erhalten.

6.4.2 Darstellung von D₃NCH₂SO₃

In ein Schlenkgefäß wird Aminomethansulfonsäure (5.0 g, 45.0 mmol) vorgelegt und unter Erwärmen auf 60 °C in 5 mL D₂O gelöst. Nachdem die Lösung auf Raumtemperatur abgekühlt ist, wird überschüssiges D₂O im dynamischen Vakuum entfernt. Zur Vervollständigung des H/D-Austausches wird diese Prozedur zweimal wiederholt. Es werden farblose Kristalle von D₃NCH₂SO₃ in quantitativer Ausbeute erhalten.

6.4.3 Darstellung von $D_3NC_2H_4SO_3$

In ein Schlenkgefäß wird Aminoethansulfonsäure (5.0 g, 40.0 mmol) vorgelegt und unter Erwärmen auf 60 °C in 5 mL D₂O gelöst. Nachdem die Lösung auf Raumtemperatur abgekühlt ist, wird überschüssiges D₂O im dynamischen Vakuum entfernt. Zur Vervollständigung des H/D-Austausches wird diese Prozedur zweimal wiederholt. Es werden farblose Kristalle von D₃NC₂H₄SO₃ in quantitativer Ausbeute erhalten.

6.4.4 Darstellung von CH₃SO₂ND₂

In ein Schlenkgefäß wird Methansulfonamid (5.0 g, 52.6 mmol) vorgelegt und unter Erwärmen auf 60 °C in 5 mL D₂O gelöst. Nachdem die Lösung auf Raumtemperatur abgekühlt ist, wird überschüssiges D₂O im dynamischen Vakuum entfernt. Zur Vervollständigung des H/D-Austausches wird diese Prozedur zweimal wiederholt. Es werden farblose Kristalle von $CH_3SO_2ND_2$ in quantitativer Ausbeute.
6.4.5 Darstellung von Thioschwefelsäure, H₂S₂O₃

Unter Schutzgas wird Natriumthiosulfat (158 mg, 1.0 mmol) in einen FEP-Reaktor vorgelegt und anschließend $\approx 2 \text{ mL}$ Fluorwasserstoff kondensiert. Unter schwachem Schütteln reagiert der Ansatz bei -65 °C für 10 min und danach wird überschüssiges Lösungsmittel bei -78 °C innerhalb von 12 h im dynamischen Vakuum entfernt.

6.4.6 Darstellung von Deutero-Thioschwefelsäure, $D_2S_2O_3$

Unter Schutzgas wird Natriumthiosulfat (158 mg, 1.0 mmol) in einen FEP-Reaktor vorgelegt und anschließend ≈ 2 mL DF dazu kondensiert. Unter schwachem Schütteln reagiert der Ansatz bei -65 °C für 10 min und danach wird überschüssiges Lösungsmittel bei -78 °C innerhalb von 12 h im dynamischen Vakuum entfernt.

6.4.7 Darstellung von Thioschwefelsäure aus H_2S und $ClSO_3H^{[39]}$

Unter Schutzgas wird Chlorsulfonsäure (117 mg, 1.0 mmol) in einen FEP-Reaktor vorgelegt und anschließend Schwefelwasserstoff (\approx 340 mg, 10 mmol) dazu kondensiert. Bei –78 °C reagiert der Ansatz, bis sich die Chlorsulfonsäure komplett auflöst. Entstehendes HCl wird durch einen Druckanstieg angezeigt. Das entstandene HCl sowie überschüssiges H₂S wird im dynamischen Vakuum bei –78 °C innerhalb von 12 h entfernt. Es verbleibt eine farblos, viskose Substanz im Reaktor.

6.4.8 Darstellung von protonierter Thioschwefelsäure, $H_3S_2O_3^+AsF_6^-$

Unter Schutzgas wird Natriumthiosulfat (158 mg, 1.0 mmol) in einen FEP-Reaktor vorgelegt und etwa 2 mL HF kondensiert. Nach Zugabe von Arsenpentafluorid (561 mg, 3.3 mmol) reagiert der Ansatz bei -65 °C. Ein schwach brauner pulveriger Feststoff fällt aus. Der überschüssige Fluorwasserstoff wird innerhalb von 12 h im dynamischen Vakuum bei -78 °C entfernt.

6.4.9 Darstellung von protonierter Thioschwefelsäure $H_3S_2O_3^+SbF_6^-$

Antimonpentafluorid (475 mg, 2.2 mmol) wird in einem FEP-Reaktor kondensiert. Danach wird $\approx 2 \text{ mL}$ wasserfreies HF über eine Edelstahl-Vakuum-Linie kondensiert und die beiden Reaktanden werden durchmischt. Das Supersäuregemisch wird bei –196 °C eingefroren und im N₂-Gegenstrom wird Natriumthiosulfat (116 mg, 0.73 mmol) zugegeben. Unter schwachem

Schütteln reagiert der Ansatz bei -65 °C für 10 min und danach wird überschüssiges Lösungsmittel bei -78 °C innerhalb von 12 h im dynamischen Vakuum entfernt.

6.4.10 Darstellung von deuterierter Thioschwefelsäure, $D_3S_2O_3^+AsF_6^-$

In einen FEP-Reaktor wird Natriumthiosulfat (158 mg, 1.0 mmol) vorgelegt. Ein Überschuss Deuteriumfluorid (≈ 2 mL) wird kondensiert und das Gemisch wird nach dem Auftauen durchmischt. Danach wird Arsenpentafluorid (561 mg, 3.3 mmol) durch Kondensation zugegeben. Mittels eines Kühlbads werden die Reaktanden auf -55 °C erwärmt und die Reaktion wird für 5 min unter schwachem Schütteln durchgeführt. Das Produkt. welches bis -25 °C unzersetzt bleibt, fällt als schwach gelber, pulveriger Feststoff aus. Innerhalb von 12 h wird das überschüssige DF im dynamischen Vakuum bei -78 °C entfernt.

6.4.11 Darstellung von deuterierter Thioschwefelsäure, $D_3S_2O_3^+SbF_6^-$

Antimonpentafluorid (445 mg, 2.1 mmol) wird in einem FEP-Reaktor durch Kondensation vorgelegt. Danach wird ≈ 2 mL wasserfreies DF über eine Edelstahl-Vakuum-Linie kondensiert und die beiden Reaktanden werden durchmischt. Das Supersäuregemisch wird bei -196 °C eingefroren und im N₂-Gegenstrom wird Natriumthiosulfat (108 mg, 0.68 mmol) zugegeben. Unter schwachem Schütteln reagiert der Ansatz bei -65 °C für 10 min und danach werden die leichtflüchtigen Reaktionskomponenten bei -78 °C innerhalb von 12 h im dynamischen Vakuum entfernt.

6.4.12 Darstellung von Dithionsäure, $H_2S_2O_4$

In einen FEP-Reaktor wird Natriumdithionit (261 mg, 1.50 mmol) vorgelegt. Das Edukt wird für 1 h dem dynamischen Vakuum überlassen, bevor ein Überschuss HF (\approx 2 mL) kondensiert wird. Mittels eines Kühlbads werden die Reaktanden auf -60 °C erwärmt und die Reaktion wird für 10 min unter schwachem Schütteln durchgeführt, wobei sofort ein farbloser Niederschlag entsteht. Innerhalb von 36 h wird überschüssiges HF im dynamischen Vakuum bei -78 °C entfernt.

6.4.13 Darstellung von Deutero-Dithionsäure, $D_2S_2O_4$

In einen FEP-Reaktor wird Natriumdithionit (261 mg, 1.50 mmol) vorgelegt. Das Edukt wird für 1 h dem dynamischen Vakuum überlassen, bevor ein Überschuss DF (≈ 2 mL) kondensiert wird. Mittels eines Kühlbads werden die Reaktanden auf -60 °C erwärmt und die Reaktion wird für

10 min unter schwachem Schütteln durchgeführt, wobei sofort ein farbloser Niederschlag entsteht. Innerhalb von 36 h wird überschüssiges HF im dynamischen Vakuum bei –78 °C entfernt.

6.4.14 Darstellung von protonierter Dithioniger Säure, $H_3S_2O_4^+A_5F_6^-$

In einen FEP-Reaktor wird Natriumdithionit (174 mg, 1.0 mmol) vorgelegt. Das Edukt wird für 1 h dem dynamischen Vakuum überlassen. bevor ein Überschuss HF kondensiert (≈ 2 mL) und das Gemisch nach dem Auftauen durchmischt wird. Danach wird Arsenpentafluorid (561 mg, 3.3 mmol) durch Kondensation zugegeben. Mittels eines Kühlbads werden die Reaktanden auf –65 °C erwärmt und die Reaktion wird für 5 min unter schwachem Schütteln durchgeführt. Das Produkt. welches bis –40°C unzersetzt bleibt, fällt als farbloser Feststoff aus. Innerhalb von 12 h wird das überschüssige HF im dynamischen Vakuum bei –78 °C entfernt.

6.4.15 Darstellung von protonierter Dithioniger Säure, $H_3S_2O_4^+SbF_6^-$

Antimonpentafluorid (470 mg, 2.2 mmol) wird in einem FEP-Reaktor durch Kondensation vorgelegt. Danach wird ≈ 2 mL wasserfreies HF über eine Edelstahl-Vakuum-Linie kondensiert und die beiden Reaktanden werden durchmischt. Das Supersäuregemisch wird bei –196 °C eingefroren und im N₂-Gegenstrom wird Natriumdithionit (117 mg, 0.7 mmol) zugegeben. Unter schwachem Schütteln reagiert der Ansatz bei –65 °C für 10 min und danach werden die leichtflüchtigen Reaktionskomponenten bei –78 °C innerhalb von 12 h im dynamischen Vakuum entfernt.

6.4.16 Darstellung von deuterierter Dithioniger Säure, $D_3S_2O_4^+AsF_6^-$

In einen FEP-Reaktor wird Natriumdithionit (174 mg, 1.0 mmol) vorgelegt. Das Edukt wird für 1 h dem dynamischen Vakuum überlassen, bevor ein Überschuss DF (≈ 2 mL) kondensiert und das Gemisch nach dem Auftauen durchmischt wird. Danach wird Arsenpentafluorid (561 mg, 3.3 mmol) durch Kondensation zugegeben. Mittels eines Kühlbads werden die Reaktanden auf –65 °C erwärmt und die Reaktion wird für 5 min unter schwachem Schütteln durchgeführt. Das Produkt. welches bis –40 °C unzersetzt bleibt, fällt als farbloser Feststoff aus. Innerhalb von 12 h wird das überschüssige HF im dynamischen Vakuum bei –78 °C entfernt.

6.4.17 Darstellung von deuterierter Dithioniger Säure, $D_3S_2O_4^+SbF_6^-$

Antimonpentafluorid (690 mg, 3.2 mmol,) wird in einem FEP-Reaktor durch Kondensation

vorgelegt. Danach wird $\approx 2 \text{ mL}$ wasserfreies DF über eine Edelstahl-Vakuum-Linie kondensiert und die beiden Reaktanden werden durchmischt. Das Supersäuregemisch wird bei -196 °C eingefroren und im N₂-Gegenstrom wird Natriumdithionit (192 mg, 1.1 mmol) zugegeben. Unter schwachem Schütteln reagiert der Ansatz bei -65 °C für 10 min und danach werden die leichtflüchtigen Reaktionskomponenten bei -78 °C innerhalb von 12 h im dynamischen Vakuum entfernt.

6.4.18 Darstellung von protonierter Dischwefliger Säure, $H_3S_2O_5^+AsF_6^-$

In einen FEP-Reaktor wird Natriumdisulfit (190 mg, 1.0 mmol) vorgelegt. Das Edukt wird für 1 h dem dynamischen Vakuum überlassen, bevor ein Überschuss HF kondensiert (≈ 2 mL) und das Gemisch nach dem Auftauen durchmischt wird. Danach wird Arsenpentafluorid (561 mg, 3.3 mmol) durch Kondensation zugegeben. Mittels eines Kühlbads werden die Reaktanden auf -65 °C erwärmt und reagieren für 5 min unter schwachem Schütteln. Das Produkt fällt als farbloser Feststoff aus. Innerhalb von 12 h wird überschüssiges HF im dynamischen Vakuum bei -78 °C entfernt.

6.4.19 Darstellung von protonierter Dischwefliger Säure, $H_3S_2O_5^+SbF_6^-$

Antimonpentafluorid (490 mg, 2.3 mmol) wird in einem FEP-Reaktor durch Kondensation vorgelegt. Danach wird ≈ 2 mL wasserfreies HF über eine Edelstahl-Vakuum-Linie kondensiert und die beiden Reaktanden werden durchmischt. Das Supersäuregemisch wird bei -196 °C eingefroren und im N₂-Gegenstrom wird Natriumdisulfit (143 mg, 0.75 mmol) zugegeben. Unter schwachem Schütteln reagiert der Ansatz bei -65 °C für 10 min und danach wird überschüssiges HF bei -78 °C innerhalb von 12 h im dynamischen Vakuum entfernt.

6.4.20 Darstellung von deuterierter Dischwefliger Säure, $D_3S_2O_5^+AsF_6^-$

In einen FEP-Reaktor wird Natriumdisulfit (190 mg, 1.0 mmol) vorgelegt. Das Edukt wird für 1 h dem dynamischen Vakuum überlassen, bevor ein Überschuss DF (≈ 2 mL) kondensiert und das Gemisch nach dem Auftauen durchmischt wird. Danach wird Arsenpentafluorid (561 mg, 3.3 mmol) durch Kondensation zugegeben. Mittels eines Kühlbads werden die Reaktanden auf -60 °C erwärmt und reagieren für 10 min unter schwachem Schütteln. Das Produkt fällt als blassgelber, pulveriger Feststoff aus. Innerhalb von 12 h wird überschüssiges DF im dynamischen Vakuum bei –78 °C entfernt.

6.4.21 Darstellung von deuterierter Dischwefliger Säure, $D_3S_2O_5^+SbF_6^-$

Antimonpentafluorid (610 mg, 2.8 mmol) wird in einem FEP-Reaktor durch Kondensation vorgelegt. Danach wird ≈ 2 mL wasserfreies DF über eine Edelstahl-Vakuum-Linie kondensiert und die beiden Reaktanden werden durchmischt. Das Supersäuregemisch wird bei -196 °C eingefroren und im N₂-Gegenstrom wird Natriumdisulfit (178 mg, 0.93 mmol) zugegeben. Unter schwachem Schütteln reagiert der Ansatz bei -65 °C für 5 min und danach wird überschüssiges HF bei -78 °C innerhalb von 12 h im dynamischen Vakuum entfernt.

6.4.22 Darstellung von protonierter Dithionsäure, $H_3S_2O_6^+$ SbF $_6^-$

Antimonpentafluorid (531 mg, 2.45 mmol) wird in einem FEP-Reaktor vorgelegt. Danach wird \approx 2 mL wasserfreies HF über eine Edelstahl-Vakuum-Linie kondensiert und die beiden Reaktanden werden durchmischt. Das Supersäuregemisch wird bei –196 °C eingefroren und im N₂-Gegenstrom wird Natriumdithionat (168 mg, 0.82 mmol) zugegeben. Unter schwachem Schütteln reagiert der Ansatz bei –60 °C für 10 min, wobei sofort ein farbloser Niederschlag ausfällt. Anschließend werden die leichtflüchtigen Reaktionskomponenten bei –78 °C innerhalb von 36 h im dynamischen Vakuum entfernt.

6.4.23 Darstellung von deuterierter Dithionsäure, $D_3S_2O_6^+SbF_6^-$

Antimonpentafluorid (531 mg, 2.45 mmol) wird in einem FEP-Reaktor vorgelegt. Danach wird \approx 2 mL wasserfreies DF über eine Edelstahl-Vakuum-Linie kondensiert und die beiden Reaktanden werden durchmischt. Das Supersäuregemisch wird bei –196 °C eingefroren und im N₂-Gegenstrom wird Natriumdithionat (168 mg, 0.82 mmol) zugegeben. Unter schwachem Schütteln reagiert der Ansatz bei –60 °C für 10 min, wobei sofort ein farbloser Niederschlag entsteht. Anschließend werden die leichtflüchtigen Reaktionskomponenten bei –78 °C innerhalb von 36 h im dynamischen Vakuum entfernt.

6.4.24 Darstellung von Dithionsäure, $H_2S_2O_6$

In einen FEP-Reaktor wird Natriumdithionat (309 mg, 1.50 mmol) vorgelegt. Das Edukt wird für 1 h dem dynamischen Vakuum überlassen, bevor ein Überschuss HF (≈ 2 mL) kondensiert wird. Mittels eines Kühlbads werden die Reaktanden auf -60 °C erwärmt und die Reaktion wird für 10 min unter schwachem Schütteln durchgeführt, wobei sofort ein farbloser Niederschlag entsteht. Innerhalb von 36 h wird das überschüssige HF im dynamischen Vakuum bei -78 °C entfernt.

6.4.25 Darstellung von Deutero-Dithionsäure, $D_2S_2O_6$

In einen FEP-Reaktor wird Natriumdithionat (309 mg, 1.50 mmol) vorgelegt. Das Edukt wird für 1 h dem dynamischen Vakuum überlassen, bevor ein Überschuss DF kondensiert ($\approx 2 \text{ mL}$) wird. Mittels eines Kühlbads werden die Reaktanden auf -60 °C erwärmt und die Reaktion wird für 10 min unter schwachem Schütteln durchgeführt, wobei sofort ein farbloser Niederschlag entsteht. Innerhalb von 36 h wird das überschüssige DF im dynamischen Vakuum bei -78 °C entfernt.

6.4.26 Darstellung von protonierter Schwefelsäure, $(H_3SO_4^+)_n(GeF_5^-)_n$

In einen FEP-Reaktor wird Kaliumsulfat (261 mg, 1.5 mmol) vorgelegt. Das Salz wird für 1 h dem dynamischen Vakuum überlassen bevor ein Überschuss HF kondensiert (≈ 2 mL) und das Gemisch nach dem Auftauen durchmischt wird. Danach wird Germaniumtetrafluorid (446 mg, 3.0 mmol) durch Kondensation zugegeben. Mittels eines Kühlbads werden die Reaktanden auf -60 °C erwärmt und reagieren für 10 min unter schwachem Schütteln. Das Produkt fällt als farblose zähe Masse aus. Innerhalb von 12 h wird das überschüssige HF im dynamischen Vakuum bei -78 °C entfernt.

6.4.27 Darstellung von deuterierter Schwefelsäure, $(D_3SO_4^+)_n(GeF_5^-)_n$

In einen FEP-Reaktor wird Kaliumsulfat (261 mg, 1.5 mmol) vorgelegt. Das Salz wird für 1 h dem dynamischen Vakuum überlassen bevor ein Überschuss DF (≈ 2 mL) kondensiert und das Gemisch nach dem Auftauen durchmischt wird. Danach wird Germaniumtetrafluorid (446 mg 3.0 mmol) durch Kondensation zugegeben. Mittels eines Kühlbads werden die Reaktanden auf -60 °C erwärmt und reagieren für 10 min unter schwachem Schütteln. Das Produkt fällt als farblose zähe Masse aus. Innerhalb von 12 h wird das überschüssige DF im dynamischen Vakuum bei –78 °C entfernt.

6.4.28 Darstellung von protonierter Schwefelsäure, $H_3SO_4^+AsF_6^-$

In einen FEP-Reaktor wird Kaliumsulfat (261 mg, 1.5 mmol) vorgelegt. Das Salz wird für 1 h dem dynamischen Vakuum überlassen bevor ein Überschuss HF (≈ 2 mL) kondensiert und das Gemisch nach dem Auftauen durchmischt wird. Danach wird Arsenpentafluorid (561 mg, 3.3 mmol) durch Kondensation zugegeben. Mittels eines Kühlbads werden die Reaktanden auf -60 °C erwärmt und reagieren für 10 min unter schwachem Schütteln. Das Produkt fällt als farbloser Niederschlag aus. Innerhalb von 12 h wird das überschüssige HF im dynamischen Vakuum bei -78 °C entfernt.

6.4.29 Darstellung von deuterierter Schwefelsäure, $D_3SO_4^+AsF_6^-$

In einen FEP-Reaktor wird Kaliumsulfat (261 mg, 1.5 mmol) vorgelegt. Das Salz wird für 1 h dem dynamischen Vakuum überlassen bevor ein Überschuss DF (≈ 2 mL) kondensiert und das Gemisch nach dem Auftauen durchmischt wird. Danach wird Arsenpentafluorid (561 mg, 3.3 mmol) durch Kondensation zugegeben. Mittels eines Kühlbads werden die Reaktanden auf -60 °C erwärmt und reagieren für 10 min unter schwachem Schütteln. Das Produkt fällt als farbloser Niederschlag aus. Innerhalb von 12 h wird das überschüssige DF im dynamischen Vakuum bei –78 °C entfernt.

6.4.30 Darstellung von protonierter Schwefelsäure, $H_3SO_4^+SbF_6^-$

Antimonpentafluorid (575 mg, 2.70 mmol) wird in einem FEP-Reaktor vorgelegt. Danach wird ≈ 2 mL wasserfreies HF über eine Edelstahl-Vakuum-Linie kondensiert und die beiden Reaktanden werden durchmischt. Das Supersäuregemisch wird bei –196 °C eingefroren und im N₂-Gegenstrom wird Kaliumsulfat (153 mg, 0.88 mmol) zugegeben. Unter schwachem Schütteln reagiert der Ansatz bei –60 °C für 10 min, wobei sofort ein farbloser Niederschlag entsteht. Anschließend werden die leichtflüchtigen Reaktionskomponenten bei –78 °C innerhalb von 12 h im dynamischen Vakuum entfernt.

6.4.31 Darstellung von deuterierter Schwefelsäure, $D_3SO_4^+SbF_6^-$

Antimonpentafluorid (430 mg, 1.98 mmol) wird in einem FEP-Reaktor vorgelegt. Danach wird ≈ 2 mL wasserfreies HF über eine Edelstahl-Vakuum-Linie kondensiert und die beiden Reaktanden werden durchmischt. Das Supersäuregemisch wird bei –196 °C eingefroren und im N₂-Gegenstrom wird Kaliumsulfat (116 mg, 0.67 mmol) zugegeben. Unter schwachem Schütteln reagiert der Ansatz bei –60 °C für 10 min, wobei sofort ein farbloser Niederschlag entsteht. Anschließend werden die leichtflüchtigen Reaktionskomponenten bei –78 °C innerhalb von 12 h im dynamischen Vakuum entfernt.

6.4.32 Darstellung von Hydroxydimethylsulfoniumdecahexafluoridogermanat, $[(CH_3)_2SOH^+]_4Ge_3F_{16}^{4-}$

Dimethylsulfoxid (78 mg, 1.0 mmol) wird in einen FEP-Reaktor überführt, bevor 1.5 g HF dazu kondensiert wird. Dann wird Germaniumtetrafluorid (111 mg, 0.75 mmol) auf das gefrorene HF kondensiert. Das Reaktionsgemisch wird für fünf Minuten auf -60 °C erwärmt und dann auf -78 °C gekühlt. Überschüssiges HF wird im dynamischen Vakuum bei -78 °C für 36 h entfernt. Einkristalle werden durch langsames Entfernen des Lösungsmittels aus einer SO₂-Lösung bei -40 °C erhalten.

6.4.33 Darstellung von protonierter Amidoschwefelsäure, $NH_3SO_3H^+A_5F_6^-$

In einen FEP-Reaktor wird Amidoschwefelsäure (97.1 mg, 1.0 mmol) vorgelegt. Ein Überschuss HF (≈ 2 mL) wird kondensiert und das Gemisch wird nach dem Auftauen durchmischt. Danach wird Arsenpentafluorid (187 mg, 1.1 mmol) durch Kondensation zugegeben. Mittels eines Ultraschallkühlbads werden die Reaktanden auf -25 °C erwärmt und die Reaktion wird unter Ultraschalleinwirkung wird für 1 h durchgeführt. Das Produkt, welches bis -10 °C unzersetzt bleibt, fällt als farbloser Feststoff aus. Innerhalb von 12 h wird das überschüssige HF im dynamischen Vakuum bei -78 °C entfernt.

6.4.34 Darstellung von protonierter Amidoschwefelsäure, $NH_3SO_3H^+SbF_6^-$

Antimonpentafluorid (475 mg, 2.2 mmol) wird in einem FEP-Reaktor durch Kondensation vorgelegt. Danach wird ≈ 2 mL wasserfreies HF über eine Edelstahl-Vakuum-Linie kondensiert und die beiden Reaktanden werden durchmischt. Das Supersäuregemisch wird bei –196 °C eingefroren und im N₂-Gegenstrom wird Amidoschwefelsäure (214 mg, 2.2 mmol) zugegeben. Im Ultraschallbad wird die Reaktion bei –25 °C für 1 h durchgeführt und danach wird überschüssiges HF bei –78 °C innerhalb von 12 h im dynamischen Vakuum entfernt.

6.4.35 Darstellung von protonierter Deutero-Amidoschwefelsäure, $ND_3SO_3D^+AsF_6^-$

In einen FEP-Reaktor wird d₃-Amidoschwefelsäure (100 mg, 1.0 mmol) vorgelegt. Ein Überschuss DF (≈ 2 mL) wird kondensiert und das Gemisch wird nach dem Auftauen durchmischt. Danach wird Arsenpentafluorid (187 mg, 1.1 mmol) durch Kondensation zugegeben. Mittels eines Ultraschallkühlbads werden die Reaktanden auf -25 °C erwärmt und die Reaktion wird unter Ultraschalleinwirkung für 1 h durchgeführt. Das Produkt, welches bis -10 °C

unzersetzt bleibt, fällt als farbloser Feststoff aus. Innerhalb von 12 h wird das überschüssige DF im dynamischen Vakuum bei –78 °C entfernt.

6.4.36 Darstellung von protonierter Deutero-Amidoschwefelsäure, $ND_3SO_3D^+SbF_6^-$

Antimonpentafluorid (475 mg, 2.2 mmol) wird in einem FEP-Reaktor durch Kondensation vorgelegt. Danach wird \approx 2 mL wasserfreies DF über eine Edelstahl-Vakuum-Linie kondensiert und die beiden Reaktanden werden durchmischt. Das Supersäuregemisch wird bei -196 °C eingefroren und im N₂-Gegenstrom wird d₃-Amidoschwefelsäure (217 mg, 2.2 mmol) zugegeben. Im Ultraschallbad reagiert der Ansatz bei -25 °C für 1 h und danach wird überschüssiges DF bei -78 °C innerhalb von 12 h im dynamischen Vakuum entfernt.

6.4.37 Darstellung von protonierter Aminomethansulfonsäure, $NH_3CH_2SO_3H^+A_5F_6^-$

In einen FEP-Reaktor wird Aminomethansulfonsäure (111 mg, 1.0 mmol) vorgelegt. Ein Überschuss HF (≈ 2 mL) wird kondensiert und das Gemisch wird nach dem Auftauen durchmischt. Danach wird Arsenpentafluorid (255 mg, 1.5 mmol) durch Kondensation zugegeben. Die Reaktanden werden für fünf Minuten auf -25 °C erwärmt. Das Produkt fällt als farbloser Niederschlag aus und bleibt bei Raumtemperatur unter Luftausschluss unzersetzt. Innerhalb von 12 h wird das überschüssige HF im dynamischen Vakuum bei -78 °C entfernt.

6.4.38 Darstellung von protonierter Aminomethansulfonsäure, $NH_3CH_2SO_3H^+SbF_6^-$

Antimonpentafluorid (360 mg, 1.7 mmol,) wird in einem FEP-Reaktor durch Kondensation vorgelegt. Danach wird ≈ 2 mL wasserfreies HF über eine Edelstahl-Vakuum-Linie kondensiert und die beiden Reaktanden werden durchmischt. Das Supersäuregemisch wird bei -196 °C eingefroren und im N₂-Gegenstrom wird Aminomethansulfonsäure (185 mg, 1.7 mmol) zugegeben. Im Ultraschallbad wird die Reaktion -25 °C für 1 h durchgeführt und danach wird überschüssiges HF bei -78 °C innerhalb von 12 h im dynamischen Vakuum entfernt.

6.4.39 Darstellung von protonierter Deutero-Aminomethansulfonsäure, $ND_3CH_2SO_3D^+$ AsF_6^-

In einen FEP-Reaktor wird d₃-Aminomethansulfonsäure (111 mg, 1.0 mmol) vorgelegt. Ein Überschuss DF (≈ 2 mL) wird kondensiert und das Gemisch wird nach dem Auftauen durchmischt. Danach wird Arsenpentafluorid (255 mg, 1.5 mmol) durch Kondensation

zugegeben. Die Reaktanden werden für fünf Minuten auf -25 °C erwärmt. Das Produkt fällt als farbloser Niederschlag aus und bleibt bei Raumtemperatur unter Luftausschluss unzersetzt. Innerhalb von 12 h wird das überschüssige DF im dynamischen Vakuum bei -78 °C entfernt.

6.4.40 Darstellung von protonierter Deutero-Aminomethansulfonsäure, $ND_3CH_2SO_3D^+$ SbF_6^-

Antimonpentafluorid (0.81 mmol, 175 mg) wird in einem FEP-Reaktor durch Kondensation vorgelegt. Danach wird ≈ 2 mL wasserfreies DF über eine Edelstahl-Vakuum-Linie kondensiert und die beiden Reaktanden werden durchmischt. Das Supersäuregemisch wird bei -196 °C eingefroren und im N₂-Gegenstrom wird d₃-Aminomethansulfonsäure (92.1 mg, 0.81 mmol) zugegeben. Im Ultraschallbad wird die Reaktion bei -25 °C für 1 h durchgeführt und danach wird überschüssiges DF bei -78 °C innerhalb von 12 h im dynamischen Vakuum entfernt.

6.4.41 Darstellung von protoniertem Methansulfonamid, $CH_3SO_2NH_3^+AsF_6^-$

Methansulfonamid (95.0 mg, 1.0 mmol,) wird im N₂-Gegenstrom im FEP-Reaktor vorgelegt. Nach Evakuierung wird der Reaktor mit flüssigem Stickstoff gekühlt und Arsenpentafluorid (187 mg, 1.1 mmol) und Wasserstofffluorid im Überschuss hinzukondensiert. Nach Erwärmen auf -50 °C erfolgt die Reaktion, durch welche nach 5 min das Produkt in quantitativer Ausbeute in Form eines farblosen Niederschlages entsteht. Überschüssiges HF wird im dynamischen Vakuum für 12 h bei -78 °C entfernt.

6.4.42 Darstellung von protoniertem Methansulfonamid, $CH_3SO_2NH_3^+SbF_6^-$

In den passivierten FEP-Reaktor wird Antimonpentafluorid (76.0 mg, 0.35 mmol) und dann Wasserstofffluorid im Überschuss kondensiert. Anschließend wird Methansulfonamid (34.0 mg 0.35 mmol) im N₂-Gegenstrom in den Reaktor gegeben. Es wird auf -50 °C erwärmt, wobei es zur Produktbildung in Form eines farblosen Niederschlages kommt. Das Lösungsmittel wird im dynamischen Vakuum für 12 h bei -78 °C entfernt.

6.4.43 Darstellung von protoniertem Deutero-Methansulfonamid, $CH_3SO_2ND_3^+AsF_6^-$

D₂-Methansulfonamid (95.0 mg, 1.0 mmol,) wird im N₂-Gegenstrom im Reaktor vorgelegt. Nach Evakuierung wird Arsenpentafluorid (187.0 mg, 1.1 mmol) und Deuteriumfluorid im Überschuss hinzukondensiert. Nach Erwärmen auf -50 °C erfolgt die Reaktion, durch welche nach 5 min das

Produkt in quantitativer Ausbeute in Form eines farblosen Niederschlages entsteht. Überschüssiges DF wird im dynamischen Vakuum für 12 h bei –78 °C entfernt.

6.4.44 Darstellung von protoniertem Deutero-Methansulfonamid, $CH_3SO_2ND_3^+SbF_6^-$

In den passivierten Reaktor wird zunächst Antimonpentafluorid (76.0 mg, 0.35 mmol,) und dann Wasserstofffluorid im Überschuss kondensiert. Anschließend wird d₂-Methansulfonamid (34.0 mg 0.35 mmol,) im N₂-Gegenstrom in den Reaktor gegeben. Es wird auf -50 °C erwärmt, dabei kommt es zur Produktbildung in Form eines farblosen Niederschlages. Das Lösungsmittel wird im dynamischen Vakuum für 12 h bei -78 °C entfernt.

7 Literatur

- G. A. Olah, S. K. S. Prakash, J. Sommer, A. Molnar, *Superacid Chemistry*, 2 ed., John Wiley & Sons, Inc., New Jersey, 2009.
- [2] S. Arrhenius, Z. Phys. Chem. 1887, 1, 637.
- [3] J. N. Bronstedt, Recl. Trav. Chim. Pays-Bas 1923, 42, 718-728.
- [4] T. M. Lowry, Chem. Ind. 1923, 42, 43-47.
- [5] S. P. L. Sorensen, *Biochem. Z.* **1909**, *24*, 131.
- [6] J. B. Conant, N. F. Hall, J. Am. Chem. Soc. 1927, 49, 3062-3070.
- [7] G. A. Olah, Angewandte Chemie International Edition in English 1973, 12, 173-212.
- [8] G. A. Olah, G. K. S. Prakash, J. Sommer, *Science* 1979, 206, 13-20.
- [9] R. J. Gillespie, T. E. Peel, Adv. Phys. Org. Chem. 1971, 9, 1.
- [10] R. J. Gillespie, T. E. Peel, J. Am. Chem. Soc. 1973, 95, 5173-5178.
- [11] J. Sommer, S. Schwartz, P. Rimmelin, P. Canivet, J. Am. Chem. Soc. 1978, 100, 2576-2577.
- [12] A. Müller, B. Krebs, Sulfur Its Significance for Chemistry, for the Geo-, Bio- and Cosmosphere and Technology, Elsevier, Amsterdam, 1984.
- [13] R. Steudel, *Chemistry of Non-metals*, Walter de Gruyter, 2008.
- [14] E. Riedel, C. Janiak, Anorganische Chemie, Walter de Gruyter, Berlin/New York, 2011.
- [15] R. Steudel, B. Eckert, Top. Curr. Chem. 2003, 230, 58-68.
- [16] W. Botsch, Chem. unserer Zeit 2001, 35, 324-331.
- [17] B. Schreiner, Chem. unserer Zeit 2008, 42, 378-392.
- [18] A. F. Holleman, E. Wiberg, N. Wiberg, *Lehrbuch der Anorganischen Chemie*, Walter de Gruyter, Berlin/New York, 2007.
- [19] J. D'Ans, W. Friederich, Ber. dtsch. chem. Ges. 1910, 43, 1880-1882.
- [20] R. Steudel, Y. Steudel, J. Phys. Chem. A 2009, 113, 9920-9933.
- [21] R. Seelbinder, Nadine R. Goetz, J. Weber, R. Minkwitz, Andreas J. Kornath, *Chem. Eur. J.* 2010, *16*, 1026-1032.
- [22] R. Minkwitz, R. Seelbinder, R. Schöbel, Angew. Chem. Int. Ed. 2002, 41, 111-114.
- [23] M. Hopfinger, Master thesis, Ludwig-Maximillians-Universität (München), 2008.
- [24] K. O. Christe, D. A. Dixon, D. McLemore, W. W. Wilson, J. A. Sheehy, J. A. Boatz, J. Fluorine Chem. 2000, 101, 151-153.

- [25] T. Soltner, PhD thesis, Ludwig-Maximilian University 2011.
- [26] B. Elvers, S. Hawkins, W. Russey, in Ullmann's Encyclopedia of Industrial Chemistry, 5th ed., Vol. 25A, VCH, Weinheim, Germany, 1994, p. 447.
- [27] A. F. Holleman, E. Wiberg, N. Wiberg, *Lehrbuch der Anorganischen Chemie*, Walter de Gruyter, Berlin, New York, 2007.
- [28] J. A. Cole, S. J. Ferguson, in *The Nitrogen and Sulfur Cycles*, Cambridge University Press, Cambridge, U.K., 1988.
- [29] N.-U. Frigaard, C. Dahl, in *Advances in Microbial Physiology, Vol. Volume 54* (Ed.: K. P. Robert), Academic Press, **2008**, pp. 103-200.
- [30] A. F. Holleman, E. Wiberg, *Lehrbuch der Anorganischen Chemie*, Walter de Gruyter, Berlin New York, 2007.
- [31] F. A. Cotton, G. Wilkinson, in *Advanced Inorganic Chemistry*, 5th Ed., Wiley, New York, 1988, p. 520.
- [32] in Anorganische Chemie, 4.Aufl., VCH, Weinheim, 1985, p. 543.
- [33] A. G. Massey, in *Main Group Chem.*, Horwood, New York, **1990**, p. 332.
- [34] N. N. Greenwood, A. Earnshaw, in *Chemistry of the Elements*, Pergamon, Oxford, 1984, p. 835.
- [35] N. N. Greenwood, A. Earnshaw, in *Chemie der Elemente*, VCH, Weinheim, 1988, p. 925.
- [36] R. Steudel, A. Prenzel, Z. Naturforsch. 1989, 44b, 1499-1502.
- [37] K. Miaskiewicz, R. Steudel, Angew. Chem. 1992, 104, 87-89.
- [38] M. Schmidt, Z. anorg. allg. Chem. 1957, 289, 141-157.
- [39] M. Schmidt, G. Talsky, Angew. Chem. 1958, 70, 312-313.
- [40] M. Schmidt, G. Talsky, Chem. Ber. 1959, 92, 1539-1549.
- [41] C. S. Venkateswaran, Proc. Indian Acad. Sci. 1936, 345.
- [42] J. Weidlein, U. Müller, K. Dehnicke, *Schwingungsspektroskopie*, Georg Thieme Verlag, Stuttgart, 1988.
- [43] J.-C. Culmann, M. Fauconet, R. Jost, J. Sommer, New J. Chem. 1999, 23, 863-867.
- [44] R. Krishnan, J. S. B. R. Seeger, J. A. Pople, J. Chem. Phys. 1980, 72, 650-654.
- [45] A. D. McLean, G. S. Chandler, J. Chem. Phys. 1980, 72, 5639-5648.
- [46] R. Steudel, André H. Otto, Eur. J. Inorg. Chem. 2000, 2000, 2379-2386.
- [47] E. G. Il'in, A. N. Zozulin, Y. A. Buslaev, *Doklady Physical Chemistry* **2002**, *384*, 109-112.
- [48] A. F. Holleman, E. Wiberg, N. Wiberg, Lehrbuch der Anorganischen Chemie, Walter de

Gruyter, Berlin, 2007.

- [49] A. Simon, H. Küchler, Z. Anorg. Chem. 1949, 260, 161-184.
- [50] J. Dunitz, Acta Cryst. 1956, 9, 579-586.
- [51] Y. Drozdova, R. Steudel, R. H. Hertwig, W. Koch, T. Steiger, J. Phys. Chem. A 1998, 102, 990-996.
- [52] H. Takahashi, N. Kaneko, K. Miwa, Spectrochim. Acta 1982, 38A, 1147-1153.
- [53] A. F. Holleman, E. Wiberg, N. Wiberg, *Lehrbuch der Anorganischen Chemie*, De Gruyter, Berlin, New York, 2007.
- [54] A. H. Otto, R. Steudel, Eur. J. Inorg. Chem. 2001, 2001, 3047-3054.
- [55] J. Meyer, Z. anorg. allg. Chem. 1935, 222, 337-344.
- [56] T. Meissner, F. Eisenbeiss, B. Jastorff, J. Chromatogr. A 1999, 838, 81-88.
- [57] J. C. Fischer, M. Wartel, Bull. Soc. Chim. Fr. 1972.
- [58] K. Ståhl, T. Balic-Zunic, F. da Silva, K. Michael Eriksen, R. W. Berg, R. Fehrmann, J. Solid State Chem. 2005, 178, 1697-1704.
- [59] C. Logemann, M. S. Wickleder, *Inorg. Chem.* 2011, 50, 11111-11116.
- [60] C. Logemann, T. Klüner, M. S. Wickleder, Chem. Eur. J. 2011, 17, 758-760.
- [61] R. J. Gillespie, E. A. Robinson, **1961**.
- [62] G. E. Walrafen, *The Journal of Chemical Physics* **1964**, *40*, 2326-2341.
- [63] A. Pietzsch, GB 1023252, Germany, **1910**.
- [64] W. D. Bancroft, *Transactions of The Electrochemical Society* **1937**, *71*, 195-205.
- [65] W. Thiele, H. Matschiner, Chem. Tech. (Leipzig) 1977, 29, 148-153.
- [66] K. D. Cleaver, J. E. D. Davies, J. Raman Spectrosc. 1980, 9, 376-380.
- [67] H. H. Eysel, G. Rösinger, J. Raman Spectrosc. 1987, 18, 123-127.
- [68] N. F. Hall, J. B. Conant, J. Am. Chem. Soc. 1927, 49, 3047-3061.
- [69] A. C. Chapman, L. E. Thrilwell, Spectrochim. Acta 1964, 20, 937-947.
- [70] T. E. Mallouk, B. Desbat, N. Bartlett, *Inorg. Chem.* **1984**, *23*, 3160-3166.
- [71] M. Hopfinger, K. Lux, A. Kornath, ChemPlusChem 2012, 77, 476-481.
- [72] J. Falbe, M. Regnitz, Chemie Lexikon/ Römpp, Thieme, Stuttgart/New York, 1990.
- [73] N. S. Panina, Y. N. Kukushkin, Zh. Neorg. Khim. 1999, 44, 1334-1336.
- [74] F. Tureček, J. Phys. Chem. A 1998, 102, 4703-4713.
- [75] Y. N. Kukushkin, V. K. Krylov, Y. E. Larionova, M. V. Bavina, Z. A. Khromenkova, *Zh. Obshch. Khim.* 1995, 65, 881-883.

- [76] G. A. Olah, A. T. Ku, J. A. Olah, J. Org. Chem. 1970, 35, 3904-3908.
- [77] M. Spiekermann, B. Schrader, Angew. Chem. 1977, 89, 200-201.
- [78] G. A. Olah, D. J. Donovan, H. C. Lin, H. Mayr, P. Andreozzi, G. Klopman, J. Org. Chem. 1978, 43, 2268-2272.
- [79] E. Alessio, G. Balducci, M. Calligaris, G. Costa, W. M. Attia, G. Mestroni, *Inorg. Chem.* 1991, 30, 609-618.
- [80] B. Viossat, P. Khodadad, N. Rodier, J. Mol. Struct. 1981, 71, 237-244.
- [81] M. Hesse, H. Meier, B. Zeeh, Spektroskopische Methoden in der organischen Chemie, Thieme, Stuttgart, New York, 2005.
- [82] G. M. Sheldrick, SHELXS-97, Program for Crystal Structure Solution, University of Göttingen (Germany), 1997.
- [83] G. M. Sheldrick, *SHELXL-97, Programm for the Refinement of Crystal Structures*, University of Göttingen, Germany, **1997**.
- [84] B. R. James, R. H. Morris, F. W. B. Einsten, A. Willis, J. Chem. Soc., Chem. Commun. 1980, 31-32.
- [85] R. Thomas, C. B. Shoemaker, K. Eriks, Acta Cryst. 1966, 21, 12-20.
- [86] G.-M. Wang, Y.-Q. Sun, G.-Y. Yang, Acta Crystallogr. Sect. E: Struct. Rep. Online 2004, 60, 705-707.
- [87] R. Minkwitz, G. Nowicki, H. Preut, Z. anorg. allg. Chem. 1992, 611, 23-27.
- [88] F. A. Kanda, A. J. King, J. Am. Chem. Soc. 1951, 73, 2315-2319.
- [89] B. Wang, S. Zhou, Y. Sun, F. Xu, R. Sun, Curr. Org. Chem. 2011, 15, 1392-1422.
- [90] G. Lucazeau, A. Lautie, A. Novak, J. Raman Spectrosc. 1975, 3, 161-176.
- [91] A. F. Cameron, F. D. Duncanson, Acta Cryst. B 1976, 32, 1563-1564.
- [92] R. L. Benoit, D. Boulet, M. Fréchette, Magn. Reson. Chem. 1989, 27, 233-236.
- [93] S. Ishizaki-Koizumi, I. Sonaka, Y. Takei, K. Ikejima, N. Sato, Biochem. Biophys. Res. Commun. 2004, 322, 514-519.
- [94] R. L. Benoit, D. Boulet, M. Fréchette, Can. J. Chem. 1988, 66, 3038-3043.
- [95] F. Tiedemann, L. Gmelin, Ann. Phys. 1827, 85, 326.
- [96] H. H. Sutherland, D. W. Young, Acta Cryst. 1963, 16, 897-901.
- [97] Y. Okaya, Acta Cryst. 1966, 21, 726-735.
- [98] L. Tao, A. L. Harris, J. Biol. Chem. 2004, 279, 38544-38554.
- [99] M. Hopfinger, K. Lux, F. Schubert, A. Kornath, Acta Crystallogr., Sect. C: Cryst. Struct.

Commun. 2011, *C67*, m400-m402.

- [100] H. Kolbe, Justus Liebigs Annalen der Chemie 1845, 54, 145-188.
- [101] G. L. Carius, *ibid.* **1860**, *114*, 142.
- [102] Collman, *ibid.* **1868**, *148*, 105.
- [103] Gowan, J. pr. Chem. 1884, 30, 281.
- [104] P. K. Dutt, J. Chem. Soc. 1924, 125, 1463.
- [105] K. Hanai, T. Okuda, T. Uno, K. Machida, Spectrochim. Acta, Part A 1975, 31A, 1221-1232.
- [106] A. Blaschette, H. Bürger, Z. anorg. allg. Chem. 1970, 378, 104-116.
- [107] L. G. Vorontsova, Zhurnal Strukturnoi Khimii 1966, 7, 280-283.
- [108] H. Fleig, M. Becke-Goehring, Z. anorg. allg. Chem. 2004, 375, 8-14.
- [109] in OPUS, 6.5 ed., 2009.
- [110] CrysAlisCCD, Version 1.171.35.11 (release 16-05-2011 CrysAlis 171.NET), Oxford Diffraction Ltd., 2011.
- [111] CrysAlisRED, Version 1.171.35.11 (release 16-05-2011 CrysAlis 171.NET), Oxford Diffraction Ltd., 2011.
- [112] L. J. Farrugia, J. Appl. Crystallogr. 1999, 32, 837-838.
- [113] A. L. Spek, PLATON, A Multipurpose Crystallographic Tool, Utrecht University, Utrecht (The Netherlands), 1999.
- [114] SCALE3 ABSPACK An Oxford Diffraction program, Oxford Diffraction Ltd., 2005.
- [115] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. M. Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision B.03, Gaussian, Inc., Pittsburgh PA, 2003.

Literatur

- [116] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1997, 78, 1396.
- [117] P. Csaszar, P. Pulay, J. Mol. Struct. 1984, 114, 31-34.

7.1 Lebenslauf

MICHELSBERGSTRASSE 6 •D-50765 KÖLN • TELEFON +49 221 94539174 • MOBIL +49 160 7359512 • E-MAIL: MATHIAS.HOPFINGER@ARCOR.DE

MATHIAS HOPFINGER

PERSÖNLICHE INFORMATION

Familienstand:	verheiratet
Geburtsort und -tag:	87668 Kaufbeuren, 11.04.1979

STUDIUM UND FORSCHUNG

seit 11/2008	Promotion in Anorganischer Chemie in der Arbeitsgruppe von
	Prof. Dr. A. Kornath: "Protonierte Schwefelsäuren"
05/2008 - 10/2008	Masterarbeit in Anorganischer Chemie in der Arbeitsgruppe von Prof.
	Dr. A. Kornath: "Sulfoniumsalze in supersauren Systemen" (Note 1.0)
04/2008	Mündliche Abschlussprüfungen im Masterstudiengang Chemie
09/2007 - 11/2007	Forschungspraktikum in der Arbeitsgruppe von Prof. Dr. K. O. Christe,
	University of Southern California, Los Angeles, CA, USA.
	"Selenium(IV) fluoride and oxofluoride anions"
10/2006 - 10/2008	Master-Studium Chemie (M.Sc.) am Department Chemie und
	Biochemie, Ludwig-Maximilians-Universität, München (Gesamtnote
	1.25)

07/2006 - 11/2006	Bachelorarbeit in Anorganischer Chemie in der Arbeitsgruppe von Prof.
	Dr. P. Klüfers: "Neue Silizium-Diolato-Komplexe" (Note 1.0)
10/2003 - 07/2006	Bachelor-Studium Chemie (B.Sc.) am Department Chemie und Biochemie, Ludwig-Maximilians-Universität, München

BERUFSERFAHRUNG

Seit 04/2012	Wacker Chemie AG (Polymerbetrieb Köln) Chemischer Sachbearbeiter Schwerpunkt: Leitung des Betriebslabors und betriebshygienische Verantwortung
12/2008 - 04/2012	ABCR GmbH <i>Wissenschaftlicher Berater</i> Schwerpunkt: Synthesen von Reinstchemikalien für die pharmazeutische Industrie
02/2002 - 10/2003	Nestlé AG (Standort Biessenhofen) <i>Chemielaborant</i> Schwerpunkt: Lebensmittelanalytik, Gaschromatographie/HPLC
BERUFSAUSBILDUNG	
09/1999 - 02/2002	Nestlé AG (Standort Biessenhofen) Ausbildung zum Chemielaboranten
WEHRDIENST	
09/1998 – 06/1999	1. Gebirgsartilleriebataillon 225, Füssen
SCHULISCHE AUSBILD	UNG
06/1998	Allgemeine Hochschulreife
09/1989 - 06/1998	Staatliches Gymnasium Kaufbeuren
09/1985 - 07/1989	Grundschule Pforzen

7.2 Publikationen

<u>Journale</u>

- 1. M. Hopfinger, K. Lux, A. Kornath, "The Protonation of Dimethyl Sulfoxide: Spectroscopical examinations of $[(CX_3)_2SOX]^+MF_6^-$ (X = H, D; M = As, Sb) and the X-Ray Structure of $[(CH_3)_2SOH^+]_4Ge_3F_{16}^{4-n}$, *ChemPlusChem* **2012**, *77*, 476-481.
- M. Hopfinger, K. Lux, F. Schubert, A. Kornath, "2-Sulfoethylammonium hexafluoridoantimonate", *Acta Crystallogr., Sect. C: Cryst. Struct. Commun.* 2011, C67, m400-m402.
- K. O. Christe, D. A. Dixon, R. Haiges, M. Hopfinger, V. E. Jackson, T. M. Klapötke, B. Krumm, M. Scherr, "Selenium(IV) fluoride and oxofluoride anions" *J. Fluorine Chem.* 2010, *131*, 791 799.
- Heiko Mueller, Mathias Hopfinger, Thomas Carell, "Synthesis of a Stabilized Version of the Imidazolone DNA Lesion" *ChemBioChem*, 2008, 9, 1617 – 1622.

<u>Vorträge</u>

 M. Hopfinger, A. Kornath, "Synthese und Charakterisierung von freien und protonierten Dischwefelsäuren H₂S₂O_x bzw. H₃S₂O_x^{+,} in supersauren Medien" vorgetragen am *Deutschen Fluortag* in Schmitten, Deutschland, **2010**.

<u>Posterpräsentationen</u>

 M. Hopfinger, A. Kornath, "Preparation and Protonation of Thiosulfuric Acid -Experimental Evidence for the Predicted (SH)(OH) Tautomer" vorgestellt am 16. Eur. Symp. on Fluorine Chem. in Ljubjana, Slowenien, 2010.

- M. Hopfinger, M. Wild, A. Kornath, "Preparation and Characterization of Protonated Dithionic Acid" vorgestellt am *16. Eur. Symp. on Fluorine Chem.* in Ljubjana, Slowenien, 2010.
- M. Hopfinger, A. Kornath, "Preparation of the Trihydroxysulfonium Cation: Protonated Sulfurous Acid" vorgestellt am *19. Int. Symp. on Fluorine Chem.* in Jackson Hole, Wyoming, USA, **2009**.

7.3 Abkürzungsverzeichnis

Abkürzung	Name
CCD	Charge Coupled Device (Ladungsgekoppeltes Bauteil)
Å	Angström
as	antisymmetrisch
bzw.	beziehungsweise
ca.	zirka
calc.	quantenchemisch berechnet
δ	Deformationsschwingung
DF	Deuteriumfluorid
DMSO	Dimethylsulfoxid
et al.	et alii
exp.	experimentell
FEP	Perfluor-(Ethylen-Propylen-)-Copolymer
FT	Fourier-Transformation
GooF	Goodnes of fit
HF	Hydrogenfluorid
IR	Infrarot
λ	Wellenlänge
m	mittel (IR)
min	Minuten
ν	Valenzschwingung
Nd-YAG	Neodym-dotierter Yttrium-Aluminium-Granat
NMR	Kernspinresonanz
Ø	Durchmesser
PFA	Perfluoralkoxyalkan
ρ	rocking-Schwingung
ка	Raman
RI	
S	Stark (IR)
Sn	
τ	
u.a.	unter anderenn
V5	sehr schwach (ID)
V VV	Schwach (IR)
vv	Schaukelschwingung (wagging)
00 7	Anzahl der Formeleinheiten in der Zelle
∠ 7 B	zum Reisniel
2.D.	